blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
eae4139235f9f8a9e3db84a997374aaec24d1ad3
25d48f4bd5daa18346c4e5722ba293b7f9e1ed17
/advice_app/apps.py
418aeb8865140663ab9c3359ea6ddf0b20b0a317
[]
no_license
collins-kipkoech/advice-forum
4c66775dc6cccbd22e302996cd924c2e17ea3d76
76a3256bb776978738cfe04d06455eb4b84c9a68
refs/heads/master
2023-01-25T05:40:29.027979
2020-12-10T10:00:02
2020-12-10T10:00:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
from django.apps import AppConfig class AdviceAppConfig(AppConfig): name = 'advice_app'
[ "collinskipkoech95@gmail.com" ]
collinskipkoech95@gmail.com
a26f167e87d65c7455661ef744c0b729f55514f3
7b74ed82584ad4b321782b33077efb4755253d8b
/ForumMediaScraper/__init__.py
ffa479e3a232cf050e934bb3be1a197fe5a76d18
[ "MIT" ]
permissive
jesseVDwolf/ForumMediaScraper
b64768dcafb72eeab591ea791a6e5341669ecb61
097e2af26a31bf510503d3133007ff31e29f986f
refs/heads/master
2020-09-02T06:10:26.010033
2020-03-16T19:20:29
2020-03-16T19:20:29
219,151,771
0
0
null
null
null
null
UTF-8
Python
false
false
53
py
from .Scraper import SeleniumScraper, ScraperConfig
[ "jessevanderwolf@gmail.com" ]
jessevanderwolf@gmail.com
dcbe0bf334ec32945138f9a38f9e12e4932ceb1d
7a8254888cc804918c9dc37e5ac98020bcd1e263
/Y2Project/jobs/migrations/0004_auto_20180423_1100.py
2287671c679348c8aed2d557e8d883db6b039d04
[]
no_license
X00136016/2ndYearProj
70e78b6501f7b4bf2841ef8fa0a8ecb0192c9389
8e7bcc4ec593413f97d5237c6e72f783beba56a2
refs/heads/master
2021-04-06T02:51:35.412247
2018-04-23T11:03:52
2018-04-23T11:03:52
125,371,752
0
0
null
null
null
null
UTF-8
Python
false
false
722
py
# Generated by Django 2.0.4 on 2018-04-23 11:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('jobs', '0003_auto_20180420_1316'), ] operations = [ migrations.AlterField( model_name='category', name='slug', field=models.CharField(max_length=30, unique=True), ), migrations.AlterField( model_name='company', name='slug', field=models.CharField(max_length=30, unique=True), ), migrations.AlterField( model_name='job', name='slug', field=models.CharField(max_length=30, unique=True), ), ]
[ "post159510@gmail.com" ]
post159510@gmail.com
b1c9cec48e52149224b7f6b46ab40418c4a04bd4
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_268/ch119_2020_03_29_20_51_10_410341.py
ec2aff375f7597950ddebfff3175c1b7883f2146
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
def fatorial (n): fat=1 while n>0: fat*=n n-=1 return fat def calcula_euler(x,n): a=0 e=0 while a<n: e+= 1*(x**a)/fatorial(a) a+=1 return e
[ "you@example.com" ]
you@example.com
58384bc02df8bda751e75beae7ca9478f6527032
91157da2a8f415d956a70c6ba50c9871ea3ea484
/COIRequestReal/mysite/mysite/urls.py
0006442896c9a08556d5a1d11db67825943f771d
[]
no_license
hussainjhaveri/COIWebsite-repository
b2cf5b3f0d6ea26eeee19793b00f5e102dfd633c
9af534990d6e360a2d918686f6b1eb95fbbc0c81
refs/heads/master
2022-12-13T22:01:23.766216
2020-08-27T18:00:30
2020-08-27T18:00:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,172
py
"""mysite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from django.contrib.auth.views import LoginView from django.urls import path, include from django.contrib.auth import views as auth_views urlpatterns = [ path('admin/', admin.site.urls), path('polls/', include('polls.urls')), #path('login/', auth_views.LoginView.as_view(), name='login'), #path('polls/', include('django.contrib.auth.urls')), path('accounts/', include('accounts.urls')), path('login/', LoginView.as_view(), name="login_url"), ]
[ "CAlfano1999@gmail.com" ]
CAlfano1999@gmail.com
1277622ac4f58f872e1be501b2991954f9e631fa
a4d09564fdd8d5c805fef82cdcbc1950fcfb9aa1
/whatsup/whatsup/urls.py
b11f316e7ba29fd8174ff17f2dcf23358615253f
[ "MIT" ]
permissive
ed-commits/whats-up
f644ad87719e44ca15ef53382eb3af6851eae9d4
6e6e13a6d73420da625d278fab31171e09511d98
refs/heads/main
2023-02-01T13:26:44.545310
2020-12-17T14:17:21
2020-12-17T14:17:21
315,723,594
0
0
null
null
null
null
UTF-8
Python
false
false
994
py
"""whatsup URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ path('admin/', admin.site.urls), path('accounts/', include('django.contrib.auth.urls')), path('app/', include('whatsupapp.urls')), ] from django.views.generic import RedirectView urlpatterns += [ path('', RedirectView.as_view(url='app/', permanent=True)), ]
[ "edward.alexander.cant@gmail.com" ]
edward.alexander.cant@gmail.com
f0a83f9fdaa016a77c36ded1c32bac9542760796
aaf3b75157eca3c17ad88696ae7d75caf849782e
/manage.py
1f1bc122b8263e997c092e9d702539c1ddc46f41
[]
no_license
shiluanzzz/flask_movie
0dba2ff99ad37795e5f3fcd69223a78fa7fd67eb
98b2ba04295533ca32d94c8e396fe1a51bbad2b9
refs/heads/master
2020-06-19T11:29:39.213224
2019-07-23T16:49:16
2019-07-23T16:49:16
196,692,534
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
# -*- coding:utf-8 -*- # __author__ = "shitou6" from app import app if __name__ == '__main__': app.run( )
[ "shiluanzzz@foxmai.com" ]
shiluanzzz@foxmai.com
8c127a8f0667ec8e0a1946eab3c2c673b709a627
e785232fbbf1b105e7b6dd6dfcfc84cc9877f98a
/Initializers/RandomInitializer.py
dc7a7d884abb091f89355ae0438d29d8b5258114
[ "Apache-2.0" ]
permissive
firestrand/pyOptimize
243db846fcd3a7a9d9ae12b06c9dd4edea5c21a3
03f8e7094e4ffa1836685842f218cd148b038e44
refs/heads/master
2023-07-20T10:30:24.584858
2023-07-11T17:40:22
2023-07-11T17:40:22
236,263,435
0
0
null
null
null
null
UTF-8
Python
false
false
441
py
import numpy as np import numpy.typing as npt from Initializers.Initializer import Initializer class RandomInitializer(Initializer): def __init__(self, dimensions: int): super().__init__(dimensions) def next(self, n: int, lower_bound: npt.ArrayLike, upper_bound: npt.ArrayLike) -> npt.ArrayLike: rand_value = np.random.random(self.dimensions) return rand_value * (upper_bound - lower_bound) + lower_bound
[ "92124324+tsilvers-ms@users.noreply.github.com" ]
92124324+tsilvers-ms@users.noreply.github.com
fa89f8908b26b40626e1695e044d65aae04fbdce
5a74fbfb317c116a911e3e6d404ed050bdd2baab
/problems/email.py
1e40b136a9d2965aa4c0d069e58d60bac296a8d0
[]
no_license
yorkypy/selise-intervie
39571fd14efca77240ee33d2ab770c86cb9103da
82da5fc6399652bb080cd3977d6a4c60c47db2a1
refs/heads/master
2023-01-23T05:14:52.903886
2020-12-05T10:50:53
2020-12-05T10:50:53
318,727,091
0
1
null
null
null
null
UTF-8
Python
false
false
483
py
'''Python code to generate emails from a list of names''' def generateEmail(names): email=[] temp='@gmail.com' for i in range(len(names)): for j in range(len(names[i])-1,-1,-1): if names[i][j] != ' ': temp=names[i][j]+temp email.append(temp.lower()) temp='@gmail.com' return email #Driver Code if __name__ == "__main__": print(generateEmail(['Nima Yonten', 'Sangay Choden', 'Pema Norbu', 'Rangdrel Loop']))
[ "nimayonten@gmail.com" ]
nimayonten@gmail.com
0d8a1b443a8d3029209e6655fe7608dc24209d93
8f5c1ad76f3f9aa67d6720154b4884c9fab2ecbc
/toontown/parties/DistributedPartyCannonActivityAI.py
49b0b8129521331eae5f0c50f38c13862667377b
[]
no_license
RegDogg/ttr-2014-dev
eb0d9da3e91b9504b83804c27e1a00d87a0b7220
8a392ea4697cf15bd83accd01dcf26d0f87557eb
refs/heads/master
2023-07-13T02:40:56.171517
2021-07-12T00:31:28
2021-07-12T00:31:28
372,103,145
2
0
null
null
null
null
UTF-8
Python
false
false
3,355
py
from direct.directnotify import DirectNotifyGlobal from toontown.parties.DistributedPartyActivityAI import DistributedPartyActivityAI from toontown.toonbase import TTLocalizer import PartyGlobals class DistributedPartyCannonActivityAI(DistributedPartyActivityAI): notify = DirectNotifyGlobal.directNotify.newCategory("DistributedPartyCannonActivityAI") def __init__(self, air, parent, activityTuple): DistributedPartyActivityAI.__init__(self, air, parent, activityTuple) self.cloudColors = {} self.cloudsHit = {} def setMovie(self, todo0, todo1): pass def setLanded(self, toonId): avId = self.air.getAvatarIdFromSender() if avId != toonId: self.air.writeServerEvent('suspicious', avId=avId, issue='Toon tried to land someone else!') return if not avId in self.toonsPlaying: self.air.writeServerEvent('suspicious', avId=avId, issue='Toon tried to land while not playing the cannon activity!') return self.toonsPlaying.remove(avId) reward = self.cloudsHit[avId] * PartyGlobals.CannonJellyBeanReward if reward > PartyGlobals.CannonMaxTotalReward: reward = PartyGlobals.CannonMaxTotalReward av = self.air.doId2do.get(avId, None) if not av: self.air.writeServerEvent('suspicious', avId=avId, issue='Toon tried to award beans while not in district!') return # TODO: Pass a msgId(?) to the client so the client can use whatever localizer it chooses. # Ideally, we shouldn't even be passing strings that *should* be localized. self.sendUpdateToAvatarId(avId, 'showJellybeanReward', [reward, av.getMoney(), TTLocalizer.PartyCannonResults % (reward, self.cloudsHit[avId])]) av.addMoney(reward) self.sendUpdate('setMovie', [PartyGlobals.CANNON_MOVIE_LANDED, avId]) del self.cloudsHit[avId] def b_setCannonWillFire(self, cannonId, rot, angle, toonId): self.toonsPlaying.append(toonId) self.cloudsHit[toonId] = 0 self.sendUpdate('setCannonWillFire', [cannonId, rot, angle]) def cloudsColorRequest(self): avId = self.air.getAvatarIdFromSender() self.sendUpdateToAvatarId(avId, 'cloudsColorResponse', [self.cloudColors.values()]) def requestCloudHit(self, cloudId, r, g, b): avId = self.air.getAvatarIdFromSender() if not avId in self.toonsPlaying: self.air.writeServerEvent('suspicious', avId=avId, issue='Toon tried to hit cloud in cannon activity they\'re not using!') return self.cloudColors[cloudId] = [cloudId, r, g, b] self.sendUpdate('setCloudHit', [cloudId, r, g, b]) self.cloudsHit[avId] += 1 def setToonTrajectoryAi(self, launchTime, x, y, z, h, p, r, vx, vy, vz): self.sendUpdate('setToonTrajectory', [self.air.getAvatarIdFromSender(), launchTime, x, y, z, h, p, r, vx, vy, vz]) def setToonTrajectory(self, todo0, todo1, todo2, todo3, todo4, todo5, todo6, todo7, todo8, todo9, todo10): pass def updateToonTrajectoryStartVelAi(self, vx, vy, vz): avId = self.air.getAvatarIdFromSender() self.sendUpdate('updateToonTrajectoryStartVel', [avId, vx, vy, vz]) def updateToonTrajectoryStartVel(self, todo0, todo1, todo2, todo3): pass
[ "regdogg.acr@gmail.com" ]
regdogg.acr@gmail.com
1d79d3999f2cd00590a314b2dd60798da2fd4bad
8bc451f94f1c944ee53819b8e8bdf369bc637bcf
/python/copyLocalRemote.py
43569583f75d64f414bc0fd4b5da7d5782243b92
[]
no_license
vigneshpalanivelr/all_scripts
e1b78bd7f90458e6fb19aa1838496da0fa22371e
c865157b44be7b2e8ae8fbe1f5d6182e09f3f302
refs/heads/master
2022-11-24T01:47:10.563315
2020-04-26T09:02:16
2020-05-29T10:32:55
198,067,913
0
0
null
null
null
null
UTF-8
Python
false
false
9,163
py
#!/bin/python2 import os import sys # import yum # import glob import yaml import json import time import stat import shutil import fnmatch import argparse import requests import fileinput import subprocess # import prettytable #import custom modules # sys.path.append(os.path.dirname('/var/lib/jenkins/workspace/playbook-provisioning-job/all_scripts/python/pySetenv/variables')) # sys.path.append(os.path.dirname('/var/lib/jenkins/workspace/playbook-provisioning-job/all_scripts/python/pySetenv/packages')) # sys.path.append(os.path.dirname('/root/all_scripts/python/pySetenv/variables/')) # sys.path.append(os.path.dirname('/root/all_scripts/python/pySetenv/packages/')) sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/pySetenv/variables/' ) sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/pySetenv/packages/' ) import logger import global_vars # print sys.path class loadLogDirectory(): def __init__(self): if not os.path.exists(logDirectory): os.makedirs(logDirectory) class CopyExtract(object): def __init__(self): execLog.debug('Object - Created Class Object') pass def copy_remote(self, allDirs=None, source='../', destination=None): execLog.debug('Action - Started coping to Remote path') for i in allDirs: self.copytree(source+i, destination+i) execLog.debug('Done - Completed coping to Remote path') def copy_destination(self, allDirs=None, source=None, yumDir=None, initDir=None, systmdDir=None, RHEL=None, repos=None): execLog.debug('Action - Started coping to Destination path') for i in allDirs: if 'repo' in i: execLog.debug('Action - Found Repo files') for basename, filename in self.find_files(source+i, '*repo*'): self.copytree(filename , yumDir, permission = variables['yumDirPer']) if 'epel' in basename and 'epel' in repos: self.find_replace(yumDir+'/'+basename, 'OS_VERSION', RHEL) self.get_GPG_KEY( variables['repositories']['epel']['repo']+variables['repositories']['epel']['gpgurl']+RHEL, variables['GPG_KEY_Dir']+variables['repositories']['epel']['gpgkey']+RHEL ) if 'jenkins' in basename and 'jenkins' in repos: self.find_replace(yumDir+'/'+basename, 'JENKINS_REPO', variables['repositories']['jenkins']['repo']) self.find_replace(yumDir+'/'+basename, 'JENKINS_GPGKEY', variables['repositories']['jenkins']['gpgkey']) self.get_GPG_KEY( variables['repositories']['jenkins']['repo']+variables['repositories']['jenkins']['gpgurl'], variables['GPG_KEY_Dir']+variables['repositories']['jenkins']['gpgkey'] ) if 'artifactory' in basename and 'artifactory' in repos: self.find_replace(yumDir+'/'+basename, 'ARTIFACTORY_REPO', variables['repositories']['artifactory']['repo']) if 'jfrog-cw' in basename and 'jfrog-cw' in repos: self.find_replace(yumDir+'/'+basename, 'CW_LOCAL_REPO', variables['repositories']['jfrog-cw']['repo']) self.find_replace(yumDir+'/'+basename, 'OS_VERSION', RHEL) if 'jfrog-epel' in basename and 'jfrog-epel' in repos: self.find_replace(yumDir+'/'+basename, 'EPEL_LOCAL_REPO', variables['repositories']['jfrog-epel']['repo']) self.find_replace(yumDir+'/'+basename, 'OS_VERSION', RHEL) if 'jfrog-jenkins' in basename and 'jfrog-jenkins' in repos: self.find_replace(yumDir+'/'+basename, 'JENKINS_LOCAL_REPO', variables['repositories']['jfrog-jenkins']['repo']) self.find_replace(yumDir+'/'+basename, 'OS_VERSION', RHEL) if 'jfrog-postgresql' in basename and 'jfrog-postgresql' in repos: self.find_replace(yumDir+'/'+basename, 'POSTGRESQL_LOCAL_REPO', variables['repositories']['jfrog-postgresql']['repo']) self.find_replace(yumDir+'/'+basename, 'OS_VERSION', RHEL) elif 'service' in i and RHEL == '6': execLog.debug('Action - Found Service files for RHEL {}'.format(RHEL)) for basename, filename in self.find_files(source+i, '*Initd*'): self.copytree(filename , initDir, permission = variables['initDirPer']) elif 'service' in i and RHEL == '7': execLog.debug('Action - Found Service files for RHEL {}'.format(RHEL)) for basename, filename in self.find_files(source+i, '*Initd*'): self.copytree(filename , initDir, permission = variables['initDirPer']) elif 'service' in i and RHEL == '8': execLog.debug('Action - Found Service files for RHEL {}'.format(RHEL)) for basename, filename in self.find_files(source+i, '*Services*'): self.copytree(filename , systmdDir, permission = variables['systemdDirPer']) elif 'python' in i: execLog.debug('Action - Found Python files') for basename, filename in self.find_files(source+i, '*.py*'): self.permission_restore(filename, variables['pythonPer'],) execLog.info('Permisn - {} : {} : {}'.format(source+i, filename, variables['pythonPer'])) execLog.debug('Done - Completed coping to Destination path') def copytree(self, src, dst, symlinks = False, ignore = None, permission = None): # Ref : https://stackoverflow.com/questions/1868714/how-do-i-copy-an-entire-directory-of-files-into-an-existing-directory-using-pyth if not os.path.exists(dst): os.makedirs(dst) shutil.copystat(src, dst) execLog.info('New File - {} : {}'.format(src, dst)) if os.path.isdir(src): copy_list = os.listdir(src) elif os.path.isfile(src): copy_list = [src.split('/')[-1]] src = '/'.join(src.split('/')[:-1]) if ignore: exclude = ignore(src, copy_list) copy_list = [x for x in copy_list if x not in exclude] execLog.warning('Files Excluded List: {}'.format(exclude)) for item in copy_list: s = os.path.join(src, item) d = os.path.join(dst, item) if symlinks and os.path.islink(s): if os.path.lexists(d): os.remove(d) os.symlink(os.readlink(s), d) try: st = os.lstat(s) mode = stat.S_IMODE(st.st_mode) os.lchmod(d, mode) except: pass # lchmod not available elif os.path.isdir(s): self.copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d) if permission == None: execLog.info('Copying - {} : {}'.format(s, d)) elif permission != None: self.permission_restore(d , permission) execLog.info('Copying - {} : {} : {}'.format(s, d, permission)) def find_files(self, directory, regex): for root, dirs, files in os.walk(directory): for basename in files: if fnmatch.fnmatch(basename, regex): filename = os.path.join(root, basename) yield basename, filename def find_replace(self, filename, textToSearch, textToReplace): with open(filename,'r+') as file: filedata = file.read() filedata = filedata.replace(textToSearch, textToReplace) file.truncate(0) file.seek(0) file.write(filedata) execLog.info('Find Re - {} : {} : {}'.format(filename, textToSearch, textToReplace)) def permission_restore(self, file, permission): subprocess.call(['chmod', permission, file]) def get_GPG_KEY(self, url, key_file): with open(key_file, 'w') as gpg_file: gpg_file.write(requests.get(url).text) execLog.info('Set GPG - {}'.format(key_file)) if __name__ == '__main__': # Argparse Argments and variables defination parser = argparse.ArgumentParser(description='Copy scripts from local to remote and enable services and repos') parser.add_argument('RHEL' ,action='store' ,help='RHEL Major Version' ,choices=['6','7','8'] ) parser.add_argument('YAMLvarFile' ,action='store_const' ,help='Load Variables from Ansible Vars' ,const='../ansible/vars/vars.yml' ) parser.add_argument('-repos' ,action='append' ,help='Add list of repos to enable' ,dest='repos' ,default=[] ) # arguments = parser.parse_args(['7','-repos','epel','-repos','jenkins','-repos','artifactory']) arguments = parser.parse_args() RHEL = arguments.RHEL YAMLvarFile = arguments.YAMLvarFile repos = arguments.repos # Load variables from ansible vars variables = global_vars.get_ansible_vars(YAMLvarFile) logDirectory = variables['scriptHomeDir']+'/'+variables['scriptsDir']+'/'+variables['logsDir'] # Execute a class object to make log dir loadLogDirectory() print 'Created Log Directory : {}'.format(logDirectory) # Define logging module, File Handler & Stream Handler # Define Log file name for later use execLogger = 'cp-local-remote-log' + time.strftime('-%Y-%m-%d-%Hh-%Mm-%Ss-%Z') + '.log' execLog = logger.setupLogger('Copy Local to Remote', logDirectory +'/'+ execLogger) execLog.debug('Object - Successfully Loadded Ansible Vars') # Creating class object copy_extract = CopyExtract() copy_extract.copy_remote( allDirs = [variables['srcPythonDir'],variables['srcRepoDir'],variables['srcServicesDir']], source = '../', destination = variables['scriptHomeDir']+'/'+variables['scriptsDir']+'/' ) copy_extract.copy_destination( allDirs = [variables['srcPythonDir'],variables['srcRepoDir'],variables['srcServicesDir']], source = variables['scriptHomeDir']+'/'+variables['scriptsDir']+'/', yumDir = variables['yumDir'], initDir = variables['initDir'], systmdDir = variables['systemdDir'], RHEL = RHEL, repos = repos )
[ "vignesh.palanivelr@gmail.com" ]
vignesh.palanivelr@gmail.com
2548483638d7dd06d52cb259f10dc85706bedab2
1c51468a57ee27a56a206f4781d83e40c5906dc9
/IT6036_AppSecurityand ServiceSideDevelopment_SecureWebApp/NZataglance_WebApp/nzataglance_StudentCopy/nzataglance/settings.py
372c293c5c654ff4e4a11eef8986ebd04d4fda6b
[]
no_license
91031431/IT6036_Project_security_WebApp
c17b23c2611c12011d9af47e415bc8da083eee95
c4dc45607fd2d340e31daa3d7e3a9454f0453fac
refs/heads/master
2020-09-13T00:40:08.546683
2019-11-28T05:38:45
2019-11-28T05:38:45
222,608,442
0
0
null
null
null
null
UTF-8
Python
false
false
3,394
py
""" Django settings for nzataglance project. Generated by 'django-admin startproject' using Django 2.0.3. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '$9w@wu45qbjfy@%cejqt+zma9-9y!u&9w_yfu#5#^8wux1urkw' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'home', 'story', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'nzataglance.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'nzataglance.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] # Redirect to home URL after login (Default redirects to /accounts/profile/) LOGIN_REDIRECT_URL ='/' EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
[ "91031431@learn.cpp.ac.nz" ]
91031431@learn.cpp.ac.nz
713619704f16c067823bf3168e44b435e5b19360
f31e73f282c645206a3d8d666fb774a4c17256ab
/lab_exam/stripped_lab_exam_0_files/python/test_linear.py
e489076d36e59268218b27bf34fe5f4eb963089a
[]
no_license
ATanggara/Statistical_Machine_Learning_2019
e59d13efbfa18362dea670d9c79859030c2f5668
746fbea75d25ebfe5a08f1e9569dc24518b1213f
refs/heads/master
2020-04-28T08:47:19.644026
2019-04-08T00:54:39
2019-04-08T00:54:39
175,141,766
3
0
null
null
null
null
UTF-8
Python
false
false
1,697
py
import numpy as np import traceback import sys import linear def test_linear(x, y, w_true): ################################################ # # INPUTS: # x: input data, shape d by n # y: output targets, shape n by 1 # w_true: true weights, shape d by 1, or None # # OUTPUTS: # w: linear regression weights, d by 1 # ################################################ d, n = x.shape assert y.shape == (n, 1) try: # call the student's code: w_student = linear.linear_least_squares(x, y) except: # the student's code raised an exception: traceback.print_exc() return False assert w_student.shape == (d, 1) if w_true is not None: # check if the correct weights have been calculated: w_matches = np.allclose(w, w_student) print('w_matches', w_matches) return w_matches else: # check if the predictions match on the training data: y_student = np.dot(x.T, w_student) y_matches = np.allclose(y, y_student) print('y_matches', y_matches) return y_matches def random_data(d, n): print('d = %i n = %i' % (d, n)) # linear model weights: w_true = np.random.randn(d, 1) # input datapoints: x = np.random.randn(d, n) # scalar outputs: y = np.dot(x.T, w_true) return x, y, w_true if __name__ == '__main__': total_marks = 0 print('First test:') x, y, w = random_data(d=2, n=3) if test_linear(x=x, y=y, w_true=w): print('passed') total_marks = total_marks + 1 else: print('failed') print() print('Second test:') x, y, w = random_data(d=2, n=1) if test_linear(x=x, y=y, w_true=None): print('passed') total_marks = total_marks + 1 else: print('failed') print() print('Tests completed, total_marks =', total_marks)
[ "" ]
786f3bbb1beef416669dead093cf35a4cc4a0190
5e861593f0c43e2a863c282c49f9bc4d15ef57f8
/config.py
607540c37b73c789a7d13df6eef1fdde69512632
[]
no_license
wddzz/Taobao-Spider
2e974a61d65cdc7ebf8aea491801b45dbd75df81
4749ab5c7073c1c0b8baa78b73b2cdcd174d3c8c
refs/heads/master
2020-03-14T16:21:05.059612
2018-05-01T12:36:21
2018-05-01T12:36:21
131,696,572
0
0
null
null
null
null
UTF-8
Python
false
false
68
py
MONGO_URL = "localhost" MONGO_DB = "taobao" MONGO_TABLE = "product"
[ "406452653@qq.com" ]
406452653@qq.com
ad32732cdc2c11b4cb11a0fd2ce443d0845a1ff0
aac44b0f483abd424a2237d1ace5c71b2c58fcf7
/collective/recipe/zopeinstancemultiplier/tests/test_docs.py
b0ec06207ba1de5c95c700460a549a2fc9ae7b3a
[]
no_license
collective/collective.recipe.zopeinstancemultiplier
5d3b2bde3772435e92e885a2e59c96b9b09129f2
5c296aad241f8801d4b619fc2d954b53abd8253c
refs/heads/master
2023-08-24T08:39:40.697499
2017-07-18T20:01:42
2017-07-18T20:01:42
97,505,280
1
0
null
null
null
null
UTF-8
Python
false
false
1,385
py
# -*- coding: utf-8 -*- """Doctest runner.""" __docformat__ = 'restructuredtext' from zope.testing import renormalizing import doctest import unittest import zc.buildout.testing import zc.buildout.tests optionflags = (doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_ONLY_FIRST_FAILURE) def setUp(test): zc.buildout.testing.buildoutSetUp(test) # Install the recipe in develop mode zc.buildout.testing.install_develop('collective.recipe.zopeinstancemultiplier', test) # Install any other recipes that should be available in the tests def test_suite(): suite = unittest.TestSuite(( doctest.DocFileSuite( '../../../../README.rst', setUp=setUp, tearDown=zc.buildout.testing.buildoutTearDown, optionflags=optionflags, checker=renormalizing.RENormalizing([ # If want to clean up the doctest output you # can register additional regexp normalizers # here. The format is a two-tuple with the RE # as the first item and the replacement as the # second item, e.g. # (re.compile('my-[rR]eg[eE]ps'), 'my-regexps') zc.buildout.testing.normalize_path, ]), ), )) return suite if __name__ == '__main__': unittest.main(defaultTest='test_suite')
[ "rafaelbco@gmail.com" ]
rafaelbco@gmail.com
747ee26960ee81836192aa2bc3f54b34ff0cb185
b72cbafda25941a411a06bd688004fb6ec8b0397
/easy/107.二叉树的层次遍历II.py
a69e85a80af385b83429b308ff23e60d41529079
[]
no_license
GGjin/algorithm_python
92d8ea04c8298bb2fcb65299d8f925a0c750209d
de36824647a10199963c64b0d32b8fb581c9eef6
refs/heads/master
2023-05-06T22:21:55.505057
2021-05-28T07:14:44
2021-05-28T07:14:44
276,314,598
0
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
# 给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历) # # 例如: # 给定二叉树 [3,9,20,null,null,15,7], # # 3 # / \ # 9 20 # / \ # 15 7 # # # 返回其自底向上的层次遍历为: # # [ # [15,7], # [9,20], # [3] # ] # # Related Topics 树 广度优先搜索 # 👍 364 👎 0 # leetcode submit region begin(Prohibit modification and deletion) # Definition for a binary tree node. from typing import List class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def levelOrderBottom(self, root: TreeNode) -> List[List[int]]: res = [] def dfs(root: TreeNode, depth: int): if not root: return res if len(res) < depth + 1: res.append([]) res[depth].append(root.val) dfs(root.left, depth + 1) dfs(root.right, depth + 1) dfs(root, 0) return res[::-1] # leetcode submit region end(Prohibit modification and deletion)
[ "gg.jin.yu@gmail.com" ]
gg.jin.yu@gmail.com
961442e0a4c5e31226154616a33f17f55e8b0e2e
1652e4eed966da8c1eeccb29e29c87d74985de6d
/randomdatatools/xmldata.py
a86f48f0abcb0f45d61425ddaa824bdfb3e75f23
[]
no_license
mchamlee/randomdatatools
7f7beab4a96e8235e9d81b829a242108e2954094
6711594e45219adfe7d4bae4d3d1253d168133ef
refs/heads/master
2020-04-27T05:17:59.894218
2019-03-27T06:07:37
2019-03-27T06:07:37
174,077,439
0
0
null
null
null
null
UTF-8
Python
false
false
3,317
py
import os from pathlib import Path import glob from xml.etree import ElementTree as ET def xml_split(file_to_split, tag_to_split_on, splits_to_generate=0): """Splits an XML file into multiple files. Places output files in output subdirectory of input file location. Args: file_to_split: Path to the file to split. tag_to_split_on: Tag/element within the XML to split on. Should be a top-level tag, just under the root. splits_to_generate: Number of files (splits) to generate, distribution round robin. If not specified, will split each found tag_to_split_on into it's own file. """ # Quickly open and close file to capture file name/path input_file = open(file_to_split) input_file_name = input_file.name.replace(Path(input_file.name).name, Path(input_file.name).stem) input_file.close() split_tag = tag_to_split_on num_files = splits_to_generate context = ET.iterparse(file_to_split, events=('end',)) if num_files == 0: index = 0 for event, elem in context: if elem.tag == split_tag: index += 1 with open(input_file_name + '_' + str(index).rjust(4, '0') + '.xml', 'wb') as f: f.write(b"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n") f.write(ET.tostring(elem)) else: xml_element_tree_list = [None for i in range(num_files)] tree_num = 0 for event, elem in context: if elem.tag == split_tag: if xml_element_tree_list[tree_num] is None: xml_element_tree_list[tree_num] = ET.Element('XMLELEMENT') xml_element_tree_list[tree_num].extend(elem.iter(split_tag)) else: xml_element_tree_list[tree_num].extend(elem.iter(split_tag)) if tree_num >= (num_files - 1): tree_num = 0 else: tree_num += 1 for file_num in range(num_files): if xml_element_tree_list[file_num] is not None: with open(input_file_name + '_' + str(file_num).rjust(4, '0') + '.xml', 'wb') as f: f.write(ET.tostring(xml_element_tree_list[file_num])) def xml_combine(files_to_combine, tag_to_combine_on): """Combines multiple XML files into one. Places output file in output subdirectory of input file location. Args: files_to_combine: Path containing the files to combine. tag_to_combine_on: Tag/element within the XML to combine on. Ideally a top-level tag, just under the root. """ tag_to_find = ".//" + tag_to_combine_on xml_files = glob.glob(files_to_combine + "/*.xml") xml_element_tree = ET.Element('XMLELEMENT') # See if output subdir exists, and if not create it if not os.path.exists(files_to_combine + "/output"): os.makedirs(files_to_combine + "/output") for xml_file in xml_files: data = ET.parse(xml_file).getroot() if data.tag != tag_to_combine_on: data = ET.parse(xml_file).find(tag_to_find) xml_element_tree.append(data) if xml_element_tree is not None: output_file = open(files_to_combine + "/output/output.xml", 'wb') output_file.write(ET.tostring(xml_element_tree))
[ "matthew.chamlee@gmail.com" ]
matthew.chamlee@gmail.com
8a94d031c49228851ad8353b0268e43fedd56a90
8eca8fbc9bb38599f040485a7cbe741b665afb78
/flats_tools.py
389fc00cffb4f6b74a391adf8bac36f76b9a21e6
[]
no_license
andrrew-c/property-data-scraper
f06b2469814942c306e016837250cdfe8a166c2d
441927ba0fe65726ce022a56d15d5ebb24df632a
refs/heads/master
2022-11-15T18:42:47.597552
2020-07-02T19:03:32
2020-07-02T19:03:32
276,642,795
0
0
null
null
null
null
UTF-8
Python
false
false
53,342
py
""" Name: Flats Tools - Property Data Purpose: This script contains a number of functions which are used to control the web scraper. Description: Author: Andrew Craik Date: February 2018 """ import requests from bs4 import BeautifulSoup as bs import json import sqlite3 from datetime import datetime import time import collections import os import sys ## Random import random import csv # Debug import pdb #import testing_db_update as tdu def getLocationID(url_search, url_find, postcode): """ Returns the outcode when given a postcode and some soup The outcode is a code used by the property website from postcode->outcode Returns string in format "OUTCODE^xxxxx" Inputs: url_search: string holding the first part of the property website search url_find: string containing the 'find properties' url - used to check whether searching a REGION or an OUTCODE postcode: The postcode of interest """ ## Create full URL url_location = url_search + "?searchLocation={}&locationIdentifier=&useLocationIdentifier=false&buy=For+sale".format(postcode) ## Make request, then soup res_location = requests.get(url_location) #with open('res.txt', 'wb') as f: f.write(res_location.content) #print("******** Writing out to a text file") soup = bs(res_location.content, 'html.parser') ## Find the outcode dictionary location_id = soup.find_all('input', id="locationIdentifier") ## Outcode rm_outcode = location_id[0]['value'] ################################################## ## Some places need a 'REGION' some 'OUTCODE' ################################################## ## Need to test a request sCode = "OUTCODE REGION".split() locationIdentifier = [i + rm_outcode[rm_outcode.find('^'):len(rm_outcode)] for i in sCode] ## Try both for i in range(len(sCode)): ## Make request res = requests.get(url_find, params={'locationIdentifier':locationIdentifier[i], 'index':0}) ## Request status res_stat = str(res.raise_for_status) status = res_stat[res_stat.find('[')+1:res_stat.find(']')] ## Check that the status works if not status == '404': print("Using location code type '{}'".format(sCode[i])) return locationIdentifier[i] ## Else, need to raise an error print("ERROR (getLocationID): no match found in '{}'".format(sCode)) def getPropertyURLs(soup): """ DISCONTINUED Returns a list of the property URLs for a given postcode (or area) """ ## Properties (?) props1 = soup.find_all('a', class_='propertyCard-link') props2 = [i for i in props1 if i.find('address')] ## Extract properties URLs prop_urls = [i['href'] for i in props2 if i['href']!=''] # return prop_urls def getPropertyBasicInfo(url, soup): """ Returns a list of dictionaries holding basic information on each property in the search results """ ##Now pull out some basic information on all properites scripts = soup.find_all('script') sc = [s.text for s in scripts if str(s).find('jsonModel')!=-1 and str(s).find('properties')!=-1] ## Extract JSON text string from scripts try: js_txt = [s[s.find('{'):] for s in sc][0] js_dict = json.loads(js_txt) ## All the other information comes from the individual ## We take, ID, summary, display address ##, property description, property URL, property images ## Init property info list props = [] ## Loop through each property in JSON data for p in js_dict['properties']: ## Added or reduced - separate addOrReduceDate = '' ## If 'on' not found in string (i.e. 'on dd/mm/yyyy') if p['addedOrReduced'].find('on') == -1: addOrReduce = p['addedOrReduced'] ## Else, date string contained else: addOrReduce = p['addedOrReduced'][:p['addedOrReduced'].find('on')-1] addOrReduceDate = p['addedOrReduced'][p['addedOrReduced'].find('on')+3:] ### ## Extract information on property props.append({'propertyId':p['id'] , 'propURL':url+p['propertyUrl'] , 'displayAddress':p['displayAddress'] , 'propertyDescription':p['propertyTypeFullDescription'] , 'listingUpdateReason':p['listingUpdate']['listingUpdateReason'] , 'listingUpdateDate':p['listingUpdate']['listingUpdateDate'] , 'addedOrReduced':addOrReduce , 'addedOrReducedDate':addOrReduceDate }) ## Returns the list return props except: return [] def getAllPropertyURLs(postcode, url_find, url, result_per_page, payload): """ Given a URL this function will return a list of the unique URLs related to properties. For example, URL will relate to the search terms for a single postcode area, this function will iterate through each of the pages to get all of the properties URLs and return those as a list, removing duplicates. """ ## Init list to hold all URLs all_props = [] ## Init loop stop to False blank_results = False ## Init idx to zero idx = 0 ## Sleep time in second sleeptime = 2 ## While resulsts are not blank while not blank_results: ## Sleep time between iterations print("getAllPropertyURLs: Sleeping for {} seconds.".format(sleeptime)) ## Update query payload payload.update({'index':idx*result_per_page}) ## Make request print("\nMaking request for postcode {}, page = {}".format(postcode, idx+1)) res = requests.get(url_find, params=payload) time.sleep(sleeptime) #with open('res.txt', 'wb') as f: f.write(res.content) #print("******** Writing out to a text file") ## Soup print("Making soup for postcode '{}'".format(postcode)) soup = bs(res.content, 'html.parser') ## Get properties results for a single iteration print("Getting properties URLs") new_list = getPropertyBasicInfo(url, soup) # print("\nThere are {:,} properties in the current list".format(len(all_props))) ## If there are properties in the soup if len(new_list) > 0: ## Add URLs to list all_props.extend(new_list) print("Current list of properties now = {:,}".format(len(all_props))) # ## Iterate index loop idx += 1 else: ## Else, we have run out of pages, return list final_result = [] # final_result.append(all_props[0]) for p in range(1, len(all_props)): if all_props[p]['propertyId'] not in [i['propertyId'] for i in final_result]: final_result.append(all_props[p]) # return final_result def sleepProgram(bigProcess=False): """ For big processes we should have 15 seconds inclued For others, no need (e.g. iterating through serach results) """ ## Make sure process doesn't throttle website rand = random.uniform(0,1) if bigProcess and rand>0.8: sleep = 15 print("Big process, sleeping for {} seconds.".format(sleep)) time.sleep(sleep) else: if rand>0.6: sleep = 5 print("getPropertyInfo: Sleeping for {} seconds".format(sleep)) time.sleep(sleep) else: time.sleep(1) def getPropertyInfo_TidyVars(basic_dict): pass #return dictionary ## Price tidy = {'price':{None:-9}} for k in basic_dict.keys(): ## If this key should be tidied if k in tidy.keys(): if basic_dict[k] in tidy[k].keys(): # basic_dict.update({k:tidy[k][basic_dict[k]]}) return basic_dict def getPropertyInfo(c, basic_dict, index, ofSize): """ Purpose: Get the property information for a single property (given the basic information scraped from the search results) Given a base URL (for the website) and a 'properties specific' URL, return a dictionary of attributes for the properties. c: sqlite3 cursor for a connection basic_dict: dictionary holding the basic information for a single property gained from the search results index: integer holding the index of the current property within the postcode ofSize: integer holding the total size of properties in the postcode """ # ## Separate URL for this properties # full_url = basic_dict['propURL'] ## If listing update date contains a string - recode it # if basic_dict['listingUpdateDate'] != None: basic_dict.update({'listingUpdateDate2':basic_dict['listingUpdateDate']}) basic_dict.update({'listingUpdateDate':None}) # ## Else, give it something else: basic_dict.update({'listingUpdateDate2':None}) ## Copy original for final final_result = dict.copy(basic_dict) ## If property has chanegs if propertyShouldBeUpdated(c, basic_dict): ## Updating property information to log print("Property {} of {} ({:.1%}) with ID {} being updated/loaded".format(index+1, ofSize, (index+1)/ofSize, basic_dict['propertyId'])) prop_res = requests.get(full_url) sleepProgram(True) ## Trying to make soup for properties - strugglingencoding = r.encoding if 'charset' in r.headers.get('content-type', '').lower() else None soup_prop = bs(prop_res.content, 'html.parser') #print("Length of soup = {}".format(len(soup_prop))) #with open('property_info.txt', 'wb') as f: f.write(prop_res.content) ######################################################## ## Now with properties soup - let's get the information ######################################################## prop_info = [i for i in soup_prop.find_all('script') if i.text.find('(function(k,v)')!=-1] # #print("Length of properties info for a single properties = {}".format(len(prop_info))) if len(prop_info)>0: ## Need to turn the key information into a dictionary js_text = prop_info[0].text[prop_info[0].text.find('property'):] try: prop_dict = json.loads(js_text[js_text.find('{'):js_text.find(')')]) # ## Key features (held separately) and full description other_sections = soup_prop.find_all('div', class_='sect') kf_string = 'Key features' fd_string = 'Full description' ## Key features (if there) and full description, separate kf_l = [i.text for i in other_sections if i.text.find(kf_string)!=-1] fd_l = [i.text[i.text.find(fd_string)+len(fd_string):] for i in other_sections if i.text.find(fd_string)!=-1] ## Extract text from first element of list, if there is any kf_full = extractFirstIfListHasIt(kf_l) # kf = None if kf_full != None: if len(kf_full) > 0: kf = getKeyFeatures(kf_full, kf_string) tenure, fd = extractTenureAndDescription(fd_l) ## Images #print("Getting image URLs") images = soup_prop.find_all('meta', itemprop='contentUrl') ## Now isolate the image content imgs = [i['content'] for i in images] # # #print("\nURL = {}".format(prop_url)) # and number of floor plans = {}".format(prop_url, prop_dict['floorplanCount'])) ## Floor plan ## Reset floor plan list fp_imgs = [] if prop_dict['floorplanCount'] >= 1: ## List all image links all_images = soup_prop.find_all('img') ## Isolate the 'src' tag from any tags which contain 'FLOOR' - unique list fp_imgs = list(set([i['src'] for i in all_images if i.prettify().upper().find('FLOOR')!=-1])) # ## Update dictionary: Key features, full description, images prop_dict.update({'tenure':tenure , 'fullDescription':fd , 'key_features': kf , 'imageURLs':imgs , 'floorplan':fp_imgs}) ## Bring together final_result.update(flatten(prop_dict)) ## Tidy up vars # final_result = getPropertyInfo_TidyVars(final_result) ## Finally, return dictionary return final_result except: strUpdate = "ERROR: Please check dictionary for property with URL '{}'\n".format(full_url) strStars = "*"*len(strUpdate) print("{0}\n{1}\n{0}".format(strStars, strUpdate)) ## Add to errors list #errors.append(basic_dict) # return {} ## Else, property should not be updated in DB else: #print("No need to request property information") # lastSeen = {'propertyId':basic_dict['propertyId'], 'lastFoundInSearch':datetime.today().strftime('%Y%m%d')} return lastSeen def getKeyFeatures(string, ignore_string): """ Return list of key features """ ## Split string into list str_list = [i.replace(ignore_string, '').replace("'",'').replace('"','') for i in string.split('\n')] str_list2 = [i for i in str_list if i != ''] ## Return values # return str_list2 def extractFirstIfListHasIt(listname, info='text'): """ Returns the first element's text or other information """ if len(listname)>0: ## If user hasn't specified type of info, then get text if info == 'text': return listname[0] ## Otherwise, get the specified information else: return listname[0][info] else: return None def extractTenureAndDescription(listname): """ Returns the first element's text or other information """ ctr = "\0".split() charsToRemove = str.maketrans(dict.fromkeys(ctr)) # ## String used to find tenure tenure_string = 'Tenure:' ## If list has some information in it, look for tenure and/or full description if len(listname)>0: ## Simpler to type fullstring = listname[0] ## TENURE ## ## If tenure string in text if fullstring.find(tenure_string)!