blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
f8c4b43d6d9cc36156f18a132ac87630172fdd51
fc05249c73f910a4d36f471eb91e05256a64cdfe
/phd/BC-NBUC_FM_orig.py
38718187d3142fc611bc4b4069940eab2ebf29b2
[]
no_license
rsoutelino/sandbox
f51b37619cd7a61a0446d83e2e1c2af58f14802a
814d215582d8e14514ba93daf1b41f6d118b906c
refs/heads/master
2023-03-02T12:05:18.703732
2023-03-02T01:58:15
2023-03-02T01:58:15
28,204,889
3
1
null
null
null
null
UTF-8
Python
false
false
24,435
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################### # Building coupled BC-NBUC Feature Model # Rafael Soutelino - rsoutelino@gmail.com # Last Modification: Apr, 2011 ################################################################################### import numpy as np import matplotlib.pyplot as plt from matplotlib.mlab import griddata from roms_setup import near import scipy.io as sp from mpl_toolkits.basemap import Basemap import seawater.csiro as sw import netCDF4 as nc from cookb_signalsmooth import smooth # FUNCTIONS ################################################################# def transp(lon, z, v): """ Slices some 3D field within some lon, lat limits Be carefull with the aproximation on distance computing """ dx = np.diff(lon, axis=1) * 111 * 1000 # valid only for low latitudes!!! aux = dx[:,0]; aux.shape = (np.size(aux), 1) dx = np.concatenate( (dx, aux), axis=1) dz = np.diff(z, axis=0) aux = dz[0,:]; aux.shape = (1, np.size(aux)) dz = np.concatenate( (dz, aux), axis=0) transp = np.abs(dx) * np.abs(dz) * v; transp = transp.sum() transp = transp / 1e6 return transp # Input Parameters ################################################################## # Common System Parameters ========================================================= D = 3. # length of the transect or total length of the # modeled jet [degrees] tgmax = 0.15 # tan of the maximum angle that the transect is # allowed to have to a parallel dr = 0.1 # horizontal spacing for the feature model [degree] ln = 30. # jump on the isobath to define the # of transects zmax = 1500. # maximum depth for the system dz = 1. # vertical resolution of the transects [m] # DO NOT CHANGE THAT!!!! If changed, # require changes in the code delta = 100. # jets width [km] # NBUC parameters ================================================================== z0_NBUC_S = 500. # incoming NBUC core depth [m] z0_NBUC_N = 200. # outgoing NBUC core depth [m] v0_NBUC_S = 0.2 # incoming NBUC core velocity [m/s] v0_NBUC_N = 0.5 # outgoing NBUC core velocity [m/s] ds_NBUC = 100. # NBUC thickness from core to surface [m] db_NBUC = 360. # NBUC thickness from core to bottom [m] # BC parameters =================================================================== BC_origin = -14 # BC Origin latitude z0_BC = 0. # BC core depth [m] v0_BC_S = -0.2 # outgoing BC core velocity [m/s] v0_BC_N = 0 # BC origin core velocity [m/s] d_BC = 150. # BC thickness [m] ##################################################################################### # analytical integration of the functions to check on the transport # NBUC at North ## Analytical Expression of the Transport: T = v0 . d ( ds + db ) #plt.figure(10, figsize=(14,8), facecolor='w') ## v0, d, ds fixed: #db = np.arange(150, 500, 10) #T = ( v0_NBUC_N * d*1e3 * ( ds_NBUC + db ) ) * 1e-6 #p1 = plt.subplot(221); plt.plot(db, T, 'g', linewidth=2) #plt.plot( (150,500) , (23,23) , 'k', alpha='0.2', linewidth=10); grid() #plt.title('$v_0$ = '+ str(v0_NBUC_N) +'m/s, $\delta$ = '+str(int(d)) +' km, $\delta_s$ = '+str(int(ds_NBUC)) +' m') #plt.xlabel('$\delta_b$ [m]'); plt.ylabel('NBUC Transport [Sv]'); p1.set_ylim(15,30) #ds = np.arange(20, 300, 10) #T = ( v0_NBUC_N * d*1e3 * ( ds + db_NBUC ) ) * 1e-6 #p2 = plt.subplot(222); plt.plot(ds, T, 'g', linewidth=2) #plt.plot( (20,300) , (23,23) , 'k', alpha='0.2', linewidth=10); grid() #plt.title('$v_0$ = '+ str(v0_NBUC_N) +'m/s, $\delta$ = '+str(int(d)) +' km, $\delta_b$ = '+str(int(db_NBUC)) +' m') #plt.xlabel('$\delta_s$ [m]'); p2.set_ylim(15,30) #dd = np.arange(50, 150, 10) #T = ( v0_NBUC_N * dd*1e3 * ( ds_NBUC + db_NBUC ) ) * 1e-6 #p3 = plt.subplot(223, position=(0.125, 0.1, 0.35, 0.3)); plt.plot(dd, T, 'g', linewidth=2) #plt.plot( (50,150) , (23,23) , 'k', alpha='0.2', linewidth=10); grid() #plt.title('$v_0$ = '+ str(v0_NBUC_N) +'m/s, $\delta_s$ = '+str(int(ds_NBUC)) +' m, $\delta_b$ = '+str(int(db_NBUC)) +' m') #plt.xlabel('$\delta$ [km]'); plt.ylabel('NBUC Transport [Sv]'); p3.set_ylim(15,30); #v0 = np.arange(0.3, 0.8, 0.03) #T = ( v0 * d*1e3 * ( ds_NBUC + db_NBUC ) ) * 1e-6 #p4 = plt.subplot(224, position=(0.55, 0.1, 0.35, 0.3)); plt.plot(v0, T, 'g', linewidth=2) #plt.plot( (0.3,0.8) , (23,23) , 'k', alpha='0.2', linewidth=10); grid() #plt.title('$\delta$ = '+ str(int(d)) +'km, $\delta_s$ = '+str(int(ds_NBUC)) +' m, $\delta_b$ = '+str(int(db_NBUC)) +' m') #plt.xlabel('$v_0$ [m/s]'); p4.set_ylim(15,30) # ====================================================== # CREATING ISOBATH-FOLLOWING NBUC FEATURE MODEL: # ====================================================== # ====================================================== # loading roms grid to get limits and topography print ' ' print ' \n' + '==> ' + ' READING GRID NETCDF FILE ...\n' + ' ' print ' ' # I need a bigger grid to get the isobath grdfile = nc.Dataset('/home/rsoutelino/rsoutelino/myroms/phd_run/phd1_grd.nc') # assigning some variables from grid file lonr = grdfile.variables['lon_rho'][:] latr = grdfile.variables['lat_rho'][:] h = grdfile.variables['h'][:] # getting an isobath plt.figure(); con = plt.contour(lonr, latr, h, levels=[100] ) col = con.collections[0]; paths = col.get_paths() path0 = paths[0]; isob = path0.vertices; plt.close('all') # limiting isobath within model domain f = np.where( (isob[:,1] >= -24) & (isob[:,1] <= -8) ) isob = isob[f[0],:] # smoothing isobath isob[:,0] = smooth(isob[:,0],window_len=201,window='hanning') isob[:,1] = smooth(isob[:,1],window_len=101,window='hanning') # now I load original small grid grdfile = nc.Dataset('/home/rsoutelino/rsoutelino/myroms/phd_run/phd8_grd.nc') # assigning some variables from grid file lonr = grdfile.variables['lon_rho'][:] latr = grdfile.variables['lat_rho'][:] h = grdfile.variables['h'][:] # creating adimensional pairs of the parameters dr = dr / D # adimensional horizontal resolution r = D * np.arange(0, 1, dr) # adimensional horizontal transects r0 = (1.0/D) * D # defining transect center d = ( delta / 111.0 ) / D # normalized jet width ### NBUC FEATURE MODEL ##################################################### # ====================================================== # defining domain, buffering variables looprange = range(0, len(isob), int(ln)) # scanning the isobath li = np.size(looprange); lj = np.size(r) X = np.zeros( [li , lj]); Y = X.copy() Z = np.arange(-zmax, 0.0+dz, dz); lk = np.size(Z) U = np.zeros( [ lk , li , lj ] ) V = U.copy(); VS = U.copy() v = np.zeros( [ lk , lj ] ) # ====================================================== # defining velocity-axis vertical structure v0 = v0(y,z) # Y-dependance: # Jet core depth will increase as a linear function from south to north z0max = np.linspace(-z0_NBUC_S, -z0_NBUC_N, li) # Core velocity will also increase as a linear function from south to north v0max = np.linspace(v0_NBUC_S, v0_NBUC_N, li) v0 = np.zeros( [lk, li] ) # Z-dependance: # NBUC core in Z0 m decaying in a gauss curve until 0 m/s at bottom # this will also by Y-dependant, to allow increasing of the jet thickness d1 = ds_NBUC / dz # gaussian vertical upper width, normalized by dz # another gaussian will be adopted to decay velocities to surface d2 = np.linspace(db_NBUC/dz, db_NBUC/dz, li) # gaussian lower width, normalized by dz # starting the looping to create the slope-following NBUC-FM print ' ' print '======== CREATING SLOPE-FOLLOWING NBUC-FM ========' print ' ' i = -1 # initializing index counter for c in looprange: print ' Transect ' + str(i+1) + ' / ' + str(np.size(looprange)) i = i + 1 x0 = isob[c:c+6, 0]; y0 = isob[c:c+6, 1] tgr, b = np.polyfit(x0, y0, 1) # finding isobath-tangent straight line x0 = x0[0]; y0 = y0[0] tgr = -1.0 / tgr; b = y0 - tgr * x0 # finding normal straight line if tgr >= tgmax: # enforcing maximun angle tgr = tgmax elif tgr <= -tgmax: tgr = -tgmax # ======================================= # assembling vertical jet-core structure # upper part z1 = Z[z0max[i]/dz:] v01 = v0max[i] * np.exp( (-1)* (z1 - (z0max[i]/dz))**2 / (2*d1**2) ) v0[z0max[i]/dz:, i] = v01 # lower part z2 = Z[:z0max[i]/dz] v02 = v0max[i] * np.exp( (-1)* (z2 - (z0max[i]/dz))**2 / (2*d2[i]**2) ) v0[:z0max[i]/dz, i] = v02 # ========================================================== # writing NBUC-FM to transect based on cross-slope structure for k in range( 0, lk): v[k, :] = v0[k, i] * np.exp( (-1)* ( ( r-r0 )**2 / ( 2*d**2 ) ) ) # georeferencing velocities and coordinates angr = np.arctan(tgr) cosr, sinr = np.cos(angr), np.sin(angr) X[i, :] = r * cosr + x0 Y[i, :] = r * sinr + y0 U[:, i, :] = v * sinr * (-1) V[:, i, :] = v * cosr VS[:, i, :] = v ### BC FEATURE MODEL ##################################################### # ====================================================== # defining domain, buffering variables U2 = np.zeros( [ lk , li , lj ] ) V2 = U2.copy(); VS2 = U2.copy() v2 = np.zeros( [ lk , lj ] ) # ====================================================== # defining velocity-axis vertical structure v0 = v0(y,z) # Y-dependance: # Core velocity will also increase as a linear function from south to north v0max = np.zeros(li) lataux = Y[:,0] fcb = np.where(lataux <= BC_origin); fcb = fcb[0] v0max[fcb] = np.linspace(v0_BC_S, v0_BC_N, fcb.size) v0 = np.zeros( [lk, li] ) # Z-dependance: # NBUC core in Z0 m decaying in a gauss curve until 0 m/s at bottom # this will also by Y-dependant, to allow increasing of the jet thickness d1 = d_BC / dz # gaussian vertical upper width, normalized by dz # starting the looping to create the slope-following NBUC-FM print ' ' print '======== CREATING SLOPE-FOLLOWING BC-FM ========' print ' ' i = -1 # initializing index counter for c in looprange: print ' Transect ' + str(i+1) + ' / ' + str(np.size(looprange)) i = i + 1 x0 = isob[c:c+6, 0]; y0 = isob[c:c+6, 1] tgr, b = np.polyfit(x0, y0, 1) # finding isobath-tangent straight line x0 = x0[0]; y0 = y0[0] tgr = -1.0 / tgr; b = y0 - tgr * x0 # finding normal straight line if tgr >= tgmax: # enforcing maximun angle tgr = tgmax elif tgr <= -tgmax: tgr = -tgmax # ======================================= # assembling vertical jet-core structure v0[:,i] = v0max[i] * np.exp( (-1)* (Z - (z0_BC/dz))**2 / (2*d1**2) ) # ========================================================== # writing NBUC-FM to transect based on cross-slope structure for k in range( 0, lk): v2[k, :] = v0[k, i] * np.exp( (-1)* ( ( r-r0 )**2 / ( 2*d**2 ) ) ) # georeferencing velocities and coordinates angr = np.arctan(tgr) cosr, sinr = np.cos(angr), np.sin(angr) X[i, :] = r * cosr + x0 Y[i, :] = r * sinr + y0 U2[:, i, :] = v2 * sinr * (-1) V2[:, i, :] = v2 * cosr VS2[:, i, :] = v2 # Gathering both Feature Models U = U + U2; V = V + V2; VS = VS + VS2 # some plotting and transport computation plt.figure() plt.plot(isob[:,0], isob[:,1]); plt.axis('equal') plt.pcolormesh(X, Y, V[-1,...], vmin=-0.20, vmax=0.20, cmap=plt.cm.RdBu) plt.grid(); plt.colorbar(); plt.title('V-Vel @ Surface') plt.xlabel('Longitude'); plt.ylabel('Latitude') plt.figure() plt.plot(isob[:,0], isob[:,1]); plt.axis('equal') plt.pcolormesh(X, Y, V[-400/dz,...], vmin=-0.50, vmax=0.50, cmap=plt.cm.RdBu) plt.grid(); plt.colorbar(); plt.title('V-Vel @ 400 m') plt.xlabel('Longitude'); plt.ylabel('Latitude') plt.figure() plt.contourf(X[0,:],Z, np.squeeze(V[:,0,:]),np.arange(-0.2,0.2+0.03,0.03), cmap=plt.cm.RdBu, alpha=0.5) plt.colorbar(); plt.title('V-Vel @ South Boundary') plt.xlabel('Longitude'); plt.ylabel('Depth') xx,zz = np.meshgrid(X[0,:],Z) Tcb = transp(xx[-200:,:], zz[-200:,:], np.squeeze(V[-200:,0,:])) Tnbuc = transp(xx[:-200,:], zz[:-200,:], np.squeeze(V[:-200,0,:])) plt.text(-42.5, -100,'BC: '+str(np.round(Tcb))+' Sv',color='k',fontsize=12,fontweight='bold') plt.text(-42.5, -700,'NBUC: '+str(np.round(Tnbuc))+' Sv',color='k',fontsize=12,fontweight='bold') ############################################### plt.figure() plt.contourf(X[-1,:],Z, np.squeeze(V[:,-1,:]),np.arange(-0.5,0.5+0.05,0.05), cmap=plt.cm.RdBu, alpha=0.5) fwhm_s = 2*np.sqrt(2*np.log1p(2)) * ds_NBUC; zd = (-z0_NBUC_N, -z0_NBUC_N + fwhm_s/2 ) plt.plot((-34.13,-34.13),zd,'k', linewidth=5, alpha=0.4) plt.text(-34, -90, '$\delta_s$', fontsize=16, fontweight='bold') plt.text(-33.92, -90, ' = '+ str(int(ds_NBUC)) +'m') fwhm_b = 2*np.sqrt(2*np.log1p(2)) * db_NBUC; zd = (-z0_NBUC_N, -z0_NBUC_N - fwhm_b/2 ) plt.plot((-34.13,-34.13),zd,'b', linewidth=5, alpha=0.4) plt.text(-34, -500, '$\delta_b$', fontsize=16, fontweight='bold', color='b') plt.text(-33.92, -500, ' = '+ str(int(db_NBUC)) +'m', fontsize=12, color='b') fwhm = delta/111; xd = (-34.13 + fwhm/2, -34.13 - fwhm/2) plt.plot(xd,(-200,-200),'g', linewidth=5, alpha=0.4) plt.text(-33.8, -250, '$\delta$', fontsize=16, fontweight='bold', color='g') plt.text(-33.72, -250, ' = '+ str(int(delta)) +'km', fontsize=12, color='g') plt.text(-34.2, -220, '$v_0$', fontsize=20, fontweight='bold', color='k') plt.text(-32.9, -250, '$v_0$', fontsize=20, fontweight='bold', color='k') plt.text(-32.78, -250, ' = '+ str(v0_NBUC_N) +' m/s', fontsize=12, color='k') plt.colorbar(); plt.title('V-Vel @ North Boundary') plt.xlabel('Longitude'); plt.ylabel('Depth') xx,zz = np.meshgrid(X[0,:],Z) Tnbuc = transp(xx, zz, np.squeeze(V[:,-1,:])) plt.text(-33, -200,'NBUC: '+str(np.round(Tnbuc))+' Sv',color='k',fontsize=12,fontweight='bold') plt.axis([-35, -32, -1000, 10]) plt.show() # ========================================================== # COMPUTING GEOSTROPHICALLY BALANCED STATE VARIABLES print ' ' print '======== COMPUTING GEOSTROPHICALLY BALANCED STATE VARIABLES ========' print ' ' # integration the thermal wind equation: # rho(x,z) = rho0(z) - rho_bar.f/g * int_0^L{ dv/dz dx} stop # obtaining rho0 and rho_bar from WOA2009: MeanDens = sp.loadmat('MeanDens.mat') rho0 = MeanDens['potdens'][:].ravel(); rho0 = rho0[::-1] zrho = MeanDens['z'][:].ravel(); zrho = zrho[::-1] salt0 = MeanDens['salt'][:].ravel(); salt0 = salt0[::-1] rho0 = np.interp(Z, zrho, rho0) salt0 = np.interp(Z, zrho, salt0) rho0.shape = (np.size(rho0), 1) salt0.shape = (np.size(salt0), 1) rho_bar = rho0.mean() print ' Density' # obtaining dv/dz: dvdz = np.zeros([ lk , li , lj]) for i in range(0, li): vaux = np.squeeze(VS[:,i,:]) aux = np.array(np.gradient(vaux)) dvdz[:,i,:] = np.squeeze(aux[0, :, :]) # obtaining dS [m]: where S is the cross-slope axis S = r * 111 * 1000; S, tmp = np.meshgrid(S, Z) dS = np.array(np.gradient(S)) dS = np.squeeze(dS[1, :, :]) # constants g = 9.8 f0 = 4 * np.pi * np.sin( np.pi * latr.mean()/180 ) / ( 24*3600 ) # COMPUTING DENSITY: RHO = np.zeros([ lk , li , lj]) for i in range(0, li): aux = dvdz[:,i,:] rhoaux = rho0 - ((rho_bar*f0) / g) * np.cumsum( aux*dS, axis=1 ) RHO[:,i,:] = rhoaux # COMPUTING TEMPERATURE AND SALINITY # linearized equation of seawater state alpha = 2.2e-4 beta = 8e-4 S0 = 37 rho_ref = 1000.7 TEMP = np.zeros([ lk , li , lj]) SALT = np.zeros([ lk , li , lj]) print ' Temperature, Salinity' for i in range(0, li): TEMP[:,i,:] = ( -RHO[:,i,:]/rho_ref + 1 + beta*salt0 ) / alpha SALT[:,i,:] = salt0 + 0.01 * TEMP[:,i,:] plt.figure() plt.plot(isob[:,0], isob[:,1]); plt.axis('equal') plt.pcolormesh(X, Y, TEMP[-1,...],cmap=plt.cm.Spectral_r); plt.grid(); plt.colorbar(); plt.title('Temperature @ Surface') plt.xlabel('Longitude'); plt.ylabel('Latitude') plt.figure() plt.plot(isob[:,0], isob[:,1]); plt.axis('equal') plt.pcolormesh(X, Y, TEMP[-400,...], cmap=plt.cm.Spectral_r) plt.grid(); plt.colorbar(); plt.title('Temperature @ 400 m') plt.xlabel('Longitude'); plt.ylabel('Latitude') plt.figure() plt.contourf(X[0,:],Z, np.squeeze(TEMP[:,0,:]),30, cmap=plt.cm.Spectral_r); plt.colorbar(); plt.contour(X[0,:],Z, np.squeeze(V[:,0,:]),10, colors='0.5') plt.title('Temperature @ South Boundary') plt.xlabel('Longitude'); plt.ylabel('Depth') plt.figure() plt.contourf(X[-1,:],Z, np.squeeze(TEMP[:,-1,:]),30, cmap=plt.cm.Spectral_r); plt.colorbar() plt.contour(X[-1,:],Z, np.squeeze(V[:,-1,:]),10, colors='0.5') plt.title('Temperature @ North Boundary') plt.xlabel('Longitude'); plt.ylabel('Depth') plt.show() plt.figure() plt.contourf(Y[:,-1],Z, np.squeeze(TEMP[:,:,-1]),30, cmap=plt.cm.Spectral_r); plt.colorbar() plt.title('Temperature @ East Boundary') plt.xlabel('Latitude'); plt.ylabel('Depth') plt.show() # clearing memory del h, VS, MeanDens, RHO, U2, V2, VS2 del c, col, con, cosr, d, d1, d2, dvdz, fcb, grdfile # extrapolate to the rest of the domain rpt = 20 XAUX = np.zeros([li, rpt]); YAUX = XAUX * 0 print ' ' print ' Extrapolating values to the east' print ' ' for i in range(0,li): lastx = X[i,-1]; xaux = np.linspace(lastx+0.25, lonr.max()+2, rpt) XAUX[i,:] = xaux lasty = Y[i,-1]; yaux = np.linspace(lasty, lasty, rpt) YAUX[i,:] = yaux # coordinates: X = np.hstack((X, XAUX)) Y = np.hstack((Y, YAUX)) # velocity: # computing geostrophic velocity to EASTERN boundary, to check SEC structure temp = np.squeeze(TEMP[...,-1]) salt = np.squeeze(SALT[...,-1]) y = Y[:,-1] y, z = np.meshgrid(y,Z); z = -z gp = sw.gpan(salt, temp, z) gp = (gp - gp[-1,:]) * -1 # to reference in the bottom dgp = np.array(np.gradient(gp)) dgp = np.squeeze(dgp[1,:,:]) dy = np.array(np.gradient(y)) dy = np.squeeze(dy[1,:,:]) * 111000 dgpdy = dgp / dy usec = -dgpdy / f0 # getting the right transport usec = usec*0.95 f = np.where(usec > 0); usec[f] = 0 Tsec = transp(y, z, usec) plt.figure(20, figsize=(10, 5), facecolor='w') plt.contourf(y, -z, usec, np.arange(-0.1, 0.1+0.01, 0.01), cmap=plt.cm.RdBu, extend='both') plt.colorbar(); plt.title('SEC velocities from BC-NBUC Feature Model') plt.xlabel('Latitude'); plt.ylabel('Z[m]') plt.axis([y.min(), y.max(), -1000, 0]) plt.text(-18, -450, str(np.round(Tsec))+' Sv') plt.text(-23, -700, 'Should be -17 Sv to fulfil the BC-NBUC inbalance.') plt.show() uaux = usec.repeat(rpt, axis=1) uaux.shape = (lk, li, rpt) # decaying uaux to zero close to the western boundary dcj = 3 # number of grid points to do the linear decay for k in range(0, lk-1): for i in range(0, li): utmp = np.linspace(0, usec[k, i], dcj) uaux[k, i, :dcj] = utmp U = np.concatenate((U, uaux), axis=2) V = np.concatenate((V, uaux*0), axis=2) del uaux # salt and temp: lastS = SALT[:,:,-1]; lastT = TEMP[:,:,-1] saux = lastS.repeat(rpt, axis=1); taux = lastT.repeat(rpt, axis=1) saux.shape = (lk, li, rpt); taux.shape = (lk, li, rpt) SALT = np.concatenate((SALT, saux), axis=2) TEMP = np.concatenate((TEMP, taux), axis=2) lk, li, lj = U.shape rpt=10 XAUX = np.zeros([li, rpt]); YAUX = XAUX * 0 print ' ' print ' Extrapolating values to the west' print ' ' for i in range(0,li): firstx = X[i,0]; xaux = np.linspace(lonr.min() - 2, firstx-0.25, rpt) XAUX[i,:] = xaux firsty = Y[i,0]; yaux = np.linspace(firsty, firsty, rpt) YAUX[i,:] = yaux X = np.hstack((XAUX, X)) Y = np.hstack((YAUX, Y)) firstu = U[:,:,0]; firstu = firstu*0; uaux = firstu.repeat(rpt, axis=1) uaux.shape = (lk, li, rpt) U = np.concatenate((uaux, U), axis=2) V = np.concatenate((uaux, V), axis=2) firstS = SALT[:,:,0]; firstT = TEMP[:,:,0] saux = firstS.repeat(rpt, axis=1); taux = firstT.repeat(rpt, axis=1) saux.shape = (lk, li, rpt); taux.shape = (lk, li, rpt) SALT = np.concatenate((saux, SALT), axis=2) TEMP = np.concatenate((taux, TEMP), axis=2) del lastS, lastT, lastx, lasty, firstS, firstT, firstu, firstx, firsty del lataux, looprange, r, rho0, rhoaux, taux, saux, tmp, v, v0, v01, v02, v0max del v2, vaux, xx, yaux, z0max, z1, z2, zrho, zz, XAUX, YAUX, aux, lonr, latr, uaux d = 20 TEMP = TEMP[::d,...]; SALT = SALT[::d,...]; Z = Z[::d] U = U[::d,...]; V = V[::d,...] lk, li, lj = U.shape # PREPARING FIELDS TO BUILD ROMS INITIAL FIELDS straight from FM: # flipping arrays to keep depths positive TEMP = TEMP.reshape(lk, li*lj); SALT = SALT.reshape(lk, li*lj) U = U.reshape(lk, li*lj); V = V.reshape(lk, li*lj) TEMP = np.flipud(TEMP); SALT = np.flipud(SALT); U = np.flipud(U); V = np.flipud(V); Z = np.flipud(Z); Z = -Z; Z = np.squeeze(Z) TEMP.shape = (lk,li,lj); SALT.shape = (lk,li,lj); U.shape = (lk,li,lj); V.shape = (lk,li,lj) # creating depth-averaged velocities UBAR = U.mean(axis=0) VBAR = V.mean(axis=0) # creating SSH TEMP2 = TEMP.reshape(lk, li*lj) SALT2 = SALT.reshape(lk, li*lj) Z2 = Z.reshape(lk,1) gpan = sw.gpan(SALT2, TEMP2, Z2); del TEMP2, SALT2, Z2 gpan = (gpan - gpan[-1,:]) # to reference in the bottom SSH = gpan / g; SSH = SSH[0,:]; SSH = SSH - SSH.mean() SSH.shape = (li,lj) matdict = {'lon':X, 'lat': Y, 'z': Z, 'temp':TEMP, 'salt':SALT, 'u':U, 'v':V, 'ubar':UBAR, 'vbar':VBAR, 'ssh':SSH} sp.savemat('BC-NBUC_FM.mat', matdict) # CREATING A FLAT Tracers FM + M3 FM velocities for k in range(0,lk-1): TEMP[k,...] = TEMP[k,...].mean() SALT[k,...] = SALT[k,...].mean() matdict = {'lon':X, 'lat': Y, 'z': Z, 'temp':TEMP, 'salt':SALT, 'u':U, 'v':V, 'ubar':UBAR, 'vbar':VBAR, 'ssh':SSH} sp.savemat('FLAT-BC-NBUC_FM.mat', matdict) # CREATING A FLAT Tracers FM + FLAT M3 FM U = U*0; UBAR = UBAR*0 V = V*0; VBAR = VBAR*0; SSH = SSH*0 matdict = {'lon':X, 'lat': Y, 'z': Z, 'temp':TEMP, 'salt':SALT, 'u':U, 'v':V, 'ubar':UBAR, 'vbar':VBAR, 'ssh':SSH} sp.savemat('FLAT_FM.mat', matdict) # PREPARING FIELDS TO AOME print ' ' print 'Please run fm2mod.py if you want to create a MODS-file' print ' ' STOP # comparing with OA fields dataset = nc.Dataset('/home/rsoutelino/rsoutelino/myroms/phd_run/init/hops_oa/work/bc-nbuc_fm.nc') lon = dataset.variables['grid3'][:,:,0] lat = dataset.variables['grid3'][:,:,1] temp = dataset.variables['temp'][:] salt = dataset.variables['salt'][:] dynht = dataset.variables['dynht'][:] z = dataset.variables['zout'][:,2] dynht = dynht[0,...] psi = (-1) * ( dynht / f0 ) gradpsi = np.gradient(psi) u = (-1) * ( gradpsi[0] / ( np.diff(lon).mean() * 111000 ) ) v = gradpsi[1] / ( np.diff(lon).mean() * 111000 ) plt.figure() plt.contourf(lon, lat, dynht[...,0], 30, cmap=plt.cm.RdBu); colorbar() plt.plot(isob[:,0], isob[:,1],'k', linewidth=2); axis('equal') plt.axis([-40, -31, -23, -10]) plt.title('$\Delta \Phi$ @ Surface') plt.xlabel('Longitude'); plt.ylabel('Latitude') plt.figure() plt.contourf(lon, lat, dynht[...,20], 30, cmap=plt.cm.RdBu); plt.colorbar() plt.plot(isob[:,0], isob[:,1],'k', linewidth=2); axis('equal') plt.axis([-40, -31, -23, -10]) plt.title('$\Delta \Phi$ @ 400 m') plt.xlabel('Longitude'); plt.ylabel('Latitude') plt.figure() plt.quiver(lon, lat, u[...,0], v[...,0]) plt.plot(isob[:,0], isob[:,1],'k', linewidth=2); plt.axis([-40, -31, -23, -10]) plt.title('Velocity @ Surface') plt.xlabel('Longitude'); plt.ylabel('Latitude') plt.figure() plt.quiver(lon, lat, u[...,20], v[...,20]) plt.plot(isob[:,0], isob[:,1],'k', linewidth=2); plt.axis([-40, -31, -23, -10]) plt.title('Velocity @ 400 m') plt.xlabel('Longitude'); plt.ylabel('Latitude') plt.figure() plt.contourf(X[0,:],Z, np.squeeze(V[:,0,:]),np.arange(-0.2,0.2+0.03,0.03), cmap=plt.cm.RdBu, alpha=0.5) plt.contourf(lat[:,-1],z, np.squeeze(u[:,-60,:]).transpose(),30, cmap=plt.cm.RdBu); plt.colorbar() plt.title('Temperature @ South Boundary') plt.xlabel('Longitude'); plt.ylabel('Depth') plt.show()
[ "rsoutelino@gmail.com" ]
rsoutelino@gmail.com
3899ac470777b3ed162ec4b63771700c70a1e8f9
ad150ad36e2996171be8ec04ad9f025bd383ed39
/delivery_app/apps/myapp/models/salida.py
de081d9a59a1c4c9702bd3b764ea6f82885638d5
[]
no_license
pacifi/Dijkstra
740150d22c5571bf5f19c90ca15e56f2759822cb
f3095997b829b2d17cd55265da4ec99a70eab6c3
refs/heads/main
2022-05-01T02:26:07.467951
2022-04-30T14:23:37
2022-04-30T14:23:37
138,086,549
0
0
null
null
null
null
UTF-8
Python
false
false
422
py
from django.db import models from backend_apps.backend_auth.models import User class Salida(models.Model): user = models.ForeignKey(User) # encargado del pedido created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: verbose_name = "Salida" verbose_name_plural = "Salidas" def __str__(self): return "%s" % self.id
[ "pacifi.bnr@gmail.com" ]
pacifi.bnr@gmail.com
118314a66db3e17343985da81c3e0df4373d4c87
446571f13b3c1604cdfbcee8fdc2f956568d7c8d
/codeeval/medium/reverse_and_add.py
a9462c0696c93b46bb61868ec3a6c47549ccdc51
[]
no_license
ssarangi/algorithms
2e8f0a4be6bf0f4a3d75b224ed993e1fb0ca0229
e151307f2706214cf8cefa6231290aeb2e5cfd82
refs/heads/master
2021-01-17T02:28:23.291588
2018-01-06T18:35:13
2018-01-06T18:35:13
51,458,833
1
1
null
null
null
null
UTF-8
Python
false
false
1,253
py
# https://www.codeeval.com/open_challenges/45 import sys def check_palindrome_and_sum(num): total_digits = 0 arr = [] while num > 0: digit = num % 10 total_digits += 1 arr.append(digit) num = num // 10 is_palindrome = True # Now the arr has the individual elemenets p1 = 0 p2 = len(arr) - 1 while p1 < p2: if arr[p1] != arr[p2]: is_palindrome = False break p1 += 1 p2 -= 1 # Now find the reverse of the digit ten_pow = 0 reversed_num = 0 while len(arr) > 0: digit = arr.pop() reversed_num += digit * pow(10, ten_pow) ten_pow += 1 return reversed_num, is_palindrome def compute_soln(num): iteration = 0 is_palindrome = False while iteration <= 100 and not is_palindrome: reversed_num, is_palindrome = check_palindrome_and_sum(num) if not is_palindrome: num = reversed_num + num iteration += 1 return iteration, num with open(sys.argv[1], 'r') as test_cases: for test in test_cases: num = int(test) iteration, palindrome = compute_soln(num) print(iteration, palindrome)
[ "satyajit.sarangi@gmail.com" ]
satyajit.sarangi@gmail.com
d6a866e67509d27ae4a6e59c536f48c56f8085e5
1ce46403c6b0db95c5d41706bf6fa7de48010820
/flask_mobility/mobility.py
ee97dd3473b3a8f0a9d3d62b95a02bbd8fc48ac5
[ "BSD-3-Clause" ]
permissive
rehandalal/flask-mobility
1d90f5ec651129ef34b2334b61d47a7cbcb57cf2
a26f13d7c678265702c5687b9a5c87a705bb0b9d
refs/heads/master
2023-03-15T13:15:52.763579
2021-07-30T18:10:11
2021-07-30T18:10:11
8,322,591
67
14
BSD-3-Clause
2023-03-06T10:56:43
2013-02-20T21:28:17
Python
UTF-8
Python
false
false
941
py
import re from flask import _request_ctx_stack as stack class Mobility(object): def __init__(self, app=None): self.app = app if self.app is not None: self.init_app(app) def init_app(self, app): app.config.setdefault("MOBILE_USER_AGENTS", "android|fennec|iemobile|iphone|opera (?:mini|mobi)|mobile") app.config.setdefault("MOBILE_COOKIE", "mobile") self.USER_AGENTS = re.compile(app.config.get("MOBILE_USER_AGENTS")) @app.before_request def before_request(): ctx = stack.top if ctx is not None and hasattr(ctx, "request"): self.process_request(ctx.request, app) def process_request(self, request, app): ua = request.user_agent.string.lower() mc = request.cookies.get(app.config.get("MOBILE_COOKIE")) request.MOBILE = mc == "on" or (mc != "off" and self.USER_AGENTS.search(ua) is not None)
[ "rehandalal@gmail.com" ]
rehandalal@gmail.com
12800ccf2b7d3ba08d5e9ae38ebc5e702c5992c8
8c96a9d66d49a5cb38d71174c6135af8f37c2259
/libpass/__init__.py
d9e7d85ad43ad73b4a0bd96430eccbfd4d21451a
[]
no_license
jensecj/libpass-py
614c00fddb6b98f8e6ac5f33ab477e86e780a847
71e3c9dc945ca8f4aaa31b66c783eab8d22a4e0f
refs/heads/master
2020-08-27T20:02:52.729262
2019-10-31T09:04:15
2019-10-31T09:04:15
217,477,187
0
0
null
null
null
null
UTF-8
Python
false
false
2,579
py
import os import sys import subprocess class PasswordStore: def __init__(self, store_path=None): # TODO: locate gpg binary, or error # TODO: locate pass binary, or error if store_path: store_path = os.path.expanduser(store_path) else: store_path = os.path.expanduser("~/.password-store") if not os.path.exists(store_path): raise FileNotFoundError(f"Path to password store does not exist: {store_path}") if not os.path.isdir(store_path): raise ValueError(f"Path to password store is not a directory: {store_path}") self._store_path = store_path def _cmd(self, cmd): popen = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) return_code = popen.wait() if return_code == 0: output = popen.stdout.read().strip() return output err = popen.stderr.read() if popen.stderr else None if err: raise ValueError(f"return code: {return_code}: {err}") def unlock(self): """ Make the gpg-agent ask for passphrase for unlocking the password-stores gpg-key, if it is not already in the agent. """ self._cmd( [ "gpg", "--quiet", "--no-greeting", "--clearsign", "--output", "/dev/null", "/dev/null", ] ) def list(self): """ Return a list of all entries in the password store. """ # an entry in the password store is the relative path from the # root of the store, to some .gpg file in a subdirectory. files = [] for root, _, fs in os.walk(self._path): files += [os.path.join(root, f) for f in fs] rel_files = [os.path.relpath(f, start=self._store_path) for f in files] rel_files.remove(".gpg-id") entries = [f.strip(".gpg") for f in rel_files] return entries def get(self, path): """ Return the secret for `path', if found in the password store, None otherwise. """ return self._cmd(["pass", path]) def set(self, path, secret): """ Insert `secret' into the password store, at `path'. """ self._cmd(["pass", "insert", path, secret]) def generate(self, path): """ Insert a generated secret into `path' in the password store. """ self._cmd(["pass", "generate", path])
[ "jensecj@gmail.com" ]
jensecj@gmail.com
5ef25e5c0ef8975460d7523a61c4044e44e2b6d2
67603326996032afeab86b870212aa7f6f83e60f
/st.py
5f3072ae400cfe13544243250e8867f763cce8c5
[]
no_license
1079658109/RL-MPC-LaneMerging
3af6eb1efcc735004da1206d50e545965cac0db5
7f1948bd62e0833bb0477fa35242211726892e5b
refs/heads/master
2023-09-01T00:20:34.006054
2021-10-26T16:40:21
2021-10-26T16:41:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
37,913
py
import heapq from scipy import interpolate from cvxopt import solvers, matrix import matplotlib.pyplot as plt import numpy as np import control from config import Settings import prediction if Settings.USE_CYTHON: import st_cy solvers.options['show_progress'] = False solvers.options['maxiters'] = 10 def get_range_index(min_s, delta_s, s): # Gets the last index before s in the list [min_s, min_s + delta_s, min_s + 2*delta_s, ...] return int((s - min_s) / delta_s) def find_s_t_obstacles_from_state(current_state, future_s=150, delta_s=0.5, delta_t=0.2, time_limit=5, start_uncertainty=0.0, uncertainty_per_second=0.1): ego_position = current_state.ego_position ego_speed = current_state.ego_speed start_s = control.get_ego_s(ego_position) # We discretize the s and t space, and store the lookup for s and t values in these arrays s_values = np.arange(start_s, start_s + future_s + delta_s, delta_s) t_values = np.arange(0, time_limit + delta_t, delta_t) obstacles = np.zeros((t_values.size, s_values.size), dtype=np.bool) distances = np.zeros(obstacles.shape, dtype=np.float) distances += 1E10 # Big number but not NaN discrete_length = int(Settings.CAR_LENGTH / delta_s) predicted_state = current_state for (t_index, t) in enumerate(t_values): uncertainty = start_uncertainty + uncertainty_per_second * t discrete_uncertainty = int(uncertainty/delta_s) if t_index != 0: predicted_state, _ = predicted_state.predict_step_without_ego(delta_t) for vehicle_index, vehicle_x in enumerate(predicted_state.other_xs): current_obstacle_s = control.get_obstacle_s_from_x(vehicle_x) if current_obstacle_s < Settings.CRASH_MIN_S - Settings.MIN_ALLOWED_DISTANCE: break # Cars do not obstruct path until the merge point elif current_obstacle_s > s_values[-1] + Settings.CAR_LENGTH: continue # calculate the distance from each point to this obstacle vehicle at time t obstacle_distances_front = np.abs(s_values - (current_obstacle_s - Settings.CAR_LENGTH - uncertainty)) obstacle_distances_back = np.abs(s_values - (current_obstacle_s + Settings.CAR_LENGTH + uncertainty)) # the distance is the minimum of the distance from the front of the ego vehicle to the back of the # obstacle vehicle, and from the front of the obstacle to the back of the ego vehicle distances[t_index] = np.minimum(obstacle_distances_front, distances[t_index, :]) distances[t_index] = np.minimum(obstacle_distances_back, distances[t_index, :]) # Within a vehicle length of the obstacle's s position, register the presence of an obstacle start_s_index = get_range_index(start_s, delta_s, current_obstacle_s) index_min = max(start_s_index - discrete_length - discrete_uncertainty, 0) index_max = min(start_s_index + discrete_length + discrete_uncertainty, s_values.size) if index_min < s_values.size and index_max > 0: obstacles[t_index, index_min:index_max] = True distances[t_index, index_min:index_max] = 0 # plt.close() # plot_s_t_obstacles(obstacles, s_values, t_values) # plt.show() return obstacles, s_values, t_values, ego_speed, distances def find_s_t_obstacles(future_s=150, delta_s=0.5, delta_t=0.2, time_limit=5, start_uncertainty=0.0, uncertainty_per_second=0.1): """ For the current state of the system, predict and plot the positions of and distances to all obstacles in the future :param future_s: how far in the future to look in the s space :param delta_s: the discretization of the s space :param delta_t: the discretization of the t space :param time_limit: how far in the future to look in the t space :param start_uncertainty: makes other cars start out this much longer for collision detection :param uncertainty_per_second: makes cars this much longer for each second in the future """ current_state = prediction.HighwayState.from_sumo() return find_s_t_obstacles_from_state(current_state) def plot_s_t_obstacles(obstacles, s_values, t_values, color='blue'): nonzero_t, nonzero_s = np.nonzero(obstacles) ts = t_values[nonzero_t] ss = s_values[nonzero_s] plt.figure() plt.scatter(ts, ss, c=color) plt.ylim(s_values[0], s_values[-1]) plt.xlim(t_values[0], t_values[-1]) plt.xlabel('t') plt.ylabel('s') def plot_s_path(obstacles, s_values, t_values, s_path): plot_s_t_obstacles(obstacles, s_values, t_values) plt.plot(t_values, s_path, c='red') def get_feasible_next_s_range_no_jerk_limits(s, prev_s, delta_t): v = (s - prev_s) / delta_t min_v = max(v + Settings.MAX_NEGATIVE_ACCELERATION * delta_t, 0) max_v = min(v + Settings.MAX_POSITIVE_ACCELERATION * delta_t, Settings.MAX_SPEED) min_s = s + min_v * delta_t # note: automatically greater than zero max_s = s + max_v * delta_t # note: automatically capped wrt max speed return min_s, max_s def get_feasible_next_s_range_with_jerk_limits(s, s_1, s_2, delta_t): prev_v = (s_1 - s_2) / delta_t v = (s - s_1) / delta_t a = (v - prev_v) / delta_t min_a = max(a + Settings.MINIMUM_NEGATIVE_JERK * delta_t, Settings.MAX_NEGATIVE_ACCELERATION) max_a = min(a + Settings.MAXIMUM_POSITIVE_JERK * delta_t, Settings.MAX_POSITIVE_ACCELERATION) min_v = max(v + min_a * delta_t, 0) max_v = min(v + max_a * delta_t, Settings.MAX_SPEED) min_s = s + min_v * delta_t # note: automatically greater than zero max_s = s + max_v * delta_t # note: automatically capped wrt max speed return min_s, max_s def distance_penalty(min_distance): if min_distance < Settings.MIN_ALLOWED_DISTANCE: return 1000000.0 * Settings.D_WEIGHT / max(min_distance, 1.0) else: return Settings.D_WEIGHT / min_distance def cost_no_jerk(s, s_1, s_2, t_discretization, min_distance): v = (s - s_1) / t_discretization a = (s - 2*s_1 + s_2) / (t_discretization**2) return Settings.V_WEIGHT * (v - Settings.DESIRED_SPEED)**2 + Settings.A_WEIGHT * a**2 + distance_penalty(min_distance) def cost(s, s_1, s_2, s_3, t_discretization, min_distance): v = (s - s_1) / t_discretization a = (s - 2*s_1 + s_2) / (t_discretization**2) j = (s - 3*s_1 + 3*s_2 - s_3) / (t_discretization**3) return Settings.V_WEIGHT * (v - Settings.DESIRED_SPEED)**2 + Settings.A_WEIGHT * a**2 + Settings.J_WEIGHT * j**2 + distance_penalty(min_distance) def get_all_range_indices(start_s, delta_s, range_min, range_max): """ Gets the indices in [start_s, start_s + delta_s, start_s + 2*delta_s, ...] between range_min and range_max (inclusive) :param start_s: The start of the list :param delta_s: The discretization of the list :param range_min: The minimum bound of the desired range :param range_max: The maximum bound of the desired range :return: A list of the desired indices """ min_index = (range_min - start_s) / delta_s if int(min_index) < min_index: min_index = int(min_index) + 1 else: min_index = int(min_index) max_index = int((range_max - start_s) / delta_s) return list(range(min_index, max_index + 1)) def readable_solve_s_t_path_no_jerk(obstacles, s_values, t_values, ego_start_speed, distances): """ Finds the optimal path through the discretized s-t space Adheres to velocity, acceleration, and monotonicity contraints (but not jerk constraints). If we assume that the discretization of the s and t space have maximum horizons of s_max and t_max respectively, with quantization sizes delta_s and delta_t, then we are given information about the discretized space as follows (where num_s = s_max/delta_s and num_t = t_max / delta_t) For this version we will use Djikstra's algorithm. For later improvements, consider making a better heuristic for A* :param obstacles: a boolean ndarray of size (num_t x num_s), encoding the projected positions of obstacles :param s_values: an ndarray of size num_s, encoding the actual s values :param t_values: an ndarray of size num_t, encoding the actual t values :param ego_start_speed: the starting speed of the ego car :param distances: an ndarray of size (num_t x num_s), encoding the distances to the nearest obstacle :return: """ delta_s = s_values[1] - s_values[0] delta_t = t_values[1] - t_values[0] num_s = s_values.size num_t = t_values.size start_s = s_values[0] # For this version we will work forwards instead of backwards for the DP, as it is more readable that way best_previous_s = np.zeros((num_t, num_s, num_s), dtype=np.int32) encountered = np.zeros((num_t, num_s, num_s), dtype=bool) estimated_previous_s = start_s - delta_t * ego_start_speed entry_order = 0 min_first_s, max_first_s = get_feasible_next_s_range_no_jerk_limits(start_s, estimated_previous_s, delta_t) # We transform the raw s value range to a list of possible s indices possible_first_s_indices = get_all_range_indices(start_s, delta_s, min_first_s, max_first_s) node_priority_queue = [] for s_index in possible_first_s_indices: s_value = s_values[s_index] if not obstacles[1, s_index]: s_cost = cost_no_jerk(s_value, start_s, estimated_previous_s, delta_t, distances[1, s_index]) node_priority_queue.append((s_cost, entry_order, 1, s_index, 0, 0)) entry_order -= 1 # We want the queue to be LIFO, as this tends to be faster for shortest path problems heapq.heapify(node_priority_queue) best_last_s_tuple = (-1, -1) best_t_index = 0 while len(node_priority_queue) > 0: # We get the (t, s, prev_s) tuple with the lowest cost so far total_cost, _, t_index, s_index, prev_s_index, second_s_index = heapq.heappop(node_priority_queue) s_value = s_values[s_index] prev_s_value = s_values[prev_s_index] if encountered[t_index, s_index, prev_s_index]: continue else: encountered[t_index, s_index, prev_s_index] = True best_previous_s[t_index, s_index, prev_s_index] = second_s_index # We keep track of the furthest point in time we can safely reach in case we cannot reach the end if t_index > best_t_index: best_t_index = t_index best_last_s_tuple = (s_index, prev_s_index) if t_index == num_t - 1: break # Again, calculate the possible next values of s min_next_s, max_next_s = get_feasible_next_s_range_no_jerk_limits(s_value, prev_s_value, delta_t) possible_next_s_indices = get_all_range_indices(start_s, delta_s, min_next_s, max_next_s) next_t = t_index + 1 for next_s_index in possible_next_s_indices: # We can't exceed the bounds of our simulation, but if this is happening it may be a good idea to increase the planning horizon if next_s_index >= num_s: break # If we have not yet encountered the next (s, prev_s) tuple at the specified time, we have found the optimal path to reach it if not encountered[next_t, next_s_index, s_index]: if obstacles[next_t, next_s_index]: continue # No colliding with obstacles next_s_value = s_values[next_s_index] s_cost = cost_no_jerk(next_s_value, s_value, prev_s_value, delta_t, distances[next_t, next_s_index]) heapq.heappush(node_priority_queue, (total_cost + s_cost, entry_order, next_t, next_s_index, s_index, prev_s_index)) entry_order -= 1 # Reconstruct the best sequence of s values, using the saved values from best_previous_s best_s_index, best_prev_s_index = best_last_s_tuple s_sequence = np.zeros(num_t) for t_index in range(best_t_index, 1, -1): s_sequence[t_index] = s_values[best_s_index] second_s_index = best_previous_s[t_index, best_s_index, best_prev_s_index] best_s_index = best_prev_s_index best_prev_s_index = second_s_index s_sequence[0] = s_values[best_prev_s_index] s_sequence[1] = s_values[best_s_index] return s_sequence def get_path_mean_abs_jerk(s_sequence, ego_start_speed, ego_start_acceleration, delta_t): prev_a = ego_start_acceleration prev_v = ego_start_speed path_cost = 0 for i, s in enumerate(s_sequence): if i == 0: continue s_1 = s_sequence[i - 1] v = (s - s_1)/delta_t a = (v - prev_v)/delta_t j = (a - prev_a)/delta_t prev_v = v prev_a = a path_cost += abs(j) return path_cost / (len(s_sequence) - 1) def get_path_cost(s_sequence, ego_start_speed, ego_start_acceleration, delta_t, s_values, distances): """ Get the cost of a path produced by an s-t path planning algorithm :param s_sequence: The path as an ndarray of s coordinates :param ego_start_speed: The starting speed of the ego car :param delta_t: The time between points on the path :param s_values: An ndarray of possible s coordinates, as given as input to the s-t solver :param distances: An ndarray of distances to the nearest obstacle, as given as input to the s-t solver :return: The total cost of the given path """ path_cost = 0 prev_a = ego_start_acceleration prev_v = ego_start_speed for i in range(1, len(s_sequence)): s = s_sequence[i] s_1 = s_sequence[i - 1] if i == 1: s_2 = s_1 - ego_start_speed * delta_t s_3 = s_2 - (ego_start_speed - ego_start_acceleration * delta_t) * delta_t elif i == 2: s_2 = s_sequence[i - 2] s_3 = s_1 - ego_start_speed * delta_t else: s_2 = s_sequence[i - 2] s_3 = s_sequence[i - 3] matches = np.where(s_values == s)[0] v = (s - s_1)/delta_t a = (v - prev_v)/delta_t j = (a - prev_a)/delta_t if v > Settings.MAX_SPEED: print("Exceeded speed limit") if a > Settings.MAX_POSITIVE_ACCELERATION or a < Settings.MAX_NEGATIVE_ACCELERATION: print("Exceeded acceleration limit") if j > Settings.MAXIMUM_POSITIVE_JERK or j < Settings.MINIMUM_NEGATIVE_JERK: print("Exceeded jerk limit") prev_v = v prev_a = a if len(matches) > 0: s_index = np.where(s_values == s)[0][0] path_cost += cost(s, s_1, s_2, s_3, delta_t, distances[i, s_index]) else: # No valid path path_cost = np.infty break return path_cost def valid_descendant_s_indices_no_jerk(t_index, start_s, s, s_1, delta_s, delta_t, obstacles): min_s, max_s = get_feasible_next_s_range_no_jerk_limits(s, s_1, delta_t) descendant_s_indices = get_all_range_indices(start_s, delta_s, min_s, max_s) descendants = [] for s_index in descendant_s_indices: if not obstacles[t_index, s_index]: descendants.append(s_index) return descendants def valid_descendant_s_indices_with_jerk(t_index, start_s, s, s_1, s_2, delta_s, delta_t, obstacles): min_s, max_s = get_feasible_next_s_range_with_jerk_limits(s, s_1, s_2, delta_t) descendant_s_indices = get_all_range_indices(start_s, delta_s, min_s, max_s) descendants = [] for s_index in descendant_s_indices: if s_index >= obstacles.shape[1]: break if not obstacles[t_index + 1, s_index]: descendants.append(s_index) return descendants def solve_st_fast_v2(obstacles, s_values, t_values, ego_start_speed, ego_start_acceleration, distances): """ A much faster st solver that still attempts not to crash, but produces suboptimal solutions :param obstacles: a boolean ndarray of size (num_t x num_s), encoding the projected positions of obstacles :param s_values: an ndarray of size num_s, encoding the actual s values :param t_values: an ndarray of size num_t, encoding the actual t values :param ego_start_speed: the starting speed of the ego car :param ego_start_acceleration: the starting acceleration of the ego car :param distances: an ndarray of size (num_t x num_s), encoding the distances to the nearest obstacle :return: an ndarray of size num_t, giving the planned trajectory in the s space """ # Extracting some relevant quantities from the input arrays delta_s = s_values[1] - s_values[0] delta_t = t_values[1] - t_values[0] num_s = s_values.size num_t = t_values.size start_s = s_values[0] estimated_previous_s = start_s - delta_t * ego_start_speed estimated_second_s = estimated_previous_s - delta_t * (ego_start_speed - ego_start_acceleration * delta_t) # Initialize arrays to backtrack after the search is done and avoid visiting a node twice best_previous_s = np.zeros((num_t, num_s), dtype=np.int32) encountered = np.zeros((num_t, num_s), dtype=bool) # We need a priority queue for a more efficient implementation of Dijkstra's algorithm node_priority_queue = [] heapq.heapify(node_priority_queue) # The priority queue is sorted by tuples of the form: # Total cost (0), t index (1), s index (2), s value (3), previous s index (4), previous s value (5), index for s_{t-2} (6), value for s_{t-2} (7) first_heap_item = (0, 0, 0, start_s, 0, estimated_previous_s, 0, estimated_second_s) heapq.heappush(node_priority_queue, first_heap_item) # Our nodes in our graph are in the form t_index, s_index. This keeps track of the best node we have reached so far best_node = (0, 0) while len(node_priority_queue) > 0: # We get the (t, s, prev_s) tuple with the lowest cost so far total_cost, t_index, s_index, s_value, prev_s_index, prev_s_value, second_s_index, second_s_value = heapq.heappop(node_priority_queue) node = t_index, s_index # We may add the same node to the priority queue multiple times (cost depending on the path taken to get there) # However, only the first, and therefore lowest cost, instance has its neighbors expanded. if encountered[node]: continue else: encountered[node] = True best_previous_s[node] = prev_s_index # We keep track of the furthest ("best") point in time we can safely reach in case we cannot reach the end if t_index > best_node[0]: best_node = (t_index, s_index) if t_index == num_t - 1: break # We have found the best path to the end of our planning period # Calculate the possible next values of s given the velocity and acceleration constraints possible_next_s_indices = valid_descendant_s_indices_with_jerk(t_index, start_s, s_value, prev_s_value, second_s_value, delta_s, delta_t, obstacles) next_t = t_index + 1 for next_s_index in possible_next_s_indices: # We can't exceed the bounds of our simulation, but if this is happening it may be a good idea # to increase the planning horizon in the s dimension if next_s_index >= num_s: break next_node = (next_t, next_s_index) if not encountered[next_node]: if obstacles[next_node]: continue # No colliding with obstacles next_s_value = s_values[next_s_index] s_cost = cost(next_s_value, s_value, prev_s_value, second_s_value, delta_t, distances[next_node]) # Total cost (0), t index (1), s index (2), s value (3), previous s index (4), # previous s value (5), index for s_{t-2} (6), value for s_{t-2} (7) heapq.heappush(node_priority_queue, (total_cost + s_cost, next_t, next_s_index, next_s_value, s_index, s_value, prev_s_index, prev_s_value)) # Reconstruct the best sequence of s values, using the saved values from best_previous_s best_t_index, best_s_index = best_node s_sequence = np.zeros(num_t) for t_index in range(best_t_index, 0, -1): s_sequence[t_index] = s_values[best_s_index] node = t_index, best_s_index best_s_index = best_previous_s[node] s_sequence[0] = s_values[best_s_index] return s_sequence def solve_st_fast(obstacles, s_values, t_values, ego_start_speed, distances): """ A much faster st solver that still attempts not to crash, but produces suboptimal solutions :param obstacles: a boolean ndarray of size (num_t x num_s), encoding the projected positions of obstacles :param s_values: an ndarray of size num_s, encoding the actual s values :param t_values: an ndarray of size num_t, encoding the actual t values :param ego_start_speed: the starting speed of the ego car :param distances: an ndarray of size (num_t x num_s), encoding the distances to the nearest obstacle :return: an ndarray of size num_t, giving the planned trajectory in the s space """ delta_s = s_values[1] - s_values[0] delta_t = t_values[1] - t_values[0] num_s = s_values.size num_t = t_values.size start_s = s_values[0] # For this version we will work forwards instead of backwards for the DP, as it is more readable that way best_previous_s = np.zeros((num_t, num_s), dtype=np.int32) encountered = np.zeros((num_t, num_s), dtype=bool) estimated_previous_s = start_s - delta_t * ego_start_speed entry_order = 0 min_first_s, max_first_s = get_feasible_next_s_range_no_jerk_limits(start_s, estimated_previous_s, delta_t) # We transform the raw s value range to a list of possible s indices possible_first_s_values = get_all_range_indices(start_s, delta_s, min_first_s, max_first_s) node_priority_queue = [] for s_index in possible_first_s_values: s_value = s_values[s_index] if not obstacles[1, s_index]: s_cost = cost_no_jerk(s_value, start_s, estimated_previous_s, delta_t, distances[1, s_index]) node_priority_queue.append((s_cost, entry_order, 1, s_index, 0)) entry_order -= 1 # We want the queue to be LIFO, as this tends to be faster for shortest path problems heapq.heapify(node_priority_queue) best_last_s = -1 best_t_index = 0 while len(node_priority_queue) > 0: # We get the (t, s, prev_s) tuple with the lowest cost so far total_cost, entry_order, t_index, s_index, prev_s_index = heapq.heappop(node_priority_queue) s_value = s_values[s_index] prev_s_value = s_values[prev_s_index] if encountered[t_index, s_index]: continue else: encountered[t_index, s_index] = True best_previous_s[t_index, s_index] = prev_s_index # We keep track of the furthest point in time we can safely reach in case we cannot reach the end if t_index > best_t_index: best_t_index = t_index best_last_s = s_index if t_index == num_t - 1: break # Again, calculate the possible next values of s min_next_s, max_next_s = get_feasible_next_s_range_no_jerk_limits(s_value, prev_s_value, delta_t) possible_next_s_values = get_all_range_indices(start_s, delta_s, min_next_s, max_next_s) next_t = t_index + 1 for next_s_index in possible_next_s_values: # We can't exceed the bounds of our simulation, but if this is happening it may be a good idea to increase the planning horizon if next_s_index >= num_s: break if not encountered[next_t, next_s_index]: if obstacles[next_t, next_s_index]: continue # No colliding with obstacles next_s_value = s_values[next_s_index] s_cost = cost_no_jerk(next_s_value, s_value, prev_s_value, delta_t, distances[next_t, next_s_index]) heapq.heappush(node_priority_queue, (total_cost + s_cost, entry_order, next_t, next_s_index, s_index)) entry_order -= 1 # Reconstruct the best sequence of s values, using the saved values from best_previous_s best_s_index = best_last_s s_sequence = np.zeros(num_t) for t_index in range(best_t_index, 0, -1): s_sequence[t_index] = s_values[best_s_index] best_s_index = best_previous_s[t_index, best_s_index] s_sequence[0] = s_values[best_s_index] return s_sequence def get_before_after_constraints(s_sequence, t_values): last_ego_position = s_sequence[-1] last_future_time = t_values[-1] before_car_start_pos = np.inf before_car_speed = 0 after_car_start_pos = np.inf after_car_speed = 0 before_car_end_pos = -np.inf after_car_end_pos = np.inf vehicle_ids = control.get_vehicle_ids() positions = control.get_vehicle_positions(vehicle_ids) speeds = control.get_vehicle_speeds(vehicle_ids) ego_position = positions["ego"] for vehicle_id in vehicle_ids: if vehicle_id != "ego": obstacle_s = control.get_obstacle_s(positions[vehicle_id]) obstacle_speed = speeds[vehicle_id] end_obstacle_s = obstacle_s + obstacle_speed * last_future_time if end_obstacle_s < -Settings.CAR_LENGTH: continue if end_obstacle_s > last_ego_position and end_obstacle_s < after_car_end_pos: after_car_end_pos = end_obstacle_s after_car_start_pos = obstacle_s after_car_speed = obstacle_speed elif end_obstacle_s < last_ego_position and end_obstacle_s > before_car_end_pos: before_car_end_pos = end_obstacle_s before_car_start_pos = obstacle_s before_car_speed = obstacle_speed return before_car_start_pos, before_car_speed, after_car_start_pos, after_car_speed def finer_fit(s_sequence, delta_t, coarse_delta_t, start_speed, start_acceleration, before_after_cars=None): s_length = len(s_sequence) if s_length == 1: return s_sequence t = np.arange(s_length) * coarse_delta_t sub_length = int(np.round(t[-1] / delta_t + 1)) if (sub_length - 1)*delta_t > t[-1]: sub_length -= 1 finer_t = np.arange(sub_length) * delta_t # Calculate a linear interpolation of our original sequence interpolation = interpolate.interp1d(t, s_sequence) interpolated = interpolation(finer_t) # QP objective ||Ax - b||^2 A = np.identity(sub_length) b = interpolated # In the form (1/2)x^TPx + q^Tx P = 2 * np.dot(A.T, A) q = -2 * np.dot(A.T, b) # Velocity min constraints: velocity \geq 0 in the form V_1 x \leq h V_1 = np.zeros((sub_length - 1, sub_length)) h_1 = np.zeros(sub_length - 1) for i in range(sub_length - 1): V_1[i, i] = 1 / delta_t V_1[i, i+1] = -1 / delta_t # (s_{i+1} - s_i)/delta_t \geq 0 # Velocity max constraints: velocity \leq v_max V_2 = -V_1 h_2 = np.zeros(sub_length - 1) for i in range(sub_length - 1): h_2[i] = Settings.MAX_SPEED # Acceleration max constraints: (s_t - 2*s_{t-1} + s_{t-2})/(delta_t ** 2) \leq a_max delta_t_2 = delta_t ** 2 A_3 = np.zeros((sub_length - 1, sub_length)) h_3 = np.zeros(sub_length - 1) A_3[0, 0] = -1 / delta_t_2 A_3[0, 1] = 1 / delta_t_2 h_3[0] = Settings.MAX_POSITIVE_ACCELERATION + start_speed / delta_t for i in range(1, sub_length - 1): A_3[i, i-1] = 1 / delta_t_2 A_3[i, i] = -2 / delta_t_2 A_3[i, i+1] = 1 / delta_t_2 h_3[i] = Settings.MAX_POSITIVE_ACCELERATION # Acceleration min constraints: (s_t - 2*s_{t-1} + s_{t-2})/(delta_t ** 2) \geq a_min h_4 = np.zeros(sub_length - 1) A_4 = -A_3 h_4[0] = -Settings.MAX_NEGATIVE_ACCELERATION - start_speed / delta_t for i in range(1, sub_length - 1): h_4[i] = -Settings.MAX_NEGATIVE_ACCELERATION # Jerk max constraints: (s_t - 3*s_{t-1} + 3*s_{t-2} - s_{t-3})/(delta_t**3) \leq j_max delta_t_3 = delta_t ** 3 J_5 = np.zeros((sub_length - 1, sub_length)) h_5 = np.zeros(sub_length - 1) J_5[0, 0] = -1 / delta_t_3 J_5[0, 1] = 1 / delta_t_3 h_5[0] = Settings.MAXIMUM_POSITIVE_JERK + start_acceleration / delta_t + start_speed / delta_t_2 if sub_length > 2: J_5[1, 0] = 2 / delta_t_3 J_5[1, 1] = -3 / delta_t_3 J_5[1, 2] = 1 / delta_t_3 h_5[1] = Settings.MAXIMUM_POSITIVE_JERK - start_speed / delta_t_2 for i in range(2, sub_length - 1): J_5[i, i-2] = -1 / delta_t_3 J_5[i, i-1] = 3 / delta_t_3 J_5[i, i] = -3 / delta_t_3 J_5[i, i+1] = 1 / delta_t_3 h_5[i] = Settings.MAXIMUM_POSITIVE_JERK # Jerk min constraints: (s_t - 3*s_{t-1} + 3*s_{t-2} - s_{t-3})/(delta_t**3) \geq j_min J_6 = -J_5 h_6 = np.zeros(sub_length - 1) h_6[0] = -Settings.MINIMUM_NEGATIVE_JERK - start_acceleration / delta_t - start_speed / delta_t_2 if sub_length > 2: h_6[1] = -Settings.MINIMUM_NEGATIVE_JERK + start_speed / delta_t_2 for i in range(2, sub_length - 1): h_6[i] = -Settings.MINIMUM_NEGATIVE_JERK C_7 = None h_7 = None if before_after_cars is not None: before_s, before_speed, after_s, after_speed = before_after_cars before_ts = [] before_ss = [] if not np.isinf(before_s): for i, t in enumerate(finer_t): before_s_projected = before_s + t * before_speed if before_s_projected < -Settings.CAR_LENGTH: continue else: before_ts.append(i) before_ss.append(before_s_projected) after_ts = [] after_ss = [] if not np.isinf(after_s): for i, t in enumerate(finer_t): after_s_projected = after_s + t * after_speed if after_s_projected < -Settings.CAR_LENGTH: continue else: after_ts.append(i) after_ss.append(after_s_projected) C_7 = np.zeros((len(before_ts) + len(after_ts), sub_length)) h_7 = np.zeros(len(before_ts) + len(after_ts)) index = 0 for i, t_index in enumerate(before_ts): C_7[index, t_index] = -1 h_7[index] = -before_ss[i] - Settings.CAR_LENGTH index += 1 for i, t_index in enumerate(after_ts): C_7[index, t_index] = 1 h_7[index] = after_ss[i] - Settings.CAR_LENGTH index += 1 # Equality constraints, start at the correct point please A = np.zeros((1, sub_length)) A[0, 0] = 1 b = np.zeros(1) b[0] = s_sequence[0] # Put together in the form Gx \leq h if C_7 is not None: G = np.vstack((V_1, V_2, A_3, A_4, J_5, J_6, C_7)) h = np.concatenate((h_1, h_2, h_3, h_4, h_5, h_6, h_7)) else: G = np.vstack((V_1, V_2, A_3, A_4, J_5, J_6)) h = np.concatenate((h_1, h_2, h_3, h_4, h_5, h_6)) # Solve the QP sol = solvers.qp(matrix(P), matrix(q), matrix(G), matrix(h), matrix(A), matrix(b)) return np.array(sol['x']).flatten() def get_appropriate_base_st_path_and_obstacles(state): obstacles, s_values, t_values, ego_speed, distances = find_s_t_obstacles_from_state( state, Settings.FUTURE_S, Settings.S_DISCRETIZATION, Settings.T_DISCRETIZATION, Settings.FUTURE_T, Settings.START_UNCERTAINTY, Settings.UNCERTAINTY_PER_SECOND) ego_acceleration = state.ego_acceleration # Do the ST path planning if Settings.USE_FAST_ST_SOLVER: if Settings.USE_CYTHON: s_sequence = st_cy.solve_s_t_path_fast(obstacles, s_values, t_values, ego_speed, ego_acceleration, distances, Settings.D_WEIGHT, Settings.V_WEIGHT, Settings.A_WEIGHT, Settings.J_WEIGHT, Settings.DESIRED_SPEED, Settings.MAX_SPEED, Settings.MAX_NEGATIVE_ACCELERATION, Settings.MAX_POSITIVE_ACCELERATION, Settings.MINIMUM_NEGATIVE_JERK, Settings.MAXIMUM_POSITIVE_JERK, Settings.MIN_ALLOWED_DISTANCE) else: s_sequence = solve_st_fast_v2(obstacles, s_values, t_values, ego_speed, ego_acceleration, distances) else: if Settings.USE_CYTHON: s_sequence = st_cy.solve_s_t_path_no_jerk_djikstra(obstacles, s_values, t_values, ego_speed, distances) else: s_sequence = readable_solve_s_t_path_no_jerk(obstacles, s_values, t_values, ego_speed, distances) return s_sequence, obstacles, s_values, t_values, distances def do_st_control(state): ego_acceleration = state.ego_acceleration ego_speed = state.ego_speed s_sequence, obstacles, s_values, t_values, distances = get_appropriate_base_st_path_and_obstacles(state) # Trim the zeros from the end of the planned sequence (in the case where pathfinding failed) end_point = len(s_sequence) while s_sequence[end_point - 1] == 0: end_point -= 1 if end_point != len(s_sequence): print("ST Solver finds crash inevitable") s_sequence = s_sequence[:end_point] # If the planning was done at a t discretization different from the tick length, smooth with a QP if Settings.TICK_LENGTH < Settings.T_DISCRETIZATION: s_sequence = finer_fit(s_sequence, Settings.TICK_LENGTH, Settings.T_DISCRETIZATION, ego_speed, ego_acceleration) # If the st solver predicts an immediate crash, nothing we can do if len(s_sequence) <= 1: control.set_ego_speed(ego_speed) return ego_speed # Plan using Euler updates planned_distance_first_step = s_sequence[1] - s_sequence[0] end_speed_first_step = planned_distance_first_step / (Settings.TICK_LENGTH) control.set_ego_speed(end_speed_first_step) return end_speed_first_step def get_s_state(): return control.get_ego_s(control.get_ego_position()) def test_guaranteed_crash_from_state(state): s_sequence, obstacles, s_values, t_values, distances = get_appropriate_base_st_path_and_obstacles(state) end_point = len(s_sequence) while s_sequence[end_point - 1] == 0: end_point -= 1 if end_point != len(s_sequence): return True for i, s in enumerate(s_sequence): s_index = get_range_index(s_values[0], s_values[1] - s_values[0], s) distance = distances[i, s_index] if distance < Settings.COMBINATION_MIN_DISTANCE - Settings.CAR_LENGTH: return True return False def do_conditional_st_based_on_first_step(state, start_speed): next_state, crashed = state.predict_step_with_ego(start_speed, delta_t=Settings.TICK_LENGTH) crash_guaranteed = test_guaranteed_crash_from_state(next_state) if crashed or crash_guaranteed: print("ST solver taking over") # Then the ST solver can't find a valid path after the predicted first step return do_st_control(state) else: control.set_ego_speed(start_speed) return start_speed def evaluate_st(num_episodes=1000): aggregate_stats = control.evaluate_control(do_st_control, num_episodes=num_episodes, state_function=prediction.HighwayState.from_sumo, verbose=True) aggregate_stats.print_stats() def evaluate_st_and_dump_crash(num_episodes=1000): aggregate_stats = control.evaluate_control(do_st_control, num_episodes, state_function=prediction.HighwayState.from_sumo, crash_callback=plot_crash, verbose=True, save_state_on_crash=True) aggregate_stats.print_stats() def replay_crash(): import pickle saved_data = pickle.load(open("crashed_state_history.pkl", 'rb')) for i, item in enumerate(saved_data): obstacles, s_values, t_values, ego_speed, ego_acceleration, distances = item s_sequence = st_cy.solve_s_t_path_fast(obstacles, s_values, t_values, ego_speed, ego_acceleration, distances, Settings.D_WEIGHT, Settings.V_WEIGHT, Settings.A_WEIGHT, Settings.J_WEIGHT, Settings.DESIRED_SPEED, Settings.MAX_SPEED, Settings.MAX_NEGATIVE_ACCELERATION, Settings.MAX_POSITIVE_ACCELERATION, Settings.MINIMUM_NEGATIVE_JERK, Settings.MAXIMUM_POSITIVE_JERK, Settings.MIN_ALLOWED_DISTANCE) end_point = len(s_sequence) while s_sequence[end_point-1] == 0: end_point -= 1 s_sequence2 = finer_fit(s_sequence[:end_point], Settings.TICK_LENGTH, Settings.T_DISCRETIZATION, ego_speed, ego_acceleration) print(s_sequence2) plot_s_path(obstacles, s_values, t_values, s_sequence) plt.plot(np.linspace(t_values[0], Settings.TICK_LENGTH*(len(s_sequence2) - 1), len(s_sequence2)), s_sequence2, c='green') plt.savefig("plots/{}.png".format(i)) plt.close() def plot_crash(states): import os plotdir = os.path.join(Settings.FULL_LOG_DIR, "plots") if not os.path.exists(plotdir): os.mkdir(plotdir) for j, start_state in enumerate(states): s_sequence, obstacles, s_values, t_values, distances = get_appropriate_base_st_path_and_obstacles(start_state) plot_s_path(obstacles, s_values, t_values, s_sequence) plt.savefig(os.path.join(plotdir, "st_{}".format(j))) plt.close()
[ "jlubars@gmail.com" ]
jlubars@gmail.com
9ce337f1935bb126d192a22cb87ea589a0a39729
32849fb3e8fc2b7a9b1c8c234b36519845bd2c1c
/wav2vec/server.py
15db0b4b3a1a282a27c24926db3308d30a737694
[ "MIT" ]
permissive
lucasgris/wav2vec-infer
06ce8eaf03bb23e460d8d7df7fa1ba4774a29bec
df8d5c02d541a0c8c02cca86661beeab455d40a0
refs/heads/main
2023-05-31T00:25:19.664855
2021-04-12T05:26:58
2021-04-12T05:26:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,447
py
import torch import logging import argparse import soundfile as sf import torch.nn.functional as F import itertools as it from fairseq import utils from fairseq.models import BaseFairseqModel from fairseq.data import Dictionary from fairseq.models.wav2vec.wav2vec2_asr import base_architecture, Wav2VecEncoder from wav2letter.common import create_word_dict, load_words from wav2letter.decoder import CriterionType,DecoderOptions,KenLM,LM,LMState,SmearingMode,Trie,LexiconDecoder from wav2letter.criterion import CpuViterbiPath, get_data_ptr_as_bytes import numpy as np from tqdm import tqdm import os from tempfile import NamedTemporaryFile import torch from flask import Flask, request, jsonify import sys from flask_cors import CORS, cross_origin import json app = Flask(__name__) cors = CORS(app) app.config['CORS_HEADERS'] = 'Content-Type' ALLOWED_EXTENSIONS = set(['.wav', '.mp3', '.ogg', '.webm']) #cs = ConfigStore.instance() #cs.store(name="config", node=ServerConfig) class Wav2VecCtc(BaseFairseqModel): def __init__(self, w2v_encoder, args): super().__init__() self.w2v_encoder = w2v_encoder self.args = args def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, args, target_dict): """Build a new model instance.""" base_architecture(args) w2v_encoder = Wav2VecEncoder(args, target_dict) return cls(w2v_encoder, args) def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output["encoder_out"] if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) def forward(self, **kwargs): x = self.w2v_encoder(**kwargs) return x class W2lDecoder(object): def __init__(self, tgt_dict): self.tgt_dict = tgt_dict self.vocab_size = len(tgt_dict) self.nbest = 1 self.criterion_type = CriterionType.CTC self.blank = ( tgt_dict.index("<ctc_blank>") if "<ctc_blank>" in tgt_dict.indices else tgt_dict.bos() ) self.asg_transitions = None def generate(self, models, sample, **unused): """Generate a batch of inferences.""" # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens" } emissions = self.get_emissions(models, encoder_input) return self.decode(emissions) def get_emissions(self, models, encoder_input): """Run encoder and normalize emissions""" # encoder_out = models[0].encoder(**encoder_input) encoder_out = models[0](**encoder_input) if self.criterion_type == CriterionType.CTC: emissions = models[0].get_normalized_probs(encoder_out, log_probs=True) return emissions.transpose(0, 1).float().cpu().contiguous() def get_tokens(self, idxs): """Normalize tokens by handling CTC blank, ASG replabels, etc.""" idxs = (g[0] for g in it.groupby(idxs)) idxs = filter(lambda x: x != self.blank, idxs) return torch.LongTensor(list(idxs)) class W2lViterbiDecoder(W2lDecoder): def __init__(self, tgt_dict): super().__init__(tgt_dict) def decode(self, emissions): B, T, N = emissions.size() hypos = list() if self.asg_transitions is None: transitions = torch.FloatTensor(N, N).zero_() else: transitions = torch.FloatTensor(self.asg_transitions).view(N, N) viterbi_path = torch.IntTensor(B, T) workspace = torch.ByteTensor(CpuViterbiPath.get_workspace_size(B, T, N)) CpuViterbiPath.compute( B, T, N, get_data_ptr_as_bytes(emissions), get_data_ptr_as_bytes(transitions), get_data_ptr_as_bytes(viterbi_path), get_data_ptr_as_bytes(workspace), ) return [ [{"tokens": self.get_tokens(viterbi_path[b].tolist()), "score": 0}] for b in range(B) ] class W2lKenLMDecoder(W2lDecoder): def __init__(self, args, tgt_dict): super().__init__( tgt_dict) self.silence = ( tgt_dict.index("<ctc_blank>") if "<ctc_blank>" in tgt_dict.indices else tgt_dict.bos() ) self.lexicon = load_words(args['lexicon']) self.word_dict = create_word_dict(self.lexicon) self.unk_word = self.word_dict.get_index("<unk>") self.lm = KenLM(args['kenlm_model'], self.word_dict) self.trie = Trie(self.vocab_size, self.silence) print('h1') print(len(self.lexicon.items())) start_state = self.lm.start(False) for i, (word, spellings) in enumerate(self.lexicon.items()): print(i, word, spellings) word_idx = self.word_dict.get_index(word) _, score = self.lm.score(start_state, word_idx) for spelling in spellings: spelling_idxs = [tgt_dict.index(token) for token in spelling] assert ( tgt_dict.unk() not in spelling_idxs ), f"{spelling} {spelling_idxs}" self.trie.insert(spelling_idxs, word_idx, score) self.trie.smear(SmearingMode.MAX) print('h2') if args['beam_size_token']: argument_2 = int(args['beam_size_token']) else: argument_2 = int(len(tgt_dict)) self.decoder_opts = DecoderOptions( args['beam'], argument_2, args['beam_threshold'], args['lm_weight'], args['word_score'], args['unk_weight'], args['sil_weight'], 0, False, self.criterion_type, ) if self.asg_transitions is None: N = 768 # self.asg_transitions = torch.FloatTensor(N, N).zero_() self.asg_transitions = [] self.decoder = LexiconDecoder( self.decoder_opts, self.trie, self.lm, self.silence, self.blank, self.unk_word, self.asg_transitions, False, ) def decode(self, emissions): B, T, N = emissions.size() hypos = [] print('Decoding with Kenlm') for b in range(B): emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0) results = self.decoder.decode(emissions_ptr, T, N) nbest_results = results[: self.nbest] hypos.append( [ { "tokens": self.get_tokens(result.tokens), "score": result.score, "words": [ self.word_dict.get_entry(x) for x in result.words if x >= 0 ], } for result in nbest_results ] ) return hypos def get_results(wav_path,target_dict_path,use_cuda=False,w2v_path=None,model=None): sample = dict() net_input = dict() feature = get_feature(wav_path) target_dict = Dictionary.load(target_dict_path) model[0].eval() #generator = W2lViterbiDecoder(target_dict) net_input["source"] = feature.unsqueeze(0) padding_mask = torch.BoolTensor(net_input["source"].size(1)).fill_(False).unsqueeze(0) net_input["padding_mask"] = padding_mask sample["net_input"] = net_input sample = utils.move_to_cuda(sample) if use_cuda else sample with torch.no_grad(): hypo = generator.generate(model, sample, prefix_tokens=None) hyp_pieces = target_dict.string(hypo[0][0]["tokens"].int().cpu()) text=post_process(hyp_pieces, 'letter') return text def get_feature(filepath): def postprocess(feats, sample_rate): if feats.dim == 2: feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() with torch.no_grad(): feats = F.layer_norm(feats, feats.shape) return feats wav, sample_rate = sf.read(filepath) feats = torch.from_numpy(wav).float() feats = postprocess(feats, sample_rate) return feats def post_process(sentence: str, symbol: str): if symbol == "sentencepiece": sentence = sentence.replace(" ", "").replace("\u2581", " ").strip() elif symbol == 'wordpiece': sentence = sentence.replace(" ", "").replace("_", " ").strip() elif symbol == 'letter': sentence = sentence.replace(" ", "").replace("|", " ").strip() elif symbol == "_EOW": sentence = sentence.replace(" ", "").replace("_EOW", " ").strip() elif symbol is not None and symbol != 'none': sentence = (sentence + " ").replace(symbol, "").rstrip() return sentence def load_gpu_model(model_path): return torch.load(model_path,map_location=torch.device("cuda")) def load_cpu_model(model_path): return torch.load(model_path,map_location=torch.device("cpu")) #import wav import cgi import contextlib import wave import os import subprocess @app.route('/transcribe', methods=['POST']) @cross_origin() def parse_transcription(): if request.method == 'POST': res = {} language = request.args.get("lang") model_path = model_dict[language] file = request.files['file'] filename = file.filename _, file_extension = os.path.splitext(filename) if file_extension.lower() not in ALLOWED_EXTENSIONS: res['status'] = "error" res['message'] = "{} is not supported format.".format(file_extension) return jsonify(res) filename_final = '' with NamedTemporaryFile(suffix=file_extension,delete=False) as tmp_saved_audio_file: file.save(tmp_saved_audio_file.name) filename_final = tmp_saved_audio_file.name filename_local = filename_final.split('/')[-1][:-4] filename_new = '/tmp/'+filename_local+'_16.wav' delete = True subprocess.call(["sox {} -r {} -b 16 -c 1 {}".format(filename_final, str(16000), filename_new)], shell=True) dict_path = "/".join(model_path.split('/')[:-1]) + '/dict.ltr.txt' if cuda: gpu_model = load_gpu_model(model_path) result = get_results( filename_new , dict_path,cuda,model=gpu_model) else: cpu_model = load_cpu_model(model_path) result = get_results( filename_new , dict_path,cuda,model=cpu_model) if delete: cmd = 'rm -f {}'.format(filename_final) cmd2 = 'rm -f {}'.format(filename_new) os.system(cmd) os.system(cmd2) logging.info('File transcribed') res['status'] = "OK" res['transcription'] = result return jsonify(res) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run') parser.add_argument('-m', '--model-path', type=str, required=True, help="Model path") parser.add_argument('-c', '--cuda',default=False, type=bool, help="CUDA path") args_local = parser.parse_args() global model_dict, cuda, generator with open(args_local.model_path) as f: model_dict = json.load(f) dict_path = '/home/harveen.chadha/deployed_models/hi/dict.ltr.txt' args_lm = {} args_lm['lexicon'] = '/home/harveen.chadha/github/lm/LM_v2/lexicon.lst' args_lm['kenlm_model'] = '/home/harveen.chadha/github/lm/LM_v2/lm.binary' args_lm['beam'] = 128 args_lm['beam_threshold'] = 25 args_lm['lm_weight'] = 0.4 args_lm['word_score'] = 0.3 args_lm['unk_weight'] = -np.inf args_lm['sil_weight'] = 0 print(args_lm) print('heere') #print(args_lm.lexicon) print('heere 2 in kenlm') target_dict = Dictionary.load(dict_path) generator = W2lKenLMDecoder(args_lm, target_dict) cuda = args_local.cuda print(cuda) logging.info('Server initialised') app.run(host='0.0.0.0', port=8020, debug=True, use_reloader=False)
[ "harveen" ]
harveen
0fc39f54934aafa76fa2f211a3d361fefb7f1d9f
272ff98ed048ddf518f888fea19b81cc262d4716
/gtp.py
9b0b6206bc7f2a68dc22bb15417a4a61201104a7
[]
no_license
sugar-activities/4083-activity
b58ac46f8eb778d684b6b7050f9771777a62fa25
63c0e8a6a2706714afbb4247182e09cd9b63b2a6
refs/heads/master
2021-01-19T23:14:21.098118
2017-04-21T05:07:37
2017-04-21T05:07:37
88,938,021
0
0
null
null
null
null
UTF-8
Python
false
false
4,614
py
# -*- coding: UTF-8 -*- # Copyright 2007-2008 One Laptop Per Child # Copyright 2008 Andrés Ambrois <andresambrois@gmail.com> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA from subprocess import Popen, PIPE import logging from sugar.activity.activity import get_bundle_path from os.path import exists, join, abspath from os import pathsep, environ from string import split logger = logging.getLogger('PlayGo') def search_for_gnugo(): paths = split(environ['PATH'], pathsep) for path in paths: if exists(join(path, 'gnugo')): return abspath(join(path, 'gnugo')) default_path = join(get_bundle_path(), 'bin', 'gnugo') if exists(default_path): return abspath(default_path) return False class gnugo: ''' A wrapper for talking to gnugo over GTP ''' def __init__(self, boardsize=19, handicap=0, komi=5.5, level=3): ''' Start the gnugo subprocess ''' self.size = boardsize self.path = search_for_gnugo() if self.path: logger.debug('Found gnugo at %s', self.path) try: self.gnugo = Popen([self.path, '--mode', 'gtp', '--boardsize', str(boardsize), '--handicap', str(handicap), '--komi', str(komi), '--level', str(level) ], stdout=PIPE, stdin=PIPE) except OSError, data: logger.error('Could not start gnugo subprocess: %s', data) raise else: logger.debug('Successfuly loaded gnugo!') self.stdin = self.gnugo.stdin self.stdout = self.gnugo.stdout else: logger.error('Could not find gnugo') def __del__(self): logger.debug('Closing gnugo') self.stdin.write('quit \n') self.stdin.flush() def _xy_to_coords(self, x, y): return dict(zip(range(25), 'ABCDEFGHJKLMNOPQRSTUVWXYZ'))[x] + str(self.size - y) def _coords_to_xy(self, coords): return int(dict(zip('ABCDEFGHJKLMNOPQRSTUVWXYZ', range(25)))[coords[0]]), self.size - int(coords[1:]) def short_to_long_colors(self, short_color): if short_color == 'B': return 'black' return 'white' def make_play(self, color, x, y): color = self.short_to_long_colors(color) self.stdin.write('play %s %s\n' % (color, self._xy_to_coords(x, y))) self.stdin.flush() logger.debug('Sent play by %s at %s to gnugo', color, self._xy_to_coords(x, y)) output = self.stdout.readline() self.stdout.readline() if output[0] == '?': return False return True def get_move(self, color): color = self.short_to_long_colors(color) self.stdin.write('kgs-genmove_cleanup %s\n' % color) self.stdin.flush() output = self.stdout.readline() self.stdout.readline() if output[0] == '?': # FIXME: Handle error return False elif output[2:] == 'PASS\n': return -1, -1 logger.debug('Generated move %s', output[2:]) return self._coords_to_xy(output[2:]) def pass_move(self, color): color = self.short_to_long_colors(color) self.stdin.write('%s pass\n' % color) self.stdin.flush() self.stdout.readline() self.stdout.readline() def undo(self): self.stdin.write('undo\n') self.stdin.flush() self.stdout.readline() self.stdout.readline() def clear(self): self.stdin.write('clear_board\n') self.stdin.flush() self.stdout.readline() self.stdout.readline() def dump_board(self): self.stdin.write('showboard\n') self.stdin.flush() output = '' for i in range(0, self.size+4): output = output + self.stdout.readline() return output
[ "ignacio@sugarlabs.org" ]
ignacio@sugarlabs.org
f59557cfff4041cf36174e07605dea498512d51d
d3ce90d1f2164d51bc899397082378406672224e
/main.py
a58dae2f6f68af2063134027d57b3b137d0fdfbd
[ "MIT" ]
permissive
automainint/ip-monitor
28ee0b99dab2dc0a345e805a1d4da497f73b778b
46efa1bc96e202213e41605fc750a22687a183ce
refs/heads/main
2023-07-13T21:57:36.297491
2021-08-30T15:33:44
2021-08-30T15:33:44
397,872,453
0
0
null
null
null
null
UTF-8
Python
false
false
4,887
py
#!/usr/bin/python3 import configparser import argparse import requests import os, shutil, time from smtplib import SMTP_SSL from email.message import EmailMessage def parse_args(config_file): config = configparser.ConfigParser( defaults = { 'helper': 'https://api.ipify.org', 'server': 'in-v3.mailjet.com', 'port': '0', 'user': 'user', 'pass': '', 'sender': 'user@yandex.ru', 'sendto': 'user@yandex.ru', 'subject': 'IP monitor', 'delay': '60', 'notify': '100000' }) config.read(config_file) cfg = config['DEFAULT'] parser = argparse.ArgumentParser( prog = 'ip-monitor', description = 'Public IP address monitoring' ) parser.add_argument( '--stop', help = 'stop background process', dest = 'stop', action = 'store_const', const = True, default = False ) parser.add_argument( '--ip-helper', type = str, metavar = 'URL', default = cfg.get('helper'), help = 'public IP service provider', dest = 'ip_helper' ) parser.add_argument( '--server', type = str, metavar = 'URL', default = cfg.get('server'), help = 'SMTP server address', dest = 'smtp_server' ) parser.add_argument( '--port', type = int, metavar = 'PORT', default = cfg.get('port'), help = 'SMTP server port', dest = 'smtp_port' ) parser.add_argument( '--user', type = str, metavar = 'NAME', default = cfg.get('user'), help = 'SMTP username', dest = 'smtp_user' ) parser.add_argument( '--pass', type = str, metavar = '****', default = cfg.get('pass'), help = 'SMTP password', dest = 'smtp_pass' ) parser.add_argument( '--sender', type = str, metavar = 'EMAIL', default = cfg.get('sender'), help = 'sender email address', dest = 'sender' ) parser.add_argument( '--sendto', type = str, metavar = 'EMAIL', default = cfg.get('sendto'), help = 'where to send notifications', dest = 'sendto' ) parser.add_argument( '--subject', type = str, metavar = 'TITLE', default = cfg.get('subject'), help = 'notification email subject', dest = 'subject' ) parser.add_argument( '--delay', type = int, metavar = 'TIME', default = cfg.get('delay'), help = 'IP check delay in seconds', dest = 'delay' ) parser.add_argument( '--notify', type = int, metavar = 'TIME', default = cfg.get('notify'), help = 'email notification timeout in seconds', dest = 'notify' ) return parser.parse_args() def send_notification( smtp_url: str, smtp_port: int, user: str, password: str, sender: str, sendto: str, subject: str, ip: str ): global token msg = EmailMessage() msg.set_content(ip) msg['Subject'] = subject msg['From'] = sender msg['To'] = sendto msg['Precedence'] = 'bulk' with SMTP_SSL(smtp_url, smtp_port) as smtp: smtp.login(user, password) smtp.send_message(msg, sender, sendto) args = parse_args('ip-monitor.ini') if args.stop: with open('.stop', 'w'): pass raise SystemExit a_helper = args.ip_helper a_smtp = args.smtp_server a_port = args.smtp_port; a_user = args.smtp_user a_pass = args.smtp_pass a_sender = args.sender; a_sendto = args.sendto; a_subject = args.subject; a_delay = args.delay a_notify = args.notify address = '' addr_new = '' time_check = 0 time_notify = 0 with open('ip-monitor.log', 'a') as f: f.write('\n\nIP monitor started\n\n') f.write('Helper: ' + a_helper + '\n') f.write('SMTP: ' + a_smtp + '\n') f.write('Port: ' + str(a_port) + '\n') f.write('User: ' + a_user + '\n') f.write('Sender: ' + a_sender + '\n') f.write('Send to: ' + a_sendto + '\n') f.write('Subject: ' + a_subject + '\n') f.write('Delay: ' + str(a_delay) + '\n') f.write('Notify: ' + str(a_notify) + '\n\n') while not os.path.exists('.stop'): if time_check <= 0: try: addr_new = requests.get(a_helper).text time_check = a_delay if addr_new != address or time_notify <= 0: send_notification( a_smtp, a_port, a_user, a_pass, a_sender, a_sendto, a_subject, addr_new ) with open('ip-monitor.log', 'a') as f: f.write( 'Notification sent. Current IP: ' + addr_new + '\n') address = addr_new time_notify = a_notify except Exception as e: with open('ip-monitor.log', 'a') as f: f.write(str(e) + '\n') time_check -= 1 time_notify -= 1 time.sleep(1) os.remove('.stop')
[ "0x7fffff@guattari.ru" ]
0x7fffff@guattari.ru
a6c8fbdeae4c919bf654c2ccbeb8f8779ff51ed5
835af2ea1c7dbd5a4605b7cc1c72b83cdf0c0254
/places/settings/dev.py
36990a404b30921ffcd565580e6dfb837303c4fb
[]
no_license
Spudwars/wheregonow
965b3a2c3e880e16ad28ad19d57d72f8939e05e0
7600cb813b11ea9ca7b474361850a807c44c4233
refs/heads/master
2021-03-22T03:57:52.317081
2013-02-12T23:36:16
2013-02-12T23:36:16
7,997,671
0
0
null
null
null
null
UTF-8
Python
false
false
1,005
py
from .base import * DEBUG = TEMPLATE_DEBUG = True DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'dev.db', } } EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # Disable caching while in development CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', } } # set up Django Debug Toolbar if installed try: import debug_toolbar MIDDLEWARE_CLASSES += ( 'debug_toolbar.middleware.DebugToolbarMiddleware', ) INSTALLED_APPS += ( 'debug_toolbar', ) DEBUG_TOOLBAR_CONFIG = { 'INTERCEPT_REDIRECTS': False, 'SHOW_TOOLBAR_CALLBACK': lambda *args, **kwargs: True } except ImportError: pass # set up devserver if installed try: import devserver INSTALLED_APPS += ( 'devserver', ) except ImportError: pass # Don't use Sentry logging even if configured for production LOGGING = BASE_LOGGING GA_TRACKING_CODE = ''
[ "chris.jesse@flightdataservices.com" ]
chris.jesse@flightdataservices.com
373b206f3f3ba5a1e44d6a4ab81c719d7ae250f4
ea21c75c6d42dddec7ef6c9e1c3337ef44dbed98
/Passport/ocr_v2_passport.py
1446181175b7edfe9272e163eae659e9c3624dc6
[]
no_license
HarshitPatel25/OCR
d9aa44d3cac61bc527376419355665271f686953
ae04728f34a1b4af5135f58b26dfb5b79c20cb05
refs/heads/master
2022-12-02T02:19:30.321235
2020-08-19T07:18:10
2020-08-19T07:18:10
288,661,497
0
0
null
null
null
null
UTF-8
Python
false
false
8,445
py
# import the necessary packages from PIL import Image import pytesseract as pt import argparse import cv2 import os import re import io import json import ftfy # from nostril import nonsense ################################################################################################################ ############################# Section 1: Initiate the command line interface ################################### ################################################################################################################ # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to input image to be OCR'd") ap.add_argument("-p", "--preprocess", type=str, default="thresh", help="type of preprocessing to be done, choose from blur, linear, cubic or bilateral") args = vars(ap.parse_args()) ''' Our command line arguments are parsed. We have two command line arguments: --image : The path to the image we’re sending through the OCR system. --preprocess : The preprocessing method. This switch is optional and for this tutorial and can accept the following parameters to be passed (refer sections to know more: - blur - adaptive - linear - cubic - gauss - bilateral - thresh (meadian threshold - default) --------------------------- Use Blur when the image has noise/grain/incident light etc. -------------------------- ''' ############################################################################################################## ###################### Section 2: Load the image -- Preprocess it -- Write it to disk ######################## ############################################################################################################## # load the example image and convert it to grayscale image = cv2.imread(args["image"]) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # check to see if we should apply thresholding to preprocess the # image if args["preprocess"] == "thresh": gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] elif args["preprocess"] == "adaptive": gray = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2) ''' What we would like to do is to add some additional preprocessing steps as in most cases, you may need to scale your image to a larger size to recognize small characters. In this case, INTER_CUBIC generally performs better than other alternatives, though it’s also slower than others. If you’d like to trade off some of your image quality for faster performance, you may want to try INTER_LINEAR for enlarging images. ''' if args["preprocess"] == "linear": gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR) elif args["preprocess"] == "cubic": gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) # make a check to see if blurring should be done to remove noise, first is default median blurring if args["preprocess"] == "blur": gray = cv2.medianBlur(gray, 3) elif args["preprocess"] == "bilateral": gray = cv2.bilateralFilter(gray, 9, 75, 75) elif args["preprocess"] == "gauss": gray = cv2.GaussianBlur(gray, (5,5), 0) # write the grayscale image to disk as a temporary file so we can # apply OCR to it filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray) ############################################################################################################## ######################################## Section 3: Running PyTesseract ###################################### ############################################################################################################## # load the image as a PIL/Pillow image, apply OCR, and then delete # the temporary file pt.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' text = pt.image_to_string(Image.open(filename), lang = 'eng') # add +hin after eng within the same argument to extract hindi specific text - change encoding to utf-8 while writing os.remove(filename) # print(text) # show the output images # cv2.imshow("Image", image) # cv2.imshow("Output", gray) # cv2.waitKey(0) # writing extracted data into a text file text_output = open('outputbase.txt', 'w', encoding='utf-8') text_output.write(text) text_output.close() file = open('outputbase.txt', 'r', encoding='utf-8') text = file.read() # print(text) # Cleaning all the gibberish text text = ftfy.fix_text(text) text = ftfy.fix_encoding(text) '''for god_damn in text: if nonsense(god_damn): text.remove(god_damn) else: print(text)''' # print(text) ############################################################################################################ ###################################### Section 4: Extract relevant information ############################# ############################################################################################################ # Initializing data variable surname = None first_name = None dob = None gender = None number = None doe = None text0 = [] text1 = [] # Searching for PAN lines = text.split('\n') for lin in lines: s = lin.strip() s = lin.replace('\n','') s = s.rstrip() s = s.lstrip() text1.append(s) text1 = list(filter(None, text1)) # print(text1) # to remove any text read from the image file which lies before the line 'Income Tax Department' lineno = 0 # to start from the first line of the text file. # text1 = list(text1) text0 = text1[lineno+1:] print(text0) # Contains all the relevant extracted text in form of a list - uncomment to check def findword(textlist, wordstring): lineno = -1 for wordline in textlist: xx = wordline.split( ) if ([w for w in xx if re.search(wordstring, w)]): lineno = textlist.index(wordline) textlist = textlist[lineno+1:] return textlist return textlist ############################################################################################################### ######################################### Section 5: Dishwasher part ########################################## ############################################################################################################### try: # Cleaning Surname surname = text0[3] surname = surname.rstrip() surname = surname.lstrip() surname = re.sub('[^a-zA-Z] +', ' ', surname) # Cleaning First Name first_name = text0[5] first_name = first_name.rstrip() first_name = first_name.lstrip() first_name = re.sub('[^a-zA-Z] +', ' ', first_name) # Cleaning DOB dob = text0[7] dob = dob.rstrip() dob = dob.lstrip() dob = dob[-12:] # Cleaning Gender gender = text0[4] gender = 'M' # need to fix this # Cleaning Passport Number number = text0[1] number = number[-8:] number = number.rstrip() number = number.lstrip() # Cleaning DOE doe = text0[14] doe = doe.rstrip() doe = doe.lstrip() doe = doe[-12:-2] except: pass # Making tuples of data data = {} data['Surname'] = surname data['First Name'] = first_name data['Date of Birth'] = dob data['Gender'] = gender data['Number'] = number data['Date of Expiry'] = doe # print(data) ############################################################################################################### ######################################### Section 6: Write Data to JSONs ###################################### ############################################################################################################### # Writing data into JSON try: to_unicode = unicode except NameError: to_unicode = str # Write JSON file with io.open('data.json', 'w', encoding='utf-8') as outfile: str_ = json.dumps(data, indent=4, sort_keys=True, separators=(',', ': '), ensure_ascii=False) outfile.write(to_unicode(str_)) # Read JSON file with open('data.json', encoding = 'utf-8') as data_file: data_loaded = json.load(data_file) # print(data == data_loaded) # Reading data back JSON(give correct path where JSON is stored) with open('data.json', 'r', encoding= 'utf-8') as f: ndata = json.load(f) print(ndata)
[ "harshitcode25@gmail.com" ]
harshitcode25@gmail.com
a2cac299398ecea8a12b0f3ff9a50c53d50df052
cdb29a347d67eb80f3deb09b685ea1e82ae47e7d
/leetcode/climbStairs.py
1b0262740f2eee0f8e5b7fd0918f00163ed889b2
[]
no_license
ishankkm/pythonProgs
f41e82c86591f4078c4c1317ecb4829087961c76
be98ba8e50cc7844d519a5ae5b6e4d9901e175ca
refs/heads/master
2021-01-24T16:48:50.161323
2018-09-08T23:30:19
2018-09-08T23:30:19
123,213,632
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
''' Created on May 5, 2018 @author: ishank You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top? ''' def climbStairs(n): first, second = 1, 2 for _ in range(2, n): second = first + second first = second - first return second print(climbStairs(10))
[ "imishra@usc.edu" ]
imishra@usc.edu
23fe111852b94e634ef05790a8368e8de8f9dd08
c72df3759d1c61f1356a5b82cdb30a4608f23ae8
/convert_to_line.py
af43eedd3428bc127ec44d85b8b7640a2b3e2f24
[]
no_license
abedalbaset/n-queen-solutions-list
0e3d7204aa453075471759fb572fac8936d55c93
8ebd98e2c57d271f216c06d76a4cccd72a5413de
refs/heads/master
2020-05-01T06:25:06.039055
2019-05-28T23:03:57
2019-05-28T23:03:57
177,329,633
1
0
null
null
null
null
UTF-8
Python
false
false
521
py
#convert n queen square solution to lines # global change according to file boardlenghth=12 file_name="12_12_sol.txt" outputfilename="12_12_lines.txt" #end global change according to file with open(file_name) as f: content = f.readlines() content = [x.strip() for x in content] numberofsol=len(content)/(boardlenghth+2) f = open(outputfilename, "a") for c in range(1,len(content),boardlenghth+2): sum="" for cc in range(0,boardlenghth): sum=sum+content[c+cc]+" " f.write(sum+"\n") f.close()
[ "noreply@github.com" ]
abedalbaset.noreply@github.com
8be026d5adf82df06e866838bdcc191ae2c44a9b
1500da3c58fd3c6becf45c86430f5a08e4cfa289
/parcels/particlefile.py
25efc792a6a69c176066fcd4d5f5905212a9ac06
[ "MIT" ]
permissive
rm1911/parcels
26e06ab32f75992da5f8631788159462ce70c4de
9c7f957bdb513f69d93c56b701287f8ad3b2b6a9
refs/heads/master
2021-01-18T04:28:56.551640
2016-08-12T10:09:31
2016-08-12T10:09:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,037
py
import numpy as np import netCDF4 __all__ = ['ParticleFile'] class ParticleFile(object): def __init__(self, name, particleset, initial_dump=True): """Initialise netCDF4.Dataset for trajectory output. The output follows the format outlined in the Discrete Sampling Geometries section of the CF-conventions: http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#discrete-sampling-geometries The current implementation is based on the NCEI template: http://www.nodc.noaa.gov/data/formats/netcdf/v2.0/trajectoryIncomplete.cdl Developer note: We cannot use xray.Dataset here, since it does not yet allow incremental writes to disk: https://github.com/xray/xray/issues/199 :param name: Basename of the output file :param particlset: ParticleSet to output :param initial_dump: Perform initial output at time 0. :param user_vars: A list of additional user defined particle variables to write """ self.dataset = netCDF4.Dataset("%s.nc" % name, "w", format="NETCDF4") self.dataset.createDimension("obs", None) self.dataset.createDimension("trajectory", particleset.size) self.dataset.feature_type = "trajectory" self.dataset.Conventions = "CF-1.6" self.dataset.ncei_template_version = "NCEI_NetCDF_Trajectory_Template_v2.0" # Create ID variable according to CF conventions self.trajectory = self.dataset.createVariable("trajectory", "i4", ("trajectory",)) self.trajectory.long_name = "Unique identifier for each particle" self.trajectory.cf_role = "trajectory_id" self.trajectory[:] = np.arange(particleset.size, dtype=np.int32) # Create time, lat, lon and z variables according to CF conventions: self.time = self.dataset.createVariable("time", "f8", ("trajectory", "obs"), fill_value=np.nan) self.time.long_name = "" self.time.standard_name = "time" if particleset.time_origin == 0: self.time.units = "seconds" else: self.time.units = "seconds since " + str(particleset.time_origin) self.time.calendar = "julian" self.time.axis = "T" self.lat = self.dataset.createVariable("lat", "f4", ("trajectory", "obs"), fill_value=np.nan) self.lat.long_name = "" self.lat.standard_name = "latitude" self.lat.units = "degrees_north" self.lat.axis = "Y" self.lon = self.dataset.createVariable("lon", "f4", ("trajectory", "obs"), fill_value=np.nan) self.lon.long_name = "" self.lon.standard_name = "longitude" self.lon.units = "degrees_east" self.lon.axis = "X" self.z = self.dataset.createVariable("z", "f4", ("trajectory", "obs"), fill_value=np.nan) self.z.long_name = "" self.z.standard_name = "depth" self.z.units = "m" self.z.positive = "down" self.user_vars = [] for v in particleset.ptype.variables: if v.name in ['time', 'lat', 'lon', 'z']: continue setattr(self, v.name, self.dataset.createVariable(v.name, "f4", ("trajectory", "obs"), fill_value=0.)) getattr(self, v.name).long_name = "" getattr(self, v.name).standard_name = v.name getattr(self, v.name).units = "unknown" self.user_vars += [v.name] self.idx = 0 if initial_dump: self.write(particleset, 0.) def __del__(self): self.dataset.close() def write(self, pset, time): """Write particle set data to file""" self.time[:, self.idx] = time self.lat[:, self.idx] = np.array([p.lat for p in pset]) self.lon[:, self.idx] = np.array([p.lon for p in pset]) self.z[:, self.idx] = np.zeros(pset.size, dtype=np.float32) for var in self.user_vars: getattr(self, var)[:, self.idx] = np.array([getattr(p, var) for p in pset]) self.idx += 1
[ "michael.lange@imperial.ac.uk" ]
michael.lange@imperial.ac.uk
30b87bccc18ed555b6af4d806c48ce473e2752e6
f68a3657ddf6fe528208fc76caf70bbf6515c30e
/TwitterSentimentAnalsis/archive/sentiment_supervised-trial.py
9e737ebda98521bf013c8c42f5ff848ed7e63812
[]
no_license
nikilohiya/fintweet
eb3084bac2bb150a0b6b4633d61b4154355d778b
53b18e9e83e7df3d40a4d098802ff5057e406dc3
refs/heads/master
2021-04-03T06:04:32.714006
2018-03-19T15:51:51
2018-03-19T15:51:51
125,084,884
0
0
null
null
null
null
UTF-8
Python
false
false
2,585
py
from nltk.tokenize import TweetTokenizer import nltk from nltk.corpus import stopwords import string # -*- coding: UTF-8 -*- import HTMLParser ### import pandas as pd from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC class SentimentAnalysisSupervized(): def sentiment_analysis_LinearSVC(self, df_training, df_new, filepath): traing_tweet_texts = df_training['text'] traing_tweet_targets = df_training['sentiment'] # Target details 0 - the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive) p8_2 = Pipeline([ ('tfidf', TfidfVectorizer(stop_words=None, token_pattern='[A-Za-z0-9]+(?=\\s+)', min_df=3)), ('clf', LinearSVC(loss='squared_hinge')) ]) p8_2.fit(traing_tweet_texts, traing_tweet_targets) predicted = p8_2.predict(df_new['text']) df_processed = pd.DataFrame() df_processed['date'] = df_new['date'] df_processed['text'] = df_new['text'] #df_processed['sentiment'] = df_new['sentiment'] df_processed['predicted'] = predicted df_processed.to_csv(filepath, index=False) def sentiment_analysis2(self, df, filepath): tweet = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--" vocab = set(word.lower() for word in nltk.corpus.words.words()) stop_words = stopwords.words('english') '''tokens = [token.strip() \ for token in nltk.word_tokenize(tweet.lower()) \ if token.strip() not in stop_words and \ token.strip() not in string.punctuation \ and token.strip() in vocab]''' tokens = [token.strip() \ for token in nltk.word_tokenize(tweet.lower()) \ if token.strip() not in stop_words and \ token.strip() not in string.punctuation] print token print "-------" tknzr = TweetTokenizer() tokens2 = tknzr.tokenize(tweet) print tokens2 def main(): sa = SentimentAnalysisSupervized() input_file_name = 'APPL.csv' training_file_path = "data/manually_labeled_data/" + input_file_name training_df = pd.read_csv(training_file_path) new_tweets_file_path = "data/twitter_clean_data/" + input_file_name new_tweets_df = pd.read_csv(new_tweets_file_path) output_file_path = 'results/sentiment_analysis_LinearSVC/' + input_file_name sa.sentiment_analysis_LinearSVC(training_df, new_tweets_df, output_file_path) main()
[ "nikilohiya@gmail.com" ]
nikilohiya@gmail.com
591f2a518119961b336fdf7115bfdb1cdd13eb2c
fd800a1748b418402df23a91bdb7eaade92e5e0e
/code/castle_mod/algorithms/gradient/__init__.py
d4616d3a74998dc80bd7b01c55fa09ca7560e541
[]
no_license
xwbxxx/PCIC2021_causal_discovery_dmirlab
b2a8569e30ba7b1d5a6da091a7b93f2d9d065dd7
1f88f40817b62d7a3f90531839eb1a0ad9d817f5
refs/heads/main
2023-08-03T05:28:36.686431
2021-09-15T05:22:20
2021-09-15T05:22:20
436,819,662
1
0
null
2021-12-10T02:01:03
2021-12-10T02:01:03
null
UTF-8
Python
false
false
1,033
py
# coding=utf-8 # Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .notears.linear import Notears from .notears.nonlinear import NotearsMLP from .notears.nonlinear import NotearsSob from .notears.low_rank import NotearsLowRank from .notears.golem import GOLEM from .gran_dag.gran_dag import GraN_DAG from .graph_auto_encoder.gae import GAE from .masked_csl.mcsl import MCSL from .rl.rl import RL from .corl1.corl1 import CORL1 from .corl2.corl2 import CORL2
[ "2018770887@qq.com" ]
2018770887@qq.com
35e40d0e0276de9c456c162e3d62690341e6ce6f
c9708d43ce0581e19aca656103b28781f69f3da1
/tests/seleniumwire/proxy/test_storage.py
4bb25d9082dfdba58e0cc7aa850fa3398ee9e8bb
[ "MIT" ]
permissive
spinda/selenium-wire
9d7f5d5b5cbf9ffe8aaf6169fef75ed2fe472f22
e7687d80907d32226ba352f39d6e81bf14cf5380
refs/heads/master
2020-05-20T00:49:37.401477
2019-04-16T10:29:26
2019-04-16T10:29:26
185,296,120
0
0
MIT
2019-05-07T01:17:27
2019-05-07T01:17:25
null
UTF-8
Python
false
false
11,236
py
from datetime import datetime, timedelta from fnmatch import fnmatch import glob import gzip from http.client import HTTPMessage from io import BytesIO import os import pickle import shutil from unittest import TestCase from unittest.mock import Mock from seleniumwire.proxy.storage import RequestStorage class RequestStorageTest(TestCase): def test_initialise(self): RequestStorage(base_dir=self.base_dir) storage_dir = glob.glob(os.path.join(self.base_dir, '.seleniumwire', 'storage-*')) self.assertEqual(len(storage_dir), 1) def test_cleanup_removes_storage(self): storage = RequestStorage(base_dir=self.base_dir) storage.cleanup() # The 'seleniumwire' parent folder should have been cleaned up # when there is nothing left inside of it. self.assertFalse(os.listdir(self.base_dir)) def test_cleanup_does_not_remove_parent_folder(self): # There is an existing storage folder os.makedirs(os.path.join(self.base_dir, '.seleniumwire', 'teststorage')) storage = RequestStorage(base_dir=self.base_dir) storage.cleanup() # The existing storage folder is not cleaned up self.assertEqual(len(os.listdir(self.base_dir)), 1) self.assertTrue(os.path.exists(os.path.join(self.base_dir, '.seleniumwire', 'teststorage'))) def test_initialise_clears_old_folders(self): test_dir = os.path.join(self.base_dir, '.seleniumwire', 'storage-test') os.makedirs(test_dir) two_days_ago = (datetime.now() - timedelta(days=2)).timestamp() os.utime(test_dir, times=(two_days_ago, two_days_ago)) RequestStorage(base_dir=self.base_dir) self.assertFalse(os.path.exists(test_dir)) def test_save_request(self): mock_request = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) request_id = storage.save_request(mock_request) request_file_path = self._get_stored_path(request_id, 'request') with open(request_file_path[0], 'rb') as loaded: loaded_request = pickle.load(loaded) self.assertEqual(loaded_request['id'], request_id) self.assertEqual(loaded_request['path'], 'http://www.example.com/test/path/') self.assertEqual(loaded_request['method'], 'GET') self.assertEqual(loaded_request['headers'], { 'Host': 'www.example.com', 'Accept': '*/*' }) self.assertIsNone(loaded_request['response']) def test_save_request_with_body(self): mock_request = self._create_mock_request() request_body = b'test request body' storage = RequestStorage(base_dir=self.base_dir) request_id = storage.save_request(mock_request, request_body=request_body) request_body_path = self._get_stored_path(request_id, 'requestbody') with open(request_body_path[0], 'rb') as loaded: loaded_body = pickle.load(loaded) self.assertEqual(loaded_body, b'test request body') def test_save_response(self): mock_request = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) request_id = storage.save_request(mock_request) mock_response = self._create_mock_resonse() storage.save_response(request_id, mock_response) response_file_path = self._get_stored_path(request_id, 'response') with open(response_file_path[0], 'rb') as loaded: loaded_response = pickle.load(loaded) self.assertEqual(loaded_response['status_code'], 200) self.assertEqual(loaded_response['reason'], 'OK') self.assertEqual(loaded_response['headers'], { 'Content-Type': 'application/json', 'Content-Length': '500' }) def test_save_response_with_body(self): mock_request = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) request_id = storage.save_request(mock_request) mock_response = self._create_mock_resonse() response_body = b'some response body' storage.save_response(request_id, mock_response, response_body=response_body) response_body_path = self._get_stored_path(request_id, 'responsebody') with open(response_body_path[0], 'rb') as loaded: loaded_body = pickle.load(loaded) self.assertEqual(loaded_body, b'some response body') def test_save_response_no_request(self): mock_request = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) request_id = storage.save_request(mock_request) mock_response = self._create_mock_resonse() storage.clear_requests() storage.save_response(request_id, mock_response) response_file_path = self._get_stored_path(request_id, 'response') self.assertFalse(response_file_path) def test_load_requests(self): mock_request_1 = self._create_mock_request() mock_request_2 = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) request_id1 = storage.save_request(mock_request_1) request_id2 = storage.save_request(mock_request_2) requests = storage.load_requests() self.assertEqual(len(requests), 2) self.assertEqual(requests[0]['id'], request_id1) self.assertEqual(requests[1]['id'], request_id2) self.assertIsNone(requests[0]['response']) self.assertIsNone(requests[1]['response']) def test_load_response(self): mock_request = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) request_id = storage.save_request(mock_request) mock_response = self._create_mock_resonse() storage.save_response(request_id, mock_response) requests = storage.load_requests() self.assertIsNotNone(requests[0]['response']) def test_load_request_body(self): mock_request = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) request_id = storage.save_request(mock_request, request_body=b'test request body') request_body = storage.load_request_body(request_id) self.assertEqual(request_body, b'test request body') def test_load_response_body(self): mock_request = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) request_id = storage.save_request(mock_request, request_body=b'test request body') mock_response = self._create_mock_resonse() storage.save_response(request_id, mock_response, response_body=b'test response body') response_body = storage.load_response_body(request_id) self.assertEqual(response_body, b'test response body') def test_load_response_body_encoded(self): io = BytesIO() with gzip.GzipFile(fileobj=io, mode='wb') as f: f.write(b'test response body') mock_request = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) request_id = storage.save_request(mock_request, request_body=b'test request body') mock_response = self._create_mock_resonse() mock_response.headers['Content-Encoding'] = 'gzip' storage.save_response(request_id, mock_response, response_body=io.getvalue()) response_body = storage.load_response_body(request_id) self.assertEqual(response_body, b'test response body') def test_load_last_request(self): mock_request_1 = self._create_mock_request() mock_request_2 = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) storage.save_request(mock_request_1) request_id2 = storage.save_request(mock_request_2) last_request = storage.load_last_request() self.assertEqual(last_request['id'], request_id2) def test_load_last_request_none(self): storage = RequestStorage(base_dir=self.base_dir) last_request = storage.load_last_request() self.assertIsNone(last_request) def test_clear_requests(self): mock_request_1 = self._create_mock_request() mock_request_2 = self._create_mock_request() storage = RequestStorage(base_dir=self.base_dir) storage.save_request(mock_request_1) storage.save_request(mock_request_2) storage.clear_requests() requests = storage.load_requests() self.assertFalse(requests) self.assertFalse(glob.glob(os.path.join(self.base_dir, '.seleniumwire', 'storage-*', '*'))) def test_get_cert_dir(self): storage = RequestStorage(base_dir=self.base_dir) self.assertTrue(fnmatch(storage.get_cert_dir(), os.path.join(self.base_dir, '.seleniumwire', 'storage-*', 'certs'))) def test_find(self): mock_request_1 = self._create_mock_request('http://www.example.com/test/path/?foo=bar') mock_request_2 = self._create_mock_request('http://www.stackoverflow.com/other/path/?x=y') mock_response = self._create_mock_resonse() storage = RequestStorage(base_dir=self.base_dir) request_id = storage.save_request(mock_request_1) storage.save_response(request_id, mock_response) storage.save_request(mock_request_2) self.assertEqual(storage.find('/test/path/')['id'], request_id) self.assertEqual(storage.find('/test/path/?foo=bar')['id'], request_id) self.assertEqual(storage.find('http://www.example.com/test/path/?foo=bar')['id'], request_id) self.assertEqual(storage.find('http://www.example.com/test/path/')['id'], request_id) self.assertIsNone(storage.find('/different/path')) self.assertIsNone(storage.find('/test/path/?x=y')) self.assertIsNone(storage.find('http://www.example.com/different/path/?foo=bar')) self.assertIsNone(storage.find('http://www.different.com/test/path/?foo=bar')) self.assertIsNone(storage.find('http://www.example.com/test/path/?x=y')) def _get_stored_path(self, request_id, filename): return glob.glob(os.path.join(self.base_dir, '.seleniumwire', 'storage-*', 'request-{}'.format(request_id), filename)) def _create_mock_request(self, path='http://www.example.com/test/path/'): mock_request = Mock() mock_request.path = path mock_request.command = 'GET' headers = HTTPMessage() headers.add_header('Host', 'www.example.com') headers.add_header('Accept', '*/*') mock_request.headers = headers return mock_request def _create_mock_resonse(self): mock_response = Mock() mock_response.status = 200 mock_response.reason = 'OK' headers = HTTPMessage() headers.add_header('Content-Type', 'application/json') headers.add_header('Content-Length', '500') mock_response.headers = headers return mock_response def setUp(self): self.base_dir = os.path.join(os.path.dirname(__file__), 'data') def tearDown(self): shutil.rmtree(os.path.join(self.base_dir), ignore_errors=True)
