id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_39900
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
expert
Task: eval Topic: Extended context and repo-scale understanding Difficulty: expert Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "documentation", "tests_are_truth", "ci_integration" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f4e51f18abc9b1ac26cb505cac1941409a20b349
train_39901
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
advanced
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "governance", "tooling", "security_gates", "auditability" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ac552876736e659b891fca35e10c437f6f81fd19
train_39902
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "documentation", "ci_integration", "security_gates" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e2d1334b1b79c9ed0cff9a22a86d49679ef041b9
train_39903
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
intermediate
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "governance", "reproducibility", "documentation" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8d675c2cba3b597c9b9880d59acede0ab783a469
train_39904
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
advanced
Task: eval Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "reproducibility", "tests_are_truth", "ci_integration" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
90d653779a6f97353aeeb0edc6c294b4424a59b4
train_39905
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
patch_diff
advanced
Task: patch_diff Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "security_gates", "governance", "tooling" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4024b74e5b49a7f687d69b454e6a14a58cab0b25
train_39906
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
intermediate
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "documentation", "auditability", "tooling", "governance" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
947a2eab845980d19d6ecd89a9381f921523e118
train_39907
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
advanced
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "tooling", "reproducibility" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c1e615db5203d3d9edc8081ad370789d73791f1c
train_39908
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
expert
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "tooling", "reproducibility", "governance", "tests_are_truth" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
71038d7b5c3096f0a4060f1ea01cdca6ca4787f1
train_39909
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
intermediate
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "ci_integration", "auditability" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1df2c76ada07607c8ec9e17d909c6623bab565f2
train_39910
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
intermediate
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "C#", "developer_needs": [ "governance", "evaluation_metrics", "tooling", "tests_are_truth" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
004b49ccf8eccf02c41b247910da1b090e47f9ca
train_39911
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
intermediate
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e6ba995b99e0b73a48beb11d6c090ed0f614a5ca
train_39912
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
advanced
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "tooling", "reproducibility", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cc1f6dce182bdbda2994192940f591b0ed5b529b
train_39913
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
advanced
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "governance", "tests_are_truth" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8661e55adc6b129a5f1dacb86e8c784548dde646
train_39914
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
expert
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "documentation", "repo_scale_reasoning", "evaluation_metrics", "tooling" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8196504412bb8a93ae0480c5834f453c2760db91
train_39915
2026-01-01T00:00:00
Self-improving agents and feedback loops
agent_loop
expert
Task: agent_loop Topic: Self-improving agents and feedback loops Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "tooling", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a19f27e125522fad1fbbc9a648aa169c11da0a44
train_39916
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
advanced
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "auditability", "security_gates" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d712b9d0015428720c8f5b4f86f72131ed4c9d9f
train_39917
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
expert
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "security_gates", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
273d2cd0398ad3ad37a67b9ab9b96511b1a45e40
train_39918
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
intermediate
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "governance", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d3b5b5d8bc6e0d24a1d1f210ec831283ffabca72
train_39919
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
intermediate
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "tooling", "ci_integration", "reproducibility" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0ee0c690bea681c7dee0c4c0fb3bee811f4823a7
train_39920
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
expert
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "documentation", "security_gates", "governance", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d5646dff166dddf8644256cfc7b5775259fc2556
train_39921
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
expert
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "ci_integration", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
26d0c1fb237345bf49fd358c40541f602b3ae7a7
train_39922
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
advanced
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
61d2305d2e5b9b6cafc7d04d11395e7e30607bbf
train_39923
2026-01-01T00:00:00
Extended context and repo-scale understanding
review
advanced
Task: review Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "auditability", "tooling", "evaluation_metrics" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bf22adfe0aa4c813868704dbd9bfad4d8424610c
train_39924
2026-01-01T00:00:00
Secure code generation and policy gates
data_pipeline
advanced
Task: data_pipeline Topic: Secure code generation and policy gates Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "evaluation_metrics", "tests_are_truth", "governance" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
01dd7e782784728d8851407ec3bc9e829bf13ec1
