content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def overlap(a, b): """check if two intervals overlap. Positional arguments: a -- First interval. b -- Second interval. """ return a[1] > b[0] and a[0] < b[1]
88860f46a94eb53f1d6f636211916dd828c83550
3,645,100
import warnings import re def contAvg_headpos(condition, method='median', folder=[], summary=False): """ Calculate average transformation from dewar to head coordinates, based on the continous head position estimated from MaxFilter Parameters ---------- condition : str String containing part of common filename, e.g. "task" for files task-1.fif, task-2.fif, etc. Consistent naiming of files is mandatory! method : str How to calculate "average, "mean" or "median" (default = "median") folder : str Path to input files. Default = current dir. Returns ------- MNE-Python transform object 4x4 transformation matrix """ # Check that the method works method = method.lower() if method not in ['median','mean']: raise RuntimeError('Wrong method. Must be either \"mean\" or "median"!') if not condition: raise RuntimeError('You must provide a conditon!') # Get and set folders if not folder: rawdir = getcwd() # [!] Match up with bash script ! else: rawdir = folder print(rawdir) quatdir = op.join(rawdir,'quat_files') mean_trans_folder = op.join(rawdir, 'trans_files') if not op.exists(mean_trans_folder): # Make sure output folder exists mkdir(mean_trans_folder) mean_trans_file = op.join(mean_trans_folder, condition+'-trans.fif') if op.isfile(mean_trans_file): warnings.warn('N"%s\" already exists is %s. Delete if you want to rerun' % (mean_trans_file, mean_trans_folder), RuntimeWarning) return # Change to subject dir files2combine = find_condition_files(quatdir, condition) files2combine.sort() if not files2combine: raise RuntimeError('No files called \"%s\" found in %s' % (condition, quatdir)) allfiles = [] for ff in files2combine: fl = ff.split('_')[0] tmplist = [f for f in listdir(quatdir) if fl in f and '_quat' in f] #Fix order if len(tmplist) > 1: tmplist.sort() if any("-" in f for f in tmplist): firstfile = tmplist[-1] # The file without a number will always be last! tmpfs = sorted(tmplist[:-1], key=lambda a: int(re.split('-|.fif', a)[-2]) ) # Assuming consistent naming!!! tmplist[0] = firstfile tmplist[1:] = tmpfs allfiles = allfiles + tmplist if len(allfiles) > 1: print('Files used for average head pos:') for ib in range(len(allfiles)): print('{:d}: {:s}'.format(ib + 1, allfiles[ib])) else: print('Will find average head pos in %s' % files2combine) # LOAD DATA # raw = read_raw_fif(op.join(quatdir,firstfile), preload=True, allow_maxshield=True, verbose=False).pick_types(meg=False, chpi=True) # Use files2combine instead of allfiles as MNE will find split files automatically. for idx, ffs in enumerate(files2combine): if idx == 0: raw = read_raw_fif(op.join(quatdir,ffs), preload=True, allow_maxshield=True).pick_types(meg=False, chpi=True) else: raw.append(read_raw_fif(op.join(quatdir,ffs), preload=True, allow_maxshield=True).pick_types(meg=False, chpi=True)) quat, times = raw.get_data(return_times=True) gof = quat[6,] # Godness of fit channel # fs = raw.info['sfreq'] # In case "record raw" started before "cHPI" if np.any(gof < 0.98): begsam = np.argmax(gof>0.98) raw.crop(tmin=raw.times[begsam]) quat = quat[:,begsam:].copy() times = times[begsam:].copy() # Make summaries if summary: plot_movement(quat, times, dirname=rawdir, identifier=condition) total_dist_moved(quat, times, write=True, dirname=rawdir, identifier=condition) # Get continous transformation print('Reading transformation. This will take a while...') H = np.empty([4,4,len(times)]) # Initiate transforms init_rot_angles = np.empty([len(times),3]) for i,t in enumerate(times): Hi = np.eye(4,4) Hi[0:3,3] = quat[3:6,i].copy() Hi[:3,:3] = quat_to_rot(quat[0:3,i]) init_rot_angles[i,:] = rotation_angles(Hi[:3,:3]) assert(np.sum(Hi[-1]) == 1.0) # sanity check result H[:,:,i] = Hi.copy() if method in ["mean"]: H_mean = np.mean(H, axis=2) # stack, then average over new dim mean_rot_xfm = rotation3d(*tuple(np.mean(init_rot_angles, axis=0))) # stack, then average, then make new xfm elif method in ["median"]: H_mean = np.median(H, axis=2) # stack, then average over new dim mean_rot_xfm = rotation3d(*tuple(np.median(init_rot_angles, axis=0))) # stack, then average, then make new xfm H_mean[:3,:3] = mean_rot_xfm assert(np.sum(H_mean[-1]) == 1.0) # sanity check result # Create the mean structure and save as .fif mean_trans = raw.info['dev_head_t'] # use the last info as a template mean_trans['trans'] = H_mean.copy() # Write file write_trans(mean_trans_file, mean_trans) print("Wrote "+mean_trans_file) return mean_trans
42b65ce84f7b303575113ca2d57f5b61841f8294
3,645,101
from . import __path__ as path from numpy import fromfile from os.path import join from os import listdir from ..IO.output import printError def getconstantfunc(name, **kwargs): """Get constants from file by name.""" path = path[0] if not name in listdir(path): printError("File {0} not exists.".format(name)) raise ValueError("File {0} not exists.".format(name)) temp = fromfile(join(path, name)) return temp
ae5279587c9d292d4f2cb0aa9480169ee386cc99
3,645,102
def scalar_prod_logp0pw_beta_basis_npf(pw, p0, DV, alpha): """ From normalized p_fact Args: pw: a batch of probabilities (row:word, column:chi) DV: centered statistics (for p0, to be consistent) p0: the central probability on which tangent space to project (row vector) alpha: the value of alpha Returns: scalar product between Logmaps of each point in the batch and the basis of the tangent space .. math:: \left< \Log^{(\alpha)_{p_0} p_w}, \beta_i^{(\alpha)} \right>_{\mathbb{R}^n_{(\alpha)}} """ p_fact_normalized, l_scale = get_norm_p_fact(p0, pw, alpha) ldv_alpha = np.matmul(p_fact_normalized, DV) return ldv_alpha, l_scale
be63a3bcd791be4ee116a1e9abbd10a455e10bfc
3,645,103
from typing import List from typing import Tuple from datetime import datetime from bs4 import BeautifulSoup def get_seminars() -> List[Tuple[str, str, datetime, str]]: """ Returns summary information for upcoming ITEE seminars, comprising seminar date, seminar title, venue, and an information link. """ html = BeautifulSoup(get_seminar_summary_page(), 'html.parser') summary_table = html.find('table', summary='ITEE Seminar List') if (summary_table is None) or (summary_table.tbody is None): # When no seminars are scheduled, no table is shown. return [] seminar_rows = summary_table.tbody.find_all('tr') seminar_summaries = map(get_seminar_summary, seminar_rows) return list(seminar_summaries)
c1f149fa1625492f60b81b7c987f839c9d14abf3
3,645,104
def cluster_hierarchically(active_sites,num_clusters=7): """ Cluster the given set of ActiveSite instances using a hierarchical algorithm. Input: a list of ActiveSite instances (OPTIONAL): number of clusters (default 7) Output: a list of clusterings (each clustering is a list of lists of ActiveSite instances) """ labels = centroid_linkage(active_sites,num_clusters) clustering = [] for clust in np.unique(labels): clustering.append([active_sites[ind] for ind,val in enumerate(labels.tolist() )if val==clust]) return clustering
e7ca3f8a9a098630a51944ae870b1beb730684dd
3,645,105
def insert(table: _DMLTableArgument) -> Insert: """Construct an :class:`_expression.Insert` object. E.g.:: from sqlalchemy import insert stmt = ( insert(user_table). values(name='username', fullname='Full Username') ) Similar functionality is available via the :meth:`_expression.TableClause.insert` method on :class:`_schema.Table`. .. seealso:: :ref:`tutorial_core_insert` - in the :ref:`unified_tutorial` :param table: :class:`_expression.TableClause` which is the subject of the insert. :param values: collection of values to be inserted; see :meth:`_expression.Insert.values` for a description of allowed formats here. Can be omitted entirely; a :class:`_expression.Insert` construct will also dynamically render the VALUES clause at execution time based on the parameters passed to :meth:`_engine.Connection.execute`. :param inline: if True, no attempt will be made to retrieve the SQL-generated default values to be provided within the statement; in particular, this allows SQL expressions to be rendered 'inline' within the statement without the need to pre-execute them beforehand; for backends that support "returning", this turns off the "implicit returning" feature for the statement. If both :paramref:`_expression.Insert.values` and compile-time bind parameters are present, the compile-time bind parameters override the information specified within :paramref:`_expression.Insert.values` on a per-key basis. The keys within :paramref:`_expression.Insert.values` can be either :class:`~sqlalchemy.schema.Column` objects or their string identifiers. Each key may reference one of: * a literal data value (i.e. string, number, etc.); * a Column object; * a SELECT statement. If a ``SELECT`` statement is specified which references this ``INSERT`` statement's table, the statement will be correlated against the ``INSERT`` statement. .. seealso:: :ref:`tutorial_core_insert` - in the :ref:`unified_tutorial` """ return Insert(table)
70bd0accf66e72d6240f7cd586fc47c927e109a6
3,645,106
def parallelize_window_generation_imap(passed_args, procs=None): """Produce window files, in a parallel fashion This method calls the get_win function as many times as sets of arguments specified in passed_args. starmap is used to pass the list of arguments to each invocation of get_win. The pool is created with either the number of provided processors, or half the number of the available processors (be kind, don't allocate everything). Parameters ---------- passed_args : list A list of lists, each one containing all the arguments to pass to an invocation of the get_win function. procs : int The number of processors to use. Defaulted to None, will use half of the available cores. Returns ------- list A list containing the paths of all the results from the get_win calls. """ pool = mp.Pool(procs or int(mp.cpu_count() / 2)) results = pool.starmap(get_win, passed_args) pool.close() pool.join() return results
74cf5c8138ad1511c9aeae62a3f14c705a3735b5
3,645,107
def build_train(q_func, ob_space, ac_space, optimizer, sess, grad_norm_clipping=None, scope="deepq", reuse=None, full_tensorboard_log=False): """ Creates the train function: :param q_func: (DQNPolicy) the policy :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param reuse: (bool) whether or not to reuse the graph variables :param optimizer: (tf.train.Optimizer) optimizer to use for the Q-learning objective. :param sess: (TensorFlow session) The current TensorFlow session :param grad_norm_clipping: (float) clip gradient norms to this value. If None no clipping is performed. :param scope: (str or VariableScope) optional scope for variable_scope. :param reuse: (bool) whether or not the variables should be reused. To be able to reuse the scope must be given. :param full_tensorboard_log: (bool) enable additional logging when using tensorboard WARNING: this logging can take a lot of space quickly :return: (tuple) act train: (function (Any, numpy float, numpy float, Any, numpy bool, numpy float): numpy float) optimize the error in Bellman's equation. See the top of the file for details. step_model: (DQNPolicy) Policy for evaluation """ n_actions = ac_space.nvec if isinstance(ac_space, MultiDiscrete) else ac_space.n with tf.variable_scope(scope, reuse=reuse): policy = q_func(sess, ob_space, ac_space, 1, 1, None) act = build_act(policy) q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/model") with tf.variable_scope("loss", reuse=reuse): # set up placeholders act_t_ph = tf.placeholder(tf.int32, [None], name="action") rew_t_ph = tf.placeholder(tf.float32, [None], name="reward") act_mask = tf.one_hot(act_t_ph, n_actions) labels = tf.nn.relu(tf.math.sign(rew_t_ph)) dist = tf.nn.softmax(policy.q_values) pred = tf.reduce_sum(dist * act_mask, axis=1) loss = tf.math.reduce_mean(tf.keras.losses.binary_crossentropy(y_true=labels, y_pred=pred)) tf.summary.scalar("loss", loss) # compute optimization op (potentially with gradient clipping) gradients = optimizer.compute_gradients(loss, var_list=q_func_vars) if grad_norm_clipping is not None: for i, (grad, var) in enumerate(gradients): if grad is not None: gradients[i] = (tf.clip_by_norm(grad, grad_norm_clipping), var) with tf.variable_scope("input_info", reuse=False): tf.summary.scalar('rewards', tf.reduce_mean(rew_t_ph)) if full_tensorboard_log: tf.summary.histogram('rewards', rew_t_ph) optimize_expr = optimizer.apply_gradients(gradients) summary = tf.summary.merge_all() # Create callable functions _train = tf_util.function( inputs=[ policy._obs_ph, act_t_ph, rew_t_ph, policy.targets_ph, policy.train_ph ], outputs=summary, updates=[optimize_expr] ) def train(obses, actions, rewards, targets, **kwargs): return _train(obses, actions, rewards, targets, True, **kwargs) return act, train, policy
395899bdb0497db5f56d42bd968ad07117cf0126
3,645,108
def _make_global_var_name(element): """creates a global name for the MAP element""" if element.tag != XML_map: raise ValueError('Expected element <%s> for variable name definition, found <%s>' % (XML_map,element.tag)) base_name = _get_attrib_or_None(element,XML_attr_name) if base_name is None: # a MAP element needs to have a name raise ValueError('Element <%s> is missing attribute "%s".' % (XML_map,XML_attr_name)) # walk up in the hirachy until we find the group element total_group_name = '' while True: element = element.find('..') if element is None: # no group element --> we could raise an exception if total_group_name =='': total_group_name = 'NO_GROUP' break if element.tag == XML_group: group_name = _get_attrib_or_None(element,XML_attr_name) if group_name is None: # perfectly legal case group_name = 'EMPTY_GROUP_NAME' total_group_name = group_name+'_'+total_group_name #... and keep looking in case there are nested groups h=str(hash(total_group_name+base_name)) # we calculate the hash in case somebody uses names in non-ASCII characters only if h[0]=='-': h='M'+h[1:] name= '_VAR_'+total_group_name+base_name+'_'+h return _sanitized_var_name(name)
