text
stringlengths
8
6.05M
from schema.user import FIELDS from cerberus import Validator from cerberus.errors import ValidationError from util.error.errors import NotValidParameterError def validate_user_create(req, res, resource, params): schema = { 'username': FIELDS['username'], 'email': FIELDS['email'], 'password': FIELDS['password'], 'details': FIELDS['details'], 'balance': FIELDS['quantity'] } validate(schema, req) def validate_login(req, res, resource, params): schema = { 'email': FIELDS['email'], 'password': FIELDS['password'] } validate(schema, req) def validate_money_transfer_create(req, res, resource, params): schema = { 'borrower': FIELDS['username'], 'quantity': FIELDS['quantity'] } validate(schema, req) def validate(schema, req): v = Validator(schema) try: if not v.validate(req.context['data']): raise NotValidParameterError(v.errors) except ValidationError: raise NotValidParameterError('Invalid request %s' % req.context)
# This file is part of AstroHOG # # Copyright (C) 2013-2017 Juan Diego Soler import numpy as np from astropy.convolution import convolve_fft from astropy.convolution import Gaussian2DKernel from congrid import * from scipy import ndimage import pycircstat as circ from nose.tools import assert_equal, assert_true import matplotlib.pyplot as plt import collections import multiprocessing # ------------------------------------------------------------------------------------------------------------------------ def HOG_PRS(phi): # Calculates the projected Rayleigh statistic of the distributions of angles phi. # # INPUTS # phi - angles between -pi/2 and pi/2 # # OUTPUTS # Zx - value of the projected Rayleigh statistic # s_Zx - # meanPhi - angles=2.*phi Zx=np.sum(np.cos(angles))/np.sqrt(np.size(angles)/2.) temp=np.sum(np.cos(angles)*np.cos(angles)) s_Zx=np.sqrt((2.*temp-Zx*Zx)/np.size(angles)) Zy=np.sum(np.sin(angles))/np.sqrt(np.size(angles)/2.) temp=np.sum(np.sin(angles)*np.sin(angles)) s_Zx=np.sqrt((2.*temp-Zy*Zy)/np.size(angles)) meanPhi=0.5*np.arctan2(Zy, Zx) return Zx, s_Zx, meanPhi # ------------------------------------------------------------------------------------------------------------------------------- def HOGvotes_simple(phi): # Calculates the correlation # # INPUTS # # OUTPUTS # # sz=np.shape(phi) corrframe=np.zeros(sz) #paraThres=20.*np.pi/180. #condPara=np.logical_and(np.isfinite(phi), np.logical_or(phi < paraThres, phi > np.pi-paraThres)).nonzero() #corrframe[condPara]=1. corrframe=np.cos(phi) corrframe[np.isnan(phi).nonzero()]=0. #np.nan Zx, s_Zx, meanPhi = HOG_PRS(phi[np.isfinite(phi).nonzero()]) return Zx, corrframe # ------------------------------------------------------------------------------------------------------------------------------- def HOGvotes_blocks(phi, wd=3): # Calculates the correlation # # INPUTS # # OUTPUTS # # sz=np.shape(phi) corrframe=np.zeros(sz) for i in range(0, sz[0]): for k in range(0, sz[1]): if (i<wd): if (k<wd): temp=phi[0:i+wd,0:k+wd]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) elif (k>sz[1]-1-wd): temp=phi[0:i+wd,k-wd:sz[1]-1]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) else: temp=phi[0:i+wd,k-wd:k+wd]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) elif (i>sz[0]-1-wd): if (k<wd): temp=phi[i-wd:sz[1]-1,0:k+wd]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) elif (k>sz[1]-1-wd): temp=phi[i-wd:sz[0]-1,k-wd:sz[1]-1]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) else: temp=phi[i-wd:sz[0]-1,k-wd:k+wd]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) elif (k<wd): if (i<wd): temp=phi[0:i+wd,0:k+wd]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) elif (i>sz[0]-1-wd): temp=phi[i-wd:sz[0]-1,0:k+wd]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) else: temp=phi[i-wd:i+wd,0:k+wd]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) elif (k>sz[1]-1-wd): if (i<wd): temp=phi[0:i+wd,k-wd:sz[1]-1]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) elif (i>sz[0]-1-wd): temp=phi[i-wd:sz[0]-1,k-wd:sz[1]-1]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) else: temp=phi[i-wd:i+wd,k-wd:sz[1]-1]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) else: temp=phi[i-wd:i+wd,k-wd:k+wd]; corrframe[i,k]=np.mean(temp[np.isfinite(temp).nonzero()]) corrframe[np.isnan(phi).nonzero()]=0. nPara=np.size(corrframe[(corrframe>0.).nonzero()]) nGood=np.size(phi[np.isfinite(phi).nonzero()]) hogcorr=nPara/float(nGood) return hogcorr, corrframe # ------------------------------------------------------------------------------------------------------------------------------- def HOGcorr_frame(frame1, frame2, gradthres1=0., gradthres2=0., pxsz=1., ksz=1., res=1., mask1=0, mask2=0, wd=1, allow_huge=False, regrid=False): # Calculates the spatial correlation between frame1 and frame2 using the HOG methods # # INPUTS # frame1 - # frame2 - # # OUTPUTS # hogcorr - # corrframe - sf=3. #Number of pixels per kernel FWHM pxksz =ksz/pxsz pxres =res/pxsz sz1=np.shape(frame1) if (ksz > 1): weight=(pxsz/ksz)**2 if (regrid): intframe1=congrid(frame1, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))]) intframe2=congrid(frame2, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))]) if np.array_equal(np.shape(frame1), np.shape(mask1)): intmask1=congrid(mask1, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))]) intmask1[(intmask1 > 0.).nonzero()]=1. if np.array_equal(np.shape(frame2), np.shape(mask2)): intmask2=congrid(mask2, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))]) intmask2[(intmask2 > 0.).nonzero()]=1. else: intframe1=frame1 intframe2=frame2 intmask1=mask1 intmask2=mask2 smoothframe1=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[0,0], mode='nearest') #convolve_fft(intframe1, Gaussian2DKernel(pxksz), allow_huge=allow_huge) smoothframe2=ndimage.filters.gaussian_filter(frame2, [pxksz, pxksz], order=[0,0], mode='nearest') #convolve_fft(intframe2, Gaussian2DKernel(pxksz), allow_huge=allow_huge) #grad1=np.gradient(smoothframe1) #grad2=np.gradient(smoothframe2) dI1dx=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[0,1], mode='nearest') dI1dy=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[1,0], mode='nearest') dI2dx=ndimage.filters.gaussian_filter(frame2, [pxksz, pxksz], order=[0,1], mode='nearest') dI2dy=ndimage.filters.gaussian_filter(frame2, [pxksz, pxksz], order=[1,0], mode='nearest') else: weight=(pxsz/res)**2 intframe1=frame1 intframe2=frame2 intmask1=mask1 intmask2=mask2 smoothframe1=frame1 smoothframe2=frame2 #grad1=np.gradient(intframe1) #grad2=np.gradient(intframe2) dI1dx=ndimage.filters.gaussian_filter(frame1, [1, 1], order=[0,1], mode='nearest') dI1dy=ndimage.filters.gaussian_filter(frame1, [1, 1], order=[1,0], mode='nearest') dI2dx=ndimage.filters.gaussian_filter(frame2, [1, 1], order=[0,1], mode='nearest') dI2dy=ndimage.filters.gaussian_filter(frame2, [1, 1], order=[1,0], mode='nearest') # Calculation of the relative orientation angles #tempphi0=np.arctan2(grad1[1]*grad2[0]-grad1[0]*grad2[1], grad1[0]*grad2[0]+grad1[1]*grad2[1]) tempphi=np.arctan2(dI1dx*dI2dy-dI1dy*dI2dx, dI1dx*dI2dx+dI1dy*dI2dy) phi=np.arctan(np.tan(tempphi)) # Excluding small gradients normGrad1=np.sqrt(dI1dx*dI1dx+dI1dy*dI1dy) #np.sqrt(grad1[1]**2+grad1[0]**2) normGrad2=np.sqrt(dI2dx*dI2dx+dI2dy*dI2dy) #np.sqrt(grad2[1]**2+grad2[0]**2) bad=np.logical_or(normGrad1 <= gradthres1, normGrad2 <= gradthres2).nonzero() phi[bad]=np.nan corrframe=phi#np.cos(2.*phi) # Excluding masked regions if np.array_equal(np.shape(intframe1), np.shape(intmask1)): corrframe[(intmask1 == 0.).nonzero()]=np.nan if np.array_equal(np.shape(intframe2), np.shape(intmask2)): corrframe[(intmask2 == 0.).nonzero()]=np.nan good=np.logical_and(np.logical_and(np.isfinite(phi), intmask1 > 0), intmask2 > 0).nonzero() else: good=np.logical_and(np.isfinite(phi), intmask1 > 0).nonzero() else: good=np.isfinite(phi).nonzero() Zx, s_Zx, meanPhi = HOG_PRS(phi[good]) wghts=0.*phi[good]+weight rvl=circ.descriptive.resultant_vector_length(2.*phi[good], w=wghts) can=circ.descriptive.mean(2.*phi[good], w=wghts)/2. pz, Z = circ.tests.rayleigh(2.*phi[good], w=wghts) pv, V = circ.tests.vtest(2.*phi[good], 0., w=wghts) #if (wd > 1): # hogcorr, corrframe =HOGvotes_blocks(phi, wd=wd) #else: # hogcorr, corrframe =HOGvotes_simple(phi) circstats=[rvl, Z, V, pz, pv] return circstats, corrframe, smoothframe1, smoothframe2 #return Zx, corrframe, smoothframe1 # ------------------------------------------------------------------------------------------------------------------------------- def HOGcorr_frameandvec(frame1, vecx, vecy, gradthres=0., vecthres=0., pxsz=1., ksz=1., res=1., mask1=0, mask2=0, wd=1, allow_huge=False, regrid=False): # Calculates the spatial correlation between frame1 and the vector field described by vecx and vecy using the HOG methods # # INPUTS # frame1 - input map # vecx - x-component of the input vector field # vecy - y-component of the input vector field # # OUTPUTS # hogcorr - # corrframe - sf=3. #Number of pixels per kernel FWHM pxksz =ksz/pxsz pxres =res/pxsz sz1=np.shape(frame1) if (ksz > 1): if (regrid): intframe1=congrid(frame1, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))]) intvecx =congrid(vecx, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))]) intvecy =congrid(vecy, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))]) if np.array_equal(np.shape(frame1), np.shape(mask1)): intmask1=congrid(mask1, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))]) intmask1[(intmask1 > 0.).nonzero()]=1. if np.array_equal(np.shape(frame2), np.shape(mask2)): intmask2=congrid(mask2, [np.int(np.round(sf*sz1[0]/pxres)), np.int(np.round(sf*sz1[1]/pxres))]) intmask2[(intmask2 > 0.).nonzero()]=1. else: intframe1=frame1 intvecx=vecx intvecy=vecy intmask1=mask1 intmask2=mask2 #smoothframe1=convolve_fft(intframe1, Gaussian2DKernel(pxksz), allow_huge=allow_huge) smoothframe1=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[0,0], mode='nearest') #grad1=np.gradient(smoothframe1) dI1dx=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[0,1], mode='nearest') dI1dy=ndimage.filters.gaussian_filter(frame1, [pxksz, pxksz], order=[1,0], mode='nearest') else: intframe1=frame1 smoothframe1=frame1 intvecx=vecx intvecy=vecy intmask1=mask1 intmask2=mask2 #grad1=np.gradient(intframe1) dI1dx=ndimage.filters.gaussian_filter(frame1, [1, 1], order=[0,1], mode='nearest') dI1dy=ndimage.filters.gaussian_filter(frame1, [1, 1], order=[1,0], mode='nearest') # ======================================================================================================================== normGrad1=np.sqrt(dI1dx*dI1dx+dI1dy*dI1dy) #np.sqrt(grad1[1]**2+grad1[0]**2) normVec=np.sqrt(intvecx*intvecx + intvecy*intvecy) bad=np.logical_or(normGrad1 <= gradthres, normVec <= vecthres).nonzero() normGrad1[bad]=1.; normVec[bad]=1.; #tempphi=np.arctan2(grad1[1]*intvecy-grad1[0]*intvecx, grad1[1]*intvecx+grad1[0]*intvecy) tempphi=np.arctan2(dI1dx*intvecy-dI1dy*intvecx, dI1dx*intvecx+dI1dy*intvecy) tempphi[bad]=np.nan phi=np.arctan(np.tan(tempphi)) #if np.array_equal(np.shape(frame1), np.shape(mask1)): # if np.array_equal(np.shape(normVec), np.shape(mask2)): # phi[np.logical_or(mask1==0, mask2==0).nonzero()]=np.nan # good=np.logical_and(mask1 > 0., mask2 > 0.).nonzero() # else: # phi[(mask1==0).nonzero()]=np.nan # good=(mask1 > 0.).nonzero() #else: # good=np.isfinite(phi).nonzero() corrframe=np.cos(2.*phi) if np.array_equal(np.shape(intframe1), np.shape(intmask1)): corrframe[(intmask1 == 0.).nonzero()]=np.nan if np.array_equal(np.shape(intvecx), np.shape(intmask2)): corrframe[(intmask2 == 0.).nonzero()]=np.nan good=np.logical_and(np.logical_and(np.isfinite(phi), intmask1 > 0), intmask2 > 0).nonzero() else: good=np.logical_and(np.isfinite(phi), intmask1 > 0).nonzero() else: good=np.isfinite(phi).nonzero() Zx, s_Zx, meanPhi = HOG_PRS(phi[good]) #if (wd > 1): # hogcorr, corrframe =HOGvotes_blocks(phi, wd=wd) #else: # hogcorr, corrframe =HOGvotes_simple(phi) #plt.imshow(phi, origin='lower') #plt.colorbar() #plt.show() #import pdb; pdb.set_trace() return Zx, corrframe, smoothframe1 # ================================================================================================================ def HOGcorr_cube(cube1, cube2, z1min, z1max, z2min, z2max, pxsz=1., ksz=1., res=1., mask1=0, mask2=0, wd=1, gradthres1=0., gradthres2=0., regrid=False, allow_huge=False): # Calculates the correlation # # INPUTS # # OUTPUTS # # print('Computing HOG correlation') print(z1max-z1min+1,z2max-z2min+1) sf=3. #Number of pixels per kernel FWHM pxksz =ksz/pxsz pxres =res/pxsz sz1=np.shape(cube1) sz2=np.shape(cube2) rplane=np.zeros([z1max+1-z1min, z2max+1-z2min]) zplane=np.zeros([z1max+1-z1min, z2max+1-z2min]) vplane=np.zeros([z1max+1-z1min, z2max+1-z2min]) pzplane=np.zeros([z1max+1-z1min, z2max+1-z2min]) pvplane=np.zeros([z1max+1-z1min, z2max+1-z2min]) corrplane=np.zeros([z1max+1-z1min, z2max+1-z2min]) corrframe=np.zeros([sz1[1],sz1[2]]) scube1=np.zeros(sz1) scube2=np.zeros(sz2) #if (regrid): # corrcube=np.zeros([sz1[0], np.int(np.round(sf*sz1[1]/pxres)), np.int(np.round(sf*sz1[2]/pxres))]) #np.zeros(sz1) # corrframe_temp=np.zeros([np.int(np.round(sf*sz1[1]/pxres)), np.int(np.round(sf*sz1[2]/pxres))]) #np.zeros([sz1[1],sz1[2]]) # maskcube=np.zeros([sz1[0], np.int(np.round(sf*sz1[1]/pxres)), np.int(np.round(sf*sz1[2]/pxres))]) #np.zeros(sz1) #else: corrcube=np.zeros([z1max+1-z1min, z2max+1-z2min,sz1[1],sz1[2]]) corrframe_temp=np.zeros([sz1[1],sz1[2]]) maskcube=np.zeros(sz1) for i in range(z1min, z1max+1): for k in range(z2min, z2max+1): print(i-z1min,k-z2min) frame1=cube1[i,:,:] frame2=cube2[k,:,:] if np.array_equal(np.shape(cube1), np.shape(mask1)): if np.array_equal(np.shape(cube2), np.shape(mask2)): circstats, corrframe, sframe1, sframe2 = HOGcorr_frame(frame1, frame2, pxsz=pxsz, ksz=ksz, res=res, mask1=mask1[i,:,:], mask2=mask2[k,:,:], gradthres1=gradthres1, gradthres2=gradthres2, wd=wd, regrid=regrid, allow_huge=allow_huge) else: circstats, corrframe, sframe1, sframe2 = HOGcorr_frame(frame1, frame2, pxsz=pxsz, ksz=ksz, res=res, mask1=mask1[i,:,:], gradthres1=gradthres1, gradthres2=gradthres2, wd=wd, regrid=regrid, allow_huge=allow_huge) else: circstats, corrframe, sframe1, sframe2 = HOGcorr_frame(frame1, frame2, ksz=ksz, gradthres1=gradthres1, gradthres2=gradthres2, wd=wd, allow_huge=allow_huge) rplane[i-z1min,k-z2min]=circstats[0] zplane[i-z1min,k-z2min]=circstats[1] vplane[i-z1min,k-z2min]=circstats[2] pzplane[i-z1min,k-z2min]=circstats[3] pvplane[i-z1min,k-z2min]=circstats[4] corrcube[i-z1min,k-z2min,:,:]=corrframe scube2[k,:,:]=sframe2 scube1[i,:,:]=sframe1 #import pdb; pdb.set_trace() #return corrplane, corrcube, scube1, scube2 return [rplane,zplane,vplane,pzplane,pvplane], corrcube, scube1, scube2 # ================================================================================================================ def HOGcorr_cubeandpol(cube1, ex, ey, z1min, z1max, pxsz=1., ksz=1., res=1., mask1=0, mask2=0, wd=1, rotatepol=False, regrid=False, allow_huge=False): # Calculates the correlation # # INPUTS # # OUTPUTS # # print('Computing HOG correlation') print(z1max-z1min) sf=3. #Number of pixels per kernel FWHM pxksz =ksz/pxsz pxres =res/pxsz sz1=np.shape(cube1) sz2=np.shape(ex) if(rotatepol): xvec= ey yvec=-ex else: xvec= ex yvec= ey normVec=np.sqrt(xvec*xvec+yvec*yvec) corrvec=0.*np.arange(z1min,z1max+1) corrframe=np.zeros([sz1[1],sz1[2]]) corrcube=np.zeros(sz1) scube=np.zeros(sz1) for i in range(z1min, z1max+1): print(i-z1min) if np.array_equal(np.shape(cube1), np.shape(mask1)): if np.array_equal(np.shape(normVec), np.shape(mask2)): corr, corrframe, sframe = HOGcorr_frameandvec(cube1[i,:,:], xvec, yvec, pxsz=pxsz, ksz=ksz, res=res, mask1=mask1[i,:,:], mask2=mask2, wd=wd, regrid=regrid) else: corr, corrframe, sframe = HOGcorr_frameandvec(cube1[i,:,:], xvec, yvec, pxsz=pxsz, ksz=ksz, res=res, mask1=mask1[i,:,:], wd=wd, regrid=regrid) else: corr, corrframe, sframe = HOGcorr_frameandvec(cube1[i,:,:], xvec, yvec, pxsz=pxsz, ksz=ksz, res=res, wd=wd, regrid=regrid) corrvec[i-z1min]=corr #corrcube[i-z1min]=corrframe corrcube[i,:,:]=corrframe scube[i,:,:]=sframe return corrvec, corrcube, scube
from selenium import webdriver import time a=webdriver.Chrome() a.get("http://www.baidu.com") a.maximize_window() a.find_element_by_id('kw').send_keys('哈哈哈 kimoji') a.find_element_by_xpath("") #相对定位 以//开头 //标签名[@属性名=值 and 或者or ]例如 //input[@name="wd" and @autocomplete="off"] #层级定位 //父标签[@属性名-值]/子标签[@属性名-值]//子孙标签[@属性名-值] #绝对定位 依赖页面的顺序和位置 以/开头,例如/html/div/... a.find_element_by_id('su').submit() time.sleep(15)
from collections import defaultdict d = defaultdict(list) d['a'].append(1) d['a'].append(2) d['b'].append(4) print d d = defaultdict(set) d['a'].add(1) d['a'].add(2) d['b'].add(4) print d d = {} d.setdefault('a', []).append(1) d.setdefault('a', []).append(2) d.setdefault('b', []).append(4) print d print d['a'][1] ''' d = defaultdict(list) for key, value in pairs: d.[key].append(value) '''
import time base=float(input("Please enter the base of the triangle :")) height = float(input("Please enter the height of the triangle :")) print("Calculating area of triangle on the basis of your input ...") area=(0.5)*base*height time.sleep(1) print("AREA :",area)
import click import confuse import sqlalchemy.dialects from .alias import alias from .domain import domain from .user import user cfg = confuse.Configuration("vmail-manager", __name__) @click.group(context_settings=dict(max_content_width=120)) @click.option( "--dialect", type=click.Choice(sqlalchemy.dialects.__all__), help="Dialect of the Database.", ) @click.option( "--driver", type=click.STRING, help="Driver to connect to the database host.", ) @click.option( "--host", "-h", type=click.STRING, help="Hostname of the database host.", ) @click.option( "--port", "-p", type=click.INT, help="Port number of Database host.", ) @click.option( "--username", "-u", type=click.STRING, ) @click.option( "--password", "-p", type=click.STRING, help="Provide password via cli. If no value is given, prompt for entering password will be shown.", ) @click.option( "--database", "-d", type=click.STRING, help="Name of the database", ) @click.pass_context def cli(ctx, dialect, driver, host, port, username, password, database): """Management of database for vmail-setup. User config is loaded from ~/.config/vmail-manager/config.yaml. Priority of options are OPTIONS > USER-CONFIG > DEFAULTS. """ for param in [ ("dialect", dialect), ("driver", driver), ("host", host), ("port", port), ("username", username), ("password", password), ("database", database), ]: if param[1] is not None: cfg["DB"][param[0]] = param[1] if cfg["DB"]["password"].get() is None: cfg["DB"]["password"] = click.prompt("Password", hide_input=True) ctx.obj = cfg pass cli.add_command(domain) cli.add_command(user) cli.add_command(alias)
import collections import os from xml.etree.ElementTree import Element as ET_Element from .vision import VisionDataset try: from defusedxml.ElementTree import parse as ET_parse except ImportError: from xml.etree.ElementTree import parse as ET_parse from typing import Any, Callable, Dict, List, Optional, Tuple from PIL import Image from .utils import download_and_extract_archive, verify_str_arg DATASET_YEAR_DICT = { "2012": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar", "filename": "VOCtrainval_11-May-2012.tar", "md5": "6cd6e144f989b92b3379bac3b3de84fd", "base_dir": os.path.join("VOCdevkit", "VOC2012"), }, "2011": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar", "filename": "VOCtrainval_25-May-2011.tar", "md5": "6c3384ef61512963050cb5d687e5bf1e", "base_dir": os.path.join("TrainVal", "VOCdevkit", "VOC2011"), }, "2010": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar", "filename": "VOCtrainval_03-May-2010.tar", "md5": "da459979d0c395079b5c75ee67908abb", "base_dir": os.path.join("VOCdevkit", "VOC2010"), }, "2009": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar", "filename": "VOCtrainval_11-May-2009.tar", "md5": "a3e00b113cfcfebf17e343f59da3caa1", "base_dir": os.path.join("VOCdevkit", "VOC2009"), }, "2008": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar", "filename": "VOCtrainval_11-May-2012.tar", "md5": "2629fa636546599198acfcfbfcf1904a", "base_dir": os.path.join("VOCdevkit", "VOC2008"), }, "2007": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar", "filename": "VOCtrainval_06-Nov-2007.tar", "md5": "c52e279531787c972589f7e41ab4ae64", "base_dir": os.path.join("VOCdevkit", "VOC2007"), }, "2007-test": { "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar", "filename": "VOCtest_06-Nov-2007.tar", "md5": "b6e924de25625d8de591ea690078ad9f", "base_dir": os.path.join("VOCdevkit", "VOC2007"), }, } class _VOCBase(VisionDataset): _SPLITS_DIR: str _TARGET_DIR: str _TARGET_FILE_EXT: str def __init__( self, root: str, year: str = "2012", image_set: str = "train", download: bool = False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None, ): super().__init__(root, transforms, transform, target_transform) self.year = verify_str_arg(year, "year", valid_values=[str(yr) for yr in range(2007, 2013)]) valid_image_sets = ["train", "trainval", "val"] if year == "2007": valid_image_sets.append("test") self.image_set = verify_str_arg(image_set, "image_set", valid_image_sets) key = "2007-test" if year == "2007" and image_set == "test" else year dataset_year_dict = DATASET_YEAR_DICT[key] self.url = dataset_year_dict["url"] self.filename = dataset_year_dict["filename"] self.md5 = dataset_year_dict["md5"] base_dir = dataset_year_dict["base_dir"] voc_root = os.path.join(self.root, base_dir) if download: download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.md5) if not os.path.isdir(voc_root): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") splits_dir = os.path.join(voc_root, "ImageSets", self._SPLITS_DIR) split_f = os.path.join(splits_dir, image_set.rstrip("\n") + ".txt") with open(os.path.join(split_f)) as f: file_names = [x.strip() for x in f.readlines()] image_dir = os.path.join(voc_root, "JPEGImages") self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names] target_dir = os.path.join(voc_root, self._TARGET_DIR) self.targets = [os.path.join(target_dir, x + self._TARGET_FILE_EXT) for x in file_names] assert len(self.images) == len(self.targets) def __len__(self) -> int: return len(self.images) class VOCSegmentation(_VOCBase): """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset. Args: root (string): Root directory of the VOC Dataset. year (string, optional): The dataset year, supports years ``"2007"`` to ``"2012"``. image_set (string, optional): Select the image_set to use, ``"train"``, ``"trainval"`` or ``"val"``. If ``year=="2007"``, can also be ``"test"``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. """ _SPLITS_DIR = "Segmentation" _TARGET_DIR = "SegmentationClass" _TARGET_FILE_EXT = ".png" @property def masks(self) -> List[str]: return self.targets def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is the image segmentation. """ img = Image.open(self.images[index]).convert("RGB") target = Image.open(self.masks[index]) if self.transforms is not None: img, target = self.transforms(img, target) return img, target class VOCDetection(_VOCBase): """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Detection Dataset. Args: root (string): Root directory of the VOC Dataset. year (string, optional): The dataset year, supports years ``"2007"`` to ``"2012"``. image_set (string, optional): Select the image_set to use, ``"train"``, ``"trainval"`` or ``"val"``. If ``year=="2007"``, can also be ``"test"``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. (default: alphabetic indexing of VOC's 20 classes). transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, required): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. """ _SPLITS_DIR = "Main" _TARGET_DIR = "Annotations" _TARGET_FILE_EXT = ".xml" @property def annotations(self) -> List[str]: return self.targets def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a dictionary of the XML tree. """ img = Image.open(self.images[index]).convert("RGB") target = self.parse_voc_xml(ET_parse(self.annotations[index]).getroot()) if self.transforms is not None: img, target = self.transforms(img, target) return img, target @staticmethod def parse_voc_xml(node: ET_Element) -> Dict[str, Any]: voc_dict: Dict[str, Any] = {} children = list(node) if children: def_dic: Dict[str, Any] = collections.defaultdict(list) for dc in map(VOCDetection.parse_voc_xml, children): for ind, v in dc.items(): def_dic[ind].append(v) if node.tag == "annotation": def_dic["object"] = [def_dic["object"]] voc_dict = {node.tag: {ind: v[0] if len(v) == 1 else v for ind, v in def_dic.items()}} if node.text: text = node.text.strip() if not children: voc_dict[node.tag] = text return voc_dict
###################################################################### #Programmer: Mateusz Przezdziecki date: 1/30/21 #File: prac_proj_1.py #Purpose: Change the color of a single color. ###################################################################### import numpy as np import matplotlib.image as mpimg # mpimg.imread(path) import matplotlib.pyplot as plt # plt.imshow(np.array) from scipy.ndimage import generic_filter, convolve import cv2 # cv2.kmeans and prebuilt computer vision functions ie grayscale #Load image and make a copy image = mpimg.imread('salad.jpg') plt.imshow(output_image) plt.show()
import sys sys.path.append('../queue_and_stack') from dll_queue import Queue from dll_stack import Stack from queue import Queue class BinarySearchTree: def __init__(self, value): self.value = value self.left = None self.right = None # Insert the given value into the tree def insert(self, value): if value < self.value: if self.left is not None: self.left.insert(value) # Base case else: self.left = BinarySearchTree(value) # If value is greater than or equal to self.value... else: if self.right is not None: self.right.insert(value) # Base case else: self.right = BinarySearchTree(value) # Return True if the tree contains the value # False if it does not def contains(self, target): # Base case if target == self.value: return True if target < self.value: if self.left is not None: return self.left.contains(target) # Base case else: return False if target > self.value: if self.right is not None: return self.right.contains(target) # Base case else: return False # Return the maximum value found in the tree def get_max(self): def determine_max(prev_max, tree): if tree.value >= prev_max: if tree.right is not None: return determine_max(prev_max, tree.right) else: prev_max = tree.value return prev_max # If tree.value is less than the prev max... else: return prev_max return determine_max(self.value, self) # Call the function `cb` on the value of each node # You may use a recursive or iterative approach def for_each(self, cb): cb(self.value) if self.left is not None: self.left.for_each(cb) if self.right is not None: self.right.for_each(cb) # DAY 2 Project ----------------------- # Print all the values in order from low to high # Hint: Use a recursive, depth first traversal def in_order_print(self, node): _list = [] def keep_track(node): if node is None: return else: _list.append(node.value) keep_track(node.left) keep_track(node.right) keep_track(self) _list.sort() for item in _list: print(item) # Print the value of every node, starting with the given node, # in an iterative breadth first traversal def bft_print(self, node): q = Queue() q.put(node) while not q.empty(): _node = q.get() print(_node.value) if _node.left is not None: q.put(_node.left) if _node.right is not None: q.put(_node.right) # Print the value of every node, starting with the given node, # in an iterative depth first traversal def dft_print(self, node): print(node.value) if self.left is not None: self.left.dft_print(node.left) if self.right is not None: self.right.dft_print(node.right) # STRETCH Goals ------------------------- # Note: Research may be required # Print Pre-order recursive DFT def pre_order_dft(self, node): pass # Print Post-order recursive DFT def post_order_dft(self, node): pass