[ "will@zifferent.com" ]
will@zifferent.com
d2217e68e3197de61f832e9ef1b5fe09b9863383
3156e6e4a078052e9554c48f5037cf4e8e3ce4fb
/techpedia_project/wsgi.py
57d879363cfb1ac1df595a088915def95c81a36c
[]
no_license
Rishav09/techpedia
18edc5d7edd6264963d680603cafdfa658be8267
3283251998530a8b09372c7f79ec2e6a7d844960
refs/heads/master
2021-01-19T23:13:46.501278
2017-05-26T11:46:20
2017-05-26T11:46:20
88,950,556
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
""" WSGI config for techpedia_project project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "techpedia_project.settings") application = get_wsgi_application()
[ "rishavsapahia@gmail.com" ]
rishavsapahia@gmail.com
0d106b6db7d554ad1d1969843cd053d447c9ee62
1d3f11a26595d232fb6d4ecb3522b79ca9ba0910
/train.py
339aebc581a23b10d18b43008eae91d4db00bd3e
[]
no_license
LorSong/GenderClassification
fa47fd512965339238e4d526beadd56d05c8630a
524d6f0aae5a5d4279872e3eae4e4a9c17fb8988
refs/heads/master
2022-12-22T10:23:51.814804
2020-10-01T08:17:57
2020-10-01T08:17:57
295,976,091
0
0
null
2020-09-19T14:12:55
2020-09-16T08:47:23
Python
UTF-8
Python
false
false
4,512
py
import os import sys import numpy as np # Silencing tensorflow warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf import tensorflow_hub as hub if tf.__version__ != "2.3.0": print("TF version is not 2.3.0, behavior may not be correct") # Silencing tensorflow depreciation warnings from tensorflow.python.util import deprecation deprecation._PRINT_DEPRECATION_WARNINGS = False def create_dataset(data_dir): # Generator that performs data augmentation train_datagen = tf.keras.preprocessing.image.ImageDataGenerator( rotation_range=20, width_shift_range=0.15, height_shift_range=0.15, horizontal_flip=True, zoom_range=0.15, fill_mode="constant", cval=0) # Black padding # Setup flow from directory train_generator = train_datagen.flow_from_directory( data_dir, target_size=(96, 96), batch_size=32, class_mode='binary') return train_generator def warmup_scheduler(epoch, lr): if epoch < 20: return lr * 1.6 else: return lr def train_and_save(data): MODULE_HANDLE ="https://tfhub.dev/google/imagenet/mobilenet_v2_100_96/feature_vector/4" # Loading MobilenetV2 base_model = hub.KerasLayer(MODULE_HANDLE, trainable=False) inputs = tf.keras.layers.Input(shape=(96, 96, 3)) # Normalization of inputs x = tf.keras.layers.experimental.preprocessing.Rescaling(1./255)(inputs) x = base_model(x, training=False) x = tf.keras.layers.Dropout(rate=0.2)(x) outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x) model = tf.keras.Model(inputs, outputs) # Training only top layer print("Training first 10 epochs with freezed base model. 40 more epochs ahead") optimizer = tf.keras.optimizers.SGD(lr=0.05, momentum=0.9, decay=0.01) model.compile(optimizer=optimizer, loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy']) freezed_history = model.fit(data, epochs=10, verbose=1) # Unfreezing model base_model.trainable = True # Changing optimizer and adding learning rate schedule lr_scheduler = tf.keras.callbacks.LearningRateScheduler(warmup_scheduler) model.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-7), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy']) print("Unfreezing weights. Training full model for 40 epochs") unfreezed_history = model.fit(data, initial_epoch=10, epochs=50, callbacks=[lr_scheduler], verbose=1) # Saving model model_path = "./model" model.save(model_path) # Uniting and saving histories h1 = freezed_history.history h2 = unfreezed_history.history for key in h2: if key != "lr": h1[key].extend(h2[key]) np.save('history', h1) print("Finished. Created model and history files.") def main(): # Taking path argument try: path_to_images = sys.argv[1] except: path_to_images = "." print("Path to images is not provided, looking in the current folder") # Preventing memory errors with GPU (copied from TF documentation) gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Currently, memory growth needs to be the same across GPUs for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) else: print("Failed to connect GPU. Training can be slow!") dataset = create_dataset(path_to_images) train_and_save(dataset) if __name__ == "__main__": main()
[ "noreply@github.com" ]
LorSong.noreply@github.com
ebcf6416af5895de3d67cec6208e3c16f9a9dede
f3743bd1bec80159913243e0ba39f161db052ab0
/backend/app/alembic/versions/6894c5975cd5_join_3_tables_for_tags_users_rides.py
f43caafd27299be0b8e54ff357f18735145764a4
[]
no_license
eric-do/helo-pelo
f8a4e95007ca5bdd26354fd2098d4f54ec4f4aac
a4714bb3dc183b96ba576735e0ef4203a6921c2f
refs/heads/master
2023-05-09T05:09:48.593538
2021-06-03T21:16:57
2021-06-03T21:16:57
347,272,759
0
0
null
2021-06-03T21:16:58
2021-03-13T04:34:29
TypeScript
UTF-8
Python
false
false
1,630
py
"""Join 3 tables for tags users rides Revision ID: 6894c5975cd5 Revises: abc4ccfa9c9c Create Date: 2021-03-10 20:40:09.352601-08:00 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '6894c5975cd5' down_revision = 'abc4ccfa9c9c' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('user_ride_tag', sa.Column('user_id', sa.Integer(), nullable=False), sa.Column('ride_id', sa.Integer(), nullable=False), sa.Column('tag_id', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['ride_id'], ['ride.id'], ), sa.ForeignKeyConstraint(['tag_id'], ['tag.id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('user_id', 'ride_id', 'tag_id'), sa.UniqueConstraint('user_id', 'ride_id', 'tag_id') ) op.drop_table('ride_tag') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('ride_tag', sa.Column('ride_id', sa.INTEGER(), autoincrement=False, nullable=False), sa.Column('tag_id', sa.INTEGER(), autoincrement=False, nullable=False), sa.Column('tag_count', sa.INTEGER(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['ride_id'], ['ride.id'], name='ride_tag_ride_id_fkey'), sa.ForeignKeyConstraint(['tag_id'], ['tag.id'], name='ride_tag_tag_id_fkey'), sa.PrimaryKeyConstraint('ride_id', 'tag_id', name='ride_tag_pkey') ) op.drop_table('user_ride_tag') # ### end Alembic commands ###
[ "ericdo.617@gmail.com" ]
ericdo.617@gmail.com
95b50eb937a9c5c4d9c33679b54ac220d7720dd9
c55036e604c3a1a714301dd4ec6def16f7ead18c
/split_dataset.py
339ad1c633ebf4bb4ae4cfedb9a0b2b6a3be9e07
[]
no_license
weizh888/ProductImageSegmentation
3326ab5a9ababd2afd9fdfb1e0665d805e3df499
be718cdbe26663220ce1ea994f325de0e3bacf04
refs/heads/master
2021-09-10T06:20:32.291629
2018-03-21T12:26:49
2018-03-21T12:26:49
113,643,096
3
1
null
null
null
null
UTF-8
Python
false
false
1,608
py
#!/usr/bin/python # -*- coding: utf-8 -*- import numpy as np import pandas as pd np.random.seed(1) full_labels = pd.read_csv('data/labels.csv') grouped = full_labels.groupby('filename') grouped.apply(lambda x: len(x)).value_counts() print(grouped.apply(lambda x: len(x)).value_counts()) gb = full_labels.groupby('filename') grouped_list = [gb.get_group(x) for x in gb.groups] print('The total number of samples is {}.'.format(len(grouped_list))) n_train_images = len(grouped_list) * 4 / 5 n_test_images = len(grouped_list) - n_train_images print('The number of training samples is {}.'.format(n_train_images)) print('The number of testing samples is {}.'.format(n_test_images)) train_index = np.random.choice(len(grouped_list), size=n_train_images, replace=False) test_index = np.setdiff1d(list(range(len(grouped_list))), train_index) # take first 200 files train = pd.concat([grouped_list[i] for i in train_index]) test = pd.concat([grouped_list[i] for i in test_index]) train.to_csv('data/train_labels.csv', index=None) test.to_csv('data/test_labels.csv', index=None) # Summary of training dataset and testing dataset train_summary = train.groupby('class' ).size().reset_index(name='counts_train') test_summary = test.groupby('class' ).size().reset_index(name='counts_test') all_summary = pd.merge(train_summary, test_summary) all_summary['total'] = all_summary.apply(lambda x: x['counts_train'] \ + x['counts_test'], axis=1) all_summary.to_csv('data/summary.csv', index=None) print(all_summary)
[ "weizh888@gmail.com" ]
weizh888@gmail.com
88d9128ceed61e034574acdbbdbc508324c444a6
69c29bd4b424b0e90ae9c439d29791f7011c993e
/Builder-Pattern/mycomputer_builder.py
996474f691a684e223e90eccfca3674df82cb961
[]
no_license
mdizhar3103/Python-Design-Patterns
b3681aa23416d3ff5aae169f71819d37ccf910da
be477db006864e5c7e30a862765a4348f3113af6
refs/heads/main
2023-08-14T22:52:06.941745
2021-09-19T13:04:26
2021-09-19T13:04:26
403,862,000
0
1
null
null
null
null
UTF-8
Python
false
false
576
py
from abs_builder import AbsBuilder class MyComputerBuilder(AbsBuilder): def get_case(self): self._computer.case = "Coolermaster N300" def build_mainboard(self): self._computer.mainboard = "MSI 970" self._computer.cpu = "Intel Core i7-4770" self._computer.memory = "Corsair Vengeance 16GB" def install_mainboard(self): pass def install_video_card(self): self._computer.video_card = "GeForce GTX 1070" def install_hard_drive(self): self._computer.hard_drive = "Seagate 2TB"
[ "mdizhar3103@gmail.com" ]
mdizhar3103@gmail.com
20a166f17484a3091f0d9551afab34b5a95bd3fd
903ba270c95a6aa9b4903484a2f0cc49ba82ea16
/Iniciante/1072.py
cfbdeffc0c007bdf5b3605701b3d289a8b1b5586
[]
no_license
pedroheck/uri-online-judge-training
fb3a0b1388e0a9d7a4f959bc582474f952d6efcb
7a8ed57d5fab703dde523ac2d0a3d5afca06d267
refs/heads/main
2023-07-13T22:23:43.600520
2021-08-25T18:40:44
2021-08-25T18:40:44
398,272,452
0
0
null
null
null
null
UTF-8
Python
false
false
236
py
n = int(input()) numeros = [] dentro, fora = 0, 0 for i in range(0, n): numeros.append(int(input())) if numeros[i] in range(10, 21): dentro += 1 else: fora += 1 print(dentro, " in\n", fora, " out", sep='')
[ "pedroscheck@hotmail.com" ]
pedroscheck@hotmail.com
c260a43c4960371a37bba0d5dd8c8410caa61953
b0fb4008bf17616942d7eb6d526b95b0359bd118
/app/common/thread/get_meta_data_thread.py
3e4a521df6315b4feefbbbf00c39fba8cc227af1
[]
no_license
hunye/Groove
d364d8ee79618b8f4722eec69d9cfb3562e41874
7b06c2530352dc5f159c0f9f674e469a305f741a
refs/heads/master
2023-08-28T15:21:52.626998
2021-10-25T14:49:33
2021-10-25T14:49:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,825
py
# coding:utf-8 import os from common.meta_data_writer import writeAlbumCover, writeSongInfo from common.crawler.qq_music_crawler import QQMusicCrawler from PyQt5.QtCore import pyqtSignal, QThread class GetMetaDataThread(QThread): """ 获取歌曲元数据线程 """ crawlSignal = pyqtSignal(str) def __init__(self, folderPaths: list, parent=None): super().__init__(parent=parent) self.__isStopped = False self.folderPaths = folderPaths self.crawler = QQMusicCrawler() def run(self): """ 获取歌曲元数据 """ # 创建一个本地专辑封面缓存文件夹 cover_folder = 'crawl_album_covers' os.makedirs(cover_folder, exist_ok=True) albumCovers = {} songPaths, fileNames = self.__getAudioFiles() for i, (songPath, fileName) in enumerate(zip(songPaths, fileNames)): if self.__isStopped: break songInfo = self.crawler.getSongInfo(fileName) if songInfo: # 修改歌曲信息 songInfo["songPath"] = songPath writeSongInfo(songInfo) key = songInfo["singer"]+'_'+songInfo['album'] # 从网上或者本地缓存文件夹获取专辑封面 if key not in albumCovers: coverPath = f'{cover_folder}/{key}.jpg' url = self.crawler.getAlbumCoverURL( songInfo["albummid"], coverPath) if url: albumCovers[key] = coverPath writeAlbumCover(songPath, coverPath) else: coverPath = albumCovers[key] writeAlbumCover(songPath, coverPath) # 发送信号 text = self.tr("Current progress: ") self.crawlSignal.emit(text+f"{(i+1)/len(songPaths):>3.0%}") def stop(self): """ 停止爬取歌曲信息 """ self.__isStopped = True def __getAudioFiles(self): """ 获取音频文件路径和不包含后缀名的文件名 Parameters ---------- folderPaths: list 文件夹列表 Returns ------- songPaths: list 歌曲路径列表 fileNames: list 不含后缀名的歌曲文件名称列表 """ songPaths = [] fileNames = [] for folderPath in self.folderPaths: files = os.listdir(folderPath) for file in files: if file.endswith(('.mp3', '.flac', '.m4a')): songPaths.append(os.path.join( folderPath, file).replace('\\', '/')) fileNames.append(os.path.splitext(file)[0]) return songPaths, fileNames
[ "1319158137@qq.com" ]
1319158137@qq.com
196f2bbc75b037236f40aa7b8286b7e49495ecb6
db1aa4a65017f4b06b9762d683fa26cf01ac06c1
/venv/bin/pip2.7
6e3a768cbc6c72aae70bed0931133ed040cfe4d4
[]
no_license
oumar90/FlaskApp1
119b87dcb27b2fd124ce1d4a3f5cf0d4fb1efcf0
81b69ce3d0007cf1fd917a3406aef47cad994965
refs/heads/master
2021-09-03T04:11:46.757154
2018-01-05T13:35:52
2018-01-05T13:35:52
116,170,340
0
0
null
null
null
null
UTF-8
Python
false
false
238
7
#!/var/www/html/FlaskApp/FlaskApp1/venv/bin/python2 # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "oudjira90@gmail.com" ]
oudjira90@gmail.com
8f9f4a16e1e15f1351ada271a24b1c294bcd6f0c
2df82996d274b5e49e5d4a1b520cebe1b19a3639
/LocalBigData/County_Wise/county_aqi_predict.py
276400d37db3b064dca8081803073259e70e3f23
[]
no_license
amandeepkapoor/AQI_Prediction_for_US
fce65ed74da912ea6c074f650f200c06bcbed163
6fb5d9c937add226bc981ac3ab4ad1a861f16cc5
refs/heads/master
2020-03-28T20:35:58.652810
2018-09-17T07:33:38
2018-09-17T07:33:38
149,085,899
0
0
null
null
null
null
UTF-8
Python
false
false
5,987
py
import sys, os from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession, types, functions from pyspark.ml import Pipeline from pyspark.ml.feature import VectorAssembler, StringIndexer, SQLTransformer from pyspark.ml.regression import LinearRegression, RandomForestRegressor, GBTRegressor, DecisionTreeRegressor from pyspark.ml.evaluation import RegressionEvaluator from pyspark.sql import SparkSession os.environ["PYSPARK_PYTHON"] = "python3" os.environ["PYSPARK_DRIVER_PYTHON"] = "python3" cluster_seeds = ['199.60.17.171', '199.60.17.188'] cluster_seeds = ['199.60.17.171', '199.60.17.188'] conf = SparkConf().setAppName('example code') \ .set('spark.cassandra.connection.host', ','.join(cluster_seeds)) spark = SparkSession.builder.appName('Big Data Project').getOrCreate() sc = spark.sparkContext assert sys.version_info >= (3, 4) # make sure we have Python 3.4+ assert spark.version >= '2.2' # make sure we have Spark 2.2+ inputs = '/home/ldua/Desktop/County/max_value_combined/county_max_value_combined.csv'#sys.argv[1] output = '/home/ldua/Desktop/County/predicted_aqi/' def aqi_cal(val,aqilevel,gaslevel): length = len(gaslevel) for i in range(len(gaslevel)): if (val < gaslevel[i]): num1 = val - gaslevel[i - 1] num2 = aqilevel[i] - aqilevel[i - 1] den = gaslevel[i] - gaslevel[i - 1] aqival = ((num1 * num2) / den) + aqilevel[i - 1] break else: if (val >= gaslevel[length-1]): aqival = aqilevel[length-1]-1 break return aqival # def aqi_so2(val): # # return aqi def transform(line): val = line.split(',') if val[0] == 'county_code': return (val[0],val[1],val[2],val[3],val[4],val[5],val[6],val[7],val[8],'global_aqi') #return line+',Global_AQI' else: aqi_level = [0,51,101,151,201,301,401,500] ozone_level = [0,.055,.071,.086,.106,.201] so_level = [0,36,76,186,305,605,805,1005] co_level = [0,4.5,9.5,12.5,15.5,30.5,40.5,50.5] no_level = [0,54,101,361,650,1250,1650,2050] pm_level = [0,12.1,35.5,55.5,150.5,250.5,350.5,500.5] aqi_oz = aqi_cal(float(val[3]),aqi_level,ozone_level) aqi_so = aqi_cal(float(val[4]), aqi_level, so_level) aqi_co = aqi_cal(float(val[5]), aqi_level, co_level) aqi_no = aqi_cal(float(val[6]), aqi_level, no_level) aqi_pma = aqi_cal(float(val[7]), aqi_level, pm_level) aqi_pmb = aqi_cal(float(val[8]), aqi_level, pm_level) # val[3] = float(val[3]) # val[4] = float(val[4]) # val[5] = float(val[5]) # val[6] = float(val[6]) # for i in range(len(ozone_level)): # if(val[3]< ozone_level[i]): # num1 = val[3] - ozone_level[i-1] # num2 = aqi_level[i] - aqi_level[i-1] # den = ozone_level[i] - ozone_level[i-1] # aqi_oz = ((num1 * num2)/den)+aqi_level[i-1] # break # else: # if(val[3] >= ozone_level[5]): # aqi_oz = 300 # break # # for i in range(len(so_level)): # if (val[4] < so_level[i]): # num1 = val[4] - so_level[i - 1] # num2 = aqi_level[i] - aqi_level[i - 1] # den = so_level[i] - so_level[i - 1] # aqi_so = ((num1 * num2) / den) + aqi_level[i - 1] # break # else: # if (val[4] > so_level[7]): # aqi_so = 500 # break # # for i in range(len(co_level)): # if (val[5] < co_level[i]): # num1 = val[5] - co_level[i - 1] # num2 = aqi_level[i] - aqi_level[i - 1] # den = co_level[i] - co_level[i - 1] # aqi_co = ((num1 * num2) / den) + aqi_level[i - 1] # break # else: # if (val[5] > co_level[7]): # aqi_co = 500 # break # # for i in range(len(no_level)): # if (val[6] < no_level[i]): # num1 = val[6] - no_level[i - 1] # num2 = aqi_level[i] - aqi_level[i - 1] # den = no_level[i] - no_level[i - 1] # aqi_no = ((num1 * num2) / den) + aqi_level[i - 1] # break # else: # if (val[6] > no_level[7]): # aqi_no = 500 # break glo = [aqi_no,aqi_so,aqi_oz,aqi_co,aqi_pma,aqi_pmb] return (val[0],val[1],val[2],aqi_oz,aqi_so,aqi_co,aqi_no,aqi_pma,aqi_pmb,max(glo)) # explicit_schema = types.StructType([types.StructField('State Code', types.IntegerType(), True), # types.StructField('Month', types.IntegerType(), True), # types.StructField('Year',types.IntegerType(), True), # types.StructField('AM_Predicted_44201', types.DoubleType(), True), # types.StructField('AM_Predicted_42401', types.DoubleType(), True)]) #State Code,Year,Month,AM_Predicted_44201,AM_Predicted_42401 #Row(State Code=1, Month=2011, Year=1, AM_Predicted_44201=0.02665985549600323, AM_Predicted_42401=1.6022149730848756) #training = sc.textFile("/home/ldua/Desktop/BigDataProject/Output/AQI/part-00000-e88f6806-9bdc-4906-84f7-0647e9a022d8-c000.csv") #training = spark.read.csv("/home/ldua/Desktop/BigDataProject/Output/AQI/part-00000-e88f6806-9bdc-4906-84f7-0647e9a022d8-c000.csv", header= True, schema= explicit_schema) #aqi = training.map(transform) training = sc.textFile(inputs) #temp = training.rdd aqi = training.map(transform) header = aqi.first() data = aqi.filter(lambda row : row != header).toDF(header) data.show() data.coalesce(1).write.csv('/home/ldua/Desktop/County/predicted_aqi', sep=',', header=True) #print(aqi.collect()) #training.show(
[ "aman0609@gmail.com" ]
aman0609@gmail.com
90183dd66049d8068183095a0e87e5343aca7ef3
6cdfe80ca94f52191f13f5684794b21b1e4747c1
/day6/day6.py
b01b570b1d9930b4f7aee46a283f24a806232e1f
[]
no_license
TheFunctionalGuy/adventofcode
0ce3515eba463817ebb239e045710e9da573c98f
dcc614a2d2bef54497ae7c5cf0edeececbba55a2
refs/heads/master
2020-09-22T11:22:11.864866
2019-12-11T20:46:16
2019-12-11T20:49:24
225,173,913
0
0
null
null
null
null
UTF-8
Python
false
false
1,993
py
from typing import Dict from anytree import Node, PreOrderIter # Solution for: https://adventofcode.com/2019/day/6 def count_orbits(): with open('input.txt', mode='r') as input_file: # Part one lines = [line.rstrip() for line in input_file] nodes = {} for line in lines: orbits = line.split(')') # Create new node or get existing node if orbits[0] not in nodes: node_1 = Node(orbits[0]) nodes[orbits[0]] = node_1 else: node_1 = nodes[orbits[0]] # Create new node or get existing node if orbits[1] not in nodes: node_2 = Node(orbits[1], parent=node_1) nodes[orbits[1]] = node_2 else: nodes[orbits[1]].parent = node_1 # Traversal tree number_of_ancestors = [len(node.ancestors) for node in PreOrderIter(nodes['COM'])] number_of_orbits = sum(number_of_ancestors) print(f'The total number of orbits is: {number_of_orbits}') # Part two get_number_of_orbital_transfers_required(nodes) def get_number_of_orbital_transfers_required(nodes: Dict[str, Node]): # Get connection node you_path = nodes['YOU'].path santa_path = nodes['SAN'].path intersected_path = set(you_path).intersection(set(santa_path)) # Get path length towards connection node path_length = 0 for node in intersected_path: if path_length < len(node.ancestors): path_length = len(node.ancestors) path_from_connection_node_to_you = list(filter(lambda x: len(x.ancestors) > path_length, you_path)) path_from_connection_node_to_santa = list(filter(lambda x: len(x.ancestors) > path_length, santa_path)) print(f'Minimum number of orbital transfers is: ' f'{len(path_from_connection_node_to_you) + len(path_from_connection_node_to_santa) - 2}') if __name__ == '__main__': count_orbits()
[ "jvesper95@gmail.com" ]
jvesper95@gmail.com
2cdad8f3013b066d06ef7a8f532a32106d81ba9c
913e24ea110f839c73363bc1aac9673e561fa5f8
/widowx_ros_packages/arbotix_ros/arbotix_controllers/bin/one_side_gripper_controller.py
ccba46afcab9bd3a34ddf04ca83e2d1e08759637
[ "MIT" ]
permissive
PierreExeter/WidowX-reacher
24e2b3f72e9aec24a9a61e6a8958c200e0dbe893
560c6779dc91a887191f344c43de24926ba75b4d
refs/heads/master
2023-03-06T13:48:12.810858
2021-02-22T15:36:52
2021-02-22T15:36:52
264,480,232
4
0
MIT
2021-02-22T15:27:44
2020-05-16T16:36:53
Python
UTF-8
Python
false
false
3,250
py
#!/usr/bin/env python """ one_side_gripper_controller.py - controls a gripper built with one servo Copyright (c) 2011 Vanadium Labs LLC. All right reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Vanadium Labs LLC nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL VANADIUM LABS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import rospy import thread from std_msgs.msg import Float64 from math import asin class OneSideGripperController: """ A simple controller that operates a servos to open/close to a particular size opening. """ def __init__(self): rospy.init_node("one_side_gripper_controller") rospy.logwarn("one_side_gripper_controller.py is deprecated and will be removed in ROS Indigo, please use gripper_controller") self.pad_width = rospy.get_param("~pad_width", 0.01) self.finger_length = rospy.get_param("~finger_length", 0.02) self.center = rospy.get_param("~center", 0.0) self.invert = rospy.get_param("~invert", False) # publishers self.pub = rospy.Publisher("gripper_joint/command", Float64, queue_size=5) # subscribe to command and then spin rospy.Subscriber("~command", Float64, self.commandCb) rospy.spin() def commandCb(self, msg): """ Take an input command of width to open gripper. """ # check limits #if msg.data > self.max_opening or msg.data < self.min_opening: # rospy.logerr("Command exceeds limits.") # return # compute angle angle = asin((msg.data - self.pad_width)/(2*self.finger_length)) # publish message if self.invert: self.pub.publish(-angle + self.center) else: self.pub.publish(angle + self.center) if __name__=="__main__": try: OneSideGripperController() except rospy.ROSInterruptException: rospy.loginfo("Hasta la Vista...")
[ "pierre.aumjaud@gmail.com" ]
pierre.aumjaud@gmail.com
ec72ba07483ae3889ec827f95dc7a8cc4c03a7f8
252575ae85fb3c1bd754c6812c63ab8339a0c47b
/wine.py
df3f106d4c30571c1d2f3ecfb240a260dd7a95a4
[]
no_license
Shally1130/CS7641-assignment3
ca11243ab2c19907bfaf5733b211ecd23378d093
a3b72a808de3465dd2e72e887de028c45800c4d8
refs/heads/master
2020-04-04T15:18:24.839408
2018-11-03T23:33:19
2018-11-03T23:33:19
156,032,615
0
1
null
null
null
null
UTF-8
Python
false
false
30,095
py
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixture from sklearn.decomposition import PCA from sklearn.decomposition import FastICA from sklearn.random_projection import GaussianRandomProjection from sklearn.feature_selection import SelectKBest from sklearn.preprocessing import MinMaxScaler from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.metrics import silhouette_samples, silhouette_score ################################################# #Data set 1: wine quality data set data = pd.read_csv('winequality.csv') X = data.iloc[:,:11] y = data.iloc[:,11] features = list(X.columns.values) scaler = MinMaxScaler(feature_range=[0,100]) scaler.fit(X) X_norm = pd.DataFrame(scaler.transform(X)) print(X_norm) ################################################# #K means clustering range_n_clusters = [2,4,6,8,10] for n_clusters in range_n_clusters: # Create a subplot with 1 row and 2 columns fig, (ax1, ax2) = plt.subplots(1, 2) fig.set_size_inches(18, 7) # The 1st subplot is the silhouette plot # The silhouette coefficient can range from -1, 1 but in this example all # lie within [-0.1, 1] ax1.set_xlim([-0.1, 1]) # The (n_clusters+1)*10 is for inserting blank space between silhouette # plots of individual clusters, to demarcate them clearly. ax1.set_ylim([0, len(X_norm) + (n_clusters + 1) * 10]) # Initialize the clusterer with n_clusters value and a random generator # seed of 10 for reproducibility. clusterer = KMeans(n_clusters=n_clusters, random_state=10).fit(X_norm) cluster_labels = clusterer.labels_ print("NMI score: %.6f" % normalized_mutual_info_score(y, cluster_labels)) # The silhouette_score gives the average value for all the samples. # This gives a perspective into the density and separation of the formed # clusters silhouette_avg = silhouette_score(X_norm, cluster_labels) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg) # Compute the silhouette scores for each sample sample_silhouette_values = silhouette_samples(X_norm, cluster_labels) y_lower = 10 for i in range(n_clusters): # Aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values[cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i cmap = cm.get_cmap("Spectral") color = cmap(float(i) / n_clusters) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # Label the silhouette plots with their cluster numbers at the middle ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # Compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples ax1.set_title("The silhouette plot for the various clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # The vertical line for average silhouette score of all the values ax1.axvline(x=silhouette_avg, color="red", linestyle="--") ax1.set_yticks([]) # Clear the yaxis labels / ticks ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) # 2nd Plot showing the actual clusters formed cmap = cm.get_cmap("Spectral") colors = cmap(cluster_labels.astype(float) / n_clusters) ax2.scatter( X_norm.iloc[:, 10], X_norm.iloc[:, 8], marker='.', s=30, lw=0, alpha=0.7, c=colors, edgecolor='k') # Labeling the clusters centers = clusterer.cluster_centers_ # Draw white circles at cluster centers ax2.scatter(centers[:, 10], centers[:, 8], marker='o', c="white", alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): ax2.scatter( c[10], c[8], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') ax2.set_title("The visualization of the clustered data.") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show() ################################################# #Expectation Maximization clustering for n_clusters in range_n_clusters: fig = plt.gcf() fig.set_size_inches(7, 7) ax = fig.add_subplot(111) # Initialize the clusterer with n_clusters value and a random generator # seed of 10 for reproducibility. clusterer = GaussianMixture(n_components=n_clusters, random_state=10).fit(X_norm) cluster_labels = clusterer.predict(X_norm) print("NMI score: %.6f" % normalized_mutual_info_score(y, cluster_labels)) # 2nd Plot showing the actual clusters formed cmap = cm.get_cmap("Spectral") colors = cmap(cluster_labels.astype(float) / n_clusters) plt.scatter( X_norm.iloc[:, 10], X_norm.iloc[:, 8], marker='.', s=30, lw=0, alpha=0.7, c=colors, edgecolor='k') # Labeling the clusters centers = clusterer.means_ # Draw white circles at cluster centers plt.scatter(centers[:, 10], centers[:, 8], marker='o', c="white", alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): ax.scatter( c[10], c[8], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') ax.set_title("The visualization of the clustered data.") ax.set_xlabel("Feature space for the 1st feature") ax.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Clusters plot for EM clustering on sample data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show() ################################################# #PCA feature transformation pca = PCA(n_components=11, random_state=10) X_r = pca.fit(X).transform(X) X_pca = X_r print('explained variance ratio (first two components): %s' % str(pca.explained_variance_ratio_)) plt.figure() colors = ["b","g","r","c","m","y","k"] lw = 2 for color, i in zip(colors, [4,8]): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw, label=i) plt.legend(loc='best', shadow=False, scatterpoints=1) plt.title('PCA of Wine Quality dataset') ################################################# #ICA feature transformation ica = FastICA(n_components=11, random_state=10) X_r = ica.fit(X).transform(X) X_ica = X_r plt.figure() colors = ["b","g","r","c","m","y","k"] lw = 2 for color, i in zip(colors, [4,8]): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw, label=i) plt.legend(loc='best', shadow=False, scatterpoints=1) plt.title('ICA of Wine Quality dataset') ################################################# #Random Projection feature transformation rca = GaussianRandomProjection(n_components=11, random_state=10) X_r = rca.fit_transform(X) X_rca = X_r plt.figure() colors = ["b","g","r","c","m","y","k"] lw = 2 for color, i in zip(colors, [4,8]): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw, label=i) plt.legend(loc='best', shadow=False, scatterpoints=1) plt.title('Random Projection of Wine Quality dataset') ################################################# #Univariate feature selection (K best) from sklearn.feature_selection import chi2 from sklearn.feature_selection import mutual_info_classif X_new = SelectKBest(chi2, k=5).fit_transform(X, y) X_fs = X_new plt.figure() colors = ["b","g","r","c","m","y","k"] lw = 2 for color, i in zip(colors, [4,8]): plt.scatter(X_new[y == i, 4], X_new[y == i, 0], color=color, alpha=.8, lw=lw, label=i) plt.legend(loc='best', shadow=False, scatterpoints=1) plt.title('Chi square feature selection of Wine Quality dataset') plt.show() ################################################# #Rerun clustering on transformed features # range_n_clusters = [2,4,6,8,10] # X_test=pd.DataFrame(X_pca) # n_clusters = 6 # # for n_clusters in range_n_clusters: # fig = plt.gcf() # fig.set_size_inches(7, 7) # ax = fig.add_subplot(111) # clusterer = KMeans(n_clusters=n_clusters, random_state=10).fit(X_test) # cluster_labels = clusterer.labels_ # silhouette_avg = silhouette_score(X_test, cluster_labels) # print("For n_clusters =", n_clusters, # "The average silhouette_score is :", silhouette_avg) # print("The NMI score is: %.6f" % normalized_mutual_info_score(y, cluster_labels)) # cmap = cm.get_cmap("Spectral") # colors = cmap(cluster_labels.astype(float) / n_clusters) # ax.scatter( X_test.iloc[:, 0], X_test.iloc[:, 1], marker='.', s=30, lw=0, alpha=0.7, # c=colors, edgecolor='k') # centers = clusterer.cluster_centers_ # ax.scatter(centers[:, 0], centers[:, 1], marker='o', # c="white", alpha=1, s=200, edgecolor='k') # for i, c in enumerate(centers): # ax.scatter( c[0], c[1], marker='$%d$' % i, alpha=1, # s=50, edgecolor='k') # ax.set_title("The visualization of the clustered data.") # ax.set_xlabel("Feature space for the 1st feature") # ax.set_ylabel("Feature space for the 2nd feature") # plt.suptitle(("KMeans clustering using PCA feature transformation " # "with n_clusters = %d" % n_clusters), # fontsize=14, fontweight='bold') # plt.show() ################################################################# # n_clusters = 6 # X_test=pd.DataFrame(X_ica) # # for n_clusters in range_n_clusters: # fig = plt.gcf() # fig.set_size_inches(7, 7) # ax = fig.add_subplot(111) # clusterer = KMeans(n_clusters=n_clusters, random_state=10).fit(X_test) # cluster_labels = clusterer.labels_ # silhouette_avg = silhouette_score(X_test, cluster_labels) # print("For n_clusters =", n_clusters, # "The average silhouette_score is :", silhouette_avg) # print("The NMI score is: %.6f" % normalized_mutual_info_score(y, cluster_labels)) # cmap = cm.get_cmap("Spectral") # colors = cmap(cluster_labels.astype(float) / n_clusters) # ax.scatter( X_test.iloc[:, 0], X_test.iloc[:, 1], marker='.', s=30, lw=0, alpha=0.7, # c=colors, edgecolor='k') # centers = clusterer.cluster_centers_ # ax.scatter(centers[:, 0], centers[:, 1], marker='o', # c="white", alpha=1, s=200, edgecolor='k') # for i, c in enumerate(centers): # ax.scatter( c[0], c[1], marker='$%d$' % i, alpha=1, # s=50, edgecolor='k') # ax.set_title("The visualization of the clustered data.") # ax.set_xlabel("Feature space for the 1st feature") # ax.set_ylabel("Feature space for the 2nd feature") # plt.suptitle(("KMeans clustering using ICA feature transformation " # "with n_clusters = %d" % n_clusters), # fontsize=14, fontweight='bold') # plt.show() # # ################################################################### # n_clusters = 6 # X_test=pd.DataFrame(X_fs) # # for n_clusters in range_n_clusters: # fig = plt.gcf() # fig.set_size_inches(7, 7) # ax = fig.add_subplot(111) # clusterer = KMeans(n_clusters=n_clusters, random_state=10).fit(X_test) # cluster_labels = clusterer.labels_ # silhouette_avg = silhouette_score(X_test, cluster_labels) # print("For n_clusters =", n_clusters, # "The average silhouette_score is :", silhouette_avg) # print("The NMI score is: %.6f" % normalized_mutual_info_score(y, cluster_labels)) # cmap = cm.get_cmap("Spectral") # colors = cmap(cluster_labels.astype(float) / n_clusters) # ax.scatter( X_test.iloc[:, 0], X_test.iloc[:, 1], marker='.', s=30, lw=0, alpha=0.7, # c=colors, edgecolor='k') # centers = clusterer.cluster_centers_ # ax.scatter(centers[:, 0], centers[:, 1], marker='o', # c="white", alpha=1, s=200, edgecolor='k') # for i, c in enumerate(centers): # ax.scatter( c[0], c[1], marker='$%d$' % i, alpha=1, # s=50, edgecolor='k') # ax.set_title("The visualization of the clustered data.") # ax.set_xlabel("Feature space for the 1st feature") # ax.set_ylabel("Feature space for the 2nd feature") # plt.suptitle(("KMeans clustering using feature selection transformation " # "with n_clusters = %d" % n_clusters), # fontsize=14, fontweight='bold') # plt.show() # # ################################################################### # n_clusters = 6 # X_test=pd.DataFrame(X_rca) # # for n_clusters in range_n_clusters: # fig = plt.gcf() # fig.set_size_inches(7, 7) # ax = fig.add_subplot(111) # clusterer = KMeans(n_clusters=n_clusters, random_state=10).fit(X_test) # cluster_labels = clusterer.labels_ # silhouette_avg = silhouette_score(X_test, cluster_labels) # print("For n_clusters =", n_clusters, # "The average silhouette_score is :", silhouette_avg) # print("The NMI score is: %.6f" % normalized_mutual_info_score(y, cluster_labels)) # cmap = cm.get_cmap("Spectral") # colors = cmap(cluster_labels.astype(float) / n_clusters) # ax.scatter( X_test.iloc[:, 0], X_test.iloc[:, 1], marker='.', s=30, lw=0, alpha=0.7, # c=colors, edgecolor='k') # centers = clusterer.cluster_centers_ # ax.scatter(centers[:, 0], centers[:, 1], marker='o', # c="white", alpha=1, s=200, edgecolor='k') # for i, c in enumerate(centers): # ax.scatter( c[0], c[1], marker='$%d$' % i, alpha=1, # s=50, edgecolor='k') # ax.set_title("The visualization of the clustered data.") # ax.set_xlabel("Feature space for the 1st feature") # ax.set_ylabel("Feature space for the 2nd feature") # plt.suptitle(("KMeans clustering using RCA transformation " # "with n_clusters = %d" % n_clusters), # fontsize=14, fontweight='bold') # plt.show() ################################################################### n_clusters = 6 X_test=pd.DataFrame(X_rca) # for n_clusters in range_n_clusters: fig = plt.gcf() fig.set_size_inches(7, 7) ax = fig.add_subplot(111) clusterer = GaussianMixture(n_components=n_clusters, random_state=10).fit(X_test) cluster_labels = clusterer.predict(X_test) print("RCA NMI score: %.6f" % normalized_mutual_info_score(y, cluster_labels)) cmap = cm.get_cmap("Spectral") colors = cmap(cluster_labels.astype(float) / n_clusters) plt.scatter( X_test.iloc[:, 0], X_test.iloc[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors, edgecolor='k') centers = clusterer.means_ plt.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): ax.scatter( c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') ax.set_title("The visualization of the clustered data.") ax.set_xlabel("Feature space for the 1st feature") ax.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Clusters plot for EM clustering on RCA data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show() ################################################################## n_clusters = 6 X_test=pd.DataFrame(X_ica) fig = plt.gcf() fig.set_size_inches(7, 7) ax = fig.add_subplot(111) clusterer = GaussianMixture(n_components=n_clusters, random_state=10).fit(X_test) cluster_labels = clusterer.predict(X_test) print("ICA NMI score: %.6f" % normalized_mutual_info_score(y, cluster_labels)) cmap = cm.get_cmap("Spectral") colors = cmap(cluster_labels.astype(float) / n_clusters) plt.scatter( X_test.iloc[:, 0], X_test.iloc[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors, edgecolor='k') centers = clusterer.means_ plt.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): ax.scatter( c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') ax.set_title("The visualization of the clustered data.") ax.set_xlabel("Feature space for the 1st feature") ax.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Clusters plot for EM clustering on ICA data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show() ################################################################## n_clusters = 6 X_test=pd.DataFrame(X_fs) # for n_clusters in range_n_clusters: fig = plt.gcf() fig.set_size_inches(7, 7) ax = fig.add_subplot(111) clusterer = GaussianMixture(n_components=n_clusters, random_state=10).fit(X_test) cluster_labels = clusterer.predict(X_test) print("FS NMI score: %.6f" % normalized_mutual_info_score(y, cluster_labels)) cmap = cm.get_cmap("Spectral") colors = cmap(cluster_labels.astype(float) / n_clusters) plt.scatter( X_test.iloc[:, 0], X_test.iloc[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors, edgecolor='k') centers = clusterer.means_ plt.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): ax.scatter( c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') ax.set_title("The visualization of the clustered data.") ax.set_xlabel("Feature space for the 1st feature") ax.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Clusters plot for EM clustering on feature selection data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show() ##################################################### n_clusters = 6 X_test=pd.DataFrame(X_pca) # for n_clusters in range_n_clusters: fig = plt.gcf() fig.set_size_inches(7, 7) ax = fig.add_subplot(111) clusterer = GaussianMixture(n_components=n_clusters, random_state=10).fit(X_test) cluster_labels = clusterer.predict(X_test) print("PCA NMI score: %.6f" % normalized_mutual_info_score(y, cluster_labels)) cmap = cm.get_cmap("Spectral") colors = cmap(cluster_labels.astype(float) / n_clusters) plt.scatter( X_test.iloc[:, 0], X_test.iloc[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors, edgecolor='k') centers = clusterer.means_ plt.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): ax.scatter( c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') ax.set_title("The visualization of the clustered data.") ax.set_xlabel("Feature space for the 1st feature") ax.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Clusters plot for EM clustering on PCA data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show() ################################################# #Rerun ANN on transformed features from sklearn.neural_network import MLPClassifier from sklearn.model_selection import learning_curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") plt.show() clf = MLPClassifier(hidden_layer_sizes=(20, 5), random_state=0, solver="lbfgs") plot_learning_curve(clf, "MLP using PCA transformed features", X_pca, y, ylim=[0,1]) plot_learning_curve(clf, "MLP using ICA transformed features", X_ica, y, ylim=[0,1]) plot_learning_curve(clf, "MLP using RCA transformed features", X_rca, y, ylim=[0,1]) plot_learning_curve(clf, "MLP using Selected 5 features", X_fs, y, ylim=[0,1]) ################################################# #Rerun ANN on transformed features with clusters new feature clf = MLPClassifier(hidden_layer_sizes=(20, 5), random_state=0, solver="lbfgs") clusterer = KMeans(n_clusters=10, random_state=10).fit(X_pca) y_kmeans = clusterer.labels_ X_df = pd.DataFrame(X_pca) X_df[11] = y_kmeans plot_learning_curve(clf, "MLP using PCA transformed features", X_df, y, ylim=[0,1]) clusterer = KMeans(n_clusters=10, random_state=10).fit(X_ica) y_kmeans = clusterer.labels_ X_df = pd.DataFrame(X_ica) X_df[11] = y_kmeans plot_learning_curve(clf, "MLP using ICA transformed features", X_df, y, ylim=[0,1]) clusterer = KMeans(n_clusters=10, random_state=10).fit(X_rca) y_kmeans = clusterer.labels_ X_df = pd.DataFrame(X_rca) X_df[11] = y_kmeans plot_learning_curve(clf, "MLP using RCA transformed features", X_df, y, ylim=[0,1]) clusterer = KMeans(n_clusters=10, random_state=10).fit(X_fs) y_kmeans = clusterer.labels_ X_df = pd.DataFrame(X_fs) X_df[11] = y_kmeans plot_learning_curve(clf, "MLP using selected 5 features", X_df, y, ylim=[0,1]) ################################################# # #Data set 2: Gene expression data set # from sklearn.preprocessing import quantile_transform # data = pd.read_csv('sle_data.csv') # X = data.iloc[:, 1:5090] # y = np.append(np.repeat("HC",34), np.repeat("Disease",42)) # features = list(X.columns.values) # scaler = MinMaxScaler(feature_range=[0,100]) # scaler.fit(X) # X_norm = pd.DataFrame(quantile_transform(X)) # ################################################# # #Clustering, K means and EM # range_n_clusters = list(range(1,20)) # sse = [] # nmi = [] # for n_clusters in range_n_clusters: # clusterer = KMeans(n_clusters=n_clusters, random_state=0).fit(X) # cluster_labels = clusterer.labels_ # sse.append(clusterer.inertia_) # nmi.append(normalized_mutual_info_score(y, cluster_labels)) # plt.plot(range_n_clusters, sse, 'bx-') # plt.xlabel('k') # plt.ylabel('Sum of Squared Errors') # plt.title('The Elbow Method showing the optimal k') # plt.show() # plt.plot(range_n_clusters, nmi, 'bx-') # plt.xlabel('k') # plt.ylabel('Normalized Mutual Information') # plt.title('The NMI metric showing the optimal k') # plt.show() # range_n_clusters = list(range(1,6)) # nmi = [] # for n_clusters in range_n_clusters: # clusterer = GaussianMixture(n_components=n_clusters, random_state=0).fit(X) # cluster_labels = clusterer.predict(X) # nmi.append(normalized_mutual_info_score(y, cluster_labels)) # plt.plot(range_n_clusters, nmi, 'bx-') # plt.xlabel('N components') # plt.ylabel('Normalized Mutual Information') # plt.title('The NMI metric showing EM clustering') # plt.show() # n_clusters=3 # clusterer = GaussianMixture(n_components=n_clusters, random_state=10).fit(X) # cluster_labels = clusterer.predict(X) # print("NMI score: %.6f" % normalized_mutual_info_score(y, cluster_labels)) # # 2nd Plot showing the actual clusters formed # cmap = cm.get_cmap("Spectral") # colors = cmap(y.astype(float) / n_clusters) # plt.scatter( X.iloc[:, 3], X.iloc[:, 7], marker='.', s=90, lw=0, alpha=0.7, # c=colors, edgecolor='k') # # Labeling the clusters # centers = clusterer.means_ # # Draw white circles at cluster centers # #plt.scatter(centers[:, 3], centers[:, 7], marker='o', # # c="white", alpha=1, s=200, edgecolor='k') # for i, c in enumerate(centers): # ax.scatter( c[3], c[7], marker='$%d$' % i, alpha=1, # s=50, edgecolor='k') # ax.set_title("The visualization of the clustered data.") # ax.set_xlabel("Feature space for the 1st feature") # ax.set_ylabel("Feature space for the 2nd feature") # plt.suptitle(("EM clustering on raw sample data " # "with n_clusters = %d" % n_clusters), # fontsize=14, fontweight='bold') # plt.show() # ################################################# # #PCA Feature transformation # pca = PCA(n_components=10, random_state=10) # X_r = pca.fit(X).transform(X) # X_pca = X_r # print('explained variance ratio (first two components): %s' # % str(pca.explained_variance_ratio_)) # plt.figure() # colors = ["b","g","r","c","m","y","k"] # lw = 2 # for color, i in zip(colors, ["HC","Disease"]): # plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw, label=i) # plt.legend(loc='best', shadow=False, scatterpoints=1) # plt.title('PCA of Disease/Health data set') # ################################################# # #ICA Feature transformation # ica = FastICA(n_components=10, random_state=10) # X_r = ica.fit(X).transform(X) # X_ica = X_r # plt.figure() # colors = ["b","g","r","c","m","y","k"] # lw = 2 # for color, i in zip(colors, ["HC","Disease"]): # plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw, label=i) # plt.legend(loc='best', shadow=False, scatterpoints=1) # plt.title('ICA of Disease/Health data set') # ################################################# # #Random Projection feature transformation # rca = GaussianRandomProjection(n_components=10, random_state=10) # X_r = rca.fit_transform(X) # X_rca = X_r # plt.figure() # colors = ["b","g","r","c","m","y","k"] # lw = 2 # for color, i in zip(colors, ["HC","Disease"]): # plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw, label=i) # plt.legend(loc='best', shadow=False, scatterpoints=1) # plt.title('Random Projection of Disease/Health data set') # ################################################# # #Univariate feature selection (K best) # X_new = SelectKBest(chi2, k=10).fit_transform(X, y) # X_fs = X_new # plt.figure() # colors = ["b","g","r","c","m","y","k"] # lw = 2 # for color, i in zip(colors, ["HC","Disease"]): # plt.scatter(X_new[y == i, 1], X_new[y == i, 0], color=color, alpha=.8, lw=lw, label=i) # plt.legend(loc='best', shadow=False, scatterpoints=1) # plt.title('Chi square feature selection of Disease/Health data set') # ################################################# # #Rerun clustering on transformed features # range_n_clusters = [2,3,4,5,6] # X_test=pd.DataFrame(X_fs) # for n_clusters in range_n_clusters: # fig = plt.gcf() # fig.set_size_inches(7, 7) # ax = fig.add_subplot(111) # clusterer = KMeans(n_clusters=n_clusters, random_state=10).fit(X_test) # cluster_labels = clusterer.labels_ # silhouette_avg = silhouette_score(X_test, cluster_labels) # print("For n_clusters =", n_clusters, # "The average silhouette_score is :", silhouette_avg) # print("The NMI score is: %.6f" % normalized_mutual_info_score(y, cluster_labels)) # cmap = cm.get_cmap("Spectral") # colors = cmap(cluster_labels.astype(float) / n_clusters) # ax.scatter( X_test.iloc[:, 0], X_test.iloc[:, 1], marker='.', s=200, lw=0, alpha=0.7, # c=colors, edgecolor='k') # centers = clusterer.cluster_centers_ # ax.scatter(centers[:, 0], centers[:, 1], marker='o', # c="white", alpha=1, s=200, edgecolor='k') # for i, c in enumerate(centers): # ax.scatter( c[0], c[1], marker='$%d$' % i, alpha=1, # s=50, edgecolor='k') # ax.set_title("The visualization of the clustered data.") # ax.set_xlabel("Feature space for the 1st feature") # ax.set_ylabel("Feature space for the 2nd feature") # plt.suptitle(("KMeans clustering using Selected 10 genes " # "with n_clusters = %d" % n_clusters), # fontsize=14, fontweight='bold') # plt.show() # X_test=pd.DataFrame(X_fs) # for n_clusters in range_n_clusters: # fig = plt.gcf() # fig.set_size_inches(7, 7) # ax = fig.add_subplot(111) # clusterer = GaussianMixture(n_components=n_clusters, random_state=10).fit(X_test) # cluster_labels = clusterer.predict(X_test) # print("NMI score: %.6f" % normalized_mutual_info_score(y, cluster_labels)) # cmap = cm.get_cmap("Spectral") # colors = cmap(cluster_labels.astype(float) / n_clusters) # plt.scatter( X_test.iloc[:, 0], X_test.iloc[:, 1], marker='.', s=30, lw=0, alpha=0.7, # c=colors, edgecolor='k') # centers = clusterer.means_ # plt.scatter(centers[:, 0], centers[:, 1], marker='o', # c="white", alpha=1, s=200, edgecolor='k') # for i, c in enumerate(centers): # ax.scatter( c[0], c[1], marker='$%d$' % i, alpha=1, # s=50, edgecolor='k') # ax.set_title("The visualization of the clustered data.") # ax.set_xlabel("Feature space for the 1st feature") # ax.set_ylabel("Feature space for the 2nd feature") # plt.suptitle(("Clusters plot for EM clustering on PCA data " # "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') # plt.show() # ################################################# # #Rerun ANN on transformed features # clf = MLPClassifier(hidden_layer_sizes=(20, 5), random_state=0, solver="lbfgs") # plot_learning_curve(clf, "MLP using FS transformed expression", X_fs, y, ylim=[0,1]) # clf = MLPClassifier(hidden_layer_sizes=(20, 5), random_state=0, solver="lbfgs") # clusterer = KMeans(n_clusters=6, random_state=10).fit(X_pca) # y_kmeans = clusterer.labels_ # X_df = pd.DataFrame(X_pca) # X_df[11] = y_kmeans # plot_learning_curve(clf, "MLP using PCA transformed features", X_df, y, ylim=[0,1])
[ "noreply@github.com" ]
Shally1130.noreply@github.com
cd32d9d2c2d3031d15b301e0fbba6be7e552c401
b985f1abc806f7cf4962374140668aa65e330a71
/pages/transition.py
58dc84bb39840ae7d0e60944c2f2fa2623a51c35
[]
no_license
Decentorage/User-Node
2665862706130c1bc14f2a7248a3ed0c0603088a
30afa71ac68a4bea73d28796186be390d00dd8c5
refs/heads/main
2023-06-26T11:21:00.136614
2021-07-27T13:44:13
2021-07-27T13:44:13
357,921,279
0
0
null
2021-07-27T13:44:14
2021-04-14T13:48:13
Python
UTF-8
Python
false
false
407
py
from PyQt5 import QtCore, QtWidgets class Transition(QtWidgets.QWidget): # Signals okay_switch = QtCore.pyqtSignal() def __init__(self, ui, helper): QtWidgets.QWidget.__init__(self) self.ui = ui self.helper = helper # Connectors self.ui.transition_okay_pb.clicked.connect(self.okay_pressed) def okay_pressed(self): self.okay_switch.emit()
[ "amr.ahmed.abdelbaqi@gmail.com" ]
amr.ahmed.abdelbaqi@gmail.com
fcd886b1b6502bdaedb01d6a0154932c1d898228
7d7d8f79e8bae80a8c99240b158c6f3d2abbf94d
/election/migrations/0003_auto_20190319_2337.py
a6df03312c9f5673d2129268fbf5d3f008f101e9
[ "MIT" ]
permissive
ecss-soton/ecssweb
feeb208a504bc80b9453ba306c51cae6da3718cd
06ddda86863ddb85e5da39a6f7b7fb29af902b16
refs/heads/master
2022-12-16T02:59:45.147472
2022-12-11T22:13:04
2022-12-11T22:13:04
133,257,221
4
3
MIT
2022-12-11T22:13:06
2018-05-13T16:58:48
HTML
UTF-8
Python
false
false
1,723
py
# Generated by Django 2.1.2 on 2019-03-19 23:37 from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): dependencies = [ ('election', '0002_auto_20190310_1218'), ] operations = [ migrations.CreateModel( name='Vote', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('time', models.DateTimeField(auto_now_add=True)), ('position', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='election.Position')), ], ), migrations.CreateModel( name='Voter', fields=[ ('uuid', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('username', models.CharField(max_length=50)), ('position', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='election.Position')), ], ), migrations.CreateModel( name='VoteRecord', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('rank', models.IntegerField()), ('nomination', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='election.Nomination')), ('vote', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='election.Vote')), ], ), migrations.AlterUniqueTogether( name='voter', unique_together={('username', 'position')}, ), ]
[ "i@cjxol.com" ]
i@cjxol.com
8e2d8002d1adb3ba31abe658807413d2afd3505e
6092d481d042ae9383454f29567be7f4d0847fd9
/3vm-demo/trex/v2.35/automation/trex_control_plane/stl/trex_stl_lib/trex_stl_conn.py
e64ddbd9053a357deda37d89225bd8de38546e6a
[]
no_license
ilsffun19/ovs-dpdk
02971cc31190eb70264499dbdd3fb20cb3fd1b8f
d760f1fd8f76513caa665a6dbec65ce1f0c1ecc7
refs/heads/master
2020-04-03T17:54:27.838112
2020-03-30T19:20:37
2020-03-30T19:20:37
155,463,472
2
2
null
null
null
null
UTF-8
Python
false
false
6,679
py
