content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_domain_from_url(url): """get domain from url""" domain='' # url is http://a.b.com/ads/asds if re.search(r'://.*?/',url): try: domain = url.split('//', 1)[1].split('/', 1)[0] except IndexError, e: LOGGER.warn('Get domain error,%s,%s' % (url, e)) # http://a.b.com?a=adsd elif re.search(r'://.*?\?',url): try: domain = url.split('//', 1)[1].split('?', 1)[0] except IndexError, e: LOGGER.warn('Get domain error,%s,%s' % (url, e)) elif re.search(r'://.*?',url): try: domain = url.split('//', 1)[1].split('/', 1)[0] except IndexError, e: LOGGER.warn('Get domain error,%s,%s' % (url, e)) # url is a.b.com/a/b/c, a.b.com, /a/b/c, elif re.search(r'/',url): value = url.split('/', 1)[0] if value=='': pass elif value=='.': pass elif '.' not in value: pass elif domain=='..': pass return domain
6b364a74c86337108d21539c4a5678af2e6ea48a
3,644,900
import json def render_response(body=None, status=None, headers=None): """生成WSGI返回消息""" headers = [] if headers is None else list(headers) if body is None: body = '' status = status or (204, 'No Content') else: body = json.dumps(body, encoding='utf-8') headers.append(('Content-Type', 'application/json')) status = status or (200, 'OK') resp = webob.Response(body=body, status='%s %s' % status, headerlist=headers) return resp
b31128db57ca99a840d4adce6f3116f629d8a0b8
3,644,901
def tests(request): """Print a list of tests.""" test_list = Test.objects.all() tag_list = Tag.objects.all().order_by(u'name') # check if we need to filter the test list based on tags # defaults to empty list because we're always passing the list to the template tags = request.GET.get(u'tag', []) if tags: # plus means only those tests that are tagged with every tag # TODO: support commas, for aggregating stuff that includes at least one tag in the list tags = tags.split(u'+') log.debug(u'displaying tests for search tags: {}'.format(tags)) # order the list by name if search tags are specified # this list contains tests if they have any of the tags passed in, so it's still 'unfiltered' test_list = test_list.filter(tags__name__in=tags).distinct().order_by(u'name') # return only the tests that have every tag specified test_list = filter_tags(test_list, tags) else: # order the list by newest -> oldest if there are no tags specified test_list = test_list.order_by(u'-id') paginator = Paginator(test_list, 20) # decides how many results to show per page # https://docs.djangoproject.com/en/dev/topics/pagination/ page = request.GET.get(u'page') try: tests = paginator.page(page) except PageNotAnInteger: # If page is not an integer, deliver first page. tests = paginator.page(1) except EmptyPage: # If page is out of range (e.g. 9999), deliver last page of results. tests = paginator.page(paginator.num_pages) return render(request, u'django_bdd/bddscenarios.html', {u'title': u'Scenarios', u'tests': tests, u'tag_list': tag_list, u'searched_tags': tags, u'label_classes': LABEL_CLASSES})
18c4077878f3864cf0771fd77a5ae324d9ee4630
3,644,902
def nashpobench_benchmark(params): """ The underlying tabulated blackbox does not have an `elapsed_time_attr`, but only a `time_this_resource_attr`. """ config_space = dict( CONFIGURATION_SPACE, epochs=params['max_resource_level'], dataset_name=params['dataset_name']) return { 'script': None, 'metric': METRIC_VALID_LOSS, 'mode': 'min', 'resource_attr': RESOURCE_ATTR, 'elapsed_time_attr': METRIC_ELAPSED_TIME, 'max_resource_attr': 'epochs', 'config_space': config_space, 'cost_model': None, 'supports_simulated': True, 'blackbox_name': BLACKBOX_NAME, }
74e1e619cc8c4a3201e41820f5f641c651a5f283
3,644,903
def horizontal_plate_natual_convection_2(Gr, Pr): """hot side downward, or cold side upward """ """ 1e5 < Ra < 1e10 """ Ra = Gr * Pr return 0.27 * Ra**0.25
bc44118e871e977a7ecb6a877f7232b837d1bf0e
3,644,904
import dill as pickle from drivebuildclient import create_client, send_request from config import SIM_NODE_PORT, FIRST_SIM_PORT from typing import Tuple def run_test_case(test_case: TestCase) -> Tuple[Simulation, Scenario, ExtThread, SimulationID]: """ This method starts the actual simulation in a separate thread. Additionally it already calculates and attaches all information that is need by this node and the separate thread before calling _start_simulation(...). """ sid = SimulationID() response = send_request(create_client("localhost", SIM_NODE_PORT), b"generateSid", []) sid.ParseFromString(response) sim = Simulation(sid, pickle.dumps(test_case), FIRST_SIM_PORT + run_test_case.counter) run_test_case.counter += 1 # FIXME Add a lock? # Make sure there is no folder of previous tests having the same sid that got not propery removed bng_scenario, thread = sim._start_simulation(test_case) return sim, bng_scenario, thread, sid
b8428763cb611b57069d74f7ebb5844f5b90df9d
3,644,905
import typing def translate_value_data( new_values: list, options: dict, parent_value: str, translate_dict: typing.Optional[dict], values: list, ): """Translates value data if necessary and checks if it falls within the Castor optiongroup""" for value in values: if pd.isnull(parent_value): if translate_dict: value = translate_dict.get(str(value), "Error: no translation provided") new_values.append(options.get(str(value), "Error: non-existent option")) else: if translate_dict: value = translate_dict.get(str(value), parent_value) new_values.append(options.get(str(value), parent_value)) return new_values
ccfc64e54fae868877c6852ebeeadae11bb1221b
3,644,906
def makeVocabFromText( filelist=None, max_size=10*10000, least_freq=2, trunc_len=100, filter_len=0, print_log=None, vocab_file=None, encoding_format='utf-8', lowercase = True): """ the core of this function is getting a word2count dict and writing it to a .txt file,then use Vocab to read it """ if print_log: print_log("%s: the max vocab size = %d, least_freq is %d truncate length = %d" \ % ( filelist[0], max_size, least_freq , trunc_len )) else: print("%s: the max vocab size = %d, least_freq is %d truncate length = %d" \ % ( filelist[0], max_size, least_freq , trunc_len )) """tokenizing sentence and add word to word2count dict""" word2count={} for filename in filelist: with open(filename, 'r', encoding = encoding_format) as f: for sent in f: tokens = sent.strip().split() if 0 < filter_len < len(sent.strip().split()): continue if trunc_len > 0: tokens = tokens[:trunc_len] for word in tokens: word = word if not lowercase else word.lower() if word not in word2count: word2count[word] = 1 else: word2count[word] += 1 return makeVocabFormDict(word2count=word2count,max_size=max_size,least_freq=least_freq,\ vocab_file=vocab_file,encoding_format=encoding_format,filename=filelist[0])
2a3c0c42ee5c541d19bbe695c12f977fd29dfeaf
3,644,907
def import_supplemental(file_path): """Get data from a supplemental file""" data = sio.loadmat(file_path) data['move'] = np.squeeze(data['move']) data['rep'] = np.squeeze(data['rep']) data['emg_time'] = np.squeeze(data['emg_time']) return data
4544a0ee292cb4e323c31545009c4d1e17ca98e1
3,644,908
def _unpickle_injected_object(base_class, mixin_class, class_name=None): """ Callable for the pickler to unpickle objects of a dynamically created class based on the InjectableMixin. It creates the base object from the original base class and re-injects the mixin class when unpickling an object. :param type base_class: The base class of the pickled object before adding the mixin via injection. :param type mixin_class: The :class:`InjectableMixin` subclass that was injected into the pickled object. :param str class_name: The class name of the pickled object's dynamically created class. :return: The initial unpickled object (before the pickler restores the object's state). """ obj = base_class.__new__(base_class, ()) return mixin_class.inject_into_object(obj, class_name)
1821509506ad31dcdb21f07a2b83c544ff3c3eb3
3,644,909
from pathlib import Path import re def parse_endfblib(libdir): """Parse ENDF/B library Parametres: ----------- libdir : str directory with ENDFB file structure""" filepaths = [] nuclidnames = [] endf_dir = Path(libdir) neutron_files = tuple((endf_dir / "neutrons").glob("*endf")) for n in neutron_files: filepaths.append(n.absolute()) nuclidnames.append(n.name.split('_')[1] + re.split("^0*", n.name.split('_')[2][:-5])[-1]) return nuclidnames, filepaths
3587b849132e4b2eeb6ad184bf58755340473bd9
3,644,910
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser def get_parser(): """Get parser object.""" parser = ArgumentParser( description=__doc__, formatter_class=ArgumentDefaultsHelpFormatter ) parser.add_argument( "-f", "--file", dest="filename", help="Read this PDF file", metavar="FILE", required=True, ) return parser
31f973d357762fa706191caa1d76f59c6d2b3d67
3,644,911
def build_val_col_list(tableName): """Build and return a schema to use for the sample data.""" statement = "( SELECT column_name, data_type, case when data_type='NUMBER' THEN NVL(DATA_PRECISION,38) + DATA_SCALE ELSE DATA_LENGTH END AS ORACLE_LENGTH FROM dba_tab_columns WHERE table_name = '" + tableName + "' order by column_id asc )" buildColTypeList = spark.read.format("jdbc") \ .option("url","jdbc:oracle:thin:system/oracle@//0.0.0.0:1521/xe") \ .option("dbtable", statement) \ .option("user","system") \ .option("password","oracle") \ .option("driver","oracle.jdbc.driver.OracleDriver") \ .load() xList = buildColTypeList.collect() return xList
d6602078a458fa3f36de3558c8044749caf7f4d5
3,644,912
from datetime import datetime def save_image(user, filename, image_tif, process, latency, size, hist): """ Function that saves image to Mongo database Args: user: username filename: desired file name in database image_tif: tiff image in byte format process: processing algorithm applied to image latency: time to process image size: image size hist: histogram values of image bins: bin locations of image Returns: outstr: Confirmation that image has been saved """ time = datetime.datetime.now() Image_Dict = { "File": filename, "Image": image_tif, "Process": process, "Timestamp": time, "Latency": latency, "Size": size, "Histogram": hist, } Image_List = user.ImageFile Image_List.append(Image_Dict) user.filenames.append(filename) user.save() outstr = "Image saved successfully" return outstr
ea416fcdc09c71aef56250a8e0b7f558e8e8a884
3,644,913
def run_simulation_with_params( sim_params, replicate, repeats=10, should_perform_gwas=True): """Runs simulation with given params and returns result object. """ try: simulation_result = run_simulation( simulation_params=sim_params) except Exception as e: print sim_params raise e result = { 'num_snps_considered': sim_params.num_snps_considered, 'num_samples': sim_params.num_samples, 'num_snps_with_effect': sim_params.num_snps_with_effect, 'replicate': replicate, 'total_fitness_effect': np.prod(simulation_result['snp_effect']), 'mage_cycles': sim_params.mage_cycles, 'population_size': sim_params.population_size } # Apply linear modeling. lm_result = run_linear_modeling( simulation_result['wgs_samples'], simulation_result['wgs_samples_doubling_times'], repeats=repeats) lm_eval_results = evaluate_modeling_result( simulation_result, lm_result) lm_eval_results_df = lm_eval_results['results_df'] result.update({ 'lm_pearson_r': lm_eval_results['pearson_r'], 'lm_pearson_p': lm_eval_results['p_value'], }) result.update( calculate_modeling_metrics( lm_eval_results_df, 'linear_model_coef', results_prefix='lm_')) # Maybe perform GWAS. if should_perform_gwas: gwas_results_df = run_gwas( simulation_result['wgs_samples'], simulation_result['wgs_samples_doubling_times']) gwas_eval_results = evaluate_gwas_result( gwas_results_df, lm_eval_results_df) gwas_eval_results_df = gwas_eval_results['results_df'] result.update({ 'gwas_pearson_r': gwas_eval_results['pearson_r'], 'gwas_pearson_p': gwas_eval_results['p_value'], }) result.update( calculate_modeling_metrics( gwas_eval_results_df, 'gwas_coef', results_prefix='gwas_')) # Perform enrichment analysis on final timepoint. enrichment_result_df = run_enrichment_analysis(simulation_result) result.update( calculate_enrichment_metrics( enrichment_result_df)) return result
a7a1383708c1b6e69c975488b03704698f9b1066
3,644,914
