id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_40000
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
intermediate
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "auditability", "documentation", "governance", "tooling" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6d607d36c02fa07605d620667e756a70b46945f9
train_40001
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
advanced
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "reproducibility", "security_gates", "tooling" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f05fed70d41c575b9ea166b634b01b8028f56d75
train_40002
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
expert
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tooling", "auditability", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
06e196282aa7159325706d4ea776afebe433ced9
train_40003
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
intermediate
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "auditability", "tooling", "tests_are_truth" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b0a9592f90f3d58b830f6dcc357b867eb9381b66
train_40004
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
expert
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "evaluation_metrics", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e2161c43bcf36eef238811cb92523725e89566e8
train_40005
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
advanced
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "auditability", "documentation", "tests_are_truth" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f5422f429f89f5c2278e51618e33dee8d39f82ea
train_40006
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
expert
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "tests_are_truth", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
37fbabbba2fbfa5276b58e25021bc8a3da22b358
train_40007
2026-01-01T00:00:00
Self-improving agents and feedback loops
explain
advanced
Task: explain Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "auditability", "security_gates" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ec4d0ef8e472999a6002a635706aef100ae9d772
train_40008
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
expert
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "security_gates", "documentation" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9780a9794513b467e02aa370bd65509609c6cbd7
train_40009
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
expert
Task: review Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "governance", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bcdad556f625a8755df8080ff4def0e95d1be9b4
train_40010
2026-01-01T00:00:00
Latency, cost, and reliability optimization
patch_diff
advanced
Task: patch_diff Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "documentation", "security_gates", "tooling" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7fb53b304994a1e7327b4d6c9d0b403e161190fc
train_40011
2026-01-01T00:00:00
Secure code generation and policy gates
review
intermediate
Task: review Topic: Secure code generation and policy gates Difficulty: intermediate Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "governance", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c1a57b97529ff0aa96e152049b448d02198cdba6
train_40012
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
advanced
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "governance", "reproducibility", "tests_are_truth" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bff923dd4f65887cf72856ba328e9b2df3e3af99
train_40013
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
expert
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "tests_are_truth", "governance" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2dcc7dd4e77e13279ae51e82201a3d52d7f01cf9
train_40014
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
expert
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "ci_integration", "documentation", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3929bbc82635c888aed50c2d25b810c85c03acbd
train_40015
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
advanced
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "security_gates", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f133a1e823c67a6d9c68aa7672908f524fa55c73
train_40016
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
intermediate
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "governance", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
19d6f2ffca5bff6e94e13122aef0679079a5da3d
train_40017
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
intermediate
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "governance", "tooling", "tests_are_truth" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
86d13ef34d55cf2d9e1c0420ca7718dbfa1b0b58
train_40018
2026-01-01T00:00:00
Secure code generation and policy gates
code
advanced
Task: code Topic: Secure code generation and policy gates Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
afaad93acbc3cb94b230f3922f43c6c58d4bf3aa
train_40019
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
advanced
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "auditability", "repo_scale_reasoning", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1b5188e1c26b9beee427baaf79b5ae5d9c702b81
train_40020
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
code
intermediate
Task: code Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tooling", "security_gates", "reproducibility", "documentation" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ca7a4a3c04b26b713e6569c3335da9ad3cf8404e
train_40021
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
intermediate
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Bash", "developer_needs": [ "documentation", "evaluation_metrics", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d59488dd0ff09161b856cf2c1d49db296d7ed73f
train_40022
2026-01-01T00:00:00
Self-improving agents and feedback loops
failure_analysis
advanced
Task: failure_analysis Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "evaluation_metrics", "auditability" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
de050614581577988242c078a91ab61c0208deab
train_40023
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
intermediate
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "governance", "ci_integration", "tooling" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
176f48651a1b27835a5ef9c55aa4bef5a2c0f638
train_40024
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
intermediate
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "auditability", "documentation" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
16f6e237461e76149fb67a9214e2b017edb309e3