from .trex_stl_types import * from .trex_stl_jsonrpc_client import JsonRpcClient, BatchMessage, ErrNo as JsonRpcErrNo from .trex_stl_async_client import CTRexAsyncClient import time import signal import os ############################ RPC layer ############################# ############################ ############################# ############################ ############################# class CCommLink(object): """Describes the connectivity of the stateless client method""" def __init__(self, server="localhost", port=5050, virtual=False, client = None): self.server = server self.port = port self.rpc_link = JsonRpcClient(self.server, self.port, client) # API handler provided by the server self.api_h = None def get_server (self): return self.server def get_port (self): return self.port def connect(self): return self.rpc_link.connect() def disconnect(self): self.api_h = None return self.rpc_link.disconnect() def transmit(self, method_name, params = None, retry = 0): return self.rpc_link.invoke_rpc_method(method_name, params, self.api_h, retry = retry) def transmit_batch(self, batch_list, retry = 0): batch = self.rpc_link.create_batch() for command in batch_list: batch.add(command.method, command.params, self.api_h) # invoke the batch return batch.invoke(retry = retry) class Connection(object): ''' Manages that connection to the server connection state object describes the connection to the server state can be either fully disconnected, fully connected or marked for disconnection ''' DISCONNECTED = 1 CONNECTED = 2 MARK_FOR_DISCONNECT = 3 def __init__ (self, conn_info, logger, client): self.conn_info = conn_info self.logger = logger self.sigint_on_conn_lost = False # API classes self.api_ver = {'name': 'STL', 'major': 4, 'minor': 1} # low level RPC layer self.rpc = CCommLink(self.conn_info['server'], self.conn_info['sync_port'], self.conn_info['virtual'], client) self.async = CTRexAsyncClient(self.conn_info['server'], self.conn_info['async_port'], client) # save pointers self.conn_info = conn_info # init state self.state = (self.DISCONNECTED, None) def disconnect (self): ''' disconnect from both channels sync and async ''' try: self.rpc.disconnect() self.async.disconnect() finally: self.state = (self.DISCONNECTED, None) def connect (self): ''' connect to the server (two channels) ''' # first disconnect if already connected if self.is_connected(): self.disconnect() # connect rc = self.__connect() if not rc: self.disconnect() return rc def barrier (self): ''' executes a barrier when it retruns, an async barrier is guaranteed ''' return self.async.barrier() def sync (self): ''' fully sync the client with the server must be called after all the config was done ''' return self.async.barrier(baseline = True) def mark_for_disconnect (self, cause): ''' A multithread safe call any thread can mark the current connection as not valid and will require the main thread to reconnect ''' # avoid any messages handling for the async thread self.async.set_as_zombie() # change state self.state = (self.MARK_FOR_DISCONNECT, cause) # if the flag is on, a SIGINT will be sent to the main thread # causing the ZMQ RPC to stop what it's doing and report an error if self.sigint_on_conn_lost: os.kill(os.getpid(), signal.SIGINT) def sigint_on_conn_lost_enable (self): ''' when enabled, if connection is lost a SIGINT will be sent to the main thread ''' self.sigint_on_conn_lost = True def sigint_on_conn_lost_disable (self): ''' disable SIGINT dispatching on case of connection lost ''' self.sigint_on_conn_lost = False def is_alive (self): ''' return True if any data has arrived the server in the last 3 seconds ''' return ( self.async.last_data_recv_ts is not None and ((time.time() - self.async.last_data_recv_ts) <= 3) ) def is_connected (self): return (self.state[0] == self.CONNECTED) def is_marked_for_disconnect (self): return self.state[0] == self.MARK_FOR_DISCONNECT def get_disconnection_cause (self): return self.state[1] ########## private ################ def __connect (self): ''' connect to the server (two channels) ''' # start with the sync channel self.logger.pre_cmd("Connecting to RPC server on {0}:{1}".format(self.conn_info['server'], self.conn_info['sync_port'])) rc = self.rpc.connect() if not rc: return rc # API sync V2 rc = self.rpc.transmit("api_sync_v2", params = self.api_ver) self.logger.post_cmd(rc) if not rc: # api_sync_v2 is not present in v2.30 and older if rc.errno() == JsonRpcErrNo.MethodNotSupported: return RC_ERR('Mismatch between client and server versions') return rc # get the API_H and provide it to the RPC channel from now on self.rpc.api_h = rc.data()['api_h'] # connect async channel self.logger.pre_cmd("Connecting to publisher server on {0}:{1}".format(self.conn_info['server'], self.conn_info['async_port'])) rc = self.async.connect() self.logger.post_cmd(rc) if not rc: return rc self.state = (self.CONNECTED, None) return RC_OK()
[ "irene.liew@intel.com" ]
irene.liew@intel.com
abe2253ea7350d7773d326c712e376a3a3925019
65388f96457bc2ed38fa48dea7c947a7aca7e396
/{{cookiecutter.project_name}}/app/apps/accounts/test_views.py
2f1441c3bb996de8bcd16d784f48f43ddba74de0
[]
no_license
JTarball/cookiecutter-django-project
0478f1f4f6068e6e0e8c4e207d624df45523d82f
658f83a36b087e8d20a8d25bc97425245f4434a0
refs/heads/master
2020-12-26T08:54:56.688819
2016-12-10T22:17:39
2016-12-10T22:17:39
68,531,018
0
0
null
null
null
null
UTF-8
Python
false
false
49,715
py
""" accounts.test_views =================== Tests the REST API calls. Add more specific social registration tests """ import responses import copy from django.core.urlresolvers import reverse from django.core import mail from django.contrib.sites.models import Site from django.contrib.auth import get_user_model from django.test.utils import override_settings from rest_framework import status from rest_framework.test import APIClient, APITestCase from allauth.account import app_settings from allauth.socialaccount.models import SocialApp from allauth.socialaccount.providers.facebook.provider import GRAPH_API_URL from .serializers import LoginSerializer from django.conf import settings class TestRegistrations(APITestCase): """ Tests Registration. """ def setUp(self): self.login_url = reverse('accounts:rest_login') self.logout_url = reverse('accounts:rest_logout') self.register_url = reverse('accounts:rest_register') self.password_reset_url = reverse('accounts:rest_password_reset') self.rest_password_reset_confirm_url = reverse('accounts:rest_password_reset_confirm') self.password_change_url = reverse('accounts:rest_password_change') self.verify_url = reverse('accounts:rest_verify_email') self.user_url = reverse('accounts:rest_user_details') self.client = APIClient() self.reusable_user_data = {'username': 'admin', 'email': 'admin@email.com', 'password': 'password12'} self.reusable_user_data_change_password = {'username': 'admin', 'email': 'admin@email.com', 'password': 'password_same'} self.reusable_register_user_data = {'username': 'admin', 'email': 'admin@email.com', 'password1': 'password12', 'password2': 'password12'} self.reusable_register_user_data_different_email = {'username': 'admin', 'email': 'admin@email.com', 'password1': 'password12', 'password2': 'password12'} self.reusable_register_user_data_different_username = {'username': 'admin1', 'email': 'admin@email.com', 'password1': 'password12', 'password2': 'password12'} self.reusable_register_user_data_no_username = {'email': 'admin@email.com', 'password1': 'password12', 'password2': 'password12'} self.reusable_register_user_data_no_email = {'username': 'admin', 'password1': 'password12', 'password2': 'password12'} self.change_password_data_incorrect = {"new_password1": "password_not_same", "new_password2": "password_same"} self.change_password_data = {"new_password1": "password_same", "new_password2": "password_same"} self.change_password_data_old_password_field_enabled = {"old_password": "password12", "new_password1": "password_same", "new_password2": "password_same"} def common_test_registration_basic(self, data): response = self.client.post(self.register_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_201_CREATED, response.content) return response def common_test_registration_400(self, data): response = self.client.post(self.register_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST, response.content) return response def common_test_registration_email_verification_mandatory(self): self.common_test_registration_basic(self.reusable_register_user_data1) response = self.client.post(self.login_url, {'email': 'admin1@email.com', 'password': 'password12'}, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) # Normal Registration with Tests - From Here # =========================================== @override_settings(ACCOUNT_USERNAME_REQUIRED=True) def test_registration_username_required(self): """ Tests username is required during registration when ACCOUNT_USERNAME_REQUIRED is set. """ self.common_test_registration_400(self.reusable_register_user_data_no_username) @override_settings(ACCOUNT_EMAIL_REQUIRED=True) def test_registration_email_required(self): """ Tests email is required during registration when ACCOUNT_EMAIL_REQUIRED is set. """ self.common_test_registration_400(self.reusable_register_user_data_no_email) @override_settings(ACCOUNT_EMAIL_REQUIRED=True, ACCOUNT_USERNAME_REQUIRED=True) def test_registration_email_and_username_required(self): """ Tests email and username is required for registration. """ self.common_test_registration_basic(self.reusable_register_user_data) @override_settings(ACCOUNT_EMAIL_REQUIRED=True, ACCOUNT_USERNAME_REQUIRED=False) def test_registration_email_required_username_not_required(self): """ Tests email is required even when username is not required for registration. """ self.common_test_registration_basic(self.reusable_register_user_data_no_username) @override_settings(ACCOUNT_EMAIL_REQUIRED=False, ACCOUNT_USERNAME_REQUIRED=True) def test_registration_username_required_email_not_required(self): """ Tests username is required even when email is not required for registration. """ self.common_test_registration_basic(self.reusable_register_user_data_no_email) @override_settings(ACCOUNT_EMAIL_VERIFICATION="none") def test_registration_email_verification_not_necessary(self): """ Tests email verification is not needed for logged in when ACCOUNT_EMAIL_VERIFICATION is set to none. """ self.common_test_registration_basic(self.reusable_register_user_data) print settings.STATICFILES_STORAGE response = self.client.post(self.login_url, self.reusable_user_data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) @override_settings(ACCOUNT_EMAIL_VERIFICATION="optional") def test_registration_email_verification_optional(self): """ Tests email verification is not needed for logged in when ACCOUNT_EMAIL_VERIFICATION is set to optional. """ self.common_test_registration_basic(self.reusable_register_user_data) response = self.client.post(self.login_url, self.reusable_user_data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) @override_settings(ACCOUNT_EMAIL_VERIFICATION="mandatory") def test_registration_email_verification_mandatory(self): """ Tests email verification is needed for logged in when ACCOUNT_EMAIL_VERIFICATION is set to mandatory. """ self.common_test_registration_basic(self.reusable_register_user_data) response = self.client.post(self.login_url, self.reusable_user_data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) @override_settings(ACCOUNT_UNIQUE_EMAIL=False) def test_registration_email_doesnt_need_to_be_unique(self): """ Tests registration doesnt need an unique email when ACCOUNT_UNIQUE_EMAIL is set. """ different_username = copy.deepcopy(self.reusable_register_user_data) different_username['username'] = 'admin_different' self.common_test_registration_basic(self.reusable_register_user_data) self.common_test_registration_basic(different_username) @override_settings(ACCOUNT_UNIQUE_EMAIL=True) def test_registration_email_needs_to_be_unique(self): """ Tests registration needs an unique email when ACCOUNT_UNIQUE_EMAIL is set. """ different_username = copy.deepcopy(self.reusable_register_user_data) different_username['username'] = 'admin_different' self.common_test_registration_basic(self.reusable_register_user_data) response = self.common_test_registration_400(different_username) self.assertEquals(response.content, '{"email":["A user is already registered with this e-mail address."]}') @override_settings(ACCOUNTS_REGISTRATION_OPEN=False) def test_registration_basic_registration_not_open(self): """ Tests basic registration fails if registration is closed. """ response = self.client.post(self.register_url, self.reusable_register_user_data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEquals(response.content, '{"message":"Registration is current closed. Please try again soon."}') # Normal Registration with Tests - what we normal want # WARNING: If you change the settings these tests will fail # this is to ensure we dont by accident change something # ========================================================= # username or email login # email verification # require email and username when registering # email doesnt have to be unique # ACCOUNT_EMAIL_REQUIRED = True # ACCOUNT_USERNAME_REQUIRED = True # ACCOUNT_EMAIL_VERIFICATION = "mandatory" # ACCOUNT_AUTHENTICATION_METHOD = "username" # ACCOUNT_UNIQUE_EMAIL = False # ACCOUNT_ADAPTER = "apps.accounts.adapter.DefaultAccountAdapter" def test_registration_normal_use_username_required_when_registering(self): """ Checks username is required when registering.""" response = self.common_test_registration_400(self.reusable_register_user_data_no_username) self.assertEquals(response.content, '{"username":["This field is required."]}') def test_registration_normal_use_email_required_when_registering(self): """ Checks email is required when registering.""" response = self.common_test_registration_400(self.reusable_register_user_data_no_email) self.assertEquals(response.content, '{"email":["This field is required."]}') def test_registration_normal_use_email_doesnt_need_to_be_unique_when_registering(self): """ Checks email is not required to be unique when registering.""" self.common_test_registration_basic(self.reusable_register_user_data) self.common_test_registration_basic(self.reusable_register_user_data_different_username) def common_registration_email_verification_neccessary_verified_login_post(self, login_data): mail_count = len(mail.outbox) reg_response = self.common_test_registration_basic(self.reusable_register_user_data) self.assertEquals(len(mail.outbox), mail_count + 1) new_user = get_user_model().objects.latest('id') login_response = self.client.post(self.login_url, login_data, format='json') self.assertEquals(login_response.status_code, status.HTTP_400_BAD_REQUEST) # verify email email_confirmation = new_user.emailaddress_set.get(email=self.reusable_register_user_data['email']).emailconfirmation_set.order_by('-created')[0] verify_response = self.client.post(self.verify_url, {'key': email_confirmation.key}, format='json') self.assertEquals(verify_response.status_code, status.HTTP_200_OK) login_response = self.client.post(self.login_url, login_data, format='json') self.assertEquals(login_response.status_code, status.HTTP_200_OK) def common_registration_email_verification_neccessary_verified_login_get(self, login_data): mail_count = len(mail.outbox) reg_response = self.common_test_registration_basic(self.reusable_register_user_data) self.assertEquals(len(mail.outbox), mail_count + 1) new_user = get_user_model().objects.latest('id') login_response = self.client.post(self.login_url, login_data, format='json') self.assertEquals(login_response.status_code, status.HTTP_400_BAD_REQUEST) # verify email email_confirmation = new_user.emailaddress_set.get(email=self.reusable_register_user_data['email']).emailconfirmation_set.order_by('-created')[0] verify_response = self.client.get(self.verify_url + '?key=' + email_confirmation.key, format='json') self.assertEquals(verify_response.status_code, status.HTTP_200_OK) login_response = self.client.post(self.login_url, login_data, format='json') self.assertEquals(login_response.status_code, status.HTTP_200_OK) def test_registration_email_verification_neccessary_verified_login_username(self): """ Proper Registration Test - mandatory email verification needed + username login via post verify. """ self.common_registration_email_verification_neccessary_verified_login_post({'username': 'admin', 'password': 'password12'}) @override_settings(ACCOUNT_EMAIL_VERIFICATION="mandatory", ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME) def test_registration_email_verification_neccessary_verified_login_username(self): """ Proper Registration Test - mandatory email verification needed + username login via get verify. """ self.common_registration_email_verification_neccessary_verified_login_get({'username': 'admin', 'password': 'password12'}) class TestPasswordResets(APITestCase): def setUp(self): self.login_url = reverse('accounts:rest_login') self.logout_url = reverse('accounts:rest_logout') self.register_url = reverse('accounts:rest_register') self.password_reset_url = reverse('accounts:rest_password_reset') self.rest_password_reset_confirm_url = reverse('accounts:rest_password_reset_confirm') self.password_change_url = reverse('accounts:rest_password_change') self.verify_url = reverse('accounts:rest_verify_email') self.user_url = reverse('accounts:rest_user_details') self.client = APIClient() self.reusable_user_data = {'username': 'admin', 'email': 'admin@email.com', 'password': 'password12'} self.reusable_user_data_change_password = {'username': 'admin', 'email': 'admin@email.com', 'password': 'password_same'} self.reusable_register_user_data = {'username': 'admin', 'email': 'admin@email.com', 'password1': 'password12', 'password2': 'password12'} self.reusable_register_user_data1 = {'username': 'admin1', 'email': 'admin1@email.com', 'password1': 'password12', 'password2': 'password12'} self.reusable_register_user_data_no_username = {'email': 'admin@email.com', 'password1': 'password12', 'password2': 'password12'} self.reusable_register_user_data_no_email = {'username': 'admin', 'password1': 'password12', 'password2': 'password12'} self.change_password_data_incorrect = {"new_password1": "password_not_same", "new_password2": "password_same"} self.change_password_data = {"new_password1": "password_same", "new_password2": "password_same"} self.change_password_data_old_password_field_enabled = {"old_password": "password12", "new_password1": "password_same", "new_password2": "password_same"} def create_user_and_login(self): """ Helper function to create a basic user, login and assign token credentials. """ get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') response = self.client.post(self.login_url, self.reusable_user_data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK, "Snap! Basic Login has failed with a helper function 'create_user_and_login'. Something is really wrong here.") self.client.credentials(HTTP_AUTHORIZATION='Token ' + response.data['key']) def _generate_uid_and_token(self, user): result = {} from django.utils.encoding import force_bytes from django.contrib.auth.tokens import default_token_generator from django import VERSION if VERSION[1] == 5: from django.utils.http import int_to_base36 result['uid'] = int_to_base36(user.pk) else: from django.utils.http import urlsafe_base64_encode result['uid'] = urlsafe_base64_encode(force_bytes(user.pk)) result['token'] = default_token_generator.make_token(user) return result """ Password Reset Tests ==================== """ def test_password_reset(self): """ Test basic functionality of password reset. """ get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') payload = {'email': 'admin@email.com'} response = self.client.post(self.password_reset_url, payload, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertEquals(response.content, '{"success":"Password reset e-mail has been sent."}') @override_settings(ACCOUNTS_PASSWORD_RESET_NOTIFY_EMAIL_NOT_IN_SYSTEM=True) def test_password_reset_fail_no_user_with_email_no_notify_not_in_system(self): """ Test basic functionality of password reset fails when there is no email on record (notify email not in system). """ payload = {'email': 'admin@email.com'} response = self.client.post(self.password_reset_url, payload, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEquals(response.content, '{"error":"User with email doesn\'t exist. Did not send reset email."}') @override_settings(ACCOUNTS_PASSWORD_RESET_NOTIFY_EMAIL_NOT_IN_SYSTEM=False) def test_password_reset_no_user_with_email_no_notify_not_in_system(self): """ Test basic functionality of password reset fails when there is no email on record. """ payload = {'email': 'admin@email.com'} response = self.client.post(self.password_reset_url, payload, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertEquals(response.content, '{"success":"Password reset e-mail has been sent."}') def test_password_reset_confirm_fail_invalid_token(self): """ Test password reset confirm fails if token is invalid. """ user = get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') url_kwargs = self._generate_uid_and_token(user) data = { 'new_password1': 'new_password', 'new_password2': 'new_password', 'uid': url_kwargs['uid'], 'token': '-wrong-token-' } response = self.client.post(self.rest_password_reset_confirm_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEquals(response.content, '{"token":["Invalid value"]}') def test_password_reset_confirm_fail_invalid_uid(self): """ Test password reset confirm fails if uid is invalid. """ user = get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') url_kwargs = self._generate_uid_and_token(user) data = { 'new_password1': 'new_password', 'new_password2': 'new_password', 'uid': 0, 'token': url_kwargs['token'] } response = self.client.post(self.rest_password_reset_confirm_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEquals(response.content, '{"uid":["Invalid value"]}') def test_password_reset_confirm_fail_passwords_not_the_same(self): """ Test password reset confirm fails if uid is invalid. """ user = get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') url_kwargs = self._generate_uid_and_token(user) data = { 'new_password1': 'new_password', 'new_password2': 'new_not_the_same_password', 'uid': url_kwargs['uid'], 'token': url_kwargs['token'] } response = self.client.post(self.rest_password_reset_confirm_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEquals(response.content, '{"new_password2":["The two password fields didn\'t match."]}') def test_password_reset_confirm_login(self): """ Tests password reset confirm works -> can login afterwards. """ user = get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') url_kwargs = self._generate_uid_and_token(user) data = { 'new_password1': 'new_password', 'new_password2': 'new_password', 'uid': url_kwargs['uid'], 'token': url_kwargs['token'] } response = self.client.post(self.rest_password_reset_confirm_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) response = self.client.post(self.login_url, {'username': 'admin', 'email': 'admin@email.com', 'password': 'new_password'}, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) def test_password_reset_confirm_login_fails_with_old_password(self): """ Tests password reset confirm fails with old password. """ user = get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') url_kwargs = self._generate_uid_and_token(user) data = { 'new_password1': 'new_password', 'new_password2': 'new_password', 'uid': url_kwargs['uid'], 'token': url_kwargs['token'] } response = self.client.post(self.rest_password_reset_confirm_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) response = self.client.post(self.login_url, {'username': 'admin', 'email': 'admin@email.com', 'password': 'password12'}, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) class TestLogins(APITestCase): @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.EMAIL, ACCOUNT_EMAIL_VERIFICATION="none") def test_registration_account_authentication_method_email(self): """ Tests authentication is email works when AUTHENTICATION_AUTHENTICATION_METHOD is set to email. """ self.common_test_registration_basic(self.reusable_register_user_data) response = self.client.post(self.login_url, {'email': 'admin@email.com', 'password': 'password12'}, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.EMAIL, ACCOUNT_EMAIL_VERIFICATION="none") def test_registration_account_authentication_method_email_username_attempted(self): """ Tests authentication is not username when AUTHENTICATION_AUTHENTICATION_METHOD is set to email. """ self.common_test_registration_basic(self.reusable_register_user_data) response = self.client.post(self.login_url, {'username': 'admin', 'password': 'password12'}, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEquals(response.content, '{"non_field_errors":["Must include \\"email\\" and \\"password\\"."]}') @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME, ACCOUNT_EMAIL_VERIFICATION="none") def test_registration_account_authentication_method_username(self): """ Tests authentication is username when AUTHENTICATION_AUTHENTICATION_METHOD is set to username. """ self.common_test_registration_basic(self.reusable_register_user_data) response = self.client.post(self.login_url, {'email': 'admin@email.com', 'password': 'password12'}, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEquals(response.content, '{"non_field_errors":["Must include \\"username\\" and \\"password\\"."]}') @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME_EMAIL, ACCOUNT_EMAIL_VERIFICATION="none") def test_registration_account_authentication_method_username_email(self): """ Tests authentication is username or email when AUTHENTICATION_AUTHENTICATION_METHOD is set to username or email. """ self.common_test_registration_basic(self.reusable_register_user_data) response = self.client.post(self.login_url, {'email': 'admin@email.com', 'password': 'password12'}, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) response = self.client.post(self.logout_url, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) response = self.client.post(self.login_url, {'username': 'admin', 'password': 'password12'}, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) class TestAccounts(APITestCase): """ Tests normal use - non social login. """ def setUp(self): self.login_url = reverse('accounts:rest_login') self.logout_url = reverse('accounts:rest_logout') self.register_url = reverse('accounts:rest_register') self.password_reset_url = reverse('accounts:rest_password_reset') self.rest_password_reset_confirm_url = reverse('accounts:rest_password_reset_confirm') self.password_change_url = reverse('accounts:rest_password_change') self.verify_url = reverse('accounts:rest_verify_email') self.user_url = reverse('accounts:rest_user_details') self.client = APIClient() self.reusable_user_data = {'username': 'admin', 'email': 'admin@email.com', 'password': 'password12'} self.reusable_user_data_change_password = {'username': 'admin', 'email': 'admin@email.com', 'password': 'password_same'} self.reusable_register_user_data = {'username': 'admin', 'email': 'admin@email.com', 'password1': 'password12', 'password2': 'password12'} self.reusable_register_user_data1 = {'username': 'admin1', 'email': 'admin1@email.com', 'password1': 'password12', 'password2': 'password12'} self.reusable_register_user_data_no_username = {'email': 'admin@email.com', 'password1': 'password12', 'password2': 'password12'} self.reusable_register_user_data_no_email = {'username': 'admin', 'password1': 'password12', 'password2': 'password12'} self.change_password_data_incorrect = {"new_password1": "password_not_same", "new_password2": "password_same"} self.change_password_data = {"new_password1": "password_same", "new_password2": "password_same"} self.change_password_data_old_password_field_enabled = {"old_password": "password12", "new_password1": "password_same", "new_password2": "password_same"} def create_user_and_login(self): """ Helper function to create a basic user, login and assign token credentials. """ get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') response = self.client.post(self.login_url, self.reusable_user_data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK, "Snap! Basic Login has failed with a helper function 'create_user_and_login'. Something is really wrong here.") self.client.credentials(HTTP_AUTHORIZATION='Token ' + response.data['key']) def cleanUp(self): pass @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME) def test_login_basic_username_auth_method(self): """ Tests basic functionality of login with authentication method of username. """ # Assumes you provide username,password and returns a token get_user_model().objects.create_user('admin3', '', 'password12') data = {"username": 'admin3', "email": "", "password": 'password12'} response = self.client.post(self.login_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertIn('key', response.content) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.EMAIL, ACCOUNT_EMAIL_REQUIRED=True) def test_login_basic_email_auth_method(self): """ Tests basic functionality of login with authentication method of email. """ # Assumes you provide username,password and returns a token get_user_model().objects.create_user('admin', 'email.login@gmail.com', 'password12') data = {"username": '', "email": "email.login@gmail.com", "password": 'password12'} response = self.client.post(self.login_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertIn('key', response.content) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME_EMAIL) def test_login_basic_username_email_auth_method(self): """ Tests basic functionality of login with authentication method of username or email. """ # Assumes you provide username,password and returns a token get_user_model().objects.create_user('admin', 'email.login@gmail.com', 'password12') # Check email data = {"username": '', "email": "email.login@gmail.com", "password": 'password12'} response = self.client.post(self.login_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) # Check username data = {"username": 'admin', "email": '', "password": 'password12'} response = self.client.post(self.login_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertIn('key', response.content) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME) def test_login_auth_method_username_fail_no_users_in_db(self): """ Tests login fails with a 400 when no users in db for login auth method of 'username'. """ serializer = LoginSerializer({'username': 'admin', 'password': 'password12'}) response = self.client.post(self.login_url, serializer.data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.EMAIL) def test_login_email_auth_method_fail_no_users_in_db(self): """ Tests login fails with a 400 when no users in db for login auth method of 'email'. """ serializer = LoginSerializer({'username': 'admin', 'password': 'password12'}) response = self.client.post(self.login_url, serializer.data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME_EMAIL) def test_login_username_email_auth_method_fail_no_users_in_db(self): """ Tests login fails with a 400 when no users in db for login auth method of 'username_email'. """ serializer = LoginSerializer({'username': 'admin', 'password': 'password12'}) response = self.client.post(self.login_url, serializer.data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) def common_test_login_fail_incorrect_change(self): # Create user, login and try and change password INCORRECTLY self.create_user_and_login() self.client.post(self.password_change_url, data=self.change_password_data_incorrect, format='json') # Remove credentials self.client.credentials() response = self.client.post(self.login_url, self.reusable_user_data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertIn('key', response.content) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME) def test_login_username_auth_method_fail_incorrect_password_change(self): """ Tests login fails with an incorrect/invalid password change (login auth username). """ self.common_test_login_fail_incorrect_change() @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.EMAIL) def test_login_email_auth_method_fail_incorrect_password_change(self): """ Tests login fails with an incorrect/invalid password change (login auth email). """ self.common_test_login_fail_incorrect_change() @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME_EMAIL) def test_login_username_email_auth_method_fail_incorrect_password_change(self): """ Tests login fails with an incorrect/invalid password change (login auth username_email). """ self.common_test_login_fail_incorrect_change() def common_test_login_correct_password_change(self): # Create user, login and try and change password successfully self.create_user_and_login() response = self.client.post(self.password_change_url, data=self.change_password_data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) # Remove credentials self.client.credentials() response = self.client.post(self.login_url, self.reusable_user_data_change_password, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertIn('key', response.content) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME) def test_login_username_auth_method_correct_password_change(self): """ Tests login is succesful with a correct password change (login auth username). """ self.common_test_login_correct_password_change() @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.EMAIL) def test_login_email_auth_method_correct_password_change(self): """ Tests login is succesful with a correct password change (login auth email). """ self.common_test_login_correct_password_change() @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME_EMAIL) def test_login_username_email_auth_method_correct_password_change(self): """ Tests login is succesful with a correct password change (login auth username_email). """ self.common_test_login_correct_password_change() def test_login_fail_no_input(self): """ Tests login fails when you provide no username and no email (login auth username_email). """ get_user_model().objects.create_user('admin', 'email.login@gmail.com', 'password12') data = {"username": '', "email": '', "password": ''} response = self.client.post(self.login_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME) def test_login_username_auth_method_fail_no_input(self): """ Tests login fails when you provide no username (login auth username). """ get_user_model().objects.create_user('admin', 'email.login@gmail.com', 'password12') data = {"username": '', "email": "email.login@gmail.com", "password": 'password12'} response = self.client.post(self.login_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.EMAIL) def test_login_email_auth_method_fail_no_input(self): """ Tests login fails when you provide no username (login auth email). """ get_user_model().objects.create_user('admin', 'email.login@gmail.com', 'password12') data = {"username": "admin", "email": '', "password": 'password12'} response = self.client.post(self.login_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) @override_settings(ACCOUNT_AUTHENTICATION_METHOD=app_settings.AuthenticationMethod.USERNAME_EMAIL) def test_login_username_email_auth_method_fail_no_input(self): """ Tests login fails when you provide no username and no email (login auth username_email). """ get_user_model().objects.create_user('admin', 'email.login@gmail.com', 'password12') data = {"username": '', "email": '', "password": 'password12'} response = self.client.post(self.login_url, data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) # need to check for token # test login with password change # test login with wrong password chaneg if fails def test_logout(self): """ Tests basic logout functionality. """ self.create_user_and_login() response = self.client.post(self.logout_url, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertEquals(response.content, '{"success":"Successfully logged out."}') def test_logout_but_already_logged_out(self): """ Tests logout when already logged out. """ self.create_user_and_login() response = self.client.post(self.logout_url, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertEquals(response.content, '{"success":"Successfully logged out."}') self.client.credentials() # remember to remove manual token credential response = self.client.post(self.logout_url, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK, response.content) self.assertEquals(response.content, '{"success":"Successfully logged out."}') def test_change_password_basic(self): """ Tests basic functionality of 'change of password'. """ self.create_user_and_login() response = self.client.post(self.password_change_url, data=self.change_password_data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertEquals(response.content, '{"success":"New password has been saved."}') def test_change_password_basic_fails_not_authorised(self): """ Tests basic functionality of 'change of password' fails if not authorised. """ get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') response = self.client.post(self.password_change_url, data=self.change_password_data, format='json') self.assertEquals(response.status_code, status.HTTP_401_UNAUTHORIZED) self.assertEquals(response.content, '{"detail":"Authentication credentials were not provided."}') def common_change_password_login_fail_with_old_password(self, password_change_data): self.create_user_and_login() response = self.client.post(self.password_change_url, data=password_change_data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.client.credentials() # Remove credentials response = self.client.post(self.login_url, self.reusable_user_data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) def common_change_password_login_pass_with_new_password(self, password_change_data): self.create_user_and_login() response = self.client.post(self.password_change_url, password_change_data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.client.credentials() # Remove credentials response = self.client.post(self.login_url, self.reusable_user_data_change_password, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) def common_change_password_login_fail_with_old_password_pass_with_new_password(self, password_change_data): """ Tests change of password with old password fails but new password successes. """ self.create_user_and_login() response = self.client.post(self.password_change_url, password_change_data, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK, response.content) self.client.credentials() # Remove credentials response = self.client.post(self.login_url, self.reusable_user_data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) response = self.client.post(self.login_url, self.reusable_user_data_change_password, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK, response.content) def test_change_password_login_fail_with_old_password(self): """ Tests change of password with old password. """ self.common_change_password_login_fail_with_old_password(self.change_password_data) def test_change_password_login_pass_with_new_password(self): """ Tests change of password with new password. """ self.common_change_password_login_pass_with_new_password(self.change_password_data) def test_change_password_login_fail_with_old_password_pass_with_new_password(self): """ Tests change of password with old password fails but new password successes. """ self.common_change_password_login_fail_with_old_password_pass_with_new_password(self.change_password_data) @override_settings(OLD_PASSWORD_FIELD_ENABLED=True) def test_change_password_old_password_field_required_old_password_field_enabled(self): """ Tests basic functionality of 'change of password' fails if old password not given as part of input (old password field enabled). """ self.create_user_and_login() response = self.client.post(self.password_change_url, data=self.change_password_data, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEquals(response.content, '{"old_password":["This field is required."]}') @override_settings(OLD_PASSWORD_FIELD_ENABLED=True) def test_change_password_basic_old_password_field_enabled(self): """ Tests basic functionality of 'change of password' (old password enabled). """ self.create_user_and_login() response = self.client.post(self.password_change_url, data=self.change_password_data_old_password_field_enabled, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertEquals(response.content, '{"success":"New password has been saved."}') @override_settings(OLD_PASSWORD_FIELD_ENABLED=True) def test_change_password_basic_fails_not_authorised_old_password_field_enabled(self): """ Tests basic functionality of 'change of password' fails if not authorised (old password field enabled). """ get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') response = self.client.post(self.password_change_url, data=self.change_password_data_old_password_field_enabled, format='json') self.assertEquals(response.status_code, status.HTTP_401_UNAUTHORIZED) self.assertEquals(response.content, '{"detail":"Authentication credentials were not provided."}') @override_settings(OLD_PASSWORD_FIELD_ENABLED=True) def test_change_password_login_fail_with_old_password_old_password_field_enabled(self): """ Tests change of password with old password (old password field enabled). """ self.common_change_password_login_fail_with_old_password(self.change_password_data_old_password_field_enabled) @override_settings(OLD_PASSWORD_FIELD_ENABLED=True) def test_change_password_login_pass_with_new_password_old_password_field_enabled(self): """ Tests change of password with new password (old password field enabled). """ self.common_change_password_login_pass_with_new_password(self.change_password_data_old_password_field_enabled) @override_settings(OLD_PASSWORD_FIELD_ENABLED=True) def test_change_password_login_fail_with_old_password_pass_with_new_password_old_password_field_enabled(self): """ Tests change of password with old password fails but new password successes (old password field enabled). """ self.common_change_password_login_fail_with_old_password_pass_with_new_password(self.change_password_data_old_password_field_enabled) class TestUserDetails(APITestCase): """ User Detail Tests ================= """ def test_user_details_get(self): """ Test to retrieve user details. """ self.create_user_and_login() response = self.client.get(self.user_url, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertEquals(response.content, '{"username":"admin","email":"admin@email.com","first_name":"","last_name":""}') def test_user_details_put(self): """ Test to put update user details. """ self.create_user_and_login() response = self.client.put(self.user_url, {"username":"changed","email":"changed@email.com","first_name":"changed","last_name":"name"}, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertEquals(response.content, '{"username":"changed","email":"changed@email.com","first_name":"changed","last_name":"name"}') def test_user_details_patch(self): """ Test to patch update user details. """ self.create_user_and_login() response = self.client.patch(self.user_url, {'username': 'changed_username', 'email': 'changed@email.com'}, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertEquals(response.content, '{"username":"changed_username","email":"changed@email.com","first_name":"","last_name":""}') def test_user_details_put_not_authenticated(self): """ Test to put update user details. """ get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') response = self.client.put(self.user_url, {"username":"changed","email":"changed@email.com","first_name":"changed","last_name":"name"}, format='json') self.assertEquals(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_user_details_patch_not_authenticated(self): """ Test to patch update user details. """ get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') response = self.client.patch(self.user_url, {'username': 'changed_username', 'email': 'changed@email.com'}, format='json') self.assertEquals(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_user_details_get_not_authenticated(self): """ Test to retrieve user details. """ get_user_model().objects.create_user('admin', 'admin@email.com', 'password12') response = self.client.get(self.user_url, format='json') self.assertEquals(response.status_code, status.HTTP_401_UNAUTHORIZED) class TestAccountsSocial(APITestCase): """ Tests normal for social login. """ urls = 'accounts.test_social_urls' def setUp(self): self.fb_login_url = reverse('fb_login') social_app = SocialApp.objects.create( provider='facebook', name='Facebook', client_id='123123123', secret='321321321', ) site = Site.objects.get_current() social_app.sites.add(site) self.graph_api_url = GRAPH_API_URL + '/me' @responses.activate def test_social_auth(self): """ Tests Social Login. """ resp_body = '{"id":"123123123123","first_name":"John","gender":"male","last_name":"Smith","link":"https:\\/\\/www.facebook.com\\/john.smith","locale":"en_US","name":"John Smith","timezone":2,"updated_time":"2014-08-13T10:14:38+0000","username":"john.smith","verified":true}' # noqa responses.add( responses.GET, self.graph_api_url, body=resp_body, status=200, content_type='application/json' ) users_count = get_user_model().objects.all().count() response = self.client.post(self.fb_login_url, {'access_token': 'abc123'}, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertIn('key', response.data) self.assertEqual(get_user_model().objects.all().count(), users_count + 1) @responses.activate def test_social_auth_only_one_user_created(self): """ Tests Social Login. """ resp_body = '{"id":"123123123123","first_name":"John","gender":"male","last_name":"Smith","link":"https:\\/\\/www.facebook.com\\/john.smith","locale":"en_US","name":"John Smith","timezone":2,"updated_time":"2014-08-13T10:14:38+0000","username":"john.smith","verified":true}' # noqa responses.add( responses.GET, self.graph_api_url, body=resp_body, status=200, content_type='application/json' ) users_count = get_user_model().objects.all().count() response = self.client.post(self.fb_login_url, {'access_token': 'abc123'}, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertIn('key', response.data) self.assertEqual(get_user_model().objects.all().count(), users_count + 1) # make sure that second request will not create a new user response = self.client.post(self.fb_login_url, {'access_token': 'abc123'}, format='json') self.assertEquals(response.status_code, status.HTTP_200_OK) self.assertIn('key', response.data) self.assertEqual(get_user_model().objects.all().count(), users_count + 1) @responses.activate def test_failed_social_auth(self): # fake response responses.add( responses.GET, self.graph_api_url, body='', status=400, content_type='application/json' ) response = self.client.post(self.fb_login_url, {'access_token': 'abc123'}, format='json') self.assertEquals(response.status_code, status.HTTP_400_BAD_REQUEST)
[ "james.tarball@gmail.com" ]
james.tarball@gmail.com
1498b82da7b6fe2ae9a6854b6fcd8b22571bd599
9372026aec32fa10896225813986346e472f7a7c
/Algorithm/class49/stack_queue.py
18afc982243a82b1014b3d2e20e95d8dfe19d907
[]
no_license
mjsong0712/learn_python
5809df5b0366b37836633f5fa5e2d96a9cb99798
1cc31ca750e76b436596e3a4f6b8f39d7b873624
refs/heads/master
2022-05-17T00:54:17.975679
2022-05-01T08:07:33
2022-05-01T08:07:33
235,795,862
0
0
null
null
null
null
UTF-8
Python
false
false
1,005
py
import sys class Stack: def __init__(self): self.L = [0 for i in range(100001)] self.top = -1 def push(self, n): self.L[self.top+1] = n self.top += 1 def pop(self): item = self.L[self.top] self.top -= 1 return item def isEmpty(self): if self.top == -1: return True else: return False def Pmaker(n, P): PM = [] S = Stack() L = [i for i in range(1,n+1)] cl = 0 cp = 0 while True: if cp == n: return PM if cl == n: while cp != len(P): if S.pop() == P[cp]: PM.append("-") cp+=1 else: return False return PM if L[cl] <= P[cp]: while (cl < n) and (L[cl] <= P[cp]): S.push(L[cl]) PM.append("+") cl+=1 S.pop() PM.append("-") cp+=1 elif L[cl] > P[cp]: a = S.pop() PM.append("-") if P[cp] != a: return False else: cp += 1 n = int(raw_input()) P = [] for i in range(n): p = int(raw_input()) P.append(p) res = Pmaker(n,P) if res: for c in res: print c else: print "NO"
[ "mjsong070712@gmail.com" ]
mjsong070712@gmail.com
df2b7b7f4286fae602e375dcdd454832dbd70659
e5ccd2611e53968a34c879f6a664d25d100eb7f6
/src/colorslider_test.pyw
04341c70496dea5512cb12bfb768da8bed7f5aef
[]
no_license
sergeyfarin/kyui
ec9b32605616fbd0ca0c21d10e130ec1c5164d4a
320f8df348491bc01bca0c76fc92e1d5e6d841a2
refs/heads/master
2020-12-24T15:49:12.880822
2012-01-06T14:32:17
2012-01-06T14:32:17
32,626,909
0
0
null
null
null
null
UTF-8
Python
false
false
5,657
pyw
#UTF-8 #colorslider_test.pyw from PyQt4.QtCore import * from PyQt4.QtGui import * import sys from Widgets.colorslider import ColorSlider_Old from template_test import TemplateDialog class Dialog(TemplateDialog): def __init__(self, parent = None): super(QDialog, self).__init__(parent) self.setObjectName('dialog') self._color = QColor(0, 0, 0) self.setupUi() self.connectSignals() def setupUi(self): super().setupUi() self.debugBox.hide() self.testBox = QGroupBox(self, objectName='testBox') self.testLayout = QBoxLayout(QBoxLayout.TopToBottom, parent=self.testBox, objectName='testLayout') self.testWidget1 = ColorSlider_Old(QColor.Rgb, 0, Qt.Horizontal, self.testBox) self.testWidget1.setObjectName('testWidget1') self.testLayout.addWidget(self.testWidget1) self.testWidget2 = ColorSlider_Old(QColor.Rgb, 1, Qt.Horizontal, self.testBox) self.testWidget2.setObjectName('testWidget2') self.testLayout.addWidget(self.testWidget2) self.testWidget3 = ColorSlider_Old(QColor.Rgb, 2, Qt.Horizontal, self.testBox) self.testWidget3.setObjectName('testWidget3') self.testLayout.addWidget(self.testWidget3) self.layout.insertWidget(0, self.testBox) self.specLabel = QLabel(self.settingsBox) self.specLabel.setObjectName('specLabel') self.specBox = QComboBox(self.settingsBox) self.specBox.setObjectName('specBox') self.specBox.addItem('RGB', QColor.Rgb) self.specBox.addItem('HSV', QColor.Hsv) self.specBox.addItem('HSL', QColor.Hsl) self.specLabel.setBuddy(self.specBox) self.settingsLayout.addRow(self.specLabel, self.specBox) self.orientBox = QCheckBox(self) self.orientBox.setObjectName('orientBox') self.settingsLayout.addWidget(self.orientBox) self.dynamicBox = QCheckBox(self) self.dynamicBox.setObjectName('dynamicBox') self.dynamicBox.setChecked(True) self.settingsLayout.addWidget(self.dynamicBox) self.retranslateUi() def retranslateUi(self): super().retranslateUi() self.testBox.setTitle(self.trUtf8('&Test')) self.specLabel.setText(self.trUtf8('&Spec')) self.orientBox.setText('&Vertical Sliders') self.dynamicBox.setText('&Dynamic Gradients') def connectSignals(self): super().connectSignals() self.setWindowTitle(self.trUtf8('ColorSlider Test')) self.specBox.currentIndexChanged[int].connect(self.onSpecChanged) self.orientBox.toggled.connect(self.onOrientationChanged) self.dynamicBox.toggled.connect(self.setDynamic) self.setDynamic(True) def onSpecChanged(self, index : int): if index == 0: qDebug('Spec: RGB') self.testWidget1.setColorChannel(QColor.Rgb, 0) self.testWidget2.setColorChannel(QColor.Rgb, 1) self.testWidget3.setColorChannel(QColor.Rgb, 2) elif index == 1: self.testWidget1.setColorChannel(QColor.Hsv, 0) self.testWidget2.setColorChannel(QColor.Hsv, 1) self.testWidget3.setColorChannel(QColor.Hsv, 2) elif index == 2: self.testWidget1.setColorChannel(QColor.Hsl, 0) self.testWidget2.setColorChannel(QColor.Hsl, 1) self.testWidget3.setColorChannel(QColor.Hsl, 2) def onOrientationChanged(self): if self.orientBox.isChecked(): direction = QBoxLayout.LeftToRight orient = Qt.Vertical else: direction = QBoxLayout.TopToBottom orient = Qt.Horizontal self.testLayout.setDirection(direction) self.testWidget1.setOrientation(orient) self.testWidget2.setOrientation(orient) self.testWidget3.setOrientation(orient) def setDynamic(self, dynamic): if dynamic: self.testWidget1.valueChanged.connect(self.onSlider1Changed) self.testWidget2.valueChanged.connect(self.onSlider2Changed) self.testWidget3.valueChanged.connect(self.onSlider3Changed) else: self.testWidget1.valueChanged.disconnect(self.onSlider1Changed) self.testWidget2.valueChanged.disconnect(self.onSlider2Changed) self.testWidget3.valueChanged.disconnect(self.onSlider3Changed) def onSlider1Changed(self, value): channel = self.testWidget1.colorChannel() self.testWidget2.setChannelValue(channel, value) self.testWidget3.setChannelValue(channel, value) def onSlider2Changed(self, value): channel = self.testWidget2.colorChannel() self.testWidget1.setChannelValue(channel, value) self.testWidget3.setChannelValue(channel, value) def onSlider3Changed(self, value): channel = self.testWidget3.colorChannel() self.testWidget1.setChannelValue(channel, value) self.testWidget2.setChannelValue(channel, value) if __name__ == '__main__': app = QApplication(sys.argv) dlg = Dialog() dlg.show() sys.exit(app.exec_())
[ "mnijph@gmail.com@61556d0e-e001-f3ff-fadc-bb871643678f" ]
mnijph@gmail.com@61556d0e-e001-f3ff-fadc-bb871643678f
cbdf7656ac78f0a708d02e0937ee94e89283794c
07b62e1b4500c2fa6df424f81a588d3f82258e8c