7a4c26ae3791ea0543a2690a61651604e727abf6
3,645,109
def list_user_images(user_id): """ Given a user_id, returns a list of Image objects scoped to that user. :param user_id: str user identifier :return: List of Image (messsage) objects """ db = get_session() try: imgs = [msg_mapper.db_to_msg(i).to_dict() for i in db.query(Image).filter(Image.user_id == user_id).all()] finally: db.close() return imgs
5a00ccae4fdea9417f26158d9042cc62a56e1013
3,645,110
def is_lower_cased_megatron(pretrained_model_name): """ Returns if the megatron is cased or uncased Args: pretrained_model_name (str): pretrained model name Returns: do_lower_cased (bool): whether the model uses lower cased data """ return MEGATRON_CONFIG_MAP[pretrained_model_name]["do_lower_case"]
6ff0954a35e19144e99aa0bdbbbeddc7542aad9d
3,645,111
import subprocess import json def bright(args, return_data=True): """ Executes CA Brightside with arguments of this function. The response is returned as Python data structures. Parameter ``return_data`` is by default ``True`` and it caused to return only the data section without metadata. Metadata are processed automatically and if they mean that commands was not successful and ``BrightCallError`` exception is raised. Example: jobs = bright("zos-jobs list jobs") # jobs is equal to: [{'class': 'A', 'files-url': 'https://ca32.ca.com:1443/zosmf/restjobs/jobs/J0038667USILCA11D4B949F2.......%3A/files', 'job-correlator': 'J0038667USILCA11D4B949F2.......:', 'jobid': 'JOB38667', 'jobname': 'PLAPALLC', 'owner': 'PLAPE03', 'phase': 20, 'phase-name': 'Job is on the hard copy queue', 'retcode': 'SEC ERROR', 'status': 'OUTPUT', 'subsystem': 'JES2', 'type': 'JOB', 'url': 'https://ca32.ca.com:1443/zosmf/restjobs/jobs/J0038667USILCA11D4B949F2.......%3A'}] """ if not isinstance(args, str): args = subprocess.list2cmdline(args) command = f"bright --rfj {args}" try: j, cp = _call_command_and_parse_json(command) if j is None: return None if not j.get("success"): be = BrightCallError(cp.returncode, command, args, output=cp.stdout, stderr=cp.stderr) be.errors = j.get("errors") be.message = j.get("message") else: if "data" in j and return_data: return j["data"] return j except CalledProcessError as e: log.debug("error: %s, output=%s" % (repr(e), e.output)) if e.stderr: raise BrightCallError(e.returncode, e.cmd, args, output=e.output, stderr=e.stderr) else: j = json.loads(e.output) be = BrightCallError(e.returncode, e.cmd, args, output=j.get( "stdout"), stderr=j.get("stderr")) be.errors = j.get("errors") be.message = j.get("message") raise be
cbc2824a2f78893fc4a5a38db95760a214c058d1
3,645,112
def decipher(string, key, a2i_dict, i2a_dict): """ This function is BASED on https://github.com/jameslyons/pycipher """ key = [k.upper() for k in key] ret = '' for (i, c) in enumerate(string): i = i % len(key) ret += i2a_dict[(a2i_dict[c] - a2i_dict[key[i]]) % len(a2i_dict)] return ret
a414892f8ccf18ab5d3189b662b284939c931382
3,645,113
def keep_samples_from_pcoa_data(headers, coords, sample_ids): """Controller function to filter coordinates data according to a list Parameters ---------- headers : list, str list of sample identifiers, if used for jackknifed data, this should be a list of lists containing the sample identifiers coords : numpy.ndarray 2-D numpy array with the float data in the coordinates, if used for jackknifed data, coords should be a list of 2-D numpy arrays sample_ids : list, str list of sample ids that should be kept Returns ------- out_headers : list, str list of headers out_coords : list, np.array list of coordinates """ # if the coords are a list then it means that the input jackknifed if type(coords) == list: out_coords, out_headers = [], [] for single_headers, single_coords in zip(headers, coords): a, b = filter_samples_from_coords(single_headers, single_coords, sample_ids) out_headers.append(a) out_coords.append(b) return out_headers, out_coords else: out_headers, out_coords = filter_samples_from_coords(headers, coords, sample_ids) return out_headers, out_coords
c33eaf6c593fcebc09e98ec479ca0505c52424c8
3,645,114
import platform def get_default_command() -> str: """get_default_command returns a command to execute the default output of g++ or clang++. The value is basically `./a.out`, but `.\a.exe` on Windows. The type of return values must be `str` and must not be `pathlib.Path`, because the strings `./a.out` and `a.out` are different as commands but same as a path. """ if platform.system() == 'Windows': return r'.\a.exe' return './a.out'
d06abdefab189f9c69cba70d9dab25ce83bebc75
3,645,115
from skymaps import Band def roi_circle(roi_index, galactic=True, radius=5.0): """ return (lon,lat,radius) tuple for given nside=12 position """ sdir = Band(12).dir(roi_index) return (sdir.l(),sdir.b(), radius) if galactic else (sdir.ra(),sdir.dec(), radius)
303c288749e3bd9ee63c95e79ef5460468d2cea0
3,645,116
from typing import List def find_by_user_defined_key(user_defined_key: str) -> List[models.BBoundingBoxDTO]: """Get a list of bounding boxes by a user-defined key.""" res_json = BoundingBoxes.get('query/userdefinedkey/{}'.format(user_defined_key)) return list(map(models.BBoundingBoxDTO.from_dict, res_json))
a60137fdc43b04c1404eaeae021f61381c39c761
3,645,117
def object_type(r_name): """ Derives an object type (i.e. ``user``) from a resource name (i.e. ``users``) :param r_name: Resource name, i.e. would be ``users`` for the resource index URL ``https://api.pagerduty.com/users`` :returns: The object type name; usually the ``type`` property of an instance of the given resource. :rtype: str """ if r_name.endswith('ies'): # Because English return r_name[:-3]+'y' else: return r_name.rstrip('s')
b74e373691edf8a8b78c2a3ff5d7b9666504330a
3,645,118
import traceback def create_comment(args, global_var): """ 创建一条新评论 (每天只能允许创建最多 1000 条评论) ------------- 关于 uuid: 1. raw_str 就用 data["content"] 2. 由于生成的 comment_id 格式中有中划线, 很奇怪, 所以建议删掉: uuid = "-".join(uuid) """ can_create = hit_daily_comment_creation_threshold(global_var) if not can_create: res = { "code": "FAILURE", "message": "Hit max daily comment creation threshold, please try to comment tomorrow." } return res data = args["data"] db = global_var["db"] comment_id = create_uuid(raw_str=data["content"]) comment_id = "".join(comment_id.split("-")) try: current_user_name = get_jwt_identity() # 根据 current_user_name 找到 user_id user_query = db.session.query(User.user_id).filter(User.name == current_user_name).first() current_user_id = user_query.user_id record = Comment( comment_id=comment_id, content=data["content"], creator_user_id=getValueWithDefault(data, "creator_user_id", current_user_id) ) db.session.add(record) db.session.commit() res = { "code": "SUCCESS", "data": {"id": record.id, "creator": current_user_name} } global_var["today_already_created_comment_count"][1] += 1 except Exception as e: res = { "code": "FAILURE", "message": traceback.format_exc() } return res
d8596febf2a020357654291952e447f175f2fe20
3,645,119
from datetime import datetime import pprint def get_aggregated_metrics(expr: ExperimentResource): """ Get aggregated metrics using experiment resource and metric resources. """ versions = [expr.spec.versionInfo.baseline] if expr.spec.versionInfo.candidates is not None: versions += expr.spec.versionInfo.candidates # messages not working as intended... messages = [] # initialize aggregated metrics object iam = get_builtin_metrics(expr) # check if start time is greater than now # this is problematic.... start time is set by etc3 but checked by analytics. # clocks are not synced, so this is not right... if expr.status.startTime > (datetime.now(timezone.utc)): messages.append(Message(MessageLevel.ERROR, "Invalid startTime: greater than current time")) iam.message = Message.join_messages(messages) return iam # there are no metrics to be fetched if expr.status.metrics is None: iam.message = Message.join_messages(messages) return iam for metric_info in expr.status.metrics: # only custom metrics is handled below... not builtin metrics if metric_info.metricObj.spec.provider is None or \ metric_info.metricObj.spec.provider != "iter8": iam.data[metric_info.name] = AggregatedMetric(data = {}) # fetch the metric value for each version... for version in versions: # initialize metric object for this version... iam.data[metric_info.name].data[version.name] = VersionMetric() val, err = get_metric_value(metric_info.metricObj, version, \ expr.status.startTime) if err is None and val is not None: iam.data[metric_info.name].data[version.name].value = val else: try: val = float(expr.status.analysis.aggregated_metrics.data\ [metric_info.name].data[version.name].value) except AttributeError: val = None iam.data[metric_info.name].data[version.name].value = val if err is not None: messages.append(Message(MessageLevel.ERROR, \ f"Error from metrics backend for metric: {metric_info.name} \ and version: {version.name}")) iam.message = Message.join_messages(messages) logger.debug("Analysis object after metrics collection") logger.debug(pprint.PrettyPrinter().pformat(iam)) return iam
047f6aac3f2662f73133fb3f4be6716d2e070035
3,645,120
from fairseq.models.bart import BARTModel import torch def get_bart(folder_path, checkpoint_file): """ Returns a pretrained BART model. Args: folder_path: str, path to BART's model, containing the checkpoint. checkpoint_file: str, name of BART's checkpoint file (starting from BART's folder). """ bart = BARTModel.from_pretrained(model_name_or_path=folder_path + '/', checkpoint_file=checkpoint_file) if torch.cuda.is_available(): bart.cuda() print("Using BART on GPU...") bart.eval() print("BART loaded (in evaluation mode).\n") return bart
504a242d24946761f2a880db66e1955752b89677
3,645,121
import os def construct_s3_raw_data_path(study_id, filename): """ S3 file paths for chunks are of this form: RAW_DATA/study_id/user_id/data_type/time_bin.csv """ return os.path.join(RAW_DATA_FOLDER, study_id, filename)
d8ed6753947b055e88fc762135f434b5cb7eb7c7
3,645,122
def _mixed_s2(x, filters, name=None): """Utility function to implement the 'stride-2' mixed block. # Arguments x: input tensor. filters: a list of filter sizes. name: name of the ops # Returns Output tensor after applying the 'stride-2' mixed block. """ if len(filters) != 2: raise ValueError('filters should have 2 components') name1 = name + '_3x3' if name else None branch3x3 = _depthwise_conv2d_bn(x, filters[0], kernel_size=(3, 3), strides=(2, 2), name=name1) name1 = name + '_5x5' if name else None branch5x5 = _depthwise_conv2d_bn(x, filters[1], kernel_size=(5, 5), strides=(2, 2), name=name1) name1 = name + '_pool' if name else None branchpool = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(2, 2), name=name1)(x) concat_axis = 1 if backend.image_data_format() == 'channels_first' else 3 x = layers.concatenate([branch3x3, branch5x5, branchpool], axis=concat_axis, name=name) return x
b4260c1b2a9e5c38a6c48baab611ac2e0d73c888
3,645,123
from typing import Union from typing import Type def get_convertor(cls: Union[Type, str]) -> Convertor: """Returns Convertor for data type. Arguments: cls: Type or type name. The name could be simple class name, or full name that includes the module name. Note: When `cls` is a type name: 1. If class name is NOT registered via `register_class()`, it's not possible to perform lookup for bases classes. 2. If simple class name is provided and multiple classes of the same name but from different modules have registered convertors, the first one found is used. If you want to avoid this situation, use full names. Raises: TypeError: If there is no convertor for `cls` or any from its bases classes. """ if (conv := _get_convertor(cls)) is None: raise TypeError(f"Type '{cls.__name__ if isinstance(cls, type) else cls}' has no Convertor") return conv
c70ce0a032efc031de67fc965a6984779dd635e7
3,645,124
def _is_mchedr(filename): """ Checks whether a file format is mchedr (machine-readable Earthquake Data Report). :type filename: str :param filename: Name of the mchedr file to be checked. :rtype: bool :return: ``True`` if mchedr file. .. rubric:: Example >>> _is_mchedr('/path/to/mchedr.dat') # doctest: +SKIP True """ if not isinstance(filename, (str, native_str)): return False with open(filename, 'rb') as fh: for line in fh.readlines(): # skip blank lines at beginning, if any if line.strip() == b'': continue # first record has to be 'HY': if line[0:2] == b'HY': return True else: return False
f8d5521cfd6ebcdf490af41877e865fb185f0f7c
3,645,125