train_40025
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
intermediate
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "tests_are_truth", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0d4cb85cabe58bd8c179b0c45c4e91e9914086c0
train_40026
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
intermediate
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "auditability", "ci_integration", "documentation" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
985aff40728fac272cb3c476278c1b786c793194
train_40027
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
expert
Task: review Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "auditability", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ea3ac5b3194d782f4dd229889537b9a50771175f
train_40028
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
failure_analysis
intermediate
Task: failure_analysis Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "tests_are_truth", "documentation", "tooling" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e0df682007ef6a32f480d90e8b889d6231c3e8fb
train_40029
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
failure_analysis
intermediate
Task: failure_analysis Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "documentation", "reproducibility", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c62e4a27f2e8ce6aafd39b3452bfd97ef65fcd96
train_40030
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
advanced
Task: code Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "security_gates", "documentation" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bc7a8454d4bfe4080131ac1a52ea78e9c0bf3f4a
train_40031
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
intermediate
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "SQL", "developer_needs": [ "governance", "cost_latency_tradeoffs", "tests_are_truth", "documentation" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
52a634069a9799c4d7d2b247f6385543fa6c5e68
train_40032
2026-01-01T00:00:00
Latency, cost, and reliability optimization
eval
expert
Task: eval Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "documentation", "auditability" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a2400b742dbdee57a2fb4c4be64ce9e14f0ecaf9
train_40033
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
advanced
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "auditability", "tooling", "governance" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
448ae4ac8fd93f403e29d603c0ac27ad22d7bfe2
train_40034
2026-01-01T00:00:00
Secure code generation and policy gates
code
intermediate
Task: code Topic: Secure code generation and policy gates Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "documentation", "ci_integration", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fb6a0f99f3c0344d9ae461caa295c0ce2069127a
train_40035
2026-01-01T00:00:00
Self-improving agents and feedback loops
patch_diff
intermediate
Task: patch_diff Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Go", "developer_needs": [ "security_gates", "tooling", "tests_are_truth", "auditability" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a0fe7b5f45bdff38c69e575b9323781cba64ed2e
train_40036
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
expert
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tooling", "reproducibility", "auditability", "documentation" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
92dafdc981b5b62a2da95cf85e583566a9221922
train_40037
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
advanced
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "auditability", "security_gates", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7cd81a5b60b59ddc08cc99e2cd9778e8a9ea8442
train_40038
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
advanced
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "auditability", "governance", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
12f4ce398d532d76d48872641e624eefa42f35df
train_40039
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
advanced
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "documentation", "security_gates", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
24a65d412d27a936dcffa0678c7a0249bd92d64f
train_40040
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
intermediate
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "evaluation_metrics", "auditability", "governance" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e152ad1ced1cb76fb3a24a9cbb7248b70ae6c06a
train_40041
2026-01-01T00:00:00
Latency, cost, and reliability optimization
patch_diff
advanced
Task: patch_diff Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "evaluation_metrics", "governance" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
10f5b24fe4e43d5823abf3f9d7dd1eaadbceffcb
train_40042
2026-01-01T00:00:00
Secure code generation and policy gates
code
advanced
Task: code Topic: Secure code generation and policy gates Difficulty: advanced Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "auditability", "tooling", "governance" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e66ab97d6ce31b7464d932aa189f1c980bb3c59d
train_40043
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
expert
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "security_gates", "reproducibility", "documentation" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
60a580e05487b5048eb20072dd209692d7054528
train_40044
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
expert
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "auditability", "evaluation_metrics", "governance", "documentation" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
408942538dc6fa7f8c54adc5e777c5b9348983e2
train_40045
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
intermediate
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Python", "developer_needs": [ "tooling", "evaluation_metrics", "governance", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
368bce8a3298bb32ffb36e1110bb7e5f5f63ca0e
train_40046
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
intermediate
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "security_gates", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d614ba08a0f36713fd13e7fb3b5820e7a854f80a
train_40047
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
expert
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "governance", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6027949719b1ac6293ed2a1657a0fe5a9c5aba96
train_40048
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
advanced
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "repo_scale_reasoning", "tooling", "documentation" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