#!/home/zcyang/git/script/Python/venv/bin/python from ddos import Control_ddos import sys aclname = "acl1" if __name__ == "__main__": ar = sys.argv ob = Control_ddos("10.0.100.114") if ar[1] == "s1": print(ob.send_command("show ddos global acl-ipv4")) if ar[1] == "s2": print(ob.send_command("show ddos global address4")) if ar[1] == "s3": print(ob.send_command("show ddos global addressgrp")) if ar[1] == "s4": print(ob.send_command("show ddos global service")) if ar[1] == "d1": args = {"variable_dict": {"aname": ar[2]}, "template": "del_acl.txt"} print(ob.control_config(**args)) if ar[1] == "d2": args = {"variable_dict": {"aname": ar[2]}, "template": "del_address.txt"} print(ob.control_config(**args)) if ar[1] == "d3": args = {"variable_dict": {"gname": ar[2]}, "template": "del_group.txt"} print(ob.control_config(**args)) if ar[1] == "d4": args = {"variable_dict": {"sname": ar[2]}, "template": "del_service.txt"} print(ob.control_config(**args)) if ar[1] == "a11": args = {"variable_dict": {"aname": aclname, "sname": ar[2]}, "template": "add_acl_sourcea.txt"} print(ob.control_config(**args)) if ar[1] == "a12": args = {"variable_dict": {"aname": aclname, "gname": ar[2]}, "template": "add_acl_sourceg.txt"} print(ob.control_config(**args)) if ar[1] == "a13": args = {"variable_dict": {"aname": aclname, "sname": ar[2]}, "template": "add_acl_dsta.txt"} print(ob.control_config(**args)) if ar[1] == "a14": args = {"variable_dict": {"aname": aclname, "gname": ar[2]}, "template": "add_acl_dstg.txt"} print(ob.control_config(**args)) if ar[1] == "a15": args = {"variable_dict": {"aname": aclname, "sname": ar[2]}, "template": "add_acl_service.txt"} print(ob.control_config(**args)) if ar[1] == "a16": args = {"variable_dict": {"aname": aclname, "gname": ar[2]}, "template": "add_acl_serviceg.txt"} print(ob.control_config(**args)) if ar[1] == "a2": args = {"variable_dict": {"aname": ar[2], "ip": ar[3]}, "template": "add_address_mask.txt"} print(ob.control_config(**args)) if ar[1] == "a21": args = {"variable_dict": {"aname": ar[2], "sip": ar[3], "bip": ar[4]}, "template": "add_address_range.txt"} print(ob.control_config(**args)) if ar[1] == "a3": args = {"variable_dict": {"gname": ar[2], "sname": ar[3]}, "template": "add_group.txt"} print(ob.control_config(**args)) if ar[1] == "a41": args = {"variable_dict": {"sname": ar[2], "sport": ar[3], "bport": ar[4]}, "template": "add_service_dport.txt"} print(ob.control_config(**args)) if ar[1] == "a42": args = {"variable_dict": {"sname": ar[2], "sport": ar[3], "bport": ar[4]}, "template": "add_service_sport.txt"} print(ob.control_config(**args)) if ar[1] == "a43": args = {"variable_dict": {"sname": ar[2], "type": ar[3]}, "template": "add_service_type.txt"} print(ob.control_config(**args))
AIRPORTS = {'origin': 'x', 'destination': 'y'} TEMPERATURES = {'x': 'temperature_x', 'y': 'temperature_y'} PRECIPITATION = {'x': 'precipitation_x', 'y': 'precipitation_y'} VISIBILITY = {'x': 'visibility_x', 'y': 'visibility_y'} WINDSPEED = {'x': 'wind_speed_x', 'y': 'wind_speed_y'} CATEGORICAL_INPUTS = ['carrier_code', 'day', 'weekday', 'month', 'origin_airport', 'destination_airport'] CONTINUOUS_INPUTS = ['scheduled_elapsed_time', 'scheduled_departure_dt', 'temperature_x', 'precipitation_x', 'visibility_x', 'wind_speed_x', 'temperature_y', 'precipitation_y', 'visibility_y', 'wind_speed_y'] INPUT_NAMES = {'carrier_code', 'origin_airport', 'destination_airport', 'day', 'month', 'weekday', 'scheduled_departure_dt', 'scheduled_elapsed_time', 'temperature', 'precipitation', 'visibility', 'wind_speed'} DATETIME_FORMAT = '%d/%m/%y %H:%M'
import pockexport.export import json import pickle from load.gsheet import Gsheet def extract_pocket(consumer_key, access_token): pocketData = pockexport.export.get_json(consumer_key=consumer_key, access_token=access_token) with open('source/pocket/all.json', 'w') as outfile: json.dump(pocketData,outfile,indent=2) def extract_gsheet(id, range): pocket_spreadsheet = Gsheet(id, range) pocket_spreadsheet_data = pocket_spreadsheet.get()['values'] with open('source/pocket/loaded.pickle', 'wb') as outfile: pickle.dump(pocket_spreadsheet_data, outfile)
''' Author: MK_Devil Date: 2022-01-13 11:13:09 LastEditTime: 2022-01-14 14:13:31 LastEditors: MK_Devil ''' #!/usr/bin/env python # -*- coding:utf-8 -*- import sqlite3 # 建立数据库连接 conn = sqlite3.connect(r'.\实例\4、sqlite3\Alchemy.db') # 创建游标 cur = conn.cursor() # 查询输出所有 # cur.execute(r'select * from material') # print(cur.fetchall())
#!/usr/bin/env python # Copyright (c) 2013 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Verifies library_dirs (in link_settings) are properly found. """ import sys import TestGyp test = TestGyp.TestGyp() lib_dir = test.tempdir('secret_location') test.run_gyp('test.gyp', '-D', 'abs_path_to_secret_library_location={0}'.format(lib_dir), chdir='subdir') # Must build each target independently, since they are not in each others' # 'dependencies' (test.ALL does NOT work here for some builders, and in any case # would not ensure the correct ordering). test.build('test.gyp', 'mylib', chdir='subdir') test.build('test.gyp', 'libraries-search-path-test', chdir='subdir') expect = """Hello world """ test.run_built_executable( 'libraries-search-path-test', chdir='subdir', stdout=expect) if sys.platform in ('win32', 'cygwin'): test.run_gyp('test-win.gyp', '-D', 'abs_path_to_secret_library_location={0}'.format(lib_dir), chdir='subdir') test.build('test.gyp', 'mylib', chdir='subdir') test.build('test-win.gyp', 'libraries-search-path-test-lib-suffix', chdir='subdir') test.run_built_executable( 'libraries-search-path-test-lib-suffix', chdir='subdir', stdout=expect) test.pass_test() test.cleanup()
# Copyright 2019 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import os import pytest from pants.fs.fs import safe_filename class FixedDigest: def __init__(self, size): self._size = size def update(self, value): pass def hexdigest(self): return self._size * "*" def test_bad_name() -> None: with pytest.raises(ValueError): safe_filename(os.path.join("more", "than", "a", "name.game")) def test_noop() -> None: assert "jack.jill" == safe_filename("jack", ".jill", max_length=9) assert "jack.jill" == safe_filename("jack", ".jill", max_length=100) def test_shorten() -> None: assert "**.jill" == safe_filename("jack", ".jill", digest=FixedDigest(2), max_length=8) def test_shorten_readable() -> None: assert "j.**.e.jill" == safe_filename( "jackalope", ".jill", digest=FixedDigest(2), max_length=11 ) def test_shorten_fail() -> None: with pytest.raises(ValueError): safe_filename("jack", ".beanstalk", digest=FixedDigest(3), max_length=12)
import click import numpy as np import logging import pickle from sklearn.preprocessing import RobustScaler from sklearn.utils import check_random_state from recnn.preprocessing import rewrite_content from recnn.preprocessing import permute_by_pt from recnn.preprocessing import extract from recnn.recnn import event_predict logging.basicConfig(level=logging.INFO, format="[%(asctime)s %(levelname)s] %(message)s") @click.command() @click.argument("filename_train") @click.argument("filename_test") @click.argument("filename_model") @click.argument("n_events_train") @click.argument("n_events_test") @click.argument("filename_output") @click.option("--pflow", is_flag=True, default=False) @click.option("--n_jets_per_event", default=10) @click.option("--random_state", default=1) def test(filename_train, filename_test, filename_model, n_events_train, n_events_test, filename_output, pflow=False, n_jets_per_event=10, random_state=1): # Initialization n_events_train = int(n_events_train) n_events_test = int(n_events_test) logging.info("Calling with...") logging.info("\tfilename_train = %s" % filename_train) logging.info("\tfilename_test = %s" % filename_test) logging.info("\tfilename_model = %s" % filename_model) logging.info("\tn_events_train = %d" % n_events_train) logging.info("\tn_events_test = %d" % n_events_test) logging.info("\tfilename_output = %s" % filename_output) logging.info("\tpflow = %s" % pflow) logging.info("\tn_jets_per_event = %d" % n_jets_per_event) logging.info("\trandom_state = %d" % random_state) rng = check_random_state(random_state) # Make data logging.info("Loading train data + preprocessing...") fd = open(filename_train, "rb") # training file is assumed to be formatted a sequence of pickled pairs # (e_i, y_i), where e_i is a list of (phi, eta, pt, mass, jet) tuples. X = [] y = [] for i in range(n_events_train): e_i, y_i = pickle.load(fd) original_features = [] jets = [] for j, (phi, eta, pt, mass, jet) in enumerate(e_i[:n_jets_per_event]): if len(jet["tree"]) > 1: original_features.append((phi, eta, pt, mass)) jet = extract(permute_by_pt(rewrite_content(jet)), pflow=pflow) jets.append(jet) if len(jets) == n_jets_per_event: X.append([np.array(original_features), jets]) y.append(y_i) y = np.array(y) fd.close() logging.info("\tfilename = %s" % filename_train) logging.info("\tX size = %d" % len(X)) logging.info("\ty size = %d" % len(y)) # Building scalers logging.info("Building scalers...") tf_features = RobustScaler().fit( np.vstack([features for features, _ in X])) tf_content = RobustScaler().fit( np.vstack([j["content"] for _, jets in X for j in jets])) X = None y = None # Loading test data logging.info("Loading test data + preprocessing...") fd = open(filename_test, "rb") # training file is assumed to be formatted a sequence of pickled pairs # (e_i, y_i), where e_i is a list of (phi, eta, pt, mass, jet) tuples. X = [] y = [] for i in range(n_events_test): e_i, y_i = pickle.load(fd) original_features = [] jets = [] for j, (phi, eta, pt, mass, jet) in enumerate(e_i[:n_jets_per_event]): if len(jet["tree"]) > 1: original_features.append((phi, eta, pt, mass)) jet = extract(permute_by_pt(rewrite_content(jet)), pflow=pflow) jets.append(jet) if len(jets) == n_jets_per_event: X.append([np.array(original_features), jets]) y.append(y_i) y = np.array(y) fd.close() logging.info("\tfilename = %s" % filename_train) logging.info("\tX size = %d" % len(X)) logging.info("\ty size = %d" % len(y)) # Scaling logging.info("Scaling...") for i in range(len(X)): X[i][0] = tf_features.transform(X[i][0]) for j in X[i][1]: j["content"] = tf_content.transform(j["content"]) # Testing logging.info("Testing...") predict = event_predict fd = open(filename_model, "rb") params = pickle.load(fd) fd.close() all_y_pred = [] for start in range(0, len(y), 1000): y_pred = predict(params, X[start:start+1000], n_jets_per_event=n_jets_per_event) all_y_pred.append(y_pred) y_pred = np.concatenate(all_y_pred) # Save output = np.hstack((y.reshape(-1, 1), y_pred.reshape(-1, 1))) fd = open(filename_output, "wb") pickle.dump(output, fd, protocol=2) fd.close() if __name__ == "__main__": test()
#!/usr/bin/env python # coding: utf-8 # In[1]: import cv2 # pip install opencv-python import readInput # this is not a package, this is a local file (located in the folder) import pandas as pd from sklearn.decomposition import PCA import numpy as np import time import pickle import os import sys # In[2]: dir_path = os.path.dirname(os.path.realpath(__file__)) os.chdir(dir_path) def create_SVM(): svm = cv2.ml.SVM_create() svm.setType(cv2.ml.SVM_C_SVC) svm.setKernel(cv2.ml.SVM_RBF) svm.setC(0.1) svm.setGamma(0.1) return svm def getHogDescriptors(img_arr): # HOG Parameters: winSize = 32 blockSize = 12 blockStride = 4 cellSize = 4 nbins = 18 derivAperture = 1 winSigma = -1. histogramNormType = 0 L2HysThreshold = 0.2 gammaCorrection = True nlevels = 64 signedGradient = True hog = cv2.HOGDescriptor((winSize,winSize),(blockSize, blockSize),(blockStride,blockStride),(cellSize,cellSize),nbins,derivAperture, winSigma,histogramNormType,L2HysThreshold,gammaCorrection,nlevels,signedGradient) return np.array([hog.compute(img).flatten() for img in img_arr]) def getPCA(X_train): t1 = time.time() pca = PCA(3000) pca.fit(X_train) print('dumping pca file.') with open('SvmHogPca', 'wb') as writeFile: pickle.dump(pca, writeFile) print(f'pca took {time.time()-t1} seconds.') return pca def trainHogSvmClassifier(): print('Training HOG + SVM Classifier') svm = create_SVM() train_img_arr, y_train = readInput.readTrainData() X_train = getHogDescriptors(train_img_arr) pca = getPCA(X_train) X_train = pca.transform(X_train) t2 = time.time() svm.train(np.asarray(X_train), cv2.ml.ROW_SAMPLE, np.asarray(y_train, dtype=np.int32)) print(f'SVM training took {time.time()-t2} seconds') print('Dumping classifier to file.') svm.save('SvmHogModel') return svm, pca def predictTestData(svm, pca): t1 = time.time() test_img_arr, y_test = readInput.readTestData() X_test = getHogDescriptors(test_img_arr) X_test = pca.transform(X_test) predictions = svm.predict(np.asarray(X_test))[1].ravel() accuracy = (y_test == predictions).mean() print(f'Test Accuracy = {accuracy*100} %.') print(f'Predicted in {time.time()-t1} seconds.') pred_df = pd.DataFrame(data={'Predictions' : predictions, 'Actual' : y_test}) return pred_df def saveDfToCsv(df): df.to_csv('mod_2_PredictionsHogSvm.csv') print('Saved Predictions.csv') # In[3]: def getClassifier(arg): if arg.lower() == 'forcetrain': clf_svm, pca = trainHogSvmClassifier() else: try: print('opening pre-trained model file.') #with open(r"SvmHogModel", "rb") as inputFile: clf_svm = cv2.ml.SVM_load('SvmHogModel') with open(r"SvmHogPca", "rb") as inputFile: pca = pickle.load(inputFile) print('Loaded Pre-trained HogSVM classifier and pca.') except FileNotFoundError: print('File not found. Initiate Force Training.') clf_svm, pca = trainHogSvmClassifier() return clf_svm, pca # In[4]: def main(arg): # Loading VGG16 model and defining feature extractor #arg = 'forcetrain' #sys.argv[1] #arg = 'dummy' clf, pca = getClassifier(arg) df = predictTestData(clf, pca) saveDfToCsv(df) print('Program Exited succesfully.') # In[6]: arg_cnt = len(sys.argv) if arg_cnt == 1: print("""Error: Argument missing. Please use 'forcetrain' or 'pretrain'""") else: arg = sys.argv[1] if arg.lower() not in ['forcetrain', 'pretrain']: print("""Error: Incorrect argument. Please use 'forcetrain' or 'pretrain'""") exit(1) else: main(arg) exit(0)
from value_objects.util.decorate import wraps def once( compute ): ''' Use @once instead of @property when you want a cached property ''' # global count ensures uniqueness even when the function is unnamed (i.e. lambda) global once_count once_count += 1 # including __name__ for debugging convenience key = '__once%s__%s' % ( once_count, compute.__name__ ) @property @wraps( compute ) def cached_compute( s ): if not hasattr( s, key ): val = compute( s ) setattr( s, key, val ) return getattr( s, key ) return cached_compute once_count = 0
import numpy as np import matplotlib.pyplot as plt from mnist import MNIST def load_data(): # Load data mndata = MNIST('data_files') train_x, train_y = mndata.load_training() test_x, test_y = mndata.load_testing() # Convert to numpy arrays train_x = np.array(train_x).T / 255 train_y = np.array(train_y).reshape((1, -1)) test_x = np.array(test_x).T / 255 test_y = np.array(test_y).reshape((1, -1)) return train_x, train_y, test_x, test_y def display(a, index): plt.imshow(a.T[index].reshape(28, 28), cmap="gray", vmin=0, vmax=1) plt.show()
#=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # 2018 July 7 polygon set import os os.chdir('C:\\Users\\James\\Documents\\data science education\\GA\\DSI\\capstone\\stars\\code') %run -i alpha_utils %run -i train_prep_lib os.chdir('C:\\Users\\James\\Documents\\data science education\\GA\\DSI\\capstone\\stars\\data\\polygons') os.mkdir('july7') os.chdir('july7') folder = os.getcwd() generate_set_of_raw_polygon_tifs(n_pts=200, n_sampled_pts=60, alpha_factor=0.9, n_sets=5000, folder=folder, rnd_seed=0, format='png') #=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # 2018 July 8 polygon set import os os.chdir('C:\\Users\\James\\Documents\\data science education\\GA\\DSI\\capstone\\stars') %run -i code/alpha_utils %run -i code/train_prep_lib os.mkdir('./data/polygons/july8') folder = 'data/polygons/july8' generate_set_of_raw_polygon_tifs(n_pts=80, n_sampled_pts=50, alpha_factor=0.9, n_sets=5000, folder=folder, rnd_seed=0, format='png'); #=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # 2018 July 9 polygon set import os os.chdir('C:\\Users\\James\\Documents\\data science education\\GA\\DSI\\capstone\\stars') %run -i code/alpha_utils %run -i code/train_prep_lib os.mkdir('./data/polygons/july9') folder = 'data/polygons/july9' generate_set_of_raw_polygon_tifs(n_pts=100, n_sampled_pts=30, alpha_factor=0.9, n_sets=5000, folder=folder, rnd_seed=0, format='png'); #=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= # 2018 July 10 polygon set import os os.chdir('C:\\Users\\James\\Documents\\data science education\\GA\\DSI\\capstone\\stars') %run -i code/alpha_utils %run -i code/train_prep_lib os.mkdir('./data/polygons/july10') folder = 'data/polygons/july10' generate_set_of_raw_polygon_tifs(n_pts=100, n_sampled_pts=50, alpha_factor=0.9, n_sets=5000, folder=folder, rnd_seed=0, format='png');
#I pledge my honor that I have abided by the Stevens Honor System. Jill McDonald #Problem 1 def bmi(weight, height): bmi = weight * 720 / height ** 2 print('Your BMI is', bmi) if bmi < 19: print('Your BMI is considered below the healthy range.') elif bmi <= 25: print('Your BMI is considered within the healthy range.') else: print('Your BMI is considered above the healthy range.') weight = float(input('How much do you weigh: ')) height = float(input('How tall are you in inches: ')) bmi(weight, height)
# import tcs # import daqctrl, inspect # ------------------------------------------------------------------ # install the script by: # cd $INTROOT/config/scripts # ln -s $guiInstalDir/ctaOperatorGUI/ctaGuiBack/ctaGuiBack/acs/guiACS_schedBlocks_script0.py # ------------------------------------------------------------------ # ------------------------------------------------------------------ from random import Random rndGen = Random(10987268332) waitTime = dict() waitTime['config_daq'] = rndGen.randint(1, 3) waitTime['config_camera'] = rndGen.randint(1, 5) waitTime['config_mount'] = rndGen.randint(2, 7) waitTime['finish_daq'] = rndGen.randint(1, 6) waitTime['finish_camera'] = rndGen.randint(1, 3) waitTime['finish_mount'] = rndGen.randint(1, 2) def get_short_wait(duration, wait_type): return waitTime[wait_type] if duration > 1 else 1 # ------------------------------------------------------------------ # # ------------------------------------------------------------------ __phases__ = [ "configuring", "config_daq", "config_camera", "config_mount", "take_data", "closing", "finish_daq", "finish_camera", "finish_mount", ] # ------------------------------------------------------------------ # # ------------------------------------------------------------------ def configuring(): coords = observationBlock.src.coords p = None try: p = (coords.equatorial.ra, coords.equatorial.dec) except: pass if not p: try: p = (coords.horizontal.alt, coords.horizontal.az) except: pass if not p: try: p = (coords.galactic.lon, coords.galactic.lat) except: pass if not p: p = (0, 0) print "Coordinates used: (" + str(p[0]) + ", " + str(p[1]) + ")" try: divergence = schedulingBlock.config.instrument.pointing_mode.divergent_.divergence print "Divergence used: " + str(divergence) except: print "Pointing mode is not divergent" pass # resources.target = tcs.SkyEquatorialTarget( # p[0], p[1], tcs.ICRS, tcs.J2000, 0.0, 0.0, 0.0, 0.0 # ) allowPhaseStart("config_daq") allowPhaseStart("config_camera") allowPhaseStart("config_mount") return # ------------------------------------------------------------------ def config_daq(): updatePhase("config_daq", "config_daq has began ...", 0) allowPhaseStart("config_camera") allowPhaseStart("config_mount") # operationStatus = daq().operationStatus # # Check daq operational status # if operationStatus != daqctrl.NOMINAL and operationStatus != daqctrl.IDLE: # raise RuntimeError('DAQ status not idle/nominal: ' + operationStatus) # # Configure daq # daqConfigured = configureDAQ() # if not daqConfigured: # raise RuntimeError('DAQ configuration failed') # add wiating time since waitToFinish is useless ............ # telescopes.waitToFinish() wait(get_short_wait(blockDuration, 'config_daq')) updatePhase("config_daq", "config_daq has ended...", 100) return # ------------------------------------------------------------------ def config_camera(): updatePhase("config_camera", "config_camera has began ...", 0) allowPhaseStart("config_mount") # cameraConfig = schedulingBlock.config.camera_configuration # telescopes.configureCameras(cameraConfig) # add wiating time since waitToFinish is useless ............ # telescopes.waitToFinish() wait(get_short_wait(blockDuration, 'config_camera')) updatePhase("config_camera", "config_camera has ended...", 100) return # ------------------------------------------------------------------ def config_mount(): updatePhase("config_mount", "config_mount has began ...", 0) # telescopes.startSlewing(resources.target) # add wiating time since waitToFinish is useless ............ # telescopes.waitToFinish() wait(get_short_wait(blockDuration, 'config_mount')) updatePhase("config_mount", "config_mount has ended...", 100) return # ------------------------------------------------------------------ def take_data(): updatePhase("take_data", "take_data has began ...", 0) # daq().moveToNextOutputBlock(daqctrl.ZFITS_ZLIB) # resources.trackingDuration = blockDuration # telescopes.startTracking(resources.trackingDuration,resources.target) # telescopes.startDataTaking() # add wiating time since waitToFinish is useless ............ # telescopes.waitToFinish() wait(blockDuration) # telescopes.stopDataTaking() updatePhase("take_data", "take_data has ended...", 100) return # ------------------------------------------------------------------ def closing(): allowPhaseStart("finish_daq") allowPhaseStart("finish_camera") allowPhaseStart("finish_mount") return # ------------------------------------------------------------------ def finish_daq(): updatePhase("finish_daq", "finish_daq has began ...", 0) allowPhaseStart("finish_camera") allowPhaseStart("finish_mount") # add wiating time since waitToFinish is useless ............ # telescopes.waitToFinish() wait(get_short_wait(blockDuration, 'finish_daq')) updatePhase("finish_daq", "finish_daq has ended...", 100) return # ------------------------------------------------------------------ def finish_camera(): updatePhase("finish_camera", "finish_camera has began ...", 0) allowPhaseStart("finish_mount") # add wiating time since waitToFinish is useless ............ # telescopes.waitToFinish() wait(get_short_wait(blockDuration, 'finish_camera')) updatePhase("finish_camera", "finish_camera has ended...", 100) return # ------------------------------------------------------------------ def finish_mount(): updatePhase("finish_mount", "finish_mount has began ...", 0) # add wiating time since waitToFinish is useless ............ # telescopes.waitToFinish() wait(get_short_wait(blockDuration, 'finish_mount')) updatePhase("finish_mount", "finish_mount has ended...", 100) return # ------------------------------------------------------------------ def cleanUp(): pass
import unittest from katas.kyu_6.validate_credit_card_number import validate class ValidateCreditCardNumberTestCase(unittest.TestCase): def test_true(self): self.assertTrue(validate(26)) def test_true_2(self): self.assertTrue(validate(91)) def test_true_3(self): self.assertTrue(validate(1230)) def test_true_4(self): self.assertTrue(validate(2121)) def test_true_5(self): self.assertTrue(validate(912030)) def test_true_6(self): self.assertTrue(validate(2626262626262626)) def test_true_7(self): self.assertTrue(validate(4111111111111111)) def test_false(self): self.assertFalse(validate(1)) def test_false_2(self): self.assertFalse(validate(92)) def test_false_3(self): self.assertFalse(validate(123)) def test_false_4(self): self.assertFalse(validate(1714)) def test_false_5(self): self.assertFalse(validate(922030)) def test_false_6(self): self.assertFalse(validate(8675309))
#!/usr/bin/env python3 # # This example demonstrates the use of consistent radial transport # on f_re and n_re. # # Run as # # $ ./generate.py # $ ../../build/iface/dreami dream_settings.h5 # # ################################################################### import numpy as np import sys sys.path.append('../../py/') from DREAM.DREAMSettings import DREAMSettings import DREAM.Settings.Equations.ColdElectronTemperature as T_cold import DREAM.Settings.Equations.ElectricField as Efield import DREAM.Settings.Equations.HotElectronDistribution as FHot import DREAM.Settings.Equations.IonSpecies as Ions import DREAM.Settings.Equations.RunawayElectrons as Runaways import DREAM.Settings.Solver as Solver import DREAM.Settings.TransportSettings as Transport ds = DREAMSettings() # Physical parameters E = 0.5 # Electric field strength (V/m) n = 5e19 # Electron density (m^-3) T = 1e3 # Temperature (eV) # Grid parameters pMax = 50 # maximum momentum in units of m_e*c Np = 50 # number of momentum grid points Nxi = 24 # number of pitch grid points tMax = 1 # simulation time in seconds Nt = 50 # number of time steps Nr = 8 # number of radial grid points dBOverB = 1e-3 # Magnetic perturbation strength R0 = 1.6 # Tokamak major radius # Set E_field #ds.eqsys.E_field.setPrescribedData(E) ds.eqsys.E_field.setType(Efield.TYPE_SELFCONSISTENT) ds.eqsys.E_field.setBoundaryCondition(bctype=Efield.BC_TYPE_PRESCRIBED, V_loop_wall_R0=E*2*np.pi, R0=R0) # Set temperature ds.eqsys.T_cold.setPrescribedData(T) # Set ions ds.eqsys.n_i.addIon(name='D', Z=1, iontype=Ions.IONS_PRESCRIBED_FULLY_IONIZED, n=n) # Disable avalanche generation ds.eqsys.n_re.setAvalanche(Runaways.AVALANCHE_MODE_FLUID_HESSLOW) ds.eqsys.n_re.setDreicer(Runaways.DREICER_RATE_NEURAL_NETWORK) # Disable hot-tail grid ds.hottailgrid.setEnabled(False) # Runaway grid ds.runawaygrid.setNxi(Nxi) ds.runawaygrid.setNp(Np) ds.runawaygrid.setPmax(pMax) # Set initial hot electron Maxwellian #ds.eqsys.f_re.setInitialValue(0) # Set up radial grid ds.radialgrid.setB0(3) ds.radialgrid.setMinorRadius(0.5) ds.radialgrid.setWallRadius(0.5) ds.radialgrid.setNr(Nr) # Set Rechester-Rosenbluth transport ds.eqsys.f_re.transport.setMagneticPerturbation(dBOverB) ds.eqsys.f_re.transport.setBoundaryCondition(Transport.BC_F_0) # Set solver type #ds.solver.setType(Solver.LINEAR_IMPLICIT) # semi-implicit time stepping ds.solver.setType(Solver.NONLINEAR) ds.solver.setVerbose(False) ds.solver.setLinearSolver(Solver.LINEAR_SOLVER_MKL) #ds.solver.tolerance.set(reltol=1e-4) # include otherquantities to save to output ds.other.include('fluid') # Set time stepper ds.timestep.setTmax(tMax) ds.timestep.setNt(Nt) ds.output.setTiming(stdout=True, file=True) ds.output.setFilename('output.h5') # Save settings to HDF5 file ds.save('dream_settings.h5')
from django import forms from .models import Read class ReadingForm(forms.ModelForm): class Meta: model = Read fields = ('title', 'url', 'data') # your_name = forms.CharField(label='Your name', max_length=100) # title = forms.CharField(label='Title',max_length=200) # url = forms.URLField(label='Url') # data = forms.CharField(label='Content', max_length=4000, widget=forms.Textarea) # created_date = forms.DateField() # country = models.CharField(max_length=50)
from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow from config import pms_app # sqlite_url = "postgresql://postgres:nikhil@localhost:5432/probe_management_system" sqlite_url = "postgresql://postgres:nikhil@localhost:5432/probe_management_system" pms_app.config["SQLALCHEMY_ECHO"] = True pms_app.config["SQLALCHEMY_DATABASE_URI"] = sqlite_url pms_app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False # Create the SqlAlchemy db instance db = SQLAlchemy(pms_app) # Initialize Marshmallow ma = Marshmallow(pms_app)
# Generated by Django 2.2.1 on 2019-05-19 20:15 from django.db import migrations import localflavor.generic.models class Migration(migrations.Migration): dependencies = [ ('events', '0007_event_event_country'), ] operations = [ migrations.AlterField( model_name='event', name='event_country', field=localflavor.generic.models.BICField(blank=True, max_length=11), ), ]
from os.path import join from SCons.Script import Import, SConscript Import("env") SConscript( join(env.PioPlatform().get_package_dir("framework-zephyr"), "scripts", "platformio", "platformio-build.py"), exports="env")
html_template = """ <html> <head> <title>Widget export</title> <!-- Load RequireJS, used by the IPywidgets for dependency management --> <script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" crossorigin="anonymous"> </script> <!-- Load IPywidgets bundle for embedding. --> <script data-jupyter-widgets-cdn="https://unpkg.com/" data-jupyter-widgets-cdn-only src="https://cdn.jsdelivr.net/npm/@jupyter-widgets/html-manager@*/dist/embed-amd.js" crossorigin="anonymous"> </script> <!-- The state of all the widget models on the page --> <script type="application/vnd.jupyter.widget-state+json"> {manager_state} </script> </head> <body> <h1>Widget export</h1> <div id="first-slider-widget"> <!-- This script tag will be replaced by the view's DOM tree --> <script type="application/vnd.jupyter.widget-view+json"> {widget_views[0]} </script> </div> <hrule /> <div id="second-slider-widget"> <!-- This script tag will be replaced by the view's DOM tree --> <script type="application/vnd.jupyter.widget-view+json"> {widget_views[1]} </script> </div> </body> </html> """
