content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
|---|---|---|
def get_mgga_data(mol, grid, rdm1):
"""
Get atomic orbital and density data.
See eval_ao and eval_rho docs for details.
Briefly, returns 0-3 derivatives of the atomic orbitals
in ao_data;
and the density, first derivatives of density,
Laplacian of density, and kinetic energy density
in rho_data.
"""
ao_data = eval_ao(mol, grid.coords, deriv=3)
if len(rdm1.shape) == 2:
rho_data = eval_rho(mol, ao_data, rdm1, xctype='mGGA')
else:
part0 = eval_rho(mol, ao_data, rdm1[0], xctype='mGGA')
part1 = eval_rho(mol, ao_data, rdm1[1], xctype='mGGA')
rho_data = np.array([part0, part1])
return ao_data, rho_data
|
11de048bbe320721204171d9786a997411b953d6
| 3,645,000
|
def _stringify_lmer_warnings(fg_lmer):
"""create grid w/ _ separated string of lme4::lmer warning list items, else "" """
warning_grids = fitgrid.utils.lmer.get_lmer_warnings(
fg_lmer
) # dict of indicator dataframes
warning_string_grid = pd.DataFrame(
np.full(fg_lmer._grid.shape, ""),
index=fg_lmer._grid.index.copy(),
columns=fg_lmer._grid.columns.copy(),
)
# collect multiple warnings into single sorted "_" separated strings
# on a tidy time x channel grid
for warning, warning_grid in warning_grids.items():
for idx, row_vals in warning_grid.iterrows():
for jdx, col_val in row_vals.iteritems():
if col_val:
if len(warning_string_grid.loc[idx, jdx]) == 0:
warning_string_grid.loc[idx, jdx] = warning
else:
# split, sort, reassemble
wrns = "_".join(
sorted(
warning_string_grid.loc[idx, jdx].split("_")
+ [warning]
)
)
warning_string_grid.loc[idx, jdx] = wrns
return warning_string_grid
|
bbd0fedb2480d4d1ef2a98689861c112552c0b59
| 3,645,001
|
def index():
"""Loads the index page for the 'Admin' controller
:returns: a dictionary to pass to the view with the list of ctr_enabled and the active module ('admin')
"""
ctr_data = get_ctr_data()
users = db().select(db.auth_user.ALL)
approvals = db(db.auth_user.registration_key=='pending').select(db.auth_user.ALL)
return dict(ctr_enabled=ctr_enabled, ctr_data=ctr_data, active_module='jadmin', users=users, approvals=approvals, doctypes=DOC_TYPES)
|
4b5dc978361b970d2dc6b2f5c6df28b06c9f28bf
| 3,645,002
|
def get_language_codes():
"""Returns a list of available languages and their 2 char input codes
"""
languages = get_languages()
two_dig_codes = [k for k, v in languages.items()]
return two_dig_codes
|
2e368b73783630835ee1ec32875318725f62d72e
| 3,645,003
|
def fun_evaluate_ndcg(user_test_recom_zero_one):
"""
计算ndcg。所得是单个用户test的,最后所有用户的求和取平均
:param test_lst: 单个用户的test集
:param zero_one: 0/1序列
:param test_mask: 单个用户的test列表对应的mask列表
:return:
"""
test_lst, zero_one, test_mask, _ = user_test_recom_zero_one
test_lst = test_lst[:np.sum(test_mask)]
zero_one = np.array(zero_one)
if 0 == sum(zero_one): # 没有命中的
return 0.0
s = 0.0
idxs = list(np.nonzero(zero_one))[0]
for idx in idxs:
s += 1.0 / np.log2(idx + 2)
m = 0.0
length = min(len(test_lst), len(zero_one)) # 序列短的,都命中为1,此时是最优情况
for idx in range(length):
m += 1.0 / np.log2(idx + 2)
return s / m
|
018dcf1095ebdd02e253ae6c1c36e17d1f13431a
| 3,645,004
|
def prettyDataSize(size_in_bytes):
""" Takes a data size in bytes and formats a pretty string. """
unit = "B"
size_in_bytes = float(size_in_bytes)
if size_in_bytes > 1024:
size_in_bytes /= 1024
unit = "kiB"
if size_in_bytes > 1024:
size_in_bytes /= 1024
unit = "MiB"
if size_in_bytes > 1024:
size_in_bytes /= 1024
unit = "GiB"
if size_in_bytes > 1024:
size_in_bytes /= 1024
unit = "TiB"
print size_in_bytes, "%.1f "%size_in_bytes + unit
return "%.1f "%size_in_bytes + unit
|
30eb068bafe2d9457ea43b59f2f62bdd0ce1c927
| 3,645,005
|
import os
def get_env(env_name: str) -> str:
"""
Safely read an environment variable.
Raises errors if it is not defined or it is empty.
:param env_name: the name of the environment variable
:return: the value of the environment variable
"""
if env_name not in os.environ:
raise KeyError(f"{env_name} not defined")
env_value: str = os.environ[env_name]
if not env_value:
raise ValueError(f"{env_name} has yet to be configured")
return env_value
|
742a251561e02f59da667d8ebc586d5e0b399103
| 3,645,006
|
def image_resize_and_sharpen(image, size, preserve_aspect_ratio=False, factor=2.0):
"""
Create a thumbnail by resizing while keeping ratio.
A sharpen filter is applied for a better looking result.
:param image: PIL.Image.Image()
:param size: 2-tuple(width, height)
:param preserve_aspect_ratio: boolean (default: False)
:param factor: Sharpen factor (default: 2.0)
"""
origin_mode = image.mode
if image.mode != 'RGBA':
image = image.convert('RGBA')
image.thumbnail(size, Image.ANTIALIAS)
if preserve_aspect_ratio:
size = image.size
sharpener = ImageEnhance.Sharpness(image)
resized_image = sharpener.enhance(factor)
# create a transparent image for background and paste the image on it
image = Image.new('RGBA', size, (255, 255, 255, 0))
image.paste(resized_image, ((size[0] - resized_image.size[0]) / 2, (size[1] - resized_image.size[1]) / 2))
if image.mode != origin_mode:
image = image.convert(origin_mode)
return image
|
7f581a0a8b1dccf62a3840269e7b2cea1e78a13b
| 3,645,007
|
import subprocess
import pipes
def callHgsql(database, command):
""" Run hgsql command using subprocess, return stdout data if no error."""
cmd = ["hgsql", database, "-Ne", command]
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
cmdout, cmderr = p.communicate()
if p.returncode != 0:
# keep command arguments nicely quoted
cmdstr = " ".join([pipes.quote(arg) for arg in cmd])
raise Exception("Error from: " + cmdstr + ": " + cmderr)
return cmdout
|
d44dce04452323b417830fad1c34fb1ebca300fe
| 3,645,008
|
def validate_mash(seq_list, metadata_reports, expected_species):
"""
Takes a species name as a string (i.e. 'Salmonella enterica') and creates a dictionary with keys for each Seq ID
and boolean values if the value pulled from MASH_ReferenceGenome matches the string or not
:param seq_list: List of OLC Seq IDs
:param metadata_reports: Dictionary retrieved from get_combined_metadata()
:param expected_species: String containing expected species
:return: Dictionary with Seq IDs as keys and True/False as values
"""
seq_status = {}
for seqid in seq_list:
print('Validating MASH reference genome for {} '.format(seqid))
df = metadata_reports[seqid]
observed_species = df.loc[df['SeqID'] == seqid]['MASH_ReferenceGenome'].values[0]
if observed_species == expected_species:
seq_status[seqid] = True
else:
seq_status[seqid] = False
return seq_status
|
9eb4fd6e1f156a4fed3cc0be0c5b7153a05b038b
| 3,645,009
|
def style_strokes(svg_path: str, stroke_color: str='#ff0000',
stroke_width: float=0.07559055) -> etree.ElementTree:
"""Modifies a svg file so that all black paths become laser cutting paths.
Args:
svg_path: a file path to the svg file to modify and overwrite.
stroke_color: the color, as a hex code, to set paths to.
stroke_width: the stroke width, in pixels (at 96 pixels per inch), to
set paths to.
Returns:
The modified XML tree.
"""
xml = etree.parse(svg_path)
svg = xml.getroot()
paths = svg.findall('.//{http://www.w3.org/2000/svg}path'
'[@style="stroke:#000000;fill:none"]')
for path in paths:
path.set('style', (
'fill:none;stroke:{};stroke-opacity:1;stroke-width:{};'
'stroke-miterlimit:4;stroke-dasharray:none'
).format(stroke_color, stroke_width))
return xml
|
6387625cd71143edb632833cd40006858f239089
| 3,645,010
|
import json
def preview_pipeline(
pipeline: Pipeline, domain_retriever: DomainRetriever, limit: int = 50, offset: int = 0
) -> str:
"""
Execute a pipeline but returns only a slice of the results, determined by `limit` and `offset` parameters, as JSON.
Return format follows the 'table' JSON table schema used by pandas (see
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#orient-options), with a few addition related to
pagination.
Note: it's required to use pandas `to_json` methods, as it convert NaN and dates to an appropriate format.
"""
df, _ = execute_pipeline(pipeline, domain_retriever)
return json.dumps(
{
'schema': build_table_schema(df, index=False),
'offset': offset,
'limit': limit,
'total': df.shape[0],
'data': json.loads(df[offset : offset + limit].to_json(orient='records')),
}
)
|
f1e640ec73bbdeb978762774c81d80e00e98adc9
| 3,645,011
|
def redirect_to_url(url):
"""
Return a bcm dictionary with a command to redirect to 'url'
"""
return {'mode': 'redirect', 'url': url}
|
01e4deb80bbd8f8e119c99d64001866c6cd644d9
| 3,645,012
|
def get_xml_tagged_data(buffer, include_refstr=True):
"""
figure out what format file it is and call the
respective function to return data for training
:param buffer:
:param include_refstr: during training do not need refstr
:return:
"""
if len(buffer) > 1 and 'http://www.elsevier.com/xml/document' in buffer[1]:
return get_elsevier_tagged_data(REGEX_XML_TAG_FORMAT.sub('', ' '.join(buffer)))
if len(buffer) > 1 and 'ADSBIBCODE' in buffer[0] and 'citation_list' in buffer[1]:
buffer = '<?xml version="1.0"?>' + ' '.join(buffer[1:])
return get_crossref_tagged_data(buffer, include_refstr)
if len(buffer) > 1 and 'ADSBIBCODE' in buffer[0] and 'Citation ID' in buffer[1]:
selected_buffer = ['<?xml version="1.0"?>', '<CitationList>']
for line in buffer:
line = line.strip()
if line.startswith('<Citation ID='):
selected_buffer.append(line)
selected_buffer.append('</CitationList>')
return get_springer_tagged_data('\n'.join(selected_buffer), include_refstr)
return None
|
e51cdde728d3e4c5c1f4936bfeb874be8aabf292
| 3,645,013
|
from typing import Dict
from typing import Any
def de_dup(
data: pd.DataFrame,
drop_duplicates_kwargs: Dict[str, Any] = {},
) -> pd.DataFrame:
"""Drop duplicate rows
"""
return data.drop_duplicates(**drop_duplicates_kwargs)
|
2cd78627226170af7e184bc60caa5ee39290ab42
| 3,645,014
|
def get_task_defs(workspace: str, num_validators: int, num_fullnodes: int) -> dict:
"""
Builds a dictionary of:
family -> current_task_def
task_def can be used to get the following when updating a service:
- containerDefinitions
- volumes
- placementConstraints
NOTE: only possible to get the current running list of tasks, so tf apply needed after
need a way to restore to steady state if an ecs update makes node boot loop
"""
ret = {}
print("Fetching ECS tasks")
def_fams = []
def_fams += [f"{workspace}-validator-{i}" for i in range(num_validators)]
def_fams += [f"{workspace}-fullnode-{i}" for i in range(num_fullnodes)]
for fam in def_fams:
print(f"Fetching task definition for {fam}")
task_def = execute_cmd_with_json_output(
["aws", "ecs", "describe-task-definition", "--task-definition", fam,],
err=f"could not get task definition for {fam}",
)
key = task_def.get("taskDefinition").get("family")
ret[key] = task_def.get("taskDefinition")
# put the tags separately
tags = task_def.get("tags")
ret[key]["tags"] = tags if tags else []
print()
return ret
|
99c131ac60999dd1b2b657575e40f2b813633f61
| 3,645,015
|
from azure.mgmt.marketplaceordering.models import OfferType
def get_terms(cmd, urn=None, publisher=None, offer=None, plan=None):
"""
Get the details of Azure Marketplace image terms.
