blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
885efec9df259eb8f15d01f19deacc378290ee8f
4e382ae46cf997ea2dbdfcfa463a57d3e0e9ad97
/sols/trapping_rain_water.py
1bcddf8200efcff10f2e1c9a95121a651a6a9e03
[]
no_license
hayeonk/leetcode
5136824838eb17ed2e4b7004301ba5bb1037082f
6485f8f9b5aa198e96fbb800b058d9283a28e4e2
refs/heads/master
2020-04-28T03:37:16.800519
2019-06-01T14:34:45
2019-06-01T14:34:45
174,943,756
0
1
null
null
null
null
UTF-8
Python
false
false
553
py
class Solution(object): def trap(self, height): left = [] right = [] for h in height: if not left: left.append(h) else: left.append(max(left[-1], h)) for h in reversed(height): if not right: right.append(h) else: right.insert(0, max(right[0], h)) ans = 0 for i in xrange(1, len(height)-1): ans += min(left[i], right[i]) - height[i] return ans
[ "31617695+hayeonk@users.noreply.github.com" ]
31617695+hayeonk@users.noreply.github.com
2ecef8bf5e66a3811d5954b32463e10dce32e217
a55f45cc3768383d0ee5b53b8bdf5b1f0ad5fff0
/turhousemanager.py
9ea29c810c1ce8a31cd6f0d556c06f8944323998
[ "Apache-2.0" ]
permissive
BuloZB/turhouse
e6efd6e997f754fbdf62f3fb35409f179a556fc6
e76db0cdc96d9c9acfc5bd99ed94d9ad1dfecfa1
refs/heads/master
2021-06-26T15:24:26.870536
2015-10-07T19:52:32
2015-10-07T19:52:32
74,385,386
0
0
Apache-2.0
2021-01-21T03:49:48
2016-11-21T16:56:07
Python
UTF-8
Python
false
false
1,345
py
# -*- coding: utf-8 -*- import time import datetime import schedule import logging from pprint import pprint from glob import Glob from alarm.alarmmanager import AlarmManager from event.notification import ezs_email class TurhouseManager(AlarmManager): ''' turhouse manager object ''' def __init__(self): self._alarm = False AlarmManager. __init__(self) def beep(self): self.device('dongle_1').beep() def alarm(self, sender, event_type, params): self._alarm = True self.device('dongle_1').alarm() ezs_email('Alarm: ', sender, event_type, params) def alarmStop(self, sender, event_type, params): if self._alarm: ezs_email('Alarm Stop: ', sender, event_type, params) self.device('dongle_1').alarmStop() self._alarm = False def controllerEventHandler(self, sender, event_type, params): Glob.logger.info( "Controller %s code: %s " % (sender, params['code'])) code = params['code'] if code == 1: self.zone('dum').arm() self.beep() if code == 2: self.zone('dum').disarm() self.alarmStop(sender, event_type, params) self.beep() if code == 3: self.device('zasuvka_1').toggle() self.beep()
[ "jan.redl@vizionet.cz" ]
jan.redl@vizionet.cz
fd00da65cc9832503776c473d4bb563f72c5ed8c
e14ccc485b835c07c86717aa097e1f8bfd8d35b8
/work/time/generate_sine_wave.py
01c579509872e3e7cc17e13cb0a94a3f15a9778f
[]
no_license
LukeJaffe/trader
1e0f39f4db39048f1ee5e9ef57e54854a372b84a
c92a6fe4b6588a30282f3f66108b913a88ca9305
refs/heads/master
2021-01-06T20:35:42.780569
2017-10-13T06:37:56
2017-10-13T06:37:56
99,526,854
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
import math import numpy as np import torch T = 20 L = 1000 N = 100 np.random.seed(2) x = np.empty((N, L), 'int64') x[:] = np.array(range(L)) + np.random.randint(-4*T, 4*T, N).reshape(N, 1) data = np.sin(x / 1.0 / T).astype('float64') torch.save(data, open('traindata.pt', 'wb'))
[ "lukejaffe1@gmail.com" ]
lukejaffe1@gmail.com
3cc04765c66f4277a2adfe6dd975ae9a46c7e373
7ba9a63b02d1abd8bae028f8703ed7da9941a3a3
/antlr/old/TParser.py
a08a183ccbd1cb74f81545db5ba5135c94240229
[]
no_license
apnorton/ir-project
40bd8ea9a52f07262b63ff1c0af3bb3c5e1dfdc1
47f487dd76125d923da5fb960a76ed33f87d8213
refs/heads/master
2021-01-10T13:56:10.635630
2016-03-02T16:36:01
2016-03-02T16:36:01
46,683,608
0
0
null
null
null
null
UTF-8
Python
false
false
13,246
py
# Generated from T by ANTLR 4.5.1 # encoding: utf-8 from __future__ import print_function from antlr4 import * from io import StringIO def serializedATN(): with StringIO() as buf: buf.write(u"\3\u0430\ud6d1\u8206\uad2d\u4417\uaef1\u8d80\uaadd\3") buf.write(u"\n\36\4\2\t\2\3\2\3\2\3\2\3\2\3\2\3\2\5\2\13\n\2\3\2") buf.write(u"\3\2\3\2\3\2\3\2\3\2\3\2\3\2\3\2\3\2\3\2\3\2\7\2\31\n") buf.write(u"\2\f\2\16\2\34\13\2\3\2\2\3\2\3\2\2\2!\2\n\3\2\2\2\4") buf.write(u"\5\b\2\1\2\5\6\7\3\2\2\6\7\5\2\2\2\7\b\7\4\2\2\b\13\3") buf.write(u"\2\2\2\t\13\7\n\2\2\n\4\3\2\2\2\n\t\3\2\2\2\13\32\3\2") buf.write(u"\2\2\f\r\f\b\2\2\r\16\7\5\2\2\16\31\5\2\2\t\17\20\f\7") buf.write(u"\2\2\20\21\7\6\2\2\21\31\5\2\2\b\22\23\f\6\2\2\23\24") buf.write(u"\7\7\2\2\24\31\5\2\2\7\25\26\f\5\2\2\26\27\7\b\2\2\27") buf.write(u"\31\5\2\2\6\30\f\3\2\2\2\30\17\3\2\2\2\30\22\3\2\2\2") buf.write(u"\30\25\3\2\2\2\31\34\3\2\2\2\32\30\3\2\2\2\32\33\3\2") buf.write(u"\2\2\33\3\3\2\2\2\34\32\3\2\2\2\5\n\30\32") return buf.getvalue() class TParser ( Parser ): grammarFileName = "T" atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] sharedContextCache = PredictionContextCache() literalNames = [ u"<INVALID>", u"'('", u"')'", u"'*'", u"'+'", u"'/'", u"'-'" ] symbolicNames = [ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"MUL", u"ADD", u"DIV", u"SUB", u"WS", u"INT" ] RULE_r = 0 ruleNames = [ u"r" ] EOF = Token.EOF T__0=1 T__1=2 MUL=3 ADD=4 DIV=5 SUB=6 WS=7 INT=8 def __init__(self, input): super(TParser, self).__init__(input) self.checkVersion("4.5.1") self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache) self._predicates = None class RContext(ParserRuleContext): def __init__(self, parser, parent=None, invokingState=-1): super(TParser.RContext, self).__init__(parent, invokingState) self.parser = parser def getRuleIndex(self): return TParser.RULE_r def copyFrom(self, ctx): super(TParser.RContext, self).copyFrom(ctx) class AddContext(RContext): def __init__(self, parser, ctx): # actually a TParser.RContext) super(TParser.AddContext, self).__init__(parser) self.copyFrom(ctx) def r(self, i=None): if i is None: return self.getTypedRuleContexts(TParser.RContext) else: return self.getTypedRuleContext(TParser.RContext,i) def ADD(self): return self.getToken(TParser.ADD, 0) def enterRule(self, listener): if hasattr(listener, "enterAdd"): listener.enterAdd(self) def exitRule(self, listener): if hasattr(listener, "exitAdd"): listener.exitAdd(self) def accept(self, visitor): if hasattr(visitor, "visitAdd"): return visitor.visitAdd(self) else: return visitor.visitChildren(self) class DivContext(RContext): def __init__(self, parser, ctx): # actually a TParser.RContext) super(TParser.DivContext, self).__init__(parser) self.copyFrom(ctx) def r(self, i=None): if i is None: return self.getTypedRuleContexts(TParser.RContext) else: return self.getTypedRuleContext(TParser.RContext,i) def DIV(self): return self.getToken(TParser.DIV, 0) def enterRule(self, listener): if hasattr(listener, "enterDiv"): listener.enterDiv(self) def exitRule(self, listener): if hasattr(listener, "exitDiv"): listener.exitDiv(self) def accept(self, visitor): if hasattr(visitor, "visitDiv"): return visitor.visitDiv(self) else: return visitor.visitChildren(self) class GroupContext(RContext): def __init__(self, parser, ctx): # actually a TParser.RContext) super(TParser.GroupContext, self).__init__(parser) self.copyFrom(ctx) def r(self): return self.getTypedRuleContext(TParser.RContext,0) def enterRule(self, listener): if hasattr(listener, "enterGroup"): listener.enterGroup(self) def exitRule(self, listener): if hasattr(listener, "exitGroup"): listener.exitGroup(self) def accept(self, visitor): if hasattr(visitor, "visitGroup"): return visitor.visitGroup(self) else: return visitor.visitChildren(self) class SubContext(RContext): def __init__(self, parser, ctx): # actually a TParser.RContext) super(TParser.SubContext, self).__init__(parser) self.copyFrom(ctx) def r(self, i=None): if i is None: return self.getTypedRuleContexts(TParser.RContext) else: return self.getTypedRuleContext(TParser.RContext,i) def SUB(self): return self.getToken(TParser.SUB, 0) def enterRule(self, listener): if hasattr(listener, "enterSub"): listener.enterSub(self) def exitRule(self, listener): if hasattr(listener, "exitSub"): listener.exitSub(self) def accept(self, visitor): if hasattr(visitor, "visitSub"): return visitor.visitSub(self) else: return visitor.visitChildren(self) class MulContext(RContext): def __init__(self, parser, ctx): # actually a TParser.RContext) super(TParser.MulContext, self).__init__(parser) self.copyFrom(ctx) def r(self, i=None): if i is None: return self.getTypedRuleContexts(TParser.RContext) else: return self.getTypedRuleContext(TParser.RContext,i) def MUL(self): return self.getToken(TParser.MUL, 0) def enterRule(self, listener): if hasattr(listener, "enterMul"): listener.enterMul(self) def exitRule(self, listener): if hasattr(listener, "exitMul"): listener.exitMul(self) def accept(self, visitor): if hasattr(visitor, "visitMul"): return visitor.visitMul(self) else: return visitor.visitChildren(self) class IntContext(RContext): def __init__(self, parser, ctx): # actually a TParser.RContext) super(TParser.IntContext, self).__init__(parser) self.copyFrom(ctx) def INT(self): return self.getToken(TParser.INT, 0) def enterRule(self, listener): if hasattr(listener, "enterInt"): listener.enterInt(self) def exitRule(self, listener): if hasattr(listener, "exitInt"): listener.exitInt(self) def accept(self, visitor): if hasattr(visitor, "visitInt"): return visitor.visitInt(self) else: return visitor.visitChildren(self) def r(self, _p=0): _parentctx = self._ctx _parentState = self.state localctx = TParser.RContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 0 self.enterRecursionRule(localctx, 0, self.RULE_r, _p) try: self.enterOuterAlt(localctx, 1) self.state = 8 token = self._input.LA(1) if token in [TParser.T__0]: localctx = TParser.GroupContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 3 self.match(TParser.T__0) self.state = 4 self.r(0) self.state = 5 self.match(TParser.T__1) elif token in [TParser.INT]: localctx = TParser.IntContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 7 self.match(TParser.INT) else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 24 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,2,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 22 la_ = self._interp.adaptivePredict(self._input,1,self._ctx) if la_ == 1: localctx = TParser.MulContext(self, TParser.RContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_r) self.state = 10 if not self.precpred(self._ctx, 6): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 6)") self.state = 11 self.match(TParser.MUL) self.state = 12 self.r(7) pass elif la_ == 2: localctx = TParser.AddContext(self, TParser.RContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_r) self.state = 13 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 5)") self.state = 14 self.match(TParser.ADD) self.state = 15 self.r(6) pass elif la_ == 3: localctx = TParser.DivContext(self, TParser.RContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_r) self.state = 16 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 4)") self.state = 17 self.match(TParser.DIV) self.state = 18 self.r(5) pass elif la_ == 4: localctx = TParser.SubContext(self, TParser.RContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_r) self.state = 19 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 3)") self.state = 20 self.match(TParser.SUB) self.state = 21 self.r(4) pass self.state = 26 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,2,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx def sempred(self, localctx, ruleIndex, predIndex): if self._predicates == None: self._predicates = dict() self._predicates[0] = self.r_sempred pred = self._predicates.get(ruleIndex, None) if pred is None: raise Exception("No predicate with index:" + str(ruleIndex)) else: return pred(localctx, predIndex) def r_sempred(self, localctx, predIndex): if predIndex == 0: return self.precpred(self._ctx, 6) if predIndex == 1: return self.precpred(self._ctx, 5) if predIndex == 2: return self.precpred(self._ctx, 4) if predIndex == 3: return self.precpred(self._ctx, 3)
[ "hskrus@gmail.com" ]
hskrus@gmail.com
437b387c6980f53268b75171dcdcc65a88269569
691f3bf0e15f5bec4cf70ac451e7b4a3e92b6dbb
/setup.py
031e600ceadd1dee4a0f42be3ec90e937ab915f8
[ "BSD-3-Clause" ]
permissive
a-tal/pyweet
ac90699468bd8b3c450492068a50b93f321d1667
61bd9ab7a28ca8e917051977bfcf84904dd06c77
refs/heads/master
2021-01-17T10:22:10.966528
2018-03-10T18:21:58
2018-03-10T18:21:58
17,307,288
1
1
BSD-3-Clause
2018-03-05T00:49:25
2014-03-01T03:59:36
Python
UTF-8
Python
false
false
1,523
py
"""Pyweet's setup/installer.""" from setuptools import setup from setuptools.command.test import test as TestCommand class PyTest(TestCommand): """Shim in pytest to be able to use it with setup.py test.""" def finalize_options(self): """Stolen from http://pytest.org/latest/goodpractises.html.""" TestCommand.finalize_options(self) self.test_args = ["-v", "-rf", "--cov", "pyweet", "test"] self.test_suite = True def run_tests(self): """Also shamelessly stolen.""" # have to import here, outside the eggs aren't loaded import pytest errno = pytest.main(self.test_args) raise SystemExit(errno) setup( name="pyweet", version="0.0.6", author="Adam Talsma", author_email="adam@talsma.ca", packages=["pyweet"], install_requires=["twitter", "blessings"], scripts=["bin/pyweet"], url="https://github.com/a-tal/pyweet", description="Twitter command line util", long_description="Yet another Twitter command line utility.", download_url="https://github.com/a-tal/pyweet", tests_require=["pytest", "mock", "pytest-cov", "coverage"], cmdclass={"test": PyTest}, license="BSD", classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: System Administrators", "License :: OSI Approved :: BSD License", "Operating System :: POSIX :: Linux", "Programming Language :: Python", ], )
[ "github@talsma.ca" ]
github@talsma.ca
097a632a53b4401a64a6fe58723296b12a6b7b74
a2cb0b841519db1b8442ce2bb100572d8683e861
/ToggleBreakpoint.py
acacb88e03eb06c9460f83b82b037a2221875373
[ "MIT" ]
permissive
Falven/Debug
ea159e3beeb98325ae43f3157f7c459252457671
bf45898789d3539dd104a42ce33e18747dd3300b
refs/heads/master
2016-09-05T17:14:17.974818
2015-04-19T01:28:42
2015-04-19T01:28:42
34,187,237
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
import sublime, sublime_plugin def plugin_loaded(): global pluginLoaded; pluginLoaded = True; class ToggleBreakpointCommand(sublime_plugin.TextCommand): def run(self, edit): global pluginLoaded; if pluginLoaded: print("Toggled A Breakpoint.")
[ "Falven2000@Hotmail.com" ]
Falven2000@Hotmail.com
f6010c075c7e7f753c9b7e31b4b2e7208d97e792
4ec73d7b22ef19c0d1301b055a5bbaf2a0931807
/main_app/migrations/0002_auto_20181204_0014.py
7f834505cb2def39e1fe804ae1e31e8a3987da8d
[]
no_license
nicklogin/realec_testing_platform
89138160f100d2028520f8ea6325863a82623113
541951ec8169120b66232a0c85015c2063be5a3d
refs/heads/master
2023-01-28T02:10:53.205266
2020-04-18T09:27:29
2020-04-18T09:27:29
227,206,248
0
0
null
2023-01-04T13:57:06
2019-12-10T20:08:41
TypeScript
UTF-8
Python
false
false
399
py
# Generated by Django 2.1.3 on 2018-12-03 21:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main_app', '0001_initial'), ] operations = [ migrations.AlterField( model_name='question', name='quiz', field=models.ManyToManyField(null=True, to='main_app.Quizz'), ), ]
[ "niklogin10v@yandex.ru" ]
niklogin10v@yandex.ru
ae16dc3d50f09ea7a2439484841531bbbd5513dc
5e715d3ab6769af0e16de3784b72ffc20b834c34
/dags/milkyway/exotel_responses.py
bc181b2dc423da4b4d5e4555572d954a818e0e5e
[ "MIT" ]
permissive
goodhamgupta/mars
6943483b428cffc77e1f1aa2e7d7ee3aa1d04ba5
06371dd35a94a5e3605e9256972f6d2a5197459f
refs/heads/master
2023-03-25T17:09:30.780427
2020-03-06T15:42:01
2020-03-06T15:42:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
303
py
# -*- coding: utf-8 -*- # Airflow DAG for exotel responses from operators.sqoop_emr_workflow import SqoopEmrWorkflow from airflow import DAG params = { 'schedule_interval': '0 13 * * *', 'source_app': 'milkyway', 'destination': 'exotel_responses' } dag = SqoopEmrWorkflow.create(params)
[ "shubhamg2208@live.com" ]
shubhamg2208@live.com
413db050c8202c87e9e287faeda03fcb45def5a5
2e7617666070ad05dab301069cfbe63d83d448b0
/states/__init__.py
43ad1580f1cb83ff8ddb4dd560c0126231b98c12
[]
no_license
dmartinchick/tbot
92f44e4bdb091ae759cfa0234ead699b2902709d
094b5ef003b96278ee001b273a913309011f94f7
refs/heads/master
2023-06-03T02:30:04.298770
2021-06-17T16:54:48
2021-06-17T16:54:48
369,304,445
0
0
null
null
null
null
UTF-8
Python
false
false
24
py
from . import add_result
[ "dmartinchick@gmail.com" ]
dmartinchick@gmail.com
d5901153c01b4dc40f38bb9626832f79d17b7ca7
eb3ebcd52ef137fc1560b6b65197627533eddf41
/Utilize/web_scraping/6_bs4.py
d1c4650dc227c8d3d92e2616489def567cc3e2cc
[]
no_license
Kor-KTW/PythonWorkSpace
a0d14b3be9af1266b35440261fa2ec0a11534288
e23ce4a4d104ff665d6a5544ce556b469c4d9d89
refs/heads/master
2023-01-04T05:10:38.362965
2020-11-06T05:11:09
2020-11-06T05:11:09
304,473,110
1
0
null
null
null
null
UTF-8
Python
false
false
1,913
py
import requests from bs4 import BeautifulSoup url = "https://comic.naver.com/webtoon/weekday.nhn" res = requests.get(url) res.raise_for_status() soup = BeautifulSoup(res.text, "lxml") # 우리가 가져온 html을 lxml을 통해서 beautifulsoup으로 만든다. # 페이지에 대한 이해가 높은 경우 # print(soup.title) # print(soup.title.get_text()) # print(soup.a) # soup 객체에서 첫번째로 발견되는 a element 출력. # print(soup.a.attrs) # a element의 속성정보 출력. # print(soup.a["href"]) # a element의 href 속성 '값' 출력 # 페이지에 대한 이해가 없는 경우 아래와 같이 원하는 객체의 class, element 이름 등의 특징을 이용하여 찾을 수 있음. # print(soup.find("a", attrs={"class":"Nbtn_upload"})) # class가 Nbtn_upload인 a element 찾기 # print(soup.find(attrs={"class":"Nbtn_upload"})) # class가 Nbtn_upload인 첫번째로 나오는 어떤 element 찾기 # print(soup.find("li", attrs={"class":"rank01"})) # tag명이 li, class명이 rank01 # rank1 = soup.find("li", attrs={"class":"rank01"}) # rank2 = rank1.next_sibling.next_sibling # rank3 = rank2.next_sibling.next_sibling # rank2 = rank3.previous_sibling.previous_sibling # print(rank2.get_text()) # print(rank1.a.get_text()) # 그 중 tag가 a인 녀석 # print(rank1.next_sibling) # print(rank1.next_sibling.next_sibling) # print(rank1.parent) # rank2 = rank1.find_next_sibling("li") # print(rank2.a.get_text()) # rank3 = rank2.find_next_sibling("li") # print(rank3.a.get_text()) # rank3 = rank2.find_previous_sibling("li") # print(rank2.a.get_text()) # print(rank1.find_next_siblings("li")) webtoon = soup.find("a", text="연애혁명-323. 마음의 저울") print(webtoon) #<a onclick="nclk_v2(event,'rnk*p.cont','570503','2')" href="/webtoon/detail.nhn?titleId=570503&amp;no=327" title="연애혁명-323. 마음의 저울">연애혁명-323. 마음의 저울</a>
[ "xodn5492@naver.com" ]
xodn5492@naver.com
116d0392934aa11564552e963f5f466650dfd304
b30d74626b0e3de17507655b1afbc73e3b81720e
/TurretController.py
83cec4f3c12c2ccd8439a52b38320272f30b1edd
[]
no_license
CRATOS-360NoScope/CRATOS-Server
4d114c12c76781a1796a885e78974e9a11e2a178
841c017881a20d8a41cbaa69265519f5f22b2aff
refs/heads/master
2021-01-20T00:58:40.123543
2015-12-02T20:33:47
2015-12-02T20:33:47
42,613,814
1
0
null
null
null
null
UTF-8
Python
false
false
3,481
py
import RPi.GPIO as GPIO import time import threading class TurretController: GPIO_PIN_YAW = 11 GPIO_PIN_PITCH = 12 GPIO_PIN_FIRE = 13 pwm_yaw = None pwm_pitch = None pwm_fire = None min_pitch = 6.8 #was 0 max_pitch = 10.0 #was 12.5 current_pitch = 8.4 stopPitchFlag = False DEBUG = False pitchDelta = False pitchingActive = False pitchThread = None def __init__(self, pin_yaw, pin_pitch, pin_fire, debug=False): self.GPIO_PIN_YAW = pin_yaw self.GPIO_PIN_PITCH = pin_pitch self.GPIO_PIN_FIRE = pin_fire GPIO.setmode(GPIO.BOARD) GPIO.setup(self.GPIO_PIN_YAW, GPIO.OUT) GPIO.setup(self.GPIO_PIN_PITCH, GPIO.OUT) GPIO.setup(self.GPIO_PIN_FIRE, GPIO.OUT) self.pwm_yaw = GPIO.PWM(self.GPIO_PIN_YAW, 53) self.pwm_pitch = GPIO.PWM(self.GPIO_PIN_PITCH, 50) self.pwm_fire = GPIO.PWM(self.GPIO_PIN_FIRE, 25) self.pwm_yaw.start(7.5) self.pwm_pitch.start(self.current_pitch) self.pwm_fire.start(2) self.DEBUG = debug self.triggerThread = threading.Thread(target=self.triggerWork) self.pitchThread = threading.Thread(target=self.pitchWorker) time.sleep(0.5) self.pwm_yaw.ChangeDutyCycle(0) self.pwm_pitch.ChangeDutyCycle(0) self.pwm_fire.ChangeDutyCycle(0) self.triggerLock = threading.Lock(); def __del__(self): self.pwm_yaw.stop() self.pwm_pitch.stop() GPIO.cleanup() def triggerWork(self): if (self.triggerLock.locked()): return self.triggerLock.acquire() self.pwm_fire.ChangeDutyCycle(5) #pull trigger(not tested) time.sleep(0.5) self.pwm_fire.ChangeDutyCycle(2) #return to original spot time.sleep(0.5) self.triggerLock.release() if self.DEBUG: print "Trigger Pulled" return def pullTrigger(self, sensitivity=1): self.pitchThread = threading.Thread(target=self.triggerWork) self.pitchThread.start() # direction +1 for clockwise, -1 for reverse def startYaw(self, direction, sensitivity=1): modifier = 2.5*sensitivity if self.DEBUG: print "** startYaw **" print "Direction: "+str(direction) print "Sensitivity: "+str(sensitivity) print "Duty Cycle: "+str(7.5+(modifier*direction)) self.pwm_yaw.ChangeDutyCycle(7.5+(modifier*direction)) def stopYaw(self): if self.DEBUG: print "** stopYaw **" self.pwm_yaw.ChangeDutyCycle(0) #was 7.5 -> 0 is off def startPitch(self, direction, sensitivity=100): self.pitchDelta = -float(sensitivity)/10000.0 if self.DEBUG: print "** startPitch **" print "pitchDelta: "+str(self.pitchDelta) print "Sensitivity: "+str(sensitivity) if not self.pitchingActive: if self.DEBUG: print "pitchThread run" self.pitchThread = threading.Thread(target=self.pitchWorker) self.stopPitchFlag = False self.pitchThread.start() print "pitchThread running" def pitchWorker(self): while not self.stopPitchFlag: self.current_pitch += self.pitchDelta if self.current_pitch > self.max_pitch: self.current_pitch = self.max_pitch break if self.current_pitch < self.min_pitch: self.current_pitch = self.min_pitch break #if self.DEBUG: #print "Duty Cycle: "+str(self.current_pitch) self.pwm_pitch.ChangeDutyCycle(self.current_pitch) time.sleep(0.01) time.sleep(0.2) self.pitchingActive = False #self.pwm_pitch.ChangeDutyCycle(0) print "pitchWorker exit" return def stopPitch(self): if self.DEBUG: print "** stopPitch **" print "currentPitch: "+str(self.current_pitch) self.stopPitchFlag = True
[ "cwirt@purdue.edu" ]
cwirt@purdue.edu
5542bd603d27b031d107e5285aa6a8d9e6700e91
436c9ee595ab3dc6f6b0dc2cd695c62de81c8ecd
/core/utils/data.py
803e05c480370eaee1f1233e96384912e144b6cd
[ "Apache-2.0" ]
permissive
viep/cmdbac
f186768754bddededa15c1692c2882c18af65b18
2df4b7980d22bd42a8128d9468de101307fc52ac
refs/heads/master
2021-01-18T00:21:43.040368
2016-05-09T12:23:38
2016-05-09T12:23:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,270
py
#!/usr/bin/env python import os, sys sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir)) sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir)) import json import logging os.environ.setdefault("DJANGO_SETTINGS_MODULE", "cmudbac.settings") import django django.setup() import library from library.models import * import utils ## ===================================================================== ## LOGGING CONFIGURATION ## ===================================================================== LOG = logging.getLogger() def get_crawler(crawler_status, repo_source): moduleName = "crawlers.%s" % (repo_source.crawler_class.lower()) moduleHandle = __import__(moduleName, globals(), locals(), [repo_source.crawler_class]) klass = getattr(moduleHandle, repo_source.crawler_class) # FOR GITHUB try: with open(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, "secrets", "secrets.json"), 'r') as auth_file: auth = json.load(auth_file) except: auth = None crawler = klass(crawler_status, auth) return crawler def add_module(module_name, package_name, package_type_id, package_version): project_type = ProjectType.objects.get(id=package_type_id) Package.objects.get_or_create(name = package_name, version = package_version) package = Package.objects.get(name = package_name, version = package_version) module = Module() module.name = module_name module.package = package module.save() def add_repo(repo_name, crawler_status_id, repo_setup_scripts): cs = CrawlerStatus.objects.get(id=crawler_status_id) repo_source = cs.source project_type = cs.project_type crawler = get_crawler(cs, repo_source) crawler.add_repository(repo_name, repo_setup_scripts) def deploy_repo(repo_name, database = 'PostgreSQL'): repo = Repository.objects.get(name=repo_name) print 'Attempting to deploy {} using {} ...'.format(repo, repo.project_type.deployer_class) try: result = utils.vagrant_deploy(repo, 0, database) except Exception, e: LOG.exception(e) raise e return result def delete_repo(repo_name): for repo in Repository.objects.filter(name=repo_name): repo.delete()
[ "zeyuanxy@gmail.com" ]
zeyuanxy@gmail.com
14346f5e4229b348c50f7dc83dd2a7143bad9b2d
2ba64b9b4b91af5f4730a1617cb0329f766690e2
/ML_uniform/network_test_nonuniform.py
03ad230969f925ee628d285e75c9d38a9948df29
[]
no_license
RalphKang/nonuniformity-effect-on-LAS--temperature-measurement
601f7ffd4287839aa6895694c15b7e390ac74c29
f35e30be38ffd37cd0d9db9e069c63e9fd040fe8
refs/heads/master
2023-04-08T07:14:11.752060
2022-11-08T08:38:09
2022-11-08T08:38:09
563,204,953
0
0
null
null
null
null
UTF-8
Python
false
false
2,559
py
from network_archive.vgg import * from dataset import dataset_all, dataset_all_2 from sklearn.metrics import mean_squared_error import torch import numpy as np """ This code is used to test network models on nonuniform twins, and record the predict temperature in temp_dif_aug_1e-x_xxx.csv """ #%% data reading data_dir='./input/data_nonuniform/file' label_dir='./input/data_nonuniform/label' order_dir='./file_reading_order.csv' spec,_,__,___=dataset_all_2(data_dir,label_dir, order_dir) """ read spectra twins, the information inside the temp_dens_comp.csv are as follows: first column: 0,index of current spectra second column: 1, the counrterpart index to make up spectra twin third column: 2, the temperature difference fourth column: 3, the average temperature for current spectra fifth column: 4, the average temperature for the counterpart spectra sixth column: 5, the similarity level """ temp_dif=np.loadtxt('input/temp_dif_data/1e-3/temp_dens_comp.csv') #%% data check, random pick some data to check whether temperature can match or not column=5 if temp_dif[column,1]==np.where(temp_dif[:,3]==temp_dif[column,4])[0]: print("true",temp_dif[column,4]) else: print('cannot match') #%% read normalization item spec_max=np.loadtxt('input/norm_case/spec_max.csv') spec_min=np.loadtxt('input/norm_case/spec_min.csv') temp_bound=np.loadtxt('input/norm_case/temp_bound.csv') #%% data normalization spec_norm=(spec-spec_min)/(spec_max-spec_min) spec_norm=np.expand_dims(spec_norm,1) test_tcc=torch.from_numpy(spec_norm).float() #%% load model model= VGG(make_layers(cfg['B'], batch_norm=False),1) model.to("cuda") model_save_dir = './model/vgg_B_uniform.pt' model.load_state_dict(torch.load(model_save_dir)) #%% pred_test_norm=[] for test in test_tcc: test_res=test.reshape([1,1,-1]) test_res=test_res.to('cuda') pred_test=model(test_res) pred_test_norm.append(pred_test.detach().cpu().numpy().squeeze()) #%% pred_test_norm=np.array(pred_test_norm) #%% temp_pred=pred_test_norm*(temp_bound[1]-temp_bound[0])+temp_bound[0] temp_main_order = temp_dif[:, 0].astype(np.int) temp_pred_main = temp_pred[temp_main_order] temp_sim_order = temp_dif[:, 1].astype(np.int) temp_pred_sim = temp_pred[temp_sim_order] # %% temp_dif_temp_pred = np.hstack((temp_dif, np.reshape(temp_pred_main, [-1, 1]))) temp_dif_aug = np.hstack((temp_dif_temp_pred, np.reshape(temp_pred_sim, [-1, 1]))) #%% save_dir='out_save/temp_dif_aug_1e-3_vgg.csv' np.savetxt(save_dir, temp_dif_aug) #%% # np.savetxt('./input/data_10p/dens_temp_10p_pred.csv',pred_test)
[ "kang1528530671@gmail.com" ]
kang1528530671@gmail.com
89f93a8916b99c5fd18697c7ee126f07ead61d2a
acbf4390b5892ea7c9e1095c5cc19a0227dbc8f7
/src/utils/ticktock.py
d5a4acdaf22eca24d8b8ab203e739e1ffb594214
[]
no_license
gongzhitaao/adversarial-text
5d68d26bcac46b69b2df0f231bd642837cb9848c
0b2009a504492edbb2a7f0c7f972b9efd7aa60f2
refs/heads/master
2021-10-23T09:12:49.032948
2019-03-16T15:15:23
2019-03-16T15:15:23
116,075,349
36
8
null
null
null
null
UTF-8
Python
false
false
1,533
py
from timeit import default_timer from functools import wraps import logging __all__ = ['Timer', 'tick'] logger = logging.getLogger(__name__) info = logger.info class Timer(object): def __init__(self, msg='timer starts', timer=default_timer, factor=1, fmt='elapsed {:.4f}s'): self.timer = timer self.factor = factor self.fmt = fmt self.end = None self.msg = msg def __call__(self): """ Return the current time """ return self.timer() def __enter__(self): """ Set the start time """ info(self.msg) self.start = self() return self def __exit__(self, exc_type, exc_value, exc_traceback): """ Set the end time """ self.end = self() info(str(self)) def __repr__(self): return self.fmt.format(self.elapsed) @property def elapsed(self): if self.end is None: # if elapsed is called in the context manager scope return (self() - self.start) * self.factor else: # if elapsed is called out of the context manager scope return (self.end - self.start) * self.factor def tick(f): """Simple context timer. """ @wraps(f) def wrapper(*args, **kw): start = default_timer() res = f(*args, **kw) end = default_timer() info('{0} elapsed: {1:.4f}s'.format(f.__name__, end-start)) return res return wrapper
[ "zhitaao.gong@gmail.com" ]
zhitaao.gong@gmail.com
078327eb8cbffb63249d9b201aee71f0e8110bbb
84326f32d61d983826d7ae1d40951c43c47b0842
/gy4/client_gyak3_f4.py
5aae8cef28b6efcf35017f4451c828c514a1622d
[]
no_license
bkiac/ELTE.computer-networks
749c82b92f83476ab714b3ae2f04da139a19debe
ee9b57359b28203e32acf471c64b409cef78a9aa
refs/heads/master
2021-10-08T03:59:02.640867
2018-12-07T12:36:17
2018-12-07T12:36:17
149,986,172
0
1
null
null
null
null
UTF-8
Python
false
false
402
py
import socket import struct connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_address = ('localhost', 10000) connection.connect(server_address) values = (7.0, '-', 2.0) packer = struct.Struct('f c f') packed_data = packer.pack(*values) print '%f %s %f' % values connection.sendall(packed_data) result = connection.recv(16) print result connection.close()
[ "benceknab.iac@gmail.com" ]
benceknab.iac@gmail.com
0049ef5dfb5967e446a1664834ff89d8811bf15d
1cd8c5548a5c1b6b0885f27f11b3f2300abbc563
/index.py
24753fa2dd05d305cd38cc208dbfaa49d98117ff
[]
no_license
KiroCarllos/Problem_Solving
5cd0efd73009d47c4c1e7afdb3a5e7192c475efc
73c87515bf297843ef9c095da0e9d749c015c7e2
refs/heads/master
2022-11-11T14:50:26.407643
2020-07-01T16:43:23
2020-07-01T16:43:23
276,431,534
0
0
null
null
null
null
UTF-8
Python
false
false
8,292
py
# 1- print Hello World # employee = input('Enter Your Employee'); # print("Hello, "+ employee); ################################### # 2- DataTypes # ints,longs,chars,floats,doubles = input().split(); # print(int(ints)) # print(longs) # print(str(chars)) # print(float(floats)) # print(doubles); ################################### # 3- Simple Calculator # x,y = input().split(); # z = int(x) + int(y); # c = int(x) * int(y); # b = int(x) - int(y); # print(str(x)+" + "+str(y) +" = " + str(z)) # print(str(x)+" * "+str(y) +" = " + str(c)) # print(str(x)+" - "+str(y) +" = " + str(b)) ################################### # 4- D. Difference # A,B,C,D = input().split(); # X = (int(A) * int(B)) - (int(C) * int(D)); # print("Difference"+"  = ",int(X)); ################################### # 5- Area Of Circle # R = input(); # Area = 3.141592653 * float(R) * float(R); # print(Area) ################################### # 6- F. Digits Summation # A,B = input().split(); # x = int(A) % 10; # y = int(B) % 10; # z = x + y; # print(z) ################################### # 7- G. Summation from 1 to N # 641009859 # num = int(input()) # sum =0 # while num > 0: # sum = sum + num # num = num - 1; # print(sum) # n = int(input()) # sum = (n*(n+1)/2) # print(int(sum)) ################################### # 8 - Tow Numbers Floor - Ceil - Round # import math # x,y = (input()).split() # z= float(x) / float(y); # print ("floor",x,"/",y ,"=",math.floor(z)) # print ("ceil",x,"/",y ,"=",math.ceil(z)) # print ("round",x,"/",y ,"=",(round(z))) ################################### # 9- Welcome for you with Conditions # x,y = (input()).split() # if(int(x) >= int(y)): # print("Yes") # else: # print("No") ################################### # 10- J. Multiples # x,y = input().split() # if((int(x) % int(y)) == 0 or (int(y) % int(x)) == 0): # print("Multiples") # else: # print("No Multiples") ################################### # 11- Min Vs Max # x,y,z = input().split() # if(int(x) <= int(y) and int(x) <= int(z) and int(y) >= int(z)): # print(x,y) # elif (int(x) <= int(y) and int(x) <= int(z) and int(z) >= int(y)): # print(x, z) # elif (int(y) <= int(x) and int(y) <= int(z) and int(z) >= int(x)): # print(y, z) # elif (int(y) <= int(x) and int(y) <= int(z) and int(x) >= int(z)): # print(y,x) # elif (int(z) <= int(x) and int(z) <= int(y) and int(y) >= int(x)): # print(z, y) # elif (int(z) <= int(x) and int(z) <= int(y) and int(x) >= int(y)): # print(z,x) ################################### # 12- M. Capital or Small or Digit # x = (input()) # try: # val = int(x) # print("IS DIGIT") # except ValueError: # try: # val = float(x) # print("IS DIGIT") # except ValueError: # if(x.isupper()== True): # print("ALPHA") # print("IS CAPITAL") # else: # print("ALPHA") # print("IS SMALL") ################################### # 13- Calculator # x,s,y = input().split(" ") # if(str(s) == "+"): # print(int(x[0]) + int(y[0])) # elif(str(s) == "-"): # print(int(x) - int(y)) # elif(str(s) == "*"): # print(int(x) * int(y)) # elif(str(s) == "/"): # print(int(x) / int(y)) ################################### # 14- First digit ! # x = input().split()[0] # if(int(x[0]) % 2 == 0): # print("EVEN") # else: # print("ODD") ################################### # 15- Q. Coordinates of a Point # x,y = input().split() # if(float(x) > 0 and float(y) > 0): # print("Q1") # elif (float(x) < 0 and float(y) > 0): # print("Q2") # elif(float(x) > 0 and float(y) < 0): # print("Q4") # elif (float(x) < 0 and float(y) < 0): # print("Q3") # elif(float(x) > 0 and float(y) == 0): # print("Eixo X") # elif(float(y) > 0 and float(x) == 0): # print("Eixo Y") # elif(float(x) < 0 and float(y) == 0): # print("Eixo X") # elif(float(y) < 0 and float(x) == 0): # print("Eixo Y") # elif(float(y) ==0 and float(x) == 0): # print("Origem") ################################### # 16- Q. R. Age in Days # x = input() # year = int(x) / 365; # monthes = ((int(x)) - int(year)*365)/30 # days = int(x) - ((int(year)*365) + int(monthes) * 30) # print(int(year) ,"years") # print(int(monthes) ,"months") # print(int(days) ,"days") ################################### # 17- S. Interval # x = input() # if(float(x) >= 0 and float(x) <= 25): # print("Interval [0,25]") # elif(float(x) >= 25 and float(x) <= 50): # print("Interval (25,50]") # elif(float(x) >= 50 and float(x) <= 75): # print("Interval (50,75]") # elif(float(x) >= 75 and float(x) <= 100): # print("Interval (75,100]") # else: # print("Out of Intervals") ################################### # 18- U. Float or int # x = input().split(".") # if(int(x[1]) == 0 ): # print("int "+x[0]) # else: # print("float " + x[0]+" 0."+x[1]) ################################### # 19- V. Comparison # A,s,B = input().split() # if(str(s) == ">" and int(A) > int(B)): # print("Right") # elif(str(s) == "<" and int(A) < int(B)): # print("Right") # elif(str(s) == "=" and int(A) == int(B)): # print("Right") # else: # print("Wrong") ################################### # 20- W. Mathematical Expression # A,s,B,Q,C = input().split(" ") # x = 0 # if(str(s) == "+"): # x= (int(A) + int(B)) # elif(str(s) == "-"): # x= (int(A) - int(B)) # elif(str(s) == "*"): # x= (int(A) * int(B)) # elif(str(s) == "/"): # x= (int(A) / int(B)) # else: # print("Operator Not Suported") # # if(int(C) == int(x)): # print("Yes") # else: # print(int(x)) ################################### # 21- X. Two intervals # A,B,C,D = input().split() # if(int(C) > int(A) and int(D) < int(B)): # print((C) + " " + (D)) # elif(int(B) - int(C) > 0): # print((C) + " " + (B)) # elif(int(B) - int(C) == 0): # print((C) + " " + (B)) # elif(int(C) < int(A) and int(D) <= int(B)): # print((C) + " " + (A)) # else: # print("-1") # ##################################### Complete Level A # Get Start With Level B # 1- A. 1 to N # x= input() # for i in range(1,int(x)+1): # print(i) ################################### # 2- B. Even Numbers # x= input() # for i in range(1,int(x)+1): # if(i % 2 == 0): # print(i) ################################### # 3- C. Even, Odd, Positive and Negative # y= input() # x= input().split(" ",int(y)) # Even = 0 # Odd = 0 # Positive= 0 # Negative= 0 # i =0 # for i in x: # if(int(i) % 2 == 0 and int(i) > 0): # Even+=1 # Positive += 1 # if(int(i) == 0 ): # Even+=1 # if(int(i) % 2 == 0 and int(i) < 0): # Even+=1 # Negative += 1 # if(int(i) % 2 and int(i) >= 0): # Odd+=1 # Positive += 1 # if(int(i) % 2 and int(i) <= 0): # Odd+=1 # Negative += 1 # print("Even:",Even) # print("Odd:",Odd) # print("Positive:",Positive) # print("Negative:",Negative) ################################### # 4- D. Fixed Password # d= input() # y= input() # a= input() # b= input() # c= input() # x = [int(d),int(y),int(a),int(b),int(c)] # correct_Pass = 1999; # for i in x: # if( int(i) == correct_Pass): # print("Correct") # break # if (int(i) != correct_Pass): # print("Wrong") ################################### # 5- F. Multiplication table # x= input() # for i in range(1,13): # z = int(x) * int(i) # print(int(x),"*",int(i),"=",int(z)) ################################### # 6- E. Max # y= input() # x= input().split(" ",int(y)) # for i in range(0, len(x)): # x[i] = int(x[i]) # print(max(x)) ################################### # 7- G. Factorial # y= input() # x =[] # factorial =1 # for i in range(0,int(y)): # x+=input() # for a in x: # if int(a) >= 1: # for j in range(1, int(a) + 1): # factorial = factorial * j # print(factorial) # factorial = 1 # if(int(a) == 0): # print("1") ################################### # 8- G. Factorial # x= input() # if int(x) > 1: # # check for factors # for i in range(2, int(x)): # if (int(x) % i) == 0: # print("NO") # break # else: # print("YES") # else: # print("NO") ################################### # 9- I. Palindrome
[ "carloskiro217@gmail.com" ]
carloskiro217@gmail.com
269fbdd3f5abe741ec26a396538010638017122d
256c5100914832915192fb1958444389eff4a85f
/scripts/online/readStatusPyRoot.py
169b70d5aa9093dd5e077de193930daf3269176e
[]
no_license
jetatar/snowShovel
ea9a45ddcb182ca6776752e08df9799ac6cd7439
69678a46cd8c20a57e4b8d8a8cc19b8900173775
refs/heads/master
2020-05-30T19:42:33.193932
2014-08-18T06:37:56
2014-08-18T06:37:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,417
py
import sys import struct from AriUtils import * def readStatus(msg): status = None evt = None power = None ssvers = ROOT.Long() erv = ROOT.Long() prv = ROOT.Long() mcode = ROOT.Long() mlen = ROOT.Long() totb = msg.size() br = 0 while ( br<totb ): br += ROOT.TSnIOHeaderFrame.PyReadFrom(msg, mcode, mlen) if (mcode==castHeaderCode(ROOT.TSnIOHeaderFrame.kStatusCode)): status = ROOT.TSnStatusUpdate() try: br += ROOT.TSnIOStatusFrame.BytesReadFrom(msg, status, ssvers) except: printout(vtype.kInfo,"Read without event failed. " "Trying with event.") evt = ROOT.TSnEvent() br += ROOT.TSnIOStatusFrame.BytesReadFrom(msg, status, evt, ssvers) elif (mcode==castHeaderCode(ROOT.TSnIOHeaderFrame.kEventCode)): evt = ROOT.TSnEvent() br += ROOT.TSnIOEventFrame.BytesReadFrom(msg, evt, status.GetWvLoseLSB(), status.GetWvLoseMSB(), status.GetWvBaseline(), erv) elif (mcode==castHeaderCode(ROOT.TSnIOHeaderFrame.kPowerCode)): power = ROOT.TSnPowerReading() br += ROOT.TSnIOPowerFrame.BytesReadFrom(msg, power, prv) else: raise ValueError("Unhandled block type {0:02x}".format(mcode)) return br, status, power, evt, ssvers, prv, erv def main(): if (len(sys.argv)<2): print 'Need filename' sys.exit() infn = sys.argv[1] with open(infn,'rb') as inf: msg = ROOT.TSnIOBuffer(inf.read()) br, status, power, evt, ssvers, prv, erv = readStatus(msg) if (status!=None): status.Print() if (power!=None): power.Print() if (evt!=None): evt.Print() if __name__=="__main__": main()