import math def ddr3_8x8_profiling( trace_file=None, word_sz_bytes=1, page_bits=8192, # number of bits for a dram page/row min_addr_word=0, max_addr_word=100000 ): """ this code takes non-stalling dram trace and reorganizes the trace to meet the bandwidth requirement. currently, it does not generate new trace, which can be improved later. all default values are for ddr3, the output values are used by cacti "main memory" type in this model, the burst behavior in the dram is not modeled, as such the reported cycle count will be larger, i.e., a pessimistic estimation """ # output list tot_word = 0 max_word = 0 tot_access = 0 tot_row_access = 0 act_cycles = 0 shift_cycles = 0 ideal_start_cycle = 0 ideal_end_cycle = 0 bank=8 # number of banks in a chip. banks can be interleaved to reduce access latency. not modelled for simplicity. burst=8 # number of bytes for a single bank row and col address, and burst is sequential. not modelled for simplicity. prefetch=8 # number of prefetches/chips, with each chip referring to 1 prefetch. prefetch is parallel io_bits=8 # number of bits provided by all chips, with each chip providing io_bits/prefectch bits, each 8 bit provided by a single bank in the chip # number of words per page page_byte = page_bits / 8 # per cycle ddr bandwidth in word io_byte = io_bits / 8 requests = open(trace_file, 'r') # applied address mapping: row + bank + col + chip # this mapping is just for modeling, and actual implementation can be different # for default ddr3 setting, 14-b row + 3-b bank + 10-b col + 3-b chip # more info about ddr3 can be found here: http://mermaja.act.uji.es/docencia/is37/data/DDR3.pdf page 15 # parallel prefetch via chip has higher priority than sequential burst in a bank # prefetch_buf format (row idx, col idx, chip idx) # consecutive addresses are transmitted using prefetech instead of burst, as they are from the same bank but different chips # bank interleaving is not simulated here, as they will not incur high access overhead prefetch_buf_new = [] prefetch_buf_old = [] current_prefetch = [] first = True for entry in requests: elems = entry.strip().split(',') elems = prune(elems) elems = [float(x) for x in elems] valid_word = 0 if first == True: first = False ideal_start_cycle = elems[0] ideal_end_cycle = elems[0] prefetch_buf_new = [] # memory row index and col index generation inside a chip for e in range(1, len(elems)): # each element here is a word # only count legal address if (elems[e] >= min_addr_word) and (elems[e] < max_addr_word): # get the byte addr of the element, as dram is byte addressable elem_addr_byte = math.floor((elems[e] - min_addr_word) * word_sz_bytes) # this row index contain both row and bank in the address row_idx = math.floor(elem_addr_byte / page_byte) # col idx inside a chip col_idx = math.floor((elem_addr_byte % page_byte) / prefetch) # chip index chip_idx = math.floor(elem_addr_byte % prefetch) prefetch_buf_new.append((row_idx, col_idx, chip_idx)) valid_word += 1 act_cycles += (len(prefetch_buf_new) > 0) # add addresses for multi-byte word tmp_prefetch_buf = list(prefetch_buf_new) for w in range(math.ceil(word_sz_bytes) - 1): for (x, y, z) in tmp_prefetch_buf: # get the byte addr of the element, as dram is byte addressable elem_addr_byte = x * page_byte + y * prefetch + z + (w + 1) # this row index contain both row and bank in the address row_idx = math.floor(elem_addr_byte / page_byte) # col idx inside a chip col_idx = math.floor((elem_addr_byte % page_byte) / prefetch) # chip index chip_idx = math.floor(elem_addr_byte % prefetch) prefetch_buf_new.append((row_idx, col_idx, chip_idx)) tot_word += valid_word if max_word < valid_word: max_word = valid_word # merge the repeated accesses in byte granularity prefetch_buf_new = list(set(prefetch_buf_new)) new_access = 0 # update the prefetch start addr prefetch_row_col_new = list(set([(x, y) for (x, y, z) in prefetch_buf_new])) prefetch_row_col_old = list(set([(x, y) for (x, y, z) in prefetch_buf_old])) for (x, y) in prefetch_row_col_new: # a new start address for prefetch if (x, y) not in prefetch_row_col_old: start_chip = 1000000 for (i, j, k) in prefetch_buf_new: if x == i and j == y and k < start_chip: # add a new prefetch start_chip = k current_prefetch.append((x, y)) # each prefetch means an access new_access += 1 tot_access += new_access for (x, y) in prefetch_row_col_old: if (x, y) not in prefetch_row_col_new: # remove a prefetch if it's not used anymore current_prefetch.remove((x, y)) # print(current_prefetch) # only new row accesses from the last load are counted, as old are already buffered new_row_access = 0 # only different blocks are accessed, old accesses are buffered already and required no access prefetch_row_new = list(set([x for (x, y, z) in prefetch_buf_new])) prefetch_row_old = list(set([x for (x, y, z) in prefetch_buf_old])) for a in range(len(prefetch_row_new)): if prefetch_row_new[a] not in prefetch_row_old: new_row_access += 1 tot_row_access += new_row_access prefetch_buf_old = prefetch_buf_new # divided by two because of ddr shift_cycles = max((math.ceil(tot_access / 2) - act_cycles), 0 ) requests.close() return tot_word, max_word, tot_access, tot_row_access, act_cycles, shift_cycles, ideal_start_cycle, ideal_end_cycle
6a3369a79ae77e6f984b5250e17a7e79393e18d2
3,645,126
def get_sites_by_latlon(latlon, filter_date='', **kwargs): """Gets list of sites from BETYdb, filtered by a contained point. latlon (tuple) -- only sites that contain this point will be returned filter_date -- YYYY-MM-DD to filter sites to specific experiment by date """ latlon_api_arg = "%s,%s" % (latlon[0], latlon[1]) return get_sites(filter_date=filter_date, containing=latlon_api_arg, **kwargs)
40c9bcbd8884d287a8bbdf233376f27c6c2d041e
3,645,127
import logging def get_context(book, chapter, pharse): """ Given book, chapter, and pharse number, return the bible context. """ try: context = repository['{} {}:{}'.format(book, chapter, pharse)] return context except KeyError: bookname = bookid2chinese[book] pharse_name = '{}{}:{}'.format(bookname, chapter, pharse) logging.warning('Cannot find this pharse:' + pharse_name) raise KeyError('Cannot find this pharse')
a9d261a780b57db06af921c11001786107886b68
3,645,128
def find_cocotb_base (path = "", debug = False): """ Find Cocotb base directory in the normal installation path. If the user specifies a location it attempts to find cocotb in that directory. This function failes quietly because most people will probably not use cocotb on the full design so it's not a big deal if it fails Args: path (string): Path to cocotb base if cocotb is not installed in the default location(can be left blank) Returns: (String): Path to cocotb on the local machine, returns an empty string if none is found Raises: Nothing """ #Normally cocotb is installed (on Linux) at if os.name == "posix": if len(path) == 0: path = DEFAULT_POSIX_COCOTB else: raise CocotbError("Error, Windows and Mac are not supported for " + "cocotb utils") dirs = os.listdir(path) if debug: print "Look for directory" if debug: print "path: %s" % path for s in dirs: if "cocotb" in s: path = os.path.join(path, s) if debug: print "Found: %s" % path return path raise CocotbWarning("Did not find Cocotb in %s" % path)
41bdc488a82017730785b1cad8b1f1925a82bbb7
3,645,129
import os def read_dicom_volume(dcm_path): """ This function reads all dicom volumes in a folder as a volume. """ dcm_files = [ f for f in os.listdir(dcm_path) if f.endswith('.dcm')] dcm_files = ns.natsorted(dcm_files, alg=ns.IGNORECASE) Z = len(dcm_files) reference = dicom.read_file(os.path.join(dcm_path,dcm_files[0])) H,W = reference.pixel_array.shape type = reference.pixel_array.dtype volume = np.zeros((H,W,Z), dtype = type) for (ii,dcm_slice) in enumerate(dcm_files): volume[:,:,ii] = dicom.read_file(os.path.join(dcm_path,dcm_files[ii])).pixel_array return volume
f93526bf0228c6f75638915bb1933b484bc23e13
3,645,130
from typing import OrderedDict def _compare_namelists(gold_namelists, comp_namelists, case): ############################################################################### """ Compare two namelists. Print diff information if any. Returns comments Note there will only be comments if the namelists were not an exact match Expect args in form: {namelist -> {key -> value} }. value can be an int, string, list, or dict >>> teststr = '''&nml ... val = 'foo' ... aval = 'one','two', 'three' ... maval = 'one', 'two', 'three', 'four' ... dval = 'one -> two', 'three -> four' ... mdval = 'one -> two', 'three -> four', 'five -> six' ... nval = 1850 ... / ... &nml2 ... val2 = .false. ... / ... ''' >>> _compare_namelists(_parse_namelists(teststr.splitlines(), 'foo'), _parse_namelists(teststr.splitlines(), 'bar'), None) '' >>> teststr1 = '''&nml1 ... val11 = 'foo' ... / ... &nml2 ... val21 = 'foo' ... val22 = 'foo', 'bar', 'baz' ... val23 = 'baz' ... val24 = '1 -> 2', '2 -> 3', '3 -> 4' ... / ... &nml3 ... val3 = .false. ... /''' >>> teststr2 = '''&nml01 ... val11 = 'foo' ... / ... &nml2 ... val21 = 'foo0' ... val22 = 'foo', 'bar0', 'baz' ... val230 = 'baz' ... val24 = '1 -> 20', '2 -> 3', '30 -> 4' ... / ... &nml3 ... val3 = .false. ... /''' >>> comments = _compare_namelists(_parse_namelists(teststr1.splitlines(), 'foo'), _parse_namelists(teststr2.splitlines(), 'bar'), None) >>> print(comments) Missing namelist: nml1 Differences in namelist 'nml2': BASE: val21 = 'foo' COMP: val21 = 'foo0' BASE: val22 list item 1 = 'bar' COMP: val22 list item 1 = 'bar0' missing variable: 'val23' BASE: val24 dict item 1 = 2 COMP: val24 dict item 1 = 20 dict variable 'val24' missing key 3 with value 4 dict variable 'val24' has extra key 30 with value 4 found extra variable: 'val230' Found extra namelist: nml01 <BLANKLINE> >>> teststr1 = '''&rad_cnst_nl ... icecldoptics = 'mitchell' ... logfile = 'cpl.log.150514-001533' ... case_name = 'ERB.f19_g16.B1850C5.sandiatoss3_intel.C.150513-230221' ... runid = 'FOO' ... model_version = 'cam5_3_36' ... username = 'jgfouca' ... iceopticsfile = '/projects/ccsm/inputdata/atm/cam/physprops/iceoptics_c080917.nc' ... liqcldoptics = 'gammadist' ... liqopticsfile = '/projects/ccsm/inputdata/atm/cam/physprops/F_nwvl200_mu20_lam50_res64_t298_c080428.nc' ... mode_defs = 'mam3_mode1:accum:=', 'A:num_a1:N:num_c1:num_mr:+', ... 'A:so4_a1:N:so4_c1:sulfate:/projects/ccsm/inputdata/atm/cam/physprops/sulfate_rrtmg_c080918.nc:+', 'A:pom_a1:N:pom_c1:p-organic:/projects/ccsm/inputdata/atm/cam/physprops/ocpho_rrtmg_c101112.nc:+', ... 'A:soa_a1:N:soa_c1:s-organic:/projects/ccsm/inputdata/atm/cam/physprops/ocphi_rrtmg_c100508.nc:+', 'A:bc_a1:N:bc_c1:black-c:/projects/ccsm/inputdata/atm/cam/physprops/bcpho_rrtmg_c100508.nc:+', ... 'A:dst_a1:N:dst_c1:dust:/projects/ccsm/inputdata/atm/cam/physprops/dust4_rrtmg_c090521.nc:+', 'A:ncl_a1:N:ncl_c1:seasalt:/projects/ccsm/inputdata/atm/cam/physprops/ssam_rrtmg_c100508.nc', ... 'mam3_mode2:aitken:=', 'A:num_a2:N:num_c2:num_mr:+', ... 'A:so4_a2:N:so4_c2:sulfate:/projects/ccsm/inputdata/atm/cam/physprops/sulfate_rrtmg_c080918.nc:+', 'A:soa_a2:N:soa_c2:s-organic:/projects/ccsm/inputdata/atm/cam/physprops/ocphi_rrtmg_c100508.nc:+', ... 'A:ncl_a2:N:ncl_c2:seasalt:/projects/ccsm/inputdata/atm/cam/physprops/ssam_rrtmg_c100508.nc', 'mam3_mode3:coarse:=', ... 'A:num_a3:N:num_c3:num_mr:+', 'A:dst_a3:N:dst_c3:dust:/projects/ccsm/inputdata/atm/cam/physprops/dust4_rrtmg_c090521.nc:+', ... 'A:ncl_a3:N:ncl_c3:seasalt:/projects/ccsm/inputdata/atm/cam/physprops/ssam_rrtmg_c100508.nc:+', 'A:so4_a3:N:so4_c3:sulfate:/projects/ccsm/inputdata/atm/cam/physprops/sulfate_rrtmg_c080918.nc' ... rad_climate = 'A:Q:H2O', 'N:O2:O2', 'N:CO2:CO2', ... 'N:ozone:O3', 'N:N2O:N2O', 'N:CH4:CH4', ... 'N:CFC11:CFC11', 'N:CFC12:CFC12', 'M:mam3_mode1:/projects/ccsm/inputdata/atm/cam/physprops/mam3_mode1_rrtmg_c110318.nc', ... 'M:mam3_mode2:/projects/ccsm/inputdata/atm/cam/physprops/mam3_mode2_rrtmg_c110318.nc', 'M:mam3_mode3:/projects/ccsm/inputdata/atm/cam/physprops/mam3_mode3_rrtmg_c110318.nc' ... /''' >>> teststr2 = '''&rad_cnst_nl ... icecldoptics = 'mitchell' ... logfile = 'cpl.log.150514-2398745' ... case_name = 'ERB.f19_g16.B1850C5.sandiatoss3_intel.C.150513-1274213' ... runid = 'BAR' ... model_version = 'cam5_3_36' ... username = 'hudson' ... iceopticsfile = '/something/else/inputdata/atm/cam/physprops/iceoptics_c080917.nc' ... liqcldoptics = 'gammadist' ... liqopticsfile = '/something/else/inputdata/atm/cam/physprops/F_nwvl200_mu20_lam50_res64_t298_c080428.nc' ... mode_defs = 'mam3_mode1:accum:=', 'A:num_a1:N:num_c1:num_mr:+', ... 'A:so4_a1:N:so4_c1:sulfate:/something/else/inputdata/atm/cam/physprops/sulfate_rrtmg_c080918.nc:+', 'A:pom_a1:N:pom_c1:p-organic:/something/else/inputdata/atm/cam/physprops/ocpho_rrtmg_c101112.nc:+', ... 'A:soa_a1:N:soa_c1:s-organic:/something/else/inputdata/atm/cam/physprops/ocphi_rrtmg_c100508.nc:+', 'A:bc_a1:N:bc_c1:black-c:/something/else/inputdata/atm/cam/physprops/bcpho_rrtmg_c100508.nc:+', ... 'A:dst_a1:N:dst_c1:dust:/something/else/inputdata/atm/cam/physprops/dust4_rrtmg_c090521.nc:+', 'A:ncl_a1:N:ncl_c1:seasalt:/something/else/inputdata/atm/cam/physprops/ssam_rrtmg_c100508.nc', ... 'mam3_mode2:aitken:=', 'A:num_a2:N:num_c2:num_mr:+', ... 'A:so4_a2:N:so4_c2:sulfate:/something/else/inputdata/atm/cam/physprops/sulfate_rrtmg_c080918.nc:+', 'A:soa_a2:N:soa_c2:s-organic:/something/else/inputdata/atm/cam/physprops/ocphi_rrtmg_c100508.nc:+', ... 'A:ncl_a2:N:ncl_c2:seasalt:/something/else/inputdata/atm/cam/physprops/ssam_rrtmg_c100508.nc', 'mam3_mode3:coarse:=', ... 'A:num_a3:N:num_c3:num_mr:+', 'A:dst_a3:N:dst_c3:dust:/something/else/inputdata/atm/cam/physprops/dust4_rrtmg_c090521.nc:+', ... 'A:ncl_a3:N:ncl_c3:seasalt:/something/else/inputdata/atm/cam/physprops/ssam_rrtmg_c100508.nc:+', 'A:so4_a3:N:so4_c3:sulfate:/something/else/inputdata/atm/cam/physprops/sulfate_rrtmg_c080918.nc' ... rad_climate = 'A:Q:H2O', 'N:O2:O2', 'N:CO2:CO2', ... 'N:ozone:O3', 'N:N2O:N2O', 'N:CH4:CH4', ... 'N:CFC11:CFC11', 'N:CFC12:CFC12', 'M:mam3_mode1:/something/else/inputdata/atm/cam/physprops/mam3_mode1_rrtmg_c110318.nc', ... 'M:mam3_mode2:/something/else/inputdata/atm/cam/physprops/mam3_mode2_rrtmg_c110318.nc', 'M:mam3_mode3:/something/else/inputdata/atm/cam/physprops/mam3_mode3_rrtmg_c110318.nc' ... /''' >>> _compare_namelists(_parse_namelists(teststr1.splitlines(), 'foo'), _parse_namelists(teststr2.splitlines(), 'bar'), 'ERB.f19_g16.B1850C5.sandiatoss3_intel') '' """ different_namelists = OrderedDict() for namelist, gold_names in gold_namelists.items(): if (namelist not in comp_namelists): different_namelists[namelist] = ["Missing namelist: {}\n".format(namelist)] else: comp_names = comp_namelists[namelist] for name, gold_value in gold_names.items(): if (name not in comp_names): different_namelists.setdefault(namelist, []).append(" missing variable: '{}'\n".format(name)) else: comp_value = comp_names[name] comments = _compare_values(name, gold_value, comp_value, case) if comments != "": different_namelists.setdefault(namelist, []).append(comments) for name in comp_names: if (name not in gold_names): different_namelists.setdefault(namelist, []).append(" found extra variable: '{}'\n".format(name)) for namelist in comp_namelists: if (namelist not in gold_namelists): different_namelists[namelist] = ["Found extra namelist: {}\n".format(namelist)] comments = "" for namelist, nlcomment in different_namelists.items(): if len(nlcomment) == 1: comments += nlcomment[0] else: comments += "Differences in namelist '{}':\n".format(namelist) comments += "".join(nlcomment) return comments
