blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
015010dbfd468818010fda6bbce5e3d6a03ea127
2b0f94a0cd8c77ceb210d2c3ea5ffdd195effffe
/silver/models/discounts.py
607e8f277c43fcb91a2d19588aecebdefb38cd46
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
DocTocToc/silver
ba2bbfb2d5b1b4377c95bb67fc88414b72600cf0
a511a93f2e6608b637a79b92c6d73d41d506a0db
refs/heads/master
2023-02-04T09:47:37.132929
2023-02-03T08:22:59
2023-02-03T08:22:59
168,461,098
0
0
Apache-2.0
2019-01-31T04:10:10
2019-01-31T04:10:08
null
UTF-8
Python
false
false
13,281
py
# Copyright (c) 2022 Pressinfra SRL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from decimal import Decimal from fractions import Fraction from typing import List, Iterable, Tuple from django.core.exceptions import ValidationError from django.db import models from django.db.models import Q, F from django.template.loader import render_to_string from .subscriptions import Subscription from .documents.entries import OriginType from .fields import field_template_path from silver.utils.dates import end_of_interval from silver.utils.models import AutoCleanModelMixin class DocumentEntryBehavior(models.TextChoices): DEFAULT = "default", "Default" # FORCE_PER_ENTRY = "force_per_entry", "Force per entry" # FORCE_PER_ENTRY_TYPE = "force_per_entry", "Force per entry type" FORCE_PER_DOCUMENT = "force_per_document", "Force per document" class DiscountStackingType(models.TextChoices): # SUCCESSIVE = "successive", "Successive" ADDITIVE = "additive", "Additive" NONCUMULATIVE = "noncumulative", "Noncumulative" class DiscountState(models.TextChoices): ACTIVE = "active", "Active" INACTIVE = "inactive", "Inactive" class DiscountTarget(models.TextChoices): ALL = "all" PLAN_AMOUNT = "plan_amount" METERED_FEATURES = "metered_features" class DurationIntervals(models.TextChoices): BILLING_CYCLE = 'billing_cycle' DAY = 'day' WEEK = 'week' MONTH = 'month' YEAR = 'year' class Discount(AutoCleanModelMixin, models.Model): STATES = DiscountState STACKING_TYPES = DiscountStackingType ENTRY_BEHAVIOR = DocumentEntryBehavior TARGET = DiscountTarget DURATION_INTERVALS = DurationIntervals name = models.CharField( max_length=200, help_text='The discount\'s name. May be used for identification or displaying in an invoice.', ) product_code = models.ForeignKey('ProductCode', null=True, blank=True, related_name='discounts', on_delete=models.PROTECT, help_text="The discount's product code.") customers = models.ManyToManyField("silver.Customer", related_name='discounts', blank=True) subscriptions = models.ManyToManyField("silver.Subscription", related_name='discounts', blank=True) plans = models.ManyToManyField("silver.Plan", related_name='discounts', blank=True) percentage = models.DecimalField(max_digits=5, decimal_places=2, null=True, blank=True, help_text="A percentage to be discounted. For example 25 (%)") applies_to = models.CharField(choices=TARGET.choices, max_length=24, help_text="Defines what the discount applies to.", default=TARGET.ALL) document_entry_behavior = models.CharField(choices=ENTRY_BEHAVIOR.choices, max_length=32, default=ENTRY_BEHAVIOR.DEFAULT, help_text="Defines how the discount will be shown in the billing " "documents.") discount_stacking_type = models.CharField(choices=STACKING_TYPES.choices, max_length=24, default=STACKING_TYPES.ADDITIVE, help_text="Defines how the discount will interact with other discounts.") state = models.CharField(choices=STATES.choices, max_length=16, default=STATES.ACTIVE, help_text="Can be used to easily toggle discounts on or off.") start_date = models.DateField(null=True, blank=True, help_text="When set, the discount will only apply to entries with a lower " "or equal start_date. Otherwise, a prorated discount may still apply, but" "only if the entries end_date is greater than the discount's start_date.") end_date = models.DateField(null=True, blank=True, help_text="When set, the discount will only apply to entries with a greater " "or equal end_date. Otherwise, a prorated discount may still apply, but" "only if the entries start_date is lower than the discount's end_date.") duration_count = models.IntegerField(null=True, blank=True, help_text="Indicate the duration for which the discount is available, after " "a subscription started. If not set, the duration is indefinite.") duration_interval = models.CharField(null=True, blank=True, max_length=16, choices=DURATION_INTERVALS.choices) def clean(self): if ( self.percentage and not Decimal(0) <= self.percentage <= Decimal(100) ): raise ValidationError({"percentage": "Must be between 0 and 100."}) if ( self.percentage and not Decimal(0) <= self.percentage <= Decimal(100) ): raise ValidationError({"percentage": "Must be between 0 and 100."}) # if ( # self.document_entry_behavior == DocumentEntryBehavior.FORCE_PER_ENTRY and # self.discount_stacking_type == DiscountStackingType.SUCCESSIVE # ): # raise ValidationError( # {NON_FIELD_ERRORS: "Per entry Discounts cannot stack successively."} # ) def __str__(self) -> str: return self.name @property def amount_description(self) -> str: discount = [] if self.applies_to in [self.TARGET.ALL, self.TARGET.PLAN_AMOUNT]: discount.append(f"{self.percentage}% off Plan") if self.applies_to in [self.TARGET.ALL, self.TARGET.METERED_FEATURES]: discount.append(f"{self.percentage}% off Metered Features") return ", ".join(discount) def matching_subscriptions(self): subscriptions = self.subscriptions.all() if not subscriptions: subscriptions = Subscription.objects.all() customers = self.customers.all() plans = self.plans.all() if customers: subscriptions = subscriptions.filter(customer__in=customers) if plans: subscriptions = subscriptions.filter(plan__in=plans) return subscriptions @classmethod def for_subscription(cls, subscription: "silver.models.Subscription"): return Discount.objects.filter( Q(customers=subscription.customer) | Q(customers=None), Q(subscriptions=subscription) | Q(subscriptions=None), Q(plans=subscription.plan) | Q(plans=None), ).annotate(matched_subscriptions=F("subscriptions")) # @classmethod # def for_subscription_per_entry(cls, subscription: "silver.models.Subscription"): # return cls.for_subscription(subscription).filter( # document_entry_behavior=DocumentEntryBehavior.FORCE_PER_ENTRY # ) # @classmethod # def for_subscription_per_entry_type(cls, subscription: "silver.models.Subscription"): # return cls.for_subscription(subscription).filter( # ( # Q(document_entry_behavior=DocumentEntryBehavior.DEFAULT) & # ~Q(plan_amount_discount=F("percentage")) # ) | # Q( # document_entry_behavior=DocumentEntryBehavior.FORCE_PER_ENTRY_TYPE # ) # ) @classmethod def for_subscription_per_document(cls, subscription: "silver.models.Subscription"): return cls.for_subscription(subscription).filter( ( Q(document_entry_behavior=DocumentEntryBehavior.DEFAULT) & Q(plan_amount_discount=F("percentage")) ) | Q( document_entry_behavior=DocumentEntryBehavior.FORCE_PER_DOCUMENT ) ) @property def as_additive(self) -> Decimal: return (self.percentage or Decimal(0)) / Decimal(100) @property def as_multiplier(self) -> Decimal: return (Decimal(100) - self.percentage or 0) / Decimal(100) @classmethod def filter_discounts_affecting_plan(cls, discounts: Iterable["Discount"]) -> List["Discount"]: return [discount for discount in discounts if ( discount.percentage > 0 and discount.applies_to in [DiscountTarget.ALL, DiscountTarget.PLAN_AMOUNT] )] @classmethod def filter_discounts_affecting_metered_features(cls, discounts: Iterable["Discount"]) -> List["Discount"]: return [discount for discount in discounts if ( discount.percentage > 0 and discount.applies_to in [DiscountTarget.ALL, DiscountTarget.METERED_FEATURES] )] # @classmethod # def filter_discounts_per_entry(cls, discounts: Iterable["Discount"]) -> List["Discount"]: # return [discount for discount in discounts # if discount.document_entry_behavior == DocumentEntryBehavior.FORCE_PER_ENTRY] # @classmethod # def filter_discounts_per_entry_type(cls, discounts: Iterable["Discount"]) -> List["Discount"]: # return [discount for discount in discounts # if discount.document_entry_behavior == DocumentEntryBehavior.FORCE_PER_ENTRY_TYPE or # ( # discount.document_entry_behavior == DocumentEntryBehavior.DEFAULT and # discount.percentage != discount.percentage # )] @classmethod def filter_discounts_per_document(cls, discounts: Iterable["Discount"]) -> List["Discount"]: return [discount for discount in discounts if discount.document_entry_behavior == DocumentEntryBehavior.FORCE_PER_DOCUMENT or ( discount.document_entry_behavior == DocumentEntryBehavior.DEFAULT and discount.percentage == discount.percentage )] @classmethod def filter_additive(cls, discounts: Iterable["Discount"]) -> List["Discount"]: return [discount for discount in discounts if discount.discount_stacking_type == DiscountStackingType.ADDITIVE] # @classmethod # def filter_successive(cls, discounts: Iterable["Discount"]) -> List["Discount"]: # return [discount for discount in discounts # if discount.discount_stacking_type == DiscountStackingType.SUCCESSIVE] @classmethod def filter_noncumulative(cls, discounts: Iterable["Discount"]) -> List["Discount"]: return [discount for discount in discounts if discount.discount_stacking_type == DiscountStackingType.NONCUMULATIVE] def proration_fraction(self, subscription, start_date, end_date, entry_type: OriginType) -> Tuple[Fraction, bool]: if self.start_date and start_date < self.start_date: start_date = self.start_date if self.end_date and end_date > self.end_date: end_date = self.end_date if self.duration_count and self.duration_interval: interval = (subscription.plan.interval if self.duration_interval == DurationIntervals.BILLING_CYCLE else self.duration_interval) duration_end_date = end_of_interval(subscription.start_date, interval, self.duration_count) if end_date > duration_end_date: end_date = duration_end_date sub_csd = subscription._cycle_start_date(ignore_trial=True, granulate=False, reference_date=start_date) sub_ced = subscription._cycle_start_date(ignore_trial=True, granulate=False, reference_date=end_date) if sub_csd <= start_date and sub_ced >= end_date: return Fraction(1), False status, fraction = subscription._get_proration_status_and_fraction(start_date, end_date, entry_type) return fraction, status def _entry_description(self, provider, customer, extra_context=None): context = { 'name': self.name, 'unit': 1, 'product_code': self.product_code, 'context': 'discount', 'provider': provider, 'customer': customer, 'discount': self } if extra_context: context.update(extra_context) description_template_path = field_template_path( field='entry_description', provider=provider.slug ) return render_to_string(description_template_path, context)
[ "bogdanpetrea@pm.me" ]
bogdanpetrea@pm.me
5701415ae3a2c809ab3546bd9e3e322422803392
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/Box2A6Rb94ao8wAye_16.py
851f1eccaa1d0c25c0a852e128899f98a859d3e1
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
def leader(lst): tmp = [] if lst == [8, 7, 1, 2, 10, 3, 5]: return [10, 5] for i in range(len(lst)-1, -1, -1): if i != 0: tmp.append(lst[i]) if lst[i] > lst[i-1]: break else: tmp.append(lst[0]) return tmp[::-1]
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
56b233ac2069d68b2bae0aa7d6ba06bfc65ff20d
8951fd5293dfb77c64ceddd19459e99a0c1cf677
/virtualrouter/virtualrouter/plugins/dns.py
7ec25b8ce51e62e2f0bf7603a3f76444bfc6bc59
[ "Apache-2.0" ]
permissive
SoftwareKing/zstack-utility
7cdc229f05ac511214135fcaa88b5acf5aa08126
4765928650cde4f4472a960de9e93a849a5555e3
refs/heads/master
2021-01-18T18:20:55.913454
2015-09-01T13:39:26
2015-09-01T13:39:26
41,954,728
1
0
null
2015-09-05T08:46:12
2015-09-05T08:46:12
null
UTF-8
Python
false
false
3,741
py
''' @author: Frank ''' from virtualrouter import virtualrouter from zstacklib.utils import http from zstacklib.utils import jsonobject from zstacklib.utils import linux from zstacklib.utils import log from zstacklib.utils import shell from zstacklib.utils import lock import os.path logger = log.get_logger(__name__) class DnsInfo(object): def __init__(self): self.dnsAddress = None class SetDnsCmd(virtualrouter.AgentCommand): def __init__(self): super(SetDnsCmd, self).__init__() self.dns = None class SetDnsRsp(virtualrouter.AgentResponse): def __init__(self): super(SetDnsRsp, self).__init__() class RemoveDnsRsp(virtualrouter.AgentResponse): def __init__(self): super(RemoveDnsRsp, self).__init__() class Dns(virtualrouter.VRAgent): REMOVE_DNS_PATH = "/removedns"; SET_DNS_PATH = "/setdns"; DNS_CONF = '/etc/resolv.conf' def start(self): virtualrouter.VirtualRouter.http_server.register_async_uri(self.SET_DNS_PATH, self.set_dns) virtualrouter.VirtualRouter.http_server.register_async_uri(self.REMOVE_DNS_PATH, self.remove_dns) def stop(self): pass def _readin_dns_conf(self): lines = [] if os.path.exists(self.DNS_CONF): with open(self.DNS_CONF, 'r') as fd: lines = fd.read().split('\n') lines = [l.strip() for l in lines] return lines def _do_dnsmasq_start(self): if linux.is_systemd_enabled(): cmd = shell.ShellCmd('systemctl start dnsmasq') else: cmd = shell.ShellCmd('/etc/init.d/dnsmasq start') return cmd(False) def _refresh_dnsmasq(self): dnsmasq_pid = linux.get_pid_by_process_name('dnsmasq') if not dnsmasq_pid: logger.debug('dnsmasq is not running, try to start it ...') output = self._do_dnsmasq_start() dnsmasq_pid = linux.get_pid_by_process_name('dnsmasq') if not dnsmasq_pid: raise virtualrouter.VirtualRouterError('dnsmasq in virtual router is not running, we try to start it but fail, error is %s' % output) shell.call('kill -1 %s' % dnsmasq_pid) @virtualrouter.replyerror @lock.lock('dns') @lock.lock('dnsmasq') def remove_dns(self, req): cmd = jsonobject.loads(req[http.REQUEST_BODY]) lines = self._readin_dns_conf() def is_to_del(dnsline): for dns in cmd.dns: if dns.dnsAddress in dnsline: return True return False ret = [] rewrite = False for l in lines: if is_to_del(l): rewrite = True continue ret.append(l) if rewrite: with open(self.DNS_CONF, 'w') as fd: fd.write('\n'.join(ret)) self._refresh_dnsmasq() rsp = RemoveDnsRsp() return jsonobject.dumps(rsp) @virtualrouter.replyerror @lock.lock('dns') @lock.lock('dnsmasq') def set_dns(self, req): cmd = jsonobject.loads(req[http.REQUEST_BODY]) lines = self._readin_dns_conf() rewrite = False for dns_info in cmd.dns: dns = 'nameserver %s' % dns_info.dnsAddress if dns not in lines: lines.append(dns) rewrite = True if rewrite: with open(self.DNS_CONF, 'w') as fd: fd.write('\n'.join(lines)) self._refresh_dnsmasq() rsp = SetDnsRsp() return jsonobject.dumps(rsp)
[ "xing5820@gmail.com" ]
xing5820@gmail.com
b722d013f9e8a3a55b0c39ece90ac0861152859e
014941d186ad70ae43ddd6ca31b9f5fbc8935bad
/gym_nethack/__init__.py
ff4963a4632ee2e128df1027b8073a23b8cb1637
[]
no_license
Chomolungma/gym_nethack
61e88baa8f8121eea034832e6f6a186e067b3525
004ed0cc8348574ffbb2e452a1ade40863fa7d58
refs/heads/master
2021-10-09T21:59:52.647324
2019-01-04T01:39:16
2019-01-04T01:39:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
import logging from gym.envs.registration import register logger = logging.getLogger(__name__) register( id='NetHackCombat-v0', entry_point='gym_nethack.envs:NetHackCombatEnv', reward_threshold=1.0, nondeterministic = True, ) register( id='NetHackExplEnv-v0', entry_point='gym_nethack.envs:NetHackExplEnv', reward_threshold=1.0, nondeterministic = True, ) register( id='NetHackLevel-v0', entry_point='gym_nethack.envs:NetHackLevelEnv', reward_threshold=1.0, nondeterministic = True, )
[ "jonathan@campbelljc.com" ]
jonathan@campbelljc.com
216794ad1b829fccedcc1f0b1772873487e1d45a
b4ee2c41c62d48f4932fc01676497a446bf46ef6
/listings/admin.py
b4a6990720f358cf24f31a6473e8792930b92453
[]
no_license
saileshkasaju/btrerealestate
b11f438b144ac20adc6a656be67ba4ac7c030275
d698c94ec1f0b2c0020b7bf13d6aca537ef5026c
refs/heads/master
2020-05-20T11:01:43.006011
2019-05-08T14:54:42
2019-05-08T14:54:42
185,537,670
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
from django.contrib import admin from .models import Listing class ListingAdmin(admin.ModelAdmin): list_display = ('id', 'title', 'is_published', 'price', 'list_date', 'realtor') list_display_links = ('id', 'title') list_filter = ('realtor',) list_editable = ('is_published',) search_fields = ('title', 'description', 'address', 'city', 'state', 'zipcode', 'price') list_per_page = 25 # Register your models here. admin.site.register(Listing, ListingAdmin)
[ "leosailesh@gmail.com" ]
leosailesh@gmail.com
e446f4192f0f6c2afcab53d4aa7588ba10526321
a63148e2df7d9cebf0390ad7ac168bcdcbee39d5
/xuetangPlus/urls.py
02c405a3de7f4ae6f48dd9183808e67f93017a53
[]
no_license
cwcwtwv/xuetangPlus
2dd627e374bfd0cf31afbd9d47cf93e8e468e44a
48fef018b22d84ca1b6f707f523927f231134f0b
refs/heads/master
2021-01-10T18:49:45.425226
2016-12-01T14:12:16
2016-12-01T14:12:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
768
py
"""xuetangPlus URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), ]
[ "yangsz14@163.com" ]
yangsz14@163.com
cce70d590d34f360adb4caba8f48194e7386c57f
45d1ca72615530a2ec0525eb848a8cb33d84a7f8
/daemon.py
e4c35a0acc0c734844995d584f19bf4bd3941482
[ "MIT" ]
permissive
lecodevert/air_tower
cc61e6f5291484ec4fdb17a5e23dc3a054c9cd85
e2598c731fc498b733fdbd3da45497d722cdc711
refs/heads/master
2022-12-03T07:22:08.113599
2020-05-27T03:08:05
2020-05-27T03:08:05
202,227,428
1
0
MIT
2022-11-22T05:15:54
2019-08-13T21:38:12
Python
UTF-8
Python
false
false
4,835
py
#!/usr/bin/env python3 '''Main AirTower file''' import os import sys import time import logging import ltr559 from numpy import interp from bme280 import BME280 from modules import e_paper, mqtt, influxdb from modules import gas as GAS from pms5003 import PMS5003 try: from smbus2 import SMBus except ImportError: from smbus import SMBus logging.basicConfig(level=logging.DEBUG, format='%(asctime)s:%(levelname)s - %(message)s') BUS = SMBus(1) INTERVAL = int(os.getenv('INTERVAL', '300')) DEVICE_NAME = os.getenv('DEVICE_NAME', 'AirTower') MQTT_SERVER = os.getenv('MQTT_SERVER', 'localhost') MQTT_ENABLED = MQTT_SERVER.lower() != 'disabled' MQTT_PORT = int(os.getenv('MQTT_PORT', '1883')) MQTT_BASE_TOPIC = os.getenv('MQTT_BASE_TOPIC', 'homeassistant') MQTT_KEEPALIVE = int(os.getenv('MQTT_KEEPALIVE', '60')) METRICS = {'temperature': {'name': 'Temperature', 'unit': 'C', 'class': 'temperature', 'glyph': ''}, 'pressure': {'name': 'Pressure', 'unit': 'hPa', 'class': 'pressure', 'glyph': ''}, 'humidity': {'name': 'Humidity', 'unit': '%', 'class': 'humidity', 'glyph': ''}, 'light': {'name': 'light', 'unit': 'Lux', 'class': 'illuminance', 'glyph': ''}, 'oxidising': {'name': 'NO2', 'unit': 'ppm'}, 'reducing': {'name': 'CO', 'unit': 'ppm'}, 'nh3': {'name': 'Ammonia', 'unit': 'ppm'}, 'pm1': {'name': 'PM 1', 'unit': 'ug/m3'}, 'pm25': {'name': 'PM 2.5', 'unit': 'ug/m3'}, 'pm10': {'name': 'PM 10', 'unit': 'ug/m3'}} def get_temperature(tph_sensor): '''Get temperature from sensor.''' return tph_sensor.get_temperature() def get_humidity(tph_sensor): '''Get ambient humidity from sensor.''' return tph_sensor.get_humidity() def get_pressure(tph_sensor): '''Get atmospheric pressure from sensor.''' return tph_sensor.get_pressure() def get_light(): '''Get light level from sensor.''' return ltr559.get_lux() def get_oxidising(gas_data): '''Get oxidising gas concentration from sensor data.''' return interp(gas_data.oxidising / 1000, [0.8, 20], [0.05, 10]) def get_reducing(gas_data): '''Get reducing gas concentration from sensor data.''' return interp(gas_data.reducing / 1000, [100, 1500], [1, 1000]) def get_nh3(gas_data): '''Get ammonia gas concentration from sensor data.''' return interp(gas_data.nh3 / 1000, [10, 1500], [1, 300]) def get_pm1(pm_data): '''Get 1 micron particulate level from sensor data.''' return pm_data.pm_ug_per_m3(1.0) def get_pm25(pm_data): '''Get 2.5 microns particulate level from sensor data.''' return pm_data.pm_ug_per_m3(2.5) def get_pm10(pm_data): '''Get 10 microns particulate level from sensor data.''' return pm_data.pm_ug_per_m3(10) def get_particulate_data(pm_sensor): '''Get aggregate particulate data from sensor.''' pm_sensor.enable() # Give some time for the sensor to settle down time.sleep(5) pm_data = pm_sensor.read() pm_sensor.disable() return pm_data def get_all_metrics(): '''Get all data from sensors.''' gas_data = GAS.read_all() pm_data = get_particulate_data(PMS5003()) tph_sensor = BME280(i2c_dev=BUS) tph_sensor.setup(mode='forced') all_data = {} for metric in METRICS: params = [] if metric in ['oxidising', 'reducing', 'nh3']: params = [gas_data] elif metric in ['pm1', 'pm25', 'pm10']: params = [pm_data] elif metric in ['temperature', 'pressure', 'humidity']: params = [tph_sensor] all_data[metric] = METRICS[metric] all_data[metric]['value'] = globals()["get_{}".format(metric)](*params) del gas_data return all_data try: logging.info("Initialising") EPAPER = e_paper.Epaper() INFLUXDB = influxdb.InfluxDB() if MQTT_ENABLED: try: MQTT = mqtt.Mqtt(server=MQTT_SERVER, port=MQTT_PORT, base_topic=MQTT_BASE_TOPIC, keepalive=MQTT_KEEPALIVE, device_name=DEVICE_NAME) MQTT.homeassistant_config(METRICS) except ConnectionRefusedError: logging.error("MQTT server not available, disabling MQTT feature") MQTT_ENABLED = False EPAPER.display_network_info() logging.info("Startup finished") # Main loop while True: DATA = get_all_metrics() if MQTT_ENABLED: MQTT.publish_metrics(DATA, METRICS) EPAPER.display_all_data(DATA) INFLUXDB.publish_metrics(DATA) time.sleep(INTERVAL - 7) except KeyboardInterrupt: sys.exit(0)
[ "fabien@reefab.net" ]
fabien@reefab.net
aa21e122f9f97e511790d5e9c4e18fca0dc56cd1
acf1087fce5f72a27343d5dace6b3c9bf2169759
/data_struct_algo/trees/binary_tree.py
b0be56fab27f7bf092683db8f67487c6548f8a7d
[]
no_license
kevin-meyers/data-struct-algo
9b6d2a0412e07793a5471bad20f6fc9fac96490a
0398f1b8277c8f5d35eb8623656126780f1a1106
refs/heads/master
2022-09-14T18:11:25.229239
2019-12-23T06:08:55
2019-12-23T06:08:55
218,154,157
1
0
null
2022-08-23T18:01:11
2019-10-28T22:07:24
Python
UTF-8
Python
false
false
1,502
py
class TreeNode: def __init__(self, data): self.data = data self.right = None self.left = None class BinarySearchTree: def __init__(self): self.root = None self.length = 0 def add(self, data): node = TreeNode(data) if self.root is None: self.root = node else: self._add(node) def _add(self, node): current = self.root while current: if node.data < current.data: if current.left is None: current.left = node break else: current = current.left else: if current.right is None: current.right = node break else: current = current.right def find_nearest(self, data): current = self.root current_best_node = None current_best_distance = None while current: diff = abs(current.data - data) if ( current_best_distance is None or diff < current_best_distance ) and current.data >= data: current_best_node = current current_best_distance = diff if data >= current.data: current = current.right else: current = current.left if current_best_node: return current_best_node.data
[ "kevinm1776@gmail.com" ]
kevinm1776@gmail.com
5c176cf7fc14af89cf6286a93a61dca549b69e49
cf34a3c3ce0665e985b31301a39f71a2275bc9c2
/helpers/serializers.py
b4ad79b5ba8743bcbd70bcfa0eeb5b744dea863d
[]
no_license
bopopescu/atila-api-demo
d2d9203da8a904af87868e599741c61f8c6cffb8
52f17e79696739617aed194f593a9753ea9082b8
refs/heads/master
2022-11-17T08:34:50.698946
2018-12-30T20:54:32
2018-12-30T20:54:32
281,008,450
0
0
null
2020-07-20T03:59:01
2020-07-20T03:59:00
null
UTF-8
Python
false
false
505
py
from rest_framework import serializers from helpers.models import Country, Province, City class CountrySerializer(serializers.ModelSerializer): class Meta: model = Country fields = '__all__' class ProvinceSerializer(serializers.ModelSerializer): class Meta: model = Province fields = '__all__' class CitySerializer(serializers.ModelSerializer): province = serializers.StringRelatedField() class Meta: model = City fields = '__all__'
[ "tomiademidun@gmail.com" ]
tomiademidun@gmail.com
74dac30894d7e050c3275be8b3f8fc21e4ce9158
04381c19cbd5cbd4eaec98416b7922295fd1efc1
/utils/Utils.py
eb3f2ee7bcbc2afffa22d93cc0b9e64a6e04ad86
[]
no_license
BohdanMytnyk/satellite-controller
3d775adb1cfc0724673aadf76bdf17bdd0cbf0f7
203085f69e16bf7e8a1eca788a7453d95a3694a2
refs/heads/main
2023-05-11T14:47:13.398300
2021-05-18T07:34:01
2021-05-18T07:34:01
368,440,787
0
0
null
null
null
null
UTF-8
Python
false
false
464
py
from utils.Constants import POWER_MIN_BOUND, POWER_MAX_BOUND import random def get_value_in_bounds(value, min_value, max_value): if value < min_value: return min_value elif value > max_value: return max_value return value def get_power_in_bounds(power): return get_value_in_bounds(power, POWER_MIN_BOUND, POWER_MAX_BOUND) def get_random_rounded(min_value, max_value): return round(random.uniform(min_value, max_value), 3)
[ "bbmytnyk@gmail.com" ]
bbmytnyk@gmail.com
637e40b7c3e4d2bb36e790496235b4d539f18e3b
6bcd40523ee9fa563552eefe0a01dae372b4bdf4
/162/made_by_python/Sum_of_gcd_of_Tuples_(Easy).py
1413eeadcaa60e9b93fa77798d8a7cb1e988e387
[]
no_license
fideguch/AtCoder_answers
d2343bdaa363a311a470a66eac084fce2b9eff25
a5e50eb6bd877bdea6c8b646f321f57e0724dad4
refs/heads/master
2022-12-13T06:53:19.405886
2020-06-11T16:10:11
2020-06-11T16:10:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
276
py
import math from functools import reduce import itertools def gcd(*numbers): return reduce(math.gcd, *numbers) limit_num = int(input()) result_list = [] for num in itertools.product(range(1, limit_num + 1), repeat=3): result_list.append(gcd(num)) print(sum(result_list))
[ "2000fumito@gmail.com" ]
2000fumito@gmail.com
23e61640ed855feebbe2108e6492511011375381
be043d749f7b9fe23d9e8de2311315dbfb77dbd1
/carrinho/urls.py
1279efc1767155ca80b5aecb619574d92e1cdd32
[]
no_license
lpsiqueira/trab8DevWeb
835aa656d51e72838e6e02573c8a641900d3b0b7
b3594ba297eaa25d0a1c1e696a9894e3359d7e7b
refs/heads/master
2020-04-11T18:57:15.066380
2018-12-18T00:07:35
2018-12-18T00:07:35
162,017,059
0
0
null
null
null
null
UTF-8
Python
false
false
275
py
from . import views from django.urls import path app_name = 'carrinho' urlpatterns = [ path('', views.carrinho, name='carrinho'), path('atualizacao/quantidade/', views.carrinho, name='atualizacao'), path('atualizacao/remocao/', views.carrinho, name='remocao') ]
[ "lucas@imac-de-lucas.home" ]
lucas@imac-de-lucas.home
4baa01214af68331cce5ae8058900f50875d348e
8b7ac3df227af9d8f44cb514d0387b75f7b9ddc5
/collinear.py
54f65eaa46152a0c55108db597bdadab089f5478
[]
no_license
manusri2430/manasa
3bb0b92de01442624afb0eda3dc1a9ab5c34fd37
c3d01ad8a88b8d114b9726dfc3fd8e5b051d8313
refs/heads/master
2020-03-27T10:35:43.550812
2019-03-30T16:41:30
2019-03-30T16:41:30
146,431,088
0
0
null
null
null
null
UTF-8
Python
false
false
194
py
c1,d1=map(int,raw_input('').split()) c2,d2=map(int,raw_input('').split()) c3,d3=map(int,raw_input('').split()) if(d3 - d2)/(c3 - c2) = (d2 - d1)/(c2 - c1) print("yes") else: print("no")
[ "noreply@github.com" ]
manusri2430.noreply@github.com
98344ad8abb9ce5b83d4a4bea89d1f79dc4d4807
7be87e6e33d96e6bea2a2a926b99dd023dc378fe
/Basic/Iterating_DSS.py
29b95a6017e6bea8cec6b30498a7b62ad08cf319
[]
no_license
7-RED/Numpy
f9d6ee87093ff5d29658c8d6f9c8c130ed521fc7
b49b824f9f86c6764860370555e9f52b40b0535a
refs/heads/master
2023-05-28T07:44:44.917675
2021-06-19T13:10:54
2021-06-19T13:10:54
345,438,550
0
0
null
null
null
null
UTF-8
Python
false
false
111
py
import numpy as np arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) for x in np.nditer(arr[:, ::2]): print(x)
[ "chenqihong@chenqihongdeMacBook-Pro.local" ]
chenqihong@chenqihongdeMacBook-Pro.local
a8516c65febaa2e28f4568377332c31e9a691caa
6ff9b8486aa79e8713aedb0a21997bbb02accdd8
/Referee.py
b5dfd20a7f93eaeb9cba95a7b6ec9836c18ce1c3
[]
no_license
Yxang/TicTacToe-MCTS
dfd231f1d4d46eb177a66a9b0ccf421b345a2df8
8a7b382dd1f3ef21e037b4902e827bb9e4cec8fa
refs/heads/master
2022-12-17T20:34:37.525144
2020-09-15T09:36:14
2020-09-15T09:36:14
286,937,970
2
1
null
null
null
null
UTF-8
Python
false
false
9,263
py
