id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_40200
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"repo_scale_reasoning",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b090e561f9b6ff8a7ab9c2a35e335d7e211d2350
|
|
train_40201
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"auditability",
"repo_scale_reasoning",
"security_gates",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b8494c0b9a04cc1e6f3b595133e46182b8b18724
|
|
train_40202
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"documentation",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
92994400e6e5d57b097b963e60cbb9a811ecd520
|
|
train_40203
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"auditability",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
18b8a6cd6e976e370749dab790005ddfdb0fc6fb
|
|
train_40204
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"documentation",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aef00630c8239c4af69078fffa7e8a74129a330f
|
|
train_40205
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
review
|
expert
|
Task: review
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"auditability",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c5cb7c1c54d56d710154c2ab25afd23a45049ef0
|
|
train_40206
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
advanced
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"ci_integration",
"tooling",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
01c101858cb3cc1b6965d52c607490556b671b2b
|
|
train_40207
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
compare
|
advanced
|
Task: compare
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Java",
"developer_needs": [
"security_gates",
"documentation",
"auditability",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
25ef4592b9588f687e3530fcbecaf0857f7988fe
|
|
train_40208
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
intermediate
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8ac85372470a841d0c0bd057926036aa08f8d5ac
|
|
train_40209
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"auditability",
"tooling",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d1c29c042f8e4ffb916fdf88d2b4403acc9ea9ff
|
|
train_40210
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"governance",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5b81edeeece53dbaa70c82537574207c17bd6b6f
|
|
train_40211
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
advanced
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
99e8bdef1b580e37bb65ab670d9fa174454e2dc9
|
|
train_40212
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
design
|
expert
|
Task: design
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"reproducibility",
"auditability",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9f657141532ecdd7d29c17a340eb7b27bbbd0552
|
|
train_40213
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"tests_are_truth",
"ci_integration"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
62bdb40fb861a019bee08c2564234fa5e3dfdd0a
|
|
train_40214
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
eval
|
advanced
|
Task: eval
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"documentation",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
149e173e194bd55408d1444ce9690b9c96e1a483
|
|
train_40215
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"cost_latency_tradeoffs",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
15661ae8085f8278df98a17547507cc30a2db2b5
|
|
train_40216
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
explain
|
expert
|
Task: explain
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"auditability",
"ci_integration",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2169545f652da9c91dae2cfe11d50ee0fba66ac0
|
|
train_40217
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"repo_scale_reasoning",
"security_gates",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7581fb642a66aea84b3e47ff12f065277a1fbf29
|
|
train_40218
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
review
|
advanced
|
Task: review
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"auditability",
"tests_are_truth",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
035d4df7a0d1380b9ed3a5abaa3b9800149b5aef
|
|
train_40219
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"reproducibility",
"governance",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9a200c501fb823f68d1300f2ef1219f5fcfd4b9e
|
|
train_40220
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
review
|
expert
|
Task: review
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"cost_latency_tradeoffs",
"reproducibility"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b7c17d55ffa775820e102a0e5e59ac3899ed0b94
|
|
train_40221
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Go",
"developer_needs": [
"security_gates",
"auditability",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1323900fd0d2d5ab37ab2b80eff46d315d6ded76
|
|
train_40222
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
code
|
advanced
|
Task: code
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"tooling",
"auditability",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2689b65890e287481adde83922e73aaeef7f95ba
|
|
train_40223
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
advanced
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f3119d0afdd4002b6ad8bbedb34605dbcda64cff
|
|
train_40224
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"documentation",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a9ca796c5312ebbdf2b2854a63ed6cb7717433ad
|
|
train_40225
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
compare
|
advanced
|
Task: compare
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"documentation",
"governance",
"ci_integration",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a5601366bfdf46bdd7c9fbca11c8e4200aba0616
|
|
train_40226
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
eval
|
advanced
|
Task: eval
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"documentation",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d7b9b45fbe75c947c8c426b221e25ce683796355
|
|
train_40227
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"ci_integration",
"security_gates",
"governance",
"reproducibility"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4f6bf9a5bf4c2a34f8fb2bf3e00cd3c168f08b9b
|
|
train_40228
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
review
|
intermediate
|
Task: review
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"ci_integration",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ccfd379fb189cf7663b1aba7a919f33f9df4d827
|
|
train_40229
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
review
|
advanced
|
Task: review
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"repo_scale_reasoning",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b30019b198a402048bb7d949a3ded373acf4844e
|
|
train_40230
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
explain
|
expert
|
Task: explain
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"auditability",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f2aa80d41ac45bded7f937cf4b6768bc02686252
|
|
train_40231
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
compare
|
advanced
|
Task: compare
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"governance",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7e525a6547218ec6f8f2752215b3def8a281da28
|
|
train_40232
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
code