import colorsys def hsl_to_rgb(hsl): """Convert hsl colorspace values to RGB.""" # Convert hsl to 0-1 ranges. h = hsl[0] / 359. s = hsl[1] / 100. l = hsl[2] / 100. hsl = (h, s, l) # returns numbers between 0 and 1 tmp = colorsys.hls_to_rgb(h, s, l) # convert to 0 to 255 r = int(round(tmp[0] * 255)) g = int(round(tmp[1] * 255)) b = int(round(tmp[2] * 255)) return (r, g, b)
4417ce8468e71b7139b57fe270809c7030b2c3df
3,644,915
import os def init_celery(app=None): """ Initialize celery. """ app = app or create_app(os.environ.get('APP_MODE')) celery.conf.update(app.config.get("CELERY", {})) class ContextTask(celery.Task): """ Make celery tasks work with Flask app context """ def __call__(self, *args, **kwargs): with app.app_context(): return self.run(*args, **kwargs) celery.Task = ContextTask return celery
8d0c6f6bc4882976812abe9967b56720b745b46a
3,644,916
import itertools async def test_filterfalse_matches_itertools_filterfalse( arange: ty.Type[ty.AsyncIterator[int]], stop: int ): """Ensure that our async filterfalse implementation follows the standard implementation. """ async def _pair(x): return (x % 2) == 0 target = list(itertools.filterfalse(lambda x: (x % 2) == 0, range(stop))) result = [x async for x in none.collection.a.filterfalse(_pair, arange(stop))] assert result == target
59fd932f3906eb411e21207d920f752f7f78df44
3,644,917
def extract_buffer_info(mod, param_dict): """ This function is to read the tvm.IRModule that contains Relay to TIR compiled IRModule. Thereafter, this will extract the buffer information as the shape and constant data (if any). Parameters ---------- mod : tvm.IRModule The NPU TIR IRModule. param_dict : dict A dictionary containing param idx --> const numpy.NDArray Returns ------- dict a dictionary of buffer names --> BufferInfo """ buffer_info = dict() # There should only be a single function assert len(mod.functions.items()) == 1 primfunc = mod.functions.items()[0][1] for idx, const_data in param_dict.items(): param = primfunc.params[idx] buffer_info[primfunc.buffer_map[param].data] = BufferInfo( const_data, const_data.shape, const_data.dtype, BufferType.constant ) for param in primfunc.params: if primfunc.buffer_map[param].data not in buffer_info.keys(): buffer_info[primfunc.buffer_map[param].data] = BufferInfo( None, primfunc.buffer_map[param].shape, primfunc.buffer_map[param].dtype, BufferType.input_or_output, ) def populate_allocate_buffer_info(stmt): if isinstance(stmt, tvm.tir.stmt.Allocate): allocate = stmt buffer_info[allocate.buffer_var] = BufferInfo( None, allocate.extents, allocate.dtype, BufferType.scratch, ) tvm.tir.stmt_functor.post_order_visit(primfunc.body, populate_allocate_buffer_info) return buffer_info
291f091d06aa768ceb28f2738823f5eeb336c47e
3,644,918
def find_external_nodes(digraph): """Return a set of external nodes in a directed graph. External nodes are node that are referenced as a dependency not defined as a key in the graph dictionary. """ external_nodes = set() for ni in digraph: for nj in digraph[ni]: if nj not in digraph: external_nodes.add(nj) return external_nodes
de63af1b649e450214907dd704bde782820d393d
3,644,919
import six def strip(val): """ Strip val, which may be str or iterable of str. For str input, returns stripped string, and for iterable input, returns list of str values without empty str (after strip) values. """ if isinstance(val, six.string_types): return val.strip() try: return list(filter(None, map(strip, val))) except TypeError: return val
893986e69f6d64167f45daf30dacb72f4b7f2bff
3,644,920
from matplotlib.backends.backend_pdf import PdfPages import os from datetime import datetime def durations_histo(filename: str, v1_2_1, v1_5_2): """Generate all the figures for the histograms. Returns a dictionary of dict with dict containing the full filename. """ ensure_path(os.path.dirname(filename)) filenames = dict() filenames['dev'] = dict() filenames['train'] = dict() labels_in_the_datasets = set(list( v1_2_1['events_counts_dev'].keys()) + list( v1_2_1['events_counts_train'].keys()) + list( v1_5_2['events_counts_dev'].keys()) + list( v1_5_2['events_counts_train'].keys())) labels_in_the_datasets = sorted( list(set([label.lower() for label in labels_in_the_datasets]))) dev_seizures_durations_by_type_v1_2_1 = { seizure_type: np.array( [event['duration'] for event in v1_2_1['events_dev'] if event['event'] == seizure_type]) for seizure_type in list(v1_2_1['events_counts_dev'].keys())} train_seizures_durations_by_type_v1_2_1 = { seizure_type: np.array( [event['duration'] for event in v1_2_1['events_train'] if event['event'] == seizure_type]) for seizure_type in list(v1_2_1['events_counts_train'].keys())} dev_seizures_durations_by_type_v1_5_2 = v1_5_2[ 'dev_seizures_durations_by_type'] train_seizures_durations_by_type_v1_5_2 = v1_5_2[ 'train_seizures_durations_by_type'] with PdfPages(filename + ".pdf") as pdf: d = pdf.infodict() d['Title'] = 'Seizures duration histograms' d['Author'] = 'Vincent Stragier' d['Subject'] = 'Compilation of all the duration histograms' d['Keywords'] = 'seizures epilepsy histogram TUSZ EEG' d['CreationDate'] = datetime.datetime(2020, 10, 21) d['ModDate'] = datetime.datetime.today() for seizure_type in labels_in_the_datasets: plt.figure( "Histograms for {0} seizures ('{1}') - dev set".format( EPILEPTIC_SEIZURE_LABELS_DICT[ seizure_type.lower()], seizure_type), figsize=(16/2.54*2, 9/2.54*2)) pdf.attach_note( "Histograms for {0} seizures ('{1}') - dev set".format( EPILEPTIC_SEIZURE_LABELS_DICT[ seizure_type.lower()], seizure_type)) plt.rc('text', usetex=True) plt.rcParams["font.family"] = 'sans-serif' plt.rcParams['font.sans-serif'] = "Calibri" plt.suptitle( "\\Huge Histograms for {0} seizures ('{1}') - dev set".format( EPILEPTIC_SEIZURE_LABELS_DICT[ seizure_type.lower()], seizure_type), fontsize=15) if seizure_type.upper()\ in dev_seizures_durations_by_type_v1_2_1.keys(): data = dev_seizures_durations_by_type_v1_2_1[ seizure_type.upper()] mu = data.mean() median = np.median(data) sigma = data.std() minimum = data.min() maximum = data.max() plt.subplot(2, 2, 1) counts, bins, _ = plt.hist( data, bins=data.size, rwidth=0.8, color='#6eb055ff') i = np.argmax(counts) hist_mode = (bins[i] + bins[i + 1])/2 plt.ylabel(r'Count per bin') plt.legend( [r'$\mu={0:.4f}$, $\sigma={1:.4f}$,{7}min$\,={2:.4f}$,' r' max$\,={6:.4f}$,{7}median$\,={4:.4f}$,' r' mode$\,={5:.4f}$,{7}Number of seizures: {3}'.format( mu, sigma, minimum, len(data), median, hist_mode, maximum, "\n")]) plt.xlabel(r'Time in seconds') plt.title(r'Dev set v1.2.1') plt.subplot(2, 2, 3) counts, bins, _ = plt.hist( data, bins=data.size, rwidth=0.8, color='#6eb055ff') plt.xlim(0, mu) i = np.argmax(counts) hist_mode = (bins[i] + bins[i + 1])/2 plt.ylabel(r'Count per bin') plt.legend( [r'$\mu={0:.4f}$, $\sigma={1:.4f}$,{7}min$\,={2:.4f}$,' r' max$\,={6:.4f}$,{7}median$\,={4:.4f}$,' r' mode$\,={5:.4f}$,{7}Number of seizures: {3}'.format( mu, sigma, minimum, len(data), median, hist_mode, maximum, "\n")]) plt.xlabel(r'Time in seconds') plt.title(r'Dev set v1.2.1 [0, %.2f]' % mu) if seizure_type in dev_seizures_durations_by_type_v1_5_2.keys(): data = dev_seizures_durations_by_type_v1_5_2[seizure_type] mu = data.mean() median = np.median(data) sigma = data.std() minimum = data.min() maximum = data.max() plt.subplot(2, 2, 2) counts, bins, _ = plt.hist( data, bins=data.size, rwidth=0.8, color='#575656ff') i = np.argmax(counts) hist_mode = (bins[i] + bins[i + 1])/2 plt.ylabel(r'Count per bin') plt.legend( [r'$\mu={0:.4f}$, $\sigma={1:.4f}$,{7}min$\,={2:.4f}$,' r' max$\,={6:.4f}$,{7}median$\,={4:.4f}$,' r' mode$\,={5:.4f}$,{7}Number of seizures: {3}'.format( mu, sigma, minimum, len(data), median, hist_mode, maximum, "\n")]) plt.xlabel(r'Time in seconds') plt.title(r'Dev set v1.5.2') plt.subplot(2, 2, 4) counts, bins, _ = plt.hist( data, bins=data.size, rwidth=0.8, color='#575656ff') plt.xlim(0, mu) i = np.argmax(counts) hist_mode = (bins[i] + bins[i + 1])/2 plt.ylabel(r'Count per bin') plt.legend( [r'$\mu={0:.4f}$, $\sigma={1:.4f}$,{7}min$\,={2:.4f}$,' r' max$\,={6:.4f}$,{7}median$\,={4:.4f}$,' r' mode$\,={5:.4f}$,{7}Number of seizures: {3}'.format( mu, sigma, minimum, len(data), median, hist_mode, maximum, "\n")]) plt.xlabel(r'Time in seconds') plt.title(r'Dev set v1.5.2 [0, %.2f]' % mu) # tight_layout docs: [left, bottom, right, top] # in normalized (0, 1) figure plt.tight_layout(rect=[0, 0.03, 1, 0.95]) plt.savefig( "_".join([filename, seizure_type, 'dev.pdf']), format="PDF", transparent=True) filenames['dev'][seizure_type] = "_".join( [filename, seizure_type, 'dev.pdf']).replace('\\', '/') pdf.savefig(transparent=True) plt.close() plt.figure( "Histograms for {0} seizures ('{1}') - train set".format( EPILEPTIC_SEIZURE_LABELS_DICT[ seizure_type.lower()], seizure_type), figsize=(16/2.54*2, 9/2.54*2)) plt.rc('text', usetex=True) plt.rcParams["font.family"] = 'sans-serif' plt.rcParams['font.sans-serif'] = "Calibri" plt.suptitle( "\\Huge Histograms for {0}" " seizures ('{1}') - train set".format( EPILEPTIC_SEIZURE_LABELS_DICT[ seizure_type.lower()], seizure_type), fontsize=15) if seizure_type.upper()\ in train_seizures_durations_by_type_v1_2_1.keys(): data = train_seizures_durations_by_type_v1_2_1[ seizure_type.upper()] mu = data.mean() median = np.median(data) sigma = data.std() minimum = data.min() maximum = data.max() plt.subplot(2, 2, 1) counts, bins, _ = plt.hist( data, bins=data.size, rwidth=0.8, color='#6eb055ff') i = np.argmax(counts) hist_mode = (bins[i] + bins[i + 1])/2 plt.ylabel(r'Count per bin') plt.legend( [r'$\mu={0:.4f}$, $\sigma={1:.4f}$,{7}min$\,={2:.4f}$,' r' max$\,={6:.4f}$,{7}median$\,={4:.4f}$,' r' mode$\,={5:.4f}$,{7}Number of seizures: {3}'.format( mu, sigma, minimum, len(data), median, hist_mode, maximum, "\n")]) plt.xlabel(r'Time in seconds') plt.title(r'Train set v1.2.1') plt.subplot(2, 2, 3) counts, bins, _ = plt.hist( data, bins=data.size, rwidth=0.8, color='#6eb055ff') plt.xlim(0, mu) i = np.argmax(counts) hist_mode = (bins[i] + bins[i + 1])/2 plt.ylabel(r'Count per bin') plt.legend( [r'$\mu={0:.4f}$, $\sigma={1:.4f}$,{7}min$\,={2:.4f}$,' r' max$\,={6:.4f}$,{7}median$\,={4:.4f}$,' r' mode$\,={5:.4f}$,{7}Number of seizures: {3}'.format( mu, sigma, minimum, len(data), median, hist_mode, maximum, "\n")]) plt.xlabel(r'Time in seconds') plt.title(r'Train set v1.2.1 [0, %.2f]' % mu) if seizure_type in train_seizures_durations_by_type_v1_5_2.keys(): data = train_seizures_durations_by_type_v1_5_2[seizure_type] mu = data.mean() median = np.median(data) sigma = data.std() minimum = data.min() maximum = data.max() plt.subplot(2, 2, 2) counts, bins, _ = plt.hist( data, bins=data.size, rwidth=0.8, color='#575656ff') i = np.argmax(counts) hist_mode = (bins[i] + bins[i + 1])/2 plt.ylabel(r'Count per bin') plt.legend( [r'$\mu={0:.4f}$, $\sigma={1:.4f}$,{7}min$\,={2:.4f}$,' r' max$\,={6:.4f}$,{7}median$\,={4:.4f}$,' r' mode$\,={5:.4f}$,{7}Number of seizures: {3}'.format( mu, sigma, minimum, len(data), median, hist_mode, maximum, "\n")]) plt.xlabel(r'Time in seconds') plt.title(r'Train set v1.5.2') plt.subplot(2, 2, 4) counts, bins, _ = plt.hist( data, bins=data.size, rwidth=0.8, color='#575656ff') plt.xlim(0, mu) i = np.argmax(counts) hist_mode = (bins[i] + bins[i + 1])/2 plt.ylabel(r'Count per bin') plt.legend( [r'$\mu={0:.4f}$, $\sigma={1:.4f}$,{7}min$\,={2:.4f}$,' r' max$\,={6:.4f}$,{7}median$\,={4:.4f}$,' r' mode$\,={5:.4f}$,{7}Number of seizures: {3}'.format( mu, sigma, minimum, len(data), median, hist_mode, maximum, "\n")]) plt.xlabel(r'Time in seconds') plt.title(r'Train set v1.5.2 [0, %.2f]' % mu) # tight_layout docs: [left, bottom, right, top] # in normalized (0, 1) figure plt.tight_layout(rect=[0, 0.03, 1, 0.95]) plt.savefig("_".join( [filename, seizure_type, 'train.pdf']), format="PDF", transparent=True) filenames['train'][seizure_type] = "_".join( [filename, seizure_type, 'train.pdf']).replace('\\', '/') pdf.savefig(transparent=True) plt.close() return filenames
6d05a7af348f4b88bf0437feb81a0f5172514d87
3,644,921
def construct_area_cube(var_name, area_data, global_atts, dim_coords): """Construct the new area cube """ dim_coords_list = [] for i, coord in enumerate(dim_coords): dim_coords_list.append((coord, i)) if var_name == 'areacello': long_name = 'Grid-Cell Area for Ocean Variables' else: long_name = 'Grid-Cell Area for Atmospheric Grid Variables' area_cube = iris.cube.Cube(area_data, standard_name='cell_area', long_name=long_name, var_name=var_name, units='m2', attributes=global_atts, dim_coords_and_dims=dim_coords_list) return area_cube