/recipe_recommender/etl/__init__.py
d2d9c0f724f66f3cadca908a80af41627f149a41
[ "BSD-3-Clause" ]
permissive
janash/recipe_recommender
fd77ad167e75669f56df3145468c42f7df17417b
ffc5c0c55578a0c0a81c1fef6ce2290bea5051d0
refs/heads/master
2020-04-12T11:32:11.181349
2019-09-15T16:51:22
2019-09-15T16:51:22
162,462,572
1
1
BSD-3-Clause
2019-09-01T16:25:32
2018-12-19T16:20:45
Python
UTF-8
Python
false
false
119
py
""" Imports for 'etl' (extract, transform, load) to database. """ from . import utils from . import index_bodybuilding
[ "janash@vt.edu" ]
janash@vt.edu
2663ee7656653db5742f85fb25439e84c3b69a74
0aa273ad48b7b52cb8853464657752f0d651c844
/cap6/eliminar.py
ee8c8174d38be8ce098d4195971568595e2a1447
[]
no_license
mrjamrd/diplopython
607eb05ade42ee706681b5ebcf776be663161e89
83fea1036743fb821c2d2df4bda3e222df3f1273
refs/heads/main
2023-08-31T10:23:42.195813
2021-09-15T04:11:55
2021-09-15T04:11:55
393,474,479
0
0
null
null
null
null
UTF-8
Python
false
false
425
py
from io import open import pathlib import shutil import os import os.path #eliminar #ruta = str(pathlib.Path().absolute()) + "/fichero_textonew.txt" #os.remove(ruta) #print(os.path.absolute("./")) #ruta = os.path.abspath("./") + "/fichero_texto1.txt" ruta = "./fichero_texto1.txt" #Comprobar si existe un archivo en una ruta if os.path.isfile(ruta): print("El archivo existe") else: print("El Archivo no existe")
[ "joseam1789@gmail.com" ]
joseam1789@gmail.com
67054ed0f58b4c83e7aca1c443931dcdd4cd01f7
b567f026aa6cac669c3987247a5ce3bfa1ff003b
/todo_api/apps/todo/urls.py
5aa1fcac1434b1f21e01ec940950f6e8f9bb6edc
[]
no_license
scorpaena/todo_list
999a84f366a4d4d03249313e3ffc6ce6f25e8b81
9a4bbad868a670e37ca00dc0f94e11d9457f55b5
refs/heads/master
2023-06-19T15:28:45.333049
2021-07-13T16:16:54
2021-07-13T16:16:54
385,237,717
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
from rest_framework.routers import DefaultRouter from .views import ToDoViewSet router = DefaultRouter() router.register(r'', ToDoViewSet, basename='todo') urlpatterns = router.urls
[ "mvalyn@gmail.com" ]
mvalyn@gmail.com
8b42b10c453a5a2872ae60c1b75bf8b2aa310647
75d8667735782cd1d0eb4877e52c89da5cd92dde
/nova/conf/vmware.py
48c3c487055130e00713481e2f51b8e88526ccf0
[ "Apache-2.0" ]
permissive
bopopescu/nova-token
ffecfd3ec561936b7d9d7e691bc57383cde05436
ec98f69dea7b3e2b9013b27fd55a2c1a1ac6bfb2
refs/heads/master
2022-11-22T09:53:31.073483
2016-05-14T02:47:01
2016-05-15T22:02:55
282,105,621
0
0
Apache-2.0
2020-07-24T02:42:19
2020-07-24T02:42:18
null
UTF-8
Python
false
false
10,441
py
begin_unit comment|'# Copyright 2016 OpenStack Foundation' nl|'\n' comment|'# All Rights Reserved.' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' nl|'\n' name|'import' name|'itertools' newline|'\n' nl|'\n' name|'from' name|'oslo_config' name|'import' name|'cfg' newline|'\n' nl|'\n' DECL|variable|vmware_group name|'vmware_group' op|'=' name|'cfg' op|'.' name|'OptGroup' op|'(' string|"'vmware'" op|',' name|'title' op|'=' string|"'VMWare Options'" op|')' newline|'\n' nl|'\n' DECL|variable|vmwareapi_vif_opts name|'vmwareapi_vif_opts' op|'=' op|'[' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'vlan_interface'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' string|"'vmnic0'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Physical ethernet adapter name for vlan networking'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'integration_bridge'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'This option should be configured only when using the '" nl|'\n' string|"'NSX-MH Neutron plugin. This is the name of the '" nl|'\n' string|"'integration bridge on the ESXi. This should not be set '" nl|'\n' string|"'for any other Neutron plugin. Hence the default value '" nl|'\n' string|"'is not set.'" op|')' op|',' nl|'\n' op|']' newline|'\n' nl|'\n' DECL|variable|vmware_utils_opts name|'vmware_utils_opts' op|'=' op|'[' nl|'\n' name|'cfg' op|'.' name|'IntOpt' op|'(' string|"'console_delay_seconds'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Set this value if affected by an increased network '" nl|'\n' string|"'latency causing repeated characters when typing in '" nl|'\n' string|"'a remote console.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'serial_port_service_uri'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Identifies the remote system that serial port traffic '" nl|'\n' string|"'will be sent to. If this is not set, no serial ports '" nl|'\n' string|"'will be added to the created VMs.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'serial_port_proxy_uri'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Identifies a proxy service that provides network access '" nl|'\n' string|"'to the serial_port_service_uri. This option is ignored '" nl|'\n' string|"'if serial_port_service_uri is not specified.'" op|')' op|',' nl|'\n' op|']' newline|'\n' nl|'\n' DECL|variable|vmwareapi_opts name|'vmwareapi_opts' op|'=' op|'[' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'host_ip'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Hostname or IP address for connection to VMware '" nl|'\n' string|"'vCenter host.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'PortOpt' op|'(' string|"'host_port'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' number|'443' op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Port for connection to VMware vCenter host.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'host_username'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Username for connection to VMware vCenter host.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'host_password'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Password for connection to VMware vCenter host.'" op|',' nl|'\n' DECL|variable|secret name|'secret' op|'=' name|'True' op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'ca_file'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Specify a CA bundle file to use in verifying the '" nl|'\n' string|"'vCenter server certificate.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'BoolOpt' op|'(' string|"'insecure'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' name|'False' op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'If true, the vCenter server certificate is not '" nl|'\n' string|"'verified. If false, then the default CA truststore is '" nl|'\n' string|"'used for verification. This option is ignored if '" nl|'\n' string|'\'"ca_file" is set.\'' op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'cluster_name'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Name of a VMware Cluster ComputeResource.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'datastore_regex'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Regex to match the name of a datastore.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'FloatOpt' op|'(' string|"'task_poll_interval'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' number|'0.5' op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'The interval used for polling of remote tasks.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'IntOpt' op|'(' string|"'api_retry_count'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' number|'10' op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'The number of times we retry on failures, e.g., '" nl|'\n' string|"'socket error, etc.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'PortOpt' op|'(' string|"'vnc_port'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' number|'5900' op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'VNC starting port'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'IntOpt' op|'(' string|"'vnc_port_total'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' number|'10000' op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Total number of VNC ports'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'BoolOpt' op|'(' string|"'use_linked_clone'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' name|'True' op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Whether to use linked clone'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'wsdl_location'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'Optional VIM Service WSDL Location '" nl|'\n' string|"'e.g http://<server>/vimService.wsdl. '" nl|'\n' string|"'Optional over-ride to default location for bug '" nl|'\n' string|"'work-arounds'" op|')' nl|'\n' op|']' newline|'\n' nl|'\n' DECL|variable|spbm_opts name|'spbm_opts' op|'=' op|'[' nl|'\n' name|'cfg' op|'.' name|'BoolOpt' op|'(' string|"'pbm_enabled'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' name|'False' op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'The PBM status.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'pbm_wsdl_location'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'PBM service WSDL file location URL. '" nl|'\n' string|"'e.g. file:///opt/SDK/spbm/wsdl/pbmService.wsdl '" nl|'\n' string|"'Not setting this will disable storage policy based '" nl|'\n' string|"'placement of instances.'" op|')' op|',' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'pbm_default_policy'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'The PBM default policy. If pbm_wsdl_location is set and '" nl|'\n' string|"'there is no defined storage policy for the specific '" nl|'\n' string|"'request then this policy will be used.'" op|')' op|',' nl|'\n' op|']' newline|'\n' nl|'\n' DECL|variable|vimutil_opts name|'vimutil_opts' op|'=' op|'[' nl|'\n' name|'cfg' op|'.' name|'IntOpt' op|'(' string|"'maximum_objects'" op|',' nl|'\n' DECL|variable|default name|'default' op|'=' number|'100' op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'The maximum number of ObjectContent data '" nl|'\n' string|"'objects that should be returned in a single '" nl|'\n' string|"'result. A positive value will cause the '" nl|'\n' string|"'operation to suspend the retrieval when the '" nl|'\n' string|"'count of objects reaches the specified '" nl|'\n' string|"'maximum. The server may still limit the count '" nl|'\n' string|"'to something less than the configured value. '" nl|'\n' string|"'Any remaining objects may be retrieved with '" nl|'\n' string|"'additional requests.'" op|')' nl|'\n' op|']' newline|'\n' nl|'\n' DECL|variable|vmops_opts name|'vmops_opts' op|'=' op|'[' nl|'\n' name|'cfg' op|'.' name|'StrOpt' op|'(' string|"'cache_prefix'" op|',' nl|'\n' DECL|variable|help name|'help' op|'=' string|"'The prefix for where cached images are stored. This is '" nl|'\n' string|"'NOT the full path - just a folder prefix. '" nl|'\n' string|"'This should only be used when a datastore cache should '" nl|'\n' string|"'be shared between compute nodes. Note: this should only '" nl|'\n' string|"'be used when the compute nodes have a shared file '" nl|'\n' string|"'system.'" op|')' op|',' nl|'\n' op|']' newline|'\n' nl|'\n' DECL|variable|ALL_VMWARE_OPTS name|'ALL_VMWARE_OPTS' op|'=' name|'list' op|'(' name|'itertools' op|'.' name|'chain' op|'(' nl|'\n' name|'vmwareapi_vif_opts' op|',' nl|'\n' name|'vmware_utils_opts' op|',' nl|'\n' name|'vmwareapi_opts' op|',' nl|'\n' name|'spbm_opts' op|',' nl|'\n' name|'vimutil_opts' op|',' nl|'\n' name|'vmops_opts' op|')' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|function|register_opts name|'def' name|'register_opts' op|'(' name|'conf' op|')' op|':' newline|'\n' indent|' ' name|'conf' op|'.' name|'register_group' op|'(' name|'vmware_group' op|')' newline|'\n' name|'conf' op|'.' name|'register_opts' op|'(' name|'ALL_VMWARE_OPTS' op|',' name|'group' op|'=' name|'vmware_group' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|function|list_opts dedent|'' name|'def' name|'list_opts' op|'(' op|')' op|':' newline|'\n' indent|' ' name|'return' op|'{' name|'vmware_group' op|':' name|'ALL_VMWARE_OPTS' op|'}' newline|'\n' dedent|'' endmarker|'' end_unit
[ "dmg@uvic.ca" ]
dmg@uvic.ca
61d1cec7299b8b9ea78c02334cf93f6792b541fe
e249af1edb0d4796657e086497b014d3b616bddc
/main.py
8f5b8d7862338456fda0d17b82f3749c4eb98177
[ "MIT" ]
permissive
mpMelnikov/ddi
98488491f94fe0f051d54997aee149198a98770f
71675b586ebf65e883355058af6522a2e4ad0688
refs/heads/master
2021-05-06T08:32:04.150962
2017-12-12T19:31:38
2017-12-12T19:31:38
114,029,665
0
0
null
null
null
null
UTF-8
Python
false
false
1,825
py
import argparse from actions.TfidfLearningAction import TfidfLearningAction from actions.FrequencyAction import FrequencyAction from actions.TfidfClassificationAction import TfidfClassificationAction from actions.TfidfAction import TfidfAction from actions.PreprocessAction import PreprocessAction commands = dict(frequency=FrequencyAction, # preprocess=PreprocessAction, tfidf=TfidfAction, tfidfLearning=TfidfLearningAction, tfidfClassification=TfidfClassificationAction) if __name__ == '__main__': parser = argparse.ArgumentParser(description='DDI NLP program') parser.add_argument('command', action="store", help='command name') parser.add_argument('-log', '-l', action="store", help='turn on log', default=False) parser.add_argument('-input', action="store", help='input file') parser.add_argument('-output', action="store", help='output file') args = parser.parse_args() command = commands[args.command](args.input, args.output) command.make() input("Press Enter to continue...") # sequency for tf-idf: # don't need it: frequency -input "data\DDICorpus\Train\DrugBank" -output "data\frequencies" # 1. tfidf -input "data\DDICorpus\Train\DrugBank" -output "data\tfidf\tfidf_results.xml" # 2. tfidfLearning -input "data\tfidf\tfidf_results.xml" -output "" # 3. tfidfClassification -input "data\tfidf\tfidf_results.xml" -output "" # параметры debug configuration для разных задач: # # посчитать значения tfIdf # -l -c tfidf -output data/tfIdfResults.xml # tfidf -output data/tfIdfResults.xml # # обучение по tfIdf # -l -c tfidfLearning -input data/tfIdfResults.xml # # классификация по tfIdf # -l -c tfidfClassification -input data/tfIdfResults.xml
[ "m.p.melnikov@gmail.com" ]
m.p.melnikov@gmail.com
687a968db4862eb5a0e8ac433902ebf3f521252b
e8d371d8d572e0aa3895c3109f6a68bc6c594af1
/web_scraping/selenium_fighter.py
b7886759333981efaa3b5e0cce59914087055240
[]
no_license
kshitijjain91/problem-solving-python-new
9c27dfe418763c233002531fa3d2f6f7285767e1
f40de1982ce4a3f69e826e11ae18a4a693d77fdb
refs/heads/master
2021-01-13T03:11:03.539041
2016-12-27T04:42:19
2016-12-27T04:42:19
77,426,755
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
from selenium import webdriver from selenium.common.exceptions import TimeoutException from selenium.webdriver.support.ui import WebDriverWait # available since 2.4.0 from selenium.webdriver.support import expected_conditions as EC # available since 2.26.0 # Create a new instance of the Firefox driver driver = webdriver.Firefox()
[ "kshitijjain91@gmail.com" ]
kshitijjain91@gmail.com
90c7d035efeb2f6dcb6eacddce89a7954e4a30bc
2f3cb8a1c66f1dc2927299d2fd2e9469068d4fc0
/create_min.py
ac798c85aa5342ea8c29a90b47ab9e1de75510bd
[ "MIT" ]
permissive
NeilBostian/x86-Quine
ed158aab74c7501f8f288b01ddeb811c482b7ffc
065ecf515885460d1257f309372e397ceac09646
refs/heads/master
2022-08-01T12:46:22.182272
2020-05-27T01:29:17
2020-05-27T01:29:17
267,183,083
1
0
null
null
null
null
UTF-8
Python
false
false
1,069
py
import re if '__main__' == __name__: re_comment = re.compile(r"^(.*);.*$") re_newline = re.compile(r"^(.*)\n$") re_whitespace = re.compile(r"^\s*$") def process_line(line): m = re_comment.match(line) if m: line = m.groups(1)[0] m = re_newline.match(line) if m: line = m.groups(1)[0] line = line.rstrip() if re_whitespace.match(line): return None else: return line with open('./quine.s', 'r') as fin: all_lines = [y for y in [process_line(x) for x in fin] if y is not None] with open('./quine.min.s', 'w') as fout: for line in all_lines: fout.write(line + '\n') first_line = True for line in all_lines: if first_line: fout.write(" ") first_line = False else: fout.write(" , ") line = line.replace("\"", "\", 0x22, \"") fout.write("\"" + line + "\", 0x0A \\\n") fout.write(" , 0x00\n")
[ "neil.bostian@gmail.com" ]
neil.bostian@gmail.com
f4ef588066795e7d66f9a0fd519298849bc2b657
dd3a3f7f5fa6db42f879a8fb3c56667b0cdc32dc
/core/migrations/0002_alter_pontoturistico_aprovado.py
8415efa755155e763e98ad46caa8eb0cfe6d1c95
[]
no_license
paulo9405/DRF_ponto_turistico_api
09895f611603366a56e3fc872e5fa9446925a340
d288c803e410a318b8dbb9e373d1e24cbc732a5c
refs/heads/main
2023-07-08T03:11:44.550779
2021-08-04T14:34:32
2021-08-04T14:34:32
390,068,866
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
# Generated by Django 3.2.5 on 2021-07-20 11:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.AlterField( model_name='pontoturistico', name='aprovado', field=models.BooleanField(default=False), ), ]
[ "paulo.ricardo1137.pr@gmail.com" ]
paulo.ricardo1137.pr@gmail.com
589f7ff120d540392566e41de19dfc82f4334952
33e3af05a6339c9dd9e15fdc97b0fb1fb6266465
/1616.分割两个字符串得到回文串.py
2667e3c311d417d29d6a0f9c3b6c91021c4c4dd9
[ "MIT" ]
permissive
cpingor/leetcode
78b4a8d30ca790dfca8236e5005c5c3db30ec8f4
d946f7c5941255b940d9b8c4b214b176584e51ed
refs/heads/main
2023-08-18T09:27:40.993959
2021-10-10T13:16:02
2021-10-10T13:16:02
387,167,571
0
0
null
null
null
null
UTF-8
Python
false
false
688
py
# # @lc app=leetcode.cn id=1616 lang=python3 # # [1616] 分割两个字符串得到回文串 # # @lc code=start class Solution: def checkPalindromeFormation(self, a: str, b: str) -> bool: left = len(a) // 2 - 1 left = min(self.is_palindrome(a, a, left), self.is_palindrome(b, b, left)) left = min(self.is_palindrome(a, b, left), self.is_palindrome(b, a, left)) return left == -1 def is_palindrome(self, s_l, s_r, left): right = len(s_l) - 1 - left while left >= 0 and right < len(s_l): if s_l[left] != s_r[right]: break left -= 1 right += 1 return left # @lc code=end
[ "chipingchuan@hotmail.com" ]
chipingchuan@hotmail.com
1f90091ef85d316579233d6f60283809bc6c59e4
cc1eac077f5f4f665533fcf9f7347b673988c4b9
/newmodule.py
c58509d167f6c5d562faae390c1d8d1792492ac8
[]
no_license
KR0NTAB/RGC
b14498f17fca028cd58f3a32108a6dcd582bca18
a8523b6bbc7bf8da92d9179b7074a96730e1cd16
refs/heads/master
2020-06-02T22:01:00.032358
2011-01-14T19:46:45
2011-01-14T19:46:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
66
py
print "I'm a new module" print "I'm cool!" print "the third line"
[ "anton.c@live.com" ]
anton.c@live.com
aa29ccb495481a8d4f885361df16652ad74d0cb9
c96700961f09bbac141858d98141428d643322e8
/tests/components/search/test_init.py
57d2c365e71a42fe6199b79cbe79c1b797f607ac
[ "Apache-2.0" ]
permissive
DerMetzger69/core
b3b6f30535f2e607e08dd6544e130b452f44c3a1
02a82d3f00c610f94d3366cc34540bdfa94a2c8e
refs/heads/dev
2023-03-18T10:42:52.605222
2021-03-13T09:53:26
2021-03-13T09:53:26
345,092,595
1
0
Apache-2.0
2021-03-06T13:32:49
2021-03-06T12:49:54
null
UTF-8
Python
false
false
10,432
py
"""Tests for Search integration.""" from homeassistant.components import search from homeassistant.helpers import ( area_registry as ar, device_registry as dr, entity_registry as er, ) from homeassistant.setup import async_setup_component from tests.common import MockConfigEntry from tests.components.blueprint.conftest import stub_blueprint_populate # noqa: F401 async def test_search(hass): """Test that search works.""" area_reg = ar.async_get(hass) device_reg = dr.async_get(hass) entity_reg = er.async_get(hass) living_room_area = area_reg.async_create("Living Room") # Light strip with 2 lights. wled_config_entry = MockConfigEntry(domain="wled") wled_config_entry.add_to_hass(hass) wled_device = device_reg.async_get_or_create( config_entry_id=wled_config_entry.entry_id, name="Light Strip", identifiers=({"wled", "wled-1"}), ) device_reg.async_update_device(wled_device.id, area_id=living_room_area.id) wled_segment_1_entity = entity_reg.async_get_or_create( "light", "wled", "wled-1-seg-1", suggested_object_id="wled segment 1", config_entry=wled_config_entry, device_id=wled_device.id, ) wled_segment_2_entity = entity_reg.async_get_or_create( "light", "wled", "wled-1-seg-2", suggested_object_id="wled segment 2", config_entry=wled_config_entry, device_id=wled_device.id, ) # Non related info. kitchen_area = area_reg.async_create("Kitchen") hue_config_entry = MockConfigEntry(domain="hue") hue_config_entry.add_to_hass(hass) hue_device = device_reg.async_get_or_create( config_entry_id=hue_config_entry.entry_id, name="Light Strip", identifiers=({"hue", "hue-1"}), ) device_reg.async_update_device(hue_device.id, area_id=kitchen_area.id) hue_segment_1_entity = entity_reg.async_get_or_create( "light", "hue", "hue-1-seg-1", suggested_object_id="hue segment 1", config_entry=hue_config_entry, device_id=hue_device.id, ) hue_segment_2_entity = entity_reg.async_get_or_create( "light", "hue", "hue-1-seg-2", suggested_object_id="hue segment 2", config_entry=hue_config_entry, device_id=hue_device.id, ) await async_setup_component( hass, "group", { "group": { "wled": { "name": "wled", "entities": [ wled_segment_1_entity.entity_id, wled_segment_2_entity.entity_id, ], }, "hue": { "name": "hue", "entities": [ hue_segment_1_entity.entity_id, hue_segment_2_entity.entity_id, ], }, "wled_hue": { "name": "wled and hue", "entities": [ wled_segment_1_entity.entity_id, wled_segment_2_entity.entity_id, hue_segment_1_entity.entity_id, hue_segment_2_entity.entity_id, ], }, } }, ) await async_setup_component( hass, "scene", { "scene": [ { "name": "scene_wled_seg_1", "entities": {wled_segment_1_entity.entity_id: "on"}, }, { "name": "scene_hue_seg_1", "entities": {hue_segment_1_entity.entity_id: "on"}, }, { "name": "scene_wled_hue", "entities": { wled_segment_1_entity.entity_id: "on", wled_segment_2_entity.entity_id: "on", hue_segment_1_entity.entity_id: "on", hue_segment_2_entity.entity_id: "on", }, }, ] }, ) await async_setup_component( hass, "script", { "script": { "wled": { "sequence": [ { "service": "test.script", "data": {"entity_id": wled_segment_1_entity.entity_id}, }, ] }, "hue": { "sequence": [ { "service": "test.script", "data": {"entity_id": hue_segment_1_entity.entity_id}, }, ] }, } }, ) assert await async_setup_component( hass, "automation", { "automation": [ { "alias": "wled_entity", "trigger": {"platform": "template", "value_template": "true"}, "action": [ { "service": "test.script", "data": {"entity_id": wled_segment_1_entity.entity_id}, }, ], }, { "alias": "wled_device", "trigger": {"platform": "template", "value_template": "true"}, "action": [ { "domain": "light", "device_id": wled_device.id, "entity_id": wled_segment_1_entity.entity_id, "type": "turn_on", }, ], }, ] }, ) # Explore the graph from every node and make sure we find the same results expected = { "config_entry": {wled_config_entry.entry_id}, "area": {living_room_area.id}, "device": {wled_device.id}, "entity": {wled_segment_1_entity.entity_id, wled_segment_2_entity.entity_id}, "scene": {"scene.scene_wled_seg_1", "scene.scene_wled_hue"}, "group": {"group.wled", "group.wled_hue"}, "script": {"script.wled"}, "automation": {"automation.wled_entity", "automation.wled_device"}, } for search_type, search_id in ( ("config_entry", wled_config_entry.entry_id), ("area", living_room_area.id), ("device", wled_device.id), ("entity", wled_segment_1_entity.entity_id), ("entity", wled_segment_2_entity.entity_id), ("scene", "scene.scene_wled_seg_1"), ("group", "group.wled"), ("script", "script.wled"), ("automation", "automation.wled_entity"), ("automation", "automation.wled_device"), ): searcher = search.Searcher(hass, device_reg, entity_reg) results = searcher.async_search(search_type, search_id) # Add the item we searched for, it's omitted from results results.setdefault(search_type, set()).add(search_id) assert ( results == expected ), f"Results for {search_type}/{search_id} do not match up" # For combined things, needs to return everything. expected_combined = { "config_entry": {wled_config_entry.entry_id, hue_config_entry.entry_id}, "area": {living_room_area.id, kitchen_area.id}, "device": {wled_device.id, hue_device.id}, "entity": { wled_segment_1_entity.entity_id, wled_segment_2_entity.entity_id, hue_segment_1_entity.entity_id, hue_segment_2_entity.entity_id, }, "scene": { "scene.scene_wled_seg_1", "scene.scene_hue_seg_1", "scene.scene_wled_hue", }, "group": {"group.wled", "group.hue", "group.wled_hue"}, "script": {"script.wled", "script.hue"}, "automation": {"automation.wled_entity", "automation.wled_device"}, } for search_type, search_id in ( ("scene", "scene.scene_wled_hue"), ("group", "group.wled_hue"), ): searcher = search.Searcher(hass, device_reg, entity_reg) results = searcher.async_search(search_type, search_id) # Add the item we searched for, it's omitted from results results.setdefault(search_type, set()).add(search_id) assert ( results == expected_combined ), f"Results for {search_type}/{search_id} do not match up" for search_type, search_id in ( ("entity", "automation.non_existing"), ("entity", "scene.non_existing"), ("entity", "group.non_existing"), ("entity", "script.non_existing"), ("entity", "light.non_existing"), ("area", "non_existing"), ("config_entry", "non_existing"), ("device", "non_existing"), ("group", "group.non_existing"), ("scene", "scene.non_existing"), ("script", "script.non_existing"), ("automation", "automation.non_existing"), ): searcher = search.Searcher(hass, device_reg, entity_reg) assert searcher.async_search(search_type, search_id) == {} async def test_ws_api(hass, hass_ws_client): """Test WS API.""" assert await async_setup_component(hass, "search", {}) area_reg = ar.async_get(hass) device_reg = dr.async_get(hass) kitchen_area = area_reg.async_create("Kitchen") hue_config_entry = MockConfigEntry(domain="hue") hue_config_entry.add_to_hass(hass) hue_device = device_reg.async_get_or_create( config_entry_id=hue_config_entry.entry_id, name="Light Strip", identifiers=({"hue", "hue-1"}), ) device_reg.async_update_device(hue_device.id, area_id=kitchen_area.id) client = await hass_ws_client(hass) await client.send_json( { "id": 1, "type": "search/related", "item_type": "device", "item_id": hue_device.id, } ) response = await client.receive_json() assert response["success"] assert response["result"] == { "config_entry": [hue_config_entry.entry_id], "area": [kitchen_area.id], }
[ "noreply@github.com" ]
DerMetzger69.noreply@github.com
a59023c73e4c83a56165318808a850c0a4773679
a1905ff01ec05d860480b1ec6624c51759b55f9b
/core/migrations/0002_client.py
35acfe33f6b1658a1480381b91965a1cf0b3a602
[]
no_license
mthlimao/DjangoFirst
ac1a57685924b86724696c8edb7d1f89bfc86335
e696f71e4ddc9596046ecf7058416c27a4dd875a
refs/heads/master
2023-03-10T10:31:06.042017
2021-02-26T15:34:40
2021-02-26T15:34:40
342,607,367
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
# Generated by Django 3.1.7 on 2021-02-25 19:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.CreateModel( name='Client', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100, verbose_name='Nome')), ('surname', models.CharField(max_length=100, verbose_name='Sobrenome')), ('email', models.EmailField(max_length=100, verbose_name='E-Mail')), ], ), ]
[ "mthlima@poli.ufrj.br" ]
mthlima@poli.ufrj.br
ce7ad080e2c9a94a6ecefbb14a754599ca303ed1
2f6da5dc2dd05e0a9ad8310e2721df56a00d29ef
/apps/xfzauth/migrations/0001_initial.py
15b55649dfaa3aa7a35c4c41e9dcc68cb0ca97e1
[]
no_license
Qinyhao/xfz
274b481c68a6e571b759482bfb78e17663db3e55
5f3faffd9fad875b0dbb09272fd93cf48137e352
refs/heads/master
2022-12-13T09:46:42.900424
2019-10-02T01:34:09
2019-10-02T01:34:09
212,029,607
1
0
null
2022-12-08T06:13:50
2019-10-01T06:44:58
Python
UTF-8
Python
false
false
1,897
py
# Generated by Django 2.2.4 on 2019-09-19 08:47 from django.db import migrations, models import shortuuidfield.fields class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('uid', shortuuidfield.fields.ShortUUIDField(blank=True, editable=False, max_length=22, primary_key=True, serialize=False)), ('telephone', models.CharField(max_length=11, unique=True)), ('password', models.CharField(max_length=200)), ('email', models.EmailField(max_length=254, null=True, unique=True)), ('username', models.CharField(max_length=100)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('data_joined', models.DateTimeField(auto_now_add=True)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'abstract': False, }, ), ]
[ "1042816768@qq.com" ]
1042816768@qq.com
1057765bd210fa0face28a8efa2798eeb147f722
b11c09407c59393e27d8cfba46ffab9c576969ae
/z_download_francischan.py
3a4c58d333a846b56b59f760d631b2477accbfc0
[]
no_license
emeth-/emethplayer
296cf277802ddf1854db66959bcfe36522153a9a
6d4066f0e5b8d8e4a929c43e0bc5d93918ff82a3
refs/heads/master
2021-01-19T09:44:52.482389
2013-09-01T03:17:27
2013-09-01T03:17:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,221
py
import urllib2, urllib, os import httplib import json def extract_data(html): data = {'title':'', 'description':'', 'scripture':'', 'church':'', 'file_loc':'', 'file_loc_s3':''} if 'resourceLinks' in html: p = html.split('resourceLinks')[1][:220].replace(' <a href="/index.php?id=305&amp;file=', "").split("listenWindow")[0].replace('" class="', '') if 'fileadmin' in p: p = p[p.index('fileadmin'):] data['file_loc'] = "http://www.preachitteachit.org/"+p data['file_loc_s3'] = os.path.basename(data['file_loc']) if 'sermonTitle' in html: data['title'] = html.split('sermonTitle')[1].split("</h2>")[0].split('href')[1].split('</a>')[0].split('" >')[1] if 'sermonDescription' in html: data['description'] = html.split("sermonDescription")[1].split("</div>")[0].split("bodytext'>")[1].split("</p>")[0].replace("Used by permission.", "").replace("Preached at Cornerstone Church, Simi Valley, California.", "").replace("Preached at Cornerstone Church, Simi Valley California.", "").replace("From Cornerstone Church, Simi Valley, California.", "").replace("&#8221;", '"').replace("&#8220;", '"').replace("&nbsp;", " ").replace("&#8217;", "'").strip() if "Passages:" in html: p = html.split("Passages:")[1].split("</a></p>")[0] if 'target="_blank" >' in p: data['scripture'] = p.split('target="_blank" >')[1] data['church'] = "Cornerstone Church, Simi Valley, California" if data['file_loc'] == "": return -1 data['download_me'] = 1 data['author_name'] = "Francis Chan" data['church_website'] = "http://www.cornerstonesimi.com/" conn = urllib.urlopen(data['file_loc']) data['sermon_timestamp'] = conn.headers['last-modified'] data['file_loc_s3'] = "media/francis_chan/" + data['file_loc_s3'] return data #http://www.preachitteachit.org/fileadmin/Release_1/sermons/sermon_series/Frances_Chan/OHolyNightChan.mp3 urls = [ "http://www.preachitteachit.org/about-us/the-team/francis-chan/sermons/", "http://www.preachitteachit.org/about-us/the-team/francis-chan/sermons/resource////1/", "http://www.preachitteachit.org/about-us/the-team/francis-chan/sermons/resource////2/", "http://www.preachitteachit.org/about-us/the-team/francis-chan/sermons/resource////3/", "http://www.preachitteachit.org/about-us/the-team/francis-chan/sermons/resource////4/" ] for url in urls: html = urllib.urlopen(url).read() for p in html.split('sermonWrap'): x = extract_data(p) if x != -1: """ local_dir = os.getcwd() + '/media/francis_chan/' + x['filename'] if not os.path.exists(local_dir): urllib.urlretrieve(x['url'], local_dir) print x['filename'] + " downloaded." """ url = 'http://localhost:8888/emethplayer/ajax.php?act=add_sermon' x['password'] = "royale" data = urllib.urlencode(x) req = urllib2.Request(url, data) response = urllib2.urlopen(req) print response.read()
[ "seanybob@gmail.com" ]
seanybob@gmail.com
6352feb72a2b9d647522c254a16f9af534795611
fc802a0cabc5cd8d93b62185a08f3c465c38df2a
/tools/profile.py
8100e07c5ad27cb592ee1e4ea413a4f8e52bdf2c
[ "BSD-3-Clause" ]
permissive
astanway/osquery
861d72e39a5c3daca8022236f4aa40dccfb38893
9effc14903589b33d3d81c10ee1b19b359aec44c
refs/heads/master
2021-01-12T21:03:02.718690
2014-11-10T21:14:48
2014-11-10T21:14:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,437
py
#!/usr/bin/env python # Copyright 2004-present Facebook. All Rights Reserved. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals try: import argparse except ImportError: print ("Cannot import argparse.") print ("Try: sudo yum install python-argparse") exit(1) import json import os import psutil import tempfile import shutil import subprocess import sys import time def red(msg): return "\033[41m\033[1;30m %s \033[0m" % str(msg) def yellow(msg): return "\033[43m\033[1;30m %s \033[0m" % str(msg) def green(msg): return "\033[42m\033[1;30m %s \033[0m" % str(msg) def blue(msg): return "\033[46m\033[1;30m %s \033[0m" % str(msg) KB = 1024 * 1024 RANGES = { "colors": (blue, green, yellow, red), "utilization": (8, 20, 50), "cpu_time": (0.4, 1, 10), "memory": (8 * KB, 12 * KB, 24 * KB), "fds": (6, 12, 50), "duration": (0.8, 1, 3), } def queries_from_tables(path, restrict): """Construct select all queries from all tables.""" # Let the caller limit the tables restrict_tables = [t.strip() for t in restrict.split(",")] tables = [] for base, folders, files in os.walk(path): for spec in files: spec_platform = os.path.basename(base) table_name = spec.split(".table", 1)[0] if spec_platform not in ["x", platform]: continue # Generate all tables to select from, with abandon. tables.append("%s.%s" % (spec_platform, table_name)) tables = [t for t in tables if t.split(".")[1] not in restrict_tables] queries = {} for table in tables: queries[table] = "SELECT * FROM %s;" % table.split(".", 1)[1] return queries def get_stats(p, interval=1): """Run psutil and downselect the information.""" utilization = p.cpu_percent(interval=interval) return { "utilization": utilization, "counters": p.io_counters() if sys.platform != "darwin" else None, "fds": p.num_fds(), "cpu_times": p.cpu_times(), "memory": p.memory_info_ex(), } def check_leaks_linux(shell, query, supp_file=None): """Run valgrind using the shell and a query, parse leak reports.""" start_time = time.time() suppressions = "" if supp_file is None else "--suppressions=%s" % supp_file cmd = "valgrind --tool=memcheck %s %s --query=\"%s\"" % ( suppressions, shell, query) proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = proc.communicate() summary = { "definitely": None, "indirectly": None, "possibly": None, } for line in stderr.split("\n"): for key in summary: if line.find(key) >= 0: summary[key] = line.split(":")[1].strip() return summary def check_leaks_darwin(shell, query): start_time = time.time() proc = subprocess.Popen([shell, "--query", query, "--delay", "1"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) leak_checks = None while proc.poll() is None: leaks = subprocess.Popen(["leaks", "%s" % proc.pid], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, _ = leaks.communicate() try: for line in stdout.split("\n"): if line.find("total leaked bytes") >= 0: leak_checks = line.split(":")[1].strip() except: print (stdout) return {"definitely": leak_checks} def check_leaks(shell, query, supp_file=None): if sys.platform == "darwin": return check_leaks_darwin(shell, query) else: return check_leaks_linux(shell, query, supp_file=supp_file) def profile_leaks(shell, queries, count=1, rounds=1, supp_file=None): report = {} for name, query in queries.iteritems(): print ("Analyzing leaks in query: %s" % query) # Apply count summary = check_leaks(shell, query * count, supp_file) display = [] for key in summary: output = summary[key] if output is not None and output[0] != "0": # Add some fun colored output if leaking. if key == "definitely": output = red(output) if key == "indirectly": output = yellow(output) display.append("%s: %s" % (key, output)) print (" %s" % "; ".join(display)) report[name] = summary return report def run_query(shell, query, timeout=0, count=1): """Execute the osquery run testing wrapper with a setup/teardown delay.""" start_time = time.time() proc = subprocess.Popen( [shell, "--query", query, "--iterations", str(count), "--delay", "1"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) p = psutil.Process(pid=proc.pid) delay = 0 step = 0.5 percents = [] # Calculate the CPU utilization in intervals of 1 second. while p.is_running(): try: stats = get_stats(p, step) percents.append(stats["utilization"]) except psutil.AccessDenied: break delay += step if timeout > 0 and delay >= timeout + 2: proc.kill() break duration = time.time() - start_time - 2; utilization = [p for p in percents if p != 0] if len(utilization) == 0: avg_utilization = 0 else: avg_utilization = sum(utilization)/len(utilization) return { "utilization": avg_utilization, "duration": duration, "memory": stats["memory"].rss, "user_time": stats["cpu_times"].user, "system_time": stats["cpu_times"].system, "cpu_time": stats["cpu_times"].user + stats["cpu_times"].system, "fds": stats["fds"], } def summary(results, display=False): """Map the results to simple thresholds.""" def rank(value, ranges): for i, r in enumerate(ranges): if value < r: return i return len(ranges) summary_results = {} for name, result in results.iteritems(): summary_result = {} for key in RANGES: if key == "colors": continue summary_result[key] = rank(result[key], RANGES[key]) if display: print ("%s:" % name, end=" ") for key, v in summary_result.iteritems(): print (RANGES["colors"][v]( "%s: %s (%s)" % (key, v, result[key])), end=" ") print ("") summary_results[name] = summary_result return summary_results def profile(shell, queries, timeout=0, count=1, rounds=1): report = {} for name, query in queries.iteritems(): print ("Profiling query: %s" % query) results = {} for i in range(rounds): result = run_query(shell, query, timeout=timeout, count=count) summary({"%s (%d/%d)" % (name, i+1, rounds): result}, display=True) # Store each result round to return an average. for k, v in result.iteritems(): results[k] = results.get(k, []) results[k].append(v) average_results = {} for k in results: average_results[k] = sum(results[k])/len(results[k]) report[name] = average_results summary({"%s avg" % name: report[name]}, display=True) return report if __name__ == "__main__": platform = sys.platform if platform == "linux2": platform = "linux" parser = argparse.ArgumentParser(description=("Profile osquery, " "individual tables, or a set of osqueryd config queries.")) parser.add_argument("--restrict", default="", help="Limit to a list of comma-separated tables.") parser.add_argument("--tables", default="./osquery/tables/specs", help="Path to the osquery table specs.") parser.add_argument("--config", default=None, help="Use scheduled queries from a config.") parser.add_argument("--output", default=None, help="Write JSON output to file.") parser.add_argument("--summary", default=False, action="store_true", help="Write a summary instead of stats.") parser.add_argument("--query", default=None, help="Profile a single query.") parser.add_argument("--timeout", default=0, type=int, help="Max seconds a query may run --count times.") parser.add_argument("--count", default=1, type=int, help="Number of times to run each query.") parser.add_argument("--rounds", default=1, type=int, help="Run the profile for multiple rounds and use the average.") parser.add_argument("--leaks", default=False, action="store_true", help="Check for memory leaks instead of performance.") parser.add_argument("--suppressions", default=None, help="Add a suppressions files to memory leak checking.") parser.add_argument("--shell", default="./build/%s/tools/run" % (platform), help="Path to osquery run wrapper.") args = parser.parse_args() if not os.path.exists(args.shell): print ("Cannot find --daemon: %s" % (args.shell)) exit(1) if args.config is None and not os.path.exists(args.tables): print ("Cannot find --tables: %s" % (args.tables)) exit(1) queries = {} if args.config is not None: if not os.path.exists(args.config): print ("Cannot find --config: %s" % (args.config)) exit(1) print ("--config is not yet supported.") exit(2) elif args.query is not None: queries["manual"] = args.query else: queries = queries_from_tables(args.tables, args.restrict) if args.leaks: results = profile_leaks(args.shell, queries, count=args.count, rounds=args.rounds, supp_file=args.suppressions) exit(0) # Start the profiling! results = profile(args.shell, queries, timeout=args.timeout, count=args.count, rounds=args.rounds) if args.output is not None and not args.summary: with open(args.output, "w") as fh: fh.write(json.dumps(results, indent=1, sort_keys=True)) if args.summary is True: with open(args.output, "w") as fh: fh.write(json.dumps(summary(results), indent=1, sort_keys=True))
[ "teddy@prosauce.org" ]
teddy@prosauce.org
a3644cf3157aa4e51f12b00a4e14fe4aabe39792
a1b522a663eb23d1fecdc215851005d82fdc7703
/selenium_pytest_demo/test_user_password.py
9bce041aa5c5dc19284136cf04b8f2b2c8eba9cd
[]
no_license
answermvp/web_ui_test
bdc4f8ad8c9a9e54be828a14a06c01ee46bbb3d7
85e0893bbf62fcfea49ecdf52ff59882fa9932c4
refs/heads/master
2020-04-14T04:48:34.005030
2018-12-31T06:51:59
2018-12-31T06:51:59
163,645,991
0
0
null
null
null
null
UTF-8
Python
false
false
487
py
import pytest import json # fixture class TestUserPassword(object): @pytest.fixture def users(self): return json.loads(open('./users.dev.json', 'r').read()) def test_user_password(self, users): for user in users: passwd = user['password'] assert len(passwd) >= 6 msg = 'user %s has a weak passpword' % (user['name']) assert passwd != 'password', msg assert passwd != '123456', msg
[ "answer_dp@163.com" ]
answer_dp@163.com
4414071dbcbc0774e0e10c7e9250b9a50c420220
c87a4c661f6093b38ff7571b482898e88a078e2b
/quiz/models.py
d29f045fe294a5d3ef722435984c022b2ea92a83
[]
no_license
CharanR24/Quiz-App-Using-Django
aaa3e36e8f45f0577a1547ca38be70efb1d7ff66
c8aa03462c2da87bad23265af8298e203622f79a
refs/heads/master
2023-01-15T21:33:29.423472
2020-11-25T01:50:55
2020-11-25T01:50:55
315,796,967
1
0
null
null
null
null
UTF-8
Python
false
false
21,639
py
import re import json import csv from django.db import models from django.core.exceptions import ValidationError, ImproperlyConfigured from django.core.validators import MaxValueValidator, validate_comma_separated_integer_list from django.utils.timezone import now from django.conf import settings from django.utils.translation import ugettext as _ from model_utils.managers import InheritanceManager from django.db.models.signals import pre_save, post_save import io from .signals import csv_uploaded from .validators import csv_file_validator from django.contrib.auth.models import User from django.contrib import messages class CategoryManager(models.Manager): def new_category(self, category): new_category = self.create(category=re.sub('\s+', '-', category) .lower()) new_category.save() return new_category class Category(models.Model): category = models.CharField( verbose_name=_("Category"), max_length=250, blank=True, unique=True, null=True) objects = CategoryManager() class Meta: verbose_name = _("Category") verbose_name_plural = _("Categories") def __str__(self): return self.category class Quiz(models.Model): title = models.CharField( verbose_name=_("Title"), max_length=60, blank=False) description = models.TextField( verbose_name=_("Description"), blank=True, help_text=_("a description of the quiz")) url = models.SlugField( max_length=60, blank=False, help_text=_("a user friendly url"), verbose_name=_("user friendly url")) category = models.ForeignKey( Category, null=True, blank=True, verbose_name=_("Category"), on_delete=models.CASCADE) random_order = models.BooleanField( blank=False, default=False, verbose_name=_("Random Order"), help_text=_("Display the questions in " "a random order or as they " "are set?")) max_questions = models.PositiveIntegerField( blank=True, null=True, verbose_name=_("Max Questions"), help_text=_("Number of questions to be answered on each attempt.")) answers_at_end = models.BooleanField( blank=False, default=False, help_text=_("Correct answer is NOT shown after question." " Answers displayed at the end."), verbose_name=_("Answers at end")) exam_paper = models.BooleanField( blank=False, default=False, help_text=_("If yes, the result of each" " attempt by a user will be" " stored. Necessary for marking."), verbose_name=_("Exam Paper")) single_attempt = models.BooleanField( blank=False, default=False, help_text=_("If yes, only one attempt by" " a user will be permitted." " Non users cannot sit this exam."), verbose_name=_("Single Attempt")) pass_mark = models.SmallIntegerField( blank=True, default=0, verbose_name=_("Pass Mark"), help_text=_("Percentage required to pass exam."), validators=[MaxValueValidator(100)]) success_text = models.TextField( blank=True, help_text=_("Displayed if user passes."), verbose_name=_("Success Text")) fail_text = models.TextField( verbose_name=_("Fail Text"), blank=True, help_text=_("Displayed if user fails.")) draft = models.BooleanField( blank=True, default=False, verbose_name=_("Draft"), help_text=_("If yes, the quiz is not displayed" " in the quiz list and can only be" " taken by users who can edit" " quizzes.")) def save(self, force_insert=False, force_update=False, *args, **kwargs): self.url = re.sub('\s+', '-', self.url).lower() self.url = ''.join(letter for letter in self.url if letter.isalnum() or letter == '-') if self.single_attempt is True: self.exam_paper = True if int(self.pass_mark) > 100: raise ValidationError('%s is above 100' % self.pass_mark) super(Quiz, self).save(force_insert, force_update, *args, **kwargs) class Meta: verbose_name = _("Quiz") verbose_name_plural = _("Quizzes") def __str__(self): return self.title def get_questions(self): return self.question_set.all().select_subclasses() @property def get_max_score(self): return self.get_questions().count() def anon_score_id(self): return str(self.id) + "_score" def anon_q_list(self): return str(self.id) + "_q_list" def anon_q_data(self): return str(self.id) + "_data" # progress manager class ProgressManager(models.Manager): def new_progress(self, user): new_progress = self.create(user=user, score="") new_progress.save() return new_progress class Progress(models.Model): """ Progress is used to track an individual signed in users score on different quiz's and categories Data stored in csv using the format: category, score, possible, category, score, possible, ... """ user = models.OneToOneField(settings.AUTH_USER_MODEL, verbose_name=_("User"), on_delete=models.CASCADE) score = models.CharField(validators=[validate_comma_separated_integer_list], max_length=1024, verbose_name=_("Score")) correct_answer = models.CharField(max_length=10, verbose_name=_('Correct Answers')) wrong_answer = models.CharField(max_length=10, verbose_name=_('Wrong Answers')) objects = ProgressManager() class Meta: verbose_name = _("User Progress") verbose_name_plural = _("User progress records") @property def list_all_cat_scores(self): """ Returns a dict in which the key is the category name and the item is a list of three integers. The first is the number of questions correct, the second is the possible best score, the third is the percentage correct. The dict will have one key for every category that you have defined """ score_before = self.score output = {} for cat in Category.objects.all(): to_find = re.escape(cat.category) + r",(\d+),(\d+)," # group 1 is score, group 2 is highest possible match = re.search(to_find, self.score, re.IGNORECASE) if match: score = int(match.group(1)) possible = int(match.group(2)) try: percent = int(round((float(score) / float(possible)) * 100)) except: percent = 0 output[cat.category] = [score, possible, percent] else: # if category has not been added yet, add it. self.score += cat.category + ",0,0," output[cat.category] = [0, 0] if len(self.score) > len(score_before): # If a new category has been added, save changes. self.save() return output def update_score(self, question, score_to_add=0, possible_to_add=0): """ Pass in question object, amount to increase score and max possible. Does not return anything. """ category_test = Category.objects.filter(category=question.category)\ .exists() if any([item is False for item in [category_test, score_to_add, possible_to_add, isinstance(score_to_add, int), isinstance(possible_to_add, int)]]): return _("error"), _("category does not exist or invalid score") to_find = re.escape(str(question.category)) +\ r",(?P<score>\d+),(?P<possible>\d+)," match = re.search(to_find, self.score, re.IGNORECASE) if match: updated_score = int(match.group('score')) + abs(score_to_add) updated_possible = int(match.group('possible')) +\ abs(possible_to_add) new_score = ",".join( [ str(question.category), str(updated_score), str(updated_possible), "" ]) # swap old score for the new one self.score = self.score.replace(match.group(), new_score) self.save() else: # if not present but existing, add with the points passed in self.score += ",".join( [ str(question.category), str(score_to_add), str(possible_to_add), "" ]) self.save() def show_exams(self): """ Finds the previous quizzes marked as 'exam papers'. Returns a queryset of complete exams. """ return Sitting.objects.filter(user=self.user, complete=True) def __str__(self): return self.user.username + ' - ' + self.score class SittingManager(models.Manager): def new_sitting(self, user, quiz): if quiz.random_order is True: question_set = quiz.question_set.all() \ .select_subclasses() \ .order_by('?') else: question_set = quiz.question_set.all() \ .select_subclasses() question_set = [item.id for item in question_set] if len(question_set) == 0: raise ImproperlyConfigured('Question set of the quiz is empty. ' 'Please configure questions properly') if quiz.max_questions and quiz.max_questions < len(question_set): question_set = question_set[:quiz.max_questions] questions = ",".join(map(str, question_set)) + "," new_sitting = self.create(user=user, quiz=quiz, question_order=questions, question_list=questions, incorrect_questions="", current_score=0, complete=False, user_answers='{}') return new_sitting def user_sitting(self, user, quiz): if quiz.single_attempt is True and self.filter(user=user, quiz=quiz, complete=True)\ .exists(): return False try: sitting = self.get(user=user, quiz=quiz, complete=False) except Sitting.DoesNotExist: sitting = self.new_sitting(user, quiz) except Sitting.MultipleObjectsReturned: sitting = self.filter(user=user, quiz=quiz, complete=False)[0] return sitting class Sitting(models.Model): """ Used to store the progress of logged in users sitting a quiz. Replaces the session system used by anon users. Question_order is a list of integer pks of all the questions in the quiz, in order. Question_list is a list of integers which represent id's of the unanswered questions in csv format. Incorrect_questions is a list in the same format. Sitting deleted when quiz finished unless quiz.exam_paper is true. User_answers is a json object in which the question PK is stored with the answer the user gave. """ user = models.ForeignKey(settings.AUTH_USER_MODEL, verbose_name=_("User"), on_delete=models.CASCADE) quiz = models.ForeignKey(Quiz, verbose_name=_("Quiz"), on_delete=models.CASCADE) question_order = models.CharField(validators=[validate_comma_separated_integer_list], max_length=1024, verbose_name=_("Question Order")) question_list = models.CharField(validators=[validate_comma_separated_integer_list], max_length=1024, verbose_name=_("Question List")) incorrect_questions = models.CharField(validators=[validate_comma_separated_integer_list], max_length=1024, blank=True, verbose_name=_("Incorrect questions")) current_score = models.IntegerField(verbose_name=_("Current Score")) complete = models.BooleanField(default=False, blank=False, verbose_name=_("Complete")) user_answers = models.TextField(blank=True, default='{}', verbose_name=_("User Answers")) start = models.DateTimeField(auto_now_add=True, verbose_name=_("Start")) end = models.DateTimeField(null=True, blank=True, verbose_name=_("End")) objects = SittingManager() class Meta: permissions = (("view_sittings", _("Can see completed exams.")),) def get_first_question(self): """ Returns the next question. If no question is found, returns False Does NOT remove the question from the front of the list. """ if not self.question_list: return False first, _ = self.question_list.split(',', 1) question_id = int(first) return Question.objects.get_subclass(id=question_id) def remove_first_question(self): if not self.question_list: return _, others = self.question_list.split(',', 1) self.question_list = others self.save() def add_to_score(self, points): self.current_score += int(points) self.save() @property def get_current_score(self): return self.current_score def _question_ids(self): return [int(n) for n in self.question_order.split(',') if n] @property def get_percent_correct(self): dividend = float(self.current_score) divisor = len(self._question_ids()) if divisor < 1: return 0 # prevent divide by zero error if dividend > divisor: return 100 correct = int(round((dividend / divisor) * 100)) if correct >= 1: return correct else: return 0 def mark_quiz_complete(self): self.complete = True self.end = now() self.save() def add_incorrect_question(self, question): """ Adds uid of incorrect question to the list. The question object must be passed in. """ if len(self.incorrect_questions) > 0: self.incorrect_questions += ',' self.incorrect_questions += str(question.id) + "," if self.complete: self.add_to_score(-1) self.save() @property def get_incorrect_questions(self): """ Returns a list of non empty integers, representing the pk of questions """ return [int(q) for q in self.incorrect_questions.split(',') if q] def remove_incorrect_question(self, question): current = self.get_incorrect_questions current.remove(question.id) self.incorrect_questions = ','.join(map(str, current)) self.add_to_score(1) self.save() @property def check_if_passed(self): return self.get_percent_correct >= self.quiz.pass_mark @property def result_message(self): if self.check_if_passed: return self.quiz.success_text else: return self.quiz.fail_text def add_user_answer(self, question, guess): current = json.loads(self.user_answers) current[question.id] = guess self.user_answers = json.dumps(current) self.save() def get_questions(self, with_answers=False): question_ids = self._question_ids() questions = sorted( self.quiz.question_set.filter(id__in=question_ids) .select_subclasses(), key=lambda q: question_ids.index(q.id)) if with_answers: user_answers = json.loads(self.user_answers) for question in questions: question.user_answer = user_answers[str(question.id)] return questions @property def questions_with_user_answers(self): return { q: q.user_answer for q in self.get_questions(with_answers=True) } @property def get_max_score(self): return len(self._question_ids()) def progress(self): """ Returns the number of questions answered so far and the total number of questions. """ answered = len(json.loads(self.user_answers)) total = self.get_max_score return answered, total class Question(models.Model): """ Base class for all question types. Shared properties placed here. """ quiz = models.ManyToManyField(Quiz, verbose_name=_("Quiz"), blank=True) category = models.ForeignKey(Category, verbose_name=_("Category"), blank=True, null=True, on_delete=models.CASCADE) figure = models.ImageField(upload_to='uploads/%Y/%m/%d', blank=True, null=True, verbose_name=_("Figure")) content = models.CharField(max_length=1000, blank=False, help_text=_("Enter the question text that " "you want displayed"), verbose_name=_('Question')) explanation = models.TextField(max_length=2000, blank=True, help_text=_("Explanation to be shown " "after the question has " "been answered."), verbose_name=_('Explanation')) objects = InheritanceManager() class Meta: verbose_name = _("Question") verbose_name_plural = _("Questions") ordering = ['category'] def __str__(self): return self.content def upload_csv_file(instance, filename): qs = instance.__class__.objects.filter(user=instance.user) if qs.exists(): num_ = qs.last().id + 1 else: num_ = 1 return f'csv/{num_}/{instance.user.username}/{filename}' class CSVUpload(models.Model): title = models.CharField(max_length=100, verbose_name=_('Title'), blank=False) user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) file = models.FileField(upload_to=upload_csv_file, validators=[csv_file_validator]) completed = models.BooleanField(default=False) # questions = models.BooleanField(default=True) # students = models.BooleanField(default=False) def __str__(self): return self.user.username def create_user(data): user = User.objects.create_user(username=data['username'], email=data['email'], password=data['password'], first_name=data['first_name'], last_name=data['last_name'] ) user.is_admin=False user.is_staff=False user.save() def convert_header(csvHeader): header_ = csvHeader[0] cols = [x.replace(' ', '_').lower() for x in header_.split(",")] return cols def csv_upload_post_save(sender, instance, created, *args, **kwargs): if not instance.completed: csv_file = instance.file decoded_file = csv_file.read().decode('utf-8') io_string = io.StringIO(decoded_file) reader = csv.reader(io_string, delimiter=';', quotechar='|') header_ = next(reader) header_cols = convert_header(header_) print(header_cols, str(len(header_cols))) parsed_items = [] ''' if using a custom signal ''' for line in reader: # print(line) parsed_row_data = {} i = 0 print(line[0].split(','), len(line[0].split(','))) row_item = line[0].split(',') for item in row_item: key = header_cols[i] parsed_row_data[key] = item i+=1 create_user(parsed_row_data) # create user parsed_items.append(parsed_row_data) # messages.success(parsed_items) print(parsed_items) csv_uploaded.send(sender=instance, user=instance.user, csv_file_list=parsed_items) ''' if using a model directly for line in reader: new_obj = YourModelKlass() i = 0 row_item = line[0].split(',') for item in row_item: key = header_cols[i] setattr(new_obj, key) = item i+=1 new_obj.save() ''' instance.completed = True instance.save() post_save.connect(csv_upload_post_save, sender=CSVUpload)