[ "jtatar@uw.edu" ]
jtatar@uw.edu
10ae3cef498bf99f949b001c20ee00663182d0d4
843ed1bff5e3184ae9428e40354d726341418572
/core/tests/providers_test.py
9e6b67868f50a75c3e6e15b031331f6c81935d3d
[]
no_license
marquesds/juggler
22f0bdbefe780c75ea20b17aa5c527441763169d
de2252d5ac37db968af4e9cc74ca890575bf5ffd
refs/heads/master
2021-01-10T07:16:25.789252
2015-06-16T02:51:37
2015-06-16T02:51:37
36,475,538
0
0
null
null
null
null
UTF-8
Python
false
false
318
py
from unittest import TestCase from core.providers import * class TestCassandraProvider(TestCase): def test_connection(self): cassandra = CassandraProvider(host=['192.168.0.7'], port=9042, database='system') def test_close_connection(self): pass def test_show_tables(self): pass
[ "lucasmarquesds@gmail.com" ]
lucasmarquesds@gmail.com
af5886042c006dc14b35138fd937d584761d7c01
8039370c0c6ad3b26fc8a3eed35a33df6cf4a00a
/example_optimization.py
d6422626ec4369035b73dd9c15feb999f77bb1c3
[]
no_license
whateverforever/Differentiable-Polygons
13d22f6a8fb62306cf91647a14b435e5334b1a44
c18d262bb526584911c60c138d1b504ecca9d015
refs/heads/master
2022-12-25T05:20:25.371340
2020-10-02T16:11:53
2020-10-02T16:11:53
252,662,862
0
0
null
null
null
null
UTF-8
Python
false
false
4,323
py
""" End-to-end example of a simple optimization problem that makes use of the gradients computed by the library. The problem is basically a very small inverse kinematics problem with a unique solution. """ import timeit import numpy as np # type:ignore import matplotlib.pyplot as plt # type:ignore from scipy import optimize # type: ignore from diff_polygons import Point, Param, Vector def parametric_pt(l, theta): """ Outputs the distance of the end of a kinematic chain from a predetermined target point. Has parameters l and theta. Analytical solution is for l=1.23, theta=34deg """ l = Param("l", l) theta = Param("theta", theta) shift_right = Vector(l, 0) origin = Point(0, 0) new_pt = origin.translate(shift_right).rotate(origin, theta).translate(shift_right) target = Point(2.24972, 0.6878) dist = (new_pt - target).norm() return dist def f(x): l, theta = x dist = parametric_pt(*x) return dist.value def jac(x): l, theta = x dist = parametric_pt(l, theta) grads = [] for param in ["l", "theta"]: grads.append(dist.grads[param]) return np.squeeze(grads) def main(): print("Go ####################\n\n") x0 = [1.0, np.radians(40)] xs = [] def reporter(xk): xs.append(xk) res_jacced = optimize.minimize(f, x0, method="CG", jac=jac, callback=reporter) length_reached = parametric_pt(*res_jacced.x) res_numeric = optimize.minimize(f, x0, method="CG") print(f"Analytical gradients needed {res_jacced.nfev} fun evals") print(f"Numerical gradients needed {res_numeric.nfev} fun evals") print("\n") print("x initial: {}".format(x0)) print("x final: {}".format(res_jacced.x)) print("\n") print("Initial distance: {}".format(f(x0))) print( "Final distance: {}, gradient norm: l={:.2f}, theta={:.2f}".format( length_reached.value, np.linalg.norm(length_reached.grads["l"]), np.linalg.norm(length_reached.grads["theta"]), ) ) print("\n") ## Plotting xs = np.array(xs) xxs, yys = np.meshgrid( np.linspace(np.min(xs[:, 0]), np.max(xs[:, 0]), 50), np.linspace(np.min(xs[:, 1]), np.max(xs[:, 1]), 50), ) zzs = np.zeros_like(xxs) jjs = np.zeros((xxs.shape[0], xxs.shape[1], 2)) for ix, x in enumerate(np.linspace(np.min(xs[:, 0]), np.max(xs[:, 0]), 50)): for iy, y in enumerate(np.linspace(np.min(xs[:, 1]), np.max(xs[:, 1]), 50)): zzs[iy, ix] = f([x, y]) jjs[iy, ix] = jac([x, y]) fig, axes = plt.subplots(ncols=3) a = axes[0].contourf(xxs, yys, zzs, levels=50) axes[0].contour(xxs, yys, zzs, levels=20, colors="k", linewidths=0.5) axes[0].plot(xs[:, 0], xs[:, 1], "-o") axes[0].quiver(xxs[:, ::6], yys[:, ::6], jjs[:, ::6, 0], jjs[:, ::6, 1], scale=20) plt.colorbar(a) axes[0].set_title("Solution Space") axes[0].set_xlabel("l") axes[0].set_ylabel("theta") axes[1].plot(range(len(xs)), [f(x) for x in xs]) axes[1].set_title("Convergence Plot") axes[1].set_ylabel("Objective Fun.") axes[1].set_xlabel("Iteration #") axes[2].plot(range(len(xs)), [jac(x)[1] for x in xs]) axes[2].set_title("Infty Norm of Jacobian") axes[2].set_ylabel("Norm of Jac.") axes[2].set_xlabel("Iteration #") plt.tight_layout() plt.show() nexecs = 3 nrepeats = 50 print("Going for statistical run time evaluation...") print(f"Runs of {nexecs}, times {nrepeats} repeats for std...") testcode_jacced = lambda: optimize.minimize(f, x0, method="CG", jac=jac) testcode_numeric = lambda: optimize.minimize(f, x0, method="CG") times_analytical = timeit.repeat(testcode_jacced, number=nexecs, repeat=nrepeats) times_numeric = timeit.repeat(testcode_numeric, number=nexecs, repeat=nrepeats) print( "Analytic grads take {:.3f}s (min: {:.3f}, std: {:.3f})".format( np.mean(times_analytical), np.min(times_analytical), np.std(times_analytical), ) ) print( "Numerical grads take {:.3f}s (min: {:.3f}, std: {:.3f})".format( np.mean(times_numeric), np.min(times_numeric), np.std(times_numeric) ) ) if __name__ == "__main__": main()
[ "max@thousandyardstare.de" ]
max@thousandyardstare.de
a7fb99e11451b0915e084a6a5fae76d23a581732
fecaed6824eb6ed09c33f335c52410a6fe8fe212
/kata-2/test_kata2_simple.py
5476f7befde7be97d74aae45a26beddfbe969c09
[ "MIT" ]
permissive
Laoujin/osherove-kata
d39876830d3f20e651da87bed07344a67f1ef967
0177bc3de5db1096ab2f47fc03189397cdcaf400
refs/heads/master
2021-05-16T03:06:48.004211
2017-11-02T21:45:45
2017-11-02T21:45:45
30,038,477
1
0
null
null
null
null
UTF-8
Python
false
false
648
py
#!/usr/bin/python -tt # String Calculator - Interactions # http://osherove.com/tdd-kata-2/ import pytest from mock import Mock from Calculator import Calculator ####################### SIMPLE KATA-2 TESTS # ex 1 def test_logger_writes_result(): logger = Mock() calcer = Calculator(logger) total = calcer.add("1,2,3") logger.write.assert_called_with(total) # ex 2 class ThrowingLogger: def write(self, input): raise def test_failing_log_calls_service(): #logger = Mock(write=Exception("IO error")) logger = ThrowingLogger() service = Mock() calcer = Calculator(logger, service) calcer.add("1,2,3") assert service.error.called
[ "woutervs@hotmail.com" ]
woutervs@hotmail.com
ffce33738782672fb95e5b549b244d8f3d6b347a
ad901f2ecba8be5101a865f719460bd3daee4c3d
/euler12.py
87c6846d271c2bb3b1852fc793a9930b016cc33d
[]
no_license
ajsabesirovic/EULER-EXERCISES
9f1893f2f6aacedaab8d8fe899fe5036acde69ba
61427ad60288b5fac6015208b6233898c7c7a7f1
refs/heads/main
2023-07-14T19:41:47.106809
2021-08-25T12:17:48
2021-08-25T12:17:48
397,927,174
0
0
null
null
null
null
UTF-8
Python
false
false
239
py
br = 1 triBr = 0 while True: triBr += br dividers = [] for i in range(1,triBr+1): if triBr % i == 0: dividers.append(i) if len(dividers) > 500: print(triBr,dividers) break br += 1
[ "besirovicajsa@gmail.com" ]
besirovicajsa@gmail.com
39e8dfce80fabe8b3a7947dee64d4c360a3025f5
54de11abc7bf3ce3f89e5f502106c76bb14316bd
/manage.py
7bfbed5b9383f6b08617db783ce7bbdfc2b43cf7
[]
no_license
lordofhell-666/energymitra
937058c753f73b4e1c2358cdc12484c4bf6a5061
855f7ddbe3787ee00f83da16e3272b7eefce87c5
refs/heads/main
2023-02-21T01:33:04.956955
2021-01-24T19:31:47
2021-01-24T19:31:47
332,535,679
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'emitra.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "lordsaurabh.tripathy@gmail.com" ]
lordsaurabh.tripathy@gmail.com
86692b6fe947d56b3a0c15ab8ec18205dc0077b1
fa95ad476b1393de3d3cf16cdefbe0c2dc1ce437
/DataCamp/02-intermediate-python-for-data-science/5-case-study-hacker-statistics/determine-your-next-move.py
d4b69da12e467b7dba2603af37375481d77d9444
[]
no_license
vijaykumar79/Data-Science-Python
95a6f6ba5f112cceeaf2fbfe8be3e7185d67ce3d
0ed142ca1e9aaef19e11621bd9c54d29c1abe152
refs/heads/master
2020-03-29T19:22:09.814218
2020-01-02T08:23:14
2020-01-02T08:23:14
150,259,437
0
1
null
null
null
null
UTF-8
Python
false
false
1,088
py
''' Determine your next move 100xp In the Empire State Building bet, your next move depends on the number of eyes you throw with the dice. We can perfectly code this with an if-elif-else construct! The sample code assumes that you're currently at step 50. Can you fill in the missing pieces to finish the script? Instructions -Roll the dice. Use randint() to create the variable dice. -Finish the if-elif-else construct by replacing ___: -If dice is 1 or 2, you go one step down. -if dice is 3, 4 or 5, you go one step up. -Else, you throw the dice again. The number of eyes is the number of steps you go up. -Print out dice and step. Given the value of dice, was step updated correctly? ''' # Import numpy and set seed import numpy as np np.random.seed(123) # Starting step step = 50 # Roll the dice dice = np.random.randint(1, 7) # Finish the control construct if dice <= 2 : step = step - 1 elif dice < 6 : step = step + 1 else : step = step + np.random.randint(1,7) # Print out dice and step print(dice) print(step)
[ "noreply@github.com" ]
vijaykumar79.noreply@github.com
e6c23d11dee1a24118f976e70873545bf5209e7c
04514f86523d393a56960b07eadb28a2ab83eee7
/old/09.06.00- jadi.py
e04923eedee58001af08c45d6434e433d70d20ad
[]
no_license
nceh/my_First
6426162199cb42ecabe0fb309d19fd48e0b1276a
0e4b1128fe270da9d864ee725068767a9444ad08
refs/heads/main
2023-08-04T01:43:20.301945
2021-09-17T19:03:56
2021-09-17T19:03:56
401,407,996
0
0
null
null
null
null
UTF-8
Python
false
false
4,089
py
#!/usr/bin/env python # coding: utf-8 # In[3]: reshte = input() reshte.lower() reshte=reshte.replace("a","") reshte=reshte.replace("e","") reshte=reshte.replace("i","") reshte=reshte.replace("o","") reshte=reshte.replace("u","") # print(reshte) khoroji="" for i in range(0,len(reshte)): khoroji +="."+reshte[i] print(khoroji) # In[53]: #moahkelsh hal nashod vorodi = (input()) print(vorodi) vorodi=vorodi.replace("+",",") vorodi=vorodi.split(",") a =int(vorodi) a # a=[] # a.append((vorodi)) # a # a = [] # a.append(vorodi) # a.sort() # for i in a: # print(i) # In[17]: def standard(name): sta=name[0].upper()+name[1:] return sta # standard("ali") for i in range(0,10): name = input("please enter your name: ") print(standard(name)) # In[ ]: def estandard(a): a=a.lower() first= a[0] edame= a[1::] first=first.upper() return first+edame list= [] for i in range(0,10): temp=estandard(input()) list.append(temp) for j in range(0,10): print(list[j]) # In[19]: def standard(name): sta=name[0].upper()+name[1:] return sta list= [] for i in range(0,10): temp=standard(input()) list.append(temp) for j in range(0,10): print(list[j]) # In[ ]: a= input() a=a.lower() vaziat = "NO" if ('h' in a) and ("e" in a) and ("ll") and ("o" in a): vaziat="YES" else: vaziat = "NO" h=a.find('h') e=a.find('e') ll=a.find('ll') o=a.find('o') if vaziat=='YES' and o>ll and ll>e and e>h: vaziat= "YES" else: vaziat="NO" print(vaziat) # In[21]: a = input() a=a.lower() vaziat = "NO" if ("h" in a) and ("e" in a) and ("ll" in a) and ("o" in a): vaziat = "YES" else: vaziat = "NO" h = a.find("h") e = a.find("e") ll = a.find("ll") o = a.find("o") if vaziat =="YES" and o>ll and ll>e and e>h: vaziat = "YES" else: vaziat = "NO" print(vaziat) # In[41]: string = input() # string = string.replace("AB","@") # string = string.replace("BA","$") # vaziat ="" if ("AB" in string) and ("BA" in string): vaziat = "YES" else: vaziat = "NO" print(vaziat) # In[48]: l = [1,3,4,5,6] for i in range(0,(len(l))): print(i,l[i]) # In[55]: s = input() x1,x2,x3 = s.split(" ") # print(x1,x2,x3) x1= int(x1) x2=int(x2) x3=int(x3) print(max(x1,x2,x3) - min(x1,x2,x3)) # In[2]: a = input() b = [int(l) for l in input().split(" ")] temp=[] for i in range (0,len(b)): temp.append(b[i]) count=0 for j in range(0,len(temp)): if temp[j]==0 or temp[j]==1 or temp[j]==2: count+=1 print(int(count/3)) # ###### dictionary # In[5]: string = "salam nceh, halet chetore?" count = dict() for letter in string: if letter in count: count[letter] +=1 else: count[letter] =1 print(letter,count) # In[6]: string = "nceh salam, chetorii? khobi?" count = dict() for letter in string: if letter in count: count[letter] +=1 else: count[letter] = 1 for this_one in list(count.keys()): print("%s appeard %s times" % (this_one,count[this_one])) # In[7]: string = "nceh salam, chetorii? khobi?" count = dict() for letter in string: count[letter] = count.get(letter,0)+1 for this_one in list(count.keys()): print("%s appeard %s times" % (this_one,count[this_one])) # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[33]: def lo_counter(a): l_counter = 0 lo=a.lower() for i in range(0,int(len(a))): if a[i] ==lo[i]: l_counter +=1 return l_counter def up_counter(a): u_counter = 0 up = a.upper() for j in range(0,int(len(a))): if a[j] == up[j]: u_counetr +=1 return u_counter a = input() vaziat = True if lo_counter(a) == up_counter(a): vaziat = True elif lo_counter(a) > up_counter(a): vaziat = True else: vaziat = False if vaziat == True: a = a.lower() else: a = a.upper() print(a) # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]:
[ "nceh.mousavinezhad@gmail.com" ]
nceh.mousavinezhad@gmail.com
24b8ac225cb3cb0a355715ff7bcf224953641e30
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_tropes.py
1f0a9f2ffa1386e6dabbb080f223e38e329f992c
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
#calss header class _TROPES(): def __init__(self,): self.name = "TROPES" self.definitions = trope self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['trope']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
b1bdecdd030b7788d2e7c1815e23128df224612e
af90ae97d8dd90663beedd81539604242e677bbc
/vivo_api.py
079f949c9c3a241ca093b15112d149ee002f1991
[]
no_license
naomidb/api_tests
e9d1104a6d45995ded2dbd85da489d9995f8063f
52ad7429c5b92b76a1ce5f964018880566c685aa
refs/heads/develop
2022-12-11T16:40:39.535348
2019-04-02T17:54:21
2019-04-02T17:54:21
151,307,248
0
0
null
2022-12-08T02:55:34
2018-10-02T18:57:40
Python
UTF-8
Python
false
false
2,652
py
''' A self-contained means of testing queries for the VIVO API. You will need to edit this program with the query you want to run. Usage: python vivo_api.py (-q | -i | -d) <config_file> Options: -q Use the query endpoint -i Use the update endpoint to insert (requires an account with admin rights) -d Use the update endpoint to delete (requires an account with admin rights) ''' import requests import sys import yaml def get_config(config_path): try: with open(config_path, 'r') as config_file: config = yaml.load(config_file.read()) except: print("Error: Check config file") exit() return config def do_query(payload, endpoint): print("Query:\n:" + payload['query']) headers = {'Accept': 'application/sparql-results+json'} response = requests.get(endpoint2, params=payload, headers=headers, verify=False) print(response) print(response.json()) return response def do_update(payload, endpoint): print("Query:\n" + payload['query']) response = requests.post(endpoint, params=payload, verify=False) print(response) return response def main(q_type, config_path): config = get_config(config_path) email = config.get('vivo_email') password = config.get('vivo_password') if q_type == '-i': endpoint = config.get('u_endpoint') # Write insert query below query = """ INSERT DATA { GRAPH <http://vitro.mannlib.cornell.edu/default/vitro-kb-2> { } } """ payload = { 'email': email, 'password': password, 'update': query, } do_update(payload, endpoint) elif q_type == '-d': endpoint = config.get('u_endpoint') # Write delete query below query = """ DELETE DATA { GRAPH <http://vitro.mannlib.cornell.edu/default/vitro-kb-2> { } } """ payload = { 'email': email, 'password': password, 'update': query, } do_update(payload, endpoint) elif q_type == '-q': endpoint = config.get('q_endpoint') # Write query below query = """ SELECT WHERE{ } """ payload = { 'email': email, 'password': password, 'query': query, } do_query(payload, endpoint) else: print("Incorrect flag.") if __name__ == '__main__': main(sys.argv[1], sys.argv[2])
[ "looseymoose@Naomis-Mistress.local" ]
looseymoose@Naomis-Mistress.local
d8d87fc53e50b4ab9c6c03dcd73340f244b82016
0622f984a5094ec0d005a08eeeff79748941c316
/users/urls.py
51270d85aa3435a934749b5e532c0a5992191b4e
[]
no_license
maximgamolin/hw04_tests
a1e16a22f1774f88e22685aec6de18b63ae5678d
549956cfccffedbb8b2d28013c3cce0bee63a3d6
refs/heads/master
2023-03-08T06:39:46.306143
2021-01-22T11:23:10
2021-01-22T11:23:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
from django.urls import path from . import views urlpatterns = [ path("signup/", views.SignUp.as_view(), name="signup") ]
[ "artur.g.r@yandex.ru" ]
artur.g.r@yandex.ru
bfa138c92d7cd595defd96b5cb36d943a9d4d195
ccf3793329233d8407ca669683f59760c02817b1
/forum/migrations/0005_auto_20181214_1448.py
2ece165e4d4bfbe252b33aa08d34979a81a1306e
[]
no_license
clavos/cartoonWar
44ae7ebf07496e452f3a94c74aaeb405e58fb50b
7e9fa84d4a502a33b1f2bebf8936cddf5d830079
refs/heads/master
2020-03-28T14:39:29.569402
2019-01-22T16:00:09
2019-01-22T16:00:09
148,508,662
0
0
null
2019-01-22T16:04:21
2018-09-12T16:21:23
Python
UTF-8
Python
false
false
790
py
# Generated by Django 2.1.3 on 2018-12-14 13:48 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('forum', '0004_article_publish_date'), ] operations = [ migrations.AddField( model_name='comment', name='article', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='comment_article', to='forum.Article'), ), migrations.AddField( model_name='comment', name='comment', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='comment_comment', to='forum.Comment'), ), ]
[ "flores28.elodie@gmail.com" ]
flores28.elodie@gmail.com
a71d029a16dd788af6d70cf6594d5e4458b21fe2
7bed99cbe12386739a292b1495e7f4d85ffac8b2
/PasswordAE/architecture.py
b3699b82509d206f2eb77b73d913968b0070222a
[]
no_license
w0r1dhe110/PLR
88e1d7562ed249a0a8958bd45341765d81fbb567
fcd8bee1e612da50349ceb1176f929c4bc2dc2a6
refs/heads/master
2023-06-30T14:48:40.568349
2021-08-02T08:32:19
2021-08-02T08:32:19
391,857,147
0
0
null
2021-08-02T07:43:09
2021-08-02T07:43:08
null
UTF-8
Python
false
false
16,668
py
import tensorflow as tf FILTER_SIZE = 3 def enc0_16(x, latent_size, training): x = tf.layers.conv1d(x, 64, FILTER_SIZE, strides=1, padding='same', activation=tf.nn.relu) x = tf.layers.conv1d(x, 128, FILTER_SIZE, strides=2, padding='same', activation=tf.nn.relu) x = tf.layers.conv1d(x, 128, FILTER_SIZE, strides=1, padding='same', activation=tf.nn.relu) x = tf.layers.conv1d(x, 128, FILTER_SIZE, strides=1, padding='same', activation=tf.nn.relu) x = tf.layers.conv1d(x, 256, FILTER_SIZE, strides=2, padding='same', activation=tf.nn.relu) x = tf.layers.flatten(x) x = tf.layers.dense(x, latent_size, activation=None) return x def dec0_16(x, output_shape, training): output_size = output_shape[0] * output_shape[1] x = tf.layers.dense(x, 4 * 256, activation=tf.nn.relu) x = tf.reshape(x, (-1, 4, 1, 256)) x = tf.layers.conv2d_transpose(x, 256, FILTER_SIZE, strides=(2, 1), padding='same', activation=tf.nn.relu) x = tf.layers.conv2d_transpose(x, 128, FILTER_SIZE, strides=(1, 1), padding='same', activation=tf.nn.relu) x = tf.layers.conv2d_transpose(x, 128, FILTER_SIZE, strides=(1, 1), padding='same', activation=tf.nn.relu) x = tf.layers.conv2d_transpose(x, 128, FILTER_SIZE, strides=(2, 1), padding='same', activation=tf.nn.relu) x = tf.layers.conv2d_transpose(x, 64, FILTER_SIZE, strides=(1, 1), padding='same', activation=tf.nn.relu) x = tf.reshape(x, (-1, 16, 64)) x = tf.layers.conv1d(x, output_shape[1], FILTER_SIZE, strides=1, padding='same') return x ARCH0_16 = [enc0_16, dec0_16] def enc1_16(x, latent_size, training): x = tf.layers.conv1d(x, 64, kernel_size=5, strides=2, padding='same', activation=tf.nn.relu) print(x.shape) x = tf.layers.conv1d(x, 128, kernel_size=3, strides=2, padding='same', activation=tf.nn.relu) print(x.shape) x = tf.layers.conv1d(x, 256, kernel_size=3, strides=2, padding='same', activation=tf.nn.relu) print(x.shape) x = tf.layers.flatten(x) print(x.shape) x = tf.layers.dense(x, latent_size, use_bias=False) return x def dec1_16(x, output_shape, training): output_size = output_shape[0] * output_shape[1] x = tf.layers.dense(x, 4 * 256, activation=tf.nn.relu) x = tf.reshape(x, (-1, 4, 1, 256)) print(x.shape) x = tf.layers.conv2d_transpose(x, 256, 3, strides=(2, 1), padding='same', activation=tf.nn.relu) print(x.shape) x = tf.layers.conv2d_transpose(x, 128, 3, strides=(2, 1), padding='same', activation=tf.nn.relu) print(x.shape) x = tf.reshape(x, (-1, 16, 128)) x = tf.layers.conv1d(x, output_shape[1], 5, strides=1, padding='same') print(x.shape) return x ARCH1_16 = [enc1_16, dec1_16] ######################################################################################## def ResBlockDeepBNK(inputs, dim, with_batch_norm=True, training=True): x = inputs dim_BNK = dim // 2 if with_batch_norm: x = tf.layers.batch_normalization(x, training=training) x = tf.nn.relu(x) x = tf.layers.conv1d(x, dim_BNK, 1, padding='same') if with_batch_norm: x = tf.layers.batch_normalization(x, training=training) x = tf.nn.relu(x) x = tf.layers.conv1d(x, dim_BNK, 5, padding='same') if with_batch_norm: x = tf.layers.batch_normalization(x, training=training) x = tf.nn.relu(x) x = tf.layers.conv1d(x, dim, 1, padding='same') return inputs + (0.3*x) def encResnetBNK(x, latent_size, training=False): batch_norm = False layer_dim = 128 x = tf.layers.conv1d(x, layer_dim, 5, padding='same') print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) #x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) #print(x.shape) x = tf.layers.flatten(x) print(x.shape) logits = tf.layers.dense(x, latent_size) return logits def decResnetBNK(x, output_shape, training=False): batch_norm = False layer_dim = 128 x = tf.layers.dense(x, output_shape[0] * layer_dim) print(x.shape) x = tf.reshape(x, [-1, output_shape[0], layer_dim]) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) #x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) #print(x.shape) logits = tf.layers.conv1d(x, output_shape[1], 1, padding='same') print(logits.shape) return logits ARCH_resnetBNK0 = [encResnetBNK, decResnetBNK] ######################################################################################## def encResnetBNK1(x, latent_size, training=False): batch_norm = False layer_dim = 128 x = tf.layers.conv1d(x, layer_dim, 5, padding='same') print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = tf.layers.flatten(x) print(x.shape) logits = tf.layers.dense(x, latent_size) return logits def decResnetBNK1(x, output_shape, training=False): batch_norm = False layer_dim = 128 x = tf.layers.dense(x, output_shape[0] * layer_dim) print(x.shape) x = tf.reshape(x, [-1, output_shape[0], layer_dim]) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) logits = tf.layers.conv1d(x, output_shape[1], 1, padding='same') print(logits.shape) return logits ARCH_resnetBNK1 = [encResnetBNK1, decResnetBNK1] ######################################################################################## def encResnetBNK2(x, latent_size, training=False): batch_norm = False layer_dim = 128 x = tf.layers.conv1d(x, layer_dim, 5, padding='same') print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = tf.layers.flatten(x) print(x.shape) logits = tf.layers.dense(x, latent_size) return logits def decResnetBNK2(x, output_shape, training=False): batch_norm = False layer_dim = 128 x = tf.layers.dense(x, output_shape[0] * layer_dim) print(x.shape) x = tf.reshape(x, [-1, output_shape[0], layer_dim]) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) logits = tf.layers.conv1d(x, output_shape[1], 1, padding='same') print(logits.shape) return logits ARCH_resnetBNK2 = [encResnetBNK2, decResnetBNK2] ######################################################################################## def encResnetBNK3(x, latent_size, training): batch_norm = True layer_dim = 128 x = tf.layers.conv1d(x, layer_dim, 5, padding='same') print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = tf.layers.flatten(x) print(x.shape) logits = tf.layers.dense(x, latent_size) return logits def decResnetBNK3(x, output_shape, training): batch_norm = True layer_dim = 128 x = tf.layers.dense(x, output_shape[0] * layer_dim) print(x.shape) x = tf.reshape(x, [-1, output_shape[0], layer_dim]) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) logits = tf.layers.conv1d(x, output_shape[1], 1, padding='same') print(logits.shape) return logits ARCH_resnetBNK3 = [encResnetBNK3, decResnetBNK3] ######################################################################################## def encResnetBNK4(x, latent_size, training=False): batch_norm = False layer_dim = 128 x = tf.layers.conv1d(x, layer_dim, 5, padding='same') print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = tf.layers.flatten(x) print(x.shape) logits = tf.layers.dense(x, latent_size) return logits def decResnetBNK4(x, output_shape, training=False): batch_norm = False layer_dim = 128 x = tf.layers.dense(x, output_shape[0] * layer_dim) print(x.shape) x = tf.reshape(x, [-1, output_shape[0], layer_dim]) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) logits = tf.layers.conv1d(x, output_shape[1], 1, padding='same') print(logits.shape) return logits ARCH_resnetBNK4 = [encResnetBNK4, decResnetBNK4] ######################################################################################## def INAE_enc(x, latent_size, training=False): batch_norm = False layer_dim = 128 x = tf.layers.conv1d(x, layer_dim, 5, padding='same') print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) return x def INAE_dec(x, output_shape, training=False): batch_norm = False layer_dim = 128 x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) logits = tf.layers.conv1d(x, output_shape[1], 1, padding='same') print(logits.shape) return logits ARCH_INAE = [INAE_enc, INAE_dec] ######################################################################################## def INAE_enc1(x, latent_size, training=False): batch_norm = False layer_dim = 128 x = tf.layers.conv1d(x, layer_dim, 5, padding='same') print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) return x def INAE_dec1(x, output_shape, training=False): batch_norm = False layer_dim = 128 x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) x = ResBlockDeepBNK(x, layer_dim, with_batch_norm=batch_norm, training=training) print(x.shape) logits = tf.layers.conv1d(x, output_shape[1], 1, padding='same') print(logits.shape) return logits ARCH_INAE2 = [INAE_enc1, INAE_dec1] ########################################################################################
[ "pasquini@di.uniroma1.it" ]
pasquini@di.uniroma1.it
4eda93ef31bc1a3fd2991cda9afc50a579a4812f
dcfec1645e18e83383c82282e0064d16d57f2917
/athospy/top_fcns.py
173b542a3fff2b732e06e6bc19cb973a19209c23
[]
no_license
Saynah/AthosPy
4986d3174d3e445d086aaf6a1128388ab2b51e0c
65841e7a39c68f27c770de30e57d579b3df32b1e
refs/heads/master
2020-05-19T11:26:29.843050
2015-08-08T17:07:17
2015-08-08T17:07:17
40,409,952
0
0
null
null
null
null
UTF-8
Python
false
false
7,907
py
from __future__ import division import os import pandas as pd import fnmatch import difflib import shutil import numpy as np # athospy packages import visualization as viz import calcs as clc import fileops as fop # ML from sklearn import svm, metrics def label_folders(basepath, write_dst): '''Return dataframe containing labels parsed from sub-folders directly under basepath. Write a record of what was done to disk. ''' folder_labels = [] paths = [] for fname in os.listdir(basepath): path = os.path.join(basepath, fname) if os.path.isdir(path) and fname[0] != '.': paths.append(path) labels, names = fop.parse_folder_name(fname) folder_labels.append(labels) df = _to_dataframe(folder_labels, names) df['Path'] = paths df['Person_id'] = _name_to_id(df.First_Last) return _select_parsed(df, write_dst) def label_csvfiles_by_folder(basepath, df_folders, write_dst): '''Return dataframe for all csv files under basepath, with a column for folder ids Write a record of what was done to disk. ''' # create table for all csv-files subdir__ix = zip(df_folders.Path, df_folders.index) df_list = [label_csvfiles(subdir, ix) for subdir, ix in subdir__ix] # concatenate data frames for all subdirectoriees files = pd.concat(df_list, ignore_index=True) return _select_parsed(files, write_dst) def label_csvfiles(basepath, id=-1): '''Return dataframe containing labels parsed from all csv files under basepath (recursively). Also append an id to index the top-level folder from which the csv files came ''' file_labels = [] paths = [] for root, dirnames, fnames in os.walk(basepath): for fn in fnmatch.filter(fnames, '*.csv'): paths.append(os.path.join(root, fn)) labels, names = fop.parse_csv_name(fn) file_labels.append(labels) df = _to_dataframe(file_labels, names) df['Path'] = paths df['Folder_id'] = [id] * len(df) # add index to parent folder return df def join_and_anonymize(df_files, df_folders, write_dst): '''Join file and folder tables and remove person names ''' df_joined = pd.merge(df_folders[['Person_id', 'Trial']], df_files[['Exercise', 'Legside', 'Resistance', 'Path', 'Folder_id']], left_index=True, right_on='Folder_id') df_joined = _rename_csvfiles(df_joined, write_dst) # copy and overwrite path df_joined.drop('Folder_id', axis=1, inplace=True) # don't need joining idx anymore return df_joined def get_best_match(item, possible): '''Return the best matching string in the possible list. Otherwise return the original''' cutoff = 0.5 n_match = 1 match = difflib.get_close_matches(item, possible, n_match, cutoff) if match: return match[0] # upack return None def load_and_plot(df_files, write_dir='', plot_on=True): '''Loads and plots the csv files in df_files. Optionally saves pdf. Labels are used as the title''' for i in df_files.index: row = df_files.ix[i] df = fop.load_emg(row.Path) title = str(row.tolist()) fig, _ = viz.plot_emg(df, title=title) if write_dir: try: os.mkdir(write_dir) except: pass fig.savefig(os.path.join(write_dir, str(i) + '.pdf')) if not plot_on: viz.plt.close() def check_quality(df_files): '''Compile quality metrics into a dataframe and plot their distrubution ''' d_summ = [] for path in df_files.Path: d_summ.append(clc.quality(path)) df_quality = pd.DataFrame(d_summ, index=df_files.index) viz.plot_qc(df_quality) return df_quality def exclude_by_quality(df_files, df_quality, write_dir): '''Remove files that don't match the quality criteria. Also keep records of the removed files in the `write_dir` folder ''' n_orig_files = len(df_files) short = df_quality.Length < 500 repeats = df_quality.MaxFrac_repeat > 60 zeros = df_quality.MaxFrac_zero > 30 noisy = df_quality.Median > 100 try: shutil.rmtree(write_dir) except: pass os.mkdir(write_dir) # write list of bad files as a record df_files[short].to_csv(os.path.join(write_dir, 'files_short.csv')) df_files[repeats].to_csv(os.path.join(write_dir, 'files_repeats.csv')) df_files[zeros].to_csv(os.path.join(write_dir, 'files_zeros.csv')) df_files[noisy].to_csv(os.path.join(write_dir, 'files_noisy.csv')) is_bad = short | repeats | zeros | noisy df_files = df_files[~is_bad] print 'excluded %d files of %d' % (n_orig_files - len(df_files), n_orig_files) return df_files def split_by_personid(files, frac_apprx): '''Split files into two parts by person id. ''' n_persons = len(files.Person_id.unique()) n_left = int(frac_apprx * n_persons) files_left = files[files.Person_id < n_left] files_right = files[files.Person_id > n_left] return files_left, files_right def get_features(files, n_sec, standardize=False): '''Sample data, calculate features, and collapse into a data frame. ''' index = files.index data_dict = fop.sample_data(files, n_sec) freq, peaks, phase = [], [], [] for ix in index: df = data_dict[ix] _, _, fc = clc.fft_df(df) freq.append(fc[::-1]) peaks.append(clc.meanpeaks_df(df, 0.5)) phase.append(clc.phase_df(df)) peak_cols = df.columns.values.tolist() phase_cols = ['p_%s' % s for s in peak_cols] columns = peak_cols + ['f1', 'f2'] + phase_cols arr = np.concatenate((peaks, freq, phase), axis=1) feat = pd.DataFrame(arr, index=index, columns=columns) if standardize: feat = (feat - feat.mean()) / feat.std() return feat def prediction_report(predicted, labels, classes, plot_on=True, print_mat=''): avg_correct = sum(predicted==labels) / len(predicted) * 100 print '\npercent correct:', avg_correct counts = labels.groupby(labels.values).count().values mat = metrics.confusion_matrix(labels, predicted) # print mat print metrics.classification_report(labels, predicted) frac_predicted = (mat.T / counts).T if plot_on: viz.plot_confusion(frac_predicted, classes) if print_mat == 'mat': print mat elif print_mat == 'frac': print frac_predicted return avg_correct # Helper functions ################################################### def _to_dataframe(labels, names): if len(labels) == 0: return [] else: return pd.DataFrame(labels, columns=names) def _select_parsed(df, write_dst): '''Save record of all items in DataFrame. Return only items that were successfully parsed. ''' df.to_csv(write_dst) parsed = df[df.iloc[:, 1].notnull()] print 'Parsed %d of %d items. See record at "%s"' % ( len(parsed), len(df), write_dst) return parsed def _name_to_id(S_name): '''replace names in series with numberical identifiers ''' name_unq = S_name.unique() left = pd.DataFrame({'name': S_name}) right = pd.DataFrame({'name': name_unq, 'id': range(len(name_unq))}) return pd.merge(left, right)['id'] def _rename_csvfiles(df_files, write_dir): '''rename csv files by file index ''' try: shutil.rmtree(write_dir) except: pass os.mkdir(write_dir) path_new = [] ix__path = zip(df_files.index, df_files.Path) for ix, src in ix__path: dst = os.path.join(write_dir, str(ix) + '.csv') shutil.copy(src, dst) path_new.append(dst) print 'Copied %d files and renamed by file_id. See "%s"' % ( len(df_files), write_dir) df_files.Path = path_new return df_files
[ "msena505+git@gmail.com" ]
msena505+git@gmail.com
dc8d52706c9e04a981453256b24c9e2111cb8438
29a0d522bc4caeb7efad8c59f9b2bab88e7cb274
/Practical1/electricitybillestimator2.py
fd605d1f04af85d76ac1a63337f2e5862b3e0777
[]
no_license
Kphoo/Programming2
20662a3594394d4b524d33adf149d6d4f18bf940
6ca3591d2e461b34dc2aeccb32706a6559a2b877
refs/heads/master
2020-04-09T11:27:49.498005
2019-01-16T17:50:27
2019-01-16T17:50:27
160,310,417
0
0
null
2018-12-04T07:36:21
2018-12-04T06:33:28
Python
UTF-8
Python
false
false
840
py
def bill_estimator(): MENU="""11 - TARIFF_11 = 0.244618 31 - TARIFF_31 = 0.136928 """ print(MENU) tariff_11=0.244618 tariff_31=0.136928 choice=int(input("Which tariff? 11 or 31: ")) if choice==11: daily_use=float(input("Enter daily use in kWh: ")) billing_days=int(input("Enter number of billing days: ")) bill= (tariff_11*daily_use*billing_days) print("Estimated bill:$ {:.2f}".format(bill)) elif choice==31: daily_use = float(input("Enter daily use in kWh: ")) billing_days = int(input("Enter number of billing days: ")) bill = (tariff_31 * daily_use * billing_days) print("Estimated bill:$ {:.2f}".format(bill)) else: while 1: print("Invalid input") bill_estimator() break bill_estimator()
[ "kphoothawnaing@my.jcu.edu.au" ]
kphoothawnaing@my.jcu.edu.au
e6b01ab9367986908a5c83dd98fa4dde404f632f
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03379/s654666202.py
c7f75f4f497f62efa5e1b77c9ad3d1f24f1abba9
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
N=int(input()) X=list(map(int,input().split())) Z=sorted(X) left=Z[N//2-1] right=Z[N//2] for i in X: if i<=left: print(right) else: print(left)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
5faaccfffd1b0b28344509c56aeff8b0c12956bb
808707d86f2cb92fc4b0c235b3b2e10d81d578da
/src/all_offense_month_from.py
0bb72831d99803809841f9d07f25750bef4227d1
[]
no_license
HoodPanther/crimeproject
3eba91be240b17c87b1e2333ead5a34a9564bc6b
87f55fcbc375d7c75df10f7bc0017444d28d015f
refs/heads/master
2021-06-16T13:00:56.988862
2017-05-20T18:52:09
2017-05-20T18:52:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
from __future__ import print_function import sys from operator import add from pyspark import SparkContext from csv import reader if __name__ == "__main__": sc = SparkContext() lines = sc.textFile(sys.argv[1], 1) lines = lines.mapPartitions(lambda x: reader(x)).filter(lambda x: x[0] != 'CMPLNT_NUM') # -1 means invalid or missing results = lines.map(lambda x: (x[1][0:2], 1) if len(x[1])==10 else ('-1', 1) ) \ .reduceByKey(add) \ .sortBy(lambda x: x[0]) \ .map(lambda x: x[0] + '\t' + str(x[1])) \ results.saveAsTextFile('all_offense_month_from.out') sc.stop()
[ "da1933@nyu.edu" ]
da1933@nyu.edu
8ed511529f375e6018227358ffe009f42d6fbfa0
8a0e14299d8b915c0a909cf9fa9a86589dc63d76
/python/ray/rllib/agents/qmix/__init__.py
a5a1e4993b675531147b7cbe073dad0d4907c3e3
[ "Apache-2.0", "MIT" ]
permissive
natashamjaques/ray
795e4271c3c5f3e261327afea40b81ffe6f362ac
aca9dd5ee7a8fef508a5383fdd26ad8ccdcb16e4
refs/heads/master
2020-04-12T05:58:15.680359
2019-03-06T22:08:10
2019-03-06T22:08:10
162,337,948
3
2
Apache-2.0
2018-12-18T19:47:02
2018-12-18T19:47:01
null
UTF-8
Python
false
false
288
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from ray.rllib.agents.qmix.qmix import QMixAgent, DEFAULT_CONFIG from ray.rllib.agents.qmix.apex import ApexQMixAgent __all__ = ["QMixAgent", "ApexQMixAgent", "DEFAULT_CONFIG"]
[ "noreply@github.com" ]
natashamjaques.noreply@github.com
0a72d6e577ced1da22d4cbd21c1a035716957133
ce776194946ac395bde4d494e56a09a62dcd575f
/week4/RL8.py
5a8186e9e4e6595df89a4e137e40edffe1b02f6a
[]
no_license
ZhangLiangyu5411/DRL-GWZQ
f607590852bdbc27558f0f8446e19a8ba3d79794
4b7a93bce6de676f1b54d27e2bb6df2f3561c829
refs/heads/master
2022-01-26T19:14:10.739940
2019-05-23T08:53:31
2019-05-23T08:53:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,236
py