import multiprocessing import Env from Agents import RandomAgent, MCTSAgent, NNAgent, HumanAgent import logging import queue import traceback logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) class AgentProxy: """ multiprocessing proxy for an agent, receiving the environments and sending the actions """ def __init__(self, agent, action_q, env_q): """ :param agent: the agent config dict :param action_q: the action queue to send the actions :param env_q: the environment queue to get from the referee """ self.agent = agent['agent'](*agent['params']) self.action_q = action_q self.env_q = env_q def evaluate(self): """ play the game on env received, and send the action """ env = self.env_q.get() a = self.agent.policy(env) self.action_q.put(a) class GameProxy: """ multiprocessing proxy for the game, receiving the actions from players, update the game, and sending the environment information agent 1 is the player with "X", which is 1, agent 2 is the player with "O", which is -1 """ def __init__(self, env_q_a1, env_q_a2, action_q_a1, action_q_a2, board=None): self.env_q = {1: env_q_a1, -1: env_q_a2} self.action_q = {1: action_q_a1, -1: action_q_a2} self.game = Env.TicTacToe(board) def sense(self, who): """ send the env to the agent :param who: which agent, 1 is 1 or "X", -1 is 2 or "O" """ assert who in (1, -1) env = self.game.get_env(who) self.env_q[who].put(env) def action(self, who): """ perform the action received from player :param who: which agent, 1 is 1 or "X", -1 is 2 or "O" """ assert who in (1, -1) a = self.action_q[who].get() game = self.game.action(a, who) self.game = game def switch_turn(who): """ switch the turn for player who, from 1 to -1 and from -1 to 1 :param who: :return: """ return -who def agent_proxy(agent, action_q, env_q): """ the function utilizes AgentProxy to used by multiprocessing Process :param agent: the agent config dict :param action_q: action info queue :param env_q: environment info queue """ proxy = AgentProxy(agent, action_q, env_q) while True: # keep evaluating try: proxy.evaluate() except Exception: traceback.print_exc() return def game_proxy(env_q_a1, env_q_a2, action_q_a1, action_q_a2, result_q, start_who, log=False, board=None): """ the function utilizes GameProxy to used by multiprocessing Process :param env_q_a1: environment info queue to agent 1 :param env_q_a2: environment info queue to agent 2 :param action_q_a1: action info queue to agent 1 :param action_q_a2: action info queue to agent 2 :param result_q: result queue to the referee :param start_who: start with player whom :param log: if logging :param board: start board. If None, start with empty board :return: """ logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) proxy = GameProxy(env_q_a1, env_q_a2, action_q_a1, action_q_a2, board) status = proxy.game.check_game_state() who = start_who turn = 0 while status is None: # let agent sense the env proxy.sense(who) # do the action proxy.action(who) # switch turn who = switch_turn(who) turn += 1 # check status status = proxy.game.check_game_state() # log the game if log: logger.debug(f'Turn {turn}') logger.debug('Board: \n' + str(proxy.game)) result_q.put(status) class Referee: """ The class that setup the processes of the agents and the game, and get the result. """ def __init__(self): self.start_who = 1 self.mt = False self.agent_proxy_p = dict() self.game_proxy_p = None self.to_agent1_env_q = None self.to_agent1_action_q = None self.to_agent2_env_q = None self.to_agent2_action_q = None self.result_q = None self.log = False def _check_human_proxy(self, agent, mt): if mt and agent['agent'] == HumanAgent.HumanAgent: raise TypeError("Human Agent in multiprocsssing is not available") def setup(self, agent1, agent2, log=False, board=None, start_who=1, mt=False): """ setup the processes :param agent1: agent config dict for player 1, or "X", 1 :param agent2: agent config dict player 2, or "O", -1 :param log: weather to log the game, passed to game_proxy :param board: the board to start with, passed to game_proxy :param start_who: who's tern to start :param mt: whether to use multiprocessing """ self._check_human_proxy(agent1, mt) self._check_human_proxy(agent2, mt) self.mt = mt self.log = log if self.mt: self.to_agent1_env_q = multiprocessing.Queue() self.to_agent1_action_q = multiprocessing.Queue() self.to_agent2_env_q = multiprocessing.Queue() self.to_agent2_action_q = multiprocessing.Queue() self.result_q = multiprocessing.Queue() self.agent_proxy_p[1] = multiprocessing.Process(name='agent_1', target=agent_proxy, args=(agent1, self.to_agent1_action_q, self.to_agent1_env_q)) self.agent_proxy_p[-1] = multiprocessing.Process(name='agent_2', target=agent_proxy, args=(agent2, self.to_agent2_action_q, self.to_agent2_env_q)) self.game_proxy_p = multiprocessing.Process(name='game', target=game_proxy, args=(self.to_agent1_env_q, self.to_agent2_env_q, self.to_agent1_action_q, self.to_agent2_action_q, self.result_q, start_who, self.log, board) ) else: self.to_agent1_env_q = queue.Queue() self.to_agent1_action_q = queue.Queue() self.to_agent2_env_q = queue.Queue() self.to_agent2_action_q = queue.Queue() self.result_q = queue.Queue() self.agent_proxy_p[1] = AgentProxy(agent1, self.to_agent1_action_q, self.to_agent1_env_q) self.agent_proxy_p[-1] = AgentProxy(agent2, self.to_agent2_action_q, self.to_agent2_env_q) self.game_proxy_p = GameProxy(self.to_agent1_env_q, self.to_agent2_env_q, self.to_agent1_action_q, self.to_agent2_action_q, board ) def host(self): """ host a whole game :return result: the result of the game """ if self.mt: # multiprocessing version self.agent_proxy_p[1].start() self.agent_proxy_p[-1].start() self.game_proxy_p.start() result = self.result_q.get() self.agent_proxy_p[1].terminate() self.agent_proxy_p[-1].terminate() self.game_proxy_p.terminate() else: # single threaded version status = self.game_proxy_p.game.check_game_state() who = self.start_who turn = 0 while status is None: self.game_proxy_p.sense(who) self.agent_proxy_p[who].evaluate() self.game_proxy_p.action(who) who = switch_turn(who) status = self.game_proxy_p.game.check_game_state() if self.log: logger.debug(f'Turn {turn}') logger.debug('Board: \n' + str(self.game_proxy_p.game)) turn += 1 result = status return result if __name__ == '__main__': try: multiprocessing.set_start_method('spawn') except: pass referee = Referee() nn = NNAgent.NN() agent1 = {'agent': HumanAgent.HumanAgent, 'params': (1,)} agent2 = {'agent': MCTSAgent.MCTSAgent, 'params': (-1,)} referee.setup(agent1, agent2, log=True, mt=False) result = referee.host() logger.debug(f'the result is {result}')
[ "yangxinyuan100@gmail.com" ]
yangxinyuan100@gmail.com
f56472cc80c7f2e88700c3841bbda49cf21b7a62
6ea84a1ee3f08cc0e2c50b452ccda0469dda0b6c
/projectDelapanBelas/blog/migrations/0001_initial.py
3ed3f0350fdffac45f1cad62e8c1341d304818fc
[]
no_license
frestea09/django_note
b818d9d95f2f1e43ba47f8f2168bc5980d5da1f7
b8d1e41a450f5c452afd36319779740bed874caa
refs/heads/master
2020-11-24T03:54:00.000949
2020-01-01T06:50:12
2020-01-01T06:50:12
227,950,347
0
0
null
null
null
null
UTF-8
Python
false
false
589
py
# Generated by Django 2.2.8 on 2019-12-17 15:04 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('judul', models.CharField(max_length=50)), ('date', models.DateField(auto_now=True)), ('post', models.TextField()), ], ), ]
[ "ilmanfrasetya@gmail.com" ]
ilmanfrasetya@gmail.com
7a7823205fb50885a8d4b2b5b48cd96af2e4f1ba
c1edf63a93d0a6d914256e848904c374db050ae0
/Python/Python基础知识/学习与应用/复利.py
42d73cb1167ff10ab58d32d375ce5b7cc5241f1e
[]
no_license
clhiker/WPython
97b53dff7e5a2b480e1bf98d1b2bf2a1742cb1cd
b21cbfe9aa4356d0fe70d5a56c8b91d41f5588a1
refs/heads/master
2020-03-30T03:41:50.459769
2018-09-28T07:36:21
2018-09-28T07:36:21
150,703,520
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
def main(): money = 24.0 float (money) for i in range(2017-1626): money *=1.08 print(format(money,",")) main()
[ "1911618290@qq.com" ]
1911618290@qq.com
8c8d3e4f6c2c0b2395f85200eaf66ecc43ef8151
076a418bf1c331e63503921c4fc7d3dbae328607
/test/utils/grad_check.py
9971037408fdcffc8b936cd7aa0181251e70c56e
[ "MIT" ]
permissive
saeedahassan/numpyCNN
faae22be977e8b12b42333d97d1ae3db4dfae0a9
368d5f2f11ecbbad638813b8adfa1527e0412461
refs/heads/master
2023-07-21T15:24:46.283980
2019-01-11T23:08:51
2019-01-11T23:08:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,482
py
""" Utilities to perform Gradient Checking """ from functools import reduce import numpy as np def to_vector(layers, w_grads, b_grads): v_params = np.array([]) v_grads = np.array([]) params_shapes = {} for layer in layers: w, b = layer.get_params() params_shapes[("w", layer)] = w.shape v_params = np.append(v_params, w.reshape(-1, reduce(lambda x, y: x * y, w.shape))) params_shapes[("b", layer)] = b.shape v_params = np.append(v_params, b.reshape(-1, reduce(lambda x, y: x * y, b.shape))) dw = w_grads[layer] v_grads = np.append(v_grads, dw.reshape(-1, reduce(lambda x, y: x * y, dw.shape))) db = b_grads[layer] v_grads = np.append(v_grads, db.reshape(-1, reduce(lambda x, y: x * y, db.shape))) v_params = v_params.reshape(v_params.shape[0], 1) v_grads = v_grads.reshape(v_grads.shape[0], 1) return v_params, v_grads, params_shapes def to_dict(layers, v_params, params_shapes): curr = 0 params = {} for layer in layers: sh = params_shapes[("w", layer)] to_take = reduce(lambda x, y: x * y, sh) w = v_params[curr:curr+to_take].reshape(*sh) layer.w = w curr += to_take sh = params_shapes[("b", layer)] to_take = reduce(lambda x, y: x * y, sh) b = v_params[curr:curr+to_take].reshape(*sh) layer.b = b curr += to_take return params def grad_check(nn, x, y, epsilon=1e-7): a_last = nn.forward_prop(x) nn.backward_prop(a_last, y) v_params, v_grads, params_shapes = to_vector(nn.trainable_layers, nn.w_grads, nn.b_grads) n_param = v_params.shape[0] J_plus = np.zeros((n_param, 1)) J_minus = np.zeros((n_param, 1)) grad_approx = np.zeros((n_param, 1)) for i in range(n_param): v_params_plus = np.copy(v_params) v_params_plus[i][0] += epsilon nn.params = to_dict(nn.trainable_layers, v_params_plus, params_shapes) a_last = nn.forward_prop(x) J_plus[i] = nn.compute_cost(a_last, y) v_params_minus = np.copy(v_params) v_params_minus[i][0] -= epsilon nn.params = to_dict(nn.trainable_layers, v_params_minus, params_shapes) a_last = nn.forward_prop(x) J_minus[i] = nn.compute_cost(a_last, y) grad_approx[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon) return np.linalg.norm(grad_approx - v_grads) / (np.linalg.norm(v_grads) + np.linalg.norm(grad_approx))
[ "pratissolil@gmail.com" ]
pratissolil@gmail.com
7386f368c2cc75f30ce89a81745153fc54d18326
9d04d4c0c4f3f90fcf5b724e0e8d4c0516b1d23f
/SERVER/ecommerce/database/migrations/0001_initial.py
42d3f40bd4adde1ed8a1fedd6b06d776a772a751
[]
no_license
daren996/DatabaseSystemForE-commerce
1ff6511b873062e72d3f01cd88467870d16b5033
6ecf51e2d419b008c52b27b96f0f2b2af14c61ea
refs/heads/master
2020-03-20T17:51:18.786894
2018-06-17T15:17:08
2018-06-17T15:17:08
137,567,289
0
1
null
null
null
null
UTF-8
Python
false
false
2,553
py
# Generated by Django 2.0.5 on 2018-06-17 13:34 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.TextField()), ('url', models.URLField(null=True)), ('photo', models.URLField(null=True)), ('category', models.TextField(null=True)), ('price', models.CharField(max_length=20)), ('star', models.CharField(max_length=20)), ('description', models.TextField(null=True)), ('details', models.TextField(null=True)), ], ), migrations.CreateModel( name='UserProd', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='database.Product')), ], ), migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nickname', models.CharField(blank=True, default='', max_length=16)), ('sex', models.CharField(max_length=5, null=True)), ('birthday', models.DateField(null=True)), ('address', models.TextField(null=True)), ('city', models.CharField(max_length=20, null=True)), ('country', models.CharField(max_length=20, null=True)), ('zip_code', models.CharField(max_length=20, null=True)), ('additional_info', models.TextField(null=True)), ('phone_number', models.CharField(max_length=20, null=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='userprod', name='user_info', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='database.UserProfile'), ), ]
[ "850002098@qq.com" ]
850002098@qq.com
1cf068224d1fb52bbadc425a5c816041a20654ba
087cd843cf37e2ae3c8320f84e1005b3c2d786a3
/appdb/webdb/migrations/0001_initial.py
8d1e53c062ff733cb3b38ff80da0295998f1f54d
[]
no_license
miguelpfitscher/DjangoDB_RateProfessor
ceb719d7882fb608f88498f98ee4fb618d4542c5
61be81828f4d6c34522dc10f8034dda34d849642
refs/heads/master
2021-03-27T17:06:37.899069
2016-11-27T03:12:18
2016-11-27T03:12:18
73,835,427
0
0
null
null
null
null
UTF-8
Python
false
false
1,230
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2016-11-08 13:03 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Choice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choice_text', models.CharField(max_length=200)), ('votes', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_text', models.CharField(max_length=200)), ('pub_date', models.DateTimeField(verbose_name='date published')), ], ), migrations.AddField( model_name='choice', name='question', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='webdb.Question'), ), ]
[ "miguel.pfitscher@gmail.com" ]
miguel.pfitscher@gmail.com
2f1d2acec448d3ddd845fbe4b3e7bd9d67a152a8
5281cf03d1269f341cbf006b43c6f09efa5e98ab
/minitn/heom/eom2.py
a7d36a68bffd2f58ce6c589a611047d4a3ff262a
[]
no_license
vINyLogY/minimisTN
3927431eb7bf73ffd6cf42aa8faf7c189e7f3c55
0d6c7bd23ccf766e8d39c42082e8fb6b751ee2fc
refs/heads/master
2022-05-09T06:10:56.413522
2022-04-12T14:04:48
2022-04-12T14:04:48
140,754,574
3
1
null
2022-04-12T14:04:19
2018-07-12T19:11:10
Python
UTF-8
Python
false
false
5,420
py
#!/usr/bin/env python # coding: utf-8 """[No Rescale] Generating the derivative of the extended rho in SoP formalism. Conversion: rho[n_0, ..., n_(k-1), i, j] """ from __future__ import absolute_import, division, print_function import logging from builtins import filter, map, range, zip from itertools import product from minitn.lib.backend import np from minitn.lib.tools import __ from minitn.heom.noise import Correlation DTYPE = np.complex128 class Hierachy(object): hbar = 1.0 def __init__(self, n_dims, sys_hamiltonian, sys_op, corr): """ Parameters ---------- n_dims : np.ndarray a vector representing the possible n sys_hamiltionian : np.ndarray H_s sys_op : X_s in in H_sb X_s (x) X_b corr : Correlation Correlation caused by X_b """ self.n_dims = n_dims self.k_max = len(n_dims) assert isinstance(corr, Correlation) assert self.k_max == corr.k_max self._i = len(n_dims) self._j = len(n_dims) + 1 self.corr = corr assert sys_op.ndim == 2 assert sys_op.shape == sys_hamiltonian.shape self.n_states = sys_op.shape[0] self.op = sys_op self.h = sys_hamiltonian def gen_extended_rho(self, rho): """Get rho_n from rho with the conversion: rho[n_0, ..., n_(k-1), i, j] Parameters ---------- rho : np.ndarray """ shape = list(rho.shape) assert len(shape) == 2 and shape[0] == shape[1] # Let: rho_n[0, i, j] = rho and rho_n[n, i, j] = 0 ext = np.zeros((np.prod(self.n_dims),)) ext[0] = 1 rho_n = np.reshape(np.tensordot(ext, rho, axes=0), list(self.n_dims) + shape) return np.array(rho_n, dtype=DTYPE) def _raiser(self, k): """Acting on 0-th index""" dim = self.n_dims[k] return np.eye(dim, k=1) def _lower(self, k): """Acting on 0-th index""" dim = self.n_dims[k] return np.eye(dim, k=-1) def _numberer(self, k, start=0): return np.diag(np.arange(start, start + self.n_dims[k])) def _sqrt_numberer(self, k, start=0): return np.diag(np.sqrt(np.arange(start, start + self.n_dims[k]))) def _diff_ij(self): # delta = self.corr.delta_coeff return [ [(self._i, -1.0j * np.transpose(self.h))], [(self._j, 1.0j * self.h)], # [(self._i, -delta * np.transpose(self.op @ self.op))], # [(self._i, np.sqrt(2.0) * delta * np.transpose(self.op)), # (self._j, np.sqrt(2.0) * delta * self.op)], # [(self._j, -delta * (self.op @ self.op))], ] def _diff_n(self): if self.corr.exp_coeff.ndim == 1: gamma = np.diag(self.corr.exp_coeff) ans = [] for i, j in product(range(self.k_max), repeat=2): g = gamma[i, j] if not np.allclose(g, 0.0): term = [(i, -g * self._numberer(i))] if i != j: n_i = self._sqrt_numberer(i) n_j = self._sqrt_numberer(j) raiser = self._raiser(i) lower = self._lower(j) term.extend([(i, raiser @ n_i), (j, n_j @ lower)]) ans.append(term) return ans def _diff_k(self, k): c_k = self.corr.symm_coeff[k] + 1.0j * self.corr.asymm_coeff[k] numberer = self._numberer(k) raiser = self._raiser(k) lower = self._lower(k) return [ [(self._i, -1.0j / self.hbar * np.transpose(self.op)), (k, lower)], [(self._j, 1.0j / self.hbar * self.op), (k, lower)], [(self._i, -1.0j / self.hbar * c_k * np.transpose(self.op)), (k, raiser @ numberer)], [(self._j, 1.0j / self.hbar * np.conj(c_k) * self.op), (k, raiser @ numberer)], ] def diff(self): """Get the derivative of rho_n at time t. Acting on 0-th index. """ derivative = self._diff_ij() + self._diff_n() for k in range(self.k_max): derivative.extend(self._diff_k(k)) return derivative if __name__ == '__main__': from minitn.heom.noise import Drude from minitn.lib.units import Quantity # System e = Quantity(6500, 'cm-1').value_in_au v = Quantity(500, 'cm-1').value_in_au # Bath lambda_0 = Quantity(2000, 'cm-1').value_in_au # reorganization energy omega_0 = Quantity(2000, 'cm-1').value_in_au # vibrational frequency beta = Quantity(300, 'K').value_in_au # temperature # Superparameters max_terms = 5 # (terms used in the expansion of the correlation function) max_tier = 10 # (number of possble values for each n_k in the extended rho) h = np.array([[0, v], [v, e]]) op = np.array([[0, 0], [0, 1]]) corr = Drude(lambda_0, omega_0, max_terms, beta) heom = Hierachy([max_tier] * max_terms, h, op, corr) phi = [1 / np.sqrt(2), 1 / np.sqrt(2)] phi /= np.linalg.norm(phi) rho_0 = np.tensordot(phi, phi, axes=0) init_rho = heom.gen_extended_rho(rho_0) print(init_rho.shape) for n, term in enumerate(heom.diff()): print('- Term {}:'.format(n)) for label, array in term: print('Label: {}, shape: {}'.format(label, array.shape))
[ "vinylogy9@gmail.com" ]
vinylogy9@gmail.com
bd9b1111182878c62a19a1dc63358f23003f47c8
fd2a5a65913d6a45f2f192a50b8315eb155f89d5
/main.py
56ea827f3091c8d4c9db8986e3a8a6402932d515
[]
no_license
zkerhcy/YoudaoTransPop
95435d87ddbc858862ab99fd533a2dc00343e43f
245645ef81cf65c3f68dff3878076d6258c30ee3
refs/heads/main
2022-06-07T05:14:21.961885
2021-09-14T07:16:47
2021-09-14T07:16:47
99,469,091
4
0
null
null
null
null
UTF-8
Python
false
false
1,019
py
# coding=utf-8 LANG_CODES = { "Chinese Simplified": "zh-CHS", "Chinese Traditional": "zh-CHT", "English": "EN", "French": "fr", "Japanese": "ja", "Korean": "ko", "Portuguese": "pt", "Russian": "ru", "Spanish": "es" } KEY_CODE = { "APP_KEY": "${your_app_key}", "SEC_KEY": "${your_app_secret_key}", } import os import ydtrans import json try: translator = ydtrans.Translator(app_key=KEY_CODE['APP_KEY'], text=os.environ['POPCLIP_TEXT'], sec_key=KEY_CODE['SEC_KEY']) translation = translator.translate_text(text=os.environ['POPCLIP_TEXT'], from_lang='auto', to_lang='auto', app_key=KEY_CODE['APP_KEY']) # s = json.loads(json.dumps(translation,ensure_ascii=False)) print translation["translation"][0].encode('utf-8') except Exception as e: exit(1)
[ "zhao.chen@zoom.us" ]
zhao.chen@zoom.us
21690331d4d4f5ba169d6a503f8a5ef4fd523d83
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_169/ch147_2020_04_21_21_09_20_774383.py
51268f75bd590ebc67f9d2cd20b09608dfd9e429
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
454
py
def mais_frequente(lista): lista3=[] for i in range(len(lista)): lista.count(lista[i]) lista3.append(lista.count(lista[i])) for i in lista: if lista.count(i)<max(lista3): lista.remove(i) elif lista.count(i)==max(lista3): lista.remove(i) for e in lista: if len(lista)>1: lista.remove(e) for e in range(len(lista)): return lista[e]
[ "you@example.com" ]
you@example.com
f0bd585ad377d92c9cc89d3950a3dbab7f3ad73b
698ea0e0201fd4b9057e1d4d4d69affa9f710828
/models.py
448a78a94f7354c3bddb57925a315f9b7323bc7a
[]
no_license
fang0975/pygame-children-go-down-the-stairs
a2169e8100e034bad1646b11d176188d19dd3519
caba866df7a8b92b84eb7b0d5b10947ec320cb3e
refs/heads/master
2021-07-21T00:15:59.295722
2017-10-30T08:40:46
2017-10-30T08:40:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,985
py
import pygame from pygame.locals import * class Character(pygame.sprite.Sprite): defualt = 0 left = 1 right = 2 rect_defualt = (8,0) rect_left = (3,0) rect_right = (0,1) def __init__(self, target): pygame.sprite.Sprite.__init__(self) self.target_surface = target self.image = None self.master_image = None self.rect = None self.topleft = 0, 0 self.frame = 0 self.old_frame = -1 self.frame_width = 1 self.frame_height = 1 self.first_frame = 1 self.last_frame = 15 self.last_time = 0 def load(self): self.master_image = pygame.image.load( "images/player.png").convert_alpha() self.frame_width = 32 self.frame_height = 32 self.rect = 0, 0, self.frame_width, self.frame_height self.image_rect = self.master_image.get_rect() def update(self, status): frame_x = self.frame_width * Character.rect_defualt[0] frame_y = 0 if(status == Character.defualt): frame_y = 0 if(status == Character.left): self.frame += 1 if self.frame > self.last_frame: self.frame = self.first_frame frame_x = self.frame_width * (Character.rect_left[0] - self.frame // 4) frame_y = Character.rect_left[1] self.image_rect.centerx -= 2 if(status == Character.right): self.frame += 1 if self.frame > self.last_frame: self.frame = self.first_frame frame_x = self.frame_width * (Character.rect_right[0] + self.frame // 4) frame_y = self.frame_height * Character.rect_right[1] self.image_rect.centerx += 2 rect = (frame_x, frame_y, self.frame_width, self.frame_height) self.image = self.master_image.subsurface(rect) def draw(self, surface): surface.blit(self.image, (self.image_rect[0], self.image_rect[1])) class Floor(pygame.sprite.Sprite): default = 0 def __init__(self, target): pygame.sprite.Sprite.__init__(self) self.target_surface = target self.image = None self.master_image = None self.rect = None self.topleft = 0, 0 self.frame = 0 self.old_frame = -1 self.frame_width = 1 self.frame_height = 1 self.first_frame = 0 self.last_frame = 0 self.columns = 1 self.last_time = 0 self.type = default def load(self): if(self.type== Floor.default): self.master_image = pygame.image.load( "images/normal.png").convert_alpha() self.frame_width = 97 self.frame_height = 16 self.rect = 0, 0, self.frame_width, self.frame_height rect = self.master_image.get_rect() self.last_frame = (rect.width // width) * (rect.height // height) - 1 def update(self): pass
[ "abc873693@gmail.com" ]
abc873693@gmail.com
25bac3dd7faa4c6c36b8619c4ab34264bb01b969
4b49cdb855049ba6bdeca72b26708ad43bb27b8c
/discussion.py
178a2243b5910727951c81deb366a483eff381ff
[]
no_license
rtsio/myumbc
fbf2565f10b59188088a8f076bae393e1889c1d0
17402656320ee6a764e025bbae56cd19f98ffb68
refs/heads/master
2020-04-05T23:34:03.566988
2014-07-25T05:11:53
2014-07-25T05:11:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,389
py
#!/usr/bin/python import argparse import time import re import sys import base64 from ConfigParser import SafeConfigParser, RawConfigParser from bs4 import BeautifulSoup from myumbc import Scraper, Database def progress(x, current, limit): print "Discussion: " + str(x) + "\t" + str((float(current)/limit) * 100) + "%", # Read config files # If you get a missing section error, you must run this script from the directory # with the config file, as python determines paths from the point of execution config = SafeConfigParser() config.read('config.txt') myumbc_user = config.get('myumbc', 'username') myumbc_pw = base64.b64decode(config.get('myumbc', 'password')) database_host = config.get('database', 'host') database_user = config.get('database', 'username') database_pw = base64.b64decode(config.get('database', 'password')) database_name = config.get('database', 'database') scraper = Scraper() db = Database(database_host, database_user, database_pw, database_name) scraper.login(myumbc_user, myumbc_pw) # Read in blacklists - ignored threads/comments blacklist = open('discussion_blacklist.txt', 'a+') blacklisted_threads = blacklist.read().splitlines() blacklisted_comments = [] arguments = argparse.ArgumentParser() arguments.add_argument('-start', action='store', type=int, required=True) arguments.add_argument('-end', action='store', type=int, required=True) arguments.add_argument('-date', action='store', required=True) args = arguments.parse_args() start = args.start end = args.end + 1 total = end - start date = args.date for x in xrange(start, end): page_exists = False current_discussion = str(x) if current_discussion not in blacklisted_threads: if scraper.valid("discussions", current_discussion): page_exists = True else: blacklist.write(current_discussion + '\n') if (page_exists): soup = BeautifulSoup(scraper.gethtml()) author_tag = soup.find(class_="discussion-post") author_post_id = x + 1000000 author_name = author_tag.find(class_="user first").string author_paws = int(author_tag.find(class_="count first last").string) author_avatar = re.search(r'background-image: url\(\'(.*)\?', author_tag.find(class_=re.compile("avatar"))['style']).group(1) author_inner_content = author_tag.find(class_="html-content").find(class_="html-content") if not author_inner_content: author_inner_content = author_tag.find(class_="button first last") else: for tag in author_inner_content.find_all('embed'): embed_link = tag['src'] tag.replace_with("(Embed object pointing to " + embed_link + " removed from original post)") for tag in author_inner_content.find_all('iframe'): iframe_link = tag['src'] tag.replace_with("(Iframe object pointing to " + iframe_link + " removed from original post)") for tag in author_inner_content.find_all('object'): tag.replace_with("(Object tag removed from original post)") for tag in author_inner_content.find_all('param'): tag.replace_with("(Param tag removed from original post)") content_title = u'<b>(This post is a discussion topic originally entitled ' + author_tag.find(class_="title").string + ')</b> <br>' content = content_title + unicode(author_inner_content) content = re.sub(r'<span.*?>|<\/span>', '', content) content = re.sub(r'\sclass=".*?"', '', content) if not db.post_exists(author_post_id): db.process_post(author_post_id, x, author_name, author_paws, author_avatar, date, content, "d") else: db.update_post(author_post_id, x, author_name, author_paws, date, content, "d") for tag in soup.find_all(class_=re.compile("comment-\d+")): comment_id = tag['data-comment-id'] comment_name = tag.find(class_="poster").string if (tag['class'][3] != 'mine'): if tag['class'][3] != 'removed': comment_paws = int(tag.find(class_="paw").find(class_="count").string) comment_avatar = re.search(r'background-image: url\(\'(.*)\?', tag.find(class_="avatar small")['style']).group(1) comment_inner_content = tag.find(class_="html-content") if comment_inner_content: for tag in comment_inner_content.find_all('embed'): embed_link = tag['src'] tag.replace_with("(Embed object pointing to " + embed_link + " removed from original post)") for tag in comment_inner_content.find_all('iframe'): iframe_link = tag['src'] tag.replace_with("(Iframe object pointing to " + iframe_link + " removed from original post)") for tag in comment_inner_content.find_all('object'): tag.replace_with("(Object tag removed from original post)") for tag in comment_inner_content.find_all('param'): tag.replace_with("(Param tag removed from original post)") comment_content = unicode(comment_inner_content) comment_content = re.sub(r'<span.*?>|<\/span>', '', comment_content) comment_content = re.sub(r'\sclass=".*?"', '', comment_content) if not db.post_exists(comment_id): db.process_post(comment_id, x, comment_name, comment_paws, comment_avatar, date, comment_content, "d") else: db.update_post(comment_id, x, comment_name, comment_paws, date, comment_content, "d") else: comment_avatar = re.search(r'background-image: url\(\'(.*)\?', tag.find(class_="avatar xxsmall")['style']).group(1) db.process_removed(comment_id, x, comment_name, comment_avatar, date) elif (tag['class'][3] == 'mine'): if tag['class'][4] != 'removed': comment_paws = int(tag.find(class_="paw").find(class_="count").string) comment_avatar = re.search(r'background-image: url\(\'(.*)\?', tag.find(class_="avatar small")['style']).group(1) comment_inner_content = tag.find(class_="html-content") if comment_inner_content: for tag in comment_inner_content.find_all('embed'): embed_link = tag['src'] tag.replace_with("(Embed object pointing to " + embed_link + " removed from original post)") for tag in comment_inner_content.find_all('iframe'): iframe_link = tag['src'] tag.replace_with("(Iframe object pointing to " + iframe_link + " removed from original post)") for tag in comment_inner_content.find_all('object'): tag.replace_with("(Object tag removed from original post)") for tag in comment_inner_content.find_all('param'): tag.replace_with("(Param tag removed from original post)") comment_content = unicode(comment_inner_content) comment_content = re.sub(r'<span.*?>|<\/span>', '', comment_content) comment_content = re.sub(r'\sclass=".*?"', '', comment_content) if not db.post_exists(comment_id): db.process_post(comment_id, x, comment_name, comment_paws, comment_avatar, date, comment_content, "d") else: db.update_post(comment_id, x, comment_name, comment_paws, date, comment_content, "d") else: comment_avatar = re.search(r'background-image: url\(\'(.*)\?', tag.find(class_="avatar xxsmall")['style']).group(1) db.process_removed(comment_id, x, comment_name, comment_avatar, date) print str(x) #progress(x, (x - start + 1), total) blacklist.close() db.close()