07c01610f800202ccbdebf834648840b77d47fb7
3,644,922
def _switch_obs_2_time_dim(ds): """Function to create a single time variable that is the midpoint of the ObsPack averaging interval, and make it the xarray coordinate. """ # Get the midpoint of the average pulled from the model: midpoint = pd.to_datetime(ds.averaging_interval_start.data) + \ np.asarray(ds.averaging_interval.data) / 2 # Make it the time midpoint a new variable in the dataset. t = midpoint.to_series().reset_index(drop=True) ds['time'] = ("obs", t) # Tell xarray that we want time to be a coordinate. ds = ds.set_coords('time') # And tell it to replace Obs # with time as the preferred dimension. ds = ds.swap_dims({"obs": "time"}) return ds
6fa53b3f1a0472f45fa59c11b5d869786b5a9f4f
3,644,923
def bitfield_v(val, fields, col=15): """ return a string of bit field components formatted vertically val: the value to be split into bit fields fields: a tuple of (name, output_function, (bit_hi, bit_lo)) tuples """ fmt = '%%-%ds: %%s' % col s = [] for (name, func, field) in fields: s.append(fmt % (name, func(bits(val, field)))) return '\n'.join(s)
139b9328190f61a1cd649826bfde806e565d4201
3,644,924
from typing import Tuple from typing import Iterable def split_housenumber_line(line: str) -> Tuple[str, bool, bool, str, Tuple[int, str], str, Tuple[int, str], Iterable[str], Tuple[int, str]]: """ Augment TSV Overpass house numbers result lines to aid sorting. It prepends two bools to indicate whether an entry is missing either a house number, a house name or a conscription number. Entries lacking either a house number or all of the above IDs come first. The following fields are interpreted numerically: oid, house number, conscription number. """ field = line.split('\t') oid = get_array_nth(field, 0) street = get_array_nth(field, 1) housenumber = get_array_nth(field, 2) postcode = get_array_nth(field, 3) housename = get_array_nth(field, 4) cons = get_array_nth(field, 5) tail = field[6:] if len(field) > 6 else [] have_housenumber = housenumber != '' have_houseid = have_housenumber or housename != '' or cons != '' return (postcode, have_houseid, have_housenumber, street, split_house_number(housenumber), housename, split_house_number(cons), tail, split_house_number(oid))
c3d93d459c9b004d199725b11e1b92340e6154b9
3,644,925
import math def tau_polinomyal_coefficients(z): """ Coefficients (z-dependent) for the log(tau) formula from Raiteri C.M., Villata M. & Navarro J.F., 1996, A&A 315, 105-115 """ log_z = math.log10(z) log_z_2 = log_z ** 2 a0 = 10.13 + 0.07547 * log_z - 0.008084 * log_z_2 a1 = -4.424 - 0.7939 * log_z - 0.1187 * log_z_2 a2 = 1.262 + 0.3385 * log_z + 0.05417 * log_z_2 return [a0, a1, a2]
ebef7d773eeb400ef87553fc5838ee2cb97d0669
3,644,926
from typing import Optional import this def register( # lgtm[py/similar-function] fn: callbacks.ResourceHandlerFn, *, id: Optional[str] = None, errors: Optional[errors_.ErrorsMode] = None, timeout: Optional[float] = None, retries: Optional[int] = None, backoff: Optional[float] = None, cooldown: Optional[float] = None, # deprecated, use `backoff` registry: Optional[registries.ResourceChangingRegistry] = None, labels: Optional[bodies.Labels] = None, annotations: Optional[bodies.Annotations] = None, when: Optional[callbacks.WhenHandlerFn] = None, ) -> callbacks.ResourceHandlerFn: """ Register a function as a sub-handler of the currently executed handler. Example:: @kopf.on.create('zalando.org', 'v1', 'kopfexamples') def create_it(spec, **kwargs): for task in spec.get('tasks', []): def create_single_task(task=task, **_): pass kopf.register(id=task, fn=create_single_task) This is efficiently an equivalent for:: @kopf.on.create('zalando.org', 'v1', 'kopfexamples') def create_it(spec, **kwargs): for task in spec.get('tasks', []): @kopf.on.this(id=task) def create_single_task(task=task, **_): pass """ decorator = this( id=id, registry=registry, errors=errors, timeout=timeout, retries=retries, backoff=backoff, cooldown=cooldown, labels=labels, annotations=annotations, when=when, ) return decorator(fn)
d2e539c97a4946f819616d0f596e68e190a68c78
3,644,927
def pd_read_csv_using_metadata(filepath_or_buffer, table_metadata, ignore_partitions=False, *args, **kwargs): """ Use pandas to read a csv imposing the datatypes specified in the table_metadata Passes through kwargs to pandas.read_csv If ignore_partitions=True, assume that partitions are not columns in the dataset """ if ignore_partitions: table_metadata = _remove_paritions_from_table_metadata(table_metadata) dtype = _pd_dtype_dict_from_metadata(table_metadata, ignore_partitions) parse_dates = _pd_date_parse_list_from_metadatadata(table_metadata) return pd.read_csv(filepath_or_buffer, dtype = dtype, parse_dates = parse_dates, *args, **kwargs)
bddc8da985c7e252effe566c640bca25acd01d6a
3,644,928
def read_parfile_dirs_props(filename): """Reads BRUKER parfile-dirs.prop file to in order to get correct mapping of the topspin parameters. Args: filename: input Bruker parfile-dirs.prop file Returns: A dict mapping parameter classes to the their respective directory. E.g. {'PY_DIRS': ['py/user', 'py']} """ fh = open(filename) dirs = fh.read() fh.close() par_dc = {} dirs = dirs.replace('\\\n', '').replace(';', ' ') for line in dirs.split('\n'): if len(line) > 0 and line[0] != '#': key, values = line.split('=') par_dc[key] = values.split() if verbose_level > 1: print 'Dictionary for BRUKER search paths:' for key in par_dc.keys(): print key, par_dc[key] return par_dc
ca54dc948923826bb81af94e41be42caadfe6004
3,644,929
def get_all_playlist_items(playlist_id, yt_client): """ Get a list of video ids of videos currently in playlist """ return yt_client.get_playlist_items(playlist_id)
c7a8cc806b552b1853eba1d8223aa00225d5539e
3,644,930
def _get_last_measurement(object_id: int): """ Get the last measurement of object with given ID. Args: object_id (int): Object ID whose last measurement to look for. Returns: (GamMeasurement): The last measurement of the object, or None if it doesn't exist. """ last_mea = (GamMeasurement.select() .where(GamMeasurement.mea_object == object_id) .order_by(GamMeasurement.mea_id.desc()) .get()) return last_mea if last_mea else None
a5ee460f57912bb885ae0cb534f6195c92983aad
3,644,931
def get_library_isotopes(acelib_path): """ Returns the isotopes in the cross section library Parameters ---------- acelib_path : str Path to the cross section library (i.e. '/home/luke/xsdata/endfb7/sss_endfb7u.xsdata') Returns ------- iso_array: array array of isotopes in cross section library: """ lib_isos_list = [] with open(acelib_path, 'r') as f: lines = f.readlines() for line in lines: iso = line.split()[0] lib_isos_list.append(iso) return lib_isos_list
d93d319b84c02b8156c5bad0998f5943a5bbe8ae
3,644,932
from typing import Mapping def read_wires(data: str) -> Mapping[int, Wire]: """Read the wiring information from data.""" wires = {} for line in data.splitlines(): wire_name, wire = get_wire(line) wires[wire_name] = wire return wires
87c8b82bceab0252204ababf842ca0b00ab6a059
3,644,933
def back_ease_out(p): """Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))""" f = 1 - p return 1 - (f * f * f - f * sin(f * pi))
9946b8929211df4624ecc201ce026b981ffb3d0c
3,644,934
def configure_estimator_params(init_args, train_args): """Validates the initialization and training arguments and constructs a `params` dictionary for creating a TensorFlow Estimator object.""" params = {} init_val = ArgumentsValidator(init_args, "Initialization arguments") with init_val: params["rm_dir_on_init"] = init_val.get("rm_dir", ATYPE_BOOL, True) params["use_ortho_weights"] = init_val.get("use_ortho_weights", ATYPE_BOOL, True) params["max_lsuv_iters"] = init_val.get("max_lsuv_iters", [ATYPE_NONE, ATYPE_INT], True) params["lsuv_tolerance"] = init_val.get("lsuv_tolerance", ATYPE_FLOAT, True) params["init_alpha"] = init_val.get("init_alpha", ATYPE_FLOAT, True) train_val = ArgumentsValidator(train_args, "Training arguments") with train_val: params["save_time"] = train_val.get("save_time", ATYPE_FLOAT, True) params["val_throttle_time"] = train_val.get("val_throttle_time", ATYPE_FLOAT, True) params["learning_rate"] = train_val.get("learning_rate", ATYPE_FLOAT, True) params["sgd_momentum"] = train_val.get("sgd_momentum", [ATYPE_NONE, ATYPE_FLOAT], True) params["sgd_use_nesterov"] = train_val.get("sgd_use_nesterov", ATYPE_BOOL, True) params["use_rmsprop"] = train_val.get("use_rmsprop", ATYPE_BOOL, True) params["rmsprop_decay"] = train_val.get("rmsprop_decay", ATYPE_FLOAT, True) params["rmsprop_momentum"] = train_val.get("rmsprop_momentum", ATYPE_FLOAT, True) params["rmsprop_epsilon"] = train_val.get("rmsprop_epsilon", ATYPE_FLOAT, True) params["reg_weight_decay"] = train_val.get("reg_weight_decay", [ATYPE_NONE, ATYPE_FLOAT], True) params["cost_type"] = train_val.get("cost_type", ATYPE_STRING, True).lower() params["max_grad_norm"] = train_val.get("max_grad_norm", [ATYPE_NONE, ATYPE_FLOAT], True) params["parallel_grad_gate"] = train_val.get("parallel_grad_gate", ATYPE_BOOL, True) return params
f132eaa4077dd197faed72d6805f15255b7dd680
3,644,935
def bit_lshift(bin_name, bit_offset, bit_size, shift, policy=None): """Creates a bit_lshift_operation to be used with operate or operate_ordered. Server left shifts bitmap starting at bit_offset for bit_size by shift bits. No value is returned. Args: bin_name (str): The name of the bin containing the map. bit_offset (int): The offset where the bits will start being shifted. bit_size (int): The number of bits that will be shifted by shift places. shift (int): How many bits to shift by. policy (dict, optional): The bit_policy policy dictionary. See: See :ref:`aerospike_bit_policies`. default: None Returns: A dictionary usable in operate or operate_ordered. The format of the dictionary should be considered an internal detail, and subject to change. """ return { OP_KEY: aerospike.OP_BIT_LSHIFT, BIN_KEY: bin_name, BIT_OFFSET_KEY: bit_offset, BIT_SIZE_KEY: bit_size, VALUE_KEY: shift, POLICY_KEY: policy }
3e8224a3f48eade9ee01a43819b4c6aa88ef308e
3,644,936
def compute_ccas(sigma_xx, sigma_xy, sigma_yx, sigma_yy, epsilon, verbose=True): """Main cca computation function, takes in variances and crossvariances. This function takes in the covariances and cross covariances of X, Y, preprocesses them (removing small magnitudes) and outputs the raw results of the cca computation, including cca directions in a rotated space, and the cca correlation coefficient values. Args: sigma_xx: 2d numpy array, (num_neurons_x, num_neurons_x) variance matrix for x sigma_xy: 2d numpy array, (num_neurons_x, num_neurons_y) crossvariance matrix for x,y sigma_yx: 2d numpy array, (num_neurons_y, num_neurons_x) crossvariance matrix for x,y (conj) transpose of sigma_xy sigma_yy: 2d numpy array, (num_neurons_y, num_neurons_y) variance matrix for y epsilon: small float to help with stabilizing computations verbose: boolean on whether to print intermediate outputs Returns: [ux, sx, vx]: [numpy 2d array, numpy 1d array, numpy 2d array] ux and vx are (conj) transposes of each other, being the canonical directions in the X subspace. sx is the set of canonical correlation coefficients- how well corresponding directions in vx, Vy correlate with each other. [uy, sy, vy]: Same as above, but for Y space invsqrt_xx: Inverse square root of sigma_xx to transform canonical directions back to original space invsqrt_yy: Same as above but for sigma_yy x_idxs: The indexes of the input sigma_xx that were pruned by remove_small y_idxs: Same as above but for sigma_yy """ (sigma_xx, sigma_xy, sigma_yx, sigma_yy, x_idxs, y_idxs) = remove_small(sigma_xx, sigma_xy, sigma_yx, sigma_yy, epsilon) numx = sigma_xx.shape[0] numy = sigma_yy.shape[0] if numx == 0 or numy == 0: return ([0, 0, 0], [0, 0, 0], np.zeros_like(sigma_xx), np.zeros_like(sigma_yy), x_idxs, y_idxs) if verbose: print("adding eps to diagonal and taking inverse") sigma_xx += epsilon * np.eye(numx) sigma_yy += epsilon * np.eye(numy) inv_xx = np.linalg.pinv(sigma_xx) inv_yy = np.linalg.pinv(sigma_yy) if verbose: print("taking square root") invsqrt_xx = positivedef_matrix_sqrt(inv_xx) invsqrt_yy = positivedef_matrix_sqrt(inv_yy) if verbose: print("dot products...") arr = np.dot(invsqrt_xx, np.dot(sigma_xy, invsqrt_yy)) if verbose: print("trying to take final svd") u, s, v = np.linalg.svd(arr) if verbose: print("computed everything!") return [u, np.abs(s), v], invsqrt_xx, invsqrt_yy, x_idxs, y_idxs