7a4b8fc1fa23f54bf1015c2cfd7b4b05da33b5b4
3,645,131
def directMultiCreate( data, cfg_params='', *, dtype='', doInfo = True, doScatter = True, doAbsorption = True ): """Convenience function which creates Info, Scatter, and Absorption objects directly from a data string rather than an on-disk or in-memory file. Such usage obviously precludes proper caching behind the scenes, and is intended for scenarios where the same data should not be used repeatedly. """ if not dtype and not data.startswith('NCMAT') and 'NCMAT' in data: if data.strip().startswith('NCMAT'): raise NCBadInput('NCMAT data must have "NCMAT" as the first 5 characters (must not be preceded by whitespace)') rawi,raws,rawa = _rawfct['multicreate_direct'](data,dtype,cfg_params,doInfo,doScatter,doAbsorption) info = Info( ('_rawobj_',rawi) ) if rawi else None scatter = Scatter( ('_rawobj_',raws) ) if raws else None absorption = Absorption( ('_rawobj_',rawa) ) if rawa else None class MultiCreated: def __init__(self,i,s,a): self.__i,self.__s,self.__a = i,s,a @property def info(self): """Info object (None if not present).""" return self.__i @property def scatter(self): """Scatter object (None if not present).""" return self.__s @property def absorption(self): """Absorption object (None if not present).""" return self.__a def __str__(self): fmt = lambda x : str(x) if x else 'n/a' return 'MultiCreated(Info=%s, Scatter=%s, Absorption=%s)'%(fmt(self.__i), fmt(self.__s), fmt(self.__a)) return MultiCreated(info,scatter,absorption)
1fe6262c0f59c836d1edcc7555b30f3182ceb2e0
3,645,132
def write_date_json(date: str, df: DataFrame) -> str: """ Just here so we can log in the list comprehension """ file_name = f"pmg_reporting_data_{date}.json" print(f"Writing file {file_name}") df.to_json(file_name, orient="records", date_format="iso") print(f"{file_name} written") return file_name
7af4d44559b28c92f2df409cb59abd441f29dde5
3,645,133
def fit_composite_peak(bands, intensities, locs, num_peaks=2, max_iter=10, fit_kinds=('lorentzian', 'gaussian'), log_fn=print, band_resolution=1): """Fit several peaks to a single spectral feature. locs : sequence of float Contains num_peaks peak-location guesses, or a single feature-location guess. fit_kinds : sequence of str Specifies all the peak types that the composite may be made of. Not all fit_kinds are guaranteed to appear in the final composite fit. See fit_single_peak for details about the other arguments. """ # deal with bad scaling intensities, scale = _scale_spectrum(intensities) # get the appropriate function(s) to fit fit_funcs = {k: _get_peak_function(k, None, False) for k in fit_kinds} # find reasonable approximations for initial parameters: (loc, area, fwhm) if len(locs) == num_peaks: loc_guesses = locs elif len(locs) == 1: loc_guesses = np.linspace(locs[0]-band_resolution, locs[0]+band_resolution, num_peaks) else: raise ValueError('Number of locs (%d) != number of peaks (%d)' % ( len(locs), num_peaks)) mean_loc = np.mean(locs) area_guess = _guess_area(bands, intensities, mean_loc) / num_peaks fwhm_guess = 2 * band_resolution / num_peaks init_params = (tuple(loc_guesses) + (area_guess,) * num_peaks + (fwhm_guess,) * num_peaks) loc_idx = slice(0, num_peaks) # try all combinations of peaks, use the one that matches best combs = [] for fit_keys in combinations_with_replacement(fit_funcs, num_peaks): label = '+'.join(fit_keys) fit_func = _combine_peak_functions([fit_funcs[k] for k in fit_keys]) params, pstd = _weighted_curve_fit( bands, intensities, mean_loc, fit_func, init_params, max_iter=max_iter, log_fn=log_fn, log_label=label, band_resolution=band_resolution, loc_idx=loc_idx) mask, peak_x, peak_y = _select_top99(bands, fit_func, params) residual = np.linalg.norm(peak_y - intensities[mask]) log_fn('composite %s residual: %g' % (label, residual)) combs.append((residual, fit_keys, fit_func, params, pstd, mask, peak_x, peak_y)) residual, fit_keys, fit_func, params, pstd, mask, peak_x, peak_y = min(combs) # Calculate peak info, with original scaling peak_data = dict(xmin=float(peak_x[0]), xmax=float(peak_x[-1]), fit_kinds=fit_keys, height=[], center=[], area=[], fwhm=[], center_std=[], area_std=[], fwhm_std=[]) peak_ys = [peak_y * scale] for i, k in enumerate(fit_keys): fn = fit_funcs[k] loc, area, fwhm = map(float, params[i::num_peaks]) loc_std, area_std, fwhm_std = map(float, pstd[i::num_peaks]) peak_ys.append(fn(peak_x, loc, area, fwhm) * scale) height = float(fn(loc, loc, area, fwhm)) peak_data['height'].append(height * scale) peak_data['center'].append(loc) peak_data['center_std'].append(loc_std) peak_data['area'].append(area * scale) peak_data['area_std'].append(area_std * scale) peak_data['fwhm'].append(fwhm) peak_data['fwhm_std'].append(fwhm_std) peak_y *= scale return mask, peak_ys, peak_data
b6cffef481fb158cf019831db716fd14ca8d6a86
3,645,134
def param(): """ Create a generic Parameter object with generic name, description and no value defined """ return parameter.Parameter("generic_param",template_units.kg_s,"A generic param")
1062351f477405a8be66ea1b3e10ae1f8a6403c7
3,645,135
def extract_filter(filter_path): """Given a path to the weka's filter file, return a list of selected features.""" with open(filepath) as f: lnum = 0 for line in f: lnum += 1 #pointer to the next line to read if line.strip().startswith('Selected attributes:'): print "next line to read: ",lnum break features = [] for line in f: #keep reading from where we stopped (from 'break' point) # if len(line.strip()) != 0: features.append(line.strip()) return features
cc8e91ac268cdeb4d9a0e4c72eeb50659342cda6
3,645,136
def convert_to_roman_numeral(number_to_convert): """ Converts Hindi/Arabic (decimal) integers to Roman Numerals. Args: param1: Hindi/Arabic (decimal) integer. Returns: Roman Numeral, or an empty string for zero. """ arabic_numbers = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1) roman_numerals = ('M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I') result = "" for index, arabic_number in enumerate(arabic_numbers): count = int(number_to_convert / arabic_number) result += roman_numerals[index] * count number_to_convert -= arabic_numbers[index] * count return result
f970517a7c2d1ceb13ec025d6d446499ce5c21ff
3,645,137
def rotate_xyz(vector: Vector, angle_x: float = 0., angle_y: float = 0., angle_z: float = 0.): """ Rotate a 3d-vector around the third (z) axis :param vector: Vector to rotate :param angle_x: Rotation angle around x-axis (in degrees) :param angle_y: Rotation angle around y-axis (in degrees) :param angle_z: Rotation angle around z-axis (in degrees) :return: Rotated 3d vector Dimension of vector is not checked for faster execution """ vec = rotate_x(vector, angle_x) vec = rotate_y(vec, angle_y) vec = rotate_z(vec, angle_z) return vec
efe98080d3354713dfc4b7b26a19b21a1551ab69
3,645,138
def get_project_from_data(data): """ Get a project from json data posted to the API """ if 'project_id' in data: return get_project_by_id(data['project_id']) if 'project_slug' in data: return get_project_by_slug(data['project_slug']) if 'project_name' in data: return get_project_by_name(data['project_name']) return None
6ab01c4273248310ecd780fa24d6541fe1e9b0ad
3,645,139
def _from_atoms_and_bonds(atm_dct, bnd_dct): """ Construct a molecular graph from atom and bond dictionaries. format: gra = (atm_dct, bnd_dct) :param atm_dct: atom dictionary :type atm_dct: dict :param bnd_dct: bond dictionary :type bnd_dct: dict :rtype: (dict, dict) """ atm_dct = dict(atm_dct) bnd_dct = dict(bnd_dct) atm_keys = set(atm_dct.keys()) bnd_keys = set(bnd_dct.keys()) assert all(bnd_key <= atm_keys for bnd_key in bnd_keys) return (atm_dct, bnd_dct)
0bd2d37442e2a141d9a0f81f77b6b45c5b82c06a
3,645,140
def __getattr__(item): """Ping the func map, if an attrib is not registered, fallback to the dll""" try: res = func_map[item] except KeyError: return dll.__getattr__(item) else: if callable(res): return res # Return methods from interface. else: return dll_func(*res)
7b93dd68ce4b658226c0f6c072bb3cb51be82206
3,645,141
def seed_random_state(seed): """ Turn seed into np.random.RandomState instance """ if (seed is None) or (isinstance(seed, int)): return np.random.RandomState(seed) elif isinstance(seed, np.random.RandomState): return seed raise ValueError("%r cannot be used to generate numpy.random.RandomState" "instance" % seed)
61639222ab74ffbb3599c5d75ee0c669db463965
3,645,142
def _normalize_dashboard_link(link, request): """ Given a dashboard link, make sure it conforms to what we expect. """ if not link.startswith("http"): # If a local url is given, assume it is using the same host # as the application, and prepend that. link = url_path_join(f"{request.protocol}://{request.host}", link) if link.endswith("/status"): # If the default "status" dashboard is given, strip it. link = link[: -len("/status")] return link
57ff43c2b364fbce94ef06447a79eeec29c06b90
3,645,143
async def delete(category_id: int): """Delete category with set id.""" apm.capture_message(param_message={'message': 'Category with %s id deleted.', 'params': category_id}) return await db.delete(category_id)
2c1aa6e9f40006d5c07fe94a9838b5f2709bc781
3,645,144
import glob import os def find_files(fields): """ Finds all FLT files from given fields and places them with metadata into OrderedDicts. Parameters ---------- fields : list of strings The CLEAR fields; retain ability to specify the individual pointings so that can easily re-run single ones if find an issue. Returns ------- visits : OrderedDict Keys of 'files' and 'products'; values of list of FLT files and product name. filters : OrderedDict Keys of filters; values of OrderedDicts with keys of orient and values of lists of FLT files. """ files = glob.glob(os.path.join(PATH_RAW, '*flt.fits')) info = grizli.utils.get_flt_info(files) # 'info' is an astropy table. # Creating a new table and inserting only the rows I want is quite annoying # Just convert 'info' into an ordered dictionary info_dict = bypass_table.decompose_table(info, return_type=dict, include_meta=True) new_info_list = [] # Convert table to ordered dictionary, put it in a list, convert to numpy array # to convert it back into a table. awesome for row in range(len(info_dict['TARGNAME'])): if info_dict['TARGNAME'][row] in fields: new_info_list.append([info_dict[key][row] for key in info_dict.keys() if key != 'meta']) # Now, if one of the fields is GOODS-N, need be sure all the Barro programs # are also retained. for field in [field for field in fields if 'N' in field or 'ERSPRIME' in field]: if info_dict['TARGNAME'][row] in overlapping_fields[field]: new_info_list.append([info_dict[key][row] for key in info_dict.keys() if key != 'meta']) # Break so the Barro programs are added only once. break # Convert 'info' back into a table # I couldn't simply do dtype=info.dtype, so just hard code it new_info_tab = Table(np.array(new_info_list), names=info.colnames, meta=info.meta, dtype=['S18', 'S5', 'S8', 'S10', 'S8', '<f8', '<f8', '<f8', '<f8', '<f8', '<f8', '<f8']) visits, filters = grizli.utils.parse_flt_files(info=new_info_tab, uniquename=True) return visits, filters
2ba34c95e996bf7a4ecb6f886df59502f6797339
3,645,145
def to_canonical_name(resource_name: str) -> str: """Parse a resource name and return the canonical version.""" return str(ResourceName.from_string(resource_name))
e9e972a8bc2eb48751da765b65ea8881e033d05c
3,645,146
import six def apply_query_filters(query, model, **kwargs): """Parses through a list of kwargs to determine which exist on the model, which should be filtered as ==, and which should be filtered as LIKE """ for k, v in six.iteritems(kwargs): if v and hasattr(model, k): column = getattr(model, k) if column.is_attribute: if isinstance(v, list): # List() style parameters receive WHERE IN logic. query = query.filter(column.in_(v)) elif isinstance(column.type, sqltypes.String): # Filter strings with LIKE query = query.filter(column.like("%" + v + "%")) else: # Everything else is a strict equal query = query.filter(column == v) return query
1a7885ab55645d6a00f35668718bc119a8b18939
3,645,147
def bytes_to_b64_str(bytestring: bytes) -> str: """Converts random bytes into a utf-8 encoded string""" return b64encode(bytestring).decode(config.security.ENCODING)
cff8e979b3d5578c39477e88f2895ebbb07f794e
3,645,148
def read_event_analysis(s:Session, eventId:int) -> AnalysisData: """read the analysis data by its eventId""" res = s.query(AnalysisData).filter_by(eventId=eventId).first() return res
4dba5e7489e6cee28312710fa233b7066d04b995
3,645,149