:param cmd:cmd
:param urn:URN, in the format of 'publisher:offer:sku:version'. If specified, other argument values can be omitted
:param publisher:Image publisher
:param offer:Image offer
:param plan:Image billing plan
:return:
"""
publisher, offer, plan = _terms_prepare(cmd, urn, publisher, offer, plan)
op = cf_vm_image_term(cmd.cli_ctx, '')
terms = op.get(offer_type=OfferType.VIRTUALMACHINE,
publisher_id=publisher,
offer_id=offer,
plan_id=plan)
return terms
|
7483e6d150b784535dd47ead0b63d079e66c391d
| 3,645,016
|
def encode_payload( result ):
"""JSON encodes a dictionary, named tuple, or object for sending
to the server
"""
try:
return tornado.escape.json_encode( result )
except TypeError:
if type( result ) is list:
return [ tornado.escape.json_encode( r ) for r in result ]
d = { k: getattr( result, k ) for k in result.__dict__ }
return tornado.escape.json_encode( d )
|
551264dcb0b9ad6d380b8ae393b2dfbfafb93dee
| 3,645,017
|
def relu(shape) -> np.ndarray:
"""
Creates a gaussian distribution numpy array with a mean of 0 and variance of sqrt(2/m).
Arguments:
shape : tuple : A tuple with 2 numbers, specifying size of the numpy array.
Returns:
output : np.ndarray : A uniform numpy array.
"""
return np.random.normal(0, np.sqrt(2/shape[1]), shape)
|
e41835dc5e6de8f0b6161c8ea73afeffd8f84c31
| 3,645,018
|
def reset_all():
"""Batch reset of batch records."""
_url = request.args.get("url") or request.referrer
task_id = request.form.get("task_id")
task = Task.get(task_id)
try:
count = utils.reset_all_records(task)
except Exception as ex:
flash(f"Failed to reset the selected records: {ex}")
else:
flash(f"{count} {task.task_type.name} records were reset for batch processing.", "info")
return redirect(_url)
|
a4241ce81531db7d18d226327f6a96b600a50fd0
| 3,645,019
|
def update_to_report(db, data, section_name, img_path,id):
"""
Update data of report
"""
query = '''UPDATE report
SET data = "{}" ,
section_name = "{}",
image_path = "{}"
WHERE id = "{}" '''.format(data, section_name, img_path, id)
result = get_db_with_actions(db, query)
return(result)
|
995d17b364bcb6a0b338b1b0323b0fd1f7692f25
| 3,645,020
|
from datetime import datetime
def keyboard(table, day=None):
"""Handler for showing the keyboard statistics page."""
cols, group = "realkey AS key, COUNT(*) AS count", "realkey"
where = (("day", day),) if day else ()
counts_display = counts = db.fetch(table, cols, where, group, "count DESC")
if "combos" == table:
counts_display = db.fetch(table, "key, COUNT(*) AS count", where,
"key", "count DESC")
events = db.fetch(table, where=where, order="stamp")
for e in events: e["dt"] = datetime.datetime.fromtimestamp(e["stamp"])
stats, collatedevents = stats_keyboard(events, table)
days, input = db.fetch("counts", order="day", type=table), "keyboard"
return bottle.template("heatmap.tpl", locals(), conf=conf)
|
d3053f06b85d6606353b71a76096558d760e5a8e
| 3,645,021
|
import base64
import logging
def fetch(uri, username='', password=''):
"""Can fetch with Basic Authentication"""
headers = {}
if username and password:
headers['Authorization'] = 'Basic ' + base64.b64encode('%s:%s' % (username, password))
headers['User-Agent'] = 'Twimonial'
f = urlfetch.fetch(uri, headers=headers)
logging.debug('Fetching %s (%s): %d' % (uri, username, f.status_code))
return f
|
e28e96c049d7b4844ca23bd8943b00b29ede3419
| 3,645,022
|
def tsCrossValidationScore(params, series,loss_function=mean_squared_error, nsplits=3, slen=1):
"""
#Parameters:
params : vector of parameters for optimization (three parameters:
alpha, beta, gamma for example
series : dataset with timeseries
sle:
Returns:
error on CrossValidation
"""
# errors array
errors = []
values = series.values
alpha, beta, gamma = params
# set the number of folds for cross-validation
tscv = TimeSeriesSplit(n_splits=nsplits)
# iterating over folds, train model on each, forecast and calculate error
for train, test in tscv.split(values):
model = HoltWinters(series=values[train], slen=slen,
alpha=alpha, beta=beta, gamma=gamma, n_preds=len(test))
model.triple_exponential_smoothing()
predictions = model.result[-len(test):]
actual = values[test]
error = loss_function(predictions, actual)
errors.append(error)
return np.mean(np.array(errors))
|
f3278ad55a423f6df0b108636c88151a72451cfa
| 3,645,023
|
from typing import Any
def get_psf_fwhm(psf_template: np.ndarray) -> float:
"""
Fit a symmetric 2D Gaussian to the given ``psf_template`` to
estimate the full width half maximum (FWHM) of the central "blob".
Args:
psf_template: A 2D numpy array containing the unsaturated
PSF template.
Returns:
The FWHM of the PSF template (in pixels).
"""
# Crop PSF template: too large templates (which are mostly zeros) can
# cause problems when fitting them with a 2D Gauss function
psf_cropped = np.copy(psf_template)
if psf_template.shape[0] >= 33 or psf_template.shape[1] >= 33:
psf_cropped = crop_center(psf_cropped, (33, 33))
# Define the grid for the fit
x, y = np.meshgrid(
np.arange(psf_cropped.shape[0]), np.arange(psf_cropped.shape[1])
)
# Create a new Gaussian2D object
center = get_center(psf_cropped.shape)
gaussian = models.Gaussian2D(x_mean=center[0], y_mean=center[1])
# Define auxiliary function for tieing the standard deviations
def tie_stddev(gaussian: Any) -> Any:
return gaussian.y_stddev
# Enforce symmetry: tie standard deviation parameters to same value to
# ensure that the resulting 2D Gaussian is always circular
gaussian.x_stddev.tied = tie_stddev
# Fix the position (= mean) of the 2D Gaussian
gaussian.x_mean.fixed = True
gaussian.y_mean.fixed = True
# Fit the model to the data
fit_p = fitting.LevMarLSQFitter()
gaussian_model = fit_p(gaussian, x, y, np.nan_to_num(psf_cropped))
# Make sure the returned FWHM is positive
return abs(float(gaussian_model.x_fwhm))
|
1982d89eb5f952d10336003e4d580fda3ab210b7
| 3,645,024
|
def sqrt(number):
"""
Calculate the floored square root of a number
Args:
number(int): Number to find the floored squared root
Returns:
(int): Floored Square Root
"""
assert number >= 0, 'Only square root of positive numbers are valid'
start = 0
end = number
res = None
while start <= end:
middle = (start + end) // 2
square = middle ** 2
next_square = (middle + 1) ** 2
if square <= number and next_square > number:
res = middle
break
if square > number:
end = middle - 1
else:
start = middle + 1
return res
|
7ed4d547e0dbabebff7ffdf1e368817a415cbb9e
| 3,645,025
|
def repetition_sigmoid(M):
"""
Used to model repetition-driven effects of STDP. More repetitions results in stronger increase/decrease.
"""
return 1.0/(1+np.exp(-0.2*M+10))
|
5cfae40b12f2ff871b60f9cad13308b8bb9189b9
| 3,645,026
|
def generate_features(ids0, ids1, forcefield, system, param):
"""
This function performs a minimization of the energy and computes the matrix features.
:param ids0: ids of the atoms for the 1st protein
:param ids1: ids of the atoms for the 2nd protein
:param forcefield: forcefield for OpenMM simulation
:param system: system for OpenMM simulation
:param param: OpenMM parameters
:return: features - to be used by ML models
"""
# sources
# https://en.wikipedia.org/wiki/Electrostatics
# https://en.wikipedia.org/wiki/Lennard-Jones_potential
# https://en.wikipedia.org/wiki/Combining_rules
# constants
eps0 = 8.8541878128e-12 * su.farad * su.meter**-1
e = 1.60217662e-19 * su.coulomb
N = 6.02214179e23 * su.mole**-1 # Avogadro
# scaling factors
k0 = (N * (e*e) / (4.0 * np.pi * eps0))
# get nonbonded interactions parameters for all atoms
# (Lennard-Jones and electrostatics)
epsilon = np.array([a.epsilon for a in param.atoms])
sigma = np.array([a.sigma for a in param.atoms])
charge = np.array([a.charge for a in param.atoms])
# pairwise epsilon with units
E = np.sqrt(epsilon[ids0].reshape(-1, 1) * epsilon[ids1].reshape(1, -1)) * param.atoms[0].uepsilon.unit
# pairwise sigma with units
S = 0.5 * (sigma[ids0].reshape(-1, 1) + sigma[ids1].reshape(1, -1)) * param.atoms[0].usigma.unit
# pairwise partial charges
Q = charge[ids0].reshape(-1, 1) * charge[ids1].reshape(1, -1)
# setup MD engine
integrator = so.LangevinIntegrator(300*su.kelvin, 1/su.picosecond, 0.002*su.picoseconds)
try:
platform = so.Platform.getPlatformByName('CUDA')
except Exception e:
platform = so.Platform.getPlatformByName('CPU')
simulation = so.app.Simulation(param.topology, system, integrator, platform)
# set atom coordinates
simulation.context.setPositions(param.get_coordinates()[0] * su.angstrom)
# minimize energy
simulation.minimizeEnergy()
# get atom coordinates and compute distance matrix between subunits
state = simulation.context.getState(getPositions=True)
xyz = state.getPositions(asNumpy=True)
D = np.linalg.norm(np.expand_dims(
xyz[ids0], 1) - np.expand_dims(xyz[ids1], 0), axis=2) * su.angstrom
# To choose the most relevant residues, we will first choose the pair of atoms with the lowest distance, and then
# extract a submatrix around it. This way we preserve the chain order of the distance matrix.
min_i = np.argmin(D)
min_r, min_c = int(min_i/D.shape[1]), min_i % D.shape[1]
# Number of interacting residues/particles considered relevant to be stored in the features
n_interactions = 256
ids0_min, ids0_max = min_r - n_interactions/2, min_r + n_interactions/2
ids1_min, ids1_max = min_c - n_interactions/2, min_c + n_interactions/2
if ids0_min < 0:
ids0_max -= ids0_min
ids0_min = 0
elif ids0_max >= D.shape[0]:
ids0_min -= ids0_max - D.shape[0] + 1
ids0_max = D.shape[0]-1
if ids1_min < 0:
ids1_max -= ids1_min
ids1_min = 0
elif ids1_max >= D.shape[1]:
ids1_min -= ids1_max - D.shape[1] + 1
ids1_max = D.shape[1]-1
ids0_interacting = np.arange(ids0_min, ids0_max, dtype=np.int32)
ids1_interacting = np.arange(ids1_min, ids1_max, dtype=np.int32)
D = D[np.ix_(ids0_interacting, ids1_interacting)]
S = S[np.ix_(ids0_interacting, ids1_interacting)]
Q = Q[np.ix_(ids0_interacting, ids1_interacting)]
E = E[np.ix_(ids0_interacting, ids1_interacting)]
# compute nonbonded potential energies
U_LJ = (4.0 * E * (np.power(S/D, 12) - np.power(S/D, 6))).value_in_unit(su.kilojoule / su.mole)
U_el = (k0 * Q / D).value_in_unit(su.kilojoule / su.mole)
features = {'U_LJ': U_LJ, 'U_el': U_el, 'D_mat': D}
return features
|
86fbc0fa67ea5a14b38af4c1fc37566b066b50a3
| 3,645,027
|
def extract_bow_feature_vectors(reviews, dictionary):
"""
Inputs a list of string reviews
Inputs the dictionary of words as given by bag_of_words
Returns the bag-of-words feature matrix representation of the data.
The returned matrix is of shape (n, m), where n is the number of reviews
and m the total number of entries in the dictionary.
Feel free to change this code as guided by Problem 9
"""
num_reviews = len(reviews)
feature_matrix = np.zeros([num_reviews, len(dictionary)])
stopwords = np.loadtxt('stopwords.txt', dtype = str)
for i, text in enumerate(reviews):
word_list = extract_words(text)
for word in stopwords:
word_list = list(filter((word).__ne__, word_list))
word_list_pairs = [(word1, word2) for (word1, word2) in zip(word_list[:-1], word_list[1:])]
for (word1, word2) in word_list_pairs:
if (word1, word2) in dictionary:
# This code gets a non-binary indicator
feature_matrix[i, dictionary[(word1, word2)]] += 1
return feature_matrix
|
3373179024127ab0202ab50f3e20184d02ed016c
| 3,645,028
|
from astropy.io.fits import Header
from scipy.optimize import least_squares
def model_wcs_header(datamodel, get_sip=False, order=4, step=32):
"""
Make a header with approximate WCS for use in DS9.
Parameters
----------
datamodel : `jwst.datamodels.ImageModel`
Image model with full `~gwcs` in `with_wcs.meta.wcs`.
get_sip : bool
If True, fit a `astropy.modeling.models.SIP` distortion model to the
image WCS.
order : int
Order of the SIP polynomial model.
step : int
For fitting the SIP model, generate a grid of detector pixels every
`step` pixels in both axes for passing through
`datamodel.meta.wcs.forward_transform`.
Returns
-------
header : '~astropy.io.fits.Header`
Header with simple WCS definition: CD rotation but no distortion.