# -*- coding: utf-8 -*- """ Created on Fri Mar 23 23:06:00 2019 @author: Xianglin ZHOU Q learning agent with fake goal and observer """ import numpy as np import pandas as pd import time import copy import tkinter as tk #actions ACTIONS = ['LEFT', 'RIGHT', 'UP', 'DOWN'] ID_ACTIONS = list(range(len(ACTIONS)))# 0:left, 1:right, 3:up, 4:down #q_learning GAMMA = 0.9 ALPHA = 0.1 EPSILON = 0.9 LAMBDA = 0.9 EPISODES = 30 #map SIZE = 100 X = 9 Y = 9 WALLS = [[-X, -1], [-1, Y], [X, Y], [X, -1]] for i in range(0, X): WALLS = WALLS + [[i , -1]] + [[-1, i]] + [[i, Y]] + [[X, i]] BARRIERS = [] + WALLS #print(len(BARRIERS)) #GOALS = [[5,5]] FAKE = [[6,4]] #fake goal GOALS = [[4,6]] class Maze(tk.Tk, object): def __init__(self, size, x, y): super(Maze, self).__init__() self.title('maze') self.goals = GOALS self.fake = FAKE self.barriers = BARRIERS self.size = size self.x_total = x self.y_total = y self.geometry('1800x900') self._build_maze() def _build_maze(self): self.canvas = tk.Canvas(self, bg = 'white', height = self.size * self.y_total, width = self.size * self.x_total) for i in range(self.x_total): for j in range(5): self.canvas.create_line(self.size - 2 + j + self.size*i, 0, self.size - 2 + j + self.size*i, self.size*self.y_total) for i in range(self.y_total): for j in range(5): self.canvas.create_line(0, self.size - 2 + j + self.size*i, self.size*self.y_total, self.size - 2 + j + self.size*i) # mouse_file = tk.PhotoImage(file='mouse.gif') # self.mouse = self.canvas.create_image(10, 10, anchor='nw', image = mouse_file) # print(11111) # food_file = tk.PhotoImage(file='food.gif') # self.food = self.canvas.create_image(1510, 10, anchor='nw', image = food_file) self.food = self.canvas.create_rectangle(10 + self.goals[0][0]*self.size, 10 + self.goals[0][1]*self.size,(self.goals[0][0] + 1)*self.size - 10, (self.goals[0][1] + 1)*self.size - 10,fill = 'red') self.fakefood = self.canvas.create_rectangle(10 + self.fake[0][0]*self.size, 10 + self.fake[0][1]*self.size,(self.fake[0][0] + 1)*self.size - 10, (self.fake[0][1] + 1)*self.size - 10,fill = 'orange') self.mouse = self.canvas.create_oval(10, 10, 10 + self.size - 20, 10 + self.size - 20, fill = 'black') # self.barriers = self.canvas.create_rectangle(10 + 3*self.size, 10 + 3*self.size, # (3 + 1)*self.size - 10, (3 + 1)*self.size - 10, # fill = 'blue') # pack all self.canvas.pack() def reset(self): self.update() time.sleep(0.5) self.canvas.delete(self.mouse) self.mouse = self.canvas.create_oval(10, 10, 10 + self.size - 20, 10 + self.size - 20, fill = 'black') # mouse_file = tk.PhotoImage(file='mouse.gif') # self.mouse = self.canvas.create_image(10, 10, anchor='nw', image = mouse_file) # return observation #return self.canvas.coords(self.rect) def move_to(self, action): self.update() time.sleep(0.05) if action == ID_ACTIONS[0]: self.canvas.move(self.mouse, -self.size, 0) elif action == ID_ACTIONS[1]: self.canvas.move(self.mouse, self.size, 0) elif action == ID_ACTIONS[2]: self.canvas.move(self.mouse, 0, -self.size) else: self.canvas.move(self.mouse, 0, self.size) def render(self): time.sleep(0.1) self.update() class Observer(object): def __init__(self, init_state = [], current_state = [], goals = [], barriers = []): self.init_state = init_state self.current_state = current_state self.goals = goals self.barriers = barriers """ def env_reaction(self, state, action): new_state = copy.copy(state) if action == ID_ACTIONS[0]: new_state[0] -= 1 elif action == ID_ACTIONS[1]: new_state[0] += 1 elif action == ID_ACTIONS[2]: new_state[1] -= 1 else: new_state[1] += 1 if new_state in self.barriers: new_state = state else: env.move_to(action) if new_state in self.goals: r = 1 else: r = 0 return new_state, r """ #give reward based on the difference of distance to the fake goal and real goal def distance (self, position1, position2): dist = abs(position1[0] - position2[0]) + abs(position1[1]-position2[1]) return dist def env_reaction(self, state, action): new_state = copy.copy(state) #new_state = state # 0:left, 1:right, 2:up, 3:down if action == ID_ACTIONS[0]: new_state[0] -= 1 elif action == ID_ACTIONS[1]: new_state[0] += 1 elif action == ID_ACTIONS[2]: new_state[1] -= 1 else: new_state[1] += 1 if new_state in BARRIERS: new_state = state else: env.move_to(action) if not RL.simulation: if new_state in FAKE: r = 0.1 RL.simulation = True elif (self.distance(state, FAKE[0]) >= self.distance(new_state, FAKE[0])): r = 0.01 else: r = -0.01 else: if new_state in GOALS: r = 1 elif (self.distance(state, GOALS[0]) >= self.distance(new_state, GOALS[0])): r = 0.1 else: r = -0.1 return new_state, r class RL_Agent(object): def __init__(self, actions = ID_ACTIONS, learning_rate = ALPHA, reward_decay = GAMMA, e_greedy = EPSILON): self.actions = actions self.lr = learning_rate self.gamma = reward_decay self.epsilon = e_greedy self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64) def choose_action(self, state): self.check_state_exist(state) if np.random.uniform() < self.epsilon: scores_of_actions = self.q_table.loc[state, :] action = np.random.choice(scores_of_actions[scores_of_actions == np.max(scores_of_actions)].index) else: action = np.random.choice(self.actions) return action def check_state_exist(self, state): if state not in self.q_table.index: self.q_table = self.q_table.append( pd.Series( [0]*len(self.actions), index = self.q_table.columns, name = state, ) ) def learn(self, *args): pass class Qlearning_Agent(RL_Agent): def __init__(self, actions = ID_ACTIONS, learning_rate = ALPHA, reward_decay = GAMMA, e_greedy = EPSILON): super(Qlearning_Agent, self).__init__(actions, learning_rate, reward_decay, e_greedy) self.simulation = False def learn(self, state, action, r, new_state): self.check_state_exist(new_state) q_predict = self.q_table.loc[state, action] if new_state not in GOALS: q_target = r + self.gamma * self.q_table.loc[new_state, :].max() else: q_target = r self.q_table.loc[state, action] += self.lr * (q_target - q_predict) class Sarsa_Agent(RL_Agent): def __init__(self, actions = ID_ACTIONS, learning_rate = ALPHA, reward_decay = GAMMA, e_greedy = EPSILON): super(Sarsa_Agent, self).__init__(actions, learning_rate, reward_decay, e_greedy) def learn(self, state, action, r, new_state, new_action): self.check_state_exist(new_state) q_predict = self.q_table.loc[state, action] if new_state not in GOALS: q_target = r + self.gamma * self.q_table.loc[new_state, new_action] else: q_target = r self.q_table.loc[state, action] += self.lr * (q_target - q_predict) class N_Step_Sarsa_Agent(RL_Agent): def __init__(self, actions = ID_ACTIONS, learning_rate = ALPHA, reward_decay = GAMMA, e_greedy = EPSILON, trace_decay = LAMBDA): super(N_Step_Sarsa_Agent, self).__init__(actions, learning_rate, reward_decay, e_greedy) self.lambd = trace_decay self.eligibility_trace = self.q_table.copy() def check_state_exist(self, state): if state not in self.q_table.index: to_be_append = pd.Series( [0] * len(self.actions), index=self.q_table.columns, name=state, ) self.q_table = self.q_table.append(to_be_append) self.eligibility_trace = self.eligibility_trace.append(to_be_append) def learn(self, state, action, r, new_state, new_action): self.check_state_exist(new_state) q_predict = self.q_table.loc[state, action] if new_state not in GOALS: q_target = r + self.gamma * self.q_table.loc[new_state, new_action] else: q_target = r self.eligibility_trace.loc[state, :] *= 0 self.eligibility_trace.loc[state, action] = 1 self.q_table += self.lr * (q_target - q_predict) * self.eligibility_trace #!!!the whole table self.eligibility_trace *= self.gamma * self.lambd def run_agent(): env.reset() state = [0, 0] #action = RL.choose_action(str(state)) #Sarsa RL.simulation = False # Q learning while state not in GOALS: action = RL.choose_action(str(state)) #Qlearning new_state, r = Obs.env_reaction(state, action) #new_action = RL.choose_action(str(new_state)) RL.learn(str(state), action, r, str(new_state)) #Qlearning #RL.learn(str(state), action, r, str(new_state), new_action) #Sarsa state = new_state #action = new_action #Sarsa print(RL.q_table) def training(): for t in range(EPISODES): env.reset() env.render() run_agent() # print('game over') # env.destroy() env.reset() if __name__ == "__main__": env = Maze(SIZE, X, Y) Obs = Observer(goals = env.goals, barriers = env.barriers) RL = Qlearning_Agent() #RL = Sarsa_Agent() #RL = N_Step_Sarsa_Agent() training() #env.after(100, update) env.mainloop()
[ "noreply@github.com" ]
ZhangLiangyu5411.noreply@github.com
a2fe085654a21fee526d110b779f48dfeb6fe9d5
a1fe62f072b68e64be0a761ea2fe93d2690dd8f9
/store/urls.py
2279630df5c9f2227850213bd38911aaed7bc5ef
[]
no_license
1nonlyabhi/dukaan-assignment
3ff9167ca98be6964ed9f9f3feebaa0cb776d797
5a4c14e4c167a5b025995bb44e67a4a5ea7f5c17
refs/heads/main
2023-08-15T14:57:57.538284
2021-09-26T16:52:29
2021-09-26T16:52:29
410,544,483
0
0
null
null
null
null
UTF-8
Python
false
false
426
py
from django.urls import path from account.views import * from store.views import ProductView, StoreView, detail_store_cat_view, detail_store_view app_name = "store" urlpatterns = [ path('', StoreView.as_view(), name="store"), path('<slug>/', detail_store_view, name="detail"), path('<slug>/product', ProductView.as_view(), name="product"), path('<slug>/category', detail_store_cat_view, name="category"), ]
[ "gabhishek0407@gmail.com" ]
gabhishek0407@gmail.com
6308246f1f21cd53a6eb7e44e01b80b0e9f21ff8
6ce2982e30e9c14e0e71291879fe9c2dd81776dc
/jouaan/main/migrations/0001_initial.py
e2b35520529c67eac8a42f62d6871cb07b12e889
[]
no_license
yacoublambaz/Jouaan
6f3c88d32d3317dc3e713032e94d54c04138fb58
c424029a765f5c2ae20cda7b354b68251e0fc143
refs/heads/main
2023-04-27T16:46:47.775709
2021-05-06T14:00:41
2021-05-06T14:00:41
352,722,587
0
1
null
null
null
null
UTF-8
Python
false
false
2,733
py
# Generated by Django 3.1.7 on 2021-03-30 17:20 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Customer', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=200)), ('email', models.CharField(max_length=200)), ('signup_date', models.DateTimeField(auto_now_add=True)), ('user', models.OneToOneField(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Review', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('review_date', models.DateTimeField(auto_now_add=True)), ('cleanliness', models.IntegerField(null=True)), ('taste', models.IntegerField(null=True)), ('environment', models.IntegerField(null=True)), ('price', models.IntegerField(null=True)), ('comments', models.TextField(null=True)), ('review_score', models.IntegerField(null=True)), ('customer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.customer')), ], ), migrations.CreateModel( name='Restaurant', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=200)), ('profile_pic', models.ImageField(null=True, upload_to='')), ('address', models.CharField(max_length=200)), ('phone_number', models.CharField(max_length=8)), ('what_we_serve', models.CharField(max_length=200)), ('signup_date', models.DateTimeField(auto_now_add=True)), ('user', models.OneToOneField(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Announcement', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.TextField(null=True)), ('restaurant', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.restaurant')), ], ), ]
[ "" ]
11adadb04fae1383c61d747eea5e932bd6384471
1532c4117246d61be9f4e8fa0d283f579d884874
/social/urls.py
cc523a8a58ab2c0be93e050fc7c5e1ad65394303
[]
no_license
jkaalexkei/redsocial
ae11ab17aec6453416810166c840d1dee9d0f4ed
25bb9141d0f730fa389bdefd259fd961b5f3c3ab
refs/heads/master
2023-07-06T09:50:55.850379
2021-07-29T16:09:50
2021-07-29T16:09:50
389,832,605
0
0
null
null
null
null
UTF-8
Python
false
false
839
py
from django.urls import path from . import views from django.conf import settings from django.conf.urls.static import static from django.contrib.auth.views import LoginView, LogoutView urlpatterns = [ path('',views.feed,name='feed'), path('profile/',views.profile,name='profile'), path('profile/<str:username>/',views.profile,name='profile'), path('register/',views.register,name='register'), path('login/',LoginView.as_view(template_name='social/login.html'),name='login'), path('logout/',LogoutView.as_view(template_name='social/logout.html'),name='logout'), path('post/',views.post, name='post'), path('follow/<str:username>/',views.follow,name='follow'), path('unfollow/<str:username>/',views.unfollow,name='unfollow'), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "jkaalexkei@gmail.com" ]
jkaalexkei@gmail.com
2fc951b9431678e1bdc9ccdae97502170f3490b3
c10af00ed8ec3ffe10f2a65720d9e2aca4c4486c
/venv/Lib/site-packages/sportsreference/mlb/boxscore.py
f0a79f5dc347a007d3c0436e61e2cd7bd11d6c57
[]
no_license
afornaca/nflstats
c590801d6415648bba2f6f88a0d66076cd5c1b20
4d7504be29724653ee09ac31ad60b906b216b927
refs/heads/master
2020-07-04T21:21:54.696209
2020-02-04T23:20:52
2020-02-04T23:20:52
202,420,370
0
2
null
null
null
null
UTF-8
Python
false
false
68,009
py
import pandas as pd import re from datetime import timedelta from pyquery import PyQuery as pq from .. import utils from ..constants import AWAY, HOME from ..decorators import float_property_decorator, int_property_decorator from .constants import (BOXSCORE_ELEMENT_INDEX, BOXSCORE_SCHEME, BOXSCORE_URL, BOXSCORES_URL, DOUBLE_HEADER_INDICES) from .player import (AbstractPlayer, _float_property_decorator, _int_property_decorator) from sportsreference import utils from sportsreference.constants import AWAY, HOME from sportsreference.mlb.constants import DAY, NIGHT from six.moves.urllib.error import HTTPError class BoxscorePlayer(AbstractPlayer): """ Get player stats for an individual game. Given a player ID, such as 'altuvjo01' for Jose Altuve, their full name, and all associated stats from the Boxscore page in HTML format, parse the HTML and extract only the relevant stats for the specified player and assign them to readable properties. This class inherits the ``AbstractPlayer`` class. As a result, all properties associated with ``AbstractPlayer`` can also be read directly from this class. As this class is instantiated from within the Boxscore class, it should not be called directly and should instead be queried using the appropriate players properties from the Boxscore class. Parameters ---------- player_id : string A player's ID according to baseball-reference.com, such as 'altuvjo01' for Jose Altuve. The player ID can be found by navigating to the player's stats page and getting the string between the final slash and the '.html' in the URL. In general, the ID is in the format 'LLLLLFFNN' where 'LLLLL' are the first 5 letters in the player's last name, 'FF', are the first 2 letters in the player's first name, and 'NN' is a number starting at '01' for the first time that player ID has been used and increments by 1 for every successive player. player_name : string A string representing the player's first and last name, such as 'Jose Altuve'. player_data : string A string representation of the player's HTML data from the Boxscore page. If the player appears in multiple tables, all of their information will appear in one single string concatenated together. """ def __init__(self, player_id, player_name, player_data): self._index = 0 self._player_id = player_id self._average_leverage_index = None self._base_out_runs_added = None self._earned_runs_against = None self._innings_pitched = None self._pitches_thrown = None self._strikes = None self._home_runs_thrown = None self._strikes_thrown = None self._strikes_contact = None self._strikes_swinging = None self._strikes_looking = None self._grounded_balls = None self._fly_balls = None self._line_drives = None self._unknown_bat_types = None self._game_score = None self._inherited_runners = None self._inherited_score = None self._win_probability_added_pitcher = None self._average_leverage_index_pitcher = None self._base_out_runs_saved = None self._win_probability_added = None self._win_probability_for_offensive_player = None self._win_probability_subtracted = None AbstractPlayer.__init__(self, player_id, player_name, player_data) @property def dataframe(self): """ Returns a ``pandas DataFrame`` containing all other relevant class properties and values for the specified game. """ fields_to_include = { 'assists': self.assists, 'at_bats': self.at_bats, 'average_leverage_index': self.average_leverage_index, 'average_leverage_index_pitcher': self.average_leverage_index_pitcher, 'bases_on_balls': self.bases_on_balls, 'bases_on_balls_given': self.bases_on_balls_given, 'base_out_runs_added': self.base_out_runs_added, 'base_out_runs_saved': self.base_out_runs_saved, 'batters_faced': self.batters_faced, 'batting_average': self.batting_average, 'earned_runs_allowed': self.earned_runs_allowed, 'earned_runs_against': self.earned_runs_against, 'fly_balls': self.fly_balls, 'game_score': self.game_score, 'grounded_balls': self.grounded_balls, 'hits': self.hits, 'hits_allowed': self.hits_allowed, 'home_runs_thrown': self.home_runs_thrown, 'inherited_runners': self.inherited_runners, 'inherited_score': self.inherited_score, 'innings_pitched': self.innings_pitched, 'line_drives': self.line_drives, 'name': self.name, 'on_base_percentage': self.on_base_percentage, 'on_base_plus_slugging_percentage': self.on_base_plus_slugging_percentage, 'pitches_thrown': self.pitches_thrown, 'plate_appearances': self.plate_appearances, 'putouts': self.putouts, 'runs': self.runs, 'runs_allowed': self.runs_allowed, 'runs_batted_in': self.runs_batted_in, 'slugging_percentage': self.slugging_percentage, 'strikes': self.strikes, 'strikes_contact': self.strikes_contact, 'strikes_looking': self.strikes_looking, 'strikes_swinging': self.strikes_swinging, 'strikes_thrown': self.strikes_thrown, 'strikeouts': self.strikeouts, 'times_struck_out': self.times_struck_out, 'unknown_bat_types': self.unknown_bat_types, 'win_probability_added': self.win_probability_added, 'win_probability_added_pitcher': self.win_probability_added_pitcher, 'win_probability_for_offensive_player': self.win_probability_for_offensive_player, 'win_probability_subtracted': self.win_probability_subtracted } return pd.DataFrame([fields_to_include], index=[self._player_id]) @_float_property_decorator def average_leverage_index(self): """ Returns a ``float`` of the amount of pressure the player faced during the game. 1.0 denotes average pressure while numbers less than 0 denote lighter pressure. """ return self._average_leverage_index @_float_property_decorator def base_out_runs_added(self): """ Returns a ``float`` of the number of base out runs added by the player. """ return self._base_out_runs_added @_float_property_decorator def earned_runs_against(self): """ Returns a ``float`` of the player's overall Earned Runs Against average as calculated by 9 * earned_runs / innings_pitched. """ return self._earned_runs_against @_int_property_decorator def innings_pitched(self): """ Returns an ``int`` of the number of innings the player pitched in. """ return self._innings_pitched @_int_property_decorator def home_runs_thrown(self): """ Returns an ``int`` of the number of home runs the player threw. """ return self._home_runs_thrown @_int_property_decorator def pitches_thrown(self): """ Returns an ``int`` of the number of pitches the player threw. """ return self._pitches_thrown @_int_property_decorator def strikes(self): """ Returns an ``int`` of the number of times a strike was called against the player. """ return self._strikes @_int_property_decorator def strikes_thrown(self): """ Returns an ``int`` of the number of times a strikes the player threw. """ return self._strikes_thrown @_int_property_decorator def strikes_contact(self): """ Returns an ``int`` of the number of times the player threw a strike when the player made contact with the ball. """ return self._strikes_contact @_int_property_decorator def strikes_swinging(self): """ Returns an ``int`` of the number of times the player threw a strike with the batter swinging. """ return self._strikes_swinging @_int_property_decorator def strikes_looking(self): """ Returns an ``int`` of the number of times the player threw a strike with the player looking. """ return self._strikes_looking @_int_property_decorator def grounded_balls(self): """ Returns an ``int`` of the number of grounded balls the player allowed. """ return self._grounded_balls @_int_property_decorator def fly_balls(self): """ Returns an ``int`` of the number of fly balls the player allowed. """ return self._fly_balls @_int_property_decorator def line_drives(self): """ Returns an ``int`` of the number of line drives the player allowed. """ return self._line_drives @_int_property_decorator def unknown_bat_types(self): """ Returns an ``int`` of the number of line drives the player allowed. """ return self._unknown_bat_types @_int_property_decorator def game_score(self): """ Returns an ``int`` of the pitcher's score determine by many factors, such as number of runs scored against, number of strikes, etc. """ return self._game_score @_int_property_decorator def inherited_runners(self): """ Returns an ``int`` of the number of runners a relief pitcher inherited. """ return self._inherited_runners @_int_property_decorator def inherited_score(self): """ Returns an ``int`` of the number of runners on base when a relief pitcher entered the game that ended up scoring. """ return self._inherited_score @_float_property_decorator def win_probability_added_pitcher(self): """ Returns a ``float`` of the total positive influence the pitcher's offense had on the outcome of the game. """ return self._win_probability_added_pitcher @_float_property_decorator def average_leverage_index_pitcher(self): """ Returns a ``float`` of the amount of pressure the pitcher faced during the game. 1.0 denotes average pressure while numbers less than 0 denote lighter pressure. """ return self._average_leverage_index_pitcher @_float_property_decorator def base_out_runs_saved(self): """ Returns a ``float`` of the number of runs saved by the pitcher based on the number of players on bases. 0.0 denotes an average value. """ return self._base_out_runs_saved @_float_property_decorator def win_probability_added(self): """ Returns a ``float`` of the total positive influence the player's offense had on the outcome of the game. """ return self._win_probability_added @_float_property_decorator def win_probability_subtracted(self): """ Returns a ``float`` of the total negative influence the player's offense had on the outcome of the game. """ return self._win_probability_subtracted @_float_property_decorator def win_probability_for_offensive_player(self): """ Returns a ``float`` of the overall influence the player's offense had on the outcome of the game where 0.0 denotes no influence and 1.0 denotes the offense was solely responsible for the outcome. """ return self._win_probability_for_offensive_player class Boxscore(object): """ Detailed information about the final statistics for a game. Stores all relevant information for a game such as the date, time, location, result, and more advanced metrics such as the number of strikes, a pitcher's influence on the game, the number of putouts and much more. Parameters ---------- uri : string The relative link to the boxscore HTML page, such as 'BOS/BOS201806070'. """ def __init__(self, uri): self._uri = uri self._date = None self._time = None self._attendance = None self._venue = None self._time_of_day = None self._duration = None self._away_name = None self._home_name = None self._winner = None self._winning_name = None self._winning_abbr = None self._losing_name = None self._losing_abbr = None self._losing_abbr = None self._away_at_bats = None self._away_runs = None self._away_hits = None self._away_rbi = None self._away_earned_runs = None self._away_bases_on_balls = None self._away_strikeouts = None self._away_plate_appearances = None self._away_batting_average = None self._away_on_base_percentage = None self._away_slugging_percentage = None self._away_on_base_plus = None self._away_pitches = None self._away_strikes = None self._away_win_probability_for_offensive_player = None self._away_average_leverage_index = None self._away_win_probability_added = None self._away_win_probability_subtracted = None self._away_base_out_runs_added = None self._away_putouts = None self._away_assists = None self._away_innings_pitched = None self._away_home_runs = None self._away_strikes_by_contact = None self._away_strikes_swinging = None self._away_strikes_looking = None self._away_grounded_balls = None self._away_fly_balls = None self._away_line_drives = None self._away_unknown_bat_type = None self._away_game_score = None self._away_inherited_runners = None self._away_inherited_score = None self._away_win_probability_by_pitcher = None self._away_base_out_runs_saved = None self._home_at_bats = None self._home_runs = None self._home_hits = None self._home_rbi = None self._home_earned_runs = None self._home_bases_on_balls = None self._home_strikeouts = None self._home_plate_appearances = None self._home_batting_average = None self._home_on_base_percentage = None self._home_slugging_percentage = None self._home_on_base_plus = None self._home_pitches = None self._home_strikes = None self._home_win_probability_for_offensive_player = None self._home_average_leverage_index = None self._home_win_probability_added = None self._home_win_probability_subtracted = None self._home_base_out_runs_added = None self._home_putouts = None self._home_assists = None self._home_innings_pitched = None self._home_home_runs = None self._home_strikes_by_contact = None self._home_strikes_swinging = None self._home_strikes_looking = None self._home_grounded_balls = None self._home_fly_balls = None self._home_line_drives = None self._home_unknown_bat_type = None self._home_game_score = None self._home_inherited_runners = None self._home_inherited_score = None self._home_win_probability_by_pitcher = None self._home_base_out_runs_saved = None self._parse_game_data(uri) def _retrieve_html_page(self, uri): """ Download the requested HTML page. Given a relative link, download the requested page and strip it of all comment tags before returning a pyquery object which will be used to parse the data. Parameters ---------- uri : string The relative link to the boxscore HTML page, such as 'BOS/BOS201806070'. Returns ------- PyQuery object The requested page is returned as a queriable PyQuery object with the comment tags removed. """ url = BOXSCORE_URL % uri try: url_data = pq(url) except HTTPError: return None return pq(utils._remove_html_comment_tags(url_data)) def _parse_game_date_and_location(self, boxscore): """ Retrieve the game's date and location. The game's meta information, such as date, location, attendance, and duration, follow a complex parsing scheme that changes based on the layout of the page. The information should be able to be parsed and set regardless of the order and how much information is included. To do this, the meta information should be iterated through line-by-line and fields should be determined by the values that are found in each line. Parameters ---------- boxscore : PyQuery object A PyQuery object containing all of the HTML data from the boxscore. """ scheme = BOXSCORE_SCHEME["game_info"] items = [i.text() for i in boxscore(scheme).items()] game_info = items[0].split('\n') attendance = None date = None duration = None time = None time_of_day = None venue = None if len(game_info) > 0: date = game_info[0] for line in game_info: if 'Start Time: ' in line: time = line.replace('Start Time: ', '') if 'Attendance: ' in line: attendance = line.replace('Attendance: ', '').replace(',', '') if 'Venue: ' in line: venue = line.replace('Venue: ', '') if 'Game Duration: ' in line: duration = line.replace('Game Duration: ', '') if 'Night Game' in line or 'Day Game' in line: time_of_day = line setattr(self, '_attendance', attendance) setattr(self, '_date', date) setattr(self, '_duration', duration) setattr(self, '_time', time) setattr(self, '_time_of_day', time_of_day) setattr(self, '_venue', venue) def _parse_name(self, field, boxscore): """ Retrieve the team's complete name tag. Both the team's full name (embedded in the tag's text) and the team's abbreviation are stored in the name tag which can be used to parse the winning and losing team's information. Parameters ---------- field : string The name of the attribute to parse boxscore : PyQuery object A PyQuery object containing all of the HTML data from the boxscore. Returns ------- PyQuery object The complete text for the requested tag. """ scheme = BOXSCORE_SCHEME[field] return boxscore(scheme) def _find_boxscore_tables(self, boxscore): """ Find all tables with boxscore information on the page. Iterate through all tables on the page and see if any of them are boxscore pages by checking if the ID is prefixed with 'box_'. If so, add it to a list and return the final list at the end. Parameters ---------- boxscore : PyQuery object A PyQuery object containing all of the HTML data from the boxscore. Returns ------- list Returns a ``list`` of the PyQuery objects where each object represents a boxscore table. """ tables = [] for table in boxscore('table').items(): try: if 'pitching' in table.attr['id'] or \ 'batting' in table.attr['id']: tables.append(table) except (KeyError, TypeError): continue return tables def _find_player_id(self, row): """ Find the player's ID. Find the player's ID as embedded in the 'data-append-csv' attribute, such as 'altuvjo01' for Jose Altuve. Parameters ---------- row : PyQuery object A PyQuery object representing a single row in a boxscore table for a single player. Returns ------- str Returns a ``string`` of the player's ID, such as 'altuvjo01' for Jose Altuve. """ return row('th').attr('data-append-csv') def _find_player_name(self, row): """ Find the player's full name. Find the player's full name, such as 'Jose Altuve'. The name is the text displayed for a link to the player's individual stats. Parameters ---------- row : PyQuery object A PyQuery object representing a single row in a boxscore table for a single player. Returns ------- str Returns a ``string`` of the player's full name, such as 'Jose Altuve'. """ return row('a').text() def _extract_player_stats(self, table, player_dict, home_or_away): """ Combine all player stats into a single object. Since each player generally has a couple of rows worth of stats (one for basic stats and another for advanced stats) on the boxscore page, both rows should be combined into a single string object to easily query all fields from a single object instead of determining which row to pull metrics from. Parameters ---------- table : PyQuery object A PyQuery object of a single boxscore table, such as the home team's advanced stats or the away team's basic stats. player_dict : dictionary A dictionary where each key is a string of the player's ID and each value is a dictionary where the values contain the player's name, HTML data, and a string constant indicating which team the player is a member of. home_or_away : string constant A string constant indicating whether the player plays for the home or away team. Returns ------- dictionary Returns a ``dictionary`` where each key is a string of the player's ID and each value is a dictionary where the values contain the player's name, HTML data, and a string constant indicating which team the player is a member of. """ for row in table('tbody tr').items(): player_id = self._find_player_id(row) # Occurs when a header row is identified instead of a player. if not player_id: continue name = self._find_player_name(row) try: player_dict[player_id]['data'] += str(row).strip() except KeyError: player_dict[player_id] = { 'name': name, 'data': str(row).strip(), 'team': home_or_away } return player_dict def _instantiate_players(self, player_dict): """ Create a list of player instances for both the home and away teams. For every player listed on the boxscores page, create an instance of the BoxscorePlayer class for that player and add them to a list of players for their respective team. Parameters ---------- player_dict : dictionary A dictionary containing information for every player on the boxscores page. Each key is a string containing the player's ID and each value is a dictionary with the player's full name, a string representation of their HTML stats, and a string constant denoting which team they play for as the values. Returns ------- tuple Returns a ``tuple`` in the format (away_players, home_players) where each element is a list of player instances for the away and home teams, respectively. """ home_players = [] away_players = [] for player_id, details in player_dict.items(): player = BoxscorePlayer(player_id, details['name'], details['data']) if details['team'] == HOME: home_players.append(player) else: away_players.append(player) return away_players, home_players def _find_players(self, boxscore): """ Find all players for each team. Iterate through every player for both teams as found in the boxscore tables and create a list of instances of the BoxscorePlayer class for each player. Return lists of player instances comprising the away and home team players, respectively. Parameters ---------- boxscore : PyQuery object A PyQuery object containing all of the HTML data from the boxscore. Returns ------- tuple Returns a ``tuple`` in the format (away_players, home_players) where each element is a list of player instances for the away and home teams, respectively. """ player_dict = {} table_count = 0 tables = self._find_boxscore_tables(boxscore) for table in tables: home_or_away = HOME # There are two tables per team with the odd tables belonging to # the away team. if table_count % 2 == 1: home_or_away = AWAY player_dict = self._extract_player_stats(table, player_dict, home_or_away) table_count += 1 away_players, home_players = self._instantiate_players(player_dict) return away_players, home_players def _parse_game_data(self, uri): """ Parses a value for every attribute. This function looks through every attribute and retrieves the value according to the parsing scheme and index of the attribute from the passed HTML data. Once the value is retrieved, the attribute's value is updated with the returned result. Note that this method is called directly once Boxscore is invoked and does not need to be called manually. Parameters ---------- uri : string The relative link to the boxscore HTML page, such as 'BOS/BOS201806070'. """ boxscore = self._retrieve_html_page(uri) # If the boxscore is None, the game likely hasn't been played yet and # no information can be gathered. As there is nothing to grab, the # class instance should just be empty. if not boxscore: return for field in self.__dict__: # Remove the '_' from the name short_field = str(field)[1:] if short_field == 'winner' or \ short_field == 'winning_name' or \ short_field == 'winning_abbr' or \ short_field == 'losing_name' or \ short_field == 'losing_abbr' or \ short_field == 'uri' or \ short_field == 'date' or \ short_field == 'time' or \ short_field == 'venue' or \ short_field == 'attendance' or \ short_field == 'time_of_day' or \ short_field == 'duration': continue if short_field == 'away_name' or \ short_field == 'home_name': value = self._parse_name(short_field, boxscore) setattr(self, field, value) continue index = 0 if short_field in BOXSCORE_ELEMENT_INDEX.keys(): index = BOXSCORE_ELEMENT_INDEX[short_field] value = utils._parse_field(BOXSCORE_SCHEME, boxscore, short_field, index) setattr(self, field, value) self._parse_game_date_and_location(boxscore) self._away_players, self._home_players = self._find_players(boxscore) @property def dataframe(self): """ Returns a pandas DataFrame containing all other class properties and values. The index for the DataFrame is the string URI that is used to instantiate the class, such as 'BOS201806070'. """ if self._away_runs is None and self._home_runs is None: return None fields_to_include = { 'date': self.date, 'time': self.time, 'venue': self.venue, 'attendance': self.attendance, 'duration': self.duration, 'time_of_day': self.time_of_day, 'winner': self.winner, 'winning_name': self.winning_name, 'winning_abbr': self.winning_abbr, 'losing_name': self.losing_name, 'losing_abbr': self.losing_abbr, 'away_at_bats': self.away_at_bats, 'away_runs': self.away_runs, 'away_hits': self.away_hits, 'away_rbi': self.away_rbi, 'away_earned_runs': self.away_earned_runs, 'away_bases_on_balls': self.away_bases_on_balls, 'away_strikeouts': self.away_strikeouts, 'away_plate_appearances': self.away_plate_appearances, 'away_batting_average': self.away_batting_average, 'away_on_base_percentage': self.away_on_base_percentage, 'away_slugging_percentage': self.away_slugging_percentage, 'away_on_base_plus': self.away_on_base_plus, 'away_pitches': self.away_pitches, 'away_strikes': self.away_strikes, 'away_win_probability_for_offensive_player': self.away_win_probability_for_offensive_player, 'away_average_leverage_index': self.away_average_leverage_index, 'away_win_probability_added': self.away_win_probability_added, 'away_win_probability_subtracted': self.away_win_probability_subtracted, 'away_base_out_runs_added': self.away_base_out_runs_added, 'away_putouts': self.away_putouts, 'away_assists': self.away_assists, 'away_innings_pitched': self.away_innings_pitched, 'away_home_runs': self.away_home_runs, 'away_strikes_by_contact': self.away_strikes_by_contact, 'away_strikes_swinging': self.away_strikes_swinging, 'away_strikes_looking': self.away_strikes_looking, 'away_grounded_balls': self.away_grounded_balls, 'away_fly_balls': self.away_fly_balls, 'away_line_drives': self.away_line_drives, 'away_unknown_bat_type': self.away_unknown_bat_type, 'away_game_score': self.away_game_score, 'away_inherited_runners': self.away_inherited_runners, 'away_inherited_score': self.away_inherited_score, 'away_win_probability_by_pitcher': self.away_win_probability_by_pitcher, 'away_base_out_runs_saved': self.away_base_out_runs_saved, 'home_at_bats': self.home_at_bats, 'home_runs': self.home_runs, 'home_hits': self.home_hits, 'home_rbi': self.home_rbi, 'home_earned_runs': self.home_earned_runs, 'home_bases_on_balls': self.home_bases_on_balls, 'home_strikeouts': self.home_strikeouts, 'home_plate_appearances': self.home_plate_appearances, 'home_batting_average': self.home_batting_average, 'home_on_base_percentage': self.home_on_base_percentage, 'home_slugging_percentage': self.home_slugging_percentage, 'home_on_base_plus': self.home_on_base_plus, 'home_pitches': self.home_pitches, 'home_strikes': self.home_strikes, 'home_win_probability_for_offensive_player': self.home_win_probability_for_offensive_player, 'home_average_leverage_index': self.home_average_leverage_index, 'home_win_probability_added': self.home_win_probability_added, 'home_win_probability_subtracted': self.home_win_probability_subtracted, 'home_base_out_runs_added': self.home_base_out_runs_added, 'home_putouts': self.home_putouts, 'home_assists': self.home_assists, 'home_innings_pitched': self.home_innings_pitched, 'home_home_runs': self.home_home_runs, 'home_strikes_by_contact': self.home_strikes_by_contact, 'home_strikes_swinging': self.home_strikes_swinging, 'home_strikes_looking': self.home_strikes_looking, 'home_grounded_balls': self.home_grounded_balls, 'home_fly_balls': self.home_fly_balls, 'home_line_drives': self.home_line_drives, 'home_unknown_bat_type': self.home_unknown_bat_type, 'home_game_score': self.home_game_score, 'home_inherited_runners': self.home_inherited_runners, 'home_inherited_score': self.home_inherited_score, 'home_win_probability_by_pitcher': self.home_win_probability_by_pitcher, 'home_base_out_runs_saved': self.home_base_out_runs_saved } return pd.DataFrame([fields_to_include], index=[self._uri]) @property def away_players(self): """ Returns a ``list`` of ``BoxscorePlayer`` class instances for each player on the away team. """ return self._away_players @property def home_players(self): """ Returns a ``list`` of ``BoxscorePlayer`` class instances for each player on the home team. """ return self._home_players @property def date(self): """ Returns a ``string`` of the date the game took place. """ return self._date @property def time(self): """ Returns a ``string`` of the time the game started. """ return self._time @property def venue(self): """ Returns a ``string`` of the name of the ballpark where the game was played. """ return self._venue @int_property_decorator def attendance(self): """ Returns an ``int`` of the game's listed attendance. """ return self._attendance @property def duration(self): """ Returns a ``string`` of the game's duration in the format 'H:MM'. """ return self._duration @property def time_of_day(self): """ Returns a ``string`` constant indicated whether the game was played during the day or at night. """ if 'night' in self._time_of_day.lower(): return NIGHT return DAY @property def winner(self): """ Returns a ``string`` constant indicating whether the home or away team won. """ if self.home_runs > self.away_runs: return HOME return AWAY @property def winning_name(self): """ Returns a ``string`` of the winning team's name, such as 'Houston Astros'. """ if self.winner == HOME: return self._home_name.text() return self._away_name.text() @property def winning_abbr(self): """ Returns a ``string`` of the winning team's abbreviation, such as 'HOU' for the Houston Astros. """ if self.winner == HOME: return utils._parse_abbreviation(self._home_name) return utils._parse_abbreviation(self._away_name) @property def losing_name(self): """ Returns a ``string`` of the losing team's name, such as 'Los Angeles Dodgers'. """ if self.winner == HOME: return self._away_name.text() return self._home_name.text() @property def losing_abbr(self): """ Returns a ``string`` of the losing team's abbreviation, such as 'LAD' for the Los Angeles Dodgers. """ if self.winner == HOME: return utils._parse_abbreviation(self._away_name) return utils._parse_abbreviation(self._home_name) @int_property_decorator def away_at_bats(self): """ Returns an ``int`` of the number of at bats the away team had. """ return self._away_at_bats @int_property_decorator def away_runs(self): """ Returns an ``int`` of the number of runs the away team scored. """ return self._away_runs @int_property_decorator def away_hits(self): """ Returns an ``int`` of the number of hits the away team had. """ return self._away_hits @int_property_decorator def away_rbi(self): """ Returns an ``int`` of the number of runs batted in the away team registered. """ return self._away_rbi @float_property_decorator def away_earned_runs(self): """ Returns a ``float`` of the number of runs the away team earned. """ return self._away_earned_runs @int_property_decorator def away_bases_on_balls(self): """ Returns an ``int`` of the number of bases the away team registerd as a result of balls. """ return self._away_bases_on_balls @int_property_decorator def away_strikeouts(self): """ Returns an ``int`` of the number of times the away team was struck out. """ return self._away_strikeouts @int_property_decorator def away_plate_appearances(self): """ Returns an ``int`` of the number of plate appearances the away team made. """ return self._away_plate_appearances @float_property_decorator def away_batting_average(self): """ Returns a ``float`` of the batting average for the away team. """ return self._away_batting_average @float_property_decorator def away_on_base_percentage(self): """ Returns a ``float`` of the percentage of at bats that result in the batter getting on base. """ return self._away_on_base_percentage @float_property_decorator def away_slugging_percentage(self): """ Returns a ``float`` of the slugging percentage for the away team based on the number of bases gained per at-bat with bigger plays getting more weight. """ return self._away_slugging_percentage @float_property_decorator def away_on_base_plus(self): """ Returns a ``float`` of the on base percentage plus the slugging percentage. Percentage ranges from 0-1. """ return self._away_on_base_plus @int_property_decorator def away_pitches(self): """ Returns an ``int`` of the number of pitches the away team faced. """ return self._away_pitches @int_property_decorator def away_strikes(self): """ Returns an ``int`` of the number of times a strike was called against the away team. """ return self._away_strikes @float_property_decorator def away_win_probability_for_offensive_player(self): """ Returns a ``float`` of the overall influence the away team's offense had on the outcome of the game where 0.0 denotes no influence and 1.0 denotes the offense was solely responsible for the outcome. """ return self._away_win_probability_for_offensive_player @float_property_decorator def away_average_leverage_index(self): """ Returns a ``float`` of the amount of pressure the away team's pitcher faced during the game. 1.0 denotes average pressure while numbers less than 0 denote lighter pressure. """ return self._away_average_leverage_index @float_property_decorator def away_win_probability_added(self): """ Returns a ``float`` of the total positive influence the away team's offense had on the outcome of the game. """ return self._away_win_probability_added @float_property_decorator def away_win_probability_subtracted(self): """ Returns a ``float`` of the total negative influence the away team's offense had on the outcome of the game. """ return self._away_win_probability_subtracted @float_property_decorator def away_base_out_runs_added(self): """ Returns a ``float`` of the number of base out runs added by the away team. """ return self._away_base_out_runs_added @int_property_decorator def away_putouts(self): """ Returns an ``int`` of the number of putouts the away team registered. """ return self._away_putouts @int_property_decorator def away_assists(self): """ Returns an ``int`` of the number of assists the away team registered. """ return self._away_assists @float_property_decorator def away_innings_pitched(self): """ Returns a ``float`` of the number of innings the away team pitched. """ return self._away_innings_pitched @int_property_decorator def away_home_runs(self): """ Returns an ``int`` of the number of times the away team gave up a home run. """ return self._away_home_runs @int_property_decorator def away_strikes_by_contact(self): """ Returns an ``int`` of the number of times the away team struck out a batter who made contact with the pitch. """ return self._away_strikes_by_contact @int_property_decorator def away_strikes_swinging(self): """ Returns an ``int`` of the number of times the away team struck out a batter who was swinging. """ return self._away_strikes_swinging @int_property_decorator def away_strikes_looking(self): """ Returns an ``int`` of the number of times the away team struck out a batter who was looking. """ return self._away_strikes_looking @int_property_decorator def away_grounded_balls(self): """ Returns an ``int`` of the number of grounded balls the away team allowed. """ return self._away_grounded_balls @int_property_decorator def away_fly_balls(self): """ Returns an ``int`` of the number of fly balls the away team allowed. """ return self._away_fly_balls @int_property_decorator def away_line_drives(self): """ Returns an ``int`` of the number of line drives the away team allowed. """ return self._away_line_drives @int_property_decorator def away_unknown_bat_type(self): """ Returns an ``int`` of the number of away at bats that were not properly tracked and therefore cannot be safely placed in another statistical category. """ return self._away_unknown_bat_type @int_property_decorator def away_game_score(self): """ Returns an ``int`` of the starting away pitcher's score determine by many factors, such as number of runs scored against, number of strikes, etc. """ return self._away_game_score @int_property_decorator def away_inherited_runners(self): """ Returns an ``int`` of the number of runners a pitcher inherited when he entered the game. """ return self._away_inherited_runners @int_property_decorator def away_inherited_score(self): """ Returns an ``int`` of the number of scorers a pitcher inherited when he entered the game. """ return self._away_inherited_score @float_property_decorator def away_win_probability_by_pitcher(self): """ Returns a ``float`` of the amount of influence the away pitcher had on the game's result with 0.0 denoting zero influence and 1.0 denoting he was solely responsible for the team's win. """ return self._away_win_probability_by_pitcher @float_property_decorator def away_base_out_runs_saved(self): """ Returns a ``float`` of the number of runs saved by the away pitcher based on the number of players on bases. 