train_39925
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
intermediate
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0a047fcbeacb1d78d460493a6d991a3d1cc37f01
train_39926
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
expert
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "documentation", "security_gates", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fc064a8f7a00c3cea1c320d11b556b799942f720
train_39927
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
expert
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "documentation", "tooling", "reproducibility" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6f0de66bfd4dca2d83d6552089b202932dfb65bf
train_39928
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
intermediate
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "security_gates", "auditability", "reproducibility" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
efb37e37f34f68c277b6c42e4d0e2ab9a65ff216
train_39929
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
intermediate
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "repo_scale_reasoning", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1dbd8e046497381832ee6a859de3abe81a1f6c88
train_39930
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
explain
intermediate
Task: explain Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "reproducibility", "ci_integration", "governance", "documentation" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
52bd0ba10ae7b4bc179b42b6c8359d141dab2b4a
train_39931
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
expert
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "tooling", "auditability", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
df4b422910865bb28b75a3dc302ca27e3ebbef3c
train_39932
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
intermediate
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "C#", "developer_needs": [ "documentation", "security_gates", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
241d6c23a53c00620f3b75767339440eb7254c48
train_39933
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
intermediate
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "tooling", "ci_integration", "reproducibility" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3c6e9e29341b971a75839d4c8dffb3ca2f6ae4e3
train_39934
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
patch_diff
advanced
Task: patch_diff Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "governance", "documentation" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c717552fa3ed87ffacf442237c904afb5e40ba75
train_39935
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
expert
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "auditability", "tooling" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c678188630228e2a0096570432ff8a0519012ec4
train_39936
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
intermediate
Task: review Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Java", "developer_needs": [ "governance", "security_gates", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e7533aee336226fa14141482f41a1c2d27b6e085
train_39937
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
expert
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "documentation", "security_gates", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f5daff8397bbba8b1341919348eaa0446f801277
train_39938
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
advanced
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "security_gates", "governance", "evaluation_metrics" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f25784f4ba85d7d83eff3f68482adf37cb19db50
train_39939
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
expert
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "governance", "ci_integration", "security_gates" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c4801de5e3df90476ee6e4dbbad65f9d45d6622f
train_39940
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
intermediate
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "auditability", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
289b5880b6b22d660a170842a93560694eaa814d
train_39941
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
advanced
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "governance", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1554ddd6a87917fbdac944f808850442c06d39aa
train_39942
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
expert
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "tooling", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
074c38533efb2c1e23cefe7b8b85f2e5ccd023e2
train_39943
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
intermediate
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "governance", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bde30b3a9205c2e9f09f0d1c98e33e51def204dd
train_39944
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
intermediate
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "governance", "auditability", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d5ebd2d6465066623a32f7e1074b5d6171120fc7
train_39945
2026-01-01T00:00:00
Latency, cost, and reliability optimization
design
intermediate
Task: design Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tooling", "documentation", "ci_integration", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
93652c91f0a8cca13a10a77285e3e34796b6de62
train_39946
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
intermediate
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "auditability", "governance", "ci_integration", "evaluation_metrics" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
af5a3f367ab8f32632d3ef367551a6bbfa8625b2
train_39947
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
advanced
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "tests_are_truth", "documentation" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
81244eca2219413bb2a44c460d2781caa7f53eeb
train_39948
2026-01-01T00:00:00
Secure code generation and policy gates
design
intermediate
Task: design Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "tests_are_truth", "governance", "security_gates" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
661de9065f792bcf0509468650f163f62eba53b7
train_39949
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
review
expert
Task: review Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "governance", "cost_latency_tradeoffs", "tests_are_truth", "tooling" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6ab932f9869b4544c9210d909406357516208458
train_39950
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
intermediate