"""
sh = datamodel.data.shape
try:
pipe = datamodel.meta.wcs.pipeline[0][1]
if 'offset_2' in pipe.param_names:
# NIRISS WCS
c_x = pipe.offset_2.value
c_y = pipe.offset_3.value
else:
# Simple WCS
c_x = pipe.offset_0.value
c_y = pipe.offset_1.value
crpix = np.array([-c_x+1, -c_y+1])
except:
crpix = np.array(sh)/2.+0.5
crval = datamodel.meta.wcs.forward_transform(crpix[0], crpix[1])
cdx = datamodel.meta.wcs.forward_transform(crpix[0]+1, crpix[1])
cdy = datamodel.meta.wcs.forward_transform(crpix[0], crpix[1]+1)
header = Header()
header['RADESYS'] = 'ICRS'
header['CTYPE1'] = 'RA---TAN'
header['CTYPE2'] = 'DEC--TAN'
header['CUNIT1'] = header['CUNIT2'] = 'deg'
header['CRPIX1'] = crpix[0]
header['CRPIX2'] = crpix[1]
header['CRVAL1'] = crval[0]
header['CRVAL2'] = crval[1]
cosd = np.cos(crval[1]/180*np.pi)
header['CD1_1'] = (cdx[0]-crval[0])*cosd
header['CD1_2'] = (cdy[0]-crval[0])*cosd
header['CD2_1'] = cdx[1]-crval[1]
header['CD2_2'] = cdy[1]-crval[1]
cd = np.array([[header['CD1_1'], header['CD1_2']], [header['CD2_1'], header['CD2_2']]])
if not get_sip:
return header
#### Fit a SIP header to the gwcs transformed coordinates
v, u = np.meshgrid(np.arange(1,sh[0]+1,step), np.arange(1,sh[1]+1,step))
x, y = datamodel.meta.wcs.forward_transform(u, v)
y -= crval[1]
x = (x-crval[0])*np.cos(crval[1]/180*np.pi)
a_names = []
b_names = []
#order = 4
for i in range(order+1):
for j in range(order+1):
ext = '{0}_{1}'.format(i,j)
if (i+j) > order:
continue
if ext in ['0_0', '0_1','1_0']:
continue
a_names.append('A_'+ext)
b_names.append('B_'+ext)
p0 = np.zeros(4+len(a_names)+len(b_names))
p0[:4] += cd.flatten()
args = (u.flatten(), v.flatten(), x.flatten(), y.flatten(), crpix, a_names, b_names, cd, 0)
# Fit the SIP coeffs
fit = least_squares(_objective_sip, p0, jac='2-point', bounds=(-np.inf, np.inf), method='lm', ftol=1e-08, xtol=1e-08, gtol=1e-08, x_scale=1.0, loss='linear', f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=1000, verbose=0, args=args, kwargs={})
# Get the results
args = (u.flatten(), v.flatten(), x.flatten(), y.flatten(), crpix, a_names, b_names, cd, 1)
cd_fit, a_coeff, b_coeff = _objective_sip(fit.x, *args)
# Put in the header
for i in range(2):
for j in range(2):
header['CD{0}_{1}'.format(i+1, j+1)] = cd_fit[i,j]
header['CTYPE1'] = 'RA---TAN-SIP'
header['CTYPE2'] = 'DEC--TAN-SIP'
header['A_ORDER'] = order
for k in a_coeff:
header[k] = a_coeff[k]
header['B_ORDER'] = order
for k in b_coeff:
header[k] = b_coeff[k]
return header
|
1b43d5382b92f7da47d72dcf5acaaca65c6329df
| 3,645,029
|
def create_session():
"""Return a session to be used for database connections
Returns:
Session: SQLAlchemy session object
"""
# Produces integrity errors!
# return _Session()
# db.session is managed by Flask-SQLAlchemy and bound to a request
return db.session
|
8c7dbc2ee1db64cfbbb3466704a7e4f70ef073be
| 3,645,030
|
def meta_to_indexes(meta, table_name=None, model_name=None):
"""Find all the indexes (primary keys) based on the meta data
"""
indexes, pk_field = {}, None
indexes = []
for meta_model_name, model_meta in meta.iteritems():
if (table_name or model_name) and not (table_name == model_meta['Meta'].get('db_table', '') or model_name == meta_model_name):
continue
field_name, field_infodict, score = find_index(model_meta)
indexes.append(('%s.%s' % (meta_model_name, field_name), field_infodict, score))
return indexes
|
12c12055f424680a68d81d5466dc6d3515d797a5
| 3,645,031
|
def index():
"""Render and return the index page.
This is a informational landing page for non-logged-in users, and the corp
homepage for those who are logged in.
"""
success, _ = try_func(auth.is_authenticated)
if success:
module = config.get("modules.home")
if module:
return config.modules[module].home()
return render_template("default_home.mako")
return render_template("landing.mako")
|
9ebc7a98ee60a59a5bed6ec5a726c5c1a5a11ca7
| 3,645,032
|
def _(origin, category="", default=None):
"""
This function returns the localized string.
"""
return LOCALIZED_STRINGS_HANDLER.translate(origin, category, default)
|
58f1d7033b1689068bf1bcb532eea78e8bf51250
| 3,645,033
|
from datetime import datetime
def next_month(month: datetime) -> datetime:
"""Find the first day of the next month given a datetime.
:param month: the date
:type month: datetime
:return: The first day of the next month.
:rtype: datetime
"""
dt = this_month(month)
return datetime((dt+_A_MONTH).year, (dt+_A_MONTH).month, 1)
|
1d5cb70fa7b3d98689e3dd967aa95deb29f5de45
| 3,645,034
|
from typing import Mapping
from typing import OrderedDict
def walk_json(d, func):
""" Walk over a parsed JSON nested structure `d`, apply `func` to each leaf element and replace it with result
"""
if isinstance(d, Mapping):
return OrderedDict((k, walk_json(v, func)) for k, v in d.items())
elif isinstance(d, list):
return [walk_json(v, func) for v in d]
else:
return func(d)
|
cc977f4cf3eaec03bd591fa4cd1e44ab5717caee
| 3,645,035
|
def getUser():
"""This method will be called if a GET request is made to the /user/ route
It will get the details of a specified user
Parameters
----------
username
the name of the user to get info about
Raises
------
DoesNotExist
Raised if the username provided does not match a user in the database
Returns
-------
String: Either the json of the user, or an error message saying the user doesn't exists
"""
try:
user = User.objects(username=request.args["username"]).get()
return str(user.json())
except DoesNotExist:
return "That user does not exist, please try again :)"
|
edc8570b83e4a173ac8028f2d8b51e93a19b27a1
| 3,645,036
|
import types
def _create_ppo_agent(
time_step_spec: types.NestedTensorSpec, action_spec: types.NestedTensorSpec,
preprocessing_layers: types.NestedLayer,
policy_network: types.Network) -> tfa.agents.TFAgent:
"""Creates a ppo_agent."""
actor_network = policy_network(
time_step_spec.observation,
action_spec,
preprocessing_layers=preprocessing_layers,
name='ActorDistributionNetwork')
critic_network = constant_value_network.ConstantValueNetwork(
time_step_spec.observation, name='ConstantValueNetwork')
return ppo_agent.PPOAgent(
time_step_spec,
action_spec,
actor_net=actor_network,
value_net=critic_network)
|
931e7078bdf634187ac0a506decb2d651373fbab
| 3,645,037
|
def stiffness_matrix_CST(element=tetra_4()):
"""Calculate stiffness matrix for linear elasticity"""
element.volume()
B = strain_matrix_CST(element)
D = material()
print('B')
print(B)
print('V',element.V)
return element.V * np.dot(np.dot(np.transpose(B),D),B)
|
5c5c443ab1007997848357d698fcce91f069a13f
| 3,645,038
|
async def can_action_member(bot, ctx: SlashContext, member: discord.Member) -> bool:
""" Stop mods from doing stupid things. """
# Stop mods from actioning on the bot.
if member.id == bot.user.id:
return False
# Stop mods from actioning one another, people higher ranked than them or themselves.
if member.top_role >= ctx.author.top_role:
role_muted = discord.utils.get(member.guild.roles, id=settings.get_value("role_muted"))
role_restricted = discord.utils.get(member.guild.roles, id=settings.get_value("role_restricted"))
# Enable mods to use /unmute and /unrestrict on others since the role "Muted" and "Restricted" is placed higher than "Staff".
if role_muted in member.roles or role_restricted in member.roles:
return True
return False
# Checking if Bot is able to even perform the action
if member.top_role >= member.guild.me.top_role:
return False
# Allow owner to override all limitations.
if member.id == ctx.guild.owner_id:
return True
# Otherwise, the action is probably valid, return true.
return True
|
c3fa4eee66ec80df2c4f91cfee181d900f0b8c45
| 3,645,039
|
import types
def trim_waveform_signal(
tr: obspy.Trace,
cfg: types.ModuleType = config
) -> obspy.Trace:
"""Cut the time series to signal window
Args:
tr: time series
cfg: configuration file
Returns:
tr: trimmed time series
"""
starttime, endtime = signal_window(tr, cfg)
tr.trim(starttime=starttime, endtime=endtime)
return tr
|
bce3a0f88903b7c62c287f6e40bb7d377215a45d
| 3,645,040
|
def animation_plot(
x,
y,
z_data,
element_table,
ani_fname,
existing_fig,
ani_funcargs=None,
ani_saveargs=None,
kwargs=None,
):
"""
Tricontourf animation plot.
Resulting file will be saved to MP4
"""
global tf
# Subtract 1 from element table to align with Python indexing
t = tri.Triangulation(x, y, element_table - 1)
# Preassign fig and ax
if existing_fig is None:
fig, ax, tf = filled_mesh_plot(x, y, z_data[:, 0], element_table, **kwargs)
else:
fig, ax, tf = existing_fig
# animation function
def animate(i):
global tf
z = z_data[:, i]
for c in tf.collections:
c.remove() # removes only the contours, leaves the rest intact
tf = ax.tricontourf(t, z, **kwargs)
anim = animation.FuncAnimation(fig, animate, frames=z_data.shape[1], repeat=True,)
anim.save(ani_fname, writer=animation.FFMpegWriter(**ani_funcargs), **ani_saveargs)
return fig, ax, tf
|
e9ef60c6240900de6fd082ff5933dbbbc471933a
| 3,645,041
|
def preprocess_adj(adj):
"""Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation."""
# adj_appr = np.array(sp.csr_matrix.todense(adj))
# # adj_appr = dense_lanczos(adj_appr, 100)
# adj_appr = dense_RandomSVD(adj_appr, 100)
# if adj_appr.sum(1).min()<0:
# adj_appr = adj_appr- (adj_appr.sum(1).min()-0.5)*sp.eye(adj_appr.shape[0])
# else:
# adj_appr = adj_appr + sp.eye(adj_appr.shape[0])
# adj_normalized = normalize_adj(adj_appr)
# adj_normalized = normalize_adj(adj+sp.eye(adj.shape[0]))
# adj_appr = np.array(sp.coo_matrix.todense(adj_normalized))
# # adj_normalized = dense_RandomSVD(adj_appr,100)
# adj_normalized = dense_lanczos(adj_appr, 100)
adj_normalized = normalize_adj(sp.eye(adj.shape[0]) + adj)
# adj_normalized = sp.eye(adj.shape[0]) + normalize_adj(adj)
return sparse_to_tuple(adj_normalized)
|
82674be0b9573c24135e56f2a5e3988fbb0966e1
| 3,645,042
|
def plot_figure_one_input_resource_2(style_label=""):
"""
Plot two bar graphs side by side, with letters as x-tick labels.