0.0 denotes an average value. """ return self._away_base_out_runs_saved @int_property_decorator def home_at_bats(self): """ Returns an ``int`` of the number of at bats the home team had. """ return self._home_at_bats @int_property_decorator def home_runs(self): """ Returns an ``int`` of the number of runs the home team scored. """ return self._home_runs @int_property_decorator def home_hits(self): """ Returns an ``int`` of the number of hits the home team had. """ return self._home_hits @int_property_decorator def home_rbi(self): """ Returns an ``int`` of the number of runs batted in the home team registered. """ return self._home_rbi @float_property_decorator def home_earned_runs(self): """ Returns a ``float`` of the number of runs the home team earned. """ return self._home_earned_runs @int_property_decorator def home_bases_on_balls(self): """ Returns an ``int`` of the number of bases the home team registerd as a result of balls. """ return self._home_bases_on_balls @int_property_decorator def home_strikeouts(self): """ Returns an ``int`` of the number of times the home team was struck out. """ return self._home_strikeouts @int_property_decorator def home_plate_appearances(self): """ Returns an ``int`` of the number of plate appearances the home team made. """ return self._home_plate_appearances @float_property_decorator def home_batting_average(self): """ Returns a ``float`` of the batting average for the home team. """ return self._home_batting_average @float_property_decorator def home_on_base_percentage(self): """ Returns a ``float`` of the percentage of at bats that result in the batter getting on base. """ return self._home_on_base_percentage @float_property_decorator def home_slugging_percentage(self): """ Returns a ``float`` of the slugging percentage for the home team based on the number of bases gained per at-bat with bigger plays getting more weight. """ return self._home_slugging_percentage @float_property_decorator def home_on_base_plus(self): """ Returns a ``float`` of the on base percentage plus the slugging percentage. Percentage ranges from 0-1. """ return self._home_on_base_plus @int_property_decorator def home_pitches(self): """ Returns an ``int`` of the number of pitches the home team faced. """ return self._home_pitches @int_property_decorator def home_strikes(self): """ Returns an ``int`` of the number of times a strike was called against the home team. """ return self._home_strikes @float_property_decorator def home_win_probability_for_offensive_player(self): """ Returns a ``float`` of the overall influence the home team's offense had on the outcome of the game where 0.0 denotes no influence and 1.0 denotes the offense was solely responsible for the outcome. """ return self._home_win_probability_for_offensive_player @float_property_decorator def home_average_leverage_index(self): """ Returns a ``float`` of the amount of pressure the home team's pitcher faced during the game. 1.0 denotes average pressure while numbers less than 0 denote lighter pressure. """ return self._home_average_leverage_index @float_property_decorator def home_win_probability_added(self): """ Returns a ``float`` of the total positive influence the home team's offense had on the outcome of the game. """ return self._home_win_probability_added @float_property_decorator def home_win_probability_subtracted(self): """ Returns a ``float`` of the total negative influence the home team's offense had on the outcome of the game. """ return self._home_win_probability_subtracted @float_property_decorator def home_base_out_runs_added(self): """ Returns a ``float`` of the number of base out runs added by the home team. """ return self._home_base_out_runs_added @int_property_decorator def home_putouts(self): """ Returns an ``int`` of the number of putouts the home team registered. """ return self._home_putouts @int_property_decorator def home_assists(self): """ Returns an ``int`` of the number of assists the home team registered. """ return self._home_assists @float_property_decorator def home_innings_pitched(self): """ Returns a ``float`` of the number of innings the home team pitched. """ return self._home_innings_pitched @int_property_decorator def home_home_runs(self): """ Returns an ``int`` of the number of times the home team gave up a home run. """ return self._home_home_runs @int_property_decorator def home_strikes_by_contact(self): """ Returns an ``int`` of the number of times the home team struck out a batter who made contact with the pitch. """ return self._home_strikes_by_contact @int_property_decorator def home_strikes_swinging(self): """ Returns an ``int`` of the number of times the home team struck out a batter who was swinging. """ return self._home_strikes_swinging @int_property_decorator def home_strikes_looking(self): """ Returns an ``int`` of the number of times the home team struck out a batter who was looking. """ return self._home_strikes_looking @int_property_decorator def home_grounded_balls(self): """ Returns an ``int`` of the number of grounded balls the home team allowed. """ return self._home_grounded_balls @int_property_decorator def home_fly_balls(self): """ Returns an ``int`` of the number of fly balls the home team allowed. """ return self._home_fly_balls @int_property_decorator def home_line_drives(self): """ Returns an ``int`` of the number of line drives the home team allowed. """ return self._home_line_drives @int_property_decorator def home_unknown_bat_type(self): """ Returns an ``int`` of the number of home at bats that were not properly tracked and therefore cannot be safely placed in another statistical category. """ return self._home_unknown_bat_type @int_property_decorator def home_game_score(self): """ Returns an ``int`` of the starting home pitcher's score determine by many factors, such as number of runs scored against, number of strikes, etc. """ return self._home_game_score @int_property_decorator def home_inherited_runners(self): """ Returns an ``int`` of the number of runners a pitcher inherited when he entered the game. """ return self._home_inherited_runners @int_property_decorator def home_inherited_score(self): """ Returns an ``int`` of the number of scorers a pitcher inherited when he entered the game. """ return self._home_inherited_score @float_property_decorator def home_win_probability_by_pitcher(self): """ Returns a ``float`` of the amount of influence the home pitcher had on the game's result with 0.0 denoting zero influence and 1.0 denoting he was solely responsible for the team's win. """ return self._home_win_probability_by_pitcher @float_property_decorator def home_base_out_runs_saved(self): """ Returns a ``float`` of the number of runs saved by the home pitcher based on the number of players on bases. 0.0 denotes an average value. """ return self._home_base_out_runs_saved class Boxscores: """ Search for MLB games taking place on a particular day. Retrieve a dictionary which contains a list of all games being played on a particular day. Output includes a link to the boxscore, and the names and abbreviations for both the home teams. If no games are played on a particular day, the list will be empty. Parameters ---------- date : datetime object The date to search for any matches. The month, day, and year are required for the search, but time is not factored into the search. end_date : datetime object (optional) Optionally specify an end date to iterate until. All boxscores starting from the date specified in the 'date' parameter up to and including the boxscores specified in the 'end_date' parameter will be pulled. If left empty, or if 'end_date' is prior to 'date', only the games from the day specified in the 'date' parameter will be saved. """ def __init__(self, date, end_date=None): self._boxscores = {} self._find_games(date, end_date) @property def games(self): """ Returns a ``dictionary`` object representing all of the games played on the requested day. Dictionary is in the following format:: { 'date': [ # 'date' is the string date in format 'MM-DD-YYYY' { 'home_name': Name of the home team, such as 'New York Yankees' (`str`), 'home_abbr': Abbreviation for the home team, such as 'NYY' (`str`), 'away_name': Name of the away team, such as 'Houston Astros' (`str`), 'away_abbr': Abbreviation for the away team, such as 'HOU' (`str`), 'boxscore': String representing the boxscore URI, such as 'SLN/SLN201807280' (`str`), 'winning_name': Full name of the winning team, such as 'New York Yankees' (`str`), 'winning_abbr': Abbreviation for the winning team, such as 'NYY' (`str`), 'losing_name': Full name of the losing team, such as 'Houston Astros' (`str`), 'losing_abbr': Abbreviation for the losing team, such as 'HOU' (`str`), 'home_score': Integer score for the home team (`int`), 'away_score': Integer score for the away team (`int`) }, { ... }, ... ] } If no games were played on 'date', the list for ['date'] will be empty. """ return self._boxscores def _create_url(self, date): """ Build the URL based on the passed datetime object. In order to get the proper boxscore page, the URL needs to include the requested month, day, and year. Parameters ---------- date : datetime object The date to search for any matches. The month, day, and year are required for the search, but time is not factored into the search. Returns ------- string Returns a ``string`` of the boxscore URL including the requested date. """ return BOXSCORES_URL % (date.year, date.month, date.day) def _get_requested_page(self, url): """ Get the requested page. Download the requested page given the created URL and return a PyQuery object. Parameters ---------- url : string The URL containing the boxscores to find. Returns ------- PyQuery object A PyQuery object containing the HTML contents of the requested page. """ return pq(url) def _get_boxscore_uri(self, url): """ Find the boxscore URI. Given the boxscore tag for a game, parse the embedded URI for the boxscore. Parameters ---------- url : PyQuery object A PyQuery object containing the game's boxscore tag which has the boxscore URI embedded within it. Returns ------- string Returns a ``string`` containing the link to the game's boxscore page. """ uri = re.sub(r'.*/boxes/', '', str(url)) uri = re.sub(r'\.shtml.*', '', uri).strip() return uri def _parse_abbreviation(self, abbr): """ Parse a team's abbreviation. Given the team's HTML name tag, parse their abbreviation. Parameters ---------- abbr : string A string of a team's HTML name tag. Returns ------- string Returns a ``string`` of the team's abbreviation. """ abbr = re.sub(r'.*/teams/', '', str(abbr)) abbr = re.sub(r'/.*', '', abbr) return abbr def _get_name(self, name): """ Find a team's name and abbreviation. Given the team's HTML name tag, determine their name, and abbreviation. Parameters ---------- name : PyQuery object A PyQuery object of a team's HTML name tag in the boxscore. Returns ------- tuple Returns a tuple containing the name and abbreviation for a team. Tuple is in the following order: Team Name, Team Abbreviation. """ team_name = name.text() abbr = self._parse_abbreviation(name) return team_name, abbr def _get_score(self, score_link): """ Find a team's final score. Given an HTML string of a team's boxscore, extract the integer representing the final score and return the number. Parameters ---------- score_link : string An HTML string representing a team's final score in the format '<td class="right">NN</td>' where 'NN' is the team's score. Returns ------- int Returns an int representing the team's final score in runs. """ score = score_link.replace('<td class="right">', '') score = score.replace('</td>', '') return int(score) def _get_team_details(self, game): """ Find the names and abbreviations for both teams in a game. Using the HTML contents in a boxscore, find the name and abbreviation for both teams. Parameters ---------- game : PyQuery object A PyQuery object of a single boxscore containing information about both teams. Returns ------- tuple Returns a tuple containing the names and abbreviations of both teams in the following order: Away Name, Away Abbreviation, Away Score, Home Name, Home Abbreviation, Home Score. """ links = [i for i in game('td a').items()] # The away team is the first link in the boxscore away = links[0] # The home team is the last (3rd) link in the boxscore home = links[-1] scores = re.findall(r'<td class="right">\d+</td>', str(game)) away_score = None home_score = None # If the game hasn't started or hasn't been updated on sports-reference # yet, no score will be shown and therefore can't be parsed. if len(scores) == 2: away_score = self._get_score(scores[0]) home_score = self._get_score(scores[1]) away_name, away_abbr = self._get_name(away) home_name, home_abbr = self._get_name(home) return (away_name, away_abbr, away_score, home_name, home_abbr, home_score) def _get_team_results(self, team_result_html): """ Extract the winning or losing team's name and abbreviation. Depending on which team's data field is passed (either the winner or loser), return the name and abbreviation of that team to denote which team won and which lost the game. Parameters ---------- team_result_html : PyQuery object A PyQuery object representing either the winning or losing team's data field within the boxscore. Returns ------- tuple Returns a tuple of the team's name followed by the abbreviation. """ link = [i for i in team_result_html('td a').items()] # If there are no links, the boxscore is likely misformed and can't be # parsed. In this case, the boxscore should be skipped. if len(link) < 1: return None name, abbreviation = self._get_name(link[0]) return name, abbreviation def _extract_game_info(self, games): """ Parse game information from all boxscores. Find the major game information for all boxscores listed on a particular boxscores webpage and return the results in a list. Parameters ---------- games : generator A generator where each element points to a boxscore on the parsed boxscores webpage. Returns ------- list Returns a ``list`` of dictionaries where each dictionary contains the name and abbreviations for both the home and away teams, and a link to the game's boxscore. """ all_boxscores = [] for game in games: details = self._get_team_details(game) away_name, away_abbr, away_score, home_name, home_abbr, \ home_score = details boxscore_url = game('td[class="right gamelink"] a') boxscore_uri = self._get_boxscore_uri(boxscore_url) losers = [l for l in game('tr[class="loser"]').items()] winner = self._get_team_results(game('tr[class="winner"]')) loser = self._get_team_results(game('tr[class="loser"]')) # Occurs when the boxscore format is invalid and the game should be # skipped to avoid conflicts populating the game information. if (len(losers) != 2 and loser and not winner) or \ (len(losers) != 2 and winner and not loser): continue # Occurs when information couldn't be parsed from the boxscore or # the game hasn't occurred yet. In this case, the winner should be # None to avoid conflicts. if not winner or len(losers) == 2: winning_name = None winning_abbreviation = None else: winning_name, winning_abbreviation = winner # Occurs when information couldn't be parsed from the boxscore or # the game hasn't occurred yet. In this case, the winner should be # None to avoid conflicts. if not loser or len(losers) == 2: losing_name = None losing_abbreviation = None else: losing_name, losing_abbreviation = loser game_info = { 'boxscore': boxscore_uri, 'away_name': away_name, 'away_abbr': away_abbr, 'away_score': away_score, 'home_name': home_name, 'home_abbr': home_abbr, 'home_score': home_score, 'winning_name': winning_name, 'winning_abbr': winning_abbreviation, 'losing_name': losing_name, 'losing_abbr': losing_abbreviation } all_boxscores.append(game_info) return all_boxscores def _find_games(self, date, end_date): """ Retrieve all major games played on a given day. Builds a URL based on the requested date and downloads the HTML contents before parsing any and all games played during that day. Any games that are found are added to the boxscores dictionary with high-level game information such as the home and away team names and a link to the boxscore page. Parameters ---------- date : datetime object The date to search for any matches. The month, day, and year are required for the search, but time is not factored into the search. end_date : datetime object (optional) Optionally specify an end date to iterate until. All boxscores starting from the date specified in the 'date' parameter up to and including the boxscores specified in the 'end_date' parameter will be pulled. If left empty, or if 'end_date' is prior to 'date', only the games from the day specified in the 'date' parameter will be saved. """ # Set the end date to the start date if the end date is before the # start date. if not end_date or date > end_date: end_date = date date_step = date while date_step <= end_date: url = self._create_url(date_step) page = self._get_requested_page(url) games = page('table[class="teams"]').items() boxscores = self._extract_game_info(games) timestamp = '%s-%s-%s' % (date_step.month, date_step.day, date_step.year) self._boxscores[timestamp] = boxscores date_step += timedelta(days=1)
[ "ajfornaca00@gmail.com" ]
ajfornaca00@gmail.com
cc29071f7afda7eb0d4e1f64e8ee6ec5a02e93fd
1375f57f96c4021f8b362ad7fb693210be32eac9
/kubernetes/test/test_v2alpha1_horizontal_pod_autoscaler_list.py
0ec877e8359999bd271c0535d574564c381630b9
[ "Apache-2.0" ]
permissive
dawidfieluba/client-python
92d637354e2f2842f4c2408ed44d9d71d5572606
53e882c920d34fab84c76b9e38eecfed0d265da1
refs/heads/master
2021-12-23T20:13:26.751954
2017-10-06T22:29:14
2017-10-06T22:29:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,023
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.7.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v2alpha1_horizontal_pod_autoscaler_list import V2alpha1HorizontalPodAutoscalerList class TestV2alpha1HorizontalPodAutoscalerList(unittest.TestCase): """ V2alpha1HorizontalPodAutoscalerList unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV2alpha1HorizontalPodAutoscalerList(self): """ Test V2alpha1HorizontalPodAutoscalerList """ model = kubernetes.client.models.v2alpha1_horizontal_pod_autoscaler_list.V2alpha1HorizontalPodAutoscalerList() if __name__ == '__main__': unittest.main()
[ "mehdy@google.com" ]
mehdy@google.com
3fbdf0023c9ffb85017d96d5d5f3397f36af5f0c
2c6f4f3afbf4ddb4df79877ff3f4fa7748819117
/MiniFlash/MiniFlash/wsgi.py
b74f588ce0874b2af52db1b99442bc84f5b0461d
[]
no_license
juree/MiniFlash
ccf8064b3b40fe9a7fa43baee3a8f4c32ba57eed
4fc1b957f473c9dc22e3cbeb55c1eaa39f15454d
refs/heads/master
2020-04-06T05:13:37.637203
2014-09-24T13:41:32
2014-09-24T13:41:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
""" WSGI config for MiniFlash project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "MiniFlash.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
[ "nejc.il92@gmail.com" ]
nejc.il92@gmail.com
e2f9404bcc14f3e91ba1077a654b24afc62b635f
12e1fcbeb0bb0c3866e9aa863016ebf5b8cf6fa9
/torch/torch_net.py
5e72c05b9578ebd1f08c20941d7e85bfb42276f8
[]
no_license
Grid-Gudx/sound_classification
0eee6c523e5c6732ce4456a297757ef20015753c
c79a83b5882c1b386254a33b2ac9ac44d0546f7b
refs/heads/main
2023-08-18T14:51:33.181996
2021-09-15T07:54:53
2021-09-15T07:54:53
403,004,685
2
0
null
null
null
null
UTF-8
Python
false
false
3,857
py
# -*- coding: utf-8 -*- """ Created on Wed Sep 8 13:39:05 2021 @author: gdx """ import torch import torch.nn as nn import torchvision.models as models from torchsummary import summary import torch.nn.functional as F class CNN(nn.Module): """ input_shape: batchsize * 1 * 640 output_shape: batchsize * num_labels """ def __init__(self): super(CNN, self).__init__() self.stage1 = nn.Sequential( nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3, stride=1,padding=1), nn.BatchNorm1d(16), nn.Conv1d(16, 16, 3, 1, 1), nn.BatchNorm1d(16), nn.ReLU(True), nn.MaxPool1d(kernel_size=2, stride=2), nn.Conv1d(16, 32, 3, 1, 1), nn.BatchNorm1d(32), nn.Conv1d(32, 32, 3, 1, 1), nn.BatchNorm1d(32), nn.ReLU(True), nn.MaxPool1d(2, 2), nn.Conv1d(32, 64, 3, 1, 1), nn.BatchNorm1d(64), nn.Conv1d(64, 64, 3, 1, 1), nn.BatchNorm1d(64), nn.ReLU(True), nn.MaxPool1d(2, 2), nn.Conv1d(64, 128, 3, 1, 1), nn.BatchNorm1d(128), nn.Conv1d(128, 128, 3, 1, 1), nn.BatchNorm1d(128), nn.ReLU(True), nn.MaxPool1d(2, 2) ) def forward(self, x): x=x.float() x = self.stage1(x) return x class My_resnet18(nn.Module): def __init__(self, num_class): super(My_resnet18, self).__init__() resnet18 = models.resnet18(pretrained=True) resnet_layer = nn.Sequential(*list(mobilenet.children())[:-1]) self.resnet = resnet_layer # print(self.resnet) self.fc = nn.Sequential( nn.Dropout(0.2), nn.Linear(512, 128), nn.ReLU(inplace=True), nn.Dropout(0.2), nn.Linear(128, num_class)) def forward(self, x): x = self.resnet(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class My_resnet18(nn.Module): def __init__(self, num_class): super(My_resnet18, self).__init__() self.conv = nn.Conv2d(1, 3, kernel_size=1) # resnet18 = models.resnet18(pretrained=True) mobilenet = models.mobilenet_v2(pretrained=True) resnet_layer = nn.Sequential(*list(mobilenet.children())[:-1]) self.resnet = resnet_layer # print(self.resnet) self.amg = nn.AdaptiveMaxPool2d((1,1)) self.fc = nn.Sequential( nn.Dropout(0.2), nn.Linear(1280, 128), nn.ReLU(inplace=True), nn.Dropout(0.2), nn.Linear(128, num_class)) def forward(self, x): x = self.resnet(x) x = self.amg(x) x = x.view(x.size(0), -1) x = self.fc(x) return x # out = F.softmax(x,dim=1) # if self.training is True: #no activation in training # return x # else: # return out if __name__ == '__main__': net = My_resnet18(num_class=50) for name, param in net.named_parameters(): # print(name) param.requires_grad = False if "fc" in name: param.requires_grad = True mobilenet = models.mobilenet_v2(pretrained=True) resnet_layer = nn.Sequential(*list(mobilenet.children())[:-1]) print(resnet_layer) # fc_features = resnet18.classifier[1].in_features # resnet18.classifier[1] = nn.Linear(fc_features, 2) dummy_input = torch.randn(5,3,100,100) out = net(dummy_input) # out = nn.AdaptiveMaxPool2d((1,1))(out) print(out.shape) summary(net, input_size=(3,100,100)) # torch.onnx.export(resnet18, dummy_input, "./model_struct/resnet18.onnx")
[ "56808862+Grid-Gudx@users.noreply.github.com" ]
56808862+Grid-Gudx@users.noreply.github.com
71428d1c474c76168a12ff0b2d4978909e64c792
d0ae2b5919a2b679a62d70069b5b1531771266d7
/data/bin/pip3.5
853217990c8a2e885ecbc5eae7cee8ec1c301367
[]
no_license
felexkemboi/teamdata
9ac60c8d7f7fba39afd9ce7ff81075f1771d46ac
df683f3561e87c24275967e6ae82fd6da0dc8642
refs/heads/master
2020-03-24T20:53:50.788654
2019-02-05T06:20:36
2019-02-05T06:20:36
143,002,423
1
0
null
null
null
null
UTF-8
Python
false
false
251
5
#!/home/limo/Desktop/Django/teamdata/data/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "felokemboi10@gmail.com" ]
felokemboi10@gmail.com
07e2328efa9184c76f36bc7feaf15a3d6ab7ec09
a2736eb0f99b9316fba5194c8b2cc4b084f3bf13
/src/behavior/normal.py
421a90f43bcd2bddb876e8b79d11561b7bbe2ab5
[]
no_license
tlelepvriercussol/primitiveWS
e9c1205821bd5689b66c986024c3027d783b0143
67cfa60b60441df11bd8a797f0fc16caf1f0a57c
refs/heads/master
2021-01-18T13:28:25.076762
2016-01-16T10:11:46
2016-01-16T10:11:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
764
py
import time import pypot.primitive class NormalBehave(pypot.primitive.Primitive): "A behave to put all motors at 0" def run(self): poppy = self.robot for m in poppy.motors: m.compliant = False for m in poppy.torso + poppy.head: m.goto_position(0, 2) poppy.l_shoulder_y.goto_position(-8, 2) poppy.l_shoulder_x.goto_position(10, 2) poppy.l_arm_z.goto_position(20, 2) poppy.l_elbow_y.goto_position(-25, 2) poppy.r_shoulder_y.goto_position(-8, 2) poppy.r_shoulder_x.goto_position(-10, 2) poppy.r_arm_z.goto_position(-20, 2) poppy.r_elbow_y.goto_position(-25, 2, wait=True) for m in poppy.arms: m.compliant = True
[ "tom.lelep@free.fr" ]
tom.lelep@free.fr
7954f5dc67cd69db54a0bcb6a07e2a4c98ca869f
5e1385521729efb8a5e90af19638dc43c2fadb88
/day14/p1.py
a052874a1d91c68ab508602bb2193bac03186e6e
[]
no_license
pwicks86/adventofcode2017
d8557f1496af0393b58e669f7f3c78a95565e871
11b5bd06ed900b857e726649c8ad2b8d619c2172
refs/heads/master
2021-08-30T16:17:15.609771
2017-12-18T15:59:21
2017-12-18T15:59:21
112,669,332
0
0
null
null
null
null
UTF-8
Python
false
false
1,000
py
from functools import reduce def knot_hash(s): skip_size = 0 cur_pos = 0 lens = [ord(c) for c in s] lens.extend([17, 31, 73, 47, 23]) nums = list(range(256)) for r in range(64): for l in lens: start = cur_pos end = start + l # reverse for i in range(l/2): b = (end - i - 1) % len(nums) a = (start + i) % len(nums) temp = nums[a] nums[a] = nums[b] nums[b] = temp # adjust cur cur_pos = cur_pos + l + skip_size skip_size += 1 dense = [] for i in range(16): block = nums[i * 16: (i + 1) * 16] x = reduce(lambda a, b: a ^ b, block, 0) dense.append(x) return "".join(("{0:b}".format(b) for b in dense)) instr = "ugkiagan" full = 0 for i in range(128): hashstr = instr + "-" + str(i) hashed = knot_hash(hashstr) full += hashed.count("1") print(full)
[ "pwicks86@gmail.com" ]
pwicks86@gmail.com
76af1bb31f3ea7a072427fe48eccc9c878f5d40d
34f508116dc30ebefc5b7c604e28396296dfc438
/real_time_curriculum.py
99d362f9d25f5d3be461cd1f2d34c4863cfe0567
[]
no_license
mlaico/cbas
8038a1b1e09da21910b1019f5c5840814e7dad74
b1fa2829568e0b9d672930a27181642c494af16f
refs/heads/master
2020-03-14T04:08:09.334524
2018-05-10T15:46:10
2018-05-10T15:46:10
131,435,161
2
0
null
null
null
null
UTF-8
Python
false
false
5,030
py
import torch import torchvision import torchvision.transforms as transforms from torch.utils.data.sampler import Sampler import matplotlib.pyplot as plt import numpy as np from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch import Tensor class MySampler(Sampler): def __init__(self, data_source): self.data_source = data_source self.random_list = None def __iter__(self): self.random_list = torch.randperm(len(self.data_source)).tolist() return iter(self.random_list) def get_idx(self): return self.random_list def __len__(self): return len(self.data_source) class MyWeightedSampler(Sampler): def __init__(self, weights, num_samples, replacement=True): self.weights = torch.DoubleTensor(weights) self.num_samples = num_samples self.replacement = replacement self.random_list = None def __iter__(self): ret = torch.multinomial(self.weights, self.num_samples, self.replacement) self.random_list = ret.numpy().tolist() return iter(ret) def get_idx(self): return self.random_list def __len__(self): return self.num_samples def normal_weights(losses, mu=None): mu, var = mu if mu else np.mean(losses), np.var(losses) return (1/(np.sqrt(np.pi*2*var)))*np.exp(-((losses-mu)**2)/(2*var)) def real_time(training_set, model, loss_fn, optimizer, deviations): """ training_set: class type 'torchvision.datasets.ImageFolder' deviations: a sequence of standard deviations scalars to be applied to the sampling distribution's mean to determine the probability of sampling and image with a given loss value. If set to [0...0], the probability of sampling each image (based on loss value) will be determined by the normal distribution's pdf. If deviation = -1, probability will be dictated by a normal dist with shifted mean mean(loss) -1*std(loss). This in effect allows us to shift the difficulty of training images over each epoch. Images are sampled with replacement, so we can shift the focus from easy to hard. For example: [-1, 0, 1] samples from a normal distribution centered at mean(loss) -1*std(loss), mean(loss), then mean(loss) + 1*std(loss) for the training epochs. Note: number of epochs == len(deviations) + 1 (+1 for the initial training epoch) """ def real_time_curriculum(sampler, loader, net, criterion, optimizer): orderings = [] running_loss = 0.0 for i, data in enumerate(loader, 0): # get the inputs inputs, labels = data try: numpy_labels = labels.numpy() except: numpy_labels = labels.data.numpy() # wrap them in Variable inputs, labels = Variable(inputs), Variable(labels) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) try: numpy_outputs = outputs.numpy() except: numpy_outputs = outputs.data.numpy() log_probs = -np.log(np.exp(numpy_outputs) / np.reshape(np.sum(np.exp(numpy_outputs), axis=1), (numpy_labels.shape[0], 1))) orderings += log_probs[:, numpy_labels].tolist()[0] loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.data[0] if i % 2000 == 1999: # print every 2000 mini-batches print('%5d loss: %.3f' % (i + 1, running_loss / 2000)) running_loss = 0.0 idx = np.argsort(np.array(sampler.get_idx())) culmulative_orderings = np.array(orderings)[idx] return culmulative_orderings my_sampler = MySampler(training_set) trainloader = torch.utils.data.DataLoader( training_set, batch_size=4, shuffle=False, sampler=my_sampler, num_workers=4) print("epoch #1") real_time_curr = \ real_time_curriculum(my_sampler, trainloader, model, loss_fn, optimizer) epoch = 1 num_samples = real_time_curr.shape[0] for deviation in deviations: epoch += 1 print("epoch #%d" % epoch) weights = normal_weights(real_time_curr, np.mean(real_time_curr) + deviation * np.std(real_time_curr)) weight_denom = np.sum(weights) weight_denom = weight_denom if weight_denom != 0 else (1/1e30) weights = weights / weight_denom sampler = MyWeightedSampler(weights, num_samples, replacement=True) real_time_curriculum_loader = \ torch.utils.data.DataLoader(training_set, batch_size=4, shuffle=False, sampler=sampler, num_workers=4) real_time_curr = \ real_time_curriculum(sampler, real_time_curriculum_loader, model, loss_fn, optimizer)
[ "airmanfair@Davids-MacBook-Pro-5.local" ]
airmanfair@Davids-MacBook-Pro-5.local
044b5038b2dc6e08eec058794d0aab40e361ee05
a24be055d6df91f7d9df033b6986c228162b2e39
/setup.py
4775973d0d595192477681ffb0320c56267fc8da
[ "Apache-2.0" ]
permissive
mbukatov/tox-sitepackages-reproducer
38c1542665258fbcc7e23080d26608443d1541a2
91fe327f5f8d725f70f24598540577f02e9fd559
refs/heads/master
2021-01-17T17:26:25.033849
2017-02-27T10:12:43
2017-02-27T10:39:55
82,937,340
0
0
null
null
null
null
UTF-8
Python
false
false
457
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup, find_packages setup( name='reproducer', version='0.0.1', author='Martin Bukatovič', author_email='mbukatov@redhat.com', license='Apache 2.0', url='https://github.com/mbukatov/tox-sitepackages-reproducer', description='Reproducer for tox issue #461', packages=find_packages(exclude=['tests']), install_requires=["lxml", "kernelconfig"], )
[ "mbukatov@redhat.com" ]
mbukatov@redhat.com
ec7444a5624a66b29237d928f9130d95128e3637
f5bf18ababaa8ca5bed2ab1af4cb0349ec5284e1
/Python/urlshortener/url/models.py
a889d3b1278ea6469961baa2f143fa7d2f67eccb
[]
no_license
rgsriram/Personal-Projects
c0377524f8d7e8f56940b24bfeacf243bb603917
44c634080e270bdee375cf6fee9ca6c313b80a1b
refs/heads/master
2023-03-03T16:34:05.542497
2023-02-20T13:57:00
2023-02-20T13:57:00
125,975,423
0
0
null
2022-01-21T19:36:05
2018-03-20T07:08:27
Java
UTF-8
Python
false
false
519
py
from django.utils import timezone from mongoengine import * class URL(Document): long_url = StringField(max_length=500) short_url = StringField(max_length=500) created_at = DateTimeField(default=timezone.now(), help_text='Url added at') no_of_clicks = IntField(default=0) domain = StringField(max_length=200, default=None, null=True) # In case of having expiring time for urls. expire_at = DateTimeField(default=None, help_text='Url expire at') is_purged = BooleanField(default=False)
[ "srignsh22@gmail.com" ]
srignsh22@gmail.com
2c4990087a05486cd48b5d4446694d10cd2be69c
044967f71c1a7b21163eb995165ea1bfcfc9c0fa
/text_processor.py
490773c6fe588e00b776d0af836de5d60dbe0b21
[]
no_license
H-Yin/owl
bc12d5388a3408c3c1b4d4048654a9f0770d6697
990f50cc083bf3baec01f846edf7b42449e58401
refs/heads/master
2021-06-23T17:05:30.299153
2017-08-17T01:15:25
2017-08-17T01:15:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,602
py
# *--coding:utf-8--* from datetime import datetime import traceback; import nltk from nltk.stem.lancaster import LancasterStemmer from nltk.corpus import stopwords, brown class TextProcessor(object): ''' process text inputed by user ''' def __init__(self, text=""): # text inputed by user self.text = text def __get_corrected_pos__(self, words_tagged=[]): ''' correcte words pos based on brown ''' def get_word_pos(word_set=None, word=""): ''' get word's pos and its frequent according to brown ''' tags = [_tag for (_word, _tag) in word_set if _word == word.lower()] # word exissts in brown if tags: # calculate frequent of word's tags frequent = nltk.FreqDist(tags) # get the most probable pos return frequent.max() else: return "" # corrected word and its pos words_corrected_tag = [] # get brown tagged words brown_tagged = brown.tagged_words(categories=['reviews', 'editorial']) # get stopwords in English stopwords_list = stopwords.words('english') # correct word's pos one-by-one for word, word_pos in words_tagged: # if word_pos[:2] in ['JJ', 'NN', 'VB']: if word not in stopwords_list and word_pos[0:2] not in ['VB', 'JJ', 'CD']: # get tagged word's pos temp_word_pos = get_word_pos(word_set=brown_tagged, word=word) if temp_word_pos: # use tagged word's pos words_corrected_tag.append((word, temp_word_pos)) else: # self-defined pos for words patterns = [ (r'.*[ts]ion$', 'NNP'), (r'.*om[ae]$', 'NNP'), (r'.*[tsl]is$', 'NNP'), (r'.*[cd]er$', 'NNP'), (r'.*[mnpsxd]ia$', 'NNP'), (r'.*[pt]hy$', 'NNP'), (r'.*asm$', 'NNP'), (r'.*mor$', 'NNP'), (r'.*ncy$', 'NNP'), (r'.*', 'NN') # nouns (default) ] # create a regexp tagger regexp_tagger = nltk.RegexpTagger(patterns) # tag word by regexp tagger temp_word, temp_word_pos = regexp_tagger.tag([word, ])[0] words_corrected_tag.append((temp_word, temp_word_pos)) else: words_corrected_tag.append((word, word_pos)) return words_corrected_tag def __get_chunck__(self, words_tagged=[]): ''' get NP-chunck of tagged words ''' chunck = [] if words_tagged: try: # create grammer basic_grammar = r'''NP: {<JJ|VBD|VBG|NN.*>*<NN.*>+<CD>?}''' # create parser regexp_parser = nltk.RegexpParser(basic_grammar) # generate grammer tree result_tree = regexp_parser.parse(words_tagged) # extract 'NP' subtree for subtree in result_tree.subtrees(): if subtree.label() == 'NP': # create a chunck by joining words chunck.append(" ".join([word for (word, pos) in subtree.leaves()])) except: traceback.print_exc() return chunck def get_keywords(self): ''' get keyword list from text ''' keywords = [] # word tokenize words = nltk.word_tokenize(self.text) # tag words words_tagged = nltk.pos_tag(words) #print words_tagged # corrected word's pos words_corrected_tag = self.__get_corrected_pos__(words_tagged=words_tagged) #print words_corrected_tag # get NP-chunck keywords.extend(self.__get_chunck__(words_corrected_tag)) # remove duplicates return list(set(keywords)) if __name__ == "__main__": text = "What made you want to look up Waardenburg syndrome?" text2 = "Waardenburg syndrome is usually inherited in an autosomal dominant pattern, which means one copy of the altered gene is sufficient to cause the disorder. " start = datetime.now() text_processor = TextProcessor(text = text) print text_processor.get_keywords() print "Total:", datetime.now()-start
[ "nywzyinhao@163.com" ]