import time from server.blockchain.blockchain import Blockchain from server.config import SECONDS blockchain = Blockchain() times = [] for i in range(1000): start_time = time.time_ns() #add_block function takes time to execute; which makes a time difference blockchain.add_block(i) end_time = time.time_ns() time_to_mine = (end_time - start_time) / SECONDS times.append(time_to_mine) #len is the length average_time = sum(times) / len(times) print(f'New block difficulty: {blockchain.chain[-1].difficulty}') print(f'Time to mine new block: {time_to_mine}s') print(f'Average time to add blocks: {average_time}s\n') """ Testing the number of time needed for adding 1000 blocks init blockchain Blockchain() for loop: Blockchain.add_block('argument is the data'); we can use dummy data for testing """
import unittest from katas.beta.only_readable_once_list import SecureList class SecureListTestCase(unittest.TestCase): def setUp(self): self.base = [1, 2, 3, 4] def test_equals(self): a = SecureList(self.base) self.assertEqual(a[0], self.base[0]) self.assertEqual(a[0], self.base[1]) self.assertEqual(len(a), 2) print 'Current List: {!s}'.format(a) self.assertEqual(len(a), 0) def test_equals_2(self): b = SecureList(self.base) print 'Current List: {!r}'.format(b) self.assertEqual(len(b), 0)
truthy = True falsy = False age = 20 is_over_age = age >= 18 is_under_age = age < 18 is_twenty = age == 20 my_number = 5 user_number = int(input("Enter a number: ")) print(my_number == user_number) print(my_number != user_number) yes = True and True no = True and False print(no) which_one_is_it = True or False second_one = False or True first_one = True or True neither = False or False absolutely = not False another_no = not True is_programmer = True is_learning = False awesome = is_programmer and is_learning less_awesome = is_programmer and not is_learning is_designer = False great_guy = (is_programmer or is_designer) and is_learning """https://blog.tecladocode.com/logical-comparisons-in-python-and-or/"""
import matplotlib.pyplot as plt import matplotlib.colors import numpy as np import seaborn as sb import math class Plot: def __init__(self): self.name = "Plot" # colour map: agent properties in time def Fig1(self, sellerP, numB, capital): if sellerP.any() != 0: fig = plt.figure() current_cmap = matplotlib.cm.get_cmap("jet").copy() current_cmap.set_bad(color='white') plt.pcolormesh(sellerP, cmap=current_cmap, rasterized=True) plt.title("Prices of seller sites in time (after rebirth)") plt.ylabel("Time") plt.xlabel("Position") color_bar = plt.colorbar(label="Price") color_bar.minorticks_on() fig.savefig("data/Prices_in_time.pdf") fig.show() if numB != 0: fig = plt.figure() plt.pcolormesh(numB, cmap='jet', rasterized=True) plt.title("Number of buyers at buyer sites in time (after relocation)") plt.ylabel("Time") plt.xlabel("Position") color_bar = plt.colorbar(label="Counts") color_bar.minorticks_on() fig.savefig("data/NumB_in_time.pdf") fig.show() if capital.any() != 0: fig = plt.figure() current_cmap = matplotlib.cm.get_cmap("turbo").copy() current_cmap.set_bad(color='white') plt.pcolormesh(capital, cmap=current_cmap, rasterized=True) plt.title("Capital of seller sites in time (after rebirth)") plt.ylabel("Time") plt.xlabel("Position") color_bar = plt.colorbar(label="Capital") color_bar.minorticks_on() fig.savefig("data/Capital_in_time.pdf") fig.show() def Fig2(self, sellerP, num_sellers, time_steps, p_max, gamma, beta, delta, seed, num_bins): fig = plt.figure() widths = [1] heights = [1, 3, 3] gs = fig.add_gridspec(ncols=len(widths), nrows=len(heights), width_ratios=widths, height_ratios=heights, hspace=1.0) init = fig.add_subplot(gs[1, 0]) final = fig.add_subplot(gs[2, 0]) plots = [init, final] init.hist(sellerP[0], alpha=1, bins=num_bins, color='navy', linewidth=0.8) final.hist(sellerP[-1], alpha=1, bins=num_bins, color='navy', linewidth=0.8) for plot in plots: plot.set_xlim(1, p_max) plot.grid(axis='x') plot.set_ylabel('Number of sellers') plot.set_xlabel('Price') init.text(0.01, 1.1, 'Initial distribution', fontsize=10, transform=init.transAxes) final.text(0.01, 1.1, 'Final distribution', fontsize=10, transform=final.transAxes) title = fig.add_subplot(gs[0, 0]) title.axis('off') t = "Price distribution" st = r'Number of sellers: ' + str(num_sellers) + r'; Time steps: ' + str(time_steps) + '\n' + \ r'$P_{max}$ = ' + str(p_max) + r'; $\gamma$ = ' + str(gamma) + r'; $\beta$ = ' + str(beta) + r'; $\Delta$ = ' + \ str(delta) + r'; seed = ' + str(seed) title.text(0, 1.8, t, fontweight='bold', fontsize=18, verticalalignment='top', horizontalalignment='left') title.text(0, 1., st, fontsize=14, verticalalignment='top', horizontalalignment='left') fig.savefig("data/Price_distribution.pdf") fig.show() def Fig3(self, frac_live_bRS, frac_live_aRS, left, bottom, width, height): fig = plt.figure() plt.title("Fraction of live sellers in time") plt.ylabel("Fraction of live sellers (before rebirth)") plt.xlabel("Time") plt.plot(frac_live_bRS) plt.axes([left, bottom, width, height]) plt.plot(frac_live_aRS, color='orange') plt.title('after rebirth') fig.savefig("data/Frac_liveS_in_time.pdf") fig.show() def Fig4(self, t, vacancy_befRebS, vacancy_afterRebS, left, bottom, width, height): vac_site_befReb = [0 for i in range(0, t + 1)] vac_site_afterReb = [0 for i in range(0, t + 1)] for i in range(0, t + 1): vac_site_befReb[i] = vacancy_befRebS[i].count(1) vac_site_afterReb[i] = vacancy_afterRebS[i].count(1) time = np.arange(t + 1) fig = plt.figure() plt.title("Number of vacant sites in time") plt.xlabel("Time") plt.ylabel("Number of vacant sites (before rebirth)") plt.plot(time, vac_site_befReb) plt.axes([left, bottom, width, height]) plt.plot(time, vac_site_afterReb, color='orange') plt.title('after rebirth') fig.savefig("data/VacancyS_in_time.pdf") fig.show() def Fig5(self, time, frac_live_bRS, mean_price, mean_capital): fig, (ax1, ax2, ax3) = plt.subplots(3, sharex='all') ax1.plot(frac_live_bRS[1:]) ax1.set(ylabel='Fraction alive') ax2.plot(time, mean_price[1:]) ax2.set(ylabel='Mean price') ax3.plot(time, mean_capital[1:]) ax3.set(xlabel='Time', ylabel='Mean capital') fig.savefig("data/Seller_params_bR_osc.pdf") fig.show() def Fig6(self, t, frac_liveS, num_sellers, num_liveB): # constant multiplication over list num_liveS = [x * num_sellers for x in frac_liveS] fig = plt.figure() plt.plot(t, num_liveS[:], marker='o', color='navy', label='sellers') plt.plot(t, num_liveB[:], marker='o', color='orange', label='buyers') plt.legend(loc='best') plt.title("Number of live agents at end of round in time") plt.xlabel("Time") plt.ylabel("Counts") plt.grid(alpha=0.3) fig.savefig("data/Number_alive.pdf") fig.show() def Fig7(self, priceS, bins): #bins = math.ceil((np.nanmax(priceS) - np.nanmin(priceS)) / np.sqrt(2)) plt.figure() plt.hist(priceS, bins=bins, alpha=0.3) plt.xlabel("Price") sb.kdeplot(priceS, bw_method=0.1, fill=True) plt.savefig("data/Price_distribution.pdf") plt.show()
from Utilities.ConfigurationsHelper import set_configuration, get_configuration def initialize(bot): for guild in bot.guilds: guild_id = guild.id # Default ADMIN_ROLE is either a role named Commissions or # the top role in role hierarchy if not get_configuration(guild_id, "ADMIN_ROLE"): selected_role_id = None for role in guild.roles: if role.name.lower() == "commissions": selected_role_id = role.id if selected_role_id == None: selected_role_id = guild.roles[-1].id set_configuration(guild_id, "ADMIN_ROLE", selected_role_id) # Default BOT_CHANNEL is either a text-channel named bots or # a the first channel in the channel list if not get_configuration(guild_id, "BOT_CHANNEL"): selected_channel_id = None for channel in guild.channels: if channel.name.lower() == "bots": selected_channel_id = channel.id if selected_channel_id == None: selected_channel_id = guild.channels[0].id set_configuration(guild_id, "BOT_CHANNEL", selected_channel_id) # Default NOTICE_DAYS_INTERVAL is: 3 if not get_configuration(guild_id, "NOTICE_DAYS_INTERVAL"): set_configuration(guild_id, "NOTICE_DAYS_INTERVAL", 3) # Default NOTICE_DAYS_INTERVAL is: 2 if not get_configuration(guild_id, "FINAL_NOTICE_DAYS_BEFORE"): set_configuration(guild_id, "FINAL_NOTICE_DAYS_BEFORE", 2) # Default DAYS_REMAINING_WARNING is: if not get_configuration(guild_id, "DAYS_REMAINING_WARNING"): set_configuration( guild_id, "DAYS_REMAINING_WARNING", "{user_mention}, you have {remaining_days} days left to complete `{commission_name}` commission.", ) # Default DAYS_REMAINING_FORFEIT_WARNING is: if not get_configuration(guild_id, "DAYS_REMAINING_FORFEIT_WARNING"): set_configuration( guild_id, "DAYS_REMAINING_FORFEIT_WARNING", "{user_mention}, you have {remaining_days} days left to complete `{commission_name}` commission. You may forfeit the reward if the commission is not complete on time.", ) # Default EXPIRED_NOTICE is: if not get_configuration(guild_id, "EXPIRED_NOTICE"): set_configuration( guild_id, "EXPIRED_NOTICE", "{admin_role_mention} {user_mention}, your `{commission_name}` commission has expired.", ) # Default INVALID_PERMISSION is You do not have permission to use that command!: if not get_configuration(guild_id, "INVALID_PERMISSION"): set_configuration( guild_id, "INVALID_PERMISSION", "You do not have permission to use that command!", )
from django.shortcuts import render from manager.models import * from django import http from django.views import View import json, requests from django.db.models import Max from django.db import transaction from django.db import IntegrityError from django.db.models import Sum, Count, Max, Min, Avg def login_check(request): dict_data = json.loads(request.body, strict = False) mg_info = managerInfo.objects.filter(userid = dict_data['userid'], password = dict_data['password'], user_type = dict_data['user_type']) login_response = {"userid":dict_data['userid'], "success":0, "power":dict_data['user_type']} # 登录失败 if len(mg_info) == 0: login_response['success'] = 1 return http.JsonResponse(login_response)
import numpy as np import os import clify import argparse from config import rl_config as config config.update( image_shape_grid=(2, 2), reductions="sum", ) grid = [dict(n_train=1, do_train=False)] + [dict(n_train=x) for x in 2**np.arange(0, 18, 2)] parser = argparse.ArgumentParser() parser.add_argument("--task", choices="A B C".split(), default='') args, _ = parser.parse_known_args() if args.task == "A": grid = dict(n_train=2**np.arange(14, 18, 2)) config.update(parity='even') elif args.task == "B": A_dir = "/home/e2crawfo/rl_parity_A/" config.load_path = [ os.path.join(A_dir, d, 'weights/best_of_stage_0') for d in os.listdir(A_dir) ] config.update(parity='odd') elif args.task == "C": config.update(parity='odd') else: raise Exception() from dps.hyper import build_and_submit, default_host_pool clify.wrap_function(build_and_submit)( config=config, distributions=grid, n_param_settings=None, host_pool=default_host_pool)
# -*- coding:utf-8 -*- import numpy as numpy from sympy import * from math import log ''' 新的博弈模型 ''' def game(S,C = 3,C_DU = 2,C_BS = 1,N = 32,a = 2,e = 0.1): C = 3 #RU对包的基本支付单价 C_DU = 2 #DU传输一个包的成本 C_BS = 1 #BS传输一个包的成本 N = 32 #总包数 a = 2 #满足因子 e = 0.1 #丢包率 x = Symbol('x') # expr1 = x*(C_BS+(C*N*S)/(log(a)*(a+S*x))) expr1 = C_BS + C*N*S/(log(a)*(a+S*x))+x*(-C*N*S*S)/(log(2)*(a+S*x)*(a+S*x))-C_DU # N1 = solve(diff(expr1,x),x) ans = solve(expr1,x) lenth = len(ans) N1 = ans[0] for i in range(0,lenth): if ans[i]>0: N1 = ans[i] temp = int(N1) U_L =temp * (C_BS + C*N*S/(log(a)*(a+S*temp)))-C_DU*temp #向下取整的时候的效益 temp = temp+1 U_H = temp * (C_BS + C*N*S/(log(a)*(a+S*temp)))-C_DU*temp #向上取整的时候的效益 if U_L>U_H: N1 = temp -1 U_DU = U_L else: N1 = temp U_DU = U_H b = C_BS + C*N*S/(log(a)*(a+S*N1)) U_BS = C*N*log(a+S*N1,a)-b*N1-(N-N1)*C_BS result = [N1,b,U_BS,U_DU] print result return result if __name__ == '__main__': game(0.7)
import datetime import threading import matplotlib.pyplot as plt import matplotlib.dates as mdates class Plotif(): def __init__(self): self.axl=[] self.twinx_l=[] plt.ion() def init_twinx(self, fig_list, n_fig, n_total_data): c_twinx_l=[] for i in range( n_fig ): c_twinx_l.append(0) for i in range( n_total_data ): if c_twinx_l[ fig_list[i] ]==0 : self.twinx_l.append(0) c_twinx_l[fig_list[i]] =1 else: self.twinx_l.append(fig_list[i]) def set_twinx(self, n_total_data): for i in range( n_total_data ): if self.twinx_l[i] != 0: self.axl[i] = self.axl[ self.twinx_l[i] ].twinx() # def arrange_ax_x(self, n_figure, ): def set(self, n_figure, n_total_data, real0time1, fig_list ): # self.fig, axl = plt.subplots(ncols=2, figsize=(10,4)) # plt.subplots(n_figure, 1) for i in range (n_total_data): # print ("AX==", i, n_figure) if i==0 : self.axl.append(plt.subplot(n_figure, 1, fig_list[i]+1) ) else: self.axl.append(plt.subplot(n_figure, 1, fig_list[i]+1, sharex=self.axl[0])) if(real0time1): xfmt = mdates.DateFormatter("%H:%M:%S") xloc = mdates.DayLocator() for i in range(n_figure): self.axl[i].xaxis.set_major_locator(xloc) self.axl[i].xaxis.set_major_formatter(xfmt) # def set_labels(self,idx, t, y): def plot_datain(self,idx, t, y): self.axl[idx].plot(t, y) def set_xlim(self, ax_idx, min, max): self.axl[ax_idx].set_xlim( min, max ) def set_ylim(self, ax_idx, min, max): self.axl[ax_idx].set_ylim( min, max ) def grid_set(self, n): for i in range(n): self.axl[i].grid(which='major',axis='both', color='black',linestyle='--') def plot_exe(self): plt.draw() plt.pause(0.01) #plt.cla()
print("Hello World") print("Goodbye World") #shows goodbye world on terminal
#!/usr/bin/env python # encoding: utf-8 """ Created by 'bens3' on 2015-01-21. Copyright (c) 2013 'bens3'. All rights reserved. Unpublish records marked non web publishable python tasks/unpublish.py --local-scheduler --date 20150702 """ import luigi import ckanapi from datetime import datetime, timedelta from ke2mongo import config from ke2mongo.log import log from ke2mongo.lib.timeit import timeit from ke2mongo.lib.ckan import ckan_delete from ke2mongo.tasks.mongo_catalogue import MongoCatalogueTask from ke2mongo.tasks.api import APITask from ke2mongo.targets.mongo import MongoTarget class UnpublishTask(APITask): """ Deprecated - once published, a record cannot be marked "do not publish to internet". If a KE EMu record has been marked non web publishable, it needs to be deleted from CKAN NB: This does not remove embargoed records which have already been published. You cannot embargo a record after it's release. """ database = config.get('mongo', 'database') keemu_schema_file = config.get('keemu', 'schema') def requires(self): # Mongo catalogue task for date must have run yield MongoCatalogueTask(self.date) @timeit def run(self): # Do not run if this is a full export date - all non-publishable records will # Already have been removed if int(self.full_export_date) == int(self.date): log.info("No records to unpublish for full exports") self.mark_complete() return collection = self.output().get_collection('ecatalogue') # We only care about records who's status has changed in the past week (6 days to be sure) date_object = datetime.strptime(str(self.date), '%Y%m%d') q = dict( AdmPublishWebNoPasswordFlag='N', exportFileDate=self.date, ISODateInserted={'$gte': date_object - timedelta(days=6)} ) cursor = collection.find(q) log.info('%s records to unpublish', cursor.count()) for record in cursor: ckan_delete(self.remote_ckan, record) # And mark the object as complete self.mark_complete() def mark_complete(self): self.output().touch() def output(self): return MongoTarget(database=self.database, update_id=self.task_id) if __name__ == "__main__": luigi.run(main_task_cls=UnpublishTask)
""" This type stub file was generated by pyright. """ import marshmallow as ma """Exception handler""" class ErrorSchema(ma.Schema): """Schema describing the error payload Not actually used to dump payload, but only for documentation purposes """ code = ... status = ... message = ... errors = ... class ErrorHandlerMixin: """Extend Api to manage error handling.""" ERROR_SCHEMA = ... def handle_http_exception(self, error): """Return a JSON response containing a description of the error This method is registered at app init to handle ``HTTPException``. - When ``abort`` is called in the code, an ``HTTPException`` is triggered and Flask calls this handler. - When an exception is not caught in a view, Flask makes it an ``InternalServerError`` and calls this handler. flask-smorest republishes webargs's :func:`abort <webargs.flaskparser.abort>`. This ``abort`` allows the caller to pass kwargs and stores them in ``exception.data`` so that the error handler can use them to populate the response payload. Extra information expected by this handler: - `message` (``str``): a comment - `errors` (``dict``): errors, typically validation errors in parameters and request body - `headers` (``dict``): additional headers """ ...
import os,sys import string from optparse import OptionParser import glob import json import pymongo from pymongo import MongoClient import datetime __version__="1.0" __status__ = "Dev" ############################### def main(): usage = "\n%prog [options]" parser = OptionParser(usage,version="%prog version___") parser.add_option("-s","--server",action="store",dest="server",help="dev/tst/beta/prd") (options,args) = parser.parse_args() for key in ([options.server]): if not (key): parser.print_help() sys.exit(0) server = options.server config_obj = json.loads(open("./conf/config.json", "r").read()) mongo_port = config_obj["dbinfo"]["port"][server] host = "mongodb://127.0.0.1:%s" % (mongo_port) admin_user, admin_pass = config_obj["dbinfo"]["admin"]["user"], config_obj["dbinfo"]["admin"]["password"] admin_db = config_obj["dbinfo"]["admin"]["db"] db_name = config_obj["dbinfo"]["dbname"] db_user, db_pass = config_obj["dbinfo"][db_name]["user"], config_obj["dbinfo"][db_name]["password"] try: client = pymongo.MongoClient(host, username=admin_user, password=admin_pass, authSource=admin_db, authMechanism='SCRAM-SHA-1', serverSelectionTimeoutMS=10000 ) client.server_info() client[db_name].command('createUser', db_user, pwd=db_pass, roles=[{'role': 'readWrite', 'db': db_name}]) except pymongo.errors.ServerSelectionTimeoutError as err: print (err) except pymongo.errors.OperationFailure as err: print (err) if __name__ == '__main__': main()
import json import logging import os import re import boto3 from botocore.exceptions import ClientError from cfn_resource_provider import ResourceProvider log = logging.getLogger() log.setLevel(os.environ.get("LOG_LEVEL", "INFO")) request_schema = { "type": "object", "required": ["Name"], "properties": { "Name": { "type": "string", "minLength": 1, "pattern": "[a-zA-Z0-9_/]+", "description": "the name of the secret", }, "Description": { "type": "string", "default": "", "description": "of the secret", }, "KmsKeyId": { "type": "string", "default": "alias/aws/secretsmanager", "description": "KMS key to use to encrypt the secret", }, "SecretBinary": { "type": "string", "description": "base64 encoded binary secret", }, "SecretString": { "description": "secret string or json object or array to be converted to string", "anyOf": [{"type": "string"}, {"type": "object"}, {"type": "array"}], }, "RecoveryWindowInDays": { "type": "integer", "default": 30, "description": "number of days a deleted secret can be restored", "minimum": 7, "maximum": 30, }, "ClientRequestToken": { "type": "string", "description": "a unique identifier for the new version to ensure idempotency", }, "NoEcho": { "type": "boolean", "default": True, "description": "the secret as output parameter", }, "Tags": { "type": "array", "items": { "type": "object", "required": ["Key", "Value"], "properties": {"Key": {"type": "string"}, "Value": {"type": "string"}}, }, }, }, } class SecretsManagerSecretProvider(ResourceProvider): def __init__(self): super(SecretsManagerSecretProvider, self).__init__() self._value = None self.request_schema = request_schema self.sm = boto3.client("secretsmanager") self.region = boto3.session.Session().region_name self.account_id = (boto3.client("sts")).get_caller_identity()["Account"] def convert_property_types(self): try: if "NoEcho" in self.properties and self.properties["NoEcho"] in [ "true", "false", ]: self.properties["NoEcho"] = self.properties["NoEcho"] == "true" if "RecoveryWindowInDays" in self.properties: self.properties["RecoveryWindowInDays"] = int( self.properties["RecoveryWindowInDays"] ) except ValueError as e: log.error("failed to convert property types %s", e) def create_arguments(self): args = { "Name": self.get("Name"), "Description": self.get("Description"), "ClientRequestToken": self.get("ClientRequestToken", self.request_id), "KmsKeyId": self.get("KmsKeyId"), } if self.get("Tags") is not None: args["Tags"] = self.get("Tags") if self.get("SecretBinary") is not None: args["SecretBinary"] = self.get("SecretBinary") if self.get("SecretString") is not None: s = self.get("SecretString") args["SecretString"] = s if isinstance(s, str) else json.dumps(s) return args def set_return_attributes(self, response): self.set_attribute("VersionId", response["VersionId"]) self.physical_resource_id = response["ARN"] self.no_echo = self.get("NoEcho") def create(self): try: args = self.create_arguments() response = self.sm.create_secret(**args) self.set_return_attributes(response) except ClientError as e: self.physical_resource_id = "could-not-create" self.fail("{}".format(e)) def update(self): if self.get_old("Name", self.get("Name")) != self.get("Name"): self.fail("Cannot change the name of a secret") return try: args = self.create_arguments() args["SecretId"] = self.physical_resource_id del args["Name"] del args["Tags"] response = self.sm.update_secret(**args) self.set_return_attributes(response) if self.get_old("Tags", self.get("Tags")) != self.get("Tags"): if len(self.get_old("Tags")) > 0: self.sm.untag_resource( SecretId=self.physical_resource_id, TagKeys=list(map(lambda t: t["Key"], self.get_old("Tags"))), ) self.sm.tag_resource( SecretId=self.physical_resource_id, Tags=self.get("Tags") ) except ClientError as e: self.fail("{}".format(e)) def delete(self): if re.match(r"^arn:aws:secretsmanager:.*", self.physical_resource_id): try: self.sm.delete_secret( SecretId=self.physical_resource_id, RecoveryWindowInDays=self.get("RecoveryWindowInDays"), ) self.success( "Secret with the name %s is scheduled for deletion" % self.get("Name") ) except ClientError as e: if e.response["Error"]["Code"] != "ResourceNotFoundException": self.fail("{}".format(e)) else: self.success( "Delete request for secret with the name {} is ignored".format( self.get("Name") ) ) provider = SecretsManagerSecretProvider() def handler(request, context): return provider.handle(request, context)
from django.apps import AppConfig class L24OConfig(AppConfig): name = 'l24o'
# -*- coding: utf-8 -*- import os.path # Parsing Paths for path in ['/one/two/three', '/one/two/three/', '/', '.', '']: print path, ' : ', os.path.split(path) ''' /one/two/three : ('/one/two', 'three') /one/two/three/ : ('/one/two/three', '') / : ('/', '') . : ('', '.') : ('', '') ''' # basename() returns a value equivalent to the second part of the split() value. # dirname() returns the first part of the split path. for path in ['/one/two/three', '/one/two/three/', '/', '.', '']: print path, ' : ', os.path.basename(path) ''' /one/two/three : three /one/two/three/ : / : . : . : ''' for path in ['/one/two/three', '/one/two/three/', '/', '.', '']: print path, ' : ', os.path.dirname(path) ''' /one/two/three : /one/two /one/two/three/ : /one/two/three / : / . : : ''' # Building Paths # if a component is an absolute path, all previous components are thrown away and # joining continues from the absolute path for parts in [('one', 'two', 'three'), ('/', 'one', 'two', 'three'), ('/one', '/two', '/three')]: print parts, ' : ', os.path.join(*parts) ''' ('one', 'two', 'three') : one/two/three ('/', 'one', 'two', 'three') : /one/two/three ('/one', '/two', '/three') : /three ''' # Testing Files f = os.path.abspath(__file__) print 'File :', f print 'Absolute :', os.path.isabs(f) print 'Is File :', os.path.isfile(f) print 'Is Dir :', os.path.isdir(f) print 'Is Link :', os.path.islink(f) print 'Mountpoint? :', os.path.ismount(f) print 'Exists :', os.path.exists(f) print 'Link Exists? :', os.path.lexists(f) ''' Absolute : True Is File : True Is Dir : False Is Link : False Mountpoint? : False Exists : True Link Exists? : True ''' # Traversing a Directory Tree def visit(arg, dirname, names): print dirname, arg for name in names: subname = os.path.join(dirname, name) if os.path.isdir(subname): print ' %s/' % name else: print ' %s' % name os.path.walk('.', visit, '(start)') ''' . ├── ospath.py ├── test1 │   ├── test11 │   └── test.txt └── test2 . (start) ospath.py test1/ test2/ ./test1 (start) test11/ test.txt ./test1/test11 (start) ./test2 (start) '''
#-*- coding: utf-8 -*- import pandas as pd data_file = 'discretization_data.xls' data = pd.read_excel(data_file) data = data[u'肝气郁结证型系数'].copy() k = 4 d1 = pd.cut(data, k, labels=range(k)) print d1 w = [1.0 * i / k for i in range(k+1)] # w = data.describe()
""" https://leetcode.com/problems/merge-two-sorted-lists/ Easy Merge Two Sorted Lists Merge two sorted linked lists and return it as a sorted list. The list should be made by splicing together the nodes of the first two lists. Input: l1 = [1,2,4], l2 = [1,3,4] Output: [1,1,2,3,4,4] Example 2: Input: l1 = [], l2 = [] Output: [] Example 3: Input: l1 = [], l2 = [0] Output: [0] """ # Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNode: # print (l1, l2) outl = ListNode(None) out = outl while l1 and l2: if l1.val < l2.val: out.next = ListNode(l1.val) l1 = l1.next else: out.next = ListNode(l2.val) l2 = l2.next out = out.next while l1: out.next = ListNode(l1.val) out = out.next l1 = l1.next while l2: out.next = ListNode(l2.val) out = out.next l2 = l2.next return outl.next #l1 = [1,2,4] l1 = ListNode(1) l1.next = ListNode(2) l1.next.next = ListNode(4) #l2 = [1,3,4] l2 = ListNode(1) l2.next = ListNode(3) l2.next.next = ListNode(4) ans = Solution().mergeTwoLists(l1, l2)
import gzip import os from gensim import interfaces from gensim.corpora.csvcorpus import CsvCorpus from gensim.corpora.textcorpus import walk from iranlowo.preprocessing import is_valid_owé_format, normalize_diacritics_text from iranlowo.utils import is_text_nfc class Corpus(interfaces.CorpusABC): def __init__(self, path=None, text=None, stream=False, fformat='txt', cformat=None, labels=False, preprocess=None): """ Args: path: text: """ self.path = path self.text = text self.labels = labels self.stream = stream self.fformat = fformat self.cformat = cformat self.preprocess = preprocess assert self.path or self.text, "You should pass either a path or text to read data from." if not self.preprocess: self.preprocess = [normalize_diacritics_text] self.data = self.read_file_filename_or_text(text=text) if text else self.read_file_filename_or_text() self.validate_format() def __iter__(self): for line in self.data: yield line def __len__(self): return len(self.data) @staticmethod def save_corpus(fname, corpus, id2word=None, metadata=False): pass def streamfile(self, fobj): num_text = 0 with fobj as obj: for line in obj: num_text += 1 yield line def read_file_filename_or_text(self, f=None, text=None): """ Returns: """ path = f if f else self.path out = [] if text: return self.handle_preprocessing(text) if self.preprocess else text elif isinstance(path, list): for f in path: text = self.read_file_filename_or_text(f) out.append(text) return out else: if isinstance(path, str): if self.fformat == "txt": text = open(path) elif self.fformat == "csv": text = CsvCorpus(path, self.labels) elif self.fformat == 'gzip': text = gzip.open(path) else: text = self.path.seek(0) text = text.read() if not self.stream else ''.join(list(self.streamfile(text))) return self.handle_preprocessing(text) if self.preprocess else text def handle_preprocessing(self, text): if callable(self.preprocess): return self.preprocess(text) if isinstance(self.preprocess, list): for technique in self.preprocess: text = technique(text) return text def validate_format(self): """ Returns: """ data = self.data if isinstance(data, list): data = ''.join(data) if not self.cformat and not is_text_nfc(data): raise TypeError("The corpus does not comply to the NFC corpus format") elif self.cformat == "owe": if not is_valid_owé_format(data): raise TypeError("The corpus does not comply to the {0} corpus format".format(self.cformat)) else: return True def generate(self, size): """ Args: size: Returns: """ if not self.cformat: raise ValueError("You need to specify a format for generating random text") class DirectoryCorpus(Corpus): def __init__(self, path, **kwargs): self.dir_path = path self.depth = kwargs.get('min_depth', 0) self.path = list(self.read_files()) super(DirectoryCorpus, self).__init__(path=self.path, **kwargs) def read_files(self): walked = list(walk(self.dir_path)) if not walked: raise NotADirectoryError("'{}' is not a valid directory".format(self.dir_path)) for depth, dirpath, _, filenames in walked: if self.depth <= depth: for path in filenames: yield os.path.join(dirpath, path)
from typing import Any from pyVmomi.vmodl import ManagedObject def __getattr__(name: str) -> Any: ... # incomplete class InvalidArgument(Exception): ... class ManagedObjectNotFound: obj: ManagedObject