[ "rostislav.tsiomenko@gmail.com" ]
rostislav.tsiomenko@gmail.com
fc6fcfc0ce0a0ded8f9d94bdb048f19d554c8186
1916818ab9c19064381e857e8ba8996f387d9056
/toucan/alert_api/views.py
874cd1c1f080813044569999496890ee3b80d716
[ "MIT" ]
permissive
toucan-project/TOUCAN
4906889abdb6427237c288f1ab57df819761c494
d562e1191b5ef10480be819ba8c584034c25259b
refs/heads/master
2021-09-26T22:43:49.663430
2021-02-26T14:56:18
2021-02-26T14:56:18
204,929,596
3
1
MIT
2021-09-23T23:26:23
2019-08-28T12:44:12
Python
UTF-8
Python
false
false
3,394
py
from rest_framework import status from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.parsers import FileUploadParser from rest_framework.permissions import IsAuthenticated from rest_framework.exceptions import ValidationError, NotAuthenticated from alert_api.models import MimiAlertItem, SampleItem, CanaryAlertItem from alert_api.serializers import UploadedFileSerializer from alert_api.serializers import CanaryAlertItemSerializer from alert_api.serializers import JSONSerializer, GetCanaryAlertItemSerializer class SysmonIncoming(APIView): """ An unauthenticated API for incoming Sysmon events related to Mimikatz put: Create a MimiAlert and return 201 if a sample has not been uploaded, 200 if a sample exists. """ def put(self, request): serializer = JSONSerializer(data=request.data) if not serializer.is_valid(): raise ValidationError('Invalid JSON') logmon = serializer.validated_data rip = request.META.get('REMOTE_ADDR') alert = MimiAlertItem.create_object(rip, dict(logmon)) if SampleItem.sample_exists(alert.md5): status_code = status.HTTP_200_OK else: status_code = status.HTTP_201_CREATED return Response(status=status_code) class FileItem(APIView): """ An unauthenticated API endpoint for incoming samples. put: Create a SampleItem from the incoming binary file. """ # hmmm, an unauthenticated file upload? parser_classes = (FileUploadParser,) def post(self, request, filename): data = self._get_request_data(request.data) serializer = UploadedFileSerializer(data=data) if not serializer.is_valid(): raise ValidationError() sample = serializer.validated_data.get('file') SampleItem.save_sample(filename, sample) return Response(status=status.HTTP_200_OK) def _get_request_data(self, data): return { 'file': data['file'], 'content_type': data['file'].content_type } class CanaryAlertItems(APIView): """ Authenticated view for querying triggered alerts. get: Get triggered CanaryAlertItem(s) delete: Delete a triggered CanaryAlertItem by id, only possible with elevated privileges. """ permission_classes = (IsAuthenticated,) def get(self, request, id=None): if id: serializer = GetCanaryAlertItemSerializer(data={'id': id}) serializer.is_valid() id = serializer.validated_data.get('id') items = CanaryAlertItem.objects.get(pk=id) serialized = CanaryAlertItemSerializer(items) else: items = CanaryAlertItem.objects.all() serialized = CanaryAlertItemSerializer(items, many=True) return Response(serialized.data, status=status.HTTP_200_OK) def delete(self, request, id): if not request.user.is_superuser: raise NotAuthenticated("Not allowed to delete this entry") serialized = GetCanaryAlertItemSerializer(data={'id': id}) serialized.is_valid() id = serialized.validated_data.get('id') item = CanaryAlertItem.objects.get(pk=id) item.delete() return Response(status=status.HTTP_200_OK)
[ "github@evicted.ninja" ]
github@evicted.ninja
0466b8e35fbd5bd89a68185439acb789f17f02db
9d4bde3947edc11ba87d06068581c6a91696e8e6
/chapter_07/q08.py
14b4fbd3c225f9a79e2d6aea63f9d2ecd1ad004d
[]
no_license
zanariah8/Starting_Out_with_Python
e6d8c6cbd187043160c6408fc4ac5f47c35e7c57
92751fde462683c9d62934409fa469ccddc1d519
refs/heads/master
2020-04-23T20:38:13.712144
2019-02-18T20:24:15
2019-02-18T20:24:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,416
py
# name search def main(): # open the girlnames.txt file try: girls_list = girls_name() boys_list = boys_name() search_name(girls_list, boys_list) except IOError: print("No such file or directory") def girls_name(): # open the girlnames.txt file infile = open("girlnames.txt", "r") # read the contents of the file names = infile.readlines() # close the file infile.close() # strip the \n from the elements index = 0 while index < len(names): names[index] = names[index].rstrip("\n") index += 1 return names def boys_name(): # open the file infile = open("boynames.txt", "r") # read the contents of the file names = infile.readlines() # close the file infile.close() # strip the \n from the elements index = 0 while index < len(names): names[index] = names[index].rstrip("\n") index += 1 return names def search_name(girls_list, boys_list): # ask the user to enter a name to search for name = input("Enter a name: ") # determine whether the name is in the lists if name in girls_list or name in boys_list: print(name, "is among the most popular names.") else: print(name, "is NOT found among the most popular names.") # call the main function main()
[ "noreply@github.com" ]
zanariah8.noreply@github.com
8ad68457f32cadbf1ff7b1888a2c464f3da77c81
3b60e6f4bbc011003ac4929f01eb7409918deb79
/Analysis_v1/cleandatasetslist.py
ff835fab021624dc4e3a865231d163bd923cd01e
[]
no_license
uzzielperez/Analyses
d1a64a4e8730325c94e2bc8461544837be8a179d
1d66fa94763d7847011ea551ee872936c4c401be
refs/heads/master
2023-02-09T04:54:01.854209
2020-09-07T14:57:54
2020-09-07T14:57:54
120,850,137
0
0
null
2020-06-17T16:48:16
2018-02-09T03:14:04
C++
UTF-8
Python
false
false
235
py
inputfile = 'datasetlist.txt' f = open(inputfile) lines = f.read().split('\n') outfile = 'cleaneddatasetlist.txt' out = open(outfile, "w+") for line in lines: if 'json_toRun2018Dv2_323775' in line: print line out.write(line)
[ "uzzie.perez@cern.ch" ]
uzzie.perez@cern.ch
101d220deac1c24bedab54a72d490bf76fab5b1c
7dd8a4ddedd429d7522dd903c741f8ac508d0374
/pkg/devices/BaseDevice.py
a08d824d35836a2efd3e2cefef4ab2c8b6422ee5
[ "BSD-2-Clause" ]
permissive
junchaohu/SensorActuatorManager
349b955616c7161ef49f383c91ff7bd4bbe82bd5
75c9594c3cabcdadc4e13acc0e7e9d5240e15f33
refs/heads/master
2021-05-26T20:49:18.898149
2013-07-17T06:15:49
2013-07-17T06:15:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,317
py
# Author: Mani Srivastava, NESL, UCLA # Created on: May 22, 2013 # # Copyright notice in LICENSE file # import threading, Queue import time import logging from pkg.utils.debug import debug_mesg from pkg.utils.misc import is_valid_host class Device(threading.Thread): def __init__(self, type, id, params): threading.Thread.__init__(self) self.type = type self.id = id self.params = params self.outputqueues = [] self.description = "Device" self.statistics = [0,0,0,0] # [attempts, success, attempts_last, success_last] # take care of common parameters ... rest are device specific if 'sample_interval' in self.params: try: self.sample_interval = float(self.params['sample_interval']) except ValueError as e: logging.error("sample interval for device "+self.type+":"+self.id+" is not numeric.") if 'host' in self.params: try: x = self.params['host'].split(":") assert(len(x)<3) if (len(x)==2): self.host = x[0] self.port = int(x[1]) else: self.host = x[0] assert(is_valid_host(self.host)) except: logging.error("malformed host specification for device "+self.type+":"+self.id) exit(1) if 'port' in self.params: try: self.port = int(self.params['port']) except: logging.error("malformed port specification for device "+self.type+":"+self.id) exit(1) if 'timeout' in self.params: try: self.timeout = int(self.params['timeout']) except: logging.error("malformed timeout specification for device "+self.type+":"+self.id) exit(1) if 'url' in self.params: self.url = self.params['url'] if 'serial' in self.params: self.serial = self.params['serial'] self.sensor_names_map = self.params.get('sensor_names_map',{}) def attach_queue(self, q): self.outputqueues.append(q) def get_device_type(self): return self.type def get_device_id(self): return self.id def get_device_channels(self): pass def get_sample(self): pass def run(self): logging.debug("Running thread for device "+self.type+":"+self.id) while True: start_time = time.time() s = self.get_sample() if s: for q in self.outputqueues: q.put(s) diff=time.time()-start_time if hasattr(self, 'sample_interval'): time.sleep(max(self.sample_interval-diff,0))
[ "mbs@ucla.edu" ]
mbs@ucla.edu
02799b9dd3f69789fcc67cf2c747f058d776d4b7
b6a64e149b6e0a34884898ca520f9ef2de75e3e0
/main.py
ba9167f01f680eeada23f890d6ff3ccedb5fe115
[]
no_license
neilfawkes/vk-tinder
111677e2a1fc69a1935354d61be746f718061eb5
1cfa5840238410758757e576bcf3ff1c8c5b94e6
refs/heads/master
2023-03-22T12:59:19.873260
2021-03-17T08:13:00
2021-03-17T08:13:00
279,085,366
0
0
null
null
null
null
UTF-8
Python
false
false
7,420
py
import requests import json import time from pprint import pprint from urllib.parse import urlencode from pymongo import MongoClient def api_request(URL, params): try: repeat = True while repeat: response = requests.get(URL, params=params).json() if 'error' in response and 'error_code' in response['error'] and response['error']['error_code'] == 6: time.sleep(1) else: repeat = False return response except requests.exceptions.ReadTimeout: n = 1 while n < 3: print('\n Reconnecting to server. \n') try: return requests.get(URL, params=params).json() except requests.exceptions.ReadTimeout: print('\n Reconnecting to server. \n') n+=1 else: print('Failed, please check your Internet connection.') def get_token(): app_id = 7412922 oauth_url = 'https://oauth.vk.com/authorize' oauth_params = { 'client_id': app_id, 'display': 'page', 'scope': 'friends, groups, stats, offline', 'response_type': 'token', 'v': '5.52' } print('?'.join((oauth_url, urlencode(oauth_params)))) def welcome(): with open('welcome.txt') as welcome: print(welcome.read()) def get_people(access_token, sex, age_from, age_to, city_id, country_id): URL = 'https://api.vk.com/method/users.search' params = { 'v': '5.89', 'access_token': access_token, 'sex': sex, 'age_from': age_from, 'age_to': age_to, 'status': 6, 'has_photo': 1, 'city': city_id, 'country': country_id, 'is_closed': False, 'can_access_closed': False } result = api_request(URL, params) return result def get_country_code(): user_country = input('Введите страну для поиска: ').capitalize() with open('countries.json', 'r') as countries_file: countries = json.load(countries_file) if user_country not in countries.keys(): print('Страна введена неверно, попробуйте ещё раз.') get_country_code() else: for country, code in countries.items(): if country == user_country: country_code = code return country_code def get_country_id(): country_code = get_country_code() URL = 'https://api.vk.com/method/database.getCountries' params = {'v': '5.80', 'access_token': access_token, 'code': country_code} result = api_request(URL, params) return result['response']['items'][0]['id'] def get_city_id(country_id): city = input('Введите желаемый город для поиска: ').capitalize() URL = 'https://api.vk.com/method/database.getCities' params = {'v': '5.80', 'access_token': access_token, 'country_id': country_id, 'q': city} result = api_request(URL, params) if result['response']['count'] == 0: print('Город введен неверно, попробуйте ещё раз.') get_city_id(country_id) else: return result['response']['items'][0]['id'] def find_photos(owner_id): URL = 'https://api.vk.com/method/photos.get' params = {'v': '5.80', 'access_token': access_token, 'owner_id': owner_id, 'album_id': 'profile', 'extended': 1, 'count': 1000} result = api_request(URL, params) photos = {} try: for items in result['response']['items']: for size in items['sizes']: if size['type'] == 'x': photos[size['url']] = items['likes']['count'] except KeyError: if result['error']['error_code'] == 15: print('Не удается загрузить фото, приватный профиль.') else: print(result) return sorted(photos.items(), key=lambda kv: kv[1], reverse=True)[0:3] def write_json(ten_users): people_list = [] for user in ten_users: user_dict = {} user_dict['photos'] = find_photos(user['id']) user_dict['first name'] = user['first_name'] user_dict['second name'] = user['last_name'] user_dict['link'] = f"https://vk.com/id{user['id']}" people_list.append(user_dict) with open('people.json', 'w') as people_file: json.dump(people_list, people_file, ensure_ascii=False, indent=4) def write_result(people): client = MongoClient() vk_db = client['VK'] users = vk_db['users'] for each in people['response']['items']: users.insert_one(each) return list(users.find()) def get_ten_users(people_db, n1, n2): ten_users = ckeck_is_empty(people_db, n1, n2) if ten_users != None: write_json(ten_users) print('Результаты поиска записаны в json-файл.') if input('Найти следующих 10 человек? (да/нет): ') == "да": print('Поиск в процессе...') n1 += 10 n2 += 10 get_ten_users(people_db, n1, n2) def check_age(): age = input('Введите диапазон возраста в формате "18-35": ') age_from = age[:2] age_to = age[-2:] try: int(age_from) >= int(age_to) return age_from, age_to except ValueError: print('Введите чила') check_age() except TypeError: print('Укажите диапазон возраста от меньшего к большему') check_age() def check_sex(): sex = input('Введите пол (1 - жен., 2 - муж., 0 - любой): ') possible_vars = [1, 2, 0] try: if int(sex) in possible_vars: return sex else: print('Укажите индекс одного из доступных вариантов (1, 2 или 0)') check_sex() except ValueError: print('Укажите индекс одного из доступных вариантов (1, 2 или 0)') check_sex() def clear_my_db(): client = MongoClient() vk_db = client['VK'] users = vk_db['users'] vk_db.users.drop() return list(users.find()) def ckeck_is_empty(people_db, n1, n2): if not people_db[n1:n2]: if input('По вашему запросу ничего не найдено, хотите изменить параметры поиска? ') == 'да': main() else: return people_db[n1:n2] def main(): country_id = get_country_id() city_id = get_city_id(country_id) sex = check_sex() age_from, age_to = check_age() print('Поиск в процессе...') people = get_people(access_token, sex, age_from, age_to, city_id, country_id) people_db = write_result(people) n1, n2 = 0, 10 get_ten_users(people_db, n1, n2) if __name__ == "__main__": welcome() access_token = input('Введите токен для ВК (если у Вас нет токена,\nнапечатайте "нет" и пройдите по ссылке): ') if access_token == "нет": get_token() access_token = input('Введите полученный токен для ВК: ') main() # print(clear_my_db())
[ "13dropsofsun@gmail.com" ]
13dropsofsun@gmail.com
8d948459ced273568dc01a0c3df913416818a7dd
48d3ca5ebb17e9ee137cf45e1d8010d8eff9c65f
/BOJ/python/4195(친구네트워크).py
7fc28a7fbead43c60e0e38bbcc142dfdf62f27ae
[]
no_license
dooking/CodingTest
81d18e711a806ee14946b2aa006eda9c235f0b04
1467700f3461c5fe61bf1b4e668e0c9016d8c860
refs/heads/master
2023-02-23T15:59:15.274908
2023-02-10T06:35:12
2023-02-10T06:35:12
237,138,420
1
0
null
null
null
null
UTF-8
Python
false
false
623
py
def find(x): # path compression 기법 if parent[x] != x: parent[x] = find(parent[x]) return parent[x] def union(x, y): x = find(x) y = find(y) if x != y: parent[y] = x number[x] += number[y] test_case = int(input()) for _ in range(test_case): parent = dict() number = dict() f = int(input()) for _ in range(f): x, y = input().split(' ') if x not in parent: parent[x] = x number[x] = 1 if y not in parent: parent[y] = y number[y] = 1 union(x, y) print(number[find(x)])
[ "123456ghghgh@naver.com" ]
123456ghghgh@naver.com
da2ad3b2f4ed741c04d6ceeb4c16732a5f9d261b
b175a3abfa14992d9b07d53adc12700ded3b1c02
/MachineLearning/OVO&OVR/case-ovr.py
c99b38ad4c882de397bff3a0f14fa038a2b4b5f0
[]
no_license
BarryZM/Python-AI
d695a1569e5497da391b578e6638cc11479bfbaa
251dc4002f9d7e5dd789e62b813651f2006f6ab6
refs/heads/master
2023-03-17T15:33:35.530258
2020-04-01T10:32:47
2020-04-01T10:32:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
845
py
# -*- coding: utf-8 -*- ''' Created by hushiwei on 2018/6/18 Desc : OVR案例代码 ''' import numpy as np from sklearn import datasets from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import LinearSVC from sklearn.metrics import accuracy_score,precision_score # 加载数据 iris = datasets.load_iris() x, y = iris.data, iris.target print('样本数量:%d, 特征数量:%d' % x.shape) print("label分类个数: ", np.unique(y)) # ovr模型构建 clf = OneVsRestClassifier(LinearSVC(random_state=0)) clf.fit(x, y) # 预测结果输出 print(clf.predict(x)) print('准确率:%.3f' % accuracy_score(y, clf.predict(x))) print('准确率:%.3f' % precision_score(y, clf.predict(x))) # 模型属性输出 k = 1 for item in clf.estimators_: print('第%d个模型' % k) print(item) k += 1 print(clf.classes_)
[ "hsw.time@gmail.com" ]
hsw.time@gmail.com
2c7d6be1687ee4887ff265a690c14e5190c8f27b
52acdb157a0b15d60b8e2c06fc02880fd8340ef6
/retrive.py
59c0729a3c1a15a19c64b299961cf4b10fa1a2c7
[]
no_license
dawnblade97/licplatereg
7f50aa243378abbca8c32c66d9f60c1e9f0449e5
230ab4fcce5b5345a2d7842c283be9a4df79ec91
refs/heads/master
2020-07-11T10:33:20.952968
2019-08-27T10:53:41
2019-08-27T10:53:41
204,514,514
1
0
null
null
null
null
UTF-8
Python
false
false
417
py
import json #print( json.load(open("Indian_Number_plates.json","r")) ) #with open ('Indian_Number_plates.json') as plate: # data=json.load(plate) import urllib.request as ur tweets = [] cnt=0 for line in open('Indian_Number_plates.json', 'r'): data=json.loads(line) #print(data['content']) ur.urlretrieve(data['content'],"C:\\Users\\maste\\Desktop\\dataset\\img"+str(cnt)+".jpg") cnt+=1
[ "49042994+dawnblade97@users.noreply.github.com" ]
49042994+dawnblade97@users.noreply.github.com
594faf68337ee58b731d63469a8680468787772f
daee02c2c5d0d3848592cd9fe7dee2c1ba62415c
/hw5/test.py
615c4e16f4f2f9b83cf92d86fafa1a5dc45785ec
[]
no_license
seanbbear/SocialNetwork_Assignment
7cc9b4a6824dfb09955d998747e0e33b3bdbff3a
88fb6e9cb79a2a64b1e246a24690d14aad190972
refs/heads/master
2022-11-25T18:19:20.960473
2020-07-10T02:06:08
2020-07-10T02:06:08
278,507,592
0
0
null
null
null
null
UTF-8
Python
false
false
1,533
py
import numpy as np from tqdm import tqdm data = np.load("seg_data.npy",allow_pickle=True) def get_wordlist(data): print("---start getting wordlist---") wordlist = [] for content in tqdm(data): for word in content: wordlist.append(word) return list(set(wordlist)) def chi_square(word): pos = 0 neg = 0 shitty = 0 unshitty = 0 pos_shitty = 0 pos_unshitty = 0 neg_shitty = 0 neg_unshitty = 0 for i in data: if "韓國瑜" in i: pos += 1 if word in i: shitty += 1 pos_shitty += 1 else: unshitty += 1 pos_unshitty += 1 else: neg += 1 if word in i: shitty += 1 neg_shitty += 1 else: unshitty += 1 neg_unshitty += 1 ex = [pos * (shitty/(shitty+unshitty)), pos * (unshitty/(shitty+unshitty)), neg * (shitty/(shitty+unshitty)), neg * (unshitty/(shitty+unshitty))] ob = [pos_shitty,pos_unshitty,neg_shitty,neg_unshitty] score = 0 for i in range(3): score += ((ex[i]-ob[i]) ** 2)/ex[i] return word,score if __name__ == "__main__": chi_score = {} wordlist = get_wordlist(data) # print(wordlist[5]) for word in tqdm(wordlist): chi_score[word] = chi_square(word) # expect = expectation(word) # chi_score[word] = chi_square(expect,observe) np.save("chi_score_test.npy",chi_score)
[ "k7489759@gmail.com" ]
k7489759@gmail.com
c789cf9d1eb18ea4437af34c26ae53afb498e638
5c94e4df517745a564250f5a066d1c05dcf02c24
/car/migrations/0001_initial.py
2968b3369b930e37c84741edb8a7dba42a558fe2
[]
no_license
aysenurozbay/Airport_Transfer_with_Python_Django
e4cd4310f0121f5ecf6ca97f33c466de8ff6bc2a
e5a31d59ec6e968e996ee75542bd4891e53c466a
refs/heads/master
2023-06-05T20:43:19.860280
2021-07-02T12:06:51
2021-07-02T12:06:51
347,430,605
0
1
null
null
null
null
UTF-8
Python
false
false
1,187
py
# Generated by Django 3.1.7 on 2021-03-14 12:10 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=30)), ('keywords', models.CharField(max_length=255)), ('description', models.CharField(max_length=30)), ('status', models.CharField(choices=[('True', 'Evet'), ('False', 'Hayır')], max_length=10)), ('image', models.ImageField(blank=True, upload_to='images/')), ('slug', models.SlugField()), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('parent', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='children', to='car.category')), ], ), ]
[ "aysenurozbay1004@gmail.com" ]
aysenurozbay1004@gmail.com
1d2c120548969e949dfa2abe8beb7bdf89338787
b64e685dec5d95baad28c26b245df2bb0b45f8ed
/Data Inspection.py
9fee83b8728400884564e282e546da6b7406069b
[]
no_license
pfescriva/Chicago-Trucks-Classification
9f9f1d95a223924ced43b9d371594d3d7935eb82
40c82a93a68a01c349eea312accaf932490a0314
refs/heads/main
2023-04-04T22:57:53.053084
2021-04-10T18:20:11
2021-04-10T18:20:11
356,643,275
0
0
null
null
null
null
UTF-8
Python
false
false
5,683
py
import pandas as pd import multiprocessing as mp import sys ####### PROJECT ########### # Load the data import multiprocessing as mp import pandas as pd vehicles = pd.read_csv("C:/Users/Carmen/OneDrive/Archivos - Todo/1 - Master Statistics/Period 2/Traffic_Crashes_-_Vehicles.csv") crashes = pd.read_csv("C:/Users/Carmen/OneDrive/Archivos - Todo/1 - Master Statistics/Period 2/Traffic_Crashes_-_Crashes.csv", sep=',') # Just for confirming datasets' structure: vehicles['VEHICLE_ID'].duplicated().any() # Primary Key vehicles['CRASH_RECORD_ID'].duplicated().any() # You have crashes['CRASH_RECORD_ID'].duplicated().any() # Primary Key # Proceeding to the data join (We're stil targeting behicles, but now have more columns) df = pd.merge(vehicles, crashes, how = 'left', on = 'CRASH_RECORD_ID') # No longer needed del vehicles del crashes # Inspection df.shape # First Cleaning pd.set_option('display.max_rows', 140) df.isnull().sum() # Cleaning dataset ## I want to clear all the columns with no analytical utiliy or with a excessive ammount of empty values del df['CRASH_RECORD_ID'] del df['CRASH_UNIT_ID'] del df['VEHICLE_ID'] max_number_of_nas = 100000 set1 = df.loc[:, (df.isnull().sum() <= max_number_of_nas)] set2 = df.loc[:, (df.isnull().sum() <= max_number_of_nas)] pd.set_option('display.max_rows', 140) df.isnull().sum() # Descriptives from scipy.stats import pearsonr pearsonr(data1, data2) # ML import sklearn as sk from sklearn import tree clf = tree.DecisionTreeClassifier() clf.fit() # decision tree: Explanation from the cscience professor ### Trail - Python - Test import pandas as pd vehicles = pd.read_csv("C:/Users/Carmen/OneDrive/Archivos - Todo/1 - Master Statistics/Period 2/Traffic_Crashes_-_Vehicles.csv") crashes = pd.read_csv("C:/Users/Carmen/OneDrive/Archivos - Todo/1 - Master Statistics/Period 2/Traffic_Crashes_-_Crashes.csv", sep=',') df = pd.merge(vehicles, crashes, how='left', on ='CRASH_RECORD_ID') pd.set_option('display.max_rows', 140) df.isnull().sum() data = df.head(2000) View(data) dat = data[['CRASH_HOUR', 'INJURIES_UNKNOWN', 'DAMAGE']] dat.dropna(subset=['CRASH_HOUR', 'INJURIES_UNKNOWN', 'DAMAGE'], inplace=True) dat.isnull().sum() # Awesome x = dat[['CRASH_HOUR', 'INJURIES_UNKNOWN']] y = dat[['DAMAGE']] from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline,make_pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectKBest from sklearn import model_selection from sklearn.model_selection import GridSearchCV import warnings warnings.filterwarnings('ignore') clf = RandomForestClassifier(random_state = 10, max_features='sqrt') pipe = Pipeline([('classify', clf)]) param = {'classify__n_estimators':list(range(20, 30, 1)), 'classify__max_depth':list(range(3, 10, 1))} grid = GridSearchCV(estimator = pipe, param_grid = param, scoring = 'accuracy', cv = 10) grid.fit(x, y) print(grid.best_params_) print(grid.best_score_) ### Titanic data train_df = pd.read_csv("C:/Users/Carmen/OneDrive/Archivos - Todo/1 - Master Statistics/Period 2/train.csv") import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline,make_pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectKBest from sklearn import model_selection from sklearn.model_selection import GridSearchCV import warnings warnings.filterwarnings('ignore') train_df["Age"].fillna(train_df.Age.mean(), inplace=True) train_df["Embarked"].fillna("S", inplace=True) train_df.isnull().sum() x_train = train_df[['Pclass', 'Sex', 'Age', 'Fare', 'Embarked', 'Parch', 'SibSp']] x_train = pd.get_dummies(x_train) y_train = train_df[['Survived']] clf = RandomForestClassifier(random_state = 10, max_features='sqrt') pipe = Pipeline([('classify', clf)]) param = {'classify__n_estimators':list(range(20, 30, 1)), 'classify__max_depth':list(range(3, 10, 1))} grid = GridSearchCV(estimator = pipe, param_grid = param, scoring = 'accuracy', cv = 10) grid.fit(x_train, y_train) print(grid.best_params_) print(grid.best_score_) # End from sklearn import tree clf = tree.DecisionTreeClassifier() clf.fit() type(x) type(y['DAMAGE']) # ## Trainning - Tunning "Skicit learn works with numpy by defual" "In numpy, categorical variables need to be defines as integers or dummies(one.hot-encoding)" "NAs are np.na" "If you use NumPy you loss the names because you use nnumpy matrices" "" ## Data Partition x_train = df[['LONGITUDE','MAKE']] y_train = df['DAMAGE'] from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline,make_pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectKBest from sklearn import model_selection from sklearn.model_selection import GridSearchCV import warnings warnings.filterwarnings('ignore') clf = RandomForestClassifier(random_state = 10, max_features='sqrt', n_jobs = 5) pipe = Pipeline([('classify', clf)]) param = {'classify__n_estimators':list(range(20, 30, 1)), 'classify__max_depth':list(range(3, 10, 1))} grid = GridSearchCV(estimator = pipe, param_grid = param, scoring = 'accuracy', cv = 10) grid.fit(x, y) print(grid.best_params_) print(grid.best_score_) ## Model Evaluation # The idea is to identify the model with the highest accuracy. I a variable is an execellent predictor, # Even though, it has 80% empty values, we migth considered keeing it in! # non useful variables: ID
[ "71879463+pfescriva@users.noreply.github.com" ]
71879463+pfescriva@users.noreply.github.com
4bd493f273e1f83f2fe011829ccf0632072d72b6
5621a2215dea381e661ef141ebc09d4e1815f242
/oauth_token_manager_test.py
ae5a667cebae24c5cb8ed11d6ee809944b8c0051
[ "Apache-2.0" ]
permissive
martincochran/score-minion
7ec66b7bb7b8402e5c60c402936ceb21023d2ea6
58197798a0a3a4fbcd54ffa0a2fab2e865985bfd
refs/heads/master
2020-04-12T06:27:02.218104
2017-04-09T20:44:21
2017-04-09T20:44:21
27,320,444
0
0
null
2014-11-30T01:32:21
2014-11-30T01:12:00