67827220cdbdd41250a8a40f140c8c21e0625df7
3,644,937
def generate_samples( segment_mask: np.ndarray, num_of_samples: int = 64, p: float = 0.5 ) -> np.ndarray: """Generate samples by randomly selecting a subset of the segments. Parameters ---------- segment_mask : np.ndarray The mask generated by `create_segments()`: An array of shape (image_width, image_height). num_of_samples : int The number of samples to generate. p : float The probability for each segment to be removed from a sample. Returns ------- samples : np.ndarray A two-dimensional array of size (num_of_samples, num_of_segments). """ num_of_segments = int(np.max(segment_mask) + 1) return np.random.binomial(n=1, p=p, size=(num_of_samples, num_of_segments))
99ee42abf95bd338714e42beee42610e3ac2f09d
3,644,938
def get_mix_bandpassed(bp_list, comp, param_dict_file=None,bandpass_shifts=None, ccor_cen_nus=None, ccor_beams=None, ccor_exps = None, normalize_cib=True,param_dict_override=None,bandpass_exps=None,nus_ghz=None,btrans=None, dust_beta_param_name='beta_CIB', radio_beta_param_name='beta_radio', override_lbeam_bnus=None): """ Get mixing factors for a given component that have "color corrections" that account for a non-delta-function bandpass and for possible variation of the beam within the bandpass. If the latter is provided, the resulting output is of shape [Nfreqs,nells], otherwise the output is of shape [Nfreqs,]. Parameters ---------- bp_list : list of strings a list of strings of length Nfreqs where each string is the filename for a file containing a specification of the bandpass for that frequency channel. For each file, the first column is frequency in GHz and the second column is the transmission whose overall normalization does not matter. comp : string a string specifying the component whose mixing is requested. Currently, the following are supported (1) CMB or kSZ (considered identical, and always returns ones) (2) tSZ (3) mu (4) rSZ (5) CIB (6) radio param_dict_file : string, optional filename of a YAML file used to create a dictionary of SED parameters and values (only needed for some SEDs). If None, defaults to parameters specified in input/fg_SEDs_default_params.yml. bandpass_shifts : list of floats, optional A list of floats of length [Nfreqs,] specifying how much in GHz to shift the entire bandpass. Each value can be positive (shift right) or negative (shift left). If None, no shift is applied and the bandpass specified in the files is used as is. ccor_cen_nus : list of floats, optional If not None, this indicates that the dependence of the beam on frequency with the bandpass should be taken into account. ccor_cen_nus will then be interpreted as a [Nfreqs,] length list of the "central frequencies" of each bandpass in GHz. The provided beams in ccor_beams for each channel are then scaled by (nu/nu_central)**ccor_exp where ccor_exp defaults to -1. ccor_beams : list of array_like, optional Only used if ccor_cen_nus is not None. In that mode, ccor_beams is interpreted as an [Nfreqs,] length list where each element is a 1d numpy array specifying the beam transmission starting from ell=0 and normalized to one at ell=0. The provided beams for each channel are then scaled by (nu/nu_central)**ccor_exp where ccor_exp defaults to -1 and nu_central is specified through ccor_cen_nus. If any list element is None, no scale dependent color correction is applied for that frequency channel. See get_scaled_beams for more information. ccor_exps : list of floats, optional Only used if ccor_cen_nus is not None. Defaults to -1 for each frequncy channel. This controls how the beam specified in ccor_beams for the central frequencies specified in ccor_cen_nus is scaled to other frequencies. """ if bandpass_shifts is not None and np.any(np.array(bandpass_shifts)!=0): print("WARNING: shifted bandpasses provided.") assert (comp is not None) assert (bp_list is not None) N_freqs = len(bp_list) if ccor_cen_nus is not None: assert len(ccor_cen_nus)==N_freqs assert len(ccor_beams)==N_freqs lmaxs = [] for i in range(N_freqs): if ccor_beams[i] is not None: assert ccor_beams[i].ndim==1 lmaxs.append( ccor_beams[i].size ) if len(lmaxs)==0: ccor_cen_nus = None shape = N_freqs else: lmax = max(lmaxs) shape = (N_freqs,lmax) if ccor_exps is None: ccor_exps = [-1]*N_freqs elif override_lbeam_bnus is not None: lbeam,bnus = override_lbeam_bnus lmax = lbeam.size shape = (N_freqs,lmax) else: shape = N_freqs if (comp == 'CIB' or comp == 'rSZ' or comp == 'radio'): if param_dict_file is None: p = default_dict else: p = read_param_dict_from_yaml(param_dict_file) if (comp == 'CMB' or comp == 'kSZ'): #CMB (or kSZ) output = np.ones(shape) #this is unity by definition, since we're working in Delta T units [uK_CMB]; output ILC map will thus also be in uK_CMB for i in range(N_freqs): if(bp_list[i] == None): #this case is appropriate for HI or other maps that contain no CMB-relevant signals (and also no CIB); they're assumed to be denoted by None in bp_list output[i] = 0. return output else: output = np.zeros(shape) for i,bp in enumerate(bp_list): if (bp_list[i] is not None): if nus_ghz is None: nu_ghz, trans = np.loadtxt(bp, usecols=(0,1), unpack=True) else: nu_ghz = nus_ghz trans = btrans if bandpass_shifts is not None: nu_ghz = nu_ghz + bandpass_shifts[i] if bandpass_exps is not None: trans = trans * nu_ghz**bandpass_exps[i] lbeam = 1 bnus = 1 # It turns out scaling the beam is actually the slowest part of the calculation # so we allow pre-calculated ones to be provided if override_lbeam_bnus is not None: lbeam,bnus = override_lbeam_bnus else: if ccor_cen_nus is not None: if ccor_beams[i] is not None: lbeam = ccor_beams[i] ells = np.arange(lbeam.size) cen_nu_ghz = ccor_cen_nus[i] bnus = get_scaled_beams(ells,lbeam,cen_nu_ghz,nu_ghz,ccor_exp=ccor_exps[i]).swapaxes(0,1) assert np.all(np.isfinite(bnus)) if (comp == 'tSZ' or comp == 'mu' or comp == 'rSZ'): # Thermal SZ (y-type distortion) or mu-type distortion or relativistic tSZ # following Sec. 3.2 of https://arxiv.org/pdf/1303.5070.pdf # -- N.B. IMPORTANT TYPO IN THEIR EQ. 35 -- see https://www.aanda.org/articles/aa/pdf/2014/11/aa21531-13.pdf mixs = get_mix(nu_ghz, comp, param_dict_file=param_dict_file, param_dict_override=param_dict_override, dust_beta_param_name=dust_beta_param_name,radio_beta_param_name=radio_beta_param_name) val = np.trapz(trans * dBnudT(nu_ghz) * bnus * mixs, nu_ghz) / np.trapz(trans * dBnudT(nu_ghz), nu_ghz) / lbeam # this is the response at each frequency channel in uK_CMB for a signal with y=1 (or mu=1) elif (comp == 'CIB'): # following Sec. 3.2 of https://arxiv.org/pdf/1303.5070.pdf # -- N.B. IMPORTANT TYPO IN THEIR EQ. 35 -- see https://www.aanda.org/articles/aa/pdf/2014/11/aa21531-13.pdf # CIB SED parameter choices in dict file: Tdust_CIB [K], beta_CIB, nu0_CIB [GHz] # N.B. overall amplitude is not meaningful here; output ILC map (if you tried to preserve this component) would not be in sensible units mixs = get_mix(nu_ghz, 'CIB_Jysr', param_dict_file=param_dict_file, param_dict_override=param_dict_override, dust_beta_param_name=dust_beta_param_name,radio_beta_param_name=radio_beta_param_name) vnorm = np.trapz(trans * dBnudT(nu_ghz), nu_ghz) val = (np.trapz(trans * mixs * bnus , nu_ghz) / vnorm) / lbeam # N.B. this expression follows from Eqs. 32 and 35 of # https://www.aanda.org/articles/aa/pdf/2014/11/aa21531-13.pdf , # and then noting that one also needs to first rescale the CIB emission # in Jy/sr from nu0_CIB to the "nominal frequency" nu_c that appears in # those equations (i.e., multiply by get_mix(nu_c, 'CIB_Jysr')). # The resulting cancellation leaves this simple expression which has no dependence on nu_c. elif (comp == 'radio'): # same logic/formalism as used for CIB component immediately above this # radio SED parameter choices in dict file: beta_radio, nu0_radio [GHz] mixs = get_mix(nu_ghz, 'radio_Jysr', param_dict_file=param_dict_file, param_dict_override=param_dict_override, dust_beta_param_name=dust_beta_param_name,radio_beta_param_name=radio_beta_param_name) val = (np.trapz(trans * mixs * bnus , nu_ghz) / np.trapz(trans * dBnudT(nu_ghz), nu_ghz)) / lbeam else: print("unknown component specified") raise NotImplementedError if (ccor_cen_nus is not None) and (ccor_beams[i] is not None): val[lbeam==0] = 0 output[i] = val assert np.all(np.isfinite(val)) elif (bp_list[i] is None): #this case is appropriate for HI or other maps that contain no CMB-relevant signals (and also no CIB); they're assumed to be denoted by None in bp_list output[i] = 0. if (comp == 'CIB' or comp == 'radio') and normalize_cib: #overall amplitude not meaningful, so divide by max to get numbers of order unity; # output gives the relative conversion between CIB (or radio) at different frequencies, for maps in uK_CMB omax = output.max(axis=0) ret = output / omax if (ccor_cen_nus is not None): ret[:,omax==0] = 0 else: ret = output assert np.all(np.isfinite(ret)) return ret
d4693e41c755dd1067c371bfa740ce1436dfc85a
3,644,939
def partition(data, label_name, ratio): """ Partitions data set according to a provided ratio. params: data - The data set in a pandas data frame label_name - the name of the collumn in the data set that contains the labels ratio - the training/total data ratio returns: training_data - The data set to train on training_labels - Indexed labels for training set testing_data - The data set to test on testing_labels - The data set to test on """ data = data.loc[np.random.permutation(data.index)] partition_idx = int(data.shape[0] * ratio) train, test = np.split(data, [partition_idx]) def splitDataLabels(data): """Separates labels from data.""" labels = data[label_name].to_frame() data = data.drop(columns = [label_name]) return data , labels train_data, train_label = splitDataLabels(train) test_data, test_label = splitDataLabels(test) return train_data, train_label, test_data, test_label
6f00c8df9e5fb42f4e3fb01744215214e732f441
3,644,940