=-1: ## Remove the tenure string from text t1 = fullstring[fullstring.find(tenure_string)+len(tenure_string):] ## Now keep tenure type to output tenure_type = t1[:t1.find('\n')].replace(' ', '').upper() # ## Now get the rest of the string fullDescription = t1[t1.find('\n')+1:].strip().replace('"', "'").translate(charsToRemove) return tenure_type, fullDescription ## Else, tenure string not found else: ## Else, no tenure, but there is a 'full description' fullDescription = fullstring[fullstring.find('\n')+1:].strip().replace('"', "'") return None, fullDescription else: return None, None def getPropertyVariables(dictionary): ###################################### ## properties information ###################################### propertyId = dictionary['propertyId'] propURL = dictionary['propURL'] added = dictionary['added'] listingUpdateReason = dictionary['listingUpdateReason'] listingUpdateDate = dictionary['listingUpdateDate'] listingUpdateDate2 = dictionary['listingUpdateDate2'] addedOrReduced = dictionary['addedOrReduced'] addedOrReducedDate = dictionary['addedOrReducedDate'] propertyDescription = dictionary['propertyDescription'] fullDescription = dictionary['fullDescription'] propertyType = dictionary['propertyType'] propertySubType = dictionary['propertySubType'] price = float(dictionary['price']) beds = int(dictionary['beds']) tenure = dictionary['tenure'] soldSTC = 1 if dictionary['soldSTC'] == True else 0 retirement = dictionary['retirement'] preOwned = dictionary['preOwned'] ownership = dictionary['ownership'] auctionOnly = 1 if dictionary['auctionOnly'] == True else 0 letAgreed = 1 if dictionary['letAgreed'] == True else 0 lettingType = dictionary['lettingType'] furnishedType = dictionary['furnishedType'] minSizeFt = dictionary['minSizeFt'] maxSizeFt = dictionary['maxSizeFt'] minSizeAc = dictionary['minSizeAc'] maxSizeAc = dictionary['maxSizeAc'] businessForSale = 1 if dictionary['businessForSale'] == True else 0 priceQualifier = dictionary['priceQualifier'] currency = dictionary['currency'] ## Return values return propertyId, propURL, added \ , listingUpdateReason, listingUpdateDate, listingUpdateDate2, addedOrReduced, addedOrReducedDate \ , propertyDescription, fullDescription, propertyType, propertySubType \ , price, beds, tenure \ , soldSTC, retirement, preOwned, ownership \ , auctionOnly, letAgreed, lettingType, furnishedType \ , minSizeFt, maxSizeFt, minSizeAc, maxSizeAc \ , businessForSale, priceQualifier, currency def dict_factory(cursor, row): """ Returns a dictionary from row ('header':value) """ d = {} for idx, col in enumerate(cursor.description): d[col[0]] = row[idx] return d def SQLGetMostRecentRecord(c, tablename, propertyId): """ With cursor and propertyID return dictoinary""" ## Check whether any variables differ sql_return = """SELECT * FROM {} WHERE propertyId = {} GROUP BY propertyId HAVING MAX(timestamp) """.format(tablename, propertyId) ## Get results from table for this properties result = runSQLCommands(c, [sql_return], getResults=True)[0] ## Result used to name columns too # ## Get dictionary of most recent update if result != None: return dict_factory(c, result) ## Else, return empty dictionary else: return {} def SQLGetAllRecords(c, tablename, propertyId, valuename): ## Initialise result # records_values = [] ## SQL to be executed - returns all values that match the latest timestamp sql_return = """SELECT A.{1} FROM {2} AS A INNER JOIN (SELECT DISTINCT propertyID, timestamp FROM {2} WHERE propertyID = {3} GROUP BY propertyId HAVING COUNT(*) > 1 AND MAX(timestamp) ) AS B ON A.propertyID = B.propertyID and A.timestamp = B.timestamp """.format("propertyId", valuename, tablename, propertyId) ## Get results from table for this properties result = runSQLCommands(c, [sql_return], getResults=True) ## c.execute(sql_return) ## result = c.fetchall() ## Put values into single list, or empty list [] records_values = [i[0] for i in result] if result!=None else [] ## Return list holding values (either list of property features, or image URLs return records_values def propertyShouldBeUpdated(c, dictionary): """ With SQL connection check whether table should be updated A property should be upadted if: - propertyid not in DB - if the listing update date in scraped data is after the last one """ # ## Property ID we're interested in propid = dictionary['propertyId'] ## SQL to pull out from DB sql = """SELECT propertyId , listingUpdateDate , addedOrReducedDate , added , listingUpdateDate2 , timestamp FROM property WHERE propertyId = {} GROUP BY propertyId HAVING timestamp = MAX(timestamp) """.format(propid) ## Excecute SQL c.execute(sql) result = c.fetchone() ## If property doesn't exist already in DB, then update it (function ends) if result == None: return True ## listingUpdateDate2: Else, check scraped dictionary update date matches the DB, return False elif dictionary['listingUpdateDate2'] == result[4]: return False # We need to check the data in the scraped data else: ## Scraped date from website newListDate = dictionary['listingUpdateDate2'] if dictionary['listingUpdateDate'] == None else dictionary['listingUpdateDate'] ########################################################### ## Check if listing update date contains a string ## This is something that was added after the program ## was first written ########################################################### if newListDate == None: if result[5] != '': ## dbDate is integer (or 'None') dbDate = datetime.strptime(result[5][:8], '%Y%m%d') ## If scraped date is after if newListDate > dbDate: return True ## Else, no need to update else: return False ## If string contains a time element elif newListDate.find('T') != -1: #################################### ## Isolate date from from DB #################################### ## If the 'addedOrReducedDate' is null then the best I can do is check the 'added' date if result[2]=='': ## Added date if result[3] != 'None': dbDate = datetime.strptime(str(result[3]), '%Y%m%d') ## Else, there are no dates in DB, use the timestamp else: print("Called by '{}'.\nThere are no dates for propertyid '{}', using timestamp.\nWorth checking".format(__file__, result[0])) dbDate = datetime.strptime(result[5][:8], '%Y%m%d') ## Else, take the date from 'addedOrReducedDate' else: dbDate = datetime.strptime(result[2], '%d/%m/%Y') ## Now, extract the date and compare with DB value (addedOrReducedDate) day = newListDate[8:10] month = newListDate[5:7] year = newListDate[:4] ## Now combine into date string (which we'll use to write to DB) datestring = '/'.join([day, month, year]) ## Create python date object to compare with addedOrReducedDate newListDate = datetime.strptime(datestring, '%d/%m/%Y') ## If scraped date is after the DB if newListDate > dbDate: return True ## Else, no need to update else: return False ### ## Else, the string for listingUpdateDate is in the numeric format, compare this else: ## dbDate is integer (or 'None') dbDate = result[1] ## If scraped date is after if newListDate > dbDate: return True ## Else, no need to update else: return False def SQLtoUpdateTable(c, sql_statements, timestamp, dictionary, forceRun=False): """ If SQL statements are over 1000 or forced to run, execute commands Return empty list if this happens""" ## Just check if force run has been provided - execute updates if forceRun and sql_statements != None: ## Run the commands runSQLCommands(c, sql_statements, 'to update DB') ## Reset list return [] ## If, for whatever reason, the dictionary is null, return an empty list if dictionary == None: return [] ## Else, do something else: ## If SQL commands >= 1000 if forceRun or len(sql_statements) > 2000: print("Forcerun = {} and len(sql_statements)={}".format(forceRun, len(sql_statements))) ## Run the commands runSQLCommands(c, sql_statements, 'to update DB') ## Reset list return [] ## Else, DB is not to be run, return updated SQL statements else: ## Init sql commands (individual ones) sql_command_property = '' sql_command_location = '' sql_command_features = [] sql_command_images = [] ## If property should be added to DB ## (i.e. listingUpdateDate is > than DB or ID not in DB) # ## I chose to check for propURL as it will not be in the dictionary ## if the property hasn't been updated if dictionary.get('propURL') != None: sql_command_property = SQLProperty(dictionary, timestamp) sql_command_location = SQLLocation(dictionary, timestamp) sql_command_features = SQLFeatures(dictionary, timestamp) sql_command_images = SQLImages(dictionary, timestamp) sql_commands = [sql_command_property, sql_command_location] \ + sql_command_features + sql_command_images ## Else, no need to update this property in DB else: #print("Only updating 'last seen' date for ID = {}".format(dictionary['propertyId'])) sql_commands = [SQLPropertyUpdateLastSeen(dictionary, timestamp)] ## Sql statements should be extended with list sql_statements.extend(sql_commands) ## Sql commands return sql_statements def runSQLCommands(c, sql_commands, string, getResults=False): """ This will attempt to execute the SQL commands to the cursor (c) if getResults is True then the function will return the values """ ## Init boolean to keep retrying, keep count of number committment_needed = True iAttempts = 0 ## Integer holding number of updates (to print to output) iCnt = 0 ## Keep trying until committment = False (i.e. successfully run) while committment_needed: ## Iterate number of attempts iAttempts += 1 print("Attempt {} to {}\n".format(iAttempts, string)) ## Loop though each command, execute and commit for s in sql_commands: ## Number of SQL statements executed iCnt += 1 #print(iCnt) if iCnt%100 == 0: print("runSQLCommands: Updating DB iteration {}".format(iCnt)) try: c.execute(s) except sqlite3.OperationalError as e: #print(s) print("ERROR: '{}'\nWill wait, then try again - 15 seconds".format(e)) time.sleep(15) break except ValueError as e: print(e) next except: raise ## We've run through all the SQL commands - turn of the infinite loop committment_needed = False ## Now, we seem to have executed the SQL commands ##- so let's try and commit the changes ## Seems like all is working - let's get some committment going in our lives! print("Committing changes to DB") c.connection.commit() ## Once, the query has been run, If user wants, results, return them if getResults: res = c.fetchall() return res def update_table_old(con, c, timestamp, dictionary): #################################################### ### THINK THIS IS NO LONGER USED - 2018-03-04 #################################################### ## Init sql commands (individual ones) sql_command_property = '' sql_command_location = '' sql_command_features = [] sql_command_images = [] ## If property should be added to DB ## (i.e. listingUpdateDate is > than DB or ID not in DB) if dictionary.get('listingUpdateDate') != None: sql_command_property = SQLProperty(dictionary, timestamp) sql_command_location = SQLLocation(dictionary, timestamp) sql_command_features = SQLFeatures(dictionary, timestamp) sql_command_images = SQLImages(dictionary, timestamp) sql_commands = [sql_command_property, sql_command_location] \ + sql_command_features + sql_command_images for s in sql_commands: # c.execute(s) ## Init boolean and counter committment_needed = False iAttempts = 0 ## Keep trying while committment_needed: iAttempts += 1 print("Attempt {} to commit changes to DB".format(iAttempts)) try: con.commit() committment_needed = False except sqlite3.OperationalError: print("Database locked. Will wait, then try again - 15 seconds") time.sleep(15) ## Else, no need to update this property in DB else: #print("Only updating 'last seen' date for ID = {}".format(dictionary['propertyId'])) sql_command_property = SQLPropertyUpdateLastSeen(dictionary, timestamp) c.execute(sql_command_property) con.commit() def update_lastFoundInSearch(con, c, dictionary): propid = dictionary['propertyId'] sql = """ UPDATE TABLE {} SET lastFoundInSearch = "{}" WHERE propertyId = {} GROUP BY propertyId HAVING timestamp = MAX(timestamp) """.format('property', today, dictionary['propertyId']) runSQLCommands(c, [sql]) ## c.execute(sql) ## con.commit() # def flatten(d, parent_key='', sep='_'): """ Flatten out nested dictionary""" items = [] for k, v in d.items(): #new_key = parent_key + sep + k if parent_key else k new_key = k if isinstance(v, collections.MutableMapping): items.extend(flatten(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def SQLPropertyUpdateLastSeen(dictionary, timestamp): tablename = 'property' var = 'lastFoundInSearch' today = timestamp[:8] sql = """ UPDATE {0} SET {1} = '{2}' WHERE propertyID = {3} AND timestamp = (SELECT timestamp FROM {0} WHERE propertyID = {3} GROUP BY propertyID HAVING MAX(timestamp) = timestamp) """.format(tablename, var, today, dictionary['propertyId']) #print(sql) # return sql def SQLProperty(dictionary, timestamp, changes='None'): """ Returns the sql command to insert a properties record """ pass ###################################### ## properties information ###################################### propertyId, propURL, added \ , listingUpdateReason, listingUpdateDate, listingUpdateDate2, addedOrReduced, addedOrReducedDate \ , propertyDescription, fullDescription, propertyType, propertySubType \ , price, beds, tenure \ , soldSTC, retirement, preOwned, ownership \ , auctionOnly, letAgreed, lettingType, furnishedType \ , minSizeFt, maxSizeFt, minSizeAc, maxSizeAc \ , businessForSale, priceQualifier, currency = getPropertyVariables(dictionary) # ## properties information sql = """INSERT INTO property (propertyId, timestamp, propURL, added , listingUpdateReason, listingUpdateDate, listingUpdateDate2, addedOrReduced, addedOrReducedDate , propertyDescription, fullDescription, propertyType, propertySubType , price, beds, tenure , soldSTC, retirement, preOwned, ownership , auctionOnly, letAgreed, lettingType, furnishedType , minSizeFt, maxSizeFt, minSizeAc, maxSizeAc , businessForSale, priceQualifier, currency, changes) VALUES ({}, "{}", "{}", "{}" , "{}", "{}", "{}", "{}", "{}" , "{}", "{}", "{}", "{}" , {}, {}, "{}" , {}, "{}", "{}", "{}" , {}, {}, "{}", "{}" , "{}", "{}", "{}", "{}" , {}, "{}", "{}", "{}" ) """.format(propertyId, timestamp, propURL, added , listingUpdateReason, listingUpdateDate, listingUpdateDate2, addedOrReduced, addedOrReducedDate , propertyDescription, fullDescription, propertyType, propertySubType , price, beds, tenure , soldSTC, retirement, preOwned, ownership , auctionOnly, letAgreed, lettingType, furnishedType , minSizeFt, maxSizeFt, minSizeAc, maxSizeAc , businessForSale, priceQualifier, currency, changes) # return sql def SQLLocation(dictionary, timestamp): ######################################## ## Location ######################################## # ## Pull out the values #loc_d = dictionary['location'] propertyId = int(dictionary['propertyId']) displayAddress = dictionary['displayAddress'] postcode = dictionary['postcode'] country = dictionary['country'] lat = dictionary['latitude'] long = dictionary['longitude'] ## Location information sql = """INSERT INTO location (propertyId, timestamp, displayAddress, postcode, country, latitude, longitude) VALUES ({}, "{}", "{}", "{}", "{}", "{}", "{}") """.format(propertyId, timestamp, displayAddress, postcode, country, lat, long) return sql def SQLImages(dictionary, timestamp): """ Returns the a list of sql commands to insert a new image record """ pass sql = [] ########################################## ## properties images (including floorplan) ########################################## propertyId = dictionary['propertyId'] imageURLs = dictionary['imageURLs'] floorplanURLs = dictionary['floorplan'] ## properties images for i in range(len(imageURLs)): # sql.append("""INSERT INTO images (propertyId, timestamp, num, imgType, imgURL) VALUES ({}, "{}", {}, "{}", "{}") """.format(propertyId, timestamp, i+1, 'Image', imageURLs[i])) ## properties floor plans for f in range(len(floorplanURLs)): # sql.append("""INSERT INTO images (propertyId, timestamp, num, imgType, imgURL) VALUES ({}, "{}", {}, "{}", "{}") """.format(propertyId, timestamp, f+1, 'Floorplan', floorplanURLs[f])) return sql def SQLFeatures(dictionary, timestamp): """ Returns a list of sql commmands to insert a new feature """ pass ######################################### ## Key features ######################################### kfs = dictionary['key_features'] propertyId = dictionary['propertyId'] sql = [] if kfs != None: for kf in range(len(kfs)): sql.append("""INSERT INTO features (propertyId, timestamp, num, feature) VALUES ({}, "{}", {}, "{}") """.format(propertyId, timestamp, kf+1, kfs[kf])) return sql def SQLpropExists(c, propertyId): """ Return True if ID exist in table, False, otherwise""" ## Select ID from properties table sql = """SELECT propertyId FROM properties where propertyId = {0}""".format(propertyId) ## Execute and fetch results result = runSQLCommands(c, [sql], getResults=True)[0] ## c.execute(sql) ## result = c.fetchone() ## If there is at least observation, return True if result != None: #sql_property(propertyId) return True ## Else, properties not found, return False else: return False def create_tables(dbname): """ This function creates a database (if not already existing) and then creates the required tables (if they don't exist """ conn = sqlite3.connect(dbname) c = conn.cursor() ## Location information c.execute("""CREATE TABLE IF NOT EXISTS location (propertyId INTEGER , timestamp STRING , displayAddress STRING , postcode STRING , country STRING , latitude STRING , longitude STRING , changes STRING)""") ## properties information c.execute("""CREATE TABLE IF NOT EXISTS property (propertyId LONG , timestamp STRING , propURL STRING , added STRING , listingUpdateReason STRING , listingUpdateDate STRING , addedOrReduced STRING , addedOrReducedDate STRING , propertyDescription STRING , fullDescription STRING , propertyType STRING , propertySubType STRING , price DOUBLE , beds INTEGER , tenure STRING , soldSTC BOOLEAN , retirement STRING , preOwned STRING , ownership STRING , auctionOnly INTEGER , letAgreed BOOLEAN , lettingType STRING , furnishedType STRING , minSizeFt STRING , maxSizeFt STRING , minSizeAc STRING , maxSizeAc STRING , businessForSale BOOLEAN , priceQualifier STRING , currency STRING , changes STRING)""") ## Key features c.execute("""CREATE TABLE IF NOT EXISTS features (propertyId LONG , timestamp STRING , num INTEGER , feature STRING)""") ## Images c.execute("""CREATE TABLE IF NOT EXISTS images (propertyId LONG , timestamp STRING , num INTEGER , imgType STRING , imgURL STRING)""") ## Postcode/Outcode lookup sql = """CREATE TABLE IF NOT EXISTS postcode (postcode STRING , timestamp STRING , outcode STRING)""" c.execute(sql) ## Commit changes conn.commit() class FileOperations: def __init__(self, path, filename): self.filename = filename self.path = path self.fullpath = path + filename """Initialise file operation to write out log""" ## If log path doesn't exist if not os.path.isdir(path): ## output note to user and create directory print("Path {} doesn't exist\nCreating it in {}".format(path, currentpath)) os.mkdir(path) ## Open files def openFile(self): self.file = open(self.fullpath, 'wt') ## Close files when done def closeFile(self): self.file.close() def setAsLog(self): print("Setting standard python output to '{}'".format(self.fullpath)) sys.stdout = self.file def TidyUp(exittype, e, con, c, sql_statements, timestamp, prop_info): if len(prop_info)>0: print("\nSome information is available in prop_info with {} properties.\nThis will be output to connection".format(len(prop_info))) ## For each property in property information for i in range(len(prop_info)): ## Try and get the SQL code to update the information retrieved try: result = SQLtoUpdateTable(c, sql_statements, timestamp, prop_info[i]) if result == []: sql_statements = [] except: print("ERROR: Error in python code trying to update property with ID {}".format(prop_info[i]['propertyId'])) raise next ## Run the commands print("Called by TidyUp. Commit changes to DB") runSQLCommands(c, sql_statements, 'to commit changes to DB') else: print("No information was written to connection") print("\nClosing connection to DB and log") con.commit() con.close() try: logfile.closeFile() except: print("Log file wasn't open - nothing to close") def TidyUpAll(prop_info, dbname): """ Tidy up all information as a last chance saloon (bit hard-coded) """ # con = sqlite3.connect(dbname) c = con.cursor() sql_statements = [] ## Init timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') if len(prop_info)>0: print("\nSome information is available in prop_info with {} properties.\nThis will be output to connection".format(len(prop_info))) ## For each property in property information for i in range(len(prop_info)): print(i) ## If the list is not [] if prop_info[i] != None: try: result = SQLtoUpdateTable(con, c, sql_statements, timestamp, prop_info[i]) print(len(result)) if result == []: sql_statements = [] except: print("ERROR: Error in python code trying to update property with ID {}".format(prop_info[i]['propertyId'])) #raise next finally: pass print("Called by TidyUpAll. Commit changes to DB") ## Run the commands runSQLCommands(c, sql_statements, 'to commit changes to DB') def variableExists(c, table, var): """ Returns true if variable exists in table c - SQL cursor table - string table name var = string, variable name """ # Command - execute sql = """ PRAGMA table_info('{}');""".format(table) c.execute(sql) ## Get results res = c.fetchall() ## Create list of var names varnames = [var[1] for var in res] result = var in varnames return result def AddColumn(dbname, table, columnName): con = sqlite3.connect(dbname) c = con.cursor() ## Property table - add lastFoundInSearch if not variableExists(c, table, columnName): sql = """ ALTER TABLE {} ADD {} STRING """.format(table, columnName) c.execute(sql) con.commit() con.close() def DeleteStringAdded(dbname): tables = ['location', 'images', 'features', 'property'] sql = """ DELETE FROM {} WHERE propertyid IN (SELECT DISTINCT propertyID FROM property WHERE addedOrReducedDate LIKE '%d%' ) """ sqlcommands = [] for t in tables: sqlcommands.append(sql.format(t)) con = sqlite3.connect(dbname) c = con.cursor() for s in sqlcommands: c.execute(s) #print(s) con.commit() def clearOldFilesWithPrefix(prefix='', ask=True): """ Deletes all files in working folder which match the prefix given Where the last 8 characters (YYYYMMDD) are not today """ files = os.listdir() ## All matches matches = [f for f in files if f[:len(prefix)]==prefix] # All matches - excluding today today = datetime.today().strftime('%Y%m%d') oldMatches = [m for m in matches if m[-len(today):]!=today] ## Delete all files [print("{}".format(i)) for i in oldMatches] if len(oldMatches)>0: if ask: check = input('Do you want to delete these {} file(s)?\nY/N? '.format(len(oldMatches))).upper() if not ask or check == 'Y': [os.unlink(f) for f in oldMatches] print("Files deleted.") return oldMatches def LoadPostcodes(filename): """ Reads in .csv file delimited by comma and quote '"' and returns a list of postcodes and labels for the postcodes""" ## Init data to append to data = [] ## Open .csv file with open(filename, 'rt') as file: ## Get reader object to iterate over redear = csv.reader(file, dialect='excel', quotechar='"') ## Loop over each line in file for r in redear: data.append(r) # postcodes = [p[0] for p in data[1:]] labels = [p[1] for p in data[1:]] return postcodes, labels def ReturnRandomSelection(seed, havelist, num): # ## Set seed random.seed(seed) ## Create list of random numbers matching the size of the list indices = [i for i in range(len(havelist))] ## Celiing for largest number minnum = min(len(indices), num) #s ## Get random sample sample = random.sample(indices, minnum) ## Return these items final = [havelist[i] for i in sample] return final def SelectRandomPostcodes2(seed, pcodesfile, dbname, num=1): """ Updated 2019-02-05: Read in postcodes file (saved as a .csv) Check whether any postcodes are missing from the DB If so, these are prioritised If not, randomly select, the number (num) provided by user Changes: Brought back the logic to check the postcodes in the list against the DB """ #pdb.set_trace() ## Get list of all postcodes from list postcodes, labels = LoadPostcodes(pcodesfile) ## Get list of postcode areas from DB con = sqlite3.connect(dbname) c = con.cursor() sql = """ SELECT DISTINCT SUBSTR(postcode, 1,INSTR(postcode, ' ')-1) FROM location""" ## Run query (with re-connection function) results = runSQLCommands(c, [sql], 'to select random postcodes', getResults=True) ## Isolate the interesting part of the postcode from the results results = [r[0] for r in results] ## Get list of postcodes with no data in DB #nodata_postcodes = [p for p in postcodes if p not in results] nodata_postcodes = results ## If user provided -1, return all postcodes if num == -1: return results else: ## Select random sample of postcodes from DB #sample = ReturnRandomSelection(seed, results, num) sample = ReturnRandomSelection(seed, nodata_postcodes, num) return sample def SelectRandomPostcodes(seed, pcodesfile, dbname, num=1): """ Read in postcodes file (saved as a .csv) Check whether any postcodes are missing from the DB If so, these are prioritised If not, randomly select, the number (num) provided by user """ ## Get list of all postcodes from list #postcodes, labels = LoadPostcodes(pcodesfile) ## Get list of postcode areas from DB con = sqlite3.connect(dbname) c = con.cursor() sql = """ SELECT DISTINCT SUBSTR(postcode, 1,INSTR(postcode, ' ')-1) FROM location""" ## Run query (with re-connection function) results = runSQLCommands(c, [sql], 'to select random postcodes', getResults=True) ## Isolate the interesting part of the postcode from the results results = [r[0] for r in results] ## If user provided -1, return all postcodes if num == -1: return results else: ## Select random sample of postcodes from DB sample = ReturnRandomSelection(seed, results, num) return sample def SelectRandomPostcodesOld(seed, pcodesfile, dbname, num=1): ### THIS HAS BEEN DECOMISSIONED BECAUSE SOME POSTCODES WERE ### NOT APPEARING AS THEY DID IN THE LIST ### e.g. SW1 actually was SW1A, SW1B, ..., ### DATE: March 2018 ### Author: Andrew Craik """ Read in postcodes file (saved as a .csv) Check whether any postcodes are missing from the DB If so, these are prioritised If not, randomly select, the number (num) provided by user """ ## Get list of all postcodes from list postcodes, labels = LoadPostcodes(pcodesfile) ## Get list of postcode areas from DB con = sqlite3.connect(dbname) c = con.cursor() sql = """ SELECT DISTINCT SUBSTR(postcode, 1,INSTR(postcode, ' ')-1) FROM location""" ## Run query (with re-connection function) results = runSQLCommands(c, [sql], 'to select random postcodes', getResults=True) ## Isolate the interesting part of the postcode from the results results = [r[0] for r in results] ## Get list of postcodes with no data in DB nodata_postcodes = [p for p in postcodes if p not in results] ## If 'nodata' list is null then write the list out to a file if nodata_postcodes == []: print("All postcodes in the .csv file '{}' are in the DB.\nSelecting {} of them.".format(pcodesfile), num) ## Randomly select from results sample = ReturnRandomSelection(seed, results, num) ## Else, select a random set of postcodes from list else: ## Randomly select from (hopefully decreasing list of postcodes NOT in DB print("There are {} postcodes in the .csv file which are not in the DB\nWill select {} of them".format(len(nodata_postcodes), num)) sample = ReturnRandomSelection(seed, nodata_postcodes, num) return sample pass ## Create DB tables if __name__ == '__main__': pass #SelectRandomPostcodes(seed, pcodes, dbname, 2)
[ "andrrew-c@users.noreply.github.com" ]
andrrew-c@users.noreply.github.com
120d9dd50c836104fd6d730d447ccc95fa97a548
61693f629c148400a885c7731ee28c18a3f1e36b
/ifnclass/ifnplot.py
ecd6f665d4aa01d5c27d3e417db548cb60433bf6
[]
no_license
dakirby/IFNmodeling
c95b58d07a142cc5cb19aae05f19d42cad1d411c
5996de12c9071b0e54371da50bb031b80dc34050
refs/heads/master
2022-12-14T10:18:39.570071
2021-09-09T14:29:50
2021-09-09T14:29:50
136,951,791
0
0
null
2022-12-08T12:01:53
2018-06-11T16:20:34
Python
UTF-8
Python
false
false
24,205
py
from numpy import ndarray, shape import matplotlib.pyplot as plt try: from .ifndata import IfnData from .ifnmodel import IfnModel except (ImportError, ModuleNotFoundError): from ifndata import IfnData from ifnmodel import IfnModel from numpy import linspace, logspace, float64, divide import time import os class Trajectory: """ Documentation - A Trajectory object is an augmented IfnData object which simply includes metainformation on the desired plotting style Parameters ---------- data (IfnData): the data to be plotted plot_type (string): the type of matplotlib plotting function to call - can be one of 'plot', 'scatter', 'errorbar' line_style (string): the argument to pass to the plotting function for colour and style (eg. line_style = 'k--') if plot_type == 'scatter' then line_style can be up to two characters, one for color and the other for marker shape. line_style[0] will be passed as colour and line_style[1] as marker shape in scatter() label (string): the label to use in the plot legend for this trajectory; default is None, in which case default plotting choices will be used Methods ------- t(): returns times for a TimecoursePlot y(): returns responses for a TimecoursePlot d(): return the doses for a DoseresponsePlot z(): returns the responses for a DoseresponsePlot """ # Initializer / Instance Attributes def __init__(self, data: IfnData, plot_type: str, line_style, label='', **kwargs): self.data = data self.plot_type = plot_type self.line_style = line_style self.label = label self.timeslice = kwargs.get('timeslice', None) self.doseslice = kwargs.get('doseslice', None) self.dose_species = kwargs.get('dose_species', None) self.dose_norm = kwargs.get('dose_norm', 1) self.color = kwargs.get('color', None) self.linewidth = kwargs.get('linewidth', 1.5) self.alpha = kwargs.get('alpha', 1) def t(self): # times if self.timeslice is None: if type(self.data.data_set.columns[0]) == str: try: return [int(el) for el in self.data.data_set.columns if el != 'Dose_Species' and el != 'Dose (pM)'] except ValueError: return [float(el) for el in self.data.data_set.columns if el != 'Dose_Species' and el != 'Dose (pM)'] else: return [el for el in self.data.data_set.columns if el != 'Dose_Species' and el != 'Dose (pM)'] else: return [self.timeslice] def y(self): # timecourse response values idx = self.t() if self.doseslice is None: return self.data.data_set[idx].values[0] else: try: return self.data.data_set.loc[self.dose_species].loc[self.doseslice].values except KeyError: print(self.data.data_set) print(self.data.data_set.loc[self.dose_species]) print(self.data.data_set.loc[self.dose_species].index) raise KeyError def d(self): # doses if self.timeslice is None: return divide(self.data.data_set.loc[self.dose_species].index.values, self.dose_norm) else: return divide(self.data.data_set.loc[self.dose_species].index.values, self.dose_norm) def z(self): # dose-response response values if self.timeslice is None: return self.data.data_set.xs(self.dose_species).values else: try: return self.data.data_set.xs(self.dose_species).loc[:, self.timeslice].values except (KeyError, TypeError): try: if type(self.timeslice) == list: temp = [str(el) for el in self.timeslice] else: temp = str(self.timeslice) return self.data.data_set.xs(self.dose_species).loc[:, temp].values except KeyError: print(self.data.data_set.xs(self.dose_species).columns) #print(self.data.data_set.xs(self.dose_species).loc[:, self.timeslice]) raise KeyError("Something went wrong indexing times") #return self.data.data_set.xs(self.dose_species).loc[:, [float(el) for el in self.timeslice][0]].values class TimecoursePlot: """ Documentation - A TimecoursePlot holds IfnModels and IfnData instances which are to be plotted in a Matplotlib figure. Parameters ---------- shape (tuple): tuple of ints for nrows and ncols in the figure Attributes ---------- nrows (int): the number of subplot rows in the figure ncols (int): the number of subplot columns in the the figure fig (matplotlib figure): the figure to plot axes (matplotlib axes): the axes object to plot trajectories (list): a list of Trajectory objects describing trajectories, experimental or simulated subplot_indices (list): a list of subplot locations Methods ------- add_trajectory(self, data: IfnData, plot_type: str, line_style, subplot_idx, label='') Builds a Trajectory instance and adds it to the TimecoursePlot object's list of trajectories. Remembers which subplot to put this trajectory in, given by subplot_idx = (row, col) - row and col in subplot_idx are 0-indexed remove_trajectory(index: int) Removes a trajectory from the TimecoursePlot instance, as indicated by its index in self.trajectories list """ # Initializer / Instance Attributes def __init__(self, shape, figsize=[6.4, 4.8]): self.nrows = shape[0] self.ncols = shape[1] self.fig, self.axes = plt.subplots(nrows=self.nrows, ncols=self.ncols, figsize=figsize) self.trajectories = [] self.subplot_indices = [] if self.nrows > 1 and self.ncols > 1: for row in range(self.nrows): for column in range(self.ncols): if row == self.nrows - 1: self.axes[row][column].set_xlabel('Time (min)') if column == 0: self.axes[row][column].set_ylabel('Response') elif self.ncols > 1: for column in range(self.ncols): self.axes[column].set_xlabel('Time (min)') if column == 0: self.axes[column].set_ylabel('Response') elif self.nrows > 1: for row in range(self.nrows): if row == 0: self.axes[row].set_xlabel('Time (min)') self.axes[row].set_ylabel('Response') else: self.axes.set_xlabel('Time (min)') self.axes.set_ylabel('Response') self.match_axes = False # Instance methods def add_trajectory(self, data: IfnData, plot_type: str, line_style, subplot_idx: tuple, label='', **kwargs): t = Trajectory(data, plot_type, line_style, label=label, **kwargs) self.trajectories.append(t) if self.nrows == 1 and self.ncols == 1: self.subplot_indices.append((None, None)) elif self.nrows == 1: self.subplot_indices.append((None, subplot_idx[1])) elif self.ncols == 1: self.subplot_indices.append((subplot_idx[0], None)) else: self.subplot_indices.append(subplot_idx) def get_axis_object(self, idx): if idx == (None, None): return self.axes elif idx[0] == None: return self.axes[idx[1]] elif idx[1] == None: return self.axes[idx[0]] else: return self.axes[idx[0]][idx[1]] def remove_trajectory(self, index): del self.trajectories[index] del self.subplot_indices[index] def show_figure(self, show_flag=True, save_flag=False, save_dir=''): for trajectory_idx in range(len(self.trajectories)): trajectory = self.trajectories[trajectory_idx] plt_idx = self.subplot_indices[trajectory_idx] ax = self.get_axis_object(plt_idx) if trajectory.plot_type == 'plot': if type(trajectory.line_style) == str: if trajectory.color is not None: ax.plot(trajectory.t(), [el[0] for el in trajectory.y()], trajectory.line_style, label=trajectory.label, color=trajectory.color, linewidth=trajectory.linewidth, alpha=trajectory.alpha) ax.legend() else: ax.plot(trajectory.t(), [el[0] for el in trajectory.y()], trajectory.line_style, label=trajectory.label, linewidth=trajectory.linewidth, alpha=trajectory.alpha) ax.legend() else: ax.plot(trajectory.t(), [el[0] for el in trajectory.y()], c=trajectory.line_style, label=trajectory.label, linewidth=trajectory.linewidth, alpha=trajectory.alpha) ax.legend() elif trajectory.plot_type == 'scatter': if type(trajectory.line_style) == str: if trajectory.color is not None: plot_times = trajectory.t() plot_responses = [el[0] for el in trajectory.y()] ax.scatter(plot_times, plot_responses, marker=trajectory.line_style, label=trajectory.label, color=trajectory.color) ax.legend() else: ax.scatter(trajectory.t(), [el[0] for el in trajectory.y()], c=trajectory.line_style[0], marker=trajectory.line_style[1], label=trajectory.label) ax.legend() else: ax.scatter(trajectory.t(), [el[0] for el in trajectory.y()], c=trajectory.line_style, label=trajectory.label) ax.legend() elif trajectory.plot_type == 'errorbar': x = trajectory.t() y = [el[0] for el in trajectory.y()] sigmas = [el[1] for el in trajectory.y()] if type(trajectory.line_style) == str: if trajectory.color is not None: ax.errorbar(x, y, yerr=sigmas, fmt=trajectory.line_style, label=trajectory.label, color=trajectory.color) else: ax.errorbar(x, y, yerr=sigmas, fmt=trajectory.line_style, label=trajectory.label) else: ax.errorbar(x, y, yerr=sigmas, fmt='--', label=trajectory.label, color=trajectory.line_style) ax.legend() if self.match_axes: ymax = 0 ymin = 0 for ax in self.axes.flat: if ymax < ax.get_ylim()[1]: ymax = ax.get_ylim()[1] if ymin > ax.get_ylim()[0]: ymin = ax.get_ylim()[0] for ax in self.axes.flat: ax.set_ylim([ymin, ymax]) if save_flag: if save_dir == '': plt.savefig(os.path.join(save_dir, 'fig{}.pdf'.format(int(time.time())))) else: plt.savefig(save_dir) if show_flag: plt.legend() plt.show() return self.fig, self.axes def save_figure(self, save_dir=''): fig, axes =self.show_figure(show_flag=False, save_flag=True, save_dir=save_dir) return fig, axes class DoseresponsePlot: """ Documentation - A DoseresponsePlot holds IfnModels and IfnData instances which are to be plotted in a Matplotlib figure. Parameters ---------- shape (tuple): tuple of ints for nrows and ncols in the figure Attributes ---------- nrows (int): the number of subplot rows in the figure ncols (int): the number of subplot columns in the the figure fig (matplotlib figure): the figure to plot axes (matplotlib axes): the axes object to plot trajectories (list): a list of Trajectory objects describing trajectories, experimental or simulated subplot_indices (list): a list of subplot locations Methods ------- add_trajectory(self, data: IfnData, time: float, plot_type: str, line_style, subplot_idx, observable_species, label='') Builds a Trajectory instance and adds it to the DoseresponsePlot object's list of trajectories. Remembers which subplot to put this trajectory in, given by subplot_idx = (row, col). Time for dose-response curve must be given - row and col in subplot_idx are 0-indexed remove_trajectory(index: int) Removes a trajectory from the DoseresponsePlot instance, as indicated by its index in self.trajectories list """ # Initializer / Instance Attributes def __init__(self, shape, figsize=[6.4, 4.8]): self.nrows = shape[0] self.ncols = shape[1] self.fig, self.axes = plt.subplots(nrows=self.nrows, ncols=self.ncols, figsize=figsize) if self.nrows > 1 and self.ncols > 1: for row in range(self.nrows): for column in range(self.ncols): self.axes[row][column].set(xscale='log', yscale='linear') if row == self.nrows - 1: self.axes[row][column].set_xlabel('Dose (pM)') if column == 0: self.axes[row][column].set_ylabel('Response') elif self.ncols > 1: for column in range(self.ncols): self.axes[column].set(xscale='log', yscale='linear') self.axes[column].set_xlabel('Dose (pM)') if column == 0: self.axes[column].set_ylabel('Response') elif self.nrows > 1: for row in range(self.nrows): self.axes[row].set(xscale='log', yscale='linear') if row == 0: self.axes[row].set_xlabel('Dose (pM)') self.axes[row].set_ylabel('Response') else: self.axes.set(xscale='log', yscale='linear') self.axes.set_xlabel('Dose (pM)') self.axes.set_ylabel('Response') self.trajectories = [] self.subplot_indices = [] # Instance methods def add_trajectory(self, data: IfnData, time, plot_type: str, line_style, subplot_idx: tuple, dose_species: str, label='', dn: float = 1., **kwargs): t = Trajectory(data, plot_type, line_style, label=label, timeslice=time, dose_species=dose_species, dose_norm=dn, **kwargs) self.trajectories.append(t) if self.nrows == 1 and self.ncols == 1: self.subplot_indices.append((None, None)) elif self.nrows == 1: self.subplot_indices.append((None, subplot_idx[1])) elif self.ncols == 1: self.subplot_indices.append((subplot_idx[0], None)) else: self.subplot_indices.append(subplot_idx) def get_axis_object(self, idx): if idx == (None, None): return self.axes elif idx[0] == None: return self.axes[idx[1]] elif idx[1] == None: return self.axes[idx[0]] else: return self.axes[idx[0]][idx[1]] def remove_trajectory(self, index): del self.trajectories[index] del self.subplot_indices[index] def show_figure(self, show_flag=True, save_flag=False, save_dir='', tight=False): for trajectory_idx in range(len(self.trajectories)): trajectory = self.trajectories[trajectory_idx] plt_idx = self.subplot_indices[trajectory_idx] ax = self.get_axis_object(plt_idx) if trajectory.plot_type == 'plot': x = trajectory.d() if type(trajectory.z()[0]) == tuple: z = [el[0] for el in trajectory.z()] else: z = trajectory.z() if x[0] == 0: x = x[1:] z = z[1:] if type(trajectory.line_style) == str: if trajectory.color is not None: ax.plot(x, z, trajectory.line_style, label=trajectory.label, color=trajectory.color, linewidth=trajectory.linewidth, alpha=trajectory.alpha) else: ax.plot(x, z, trajectory.line_style, label=trajectory.label, linewidth=trajectory.linewidth, alpha=trajectory.alpha) else: ax.plot(x, z, c=trajectory.line_style, label=trajectory.label, linewidth=trajectory.linewidth, alpha=trajectory.alpha) ax.legend() elif trajectory.plot_type == 'scatter': x = trajectory.d() z = [el[0] for el in trajectory.z()] if x[0] == 0: x = x[1:] z = z[1:] if len(trajectory.line_style) == 2: if trajectory.color is not None: ax.scatter(x, z, marker=trajectory.line_style[1], label=trajectory.label, color=trajectory.color) else: ax.scatter(x, z, c=trajectory.line_style[0], marker=trajectory.line_style[1], label=trajectory.label) elif len(trajectory.line_style) == 1: ax.scatter(x, z, c=trajectory.line_style[0], label=trajectory.label) else: try: ax.scatter(x, z, c=[trajectory.line_style], label=trajectory.label) except: print("Could not interpret line style") raise elif trajectory.plot_type == 'errorbar': x = trajectory.d() z = [el[0] for el in trajectory.z()] if x[0] == 0: x = x[1:] z = z[1:] sigmas = [el[1] for el in trajectory.z()] if type(trajectory.line_style) == str: if trajectory.color is not None: ax.errorbar(x, z, yerr=sigmas, fmt=trajectory.line_style, label=trajectory.label, color=trajectory.color, alpha=trajectory.alpha) else: ax.errorbar(x, z, yerr=sigmas, fmt=trajectory.line_style, label=trajectory.label, alpha=trajectory.alpha) else: ax.errorbar(x, z, yerr=sigmas, fmt='--', label=trajectory.label, color=trajectory.line_style, alpha=trajectory.alpha) ax.legend() elif trajectory.plot_type == 'envelope': x = trajectory.d() z = [el[0] for el in trajectory.z()] if x[0] == 0: x = x[1:] z = z[1:] sigmas = [el[1] for el in trajectory.z()] z_plus_sigma = [z[i] + sigmas[i] for i in range(len(sigmas))] z_minus_sigma = [z[i] - sigmas[i] for i in range(len(sigmas))] if type(trajectory.line_style) == str: if trajectory.color is not None: ax.plot(x, z, trajectory.line_style, label=trajectory.label, color=trajectory.color, linewidth=trajectory.linewidth, alpha=1.0) ax.fill_between(x, z_plus_sigma, z_minus_sigma, facecolor=trajectory.color, alpha=trajectory.alpha) else: ax.plot(x, z, trajectory.line_style, label=trajectory.label, color=trajectory.color, linewidth=trajectory.linewidth, alpha=1.0) ax.fill_between(x, z_plus_sigma, z_minus_sigma, facecolor=trajectory.color, alpha=trajectory.alpha) else: ax.plot(x, z, c=trajectory.line_style, label=trajectory.label, linewidth=trajectory.linewidth, alpha=1.0) ax.fill_between(x, z_plus_sigma, z_minus_sigma, facecolor=trajectory.line_style, alpha=trajectory.alpha) ax.legend() if tight: plt.tight_layout() if save_flag: if save_dir == '': plt.savefig(os.path.join(save_dir, 'fig{}.pdf'.format(int(time.time())))) else: plt.savefig(save_dir) if show_flag: plt.show() return self.fig, self.axes def save_figure(self, save_dir='', tight=False): fig, axes = self.show_figure(show_flag=False, save_flag=True, save_dir=save_dir, tight=tight) return fig, axes if __name__ == '__main__': testData = IfnData("20181113_B6_IFNs_Dose_Response_Bcells") testModel = IfnModel('Mixed_IFN_ppCompatible') # testParameters = {'kpa': 4.686e-05, 'kSOCSon': 2.687e-06, 'kd4': 0.236, 'k_d4': 0.2809, 'R1': 108, 'R2': 678} 'kpa': 1e-07, #best_fit_old20min = {'kSOCSon': 1e-07, 'krec_a1': 0.0001, 'krec_a2': 0.001, 'R1': 1272, 'R2': 1272, # 'krec_b1': 1.0e-05, 'krec_b2': 0.0001, 'kpu':1E-2, 'kpa':1E-7} best_fit_old20min = {'kpu': 0.004, 'kpa': 1e-6, 'R2': 1742, 'R1': 1785, 'k_d4': 0.06, 'kd4': 0.3, 'k_a2': 8.3e-13, 'k_a1': 4.98e-14, 'ka4': 0.001, 'kSOCS': 0.01, 'kSOCSon': 2e-3, 'SOCSdeg': 0.2, 'kint_b': 0.0, 'kint_a': 0.04} dose = 1000 # in pM best_fit_old20min.update({'Ib': dose * 6.022E23 * 1E-5 * 1E-12, 'Ia': 0}) testModel.set_parameters(best_fit_old20min) print(testModel.parameters) tc = testModel.timecourse(list(linspace(0, 60)), 'TotalpSTAT', return_type='dataframe', dataframe_labels=['Beta', dose]) tcIfnData = IfnData('custom', df=tc, conditions={'Beta': {'Ia': 0}}) testplot = TimecoursePlot((1, 1)) testplot.add_trajectory(tcIfnData, 'plot', 'g', (0, 0)) testplot.show_figure() exit() dra = testModel.doseresponse([0, 2.5, 5, 15, 30, 60], 'TotalpSTAT', 'Ia', list(logspace(-3, 6)), parameters={'Ib': 0}, return_type='dataframe', dataframe_labels='Alpha') drb = testModel.doseresponse([0, 2.5, 5, 15, 30, 60], 'TotalpSTAT', 'Ib', list(logspace(-3, 6)), parameters={'Ia': 0}, return_type='dataframe', dataframe_labels='Beta') draIfnData = IfnData('custom', df=dra, conditions={'Alpha': {'Ib': 0}}) drbIfnData = IfnData('custom', df=drb, conditions={'Beta': {'Ia': 0}}) testplot = DoseresponsePlot((1, 1)) testplot.add_trajectory(draIfnData, '15', 'plot', 'r:', (0, 0), 'Alpha', dn=1) testplot.add_trajectory(drbIfnData, '15', 'plot', 'g:', (0, 0), 'Beta', dn=1) testplot.add_trajectory(draIfnData, '30', 'plot', 'r--', (0, 0), 'Alpha', dn=1) testplot.add_trajectory(drbIfnData, '30', 'plot', 'g--', (0, 0), 'Beta', dn=1) testplot.add_trajectory(draIfnData, '60', 'plot', 'r', (0, 0), 'Alpha', dn=1) testplot.add_trajectory(drbIfnData, '60', 'plot', 'g', (0, 0), 'Beta', dn=1) testtraj = testplot.show_figure()