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "evaluation_metrics", "tests_are_truth", "reproducibility" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6f5b714b012331f6ba2c0093335158bcd2d8bc2a
train_39951
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
advanced
Task: code Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "documentation", "governance", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1b595ee5d99478d3bda98c8a15f4b5f3772c16a2
train_39952
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
intermediate
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "ci_integration", "auditability", "documentation" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
460736a27f3ae3ab128a91c5bddf0ba4b1f20dea
train_39953
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
advanced
Task: code Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "documentation", "auditability", "tests_are_truth" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
02188740cc6699e7b129647731921ad3d63b3d4a
train_39954
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
eval
intermediate
Task: eval Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "ci_integration", "security_gates", "reproducibility" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b32953853fa9e80d0a998e3029349fe61a4fa595
train_39955
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
intermediate
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "auditability", "evaluation_metrics", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
259b1ace6f8b9f32c7f6474872e464bc4138d2f8
train_39956
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
data_pipeline
expert
Task: data_pipeline Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "tests_are_truth", "documentation" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b3778419dfb0b19aa322d35f823fd596b39ee36e
train_39957
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
expert
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "governance", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
869904b4040cb6cb464617a471678cf2ef8c8fe6
train_39958
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
intermediate
Task: design Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "security_gates", "evaluation_metrics", "governance" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
51599702f7b85ded1c2dae6f4d04626928ce96de
train_39959
2026-01-01T00:00:00
Extended context and repo-scale understanding
review
advanced
Task: review Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "documentation", "tooling" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dc0afeb7a5647ce4a8b0a32108788eefe2bfad55
train_39960
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
failure_analysis
advanced
Task: failure_analysis Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Java", "developer_needs": [ "security_gates", "evaluation_metrics", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d9e0bea3fa9b368fc615f8175e5576a10989fe0b
train_39961
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
intermediate
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "reproducibility", "documentation", "tooling" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
17d58ed8552bdd58bcabc230df86a91f59705f7e
train_39962
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
intermediate
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "auditability", "governance", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
08af8efd783aeb7b7de77cb205ba09fa35855f34
train_39963
2026-01-01T00:00:00
Secure code generation and policy gates
review
expert
Task: review Topic: Secure code generation and policy gates Difficulty: expert Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "security_gates", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0351aea923f9cbe0b262b94f0bba28af043fa3bb
train_39964
2026-01-01T00:00:00
Latency, cost, and reliability optimization
eval
expert
Task: eval Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "auditability", "evaluation_metrics", "documentation", "ci_integration" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5124d1be4c86d756e928e1ed45753160a3d1d92e
train_39965
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
failure_analysis
expert
Task: failure_analysis Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "governance", "evaluation_metrics", "tooling" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0d1eee774ae9630d0579b0d6fd872f145e6c97de
train_39966
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
failure_analysis
advanced
Task: failure_analysis Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "tooling", "auditability", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1f343dc38bb86575c70c1dceb7410ff77650e520
train_39967
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
advanced
Task: code Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "tests_are_truth", "tooling", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
434716d948d3c46d707d42e43b3dfb18fb942003
train_39968
2026-01-01T00:00:00
Secure code generation and policy gates
explain
expert
Task: explain Topic: Secure code generation and policy gates Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "auditability", "security_gates", "governance", "ci_integration" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
897784c8c5309f820d6221457a7f0d9fe19521d3
train_39969
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
advanced
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "auditability", "documentation", "security_gates" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7fbbad6e6c1c949247f25a58fdeea7a6d8ea1d9f
train_39970
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
intermediate
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "tests_are_truth", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
234e0007b7e05dd7438f73bc3e1fa944724ab0ed
train_39971
2026-01-01T00:00:00
Secure code generation and policy gates
review
intermediate
Task: review Topic: Secure code generation and policy gates Difficulty: intermediate Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "tests_are_truth", "evaluation_metrics", "tooling" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1d217e1e0bcb009d88da433c4b4d5b6d4a4d90b7
train_39972
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
expert
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "auditability", "governance", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
550a2fb9547c70111faf9f2d5508b22620bf8499
train_39973
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "reproducibility", "tests_are_truth", "tooling" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e2d1334b1b79c9ed0cff9a22a86d49679ef041b9
train_39974
2026-01-01T00:00:00