from pymongo import MongoClient # Criando a conexao com o Banco mongo_con = MongoClient() # Usar o Banco db = mongo_con['flask-app']
from gensim.models import LdaModel import numpy as np import os import pickle from scipy.stats import entropy import pandas as pd import seaborn as sns import plotly import plotly.graph_objects as go import plotly.express as px import pyLDAvis import pyLDAvis.gensim import matplotlib.pyplot as plt from utilities import topic_to_word_cloud from collections import defaultdict def compute_term_frequency_in_corpus(corpus): term_freq = [0 for _ in range(vocab_len)] for doc in corpus: for word_tuple in doc: term_freq[word_tuple[0]] += word_tuple[1] return term_freq def compute_lift(common_corpus, common_dictionary, word_prob): vocab_size = len(common_dictionary) lift_score = [0 for _ in range(vocab_size)] for doc in common_corpus: for word_tuple in doc: lift_score[word_tuple[0]] += word_tuple[1] for i in range(vocab_size): lift_score[i] = word_prob[i] / (lift_score[i]*vocab_size) return lift_score def compute_jsd(p, q): p = np.asarray(p) q = np.asarray(q) p /= p.sum() q /= q.sum() m = (p + q) / 2 return (entropy(p, m) + entropy(q, m)) / 2 def create_pyldavis_plot(lda, common_dictionary, common_corpus): vis_data = pyLDAvis.gensim.prepare(lda, common_corpus, common_dictionary, sort_topics=False) model_name = model_file.split("/")[-1] out_filename = model_dir + "pyldavis/" + model_name + ".html" outfile = open(out_filename, 'w') pyLDAvis.save_html(vis_data, fileobj=outfile) return out_filename def plot_topic_share_stacked_bar_plot_plotly(df, filename): print("Plotting stacked bar plot with plotly") topic_ids = list(df['topic_id'].unique()) valid_topics = [] for k in topic_ids: if df[df['topic_id']==k]['topic_weight'].sum() > 0.0: valid_topics.append(k) df = df[df.topic_id.isin(valid_topics)] corpus_years = list(df['year'].unique()) fig = go.Figure() for k in valid_topics: topic_share = list(df[df['topic_id'] == k].topic_weight) top_words = list(df[df['topic_id'] == k].topic_words) topic_name = "Topic_"+str(k) fig.add_trace(go.Bar(x=corpus_years, y=topic_share, name=top_words[0], hovertext=top_words )) fig.update_layout(barmode='stack', xaxis={'categoryorder': 'category ascending'}, xaxis_tickangle=-45, plot_bgcolor='#fff') plotly.offline.plot(fig, filename=model_dir + 'threshold_doc/bar_plots/' + filename, auto_open=True) print("Done saving Plotly plot as", filename, "!") def compute_topic_popularity_by_year(df): corpus_years = list(df['year'].unique()) for year in corpus_years: df_year = df[df['year']==year] df_year = df_year.assign(topic_rank=df_year['topic_weight'].rank(ascending=False)) df_year = df_year.sort_values(by='topic_rank') csv_file = model_dir + "threshold_doc/topic_rankings/" + str(year) + ".csv" df_year.to_csv(csv_file, sep='\t', encoding='utf-8', index=False) def compute_topic_share_whole_corpus(): # compute normalized topic shares per year print("Computing normalized topic share per year") pickle_dir = "results/lda/" topic_shares = [] pickle_files = sorted(os.listdir(pickle_dir)) for pf in pickle_files: data = pickle.load(open(pickle_dir + pf, 'rb')) doc_matrix = np.zeros((len(data), n_topics)) for i,doc in enumerate(data): for tup in doc: topic_prop = tup[1] if topic_prop < topic_thresh: doc_matrix[i,tup[0]] = 0.0 else: doc_matrix[i,tup[0]] = topic_thresh doc_matrix[i] /= doc_matrix[i].sum() topic_share_ts = doc_matrix.sum(axis=0) topic_share_ts /= np.sum(topic_share_ts) #topic_share_ts[topic_share_ts < topic_thresh] = 0.0 #topic_share_ts /= np.sum(topic_share_ts) topic_shares.append(topic_share_ts) # create Dataframe from dict topic_words_list = [] topic_id_list = [] topic_year_list = [] topic_share_list = [] for t in range(len(pickle_files)): for k in range(n_topics): topic_words_list.append(topic_words[k]) topic_share_list.append(topic_shares[t][k]) topic_id_list.append(k+1) topic_year_list.append(start_year + t) df = {"topic_id": topic_id_list, "topic_words": topic_words_list, "topic_weight": topic_share_list, "year": topic_year_list} df = pd.DataFrame.from_dict(df) csv_file = "disappearing_lda.csv" df.to_csv(csv_file, sep='\t', encoding='utf-8', index=False) return df, topic_shares def plot_topic_share_line_plot(topic_shares): n_timeslices = len(topic_shares) for k in range(n_topics): plt.figure(figsize=(16, 10)) plt.plot() topic_prob = [topic_shares[t][k] for t in range(n_timeslices)] plt.plot(range(n_timeslices), topic_prob, marker='o', linestyle='-', linewidth=1, label='Topic_'+str(k+1)) plt.xticks(range(n_timeslices), labels=[str(start_year+y) for y in range(n_timeslices)], rotation='vertical') plt.legend(["Topic "+str(k+1)]) plt.savefig(model_dir + "threshold_doc/line_plots/Topic_"+str(k+1)+".png") plt.close() #plt.show() def create_word_clouds(): topics = lda.get_topics() for k in range(n_topics): print("topic = ", k) topic_dist = topics[k] image = topic_to_word_cloud(common_dictionary, topic_dist) image_filename = model_dir + "word_clouds/Topic_" + str(k+1) + ".png" image.save(image_filename) start_year = 1854 model_dir = "trained_models/nlf/lda/" model_file = model_dir + "lda_nlf_50topics" lda = LdaModel.load(model_file) common_dictionary = pickle.load(open(model_file + "_dict.pkl", "rb")) common_corpus = pickle.load(open(model_file+"_corpus.pkl", "rb")) n_topics = lda.num_topics vocab_len = len(common_dictionary) vocab = list(common_dictionary.keys()) topic_words = [" ".join([w[0] for w in lda.show_topic(k)]) for k in range(n_topics)] topic_thresh = 0.005 df, topic_shares = compute_topic_share_whole_corpus() #create_word_clouds() #plot_topic_share_line_plot(topic_shares) #compute_topic_popularity_by_year(df) bar_plot_name = "lda_whole_corpus_topic_words.html" plot_topic_share_stacked_bar_plot_plotly(df, bar_plot_name) # # create_pyldavis_plot(lda, common_dictionary, common_corpus)
#!/usr/bin/env python # -*- coding: utf-8 -*- import os, ast from ConfigParser import ConfigParser class Config(): def __init__(self, filename="settings.ini"): self.defaulttimedict = { "06:00":(12,151,250), "06:30":(251,13,52), "12:00":(247,37,21), "23:30":(251,13,52), "00:30":(12,151,250) } self.filename = filename self.homepath = os.path.expanduser("~") self.configfolder = os.path.join(self.homepath, ".studiouhr") self.path = os.path.join(self.configfolder, self.filename) self.config = ConfigParser() self.initialize_settings_directory() self.read_settings(self.path) def initialize_settings_directory(self): if not os.path.exists(self.configfolder): os.mkdir(self.configfolder) print "Created directory "+str(self.configfolder) self.set_defaults() self.write_settings(self.path) def write_settings(self, path): with open(path, 'w') as f: self.config.write(f) print "Wrote new settings to "+str(path) f.close() def read_settings(self, path): self.config.read(path) self.fullscreen = self.retrieve("Display", "fullscreen", True) == "True" self.textformat = self.retrieve("Digits", "textformat", "%H:%M") self.fontname = self.retrieve("Digits", "fontname", "Roboto Mono Thin") self.fontsize = int(self.retrieve("Digits", "fontsize", 20)) self.xoffset = int(self.retrieve("Digits", "xoffset", 20)) self.yoffset = int(self.retrieve("Digits", "yoffset", 20)) self.displayarc = self.retrieve("Arc", "displayarc", True) == "True" self.arcwidth = int(self.retrieve("Arc", "arcwidth", 1)) self.displayfivemarks = self.retrieve("Dots", "displayfivemarks", True) == "True" self.displayseconddots = self.retrieve("Dots", "displayseconddots", True) == "True" self.dotdiameter = int(self.retrieve("Dots", "dotdiameter", 50)) self.secondmargin = int(self.retrieve("Dots", "secondmargin", 60)) self.indicatormargin = int(self.retrieve("Dots", "indicatormargin", 15)) self.clockinterval = float(self.retrieve("Drawscheduler", "clockinterval", 0.01)) self.dotinterval = float(self.retrieve("Drawscheduler", "dotinterval", 0.02)) self.arcinterval = float(self.retrieve("Drawscheduler", "arcinterval", 0.02)) self.indicatorinterval = float(self.retrieve("Drawscheduler", "indicatorinterval", 0.02)) self.timedict = ast.literal_eval(self.retrieve("Zeitfarben", "timedict", self.defaulttimedict)) print "Read settings from "+str(path) def retrieve(self, configsection, configoption, default): """ Returns a Value from a config, if it fails returns defaults """ try: return self.config.get(configsection, configoption) except: return default def set_defaults(self): # Sets the default values # Create Sections self.config.add_section("Display") self.config.add_section("Digits") self.config.add_section("Arc") self.config.add_section("Dots") self.config.add_section("Drawscheduler") self.config.add_section("Zeitfarben") # Set Values self.config.set("Display", "fullscreen", True) self.config.set("Digits", "textformat", "%H:%M") self.config.set("Digits", "fontname", "Roboto Mono Thin") self.config.set("Digits", "fontsize", 20) self.config.set("Digits", "xoffset", 20) self.config.set("Digits", "yoffset", 20) self.config.set("Arc", "displayarc", True) self.config.set("Arc", "arcwidth", 1) self.config.set("Dots", "displayfivemarks", True) self.config.set("Dots", "displayseconddots", True) self.config.set("Dots", "dotdiameter", 50) self.config.set("Dots", "secondmargin", 60) self.config.set("Dots", "indicatormargin", 15) self.config.set("Drawscheduler", "clockinterval", 0.01) self.config.set("Drawscheduler", "dotinterval", 0.02) self.config.set("Drawscheduler", "arcinterval", 0.02) self.config.set("Drawscheduler", "indicatorinterval", 0.02) self.config.set("Zeitfarben", "timedict", self.defaulttimedict)
n, m = map(int, input().split(' ')) txt = input().split(' ') c = [] for i in range(n): c.append(int(txt[i])) answer = [] for i in range(len(c)-2): for j in range(i+1, len(c)-1): for k in range(j+1, len(c)): o = c[i] + c[j] + c[k] if c[i] + c[j] + c[k] <= m: answer.append(o) print(max(answer))
# Copyright 2021 DAI Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from functools import lru_cache from typing import List, Dict, Optional from web3 import Web3 from web3.datastructures import AttributeDict from web3.middleware import geth_poa_middleware from web3.types import BlockData, TxData, TxReceipt, HexStr from .node import NodeConnectionPool from ..exceptions import NodeConnectionException, ProcessingException from ..models.objects_model import Transaction, BlockMetadata, TransactionMetadata, Call from ..models.w3_model import W3Block, W3Transaction, W3Receipt, W3CallTree, W3Log from ..semantics.standards import erc20 log = logging.getLogger(__name__) def connect_chain( http_hook: str = None, ipc_hook: str = None, ws_hook: str = None, poa: bool = False ) -> Web3 or None: if http_hook: provider = Web3.HTTPProvider hook = http_hook elif ipc_hook: provider = Web3.IPCProvider hook = ipc_hook elif ws_hook: provider = Web3.WebsocketProvider hook = ws_hook else: provider = Web3.IPCProvider hook = "\\\\.\\pipe\\geth.ipc" w3 = Web3(provider(hook, request_kwargs={"timeout": 600})) # middleware injection for POA chains if poa: w3.middleware_onion.inject(geth_poa_middleware, layer=0) return w3 class NodeDataProvider: default_chain: str def __init__(self, default_chain=None): self.default_chain = default_chain def get_block( self, block_number: int, chain_id: Optional[str] = None ) -> BlockMetadata: ... def get_transaction( self, tx_hash: str, chain_id: Optional[str] = None ) -> TransactionMetadata: ... def get_full_transaction( self, tx_hash: str, chain_id: Optional[str] = None ) -> Transaction: ... def get_calls(self, tx_hash: str, chain_id: Optional[str] = None) -> Call: ... def get_code_hash( self, contract_address: str, chain_id: Optional[str] = None ) -> str: ... def get_erc20_token( self, token_address: str, contract_name: str, functions, chain_id: Optional[str] = None, ): ... def guess_erc20_token(self, contract_address: str, chain_id: Optional[str] = None): ... def guess_erc20_proxy(self, contract_address: str, chain_id: Optional[str] = None): ... def guess_erc721_proxy(self, contract_address: str, chain_id: Optional[str] = None): ... class Web3Provider(NodeDataProvider): chain: Web3 def __init__(self, nodes: Dict[str, dict], default_chain=None): super().__init__(default_chain) self.nodes = nodes def _get_node_connection(self, chain_id: Optional[str] = None) -> Web3: chain_id = chain_id or self.default_chain if chain_id is None: raise ProcessingException( "chain_id must be provided as an argument or constructor default" ) if chain_id not in self.nodes: raise ProcessingException( "unknown chain_id, it must be defined in the EthTxConfig object" ) for connection in NodeConnectionPool(nodes=self.nodes).get_connection( chain=chain_id ): w3 = connect_chain(http_hook=connection.url, poa=connection.poa) if w3.isConnected(): log.info( "Connected to: %s with latest block %s.", connection, w3.eth.block_number, ) return w3 else: log.warning("Connection failed to: %s", connection) raise NodeConnectionException # get the raw block data from the node @lru_cache(maxsize=512) def get_block(self, block_number: int, chain_id: Optional[str] = None) -> W3Block: chain = self._get_node_connection(chain_id) raw_block: BlockData = chain.eth.get_block(block_number) block = W3Block( chain_id=chain_id or self.default_chain, difficulty=raw_block.difficulty, extraData=raw_block.get("extraData", None), gasLimit=raw_block.gasLimit, gasUsed=raw_block.gasUsed, hash=raw_block.hash, logsBloom=raw_block.logsBloom, miner=raw_block.miner, nonce=raw_block.get("nonce", 0), number=raw_block.number, parentHash=raw_block.parentHash, receiptsRoot=raw_block.receiptsRoot, sha3Uncles=raw_block.sha3Uncles, size=raw_block.size, stateRoot=raw_block.stateRoot, timestamp=raw_block.timestamp, totalDifficulty=raw_block.totalDifficulty, transactions=raw_block.transactions, transactionsRoot=raw_block.transactionsRoot, uncles=raw_block.uncles, ) return block # get the raw transaction data from the node @lru_cache(maxsize=512) def get_transaction( self, tx_hash: str, chain_id: Optional[str] = None ) -> W3Transaction: chain = self._get_node_connection(chain_id) raw_tx: TxData = chain.eth.get_transaction(HexStr(tx_hash)) transaction = W3Transaction( chain_id=chain_id or self.default_chain, blockHash=raw_tx.blockHash, blockNumber=raw_tx.blockNumber, from_address=raw_tx["from"], gas=raw_tx.gas, gasPrice=raw_tx.gasPrice, hash=raw_tx.hash, input=raw_tx.input, nonce=raw_tx.nonce, r=raw_tx.r, s=raw_tx.s, to=raw_tx.to, transactionIndex=raw_tx.transactionIndex, v=raw_tx.v, value=raw_tx.value, ) return transaction @lru_cache(maxsize=512) def get_receipt(self, tx_hash: str, chain_id: Optional[str] = None) -> W3Receipt: chain = self._get_node_connection(chain_id) raw_receipt: TxReceipt = chain.eth.get_transaction_receipt(tx_hash) _root = raw_receipt.root if hasattr(raw_receipt, "root") else None _logs = [ W3Log( tx_hash=tx_hash, chain_id=chain_id or self.default_chain, address=_log.address, blockHash=_log.blockHash, blockNumber=_log.blockNumber, data=_log.data, logIndex=_log.logIndex, removed=_log.removed, topics=_log.topics, transactionHash=_log.transactionHash, transactionIndex=_log.transactionIndex, ) for _log in raw_receipt.logs ] receipt = W3Receipt( tx_hash=tx_hash, chain_id=chain_id or self.default_chain, blockHash=raw_receipt.blockHash, blockNumber=raw_receipt.blockNumber, contractAddress=raw_receipt.contractAddress, cumulativeGasUsed=raw_receipt.cumulativeGasUsed, from_address=raw_receipt["from"], gasUsed=raw_receipt.gasUsed, logs=_logs, logsBloom=raw_receipt.logsBloom, root=_root, status=raw_receipt.get("status", True), to_address=raw_receipt.to, transactionHash=raw_receipt.transactionHash, transactionIndex=raw_receipt.transactionIndex, ) return receipt @staticmethod def _get_custom_calls_tracer(): return open(os.path.join(os.path.dirname(__file__), "static/tracer.js")).read() @lru_cache(maxsize=512) def get_calls(self, tx_hash: str, chain_id: Optional[str] = None) -> W3CallTree: # tracer is a temporary fixed implementation of geth tracer chain = self._get_node_connection(chain_id) tracer = self._get_custom_calls_tracer() response = chain.manager.request_blocking( "debug_traceTransaction", [tx_hash, {"tracer": tracer, "timeout": "60s"}] ) return self._create_call_from_debug_trace_tx( tx_hash, chain_id or self.default_chain, response ) # get the contract bytecode hash from the node @lru_cache(maxsize=512) def get_code_hash( self, contract_address: str, chain_id: Optional[str] = None ) -> str: chain = self._get_node_connection(chain_id) byte_code = chain.eth.get_code(Web3.toChecksumAddress(contract_address)) code_hash = Web3.keccak(byte_code).hex() return code_hash # get the erc20 token data from the node def get_erc20_token( self, token_address: str, contract_name: str, functions, chain_id: Optional[str] = None, ): name_abi = symbol_abi = decimals_abi = "" if functions: for function in functions.values(): if ( function.name == "name" and len(function.inputs) == 0 and len(function.outputs) == 1 ): name_type = function.outputs[0].parameter_type name_abi = ( '{"name":"name", "constant":true, "payable":false, "type":"function", ' ' "inputs":[], "outputs":[{"name":"","type":"%s"}]}' % name_type ) elif ( function.name == "symbol" and len(function.inputs) == 0 and len(function.outputs) == 1 ): symbol_type = function.outputs[0].parameter_type symbol_abi = ( '{"name":"symbol", "constant":true, "payable":false,"type":"function", ' ' "inputs":[], "outputs":[{"name":"","type":"%s"}]}' % symbol_type ) elif ( function.name in ["decimals", "dec"] and len(function.inputs) == 0 and len(function.outputs) == 1 ): decimals_type = function.outputs[0].parameter_type decimals_abi = ( '{"name":"decimals", "constant":true, "payable":false,"type":"function", ' ' "inputs":[], "outputs":[{"name":"","type":"%s"}]}' % decimals_type ) abi = f'[{",".join([name_abi, symbol_abi, decimals_abi])}]' try: chain = self._get_node_connection(chain_id) token = chain.eth.contract( address=Web3.toChecksumAddress(token_address), abi=abi ) name = token.functions.name().call() if name_abi else contract_name if isinstance(name, bytes): name = name.decode("utf-8").replace("\x00", "") symbol = token.functions.symbol().call() if symbol_abi else contract_name if isinstance(symbol, bytes): symbol = symbol.decode("utf-8").replace("\x00", "") decimals = token.functions.decimals().call() if decimals_abi else 18 except Exception: name = symbol = contract_name decimals = 18 return dict(address=token_address, symbol=symbol, name=name, decimals=decimals) # guess if the contract is and erc20 token and get the data @lru_cache(maxsize=512) def guess_erc20_token(self, contract_address, chain_id: Optional[str] = None): chain = self._get_node_connection(chain_id) byte_code = chain.eth.get_code(Web3.toChecksumAddress(contract_address)).hex() if all( "63" + signature[2:] in byte_code for signature in ( erc20.erc20_transfer_function.signature, erc20.erc20_transferFrom_function.signature, erc20.erc20_approve_function.signature, ) ) and all( signature[2:] in byte_code for signature in ( erc20.erc20_transfer_event.signature, erc20.erc20_approval_event.signature, ) ): name_abi = ( '{"name":"name", "constant":true, "payable":false,' ' "type":"function", "inputs":[], "outputs":[{"name":"","type":"string"}]}' ) symbol_abi = ( '{"name":"symbol", "constant":true, "payable":false,' '"type":"function", "inputs":[], "outputs":[{"name":"","type":"string"}]}' ) decimals_abi = ( '{"name":"decimals", "constant":true, "payable":false,' '"type":"function", "inputs":[], "outputs":[{"name":"","type":"uint8"}]}' ) abi = f'[{",".join([name_abi, symbol_abi, decimals_abi])}]' try: token = chain.eth.contract( address=Web3.toChecksumAddress(contract_address), abi=abi ) name = token.functions.name().call() symbol = token.functions.symbol().call() decimals = token.functions.decimals().call() return dict( address=contract_address, symbol=symbol, name=name, decimals=decimals, ) except Exception: pass return None # guess if the contract is and erc20 token proxy and get the data @lru_cache(maxsize=512) def guess_erc20_proxy(self, contract_address, chain_id: Optional[str] = None): chain = self._get_node_connection(chain_id) name_abi = ( '{"name":"name", "constant":true, "payable":false,' ' "type":"function", "inputs":[], "outputs":[{"name":"","type":"string"}]}' ) symbol_abi = ( '{"name":"symbol", "constant":true, "payable":false,' '"type":"function", "inputs":[], "outputs":[{"name":"","type":"string"}]}' ) decimals_abi = ( '{"name":"decimals", "constant":true, "payable":false,' '"type":"function", "inputs":[], "outputs":[{"name":"","type":"uint8"}]}' ) abi = f'[{",".join([name_abi, symbol_abi, decimals_abi])}]' try: token = chain.eth.contract( address=Web3.toChecksumAddress(contract_address), abi=abi ) name = token.functions.name().call() symbol = token.functions.symbol().call() decimals = token.functions.decimals().call() return dict(symbol=symbol, name=name, decimals=decimals) except Exception: pass return None # guess if the contract is and erc721 token proxy and get the data @lru_cache(maxsize=512) def guess_erc721_proxy(self, contract_address, chain_id: Optional[str] = None): chain = self._get_node_connection(chain_id) name_abi = ( '{"name":"name", "constant":true, "payable":false,' ' "type":"function", "inputs":[], "outputs":[{"name":"","type":"string"}]}' ) symbol_abi = ( '{"name":"symbol", "constant":true, "payable":false,' '"type":"function", "inputs":[], "outputs":[{"name":"","type":"string"}]}' ) abi = f'[{",".join([name_abi, symbol_abi])}]' try: token = chain.eth.contract( address=Web3.toChecksumAddress(contract_address), abi=abi ) name = token.functions.name().call() symbol = token.functions.symbol().call() return dict(symbol=symbol, name=name) except Exception: pass return None @lru_cache(maxsize=512) def get_full_transaction(self, tx_hash: str, chain_id: Optional[str] = None): w3transaction = self.get_transaction(tx_hash, chain_id) w3receipt = self.get_receipt(tx_hash, chain_id) w3calltree = self.get_calls(tx_hash, chain_id) return Transaction.from_raw( w3transaction=w3transaction, w3receipt=w3receipt, w3calltree=w3calltree ) @staticmethod def _create_call_from_debug_trace_tx( tx_hash: str, chain_id: str, input_rpc: AttributeDict ) -> W3CallTree: def prep_raw_dict(dct: [AttributeDict, Dict]): if not isinstance(dct, dict): dct = dct.__dict__ dct["from_address"] = dct.pop("from", None) dct["to_address"] = dct.pop("to", None) dct["input"] = dct.pop("input", "0x") dct["output"] = dct.pop("output", "0x") calls = dct.pop("calls", []) return dct, calls obj = input_rpc.__dict__ tmp_call_tree = [] w3input, main_parent_calls = prep_raw_dict(obj) main_parent = W3CallTree(tx_hash=tx_hash, chain_id=chain_id, **w3input) for main_parent_call in main_parent_calls: w3input, main_parent_calls = prep_raw_dict(main_parent_call) main_parent_child = W3CallTree( tx_hash=tx_hash, chain_id=chain_id, **w3input ) main_parent.calls.append(main_parent_child) if len(main_parent_calls) > 0: tmp_call_tree.append( {"parent": main_parent_child, "children": main_parent_calls} ) while len(tmp_call_tree) != 0: new_call_tree = [] for pair in tmp_call_tree: parent_call: W3CallTree = pair["parent"] child_calls: List = pair["children"] if child_calls is not None: for child_call in child_calls: w3input, child_child_call = prep_raw_dict(child_call) child = W3CallTree( tx_hash=tx_hash, chain_id=chain_id, **w3input ) parent_call.calls.append(child) if len(child_call) > 0: new_call_tree.append( {"parent": child, "children": child_child_call} ) tmp_call_tree = new_call_tree return main_parent
from pyspark import SparkContext from pyspark import SparkConf def CreateSparkContext(): ''' spark配置: 1.显示在spark或 hadoop-yarn UI界面的App名称 2.设置不显示spark执行进度以免界面太乱 ''' sparkConf = SparkConf().setAppName('FilmRecommend') \ .set('spark.ui.showConsoleProgress','false') sc = SparkContext(conf=sparkConf) print('master='+sc.master) SetLogger(sc) #设置不要显示太多信息 SetPath(sc) # 设置文件读取路径 return sc def SetLogger(sc): logger = sc._jvm.org.apache.log4j logger.LogManager.getLogger("org").setLevel(logger.Level.ERROR) logger.LogManager.getLogger("akka").setLevel(logger.Level.ERROR) logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR) def SetPath(sc): global Path if sc.master[0:5]=="local": Path = "file:/home/hadoop/eclipse-workspace/FilmRecommend/" else: Path = "hdfs://ubuntu:9000/sparkproject/FilmRecommend/" if __name__=='__main__': print('开始执行 FilmRecommend') sc = CreateSparkContext() print('开始读取数据文件...') textFile = sc.textFile(Path+"data/words.txt") print("该数据文件共%s行" % textFile.count()) countsRDD = textFile.flatMap(lambda line:line.split(' ')) \ .map(lambda x:(x,1)).reduceByKey(lambda x,y:x+y) print('文字统计共%s项数据' % countsRDD.count()) print('保存至文本文件output') try: countsRDD.saveAsTextFile(Path+'data/output') except Exception as e: print('输出目录已存在,请先删除原有目录') sc.stop()
""" Представлен список чисел. Определить элементы списка, не имеющие повторений. Сформировать итоговый массив чисел, соответствующих требованию. Элементы вывести в порядке их следования в исходном списке. Для выполнения задания обязательно использовать генератор.""" num_list = [1, 2, 3, 2, 4, 5, 5, 6, 1] new_list = [itm for itm in num_list if num_list.count(itm) == 1] print(new_list)
# Ryan Spies # 8/5/2014 # Python 2.6.5 # This script calculates a mean daily max and min temperature for each month #!!!!!!!!!!! Units left in degrees F !!!!!!!!!!!!!!!!!!!!!!! #!!!!!!!!!!! Data must be 6 hour time steps !!!!!!!!!!!!!!!!!!!!!! import os import numpy as np from dateutil import parser from dateutil.relativedelta import relativedelta import csv path = os.getcwd() ######################## User Input Section ############################ rfc = 'NERFC' # give directory of original RFC MAP/MAT files map_dir = 'P:\\NWS\\Calibration_NWS\\NERFC\\fromNERFC\\MAT' ###################### End User Input ################################## rfc_files = os.listdir(map_dir) rfc_basins = [] for name in rfc_files: if name.endswith('.txt'): # only use text files in diretory rfc_basins.append(name) for files in rfc_files: # locat only .mat and .map files if files[-9:-4] == 'MAT06' or files[-7:-4] == 'MAT': basin = files[:5] basin_title = str.upper(basin) print basin_title # enter file locations for old and new files file1 = map_dir + '\\' + files csvfile = open('P:\\NWS\\Calibration_NWS\\NERFC\\fromNERFC\\MAT\\' + basin_title + '_monthly_tmin_tmax_.csv','w') writer = csv.writer(csvfile) writer.writerow(['Monthly mean daily max and min temperatures (F)']) writer.writerow(['Year', 'Variable', 'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']) day_data= {} fg = open(file1,'r') # create a dictionary with 6hr data grouped into daily data print 'Creating dictionary with 6hr data grouped into daily data...' for each in fg: spl = each.split('\t') date = parser.parse(spl[0]) all_day = date.replace(hour=12) temp = float(spl[1]) if temp < -100 or temp > 120: print 'Warning... bad data: ' + str (date) temp = 'na' if all_day in day_data: day_data[all_day].append(temp) else: day_data[all_day] = [temp] fg.close() start = min(day_data).replace(month=1,day=1,hour=12) end = max(day_data).replace(month=12,day=1,hour=12) # create two dictionaries with tmin and tmax data for each day print 'Calculating Tmin and Tmax for each day...' mnday_min = {}; mnday_max = {} for day in day_data: tmin = min(day_data[day]) tmax = max(day_data[day]) day_mn = day.replace(day=1) if day_mn in mnday_min: mnday_min[day_mn].append(tmin) else: mnday_min[day_mn] = [tmin] if day_mn in mnday_max: mnday_max[day_mn].append(tmax) else: mnday_max[day_mn] = [tmax] # write to new csv file: the mean daily values for each month print 'writing data to csv file...' year_max = []; year_min = [] while start <= end: ## tmax output if start in mnday_max: year_max.append(np.average(mnday_max[start])) else: year_max.append('na') if start.month == 12: csvfile.write(str(start.year) + ',' + 'Tmax' + ',') for each in year_max: csvfile.write(str(each) + ',') csvfile.write('\n') year_max = [] # tmin output if start in mnday_min: year_min.append(np.average(mnday_min[start])) else: year_min.append('na') if start.month == 12: csvfile.write(str(start.year) + ',' + 'Tmin' + ',') for each in year_min: csvfile.write(str(each) + ',') csvfile.write('\n') year_min = [] #writer.writerow([start.year,'Tmax',np.average(mnday_max[start.replace(month=1)]),np.average(mnday_max[start.replace(month=2)]),np.average(mnday_max[start.replace(month=3)]),np.average(mnday_max[start.replace(month=4)]),np.average(mnday_max[start.replace(month=5)]),np.average(mnday_max[start.replace(month=6)]),np.average(mnday_max[start.replace(month=7)]),np.average(mnday_max[start.replace(month=8)]),np.average(mnday_max[start.replace(month=9)]),np.average(mnday_max[start.replace(month=10)]),np.average(mnday_max[start.replace(month=11)]),np.average(mnday_max[start.replace(month=12)])]) start = start + relativedelta(months=1) csvfile.close() print 'Finito!!!'