[ "39995281+dakirby@users.noreply.github.com" ]
39995281+dakirby@users.noreply.github.com
d5a065d71589b63422d232773704e9ae5c49e792
97b6ba4ce0dab62629fa11d491d3c0ae95e38aa6
/SVM/SMOWithKernel/SMOWithKernel.py
d8d965ffda17ee4a743940d3114c995e9f0cb0be
[]
no_license
WCC-wcc/MachineLearningInAction
36303296c81002c5e114ed04076dc6969fd442a8
b3d57757a575fd981b2f5f8fa81d67a905c1f829
refs/heads/master
2020-08-30T18:52:12.825731
2019-10-30T07:32:37
2019-10-30T07:32:37
218,461,864
1
0
null
null
null
null
UTF-8
Python
false
false
15,163
py
from numpy import * import matplotlib.pyplot as plt #读取文件函数 def loadDataSet(fileName): dataMat = [] labelMat = [] fr = open(fileName) for line in fr.readlines(): lineArr = line.strip().split('\t') dataMat.append([float(lineArr[0]),float(lineArr[1])]) labelMat.append(float(lineArr[2])) return dataMat,labelMat #核转换函数 def kernelTrans(X,A,kTup): #输入参数为2个数值型变量和一个元组信息 元祖Ktup给出核函数信息,第一个字符变量是核函数类型,第二个变量是给定的sigma值 #X 表示所有数据集 A 表示数据集中的一行 m,n = shape(X) K = mat(zeros((m,1))) #初始化K值,列向量,记录的是 所有数据集 依次和 数据集中的每一行 的高斯函数值 if kTup[0] == 'lin' : #线性情况下 取得是向量内积 K = X * A.T elif kTup[0] == 'rbf' : #高斯径向基核函数的计算方式 for j in range(m) : deltaRow = X[j,:] - A #首先计算(x - y) K[j] = deltaRow * deltaRow.T #计算(x - y) ^ 2 由于 (x-y)是向量, 令 deltaRow * deltaRow.T即可 K = exp(K / (-kTup[1] ** 2)) #高斯径向基核函数表达式为 : K(xy) = exp( - ( x - y ) ^ 2 / 2 * sigma ^2) 2作为常数可以忽略 else : raise NameError('There is a problem about kernel.') return K #辅助函数 在某个范围区间内随机选择一个整数 def selectJrand(i,m): #输入参数i是第一个alpha下标 m是所有alpha数目 j = i #这个函数是为了随机选择另一个alpha值 while(j == i): j = int(random.uniform(0,m)) return j #辅助函数 调整小于L,大于H的alpha值 #调整alpha值,使得其在取值区间内 def clipAlpha(aj,L,H): if aj < L: aj = L if aj > H: aj = H return aj #建造一个数据结构保存重要的值 __init__ 前后是两个_ 通过一个对象完成 class optStruct: def __init__(self,dataMatIn,classLabels,C,toler,kTup) : self.X = dataMatIn #记录数据样本 self.labelMat = classLabels #记录标签 self.C = C #常数C self.tol = toler #容错率 self.m = shape(dataMatIn)[0] #记录数据个数 self.alphas = mat(zeros((self.m,1))) #数据个数对应的alphas值 self.b = 0 #纪录常数b self.eCache = mat(zeros((self.m,2))) #增加一个 m * 2 的矩阵成员变量eCache 第一列是eCache是否有效的标志位 第二列是实际的E值 self.K = mat(zeros((self.m,self.m))) #初始化矩阵K 是一个100 * 100 的矩阵 每一行得 for i in range(self.m) : #依次计算总数据向量 和每一个数据向量 的高斯函数值 self.K[:,i] = kernelTrans(self.X,self.X[i,:],kTup) #返回值是一列数值,赋值给对应的self.K[:,i] #计算误差E值并返回 注意 E值 是动态变化的 E = wx + b - y w = alphai * yi * xi (i = 1,2...100 ) def calcEk(oS,k) : fXk = float(multiply(oS.alphas,oS.labelMat).T * oS.K[:,k] + oS.b) #multiply(oS.alphas,oS.labelMat)内积,对应位置相乘 Ek = fXk - float(oS.labelMat[k]) return Ek #选择内循环的alpha 保证每次优化中采用最大步长 def selectJ(i,oS,Ei) : # i - 标号为i的数据的索引值 oS - 数据结构 Ei - 标号为i的数据误差 maxK = -1 maxDeltaE = 0 Ej = 0 oS.eCache[i] = [1,Ei] #根据Ei更新误差缓存,将Ei在缓存中设置成有效的 validEcacheList = nonzero(oS.eCache[:,0].A)[0] #返回误差不为0的数据的索引值,是一个列表(也就是对计算过的Ej值进行操作) #oS.eCache是一个 100 * 2 的矩阵 #oS.eCache[:,0]表示取出100行中第一列的数据 #oS.eCache[:,0].A表示将矩阵转换为array数组类型(100 * 1) #nonzero(oS.eCache[:,0].A)表示找到非零的项 返回值和oS.eCache[:,0].A维数对应 #对应100 * 1 数组情况,第一个维数对应行数 第二个维数对应列数 if (len(validEcacheList)) > 1 : #遍历,找到最大的Ek for k in validEcacheList : #此时全局变量中的缓存值存在Ej信息 if k == i : #不计算i,浪费时间 continue Ek = calcEk(oS,k) #计算误差Ek deltaE = abs(Ei - Ek) #计算步长 if (deltaE > maxDeltaE) : #取最大步长 maxK = k maxDeltaE = deltaE #找到maxDeltaE Ej = Ek return maxK,Ej #maxK 标号为maxK的数据的索引值 Ej - 标号为j的数据误差 else : #若此时Ej值没有计算过,就先随机选取j j = selectJrand(i,oS.m) #随机选择alpha_j的索引值 Ej = calcEk(oS,j) return j,Ej #j标号为j的数据的索引值 Ej - 标号为j的数据误差 #计算误差值,更新缓存 def updateEk(oS,k) : Ek = calcEk(oS,k) oS.eCache[k] = [1,Ek] #决策边界优化历程,优化的SMO算法 def innerL(i,oS) : #输入参数索引值i 数据结构oS Ei = calcEk(oS,i) if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)) :#在这里判断KTT条件 #对正间隔和负间隔进行测试,同时判断alpha[i]是否超出0和C的界限,若在边界上就不能再减小或增大了 #也就不用在进行优化 #对三个KTT条件同时比较 #alpha > 0 yi * (wx + b) <= 1 这里判断的是违反情况 #alpha < C yi * (wx + b) >= 1 j,Ej = selectJ(i,oS,Ei) #第二个alpha的启发式选择 alphaIold = oS.alphas[i].copy() #python通过引用的方式传递所有列表,所以要明确分配内存,方便比较新旧alpha的值 alphaJold = oS.alphas[j].copy() #计算alphaIold,alphaJold;alphaIold,alphaJold为初始可行解 if (oS.labelMat[i] != oS.labelMat[j]) : #接下来计算L,H的值,用于将alphas[j]调整到0-C之间 #y1 y2 取值有四种情况 同号(1 1)(-1 -1) 异号(1 -1)(-1 1) L = max(0,oS.alphas[j] - oS.alphas[i]) #异号情况 H = min(oS.C,oS.C + oS.alphas[j] - oS.alphas[i]) else : #同号情况 L = max(0,oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C,oS.alphas[j] + oS.alphas[i]) if L == H : print('L == H') #如果LH相等,退出这次循环 return 0 eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #eta是alpha[j]的最优修改量eta=(K11+K22-2*K12),这里取得是负数eta if eta >= 0: #当eta < 0 不是二次函数,不能用求导方式对alpha求极值,跳过这次循环 print('eta >= 0') return 0 oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta #alpha2_new = a2pha1_old + y2(E1-E2)/(k11+k22-2k12) oS.alphas[j] = clipAlpha(oS.alphas[j],L,H) #调整alpha的值,下界L。上界H updateEk(oS,j) #更新误差缓存 if (abs(oS.alphas[j] - alphaJold) < 0.00001) : #判断alpha调整的幅度,太小的话就跳过循环 print('j not moving enough') return 0 oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j]) #alpha1_old * y1 + alpha2_old * y2 = alpha1_new * y1 + alpha2_new * y2 #alpha1_new = alpha1_old + y1 * y2 *(alpha2_old - alpha2_new) updateEk(oS,i) #更新误差缓存 b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i,i] - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.K[i,j] b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i,j] - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.K[j,j] #更新b1,b2 #y1 = wx1 + b1 # w = alphai * yi * xi (1 <= i <= m) #y1 = alphai * yi * ki1 +b1 (1 <= i <= m) #b1_new = y1 - alphai * yi * ki1 - alpha1_new * k11 * y1 - alpha2_new *k21 *y2 (3 <= i <= m) #E1 = g(x1) - y1 #g(xi) = wxi + bi (1 <= i <= m) #E1 = g(x1) - y1 = wx1 + b1 - y1 = alphai * yi * ki1 +b1 - y1 (1 <= i <= m) #E1 = alphai * yi * ki1 + alpha1_old * k11 * y1 + alpha2_old *k21 *y2 + b_old - y1 (3 <= i <= m) #b1_new = b_old - (-alpha_old1 + alpha1_new) * y1 * k11 - (-alpha2_old + alpha2_new) * y2 * k12 -E1 #b2_new = b_old - (-alpha_old1 + alpha1_new) * y1 * k12 - (-alpha2_old + alpha2_new) * y2 * k22 -E2 if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]) : oS.b = b2 else : oS.b = (b1 + b2) / 2.0 return 1 else : return 0 def smoP(dataMatIn,classLabels,C,toler,maxIter,kTup = ('lin',0)) : #新变量kTup,使用的是高斯核函数 oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler,kTup) #导入数据结构 iter = 0 entireSet = True alphaPairsChanged = 0 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)) : #迭代次数大于最大迭代次数 上次遍历整个集合无alpha修改 退出循环 alphaPairsChanged = 0 if entireSet : for i in range(oS.m) : #遍历所有的值,i是第一个选取的alpha alphaPairsChanged += innerL(i,oS) #调用innerL函数,选取第二个alpha,判断是否有alpha改变,计数 print('fullSet, iter: %d i: %d,pairs changed %d' % (iter,i,alphaPairsChanged)) iter += 1 else : noBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] #oS.alphas.A > 0 判断oS.alphas中各个数据是否大于0 返回值是true #oS.alphas.A < C 判断oS.alphas中各个数据是否小于C 或false #(oS.alphas.A > 0) * (oS.alphas.A < C) 列表相乘 #nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]取得下标值,是一个列表 # print(noBoundIs) for i in noBoundIs : #遍历所有非边界的值 alphaPairsChanged += innerL(i,oS) #调用innerL函数,选取第二个alpha,判断是否有alpha改变,计数 print('non-bound, iter: %d i: %d,pairs changed %d' % (iter,i,alphaPairsChanged)) iter += 1 if entireSet : entireSet = False #交替进行非边界循环和完整遍历循环,这次遍历全部集合,下次遍历非边界点 # 因为随着多次子优化过程,边界变量倾向于留在边界,而非边界变量倾向于波动,这一步启发式的选择算法是基于节省时间考虑的,并且算法会一直在非边界变量集合上遍历, # 直到所有非边界变量都满足KKT条件(self-consistent)随后算法继续在整个集合上遍历寻找违反KKT条件的变量作为优化的第一个变量 # 要注意的是,算法在整个集合上最多只连续遍历一次,但在非边界变量集合上可能连续遍历多次 elif (alphaPairsChanged == 0) : entireSet = True print('iteration number : %d' % iter) return oS.b,oS.alphas def calculateW(dataArr,labelArr,alphas): #dataArr是100 * 2 的数组,下面生成的Mw是一个2 * 1的数组,初始化为[0,0] X = mat(dataArr) labelMat = mat(labelArr).transpose() m,n = shape(X) w = zeros((n,1)) for i in range(m): w += multiply(alphas[i] * labelMat[i],X[i,:].T) return w.tolist() # Mw = matrix(zeros(shape(dataArr)[1])) #shape(dataArr)[0]表示数组dataArr是几维的 shape(dataArr)[1]表示数组第一条记录中有几个数据 # for i in range (shape(alpha)[0]): # if alpha[i]>0: # Mw += multiply(labelArr[i]*alpha[i],dataArr[i]) #计算w的值 w = alphai * yi * xi (1 <= i <= m) 当alphai . 0 时 # w = Mw.T.tolist() #将w转置再转换成列表 2*1 # return w #画出数据集和simpleSVM回归最佳拟合直线 def drawing(dataArr,labelArr,alphas): n = shape(labelArr)[0] #取数,数据点分为四类 class1 class-1 和class1 SV class-1 SV xcord1 = []; ycord1 = [] xcord2 = []; ycord2 = [] xcord3 = []; ycord3 = [] xcord4 = []; ycord4 = [] for i in range(n): if int(labelArr[i])== 1: if alphas[i]>0: xcord3.append(dataArr[i][0]); ycord3.append(dataArr[i][1]) else: xcord1.append(dataArr[i][0]); ycord1.append(dataArr[i][1]) else: if alphas[i]>0: xcord4.append(dataArr[i][0]); ycord4.append(dataArr[i][1]) else: xcord2.append(dataArr[i][0]); ycord2.append(dataArr[i][1]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=40, c='yellow', marker='s',label='class 1') #开始绘图 ax.scatter(xcord2, ycord2, s=40, c='green',label='class -1') ax.scatter(xcord3, ycord3, s=40, c='red',marker='s',label='SV 1') ax.scatter(xcord4, ycord4, s=40, c='red',label='SV -1') ax.legend(loc='best') # x = arange(2.7, 6.6, 0.1) #取出40个x进行绘图,这里处理的是分隔超平面 # y1 = (b+(calculateW(dataArr,labelArr,alphas)[0][0])*x)/(-calculateW(dataArr,labelArr,alphas)[1][0]) #w * x + b = 0 就是分割超平面,由于是二维的,计算y表达式 # y = mat(y1).T #w1x1 +w2x2 + b = 0 x2 = (b + w1x1)/(-w2) w1 =w[0][0] w2 =w[1][0] # ax.plot(x, y,'-') #画出x,y关系图像 plt.xlabel('X1') plt.ylabel('X2'); # plt.savefig('SMO.png',dpi=2000) plt.show() #利用核函数进行分类的径向基测试函数 def testRbf(k1 = 1.5): dataArr,labelArr = loadDataSet('testSetRBF.txt') b,alphas = smoP(dataArr,labelArr,200,0.0001,10000,('rbf',k1)) dataMat = mat(dataArr) labelMat = mat(labelArr).transpose() svInd = nonzero(alphas.A > 0)[0] #找到支持向量下标 sVs = dataMat[svInd] #保存支持向量对应x y labelSV = labelMat[svInd] #支持向量的类别标签 print('there are %d Support Vectors' % shape(sVs)[0]) m,n = shape(dataMat) errorCount = 0 for i in range(m) : kernelEval = kernelTrans(sVs,dataMat[i,:],('rbf',k1)) #w = alpha * label * x 这里的计算步骤是先把 支持向量 * 每一个行向量 predict = kernelEval.T * multiply(labelSV,alphas[svInd]) + b #label = w * x + b 然后再把他们的乘积 * (alpha * label) 这里的alpha label 都是SV if (sign(predict) != sign(labelArr[i])) : #sign(predict) 是符号函数 predict < 0 值为 -1 predict > 0 值为 1 errorCount += 1 #预测错误 错误数加一下 print('the training error rate is %f ' % (float(errorCount / m))) dataArr,labelArr = loadDataSet('testSetRBF2.txt') dataMat = mat(dataArr) labelMat = mat(labelArr).transpose() errorCount = 0 m,n = shape(dataMat) for i in range(m) : kernelEval = kernelTrans(sVs,dataMat[i,:],('rbf',k1)) predict = kernelEval.T * multiply(labelSV,alphas[svInd]) + b if (sign(predict) != sign(labelArr[i])) : errorCount += 1 print('the test error rate is %f ' % (float(errorCount / m))) drawing(dataArr,labelArr,alphas) testRbf(k1 = 1.3);
[ "41832588+WCC-wcc@users.noreply.github.com" ]
41832588+WCC-wcc@users.noreply.github.com
9fafc54a808fe954f6a9cced561d54308e404226
aec28a032dd5788d9201d6325f2efa285116696e
/big/plot_grid3d.py
8e763a48aa2b2c2ce84dab68bc3abbc78087d1f9
[]
no_license
pletzer/pyterp_tests
346addfe89ff14613e986ca2b9a14206f9b41d45
56be0634d8f7402ce5322a6a67c1843a593d31de
refs/heads/master
2020-05-29T08:50:40.072549
2017-07-20T03:23:34
2017-07-20T03:23:34
69,289,048
1
3
null
2017-03-22T19:15:02
2016-09-26T20:15:44
Python
UTF-8
Python
false
false
3,031
py
import vtk import argparse import iris import numpy import math iris.FUTURE.netcdf_promote = True parser = argparse.ArgumentParser(description='Plot grid in 3d') parser.add_argument('--src_file', type=str, dest='src_file', default='coords_CF_ORCA12_GO6-2.nc', help='Source data file name') parser.add_argument('--dst_file', type=str, dest='dst_file', default='dst.nc', help='Destination data file name') parser.add_argument('--src_field', type=str, dest='src_field', default='ocndept', help='Destination data field name') parser.add_argument('--dst_field', type=str, dest='dst_field', default='pointData', help='Destination data field name') args = parser.parse_args() def readCube(filename, fieldname): cube = None cubes = iris.load(filename) for cb in cubes: if cb.var_name == fieldname: cube = cb return cube def createPipeline(cube, pngfile, color=(1.,1.,1.), radius=1.0, show_mesh_as_surface=False, nlines=10): n0, n1 = cube.data.shape numPoints = n0 * n1 sg = vtk.vtkStructuredGrid() pt = vtk.vtkPoints() #pt.SetNumberOfPoints(numPoints) coords = cube.coords() lats = coords[0].points lons = coords[1].points steps0 = n0 // nlines steps1 = n1 // nlines k = 0 for i1 in range(0, n1, steps1): for i0 in range(0, n0, steps0): x = radius * math.cos(lats[i0, i1] * math.pi/180.) * math.cos(lons[i0, i1] * math.pi/180.) y = radius * math.cos(lats[i0, i1] * math.pi/180.) * math.sin(lons[i0, i1] * math.pi/180.) z = radius * math.sin(lats[i0, i1] * math.pi/180.) pt.InsertPoint(k, x, y, z) k += 1 sg = vtk.vtkStructuredGrid() sg.SetDimensions(1, n0, n1) sg.SetPoints(pt) mp, ac = None, None # show mesh as a surface if show_mesh_as_surface: mp = vtk.vtkDataSetMapper() mp.SetInputData(sg) ac = vtk.vtkActor() ac.SetMapper(mp) # show the grid as tubes ed = vtk.vtkExtractEdges() et = vtk.vtkTubeFilter() em = vtk.vtkPolyDataMapper() ea = vtk.vtkActor() et.SetRadius(0.01) ed.SetInputData(sg) et.SetInputConnection(ed.GetOutputPort()) em.SetInputConnection(et.GetOutputPort()) ea.SetMapper(em) ea.GetProperty().SetColor(color) return [ea], em, et, ed, mp, sg def render(actors): # rendering stuff renderer = vtk.vtkRenderer() renderWindow = vtk.vtkRenderWindow() renderWindow.AddRenderer(renderer) renderWindowInteractor = vtk.vtkRenderWindowInteractor() renderWindowInteractor.SetRenderWindow(renderWindow) for a in actors: if a is not None: renderer.AddActor(a) renderer.SetBackground(.0, .0, .0) renderWindow.Render() renderWindowInteractor.Start() src_cube = readCube(args.src_file, args.src_field) src_pipeline = createPipeline(src_cube, pngfile='src.png', color=(0.5, 0.5, 0.5), radius=0.99, show_mesh_as_surface=False) #dst_cube = readCube(args.dst_file, args.dst_field) #dst_pipeline = createPipeline(dst_cube, pngfile='dst.png', color=(1.0, 0.0, 0.0), radius=1.05) render(src_pipeline[0]) # + dst_pipeline[0])
[ "pletzera@niwa-1007520.niwa.local" ]
pletzera@niwa-1007520.niwa.local
3e10823cddf7156502afb121f4d4ca37fa2d458b
ba57226113a8a9c73af79b6d6033769299c7f05b
/setup_bgmapi.py
a1f053b8079db1077148ab913813573a0bdbf5e3
[ "MIT", "BSD-2-Clause" ]
permissive
wattlebird/Bangumi_Spider
fe0e8f95b37f89510d4053ba1fd1b3193faebf7b
61ede2551e697f6851ab51b357b843e4e61f4afa
refs/heads/master
2023-08-02T17:32:03.277992
2023-07-27T13:35:28
2023-07-27T13:35:28
26,780,910
27
7
BSD-2-Clause
2022-10-29T12:15:24
2014-11-17T22:42:45
Python
UTF-8
Python
false
false
207
py
from setuptools import setup, find_packages setup( name = 'project', version = '1.0', packages = find_packages(), entry_points = {'scrapy': ['settings = bgmapi.settings']}, )
[ "geniusxiaoguai@gmail.com" ]
geniusxiaoguai@gmail.com
a9f68c3ba6d77e4afa5766a4916619102fbe1640
0eb0535abcf8c1a70aacad76a031992bfd0bc745
/Intervals/Intervals.py
4d16cfd32e0ceca0f38d302df51c7d22a814e9ee
[]
no_license
gyllbane99/CS313E
eb2d35166e121cec2800dc6e3f54a5d9ab6098d0
715d1d8e1579d20edc691c3f4235f98ce5a8df78
refs/heads/master
2020-09-26T07:14:34.328646
2020-04-15T17:59:01
2020-04-15T17:59:01
226,200,617
0
0
null
null
null
null
UTF-8
Python
false
false
2,276
py
# File: Intervals.py # Description: This program takes intervals from a text file, orders them and then collapses the intervals that overlaps. # Student Name: Brock Brennan # Student UT EID: btb989 # Course Name: CS 313E # Unique Number: 50205 # Date Created: 9/8/2019 # Date Last Modified: 9/9/2018 def readfile(): #Reads file and removes new line character file = open("Intervals.txt", "r") intervalslist = file.readlines() intervalslist = [x.replace('\n', '') for x in intervalslist ] intervalslist.sort return intervalslist def converttotuple(intervalslist): #Converts items of the list into tuples and splits them using the space in the middle. intervalslisttuple = [] for item in intervalslist: smallint = [] x = item.split(" ") firstnumber = int(x[0]) secondnumber = int(x[1]) smallint.append(firstnumber) smallint.append(secondnumber) x = tuple(smallint) intervalslisttuple.append(x) return intervalslisttuple def collapsetheintervals(intervalslist): # Takes each tuple piece by piece and compares the values then files them into the final list for printing. collapsedlist = [] for tup in intervalslist: if collapsedlist: lower = collapsedlist[-1] if tup[0] <= lower[1]: highest = max(lower[1], tup[1]) collapsedlist[-1] = (lower[0], highest) else: collapsedlist.append(tup) else: collapsedlist.append(tup) return collapsedlist def printfinalList(collapsedlist): #Prints the intervals out print("Non-intersecting Intervals:") for tup in (collapsedlist): print((tup),end="\n") def main(): #Read all of the intervals off of the file and then set them in a list intervals = readfile() #Convert the elements of the lists to ints and then place them into tuples. tup = converttotuple(intervals) #Sort the Tuple List tup.sort() #Collapse the possible intervals collapsed = collapsetheintervals(tup) #Prints out the intervals in proper format printfinalList(collapsed) main()
[ "noreply@github.com" ]
gyllbane99.noreply@github.com
2b7790cc834c668d9144482a4c26723262e9a0c1
906448c0fd113471f19b56f549387a8c2b4123cf
/tienda_zapatos/app/migrations/0001_initial.py
b868fecaf001b284608acbebe1cdc366ebba4df3
[]
no_license
usac201504229/proyectos_980
c79158556d12dfb0791f81b3f29e7b7c92fca8f6
243c730989ab57571e42b87b2f0351d8cea72c3f
refs/heads/master
2023-01-24T20:50:35.691650
2020-11-19T03:29:55
2020-11-19T03:29:55
312,479,527
0
0
null
null
null
null
UTF-8
Python
false
false
1,165
py
# Generated by Django 3.0 on 2020-11-12 19:58 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Marca', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='Producto', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(max_length=50)), ('precio', models.ImageField(upload_to='')), ('descripcion', models.TimeField()), ('nuevo', models.BooleanField()), ('fecha_fabricacion', models.DateField()), ('marca', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='app.Marca')), ], ), ]
[ "2468064780101@ingenieria.usac.edu.gt" ]
2468064780101@ingenieria.usac.edu.gt
c89d6f6dc63c1dd1ed236bd4f6ae25a485a2197e
2029d339e0e45ae37b814dbbfca8c8b3b1876f52
/users/views.py
703aead4fac582774698e3f73c68f6d80484393b
[]
no_license
lijiancheng0614/Emoji
e1f2fbc9b141c38ebf6a38a2733637e55db69723
143d069f681f62f52c6f577fd6a7503b957dfeab
refs/heads/master
2022-08-31T17:17:31.452666
2022-08-09T02:25:49
2022-08-09T02:25:49
130,447,575
1
1
null
2022-08-09T02:25:50
2018-04-21T06:43:34
Python
UTF-8
Python
false
false
1,819
py
from django.conf import settings from django.contrib import messages from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.contrib.auth.models import Permission from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect from django.template.response import TemplateResponse from django.utils.functional import lazy from django.views.generic import CreateView from .forms import UserCreationForm from users.models import User reverse_lazy = lambda name=None, *args: lazy(reverse, str)(name, args=args) class CreateUser(CreateView): template_name = 'users/register.html' model = User form_class = UserCreationForm success_url = reverse_lazy('core:recent-pins') def get(self, request, *args, **kwargs): if not settings.ALLOW_NEW_REGISTRATIONS: messages.error(request, "The admin of this service is not allowing new registrations.") return HttpResponseRedirect(reverse('core:recent-pins')) return super(CreateUser, self).get(request, *args, **kwargs) def form_valid(self, form): redirect = super(CreateUser, self).form_valid(form) permissions = Permission.objects.filter(codename__in=['add_pin', 'add_image']) user = authenticate(username=form.cleaned_data['username'], password=form.cleaned_data['password']) user.user_permissions = permissions login(self.request, user) return redirect @login_required def logout_user(request): logout(request) messages.success(request, 'You have successfully logged out.') return HttpResponseRedirect(reverse('core:recent-pins')) def private(request): return TemplateResponse(request, 'users/private.html', None)
[ "lijiancheng0614@gmail.com" ]
lijiancheng0614@gmail.com
a201377ec8cb7c619f536ed48d881da13e7b47a6
3fb042540a62670300a668ab79381e7cc7739a5e
/src/ex00.py
223147f9da5b9bd8c7360eb7692fee7355ea539e
[ "MIT" ]
permissive
maberf/python
830a18986a86cb6da05a991c4886dbc9685ce60a
8c72074e4c6bd631c524d79b443428b20460b8d8
refs/heads/master
2023-04-18T20:40:55.664409
2023-04-01T23:48:34
2023-04-01T23:48:34
295,516,393
0
0
null
null
null
null
UTF-8
Python
false
false
49
py
import sys print(sys.path) print('Olá Dummie!')
[ "71026050+maberf@users.noreply.github.com" ]
71026050+maberf@users.noreply.github.com
59aeba235b6cae5ff20d5ed769307e56effba754
2dd26e031162e75f37ecb1f7dd7f675eeb634c63
/nemo/collections/common/metrics/perplexity.py
9e1c21737ec8caea46c8850c32dd23fe499f6394
[ "Apache-2.0" ]
permissive
NVIDIA/NeMo
1b001fa2ae5d14defbfd02f3fe750c5a09e89dd1
c20a16ea8aa2a9d8e31a98eb22178ddb9d5935e7
refs/heads/main
2023-08-21T15:28:04.447838
2023-08-21T00:49:36
2023-08-21T00:49:36
200,722,670
7,957
1,986
Apache-2.0
2023-09-14T18:49:54
2019-08-05T20:16:42
Python
UTF-8
Python
false
false
3,420
py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.distributions.categorical import Categorical from torchmetrics import Metric __all__ = ['Perplexity'] class Perplexity(Metric): """ This class computes mean perplexity of distributions in the last dimension of inputs. It is a wrapper around :doc:`torch.distributions.Categorical.perplexity<pytorch:distributions>` method. You have to provide either ``probs`` or ``logits`` to the :meth:`update` method. The class computes perplexities for distributions passed to :meth:`update` method in ``probs`` or ``logits`` arguments and averages the perplexities. Reducing results between all workers is done via SUM operations. See `PyTorch Lightning Metrics <https://pytorch-lightning.readthedocs.io/en/stable/ecosystem/metrics.html>`_ for the metric usage instructions. Args: dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: ``None`` (which selects the entire world) validate_args: If ``True`` values of :meth:`update` method parameters are checked. ``logits`` has to not contain NaNs and ``probs`` last dim has to be valid probability distribution. """ full_state_update = True def __init__(self, dist_sync_on_step=False, process_group=None, validate_args=True): super().__init__(dist_sync_on_step=dist_sync_on_step, process_group=process_group) self.validate_args = validate_args self.add_state('perplexities_sum', torch.tensor(0.0, dtype=torch.float64), dist_reduce_fx='sum') # Total number of distributions seen since last reset self.add_state('num_distributions', torch.tensor(0, dtype=torch.int64), dist_reduce_fx='sum') def update(self, probs=None, logits=None): """ Updates :attr:`perplexities_sum` and :attr:`num_distributions`. Args: probs: A ``torch.Tensor`` which innermost dimension is valid probability distribution. logits: A ``torch.Tensor`` without NaNs. """ d = Categorical( None if probs is None else probs.detach(), None if logits is None else logits.detach(), validate_args=self.validate_args, ) ppl = d.perplexity() self.num_distributions += ppl.numel() self.perplexities_sum += ppl.sum() def compute(self): """ Returns perplexity across all workers and resets to 0 :attr:`perplexities_sum` and :attr:`num_distributions`. """ if self.num_distributions.eq(0): return None return self.perplexities_sum / self.num_distributions
[ "noreply@github.com" ]
NVIDIA.noreply@github.com
c33906ce3a52e69dcca086bc09ff33f8783031e0
60bd7af45fd53c20930e79961dd2fc8c47e67328
/LC/30daysChallenge/week3/ConstructBSTFromPreorder.py
4252c7dfa0686a5c3eca9fe014e11f825b505c41
[]
no_license
albertopha/ds-algo
36d6a3c20f4a52b096c8aec276355ae28a770a60
51b379b1be406cd27c92f26f44633c87360c7de3
refs/heads/master
2022-12-27T06:27:42.352855
2022-12-24T01:44:48
2022-12-24T01:44:48
181,027,160
2
0
null
2021-03-14T18:01:12
2019-04-12T14:44:02
Python
UTF-8
Python
false
false
1,169
py
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def bstFromPreorder(self, preorder: List[int]) -> TreeNode: if len(preorder) == 0: return root = TreeNode(preorder[0]) self.findChildren(root, preorder, 1, len(preorder)-1) return root def findChildren(self, root: TreeNode, preorder: List[int], start: int, end: int) -> None: if start > end or not root: return root_val = root.val new_start = start new_end = end+1 for i in range(start, end+1): if root_val > preorder[i]: root.left = TreeNode(preorder[i]) new_start = i break for i in range(start, end+1): if root_val < preorder[i]: root.right = TreeNode(preorder[i]) new_end = i break if root.left: self.findChildren(root.left, preorder, new_start+1, new_end-1) if root.right: self.findChildren(root.right, preorder, new_end+1, end)
[ "albertopha@hotmail.com" ]
albertopha@hotmail.com
57727b270f34c3828bb09c4ccb03db3ef86953b9
55628a9a08a6b6646b4a8aa74bedbf2e3fd7d850
/.history/test_20200123001430.py
039d1a2e7afe254c5c708d761701cc99e526961b
[]
no_license
StRobertCHSCS/final-project-team
c115dc11b318f7ac782c94860a8801bb558bd107
48907e72813c4dd3b48ff36f794f6fce04533219
refs/heads/master
2020-12-03T22:35:37.833893
2020-01-31T04:05:38
2020-01-31T04:05:38
231,506,873
1
0
null
null
null
null
UTF-8
Python
false
false
3,208
py
# from time import ctime # current_time = ctime() # # with open('scoress.txt', 'r+') as high_score_file: # # high_scores = [0, 0, 0, 0, 0] # # for item in high_scores: # # high_score_file.write(str(high_scores[item]) + "\n") # # high_score_file.close() # def replace_line(line_num, text): # lines = open('scoress.txt', 'r').readlines() # if len(lines)> 0: # lines[0] = text # else: # lines = text # lines.close() # out = open('scoress.txt', 'w') # out.write(lines + "\n") # out.close() # high_score = 0 # with open('scoress.txt', 'r+') as high_score_file: # current_score = (input("high score?" )) # high_score = high_score_file.readline() # print(high_score) # if current_score > high_score: # sentence = (" High score of " + str(current_score) + " at " + current_time + "\n") # high_score_file.write(sentence) # # with open('scoress.txt', 'r+') as high_score_file: # # for i in range (7): # # print(high_score_file.readline(i)) # # print ("--") # # for line in high_score_file: # # print (line) # ''' # import json # with open("score.json", "r+") as foo: # for i in range (3): # score = (input("score; ")) # json.dump(score + "\n", foo) # #if score > int(foo.readline()): # ''' """ Show how to use exceptions to save a high score for a game. Sample Python/Pygame Programs Simpson College Computer Science http://programarcadegames.com/ http://simpson.edu/computer-science/ """ def get_high_score(): # Default high score high_score = 0 # Try to read the high score from a file try: high_score_file = open("scoress.txt", "r") high_score = int(high_score_file.read()) high_score_file.close() print("The high score is", high_score) except IOError: # Error reading file, no high score print("There is no high score yet.") except ValueError: # There's a file there, but we don't understand the number. print("I'm confused. Starting with no high score.") return high_score def save_high_score(new_high_score): try: # Write the file to disk high_score_file = open("scoress.txt", "w") high_score_file.write(str(new_high_score)) high_score_file.close() except IOError: # Hm, can't write it. print("Unable to save the high score.") def main(): """ Main program is here. """ # Get the high score high_score = get_high_score() # Get the score from the current game current_score = 0 try: # Ask the user for his/her score current_score = int(input("What is your score? ")) except ValueError: # Error, can't turn what they typed into a number print("I don't understand what you typed.") # See if we have a new high score if current_score > high_score: # We do! Save to disk print("Yea! New high score!") save_high_score(current_score) else: print("Better luck next time.") # Call the main function, start up the game if __name__ == "__main__": main()
[ "clementina1023@gmail.com" ]
clementina1023@gmail.com
906896361bd2865a171b902df5c155d80d72b068
354e921858ad0fdcefa683484d6b7d16c39e9eaa
/pyfair/model/model_calc.py
05e51d5a712decf770f917aa20052d477413f357
[ "MIT" ]
permissive
welshie1/pyfair
27936f7a92e9e16c567fc11f3458a0ce83bcf136
ca8aae80ca8a89bbfb8d435b480c5985e95efdff
refs/heads/master
2020-06-12T19:57:42.615948
2019-06-29T13:33:40
2019-06-29T13:33:40
194,408,562
0
0
null
2019-06-29T13:26:50
2019-06-29T13:26:50
null
UTF-8
Python
false
false
1,592
py
class FairCalculations(object): '''A class to perform calculations''' # TODO confirm accuracy of these calculations. def __init__(self): self._data = None # Lookup table (no leaf nodes required) self._function_dict = { 'Risk' : self._calculate_multiplication, 'Loss Event Frequency' : self._calculate_multiplication, 'Threat Event Frequency' : self._calculate_multiplication, 'Vulnerability' : self._calculate_step, 'Loss Magnitude' : self._calculate_addition, 'Primary Loss' : self._calculate_multiplication, 'Secondary Loss' : self._calculate_multiplication, } def calculate(self, parent_name, child_1_data, child_2_data): '''General function for dispatching calculations''' target_function = self._function_dict[parent_name] calculated_result = target_function(parent_name, child_1_data, child_2_data) return calculated_result def _calculate_step(self, parent_name, child_1_data, child_2_data): '''Create a bool series, which can be multiplied as 0/1 value''' return child_1_data > child_2_data def _calculate_addition(self, parent_name, child_1_data, child_2_data): '''Calculate sum of two columns''' return child_1_data + child_2_data def _calculate_multiplication(self, parent_name, child_1_data, child_2_data): '''Calculate product of two columns''' return child_1_data * child_2_data
[ "theonaunheim@gmail.com" ]
theonaunheim@gmail.com
a01ecbdc9503afd1d6c1a8eb5afb1c1480e39032
f03193db41bfa790d07b617d9a65c787cbff780c
/app01/stark.py
99d3df297887afec9d230dc51c57d1d567c2bf2a
[]
no_license
w7374520/starkall
d1e9cbc1df7be910127e1272e9f19068222937e5
c455f8e12629dc5e7abfe1b8aa5b4ee126415cde
refs/heads/master
2020-05-18T06:09:15.323179
2019-04-15T06:32:50
2019-04-15T06:32:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
721
py
from stark.service.sites import site,ModelStark from django.utils.safestring import mark_safe from app01.models import Book, Publish, Author, AuthorDetail from django.shortcuts import HttpResponse, render, redirect class BookConfig(ModelStark): list_display = ["title", "price", "publish", "authors"] list_display_links = ["title", "publish", "authors"] search_fields = ["title", "price"] list_filter = ["publish", "authors"] # 批量操作 def patch_init(self, request, queryset): queryset.update(price=100) patch_init.desc = "价格初始化" actions = [patch_init] site.register(Book, BookConfig) site.register(Publish) site.register(Author) site.register(AuthorDetail)
[ "1079264692@qq.com" ]
1079264692@qq.com
eb95018d472eadb3cd500298d47b6c2f17952a99
1e696cfacf608326dd8efe60126bc0a3bab25750
/supervisor/store/data.py
b810493bb3af9943b92a576565e854ed62f91218
[ "Apache-2.0" ]
permissive
KiraD5268/supervisor
8b3105d6af090653156be72e0d39f65d922e0be1
1bf38bdc999f8430cc32b2a3bad6fea927ba3d91
refs/heads/main
2023-01-12T14:19:00.324792
2020-11-19T08:24:40
2020-11-19T08:24:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,483
py
"""Init file for Supervisor add-on data.""" import logging from pathlib import Path from typing import Any, Dict import voluptuous as vol from voluptuous.humanize import humanize_error from ..addons.validate import SCHEMA_ADDON_CONFIG from ..const import ( ATTR_LOCATON, ATTR_REPOSITORY, ATTR_SLUG, REPOSITORY_CORE, REPOSITORY_LOCAL, ) from ..coresys import CoreSys, CoreSysAttributes from ..exceptions import JsonFileError from ..resolution.const import ContextType, IssueType from ..utils.json import read_json_file from .utils import extract_hash_from_path from .validate import SCHEMA_REPOSITORY_CONFIG _LOGGER: logging.Logger = logging.getLogger(__name__) class StoreData(CoreSysAttributes): """Hold data for Add-ons inside Supervisor.""" def __init__(self, coresys: CoreSys): """Initialize data holder.""" self.coresys: CoreSys = coresys self.repositories: Dict[str, Any] = {} self.addons: Dict[str, Any] = {} def update(self): """Read data from add-on repository.""" self.repositories.clear() self.addons.clear() # read core repository self._read_addons_folder(self.sys_config.path_addons_core, REPOSITORY_CORE) # read local repository self._read_addons_folder(self.sys_config.path_addons_local, REPOSITORY_LOCAL) # add built-in repositories information self._set_builtin_repositories() # read custom git repositories for repository_element in self.sys_config.path_addons_git.iterdir(): if repository_element.is_dir(): self._read_git_repository(repository_element) def _read_git_repository(self, path): """Process a custom repository folder.""" slug = extract_hash_from_path(path) # exists repository json repository_file = Path(path, "repository.json") try: repository_info = SCHEMA_REPOSITORY_CONFIG(read_json_file(repository_file)) except JsonFileError: _LOGGER.warning( "Can't read repository information from %s", repository_file ) return except vol.Invalid: _LOGGER.warning("Repository parse error %s", repository_file) return # process data self.repositories[slug] = repository_info self._read_addons_folder(path, slug) def _read_addons_folder(self, path, repository): """Read data from add-ons folder.""" try: # Generate a list without artefact, safe for corruptions addon_list = [ addon for addon in path.glob("**/config.json") if ".git" not in addon.parts ] except OSError as err: self.sys_resolution.create_issue( IssueType.CORRUPT_REPOSITORY, ContextType.SYSTEM ) _LOGGER.critical( "Can't process %s because of Filesystem issues: %s", repository, err ) self.sys_capture_exception(err) return for addon in addon_list: try: addon_config = read_json_file(addon) except JsonFileError: _LOGGER.warning("Can't read %s from repository %s", addon, repository) continue # validate try: addon_config = SCHEMA_ADDON_CONFIG(addon_config) except vol.Invalid as ex: _LOGGER.warning( "Can't read %s: %s", addon, humanize_error(addon_config, ex) ) continue # Generate slug addon_slug = f"{repository}_{addon_config[ATTR_SLUG]}" # store addon_config[ATTR_REPOSITORY] = repository addon_config[ATTR_LOCATON] = str(addon.parent) self.addons[addon_slug] = addon_config def _set_builtin_repositories(self): """Add local built-in repository into dataset.""" try: builtin_file = Path(__file__).parent.joinpath("built-in.json") builtin_data = read_json_file(builtin_file) except JsonFileError: _LOGGER.warning("Can't read built-in json") return # core repository self.repositories[REPOSITORY_CORE] = builtin_data[REPOSITORY_CORE] # local repository self.repositories[REPOSITORY_LOCAL] = builtin_data[REPOSITORY_LOCAL]
[ "noreply@github.com" ]
KiraD5268.noreply@github.com
d032f87c76a40aec68f5ae53e43964a0d195e85e
bde0a0efad2c3e117f4ca01dcc8a7001725c800d
/src/annalist_root/annalist/views/site.py
1357583a187ac6e1f1a62b0cf740c3b7b6fd2d0f
[ "MIT" ]
permissive
josemanuelgp/annalist
2eb0e1535214121acd3369dde00479b368f673fe
f3324ea457dfbde1cea6a1df301946dc92cdaaf3
refs/heads/master
2021-01-17T03:40:39.422881
2015-01-31T14:09:37
2015-01-31T14:25:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,820
py
""" Analist site views """ __author__ = "Graham Klyne (GK@ACM.ORG)" __copyright__ = "Copyright 2014, G. Klyne" __license__ = "MIT (http://opensource.org/licenses/MIT)" import logging log = logging.getLogger(__name__) from django.conf import settings from django.http import HttpResponse from django.http import HttpResponseRedirect from django.core.urlresolvers import resolve, reverse from annalist.identifiers import ANNAL, RDFS from annalist.exceptions import Annalist_Error, EntityNotFound_Error from annalist import message from annalist import util from annalist.models.site import Site from annalist.views.displayinfo import DisplayInfo from annalist.views.generic import AnnalistGenericView from annalist.views.confirm import ConfirmView class SiteView(AnnalistGenericView): """ View class to handle requests to the annalist site home URI """ def __init__(self): super(SiteView, self).__init__() self.help = "site-help" return # GET def get(self, request): """ Create a rendering of the current site home page, containing (among other things) a list of defined collections. """ viewinfo = DisplayInfo(self, "view") viewinfo.get_site_info(self.get_request_host()) viewinfo.check_authorization("view") if viewinfo.http_response: return viewinfo.http_response resultdata = viewinfo.sitedata resultdata.update(viewinfo.context_data()) # log.info("SiteView.get: site_data %r"%(self.site_data())) return ( self.check_site_data() or self.render_html(resultdata, 'annalist_site.html') or self.error(self.error406values()) ) # POST def post(self, request): """ Process options to add or remove a collection in an Annalist site """ log.debug("site.post: %r"%(request.POST.lists())) if "remove" in request.POST: collections = request.POST.getlist("select", []) if collections: # Get user to confirm action before actually doing it auth_required = ( self.authorize("ADMIN", None) and # either of these.. self.authorize("DELETE_COLLECTION", None) ) return ( auth_required or ConfirmView.render_form(request, action_description= message.REMOVE_COLLECTIONS%{'ids': ", ".join(collections)}, action_params= request.POST, confirmed_action_uri= self.view_uri('AnnalistSiteActionView'), cancel_action_uri= self.view_uri('AnnalistSiteView'), title= self.site_data()["title"] ) ) else: return self.redirect_info( self.view_uri("AnnalistSiteView"), info_message=message.NO_COLLECTIONS_SELECTED, info_head=message.NO_ACTION_PERFORMED ) if "new" in request.POST: # Create new collection with name and label supplied new_id = request.POST["new_id"] new_label = request.POST["new_label"] log.debug("New collection %s: %s"%(new_id, new_label)) if not new_id: return self.redirect_error( self.view_uri("AnnalistSiteView"), error_message=message.MISSING_COLLECTION_ID ) if not util.valid_id(new_id): return self.redirect_error( self.view_uri("AnnalistSiteView"), error_message=message.INVALID_COLLECTION_ID%{'coll_id': new_id} ) # Create new collection with name and label supplied auth_required = ( self.authorize("ADMIN", None) and # either of these.. self.authorize("CREATE_COLLECTION", None) ) if auth_required: return auth_required coll_meta = ( { RDFS.CURIE.label: new_label , RDFS.CURIE.comment: "" }) coll = self.site().add_collection(new_id, coll_meta) # Create full permissions in new collection for creating user user = self.request.user user_id = user.username user_uri = "mailto:"+user.email user_name = "%s %s"%(user.first_name, user.last_name) user_description = "User %s: permissions for %s in collection %s"%(user_id, user_name, new_id) coll.create_user_permissions( user_id, user_uri, user_name, user_description, user_permissions=["VIEW", "CREATE", "UPDATE", "DELETE", "CONFIG", "ADMIN"] ) return self.redirect_info( self.view_uri("AnnalistSiteView"), info_message=message.CREATED_COLLECTION_ID%{'coll_id': new_id} ) return self.error(self.error400values()) class SiteActionView(AnnalistGenericView): """ View class to perform completion of confirmed action requested from site view """ def __init__(self): super(SiteActionView, self).__init__() return # POST def post(self, request): """ Process options to complete action to add or remove a collection """ log.debug("siteactionview.post: %r"%(request.POST)) if "remove" in request.POST: log.debug("Complete remove %r"%(request.POST.getlist("select"))) auth_required = ( self.authorize("ADMIN", None) and # either of these.. self.authorize("DELETE_COLLECTION", None) ) if auth_required: return auth_required coll_ids = request.POST.getlist("select") for coll_id in coll_ids: err = self.site().remove_collection(coll_id) if err: return self.redirect_error( self.view_uri("AnnalistSiteView"), error_message=str(err)) return self.redirect_info( self.view_uri("AnnalistSiteView"), info_message=message.COLLECTIONS_REMOVED%{'ids': ", ".join(coll_ids)} ) else: return self.error(self.error400values()) return HttpResponseRedirect(self.view_uri("AnnalistSiteView")) # End.