import os def find_background2(data, mask, channels, apertureset_lst, method='poly', scale='linear', scan_step=200, xorder=2, yorder=2, maxiter=5, upper_clip=3, lower_clip=3, extend=True, display=True, fig_file=None, reg_file=None): """Subtract the background for an input FITS image. Args: data (:class:`numpy.ndarray`): Input data image. mask (:class:`numpy.ndarray`): Mask of input data image. channels (list): List of channels as strings. apertureset_lst (dict): Dict of :class:`~edrs.echelle.trace.ApertureSet` at different channels. method (str): Method of finding background light. scale (str): Scale of the 2-D polynomial fitting. If 'log', fit the polynomial in the logrithm scale. scan_step (int): Steps of scan in pixels. xorder (int): Order of 2D polynomial along the main dispersion direction (only applicable if **method** = "poly"). yorder (int): Order of 2D polynomial along the cross-dispersion direction (only applicable if **method** = "poly"). maxiter (int): Maximum number of iteration of 2D polynomial fitting (only applicable if **method** = "poly"). upper_clip (float): Upper sigma clipping threshold (only applicable if **method** = "poly"). lower_clip (float): Lower sigma clipping threshold (only applicable if **method** = "poly"). extend (bool): Extend the grid to the whole CCD image if *True*. display (bool): Display figures on the screen if *True*. fig_file (str): Name of the output figure. No image file generated if *None*. reg_file (string): Name of the output DS9 region file. No file generated if *None*. Returns: :class:`numpy.ndarray`: Image of background light. """ plot = (display or fig_file is not None) plot_paper_fig = False h, w = data.shape meddata = median_filter(data, size=(3,3), mode='reflect') xnodes, ynodes, znodes = [], [], [] # find the minimum and maximum aperture number min_aper = min([min(apertureset_lst[ch].keys()) for ch in channels]) max_aper = max([max(apertureset_lst[ch].keys()) for ch in channels]) # generate the horizontal scan list x_lst = np.arange(0, w-1, scan_step) # add the last column to the list if x_lst[-1] != w-1: x_lst = np.append(x_lst, w-1) # find intra-order pixels _message_lst = ['Column, N (between), N (extend), N (removed), N (total)'] for x in x_lst: xsection = meddata[:,x] inter_aper = [] prev_newy = None # loop for every aperture for aper in range(min_aper, max_aper+1): # for a new aperture, initialize the count of channel count_channel = 0 for ich, channel in enumerate(channels): # check every channel in this frame if aper in apertureset_lst[channel]: count_channel += 1 this_newy = apertureset_lst[channel][aper].position(x) if count_channel == 1 and prev_newy is not None: # this channel is the first channel in this aperture and # there is a previous y mid_newy = (prev_newy + this_newy)//2 i1 = min(h-1, max(0, int(prev_newy))) i2 = min(h-1, max(0, int(this_newy))) #if len(inter_aper)==0 or \ # abs(mid_newy - inter_aper[-1])>scan_step*0.7: # if i2-i1>0: if i2-i1>0: mid_newy = i1 + xsection[i1:i2].argmin() inter_aper.append(mid_newy) prev_newy = this_newy inter_aper = np.array(inter_aper) # count how many nodes found between detected orders n_nodes_inter = inter_aper.size # if extend = True, expand the grid with polynomial fitting to # cover the whole CCD area n_nodes_extend = 0 if extend: if x==2304: _fig = plt.figure(dpi=150) _ax = _fig.gca() for _x in inter_aper: _ax.axvline(x=_x,color='g', ls='--',lw=0.5, alpha=0.6) _ax.plot(data[:, x],'b-',lw=0.5) _fig2 = plt.figure(dpi=150) _ax2 = _fig2.gca() print(inter_aper) coeff = np.polyfit(np.arange(inter_aper.size), inter_aper, deg=3) if x== 2304: _ax2.plot(np.arange(inter_aper.size), inter_aper,'go', alpha=0.6) _newx = np.arange(0, inter_aper.size, 0.1) _ax2.plot(_newx, np.polyval(coeff, _newx),'g-') # find the points after the end of inter_aper ii = inter_aper.size-1 new_y = inter_aper[-1] while(new_y<h-1): ii += 1 new_y = int(np.polyval(coeff,ii)) inter_aper = np.append(inter_aper,new_y) n_nodes_extend += 1 # find the points before the beginning of order_mid ii = 0 new_y = inter_aper[0] while(new_y>0): ii -= 1 new_y = int(np.polyval(coeff,ii)) inter_aper = np.insert(inter_aper,0,new_y) n_nodes_extend += 1 if x==2304: #for _x in np.polyval(coeff, np.arange(0,25)): # _ax.axvline(x=_x, color='r',ls='--',lw=0.5) #_newx = np.arange(0, 25) #_ax2.plot(_newx, np.polyval(coeff, _newx), 'ro', alpha=0.6) plt.show() # remove those points with y<0 or y>h-1 m1 = inter_aper > 0 m2 = inter_aper < h-1 inter_aper = inter_aper[np.nonzero(m1*m2)[0]] # filter those masked pixels m = mask[inter_aper, x]==0 inter_aper = inter_aper[m] # remove backward points tmp = np.insert(inter_aper,0,0.) m = np.diff(tmp)>0 inter_aper = inter_aper[np.nonzero(m)[0]] # count how many nodes removed n_nodes_removed = (n_nodes_inter + n_nodes_extend) - inter_aper.size # pack infos into message list _message_lst.append('| %6d | %6d | %6d | %6d | %6d |'%( x, n_nodes_inter, n_nodes_extend, n_nodes_removed, inter_aper.size)) # pack all nodes for y in inter_aper: xnodes.append(x) ynodes.append(y) znodes.append(meddata[y,x]) # extrapolate #if extrapolate: if False: _y0, _y1 = inter_aper[0], inter_aper[1] newy = _y0 - (_y1 - _y0) newz = meddata[_y0, x] - (meddata[_y1, x] - meddata[_y0, x]) xnodes.append(x) ynodes.append(newy) znodes.append(newz) _y1, _y2 = inter_aper[-2], inter_aper[-1] newy = _y2 + (_y2 - _y1) newz = meddata[_y2, x] + (meddata[_y2, x] - meddata[_y1, x]) xnodes.append(x) ynodes.append(newy) znodes.append(newz) # convert to numpy array xnodes = np.array(xnodes) ynodes = np.array(ynodes) znodes = np.array(znodes) # write to running log _message_lst.append('Total: %4d'%xnodes.size) logger.info((os.linesep+' ').join(_message_lst)) # if scale='log', filter the negative values if scale=='log': pmask = znodes > 0 znodes[~pmask] = znodes[pmask].min() znodes = np.log10(znodes) if plot: # initialize figures fig = plt.figure(figsize=(10,10), dpi=150) ax11 = fig.add_axes([0.07, 0.54, 0.39, 0.39]) ax12 = fig.add_axes([0.52, 0.54, 0.39, 0.39]) ax13 = fig.add_axes([0.94, 0.54, 0.015, 0.39]) ax21 = fig.add_axes([0.07, 0.07, 0.39, 0.39], projection='3d') ax22 = fig.add_axes([0.52, 0.07, 0.39, 0.39], projection='3d') fig.suptitle('Background') ax11.imshow(data, cmap='gray') # plot nodes for ax in [ax11, ax12]: ax.set_xlim(0,w-1) ax.set_ylim(h-1,0) ax.set_xlabel('X (pixel)', fontsize=10) ax.set_ylabel('Y (pixel)', fontsize=10) for ax in [ax21, ax22]: ax.set_xlim(0,w-1) ax.set_ylim(0,h-1) ax.set_xlabel('X (pixel)', fontsize=10) ax.set_ylabel('Y (pixel)', fontsize=10) for ax in [ax11, ax12]: for tick in ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(9) for tick in ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(9) for ax in [ax21, ax22]: for tick in ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(9) for tick in ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(9) for tick in ax.zaxis.get_major_ticks(): tick.label1.set_fontsize(9) if display: plt.show(block=False) # plot the figure used in paper if plot_paper_fig: figp1 = plt.figure(figsize=(6,6), dpi=150) axp1 = figp1.add_axes([0.00, 0.05, 1.00, 0.95], projection='3d') figp2 = plt.figure(figsize=(6.5,6), dpi=150) axp2 = figp2.add_axes([0.12, 0.1, 0.84, 0.86]) if method=='poly': background_data, fitmask = fit_background(data.shape, xnodes, ynodes, znodes, xorder=xorder, yorder=yorder, maxiter=maxiter, upper_clip=upper_clip, lower_clip=lower_clip) elif method=='interp': background_data, fitmask = interpolate_background(data.shape, xnodes, ynodes, znodes) else: print('Unknown method: %s'%method) m = (ynodes >= 0)*(ynodes <= h-1) xnodes = xnodes[m] ynodes = ynodes[m] znodes = znodes[m] fitmask = fitmask[m] if scale=='log': background_data = np.power(10, background_data) # save nodes to DS9 region file if reg_file is not None: outfile = open(reg_file, 'w') outfile.write('# Region file format: DS9 version 4.1'+os.linesep) outfile.write('global color=green dashlist=8 3 width=1 ') outfile.write('font="helvetica 10 normal roman" select=1 highlite=1 ') outfile.write('dash=0 fixed=0 edit=1 move=1 delete=1 include=1 ') outfile.write('source=1'+os.linesep) outfile.write('physical'+os.linesep) for x, y in zip(xnodes, ynodes): text = ('point(%4d %4d) # point=circle'%(x+1, y+1)) outfile.write(text+os.linesep) outfile.close() # write nodes to running log message = ['Background Nodes:', ' x, y, value, mask'] for x,y,z,m in zip(xnodes, ynodes, znodes, fitmask): message.append('| %4d | %4d | %+10.8e | %1d |'%(x,y,z,m)) logger.info((os.linesep+' '*4).join(message)) residual = znodes - background_data[ynodes, xnodes] if plot: # prepare for plotting the fitted surface with a loose grid yy, xx = np.meshgrid(np.linspace(0,h-1,32), np.linspace(0,w-1,32)) yy = np.int16(np.round(yy)) xx = np.int16(np.round(xx)) zz = background_data[yy, xx] # plot 2d fitting in a 3-D axis in fig2 # plot the linear fitting ax21.set_title('Background fitting (%s Z)'%scale, fontsize=10) ax22.set_title('residuals (%s Z)'%scale, fontsize=10) ax21.plot_surface(xx, yy, zz, rstride=1, cstride=1, cmap='jet', linewidth=0, antialiased=True, alpha=0.5) ax21.scatter(xnodes[fitmask], ynodes[fitmask], znodes[fitmask], color='C0', linewidth=0) ax22.scatter(xnodes[fitmask], ynodes[fitmask], residual[fitmask], color='C0', linewidth=0) if (~fitmask).sum()>0: ax21.scatter(xnodes[~fitmask], ynodes[~fitmask], znodes[~fitmask], color='none', edgecolor='C0', linewidth=1) ax22.scatter(xnodes[~fitmask], ynodes[~fitmask], residual[~fitmask], color='none', edgecolor='C0', linewidth=1) # plot the logrithm fitting in another fig #if scale=='log': # ax23.plot_surface(xx, yy, log_zz, rstride=1, cstride=1, cmap='jet', # linewidth=0, antialiased=True, alpha=0.5) # ax23.scatter(xnodes[fitmask], ynodes[fitmask], zfit[fitmask], linewidth=0) # ax24.scatter(xnodes[fitmask], ynodes[fitmask], log_residual[fitmask], linewidth=0) for ax in [ax21, ax22]: ax.xaxis.set_major_locator(tck.MultipleLocator(500)) ax.xaxis.set_minor_locator(tck.MultipleLocator(100)) ax.yaxis.set_major_locator(tck.MultipleLocator(500)) ax.yaxis.set_minor_locator(tck.MultipleLocator(100)) if display: fig.canvas.draw() # plot figure for paper if plot_paper_fig: axp1.plot_surface(xx, yy, zz, rstride=1, cstride=1, cmap='jet', linewidth=0, antialiased=True, alpha=0.5) axp1.scatter(xnodes[fitmask], ynodes[fitmask], znodes[fitmask], linewidth=0) axp1.xaxis.set_major_locator(tck.MultipleLocator(500)) axp1.xaxis.set_minor_locator(tck.MultipleLocator(100)) axp1.yaxis.set_major_locator(tck.MultipleLocator(500)) axp1.yaxis.set_minor_locator(tck.MultipleLocator(100)) axp1.set_xlim(0, w-1) axp1.set_ylim(0, h-1) axp1.set_xlabel('X') axp1.set_ylabel('Y') axp1.set_zlabel('Count') if plot: # plot the accepted nodes in subfig 1 ax11.scatter(xnodes[fitmask], ynodes[fitmask], c='r', s=6, linewidth=0, alpha=0.8) # plot the rejected nodes if (~fitmask).sum()>0: ax11.scatter(xnodes[~fitmask], ynodes[~fitmask], c='none', s=6, edgecolor='r', linewidth=0.5) # plot subfig 2 cnorm = colors.Normalize(vmin = background_data.min(), vmax = background_data.max()) scalarmap = cmap.ScalarMappable(norm=cnorm, cmap=cmap.jet) # plot the background light image = ax12.imshow(background_data, cmap=scalarmap.get_cmap()) # plot the accepted nodes ax12.scatter(xnodes[fitmask], ynodes[fitmask], c='k', s=6, linewidth=0.5) # plot the rejected nodes if (~fitmask).sum()>0: ax12.scatter(xnodes[~fitmask], ynodes[~fitmask], c='none', s=6, edgecolor='k', linewidth=0.5) # set colorbar plt.colorbar(image, cax=ax13) # set font size of colorbar for tick in ax13.get_yaxis().get_major_ticks(): tick.label2.set_fontsize(9) if display: fig.canvas.draw() # plot for figure in paper if plot_paper_fig: pmask = data>0 logdata = np.zeros_like(data)-1 logdata[pmask] = np.log(data[pmask]) axp2.imshow(logdata, cmap='gray') axp2.scatter(xnodes, ynodes, c='b', s=8, linewidth=0, alpha=0.8) cs = axp2.contour(background_data, linewidth=1, cmap='jet') axp2.clabel(cs, inline=1, fontsize=11, fmt='%d', use_clabeltext=True) axp2.set_xlim(0, w-1) axp2.set_ylim(h-1, 0) axp2.set_xlabel('X') axp2.set_ylabel('Y') figp1.savefig('fig_background1.png') figp2.savefig('fig_background2.png') figp1.savefig('fig_background1.pdf') figp2.savefig('fig_background2.pdf') plt.close(figp1) plt.close(figp2) if fig_file is not None: fig.savefig(fig_file) plt.close(fig) return background_data
20ed1499ed23252fb5d24cf892e3cd169b0027b9
3,644,941
def get_piesocket_api_key(): """ Retrieves user's Piesocket API key. Returns: (str) Piesocket API key. Raises: (ImproperlyConfigured) if the Piesocket API key isn't specified in settings. """ return get_setting_or_raise( setting="PIESOCKET_API_KEY", setting_str="PieSocket API Key" )
657bba650a914ed1a15d54b9d0000f37b99568d0
3,644,942
def downsample(myarr,factor,estimator=np.mean): """ Downsample a 2D array by averaging over *factor* pixels in each axis. Crops upper edge if the shape is not a multiple of factor. This code is pure numpy and should be fast. keywords: estimator - default to mean. You can downsample by summing or something else if you want a different estimator (e.g., downsampling error: you want to sum & divide by sqrt(n)) """ ys,xs = myarr.shape crarr = myarr[:ys-(ys % int(factor)),:xs-(xs % int(factor))] dsarr = estimator(np.concatenate([[crarr[i::factor,j::factor] for i in range(factor)] for j in range(factor)]), axis=0) return dsarr
45b6422cb7f9b01512bc4860229164b043201675
3,644,943
def getActiveWindow(): """Returns a Window object of the currently active Window.""" # Source: https://stackoverflow.com/questions/5286274/front-most-window-using-cgwindowlistcopywindowinfo windows = Quartz.CGWindowListCopyWindowInfo(Quartz.kCGWindowListExcludeDesktopElements | Quartz.kCGWindowListOptionOnScreenOnly, Quartz.kCGNullWindowID) for win in windows: if win['kCGWindowLayer'] == 0: return '%s %s' % (win[Quartz.kCGWindowOwnerName], win.get(Quartz.kCGWindowName, '')) # Temporary. For now, we'll just return the title of the active window. raise Exception('Could not find an active window.')