latency_dev_num_non_reuse.log
"""
prng = np.random.RandomState(96917002)
#plt.set_cmap('Greys')
#plt.rcParams['image.cmap']='Greys'
# Tweak the figure size to be better suited for a row of numerous plots:
# double the width and halve the height. NB: use relative changes because
# some styles may have a figure size different from the default one.
(fig_width, fig_height) = plt.rcParams['figure.figsize']
fig_size = [fig_width * 1.8, fig_height / 2]
fig, ax = plt.subplots(ncols=1, nrows=1, num=style_label, figsize=fig_size, squeeze=True)
plt.set_cmap('Greys')
ax.set_ylabel("Latency (s)", fontsize=larger_size)
ax.set_xlabel("Number of devices", fontsize=larger_size)
grid = "3x3"
config = ["MR-BODPv2", "WST-FGP-R"]
#np.array(load_data_vector(config[0]+"/" + grid + "/single_resource/commu_size_steal.log"))+
#np.array(load_data_vector(config[0] + "/" + grid + "/single_resource/commu_size_gateway.log"))
y1 = load_data_vector(config[0] + "/single_resource/latency.log")
y2 = load_data_vector(config[1] + "/" + grid + "/single_resource/latency.log")
x = np.arange(len(y1))
print x
width = 0.2
latency1 = ax.bar(x-0.5*width, y1, width, label='MR-BODP', color=[0.4, 0.4, 0.4], edgecolor =[0, 0, 0])
latency2 = ax.bar(x+0.5*width, y2, width, label='WST-FGP (Shuffle)', color=[0.8, 0.8, 0.8], edgecolor =[0, 0, 0], hatch='//')
ax.set_xticks(x)
ax.set_xticklabels(['1','2','3','4','5','6'])
ax.set_xlim([-0.5,len(x)-0.3])
ax.set_ylim([0, 30])
plt.tick_params(labelsize=larger_size)
y1 = np.array(load_data_vector(config[0]+ "/single_resource/commu_size.log"))
y2 = np.array(load_data_vector(config[1]+"/" + grid + "/single_resource/commu_size_steal.log"))+np.array(load_data_vector(config[1] + "/" + grid + "/single_resource/commu_size_gateway.log"))
ax2 = ax.twinx()
comm1 = ax2.plot(x-width, y1, label='MR-BODP', linestyle='-.', linewidth=4, color=[0.4, 0.4, 0.4], marker="s", markersize=16)
comm2 = ax2.plot(x+width, y2, label='WST-FGP (Shuffle)', linestyle='-.', linewidth=4, color=[0.8, 0.8, 0.8], marker="<", markersize=16)
ax2.set_ylabel("Commu. size (MB)", fontsize=larger_size)
ax2.set_xticklabels(['1','2','3','4','5','6'])
ax2.set_ylim([-30, 25])
ax2.set_yticks([0, 10, 20])
plt.tick_params(labelsize=larger_size)
#plt.legend(loc=9, ncol=4, bbox_to_anchor=(0.5, 1.16), framealpha=1, prop={'size': larger_size})
plt.figlegend((latency1[0], comm1[0], latency2[0], comm2[0]), ('MR-BODP',' ', 'WST-FGP ('+grid+' Shuffle)', ' '), loc=9, ncol=2, bbox_to_anchor=(0.5, 1), framealpha=1, prop={'size': larger_size})
#fig.tight_layout()
return fig
|
69c25829adf9ef3d5dc818621bb724bb92c29f31
| 3,645,043
|
def comp_rot_dir(self):
"""Compute the rotation direction of the winding
Parameters
----------
self : LamSlotWind
A LamSlotWind object
Returns
-------
rot_dir : int
-1 or +1
"""
MMF = self.comp_mmf_unit()
p = self.get_pole_pair_number()
# Compute rotation direction from unit mmf
results = MMF.get_harmonics(1, "freqs", "wavenumber")
H1 = results[MMF.symbol]
return sign(H1[0])
|
524fdfd195a70bcd07b89e594a90e624ec4db4ea
| 3,645,044
|
def search_pk(uuid):
"""uuid can be pk."""
IterHarmonicApprox = WorkflowFactory("phonopy.iter_ha")
qb = QueryBuilder()
qb.append(IterHarmonicApprox, tag="iter_ha", filters={"uuid": {"==": uuid}})
PhonopyWorkChain = WorkflowFactory("phonopy.phonopy")
qb.append(PhonopyWorkChain, with_incoming="iter_ha")
qb.order_by({PhonopyWorkChain: {"ctime": "asc"}})
pks = [n[0].pk for n in qb.all() if n[0].is_finished_ok]
return pks
|
d1a8d9d32e6d3272d49163ee8abf74363a520c8d
| 3,645,045
|
def _region_bulk(mode='full', scale=.6):
"""
Estimate of the temperature dependence of bulk viscosity zeta/s.
"""
plt.figure(figsize=(scale*textwidth, scale*aspect*textwidth))
ax = plt.axes()
def zetas(T, zetas_max=0, zetas_width=1):
return zetas_max / (1 + ((T - Tc)/zetas_width)**2)
chain = mcmc.Chain()
keys, ranges = map(list, zip(*(
i for i in zip(chain.keys, chain.range)
if i[0].startswith('zetas')
)))
T = Tc*np.linspace(.5, 1.5, 1000)
maxdict = {k: r[1] for k, r in zip(keys, ranges)}
ax.fill_between(
T, zetas(T, **maxdict),
label='Prior range',
**region_style
)
ax.set_xlim(T[0], T[-1])
ax.set_ylim(0, 1.05*maxdict['zetas_max'])
auto_ticks(ax, minor=2)
ax.set_xlabel('Temperature [GeV]')
ax.set_ylabel(r'$\zeta/s$')
if mode == 'empty':
return
if mode == 'examples':
for args in [
(.025, .01),
(.050, .03),
(.075, .05),
]:
ax.plot(T, zetas(T, *args), color=plt.cm.Blues(.7))
return
# use a Gaussian mixture model to classify zeta/s parameters
samples = chain.load(*keys, thin=10)
gmm = GaussianMixture(n_components=3, covariance_type='full').fit(samples)
labels = gmm.predict(samples)
for n in range(gmm.n_components):
params = dict(zip(
keys,
(mcmc.credible_interval(s)[1] for s in samples[labels == n].T)
))
if params['zetas_max'] > .05:
cmap = 'Blues'
elif params['zetas_width'] > .03:
cmap = 'Greens'
else:
cmap = 'Oranges'
curve = zetas(T, **params)
color = getattr(plt.cm, cmap)(.65)
ax.plot(T, curve, color=color, zorder=-10)
ax.fill_between(T, curve, color=color, alpha=.1, zorder=-20)
ax.legend(loc='upper left')
|
9a76f28b47a5e8c1ce45a9ea0dcaef723032bcce
| 3,645,046
|
def bias(struct,subover=True,trim=True, subbias=False, bstruct=None,
median=False, function='polynomial',order=3,rej_lo=3,rej_hi=3,niter=10,
plotover=False, log=None, verbose=True):
"""Bias subtracts the bias levels from a frame. It will fit and subtract the overscan
region, trim the images, and subtract a master bias if required.
struct--image structure
subover--subtract the overscan region
trim--trim the image
subbias--subtract master bias
bstruct--master bias image structure
median--use the median instead of mean in image statistics
function--form to fit to the overscan region
order--order for the function
rej_lo--sigma of low points to reject in the fit
rej_hi--sigma of high points to reject in the fit
niter--number of iterations
log--saltio log for recording information
verbose--whether to print to stdout
"""
infile=saltkey.getimagename(struct[0])
# how many extensions?
nsciext = saltkey.get('NSCIEXT',struct[0])
nextend = saltkey.get('NEXTEND',struct[0])
nccd = saltkey.get('NCCDS',struct[0])
# how many amplifiers?--this is hard wired
amplifiers = 2 * nccd
#log the process
if subover and log:
message = '%28s %7s %5s %4s %6s' % \
('HDU','Overscan','Order','RMS','Niter')
log.message('\n --------------------------------------------------',
with_header=False, with_stdout=verbose)
log.message(message, with_header=False, with_stdout=verbose)
log.message(' --------------------------------------------------',
with_header=False, with_stdout=verbose)
if (plotover):
plt.figure(1)
plt.axes([0.1,0.1,0.8,0.8])
plt.xlabel('CCD Column')
plt.ylabel('Pixel Counts (e-)')
plt.ion()
#loop through the extensions and subtract the bias
for i in range(1,nsciext+1):
if struct[i].name=='SCI':
#get the bias section
biassec = saltkey.get('BIASSEC',struct[i])
y1,y2,x1,x2 = saltio.getSection(biassec, iraf_format=True)
#get the data section
datasec = saltkey.get('DATASEC',struct[i])
dy1,dy2, dx1, dx2 = saltio.getSection(datasec, iraf_format=True)
#setup the overscan region
if subover:
yarr=np.arange(y1,y2, dtype=float)
data=struct[i].data
odata=struct[i].data[y1:y2,x1:x2]
if median:
odata=np.median((struct[i].data[y1:y2,x1:x2]),axis=1)
olevel=np.median((struct[i].data[y1:y2,x1:x2]))
saltkey.new('OVERSCAN','%f' % (olevel),'Overscan median value', struct[i])
else:
odata=np.mean((struct[i].data[y1:y2,x1:x2]),axis=1)
olevel=np.mean((struct[i].data[y1:y2,x1:x2]))
saltkey.new('OVERSCAN','%f' % (olevel),'Overscan mean value', struct[i])
#fit the overscan region
ifit=saltfit.interfit(yarr, odata, function=function, \
order=order, thresh=rej_hi, niter=niter)
try:
ifit.interfit()
coeffs=ifit.coef
ofit=ifit(yarr)
omean, omed, osigma=saltstat.iterstat((odata-ofit), sig=3, niter=5)
except ValueError:
#catch the error if it is a zero array
ofit=np.array(yarr)*0.0
osigma=0.0
except TypeError:
#catch the error if it is a zero array
ofit=np.array(yarr)*0.0
osigma=0.0
#subtract the overscan region
for j in range(len(struct[i].data[0])):
struct[i].data[y1:y2,j] -= ofit
#report the information
if log:
message = '%25s[%1d] %8.2f %3d %7.2f %3d' % \
(infile, i, olevel, order, osigma, niter)
log.message(message, with_stdout=verbose, with_header=False)
#add the statistics to the image header
saltkey.new('OVERRMS','%f' % (osigma),'Overscan RMS value', struct[i])
#update the variance frame
if saltkey.found('VAREXT', struct[i]):
vhdu=saltkey.get('VAREXT', struct[i])
try:
vdata=struct[vhdu].data
#The bias level should not be included in the noise from the signal
for j in range(len(struct[i].data[0])):
vdata[y1:y2,j] -= ofit
#add a bit to make sure that the minimum error is the rednoise
rdnoise= saltkey.get('RDNOISE',struct[i])
vdata[vdata<rdnoise**2]=rdnoise**2
struct[vhdu].data=vdata+osigma**2
except Exception as e:
msg='Cannot update the variance frame in %s[%i] because %s' % (infile, vhdu, e)
raise SaltError(msg)
#plot the overscan region
if plotover:
plt.plot(yarr, odata)
plt.plot(yarr, ofit)
#trim the data and update the headers
if trim:
struct[i].data=struct[i].data[dy1:dy2,dx1:dx2]
datasec = '[1:'+str(dx2-dx1)+',1:'+str(dy2-dy1)+']'
saltkey.put('DATASEC',datasec,struct[i])
#update the variance frame
if saltkey.found('VAREXT', struct[i]):
vhdu=saltkey.get('VAREXT', struct[i])
struct[vhdu].data=struct[vhdu].data[dy1:dy2,dx1:dx2]
datasec = '[1:'+str(dx2-dx1)+',1:'+str(dy2-dy1)+']'
saltkey.put('DATASEC',datasec,struct[vhdu])
#update the BPM frame
if saltkey.found('BPMEXT', struct[i]):
bhdu=saltkey.get('BPMEXT', struct[i])
struct[bhdu].data=struct[bhdu].data[dy1:dy2,dx1:dx2]
datasec = '[1:'+str(dx2-dx1)+',1:'+str(dy2-dy1)+']'
saltkey.put('DATASEC',datasec,struct[bhdu])
#subtract the master bias if necessary
if subbias and bstruct:
struct[i].data -= bstruct[i].data
#update the variance frame
if saltkey.found('VAREXT', struct[i]):
vhdu=saltkey.get('VAREXT', struct[i])
try:
vdata=struct[vhdu].data
struct[vhdu].data=vdata+bstruct[vhdu].data
except Exception as e:
msg='Cannot update the variance frame in %s[%i] because %s' % (infile, vhdu, e)
raise SaltError(msg)
if plotover:
plt.ioff()
plt.show()
return struct
|
035da6b5eaa73a30ffec3f148d33199b275529a8
| 3,645,047
|
def getItemStatus(selected_item, store_id, num_to_average):
""" Method pulls the stock status of the selected item in the given store
:param selected_item: current item being processed (toilet paper or hand sanitizer)
:param store_id: id of the current store
:param num_to_average: number of recent status updates to include in the cumulative moving average status update
:return: returns the status of the item (integer between 1-5)
"""
db = mysql.connect()
cursor = db.cursor()
query = "SELECT rating FROM status_list WHERE id = '" + str(store_id) + "' AND item = " + str(selected_item) +";"
cursor.execute(query)
status_values = []
status = cursor.fetchall()
moving_average = 0
for i in range(len(status)):
status_values.append(5-(status[i][0])+1)
if len(status_values) != 0:
for i in range(min(len(status_values),num_to_average)):
moving_average += status_values[i]
moving_average = moving_average/min(num_to_average, len(status_values))
cursor.close()
db.close()
return round(moving_average)
|
00c0ecdec56ac4446b3db247fd234daeecada589
| 3,645,048
|
def filter_and_copy_table(tab, to_remove):
""" Filter and copy a FITS table.
Parameters
----------
tab : FITS Table object
to_remove : [int ...}
list of indices to remove from the table
returns FITS Table object
"""
nsrcs = len(tab)
mask = np.zeros((nsrcs), '?')
mask[to_remove] = True
inv_mask = np.invert(mask)
out_tab = tab[inv_mask]
return out_tab
|
cc13a002715c36cc2c07b836a5045cfb62311529
| 3,645,049
|
def _archive_logs(conn, node_type, logger, node_ip):
"""Creates an archive of all logs found under /var/log/cloudify plus
journalctl.