def eval_semeval2012_analogies( vectors, weight_direct, weight_transpose, subset, subclass ): """ For a set of test pairs: * Compute a Spearman correlation coefficient between the ranks produced by vectors and gold ranks. * Compute an accuracy score of answering MaxDiff questions. """ train_pairs = read_train_pairs_semeval2012(subset, subclass) test_questions = read_test_questions_semeval2012(subset, subclass) pairqnum2least, pairqnum2most = read_turk_answers_semeval2012( subset, subclass, test_questions ) turk_rank = read_turk_ranks_semeval2012(subset, subclass) pairs_to_rank = [pair for pair, score in turk_rank] # Assign a score to each pair, according to pairwise_analogy_func our_pair_scores = {} for pair in pairs_to_rank: rank_pair_scores = [] for train_pair in train_pairs: pair_to_rank = pair.strip().replace('"', '').split(':') score = pairwise_analogy_func( vectors, standardized_uri('en', train_pair[0]), standardized_uri('en', train_pair[1]), standardized_uri('en', pair_to_rank[0]), standardized_uri('en', pair_to_rank[1]), weight_direct, weight_transpose, ) rank_pair_scores.append(score) our_pair_scores[pair] = np.mean(rank_pair_scores) # Answer MaxDiff questions using the ranks from the previous step correct_most = 0 correct_least = 0 total = 0 for i, question in enumerate(test_questions): question_pairs_scores = [] for question_pair in question: score = our_pair_scores[question_pair] question_pairs_scores.append(score) our_answer_most = question[np.argmax(question_pairs_scores)] our_answer_least = question[np.argmin(question_pairs_scores)] votes_guess_least = pairqnum2least[(i, our_answer_least)] votes_guess_most = pairqnum2most[(i, our_answer_most)] max_votes_least = 0 max_votes_most = 0 for question_pair in question: num_votes_least = pairqnum2least[(i, question_pair)] num_votes_most = pairqnum2most[(i, question_pair)] if num_votes_least > max_votes_least: max_votes_least = num_votes_least if num_votes_most > max_votes_most: max_votes_most = num_votes_most # a guess is correct if it got the same number of votes as the most frequent turkers' answer if votes_guess_least == max_votes_least: correct_least += 1 if votes_guess_most == max_votes_most: correct_most += 1 total += 1 # Compute Spearman correlation of our ranks and MT ranks our_semeval_scores = [score for pair, score in sorted(our_pair_scores.items())] turk_semeval_scores = [score for pair, score in turk_rank] spearman = spearmanr(our_semeval_scores, turk_semeval_scores)[0] spearman_results = confidence_interval(spearman, total) # Compute an accuracy score on MaxDiff questions maxdiff = (correct_least + correct_most) / (2 * total) low_maxdiff, high_maxdiff = proportion_confint( (correct_least + correct_most), (2 * total) ) maxdiff_results = pd.Series( [maxdiff, low_maxdiff, high_maxdiff], index=['acc', 'low', 'high'] ) return [maxdiff_results, spearman_results]
f8b13ef5520129e753024bc5ec3d25d7ab24ccee
3,645,150
def form_examples(request, step_variables): """ extract the examples from the request data, if possible @param request: http request object @type request rest_framework.request.Request @param step_variables: set of variable names from the bdd test @type step_variables: set(basestring) @return: none if no examples or failed, or formed examples and an error msg, if applicable @rtype: (basestring, basestring) """ if u'examples' not in request.DATA: return None, None examples = request.DATA[u'examples'] log.debug(u'request has examples:\n{}'.format(examples)) # examples should be an array of json objects, each object being an # example row if not isinstance(examples, list): return None, u'examples payload was not an array' if not examples: return None, u'examples array was empty' # form the actual gherkin example text (sans "Examples:", engine adds it) text = [u'|' + u'|'.join(step_variables) + u'|'] for ex in examples: # verify the example obj has all the expected headers/fields ex_field_diffs = step_variables.difference(ex.keys()) if ex_field_diffs: return None, u'an example object was missing some fields: {} given: {}'.format(ex_field_diffs, ex) vals = [unicode(ex[key]) for key in step_variables] text.append(u'|' + u'|'.join(vals) + u'|') text = u'\n'.join(text) log.debug(u'resulting example text\n{}'.format(text)) return text, None
2385974ace0091fb54dbce3b820cc36082a90e78
3,645,151
def get_typefromSelection(objectType="Edge", info=0): """ """ m_num_obj, m_selEx, m_objs, m_objNames = get_InfoObjects(info=0, printError=False) m_found = False for m_i_o in range(m_num_obj): if m_found: break Sel_i_Object = m_selEx[m_i_o] Obj_i_Object = m_objs[m_i_o] Name_i_Object = m_objNames[m_i_o] if info != 0: print("Sel_i_Object = " + str(Sel_i_Object)) print("Obj_i_Object = " + str(Obj_i_Object)) print("Name_i_Object = " + str(Name_i_Object)) SubObjects_Inside = Sel_i_Object.SubObjects for n in range(len(SubObjects_Inside)): SubObject = SubObjects_Inside[n] if info != 0: print("SubObject = " + str(SubObject)) print("SubObject.ShapeType = " + str(SubObject.ShapeType)) if SubObject.ShapeType == objectType: m_found = True break if m_found: return Sel_i_Object, Obj_i_Object, Name_i_Object else: return None, None, None
a2e55139219417b05fc9486bb9880bc6d17e1777
3,645,152
def load_file(file_path, mode='rb', encoder='utf-8'): """ Loads the content of a given filename :param file_path: The file path to load :param mode: optional mode options :param encoder: the encoder :return: The content of the file """ with xbmcvfs.File(xbmcvfs.translatePath(file_path), mode) as file_handle: return file_handle.readBytes().decode(encoder)
118f18fd651a332728e71d0b7fac5e57ad536f4b
3,645,153
def centcalc_by_weight(data): """ Determines the center (of grtavity) of a neutron beam on a 2D detector by weigthing each pixel with its count -------------------------------------------------- Argments: ---------- data : ndarray : l x m x n array with 'pixel' - data to weight over m and n Return: ---------- centers : ndarray : l x 2 array with all the centers (cx, cy) INFO: ---------- 1. Method implemented by C. Herb 2. CHECK the order of cx, cy if it fits to all other interpretations of 2d dimnensions """ centerdata = zeros((data.shape[0], 2)) for row in centerdata: x_int = sum(data,axis = 0) y_int = sum(data,axis = 1) row[0] = sum([i* xval for i,xval in enumerate(x_int) ])/sum(x_int) row[1] = sum([j* yval for j,yval in enumerate(y_int) ])/sum(y_int) return centerdata
6d3bb14820bb11ac61c436055d723bbd49f77740
3,645,154
def sum(a, axis=None, dtype=None, out=None, keepdims=False): """Returns the sum of an array along given axes. Args: a (cupy.ndarray): Array to take sum. axis (int or sequence of ints): Axes along which the sum is taken. dtype: Data type specifier. out (cupy.ndarray): Output array. keepdims (bool): If ``True``, the specified axes are remained as axes of length one. Returns: cupy.ndarray: The result array. .. seealso:: :func:`numpy.sum` """ if fusion._is_fusing(): if keepdims: raise NotImplementedError( 'cupy.sum does not support `keepdims` in fusion yet.') return fusion._call_reduction(_math.sum_auto_dtype, a, axis=axis, dtype=dtype, out=out) # TODO(okuta): check type return a.sum(axis, dtype, out, keepdims)
7382cbd6cbcf555cf63acc7b48a65f59a3d847c3
3,645,155
import os def to_bool(env, default="false"): """ Convert a string to a bool. """ return bool(util.strtobool(os.getenv(env, default)))
a8471d8bb7600e7f54e8ad1612a5f1c090e864c5
3,645,156
import textwrap def public_key(): """ returns public key """ return textwrap.dedent(''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAwBLTc+75h13ZyLWlvup0OmbhZWxohLMMFCUBClSMxZxZdMvyzBnW +JpOQuvnasAeTLLtEDWSID0AB/EG68Sesr58Js88ORUw3VrjObiG15/iLtAm6hiN BboTqd8jgWr1yC3LfNSKJk82qQzHJPlCO9Gc5HcqvWrIrqrJL2kwjOU66U/iRxJu dyOrz0sBkVgfwDBqNS96L0zFQCqk70w9KyOJqe4JNJUtBas6lbwgChDU4/B3BDW5 PYJy2Pp8MSs2n1lhrUkXxRnj+Vl5wLQLdwog1XAGu2J8pIckPg/aB7mB/fSlFihU bnFlRlgHrlh8gyNYztbGWKMrQ4Bz2831PQIDAQAB -----END RSA PUBLIC KEY----- ''')
4d27c3e72714bccd885178c05598f0f1d8d7914d
3,645,157
import pickle import tqdm def fetch_WIPOgamma(subset, classification_level, data_home, extracted_path, text_fields = ['abstract', 'description'], limit_description=300): """ Fetchs the WIPO-gamma dataset :param subset: 'train' or 'test' split :param classification_level: the classification level, either 'subclass' or 'maingroup' :param data_home: directory containing the original 11 English zips :param extracted_path: directory used to extract and process the original files :param text_fields: indicates the fields to extract, in 'abstract', 'description', 'claims' :param limit_description: the maximum number of words to take from the description field (default 300); set to -1 for all :return: """ assert subset in {"train", "test"}, 'unknown target request (valid ones are "train" or "test")' assert len(text_fields)>0, 'at least some text field should be indicated' if not exists(data_home): raise ValueError(f'{data_home} does not exist, and the dataset cannot be automatically download, ' f'since you need to request for permission. Please refer to {WIPO_URL}') create_if_not_exist(extracted_path) config = f'{"-".join(text_fields)}' if 'description' in text_fields: config+='-{limit_description}' pickle_path=join(extracted_path, f'wipo-{subset}-{classification_level}-{config}.pickle') if exists(pickle_path): print(f'loading pickled file in {pickle_path}') return pickle.load(open(pickle_path,'rb')) print('pickle file not found, processing...(this will take some minutes)') extracted = sum([exists(f'{extracted_path}/EnglishWipoGamma{(i+1)}-{config}.txt') for i in range(11)])==11 if not extracted: print(f'extraction files not found, extracting files in {data_home}... (this will take some additional minutes)') Parallel(n_jobs=-1)( delayed(extract)( join(data_home, file), join(extracted_path, file.replace('.zip', f'-{config}.txt')), text_fields, limit_description ) for file in list_files(data_home) ) doc_labels, train_ids, test_ids = read_classification_file(data_home, classification_level=classification_level) # or maingroup print(f'{len(doc_labels)} documents classified split in {len(train_ids)} train and {len(test_ids)} test documents') train_request = [] test_request = [] pbar = tqdm([filename for filename in list_files(extracted_path) if filename.endswith(f'-{config}.txt')]) labelcut = LabelCut(classification_level) errors=0 for proc_file in pbar: pbar.set_description(f'processing {proc_file} [errors={errors}]') if not proc_file.endswith(f'-{config}.txt'): continue lines = open(f'{extracted_path}/{proc_file}', 'rt').readlines() for lineno,line in enumerate(lines): parts = line.split('\t') assert len(parts)==4, f'wrong format in {extracted_path}/{proc_file} line {lineno}' id,mainlabel,alllabels,text=parts mainlabel = labelcut.trim(mainlabel) alllabels = labelcut.trim(alllabels.split()) # assert id in train_ids or id in test_ids, f'id {id} out of scope' if id not in train_ids and id not in test_ids: errors+=1 else: # assert mainlabel == doc_labels[id][0], 'main label not consistent' request = train_request if id in train_ids else test_request request.append(WipoGammaDocument(id, text, mainlabel, alllabels)) print('pickling requests for faster subsequent runs') pickle.dump(train_request, open(join(extracted_path,f'wipo-train-{classification_level}-{config}.pickle'), 'wb', pickle.HIGHEST_PROTOCOL)) pickle.dump(test_request, open(join(extracted_path, f'wipo-test-{classification_level}-{config}.pickle'), 'wb', pickle.HIGHEST_PROTOCOL)) if subset== 'train': return train_request else: return test_request
05d3f19950321c5e94abf846bd7fab2d9b905f39
3,645,158
from typing import Optional import requests def latest_maven_version(group_id: str, artifact_id: str) -> Optional[str]: """Helper function to find the latest released version of a Maven artifact. Fetches metadata from Maven Central and parses out the latest released version. Args: group_id (str): The groupId of the Maven artifact artifact_id (str): The artifactId of the Maven artifact Returns: The latest version of the artifact as a string or None """ group_path = "/".join(group_id.split(".")) url = ( f"https://repo1.maven.org/maven2/{group_path}/{artifact_id}/maven-metadata.xml" ) response = requests.get(url) if response.status_code >= 400: return "0.0.0" return version_from_maven_metadata(response.text)
1c5f3b3e683e5e40f9779d53d93dad9e1397e25d
3,645,159
def zeropoint(info_dict): """ Computes the zero point of a particular system configuration (filter, atmospheric conditions,optics,camera). The zeropoint is the magnitude which will lead to one count per second. By definition ZP = -2.5*log10( Flux_1e-_per_s / Flux_zeromag ), where Flux_1e-_per_s = 1 e-/s and Flux_zeromag = sum_over_passband ( zero_flux * system_response * A_tel ) in e-/s Hence: ZP = 2.5*log10( sum_over_passband ( zero_flux * system_response * A_tel )) Parameters ---------- info_dict: dictionary wavelength: array wavelength in angstrom Returns ------_ zeropoint: float zeropoint in magnitude """ # Integrate over the wavelengths # Flux_zero = np.trapz(zeromag_to_flux(info_dict,wavelength,unit='ph') # * precomp.system_response(info_dict,wavelength), # wavelength)*precomp.A_tel(info_dict) # Flux_zero = np.trapz(zeromag_to_flux(info_dict,unit='ph') # * info_dict['system_response'], # info_dict['wavelength_ang']) # * info_dict['A_tel'] Flux_zero = ( np.trapz( utils.flambda_to_fph( info_dict["wavelength_ang"], utils.fJy_to_flambda( info_dict["wavelength_ang"], info_dict["Flux_zero_Jy"] ), ) * info_dict["system_response"] * info_dict["Trans_atmosphere"], info_dict["wavelength_ang"], ) * info_dict["A_tel"] ) ZP = 2.5 * np.log10(Flux_zero) info_dict["zeropoint"] = ZP return info_dict
0deba397aa14226a45af7a1acca6f51ec846083b
3,645,160