ca1c810525f0a49cd9f4b53d0d621cb39b3b733e
3,644,944
def _derivative_log(x): """Chain rule on natural log = (1/x)*(dx/dr)""" return _protected_inverse(x[0])[:, :, np.newaxis, np.newaxis]*x[1]
5f4bf5416575126cd93adaee6ccfca942ad6218f
3,644,945
def svn_wc_merge_props(*args): """ svn_wc_merge_props(svn_wc_notify_state_t state, char path, svn_wc_adm_access_t adm_access, apr_hash_t baseprops, apr_array_header_t propchanges, svn_boolean_t base_merge, svn_boolean_t dry_run, apr_pool_t pool) -> svn_error_t """ return _wc.svn_wc_merge_props(*args)
54187e010f71798bee90eb179a10da11bf410fce
3,644,946
def is_paused(): """ Return True if is_paused is set in the global settings table of the database. """ try: is_paused_val = Settings.objects.get().is_paused except ObjectDoesNotExist: is_paused_val = False return is_paused_val
59b99d4a4842e14205376d7923d3e5c8b52c30a6
3,644,947
def info_request(request): """Information request form.""" if request.method == 'POST': form = InfoRequestForm(request.POST) if form.is_valid(): cd = form.cleaned_data # create out recipient list to = [] # cleaned_data converts the data to a list so we do not # need to use getlist() for program in cd.get('academic_programs'): to = to + settings.CONTINUING_STUDIES_INFOREQUEST_RECIPIENTS[program] if settings.DEBUG: cd['to'] = to to = [settings.MANAGERS[0][1]] subject = 'OCS Information Request' send_mail( request, to, subject, cd['email'], 'admissions/inforequest.txt', cd, ) return HttpResponseRedirect(reverse_lazy('info_request_success')) else: form = InfoRequestForm() return render(request, 'admissions/inforequest.html', {'form': form})
124d2fc36823fb4e1c7b569c0c6d9c75a93297e8
3,644,948
import itertools def get_accurate(clustering_res_df, cluster_number, error=False): """ :param clustering_res_df: a pandas DataFrame about clustering result :param cluster_number: the number of the cluster (the first column is the index, the second column is the right information, the third column is the clustering information) :param error: if error=True, then return the error rate, else, return the accuracy rate :return: the clustering accuracy """ if clustering_res_df.shape[1] != 3: raise Exception("Shape Error: the input DataFrame's column number is not 3") real_dict = {} clustering_dict = {} for i in range(cluster_number): real_df = clustering_res_df.loc[clustering_res_df['ClusterInfo'] == i] clustering_df = clustering_res_df.loc[clustering_res_df['ClusterExp'] == i] real_dict[i] = real_df['IndexNum'].tolist() clustering_dict[i] = clustering_df['IndexNum'].tolist() accuracy_matrix = np.zeros((cluster_number, cluster_number)) for i in range(cluster_number): for j in range(cluster_number): accuracy_matrix[i][j] = len(set(real_dict[i]).intersection(set(clustering_dict[j]))) # for test # print("The accuracy matrix is: \n", accuracy_matrix) case_iterator = itertools.permutations(range(cluster_number), cluster_number) accurate = 0 for item in case_iterator: acc = sum([accuracy_matrix[i][item[i]] for i in range(cluster_number)]) if acc > accurate: accurate = acc if not error: return accurate / clustering_res_df.shape[0] else: return 1 - accurate / clustering_res_df.shape[0]
7ba71bcd82e70d9344994f9b6a2133676d58f683
3,644,949
import json def odict_to_json(odict): """ Dump an OrderedDict into JSON series """ json_series = json.dumps(odict) return json_series
d18a4e0f0d11a2c529edb395671052f15ad8071d
3,644,950
import ast def parenthesize(node: ast.AST, _nl_able: bool = False) -> str: """Wrap the un-parsed node in parentheses.""" return f"({unparse(node, True)})"
d61d6be6e5466559cdaba0602a95f3169d74aa36
3,644,951
def stack_nested_arrays(nested_arrays): """Stack/batch a list of nested numpy arrays. Args: nested_arrays: A list of nested numpy arrays of the same shape/structure. Returns: A nested array containing batched items, where each batched item is obtained by stacking corresponding items from the list of nested_arrays. """ nested_arrays_flattened = [tf.nest.flatten(a) for a in nested_arrays] batched_nested_array_flattened = [ np.stack(a) for a in zip(*nested_arrays_flattened) ] return tf.nest.pack_sequence_as(nested_arrays[0], batched_nested_array_flattened)
bf1e4bd35be871b9098d9789b189c48f36329646
3,644,952
from sys import version def temporal_statistics(da, stats): """ Obtain generic temporal statistics using the hdstats temporal library: https://github.com/daleroberts/hdstats/blob/master/hdstats/ts.pyx last modified June 2020 Parameters ---------- da : xarray.DataArray DataArray should contain a 3D time series. stats : list list of temporal statistics to calculate. Options include: 'discordance' = 'f_std' = std of discrete fourier transform coefficients, returns three layers: f_std_n1, f_std_n2, f_std_n3 'f_mean' = mean of discrete fourier transform coefficients, returns three layers: f_mean_n1, f_mean_n2, f_mean_n3 'f_median' = median of discrete fourier transform coefficients, returns three layers: f_median_n1, f_median_n2, f_median_n3 'mean_change' = mean of discrete difference along time dimension 'median_change' = median of discrete difference along time dimension 'abs_change' = mean of absolute discrete difference along time dimension 'complexity' = 'central_diff' = 'num_peaks' : The number of peaks in the timeseries, defined with a local window of size 10. NOTE: This statistic is very slow Outputs ------- xarray.Dataset containing variables for the selected temporal statistics """ # if dask arrays then map the blocks if dask.is_dask_collection(da): if version.parse(xr.__version__) < version.parse("0.16.0"): raise TypeError( "Dask arrays are only supported by this function if using, " + "xarray v0.16, run da.compute() before passing dataArray." ) # create a template that matches the final datasets dims & vars arr = da.isel(time=0).drop("time") # deal with the case where fourier is first in the list if stats[0] in ("f_std", "f_median", "f_mean"): template = xr.zeros_like(arr).to_dataset(name=stats[0] + "_n1") template[stats[0] + "_n2"] = xr.zeros_like(arr) template[stats[0] + "_n3"] = xr.zeros_like(arr) for stat in stats[1:]: if stat in ("f_std", "f_median", "f_mean"): template[stat + "_n1"] = xr.zeros_like(arr) template[stat + "_n2"] = xr.zeros_like(arr) template[stat + "_n3"] = xr.zeros_like(arr) else: template[stat] = xr.zeros_like(arr) else: template = xr.zeros_like(arr).to_dataset(name=stats[0]) for stat in stats: if stat in ("f_std", "f_median", "f_mean"): template[stat + "_n1"] = xr.zeros_like(arr) template[stat + "_n2"] = xr.zeros_like(arr) template[stat + "_n3"] = xr.zeros_like(arr) else: template[stat] = xr.zeros_like(arr) try: template = template.drop('spatial_ref') except: pass # ensure the time chunk is set to -1 da_all_time = da.chunk({"time": -1}) # apply function across chunks lazy_ds = da_all_time.map_blocks( temporal_statistics, kwargs={"stats": stats}, template=template ) try: crs = da.geobox.crs lazy_ds = assign_crs(lazy_ds, str(crs)) except: pass return lazy_ds # If stats supplied is not a list, convert to list. stats = stats if isinstance(stats, list) else [stats] # grab all the attributes of the xarray x, y, time, attrs = da.x, da.y, da.time, da.attrs # deal with any all-NaN pixels by filling with 0's mask = da.isnull().all("time") da = da.where(~mask, other=0) # complete timeseries print("Completing...") da = fast_completion(da) # ensure dim order is correct for functions da = da.transpose("y", "x", "time").values stats_dict = { "discordance": lambda da: hdstats.discordance(da, n=10), "f_std": lambda da: hdstats.fourier_std(da, n=3, step=5), "f_mean": lambda da: hdstats.fourier_mean(da, n=3, step=5), "f_median": lambda da: hdstats.fourier_median(da, n=3, step=5), "mean_change": lambda da: hdstats.mean_change(da), "median_change": lambda da: hdstats.median_change(da), "abs_change": lambda da: hdstats.mean_abs_change(da), "complexity": lambda da: hdstats.complexity(da), "central_diff": lambda da: hdstats.mean_central_diff(da), "num_peaks": lambda da: hdstats.number_peaks(da, 10), } print(" Statistics:") # if one of the fourier functions is first (or only) # stat in the list then we need to deal with this if stats[0] in ("f_std", "f_median", "f_mean"): print(" " + stats[0]) stat_func = stats_dict.get(str(stats[0])) zz = stat_func(da) n1 = zz[:, :, 0] n2 = zz[:, :, 1] n3 = zz[:, :, 2] # intialise dataset with first statistic ds = xr.DataArray( n1, attrs=attrs, coords={"x": x, "y": y}, dims=["y", "x"] ).to_dataset(name=stats[0] + "_n1") # add other datasets for i, j in zip([n2, n3], ["n2", "n3"]): ds[stats[0] + "_" + j] = xr.DataArray( i, attrs=attrs, coords={"x": x, "y": y}, dims=["y", "x"] ) else: # simpler if first function isn't fourier transform first_func = stats_dict.get(str(stats[0])) print(" " + stats[0]) ds = first_func(da) # convert back to xarray dataset ds = xr.DataArray( ds, attrs=attrs, coords={"x": x, "y": y}, dims=["y", "x"] ).to_dataset(name=stats[0]) # loop through the other functions for stat in stats[1:]: print(" " + stat) # handle the fourier transform examples if stat in ("f_std", "f_median", "f_mean"): stat_func = stats_dict.get(str(stat)) zz = stat_func(da) n1 = zz[:, :, 0] n2 = zz[:, :, 1] n3 = zz[:, :, 2] for i, j in zip([n1, n2, n3], ["n1", "n2", "n3"]): ds[stat + "_" + j] = xr.DataArray( i, attrs=attrs, coords={"x": x, "y": y}, dims=["y", "x"] ) else: # Select a stats function from the dictionary # and add to the dataset stat_func = stats_dict.get(str(stat)) ds[stat] = xr.DataArray( stat_func(da), attrs=attrs, coords={"x": x, "y": y}, dims=["y", "x"] ) # try to add back the geobox try: crs = da.geobox.crs ds = assign_crs(ds, str(crs)) except: pass return ds
b3be6d8260a70dcb697de39dd04d146e53907997
3,644,953
def encode_data(data): """ Helper that converts :class:`str` or :class:`bytes` to :class:`bytes`. :class:`str` are encoded with UTF-8. """ # Expect str or bytes, return bytes. if isinstance(data, str): return data.encode('utf-8') elif isinstance(data, bytes): return data else: raise TypeError("data must be bytes or str")
3cd54389719439e8f18cf02b110af07799c946b5
3,644,954
def get_apps_final(the_apps_dummy): """ 计算出: 1.每个用户安装app的数量; 2.每个用户安装小众app的数量; 3.每个用户安装大众app的数量; 4.根据每个用户安装app的向量进行Mean-shift聚类的结果 """ core_data = the_apps_dummy.drop(['id'], axis=1) the_apps_final = get_minor_major(core_data, 'apps', 5, 90) # new_core_data = col_cluster(core_data, n_cluster, 'app') # the_apps_final = pd.concat([apps_minor_major, new_core_data], axis=1) the_apps_final['id'] = the_apps_dummy['id'] return the_apps_final
afe92cf7fb79ac73464f7e9189bb56608e0fd424
3,644,955
from indico.modules.events.abstracts.util import (get_events_with_abstract_reviewer_convener, get_events_with_abstract_persons) from indico.modules.events.contributions.util import get_events_with_linked_contributions from indico.modules.events.papers.util import get_events_with_paper_roles from indico.modules.events.registration.util import get_events_registered from indico.modules.events.sessions.util import get_events_with_linked_sessions from indico.modules.events.surveys.util import get_events_with_submitted_surveys from indico.modules.events.util import (get_events_managed_by, get_events_created_by, get_events_with_linked_event_persons) def get_linked_events(user, dt, limit=None, load_also=()): """Get the linked events and the user's roles in them :param user: A `User` :param dt: Only include events taking place on/after that date :param limit: Max number of events """ links = OrderedDict() for event_id in get_events_registered(user, dt): links.setdefault(event_id, set()).add('registration_registrant') for event_id in get_events_with_submitted_surveys(user, dt): links.setdefault(event_id, set()).add('survey_submitter') for event_id in get_events_managed_by(user, dt): links.setdefault(event_id, set()).add('conference_manager') for event_id in get_events_created_by(user, dt): links.setdefault(event_id, set()).add('conference_creator') for event_id, principal_roles in get_events_with_linked_sessions(user, dt).iteritems(): links.setdefault(event_id, set()).update(principal_roles) for event_id, principal_roles in get_events_with_linked_contributions(user, dt).iteritems(): links.setdefault(event_id, set()).update(principal_roles) for event_id, role in get_events_with_linked_event_persons(user, dt).iteritems(): links.setdefault(event_id, set()).add(role) for event_id, roles in get_events_with_abstract_reviewer_convener(user, dt).iteritems(): links.setdefault(event_id, set()).update(roles) for event_id, roles in get_events_with_abstract_persons(user, dt).iteritems(): links.setdefault(event_id, set()).update(roles) for event_id, roles in get_events_with_paper_roles(user, dt).iteritems(): links.setdefault(event_id, set()).update(roles) if not links: return OrderedDict() query = (Event.query .filter(~Event.is_deleted, Event.id.in_(links)) .options(joinedload('series'), joinedload('label'), load_only('id', 'category_id', 'title', 'start_dt', 'end_dt', 'series_id', 'series_pos', 'series_count', 'label_id', 'label_message', *load_also)) .order_by(Event.start_dt, Event.id)) if limit is not None: query = query.limit(limit) return OrderedDict((event, links[event.id]) for event in query)
145f33cec0b79d74ea1550d22fc8599484d2b16d
3,644,956
import time import os def get_run_callback(run_text, output_dir): """ function to generate tf run callback for tensor board """ root_logdir = f'{output_dir.rstrip("/")}/tensorboard_logs/' run_id = time.strftime(f'{run_text}_%Y_%m_%d-%H-%M-%S') log_path = os.path.join(root_logdir, run_id) tensorboad_callback = tf.keras.callbacks.TensorBoard(log_path) return tensorboad_callback
f5275515b061446fd2be0cd79ed4fa583a23f80a
3,644,957
def bert_keyword_expansion(keywords: str, num_similar: int, bert_model, tokenizer, bert_embedding_dict): """ Keyword expansion outputs top N most similar words from vocabulary. @param keywords: string of comma-separated words to find keywords for @param num_similar: number of similar words to return @param bert_model: BERT embedding model @param tokenizer: BERT tokenizer object @param bert_embedding_dict: KeyedVectors object storing BERT-generated embeddings @return: list of top N most similar words in order of descending similarity """ assert isinstance(keywords, str) keywords = utils.rm_punct(keywords) keywords = utils.lower(keywords) # Assuming input is a string of space separated words keyword_list = set(keywords.split()) # Dictionary used to store similarity scores for top keywords scores_dict = defaultdict(int) for keyword in keyword_list: # Check if keyword is in the BERT embedding dictionary # If not, we create a vector representation of it first if keyword not in bert_embedding_dict.vocab: keyword = bert_embedding(keyword, tokenizer, bert_model, to_numpy=True) # Returns a list of tuples in the form (word, similarity score) result = utils.find_similar_keyword_in_vocab(keyword=keyword, num_similar=num_similar, model=bert_embedding_dict, similarity_score=True) for word, score in result: # Skipping similar words that already in the list of keywords provided by user if word in keyword_list: continue else: # Keeping the maximum similarity score for each word scores_dict[word] = max(scores_dict[word], score) sorted_results = sorted(scores_dict.items(), key=lambda kv: kv[1], reverse=True)[:num_similar] return [word for word, score in sorted_results]