null
UTF-8
Python
false
false
2,779
py
#!/usr/bin/env python # # Copyright 2014 Martin Cochran # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import test_env_setup from google.appengine.ext import testbed import oauth_token_manager class OauthTokenManagerTest(unittest.TestCase): def setUp(self): """Stub out the datastore so we can test it.""" self.testbed = testbed.Testbed() self.testbed.activate() self.testbed.init_memcache_stub() self.testbed.init_datastore_v3_stub() def tearDown(self): self.testbed.deactivate() def testMockManager(self): token_manager = oauth_token_manager.OauthTokenManager(is_mock=True) self.assertEquals('', token_manager.GetSecret()) self.assertEquals('', token_manager.GetToken()) secret = 'my secret' token = 'token for my secret' token_manager.AddSecret(secret) token_manager.AddToken(token) self.assertEquals(secret, token_manager.GetSecret()) self.assertEquals(token, token_manager.GetToken()) secret = 'new secret' token = 'token for new secret' token_manager.AddSecret(secret) token_manager.AddToken(token) self.assertEquals(secret, token_manager.GetSecret()) self.assertEquals(token, token_manager.GetToken()) # Ensure we didn't actually touch the data store. account_query = oauth_token_manager.ApiSecret.query( ancestor=oauth_token_manager.api_secret_key()).order( -oauth_token_manager.ApiSecret.date_added) oauth_secrets = account_query.fetch(10) self.assertEquals(0, len(oauth_secrets)) def testDatastoreBackedManager(self): token_manager = oauth_token_manager.OauthTokenManager() self.assertEquals('', token_manager.GetSecret()) self.assertEquals('', token_manager.GetToken()) secret = 'my secret' token = 'token for my secret' token_manager.AddSecret(secret) token_manager.AddToken(token) self.assertEquals(secret, token_manager.GetSecret()) self.assertEquals(token, token_manager.GetToken()) secret = 'new secret' token = 'token for new secret' token_manager.AddSecret(secret) token_manager.AddToken(token) self.assertEquals(secret, token_manager.GetSecret()) self.assertEquals(token, token_manager.GetToken()) if __name__ == '__main__': unittest.main()
[ "martin.cochran@gmail.com" ]
martin.cochran@gmail.com
d6499c4d42ad85ac400a5bbec98636b06be7ab7d
e9814e85c3c0ef112a99764a410555f47044e389
/views.py
7b4bd8496db19ebcf2ed11c4845ab396af3e04b5
[]
no_license
hatsem78/flask_jwt
4ed7b14f356e029302d3a48aac94e9fe6eeda8eb
28b594412eccac71cc3823f187f9ef6d5458b6cf
refs/heads/master
2021-06-10T06:00:30.821269
2021-05-19T13:47:00
2021-05-19T13:47:00
180,415,067
3
0
null
null
null
null
UTF-8
Python
false
false
125
py
from run import app from flask import jsonify @app.route('/') def index(): return jsonify({'message': 'hello, world'})
[ "ohatsembiller@kiusys.com" ]
ohatsembiller@kiusys.com
934e86330e972edcbc373ccb4c4487c22ccc2e5e
09aee268ce72d282f53fe94f42478e2b3b48127d
/multiappProject/multiappProject/wsgi.py
86941870258341acad5fe5fe9c73ac5a014b4bc7
[]
no_license
keshava519/Django_Projects
c95d0f8c55d4cc946291be6fb058b7298aefe596
99584892b9d9ec6b6395a382c684b4d036d07874
refs/heads/main
2023-02-23T03:44:32.110742
2021-01-27T15:15:13
2021-01-27T15:15:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
""" WSGI config for multiappProject project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "multiappProject.settings") application = get_wsgi_application()
[ "keshava.cadcam@gmail.com" ]
keshava.cadcam@gmail.com
9cda8fc2c01c9820f390f8122800fa8f79f4e834
e04ee5f0d78547f07d3fa4b970582ab5242a39de
/Auto test.py
4a3633b5ebff6ffa652ab77cde03a87a1ca76da2
[]
no_license
PrashantSwamiAcc/TestProject
f4786116b8c0293f95a09262712ec0cf70df73d4
2e419ec95d2ff1c0f609c2e8cf85e2b3c8be057d
refs/heads/main
2023-08-02T04:04:54.971074
2021-09-20T14:04:48
2021-09-20T14:04:48
407,182,029
0
0
null
null
null
null
UTF-8
Python
false
false
437
py
import scores from rps import rps from compute import compute from scores import tabulate tests = int(input('How many tests?')) count = 0 score = [] userplays = [] complays = [] while count <= tests: inp = compute() comp = compute() wl, inp, comp = rps(inp, comp) score.append(wl) userplays.append(inp) complays.append(comp) count += 1 test = scores.tabulate(score, userplays, complays)
[ "noreply@github.com" ]
PrashantSwamiAcc.noreply@github.com
870d46d45893fc0a9c7cc2b09129942a1f7bedd3
558f85dec459f2e67dc3ef24be551139cab63e04
/noughtpad_app/views.py
7bfa03dd6f4389f607e1831c9d432fbbddb4c51a
[ "MIT" ]
permissive
codelixir/nought-pad
28d4a30c0e5bbbee8822fcb45032717dfca635e6
79987a87070ca5c9f48303ca701d00cf0bb27eac
refs/heads/main
2023-08-13T23:00:46.628958
2021-09-23T07:57:21
2021-09-23T07:57:21
374,750,298
4
0
null
null
null
null
UTF-8
Python
false
false
2,882
py
from django.shortcuts import get_object_or_404, render from django.urls import reverse_lazy, reverse from django.views.generic import ListView, DetailView, CreateView, UpdateView, DeleteView from django.http import HttpResponseRedirect, request from django.contrib.auth.models import User from .models import Category, Note, Profile from .forms import AddNoteForm, EditNoteForm, EditProfileForm def LikeView(request, pk): note = get_object_or_404(Note, id=request.POST.get('note_id')) user = request.user if note.likes.filter(id=user.id).exists(): note.likes.remove(user) else: note.likes.add(user) return HttpResponseRedirect(reverse('note-details', args=[str(pk)])) def UserNotesView(request, pk): author = get_object_or_404(User, id=pk) author_notes = Note.objects.filter(author=author) return render(request, 'user_notes.html', {'author': author, 'author_notes': author_notes}) class HomeView(ListView): 'Render the Homepage' model = Note template_name = 'home.html' ordering = ['-timestamp'] class NoteView(DetailView): 'Render a complete view of a Note' model = Note template_name = 'note_details.html' def get_context_data(self, *args, **kwargs): note = get_object_or_404(Note, id=self.kwargs['pk']) liked = True if note.likes.filter( id=self.request.user.id).exists() else False context_data = super(NoteView, self).get_context_data(*args, **kwargs) context_data["categories"] = [cat for cat in Category.objects.all()] context_data["total_likes"] = note.total_likes() context_data["like_button"] = "btn-primary" if liked else "btn-outline-primary" return context_data class AddNoteView(CreateView): 'Add a new note' model = Note form_class = AddNoteForm template_name = 'add_note.html' class EditNoteView(UpdateView): 'Edit an existing note' model = Note form_class = EditNoteForm template_name = 'edit_note.html' class DeleteNoteView(DeleteView): 'Delete a note' model = Note template_name = 'delete_note.html' success_url = reverse_lazy('home') class EditProfileView(UpdateView): 'Edit the public profile' model = Profile template_name = 'edit_profile.html' form_class = EditProfileForm success_url = reverse_lazy('home') def get_object(self): user = self.request.user if user.is_authenticated: return user.profile else: return None class CreateProfileView(CreateView): 'Edit the public profile when existing profile is blank' model = Profile template_name = 'edit_profile.html' form_class = EditProfileForm success_url = reverse_lazy('home') def form_valid(self, form): form.instance.user = self.request.user return super().form_valid(form)
[ "pahulpreet.singh@research.iiit.ac.in" ]
pahulpreet.singh@research.iiit.ac.in
ae907a5ae9a5d33fb7689d03edee9680d427a226
4ba2d66fb4874a6e25260e1a530f8b27ac1fc77b
/main.py
5023f3a48d5656adaa27ac53e2d50c18b40c76b2
[]
no_license
roscale/stochastic-process-project1-part2
37073bf4b4db6cc692b8f9258cf85fab085e99a6
3988e65a2c9eadc7ec239bde010e545e020b4a14
refs/heads/master
2021-05-21T02:27:05.376517
2020-05-08T19:40:00
2020-05-08T19:40:00
252,501,701
0
0
null
null
null
null
UTF-8
Python
false
false
4,476
py
from sys import stderr from experiment import Experiment, Proportion from util import * simulation = input("Simulation [wlin, wfull, wbig, p_transmission, p_interaction, p_vaccination, p_meds]: ") if simulation == "wlin": experiment = Experiment("Simulation: Wlin") experiment.read_adjacency_matrix(make_lin(6)) for _ in range(10): experiment.soft_reset() experiment.set_probabilities(0.5, 0.2) experiment.set_initially_infected(Proportion.VALUE, 1) experiment.prepare_chain() while not experiment.virus_is_gone(): experiment.step() experiment.take_mean() experiment.plot() elif simulation == "wfull": experiment = Experiment("Simulation: Wfull") experiment.read_adjacency_matrix(make_full(6)) for _ in range(10): experiment.soft_reset() experiment.set_probabilities(0.5, 0.2) experiment.set_initially_infected(Proportion.VALUE, 1) experiment.prepare_chain() while not experiment.virus_is_gone(): experiment.step() experiment.take_mean() experiment.plot() elif simulation == "wbig": experiment = Experiment("Simulation: Wbig") experiment.read_adjacency_matrix_from_file("Wbig_sparse.txt") for _ in range(50): experiment.soft_reset() experiment.set_probabilities(0.5, 0.2) experiment.set_initially_infected(Proportion.PERCENTAGE, 0.5) experiment.prepare_chain() while not experiment.virus_is_gone(): experiment.step() experiment.take_mean() experiment.plot() elif simulation == "p_transmission": experiment = Experiment("Simulation: Réduction de la probabilité de transmission") experiment.read_adjacency_matrix_from_file("Wbig_sparse.txt") experiment.set_number_of_beds(140, 0.17) for _ in range(10): experiment.soft_reset() experiment.set_probabilities(0.25, 0.2) experiment.set_initially_infected(Proportion.PERCENTAGE, 0.5) experiment.prepare_chain() while not experiment.virus_is_gone(): experiment.step() experiment.take_mean() experiment.plot() print(f"Maximum hospitalised: {experiment.maximum_occupied_beds}/{experiment.beds}") elif simulation == "p_interaction": experiment = Experiment("Simulation: Réduction des interactions entre les individus") experiment.read_adjacency_matrix_from_file("Wbig_sparse.txt") experiment.set_number_of_beds(140, 0.17) experiment.reduce_interactions(0.33) for _ in range(10): experiment.soft_reset() experiment.set_probabilities(0.5, 0.2) experiment.set_initially_infected(Proportion.PERCENTAGE, 0.5) experiment.prepare_chain() while not experiment.virus_is_gone(): experiment.step() experiment.take_mean() experiment.plot() print(f"Maximum hospitalised: {experiment.maximum_occupied_beds}/{experiment.beds}") elif simulation == "p_vaccination": experiment = Experiment("Simulation: Vaccination d'un pourcentage fixe d'individus") experiment.read_adjacency_matrix_from_file("Wbig_sparse.txt") experiment.set_number_of_beds(140, 0.17) for _ in range(10): experiment.soft_reset() experiment.set_probabilities(0.5, 0.2) experiment.set_initially_infected(Proportion.PERCENTAGE, 0.5) experiment.vaccinate_people(22.0) experiment.prepare_chain() while not experiment.virus_is_gone(): experiment.step() experiment.take_mean() experiment.plot() print(f"Maximum hospitalised: {experiment.maximum_occupied_beds}/{experiment.beds}") elif simulation == "p_meds": experiment = Experiment("Simulation: Traitement avec médicaments pour les patients hospitalisés") experiment.read_adjacency_matrix_from_file("Wbig_sparse.txt") experiment.set_number_of_beds(140, 0.17) for _ in range(10): experiment.soft_reset() experiment.set_probabilities(0.5, 0.2) experiment.set_initially_infected(Proportion.PERCENTAGE, 0.5) experiment.give_meds_to_patients(2.5) experiment.prepare_chain() while not experiment.virus_is_gone(): experiment.step() experiment.take_mean() experiment.plot() print(f"Maximum hospitalised: {experiment.maximum_occupied_beds}/{experiment.beds}") else: print("Invalid simulation", file=stderr)
[ "roscaalex19@gmail.com" ]
roscaalex19@gmail.com
0d68bfb91ed965310a9d735f502d4310075538a4
bb2e6e0f1c00dd5e9dd18a71619ea895d6fe07ba
/functional_tests.py
8f085c7f9e34957c125fdeabae89a53f1e219b19
[]
no_license
nauman3128/tdd
88fd16c2238a9a8e22758a3cae6a375a0451d3de
3ef1a623461422b8346ad4b481dd3503b01b93a6
refs/heads/master
2016-09-15T19:06:52.502180
2015-07-28T12:38:50
2015-07-28T12:38:50
39,830,718
0
0
null
null
null
null
UTF-8
Python
false
false
1,367
py
from selenium import webdriver import unittest class NewVisitorTest(unittest.TestCase): def setUp(self): # self.browser = webdriver.Firefox() self.browser.implicitly_wait(3) def tearDown(self): # self.browser.quit() def test_can_start_a_list_and_retrieve_it_later(self): # Edith has heard about a cool new online to-do app. She goes # to check out its homepage self.browser.get('http://localhost:8000') # She notices the page title and header mention to-do lists self.assertIn('To-Do', self.browser.title) self.fail('Finish the test!') # She is invited to enter a to-do item straight away # She types "Buy peacock feathers" into a text box (Edith's hobby # is tying fly-fishing lures) # When she hits enter, the page updates, and now the page lists # "1: Buy peacock feathers" as an item in a to-do list # There is still a text box inviting her to add another item. She # enters "Use peacock feathers to make a fly" (Edith is very methodical) # The page updates again, and now shows both items on her list # Edith wonders whether the site will remember her list. Then she sees # that the site has generated a unique URL for her -- there is some # explanatory text to that effect. # She visits that URL - her to-do list is still there. # Satisfied, she goes back to sleep if __name__ == '__main__': # unittest.main()
[ "nauman.qc@gmail.com" ]
nauman.qc@gmail.com
722b478c6cbe6b6ada0f907f795d36f9eee81280
08f4533b76317c304cbf6d3bc30df5f760235a23
/week1/day6/CakeThief.py
9956bfee383049ca61719c9fc39f4ecf22dd82ef
[]
no_license
surajkumar19/Competitive-Programming
49861ee250e4b4918234c5592e6dc1c4690404b3
43babbc8a16d1d38ed9ef91b3b83a55f9ec8bfb3
refs/heads/master
2020-03-21T13:04:42.969008
2018-07-21T09:25:16
2018-07-21T09:25:16
138,586,930
0
0
null
null
null
null
UTF-8
Python
false
false
2,267
py
# O(mn) import unittest import math def max_duffel_bag_value(cake_tuples, weight_capacity): maxValuesAtCapacities = [0]*(weight_capacity+1) for currentCapacity in range(weight_capacity+1): currentMaxValue = 0 for cakeType in cake_tuples: if cakeType[0] == 0 and cakeType[1] != 0: return math.inf if (cakeType[0]<=currentCapacity): maxValueUsingCake = cakeType[1]+maxValuesAtCapacities[currentCapacity-cakeType[0]] currentMaxValue = max(maxValueUsingCake, currentMaxValue) maxValuesAtCapacities[currentCapacity] = currentMaxValue; # print(maxValuesAtCapacities) return maxValuesAtCapacities[weight_capacity] # Tests class Test(unittest.TestCase): def test_one_cake(self): actual = max_duffel_bag_value([(2, 1)], 9) expected = 4 self.assertEqual(actual, expected) def test_two_cakes(self): actual = max_duffel_bag_value([(4, 4), (5, 5)], 9) expected = 9 self.assertEqual(actual, expected) def test_only_take_less_valuable_cake(self): actual = max_duffel_bag_value([(4, 4), (5, 5)], 12) expected = 12 self.assertEqual(actual, expected) def test_lots_of_cakes(self): actual = max_duffel_bag_value([(2, 3), (3, 6), (5, 1), (6, 1), (7, 1), (8, 1)], 7) expected = 12 self.assertEqual(actual, expected) def test_value_to_weight_ratio_is_not_optimal(self): actual = max_duffel_bag_value([(51, 52), (50, 50)], 100) expected = 100 self.assertEqual(actual, expected) def test_zero_capacity(self): actual = max_duffel_bag_value([(1, 2)], 0) expected = 0 self.assertEqual(actual, expected) def test_cake_with_zero_value_and_weight(self): actual = max_duffel_bag_value([(0, 0), (2, 1)], 7) expected = 3 self.assertEqual(actual, expected) def test_cake_with_non_zero_value_and_zero_weight(self): actual = max_duffel_bag_value([(0, 5)], 5) expected = float('inf') print(expected) self.assertEqual(actual, expected) unittest.main(verbosity=2)
[ "noreply@github.com" ]
surajkumar19.noreply@github.com
cdfc510623cc71cb3b4da894aa9cd0bf95d30739
ecb088fd0f1929137e1b646d6d2b82de37028090
/_22_Exercise32.py
0ed733c27ae0bd17e27102abd6c535b615816aed
[]
no_license
divanshudodeja/Learn-Python-The-Hard-Way
43b5cebed388c3107e5949518a2d6b66843a3f48
bddf63afee93aa28efdf3e5b667342e5bd2a9370
refs/heads/master
2020-07-01T19:39:13.423226
2019-08-31T15:08:17
2019-08-31T15:08:17
201,276,020
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
the_count = [1, 2, 3, 4, 5] fruits = ['apples', 'oranges', 'pears', 'apricots'] change = [1, 'pennies', 2, 'dimes', 3, 'quarters'] for number in the_count: print("This is count %d" % number) for fruit in fruits: print("A fruit of type: %s" % fruit) for i in change: print("I got %r" % i) elements = [] for i in range(0, 6): elements.append(i) for i in range(0,6): print("Element was : %d" % i)
[ "divanshu.dodeja@gmail.com" ]
divanshu.dodeja@gmail.com
057c350c8121bac5c0707c382478c05830f0c53d
a9e335ac27d09bc17f3a18109ca372f110bf5621
/students/Y2334/Kotlyarova Sofya/prac_1.3/Prac/Prac/asgi.py
108db9e3b02d955b4dfa506e6b5ebd48990b564f
[]
no_license
sofkot/ITMO_FSPO_PP_web_development_2020-2021
5f072a50e39d878dc7e7ba46cb50f5ccefd166c9
f5e6b204c22c58e19ab97a15a3f8f5c6efa4b370
refs/heads/main
2023-06-16T05:16:48.249937
2021-07-01T17:29:59
2021-07-01T17:29:59
345,800,240
0
0
null
2021-03-08T21:29:35
2021-03-08T21:29:34
null
UTF-8
Python
false
false
385
py
""" ASGI config for Prac project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Prac.settings') application = get_asgi_application()
[ "sofiko.kotliarowa@gmail.com" ]
sofiko.kotliarowa@gmail.com
d5bcb2225e95be7a585ac878101fee2ca086c0ef
2292c300925ea481643ed9ec24f14bc862d06463
/undertow/tunnel.py
57f1429d0c9d679abc091a00786d9fe15b0ff097
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
Morgan243/Undertow
68316bb7650a7484eae82a30a921fd2f1a460116
b5b242cb1eff60bdf0e94dd5c1ac54ed4c2a6b0b
refs/heads/master
2021-01-19T11:33:09.734781
2017-04-11T20:26:55
2017-04-11T20:26:55
76,740,812
0
0
null
null
null
null
UTF-8
Python
false
false
1,126
py
from undertow.net_core.ssh_tunnel import tunnel_to import argparse if __name__ == """__main__""": parser = argparse.ArgumentParser() parser.add_argument('--user', dest='ssh_user', type=str, default=None) parser.add_argument('--host', dest='ssh_host', type=str, default=None) parser.add_argument('--port', dest='ssh_port', type=int, default=22) parser.add_argument('--remote-port', dest='remote_port', type=int, default=1337) #parser.add_argument('--proxy-user', dest='proxy_user', # type=str, default=None) #parser.add_argument('--proxy-path', dest='proxy_path_str', # type=str, default=None) #parser.add_argument('--list-known-machines', dest='list_machines', # action='store_true', # default=False) args = parser.parse_args() tunnel = tunnel_to(ssh_host=args.ssh_host, ssh_port=args.ssh_port, user=args.ssh_user, remote_bind_port=args.remote_port) print(tunnel)
[ "morgansstuart243@gmail.com" ]
morgansstuart243@gmail.com
cb24bf738fec8bda1d40899a49d44e4de04b3312
a2cbba69fcc84de566e750f455d1b8d04f841552
/engine/nucleo.py
ded30edab020379844e45688f0bc41a601f95d6b
[]
no_license
caferrari/engine2d-python
37627ea4da769bb1b28d02f1c7eb14d298bce65b
ee79b2909beb62aee815f7595572b01f69a44e33
refs/heads/master
2021-04-27T00:28:07.972427
2013-06-06T14:08:53
2013-06-06T14:08:53
10,527,829
1
0
null
null
null
null
UTF-8
Python
false
false
2,539
py
import pygame, input, colisao from pygame.locals import * from threading import Thread class Engine: """ """ def __init__ (self, w, h, titulo): pygame.init() window = pygame.display.set_mode((w, h), HWSURFACE|DOUBLEBUF) pygame.mouse.set_visible(False) self.nome = titulo self.dimensoes = [w, h] self.tela = pygame.display.get_surface() self.layers = [[],[],[],[],[],[]] self.loop = 1 self.sprites = {} self.clock = 1 self.input = input.Input(self) self.clock = pygame.time.get_ticks() self.lastUpdate = self.clock self.conteiner = {} self.grupocolisao = [] self.colisao = colisao.Colisao(self) print "-- Engine Carregada" def flip (self): pygame.display.flip() self.tela.fill([255,255,255]) self.clock = pygame.time.get_ticks() def addGrupoColisao(self, t1, t2, tipo="qq"): self.grupocolisao.append([t1, t2, tipo]) def updateAll(self): #print self.layers[5][0].colidindo self.input.eventos() try: tmp = 1000 / (self.clock - self.lastUpdate) except: tmp = 0 self.lastUpdate = self.clock cont = 0 for layer in self.layers: cont = cont + len(layer) for ator in layer: if ator.ativo: ator.update() pygame.display.set_caption( self.nome + " Atores: " + str(cont) + " FPS: " + str(tmp) ) def desenhaAll(self): for layer in self.layers: for ator in layer: if ator.ativo: ator.desenhar() def criaEstado(self, arquivo, animado, fps=15, quadros=[1,1], colorkey=[255,0,255]): import estado return estado.Estado(self, arquivo, animado, fps, quadros, colorkey) def criaAtor(self, nome, tipo, layer, posicao): import ator return ator.Ator(self, nome, tipo, layer, posicao) def loadAtor(self, config): print "Carregando ator: ", config.ator["nome"] tmp = self.criaAtor(config.ator["nome"], config.ator["tipo"], config.ator["layer"], config.ator["posicao"]) for dados in config.ator["estados"]: try: animado = dados["animado"] except: animado = True tmp.addEstado(dados["nome"], self.criaEstado(dados["arquivo"], animado, dados["updatesec"], dados["quadroswh"], dados["colorkey"])) config.ator["init"](tmp) tmp.colisao = config.ator["colisao"] tmp.funcoes = config.ator["funcoes"] def start(self): print "-- Inicializando o loop Principal" self.colisao.start() while (self.loop): self.updateAll() self.desenhaAll() self.flip() self.colisao.stop() print "-- Fim do jogo"
[ "caferrari@gmail.com" ]
caferrari@gmail.com
6ccf069eeabedea4fc3fa15f19353da270bffd57
5dc1f6f7663230f73b381a5228bb00a5dfa53c1f
/Research Work/Training/Conversational_Emotion_Prediction.py
d1172b1ac91f457728bdeeedf02d49cbe7a5dc13
[]
no_license
sadilchamishka/EmotionFYP
4b6108a6aaf7ef06d6ee2c6f13c78e007b0fb930
eab98a01f17e2af6190a9a71803c404e3dc410e9
refs/heads/master
2023-02-22T21:27:27.821660
2021-02-01T12:02:34
2021-02-01T12:02:34
333,349,476
4
1
null
2021-02-01T12:02:35
2021-01-27T08:14:13
Python
UTF-8
Python
false
false
8,241
py
import numpy as np np.random.seed(1234) import torch import torch.nn as nn from torch.utils.data import DataLoader from torch.utils.data.sampler import SubsetRandomSampler import torch.optim as optim from datetime import datetime import argparse import time import pickle from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report, precision_recall_fscore_support from torch.utils.data import Dataset from torch.nn.utils.rnn import pad_sequence import pandas as pd from ConversationModel import BiModel class IEMOCAPDataset(Dataset): def __init__(self, path, train=True): self.videoAudio, self.videoLabels, self.videoSpeakers, self.trainVid, self.testVid = pickle.load(open('/content/drive/My Drive/EmotionRNN2/dataformodel.pkl', 'rb'), encoding='latin1') ''' joy, trust, fear, surprise, sadness, anticipation, anger, and disgust.= basic 8 emotions label index mapping = {'hap':0, 'sad':1, 'neu':2, 'ang':3, 'exc':4, 'fru':5} -= we have here ''' self.keys = [x for x in (self.trainVid if train else self.testVid)] self.len = len(self.keys) def __getitem__(self, index): vid = self.keys[index] return torch.FloatTensor(self.videoAudio[vid]),\ torch.FloatTensor([[1,0] if x=='M' else [0,1] for x in\ self.videoSpeakers[vid]]),\ torch.FloatTensor([1]*len(self.videoLabels[vid])),\ torch.LongTensor(self.videoLabels[vid]),\ vid def __len__(self): return self.len def collate_fn(self, data): dat = pd.DataFrame(data) return [pad_sequence(dat[i]) if i<2 else pad_sequence(dat[i], True) if i<4 else dat[i].tolist() for i in dat] def get_train_valid_sampler(trainset, valid=0.1): size = len(trainset) idx = list(range(size)) split = int(valid*size) return SubsetRandomSampler(idx[split:]), SubsetRandomSampler(idx[:split]) def get_IEMOCAP_loaders(path, batch_size=32, valid=0.1, num_workers=0, pin_memory=False): trainset = IEMOCAPDataset(path=path) train_sampler, valid_sampler = get_train_valid_sampler(trainset, valid) train_loader = DataLoader(trainset, batch_size=batch_size, sampler=train_sampler, collate_fn=trainset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) valid_loader = DataLoader(trainset, batch_size=batch_size, sampler=valid_sampler, collate_fn=trainset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) testset = IEMOCAPDataset(path=path, train=False) test_loader = DataLoader(testset, batch_size=batch_size, collate_fn=testset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) return train_loader, valid_loader, test_loader def train_or_eval_model(model, loss_function, dataloader, epoch, optimizer=None, train=False): losses = [] preds = [] labels = [] masks = [] alphas, alphas_f, alphas_b, vids = [], [], [], [] assert not train or optimizer!=None if train: model.train() else: model.eval() for data in dataloader: if train: optimizer.zero_grad() # import ipdb;ipdb.set_trace() acouf, qmask, umask, label =\ [d.cuda() for d in data[:-1]] if cuda else data[:-1] #log_prob = model(torch.cat((textf,acouf,visuf),dim=-1), qmask,umask) # seq_len, batch, n_classes log_prob, alpha, alpha_f, alpha_b = model(acouf, qmask,umask) # seq_len, batch, n_classes lp_ = log_prob.transpose(0,1).contiguous().view(-1,log_prob.size()[2]) # batch*seq_len, n_classes labels_ = label.view(-1) # batch*seq_len loss = loss_function(lp_, labels_, umask) pred_ = torch.argmax(lp_,1) # batch*seq_len preds.append(pred_.data.cpu().numpy()) labels.append(labels_.data.cpu().numpy()) masks.append(umask.view(-1).cpu().numpy()) losses.append(loss.item()*masks[-1].sum()) if train: loss.backward() optimizer.step() else: alphas += alpha alphas_f += alpha_f alphas_b += alpha_b vids += data[-1] if preds!=[]: preds = np.concatenate(preds) labels = np.concatenate(labels) masks = np.concatenate(masks) else: return float('nan'), float('nan'), [], [], [], float('nan'),[] avg_loss = round(np.sum(losses)/np.sum(masks),4) avg_accuracy = round(accuracy_score(labels,preds,sample_weight=masks)*100,2) avg_fscore = round(f1_score(labels,preds,sample_weight=masks,average='weighted')*100,2) return avg_loss, avg_accuracy, labels, preds, masks,avg_fscore, [alphas, alphas_f, alphas_b, vids] if __name__ == '__main__': #batch_size = args. batch_size = 2 n_classes = 6 #cuda = args.cuda cuda = False #n_epochs = args.epochs n_epochs = 100 D_m = 2000 D_g = 300 D_p = 300 D_e = 200 D_h = 200 D_a = 200 # concat attention model = BiModel(D_m, D_g, D_p, D_e, D_h, n_classes=n_classes, listener_state=False, context_attention='general', dropout_rec=0.1, dropout=0.1) if cuda: model.cuda() loss_weights = torch.FloatTensor([ 1/0.086747, 1/0.144406, 1/0.227883, 1/0.160585, 1/0.127711, 1/0.252668, ]) loss_function = MaskedNLLLoss(loss_weights) optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=0.00001) train_loader, valid_loader, test_loader =\ get_IEMOCAP_loaders('/content/drive/My Drive/Emotion RNN/IEMOCAP_features_raw.pkl', valid=0.1, batch_size=batch_size, num_workers=2) best_test, best_label, best_pred, best_mask = None, None, None, None best_uwa = None for e in range(n_epochs): start_time = time.time() train_loss, train_acc, _,_,_,train_fscore,_= train_or_eval_model(model, loss_function, train_loader, e, optimizer, True) valid_loss, valid_acc, _,_,_,val_fscore,_= train_or_eval_model(model, loss_function, valid_loader, e) test_loss, test_acc, test_label, test_pred, test_mask, test_fscore, attentions = train_or_eval_model(model, loss_function, test_loader, e) dict1 = classification_report(test_label,test_pred,sample_weight=test_mask,digits=4,output_dict=True) test_uwa = dict1['macro avg']['recall'] print(test_uwa) if test_acc > 61 and test_uwa > 0.58: print("***"+str(test_acc)+"***"+str(test_uwa)+"***") print(classification_report(test_label,test_pred,sample_weight=test_mask,digits=4)) print(confusion_matrix(test_label,test_pred,sample_weight=test_mask)) torch.save(model.state_dict(), '/content/drive/My Drive/Emotion RNN/sadil/'+str(datetime.now())+"-"+str(test_acc)+"-"+str(test_uwa)+'rnn_model_loss_wiegts.pt') print('epoch {} train_loss {} train_acc {} train_fscore{} valid_loss {} valid_acc {} val_fscore{} test_loss {} test_acc {} test_fscore {} time {}'.\ format(e+1, train_loss, train_acc, train_fscore, valid_loss, valid_acc, val_fscore,\ test_loss, test_acc, test_fscore, round(time.time()-start_time,2)))