[ "gk-github@ninebynine.org" ]
gk-github@ninebynine.org
b0fb5f97fa751d8b36016df8af5b05eb14efb3bc
aeabc9a7b3e8d67fba5e6f8933a96b8a4bb51d2e
/camp/opus/track.py
d062c9c842f4d807c4608236556ae0c0b93d9887
[ "Apache-2.0" ]
permissive
YixuanFranco/camp
7926defa85c48aa1fef6481e8f6ba0019a6c2856
e2d1ecb57fbbd337028d48239bf20e2cdf8f65d4
refs/heads/master
2020-12-25T11:58:23.401292
2016-02-04T16:46:03
2016-02-04T16:46:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,279
py
""" Copyright 2016, Michael DeHaan <michael.dehaan@gmail.com> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # see tests/opus.py for how all this works. # # reminder example: # # track1 = song.add_track(Track(name="melodica", midi_channel=1)) class Track(object): def __init__(self, song=None, name=None, midi_channel=None): self.name = name self.song = song self.midi_channel = midi_channel assert isinstance(self.name, str) # CAMP doesn't *HAVE* to be used for MIDI, but I'd prefer these get # checked anyway - if not doing MIDI, just make up a channel number. # Channel numbers do *NOT* have to be unique between tracks, but we'll # avoid setting a default to avoid surprises. assert type(self.midi_channel) == int
[ "michael.dehaan@gmail.com" ]
michael.dehaan@gmail.com
d302df19f553b76825f1950985d688173622b927
a90ea1a3f103b1dbb8e6132f3f2eb20c48db4671
/Hurricane project.py
2d786faf0597edaf608bbbc139f1995dd97ad6ff
[]
no_license
badinplaid737/Codecademy-Projects
2f9618ad3138b472822a256df46de441a35da135
a786eb155b03a460f4adbecd7e51fd84c20a29e3
refs/heads/main
2023-08-18T21:33:40.574439
2021-10-04T23:13:43
2021-10-04T23:13:43
405,109,893
0
0
null
2021-09-21T21:35:32
2021-09-10T14:32:07
Python
UTF-8
Python
false
false
10,473
py
import pandas as pd import numpy as np # names of hurricanes names = ['Cuba I', 'San Felipe II Okeechobee', 'Bahamas', 'Cuba II', 'CubaBrownsville', 'Tampico', 'Labor Day', 'New England', 'Carol', 'Janet', 'Carla', 'Hattie', 'Beulah', 'Camille', 'Edith', 'Anita', 'David', 'Allen', 'Gilbert', 'Hugo', 'Andrew', 'Mitch', 'Isabel', 'Ivan', 'Emily', 'Katrina', 'Rita', 'Wilma', 'Dean', 'Felix', 'Matthew', 'Irma', 'Maria', 'Michael'] # months of hurricanes months = ['October', 'September', 'September', 'November', 'August', 'September', 'September', 'September', 'September', 'September', 'September', 'October', 'September', 'August', 'September', 'September', 'August', 'August', 'September', 'September', 'August', 'October', 'September', 'September', 'July', 'August', 'September', 'October', 'August', 'September', 'October', 'September', 'September', 'October'] # years of hurricanes years = [1924, 1928, 1932, 1932, 1933, 1933, 1935, 1938, 1953, 1955, 1961, 1961, 1967, 1969, 1971, 1977, 1979, 1980, 1988, 1989, 1992, 1998, 2003, 2004, 2005, 2005, 2005, 2005, 2007, 2007, 2016, 2017, 2017, 2018] # maximum sustained winds (mph) of hurricanes max_sustained_winds = [165, 160, 160, 175, 160, 160, 185, 160, 160, 175, 175, 160, 160, 175, 160, 175, 175, 190, 185, 160, 175, 180, 165, 165, 160, 175, 180, 185, 175, 175, 165, 180, 175, 160] # areas affected by each hurricane areas_affected = [['Central America', 'Mexico', 'Cuba', 'Florida', 'The Bahamas'], ['Lesser Antilles', 'The Bahamas', 'United States East Coast', 'Atlantic Canada'], ['The Bahamas', 'Northeastern United States'], ['Lesser Antilles', 'Jamaica', 'Cayman Islands', 'Cuba', 'The Bahamas', 'Bermuda'], ['The Bahamas', 'Cuba', 'Florida', 'Texas', 'Tamaulipas'], ['Jamaica', 'Yucatn Peninsula'], ['The Bahamas', 'Florida', 'Georgia', 'The Carolinas', 'Virginia'], ['Southeastern United States', 'Northeastern United States', 'Southwestern Quebec'], ['Bermuda', 'New England', 'Atlantic Canada'], ['Lesser Antilles', 'Central America'], ['Texas', 'Louisiana', 'Midwestern United States'], ['Central America'], ['The Caribbean', 'Mexico', 'Texas'], ['Cuba', 'United States Gulf Coast'], ['The Caribbean', 'Central America', 'Mexico', 'United States Gulf Coast'], ['Mexico'], ['The Caribbean', 'United States East coast'], ['The Caribbean', 'Yucatn Peninsula', 'Mexico', 'South Texas'], ['Jamaica', 'Venezuela', 'Central America', 'Hispaniola', 'Mexico'], ['The Caribbean', 'United States East Coast'], ['The Bahamas', 'Florida', 'United States Gulf Coast'], ['Central America', 'Yucatn Peninsula', 'South Florida'], ['Greater Antilles', 'Bahamas', 'Eastern United States', 'Ontario'], ['The Caribbean', 'Venezuela', 'United States Gulf Coast'], ['Windward Islands', 'Jamaica', 'Mexico', 'Texas'], ['Bahamas', 'United States Gulf Coast'], ['Cuba', 'United States Gulf Coast'], ['Greater Antilles', 'Central America', 'Florida'], ['The Caribbean', 'Central America'], ['Nicaragua', 'Honduras'], ['Antilles', 'Venezuela', 'Colombia', 'United States East Coast', 'Atlantic Canada'], ['Cape Verde', 'The Caribbean', 'British Virgin Islands', 'U.S. Virgin Islands', 'Cuba', 'Florida'], ['Lesser Antilles', 'Virgin Islands', 'Puerto Rico', 'Dominican Republic', 'Turks and Caicos Islands'], ['Central America', 'United States Gulf Coast (especially Florida Panhandle)']] # damages (USD($)) of hurricanes damages = ['Damages not recorded', '100M', 'Damages not recorded', '40M', '27.9M', '5M', 'Damages not recorded', '306M', '2M', '65.8M', '326M', '60.3M', '208M', '1.42B', '25.4M', 'Damages not recorded', '1.54B', '1.24B', '7.1B', '10B', '26.5B', '6.2B', '5.37B', '23.3B', '1.01B', '125B', '12B', '29.4B', '1.76B', '720M', '15.1B', '64.8B', '91.6B', '25.1B'] # deaths for each hurricane deaths = [90,4000,16,3103,179,184,408,682,5,1023,43,319,688,259,37,11,2068,269,318,107,65,19325,51,124,17,1836,125,87,45,133,603,138,3057,74] #converting damages list def convert_damages_data(damages): """Convert damages data from string to float and return converted data as a list.""" conversion = {"M": 1000000, "B": 1000000000} updated_damages =[] for damage in damages: if damage.find('M') != -1: updated_damages.append(float(damage[0:damage.find('M')])*conversion["M"]) elif damage.find('B') != -1: updated_damages.append(float(damage[0:damage.find('B')])*conversion["B"]) else: updated_damages.append(damage) return updated_damages # update damages data updated_damages = convert_damages_data(damages) # 2 # Create a Table def create_dictionary(names, months, years, max_sustained_winds,areas_affected, updated_damages, deaths): hurricanes={} num_of_hurricanes=len(names) for i in range(num_of_hurricanes): hurricanes[names[i]]={"Name": names[i], "Month":months[i], "Year":years[i], "Max Sustained Wind": max_sustained_winds[i],"Areas Affected": areas_affected[i], "Damages": updated_damages[i], "Deaths":deaths[i]} return hurricanes # Create and view the hurricanes dictionary hurricanes = create_dictionary(names, months, years, max_sustained_winds, areas_affected, updated_damages, deaths) # 3 # Organizing by Year def create_year_directory(hurricanes): hurricanes_by_year={} for cane in hurricanes: current_year=hurricanes[cane]["Year"] current_cane=hurricanes[cane] if current_year not in hurricanes_by_year: hurricanes_by_year[current_year]=[current_cane] else: hurricanes_by_year[current_year].append(current_cane) return hurricanes_by_year # create a new dictionary of hurricanes with year and key hurricanes_by_year=create_year_directory(hurricanes) print(hurricanes_by_year[1932]) # 4 # Counting Damaged Areas def count_affected_areas(hurricanes): affected_areas_count={} for cane in hurricanes: for area in hurricanes[cane]["Areas Affected"]: if area not in affected_areas_count: affected_areas_count[area]=1 else: affected_areas_count[area]+=1 return affected_areas_count # create dictionary of areas to store the number of hurricanes involved in affected_areas_count=count_affected_areas(hurricanes) # 5 # Calculating Maximum Hurricane Count def most_affected_areas(affected_areas_count): max_area="Central America" max_area_count=0 for area in affected_areas_count: if affected_areas_count[area]>max_area_count: max_area=area max_area_count=affected_areas_count[area] return max_area, max_area_count # find most frequently affected area and the number of hurricanes involved in max_area, max_area_count=most_affected_areas(affected_areas_count) print(max_area, max_area_count) # 6 # Calculating the Deadliest Hurricane def highest_mortality(hurricanes): max_mortality_cane = 'Cuba I' max_mortality = 0 for cane in hurricanes: if hurricanes[cane]['Deaths'] > max_mortality: max_mortality_cane = cane max_mortality = hurricanes[cane]['Deaths'] return max_mortality_cane, max_mortality # find highest mortality hurricane and the number of deaths max_mortality_cane, max_mortality=highest_mortality(hurricanes) print(max_mortality_cane, max_mortality) # 7 # Rating Hurricanes by Mortality def catagorize_by_mortality(hurricanes): mortality_scale={0:0, 1:100, 2:500, 3:1000, 4:10000} hurricanes_by_mortality={0:[], 1:[] ,2:[], 3:[], 4:[], 5:[]} for cane in hurricanes: num_deaths=hurricanes[cane]["Deaths"] if num_deaths==mortality_scale[0]: hurricanes_by_mortality[0].append(hurricanes[cane]) elif num_deaths>mortality_scale[0] and num_deaths <=mortality_scale[1]: hurricanes_by_mortality[1].append(hurricanes[cane]) elif num_deaths>mortality_scale[1] and num_deaths>=mortality_scale[2]: hurricanes_by_mortality[2].append(hurricanes[cane]) elif num_deaths>mortality_scale[2]and num_deaths<=mortality_scale[3]: hurricanes_by_mortality[3].append(hurricanes[cane]) elif num_deaths>mortality_scale[3] and num_deaths<=mortality_scale[4]: hurricanes_by_mortality[4].append(hurricanes[cane]) else: hurricanes_by_mortality[5].append(hurricanes[cane]) return hurricanes_by_mortality # categorize hurricanes in new dictionary with mortality severity as key hurricanes_by_mortality=catagorize_by_mortality(hurricanes) print(hurricanes_by_mortality[5]) # 8 Calculating Hurricane Maximum Damage def maximum_damage(hurricanes): max_damage_cane="Cuba I" max_damage=0 for cane in hurricanes: if hurricanes[cane]["Damages"]=="Damages not recorded": pass elif hurricanes[cane]["Damages"]>max_damage: max_damage_cane=cane max_damage=hurricanes[cane]["Damages"] return max_damage_cane, max_damage # find highest damage inducing hurricane and its total cost max_damage_cane, max_damage=maximum_damage(hurricanes) print(max_damage_cane, max_damage) # 9 # Rating Hurricanes by Damage def hurricanes_by_damage(hurricanes): damage_scale = {0: 0, 1: 100000000, 2: 1000000000, 3: 10000000000, 4: 50000000000} canes_by_damage={0:[], 1:[], 2:[], 3:[], 4:[], 5:[]} for cane in hurricanes: tot_damage=hurricanes[cane]["Damages"] if tot_damage=="Damages not recorded": canes_by_damage[0].append(hurricanes[cane]) elif tot_damage==damage_scale[0]: canes_by_damage[0].append(hurricanes[cane]) elif tot_damage > damage_scale[0] and tot_damage <= damage_scale[1]: canes_by_damage[1].append(hurricanes[cane]) elif tot_damage > damage_scale[1] and tot_damage <= damage_scale[2]: canes_by_damage[2].append(hurricanes[cane]) elif tot_damage > damage_scale[2] and tot_damage <= damage_scale[3]: canes_by_damage[3].append(hurricanes[cane]) elif tot_damage > damage_scale[3] and tot_damage <= damage_scale[4]: canes_by_damage[4].append(hurricanes[cane]) else: canes_by_damage[5].append(hurricanes[cane]) return canes_by_damage # categorize hurricanes in new dictionary with damage severity as key canes_by_damage=hurricanes_by_damage(hurricanes) print(canes_by_damage[5])
[ "noreply@github.com" ]
badinplaid737.noreply@github.com
76ca0659bc2a888ba9d30a93427fa3fbf9282b19
af34730d1d0129a4381649d9a63b2966ab496fa1
/LAB6/zad1.py
009f6724957e42cc9188490e562d5db63d5d77e5
[]
no_license
panjacob/Artificial-intelligence
e84958d2d94f062edf59034e61df711edc027432
378b5244a172104cacb59c041891071c4ae55e91
refs/heads/master
2023-02-21T10:15:56.834349
2021-01-12T12:33:34
2021-01-12T12:33:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,042
py
from LAB6.algorithms import hillclimb, hillclimb_random from LAB6.functions import sphere_f, booth_f, mc_cormick_f from LAB6.utilis import avg_plot results_mc_cormick_f_rand = [] results_booth_f_rand = [] results_sphere_f_rand = [] results_mc_cormick_f_hillclimb = [] results_booth_f_hillclimb = [] results_sphere_f_hillclimb = [] for n in range(0, 20): results_mc_cormick_f_hillclimb.append( hillclimb(function=mc_cormick_f, domain_x=(-1.5, 4), domain_y=(-3, 4), attempts=100000, accuracy_float_points_x=5, accuracy_float_points_y=5)) results_booth_f_hillclimb.append( hillclimb(function=booth_f, domain_x=(-10, 10), domain_y=(-10, 10), attempts=10000, accuracy_float_points_x=0, accuracy_float_points_y=0)) results_sphere_f_hillclimb.append( hillclimb(function=sphere_f, domain_x=(-1000, 1000), domain_y=(1, 100), attempts=100000, accuracy_float_points_x=1, accuracy_float_points_y=0)) results_mc_cormick_f_rand.append( hillclimb_random(function=mc_cormick_f, domain_x=(-1.5, 4), domain_y=(-3, 4), attempts=100000, accuracy_float_points_x=5, accuracy_float_points_y=5)) results_booth_f_rand.append( hillclimb_random(function=booth_f, domain_x=(-10, 10), domain_y=(-10, 10), attempts=10000, accuracy_float_points_x=0, accuracy_float_points_y=0)) results_sphere_f_rand.append( hillclimb_random(function=sphere_f, domain_x=(-1000, 1000), domain_y=(1, 100), attempts=100000, accuracy_float_points_x=1, accuracy_float_points_y=0)) avg_plot(results_mc_cormick_f_hillclimb, 'results_mc_cormick_f HILLCLIMB') avg_plot(results_booth_f_hillclimb, 'results_booth_f HILLCLIMB') avg_plot(results_sphere_f_hillclimb, 'results_sphere_f HILLCLIMB') avg_plot(results_mc_cormick_f_rand, 'results_mc_cormick_f RAND') avg_plot(results_booth_f_rand, 'results_booth_f RAND') avg_plot(results_sphere_f_rand, 'results_sphere_f RAND')
[ "kwiatkowskijakub@protonmail.com" ]
kwiatkowskijakub@protonmail.com
bf3f3144ec9f3583ccdd3b4ee75f9f33fb4b2722
91e722e72cde9e913803c9d811afb7e971bcafd5
/squisha.py
4dec736ea5921757748e811ef977cd849bbbca41
[]
no_license
gbishop16/PythonTest
ba0b80e619a2322417e6192c5377781afdcd9b85
9169608d98229367f4c414b818508032784242f1
refs/heads/main
2023-04-19T12:49:23.395975
2021-04-29T21:28:42
2021-04-29T21:28:42
358,661,381
0
0
null
2021-04-16T16:38:45
2021-04-16T16:38:44
null
UTF-8
Python
false
false
1,821
py
import numpy as np #Here we are going to do two steps # 1 - Calculate the Output # 2 - Compare the output to the expected Output def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoid_derrivative(x): return x * (1 - x) # Grid of training inputs training_inputs = np.array([ [1,0,1,1,0], [0,1,1,0,1], [1,1,0,1,1], [0,1,0,0,0], [1,1,1,0,0], [1,0,0,0,1 ] ]) # .T Transpose the matrix so its a 1 x 4 training_outputs = np.array( [[1,0,1,1,0,0]] ).T np.random.seed(2) # How many weights do we have? # in1, in2, in3 each need their own weight... so 3! # Create random weights synaptic_weights = 2 * np.random.random((5,1)) - 1 #print('Random starting synaptic weights') #print(synaptic_weights) for iteration in range(1): input_layer = training_inputs # Take each input and multiply it times our weights unsquished_outputs = np.dot(input_layer, synaptic_weights) # print('Sum of Weights and Inputs') # print(unsquished_outputs) # Squish our result between 0 and 1 by using our normalizing fn normalized_outputs = sigmoid(unsquished_outputs) # print('Normalized (Squished) Outputs') # print(normalized_outputs) # print('Derrivative of normalized outputs') # print(sigmoid_derrivative(normalized_outputs)) # 2 - Calc error by checking the training outputs with our calulated ones error = training_outputs - normalized_outputs # print('Error') # print(error) adjustments = error * sigmoid_derrivative(normalized_outputs) print('Adjustments') print(adjustments) print(input_layer.T) print(np.dot(input_layer.T, adjustments)) print(synaptic_weights) synaptic_weights += np.dot(input_layer.T, adjustments) # print('New Weights') print('Final synaptic weights') print(synaptic_weights)
[ "gqbishop@gmail.com" ]
gqbishop@gmail.com
4711899bace9f735a03aa47cdd6369e47250c52b
3c9905785bf67f39c8c2d4e43911bfca3fac7e7c
/ssg_wargame/floppy/floppy_ex.py
2026905962306529509cbf589a71f145ee806e4f
[]
no_license
kommadot/CTF_STUDY
c31a3fd63f45674a41b25a21d2632c849f165d91
d7ccb33297f8bccc5b9b47a0958478bc8bfb1998
refs/heads/master
2022-07-09T17:04:14.286922
2022-06-27T07:00:54
2022-06-27T07:00:54
127,427,375
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
from pwn import * s = process('./floppy') s.recvuntil('>') s.sendline('1') s.recv() s.sendline('1') s.recvuntil('>') s.sendline('2') s.recvuntil('data') s.send('1234') s.recvuntil('tion:') s.send('1234') s.recvuntil('>') s.sendline('4') s.recvuntil('Data') s.sendline('1') s.recvuntil('tion:') s.send('a'*17) s.recvuntil('>') s.sendline('3') s.recvuntil('a'*16) stackleak = u32(recv(4)) print hex(stackleak)
[ "tlagyqls7@naver.com" ]
tlagyqls7@naver.com
d021b744115764d2277dc2d4614b68fc97f495bd
bcab6bf51597d4fb8ba7abad8e5e33434cd8aa0a
/verts_package/__init__.py
cd1f1451ba0456486c767efacec29c163ece17c8
[]
no_license
OpenSolutionsFinland/Verts_package
847d14230a310f9096a4edbb731fe531d68db5d6
583dad43a5e1f43fbc1dbbb73d49608ed1832b62
refs/heads/master
2016-09-05T09:11:17.272150
2013-08-16T04:38:22
2013-08-16T04:38:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
36
py
import package_report import package
[ "jezco@Jesses-MacBook-Pro.local" ]
jezco@Jesses-MacBook-Pro.local
23bf9810cb81c88e936da29a45a53a82b77e55da
10decc1620bf5607e9c57296114026ff4bba4551
/leadmanager/leads/migrations/0001_initial.py
d1d321c13518b22c04f69b6f2d15d3f4e79e3eab
[ "MIT" ]
permissive
GeorgHs/PreSteps_BuchungsTrainerDjangoAPI
785797d94fa14489a7375c7e89999f39f52f90dd
de1609923e235cb2463463da220157c19e090c97
refs/heads/main
2023-03-30T15:54:10.083151
2021-04-08T15:44:53
2021-04-08T15:44:53
336,791,318
0
0
null
null
null
null
UTF-8
Python
false
false
718
py
# Generated by Django 3.1.6 on 2021-02-07 13:50 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Lead', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=100)), ('email', models.EmailField(max_length=100, unique=True)), ('message', models.CharField(blank=True, max_length=500)), ('create_at', models.DateTimeField(auto_now_add=True)), ], ), ]
[ "Georg.Hertzsch@msg-gillardon.de" ]
Georg.Hertzsch@msg-gillardon.de
147a37571e91159aee5ad94006330608a5b884fa
4091f79b6537d091241f66ce02c79f701e07967e
/HW_PT2/RELAYplate.py
8f722a49d2061c3cee7b167b529e288cd3b7f0a1
[]
no_license
habibiam/opto_luna
b0b3c29ce1fdb1e730d4c40a7dd91fe8a13d492b
1ee2cf09e0e03a046a43c69d35cb09e82f05c457
refs/heads/master
2020-04-15T12:47:47.547115
2017-02-03T22:50:11
2017-02-03T22:50:11
65,699,360
0
0
null
null
null
null
UTF-8
Python
false
false
6,209
py
import spidev import time import string import site import sys from numbers import Number import RPi.GPIO as GPIO GPIO.setwarnings(False) #Initialize if (sys.version_info < (2,7,0)): sys.stderr.write("You need at least python 2.7.0 to use this library") exit(1) GPIO.setmode(GPIO.BCM) RELAYbaseADDR=24 ppFRAME = 25 ppINT = 22 GPIO.setup(ppFRAME,GPIO.OUT) GPIO.output(ppFRAME,False) #Initialize FRAME signal time.sleep(.001) #let Pi-Plate reset SPI engine if necessary GPIO.setup(ppINT, GPIO.IN, pull_up_down=GPIO.PUD_UP) spi = spidev.SpiDev() spi.open(0,1) localPath=site.getsitepackages()[0] helpPath=localPath+'/piplates/RELAYhelp.txt' #helpPath='RELAYhelp.txt' #for development only RPversion=1.1 # Version 1.0 - initial release # Version 1.1 - adjusted timing on command functions to compensate for RPi SPI changes RMAX = 2000 MAXADDR=8 relaysPresent = range(8) #==============================================================================# # HELP Functions # #==============================================================================# def Help(): help() def HELP(): help() def help(): valid=True try: f=open(helpPath,'r') while(valid): Count=0 while (Count<20): s=f.readline() if (len(s)!=0): print s[:len(s)-1] Count = Count + 1 if (Count==20): Input=raw_input('press \"Enter\" for more...') else: Count=100 valid=False f.close() except IOError: print ("Can't find help file.") def getPMrev(): return RPversion #==============================================================================# # RELAY Functions # #==============================================================================# def relayON(addr,relay): VerifyADDR(addr) VerifyRELAY(relay) ppCMDr(addr,0x10,relay,0,0) def relayOFF(addr,relay): VerifyADDR(addr) VerifyRELAY(relay) ppCMDr(addr,0x11,relay,0,0) def relayTOGGLE(addr,relay): VerifyADDR(addr) VerifyRELAY(relay) ppCMDr(addr,0x12,relay,0,0) def relayALL(addr,relays): VerifyADDR(addr) assert ((relays>=0) and (relays<=127)),"Argument out of range. Must be between 0 and 127" ppCMDr(addr,0x13,relays,0,0) def relaySTATE(addr): VerifyADDR(addr) resp=ppCMDr(addr,0x14,0,0,1) return resp[0] #==============================================================================# # LED Functions # #==============================================================================# def setLED(addr): VerifyADDR(addr) resp=ppCMDr(addr,0x60,0,0,0) def clrLED(addr): VerifyADDR(addr) resp=ppCMDr(addr,0x61,0,0,0) def toggleLED(addr): VerifyADDR(addr) resp=ppCMDr(addr,0x62,0,0,0) #==============================================================================# # SYSTEM Functions # #==============================================================================# def getID(addr): global RELAYbaseADDR VerifyADDR(addr) addr=addr+RELAYbaseADDR id="" arg = range(4) resp = [] arg[0]=addr; arg[1]=0x1; arg[2]=0; arg[3]=0; ppFRAME = 25 GPIO.output(ppFRAME,True) null = spi.writebytes(arg) count=0 # time.sleep(.01) while (count<20): dummy=spi.xfer([00],500000,20) if (dummy[0] != 0): num = dummy[0] id = id + chr(num) count = count + 1 else: count=20 GPIO.output(ppFRAME,False) return id def getHWrev(addr): global RELAYbaseADDR VerifyADDR(addr) resp=ppCMDr(addr,0x02,0,0,1) rev = resp[0] whole=float(rev>>4) point = float(rev&0x0F) return whole+point/10.0 def getFWrev(addr): global RELAYbaseADDR VerifyADDR(addr) resp=ppCMDr(addr,0x03,0,0,1) rev = resp[0] whole=float(rev>>4) point = float(rev&0x0F) return whole+point/10.0 def getVersion(): return RPversion #==============================================================================# # LOW Level Functions # #==============================================================================# def VerifyRELAY(relay): assert ((relay>=1) and (relay<=7)),"Relay number out of range. Must be between 1 and 7" def VerifyADDR(addr): assert ((addr>=0) and (addr<MAXADDR)),"RELAYplate address out of range" addr_str=str(addr) assert (relaysPresent[addr]==1),"No RELAYplate found at address "+addr_str def ppCMDr(addr,cmd,param1,param2,bytes2return): global RELAYbaseADDR arg = range(4) resp = [] arg[0]=addr+RELAYbaseADDR; arg[1]=cmd; arg[2]=param1; arg[3]=param2; GPIO.output(ppFRAME,True) null=spi.xfer(arg,300000,60) #null = spi.writebytes(arg) if bytes2return>0: time.sleep(.0001) for i in range(0,bytes2return): dummy=spi.xfer([00],500000,20) resp.append(dummy[0]) time.sleep(.001) GPIO.output(ppFRAME,False) time.sleep(.001) return resp def getADDR(addr): global RELAYbaseADDR resp=ppCMDr(addr,0x00,0,0,1) return resp[0]-RELAYbaseADDR def quietPoll(): global relaysPresent ppFoundCount=0 for i in range (0,8): relaysPresent[i]=0 rtn = getADDR(i) if (rtn==i): relaysPresent[i]=1 ppFoundCount += 1 #RESET(i) def RESET(addr): VerifyADDR(addr) resp=ppCMDr(addr,0x0F,0,0,0) time.sleep(.10) quietPoll()
[ "noreply@github.com" ]
habibiam.noreply@github.com
dd953dd9a5015782428fe48bd1d2a3e97abca454
23177554c77dbaffd51fd67d2223503980395d19
/Hangman.py
bdbb93746f1406f8684256a18b4ce10288d4e84f
[]
no_license
Aakash1311/Python
b9bb62aad73590365dc38572b0bc53880ee65163
869f2ea7c767a0c2d801b6223c60bc5d533d88c8
refs/heads/master
2023-04-30T02:54:21.862781
2021-05-20T12:19:30
2021-05-20T12:19:30
363,636,141
0
0
null
null
null
null
UTF-8
Python
false
false
1,179
py
import random def hangman(): word_list = ["python", "java", "computer", "hacker", "painter"] random_number = random.randint(0, 4) word = word_list[random_number] wrong_guesses = 0 stages = ["", "________ ", "| | ", "| 0 ", "| /|\ ", "| / \ ", "|"] remaining_letters = list(word) letter_board = ["__"] * len(word) win = False print('Welcome to Hangman') while wrong_guesses < len(stages) - 1: print('\n') guess = input("Guess a letter") if guess in remaining_letters: character_index = remaining_letters.index(guess) letter_board[character_index] = guess remaining_letters[character_index] = '$' else: wrong_guesses += 1 print((' '.join(letter_board))) print('\n'.join(stages[0: wrong_guesses + 1])) if '__' not in letter_board: print('You win! The word was:') print(' '.join(letter_board)) win = True break if not win: print('\n'.join(stages[0: wrong_guesses])) print('You lose! The words was {}'.format(word)) hangman()
[ "Singhaakash084@gmail.com" ]
Singhaakash084@gmail.com
5a520ace4bc20effd2e6510434cbd0883db604d1
1985e1265986b5ba04fef111f1f4dd2f29525f70
/postgresql_example/queries.py
3c9fa4f7b92e03e8642ba821ec83b53e7c5fdc81
[ "MIT" ]
permissive
AshleyBrooks213/Unit3Sprint2
a21eca835c9ccf6871d5158b3df10058356d67c5
48e35f1a33c5ba50caa5f8f94df244e7f1f4e6b4
refs/heads/main
2023-05-10T21:47:41.164837
2021-05-25T17:27:16
2021-05-25T17:27:16
370,768,767
0
0
null
null
null
null
UTF-8
Python
false
false
497
py
"""Holds my PosGreSQL example queries""" # SQL Create Table Query CREATE_TABLE_STATEMENT = """ CREATE TABLE test_table ( id SERIAL PRIMARY KEY, name VARCHAR(40) NOT NULL, data JSONB ); """ #SQL Insert Values Query INSERT_STATEMENT = """ INSERT INTO test_table(name, data) VALUES ( 'A Row', null ), ( 'Another Row, with Json', '{"a": 1, "b": ["leanves, "more leaves", "even more leaves"]}'::JSONB ); """
[ "noreply@github.com" ]
AshleyBrooks213.noreply@github.com
0cb2d43aa43b94d6fe24a210644786fcedeb5ef9
7d59a4dec57d09b7f899d6d0db2de4a4decfaa55
/2020-11/2020-11-13-TabuSearch/tabu_tsp.py
b521881a2d76cc79cf82da8a546f978677b5af92
[ "MIT" ]
permissive
MinWu-DoctorFive/Code
df41bcd248179f4378954d51d3076d79d5dfaca1
fc3790b9b30b8acd6c46ab4b4f0ce9aa7892e4aa
refs/heads/main
2023-01-31T21:11:03.247698
2020-12-16T03:13:31
2020-12-16T03:13:31
343,963,649
1
1
MIT
2021-03-03T01:27:32
2021-03-03T01:27:31
null
UTF-8
Python
false
false
5,613
py
from itertools import combinations import os,sys,copy import numpy as np import time import matplotlib.pyplot as plt from GetData import * from tqdm import tqdm class Tabu(): def __init__(self,disMatrix,max_iters=50,maxTabuSize=10): """parameters definition""" self.disMatrix = disMatrix self.maxTabuSize = maxTabuSize self.max_iters = max_iters self.tabu_list=[] def get_route_distance(self,route): ''' Description: function to calculate total distance of a route. evaluate function. parameters: route : list return : total distance : folat ''' routes = [0] + route + [0] # add the start and end point total_distance = 0 for i,n in enumerate(routes): if i != 0 : total_distance = total_distance + self.disMatrix[last_pos][n] last_pos = n return total_distance def exchange(self,s1,s2,arr): """ function to Swap positions of two elements in an arr Args: int,int,list s1 : target 1 s2 : target 2 arr : target array Ouput: list current_list : target array """ current_list = copy.deepcopy(arr) index1 , index2 = current_list.index(s1) , current_list.index(s2) # get index current_list[index1], current_list[index2]= arr[index2] , arr[index1] return current_list def generate_initial_solution(self,num=10,mode='greedy'): """ function to get the initial solution,there two different way to generate route_init. Args: num : int the number of points mode : string "greedy" : advance step by choosing optimal one "random" : randomly generate a series number Ouput: list s_init : initial solution route_init """ if mode == 'greedy': route_init=[0] for i in range(num): best_distance = 10000000 for j in range(num+1): if self.disMatrix[i][j] < best_distance and j not in route_init: best_distance = self.disMatrix[i][j] best_candidate = j route_init.append(best_candidate) route_init.remove(0) if mode == 'random': route_init = np.arange(1,num+1) #init solution from 1 to num np.random.shuffle(route_init) #shuffle the list randomly return list(route_init) def tabu_search(self,s_init): """tabu search""" s_best = s_init bestCandidate = copy.deepcopy(s_best) routes , temp_tabu = [] , [] # init routes.append(s_best) while(self.max_iters): self.max_iters -= 1 # Number of iterations neighbors = copy.deepcopy(s_best) for s in combinations(neighbors, 2): sCandidate = self.exchange(s[0],s[1],neighbors) # exchange number to generate candidates if s not in self.tabu_list and self.get_route_distance(sCandidate) < self.get_route_distance(bestCandidate): bestCandidate = sCandidate temp_tabu = s if self.get_route_distance(bestCandidate) < self.get_route_distance(s_best): # record the best solution s_best = bestCandidate if temp_tabu not in self.tabu_list: self.tabu_list.append(temp_tabu) if len(self.tabu_list) > self.maxTabuSize : self.tabu_list.pop(0) routes.append(bestCandidate) return s_best, routes if __name__ == "__main__": np.random.seed(2020) customerNum = 10 # 定义多少个点 data=GetData() tsp_data = data.generate_locations(num_points=customerNum+1,map_size=100) #在100*100的图中,随机生成位置,customerNum+1 多一个depot点 dismatrix = data.get_euclidean_distance_matrix(tsp_data.locations) # data.plot_nodes(tsp_data.locations) """ Tabu : disMatrix : the distance matrix from 0 to X , 0 represernt starting and stopping point。 for example: disMatrix = [[0,3,4,... 1,0,5,... 3,5,0,...]] that means the distance from 0 to 0 is 0, from 0 to 1 is 3,... from 1 to 3 is 5.... max_iters : maximum iterations maxTabuSize : maximum iterations """ tsp = Tabu(disMatrix=dismatrix ,max_iters=20,maxTabuSize=10) # 设置参数 # two different way to generate initial solution # num : the number of points s_init = tsp.generate_initial_solution(num=customerNum,mode='greedy') # mode = "greedy" or "random" print('init route : ' , s_init) print('init distance : ' , tsp.get_route_distance(s_init)) start = time.time() best_route , routes = tsp.tabu_search(s_init) # tabu search end = time.time() print('best route : ' , best_route) print('best best_distance : ' , tsp.get_route_distance(best_route)) print('the time cost : ',end - start ) # plot the result changes with iterations results=[] for i in routes: results.append(tsp.get_route_distance(i)) plt.plot(np.arange(len(results)) , results) plt.show() # plot the route data.plot_route(tsp_data.locations,[0]+best_route+[0])
[ "noreply@github.com" ]
MinWu-DoctorFive.noreply@github.com
c345ca9a14392bdf35f7190437bb582816f536b5
60dae997c1c460a5c058940528669865fa44bb6d
/venv/lib/python3.5/types.py
c9d27e80838075844f2e347ead9a0fb8adc8c1c9
[]
no_license
abhay97ps/ReversiBot
5ba5e79e23659313de5004708642fdda508c0769
efc31516006a4819276231088f5a96acb3f4a57f
refs/heads/master
2020-03-07T04:43:37.003946
2018-05-09T03:24:48
2018-05-09T03:24:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
29
py
F:/usr/lib/python3.5/types.py
[ "aakashv000@gmail.com" ]
aakashv000@gmail.com
f9cb8c6add31241c4678d8c603fe6ab76c594042
1f780ec1f753be1628f7fc5bac23a9d6f594a8be
/asyncbb/ethereum/test/test_faucet.py
6854d62bab53a288815d92490abf5adefd15fb79
[]
no_license
tristan/asyncbb-eth
93833dc5b4d078c80eb3d9576d38f3fb9a66ce08
8371398076322a24e970fe0650b43d364c28d2cb
refs/heads/master
2020-06-10T22:36:06.634248
2017-02-19T10:34:25
2017-02-19T10:34:25
75,856,477
0
0
null
null
null
null
UTF-8
Python
false
false
3,722
py
import asyncio import os import subprocess import unittest from ethereum.abi import ContractTranslator from ethereum.utils import sha3 from tornado.escape import json_decode from asyncbb.handlers import BaseHandler from asyncbb.ethereum import EthereumMixin from asyncbb.test.base import AsyncHandlerTest from tornado.testing import gen_test from asyncbb.ethereum.client import JsonRPCClient from testing.common.database import get_path_of from .parity import requires_parity from .faucet import FaucetMixin, data_decoder from .geth import requires_geth class Handler(EthereumMixin, BaseHandler): async def get(self, addr): balance = await self.eth.eth_getBalance(addr) self.write(str(balance)) class FaucetTest(FaucetMixin, AsyncHandlerTest): def get_urls(self): return [(r'^/(0x.+)$', Handler)] @gen_test(timeout=10) @requires_parity async def test_parity_faucet_connection(self): addr = '0x39bf9e501e61440b4b268d7b2e9aa2458dd201bb' val = 761751855997712 await self.faucet(addr, val) resp = await self.fetch('/{}'.format(addr)) self.assertEqual(resp.body.decode('utf-8'), str(val)) @gen_test(timeout=10) @requires_geth async def test_geth_faucet(self): addr = '0x39bf9e501e61440b4b268d7b2e9aa2458dd201bb' val = 761751855997712 await self.faucet(addr, val) resp = await self.fetch('/{}'.format(addr)) self.assertEqual(resp.body.decode('utf-8'), str(val)) class ContractTest(FaucetMixin, AsyncHandlerTest): def get_urls(self): return [] @unittest.skipIf(get_path_of("solc") is None, "couldn't find solc compiler, skipping test") @gen_test(timeout=60) @requires_parity(pass_parity='node') async def test_deploy_contract(self, *, node): client = JsonRPCClient(node.dsn()['url']) sourcecode = b"contract greeter{string greeting;function greeter(string _greeting) public{greeting=_greeting;}function greet() constant returns (string){return greeting;}}" #source_fn = os.path.join(node.get_data_directory(), 'greeting.sol') #with open(source_fn, 'wb') as wf: # wf.write(sourcecode) source_fn = '<stdin>' contract_name = 'greeter' constructor_args = [b'hello world!'] args = ['solc', '--combined-json', 'bin,abi', '--add-std'] # , source_fn] #output = subprocess.check_output(args, stderr=subprocess.PIPE) process = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, stderrdata = process.communicate(input=sourcecode) output = json_decode(output) contract = output['contracts']['{}:{}'.format(source_fn, contract_name)] bytecode = data_decoder(contract['bin']) contract_interface = json_decode(contract['abi']) translator = ContractTranslator(contract_interface) constructor_call = translator.encode_constructor_arguments(constructor_args) bytecode += constructor_call tx_hash, contract_address = await self.deploy_contract(bytecode) tx_receipt = await client.eth_getTransactionReceipt(tx_hash) self.assertIsNotNone(tx_receipt) code = await client.eth_getCode(contract_address) self.assertIsNotNone(code) self.assertNotEqual(data_decoder(code), b'') # call the contract and check the result res = await client.eth_call(from_address='0x39bf9e501e61440b4b268d7b2e9aa2458dd201bb', to_address=contract_address, data=sha3('greet()')) result = translator.decode_function_result('greet', data_decoder(res)) self.assertEqual(result[0], constructor_args[0])
[ "tristan@bakkenbaeck.no" ]
tristan@bakkenbaeck.no
2a958a04c29b32972ba720e0bf136c454d89520f
f6794da6d91204047c31789d28872381b8db73bf
/structs_and_algs/queue.py
1e2a595a958e0595111fe199c3e29bf4c0fea3d5
[]
no_license
mericar/pyPlay
357b16eb6d6103bbcad0d8dc30e2a84d08f80ad3
6857c11d0ca7ebdaabeb0989a9492b9ec9a9d438
refs/heads/master
2021-06-18T05:11:22.315657
2017-06-26T07:51:17
2017-06-26T07:51:17
46,304,052
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
class Queue: def __init__(self, front=None): self.q = [front] def enqueue(self, new_entity): self.q.append(new_entity) def first(self): return self.q[0] def dequeue(self): return self.q.pop(0)
[ "mirkocarich@gmail.com" ]
mirkocarich@gmail.com
98b06251948d5f524eae90478a5c1dd10a1d57cd
7f41ef1cfa30e02e7887bcf16e6587c0052ed4ba
/flaskapi/pyapi/logging/apiicefire.py
7d714513d903562685ff4cc7bdae48c7c271ed10
[]
no_license
bmyers624/pyapi
353b4ddf50eb0290d8a161a872520020e50b0cd1
fcd97e2f247c314f7f76e0fb68cf410f9c706f7a
refs/heads/master
2022-11-06T23:59:47.246268
2020-07-10T22:05:54
2020-07-10T22:05:54
276,757,132
0
0
null
null
null
null
UTF-8
Python
false
false
824
py
#!/usr/bin/python3 import logging import requests import argparse import pprint BOOK = "https://www.anapioficeandfirie.com/api/books" def main(): logging.basicConfig(filename='icefire.log', format='%(levelname)s:%(asctime)s %(message)s',\ datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO) try: logging.info('Scripting started') icefire = requests.get(BOOK + "/" + args.bookno) pprint.pprint(icefire.json()) logging.info("API Response Code -" + str(icefire)) except Exception as err: logging.critical(err) finally: logging.info("Program ended") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--bookno', help='Enter the book number (integer) to look up.') args = parser.parse_args() main()
[ "b.myers624@gmail.com" ]
b.myers624@gmail.com
8ffd200a40777796426fd2536c915d0fa9d9ddf9
6ccdab14aca949c571ef5f63dea001cb9565e23e
/app/api/monitoring.py
e21a7d646f8880c74a66c03e740f7cdc40bcefa5
[]
no_license
unmade/hangman
bb87cb3ca3952791f61715e15db3805c6cd4f403
28eef30411e06446cd5252143c4d1b0e6a418483
refs/heads/master
2021-07-10T09:56:45.988497
2020-02-09T14:51:56
2020-02-09T14:51:56
239,015,111
0
0
null
2021-03-26T17:39:01
2020-02-07T20:17:40
Python
UTF-8
Python
false
false
332
py
from fastapi import APIRouter from app import db router = APIRouter() @router.get("/ping") async def ping(): """Health check for service""" return {"status": "OK"} @router.get("/ping/db") def ping_db(): try: db.ping_db() except Exception: return {"status": "ERROR"} return {"status": "OK"}
[ "lesha.maslakov@gmail.com" ]
lesha.maslakov@gmail.com
f17fd033520cfda90e7a79bc7778f3f55c05d53f
ffe9783bffe016db125b3bc0416776bf057d999d
/OML/logs.py
5cf201b237f5195d705db0f04ff7c0d4d9a9e7a2
[]
no_license
hrmello/OperationalizingMachineLearning
836a221353b231796b28c9b0aa17852467fe235c
9fec131a7435ae5f97edc06ab2e6fd9fc2615f2f
refs/heads/master
2022-12-20T05:28:58.329562
2020-10-07T18:45:52
2020-10-07T18:45:52
300,402,359
0
0
null
null
null
null
UTF-8
Python
false
false
434
py
from azureml.core import Workspace from azureml.core.webservice import Webservice # Requires the config to be downloaded first to the current working directory ws = Workspace.from_config() # Set with the deployment name name = "voting-deploy" # load existing web service service = Webservice(name=name, workspace=ws) logs = service.get_logs() service.update(enable_app_insights=True) for line in logs.split('\n'): print(line)
[ "hrmello@outlook.com" ]
hrmello@outlook.com
b564186a86551fe1998854e70937d0ba90f29676
e7397ed7c8a79b1df463205ccf8358a183f51d68
/venv/Lib/site-packages/pdfdocument/document.py
247abee33a04553e4c81c232e08d028a645cb3c2
[]
no_license
yzx6151211/test
7515a1e15fa16d1ba35a6af3afcd331e579427c0
59ffb77c240dc7e3f18d45e0d0863b9080c9fe40
refs/heads/master
2023-03-31T10:57:11.523739
2021-04-08T02:00:12
2021-04-08T02:00:12
355,732,822
0
1
null
null
null
null
UTF-8
Python
false
false
22,264
py