83651bd644a0d4faeb46f9741b8e0c9d53c274cb
train_40049
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
advanced
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "reproducibility", "tooling", "evaluation_metrics" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d1fe1247437369d86eb7a1574498bfacd4654a05
train_40050
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
intermediate
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "tests_are_truth", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
73e0bc61a90f00e4635b2dbb5e974eb9efb5bf56
train_40051
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
intermediate
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "documentation", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
05949bdfe468fdbdd8a837e68d5d7e9f0ded2f46
train_40052
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
advanced
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "cost_latency_tradeoffs", "security_gates", "tooling" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
73d53c9590ee4deeac43dc281a4d088c8effcf82
train_40053
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
advanced
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "ci_integration", "tests_are_truth", "security_gates" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f31a77224ddde94109b913933f07a53eb67e0ee2
train_40054
2026-01-01T00:00:00
Secure code generation and policy gates
design
advanced
Task: design Topic: Secure code generation and policy gates Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "security_gates", "governance", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4f3628b4bc4a9634bfc7f92c88fa8b482b2105f1
train_40055
2026-01-01T00:00:00
Latency, cost, and reliability optimization
design
advanced
Task: design Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "documentation", "tooling", "ci_integration" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bd44d90360a3ce318d228b25e28000df4917f49a
train_40056
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
eval
intermediate
Task: eval Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5cd75448bc9feda928a48a644b7b7ebb9ecc8621
train_40057
2026-01-01T00:00:00
Extended context and repo-scale understanding
design
advanced
Task: design Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "tooling", "security_gates" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7c3b543b060ee641ee1a56dfba874bbd8fae471e
train_40058
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
code
intermediate
Task: code Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "security_gates", "tests_are_truth", "reproducibility" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b353c2913e5d701928871a8bd4cb8a1a6c4ef16f
train_40059
2026-01-01T00:00:00
Self-improving agents and feedback loops
compare
advanced
Task: compare Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "documentation", "governance", "ci_integration" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5aa5fb916c48fdfca5bd44f089b164fd67c984cb
train_40060
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
intermediate
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "tests_are_truth", "governance" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5030aa1b9726ab67f8c3190f07df482179a68f3f
train_40061
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
review
expert
Task: review Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "ci_integration", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
62df666d82a9df7dd3d5541e44446865a33cb326
train_40062
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
expert
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "ci_integration", "auditability", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0df9c4aab35f71573e570319036f65518fcb3ddb
train_40063
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
data_pipeline
advanced
Task: data_pipeline Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "governance", "auditability", "tests_are_truth", "documentation" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5e92a7cd52793efab20e35c2ee2f74ca68820e0e
train_40064
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
intermediate
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "ci_integration", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1a63cdd152c163f5905a8258f3889e176889332a
train_40065
2026-01-01T00:00:00
Extended context and repo-scale understanding
patch_diff
expert
Task: patch_diff Topic: Extended context and repo-scale understanding Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "tests_are_truth", "auditability" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2473f51694784fd2f1185fe40aea3764ebf5d0cb
train_40066
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
patch_diff
advanced
Task: patch_diff Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "governance", "ci_integration", "documentation" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
349aabb280825d80a696f539cac48692209a6447
train_40067
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
expert
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "security_gates", "governance", "tests_are_truth" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
df4b422910865bb28b75a3dc302ca27e3ebbef3c
train_40068
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
intermediate
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e6ba995b99e0b73a48beb11d6c090ed0f614a5ca
train_40069
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
advanced
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "tooling", "security_gates", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7f78201193d3c9428c67bac795b5a039a76add2d
train_40070
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
advanced
Task: review Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5e9e99679dc32584ae0605fe023e63d52bffcd01
train_40071
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
advanced
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "evaluation_metrics", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fc9b760ce9b5d494410944a43474446959b2156f
train_40072
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
expert
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "evaluation_metrics", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
61b6e02a964add1f7e74041b4306e44e817d4e39
train_40073
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
expert
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "governance", "evaluation_metrics", "tooling" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
50aff152a0bfb350b4f9a5db185efb931b0b91e9
train_40074
2026-01-01T00:00:00
Secure code generation and policy gates