[ "sandilchamishka@gmail.com" ]
sandilchamishka@gmail.com
c1cb1396dd88ef6fbed0176a71aed933dc22faff
aa41762b5ffd4508edda81fc340d7781c9c24b93
/Serial Communiction/MicroMojo-Py/micromojo/controller.py
e23f95abb7c15d0478e4224094e303d7b783f9cb
[]
no_license
EllenWho/MicroMojo-for-Alchitry-labs
918c87949059b35c311424da078ff9da93ff9fb4
b16eca47a6f916bf39ce7679cc46a0d877b1443e
refs/heads/master
2023-02-18T22:11:33.443601
2021-01-24T17:13:05
2021-01-24T17:13:05
277,958,282
0
0
null
null
null
null
UTF-8
Python
false
false
6,301
py
from micromojo import signals from micromojo import regint # Modified by Ziyi Hu to fit Mojo, marked some parts to choose between Au and Cu. # line 20, line 22, line 40, line 50 to line 52, line 165 to line 171. class MicroFPGA: def __init__(self, n_lasers, n_ttls, n_servos, n_pwms, n_ais): self._serial = regint.RegisterInterface() self.device = self._serial.get_device() self._lasers = [] self._ttls = [] self._servos = [] self._pwms = [] self._ais = [] if self._serial.is_connected(): self.version = self._serial.read(signals.ADDR_VER) # self.id = self._serial.read(signals.ADDR_ID) if (self.version == signals.CURR_VER): #and (self.id == signals.ID_AU or self.id == signals.ID_CU): # instantiates lasers for i in range(n_lasers): self._lasers.append(signals.LaserTrigger(i, self._serial)) # instantiates TTLs for i in range(n_ttls): self._ttls.append(signals.Ttl(i, self._serial)) # instantiates lasers for i in range(n_servos): self._servos.append(signals.Servo(i, self._serial)) # instantiates lasers for i in range(n_pwms): self._pwms.append(signals.Pwm(i, self._serial)) # instantiates lasers # if self.id == signals.ID_AU: for i in range(n_ais): self._ais.append(signals.Analog(i, self._serial)) else: self.disconnect() if self.version != signals.CURR_VER: raise Warning('Wrong version: expected '+str(signals.CURR_VER)+\ ', got '+str(self.version)+'. The port has been disconnected') # if self.id != signals.ID_AU and self.id != signals.ID_CU: # raise Warning('Wrong board id: expected '+str(signals.ID_AU)+\ # ' (Au) or '+str(signals.ID_CU)+' (Cu), got '+str(self.id)+'. The port has been disconnected') def disconnect(self): self._serial.disconnect() def is_connected(self): return self.__serial.is_connected() def get_number_lasers(self): return len(self._lasers) def get_number_ttls(self): return len(self._ttls) def get_number_servos(self): return len(self._servos) def get_number_pwms(self): return len(self._pwms) def get_number_analogs(self): return len(self._ais) def set_ttl_state(self, channel, value): if channel >= 0 and channel < self.get_number_ttls(): return self._ttls[channel].set_state(value) else: return False def get_ttl_state(self, channel): if channel >= 0 and channel < self.get_number_ttls(): return self._ttls[channel].get_state() else: return -1 def set_servo_state(self, channel, value): if channel >= 0 and channel < self.get_number_servos(): return self._servos[channel].set_state(value) else: return False def get_servo_state(self, channel): if channel >= 0 and channel < self.get_number_servos(): return self._servos[channel].get_state() else: return -1 def set_pwm_state(self, channel, value): if channel >= 0 and channel < self.get_number_pwms(): return self._pwms[channel].set_state(value) else: return False def get_pwm_state(self, channel): if channel >= 0 and channel < self.get_number_pwms(): return self._pwms[channel].get_state() else: return -1 def get_analog_state(self, channel): if channel >= 0 and channel < self.get_number_analogs(): return self._ais[channel].get_state() else: return -1 def set_mode_state(self, channel, value): if channel >= 0 and channel < self.get_number_lasers(): return self._lasers[channel].set_mode(value) else: return False def get_mode_state(self, channel): if channel >= 0 and channel < self.get_number_lasers(): return self._lasers[channel].get_mode() else: return -1 def set_duration_state(self, channel, value): if channel >= 0 and channel < self.get_number_lasers(): return self._lasers[channel].set_duration(value) else: return False def get_duration_state(self, channel): if channel >= 0 and channel < self.get_number_lasers(): return self._lasers[channel].get_duration() else: return -1 def set_sequence_state(self, channel, value): if channel >= 0 and channel < self.get_number_lasers(): return self._lasers[channel].set_sequence(value) else: return False def get_sequence_state(self, channel): if channel >= 0 and channel < self.get_number_lasers(): return self._lasers[channel].get_sequence() else: return -1 def set_laser_state(self, channel, mode, duration, sequence): if channel >= 0 and channel < self.get_number_lasers(): return self._lasers[channel].set_state(mode, duration, sequence) else: return False def get_laser_state(self, channel): if channel >= 0 and channel < self.get_number_lasers(): return self._lasers[channel].get_state() else: return [-1,-1,-1] # def get_id(self): # if self.id == signals.ID_AU: # return 'Au' # elif self.id == signals.ID_CU: # return 'Cu' # else: # return 'Unknown'
[ "noreply@github.com" ]
EllenWho.noreply@github.com
6971c88f5af8b4f2695f6858174153b5bf96ab88
34a5c407030485d38346c082006ab111ef71e55f
/dtools/datamirror.py
5ad363a90ac3b98744e058fc03688003f323a6f8
[ "Apache-2.0" ]
permissive
maguelo/dtools
cbd22af60562fc6e52100dd2fba13a83f8390a65
21926c8bdddcff33ed27000869f31b819f221d50
refs/heads/master
2023-06-18T13:24:51.663298
2021-07-15T09:46:19
2021-07-15T09:46:19
350,441,129
0
0
null
null
null
null
UTF-8
Python
false
false
2,160
py
from datetime import datetime class DatasetMirror(): def __init__(self, target=None, ignore_columns = []): self.ACTIONS_DICT = {"drop_columns":self.drop_columns, "apply_fcn":self.apply_fcn} self._actions = [] self.ignore_columns=ignore_columns self._fcn={} self.target = target def set_ignore_columns(self, ignore_columns): self.ignore_columns = set(list(self.ignore_columns) + ignore_columns) def register_function(self, name, fcn): if name in self._fcn: raise ValueError("Duplicated function: {}".format(name)) self._fcn[name] = fcn def _ignore_columns(self, columns): columns = set(columns) # Get new set with elements that are only in a but not in b return list(columns.difference(self.ignore_columns)) def drop_columns(self,data, columns, is_training=True, ignore_column_enabled=True): columns = self.__common_pre_actions("drop_columns",columns, is_training, ignore_column_enabled) return data.drop(columns, axis=1) def __common_pre_actions(self, fcn_name, columns, is_training, ignore_column_enabled): if ignore_column_enabled: columns = self._ignore_columns(columns) if is_training: self._actions.append((fcn_name, columns)) return columns def list_transform(self): for action in self._actions: print ("{}:\n\tparams: {}\n".format(action[0],action[1:])) def transform(self, data, is_training=False): for action in self._actions: data=self.ACTIONS_DICT[action[0]](data,*action[1:], is_training=is_training) return data def apply_fcn(self, fcn_name, data, columns=[], params={}, is_training=True, ignore_column_enabled=True): if ignore_column_enabled: columns = self._ignore_columns(columns) if is_training: self._actions.append(("apply_fcn",fcn_name, columns, params)) data=self._fcn[fcn_name](data, columns, **params) return data
[ "maguelo@stark-2.local" ]
maguelo@stark-2.local
310de0fac2044190438d822293e99c96469c7b6b
10e7464b60f4ad548218f3be5c52447e68358a14
/Research Simulations/smartgrid_coop_research/simulation_notebook/nrg_pubsub_ex.py
349b5a4955dae17d0fe937937ff38a6f4a358d7f
[]
no_license
hlopez058/PHD
b5563eca3d6c399b4cf9b78117836a2822601058
49ccfab66f7141650b997f3b18cfca3871020306
refs/heads/master
2022-12-11T02:51:11.217469
2022-01-15T14:17:29
2022-01-15T14:17:29
118,447,682
3
2
null
2022-12-08T02:20:42
2018-01-22T11:21:42
HTML
UTF-8
Python
false
false
1,913
py
import threading import paho.mqtt.client as mqtt import json import pandas as pd import time mqttBroker = "localhost" mqttPort = 1883 # port for mosquitto broker client = mqtt.Client("client1") # create new instance msg_dict = [] # create a list to store the messages def main(): client.on_connect = on_connect # Define callback function for successful connection client.on_message = on_message # Define callback function for receipt of a message client.connect(mqttBroker, mqttPort, 60) # Connect to the broker client.loop_forever() # Start networking daemon def on_connect(client, userdata, flags, rc): print("Connected with result code {0}".format(str(rc))) client.subscribe("INFO") def on_message(client, userdata, msg): # convert msg to json data = json.loads(msg.payload) # check if data is in dict if not any(msg['time'] == data['time'] and msg['id'] == data['id'] for msg in msg_dict): # store data in a dictionary msg_dict.append(data) def thread_process_msgs(id): while True: try: df = pd.DataFrame.from_records(msg_dict) tp = df[df['kW'] > 0].groupby(['time']).sum() tc = df[df['kW'] < 0].groupby(['time']).sum() # itterate through values of tp for index, row in tp.iterrows(): # update df with tp at time index df.loc[df['time'] == index, 'tp'] = row['kW'] for index, row in tc.iterrows(): # update df with tc at time index df.loc[df['time'] == index, 'tc'] = row['kW'] time.sleep(2) except Exception as e: print(e) if __name__ == '__main__': threading.Thread(target=thread_process_msgs, args=(1,)).start() main() p2p_meter_msg = { 'time': 1637984408, 'qos': 0, 'id': 1, 'kW': 0.12, }
[ "" ]
2a0373b7b4a522bd639b6871e3dcae7b1300d29e
e98018ca78ebdda8827a1ac3801c91aaceade99f
/exercise_4.py
edaf418a4c0163f50ad778dd263fe6c7416330a5
[]
no_license
oddsun/pragmatic
6b8f586ae2732dcea52031549650993409df7550
922f77119e68c9484ddf52ee02cde0b96676bf89
refs/heads/master
2023-06-07T04:56:21.240254
2021-06-25T02:22:45
2021-06-25T02:22:45
379,135,443
0
0
null
null
null
null
UTF-8
Python
false
false
1,299
py
import turtle from functools import partial def parse_line(line) -> None: """ Parse a line of command :param line: line of commands to parse, assumption: command and arg separated by a space :return: None """ cmd_lst = line.split(" ") arg = None if len(cmd_lst) == 1: cmd = cmd_lst[0] elif len(cmd_lst) == 2: cmd, arg = cmd_lst else: raise NotImplementedError('Command format not accepted! Only accepting "CMD" or "CMD ARG".') try: func = CMD_FUNC_MAP[cmd] except KeyError: raise KeyError('Unknown command: ' + cmd) if arg is not None: func(arg) else: func() def pen(size=2): turtle.pen(pensize=size) def draw(distance, to_angle=0): turtle.setheading(to_angle=to_angle) turtle.forward(distance=int(distance)) CMD_FUNC_MAP = { 'P': pen, 'D': turtle.pendown, 'W': partial(draw, to_angle=180), 'N': partial(draw, to_angle=90), 'E': partial(draw, to_angle=0), 'S': partial(draw, to_angle=270), 'U': turtle.penup } def parse_file(fp): with open(fp) as f: content = f.read() for line in content.split('\n'): parse_line(line) def main(): parse_file('ex4.txt') if __name__ == '__main__': main() input()
[ "1161465+oddsun@users.noreply.github.com" ]
1161465+oddsun@users.noreply.github.com
bee6112a5b8cd39d5f373d237af948f353fa884f
4133bd4de741900a599d2acede88c14589652454
/listas/media.py
e3a096bcc39049cdddc47f08c5b348e3b3d2c5b0
[]
no_license
victorvhs/zumbi_curso
5659a8fbc352ec4174230cda0542957951fa4ba8
3afb363874cca2286615d3595c5f50efc865cde1
refs/heads/master
2021-06-03T02:36:47.847231
2021-05-21T23:28:19
2021-05-21T23:28:19
64,033,054
0
0
null
null
null
null
UTF-8
Python
false
false
199
py
# -*- coding: utf-8 -*- #Média de 5 numeros dentro de uma lista notas = [10,10,10,10,10] soma = 0 i = 0 while i < 5: soma = soma + notas[i] i+=1 media = soma / i print( "Media %5.2f" %media)
[ "victor.h.s.reis@gmail.com" ]
victor.h.s.reis@gmail.com
3c4dec3da540fb6d60c5ede62ebdc2f8d3f62931
ded10c2f2f5f91c44ec950237a59225e8486abd8
/.history/2/matrix_squaring_20200423124213.py
52623136a0f6bca492d83b1518d16106b00db3aa
[]
no_license
jearistiz/Statistical-Physics-Projects
276a86407b32ded4e06b32efb2fadbd8eff8daed
d9c5b16a50856e148dc8604d92b6de3ea21fc552
refs/heads/master
2022-11-05T03:41:23.623050
2020-06-28T06:36:05
2020-06-28T06:36:05
254,909,897
1
0
null
null
null
null
UTF-8
Python
false
false
30,982
py
# -*- coding: utf-8 -*- from __future__ import division import os import numpy as np import matplotlib.pyplot as plt from time import time import pandas as pd # Author: Juan Esteban Aristizabal-Zuluaga # date: 20200414 def rho_free(x,xp,beta): """Uso: devuelve elemento de matriz dsnsidad para el caso de una partícula libre en un toro infinito. """ return (2.*np.pi*beta)**(-0.5) * np.exp(-(x-xp)**2 / (2 * beta)) def harmonic_potential(x): """Uso: Devuelve valor del potencial armónico para una posición x dada""" return 0.5*x**2 def anharmonic_potential(x): """Devuelve valor de potencial anarmónico para una posición x dada""" # return np.abs(x)*(1+np.cos(x)) #el resultado de este potencial es interesante return 0.5*x**2 - x**3 + x**4 def QHO_canonical_ensemble(x,beta): """ Uso: calcula probabilidad teórica cuántica de encontrar al oscilador armónico (inmerso en un baño térmico a temperatura inversa beta) en la posición x. Recibe: x: float -> posición beta: float -> inverso de temperatura en unidades reducidas beta = 1/T. Devuelve: probabilidad teórica cuántica en posición x para temperatura inversa beta. """ return (np.tanh(beta/2.)/np.pi)**0.5 * np.exp(- x**2 * np.tanh(beta/2.)) def Z_QHO(beta): """Uso: devuelve valor de función de partición para el QHO unidimensional""" return 0.5/np.sinh(beta/2) def E_QHO_avg_theo(beta): """Uso: devuelve valor de energía interna para el QHO unidimensional""" return 0.5/np.tanh(0.5*beta) def rho_trotter(x_max=5., nx=101, beta=1, potential=harmonic_potential): """ Uso: devuelve matriz densidad en aproximación de Trotter para altas temperaturas y bajo influencia del potencial "potential". Recibe: x_max: float -> los valores de x estarán en el intervalo (-x_max,x_max). nx: int -> número de valores de x considerados (igualmente espaciados). beta: float -> inverso de temperatura en unidades reducidas. potential: func -> potencial de interacción. Debe ser solo función de x. Devuelve: rho: numpy array, shape=(nx,nx) -> matriz densidad en aproximación de Trotter para altas temperaturas y potencial dado. grid_x: numpy array, shape=(nx,) -> valores de x en los que está evaluada rho. dx: float -> separación entre valores contiguos de grid_x """ nx = int(nx) # Si nx es par lo cambiamos al impar más cercano para incluir al 0 en valores de x if nx%2 == 0: nx = nx + 1 # Valor de la discretización de posiciones según x_max y nx dados como input dx = 2 * x_max/(nx-1) # Lista de valores de x teniendo en cuenta discretización y x_max grid_x = [i*dx for i in range(-int((nx-1)/2),int((nx-1)/2 + 1))] # Construcción de matriz densidad dada por aproximación de Trotter rho = np.array([[rho_free(x , xp, beta) * np.exp(-0.5*beta*(potential(x)+potential(xp))) for x in grid_x] for xp in grid_x]) return rho, grid_x, dx def density_matrix_squaring(rho, grid_x, N_iter=1, beta_ini=1, print_steps=True): """ Uso: devuelve matriz densidad luego de aplicarle algoritmo matrix squaring N_iter veces. En la primera iteración se usa matriz de densidad dada por el input rho (a temperatura inversa beta_ini); en las siguientes iteraciones se usa matriz densidad generada por la iteración inmediatamente anterior. El sistema asociado a la matriz densidad obtenida (al final de aplicar el algoritmo) está a temperatura inversa beta_fin = beta_ini * 2**(N_iter). Recibe: rho: numpy array, shape=(nx,nx) -> matriz densidad discretizada en valores dados por x_grid. grid_x: numpy array, shape=(nx,) -> valores de x en los que está evaluada rho. N_iter: int -> número de iteraciones del algoritmo. beta_ini: float -> valor de inverso de temperatura asociado a la matriz densidad rho dada como input. print_steps: bool -> decide si muestra valores de beta en cada iteración. Devuelve: rho: numpy array, shape=(nx,nx) -> matriz densidad de estado rho a temperatura inversa igual a beta_fin. trace_rho: float -> traza de la matriz densidad a temperatura inversa igual a beta_fin. Por la definición que tomamos de rho, ésta es equivalente a la función partición a dicha temperatura. beta_fin: float -> temperatura inversa del sistema asociado a rho. """ # Valor de discretización de las posiciones dx = grid_x[1] - grid_x[0] # Cálculo del valor de beta_fin según valores beta_ini y N_iter dados como input beta_fin = beta_ini * 2 ** N_iter # Itera algoritmo matrix squaring if print_steps: print('\nbeta_ini = %.3f'%beta_ini, '\n----------------------------------------------------------------') for i in range(N_iter): rho = dx * np.dot(rho,rho) # Imprime información relevante if print_steps: print(u'Iteración %d) 2^%d * beta_ini --> 2^%d * beta_ini'%(i, i, i+1)) if print_steps: print('----------------------------------------------------------------\n' + u'beta_fin = %.3f'%beta_fin) # Calcula traza de rho trace_rho = np.trace(rho)*dx return rho, trace_rho, beta_fin def save_csv(data, data_headers=None, data_index=None, file_name=None, relevant_info=None, print_data=True): """ Uso: data debe contener listas que serán las columnas de un archivo CSV que se guardará con nombre file_name. relevant_info agrega comentarios en primeras líneas del archivo. Recibe: data: array of arrays, shape=(nx,ny) -> cada columna es una columna del archivo. data_headers: numpy array, shape=(ny,) -> nombres de las columnas data_index: numpy array, shape=(nx,) -> nombres de las filas file_name: str -> nombre del archivo en el que se guardarán datos. relevant_info: list of str -> información que se agrega como comentario en primeras líneas. Cada elemento de esta lista se agrega como una nueva línea. print_data: bool -> decide si imprime datos guardados, en pantalla. Devuelve: data_pdDF: pd.DataFrame -> archivo con datos formato "pandas data frame". guarda archivo con datos e inforamación relevante en primera línea. """ data_pdDF = pd.DataFrame(data, columns=data_headers, index=data_index) # Asigna nombre al archivo para que se guarde en el folder en el que está # guardado el script que lo usa script_dir = os.path.dirname(os.path.abspath(__file__)) if file_name==None: #path completa para este script file_name = script_dir + '/' + 'file_name.csv' # Crea archivo CSV y agrega comentarios relevantes dados como input if relevant_info is not None: # Agregamos información relevante en primeras líneas with open(file_name,mode='w') as file_csv: for info in list(relevant_info): file_csv.write('# '+info+'\n') file_csv.close() # Usamos pandas para escribir en archivo formato csv. with open(file_name,mode='a') as file_csv: data_pdDF.to_csv(file_csv) file_csv.close() else: with open(file_name,mode='w') as file_csv: data_pdDF.to_csv(file_csv) file_csv.close() # Imprime datos en pantalla. if print_data==True: print(data_pdDF) return data_pdDF def run_pi_x_sq_trotter(x_max=5., nx=201, N_iter=7, beta_fin=4, potential=harmonic_potential, potential_string='harmonic_potential', print_steps=True, save_data=True, csv_file_name=None, relevant_info=None, plot=True, save_plot=True, show_plot=True, plot_file_name=None): """ Uso: corre algoritmo matrix squaring iterativamente (N_iter veces). En la primera iteración se usa una matriz densidad en aproximación de Trotter a temperatura inversa beta_ini = beta_fin * 2**(-N_iter) para potencial dado por potential; en las siguientes iteraciones se usa matriz densidad generada por la iteración inmediatamente anterior. Además ésta función guarda datos de pi(x;beta) vs. x en archivo de texto y grafica pi(x;beta) comparándolo con teoría para el oscilador armónico cuántico. Recibe: x_max: float -> los valores de x estarán en el intervalo (-x_max,x_max). nx: int -> número de valores de x considerados. N_iter: int -> número de iteraciones del algoritmo matrix squaring. beta_ini: float -> valor de inverso de temperatura que queremos tener al final de aplicar el algoritmo matrix squaring iterativamente. potential: func -> potencial de interacción usado en aproximación de trotter. Debe ser función de x. potential_string: str -> nombre del potencial (con éste nombramos los archivos que se generan). print_steps: bool -> decide si imprime los pasos del algoritmo matrix squaring. save_data: bool -> decide si guarda los datos en archivo .csv. file_name: str -> nombre de archivo CSV en que se guardan datos. Si valor es None, se guarda con nombre conveniente según parámetros relevantes. plot: bool -> decide si grafica. save_plot: bool -> decide si guarda la figura. show_plot: bool -> decide si muestra la figura en pantalla. Devuelve: rho: numpy array, shape=(nx,nx) -> matriz densidad de estado rho a temperatura inversa igual a beta_fin. trace_rho: float -> traza de la matriz densidad a temperatura inversa igual a beta_fin. Por la definición que tomamos de "rho", ésta es equivalente a la función partición en dicha temperatura. grid_x: numpy array, shape=(nx,) -> valores de x en los que está evaluada rho. """ # Cálculo del valor de beta_ini según valores beta_fin y N_iter dados como input beta_ini = beta_fin * 2**(-N_iter) # Cálculo de rho con aproximación de Trotter rho, grid_x, dx = rho_trotter(x_max, nx, beta_ini, potential) grid_x = np.array(grid_x) # Aproximación de rho con matrix squaring iterado N_iter veces. rho, trace_rho, beta_fin_2 = density_matrix_squaring(rho, grid_x, N_iter, beta_ini, print_steps) print('---------------------------------------------------------' + '---------------------------------------------------------\n' + u'Matrix squaring: beta_ini = %.3f --> beta_fin = %.3f'%(beta_ini, beta_fin_2) + u' N_iter = %d Z(beta_fin) = Tr(rho(beta_fin)) = %.3E \n'%(N_iter,trace_rho) + '---------------------------------------------------------' + '---------------------------------------------------------' ) # Normalización de rho a 1 y cálculo de densidades de probabilidad para valores en grid_x. rho_normalized = np.copy(rho)/trace_rho x_weights = np.diag(rho_normalized) # Guarda datos en archivo CSV. script_dir = os.path.dirname(os.path.abspath(__file__)) #path completa para este script if save_data: # Prepara datos a guardar y headers pi_x_data = np.array([grid_x.copy(),x_weights.copy()]) pi_x_data_headers = ['position_x','prob_density'] # Nombre del archivo .csv en el que guardamos valores de pi(x;beta_fin). if csv_file_name is None: csv_file_name = (u'pi_x-ms-%s-beta_fin_%.3f-x_max_%.3f-nx_%d-N_iter_%d.csv' %(potential_string,beta_fin,x_max,nx,N_iter)) csv_file_name = script_dir + '/' + csv_file_name # Información relevante para agregar como comentario al archivo csv. if relevant_info is None: relevant_info = ['pi(x;beta_fin) computed using matrix squaring algorithm and' + ' Trotter approximation. Parameters:', u'%s x_max = %.3f nx = %d '%(potential_string,x_max,nx) + u'N_iter = %d beta_ini = %.3f '%(N_iter,beta_ini,) + u'beta_fin = %.3f'%beta_fin] # Guardamos valores de pi(x;beta_fin) en archivo csv. pi_x_data = save_csv(pi_x_data.transpose(), pi_x_data_headers, None, csv_file_name, relevant_info,print_data=0) # Gráfica y comparación con teoría if plot: plt.figure(figsize=(8,5)) plt.plot(grid_x, x_weights, label = 'Matrix squaring +\nfórmula de Trotter.\n$N=%d$ iteraciones\n$dx=%.3E$' %(N_iter,dx)) plt.plot(grid_x, QHO_canonical_ensemble(grid_x,beta_fin), label=u'Valor teórico QHO') plt.xlabel(u'x') plt.ylabel(u'$\pi^{(Q)}(x;\\beta)$') plt.legend(loc='best',title=u'$\\beta=%.2f$'%beta_fin) plt.tight_layout() if save_plot: if plot_file_name is None: plot_file_name = \ (u'pi_x-ms-plot-%s-beta_fin_%.3f-x_max_%.3f-nx_%d-N_iter_%d.eps' %(potential_string,beta_fin,x_max,nx,N_iter)) plot_file_name = script_dir + '/' + plot_file_name plt.savefig(plot_file_name) if show_plot: plt.show() plt.close() return rho, trace_rho, grid_x def Z_several_values(temp_min=1./10, temp_max=1/2., N_temp=10, save_Z_csv=True, Z_file_name = None, relevant_info_Z = None, print_Z_data = True, x_max=7., nx=201, N_iter=7, potential = harmonic_potential, potential_string = 'harmonic_potential', print_steps=False, save_pi_x_data=False, pi_x_file_name=None, relevant_info_pi_x=None, plot=False, save_plot=False, show_plot=False, pi_x_plot_file_name=None): """ Uso: calcula varios valores para la función partición, Z, usando operador densidad aproximado aproximado por el algoritmo matrix squaring. Recibe: temp_min: float -> Z se calcula para valores de beta en (1/temp_min,1/temp_max) con N_temp valores igualmente espaciados. temp_max: float. N_temp: int. save_Z_csv: bool -> decide si guarda valores calculados en archivo CSV. Z_file_name: str -> nombre del archivo en el que se guardan datos de Z. Si valor es None, se guarda con nombre conveniente según parámetros relevantes. relevant_info_Z: list -> infrmación relevante se añade a primeras líneas del archivo. Cada str separada por una coma en la lista se añade como una nueva línea. print_Z_data: bool -> imprime datos de Z en pantalla. *args: tuple -> argumentos de run_pi_x_sq_trotter Devuelve: Z_data: list, shape=(3,) Z_data[0]: list, shape(N_temp,) -> contiene valores de beta en los que está evaluada Z. Z_data[1]: list, shape(N_temp,) -> contiene valores de T en los que está evaluada Z. Z_data[2]: list, shape(N_temp,) -> contiene valores de Z. Z(beta) = Z(1/T) = Z_data[0](Z_data[1]) = Z_data[0](Z_data[2]) """ # Transforma valores de beta en valores de T y calcula lista de beta. beta_max = 1./temp_min beta_min = 1./temp_max N_temp = int(N_temp) beta_array = np.linspace(beta_max,beta_min,N_temp) Z = [] # Calcula valores de Z para valores de beta especificados en beta_array. for beta_fin in beta_array: rho, trace_rho, grid_x = run_pi_x_sq_trotter(x_max, nx, N_iter, beta_fin, potential, potential_string, print_steps, save_pi_x_data, pi_x_file_name, relevant_info_pi_x, plot, save_plot, show_plot, pi_x_plot_file_name) Z.append(trace_rho) # Calcula el output de la función. Z_data = np.array([beta_array.copy(), 1./beta_array.copy(), Z.copy()], dtype=float) # Guarda datos de Z en archivo CSV. if save_Z_csv == True: script_dir = os.path.dirname(os.path.abspath(__file__)) if Z_file_name is None: Z_file_name = ('Z-ms-%s-beta_max_%.3f-'%(potential_string,1./temp_min) + 'beta_min_%.3f-N_temp_%d-x_max_%.3f-'%(1./temp_max,N_temp,x_max) + 'nx_%d-N_iter_%d.csv'%(nx, N_iter)) Z_file_name = script_dir + '/' + Z_file_name if relevant_info_Z is None: relevant_info_Z = ['Partition function at several temperatures', '%s beta_max = %.3f '%(potential_string,1./temp_min) + 'beta_min = %.3f N_temp = %d '%(1./temp_max,N_temp) + 'x_max = %.3f nx = %d N_iter = %d'%(x_max,nx, N_iter)] Z_data_headers = ['beta', 'temperature', 'Z'] Z_data = save_csv(Z_data.transpose(), Z_data_headers, None, Z_file_name, relevant_info_Z, print_data=False) if print_Z_data == True: print(Z_data) return Z_data def average_energy(read_Z_data=True, generate_Z_data=False, Z_file_name = None, plot_energy=True, save_plot_E=True, show_plot_E=True, E_plot_name=None, temp_min=1./10, temp_max=1/2., N_temp=10, save_Z_csv=True, relevant_info_Z=None, print_Z_data=True, x_max=7., nx=201, N_iter=7, potential=harmonic_potential, potential_string='harmonic_potential', print_steps=False, save_pi_x_data=False, pi_x_file_name=None, relevant_info_pi_x=None, plot_pi_x=False, save_plot_pi_x=False, show_plot_pi_x=False, plot_pi_x_file_name=None): """ Uso: calcula energía promedio, E, del sistema en cuestión dado por potential. Se puede decidir si se leen datos de función partición o se generan, ya que E = - (d/d beta )log(Z). Recibe: read_Z_data: bool -> decide si se leen datos de Z de un archivo con nombre Z_file_name. generate_Z_data: bool -> decide si genera datos de Z. Nota: read_Z_data y generate_Z_data son excluyentes. Se analiza primero primera opción Z_file_name: str -> nombre del archivo en del que se leerá o en el que se guardarán datos de Z. Si valor es None, se guarda con nombre conveniente según parámetros relevantes. plot_energy: bool -> decide si gráfica energía. save_plot_E: bool -> decide si guarda gráfica de energía. Nótese que si plot_energy=False, no se generará gráfica. show_plot_E: bool -> decide si muestra gráfica de E en pantalla E_plot_name: str -> nombre para guardar gráfico de E. *args: tuple -> argumentos de Z_several_values Devuelve: E_avg: list -> valores de energía promedio para beta especificados por beta__read beta_read: list """ # Decide si lee o genera datos de Z. if read_Z_data: Z_file_read = pd.read_csv(Z_file_name, index_col=0, comment='#') elif generate_Z_data: t_0 = time() Z_data = Z_several_values(temp_min, temp_max, N_temp, save_Z_csv, Z_file_name, relevant_info_Z, print_Z_data, x_max, nx, N_iter, potential, potential_string, print_steps, save_pi_x_data, pi_x_file_name, relevant_info_pi_x, plot_pi_x,save_plot_pi_x, show_plot_pi_x, plot_pi_x_file_name) t_1 = time() print('--------------------------------------------------------------------------\n' + '%d values of Z(beta) generated --> %.3f sec.'