nywzyinhao@163.com
aed4106be15ee2f60d1b655d64c873bd9310833d
31900bdf5648061a3093230711c5394e20b90436
/usr/lib/enigma2/python/Plugins/Extensions/MediaPortal/additions/porn/voyeurhit.py
f04bb7583010ba617ea271edcd837c8a6296914a
[]
no_license
linuxbox10/enigma2-plugin-extensions-mediaportal
aa6f14ecfc42ce91e22c487070541459a1ab820c
e6b388918c186442718e7200e03c83d0db260831
refs/heads/master
2021-05-01T18:50:50.332850
2018-02-10T11:33:48
2018-02-10T11:33:48
121,009,954
0
0
null
null
null
null
UTF-8
Python
false
false
6,738
py
# -*- coding: utf-8 -*- ############################################################################################### # # MediaPortal for Dreambox OS # # Coded by MediaPortal Team (c) 2013-2018 # # This plugin is open source but it is NOT free software. # # This plugin may only be distributed to and executed on hardware which # is licensed by Dream Property GmbH. This includes commercial distribution. # In other words: # It's NOT allowed to distribute any parts of this plugin or its source code in ANY way # to hardware which is NOT licensed by Dream Property GmbH. # It's NOT allowed to execute this plugin and its source code or even parts of it in ANY way # on hardware which is NOT licensed by Dream Property GmbH. # # This applies to the source code as a whole as well as to parts of it, unless # explicitely stated otherwise. # # If you want to use or modify the code or parts of it, # you have to keep OUR license and inform us about the modifications, but it may NOT be # commercially distributed other than under the conditions noted above. # # As an exception regarding execution on hardware, you are permitted to execute this plugin on VU+ hardware # which is licensed by satco europe GmbH, if the VTi image is used on that hardware. # # As an exception regarding modifcations, you are NOT permitted to remove # any copy protections implemented in this plugin or change them for means of disabling # or working around the copy protections, unless the change has been explicitly permitted # by the original authors. Also decompiling and modification of the closed source # parts is NOT permitted. # # Advertising with this plugin is NOT allowed. # For other uses, permission from the authors is necessary. # ############################################################################################### from Plugins.Extensions.MediaPortal.plugin import _ from Plugins.Extensions.MediaPortal.resources.imports import * default_cover = "file://%s/voyeurhit.png" % (config.mediaportal.iconcachepath.value + "logos") class voyeurhitGenreScreen(MPScreen): def __init__(self, session): MPScreen.__init__(self, session, skin='MP_PluginDescr', default_cover=default_cover) self["actions"] = ActionMap(["MP_Actions"], { "ok" : self.keyOK, "0" : self.closeAll, "cancel" : self.keyCancel, "up" : self.keyUp, "down" : self.keyDown, "right" : self.keyRight, "left" : self.keyLeft }, -1) self['title'] = Label("VoyeurHit.com") self['ContentTitle'] = Label("Genre:") self.keyLocked = True self.suchString = '' self.genreliste = [] self.ml = MenuList([], enableWrapAround=True, content=eListboxPythonMultiContent) self['liste'] = self.ml self.onLayoutFinish.append(self.layoutFinished) def layoutFinished(self): self.keyLocked = True url = 'http://voyeurhit.com/categories/' getPage(url).addCallback(self.genreData).addErrback(self.dataError) def genreData(self, data): kats = re.findall('<a class="tooltip".*?href="(.*?)".*?id="(.*?)">.*?<strong>(.*?)</strong>.*?<span>.*?<img src="(.*?)".*?height=".*?".*?width=".*?">',data, re.S) if kats: for (url, id, title, img) in kats: Title = title.replace(' ','').replace('\n','') self.genreliste.append((Title, url, img)) self.genreliste.sort() self.genreliste.insert(0, ("Most Popular", "http://www.voyeurhit.com/most-popular/", default_cover)) self.genreliste.insert(0, ("Top Rated", "http://voyeurhit.com/top-rated/", default_cover)) self.genreliste.insert(0, ("Most Recent", "http://voyeurhit.com/latest-updates/", default_cover)) self.ml.setList(map(self._defaultlistcenter, self.genreliste)) self.ml.moveToIndex(0) self.keyLocked = False self.showInfos() def showInfos(self): Image = self['liste'].getCurrent()[0][2] CoverHelper(self['coverArt']).getCover(Image) def keyOK(self): if self.keyLocked: return Name = self['liste'].getCurrent()[0][0] Link = self['liste'].getCurrent()[0][1] self.session.open(voyeurhitFilmScreen, Link, Name) class voyeurhitFilmScreen(MPScreen, ThumbsHelper): def __init__(self, session, Link, Name): self.Link = Link self.Name = Name MPScreen.__init__(self, session, skin='MP_PluginDescr', default_cover=default_cover) ThumbsHelper.__init__(self) self["actions"] = ActionMap(["MP_Actions"], { "ok" : self.keyOK, "0" : self.closeAll, "cancel" : self.keyCancel, "5" : self.keyShowThumb, "up" : self.keyUp, "down" : self.keyDown, "right" : self.keyRight, "left" : self.keyLeft, "nextBouquet" : self.keyPageUp, "prevBouquet" : self.keyPageDown, "green" : self.keyPageNumber }, -1) self['title'] = Label("VoyeurHit.com") self['ContentTitle'] = Label("Genre: %s" % self.Name) self['F2'] = Label(_("Page")) self['Page'] = Label(_("Page:")) self.keyLocked = True self.page = 1 self.lastpage = 1 self.filmliste = [] self.ml = MenuList([], enableWrapAround=True, content=eListboxPythonMultiContent) self['liste'] = self.ml self.onLayoutFinish.append(self.loadPage) def loadPage(self): self.keyLocked = True self['name'].setText(_('Please wait...')) self.filmliste = [] cat = self.Link url = "%s%s/" % (self.Link, str(self.page)) getPage(url).addCallback(self.loadData).addErrback(self.dataError) def loadData(self, data): self.getLastPage(data, 'lass="pagination">(.*?)</ul>') parse = re.search('<div class="block-thumb">(.*?)<div class="pagination">', data, re.S) videos = re.findall('<a href="(.*?)" class="thumb">.*?<span class="image"><img.*?src="(.*?)"\s{0,1}alt="(.*?)".*?<span class="dur_ovimg">(.*?)</span>', parse.group(0), re.S) for (url,img,desc,dur) in videos: self.filmliste.append((decodeHtml(desc), url, img)) if len(self.filmliste) == 0: self.filmliste.append((_('No movies found!'), None, None)) self.ml.setList(map(self._defaultlistleft, self.filmliste)) self.ml.moveToIndex(0) self.keyLocked = False self.th_ThumbsQuery(self.filmliste, 0, 1, 2, None, None, self.page, self.lastpage, mode=1) self.showInfos() def showInfos(self): Title = self['liste'].getCurrent()[0][0] Image = self['liste'].getCurrent()[0][2] self['name'].setText(Title) CoverHelper(self['coverArt']).getCover(Image) def keyOK(self): if self.keyLocked: return Link = self['liste'].getCurrent()[0][1] if Link == None: return self.keyLocked = True getPage(Link).addCallback(self.getVideoPage).addErrback(self.dataError) def getVideoPage(self, data): videoPage = re.findall('video_url="(.*?)";', data, re.S) if videoPage: self.keyLocked = False Title = self['liste'].getCurrent()[0][0] self.session.open(SimplePlayer, [(Title, videoPage[-1])], showPlaylist=False, ltype='voyeurhit')
[ "jaysmith940@hotmail.co.uk" ]
jaysmith940@hotmail.co.uk
0c72b38b1807ffdf0c0bbad486813abdc8249805
50dc7b063ca860d89717866ff6f844fef9164683
/pwndbg/info.py
4bdf15f2b6cc7acb34d683493bd756b46f006cca
[ "MIT" ]
permissive
sigma-random/pwndbg
3519a0411dd95d254cda9f83ad1faf85c20c335a
da88e347f7e1b828f6ebee2753117c666f4dd97d
refs/heads/master
2021-01-22T13:08:11.112154
2015-05-23T01:25:41
2015-05-23T01:25:41
36,412,538
2
0
null
2015-05-28T03:32:10
2015-05-28T03:32:10
Python
UTF-8
Python
false
false
649
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Runs a few useful commands which are available under "info". We probably don't need this anymore. """ import gdb import pwndbg.memoize @pwndbg.memoize.reset_on_exit def proc_mapping(): try: return gdb.execute('info proc mapping', to_string=True) except gdb.error: return '' @pwndbg.memoize.reset_on_exit def auxv(): try: return gdb.execute('info auxv', to_string=True) except gdb.error: return '' @pwndbg.memoize.reset_on_stop def files(): try: return gdb.execute('info files', to_string=True) except gdb.error: return ''
[ "riggle@google.com" ]
riggle@google.com
2810e7ca25da235d2ad6cda17b2a2e24a0dbfc5c
93d62f8f6525010cf25127e4cc9b8aba7cf03a77
/authDjango/authApp/urls.py
535af82d63d1b22f1a9b9c3416e2310a046926d5
[]
no_license
pourmirza/DRF-React-Auth
fcc5e14dfe90d63bd6b236a72630c4f3edd73a2a
5a545aac3d52c4415b5010ae47e8df081d80fdae
refs/heads/master
2023-07-03T03:01:53.554414
2021-08-08T15:43:36
2021-08-08T15:43:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
270
py
from django.urls import path from .views import set_csrf_token, login_view, CheckAuth urlpatterns = [ path('set-csrf/', set_csrf_token, name='Set-CSRF'), path('login/', login_view, name='Login'), path('test-auth/', CheckAuth.as_view(), name='check-auth') ]
[ "53014897+kieronjmckenna@users.noreply.github.com" ]
53014897+kieronjmckenna@users.noreply.github.com
80831e3880c0732805d920c03fde0582f8b7f7b8
0afed628ce737295ce370d4c397888e822937b66
/expenses/migrations/0024_auto_20190203_1712.py
701b6e67d5437e2760ab9f301b0d99b0446b8321
[]
no_license
newbusox/expensetracker
4cdae836d65604ba9f051bd8da40f0cd3acc0363
008cdc75962351e4271358575e5c8007c8263f1d
refs/heads/master
2022-12-14T04:03:25.207888
2020-08-09T04:34:30
2020-08-09T04:34:30
169,085,053
0
0
null
2022-12-08T01:35:12
2019-02-04T13:48:16
Python
UTF-8
Python
false
false
662
py
# Generated by Django 2.1.5 on 2019-02-03 22:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('expenses', '0023_constructiondivision'), ] operations = [ migrations.RemoveField( model_name='constructiondivision', name='division_choices', ), migrations.AddField( model_name='constructiondivision', name='division_choice', field=models.CharField(choices=[('01', 'Plans/Permits'), ('02', 'Demolition'), ('03', 'Foundation')], default=1, max_length=2), preserve_default=False, ), ]
[ "john.errico@gmail.com" ]
john.errico@gmail.com
8f8e62220d50fa2f672496e56c1d1c509e1a83eb
8a135e5e41b0648aaf10641705b1f0a83b5e144a
/test/core/045-hierarchy-sharedfs-b/local_hierarchy.py
d5f4f00e9f49c1a3ec55e1c47d6926deab1811e7
[ "Apache-2.0" ]
permissive
fengggli/pegasus
43fb182cf02d4545693b9500dc4fd7d08ac61ebc
402bdbc67438afb0cdcc5868419cf28b4d229ff4
refs/heads/master
2020-11-26T16:57:06.577507
2019-12-19T18:15:42
2019-12-19T18:15:42
229,146,362
0
0
Apache-2.0
2019-12-19T22:07:49
2019-12-19T22:07:47
null
UTF-8
Python
false
false
1,199
py
#!/usr/bin/env python import os import sys import subprocess if len(sys.argv) != 2: print "Usage: %s CLUSTER_PEGASUS_HOME" % (sys.argv[0]) sys.exit(1) cluster_pegasus_home=sys.argv[1] # to setup python lib dir for importing Pegasus PYTHON DAX API #pegasus_config = os.path.join("pegasus-config") + " --noeoln --python" #lib_dir = subprocess.Popen(pegasus_config, stdout=subprocess.PIPE, shell=True).communicate()[0] #Insert this directory in our search path #os.sys.path.insert(0, lib_dir) from Pegasus.DAX3 import * # Create a abstract dag adag = ADAG('local-hierarchy') daxfile = File('blackdiamond.dax') dax1 = DAX (daxfile) #DAX jobs are called with same arguments passed, while planning the root level dax dax1.addArguments('--output-site local') dax1.addArguments( '-vvv') adag.addJob(dax1) # this dax job uses a pre-existing dax file # that has to be present in the replica catalog daxfile2 = File('sleep.dax') dax2 = DAX (daxfile2) dax2.addArguments('--output-site local') dax2.addArguments( '-vvv') adag.addJob(dax2) # Add control-flow dependencies #adag.addDependency(Dependency(parent=dax1, child=dax2)) # Write the DAX to stdout adag.writeXML(sys.stdout)
[ "vahi@isi.edu" ]
vahi@isi.edu
ed390fc5eb173e6c52436f931d003dbf4f303955
9c9b908a4697491c040b8d7877c1dacf253b836a
/venv/Scripts/easy_install-script.py
a145659108160ec633efca8aff4a1045c92dda70
[]
no_license
aj1218/SeleniumTest
37e796f42417326386002abdd7d7dedc70d4f203
cd9375269335133978395aaad9cc24ffc9f35551
refs/heads/main
2023-01-25T04:54:16.380816
2020-12-03T07:29:25
2020-12-03T07:29:25
319,197,916
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
#!E:\SeleniumTest\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
[ "nnczstar@NNCZStar-iMac.local" ]
nnczstar@NNCZStar-iMac.local
71dd61e2b8ce662766a38021747136d4753a097b
faf2c4dca39486207868c74f13f69e62fd88e9b1
/utilities/generate-header.py
0046313cdd1b04984f619ad926cde31e20adab47
[]
no_license
Unco3892/FaceRunner
922f96fb99d5ea7d2dfff079f6367b64c4e1e262
f862262dd19c6c41b510e862b6f7baf8602b5528
refs/heads/main
2023-02-26T02:28:41.990543
2021-02-01T21:06:54
2021-02-01T21:06:54
335,082,353
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
# This file was used to generate the header which was not palced directly in the main body as this method leaves some newlines which we desired to remove. from pyfiglet import Figlet header = Figlet(font='big') subheader = Figlet(font='digital') print(header.renderText("FaceRunner")) print(subheader.renderText("By Ilia Azizi & Emile Evers"))
[ "unco3892@gmail.com" ]
unco3892@gmail.com
1c1078806866c1170018081bf291d0fcc2d4ffe2
61f33d36c86e9961800976b927df6597ec47aa87
/constant.py
6320082fed6404ae75e38bca3c5c3aebac090aa6
[ "MIT" ]
permissive
29527/OKExPyWebsocket
accfbeca7fbdf75b16d14122023765410bfb6309
d084373e0bf18ca533bcc8f4fc1ba051d6be0209
refs/heads/main
2023-07-17T08:29:12.956397
2021-09-02T07:49:16
2021-09-02T07:49:16
398,232,201
0
0
MIT
2021-08-20T10:00:50
2021-08-20T10:00:50
null
UTF-8
Python
false
false
1,583
py
class Operation(str): # 操作 SUBSCRIBE = "subscribe" UNSUBSCRIBE = "unsubscribe" ERROR = "error" # 登陆 LOGIN = "login" # 下单、撤单、改单相关 ORDER = "order" CANCEL_ORDER = "cancel-order" AMEND_ORDER = "amend-order" class Channel(str): """ 私有频道中的channel """ ACCOUNT = "account" # 账号情况 POSITIONS = "positions" # 持仓情况 BALANCE_AND_POSITION = "balance_and_position" # 账户余额和持仓频道 ORDERS = "orders" # 获取订单信息 ORDERS_ALGO = "orders-algo" # 获取策略委托订单 """ 公共频道中的channel """ INSTRUMENTS = "instruments" # 产品数据 TICKERS = "tickers" # 产品行情 OPEN_INTEREST = "open-interest" # 持仓总量 CANDLE1D = "candle1D" # K线 TRADES = "trades" # 交易频道, 获取最近的成交数据 ESTIMATED_PRICE = "estimated-price" # 获取交割合约和期权预估交割/行权价。 MARK_PRICE = "mark-price" # 标记价格频道 MARK_PRICE_CANDLE1D = "mark-price-candle1D" # 标记价格K线频道 PRICE_LIMIT = "price-limit" # 限价频道, 获取交易的最高买价和最低卖价 BOOKS = "books" # 深度频道 OPT_SUMMARY = "opt-summary" # 期权定价频道 FUNDING_RATE = "funding-rate" # 资金费率频道 INDEX_CANDLE30M = "index-candle30m" # 指数K线频道 INDEX_TICKERS = "index-tickers" # 指数行情频道 STATUS = "status" # Status 频道 class Currency(str): """ 货币 """ BTC = "BTC"
[ "cl193931" ]
cl193931
16d466faf8885448bc782e7158f0b12d78f1ed4c
72af42076bac692f9a42e0a914913e031738cc55
/Do it! 자료구조와 함께 배우는 알고리즘 입문 – 파이썬 편/chap02/reverse.py
36203133733209c57a24c7b4927b5f17ee2d9f8f
[]
no_license
goareum93/Algorithm
f0ab0ee7926f89802d851c2a80f98cba08116f6c
ec68f2526b1ea2904891b929a7bbc74139a6402e
refs/heads/master
2023-07-01T07:17:16.987779
2021-08-05T14:52:51
2021-08-05T14:52:51
376,908,264
0
0
null
null
null
null
UTF-8
Python
false
false
765
py
# [Do it! 실습 2-6] 뮤터블 시퀀스 원소를 역순으로 정렬 from typing import Any, MutableSequence def reverse_array(a: MutableSequence) -> None: """뮤터블 시퀀스형 a의 원소를 역순으로 정렬""" n = len(a) for i in range(n // 2): a[i], a[n - i - 1] = a[n - i - 1], a[i] if __name__ == '__main__': print('배열 원소를 역순으로 정렬합니다.') nx = int(input('원소 수를 입력하세요.: ')) x = [None] * nx # 원소 수가 nx인 리스트를 생성 for i in range(nx): x[i] = int(input(f'x[{i}] : ')) reverse_array(x) # x를 역순으로 정렬 print('배열 원소를 역순으로 정렬했습니다.') for i in range(nx): print(f'x[{i}] = {x[i]}')
[ "goareum7@gmail.com" ]
goareum7@gmail.com
c411bd03168f2f7f1423730ee2d476bd59141dae
62b7a34776b851692ee7d9c18070e74f7ffbe13a
/app.py
4a3ff116facd599a62b4e7e57fa4883b0b4b17af
[]
no_license
cathyann/flask-task-manager-project
a0153e0d95ce7fc6a18551dad17e7258cc7f0599
f344df5422b1f3916a5e6b3e15b40aa5691eb0f1
refs/heads/master
2023-02-10T20:09:53.277767
2021-01-04T09:29:15
2021-01-04T09:29:15
322,547,501
0
0
null
null
null
null
UTF-8
Python
false
false
6,529
py
import os from flask import ( Flask, flash, render_template, redirect, request, session, url_for) from flask_pymongo import PyMongo from bson.objectid import ObjectId from werkzeug.security import generate_password_hash, check_password_hash if os.path.exists("env.py"): import env app = Flask(__name__) app.config["MONGO_DBNAME"] = os.environ.get("MONGO_DBNAME") app.config["MONGO_URI"] = os.environ.get("MONGO_URI") app.secret_key = os.environ.get("SECRET_KEY") mongo = PyMongo(app) @app.route("/") @app.route("/get_tasks") def get_tasks(): tasks = list(mongo.db.tasks.find()) print(tasks) return render_template("tasks.html", tasks=tasks) @app.route("/register", methods=["GET", "POST"]) def register(): if request.method == "POST": # check if username already exist in db existing_user = mongo.db.users.find_one( {"username": request.form.get("username").lower()}) if existing_user: flash("User already exists") return redirect(url_for("register")) register = { "username": request.form.get("username").lower(), "password": generate_password_hash(request.form.get("password")) } mongo.db.users.insert_one(register) # put the new user into 'session' cookie session["user"] = request.form.get("username"). lower() flash("Registration Successful!") return redirect(url_for("profile", username=session["user"])) return render_template("register.html") @app.route("/login", methods=["GET", "POST"]) def login(): if request.method == "POST": # check if username exists in db existing_user = mongo.db.users.find_one( {"username": request.form.get("username"). lower()}) if existing_user: # ensure hashed password matches user input if check_password_hash( existing_user["password"], request.form.get("password")): session["user"] = request.form.get("username").lower() flash("Welcome, {}".format( request.form.get("username"))) return redirect(url_for( "profile", username=session["user"])) else: # invalid password match flash("Incorrect Username and/or Password") return redirect(url_for("login")) else: # username doesn't exist flash("Incorrect Username and/or Password") return redirect(url_for("login")) return render_template("login.html") @app.route("/profile/<username>", methods=["GET", "POST"]) def profile(username): # grab the session user's username from db username = mongo.db.users.find_one( {"username": session["user"]})["username"] if session["user"]: return render_template("profile.html", username=username) return redirect(url_for("login")) @app.route("/logout") def logout(): # remove user from session cookies flash("You have been logged out") session.pop("user") return redirect(url_for("login")) @app.route("/add_task", methods=["GET", "POST"]) def add_task(): if request.method == "POST": is_urgent = "on" if request.form.get("is_urgent") else "off" task = { "category_name": request.form.get("category_name"), "task_name": request.form.get("task_name"), "task_description": request.form.get("task_description"), "is_urgent": is_urgent, "due_date": request.form.get("due_date"), "created_by": session["user"] } mongo.db.tasks.insert_one(task) flash("Task Successfully Added") return redirect(url_for("get_tasks")) categories = mongo.db.categories.find().sort("category_name", 1) return render_template("add_task.html", categories=categories) @app.route("/edit_task/<task_id>", methods=["GET", "POST"]) def edit_task(task_id): if request.method == "POST": is_urgent = "on" if request.form.get("is_urgent") else "off" submit = { "category_name": request.form.get("category_name"), "task_name": request.form.get("task_name"), "task_description": request.form.get("task_description"), "is_urgent": is_urgent, "due_date": request.form.get("due_date"), "created_by": session["user"] } mongo.db.tasks.update({"_id": ObjectId(task_id)}, submit) flash("Task Successfully Updated") task = mongo.db.tasks.find_one({"_id": ObjectId(task_id)}) categories = mongo.db.categories.find().sort("category_name", 1) return render_template("edit_task.html", task=task, categories=categories) @app.route("/delete_task/<task_id>") def delete_task(task_id): mongo.db.tasks.remove({"_id": ObjectId(task_id)}) flash("Task Successfully Deleted") return redirect(url_for("get_tasks")) @app.route("/get_categories") def get_categories(): categories = list(mongo.db.categories.find().sort("category_name", 1)) return render_template("categories.html", categories=categories) @app.route("/add_category", methods=["GET", "POST"]) def add_category(): if request.method == "POST": category = { "category_name": request.form.get("category_name") } mongo.db.categories.insert_one(category) flash("New Category Added") return redirect(url_for("get_categories")) return render_template("add_category.html") @app.route("/edit_category<category_id>", methods=["GET", "POST"]) def edit_category(category_id): if request.method == "POST": submit = { "category_name": request.form.get("category_name") } mongo.db.categories.update({"_id": ObjectId(category_id)}, submit) flash("Category Successfully Updated") return redirect(url_for("get_categories")) category = mongo.db.categories.find_one({"_id": ObjectId(category_id)}) return render_template("edit_category.html", category=category) @app.route("/delete_category/<category_id>") def delete_category(category_id): mongo.db.categories.remove({"_id": ObjectId(category_id)}) flash("Category Successfully Deleted") return redirect(url_for("get_categories")) if __name__ == "__main__": app.run(host=os.environ.get("IP"), port=int(os.environ.get("PORT")), debug=True)
[ "cathyannsy@gmail.com" ]
cathyannsy@gmail.com
9b5e5c683798764ef15363fbd2fdf392b0afaf11
d4a6c3ae3b911cc1f3866c75e5934165d2fafb49
/setup.py
d3633613e45988ed063dd11f2eb62cc7f8ab5a8e
[]
no_license
arthur-a/nativeview
a7ab4f7dac9a28f7c253dd5a882fe6b9ad2a6974
6fa5a5bff56a36783edb5b4dabc32c386498f2ea
refs/heads/master
2016-09-01T23:25:05.197254
2015-11-10T06:14:48
2015-11-10T06:14:48
25,459,839
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
from setuptools import setup, find_packages requires = [ 'arrow>=0.4.4', 'translationstring' ] setup(name='nativeview', version='0.0', description='nativeview', classifiers=[ "Programming Language :: Python", ], author='Arthur Aminov', author_email='', url='', packages=find_packages('nativeview'), zip_safe=False, install_requires=requires )
[ "aminov.a.r@gmail.com" ]
aminov.a.r@gmail.com
23f7e2bcf92de1dc1282410eb1cb672dcdcaf44f
66ba6a582d8fd5ed7ba01742ca19b658a59cc28a
/crawlers/server/DianPing.py
ab1d169cc6c11e502e7692a7b2f83b8b9269ee65
[]
no_license
BaymaxGroot/DataCrawler
84417a470db3d425296214d0f524668e7bf61f5c
43044ba6a51114518b22abcc8c082062c4507d6f
refs/heads/master
2020-03-19T02:48:38.131595
2018-08-13T01:52:50
2018-08-13T01:52:50
135,662,647
0
0
null
null
null
null
UTF-8
Python
false
false
5,350
py
import os import json import requests import random import time from crawlers.common.db_operation import batch_insert_update_delete,db_query pro = ['192.155.185.43', '192.155.185.153', '192.155.185.171', '192.155.185.197'] head = { 'user-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36', 'Cookie': '' } def update_domestic_city_info(): """ update local database domestic city info from dinaping.com :return: """ try: province_exist = get_exist_province_list() city_exist = get_exist_city_list() url = "http://www.dianping.com/ajax/citylist/getAllDomesticCity" time.sleep(random.random() * 3) print("DianPing: start crawler city info from {}".format(url)) response = requests.get(url) province_list_remote = response.json()['provinceList'] city_list_remote = response.json()['cityMap'] sql_list = [] for province_remote in province_list_remote: isExisted = False for province_local in province_exist: if str(province_local['provinceId']) == str(province_remote['provinceId']): isExisted = True break if not isExisted: sql = """ insert into dp_province (areaId, provinceId, provinceName) values ('{areaId}','{provinceId}','{provinceName}') """.format(areaId=province_remote['areaId'], provinceId=province_remote['provinceId'], provinceName=province_remote['provinceName']) sql_list.append(sql) batch_insert_update_delete(sql_list) print("DianPing: success update the province info for local database") for k in city_list_remote: sql_list = [] city_list = city_list_remote[k] for city_remote in city_list: isExisted = False for city_local in city_exist: if str(city_local['cityId']) == str(city_remote['cityId']): isExisted = True break if not isExisted: sql = """ insert into dp_city (activeCity, appHotLevel, cityAbbrCode, cityEnName, cityId, cityLevel, cityName, cityOrderId, cityPyName, gLat, gLng, overseasCity, parentCityId, provinceId, scenery, tuanGouFlag) values ('{activeCity}', '{appHotLevel}', '{cityAbbrCode}', '{cityEnName}','{cityId}','{cityLevel}', '{cityName}','{cityOrderId}', '{cityPyName}','{gLat}', '{gLng}','{overseasCity}', '{parentCityId}', '{provinceId}', '{scenery}','{tuanGouFlag}') """.format(activeCity=1 if city_remote['activeCity'] else 0, appHotLevel=city_remote['appHotLevel'], cityAbbrCode=city_remote['cityAbbrCode'], cityEnName=city_remote['cityEnName'], cityId=city_remote['cityId'], cityLevel=city_remote['cityLevel'], cityName=city_remote['cityName'], cityOrderId=city_remote['cityOrderId'], cityPyName=city_remote['cityPyName'], gLat=float(city_remote['gLat']), gLng=float(city_remote['gLng']), overseasCity=1 if city_remote['overseasCity'] else 0, parentCityId=city_remote['parentCityId'], provinceId=city_remote['provinceId'], scenery=1 if city_remote['scenery'] else 0, tuanGouFlag=city_remote['tuanGouFlag']) sql_list.append(sql) batch_insert_update_delete(sql_list) print("DianPing: success update the city for provinceId {}".format(k)) print("DianPing: success update the city info for local database") except: print("DianPing: Failed to update the domestic city info in local databse") raise def get_exist_province_list(): """ get existed province list information :return: """ sql = """ select provinceId from dp_province """ province_list = [] try: province_list = db_query(sql) print("DianPing: success to get the province existed in local database") return province_list except: print("DianPing: failed to query the database to get the existed province info list") raise def get_exist_city_list(): """ get existed city list from local database :return: """ sql = """ select cityId from dp_city """ city_list = [] try: city_list = db_query(sql) print("DianPing: success to get the city list from local database") return city_list except: print("DianPing: failed to query the database to get the city info ") raise pass
[ "lele.zheng@citrix.com" ]
lele.zheng@citrix.com
21732b6a55f993398d367ce33a847b4d240dc182
9db06f1464974bbe20c87009b3f1b345a778df85
/test/tiaoxingtu.py
398664baf6b9f830683fe1100d2e0fee5d784495
[]
no_license
wangyuntao1990/data_analysis
e83547404c8bc09acc6d371c035e7eac8218db77
380ab4a911773997e7745e470c1715808648545f
refs/heads/main
2023-03-13T01:40:41.686533
2021-03-06T14:09:35
2021-03-06T14:09:35
341,168,860
0
0
null
null
null
null
UTF-8
Python
false
false
268
py
# -*- coding: UTF-8 -*- import matplotlib.pyplot as plt import seaborn as sns # 数据准备 x = ['Cat1', 'Cat2', 'Cat3', 'Cat4', 'Cat5'] y = [5, 4, 8, 12, 7] # 用Matplotlib画条形图 plt.bar(x, y) plt.show() # 用Seaborn画条形图 sns.barplot(x, y) plt.show()
[ "253782489@qq.com" ]
253782489@qq.com
a572ce463403833a173873f566d1d844feb927d8
4ddd5aafb68cfdfd1afbf8a481711da00a674e13
/Some Python Libraries for Data Science/Numpy Basics/numpyBasics.py
3da9198138db6a0f1c313e9dc9c3472240e8efc3
[]
no_license
MertUsenmez/Some-Python-Libraries-for-Data-Science-
b1a1c09a860ebcdc6cb3c09f4c0817975f738c46
a7f4a12132b3af5985ec714d5d7a98a81f455244
refs/heads/master
2020-04-25T17:49:07.225840
2019-02-27T17:52:26
2019-02-27T17:52:26
172,962,387
0
0
null
null
null
null
UTF-8
Python
false
false
2,718
py
# -*- coding: utf-8 -*- """ @author: User """ #%% Numpy import numpy as np array = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) #1*15 matrix(vector) print(array.shape) a = array.reshape(3,5) print("Shape:",a.shape) print("Dimension:",a.ndim) print("Data type:",a.dtype.name) print("Size:",a.size) print(type(a)) array1 = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]]) zeros = np.zeros((3,4)) # memory allocation zeros[0,0]=5 print(zeros) zeros[2,3]=8 print(zeros) np.ones((3,4)) np.empty((3,2)) a = np.arange(10,50,5) # From 10 until 50, +5 a array of increasing. print(a) a = np.linspace(5,50,20) # Print 20 numbers between 5 and 50. print(a) #%% #%% Numpy Basic Operations a = np.array([1,2,3]) b = np.array([3,4,5]) print(a+b) print(a-b) print(a**2) print(np.sin(a)) print(a<2) a = np.array([[1,2,3],[4,5,6]]) b = np.array([[1,2,3],[4,5,6]]) # Element wise product. print(a*b) # Matrix product. print(a.dot(b.T)) #b.T b'nin transpozudur. # Exponential of a. print(np.exp(a)) # Creates a random matrix(5x5) of numbers between 0 to 1. a = np.random.random((5,5)) print(a.sum()) print(a.max()) print(a.min()) # sum of columns print(a.sum(axis=0)) # sum of rows print(a.sum(axis=1)) # square root print(np.sqrt(a)) # squared print(a**2) print(np.add(a,a)) #%% Shape Manipulation array = np.array([[1,2,3],[4,5,6],[7,8,9]]) # 3x3 matrix # Let's turn this matrix into a vector, that is, to a 1-dimensional array. # flatten a = array.ravel() # we want to make a 3-dimensional array again. array2 = a.reshape(3,3) # Transpose of array2 arrayT = array2.T print(arrayT) print(arrayT.shape) #%% stacking array array1 = np.array([[1,2],[3,4]]) array2 = np.array([[-1,-2],[-3,-4]]) # arrays(matrix) horizontal merge array3 = np.hstack((array1,array2)) # arrays(matrix) vertical merge array4 = np.vstack((array1,array2)) #%% convert array and copy array # convert liste = [1,2,3,4] print(type(liste)) array1 = np.array(liste) print(type(array1)) liste1 = list(array1) # copy a = np.array([1,2,3,4]) b = a c = a b[0] = 5 # In this case, a, b, c will change because those are kept as an area in memory. Those are not kept as a value in memory. # If we want no change those. d = np.array([1,2,3,4]) e = d.copy() f = d.copy() # Using the copy() method, we created new fields for e and d so that the changes do not depend on each other. e[0] = 5
[ "noreply@github.com" ]
MertUsenmez.noreply@github.com
3f21409f67a329d44c7e3650cbed075f5fb08512
0bc81c8742e6b7cd4bd3a804ac41cedee637c921
/portalweb/services/instancegroupservice.py
94912cd53481aa718386c5a0539d490129c83f52
[]
no_license
TPAC-MARVL/portal
c7ff9445ea340774aaa1890e2b847001e6564379
b9660d7b771f105360c814e1a861fb16dc036c2b
refs/heads/master
2016-09-16T11:25:25.742221
2014-11-07T04:44:19
2014-11-07T04:44:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,361
py
from portalweb.system.message import MessageManager from portalweb.system.message import Message from portalweb.decorators.transaction import transaction from portalweb.system.util import Util from baseservice import BaseService from portalweb.cloud.entities.instance import InstanceState class InstanceGroupService(BaseService): def is_authorized(self, instance, user): if instance.state == InstanceState.STOPPED: return False else: if user.is_admin: return True else: instances = self.getAllowedToViewInstancesByUser(user) for ins in instances: if ins.id == instance.id: return True return False def get_total_instance_number_by_group(self, group): instance_groups = self._instance_group_manager.get_instance_groups_by_group(group) return instance_groups.count() def get_instances_by_group(self, group=None, group_id=None): if group_id: group = self._group_manager.getGroupById(group_id) instance_groups = self._instance_group_manager.get_instance_groups_by_group(group) instances = [] if instance_groups: for instance_group in instance_groups: instances.append(instance_group.instance) return instances def get_group_ids_by_insance(self, instance_id=None, instance=None): instance_groups = self.get_instance_groups_by_instance(instance_id, instance=instance) group_ids = [] if instance_groups: for instance_group in instance_groups: group_ids.append(instance_group.group.id) return group_ids def getAllowedToViewInstancesByUser(self, user): instances = [] instance_groups = self._instance_group_manager.getAllInstancesByUser(user) public_instances = self._instance_manager.get_public_instances() old_instances = self._instance_manager.getAllInstancesByUser(user) if instance_groups: for instance_group in instance_groups: instances.append(instance_group.instance) if public_instances: for public_instance in public_instances: instances.append(public_instance) if old_instances: for old_instance in old_instances: instances.append(old_instance) refined_instances = [] for instance in instances: if instance.state != InstanceState.STOPPED: refined_instances.append(instance) return refined_instances def get_instance_groups_by_instance(self, instance_id=None, instance=None): if instance_id: instance = self._instance_manager.getInstanceById(instance_id) if instance: return self._instance_group_manager.get_instance_groups_by_instance(instance) else: return [] def edit_instance_groups(self, instance_id, group_ids, creator): success = self._edit_instance_groups(instance_id, group_ids, creator) token = '' if success: message = Util.get_replaced_text("1 2 been changed successfully.", group_ids, [('1', 'Group'), ('2', 'has')]) token = MessageManager.setMessage(message, Message.SUCCESS) else: message = Util.get_replaced_text("Error occurred when changing the 1. Please try again later.", group_ids, [('1', 'group')]) token = MessageManager.setMessage(message, Message.ERROR) return token @transaction def _edit_instance_groups(self, instance_id, group_ids, creator): instance = self._instance_manager.getInstanceById(instance_id) groups = self._group_manager.getGroupsByIds(group_ids) success1 = self._delete_instance_group(instance) success2 = self._instance_group_manager.create_instance_groups(instance, groups, creator) if success1 and success2: return True else: return False def delete_instance_group(self, instance_id=None, instance=None, group_ids=None): success = self._delete_instance_group(instance_id, instance) if success: message = Util.get_replaced_text("1 2 been removed successfully.", group_ids, [('1', 'Group'), ('2', 'has')]) token = MessageManager.setMessage(message, Message.SUCCESS) else: message = Util.get_replaced_text("Error occurred when removing the 1. Please try again later.", group_ids, [('1', 'group')]) token = MessageManager.setMessage(message, Message.ERROR) return token def _delete_instance_group(self, instance_id=None, instance=None): if instance_id: instance = self._instance_manager.getInstanceById(instance_id) return self._instance_group_manager.remove_instance_group(instance=instance) def create_instance_group(self, instance_id, group_id, creator): instance = self._instance_manager.getInstanceById(instance_id) group = self._group_manager.getGroupById(group_id) success = self._instance_group_manager.create_instance_group(instance, group, creator) if success: if group_id: token = MessageManager.setMessage("Group has been changed successfully.", Message.SUCCESS) else: token = MessageManager.setMessage("Group has been removed successfully.", Message.SUCCESS) else: if group_id: token = MessageManager.setMessage("Error occurred when changing the group. Please try again later.", Message.ERROR) else: token = MessageManager.setMessage("Error occurred when removing the group. Please try again later.", Message.ERROR) return token
[ "fxmzb123@gmail.com" ]
fxmzb123@gmail.com
77cc1bcafc3a1e60f67633790891d345b694ea52
af4830183cc22bc93b392a8acea72f51a34c3103
/genome.py
91e7c4d000902763ba3d6865160184ee3e7b2b2e
[]
no_license
siekmanj/genetic-code-generation
e5e6d0dcc50a777584756ca52c261d87e0daada7
ee713ad3f311de681ea3f711b1a901fa8dcda41e
refs/heads/master
2021-09-20T23:41:57.486326
2018-08-16T21:34:59
2018-08-16T21:34:59
116,884,229
0
0
null
null
null
null
UTF-8
Python
false
false
570
py
import random #The only thing that this class should do is generate random 1s and 0s #The other stuff should be in an intermediary class #character interpretations class Genome: def __init__(self, genome_length): self.genome = [] self.length = genome_length random.seed() for i in range(genome_length): self.genome.append(random.randint(0, 1)) def sequence(self, bytelength): nums = [] for i in range(0, len(self.genome), bytelength): codon = int("".join(str(self.genome[x]) for x in range(i, i+bytelength)), 2) nums.append(codon) return nums
[ "siekmanj@oregonstate.edu" ]
siekmanj@oregonstate.edu
6ad58bb1abb0f28a69b2fda6bb4a2263fb8ebefd
669fb7909b023a5315f3f20edffc9b40d57e28bb
/questionnaire_site/urls.py
2d80a31a02f571a77eec0358376bdaa11c68d84d
[]
no_license
alinacristea/questionnaire_site
cc6dd8df56ef085c713f73a8fd49c9510389839e
f5302a468d36fbf3fad7004d9b27bd4292bea3de
refs/heads/master
2020-05-02T02:39:06.841693
2016-01-28T18:57:53
2016-01-28T18:57:53
21,604,186
0
0
null
null
null
null
UTF-8
Python
false
false
1,427
py
from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() from questionnaire_site import views # the URLs created for the application urlpatterns = patterns('', url(r'^$', views.index, name='index'), url(r'^admin/', include(admin.site.urls)), # when the regular expression "r'^view_survey/$'" is matched then # the "views.viewSurvey" function will be called url(r'^view_survey/$', views.viewSurvey, name='view_survey'), url(r'^view_answers/$', views.viewAnswers, name='view_answers'), url(r'^add_survey/$', views.add_survey, name='add_survey'), url(r'^add_question/$', views.add_question, name='add_question'), url(r'^add_participant/$', views.add_participant, name='add_participant'), url(r'^add_likert_scale_answer/$', views.add_likert_scale_answer, name='add_likert_scale_answer'), url(r'^add_text_answer/$', views.add_text_answer, name='add_text_answer'), url(r'^add_boolean_answer/$', views.add_boolean_answer, name='add_boolean_answer'), url(r'^add_response/$', views.add_response, name='add_response'), url(r'^survey_stats/$', views.survey_stats, name='survey_stats'), url(r'^login/$', views.user_login, name='login'), url(r'^logout/$', views.user_logout, name='logout'), # url needed to handle the AJAX request url(r'^delete_question/$', views.delete_question, name='delete-question'), )
[ "alina.andreea.cristea@gmail.com" ]
alina.andreea.cristea@gmail.com
04ae14073ae09d78e57d714a6833da4011531657
3108ebd916033991e8a6178e418d9caf2248056c
/media.py
355d4e0ffefc5d48a2449611cde023c06cb97dcf
[]
no_license
demesvardestin/project-movie-trailer
ec7eb658e89ec3ed531df7df63b0ac241d5d8194
b7ca0d56f37ca4fa59e06c6e4dc96f6baf12e51a
refs/heads/master
2021-07-10T18:52:54.881675
2017-10-12T03:28:13
2017-10-12T03:28:13
106,588,859
0
0
null
null
null
null
UTF-8
Python
false
false
630
py
import webbrowser class Movie(): """ TrailFlix website source-code Author: Demesvar D. Destin """ def __init__(self, title, movie_id, description, poster_image_url, trailer_youtube_url, genre, actors, box_office, release): # initiate movie attributes self.title = title self.movie_id = movie_id self.description = description self.poster_image_url = poster_image_url self.trailer_youtube_url = trailer_youtube_url self.genre = genre self.actors = actors self.box_office = box_office self.release = release
[ "dddemesvar07@gmail.com" ]
dddemesvar07@gmail.com
07d8d878ca7856a8bb99ddf171a7f718602f8ca1
718b810b7c8103795f54d934116c60715cbfb44b
/pixivlink.py
23152c98e2050a4946e5ac8fe99ea09a9171d54b
[]
no_license
godofalb/PixivPicGet
816c12f741a10477b7a63e0df10a10e7c8fc748f
47f65036da75de49a64551ff0de0c49996287b04
refs/heads/master
2021-01-19T09:31:38.510983
2018-10-09T11:05:14
2018-10-09T11:05:14
100,656,805
1
0
null
null
null
null
UTF-8
Python
false
false
21,075
py