# coding=utf-8 import copy import sys import unicodedata from functools import reduce from reportlab.lib import colors from reportlab.lib.enums import TA_RIGHT from reportlab.lib.fonts import addMapping from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib.units import cm, mm from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.platypus import ( BaseDocTemplate, CondPageBreak, Frame, KeepTogether, NextPageTemplate, PageBreak, PageTemplate, Paragraph as _Paragraph, Spacer, Table, ) from reportlab.platypus.flowables import HRFlowable PY2 = sys.version_info[0] < 3 if PY2: string_type = unicode # noqa else: string_type = str def register_fonts_from_paths( regular, italic=None, bold=None, bolditalic=None, font_name="Reporting" ): """ Pass paths to TTF files which should be used for the PDFDocument """ pdfmetrics.registerFont(TTFont("%s" % font_name, regular)) pdfmetrics.registerFont(TTFont("%s-Italic" % font_name, italic or regular)) pdfmetrics.registerFont(TTFont("%s-Bold" % font_name, bold or regular)) pdfmetrics.registerFont( TTFont("%s-BoldItalic" % font_name, bolditalic or bold or regular) ) addMapping("%s" % font_name, 0, 0, "%s" % font_name) addMapping("%s" % font_name, 0, 1, "%s-Italic" % font_name) addMapping("%s" % font_name, 1, 0, "%s-Bold" % font_name) addMapping("%s" % font_name, 1, 1, "%s-BoldItalic" % font_name) class Empty(object): pass def sanitize(text): REPLACE_MAP = [ (u"&", "&#38;"), (u"<", "&#60;"), (u">", "&#62;"), (u"ç", "&#231;"), (u"Ç", "&#199;"), (u"\n", "<br />"), (u"\r", ""), ] for p, q in REPLACE_MAP: text = text.replace(p, q) return text def normalize(text): """ Some layers of reportlab, PDF or font handling or whatever cannot handle german umlauts in decomposed form correctly. Normalize everything to NFKC. """ if not isinstance(text, string_type): text = string_type(text) return unicodedata.normalize("NFKC", text) def MarkupParagraph(txt, *args, **kwargs): if not txt: return _Paragraph(u"", *args, **kwargs) return _Paragraph(normalize(txt), *args, **kwargs) def Paragraph(txt, *args, **kwargs): if not txt: return _Paragraph(u"", *args, **kwargs) return _Paragraph(sanitize(normalize(txt)), *args, **kwargs) class BottomTable(Table): """ This table will automatically be moved to the bottom of the page using the BottomSpacer right before it. """ pass class BottomSpacer(Spacer): def wrap(self, availWidth, availHeight): my_height = availHeight - self._doc.bottomTableHeight if my_height <= 0: return (self.width, availHeight) else: return (self.width, my_height) class RestartPageBreak(PageBreak): """ Insert a page break and restart the page numbering. """ pass class ReportingDocTemplate(BaseDocTemplate): def __init__(self, *args, **kwargs): BaseDocTemplate.__init__(self, *args, **kwargs) self.bottomTableHeight = 0 self.bottomTableIsLast = False self.numPages = 0 self._lastNumPages = 0 self.setProgressCallBack(self._onProgress_cb) # For batch reports with several PDFs concatenated self.restartDoc = False self.restartDocIndex = 0 self.restartDocPageNumbers = [] def afterFlowable(self, flowable): self.numPages = max(self.canv.getPageNumber(), self.numPages) self.bottomTableIsLast = False if isinstance(flowable, BottomTable): self.bottomTableHeight = reduce(lambda p, q: p + q, flowable._rowHeights, 0) self.bottomTableIsLast = True elif isinstance(flowable, RestartPageBreak): self.restartDoc = True self.restartDocIndex += 1 self.restartDocPageNumbers.append(self.page) # here the real hackery starts ... thanks Ralph def _allSatisfied(self): """ Called by multi-build - are all cross-references resolved? """ if self._lastNumPages < self.numPages: return 0 return BaseDocTemplate._allSatisfied(self) def _onProgress_cb(self, what, arg): if what == "STARTED": self._lastNumPages = self.numPages self.restartDocIndex = 0 # self.restartDocPageNumbers = [] def page_index(self): """ Return the current page index as a tuple (current_page, total_pages) This is the ugliest thing I've done in the last two years. For this I'll burn in programmer hell. At least it is contained here. (Determining the total number of pages in reportlab is a mess anyway...) """ current_page = self.page total_pages = self.numPages if self.restartDoc: if self.restartDocIndex: current_page = ( current_page - self.restartDocPageNumbers[self.restartDocIndex - 1] + 1 ) if len(self.restartDocPageNumbers) > self.restartDocIndex: total_pages = ( self.restartDocPageNumbers[self.restartDocIndex] - self.restartDocPageNumbers[self.restartDocIndex - 1] + 1 ) else: total_pages = self.restartDocPageNumbers[0] if self.bottomTableHeight: total_pages -= 1 if self.bottomTableIsLast and current_page == 1: total_pages = max(1, total_pages) # Ensure total pages is always at least 1 total_pages = max(1, total_pages) return (current_page, total_pages) def page_index_string(self): """ Return page index string for the footer. """ current_page, total_pages = self.page_index() return self.PDFDocument.page_index_string(current_page, total_pages) def dummy_stationery(c, doc): pass class PDFDocument(object): show_boundaries = False _watermark = None def __init__(self, *args, **kwargs): self.doc = ReportingDocTemplate(*args, **kwargs) self.doc.PDFDocument = self self.story = [] self.font_name = kwargs.get("font_name", "Helvetica") self.font_size = kwargs.get("font_size", 9) def page_index_string(self, current_page, total_pages): return "Page %(current_page)d of %(total_pages)d" % { "current_page": current_page, "total_pages": total_pages, } def generate_style(self, font_name=None, font_size=None): self.style = Empty() self.style.fontName = font_name or self.font_name self.style.fontSize = font_size or self.font_size _styles = getSampleStyleSheet() self.style.normal = _styles["Normal"] self.style.normal.fontName = "%s" % self.style.fontName self.style.normal.fontSize = self.style.fontSize self.style.normal.firstLineIndent = 0 # normal.textColor = '#0e2b58' self.style.heading1 = copy.deepcopy(self.style.normal) self.style.heading1.fontName = "%s" % self.style.fontName self.style.heading1.fontSize = 1.5 * self.style.fontSize self.style.heading1.leading = 2 * self.style.fontSize # heading1.leading = 10*mm self.style.heading2 = copy.deepcopy(self.style.normal) self.style.heading2.fontName = "%s-Bold" % self.style.fontName self.style.heading2.fontSize = 1.25 * self.style.fontSize self.style.heading2.leading = 1.75 * self.style.fontSize # heading2.leading = 5*mm self.style.heading3 = copy.deepcopy(self.style.normal) self.style.heading3.fontName = "%s-Bold" % self.style.fontName self.style.heading3.fontSize = 1.1 * self.style.fontSize self.style.heading3.leading = 1.5 * self.style.fontSize self.style.heading3.textColor = "#666666" # heading3.leading = 5*mm self.style.small = copy.deepcopy(self.style.normal) self.style.small.fontSize = self.style.fontSize - 0.9 self.style.smaller = copy.deepcopy(self.style.normal) self.style.smaller.fontSize = self.style.fontSize * 0.75 self.style.bold = copy.deepcopy(self.style.normal) self.style.bold.fontName = "%s-Bold" % self.style.fontName self.style.boldr = copy.deepcopy(self.style.bold) self.style.boldr.alignment = TA_RIGHT self.style.right = copy.deepcopy(self.style.normal) self.style.right.alignment = TA_RIGHT self.style.indented = copy.deepcopy(self.style.normal) self.style.indented.leftIndent = 0.5 * cm self.style.tablenotes = copy.deepcopy(self.style.indented) self.style.tablenotes.fontName = "%s-Italic" % self.style.fontName self.style.paragraph = copy.deepcopy(self.style.normal) self.style.paragraph.spaceBefore = 1 self.style.paragraph.spaceAfter = 1 self.style.bullet = copy.deepcopy(self.style.normal) self.style.bullet.bulletFontName = "Symbol" self.style.bullet.bulletFontSize = 7 self.style.bullet.bulletIndent = 6 self.style.bullet.firstLineIndent = 0 self.style.bullet.leftIndent = 15 self.style.numberbullet = copy.deepcopy(self.style.normal) self.style.numberbullet.bulletFontName = self.style.paragraph.fontName self.style.numberbullet.bulletFontSize = self.style.paragraph.fontSize self.style.numberbullet.bulletIndent = 0 self.style.numberbullet.firstLineIndent = 0 self.style.numberbullet.leftIndent = 15 # alignment = TA_RIGHT # leftIndent = 0.4*cm # spaceBefore = 0 # spaceAfter = 0 self.style.tableBase = ( ("FONT", (0, 0), (-1, -1), "%s" % self.style.fontName, self.style.fontSize), ("TOPPADDING", (0, 0), (-1, -1), 0), ("BOTTOMPADDING", (0, 0), (-1, -1), 1), ("LEFTPADDING", (0, 0), (-1, -1), 0), ("RIGHTPADDING", (0, 0), (-1, -1), 0), ("FIRSTLINEINDENT", (0, 0), (-1, -1), 0), ("VALIGN", (0, 0), (-1, -1), "TOP"), ) self.style.table = self.style.tableBase + ( ("ALIGN", (1, 0), (-1, -1), "RIGHT"), ) self.style.tableLLR = self.style.tableBase + ( ("ALIGN", (2, 0), (-1, -1), "RIGHT"), ("VALIGN", (0, 0), (-1, 0), "BOTTOM"), ) self.style.tableHead = self.style.tableBase + ( ( "FONT", (0, 0), (-1, 0), "%s-Bold" % self.style.fontName, self.style.fontSize, ), ("ALIGN", (1, 0), (-1, -1), "RIGHT"), ("TOPPADDING", (0, 0), (-1, -1), 1), ("BOTTOMPADDING", (0, 0), (-1, -1), 2), ("LINEABOVE", (0, 0), (-1, 0), 0.2, colors.black), ("LINEBELOW", (0, 0), (-1, 0), 0.2, colors.black), ) self.style.tableOptional = self.style.tableBase + ( ( "FONT", (0, 0), (-1, 0), "%s-Italic" % self.style.fontName, self.style.fontSize, ), ("ALIGN", (1, 0), (-1, -1), "RIGHT"), ("BOTTOMPADDING", (0, 0), (-1, -1), 5), ("RIGHTPADDING", (1, 0), (-1, -1), 2 * cm), ) def init_templates(self, page_fn, page_fn_later=None): self.doc.addPageTemplates( [ PageTemplate(id="First", frames=[self.frame], onPage=page_fn), PageTemplate( id="Later", frames=[self.frame], onPage=page_fn_later or page_fn ), ] ) self.story.append(NextPageTemplate("Later")) def init_report(self, page_fn=dummy_stationery, page_fn_later=None): frame_kwargs = { "showBoundary": self.show_boundaries, "leftPadding": 0, "rightPadding": 0, "topPadding": 0, "bottomPadding": 0, } full_frame = Frame(2.6 * cm, 2 * cm, 16.4 * cm, 25 * cm, **frame_kwargs) self.doc.addPageTemplates( [ PageTemplate(id="First", frames=[full_frame], onPage=page_fn), PageTemplate( id="Later", frames=[full_frame], onPage=page_fn_later or page_fn ), ] ) self.story.append(NextPageTemplate("Later")) self.generate_style() def init_confidential_report(self, page_fn=dummy_stationery, page_fn_later=None): if not page_fn_later: page_fn_later = page_fn def _first_page_fn(canvas, doc): page_fn(canvas, doc) doc.PDFDocument.confidential(canvas) doc.PDFDocument.watermark("CONFIDENTIAL") self.init_report(page_fn=_first_page_fn, page_fn_later=page_fn_later) def init_letter( self, page_fn=dummy_stationery, page_fn_later=None, address_y=None, address_x=None, ): frame_kwargs = { "showBoundary": self.show_boundaries, "leftPadding": 0, "rightPadding": 0, "topPadding": 0, "bottomPadding": 0, } address_frame = Frame( address_x or 2.6 * cm, address_y or 20.2 * cm, 16.4 * cm, 4 * cm, **frame_kwargs ) rest_frame = Frame(2.6 * cm, 2 * cm, 16.4 * cm, 18.2 * cm, **frame_kwargs) full_frame = Frame(2.6 * cm, 2 * cm, 16.4 * cm, 25 * cm, **frame_kwargs) self.doc.addPageTemplates( [ PageTemplate( id="First", frames=[address_frame, rest_frame], onPage=page_fn ), PageTemplate( id="Later", frames=[full_frame], onPage=page_fn_later or page_fn ), ] ) self.story.append(NextPageTemplate("Later")) self.generate_style() def watermark(self, watermark=None): self._watermark = watermark def restart(self): self.story.append(NextPageTemplate("First")) self.story.append(RestartPageBreak()) def p(self, text, style=None): self.story.append(Paragraph(text, style or self.style.normal)) def h1(self, text, style=None): self.story.append(Paragraph(text, style or self.style.heading1)) def h2(self, text, style=None): self.story.append(Paragraph(text, style or self.style.heading2)) def h3(self, text, style=None): self.story.append(Paragraph(text, style or self.style.heading3)) def small(self, text, style=None): self.story.append(Paragraph(text, style or self.style.small)) def smaller(self, text, style=None): self.story.append(Paragraph(text, style or self.style.smaller)) def p_markup(self, text, style=None): self.story.append(MarkupParagraph(text, style or self.style.normal)) def ul(self, items): for item in items: self.story.append(MarkupParagraph(item, self.style.bullet, bulletText=u"•")) def spacer(self, height=0.6 * cm): self.story.append(Spacer(1, height)) def table(self, data, columns, style=None): self.story.append(Table(data, columns, style=style or self.style.table)) def hr(self): self.story.append(HRFlowable(width="100%", thickness=0.2, color=colors.black)) def hr_mini(self): self.story.append(HRFlowable(width="100%", thickness=0.2, color=colors.grey)) def mini_html(self, html): """Convert a small subset of HTML into ReportLab paragraphs Requires lxml and BeautifulSoup.""" import lxml.html import lxml.html.soupparser TAG_MAP = { "strong": "b", "em": "i", "br": "br", # Leave br tags alone } BULLETPOINT = u"•" def _p(text, list_bullet_point, style=None): if list_bullet_point: self.story.append( MarkupParagraph( text, style or self.style.paragraph, bulletText=list_bullet_point, ) ) else: self.story.append(MarkupParagraph(text, style or self.style.paragraph)) def _remove_attributes(element): for key in element.attrib: del element.attrib[key] def _handle_element(element, list_bullet_point=False, style=None): _remove_attributes(element) if element.tag in TAG_MAP: element.tag = TAG_MAP[element.tag] if element.tag in ("ul",): for item in element: _handle_element( item, list_bullet_point=BULLETPOINT, style=self.style.bullet ) list_bullet_point = False elif element.tag in ("ol",): for counter, item in enumerate(element): _handle_element( item, list_bullet_point=u"{}.".format(counter + 1), style=self.style.numberbullet, ) list_bullet_point = False elif element.tag in ("p", "li"): for tag in reversed(list(element.iterdescendants())): _remove_attributes(tag) if tag.tag in TAG_MAP: tag.tag = TAG_MAP[tag.tag] else: tag.drop_tag() _p( lxml.html.tostring(element, method="xml", encoding=string_type), list_bullet_point, style, ) else: if element.text: _p(element.text, list_bullet_point, style) for item in element: _handle_element(item, list_bullet_point, style) if element.tail: _p(element.tail, list_bullet_point, style) soup = lxml.html.soupparser.fromstring(html) _handle_element(soup) def pagebreak(self): self.story.append(PageBreak()) def bottom_table(self, data, columns, style=None): obj = BottomSpacer(1, 1) obj._doc = self.doc self.story.append(obj) self.story.append(BottomTable(data, columns, style=style or self.style.table)) def append(self, data): self.story.append(data) def generate(self): self.doc.multiBuild(self.story) def confidential(self, canvas): canvas.saveState() canvas.translate(18.5 * cm, 27.4 * cm) canvas.setLineWidth(3) canvas.setFillColorRGB(1, 0, 0) canvas.setStrokeGray(0.5) p = canvas.beginPath() p.moveTo(10, 0) p.lineTo(20, 10) p.lineTo(30, 0) p.lineTo(40, 10) p.lineTo(30, 20) p.lineTo(40, 30) p.lineTo(30, 40) p.lineTo(20, 30) p.lineTo(10, 40) p.lineTo(0, 30) p.lineTo(10, 20) p.lineTo(0, 10) canvas.drawPath(p, fill=1, stroke=0) canvas.restoreState() def draw_watermark(self, canvas): if self._watermark: canvas.saveState() canvas.rotate(60) canvas.setFillColorRGB(0.9, 0.9, 0.9) canvas.setFont("%s" % self.style.fontName, 120) canvas.drawCentredString(195 * mm, -30 * mm, self._watermark) canvas.restoreState() def draw_svg(self, canvas, path, xpos=0, ypos=0, xsize=None, ysize=None): from reportlab.graphics import renderPDF from svglib.svglib import svg2rlg drawing = svg2rlg(path) xL, yL, xH, yH = drawing.getBounds() if xsize: drawing.renderScale = xsize / (xH - xL) if ysize: drawing.renderScale = ysize / (yH - yL) renderPDF.draw(drawing, canvas, xpos, ypos, showBoundary=self.show_boundaries) def next_frame(self): self.story.append(CondPageBreak(20 * cm)) def start_keeptogether(self): self.keeptogether_index = len(self.story) def end_keeptogether(self): keeptogether = KeepTogether(self.story[self.keeptogether_index :]) self.story = self.story[: self.keeptogether_index] self.story.append(keeptogether) def address_head(self, text): self.smaller(text) self.spacer(2 * mm) def address(self, obj, prefix=""): if type(obj) == dict: data = obj else: data = {} for field in ( "company", "manner_of_address", "first_name", "last_name", "address", "zip_code", "city", "full_override", ): attribute = "%s%s" % (prefix, field) data[field] = getattr(obj, attribute, u"").strip() address = [] if data.get("company", False): address.append(data["company"]) title = data.get("manner_of_address", "") if title: title += u" " if data.get("first_name", False): address.append( u"%s%s %s" % (title, data.get("first_name", ""), data.get("last_name", "")) ) else: address.append(u"%s%s" % (title, data.get("last_name", ""))) address.append(data.get("address")) address.append(u"%s %s" % (data.get("zip_code", ""), data.get("city", ""))) if data.get("full_override"): address = [ l.strip() for l in data.get("full_override").replace("\r", "").splitlines() ] self.p("\n".join(address))
[ "523882246@qq.com" ]
523882246@qq.com
cfeefa710d82c14c84f1b09f78d2f06d7bc04a4a
625f2f86f2b2e07cb35204d9b3232427bf462a09
/data/HIRun2017XeXe/HIMinimumBias10_XeXeRun2017_13Dec2017_v1/crabConfig.py
8d4c3810aa384ccce2a13748b25967252606e33f
[]
no_license
ttrk/production
abb84c423a076fd9966276b7ed4350936c755e0b
f8a64c9c38de215802799365f0f7a99e1ee78276
refs/heads/master
2023-02-08T23:48:56.355141
2023-01-26T08:46:22
2023-01-26T08:46:22
52,877,406
0
2
null
null
null
null
UTF-8
Python
false
false
1,800
py
from WMCore.Configuration import Configuration config = Configuration() config.section_('General') config.General.requestName = 'HIMinimumBias10_XeXeRun2017_13Dec2017_v1' config.General.transferLogs = False config.section_('JobType') config.JobType.pluginName = 'Analysis' config.JobType.psetName = 'runForestAOD_XeXe_DATA_94X.py' config.JobType.maxMemoryMB = 2500 # request high memory machines. config.JobType.maxJobRuntimeMin = 2500 # request longer runtime. # forest_CMSSW_9_4_1 # https://github.com/CmsHI/cmssw/commit/09a79bd943eda5136a9de73943553dd2bfd30f3e # runForestAOD_XeXe_DATA_94X.py commit + turn off trees not related to photon production analysis + add tree for standard photons # https://github.com/CmsHI/cmssw/commit/09a79bd943eda5136a9de73943553dd2bfd30f3e # JSON file : /afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions17/HI/Cert_304899-304907_5TeV_PromptReco_XeXe_Collisions17_JSON.txt # related : https://hypernews.cern.ch/HyperNews/CMS/get/hi-general/4437.html config.section_('Data') config.Data.inputDataset = '/HIMinimumBias10/XeXeRun2017-13Dec2017-v1/AOD' config.Data.inputDBS = 'global' config.Data.lumiMask = 'Cert_304899-304907_5TeV_PromptReco_XeXe_Collisions17_JSON.txt' #config.Data.runRange = '304899-304906' config.Data.splitting = 'FileBased' config.Data.unitsPerJob = 10 config.Data.totalUnits = -1 config.Data.publication = False config.Data.outputDatasetTag = 'XeXeRun2017-13Dec2017-v1-photonFOREST' config.Data.outLFNDirBase = '/store/user/katatar/HIRun2017XeXe/' # https://github.com/richard-cms/production/commits/2016-03-17-reRECO-foresting/crabConfig.py config.section_('Site') config.Site.storageSite = "T2_US_MIT" config.Site.whitelist = ["T2_US_MIT"] config.section_("Debug") config.Debug.extraJDL = ["+CMS_ALLOW_OVERFLOW=False"]
[ "tatark@mit.edu" ]
tatark@mit.edu
431bec1f65b0f2f9845fd0cd4fa3323157ce83d2
e9e6803260c681fd5f9eb7179f51783685f62e68
/oops_employee.py
14b085594fd05dbbb36465be830f0b856fc7397c
[]
no_license
http-www-testyantra-com/Anusha_Sony
74f06f60ede11c0500eb0e58dc2cd381f7966d99
a64f4b026661294b4da3be50493fb094c0b7db80
refs/heads/master
2020-11-24T04:35:10.396054
2019-12-15T19:48:17
2019-12-15T19:48:17
227,967,194
0
0
null
null
null
null
UTF-8
Python
false
false
1,033
py
class Company: CompanyName="LT" Location="Bangalore" Hike_Rate=10 def __init__(self,Name, age,id,sal): self.Name=Name self.id=id self.sal=sal self.age=age def display_employedetails(self): print(self.Name,self.age,self.id,self.sal) def modify_details(self,Name="",age=0,id=0,sal=0 ): if Name!="": self.Name=Name if id!=0: self.id=id if age!=0: self.age=age if sal!=0: self.sal=sal @classmethod def modify_hike(cls,new=0): if new==0: cls.Hike=new return new @staticmethod def get_hike(): new = float(input("enter the new hike")) return new @staticmethod def success(): print("Employee details has been updated successfully") @staticmethod def failure(): print("Employee details modification has been failed") ob=Company("anusha",20,1121,10000) Company.display_employedetails(ob)
[ "anushanvi91@gmail.com" ]
anushanvi91@gmail.com
d596b39e16214c2187363402bb1cc5cfbd030dd2
39d100d1ed768ab4bdc768dc70e68d4bf943f233
/tgmate/views/admin_view/message.py
01e5eed946237b3093a365c59c1db8e628247eca
[]
no_license
ivan-koryshkin/tgmate
702b5c465a3435be134d858cc5fbd0f5ca8fd1f3
7ae1f5125ac19f00c53d557c70dbbdbe99886cac
refs/heads/master
2023-08-30T09:20:04.947011
2021-11-09T13:21:17
2021-11-09T13:21:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
87
py
from flask_admin.contrib.sqla import ModelView class MessageView(ModelView): pass
[ "ivan.koryshkin@gmail.com" ]
ivan.koryshkin@gmail.com
6b0cd2f19b9a1b1405cfb0781b19e6c544ac8a43
2a45507fff25c42cad05b52d83d011fea0909be5
/Codeforces/Python/Indian Coin Change.py
7254c2721508e7cd6403b69022eb32ca68ff52f7
[ "MIT" ]
permissive
Sharayu1071/Daily-Coding-DS-ALGO-Practice
dc8256e76d43952f679236df904f597908fbda13
2c424b33a1385085f97b98d6379d6cd9cc71b1bd
refs/heads/main
2023-08-30T17:49:44.312613
2021-10-03T04:21:21
2021-10-03T04:21:21
412,973,714
3
0
MIT
2021-10-03T04:18:20
2021-10-03T04:18:19
null
UTF-8
Python
false
false
680
py
denominations = [1, 2, 5, 10, 20, 50, 100, 500, 1000] #denominations of indian currency n=len(denominations) def Coin_Change(V): change = [] # to store the change currencies for deno in range(n-1 , -1, -1): #reverse for loop while (V >= denominations[deno]): V -= denominations[deno] change.append(denominations[deno]) print("Minimal no. of coins needed:", len(change)) print("Changed currency: ", end=" ") for i in change: print(i, end=" ") # Driver Code V= int(input("Enter the amount: ")) Coin_Change(V) # Sample # Enter the amount: 72 # Minimal no. of coins needed: 3 # Changed currency: 50 20 2
[ "1218.muskangupta@gmail.com" ]
1218.muskangupta@gmail.com
363eebe781fa7846f4e80639033db7c5abf5cddf
807022b4aebd9c4b2e8b0f5b7c209cf21c697381
/ocr_structuring/core/non_template/utils/bol_utils/table_items/table_handler/element_handler.py
82587a41931bc5700533f5ccd6b2b83495a80ec7
[]
no_license
imfifc/myocr
4abc5480222f4828072857fbb84236f4a494b851
71ba56084aabfa8b07ddc1842bcac5cdbd71212c
refs/heads/master
2022-12-13T13:04:51.488913
2020-09-02T09:07:09
2020-09-02T09:07:09
292,232,085
0
0
null
null
null
null
UTF-8
Python
false
false
28,938
py
import re from collections import defaultdict from typing import Dict, List import editdistance as ed import numpy as np import pandas as pd from ocr_structuring.core.non_template.utils.bol_utils.table_items.table_handler.keyrow_handler import KeyrowGroup from ocr_structuring.core.non_template.utils.bol_utils.utils.time_counter import record_time from ocr_structuring.core.utils.bbox import BBox from ocr_structuring.core.utils.node_item_group import NodeItemGroup from ocr_structuring.utils.logging import logger pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) from itertools import chain from .field_handler import Field from ocr_structuring.core.utils.node_item import NodeItem from . import element_common_rules as element_common_rules from collections import OrderedDict from ocr_structuring.core.non_template.utils.bol_utils.utils.structures import ElementTextType TOTAL_STATS_REGEX = [ '(Total|TOTAL)s?_{,2}:[0-9\._]*L?', 'TOTAL_{,2}:([0-9]*(PCS|KG)){1,}.*', 'Total.{,4}Package. *', 'Subtotal.{,2}Order.*Q.{,2}ty.*' 'SUB-TOTAL', 'TOTALCustomer', 'Subtotal_Order_Q\'ty\ .', 'Total:[0-9\.]*', 'TOTAL_QUANTITY.*' 'SAY.{,3}TOTAL.{,3}ONE' ] class Block(): def __init__(self, fid, row_order, header_name, header_type, line_content: List[str], line_item: List[NodeItemGroup], update=True): self.fid = fid # fid 记录了field 信息 self.row_order = row_order self.header_name = header_name self.header_type = header_type self.line_content = line_content self.line_item = line_item self.node_items = list(chain(*[line.node_items for line in self.line_item])) if update: self.line_content, self.line_item = self.extract_text_from_node_items(node_items=self.node_items) @property def bbox(self): _bbox: BBox = self.line_item[0].bbox for i in range(1, len(self.line_item)): _bbox.merge_(self.line_item[i].bbox) return _bbox @property def content(self): return self.line_content def update_line_content(self): # 在更新过node_item 相关的信息之后,可以通过这个方法更新行内容 self.line_content, self.line_item = self.extract_text_from_node_items(node_items=self.node_items) def extract_text_from_node_items(self, node_items, thresh=None): def h_dis(node1, node2): return abs(node1.bbox.cx - node2.bbox.cx) def v_algin(node1, node2, thresh): if abs(node1.bbox.cy - node2.bbox.cy) < thresh: return True return False if thresh is None: thresh = node_items[0].bbox.height // 2 sorted_nodes = sorted(node_items, key=lambda x: x.bbox.top) rows = [] while len(sorted_nodes) > 0: current_row = [] delete_idxs = [] node = sorted_nodes[0] del sorted_nodes[0] current_row.append(node) for idx, node in enumerate(sorted_nodes): target = sorted(current_row, key=lambda target: h_dis(target, node))[0] if v_algin(node, target, thresh): current_row.append(node) delete_idxs.append(idx) current_row = sorted(current_row, key=lambda x: x.bbox.left) rows.append(current_row) delete_idxs = sorted(delete_idxs, key=lambda x: -x) for idx in delete_idxs: del sorted_nodes[idx] row_texts = [] for row in rows: texts = [it.text for it in row] split = '_' row_text = split.join(texts) row_texts.append(row_text) return row_texts, [NodeItemGroup(row) for row in rows] class ElementGroup(): def __init__(self, cfg, header_type, header_group, fields, rows, keyrow_config, filterrow_config, block_update_config, node_items: Dict[str, NodeItem], company_name=None): # 初始化,给出很多表的基本信息 self.cfg = cfg self.header_type = header_type self.header_group = header_group self.fields: List[Field] = fields self.rows = rows self.keyrow_config = keyrow_config self.keyrow_group = KeyrowGroup(keyrow_config, company_name=company_name) self.filterrow_config = filterrow_config self.node_items = node_items self.block_update_config: set = block_update_config @record_time def assign_block(self, row_info: Dict[str, str], fields_info: Dict[str, str]): """ 这个函数的作用,是对于每一个行抽取一系列的特征 比如这一行包含了多少的field,之类的 返回结果: block_info: Dict[str,str] ,记录着每个uid 属于哪一个block block_list: List[BlockItem] , 每个对应着一系列的nodes,对应的列号(不同的列会被划分为不同的block) :param 传入所有的node_item :param row_info: 记录着每个node_items 所属的行信息 :param fields_info: 记录着每个node_items 所属的列信息 :return: """ # step1 建表 # uid 是 node_items 的id # rid 是 row id,表示这个数据属于哪一行 # fid 是 field id ,表示这个数据属于哪一个列 node_info = pd.DataFrame( [ (uid, row_idx, fields_info[uid]) for uid, row_idx in row_info.items() ], columns=['uid', 'rid', 'fid'] ) node_info.index = node_info.uid # 做一些相关信息的准备: node_info = self.preprocess_node_info(node_info) # 对每个行,在每个列涉及到的text 的信息进行记录 self.row_content_in_each_fields = self.get_row_content_in_each_fields(node_info) # 尝试过滤掉表尾部的一些元素 node_info = self.filter_redudant_content(node_info) # step2, 对每个行,检查是否是key row # 检查结果更新在node_info 这个dataframe 当中 find_keyrow, possible_key_row = self.assign_keyrow(node_info) # step3,过滤掉possible_key_row 最大的那一个之后的内容 if find_keyrow: start_filter_line = max(possible_key_row) else: start_filter_line = 0 node_info, possible_key_row = self.filter_redudant_line(start_filter_line, node_info, possible_key_row=possible_key_row) if len(self.row_content_in_each_fields) == 0: # 说明没有一条有用的记录 return False, None, None # step4 ,如果有 key_row , 则按照key_row , 对node 进行分类 if find_keyrow and len(possible_key_row) > 0: blocks_in_row = self.assign_row_to_block(possible_key_row, node_info) else: # 认为表头一下只有一行数据 # 注意,要传入 应该是所有剩余有效行的最小的一行 first_row_not_redundant = min([self.rows[rid].order for rid in self.row_content_in_each_fields]) blocks_in_row = self.assign_row_to_block({first_row_not_redundant}, node_info) # 对于同一个fields,同一个row 的,会被分为一个block return True, possible_key_row, blocks_in_row def preprocess_node_info(self, node_info): # 获取每个node 的数据 self.parse_element_info(node_info) self.parse_row_info(node_info) self.parse_field_info(node_info) return node_info def parse_element_info(self, node_info): node_info.loc[:, 'text'] = node_info.uid.map(lambda x: self.node_items[x].text) # node_info.loc[:, 'clean_text'] = node_info.text.map(lambda x: re.sub('[^0-9A-Za-z\-\.]', '', x)) node_info.loc[:, 'xmin'] = node_info.uid.map(lambda x: self.node_items[x].bbox.left) def _text_type(text: str): text = text.lower() text = text.replace('_', '') if re.sub('[^0-9\-\./_]', '', text) == text: # 对于 4.23 return ElementTextType.ALL_NUM if re.sub('[0-9]', '', text) == text: # 文本当中不存在数字; return ElementTextType.ALL_CHAR if re.sub('[0-9a-z]', '', text) == text: # 文本当中只包含特殊字符 return ElementTextType.ALL_SPEC filter_spec = re.sub('[^0-9a-z]', '', text) # 如果filter_spec 前面全是数字,后面全是字母 if re.match('^[0-9]{1,}[a-z]{1,}$', filter_spec): return ElementTextType.NUM2CHAR return ElementTextType.MIX_NUM_CHAR node_info.loc[:, 'text_type'] = node_info.text.map(lambda x: _text_type(x)) def parse_row_info(self, node_info): # 对row 进行排序,获取row 从上至下的行数 for idx, (row_id, row) in enumerate(sorted(self.rows.items(), key=lambda x: x[1].bbox.cy)): row.order = idx node_info.loc[:, 'row_order'] = node_info.rid.map(lambda x: self.rows[x].order) # 抽取一些统计信息 # stats1 : 每个行,涉及到的列数,总共对应的node 的数量 node_info.loc[:, 'num_uid_in_row'] = node_info.rid.map(node_info.groupby('rid').uid.count()) node_info.loc[:, 'num_fid_in_row'] = node_info.rid.map( node_info.groupby('rid').fid.apply(lambda x: len(x.unique())) ) # 对row 当中的node_item 按照xmin 进行排序 for rowid, row_item in self.rows.items(): row_item.sort(lambda x: x.bbox.rect[0]) def parse_field_info(self, node_info): # 对列,获取header node_info.loc[:, 'header_type'] = node_info.fid.map(lambda x: self.fields[x].header.head_type) node_info.loc[:, 'header_content'] = node_info.fid.map(lambda x: self.fields[x].header.key_node.content) def filter_redudant_content(self, node_info): useless_row_id = [] for filter_config in self.filterrow_config['filter_content']: # 遍历所有的过滤配置 regex_list = filter_config['regex'] adaptive_fields = filter_config['adaptive_fields'] for rid, rid_content in self.row_content_in_each_fields.copy().items(): # 遍历所有的行 for fid, content_info in rid_content.items(): # 遍历这些行涉及到的列 header_type = content_info['header_type'] if header_type not in adaptive_fields: continue row_content_in_field = content_info['content'] # print('debug, ', regex_list, row_content_in_field) useless = False for regex in regex_list: if re.match(regex, row_content_in_field): useless = True break if useless: del self.row_content_in_each_fields[rid] row_order = content_info['row_order'] logger.info('{} is not useful'.format(row_content_in_field)) useless_row_id.append(row_order) break for rid, rid_content in self.rows.copy().items(): row_content = rid_content.content() # print('debugger', row_content) need_ignore = False for regex in self.filterrow_config['filter_content_in_line']: if re.search(regex, row_content, re.IGNORECASE): need_ignore = True if need_ignore: del self.row_content_in_each_fields[rid] useless_row_id.append(rid_content.order) useless_row_id = set(useless_row_id) if not useless_row_id: return node_info node_info = node_info[~node_info.row_order.isin(useless_row_id)] # TODO: 自适应的去除尾部的内容 return node_info def filter_redudant_line(self, start_filter_line, node_info, possible_key_row=None): # 从行的角度筛选数据 ignore_bg_lines = [] for idx, (bg_texts, ed_thresh) in enumerate(self.filterrow_config['filter_lines']): bg_texts = re.sub('[^0-9A-Za-z]', '', bg_texts).lower() self.filterrow_config['filter_lines'][idx] = (bg_texts, ed_thresh) # 建立row_order 对于rid 的字典 row_order_id_map = {self.rows[rid].order: rid for rid in self.row_content_in_each_fields} # 按照从小到大排序 row_order_id_map = OrderedDict(sorted(row_order_id_map.items(), key=lambda x: x[0])) after_filter_row = False # 在一个过滤行之后的所有内容, 会会被过滤掉 for order, rid in row_order_id_map.items(): # 遍历每一行 if after_filter_row: ignore_bg_lines.append(order) del self.row_content_in_each_fields[rid] continue row = self.rows[rid] if row.order < start_filter_line: continue row_content = row.content() row_content = re.sub('[^0-9A-Za-z]', '', row_content).lower() logger.info('this print used to check rows need filter: {}'.format(row_content)) filtered_by_line_rule = False # print('debug',row_content) for bg_texts, ed_thresh in self.filterrow_config['filter_lines']: dist = ed.eval(row_content, bg_texts) if dist < ed_thresh: del self.row_content_in_each_fields[rid] ignore_bg_lines.append(row.order) after_filter_row = True filtered_by_line_rule = True break if filtered_by_line_rule: # 已经认为是一个需要过滤的行了,这里就不做考虑了 continue for comb in self.filterrow_config['filter_comb']: # 拿到每一个comb 的配置 matched_count = 0 for header_type_list, regex_config in comb: if isinstance(header_type_list, self.header_group.header_types): header_type_list = [header_type_list] at_least_succeed = False for header_type in header_type_list: # 遍历所有的在这次配置当中的header_type if at_least_succeed: break if isinstance(regex_config, list): # 如果对某个内容配置为list regex_list = regex_config # 获取这一行涉及到的这个类型的type content = [fid_info['content'] for fid, fid_info in self.row_content_in_each_fields[rid].items() if fid_info['header_type'] == header_type] for regex in regex_list: if any([re.search(regex, text, re.IGNORECASE) is not None for text in content]): matched_count += 1 break elif isinstance(regex_config, dict): regex_list = regex_config['content_regex'] header_regex_list = regex_config['header_regex'] content_list = [(fid, fid_info['content']) for fid, fid_info in self.row_content_in_each_fields[rid].items() if fid_info['header_type'] == header_type] # 根据fid ,获取每个content 对应的header 的内容 content_list = [(self.fields[fid].header.key_node.content, fid_content) \ for fid, fid_content in content_list] # 从这些content 当中挑选 符合 header_regex_list 的内容 content_satisfy_header_regex = [] for header_content, field_content in content_list: satisfy_regex = False for header_regex in header_regex_list: if re.search(header_regex, header_content, re.IGNORECASE): satisfy_regex = True break if satisfy_regex: content_satisfy_header_regex.append(field_content) if len(content_satisfy_header_regex) == 0: # 说明这一行没有一个列满足header_regex 的条件 continue for regex in regex_list: if any([re.search(regex, text, re.IGNORECASE) is not None for text in content_satisfy_header_regex]): matched_count += 1 at_least_succeed = True break if matched_count == len(comb): logger.info('filtered {} by filter_comb'.format(self.rows[rid].content())) del self.row_content_in_each_fields[rid] ignore_bg_lines.append(row.order) after_filter_row = True break node_info = node_info[~node_info.row_order.isin(ignore_bg_lines)] if possible_key_row is not None: possible_key_row = possible_key_row - set(ignore_bg_lines) return node_info, possible_key_row def get_row_content_in_each_fields(self, node_info): """ 返回的字典记录了每行,在每列的文字信息,以及将每行在每列的node 组合成了一个nodeitemgroup """ row_content_in_each_fields = defaultdict(dict) for (rid, fid), data in node_info.groupby(['rid', 'fid']): data = data.sort_values(by='xmin') row_content = '_'.join(data.text) element_group = NodeItemGroup(data.uid.map(lambda x: self.node_items[x]).to_list()) row_order = data.row_order.values[0] for node in element_group.node_items: node.row_order = row_order header_type = data.header_type.values[0] row_content_in_each_fields[rid][fid] = {'header_type': header_type, 'content': row_content, 'row_order': row_order, 'element_group': element_group } return row_content_in_each_fields def assign_keyrow(self, node_info: pd.DataFrame): """ :param node_info: pd.DataFrame , 记录了每个节点的id , 所属列的id , 行的id :return: """ success, possible_key_row = self.keyrow_group.assign_key_row(node_info, self.fields, self.rows, self.header_group) if success: return success, possible_key_row return False, set() @staticmethod def load_rule(func_name): if isinstance(func_name, str): function = getattr(element_common_rules, func_name, None) assert function is not None, 'must set right function name {}'.format(func_name) return function else: function = func_name return function def assign_row_to_block(self, possible_key_row, node_info): """ 目的,对数据进行分类 可以利用的信息 : node_info : 记录了所有的node_item ,属于哪一行,哪一列,以及其基本属性 possible_key_row: 记录了哪一行是关键行,一般认为关键行是一个block (一条记录称为一个block) self.row_content_in_each_fields: 记录了每行,在每一个fields 当中都拥有什么信息 最后记录在block 当中的信息,应该类似于一个paragraph 相当于是所有的在这个block 当中的行,给出content 和 bbox 然后合并成一个node_item_group, 当然也会同时保持相关的其他信息 难点:如何完成asssign: rule1 : 如果和key_row 完全不相交的,采取向上合并原则 rule2 : 如果和key_row 有交集的(在y轴上有一定的比例相交),采取就近合并原则 rule3 : 对于无法处理的情况,在后续考虑通过company_rules 来解决 :return: node_info: 需要记录每个node_items所属的block id, blocks 记录着每个block 包含了哪些内容 """ before_key_row, row_group, row_order_id_map = self.assign_row_to_key_row(possible_key_row) row_group = sorted(row_group.items(), key=lambda x: x[0]) row_group = self.common_filter_total_line(row_group, row_order_id_map) blocks_in_row = [] for row_id, row in row_group: auto_remove_tail = False if row_id == row_group[-1][0]: # 说明是最后一个group auto_remove_tail = True blocks = self.build_blocks(row_id, row, row_order_id_map, node_info, auto_remove_tail=auto_remove_tail) blocks_in_row.append(blocks) return blocks_in_row def common_filter_total_line(self, row_group, row_order_id_map): # 如果只有在最后一组出现了某个行是以total相关的正则表达式开头的,则认为这个total 指的是总计的total # 则这个total 之后的内容会过滤 first_total_appear_id = -1 first_total_appear_line = 0 for group_id, group in row_group: find_total = False for group_idx, row in enumerate(group): row_content = self.rows[row_order_id_map[row]].content() for total_regex in TOTAL_STATS_REGEX: # print('debug common filter total line', row_content , total_regex , re.search(total_regex,row_content)) if re.search(total_regex, row_content): find_total = True first_total_appear_line = group_idx break if find_total: first_total_appear_id = group_id break # print('debug common filter total line', first_total_appear_id, row_group) if first_total_appear_id == row_group[-1][0]: # 说明最后一列存在total 的情况 row_group[-1] = ( row_group[-1][0], row_group[-1][1][:first_total_appear_line] ) if row_group[-1][1] == []: row_group = row_group[:-1] return row_group def assign_row_to_key_row(self, possible_key_row, ): """ :param possible_key_row: 按照key row 分组,将row 分配到不同的keyrow 当中 :return: """ _BEFORE_ROW = -1 _AFTER_ROW = 1e4 # 首先对数据进行排序 # 注意,这个程序不能反复执行 possible_key_row = list(possible_key_row) possible_key_row.sort() # 加入一前以后,便于后面设计算法 possible_key_row.insert(0, _BEFORE_ROW) possible_key_row.append(_AFTER_ROW) # 建立row_order 对于rid 的字典 row_order_id_map = {self.rows[rid].order: rid for rid in self.row_content_in_each_fields} # 按照从小到大排序 row_order_id_map = OrderedDict(sorted(row_order_id_map.items(), key=lambda x: x[0])) matched_keyrow = [] cur_key_row_idx = 0 for row_order, rid in row_order_id_map.items(): if row_order == possible_key_row[cur_key_row_idx + 1]: cur_key_row_idx += 1 matched_keyrow.append(possible_key_row[cur_key_row_idx]) else: if possible_key_row[cur_key_row_idx + 1] == _AFTER_ROW: matched_keyrow.append(possible_key_row[cur_key_row_idx]) else: # 需要计算一下和下一个位置上的key_row 的iou next_keyrow_id = row_order_id_map[possible_key_row[cur_key_row_idx + 1]] if self.judge_intersection(rid, next_keyrow_id): cur_key_row_idx += 1 matched_keyrow.append(possible_key_row[cur_key_row_idx]) before_key_row = [] row_group = defaultdict(list) for row_order, match_id in zip(row_order_id_map.keys(), matched_keyrow): if match_id == _BEFORE_ROW: before_key_row.append(row_order) else: row_group[match_id].append(row_order) return before_key_row, row_group, row_order_id_map def judge_intersection(self, row_id, keyrow_id): """ 检查这个行和关键行是否有相交 :param row_id: 某行的数据的id :param keyrow_id: 某个关键行的id :return: """ bbox1 = self.rows[row_id].bbox.rect bbox2 = self.rows[keyrow_id].bbox.rect # 判断y 方向上的iou ymin_b1, ymax_b1 = bbox1[1], bbox1[3] ymin_b2, ymax_b2 = bbox2[1], bbox2[3] iou = (min(ymax_b1, ymax_b2) - max(ymin_b1, ymin_b2)) / (max(ymax_b1, ymax_b2) - min(ymin_b1, ymin_b2)) iou = max(iou, 0) if iou > 0.5: return True else: return False def build_blocks(self, row_id, rows, row_order_id_map, node_info, auto_remove_tail=False): """ :param row_id: 关键行的行号 :param rows: list of row , 记录着这条记录涉及到的row order :param row_order_id_map: row_order 和 row 的关系 :param node_info: :param auto_remove_tail : 对于最后一行设置这个参数为True ,会对最后一行,考虑一些特殊的过滤规则,去除掉表尾部的内容 :return: """ lines_in_field = defaultdict(list) useful_row = [True] * len(rows) if auto_remove_tail and len(rows) >= 2: # 需要自适应的去除一些不需要的信息 # rule1 , 计算rows 之间的间隔,如果存在一个很大的间隔,对后面的内容不考虑 # 拿到每个行的top row_bottom = [self.rows[row_order_id_map[rid]].bbox.bottom for rid in rows] row_height = [self.rows[row_order_id_map[rid]].bbox.height for rid in rows] row_height_diff = np.diff(row_bottom) > 5 * np.mean(row_height) after_useless = False for idx in range(1, len(rows)): if row_height_diff[idx - 1] == True: after_useless = True if after_useless == True: useful_row[idx] = False for row, is_useful in zip(rows, useful_row): if not is_useful: continue row_info = self.row_content_in_each_fields[row_order_id_map[row]] for fid, field_info in row_info.items(): # header_name = self.fields[fid].header.name lines_in_field[fid].append( { 'line_item': field_info['element_group'], 'line_content': field_info['content'] } ) row_info = {} for fid, field_info in lines_in_field.items(): line_content = [line['line_content'] for line in field_info] line_item = [line['line_item'] for line in field_info] header_name = self.fields[fid].header.name header_type = self.fields[fid].header.head_type update = False if header_type in [self.header_type[htype] for htype in self.cfg.ELEMENT_HANDLER.get('block_update_config', [])]: logger.info('set update True for {}'.format(header_type)) update = True row_info[fid] = Block(fid, row_id, header_name, header_type, line_content, line_item, update=update) return row_info