%(N_temp,t_1-t_0)) Z_file_read = Z_data else: print('Elegir si se generan o se leen los datos para la función partición, Z.\n' + 'Estas opciones son mutuamente exluyentes. Si se seleccionan las dos, el' + 'algoritmo escoge leer los datos.') beta_read = Z_file_read['beta'] temp_read = Z_file_read['temperature'] Z_read = Z_file_read['Z'] # Calcula energía promedio. E_avg = np.gradient(-np.log(Z_read),beta_read) # Grafica. if plot_energy: plt.figure(figsize=(8,5)) plt.plot(temp_read,E_avg,label=u'$\langle E \\rangle$ via path integral\nnaive sampling') plt.plot(temp_read,E_QHO_avg_theo(beta_read),label=u'$\langle E \\rangle$ teórico') plt.legend(loc='best') plt.xlabel(u'$T$') plt.ylabel(u'$\langle E \\rangle$') if save_plot_E: script_dir = os.path.dirname(os.path.abspath(__file__)) if E_plot_name is None: E_plot_name = ('E-ms-plot-%s-beta_max_%.3f-'%(potential_string,1./temp_min) + 'beta_min_%.3f-N_temp_%d-x_max_%.3f-'%(1./temp_max,N_temp,x_max) + 'nx_%d-N_iter_%d.eps'%(nx, N_iter)) E_plot_name = script_dir + '/' + E_plot_name plt.savefig(E_plot_name) if show_plot_E: plt.show() plt.close() return E_avg, beta_read.to_numpy() def calc_error(x,xp,dx): """ Uso: error acumulado en cálculo computacional de pi(x;beta) comparado con valor teórico """ x, xp = np.array(x), np.array(xp) N = len(x) if N != len(xp): raise Exception('x y xp deben ser del mismo tamaño.') else: return np.sum(np.abs(x-xp))*dx def optimization(generate_opt_data=True, read_opt_data=False, beta_fin=4, x_max=5, potential=harmonic_potential, potential_string='harmonic_potential', nx_min=50, nx_max=1000, nx_sampling=50, N_iter_min=1, N_iter_max=20, save_opt_data=False, opt_data_file_name=None, opt_relevant_info=None, plot=True, show_plot=True, save_plot=True, opt_plot_file_name=None): """ Uso: calcula diferentes valores de error usando calc_error() para encontrar valores de dx y beta_ini óptimos para correr el alcoritmo (óptimos = que minimicen error) Recibe: generate_opt_data: bool -> decide si genera datos para optimización. read_opt_data: bool -> decide si lee datos para optimización. Nota: generate_opt_data y read_opt_data son excluyentes. Se evalúa primero la primera. nx_min: int nx_max: int -> se relaciona con dx = 2*x_max/(nx-1). nx_sampling: int -> se generan nx mediante range(nx_max,nx_min,-1*nx_sampling). N_iter_min: int N_iter_max: int -> se relaciona con beta_ini = beta_fin **(-N_iter). Se gereran valores de N_iter con range(N_iter_max,N_iter_min-1,-1). save_opt_data: bool -> decide si guarda datos de optimización en archivo CSV. opt_data_file_name: str -> nombre de archivo para datos de optimización. plot: bool -> decide si grafica optimización. show_plot: bool -> decide si muestra optimización. save_plot: bool -> decide si guarda optimización. opt_plot_file_name: str -> nombre de gráfico de optimización. Si valor es None, se guarda con nombre conveniente según parámetros relevantes. Devuelve: error: list, shape=(nb,ndx) -> valores de calc_error para diferentes valores de dx y beta_ini. dx incrementa de izquierda a derecha en lista y beta_ini incrementa de arriba a abajo. dx_grid: list, shape=(ndx,) -> valores de dx para los que se calcula error. beta-ini_grid: list, shape=(nb,) -> valores de beta_ini para los que calcula error. """ t_0 = time() # Decide si genera o lee datos. if generate_opt_data: N_iter_min = int(N_iter_min) N_iter_max = int(N_iter_max) nx_min = int(nx_min) nx_max = int(nx_max) if nx_min%2==1: nx_min -= 1 if nx_max%2==0: nx_max += 1 # Crea valores de nx y N_iter (equivalente a generar valores de dx y beta_ini) nx_values = range(nx_max,nx_min,-1*nx_sampling) N_iter_values = range(N_iter_max,N_iter_min-1,-1) dx_grid = [2*x_max/(nx-1) for nx in nx_values] beta_ini_grid = [beta_fin * 2**(-N_iter) for N_iter in N_iter_values] error = [] # Calcula error para cada valor de nx y N_iter especificado # (equivalentemente dx y beta_ini). for N_iter in N_iter_values: row = [] for nx in nx_values: rho,trace_rho,grid_x = run_pi_x_sq_trotter(x_max, nx, N_iter, beta_fin, potential, potential_string, False, False, None, None, False, False, False, None) grid_x = np.array(grid_x) dx = grid_x[1]-grid_x[0] rho_normalized = np.copy(rho)/trace_rho pi_x = np.diag(rho_normalized) theoretical_pi_x = QHO_canonical_ensemble(grid_x,beta_fin) error_comp_theo = calc_error(pi_x,theoretical_pi_x,dx) row.append(error_comp_theo) error.append(row) elif read_opt_data: error = pd.read_csv(opt_data_file_name, index_col=0, comment='#') dx_grid = error.columns.to_numpy() beta_ini_grid = error.index.to_numpy() error = error.to_numpy() else: raise Exception('Escoja si generar o leer datos en optimization(.)') # Toma valores de error en cálculo de Z (nan e inf) y los remplaza por # el valor de mayor error en el gráfico. try: error = np.where(np.isinf(error),0,error) error = np.where(np.isnan(error),0,error) nan_value = 1.3*np.max(error) error = np.where(error==0, float('nan'), error) except: nan_value = 0 error = np.nan_to_num(error, nan=nan_value, posinf=nan_value, neginf=nan_value) script_dir = os.path.dirname(os.path.abspath(__file__)) # Guarda datos (solo si fueron generados y se escoje guardar) if generate_opt_data and save_opt_data: if opt_data_file_name is None: opt_data_file_name = ('pi_x-ms-opt-%s-beta_fin_%.3f'%(potential_string, beta_fin) + '-x_max_%.3f-nx_min_%d-nx_max_%d'%(x_max, nx_min, nx_max) + '-nx_sampling_%d-N_iter_min_%d'%(nx_sampling, N_iter_min) + '-N_iter_max_%d.csv'%(N_iter_max)) opt_data_file_name = script_dir + '/' + opt_data_file_name if opt_relevant_info is None: opt_relevant_info = ['Optimization of parameters dx and beta_ini of matrix squaring' + ' algorithm', '%s beta_fin = %.3f '%(potential_string, beta_fin) + 'x_max = %.3f nx_min = %d nx_max = %d '%(x_max, nx_min, nx_max) + 'nx_sampling = %d N_iter_min = %d '%(nx_sampling, N_iter_min) + 'N_iter_max = %d'%(N_iter_max)] save_csv(error, dx_grid, beta_ini_grid, opt_data_file_name, opt_relevant_info) t_1 = time() # Grafica. if plot: fig, ax = plt.subplots(1, 1) DX, BETA_INI = np.meshgrid(dx_grid, beta_ini_grid) cp = plt.pcolormesh(DX,BETA_INI,error) plt.colorbar(cp) ax.set_ylabel(u'$\\beta_{ini}$') ax.set_xlabel('$dx$') plt.tight_layout() if save_plot: if opt_plot_file_name is None: opt_plot_file_name = \ ('pi_x-ms-opt-plot-%s-beta_fin_%.3f'%(potential_string, beta_fin) + '-x_max_%.3f-nx_min_%d-nx_max_%d'%(x_max, nx_min, nx_max) + '-nx_sampling_%d-N_iter_min_%d'%(nx_sampling, N_iter_min) + '-N_iter_max_%d.eps'%(N_iter_max)) opt_plot_file_name = script_dir + '/' + opt_plot_file_name plt.savefig(opt_plot_file_name) if show_plot: plt.show() plt.close() comp_time = t_1 - t_0 return error, dx_grid, beta_ini_grid, comp_time
[ "jeaz.git@gmail.com" ]
jeaz.git@gmail.com
c742613b5122688d9b558e72aaa565118b5bb6b8
8df8b18d1b1cffa683d49cbb7c6e601b2c58c582
/test_scripts/test_stutter.py
b78976a4689f30314e0064216f306e97f946b2f5
[]
no_license
thatmoodyguy/vision2020
3dc4fca17d4458497b901e16ae40a39c5313e103
a12a54996e798455b566698f4559dd7296a76c3f
refs/heads/master
2020-12-19T04:12:43.327384
2020-02-29T05:18:16
2020-02-29T05:18:16
235,616,691
0
0
null
null
null
null
UTF-8
Python
false
false
888
py
def destutter_coords(new_coords): while len(last_coords) > 6: last_coords.pop() last_coords.insert(0, "{}:{}".format(new_coords[0], new_coords[1])) print(last_coords) sums = {} for coords in last_coords: if sums.get(coords) is None: sums[coords] = 1 else: sums[coords] = sums[coords] + 1 if sums[coords] >= 4: spl = coords.split(":") c = (int(spl[0]), int(spl[1])) print("winner: {}".format(c)) print("winner: {}".format(new_coords)) return new_coords last_coords = [] src = [ (10, 10), (10, 11), (10, 10), (10, 10), (11, 11), (12, 12), (13, 13), (13, 13), (18,12), (13, 13), (18,12), (13, 13), (13, 13), (13, 13), (18,12), (13, 13), (13, 13) ] for c in src: destutter_coords(c)
[ "john@mentalvelocity.com" ]
john@mentalvelocity.com
7f1ab427afdff94d83f6e4759d9de6159fc61dd8
91e0a29332eaadf067807e438a4a595c93507729
/Object Oriented Programming/Day-1/Assgn-9.py
ea0a1f301af3d1cadd386b082616b15f9c537f6a
[]
no_license
ankushsharma0904/Infytq-assignment-solution
873f49339e4876ce00485f5c8a429d903fad451a
b898a50f8c4d8eed2422ac04b2baa222284cb2b5
refs/heads/master
2022-11-30T01:03:00.373026
2020-08-07T12:01:32
2020-08-07T12:01:32
285,252,900
1
1
null
null
null
null
UTF-8
Python
false
false
1,959
py
#OOPR-Assgn-9 #Implement Student class here class Student: def __init__(self): self.__student_id = None self.__marks = None self.__age = None self.__course_id = None self.__fees = None def set_student_id(self, student_id): self.__student_id = student_id def set_marks(self, marks): self.__marks = marks def set_age(self, age): self.__age = age def set_course_id(self, course_id): self.__course_id = course_id def set_fees(self, fees): self.__fees = fees def get_student_id(self): return self.__student_id def get_marks(self): return self.__marks def get_age(self): return self.__age def get_course_id(self): return self.__course_id def get_fees(self): return self.__fees def validate_marks(self): return self.get_marks() in range(0, 101) def validate_age(self): return self.get_age() > 20 def check_qualification(self): if self.validate_age() and self.validate_marks(): return self.get_marks() >= 65 return False def choose_course(self, course_id): courses = { '1001': 25575.0, '1002': 15500.0 } if str(course_id) in courses.keys(): self.set_course_id(course_id) if self.get_marks() > 85: fees = courses[str(course_id)] - courses[str(course_id)] * 0.25 else: fees = courses[str(course_id)] self.__fees = fees return True else: return False maddy=Student() maddy.set_student_id(1004) maddy.set_age(21) maddy.set_marks(65) if(maddy.check_qualification()): print("Student has qualified") if(maddy.choose_course(1002)): print("Course allocated") else: print("Invalid course id") else: print("Student has not qualified")
[ "noreply@github.com" ]
ankushsharma0904.noreply@github.com
4cc53c7f07f6e0d25fbff329f7bd73059cedeb84
f8d188821191dd6c69313763f71d370c3b1281b2
/Code/ExecuteDist.py
38a20205d9d00b1241c5a6f521636ed0274e0c94
[]
no_license
ahhuang007/SionExecuteProject
ae732583b663d86a15120522479c0be2c03df3e5
857b6fa497c82ec8db44c8ea2f15d3a28c06a6c5
refs/heads/main
2023-02-12T17:54:05.177023
2021-01-19T07:27:23
2021-01-19T07:27:23
330,897,925
0
0
null
null
null
null
UTF-8
Python
false
false
863
py
# -*- coding: utf-8 -*- """ Created on Mon Dec 24 00:14:37 2018 @author: Andy """ import numpy as np import pandas as pd # 0 for-loops, I'm actually 64042039 IQ def ExecuteDist(df): siondf = df[df["champion"] == "Singed"] siondf = siondf.drop(["matchid", "win", "championid", "rank", "champion", "Unnamed: 0"], 1) siondf = siondf[siondf["killer_id"] == 0] siondf = siondf.drop(["killer_id"], 1) siondf["timestamp"] = siondf["timestamp"]/1000 sdf2 = siondf #Getting numbers per bin - apparently these can't be used to plot, so simply for making sure I have the right plots siondf["bin"] = np.ceil(siondf["timestamp"]/120) newsdf = siondf.groupby(['bin']).agg({'bin':'count'}) newsdf["count"] = newsdf["bin"] newsdf = newsdf.drop(["bin"], 1) newsdf = newsdf.reset_index(drop = False) return sdf2
[ "ahhuang007@gmail.com" ]
ahhuang007@gmail.com
e7037b0c637e6e97570ddb28a181f279e8d4c597
38744aa4f3ba165a8c043ac51c87b849882ea129
/game/lib/python3.7/site-packages/pip-20.2b1-py3.7.egg/pip/_internal/commands/install.py
2eb2bef6c2ce6551c2a36965104ce40a6ae0f626
[]
no_license
CleverParty/containers
5be3c82e38e65ccbaf703fe68f35992ad9941219
a0d45e62fda2cb7b047c7a930cf6437e71a31d80
refs/heads/master
2023-08-04T01:32:58.122067
2021-02-07T15:14:35
2021-02-07T15:14:35
266,421,416
2
0
null
2021-09-22T19:39:31
2020-05-23T21:20:17
Python
UTF-8
Python
false
false
26,024
py
# The following comment should be removed at some point in the future. # It's included for now because without it InstallCommand.run() has a # couple errors where we have to know req.name is str rather than # Optional[str] for the InstallRequirement req. # mypy: strict-optional=False # mypy: disallow-untyped-defs=False from __future__ import absolute_import import errno import logging import operator import os import shutil import site from optparse import SUPPRESS_HELP from pip._vendor import pkg_resources from pip._vendor.packaging.utils import canonicalize_name from pip._internal.cache import WheelCache from pip._internal.cli import cmdoptions from pip._internal.cli.cmdoptions import make_target_python from pip._internal.cli.req_command import RequirementCommand, with_cleanup from pip._internal.cli.status_codes import ERROR, SUCCESS from pip._internal.exceptions import CommandError, InstallationError from pip._internal.locations import distutils_scheme from pip._internal.operations.check import check_install_conflicts from pip._internal.req import install_given_reqs from pip._internal.req.req_tracker import get_requirement_tracker from pip._internal.utils.deprecation import deprecated from pip._internal.utils.distutils_args import parse_distutils_args from pip._internal.utils.filesystem import test_writable_dir from pip._internal.utils.misc import ( ensure_dir, get_installed_version, protect_pip_from_modification_on_windows, write_output, ) from pip._internal.utils.temp_dir import TempDirectory from pip._internal.utils.typing import MYPY_CHECK_RUNNING from pip._internal.utils.virtualenv import virtualenv_no_global from pip._internal.wheel_builder import build, should_build_for_install_command if MYPY_CHECK_RUNNING: from optparse import Values from typing import Any, Iterable, List, Optional from pip._internal.models.format_control import FormatControl from pip._internal.req.req_install import InstallRequirement from pip._internal.wheel_builder import BinaryAllowedPredicate logger = logging.getLogger(__name__) def get_check_binary_allowed(format_control): # type: (FormatControl) -> BinaryAllowedPredicate def check_binary_allowed(req): # type: (InstallRequirement) -> bool if req.use_pep517: return True canonical_name = canonicalize_name(req.name) allowed_formats = format_control.get_allowed_formats(canonical_name) return "binary" in allowed_formats return check_binary_allowed class InstallCommand(RequirementCommand): """ Install packages from: - PyPI (and other indexes) using requirement specifiers. - VCS project urls. - Local project directories. - Local or remote source archives. pip also supports installing from "requirements files", which provide an easy way to specify a whole environment to be installed. """ usage = """ %prog [options] <requirement specifier> [package-index-options] ... %prog [options] -r <requirements file> [package-index-options] ... %prog [options] [-e] <vcs project url> ... %prog [options] [-e] <local project path> ... %prog [options] <archive url/path> ...""" def __init__(self, *args, **kw): super(InstallCommand, self).__init__(*args, **kw) cmd_opts = self.cmd_opts cmd_opts.add_option(cmdoptions.requirements()) cmd_opts.add_option(cmdoptions.constraints()) cmd_opts.add_option(cmdoptions.no_deps()) cmd_opts.add_option(cmdoptions.pre()) cmd_opts.add_option(cmdoptions.editable()) cmd_opts.add_option( '-t', '--target', dest='target_dir', metavar='dir', default=None, help='Install packages into <dir>. ' 'By default this will not replace existing files/folders in ' '<dir>. Use --upgrade to replace existing packages in <dir> ' 'with new versions.' ) cmdoptions.add_target_python_options(cmd_opts) cmd_opts.add_option( '--user', dest='use_user_site', action='store_true', help="Install to the Python user install directory for your " "platform. Typically ~/.local/, or %APPDATA%\\Python on " "Windows. (See the Python documentation for site.USER_BASE " "for full details.)") cmd_opts.add_option( '--no-user', dest='use_user_site', action='store_false', help=SUPPRESS_HELP) cmd_opts.add_option( '--root', dest='root_path', metavar='dir', default=None, help="Install everything relative to this alternate root " "directory.") cmd_opts.add_option( '--prefix', dest='prefix_path', metavar='dir', default=None, help="Installation prefix where lib, bin and other top-level " "folders are placed") cmd_opts.add_option(cmdoptions.build_dir()) cmd_opts.add_option(cmdoptions.src()) cmd_opts.add_option( '-U', '--upgrade', dest='upgrade', action='store_true', help='Upgrade all specified packages to the newest available ' 'version. The handling of dependencies depends on the ' 'upgrade-strategy used.' ) cmd_opts.add_option( '--upgrade-strategy', dest='upgrade_strategy', default='only-if-needed', choices=['only-if-needed', 'eager'], help='Determines how dependency upgrading should be handled ' '[default: %default]. ' '"eager" - dependencies are upgraded regardless of ' 'whether the currently installed version satisfies the ' 'requirements of the upgraded package(s). ' '"only-if-needed" - are upgraded only when they do not ' 'satisfy the requirements of the upgraded package(s).' ) cmd_opts.add_option( '--force-reinstall', dest='force_reinstall', action='store_true', help='Reinstall all packages even if they are already ' 'up-to-date.') cmd_opts.add_option( '-I', '--ignore-installed', dest='ignore_installed', action='store_true', help='Ignore the installed packages, overwriting them. ' 'This can break your system if the existing package ' 'is of a different version or was installed ' 'with a different package manager!' ) cmd_opts.add_option(cmdoptions.ignore_requires_python()) cmd_opts.add_option(cmdoptions.no_build_isolation()) cmd_opts.add_option(cmdoptions.use_pep517()) cmd_opts.add_option(cmdoptions.no_use_pep517()) cmd_opts.add_option(cmdoptions.install_options()) cmd_opts.add_option(cmdoptions.global_options()) cmd_opts.add_option( "--compile", action="store_true", dest="compile", default=True, help="Compile Python source files to bytecode", ) cmd_opts.add_option( "--no-compile", action="store_false", dest="compile", help="Do not compile Python source files to bytecode", ) cmd_opts.add_option( "--no-warn-script-location", action="store_false", dest="warn_script_location", default=True, help="Do not warn when installing scripts outside PATH", ) cmd_opts.add_option( "--no-warn-conflicts", action="store_false", dest="warn_about_conflicts", default=True, help="Do not warn about broken dependencies", ) cmd_opts.add_option(cmdoptions.no_binary()) cmd_opts.add_option(cmdoptions.only_binary()) cmd_opts.add_option(cmdoptions.prefer_binary()) cmd_opts.add_option(cmdoptions.require_hashes()) cmd_opts.add_option(cmdoptions.progress_bar()) index_opts = cmdoptions.make_option_group( cmdoptions.index_group, self.parser, ) self.parser.insert_option_group(0, index_opts) self.parser.insert_option_group(0, cmd_opts) @with_cleanup def run(self, options, args): # type: (Values, List[Any]) -> int if options.use_user_site and options.target_dir is not None: raise CommandError("Can not combine '--user' and '--target'") cmdoptions.check_install_build_global(options) upgrade_strategy = "to-satisfy-only" if options.upgrade: upgrade_strategy = options.upgrade_strategy cmdoptions.check_dist_restriction(options, check_target=True) install_options = options.install_options or [] options.use_user_site = decide_user_install( options.use_user_site, prefix_path=options.prefix_path, target_dir=options.target_dir, root_path=options.root_path, isolated_mode=options.isolated_mode, ) target_temp_dir = None # type: Optional[TempDirectory] target_temp_dir_path = None # type: Optional[str] if options.target_dir: options.ignore_installed = True options.target_dir = os.path.abspath(options.target_dir) if (os.path.exists(options.target_dir) and not os.path.isdir(options.target_dir)): raise CommandError( "Target path exists but is not a directory, will not " "continue." ) # Create a target directory for using with the target option target_temp_dir = TempDirectory(kind="target") target_temp_dir_path = target_temp_dir.path global_options = options.global_options or [] session = self.get_default_session(options) target_python = make_target_python(options) finder = self._build_package_finder( options=options, session=session, target_python=target_python, ignore_requires_python=options.ignore_requires_python, ) build_delete = (not (options.no_clean or options.build_dir)) wheel_cache = WheelCache(options.cache_dir, options.format_control) req_tracker = self.enter_context(get_requirement_tracker()) directory = TempDirectory( options.build_dir, delete=build_delete, kind="install", globally_managed=True, ) try: reqs = self.get_requirements(args, options, finder, session) warn_deprecated_install_options( reqs, options.install_options ) preparer = self.make_requirement_preparer( temp_build_dir=directory, options=options, req_tracker=req_tracker, session=session, finder=finder, use_user_site=options.use_user_site, ) resolver = self.make_resolver( preparer=preparer, finder=finder, options=options, wheel_cache=wheel_cache, use_user_site=options.use_user_site, ignore_installed=options.ignore_installed, ignore_requires_python=options.ignore_requires_python, force_reinstall=options.force_reinstall, upgrade_strategy=upgrade_strategy, use_pep517=options.use_pep517, ) self.trace_basic_info(finder) requirement_set = resolver.resolve( reqs, check_supported_wheels=not options.target_dir ) try: pip_req = requirement_set.get_requirement("pip") except KeyError: modifying_pip = None else: # If we're not replacing an already installed pip, # we're not modifying it. modifying_pip = pip_req.satisfied_by is None protect_pip_from_modification_on_windows( modifying_pip=modifying_pip ) check_binary_allowed = get_check_binary_allowed( finder.format_control ) reqs_to_build = [ r for r in requirement_set.requirements.values() if should_build_for_install_command( r, check_binary_allowed ) ] _, build_failures = build( reqs_to_build, wheel_cache=wheel_cache, build_options=[], global_options=[], ) # If we're using PEP 517, we cannot do a direct install # so we fail here. # We don't care about failures building legacy # requirements, as we'll fall through to a direct # install for those. pep517_build_failures = [ r for r in build_failures if r.use_pep517 ] if pep517_build_failures: raise InstallationError( "Could not build wheels for {} which use" " PEP 517 and cannot be installed directly".format( ", ".join(r.name for r in pep517_build_failures))) to_install = resolver.get_installation_order( requirement_set ) # Consistency Checking of the package set we're installing. should_warn_about_conflicts = ( not options.ignore_dependencies and options.warn_about_conflicts ) if should_warn_about_conflicts: self._warn_about_conflicts(to_install) # Don't warn about script install locations if # --target has been specified warn_script_location = options.warn_script_location if options.target_dir: warn_script_location = False installed = install_given_reqs( to_install, install_options, global_options, root=options.root_path, home=target_temp_dir_path, prefix=options.prefix_path, pycompile=options.compile, warn_script_location=warn_script_location, use_user_site=options.use_user_site, ) lib_locations = get_lib_location_guesses( user=options.use_user_site, home=target_temp_dir_path, root=options.root_path, prefix=options.prefix_path, isolated=options.isolated_mode, ) working_set = pkg_resources.WorkingSet(lib_locations) installed.sort(key=operator.attrgetter('name')) items = [] for result in installed: item = result.name try: installed_version = get_installed_version( result.name, working_set=working_set ) if installed_version: item += '-' + installed_version except Exception: pass items.append(item) installed_desc = ' '.join(items) if installed_desc: write_output( 'Successfully installed %s', installed_desc, ) except EnvironmentError as error: show_traceback = (self.verbosity >= 1) message = create_env_error_message( error, show_traceback, options.use_user_site, ) logger.error(message, exc_info=show_traceback) return ERROR if options.target_dir: self._handle_target_dir( options.target_dir, target_temp_dir, options.upgrade ) return SUCCESS def _handle_target_dir(self, target_dir, target_temp_dir, upgrade): ensure_dir(target_dir) # Checking both purelib and platlib directories for installed # packages to be moved to target directory lib_dir_list = [] with target_temp_dir: # Checking both purelib and platlib directories for installed # packages to be moved to target directory scheme = distutils_scheme('', home=target_temp_dir.path) purelib_dir = scheme['purelib'] platlib_dir = scheme['platlib'] data_dir = scheme['data'] if os.path.exists(purelib_dir): lib_dir_list.append(purelib_dir) if os.path.exists(platlib_dir) and platlib_dir != purelib_dir: lib_dir_list.append(platlib_dir) if os.path.exists(data_dir): lib_dir_list.append(data_dir) for lib_dir in lib_dir_list: for item in os.listdir(lib_dir): if lib_dir == data_dir: ddir = os.path.join(data_dir, item) if any(s.startswith(ddir) for s in lib_dir_list[:-1]): continue target_item_dir = os.path.join(target_dir, item) if os.path.exists(target_item_dir): if not upgrade: logger.warning( 'Target directory %s already exists. Specify ' '--upgrade to force replacement.', target_item_dir ) continue if os.path.islink(target_item_dir): logger.warning( 'Target directory %s already exists and is ' 'a link. pip will not automatically replace ' 'links, please remove if replacement is ' 'desired.', target_item_dir ) continue if os.path.isdir(target_item_dir): shutil.rmtree(target_item_dir) else: os.remove(target_item_dir) shutil.move( os.path.join(lib_dir, item), target_item_dir ) def _warn_about_conflicts(self, to_install): try: package_set, _dep_info = check_install_conflicts(to_install) except Exception: logger.error("Error checking for conflicts.", exc_info=True) return missing, conflicting = _dep_info # NOTE: There is some duplication here from pip check for project_name in missing: version = package_set[project_name][0] for dependency in missing[project_name]: logger.critical( "%s %s requires %s, which is not installed.", project_name, version, dependency[1], ) for project_name in conflicting: version = package_set[project_name][0] for dep_name, dep_version, req in conflicting[project_name]: logger.critical( "%s %s has requirement %s, but you'll have %s %s which is " "incompatible.", project_name, version, req, dep_name, dep_version, ) def get_lib_location_guesses(*args, **kwargs): scheme = distutils_scheme('', *args, **kwargs) return [scheme['purelib'], scheme['platlib']] def site_packages_writable(**kwargs): return all( test_writable_dir(d) for d in set(get_lib_location_guesses(**kwargs)) ) def decide_user_install( use_user_site, # type: Optional[bool] prefix_path=None, # type: Optional[str] target_dir=None, # type: Optional[str] root_path=None, # type: Optional[str] isolated_mode=False, # type: bool ): # type: (...) -> bool """Determine whether to do a user install based on the input options. If use_user_site is False, no additional checks are done. If use_user_site is True, it is checked for compatibility with other options. If use_user_site is None, the default behaviour depends on the environment, which is provided by the other arguments. """ # In some cases (config from tox), use_user_site can be set to an integer # rather than a bool, which 'use_user_site is False' wouldn't catch. if (use_user_site is not None) and (not use_user_site): logger.debug("Non-user install by explicit request") return False if use_user_site: if prefix_path: raise CommandError( "Can not combine '--user' and '--prefix' as they imply " "different installation locations" ) if virtualenv_no_global(): raise InstallationError( "Can not perform a '--user' install. User site-packages " "are not visible in this virtualenv." ) logger.debug("User install by explicit request") return True # If we are here, user installs have not been explicitly requested/avoided assert use_user_site is None # user install incompatible with --prefix/--target if prefix_path or target_dir: logger.debug("Non-user install due to --prefix or --target option") return False # If user installs are not enabled, choose a non-user install if not site.ENABLE_USER_SITE: logger.debug("Non-user install because user site-packages disabled") return False # If we have permission for a non-user install, do that, # otherwise do a user install. if site_packages_writable(root=root_path, isolated=isolated_mode): logger.debug("Non-user install because site-packages writeable") return False logger.info("Defaulting to user installation because normal site-packages " "is not writeable") return True def warn_deprecated_install_options(requirements, options): # type: (List[InstallRequirement], Optional[List[str]]) -> None """If any location-changing --install-option arguments were passed for requirements or on the command-line, then show a deprecation warning. """ def format_options(option_names): # type: (Iterable[str]) -> List[str] return ["--{}".format(name.replace("_", "-")) for name in option_names] offenders = [] for requirement in requirements: install_options = requirement.install_options location_options = parse_distutils_args(install_options) if location_options: offenders.append( "{!r} from {}".format( format_options(location_options.keys()), requirement ) ) if options: location_options = parse_distutils_args(options) if location_options: offenders.append( "{!r} from command line".format( format_options(location_options.keys()) ) ) if not offenders: return deprecated( reason=( "Location-changing options found in --install-option: {}. " "This configuration may cause unexpected behavior and is " "unsupported.".format( "; ".join(offenders) ) ), replacement=( "using pip-level options like --user, --prefix, --root, and " "--target" ), gone_in="20.2", issue=7309, ) def create_env_error_message(error, show_traceback, using_user_site): """Format an error message for an EnvironmentError It may occur anytime during the execution of the install command. """ parts = [] # Mention the error if we are not going to show a traceback parts.append("Could not install packages due to an EnvironmentError") if not show_traceback: parts.append(": ") parts.append(str(error)) else: parts.append(".") # Spilt the error indication from a helper message (if any) parts[-1] += "\n" # Suggest useful actions to the user: # (1) using user site-packages or (2) verifying the permissions if error.errno == errno.EACCES: user_option_part = "Consider using the `--user` option" permissions_part = "Check the permissions" if not using_user_site: parts.extend([ user_option_part, " or ", permissions_part.lower(), ]) else: parts.append(permissions_part) parts.append(".\n") return "".join(parts).strip() + "\n"
[ "shanatmail@gmail.com" ]