#-*- coding:utf-8 -*- from httplib import HTTPException from urllib2 import HTTPError import cookielib, urllib2,urllib from Cookie import CookieError import re import time import types import os #import ssl #关闭ssl验证 #ssl._create_default_https_context = ssl._create_unverified_context false=False true=True import sys reload(sys) sys.setdefaultencoding('utf-8') class PixivLinker(): def __init__(self,filepath="G:\\Hp"): print "InitStart" #初始化 self.filePath=filepath self.newPath=filepath+'\\New' self.mynewPath=filepath+'\\NewMy' self.recommonedPath=filepath+'\\Recommoned' self.authorPath=filepath+'\\Author' #self.searchPath=filepath+'\\Search' self.mkDir(self.mynewPath) self.mkDir(self.newPath) self.mkDir(self.recommonedPath) self.mkDir(self.authorPath) #self.mkDir(self.searchPath) self.mainUrl="https://www.pixiv.net/" self.newUrl="https://www.pixiv.net/bookmark_new_illust.php?p={0}" self.authorUrl="https://www.pixiv.net/member_illust.php?id={0}&type=all&p={1}" #self.searchUrl="https://www.pixiv.net/search.php?word={0}&order=date_d&p={1}" self.size=r'600x600' self.orgsize=r'150x150' #self.delete=re.compile(r'_master\d*') self.OrigingalUrl="https://www.pixiv.net/member_illust.php?mode=medium&illust_id={0}" #读取cookie self.cookie=cookielib.MozillaCookieJar() self.handle=urllib2.HTTPCookieProcessor(self.cookie) self.opener = urllib2.build_opener(self.handle) #用来获得文件名的正则表达式 self.namefinder=re.compile('/[a-z,A-Z,_,0-9]*?.jpg') self.sizeF=re.compile(self.orgsize) self.findfilename=re.compile(r'/.*?\..*?', re.S) self.findworkplace=re.compile(r'<div class="_layout-thumbnail">(.*?)</div>', re.S) self.finder=re.compile(r'(https://i.pximg.net/img-original/.*?)"', re.S) #self.finder=re.compile(r'<img.*?data-src="(https://i.pximg.net/img-original/.*?)".*?class="original-image".*?>', re.S) self.Header= { 'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:54.0) Gecko/20100101 Firefox/54.0' ,'Host': 'i.pximg.net' ,'Accept-Language': 'zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3' ,'Accept-Encoding': 'gzip, deflate, br' ,'Referer': 'https://www.pixiv.net/' ,'DNT': '1' ,'Connection': 'keep-alive' ,'Accept':'*/*' } self.domainfinder=re.compile(r'://(.*?)/') self.username='' self.password='' self.maxList=50 def UrlChange(self,url): domain=re.search(self.domainfinder,url) if domain: domain=domain.group(1) return url.replace(domain,self.pixivDNS[domain]) return url #登入 def LoginIn(self): url="https://accounts.pixiv.net/api/login?lang=zh" loginUrl="https://accounts.pixiv.net/login" Header= { 'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:54.0) Gecko/20100101 Firefox/54.0' ,'Host': 'accounts.pixiv.net' ,'Accept-Language': 'zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3' ,'Accept-Encoding': 'gzip, deflate, br' ,'Referer': 'https://accounts.pixiv.net/login' ,'DNT': '1' ,'Connection': 'keep-alive' ,'Accept':'*/*' } req1=self.opener.open(loginUrl) content=req1.read() pattern = re.compile(r'<input.*?"post_key".*?value="(.*?)"') match = pattern.search(content) if match: datas={'pixiv_id':self.username,'password':self.password ,'post_key':match.group(1) ,'ref':'wwwtop_accounts_index' ,'return_to':'https://www.pixiv.net/' ,'source':'pc' } postdata = urllib.urlencode(datas) req=urllib2.Request(url,headers=Header,data=postdata) res=self.opener.open(req) #创建新目录 def mkDir(self,path): path = path.strip() #注意要添加设置文件编码格式 isExists=os.path.exists(path.decode('utf-8')) if not isExists: os.makedirs(path.decode('utf-8')) return True else: print "Exists" return False def dealpic(self,pid): print 'saving' reallink=[] filename=[] try: print 'finding' tempres=urllib2.Request(self.OrigingalUrl.format(pid)) print self.OrigingalUrl.format(pid) time.sleep(1) res = self.opener.open(tempres) content=self.finder.search(res.read()).group(1) reallink.append(content) filename.append(self.findfilename.search(content)) except Exception,e: print e.message #保存图片 def savePic(self,path,filename,link,name,pid='',date=''): #reallink=link.replace('24-x24-') ''' if pid: try: print 'finding' tempres=urllib2.Request(self.OrigingalUrl.format(pid)) print self.OrigingalUrl.format(pid) time.sleep(3) res = self.opener.open(tempres) reallink=self.finder.search(res.read()).group(1) name+="."+reallink[-3:] except Exception,e: print e.message else: reallink=self.sizeF.sub(self.size,link) name+='.jpg' if not reallink: reallink=self.sizeF.sub(self.size,link) name+='.jpg' ''' reallink=link.replace('c/240x240/img-master','img-original').replace('_master1200','') print reallink,name try: name=name+'.jpg' request=urllib2.Request(reallink,headers=self.Header) response = self.opener.open(request) except HTTPError,e: reallink=reallink.replace('jpg','png') name=name.replace('jpg','png') print('Try PNG') request=urllib2.Request(reallink,headers=self.Header) response = self.opener.open(request) print reallink,name try: print path+'\\'+date+name file=open((path+'\\'+date+name),"wb") # for byte in response.read(): file.write( response.read()) file.close() return path+'\\'+date+name except Exception,e: print e.message print path+'\\'+date+filename+'.jpg' file=open((path+'\\'+date+filename+'.jpg'),"wb") # for byte in response.read(): file.write( response.read()) file.close() return path+'\\'+date+filename+'.jpg' #保存文本 https://i.pximg.net/img-original/img/2017/09/15/19/41/41/64969252_p0.jpg def saveTxt(self,path,name,linkname,tag,author,aid,pid,date=''): try: file=open((path+'\\'+date+name+'.txt').decode('utf-8'),'w') file.write("作品名:{0}\n文件名:{1}\n作品id:{2}\n作者:{3} \n作者id:{4}\n标签:{5}\n".format(name,linkname,pid,author,aid,tag)) file.close() except: file=open((path+'\\'+date+linkname+'.txt').decode('utf-8'),'w') file.write("作品名:{0}\n文件名:{1}\n作品id:{2}\n作者:{3} \n作者id:{4}\n标签:{5}\n".format(name,linkname,pid,author,aid,tag)) file.close() #保存推荐内容 def saveRec(self,contents,NewDate=True): #0-url 1-pid 2-tag 3-aid 4-title 5-username pattern=re.compile(r'<li.*?class="image-item".*?data-src="(.*?)".*?data-id="(.*?)".*?data-tags="(.*?)".*?data-user-id="(.*?)".*?<h1 class="title gtm-recommended-illusts" title="(.*?)">.*?data-user_name="(.*?)".*?</li>',re.S) FPath= self.recommonedPath if NewDate: FPath=FPath+'\\'+time.strftime('%Y-%m-%d',time.localtime(time.time())) self.mkDir(FPath) for content in contents: for s in re.findall(pattern,content): print s[0],s[1],s[2],s[3],s[4],s[5] self.saveTxt( FPath, s[4], self.namefinder.search(s[0]).group()[1:], s[2], s[5], s[3], s[1]) self.savePic( FPath, self.namefinder.search(s[0]).group()[1:], s[0], s[4], s[1]) #保存大家更新内容 def saveNew(self,contents,NewDate=True): #0-url 1-pid 2-tag 3-aid 4-title 5-username pattern=re.compile(r'<li.*?class="image-item".*?data-src="(.*?)".*?data-id="(.*?)".*?data-tags="(.*?)".*?data-user-id="(.*?)".*?<h1 class="title gtm-everyone-new-illusts" title="(.*?)">.*?data-user_name="(.*?)".*?</li>',re.S) FPath=self.newPath if NewDate: FPath=FPath+'\\'+time.strftime('%Y-%m-%d',time.localtime(time.time())) self.mkDir(FPath) for content in contents: for s in re.findall(pattern,content): print s[0],s[1],s[2],s[3],s[4],s[5] self.saveTxt( FPath, s[4], self.namefinder.search(s[0]).group()[1:], s[2], s[5], s[3], s[1]) self.savePic( FPath, self.namefinder.search(s[0]).group()[1:], s[0], s[4], s[1]) #保存订阅更新内容 def saveMyNew(self,content): #0-url 1-pid 2-tag 3-aid 4-title 5-username pattern=re.compile(r'<li.*?class="image-item".*?data-src="(.*?)".*?data-id="(.*?)".*?data-tags="(.*?)".*?data-user-id="(.*?)".*?<h1 class="title" title="(.*?)">.*?data-user_name="(.*?)".*?</li>',re.S) for s in re.findall(pattern,content): print s[0],s[1],s[2],s[3],s[4],s[5] self.saveTxt(self.mynewPath, s[4], self.namefinder.search(s[0]).group()[1:], s[2], s[5], s[3], s[1]) self.savePic(self.mynewPath, self.namefinder.search(s[0]).group()[1:], s[0], s[4], s[1]) #保存某作家的内容 def saveAuthor(self,content,path,aname): #0-url 1-pid 2-tag 3-aid 4-title 5-username pattern=re.compile(r'<li.*?class="image-item".*?data-src="(.*?)".*?data-id="(.*?)".*?data-tags="(.*?)".*?data-user-id="(.*?)".*?<h1 class="title" title="(.*?)">.*?</li>',re.S) for s in re.findall(pattern,content): print s[0],s[1],s[2],s[3],s[4] self.saveTxt(path, s[4], self.namefinder.search(s[0]).group()[1:], s[2], aname, s[3], s[1]) self.savePic(path, self.namefinder.search(s[0]).group()[1:], s[0], s[4], s[1]) #获得主页信息 def getMain(self,save=False,wantNew=False,wantRec=True,NewDate=True): try: print "GetMain..." print self.mainUrl req = urllib2.Request(self.mainUrl) response = self.opener.open(req) self.cookie.save(filename='cookies.txt', ignore_discard=True, ignore_expires=True) content=response.read() if save: file=open('HtmlTmp.txt','w') file.write(content) file.close() if wantRec: recommonedpattern=re.compile(r'<section class="item recommended-illusts " data-name="recommended_illusts">.*?</section>',re.S) self.saveRec(re.findall(recommonedpattern,content),NewDate)#recommonedpattern.search(content).group()) if wantNew: newpattern=re.compile(r'<section class="item everyone-new-illusts" data-name="everyone_new_illusts">.*?</section>',re.S) self.saveNew(re.findall(newpattern,content),NewDate)#newpattern.search(content).group()) print "Over" except CookieError,e: print e.reason except Exception, e: print e.message def saveList(self,ids,path,header,tt): #https://www.pixiv.net/rpc/illust_list.php?illust_ids=65473011%2C65419178%2C65074614%2C65185576%2C65508558%2C65456275%2C65144502%2C65531239%2C65414423%2C65409762%2C65074959%2C65373539%2C65525510%2C65382906%2C65518224%2C65467454%2C65520983%2C65353027%2C65108280%2C65127935%2C65290068%2C65397514%2C65346015%2C65433918%2C65407698%2C65281689%2C65185350%2C65422835%2C65364898%2C65259574%2C65326536%2C65374516%2C65474412%2C65204968%2C65471083%2C65440000%2C65535513%2C65481378%2C65115686%2C65435274%2C65202162%2C65511561%2C65089638%2C65096039%2C65540233%2C65472225%2C65178994%2C65202055%2C65256707%2C65486757&page=discover&exclude_muted_illusts=1&tt=b4424083a29b1aa069dcf38eaf318dbc listurl='https://www.pixiv.net/rpc/illust_list.php?illust_ids=' b=True for id in ids: if b: b=False listurl+='{0}'.format(id) else: listurl+='%2C{0}'.format(id) listurl+='&page=discover&exclude_muted_illusts=1&tt=%s'%(tt) req=urllib2.Request(listurl,headers=header) response=self.opener.open(req) content=response.read() # pattern=re.compile(r'"tags":(?P<tags>.*?),"url":(?P<url>.*?),"user_name":(?P<user_name>.*?),"illust_id":(?P<illust_id>.*?),"illust_title":(?P<illust_title>.*?),"illust_user_id":(?P<illust_user_id>.*?),"user_name":(?P<user_name>.*?),"user_name":(?P<user_name>.*?),"user_name":(?P<user_name>.*?),"user_name":(?P<user_name>.*?),"user_name":(?P<user_name>.*?),"user_name":(?P<user_name>.*?),"user_name":(?P<user_name>.*?),"user_name":(?P<user_name>.*?),"user_name":(?P<user_name>.*?),"user_name":(?P<user_name>.*?)', re.S) for match in re.findall(r'{.*?}',content,re.S): try: time.sleep(1) jsons=eval(match) ''' for k in jsons: if type(jsons[k])==types.StringType: jsons[k]=jsons[k].decode('unicode-escape') if types(jsons[k])==types.ListType: ''' tags='' for tag in jsons['tags']: if tag[0]=='\\' and tag[1]=='u' : tags+=tag.decode('unicode-escape')+' , ' else: tags+=tag+' , ' jsons['tags']=tags for k in jsons: if type(jsons[k])==types.StringType: if jsons[k][0]=='\\' and jsons[k][1]=='u' : jsons[k]=jsons[k].decode('unicode-escape') #path,name,linkname,tag,author,aid,pid,date='' ''' print jsons['illust_title'] print self.namefinder.search(jsons['url']).group()[1:] print jsons['tags'] print jsons['user_name'] print jsons['illust_user_id'] print jsons['illust_id'] print jsons['url'] print jsons['illust_page_count'] print re.sub(r'\\/',r'/',jsons['url']) ''' self.saveTxt(path,jsons['illust_title'],self.namefinder.search(jsons['url']).group()[1:],jsons['tags'],jsons['user_name'],jsons['illust_user_id'],jsons['illust_id']) #self,path,filename,link,name,pid='',date='' path,filename,link,name,pid='',date='' #savePic(self,path,filename,link,name,pid='',date=''): self.savePic(path, self.namefinder.search(jsons['url']).group()[1:], re.sub(r'\\/','/',jsons['url']),jsons['illust_title'],pid=jsons['illust_id']) except Exception,e: print e def getRecommend(self,num=10): req=urllib2.Request('https://www.pixiv.net/discovery') response=self.opener.open(req) content=response.read() tokenfinder=re.compile(r'pixiv.context.token = "(.*?)"', re.S) tokenmatch = re.search(tokenfinder, content) Header= { 'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:54.0) Gecko/20100101 Firefox/54.0' ,'Host': 'www.pixiv.net' ,'Referer': 'https://www.pixiv.net/discovery' ,'DNT': '1' ,'Accept':'*/*' } tt=tokenmatch.group(1) datareq=urllib2.Request('https://www.pixiv.net/rpc/recommender.php?type=illust&sample_illusts=auto&num_recommendations={0}&page=discovery&mode=all&tt={1}'.format(num,tt),headers=Header) datasresponse=self.opener.open(datareq) data=datasresponse.read() FPath=self.recommonedPath+'\\'+time.strftime('%Y-%m-%d',time.localtime(time.time())) self.mkDir(FPath) i=0 L=[] for match in re.findall(r'\d+',data,re.S): i+=1 L.append(match) if i>=self.maxList: print 'sending-------------------' self.saveList(L,FPath,Header,tt) i=0 L=[] self.saveList(L,FPath,Header,tt) #获得我的更新 def getMyNew(self,save=False,MaxPage=1): try: print "GetMyNew..." for i in range(1,MaxPage+1): req = urllib2.Request(self.newUrl.format(i)) print self.newUrl.format(i) response = self.opener.open(req) self.cookie.save(filename='cookies.txt', ignore_discard=True, ignore_expires=True) content=response.read() if save: file=open('HtmlTmp{0}.txt'.format(i),'w') file.write(content) file.close() self.saveMyNew(content) print "Over" except CookieError,e: print e.reason #获得某作者的信息 def getAuthor(self,aid,save=False,MaxPage=1): try: print 'getAuthor...' Aname='UnKnown' path='' for i in range(1,MaxPage+1): req = urllib2.Request(self.authorUrl.format(aid,i)) print self.authorUrl.format(aid,i) response = self.opener.open(req) self.cookie.save(filename='cookies.txt', ignore_discard=True, ignore_expires=True) content=response.read() if save: file=open('HtmlTmp{0}.txt'.format(i),'w') file.write(content) file.close() if i==1: pattern=re.compile(r'<a.*?class="user-name".*?>(.*?)</a>',re.S) Aname=pattern.search(content).group(1) print Aname path=self.authorPath+'\\'+Aname print path self.mkDir(path) self.saveAuthor(content,path,Aname) print "Over" except CookieError,e: print e.reason if __name__=='__main__': pass p=PixivLinker() #p.getAuthor('4239212',False, 9)#'8189060' #p.getMyNew(False, 1) p.getMain(save=True,wantNew=False,wantRec=True)
[ "xwl992365231@163.com" ]
xwl992365231@163.com
34b03cd2b0561302a442746036964d970147b488
aff33d74832ac5c4ba271d1735f41bf9f7048e9e
/JustesSite/wsgi.py
f2363782918d913441d82df70285eab7934af771
[]
no_license
JustinaSavickaite/DjangoGirlsBlog
1daa0277f5f77fe1a62591687ed11e22426cbc8b
edcd5340f7cb167000c7492966d289922b1cd588
refs/heads/master
2020-05-27T08:13:16.380610
2019-05-25T13:02:49
2019-05-25T13:02:49
188,541,561
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
""" WSGI config for JustesSite project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "JustesSite.settings") application = get_wsgi_application()
[ "justinaa.savickaite@gmail.com" ]
justinaa.savickaite@gmail.com
59b9c718b121c393ba492ef0fab66fd9222c0f25
4c0b1c2477a1c1d9f35d3d1cdaccde8d11c5bf0c
/oz/bandit/actions.py
6e441bf15b15f997cae021d8030b3884fd0c00b3
[ "BSD-3-Clause" ]
permissive
dailymuse/oz
5307af4066c054d5f027ba370ec18e4db3b91d22
f4fec5078bba3258a15504247394339a100487de
refs/heads/develop
2021-01-17T01:21:24.048074
2020-09-25T20:15:06
2020-09-25T20:15:06
12,148,880
36
4
BSD-3-Clause
2020-09-26T00:32:12
2013-08-16T02:28:00
Python
UTF-8
Python
false
false
2,270
py
from __future__ import absolute_import, division, print_function, with_statement, unicode_literals import oz import datetime import oz.redis import oz.bandit from tornado import escape @oz.action def add_experiment(experiment): """Adds a new experiment""" redis = oz.redis.create_connection() oz.bandit.add_experiment(redis, experiment) @oz.action def archive_experiment(experiment): """Archives an experiment""" redis = oz.redis.create_connection() oz.bandit.Experiment(redis, experiment).archive() @oz.action def add_experiment_choice(experiment, choice): """Adds an experiment choice""" redis = oz.redis.create_connection() oz.bandit.Experiment(redis, experiment).add_choice(choice) @oz.action def remove_experiment_choice(experiment, choice): """Removes an experiment choice""" redis = oz.redis.create_connection() oz.bandit.Experiment(redis, experiment).remove_choice(choice) @oz.action def get_experiment_results(): """ Computes the results of all experiments, stores it in redis, and prints it out """ redis = oz.redis.create_connection() for experiment in oz.bandit.get_experiments(redis): experiment.compute_default_choice() csq, confident = experiment.confidence() print("%s:" % experiment.name) print("- creation date: %s" % experiment.metadata["creation_date"]) print("- default choice: %s" % experiment.default_choice) print("- chi squared: %s" % csq) print("- confident: %s" % confident) print("- choices:") for choice in experiment.choices: print(" - %s: plays=%s, rewards=%s, performance=%s" % (choice.name, choice.plays, choice.rewards, choice.performance)) @oz.action def sync_experiments_from_spec(filename): """ Takes the path to a JSON file declaring experiment specifications, and modifies the experiments stored in redis to match the spec. A spec looks like this: { "experiment 1": ["choice 1", "choice 2", "choice 3"], "experiment 2": ["choice 1", "choice 2"] } """ redis = oz.redis.create_connection() with open(filename, "r") as f: schema = escape.json_decode(f.read()) oz.bandit.sync_from_spec(redis, schema)
[ "simonson@gmail.com" ]
simonson@gmail.com
73e6a623d85f20031eb6facf7519a7542786ec9f
f59246a0b83df52c4a8d53f350e16c74333eb56c
/bin/epylint
65b9cc758eea3c753eb0f53d23a166437dcf16a5
[]
no_license
Angel-Chang/HSDBS
bcc4ffe679cd56898354f8d4e0aa21bd94fc2844
df14e42beb17ad3f6262b3fdc50052b73d99fd25
refs/heads/master
2023-07-10T22:19:34.965001
2021-08-24T14:42:58
2021-08-24T14:42:58
399,503,048
0
0
null
null
null
null
UTF-8
Python
false
false
257
#!/Users/dualwings/Projects/HappyCityDB/HSDBS/bin/python # -*- coding: utf-8 -*- import re import sys from pylint import run_epylint if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(run_epylint())
[ "huichi.chang@gmail.com" ]
huichi.chang@gmail.com
49418e89eb996edd410c9e539d7f89196d1c80c0
7a0adfa02066795cf426434f36469560e9731448
/TokenExtract.py
82faec4da27067fe03eb1f735690fb41508c5960
[]
no_license
kevinkoo001/malClassifier
b5b7dc4287903eae6a69eb547d60f5d3e966f8d0
9c25bad29069afa030443284042e8d1fcbeb7233
refs/heads/master
2021-01-10T19:36:53.793962
2015-03-09T19:24:06
2015-03-09T19:24:06
30,928,405
1
1
null
null
null
null
UTF-8
Python
false
false
818
py
__author__ = 'HEEYOUNG' import csv import numpy as np import sklearn import sys from os import listdir from os.path import isfile, join import os from pymongo import MongoClient client = MongoClient('localhost', 27017) db = client.Malware BASEDIR = "H:/Malware_Data/" if __name__ == '__main__': TrainList = [] AC = db.AssemCnt AK = db.AssemKeys CI = db.CallInfo CA = db.CallArg Files = CI.find(timeout=False) for f in Files: for k in f.keys(): if k == '_id' or k == 'Id': continue if CA.find_one({"arg":k}): continue CA.insert({"arg": k}) arg = CA.find(timeout=False) arg_id = 0 for c in arg: AK.update({"_id":c['_id']}, {"$set": {"arg_id": arg_id}}) arg_id += 1 sys.exit()
[ "kevinkoo001@gmail.com" ]
kevinkoo001@gmail.com
dc7eb1f17fb333249a13d48e83e81c6eb1c15213
684a4b1b43810ed6ebe6bbb29b3de90038ee90a6
/Decision_Trees/LMT/calculate_diff_sum_with_pos_neg_weights.py
1e3b1bafee3c3991cb4d9c1d7de194bcc2a4385e
[]
no_license
liuyejia/Yeti-Thesis-Project
47735120f3314e0041fe978d16ba2c922775b0fd
3ce083c5f871b6efe0a581d8ce8db18116ea6ba4
refs/heads/master
2021-10-09T12:25:23.067022
2018-12-28T06:02:41
2018-12-28T06:02:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,085
py
import csv import pandas as pd import numpy as np # get the average value with sql "SELECT LeafNode, avg(DraftAge_norm), avg(Weight_norm), avg(CSS_rank_norm), avg(rs_A_norm), avg(rs_GP_norm), avg(rs_P_norm), avg(rs_PIM_norm), avg(rs_PlusMinus_norm), avg(po_P_norm), avg(po_PIM_norm), avg(po_PlusMinus_norm), avg(po_A_norm), avg(country_EURO), avg(country_USA), avg(country_CAN), avg(position_R) FROM chao_draft.lmt_testYears_CSS_null_norm_prob_for_points where DraftYear in (2001,2002)/(2007,2008) group by LeafNode;" df1 = pd.read_csv('Desktop/lmt_10years_CSS_null_norm_prob_01_02.csv') DraftAge_norm_avg = [0.042207792207792194, 0.05088062622309201,0.10545556805399334, 0.06395348837209304, 0.10204081632653063] Weight_norm_avg = [0.4145541958041958, 0.4143835616438356, 0.4140672319806176, 0.39020572450804997, 0.3820970695970695] CSS_rank_norm_avg = [0.5431709438886473, 0.5189093530838303, 0.5073842444335611, 0.47947034605541355, 0.5593529277739803] rs_A_norm_avg = [0.19184491978609627, 0.15028203062046727, 0.212289640265555, 0.2045143638850889, 0.20891690009337066] rs_GP_norm_avg = [0.6603535353535354, 0.5652968036529681, 0.5430446194225723, 0.5740310077519379, 0.6825396825396827] rs_P_norm_avg = [0.20497698504027628, 0.1596150511531126, 0.2299661118309578, 0.22188695908154255, 0.24035563592525613] rs_PIM_norm_avg = [0.18898272917062062, 0.14762490348042442, 0.1367432150313153, 0.13191241442928583, 0.17447062332239785] rs_PlusMinus_norm_avg = [0.566, 0.47331506849315086, 0.5520000000000023, 0.634790697674419, 0.6540952380952382] po_P_norm_avg = [0.05039525691699606, 0.022036926742108394, 0.07300581992468333, 0.06648129423660265, 0.14906832298136646] po_PIM_norm_avg = [0.06079545454545455, 0.023972602739726033, 0.05692257217847772, 0.04544573643410852, 0.12539682539682542] po_PlusMinus_norm_avg = [0.28693181818181823, 0.375, 0.375, 0.375, 0.5674603174603176] po_A_norm_avg = [0.05506993006993008, 0.02370916754478399, 0.0772259236826166, 0.06663685152057243, 0.16300366300366298] country_EURO_avg = [0.4091, 0.5342, 0.4291, 0.6163, 0.5714] country_USA_avg = [0.0682, 0.1370, 0.2402, 0.0814, 0.0238] country_CAN_avg = [0.5227, 0.3288, 0.3307, 0.3023, 0.4048] position_R_avg = [0.1818, 0.2329, 0.2126, 0.1047, 0.2143] with open('Desktop/lmt_10years_CSS_null_norm_prob_01_02.csv', 'rb') as csvfile: d_reader = csv.DictReader(csvfile) vals_positive = [] vals_negative = [] DraftAge_norm_diff_list = [] Weight_norm_diff_list = [] CSS_rank_norm_diff_list = [] rs_A_norm_diff_list = [] rs_P_norm_diff_list = [] country_EURO_diff_list = [] rs_GP_norm_diff_list = [] rs_PIM_norm_diff_list = [] rs_PlusMinus_norm_diff_list = [] po_A_norm_diff_list = [] po_P_norm_diff_list = [] po_PIM_norm_diff_list = [] po_PlusMinus_norm_diff_list = [] position_R_diff_list = [] country_CAN_diff_list = [] for row in d_reader: DraftAge_norm_diff = float(row['DraftAge_norm']) - DraftAge_norm_avg[int(row['LeafNode'])-1] DraftAge_norm_diff_list.append(DraftAge_norm_diff) Weight_norm_diff = float(row['Weight_norm']) - Weight_norm_avg[int(row['LeafNode'])-1] Weight_norm_diff_list.append(Weight_norm_diff) CSS_rank_norm_diff = float(row['CSS_rank_norm']) - CSS_rank_norm_avg[int(row['LeafNode'])-1] CSS_rank_norm_diff_list.append(CSS_rank_norm_diff) rs_A_norm_diff = float(row['rs_A_norm']) - rs_A_norm_avg[int(row['LeafNode'])-1] rs_A_norm_diff_list.append(rs_A_norm_diff) rs_P_norm_diff = float(row['rs_P_norm']) - rs_P_norm_avg[int(row['LeafNode'])-1] rs_P_norm_diff_list.append(rs_P_norm_diff) country_EURO_diff = float(row['country_EURO']) - country_EURO_avg[int(row['LeafNode'])-1] country_EURO_diff_list.append(country_EURO_diff) rs_GP_norm_diff = float(row['rs_GP_norm']) - rs_GP_norm_avg[int(row['LeafNode'])-1] rs_GP_norm_diff_list.append(rs_GP_norm_diff) rs_PIM_norm_diff = float(row['rs_PIM_norm']) - rs_PIM_norm_avg[int(row['LeafNode'])-1] rs_PIM_norm_diff_list.append(rs_PIM_norm_diff) rs_PlusMinus_norm_diff = float(row['rs_PlusMinus_norm']) -rs_PlusMinus_norm_avg[int(row['LeafNode'])-1] rs_PlusMinus_norm_diff_list.append(rs_PlusMinus_norm_diff) po_A_norm_diff = float(row['po_A_norm']) - po_A_norm_avg[int(row['LeafNode'])-1] po_A_norm_diff_list.append(po_A_norm_diff) po_P_norm_diff = float(row['po_P_norm']) - po_P_norm_avg[int(row['LeafNode'])-1] po_P_norm_diff_list.append(po_P_norm_diff) po_PIM_norm_diff = float(row['po_PIM_norm']) - po_PIM_norm_avg[int(row['LeafNode'])-1] po_PIM_norm_diff_list.append(po_PIM_norm_diff) po_PlusMinus_norm_diff = float(row['po_PlusMinus_norm']) - po_PlusMinus_norm_avg[int(row['LeafNode'])-1] po_PlusMinus_norm_diff_list.append(po_PlusMinus_norm_diff) position_R_diff = float(row['position_R']) - position_R_avg[int(row['LeafNode'])-1] position_R_diff_list.append(position_R_diff) country_CAN_diff = float(row['country_CAN']) - country_CAN_avg[int(row['LeafNode'])-1] country_CAN_diff_list.append(country_CAN_diff) if int(row['LeafNode']) == 1: val_neg = CSS_rank_norm_diff *-1.256756345 + rs_A_norm_diff * -1.3622035894 val_pos = DraftAge_norm_diff* 1.5253614015 + Weight_norm_diff * 1.4919620265 + rs_P_norm_diff * 1.5706334136 elif int(row['LeafNode']) == 2: val_neg = country_EURO_diff *-0.1901788186 + CSS_rank_norm_diff * -1.4750414248 + po_PlusMinus_norm_diff * -7.1433895008 val_pos = DraftAge_norm_diff * 2.2681273438 + Weight_norm_diff *1.5706434401 + rs_GP_norm_diff *1.1639704533 + rs_P_norm_diff * 1.5706334136 + rs_PlusMinus_norm_diff * 1.8081514932 + po_P_norm_diff * 1.4172451085 + po_PIM_norm_diff *22.3783855159 elif int(row['LeafNode']) == 3: val_neg = CSS_rank_norm_diff * -2.2145122397 + rs_PIM_norm_diff * -1.0367303956 + rs_PlusMinus_norm_diff * -10.8803616145 + po_A_norm_diff * -0.9534784316 + po_PlusMinus_norm_diff * -7.1433895008 val_pos = DraftAge_norm_diff * 2.2681273438 + country_EURO_diff * 0.0056782221 + country_CAN_diff * 0.332912836 + Weight_norm_diff * 1.5706434401 + rs_GP_norm_diff * 2.4135766868 + rs_P_norm_diff * 1.5706334136 + po_P_norm_diff * 1.4172451085 + po_PIM_norm_diff * 1.5097963896 elif int(row['LeafNode']) == 4: val_neg = country_EURO_diff * -0.1901788186 + CSS_rank_norm_diff * -1.4750414248 + rs_PIM_norm_diff * -1.0367303956 + po_PlusMinus_norm_diff * -7.1433895008 val_pos = DraftAge_norm_diff * 2.2681273438 + country_CAN_diff * 0.332912836 + Weight_norm_diff * 1.5706434401 + rs_GP_norm_diff * 1.8403281774 + rs_P_norm_diff * 1.5706334136 + rs_PlusMinus_norm_diff * 0.7777586333 + po_P_norm_diff * 4.3659576659 + po_PIM_norm_diff * 5.2983383711 elif int(row['LeafNode']) == 5: val_neg = position_R_diff * -0.1171557532 + CSS_rank_norm_diff * -1.4750414248 + po_PlusMinus_norm_diff * -7.1433895008 val_pos = DraftAge_norm_diff * 0.7210529086 + Weight_norm_diff * 1.5706434401 + rs_GP_norm_diff * 1.1639704533 + rs_P_norm_diff * 1.5706334136 + po_P_norm_diff * 1.4172451085 vals_positive.append(val_pos) vals_negative.append(val_neg) with open('Desktop/lmt_10years_CSS_null_norm_prob_01_02.csv', 'rb') as input, open('Desktop/output_lmt_points_01_02_pos_neg_points_with_diff.csv', 'wb') as output: reader = csv.reader(input, delimiter = ',') writer = csv.writer(output, delimiter = ',') row = next(reader) # read title line row.append('weight_pos_val') row.append('weight_neg_val') row.append('DraftAge_norm_diff') row.append('Weight_norm_diff') row.append('CSS_rank_norm_diff') row.append('rs_A_norm_diff') row.append('rs_P_norm_diff') row.append('country_EURO_diff') row.append('rs_GP_norm_diff') row.append('rs_PIM_norm_diff') row.append('rs_PlusMinus_norm_diff') row.append('po_A_norm_diff') row.append('po_P_norm_diff') row.append('po_PIM_norm_diff') row.append('po_PlusMinus_norm_diff') row.append('position_R_diff') row.append('country_CAN_diff') writer.writerow(row) # write enhanced title line it_pos = vals_positive.__iter__() # create an iterator on the result it_neg = vals_negative.__iter__() it_1 = DraftAge_norm_diff_list.__iter__() it_2 = Weight_norm_diff_list.__iter__() it_3 = CSS_rank_norm_diff_list.__iter__() it_4 = rs_A_norm_diff_list.__iter__() it_5= rs_P_norm_diff_list.__iter__() it_6 = country_EURO_diff_list.__iter__() it_7 = rs_GP_norm_diff_list.__iter__() it_9 = rs_PIM_norm_diff_list.__iter__() it_10 = rs_PlusMinus_norm_diff_list.__iter__() it_11 = po_A_norm_diff_list.__iter__() it_12 = po_P_norm_diff_list.__iter__() it_13 = po_PIM_norm_diff_list.__iter__() it_14 = po_PlusMinus_norm_diff_list.__iter__() it_15 = position_R_diff_list.__iter__() it_16 = country_CAN_diff_list.__iter__() for row in reader: if row: # avoid empty lines that usually lurk undetected at the end of the files try: row.append(next(it_pos)) # add a result to current row row.append(next(it_neg)) row.append(next(it_1)) row.append(next(it_2)) row.append(next(it_3)) row.append(next(it_4)) row.append(next(it_5)) row.append(next(it_6)) row.append(next(it_7)) row.append(next(it_9)) row.append(next(it_10)) row.append(next(it_11)) row.append(next(it_12)) row.append(next(it_13)) row.append(next(it_14)) row.append(next(it_15)) row.append(next(it_16)) except StopIteration: row.append("N/A") # not enough results: pad with N/A writer.writerow(row)
[ "noreply@github.com" ]
liuyejia.noreply@github.com
81b6956e40e1cd7df9d676045abb0fb86f48d988
3e08cffe70e114cdee33469c5b95e95e31dc668b
/common_tools/units.py
a9175bce0ff93735177f3d02fdda1232fc3321fa
[]
no_license
mzoll/common_tools
7d5433daed4284b11df6eb5de6112d48eb9ac094
1a679f152727d52c9ce9e718f1d609c6f3d3fca4
refs/heads/master
2021-06-02T01:34:47.206657
2019-02-21T23:35:32
2019-02-21T23:35:32
125,834,198
0
0
null
null
null
null
UTF-8
Python
false
false
1,777
py
''' Created on Sep 28, 2017 @author: marcel.zoll define some commonly used units as multiplicative values, so that we wont have to guess what kind of factor they entail to standard definitions. ''' class units: """ defines conversion factors between units Examples -------- ``` t = 1. * units.time.milliseconds print('t equal to ', t, units.time._native_name) ``` """ class time: seconds = 1. sec = 1 minutes = 60. m = 60. hours = 3600. h = 3600. days = 24.*3600. d = 24.*3600. milliseconds = 1E-3 ms = 1E-3 microseconds = 1E-6 mus = 1E-6 nanoseconds = 1E-9 ns = 1E-9 class distance: meters = 1. m = 1. kilometers = 1E3 km = 1E3 class weight: kilograms = 1. kg = 1. grams = 1E-3 g = 1E-3 tons = 1E3 t = 1E3 class factors: percent = 1E-2 kilo = 1E3 mega = 1E6 giga =1E9 tera = 1E12 deci = 1E-1 centi = 1E-2 milli = 1E-3 micro = 1E-6 nano = 1E-9 class abstract: money = 1. class money: Kronor = 1. SEK = 1. Dollar = 1. USD = 1. Euro = 1. EUR = 1. class _native_name: time = 'seconds' distance = 'meters' weight = 'kilogram' def impl(value): """ gotten an implict unit value: multiply with this to just mark this variable as explicit unit dependent Examples -------- ``` t_ms = 1. * impl('milliseconds') print('t equal to ', t*units.time*milliseconds , units._native_name.time) ``` """ return(1.)
[ "marcel.zoll@nowinteract.com" ]
marcel.zoll@nowinteract.com
7a9a5b0d61016058241e1c30827b44586ea150a4
7649d4420c729eb1114d1159b35f9b7e05f40c42
/dog.py
aa05e8daff6e94930b21c7a8244682bcb393f74f
[]
no_license
ninankkim/python-functions
6492bfe5dc9151092179367effde1a4d733c2270
4b872849d7d527620b08e762536ca8b24d30f7f5
refs/heads/master
2022-12-23T09:00:23.183486
2020-09-24T02:31:52
2020-09-24T02:31:52
289,960,542
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
class Dog: species = 'mammal' def __init__(self, Nelson, age): self.name = name self.age = age nelson = Dog("Nelson", 3) print(f"{nelson.name} is {nelson.age}.") def description(self): return(f'{self.name} is {self.age} years old'. ) # nelson = Dog("Nelson", 3) # print(f"{nelson.name} is {nelson.age}.")
[ "noreply@github.com" ]
ninankkim.noreply@github.com
ad2413067fa7f22525ccaa649449bf4eb0f75ac0
6633410f0b0922acc53a452a4fb379d322be60ae
/trydjango19/manage.py
394fc3ba1c3c0abd172f8409d04987e6abc650f1
[]
no_license
miradouro/django_rest
40cf71eb26abe7da509aa417104503563295dca7
1250eed5860ee6e2b87ca1c0f7b90899e0eb7d44
refs/heads/master
2023-04-09T12:03:33.059053
2021-03-31T11:55:07
2021-03-31T11:55:07
352,301,531
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'trydjango19.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "rafaelmiradouro@gmail.com" ]
rafaelmiradouro@gmail.com
7215c3ea37b0c050243a3ad04035d80c0d10a10d
a5d42f157dc642888564bca72d9ebfa18b7e8ee7
/05-condicionales/ejemplo_if.py
896d6dd4d392358a1077f0e341a8acfb3ce6546f
[ "MIT" ]
permissive
tulcas/master-python
5cbc17881e4b2f3f3e3134f3edc61ecc73898f68
ddac8aa1bf3e6448fe237eac239d27ce3fda705c
refs/heads/master
2023-01-08T17:17:12.616654
2020-11-14T09:38:51
2020-11-14T09:38:51
275,884,651
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
# Ejemplo 1 print ("########################## EJEMPLO 1 ########################## ") color = "rojo" color = "verde" if color == "rojo": print("Enhorabuena!!!") print("El color es: ROJO ") else: print("El color NO es: ROJO ") # Ejemplo 2 print ("\n########################## EJEMPLO 2 ########################## ") year = int(input("En que año estamos ?: ")) anioActual = 2020 if year >= anioActual: print("Estamos de 2020 en adelante...") else: print("Es un año anterior a 2020! ") # Ejemplo 3 print ("\n########################## EJEMPLO 3 ########################## ") nombre = "Victor Robles"
[ "andllanes@gmail.com" ]
andllanes@gmail.com
cee26de311e1547ddda332a99951c846aae0f3a4
655f463e8a357a649972782b2a338be03044b119
/h_index_P3.py
86a598e5917d3e50c46750deb15af0c599528919
[]
no_license
covy92/algorithmPrac
01c29476ebe869c1bcd15133f95e44ba7e9b59b2
86c9691d86b6275026195e3c2fe0e34778f03159
refs/heads/master
2023-09-04T16:49:09.994580
2021-11-05T01:54:28
2021-11-05T01:54:28
422,837,985
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
citations = [0, 1, 1] citations.sort() print(citations) count = 0 over_num = 0 answer_list = [0] while count < len(citations)+1: for i in range((len(citations))): if citations[i] >= count: over_num += 1 print(count, over_num) if count <= over_num: answer_list.append(count) over_num = 0 count += 1 answer = max(answer_list) print(answer) # 모법답안 def solution(citations): citations = sorted(citations) l = len(citations) for i in range(l): if citations[i] >= l-i: return l-i return 0 print(solution(citations))
[ "tjddlf1232@gmail.com" ]
tjddlf1232@gmail.com
3984eab721b23a8156156fad53f978306b280051
9275f3919f80c3d1525afa890a9422d86e2c745b
/coderbyte-TimeConvert.py
4b13ee7d9dd3b5cd26688273943992491c5e4486
[]
no_license
Jandeh7/coderbyte-solution
3b97c1d6c9be5c00607b1d1d86b0f413c975f3d4
7614bc9a00787e92be67dc745f5c4b6de90aa27e
refs/heads/master
2022-01-07T19:41:08.443776
2019-07-05T09:15:31
2019-07-05T09:15:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
550
py
''' Have the function TimeConvert(num) take the num parameter being passed and return the number of hours and minutes the parameter converts to (ie. if num = 63 then the output should be 1:3). Separate the number of hours and minutes with a colon. Use the Parameter Testing feature in the box below to test your code with different arguments. ''' def TimeConvert(num): hour = int(num/60) min = num - hour * 60 # code goes here return str(hour) + ':' + str(min) # keep this function call here print TimeConvert(raw_input())
[ "liangmanping@outlook.com" ]
liangmanping@outlook.com
5c304c1203ea75a46905540701399371d11cb521
1f2cd2042e3ad8a3866a01ee6dcc9735537ffa28
/Task 3.py
eed4903ddca70e5a5901d032feb5f256a160ffaa
[]
no_license
ADRITA-PARIA/TSF-tasks
f6613b68d55813ca14805f36a2a60c61a264d04d
26975dd63096eb7d2750eff380cf0345c72b8d3c
refs/heads/main
2023-02-27T05:46:57.990106
2021-02-10T13:30:55
2021-02-10T13:30:55
336,715,941
0
1
null
null
null
null
UTF-8
Python
false
false
5,373
py
#!/usr/bin/env python # coding: utf-8 # # Data Science And Business Analytics Intern At The Sparks Foundation # # GRIPFEB21 # # Author: Adrita Paria # # Task 3=Exploratory Data Analysis(Sample Superstore) # # Step 1: Importing standard ML libraries # In[132]: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import plotly.express as px # # Step 2: Importing the data set # In[52]: df=pd.read_csv("C:\\Users\\adrit\\Desktop\\SampleSuperstore.csv") df.head(5) # # 3. Data Analysis # In[53]: df.describe() # In[54]: df.shape # In[55]: df.columns # In[56]: df.nunique() # In[57]: df.isnull().sum() # # 4. Data Visualization Using Correlation Matrix # In[58]: correlation=df.corr() # In[59]: plt.figure(figsize=(10,8)) sns.heatmap(correlation,annot=True) plt.xticks(fontsize=13) plt.yticks(fontsize=13) plt.show() # In[60]: plt.figure(figsize=(15,7)) sns.boxplot(data=df) # # There are no outliers present here # In[61]: df.groupby(['Category','Sub-Category'])['Quantity'].count() # In[62]: sns.catplot(x='Quantity',kind='box',data=df) # In[79]: sns.pairplot(df) # In[75]: y=df[['Ship Mode','Sales']] print(y) # # 5. Individual visualisation of the categories # In[93]: plt.figure(figsize=(10,8)) sns.countplot(x=df['Segment']) print(df['Segment'].value_counts()) # ## The section consumer shows the highest consumption rather than corporate and home office # In[94]: plt.figure(figsize=(10,8)) sns.countplot(x=df['Region']) print(df['Region'].value_counts()) # ## The section west shows the highest count # In[90]: plt.figure(figsize=(10,8)) sns.countplot(x=df['Category']) print(df['Category'].value_counts()) # In[92]: plt.figure(figsize=(15,9)) sns.countplot(x=df['Sub-Category']) print(df['Sub-Category'].value_counts()) # In[97]: plt.figure(figsize=(20,5)) sns.countplot(x=df['City']) print(df['City'].value_counts()) # In[78]: plt.figure(figsize=(10,7)) plt.bar(x=y['Ship Mode'],height=y['Sales']) plt.title('Shipping mode vs Sales',fontsize=14) plt.xlabel('Shipping mode',fontsize=13) plt.ylabel('Sales',fontsize=13) plt.show() # In[100]: plt.figure(figsize=(19,7)) plt.bar('Sub-Category','Category',data=df,color='y') # In[105]: plt.figure(figsize=(15,8)) sns.countplot(x='Sub-Category',hue='Region',data=df) print(df['Profit'].value_counts()) # In[109]: plt.figure(figsize=(15,8)) sns.countplot(x='Sub-Category',hue='Segment',data=df) # In[130]: plt.figure(figsize=(10,8)) df['Category'].value_counts().plot.pie() plt.show() # In[126]: plt.figure(figsize=(10,8)) df['Sub-Category'].value_counts().plot.pie() plt.show() # In[139]: fig=px.sunburst(df,path=['Country','Category','Sub-Category'],values='Sales',color='Category',hover_data=['Sales','Quantity','Profit']) fig.update_layout(height=800) fig.show() # # Interpretation # ### The dataset is about a superstore’s sales. # 2) The shape of the dataset is 9994, 13(Rows, Columns). # 3) The max profit on a single sale is 8399.976. # 4) Different Types of Shipping Mode is (Standard, Second, First Class and Same Day). # 5) Categories of the Products are (Office Supplies, Technology, and Furniture). # 6) Segment of the Customers are (Consumer, Home Office, Corporate). # 7) Products are delivered in 39 states. # 8) Region of services is (East, West, South, and Central). # 9) There are several Sub-Categories of Products. # 10) Total profit made: 286397.0217. # 11) Total Sales made: 2297200.8603. # 12) Therefore Profit Percentage is: 12.46. # 13) Many Discounts are also given. # 14) As California has the highest number of sales let’s take a look its stats. # 15) In California Office Supplies has the highest number of sales. # 16) In Office Supplies Paper is the highest Sold. # 17) Most people in California prefer Standard Class of shipping mode. # 18) As most of the sales are in the quantity of 3, company should provide a special discount on a bundle of 3, so sales may increase. # 19) In west also Office supplies has the highest sales. # 20) But a noticeable thing to see is that instead of paper in west highest sales is of binders. # 21) In the technology category Phones has the highest sales in California. # 22) Sales in Furniture : 74199.7953 # 23) Sales in Office Supplies: 719047.032 # 24) Sales in Technology: 836154.033 # 25) Though highest no.of sales were of Office Supplies still Technology’s Sales are greater in number. # 26) Profit in Furniture: 18451.272 # 27) Profit in Office Supplies: 122490.8008 # 28) Profit in Technology: 145454.9481 # 29) There is highest loss in the Office Supplies Category. # 30) California is the state where there is highest profit in the art category so art related ads should be run in California. # 31) Company should work on the Central region because that region has the highest losses. # 32) And state wise company should work on Texas.