[ "charanravichandran24@gmail.com" ]
charanravichandran24@gmail.com
fa4069b3aae284cd85d86fe63a1219a3c5b21221
2f66b4070ee313fda229f6d7b9984eac8447c76c
/0108_etsy_1.py
024e79660fe7376d8040068ea7e596c93bef7f4b
[]
no_license
hqpr/esty
207b1b871bfb4d49e3fd8392295f092515aeb38e
2c51040e1a9269a53b60c21271f8cbac5ff8361b
refs/heads/master
2020-05-18T04:12:36.027545
2018-02-09T17:54:38
2018-02-09T17:54:38
23,795,634
0
0
null
null
null
null
UTF-8
Python
false
false
988
py
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'o.dubnyak' __version__ = 1.0 """ https://github.com/geduldig/TwitterAPI https://dev.twitter.com/docs/api/1.1 https://hootsuite.com/developers/api/oauth2 consumer_key = "IqoIbOEZn4MVJJ5DePtvA" consumer_secret = "MLdKfOS65GN7gDn5XSJyO9sjgGdcK1rUZMuLW2uPZg" access_token_key = "23428449-GU5Ecm0gPC24kYDiC9xPLff0JvUd3LvHBwn7JOZGs" access_token_secret = "XedJlYAc29XTAOiBjVMVueHJMbYPUzpL8alC9ID4A" """ from TwitterAPI import TwitterAPI import time import csv reader = csv.reader(open('keys.csv', 'rb'), delimiter=';', quotechar='"') for row in reader: consumer_key = row[0] consumer_secret = row[1] access_token_key = row[2] access_token_secret = row[3] api = TwitterAPI(consumer_key, consumer_secret, access_token_key, access_token_secret) msg = ['test', 'is', 'this'] for m in msg: r = api.request('statuses/update', {'status': m}) time.sleep(5) print r.status_code
[ "adubnyak@gmail.com" ]
adubnyak@gmail.com
3a747dbe6324f8ee0d8ec7fda4c8284b76e6ed1b
d61142cbb171f4aa9d7b792bd29a0068200cd36f
/tests/mock_app/blueprint_one/__init__.py
c3a6bc399e084ef952013bd4ebbd3825a89f995b
[ "MIT" ]
permissive
joelcolucci/flask-registerblueprints
1f9a0187e63d4b956a550468b8def190b569a09b
c117404691b66594f2cc84bff103ce893c633ecc
refs/heads/master
2023-01-23T04:20:20.210667
2016-10-14T23:09:24
2016-10-14T23:09:24
70,648,263
5
0
MIT
2022-12-26T19:57:31
2016-10-12T00:58:44
Python
UTF-8
Python
false
false
30
py
from api import blueprint_api
[ "joelcolucci@gmail.com" ]
joelcolucci@gmail.com
c4791c2e825413ab4394faae014a9ff440211360
aacd813df79d65fda68fafc7f171c689e5dbe8e1
/kobert_transformers/kobert_transformers/utils.py
1a6580a439779f850974be84b99148a96a177a46
[ "Apache-2.0" ]
permissive
KKbeom/DistilKoBERT
e685a4407cebbf63886634d7b79222c637cbf9f0
b09f2b78b0d554be4885b5a9042a41e4ca76fd78
refs/heads/master
2020-12-10T05:11:59.909126
2020-01-12T11:02:45
2020-01-12T11:02:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
140
py
from .tokenization_kobert import KoBertTokenizer def get_tokenizer(): return KoBertTokenizer.from_pretrained('monologg/distilkobert')
[ "adieujw@gmail.com" ]
adieujw@gmail.com
32cfa54f40707c030336eea1fd9e4f3640daf9e6
c6f9aae90a71a621a00c606d1d5c6b2c2feb4360
/comparison.py
4d27d029e8105f413e720568a6bbaba6c876ad92
[]
no_license
yungkk98/korean_music_classifier
5114ae1a511d04e5498fb31f3fc9ed4b2cc8a586
0dd30172bc3db6f56a4910d2e708226a0c66340f
refs/heads/master
2020-03-18T21:41:08.350311
2018-05-29T12:52:57
2018-05-29T12:52:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,272
py
import numpy as np import statistics from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_classification from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB import librosa from sklearn.metrics import precision_score, recall_score from sklearn.metrics import accuracy_score from sklearn.externals import joblib import csv import os f=open('./ex_2_fin_good.csv', 'w') csvWriter = csv.writer(f) channel = 16 names = ["NearestNeighbors", "K-NN_k=3", "Linear_SVM", "RBF_SVM", "Gaussian_Process", "Decision_Tree_5", "Decision_Tree_10", "Random_Forest", "Neural_Net", "AdaBoost", "Naive_Bayes"] classifiers = [ KNeighborsClassifier(1), KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), GaussianProcessClassifier(1.0 * RBF(1.0)), DecisionTreeClassifier(max_depth=5), DecisionTreeClassifier(max_depth=10), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), MLPClassifier(alpha=1), AdaBoostClassifier(), GaussianNB() ] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) mfccs = [] mfcc_record = [] y_list = [] songs = [] cn = 0 for category in ['balad', 'dance', 'fork/bluse', 'korea_tradition', 'rap/hiphop', 'rock', 'trote']: for root, dirs, files in os.walk('./music/' + category): for fname in files: full_fname = os.path.join(root, fname) songs.append(full_fname) print(full_fname) y_list.append(cn) cn += 1 for song in songs: audio_path = librosa.util.example_audio_file() y, sr = librosa.load(song, offset=15.0, duration=30.0) S = librosa.feature.melspectrogram(y, sr=sr, n_mels=64) log_S = librosa.logamplitude(S, ref_power=np.max) mfcc = librosa.feature.mfcc(S=log_S, n_mfcc=channel) l = [] for tmp in mfcc: l.append(np.mean(tmp)) for tmp in mfcc: l.append(np.var(tmp)) for tmp in mfcc: l.append(np.std(tmp)) for tmp in mfcc: l.append(np.max(tmp) - np.min(tmp)) for tmp in mfcc: l.append(statistics.median(tmp)) mfccs.append(l) print(song) print(l) X = np.array(mfccs, dtype=np.float32) y = np.array(y_list, dtype=np.int64) # 1 : balad, 2 : dance, 3 : fork&bluse, 4 : korea_traition, 5 : rap, 6 : rock, 7 : trote scores = [] for i in range(6): csvWriter.writerow([i]) if i < 5: X = np.array(mfccs, dtype=np.float32)[:, i * channel: (i+1)*channel] else: X = np.array(mfccs, dtype=np.float32)[:, 0: 2*channel] linearly_separable = (X, y) datasets = [linearly_separable] # iterate over datasets for ds_cnt, ds in enumerate(datasets): # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=.2, random_state=42) print(y_test) for name, clf in zip(names, classifiers): clf.fit(X_train, y_train) #score = clf.score(X_test, y_test) y_pred = clf.predict(X_test) score = accuracy_score(y_test, y_pred) scores.append(score) precision = precision_score(y_test, y_pred, average=None) recall = recall_score(y_test, y_pred, average=None) print(name, precision, recall, score) csvWriter.writerow([name, score]) csvWriter.writerow(precision) csvWriter.writerow(recall) joblib.dump(clf, './classifier/15/'+name + '_' + str(i) + '_' + str(score) + '.pkl') print(max(scores))
[ "noreply@github.com" ]
yungkk98.noreply@github.com
3db5355de3a03eca4dd6b1722acf89864c6867ab
e36c5a91306f8d8cf487368d3a1dfae4c03da3c0
/build/navigation/rotate_recovery/catkin_generated/pkg.develspace.context.pc.py
00e97c42a68da3f3841d2d8e40e6199bfe123bf1
[]
no_license
DocDouze/RobMob
84ae5b96a16028586c9da2008f7c7772bdaa1334
6a2e7505eb2207d61b1c354cfd255075b1efbc73
refs/heads/master
2020-04-11T07:24:28.958201
2018-12-17T11:56:54
2018-12-17T11:56:54
161,607,677
0
0
null
null
null
null
UTF-8
Python
false
false
614
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/aubailly/Bureau/RobMob/src/navigation/rotate_recovery/include".split(';') if "/home/aubailly/Bureau/RobMob/src/navigation/rotate_recovery/include" != "" else [] PROJECT_CATKIN_DEPENDS = "costmap_2d;geometry_msgs;nav_core;pluginlib;roscpp;tf2;tf2_ros".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lrotate_recovery".split(';') if "-lrotate_recovery" != "" else [] PROJECT_NAME = "rotate_recovery" PROJECT_SPACE_DIR = "/home/aubailly/Bureau/RobMob/devel" PROJECT_VERSION = "1.16.2"
[ "quentin.aubailly@gmail.com" ]
quentin.aubailly@gmail.com
9f66502d6f8856bbb13b38d5f97327f839f6260c
d027466f39070797a13c0210c59b7a52ad210f91
/grafana_dashboards/components/projects.py
33d1affcf12f992b15242e9f4eca0aa04ba979ca
[ "Apache-2.0" ]
permissive
jakubplichta/grafana-dashboard-builder
4d3c7e64686128dba19b4dd6c9cfd71e2acccb1c
fa6bc51d7f1668d329dacd7e717b1f61eb35756e
refs/heads/master
2023-06-25T14:36:34.185076
2023-06-18T19:42:28
2023-06-18T19:42:28
36,573,600
149
44
Apache-2.0
2023-06-18T19:42:29
2015-05-30T20:02:10
Python
UTF-8
Python
false
false
1,678
py
# -*- coding: utf-8 -*- # Copyright 2015-2019 grafana-dashboard-builder contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import unicode_literals from grafana_dashboards.components.base import ComponentBase, get_placeholders from grafana_dashboards.components.dashboards import Dashboard from grafana_dashboards.context import Context __author__ = 'Jakub Plichta <jakub.plichta@gmail.com>' class Project(ComponentBase): def __init__(self, data, registry): super(Project, self).__init__(data, registry) self._placeholders = [placeholder for dashboard in self._get_dashboard_names() for placeholder in get_placeholders(dashboard)] def _get_dashboard_names(self): return self.data.get('dashboards', []) def get_dashboards(self): return [self.registry.get_component(Dashboard, dashboard_name) for dashboard_name in self._get_dashboard_names()] def get_contexts(self, context=None): if context is None: context = {} data = self.data.copy() data.update(context) return Context.create_context(data, self._placeholders)
[ "jakub.plichta@gmail.com" ]
jakub.plichta@gmail.com
eaa0862ac25519a84af0807c03bc01c1fa2de9ea
72063d10710268a8dfc45aee02f5afdc1890dd5a
/Python/connect.py
72dfe9e4fd85115c728129ac79f76477aa579b84
[ "MIT" ]
permissive
RitRa/Little-Python-application-gmit-semester-3-2019
580c8b5e45ed8f4a2ab23f6a8404afa4fec93826
9c9ff525363785339db1a4cb2b8e12c23547be86
refs/heads/master
2020-05-20T08:02:43.666047
2019-05-17T17:55:02
2019-05-17T17:55:02
185,465,498
0
1
null
null
null
null
UTF-8
Python
false
false
2,731
py
import pymysql.cursors # Connect to the database conn = pymysql.connect(host='localhost', user='root', password='Password!', db='world', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) print ("connect successful!!") print(conn) # choice 1: shows all cities def showcity(): with conn: cursor = conn.cursor() sql = ('Select * from city limit 15;') cursor.execute(sql) data = cursor.fetchall() for row in data: #print (row) print (row["ID"], ":", row["Name"] ,":", row["CountryCode"],":", row["District"], ":",row["Population"]) # choice 2 # pulls in an operator (< > =) and population value def findpopulation(operator, population): #print("findpopulation", operator, population) with conn: cursor = conn.cursor() sql = ('Select * from city where population %s %s'% (operator, population)) cursor.execute(sql) data = cursor.fetchall() for row in data: #print (row) print (row["ID"], ":", row["Name"] ,":", row["CountryCode"],":", row["District"], ":",row["Population"]) # choice 3 def addcity(city, countrycode, district, population): print("add city ", city, countrycode, district, population) with conn: try: cursor = conn.cursor() sql = ("Insert into city (Name, CountryCode, District, Population) VALUES (%s, %s, %s, %s)") cursor.execute(sql, (city, countrycode, district, population)) cursor.close() print("Insert Successful") except Exception as e: #print(e) print("****Error***:CountryCode",countrycode, "does not exist" ) #finally: def find_Country(country): #print("country: ", country) with conn: cursor = conn.cursor() sql = ("""SELECT * from country where Name LIKE '%%%s%%' """ % (country,) ) cursor.execute(sql) data = cursor.fetchall() for row in data: print (row["Name"], ":", row["Continent"] ,":", row["Population"],":", row["HeadOfState"]) def country_Population(operator,population): print("user input", operator, population) with conn: cursor = conn.cursor() sql = ('Select * from country where population %s %s'% (operator, population)) cursor.execute(sql) data = cursor.fetchall() for row in data: print (row["Code"], ":", row["Name"] ,":", row["Continent"],":", row["Population"])
[ "noreply@github.com" ]
RitRa.noreply@github.com
90862e1d171c8a187214dbacae754a9ed607ac2b
934ab23486fa1357f65bd46a6bea18b18713ba5f
/ML/scraping/losers/monthly_top_losers.py
eb2476b61ed17613a6b42cbf9fe3b07312111748
[ "MIT" ]
permissive
CodeChefVIT/Stocker
80b249b5c2715fcdd274d0cf319a30a14191182c
a9bcaa7458240241495d2f88acb396640ab2b333
refs/heads/master
2023-01-20T02:23:45.591327
2020-11-22T03:29:47
2020-11-22T03:29:47
277,299,425
2
4
MIT
2020-11-22T03:29:48
2020-07-05T12:39:12
Jupyter Notebook
UTF-8
Python
false
false
1,408
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jul 30 00:01:33 2020 @author: pranjal27bhardwaj """ import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt def monthly_losers(): dfs = pd.read_html('https://money.rediff.com/losers/bse/monthly',header=0) for df in dfs[:-1]: df = df # df['% Change'] = df['% Change'].str.replace(' ', "") df1 = df[['Company', '% Change', 'Current Price (Rs)']][:10] data = {} col = list(df1) for i in range(10): current = 'Company {}'.format(i+1) data[current] = {} c=0 for j in col: if c==0: data[current]['Company Name'] = df[j][i] elif c==1: data[current]['% Change'] = df[j][i] else: data[current]['Current Price (Rs)'] = df[j][i] c+=1 return data df1.to_csv('monthly_top_losers.csv', index=False) #monthly_losers() def plot_monthly_losers(): plt.style.use('fivethirtyeight') data_monthly_losers = pd.read_csv('monthly_top_losers.csv') data_monthly_losers_final = data_monthly_losers[:16] x6 = data_monthly_losers_final.plot.bar(x = 'Company', y = '% Change', title = 'Monthly Top Losers', color='Black') plt.savefig('monthly_top_losers.png', bbox_inches='tight') plt.show(x6) plot_monthly_losers()
[ "pranjalb2709@gmail.com" ]
pranjalb2709@gmail.com
cbbab1f660f4fd8b9bd2e98e3c8d6da7bdade02b
f243198dcacd7362499ccfc27cb9fefdc763ba47
/diff/RandomFrameDiff.py
9ecd34728b1426525aad30b6ecf7ee6a92f37cd2
[]
no_license
fletch22/kaggleDeepFakeDetection
a60dbd170660de99567a74aa5b5e246038cedd9d
592be28729613ae5ebdfd80af1fc1c3ccd18600b
refs/heads/master
2022-04-19T16:47:19.359334
2020-04-08T01:53:22
2020-04-08T01:53:22
233,509,674
0
0
null
null
null
null
UTF-8
Python
false
false
319
py
import numpy as np class RandomFrameDiff(): def __init__(self, image: np.ndarray, frame_index: int, x: int, y: int, height: int, width: int, score: float): self.image = image self.frame_index = frame_index self.x = x self.y = y self.height = height self.width = width self.score = score
[ "chris@fletch22.com" ]
chris@fletch22.com
959cbc67c9b7a1374f42dae6b177f64978ea49c6
eb297ff1e0011438fd184cc338b3fb86859b81c9
/Chapters 18 to 20/port_book/ll_env/Scripts/django-admin.py
c61bd159b5643f7569b205d7e0a93224e7dd107c
[]
no_license
mynameisbenzo/PythonCrashCourse
c73a4505d9cdfe4df78e3ed01adb3491debf8a9b
831a9962a3c6cab53ecfdb1d2cceb0dd2d9c5a0a
refs/heads/master
2021-04-12T08:13:51.772957
2018-05-02T05:54:57
2018-05-02T05:54:57
126,091,903
0
0
null
null
null
null
UTF-8
Python
false
false
207
py
#!c:\users\me\desktop\python\pythoncrashcourse\chapters 18 to 20\port_book\ll_env\scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "lorhernandez@csumb.edu" ]
lorhernandez@csumb.edu
3dcdbaa3bf98fb662eb2a35b4e341b5b19b624dc
d638bbf120a54a02643d728b7c2c441efa6aacb7
/cogs/basic.py
72531f97e8757e865993f43cf43f8dbe4af54148
[ "MIT" ]
permissive
MarkFrankle/DiscordPicBot
72a13c25e6c6d9b07d999f1017aea6a46e60fb10
7b953ead134475862bff99f5b0eb346508651c73
refs/heads/master
2020-03-19T01:11:23.195445
2018-05-31T03:56:51
2018-05-31T03:56:51
135,528,472
2
0
null
null
null
null
UTF-8
Python
false
false
1,841
py
import praw import discord from discord.ext import commands import math import random # discord.py calls groups of commands cogs # cogs can also be handlers for different types of events # and respond to changes in data as they happen # setup usedLinks = [] class BasicCog: def __init__(self, bot): self.bot = bot # Get EyeBleach command @commands.command() async def eyebleach(self, ctx): await ctx.send(getSubmission('eyebleach')) # Get EyeBleach command @commands.command() async def subpic(self, ctx, subreddit): await ctx.send(getSubmission(subreddit)) # Get EyeBleach command @commands.command() async def subrange(self, ctx, subreddit, endIdx): for i in range(1, (int)(endIdx) - 1): await ctx.send(getSubmissionIndex(subreddit,i)) # add this cog to the bot def setup(bot): bot.add_cog(BasicCog(bot)) def getSubmissionIndex(subreddit, index): subreddit = getSubreddit(subreddit) hot_sub = subreddit.hot(limit = index) i = 0 for submission in hot_sub: if i == index: return submission i += 1 def getSubmission(subreddit): cap = 100 subreddit = getSubreddit(subreddit) hot_sub = subreddit.hot(limit = cap) for submission in hot_sub: if submission.url not in usedLinks and not submission.stickied and submission.url.endswith('.jpg'): usedLinks.append(submission.url) return submission.url return 'No more pics :(' def getSubreddit(subreddit): reddit = praw.Reddit(client_id = '', client_secret = '', username = '', password = '', user_agent = '') subreddit = reddit.subreddit(subreddit) return subreddit
[ "mfrankle@uw.edu" ]
mfrankle@uw.edu
24d9c572f9c6ea820fb911ea4bcf16d134dd2b43
52d9b1152c23c7725884c0a25f71da1e9f5fbecc
/conferences.py
f09cbacac848ec23c48709d3f28f9f428618cd61
[]
no_license
inwyrd/bibformatter
6680986496afae7e25e356bb5ab3068cd04b8059
e3ddd54327861bdc414bcacacf9c74879dc07137
refs/heads/master
2021-01-01T16:13:15.172142
2014-11-21T00:25:31
2014-11-21T00:25:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,701
py
"""List of canonical names for conferences. Keywords are ordered by increasing specificity. Example: Security and Privacy (assumed IEEE S&P) Web 2.0 Security and Privacy (assumed W2SP) """ CONFERENCE_KEYWORDS = [ [["Symposium on Architectures for Networking", "ANCS"], ("Proceedings of the ACM/IEEE Symposium on Architectures for " "Networking and Communications Systems")], [["Privacy Enhancing Technologies", "PET"], "Proceedings of the Privacy Enhancing Technologies Symposium"], [["EuroSys", "European Conference in Computer Systems"], "Proceedings of the ACM European Conference in Computer Systems"], [["Mobile Computing and Networking", "Mobicom"], "Proceedings of the ACM Conference on Mobile Computing and Networking"], [["World Wide Web", "WWW"], "Proceedings of the International Conference on the World Wide Web"], [["Computer Security Applications", "ACSAC"], "Proceedings of the Annual Computer Security Applications Conference"], [["Communications Security", "CCS"], "Proceedings of the Conference on Computer and Communications Security"], [["Security and Privacy", "Security \\\& Privacy", "Security Privacy", "Oakland"], "Proceedings of the IEEE Symposium on Security and Privacy"], [["Web 2.0 Security and Privacy", "W2SP"], "Proceedings of the Workshop on Web 2.0 Security and Privacy"], [["IMC", "Internet Measurement"], "Proceedings of the ACM SIGCOM Internet Measurement Conference"], [["NDSS", "Network and Distributed System Security"], "Proceedings of the Network and Distributed System Security Conference"], [["NSDI", "Network System Design and Implementation"], "Proceedings of the Symposium on Network System Design and Implementation"], [["LEET", "Scale Exploits"], # Now defunct "Proceedings of the USENIX Workshop on Large-Scale Exploits and Emergent Threats"], [["Hotbot", "Hot Topics in Understanding Botnets"], # Now defunct "Proceedings of the USENIX Workshop on Hot Topics in Understanding Botnets"], [["WIFS", "Information Forensics and Security"], "Proceedings of the Workshop on Information Forensics and Security"], [["WEIS", "Economics of Information Security"], "Proceedings of the Workshop on Workshop on Economics of Information Security"], [["WOSN", "Workshop on Online Social Networks"], "Proceedings of the Workshop on Online Social Networks"], [["AIRWeb", "Adversarial Information Retrieval"], "Proceedings of SIGIR Workshop on Adversarial Information Retrieval on the Web"], [["ICWSM", "Weblogs and Social Media"], "Proceedings of the AAAI International Conference on Weblogs and Social Media"], [["Collaboration, Electronic", "CEAS", "Electronic Messaging"], "Proceedings of the Annual Collaboration, Electronic messaging, Anti-Abuse and Spam Conference"], [["Financial Cryptography", "FC"], "Proceedings of the International Conference on Financial Cryptography and Data Security"], [["OSDI", "Operating Systems Design"], "Proceedings of the Symposium on Operating Systems Design and Implementation"], [["eCrime", "eCRS"], "Proceedings of the IEEE eCrime Researchers Summit"], [["FTCS", "Symposium on Fault-Tolerant Computing"], "Proceedings of the International Symposium on Fault-Tolerant Computing"], [["Measurement and Modeling of Computer Systems"], "Proceedings of the ACM Conference on Measurement and Modeling of Computer Systems"], [["Management and Performance Evaluation"], "Proceedings of the International Conference on Management and Performance Evaluation of Computer Systems"], [["VLDB", "Very Large Data Bases"], "Proceedings of the International Conference on Very Large Data Bases"], [["PODC", "Principles of Distributed Computing"], "Proceedings of the Symposium on Principles of Distributed Computing"], [["Large Installation System Administration", "LISA"], "Proceedings of the Large Installation System Administration Conference"], [["Hot Topics in Networks", "Hotnets"], "Proceedings of the Workshop on Hot Topics in Networks"], [["Hot Topics in Operating", "Hotos"], "Proceedings of the Workshop on Hot Topics in Operating Systems"], [["Usenix annual", "Usenix Technical"], "Proceedings of the USENIX Annual Technical Conference"], [["Symposium on Computer Architecture", "ISCA"], "Proceedings of the International Symposium on Computer Architecture"], [["Principles of Programming Languages", "POPL"], "Proceedings of the Annual Symposium on Principles of Programming Languages"], [["International Information Security Conference"], "Proceedings of the IFIP International Information Security and Privacy Conference"], [["INFOCOM", "Computer and Communications Societies"], "Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies"], [["SOSP", "Symposium on Operating Systems Principles"], "Proceedings of the ACM Symposium on Operating Systems Principles"], [["ASPLOS", "Architectural Support"], "Proceedings of the Symposium on Architectural Support for Programming Languages and Operating Systems"], [["Development in Information Retrieval"], "Proceedings of the Annual International ACM Conference on Research and Development in Information Retrieval"], [["Hypertext and Social"], "Proceedings of the ACM Conference on Hypertext and Social Media"], [["Malicious and Unwanted Software"], "Proceedings of the International Conference on Malicious and Unwanted Software"], [["PLDI", "Programming Language Design"], "Proceedings of the Conference on Programming Language Design and Implementation"], [["RAID", "Recent Advances"], "Proceedings of International Symposium on Recent Advances in Intrusion Detection"], [["ICML", "International Conference on Machine Learning"], "Proceedings of the International Conference on Machine Learning"], [["Economics and Computation"], "Proceedings of the ACM Conference on Economics and Computation"], [["KDD", "Knowledge Discovery"], "Proceedings of the SIGKDD International Conference on Knowledge Discovery and Data Mining"], [["ICDCS", "Distributed Computing Systems"], "Proceedings of the International Conference on Distributed Computing Systems"], [["PST", "Privacy Security and Trust"], "Proceedings of the Annual Conference on Privacy Security and Trust"], [["DIMVA", "Intrusions and Malware"], "Proceedings of the International Conference on Detection of Intrusions and Malware and Vulnerability Assessment"], [["Usenix Security", "Security Symposium", "usenix-security"], "Proceedings of the USENIX Security Symposium"] ]
[ "kurtthomas@google.com" ]
kurtthomas@google.com
a06fd4836b1a818695a509b6c189ae422c8091cb
93f98dde611c138055629ae3b3b2cb1e301adc49
/DS/urls.py
f5caa443ef573ed57d9fdef5444e09360181e647
[ "BSD-3-Clause" ]
permissive
gitter-badger/djangochannel
ebd9a69bef62376d9877a5aece3f54b211880736
f9e33254739457c461e84b66879172007512f9b0
refs/heads/master
2020-08-06T01:43:26.679657
2019-10-04T10:16:32
2019-10-04T10:16:32
212,788,313
0
0
BSD-3-Clause
2019-10-04T10:18:48
2019-10-04T10:18:47
null
UTF-8
Python
false
false
2,177
py
from django.contrib import admin from django.contrib.sitemaps.views import sitemap from django.http import HttpResponse from django.urls import path, include from django.conf import settings from django.conf.urls.static import static from django.views.generic import TemplateView from backend.blog.sitemap import PostSitemap from backend.pages.sitemap import PagesSitemap from backend.forum.sitemap import TopicSitemap from backend.courses.sitemap import CourseSitemap from backend.reviews.sitemap import ReviewSitemap sitemaps = { 'blog': PostSitemap, 'pages': PagesSitemap, 'forum': TopicSitemap, 'course': CourseSitemap, 'review': ReviewSitemap, } urlpatterns = [ path('djadmin/', admin.site.urls), path('sitemap.xml', sitemap, {'sitemaps': sitemaps}), path('accounts/', include('allauth.urls')), path('ckeditor/', include('ckeditor_uploader.urls')), path('blog/', include('backend.blog.urls')), path('course/', include('backend.courses.urls')), path('forum/', include('backend.forum.urls')), path('profile/', include('backend.profile.urls')), path('test/', include('backend.dc_tests.urls')), path('reviews/', include('backend.reviews.urls')), path('moderation/', include('moderation.urls')), path('pay/', include('backend.pay.urls')), path('contact/', include('backend.contact.urls')), path('task/', include('backend.dc_task.urls')), path('friends/', include('backend.followers.urls')), path('groups/', include('backend.community.urls')), path('', include("backend.pages.urls")), path('google1ca7c2f55e09214b.html/', lambda r: HttpResponse("google-site-verification: google1ca7c2f55e09214b.html", mimetype="text/plain")), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) # urlpatterns += DS_url urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += [ path('robots.txt', TemplateView.as_view(template_name="robots.txt", content_type='text/plain')), ] if settings.DEBUG: import debug_toolbar urlpatterns = [path('__debug__/', include(debug_toolbar.urls))] + urlpatterns
[ "l2maximum@mail.ru" ]
l2maximum@mail.ru
02e1a00b37345e850dd03bb5a86d0c9ed8846a8c
6385e650e1112599b76ad508a12cfb221fe8a716
/susy/script/runbatch/filesHadder.py
7c5540bee16b29c121798bd40ae44da95c47ac8e
[]
no_license
fanxia/ana2016
663aabedba3c8de9f747c2e4edfb74f879d47ad3
60e14f64778f69dab0008f775f8639527d9be917
refs/heads/master
2021-01-12T13:08:08.402117
2018-10-24T02:47:05
2018-10-24T02:47:05
72,113,815
1
0
null
null
null
null
UTF-8
Python
false
false
2,405
py
#!/usr/bin/env python #./filesHadder.py Mar08 import os, re import commands import sys import math date=sys.argv[1] #MClist=['TTJets_DiLept','TTJets_SingleLeptFromT','TTJets_SingleLeptFromTbar'] #MClist=['TT','TTGJets','TTWJetsToLNu','TTWJetsToQQ','TTZToLLNuNu','TTZToQQ','W4JetsToLNu','DYJetsToLL','WGToLNuG','WW','WZ','ZGTo2LG','ZZ','ST_s-channel_4f_leptonDecays','ST_tW_antitop_5f_inclusiveDecays','ST_tW_top_5f_inclusiveDecays','ST_t-channel_antitop_4f_inclusiveDecays','ST_t-channel_top_4f_inclusiveDecays','W3JetsToLNu','W2JetsToLNu'] MClist=[] #EleDatalist=['SingleEle_Run2016B_FebReminiAOD','SingleEle_Run2016C_FebReminiAOD','SingleEle_Run2016D_FebReminiAOD','SingleEle_Run2016E_FebReminiAOD','SingleEle_Run2016F_FebReminiAOD1','SingleEle_Run2016F_FebReminiAOD2','SingleEle_Run2016G_FebReminiAOD','SingleEle_Run2016H_FebReminiAODv2','SingleEle_Run2016H_FebReminiAODv3'] EleDatalist=[] #MuDatalist=['SingleMu_Run2016B_FebReminiAOD','SingleMu_Run2016C_FebReminiAOD','SingleMu_Run2016D_FebReminiAOD','SingleMu_Run2016E_FebReminiAOD','SingleMu_Run2016F_FebReminiAOD1','SingleMu_Run2016F_FebReminiAOD2','SingleMu_Run2016G_FebReminiAOD','SingleMu_Run2016H_FebReminiAODv2','SingleMu_Run2016H_FebReminiAODv3'] #MuDatalist=['SingleMu_Run2016B_FebReminiAOD'] MuDatalist=['SingleMu_Run2016B_FebReminiAOD00','SingleMu_Run2016B_FebReminiAOD01','SingleMu_Run2016B_FebReminiAOD02','SingleMu_Run2016C_FebReminiAOD','SingleMu_Run2016D_FebReminiAOD','SingleMu_Run2016E_FebReminiAOD','SingleMu_Run2016F_FebReminiAOD1','SingleMu_Run2016F_FebReminiAOD2','SingleMu_Run2016G_FebReminiAOD00','SingleMu_Run2016G_FebReminiAOD01','SingleMu_Run2016H_FebReminiAODv200','SingleMu_Run2016H_FebReminiAODv201','SingleMu_Run2016H_FebReminiAODv3'] #MuDatalist=[] # hadd step1 mc outputs and mv it to ntupleStore/ for mc in MClist: os.system("hadd -k step1_{0}.root MC_Out_step1/{0}/ana_root{1}/step1*.root".format(mc,date)) os.system("mv step1_{0}.root ../../ntupleStore".format(mc)) #sys.exit() for Eledata in EleDatalist: os.system("hadd -k -f step1_{0}.root Data_Out_step1/{0}/ana_root{1}/step1*.root".format(Eledata,date)) os.system("mv step1_{0}.root ../../ntupleStore".format(Eledata)) #sys.exit() for Mudata in MuDatalist: os.system("hadd -k -f step1_{0}.root Data_Out_step1/{0}*/ana_root{1}/step1*.root".format(Mudata,date)) os.system("mv step1_{0}.root ../../ntupleStore".format(Mudata))
[ "fanxia08@gmail.com" ]
fanxia08@gmail.com
8f291d75a4c4080d178001ad4f28b5f4b5f686a4
4a2d484c1cc7023cf984e936ea64f8b04b5a794b
/demo5.py
97ab5bc4a905e950480cf885aaaaec815f3ffcf6
[]
no_license
zsu13579/pptgen
3466aef81fb59d101cf7c90950ddaae70d10fad1
2a6692a451b97b8f8c8386f8d3de83d751372d0e
refs/heads/master
2020-07-19T13:03:02.340435
2016-09-07T02:24:43
2016-09-07T02:24:43
66,757,708
0
0
null
null
null
null
UTF-8
Python
false
false
824
py
from pptx import Presentation from pptx.enum.shapes import MSO_SHAPE from pptx.util import Inches prs = Presentation() title_only_slide_layout = prs.slide_layouts[5] slide = prs.slides.add_slide(title_only_slide_layout) shapes = slide.shapes shapes.title.text = 'Adding an AutoShape' left = Inches(0.93) # 0.93" centers this overall set of shapes top = Inches(3.0) width = Inches(1.75) height = Inches(1.0) shape = shapes.add_shape(MSO_SHAPE.PENTAGON, left, top, width, height) shape.text = 'Step 1' left = left + width - Inches(0.4) width = Inches(2.0) # chevrons need more width for visual balance for n in range(2, 6): shape = shapes.add_shape(MSO_SHAPE.CHEVRON, left, top, width, height) shape.text = 'Step %d' % n left = left + width - Inches(0.4) prs.save('test51.pptx')
[ "jacklvabcd@163.com" ]
jacklvabcd@163.com
2296045aadeec7074e22751268bd354962d7a6e3
d9b0248186471079022d0db2af5f3f16847a2258
/board/models.py
ddc05a259e2a2d7e73c67e95e545e9259e5839b9
[]
no_license
jungting20/-django-
1ec04f6b5ff89fd404d7a9d8782e8e55c9a389b9
9af46cf359990f8d82aaa91548a62eb86564465c
refs/heads/master
2021-05-15T02:57:11.623526
2017-10-07T09:37:09
2017-10-07T09:37:09
106,086,504
0
0
null
null
null
null
UTF-8
Python
false
false
1,045
py
from django.db import models from django.db.models.deletion import CASCADE from django.db.models.fields import DateTimeField from django.core.urlresolvers import reverse_lazy from member.models import User class Board(models.Model): image = models.ImageField(upload_to='%Y/%m/%d/orig',blank=True,null=True) author = models.ForeignKey(User,on_delete=models.CASCADE,) title = models.CharField(max_length=100) content = models.TextField(max_length=500,blank=True,null=True) created_at = models.DateTimeField(auto_now_add=True) def get_absolute_url(self): url = reverse_lazy('detailboard',kwargs = {'pk':self.pk}) return url def delete(self,*args,**kwargs): self.image.delete() super(Board,self).delete() class BoardComment(models.Model): author = models.ForeignKey(User,on_delete=models.CASCADE) content = models.TextField(max_length=300) board_id = models.ForeignKey(Board,on_delete=models.CASCADE) created_at = models.DateTimeField(auto_now_add=True)
[ "jungting20@gmail.com" ]
jungting20@gmail.com
33d359b45b72b589770d7f1a0a8508da682da219
e6200a978e64e4be068c4664050c82bc1f2dde8a
/address/lib/python2.7/site-packages/localflavor/pk/forms.py
700d42a23fd9fa6e67381c7ec6b478371d777bba
[]
no_license
avs8/address
5979311445273954326cface402f60c2df2753c2
62f92355fc282a47e1ed39c743430d2142e6f3c0
refs/heads/master
2021-01-01T18:42:07.593555
2017-11-28T14:50:28
2017-11-28T14:50:28
39,541,958
0
0
null
null
null
null
UTF-8
Python
false
false
1,970
py
"""Pakistani-specific Form helpers.""" from __future__ import unicode_literals import re from django.forms import ValidationError from django.forms.fields import CharField, RegexField, Select from django.utils.encoding import force_text from django.utils.translation import ugettext_lazy as _ from localflavor.compat import EmptyValueCompatMixin from localflavor.generic.forms import DeprecatedPhoneNumberFormFieldMixin from .pk_states import STATE_CHOICES POSTCODE_DIGITS_RE = re.compile(r'^(\d{5})$') PHONE_DIGITS_RE = re.compile(r'^(\d{9,11})$') class PKPostCodeField(RegexField): """ Pakistani post code field. Assumed to be 5 digits. """ default_error_messages = { 'invalid': _('Enter a 5 digit postcode.'), } def __init__(self, *args, **kwargs): super(PKPostCodeField, self).__init__(POSTCODE_DIGITS_RE, *args, **kwargs) class PKPhoneNumberField(EmptyValueCompatMixin, CharField, DeprecatedPhoneNumberFormFieldMixin): """ A form field that validates input as an Pakistani phone number. Valid numbers have nine to eleven digits. """ default_error_messages = { 'invalid': _('Phone numbers must contain 9, 10 or 11 digits.'), } def clean(self, value): """ Validate a phone number. Strips parentheses, whitespace and hyphens. """ super(PKPhoneNumberField, self).clean(value) if value in self.empty_values: return self.empty_value value = re.sub('(\(|\)|\s+|-)', '', force_text(value)) phone_match = PHONE_DIGITS_RE.search(value) if phone_match: return '%s' % phone_match.group(1) raise ValidationError(self.error_messages['invalid']) class PKStateSelect(Select): """A Select widget that uses a list of Pakistani states/territories as its choices.""" def __init__(self, attrs=None): super(PKStateSelect, self).__init__(attrs, choices=STATE_CHOICES)
[ "ajitavsingh_8@yahoo.com" ]
ajitavsingh_8@yahoo.com
6a73711d13a7fda4beb2f22832630ed938e377e0
739f160655268e242d8daae10df2d858c7ce11b5
/webot/data.py
c7d7c393ad3d7873e8fb60e7d8e75b6a6d11ea34
[ "MIT" ]
permissive
csqner/Webot
760f9e22dbd6ef5f208090e92fcf37737da65f2c
6bb7b3980fab34d9c03d27390a4a0acbd3d1372c
refs/heads/master
2022-04-24T00:18:10.521288
2020-04-29T07:43:24
2020-04-29T07:43:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,271
py
""" 基础过程 """ API_target = "https://wx.qq.com" # 主页 API_target_login = "https://login.wx.qq.com" # 登录 API_jsLogin = f"{API_target_login}/jslogin?appid=wx782c26e4c19acffb&redirect_uri={API_target}/cgi-bin/mmwebwx-bin/webwxnewloginpage&fun=new&lang=zh_CN" API_qrcode = f"{API_target_login}/qrcode/" # 二维码 API_login = f"{API_target}/cgi-bin/mmwebwx-bin/login" API_check_login = f"{API_target_login}/cgi-bin/mmwebwx-bin/login" API_synccheck = "https://webpush.wx.qq.com/cgi-bin/mmwebwx-bin/synccheck" # 消息监测 API_webwxdownloadmedia = f"{API_target}/cgi-bin/mmwebwx-bin/webwxgetmedia" API_webwxuploadmedia = f"{API_target}/cgi-bin/mmwebwx-bin/webwxuploadmedia" API_webwxpreview = f"{API_target}/cgi-bin/mmwebwx-bin/webwxpreview" API_webwxinit = f"{API_target}/cgi-bin/mmwebwx-bin/webwxinit" API_webwxgetcontact = f"{API_target}/cgi-bin/mmwebwx-bin/webwxgetcontact" API_webwxsync = f"{API_target}/cgi-bin/mmwebwx-bin/webwxsync" API_webwxbatchgetcontact = f"{API_target}/cgi-bin/mmwebwx-bin/webwxbatchgetcontact" API_webwxgeticon = f"{API_target}/cgi-bin/mmwebwx-bin/webwxgeticon" API_webwxlogout = f"{API_target}/cgi-bin/mmwebwx-bin/webwxlogout" """ 消息发送 """ API_webwxsendmsg = f"{API_target}/cgi-bin/mmwebwx-bin/webwxsendmsg" API_webwxsendmsgimg = f"{API_target}/cgi-bin/mmwebwx-bin/webwxsendmsgimg" API_webwxsendmsgvedio = f"{API_target}/cgi-bin/mmwebwx-bin/webwxsendvideomsg" API_webwxsendemoticon = f"{API_target}/cgi-bin/mmwebwx-bin/webwxsendemoticon" API_webwxsendappmsg = f"{API_target}/cgi-bin/mmwebwx-bin/webwxsendappmsg" """ 消息获取 """ API_webwxgetheadimg = f"{API_target}/cgi-bin/mmwebwx-bin/webwxgetheadimg" API_webwxgetmsgimg = f"{API_target}/cgi-bin/mmwebwx-bin/webwxgetmsgimg" API_webwxgetmedia = f"{API_target}/cgi-bin/mmwebwx-bin/webwxgetmedia" API_webwxgetvideo = f"{API_target}/cgi-bin/mmwebwx-bin/webwxgetvideo" API_webwxgetvoice = f"{API_target}/cgi-bin/mmwebwx-bin/webwxgetvoice" API_webwxupdatechatroom = f"{API_target}/cgi-bin/mmwebwx-bin/webwxupdatechatroom" API_webwxcreatechatroom = f"{API_target}/cgi-bin/mmwebwx-bin/webwxcreatechatroom" # 获取msgid API_webwxstatusnotify = f"{API_target}/cgi-bin/mmwebwx-bin/webwxstatusnotify" API_webwxcheckurl = f"{API_target}/cgi-bin/mmwebwx-bin/webwxcheckurl" API_webwxverifyuser = f"{API_target}/cgi-bin/mmwebwx-bin/webwxverifyuser" API_webwxfeedback = f"{API_target}/cgi-bin/mmwebwx-bin/webwxsendfeedback" API_webwxreport = f"{API_target}/cgi-bin/mmwebwx-bin/webwxstatreport" API_webwxsearch = f"{API_target}/cgi-bin/mmwebwx-bin/webwxsearchcontact" API_webwxoplog = f"{API_target}/cgi-bin/mmwebwx-bin/webwxoplog" API_checkupload = f"{API_target}/cgi-bin/mmwebwx-bin/webwxcheckupload" API_webwxrevokemsg = f"{API_target}/cgi-bin/mmwebwx-bin/webwxrevokemsg" API_webwxpushloginurl = f"{API_target}/cgi-bin/mmwebwx-bin/webwxpushloginurl" # ------------------------------------------------------------------------- oplogCmdId = {"TOPCONTACT": 3, "MODREMARKNAME": 2} SP_CONTACT_FILE_HELPER = "filehelper" SP_CONTACT_NEWSAPP = "newsapp" SP_CONTACT_RECOMMEND_HELPER = "fmessage" CONTACTFLAG_CONTACT = 1 CONTACTFLAG_CHATCONTACT = 2 CONTACTFLAG_CHATROOMCONTACT = 4 CONTACTFLAG_BLACKLISTCONTACT = 8 CONTACTFLAG_DOMAINCONTACT = 16 CONTACTFLAG_HIDECONTACT = 32 CONTACTFLAG_FAVOURCONTACT = 64 CONTACTFLAG_3RDAPPCONTACT = 128 CONTACTFLAG_SNSBLACKLISTCONTACT = 256 CONTACTFLAG_NOTIFYCLOSECONTACT = 512 CONTACTFLAG_TOPCONTACT = 2048 MM_USERATTRVERIFYFALG_BIZ = 1 MM_USERATTRVERIFYFALG_FAMOUS = 2 MM_USERATTRVERIFYFALG_BIZ_BIG = 4 MM_USERATTRVERIFYFALG_BIZ_BRAND = 8 MM_USERATTRVERIFYFALG_BIZ_VERIFIED = 16 MM_DATA_TEXT = 1 MM_DATA_HTML = 2 MM_DATA_IMG = 3 MM_DATA_PRIVATEMSG_TEXT = 11 MM_DATA_PRIVATEMSG_HTML = 12 MM_DATA_PRIVATEMSG_IMG = 13 MM_DATA_VOICEMSG = 34 MM_DATA_PUSHMAIL = 35 MM_DATA_QMSG = 36 MM_DATA_VERIFYMSG = 37 MM_DATA_PUSHSYSTEMMSG = 38 MM_DATA_QQLIXIANMSG_IMG = 39 MM_DATA_POSSIBLEFRIEND_MSG = 40 MM_DATA_SHARECARD = 42 MM_DATA_VIDEO = 43 MM_DATA_VIDEO_IPHONE_EXPORT = 44 MM_DATA_EMOJI = 47 MM_DATA_LOCATION = 48 MM_DATA_APPMSG = 49 MM_DATA_VOIPMSG = 50 MM_DATA_STATUSNOTIFY = 51 MM_DATA_VOIPNOTIFY = 52 MM_DATA_VOIPINVITE = 53 MM_DATA_MICROVIDEO = 62 MM_DATA_SYSNOTICE = 9999 MM_DATA_SYS = 1e4 MM_DATA_RECALLED = 10002 MSGTYPE_TEXT = 1 MSGTYPE_IMAGE = 3 MSGTYPE_VOICE = 34 MSGTYPE_VIDEO = 43 MSGTYPE_MICROVIDEO = 62 MSGTYPE_EMOTICON = 47 MSGTYPE_APP = 49 MSGTYPE_VOIPMSG = 50 MSGTYPE_VOIPNOTIFY = 52 MSGTYPE_VOIPINVITE = 53 MSGTYPE_LOCATION = 48 MSGTYPE_STATUSNOTIFY = 51 MSGTYPE_SYSNOTICE = 9999 MSGTYPE_POSSIBLEFRIEND_MSG = 40 MSGTYPE_VERIFYMSG = 37 MSGTYPE_SHARECARD = 42 MSGTYPE_SYS = 1e4 MSGTYPE_RECALLED = 10002 MSG_SEND_STATUS_READY = 0 MSG_SEND_STATUS_SENDING = 1 MSG_SEND_STATUS_SUCC = 2 MSG_SEND_STATUS_FAIL = 5 APPMSGTYPE_TEXT = 1 APPMSGTYPE_IMG = 2 APPMSGTYPE_AUDIO = 3 APPMSGTYPE_VIDEO = 4 APPMSGTYPE_URL = 5 APPMSGTYPE_ATTACH = 6 APPMSGTYPE_OPEN = 7 APPMSGTYPE_EMOJI = 8 APPMSGTYPE_VOICE_REMIND = 9 APPMSGTYPE_SCAN_GOOD = 10 APPMSGTYPE_GOOD = 13 APPMSGTYPE_EMOTION = 15 APPMSGTYPE_CARD_TICKET = 16 APPMSGTYPE_REALTIME_SHARE_LOCATION = 17 APPMSGTYPE_TRANSFERS = 2e3 APPMSGTYPE_RED_ENVELOPES = 2001 APPMSGTYPE_READER_TYPE = 100001 UPLOAD_MEDIA_TYPE_IMAGE = 1 UPLOAD_MEDIA_TYPE_VIDEO = 2 UPLOAD_MEDIA_TYPE_AUDIO = 3 UPLOAD_MEDIA_TYPE_ATTACHMENT = 4 PROFILE_BITFLAG_NOCHANGE = 0 PROFILE_BITFLAG_CHANGE = 190 CHATROOM_NOTIFY_OPEN = 1 CHATROOM_NOTIFY_CLOSE = 0 StatusNotifyCode_READED = 1 StatusNotifyCode_ENTER_SESSION = 2 StatusNotifyCode_INITED = 3 StatusNotifyCode_SYNC_CONV = 4 StatusNotifyCode_QUIT_SESSION = 5 VERIFYUSER_OPCODE_ADDCONTACT = 1 VERIFYUSER_OPCODE_SENDREQUEST = 2 VERIFYUSER_OPCODE_VERIFYOK = 3 VERIFYUSER_OPCODE_VERIFYREJECT = 4 VERIFYUSER_OPCODE_SENDERREPLY = 5 VERIFYUSER_OPCODE_RECVERREPLY = 6 ADDSCENE_PF_QQ = 4 ADDSCENE_PF_EMAIL = 5 ADDSCENE_PF_CONTACT = 6 ADDSCENE_PF_WEIXIN = 7 ADDSCENE_PF_GROUP = 8 ADDSCENE_PF_UNKNOWN = 9 ADDSCENE_PF_MOBILE = 10 ADDSCENE_PF_WEB = 33 TIMEOUT_SYNC_CHECK = 0 EMOJI_FLAG_GIF = 2 KEYCODE_BACKSPACE = 8 KEYCODE_ENTER = 13 KEYCODE_SHIFT = 16 KEYCODE_ESC = 27 KEYCODE_DELETE = 34 KEYCODE_ARROW_LEFT = 37 KEYCODE_ARROW_UP = 38 KEYCODE_ARROW_RIGHT = 39 KEYCODE_ARROW_DOWN = 40 KEYCODE_NUM2 = 50 KEYCODE_AT = 64 KEYCODE_NUM_ADD = 107 KEYCODE_NUM_MINUS = 109 KEYCODE_ADD = 187 KEYCODE_MINUS = 189 MM_NOTIFY_CLOSE = 0 MM_NOTIFY_OPEN = 1 MM_SOUND_CLOSE = 0 MM_SOUND_OPEN = 1 MM_SEND_FILE_STATUS_QUEUED = 0 MM_SEND_FILE_STATUS_SENDING = 1 MM_SEND_FILE_STATUS_SUCCESS = 2 MM_SEND_FILE_STATUS_FAIL = 3 MM_SEND_FILE_STATUS_CANCEL = 4 MM_EMOTICON_WEB = "_web" # ------------------------------------------------------------------------- API_checktimeout = 25.04 API_checknums = 5 from webot.common import init_path YOUR_NAME = "张三" API_conf_path = init_path("extra/") API_log_path = init_path(f"{API_conf_path}/log/") # 聊天记录 markdown API_static_path = init_path(f"{API_conf_path}/static/") # 生成的配置文件及实时记录 API_analysis_path = init_path(f"{API_conf_path}/analysis/") # 各类分析结果及导出数据 API_media_path = init_path(f"{API_conf_path}/meidas/") # 媒体数据 API_media_icon_path = init_path(f"{API_media_path}/icons/") # 头像 API_meida_voice_path = init_path(f"{API_media_path}/voices/") # 语音 API_meida_image_path = init_path(f"{API_media_path}/images/") # 图片 API_meida_emoji_path = init_path(f"{API_media_path}/emoji/") # 表情 API_meida_video_path = init_path(f"{API_media_path}/videos/") # 视频 API_hotreload_file = f"{API_static_path}/wxbot.pkl" API_qrcode_name = f"{API_static_path}/qrcode.jpg" Webot_logger_format = "[%(asctime)s] >>> %(levelname)s %(name)s: %(message)s" MSG_TYPES = { 1: "TEXT", 3: "IMAGE", 34: "VOICE", 43: "VIDEO", 62: "MICROVIDEO", 47: "EMOTICON", 49: "APP", 50: "VOIPMSG", 52: "VOIPNOTIFY", 53: "VOIPINVITE", 48: "LOCATION", 51: "STATUSNOTIFY", 9999: "SYSNOTICE", 40: "POSSIBLEFRIEND_MSG", 37: "VERIFYMSG", 42: "SHARECARD", 10000: "SYS", 10002: "RECALLED", }
[ "aoii103@126.com" ]
aoii103@126.com
70054672c56c8027712f7a9016fddbe96debf347
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03085/s105066382.py
5ca148b3207680bf521622653edd87455c2d3d1c
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
98
py
b = input() if b=="A": print("T") elif b=="T": print("A") elif b=="C": print("G") else: print("C")
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
89cef373a6b91c3ff9293f001aefe1d221fb5795
e9cd5b115858c57a805553fd27f0fc831297b779
/weak_disentangle/tensorsketch/utils.py
8c288585e745c9dd64c2ef11d9d70d5bd62697cc
[ "Apache-2.0" ]
permissive
dtch1997/disentangle-gen
516fde31b360ca68bd35d77dddf9ee0f4ce3432e
9c50dcb09063db018aa0090a564f96b798125a2f
refs/heads/master
2023-04-06T04:52:18.349321
2019-12-06T08:42:36
2019-12-06T08:42:36
220,395,617
0
0
Apache-2.0
2023-03-24T23:31:47
2019-11-08T05:48:07
Python
UTF-8
Python
false
false
3,724
py
# coding=utf-8 # Copyright 2019 The Weak Disentangle Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # python3 """Tensorsketch utilities. """ import numpy as np import tensorflow as tf # String utilities def count_leading_whitespace(string): return len(string) - len(string.lstrip(" ")) def shorten(string, num_lines=4): strings = string.split("\n") if len(strings) <= num_lines: return string head = strings[:num_lines - 2] mid = " " * count_leading_whitespace(strings[num_lines - 2]) + "...," tail = strings[-1] return "\n".join(head + [mid, tail]) def indent(string, spaces=4): strings = string.split("\n") return "\n".join([" " * spaces + string for string in strings]) # Tensor utilities def pack(x): if isinstance(x, tuple): return x else: return (x,) def shapes_to_zeros(*maybe_typed_shapes): tensors = [] for maybe_typed_shape in maybe_typed_shapes: if elem_isinstance(maybe_typed_shape, int): tensors.append(tf.zeros(maybe_typed_shape)) else: shape, dtype = maybe_typed_shape tensors.append(tf.zeros(shape, dtype)) return tuple(tensors) # List utilities def elem_isinstance(lst, cls): return all([isinstance(x, cls) for x in lst]) # Layer utilities def compute_fan(kernel): shape = kernel.shape receptive_field = np.prod(kernel.shape[:-2]) # returns 1 if kernel is 2D fan_in = int(receptive_field * shape[-2]) fan_out = int(receptive_field * shape[-1]) return fan_in, fan_out def compute_out_dims(in_dims, kernel_size, stride, padding, output_padding, dilation): """Computes the output dimensions of convolution. The formulas below are based on what Keras does. Args: in_dims: number of input dimensions. kernel_size: size of kernel. stride: size of stride. padding: amount of padding on both ends of input. output_padding: padding adjustment for disambiguating out_dims. dilation: amount of dilation for convolution. Returns: The computed value of output dimensions. """ kernel_size = (kernel_size - 1) * dilation + 1 if output_padding is None: if padding == "same": out_dims = in_dims * stride elif padding == "valid": out_dims = in_dims * stride + max(kernel_size - stride, 0) else: if padding == "same": out_dims = ((in_dims - 1) * stride + output_padding) elif padding == "valid": out_dims = ((in_dims - 1) * stride + kernel_size + output_padding) return out_dims # Tensor utilities def assign_moving_average(target, value, momentum): target.assign(momentum * target + (1 - momentum) * value) # tf.function utilities class Function(object): """A python function wrapper to support tf.function with resetting. """ def __init__(self, python_function): self.tf_function = tf.function(python_function) self.python_function = python_function def reset(self): self.tf_function = tf.function(self.python_function) def __call__(self, *args, **kwargs): return self.tf_function(*args, **kwargs) def advanced_function(function): return Function(function) def reset_tf_function(tf_function): return tf.function(tf_function.python_function)
[ "dtch009@gmail.com" ]
dtch009@gmail.com
e6bad036db699b1e75ec63b62ffcaf86a99693cf
3119bda86736a216b5847b9d00fd7f65ea7f8646
/MHD/FEniCS/MHD/Stabilised/SaddlePointForm/Test/SplitMatrix/ScottTest/MHDprec.py
a6a6fc14980282f66177b6b5105afa481026324c
[ "MIT" ]
permissive
wathen/UBC
5004f0c1c81d0ab931d3269d09b562b78553af59
35524f40028541a4d611d8c78574e4cf9ddc3278
refs/heads/master
2021-09-18T15:50:28.820698
2018-07-16T22:44:30
2018-07-16T22:44:30
56,339,239
3
3
null
null
null
null
UTF-8
Python
false
false
31,873
py