"""
archive_filename = 'cloudify-{node_type}-logs_{date}_{ip}.tar.gz'.format(
node_type=node_type,
date=get_host_date(conn),
ip=node_ip
)
archive_path = '/tmp/{}'.format(archive_filename)
journalctl_destination_path = '/var/log/cloudify/journalctl.log'
conn.sudo(
'bash -c "journalctl > /tmp/jctl && mv /tmp/jctl {0}"'
.format(journalctl_destination_path),
)
logger.info('Creating logs archive in {0}: {1}'.format(node_type,
archive_path))
conn.sudo(
'tar -czf {0} -C /var/log cloudify '
'--warning=no-file-changed'.format(archive_path),
warn=True
)
conn.run('test -e {0}'.format(archive_path))
conn.sudo('rm {0}'.format(journalctl_destination_path))
return archive_path
|
970683258d664a1170fe9ab5253287313fa9f871
| 3,645,050
|
def get_scripts():
"""Returns the list of available scripts
Returns:
A dict holding the result message
"""
return Response.ok("Script files successfully fetched.", {
"scripts": list_scripts()
})
|
5aa2ecd9a19c3e4d577c679e5249b71b01b62f20
| 3,645,051
|
from typing import Any
from typing import Optional
import functools
import contextvars
import asyncio
from typing import cast
async def invoke(
fn: callbacks.BaseFn,
*args: Any,
settings: Optional[configuration.OperatorSettings] = None,
cause: Optional[causation.BaseCause] = None,
**kwargs: Any,
) -> Any:
"""
Invoke a single function, but safely for the main asyncio process.
Used mostly for handler functions, and potentially slow & blocking code.
Other callbacks are called directly, and are expected to be synchronous
(such as handler-selecting (lifecycles) and resource-filtering (``when=``)).
A full set of the arguments is provided, expanding the cause to some easily
usable aliases. The function is expected to accept ``**kwargs`` for the args
that it does not use -- for forward compatibility with the new features.
The synchronous methods are executed in the executor (threads or processes),
thus making it non-blocking for the main event loop of the operator.
See: https://pymotw.com/3/asyncio/executors.html
"""
if is_async_fn(fn):
kwargs = build_kwargs(cause=cause, _sync=False, **kwargs)
result = await fn(*args, **kwargs) # type: ignore
else:
kwargs = build_kwargs(cause=cause, _sync=True, **kwargs)
# Not that we want to use functools, but for executors kwargs, it is officially recommended:
# https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor
real_fn = functools.partial(fn, *args, **kwargs)
# Copy the asyncio context from current thread to the handlr's thread.
# It can be copied 2+ times if there are sub-sub-handlers (rare case).
context = contextvars.copy_context()
real_fn = functools.partial(context.run, real_fn)
# Prevent orphaned threads during daemon/handler cancellation. It is better to be stuck
# in the task than to have orphan threads which deplete the executor's pool capacity.
# Cancellation is postponed until the thread exits, but it happens anyway (for consistency).
# Note: the docs say the result is a future, but typesheds say it is a coroutine => cast()!
loop = asyncio.get_event_loop()
executor = settings.execution.executor if settings is not None else None
future = cast(aiotasks.Future, loop.run_in_executor(executor, real_fn))
cancellation: Optional[asyncio.CancelledError] = None
while not future.done():
try:
await asyncio.shield(future) # slightly expensive: creates tasks
except asyncio.CancelledError as e:
cancellation = e
if cancellation is not None:
raise cancellation
result = future.result()
return result
|
4f132bab3eaae0ebe64f4cfdcfefa89cd2b59f3f
| 3,645,052
|
import sys
def getLatestFare(_origin, _destination, _date):
"""
_origin and _destination take airport codes , e.g. BLR for Bangalore
_date in format YYYY-MM-DD e.g.2016-10-30
Returns either:
10 latest results from the results page.
1 lastest result from the results page.
"""
try:
_url = base_url.format(_origin, _destination, _date)
soup = getSoup(_url)
fare_list = soup.find('ul').find_all('li',{"class":["active","not-active"]})
fares = []
for fare in fare_list:
fares.append({'price':getPrice(fare.find('a').find('div').findChildren()[2].string),'date':fare.find('a').find('div').findChildren()[0].string})
except Exception:
sys.exit("No Route found.")
return fares
|
209c9c4ee05dc25b575565b0953097049ba21c28
| 3,645,053
|
from datetime import datetime
def home():
"""Renders the home page."""
return render_template(
'index.html',
title='Rococal',
year=datetime.now().year,
)
|
4cee1eed6c45d79aad0acebdd55ed61ef7dff9da
| 3,645,054
|
def Dx(x):
"""Nombre de survivants actualisés.
Args:
x: l'âge.
Returns:
Nombre de survivants actualisés.
"""
return lx(x)*v**x
|
886fdfb8b5337e9520f94fa937cb967328391823
| 3,645,055
|
def tracek(k,aee,aii,see,sii,tau=1,alpha=0):
""" Trace of recurrently connected network of E,I units, analytically determined
input:
k: spatial frequency
aee: ampltidue E to E connectivity
aii: ampltidue I to I connectivity
see: standard deviation/width of E to E connectivity
sii: standard deviation/width of I to I connectivity
tau: ratio of excitatory to inhibitory time constant, default is 1
alpha: float, 0<=alpha<=1, strength of self-inhibitory connections
"""
aii_s = aii*(1-alpha)
aii_a = aii*alpha
return -1 - (1 + aii_s*H(k,sii) + aii_a)/tau + aee*H(k,see)
|
005c612f8d54b4ba61b7e701d40b9814136695b4
| 3,645,056
|
import os
def set_working_dir_repo_root(func):
"""
Decorator for checking whether the
current working dir is set as root of repo.
If not, changes the working dir to root of repo
Returns
-------
"""
def inner(*args, **kwargs):
git_repo = git.Repo(".", search_parent_directories=True)
git_root = git_repo.working_tree_dir
if os.getcwd() != git_root:
logger.info(
f"current working dir: {os.getcwd()},"
f"is not correctly set as repo root, "
f"so changing to {git_root}"
)
os.chdir(git_root)
else:
logger.info(
f"current working dir correctly set as" f" repo root {os.getcwd()}"
)
result = func(*args, **kwargs)
return result
return inner
|
07a6d667129d94557fdd20956124933920338e30
| 3,645,057
|
def get_verbose_name(model_or_queryset, field):
"""
returns the value of the ``verbose_name`` of a field
typically used in the templates where you can have a dynamic queryset
:param model_or_queryset: target object
:type model_or_queryset: :class:`django.db.models.Model`, :class:`django.db.query.Queryset`
:param field: field to get the verbose name
:type field: :class:`django.db.models.Field`, basestring
:return: translated field verbose name
:rtype: unicode
Valid uses:
>>> from django.contrib.auth.models import User, Permission
>>> user = User()
>>> p = Permission()
>>> print unicode(get_verbose_name(user, 'username'))
username
>>> print unicode(get_verbose_name(User, 'username'))
username
>>> print unicode(get_verbose_name(User.objects.all(), 'username'))
username
>>> print unicode(get_verbose_name(User.objects, 'username'))
username
>>> print unicode(get_verbose_name(User.objects, user._meta.get_field_by_name('username')[0]))
username
>>> print unicode(get_verbose_name(p, 'content_type.model'))
python model class name
>>> get_verbose_name(object, 'aaa')
Traceback (most recent call last):
...
ValueError: `get_verbose_name` expects Manager, Queryset or Model as first parameter (got <type 'type'>)
"""
if isinstance(model_or_queryset, models.Manager):
model = model_or_queryset.model
elif isinstance(model_or_queryset, QuerySet):
model = model_or_queryset.model
elif isinstance(model_or_queryset, models.Model):
model = model_or_queryset
elif type(model_or_queryset) is models.base.ModelBase:
model = model_or_queryset
else:
raise ValueError('`get_verbose_name` expects Manager, Queryset or Model as first parameter (got %s)' % type(
model_or_queryset))
if isinstance(field, basestring):
field = get_field_by_path(model, field)
elif isinstance(field, models.Field):
field = field
else:
raise ValueError('`get_verbose_name` field_path must be string or Field class')
return field.verbose_name
|
1f395d62a20b307dce2f802c498630fd237aec33
| 3,645,058
|
def if_then_else(cond, t, f, span=None):
"""Conditional selection expression.
Parameters
----------
cond : PrimExpr
The condition
t : PrimExpr
The result expression if cond is true.
f : PrimExpr
The result expression if cond is false.
span : Optional[Span]
The location of this operator in the source.
Returns
-------
result : Node
The result of conditional expression.
Note
----
Unlike Select, if_then_else will not execute
the branch that does not satisfy the condition.
You can use it to guard against out of bound access.
Unlike Select, if_then_else cannot be vectorized
if some lanes in the vector have different conditions.
"""
return _ffi_api._OpIfThenElse(convert(cond), convert(t), convert(f), span)
|
dba758c13d3108244f389f0cbae97c1eeb1f8e04
| 3,645,059
|
import argparse
def get_args() -> argparse.Namespace:
"""Get arguments."""
parser = argparse.ArgumentParser(description="Dump Instance")
parser.add_argument(
"network_state_path", type=str, help="File path to network state dump JSON."
)
parser.add_argument("--host", type=str, help="Host to bind to", default="127.0.0.1")
parser.add_argument(
"--port", type=int, help="Port to run on (defaults to 3000)", default=3000
)
parser.add_argument(
"--log-level",
type=str.upper,
help="Log level",
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR"],
)
parser.add_argument(
"--events-to-replay-path",
type=str,
help=(
"File path to events to replay JSON. Events provided by "
"--combined-replay-dump-path option will be first, followed by events "
"from this file."
),
default=None,
)
parser.add_argument(
"--command-results-path",
type=str,
help=(
"File path to command result JSON. Command results provided by "
"--combined-replay-dump-path option will be first, followed by results "
"from this file."
),
default=None,
)
parser.add_argument(
"--combined-replay-dump-path",
type=str,
help=(
"File path to the combined event and command result dump JSON. Events and "
"command results will be extracted in the order they were received."
),
default=None,
)
return parser.parse_args()
|
30b1aacc2c13d1ac8fad3411b95d9aeabf625f62
| 3,645,060
|
def get_resources(filetype):
"""Find all HTML template or JavaScript files in the package.
Caches the results for quick access.
Parameters
----------
filetype : {'templates', 'js'}
The type of file resource needed.
Returns
-------
:class:`dict`
A dictionary mapping filename to the contents of the file.
Raises
------
ValueError
If `filetype` is unknown.
"""
global _resource_cache
if filetype not in _resource_cache:
raise ValueError("Unknown filetype '{0}' for get_resources()!".format(filetype))
if _resource_cache[filetype] is None:
_resource_cache[filetype] = dict()
for f in resource_listdir('prospect', filetype):
if not f.startswith("."):
_resource_cache[filetype][f] = resource_string('prospect', filetype + '/' + f).decode('utf-8')
return _resource_cache[filetype]
|
73244ac590db5a310170142b6b43b7840cfc94ca
| 3,645,061
|
def sum_fn(xnum, ynum):
""" A function which performs a sum """
return xnum + ynum
|
61a1ae2e4b54348b9e3839f7f2779edd03f181df
| 3,645,062
|
def categorical_iou(y_true, y_pred, target_classes=None, strict=True):
"""画像ごとクラスごとのIoUを算出して平均するmetric。
Args:
target_classes: 対象のクラスindexの配列。Noneなら全クラス。
strict: ラベルに無いクラスを予測してしまった場合に減点されるようにするならTrue、ラベルにあるクラスのみ対象にするならFalse。
"""
axes = list(range(1, K.ndim(y_true)))
y_classes = K.argmax(y_true, axis=-1)
p_classes = K.argmax(y_pred, axis=-1)
active_list = []
iou_list = []
for c in target_classes or range(y_true.shape[-1]):
with tf.name_scope(f"class_{c}"):
y_c = K.equal(y_classes, c)
p_c = K.equal(p_classes, c)
inter = K.sum(K.cast(tf.math.logical_and(y_c, p_c), "float32"), axis=axes)
union = K.sum(K.cast(tf.math.logical_or(y_c, p_c), "float32"), axis=axes)
active = union > 0 if strict else K.any(y_c, axis=axes)
iou = inter / (union + K.epsilon())
active_list.append(K.cast(active, "float32"))
iou_list.append(iou)
return K.sum(iou_list, axis=0) / (K.sum(active_list, axis=0) + K.epsilon())
|
b79f399479127271c3af3ee9b28203622f8d17fe
| 3,645,063
|
def convert_string(string: str, type: str) -> str:
"""Convert the string by [e]ncrypting or [d]ecrypting.
:param type: String 'e' for encrypt or 'd' for decrypt.
:return: [en/de]crypted string.