[ "noreply@github.com" ]
ADRITA-PARIA.noreply@github.com
b91f6ce958f69e9dfef51a067e91a094aa42930b
99de523ddc847b29db4236ef87d39eb0c1f6ac1c
/python/searchMethodUI.py
a5e2497ec6aa9e548e9d45302a2fb5c00bd5efc7
[]
no_license
sanfx/searchMethod
28ffcbcee5c8e7adaed1ae410c033965b1dbf875
38392d0101c2f3c1435e50e52857df13e50a9943
refs/heads/master
2016-09-06T03:36:55.479814
2013-11-04T14:01:33
2013-11-04T14:01:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,091
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'ui/searchMethod.ui' # # Created: Sat Nov 2 02:20:15 2013 # by: pyside-uic 0.2.13 running on PySide 1.1.1 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui class Ui_searchMethodMainWidget(object): def setupUi(self, searchMethodMainWidget): searchMethodMainWidget.setObjectName("searchMethodMainWidget") searchMethodMainWidget.resize(553, 414) self.gridLayout_2 = QtGui.QGridLayout(searchMethodMainWidget) self.gridLayout_2.setObjectName("gridLayout_2") self.verticalLayout = QtGui.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.gridLayout = QtGui.QGridLayout() self.gridLayout.setObjectName("gridLayout") self.searchBtn = QtGui.QPushButton(searchMethodMainWidget) self.searchBtn.setObjectName("searchBtn") self.gridLayout.addWidget(self.searchBtn, 1, 2, 1, 1) self.lookInsideLbl = QtGui.QLabel(searchMethodMainWidget) self.lookInsideLbl.setObjectName("lookInsideLbl") self.gridLayout.addWidget(self.lookInsideLbl, 1, 0, 1, 1) self.horizontalLayout_3 = QtGui.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.lookInsideEdit = CompleterLineEdit(searchMethodMainWidget) self.lookInsideEdit.setAutoFillBackground(True) self.lookInsideEdit.setDragEnabled(True) self.lookInsideEdit.setObjectName("lookInsideEdit") self.horizontalLayout_3.addWidget(self.lookInsideEdit) self.label = QtGui.QLabel(searchMethodMainWidget) self.label.setObjectName("label") self.horizontalLayout_3.addWidget(self.label) self.lineEdit = QtGui.QLineEdit(searchMethodMainWidget) self.lineEdit.setCursorMoveStyle(QtCore.Qt.VisualMoveStyle) self.lineEdit.setObjectName("lineEdit") self.horizontalLayout_3.addWidget(self.lineEdit) self.gridLayout.addLayout(self.horizontalLayout_3, 1, 1, 1, 1) self.addPathEdit = AddPathLineEdit(searchMethodMainWidget) self.addPathEdit.setInputMask("") self.addPathEdit.setObjectName("addPathEdit") self.gridLayout.addWidget(self.addPathEdit, 0, 1, 1, 1) self.addPathlbl = QtGui.QLabel(searchMethodMainWidget) self.addPathlbl.setObjectName("addPathlbl") self.gridLayout.addWidget(self.addPathlbl, 0, 0, 1, 1) self.browseBtn = QtGui.QPushButton(searchMethodMainWidget) self.browseBtn.setObjectName("browseBtn") self.gridLayout.addWidget(self.browseBtn, 0, 2, 1, 1) self.verticalLayout.addLayout(self.gridLayout) self.resultlbl = QtGui.QLabel(searchMethodMainWidget) self.resultlbl.setEnabled(True) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.resultlbl.sizePolicy().hasHeightForWidth()) self.resultlbl.setSizePolicy(sizePolicy) self.resultlbl.setMinimumSize(QtCore.QSize(0, 9)) font = QtGui.QFont() font.setPointSize(11) self.resultlbl.setFont(font) self.resultlbl.setObjectName("resultlbl") self.verticalLayout.addWidget(self.resultlbl) self.searchListView = QtGui.QListView(searchMethodMainWidget) self.searchListView.setMaximumSize(QtCore.QSize(16777215, 150)) self.searchListView.setTabKeyNavigation(True) self.searchListView.setProperty("isWrapping", True) self.searchListView.setResizeMode(QtGui.QListView.Adjust) self.searchListView.setObjectName("searchListView") self.verticalLayout.addWidget(self.searchListView) self.gridLayout_3 = QtGui.QGridLayout() self.gridLayout_3.setObjectName("gridLayout_3") self.methodListView = QtGui.QListView(searchMethodMainWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.methodListView.sizePolicy().hasHeightForWidth()) self.methodListView.setSizePolicy(sizePolicy) self.methodListView.setMinimumSize(QtCore.QSize(20, 0)) self.methodListView.setMaximumSize(QtCore.QSize(125, 16777215)) self.methodListView.setObjectName("methodListView") self.gridLayout_3.addWidget(self.methodListView, 1, 0, 1, 1) self.helpOnSelMethodTxtEdit = QtGui.QTextEdit(searchMethodMainWidget) font = QtGui.QFont() font.setUnderline(False) self.helpOnSelMethodTxtEdit.setFont(font) self.helpOnSelMethodTxtEdit.setProperty("cursor", QtCore.Qt.IBeamCursor) self.helpOnSelMethodTxtEdit.setFrameShape(QtGui.QFrame.StyledPanel) self.helpOnSelMethodTxtEdit.setFrameShadow(QtGui.QFrame.Raised) self.helpOnSelMethodTxtEdit.setTabChangesFocus(True) self.helpOnSelMethodTxtEdit.setReadOnly(True) self.helpOnSelMethodTxtEdit.setObjectName("helpOnSelMethodTxtEdit") self.gridLayout_3.addWidget(self.helpOnSelMethodTxtEdit, 1, 1, 1, 1) self.methodlbl = QtGui.QLabel(searchMethodMainWidget) self.methodlbl.setMinimumSize(QtCore.QSize(0, 9)) font = QtGui.QFont() font.setPointSize(11) self.methodlbl.setFont(font) self.methodlbl.setObjectName("methodlbl") self.gridLayout_3.addWidget(self.methodlbl, 0, 0, 1, 1) self.helplbl = QtGui.QLabel(searchMethodMainWidget) self.helplbl.setMinimumSize(QtCore.QSize(0, 12)) font = QtGui.QFont() font.setPointSize(11) font.setWeight(50) font.setBold(False) self.helplbl.setFont(font) self.helplbl.setObjectName("helplbl") self.gridLayout_3.addWidget(self.helplbl, 0, 1, 1, 1) self.verticalLayout.addLayout(self.gridLayout_3) self.gridLayout_2.addLayout(self.verticalLayout, 0, 0, 1, 1) self.retranslateUi(searchMethodMainWidget) QtCore.QMetaObject.connectSlotsByName(searchMethodMainWidget) searchMethodMainWidget.setTabOrder(self.lookInsideEdit, self.lineEdit) searchMethodMainWidget.setTabOrder(self.lineEdit, self.searchBtn) searchMethodMainWidget.setTabOrder(self.searchBtn, self.searchListView) searchMethodMainWidget.setTabOrder(self.searchListView, self.addPathEdit) searchMethodMainWidget.setTabOrder(self.addPathEdit, self.browseBtn) def retranslateUi(self, searchMethodMainWidget): searchMethodMainWidget.setWindowTitle(QtGui.QApplication.translate("searchMethodMainWidget", "Search Method with help", None, QtGui.QApplication.UnicodeUTF8)) self.searchBtn.setText(QtGui.QApplication.translate("searchMethodMainWidget", "Search", None, QtGui.QApplication.UnicodeUTF8)) self.lookInsideLbl.setText(QtGui.QApplication.translate("searchMethodMainWidget", "Look Inside", None, QtGui.QApplication.UnicodeUTF8)) self.lookInsideEdit.setToolTip(QtGui.QApplication.translate("searchMethodMainWidget", "modules or package names separated by comma", None, QtGui.QApplication.UnicodeUTF8)) self.lookInsideEdit.setPlaceholderText(QtGui.QApplication.translate("searchMethodMainWidget", "Enter module name", None, QtGui.QApplication.UnicodeUTF8)) self.label.setText(QtGui.QApplication.translate("searchMethodMainWidget", "Prefix", None, QtGui.QApplication.UnicodeUTF8)) self.lineEdit.setToolTip(QtGui.QApplication.translate("searchMethodMainWidget", "prefix to filter from all methods", None, QtGui.QApplication.UnicodeUTF8)) self.lineEdit.setPlaceholderText(QtGui.QApplication.translate("searchMethodMainWidget", "Enter starting letter/s or leave empty and hit enter", None, QtGui.QApplication.UnicodeUTF8)) self.addPathEdit.setToolTip(QtGui.QApplication.translate("searchMethodMainWidget", "location of module or package not in sys.path", None, QtGui.QApplication.UnicodeUTF8)) self.addPathEdit.setPlaceholderText(QtGui.QApplication.translate("searchMethodMainWidget", "Add path of the module or package not in sys.path list by default", None, QtGui.QApplication.UnicodeUTF8)) self.addPathlbl.setText(QtGui.QApplication.translate("searchMethodMainWidget", "Add Path", None, QtGui.QApplication.UnicodeUTF8)) self.browseBtn.setText(QtGui.QApplication.translate("searchMethodMainWidget", "Browse", None, QtGui.QApplication.UnicodeUTF8)) self.resultlbl.setText(QtGui.QApplication.translate("searchMethodMainWidget", "Results", None, QtGui.QApplication.UnicodeUTF8)) self.methodlbl.setText(QtGui.QApplication.translate("searchMethodMainWidget", "Methods", None, QtGui.QApplication.UnicodeUTF8)) self.helplbl.setText(QtGui.QApplication.translate("searchMethodMainWidget", "Help", None, QtGui.QApplication.UnicodeUTF8)) from autoComplete import CompleterLineEdit from utils import AddPathLineEdit
[ "skysan@gmail.com" ]
skysan@gmail.com
939c889e2b58279d75e55db716e9309be7d5298d
c1a67f7650e7949ec66d0109c4a05326cfa7e976
/travel_budy/urls.py
278cd14802a1c21928a3ec5ecb46e93b193aa265
[]
no_license
SaralynOgden/Travel_budy
7dd7c12bf121996771291c418e72ed84d441aa00
c57c39e8822febfa64deed1672dffc457a5f6037
refs/heads/master
2021-01-22T09:54:34.193167
2016-09-07T04:28:00
2016-09-07T04:28:00
81,977,291
0
0
null
2017-02-14T18:41:28
2017-02-14T18:41:28
null
UTF-8
Python
false
false
792
py
"""dashboard URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include urlpatterns = [ url(r'^', include('apps.loginreg.urls')), url(r'^', include('apps.main.urls')), ]
[ "lynam.emily@gmail.com" ]
lynam.emily@gmail.com
81ae8a68197e4435c336fff6212a256e7cc3d667
174942d21c29300d79b03be2d43f7b8635d38b07
/lesson_05/task_1.py
471274cf7c804e4372102453ce1f46d23320edd0
[]
no_license
HelenMaksimova/algorithms
43a546295888470838bea8301db9acab7b58496b
9b3676f2312cd79b28c984aa11dfeb4868237e46
refs/heads/main
2023-07-03T11:21:26.576778
2021-08-12T20:06:06
2021-08-12T20:06:06
395,431,444
0
0
null
null
null
null
UTF-8
Python
false
false
4,893
py
""" 1. Пользователь вводит данные о количестве предприятий, их наименования и прибыль за 4 квартала (т.е. 4 отдельных числа) для каждого предприятия. Программа должна определить среднюю прибыль (за год для всех предприятий) и вывести наименования предприятий, чья прибыль выше среднего и отдельно вывести наименования предприятий, чья прибыль ниже среднего. Подсказка: Для решения задачи обязательно примените какую-нибудь коллекцию из модуля collections Для лучшее освоения материала можете даже сделать несколько решений этого задания, применив несколько коллекций из модуля collections Пример: Введите количество предприятий для расчета прибыли: 2 Введите название предприятия: Рога через пробел введите прибыль данного предприятия за каждый квартал(Всего 4 квартала): 235 345634 55 235 Введите название предприятия: Копыта через пробел введите прибыль данного предприятия за каждый квартал(Всего 4 квартала): 345 34 543 34 Средняя годовая прибыль всех предприятий: 173557.5 Предприятия, с прибылью выше среднего значения: Рога Предприятия, с прибылью ниже среднего значения: Копыта """ from collections import namedtuple, defaultdict def get_firms_data(number): """Формирует словарь с шаблоном namedtuple по умолчанию и заполняет его данными по предприятиям за 4 квартала""" FIRM_PROFIT = namedtuple('Profits', 'I II III IV sum_profit') firms_dict = defaultdict(FIRM_PROFIT) try: for _ in range(number): firm_name = input('\nВведите название предприятия: ') firm_profit = [float(elem)for elem in input( 'Через пробел введите прибыль данного предприятия поквартально: ').split()] sum_profit = sum(firm_profit) firms_dict[firm_name] = FIRM_PROFIT(*firm_profit, sum_profit) except ValueError: print('\nНеобходимо ввести числа в качестве значений прибыли!') return get_firms_data(number) except TypeError: print('\nНеобходимо ввести прибыль за четыре квартала!') return get_firms_data(number) return firms_dict def average_profit(firms_dct): """Считает среднюю прибыль по всем предприятиям""" profit = sum(value.sum_profit for value in firms_dct.values()) return profit / len(firms_dct) def below_profit(firms_dct, profit): """Возвращает генератор, содержащий наименования предприятий, прибыль которых ниже средней""" result = (key for key in firms_dct if firms_dct[key].sum_profit < profit) return result def over_profit(firms_dct, profit): """Возвращает генератор, содержащий наименования предприятий, прибыль которых выше средней""" result = (key for key in firms_dct if firms_dct[key].sum_profit > profit) return result def firms_count(): """Возвращает количество предприятий""" try: count = int(input('\nВведите количество фирм: ')) except ValueError: print('\nНеобходимо ввести целое число!') return firms_count() return count firms_num = firms_count() firms_data = get_firms_data(firms_num) av_profit = average_profit(firms_data) print(f'\nСредняя годовая прибыль всех предприятий: {av_profit}') print('\nПредприятия с прыбылью выше средней:', *over_profit(firms_data, av_profit), sep='\n') print('\nПредприятия с прыбылью ниже средней:', *below_profit(firms_data, av_profit), sep='\n')
[ "noreply@github.com" ]
HelenMaksimova.noreply@github.com
5df80fcc727c5509aada718e3f6c68c69dd3230e
6187eda12d02fbf8e309c9efdcead58dacc35b6f
/sdk/cogscale/client/service_client.py
f8cd9be0f71252ee6f0a50fc2c2c5001c347a4e6
[ "Apache-2.0" ]
permissive
CognitiveScale/industry-models
3f08fc8417357a19b78bef95a084d5aa7a983c93
9afc26f0b209fbec7bfd41e37d6ff7d86ea7d1c3
refs/heads/master
2021-01-20T20:14:28.253187
2016-07-21T18:29:54
2016-07-21T18:29:54
63,868,361
0
0
null
null
null
null
UTF-8
Python
false
false
3,946
py
# # Copyright 2016 CognitiveScale, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from cogscale.client.resource import Resource from cogscale.client.results import Success, create_error, Error class Service(Resource): def __init__(self, client, attributes): Resource.__init__(self, client, attributes) class Activation(Resource): def __init__(self, client, attributes): Resource.__init__(self, client, attributes) class ServiceClient(object): def __init__(self, client): self.client = client def find_services_of_type(self, service_type): r = self.client.get_as_json("services", {'typeExpr': service_type}) if "services" in r: return Success({"services": [Service(self.client, s) for s in r["services"]]}) return Error({"error": "Error listing services of type %s: %s" % (service_type, r)}) def get_service_of_type(self, service_type, service_id): r = self.client.get_as_json("services", {'typeExpr': service_type, 'idExpr': service_id}) if "services" in r: if len(r["services"]) == 0: return Error({"error": "Service of type %s with ID %s not found" % (service_type, service_id)}) return Success({"service": Service(self.client, r["services"][0])}) return create_error(r) def find_activations(self): r = self.client.get_as_json("activations") if "activations" in r: return Success({'activations': [Activation(self.client, a) for a in r["activations"]]}) return Error({"error": "Error listing activations: %s" % r}) def get_activation(self, slug): r = self.client.get_as_json("activations/%s" % slug) return Success({'activation': Activation(self.client, r)}) def activate_service(self, activation): r = self.client.post('activations', activation) if r.status_code == 201: if os.getenv("CS_DEBUG"): print r.headers slug = r.headers['Location'] return Success({'message': 'Created activation %s' % slug, 'slug': slug}) return create_error(r) def save_activation(self, slug, activation): if os.getenv("CS_DEBUG"): print slug, activation r = self.client.put('activations/%s' % slug, activation) if r.status_code == 200: return Success({'message': 'Saved activation %s' % slug}) return create_error(r) def disable_activation(self, slug): r = self.client.put('activations/%s/state' % slug, "disabled") if r.status_code // 100 == 2: return Success({'message': 'disabled activation %s' % slug}) return create_error(r) def resume_activation(self, slug): r = self.client.put('activations/%s/state' % slug, "enabled") if r.status_code // 100 == 2: return Success({'message': 'resumed activation %s' % slug}) return create_error(r) def drop_activation(self, slug): r = self.client.delete('activations/%s' % slug) if r.status_code == 200: return Success({'message': 'Activation %s dropped successfully' % slug}) return create_error(r) def service_status(self): r = self.client.get_as_json('status') if 'status' in r: return Success({'status': r['status']}) return Error({'error': 'Error getting service status: %s' % r})
[ "msanchez@cognitivescale.com" ]
msanchez@cognitivescale.com
9aa9512ec6fb84ba8b0f2c3e7cff52f2a54cf02c
8c11893f10a1eef5deec2a5cb16eaeeaf5d5ef01
/src/100818/042719/nnn_disorder_spinup_gf_QSHlead.py
be85edaef513c86cbb2a2a864e3d3c4b29d9fd06
[]
no_license
yuhao12345/topological_propagation
a2b325f11d4e6117581f94d2339c3fba3190271d
ef4bf7ee9fdb8a0e0bd04115250a131f919fdac9
refs/heads/master
2023-07-19T14:55:00.224328
2021-09-17T05:05:45
2021-09-17T05:05:45
307,262,829
0
0
null
null
null
null
UTF-8
Python
false
false
3,421
py
# -*- coding: utf-8 -*- """ Created on Fri Jun 14 15:34:19 2019 @author: ykang """ import numpy as np from matplotlib import pyplot import scipy.io as sio import os.path import random import kwant from kwant.digest import uniform from random import choices from time import time from joblib import Parallel, delayed import multiprocessing t_ini=time() width=30 length=200 dis=0 graphene = kwant.lattice.general([[1, 0], [1/2, np.sqrt(3)/2]], # lattice vectors [[0, 0], [0, 1/np.sqrt(3)]]) # Coordinates of the sites a, b = graphene.sublattices m2 = .1 #spin 3*np.sqrt(3)*m2 nnn_hoppings_a = (((-1, 0), a, a), ((0, 1), a, a), ((1, -1), a, a)) nnn_hoppings_b = (((1, 0), b, b), ((0, -1), b, b), ((-1, 1), b, b)) nnn_hoppings = nnn_hoppings_a + nnn_hoppings_b def make_system(width, length, salt): def disk(pos): x,y=pos return abs(y)<width and abs(x)<length #25.1 def onsite(site): x,y=site.pos if y>width-10: return (uniform(repr(site),salt)-0.5)*dis else: return 0 sys=kwant.Builder() sys[graphene.shape(disk,(0,0))]= onsite #0 # sys[graphene.neighbors()]=1 # comment it, when has rashba sys[[kwant.builder.HoppingKind(*hopping) for hopping in nnn_hoppings]] = 1j*m2 return sys def attach_lead(sys): def lead_shape(pos): x,y=pos return abs(y)<width sym = kwant.TranslationalSymmetry((-1,0)) sym.add_site_family(graphene.sublattices[0], other_vectors=[(-1, 2)]) sym.add_site_family(graphene.sublattices[1], other_vectors=[(-1, 2)]) lead = kwant.Builder(sym) lead[graphene.shape(lead_shape, (0, width-1))] = 0 lead[graphene.neighbors()]=1 # lead[[kwant.builder.HoppingKind(*hopping) for hopping in nnn_hoppings]]=1j *m2 sys.attach_lead(lead) sys.attach_lead(lead.reversed()) #def mount_vlead(sys, vlead_interface, norb): # """Mounts virtual lead to interfaces provided. # # :sys: kwant.builder.Builder # An unfinalized system to mount leads # :vlead_interface: sequence of kwant.builder.Site # Interface of lead # :norb: integer # Number of orbitals in system hamiltonian. # """ # dim = len(vlead_interface)*norb # zero_array = np.zeros((dim, dim), dtype=float) # def selfenergy_func(energy, args=()): # return zero_array # # vlead = kwant.builder.SelfEnergyLead(selfenergy_func, vlead_interface) # sys.leads.append(vlead) ########### for one configuration #en=0.4 syst=make_system(width, length, '9') # whole system as virtual lead attach_lead(syst) ##kwant.plot(syst0,fig_size=(25, 10)) # ##greens_function_sites = syst0.sites() ##mount_vlead(syst0, greens_function_sites, 1) sys = syst.finalized() #kwant.plot(sys) en=0.4008 G=kwant.smatrix(sys,en).transmission(1,0) wf=kwant.wave_function(sys,en)(0) kwant.plotter.map(sys, (abs(wf[0])**2),num_lead_cells=5,fig_size=(15, 10),colorbar=False) ### step 1, gf spectrum energies=np.linspace(0.35,0.45,1000) def gf_01(cishu): en=energies[cishu] gf=kwant.greens_function(sys,en).submatrix(1,0) myDict = {'gf':gf} #,'ld':ld completeName = os.path.join('E:/dwell3/751/69/', str(cishu)+'.mat') sio.savemat(completeName,myDict,oned_as='row') return gf Parallel(n_jobs=10)(delayed(gf_01)(cishu) for cishu in np.arange(0,1000,1)) elapsed=time()-t_ini
[ "yuhaok@uchicago.edu" ]
yuhaok@uchicago.edu
ed16fecfd1164b433a4d9af495e35147b69f90a2
20a2789ddd20ee35c069cd72724b1a0a5df76194
/alte Klausur/3. Mal PK.py
96736ffd3d48f401262035cabbc415a7e2012e02
[]
no_license
KKainz/Uebungen
9c63e691b37fa678ed578f38668b278ad82837d5
372473e91a44e8ec244e8a9312b5464ffe36e147
refs/heads/master
2023-02-09T18:12:47.220168
2021-01-10T17:26:42
2021-01-10T17:26:42
325,608,733
0
0
null
null
null
null
UTF-8
Python
false
false
5,670
py
from typing import List, Dict import abc import math class Instrument: def __init__(self, name: str, lautstaerke: float): self.name = name self.lautstaerke = lautstaerke class Musikant(abc.ABC): def __init__(self, anzahl_beine: int, instrument: Instrument): self.__anzahl_beine = anzahl_beine self.__instrument = instrument @property def anzahl_beine(self): return self.__anzahl_beine @property def instrument(self): return self.__instrument @abc.abstractmethod def verscheuche_raeuber(self) -> int: pass @abc.abstractmethod def spiele_musik(self) -> float: pass def __repr__(self): return f'Verscheucht: {self.verscheuche_raeuber()}, Musiziert: {self.spiele_musik()}' class Esel(Musikant): def __init__(self, anzahl_beine: int, instrument: Instrument, tritt_kraft: float): super().__init__(anzahl_beine, instrument) self.__tritt_kraft = tritt_kraft def __repr__(self): return f'{type(self).__name__} {self.__tritt_kraft}: {super().__repr__()}' def verscheuche_raeuber(self) -> int: return math.floor(self.__tritt_kraft * self.anzahl_beine) def spiele_musik(self) -> float: return self.instrument.lautstaerke class Hund(Musikant): def __init__(self, anzahl_beine: int, instrument: Instrument, bell_lautstaerke: float): super().__init__(anzahl_beine, instrument) self.__bell_lautstaerke = bell_lautstaerke def __repr__(self): return f'{type(self).__name__} {self.__bell_lautstaerke}: {super().__repr__()}' def verscheuche_raeuber(self) -> int: if self.__bell_lautstaerke > self.instrument.lautstaerke: return math.floor(self.__bell_lautstaerke) else: return math.floor(self.instrument.lautstaerke) def spiele_musik(self) -> float: return (self.__bell_lautstaerke + self.instrument.lautstaerke) / 2 class Katze(Musikant): def __init__(self, anzahl_beine: int, instrument: Instrument, kratz_kraft: float): super().__init__(anzahl_beine, instrument) self.__kratz_kraft = kratz_kraft def __repr__(self): return f'{type(self).__name__} {self.__kratz_kraft}: {super().__repr__()}' def verscheuche_raeuber(self) -> int: if self.anzahl_beine == 3: return math.floor(self.__kratz_kraft / 2) elif self.anzahl_beine <= 2: return 1 else: return math.floor(self.__kratz_kraft) def spiele_musik(self) -> float: return self.instrument.lautstaerke class Hahn(Musikant): def __init__(self, anzahl_beine: int, instrument: Instrument, flug_weite: int): super().__init__(anzahl_beine, instrument) self.__flug_weite = flug_weite def __repr__(self): return f'{type(self).__name__} {self.__flug_weite}: {super().__repr__()}' def verscheuche_raeuber(self) -> int: if self.__flug_weite < 2: return math.floor(self.instrument.lautstaerke) elif self.__flug_weite == 2: return 6 elif self.__flug_weite == 3: return 5 elif self.__flug_weite == 4: return 4 elif self.__flug_weite == 5: return 3 elif self.__flug_weite == 6: return 2 else: return 1 def spiele_musik(self) -> float: return (self.instrument.lautstaerke + 2) / self.__flug_weite class Quartett: def __init__(self): self.__musikanten_liste = [] def add(self, m: Musikant): self.__musikanten_liste.append(m) def ist_quartett(self) -> bool: if len(self.__musikanten_liste) == 4: return True else: return False def gemeinsam_raeuber_verscheucht(self) -> int: ver = 0 for r in self.__musikanten_liste: ver += r.verscheuche_raeuber() return ver def durchschnittliche_lautstaerke(self) -> float: vol = 0 for laut in self.__musikanten_liste: vol += laut.spiele_musik() erg = vol / len(self.__musikanten_liste) return erg def get_musikanten_in_laustaerke_bereich(self, von: float, bis: float) -> List[Musikant]: bereich = [] for m in self.__musikanten_liste: if m.spiele_musik() >= von and m.spiele_musik() <= bis: bereich.append(m) return bereich def get_anzahl_musikanten_mit_bein_anzahl(self) -> Dict[int, int]: bein_dict = {} for b in self.__musikanten_liste: anzahl = bein_dict.get(b.anzahl_beine, 0) + 1 bein_dict[b.anzahl_beine] = anzahl return bein_dict # for b in range(len(self.__musikanten_liste)): # if self.__musikanten_liste[b] in bein_dict: # bein_dict[self.__musikanten_liste[b].anzahl_beine] += 1 # else: # bein_dict[self.__musikanten_liste[b].anzahl_beine] = 1 # return bein_dict if __name__ == '__main__': chello = Instrument("Chello", 5) klavier = Instrument("Klavier", 6) floete = Instrument("Floete", 4) drum = Instrument("Schlagzeug", 8) esel = Esel(4, chello, 6.5) hund = Hund(4, klavier, 5.9) katze = Katze(3, floete, 8.2) hahn = Hahn(2, drum, 3) q = Quartett() q.add(esel) q.add(hahn) q.add(hund) q.add(katze) print(q.ist_quartett()) print(q.gemeinsam_raeuber_verscheucht()) print(q.durchschnittliche_lautstaerke()) print(q.get_musikanten_in_laustaerke_bereich(5, 10)) print(q.get_anzahl_musikanten_mit_bein_anzahl())
[ "kristina.kainz@edu.campus02.at" ]
kristina.kainz@edu.campus02.at
9da49f42c6d8aaedf68d9d5f35f09e8d3c89dbf6
f201a096b9c74bccd13648ae0137e41397e3c0a2
/ec_curves.py
d13df3fee4e4750ebe995930c93e5cbb06724669
[]
no_license
vickraj/Elliptic-Curve-Crypto
48344286307fb54bb186c01ff97eaa654ce608e5
5d01f0c9498b040f62a8e6d93d677fbef0e1fc77
refs/heads/master
2020-03-21T08:23:06.516227
2018-06-24T00:58:16
2018-06-24T00:58:16
138,339,768
0
0
null
null
null
null
UTF-8
Python
false
false
9,128
py
from ec_fields import f_add, f_mult, f_inv, f_sqrt, f_rand from sympy import * import numpy as np ###A module containing the two classes, Curves and Points, and related methods. class Curve: #all curves initialize as the trivial elliptic curve. def __init__(self): self.q = 0; #q is the size of the finite field, 0 for rationals, -1 for reals. self.a = 0; self.b = 0; self.c = 0; ###Add: add two points on this elliptic curve. If the fac flag is on, then stop #as soon as a nontrivial gcd is found in any inversions. #The addition is done in the standard chord and flip method. ###Inputs: #x, y - points to add, should be on the elliptic curve. #fac - a flag determining whether we should be caring about gcd's. ###Outputs: #0 on failure. #p - a point that is the sum of x and y on this curve on success. def add(self, x, y, fac =0): if ec.verify(x) != True: print("This is not on the curve.") return 0 if ec.verify(y) != True: print("This is not on the curve.") return 0 if y.z == 0: return x elif x.z == 0: return y else: q = self.q x_1 = x.plane()[0] y_1 = x.plane()[1] x_2 = y.plane()[0] y_2 = y.plane()[1] ret = Point() if x_1 != x_2: m = f_add(self.q, y_2, -y_1) m = f_mult(self.q, m, f_inv(self.q, f_add(self.q, x_2, -x_1), fac)) x_3 = f_mult(q, m, m) x_3 = f_add(q, x_3, -x_1) x_3 = f_add(q, x_3, -x_2) y_3 = f_add(q, x_1, -x_3) y_3 = f_mult(q,m,y_3) y_3 = f_add(q, y_3, -y_1) elif y_1 != y_2: ret.x = 0 ret.y = 1 ret.z = 0 return ret elif y_1 != 0: #P_1 = P_2, y_1 != 0 m = f_mult(q, 3, x_1) m = f_mult(q, m, x_1) m = f_add(q, m, self.b) div = f_mult(q, 2, y_1) m = f_mult(q, m, f_inv(q, div, fac)) #print(m) x_3 = f_mult(q, m, m) x_3 = f_add(q, x_3, -x_1) x_3 = f_add(q, x_3, -x_1) y_3 = f_add(q, x_1, -x_3) y_3 = f_mult(q,m,y_3) y_3 = f_add(q, y_3, -y_1) elif y_1 == 0: ret.x = 0 ret.y = 1 ret.z = 0 return ret ret.x = x_3 ret.y = y_3 ret.z = 1 return ret ###scale: #A way to easily scale a point on an elliptic curve by an integer. #We'll do double and add scaling. ###Inputs: #point - the point to scale #n - the integer to scale it by. #fac - an optional flag determining whether we should care about addition. ###Outputs: #0 on failure #ret - the scaled point. def scale(self, point, n, fac = 0):#We'll do double and add scaling. if n == 0: return 0 elif n == 1: return point elif n%2 == 1: return self.add(point, self.scale(point, n-1, fac), fac) else: return self.scale(self.add(point, point, fac), n/2, fac) ###rand #A method that returns a random point on this elliptic curve. ###Inputs: just the elliptic curve ###Outputs: #ret - a random point on this elliptic curve. def rand(self):#pick a random point on this ec. TODO: Prime power support. y_0 = False while(y_0 == False): x_0 = np.random.randint(0, self.q) y_square = f_mult(self.q, x_0, x_0) y_square = f_mult(self.q, x_0, y_square) temp = f_mult(self.q, x_0, self.b) y_square = f_add(self.q, temp, y_square) y_square = f_add(self.q, y_square, self.c) y_0 = f_sqrt(self.q, y_square) r = Point() r.x = x_0 r.y = y_0 r.z = 1 return r ###verify: #A method that determines whether a point is actually on an elliptic curve. ###Inputs: #p - a point() object ###Outputs: #A boolean determining whether it is or is not on the curve. def verify(self, p): x = p.plane()[0] y = p.plane()[1] if self.q > 0: x = int(x) y = int(y) y = pow(y, 2, self.q) rhs = pow(x, 3, self.q) rhs += (self.b*x)%(self.q) rhs += self.c rhs = rhs%(self.q) if y == rhs: return True else: return False else: if y**2 == (x**3 + self.b*x + self.c): return True else: return False ###__str__ #Debugging information that says exactly what this elliptic curve is. def __str__(self): stra = str(self.a); strb = str(self.b); if self.b < 0: strb = str(-1*self.b); strc = str(self.c); if self.c < 0: strc = str(-1*self.c) field = ""; if self.q == 0: field = "rationals" elif self.q == -1: field = "reals" else: field = "finite field with "+str(self.q)+" elements" if self.a == 0: stra = "" elif self.a == 1: stra = "x^3" elif self.a == -1: stra = "-x^3" else: stra += "x^3" if self.b == 0: strb = "" elif self.b == 1 or self.b == -1: strb = "x" else: strb = strb +"x" string = stra; if self.a == 0: string = ""; if self.b < 0 and self.a != 0: string += " - " + strb elif self.b > 0 and self.a != 0: string += " + " + strb elif self.a == 0 and self.b < 0: string += "-" + strb elif self.a == 0 and self.b > 0: string += strb if string == "": if self.c < 0: string += "-"+strc; else: string += strc; else: if self.c < 0: string += " - " + strc elif self.c > 0: string += " + " + strc return("This curve is over the " + field + " with equation" + " y^2 = "+string) class Point: #all points initialize as the point at infinity, we'll #use projective coordinates. def __init__(self): self.x = 0; self.y = 1; self.z = 0; ###neg: #this will negate the point (as long as the curve is in weierstrass form. def neg(self): self.y = -self.y; if self.z == 0: self.y = 1 ###plane: #This gives the points in plane coordinates, when otherwise they would be in #projective coordinates. ###Inputs: None ###Outputs: #the points in plane coordinates as a tuple. def plane(self): if self.z == 0: return (0, 1) else: return (self.x/self.z, self.y/self.z) ###equiv_c #this allows points to check if they are equivalent to another point on a curve. ###Inputs: #ec - an elliptic curve. #m - the other point - default is the other point is the point at infinity. ###Outputs: #True or False, depending if the points are equivalent on this curve. def equiv_c(self, ec, m = 0): if m == 0: p = Point() p.x = 0 p.y = 1 p.z = 0 return(self.equiv_c(ec, p)) if self.z == 0 or m.z == 0: if self.z == 0 and m.z == 0: return True else: return False temp = f_inv(ec.q, m.z) s_temp = f_inv(ec.q, self.z) self_x = f_mult(ec.q, (int) (self.x), s_temp) self_y = f_mult(ec.q, (int) (self.y), s_temp) m_x = f_mult(ec.q, m.x, m.z) m_y = f_mult(ec.q, m.y, m.z) if ec.q > 0: if m_x%(ec.q) == self_x%(ec.q) and (m_y%(ec.q)) == self_y%ec.q: return True else: return False else: if m_x == self_x and m_y == self_y: return True else: return False ###str: #the string method that gives the point in both plane coordinates and #projective coordinates. def __str__(self): if self.z != 0: return "Plane: " + str((self.x/self.z, self.y/self.z)) + "\n" + "Projective: " + str((self.x, self.y, self.z)) else: return "Point at infinity: (0, 1, 0)"
[ "noreply@github.com" ]
vickraj.noreply@github.com
bad518a75ce094b830ad4c3e9d91bb3752671f3e
8a4556e3ea8aa24e795fb8c55f4e518dd748e4b9
/src/networks/unet_mini.py
c435723b7fd3f509efcf525432088b0859fef733
[]
no_license
MostafaGazar/lines-segmentation-pytorch
673f74fa2e5b45afdebad0d4dfd3e079541e174f
6a2dfff4c72913479653af4aed0b5cd2d3d16333
refs/heads/master
2022-11-23T08:58:19.705910
2019-09-14T19:49:00
2019-09-14T19:49:00
208,118,988
4
3
null
2022-11-22T04:16:45
2019-09-12T18:29:38
Jupyter Notebook
UTF-8
Python
false
false
2,646
py
import torch from torch.nn import Module from torch.nn import Sequential from torch.nn import Conv2d, Dropout2d, MaxPool2d, ReLU, UpsamplingNearest2d # Based on https://github.com/divamgupta/image-segmentation-keras/blob/master/keras_segmentation/models/unet.py#L19 class UNetMini(Module): def __init__(self, num_classes): super(UNetMini, self).__init__() # Use padding 1 to mimic `padding='same'` in keras, # use this visualization tool https://ezyang.github.io/convolution-visualizer/index.html self.block1 = Sequential( Conv2d(1, 32, kernel_size=3, padding=1), ReLU(), Dropout2d(0.2), Conv2d(32, 32, kernel_size=3, padding=1), ReLU(), ) self.pool1 = MaxPool2d((2, 2)) self.block2 = Sequential( Conv2d(32, 64, kernel_size=3, padding=1), ReLU(), Dropout2d(0.2), Conv2d(64, 64, kernel_size=3, padding=1), ReLU(), ) self.pool2 = MaxPool2d((2, 2)) self.block3 = Sequential( Conv2d(64, 128, kernel_size=3, padding=1), ReLU(), Dropout2d(0.2), Conv2d(128, 128, kernel_size=3, padding=1), ReLU() ) self.up1 = UpsamplingNearest2d(scale_factor=2) self.block4 = Sequential( Conv2d(192, 64, kernel_size=3, padding=1), ReLU(), Dropout2d(0.2), Conv2d(64, 64, kernel_size=3, padding=1), ReLU() ) self.up2 = UpsamplingNearest2d(scale_factor=2) self.block5 = Sequential( Conv2d(96, 32, kernel_size=3, padding=1), ReLU(), Dropout2d(0.2), Conv2d(32, 32, kernel_size=3, padding=1), ReLU() ) self.conv2d = Conv2d(32, num_classes, kernel_size=1) def forward(self, x): out1 = self.block1(x) out_pool1 = self.pool1(out1) out2 = self.block2(out_pool1) out_pool2 = self.pool1(out2) out3 = self.block3(out_pool2) out_up1 = self.up1(out3) # return out_up1 out4 = torch.cat((out_up1, out2), dim=1) out4 = self.block4(out4) out_up2 = self.up2(out4) out5 = torch.cat((out_up2, out1), dim=1) out5 = self.block5(out5) out = self.conv2d(out5) return out if __name__ == '__main__': from torchsummary import summary device = torch.device("cpu") number_of_classes = 3 model = UNetMini(number_of_classes).to(device) summary(model, input_size=(1, 256, 256)) # (channels, H, W)
[ "mmegazar@gmail.com" ]
mmegazar@gmail.com
268f582b8020642e0d04afced2cadbd446bcd957
d0dce965ee97847397e12c741d247941b72a086d
/platform_msg/AppAllInfo/AppAllInfo/spiders/feixiaohao_notice.py
fee9a49f44ad8534773849c17954a40d427a2fad
[]
no_license
xuxin8911/wechat_robot
21e04b53c34cd34148767ba0bfa1bf076271bea5
49b6ed2d452144913c78ec457bcea0def14beb43
refs/heads/master
2021-05-05T21:49:37.019674
2018-01-24T08:07:01
2018-01-24T08:07:01
116,029,119
0
3
null
null
null
null
UTF-8
Python
false
false
3,334
py
# -*- coding:utf-8 -*- import scrapy from scrapy.selector import Selector from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor from scrapy.http import Request from AppAllInfo.items import * from AppAllInfo.settings import APP_NAME import codecs class feixiaohao_notice(scrapy.Spider): name = "feixiaohao_notice_spider" allowed_domains = ["www.feixiaohao.com"] urls = [ #"http://www.wandoujia.com/tag/视频", #"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/" "https://www.feixiaohao.com/notice/" # "https://www.feixiaohao.com/currencies/bitcoin/" ] #urls.extend([ "http://www.feixiaohao.com/list_%d.html" % x for x in range(2,17) ]) start_urls = urls #rules = [Rule(LinkExtractor(allow=['/apps/.+']), 'parse')] def parse(self, response): page = Selector(response) for link in page.xpath("//a/@href"): href=link.extract() if href.startswith("/currencies/"): yield Request("http://www.feixiaohao.com" +href, callback=self.parse_curr_page) def parse_curr_page(self, response): #for sel in response.xpath('//ul/li'): # title = sel.xpath('a/text()').extract() # link = sel.xpath('a/@href').extract() # desc = sel.xpath('text()').extract() #print title, link, desc item = FeiXiaoHaoItem() sel = Selector(response) name = sel.xpath('//*[@id="baseInfo"]/div[1]/div[1]/h1/node()').extract()[2].strip() chineseName = sel.xpath('//*[@id="baseInfo"]/div[1]/div[1]/h1/node()').extract()[-1].strip() engName = sel.xpath('//*[@id="baseInfo"]/div[2]/ul/li[1]/span[2]/text()').extract()[0] cnyPrice = sel.xpath('//*[@id="baseInfo"]/div[1]/div[1]/div[1]/text()').extract()[0] usdtPrice = sel.xpath('//*[@id="baseInfo"]/div[1]/div[1]/div[3]/span[1]/text()').extract()[0].replace(u'\u2248', '') btcPrice = sel.xpath('//*[@id="baseInfo"]/div[1]/div[1]/div[3]/span[2]/text()').extract()[0].replace(u'\u2248', '') upMarkets = sel.xpath('//*[@id="baseInfo"]/div[2]/ul/li[3]/span[2]/a/text()').extract()[0].strip().replace("家","") releaseTime = sel.xpath('//*[@id="baseInfo"]/div[2]/ul/li[4]/span[2]/text()').extract()[0] whitePaper = sel.xpath('//*[@id="baseInfo"]/div[2]/ul/li[5]/span[2]/a/@href').extract()[0] site = repr(sel.xpath('//*[@id="baseInfo"]/div[2]/ul/li[6]/span[2]/a/@href').extract()) blockite = repr(sel.xpath('//*[@id="baseInfo"]/div[2]/ul/li[7]/span[2]/a/@href').extract()) concept = sel.xpath('//*[@id="baseInfo"]/div[2]/ul/li[8]/span[2]/a/text()').extract()[0] print name,chineseName item['name'] = name item['chineseName'] = chineseName item['engName'] = engName item['cnyPrice'] = cnyPrice item['usdtPrice'] = usdtPrice item['btcPrice'] = btcPrice item['upMarkets'] = upMarkets item['releaseTime'] = releaseTime item['whitePaper'] = whitePaper item['site'] =site item['blockite'] = blockite item['concept'] = "" #concept yield item def process_item(self,item): return item and item[0].strip() or "" def process_name(self,item): return item and item[1].strip() or ""
[ "xuxin@gdbigdata.com" ]
xuxin@gdbigdata.com
ac1afcab6467a272667166b1b5f392fec0281043
116d445b32192a4ae441c4a345d8562b2ecbfead
/Chapter_04/prg_01.py
76f41a0b19ed2a55bac6f2b64fb94b649df52f3c
[ "MIT" ]
permissive
lokeshvishwakarma/computer-vision
f7003feb677b60ae3a194b31330a210f784ebaa4
af4bff3b10e11f6ffca4468378a13c9313328226
refs/heads/master
2022-07-16T03:42:49.607690
2020-05-18T13:02:28
2020-05-18T13:02:28
262,029,607
0
0
null
null
null
null
UTF-8
Python
false
false
972
py
# Shapes and Texts import cv2 import numpy as np # Create a matrix with zeroes img = np.zeros((512, 512, 3), np.uint8) # This creates a black image of 512 x 512 print('Original Image', img.shape) # img[:] = 255, 0, 0 # Puts blue color to the full image img[200:300, 100:300] = 255, 0, 0 # Puts blue color to the specified range of image # Because in OpenCV are BGR instead of RGB # cv2.line(img, (0, 0), (200, 300), (0, 255, 255)) # takes img, start point, end point, color cv2.line(img, (0, 0), (img.shape[0], img.shape[1]), (0, 255, 255)) # here end point is given as the corners of the img cv2.rectangle(img, (20, 20), (250, 300), (0, 0, 255), 5) # creates outlined rectangle # cv2.rectangle(img, (20, 20), (250, 300), (0, 0, 255), cv2.FILLED) # creates filled rectangle cv2.circle(img, (400, 400), 60, (0, 255, 255), 3) cv2.putText(img, 'OpenCV', (300, 300), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 150, 230), 1) cv2.imshow('Original Image', img) cv2.waitKey(3000)
[ "uvishwakarma3@gmail.com" ]
uvishwakarma3@gmail.com
a063e35a31c7a672b1914db46992b226b0604ce9
b21cc7127132b5b3abbbea7aabd43eb8c89f91d8
/TP3/redblacktree.py
f287c4c76eab2067fbfad0ebf79fdeeec4ca37a3
[]
no_license
LucianoAlbanes/AyEDII
4f338c67fc7b2fbb4b1373c74145c0a88f58c294
ceba670f6b2b4df46b2edb695e82ccba69d8257d
refs/heads/master
2023-06-16T22:10:32.968978
2021-07-08T17:28:20