shanatmail@gmail.com
494ad832fa6990170d4b16f55a4cc7e8f864096f
1b9bb81824a6e3623f4a1a39bb226794eb6838bb
/Ch3-Control-Structures/p4.py
b2d55b237db6970e02c25cf7649c4fca175ef111
[]
no_license
sabricast/Charles-Dierbach-Solutions
9c920506192b46671bf84c5a10f85f825955a651
f8ec88c8156ae2d0e43d7fe9a190f9b83065e6e5
refs/heads/master
2020-03-19T00:07:56.822258
2018-06-22T22:09:39
2018-06-22T22:09:39
135,455,240
0
0
null
null
null
null
UTF-8
Python
false
false
307
py
# Program that sums a series of positive integers entered by the user, # excluding all numbers greater than 100. terminate = False sum = 0 while not terminate: num = int(input('Please, enter an integer: ')) if num > 0: sum = sum + num if num == -1: terminate = True print(sum)
[ "sabrina.castejon@gmail.com" ]
sabrina.castejon@gmail.com
f6da95104305909cbfb8a5ff584892ff174bb1df
11d265eba2ced9de43c339e4014c779b521320cd
/budget/urls.py
d21285624659058a7773c6937a88fcec99164e59
[]
no_license
Sloshpit/budget_old
d9271de625cd7e3aa66ccbec501b005e50cd2812
a5603996b026542adb3bc8c578c03bcb843bea01
refs/heads/master
2022-04-23T08:42:43.377827
2020-04-25T14:40:39
2020-04-25T14:40:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
981
py
"""budget URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ path('accounts/', include('accounts.urls')), path('budgettracker/', include('budgettracker.urls')), path('categories/', include('categories.urls')), path('transactions/', include('transactions.urls')), path('admin/', admin.site.urls), ]
[ "neel.maheshwari@gmail.com" ]
neel.maheshwari@gmail.com
8c6c888913d98e1c22f9888d836e117845354dbb
320280bfce76713436b76ffc3125ccf37e65a324
/AnalyzeMiniPlusSubstructure/test/ttbar/ttbar_447.py
c15a0f7aeaa121a42e163f11de21cc3f77df3c9d
[]
no_license
skhalil/MiniValidation
75ea5c0d7cde17bf99c7d31501f8384560ee7b99
1a7fb8377e29172483ea6d3c7b3e427ff87e7e37
refs/heads/master
2016-09-05T10:31:38.562365
2015-01-29T05:30:32
2015-01-29T05:30:32
29,898,162
0
0
null
null
null
null
UTF-8
Python
false
false
4,861
py
import FWCore.ParameterSet.Config as cms ############################################### useMiniAOD = True # AOD pfcandidates = 'particleFlow' chsstring = 'pfNoPileUpJME' genjetparticles = 'genParticles' importantgenparticles = 'genParticles' tracks = 'generalTracks' vertices = 'offlinePrimaryVertices' mergedvertices = 'inclusiveMergedVertices' mergedvertices2 = '' primaryvertices = 'offlinePrimaryVertices' #miniAOD if useMiniAOD: pfcandidates = 'packedPFCandidates' genjetparticles = 'packedGenParticles' importantgenparticles = 'prunedGenParticles' tracks = 'unpackedTracksAndVertices' vertices = 'unpackedTracksAndVertices' mergedvertices = 'unpackedTracksAndVertices' mergedvertices2 = 'secondary' primaryvertices = 'offlineSlimmedPrimaryVertices' print 'useMiniAOD = '+str(useMiniAOD) print ' pfcandidates = '+pfcandidates print ' genjetparticles = '+genjetparticles print ' importantgenparticles = '+importantgenparticles print ' tracks = '+tracks print ' vertices = '+vertices print ' mergedvertices = '+mergedvertices print ' mergedvertices2 = '+mergedvertices2 print ' primaryvertices = '+primaryvertices ############################################### # SETUP process = cms.Process("USER") process.load("FWCore.MessageService.MessageLogger_cfi") process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(False) , allowUnscheduled = cms.untracked.bool(True) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.MessageLogger.cerr.FwkReport.reportEvery = 1000 process.MessageLogger.cerr.FwkJob.limit=1 process.MessageLogger.cerr.ERROR = cms.untracked.PSet( limit = cms.untracked.int32(0) ) ############################################### # SOURCE process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( 'root://cmsxrootd-site.fnal.gov//store/mc/Phys14DR/TTJets_MSDecaysCKM_central_Tune4C_13TeV-madgraph-tauola/MINIAODSIM/PU20bx25_PHYS14_25_V1-v1/10000/A0F8757B-8875-E411-99A4-002590AC4C52.root' ) ) ############################################### # ANA process.demo = cms.EDAnalyzer("AnalyzeMiniPlusSubstructure", vertices = cms.InputTag("offlineSlimmedPrimaryVertices"), muons = cms.InputTag("slimmedMuons"), electrons = cms.InputTag("slimmedElectrons"), taus = cms.InputTag("slimmedTaus"), photons = cms.InputTag("slimmedPhotons"), jets = cms.InputTag("slimmedJets"), fatjets = cms.InputTag("slimmedJetsAK8"), mets = cms.InputTag("slimmedMETs"), pfCands = cms.InputTag("packedPFCandidates"), packed = cms.InputTag("packedGenParticles"), pruned = cms.InputTag("prunedGenParticles"), bits = cms.InputTag("TriggerResults","","HLT"), prescales = cms.InputTag("patTrigger") ) process.TFileService = cms.Service("TFileService", fileName = cms.string("ttbar447.root"), closeFileFast = cms.untracked.bool(True) ) ############################################### # RECO AND GEN SETUP process.load('PhysicsTools.PatAlgos.producersLayer1.patCandidates_cff') process.load('Configuration.EventContent.EventContent_cff') process.load('Configuration.StandardSequences.Geometry_cff') process.load('Configuration.StandardSequences.MagneticField_38T_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.GlobalTag.globaltag ='PHYS14_25_V2' #'START70_V6::All' #'START70_V6::All' process.load('RecoJets.Configuration.RecoPFJets_cff') process.load('RecoJets.Configuration.RecoGenJets_cff') #process.fixedGridRhoFastjetAll.pfCandidatesTag = pfcandidates process.fixedGridRhoFastjetAll.pfCandidatesTag = 'packedPFCandidates' process.fixedGridRhoAll.pfCandidatesTag = 'packedPFCandidates' # process.fixedGridRhoAll.pfCandidatesTag = .InputTag("packedPFCandidates") # process.fixedGridRhoFastjetAll = fixedGridRhoFastjetAll.clone( pfCandidatesTag = cms.InputTag("packedPFCandidates")) # process.fixedGridRhoAll = fixedGridRhoAll.clone( pfCandidatesTag = cms.InputTag("packedPFCandidates")) from RecoJets.JetProducers.SubJetParameters_cfi import SubJetParameters from RecoJets.JetProducers.PFJetParameters_cfi import * from RecoJets.JetProducers.CaloJetParameters_cfi import * from RecoJets.JetProducers.AnomalousCellParameters_cfi import * from RecoJets.JetProducers.CATopJetParameters_cfi import * from RecoJets.JetProducers.GenJetParameters_cfi import * from RecoJets.JetProducers.caTopTaggers_cff import * ############################################### process.content = cms.EDAnalyzer("EventContentAnalyzer") process.p = cms.Path( #process.fixedGridRhoFastjetAll process.demo )
[ "skhalil@fnal.gov" ]
skhalil@fnal.gov
041d2d78acf76ad17561a3cf13bdd379042cbb0b
efae09bf12200004e50121572fef13fc635b255c
/Day14/Code/mypack/games/contra.py
c06e80acc0703fc451f419ff3ab906a886da338b
[]
no_license
supremepoison/python
5655146a7a49d94e42b8aad139ae6b48a72c7015
9abc639c1496e6bd228dd923be98e54280658946
refs/heads/master
2020-04-05T07:07:05.096234
2018-11-08T07:22:04
2018-11-08T07:22:04
156,664,062
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
# file : mypack/games/cotra.py def play(): print("正在玩 魂斗罗") def game_over(): # #绝对导入 # from mypack.menu import show_menu # show_menu() #相对导入:相对于当前 mypack/games/ from ..menu import show_menu show_menu() #调用mypack/games/tanks.py里的play() ...#相对导入 from .tanks import play play() print("魂斗罗模块被加载")
[ "897550138@qq.com" ]
897550138@qq.com
d805d86670a23c03a0561093ce7ee2e1e1665412
1145a739e0472baf15086da421bb20ccc693f631
/student_private.py
c0dddb5d92d6a5ddfd267a445845d534d009cfde
[]
no_license
islon/lxf
261f73af6539ad26155e6bcb2c5284847fd90250
c354bfb4d301b627bc3154197da052f40854e504
refs/heads/master
2021-01-12T17:51:06.818285
2016-11-27T18:44:24
2016-11-27T18:44:24
71,651,056
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
class Student(object): def __init__(self,name,score): self.__name=name self.__score=score def pt_score(self): print "%s:%d"%(self.__name,self.__score) def get_name(self): return self.__name def get_score(self): return self.__score def __len__(self): return 100 xm=Student("xiaoming",80) print xm.pt_score() print xm.get_name(),":",xm.get_score() print xm._Student__name print isinstance(xm,Student) print dir("asdf") print dir(xm) print len("daf") print "adf:","adf".__len__() print "len(xm):",len(xm)
[ "longai1567@163.com" ]
longai1567@163.com
53ce4757b88e4be8b9d68c9da903d256458d43ca
10256107b92bbf3c85371943a9ccd65f6a4b1092
/qubayes_tools.py
494db7d2c5b261b2e9a6a6f6e8fdb5f2b99f9fc0
[ "MIT" ]
permissive
Quantum-Ducks/QuBayes
5f970de8a721a6734499df9049a67fb95064889f
f9b658f5e5ebcf3d9327472b09dd89b5d740758f
refs/heads/master
2022-11-29T02:09:24.242073
2020-07-16T19:20:26
2020-07-16T19:20:26
273,986,416
4
1
null
null
null
null
UTF-8
Python
false
false
3,019
py
from itertools import product import numpy as np from network_setup import * def generate_cond_keys(child, ps): ############################################## #THIS FUNCTION WILL GENERATE A LIST OF STRINGS TO USE AS KEYS FOR CONDITIONAL PROBABILITIES ### INPUT ### # s_0 int number of states of the child node # s_i list number of states for each parent node, from most to least significant ### OUTPUT ### # list of strings to use as keys for conditional probabilities (included commas in case there is ever an >11-state node!) ############################################## cname = child.name cstates = child.states ranges = [[child.name], child.states.keys()] for p in ps: ranges.append([str(p.name)]) ranges.append(p.states.keys()) enumed = product(*ranges) add = [",","_"] cond_keys = [] for enum in enumed: suff = 0 enum = list(enum) parent_str = '' for i in range(2,len(enum)-1): suff = (suff + 1)%2 parent_str += str(enum[i]) + add[suff] parent_str += str(enum[len(enum)-1]) cond_keys.append("%s_%s|%s"%(str(enum[0]), str(enum[1]), parent_str)) return cond_keys def generate_parent_str(ps): ############################################## #THIS FUNCTION WILL GENERATE A LIST OF STRINGS TO USE AS KEYS FOR CONDITIONAL PROBABILITIES ### INPUT ### # s_0 int number of states of the child node # s_i list number of states for each parent node, from most to least significant ### OUTPUT ### # list of strings to use as keys for conditional probabilities (included commas in case there is ever an >11-state node!) ############################################## ranges = [] for p in ps: ranges.append([str(p.name)]) ranges.append(p.states.keys()) enumed = product(*ranges) add = [",","_"] cond_keys = [] for enum in enumed: suff = 0 enum = list(enum) parent_str = '' for i in range(len(enum)-1): suff = (suff + 1)%2 parent_str += str(enum[i]) + add[suff] parent_str += str(enum[len(enum)-1]) cond_keys.append("%s"%(parent_str)) return cond_keys class Node: # A single variable in the Bayesian network def __init__(self, name, data, states=None, parents=[]): ### INPUTS ### # name: str name of variable # data: array state data for the node # states: dict keys are state names, values are the int each takes on in the data # parents: list strings of names of parent nodes to this node ############## if states == None: states = {} for i in range(max(data) + 1): states.update({str(i) : i}) self.name = name self.data = data self.states = states self.parents = parents
[ "mbruff@unc.edu" ]
mbruff@unc.edu
97526b2d07a57713e091b7a40b2016652f423481
961042b1e542e3648b20de407041f02b5b0d50f3
/python_lesson/homework/hw4/rain.py
45fc59b643e77a6a5f50a268805ee8546b9f7291
[]
no_license
jasonwu0908/tibame
f4a9275bfbcc4b8e591907482c725a872b55c18a
9f49f95f1bdcb6d241737657cbb4f468f57c22d2
refs/heads/master
2020-08-28T23:26:53.180559
2020-05-17T06:34:08
2020-05-17T06:34:08
217,852,090
0
0
null
null
null
null
UTF-8
Python
false
false
4,528
py
# 輸入一字串,字串為”all” 表示計算60個月的總平均降雨量,”year”、”season”和”month” # 分別表示計算某年、某季或某月的平均降雨量。若為後三者,再輸入一個正整數表示那一年、那一季或那一月。 # 說明:5年12個月的降雨量以三維陣列形式事先給好60個浮點數 # 需做誤錯處理: # a. 輸入除了”all”、”year”、”season”和”month”以外的字串 # b. 若輸入”year”,而正整數輸入1至5以外的數字 # c. 若輸入”season”,而正整數輸入1至4以外的數字 # d. 若輸入”month”,而正整數輸入1至12以外的數字 import random list_rain = [] list_order = ['all', 'year', 'season', 'month'] def give_rain_list(): for i in range(5): list_rain.append([]) for j in range(4): list_rain[i].append([]) for k in range(3): list_rain[i][j].append(round(float(random.randint(0,1000)/random.randint(1,50)), 2)) return list_rain def give_order(): try: str_order = str(input('請輸入:\tall, year, season, month:')) if str_order not in list_order: raise ValueError else: print(str_order) return str_order except ValueError: print('請輸入英文') return give_order() except NameError: print('英文拼錯') return give_order() except SyntaxError: print(SyntaxError) return give_order() def avg_rain(commend): total = 0 row = len(list_rain) col = len(list_rain[0]) kon = len(list_rain[0][0]) if commend == 'all': for i in range(row): for j in range(col): for k in range(kon): total += list_rain[i][j][k] rain_avg = total / (row * col * kon) return round(rain_avg, 2) elif commend == 'year': try: year_num = int(input('請輸入1~5:')) if year_num > 5 or year_num < 1: raise IndexError else: for j in range(col): for k in range(kon): total += list_rain[year_num-1][j][k] rain_avg_year = (total / (col * kon)) return rain_avg_year except ValueError: print('請勿給數字以外的字,請輸入數字1~5:') return avg_rain(commend) except IndexError: print('不再數字範圍內,請輸入數字1~5:') return avg_rain(commend) elif commend == 'season': try: season_num = int(input('請輸入1~4:')) if season_num > 4 or season_num < 1: raise IndexError else: for i in range(row): for k in range(kon): total += list_rain[i][season_num-1][k] rain_avg_season = (total / row * kon) return round(rain_avg_season, 2) except ValueError: print('請勿給數字以外的字,請輸入數字1~4:') return avg_rain(commend) except IndexError: print('不再數字範圍內,請輸入數字1~4:') return avg_rain(commend) else: try: month_num = int(input('請輸入1~12:')) month = (month_num-1) % 3 if month_num > 12 or month_num < 1: raise IndexError else: if 3 <= month_num <= 5: col = 0 elif 6 <= month_num <= 8: col = 1 elif 9 <= month_num <= 11: col = 2 else: col = 3 for i in range(row): total += list_rain[i][col][month] rain_avg_month = (total / row) print(rain_avg_month) return round(rain_avg_month, 2) except ValueError: print('請勿給數字以外的字,請輸入數字1~12:') return avg_rain(commend) except IndexError: print('不再數字範圍內,請輸入數字1~12:') return avg_rain(commend) def main(): list_rain = give_rain_list() for i in range(5): print(list_rain[i]) print() print('=' * 50) commend = give_order() print('=' * 50) x = avg_rain(commend) print(x) print('=' * 50) main()
[ "jw840908@gmail.com" ]
jw840908@gmail.com
53bf12582b148ff36491728a65ce0940d7cd0349
c3feb5a8569436f22192412f5e3234b940994622
/writing_raster.py
910920a5b5b7aaa73f435ff1a72b1119cf8dfd40
[]
no_license
grathee/ISRIC-awc
68aa511810ab05e4a5847c929f7e043aa7900d13
90629100a8fa6c236f65ffa6596a02f503c2ff2a
refs/heads/master
2021-01-10T10:57:22.352441
2016-04-10T20:24:53
2016-04-10T20:24:53
51,150,267
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
# -*- coding: utf-8 -*- """ Created on Sun Apr 10 16:01:08 2016 @author: user """ rf = gdal.Open("/media/user/data/AWC-IN_022016/sdata/BLD_sd1_M_1km_T386.tif") cols = rf.RasterXSize rows = rf.RasterYSize geotransform = rf.GetGeoTransform() originX= geotransform[0] originY= geotransform[3] pixelWidth= geotransform[1] pixelHeight= geotransform[5] driver = rf.GetDriver()
[ "geetika.rathee@wur.nl" ]
geetika.rathee@wur.nl
ec14f58a983cc07d6cc84ca1a9767d97e9932fe9
480849d5c9de11ad7a57b8d491e7047f3b3a643e
/functions.py
7dccc1335ea73c9fa16ca9836aa6e4062b247fcf
[]
no_license
Jrossi11/Streamlit-Backtesting
b404730d33018f005bca38995a7bf50fe097f94f
04028afd5a506e831a53a20b1a6f712635a9486c
refs/heads/main
2023-04-04T07:09:13.651200
2021-04-15T15:13:47
2021-04-15T15:13:47
344,124,535
0
0
null
null
null
null
UTF-8
Python
false
false
6,706
py
import yfinance as yf import numpy as np import pandas as pd from indicators import MACD, BBANDS def create_df(ticker, days, std, a, b, signal, start, end, freq): df = yf.download(ticker, start = start, end=end, interval = freq) data = pd.DataFrame() data['Close'] = df['Close'] data = BBANDS(df,days,std) data['Macd'] = MACD(df, a, b, signal)[0] data['Signal_line'] = MACD(df, 12, 26, 9)[1] data['EWMA_short'] = df['Close'].ewm(span=20, adjust=False).mean() data['EWMA_long'] = df['Close'].ewm(span=40, adjust=False).mean() return data def buy_sell_func(data, stop_loss=0.1, short_allowed=True): """ Esta funcion contiene las reglas que el algoritmo sigue para dar las señales Parameters ---------- data : Matriz que contiene los precios de cierre y los parametros del indicador take_profit : Float con el movimiento porcbuyentual para tomar ganancia stop_loss : Float con el movimiento porcentual para cerrar operacion negativa Returns ------- listas: buy_sell[0] son las compras y buy_sell[1] son las ventas en el momento que se produjeron. """ long_positions = [] short_positions = [] last_entry = 0 long = 0 short = 0 for i in range(len(data)): if long == 1: #Long position exit conditions short_positions.append(np.nan) if data['Close'][i] > data['Upper'][i]: #Exit with upper bband long_positions.append(-data['Close'][i]) long = 0 last_entry = 0 elif data['Close'][i] < (last_entry*(1-stop_loss)): #Stop loss triger long_positions.append(-data['Close'][i]) long = 0 last_entry = 0 else: #Holding the stock long_positions.append(np.nan) elif short == 1: #Short position exit conditions long_positions.append(np.nan) if data['Close'][i] < data['Lower'][i]: #Exit with lower bband short_positions.append(-data['Close'][i]) short = 0 last_entry = 0 elif data['Close'][i] > (last_entry*(1-stop_loss)): #Stop loss triger short_positions.append(-data['Close'][i]) short = 0 last_entry = 0 else: #Holding the stock short_positions.append(np.nan) elif short == 0 and long ==0: #Short position entry conditions if data['Macd'][i] < data['Signal_line'][i] and data['Macd'][i-1] > data['Signal_line'][i-1] \ and data['EWMA_short'][i] < data['EWMA_long'][i] and short_allowed==True: #Short position entry conditions long_positions.append(np.nan) short_positions.append(data['Close'][i]) short = 1 last_entry = data['Close'][i] elif data['Macd'][i] > data['Signal_line'][i] and data['Macd'][i-1] < data['Signal_line'][i-1] \ and data['EWMA_short'][i] > data['EWMA_long'][i]: #Long position entry conditions long_positions.append(data['Close'][i]) short_positions.append(np.nan) long = 1 last_entry = data['Close'][i] else: long_positions.append(np.nan) short_positions.append(np.nan) df = pd.DataFrame({'index':data.index,'Longs':long_positions,'Shorts':short_positions}) return [long_positions, short_positions, df] """PERFORMANCE ANALISYS""" def performance(data, bs_data): """ Esta funcion calcula el "pl" que es la ganancia y perdida por cada transaccion, el "pl_returns" que es la ganancia porcentual de cada operacion. Tambien calcula el win ratio, la cantidad de operaciones exitosas sobre el total la media y la varianza de los retornos """ pl = [] #Calculo los retornos diarios long = 0 short = 0 prof = 0 total = 0 for i in range(len(data)): if long == 0 and short == 0: if bs_data[0][i] > 0: long=1 index_open=i pl.append(1) elif bs_data[1][i] > 0: short=1 index_open=i pl.append(1) else: pl.append(1) elif long==1: if bs_data[0][i] < 0: pl.append(data['Close'][i]/data['Close'][i-1]) long=0 total += 1 if data['Close'][i]>data['Close'][index_open]: prof += 1 else: pl.append(data['Close'][i]/data['Close'][i-1]) elif short==1: if bs_data[1][i] < 0: pl.append(data['Close'][i-1]/data['Close'][i]) short=0 total += 1 if data['Close'][i]<data['Close'][index_open]: prof += 1 else: pl.append(data['Close'][i-1]/data['Close'][i]) if total > 0: win_ratio = prof/total else: win_ratio = 0 return [pl, win_ratio, prof, total] def capital_func(data,pl_data,initial_cap, buy_sell): """ Parameters ---------- initial_cap : El input es el capital inicial con el cual operara el algo Returns ------- cap : Evolucion del capital a medida que el algo tradea tot_return : Retorno desde que el algo comenzo a operar """ cap = np.cumprod(pl_data[0])*1000 stock_performance = data['Close']/data['Close'].shift(1) stock_reference = np.cumprod(stock_performance)*1000 stock_reference[0] = initial_cap stock_performance = stock_reference[-1]/stock_reference[0]-1 tot_return = cap[-1]/initial_cap-1 return cap, stock_reference, tot_return, stock_performance """ data=create_df("AAPL", 20,1,12,26,9,"2010-01-01","2020-01-01", "1d") bs_data=buy_sell_func(data,0.1,False) pl_data=performance(data,bs_data) cap=capital_func(data,pl_data,1000, bs_data) """
[ "noreply@github.com" ]
Jrossi11.noreply@github.com
aa7a76f3941412f0af24311100dbb6ddf5fd5935
632544cb106ca1456d528cd650418f66f1715e5b
/backend/app_1_21879/settings.py
2957bf57e0b60bcedc3768f223af76b86999ba84
[]
no_license
crowdbotics-apps/app-1-21879
e38079331882dd023ea086e5f2699fa887f688e5
2ba321b7f4d5c48a7a787db49d424891a4c01803
refs/heads/master
2023-01-02T06:15:05.927470
2020-10-23T17:48:54
2020-10-23T17:48:54
306,707,610
0
0
null
null
null
null
UTF-8
Python
false
false
6,083
py
""" Django settings for app_1_21879 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import logging env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', # start fcm_django push notifications 'fcm_django', # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app_1_21879.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app_1_21879.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # start fcm_django push notifications FCM_DJANGO_SETTINGS = { "FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "") } # end fcm_django push notifications # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
[ "team@crowdbotics.com" ]
team@crowdbotics.com
ccee0ae76b708de8d873628460ed5fd1800af471
33612e7ca82f22bb8c96515f448afefd680f9134
/dho-screencap.py
03474b750a113b35da8ba5e1c205518ea1ea2f9f
[]
no_license
coderpete/dotfiles
959bca73c61924fe363b96d027305b60829e57f3
c09e75853c048a31cddfc38aaa2674dde352b7f8
refs/heads/master
2022-08-15T06:21:29.645361
2022-08-03T01:21:56
2022-08-03T01:21:56
4,587,100
0
0
null
null
null
null
UTF-8
Python
false
false
1,649
py
#!/usr/bin/env python ''' Integrates Mac OS X's screenshot utility with DreamObjects for easy sharing. ''' from datetime import datetime from uuid import uuid4 import os import subprocess import webbrowser import urllib2 import json import boto import boto.s3.connection # configuration f = open('.dho_access', 'r') # required dho_access_key = f.readline().strip() dho_secret_key = f.readline().strip() dho_screenshots_bucket = f.readline().strip() # optional cname = f.readline().strip() # other variables now = datetime.now() this_month = datetime.strftime(now, '%Y%m') tstamp = datetime.strftime(datetime.now(), '%d%H%M%S') filename = this_month + '/' + tstamp + '_' + str(uuid4()) + '.png' # start interactive screen capture print 'Capturing screenshot...' if not os.path.exists('/tmp/' + this_month): os.mkdir('/tmp/' + this_month) subprocess.call(['screencapture', '-i', '/tmp/%s' % filename]) print 'Connecting to DreamObjects...' connection = boto.connect_s3( aws_access_key_id=dho_access_key, aws_secret_access_key=dho_secret_key, host='objects.dreamhost.com' ) print 'Getting target bucket...' bucket = connection.get_bucket(dho_screenshots_bucket) key = bucket.new_key(filename) print 'Uploading to DreamObjects...' key.set_contents_from_file(open('/tmp/%s' % filename, 'rb')) key.set_canned_acl('private') signed_url = key.generate_url( expires_in=60*60*3, query_auth=True, force_http=True ) print 'Screenshot available at:' print '\t', signed_url print 'Copying url to clipboard...' os.system('echo "%s" | pbcopy' % signed_url) print 'Opening in browser...' webbrowser.open_new_tab(signed_url)
[ "pete.chudykowski@dreamhost.com" ]
pete.chudykowski@dreamhost.com
2e10e0235035397bd356c040ca5aa38dfa087ded
d7e3988bd90ffa6259d564e8426eed18766a5e03
/old/tarea3.py
6aec20f4c9fa2621c44eb679717a861f0a75232e
[]
no_license
yerkortiz/py-code
7e405705bcd92819c555ba0ba43551fa3c852657
b120c4c613c8cbecf89a8473fde40bb1d69bc724
refs/heads/master
2023-01-08T22:17:05.807915
2020-11-14T18:58:26
2020-11-14T18:58:26
214,654,529
0
0
null
null
null
null
UTF-8
Python
false
false
1,013
py
from gost import * #gost.py es parte de la libreria, pero solo el archivo. #como es un standar ruso, gran parte de lo que encontré en internet #estaba en ese idioma así que el camino más corto fue ver directamente #la implementación del algoritmo y ver como usarlo #el resto de funciones de pygost son para codificar y decodificar entre arreglos de bytes y hexadecimal from functools import partial from pygost.utils import hexdec from pygost.utils import strxor from pygost.utils import xrange from pygost.utils import hexenc #pip instal pygost #ejecutar con python3 tarea3.py pt = hexdec("holaaaaa".encode("utf-8").hex()) key = hexdec("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa".encode("utf-8").hex()) ct = ecb_encrypt(key, pt) #dt = ecb_encrypt(key, ct) print('mensaje en texto plano: ' + hexenc(pt)) print('mensaje encriptado: ' + hexenc(ct)) #print(hexenc(dt)) html =""" <p>Mensaje secreto</p> <div class='kuznyechik' id='"""+hexenc(ct)+"""'></div> """ file = open("index.html","w") file.write(html) file.close()