import petsc4py import sys petsc4py.init(sys.argv) from petsc4py import PETSc import numpy as np from dolfin import tic, toc import HiptmairSetup import PETScIO as IO import scipy.sparse as sp import MatrixOperations as MO import HiptmairSetup class BaseMyPC(object): def setup(self, pc): pass def reset(self, pc): pass def apply(self, pc, x, y): raise NotImplementedError def applyT(self, pc, x, y): self.apply(pc, x, y) def applyS(self, pc, x, y): self.apply(pc, x, y) def applySL(self, pc, x, y): self.applyS(pc, x, y) def applySR(self, pc, x, y): self.applyS(pc, x, y) def applyRich(self, pc, x, y, w, tols): self.apply(pc, x, y) class Matrix(object): def __init__(self): pass def create(self, mat): pass def destroy(self, mat): pass class InnerOuterMAGNETICinverse(BaseMyPC): def __init__(self, W, kspF, kspA, kspQ,Fp,kspScalar, kspCGScalar, kspVector, G, P, A, Hiptmairtol,Options): self.W = W self.kspF = kspF self.kspA = kspA self.kspQ = kspQ self.Fp = Fp self.kspScalar = kspScalar self.kspCGScalar = kspCGScalar self.kspVector = kspVector # self.Bt = Bt self.HiptmairIts = 0 self.CGits = 0 # print range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim()) # ss self.P = P self.G = G self.AA = A self.tol = Hiptmairtol self.u_is = PETSc.IS().createGeneral(range(self.W[0].dim())) self.p_is = PETSc.IS().createGeneral(range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim())) self.b_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim())) self.r_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim()+self.W[2].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim()+self.W[3].dim())) def create(self, pc): print "Create" def setUp(self, pc): A, P = pc.getOperators() print A.size if A.type == 'python': self.Ct = A.getPythonContext().getMatrix("Ct") self.Bt = A.getPythonContext().getMatrix("Bt") else: self.Ct = A.getSubMatrix(self.b_is,self.u_is) self.Bt = A.getSubMatrix(self.p_is,self.u_is) self.Dt = A.getSubMatrix(self.r_is,self.b_is) # print self.Ct.view() #CFC = sp.csr_matrix( (data,(row,column)), shape=(self.W[1].dim(),self.W[1].dim()) ) #print CFC.shape #CFC = PETSc.Mat().createAIJ(size=CFC.shape,csr=(CFC.indptr, CFC.indices, CFC.data)) #print CFC.size, self.AA.size # MO.StoreMatrix(B,"A") # print FC.todense() OptDB = PETSc.Options() OptDB["pc_factor_mat_ordering_type"] = "rcm" OptDB["pc_factor_mat_solver_package"] = "mumps" self.kspA.setType('preonly') self.kspA.getPC().setType('lu') self.kspA.setFromOptions() self.kspA.setPCSide(0) self.kspQ.setType('preonly') self.kspQ.getPC().setType('lu') self.kspQ.setFromOptions() self.kspQ.setPCSide(0) self.kspScalar.setType('preonly') self.kspScalar.getPC().setType('lu') self.kspScalar.setFromOptions() self.kspScalar.setPCSide(0) kspMX = PETSc.KSP() kspMX.create(comm=PETSc.COMM_WORLD) pcMX = kspMX.getPC() kspMX.setType('preonly') pcMX.setType('lu') OptDB = PETSc.Options() kspMX.setOperators(self.AA,self.AA) self.kspMX = kspMX # self.kspCGScalar.setType('preonly') # self.kspCGScalar.getPC().setType('lu') # self.kspCGScalar.setFromOptions() # self.kspCGScalar.setPCSide(0) self.kspVector.setType('preonly') self.kspVector.getPC().setType('lu') self.kspVector.setFromOptions() self.kspVector.setPCSide(0) print "setup" def apply(self, pc, x, y): br = x.getSubVector(self.r_is) xr = br.duplicate() self.kspScalar.solve(br, xr) # print self.D.size x2 = x.getSubVector(self.p_is) y2 = x2.duplicate() y3 = x2.duplicate() xp = x2.duplicate() self.kspA.solve(x2,y2) self.Fp.mult(y2,y3) self.kspQ.solve(y3,xp) # self.kspF.solve(bu1-bu4-bu2,xu) bb = x.getSubVector(self.b_is) xb = bb.duplicate() xxr = bb.duplicate() self.Dt.multTranspose(xr,xxr) self.kspMX.solve(bb-xxr,xb) bu1 = x.getSubVector(self.u_is) bu2 = bu1.duplicate() bu4 = bu1.duplicate() self.Bt.multTranspose(xp,bu2) self.Ct.multTranspose(xb,bu4) XX = bu1.duplicate() xu = XX.duplicate() self.kspF.solve(bu1-bu4+bu2,xu) #self.kspF.solve(bu1,xu) y.array = (np.concatenate([xu.array, -xp.array,xb.array,xr.array])) def ITS(self): return self.CGits, self.HiptmairIts , self.CGtime, self.HiptmairTime class InnerOuterMAGNETICapprox(BaseMyPC): def __init__(self, W, kspF, kspA, kspQ,Fp,kspScalar, kspCGScalar, kspVector, G, P, A, Hiptmairtol,Options): self.W = W self.kspF = kspF self.kspA = kspA self.kspQ = kspQ self.Fp = Fp self.kspScalar = kspScalar self.kspCGScalar = kspCGScalar self.kspVector = kspVector # self.Bt = Bt self.HiptmairIts = 0 self.CGits = 0 # print range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim()) # ss self.P = P self.G = G self.AA = A self.tol = Hiptmairtol self.u_is = PETSc.IS().createGeneral(range(self.W[0].dim())) self.p_is = PETSc.IS().createGeneral(range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim())) self.b_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim())) self.r_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim()+self.W[2].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim()+self.W[3].dim())) def create(self, pc): print "Create" def setUp(self, pc): A, P = pc.getOperators() print A.size if A.type == 'python': self.Ct = A.getPythonContext().getMatrix("Ct") self.Bt = A.getPythonContext().getMatrix("Bt") else: self.Ct = A.getSubMatrix(self.b_is,self.u_is) self.Bt = A.getSubMatrix(self.p_is,self.u_is) self.Dt = A.getSubMatrix(self.r_is,self.b_is) # print self.Ct.view() #CFC = sp.csr_matrix( (data,(row,column)), shape=(self.W[1].dim(),self.W[1].dim()) ) #print CFC.shape #CFC = PETSc.Mat().createAIJ(size=CFC.shape,csr=(CFC.indptr, CFC.indices, CFC.data)) #print CFC.size, self.AA.size # MO.StoreMatrix(B,"A") # print FC.todense() #self.kspF.setType('preonly') #self.kspF.getPC().setType('lu') #self.kspF.setFromOptions() #self.kspF.setPCSide(0) print "setup" def apply(self, pc, x, y): br = x.getSubVector(self.r_is) xr = br.duplicate() self.kspScalar.solve(br, xr) # print self.D.size x2 = x.getSubVector(self.p_is) y2 = x2.duplicate() y3 = x2.duplicate() xp = x2.duplicate() self.kspA.solve(x2,y2) self.Fp.mult(y2,y3) self.kspQ.solve(y3,xp) # self.kspF.solve(bu1-bu4-bu2,xu) bb = x.getSubVector(self.b_is) xb = bb.duplicate() #self.kspMX.solve(bb,xb) xxr = bb.duplicate() self.Dt.multTranspose(xr,xxr) xb, its, self.HiptmairTime = HiptmairSetup.HiptmairApply(self.AA, bb-xxr, self.kspScalar, self.kspVector, self.G, self.P, self.tol) bu1 = x.getSubVector(self.u_is) bu2 = bu1.duplicate() bu4 = bu1.duplicate() self.Bt.multTranspose(xp,bu2) self.Ct.multTranspose(xb,bu4) XX = bu1.duplicate() xu = XX.duplicate() self.kspF.solve(bu1-bu4+bu2,xu) #self.kspF.solve(bu1,xu) y.array = (np.concatenate([xu.array, -xp.array,xb.array,xr.array])) def ITS(self): return self.CGits, self.HiptmairIts , self.CGtime, self.HiptmairTime class P(Matrix): def __init__(self, Fspace,P,Mass,L,F,M): self.Fspace = Fspace self.P = P self.Mass = Mass self.L = L self.kspFp = F self.M = M # self.N = (n, n, n) # self.F = zeros([n+2]*3, order='f') def create(self, A): self.IS = MO.IndexSet(self.Fspace) self.F = self.P.getSubMatrix(self.IS[0],self.IS[0]) self.Bt = self.P.getSubMatrix(self.IS[0],self.IS[2]) self.Ct = self.P.getSubMatrix(self.IS[0],self.IS[1]) self.C = self.P.getSubMatrix(self.IS[1],self.IS[0]) self.A = self.P.getSubMatrix(self.IS[3],self.IS[3]) # ksp = PETSc.KSP() # ksp.create(comm=PETSc.COMM_WORLD) # pc = ksp.getPC() # ksp.setType('preonly') # pc.setType('hypre') # ksp.max_it = 1 # ksp.setOperators(self.FF) # self.ksp = ksp print 13333 def mult(self, A, x, y): print 'multi apply' print 333 u = x.getSubVector(self.IS[0]) p = x.getSubVector(self.IS[2]) b = x.getSubVector(self.IS[1]) r = x.getSubVector(self.IS[3]) FQp = p.duplicate() uOut = self.F*u+self.Bt*p+self.Ct*b Qp =self.Mass*p self.kspFp.solve(Qp,FQp) pOut = -self.L*FQp bOut = self.C*u+self.M*b rOut = self.A*r y.array = (np.concatenate([uOut.array, bOut.array, pOut.array, rOut.array])) print "$$$$$$$/$$$$$$$$" # print x.array def multTranspose(self, A, x, y): "y <- A' * x" self.mult(x, y) # def getSubMatrix(self, isrow, iscol, submat=None): # submat = self.P.get class ApproxInv(BaseMyPC): def __init__(self, W, kspF, kspA, kspQ,Fp,kspScalar, kspCGScalar, kspVector, G, P, A, Hiptmairtol,Options): self.W = W self.kspF = kspF self.kspA = kspA self.kspQ = kspQ self.Fp = Fp self.kspScalar = kspScalar self.kspCGScalar = kspCGScalar self.kspVector = kspVector self.Options = Options # self.Bt = Bt self.HiptmairIts = 0 self.CGits = 0 # print range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim()) # ss self.P = P self.G = G self.AA = A self.tol = Hiptmairtol self.u_is = PETSc.IS().createGeneral(range(self.W[0].dim())) self.p_is = PETSc.IS().createGeneral(range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim())) self.b_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim())) self.r_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim()+self.W[2].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim()+self.W[3].dim())) def create(self, pc): print "Create" def setUp(self, pc): A, P = pc.getOperators() print A.size if A.type == 'python': self.Ct = A.getPythonContext().getMatrix("Ct") self.Bt = A.getPythonContext().getMatrix("Bt") else: self.Ct = A.getSubMatrix(self.b_is,self.u_is) self.Bt = A.getSubMatrix(self.p_is,self.u_is) self.Dt = A.getSubMatrix(self.r_is,self.b_is) # print self.Ct.view() #CFC = sp.csr_matrix( (data,(row,column)), shape=(self.W[1].dim(),self.W[1].dim()) ) #print CFC.shape #CFC = PETSc.Mat().createAIJ(size=CFC.shape,csr=(CFC.indptr, CFC.indices, CFC.data)) #print CFC.size, self.AA.size # MO.StoreMatrix(B,"A") # print FC.todense() OptDB = PETSc.Options() OptDB["pc_factor_mat_ordering_type"] = "rcm" OptDB["pc_factor_mat_solver_package"] = "mumps" self.kspA.setType('preonly') self.kspA.getPC().setType('lu') self.kspA.setFromOptions() self.kspA.setPCSide(0) self.kspQ.setType('preonly') self.kspQ.getPC().setType('lu') self.kspQ.setFromOptions() self.kspQ.setPCSide(0) self.kspScalar.setType('preonly') self.kspScalar.getPC().setType('lu') self.kspScalar.setFromOptions() self.kspScalar.setPCSide(0) kspMX = PETSc.KSP() kspMX.create(comm=PETSc.COMM_WORLD) pcMX = kspMX.getPC() kspMX.setType('preonly') pcMX.setType('lu') OptDB = PETSc.Options() kspMX.setOperators(self.AA,self.AA) self.kspMX = kspMX # self.kspCGScalar.setType('preonly') # self.kspCGScalar.getPC().setType('lu') # self.kspCGScalar.setFromOptions() # self.kspCGScalar.setPCSide(0) self.kspVector.setType('preonly') self.kspVector.getPC().setType('lu') self.kspVector.setFromOptions() self.kspVector.setPCSide(0) print "setup" def apply(self, pc, x, y): if self.Options == 'BT': b = x.getSubVector(self.b_is) Mxb = b.duplicate() self.kspMX.solve(b,Mxb) r = x.getSubVector(self.r_is) Lr = r.duplicate() self.kspScalar.solve(r, Lr) DL = b.duplicate() self.Dt.multTranspose(Lr,DL) K = b.duplicate() self.kspMX.solve(DL,K) DM = r.duplicate() self.Dt.mult(Mxb,DM) E = r.duplicate() self.kspScalar.solve(DM,E) p = x.getSubVector(self.p_is) Sp2 = p.duplicate() Sp3 = p.duplicate() Sp = p.duplicate() self.kspA.solve(p,Sp2) self.Fp.mult(Sp2,Sp3) self.kspQ.solve(Sp3,Sp) u = x.getSubVector(self.u_is) Fu = u.duplicate() Cb = u.duplicate() Bp = u.duplicate() self.Ct.multTranspose(Mxb,Cb) self.Bt.multTranspose(Sp,Bp) self.kspF.solve(u-Cb+Bp,Fu) y.array = (np.concatenate([Fu.array, -Sp.array, Mxb.array+K.array,E.array])) else: u = x.getSubVector(self.u_is) Fu = u.duplicate() self.kspF.solve(u,Fu) p = x.getSubVector(self.p_is) Sp2 = p.duplicate() Sp3 = p.duplicate() Sp = p.duplicate() self.kspA.solve(p,Sp2) self.Fp.mult(Sp2,Sp3) self.kspQ.solve(Sp3,Sp) b = x.getSubVector(self.b_is) Mxb = b.duplicate() self.kspMX.solve(b,Mxb) r = x.getSubVector(self.r_is) Lr = r.duplicate() self.kspScalar.solve(r, Lr) if self.Options == 'p4': Q = u.duplicate() else: Q1 = u.duplicate() self.Bt.multTranspose(Sp,Q1) Q = u.duplicate() self.kspF(Q1,Q) Y1 = u.duplicate() self.Ct.multTranspose(Mxb,Y1) Y = u.duplicate() self.kspF(Y1,Y) BF = p.duplicate() self.Bt.mult(Fu,BF) if self.Options == 'p3': H = p.duplicate() else: H1 = p.duplicate() H2 = p.duplicate() H = p.duplicate() self.kspA.solve(BF,H1) self.Fp.mult(H1,H2) self.kspQ.solve(H2,H) if self.Options == 'p3': J = p.duplicate() else: BY = p.duplicate() self.Bt.mult(Fu,BY) J1 = p.duplicate() J2 = p.duplicate() J = p.duplicate() self.kspA.solve(BY,J1) self.Fp.mult(J1,J2) self.kspQ.solve(J2,J) CF = b.duplicate() self.Ct.mult(Fu,CF) T = b.duplicate() self.kspMX.solve(CF,T) if self.Options == 'p4': V = b.duplicate() else: CQ = b.duplicate() self.Ct.mult(Q,CQ) V = b.duplicate() self.kspMX.solve(CQ,V) DL = b.duplicate() self.Dt.multTranspose(Lr,DL) K = b.duplicate() self.kspMX.solve(DL,K) DM = r.duplicate() self.Dt.mult(Mxb,DM) E = r.duplicate() self.kspScalar.solve(DM,E) y.array = (np.concatenate([Fu.array+Q.array-Y.array, H.array-Sp.array-J.array, T.array+V.array+Mxb.array+K.array,E.array])) def ITS(self): return self.CGits, self.HiptmairIts , self.CGtime, self.HiptmairTime class ApproxInvApprox(BaseMyPC): def __init__(self, W, kspF, kspA, kspQ,Fp,kspScalar, kspCGScalar, kspVector, G, P, A, Hiptmairtol,Options): self.W = W self.kspF = kspF self.kspA = kspA self.kspQ = kspQ self.Fp = Fp self.kspScalar = kspScalar self.kspCGScalar = kspCGScalar self.kspVector = kspVector self.Options = Options # self.Bt = Bt self.HiptmairIts = 0 self.CGits = 0 # print range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim()) # ss self.P = P self.G = G self.AA = A self.tol = Hiptmairtol self.u_is = PETSc.IS().createGeneral(range(self.W[0].dim())) self.p_is = PETSc.IS().createGeneral(range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim())) self.b_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim())) self.r_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim()+self.W[2].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim()+self.W[3].dim())) def create(self, pc): print "Create" def setUp(self, pc): A, P = pc.getOperators() print A.size if A.type == 'python': self.Ct = A.getPythonContext().getMatrix("Ct") self.Bt = A.getPythonContext().getMatrix("Bt") else: self.Ct = A.getSubMatrix(self.b_is,self.u_is) self.Bt = A.getSubMatrix(self.p_is,self.u_is) self.Dt = A.getSubMatrix(self.r_is,self.b_is) print "setup" def apply(self, pc, x, y): if self.Options == 'BT': b = x.getSubVector(self.b_is) Mxb = b.duplicate() # self.kspMX.solve(b,Mxb) Mxb, its, self.HiptmairTime = HiptmairSetup.HiptmairApply(self.AA, b, self.kspScalar, self.kspVector, self.G, self.P, self.tol) r = x.getSubVector(self.r_is) Lr = r.duplicate() self.kspScalar.solve(r, Lr) DL = b.duplicate() self.Dt.multTranspose(Lr,DL) K = b.duplicate() K, its, self.HiptmairTime = HiptmairSetup.HiptmairApply(self.AA, DL, self.kspScalar, self.kspVector, self.G, self.P, self.tol) DM = r.duplicate() self.Dt.mult(Mxb,DM) E = r.duplicate() self.kspScalar.solve(DM,E) p = x.getSubVector(self.p_is) Sp2 = p.duplicate() Sp3 = p.duplicate() Sp = p.duplicate() self.kspA.solve(p,Sp2) self.Fp.mult(Sp2,Sp3) self.kspQ.solve(Sp3,Sp) u = x.getSubVector(self.u_is) Fu = u.duplicate() Cb = u.duplicate() Bp = u.duplicate() self.Ct.multTranspose(Mxb,Cb) self.Bt.multTranspose(Sp,Bp) self.kspF.solve(u-Cb+Bp,Fu) y.array = (np.concatenate([Fu.array, -Sp.array, Mxb.array+K.array,E.array])) else: u = x.getSubVector(self.u_is) Fu = u.duplicate() self.kspF.solve(u,Fu) p = x.getSubVector(self.p_is) Sp2 = p.duplicate() Sp3 = p.duplicate() Sp = p.duplicate() self.kspA.solve(p,Sp2) self.Fp.mult(Sp2,Sp3) self.kspQ.solve(Sp3,Sp) b = x.getSubVector(self.b_is) Mxb = b.duplicate() Mxb, its, self.HiptmairTime = HiptmairSetup.HiptmairApply(self.AA, b, self.kspScalar, self.kspVector, self.G, self.P, self.tol) r = x.getSubVector(self.r_is) Lr = r.duplicate() self.kspScalar.solve(r, Lr) if self.Options == 'p4': Q = u.duplicate() else: Q1 = u.duplicate() self.Bt.multTranspose(Sp,Q1) Q = u.duplicate() self.kspF(Q1,Q) Y1 = u.duplicate() self.Ct.multTranspose(Mxb,Y1) Y = u.duplicate() self.kspF(Y1,Y) BF = p.duplicate() self.Bt.mult(Fu,BF) if self.Options == 'p3': H = p.duplicate() else: H1 = p.duplicate() H2 = p.duplicate() H = p.duplicate() self.kspA.solve(BF,H1) self.Fp.mult(H1,H2) self.kspQ.solve(H2,H) BY = p.duplicate() self.Bt.mult(Fu,BY) if self.Options == 'p3': J = p.duplicate() else: J1 = p.duplicate() J2 = p.duplicate() J = p.duplicate() self.kspA.solve(BY,J1) self.Fp.mult(J1,J2) self.kspQ.solve(J2,J) CF = b.duplicate() self.Ct.mult(Fu,CF) T, its, self.HiptmairTime = HiptmairSetup.HiptmairApply(self.AA, CF, self.kspScalar, self.kspVector, self.G, self.P, self.tol) if self.Options == 'p4': V = b.duplicate() else: CQ = b.duplicate() self.Ct.mult(Q,CQ) V, its, self.HiptmairTime = HiptmairSetup.HiptmairApply(self.AA, CQ, self.kspScalar, self.kspVector, self.G, self.P, self.tol) DL = b.duplicate() self.Dt.multTranspose(Lr,DL) K = b.duplicate() K, its, self.HiptmairTime = HiptmairSetup.HiptmairApply(self.AA, DL, self.kspScalar, self.kspVector, self.G, self.P, self.tol) DM = r.duplicate() self.Dt.mult(Mxb,DM) E = r.duplicate() self.kspScalar.solve(DM,E) y.array = (np.concatenate([Fu.array+Q.array-Y.array, H.array-Sp.array-J.array, T.array+V.array+Mxb.array+K.array,E.array])) def ITS(self): return self.CGits, self.HiptmairIts , self.CGtime, self.HiptmairTime # class ApproxBT(BaseMyPC): # def __init__(self, W, kspF, kspA, kspQ,Fp,kspScalar, kspCGScalar, kspVector, G, P, A, Hiptmairtol,Options): # self.W = W # self.kspF = kspF # self.kspA = kspA # self.kspQ = kspQ # self.Fp = Fp # self.kspScalar = kspScalar # self.kspCGScalar = kspCGScalar # self.kspVector = kspVector # self.Options = Options # # self.Bt = Bt # self.HiptmairIts = 0 # self.CGits = 0 # # print range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim()) # # ss # self.P = P # self.G = G # self.AA = A # self.tol = Hiptmairtol # self.u_is = PETSc.IS().createGeneral(range(self.W[0].dim())) # self.p_is = PETSc.IS().createGeneral(range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim())) # self.b_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim(), # self.W[0].dim()+self.W[1].dim()+self.W[2].dim())) # self.r_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim()+self.W[2].dim(), # self.W[0].dim()+self.W[1].dim()+self.W[2].dim()+self.W[3].dim())) # def create(self, pc): # print "Create" # def setUp(self, pc): # A, P = pc.getOperators() # print A.size # if A.type == 'python': # self.Ct = A.getPythonContext().getMatrix("Ct") # self.Bt = A.getPythonContext().getMatrix("Bt") # else: # self.Ct = A.getSubMatrix(self.b_is,self.u_is) # self.Bt = A.getSubMatrix(self.p_is,self.u_is) # self.Dt = A.getSubMatrix(self.r_is,self.b_is) # # print self.Ct.view() # #CFC = sp.csr_matrix( (data,(row,column)), shape=(self.W[1].dim(),self.W[1].dim()) ) # #print CFC.shape # #CFC = PETSc.Mat().createAIJ(size=CFC.shape,csr=(CFC.indptr, CFC.indices, CFC.data)) # #print CFC.size, self.AA.size # # MO.StoreMatrix(B,"A") # # print FC.todense() # OptDB = PETSc.Options() # OptDB["pc_factor_mat_ordering_type"] = "rcm" # OptDB["pc_factor_mat_solver_package"] = "mumps" # self.kspA.setType('preonly') # self.kspA.getPC().setType('lu') # self.kspA.setFromOptions() # self.kspA.setPCSide(0) # self.kspQ.setType('preonly') # self.kspQ.getPC().setType('lu') # self.kspQ.setFromOptions() # self.kspQ.setPCSide(0) # self.kspScalar.setType('preonly') # self.kspScalar.getPC().setType('lu') # self.kspScalar.setFromOptions() # self.kspScalar.setPCSide(0) # kspMX = PETSc.KSP() # kspMX.create(comm=PETSc.COMM_WORLD) # pcMX = kspMX.getPC() # kspMX.setType('preonly') # pcMX.setType('lu') # OptDB = PETSc.Options() # kspMX.setOperators(self.AA,self.AA) # self.kspMX = kspMX # # self.kspCGScalar.setType('preonly') # # self.kspCGScalar.getPC().setType('lu') # # self.kspCGScalar.setFromOptions() # # self.kspCGScalar.setPCSide(0) # self.kspVector.setType('preonly') # self.kspVector.getPC().setType('lu') # self.kspVector.setFromOptions() # self.kspVector.setPCSide(0) # print "setup" # def apply(self, pc, x, y): # def ITS(self): # return self.CGits, self.HiptmairIts , self.CGtime, self.HiptmairTime def FluidSchur(A, b): if len(A) == 1: print "exact Schur complement" x = b.duplicate() A[0].solve(b, x) return x else: print "PCD Schur complement" x1 = b.duplicate() x2 = b.duplicate() x3 = b.duplicate() A[0].solve(b,x1) A[1].mult(x1,x2) A[2].solve(x2,x3) return x3 class ApproxInv(BaseMyPC): def __init__(self, W, kspF, kspA, kspQ,Fp,kspScalar, kspCGScalar, kspVector, G, P, A, Hiptmairtol,Options): self.W = W self.kspF = kspF self.kspA = kspA self.kspQ = kspQ self.Fp = Fp self.kspScalar = kspScalar self.kspCGScalar = kspCGScalar self.kspVector = kspVector # self.Bt = Bt self.HiptmairIts = 0 self.CGits = 0 # print range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim()) # ss self.P = P self.G = G self.AA = A self.tol = Hiptmairtol self.u_is = PETSc.IS().createGeneral(range(self.W[0].dim())) self.p_is = PETSc.IS().createGeneral(range(self.W[0].dim(),self.W[0].dim()+self.W[1].dim())) self.b_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim())) self.r_is = PETSc.IS().createGeneral(range(self.W[0].dim()+self.W[1].dim()+self.W[2].dim(), self.W[0].dim()+self.W[1].dim()+self.W[2].dim()+self.W[3].dim())) def create(self, pc): print "Create" def setUp(self, pc): A, P = pc.getOperators() print A.size if A.type == 'python': self.Ct = A.getPythonContext().getMatrix("Ct") self.Bt = A.getPythonContext().getMatrix("Bt") else: self.C = A.getSubMatrix(self.u_is,self.b_is) self.B = A.getSubMatrix(self.u_is,self.p_is) self.D = A.getSubMatrix(self.b_is,self.r_is) # print self.Ct.view() #CFC = sp.csr_matrix( (data,(row,column)), shape=(self.W[1].dim(),self.W[1].dim()) ) #print CFC.shape #CFC = PETSc.Mat().createAIJ(size=CFC.shape,csr=(CFC.indptr, CFC.indices, CFC.data)) #print CFC.size, self.AA.size # MO.StoreMatrix(B,"A") # print FC.todense() OptDB = PETSc.Options() OptDB["pc_factor_mat_ordering_type"] = "rcm" OptDB["pc_factor_mat_solver_package"] = "mumps" self.kspA.setType('preonly') self.kspA.getPC().setType('lu') self.kspA.setFromOptions() self.kspA.setPCSide(0) self.kspQ.setType('preonly') self.kspQ.getPC().setType('lu') self.kspQ.setFromOptions() self.kspQ.setPCSide(0) self.kspScalar.setType('preonly') self.kspScalar.getPC().setType('lu') self.kspScalar.setFromOptions() self.kspScalar.setPCSide(0) kspMX = PETSc.KSP() kspMX.create(comm=PETSc.COMM_WORLD) pcMX = kspMX.getPC() kspMX.setType('preonly') pcMX.setType('lu') OptDB = PETSc.Options() kspMX.setOperators(self.AA,self.AA) self.kspMX = kspMX # self.kspCGScalar.setType('preonly') # self.kspCGScalar.getPC().setType('lu') # self.kspCGScalar.setFromOptions() # self.kspCGScalar.setPCSide(0) self.kspVector.setType('preonly') self.kspVector.getPC().setType('lu') self.kspVector.setFromOptions() self.kspVector.setPCSide(0) print "setup" def apply(self, pc, x, y): bu = x.getSubVector(self.u_is) invF = bu.duplicate() bb = x.getSubVector(self.b_is) invMX = bb.duplicate() br = x.getSubVector(self.r_is) invL = br.duplicate() self.kspF.solve(bu,invF) invS = FluidSchur([kspA, Fp, KspQ], bp) self.kspMX.solve(bb,invMX) self.kspScalar.solve(br,invL) # outP = barF - invS - Schur(B*F(C'*invMx)); # outU = invF - F(B'*barF) + barS; xp1 = xp.duplicate() self.B.mult(invF, xp1) barF = FluidSchur([kspA, Fp, KspQ], xp1) xu1 = xu.duplicate() barS = xu.duplicate() self.B.multTranspose(invS, xu1) self.kspF.solve(xu1, barS) # outR = (L(D*invMx)); xr1 = xr.duplicate() outR = xr.duplicate() self.D.mult(invMX, xr1) self.kspScalar(xr1, outR) # outB = (Mx(C*barS) + invMx + Mx(D'*invL)); xb1 = invMX.duplicate() xb2 = invMX.duplicate() xb3 = invMX.duplicate() xb4 = invMX.duplicate() self.D.multTranspose(invL, xb1) self.kspMX.solve(xb1, xb2) self.C.mult(xp, xb3) self.kspMX.solve(xb3, xb4) outB = xb4 + xb + xb2 xp1 = xu.duplicate() xp2 = xu.duplicate() xp3 = xp.duplicate() self.C.multTranspose(xb, xp1) self.kspF.solve(xp1, xp2) self.B.mult(xp2, xp3) xp4 = FluidSchur([kspA, Fp, KspQ], xp3) outP = barF - xp - xp4; xu1 = xu.duplicate() xu2 = xu.duplicate() self.B.multTranspose(barF, xu1) self.kspF.solve(xu1, xu2) outU = xu - xu2 + barS; y.array = (np.concatenate([outU.array, outP.array, outB.array, outR.array])) def ITS(self): return self.CGits, self.HiptmairIts , self.CGtime, self.HiptmairTime
[ "mwathen@cs.ubc.ca" ]
mwathen@cs.ubc.ca
d778743a397c2fe79bba785b1f4d109a09e3251c
223593dfc133e6fdc96f95773a3a7e235b00e637
/essentials/chatsocket.py
267b1dc414250cda379e3c6da7787af766f6cfe5
[]
no_license
ronts2/chat
7a1daaea232074310e28f54720be49bf9612859d
c4ee61f155693b47b6d53575eabab20cb43443d2
refs/heads/master
2021-07-09T09:20:13.473097
2017-10-04T12:47:42
2017-10-04T12:47:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,138
py
""" This module contains the ChatClient class, used for client-server communication. The ChatClient follows the communication protocol: send size of data - then the data itself. """ import socket import jsonpickle as pickle from threading import Thread from time import sleep import file_handler import messages import protocols MSG_LEN_SIZE = 10 # The size of the length of a message # the default server ip address - the current computer DEF_SERVER_IP = socket.gethostbyname(socket.gethostname()) # the default server port - the host's choice DEF_SERVER_PORT = 9900 DEF_DATA_CHUNK_SIZE = 1048576 DEF_LISTEN = 5 CHUNK_SEND_WAIT = 0.1 class ChatSocket(socket.socket): """ The chat socket follows the communication protocol: send size of data - then the data itself The chat socket contains the chat socket socket and the server's info """ def __init__(self, server_ip=DEF_SERVER_IP, port=DEF_SERVER_PORT, msg_len_size=MSG_LEN_SIZE, data_chunk_size=DEF_DATA_CHUNK_SIZE, listen=DEF_LISTEN, _sock=None): """ The class constructor. :param server_ip: IP of the server. :param port: port of the server. :param msg_len_size: the maximum number of digits representing data size. :param data_chunk_size: the size of a data chunk (used to split sent file data) """ self.port = port self.server_ip = server_ip self.msg_len_size = msg_len_size self.data_chunk_size = data_chunk_size self.listen = listen if _sock: super(ChatSocket, self).__init__(_sock=_sock) else: super(ChatSocket, self).__init__() self.open = False def connect(self): super(ChatSocket, self).connect((self.server_ip, self.port)) self.open = True def initialize_server_socket(self): """ Initializes the server socket. """ self.bind((self.server_ip, self.port)) super(ChatSocket, self).listen(self.listen) def accept(self): """ Accepts a client connection. :return: client socket and address as returned by the socket.accept method. """ sock, address = super(ChatSocket, self).accept() return ChatSocket(_sock=sock), address def receive(self): """ Gathers data sent from the server :return: message from the server or None if the server closed """ size = self._receive_all(MSG_LEN_SIZE) if not size: return '' data = self._receive_all(int(size)) return data def _receive_all(self, size): """ Receives data sent from the server until all data is received :param size: the size of the data :return: received data """ try: data = self.recv(size) while len(data) < size: data += self.recv(size - len(data)) return data except: return '' def receive_obj(self): """ Receives an object from the server. :return: sent object. """ try: return pickle.loads(self.receive()) except: return '' def send_str(self, msg): """ Sends a string :param msg: the message object """ self.sendall(str(len(msg)).zfill(MSG_LEN_SIZE)) self.sendall(msg) def send_obj(self, obj): """ Sends and object. :param obj: an object. """ self.send_str(pickle.dumps(obj)) def send_msg(self, header, data): """ Sends a message. :param header: the message's protocol header. :param data: the message's data. """ self.send_obj(messages.Message(header, data)) def send_regular_msg(self, data): """ Sends a regular-type message. :param data: the message's data """ self.send_msg(protocols.build_header(protocols.REGULAR), data) def _send_chunks(self, chunks, path): """ Sends chunks of a file. :param chunks: a collection of a file's data in chunks. :param path: the file's path. """ for chunk in chunks: self.send_msg(protocols.build_header(protocols.FILE_CHUNK, path), chunk) sleep(CHUNK_SEND_WAIT) self.send_msg(protocols.build_header(protocols.FILE_END, path), '') def send_file(self, path): """ Sends a file. :param path: a path of a file. Name is necessary for instances where the receiver has no indication of the sender's identity. """ file_chunks = file_handler.generate_chunks(path, DEF_DATA_CHUNK_SIZE) path = file_handler.GET_FILE_NAME(path) sender = Thread(target=self._send_chunks, args=[file_chunks, path]) sender.start() def close_sock(self): """ Closes the socket. """ try: self.shutdown(socket.SHUT_RDWR) # Stop receiving/sending except: pass self.close() self.open = False
[ "ron.tsip1@gmail.com" ]
ron.tsip1@gmail.com
39cbec8d577289fe1474fea741e0e59411aca1c7
7d0adad278552c3e5027f06fc59e03c74709e3f4
/json_test.py
2811bb7ba943971a188448466d9d43f7c618f543
[]
no_license
jimhorng/python-test
b6796392b6cec65e413c9dc36b4d3c41dbd6d17b
3549f6f992a9387d1d218c826b758729e05da04a
refs/heads/master
2020-05-19T16:56:17.261650
2015-03-19T06:26:43
2015-03-19T06:26:43
22,061,174
1
0
null
null
null
null
UTF-8
Python
false
false
391
py
''' Created on Feb 26, 2014 @author: jimhorng ''' import json from multiprocessing import Manager d_proxy = Manager().dict() d_proxy['test1'] = 123 d_proxy['test2'] = {'foo' : 123} print type(d_proxy) print type(d_proxy.items()) print d_proxy['test2'] print type(d_proxy['test2']) print json.dumps(d_proxy['test2']) print json.dumps(d_proxy.items()) if __name__ == '__main__': pass
[ "jimhorng@qnap.com" ]
jimhorng@qnap.com
000e84959aaa01493e19b1f31e423080e0da4188
6e99e7ee2ee3cc8c68e6df043293c7d2b614356d
/lib/gzip_assets.py
009ef35eafc5398ea328168aa1acc1f3b81fbc6b
[]
no_license
sfchronicle/homelessness-map
68dd6bec1b6b7abbaa90850b21042982e60aaaad
aa009ee5774d53c27a54da6731832beb74e5dc22
refs/heads/master
2021-01-16T22:08:55.542077
2015-10-28T18:01:18
2015-10-28T18:01:18
44,569,838
1
0
null
null
null
null
UTF-8
Python
false
false
786
py
#!/bin/env python import os import gzip import shutil class FakeTime: def time(self): return 1261130520.0 # Hack to override gzip's time implementation # http://stackoverflow.com/a/264303/868724 gzip.time = FakeTime() project_dir = 'homelessness' shutil.rmtree(os.path.join(project_dir, 'gzip'), ignore_errors=True) shutil.copytree( os.path.join(project_dir, 'static'), os.path.join(project_dir, 'gzip/static') ) for path, dirs, files in os.walk(os.path.join(project_dir, 'gzip/static')): for filename in files: file_path = os.path.join(path, filename) f_in = open(file_path, 'rb') contents = f_in.readlines() f_in.close() f_out = gzip.open(file_path, 'wb') f_out.writelines(contents) f_out.close()
[ "aaron.colby.williams@gmail.com" ]
aaron.colby.williams@gmail.com
0ef1c7f6f37da9f059d220e414cfbdf4b7a58513
345c14ae0f990841c0323b8347bda6a27236ced2
/apps/dialog15_jiangliziji.py
d33e5dc2ac88fa219abbb98fce9bc9a9eb07f794
[]
no_license
wdc63/personal-RPG
03bdd7c6869a23f20ea3e403a2fe90b00249f881
c9d7db50eacf815ff44ce79f751737e195efc2d3
refs/heads/master
2020-05-21T16:44:52.575847
2016-12-11T16:52:40
2016-12-11T16:52:40
41,748,103
2
0
null
null
null
null
UTF-8
Python
false
false
5,809
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'dialog15_jiangliziji.ui' # # Created by: PyQt5 UI code generator 5.5 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(447, 352) Dialog.setModal(True) self.gridLayout = QtWidgets.QGridLayout(Dialog) self.gridLayout.setObjectName("gridLayout") self.pushButton = QtWidgets.QPushButton(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.pushButton.sizePolicy().hasHeightForWidth()) self.pushButton.setSizePolicy(sizePolicy) self.pushButton.setObjectName("pushButton") self.gridLayout.addWidget(self.pushButton, 3, 1, 1, 1) self.listWidget = QtWidgets.QListWidget(Dialog) self.listWidget.setObjectName("listWidget") self.gridLayout.addWidget(self.listWidget, 1, 0, 1, 3) self.pushButton_3 = QtWidgets.QPushButton(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.pushButton_3.sizePolicy().hasHeightForWidth()) self.pushButton_3.setSizePolicy(sizePolicy) self.pushButton_3.setObjectName("pushButton_3") self.gridLayout.addWidget(self.pushButton_3, 3, 2, 1, 1) self.label = QtWidgets.QLabel(Dialog) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(Dialog) self.label_2.setObjectName("label_2") self.gridLayout.addWidget(self.label_2, 2, 0, 1, 1) self.label_3 = QtWidgets.QLabel(Dialog) self.label_3.setObjectName("label_3") self.gridLayout.addWidget(self.label_3, 3, 0, 1, 1) self.gridLayout.addWidget(self.label, 0, 0, 1, 1) self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def dudang(): import pickle path = open('D:/MyRPG/data.dat','rb') global dianshu,nengli,zhuangbei,xiguangeverday,xiguanall,renwu,renwufinish,rizhi,rizhifinish,jiangli,jiangliget,yuanwang dianshu,nengli,zhuangbei,xiguangeverday,xiguanall,renwu,renwufinish,rizhi,rizhifinish,jiangli,jiangliget,yuanwang = pickle.load(path) path.close() del path dudang() self.label_2.setText('娱乐点剩余:'+"<span style=\" font-size:10pt; font-weight:bold;color:#00df00;\">"+str(dianshu['d8'])+"</span>") global count7 count7 = 1 self.listWidget.clear() self.listWidget.setWordWrap(True) for i in jiangli: item = QtWidgets.QListWidgetItem() value = '('+str(count7)+') '+i[0]+'(将消耗'+str(i[2])+'点娱乐点)' item.setText(value) item.setToolTip(i[1]) item.setCheckState(0) self.listWidget.addItem(item) count7 += 1 def queding(): import datetime time = str(datetime.date.today().year)+'-'+str(datetime.date.today().month)+'-'+str(datetime.date.today().day)+' '+str(datetime.datetime.today().time().hour)+':'+str(datetime.datetime.today().time().minute) global jiangli,jiangliget,dianshu,add add = [] for i in range(self.listWidget.count()): if int(self.listWidget.item(i).checkState()) == 2: import copy s = copy.deepcopy(jiangli[i]) s.insert(0,time) jiangliget.insert(0,s) dianshu['d8'] = dianshu['d8']-jiangli[i][2] add.insert(0,s) if dianshu['d8']<0: self.pushButton.setText('娱乐点不足') add = [] dudang() return else: import pickle path = open('D:/MyRPG/data.dat','wb') pickle.dump((dianshu,nengli,zhuangbei,xiguangeverday,xiguanall,renwu,renwufinish,rizhi,rizhifinish,jiangli,jiangliget,yuanwang),path) path.close() del path Dialog.destroy() def tuichu(): Dialog.destroy() def quedingchongzhi(): self.pushButton.setText('获得奖励') fenshu = 0 for i in range(self.listWidget.count()): if int(self.listWidget.item(i).checkState()) == 2: fenshu = fenshu + jiangli[i][2] if fenshu == 0: self.label_3.setText('') else: self.label_3.setText('所选娱乐点:'+"<span style=\" font-size:10pt; font-weight:bold;color:#ff0000;\">"+str(fenshu)+"</span>") self.pushButton.clicked.connect(queding) self.pushButton_3.clicked.connect(tuichu) self.listWidget.itemPressed.connect(quedingchongzhi) self.listWidget.itemClicked.connect(quedingchongzhi) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "奖励自己")) self.pushButton.setText(_translate("Dialog", "获得奖励")) self.pushButton_3.setText(_translate("Dialog", "取消")) self.label.setText(_translate("Dialog", "所有奖励列表")) # import sys # app = QtWidgets.QApplication(sys.argv) # Dialog = QtWidgets.QDialog() # ui = Ui_Dialog() # ui.setupUi(Dialog) # Dialog.show() # sys.exit(app.exec_())
[ "214801017@qq.com" ]
214801017@qq.com
fe854a3a397e4ad98c259bae3d3b8c85e54672c7
dda40d877091952a016409d9ae104e2e5568f4b6
/blog/migrations/0001_initial.py
58e203f76bf4d4f41ae0cbd9fc87863dd974f6c0
[]
no_license
Ochika3310/my-first-blog
3e4130000ddbe6b3d40c6c2c819e79b9c03ccdd3
3919367bc416886cf3b55b9e252010ca90b6d7d2
refs/heads/master
2020-09-27T08:54:23.365165
2019-12-08T08:59:08
2019-12-08T08:59:08
226,478,855
0
0
null
null
null
null
UTF-8
Python
false
false
986
py
# Generated by Django 2.2.6 on 2019-11-24 10:05 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "noanoa0g03292@gmail.com" ]
noanoa0g03292@gmail.com
8fad9a8a9923ddda823b8b2ffdd4378d64dc08be
b0766b974cf8919b636a24d8998ebd5747bde8bd
/tests.py
ec200e53030cf43a52e7d436bae632c941be0324
[ "MIT" ]
permissive
marciomazza/Duolingo
02b5ce3cd91a3a4742d220850140b98d02fad34d
74dd96fb7ee9f1b8b2afd9c166fb40e848d72095
refs/heads/master
2021-01-13T16:02:15.666025
2016-12-17T18:47:32
2016-12-17T18:47:32
76,740,430
0
0
null
2016-12-17T18:37:36
2016-12-17T18:37:36
null
UTF-8
Python
false
false
2,768
py
import os import unittest import duolingo USERNAME = os.environ.get('DUOLINGO_USER', 'kartik') PASSWORD = os.environ.get('DUOLINGO_PASSWORD') class DuolingoTest(unittest.TestCase): lingo = duolingo.Duolingo(USERNAME, password=PASSWORD) def setUp(self): self.lang = self.lingo.user_data.learning_language def test_get_user_info(self): response = self.lingo.get_user_info() def test_get_settings(self): response = self.lingo.get_settings() def test_get_languages(self): response = self.lingo.get_languages(abbreviations=False) response = self.lingo.get_languages(abbreviations=True) def test_get_friends(self): response = self.lingo.get_friends() def test_get_calendar(self): response = self.lingo.get_calendar() response = self.lingo.get_calendar(self.lang) def test_get_streak_info(self): response = self.lingo.get_streak_info() def test_get_certificates(self): response = self.lingo.get_certificates() def test_get_language_details(self): response = self.lingo.get_language_details(self.lang) def test_get_language_progress(self): response = self.lingo.get_language_progress(self.lang) def test_get_known_topics(self): response = self.lingo.get_known_topics(self.lang) def test_get_known_words(self): response = self.lingo.get_known_words(self.lang) def test_get_learned_skills(self): response = self.lingo.get_learned_skills(self.lang) def test_get_language_from_abbr(self): response = self.lingo.get_language_from_abbr(self.lang) def test_get_abbreviation_of(self): response = self.lingo.get_abbreviation_of('portuguese') def test_get_activity_stream(self): response = self.lingo.get_activity_stream() def test_get_translations(self): response = self.lingo.get_translations('e') response = self.lingo.get_translations('e', self.lang) response = self.lingo.get_translations('e', self.lang, 'fr') response = self.lingo.get_translations(['e', 'a']) @unittest.skipIf(not PASSWORD, "You must have valid username/password") def test_get_vocabulary(self): response = self.lingo.get_vocabulary() response = self.lingo.get_vocabulary(self.lang) @unittest.skipIf(not PASSWORD, "You must have valid username/password") def test_get_audio_url(self): response = self.lingo.get_audio_url('o') response = self.lingo.get_audio_url('o', self.lang) @unittest.skipIf(not PASSWORD, "You must have valid username/password") def test_get_related_words(self): response = self.lingo.get_related_words('o') if __name__ == '__main__': unittest.main()
[ "montheanthony@hotmail.com" ]
montheanthony@hotmail.com
246fa7fe510fafbeb202db62ebca8d435612f783
0ea4636495ffb83544819df977967c5c4f11347a
/flip_heap.py
22ac73c0b52cb78704e91ec9026f1632b9de9448
[ "MIT" ]
permissive
fregulationn/SANM
eb823ae72bd3aac41c5179a320cfc937219b8fe0
7a2580893da32eefcab2d77138fda0f27068dd3c
refs/heads/master
2022-12-15T12:50:05.626346
2020-01-09T13:00:58
2020-01-09T13:00:58
232,237,658
1
2
MIT
2022-12-08T05:25:27
2020-01-07T03:49:37
Python
UTF-8
Python
false
false
144
py
import cv2 as cv from PIL import Image im = Image.open("/home/junjie/Downloads/addd.jpg") out = im.transpose(Image.FLIP_TOP_BOTTOM) out.show()
[ "fregulationn@gmail.com" ]
fregulationn@gmail.com
524c4d523fb8b8196bbb7bfd0a58ce7338f3040a
79ab25621fad01a72afe952cc2ce0d1d78be9651
/evaluate.py
d064606d01708a7d55c586318e0be5870e466eff
[ "Apache-2.0" ]
permissive
juhongm999/hpf
598056e8787cbf52f01a26ed4755a93843c44592
5befc6f29411ad81c2f022fa9c6d36dc88629810
refs/heads/master
2022-10-06T17:24:59.856563
2022-09-14T00:55:07
2022-09-14T00:55:07
210,576,626
82
15
null
2022-09-14T00:54:52
2019-09-24T10:34:13
Python
UTF-8
Python
false
false
3,763
py
r"""Runs Hyperpixel Flow framework""" import argparse import datetime import os from torch.utils.data import DataLoader import torch from model import hpflow, geometry, evaluation, util from data import download def run(datapath, benchmark, backbone, thres, alpha, hyperpixel, logpath, beamsearch, model=None, dataloader=None, visualize=False): r"""Runs Hyperpixel Flow framework""" # 1. Logging initialization if not os.path.isdir('logs'): os.mkdir('logs') if not beamsearch: cur_datetime = datetime.datetime.now().__format__('_%m%d_%H%M%S') logfile = os.path.join('logs', logpath + cur_datetime + '.log') util.init_logger(logfile) util.log_args(args) if visualize: os.mkdir(logfile + 'vis') # 2. Evaluation benchmark initialization device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if dataloader is None: download.download_dataset(os.path.abspath(datapath), benchmark) split = 'val' if beamsearch else 'test' dset = download.load_dataset(benchmark, datapath, thres, device, split) dataloader = DataLoader(dset, batch_size=1, num_workers=0) # 3. Model initialization if model is None: model = hpflow.HyperpixelFlow(backbone, hyperpixel, benchmark, device) else: model.hyperpixel_ids = util.parse_hyperpixel(hyperpixel) # 4. Evaluator initialization evaluator = evaluation.Evaluator(benchmark, device) for idx, data in enumerate(dataloader): # a) Retrieve images and adjust their sizes to avoid large numbers of hyperpixels data['src_img'], data['src_kps'], data['src_intratio'] = util.resize(data['src_img'], data['src_kps'][0]) data['trg_img'], data['trg_kps'], data['trg_intratio'] = util.resize(data['trg_img'], data['trg_kps'][0]) data['alpha'] = alpha # b) Feed a pair of images to Hyperpixel Flow model with torch.no_grad(): confidence_ts, src_box, trg_box = model(data['src_img'], data['trg_img']) # c) Predict key-points & evaluate performance prd_kps = geometry.predict_kps(src_box, trg_box, data['src_kps'], confidence_ts) evaluator.evaluate(prd_kps, data) # d) Log results if not beamsearch: evaluator.log_result(idx, data=data) if visualize: vispath = os.path.join(logfile + 'vis', '%03d_%s_%s' % (idx, data['src_imname'][0], data['trg_imname'][0])) util.visualize_prediction(data['src_kps'].t().cpu(), prd_kps.t().cpu(), data['src_img'], data['trg_img'], vispath) if beamsearch: return (sum(evaluator.eval_buf['pck']) / len(evaluator.eval_buf['pck'])) * 100. else: evaluator.log_result(len(dset), data=None, average=True) if __name__ == '__main__': # Argument parsing parser = argparse.ArgumentParser(description='Hyperpixel Flow in pytorch') parser.add_argument('--datapath', type=str, default='../Datasets_HPF') parser.add_argument('--dataset', type=str, default='pfpascal') parser.add_argument('--backbone', type=str, default='resnet101') parser.add_argument('--thres', type=str, default='auto', choices=['auto', 'img', 'bbox']) parser.add_argument('--alpha', type=float, default=0.1) parser.add_argument('--hyperpixel', type=str, default='') parser.add_argument('--logpath', type=str, default='') parser.add_argument('--visualize', action='store_true') args = parser.parse_args() run(datapath=args.datapath, benchmark=args.dataset, backbone=args.backbone, thres=args.thres, alpha=args.alpha, hyperpixel=args.hyperpixel, logpath=args.logpath, beamsearch=False, visualize=args.visualize)
[ "juhongm999@gmail.com" ]
juhongm999@gmail.com
cb48ef2c6152a119590df8e9d113d099a4b36092
6ed05164fc54018ac2b80bfbc9ce08ca49e90898
/ext14.py
5a1a7995a99abe9023c89e6cc282d5dc4b9347df
[]
no_license
pengxie/python-learing
02fc99d2c8817619b7fae2676dd237a8f2761604
448bb8c628635be03d3dfcebe9bbe2bcd9cd5063
refs/heads/master
2016-09-06T07:40:40.274158
2014-08-12T09:18:51
2014-08-12T09:18:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
# -*- coding: utf-8 -*- from sys import argv script, user_name = argv #一个变量为脚本名,二为第一个变量名 prompt = 'ubuntu@localhost: ' print type(prompt) print "%s" % (script) print "Hi %s, I'm the %s script." % (user_name, script) print "I'd like to ask you a few questions." print "Do you like me %s?" % user_name likes = raw_input(prompt) print "Where do you live %s" % user_name lives = raw_input(prompt) print "what kind of computer do you hava?" computer = raw_input(prompt) print """ Alright, so you said %r about liking me. You live in %s. Not sure where that is. And you have %r computer. Nice. """ % (likes, lives, computer)
[ "pengxie@anjuke.com" ]
pengxie@anjuke.com
7b57490969b42931c6bbb1861b27967bc327a16f
300eb733976a31d73a68ddf20d986ba6aceb6ef5
/OttBands5minFixedOtt/jessepickerdata/dnafiles/BEL-USDT 2021-09-11 2021-10-11.py
828a526524c78761e00c259cd9501042a9721776
[]
no_license
ajthummar/jesse_strategies
f168ae455970bd91845807dd7b0346e77471db09
5d23b44f97006e6cecf8519a3951accbfde09fc7
refs/heads/master
2023-08-12T21:35:22.458840
2021-10-18T13:26:12
2021-10-18T13:26:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,868
py
dnas = [ ['E^c[A', 58, 34, 10.18, 50, 10, -1.0, {'ott_len': 29, 'ott_percent': 219, 'ott_bw': 135, 'tps_qty_index': 81, 'max_risk': 31}], ['_W6,U', 40, 84, 9.31, 50, 14, 6.21, {'ott_len': 32, 'ott_percent': 210, 'ott_bw': 79, 'tps_qty_index': 6, 'max_risk': 43}], ['FVW*?', 50, 53, 22.75, 36, 11, -1.52, {'ott_len': 29, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['vNqn]', 81, 11, 12.65, 100, 4, 9.27, {'ott_len': 35, 'ott_percent': 199, 'ott_bw': 152, 'tps_qty_index': 111, 'max_risk': 49}], ['HPqWv', 64, 17, 16.65, 60, 5, 2.69, {'ott_len': 29, 'ott_percent': 201, 'ott_bw': 152, 'tps_qty_index': 74, 'max_risk': 64}], ['7Fpob', 66, 12, 12.15, 75, 4, 3.62, {'ott_len': 27, 'ott_percent': 189, 'ott_bw': 151, 'tps_qty_index': 112, 'max_risk': 52}], ['ui*5<', 44, 84, 12.12, 42, 14, 6.81, {'ott_len': 35, 'ott_percent': 232, 'ott_bw': 64, 'tps_qty_index': 21, 'max_risk': 28}], ['q9da]', 71, 14, 11.37, 75, 4, 3.13, {'ott_len': 34, 'ott_percent': 172, 'ott_bw': 136, 'tps_qty_index': 90, 'max_risk': 49}], ['o4,@X', 42, 98, 8.28, 45, 20, 5.45, {'ott_len': 34, 'ott_percent': 166, 'ott_bw': 66, 'tps_qty_index': 38, 'max_risk': 45}], ['?dpMr', 61, 26, 28.05, 50, 8, 2.43, {'ott_len': 28, 'ott_percent': 226, 'ott_bw': 151, 'tps_qty_index': 59, 'max_risk': 62}], ['3OWXC', 54, 57, 20.13, 63, 11, 5.57, {'ott_len': 26, 'ott_percent': 200, 'ott_bw': 120, 'tps_qty_index': 76, 'max_risk': 32}], ['=bVNC', 46, 62, 22.8, 50, 12, -0.59, {'ott_len': 28, 'ott_percent': 224, 'ott_bw': 119, 'tps_qty_index': 60, 'max_risk': 32}], ['@XW*?', 50, 54, 25.83, 50, 10, 1.55, {'ott_len': 28, 'ott_percent': 211, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['MVsWv', 66, 18, 17.72, 60, 5, 4.17, {'ott_len': 30, 'ott_percent': 209, 'ott_bw': 155, 'tps_qty_index': 74, 'max_risk': 64}], ['LewDb', 76, 17, 19.15, 80, 5, 8.45, {'ott_len': 30, 'ott_percent': 227, 'ott_bw': 160, 'tps_qty_index': 44, 'max_risk': 52}], ['@_W*?', 44, 58, 22.34, 55, 9, 4.25, {'ott_len': 28, 'ott_percent': 220, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['=ptVt', 73, 26, 30.29, 50, 8, 1.89, {'ott_len': 28, 'ott_percent': 241, 'ott_bw': 156, 'tps_qty_index': 73, 'max_risk': 63}], ['@^W*?', 45, 57, 21.06, 55, 9, 4.26, {'ott_len': 28, 'ott_percent': 219, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['eVswv', 63, 19, 11.55, 100, 4, 5.34, {'ott_len': 33, 'ott_percent': 209, 'ott_bw': 155, 'tps_qty_index': 125, 'max_risk': 64}], ['3OWXE', 55, 58, 20.61, 63, 11, 5.57, {'ott_len': 26, 'ott_percent': 200, 'ott_bw': 120, 'tps_qty_index': 76, 'max_risk': 33}], ['XRV.a', 50, 54, 25.07, 58, 12, 1.52, {'ott_len': 31, 'ott_percent': 204, 'ott_bw': 119, 'tps_qty_index': 9, 'max_risk': 51}], ['ePjWv', 68, 22, 19.21, 66, 6, 5.68, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 144, 'tps_qty_index': 74, 'max_risk': 64}], ['-VW*9', 57, 49, 23.19, 27, 11, -0.52, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 26}], ['YOR9c', 51, 60, 21.87, 58, 12, 2.39, {'ott_len': 31, 'ott_percent': 200, 'ott_bw': 114, 'tps_qty_index': 27, 'max_risk': 52}], ['@VW*F', 49, 55, 26.22, 45, 11, -0.99, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 34}], ['?VuWv', 62, 16, 15.34, 60, 5, 2.75, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 157, 'tps_qty_index': 74, 'max_risk': 64}], ['@cW*?', 47, 61, 22.93, 50, 12, 0.29, {'ott_len': 28, 'ott_percent': 225, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['hPmHf', 73, 19, 19.46, 75, 4, 4.96, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 147, 'tps_qty_index': 51, 'max_risk': 54}], ['CMNWv', 52, 71, 22.36, 58, 12, 4.3, {'ott_len': 28, 'ott_percent': 197, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['?VW.v', 49, 59, 25.96, 58, 12, 2.45, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 9, 'max_risk': 64}], [':VWWv', 55, 61, 23.82, 58, 12, 3.32, {'ott_len': 27, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], ['7VWWv', 55, 61, 23.82, 58, 12, 3.32, {'ott_len': 27, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], ['@VW4?', 49, 55, 17.59, 45, 11, -1.73, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 19, 'max_risk': 30}], ['-VW.v', 49, 61, 23.86, 58, 12, 4.35, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 9, 'max_risk': 64}], ['ftUQf', 46, 66, 10.18, 58, 12, 3.51, {'ott_len': 33, 'ott_percent': 246, 'ott_bw': 117, 'tps_qty_index': 65, 'max_risk': 54}], ['-VW<v', 58, 60, 23.78, 58, 12, 3.9, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 32, 'max_risk': 64}], ['-VWMv', 50, 61, 23.08, 58, 12, 3.48, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 59, 'max_risk': 64}], ['-VWWu', 57, 61, 24.09, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], [',VWWv', 57, 61, 24.09, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], ['-VWWs', 57, 61, 24.09, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 62}], ['?VW2v', 52, 59, 27.13, 58, 12, 2.6, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 16, 'max_risk': 64}], ['3OW?n', 54, 59, 24.5, 66, 12, 3.73, {'ott_len': 26, 'ott_percent': 200, 'ott_bw': 120, 'tps_qty_index': 36, 'max_risk': 59}], ['3OW5n', 50, 59, 24.24, 66, 12, 4.05, {'ott_len': 26, 'ott_percent': 200, 'ott_bw': 120, 'tps_qty_index': 21, 'max_risk': 59}], ['-SUNv', 51, 64, 24.47, 58, 12, 3.76, {'ott_len': 26, 'ott_percent': 205, 'ott_bw': 117, 'tps_qty_index': 60, 'max_risk': 64}], ['-VW=v', 55, 61, 21.99, 58, 12, 3.27, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 33, 'max_risk': 64}], ['eRNDv', 53, 67, 17.86, 53, 13, 3.08, {'ott_len': 33, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 44, 'max_risk': 64}], ['-VWWl', 57, 61, 24.09, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 58}], ['-VWLv', 50, 60, 24.44, 58, 12, 2.84, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 57, 'max_risk': 64}], ['ePPW\\', 52, 63, 19.94, 63, 11, 4.8, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 74, 'max_risk': 48}], ['-VUWv', 53, 66, 19.51, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 117, 'tps_qty_index': 74, 'max_risk': 64}], ['WrVZ;', 49, 65, 9.97, 50, 10, -1.45, {'ott_len': 31, 'ott_percent': 244, 'ott_bw': 119, 'tps_qty_index': 79, 'max_risk': 27}], ['3fWHn', 56, 64, 27.28, 58, 12, 4.26, {'ott_len': 26, 'ott_percent': 229, 'ott_bw': 120, 'tps_qty_index': 51, 'max_risk': 59}], ['-VW;v', 56, 60, 21.81, 58, 12, 3.24, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 30, 'max_risk': 64}], ['`RNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['cRNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['\\RNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], [']RNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['aRNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['^RNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['_RNWv', 51, 68, 21.49, 53, 13, 1.56, {'ott_len': 32, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 64}], ['-VW?v', 55, 61, 23.02, 58, 12, 3.04, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 36, 'max_risk': 64}], ['O=ITi', 49, 69, 21.32, 61, 13, 4.06, {'ott_len': 30, 'ott_percent': 177, 'ott_bw': 102, 'tps_qty_index': 70, 'max_risk': 56}], ['eRNWk', 52, 67, 17.52, 53, 13, 2.3, {'ott_len': 33, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 57}], ['@VW.?', 49, 55, 20.38, 45, 11, -0.98, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 9, 'max_risk': 30}], ['@VW*A', 49, 55, 25.8, 45, 11, -0.99, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 31}], ['eVkWv', 72, 22, 20.19, 66, 6, 5.82, {'ott_len': 33, 'ott_percent': 209, 'ott_bw': 145, 'tps_qty_index': 74, 'max_risk': 64}], ['g^VGt', 57, 61, 16.78, 63, 11, 5.52, {'ott_len': 33, 'ott_percent': 219, 'ott_bw': 119, 'tps_qty_index': 49, 'max_risk': 63}], ['@VW)?', 48, 54, 23.4, 45, 11, -1.08, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 2, 'max_risk': 30}], ['hPPHs', 57, 63, 21.8, 63, 11, 5.36, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 51, 'max_risk': 62}], ['ePPHt', 57, 63, 21.8, 63, 11, 5.36, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 51, 'max_risk': 63}], ['?^WWv', 53, 60, 21.94, 63, 11, 6.61, {'ott_len': 28, 'ott_percent': 219, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], ['fVPWv', 52, 65, 21.16, 53, 13, 1.82, {'ott_len': 33, 'ott_percent': 209, 'ott_bw': 111, 'tps_qty_index': 74, 'max_risk': 64}], ['gVPWv', 52, 65, 21.16, 53, 13, 1.82, {'ott_len': 33, 'ott_percent': 209, 'ott_bw': 111, 'tps_qty_index': 74, 'max_risk': 64}], ['eSNWd', 50, 67, 18.68, 53, 13, 2.22, {'ott_len': 33, 'ott_percent': 205, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 53}], ['eRQWv', 52, 63, 17.59, 63, 11, 4.81, {'ott_len': 33, 'ott_percent': 204, 'ott_bw': 112, 'tps_qty_index': 74, 'max_risk': 64}], ['[\\sta', 66, 18, 12.71, 80, 5, 5.61, {'ott_len': 31, 'ott_percent': 216, 'ott_bw': 155, 'tps_qty_index': 120, 'max_risk': 51}], ['-dW6n', 51, 64, 27.68, 58, 12, 5.23, {'ott_len': 26, 'ott_percent': 226, 'ott_bw': 120, 'tps_qty_index': 22, 'max_risk': 59}], ['3eWXn', 53, 64, 29.51, 58, 12, 4.39, {'ott_len': 26, 'ott_percent': 227, 'ott_bw': 120, 'tps_qty_index': 76, 'max_risk': 59}], ['@TW*?', 51, 56, 14.24, 45, 11, -1.0, {'ott_len': 28, 'ott_percent': 206, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], [':YY:_', 54, 59, 21.43, 58, 12, 3.52, {'ott_len': 27, 'ott_percent': 212, 'ott_bw': 122, 'tps_qty_index': 28, 'max_risk': 50}], ['ePPWb', 52, 63, 19.94, 63, 11, 4.8, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 74, 'max_risk': 52}], ['@VWF?', 54, 55, 19.17, 45, 11, -1.64, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 47, 'max_risk': 30}], ['-VWWa', 58, 60, 22.96, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 51}], ['QYRcn', 50, 65, 19.63, 58, 12, 3.49, {'ott_len': 30, 'ott_percent': 212, 'ott_bw': 114, 'tps_qty_index': 93, 'max_risk': 59}], ['-VWW^', 58, 60, 22.96, 58, 12, 3.47, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 49}], ['ePRWv', 53, 60, 20.61, 63, 11, 4.2, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 114, 'tps_qty_index': 74, 'max_risk': 64}], ['eRNWZ', 52, 67, 17.52, 53, 13, 2.3, {'ott_len': 33, 'ott_percent': 204, 'ott_bw': 109, 'tps_qty_index': 74, 'max_risk': 47}], ['ePPHa', 57, 63, 21.8, 63, 11, 5.36, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 51, 'max_risk': 51}], ['ePPH]', 57, 63, 21.8, 63, 11, 5.36, {'ott_len': 33, 'ott_percent': 201, 'ott_bw': 111, 'tps_qty_index': 51, 'max_risk': 49}], ['eVPWc', 52, 65, 21.16, 53, 13, 1.82, {'ott_len': 33, 'ott_percent': 209, 'ott_bw': 111, 'tps_qty_index': 74, 'max_risk': 52}], ['wVW*?', 48, 52, 15.52, 40, 10, -0.23, {'ott_len': 35, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 30}], ['IVWWv', 51, 58, 22.46, 58, 12, 1.85, {'ott_len': 29, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 74, 'max_risk': 64}], ['BVV.a', 50, 59, 27.82, 58, 12, 2.71, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 119, 'tps_qty_index': 9, 'max_risk': 51}], ['<VV.a', 50, 59, 27.82, 58, 12, 2.71, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 119, 'tps_qty_index': 9, 'max_risk': 51}], ['-VW*=', 55, 54, 29.83, 33, 12, -1.75, {'ott_len': 26, 'ott_percent': 209, 'ott_bw': 120, 'tps_qty_index': 3, 'max_risk': 28}], ['[VsWv', 63, 19, 14.24, 75, 4, 6.76, {'ott_len': 31, 'ott_percent': 209, 'ott_bw': 155, 'tps_qty_index': 74, 'max_risk': 64}], ['WVsWv', 63, 19, 14.24, 75, 4, 6.76, {'ott_len': 31, 'ott_percent': 209, 'ott_bw': 155, 'tps_qty_index': 74, 'max_risk': 64}], ['t]bik', 57, 35, 9.33, 62, 8, 4.47, {'ott_len': 35, 'ott_percent': 217, 'ott_bw': 134, 'tps_qty_index': 103, 'max_risk': 57}], ['@VX*?', 50, 53, 24.04, 50, 10, 1.23, {'ott_len': 28, 'ott_percent': 209, 'ott_bw': 121, 'tps_qty_index': 3, 'max_risk': 30}], ['eEsWv', 66, 9, 10.3, 75, 4, 5.13, {'ott_len': 33, 'ott_percent': 187, 'ott_bw': 155, 'tps_qty_index': 74, 'max_risk': 64}], ]
[ "yunusseyhandede@gmail.com" ]
yunusseyhandede@gmail.com
c9f037387ffa13eecb11fa24424adc949647dfe6
aa3062fc36e6721c30e149618562c85eb26dc046
/movieapi.py
01526b28172122c39058b343c61aafd03763d481
[]
no_license
VolodymyrBor/movieAPI
9b5ab466d8a9ae7cdb785eeb495e697690f06514