Latency, cost, and reliability optimization
design
intermediate
Task: design Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "repo_scale_reasoning", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
54cce7c54971f0734ae41062b8541afb78e7d4de
train_39975
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
intermediate
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Go", "developer_needs": [ "governance", "documentation", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f40d1ba66d2ded3683fec1b6e9ace27fb12674a6
train_39976
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
advanced
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "governance", "auditability", "documentation" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ec40d0a2216161bf6c6df1b013c4c88ce410e423
train_39977
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
advanced
Task: code Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "tests_are_truth", "auditability", "tooling" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c73668d83f0d10ae032e52bfd486fd78a6372627
train_39978
2026-01-01T00:00:00
Latency, cost, and reliability optimization
failure_analysis
advanced
Task: failure_analysis Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "repo_scale_reasoning", "ci_integration", "security_gates" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9565d8978670fd2cda44bbba87fd9481368134af
train_39979
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
intermediate
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "documentation", "auditability", "governance", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0e31566574dd7a6e7c753959c2959274e9c70319
train_39980
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
advanced
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "documentation", "evaluation_metrics", "governance", "tests_are_truth" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
530e1480e1a55cf0be11672b081ca4491c811a7e
train_39981
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
intermediate
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
50c778d0c00257c3ee118f1416133907fc41a169
train_39982
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
eval
intermediate
Task: eval Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "reproducibility", "tests_are_truth", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d9a6170ee81c0b09c4ae1d8b7439e59afaa0b53d
train_39983
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
expert
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6018ab7ed8b6d22636f72f6592cd3b5167280d2d
train_39984
2026-01-01T00:00:00
Self-improving agents and feedback loops
patch_diff
expert
Task: patch_diff Topic: Self-improving agents and feedback loops Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "documentation", "ci_integration", "tooling" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f87166c0974e5c480985e4c5a8336242be14c519
train_39985
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
intermediate
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "governance", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
43229a28fd53b1decde62f3ed17ccd78d3d3c956
train_39986
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
advanced
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "reproducibility", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9e0afc096d69b65b59c08cbf00ccc39511b049e7
train_39987
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
expert
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "auditability", "ci_integration" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
37ac29b012721f565722cd3b520d428b096163b0
train_39988
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
intermediate
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "security_gates", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
aa9d9f1d4022915769bb7e88d58f6dc93e0f43bb
train_39989
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
expert
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "tooling", "auditability", "tests_are_truth" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7fc84eb1f20c72310dae3bd3946dd04bd9984030
train_39990
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
intermediate
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Java", "developer_needs": [ "ci_integration", "governance", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7983c71f5ed18acfc30d124c4b246db61c5be242
train_39991
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
expert
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "auditability", "tests_are_truth" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5b1372c285abfa9d110869ff2601a785a6b93639
train_39992
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
intermediate
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "documentation", "repo_scale_reasoning", "auditability", "governance" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f646e3d72cf1c8e891ee2c874c8bc13bb18fbb27
train_39993
2026-01-01T00:00:00
Secure code generation and policy gates
review
intermediate
Task: review Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "governance", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7ac6a1607b54d65a376979e5d84a292fbcf6749e
train_39994
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
expert
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
001c35cf9757b9f6025b0d40d28ddeed1f04335e
train_39995
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
advanced
Task: explain Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "governance", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
43e7f7fd41f5e6fe01d1c6d272419bf73c58a184
train_39996
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
intermediate
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "auditability", "tests_are_truth", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7a203f7ff8176ffd4bfbaa3a0a1dc19cbc019b92
train_39997
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
eval
advanced
Task: eval Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "tooling", "evaluation_metrics", "auditability", "ci_integration" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
69dbcb4d37213b1ec6b63c853bd92336816ebc6e
train_39998
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
advanced
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "auditability", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f7af68436a1be23fdc19e2f606849257e6d36394
train_39999
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
intermediate
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "reproducibility", "ci_integration", "governance" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c45fbb2b432e148f0f94c3cf93c4bcd587ad86c0