5976a52cfcdd8d80f1b3b0fcc0d32b92f40a1f62
3,644,958
def utc_to_tt_offset(jday=None): """Returns the offset in seconds from a julian date in Terrestrial Time (TT) to a Julian day in Coordinated Universal Time (UTC)""" if use_numpy: return utc_to_tt_offset_numpy(jday) else: return utc_to_tt_offset_math(jday)
f40c82840253cc9b9f1f9a2685134b9313cb42d1
3,644,959
from typing import Any import aiohttp async def get_async_request(url: str) -> [int, Any]: """Get the data from the url provided. Parameters ---------- url: str url to get the data from Returns ------- [int, Any] Tuple with the Response status code and the data returned from the request """ async with aiohttp.ClientSession() as session: async with session.get(url) as response: data = await response.json() return [response.status, data]
2ad07bf7394d4d7804802d201fab0027171bea3d
3,644,960
def scattering_probability(H, psi0, n_emissions, c_ops, tlist, system_zero_state=None, construct_effective_hamiltonian=True): """ Compute the integrated probability of scattering n photons in an arbitrary system. This function accepts a nonlinearly spaced array of times. Parameters ---------- H : :class: qutip.Qobj or list System-waveguide(s) Hamiltonian or effective Hamiltonian in Qobj or list-callback format. If construct_effective_hamiltonian is not specified, an effective Hamiltonian is constructed from H and `c_ops`. psi0 : :class: qutip.Qobj Initial state density matrix :math:`\\rho(t_0)` or state vector :math:`\\psi(t_0)`. n_emissions : int Number of photons emitted by the system (into any combination of waveguides). c_ops : list List of collapse operators for each waveguide; these are assumed to include spontaneous decay rates, e.g. :math:`\\sigma = \\sqrt \\gamma \\cdot a`. tlist : array_like List of times for :math:`\\tau_i`. tlist should contain 0 and exceed the pulse duration / temporal region of interest; tlist need not be linearly spaced. system_zero_state : :class: qutip.Qobj State representing zero excitations in the system. Defaults to `basis(systemDims, 0)`. construct_effective_hamiltonian : bool Whether an effective Hamiltonian should be constructed from H and c_ops: :math:`H_{eff} = H - \\frac{i}{2} \\sum_n \\sigma_n^\\dagger \\sigma_n` Default: True. Returns ------- scattering_prob : float The probability of scattering n photons from the system over the time range specified. """ phi_n = temporal_scattered_state(H, psi0, n_emissions, c_ops, tlist, system_zero_state, construct_effective_hamiltonian) T = len(tlist) W = len(c_ops) # Compute <omega_tau> for all combinations of tau all_emission_indices = combinations_with_replacement(range(T), n_emissions) probs = np.zeros([T] * n_emissions) # Project scattered state onto temporal basis for emit_indices in all_emission_indices: # Consider unique emission time partitionings partition = tuple(set(set_partition(emit_indices, W))) # wg_indices_list = list(set_partition(indices, W)) for wg_indices in partition: projector = temporal_basis_vector(wg_indices, T) amplitude = projector.dag() * phi_n probs[emit_indices] += np.real(amplitude.conjugate() * amplitude) # Iteratively integrate to obtain single value while probs.shape != (): probs = np.trapz(probs, x = tlist) return np.abs(probs)
d4509371303a729a160d1b3d92f5c5f2f8ac3339
3,644,961
def analytical_value_cond_i_shannon(distr, par): """ Analytical value of the conditional Shannon mutual information. Parameters ---------- distr : str-s Names of the distributions; 'normal'. par : dictionary Parameters of the distribution. If distr is 'normal': par["cov"] and par["ds"] are the (joint) covariance matrix and the vector of subspace dimensions. Returns ------- cond_i : float Analytical value of the conditional Shannon mutual information. """ # initialization: ds = par['ds'] len_ds = len(ds) # 0,d_1,d_1+d_2,...,d_1+...+d_M; starting indices of the subspaces: cum_ds = cumsum(hstack((0, ds[:-1]))) idx_condition = range(cum_ds[len_ds - 1], cum_ds[len_ds - 1] + ds[len_ds - 1]) if distr == 'normal': c = par['cov'] # h_joint: h_joint = analytical_value_h_shannon(distr, par) # h_cross: h_cross = 0 for m in range(len_ds-1): # non-conditioning subspaces idx_m = range(cum_ds[m], cum_ds[m] + ds[m]) idx_m_and_condition = hstack((idx_m, idx_condition)) par = {"cov": c[ix_(idx_m_and_condition, idx_m_and_condition)]} h_cross += analytical_value_h_shannon(distr, par) # h_condition: par = {"cov": c[ix_(idx_condition, idx_condition)]} h_condition = analytical_value_h_shannon(distr, par) cond_i = -h_joint + h_cross - (len_ds - 2) * h_condition else: raise Exception('Distribution=?') return cond_i
a9a91d77863829de7f818aa6dcfe0216eb9a70af
3,644,962
from re import DEBUG import os def zexp(input, i=None): """ Point-wise complex exponential. :param input array: :param i bool: imaginary """ usage_string = "zexp [-i] input output" cmd_str = f'{BART_PATH} ' cmd_str += 'zexp ' flag_str = '' opt_args = f'' multituples = [] if i is not None: flag_str += f'-i ' cmd_str += flag_str + opt_args + ' ' cmd_str += f"{' '.join([' '.join([str(x) for x in arg]) for arg in zip(*multituples)]).strip()} {NAME}input {NAME}output " cfl.writecfl(NAME + 'input', input) if DEBUG: print(cmd_str) os.system(cmd_str) outputs = cfl.readcfl(NAME + 'output') return outputs
0a392013e3e7c5ac51d32f4fb7d228ecc3cf0250
3,644,963
def ekin2wl(ekin): """Convert neutron kinetic energy in electronvolt to wavelength in Angstrom""" if _np and hasattr(ekin,'__len__'): #reciprocals without zero division: ekinnonzero = ekin != 0.0 ekininv = 1.0 / _np.where( ekinnonzero, ekin, 1.0)#fallback 1.0 wont be used return _c_ekin2wl * _np.sqrt(_np.where( ekinnonzero, ekininv, _np.inf)) else: return _rawfct['ncrystal_ekin2wl'](ekin)
873ae25e10dfb3e6d9c6ca8ab1c56efa0066544a
3,644,964
def show_subscription(conn, customer): """ Retrieves authenticated user's plan and prints it. - Return type is a tuple, 1st element is a boolean and 2nd element is the response message from messages.py. - If the operation is successful; print the authenticated customer's plan and return tuple (True, CMD_EXECUTION_SUCCESS). - If any exception occurs; return tuple (False, CMD_EXECUTION_FAILED). Output should be like: #|Name|Resolution|Max Sessions|Monthly Fee 1|Basic|720P|2|30 """ try: cursor = conn.cursor() cursor.execute("SELECT plan_id " "FROM customer " "WHERE customer_id = %s", (customer.customer_id,)) queryCustomerPlanId = cursor.fetchall() if queryCustomerPlanId is None: # Fail if no such customer exists (somehow) return False, CMD_EXECUTION_FAILED else: cursor.execute("SELECT plan_id, plan_name, resolution, max_parallel_sessions, monthly_fee " "FROM plan " "WHERE plan_id = %s", (queryCustomerPlanId[0],)) queryPlan = cursor.fetchone() if queryPlan is None: # Fail if no such plan exists return False, CMD_EXECUTION_FAILED print("#|Name|Resolution|Max Sessions|Monthly Fee") print("{0}|{1}|{2}|{3}|{4}".format(queryPlan[0], queryPlan[1], queryPlan[2], queryPlan[3], queryPlan[4])) cursor.close() return True, CMD_EXECUTION_SUCCESS except Exception as e: return False, CMD_EXECUTION_FAILED
93a99075ea98697782845c2751362f9b319cea43
3,644,965
def maybe_gen_fake_data_based_on_real_data( image, label, reso, min_fake_lesion_ratio, gen_fake_probability): """Remove real lesion and synthesize lesion.""" # TODO(lehou): Replace magic numbers with flag variables. gen_prob_indicator = tf.random_uniform( shape=[], minval=0.0, maxval=1.0, dtype=tf.float32) background_mask = tf.less(label, 0.5) lesion_mask = tf.greater(label, 1.5) liver_mask = tf.logical_not(tf.logical_or(background_mask, lesion_mask)) liver_intensity = tf.boolean_mask(image, liver_mask) lesion_intensity = tf.boolean_mask(image, lesion_mask) intensity_diff = tf.reduce_mean(liver_intensity) - ( tf.reduce_mean(lesion_intensity)) intensity_diff *= 1.15 intensity_diff = tf.cond(tf.is_nan(intensity_diff), lambda: 0.0, lambda: intensity_diff) lesion_liver_ratio = 0.0 lesion_liver_ratio += tf.random.normal(shape=[], mean=0.01, stddev=0.01) lesion_liver_ratio += tf.random.normal(shape=[], mean=0.0, stddev=0.05) lesion_liver_ratio = tf.clip_by_value( lesion_liver_ratio, min_fake_lesion_ratio, min_fake_lesion_ratio + 0.20) fake_lesion_mask = tf.logical_and( _gen_rand_mask(ratio_mean=lesion_liver_ratio, ratio_stddev=0.0, scale=reso // 32, shape=label.shape, smoothness=reso // 32), tf.logical_not(background_mask)) liver_mask = tf.logical_not(tf.logical_or(background_mask, fake_lesion_mask)) # Blur the masks lesion_mask_blur = tf.squeeze(tf.nn.conv3d( tf.expand_dims(tf.expand_dims(tf.cast(lesion_mask, tf.float32), -1), 0), filter=tf.ones([reso // 32] * 3 + [1, 1], tf.float32) / (reso // 32) ** 3, strides=[1, 1, 1, 1, 1], padding='SAME')) fake_lesion_mask_blur = tf.squeeze(tf.nn.conv3d( tf.expand_dims(tf.expand_dims( tf.cast(fake_lesion_mask, tf.float32), -1), 0), filter=tf.ones([reso // 32] * 3 + [1, 1], tf.float32) / (reso // 32) ** 3, strides=[1, 1, 1, 1, 1], padding='SAME')) # Remove real lesion and add fake lesion. # If the intensitify is too small (maybe no liver or lesion region labeled), # do not generate fake data. gen_prob_indicator = tf.cond( tf.greater(intensity_diff, 0.0001), lambda: gen_prob_indicator, lambda: 0.0) # pylint: disable=g-long-lambda image = tf.cond( tf.greater(gen_prob_indicator, 1 - gen_fake_probability), lambda: image + intensity_diff * lesion_mask_blur \ - intensity_diff * fake_lesion_mask_blur, lambda: image) label = tf.cond( tf.greater(gen_prob_indicator, 1 - gen_fake_probability), lambda: tf.cast(background_mask, tf.float32) * 0 + \ tf.cast(liver_mask, tf.float32) * 1 + \ tf.cast(fake_lesion_mask, tf.float32) * 2, lambda: label) # pylint: enable=g-long-lambda return image, label
fd3f1557930d63652f4dd39b2ba8031410bda711
3,644,966
def is_primitive_type (v) : """ Check to see if v is primitive. Primitive in this context means NOT a container type (str is the exception): primitives type are: int, float, long, complex, bool, None, str """ return type(v) in {int:0, float:0, long:0, complex:0, bool:0, None:0, str:0}
2d72e03aa1ec62f214b2a3b468948ff2354508dd
3,644,967
def _get_bit(h, i): """Return specified bit from string for subsequent testing""" h1 = int.from_bytes(h, 'little') return (h1 >> i) & 0x01
b9b672c87b35369dc86abec7005dfeed3e99eb67
3,644,968
def go_down_right_reward(nobs, high_pos, agent_num, act): """ Return a reward for going to the low or right side of the board :param nobs: The current observation :param high_pos: Tuple of lowest and most-right position :param agent_num: The id of the agent to check (0-3) :return: The reward for going down or right """ # only give rewards if a new highest point is reached bomb_bonus = 0 if act[agent_num] == 5: bomb_bonus = 0.00 if nobs[agent_num]['position'][0] > high_pos[0]: return 1 + bomb_bonus, (nobs[agent_num]['position'][0], high_pos[1]) elif nobs[agent_num]['position'][1] > high_pos[1]: return 1 + bomb_bonus, (high_pos[0], nobs[agent_num]['position'][1]) else: return 0 + bomb_bonus, high_pos
bd8c6f01b55e14cc498cc251b1c0cc92340506c7
3,644,969
def getChannelBoxMenu(): """ Get ChannelBox Menu, convert the main channel box to QT and return the Edit QMenu which is part of the channel box' children. :return: Maya's main channel box menu :rtype: QMenu """ channelBox = getChannelBox() # find widget menus = channelBox.findChildren(QMenu) # find Edit menu for menu in menus: if menu.menuAction().text() == "Edit": return menu
38957701044f4552cd355c8856abb8c3b486479b
3,644,970
def make_sid_cookie(sid, uri): """Given a sid (from a set-cookie) figure out how to send it back""" # sometime near 0.92, port got dropped... # uritype, uribody = urllib.splittype(uri) # host, path = urllib.splithost(uribody) # host, port = urllib.splitnport(host) # if port == -1: # port = dict(http=80, https=443)[uritype] # we want to throw here cookiename = "JIFTY_SID_HIVEMINDER" return "%s=%s" % (cookiename, sid)
d194bcb8f47acfbbab9d7405ff9a23069b74f077
3,644,971
def identity_filter(element_tuple): """ element_tuple est consitute des (name, attrs) de chaque element XML recupere par la methode startElement """ return element_tuple
c50208f345f40acce58df86cdae4432aae24cf4b
3,644,972
def EoZ(N2, w0, f, ): """ Wave ray energy when variations can only occur in the vertical (i.e. N2 and flow only vary with depth not horizontally) - Olbers 1981 """ Ez = np.squeeze((w0**2 * (N2 - f**2)) / ((w0**2 - f**2)**(3 / 2) * (N2 - w0**2)**(1 / 2))) return Ez
7dfbcf3c0e29463ccf1663922486ffaad99b1ea5
3,644,973
from typing import Any def safe_string(value: Any) -> str: """ Consistently converts a value to a string. :param value: The value to stringify. """ if isinstance(value, bytes): return value.decode() return str(value)
0ba8dcfe028ac6c45e0c17f9ba02014c2f746c4d
3,644,974
def handle_older_version(upstream_version: Box) -> bool: """ Checks if the current version (local) is older than the upstream one and provides a message to the end-user. :return: :py:class:`True` if local is older. :py:class:`False` otherwise. """ version_utility = VersionUtility(PyFunceble.storage.PROJECT_VERSION) if PyFunceble.facility.ConfigLoader.is_already_loaded(): if PyFunceble.storage.CONFIGURATION.cli_testing.display_mode.quiet: message = "New version available." elif PyFunceble.storage.CONFIGURATION.cli_testing.display_mode.colour: message = ( f"{colorama.Style.BRIGHT}{colorama.Fore.GREEN}Please take the " "time to " f"update {PyFunceble.storage.PROJECT_NAME}!" f"{colorama.Style.RESET_ALL}\n" f"{colorama.Style.BRIGHT}Your version:{colorama.Style.RESET_ALL} " f"{PyFunceble.storage.PROJECT_VERSION}\n" f"{colorama.Style.BRIGHT}Upstream version:{colorama.Style.RESET_ALL} " f"{upstream_version.current_version}\n" ) else: message = ( f"Please take the time to update " f"{PyFunceble.storage.PROJECT_NAME}!\n" f"Your version: {PyFunceble.storage.PROJECT_VERSION}\n" f"Upstream version: {upstream_version.current_version}" ) else: message = ( "Please take the time to " f"update {PyFunceble.storage.PROJECT_NAME}!\n" f"Your version: {PyFunceble.storage.PROJECT_VERSION}\n" f"Upstream version: {upstream_version.current_version}" ) if version_utility.is_older_than(upstream_version.current_version): print(message) return True return False