compare
intermediate
Task: compare Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tooling", "ci_integration", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
df0a95a24222c2c41295c413f5712b5f4531f120
train_40075
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
advanced
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "security_gates", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
deccff884c62fcf0df8c6ba9bfb33d5be1cd287d
train_40076
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
expert
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "governance", "ci_integration", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8657d025ff2fe6778a2e5c4f86f5e6912240bb9b
train_40077
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
advanced
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "security_gates", "documentation" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6fa8357ec1ab1021b58c5b0aa4384204ff2fa7ec
train_40078
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
expert
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "ci_integration", "auditability" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
767ac1923594a1f790bdc7cec8a45d5c39dab5aa
train_40079
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
advanced
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "governance", "tooling", "reproducibility" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d42162a837ea62d0db6a8b2be46cd6433535f099
train_40080
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
advanced
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "auditability", "governance", "tests_are_truth", "documentation" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1cfd3a085c6747710841efe0b4d62809c8f260b6
train_40081
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
intermediate
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "tests_are_truth", "governance", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3c275adc0c5e6747b88dad1e41bd60f22b01560a
train_40082
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
advanced
Task: eval Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "auditability", "governance", "documentation" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0c4ccdfebc7360c6033f20a48ce0080d01c968bd
train_40083
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
review
expert
Task: review Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "repo_scale_reasoning", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b6026552670784474e60e9bc49f59e65cbb6783c
train_40084
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
intermediate
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "tests_are_truth", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ca5e5447cbbdf790849d38141c4ff59f07e5756c
train_40085
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
intermediate
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "tooling", "evaluation_metrics", "governance" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ba57200bcd1261b0a4c984f0aa18489642c4cae7
train_40086
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
advanced
Task: explain Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "tooling", "tests_are_truth", "auditability" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6d8ead2c234b5cdcde3512e42cdf0e93b9c32cb5
train_40087
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
advanced
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "auditability", "tests_are_truth", "tooling" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a45530e15ab06e7db892f5e097c3cd53beb307d3
train_40088
2026-01-01T00:00:00
Latency, cost, and reliability optimization
eval
intermediate
Task: eval Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "auditability", "ci_integration", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
268e41bc8fbb5397824dc23c175066f15cc2b98c
train_40089
2026-01-01T00:00:00
Latency, cost, and reliability optimization
failure_analysis
intermediate
Task: failure_analysis Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tooling", "reproducibility", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e2531974312a81dbe7f6475d873732f4ff049349
train_40090
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
expert
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "security_gates", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4052750e833a358f2137d142f339c76ffaf8f560
train_40091
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
advanced
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "security_gates", "evaluation_metrics" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f37c48ba3eeb92b8f9f5aca47310930819edafec
train_40092
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
eval
intermediate
Task: eval Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
69ec6251d327eac16e427befb43542a50d30ef4e
train_40093
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
data_pipeline
advanced
Task: data_pipeline Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c29c84e0ef5abd3cb95dfb4a5512579d5e60b9c2
train_40094
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
intermediate
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "security_gates", "auditability", "governance" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e26b7ad0ab5b0c841c3b81ccb22c0e46b6370240
train_40095
2026-01-01T00:00:00
Extended context and repo-scale understanding
review
expert
Task: review Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Java", "developer_needs": [ "governance", "documentation", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d0cb83836b70a249b4581176e3868d405ef755b5
train_40096
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
intermediate
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "tooling", "governance", "documentation" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a2bb68bb34b6749ffdd4922fa2d6c577d4f13d27
train_40097
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
expert
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "security_gates", "governance", "tests_are_truth" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8f98116376953e41892e75f12eee09cbb87ab348
train_40098
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
expert
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "tooling", "governance", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eb914068491bb03d38d3d698c8943246af51042c
train_40099
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
intermediate
Task: review Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "evaluation_metrics", "auditability" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e8c28525570c3b36ec029370ca1e5d2120fc8219