|
intermediate
|
Task: code
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"ci_integration",
"evaluation_metrics",
"auditability"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
612be51a66e8ba7a7aefcaf1162cbbe1969f8cd8
|
|
train_40233
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d55dd5e875f19e9027d27f054b9333bb985309ef
|
|
train_40234
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
review
|
expert
|
Task: review
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"evaluation_metrics",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
acbdb731f5dcbd636f3e44e8c6cc65dc49edf9cf
|
|
train_40235
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4de82b71fc04630712bc98bbe131eceedcd378a0
|
|
train_40236
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"reproducibility",
"documentation",
"security_gates",
"governance"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
31f13250e4d97545747dbdee1ab9a99a0fce4c14
|
|
train_40237
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"tests_are_truth",
"governance"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5559d4c2abbbb0cb86805b885df0e9e5e4fd82f3
|
|
train_40238
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"documentation",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
09244356bd51934054635565db0031b08c495afe
|
|
train_40239
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
advanced
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Go",
"developer_needs": [
"documentation",
"reproducibility",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
866254a7dac49c99f9fe7da7d7b66ff5666f84e3
|
|
train_40240
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
expert
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"auditability",
"evaluation_metrics",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1ab2bab09b698268c953007277d4a3111ffd04d2
|
|
train_40241
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
expert
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"auditability",
"evaluation_metrics",
"documentation",
"tooling"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
42b0f395687d54b1d49afcffa8f6e3583c61bac5
|
|
train_40242
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
33c4f6eb3bfaa3a9ef50dee9ed6a8f9d876554e3
|
|
train_40243
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bdbf4e7c36b32f6689ec7272a4a4794a16132f57
|
|
train_40244
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"auditability",
"documentation",
"security_gates"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0e8df779c61477f42de714a26df0a32ff7c54981
|
|
train_40245
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
design
|
advanced
|
Task: design
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"documentation",
"tooling",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
27b33fc26bdfa8fe61a4f7fdeec0efe63088c249
|
|
train_40246
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
design
|
advanced
|
Task: design
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"auditability",
"documentation"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e336cb787159ed21c72c7cf9e52e1ccacecba5ad
|
|
train_40247
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"reproducibility",
"security_gates"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c43991833904ac1ea13c66ec61447394ac85499f
|
|
train_40248
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"auditability",
"governance",
"tooling"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4cac8f80667d1b8b067ab89fe1eac93042af981b
|
|
train_40249
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
eval
|
advanced
|
Task: eval
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"ci_integration",
"repo_scale_reasoning",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3598eb91445c31ad563aa91e2cd49d4dc81ae648
|
|
train_40250
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
review
|
intermediate
|
Task: review
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"governance",
"documentation",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7eeb2ec63c426fcd69cf73bd0ca9fbfe760e4755
|
|
train_40251
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"reproducibility",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8ce51f9cae436ca38998375dc96cc47fffc5cf16
|
|
train_40252
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"reproducibility",
"documentation"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b8c2e95512c58bd86cec224cc5bdd7ef70354767
|
|
train_40253
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
code
|
intermediate
|
Task: code
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"tests_are_truth",
"documentation",
"tooling"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c01649f523a454b1ea35b9260c38dbea3ff3dd52
|
|
train_40254
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
design
|
intermediate
|
Task: design
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b8bcdedd9d202d4e02525aa497d45fc2f9d80b57
|
|
train_40255
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
review
|
expert
|
Task: review
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"repo_scale_reasoning",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5f740b259d0cbf946d86b10f1bd805c985336926
|
|
train_40256
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
review
|
expert
|
Task: review
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"tests_are_truth",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3e197d890c5c71e04387288e1f9b6c1cca7bdf39
|
|
train_40257
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
review
|
intermediate
|
Task: review
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
31d961f4d27ccfed4a2b193f59f2747d1dbe8216
|
|
train_40258
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
expert
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
dd85c302046ba83c4bf6d93ae6d186c1383f9275
|
|
train_40259
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
expert
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"tests_are_truth",
"governance"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b350fb02a991a7afe0eed1544853c82fdb68d49f
|
|
train_40260
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
explain
|
advanced
|
Task: explain
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"documentation",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7b8317afcadca7b31857b91f7061795e4d0c8cae
|
|
train_40261
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
compare
|
advanced
|
Task: compare
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"ci_integration",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1b4aff3c737bea56fa142630b99d22ebdcf58f12
|
|
train_40262
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
compare
|
advanced
|
Task: compare
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"tooling",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7e0d0cad165c2a9644945844a3f44f817fc43da3
|
|
train_40263
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"auditability",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d59959c9669f2d5fd7fd4fbeb123400033a27af0
|
|
train_40264
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
eval
|
intermediate
|
Task: eval
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"documentation",
"ci_integration"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
863363bb0116dc036835424f8a9f51036b513fdb
|
|
train_40265
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"documentation",
"repo_scale_reasoning",