130f825a59ca27a2e3d7d63e7d917f837153a2be
3,644,975
from typing import Union def tp(selector:Union[str, tuple]="@s", selector2:Union[str, tuple]=("~", "~", "~")): """ selector:Union[str, tuple] -> The position to be moved from selector2:Union[str, tuple] -> The position to be moved to """ if not ((isinstance(selector, str) or isinstance(selector, tuple)) and (isinstance(selector2, str) or isinstance(selector2, tuple))): return "## Tp command hasn't been configured properly ##" if isinstance(selector, tuple): if len(selector) < 3: selector = ("~", "~", "~") return f"tp {selector[0]} {selector[1]} {selector[2]}\n" else: if isinstance(selector2, tuple): if len(selector2) < 3: selector2 = ("~", "~", "~") return f"tp {selector} {selector2[0]} {selector2[1]} {selector2[2]}\n" else: return f"tp {selector} {selector2}\n"
81b3baf308f412bae3718fe165028a970fe56bda
3,644,976
def new_product() -> Product: """Generates an instance of Product with default values.""" return Product( product_id='', desc='', display_name='', capacity=0, image='')
ef50c2e90d5f512b2ae53c1111f501c13bdbca5d
3,644,977
def _rng_bit_generator_batching_rule(batched_args, batch_dims, *, shape, dtype, algorithm): """Calls RBG in a loop and stacks the results.""" key, = batched_args bd, = batch_dims if bd is batching.not_mapped: return lax.rng_bit_generator_p.bind(key, shape=shape, dtype=dtype, algorithm=algorithm), (None, None) key = batching.moveaxis(key, bd, 0) map_body = lambda k: lax.rng_bit_generator_p.bind(k, shape=shape, dtype=dtype, algorithm=algorithm) stacked_keys, stacked_bits = map(map_body, key) return (stacked_keys, stacked_bits), (0, 0)
6fdcdadb5a303a7f1f38033f7e69be781eee4a49
3,644,978
from typing import List def count_short_tail_keywords(keywords: List[str]) -> int: """ Returns the count of short tail keywords in a list of keywords. Parameters: keywords (List[str]): list with all keywords as strings. Returns: total (int): count of short tail keywords (1 o 2 words per keyword). """ total = 0 for keyword in keywords: keyword_list = keyword.split() if len(keyword_list) > 1 and len(keyword_list) < 3: total += 1 return total
1af42d71be75d9279584a8c3edc090a39ec6cf77
3,644,979
def is_odd(number): """Determine if a number is odd.""" if number % 2 == 0: return False else: return True
4efe5114f2e25431808492c768abc0f750e63225
3,644,980
def fmt_quil_str(raw_str): """Format a raw Quil program string Args: raw_str (str): Quil program typed in by user. Returns: str: The Quil program with leading/trailing whitespace trimmed. """ raw_quil_str = str(raw_str) raw_quil_str_arr = raw_quil_str.split('\n') trimmed_quil_str_arr = [qs.strip() for qs in raw_quil_str_arr] trimmed_quil_str = '\n'.join([x for x in trimmed_quil_str_arr]) return trimmed_quil_str
e95c26f3de32702d6e44dc09ebbd707da702d964
3,644,981
from typing import Optional from typing import Collection from typing import cast def get_source_plate_uuid(barcode: str) -> Optional[str]: """Attempt to get a UUID for a source plate barcode. Arguments: barcode {str} -- The source plate barcode. Returns: {str} -- The source plate UUID; otherwise None if it cannot be determined. """ try: source_plates_collection: Collection = cast(Eve, app).data.driver.db.source_plates source_plate: Optional[SourcePlateDoc] = source_plates_collection.find_one({FIELD_BARCODE: barcode}) if source_plate is None: return None return source_plate.get(FIELD_LH_SOURCE_PLATE_UUID) except Exception as e: logger.error(f"An error occurred attempting to determine the UUID of source plate '{barcode}'") logger.exception(e) return None
b834d7740bfda86037d1d266c53f8618ff8e0bd3
3,644,982
def find_largest_digit(n): """ :param n: integers :return: the largest digit """ n = abs(n) # absolute the value if n < 10: return n else: return find_helper(n, 0)
f18af5c32263254e132ca405ad40c217083bd568
3,644,983
def extractChrononTranslations(item): """ """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol or frag) or 'preview' in item['title'].lower(): return None item['title'] = item['title'].replace('’', '') if 'Weapons cheat'.lower() in item['title'].lower(): return buildReleaseMessageWithType(item, 'Modern weapons cheat in another world', vol, chp, frag=frag, postfix=postfix) if 'Heavenly Tribulation'.lower() in item['title'].lower(): return buildReleaseMessageWithType(item, 'Heavenly Tribulation', vol, chp, frag=frag, postfix=postfix) if 'I can speak'.lower() in item['title'].lower(): return buildReleaseMessageWithType(item, 'I Can Speak with Animals and Demons', vol, chp, frag=frag, postfix=postfix) if 'I Bought a Girl'.lower() in item['title'].lower(): return buildReleaseMessageWithType(item, 'I Bought a Girl', vol, chp, frag=frag, postfix=postfix) if 'Girl Corps'.lower() in item['title'].lower(): return buildReleaseMessageWithType(item, 'Girl Corps', vol, chp, frag=frag, postfix=postfix) if 'Modern Weapons'.lower() in item['title'].lower(): return buildReleaseMessageWithType(item, 'Modern weapons cheat in another world', vol, chp, frag=frag, postfix=postfix) if 'Upper World'.lower() in item['title'].lower(): return buildReleaseMessageWithType(item, 'Reincarnation ~ From the lower world to the upper world', vol, chp, frag=frag, postfix=postfix) if 'I work as a healer'.lower() in item['title'].lower(): return buildReleaseMessageWithType(item, "I Work As A Healer In Another World's Labyrinth City", vol, chp, frag=frag, postfix=postfix) return False
3c4768745d54257d5654dac74b3278e95611288e
3,644,984
from sklearn.ensemble import RandomForestRegressor from sklearn.feature_selection import SelectFromModel def run_feature_selection(X, y, select_k_features): """Use a gradient boosting tree regressor as a proxy for finding the k most important features in X, returning indices for those features as output.""" clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0) clf.fit(X, y) selector = SelectFromModel( clf, threshold=-np.inf, max_features=select_k_features, prefit=True ) return selector.get_support(indices=True)
0c730e2d2015b3ad0777cd493e2f5235bc9682a3
3,644,985
from typing import Optional from typing import Callable from typing import Literal def _not_json_encodable(message: str, failure_callback: Optional[Callable[[str], None]]) -> Literal[False]: """ Utility message to fail (return `False`) by first calling an optional failure callback. """ if failure_callback: failure_callback(message) return False
6979261a5f14a32c1ae34d01bad346344f38ed14
3,644,986
import functools def requires(*commands: str) -> RequiresT: """Decorator to require the given commands.""" def inner(func: ReturnT) -> ReturnT: """Decorates the function and checks for the commands.""" for command in commands: if not check_availability(command): raise errors.MissingShellCommand( f"ipq requires the {command!r} command, please install it." ) @functools.wraps(func) def wrapper(*args: t.Any, **kwargs: t.Any) -> str: """Wraps and executes the decorated function.""" return func(*args, **kwargs) return wrapper return inner
a84199cfff7bf29a3a2c3ccb46cf65b3a09a7136
3,644,987
def _build_model(input_dim, num_classes, num_hidden_layers=0, hidden_dimension=128, normalize_inputs=False, dropout=0): """ Macro to generate a Keras classification model """ inpt = tf.keras.layers.Input((input_dim)) net = inpt # if we're normalizing inputs: if normalize_inputs: norm = tf.keras.layers.Lambda(lambda x:K.l2_normalize(x,axis=1)) net = norm(net) # for each hidden layer for _ in range(num_hidden_layers): if dropout > 0: net = tf.keras.layers.Dropout(dropout)(net) net = tf.keras.layers.Dense(hidden_dimension, activation="relu")(net) # final layer if dropout > 0: net = tf.keras.layers.Dropout(dropout)(net) net = tf.keras.layers.Dense(num_classes, activation="relu")(net) return tf.keras.Model(inpt, net)
07386dbf2649463963d754959f7d389c1d2aae90
3,644,988
def get_client( project_id, cloud_region, registry_id, device_id, private_key_file, algorithm, ca_certs, mqtt_bridge_hostname, mqtt_bridge_port): """Create our MQTT client. The client_id is a unique string that identifies this device. For Google Cloud IoT Core, it must be in the format below.""" client = mqtt.Client( client_id=('projects/{}/locations/{}/registries/{}/devices/{}' .format( project_id, cloud_region, registry_id, device_id))) # With Google Cloud IoT Core, the username field is ignored, and the # password field is used to transmit a JWT to authorize the device. client.username_pw_set( username='unused', password=create_jwt( project_id, private_key_file, algorithm)) # Enable SSL/TLS support. client.tls_set(ca_certs=ca_certs) # Register message callbacks. https://eclipse.org/paho/clients/python/docs/ # describes additional callbacks that Paho supports. In this example, the # callbacks just print to standard out. client.on_connect = on_connect client.on_publish = on_publish client.on_disconnect = on_disconnect client.on_message = on_message client.on_subscribe = on_subscribe # Connect to the Google MQTT bridge. client.connect(mqtt_bridge_hostname, mqtt_bridge_port) return client
6fa945892e7b0174e4fbfebc7e5f2f985982c6f0
3,644,989
def fake_image_sct_custom(data): """ :return: an Image (3D) in RAS+ (aka SCT LPI) space """ i = fake_image_custom(data) img = msct_image.Image(i.get_data(), hdr=i.header, orientation="LPI", dim=i.header.get_data_shape(), ) return img
9593240af25c3c4fc2cb8602dda902713721ebfb
3,644,990
def _get_property_header(resource, resource_type): """ Create a dictionary representing resources properties :param resource: The name of the resource for which to create a property header :param resource_type: The type of the resource (model, seed, etc.) :return: A dictionary representing resource properties """ header_dict = { 'version': 2, _SUPPORTED_RESOURCE_TYPES[resource_type]: [ {'name': resource, 'description': "", 'columns': []} ], } return header_dict
e9622282a83cfd1b0be5af54def817ed07ad8e21
3,644,991
def create_metapaths_parameters(filename, folder): """ creates a parameters file from the default """ default_filename = folder + PATHDELIM + 'resources'+ PATHDELIM + "template_param.txt" try: filep = open(default_filename, 'r') except: eprintf("ERROR: cannot open the default parameter file " + sQuote(default_filename) ) exit_process("ERROR: cannot open the default parameter file " + sQuote(default_filename), errorCode = 0 ) lines = filep.readlines() with open(filename, 'w') as newfile: for line in lines: fprintf(newfile, "%s", line); filep.close() #result['filename'] = filename return True
b859ee0791b3213cc48f253943122290ad5a67fa
3,644,992
def dist_prune(DELTA, prune=True): """ transform similarity matrix to distance matrix - prune matrix by removing edges that have a distance larger than condition cond (default mean distance) """ w = np.max(DELTA) DELTA = np.abs(DELTA - w) np.fill_diagonal(DELTA, 0.) if prune: cond = np.mean(DELTA) # + np.std(DELTA)# TODO: transform to parameter with choice between models for i in range(DELTA.shape[0]): for j in range(DELTA.shape[1]): val = DELTA[i, j] if val > cond: DELTA[i, j] = 0. else: DELTA[i, j] = DELTA[i, j] return DELTA
524c4f743ced455d67b276dfe4f66e9bcd2ca313
3,644,993
def bitwise_dot(x, y): """Compute the dot product of two integers bitwise.""" def bit_parity(i): n = bin(i).count("1") return int(n % 2) return bit_parity(x & y)
074b09a92e3e697eb08b8aaefa6ffd05d58698f4
3,644,994
import itertools def fit (samples, degree, sample_weights=None): """ Fit a univariate polynomial function to the 2d points given in samples, where the rows of samples are the points. The return value is the vector of coefficients of the polynomial (see p below) which minimizes the squared error of the polynomial at the given samples. Denote the components of samples as samples = [ [x[0], y[0]], [x[1], y[1]], ... ] and let p(coefficients)(t) = sum(coefficient*t**i for i,coefficient in enumerate(coefficients)) noting that coefficients[0] is the constant term, coefficients[1] is the linear coefficient, etc. """ assert len(samples.shape) == 2 assert samples.shape[1] == 2, 'Expected the rows of samples to be (x,y) pairs.' A = np.zeros((degree+1,degree+1), dtype=float) B = np.zeros((degree+1,), dtype=float) weight_iterator = sample_weights if sample_weights is not None else itertools.cycle([1.0]) for (x,y),weight in itertools.izip(samples,weight_iterator): g = geometric(x, degree) A += weight*np.outer(g,g) B += weight*y*g coefficients,_,_,_ = np.linalg.lstsq(A,B) return coefficients
4b7a7e77c5e55641a1a666f52abef32088bf680a
3,644,995
import os def get_engines(): """ Returns a list of all engines for tests """ engines = [] base_dir = os.getcwd() engines_dir = os.path.join(base_dir, 'search_engine_parser', 'core', 'engines') for filename in os.listdir(engines_dir): if os.path.isfile(os.path.join(engines_dir, filename)) and filename.endswith('.py') \ and filename != '__init__.py': engine = filename.split('.py')[0] module = import_module("search_engine_parser.core.engines.{}".format(engine.lower())) engine_class = getattr(module, "Search") engines.append([engine, engine_class(),]) return engines
0b23da44ebd14c39f2e5b3ba240c37f3f3500cf9
3,644,996
import os def IsEncryptedCoredump(path): """ Function to find if the coredump is encrypted or not. """ if not os.path.exists('/bin/vmkdump_extract'): raise Exception('vmkdump_extract not present.') result, rc = RunCmd("/bin/vmkdump_extract -E {0}".format(path)) if rc != 0: raise Exception( 'RunCmd failed when trying to check for encrypted coredump') return result.strip() == "YES"
cbd15d8df2d9172a32c4f8e6f6cdd04e5d42c57f
3,644,997
def get_ahead_mask(tokens, i_pad=0): """ ahead mask 계산하는 함수 :param tokens: tokens (bs, n_seq) :param i_pad: id of pad :return mask: ahead and pad mask (ahead or pad: 1, other: 0) """ n_seq = tf.shape(tokens)[1] ahead_mask = 1 - tf.linalg.band_part(tf.ones((n_seq, n_seq)), -1, 0) ahead_mask = tf.expand_dims(ahead_mask, axis=0) pad_mask = get_pad_mask(tokens, i_pad) mask = tf.maximum(ahead_mask, pad_mask) return mask
31a7bd2710cd86075f753227fa2e4c97b1948e19
3,644,998
def check_containment(row, query_index, reference_index, percent_identity=PERCENT_IDENTITY, covered_length=COVERED_LENGTH): """Checks if a row from a blast out format 6 file is a containment Takes in a row from a blast out format 6 table, a DataFrames with query sequence and reference sequence data. """ if (row['qId'] != row['tId']) and (row['seqIdentity'] >= percent_identity): query_covered = row['alnLen']/float(query_index.loc[row['qId'], 'LENGTH']) reference_covered = row['alnLen']/float(reference_index.loc[row['tId'], 'LENGTH']) if query_covered >= covered_length or reference_covered >= covered_length: return True else: return False else: return False
a868d9c15abd5c73bc9483cc9a58d7c92875d15a
3,644,999