[ "1193690571@qq.com" ]
1193690571@qq.com
617850ebf299ad30915a18f564628a69243c5d24
dfc686228834750216b2cd6eea14d2a6d12422e4
/django2.2/reh/django_pro/store/orders/views.py
881709a343148285a92835c84be8b89ae69bf6eb
[]
no_license
Parth-Ps/python
8466e8856bf301908544eb60ae4a68338ccf4550
bb448c2a7996d17883214fe8eb11caa61e211400
refs/heads/master
2023-01-22T13:30:50.507021
2020-12-02T07:59:53
2020-12-02T07:59:53
317,788,331
0
0
null
null
null
null
UTF-8
Python
false
false
3,026
py
from django.shortcuts import render, redirect from django.views.generic import View from django.views.generic.list import ListView from django.contrib import messages from django.views.generic.edit import FormView, CreateView from django.urls import reverse from .forms import AddressForm, UserAddressForm from .models import UserAddress, UserCheckout, Order from products.mixins import LoginRequiredMixin class UserAddressCreateView(CreateView): form_class = UserAddressForm template_name = 'forms.html' def get_success_url(self): return reverse('cart:cart_checkout') def get_user_checkout(self): user_checkout_id = self.request.session['user_checkout_id'] return UserCheckout.objects.get(id=user_checkout_id) def form_valid(self, form, *args, **kwargs): form.instance.user = self.get_user_checkout() return super(UserAddressCreateView, self).form_valid(form, *args, **kwargs) class AddressFormView(FormView): form_class = AddressForm template_name = 'orders/address_select.html' def dispatch(self, request, *args, **kwargs): b_address, s_address = self.get_address() if not (b_address.exists() and s_address.exists()): messages.success(self.request, 'Please add an address before continuing') return redirect('cart:add_address') return super(AddressFormView, self).dispatch(request, *args, **kwargs) def get_address(self, *args, **kwargs): user_checkout = self.request.session['user_checkout_id'] b_address = UserAddress.objects.filter( type=UserAddress.BILLING, user_id=user_checkout) s_address = UserAddress.objects.filter( type=UserAddress.SHIPPING, user_id=user_checkout) return b_address, s_address def get_form(self): form = super(AddressFormView, self).get_form() b_address, s_address = self.get_address() form.fields['billing_address'].queryset = b_address form.fields['shipping_address'].queryset = s_address return form def form_valid(self, form, *args, **kwargs): billing_address = form.cleaned_data['billing_address'] shipping_address = form.cleaned_data['shipping_address'] self.request.session['billing_address_id'] = billing_address.id self.request.session['shipping_address_id'] = shipping_address.id return super(AddressFormView, self).form_valid(form, *args, **kwargs) def get_success_url(self): return reverse('cart:cart_checkout') class ConfirmOrderView(View): def post(self, request): order = Order.objects.get(id=request.session['order_id']) if request.POST.get('complete_order'): order.complete_order() return redirect('accounts:payment') class OrdersList(LoginRequiredMixin, ListView): model = Order template_name = 'orders/orders_list.html' def get_queryset(self): return Order.objects.filter(user__user=self.request.user)
[ "parth0129.certificate@gmail.com" ]
parth0129.certificate@gmail.com
2fcddc203d429f2ba2f344a2ef75518082dad2e1
1b2bcf9b944e390462b54a64f28f66435a9c62bf
/shakespearean_pokemon/exceptions.py
2892df99c0f91ff301437c7957ca0df929ebbc07
[]
no_license
dalehp/shakespearean_pokemon
484fccd15e52882ca7cf19be28a77657006953af
31a7e707795fe7977bf6a7b2975d4933ea7d1282
refs/heads/master
2022-06-02T06:02:16.352253
2020-05-04T07:44:49
2020-05-04T07:44:49
260,740,428
0
0
null
null
null
null
UTF-8
Python
false
false
271
py
class InvalidPokemonError(Exception): pass class UnknownAPIError(Exception): """Unexpected errors from external API. Should probably handle this better for certain scenarios, e.g. retry on 503?""" pass class TooManyRequestsError(Exception): pass
[ "dale@Dales-MBP.lan" ]
dale@Dales-MBP.lan
18985bcfa506725407f81a6972befff206a7eb72
9813636bf3d99ca727baddc9791b4c02e0532457
/book_api_django/book_api/models.py
ffee109af22725969cc2ca72c08ae9841055e62d
[]
no_license
amfueger/django-starter-code
bb791564ee06b2b0cc298c0293c72d595738de5f
ce362355af1aadeb921fb6cb3804f2d543a536b8
refs/heads/master
2020-04-16T21:52:21.518309
2018-11-17T00:30:41
2018-11-17T00:30:41
165,943,460
0
0
null
null
null
null
UTF-8
Python
false
false
266
py
from django.db import models # Create your models here. class Book(models.Model): title = models.CharField(max_length=100) author = models.CharField(max_length=100) year = models.IntegerField(default=0) def __str__(self): return self.title
[ "Jimmyhaff3@gmail.com" ]
Jimmyhaff3@gmail.com
f9b0fe3e32e67ea52512f7e359041022a22cc2ec
e0c5cb0500a1200168e4e2a5b8897715a0c51a15
/MSI_calculator.py
944461f880080ed81dff269244c3e095b22e0ee9
[]
no_license
OriolGraCar/Naivebayes_AGB
e976d52cf4272fee992574ba14e677ed3d506a3d
d6f873e87101a8434faa2b70e44a748d8a911a03
refs/heads/master
2021-05-03T10:21:59.849711
2018-02-28T08:46:24
2018-02-28T08:46:24
120,532,697
0
0
null
null
null
null
UTF-8
Python
false
false
2,200
py
import math def entropy(splicing_info): total_tissues = len(splicing_info['up']) prob_up = 0 prob_down = 0 count_up = 0 count_down = 0 #count_NA = 0 conditional_prob_up = [] conditional_prob_down = [] summatory_up = 0 summatory_down = 0 for element in splicing_info['up']: conditional_prob_up.append(splicing_info['up'][element]) count_up += splicing_info['up'][element] for element in splicing_info['down']: conditional_prob_down.append(splicing_info['down'][element]) count_down += splicing_info['down'][element] #for element in splicing_info['NA']: # count_NA += splicing_info['NA'][element] prob_up = count_up/(count_up + count_down)# + count_NA) prob_down = count_down/(count_up + count_down)# + count_NA) summatory_up = sum([(x/count_up)*(math.log(x/count_up)/math.log(2)) for x in conditional_prob_up if x != 0]) summatory_up = summatory_up * prob_up summatory_down = sum([(x/count_down)*(math.log(x/count_down)/math.log(2)) for x in conditional_prob_down if x != 0]) summatory_down = summatory_down * prob_down return -(summatory_up + summatory_down) def calculate_MSI(input_file,output_file): START = True tissue_list = [] different_tissue = set() all_info = {} result = [] with open(input_file) as fl: for line in fl: line = line.rstrip() data = line.split("\t") all_info = {} if START: tissue_list = data START = False for element in data: different_tissue.add(element) else: all_info[data[0]] = {} all_info[data[0]]['up'] = {} all_info[data[0]]['down'] = {} all_info[data[0]]['NA'] = {} for different in different_tissue: all_info[data[0]]['up'][different] = 0 all_info[data[0]]['down'][different] = 0 all_info[data[0]]['NA'][different] = 0 for i in range(1,len(data)): all_info[data[0]][data[i]][tissue_list[i-1]] += 1 result.append([data[0],entropy(all_info[data[0]])]) with open(output_file,'w') as out: result = sorted(result, key = lambda x: x[1]) for element in result: out.write("%s\t%s\n" % (element[0],element[1])) if __name__ == "__main__": #testing print(calculate_MSI('training.txt','information_gained.txt'))
[ "noreply@github.com" ]
OriolGraCar.noreply@github.com
e36b9e898b42d2ec4030c7b698009d6432b9283d
59e2cdec9e271fd05f9c99f485f1a5c020979402
/src/edit.py
ea66ac3736ba296c96d804345f1094b7b4a99c0a
[]
no_license
zwaltman/LSystem
c886e8d560a175f0875e2cb43ae5a4d4d4d6785f
4406cbb54a802afb2c7ba7bf4bd3eabedffdcba8
refs/heads/master
2020-04-17T12:05:21.697188
2018-05-28T05:46:54
2018-05-28T05:46:54
65,895,185
0
0
null
null
null
null
UTF-8
Python
false
false
3,773
py
""" Editor for L-systems objects Used for creation of new systems and modifying previously saved ones """ import LSystemObject from printer import printVars, printConsts, printRules, printStart from modify import addVar, deleteVar, addConst, deleteConst, addRule, deleteRule, addStart, deleteStart from load import loadSystem from save import save def edit(systemName=None): """ Editor for L-systems """ head = ("\n // LSystem Generator // LSystem Editor //\n\n" + " 'exit': description\n" + " 'view': description\n" + " 'delete': description\n" + " 'add': description\n" + " 'save': description\n") print head # Initiate system system = LSystemObject.LSystemObject() # Import attributes from system file, if file name provided if systemName: loadSystem(system, systemName) # View, modify system settings while True: input = raw_input('> ').split() if input: cmd = input[0] args = input[1:] if cmd == 'exit': return elif cmd == 'view': if not args: printVars(system) printConsts(system) printRules(system) printStart(system) elif args[0] == 'variables': printVars(system) elif args[0] == 'constants': printConsts(system) elif args[0] == 'rules': printRules(system) elif args[0] == 'start': printStart(system) else: print " Error: %s is not a valid system attribute. See help for guidelines." % args[0] elif cmd == 'add': if not args: print "Error: argument required. See help for guidelines." elif args[0] == 'variable': addVar(system, args[1]) elif args[0] == 'constant': addConst(system, args[1]) elif args[0] == 'rule': addRule(system, args[1], args[2]) elif args[0] == 'start': addStart(system, args[1]) else: print "Error: %s is not a valid system attribute. See help for guidelines." % args[0] elif cmd == 'delete': if not args: print "Error: two arguments required. See help for guidelines." elif args[0] == 'all': # Wipe entire system by creating new instance of LSystem system = LSystemObject.LSystemObject() elif args[0] == 'variable': if args[1]: deleteVar(system, int(args[1]) - 1) else: deleteVar(system) elif args[0] == 'constant': if args[1]: deleteConst(system, int(args[1]) - 1) else: deleteConst(system) elif args[0] == 'rule': if args[1]: deleteRule(system, args[1]) else: deleteRule(system) elif args[0] == 'start': deleteStart() elif cmd == 'save': if args: save(system, args[0]) else: print "Error: please provide a file name" else: invalidCommand()
[ "z.waltman@gmail.com" ]
z.waltman@gmail.com
91917955537aa8f8ffc9ebad84b1e29e516d770b
f2c64c03c0e6d84daffb7464df471ef33944f6a8
/keras_kit/__init__.py
a7388c89b4d34fc23a78bf9defc6c67395afcfef
[ "MIT" ]
permissive
bigboyooo/NER-toolkits
c290b279743f3968913d422ebdfde6625ff47861
bd568b62b30672fa014308413b7715ec11e8064a
refs/heads/master
2020-06-05T16:49:32.178363
2019-06-11T15:12:25
2019-06-11T15:12:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
# _*_ coding: utf-8 _*_ from . import common from . import transformer
[ "lyssym@sina.com" ]
lyssym@sina.com
c96b38abe78c574577aa444659c3ca827a2d4b36
fc68ed9f0ca806c5f2473ffb5ffd0430a29393a7
/bomtool/pngen.py
67c65b730cfbe4421ac011a9b5c083d9fc64fb74
[ "MIT" ]
permissive
iromero91/bomtool
f48bf3894323fcf09eb6641db020d3a667d50dcf
fd967d84a220d7876d98cc02b072ffc71f33c767
refs/heads/master
2021-06-27T11:41:23.947454
2021-02-16T15:59:39
2021-02-16T15:59:39
67,799,755
2
0
null
null
null
null
UTF-8
Python
false
false
1,265
py
def RC(value, tolerance=5.0, power=None, package="0603",pkgcode="07"): res = {"manufacturer": "Yageo"} suffix = ['R', 'K', 'M'] digits = 3 if tolerance < 5 else 2 while value >= 1000: value = value/1000. suffix.pop(0) suffix = suffix[0] whole = str(int(value)) decimal = str(round((value-int(value)) * 10**(digits-len(whole)))) v_str = (whole+suffix+decimal).strip("0") if v_str == "R": v_str = "0R" if tolerance == 0.5: t_str = 'D' elif tolerance == 1.0: t_str = 'F' else: t_str = 'J' res["MPN"] = "RC{}{}R-{}{}L".format(package, t_str, pkgcode, v_str) return res _cc_voltages = {6300: '5', 10000: '6', 16000: '7', 25000: '8', 50000: '9'} def CC_XxR(value, tolerance=10, voltage=16, package='0603', pkgcode='R', dielectric="X7R"): res = {"manufacturer": "Yageo"} c_pf = int(value * 1e12) exp = 0 while c_pf >= 100: exp += 1 c_pf /= 10 if package > '0603' and pkgcode == 'R': pkgcode = 'K' c_str = str(int(c_pf))+str(exp) v_mv = round(voltage*1e3) v_str = _cc_voltages.get(v_mv, '9') t_str = 'K' res["MPN"] = "CC{}{}{}{}{}BB{}".format(package, t_str, pkgcode, dielectric, v_str, c_str) return res
[ "jose.cyborg@gmail.com" ]
jose.cyborg@gmail.com
a7a12afb1c022ae8a75143cb8063ae50fcb75dae
32b28c9d13797c17ddd215d762dab59d1eaf6ae7
/src/utils/bitcoin_address.py
5ceecf176aa3496c6d1e3f5dbab4fa849b13f827
[]
no_license
pierce403/hashbounty
15ee3fff21c519d5eaf4480f30bbde357dc2da40
f918c999ee41406db74697f79c45f43b36f5b9ad
refs/heads/master
2021-01-19T16:33:18.872478
2011-07-02T02:37:57
2011-07-02T02:37:57
1,846,117
2
0
null
null
null
null
UTF-8
Python
false
false
2,571
py
import re from hashlib import sha256 import math def is_valid(a): return get_bcaddress_version(a) is not None class AddressValidator(object): def __call__(self, form, field): if not is_valid(field.data): from wtforms.validators import ValidationError raise ValidationError(u'This address is not valid.') __b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' __b58base = len(__b58chars) def b58encode(v): """ encode v, which is a string of bytes, to base58. """ long_value = 0L for (i, c) in enumerate(v[::-1]): long_value += (256**i) * ord(c) result = '' while long_value >= __b58base: div, mod = divmod(long_value, __b58base) result = __b58chars[mod] + result long_value = div result = __b58chars[long_value] + result # Bitcoin does a little leading-zero-compression: # leading 0-bytes in the input become leading-1s nPad = 0 for c in v: if c == '\0': nPad += 1 else: break return (__b58chars[0]*nPad) + result def b58decode(v, length): """ decode v into a string of len bytes """ long_value = 0L for (i, c) in enumerate(v[::-1]): long_value += __b58chars.find(c) * (__b58base**i) result = '' while long_value >= 256: div, mod = divmod(long_value, 256) result = chr(mod) + result long_value = div result = chr(long_value) + result nPad = 0 for c in v: if c == __b58chars[0]: nPad += 1 else: break result = chr(0)*nPad + result if length is not None and len(result) != length: return None return result def get_bcaddress_version(strAddress): """ Returns None if strAddress is invalid. Otherwise returns integer version of address. """ addr = b58decode(strAddress,25) if addr is None: return None version = addr[0] checksum = addr[-4:] vh160 = addr[:-4] # Version plus hash160 is what is checksummed h3=sha256(sha256(vh160).digest()).digest() if h3[0:4] == checksum: return ord(version) return None
[ "jure.vrscaj@gmail.com" ]
jure.vrscaj@gmail.com
b42a2b08cb31f2974ae2b3a6c1c3ca86a3b16b17
5f10ca2439551040b0af336fd7e07dcc935fc77d
/Binary tree/二叉树的构建/109. Convert Sorted List to Binary Search Tree.py
fc1c80d96dc7d82272ce983078633f7b7bd7e5cd
[]
no_license
catdog001/leetcode2.0
2715797a303907188943bf735320e976d574f11f
d7c96cd9a1baa543f9dab28750be96c3ac4dc731
refs/heads/master
2021-06-02T10:33:41.552786
2020-04-08T04:18:04
2020-04-08T04:18:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,443
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2020/2/27 10:21 # @Author : LI Dongdong # @FileName: 109. Convert Sorted List to Binary Search Tree.py '''''' ''' 题目分析 1.要求:Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST. For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1. Example: Given the sorted linked list: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST: 0 / \ -3 9 / / -10 5 2.理解:use node value of linkedlist to create a height balanced BST 3.类型:create tree 4.确认输入输出及边界条件: input: linkedlist head, linkedlist node is order? Y, repeated? N, number of node? N node value range? N output: root of tree with definition corner case: head of linkedlist is None: return None 5.方法及方法分析:brute force - cut linkedlist, 链表转换数组 + 二分, inorder simulation time complexity order: O(N) space complexity order: 6.如何考 ''' ''' A. brute force - cut linkedlist Method: recursion(list head) return root end: head is None slow and fast pointer, when fast is None or fast.next is None, slow in mid pre_slow.next = None root = slow root.left = recursion(head) root.right = recursion(slow.next) time O(NlogN) space O(N) 易错点: while fast and fast.next 不是or,要确保两个存在,有一个不行都不行 ''' class ListNode: def __init__(self, x): self.val = x self.next = None class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def sortedListToBST(self, head: ListNode) -> TreeNode: if not head: # corner case return None if not head.next: return TreeNode(head.val) slow = fast = head while fast and fast.next: prev_s = slow slow = slow.next fast = fast.next.next prev_s.next = None root = TreeNode(slow.val) root.left = self.sortedListToBST(head) root.right = self.sortedListToBST(slow.next) return root ''' B. 链表转换数组 + 二分 Method: 1. traveral linkedlist to save node val in list # time complexity O(N) space O(N) 2. self.binary(list) recursion, return root # time O(N) sO(N) end: list is None mid = len(list) // 2 root.left = binary(left list) root.right = binary(right list) return root tO(N) sO(N) O(N) to keep the output, and O(logN) for the recursion stack 易错点: root = TreeNode(nodeList[mid]) 不是 root = TreeNode(mid) ''' class ListNode: def __init__(self, x): self.val = x self.next = None class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def sortedListToBST(self, head: ListNode) -> TreeNode: if not head: # corner case return None nodeList = self.transfer(head) root = self.dfs(nodeList) return root def transfer(self, head): # output [nodes' val] if not head: # corner case return [] res = [] while head: res.append(head.val) head = head.next return res def dfs(self, nodeList): # return tree root node if not nodeList: # corner case return None if len(nodeList) == 1: return TreeNode(nodeList[0]) mid = len(nodeList) // 2 root = TreeNode(nodeList[mid]) root.left = self.dfs(nodeList[:mid]) root.right = self.dfs(nodeList[mid + 1:]) return root ''' test code corner case: None -> None check main then helper() [-10,-3,0,5,9] 1. sortedListToBST nodelist = [-10,-3,0,5,9] root return root 2. transfer() res = [] head = -10 loop 1: res = [-10] head = -3 loop 2: res = [-10, -3] head = 0 loop 3: res = [-10, -3, 0] head = 5 loop 4 res = [-10, -3, 0, 5] head = 9 loop 5 res = [-10, -3, 0, 5,9] head = None return res 3. dfs() mid = 5 // 2 = 2 root = 0 root.left = dfs([-10, 3]) mid = 2 // 2= 1 root = 3 root.left = dfs([:mid]) = dfs[-10] return treeNode(-10) root.right = dfs([mid + 1:]) = dfs [] return None 0 / \ 3 9 / \ / -10 N 5 root.left = dfs([3:]) = dfs[5, 9] mid = 2// 2 = 1 root = 9 root.left = dfs(5) root.right = None return root ''' ''' C. inorder simulation Method: 1. iterative over the linkedlist to find its length 2. fnd the mid elem by (start + end) // 2 3. recurse on the left half by using start, mid -1 as starting and ending points 4. head as root, and head = head.next 5. recurse on the right half by using mid + 1, end as starting and ending points time O(N) sO(N): while recursion use O(logN) ''' class Solution: def findSize(self, head): tmp = head res = 0 while tmp: tmp = tmp.next res += 1 return res def sortedListToBST(self, head): # Get the size of the linked list first size = self.findSize(head) # Recursively form a BST out of linked list from l --> r def convert(l, r): nonlocal head # # Invalid case if l > r: return None mid = (l + r) // 2 # First step of simulated inorder traversal. Recursively form # the left half left = convert(l, mid - 1) # Once left half is traversed, process the current node node = TreeNode(head.val) node.left = left # Maintain the invariance mentioned in the algorithm head = head.next # Recurse on the right hand side and form BST out of them node.right = convert(mid + 1, r) return node return convert(0, size - 1)
[ "lidongdongbuaa@gmail.com" ]
lidongdongbuaa@gmail.com
6ef336fe2b4c4c6570f5f608a03e7fb1f0c3b6fa
a44d6c8ddf4d43b8f623053ff8e4863d9a5f40d6
/readlikeme/wsgi.py
fa0c6764c3e6eff3c7b8c7ce9e0fa1b1c6f702b8
[]
no_license
martolini/readlikeme
c5bdd31f6233203454ee46c600e6add7936da39e
69e2509a5b747553fe723d890429444fbda24f14
refs/heads/master
2021-03-19T07:12:26.034555
2014-03-18T20:54:06
2014-03-18T20:54:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
""" WSGI config for readlikeme project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "readlikeme.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
[ "msroed@gmail.com" ]
msroed@gmail.com
4163cd7fd42ae455103ea2f04a36f4bd743d26a8
f895e1a0ca2499cbe733bde0584d5244ddb2e438
/system.py
343ad1411ed8ce3cbaaae7ded5a3549cf7793bcc
[]
no_license
rcackerman/security-camera
7d4c1f597bd6f50e1b6da69b58e1ab5978e39858
3411d985400f3cb2f8d5e23162e883285b1efd4f
refs/heads/master
2021-01-13T13:59:24.634613
2015-09-05T14:57:20
2015-09-05T14:57:20
40,516,281
0
1
null
2015-09-05T14:57:15
2015-08-11T02:12:42
Python
UTF-8
Python
false
false
2,087
py
''' TODO: * Make sure NTP is running so we have an accurate time * Automatically deal with time zone! (DST etc) ''' S3_KEY = process.env.S3_KEY S3_SECRET = process.env.S3_SECRET MIN_DIFFERENT_FRAMES = 4 # minimum number of different frames to trigger alert active = True # Is the security camera on? streak = 0 # Is there motion? # List of photo files # maybe this should be a FIFO queue of length TRIGGER_LENGTH? pastPhotos = [] # save the S3 urls recording = [] ''' Toggle the system on or off Maybe with Twilio? ''' onOff(state): active = state if active: runApp() ''' Save an image file to S3. ''' saveToS3(file): # save the file to S3 with a timestamp # Do we need to get the metadata from the image? # Maybe put it in a folder so we don't hit S3's file count limits? # then save the URL for sending out later recording.push(s3url) ''' Send us a message after the recording is over. ''' sendAlert(): msg = 'Motion detected!\n' for photo in recording: msg += recording + '\n' send msg # twilio? email? both? ''' Monitor the camera ''' # How many FPS does this give us? # Should we instead run this once per second and just do nothing if we are inactive? # https://docs.python.org/2/library/threading.html#timer-objects runApp(): while Active: # take a photo pastPhotos.push(photo) # if there is a previous photo # compare it to the last photo # is there significant change? # if yes streak++ # if streak is >= than MIN_DIFFERENT_FRAMES Save everything to S3 Do we need to have a filename w/timestamp by now? # Once everything is saved: pastPhotos.empty()??? # This won't work..... need to save at least one photo for comparison. # else # queue up the different photo in case we want it # pastPhotos.push(photo) # if no significant change # if we had a streak, and it's over, we need to send off an alert sendAlert() streak = 0 # reset the streak
[ "mahatm@gmail.com" ]
mahatm@gmail.com
f648966895199062456e5e080b63bc975caf9b28
648a6e11bea6a15bd677ecf152592edd71203734
/Lab6/task-6.1.4.py
b95f37d2fd863d0bf10179c439c17e8fea91ce6c
[]
no_license
paulkirwan6/AllLabs
70975233c2a545e0acf116f9326bc1153fd4d497
5c660eb352e61047519e87deaa5a3f0a0155785e
refs/heads/master
2020-09-20T12:13:17.593871
2019-11-27T18:59:30
2019-11-27T18:59:30
224,473,008
0
0
null
null
null
null
UTF-8
Python
false
false
700
py
from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer import SocketServer as S import datetime ##for current dynamic current time class S(BaseHTTPRequestHandler): def set_headers(self): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() def do_GET(self): self.set_headers() self.wfile.write(datetime.datetime.now()) def run(server_class=HTTPServer, handler_class=S, port=8000): server_address = ('',port) print 'Starting server' httpd = server_class(server_address, handler_class) print 'Server up' httpd.serve_forever() if __name__ == "__main__": from sys import argv if len(argv) == 2: run(port=int(argv[1])) else: run()
[ "paulkirwan6@gmail.com" ]
paulkirwan6@gmail.com
347dbf0216b68f16364f68c9c54ed2359479483c
9793d734de4283cec67ca1c398a7e71fddbdb19d
/test/ccp/test_ccp_inputs.py
8344778b53a40f78841ad29b887700f026a69d8b
[]
no_license
K-Molloy/whitebeam
40adcb9e94c59db66da24b65b0d5b7ac01a4f740
ef6bf6cbdff1f7713aead37a5f609fe2cfae8f28
refs/heads/main
2023-02-17T12:39:33.545920
2021-01-18T07:18:15
2021-01-18T07:18:15
327,152,651
0
0
null
2021-01-11T06:23:17
2021-01-06T00:10:49
Python
UTF-8
Python
false
false
3,187
py
from whitebeam.base import CCPTreeClassifier from sklearn.model_selection import train_test_split import numpy as np import pytest from test.utils import generate_binary_classification # --------------- # Expected Error # --------------- @pytest.mark.parametrize("param_alpha", [2+3j, "3", []]) def test_alpha_alpha_data_types_fail(param_alpha): X_train, X_test, y_train, y_test = generate_binary_classification() # should fail DURING THE <model.fit> CALL with pytest.raises(Exception) as e_info: model = CCPTreeClassifier(alpha=param_alpha) model.fit(X_train, y_train) @pytest.mark.parametrize("param_depth", [2+3j, "3", []]) def test_alpha_depth_data_types_fail(param_depth): X_train, X_test, y_train, y_test = generate_binary_classification() # should fail DURING THE <model.fit> CALL with pytest.raises(Exception) as e_info: model = CCPTreeClassifier(max_depth=param_depth) model.fit(X_train, y_train) # for some reason, a complex number does not call an error here :/ # also an empty list doesnt # Perhaps the split condition gets ignored in some way @pytest.mark.parametrize("param_split", ["3"]) def test_alpha_split_data_types_fail(param_split): X_train, X_test, y_train, y_test = generate_binary_classification() # should fail DURING THE <model.fit> CALL with pytest.raises(Exception) as e_info: model = CCPTreeClassifier(min_samples_split=param_split) model.fit(X_train, y_train) @pytest.mark.parametrize("param_leaf", [2+3j, "3", []]) def test_alpha_leaf_data_types_fail(param_leaf): X_train, X_test, y_train, y_test = generate_binary_classification() # should fail DURING THE <model.fit> CALL with pytest.raises(Exception) as e_info: model = CCPTreeClassifier(min_samples_leaf= param_leaf) model.fit(X_train, y_train) # --------------- # Expected Pass # --------------- @pytest.mark.parametrize("param_alpha", [True, 3.2]) def test_alpha_alpha_data_types_pass(param_alpha): X_train, X_test, y_train, y_test = generate_binary_classification() model = CCPTreeClassifier(alpha=param_alpha) model.fit(X_train, y_train) @pytest.mark.parametrize("param_depth", [True, 3.2]) def test_alpha_depth_data_types_pass(param_depth): X_train, X_test, y_train, y_test = generate_binary_classification() model = CCPTreeClassifier(max_depth=param_depth) model.fit(X_train, y_train) # for some reason, a complex number does not call an error here :/ # Additionally, passing a list as split brings a deprecation warning from arrays @pytest.mark.parametrize("param_split", [True, 3.2, 3+2j, []]) def test_alpha_split_data_types_pass(param_split): X_train, X_test, y_train, y_test = generate_binary_classification() model = CCPTreeClassifier(min_samples_split=param_split) model.fit(X_train, y_train) @pytest.mark.parametrize("param_leaf", [True, 3.2]) def test_alpha_leaf_data_types_pass(param_leaf): X_train, X_test, y_train, y_test = generate_binary_classification() # should fail DURING THE <model.fit> CALL model = CCPTreeClassifier(min_samples_leaf= param_leaf) model.fit(X_train, y_train)
[ "kieran.b.molloy@outlook.com" ]
kieran.b.molloy@outlook.com
8713742e4a25b2f594904e6f2e0e9a8afae4c048
b7c6a4ceb4f6f980f8dbc3c273402d3a70001e38
/materialize_threats/mx/models/Text.py
6dbdf9fbefa3283ba543ddb6afdc3d5e690985aa
[ "Apache-2.0" ]
permissive
ikszero/materialize_threats
e1924e7fe93c7eea382f4f47f2f97752eb5f09ff
fe811dc4c719baa1258a55bb43eb8a465e050da1
refs/heads/master
2022-11-27T10:16:56.843204
2020-08-03T05:11:19
2020-08-03T05:11:19
285,853,255
0
1
Apache-2.0
2020-08-07T14:49:07
2020-08-07T14:49:06
null
UTF-8
Python
false
false
1,189
py
from ..utils import MxConst from .Styles import Styles class Text: def __init__(self, anchor, family, size, text, color): self.anchor = anchor self.family = family self.size = size self.text = text self.color = color def get_mx_style(self): align = MxConst.CENTER if self.anchor == MxConst.MIDDLE else MxConst.START # TODO: add right margin = ( "margin-top:4px;" if self.anchor == MxConst.MIDDLE else "margin-left:4px;" ) rescaled_size = 10.0 * (self.size / 14.0) return Styles.TEXT.format( align=align, margin=margin, size=rescaled_size, family=self.family or MxConst.DEFAULT_FONT_FAMILY, color=self.color or MxConst.DEFAULT_FONT_COLOR, ) @staticmethod def from_xml(text): if text != None: text = text.replace("<", "&lt;").replace(">", "&gt;") else: text = "" return Text( text = text, anchor=None, family=MxConst.DEFAULT_FONT_FAMILY, size=MxConst.DEFAULT_TEXT_SIZE, color=None, )
[ "33043272+jacob-salassi@users.noreply.github.com" ]
33043272+jacob-salassi@users.noreply.github.com
f717594b82fedbfdf3ca400ff7a19b81fcb4c4ef
1f2262bf0f03c010fdfa595f7d6d1e0dd215f817
/myapp/migrations/0054_remove_checkoutcart_country.py
235bbe69057d2a633aa447ebf0fb518dd6c17b60
[]
no_license
nabin-01/Ecommerce_Django
ea27d13491e2dbeb0a2c2e52d6372f3d0b07905b
104a3a33672e30234fe776e0504bb6487aa78a9a
refs/heads/main
2023-04-15T18:30:26.408146
2021-05-02T20:08:56
2021-05-02T20:08:56
358,646,257
0
0
null
null
null
null
UTF-8
Python
false
false
335
py
# Generated by Django 3.1.7 on 2021-04-24 16:41 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('myapp', '0053_checkoutcart_country'), ] operations = [ migrations.RemoveField( model_name='checkoutcart', name='country', ), ]
[ "nabinghimire1001@gmail.com" ]
nabinghimire1001@gmail.com
553206a6a06c245cc0ea6f8521414d4baf2819d8
e3b3ae9aec7e1a2eacdf0176c0b1a6bbf8834f75
/imperialtometric.py
15d1e003f6841b45135e5558d4a40136851e7902
[]
no_license
carolinascarneiro/pp-lesson-projects
9f5954790372bbb7f5cb312c376c1d5366dd5cb2
7e89d01a461e6edc0c2f5d53bb42caff4fd80edd
refs/heads/main
2023-06-30T04:11:43.876987
2021-08-01T16:11:43
2021-08-01T16:11:43
389,911,117
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
#Convert from feet+inches to cm feet = 5 inches = 3 cm = 30*feet + 3*inches print(cm)
[ "carneiro.carolina@yahoo.com.br" ]
carneiro.carolina@yahoo.com.br
5ebb4852fd107ae15be7b6ad2880aa9fcda1c20e
24815c399098b90a4d825f60a78148c8f895848d
/test_tdd_demo1a.py
ce4bad4abab1ff3d6a4f6a0e9c1f9aca57fe4532
[]
no_license
kevinelong/tdd_demo
710c250a2f65a5df5e765d74ab89244b2d93e8d9
e9a70f0ba34d0c1ec0633697eed54b7ed9d1b6c7
refs/heads/master
2022-11-13T12:05:35.807818
2020-07-02T18:53:33
2020-07-02T18:53:33
270,855,427
0
0
null
null
null
null
UTF-8
Python
false
false
1,325
py
""" MARKETING REQUEST FOR DEVELOPMENT: We want a function called "backwards", that returns its input reversed. e.g. "ABC" becomes "CBA" """ """ ENGINEERING FUNCTIONAL REQUIREMENTS: 1. The identifier "backwards" must point to a function. 2. The function must accept a string as input. 3. The output value from the function must be the input reversed. """ """ THE TDD PROCESS (Repeat for each functional requirement): - Red = Make a failing test; see it FAIL. - Green = Do the minimum required to make it pass; see it PASS. - Refactor = Make it work well; see it still passes. """ # def backwards(): pass # def backwards(text): return True # def backwards(text): return text[::-1] def backwards(text): letters = list(text) letters.reverse() return "".join(letters) suite: dict = { "1. Is Function": lambda: callable(backwards), "2. Accepts String": lambda: backwards("ABC"), "3. Is Reversed": lambda: "ZYX" == backwards("XYZ"), } # SIMPLE TEST FRAMEWORK red, green = (u"\u001b[31mFAIL-RED: ", u"\u001b[32mPASS-GREEN: ") for name, test in suite.items(): try: print(f"{green if test() else red} : {name}") except Exception as message: print(f"{red}{name} MESSAGE: {message}") ''
[ "kevinelong@gmail.com" ]
kevinelong@gmail.com
d92a5039ae80d5127a0597cbd9b592de97baa478
d6185183eea8a99f486f346c8b03b3dc3b71bd54
/api/serializers.py
777656971ce300f5d824d6f07adf9e55abdf0a1d
[]
no_license
dohcgle/squad
98acbd5461cb48b75a373a135bdd3c0eb8a952f3
e24606276dcc84550f0e5d0d569cb9d1f111b9c7
refs/heads/main
2023-07-05T17:27:37.827912
2021-08-24T10:07:02
2021-08-24T10:07:02
398,609,950
0
0
null
null
null
null
UTF-8
Python
false
false
512
py
from rest_framework import serializers from .models import Members, Squad, Power class PowerSerializer(serializers.ModelSerializer): class Meta: model = Power exclude = ('id', ) class MembersSerializer(serializers.ModelSerializer): powers = PowerSerializer(many=True) class Meta: model = Members exclude = ('id', ) class SquadSerializer(serializers.ModelSerializer): members = MembersSerializer() class Meta: model = Squad fields = '__all__'
[ "utn1002@gmail.com" ]
utn1002@gmail.com
52daf9e37da6d60f8e9103ebb8997114695211b5
e2d03079c2483ff91f473a4580f1ce4661c14f80
/pelican/plugins/pelican-semantic-ui/pelican-semantic-ui.py
b49b62cb27ee511b2cda82f7cc2f06dcf782b1ba
[ "MIT" ]
permissive
hielsnoppe/pelican-semantic-ui
d19599a33086f7a0713827fdfb8167560765d2e2
23976c3cc1a065bc94cf4d098dc0aafae68988bf
refs/heads/main
2023-01-01T01:33:07.252830
2020-10-26T22:10:51
2020-10-26T22:10:51
307,516,231
0
0
null
null
null
null
UTF-8
Python
false
false
532
py
from pelican import signals from jinja2 import ChoiceLoader, FileSystemLoader def add_loader(pelican): ''' https://stackoverflow.com/questions/30109097/trying-to-override-jinja-choicereloader-in-a-pelican-plugin ''' pelican.env.loader = ChoiceLoader([ pelican.env.loader, #PackageLoader('Semantic-UI-Jinja2', 'templates'), FileSystemLoader('/home/niels/Projects/public/Semantic-UI-Jinja2/semantic_ui_jinja2/templates'), ]) def register(): signals.generator_init.connect(add_loader)
[ "mail@nielshoppe.de" ]
mail@nielshoppe.de
a1ea9882410206d97dde501efb90db8f3844d88c
61a4f0ef43e31f77d17d41a0f0250cf4d10cc45b
/directory/migrations/0002_auto_20180215_2103.py
52a16e771442cef9e59c29a1a3088db9a0baf6b3
[ "MIT" ]
permissive
for-each-org/taf-members
f09dcf9044db7abd070ecda2c8c55fedf06eba54
a9e9663acc8ae5a321965a6340c639ede0c09754
refs/heads/master
2021-05-09T00:31:39.855553
2018-03-03T19:06:17
2018-03-03T19:06:17
119,747,094
0
0
MIT
2018-03-03T19:06:18
2018-01-31T21:41:29
Python
UTF-8
Python
false
false
1,647
py
# Generated by Django 2.0.2 on 2018-02-15 21:03 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('directory', '0001_initial'), ] operations = [ migrations.CreateModel( name='SocialField', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(max_length=256)), ('url', models.URLField()), ], ), migrations.DeleteModel( name='User', ), migrations.RemoveField( model_name='profile', name='social', ), migrations.AddField( model_name='profile', name='owner', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), preserve_default=False, ), migrations.AlterField( model_name='profile', name='profile_img_url', field=models.URLField(max_length=256), ), migrations.AlterField( model_name='profile', name='website', field=models.URLField(max_length=256), ), migrations.AddField( model_name='socialfield', name='profile', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='directory.Profile'), ), ]
[ "drewatkinson5@gmail.com" ]
drewatkinson5@gmail.com
adcc26d378e12b39c36bbc0edf78f14655faeafa
7b87f276dcc09f372a6f8cd74e5a8b91f1025bde
/work/app.py
ddcc6311f528a2c07c6a9586a9ebe9cda1894162
[]
no_license
hyeljang/code_test
45d5cad83da330c4973e613790168a3b790151aa
55e9da4a4a884b6a11b879513db538f56e420de5
refs/heads/master
2022-09-24T22:50:14.756728
2020-06-09T08:06:19
2020-06-09T08:06:19
265,852,853
0
0
null
null
null
null
UTF-8
Python
false
false
1,297
py
from pymongo import MongoClient # pymongo를 임포트 하기(패키지 인스톨 먼저 해야겠죠?) from flask import Flask, render_template, jsonify, request app = Flask(__name__) client = MongoClient('localhost', 27017) # mongoDB는 27017 포트로 돌아갑니다. db = client.dbsparta # 'dbsparta'라는 이름의 db를 만듭니다. # HTML을 주는 부분 @app.route('/') def home(): return render_template('index.html') # API 역할을 하는 부분 @app.route('/shoppings', methods=['POST']) def write_order(): name_receive = request.form['name_give'] qty_receive = request.form['qty_give'] address_receive = request.form['address_give'] phone_receive = request.form['phone_give'] orders1 = {'name': name_receive, 'qty': qty_receive, 'address': address_receive, 'phone': phone_receive} db.orders.insert_one(orders1) return jsonify({'result': 'success', 'msg': '주문이 정상적으로 접수되었습니다.'}) @app.route('/shoppings', methods=['GET']) def read_orders(): orders_list = list(db.orders.find({}, {'_id': 0})) print(orders_list) return jsonify({'result': 'success', 'order_list': orders_list}) if __name__ == '__main__': app.run('0.0.0.0', port=5000, debug=True)
[ "hyeljang@naver.com" ]
hyeljang@naver.com
2dd6a7d5978b6b8bab205615d8932e5a579079c7
bd22572b4fe1bdf7d38e4a37ccb6da52cf5dbb08
/bot-engine/EngineStates/InternalVariableFlow.py
ef0c1110e0e3c0d003b4e02ba3526caeef1d926a
[]
no_license
dannysheyn/bonter
a8d4a5dba5be5e43374bcd702d81793c6cc07faa
2d2ebc13e4fdcd1b1a3ef6b0cd5cbf0b9d53a4db
refs/heads/master
2023-08-25T22:59:17.176394
2021-11-08T17:58:09
2021-11-08T17:58:09
333,482,514
0
0
null
null
null
null
UTF-8
Python
false
false
8,566
py