import string KEYS_TO_ORD = { 'c' : 0, 'cis': 1, 'des': 1, 'd': 2, 'dis' : 3, 'e' : 4, 'es' : 4, 'f': 5, 'fis': 6, 'ges': 6, 'g' : 7, 'gis': 8, 'as': 8, 'a': 9, 'b': 10, 'ais': 10, 'h' : 11 } ORD_TO_KEY = { 0 : 'c', 1 : 'cis', 2 : 'd', 3 : 'dis', 4 : 'e', 5 : 'f', 6 : 'fis', 7 : 'g', 8 : 'gis', 9 : 'a', 10 : 'b', 11 : 'h' } def transpose_chord(chord, transposition): """ Transposes a chord >without a base sound< a given number of halftones up """ low = chord[0].lower() + chord[1:] transposed = "??" for prefix_length in [3,2,1]: if len(low) >= prefix_length and low[:prefix_length] in KEYS_TO_ORD: new_ord = (KEYS_TO_ORD[low[:prefix_length]] + transposition) % 12 transposed = ORD_TO_KEY[new_ord] + low[prefix_length:] break if chord[0].isupper(): return transposed[0].upper() + transposed[1:] else: return transposed def transpose_sequence(chord_sequence, transposition): """ Transposes a sequence of chords a given number of halftones up. Chords with specified base sounds are split and the sound is transposed separately.""" input_chords = [str(x) for x in chord_sequence.split()] output_chords = list() for chord in input_chords: if chord.find("/") != -1: # for chords with specified base sound transposed = "/".join([transpose_chord(x, transposition) for x in chord.split("/")]) else: transposed = transpose_chord(chord, transposition) output_chords.append(transposed) return ' '.join(output_chords) def transpose_lyrics(parsed_lyrics, transposition): """ Transposes a song represented as a list of paragraphs and returns result in the same format """ result = [] for paragraph in parsed_lyrics: section = [] for (text, chords, is_indented, are_chords_extra) in paragraph: if chords.find("(") != -1: begin = chords.find("(") end = chords.find(")") if end == -1 or end < begin: raise SyntaxError, "Incorrect '(' brackets in chords" core = chords[:begin].strip() bracketed = chords[begin+1:end].strip() transposed = "%s (%s)" % (transpose_sequence(core, transposition), transpose_sequence(bracketed, transposition)) else: transposed = transpose_sequence(chords.strip(), transposition) section.append( ( text, transposed, is_indented, are_chords_extra ) ) result.append(section) return result
#!/usr/bin/env python ''' chat_server.py -- Simple chat server for chat_client.py ''' import sys import socket import select from twisted.internet import protocol, reactor, endpoints # TODO: Store all config values in a YAML config file. HOST = '127.0.0.1' PORT = 5000 MAX_CLIENTS = 3 RECV_BUFFER = 4096 # Zero value makes it wait forever. SERVER_TIMEOUT = 0 # Track open connections CONNECTION_LIST = [] def send_message(server_socket, originating_sock, message): ''' Message all connected clients ''' for socket_item in CONNECTION_LIST: # Message everyone except the server and originating client. if socket_item != server_socket and socket_item != originating_sock: try: socket_item.send(message) except socket.error: socket_item.close() if socket_item in CONNECTION_LIST: CONNECTION_LIST.remove(socket) def chat_server(): ''' Chat server implementation ''' # TODO: Extend support to include IPv6 protocol server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Avoid 'socket.error: [Errno 98] Address already in use' when socket is # in TIME_WAIT state. # https://docs.python.org/2/library/socket.html#example server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server_socket.bind((HOST, PORT)) server_socket.listen(MAX_CLIENTS) # Start by listening to icomming connections to this server CONNECTION_LIST.append(server_socket) print "Chat server started on {}:{} ".format(HOST, PORT) while True: # Wait for server socket events ready_to_read, _, _ = select.select(CONNECTION_LIST, [], [], SERVER_TIMEOUT) for sock in ready_to_read: if sock == server_socket: # Incomming connection request sockfd, addr = server_socket.accept() CONNECTION_LIST.append(sockfd) print "Connected with client {}".format(addr) send_message(server_socket, sockfd, "{} entered our chatting room" .format(addr)) else: # Message received from a client try: data = sock.recv(RECV_BUFFER) if data: # Relay the message msg = '{}: {}'.format(sock.getpeername(), data) send_message(server_socket, sock, msg) else: # De-list the client if sock in CONNECTION_LIST: CONNECTION_LIST.remove(sock) print "DEBUG: client {} is offline".format(addr) # No data means the connection has been broken send_message(server_socket, sock, "Client {} is offline".format(addr)) except socket.error as err: send_message(server_socket, sock, "Client {} is offline".format(addr)) print "ERROR: Failed to comunicate with client. {}" \ "".format(err) continue server_socket.close() # # M A I N # if __name__ == "__main__": sys.exit(chat_server())
from django.contrib.auth.models import User, AbstractUser from django.contrib.contenttypes.fields import GenericForeignKey, GenericRelation from django.contrib.contenttypes.models import ContentType from django.db import models # Create your models here. from django.db.models import CASCADE from django.utils.datetime_safe import datetime class Poster(AbstractUser): pass class Profile(models.Model): objects = models.Manager() user = models.OneToOneField(Poster, on_delete=models.CASCADE, related_name='profile') first_name = models.CharField(max_length=50, blank = True) last_name = models.CharField(max_length=50, blank=True) gender = models.CharField(max_length=6, blank=True, default='') date_of_birth = models.DateField(blank=True, default='1900-01-01') avatar = models.FileField(default='default_pic.jpg') class Post(models.Model): created_date = models.DateTimeField(default=datetime.now) title = models.CharField(max_length=250) original_content = models.BooleanField(blank=True, default=False) spoiler = models.BooleanField(blank=True, default=False) nsfw = models.BooleanField(blank=True, default=False) nr_likes = models.IntegerField(default=0) class Meta: abstract = True def __str__(self): return self.title class Comment(models.Model): user = models.ForeignKey(Profile, on_delete=models.CASCADE) created_date = models.DateTimeField() comment = models.CharField(max_length=250, default='', blank=True) # Following fields are required for using GenericForeignKey content_type = models.ForeignKey(ContentType, on_delete=CASCADE, blank=True) object_id = models.PositiveIntegerField() post = GenericForeignKey() class Like(models.Model): user = models.ForeignKey(Poster, on_delete=models.CASCADE) created_date = models.DateTimeField() # Following fields are required for using GenericForeignKey content_type = models.ForeignKey(ContentType, on_delete=CASCADE) object_id = models.PositiveIntegerField() post = GenericForeignKey() class Text(Post): user = models.ForeignKey(Poster, on_delete=models.CASCADE) text = models.CharField(max_length=1000, default='', blank=True) likes = GenericRelation(Like, related_query_name='like_text') comments = GenericRelation(Comment) @property def class_name(self): return "texts" class File(Post): user = models.ForeignKey(Poster, on_delete=models.CASCADE) file = models.FileField() likes = GenericRelation(Like, related_query_name='like_file') comments = GenericRelation(Comment) @property def class_name(self): return "files" class Link(Post): user = models.ForeignKey(Poster, on_delete=models.CASCADE) url = models.URLField() likes = GenericRelation(Like, related_query_name='like_link') comments = GenericRelation(Comment) @property def class_name(self): return "links"
from threading import Thread import requests import time import json class wtm (Thread): def __init__(self,win): #Intializing the request for the Yahoo Weather API ############### ALL COMMENTEND WAITING FOR API KEY ############### #Basic info self.url = "https://weather-fetcher-nmiot.herokuapp.com/weather" Thread.__init__(self) self.win = win #keeping a reference to the window object so we can pass info to it def run(self): while True: try: r = requests.get(url=self.url) r.raise_for_status() self.win.updateWeatherData(json.loads(r.text)["forecasts"]) time.sleep(3600) #Updating the weather every hour except Exception as err: print("couldn't get weather") time.sleep(10) #try again in 10 seconds #with open('res.json','r') as file: #Reading from res.json as placeholder # response=json.load(file)
from PyQt5 import QtGui, QtWidgets from bsp.leveleditor.DocObject import DocObject from enum import IntEnum # What viewport type can a tool be used in? class ToolUsage(IntEnum): View2D = 0 View3D = 1 Both = 2 class BaseTool(DocObject): Name = "Tool" KeyBind = None WantButton = True ToolTip = "Base tool" StatusTip = None Icon = None Usage = ToolUsage.Both def __init__(self, mgr): DocObject.__init__(self, mgr.doc) self.enabled = False self.activated = False self.mgr = mgr self.options = None def cleanup(self): self.enabled = None self.activated = None self.mgr = None DocObject.cleanup(self) def toolTriggered(self): pass def enable(self): print("Enable", self.Name) self.enabled = True self.activate() def activate(self): self.activated = True self.doc.taskMgr.add(self.__updateTask, self.Name + "-UpdateTool") if self.options: self.options.setTool(self) self.mgr.toolProperties.addGroup(self.options) def __updateTask(self, task): self.update() return task.cont def update(self): pass def disable(self): print("Disable", self.Name) self.deactivate() self.enabled = False self.ignoreAllGlobal() def deactivate(self): self.activated = False self.doc.taskMgr.remove(self.Name + "-UpdateTool") self.ignoreAll() self.mgr.toolProperties.clear()
import subprocess import psutil import platform import tensorflow_datasets as tfds import json import os import http.client import requests import multiprocessing from SCASSHManager import listen_and_accept_requests import time agent_registered = False base_conda_env_installed = False accepting_jobs = False anaconda_url = 'https://repo.anaconda.com/archive/' conda_download_dir = '/users/rijupahwa/Downloads/conda_repo/' anaconda_installer = {'Darwin': 'https://repo.anaconda.com/archive/Anaconda3-2019.10-MacOSX-x86_64.sh' , 'windows': 'https://repo.anaconda.com/archive/Anaconda3-2019.10-MacOSX-x86_64.sh' , 'linux': 'https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86_64.sh' , 'power_linux': 'https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-ppc64le.sh'} cloud_server_hostname = "ec2-54-201-232-156.us-west-2.compute.amazonaws.com" monitor_pid = None py_function_pid = None ssh_cloud_pid = None notebook_service = None py_function_service = None notebook_service_port = None py_function_service_port = None ssh_cloud_status = None agent_id = None from enum import Enum class SystemInfo: def __init__(self , system_id , mac_addr , os , os_version , cpu_count , total_memory , cpu_architecture , processor_type , machine_type , gpu_type , gpu_model , total_disk_space , free_disk_space): self.system_id = system_id self.mac_addr = mac_addr self.os = os self.os_version = os_version self.cpu_count = cpu_count self.total_memory = total_memory self.cpu_architecture = cpu_architecture self.processor_type = processor_type self.machine_type = machine_type self.gpu_type = gpu_type self.gpu_model = gpu_model self.total_disk_space = total_disk_space self.free_disk_space = free_disk_space class MonitoringInfo: def __init__(self , monitoring_id , agent_id , current_cpu_usage , current_memory_usage , current_network_usage , current_gpu_usage , current_free_disk_space): self.monitoring_id = monitoring_id self.agent_id = agent_id self.current_cpu_usage = current_cpu_usage self.current_memory_usage = current_memory_usage self.current_network_usage = current_network_usage self.current_gpu_usage = current_gpu_usage self.current_free_disk_space = current_free_disk_space class JobStatus (Enum): PROCESSING = 0 ACCEPTING_JOBS = 1 NOT_ACCEPTING_JOBS = 2 class Agent: def __init__(self , agent_id , agent_password , agent_key , job_status , system_id , policy): self.agent_id = agent_id self.agent_password = agent_password self.agent_key = agent_key self.system_id = system_id self.job_status = job_status self.policy = policy ''' { 'free_cpu_threshold': 50 , # in percent 'free_memory_threshold': 10 , # in GB 'free_disk_space': 100 # in GB } ''' def export_conda_env(env_file_name='blah.yml'): subprocess.run ([ "cd" , "/Users/rijupahwa/Library/Mobile Documents/com~apple~CloudDocs/cloudOS/code/trials" ]) subprocess.run ([ "python" , "--version" ]) env_file = open (env_file_name , "w") # text = subprocess.run ([ "conda" , "list" ]) text = subprocess.run ([ "conda" , "env" , "export" ] , stdout=env_file) print (text) def import_conda_env(env_file_name='blah.yml'): subprocess.run ([ "cd" , "/Users/rijupahwa/Library/Mobile Documents/com~apple~CloudDocs/cloudOS/code/trials" ]) env_file = open (env_file_name , "w") # text = subprocess.run ([ "conda" , "list" ]) # conda env create -f environment.yml text = subprocess.run ([ "conda" , "env" , "create" , "-n" , "test_env1" , "--prefix" , "./envs" ] , stdin=env_file) def register_system_with_supercompute(): sys_info = { 'os': platform.system () , 'os_version': platform.mac_ver ()[ 0 ] , 'cpu_count': psutil.cpu_count () , 'cpu_architecture': platform.architecture () , 'processor_type': platform.processor () , 'total_memory': psutil.virtual_memory ()[ 0 ] , 'total_disk_space': psutil.disk_usage ('/')[ 0 ] , 'free_disk_space': psutil.disk_usage ('/')[ 1 ] } resp = requests.post ('http://127.0.0.1:5000/system/register/' , json=sys_info) print (resp.json ()) sys_info = resp.json () with open ('sys_config.json' , 'w') as f: json.dump (sys_info , f) return sys_info[ 'system_id' ] def register_agent_with_supercompute(system_id): agent_info = { 'system_id': system_id , 'agent_password': 'Default' , 'agent_key': 'from the file' , 'policy': { 'free_cpu_threshold': 50 , # in percent 'free_memory_threshold': 10 , # in GB 'free_disk_space': 100 # in GB } } resp = requests.post ('http://127.0.0.1:5000/agent/register/' , json=agent_info) print (resp.json ()) agent_info = resp.json () with open ('agent_config.json' , 'w') as f: json.dump (agent_info , f) return agent_info[ 'agent_id' ] def setup_jupyter_notebook(self): # conda_installed = # dm = tfds.download.download_manager.DownloadManager(download_dir=conda_download_dir)\ # .download(anaconda_installer[platform.system()]) # subprocess.run(['cd',conda_download_dir]) subprocess.run ([ 'pwd' ]) filename = anaconda_installer[ platform.system () ].rsplit ('/')[ -1 ] subprocess.run ([ 'bash' , conda_download_dir + filename ]) def collect_monitoring_data(agent_id): monitoring_info = {} monitoring_info = {'agent_id': agent_id , 'current_cpu_usage': psutil.cpu_percent (interval=1) , 'available_memory': psutil.virtual_memory ()[ 1 ] , 'current_network_usage': None , 'current_gpu_usage': None , 'free_disk_space': psutil.disk_usage ('/')[ 1 ] , 'notebook_service': '' , 'python_functions_service': '' , 'notebook_service_port': '' , 'python_functions_service_port': '' } resp = requests.post ('http://127.0.0.1:5000/agent/monitor/' , json=monitoring_info) with open ('agent_monitoring_data.json' , 'a') as f: json.dump (monitoring_info , f) notebook_service_port = monitoring_info['notebook_service_port'] py_function_service_port = monitoring_info['python_service_port'] return monitoring_info def start_notebook(conda_path , conda_port): print ('Starting notebook server..') # subprocess.run ([ '/Users/rijupahwa/opt/anaconda3/bin/conda','activate','trials' ], shell=True) subprocess.run ([ conda_path , 'notebook' , '--port' , conda_port , '--NotebookApp.token=''' ]) def start_agent_services(self): try: while True: print ('running..') except KeyboardInterrupt: print ('terminating.') finally: print ('finally') def shutdown_agent_services(self): pass if __name__ == '__main__': register_system_with_supercompute () if not os.path.isfile ("sys_config.json"): print ('Registering system...') sys_id = register_system_with_supercompute () register_agent_with_supercompute (sys_id) elif not os.path.isfile ("agent_config.json"): with open ('sys_config.json') as f: sys_config = json.load (f) print ('Registering agent for system {}...'.format (sys_config[ 'system_id' ])) register_agent_with_supercompute (sys_config[ 'system_id' ]) print ('Starting monitoring services..') #agent_config = None with open ('agent_config.json') as f: agent_config = json.load (f) monitor_pid = multiprocessing.Process (target=collect_monitoring_data , args=agent_config[ 'agent_id' ]) time.sleep(5) print(notebook_service_port) ssh_cloud_pid = multiprocessing.Process (target=listen_and_accept_requests , args=(cloud_server_hostname , notebook_service_port , "127.0.0.1" , notebook_service_port , "/Users/rijupahwa/.ssh/super-compute-dev.pem")) ssh_cloud_pid.start () ssh_cloud_status = True time.sleep (5) notebook_pid = multiprocessing.Process (target=start_notebook , args=('/Users/rijupahwa/opt/anaconda3/bin/jupyter' , notebook_service_port)) notebook_pid.start () notebook_service = True while True: collect_monitoring_data (agent_config[ 'agent_id' ]) print (collect_monitoring_data (agent_config[ 'agent_id' ])) if not ssh_cloud_status: ssh_cloud_pid = multiprocessing.Process (target=listen_and_accept_requests , args=(cloud_server_hostname , notebook_service_port , "127.0.0.1" , notebook_service_port , "/Users/rijupahwa/.ssh/super-compute-dev.pem")) ssh_cloud_pid.start () ssh_cloud_status = True if not notebook_service: notebook_pid = multiprocessing.Process (target=start_notebook , args=('/Users/rijupahwa/opt/anaconda3/bin/jupyter' , notebook_service_port)) notebook_pid.start () notebook_service = True time.sleep (5)
import socket addr=("0.0.0.0",19562) ss = socket.socket(socket.AF_INET,socket.SOCK_STREAM) ss.bind(addr) while 1: data,addr= ss.recvfrom(1024) ss.sendto(data, addr)
# -*- coding:utf-8 -*- # 匿名函数 from math import log #引入Python数学库的对数函数 # 此函数用于返回一个以base为底的匿名对数函数 def make_logarithmic_function(base): return lambda x:log(x,base) # 创建了一个以3为底的匿名对数函数,并赋值给了My_LF My_LF = make_logarithmic_function(3) # 使用My_LF调用匿名函数,参数只需要真数即可,底数已设置为3。而使用log()函数需要 # 同时指定真数和对数。如果我们每次都是求以3为底数的对数,使用My_LF更方便。 print My_LF(9) # result: 2.0
try: from charm.core.math.elliptic_curve import elliptic_curve,ZR,G,init,random,order,getGenerator,bitsize,serialize,deserialize,hashEC,encode,decode,getXY #from charm.core.math.elliptic_curve import InitBenchmark,StartBenchmark,EndBenchmark,GetBenchmark,GetGeneralBenchmarks,ClearBenchmark except Exception as err: print(err) exit(-1) class ECGroup(): def __init__(self, builtin_cv): self.group = elliptic_curve(nid=builtin_cv) self.param = builtin_cv self._verbose = True def order(self): return order(self.group) def bitsize(self): return bitsize(self.group) def paramgen(self, secparam): return None def groupSetting(self): return 'elliptic_curve' def groupType(self): return self.param def init(self, _type=ZR): return init(self.group, _type) def random(self, _type=ZR): if _type == ZR or _type == G: return random(self.group, _type) return None def encode(self, message): return encode(self.group, message) def decode(self, msg_bytes): return decode(self.group, msg_bytes) def serialize(self, object): return serialize(object) def deserialize(self, bytes_object): return deserialize(self.group, bytes_object) # needs work to iterate over tuple def hash(self, args, _type=ZR): if isinstance(args, tuple): s = bytes() for i in args: if type(i) == elliptic_curve: s += serialize(i) elif type(i) == str: s += str(i) # consider other types #print("s => %s" % s) return hashEC(self.group, str(s), _type) elif type(args) == elliptic_curve: msg = str(serialize(args)) return hashEC(self.group, msg, _type) elif type(args) == str: return hashEC(self.group, args, _type) return None def zr(self, point): if type(point) == elliptic_curve: return getXY(self.group, point, False) return None def coordinates(self, point): if type(point) == elliptic_curve: return getXY(self.group, point, True) def debug(self, data, prefix=None): if type(data) == dict and self._verbose: for k,v in data.items(): print(k,v) elif type(data) == list and self._verbose: for i in range(0, len(data)): print(prefix, (i+1),':',data[i]) print('') elif type(data) == str and self._verbose: print(data) return None
import random a = str(input('First student:')) b = str(input('Second student')) c = str(input('Third student')) d = str(input('Forh student')) list =[a, b, c, d] random.shuffle(list) print(list)
"""FTDs to VPNs Class.""" from fmcapi.api_objects.apiclasstemplate import APIClassTemplate import logging class FTDS2SVPNs(APIClassTemplate): """The FTDS2SVPNs Object in the FMC.""" VALID_JSON_DATA = [ "id", "name", "type", "ipsecSettings", "endpoints", "ikeSettings", "advancedSettings", "description", "ikeV2Enabled", "ikeV1Enabled", "topologyType", "version", ] VALID_FOR_KWARGS = VALID_JSON_DATA + [] FIRST_SUPPORTED_FMC_VERSION = "6.3" URL_SUFFIX = "/policy/ftds2svpns" VALID_CHARACTERS_FOR_NAME = """[.\w\d_\- ]""" def __init__(self, fmc, **kwargs): """ Initialize FTDS2SVPNs object. Set self.type to "FTDS2SVPpn", parse the kwargs, and set up the self.URL. :param fmc (object): FMC object :param **kwargs: Any other values passed during instantiation. :return: None """ super().__init__(fmc, **kwargs) logging.debug("In __init__() for FTDNatPolicies class.") self.parse_kwargs(**kwargs) self.type = "FTDS2SVpn"
#!/usr/bin/env python # -*- coding: utf-8 -*- # # copia.py # # Copyright 2015 Cristian <cristian@cristian> # """ Escreva um programa que cria uma cópia de um arquivo via CLI. Exemplo: python3 copia.py <arquivo original> <arquivo copia> """ import sys def copia(nomeArquivo, nomeNovoArquivo): PARAMETROS = 3 copiaArquivo = "" if len(sys.argv) == PARAMETROS: arquivo = open(nomeArquivo, 'r') for texto in arquivo.readlines(): copiaArquivo += texto # novoArquivo = open(nomeNovoArquivo, 'w') novoArquivo.write(copiaArquivo) novoArquivo.close() arquivo.close() else: print("\nA função precisa receber dois parâmetros!\n") # # def main(): copia(sys.argv[1], sys.argv[2]) return 0 if __name__ == '__main__': main()
import re comment = re.compile(r'/\*(.*?)\*/') text1 = '/* abcsdfasdfasdf */' text2 = '''/* abcsdfasdfasdf ddddz;z;z;z;z;z;z */''' print comment.findall(text1) print '--------------' print comment.findall(text2) comment = re.compile(r'/\*((?:.|\n)*?)\*/') print '--------------' print comment.findall(text1) print '--------------' print comment.findall(text2) comment = re.compile(r'/\*(.*?)\*/', re.DOTALL) print '--------------' print comment.findall(text1) print '--------------' print comment.findall(text2)
#!/usr/bin/python3 ''' eval is to parse a expression from a str to a command and run it then return a result of it ''' list_str="[5,6,7,8,9]" list_str=eval(list_str) print(list_str) print(list_str[4]) x=input("code:") check_this_out=eval(input("code:")) print(check_this_out)
# http://fun.coolshell.cn/unix.html D = dict(zip('pvwdgazxubqfsnrhocitlkeymj', 'abcdefghijklmnoqprstuvwxyz')) string = 'Wxgcg txgcg ui p ixgff, txgcg ui p epm. I gyhgwt mrl lig txg ixgff wrsspnd tr irfkg txui hcrvfgs, nre, hfgpig tcm liunz txg crt13 ra "ixgff" tr gntgc ngyt fgkgf.' answer = '' for c in string: if c in D: answer += D[c] else: answer += c print(answer) # Where there is a shell, there is a way. I exqect you use the shell command to solve this qroblem, now, qlease try using the rot13 of "shell" to enter next level. rot13 = dict(zip('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz', 'NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklm')) print([rot13[c] for c in 'shell']) # furyy
def Key_Generator(message, key): key = list(key) if len(message) == len(key): return (key) else: for i in range(len(message) - len(key)): key.append(key[i % len(key)]) return ("".join(key)) def encrypt(message, key): Encrypted_Message = [] for i in range(len(message)): m = (ord(message[i]) + ord(key[i])) % 26 m += ord('A') Encrypted_Message.append(chr(m)) return ("".join(Encrypted_Message)) def decrypt(cipher_text, key): Decrypted_Message = [] for i in range(len(cipher_text)): m = (ord(cipher_text[i]) - ord(key[i]) + 26) % 26 m += ord('A') Decrypted_Message.append(chr(m)) return ("".join(Decrypted_Message)) print('<---Please select one of the options given below--->\nNOTE: Do not forget to use capital letters only :)') Value = int(input('1 : Encryption\n2 : Decryption\n-->')) if(Value == 1): Message = input("Please Enter Your MESSAGE (Plain Text) : ") key = input('Please Enter the desired SHIFT KEY : ') key = Key_Generator(Message, key) print("Encrypted Message : ", encrypt(Message, key)) elif(Value == 2): Message = input("Please Enter Your MESSAGE (Cipher Text) : ") key = input('Please Enter the desired SHIFT KEY : ') key = Key_Generator(Message, key) print("Decrypted Message : ", decrypt(Message, key)) else: print('Please Select the Valid Option')
#-*- coding: utf-8 -*- from django.core import serializers from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.http import HttpResponse, HttpResponseRedirect, Http404, HttpResponseServerError from django.shortcuts import render from django.template import loader, RequestContext from carton.cart import Cart from .models import Produto from protetores_bucais.apps.localizacao.models import Cidade, Endereco, Uf from protetores_bucais.apps.loja.models import Cliente, Pedido, ItemPedido import json def abrir_loja(request): produtos = Produto.objects.all() template = loader.get_template('loja/base.html') context = RequestContext(request, {'produtos': produtos}) return HttpResponse(template.render(context)) def buscar_produtos(request, pagina=1): filtro = request.POST.get('filtro') valor = request.POST.get('valor') produtos = [] if filtro and valor: if filtro == 'nome': produtos = Produto.objects.filter(nome__icontains=valor) elif filtro == 'preco-menor-igual': produtos = Produto.objects.filter(preco__lte=valor) elif filtro == 'preco-igual': produtos = Produto.objects.filter(preco__exact=valor) elif filtro == 'preco-maior-igual': produtos = Produto.objects.filter(preco__gte=valor) else: produtos = Produto.objects.filter(descricao__icontains=valor) else: produtos = Produto.objects.all() # Mostra 10 produtos por página. paginator = Paginator(produtos, 10) page = pagina try: produtos = paginator.page(page) except PageNotAnInteger: produtos = paginator.page(1) except EmptyPage: produtos = paginator.page(paginator.num_pages) template = loader.get_template('loja/produtos.html') context = RequestContext(request, {'produtos': produtos}) return HttpResponse(template.render(context)) def ver_produto(request, id): produto = Produto.objects.get(pk=id) template = loader.get_template('loja/produto.html') context = RequestContext(request, {'produto': produto}) return HttpResponse(template.render(context)) def carrinho_adicionar(request): if request.method == 'POST': carrinho = Cart(request.session) produto = Produto.objects.get(pk=request.POST.get('id')) carrinho.add(produto, price=produto.preco, quantity=request.POST.get('quantidade')) data = json.dumps({'itens': str(len(carrinho.items)), 'total': str(carrinho.total)}) return HttpResponse(data, content_type='application/json') else: return HttpResponse('404') def carrinho_remover(request): if request.method == 'POST': carrinho = Cart(request.session) produto = Produto.objects.get(pk=request.POST.get('id')) carrinho.remove(produto) template = loader.get_template('loja/carrinho.html') context = RequestContext(request) return HttpResponse(template.render(context)) else: return HttpResponse('404') def incrementar_quantidade(request): produto_id = request.POST['produto'] quantidade = request.POST['quantidade'] carrinho = Cart(request.session) produto = Produto.objects.get(pk=produto_id) carrinho.set_quantity(produto, quantity=quantidade) template = loader.get_template('loja/carrinho.html') context = RequestContext(request) return HttpResponse(template.render(context)) def decrementar_quantidade(request): produto_id = request.POST['produto'] quantidade = request.POST['quantidade'] carrinho = Cart(request.session) produto = Produto.objects.get(pk=produto_id) carrinho.set_quantity(produto, quantity=quantidade) template = loader.get_template('loja/carrinho.html') context = RequestContext(request) return HttpResponse(template.render(context)) def carrinho_ver(request, pagina=1): carrinho = Cart(request.session) template = loader.get_template('loja/carrinho.html') context = RequestContext(request) return HttpResponse(template.render(context)) def esvaziar_carrinho(request): carrinho = Cart(request.session) carrinho.clear() return carrinho_ver(request) def finalizar_pedido(request): template = loader.get_template('loja/confirmar-pedido.html') context = RequestContext( request, { 'ufs': Uf.objects.all(), 'cidades': Cidade.objects.all(), } ) return HttpResponse(template.render(context)) def confirmar_pedido(request): if request.method == 'POST': # UF uf = Uf.objects.get(sigla=request.POST.get('uf')) # Cidade cidade = uf.cidade_set.get(nome=request.POST.get('cidade')) # Endereço endereco = Endereco() endereco.logradouro = request.POST.get('logradouro') endereco.complemento = request.POST.get('complemento') endereco.bairro = request.POST.get('bairro') endereco.cep = request.POST.get('cep') endereco.cidade = cidade; endereco.save() # Cliente cliente = Cliente() cliente.endereco = endereco cliente.nome = request.POST.get('nome') cliente.telefone = request.POST.get('telefone') cliente.email = request.POST.get('email') cliente.save() # Pedido pedido = Pedido() pedido.cliente = cliente # Carrinho de compras carrinho = Cart(request.session) pedido.valor_total = carrinho.total pedido.save() # Item pedido for item in carrinho.items: print item item_pedido = ItemPedido() item_pedido.pedido = pedido item_pedido.produto = item.product item_pedido.quantidade = item.quantity item_pedido.preco_unitario = item.price item_pedido.preco_total = item.price * item.quantity item_pedido.save() pedido.save() carrinho.clear() template = loader.get_template('loja/efetuar-pagamento.html') context = RequestContext(request, {'cliente': cliente}) return HttpResponse(template.render(context)) else: return HttpResponseServerError()
num = int(input("请输入阶乘num:")) factorial = 1 if num < 0: print("负数没有阶乘!") elif num == 0: print("0的阶乘为1") else: for i in range(1,num+1): factorial = factorial * i print("%d的阶乘为%d"%(num,factorial))