"""
hash_string = hash_()
map_ = mapping(hash_string)
if type.lower() == 'e':
output = encrypt(string, map_)
elif type.lower() == 'd':
map_ = {v: k for k, v in map_.items()}
output = decrypt(string, map_)
else:
output = ''
return output
|
824122fa035dcb164f21eadb5c0e840f8acd2914
| 3,645,064
|
def create_saml_security_context(token, private_key):
"""
Create a security context for SAML token based
authentication scheme
:type token: :class:`str`
:param token: SAML Token
:type private_key: :class:`str`
:param private_key: Absolute file path of the private key of the user
:rtype: :class:`vmware.vapi.core.SecurityContext`
:return: Newly created security context
"""
private_key_data = None
with open(private_key, 'r') as fp:
private_key_data = fp.read()
return SecurityContext({SCHEME_ID: SAML_SCHEME_ID,
PRIVATE_KEY: private_key_data,
SAML_TOKEN: token,
SIGNATURE_ALGORITHM: DEFAULT_ALGORITHM_TYPE})
|
430e71697eb3e5b3df438f400a7f07ab8e936af7
| 3,645,065
|
def predictIsDeviceLeftRunning():
"""
Returns if the device is presumed left running without a real need
---
parameters:
name: -device_id
in: query
description: the device id for which the prediction is made
required: false
style: form
explode: true
schema:
type: integer
format: int32
responses:
"200":
description: A boolean, True or False, if the device is left running or not
content:
application/json:
schema:
type: boolean
"400":
description: Bad argument
"""
device_id = int(request.args.get("id", -1))
if device_id == -1:
return Response(jsonify("Bad argument"), status=400)
device = DeviceObject(UserObject.getMockUser(), device_id)
return jsonify(device.predictDeviceLeftRunning())
|
8a50962f3c52e100d79a74413df0d4bf8230bafd
| 3,645,066
|
from typing import Optional
from typing import Callable
from pathlib import Path
def load(
source: AnyPath,
wordnet: Wordnet,
get_synset_id: Optional[Callable] = None,
) -> Freq:
"""Load an Information Content mapping from a file.
Arguments:
source: A path to an information content weights file.
wordnet: A :class:`wn.Wordnet` instance with synset
identifiers matching the offsets in the weights file.
get_synset_id: A callable that takes a synset offset and part
of speech and returns a synset ID valid in *wordnet*.
Raises:
:class:`wn.Error`: If *wordnet* does not have exactly one
lexicon.
Example:
>>> import wn, wn.ic
>>> pwn = wn.Wordnet('pwn:3.0')
>>> path = '~/nltk_data/corpora/wordnet_ic/ic-brown.dat'
>>> freq = wn.ic.load(path, pwn)
"""
source = Path(source).expanduser().resolve(strict=True)
assert len(wordnet.lexicons()) == 1
lexid = wordnet.lexicons()[0].id
if get_synset_id is None:
get_synset_id = synset_id_formatter(prefix=lexid)
freq = _initialize(wordnet, 0.0)
with source.open() as icfile:
for offset, pos, weight, is_root in _parse_ic_file(icfile):
ssid = get_synset_id(offset=offset, pos=pos)
# synset = wordnet.synset(ssid)
freq[pos][ssid] = weight
if is_root:
freq[pos][None] += weight
return freq
|
962bdfbe5d101bdeae966566c16d8a7216c36d8b
| 3,645,067
|
from datetime import datetime
def iso_time_str() -> str:
"""Return the current time as ISO 8601 format
e.g.: 2019-01-19T23:20:25.459Z
"""
now = datetime.datetime.utcnow()
return now.isoformat()[:-3]+'Z'
|
203617006175079181d702f7d7ed6d2974714f2e
| 3,645,068
|
def mass(snap: Snap) -> Quantity:
"""Particle mass."""
massoftype = snap._file_pointer['header/massoftype'][()]
particle_type = np.array(
np.abs(get_dataset('itype', 'particles')(snap)).magnitude, dtype=int
)
return massoftype[particle_type - 1] * snap._array_code_units['mass']
|
cf67d66f1e1a47f162b5e538444d2c406b377238
| 3,645,069
|
import os
def _build_pytest_test_results_path(cmake_build_path):
"""
Build the path to the Pytest test results directory.
:param cmake_build_path: Path to the CMake build directory.
:return: Path to the Pytest test results directory.
"""
pytest_results_path = os.path.join(cmake_build_path, TEST_RESULTS_DIR, 'Pytest')
return pytest_results_path
|
52198ce508d5d30c322da285c66ff9ba45418ebd
| 3,645,070
|
import logging
async def create_object_detection_training(
train_object_detection_model_request: TrainImageModel,
token: str = Depends(oauth2_scheme),
):
"""[API router to train AutoML object detection model]
Args:
train_object_detection_model_request (TrainImageModel): [Train AutoML Object detection model request]
token (str, optional): [Bearer token for authentication]. Defaults to Depends(oauth2_scheme).
Raises:
HTTPException: [Unauthorized exception when invalid token is passed]
error: [Exception in underlying controller]
Returns:
[TrainModelResponse]: [AutoML train object detection model response]
"""
try:
logging.info("Calling /gcp/automl/train_object_detection_model endpoint")
logging.debug(f"Request: {train_object_detection_model_request}")
if decodeJWT(token=token):
response = TrainModelController().train_object_detection_model_controller(
request=train_object_detection_model_request
)
return TrainModelResponse(**response)
else:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid access token",
headers={"WWW-Authenticate": "Bearer"},
)
except Exception as error:
logging.error(
f"Error in /gcp/automl/train_object_detection_model endpoint: {error}"
)
raise error
|
293dc0bfd8acb52a3207138e13028b6766c7be20
| 3,645,071
|
import torch
def batchify_rays(rays_flat, chunk=1024*32, random_directions=None, background_color=None, **kwargs):
"""Render rays in smaller minibatches to avoid OOM.
"""
all_ret = {}
for i in range(0, rays_flat.shape[0], chunk):
ret = render_rays(rays_flat[i:i+chunk], random_directions=random_directions, background_color=background_color, **kwargs)
if random_directions is not None:
ret, mean_regularization_term = ret
for k in ret:
if k not in all_ret:
all_ret[k] = []
all_ret[k].append(ret[k])
all_ret = {k : torch.cat(all_ret[k], 0) for k in all_ret}
if random_directions is None:
return all_ret
else:
return all_ret, mean_regularization_term
|
9897575462e47f98016ebd0a2fcaee186c440f9a
| 3,645,072
|
def extract_surfaces(pvol):
""" Extracts surfaces from a volume.
:param pvol: input volume
:type pvol: abstract.Volume
:return: extracted surface
:rtype: dict
"""
if not isinstance(pvol, BSpline.abstract.Volume):
raise TypeError("The input should be an instance of abstract.Volume")
# Get data from the volume object
vol_data = pvol.data
rational = vol_data['rational']
degree_u = vol_data['degree'][0]
degree_v = vol_data['degree'][1]
degree_w = vol_data['degree'][2]
kv_u = vol_data['knotvector'][0]
kv_v = vol_data['knotvector'][1]
kv_w = vol_data['knotvector'][2]
size_u = vol_data['size'][0]
size_v = vol_data['size'][1]
size_w = vol_data['size'][2]
cpts = vol_data['control_points']
# Determine object type
obj = NURBS.Surface if rational else BSpline.Surface
# u-v plane
surflist_uv = []
for w in range(size_w):
surf = obj()
surf.degree_u = degree_u
surf.degree_v = degree_v
surf.ctrlpts_size_u = size_u
surf.ctrlpts_size_v = size_v
surf.ctrlpts2d = [[cpts[v + (size_v * (u + (size_u * w)))] for v in range(size_v)] for u in range(size_u)]
surf.knotvector_u = kv_u
surf.knotvector_v = kv_v
surflist_uv.append(surf)
# u-w plane
surflist_uw = []
for v in range(size_v):
surf = obj()
surf.degree_u = degree_u
surf.degree_v = degree_w
surf.ctrlpts_size_u = size_u
surf.ctrlpts_size_v = size_w
surf.ctrlpts2d = [[cpts[v + (size_v * (u + (size_u * w)))] for w in range(size_w)] for u in range(size_u)]
surf.knotvector_u = kv_u
surf.knotvector_v = kv_w
surflist_uw.append(surf)
# v-w plane
surflist_vw = []
for u in range(size_u):
surf = obj()
surf.degree_u = degree_v
surf.degree_v = degree_w
surf.ctrlpts_size_u = size_v
surf.ctrlpts_size_v = size_w
surf.ctrlpts2d = [[cpts[v + (size_v * (u + (size_u * w)))] for w in range(size_w)] for v in range(size_v)]
surf.knotvector_u = kv_v
surf.knotvector_v = kv_w
surflist_vw.append(surf)
# Return shapes as a dict object
return dict(uv=surflist_uv, uw=surflist_uw, vw=surflist_vw)
|
cd2b24f200adf9f5ff29cc847693d57d450521ad
| 3,645,073
|
import os
import logging
def read_file(filepath: str, config: Config = DEFAULT_CONFIG) -> pd.DataFrame:
"""
Read .csv, .xlsx, .xls to pandas dataframe. Read only a certain sheet name and skip
to header row using sheet_name and header_index.
:filepath: path to file (str)
:config: dtype.Config
Returns pd.DataFrame
"""
filename = os.path.basename(filepath).lower()
excel_header_row = utils._or(config.excel_header_row, config.header_row)
csv_header_row = utils._or(config.csv_header_row, config.header_row)
if filename == "pdappend.csv":
logging.warning("Cannot read reserved result filename (pdappend.csv)")
return pd.DataFrame()
if not is_filetype(filename):
raise ValueError(f"file {filename} is not .csv, .xslx, or .xls")
if ".xls" in filename:
return pd.read_excel(
filepath,
sheet_name=config.sheet_name,
skiprows=list(range(0, int(excel_header_row))),
)
if filename.endswith(".csv"):
return pd.read_csv(filepath, skiprows=list(range(0, int(csv_header_row))))
|
09f9e626be020cf2d3c02a09863489cf84735c05
| 3,645,074
|
def euler2quaternion( euler_angs ):
"""
Description
-----------
This code is directly from the following reference
[REF] https://computergraphics.stackexchange.com/questions/8195/how-to-convert-euler-angles-to-quaternions-and-get-the-same-euler-angles-back-fr
Converting a R4 quaternion vector (w, x, y, z) to Euler Angle (Roll, Pitch, Yaw)
Arguments
---------
[NAME] [TYPE] [DESCRIPTION]
(1) yaw, pitch, roll The euler angles of the given quaternion vector.
[OUTPUTS]
-----------
[NAME] [TYPE] [DESCRIPTION]
(1) quatVec List The quaternion vector, ordered in w, x, y and z
"""
yaw, pitch, roll = euler_angs[ : ]
cy = np.cos( yaw * 0.5 )
sy = np.sin( yaw * 0.5 )
cp = np.cos( pitch * 0.5 )
sp = np.sin( pitch * 0.5 )
cr = np.cos( roll * 0.5 )
sr = np.sin( roll * 0.5 )
w = cr * cp * cy + sr * sp * sy;
x = sr * cp * cy - cr * sp * sy;
y = cr * sp * cy + sr * cp * sy;
z = cr * cp * sy - sr * sp * cy;
return w,x,y,z
|
307385911573af8a6e65617a8b438ca680130b79
| 3,645,075
|
def run_server(server, thread=False, port=8080):
"""
Runs the server.
@param server if None, it becomes ``HTTPServer(('localhost', 8080), SimpleHandler)``
@param thread if True, the server is run in a thread
and the function returns right away,
otherwite, it runs the server.
@param port port to use
@return server if thread is False, the thread otherwise (the thread is started)
@warning If you kill the python program while the thread is still running, python interpreter might be closed completely.
"""
if server is None:
server = HTTPServer(('localhost', port), SimpleHandler)
if thread:
th = ThreadServer(server)
th.start()
return th
else:
server.serve_forever()
return server
|
524b58f012a1029e52d845f40a20e2ae1f7f9c0a
| 3,645,076
|
def validate(aLine):
"""
>>> validate(b"$GPGSA,A,2,29,19,28,,,,,,,,,,23.4,12.1,20.0*0F")
[b'GPGSA', b'A', b'2', b'29', b'19', b'28', b'', b'', b'', b'', b'', b'', b'', b'', b'', b'23.4', b'12.1', b'20.0']
>>> validate(b"$GPGSA,A,2,29,19,28,,,,,,,,,,23.4,") # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/doctest.py", line 1330, in __run
compileflags, 1), test.globs)
File "<doctest __main__.validate[1]>", line 1, in <module>
validate(b"$GPGSA,A,2,29,19,28,,,,,,,,,,23.4,")
File "/Users/slott/Documents/Projects/NMEA-Tools/nmea_checksum.py", line 23, in validate
assert sentence[0] in b'$!', "Unexpected {} not in ({}, {})".format(sentence[0], b'$', b'!')
IndexError: index out of range
>>> validate(b"29,19,28,,,,,,,,,,23.4,12.1,20.0*0F") # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/doctest.py", line 1330, in __run
compileflags, 1), test.globs)
File "<doctest __main__.validate[2]>", line 1, in <module>
validate(b"29,19,28,,,,,,,,,,23.4,12.1,20.0*0F") # doctest: +IGNORE_EXCEPTION_DETAIL
File "/Users/slott/Documents/Projects/NMEA-Tools/nmea_checksum.py", line 32, in validate
assert sentence[0] in b'$!', "Unexpected {} not in ({}, {})".format(sentence[0], b'$', b'!')