def model_comp(real_data, deltaT, binSize, maxTimeLag, abc_results1, final_step1, abc_results2, final_step2,\ model1, model2, distFunc, summStat_metric, ifNorm,\ numSamplesModelComp, eval_start = 3, disp1 = None, disp2 = None): """Perform Baysian model comparison with ABC fits from model1 and model2. Parameters ----------- real_data : nd array time-series of continous data, e.g., OU process, (numTrials * numTimePoints) or binned spike counts (numTrials * numBin). deltaT : float temporal resolution of data (or binSize of spike counts). binSize : float bin-size for computing the autocorrelation. maxTimeLag : float maximum time-lag for computing the autocorrelation. abc_results1: object output of fitting model1 with aABC algorithm. final_step1 : int final step of aABC fitting for model1. abc_results2: object output of fitting model2 with aABC algorithm. final_step2 : int final step of aABC fitting for model2. model1: string selected generative model for model1 (from generative models list). model2: string selected generative model for model2 (from generative models list). distFunc: string 'linear_distance' or 'logarithmic_distance'. summStat_metric : string metric for computing summay statistics ('comp_cc', 'comp_ac_fft', 'comp_psd'). ifNorm : string if normalize the autocorrelation or PSD. numSamplesModelComp: int number of samples from posterior distributions to compute the Bayes factor. eval_start : int, default 3 defines the number of smallest errors we ignore before starting CDF computation. disp1 : float, default None The value of dispersion parameter if computed with the grid search method for model1. disp2 : float, default None The value of dispersion parameter if computed with the grid search method for model2. Returns ------- d1 : 1d array distribution of errors (distances) for model1. d2 : 1d array distribution of errors (distances) for model2. cdf1 : 1d array CDF of errors for model1. cdf2 : 1d array CDF of errors for model2. err_threshs : 1d array error thresholds for which CDFs are computed bf : 1d array Bayes factors for each error threshold in "err_threshs" (CDF_M2/CDF_M1). """ # extract abc fits theta_accepted1 = abc_results1[final_step1 - 1]['theta accepted'] theta_accepted2 = abc_results2[final_step2 - 1]['theta accepted'] # extract real data statistics data_sumStat, data_mean, data_var, T, numTrials = extract_stats(real_data, deltaT, binSize,\ summStat_metric, ifNorm, maxTimeLag) # compute distances numSamplesPosterior1 = len(theta_accepted1[0]) numSamplesPosterior2 = len(theta_accepted2[0]) print('Computing distances for model1:') d1 = gen_model_dist(data_sumStat, theta_accepted1, numSamplesModelComp, numSamplesPosterior1, model1, distFunc,\ summStat_metric, ifNorm, deltaT, binSize, T, numTrials, data_mean, data_var, maxTimeLag, disp1) print('Computing distances for model2:') d2 = gen_model_dist(data_sumStat, theta_accepted2, numSamplesModelComp, numSamplesPosterior2, model2, distFunc,\ summStat_metric, ifNorm, deltaT, binSize, T, numTrials, data_mean, data_var, maxTimeLag, disp2) # compute CDFs and Bayes factors cdf1, cdf2, eval_points, bf = comp_cdf(d1, d2, numSamplesModelComp, eval_start) err_threshs = eval_points return d1, d2, cdf1, cdf2, err_threshs, bf
060fa9dcd133363b93dd22353eee5c47e3fd90dd
3,645,161
def unwrap(*args, **kwargs): """ This in a alias for unwrap_array, which you should use now. """ if deprecation_warnings: print('Use of "unwrap" function is deprecated, the new name '\ ' is "unwrap_array".') return unwrap_array(*args, **kwargs)
156b5607b3b76fff66ede40eed79ca5cf74b1313
3,645,162
def solve(): """solve form""" if request.method == 'GET': sql="SELECT g.class, p.origin, p.no, p.title, p.address FROM GIVE g, PROBLEM p WHERE g.origin=p.origin AND g.no=p.no AND class = 1" cursor.execute(sql) week1=[] for result in cursor.fetchall(): week1.append({ "class":result['class'], "origin":result['origin'], "no":result['no'], "title":result['title'], "address":result['address'] }) sql="SELECT g.class, p.origin, p.no, p.title, p.address FROM GIVE g, PROBLEM p WHERE g.origin=p.origin AND g.no=p.no AND class = 2" cursor.execute(sql) week2=[] for result in cursor.fetchall(): week2.append({ "class":result['class'], "origin":result['origin'], "no":result['no'], "title":result['title'], "address":result['address'] }) return render_template('week.html',week1 = week1, week2 = week2)
4d1d117b686ef4bb265b9fcc2185f07351710f49
3,645,163
import re def build_path(entities, path_patterns, strict=False): """ Constructs a path given a set of entities and a list of potential filename patterns to use. Args: entities (dict): A dictionary mapping entity names to entity values. path_patterns (str, list): One or more filename patterns to write the file to. Entities should be represented by the name surrounded by curly braces. Optional portions of the patterns should be denoted by square brackets. Entities that require a specific value for the pattern to match can pass them inside carets. Default values can be assigned by specifying a string after the pipe operator. E.g., (e.g., {type<image>|bold} would only match the pattern if the entity 'type' was passed and its value is "image", otherwise the default value "bold" will be used). Example 1: 'sub-{subject}/[var-{name}/]{id}.csv' Result 2: 'sub-01/var-SES/1045.csv' strict (bool): If True, all passed entities must be matched inside a pattern in order to be a valid match. If False, extra entities will be ignored so long as all mandatory entities are found. Returns: A constructed path for this file based on the provided patterns. """ if isinstance(path_patterns, string_types): path_patterns = [path_patterns] # Loop over available patherns, return first one that matches all for pattern in path_patterns: # If strict, all entities must be contained in the pattern if strict: defined = re.findall('\{(.*?)(?:<[^>]+>)?\}', pattern) if set(entities.keys()) - set(defined): continue # Iterate through the provided path patterns new_path = pattern optional_patterns = re.findall('\[(.*?)\]', pattern) # First build from optional patterns if possible for optional_pattern in optional_patterns: optional_chunk = replace_entities(entities, optional_pattern) or '' new_path = new_path.replace('[%s]' % optional_pattern, optional_chunk) # Replace remaining entities new_path = replace_entities(entities, new_path) if new_path: return new_path return None
120811c5560fabe48e10f412c0b3c0ab3592a887
3,645,164
def schedule_compensate(): """ swagger-doc: 'schedule' required: [] req: course_schedule_id: description: '课程id' type: 'string' start: description: '课程开始时间 format YYYY-mm-dd HH:MM:ss.SSS' type: 'string' end: description: '课程结束时间 in sql format YYYY-mm-dd HH:MM:ss.SSS' type: 'string' schedule_type: description: '课节类型' type: 'string' res: verify_code: description: 'id' type: '' """ course_schedule_id = request.json['course_schedule_id'] start = request.json['start'].replace('T', ' ').replace('Z', '') end = request.json['end'].replace('T', ' ').replace('Z', '') schedule_type = request.json['schedule_type'] with session_scope(db) as session: courseSchedule = session.query(CourseSchedule).filter_by(id=course_schedule_id).one_or_none() if courseSchedule is None: return jsonify({ "error": "not found course_schedule: {0}".format( course_schedule_id) }), 500 courseschedule = CourseSchedule( start = start, end = end, name = courseSchedule.name, state = 98, override_course_type=courseSchedule.override_course_type, course_id = courseSchedule.course_id, schedule_type = schedule_type, delete_flag = 'IN_FORCE', updated_by=getattr(g, current_app.config['CUR_USER'])['username'] ) session.add(courseschedule) session.flush() course = session.query(Course).filter_by(id=courseSchedule.course_id).one_or_none() class_type =ClassroomTypeEnum.ONE_VS_ONE.name if course.class_type != 1: class_type = ClassroomTypeEnum.ONE_VS_MANY.name live_service.create_room(getattr(g, current_app.config['CUR_USER'])['username'], courseschedule.id,courseSchedule.name, getTimeDiff(start,end),class_type,request.json['start'],0,'en') studyschedules = session.query(StudySchedule).filter_by(course_schedule_id=course_schedule_id).all() for studyschedule in studyschedules: sudyschedule = StudySchedule( actual_start = start, actual_end = end, name = courseSchedule.name, study_state = 1, order_id = studyschedule.order_id, course_schedule_id = courseschedule.id, student_id = studyschedule.student_id, schedule_type = schedule_type, delete_flag = 'IN_FORCE', updated_by=getattr(g, current_app.config['CUR_USER'])['username'] ) session.add(sudyschedule) session.flush() return jsonify({'id':courseschedule.id })
7c3a14af27287e64535d7b9150531d8646cb0cfe
3,645,165
def parse(xml): """ Parse headerdoc XML into a dictionary format. Extract classes, functions, and global variables from the given XML output by headerdoc. Some formatting and text manipulation takes place while parsing. For example, the `@example` is no longer recognized by headerdoc. `parse()` will extract examples separately from the given description. [Admonitions](https://python-markdown.github.io/extensions/admonition/) are also not kept in the correct format by headerdoc. Admonitions text must be indented to the same level as the admonition title, but headerdoc strips leading whitespace. The dictionary returned from `parse` will have the correct indentation restored. Args: xml (ElementTree): An `ElementTree` read from a headerdoc XML file. The root must be the `<header>` element. Returns: Dict """ return _parse_script(xml)
f130a7b457d3b347153a3ea013f69a11dc3859c2
3,645,166
import os def ReadKeywordValueInFile(filename,keyword): """ Get value in the expression of keyword=vlaue in file :param str filenname: file name :param str keywors: keyword string :return: value(str) - value string """ value=None; lenkey=len(keyword) if not os.path.exists(filename): return value fmomenu=False; found=False f=open(filename) dat=''; lenkey=len(keyword); leftpar=0; rightpar=0 for s in f.readlines(): cm=s.find('#') if cm > 0: s=s[:cm] s=s.strip() if len(s) == 0: continue items=s.split() for item in items: if item[:lenkey] == keyword: found=True; value=item.split('=')[1]; value=value.strip() break f.close() if not found: value=None return value
cea315129a39384a80de227d17f647d24fcd27c7
3,645,167
def getSolventList(): """ Return list of solvent molecules for initializing solvation search form. If any of the Mintz parameters are None, that solvent is not shown in the list since it will cause error. """ database.load('solvation', '') solvent_list = [] for index, entry in database.solvation.libraries['solvent'].entries.items(): mintz_parameter_list = [entry.data.s_h, entry.data.b_h, entry.data.e_h, entry.data.l_h, entry.data.a_h, entry.data.c_h] if not any(h is None for h in mintz_parameter_list): solvent_list.append((entry.label, index)) return solvent_list
ea202459ac69b02d362c422935e396be04e7ec30
3,645,168
import random def subset_samples(md_fp: str, factor: str, unstacked_md: pd.DataFrame, number_of_samples: int, logs:list) -> pd.DataFrame: """ Subset the metadata to a maximum set of 100 samples. ! ATTENTION ! In case there are many columns with np.nan, these should be selected to select samples that do have actual numerical values... Parameters ---------- md_fp : str Metadata file path. factor : str Stratification factor. unstacked_md : pd.DataFrame Metadata table subset for the current stratification and numerical variables. number_of_samples : int Number of samples to randomly select to compute the distributions. logs : list List of lists: each nested list is: [variable, metadata file path, warning message, a number] Returns ------- figure_tab : pd.DataFrame re-stacked metadata table """ # get the unique samples names samples = set(list(unstacked_md.sample_name.tolist())) # take either 100 or if less, all the samples as data for the figure if len(samples) < number_of_samples: logs.append([factor, md_fp, 'not enough samples', len(samples)]) figure_tab = unstacked_md.copy() else: random_samples = random.sample(samples, number_of_samples) figure_tab = unstacked_md.loc[unstacked_md.sample_name.isin(random_samples),:].copy() return figure_tab
36b99aaecf7fc67b4a5809bb00758b158d753997
3,645,169
def _process_image(filename, coder): """Process a single image file. Args: filename: string, path to an image file e.g., '/path/to/example.JPG'. coder: instance of ImageCoder to provide TensorFlow image coding utils. Returns: image_buffer: string, JPEG encoding of RGB image. height: integer, image height in pixels. width: integer, image width in pixels. """ # Read the image file. with tf.gfile.GFile(filename, "rb") as f: image_data = f.read() # Decode the RGB JPEG. image = coder.decode_jpeg(image_data) # Check that image converted to RGB assert len(image.shape) == 3 height = image.shape[0] width = image.shape[1] assert image.shape[2] == 3 return image, height, width
2b5c78a6b641ce31aed3f80590dcf6dbe3a36baa
3,645,170
def to_rna_sequences(model): """ Convert all the sequences present in the model to RNA. :args dict model: Description model. """ for seq, path in yield_sub_model(model, ["sequence"]): set_by_path(model, path, str(Seq(seq).transcribe().lower())) return model
8a0929e631e6d162f47ba1773975116b0e2caff4
3,645,171
def rest_get_repositories(script, project=None, start=0, limit=50): """ Gets a list of repositories via REST :param script: A TestScript instance :type script: TestScript :param project: An optional project :type project: str :param start: The offset to start from :type start: int :param limit: The max number of items to return :type limit: int :return: repositories or None :rtype: list(Repository) """ if project: project_filter = "projects/%s/" % project else: project_filter = "" j = script.rest("GET", "/rest/api/latest/%srepos" % project_filter, { "start": str(start), "limit": str(limit) }) if is_http_ok(): return map(lambda repo: Repository(repo["project"]["key"], repo["slug"]), j["values"])
772b1682ba3de11b98d943f4a768386b7907b1d9
3,645,172