from django.db.models import Q from django.conf import settings from django.contrib.auth import get_user_model, authenticate from rest_framework.response import Response from rest_framework.status import HTTP_200_OK, HTTP_400_BAD_REQUEST from rest_framework.views import APIView from django.db.models.signals import post_save from django.dispatch import receiver from rest_framework.authtoken.models import Token from rest_framework.authtoken.models import Token from rest_framework.generics import ( CreateAPIView, ) from rest_framework.permissions import ( AllowAny, IsAuthenticated, IsAdminUser, IsAuthenticatedOrReadOnly, ) User = get_user_model() from .serializers import ( UserCreateSerializer, UserLoginSerializer, ) @receiver(post_save, sender=settings.AUTH_USER_MODEL) def create_auth_token(sender, instance=None, created=False, **kwargs): if created: Token.objects.create(user=instance) class UserCreateAPIView(CreateAPIView): serializer_class = UserCreateSerializer queryset = User.objects.all() permission_classes = [AllowAny] class UserLoginAPIView(APIView): permission_classes = [AllowAny] serializer_class = UserLoginSerializer def post(self, request, *args, **kwargs): data = request.data serializer = UserLoginSerializer(data=data) import pdb;pdb.set_trace() if serializer.is_valid(raise_exception=True): new_data = serializer.data token = Token.objects.get_or_create(user=serializer) new_data['token'] = token.key return Response(new_data, status=HTTP_200_OK) return Response(serializer.errors, status=HTTP_400_BAD_REQUEST)
szamla=[] print(szamla) print(total)
# coding=utf-8 def triangles(max): c, n = [1], 1 while n <= max: print(c) c = [1]+[c[i-1]+c[i] for i in range(1, len(c))]+[1] n += 1 def main(): while True: cmd = raw_input("输入杨辉三角数字?") if cmd == 'q': return else: num = int(cmd) triangles(num) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- from selenium import webdriver from pyunitreport import HTMLTestRunner from selenium.webdriver.common.by import By from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select from selenium.common.exceptions import NoSuchElementException from selenium.common.exceptions import NoAlertPresentException import unittest, time, re import mysql.connector import os import datetime class UntitledTestCase(unittest.TestCase): #steps = [["open","https://www.facebook.com/",""],["click","id=email",""],["type","id=email","salmanplaystation2@gmail.com"],["click","id=pass",""],["type","id=pass","12345678"],["click","id=u_0_2",""]] case_name = "facebooklogin.xml" def setUp(self): cwd = os.getcwd() self.driver = webdriver.Chrome(cwd+"\\chrome\\chromedriver.exe") '''self.driver.implicitly_wait(30) self.base_url = "https://www.google.com/" self.verificationErrors = [] self.accept_next_alert = True''' '''chrome_options = Options() chrome_options.add_argument("--headless") chrome_options.add_argument("--window-size=1920x1080") chrome_driver = os.getcwd() + "\\chrome\\chromedriver.exe" self.driver = webdriver.Chrome(options=chrome_options, executable_path=chrome_driver)''' self.driver.implicitly_wait(30) self.base_url = "https://www.google.com/" self.verificationErrors = [] self.accept_next_alert = True def test_untitled_test_case(self): driver = self.driver steps = self.getArray(self.case_name) try: self.execute_steps(steps) except Exception as e: print("type error: " + str(e)) driver.get_screenshot_as_file("test.png") def is_element_present(self, how, what): try: self.driver.find_element(by=how, value=what) except NoSuchElementException as e: return False return True def is_alert_present(self): try: self.driver.switch_to_alert() except NoAlertPresentException as e: return False return True def close_alert_and_get_its_text(self): try: alert = self.driver.switch_to_alert() alert_text = alert.text if self.accept_next_alert: alert.accept() else: alert.dismiss() return alert_text finally: self.accept_next_alert = True def execute_steps(self,listSteps): driver = self.driver driver.maximize_window() size=len(listSteps) if size > 0: now = datetime.datetime.now() b=now.strftime("%Y-%m-%d_%H-%M-%S") f= open("log_"+b+".txt","a+") f.write("\n-----------------------------------------------------------------------------------------------------------------------\n") f.write("######################################################################################################################\n") f.write("-----------------------------------------------------------------------------------------------------------------------\n") f.write("Current Time \n") f.write(now.strftime("%Y-%m-%d %H:%M:%S\n")) f.write("-----------------------------------------------------------------------------------------------------------------------\n") print("executing testcase: ", self.case_name,"\n") a="executing testcase: "+self.case_name+"\n" f.write(a) for step in listSteps: # print(step) target = step[1] if "open" in step[0]: print("opening ", step[1]) a = "opening "+step[1]+"\n" f.write(a) driver.get(step[1]) elif "click" in step[0]: if "/" in target[1]: print("click element by xpath ", target) a="click element by xpath "+target+"\n" f.write(a) driver.find_element_by_xpath(target).click() elif "link=" in target: linktag = target.split("=") print("click link ", linktag[1]) a="click link "+linktag[1]+"\n" f.write(a) driver.find_element_by_link_text(linktag[1]).click() elif "id=" in step[1]: idtag = target.split("=") print("click on element with id ", idtag[1]) a="click on element with id "+idtag[1]+"\n" f.write(a) driver.find_element_by_id(idtag[1]).click() elif "name=" in target: nametag = target.split("=") print("click on element with name ", nametag[1]) a="click on element with name "+nametag[1]+"\n" f.write(a) driver.find_element_by_name(nametag[1]).click() elif "type" in step[0]: if "/" in target[1]: print("clearing field with xpath ",target) a="clearing field with xpath "+target+"\n" f.write(a) driver.find_element_by_xpath(target).clear() print("typing ", step[2], " field with xpath ", target) a="typing "+step[2]+" field with xpath "+target+"\n" f.write(a) driver.find_element_by_xpath(target).send_keys(step[2]) elif "id=" in step[1]: idtag = target.split("=") print("clearing field with element id ", idtag[1]) x=str(idtag[1]) b="clearing field with element id "+x+"\n" f.write(b) driver.find_element_by_id(idtag[1]).clear() print("inserting ", step[2], "field with element id ", idtag[1]) a="inserting "+step[2]+"field with element id "+idtag[1]+"\n" f.write(a) driver.find_element_by_id(idtag[1]).send_keys(step[2]) elif "name=" in target: nametag = target.split("=") print("clearing field with element name ", nametag[1]) a="clearing field with element name "+nametag[1]+"\n" f.write(a) driver.find_element_by_name(nametag[1]).clear() print("inserting", step[2], "field with element name ", nametag[1]) a="inserting"+step[2]+"field with element name "+nametag[1]+"\n" f.write(a) driver.find_element_by_name(nametag[1]).send_keys(step[2]) elif "assertText" in step[0]: if "/" in target[1]: print("assertEqualText ", step[2], "with text in element with xpath ", target) a="assertEqualText "+step[2], "with text in element with xpath "+target+"\n" f.write(a) self.assertEqual(step[2], driver.find_element_by_xpath( target).text) elif "link=" in target: linktag = target.split("=") print("assertEqualText ", step[2], "with text in link ", linktag[1]) a="assertEqualText "+step[2]+"with text in link "+linktag[1]+"\n" f.write(a) self.assertEqual(step[2], driver.find_element_by_link_text(linktag[1]).text) elif "id=" in step[1]: idtag = target.split("=") print("assertEqualText ", step[2], "with text in element with id ", idtag[1]) a="assertEqualText "+step[2], "with text in element with id "+idtag[1]+"\n" f.write(a) self.assertEqual(step[2], driver.find_element_by_id(idtag[1]).text) elif "name=" in target: nametag = target.split("=") print("assertEqualText ",step[2],"with text in element with name ", nametag[1]) a="assertEqualText "+step[2], "with text in element with name "+nametag[1]+"\n" f.write(a) self.assertEqual(step[2], driver.find_element_by_name(nametag[1]).text) elif "assertElementPresent" in step[0]: if "/" in target[1]: print("assert element is present with xpath ", target) a="assert element is present with xpath "+target+"\n" f.write(a) self.assertTrue(self.is_element_present(By.XPATH, target)) elif "link=" in target: linktag = target.split("=") print("assert element is present with link ", linktag[1]) a="assert element is present with link "+linktag[1]+"\n" f.write(a) self.assertTrue(self.is_element_present(By.LINK_TEXT, linktag[1])) elif "id=" in step[1]: idtag = target.split("=") print("assert element is present with id ", idtag[1]) a="assert element is present with id "+idtag[1]+"\n" f.write(a) self.assertTrue(self.is_element_present(By.ID, idtag[1])) elif "name=" in target: nametag = target.split("=") print("assert element is present with name ", nametag[1]) a="assert element is present with name "+nametag[1]+"\n" f.write(a) self.assertTrue(self.is_element_present(By.NAME, nametag[1])) elif "waitForVisible" in step[0]: if "/" in target[1]: print("waiting for element with xpath ", target, "to be visible") a="waiting for element with xpath "+target+"to be visible"+"\n" f.write(a) for i in range(60): try: if driver.find_element_by_xpath(target).is_displayed(): break except: pass time.sleep(1) else: print("element is not visible within time frame") a="element is not visible within time frame"+"\n" f.write(a) self.fail("time out") elif "link=" in target: linktag = target.split("=") print("waiting for element with link ", linktag[1], "to be visible") a="waiting for element with link "+linktag[1], "to be visible"+"\n" f.write(a) for i in range(60): try: if driver.find_element_by_link_text(linktag[1]).is_displayed(): break except: pass time.sleep(1) else: print("element is not visible within time frame") a="element is not visible within time frame"+"\n" f.write(a) self.fail("time out") elif "id=" in step[1]: idtag = target.split("=") print("waiting for element with id ", idtag[1], "to be visible") a="waiting for element with id "+idtag[1], "to be visible"+"\n" f.write(a) for i in range(60): try: if driver.find_element_by_id(idtag[1]).is_displayed(): break except: pass time.sleep(1) else: print("element is not visible within time frame") a="element is not visible within time frame"+"\n" f.write(a) self.fail("time out") elif "name=" in target: nametag = target.split("=") print("waiting for element with name ", nametag[1], "to be visible") a="waiting for element with name "+nametag[1], "to be visible"+"\n" f.write(a) for i in range(60): try: if driver.find_element_by_name(nametag[1]).is_displayed(): break except: pass time.sleep(1) else: print("element is not visible within time frame") a="element is not visible within time frame"+"\n" f.write(a) self.fail("time out") elif "assertTextPresent" in step[0]: self.assertRegexpMatches(driver.find_element_by_css_selector("BODY").text, r"^[\s\S]*"+target+"[\s\S]*$") print("taking screenshot") a="taking screenshot" f.write(a) driver.get_screenshot_as_file("test.png") def getArray(self,testcase): conn = mysql.connector.connect(user="root", password="", host="localhost", database="testcasedb") cursor = conn.cursor() cursor.execute("SELECT * FROM testcases WHERE testCaseName='" + testcase + "' ORDER BY ID") array = [] for row in cursor.fetchall(): array.append([row[2], row[3], row[4]]) conn.close() if array == []: print("Test case not found ") else: return array def tearDown(self): self.driver.quit() self.assertEqual([], self.verificationErrors) if __name__ == "__main__": unittest.main(testRunner=HTMLTestRunner(output="example_dir"))
import logic import random from AbstractPlayers import * from math import log import copy import signal import time # commands to use for move players. dictionary : Move(enum) -> function(board), # all the functions {up,down,left,right) receive board as parameter and return tuple of (new_board, done, score). # new_board is according to the step taken, done is true if the step is legal, score is the sum of all numbers that # combined in this step. # (you can see GreedyMovePlayer implementation for example) from constants import * inf = 1 << 32 PROBABILITY_2 = 0.9 PROBABILITY_4 = 0.1 commands = {Move.UP: logic.up, Move.DOWN: logic.down, Move.LEFT: logic.left, Move.RIGHT: logic.right} def signal_handler(signum, frame): raise Exception("Timeout") # generate value between {2,4} with probability p for 4 def gen_value(p=PROBABILITY): return logic.gen_two_or_four(p) class GreedyMovePlayer(AbstractMovePlayer): """Greedy move player provided to you (no need to change), the player receives time limit for a single step and the board as parameter and return the next move that gives the best score by looking one step ahead. """ def get_move(self, board, time_limit) -> Move: optional_moves_score = {} for move in Move: new_board, done, score = commands[move](board) if done: optional_moves_score[move] = score return max(optional_moves_score, key=optional_moves_score.get) def calc_heuristic(board): empty = 3 * _empty_cells(board) max_val = 3 * _max_value(board) mono_val = 1 * _monotonic_board_2(board) same_tiles_val = 2 * _same_tiles(board) return empty + mono_val + max_val + same_tiles_val def _empty_cells(board) -> float: empty_cells = 0 for i in range(GRID_LEN): for j in range(GRID_LEN): if board[i][j] == 0: empty_cells += 1 return empty_cells def _max_value(board) -> float: max_val = 0 for i in range(GRID_LEN): for j in range(GRID_LEN): if board[i][j] > max_val: max_val = board[i][j] return log(max_val) def _monotonic_board_2(board): left_to_right = 0 right_to_left = 0 up_to_down = 0 down_to_up = 0 for x in range(GRID_LEN): for y in range(GRID_LEN - 1): # horizontal val_curr = board[x][y] val_next = board[x][y + 1] if val_curr != 0 or val_next != 0: if val_curr < val_next: left_to_right += val_next - val_curr if val_curr > val_next: right_to_left += val_curr - val_next # vertical val_curr = board[y][x] val_next = board[y + 1][x] if val_curr != 0 or val_next != 0: if val_curr < val_next: up_to_down += val_next - val_curr if val_curr > val_next: down_to_up += val_curr - val_next res = min(left_to_right, right_to_left) + min(up_to_down, down_to_up) if res == 0: return 0 return -log(res) def _same_tiles(board): counter = 0 for row in range(GRID_LEN): for col in range(GRID_LEN - 1): if board[row][col] == board[row][col + 1] and board[row][col] != 0: counter += 1 col += 1 for col in range(GRID_LEN): for row in range(GRID_LEN - 1): if board[row][col] == board[row + 1][col] and board[row][col] != 0: counter += 1 row += 1 if counter == 0: return 0 return counter class RandomIndexPlayer(AbstractIndexPlayer): """Random index player provided to you (no need to change), the player receives time limit for a single step and the board as parameter and return the next indices to put 2 randomly. """ def get_indices(self, board, value, time_limit) -> (int, int): a = random.randint(0, len(board) - 1) b = random.randint(0, len(board) - 1) while board[a][b] != 0: a = random.randint(0, len(board) - 1) b = random.randint(0, len(board) - 1) return a, b # part A class ImprovedGreedyMovePlayer(AbstractMovePlayer): """Improved greedy Move Player, implement get_move function with greedy move that looks only one step ahead with heuristic. (you can add helper functions as you want). """ def __init__(self): AbstractMovePlayer.__init__(self) def get_move(self, board, time_limit) -> Move: optional_moves_score = {} for move in Move: new_board, done, score = commands[move](board) if done: optional_moves_score[move] = calc_heuristic(new_board) return max(optional_moves_score, key=optional_moves_score.get) # part B class MiniMaxMovePlayer(AbstractMovePlayer): """MiniMax Move Player, implement get_move function according to MiniMax algorithm (you can add helper functions as you want). """ def __init__(self): AbstractMovePlayer.__init__(self) def get_move(self, board, time_limit) -> Move: move = Move.LEFT iter = 0 signal.signal(signal.SIGALRM, signal_handler) signal.setitimer(signal.ITIMER_REAL, 0.8 * time_limit) try: while True: move = MiniMaxMovePlayer.min_max_move(board, iter)[0] iter += 1 except Exception as msg: pass return move @staticmethod def min_max_move(board, iteration) -> (Move, float): optional_moves_score = {} if iteration == 0: for move in Move: new_board, done, score = commands[move](board) if done: optional_moves_score[move] = calc_heuristic(new_board) if not optional_moves_score: return Move.LEFT, 0 # need to put something in the second value else: res_move = max(optional_moves_score, key=optional_moves_score.get) return res_move, optional_moves_score[res_move] else: for move in Move: new_board, done, score = commands[move](board) if done: optional_moves_score[move] = MiniMaxIndexPlayer.min_max_index(new_board, iteration - 1)[1] if not optional_moves_score: return Move.LEFT, 0 else: res_move = max(optional_moves_score, key=optional_moves_score.get) return res_move, optional_moves_score[res_move] class MiniMaxIndexPlayer(AbstractIndexPlayer): """MiniMax Index Player, this player is the opponent of the move player and need to return the indices on the board where to put 2. the goal of the player is to reduce move player score. implement get_indices function according to MiniMax algorithm, the value in minimax player value is only 2. (you can add helper functions as you want). """ def __init__(self): AbstractIndexPlayer.__init__(self) def get_indices(self, board, value, time_limit) -> (int, int): row = 0 col = 0 iteration = 0 signal.signal(signal.SIGALRM, signal_handler) signal.setitimer(signal.ITIMER_REAL, 0.80 * time_limit) try: while True: row, col = MiniMaxIndexPlayer.min_max_index(board, iteration)[0] iteration += 1 except Exception as msg: pass return row, col @staticmethod def min_max_index(board, iteration) -> ((int, int), float): optional_index_score = {} if iteration == 0: for row in range(GRID_LEN): for col in range(GRID_LEN): if board[row][col] == 0: new_board = copy.deepcopy(board) new_board[row][col] = 2 optional_index_score[(row, col)] = calc_heuristic(new_board) res_index = min(optional_index_score, key=optional_index_score.get) return res_index, optional_index_score[res_index] else: for row in range(GRID_LEN): for col in range(GRID_LEN): if board[row][col] == 0: new_board = copy.deepcopy(board) new_board[row][col] = 2 optional_index_score[(row, col)] = (MiniMaxMovePlayer.min_max_move(new_board, iteration - 1))[1] return min(optional_index_score, key=optional_index_score.get), min(optional_index_score.values()) # part C class ABMovePlayer(AbstractMovePlayer): """Alpha Beta Move Player, implement get_move function according to Alpha Beta MiniMax algorithm (you can add helper functions as you want) """ def __init__(self): AbstractMovePlayer.__init__(self) def get_move(self, board, time_limit) -> Move: move = Move.LEFT iter = 0 start = time.time() signal.signal(signal.SIGALRM, signal_handler) signal.setitimer(signal.ITIMER_REAL, 0.80 * time_limit) try: while True: move = ABMovePlayer.min_max_move(board, iter)[0] iter += 1 except Exception as msg: pass return move @staticmethod def min_max_move(board, iteration, alpha=-inf, beta=inf) -> (Move, float): optional_moves_score = {} if iteration == 0: for move in Move: new_board, done, score = commands[move](board) if done: optional_moves_score[move] = calc_heuristic(new_board) if not optional_moves_score: return Move.LEFT, 0 # need to put something in the second value else: res_move = max(optional_moves_score, key=optional_moves_score.get) return res_move, optional_moves_score[res_move] else: for move in Move: new_board, done, score = commands[move](board) if done: optional_moves_score[move] = ABMovePlayer.min_max_index(new_board, iteration - 1, alpha, beta)[1] alpha = max(alpha, optional_moves_score[move]) if alpha >= beta: break if not optional_moves_score: return Move.LEFT, 0 else: res_move = max(optional_moves_score, key=optional_moves_score.get) return res_move, optional_moves_score[res_move] @staticmethod def min_max_index(board, iteration, alpha=-inf, beta=inf) -> ((int, int), float): optional_index_score = {} if iteration == 0: for row in range(GRID_LEN): for col in range(GRID_LEN): if board[row][col] == 0: new_board = copy.deepcopy(board) new_board[row][col] = 2 optional_index_score[(row, col)] = calc_heuristic(new_board) res_index = min(optional_index_score, key=optional_index_score.get) return res_index, optional_index_score[res_index] else: for row in range(GRID_LEN): for col in range(GRID_LEN): if board[row][col] == 0: new_board = copy.deepcopy(board) new_board[row][col] = 2 optional_index_score[(row, col)] = \ (ABMovePlayer.min_max_move(new_board, iteration - 1, alpha, beta))[1] beta = min(beta, optional_index_score[(row, col)]) if beta <= alpha: break return min(optional_index_score, key=optional_index_score.get), min(optional_index_score.values()) # part D class ExpectimaxMovePlayer(AbstractMovePlayer): """Expectimax Move Player, implement get_move function according to Expectimax algorithm. (you can add helper functions as you want) """ def __init__(self): AbstractMovePlayer.__init__(self) def get_move(self, board, time_limit) -> Move: move = Move.LEFT iter = 0 signal.signal(signal.SIGALRM, signal_handler) signal.setitimer(signal.ITIMER_REAL, 0.80 * time_limit) try: while True: move = ExpectimaxMovePlayer.min_max_move(board, iter)[0] iter += 1 except Exception as msg: pass return move @staticmethod def min_max_move(board, iteration) -> (Move, float): optional_moves_score = {} if iteration == 0: for move in Move: new_board, done, score = commands[move](board) if done: optional_moves_score[move] = calc_heuristic(new_board) if not optional_moves_score: return Move.LEFT, 0 # need to put something in the second value else: res_move = max(optional_moves_score, key=optional_moves_score.get) return res_move, optional_moves_score[res_move] else: for move in Move: new_board, done, score = commands[move](board) if done: optional_moves_score[move] = ExpectimaxIndexPlayer.min_max_index(new_board, iteration - 1, 2)[ 1] * PROBABILITY_2 optional_moves_score[move] += ExpectimaxIndexPlayer.min_max_index(new_board, iteration - 1, 4)[ 1] * PROBABILITY_4 if not optional_moves_score: return Move.LEFT, 0 else: res_move = max(optional_moves_score, key=optional_moves_score.get) return res_move, optional_moves_score[res_move] class ExpectimaxIndexPlayer(AbstractIndexPlayer): """Expectimax Index Player implement get_indices function according to Expectimax algorithm, the value is number between {2,4}. (you can add helper functions as you want) """ def __init__(self): AbstractIndexPlayer.__init__(self) def get_indices(self, board, value, time_limit) -> (int, int): row = 0 col = 0 iteration = 0 signal.signal(signal.SIGALRM, signal_handler) signal.setitimer(signal.ITIMER_REAL, 0.80 * time_limit) try: while True: row, col = self.min_max_index(board, iteration, value)[0] iteration += 1 except Exception as msg: pass return row, col @staticmethod def min_max_index(board, iteration, value) -> ((int, int), float): optional_index_score = {} if iteration == 0: for row in range(GRID_LEN): for col in range(GRID_LEN): if board[row][col] == 0: new_board = copy.deepcopy(board) new_board[row][col] = value optional_index_score[(row, col)] = calc_heuristic(new_board) res_index = min(optional_index_score, key=optional_index_score.get) return res_index, optional_index_score[res_index] else: for row in range(GRID_LEN): for col in range(GRID_LEN): if board[row][col] == 0: new_board = copy.deepcopy(board) new_board[row][col] = value optional_index_score[(row, col)] = \ (ExpectimaxMovePlayer.min_max_move(new_board, iteration - 1))[1] return min(optional_index_score, key=optional_index_score.get), min(optional_index_score.values()) # Tournament class ContestMovePlayer(AbstractMovePlayer): """Contest Move Player, implement get_move function as you want to compete in the Tournament (you can add helper functions as you want) """ def __init__(self): AbstractMovePlayer.__init__(self) def get_move(self, board, time_limit) -> Move: move = Move.LEFT iter = 0 signal.signal(signal.SIGALRM, signal_handler) signal.setitimer(signal.ITIMER_REAL, 0.80 * time_limit) try: while True: move = ABMovePlayer.min_max_move(board, iter)[0] iter += 1 except Exception: pass return move
name = input("Qual o nome do funcionario: ") salary= int(input("Digite valor do Salario: ")) if (salary <= 5000): newSalary = salary*1,10 print ("O Funcionario",name," recebera o nova salario =", newSalary) if (salary > 5000) and (salary <= 20000): newSalary = (salary/100)*105 print ("O Funcionario",name," recebera o nova salario =", newSalary) if (salary > 20000): print ("O Funcionario",name," recebera o mesmo salario =", salary)
from django.apps import AppConfig #class MilliardConfig(AppConfig): # name = 'milliard' import re if re.match (r'^[а-яА-ЯёЁa-zA-Z\s]+$', ' '): print (1000)
print("Juste _un test")
# -*- coding: utf-8 -*- import os, re rs = os.popen("./iat_sample") text = rs.read() arr = text.split('=============================================================') print(arr[1].strip('\n'))
# ============LICENSE_START======================================================= # Copyright (c) 2020-2022 AT&T Intellectual Property. All rights reserved. # ================================================================================ # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============LICENSE_END========================================================= import unittest import trapd_exit pid_file = "/tmp/test_pid_file" pid_file_dne = "/tmp/test_pid_file_NOT" import trapd_stormwatch_settings as sws class test_cleanup_and_exit(unittest.TestCase): """ Test for presense of required vars """ def test_nonexistent_dict(self): """ Test nosuch var """ sws.init() self.assertFalse(hasattr(sws, 'no_such_var')) def test_storm_counter_dict(self): """ Test storm_counter_dict """ sws.init() self.assertTrue(hasattr(sws, 'sw_storm_counter_dict')) def test_storm_active_dict(self): """ Test storm_active_dict """ sws.init() self.assertTrue(hasattr(sws, 'sw_storm_active_dict')) def test_sw_config_oid_dict(self): """ Test sw_config_oid_dict """ sws.init() self.assertTrue(hasattr(sws, 'sw_config_oid_dict')) def test_sw_config_low_water_in_interval_dict(self): """ Test low_water """ sws.init() self.assertTrue(hasattr(sws, 'sw_config_low_water_in_interval_dict')) def test_sw_config_high_water_in_interval_dict(self): """ Test high water dict """ sws.init() self.assertTrue(hasattr(sws, 'sw_config_high_water_in_interval_dict')) def test_sw_config_category(self): """ Test category """ sws.init() self.assertTrue(hasattr(sws, 'sw_config_category')) def test_sw_interval_in_seconds(self): """ Test sw_interval """ sws.init() self.assertTrue(hasattr(sws, 'sw_interval_in_seconds')) self.assertTrue(str(sws.sw_interval_in_seconds).isnumeric()) def test_sw_last_stormwatch_dict_analysis(self): """ Test last_stormwatch_dict_analysis """ sws.init() self.assertTrue(hasattr(sws, 'sw_last_stormwatch_dict_analysis')) self.assertTrue(str(sws.sw_last_stormwatch_dict_analysis).isnumeric()) if __name__ == "__main__": # pragma: no cover unittest.main(verbosity=2)
#!/usr/bin/env python3 import meal_planner from bottle import * import logging import os import copy logging.basicConfig(level=logging.INFO) logger = logging.getLogger('web_server') mp_log = logging.getLogger('meal_planner') mp_log.setLevel(logging.INFO) @get('/') def index(): return static_file('index.html', '.') @get('/css/<filename>') def css(filename): return static_file(filename, './css') @get('/js/<filename>') def js(filename): return static_file(filename, './js') @get('/csvs/<filename>') def csvs(filename): return static_file(filename, './csvs', download=True) @get('/get_meal_plans') def get_meal_plans_get(): return meal_planner.get_meal_plans() @post('/get_meal_plans') def get_meal_plans_post(): person = request.json.get('person', "adult man").strip() nutrient_targets = request.json.get('nutrient_targets') iterations = request.json.get('iterations') or 10000 min_serve_size_difference = request.json.get('min_serve_size_difference') or .5 allowed_varieties = request.json.get('variety') or [1,2,3] allow_takeaways = request.json.get('takeaways') food_group_targets = request.json.get('food_group_targets') or {} logger.info('request recieved, person={}, nutrient_targets={}, iterations={}, min_serve_size_difference={}, allowed_varieties={}, allow_takeaways={}, food_group_targets={}'.format(person, nutrient_targets, iterations, min_serve_size_difference, allowed_varieties, allow_takeaways, food_group_targets)) return meal_planner.get_meal_plans(person, nutrient_targets, int(iterations), float(min_serve_size_difference), allowed_varieties, bool(allow_takeaways), food_group_targets) @get('/get_nutrient_targets') def get_nutrient_targets(): return meal_planner.nutrient_targets @get('/get_food_group_targets') def get_food_group_targets(): return meal_planner.food_groups @get('/get_var_price') def get_variable_price_options(): return meal_planner.variable_prices @post('/check_meal_plan_for_person') def check_meal_plan_for_person(): person = request.json.get('person') or 'adult man' meal_plan = request.json['meal_plan'] nutrients = meal_planner.get_nutrients(meal_plan, person) nutrient_targets = meal_planner.convert_to_fortnightly(copy.deepcopy(meal_planner.nutrient_targets[person])) return meal_planner.get_diff(nutrients, nutrient_targets) port = int(os.environ.get('PORT', 8080)) if __name__ == "__main__": try: try: run(host='0.0.0.0', port=port, debug=True, server='gunicorn', workers=8, timeout=500) except ImportError: run(host='0.0.0.0', port=port, debug=True, timeout=500) except Exception as e: logger.error(e) sys.stdin.readline() app = default_app()
name = "Roberta" print("Hello, " + name.title())
def add(num1, num2): return num1 + num2 def subtract(num1, num2): return num1 - num2 def multiply(num1, num2): return num1 * num2 def divide(num1, num2): return num1 / num2 def vowels(string): vowel = "aeiou" string = string.lower() count = 0 for x in string: if x in vowel: count = count+1 return count def encrypt(string): return string[::-1] menu = input("For Mathematical functions, Please Enter the Number 1 " + "\n" + "For String Operations, Please Enter the Number 2 \n") if menu == '1': menu = input("For Addition, Please Enter the Number 1 \n" + "For subtraction, Please Enter the Number 2 \n" + "For Multiplication, Please Enter the Number 3 \n" + "For Division, Please Enter the Number 4 \n") num1 = int(input("Enter First Number: ")) num2 = int(input("Enter Second Number: ")) if menu == '1': print(add(num1, num2)) elif menu == '2': print(subtract(num1, num2)) elif menu == '3': print(multiply(num1, num2)) elif menu == '4': print(divide(num1, num2)) else: print("Invalid Menu Number!") elif menu == '2': menu = input("To Determine the Number of Vowels in a String; Enter the Number 1 \n" + "To Encrypt a String; Enter Number 2 \n") string = input("Enter a String: ") if menu == '1': print(vowels(string)) elif menu == '2': print(encrypt(string)) else: print("Invalid Menu Number") else: print("Invalid Menu Number")