AssertionError: Unexpected 50 not in (b'$', b'!')
>>> validate(b'$GPGLL,2542.9243,N,08013.6310,W,162823.000,A*29')
[b'GPGLL', b'2542.9243', b'N', b'08013.6310', b'W', b'162823.000', b'A']
"""
sentence, star, checksum = aLine.rpartition(b'*')
assert sentence[0] in b'$!', f"Unexpected {sentence[0]} not in b'$!'
if star == b'*':
cs = reduce(xor, sentence[1:])
assert int(checksum, 16) == cs
return sentence[1:].split(b',')
|
a8f302f0a03f567bc3c61930ecdf147ff9670b04
| 3,645,077
|
def matlabize(s):
"""Make string s suitable for use as a MATLAB function/script name"""
s = s.replace(' ', '_')
s = s.replace('.', '_')
s = s.replace('-', '_')
assert len(s) <= 63 # MATLAB function/script name length limitation
return s
|
5dccb9497a3ee28dae5fb7de6e15a1fa02f144cf
| 3,645,078
|
def getApiResults(case, installer, version, criteria):
"""
Get Results by calling the API
criteria is to consider N last results for the case success criteria
"""
results = json.dumps([])
# to remove proxy (to be removed at the end for local test only)
# proxy_handler = urllib2.ProxyHandler({})
# opener = urllib2.build_opener(proxy_handler)
# urllib2.install_opener(opener)
# url = "http://127.0.0.1:8000/results?case=" + case + \
# "&period=30&installer=" + installer
period = get_config('general.period')
url_base = get_config('testapi.url')
nb_tests = get_config('general.nb_iteration_tests_success_criteria')
url = (url_base + "?case=" + case +
"&period=" + str(period) + "&installer=" + installer +
"&version=" + version)
if criteria:
url += "&last=" + str(nb_tests)
proxy = get_config('general.proxy')
response = requests.get(url, proxies=proxy)
try:
results = json.loads(response.content)
except Exception: # pylint: disable=broad-except
print "Error when retrieving results form API"
return results
|
d54eaf785bc1e80e633cf3f6588f135c54425b79
| 3,645,079
|
def generate_noisy_gaussian(center, std_dev, height, x_domain, noise_domain,
n_datapoints):
"""
Generate a gaussian with some aspect of noise.
Input:
center = central x value
std_dev = standard deviation of the function
height = height (y-off set) of the function
noise_range = uniform random distribution of noise from perfect gauss function
x_range = absolute domain of the gaussian function
n_datapoints = total number of input datapoints of gaussian function
Output: x_values,y_values
x_values = the x-axial array of the gaussian function within the domain
y_values = the y-axial array of the gaussian function within the domain
"""
# Type check.
center = valid.validate_float_value(center)
std_dev = valid.validate_float_value(std_dev, greater_than=0)
height = valid.validate_float_value(height)
x_domain = valid.validate_float_array(x_domain, shape=(2,), size=2)
noise_domain = valid.validate_float_array(noise_domain, shape=(2,), size=2)
n_datapoints = valid.validate_int_value(n_datapoints, greater_than=0)
# Generate the gaussian function and map to an output with the input
# parameters.
x_values, y_values = generate_gaussian(center, std_dev, height,
x_domain=x_domain,
n_datapoints=n_datapoints)
# Imbue the gaussian with random noise.
y_values = misc.generate_noise(y_values, noise_domain,
distribution='uniform')
return x_values, y_values
|
5120bb23be1b98663b61ad67df0aa43c61ed1714
| 3,645,080
|
from typing import Tuple
def filter_group_delay(
sos_or_fir_coef: np.ndarray,
N: int = 2048,
fs: float = None,
sos: bool = True,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Given filter spec in second order sections or (num, den) form, return group delay.
Uses method in [1], which is cited by `scipy.signal.group_delay` but incorrectly implemented.
Inputs:
- sos_or_fir_coef: np.ndarray, second order section of iir filter or fir_coef of a
FIR filter.
- N: int, number of samples to calculate for the impulse and frequency response
- fs: float, sampling rate in Hz. If not None, will return the frequency in Hz,
otherwise normalized frequency will be returned.
- sos: bool. If true, assume `sos_or_fir_coef` is sos, otherwise as fir_coef
Output:
- frequency: np.ndarray, frequency of the frequency response. If fs is None,
unit will be in radians/sample (ranging from 0 to np.pi),
otherwise will be in Hz (ranging from 0 to fs / 2).
- group_delay: np.ndarray, group delay of filter as function of frequency, unit
is in samples.
[1] Richard G. Lyons, "Understanding Digital Signal Processing, 3rd edition", p. 830.
"""
impulse_response = filter_impulse_response(sos_or_fir_coef, N, sos=sos)
k = np.arange(N)
fft_gd = np.real(fft(k * impulse_response) / fft(impulse_response))[0 : N // 2]
omega = (fftfreq(N) * 2 * np.pi)[0 : N // 2]
if fs is not None:
freq = omega_to_f(omega, fs)[0 : N // 2]
return freq, fft_gd
else:
return omega, fft_gd
|
9cdcf30db5f1308dac27ce057f392fb38d805f1f
| 3,645,081
|
import re
def query():
"""Perform a query on the dataset, where the search terms are given by the saleterm parameter"""
# If redis hasn't been populated, stick some tweet data into it.
if redis_db.get("tweet_db_status") != "loaded":
tweet_scraper.add_tweets(default_num_tweets_to_try)
sale_term = request.form['saleterm']
subterms = re.split('\W+', sale_term)
saleterm_keys = ['saleterm-{}'.format(w) for w in subterms if len(w) > 1]
result_dict = {}
num_tweets = 0
if saleterm_keys:
common_tweet_ids = redis_db.sinter(saleterm_keys)
if common_tweet_ids:
result_dict['tweets'] = [redis_db.hgetall(tweet_id) for tweet_id in common_tweet_ids]
num_tweets = len(common_tweet_ids)
result_dict['num_tweets'] = num_tweets
result_dict['saleterm'] = sale_term
resp = jsonify(result_dict)
resp.status_code = 200
return resp
|
9cdb937d45b1314884afb0d53aee174ef160f8a8
| 3,645,082
|
def get_spec_res(z=2.2, spec_res=2.06, pix_size=1.8):
""" Calculates the pixel size (pix_size) and spectral resolution (spec_res) in
km/s for the MOCK SPECTRA.
arguments: z, redshift. spec_res, spectral resoloution in Angst. pixel_size
in sngst.
returns:
(pixel_size, spec_res) in km/s
"""
# conversion factor from Angstrom to km/s at any redshift
conv_fac = 3e5*0.000823/(1+z)
return(pix_size*conv_fac, spec_res*conv_fac)
|
597db8ce00c071624b0877fe211ab9b01ec889de
| 3,645,083
|
from datetime import datetime
import os
def _process_general_config(config: ConfigType) -> ConfigType:
"""Process the `general` section of the config
Args:
config (ConfigType): Config object
Returns:
[ConfigType]: Processed config
"""
general_config = deepcopy(config.general)
general_config.id = general_config.id.replace("/", "_")
if not general_config.commit_id:
general_config.commit_id = utils.get_current_commit_id()
if not general_config.date:
general_config.date = datetime.datetime.now().strftime("%Y-%m-%d %H:%M")
slurm_id = []
env_var_names = ["SLURM_JOB_ID", "SLURM_STEP_ID"]
for var_name in env_var_names:
if var_name in os.environ:
slurm_id.append(str(os.environ[var_name]))
if slurm_id:
general_config.slurm_id = "-".join(slurm_id)
config.general = general_config
return config
|
370367f718c3830964c6f5f276b1d699400fd1ab
| 3,645,084
|
def api_response(response):
"""Response generation for ReST API calls"""
# Errors present
if response.message:
messages = response.message
if not isinstance(messages, list):
messages = [messages]
# Report the errors
return Response({'errors': messages}, status=status.HTTP_400_BAD_REQUEST)
# All OK
return Response(response.data) if not isinstance(response.data, HttpResponseBase) else response.data
|
f41bca36b1cabc6002f730b3b40170415baffc62
| 3,645,085
|
from tensorflow.python.training import moving_averages
def batch_norm(name, inpvar, decay=0.9, epsilon=1e-5, use_affine=True, param_dtype=__default_dtype__):
"""
Batch normalization.
:param name: operator name
:param inpvar: input tensor, of data type NHWC
:param decay: decay for moving average
:param epsilon: epsilon
:param use_affine: add affine transformation after the normalization (to preserve the bias and scale)
:param param_dtype: param dtype
:return: output tensor
"""
assign_moving_average = moving_averages.assign_moving_average
inpvar = as_varnode(inpvar)
shape = inpvar.static_shape
assert len(shape) in [2, 4]
nr_channels = shape[-1]
if len(shape) == 2:
inpvar = inpvar.reshape(-1, 1, 1, nr_channels)
if use_affine:
beta = O.variable('beta', tf.constant_initializer(), shape=[nr_channels], dtype=param_dtype)
gamma = O.variable('gamma', tf.constant_initializer(1.0), shape=[nr_channels], dtype=param_dtype)
else:
beta = O.zeros([nr_channels], name='beta')
gamma = O.ones([nr_channels], name='gamma')
moving_mean = O.variable('mean/ema', tf.constant_initializer(), shape=[nr_channels], trainable=False)
moving_var = O.variable('variance/ema', tf.constant_initializer(1.0), shape=[nr_channels], trainable=False)
env = get_default_env()
if env.flags.compute_update_batch_normalization(name):
xn, batch_mean, batch_var = tf.nn.fused_batch_norm(inpvar, gamma, beta, epsilon=epsilon, is_training=True, name='bn')
else:
xn = tf.nn.batch_normalization(inpvar, moving_mean, moving_var, beta, gamma, variance_epsilon=epsilon, name='bn')
if len(shape) == 2:
xn = O.remove_axis(xn, [1, 2])
if env.flags.compute_update_batch_normalization(name) and \
(not env.has_current_dpc() or env.current_dpc.is_master_device):
update_mean_op = assign_moving_average(moving_mean.impl, batch_mean, decay, zero_debias=False, name='mean_ema_op')
update_var_op = assign_moving_average(moving_var.impl, batch_var, decay, zero_debias=False, name='var_ema_op')
with tf.control_dependencies([update_mean_op, update_var_op]):
return tf.identity(xn, name='out')
else:
return tf.identity(xn, name='out')
|
74565379d15d4ec7cfa647a4f7833328f2c86ac7
| 3,645,086
|
import os
def get_engine(onnx_file_path, engine_file_path="", input_shapes=((1, 3, 640, 640)), force_rebuild=False):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
assert len(input_shapes) in [1, 3], 'length of input_shapes should be 1 or 3, 3 for dynamic input size, got {}'.format(len(input_shapes))
def build_engine():
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER) as parser, builder.create_builder_config() as config:
builder.strict_type_constraints = True
# builder.max_workspace_size = 1 << 30 # deprecated, use config to set max_workspace_size
# builder.fp16_mode = True # deprecated, use config to set FP16 mode
# builder.max_batch_size = 1 # deprecated, use EXPLICIT_BATCH
config.set_flag(trt.BuilderFlag.FP16)
config.max_workspace_size=GiB(1)
# Parse model file
# Try to load a previously generated graph in ONNX format:
if not os.path.exists(onnx_file_path):
print('ONNX file {} not found, please generate it first.'.format(
onnx_file_path))
exit(0)
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
if not parser.parse(model.read()):
print('ERROR: Failed to parse the ONNX file.')
for error in range(parser.num_errors):
print(parser.get_error(error))
exit(0)
# Reference: https://blog.csdn.net/weixin_43953045/article/details/103937295
last_layer = network.get_layer(network.num_layers - 1)
if not last_layer.get_output(0):
network.mark_output(last_layer.get_output(0))
print("input shape {}".format(network.get_input(0).shape))
network.get_input(0).shape = [1, 3, -1, -1] if len(input_shapes) != 1 else input_shapes[0]
print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
# ######################## SET DYNAMIC INPUT SHAPE #################################
if len(input_shapes) == 3:
profile = builder.create_optimization_profile()
profile.set_shape(network.get_input(0).name, *input_shapes)
config.add_optimization_profile(profile)
engine = builder.build_engine(network, config)
else:
engine = builder.build_cuda_engine(network)
# ########################################################
print("Completed creating Engine")
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
return engine
# return build_engine()
if os.path.exists(engine_file_path) and not force_rebuild:
# If a serialized engine exists, use it instead of building an engine.
print("Reading engine from file {}".format(engine_file_path))
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
else:
return build_engine()
|
57489225c3854408f880f024443811d59c88df9f
| 3,645,087
|
from typing import Callable
def _window_when(closing_mapper: Callable[[], Observable]) -> Callable[[Observable], Observable]:
"""Projects each element of an observable sequence into zero or
more windows.