2021-07-08T17:28:20
375,737,658
0
0
null
null
null
null
UTF-8
Python
false
false
14,082
py
# Red-Black Tree implementation from mybinarytree import getNode, insertAux, searchAux, moveNode, search, access, update, traverseInPreOrder # Define classes class RedBlackTree: root = None class RedBlackNode: parent = None leftnode = None rightnode = None key = None red = None value = None nilNode = RedBlackNode() # Define functions def insert(RBTree, RBNode): ''' Explanation: Inserts an RBNode in a Red-Black Tree, fix violations. Params: RBTree: The Red-Black Tree on which you want to perform the Alt. RBNode: The node to be inserted Return: The RBTree pointer with the inserted node. 'None' if exists another node with the same key. ''' # Check if exists another node with same key, if not, proceed with insertion if not getNode(RBTree, RBNode.key): # Insert node if not RBTree.root: # Case if empty tree. RBTree.root = RBNode else: # General case insertAux(RBTree.root, RBNode) # Fix RBTree inconssistences. fixup(RBTree, RBNode) return RBTree else: return None def insertAlt(RBTree, value, key): ''' Explanation: Inserts an value with a given key in a Red-Black Tree, fix violations. Params: RBTree: The Red-Black Tree on which you want to perform the Alt. value: The value to Alt in the given binary tree. key: The key of the node with the given value to Alt. Return: The key of the node of the inserted value. Returns 'None' if the Alt cannot be performed (Exists a node with same key). ''' # Create the new node newNode = RedBlackNode() newNode.key = key newNode.red = True newNode.value = value # Call insert fn, will verify if exists key, and do the fixup if insert(RBTree, newNode): # Return if was performed successfully return key else: return None def fixup(RBTree, RBNode): ''' Explanation: Correct all possible RBNode violations according to the Red-Black tree specification. Params: RBTree: The Red-Black Tree on which you want to perform the operation. RBNode: The RBNode to check if violations exists. ''' while RBNode.parent and RBNode.parent.parent and RBNode.parent.red: if RBNode.parent is RBNode.parent.parent.leftnode: uncle = RBNode.parent.parent.rightnode if uncle and uncle.red: RBNode.parent.red = False # Case 1 uncle.red = False # Case 1 RBNode.parent.parent.red = True # Case 1 RBNode = RBNode.parent.parent else: if RBNode is RBNode.parent.rightnode: RBNode = RBNode.parent # Case 2 rotateLeft(RBTree, RBNode) # Case 2 RBNode.parent.red = False # Case 3 RBNode.parent.parent.red = True # Case 3 rotateRight(RBTree, RBNode.parent.parent) # Case 3 else: uncle = RBNode.parent.parent.leftnode if uncle and uncle.red: RBNode.parent.red = False # Case 1 uncle.red = False # Case 1 RBNode.parent.parent.red = True # Case 1 RBNode = RBNode.parent.parent else: if RBNode is RBNode.parent.leftnode: RBNode = RBNode.parent # Case 2 rotateRight(RBTree, RBNode) # Case 2 RBNode.parent.red = False # Case 3 RBNode.parent.parent.red = True # Case 3 rotateLeft(RBTree, RBNode.parent.parent) # Case 3 RBTree.root.red = False def rotateLeft(RBTree, RBNode): ''' Explanation: The unbalanced RBNode becomes the child of its right child by performing a rotation. Params: RBTree: The Red-Black Tree on which you want to perform the rotation. RBNode: The unbalanced RBNode 'root' to be rotated. Return: The pointer of the new balanced 'root' RBNode. ''' # Check condition to rotate if not RBNode.rightnode: print("Can't rotate left, no rightnode") newRoot = RBNode.rightnode # Check if the new root have left child node if newRoot.leftnode: RBNode.rightnode = newRoot.leftnode RBNode.rightnode.parent = RBNode else: RBNode.rightnode = None # Change parents relationships betwen roots newRoot.parent = RBNode.parent if RBNode is RBTree.root: RBTree.root = newRoot else: if RBNode is RBNode.parent.rightnode: RBNode.parent.rightnode = newRoot else: RBNode.parent.leftnode = newRoot # Finish child's relationships newRoot.leftnode = RBNode RBNode.parent = newRoot # Return new root pointer return newRoot def rotateRight(RBTree, RBNode): ''' Explanation: The unbalanced RBNode becomes the child of its left child by performing a rotation. Params: RBTree: The Red-Black Tree on which you want to perform the rotation. RBNode: The unbalanced RBNode 'root' to be rotated. Return: The pointer of the new balanced 'root' RBNode. ''' # Check condition to rotate if not RBNode.leftnode: print("Can't rotate right, no leftnode") newRoot = RBNode.leftnode # Check if the new root have right child node if newRoot.rightnode: RBNode.leftnode = newRoot.rightnode RBNode.leftnode.parent = RBNode else: RBNode.leftnode = None # Change parents relationships betwen roots newRoot.parent = RBNode.parent if RBNode is RBTree.root: RBTree.root = newRoot else: if RBNode is RBNode.parent.leftnode: RBNode.parent.leftnode = newRoot else: RBNode.parent.rightnode = newRoot # Finish child's relationships newRoot.rightnode = RBNode RBNode.parent = newRoot # Return new root pointer return newRoot def delete(RBTree, RBNode): ''' Explanation: Delete an node from a Red-Black Tree, fix violations. Params: RBTree: The Red-Black Tree on which you want to perform the deleteValue. value: The value of the node of the tree to be deleted. Return: The pointer of the tree. Returns 'None' if the deletion can't be performed. ''' if RBTree and RBNode: # Check if parameters are valid. # Only one node case if not (RBTree.root.leftnode or RBTree.root.rightnode): RBTree.root = None else: # General Case deleteAux(RBTree, RBNode) # Unlink nilNode from the tree removeTempNode() return RBTree else: return None def deleteValue(RBTree, value): ''' Explanation: Delete an node with a given value on an Red-Black Tree, fix violations. Info: If exist more than one node with the value, only the first one will be deleted. (Preorder) Params: RBTree: The Red-Black Tree on which you want to perform the delete. value: The value of the node of the tree to be deleted. Return: The key of the deleted node. Returns 'None' if there is no a node with the given value in the tree. ''' # Search the value nodeToDelete = searchAux(RBTree.root, value) # Call delete fn. if delete(RBTree, nodeToDelete): return nodeToDelete.key else: return None def deleteKey(RBTree, key): ''' Explanation: Delete an node with a given key on an Red-Black Tree, fix violations. Params: RBTree: The tree on which you want to perform the delete. key: The key of the node of the tree to be deleted. Return: The key of the deleted node. Returns 'None' if there is no a node with the given key. ''' # Search the value nodeToDelete = getNode(RBTree, key) # Call delete fn. if delete(RBTree, nodeToDelete): return nodeToDelete.key else: return None def deleteAux(RBTree, RBNode): ''' Perform the deletion of the RBNode, and prepares the tree for the deleteFixup() that will be called inside. ''' successorNode = RBNode successorColor = successorNode.red fixupNode = None # Case leaf node if not (RBNode.leftnode or RBNode.rightnode): if RBNode is RBNode.parent.leftnode: if RBNode.red: RBNode.parent.leftnode = None else: RBNode.parent.leftnode = createTempNode(RBNode.parent, True) fixupNode = RBNode.parent.leftnode else: if RBNode.red: RBNode.parent.rightnode = None else: RBNode.parent.rightnode = createTempNode(RBNode.parent, False) fixupNode = RBNode.parent.rightnode # Case right branch elif not RBNode.leftnode: fixupNode = RBNode.rightnode moveNode(RBTree, RBNode.rightnode, RBNode) # Case left branch elif not RBNode.rightnode: fixupNode = RBNode.leftnode moveNode(RBTree, RBNode.leftnode, RBNode) # Case both branches else: # Define successorNode successorNode = RBNode.rightnode while successorNode.leftnode: successorNode = successorNode.leftnode successorColor = successorNode.red fixupNode = successorNode.rightnode if not fixupNode: if successorNode.parent.rightnode is successorNode: fixupNode = createTempNode(successorNode.parent, False) else: fixupNode = createTempNode(successorNode.parent, True) # Reasign pointers if successorNode.parent is RBNode: if fixupNode: fixupNode.parent = successorNode else: if successorNode.rightnode: moveNode(RBTree, successorNode.rightnode, successorNode) successorNode.rightnode = RBNode.rightnode if successorNode.rightnode: successorNode.rightnode.parent = successorNode moveNode(RBTree, successorNode, RBNode) successorNode.leftnode = RBNode.leftnode successorNode.leftnode.parent = successorNode successorNode.red = RBNode.red # Call fixup fn if necessary if not successorColor: deleteFixup(RBTree, fixupNode) def deleteFixup(RBTree, RBNode): ''' This function fix the possibles violations from the RBNode. ''' # CLRS <3 while RBNode.parent and not RBNode.red: if RBNode is RBNode.parent.leftnode: # RBNode is leftnode case siblingNode = RBNode.parent.rightnode if isRed(siblingNode): # Case 1 siblingNode.red = False RBNode.parent.red = True rotateLeft(RBTree, RBNode.parent) siblingNode = RBNode.parent.rightnode if not (isRed(siblingNode.leftnode) or isRed(siblingNode.rightnode)): siblingNode.red = True RBNode = RBNode.parent else: if not isRed(siblingNode.rightnode): # Case 3 siblingNode.leftnode.red = False siblingNode.red = True rotateRight(RBTree, siblingNode) siblingNode = RBNode.parent.rightnode siblingNode.red = RBNode.parent.red # Case 4 RBNode.parent.red = False siblingNode.rightnode.red = False rotateLeft(RBTree, RBNode.parent) RBNode = RBTree.root else: # RBNode is rightnode case siblingNode = RBNode.parent.leftnode if siblingNode.red: # Case 1 siblingNode.red = False RBNode.parent.red = True rotateRight(RBTree, RBNode.parent) siblingNode = RBNode.parent.leftnode if not (isRed(siblingNode.leftnode) or isRed(siblingNode.rightnode)): # Case 2 siblingNode.red = True RBNode = RBNode.parent else: if not isRed(siblingNode.leftnode): # Case 3 siblingNode.rightnode.red = False siblingNode.red = True rotateLeft(RBTree, siblingNode) siblingNode = RBNode.parent.leftnode siblingNode.red = RBNode.parent.red # Case 4 RBNode.parent.red = False siblingNode.leftnode.red = False rotateRight(RBTree, RBNode.parent) RBNode = RBTree.root RBNode.red = False def isRed(RBNode): ''' Return the color of RBNode (handles NULL Nodes) ''' if RBNode: return RBNode.red else: return False # non-existant node = Black def createTempNode(parent, isLeftChild): ''' Creates a temp 'Nil Node' (Like CLRS), useful in some cases of the deletion. Will be removed after perform the deletion nilNode object is global. ''' nilNode.parent = parent nilNode.red = False if isLeftChild: parent.leftnode = nilNode else: parent.rightnode = nilNode return nilNode def removeTempNode(): ''' Remove (unlink) the possibly created node using createTempNode() nilNode object is global. ''' if nilNode.parent: if nilNode is nilNode.parent.leftnode: nilNode.parent.leftnode = None else: nilNode.parent.rightnode = None
[ "lucianoalbanes@gmai.com" ]
lucianoalbanes@gmai.com
8fb50491315368de4dda83ceec98b10bce12cc65
90fb6f665e6c8c83f1c8207e0a2e793833fc3c6d
/NLP/chapter01.py
b4c083d4041d757f9e866a99623ce48e01eae74f
[]
no_license
hello-wangjj/Introduction-to-Programming-Using-Python
8698ced3067714ab639328f5e3e78ccbbb4905c4
ff24118d1779d589e37aa6ab88002176e8f475c3
refs/heads/master
2021-09-13T22:29:00.355794
2018-05-05T07:28:29
2018-05-05T07:28:29
57,047,413
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
# -*- coding:utf-8 -*- """ 用途,文档说明 """ from nltk.book import * def lexical_diversity(text): # 词汇 return len(text)/len(set(text)) def percentage(count,tatal): return 100*count/tatal
[ "576988736@qq.com" ]
576988736@qq.com
7cbb4ec069723b56e751ab29d7c238522f85aab6
a65bff31e28a6abd615dee40a0d44b8a31004045
/templator.py
bcae71c821bf6a6346f734eaf8d9938729c0e3f2
[]
no_license
artmikh/Patterns.Framework
138b4a241ffa9a3b568672f5236cb92c3ae01898
2e9df931ad1ebd5417fc2d8db8a57aa976f4c738
refs/heads/main
2023-04-21T08:52:01.960031
2021-05-14T20:20:01
2021-05-14T20:20:01
362,932,020
0
0
null
2021-05-16T21:43:39
2021-04-29T19:56:05
Python
UTF-8
Python
false
false
499
py
import settings from jinja2 import FileSystemLoader from jinja2.environment import Environment def render(template_name, **kwargs): env = Environment() # Загружаем папку с шаблонами env.loader = FileSystemLoader(settings.TEMPLATES_ROOT) # Открываем шаблон по имени template = env.get_template(template_name) # рендерим шаблон с параметрами return template.render(css=settings.css_file, **kwargs)
[ "artmikh@yandex.ru" ]
artmikh@yandex.ru
9e51363e2a976dbbdb4bd24a0d2cec4b15627703
ecbc9493c2584b926845276fd31aeeb7363c5c0f
/textutils/views.py
1e59596d62e5bf8ce93ea60af4f74dca833d3b51
[]
no_license
AsifNasim/Publish
72c717e15814ecc6a03c927a980f31b8f0ab00ed
4713db85c6179793999693bdf9b5ec4970c834b6
refs/heads/master
2023-04-28T03:32:08.107524
2020-04-05T06:22:15
2020-04-05T06:22:15
253,167,987
0
0
null
2023-04-21T20:54:14
2020-04-05T06:11:21
Python
UTF-8
Python
false
false
2,062
py
from django.contrib import admin from django.urls import path from django.http import HttpResponse from django.shortcuts import render def index(Request): return render(Request,'index.html') def analyze(Request): #Get the text djtext = Request.POST.get('text', 'default') # Check checkbox values removePunc = Request.POST.get('removePunc', 'off') fullcaps = Request.POST.get('fullcaps', 'off') newLineRemover = Request.POST.get('newLineRemover', 'off') extraSpaceRemover = Request.POST.get('extraSpaceRemover', 'off') characterCount = Request.POST.get('characterCounter', 'off') #Check which checkbox is on if removePunc == "on": punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~''' analyzed = "" for char in djtext: if char not in punctuations: analyzed = analyzed + char params = {'purpose':' Punctuations Removed ', 'analyzed_text': analyzed} djtext = analyzed if(fullcaps == "on"): analyzed ="" for char in djtext: analyzed += char.upper() params = {'purpose':' Converted String to Upper Case ', 'analyzed_text': analyzed} djtext = analyzed if(extraSpaceRemover == "on"): analyzed ="" for index,char in enumerate(djtext): if djtext[index] == " " and djtext[index +1] == " ": pass else: analyzed = analyzed + char params = {'purpose':' Extra Spaces have been removed ', 'analyzed_text': analyzed} djtext = analyzed if(newLineRemover == "on"): analyzed = "" for char in djtext: if char != "\n" and char != "\r": analyzed = analyzed + char params = {'purpose':' New Line has been removed ', 'analyzed_text': analyzed} if(removePunc != "on" and fullcaps != "on" and extraSpaceRemover != "on" and newLineRemover != "on"): return HttpResponse("Please Choose any operations!") return render(Request, 'analyze.html', params)
[ "asifnasimofficial@gmail.com" ]
asifnasimofficial@gmail.com
7621c014a8edf7806405f6fc76c6539e4aef5ef0
0cc61991d526eb761ba603438647561cc1337ef4
/astar_multi.py
cb1b67b77bc0f35bbcb8eedd1ecfd11b6fb5acdb
[]
no_license
etahirovic1/gmstar
0d6d4e9e9cace84ddded070ed115657398ee6301
2e93c4c20bde0df881e83e83e0ac5eb11a273921
refs/heads/main
2023-08-11T11:47:05.133278
2021-09-16T16:17:02
2021-09-16T16:17:02
404,886,915
0
0
null
null
null
null
UTF-8
Python
false
false
5,954
py
import heapq import random class Node: def __init__(self, parent=None, position=None, value=0): self.parent = parent self.position = position self.value = value self.g = 0 self.h = 0 self.f = 0 def __eq__(self, other): # return self.position == other return self.position == other.position def __repr__(self): return f"{self.position} - g: {self.g} h: {self.h} f: {self.f}" def __lt__(self, other): return self.f < other.f def __gt__(self, other): return self.f > other.f class Astar: def __init__(self, workspace, robots, given_choice, num_randoms=0, type_obs=0, num_seed=0, difficulty=0): self.starts = [[] for i in range(len(robots))] self.paths = [[] for i in range(len(robots))] self.children = [[] for i in range(len(robots))] self.open_lists = [] self.closed_lists = [] self.given_choice = given_choice self.num_randoms = num_randoms self.type_obs = type_obs self.num_seed = num_seed self.difficulty = difficulty for num_rob in range(len(robots)): self.open_list_i = [] heapq.heapify(self.open_list_i) self.open_lists.append(self.open_list_i) self.closed_list_i = [] heapq.heapify(self.closed_list_i) self.closed_lists.append(self.closed_list_i) self.neighbors = ((-1, -1), (1, -1), (1, 1), (-1, 1), (-1, 0), (0, 1), (1, 0), (0, -1), (0, 0)) self.workspace = workspace self.robots = robots def randomise(self): start_positions = [] end_positions = [] for robot in self.robots: start_positions.append(robot.start) end_positions.append(robot.goal) randoms = [] random.seed(int(self.num_seed)) while len(randoms) != self.num_randoms: num = random.randint(0, (len(self.workspace)-1) * (len(self.workspace)-1)) w = num % (len(self.workspace) - 1) h = int(num / (len(self.workspace)-1)) tapl = (h, w) forbidden = [[], [(12, 8), (12, 15)], [(15, 11), (15, 12)]] if num not in randoms and tapl not in start_positions and tapl not in end_positions and \ self.workspace[h][w] != 1 and tapl not in forbidden[int(self.difficulty)]: randoms.append(num) self.workspace[h][w] = 1 else: continue def choose_course(self): if self.given_choice == '0': self.randomise() elif self.given_choice == '1': if self.type_obs == '0': for h in range(len(self.workspace)): for w in range(len(self.workspace)): self.workspace[h][w] = 0 self.randomise() elif self.type_obs == '1': return elif self.type_obs == '2': self.randomise() def return_path(self, current_node): path = [] current = current_node while current is not None: path.append(current) current = current.parent return path[::-1] def run(self): self.choose_course() for ri in range(len(self.robots)): start = Node(None, self.robots[ri].start, 0) heapq.heappush(self.open_lists[ri], start) self.starts[ri] = start iteration = 0 while self.open_lists[ri]: if iteration > 3 * len(self.robots) * len(self.workspace): self.paths[ri] = self.return_path(vk) print('Put za robota broj', ri, 'nije pronađen unutar prihvatljivog vremena.') break iteration = iteration + 1 vk = heapq.heappop(self.open_lists[ri]) heapq.heappush(self.closed_lists[ri], vk) if vk.position == self.robots[ri].goal: self.paths[ri] = self.return_path(vk) break for new_position in self.neighbors: node_position = (vk.position[0] + new_position[0], vk.position[1] + new_position[1]) if node_position[0] > (len(self.workspace) - 1) or node_position[0] < 0 or node_position[1] > ( len(self.workspace[len(self.workspace)-1]) -1) or node_position[1] < 0: continue if self.workspace[node_position[0]][node_position[1]] != 0: continue new_node = Node(vk, node_position, 0) self.children[ri].append(new_node) if new_position[0] != 1 and new_position[1] != 1: new_node.g = vk.g + 1.44 else: new_node.g = vk.g + 1 new_node.h = (((new_node.position[0] - self.robots[ri].goal[0]) ** 2) + ( (new_node.position[1] - self.robots[ri].goal[1]) ** 2))**(1/2) new_node.f = new_node.g + new_node.h if new_node in self.closed_lists[ri]: continue for open_node in self.open_lists[ri]: if new_node.position == open_node.position: if new_node.g < open_node.g: open_node.g = new_node.g open_node.parent = new_node.parent break if new_node not in self.open_lists[ri]: heapq.heappush(self.open_lists[ri], new_node) for path_index in range(len(self.paths)): if len(self.paths[path_index]) == 0: print('No path for robot', path_index+1) return self.paths
[ "noreply@github.com" ]
etahirovic1.noreply@github.com
9884cae2f8e8ccc4f6c642f95ef5bf620d4a2864
fabcd19d61549304dd4127c7227dc49974a9d628
/app/import_fide.py
edaea39a1b31e2392475f0f6e01e9edd25ffecaa
[]
no_license
JulesCourtois/mychesshub
94614ee2d98db99a67e9c7a492199cda665da982
d9989276b75f83e6a9343375f01e856fddeced52
refs/heads/master
2020-04-14T23:57:22.657988
2019-01-11T12:03:01
2019-01-11T12:03:01
164,222,909
0
0
null
null
null
null
UTF-8
Python
false
false
1,569
py
import os import urllib.request import zipfile from app import db from app.models import Federation, Ranking def import_fide(anonymous_user): temp_txt = "standard_rating_list.txt" url = "http://ratings.fide.com/download/standard_rating_list.zip" downloaded_zip, headers = urllib.request.urlretrieve(url) fide = db.session.query(Federation).filter(Federation.initials == "FID").one_or_none() if fide is None: fide = Federation(name="World Chess Federation", initials="FID") db.session.add(fide) db.session.commit() fide = db.session.query(Federation).filter(Federation.initials == "FID").one_or_none() with zipfile.ZipFile(downloaded_zip, 'r') as zip_ref: zip_ref.extractall() file = open(temp_txt) content = file.readlines()[1:] # ignore first line (column names) rankings = [] for line in content: player_id = line[0:9].strip() elo = int(line[113:117].strip()) # name = line[15:75].strip() # federation_initials = line[76:79] # birth = int(line[126:130]) ranking = db.session.query(Ranking)\ .filter(Ranking.federation == fide.id)\ .filter(Ranking.player_id == player_id)\ .first() if ranking is None: ranking = Ranking(user_id=anonymous_user.id, federation=fide.id, player_id=player_id) ranking.elo = elo rankings.append(ranking) db.session.add_all(rankings) db.session.commit() file.close() os.remove(temp_txt) os.remove(downloaded_zip)
[ "jules.courtois@epfl.ch" ]
jules.courtois@epfl.ch
c0370459eef6f39c24d1f261241c974acc5577f3
b00c2a7c74c46b3d0ad3af4b57c19b7edbb0f61f
/proxy.py
dbc720d98bf87d41a01d61a275cacaeb24aa417d
[]
no_license
rauldoe/cpsc551proj3
1cce0b7c4a3851ff370ed6dac63693d56a332fac
68e1d645563cb3e741cce0e58f089d24ed07e16c
refs/heads/master
2020-09-23T15:18:32.242618
2019-12-18T11:51:13
2019-12-18T11:51:13
225,529,433
0
0
null
null
null
null
UTF-8
Python
false
false
1,527
py
import re import typing import xmlrpc.client # Credit to Yu Kou (<yuki.coco@csu.fullerton.edu>) # for making this suggestion and working on type mappings. class TupleSpaceAdapter: PYTHON_TO_RUBY = { 'str': 'String', 'int': 'Numeric', 'float': 'Numeric' } RANGE_TYPE = type(range(0)) def __init__(self, uri): self.uri = uri self.ts = xmlrpc.client.ServerProxy(self.uri, allow_none=True) def map_template_out(self, item): if isinstance(item, typing.Type): python_type = item.__name__ ruby_type = self.PYTHON_TO_RUBY[python_type] if ruby_type is not None: return { 'class': ruby_type } elif isinstance(item, typing.Pattern): return { 'regexp': item.pattern } elif isinstance(item, self.RANGE_TYPE): return { 'from': item.start, 'to': item.stop - 1 } return item def map_templates_out(self, tupl): return [self.map_template_out(item) for item in tupl] def _in(self, tupl): return self.ts._in(self.map_templates_out(tupl), None) def _inp(self, tupl): return self.ts._in(self.map_templates_out(tupl), 0) def _rd(self, tupl): return self.ts._rd(self.map_template_out(tupl), None) def _rdp(self, tupl): return self.ts._rd(self.map_template_out(tupl), 0) def _out(self, tupl): self.ts._out(tupl) def _rd_all(self, tupl): return self.ts._rd_all(self.map_template_out(tupl))
[ "khoado@csu.fullerton.edu" ]
khoado@csu.fullerton.edu
131c53910d35f10cf9f46abe44064b5c63681d5d
781029dcc468a7d1467a17727870d526da1df985
/django/crud_form/articles/urls.py
20033f90e9434504b066dd2f73e7934e94e26923
[]
no_license
Huijiny/TIL
5f0edec5ad187029e04ed2d69e85ae4d278e048d
d1a974b3cacfb45b2718f87d5c262a23986c6574
refs/heads/master
2023-09-03T15:28:11.744287
2021-10-21T12:38:10
2021-10-21T12:38:10
335,220,747
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
from django.urls import path from . import views app_name = 'articles' urlpatterns = [ path('index/', views.index, name='index'), path('create/', views.create, name='create'), path('detail/<str:pk>', views.detail, name='detail'), path('update/<str:pk>', views.update, name='update'), path('delete/<str:pk>', views.delete, name='delete'), ]
[ "jiin20803@gmail.com" ]
jiin20803@gmail.com
074260b13dd38e71d53c4becd4a84f776db80e2b
a003919560c569114a54182e1d977bd2cd3e67dd
/cs231n-assignment2/cs231n/classifiers/fc_net.py
087ccbbb0810102b9e9a9a191980552e30a0d92e
[]
no_license
MohdElgaar/ML-assignments
282bd73d35e171dbf305451c9c0b7049e75382e8
7c68452906e68b8d3e6ba75fe65b59e6660053df
refs/heads/master
2020-04-18T17:33:20.557874
2019-01-26T06:28:34
2019-01-26T06:30:50
167,657,532
0
0
null
null
null
null
UTF-8
Python
false
false
17,086
py
from builtins import range from builtins import object import numpy as np from cs231n.layers import * from cs231n.layer_utils import * class TwoLayerNet(object): """ A two-layer fully-connected neural network with ReLU nonlinearity and softmax loss that uses a modular layer design. We assume an input dimension of D, a hidden dimension of H, and perform classification over C classes. The architecure should be affine - relu - affine - softmax. Note that this class does not implement gradient descent; instead, it will interact with a separate Solver object that is responsible for running optimization. The learnable parameters of the model are stored in the dictionary self.params that maps parameter names to numpy arrays. """ def __init__(self, input_dim=3*32*32, hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0): """ Initialize a new network. Inputs: - input_dim: An integer giving the size of the input - hidden_dim: An integer giving the size of the hidden layer - num_classes: An integer giving the number of classes to classify - dropout: Scalar between 0 and 1 giving dropout strength. - weight_scale: Scalar giving the standard deviation for random initialization of the weights. - reg: Scalar giving L2 regularization strength. """ self.params = {} self.reg = reg ############################################################################ # TODO: Initialize the weights and biases of the two-layer net. Weights # # should be initialized from a Gaussian with standard deviation equal to # # weight_scale, and biases should be initialized to zero. All weights and # # biases should be stored in the dictionary self.params, with first layer # # weights and biases using the keys 'W1' and 'b1' and second layer weights # # and biases using the keys 'W2' and 'b2'. # ############################################################################ self.params['W1'] = np.random.normal(0, weight_scale, (input_dim, hidden_dim)) self.params['b1'] = np.zeros(hidden_dim) self.params['W2'] = np.random.normal(0, weight_scale, (hidden_dim, num_classes)) self.params['b2'] = np.zeros(num_classes) ############################################################################ # END OF YOUR CODE # ############################################################################ def loss(self, X, y=None): """ Compute loss and gradient for a minibatch of data. Inputs: - X: Array of input data of shape (N, d_1, ..., d_k) - y: Array of labels, of shape (N,). y[i] gives the label for X[i]. Returns: If y is None, then run a test-time forward pass of the model and return: - scores: Array of shape (N, C) giving classification scores, where scores[i, c] is the classification score for X[i] and class c. If y is not None, then run a training-time forward and backward pass and return a tuple of: - loss: Scalar value giving the loss - grads: Dictionary with the same keys as self.params, mapping parameter names to gradients of the loss with respect to those parameters. """ scores = None ############################################################################ # TODO: Implement the forward pass for the two-layer net, computing the # # class scores for X and storing them in the scores variable. # ############################################################################ first_activations, first_cache = affine_relu_forward(X, self.params['W1'], self.params['b1']) scores, second_cache = affine_forward(first_activations, self.params['W2'], self.params['b2']) ############################################################################ # END OF YOUR CODE # ############################################################################ # If y is None then we are in test mode so just return scores if y is None: return scores loss, grads = 0, {} ############################################################################ # TODO: Implement the backward pass for the two-layer net. Store the loss # # in the loss variable and gradients in the grads dictionary. Compute data # # loss using softmax, and make sure that grads[k] holds the gradients for # # self.params[k]. Don't forget to add L2 regularization! # # # # NOTE: To ensure that your implementation matches ours and you pass the # # automated tests, make sure that your L2 regularization includes a factor # # of 0.5 to simplify the expression for the gradient. # ############################################################################ loss, dout = softmax_loss(scores,y) loss +=0.5*self.reg*(np.linalg.norm(self.params['W1'])**2 + np.linalg.norm(self.params['W2'])**2) dh, grads['W2'], grads['b2'] = affine_backward(dout, second_cache) grads['W2'] += self.reg * (self.params['W2']) dx, grads['W1'], grads['b1'] = affine_relu_backward(dh, first_cache) grads['W1'] += self.reg * (self.params['W1']) ############################################################################ # END OF YOUR CODE # ############################################################################ return loss, grads class FullyConnectedNet(object): """ A fully-connected neural network with an arbitrary number of hidden layers, ReLU nonlinearities, and a softmax loss function. This will also implement dropout and batch normalization as options. For a network with L layers, the architecture will be {affine - [batch norm] - relu - [dropout]} x (L - 1) - affine - softmax where batch normalization and dropout are optional, and the {...} block is repeated L - 1 times. Similar to the TwoLayerNet above, learnable parameters are stored in the self.params dictionary and will be learned using the Solver class. """ def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10, dropout=0, use_batchnorm=False, reg=0.0, weight_scale=1e-2, dtype=np.float32, seed=None): """ Initialize a new FullyConnectedNet. Inputs: - hidden_dims: A list of integers giving the size of each hidden layer. - input_dim: An integer giving the size of the input. - num_classes: An integer giving the number of classes to classify. - dropout: Scalar between 0 and 1 giving dropout strength. If dropout=0 then the network should not use dropout at all. - use_batchnorm: Whether or not the network should use batch normalization. - reg: Scalar giving L2 regularization strength. - weight_scale: Scalar giving the standard deviation for random initialization of the weights. - dtype: A numpy datatype object; all computations will be performed using this datatype. float32 is faster but less accurate, so you should use float64 for numeric gradient checking. - seed: If not None, then pass this random seed to the dropout layers. This will make the dropout layers deteriminstic so we can gradient check the model. """ self.use_batchnorm = use_batchnorm self.use_dropout = dropout > 0 self.reg = reg self.num_layers = 1 + len(hidden_dims) self.dtype = dtype self.params = {} ############################################################################ # TODO: Initialize the parameters of the network, storing all values in # # the self.params dictionary. Store weights and biases for the first layer # # in W1 and b1; for the second layer use W2 and b2, etc. Weights should be # # initialized from a normal distribution with standard deviation equal to # # weight_scale and biases should be initialized to zero. # # # # When using batch normalization, store scale and shift parameters for the # # first layer in gamma1 and beta1; for the second layer use gamma2 and # # beta2, etc. Scale parameters should be initialized to one and shift # # parameters should be initialized to zero. # ############################################################################ current_D = input_dim current_M = hidden_dims[0] for i in range(1, self.num_layers + 1): W = "W" + str(i) b = "b" + str(i) gamma = "gamma" + str(i) beta = "beta" + str(i) self.params[W] = np.random.normal(0, weight_scale, (current_D, current_M)) self.params[b] = np.zeros(current_M) if not i == self.num_layers and self.use_batchnorm: self.params[gamma] = np.ones(current_M) self.params[beta] = np.zeros(current_M) current_D = current_M if i >= len(hidden_dims): current_M = num_classes continue current_M = hidden_dims[i] ############################################################################ # END OF YOUR CODE # ############################################################################ # When using dropout we need to pass a dropout_param dictionary to each # dropout layer so that the layer knows the dropout probability and the mode # (train / test). You can pass the same dropout_param to each dropout layer. self.dropout_param = {} if self.use_dropout: self.dropout_param = {'mode': 'train', 'p': dropout} if seed is not None: self.dropout_param['seed'] = seed # With batch normalization we need to keep track of running means and # variances, so we need to pass a special bn_param object to each batch # normalization layer. You should pass self.bn_params[0] to the forward pass # of the first batch normalization layer, self.bn_params[1] to the forward # pass of the second batch normalization layer, etc. self.bn_params = [] if self.use_batchnorm: self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)] # Cast all parameters to the correct datatype for k, v in self.params.items(): self.params[k] = v.astype(dtype) def loss(self, X, y=None): """ Compute loss and gradient for the fully-connected net. Input / output: Same as TwoLayerNet above. """ X = X.astype(self.dtype) mode = 'test' if y is None else 'train' # Set train/test mode for batchnorm params and dropout param since they # behave differently during training and testing. if self.use_dropout: self.dropout_param['mode'] = mode if self.use_batchnorm: for bn_param in self.bn_params: bn_param['mode'] = mode scores = None ############################################################################ # TODO: Implement the forward pass for the fully-connected net, computing # # the class scores for X and storing them in the scores variable. # # # # When using dropout, you'll need to pass self.dropout_param to each # # dropout forward pass. # # # # When using batch normalization, you'll need to pass self.bn_params[0] to # # the forward pass for the first batch normalization layer, pass # # self.bn_params[1] to the forward pass for the second batch normalization # # layer, etc. # ############################################################################ intermediate = X.copy() caches={'affine': [], 'relu': [], 'batchnorm': [], 'dropout': []} for i in range(1, self.num_layers + 1): output_layer = i == self.num_layers W = "W" + str(i) b = "b" + str(i) gamma = "gamma" + str(i) beta = "beta" + str(i) if output_layer: scores, cache = affine_forward(intermediate, self.params[W], self.params[b]) caches['affine'].append(cache) else: intermediate, cache = affine_forward(intermediate, self.params[W], self.params[b]) caches['affine'].append(cache) if self.use_batchnorm: intermediate, cache = batchnorm_forward(intermediate, self.params[gamma], self.params[beta], self.bn_params[i-1]) caches['batchnorm'].append(cache) intermediate, cache = relu_forward(intermediate) caches['relu'].append(cache) if self.use_dropout: intermediate, cache = dropout_forward(intermediate, self.dropout_param) caches['dropout'].append(cache) ############################################################################ # END OF YOUR CODE # ############################################################################ # If test mode return early if mode == 'test': return scores loss, grads = 0.0, {} ############################################################################ # TODO: Implement the backward pass for the fully-connected net. Store the # # loss in the loss variable and gradients in the grads dictionary. Compute # # data loss using softmax, and make sure that grads[k] holds the gradients # # for self.params[k]. Don't forget to add L2 regularization! # # # # When using batch normalization, you don't need to regularize the scale # # and shift parameters. # # # # NOTE: To ensure that your implementation matches ours and you pass the # # automated tests, make sure that your L2 regularization includes a factor # # of 0.5 to simplify the expression for the gradient. # ############################################################################ loss, intermediate = softmax_loss(scores, y) for i in range(1, self.num_layers + 1): W = "W" + str(i) loss += 0.5*self.reg*(np.linalg.norm(self.params[W])**2) for i in range(self.num_layers, 0, -1): W = "W" + str(i) b = "b" + str(i) gamma = "gamma" + str(i) beta = "beta" + str(i) output_layer = i == self.num_layers if output_layer: intermediate, grads[W], grads[b] = affine_backward(intermediate, caches['affine'][i-1]) else: if self.use_dropout: intermediate = dropout_backward(intermediate, caches['dropout'][i-1]) intermediate = relu_backward(intermediate, caches['relu'][i-1]) if self.use_batchnorm: intermediate, grads[gamma], grads[beta] = batchnorm_backward(intermediate, caches['batchnorm'][i-1]) intermediate, grads[W], grads[b] = affine_backward(intermediate, caches['affine'][i-1]) grads[W] += self.reg * self.params[W] ############################################################################ # END OF YOUR CODE # ############################################################################ return loss, grads
[ "mohamed@kaist.ac.kr" ]
mohamed@kaist.ac.kr
048e35e12a0d93a9ac53cb672c5f2ec95f0eae85
15421e75dab5775e53bf8a20da50f0de6d78d410
/ascii_chan/ascii_chan.py
8c0b1ca0b4e7fd287e6b5aff170d38912118ddcf
[]
no_license
etmoore/intro-to-backend-udacity
292dd98d0fb9ebed95d295b41d5abde2e2610544
dc3435e43a6a6c89f0c832431667bb0bc4ad99e1
refs/heads/master
2020-12-26T03:43:15.067050
2017-02-13T23:43:35
2017-02-13T23:43:35
68,500,043
0
0
null
null
null
null
UTF-8
Python
false
false
1,573
py
import os import jinja2 import webapp2 from google.appengine.ext import db # configuration for jinja template_dir = os.path.join(os.path.dirname(__file__), 'templates') jinja_env = jinja2.Environment(loader = jinja2.FileSystemLoader(template_dir), autoescape = True) class Art(db.Model): title = db.StringProperty(required = True) art = db.TextProperty(required = True) created = db.DateTimeProperty(auto_now_add = True) class Handler(webapp2.RequestHandler): """Renders via jinja2 template engine""" def write(self, *a, **kw): self.response.out.write(*a, **kw) def render_str(self, template, **params): t = jinja_env.get_template(template) return t.render(params) def render(self, template, **kw): self.write(self.render_str(template, **kw)) class MainPage(Handler): def render_front(self, title="", art="", error=""): arts = db.GqlQuery("Select * from Art " "ORDER BY created DESC ") self.render("front.html", title=title, art=art, error=error, arts=arts) def get(self): self.render_front() def post(self): title = self.request.get("title") art = self.request.get("art") if title and art: a = Art(title = title, art = art) a.put() self.redirect("/") else: error = "We need both a title and some artwork!" self.render_front(title, art, error) app = webapp2.WSGIApplication([ ('/', MainPage), ], debug=True)
[ "etmoore@gmail.com" ]
etmoore@gmail.com