from panda3d.core import CKeyValues from .Entity import Entity # The root entity of each map class World(Entity): ObjectName = "world" def __init__(self, id): Entity.__init__(self, id) self.setClassname("worldspawn") self.np.node().setFinal(False) def doWriteKeyValues(self, parent): kv = CKeyValues(self.ObjectName, parent) self.writeKeyValues(kv) for child in self.children.values(): if isinstance(child, Entity): # Put entities outside of the world key-value block par = parent else: par = kv child.doWriteKeyValues(par) self.writeEditorValues(kv) def isWorld(self): return True
from flask import Flask, request, render_template, session, redirect, url_for from user import Newbike from sdt import New import mlab import smtplib mlab.connect() app = Flask(__name__) @app.route("/", methods=["GET", "POST"]) def home(): if request.method == "GET": #User request form return render_template("login.html") elif request.method == "POST": form = request.form s = form["sdt"] nbi = New(sdt=s.strip()) if s == '': warning = "vui long nhap sdt" return render_template("login.html", warning=warning) else: nbi.save() return render_template("welcome.html") @app.route("/trangchu", methods=["GET", "POST"]) def trangchu(): if request.method == "GET": #User request form return render_template("index.html") elif request.method == "POST": form = request.form u = form["username"] e = form["email"] n = form["number"] m = form["messenger"] nbike = Newbike(username=u.strip(), email=e.strip(), number=n.strip(), messenger=m.strip()) nbike.save() server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login("spy12a6@gmail.com", "cuong11a6") msg = "Cam on quy khach da quan tam toi du an, goi ngay 012345678 de duoc tu van mien phi" server.sendmail("spy12a6@gmail.com", e, msg) server.quit() notice2 = 'tkank you!' return render_template("index.html", username=u, email=e, number=n, messenger=m, u=u, notice2=notice2) @app.route("/list") def list(): userlist = Newbike.objects() sdtlist = New.objects() return render_template('aboutmes.html', userlist=userlist, sdtlist=sdtlist) if __name__ == "__main__": app.run(debug=True)
from controller import Robot, DistanceSensor, Motor,Receiver,Emitter,LightSensor,LED,Keyboard, GPS import struct #import RRT import math import RRT2 import sys import my_parser import IdealPos EN = "utf-8" pI=3.14159265359 #dummy car location #goal_x = -1 #goal_y = -1 #fire car dimension #fire_length = 0.2 #fire_width = 0.1 #car dimensions # x,y,z in meters dim = [0.1,0.05,0.2] CAR = "FIRE" TH = 950 TIME_STEP = 64 ##########globals for rrt############################## delta_time=11.93662 #when speed is 3.14 rad/s, go 1.5 meters need 11.93662s currTime=0 nextTime=0 i=1 mode=2 my_turn = False lock=0 rrt_count=0 prio = 2 do_job_now = False task_done = False #testing purposes mode = 2 ########################################################## ######## globals for info parsing and ideal loc ############ com = r_message = None # at_ideal = going_ideal = False coords = [] ccoords = [] # ############################################################ robot = Robot() ds = [] dsNames = ['ds_right', 'ds_left','ds_back_left','ds_back_right'] for i in range(4): ds.append(robot.getDistanceSensor(dsNames[i])) ds[i].enable(TIME_STEP) ''' ds_l = robot.getDistanceSensor('ds_left') ds_r = robot.getDistanceSensor('ds_right') ds_l.enable(TIME_STEP) ds_r.enable(TIME_STEP) ''' wheels = [] wheelsNames = ['wheel1', 'wheel2', 'wheel3', 'wheel4','arm_motor1','arm_motor2','arm_motor4','arm_motor6'] for i in range(8): wheels.append(robot.getMotor(wheelsNames[i])) wheels[i].setPosition(float('inf')) wheels[i].setVelocity(0.0) avoidObstacleCounter = 0 tuoluoyi=robot.getInertialUnit('imu_angle') tuoluoyi.enable(TIME_STEP) jieshouqi=robot.getReceiver('receiver') jieshouqi.enable(TIME_STEP) jieshouqi.setChannel(3) #set up emitter to send back to server server_sock=robot.getEmitter('emitter') server_sock.setChannel(1) server_sock.setRange(-1) count =0 jianpan=robot.getKeyboard() jianpan.enable(TIME_STEP) light_sensor_1=robot.getLightSensor('light_sensor1') light_sensor_1.enable(TIME_STEP) light_sensor_2=robot.getLightSensor('light_sensor2') light_sensor_2.enable(TIME_STEP) light_sensor_3=robot.getLightSensor('light_sensor3') light_sensor_3.enable(TIME_STEP) light_sensor_lu_left=robot.getLightSensor('light_sensor_lu_left') light_sensor_lu_left.enable(TIME_STEP) light_sensor_lu_right=robot.getLightSensor('light_sensor_lu_right') light_sensor_lu_right.enable(TIME_STEP) motor4_imu=robot.getInertialUnit('motor4_imu') motor4_imu.enable(TIME_STEP) motor2_imu=robot.getInertialUnit('motor2_imu') motor2_imu.enable(TIME_STEP) gps = robot.getGPS('arm_gps') gps.enable(TIME_STEP) #start_rrt = 0 #start_find = 0 #start_arm = 0 ls_top = robot.getLightSensor("light_sensor_top") ls_bot = robot.getLightSensor("light_sensor_bot") ls_top.enable(TIME_STEP) ls_bot.enable(TIME_STEP) #to go to the closest side global variables #detect fire #Top, Bot, Left, and Right position of the dummy car dum_loc = [] arm_loc = [] dum_angle = -361 dum_loc.append((-100,-100)) #top dum_loc.append((-100,-100)) #right dum_loc.append((-100,-100)) #bot dum_loc.append((-100,-100)) #left dum_light =[-1, -1, -1, -1] #top, right, bot, left max light intensity dum_imu = [-1, -1, -1, -1] #top, right, bot, left angle with the highest intensity #move_to_fire variables stop_index = -1 index = -1 max_light_index = -1 min_dist_index = -1 first_time = 0 #LOCKS fire_lock_0 = 0 fire_lock_1 = 0 fire_lock_2 = 0 fire_lock_3 = 0 fire_lock_4 = 0 fire_lock_5 = 0 fire_lock_6 = 0 fire_lock_7 = 0 fire_lock_8 = 0 fire_lock_9 = 0 move_lock_4_1 = 0 move_lock_4_2 = 0 move_lock_4_3 = 0 move_lock_4_4 = 0 move_lock_4_5 = 0 move_lock_4_6 = 0 move_lock_1 = 0 move_lock_2 = 0 move_lock_3 = 0 move_lock_4 = 0 move_thresh_angle = -361 scan_lock_1 = 0 scan_lock_2 = 0 scan_lock_3 = 0 scan_lock_4 = 0 scan_lock = 0 #convert python coordinates to webots def conv_coords(coords): x = (coords[0] + 3) * 10 y = (coords[1] + 3) * 10 z = (-1*coords[2] + 3) * 10 return [x,y,z] ############## create rrt path rrt_theta=[] len_rrt = 0 my_rrt = None in_transit = False ending = False obstacles_list = [ (19,20,2,40), (37,0,2,40) ] show_ani = False #initializing the rrt def rrt_create(start, dest): global my_rrt #rrt_theta = [] beg_x = float(start[0]) beg_y = float(start[2]) goal_x=float(dest[0]) goal_y=float(dest[2]) #convert radius to RRT coordinates car_bound = dim[2] * 10 + 2 #print(car_radius) my_rrt = RRT2.RRT(start=[beg_x, beg_y],goal=[goal_x,goal_y],rand_area=[0,60],\ obstacle_list=obstacles_list,car_radi=car_bound,show = show_ani) #rrt_path=RRT2.rrt_main(beg_x, beg_y,goal_x,goal_y,car_bound) rrt_new(start,dest) #print(rrt_theta) #ALWAYS! rrt_reset right before rrt_new #resetting parameters for rrt def rrt_reset(): global rrt_theta, len_rrt, i, lock rrt_theta = [] len_rrt = 0 i = 1 #print(i) angleArray=rrt_theta lock = 0 #change start and goal and create path def rrt_new(start, dest): global rrt_theta,len_rrt, mode,my_rrt rrt_reset() my_rrt.set_start_end([float(start[0]),float(start[2])],[float(dest[0]),float(dest[2])]) rrt_path = my_rrt.planning() len_path=len(rrt_path) for data in rrt_path: rrt_theta.append(float(data[2])) rrt_theta.reverse() len_rrt=len(rrt_theta) mode = 1 print(rrt_theta) ################################################# for move RRT def go_straight(): wheels[0].setVelocity(1) wheels[1].setVelocity(1) wheels[2].setVelocity(1) wheels[3].setVelocity(1) def right_turn(): wheels[0].setVelocity(1) wheels[1].setVelocity(-1) wheels[2].setVelocity(1) wheels[3].setVelocity(-1) def left_turn(): wheels[0].setVelocity(-1) wheels[1].setVelocity(1) wheels[2].setVelocity(-1) wheels[3].setVelocity(1) def no_move(): wheels[0].setVelocity(0) wheels[1].setVelocity(0) wheels[2].setVelocity(0) wheels[3].setVelocity(0) def set_global_angle(angle): global dum_angle dum_angle = angle def move_car_on_rrt(): global mode,lock,i,delta_time,currTime,nextTime,rrt_theta, at_ideal, going_ideal angleArray = rrt_theta if mode==0: #print(lock) xyz = tuoluoyi.getRollPitchYaw() for a in xyz: a = float(a) curr_angle = xyz[2]/pI*180 #decide which way should rotate if lock ==0: if angleArray[i]<=curr_angle and curr_angle >=0 and angleArray[i] >=0: #right turn lock=1 elif angleArray[i] > curr_angle and curr_angle >=0 and angleArray[i] >=0: #left turn lock=2 elif angleArray[i]<=curr_angle and curr_angle <=0 and angleArray[i] <=0: #right turn lock=3 elif angleArray[i]>curr_angle and curr_angle <=0 and angleArray[i] <=0: #left turn lock=4 elif angleArray[i]<90 and curr_angle <=0 and angleArray[i] >=0: #left turn lock=5 elif angleArray[i]>=90 and curr_angle <=0 and angleArray[i] >=0: #right turn lock=6 elif angleArray[i]>-90 and curr_angle >=0 and angleArray[i] <=0: #left turn lock=7 elif angleArray[i]<=-90 and curr_angle >=0 and angleArray[i] <=0: #right turn lock=8 else: print('error') #print(lock) if lock==1: #right turn right_turn() xyz=tuoluoyi.getRollPitchYaw() if xyz[2]/pI*180 <=angleArray[i]: no_move() mode=1 currTime=robot.getTime() elif lock==2: #left turn left_turn() xyz=tuoluoyi.getRollPitchYaw() if xyz[2]/pI*180 >=angleArray[i] or (xyz[2]/pI*180 <=-175 and xyz[2]/pI*180>=-180): no_move() mode=1 currTime=robot.getTime() elif lock==3: #right turn right_turn() xyz=tuoluoyi.getRollPitchYaw() if xyz[2]/pI*180 <=angleArray[i]: no_move() mode=1 currTime=robot.getTime() elif lock==4: #left turn left_turn() xyz=tuoluoyi.getRollPitchYaw() if xyz[2]/pI*180 >=angleArray[i]: no_move() mode=1 currTime=robot.getTime() elif lock==5: #left turn left_turn() xyz=tuoluoyi.getRollPitchYaw() if xyz[2]/pI*180 >=angleArray[i]: no_move() mode=1 currTime=robot.getTime() elif lock==6: #right turn right_turn() xyz=tuoluoyi.getRollPitchYaw() if xyz[2]/pI*180 <=angleArray[i] and xyz[2]/pI*180>=0: no_move() mode=1 currTime=robot.getTime() elif lock==7: #left turn right_turn() xyz=tuoluoyi.getRollPitchYaw() if xyz[2]/pI*180 <=angleArray[i] and xyz[2]/pI*180<=0: no_move() mode=1 currTime=robot.getTime() elif lock==8: #right turn left_turn() xyz=tuoluoyi.getRollPitchYaw() if xyz[2]/pI*180 >=angleArray[i] and xyz[2]/pI*180<=0: no_move() mode=1 currTime=robot.getTime() elif mode==1: if robot.getTime()-currTime <=1.55:#3.978733: #count+=1 #print(count,robot.getTime()) leftSpeed = pI rightSpeed = pI wheels[0].setVelocity(leftSpeed) wheels[1].setVelocity(rightSpeed) wheels[2].setVelocity(leftSpeed) wheels[3].setVelocity(rightSpeed) else: #print(lock,angleArray[i]) i+=1 lock=0 no_move() if going_ideal: #if at the end of RRT, switch modes if i==len_rrt-1: mode=3 #if heading to ideal, set at_ideal to be true at_ideal = True going_ideal = False else: mode = 0 elif ending: if i==len_rrt-1: mode = 2 #mode=5 else: mode = 0 elif do_job_now: #print("from do_job_now") if i==len_rrt-1: mode = 5 #mode=5 else: mode = 0 elif i == len_rrt-4: mode = 3 #rrt_theta = [] else: mode=0 #moving = 0 return mode #,lock,i,delta_time,currTime,nextTime ####################### # ideal waiting stuff # ####################### def check_queue(rec_sock): server_sock.send(bytes('REQ JOBS NONE '+CAR,EN)) return False #ideal position does not work well with u shaped obstacles since the car will wait #on the outside of the wall def go_ideal(): global gps, ccoords, going_ideal, mode,my_rrt #test ideal_pos my_pos = gps.getValues() ideal = IdealPos.Ideal_Pos(r1=15,r2=20,show=True) my_pos = conv_coords(my_pos) #pos is a list of all reported positions (x,z) #ind is a sorted index by smallest distance pos, ind = ideal.get_ideal(my_pos[0],my_pos[2],ccoords[0],ccoords[2]) #get coordinates of ideal waiting spot from positions and index ind_no_obs = 0 #while position has an obstacle, update index to next shortest distance while my_rrt.collision_check_no_path(pos[ind[ind_no_obs]],my_rrt.obstacleList) == 0: ind_no_obs = ind_no_obs + 1 print("obs index "+str(ind_no_obs)) print("position: "+str(pos[ind[ind_no_obs]])) #change to fit coordinate convention ideal_wait = [pos[ind[ind_no_obs]][0],0,pos[ind[ind_no_obs]][1]] rrt_new(my_pos,ideal_wait) #mode = 2 going_ideal = True return True ############################# # collision avoidance stuff # ############################# ##TODO!!!!: finish implementing collision avoidance, # need to use function to add obstacles # need update communications implementation def query_coll(): data = gps.getValues() coord = str(data[0]) + " " + str(data[1]) + " " + str(data[2]) out_message = bytes("REQ COLL COORDS "+ str(coords[0]) +" "+ str(coords[1]) +" "+ str(coords[2]) + " "+CAR,EN) server_sock.send(out_message) def resp_coll(): data = gps.getValues() coord = str(data[0]) + " " + str(data[1]) + " " + str(data[2]) out_message = bytes("RESP COLL COORDS "+ str(coords[0]) +" "+ str(coords[1]) +" "+ str(coords[2]) + " "+CAR,EN) server_sock.send(out_message) def handle_collision(): return False def send_fin_task(): data = "RESP HELP DONE "+CAR out_message = bytes(data,EN) server_sock.send(out_message) def add_obstacle(c,size): global my_rrt obs_x = c[0]-0.5*size obs_z = c[2]-0.5*size my_rrt.add_obstacle([obs_x,obs_z],size) def add_obstacles(obs_list): for (ox,oz,size) in obs_list: add_obstacle(ox,oz,size) ###############################################fire car move def distance(pos1, pos2): return math.sqrt((pos1[0]-pos2[0])**2+(pos1[1]-pos2[1])**2) def move_straight(pos2, index): data = gps.getValues() angle = -1000 if index == 1: if data[0] < pos2[0]: go_straight() data = gps.getValues() else: no_move() angle = 180 elif index == 2: if data[2] > pos2[1]: go_straight() data = gps.getValues() else: no_move() angle = -90 elif index == 3: if data[0] > pos2[0]: go_straight() data = gps.getValues() else: no_move() angle = 0 elif index == 0: if data[2] < pos2[1]: print(data[2]) print(pos2[1]) go_straight() data = gps.getValues() print("here") else: no_move() angle = 90 return angle def move(pos1, pos2, index): global move_lock_4_1, move_lock_4_2, move_lock_4_3, move_lock_4_4, move_lock_4_5, move_lock_4_6, move_lock_1, move_lock_2, move_lock_3, move_lock_4 global move_thresh_angle move_return = -1 if index == 4: #print("here?") xyz = tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 # get thresh angle, the angle to stop turning if pos1[0] < pos2[0]: thresh_angle = 90 elif pos1[0] > pos2[0]: thresh_angle = -90 # turn to that angle if move_lock_4_1 == 0: left_turn() xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if round(curr_angle) == thresh_angle: no_move() move_lock_4_1 = 1 print("here!!!!!!!!!!!") elif move_lock_4_1 == 1 and move_lock_4_2 == 0: data = gps.getValues() if pos1[0] > pos2[0] and data[0] > pos2[0]: go_straight() data = gps.getValues() #print(str(data[0])) #print(str(pos2[0])) elif pos1[0] < pos2[0] and data[0] < pos2[0]: go_straight() data = gps.getValues() else: move_lock_4_2 = 1 no_move() print("finish moving left or right") elif move_lock_4_2 == 1: data = gps.getValues() if pos2[1] > data[2] and pos2[1] > pos1[1]: #thresh_angle = 180 if move_lock_4_3==0: left_turn() xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 print(curr_angle) if -1 < round(curr_angle) < 1: print("here") move_lock_4_3 = 1 no_move() elif move_lock_4_5 == 0: go_straight() data = gps.getValues() #print(str(data[2])) #print(str(pos2[1])) #if data[2] >= pos2[1]: #print("here!!!!") #move_lock_4_5 = 1 #move_return = 1 #no_move() elif pos2[1] < data[2] and pos2[1] < pos1[1]: #thresh_angle = 0 #print("hello") if move_lock_4_4==0: right_turn() xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if abs(curr_angle) > 179: move_lock_4_4 = 1 no_move() elif data[2] > pos2[1] and move_lock_4_6 == 1: go_straight() data = gps.getValues() if data[2] < pos2[1]: move_return = 1 no_move() else: print("I am fking here!") no_move() move_return = 1 else: xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if move_lock_1 == 0: print("at lock 1") ds_l = ds[0].getValue() ds_r = ds[1].getValue() if ds_l < 100 or ds_r < 100: no_move() #move_thresh_angle = t_angle[index] else: move_thresh_angle = move_straight(pos2, index) if move_thresh_angle != -1000: print(move_thresh_angle) move_lock_1 = 1 elif curr_angle < (move_thresh_angle-0.7) or curr_angle > (move_thresh_angle +0.7) and move_lock_2 == 0: print("at lock 2") left_turn() xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if curr_angle > (move_thresh_angle-0.7) and curr_angle < (move_thresh_angle +0.7): move_lock_2 = 1 no_move() elif move_lock_3 == 0: print("at lock 3") index = (index+1)%4 move_lock_3 = 1 elif move_lock_4 == 0: print("at lock 4") print(index) print(pos2) index_temp = (index+1)%4 temp = move_straight(pos2, index_temp) if temp != -1000: move_lock_4 = 1 move_return = 1 else: move_return = 1 if move_return == 1: no_move() move_lock_4_1 = 0 move_lock_4_2 = 0 move_lock_4_3 = 0 move_lock_4_4 = 0 move_lock_1 = 0 move_lock_2 = 0 move_lock_3 = 0 move_lock_4 = 0 move_thresh_angle = -361 return 1 return move_return def scan(index): global scan_lock, scan_lock_1, scan_lock_2, scan_lock_3, scan_lock_4 ret = -1 xyz = tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if index == 1 or index == 3: #thresh angle for scanning right and left side thresh_angle_1 = -180+dum_angle if thresh_angle_1 == -180: thresh_angle_1 += 1 if thresh_angle_1 < -180: thresh_angle_1 = 360 + thresh_angle_1 thresh_angle_2 = 0 + dum_angle if thresh_angle_2 == 0: thresh_angle_2 += 1 elif index == 0 or index == 2: #thresh angle for scanning top and bot side thresh_angle_1 = 90+dum_angle thresh_angle_2 = -90+dum_angle if index == 1 and scan_lock == 0: #scan right if scan_lock_1 == 0: left_turn() lt= (ls_top.getValue() + ls_bot.getValue())/2 xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if round(curr_angle) == int(thresh_angle_2): scan_lock_1 = 1 no_move() if lt > dum_light[index]: dum_light[index] = lt dum_imu[index] = curr_angle if scan_lock_1 == 1: right_turn() lt= (ls_top.getValue() + ls_bot.getValue())/2 xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if round(curr_angle) == int(thresh_angle_1): print("finished rotating!") scan_lock_1 = 0 scan_lock = 1 no_move() if lt > dum_light[index]: dum_light[index] = lt dum_imu[index] = curr_angle elif index == 2 and scan_lock == 0: #scan bot (which is shown top) if scan_lock_2 == 0: left_turn() lt= (ls_top.getValue() + ls_bot.getValue())/2 xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if round(curr_angle) == int(thresh_angle_1): scan_lock_2 = 1 no_move() if lt > dum_light[index]: dum_light[index] = lt dum_imu[index] = curr_angle if scan_lock_2 == 1: right_turn() lt= (ls_top.getValue() + ls_bot.getValue())/2 xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if round(curr_angle) == int(thresh_angle_2): print("finished rotating!") scan_lock_2 = 0 scan_lock = 1 no_move() if lt > dum_light[index]: dum_light[index] = lt dum_imu[index] = curr_angle elif index == 3 and scan_lock == 0: # scan left if scan_lock_3 == 0: left_turn() lt= (ls_top.getValue() + ls_bot.getValue())/2 xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if round(curr_angle) == int(thresh_angle_1): scan_lock_3 = 1 no_move() if lt > dum_light[index]: dum_light[index] = lt dum_imu[index] = curr_angle if scan_lock_3 == 1: right_turn() lt= (ls_top.getValue() + ls_bot.getValue())/2 xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if round(curr_angle) == int(thresh_angle_2): print("finished rotating!") scan_lock_3 = 0 scan_lock = 1 no_move() if lt > dum_light[index]: dum_light[index] = lt dum_imu[index] = curr_angle elif index == 0 and scan_lock == 0: #scan top (which is shown bot) if scan_lock_4 == 0: left_turn() lt= (ls_top.getValue() + ls_bot.getValue())/2 xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if round(curr_angle) == int(thresh_angle_2): scan_lock_4 = 1 no_move() if lt > dum_light[index]: dum_light[index] = lt dum_imu[index] = curr_angle elif scan_lock_4 == 1: right_turn() lt= (ls_top.getValue() + ls_bot.getValue())/2 xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if round(curr_angle) == int(thresh_angle_1): print("finished rotating!") scan_lock_4 = 0 scan_lock = 1 no_move() if lt > dum_light[index]: dum_light[index] = lt dum_imu[index] = curr_angle if scan_lock == 1: print("scan_lock is set to 1") scan_lock = 0 return 1 return ret def get_to_operation(angle): left_turn() xyz=tuoluoyi.getRollPitchYaw() curr_angle = xyz[2]/pI*180 if round(curr_angle) == int(angle): no_move() return 1 else: return -1 def move_to_fire(): global fire_lock_0, fire_lock_1, fire_lock_2, fire_lock_3, fire_lock_4, fire_lock_5, fire_lock_6, fire_lock_7, fire_lock_8, fire_lock_9 global arm_loc, stop_index, index, min_dist_index, max_light_index global first_time ret = -1 #data = gps.getValues() if fire_lock_0 == 0: data = gps.getValues() arm_loc = (data[0], data[2]) #finding closest point of interest dist = [] #print("here?") dist.append(distance(arm_loc, dum_loc[0])) #top dist.append(distance(arm_loc, dum_loc[1])) #right dist.append(distance(arm_loc, dum_loc[2])) #bot dist.append(distance(arm_loc, dum_loc[3])) #left min_dist_index = dist.index(min(dist[0], dist[1], dist[2], dist[3])) print("The min dist index is: " + str(min_dist_index)) fire_lock_0 = 1 #move to point of interest elif fire_lock_1 == 0: #print("Now the min dist index is: " + str(min_dist_index)) temp = move(arm_loc, dum_loc[min_dist_index], 4) #print(str(dum_loc[min_dist_index])) #print(str(arm_loc)) if temp == 1: fire_lock_1 = 1 print("moved to point of interest") #scan the area elif fire_lock_1 == 1 and fire_lock_2 == 0: temp = scan(min_dist_index) if temp == 1: print("finished scanning") fire_lock_2 = 1 index = (min_dist_index+1)%4 #move to the other sides elif fire_lock_2 == 1 and fire_lock_3 == 0: if index != min_dist_index: #print("try to move to other side") data = gps.getValues() arm_loc = (data[0], data[2]) #if dum_loc[index] != (-100,-100): if fire_lock_4 == 0: print("At 4") temp1 = move(arm_loc, dum_loc[index], index) if temp1 == 1: fire_lock_4 = 1 elif fire_lock_4 == 1 and fire_lock_5 ==0: print("At 5") temp2 = scan(index) if temp2 == 1: fire_lock_5 = 1 #index = (index+1)%4 elif fire_lock_5 == 1: print("At 6") index = (index+1)%4 print("index is:" + str(index)) print("min_dist_index" + str(min_dist_index)) fire_lock_4 = 0 fire_lock_5 = 0 if index == min_dist_index: fire_lock_3 = 1 max_light_index = dum_light.index(max(dum_light[0],dum_light[1],dum_light[2],dum_light[3])) stop_index = min_dist_index-1 if stop_index < 0: stop_index = 3 #find which side to go elif fire_lock_3 == 1 and fire_lock_6 == 0: print("max_light_index is:" + str(max_light_index)) print("current index is: " + str(stop_index)) if stop_index != (max_light_index+1)%4 or first_time == 0: if first_time == 0: first_time = 1 if fire_lock_7 == 0 and fire_lock_8 == 0: stop_index = (stop_index+1)%4 data = gps.getValues() arm_loc = (data[0], data[2]) fire_lock_7 = 1 elif fire_lock_7 == 1: temp = move(arm_loc, dum_loc[stop_index], stop_index) #stop_index = (stop_index-1)%4 if temp == 1: fire_lock_7 = 0 else: fire_lock_8 = 1 fire_lock_6 = 1 #rotate to the final angle elif fire_lock_8 == 1: print("here!!!!") temp = get_to_operation(dum_imu[max_light_index]) if temp == 1: fire_lock_8 = 0 fire_lock_9 = 1 elif fire_lock_9 == 1: fire_lock_1 = 0 fire_lock_2 = 0 fire_lock_3 = 0 fire_lock_4 = 0 fire_lock_5 = 0 fire_lock_6 = 0 fire_lock_7 = 0 fire_lock_8 = 0 fire_lock_9 = 0 ret = 1 return ret ###############################################motor_move motor1_direction=0 motor1_stop=0 motor2_stop=0 motor3_stop=0 motor4_stop=0 max_fire1 = 0 temp_fire1 = 0 max_fire2 = 0 max_fire3 = 0 temp_fire2 = 0 temp_fire3 = 0 theta_1=0 distance_fire=0 theta_0=0 max_2motors=0 arm_mode = False def robot_arm_moving(): global motor1_stop, motor2_stop, motor3_stop, motor4_stop,temp_fire1,\ max_fire1,temp_fire2,max_fire2,theta_1,distance_fire,theta_0,\ temp_fire3,max_fire3,motor1_direction,max_2motors,arm_mode,task_done #movement for motor 1 if(motor1_stop==0): #print('1') if motor1_direction == 0: if(light_sensor_lu_left.getValue()>light_sensor_lu_right.getValue()): motor1_direction=1 else: motor1_direction=2 elif(motor1_direction==1): #turn left temp_fire1 = light_sensor_1.getValue() print("fire readings: " + str(temp_fire1)) if(temp_fire1>=max_fire1): wheels[4].setVelocity(0.5) max_fire1=temp_fire1 else: wheels[4].setVelocity(0) motor1_stop=1 elif(motor1_direction==2): #turn right temp_fire1 = light_sensor_1.getValue() print("fire readings: " + str(temp_fire1)) if(temp_fire1>=max_fire1): wheels[4].setVelocity(-0.5) max_fire1=temp_fire1 else: wheels[4].setVelocity(0) motor1_stop=1 #movement for motor 3 to test fire location elif(motor3_stop==0): #print('2') temp_fire2 = light_sensor_2.getValue() if(temp_fire2>=max_fire2): wheels[6].setVelocity(0.5) max_fire2=temp_fire2 else: wheels[6].setVelocity(0) motor3_stop=1 theta_1 = motor4_imu.getRollPitchYaw() distance_fire=0.18/math.cos(theta_1[1])#+0.065*math.tan(theta_1[1]) if((distance_fire-0.27)/0.18>=0.72): theta_0=0.785 else: theta_0=math.acos((distance_fire-0.27)/0.18) #get the theta1 angle elif(motor3_stop==1): #print(motor3_stop) temp_theta_0=motor2_imu.getRollPitchYaw() if((pI/2-math.fabs(temp_theta_0[1]))>theta_0): wheels[5].setVelocity(0.5) else: motor3_stop=2 #print(motor3_stop) wheels[5].setVelocity(0) motor3_stop==2 motor2_stop=1 #move motor3 to correct postition depend on angle thta0 elif(motor2_stop==1): #print('4') #print((motor4_imu.getRollPitchYaw())[1]/pI*180) if((motor4_imu.getRollPitchYaw())[1]>0): wheels[6].setVelocity(0.5) else: wheels[6].setVelocity(0) motor2_stop=2 # elif(motor2_stop==2): temp_fire3 = light_sensor_3.getValue() if(temp_fire3>=max_fire3): wheels[7].setVelocity(0.5) max_fire3=temp_fire3 else: wheels[7].setVelocity(0) motor2_stop=3 # elif(motor2_stop==3): if(light_sensor_3.getValue() < 500): temp_fire_s=light_sensor_3.getValue() if(temp_fire_s>=max_2motors): wheels[7].setVelocity(-0.5) wheels[6].setVelocity(0.3) max_2motors=temp_fire_s else: wheels[6].setVelocity(0) wheels[7].setVelocity(0) motor2_stop=4 else: motor2_stop=4 wheels[6].setVelocity(0) wheels[7].setVelocity(0) task_done = True arm_mode = False ###################################################### while robot.step(TIME_STEP) != -1: # xyz = [] #xyz=tuoluoyi.getRollPitchYaw() # print('x=', xyz[0]/3.14*180,' ','y=', xyz[1]/3.14*180,' ','z=', xyz[2]/3.14*180) #print(jieshouqi.getDataSize()) leftSpeed = 10.0 rightSpeed = 10.0 v1 = ds[0].getValue() v2 = ds[1].getValue() #print("ds_l is: " + str(v1)) #print("ds_r is: " + str(v2)) #if there is a message to be recieved if jieshouqi.getQueueLength() > 0: if jieshouqi.getDataSize() > 0: message=jieshouqi.getData() jieshouqi.nextPacket() #parse message r_message = message.decode(EN) #statement to go to a position via RRT if "GO" in r_message: #rrt_reset() print(r_message) coords,dinfo = my_parser.coords(r_message) start = gps.getValues() for a in coords: ccoords.append(float(a)) start = conv_coords(start) ccoords = conv_coords(ccoords) mode = 0 #TODO: set up actual task angle = math.radians(float(dinfo[0])) # imu of dum car width = float(dinfo[1]) # length of dum car length = float(dinfo[2]) # width of dum car set_global_angle(float(dinfo[0])) #print(dum_angle) #set the four location to traverse. dum_loc[0] = (float(coords[0]) + (length+dim[2]/2)*math.sin(angle),float(coords[2])+(length+dim[2]/2)*math.cos(angle)) #top dum_loc[1] = (float(coords[0])+ (width+dim[2])*math.cos(angle),float(coords[2])-(width+dim[2])*math.sin(angle)) #right dum_loc[2] = (float(coords[0]) - (length+dim[2]/2)*math.sin(angle),float(coords[2])-(length+dim[2]/2)*math.cos(angle)) #bot dum_loc[3] = (float(coords[0]) - (width+dim[2])*math.cos(angle),float(coords[2])+(width+dim[2])*math.sin(angle)) #left print(dum_loc[0]) print(dum_loc[1]) print(dum_loc[2]) print(dum_loc[3]) if my_rrt is None: rrt_create(start,ccoords) else: rrt_new(start,ccoords) in_transit = True elif "RESP" in r_message: #statement to check message whose turn it is for going to ideal position if "JOBS" in r_message: #its FIRE car's turn to go, go into specific task mode if (CAR+"T") in r_message: print("my turn!") my_turn = True mode = 5 else: print(r_message) print("not my turn") #go to ideal position mode mode = 4 #statement to check if its their turn to go for collision protocol elif "COLL" in r_message: print(r_message) #TODO: implement add obstacles,implement go to node function #add obstacles to rrt planner list #find new node to traverse to #rewire rrt to go to that node #send message back to server for confirmation #continue on rrt #condition to respond to collision protocol steo for server's query elif "REQ" in r_message: if "COLL" in r_message: resp_coll() #RRT is still processing elif 0 <= mode and mode < 2: print(mode) #check if car senses another car #if it does, go into collision avoidance mode #else, move car on rrt #if in_transit: # for sensor in ds: # if sensor.getValue() < 300: # mode = 6 if 0 <= mode and mode < 2: move_car_on_rrt() #RRT is completed and check to go to ideal elif mode == 3: in_transit = False #rrt_reset() #if not at ideal position, then check queue check_queue(jieshouqi) print(mode) #if needs to go to ideal position elif mode == 4: in_transit = False print(mode) #not car's turn and not at ideal, then go to ideal if not my_turn and not at_ideal: print("GOING IDEAL") go_ideal() #at_ideal = True #if not car's turn and is at ideal, then stay still and check queue elif not my_turn and not going_ideal: no_move() mode = 3 #it is this car's turn, go back in front of car, then mode 5 which does its job else: mode = 0 my_pos = gps.getValues() my_pos = conv_coords(my_pos) do_job_now = True rrt_new(my_pos,ccoords) at_ideal = False #do specific task elif mode == 5: print("finding fire...") #should prepare to operate on car #then do its specific task #from there, send fin task_done = False temp = move_to_fire() do_job_now = False if temp == 1: #start_find = 0 no_move() arm_mode = True print("done finding fire!") #go to arm mode mode = 8 #collision avoidance protocol elif mode == 6: print(mode) no_move() #request server for obstacles query_coll() #mode = 7 elif mode == 7: print(mode) #wait until further notice to run new RRT #mode = 6 elif mode == 8: robot_arm_moving() if task_done == True: send_fin_task() my_pos = gps.getValues() my_pos = conv_coords(my_pos) add_obstacle(ccoords,(dinfo[2]*10-1)) end_pos = conv_coords([2.5,0.04,2.0]) rrt_new(my_pos,end_pos) ending = True mode = 0 print('done with arm') #test mode elif mode == 10: go_ideal() print(mode) ##franks code i think, to go around car #define goal location. # goal_x = float(coord[1])*10+30 # goal_y = 60-(float(coord[5])*10+30) # angle = math.radians(float(coord[7])) # imu of dum car # length = float(coord[9]) # length of dum car # width = float(coord[11]) # width of dum car #dum_len = length #dum_wid = width #dum_gps = (float(coord[1]),float(coord[5])) # set_global_angle(float(coord[7])) # set global variable dum_angle for future use #set the four location to traverse. # dum_loc[0] = (float(coord[1]) + (length+dim[2]/2)*math.sin(angle),float(coord[5])+(length+dim[2]/2)*math.cos(angle)) #top # dum_loc[1] = (float(coord[1])+ (width+dim[2])*math.cos(angle),float(coord[5])-(width+dim[2])*math.sin(angle)) #right # dum_loc[2] = (float(coord[1]) - (length+dim[2]/2)*math.sin(angle),float(coord[5])-(length+dim[2]/2)*math.cos(angle)) #bot # dum_loc[3] = (float(coord[1]) - (width+dim[2])*math.cos(angle),float(coord[5])+(width+dim[2])*math.sin(angle)) #left # print(str(dum_loc[0])) # print(str(dum_loc[1])) # print(str(dum_loc[2])) # print(str(dum_loc[3])) ##############specific task, i think # if start_find == 1: # temp = move_to_fire() # if temp == 1: # start_find = 0 # print("done!!!!") #############doing rrt then after go to specific task <- lu's code i think # if start_rrt == 1: # temp = move_car_on_rrt() #print(temp[0]) # print(temp[0]) # if(temp[0] == 2): # start_rrt = 0 # start_find = 1