def clean_float(input_float): """ Return float in seconds (even if it was a timestamp originally) """ return (timestamp_to_seconds(input_float) if ":" in str(input_float) else std_float(input_float))
8ce6ca89b40750bb157d27a68631ddd64a824f3a
3,645,173
def resize( image, output_shape, order=1, mode="constant", cval=0, clip=True, preserve_range=False, anti_aliasing=False, anti_aliasing_sigma=None, ): """A wrapper for Scikit-Image resize(). Scikit-Image generates warnings on every call to resize() if it doesn't receive the right parameters. The right parameters depend on the version of skimage. This solves the problem by using different parameters per version. And it provides a central place to control resizing defaults. """ if LooseVersion(skimage.__version__) >= LooseVersion("0.14"): # New in 0.14: anti_aliasing. Default it to False for backward # compatibility with skimage 0.13. return skimage.transform.resize( image, output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range, anti_aliasing=anti_aliasing, anti_aliasing_sigma=anti_aliasing_sigma, ) else: return skimage.transform.resize( image, output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range, )
21273e385e892e21e6fb40241d9c430b6f41ba3d
3,645,174
def get_subsystem_fidelity(statevector, trace_systems, subsystem_state): """ Compute the fidelity of the quantum subsystem. Args: statevector (list|array): The state vector of the complete system trace_systems (list|range): The indices of the qubits to be traced. to trace qubits 0 and 4 trace_systems = [0,4] subsystem_state (list|array): The ground-truth state vector of the subsystem Returns: The subsystem fidelity """ rho = np.outer(np.conj(statevector), statevector) rho_sub = partial_trace(rho, trace_systems) rho_sub_in = np.outer(np.conj(subsystem_state), subsystem_state) fidelity = np.trace( sqrtm( np.dot( np.dot(sqrtm(rho_sub), rho_sub_in), sqrtm(rho_sub) ) ) ) ** 2 return fidelity
13d3ef7fc3e7d414fe6b936f839c42321a5e0982
3,645,175
import requests def jyfm_data_coke(indicator="焦炭总库存", headers=""): """ 交易法门-数据-黑色系-焦炭 :param indicator: ["焦企产能利用率-100家独立焦企产能利用率", "焦企产能利用率-230家独立焦企产能利用率", "焦炭日均产量-100家独立焦企焦炭日均产量", "焦炭日均产量-230家独立焦企焦炭日均产量", "焦炭总库存", "焦炭焦企库存-100家独立焦企焦炭库存", "焦炭焦企库存-230家独立焦企焦炭库存", "焦炭钢厂库存", "焦炭港口库存", "焦企焦化利润"] :type indicator: str :param headers: headers with cookies :type headers: dict :return: result :rtype: pandas.DataFrame """ res = requests.get(jyfm_data_coke_url_dict[indicator], headers=headers,) # 由于返回的数据长度不一致,先补齐再转置 return pd.read_json(res.text, orient="index").T
23f1c0cad5cb93953f5d5745f0c3e14aedd51fd8
3,645,176
from typing import Tuple from typing import Any def generate_index_distribution( numTrain: int, numTest: int, numValidation: int, params: UQDistDict ) -> Tuple[Any, ...]: """ Generates a vector of indices to partition the data for training. NO CHECKING IS DONE: it is assumed that the data could be partitioned in the specified blocks and that the block indices describe a coherent partition. :param int numTrain: Number of training data points :param int numTest: Number of testing data points :param int numValidation: Number of validation data points (may be zero) :param Dict params: Contains the keywords that control the behavior of the function \ (uq_train_fr, uq_valid_fr, uq_test_fr for fraction specification, \ uq_train_vec, uq_valid_vec, uq_test_vec for block list specification, and \ uq_train_bks, uq_valid_bks, uq_test_bks for block number specification) :return: Tuple of numpy arrays - indexTrain (int numpy array): Indices for data in training - indexValidation (int numpy array): Indices for data in validation (if any) - indexTest (int numpy array): Indices for data in testing (if merging) """ if all(k in params for k in ("uq_train_fr", "uq_valid_fr", "uq_test_fr")): # specification by fraction print("Computing UQ cross-validation - Distributing by FRACTION") return generate_index_distribution_from_fraction( numTrain, numTest, numValidation, params ) elif all(k in params for k in ("uq_train_vec", "uq_valid_vec", "uq_test_vec")): # specification by block list print("Computing UQ cross-validation - Distributing by BLOCK LIST") return generate_index_distribution_from_block_list( numTrain, numTest, numValidation, params ) elif all(k in params for k in ("uq_train_bks", "uq_valid_bks", "uq_test_bks")): # specification by block size print("Computing UQ cross-validation - Distributing by BLOCK NUMBER") return generate_index_distribution_from_blocks( numTrain, numTest, numValidation, params ) else: print("ERROR !! No consistent UQ parameter specification found !! ... exiting ") raise KeyError( "No valid triplet of ('uq_train_*', 'uq_valid_*', 'uq_test_*') found. (* is any of fr, vec or bks)" )
f3c35d5c99a3f79b40f3c7220519152b85fe679d
3,645,177
def generacionT (v, m): """ Signature of a message with hash, hashed. Here we have to use the private key. Parameters: m (int): Number of oil v (int): Number of vinager Returns: T (matrix): Matrix with dimension nxn """ #Matriz de distorsion T = [] n = v + m for i in range(n): row = [] if i < v: for k in range(n): if k < v: #Matriz indentidad dimension v if i == k: row += [1] else: row += [0] else: #Matriz aleatoria vxm if randint(0,2) == 1: row += [1] else: row += [0] else: for k in range(n): if k < v: #Matriz nula dimension v row += [0] else: #Matriz identidad dimension m if i == k: row += [1] else: row += [0] T += [row] return T
6fd4d9f8ebeea5f422c937b3b92c5c5134ffd541
3,645,178
from io import StringIO import pandas from datetime import datetime def isotherm_from_bel(path): """ Get the isotherm and sample data from a BEL Japan .dat file. Parameters ---------- path : str Path to the file to be read. Returns ------- dataDF """ with open(path) as file: line = file.readline().rstrip() meta = {} data = StringIO() while line != '': values = line.split(sep='\t') line = file.readline().rstrip() if len(values) < 2: # If "title" section # read adsorption section if values[0].strip().lower().startswith('adsorption data'): line = file.readline().rstrip() # header file_headers = line.replace('"', '').split('\t') new_headers = ['branch'] for h in file_headers: txt = next(( _FIELDS['isotherm_data'][a] for a in _FIELDS['isotherm_data'] if h.lower().startswith(a) ), h) new_headers.append(txt) if txt == 'loading': meta['loading_basis'] = 'molar' for (u, c) in ( ('/mmol', 'mmol'), ('/mol', 'mol'), ('/ml(STP)', 'cm3(STP)'), ('/cm3(STP)', 'cm3(STP)'), ): if u in h: meta['loading_unit'] = c meta['material_basis'] = 'mass' for (u, c) in ( ('g-1', 'g'), ('kg-1', 'kg'), ): if u in h: meta['material_unit'] = c if txt == 'pressure': meta['pressure_mode'] = 'absolute' for (u, c) in ( ('/mmHg', 'torr'), ('/torr', 'torr'), ('/kPa', 'kPa'), ('/bar', 'bar'), ): if u in h: meta['pressure_unit'] = c data.write('\t'.join(new_headers) + '\n') line = file.readline() # firstline while not line.startswith('0'): data.write('False\t' + line) line = file.readline() # read desorption section elif values[0].strip().lower().startswith('desorption data'): file.readline() # header - discard line = file.readline() # firstline while not line.startswith('0'): data.write('True\t' + line) line = file.readline() else: continue else: values = [v.strip('"') for v in values] key = values[0].lower() try: field = next( v for k, v in _FIELDS.items() if any([key.startswith(n) for n in v.get('text', [])]) ) except StopIteration: continue meta[field['name']] = values[1] # Read prepared table data.seek(0) # Reset string buffer to 0 data_df = pandas.read_csv(data, sep='\t') data_df.dropna(inplace=True, how='all', axis='columns') # Set extra metadata meta['date'] = datetime.strptime(meta['date'], r'%y/%m/%d').isoformat() meta['apparatus'] = 'BEL ' + meta["serialnumber"] meta['loading_key'] = 'loading' meta['pressure_key'] = 'pressure' meta['other_keys'] = sorted([ a for a in data_df.columns if a not in ['loading', 'pressure', 'measurement', 'branch'] ]) return PointIsotherm(isotherm_data=data_df, **meta)
7aa144942ef6e0cb3d2926817015692b8fe8b99b
3,645,179
import os import random def image(height, width, image_dir): """ Create a background with a image """ images = [xx for xx in os.listdir(image_dir) \ if xx.endswith(".jpeg") or xx.endswith(".jpg") or xx.endswith(".png")] if len(images) > 0: image_name = images[random.randint(0, len(images) - 1)] pic = Image.open(os.path.join(image_dir, image_name)) pic_original_width = pic.size[0] pic_original_height = pic.size[1] if pic.size[0] < width: pic = pic.resize([width, int(pic.size[1] * (width / pic.size[0]))], Image.ANTIALIAS) if pic.size[1] < height: pic = pic.resize([int(pic.size[0] * (height / pic.size[1])), height], Image.ANTIALIAS) pic_final_width = pic.size[0] pic_final_height = pic.size[1] if pic.size[0] == width: x = 0 else: x = random.randint(0, pic.size[0] - width) if pic.size[1] == height: y = 0 else: y = random.randint(0, pic.size[1] - height) return pic.crop((x, y, x + width, y + height)), (image_name, pic_original_width, pic_original_height, pic_final_width, pic_final_height, x, y, x + width, y + height) else: raise Exception("No images where found in the images folder!")
c08c047490d1f14d7c97b8bd7927fca5f04dfeed
3,645,180
def model(x, a, b, c): """ Compute .. math:: y = A + Be^{Cx} Parameters ---------- x : array-like The value of the model will be the same shape as the input. a : float The additive bias. b : float The multiplicative bias. c : float The exponent. Return ------ y : array-like An array of the same shape as ``x``, containing the model computed for the given parameters. """ return a + b * exp(c * x)
12a8272fb773226ad328daeb460cc2ca84d4c6e0
3,645,181
from typing import List import os def add_abspath(dirs: List): """Recursively append the absolute path to the paths in a nested list If not a list, returns the string with absolute path. """ if isinstance(dirs, list): for i, elem in enumerate(dirs): if isinstance(elem, str): dirs[i] = os.path.abspath(elem) else: dirs[i] = add_abspath(elem) return dirs else: return os.path.abspath(dirs)
544fb5bb680b6a7874c7364090109ee3cdc75632
3,645,182
import inspect def equal_matches( matches_a: kapture.Matches, matches_b: kapture.Matches) -> bool: """ Compare two instances of kapture.Matches. :param matches_a: first set of matches :param matches_b: second set of matches :return: True if they are identical, False otherwise. """ assert isinstance(matches_a, kapture.Matches) assert isinstance(matches_b, kapture.Matches) current_function_name = inspect.getframeinfo(inspect.currentframe()).function return equal_sets(matches_a, matches_b, current_function_name)
57efdd63a56f4e94afc9a57e05f4e4f726ce7b44
3,645,183
def convert_to_example(img_data, target_data, img_shape, target_shape, dltile): """ Converts image and target data into TFRecords example. Parameters ---------- img_data: ndarray Image data target_data: ndarray Target data img_shape: tuple Shape of the image data (h, w, c) target_shape: tuple Shape of the target data (h, w, c) dltile: str DLTile key Returns ------- Example: TFRecords example TFRecords example """ if len(target_shape) == 2: target_shape = (*target_shape, 1) features = { "image/image_data": _float64_feature(img_data), "image/height": _int64_feature(img_shape[0]), "image/width": _int64_feature(img_shape[1]), "image/channels": _int64_feature(img_shape[2]), "target/target_data": _float64_feature(target_data), "target/height": _int64_feature(target_shape[0]), "target/width": _int64_feature(target_shape[1]), "target/channels": _int64_feature(target_shape[2]), "dltile": _bytes_feature(tf.compat.as_bytes(dltile)), } return tf.train.Example(features=tf.train.Features(feature=features))
d8dd2b78a85d2e34d657aa36bfe3515ef1dd5418
3,645,184
def linear(args, output_size, bias, bias_start=0.0, scope=None, var_on_cpu=True, wd=0.0): """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. Args: args: a 2D Tensor or a list of 2D, batch x n, Tensors. output_size: int, second dimension of W[i]. bias: boolean, whether to add a bias term or not. bias_start: starting value to initialize the bias; 0 by default. scope: VariableScope for the created subgraph; defaults to "Linear". var_on_cpu: if True, put the variables on /cpu:0. Returns: A 2D Tensor with shape [batch x output_size] equal to sum_i(args[i] * W[i]), where W[i]s are newly created matrices. Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ assert args if not isinstance(args, (list, tuple)): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape().as_list() for a in args] for shape in shapes: if len(shape) != 2: raise ValueError("Linear is expecting 2D arguments: %s" % str(shapes)) if not shape[1]: raise ValueError("Linear expects shape[1] of arguments: %s" % str(shapes)) else: total_arg_size += shape[1] # Now the computation. with tf.variable_scope(scope or "Linear"): if var_on_cpu: with tf.device("/cpu:0"): matrix = tf.get_variable("Matrix", [total_arg_size, output_size]) else: matrix = tf.get_variable("Matrix", [total_arg_size, output_size]) if wd: weight_decay = tf.mul(tf.nn.l2_loss(matrix), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) if len(args) == 1: res = tf.matmul(args[0], matrix) else: res = tf.matmul(tf.concat(1, args), matrix) if not bias: return res if var_on_cpu: with tf.device("/cpu:0"): bias_term = tf.get_variable( "Bias", [output_size], initializer=tf.constant_initializer(bias_start)) else: bias_term = tf.get_variable( "Bias", [output_size], initializer=tf.constant_initializer(bias_start)) return res + bias_term
1072115bc42b3d2acb3d41cd0116a636f6bb7804
3,645,185
def _start_job(rule, settings, urls=None): """Start a new job for an InfernoRule Note that the output of this function is a tuple of (InfernoJob, DiscoJob) If this InfernoJob fails to start by some reasons, e.g. not enough blobs, the DiscoJob would be None. """ job = InfernoJob(rule, settings, urls) return job, job.start()