from botEngine import BotEngine from callableBox import * import userMessages from EngineStates import * from api import API from userGeneratedBot import BOX_TYPE_INTERNAL_VARIABLE from CurrentUser import CurrentUser class InternalVariableFlow: @staticmethod def internal_variable_assignment_start_flow(update: Update, context: CallbackContext): ''' goal: embedded a value into a variable ''' query = update.callback_query query.answer() text = 'Please enter the name of the variable you want to embed with a value' query.message.reply_text(text=text) return GET_INTERNAL_VARIABLE @staticmethod def internal_variable_assignment_name(update: Update, context: CallbackContext): variable_name = update.message.text user_generated_bot = CurrentUser.get_current_user(update) if variable_name in user_generated_bot.internal_client_variables or variable_name in user_generated_bot.user_variables: update.message.reply_text(text='The variable name you gave is already in use, please try again.') return BotEngine.edit_bot(update, context) else: user_generated_bot.user_variables['internal_variable'] = variable_name update.message.reply_text(text='Please insert if you want to insert the value:\n' '1) Now\n' '2) API during run time.') return INTERNAL_VARIABLE_SOURCE @staticmethod def internal_variable_assignment_source(update: Update, context: CallbackContext): user_choice = update.message.text if user_choice == "1": update.message.reply_text(text='Please enter the value you want to insert to the variable') return INTERNAL_VARIABLE_INSTANT_VALUE elif user_choice == "2": update.message.reply_text(text='Please enter the api uri you want to use.\n' 'Note: you can use the ${variable_name} in the uri given, BUT you will need to add' ' a default value in the following matter: ${variable_name:default_value} examples:\n' ' ${city:new york}, ${name:Alice}') return INTERNAL_VARIABLE_API_VALUE else: update.message.reply_text(text='Not 1 or 2 was given as an answer.\n Please try again') return BotEngine.edit_bot(update, context) @staticmethod def internal_variable_instant_value(update: Update, context: CallbackContext): query = update.callback_query query.answer() user_variable_value = update.message.text user_generated_bot = CurrentUser.get_current_user(update) internal_variable_name = user_generated_bot.user_variables['internal_variable'] user_generated_bot.internal_client_variables[internal_variable_name] = user_variable_value update.message.reply_text( text=f'Value added to variable ${{{internal_variable_name}}} with the value: {internal_variable_name}.\n' f'Now you can use the ${{{internal_variable_name}}} everywhere in your bot ' f'making.') return BotEngine.edit_bot(update, context) @staticmethod def internal_variable_api_value_start(update: Update, context: CallbackContext): url = update.message.text user_generated_bot = CurrentUser.get_current_user(update) user_generated_bot.apis.append(API(uri=url)) update.message.reply_text(text=userMessages.HEADER_MESSAGE) return INTERNAL_VARIABLE_API_HEADERS @staticmethod def internal_variable_api_headers(update: Update, context: CallbackContext): authorization = update.message.text user_generated_bot = CurrentUser.get_current_user(update) api_obj = user_generated_bot.apis[-1] if authorization.find('=') == -1: text = 'No headers where given continuing to next stage...\n' update.message.reply_text(text=text) else: BotEngine.header_extractor(authorization, api_obj) text = 'Now we will show you the return value from the api call,' \ ' and you will choose with value you want from the call' update.message.reply_text(text=text) query_variables = re.findall(r'\$\{.+?\}', api_obj.uri) if query_variables: # if in the url there are variables in the form of ${var} api_obj.uri_to_check = BotEngine.sub_variables_with_defualt_values(query_variables, api_obj.uri) response = user_generated_bot.apis[-1].get_api_response() text = "We just made a request with the parameters that you provided " \ "and got the following response\n\n" update.message.reply_text(text=text) if response.status_code == 200: pretty_response = json.loads(response.text) pretty_response = json.dumps(pretty_response, indent=2) user_generated_bot.apis[-1].response = pretty_response BotEngine.send_long_message(update=update, pretty_response=pretty_response) text_get_key = f'What key in the data would you like it to be inserted to the variable {user_generated_bot.user_variables["internal_variable"]}.' \ f'please enter the Json expressions which evaluate to your key for example:\n' \ f'[origin] or [destination][flight_num] and etc...\n ' \ 'If the key are inside an array you need to index it, for example: [0][origin] or ' \ '[destination][1]\n ' \ 'You can use nesting for dictionaries as well, for example: [data][name] or [0][data][' \ 'time]\n ' update.message.reply_text(text=text_get_key) return INTERNAL_VARIABLE_API_MAPPING else: text = 'Status code was not 200, please try to request the same values in postman and try again later' update.message.reply_text(text=text) return BotEngine.edit_bot(update, context) @staticmethod def internal_variable_api_mapping(update: Update, context: CallbackContext): expression = update.message.text # I.E: [0][data][time] user_generated_bot = CurrentUser.get_current_user(update) user_generated_bot.apis[-1].expressions = [expression] internal_variable = user_generated_bot.user_variables["internal_variable"] try: user_generated_bot.apis[-1].validate_keys(save_response=False, use_uri_to_check=True) item = tuple(user_generated_bot.apis[-1].key_expression.items()) key, value = item[0][0], item[0][1] user_generated_bot.apis[-1].key_expression[internal_variable] = value del user_generated_bot.apis[-1].key_expression[key] except Exception as e: error_message = "We couldn't validate one of your expressions\n" \ f"Original error is: \n {e}\n" \ f"Please try to write those expressions again according to the rules" update.message.reply_text(text=error_message) return INTERNAL_VARIABLE_API_MAPPING key_expression_mapping = user_generated_bot.apis[-1].key_expression_map() ref_keys_text = "Your keys have been validated and we have saved them\n" \ "Here is the key-expression mapping (In this format {Key} = {Expression}):\n" \ f"{key_expression_mapping}" update.message.reply_text(text=ref_keys_text) box_number = user_generated_bot.add_box(box_msg=f'Internal variable api: {key},' f' Note: this box will be invisible to the user', box_type=BOX_TYPE_INTERNAL_VARIABLE, api_obj=user_generated_bot.apis[-1]) # add to graph # support add edge to and from this box update.message.reply_text( text=f'You have successfully created an internal variable assignment, with the number ' f'of {box_number} ' f'Please remember that the box cannot print and every edge from it is in the ' f'following syntax:\n ' f'{box_number}.0->destination') return BotEngine.edit_bot(update, context)
[ "59560231+ArtemKuznetsovv@users.noreply.github.com" ]
59560231+ArtemKuznetsovv@users.noreply.github.com
dc83acb459fcffe1afe7db43b56887dcd5a13f98
c7c3daeaa29fc8c955ea6c143d73f7fe34f0ca6b
/Pn/Newtoy10000batch/calc_err.py
f98b16236cd5dae79b053205f5efd7b832062d26
[]
no_license
hanzhuoran/FETtest
9e678f9c6c6ccf6b0fb3fc8063a32b5439299883
d0104ca3d5dc06152ad583089a837f3425fb5c00
refs/heads/master
2020-03-22T10:27:11.010594
2018-07-20T18:27:54
2018-07-20T18:27:54
139,903,416
0
0
null
null
null
null
UTF-8
Python
false
false
413
py
import glob import matplotlib.pyplot as plt import openmc import os import numpy as np import openmc.capi as capi import scipy.misc as scm import scipy.special as scp import generate_xml as genxml import helperfunction as hf import dataprocess as dp import generateplot as gp import sys plnnum = 100 porder = 100 pln,plnmid = hf.get_planes(plnnum) N = [10000] for n in N: dp.process_data(plnnum,porder,pln,n)
[ "zhuoranh@mit.edu" ]
zhuoranh@mit.edu
bf0c684d00618e404e4f0cf0988ac822ca07783b
55fad148029f51073d15efe0f7053cf9c890c797
/parser/tasks.py
ee9b78983e428c9c38941aef6da0435fc79a928e
[]
no_license
MishaAntonkin/domovichok
f0dba4570258a896a3254e99d67e7ad3241ccdf7
51afbd9c031fde97553c17b70dace02a57fcf029
refs/heads/master
2022-12-18T03:29:05.621168
2018-06-02T19:05:09
2018-06-02T19:05:09
126,003,055
0
0
null
2022-12-08T00:56:17
2018-03-20T10:51:19
Python
UTF-8
Python
false
false
184
py
from datetime import datetime from celer import celery_app @celery_app.task def now(): with open('asome', 'a+') as f: f.write('string\n') print(str(datetime.now()))
[ "mishaAntonkin@gmail.com" ]
mishaAntonkin@gmail.com
dd88f4ab6f1e21d5f809655c618724a9cce5a20d
537d28fb2142331e27c84ebf2c16bad77aceb24e
/keras/lstmTest/p054_UnivariateMLP.py
8d753d5fc810757620cacc1001d07366250eefb2
[]
no_license
gema0000/bit2019
c27c3cec8d8d3a0907ade41523ce1c5ee86337b6
2f44ad3956b387186935374d9a488ad40a13bcaf
refs/heads/master
2020-07-03T05:19:41.051447
2019-10-26T23:56:25
2019-10-26T23:56:25
201,796,021
4
2
null
null
null
null
UTF-8
Python
false
false
1,657
py
# split a univariate sequence into samples def split_sequence(sequence, n_steps): X, y = list(), list() for i in range(len(sequence)): # find the end of this pattern end_ix = i + n_steps # check if we are beyond the sequence if end_ix > len(sequence)-1: break # gather input and output parts of the pattern seq_x, seq_y = sequence[i:end_ix], sequence[end_ix] X.append(seq_x) y.append(seq_y) return array(X), array(y) # univariate data preparation from numpy import array from keras.models import Sequential from keras.layers import Dense # split a univariate sequence into samples def split_sequence(sequence, n_steps): X, y = list(), list() for i in range(len(sequence)): # find the end of this pattern end_ix = i + n_steps # check if we are beyond the sequence if end_ix > len(sequence)-1: break # gather input and output parts of the pattern seq_x, seq_y = sequence[i:end_ix], sequence[end_ix] X.append(seq_x) y.append(seq_y) return array(X), array(y) # define input sequence raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90] # choose a number of time steps n_steps = 3 # split into samples X, y = split_sequence(raw_seq, n_steps) # summarize the data for i in range(len(X)): print(X[i], y[i]) # define model model = Sequential() model.add(Dense(100, activation='relu', input_dim=n_steps)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') # fit model model.fit(X, y, epochs=2000, verbose=0) # demonstrate prediction x_input = array([70, 80, 90]) x_input = x_input.reshape((1, n_steps)) yhat = model.predict(x_input, verbose=0)
[ "gema0000@naver.com" ]
gema0000@naver.com
0b9e1610455523e45cd4142a03cf3aa9e462915c
0f1ffdf3ce215b170e201e8d3d7a103fdb3ec1cf
/examples/tenant_tutorial/tenant_tutorial/urls_tenants.py
302ac2a76c019007d753a6a177ead0285ac18d5c
[ "MIT" ]
permissive
simo97/django-tenants
4afa6062e632ad29ec8bbbd2bcf49244fb693ffe
386152dfcfdfb0084d471495fd8fcd95762a451f
refs/heads/master
2020-06-30T15:08:14.788197
2019-11-08T12:31:25
2019-11-08T12:31:25
200,866,875
1
0
MIT
2019-11-08T12:31:26
2019-08-06T14:22:51
Python
UTF-8
Python
false
false
425
py
from customers.views import TenantView, TenantViewRandomForm, TenantViewFileUploadCreate from django.contrib import admin from django.urls import path urlpatterns = [ path('', TenantView.as_view(), name="index"), path('sample-random/', TenantViewRandomForm.as_view(), name="random_form"), path('upload-file/', TenantViewFileUploadCreate.as_view(), name="upload_file"), path('admin/', admin.site.urls), ]
[ "tom@twt.me.uk" ]
tom@twt.me.uk
7c6c64e07b7e7b162308256268e3047bf5cb9801
c6d4db3208e915ffcca08325b167b6901f4cf3c9
/ABC144/c.py
580ba5e3d35f14eafeacfc6562ddd91e42d20af2
[]
no_license
NagaTaku/atcoder_abc_edition
183db46774a642ec4ab2b38cace7d73312ca5fe0
d018fcea03681bb78b159c0934dfe02794fe5df6
refs/heads/develop
2023-03-28T16:13:59.610494
2021-04-05T08:41:54
2021-04-05T08:41:54
259,724,404
1
0
null
2020-08-21T08:05:13
2020-04-28T18:52:53
Python
UTF-8
Python
false
false
461
py
import math def make_divisors(n): lower_divisors , upper_divisors = [], [] i = 1 while i*i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] n = int(input()) yaku = make_divisors(n) Min = float('inf') for i in range(math.ceil(len(yaku)/2)): Min = min(Min, yaku[i]+yaku[-(i+1)]) print(Min-2)
[ "greeeen0315@gmail.com" ]
greeeen0315@gmail.com
7cf56b169537088e8957df7107db39c5313491c4
cda3810d054a9769a2e0d95613fac970bf0f08a4
/source_codes/modeling_trial.py
26e65411623632cb779ec48a288b67b8429cf553
[]
no_license
iocak28/Fantasy_Basketball_ML
bb97d41d910a4216496aae8eaadf163fce9a7f69
ef8156292e5a50316039fb3dbf6c78cb0bfaa73e
refs/heads/master
2022-04-11T10:58:29.288289
2020-04-02T06:52:09
2020-04-02T06:52:09
241,824,074
0
1
null
null
null
null
UTF-8
Python
false
false
7,533
py
# Modeling Code import pandas as pd import numpy as np import time # from basketball_reference_web_scraper import client import os import gc import datetime import sklearn from sklearn import linear_model from sklearn.metrics import mean_squared_error, r2_score from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.model_selection import RandomizedSearchCV from sklearn.tree import DecisionTreeRegressor from itertools import product from sklearn.model_selection import GridSearchCV from sklearn.model_selection import TimeSeriesSplit from sklearn.ensemble import RandomForestRegressor import xgboost from matplotlib import pyplot #from keras.callbacks import ModelCheckpoint #from keras.models import Sequential #from keras.layers import Dense, Activation, Flatten, Dropout ##from talos.model import layers #from keras.regularizers import l1 # gc collect gc.collect() # Configuration feature = 'C:/Users/iocak/OneDrive/Masaüstü/WI20/ECE 271B/Project/model_data/' # Read Data dataset = pd.read_parquet(feature + 'all_data.parquet') # Train Test Split season_end_year_list = [2015, 2017] train = dataset[(dataset['season_end_year'] >= season_end_year_list[0]) & (dataset['season_end_year'] < season_end_year_list[1])].drop( columns = ['date', 'opponent', 'team', 'name', 'slug', 'season_end_year', 'fantasy_point']) train_labels = dataset[(dataset['season_end_year'] >= season_end_year_list[0]) & (dataset['season_end_year'] < season_end_year_list[1])][['fantasy_point']] test = dataset[(dataset['season_end_year'] == season_end_year_list[1])].drop( columns = ['date', 'opponent', 'team', 'name', 'slug', 'season_end_year', 'fantasy_point']) test_labels = dataset[(dataset['season_end_year'] == season_end_year_list[1])][['fantasy_point']] # Scale data scaler = StandardScaler() # Fit on training set only. scaler.fit(train) # Apply transform to both the training set and the test set. train_n = scaler.transform(train) test_n = scaler.transform(test) # PCA ## Make an instance of the Model pca = PCA(.90) pca.fit(train_n) train_n = pca.transform(train_n) test_n = pca.transform(test_n) # Plot % Variance explained variance = pca.explained_variance_ratio_ #calculate variance ratios var=np.cumsum(np.round(pca.explained_variance_ratio_, decimals=3)*100) var #cumulative sum of variance explained with [n] features pyplot.ylabel('% Variance Explained') pyplot.xlabel('# of Features') pyplot.title('PCA Analysis') pyplot.ylim(30,100.5) pyplot.style.context('seaborn-whitegrid') pyplot.plot(var) # Try a basic model ## Linear Regression ### Create linear regression object regr = linear_model.LinearRegression() ### Train the model using the training sets regr.fit(train_n, train_labels) ### Make predictions using the testing set y_pred = regr.predict(test_n) ### The coefficients print('Coefficients: \n', regr.coef_) ### General Error & Bias lr_err = np.mean(np.abs(y_pred - test_labels)) / np.mean(test_labels) lr_bias = np.mean((y_pred - test_labels)) / np.mean(test_labels) ## Lasso ### Create lasso object regr = linear_model.Lasso(alpha = 0.1) ### Train the model using the training sets regr.fit(train_n, train_labels) ### Make predictions using the testing set y_pred = regr.predict(test_n) ### The coefficients print('Coefficients: \n', regr.coef_) ### General Error & Bias lr_err = np.mean(np.abs(y_pred[:, None] - test_labels)) / np.mean(test_labels) lr_bias = np.mean((y_pred[:, None] - test_labels)) / np.mean(test_labels) ## Decision Tree # Time Series CV max_depth = [5, 10, 50] min_samples_split = [2, 5] min_samples_leaf = [1, 5] max_features = ['auto'] parameters = {'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'max_features': max_features} clf = GridSearchCV(DecisionTreeRegressor(), parameters, n_jobs=-1, cv = TimeSeriesSplit(max_train_size=None, n_splits=3)) clf.fit(X = train_n, y = train_labels) tree_model = clf.best_estimator_ ### Train the model using the training sets tree_model.fit(train_n, train_labels) ### Make predictions using the testing set y_pred = tree_model.predict(test_n) ### General Error & Bias np.mean(np.abs(y_pred[:, None] - test_labels)) / np.mean(test_labels) np.mean((y_pred[:, None] - test_labels)) / np.mean(test_labels) # ideas: ''' - try rf, xgb, nn if they don't work, try them again by handpicking some features - selective pca, or some other dim reduction ''' ## Random Forest # Time Series CV # Number of trees in random forest n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 5)] # Number of features to consider at every split max_features = ['auto', 'sqrt'] # Maximum number of levels in tree max_depth = [int(x) for x in np.linspace(2, 100, num = 5)] max_depth.append(None) # Minimum number of samples required to split a node min_samples_split = [2, 5, 10] # Minimum number of samples required at each leaf node min_samples_leaf = [1, 2, 4] # Method of selecting samples for training each tree bootstrap = [True, False] parameters = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} clf = GridSearchCV(RandomForestRegressor(), parameters, n_jobs=-1, cv = TimeSeriesSplit(max_train_size=None, n_splits=3), verbose = 2) clf.fit(X = train_n, y = train_labels) tree_model = clf.best_estimator_ ### Train the model using the training sets tree_model.fit(train_n, train_labels) ### Make predictions using the testing set y_pred = tree_model.predict(test_n) ### General Error & Bias np.mean(np.abs(y_pred[:, None] - test_labels)) / np.mean(test_labels) np.mean((y_pred[:, None] - test_labels)) / np.mean(test_labels) # xgboost parameters = {'nthread':[-1], #when use hyperthread, xgboost may become slower 'objective':['reg:linear'], 'learning_rate': [.03, 0.05, .07], #so called `eta` value 'max_depth': [5, 6, 7], 'min_child_weight': [1, 4, 10], 'silent': [1], 'subsample': [0.7], 'colsample_bytree': [0.7], 'n_estimators': [50, 100]} xgb1 = xgboost.XGBRegressor() clf = GridSearchCV(xgb1, parameters, n_jobs=-1, cv = TimeSeriesSplit(max_train_size=None, n_splits=3), verbose = 2) clf.fit(X = train, y = train_labels) clf.best_estimator_ best_model = clf.best_estimator_ ### Train the model using the training sets best_model.fit(train, train_labels) ### Make predictions using the testing set y_pred = best_model.predict(test) ### General Error & Bias print(np.mean(np.abs(y_pred[:, None] - test_labels)) / np.mean(test_labels)) print(np.mean((y_pred[:, None] - test_labels)) / np.mean(test_labels)) # plot feature importance xgboost.plot_importance(best_model) pyplot.figure(figsize=(200,50)) pyplot.show() feat_imp = pd.DataFrame({'col_name' : train.columns, 'feature_imp' : best_model.feature_importances_}) feat_imp = feat_imp.sort_values(by = 'feature_imp', ascending=False)
[ "iocak28@gmail.com" ]
iocak28@gmail.com
bcb65764a20736e44cc15c3d9f9062023ebe1e13
7c89da72f81c4e99130cf49a8ca48119beabff39
/knn.py
110287582bbdd3df364d2f6947c0c964798d546d
[]
no_license
ianyehwork/Machine-Learning-Movie-Success-Prediction
cdb2add2be7d361de2b5b7362647a39bf8e66bd5
7d2ecdaa7998333926450b6f08ab5abc7a93e1ab
refs/heads/master
2022-12-05T17:49:29.556571
2020-08-23T02:00:44
2020-08-23T02:00:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,148
py
""" This program is used for finding the best knn of different roi label @author: gwang25 """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import sklearn from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import StratifiedKFold from sklearn.metrics import cohen_kappa_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import accuracy_score from sklearn import metrics from sklearn.preprocessing import scale #use iteration to caclulator different k in models, then return the average accuracy based on the cross validation def cv_knn(dateframe, k_range, cv_times, model_evaluation, feature_number=10): k_scores = [] feature_array = ['budget','directors_popularity_score', 'casts_popularity_score', 'runtime', 'keywords_popularity_score', 'release_year', 'casts_vote_score', 'release_month', 'directors_vote_score', 'keywords_vote_score'] if feature_number == 10: knn_attrbiutes = dateframe.loc[:,['budget', 'release_year', 'release_month', 'genres_popularity_score', 'genres_vote_score', 'keywords_popularity_score','keywords_vote_score', 'casts_popularity_score', 'casts_vote_score', 'directors_popularity_score','directors_vote_score']] else: feature_choose = feature_array[0:feature_number] knn_attrbiutes = dateframe.loc[:,feature_choose] knn_attrbiutes.info() print(feature_choose) #.values will change to array, .ravel() convert that array shape to (n,) which is required knn_label = dateframe.loc[:, ['return_on_investment_label']].values.ravel() for k in k_range: knn = KNeighborsClassifier(n_neighbors=k) scores = cross_val_score(knn, X=knn_attrbiutes, y=knn_label, cv = cv_times, scoring = model_evaluation) k_scores.append(scores.mean()) index_max_score = np.argmax(k_scores) print("Choose "+str(k_range[index_max_score])+" as k, "+"the "+ model_evaluation + " is "+str(k_scores[index_max_score])) # plot to see clearly plt.plot(k_range, k_scores) label = "Cross-Validated "+ model_evaluation plt.xlabel("Value of K for KNN") plt.ylabel(label) path = 'graph/CV of knn '+ model_evaluation + '.png' plt.savefig(path) plt.show() #Out put of knn_new are accuracy, balanced_accuracy, cohen_kappa def knn_new(dateframe, k_range, k_fold, origin_attribute=False): #dataframe #'budget' if origin_attribute: knn_attrbiutes = dateframe.loc[:,['budget','runtime', 'release_year', 'release_month', 'popularity', 'vote_average']] else: knn_attrbiutes = dateframe.loc[:,['budget', 'runtime', 'casts_popularity_score', 'casts_vote_score', 'directors_popularity_score']] #knn_attrbiutes = dateframe.loc[:, ['budget', 'runtime', 'release_year', 'release_month', 'genres_popularity_score', 'genres_vote_score', 'keywords_popularity_score', 'keywords_vote_score', 'casts_popularity_score', 'casts_vote_score', 'directors_popularity_score', 'directors_vote_score', 'genres_roi_score','keywords_roi_score','casts_roi_score','directors_roi_score']] #narray print(knn_attrbiutes.columns) knn_label = dateframe.loc[:, ['return_on_investment_label']].values.ravel() #the different of StratifiedShuffleSplit from stratifiedKold is the random index shufflesplit = StratifiedKFold(n_splits = k_fold, shuffle=True, random_state=42) mean_accuracy_list = [] mean_balanced_accuracy_list = [] mean_cohen_kappa_list = [] for k in k_range: knn_classifier = KNeighborsClassifier(n_neighbors=k, weights="distance", algorithm="kd_tree") accuracy = [] balanced_accuracy = [] cohen_kappa = [] for train_index, test_index in shufflesplit.split(knn_attrbiutes, knn_label): scale_attributes_train = scale(knn_attrbiutes.loc[train_index]) scale_attributes_test = scale(knn_attrbiutes.loc[test_index]) predict_test = knn_classifier.fit(scale_attributes_train, knn_label[train_index]).predict(scale_attributes_test) accuracy.append(accuracy_score(knn_label[test_index], predict_test)) balanced_accuracy.append(balanced_accuracy_score(knn_label[test_index], predict_test)) cohen_kappa.append(cohen_kappa_score(knn_label[test_index], predict_test, weights= "quadratic")) mean_accuracy_list.append(np.mean(accuracy)) mean_balanced_accuracy_list.append(np.mean(balanced_accuracy)) mean_cohen_kappa_list.append(np.mean(cohen_kappa)) index_max_accuracy = np.argmax(mean_accuracy_list) index_max_balanced_accuracy = np.argmax(mean_balanced_accuracy_list) index_max_cohen_kappa = np.argmax(mean_cohen_kappa_list) print("Choose " + str(k_range[index_max_accuracy]) + " as k, " + "the accuracy is " + str( mean_accuracy_list[index_max_accuracy])) print("Choose " + str(k_range[index_max_balanced_accuracy]) + " as k, " + "the balanced_accuracy is " + str( mean_balanced_accuracy_list[index_max_balanced_accuracy])) print("Choose " + str(k_range[index_max_cohen_kappa]) + " as k, " + "the cohen_kappa is " + str( mean_cohen_kappa_list[index_max_cohen_kappa])) plt.figure(0) plt.plot(k_range, mean_balanced_accuracy_list) label = "Cross-Validated " + "balanced accuracy" plt.xlabel("Value of K for KNN") plt.ylabel(label) path = 'graph/CV of knn ' + "balanced accuracy" + '.png' plt.savefig(path) plt.figure(1) plt.plot(k_range, mean_cohen_kappa_list) label = "Cross-Validated " + "cohen kappa" plt.xlabel("Value of K for KNN") plt.ylabel(label) path = 'graph/CV of knn ' + "cohen kappa" + '.png' plt.savefig(path) print(mean_cohen_kappa_list[index_max_balanced_accuracy]) #load dataset #Using percentile to create label of return on investment movies_processed = pd.read_csv('data/movies_meta_data_after_processing.csv') knn_features = movies_processed.loc[:,['budget', 'runtime', 'release_year', 'release_month', 'popularity', 'vote_average']] knn_feature = scale(knn_features) movies_processed.isnull().sum() movies_processed_four_percentile_label = pd.read_csv('data/movies_meta_data_after_processing_percentile_4_label.csv') movies_processed_three_percentile_label = pd.read_csv('data/movies_meta_data_after_processing_percentile_3_label.csv') #Using clustering to create label of return on investment movies_processed_four_cluster_label = pd.read_csv('data/movies_meta_data_after_processing_with_4_cluster_label.csv') movies_processed_three_cluster_label = pd.read_csv('data/movies_meta_data_after_processing_with_3_cluster_label.csv') movies_processed_three_cluster_label['return_on_investment_label'].value_counts() movies_processed_four_cluster_label['return_on_investment_label'].value_counts() movies_processed_three_percentile_label.return_on_investment_label.value_counts() #set the range of k k_range = range(1,31) k_fold = 10 #f1 maybe better for unbalanced data #accuracy, precision_macro #scoring = ['accuracy', 'precision'] multiple metric evaluation # model_evaluation = "accuracy" #all features knn_new(movies_processed_four_percentile_label, k_range, k_fold) knn_new(movies_processed_four_percentile_label, k_range, k_fold, origin_attribute = True) knn_new(movies_processed_four_cluster_label, k_range, k_fold) knn_new(movies_processed_four_cluster_label, k_range, k_fold, origin_attribute = True) movies_processed_four_cluster_label.describe() movies_processed_four_cluster_label.groupby('return_on_investment_label').size() movies_processed_four_cluster_label = movies_processed_four_cluster_label.drop(columns=['popularity','vote_average','return_on_investment','genres_roi_score','keywords_roi_score','casts_roi_score','directors_roi_score']) from pandas.plotting import parallel_coordinates plt.figure(figsize=(30,10)) movies_processed_four_cluster_label.loc[:, ['budget', 'runtime', 'release_year', 'release_month', 'genres_popularity_score', 'genres_vote_score', 'keywords_popularity_score', 'keywords_vote_score', 'casts_popularity_score', 'casts_vote_score', 'directors_popularity_score', 'directors_vote_score']] = scale(movies_processed_four_cluster_label.loc[:, ['budget', 'runtime', 'release_year', 'release_month', 'genres_popularity_score', 'genres_vote_score', 'keywords_popularity_score', 'keywords_vote_score', 'casts_popularity_score', 'casts_vote_score', 'directors_popularity_score', 'directors_vote_score']]) parallel_coordinates(movies_processed_four_cluster_label, "return_on_investment_label", color = ('Red', 'Yellow', 'Blue', 'Purple')) plt.title('Parallel Coordinates Plot', fontsize=20, fontweight='bold') plt.xlabel('Features', fontsize=5) plt.ylabel('Features values', fontsize=15) plt.legend(loc=1, prop={'size': 15}, frameon=True,shadow=True, facecolor="white", edgecolor="black") plt.savefig('graph/CV of knn ' + "Parallel Coordinates Plot" + '.png') plt.show() import seaborn as sns plt.figure(1) sns.pairplot(movies_processed_four_cluster_label, hue='return_on_investment_label', size=4, markers=["o", "s", "D", "+"]) plt.savefig('graph/CV of knn ' + "PairPlot" + '.png') plt.show() # #Over-sampling method. It creates synthetic samples of the minority class # #imblearn python package is used to over-sample the minority classes # from imblearn.over_sampling import SMOTE # smote = SMOTE('minorty') # # knn_attrbiutes = movies_processed_four_percentile_label.loc[:,['budget', 'genres_popularity_score', 'genres_vote_score', 'keywords_popularity_score','keywords_vote_score', 'casts_popularity_score', 'casts_vote_score', 'directors_popularity_score','directors_vote_score']] # #.values will change to array, .ravel() convert that array shape to (n,) which is required # knn_label = movies_processed_four_percentile_label.loc[:, ['return_on_investment_label']]#.values.ravel() # x_train = knn_attrbiutes # y_train = knn_label # x_train.shape # y_train.shape # X_sm, y_sm = smote.fit_sample(x_train, y_train) # print(X_sm.shape, y_sm.shape)
[ "wanggy522@gmail.com" ]
wanggy522@gmail.com
689deef17fde9d2207c3074bea557590888e9d3c
2c5752e9ba3b6563cc51d84b0076df32f101a0ab
/IDRUSD/FIX FIX.py
dc0af4cef972df7f8b6522f529741c1647351794
[]
no_license
rulisastra/Skripsi-Laptop-Github
75d42e82bfd42976c89570ca326894c7cabb0033
aa26ae87cdffe8e213997cc17ca505d200625a4c
refs/heads/master
2022-04-08T00:49:37.215486
2020-01-27T06:10:59
2020-01-27T06:10:59
206,923,232
0
0
null
null
null
null
UTF-8
Python
false
false
15,866
py
import pandas as pd import numpy as np import time import matplotlib.pyplot as plt from numpy.linalg import inv from numpy.linalg import cholesky from scipy.stats import norm #%% persiapan data # IDRUSD.csv = 64% | 71# # data baru mulai 27sep2017.csv = 0.0 # data baru all = 21% # data = 56% # Ether mulai 1jul2017 = 52% # Ether = 55% # Litecoin mulai 1jan2017.csv = 55% # NEO jul2017 = 62% # NEO all = 63 # BTCIDR 1sept2017 | 74% # Currency Converter.csv = 70% # Currency Converter - copy.csv 73% malah jadi 54% dengan model yang baru # 1000 data.csv = 72% tapi mse naik # USDIDR 2009_2019 = 48% dengan model yang baru data = pd.read_csv('USDIDR 1000 data.csv', # USDIDR 2009_2019 /// USDIDR 2000_2010 cut /// USDIDR 2000_2019 all usecols=[1], engine='python', delimiter=',', decimal=".", thousands=',', header=None, names=['date','value'] ) data['value'] = data['value'].values data['value'] = data['value'].astype('float32') def pisahData(data,a,b): if((a+b)!=1): print("pemisahan tidak valid") else: train = [] test = [] train_size = int(len(data)*a) train = data[0:train_size-1] test = data[train_size-1:len(data)] return np.array(train),np.array(test) #fungsi aktivasi dan turunannya def tanh(x): return (1-np.exp(-2*x))/(1+np.exp(-2*x)) def dtanh(x): return (1-tanh(x)**2) def normalize(data, scale): normalized = [] for i in range(len(data)): a = (min(scale))+(data[i]-min(data))*(max(scale)-min(scale))/(max(data)-min(data)) normalized.append(a) return np.array(normalized) scale = (-1,1) normalized = normalize(data,scale) def denormalize(normalized, data, scale): denormalized = [] for i in range(len(normalized)): a = ((normalized[i]-min(scale))*(max(data)-min(data)))/(max(scale)-min(scale))+min(data) denormalized.append(a) return np.array(denormalized) # ============================================================================= # def norm(x, scale): # normalized = [] # for i in range(len(x)): # a = (min(scale))+(x[i]-min(x))*(max(scale)-min(scale))/(max(x)-min(x)) # normalized.append(a) # return np.array(normalized) # scale = (-1,1) # normalized = normalize(x,scale) # ============================================================================= # normalisasi dengan data satu kolom kebawah data_raw = np.reshape(normalize(data['value'],(-1,1)),(-1,1)) # pembagian data latih dan test train_data, test_data = pisahData(data_raw, 0.8, 0.2) #8:2 = 71% # ============================================================================= # train_data = train_data.reshape(-1,1) #satu kolom kebawah # test_data = test_data.reshape(-1,1) # ============================================================================= plt.plot(data, c='g', ls=None) plt.xlabel('Data ke-') plt.ylabel('Harga (USD)') plt.title('Harga Nilai Tukar IDR/USD') plt.show() plt.plot(data_raw, c='y', ls=None) plt.title('Nilai Tukar IDR/USD [Ternormalisasi]') plt.xlabel('Data ke-') plt.ylabel('Jangkauan Harga (-1,1)') plt.show() plt.plot(data, c='b', label='test', ls=None) plt.plot(data[1:3499], c='g', label='training', ls=None) plt.title('Pembagian Data [7:3]') plt.xlabel('Data ke-') plt.ylabel('Harga (USD)') plt.legend() plt.show() plt.plot(data_raw, c='b', label='test', ls=None) plt.plot(train_data[0:-1], c='r', label='training', ls=None) plt.title('Pembagian Data [7:3]') plt.xlabel('Data ke-') plt.ylabel('Jangkauan Harga') plt.legend() plt.show() # createwindowSize =3 untuk input def createDataset(data, windowSize): dataX, dataY = [],[] for i in range(len(data)-windowSize): a = [] for j in range(i, i+windowSize): a.append(data[j,0]) dataX.append(a) dataY.append(data[i+windowSize,0]) return np.array(dataX), np.array(dataY) # =================================================== #%% windowSize = 5 # 5 70% epoch = 100 # 100 hidden_dim = 7 # 7,9, ---->>> 73% dengan wn=5 dan hd = 9 dan 7:3 #%% trainX, trainY = createDataset(train_data,windowSize) testX, testY = createDataset(test_data, windowSize) #%% PELATIHAN ==== gunain trainX & trainY ==== # INISIALISASI banyaknya neuron setiap layer batch_dim = trainX.shape[0] # ambil jumlah baris (n) dari trainX(n,m) input_dim = windowSize output_dim = 1 alpha = .001 np.random.seed(1) # 1 =72% # BOBOT === inisialisasi bobot awal (baris,kolom) synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1 # inisialisasi random bobot awal synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1 # dengan interval [-1,1] synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1 # random.random ->> interval [0,1] synapse_0_update = np.zeros_like(synapse_0) #meng-0 kan semua isi array sesuai shape dr variabel (synapse_0) synapse_1_update = np.zeros_like(synapse_1) synapse_h_update = np.zeros_like(synapse_h) # log mse tiap epoch mse_all = [] rmse_all = [] # inisialisasi sebelum train jumlah_w = (input_dim*hidden_dim)+(hidden_dim*hidden_dim)+(hidden_dim*output_dim) Q = 1*np.identity(jumlah_w) #kovarian Noise process R = 1*np.identity(output_dim) #Kovarian Noise measurement(observasi) output_dim P = 1*np.identity(jumlah_w) #kovarian estimasi vektor state #%% EVALUASI ==== def mse(x,y): mse = [] for i in range(len(y)): a = (x[i]-y[i])**2 mse.append(a) mse = float((sum(mse)/len(y))) return mse def mae(x,y): mae = [] for i in range(len(y)): a = abs(y[i]-x[i]) mae.append(a) mae = float(sum(mae)/len(y)) return mae def rmse(x,y): rmse = [] for i in range(len(y)): a = (x[i]-y[i])**2 rmse.append(a) rmse = float((sum(rmse)/len(y))**0.5) return rmse def mape(x,y): mape = [] for i in range(len(y)): a = abs((x[i]-y[i])/x[i]) mape.append(a) mape = float((sum(mape))/len(y))*100 return mape def dstat(x,y): dstat = 0 n = len(y) for i in range(n-1): if(((x[i+1]-y[i])*(y[i+1]-y[i]))>0): dstat += 1 Dstat = (1/float(n-2))*float(dstat)*100 return float(Dstat) #%% MULAI EPOCH ============ TRAINING =================== epsilon = 0.98 # sbg forgetting factor berdasarkan dash 2014 gamma = 1.98 # untuk minimize error karena fluktuasi (dash) start_time = time.time() for i in range(epoch): index = 0 layer_2_value = [] context_layer = np.full((batch_dim,hidden_dim),0) layer_h_deltas = np.zeros(hidden_dim) # context layer (sebelumnya) sigmas_concat = [] while(index+batch_dim<=trainX.shape[0]): # input dan output X = trainX[index:index+batch_dim,:] Y = trainY[index:index+batch_dim] index = index+batch_dim # bawa ke input ~> prev hidden layer_1 = tanh(np.dot(X,synapse_0) + np.dot(context_layer,synapse_h)) # hidden ~> output layer_2 = tanh(np.dot(layer_1,synapse_1)) layer_2_value.append(layer_2) # hitung error output layer_2_error = layer_2 - Y[:,None] #problemnya, y diganti dr Y matrix # error di output layer -> layer 2 deltas (masuk ke context layer dari hidden layer) layer_2_delta = layer_2_error*dtanh(layer_2) # seberapa besar error berpengaaruh terhadap layer layer_1_error = np.dot(layer_2_delta,synapse_1.T) # error di hidden layer -> layer 1 delta (masuk ke hidden layer dari context layer) layer_1_delta = (layer_1_error + np.dot(layer_h_deltas,synapse_h.T)) * dtanh(layer_1) # calculate weight update synapse_1_update = np.dot(np.atleast_2d(layer_1).T,(layer_2_delta)) synapse_h_update = np.dot(np.atleast_2d(context_layer).T,(layer_1_delta)) synapse_0_update = np.dot(X.T,(layer_1_delta)) #%% concatenate weight synapse_0_c = np.reshape(synapse_0,(-1,1)) synapse_h_c = np.reshape(synapse_h,(-1,1)) synapse_1_c = np.reshape(synapse_1,(-1,1)) w_concat = np.concatenate((synapse_0_c,synapse_h_c,synapse_1_c), axis=0) w_concat_transpose = w_concat.T synapse_0_masuk = np.reshape(synapse_0_update,(1,-1)) # satu baris kesamping synapse_h_masuk = np.reshape(synapse_h_update,(1,-1)) synapse_1_masuk = np.reshape(synapse_1_update,(1,-1)) masuk = np.concatenate((synapse_0_masuk,synapse_h_masuk,synapse_1_masuk), axis=1) #%% Unscented Kalman Filter without filterpy # X_ = masuk # myu X_ = w_concat_transpose n = X_.size # julier versi masalah 'dimension of problem' L = X_.ndim #2 beta = 2. kappa = 0 # dash lambda_ = alpha**2 * (n + kappa) - n # bisoi, dash #%% SIGMA POINTS around mean U = cholesky((n + lambda_)*P) # sama dg np.sqrt sigmas = np.zeros((2*n+1, n)) sigmas[0] = X_ # maka.... for k in range(n): # gabung kebawah.. jadinya 121,60 (library juga) sigmas[k+1] = np.subtract(X_, -U[k]) sigmas[n+k+1] = np.subtract(X_, U[k]) # mengasmbil nilai eye dari sigmas sigmas_reshape_1 = sigmas[0] sigmas_reshape_2 = sigmas[1:n+1,:] * np.eye(n) sigmas_reshape_3 = sigmas[n+1::,:] * np.eye(n) # Sigma dengan 3 kolom (3 titik sigmas) ones = np.reshape(np.ones(n),(-1,1)) sigmas_1 = np.reshape(sigmas_reshape_1.T,(-1,1)) sigmas_2 = np.dot(sigmas_reshape_2,ones) sigmas_3 = np.dot(sigmas_reshape_3,ones) sigmas_concat = np.concatenate((sigmas_1,sigmas_2,sigmas_3), axis=1) #%% BOBOT SIGMA dari Merwe (tetap nilainya) c_ = .5 / (n + lambda_) # Wm = np.full(2*n+1, c_) Wm = np.full(2*n+1, 1 / (2*(n + lambda_))) Wc = Wm # size (121,) atau (n,) Wc[0] = lambda_ / (n + lambda_) + (1 - alpha**2 + beta) Wm[0] = lambda_ / (n + lambda_) #%% SIGMA Unscented Transform (biar hold value dg eyeP) ke measurement Mz = np.dot(Wm,sigmas) # KOVARIAN ke measurement juga kmax, n = sigmas.shape Pz = np.zeros(n) for k in range(kmax): c = np.subtract(sigmas[k],Mz) Pz = Wc[k] * np.outer(c, c) Pz += R # sebagai S # Cross covariance Weight sebelum dan weights sesudah unscented transform Pxz = np.zeros(sigmas.shape) # Tut for k in range(kmax): cc = np.subtract(X_,Mz) # sebagai T Pxz = Wc[k] * np.outer(cc, c) # Kalman gain K1 = np.dot(Pxz,inv(P)) Knorm = np.reshape(norm(K1[:,0],(-1,1)),(-1,1)) # tambahan doang K = np.reshape(K1[:,0],(-1,1)) # update kovarian P = P - np.dot(K,np.dot(Pz.sum(),K.T)) P += Q #%% innovation = ((Y-layer_2).sum()/len(layer_2_error)) w_concat_new = w_concat + np.dot(K,innovation) #assign bobot synapse_0 = w_concat_new[0:(input_dim*hidden_dim),0] synapse_h = w_concat_new[(input_dim*hidden_dim):(input_dim*hidden_dim)+(hidden_dim*hidden_dim),0] synapse_1 = w_concat_new[(input_dim*hidden_dim)+(hidden_dim*hidden_dim):w_concat_new.shape[0],0] #reshape balik bobot synapse_0 = np.reshape(synapse_0,(input_dim,hidden_dim)) synapse_h = np.reshape(synapse_h,(hidden_dim,hidden_dim)) synapse_1 = np.reshape(synapse_1,(hidden_dim,output_dim)) # reset update synapse_0_update *= 0 synapse_1_update *= 0 synapse_h_update *= 0 # update context layer layer_h_deltas = layer_1_delta # future_layer_1_delta context_layer = layer_1 # prev_hidden_layer layer_2_value = np.reshape(layer_2_value,(-1,1)) mse_epoch = mse(trainY,layer_2_value) mse_all.append(mse_epoch) rmse_epoch = rmse(trainY,layer_2_value) rmse_all.append(rmse_epoch) run_time = time.time() - start_time #%% seberapa besar lossnya??? plt.plot(sigmas_1,label='sigma utama (mean)', marker='o', ls='-') plt.plot(sigmas_2,label='sigma lain', marker='x', ls=None) plt.plot(sigmas_3,label='sigma lain', marker='x', ls=None) plt.title('SIGMAS') plt.xlabel('sigmas ke-') plt.ylabel('value') plt.legend() plt.show() plt.plot(mse_all, marker='x') plt.title('Loss (MSE)') plt.xlabel('Epoch') plt.ylabel('Loss (MSE)') plt.show() np.savetxt('loss_ukf.csv', mse_all, delimiter=';') # plt.plot(trainY, c='r', marker='o', label='true') #testY[0:50] buat plotting coba liat di catatan plt.plot(layer_2_value, c='y', marker='o', label='layer_2_value (predict)') plt.plot(trainY, c='r', marker='o', label='trainY (sebenarnya)') plt.title('Prediksi Training') plt.xlabel('data ke-') plt.ylabel('value') plt.legend() plt.show() plt.plot(layer_2_error,label='error', marker = 'x',c='g') plt.title('ERROR') plt.xlabel('data ke-') plt.ylabel('value') plt.legend() plt.show() mse_pred = mse(trainY,layer_2_value) mae_pred = mae(trainY,layer_2_value) rmse_pred = rmse(trainY,layer_2_value) mape_pred = mape(trainY,layer_2_value) dstat_pred = dstat(trainY,layer_2_value) scoring = [mse_pred,rmse_pred,mae_pred,mape_pred,dstat_pred,run_time] np.savetxt('loss_ukf_train.csv', mse_all, delimiter=';') print("Training mse : " , mse_pred) print("Training mape : ", mape_pred) print("Training mae: " , mae_pred) print("Training rmse : ", rmse_pred) print("Training dstat : " , dstat_pred) print("Training runtime : ", run_time) #%% mari coba ============ PREDIKSI =================== batch_predict = testX.shape[0] # mengambil banyaknya baris (n) dari testX(n,m) context_layer_p = np.full((batch_predict,hidden_dim),0) # return full array yg isinya (0) sebesar dimensi [batch_predict x hidden_dim] y_pred = [] # hasil akhir Y prediksi index = 0 mse_pred_all = [] while(index+batch_predict<=testX.shape[0]): X = testX[index:index+batch_predict,:] layer_1p = tanh(np.dot(X,synapse_0)+np.dot(context_layer_p,synapse_h)) layer_2p = tanh(np.dot(layer_1p,synapse_1)) y_pred.append(layer_2p) context_layer_p = layer_1p index = index+batch_predict y_pred = denormalize(np.reshape(y_pred,(-1,1)), data['value'], (-1,1)) testYseb = testY.reshape(-1,1) testY = denormalize(testY, data['value'], (-1,1)) mse_pred = mse(testY,y_pred) mse_pred_all.append(mse_pred) rmse_pred = rmse(testY,y_pred) mae_pred = mae(testY,y_pred) mape_pred = mape(testY,y_pred) dstat_pred = dstat(testY,y_pred) scoring = [mse_pred,rmse_pred,mae_pred,mape_pred,dstat_pred,run_time] plt.plot(testYseb, label='true') #testY[0:50] buat plotting coba liat di catatan plt.plot(layer_2p, label='prediction') plt.xlabel('Data ke-') plt.ylabel('jangkauan') plt.title('Jangkauan data uji keseluruhan 1000 data') plt.legend() plt.show() plt.plot(testY[50:100], marker='o', label='true') #testY[0:50] buat plotting coba liat di catatan plt.plot(y_pred[50:100], marker='o', label='prediction') plt.title('HASIL UJI dengan metode RNN-UKF 50 data awal') plt.xlabel('Data ke-') plt.ylabel('Harga') plt.legend() plt.show() print('Kalman dim: ', K.ndim) print('Kalman size: ', K.size) print('Kalman shape: ', K.shape) #scoring = [mse_pred,rmse_pred,mae_pred,dstat_pred,run_time] print("mse : " , mse_pred) print("rmse : ", rmse_pred) print("mape : ", mape_pred) print("mae: " , mae_pred) print("dstat : " , dstat_pred) print("runtime : ", run_time) #%% np.savetxt('bobot_input.csv', synapse_0, delimiter=',') np.savetxt('bobot_hidden.csv', synapse_h, delimiter=',') np.savetxt('bobot_output.csv', synapse_1, delimiter=',') np.savetxt('loss_ukf_uji.csv', mse_pred_all, delimiter=';')