from sqlalchemy import * from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, relationship from subscripts import bls_api_query_app as BLS import pdb, json Base = declarative_base() BLS_API_KEY = 'c4aceae070ec4aa88bd85a9323947770' # A year has many consumer demographics # A consumer demographic has many expenditures # An expenditure belongs to a consumer demographic # A consumer demographic belongs to a year def get_bls_row(query_code): df = BLS.get_series([query_code], 2002, 2012, BLS_API_KEY) print('\n') years = [year.year for year in df.axes[0]] values = [year[0] for year in df.values] return(list(zip(years,values))) ############################################################# def get_expenditure_by_demo_code(item_code, demo_code, decile, year): query_code = 'CXU' + item_code + demo_code + decile +'M' toops = get_bls_row(query_code) newList = [] try: newList.append([toop[1] for toop in toops if int(toop[0]) == year][0]) except IndexError: pass return newList categories = ['INCAFTTX', 'HOUSING', 'FOODHOME', 'FOODAWAY', 'HEALTH', 'ALCBEVG', 'APPAREL', 'TRANS', 'ENTRTAIN'] # takes a year and a edu_level and returns list of all expenses def get_all_expenses_for_demo_and_year(demo_code, decile, year): expenses = {} for category in categories: expenses[category] = get_expenditure_by_demo_code(category, demo_code, decile, year) return expenses #################### def get_all_expenses_all_levels(year): # demo_code = 'LB13' # levels = ['03', '04', '06', '08', '09'] # edu_levels # ed_level_labels = ['sub_hs', 'high_school', 'AD', 'BD', 'MA+'] # levels = ['02','03','04','05','06'] # income_quants # demo_code = 'LB01' levels = ['03','04','05'] # housing_levels demo_code = 'LB08' all_levels = {} for level in levels: expenses = get_all_expenses_for_demo_and_year(demo_code,level, year) all_levels[level] = expenses return all_levels #################### def get_all_data_all_years(start, end): alldata_allyears = {} for year in range(start,end): alldata_allyears[year] = get_all_expenses_all_levels(year) return alldata_allyears data = get_all_data_all_years(2002,2012) with open('BLS_data_housing.json', 'w') as BLS_data: json.dump(data, BLS_data) #### This script makes so many gosh darn requests, we filed for many API keys with many fake email addys
#!/usr/bin/env /data/mta/Script/Python3.8/envs/ska3-shiny/bin/python ################################################################################# # # # extract_goes.py: extract GOES-R data and plot the results # # # # Note: this script works only after: 2020:077 # # # # author: t. isobe (tisobe@cfa.harvard.edu) # # # # last update: Mar 09, 2021 # # # # P1 1.0 - 3.0 MeV protons (Counts/cm2 sec sr MeV) Uncorrected # # P2 3.4 - 11.0 MeV protons (Counts/cm2 sec sr MeV) Uncorrected # # P5 40.0 - 98.0 MeV protons (Counts/cm2 sec sr MeV) Uncorrected # # HRC Proxy = 6000 * (11.64-38.1MeV) + 270000 * (40.3-73.4MeV) # # + 100000 * (83.7-242.0MeV) # # # ################################################################################# import math import re import sys import os import string import time import Chandra.Time # #--- reading directory list # path = '/data/mta/Script/Interrupt/Scripts/house_keeping/dir_list' with open(path, 'r') as f: data = [line.strip() for line in f.readlines()] for ent in data: atemp = re.split(':', ent) var = atemp[1].strip() line = atemp[0].strip() exec("%s = %s" %(var, line)) # #--- append path # sys.path.append(bin_dir) sys.path.append(mta_dir) import mta_common_functions as mcf # #--- original data location # goes_r = '/data/mta4/Space_Weather/GOES/Data/goes_data_r.txt' # #--- a day in seconds # aday = 86400.0 #------------------------------------------------------------------------------- #-- extract_goes_data: read goes r data and extract the potion for this period - #------------------------------------------------------------------------------- def extract_goes_data(event, start, stop): """ read goes r data and extract the potion for this period input: event --- the name of the event start --- starting time in <yyyy>:<mm>:<dd>:<hh>:<mm> stop --- stopping time in <yyyy>:<mm>:<dd>:<hh>:<mm> output: <web_dir>/GOES_data/<event>_goes.txt """ # #--- year of starting time # atemp = re.split(':', start) syear = float(atemp[0]) # #--- convert time in Chandra Time # start = time.strftime('%Y:%j:%H:%M:00', time.strptime(start, '%Y:%m:%d:%H:%M')) stop = time.strftime('%Y:%j:%H:%M:00', time.strptime(stop, '%Y:%m:%d:%H:%M')) start = int(Chandra.Time.DateTime(start).secs) stop = int(Chandra.Time.DateTime(stop).secs) # #--- this script works only after 2020:077 # if start < 700790394: print('Starting time is before the valid date (2020:077). Terminating the process.') exit(1) # #--- set to data collecting period # pstart = start - 2 * aday period = int((stop - start) / (5 * aday)) + 1 pstop = start + 5 * period * aday # #--- original data has the following columns #--- Time P1 P2A P2B P3 P4 P5 P6 P7 P8A P8B P8C P9 P10 HRC Proxy # data = mcf.read_data_file(goes_r) hline = 'Science Run Interruption: ' + event + '\n' hline = hline + 'dofy p1 p2 p5 hrc prox\n' hline = hline + '-' * 65 + '\n' line = '' for ent in data: if ent[0] == '#': continue atemp = re.split('\s+', ent) stime = int(Chandra.Time.DateTime(atemp[0]).secs) if stime < pstart: continue elif stime > pstop: break # #--- time in ydate # ctime = chandra_time_to_yday(stime, syear) # #--- p1: 1020 - 1860 keV #--- p2a: 1900 - 2300 keV #--- p2b: 2310 - 3340 keV # p1 = float(atemp[1]) p2a = float(atemp[2]) p2b = float(atemp[3]) p1n = (0.83 * p1 + 0.4 * p2a + 1.0 * p2b) / 2.3 # #--- p3: 3400 - 6480 keV #--- p4: 5840 - 1100 keV # p3 = float(atemp[4]) p4 = float(atemp[5]) p2n = (3.08 * p3 + 5.16 * p4) / 7.6 # #--- p8b: 99900 - 118000 keV #--- p8c: 115000 - 143000 keV # p8b = float(atemp[10]) p8c = float(atemp[11]) p5n = (18.1 * p8b + 28.0 * p8c) / 43.1 hprox = atemp[14] line = line + str(stime) + '\t' line = line + '%3.3e\t' % p1n line = line + '%3.3e\t' % p2n line = line + '%3.3e\t' % p5n line = line + hprox + '\n' hline = hline + '%3.4f\t' % ctime hline = hline + '%3.3e\t' % p1n hline = hline + '%3.3e\t' % p2n hline = hline + '%3.3e\t' % p5n hline = hline + hprox + '\n' # #--- print out the data # ofile = web_dir + 'GOES_data/' + event + '_goes.txt' with open(ofile, 'w') as fo: fo.write(line) ofile = wdata_dir + event + '_goes.txt' with open(ofile, 'w') as fo: fo.write(hline) #-------------------------------------------------------------------- #-- chandra_time_to_yday: convert chandra time to ydate -- #-------------------------------------------------------------------- def chandra_time_to_yday(stime, syear): """ convert chandra time to ydate input: stime --- time in seconds from 1998.1.1 syear --- year at the beginning of the data period output: ydate --- ydate """ atime = Chandra.Time.DateTime(stime).date btemp = re.split(':', atime) year = float(btemp[0]) ydate = float(btemp[1]) hour = float(btemp[2]) mins = float(btemp[3]) sec = float(btemp[4]) ydate = ydate + (hour/24.0 + mins/1440.0 + sec/86400.0) # #--- if the date is over two years, keep counting from the first year # if year > syear: if mcf.is_leapyear(syear): base = 366 else: base = 365 ydate += base return ydate #-------------------------------------------------------------------- #--- compute_goes_stat: computing GOES statitics --- #-------------------------------------------------------------------- def compute_goes_stat(event, start): """ read data from goes data, and compute statistics input: event --- event name start --- interruption start time in <yyyy>:<mm>:<dd>:<hh>:<mm> output: <stat_dir>/<event>_goes_stat """ # #--- check the interruption period so that we can choose which data format to use # atemp = re.split(':', start) syear = float(atemp[0]) nind = 0 if syear >= 2020: nind = 1 # #--- convert to ydate # start = time.strftime('%Y:%j:%H:%M:00', time.strptime(start, '%Y:%m:%d:%H:%M')) atemp = re.split(':', start) rstart = float(atemp[1]) + float(atemp[2]) / 24.0 + float(atemp[3]) / 1440.0 # #--- read the data file # ifile = wdata_dir + event + '_goes.txt' data = mcf.read_data_file(ifile) # #--- initialize # p1_list = [0.0, 0.0, 0.0, 1.0e10, 0.0, 0.0, 0.0] p2_list = [0.0, 0.0, 0.0, 1.0e10, 0.0, 0.0, 0.0] p5_list = [0.0, 0.0, 0.0, 1.0e10, 0.0, 0.0, 0.0] hp_list = [0.0, 0.0, 0.0, 1.0e10, 0.0, 0.0, 0.0] p1_int_val = 0.0 p2_int_val = 0.0 p5_int_val = 0.0 hp_int_val = 0.0 ind = 0 #---- indicator whther the loop passed the interruption time for ent in data: atemp = re.split('\s+|\t+', ent) btemp = re.split('\.', atemp[0]) if ent and btemp[0].isdigit(): atemp = re.split('\s+|\t+', ent) if len(atemp) < 4: continue val0 = float(atemp[0]) #--- time val1 = float(atemp[1]) #--- p1 val2 = float(atemp[2]) #--- p2 val3 = float(atemp[3]) #--- p5 p1_list = update_data_set(val0, val1, p1_list) p2_list = update_data_set(val0, val2, p2_list) p5_list = update_data_set(val0, val3, p5_list) if nind > 0: val4 = float(atemp[4]) #--- hrc prox hp_list = update_data_set(val4, val1, p1_list) # #--- finding the value at the interruption # if rstart <= val0 and ind == 0: p1_int_val = val1 p2_int_val = val2 p5_int_val = val3 if nind > 0: hp_int_val = val4 ind = 1 # #--- compute avg/std and create output # line = '\t\t\tavg\t\t\tmax\t\tTime\t\tmin\t\tTime\t\tValue at Interruption Started\n' line = line + '-'*95 + '\n' line = line + create_stat_line(p1_list, 'p1\t', p1_int_val) line = line + create_stat_line(p2_list, 'p2\t', p2_int_val) line = line + create_stat_line(p5_list, 'p5\t', p5_int_val) if nind > 0: line = line + create_stat_line(hp_list, 'hrc prox', hp_int_val) ofile = stat_dir + event + '_goes_stat' with open(ofile, 'w') as fo: fo.write(line) #---------------------------------------------------------------------------- #-- update_data_set: update min, max,sum and sum of square value in the data list #---------------------------------------------------------------------------- def update_data_set(ytime, val, dlist): """ update min, max,sum and sum of square value in the data list input: ytime --- time in ydate val --- value dlist --- a list of data: <sum of value> <sum of value**2> <max> <min> <time of max> <time of min> <# of data> output: dlist --- updated data list """ if val > 0: dlist[0] += val dlist[1] += val * val if val > dlist[2]: dlist[2] = val dlist[4] = ytime if val < dlist[3]: dlist[3] = val dlist[5] = ytime dlist[6] += 1 return dlist #---------------------------------------------------------------------------- #-- create_stat_line: create a stat result line for a given data list - #---------------------------------------------------------------------------- def create_stat_line(d_list, title, int_val): """ create a stat result line for a given data list input: d_list --- a list of data title --- a line head int_val --- the value at the interruption output: line --- a resulted line to be printed """ [davg, dstd] = compute_stat(d_list) line = title + '\t%2.3e +/- %2.3e\t\t%2.3e\t%4.3f\t\t%2.3e\t%4.3f\t\t%2.3e\n'\ % (davg, dstd, d_list[2], d_list[4], d_list[3], d_list[5], int_val) return line #---------------------------------------------------------------------------- #-- compute_stat: compute avg and std -- #---------------------------------------------------------------------------- def compute_stat(d_list): """ compute avg and std input: d_list --- a list of data output [avg, std] """ if d_list[-1] > 0: davg = d_list[0] / d_list[-1] try: dstd = math.sqrt((d_list[1] / d_list[-1]) - (davg * davg)) except: dstd = -999 else: davg = -999 dstd = -999 return [davg, dstd] #---------------------------------------------------------------------------- if __name__ == '__main__': if len(sys.argv) > 2: event = sys.argv[1] start = sys.argv[2] stop = sys.argv[3] extract_goes_data(event, start, stop) compute_goes_stat(event, start)
from filecache import filecache import feedparser from unidecode import unidecode import urllib import urlparse import re from nab.files import Searcher, Torrent @filecache(60 * 60) def _get_feed(url): feed = feedparser.parse(url) if feed['entries']: return feed['entries'] else: raise IOError("No results found") def get_seeds(f): if "description" in f: match = re.search(r"(\d+) seed", f["description"]) if match: return int(match.group(1)) match = re.search(r"seed(?:er(?:\(s?\))?)?:? (\d+)", f["description"]) if match: return int(match.group(1)) if "torrent_seeds" in f: return int(f["torrent_seeds"]) return None def get_torrent_url(f): for link in f.get('links', []): if link['type'] == 'application/x-bittorrent': # remove query string and return return link['href'][:link['href'].find('?')] # no link found return None class Feed(Searcher): def __init__(self, url, name=None, search_by=None, match_by=None, num_pages=1): Searcher.__init__(self, search_by, match_by) self.url = url self.name = name or url self.num_pages = num_pages self.multipage = "{p}" in self.url def _get_feed(self, url): Feed.log.debug("Parsing feed at %s" % url) # retry three times feed = [] for retry in range(1): try: feed = _get_feed(url) except IOError: continue else: break if feed: Feed.log.debug("Feed parsed") else: Feed.log.debug("No results found") return feed def search(self, term): files = [] if isinstance(term, unicode): term = unidecode(term) term = urllib.quote(term) files = [] # only search first few pages for files for page in range(1, self.num_pages + 1): results = self._get_feed(self.url.format(s=term, p=page)) # remember page 1 links so we can tell if the # site is giving us the same page again links = set([f["link"] for f in results]) if page == 1: p1_links = set(links) # break when no results or results are the same as page 1 if not results or (page != 1 and p1_links == links): break for f in results: url = get_torrent_url(f) magnet = f.get("torrent_magneturi") files.append(Torrent(f["title"], url, magnet, get_seeds(f))) if not self.multipage: break return files def __str__(self): return "%s: %s" % (Searcher.__str__(self), self.name) Feed.register("feed")
from django.apps import AppConfig class ZipcodesConfig(AppConfig): name = 'zipcodes'
#%% import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import KMeans import hvplot.pandas # %% file_path = "/Users/oshadi/Desktop/Analysis Projects/Cryptocurrencies/module examples/new_iris_data.csv" df_iris = pd.read_csv(file_path) df_iris.head(10) # %% #standardize iris_scaled = StandardScaler().fit_transform(df_iris) print(iris_scaled[0:5]) # %% # Initialize PCA model pca = PCA(n_components=2) # %% # Get two principal components for the iris data. iris_pca = pca.fit_transform(iris_scaled) # %% df_iris_pca = pd.DataFrame( data= iris_pca, columns=['principal component 1', 'principal component 2'] ) df_iris_pca.head() # %% pca.explained_variance_ratio_ # %% # Find the best value for K inertia = [] k = list(range(1, 11)) # Calculate the inertia for the range of K values for i in k: km = KMeans(n_clusters=i, random_state=0) km.fit(df_iris_pca) inertia.append(km.inertia_) # Create the elbow curve elbow_data = {"k": k, "inertia": inertia} df_elbow = pd.DataFrame(elbow_data) df_elbow.hvplot.line(x="k", y="inertia", xticks=k, title="Elbow Curve") # %% # Initialize the K-means model model = KMeans(n_clusters=3, random_state=0) # Fit the model model.fit(df_iris_pca) # Predict clusters predictions = model.predict(df_iris_pca) # Add the predicted class columns df_iris_pca["class"] = model.labels_ df_iris_pca.head() # %% df_iris_pca.hvplot.scatter( x="principal component 1", y="principal component 2", hover_cols=["class"], by="class", ) # %%
cont = 0 for cont in range(0,51): if cont%2 == 0 and cont != 0: print(cont)
from playsound import playsound print('voice playing') playsound('happyvoice.wav') print('voice stopped')
########################################### # Assessing the number of reads that # were filtered out from the host-filtering # step from bowtie2 ########################################### #imports import os from Bio import SeqIO import gzip from collections import defaultdict #Path to raw reads path_raw = '/Volumes/UUI/reads/' #Path to filtered reads path_filtered = '/Volumes/UUI/host_filtered/' #Functions def getSeqNum(path): '''Read in the sequence files and return a dictionary: - keys = file name - values = number of sequences ''' counts = defaultdict(int) for file in os.listdir(path): if file != 'hide': file_path = path + file sequences = 0 for record in SeqIO.parse(gzip.open(file_path, 'rt', encoding='utf-8'),"fastq"): sequences += 1 counts[file] = sequences return counts #Read in the raw sequences raw_counts = getSeqNum(path_raw) #Read in the filtered sequences filtered_counts = getSeqNum(path_filtered) #output the filtering statistics with open('filtering_stats.csv') as fn: fn.write("Raw Sequences\tcounts\n") for key, value in raw_counts.items(): fn.write(key + '\t' + str(value) + '\n') fn.write("\t\tFiltered Sequences\tcounts\n") for key, value in filtered_counts.items(): fn.write("\t\t" + key + '\t' + str(value) + '\n')
import numpy as np from numba import cuda, float32 from pyqtgraph.Qt import QtCore, QtGui import pyqtgraph as pg import pyqtgraph.opengl as gl from time import clock from math import sqrt '''------------------------------------------------ Disclaimer ------------------------------------------------''' # # Only tested on a gtx 960m with compute capability 5.0 # # DWORD 'TdrDelay' and 'TdrLevel' at 8 and 0 respectively must be added to allow for larger amount of bodies in # # HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\GraphicsDrivers # # '''------------------------------------------------ GPU function ------------------------------------------------''' @cuda.jit(device=True, inline=True) def interaction(xi, yi, zi, axi, ayi, azi, xj, yj, zj, mj, eps, min_dist): """ Models the gravitational interaction between two bodies :param xi: x-coordinate of body i :param yi: y-coordinate of body i :param zi: y-coordinate of body i :param axi: Acceleration of body i along the x-axis :param ayi: Acceleration of body i along the y-axis :param azi: Acceleration of body i along the z-axis :param xj: x-coordinate of body j :param yj: y-coordinate of body j :param zj: z-coordinate of body j :param mj: Mass of body j :param eps: Softening parameter :param min_dist: Minimal distance for acceleration calculation :return: Updated acceleration of body i along the three axes """ rx = xj-xi # Distance along the x-axis ry = yj-yi # Distance along the y-axis rz = zj-zi # Distance along the z-axis distance = sqrt(rx*rx+ry*ry+rz*rz) # Distance between the bodies plus the softening parameter if distance > min_dist: # If the bodies are far enough apart (at least not the same) scale = mj/(distance**3+eps) # Scale for the distance vector (rx, ry, rz) for gravitation elif distance < 1.1*eps: # If too close together (or the same particle) scale = 0 # Zero acceleration else: # If the bodies are very close together scale = mj/(distance*min_dist**2+eps) # Constant acceleration once scaled axi += rx*scale # Add acceleration of body j to that of body i along the x-axis ayi += ry*scale # Add acceleration of body j to that of body i along the y-axis azi += rz*scale # Add acceleration of body j to that of body i along the z-axis return axi, ayi, azi @cuda.jit(device=True, inline=True) def block_acceleration(xi, yi, zi, axi, ayi, azi, bodies, eps, min_dist): """ Executes interaction for each block in the grid :param xi: x-coordinate of body i :param yi: y-coordinate of body i :param zi: z-coordinate of body i :param axi: Acceleration of body i along the x-axis :param ayi: Acceleration of body i along the y-axis :param azi: Acceleration of body i along the z-axis :param bodies: Array of body vectors :param eps: Softening parameter :param min_dist: Minimal distance for acceleration calculation :return: Updated acceleration of body i along the three axes """ for j in range(cuda.blockDim.x): # For each body in this block xj = bodies[j, 0] # x-coordinate of body j yj = bodies[j, 1] # y-coordinate of body j zj = bodies[j, 2] # z-coordinate of body j mj = bodies[j, 3] # Mass of body j axi, ayi, azi = interaction(xi, yi, zi, axi, ayi, azi, xj, yj, zj, mj, eps, min_dist) # Update acceleration return axi, ayi, azi @cuda.jit('void(float32[:, :], float32, float32, float32)') def total_acceleration(d_bodies, N, eps, min_dist): """ Calculates the acceleration for each body :param d_bodies: Array of all the body vectors :param: N: Amount of bodies :param eps: Softening parameter :param min_dist: Minimal distance for acceleration calculation """ block_dim = 32 # Manually set block size (can not be a parameter because of the shared array) sh_bodies = cuda.shared.array((block_dim, 4), float32) # Create shared array for block_acceleration i = cuda.grid(1) # Create grid xi = d_bodies[i, 0] # x-coordinate of body i yi = d_bodies[i, 1] # y-coordinate of body i zi = d_bodies[i, 2] # z-coordinate of body i axi = 0.0 # Initialize acceleration of body i along the x-axis ayi = 0.0 # Initialize acceleration of body i along the y-axis azi = 0.0 # Initialize acceleration of body i along the z-axis for j in range(0, N, block_dim): # For each block index = (j//block_dim)*cuda.blockDim.x+cuda.threadIdx.x # Calculate index sh_index = cuda.threadIdx.x # Identify the thread (body) sh_bodies[sh_index, 0] = d_bodies[index, 0] # Add x-coordinate of body to shared array sh_bodies[sh_index, 1] = d_bodies[index, 1] # Add y-coordinate of body to shared array sh_bodies[sh_index, 2] = d_bodies[index, 2] # Add z-coordinate of body to shared array sh_bodies[sh_index, 3] = d_bodies[index, 9] # Add mass of body to shared array cuda.syncthreads() # Wait for the entire shared array to finish axi, ayi, azi = block_acceleration(xi, yi, zi, axi, ayi, azi, sh_bodies, eps, min_dist) # Update acceleration cuda.syncthreads() # Wait for all the accelerations to be updated d_bodies[i, 6] = axi # Assign acceleration along the x-axis to body i d_bodies[i, 7] = ayi # Assign acceleration along the y-axis to body i d_bodies[i, 8] = azi # Assign acceleration along the z-axis to body i @cuda.jit('void(float32[:, :], float32, float32)') def leapfrog(d_bodies, delta_t, inv_step_size): """ Executes the leapfrog integration method :param d_bodies: Array of all the body vectors :param delta_t: Time step duration :param inv_step_size: Full step (1) or half step (2) """ i = cuda.grid(1) # Create grid d_bodies[i, 3] += delta_t*d_bodies[i, 6]/inv_step_size # Update velocity of body i along the x-axis d_bodies[i, 4] += delta_t*d_bodies[i, 7]/inv_step_size # Update velocity of body i along the y-axis d_bodies[i, 5] += delta_t*d_bodies[i, 8]/inv_step_size # Update velocity of body i along the z-axis d_bodies[i, 0] += delta_t*d_bodies[i, 3] # Update x-coordinate of body i d_bodies[i, 1] += delta_t*d_bodies[i, 4] # Update y-coordinate of body i d_bodies[i, 2] += delta_t*d_bodies[i, 5] # Update z-coordinate of body i '''------------------------------------------------- Constants -------------------------------------------------''' G = 6.67*10**-11 # Gravitational constant kpc = 3.08567758*10**19 # 1 Kilo parsec in meters min_dist = 1 # Minimum distance between two bodies for calculating acceleration eps = np.float32(1e-3) # Softening parameter '''---------------------------------------------------- Data ----------------------------------------------------''' ''' galaxy1 = np.zeros((1600, 10), dtype=np.float32) # Allocate galaxy array theta = np.repeat(np.arange(41)*2*np.pi/41, 39) # Multiple sets of an array of angles r = np.tile(np.arange(5, 200, 5), 41) # Multiple sets of an array of radii galaxy1[1:, 0] = r*np.cos(theta) # Set x-coordinate from (r, theta) galaxy1[1:, 1] = r*np.sin(theta) # Set y-coordinate from (r, theta) galaxy1[1:, 3] = -np.sqrt(G*1000000/r)*np.sin(theta)*1.2 # Perpendicular velocity .*sqrt(GM/r) in the x-direction galaxy1[1:, 4] = np.sqrt(G*1000000/r)*np.cos(theta)*1.2 # Perpendicular velocity .*sqrt(GM/r) in the y-direction galaxy1[1:, 9] = G # Set masses of all 'planets' scaled by G galaxy1[0, 9] = 1000000*G # Set mass of the 'star' scaled by G follow = 90 # State which particle to create a trail of bodies = galaxy1 # Set galaxy1 as de body array # Set colors of the bodies for the scatter plot N = bodies.shape[0] # Amount of bodies color = np.zeros((N, 4), dtype=np.float32) # Allocate color array color[:, 3] = 0.9 # Set transparency to 90% color[1:, 1] = 1 # Add color green to all but the center color[0, 2] = 1 # Add color blue to center ''' data = np.loadtxt("dubinskitab.txt") # Load Milky Way & Andromeda data (m, x, y, z, vx, vy, vz) # 16384 Gal. disk, 16384 And. disk, 8192 Gal. bulge, 8192 And. bulge, 16384 Gal. halo, 16384 And. halo mod = 16 # Set amount 81920/mod amount of bodies bodies = np.zeros((int(81920/mod), 10), dtype=np.float32) # Initialize body array bodies[:, :6] = data[0::mod, 1:] # Copy positions and velocities of selected data bodies[:, 9] = mod*data[0::mod, 0] # Copy masses of selected data, balance total mass and scale with G follow = 90 # State which particle to create a trail of # Set color of the plot based on the Milky Way & Andromeda data N = bodies.shape[0] # Amount of bodies color = np.zeros((N, 4), dtype=np.float32) # Initialize color array for the plot color[:, 3] = 0.3 # Set transparency to 30% color[:int(16384/mod), 2] = 1 # Set Milky Way core to blue color[int(16384/mod):int(32768/mod), 0] = 1 # Set Andromeda core to red color[int(32768/mod):int(40960/mod), 2] = 0.8 # Set Milky Way bulge to lighter blue color[int(409604/mod):int(49152/mod), 0] = 0.8 # Set Andromeda bulge to lighter red color[int(49152/mod):int(65536/mod), 2] = 0.6 # Set Milky way halo to even lighter blue color[int(65536/mod):, 0] = 0.6 # Set Andromeda halo to even lighter red d_bodies = cuda.to_device(bodies) # Copy the array of body vectors to the gpu '''------------------------------------------------- Parameters -------------------------------------------------''' # Set block and grid dimensions for the GPU blockdim = 32 # Amount of threads per block griddim = int(np.ceil(N/blockdim)) # Amount of blocks # Initialize GPU functions with the given grid and block dimensions leapfrog = leapfrog.configure(griddim, blockdim) # Configure leapfrog function total_acceleration = total_acceleration.configure(griddim, blockdim) # Configure total_acceleration function '''------------------------------------------------ 3D Animation ------------------------------------------------''' app = QtGui.QApplication([]) # Initialize application # Initialize window for the scatter plots w = gl.GLViewWidget() # Initialize opengl widget w.opts['distance'] = 12500 # Set viewing distance to the figure w.show() # Show the figure w.setWindowTitle('N-body simulation') # Set title of the window w.setGeometry(960, 35, 960, 995) # Set window to envelop right side of the screen # Scatter plot of all the bodies sp = gl.GLScatterPlotItem(pos=bodies[:, :3], color=color, size=7) # Set initial frame sp.scale(20, 20, 20) # Scale the plot to match the grids sp.translate(-10, -10, -10) # Translate the plot to match the grids sp.rotate(80, 0, 0, 1) w.addItem(sp) # Add plot to figure # Initialize arrays for the scatter plot trail bodies2 = np.zeros((1000000, 3)) # Allocate memory for the body position over time bodies2[0, :] = bodies[follow, :3] # Set the location at the first frame color2 = np.zeros((1000000, 4)) # Allocate memory for the color array color2[:, 0] = 1 # Set color array to color of followed particle color2[:, 3] = 0.9 # Set color array to color of followed particle # Scatter plot of the trail of a single body sp2 = gl.GLScatterPlotItem(pos=bodies2[0, :], color=color2[0, :], size=5, glOptions='additive') # Set initial frame sp2.scale(20, 20, 20) # Scale the plot to match the grids sp2.translate(-10, -10, -10) # Translate the plot to match the grids w.addItem(sp2) # Add plot to figure # Initialize window for the scrolling plots win = pg.GraphicsWindow() # Initialize window for plotting win.setGeometry(0, 35, 960, 995) # Set window to envelop left side of the screen p1 = win.addPlot(row=1, col=0) # Add top plot p2 = win.addPlot(row=2, col=0) # Add bottom plot # Scrolling plots of the time steps dts = np.zeros(1000000, dtype=np.float32) # Allocate array for dt's curve = p1.plot(dts[:500]) # Set initial frame top plot curve2 = p2.plot(dts[:2]) # Set initial frame bottom plot frame = 0 # Frame index def update(): """ Updates the plot """ global sp, d_bodies, N, frame, ts, color, dts, bodies2, color2, dt frame += 1 # Update frame index # Update the positions for amount in range(10): # Calculates amount of frames per one display of a frame total_acceleration(d_bodies, N, eps, min_dist) # Calculate the accelerations d_bodies.copy_to_host(bodies) # Copy the updated array of body vectors back to RAM (auto syncs threads) dt = np.clip(1/(np.max(np.abs(bodies[:, 6:9]))+0.001), 0, 200) # Set time step to max velocity, acceleration if frame == 1: # Half step of the velocity ts = clock() # Starting time #dts[499] = dt # Replace initial value needed for initializing the plot leapfrog(d_bodies, dt, 2) # Apply the leapfrog integration method else: # Full step of the velocity leapfrog(d_bodies, dt, 1) # Apply the leapfrog integration method # Top plot dts[499+frame] = dt # Save value of current frame curve.setData(dts[frame:500+frame]) # Set data as last 500 frames curve.setPos(frame-499, 0) # Scroll x-axis # Bottom plot curve2.setData(dts[499:500+frame]) # Set data as all elapsed frames # Plot bodies d_bodies.copy_to_host(bodies) # Copy the updated array of body vectors back to RAM (auto syncs threads) sp.setData(pos=bodies[:, :3]) # Update the plot data and colors # Plot Trail bodies2[frame, :] = bodies[follow, :3] # Save value of current frame sp2.setData(pos=bodies2[:frame+1, :], color=color2[:frame+1, :]) # Update the plot data and colors # Print FPS if frame % 10 == 0: # Display fps every 10 frames print(10/(clock()-ts)) # Display fps ts = clock() # Reset starting time # Update the figure timer = QtCore.QTimer() # Initialize timer timer.timeout.connect(update) # Connect the timer to the update function timer.start(0) # Start timer QtGui.QApplication.instance().exec_() # Run the figure