"security_gates"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d01165a3fa8cae06f1ba3a50a54c9323dd027042
|
|
train_40266
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
eval
|
advanced
|
Task: eval
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"repo_scale_reasoning",
"documentation",
"security_gates"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
08a121f87f85a2f0658eb1d31d52de83ce6312ab
|
|
train_40267
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0b37bc8ae873dad27500be6b23317f466e8c0263
|
|
train_40268
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
explain
|
intermediate
|
Task: explain
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tooling",
"tests_are_truth",
"security_gates",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aac70e3742d011cc301a589130f989e698dbdc45
|
|
train_40269
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
design
|
advanced
|
Task: design
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"auditability",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7ba069f0a55e73fe462b825ba88bc6094404266e
|
|
train_40270
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"security_gates",
"governance",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
64b8049780989337f15324b95064371b31529467
|
|
train_40271
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"tests_are_truth",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f8da69c0a4048771139e1ed9de582af0d623ff43
|
|
train_40272
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
313b50d1a34199cae2af08f1bb58f143e7eeff6d
|
|
train_40273
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"ci_integration",
"tooling",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a1cd5b6fd3562917f950a8bf8d68a356078c90cd
|
|
train_40274
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Java",
"developer_needs": [
"tests_are_truth",
"security_gates",
"documentation",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
45fe5ec34e482ec54c8d8a2e6a5c8a261f9b4438
|
|
train_40275
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
code
|
advanced
|
Task: code
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"governance",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d0aa85222695fd7c94896f8461be7e4576070456
|
|
train_40276
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
expert
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
148ebcc3a074349e4e505bc3b92f9d7c1df1861b
|
|
train_40277
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
eval
|
intermediate
|
Task: eval
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"security_gates",
"auditability",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d89fd6342392d5e9d9853618ea25c4bfe695139b
|
|
train_40278
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1f3f9253c1294fc84792549d601021af01ef1893
|
|
train_40279
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"ci_integration",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b71ac3dc51c8ddeba5d275bb175daf16492047bc
|
|
train_40280
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
intermediate
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"documentation",
"security_gates",
"evaluation_metrics",
"auditability"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3a1b381b889cef02cd7b096d4ad8d589d51011b6
|
|
train_40281
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
eval
|
intermediate
|
Task: eval
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"evaluation_metrics",
"security_gates",
"documentation"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9d77c5452c681cc56f96b8def880aeeac9543235
|
|
train_40282
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
code
|
expert
|
Task: code
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
96e6a9d6f0eb6490d6c0d8bf4d38bcd89130923d
|
|
train_40283
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
eval
|
advanced
|
Task: eval
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"tests_are_truth",
"documentation"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1533cee1db8a38c6d5e3aadd2ed4d6f346a6dfba
|
|
train_40284
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"tooling",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
71cad1fe0867f9bfc61c1b9a41c040f3844c3647
|
|
train_40285
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
compare
|
advanced
|
Task: compare
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"tests_are_truth",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a0104c6e077b49091f0b492592ab6f86d133d4c7
|
|
train_40286
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"security_gates",
"governance",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
79a89ba0ac8ca778d0edae9d72c243654d9f2096
|
|
train_40287
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"cost_latency_tradeoffs",
"auditability"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2e494702397a5b3200556ad7abfd14d439dcb960
|
|
train_40288
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
explain
|
intermediate
|
Task: explain
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"security_gates",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
027729bf54b1a62388bf6b395b13a94dc658455b
|
|
train_40289
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"repo_scale_reasoning",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
454fdcb2ae3bd1dc389ffba57f5480c4588ae84e
|
|
train_40290
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"ci_integration",
"governance"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
611c681549d82a0f0fe822c856f32c2bfd599f80
|
|
train_40291
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"evaluation_metrics",
"governance"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1558f4e2afa32fd0ef5c767a02ea7f20a5115159
|
|
train_40292
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
compare
|
expert
|
Task: compare
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"auditability",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b5b4ede8b08424002a7aad29eaf31295d9cbb16b
|
|
train_40293
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
compare
|
intermediate
|
Task: compare
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9e5076117d6c9178a8692e80bbd8a4de401e5a2c
|
|
train_40294
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
review
|
intermediate
|
Task: review
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d160c81e40bb990a876632aa751860372af063b7
|
|
train_40295
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"tests_are_truth",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f939bb0f7c4cc66c7a2cd4faab8bf59f4960d9b9
|
|
train_40296
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
code
|
intermediate
|
Task: code
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9dfecbbb89f0ff5bc6a212a996e9525fd9b5beca
|
|
train_40297
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"governance",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7e6898bceec258d36069737257012d3f3f1ba8de
|
|
train_40298
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
explain
|
expert
|
Task: explain
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"tooling",
"ci_integration"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
270a22ce73764aa022faf6e36ef9c4fc893e3bb8
|
|
train_40299
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"documentation",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
889a51edcb34e0656885ea0451eec0f6343c0b42
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.