5eab30433004240d79f1ec4eeac868b40632cdde
3,645,186
def mult(dic,data,r=1.0,i=1.0,c=1.0,inv=False,hdr=False,x1=1.0,xn='default'): """ Multiple by a Constant Parameter c is used even when r and i are defined. NMRPipe ignores c when r or i are defined. Parameters: * dic Dictionary of NMRPipe parameters. * data array of spectral data. * r Constant to multply real data by. * i Constant to multiply imaginary data by. * c Constant to multiply both real and imaginary data by. * inv Multiply by inverse of Constant (both real and imaginary) * hdr Use constant value from header. * x1 First point of region to multiply constant by. * xn Last point of region to multiply constant by. 'default' specifies the end of the vector. """ mn = x1 - 1 if xn == 'default': mx = data.shape[-1] else: mx = xn if hdr: # read in C from header fn = "FDF"+str(int(dic["FDDIMORDER"][0])) # F1, F2, etc c = dic[fn+"C1"] r = 1.0 i = 1.0 rf = (r*c) # real factor cf = (i*c) # complex factor if inv: rf = 1/rf cf = 1/cf data[...,mn:mx] = p.mult(data[...,mn:mx],r=rf,i=cf,c=1.0) dic = update_minmax(dic,data) return dic,data
833ab3784dc9210aa6be0f968f9115982ea93753
3,645,187
import os def generate_gps_photon(stream, source, focus, angle_gantry, angle_couch, angle_coll, beamletsize, sad, sfd, energy_mev, desc='Diverging Square field', gps_template=None): """Generate the gps input file using a template Args: idx (int): index of beamlet in beam (row-major order) source (x, y, z, u): coordinates focus (x, y, z, u): coordinates angle_gantry (float): gantry angle beamletsize (x, z, u) sad (float): sad (units must match beamletsize units) sfd (float): src-focus-distance (units must match beamletsize units) """ extra_kwargs = {} # try to match requested template if gps_template is not None: fullpath = pjoin(TEMPLATES, gps_template) if not os.path.isfile(fullpath): raise FileNotFoundError('GPS template "{}" doesn\'t exist'.format(fullpath)) else: if energy_mev is not None and is_numeric(energy_mev): gps_template = 'gps_photon_mono.mac.tpl' extra_kwargs['energy'] = float(energy_mev) else: gps_template = 'gps_photon_6MV.mac.tpl' xp, yp = calculate_plane_rotation(angle_gantry, angle_couch, angle_coll) adj_fsize = [0.5*sfd/sad*beamletsize[ii] for ii in range(2)] with open(pjoin(TEMPLATES, gps_template), 'r') as fd: stream.write( fd.read().format( description=desc, cx=source[0], cy=source[1], cz=source[2], cu=source[3], rot1x=xp[0], rot1y=xp[1], rot1z=xp[2], rot2x=yp[0], rot2y=yp[1], rot2z=yp[2], fsx=adj_fsize[0], fsy=adj_fsize[1], fsu=beamletsize[2], fx=focus[0], fy=focus[1], fz=focus[2], fu=focus[3], **extra_kwargs, ) ) return stream
918c31ee44fe241a07c67587ccd673c4a83cdb2c
3,645,188
import re def navigation_target(m) -> re.Pattern: """A target to navigate to. Returns a regular expression.""" if hasattr(m, 'any_alphanumeric_key'): return re.compile(re.escape(m.any_alphanumeric_key), re.IGNORECASE) if hasattr(m, 'navigation_target_name'): return re.compile(m.navigation_target_name) return re.compile(re.escape(m.text), re.IGNORECASE)
62cc847f5454e76afb128fd752b7fa83fd2e167e
3,645,189
def hammingDistance(strA, strB): """ Determines the bitwise Hamming Distance between two strings. Used to determine the fitness of a mutating string against the input. Example: bin(ord('a')) == '0b1100001' bin(ord('9')) == '0b0111001' bin(ord('a') ^ ord('9')) == '0b1011000' bin(ord('a') ^ ord('9')).count('1') == 3 hammingDistance('a', '9') == 3 hammingDistance('a', '9') * 4 == 12 hammingDistance('aaaa', '9999') == 12 Args: strA: A string strB: A string Returns: Returns an integer that represents the Hamming Distance from a to b. Raises: ValueError: If the two strings are unequal in length or if one input is not a string. """ if (not isinstance(strA, basestring) or not isinstance(strB, basestring)): raise ValueError('Input is not a string', strA, strB) if len(strA) != len(strB): raise ValueError('The two strings are unequal in length', strA, strB) # base case, hamming distance of nothing and nothing is 0 if (len(strA) == 0) and (len(strB) == 0): return 0 # XOR both first characters, count the 1s, remaining is recursive case return ( bin(ord(strA[0]) ^ ord(strB[0])).count('1') + hammingDistance(strA[1:], strB[1:]) )
d417ac22a1abd4c2df0f274d809096f354ac4150
3,645,190
import regex def convert(s, syntax=None): """Convert a regex regular expression to re syntax. The first argument is the regular expression, as a string object, just like it would be passed to regex.compile(). (I.e., pass the actual string object -- string quotes must already have been removed and the standard escape processing has already been done, e.g. by eval().) The optional second argument is the regex syntax variant to be used. This is an integer mask as passed to regex.set_syntax(); the flag bits are defined in regex_syntax. When not specified, or when None is given, the current regex syntax mask (as retrieved by regex.get_syntax()) is used -- which is 0 by default. The return value is a regular expression, as a string object that could be passed to re.compile(). (I.e., no string quotes have been added -- use quote() below, or repr().) The conversion is not always guaranteed to be correct. More syntactical analysis should be performed to detect borderline cases and decide what to do with them. For example, 'x*?' is not translated correctly. """ table = mastertable.copy() if syntax is None: syntax = regex.get_syntax() if syntax & RE_NO_BK_PARENS: del table[r'\('], table[r'\)'] del table['('], table[')'] if syntax & RE_NO_BK_VBAR: del table[r'\|'] del table['|'] if syntax & RE_BK_PLUS_QM: table['+'] = r'\+' table['?'] = r'\?' table[r'\+'] = '+' table[r'\?'] = '?' if syntax & RE_NEWLINE_OR: table['\n'] = '|' res = "" i = 0 end = len(s) while i < end: c = s[i] i = i+1 if c == '\\': c = s[i] i = i+1 key = '\\' + c key = table.get(key, key) res = res + key else: c = table.get(c, c) res = res + c return res
e61a9d555008c9b36b579f6eb1e32e1e9fa0e983
3,645,191
import select def current_user(request): """Return the list of all the users with their ids. """ query = select([ User.id.label('PK_id'), User.Login.label('fullname') ]).where(User.id == request.authenticated_userid) print return dict(DBSession.execute(query).fetchone())
6951a6c638886d773a9e92e161d9aa2b166b17b3
3,645,192
def get_test_examples_labels(dev_example_list, batch_size): """ :param dev_example_list: list of filenames containing dev examples :param batch_size: int :return: list of nlplingo dev examples, dev labels """ dev_chunk_generator = divide_chunks(dev_example_list, NUM_BIG_CHUNKS) test_examples = [] # dev_chunk_generator yields lists, each of len == NUM_BIG_CHUNKS for big_chunk in dev_chunk_generator: chunk_lst = load_big_chunk(big_chunk) # big_chunk is a filepath to .npz example_lst = [] for chunk in chunk_lst: example_lst.extend(chunk) example_generator = divide_chunks(example_lst, batch_size) for example_chunk in example_generator: test_examples.extend(example_chunk) labels = [example.label for example in test_examples] test_label = np.asarray(labels) return test_examples, test_label
e46a3c1d9780c8b74fcef3311267ad87f5938a66
3,645,193
import uuid import tokenize from operator import getitem from typing import Iterator from typing import OrderedDict def unpack_collections(*args, **kwargs): """Extract collections in preparation for compute/persist/etc... Intended use is to find all collections in a set of (possibly nested) python objects, do something to them (compute, etc...), then repackage them in equivalent python objects. Parameters ---------- *args Any number of objects. If it is a dask collection, it's extracted and added to the list of collections returned. By default, python builtin collections are also traversed to look for dask collections (for more information see the ``traverse`` keyword). traverse : bool, optional If True (default), builtin python collections are traversed looking for any dask collections they might contain. Returns ------- collections : list A list of all dask collections contained in ``args`` repack : callable A function to call on the transformed collections to repackage them as they were in the original ``args``. """ traverse = kwargs.pop("traverse", True) collections = [] repack_dsk = {} collections_token = uuid.uuid4().hex def _unpack(expr): if is_dask_collection(expr): tok = tokenize(expr) if tok not in repack_dsk: repack_dsk[tok] = (getitem, collections_token, len(collections)) collections.append(expr) return tok tok = uuid.uuid4().hex if not traverse: tsk = quote(expr) else: # Treat iterators like lists typ = list if isinstance(expr, Iterator) else type(expr) if typ in (list, tuple, set): tsk = (typ, [_unpack(i) for i in expr]) elif typ in (dict, OrderedDict): tsk = (typ, [[_unpack(k), _unpack(v)] for k, v in expr.items()]) elif is_dataclass(expr) and not isinstance(expr, type): tsk = ( apply, typ, (), ( dict, [ [f.name, _unpack(getattr(expr, f.name))] for f in fields(expr) ], ), ) else: return expr repack_dsk[tok] = tsk return tok out = uuid.uuid4().hex repack_dsk[out] = (tuple, [_unpack(i) for i in args]) def repack(results): dsk = repack_dsk.copy() dsk[collections_token] = quote(results) return simple_get(dsk, out) return collections, repack
d855a4cea5cb16a5863d670edb4bda6d15e2b371
3,645,194
def get_usernames(joomlasession): """Get list of usernames on the homepage.""" users = joomlasession.query(Jos_Users).all() return [user.username for user in users]
b866cdd8fb47d12b7b79291f3335ded217fa8a1d
3,645,195
def minor_block_encoder(block, include_transactions=False, extra_info=None): """Encode a block as JSON object. :param block: a :class:`ethereum.block.Block` :param include_transactions: if true transaction details are included, otherwise only their hashes :param extra_info: MinorBlockExtraInfo :returns: a json encodable dictionary """ header = block.header meta = block.meta header_info = minor_block_header_encoder(header) d = { **header_info, "hashMerkleRoot": data_encoder(meta.hash_merkle_root), "hashEvmStateRoot": data_encoder(meta.hash_evm_state_root), "gasUsed": quantity_encoder(meta.evm_gas_used), "size": quantity_encoder(len(block.serialize())), } if include_transactions: d["transactions"] = [] for i, _ in enumerate(block.tx_list): d["transactions"].append(tx_encoder(block, i)) else: d["transactions"] = [ id_encoder(tx.get_hash(), block.header.branch.get_full_shard_id()) for tx in block.tx_list ] if extra_info: _add_posw_info_to_resp(d, header.difficulty, extra_info) return d
53b0eb26e7a8ef0c05f4149c71b09ff6505f85d0
3,645,196
def heaviside(x): """Implementation of the Heaviside step function (https://en.wikipedia.org/wiki/Heaviside_step_function) Args: x: Numpy-Array or single Scalar Returns: x with step values """ if x <= 0: return 0 else: return 1
5ef05263637501f82cea3befe897cd60ec39994d
3,645,197
def FallbackReader(fname): """Guess the encoding of a file by brute force by trying one encoding after the next until something succeeds. @param fname: file path to read from """ txt = None for enc in GetEncodings(): try: handle = open(fname, 'rb') reader = codecs.getreader(enc)(handle) txt = reader.read() reader.close() except Exception, msg: handle.close() continue else: return (enc, txt) return (None, None)
d9f4235df9f472c7584192e920980f5f2668202a
3,645,198
def graph_3D(data, col="category", list_=[None], game=None, extents=None): """ 3D t-sne graph data output :param data: a pandas df generated from app_wrangling.call_boardgame_data() :param col: string indicating which column (default 'category') :param list_: list of elements in column (default [None]) :param game: string of board game name (default None) :param extents: string (default None) :return fig_out: 3D plotly figure """ # layout for the 3D plot: axis_x = dict( title="", showgrid=True, zeroline=False, showticklabels=False, showspikes=False, range=[extents["min_x"], extents["max_x"]], ) axis_y = axis_x.copy() axis_y["range"] = [extents["min_y"], extents["max_y"]] axis_z = axis_x.copy() axis_z["range"] = [extents["min_z"], extents["max_z"]] layout_out = go.Layout( margin=dict(l=0, r=0, b=0, t=0), scene=dict(xaxis=axis_x, yaxis=axis_y, zaxis=axis_z), legend=dict(yanchor="top", y=0.93, xanchor="right", x=0.99), paper_bgcolor="rgba(0,0,0,0)", plot_bgcolor="rgba(0,0,0,0)", ) # plotting data: if (list_ == [None]) or (not list_): set_data = data.copy(deep=True) set_data["group"] = "none" else: set_data = app_wr.call_boardgame_radio(data, col, list_).explode("group") data_out = [] # corresponds with dark2 palette: # had trouble manually setting color palette for graph_object: color_list = [ "#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666", ] i = 0 for idx, val in set_data.groupby(set_data.group): if idx == "none": marker_style = dict( size=val["average_rating"] * 1.6, symbol="circle", opacity=0.1, color="grey", ) legend_show = False else: marker_style = dict( size=val["average_rating"] * 1.6, symbol="circle", opacity=0.4, color=color_list[i], ) legend_show = True i += 1 scatter = go.Scatter3d( name=idx, x=val["x"], y=val["y"], z=val["z"], mode="markers", marker=marker_style, text=val["name"], hoverinfo="text+name", showlegend=legend_show, ) data_out.append(scatter) if game: game_data = data[data["name"] == game] marker_style = dict( size=game_data["average_rating"] * 1.6, symbol="circle", opacity=1.0, color="purple", ) scatter = go.Scatter3d( name=game, x=game_data["x"], y=game_data["y"], z=game_data["z"], mode="markers", marker=marker_style, text=game_data["name"], hoverinfo="text", ) data_out.append(scatter) fig_out = {"data": data_out, "layout": layout_out} return fig_out
17ad05f2c7cc3413c145009fb72aed366ec9ab49
3,645,199