Args:
source: Source observable to project into windows.
Returns:
An observable sequence of windows.
"""
def window_when(source: Observable) -> Observable:
def subscribe(observer, scheduler=None):
m = SerialDisposable()
d = CompositeDisposable(m)
r = RefCountDisposable(d)
window = Subject()
observer.on_next(add_ref(window, r))
def on_next(value):
window.on_next(value)
def on_error(error):
window.on_error(error)
observer.on_error(error)
def on_completed():
window.on_completed()
observer.on_completed()
d.add(source.subscribe_(on_next, on_error, on_completed, scheduler))
def create_window_on_completed():
try:
window_close = closing_mapper()
except Exception as exception:
observer.on_error(exception)
return
def on_completed():
nonlocal window
window.on_completed()
window = Subject()
observer.on_next(add_ref(window, r))
create_window_on_completed()
m1 = SingleAssignmentDisposable()
m.disposable = m1
m1.disposable = window_close.pipe(ops.take(1)).subscribe_(noop, on_error, on_completed, scheduler)
create_window_on_completed()
return r
return Observable(subscribe)
return window_when
|
d0f51f8385b2d45f1cbd64649953c312247644eb
| 3,645,088
|
def generate_features(df):
"""Generate features for a stock/index based on historical price and performance
Args:
df(dataframe with columns "Open", "Close", "High", "Low", "Volume", "Adjusted Close")
Returns:
dataframe, data set with new features
"""
df_new = pd.DataFrame()
# 6 original features
df_new['open'] = df['Open']
df_new['open_1'] = df['Open'].shift(1)
# Shift index by 1, in order to take the value of previous day. For example, [1, 3, 4, 2] -> [N/A, 1, 3, 4]
df_new['close_1'] = df['Close'].shift(1)
df_new['high_1'] = df['High'].shift(1)
df_new['low_1'] = df['Low'].shift(1)
df_new['volume_1'] = df['Volume'].shift(1)
# 31 original features
# average price
df_new['avg_price_5'] = df['Close'].rolling(5).mean().shift(1)
df_new['avg_price_30'] = df['Close'].rolling(21).mean().shift(1)
df_new['avg_price_365'] = df['Close'].rolling(252).mean().shift(1)
df_new['ratio_avg_price_5_30'] = df_new['avg_price_5'] / df_new['avg_price_30']
df_new['ratio_avg_price_5_365'] = df_new['avg_price_5'] / df_new['avg_price_365']
df_new['ratio_avg_price_30_365'] = df_new['avg_price_30'] / df_new['avg_price_365']
# average volume
df_new['avg_volume_5'] = df['Volume'].rolling(5).mean().shift(1)
df_new['avg_volume_30'] = df['Volume'].rolling(21).mean().shift(1)
df_new['avg_volume_365'] = df['Volume'].rolling(252).mean().shift(1)
df_new['ratio_avg_volume_5_30'] = df_new['avg_volume_5'] / df_new['avg_volume_30']
df_new['ratio_avg_volume_5_365'] = df_new['avg_volume_5'] / df_new['avg_volume_365']
df_new['ratio_avg_volume_30_365'] = df_new['avg_volume_30'] / df_new['avg_volume_365']
# standard deviation of prices
df_new['std_price_5'] = df['Close'].rolling(5).std().shift(1)
# rolling_mean calculates the moving standard deviation given a window
df_new['std_price_30'] = df['Close'].rolling(21).std().shift(1)
df_new['std_price_365'] = df['Close'].rolling(252).std().shift(1)
df_new['ratio_std_price_5_30'] = df_new['std_price_5'] / df_new['std_price_30']
df_new['ratio_std_price_5_365'] = df_new['std_price_5'] / df_new['std_price_365']
df_new['ratio_std_price_30_365'] = df_new['std_price_30'] / df_new['std_price_365']
# standard deviation of volumes
df_new['std_volume_5'] = df['Volume'].rolling(5).std().shift(1)
df_new['std_volume_30'] = df['Volume'].rolling(21).std().shift(1)
df_new['std_volume_365'] = df['Volume'].rolling(252).std().shift(1)
df_new['ratio_std_volume_5_30'] = df_new['std_volume_5'] / df_new['std_volume_30']
df_new['ratio_std_volume_5_365'] = df_new['std_volume_5'] / df_new['std_volume_365']
df_new['ratio_std_volume_30_365'] = df_new['std_volume_30'] / df_new['std_volume_365']
# return
df_new['return_1'] = ((df['Close'] - df['Close'].shift(1)) / df['Close'].shift(1)).shift(1)
df_new['return_5'] = ((df['Close'] - df['Close'].shift(5)) / df['Close'].shift(5)).shift(1)
df_new['return_30'] = ((df['Close'] - df['Close'].shift(21)) / df['Close'].shift(21)).shift(1)
df_new['return_365'] = ((df['Close'] - df['Close'].shift(252)) / df['Close'].shift(252)).shift(1)
df_new['moving_avg_5'] = df_new['return_1'].rolling(5).mean()
df_new['moving_avg_30'] = df_new['return_1'].rolling(21).mean()
df_new['moving_avg_365'] = df_new['return_1'].rolling(252).mean()
# the target
df_new['close'] = df['Close']
df_new = df_new.dropna(axis=0)
# This will drop rows with any N/A value, which is by-product of moving average/std.
return df_new
|
ec64c9562287e0dd32b7cfd07c477acd8d799dc3
| 3,645,089
|
from typing import Dict
from typing import Union
from typing import Optional
def format_plate(barcode: str) -> Dict[str, Union[str, bool, Optional[int]]]:
"""Used by flask route /plates to format each plate. Determines whether there is sample data for the barcode and if
so, how many samples meet the fit to pick rules.
Arguments:
barcode (str): barcode of plate to get sample information for.
Returns:
Dict[str, Union[str, bool, Optional[int]]]: sample information for the plate barcode
"""
logger.info(f"Getting information for plate with barcode: {barcode}")
(
fit_to_pick_samples,
count_fit_to_pick_samples,
count_must_sequence,
count_preferentially_sequence,
count_filtered_positive,
) = get_fit_to_pick_samples_and_counts(barcode)
return {
"plate_barcode": barcode,
"has_plate_map": fit_to_pick_samples is not None and len(fit_to_pick_samples) > 0,
"count_fit_to_pick_samples": count_fit_to_pick_samples if count_fit_to_pick_samples is not None else 0,
"count_must_sequence": count_must_sequence if count_must_sequence is not None else 0,
"count_preferentially_sequence": count_preferentially_sequence
if count_preferentially_sequence is not None
else 0,
"count_filtered_positive": count_filtered_positive if count_filtered_positive is not None else 0,
}
|
5508ee508ef6d2a8329a2899bf9e90c9ac399874
| 3,645,090
|
def method_only_in(*states):
"""
Checks if function has a MethodMeta representation, calls wrap_method to
create one if it doesn't and then adds only_in to it from *states
Args:
*args(list): List of state names, like DefaultStateMachine.RESETTING
Returns:
function: Updated function
"""
def decorator(func):
if not hasattr(func, "MethodMeta"):
MethodMeta.wrap_method(func)
func.MethodMeta.only_in = states
return func
return decorator
|
33fbd619deb4b2a1761b3bf7f860ed2ae728df44
| 3,645,091
|
import igraph
def to_igraph(adjacency_matrix:Image, centroids:Image=None):
"""
Converts a given adjacency matrix to a iGraph [1] graph data structure.
Note: the given centroids typically have one entry less than the adjacency matrix is wide, because
those matrices contain a first row and column representing background. When exporting the networkx graph,
that first column will be ignored.
Parameters
----------
adjacency_matrix : Image
m*m touch-matrix, proximal-neighbor-matrix or n-nearest-neighbor-matrix
centroids : Image, optional
d*(m-1) matrix, position list of centroids
Returns
-------
iGraph graph
See Also
--------
..[1] https://igraph.org/
"""
try:
except ImportError:
raise ImportError("igraph is not installed. Please refer to the documentation https://igraph.org/python/")
igraph_graph = igraph.Graph(adjacency_matrix.shape[0] - 1)
edge_list = np.nonzero(np.asarray(adjacency_matrix)[1:,1:])
igraph_graph.add_edges(np.asarray(edge_list).T)
if centroids is not None:
igraph_graph.vs['x'] = centroids[0]
igraph_graph.vs['y'] = centroids[1]
if centroids.shape[0] > 2: # 3D data
igraph_graph.vs['z'] = centroids[2]
return igraph_graph
|
e0cac1dd85b79b30e3f7e3139201b97e092603eb
| 3,645,092
|
def Laplacian(src, ddepth, dst=None, ksize=1, scale=1, delta=0, borderType=cv2.BORDER_DEFAULT):
"""dst = cv.Laplacian( src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]] )
Executes the Laplacian operator on hardware if input parameters fit to hardware constraints.
Otherwise the OpenCV Laplacian function is called."""
if (ksize == 1 or ksize ==3 or ksize == 5) and (scale == 1) and (delta == 0) and (borderType == cv2.BORDER_DEFAULT) :
if (src.dtype == np.uint8) and (src.ndim == 2) :
if (src.shape[0] <= cv2pynq.MAX_HEIGHT) and (src.shape[0] > 0) and (src.shape[1] <= cv2pynq.MAX_WIDTH) and (src.shape[1] > 0) :
if (ddepth == -1) :
return c.Laplacian(src, ddepth, dst, ksize)
return cv2.Laplacian(src, ddepth, dst, ksize, scale, delta, borderType)
|
88237f83ed9b2159829f4a9b194c18007699c1a9
| 3,645,093
|
def get_docptr(n_dw_matrix):
"""
Parameters
----------
n_dw_matrix: array-like
Returns
-------
np.array
row indices for the provided matrix
"""
return _get_docptr(n_dw_matrix.shape[0], n_dw_matrix.indptr)
|
7a20ca17f16475d6fd836bb5b7b70221f5cf4378
| 3,645,094
|
def check_if_shift_v0(data, column_name, start_index, end_index, check_period):
""" using median to see if it changes significantly in shift """
period_before = data[column_name][start_index - check_period: start_index]
period_in_the_middle = data[column_name][start_index:end_index]
period_after = data[column_name][end_index: end_index + check_period]
period_before_median = abs(np.nanmedian(period_before))
period_in_the_middle_median = abs(np.nanmedian(period_in_the_middle))
period_after_median = abs(np.nanmedian(period_after))
upper_threshold = period_in_the_middle_median * 2
down_threshold = period_in_the_middle_median / 2
if (upper_threshold < period_before_median and upper_threshold < period_after_median) or\
(down_threshold > period_before_median and down_threshold > period_after_median):
return True
else:
return False
|
e73629dae7d6cce70b344f24acb98a3ae24c4e64
| 3,645,095
|
def opening2d(value, kernel, stride=1, padding="SAME"):
"""
erode and then dilate
Parameters
----------
value : Tensor
4-D with shape [batch, in_height, in_width, depth].
kernel : Tensor
Must have the same type as 'value'. 3-D with shape '[kernel_height, kernel_width, depth]'
stride : int
The stride of the sliding window for the spatial dimensions '[1, 2]' of the input tensor.
padding : string
from '"SAME", "VALID"'. The type of padding algorithm to use.
Returns
-------
out : tensor
opened output
"""
strides = [1, stride, stride, 1]
rates = [1, 1, 1, 1]
out = tf.nn.erosion2d(value, kernel, strides, rates, padding)
out = tf.nn.dilation2d(out, kernel, strides, rates, padding)
return out
|
b425735dacceac825b4394fdc72a744b168acc91
| 3,645,096
|
def convert_npy_mat(user_num, item_num, df):
"""
method of convert dataframe to numpy matrix
Parameters
----------
user_num : int, the number of users
item_num : int, the number of items
df : pd.DataFrame, rating dataframe
Returns
-------
mat : np.matrix, rating matrix
"""
mat = np.zeros((user_num, item_num))
for _, row in df.iterrows():
u, i, r = row['user'], row['item'], row['rating']
mat[int(u), int(i)] = float(r)
return mat
|
627fcc45a490be1554445582dc8a2312e25b1152
| 3,645,097
|
def user_enter_state_change_response():
"""
Prompts the user to enter a key event response.
nothing -> str
"""
return input('>> ')
|
22da5cb99fa603c3dff04e8afd03cb9fae8210cd
| 3,645,098
|
def call_worker(job_spec):
"""Calls command `cron_worker run <job_spec>` and parses the output"""
output = call_command("cron_worker", "run", job_spec)
status = exc_class_name = exc_message = None
if output:
result_match = RESULT_PATTERN.match(output)
if result_match:
status = result_match.group("status")
else:
exc_match = EXCEPTION_PATTERN.match(output)
if exc_match:
exc_class_name = exc_match.group("exc_class_name")
exc_message = exc_match.group("exc_message")
ok = status == "OK"
return CronWorkerRunResult(output, status, exc_class_name, exc_message, ok)
|
5a914c742319e2528b1668309ff57e507efd26bb
| 3,645,099
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.