967e5295088504c50de43e9259ebfce2bffd855b
refs/heads/master
2023-02-28T12:02:23.498605
2021-02-07T12:35:32
2021-02-07T12:35:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
import uvicorn from fastapi import FastAPI from api.shared import logger from database import database, configs logger.logger_configure() log = logger.get_logger('Movie') app = FastAPI() @app.on_event('startup') async def startup(): log.info('Setting up database...') await database.setup(config=configs.MYSQL_CONFIG) @app.on_event('shutdown') async def startup(): log.info('Shutting down database...') await database.shutdown() if __name__ == '__main__': uvicorn.run('movieapi:app', reload=True, port=8001)
[ "volodymyrb@fornova.net" ]
volodymyrb@fornova.net
5a6f5abcee8c2309a8577d6bdbe01f6ac78ea2c8
e5d8f9629b8baf936ddae154f3d72cc3ef172397
/flight_control/booking/mocks.py
4b29237b6732b19c2671d531120cd5e7a42496b4
[ "MIT" ]
permissive
kenware/flight-api
67fa3b923bbe54865c0fdc17bcb3a6f1765e4917
adfa6f320b6c5bd9830bfb7c3c947028acf39e23
refs/heads/staging
2022-12-14T15:49:31.373788
2019-06-16T20:14:20
2019-06-16T20:14:20
190,599,919
0
0
MIT
2022-12-08T01:46:31
2019-06-06T14:55:20
Python
UTF-8
Python
false
false
594
py
from datetime import datetime def get_date(): date = datetime.today().strftime('%Y-%m-%d') day = int(date[-2:]) + 1 date = date[:-2] + str(day) return date flight_data = { 'name': 'emirate', 'tag': 'dgsfdygg' } booking_data = { "flightSeat": "front", "location": "USA", "flightDate": get_date(), } booking_list_data = [{ "flightSeat": "front", "location": "USA", "flightDate": get_date(), }, { "flightSeat": "middle", "location": "USA", "flightDate": get_date(), }, { "flightSeat": "front", "location": "USA", "flightDate": get_date(), } ]
[ "kenware" ]
kenware
ea90ccd879f594f48de80bc9dfbc97f0e6d8c95b
275a96a33ae1f89e7b2ee0ecdbac7d78abe6d6cc
/swagger_client/models/captcha_provider_enum.py
c58f04f1f540e205062cd6b82edabe5ba48ac130
[]
no_license
cascadiarc/cyclos-python-client
8029ce07174f2fe92350a92dda9a60976b2bb6c2
a2e22a30e22944587293d51be2b8268bce808d70
refs/heads/main
2023-04-03T16:52:01.618444
2021-04-04T00:00:52
2021-04-04T00:00:52
354,419,532
0
0
null
null
null
null
UTF-8
Python
false
false
2,775
py
# coding: utf-8 """ Cyclos 4.11.5 API The REST API for Cyclos 4.11.5 # noqa: E501 OpenAPI spec version: 4.11.5 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.configuration import Configuration class CaptchaProviderEnum(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ allowed enum values """ INTERNAL = "internal" """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } def __init__(self, _configuration=None): # noqa: E501 """CaptchaProviderEnum - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CaptchaProviderEnum, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CaptchaProviderEnum): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, CaptchaProviderEnum): return True return self.to_dict() != other.to_dict()
[ "dan@leftcoastfs.com" ]
dan@leftcoastfs.com
efc53235042f396368503795aa86f40f6af1a101
9f5c9adf472501392e8a8e066d5930abe55327ea
/settings/test.py
d6aaef78103b47fa0b2cb133c3697c3726602b63
[]
no_license
kaj/kratsblog
b3af805b0eb89a64234fcc09f5ab6188d811f7f0
3b6f1b8123785568e54e52fafa0808fd541bc205
refs/heads/master
2022-10-26T20:46:37.165840
2022-10-04T16:08:02
2022-10-04T16:08:02
957,209
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
from . import * DATABASES['default'] = { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': '/tmp/tygbittar.sqlite' }
[ "kaj@kth.se" ]
kaj@kth.se
67088f748695fee374d4a791bcb80841011ad87c
57e42bba49f071bfba6f54d241d1839c615b9e33
/execptions.py
569d3b0f086a7def9006605d79f147d813709562
[ "MIT" ]
permissive
flifloo/MinecraftServerGUI
1452cdc329a7dfd0791a8468c98f7167c389e195
adb3d8932593398f5d84154345ced57096e2783b
refs/heads/master
2020-08-28T23:34:42.370444
2019-10-27T20:41:21
2019-10-27T20:41:21
217,854,019
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
class InvalidLogin(Exception): pass class InvalidURL(Exception): pass class InvalidMethod(Exception): pass class InvalidServerState(Exception): pass
[ "flifloo@gmail.com" ]
flifloo@gmail.com
9bf4756621fa261828be3e0e30be105fa1e8716f
571055077369585c3fdcd2394142a6406f4567ff
/storage.py
664684dbf6b174d42797a1b608bee351f72b645d
[ "MIT" ]
permissive
DylanCheetah/android-file
cd76d445828974f20d9a615bf60ccd7464733def
19e91047bff2bcbfdee4b0e305a00723f586a695
refs/heads/main
2023-02-21T05:26:13.053945
2021-01-24T14:43:25
2021-01-24T14:43:25
332,369,181
0
0
null
null
null
null
UTF-8
Python
false
false
635
py
"""External storage utilities for Android API 29+.""" import builtins import os from jnius import autoclass #Globals #=============================================================================== __version__ = "1.0.0" __author__ = "Eric Snyder" __license__ = "MIT" _activity = autoclass("org.kivy.android.PythonActivity").mActivity _external_storage_path = _activity.getExternalFilesDir(None).getPath() #Functions #=============================================================================== def get_external_storage_path(): """Returns the external storage path for the current app.""" return _external_storage_path
[ "dylan_the_cheetah@outlook.com" ]
dylan_the_cheetah@outlook.com
17a4438c5f8065744f4f3e842051af12673c53db
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/benchmarks/tree-676.py
3e2f9cbced03452408ccc1647f0547e56c110f40
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
1,456
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b # Input parameters n:int = 100 c:int = 4 # Data t:Tree = None i:int = 0 k:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [$Exp, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
b4da2baec3936324ef7366bd58c2f474fff0cf53
fd65851c7977176cfa69056ea5d63ca529e74271
/sdk/python/kfp/v2/compiler_cli_tests/test_data/pipeline_with_gcpc_types.py
e99aa8485b0fbdaa197a5c09d171cc92e2ce9478
[ "Apache-2.0", "BSD-3-Clause", "MIT", "BSD-2-Clause" ]
permissive
NikeNano/pipelines
dad9f45267a7f4c495a30880dd6fe1570f26fa64
73804f8928ce671839d34800627b6d3ea9f820a7
refs/heads/master
2022-01-29T21:24:43.693120
2021-11-20T18:18:35
2021-11-20T18:18:35
221,051,451
1
1
Apache-2.0
2021-04-23T20:07:11
2019-11-11T19:11:29
Python
UTF-8
Python
false
false
1,361
py
# Copyright 2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from kfp.v2 import components from kfp.v2.dsl import component, Input, Output from kfp.v2 import compiler from kfp.v2 import dsl class VertexModel(dsl.Artifact): TYPE_NAME = 'google.VertexModel' producer_op = components.load_component_from_text(""" name: producer outputs: - {name: model, type: google.VertexModel} implementation: container: image: dummy command: - cmd args: - {outputPath: model} """) @component def consumer_op(model: Input[VertexModel]): pass @dsl.pipeline(name='pipeline-with-gcpc-types') def my_pipeline(): consumer_op(model=producer_op().outputs['model']) if __name__ == '__main__': compiler.Compiler().compile( pipeline_func=my_pipeline, package_path=__file__.replace('.py', '.json'))
[ "noreply@github.com" ]
NikeNano.noreply@github.com
1f4584aa70f9bce1613d6653570e7fc7c6d6136e
e77b8179db63a4c1655991f6875f6bd0a6d3b648
/backend/app.py
49986d9153959b1475b8f8768580afd6c07ea3c9
[]
no_license
cptodd757/spotifun
81713316858d3f26e92fa567dc1af16ef89c92e5
9f6dac4eecd06dbe822b6903b9bd2fb4d072d5ea
refs/heads/master
2022-04-02T03:15:29.988996
2020-02-14T16:15:01
2020-02-14T16:15:01
198,119,456
0
0
null
null
null
null
UTF-8
Python
false
false
2,917
py
from flask import Flask, jsonify, redirect, request from flask_cors import CORS import json from bson import json_util import re import urllib import requests import base64 import pandas as pd import numpy as np import unidecode from datetime import datetime import sys sys.path.append('./helpers') import config from get_token_helper import get_token_helper from compile_liked_songs_helper import compile_liked_songs_helper from create_playlist_helper import create_playlist_helper from analyze_helper import analyze_helper #BEFORE RUNNING: Ensure RUN_LOCALLY is set to the appropriate state in config.py #RUN_LOCALLY = True app = Flask(__name__) CORS(app) users = {} artist_genres = {} #{artist_id:{"name":"bob smith","genres":["genre1","genre2","genre3"]}} hostname = config.hostname client_id = config.client_id client_secret = config.client_secret scope = config.scope redirect_uri = config.redirect_uri login_url = config.login_url token_url = config.token_url auth_str = config.auth_str b64_auth_str = config.b64_auth_str token_headers = config.token_headers create_playlist_url = config.create_playlist_url add_to_playlist_url = config.add_to_playlist_url audio_features = config.audio_features #Prompt the user to login to Spotify. @app.route('/login', methods=['GET','POST']) def login(): return redirect(login_url) #With the authorization code granted by user's login to Spotify, obtain an API Key. @app.route('/get_token', methods=['GET','POST']) def get_token(): return jsonify(get_token_helper(request)) #Compile a DataFrame of a given user's liked songs. @app.route('/compile_liked_songs',methods=['GET','POST']) def compile_liked_songs(): data = json.loads(request.data) if config.read_from_temp_csv: users[data['uid']] = {"liked_songs":pd.read_csv('charlie_liked_songs_verbose.csv')} elif data['uid'] not in users.keys(): df = compile_liked_songs_helper(data) users[data['uid']] = {"liked_songs":df} #print(users.keys(),'users.keys') return {'hello':'world'} #Create a playlist from user's liked songs, based on additional specified parameters. @app.route('/create_playlist',methods=['GET','POST']) def create_playlist(): data = json.loads(request.data) df = users[data['uid']]["liked_songs"] response = create_playlist_helper(data, df) print(response) return jsonify(response) #A work in progress. Basic analysis of user's liked songs. @app.route('/analyze', methods=['GET','POST']) def analyze(): data = json.loads(request.data) df = users[data['uid']]['liked_songs'] analyze_helper(data, df) return 'analyze response' #NOT USED. Recently played song data not expansive enough for practical use. @app.route('/compile_recently_played',methods=['GET','POST']) def compile_recently_played(): return {'hello':'world'} if __name__ == '__main__': app.run(host='0.0.0.0',port=4000)
[ "cpt8@duke.edu" ]
cpt8@duke.edu
cbaacde4e88caa40782155db716adfec598caffb
8d353115f54b228e6d1dc12f32d2c590be78c23f
/node_modules/webpack-dev-server/node_modules/fsevents/build/config.gypi
26b24d29781ecc4452c8fd64840100e5843fa86d
[ "MIT" ]
permissive
fernndzaky/FP_Cads
f6e34c654d316a806d4809294a5dddef0f834a74
71891923715d36101e923f9d677ad684d6050371
refs/heads/master
2023-02-10T05:14:05.143848
2021-01-06T13:09:19
2021-01-06T13:09:19
326,116,022
0
1
null
null
null
null
UTF-8
Python
false
false
5,512
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "build_v8_with_gn": "false", "coverage": "false", "debug_nghttp2": "false", "enable_lto": "false", "enable_pgo_generate": "false", "enable_pgo_use": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_data_in": "../../deps/icu-small/source/data/in/icudt64l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "64", "is_debug": 0, "llvm_version": "0", "napi_build_version": "4", "node_byteorder": "little", "node_code_cache": "yes", "node_debug_lib": "false", "node_enable_d8": "false", "node_install_npm": "true", "node_module_version": 72, "node_no_browser_globals": "false", "node_prefix": "/usr/local", "node_release_urlbase": "https://nodejs.org/download/release/", "node_report": "true", "node_shared": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_target_type": "executable", "node_use_bundled_v8": "true", "node_use_dtrace": "true", "node_use_etw": "false", "node_use_large_pages": "false", "node_use_node_snapshot": "true", "node_use_openssl": "true", "node_use_v8_platform": "true", "node_with_ltcg": "false", "node_without_node_options": "false", "openssl_fips": "", "openssl_is_fips": "false", "shlib_suffix": "72.dylib", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 1, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_siphash": 1, "v8_use_snapshot": 1, "want_separate_host_toolset": 0, "xcode_version": "8.0", "nodedir": "/Users/fernndzaky/.node-gyp/12.7.0", "standalone_static_library": 1, "dry_run": "", "legacy_bundling": "", "save_dev": "", "browser": "", "commit_hooks": "true", "only": "", "viewer": "man", "also": "", "rollback": "true", "sign_git_commit": "", "audit": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "init_author_url": "", "maxsockets": "50", "shell": "/bin/bash", "metrics_registry": "https://registry.npmjs.org/", "parseable": "", "shrinkwrap": "true", "init_license": "ISC", "timing": "", "if_present": "", "cache_max": "Infinity", "init_author_email": "", "sign_git_tag": "", "cert": "", "git_tag_version": "true", "local_address": "", "long": "", "preid": "", "fetch_retries": "2", "noproxy": "", "registry": "https://registry.npmjs.org/", "key": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "logs_max": "10", "prefer_online": "", "cache_lock_retries": "10", "global_style": "", "update_notifier": "true", "audit_level": "low", "heading": "npm", "fetch_retry_mintimeout": "10000", "offline": "", "read_only": "", "searchlimit": "20", "access": "", "json": "", "allow_same_version": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/fernndzaky/.npm-init.js", "userconfig": "/Users/fernndzaky/.npmrc", "cidr": "", "node_version": "12.7.0", "user": "", "save": "true", "auth_type": "legacy", "editor": "vi", "ignore_prepublish": "", "script_shell": "", "tag": "latest", "before": "", "global": "", "progress": "true", "ham_it_up": "", "optional": "true", "searchstaleness": "900", "bin_links": "true", "force": "", "save_prod": "", "searchopts": "", "depth": "Infinity", "node_gyp": "/usr/local/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js", "rebuild_bundle": "true", "sso_poll_frequency": "500", "unicode": "true", "fetch_retry_maxtimeout": "60000", "ca": "", "save_prefix": "^", "scripts_prepend_node_path": "warn-only", "sso_type": "oauth", "strict_ssl": "true", "tag_version_prefix": "v", "save_exact": "true", "dev": "", "fetch_retry_factor": "10", "group": "20", "cache_lock_stale": "60000", "prefer_offline": "", "version": "", "cache_min": "10", "otp": "", "cache": "/Users/fernndzaky/.npm", "searchexclude": "", "color": "true", "package_lock": "true", "package_lock_only": "", "save_optional": "", "user_agent": "npm/6.10.0 node/v12.7.0 darwin x64", "ignore_scripts": "", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "send_metrics": "", "init_version": "1.0.0", "node_options": "", "umask": "0022", "scope": "", "git": "git", "init_author_name": "", "onload_script": "", "tmp": "/var/folders/1q/btmfy1mj02d6f172lgvjdvh40000gn/T", "unsafe_perm": "true", "link": "", "prefix": "/usr/local" } }
[ "fernandhadzaky@hotmail.com" ]
fernandhadzaky@hotmail.com
cbce3ee71741adcf00706a9dc0b0fc7177d127f5
3711172b26851f4e7901ee49c5730f4b20d271c0
/linear_differential/toy_cipher.py
a436e6de2dba87bd39d056579c43352491ca9595
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
mdgaxs/crypto_misc
49ad8a4d2a8b0ae170ea348499dcaa1108848382
f00714cc64a5276d95114deebfd6172742780fd0
refs/heads/master
2022-04-16T12:27:23.727009
2020-04-13T10:40:17
2020-04-13T10:40:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,658
py
P = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15] S = [14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7] Pinv = [P.index(i) for i in xrange(16)] Sinv = [S.index(i) for i in xrange(16)] def split4(x): assert 0 <= x < 2**16 return [x & 0xf, (x >> 4) & 0xf, (x >> 8) & 0xf, (x >> 12) & 0xf] def merge4(x): assert len(x) == 4 assert all([0 <= t < 16 for t in x]) return x[0] + x[1] * 2**4 + x[2] * 2**8 + x[3] * 2**12 def split8(x): assert 0 <= x < 2**16 return [x & 0xff, x >> 8] def merge8(x): assert len(x) == 2 assert all([0 <= t < 256 for t in x]) return x[0] + x[1] * 2**8 def split16_bits(x): assert 0 <= x < 2**16 return map(int, format(x, '016b')[::-1]) def merge16_bits(x): return int(''.join(map(str, x[::-1])), 2) def Sbox(i): return S[i] def Pbox(i): i = split16_bits(i) o = split16_bits(0) for j in xrange(16): o[P[j]] = i[j] return merge16_bits(o) def SboxInv(i): return Sinv[i] def PboxInv(i): i = split16_bits(i) o = split16_bits(0) for j in xrange(16): o[Pinv[j]] = i[j] return merge16_bits(o) class ToyCipher(object): def __init__(s, key, rounds=4): assert 0 <= key < 2**16 s.k = key s.r = rounds def encrypt(s, m): assert 0 <= m < 2**16 for r in xrange(s.r): m = Pbox(merge4(map(Sbox, split4(m)))) ^ s.k return m def decrypt(s, c): assert 0 <= c < 2**16 for r in xrange(s.r): c = merge4(map(SboxInv, split4(PboxInv(c ^ s.k)))) return c def main(): cipher = ToyCipher(0xdead) m = 0x1234 c = cipher.encrypt(m) m2 = cipher.decrypt(c) print hex(c) print m2 == m if __name__ == '__main__': main()
[ "shiho.elliptic@gmail.com" ]
shiho.elliptic@gmail.com
169652375466e1e23d94c2247ca9ee3ab43a37d0
ec6a2406905d7743c4ab7ba0f1213fd0f32acb8b
/conftest.py
f6172bb1afb18641036094d50611e1abb434d4b4
[ "BSD-2-Clause-Views", "BSD-3-Clause" ]
permissive
oii/ogreserver
4277c1da689911fa52e2486213c3c8281370c134
29ca97765fde949c60d33ee0e301f9fc11679eb9
refs/heads/master
2021-06-07T18:07:12.511077
2017-07-05T09:43:28
2017-07-07T10:13:52
96,296,318
0
0
null
null
null
null
UTF-8
Python
false
false
156
py
# Please do not put fixtures into this file - add them to test/conftest.py # This file exists in the project root to help py.test find our main app package
[ "github@mafro.net" ]
github@mafro.net
7dc2feeef36ab07f2529109add4df40295cdace0
da90c21c325a532ad2663b1322f00f32edd5a109
/app/mod_api/controllers.py
5656c6373ec7b59efcfbc229e821989fcc7c1859
[]
no_license
bdh1011/realmapia_server
5d1b7bc6b5450c16d162fae1a85d2ccfccd7916e
80044d3d0e1801ea0a36af9aa59f9ed1abf6dc6d
refs/heads/master
2016-08-11T21:46:34.029609
2015-11-17T19:18:26
2015-11-17T19:18:26
44,907,471
0
0
null
null
null
null
UTF-8
Python
false
false
34,652
py
# -*- coding: utf-8 -*- from flask import current_app,Blueprint,render_template, flash,jsonify, session, url_for, g, request, redirect, make_response, Response, send_file from app import db from app import app from app import redis import hashlib, os, sys, random, re, json, ast from functools import wraps from datetime import date, time, datetime import time as ptime from flask.ext.login import login_user, logout_user, current_user, login_required from sqlalchemy import or_, and_, desc, asc from ..models import User, Follow, User_alert, Like, Comment, Post, Hashtag_to_post, Hashtag,\ Placetag_to_post, Placetag, Usertag_to_post, Group, Group_member, Push, Noti from flask.ext.login import LoginManager, login_user, logout_user, current_user, login_required import decorator from flask_wtf.csrf import CsrfProtect import base64 from werkzeug import secure_filename from gcm import GCM GCM_API_KEY = "AIzaSyDjsPRiKm9o6LqEOGYt5TFR7U6ry22Gvwc" reg_ids = 'gcm_registered device' registered_devices = set() # from forms import LoginForm import sys reload(sys) sys.setdefaultencoding('utf-8') ALLOWED_PHOTO_EXTENSIONS = set(['png','jpg','jpeg','gif']) ALLOWED_MOVIE_EXTENSIONS = set(['avi','mp4','mpec','exo']) api = Blueprint('api', __name__, url_prefix='/api') base_url = 'http://52.192.0.214/api/' def token_required(f): @wraps(f) def decorated_function(*args, **kwargs): print 'token!',request.headers.get('Authorization') try: if request.headers.get('Authorization')[6:] == '1': session['userid'] = 'admin' print 'testing access' pass else: token = request.headers.get('Authorization') print 'token@',token if token is None: return jsonify({'error':'no token headers'}),400 token = token[6:] if app.r.get(token) is None: return jsonify({'error':'token invalid'}),400 print 'valid token' session['userid'] = ast.literal_eval(app.r.get(token))['id'] if request.method == 'POST': print request.json return f(*args, **kwargs) except Exception as e: print e return jsonify({'message':'token error'}),400 return decorated_function #Deferred Request Callbacks def after_this_request(f): if not hasattr(g, 'after_request_callbacks'): g.after_request_callbacks = [] g.after_request_callbacks.append(f) return f @app.after_request def call_after_request_callbacks(response): for callback in getattr(g, 'after_request_callbacks', ()): callback(response) return response @token_required def post_name(): name = request.json.get('name') user = User.query.filter_by(id=session['userid']).first() if not user: return jsonfiy({'message':'user not exist'}),400 if profile_pic is None: return jsonify({'message':'needs name attribute'}),400 user.name = name return jsonify({'result':'success'}) @token_required def post_pw(): pw = request.json.get('pw') user = User.query.filter_by(id=session['userid']).first() if not user: return jsonfiy({'message':'user not exist'}),400 if pw is None: return jsonify({'message':'needs pw attribute'}),400 user.hash_password(pw) token = user.generate_auth_token() return jsonify({'result':{'token':token,'name':user.name,'profile_pic':base_url+'profile_pic/'+user.profile_pic if user.profile_pic is not None else None}}) @token_required def post_profile_pic(): profile_pic = request.json.get('photo') ext = request.json.get('ext') user = User.query.filter_by(id=session['userid']).first() if not user: return jsonfiy({'message':'user not exist'}),400 if profile_pic is None: return jsonify({'message':'needs photo attribute'}),400 print profile_pic if 'http' in profile_pic: user.profile_pic = profile_pic return jsonify({'result':'success'}) else: data = base64.b64decode(profile_pic) filepath = "./app/static/profile_pic/"+str(user.id)+"."+ext #not exist if not os.path.exists(filepath): with open(filepath,"w") as photo_file: photo_file.write(data) file_dir, filename = os.path.split(filepath) user.profile_pic = filename db.session.commit() #test return jsonify({'result':{'profile_pic_path':base_url+'profile_pic/'+filename}}) def login(): if request.method=='POST': login_id = request.json.get('id') login_pw = request.json.get('pw') user = User.query.filter_by(id=login_id).first() if user is None: return jsonify({'message':'user not exist'}),400 else: print user.serialize user.recent_login_timestamp = datetime.now() db.session.commit() try: if not user.verify_password(login_pw): raise ValueError('Could not find correct user!') except: return jsonify({'message':'id or pw is invalid'}),400 token = user.generate_auth_token() print ptime.time() now = int(ptime.time()) expires = now + (current_app.config['ONLINE_LAST_MINUTES'] * 600) + 10 p = app.r.pipeline() if app.r.get(token) is None: p.set(token,{'id':user.id, 'time':int(ptime.time())}) p.expireat(token, expires) p.execute() print 'app.r', ast.literal_eval(app.r.get(token))['id'] #redis.flushdb() return jsonify({'result':{'token':token,'name':user.name,'profile_pic':base_url+'profile_pic/'+user.profile_pic if user.profile_pic is not None else None}}) @token_required def token_login(): if request.method=='GET': login_token = request.headers.get('Authorization')[6:] user = User.query.filter_by(id=session['userid']).first() if user is None: return jsonify({'message':'user not exist'}),400 else: print user.serialize user.recent_login_timestamp = datetime.now() db.session.commit() return jsonify({'result':{'token':login_token,'name':user.name,'profile_pic':base_url+'profile_pic/'+user.profile_pic if user.profile_pic is not None else None}}) def register(): db.session.rollback() register_id = request.json.get('id') register_name = request.json.get('name') register_pw = request.json.get('pw') print 'id :', register_id print 'pw :', register_pw if register_id is None or register_pw is None: return jsonify({'message':'missing arguments'}), 400 if User.query.filter_by(id=register_id).first() is not None: return jsonify({'message':'existing user'}), 400 user = User(id=register_id, name=register_name) user.hash_password(register_pw) db.session.add(user) db.session.commit() g.user = user token = user.generate_auth_token() return jsonify({ 'result': {'token':token,'name':user.name}}), 200 # {'Location': url_for('get_user', id=user.username, _external=True)}) @token_required def logout(): token = request.headers.get('Authorization')[6:] app.r.delete(token) return jsonify({'result':'success'}) #mobile api @token_required def get_user_list(): name = request.args.get('name') if name is not None: user_list = db.session.query(User).filter(User.name.contains(name)).all() else: user_list = User.query.order_by(User.id).all() return jsonify({'result':[ { 'id':user.id, 'name':user.name, 'profile_pic':user.profile_pic, 'recent_login_timestamp':user.recent_login_timestamp, 'register_login_timestamp':user.register_timestamp } for user in user_list]}) #mobile api @token_required def get_user(userid): try: user = User.query.filter_by(id=userid).first() except: return jsonify({'message':'unexpected exception'}),400 return jsonify({'result':user.serialize}) @token_required def about_me(): my_info = User.query.filter_by(id=session['userid']).first() if my_info is None: return jsonify({'message':'login first'}),400 print my_info.serialize return jsonify({'result':my_info.serialize}) @token_required def get_my_posts(): return jsonify({'result':'hi'}) @token_required def get_my_post(post_id): return jsonify({'result':'hi'}) @token_required def get_posts(): map_type=request.args.get('map_type') group_id=request.args.get('group_id') user_id=request.args.get('user_id') lat=request.args.get('lat') lng=request.args.get('lng') level=request.args.get('level') circle=request.args.get('circle_id') if circle: map_type='public' get_posts_query = db.session.query(Post).filter(Post.id==circle) else: get_posts_query = db.session.query(Post).filter(Post.map_type==map_type) if map_type=='group': get_posts_query = get_posts_query.filter(Post.target_group==group_id) if user_id is not None: get_posts_query = get_posts_query.filter(Post.user_id==user_id) if (lat is not None) and (lng is not None) and (level is not None): pass #level calculate posts_list = get_posts_query.all() if posts_list is None: return jsonify({'result':[]}) return jsonify({'result':[ { 'post_id': each_post.id, 'profile_pic': User.query.filter_by(id=each_post.user_id).first().profile_pic if (User.query.filter_by(id=each_post.user_id).first() is not None) else None, 'photo' : base_url+'photo/'+each_post.photo if (each_post.photo is not None) else None, 'video' : base_url+'video/'+each_post.video if (each_post.video is not None) else None, 'username':User.query.filter_by(id=each_post.user_id).first().name, 'timestamp':each_post.register_timestamp.strftime("%Y-%m-%d %H:%M:%S"), 'content':each_post.content, 'lat':each_post.lat, 'lng':each_post.lng, 'like_num':Like.query.filter_by(post_id=each_post.id).count(), 'comment_num':Comment.query.filter_by(post_id=each_post.id).count(), 'placetag':db.session.query(Placetag, Placetag_to_post).filter(Placetag_to_post.post_id==each_post.id).filter(Placetag.id==Placetag_to_post.placetag_id).with_entities(Placetag.content).first()[0], 'hashtag_list':[hashtag.Hashtag.content for hashtag in db.session.query(Hashtag, Hashtag_to_post ).filter(Hashtag_to_post.post_id==each_post.id).filter(Hashtag.id==Hashtag_to_post.hashtag_id).all()], 'usertag_list':[{'userid':user.id,'username':user.name} for user in db.session.query(User, Usertag_to_post ).filter(Usertag_to_post.post_id==each_post.id).filter(User.id==Usertag_to_post.user_id).with_entities(User).all()] } for each_post in posts_list]}) @token_required def get_circle(): center_lat=request.args.get('center_lat') center_lng=request.args.get('center_lng') level=request.args.get('level') map_type=request.args.get('map_type') group_id=request.args.get('group_id') if map_type is None or center_lng is None or center_lng is None or level is None: return jsonify({'message':'parameter miss, needs center_lat, center_lng, level, map_type'}),400 get_circle_query = db.session.query(Post).filter(Post.map_type==map_type) if map_type=='group': get_circle_query = get_circle_query.filter(Post.target_group==group_id) elif map_type=='follow': pass elif map_type=='private': get_circle_query = get_circle_query.filter(Post.user_id==session['userid']) #get_circle_query.filter(Post.lat.between(float(center_lat)-0.1,float(center_lat)+0.1 )) #get_circle_query.filter(Post.lng.between(float(center_lng)-0.1,float(center_lng)+0.1 )) posts_list = get_circle_query.all() print posts_list return jsonify({'result':[ { 'circle_id': each_post.id, 'center_lat':each_post.lat, 'center_lng':each_post.lng, 'post_num':1, 'radius': 30 } for each_post in posts_list]}) @token_required def get_post(post_id): post = Post.query.filter_by(id=post_id).first() if post is None: return jsonify({'message':'wrong post id'}),404 placetag = db.session.query(Placetag).filter(Placetag_to_post.post_id==post_id).filter(Placetag.id==Placetag_to_post.placetag_id).with_entities(Placetag.content).first() if placetag is not None: placetag = placetag[0] hashtag_list = [hashtag.content for hashtag in db.session.query(Hashtag).filter(Hashtag_to_post.post_id==post_id).filter(Hashtag.id==Hashtag_to_post.hashtag_id).all()] usertag_list = [{'userid':user.id,'username':user.name} for user in db.session.query(User).filter(Usertag_to_post.post_id==post_id).filter(User.id==Usertag_to_post.user_id).with_entities(User).all()] photo = base_url+'photo/'+post.photo if (post.photo is not None) else None video = base_url+'video/'+post.video if (post.video is not None) else None return jsonify({'result':{ 'userid':post.user_id, 'photo':photo, 'video':video, 'map_type': post.map_type, 'target_group':post.target_group, 'timestamp':post.register_timestamp.strftime("%Y-%m-%d %H:%M:%S"), 'content':post.content, 'like_num':Like.query.filter_by(post_id=post.id).count(), 'comment_num':Comment.query.filter_by(post_id=post.id).count(), 'lat':post.lat, 'lng':post.lng, 'placetag':placetag, 'hashtag_list':hashtag_list, 'usertag_list':usertag_list}}) @token_required def get_synced_sns(): post_list = db.session.query(Post.sns).filter(Post.user_id==session['userid']).distinct(Post.sns) return jsonify({'result':[post.sns for post in post_list if post.sns is not None]}) @token_required def post_sns_post(): db.session.rollback() print request.json posts = request.json.get("posts") if not posts: return jsonify({'result':'posts key needs'}),400 for post_id, sns_post in posts.iteritems(): sns = sns_post.get("sns") content = sns_post.get("content") lat = sns_post.get("lat") lng = sns_post.get("lng") placetag_content = sns_post.get("placetag") hashtag_list = sns_post.get("hashtag") usertag_list = sns_post.get("usertag") photo = sns_post.get("photo") video = sns_post.get("video") ext = sns_post.get("ext") map_type = sns_post.get("map_type") post = Post(user_id=session['userid'],lat=lat,lng=lng,content=content,map_type=map_type, sns=sns, photo=photo, video=video) db.session.add(post) db.session.commit() #add placetag if placetag_content is None: pass else: placetag = Placetag.query.filter_by(content=placetag_content).first() if placetag is None: placetag = Placetag(content=placetag_content) db.session.add(placetag) db.session.commit() #check if it works without commit placetag_to_post = Placetag_to_post(post_id=post.id,placetag_id=placetag.id) db.session.add(placetag_to_post) db.session.commit() placetag.update_placetaged_num() db.session.commit() #too many commit, how can I shrink it? #add hashtag if hashtag_list is None: pass else: for each_hashtag in hashtag_list: print 'each hashtag',each_hashtag hashtag = Hashtag.query.filter_by(content=each_hashtag).first() print 'hashtag',hashtag if hashtag is None: hashtag = Hashtag(content=each_hashtag) db.session.add(hashtag) db.session.commit() #check if it works without commit hashtag_to_post = Hashtag_to_post(post_id=post.id,hashtag_id=hashtag.id) db.session.add(hashtag_to_post) db.session.commit() hashtag.update_hashtaged_num() db.session.commit() #too many commit, how can I shrink it? return jsonify({'result':{'posts_num':len(posts)}}) @token_required def post_post(): content = request.json.get("content") lat = request.json.get("lat") lng = request.json.get("lng") placetag_content = request.json.get("placetag") hashtag_list = request.json.get("hashtag") usertag_list = request.json.get("usertag") photo = request.json.get("photo") ext = request.json.get("ext") map_type = request.json.get("map_type") print request.json video = request.json.get("video") #post_to = request.json.get("post_to") post = Post(user_id=session['userid'],lat=lat,lng=lng,content=content,map_type=map_type) db.session.add(post) db.session.commit() if photo is not None: data = base64.b64decode(photo) filepath = app.config['PHOTO_UPLOAD_FOLDER']+str(post.id)+"."+ext #not exist if not os.path.exists(filepath): with open(filepath,"w") as photo_file: photo_file.write(data) file_dir, filename = os.path.split(filepath) post.photo = filename db.session.commit() ''' with open(filepath,"r") as photo_file: photo_file.read() mp3_list.append(mp3_encoded)''' if video is not None: data = base64.b64decode(video) filepath = app.config['VIDEO_UPLOAD_FOLDER']+str(post.id)+"."+ext #not exist if not os.path.exists(filepath): with open(filepath,"w") as photo_file: photo_file.write(data) file_dir, filename = os.path.split(filepath) post.video = filename db.session.commit() #add placetag if placetag_content is None: pass else: placetag = Placetag.query.filter_by(content=placetag_content).first() if placetag is None: placetag = Placetag(content=placetag_content) db.session.add(placetag) db.session.commit() #check if it works without commit placetag_to_post = Placetag_to_post(post_id=post.id,placetag_id=placetag.id) db.session.add(placetag_to_post) db.session.commit() placetag.update_placetaged_num() db.session.commit() #too many commit, how can I shrink it? #add hashtag if hashtag_list is None: pass else: for each_hashtag in hashtag_list: print 'each hashtag',each_hashtag hashtag = Hashtag.query.filter_by(content=each_hashtag).first() print 'hashtag',hashtag if hashtag is None: hashtag = Hashtag(content=each_hashtag) db.session.add(hashtag) db.session.commit() #check if it works without commit hashtag_to_post = Hashtag_to_post(post_id=post.id,hashtag_id=hashtag.id) db.session.add(hashtag_to_post) db.session.commit() placetag.update_placetaged_num() db.session.commit() #too many commit, how can I shrink it? #add usertag if usertag_list is None: pass else: for usertag in usertag_list: user = User.query.filter_by(id=usertag).first() if user is None: return jsonify({'message':'wrong usertag'}),400 usertag_to_post = Usertag_to_post(post_id=post.id,user_id=user.id) db.session.add(usertag_to_post) db.session.commit() #too many commit, how can I shrink it? noti_post_taged(session['userid'],post.id,user.id) print Post.query.filter_by(id=post.id).all() return jsonify({'result':{'post_id':post.id}}) def get_profile_pic(filename): try: return send_file(app.config['PROFILE_PIC_DOWNLOAD_FOLDER']+filename ) except Exception as e: return jsonify({'message':'no profile picture'}),404 def get_my_profile_pic(): profile_pic = User.query.filter_by(id=session['userid']).first().profile_pic if profile_pic is not None: return send_file(app.config['PROFILE_PIC_DOWNLOAD_FOLDER']+profile_pic) return jsonify({'message':'no profile picture'}),404 def get_photo(filename): root_dir = os.path.dirname(os.getcwd()) return send_file( app.config['PHOTO_DOWNLOAD_FOLDER']+filename) def get_movie(filename): return send_file(app.config['PHOTO_DOWNLOAD_FOLDER']+filename) @token_required def get_comments(): print 'get comment' post_id = request.args.get('post_id') print 'post id',post_id user_id = request.args.get('user_id') name = request.args.get('name') get_comments_query = [] if post_id is not None: get_comments_query.append(Comment.post_id==post_id) if user_id is not None: get_comments_query.append(Comment.user_id==user_id) if name is not None: get_comments_query.append(User.name.contains(name)) comments_list = db.session.query(Comment).outerjoin(User).filter(and_( *get_comments_query)).order_by(Comment.id).all() return jsonify({'result':[{ 'post_id':comment.post_id, 'user_id':comment.user_id, 'name': User.query.filter_by(id=comment.user_id).first().name, 'profile_pic':User.query.filter_by(id=comment.user_id).first().profile_pic, 'content':comment.content, 'timestamp':comment.register_timestamp.strftime("%Y-%m-%d %H:%M:%S")} for comment in comments_list]}) @token_required def post_comment(): postid = request.json.get('post_id') content = request.json.get('content') post = Post.query.filter_by(id=postid) if post is None: return jsonify({'message':'invalid post id'}),400 comment = Comment(user_id=session['userid'],post_id=postid,content=content) db.session.add(comment) db.session.commit() noti_comment(session['userid'],postid) return jsonify({'result':'success'}) @token_required def get_follow(): from_user_id = request.args.get('from_user_id') to_user_id = request.args.get('to_user_id') if from_user_id is not None: follow_list = Follow.query.filter_by(from_user_id=from_user_id).all() return jsonify({'result': [follow.to_serialize for follow in follow_list]}) elif to_user_id is not None: follow_list = Follow.query.filter_by(to_user_id=to_user_id).all() return jsonify({'result': [follow.from_serialize for follow in follow_list]}) else: return jsonify({'message':'parameter error'}),400 @token_required def post_follow(): to_user_id = request.json.get('to_user_id') if Follow.query.filter_by(from_user_id=session['userid'],to_user_id=to_user_id).first() is not None: return jsonify({'message':'already following'}),400 follow = Follow(from_user_id=session['userid'],to_user_id=to_user_id) db.session.add(follow) db.session.commit() noti_follow(session['userid'],to_user_id) return jsonify({'result':'success'}) @token_required def delete_follow(): to_user_id = request.args.get('to_user_id') follow = Follow.query.filter_by(from_user_id=session['userid'],to_user_id=to_user_id).first() db.session.delete(follow) db.session.commit() return jsonify({'result': 'success'}) @token_required def get_alert(): return jsonify({'result':'hi'}) @token_required def get_like(): user_id = request.args.get('user_id') post_id = request.args.get('post_id') if user_id is not None: like_list = Like.query.filter_by(user_id=user_id).all() if post_id is not None: like_list = Like.query.filter_by(post_id=post_id).all() return jsonify({'result':[ like.serialize for like in like_list ]}) @token_required def get_hashtag(hashtag_query): hashtag_list = db.session.query(Hashtag).filter(Hashtag.content.contains(hashtag_query)).all() return jsonify({'result':[ hashtag.serialize for hashtag in hashtag_list ]}) @token_required def get_placetag(placetag_query): placetag_list = db.session.query(Placetag).filter(Placetag.content.contains(placetag_query)).all() return jsonify({'result':[ placetag.serialize for placetag in placetag_list ]}) @token_required def get_all_hashtag(): hashtag_list = db.session.query(Hashtag).all() return jsonify({'result':[ hashtag.serialize for hashtag in hashtag_list ]}) @token_required def get_all_placetag(): placetag_list = db.session.query(Placetag).all() return jsonify({'result':[ placetag.serialize for placetag in placetag_list ]}) @token_required def post_like(): post_id = request.json.get('post_id') if Like.query.filter_by(user_id=session['userid'], post_id=post_id).first() is not None: return jsonify({'message':'already like it'}) like = Like(user_id=session['userid'], post_id=post_id) db.session.add(like) db.session.commit() noti_like(session['userid'],post_id) return jsonify({'result':'success'}) @token_required def delete_like(): user_id = request.args.get('user_id') post_id = request.args.get('post_id') like = Like.query.filter_by(user_id=user_id,post_id=post_id).first() db.session.delete(like) db.session.commit() return jsonify({'result':'success'}) @token_required def get_groups(): name = request.args.get('name') member = request.args.get('member') # print Group.query.filter_by(name=name).all() get_groups_query = db.session.query(Group).join(Group_member).distinct(name) # print get_groups_query.all() if member is not None: get_groups_query = get_groups_query.filter(Group_member.user_id==member).filter(Group.id==Group_member.group_id) if name is not None: get_groups_query = get_groups_query.filter(Group.id.contains(name)) group_list = get_groups_query.all() print group_list return jsonify({'result':[ {'name':group.id, 'members':[user.user_id for user in Group_member.query.filter_by(group_id=group.id).with_entities(Group_member.user_id).all()], 'privacy':group.privacy, } for group in group_list ]}) @token_required def get_group(group_id): group= db.session.query(Group).join(Group_member).filter(Group.id==group_id).first() if group: return jsonify({'result':{'name':group.id, 'members':[user.user_id for user in Group_member.query.filter_by(group_id=group.name).with_entities(Group_member.user_id).all()], 'privacy':group.privacy, }}) else: return jsonify({'message':'group not exists'}),400 @token_required def post_group(): name = request.json.get('name') if Group.query.filter_by(id=name).first(): return jsonify({'message':'already exists'}),400 members = request.json.get('members') privacy = request.json.get('privacy') if Group.query.filter_by(id=name).first() is not None: return jsonify({'message':'group name already exist'}),400 group = Group(id=name, privacy=privacy) db.session.add(group) member = Group_member(role='manager',user_id=session['userid'],group_id=name) db.session.add(member) for each_member in members: if each_member == session['userid']: continue member = Group_member(user_id=each_member, role='member',group_id=name) db.session.add(member) db.session.commit() db.session.rollback() return jsonify({'result':'success'}) @token_required def invite_group_member(group_id): member_list = request.json.get('members') for each_member in member_list: if Group_member.query.filter_by(group_id=group_id, user_id=each_member) is not None: pass else: group_member = Group_member(group_id=group_id, user_id=each_member) db.session.add(group_member) db.session.commit() return jsonify({'result':'success'}) @token_required def delete_group(): group_id = request.args.get('group_id') member_list = Group_member.query.filter_by(group_id = group_id).all() for each_member in member_list: db.session.delete(each_member) group = Group.query.filter_by(group_id=group_id).first() db.session.delete(group) db.session.commit() return jsonify({'result':'success'}) @token_required def post_reg_id(): reg_id = request.json.get('reg_id') if reg_id: push = Push.query.filter_by(id=reg_id).first() if not push: push = Push(id=reg_id, user_id=session['userid']) db.session.add(push) db.session.commit() return jsonify({'result':'success'}) else: return jsonify({'message':'need reg_id'}),404 @token_required def delete_reg_id(): push = Push.query.filter_by(user_id=session['userid']).first() if push: db.session.delete(push) db.session.commit() return jsonify({'result':'success'}) else: return jsonify({'message':'not registered user'}),400 @token_required def test_push(): msg = request.args.get('msg') return send_push(session['userid'], msg) def send_push(user_id, msg): user = User.query.filter_by(id=user_id).first() if not user: return jsonify({'message':'user not exist'}),400 push_list = Push.query.filter_by(user_id=user_id).all() if push_list is None: return jsonify({'message':'register first'}),400 url = 'https://gcm-http.googleapis.com/gcm/send' if msg: try: gcm = GCM(GCM_API_KEY) data = {'title':'MAPIA','message':msg} ids = [push.id for push in push_list] response = gcm.json_request(registration_ids=ids, data=data) return jsonify({'result':str(response)}) except Exception as e: print e return jsonify({'message':'wrong register id'}),400 else: return jsonify({'message':'msg parameter needs'}),400 def noti_like(user_from, post_id): user_id = Post.query.filter_by(id=post_id).first().user_id input_noti(user_from, 'like', user_id, post_id) def noti_comment(user_from, post_id): user_id = Post.query.filter_by(id=post_id).first().user_id input_noti(user_from, 'comment', user_id, post_id) def noti_follow(user_from, user_to): input_noti(user_from, 'follow', user_to, None) def noti_post_taged(user_from, post_id, user_to): input_noti(user_from, 'tag', user_to, post_id) def input_noti(user_from, noti_type, user_to, post_id): noti = Noti(user_from=user_from, noti_type=noti_type,user_to=user_to, post_id=post_id) db.session.add(noti) db.session.commit() if noti_type == 'like': send_push(user_to, user_from + "님이 회원님의 게시글을 좋아합니다.") elif noti_type == 'comment': send_push(user_to, user_from + "님이 회원님의 글에 댓글을 달았습니다.") elif noti_type == 'follow': send_push(user_to, user_from + "님이 회원님을 Follow 하기 시작했습니다.") elif noti_type == 'tag': send_push(user_to, user_from + "님이 회원님을 게시글에 태그했습니다.") else: print 'noti type error' @token_required def get_noti(): noti_list = Noti.query.filter_by(user_to=session['userid']).all() if not noti_list: return jsonify({'result':[]}) return jsonify({'result':[ {'user_from':noti.user_from, 'user_to':noti.user_to, 'noti_type':noti.noti_type, 'post_id':noti.post_id, 'timestamp':noti.register_timestamp.strftime("%Y-%m-%d %H:%M:%S") } for noti in noti_list] }) @token_required def get_noti_status(): user = User.query.filter_by(id=session['userid']).first() if not user: return jsonify({'message':'user not exists'}),400 return jsonify({'result':user.noti_flag}) @token_required def activate_noti(): user = User.query.filter_by(id=session['userid']).first() if not user: return jsonify({'message':'user not exists'}),400 user.noti_flag = True return jsonify({'result':'success'}) @token_required def deactivate_noti(): user = User.query.filter_by(id=session['userid']).first() if not user: return jsonify({'message':'user not exists'}),400 user.noti_flag = False return jsonify({'result':'success'}) api.add_url_rule('/users/register', 'register', register, methods=['POST']) api.add_url_rule('/users/login', 'login', login, methods=['POST']) api.add_url_rule('/users/login/token', 'token login', token_login, methods=['GET']) api.add_url_rule('/users/logout', 'logout', logout, methods=['GET']) api.add_url_rule('/users', 'get_user_list', get_user_list) api.add_url_rule('/users/<userid>', 'get_user', get_user) api.add_url_rule('/users/me', 'about me', about_me) api.add_url_rule('/users/me/name', 'change name', post_name) api.add_url_rule('/users/me/pw', 'change pw', post_pw) api.add_url_rule('/users/me/profile_pic', 'post profile pic', post_profile_pic, methods=['POST']) api.add_url_rule('/users/me/posts', 'get my posts', get_my_posts) api.add_url_rule('/users/me/posts/<post_id>', 'get my post', get_my_post) api.add_url_rule('/posts', 'get posts', get_posts, methods=['GET']) api.add_url_rule('/posts/<post_id>', 'get post', get_post, methods=['GET']) api.add_url_rule('/posts', 'post posts', post_post, methods=['POST']) api.add_url_rule('/sns/posts', 'post sns posts', post_sns_post, methods=['POST']) api.add_url_rule('/sns/sync', 'get synced sns', get_synced_sns, methods=['GET']) api.add_url_rule('/circle', 'get cicles', get_circle, methods=['GET']) api.add_url_rule('/profile_pic/<filename>','get profile_pic', get_profile_pic, methods=['GET']) api.add_url_rule('/photo/<filename>','get photo', get_photo, methods=['GET']) api.add_url_rule('/movie/<filename>','get movie', get_movie, methods=['GET']) api.add_url_rule('/hashtag/<hashtag_query>','get hashtag', get_hashtag, methods=['GET']) api.add_url_rule('/placetag/<placetag_query>','get placetag', get_placetag, methods=['GET']) api.add_url_rule('/hashtag','get all hashtag', get_all_hashtag, methods=['GET']) api.add_url_rule('/placetag','get all placetag', get_all_placetag, methods=['GET']) api.add_url_rule('/comments', 'get comments', get_comments, methods=['GET']) api.add_url_rule('/comments', 'post comments', post_comment, methods=['POST']) api.add_url_rule('/follow', 'get following', get_follow, methods=['GET']) api.add_url_rule('/follow', 'post following', post_follow, methods=['POST']) api.add_url_rule('/follow', 'quit following', delete_follow, methods=['DELETE']) api.add_url_rule('/alert', 'get alert', get_alert, methods=['GET']) api.add_url_rule('/like', 'get like', get_like, methods=['GET']) api.add_url_rule('/like', 'post like', post_like, methods=['POST']) api.add_url_rule('/like', 'delete like', delete_like, methods=['DELETE']) api.add_url_rule('/groups', 'get groups', get_groups, methods=['GET']) api.add_url_rule('/groups/<group_id>', 'get group', get_group, methods=['GET']) api.add_url_rule('/groups', 'post groups', post_group, methods=['POST']) api.add_url_rule('/groups/<group_id>/members', 'invite group member', invite_group_member, methods=['POST']) api.add_url_rule('/groups/<group_id>', 'delete group', delete_group, methods=['DELETE']) api.add_url_rule('/groups/<group_id>/members', 'invite group member', invite_group_member, methods=['POST']) api.add_url_rule('/groups/<group_id>', 'delete group', delete_group, methods=['DELETE']) api.add_url_rule('/push/reg_id', 'register push id', post_reg_id, methods=['POST']) api.add_url_rule('/push/reg_id', 'delete push id', delete_reg_id, methods=['DELETE']) api.add_url_rule('/push/test', 'get test push', test_push, methods=['GET']) api.add_url_rule('/noti/contents', 'get my noti contents', get_noti, methods=['GET']) api.add_url_rule('/noti/status', 'get status notification', get_noti_status, methods=['GET']) api.add_url_rule('/noti/status/activate', 'activate account notification', activate_noti, methods=['GET']) api.add_url_rule('/noti/status/deactivate', 'deactivate account notification', deactivate_noti, methods=['GET'])
[ "bdh931101@gmail.com" ]
bdh931101@gmail.com
2f1963b7dcab8d3722a0aead506bd0147a04fcdc
0f4ff6fe47803cdf485f64b9abf6053ad02ebcde
/test/common/page.py
e9800f2c67415b1bb1464ce1332c85dac63e0cc8
[]
no_license
wowo665636/dongtest
944a7dd01c362da4ddac8232b343d5343a177858
1cd4856382e39d07712d4c0a45c6de3bb5c431df
refs/heads/master
2021-06-29T17:49:31.124568
2017-09-14T13:07:01
2017-09-14T13:07:01
103,113,922
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
from test.common.browser import Brower class Page(Brower): def __init__(self, page=None, brower_type='firefox'): if page: self.driver = page.driver else: super(Page, self).__init__(brower_type=brower_type) def get_driver(self): return self.driver def find_element(self, *args): return self.driver.find_element(*args) def find_elements(self, *args): return self.driver.find_elements(*args)
[ "392386038@qq.com" ]
392386038@qq.com
9ffb18b539fc4d52d55686384f909bad4853cc27
e7b4114f517a0f8d650e75d59f6c9c958061205a
/examples/dm_response.py
96a9a5869fe0c41f4490b12ad39978d2a7a3b436
[ "MIT" ]
permissive
xezzz/Sentinel
4d7607463441ed94b695b26bf313b874be13f5e3
c0b427c67a9038213b6ed361007189a8c66408ad
refs/heads/master
2023-06-07T01:58:07.648326
2021-07-04T21:49:08
2021-07-04T21:49:08
382,418,906
0
0
null
null
null
null
UTF-8
Python
false
false
344
py
# import the client class ⬆️ from sentinel import SentinelClient # define the classic client ⚙️ client = SentinelClient(token="YOUR_BOT_TOKEN", app_id=123456789).build() @client.slash_command(name="dm", guild_id=123456789, description="🎉 Sends a simple DM to the author") def dm(ctx): ctx.dm("Only you can see this message!")
[ "pschaper18@gmail.com" ]
pschaper18@gmail.com
4072030fa3b51275fc733f742b865cbb2987d105
18da7621287c06dc2fd094073350fddf6ce3be39
/api/serializers.py
93364058a69c4239fbe6cb732b0a8b1092f3d208
[]
no_license
saiyadfaizan/twenty
1486eaad044dce81983b15738353792a2ab2b826
35be3d7f9792d6b8a5e19440caa4365666804f88
refs/heads/master
2023-02-25T16:45:40.270079
2021-01-19T12:31:04
2021-01-19T12:31:04
330,972,009
0
0
null
null
null
null
UTF-8
Python
false
false
1,235
py
from rest_framework import serializers from store.models import * class AdminSerializer(serializers.ModelSerializer): class Meta: model = Admin fields = ('user', 'name', 'email') class CustomerSerializer(serializers.ModelSerializer): class Meta: model = Customer fields = ('user', 'name', 'email') class CategorySerializer(serializers.ModelSerializer): class Meta: model = Category fields = '__all__' class ProductSerializer(serializers.ModelSerializer): class Meta: model = Product fields = '__all__' #fields = ('name', 'category', 'price', 'description', 'digital', 'image') class OrderSerializer(serializers.ModelSerializer): class Meta: model = Order fields = '__all__' #fields = ('customer', 'emailAddress', 'date_ordered', 'complete', 'transaction_id', 'status') class OrderItemSerializer(serializers.ModelSerializer): class Meta: model = Admin fields = ('product', 'order', 'quantity', 'date_added') class ShippingAddressSerializer(serializers.ModelSerializer): class Meta: model = ShippingAddress fields = '__all__'
[ "saliali@bestpeers.com" ]
saliali@bestpeers.com
aa528e237efb5d592e5fa08b8117e3c149b1e032
c1b8e586975804106602a3d13dacd60f9e5b329c
/old/manage.py
4ed1b9d9dc095f342b8ff13f023543865fee1468
[]
no_license
mrweber2/abbwear-hs-app
9a54eb3c2a00e831b625777bdd289b2886dfef2f
a2b08ca48c141c44161d95eacbf65551d201a6be
refs/heads/master
2020-06-10T23:28:34.874743
2019-06-27T02:21:53
2019-06-27T02:21:53
193,789,648
0
0
null
null
null
null
UTF-8
Python
false
false
541
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'abbwearHS.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "matthew.weber@abbvie.com" ]
matthew.weber@abbvie.com