[ "rulisastra@gmail.com" ]
rulisastra@gmail.com
96d1e168aeaa36bf400dc56c4da42a6b03fc6da4
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_divorcing.py
7d0123ef97df6f655c1258d8cbe1d63c8aeb6693
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
#calss header class _DIVORCING(): def __init__(self,): self.name = "DIVORCING" self.definitions = divorce self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['divorce']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
b880237ef7e09503c0984673529a8d5613255356
f48da6cabf525dc1bc63e58d1f3cc8ed7404b852
/venv/bin/pip3.5
4ed4c88c564904304d661f48a6d6a61ec5aab9e0
[]
no_license
wangbingde/Fly_game
9c02a7afa0038546b3b58ad0dac7a472860f8ad2
91028541f008c2bc292f0fd4b7af1b6fa4b1d238
refs/heads/master
2020-04-08T10:06:10.746405
2018-11-27T00:58:41
2018-11-27T00:58:41
159,254,110
0
0
null
null
null
null
UTF-8
Python
false
false
406
5
#!/home/wang/PycharmProjects/Fly_game/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.5' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.5')() )
[ "1254817017@qq.com" ]
1254817017@qq.com
bb50184d47fad6f414d4f76e397f897a1994c154
a474ddeebc2c1b7347aa257ebafc535b1fee42c1
/scripts/serato_autotags.py
12348b96a5f23d87fd51d2c0cdc9cc3e79799afa
[ "MIT", "CC-BY-3.0", "CC-BY-SA-4.0" ]
permissive
Christilut/serato-tags
8eed466228b33b6a35056755690aac69da142c1a
20068085751c3a5cb27efad99639f1872a54ff8f
refs/heads/master
2020-12-11T16:17:09.495640
2019-11-17T02:01:29
2019-11-17T02:01:29
233,895,511
1
0
MIT
2020-01-14T17:20:43
2020-01-14T17:20:42
null
UTF-8
Python
false
false
3,186
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import configparser import io import shutil import subprocess import os import tempfile import struct import sys import mutagen FMT_VERSION = 'BB' def readbytes(fp): for x in iter(lambda: fp.read(1), b''): if x == b'\00': break yield x def parse(fp): version = struct.unpack(FMT_VERSION, fp.read(2)) assert version == (0x01, 0x01) for i in range(3): data = b''.join(readbytes(fp)) yield float(data.decode('ascii')) def dump(bpm, autogain, gaindb): data = struct.pack(FMT_VERSION, 0x01, 0x01) for value, decimals in ((bpm, 2), (autogain, 3), (gaindb, 3)): data += '{:.{}f}'.format(value, decimals).encode('ascii') data += b'\x00' return data def main(argv=None): parser = argparse.ArgumentParser() parser.add_argument('file', metavar='FILE') parser.add_argument('-e', '--edit', action='store_true') args = parser.parse_args(argv) tagfile = mutagen.File(args.file) if tagfile is not None: try: tag = tagfile['GEOB:Serato Autotags'] except KeyError: print('File is missing "GEOB:Serato Autotags" tag') return 1 else: fp = io.BytesIO(tag.data) else: fp = open(args.file, mode='rb') with fp: bpm, autogain, gaindb = parse(fp) if args.edit: editor = shutil.which(os.getenv('EDITOR', 'vi')) if not editor: print('No suitable $EDITOR found.', file=sys.stderr) return 1 with tempfile.NamedTemporaryFile() as f: f.write(( 'bpm: {}\n' 'autogain: {}\n' 'gaindb: {}\n' ).format(bpm, autogain, gaindb).encode('ascii')) f.flush() status = subprocess.call((editor, f.name)) f.seek(0) output = f.read() if status != 0: print('Command executation failed with status: {}'.format(status), file=sys.stderr) return 1 cp = configparser.ConfigParser() try: cp.read_string('[Autotags]\n' + output.decode()) bpm = cp.getfloat('Autotags', 'bpm') autogain = cp.getfloat('Autotags', 'autogain') gaindb = cp.getfloat('Autotags', 'gaindb') except Exception: print('Invalid input, no changes made', file=sys.stderr) return 1 new_data = dump(bpm, autogain, gaindb) if tagfile: if tagfile is not None: tagfile['GEOB:Serato Autotags'] = mutagen.id3.GEOB( encoding=0, mime='application/octet-stream', desc='Serato Autotags', data=new_data, ) tagfile.save() else: with open(args.file, mode='wb') as fp: fp.write(new_data) else: print('BPM: {}'.format(bpm)) print('Auto Gain: {}'.format(autogain)) print('Gain dB: {}'.format(gaindb)) return 0 if __name__ == '__main__': sys.exit(main())
[ "jan.holthuis@ruhr-uni-bochum.de" ]
jan.holthuis@ruhr-uni-bochum.de
2e90533c77034f1799cb7fbaf0505fbc69ef0fe0
7ef179d708f9e92054dff9f1f5245cb25fa1b066
/api-inference-community/tests/test_nlp.py
95e4be5e45a81377341a21028d6b50a2f5bf4fcd
[ "Apache-2.0" ]
permissive
ycemsubakan/huggingface_hub
8982286d3948188345c0714bfb3518af9a10d199
5585292287083dcbb71c0515b4df924078d677a6
refs/heads/main
2023-05-14T16:39:42.043630
2021-06-04T12:05:38
2021-06-04T12:05:38
374,215,794
0
0
Apache-2.0
2021-06-05T21:31:29
2021-06-05T21:31:29
null
UTF-8
Python
false
false
17,715
py
import json from unittest import TestCase from api_inference_community.validation import normalize_payload_nlp from parameterized import parameterized from pydantic.error_wrappers import ValidationError class ValidationTestCase(TestCase): def test_malformed_input(self): bpayload = b"\xc3\x28" with self.assertRaises(UnicodeDecodeError): normalize_payload_nlp(bpayload, "tag") def test_accept_raw_string_for_backward_compatibility(self): query = "funny cats" bpayload = query.encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp(bpayload, "tag") self.assertEqual(processed_params, {}) self.assertEqual(normalized_inputs, query) class QuestionAnsweringValidationTestCase(TestCase): def test_valid_input(self): inputs = {"question": "question", "context": "context"} bpayload = json.dumps({"inputs": inputs}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "question-answering" ) self.assertEqual(processed_params, {}) self.assertEqual(inputs, normalized_inputs) def test_missing_input(self): inputs = {"question": "question"} bpayload = json.dumps({"inputs": inputs}).encode("utf-8") with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "question-answering") class SentenceSimilarityValidationTestCase(TestCase): def test_valid_input(self): source_sentence = "why is the sky blue?" sentences = ["this is", "a list of sentences"] inputs = {"source_sentence": source_sentence, "sentences": sentences} bpayload = json.dumps({"inputs": inputs}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "sentence-similarity" ) self.assertEqual(processed_params, {}) self.assertEqual(inputs, normalized_inputs) def test_missing_input(self): source_sentence = "why is the sky blue?" inputs = {"source_sentence": source_sentence} bpayload = json.dumps({"inputs": inputs}).encode("utf-8") with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "sentence-similarity") class ConversationalValidationTestCase(TestCase): def test_valid_inputs(self): past_user_inputs = ["Which movie is the best ?"] generated_responses = ["It's Die Hard for sure."] text = "Can you explain why ?" inputs = { "past_user_inputs": past_user_inputs, "generated_responses": generated_responses, "text": text, } bpayload = json.dumps({"inputs": inputs}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "conversational" ) self.assertEqual(processed_params, {}) self.assertEqual(inputs, normalized_inputs) class TableQuestionAnsweringValidationTestCase(TestCase): def test_valid_input(self): query = "How many stars does the transformers repository have?" table = { "Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"], } inputs = {"query": query, "table": table} bpayload = json.dumps({"inputs": inputs}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "table-question-answering" ) self.assertEqual(processed_params, {}) self.assertEqual(inputs, normalized_inputs) def test_invalid_table_input(self): query = "How many stars does the transformers repository have?" table = { "Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512"], } inputs = {"query": query, "table": table} bpayload = json.dumps({"inputs": inputs}).encode("utf-8") with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "table-question-answering") def test_invalid_question(self): query = "How many stars does the transformers repository have?" table = "Invalid table" inputs = {"query": query, "table": table} bpayload = json.dumps({"inputs": inputs}).encode("utf-8") with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "table-question-answering") def test_invalid_query(self): query = {"not a": "query"} table = { "Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"], } inputs = {"query": query, "table": table} bpayload = json.dumps({"inputs": inputs}).encode("utf-8") with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "table-question-answering") def test_no_table(self): query = "How many stars does the transformers repository have?" inputs = { "query": query, } bpayload = json.dumps({"inputs": inputs}).encode("utf-8") with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "table-question-answering") def test_no_query(self): table = { "Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"], } inputs = {"table": table} bpayload = json.dumps({"inputs": inputs}).encode("utf-8") with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "table-question-answering") class SummarizationValidationTestCase(TestCase): def test_no_params(self): bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "summarization" ) self.assertEqual(processed_params, {}) self.assertEqual(normalized_inputs, "whatever") def test_valid_min_length(self): params = {"min_length": 10} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "summarization" ) self.assertEqual(processed_params, params) self.assertEqual(normalized_inputs, "whatever") def test_invalid_negative_min_length(self): params = {"min_length": -1} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "summarization" ) def test_invalid_large_min_length(self): params = {"min_length": 1000} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "summarization" ) def test_invalid_type_min_length(self): params = {"min_length": "invalid"} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "summarization" ) def test_valid_max_length(self): params = {"max_length": 10} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "summarization" ) self.assertEqual(processed_params, params) self.assertEqual(normalized_inputs, "whatever") def test_invalid_negative_max_length(self): params = {"max_length": -1} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "summarization" ) def test_invalid_large_max_length(self): params = {"max_length": 1000} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "summarization" ) def test_invalid_type_max_length(self): params = {"max_length": "invalid"} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "summarization" ) def test_invalid_min_length_larger_than_max_length(self): params = {"min_length": 20, "max_length": 10} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "summarization" ) class ZeroShotValidationTestCase(TestCase): def test_single_label(self): params = {"candidate_labels": "happy"} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "zero-shot-classification" ) self.assertEqual(processed_params, params) self.assertEqual(normalized_inputs, "whatever") def test_list_labels(self): params = {"candidate_labels": ["happy", "sad"]} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "zero-shot-classification" ) self.assertEqual(processed_params, params) self.assertEqual(normalized_inputs, "whatever") def test_empty_list(self): params = {"candidate_labels": []} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "zero-shot-classification") def test_no_params(self): bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8") with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "zero-shot-classification") def test_multi_label(self): params = {"candidate_labels": "happy", "multi_label": True} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "zero-shot-classification" ) self.assertEqual(processed_params, params) self.assertEqual(normalized_inputs, "whatever") def test_multi_label_wrong_type(self): params = {"candidate_labels": "happy", "multi_label": "wrong type"} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "zero-shot-classification") class FillMaskValidationTestCase(TestCase): def test_no_params(self): bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "fill-mask" ) self.assertEqual(processed_params, {}) self.assertEqual(normalized_inputs, "whatever") def test_top_k(self): params = {"top_k": 10} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "fill-mask" ) self.assertEqual(processed_params, params) self.assertEqual(normalized_inputs, "whatever") def test_top_k_invalid_value(self): params = {"top_k": 0} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "fill-mask") def test_top_k_wrong_type(self): params = {"top_k": "wrong type"} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, "fill-mask") def make_text_generation_test_case(tag): def valid_params(): return [ ("max_new_tokens", 10), ("top_k", 5), ("top_p", 0.5), ("max_time", 20.0), ("repetition_penalty", 50.0), ("temperature", 10.0), ("return_full_text", True), ("num_return_sequences", 2), ] def invalid_params(): return [ ("min_length", 1000), ("min_length", 0), ("min_length", "invalid"), ("max_length", 1000), ("max_length", 0), ("max_length", "invalid"), ("top_k", 0), ("top_k", "invalid"), ("top_p", -0.1), ("top_p", 2.1), ("top_p", "invalid"), ("max_time", -0.1), ("max_time", 120.1), ("max_time", "invalid"), ("repetition_penalty", -0.1), ("repetition_penalty", 200.1), ("repetition_penalty", "invalid"), ("temperature", -0.1), ("temperature", 200.1), ("temperature", "invalid"), ("return_full_text", "invalid"), ("num_return_sequences", -1), ("num_return_sequences", 100), ] class TextGenerationTestCase(TestCase): def test_no_params(self): bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp(bpayload, tag) self.assertEqual(processed_params, {}) self.assertEqual(normalized_inputs, "whatever") @parameterized.expand(valid_params()) def test_valid_params(self, param_name, param_value): params = {param_name: param_value} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) normalized_inputs, processed_params = normalize_payload_nlp(bpayload, tag) self.assertEqual(processed_params, params) self.assertEqual(normalized_inputs, "whatever") @parameterized.expand(invalid_params()) def test_invalid_params(self, param_name, param_value): params = {param_name: param_value} bpayload = json.dumps({"inputs": "whatever", "parameters": params}).encode( "utf-8" ) with self.assertRaises(ValidationError): normalize_payload_nlp(bpayload, tag) return TextGenerationTestCase class Text2TextGenerationTestCase( make_text_generation_test_case("text2text-generation") ): pass class TextGenerationTestCase(make_text_generation_test_case("text-generation")): pass class TasksWithOnlyInputStringTestCase(TestCase): def test_feature_extraction_accept_string_no_params(self): bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "feature-extraction" ) self.assertEqual(processed_params, {}) self.assertEqual(normalized_inputs, "whatever") def test_fill_mask_accept_string_no_params(self): bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "fill-mask" ) self.assertEqual(processed_params, {}) self.assertEqual(normalized_inputs, "whatever") def test_text_classification_accept_string_no_params(self): bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "text-classification" ) self.assertEqual(processed_params, {}) self.assertEqual(normalized_inputs, "whatever") def test_token_classification_accept_string_no_params(self): bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "token-classification" ) self.assertEqual(processed_params, {}) self.assertEqual(normalized_inputs, "whatever") def test_translation_accept_string_no_params(self): bpayload = json.dumps({"inputs": "whatever"}).encode("utf-8") normalized_inputs, processed_params = normalize_payload_nlp( bpayload, "translation" ) self.assertEqual(processed_params, {}) self.assertEqual(normalized_inputs, "whatever")
[ "noreply@github.com" ]
ycemsubakan.noreply@github.com
32cea5092cf30db70772ef04e5e944197f432c08
488a5ccce62226f00f2630f0af99e938c3a1f586
/djingles/html/common.py
76bfa171f7376d711a9fc6c1fd14fde17c716794
[]
no_license
vivsh/djingles
c0286c8fedc677f6090a425c91f8b76467fea11d
4e83ad66feb84492403cc9d7b05545ba708c7a42
refs/heads/master
2022-09-14T06:53:17.640075
2022-09-05T09:43:43
2022-09-05T09:43:43
130,049,023
0
0
null
2022-08-31T08:08:20
2018-04-18T10:59:54
Python
UTF-8
Python
false
false
6,299
py
try: from django.utils.encoding import force_text except ImportError: from django.utils.encoding import force_str as force_text from django.forms.models import ModelChoiceIteratorValue import re import json from jinja2.utils import markupsafe __all__ = ['html_json', 'html_attrs', "Element", "CssClassList", "CssStyle", 'add_css_class', 'empty'] def html_json(values): content = json.dumps(values) return markupsafe.Markup(content) def html_attrs(*args, **kwargs): attr = HtmlAttr() attr.update(*args, **kwargs) return str(attr) def add_css_class(original_class, *css_classes): css = CssClassList() css.append(original_class) css.append(css_classes) return str(css) class CssClassList(object): def __init__(self): self.classes = [] def __iter__(self): return iter(self.classes) def __len__(self): return len(self.classes) def copy(self): value = CssClassList() value.classes.extend(self.classes) return value def append(self, value): if isinstance(value, str): value = re.sub(r'\s+', ' ', value.strip()) if len(value) == 1: value = value[0] if isinstance(value, (tuple, list)): for val in value: self.append(val) else: if value not in self.classes: self.classes.append(value) def __contains__(self, item): return item in self.classes def __str__(self): return " ".join(str(c) for c in self.classes if c) class CssStyle(dict): def render(self): return ";".join("%s:%s" % (key.replace("_", "-"), value) for (key, value) in self.items()) def __str__(self): return self.render() def copy(self): return CssStyle(super(CssStyle, self).copy()) def _normalize(key): if key.endswith("_"): key = key[:-1] key = key.replace("__", ":").replace("_", "-") return key class HtmlAttr(object): def __init__(self): self.attrs = {} self.styles = CssStyle() self.classes = CssClassList() def copy(self): attr = HtmlAttr() attr.attrs = self.attrs.copy() attr.styles = self.styles.copy() attr.classes = self.classes.copy() return attr def dict(self): return dict(self) def __setitem__(self, key, value): self.set(key, value) def __getitem__(self, item): return dict(self)[item] def __len__(self): return len(dict(self)) def get(self, key): return dict(self).get(key) def set(self, key, value): key = _normalize(key) if key in {"class"}: self.classes.append(value) elif key == "style": if isinstance(value, str): result = {} pairs = value.split(";") for p in pairs: k, v = p.split(":", 1) result[k] = v value = result self.styles.update(value) else: self.attrs[key] = value def update(self, *args, **attrs): values = {} values.update(*args, **attrs) for k, v in values.items(): self.set(k, v) def __iter__(self): for k, v in self.attrs.items(): yield k, v if self.classes: yield "class", str(self.classes) if self.styles: yield "style", self.styles.render() def render(self): pairs = [] for key, value in self: if value is None or value is False: continue if value is True: pairs.append(key) else: if isinstance(value, ModelChoiceIteratorValue): value = value.value if not isinstance(value, (str, bytes)): value = html_json(value) pairs.append("%s='%s'" % (key, str(value))) return " ".join(pairs) def __str__(self): return self.render() class Element(object): def __init__(self, tag): self.tag = tag self.attrib = HtmlAttr() self.children = [] def __call__(self, **kwargs): el = self.copy() el.attrib.update(kwargs) return el def __getitem__(self, item): el = self.copy() if not isinstance(item, (list, tuple)): item = [item] for c in item: el.append(c) return el def copy(self): el = self.__class__(self.tag) el.attrib = self.attrib.copy() el.children = self.children[:] return el def mutate(self, tag): el = tag.copy() el.attrib.update(self.attrib.copy()) el.children = self.children[:] return el def append(self, child): if child is None: return if isinstance(child, (list, tuple)): for c in child: self.append(c) else: self.children.append(child) def convert_to_text(self, el, *args, **kwargs): return el.render(*args, **kwargs) if hasattr(el, 'render') else force_text(el) def render_children(self, *args, **kwargs): return "".join(filter(None, (self.convert_to_text(c, *args, **kwargs)for c in self.children))) def render(self, ctx=None): if self.attrib.get('if') is False: return None attrs = self.attrib content = self.render_children(ctx) tag = _normalize(self.tag) return u"<{tag} {attrs}>{content}</{tag}>".format(**locals()) def __str__(self): return self.render() def __html__(self): return self.render() class Empty(Element): def render(self, *args, **kwargs): return self.render_children(*args, **kwargs) empty = Empty("none") for name in "html body link meta div span form section article aside main ul li ol dl dd dt p a strong "\ "i fieldset legend b em input select button label nav textarea " \ "table tbody tfoot thead tr td th figure caption img".split(" "): __all__.append(name) globals()[name] = Element(name) if __name__ == '__main__': print(input(type="radio", checked=False).render())
[ "vivek@levimind.com" ]
vivek@levimind.com
1471ddbaac8e77ebb94373b674d3baffc1ddc0b8
dc9b0ea6714c29651cfd8b494862f31f07d85f28
/project22_bio_bot/test2/test11.py
156b2facbdb8a16006b767f34cf2755aafe51c3b
[]
no_license
Papashanskiy/PythonProjects
c228269f0aef1677758cb6e2f1acdfa522da0a02
cf999867befa7d8213b2b6675b723f2b9f392fd7
refs/heads/master
2022-12-12T15:23:56.234339
2019-02-10T09:14:56
2019-02-10T09:14:56
148,336,536
0
0
null
2022-12-08T03:01:04
2018-09-11T15:10:44
Python
UTF-8
Python
false
false
6,068
py
import sqlite3 import random import string # db questions # u (username text, var int, count_r_a int) # q (question text, a_1 text, a_2 text, a_3 text, a_4 text, r_a int) # v (username text, q_n text) q_v - question number (string: '[1, 2, 7, 8]') class BioCheck: db_name = 'questions.db' MY_VOWELS = 'aieou' COUNT_VARIANTS = 0 COUNT_QUESTIONS = 0 def __init__(self, is_external=False): conn, c = self.db_connect() a = c.execute('SELECT * FROM q').fetchall() count = 0 for _ in a: count += 1 self.COUNT_QUESTIONS = count self.COUNT_VARIANTS = count / 20 def db_connect(self): try: conn = sqlite3.connect(self.db_name) c = conn.cursor() except sqlite3.Error as e: print(e) print("Не удалось подключиться к базе данных!") exit(1) return conn, c def check(self, answers, variant): conn, c = self.db_connect() def create_table(self): conn, c = self.db_connect() c.execute('CREATE TABLE IF NOT EXISTS q (question text, a_1 text, a_2 text, a_3 text, a_4 text, r_a int)') conn.commit() for i in range(100): try: q, a_1, a_2, a_3, a_4, r_a = self.randomize() params = (q, a_1, a_2, a_3, a_4, r_a) c.execute('INSERT INTO q VALUES (?, ?, ?, ?, ?, ?)', params) conn.commit() except sqlite3.Error as e: print(e) print(f'Не удалось добавить данные в базу данных {self.db_name}') exit(1) def create_table_u(self): conn, c = self.db_connect() c.execute('CREATE TABLE IF NOT EXISTS u (username text, var int, count_r_a int)') conn.commit() def show_teble(self): conn, c = self.db_connect() a = c.execute('SELECT * FROM q').fetchall() count = 0 for i in a: count += 1 print(count) def randomize(self): q = ''.join(random.choice(string.ascii_lowercase + string.whitespace) for _ in range(random.randint(60, 90))).capitalize() a_1 = ''.join(random.choice(string.ascii_lowercase + string.whitespace) for _ in range(random.randint(30, 40))).capitalize() a_2 = ''.join(random.choice(string.ascii_lowercase + string.whitespace) for _ in range(random.randint(30, 40))).capitalize() a_3 = ''.join(random.choice(string.ascii_lowercase + string.whitespace) for _ in range(random.randint(30, 40))).capitalize() a_4 = ''.join(random.choice(string.ascii_lowercase + string.whitespace) for _ in range(random.randint(30, 40))).capitalize() r_a = random.randint(1, 4) return q, a_1, a_2, a_3, a_4, r_a def randomize_answers(self): username = '' for _ in range(random.randint(2, 5)): username += username.join(random.choice(string.ascii_lowercase)) username += username.join(random.choice(self.MY_VOWELS)) username = username.capitalize() username += ' ' last_name = '' for _ in range(random.randint(2, 5)): last_name += last_name.join(random.choice(string.ascii_lowercase)) last_name += last_name.join(random.choice(self.MY_VOWELS)) last_name = last_name.capitalize() username += last_name variant = random.randint(1, self.COUNT_VARIANTS) answers = [] for _ in range(20): answers.append(random.randint(1, 4)) return username, variant, answers class BioVariant: DB_NAME = 'variant.db' MY_VOWELS = 'aieou' def db_connect(self): try: conn = sqlite3.connect(self.DB_NAME) c = conn.cursor() except sqlite3.Error as e: print(e) print("Не удалось подключиться к базе данных!") exit(1) return conn, c def create_table_v(self): conn, c = self.db_connect() c.execute('CREATE TABLE IF NOT EXISTS v (username text, q_n text)') conn.commit() # Случайный вариант def add_info_v(self): conn, c = self.db_connect() bio = BioCheck() count_q = bio.COUNT_QUESTIONS username = '' answers = [] answers_str = '' for _ in range(10): username = self.name() for i in range(20): answers.append(str(random.randint(1, count_q))) answers_str = ' '.join(answers) del answers[1:-1] params = [username, answers_str] try: c.execute('INSERT INTO v VALUES(?, ?)', params) conn.commit() except sqlite3.Error as e: print(e) print("Не удалось добавить данные в таблицу v") def look_into_v(self): conn, c = self.db_connect() try: a = c.execute('SELECT rowid, * FROM v').fetchall() except sqlite3.Error as e: print(e) print("Не удалось получить данные из таблицы v") for i in a: print(i[0], i[1]) def name(self): username = '' for _ in range(random.randint(2, 5)): username += username.join(random.choice(string.ascii_lowercase)) username += username.join(random.choice(self.MY_VOWELS)) username = username.capitalize() username += ' ' last_name = '' for _ in range(random.randint(2, 5)): last_name += last_name.join(random.choice(string.ascii_lowercase)) last_name += last_name.join(random.choice(self.MY_VOWELS)) last_name = last_name.capitalize() username += last_name return username def main(): conn = BioCheck() variant = BioVariant() variant.look_into_v() if __name__ == '__main__': main()
[ "apashanskiy@gmail.com" ]
apashanskiy@gmail.com
6fee4924bd89b10be4caafb0e7033431b22856f4
87d5b21265c381104de8f45aa67842a4adc880eb
/213. House Robber II.py
2368f8538a98c87b43048c5284734ee38d79b8d4
[]
no_license
MYMSSENDOG/leetcodes
ac047fe0d951e0946740cb75103fc94aae967166
8a52a417a903a0742034161471a084bc1e494d68
refs/heads/master
2020-09-23T16:55:08.579319
2020-09-03T19:44:26
2020-09-03T19:44:26
225,543,895
0
0
null
null
null
null
UTF-8
Python
false
false
589
py
class Solution: def rob(self, nums) -> int: if len(nums) <= 3: return max(nums) dp = [0] * len(nums) dp[0] = nums[0] dp[1] = max(nums[:2]) dp2 = [0] * len(nums) dp2[1] = nums[1] ret = 0 for i in range(2, len(nums)): dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]) ret = max(ret, dp[-2]) for i in range(2, len(nums)): dp2[i] = max(dp2[i - 2] + nums[i], dp2[i - 1]) ret = max(ret, dp2[-1]) return ret sol = Solution() nums = [2,1,1,2] print(sol.rob(nums))
[ "fhqmtkfkd@naver.com" ]
fhqmtkfkd@naver.com
a03702a61d3caee05419c9c79a3a8f918f429b9b
7e2144cbbd53e693755c7d277252d8add867dfe8
/src/success_backup_check/tests/test_documentation.py
cc33e33bfedac7bc420d9a3a06ae03014dce807f
[ "MIT" ]
permissive
linuxluigi/success-backup-check
bf7c2cf33aa9d4b39171e46010946e491ecf3a37
aa3be2dbd8b0106b931bf226614e05af68034077
refs/heads/master
2020-06-29T21:00:21.381307
2019-08-07T19:34:05
2019-08-07T19:34:05
74,410,317
0
0
MIT
2019-08-07T19:34:06
2016-11-21T22:10:39
Python
UTF-8
Python
false
false
1,237
py
import os import pytest import manuel.ignore import manuel.codeblock import manuel.doctest import manuel.testing def make_manuel_suite(ns): """ Prepare Manuel test suite. Test functions are injected in the given namespace. """ # Wrap function so pytest does not expect an spurious "self" fixture. def _wrapped(func, name): wrapped = lambda: func() wrapped.__name__ = name return wrapped # Collect documentation files cd = os.path.dirname path = cd(cd(cd(cd(__file__)))) doc_path = os.path.join(path, 'docs') files = sorted(os.path.join(doc_path, f) for f in os.listdir(doc_path)) files = [f for f in files if f.endswith('.rst') or f.endswith('.txt')] # Create manuel suite m = manuel.ignore.Manuel() m += manuel.doctest.Manuel() m += manuel.codeblock.Manuel() # Copy tests from the suite to the global namespace suite = manuel.testing.TestSuite(m, *files) for i, test in enumerate(suite): name = 'test_doc_%s' % i ns[name] = pytest.mark.documentation(_wrapped(test.runTest, name)) return suite try: make_manuel_suite(globals()) except OSError: print('Documentation files not found: disabling tests!')
[ "Steffen.Exler@gmail.com" ]
Steffen.Exler@gmail.com
b813ebcbec7f13c5a86fd3eaae64d01fb3fcd474
02067187903c83e354cc4d9146b4c272ccfb9636
/tests/test.py
43ec383b9ec307b5fef402c89232cf5d674bbc67
[]
no_license
japoorv/vehicle_routing_problem
777520e4255237a2871194f0fa2b63e9336f0c60
3cc77ff54cac26a5568cab78bd131882da9e5ba6
refs/heads/master
2022-04-29T03:57:00.668458
2020-04-30T11:45:38
2020-04-30T11:45:38
254,881,271
0
0
null
null
null
null
UTF-8
Python
false
false
413
py
import os import requests def sol(): name=[i for i in os.listdir() if i.endswith('.csv')] for i in name: response=requests.post('https://vehicleroutingproblem.herokuapp.com/handleUpload',files=dict(datax=open(i,'r'))) file_output=open(i[:-4]+'.txt','w') file_output.write(response.content.decode('utf-8')) file_output.close() return if __name__=='__main__': sol()
[ "japoorv0@gmail.com" ]
japoorv0@gmail.com
14f23765586203a4d9958eed8733c452add248a8
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/224/users/4353/codes/1577_996.py
89cd099d56c2d7ae2b56fdad07e0cf80becca714
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
85
py
print ("*****") print("(* o o *)") print("* ^ *") print("* --- *") print ("*****")
[ "jvlo@icomp.ufam.edu.br" ]
jvlo@icomp.ufam.edu.br
b344650697ece688f1f383bbc57df9ee24f05e01
8efe56ee34c455a6b1336897f6d457acbc9c10f9
/examples/torch/ppo_pendulum.py
34d699874c3aa6ef232a2318b190b4cb7df41cec
[ "MIT" ]
permissive
neurips2020submission11699/metarl
ab18d11e708bf569d76cb2fab2bcce089badd111
ae4825d21478fa1fd0aa6b116941ea40caa152a5
refs/heads/master
2022-10-15T22:03:09.948673
2020-06-11T19:22:55
2020-06-11T19:30:58
268,410,657
4
0
null
null
null
null
UTF-8
Python
false
false
1,794
py
#!/usr/bin/env python3 """This is an example to train a task with PPO algorithm (PyTorch). Here it runs InvertedDoublePendulum-v2 environment with 100 iterations. """ import torch from metarl import wrap_experiment from metarl.envs import MetaRLEnv from metarl.experiment import LocalRunner from metarl.experiment.deterministic import set_seed from metarl.torch.algos import PPO from metarl.torch.policies import GaussianMLPPolicy from metarl.torch.value_functions import GaussianMLPValueFunction @wrap_experiment def ppo_pendulum(ctxt=None, seed=1): """Train PPO with InvertedDoublePendulum-v2 environment. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. """ set_seed(seed) env = MetaRLEnv(env_name='InvertedDoublePendulum-v2') runner = LocalRunner(ctxt) policy = GaussianMLPPolicy(env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=torch.tanh, output_nonlinearity=None) value_function = GaussianMLPValueFunction(env_spec=env.spec, hidden_sizes=(32, 32), hidden_nonlinearity=torch.tanh, output_nonlinearity=None) algo = PPO(env_spec=env.spec, policy=policy, value_function=value_function, max_path_length=100, discount=0.99, center_adv=False) runner.setup(algo, env) runner.train(n_epochs=100, batch_size=10000) ppo_pendulum(seed=1)
[ "neurips2020submission11699@gmail.com" ]
neurips2020submission11699@gmail.com
19a92659db1770093afeb8f64755fb59a0e6cae8
a8abdb08b72089171e3471cc50954ca3d778f4c3
/api/core/migrations/0009_diskwipe_started.py
8cb6e8b0be1e9aff796d66f0de11f8b54645ac62
[ "MIT" ]
permissive
wh1te909/imagebackups
195b86f267750c2230253373edd7d0b08e579e13
a0f94b6571a8ed9083cd4a02bf28ce4bfc2882c0
refs/heads/master
2023-01-13T18:42:24.413592
2020-08-01T23:16:14
2020-08-01T23:16:14
222,405,465
9
4
MIT
2023-01-06T02:18:27
2019-11-18T09:01:38
Python
UTF-8
Python
false
false
493
py
# Generated by Django 2.2.7 on 2019-11-13 07:31 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('core', '0008_backupjob_celery_id'), ] operations = [ migrations.AddField( model_name='diskwipe', name='started', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), ]
[ "dcparsi@gmail.com" ]
dcparsi@gmail.com
5d8281c8b7a716e074bc0bfda5f76f158d0a4d82
786de89be635eb21295070a6a3452f3a7fe6712c
/Translator/tags/V00-02-38/src/TestPutNDArray.py
4130dbd1d1754ef949c9a0492943eb16895b4fd7
[]
no_license
connectthefuture/psdmrepo
85267cfe8d54564f99e17035efe931077c8f7a37
f32870a987a7493e7bf0f0a5c1712a5a030ef199
refs/heads/master
2021-01-13T03:26:35.494026
2015-09-03T22:22:11
2015-09-03T22:22:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
758
py
import psana import numpy as np class TestPutNDArray(object): def __init__(self): self.src = self.configSrc('cspadsrc') self.cc=-1 self.allevts = -1 def begincalibcycle(self, evt, env): self.cc += 1 self.ii=-1 def event(self, evt, env): self.ii += 1 self.allevts += 1 cspad = evt.get(psana.CsPad.DataV2, self.src) if cspad is None: print "Translator.TestPutNDArray: cc=%5d evt=%5d allevt=%7d: NO CSPAD" % (self.cc, self.ii, self.allevts) return arr = np.ones((2,3),np.float32) evt.put(arr,self.src, "myarray") print "Translator.TestPutNDArray: cc=%5d evt=%5d allevt=%7d" % (self.cc, self.ii, self.allevts)
[ "davidsch@SLAC.STANFORD.EDU@b967ad99-d558-0410-b138-e0f6c56caec7" ]
davidsch@SLAC.STANFORD.EDU@b967ad99-d558-0410-b138-e0f6c56caec7
48c21e7a403c1dc08cc450ffe204cbb00e4114ad
d39788764b2e098884b97a1f1a1f8bca4991f592
/passwd/secondpaswd.py
c32c200c65790a51aec8784166ada6684735ad83
[]
no_license
dlasche/mycode
c7a574aa944f94927b8e83a9bce177f8774f54d0
9f021d61e53eab0a5f66e1c640762127516b19f9
refs/heads/main
2023-05-31T02:16:59.414997
2021-06-18T14:44:53
2021-06-18T14:44:53
374,736,263
1
1
null
null
null
null
UTF-8
Python
false
false
887
py
#!/usr/bin/python3 ## Try a real world test with getpass ## import Paramiko so we can talk SSH import paramiko # allows Python to ssh import os # low level operating system commands import getpass # we need this to accept passwords def main(): ## where to connect to t = paramiko.Transport("10.10.2.3", 22) ## IP and port of bender ## how to connect (see other labs on using id_rsa private / public keypairs) t.connect(username="bender", password=getpass.getpass()) # notice the password references getpass ## Make an SFTP connection object sftp = paramiko.SFTPClient.from_transport(t) ## copy our firstpasswd.py script to bender sftp.put("firstpassword.py", "firstpassword.py") # move file to target location home directory ## close the connection sftp.close() # close the connection if __name__ == "__main__": main()
[ "dlasche@gmail.com" ]
dlasche@gmail.com