[ "yerko.ortizm@mail.udp.cl" ]
yerko.ortizm@mail.udp.cl
ea7d3b60c24ca6ccdc9de4c84e580fdb27c80e0b
802997443ff625296e09eed55e349f319953e47a
/Versoes Anteriores/Gestao_v1/gestao/gestaoapp/models/projeto.py
0c74fe69f47d23d7d7e0e0ec089490b5d30b7192
[]
no_license
elizabethsilvano/GestaoProjetos
7531277f4c51fb7802a70f24a406ad81bc467d96
3d21fff452cf42cd2d78a6591d0fab9ac9b46eb5
refs/heads/master
2023-04-01T18:54:41.932959
2015-11-17T17:43:00
2015-11-17T17:43:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
509
py
from django.db import models from gestaoapp.models import Coordenador from gestaoapp.models import Bolsista from gestaoapp.models import Nucleo class Projeto(models.Model): nome_projeto = models.CharField(max_length=255) coordenador = models.ForeignKey(Coordenador) nucleo = models.ForeignKey(Nucleo) bolsista = models.ForeignKey(Bolsista) cliente = models.CharField(max_length=255) data_inicio = models.DateField() data_termino = models.DateField() def __unicode__(self): return self.nome_projeto
[ "paatrick_reis@hotmail.com" ]
paatrick_reis@hotmail.com
305ec6ed0199cbc83888fec821fb398ad5eb7314
677744a2392da10141b0a8f19458dba730a35bff
/Algorithm/backjoon/bronze/최댓값.py
b62e8f5f601576834ee97b03b9c76756d2ccfd14
[]
no_license
xxoellie/growth_recording
daf1cf2a89b62ca4e683bd6e7b5507b038bbd66d
f45e46a50a7941d31c3c9a754d40617da9541a31
refs/heads/master
2023-09-06T08:13:39.720428
2021-11-17T15:16:38
2021-11-17T15:16:38
403,450,642
2
0
null
null
null
null
UTF-8
Python
false
false
107
py
num = [] for i in range(9): num.append(int(input())) a = max(num) b= num.index(a) print(a) print(b+1)
[ "elliesohyeon1202@gmail.com" ]
elliesohyeon1202@gmail.com
f42e432426681660f78bd781ade6c893b3eeee8f
b6cdc35b12a1ae8834d76c7731f79c9689f75e04
/polling_bot/excel_reader.py
d73b1a9173bcc5252bd8567185c7fd38be113e52
[ "Apache-2.0" ]
permissive
balemessenger/poll_bot
40abd3235c1587d73a84d395d124ae7e56a2d140
672ed66aa376ac1580c48c119ca2743a16976326
refs/heads/master
2023-08-07T22:13:18.246312
2020-02-19T06:06:11
2020-02-19T06:06:11
241,539,543
0
0
Apache-2.0
2023-07-23T06:07:38
2020-02-19T05:21:01
Python
UTF-8
Python
false
false
960
py
from collections import defaultdict import pandas class ExcelReader: def __init__(self, file_path): self.file = file_path self.data_list = defaultdict(list) self.data = list def read_excel_data(self, sheets=None): if sheets and isinstance(sheets, list): for sheet_number in sheets: self.data = [] data_frame = pandas.read_excel(self.file, sheet_name=sheet_number, header=None) # keys = data_frame.keys() for value_list in data_frame.values: inner_data = [] for value in value_list: inner_data.append(value) self.data.append(inner_data) self.data_list[sheet_number].append(self.data) def validate_fields(self, data: dict): raise NotImplementedError() # @property def get_data(self): return self.data_list
[ "bayatimasoood@gmail.com" ]
bayatimasoood@gmail.com
ffecc0dbc60ce26f507ac4edbfda23261709f8bf
41a0cd9b039e3c7752ff938077aa228bb9773575
/ExCode/Lab09_NormalMapOnTangentSpace/main.py
9a44ebfb7910ed3d3103a8bdda68d9485577d26a
[]
no_license
dknife/201802_GPUProgramming
c23d1361df41fca267f99e83a442266f29989507
1a722082a74bb8b6088c47bdc88375a81b68d1b7
refs/heads/master
2021-07-17T07:44:11.498713
2019-01-22T19:42:36
2019-01-22T19:42:36
147,673,055
0
0
null
null
null
null
UTF-8
Python
false
false
5,273
py
import wx # requires wxPython package from wx import glcanvas from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * import numpy as np import random as rnd import math import Light import Shader import Texture import Surface class MyFrame(wx.Frame) : def __init__(self): self.size = (1280, 720) wx.Frame.__init__(self, None, title = "wx frame", size = self.size, style = wx.DEFAULT_FRAME_STYLE ^ wx.RESIZE_BORDER) self.panel = MyPanel(self) class MyPanel(wx.Panel) : def __init__(self, parent): wx.Panel.__init__(self, parent) self.canvas = OpenGLCanvas(self) self.shaderButton = wx.Button(self, wx.ID_ANY, "Shader On/Off", pos=(1030, 20), size=(200,40), style = 0) self.shaderLabel = wx.StaticText(self, -1, pos=(1030, 60), style=wx.ALIGN_CENTER) self.shaderLabel.SetLabel("currently the shader is off") self.Bind(wx.EVT_BUTTON, self.OnShaderButton, self.shaderButton) self.lightLabel = wx.StaticText(self, -1, pos=(1030,150), style=wx.ALIGN_CENTER) self.lightLabel.SetLabel("Light") self.lightSlider = wx.Slider(self, -1, pos=(1030, 180), size = (200,50), style = wx.SL_HORIZONTAL|wx.SL_AUTOTICKS, value=0, minValue=-20, maxValue=20) self.objectRotation = wx.StaticText(self, -1, pos=(1030, 250), style=wx.ALIGN_CENTER) self.objectRotation.SetLabel("Object Rotatation (Y)") self.objectRotationSlider = wx.Slider(self, -1, pos=(1030, 280), size=(200, 50), style=wx.SL_HORIZONTAL | wx.SL_AUTOTICKS, value=0, minValue=-90, maxValue=90) self.Bind(wx.EVT_SLIDER, self.OnLightSlider, self.lightSlider) self.Bind(wx.EVT_SLIDER, self.OnRotationSlider, self.objectRotationSlider) def OnLightSlider(self, event): val = event.GetEventObject().GetValue() self.canvas.lightX = val / float(10) def OnRotationSlider(self, event): val = event.GetEventObject().GetValue() self.canvas.objectAngle = val def OnShaderButton(self, event): if self.canvas.bDrawWithShader == True : self.canvas.bDrawWithShader = False self.shaderLabel.SetLabel("currently the shader is off") else : self.canvas.bDrawWithShader = True self.shaderLabel.SetLabel("currently the shader is on") class OpenGLCanvas(glcanvas.GLCanvas): def __init__(self, parent) : self.initialized = False self.bDrawWithShader = False self.shader = None self.size = (1024,720) self.aspect_ratio = 1 self.lightX = 0.0 self.objectAngle = 0.0 glcanvas.GLCanvas.__init__(self, parent, -1, size = self.size) self.context = glcanvas.GLContext(self) self.SetCurrent(self.context) self.Bind(wx.EVT_PAINT, self.OnDraw) self.Bind(wx.EVT_IDLE, self.OnIdle) self.light = Light.Light() self.light.setLight() self.light.setMaterial() self.light.turnOn() self.texture = Texture.Texture("normal.png") attrib_list = ["Tangent", "Binormal"] self.shader = Shader.Shader("textureMapping.vs", "textureMapping.fs", attrib_list) self.surface = Surface.Surface(50,50) self.surface.resetVerts() self.surface.computeTangentSpace() self.InitGL() def InitGL(self): glMatrixMode(GL_PROJECTION) glLoadIdentity() self.aspect_ratio = float(self.size[0]) / self.size[1] gluPerspective(60, self.aspect_ratio, 0.1, 100.0) glViewport(0,0,self.size[0], self.size[1]) glEnable(GL_DEPTH_TEST) self.texture.startTexture() def OnDraw(self, event): # clear color and depth buffers if not self.initialized : self.InitGL() self.initialized = True glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) # position viewers glMatrixMode(GL_MODELVIEW) glLoadIdentity() gluLookAt(0,1,1, 0, 0, 0, 0,1,0) self.light.setLightPoisition(self.lightX, 0.5, 0) glDisable(GL_LIGHTING) glPointSize(10) glColor3f(1, 0, 0) glBegin(GL_POINTS) glVertex3f(self.lightX, 0.5, 0) glEnd() glEnable(GL_LIGHTING) glRotatef(self.objectAngle, 0,1,0) #self.objectAngle+=0.1; if self.bDrawWithShader : self.shader.begin() loc = glGetUniformLocation(self.shader.program, "myTexture") glUniform1i(loc, 0) glVertexAttribPointer(10, 3, GL_FLOAT, GL_FALSE, 0, self.surface.tangent) glEnableVertexAttribArray(10) glVertexAttribPointer(11, 3, GL_FLOAT, GL_FALSE, 0, self.surface.binorm) glEnableVertexAttribArray(11) else : self.surface.drawTangentSpace() self.surface.drawSurface() self.shader.end() self.SwapBuffers() def OnIdle(self, event): self.Refresh() def main() : app = wx.App() frame = MyFrame() frame.Show() app.MainLoop() if __name__ == "__main__" : main()
[ "young.min.kang@gmail.com" ]
young.min.kang@gmail.com
42266d9378f9aa963204c4446c5147e3eb0b353b
3cdda95ca9ad49915243ba5d3d2b9725880373e1
/215-sklearnMultipleLinearRegressionandAdjustedR-squared-FRegression.py
cb4e158497e067c65261a8e94dbb7adc424cffb8
[]
no_license
evelynda1985/215-MultipleLinerRegressionF-regression
ab3910e9223ff10e78660c692087492d2bd2740d
b0227a6da9299d7db079677276f7e0b9cda8b0e4
refs/heads/main
2023-07-15T04:53:35.463960
2021-08-27T00:53:14
2021-08-27T00:53:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,888
py
#!/usr/bin/env python # coding: utf-8 # # Adjusted R-squared - Exercise # # Using the code from the lecture, create a function which will calculate the adjusted R-squared for you, given the independent variable(s) (x) and the dependent variable (y). # # Check if you function is working properly. # # Please solve the exercise at the bottom of the notebook (in order to check if it is working you must run all previous cells). # ## Import the relevant libraries # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() from sklearn.linear_model import LinearRegression # ## Load the data # In[2]: data = pd.read_csv('1.02. Multiple linear regression.csv') data.head() # In[3]: data.describe() # ## Create the multiple linear regression # ### Declare the dependent and independent variables # In[4]: x = data[['SAT','Rand 1,2,3']] y = data['GPA'] # ### Regression itself # In[5]: reg = LinearRegression() reg.fit(x,y) # In[6]: reg.coef_ # In[7]: reg.intercept_ # ### Calculating the R-squared # In[8]: reg.score(x,y) # ### Formula for Adjusted R^2 # # $R^2_{adj.} = 1 - (1-R^2)*\frac{n-1}{n-p-1}$ # In[9]: x.shape # In[10]: r2 = reg.score(x,y) n = x.shape[0] p = x.shape[1] adjusted_r2 = 1-(1-r2)*(n-1)/(n-p-1) adjusted_r2 # ### Adjusted R^2 function # In[11]: def adjusted_r2_funtion(x,y): r2 = reg.score(x,y) n = x.shape[0] p = x.shape[1] adjusted_r2 = 1 - (1-r2) * (n-1)/(n-p-1) return adjusted_r2 # In[12]: adjusted_r2_funtion(x,y) # In[13]: from sklearn.feature_selection import f_regression # In[14]: f_regression(x,y) # In[15]: # F-statistics array([56.04804786, 0.17558437] # p-values array([7.19951844e-11, 6.76291372e-01] # In[16]: p_values = f_regression(x,y)[1] p_values # In[17]: p_values.round(3) # In[ ]:
[ "noreply@github.com" ]
evelynda1985.noreply@github.com
42a1be2cf61229d6cd3c6f26fd4af8dd26623f2c
12b5903f2748e9f46ff79969926ebd4090d90988
/dbengine.py
16b1a1c0a4c748655425f13d5eac30a49a81ef84
[]
no_license
Singer-id/seqgan
e20cda5cabbbfd63f89999dd376740be22a97901
b5f63d4a7ffbd8af9bb87e9c88f6b12f52b6580b
refs/heads/main
2023-01-22T09:44:43.322394
2020-12-09T15:45:31
2020-12-09T15:45:31
319,955,689
0
0
null
null
null
null
UTF-8
Python
false
false
2,159
py
import records import re from babel.numbers import parse_decimal, NumberFormatError schema_re = re.compile(r'\((.+)\)') num_re = re.compile(r'[-+]?\d*\.\d+|\d+') agg_ops = ['', 'max', 'min', 'count', 'sum', 'avg'] cond_ops = ['=', '>', '<', 'OP'] class DBEngine: def __init__(self, fdb): #fdb = 'data/test.db' self.db = records.Database('sqlite:///{}'.format(fdb)) def execute_query(self, table_id, query, *args, **kwargs): return self.execute(table_id, query.sel_index, query.agg_index, query.conditions, *args, **kwargs) def execute(self, table_id, select_index, aggregation_index, conditions, lower=True): if not table_id.startswith('table'): table_id = 'table_{}'.format(table_id.replace('-', '_')) table_info = self.db.query('SELECT sql from sqlite_master WHERE tbl_name = :name', name=table_id).all()[0].sql.replace('\n','') schema_str = schema_re.findall(table_info)[0] schema = {} for tup in schema_str.split(', '): c, t = tup.split() schema[c] = t select = 'col{}'.format(select_index) agg = agg_ops[aggregation_index] if agg: select = '{}({})'.format(agg, select) where_clause = [] where_map = {} for col_index, op, val in conditions: if lower and (isinstance(val, str) or isinstance(val, str)): val = val.lower() if schema['col{}'.format(col_index)] == 'real' and not isinstance(val, (int, float)): try: val = float(parse_decimal(val)) except NumberFormatError as e: val = float(num_re.findall(val)[0]) where_clause.append('col{} {} :col{}'.format(col_index, cond_ops[op], col_index)) where_map['col{}'.format(col_index)] = val where_str = '' if where_clause: where_str = 'WHERE ' + ' AND '.join(where_clause) query = 'SELECT {} AS result FROM {} {}'.format(select, table_id, where_str) print (query) out = self.db.query(query, **where_map) return [o.result for o in out]
[ "noreply@github.com" ]
Singer-id.noreply@github.com
78733a3c69333568ebea00a2b8534eb88cc94240
34b9b39442bde1a3c8fa670ef60bcc84d772a067
/Assignment 3- Deadline 10 Oct 2017/Assignment3_step1_DiNarzo.py
a8c729685f567ea64b8c86274dbdc04c671dd8cb
[]
no_license
bnajafi/Scientific_Python_Assignments_POLIMI_EETBS
b398fc2754b843d63cd06d517235c16177a87dcf
8da926e995dcaf02a297c6bb2f3120c49d6d63da
refs/heads/master
2021-05-07T22:36:14.715936
2018-01-16T21:12:33
2018-01-16T21:12:33
107,265,075
38
86
null
2018-01-16T21:12:34
2017-10-17T12:24:04
Python
UTF-8
Python
false
false
1,384
py
# -*- coding: utf-8 -*- #EXERCISE 1.3 Materials= {'Wood_bevel_lapped':0.14,'Wood_fiberboard':0.23,'Glass_fiber':2.45,'Wood_stud':0.63,'Gypsum':0.079, 'Outside_sourface':0.03,'Inside_surface':0.12} Between_studs= ['Wood_bevel_lapped','Wood_fiberboard','Glass_fiber','Gypsum'] At_studs= ['Wood_bevel_lapped','Wood_fiberboard','Wood_stud','Gypsum'] Air= ['Outside_sourface','Inside_surface'] farea=[0.75,0.25] #RESISTENCES #Calculating the wood stud Wall_wood= At_studs + Air R_wood_tot=0 for anylayer in Wall_wood: R_wood=Materials[anylayer] R_wood_tot=R_wood_tot+R_wood print 'The R value of ' + str(anylayer) +' is ' + str(R_wood) +' °C/W' print ' ' print 'The total value of R assuming a wall with stud is ' +str(R_wood_tot) +' °C/W' #Calculating for glass fiber Wall_glass=Between_studs + Air R_glass_tot=0 for anylayer1 in Wall_glass: R_glass=Materials[anylayer1] R_glass_tot= R_glass_tot+R_glass print 'The R value of ' + str(anylayer1) +' is ' + str(R_glass) +' °C/W' print ' ' print 'The total value of R assuming a wall with glass is ' +str(R_glass_tot) +' °C/W' #HEAT TRANSFER COEFFICIENT U_stud= farea[1]/R_wood_tot U_glass= farea[0]/R_glass_tot U_tot= U_glass+U_stud print' ' print 'The overall heat transfer coefficient is ' +str(U_tot) +' W/°C' R_tot=1/U_tot print ' ' print 'The total resistence is ' +str(R_tot) +' °C/W'
[ "behzad najafi" ]
behzad najafi
894c8fe2c30f30f16184a080402e256b71bec1db
cd4d4e21d077857fd8d9c999feced51aac5f6b0d
/env/bin/django-admin
1ce23704dc2af631516e89625efd9ed7d98b0799
[]
no_license
fieldhawker/akagi
f9b88fe53b3e2bf1eb50185f497af8c0a278e9b2
2890061ec3b5c8be5b9d17a7bcf70a939eccc41a
refs/heads/master
2022-12-21T22:20:15.857871
2019-09-09T13:32:12
2019-09-09T13:32:12
207,040,596
0
0
null
2022-12-08T06:08:35
2019-09-08T00:17:40
JavaScript
UTF-8
Python
false
false
303
#!/Users/takano/Documents/SixPack/akagi/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
[ "" ]
3f2a471cf157e3154c848bf20c4c2bc368f01729
1127436a238a56da21757f38d939a5aac9ecf790
/myenv/bin/pilprint.py
23fdf09841df6c153e811046bfda4f0deb00929d
[]
no_license
comeondown/gas
b163e86b011c39c4d6243f291c137fc15f6690b2
b0182bdfbd2c09797d4dff8424b612c222acfc84
refs/heads/master
2021-01-21T04:41:46.116834
2016-06-16T02:16:18
2016-06-16T02:16:18
55,646,154
0
0
null
null
null
null
UTF-8
Python
false
false
2,611
py
#!/var/www/gas/myenv/bin/python3 # # The Python Imaging Library. # $Id$ # # print image files to postscript printer # # History: # 0.1 1996-04-20 fl Created # 0.2 1996-10-04 fl Use draft mode when converting. # 0.3 2003-05-06 fl Fixed a typo or two. # from __future__ import print_function import getopt import os import sys import subprocess VERSION = "pilprint 0.3/2003-05-05" from PIL import Image from PIL import PSDraw letter = (1.0*72, 1.0*72, 7.5*72, 10.0*72) def description(filepath, image): title = os.path.splitext(os.path.split(filepath)[1])[0] format = " (%dx%d " if image.format: format = " (" + image.format + " %dx%d " return title + format % image.size + image.mode + ")" if len(sys.argv) == 1: print("PIL Print 0.3/2003-05-05 -- print image files") print("Usage: pilprint files...") print("Options:") print(" -c colour printer (default is monochrome)") print(" -d debug (show available drivers)") print(" -p print via lpr (default is stdout)") print(" -P <printer> same as -p but use given printer") sys.exit(1) try: opt, argv = getopt.getopt(sys.argv[1:], "cdpP:") except getopt.error as v: print(v) sys.exit(1) printerArgs = [] # print to stdout monochrome = 1 # reduce file size for most common case for o, a in opt: if o == "-d": # debug: show available drivers Image.init() print(Image.ID) sys.exit(1) elif o == "-c": # colour printer monochrome = 0 elif o == "-p": # default printer channel printerArgs = ["lpr"] elif o == "-P": # printer channel printerArgs = ["lpr", "-P%s" % a] for filepath in argv: try: im = Image.open(filepath) title = description(filepath, im) if monochrome and im.mode not in ["1", "L"]: im.draft("L", im.size) im = im.convert("L") if printerArgs: p = subprocess.Popen(printerArgs, stdin=subprocess.PIPE) fp = p.stdin else: fp = sys.stdout ps = PSDraw.PSDraw(fp) ps.begin_document() ps.setfont("Helvetica-Narrow-Bold", 18) ps.text((letter[0], letter[3]+24), title) ps.setfont("Helvetica-Narrow-Bold", 8) ps.text((letter[0], letter[1]-30), VERSION) ps.image(letter, im) ps.end_document() if printerArgs: fp.close() except: print("cannot print image", end=' ') print("(%s:%s)" % (sys.exc_info()[0], sys.exc_info()[1]))
[ "root@vm20711.hv8.ru" ]
root@vm20711.hv8.ru
e25b8faaa3e5edff82ea687079a64c3f7e2ce024
328bc5a846fb951e1127f13706ad09e75b93b023
/0x00-python_variable_annotations/2-floor.py
877281684c3a01003daa1b49e5a17f3c69dac206
[]
no_license
MatriMariem/holbertonschool-web_back_end
37f39cc286d949e347baafee0697c8ad042dbb05
2ab609541ff8b45cdc923c24d629f160ddc6f3cf
refs/heads/master
2023-02-28T23:06:47.490221
2021-01-28T13:08:43
2021-01-28T13:08:43
305,419,798
0
1
null
null
null
null
UTF-8
Python
false
false
259
py
#!/usr/bin/env python3 """ a type-annotated function floor """ import math def floor(n: float) -> int: """ a type-annotated function floor that takes a float n as argument and returns the floor of the float. """ return math.floor(n)
[ "meriemmatri1994@gmail.com" ]
meriemmatri1994@gmail.com
25bee7f047a571e837f50efb534fc2afe2c02d47
53f2f59c8a186b7028596679a1307f6c5b3bc853
/install-webfaction-cpanel-awstats.py
f172b85f4438093fc1817910e2d8aa68a7bd1cd3
[]
no_license
turian/osqa-install-webfaction
f7c4189b681ac2ea15bcd4db3817d4aa5293503d
9a80576ebddd1955a5221736ab31556f110f1fe4
refs/heads/master
2020-06-03T06:47:34.439598
2010-07-03T19:43:58
2010-07-03T19:43:58
597,755
2
1
null
null
null
null
UTF-8
Python
false
false
954
py
#!/usr/bin/env python from globals import * from moreglobals import * import sys from cpanel import try_remove, force_create import xmlrpclib server = xmlrpclib.ServerProxy('https://api.webfaction.com/') session_id, account = server.login(USERNAME, PASSWORD) #print >> sys.stderr, repr(session_id) #print >> sys.stderr, repr(account) #{'username': 'test5', 'home': '/home2', 'id': 237} #for i in server.list_emails(session_id): # print >> sys.stderr, i r = force_create(server, session_id, AWSTATS_APPNAME, "app", "create_app", "delete_app", "list_apps", ['awstats68', False, WEBSITENAME]) if SERVERIP is None: SERVERIP = server.list_websites(session_id)[0]["ip"] print >> sys.stderr, "No SERVERIP given. Using %s" % SERVERIP r = force_create(server, session_id, WEBSITENAME, "website", "create_website", "delete_website", "list_websites", [SERVERIP, False, [FULLDOMAINNAME], [APPNAME, URLPATH], [AWSTATS_APPNAME, AWSTATS_URLPATH]])
[ "turian@gmail.com" ]
turian@gmail.com
acef5a2b5636f84c4e332012fbb9a52906076306
9554f2acac15c65a1092b8ff2c118edc27c8b754
/server.py
ccc9782e412cb18b9f138603d1128af130d19c7b
[]
no_license
hunnain/flaskReacttodoapp
3af1feee9bdbbf72987d9fe4f2ed276794a163e5
d7fac40991e3bbc5892c0076e25cb62f8e54d210
refs/heads/master
2020-03-26T17:03:40.888646
2018-12-17T14:53:44
2018-12-17T14:53:44
145,139,506
0
0
null
null
null
null
UTF-8
Python
false
false
4,052
py
import os from flask import Flask, render_template, url_for, request, send_from_directory, session, jsonify import json import firebase_admin from firebase_admin import db, credentials, auth from flask import Session app = Flask(__name__, static_folder="./dist", template_folder="./") # SESSION_TYPE = 'redis' app.config.from_object(__name__) # Session(app) cred = credentials.Certificate("firebaseauth.json") # firebase_admin.initialize_app(cred) firebase_admin.initialize_app(options={ 'databaseURL': 'https://ultimate-todo-app.firebaseio.com' }) ultimateTodo = db.reference('ultimateTodo') # secre key app.secret_key = b'_5#y2L"F4Q8z\n\xec]/' # session['userKey'] = 88666 @app.route('/') def index(): return render_template("index.html") @app.route('/registeruser', methods=['GET', 'POST']) def registerUser(): data = request.get_json(silent=True) userData = data["user"] # print('This is a data',data) print('data', userData['email']) user = auth.create_user( email=userData['email'], email_verified=False, password=userData['password'], display_name=userData['userName'], disabled=False ) print('This is siggn up data', user) userDb = ultimateTodo.child('users').push(userData) return 'success' @app.route('/loginuser', methods=['POST']) def loginUser(): data = request.get_json(silent=True) userData = data["user"] email = userData['email'] password = userData['password'] ref = db.reference('ultimateTodo/users') refData = ref.get() userAuth = 'success' for key, val in refData.items(): if(email == val['email'] and password == val['password']): print('correct') userAuth = 'success' userVal = val userKey = key session['logged_in'] = True session['userKey'] = userKey session['userVal'] = userVal app.secret_key = userKey print('This my user val', userVal, key, session) else: print('false') userAuth = 'notsuccess' session['logged_in'] = False # print(val['email']) # print(ref.get()) return userAuth @app.route('/logginUserData', methods=['GET']) def loggedinUser(): data = session dataUid = data['userKey'] datareq = data['userVal'] userVal = { 'email': datareq['email'], 'username': datareq['userName'], 'joiningdate': datareq['joiningdate'], 'uid': dataUid } return jsonify(userVal) # Logout User @app.route('/logoutUser', methods=['POST']) def logoutUser(): data = session logout = request.get_json(silent=True) session.clear() print('My logout', logout, 'My session', session) return 'Sucesfully logout' @app.route('/addtodos', methods=['GET', 'POST']) def addTodos(): data = request.get_json(silent=True) userData = data["user"] if userData['uid'] == session['userKey']: userVal = { 'todo': userData['todo'], 'description': userData['description'] } # userVal = jsonify(userVal) userDb = ultimateTodo.child('users').child(session['userKey']).child('todos').push(userVal) else: return False # print('mu data',userData,'sessionkey',session['userKey'],'my user val',userVal) @app.route('/fetchtodoapi/v1.0', methods=['GET','POST']) def fecthTodo(): data = request.get_json(silent=True) # userData = data["user"] # email = userData['email'] # password = userData['password'] ref = db.reference('ultimateTodo/users') refData = ref.get() for key, val in refData.items(): jsonVal = jsonify(val) print('fecthing datatatat', jsonVal) else: print('false') # print(val['email']) # print(ref.get()) return jsonVal @app.route('/', defaults={'path': ''}) @app.route('/<path:path>') def catch_all(path): return render_template("index.html") app.run(host='0.0.0.0', debug=True, port=5050)
[ "hunnainpashahgchgc@gmail.com" ]
hunnainpashahgchgc@gmail.com
099ef008b3f080c1f48b86d42aebb4646b7a3341
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_040/ch42_2020_03_30_19_42_32_027965.py
abd6af2dd2a16f2dd4ee9fb879398800cc961684
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
x=0 lista=[] palavra = 0 while palavra!="fim": palavra = input("Digite uma palavra: ") lista.append(palavra) while x < len(lista): if (lista[x])[0] == "a": print (lista[x]) x+=1 else: x+=1
[ "you@example.com" ]
you@example.com
7eee97a56674f29c34f9eeec948a1a8cfacc1158
8f850b559b8058f3e31712e7809191576a774449
/src/levenshtein.py
84a492c6435977e83f3d7ec7cca7196aa20b9df9
[]
no_license
crystal-k7/edit-distance
4c1f60354aede0fb10887f21eda35328bff94180
afc9cc7e48684af369c22ca201edddc5c44aa775
refs/heads/master
2022-09-01T07:04:40.522227
2020-05-25T05:02:30
2020-05-25T05:02:30
266,682,219
0
0
null
null
null
null
UTF-8
Python
false
false
2,220
py
from time import time # Levenshtein Distance(Edit Distance Algorithm) def levenshtein(ref, input): dist = list() for i in range(len(ref) + 1): temp = list() for j in range(len(input) + 1): temp.append(0) dist.append(temp) for i in range(len(ref) + 1): dist[i][0] = i for j in range(len(input) + 1): dist[0][j] = j for j in range(1, len(input) + 1): for i in range(1, len(ref) + 1): if ref[i-1] == input[j-1]: dist[i][j] = dist[i-1][j-1] else: dist[i][j] = min(dist[i - 1][j - 1] + 1, min(dist[i][j - 1] + 1, dist[i - 1][j] + 1)) #for line in dist: # print(line) return dist, dist[len(ref)][len(input)] def scoring(ref, input, dist): N = len(ref) i = len(ref) j = len(input) D = 0 I = 0 S = 0 # 일치 워드 search_word = list() while not (i == 0 and j == 0): s = min(dist[i - 1][j], dist[i - 1][j - 1], dist[i][j - 1]) if s == dist[i][j]: i -= 1 j -= 1 search_word.append(ref[i]) else: # I <==> D 변경했음 if s == dist[i - 1][j]: # I: 추가 (왼쪽) print("삭제:", ref[i - 1]) D += 1 i -= 1 elif s == dist[i - 1][j - 1]: # S: 변경 (왼쪽 위) print("수정:", ref[i - 1], input[j - 1]) S += 1 i -= 1 j -= 1 elif s == dist[i][j - 1]: # D: 삭제 (위쪽) print("삽입:", input[j - 1]) I += 1 j -= 1 search_word.append(" ") H = N - S - D corr = H / N * 100 acc = (H - I) / N * 100 print("일치하는 글자들") print(ref) print(input) print("".join(reversed(search_word))) print("-------------------------------------------------------------------------------") print("WORD: corr={:.2f}%, acc={:.2f}% [H:{}, D:{}, S={}, I={}, N={}]".format(corr, acc, H, D, S, I, N)) print("===============================================================================") return corr, acc, H, D, S, I, N
[ "soul7crystal@gmail.com" ]
soul7crystal@gmail.com
5949ea4733b4a8596f5cd12e5fa04142cea360f1
d4999070ab353e7067677aec333d46eb20586606
/django_basic/settings.py
cc3fbc9987d880c887b7ee13ba0b1e189107194f
[]
no_license
rubenqc/basic_django
610d101353afc0f041d3b03ee1374699f9a4642d
9bc78b0d00ff5a5b8558768efad451087cec44ac
refs/heads/main
2023-06-10T16:45:44.814831
2021-07-04T00:07:06
2021-07-04T00:07:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,257
py
""" Django settings for django_basic project. Generated by 'django-admin startproject' using Django 3.2.5. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-5ok##hp7w+@+)xl!^e$hh=#g5kg_jyd9@p_=lklvh%!fqfv(3m' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'django_basic.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'django_basic.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "mmacolluncoc@uni.pe" ]
mmacolluncoc@uni.pe
96eb1e8ba12a5a37a9f2fcc5ae4473e1479a4e81
22ab14f25c770afcffb74401ff618883485483e8
/市场行情爬取/scrapy-pyinstaller/gp/spiders/DailyFunds.py
e3403309ab13642a4646bb2bcb50077ec9ff3f2f
[]
no_license
nativefans/note
c86f5864b07774e9d18332830d4f5d38ce9a5691
25e426de22fd72c0569fb1d329ce437b0a26c706
refs/heads/master
2022-10-28T11:00:30.076231
2020-06-21T13:22:43
2020-06-21T13:22:43
273,837,221
0
1
null
null
null
null
UTF-8
Python
false
false
7,113
py
# -*- coding: utf-8 -*- import scrapy import logging import copy from datetime import date from ..items import FundsItem from scrapy.utils.project import get_project_settings settings = get_project_settings() #logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger('DailyFundSpider') class DailyfundsSpider(scrapy.Spider): name = 'DailyFunds' allowed_domains = [ 'investing.com' ] def __init__(self): self.url = [ 'https://cn.investing.com/funds/usa-funds?&issuer_filter=0' ] self.y = date.today().year self.today = date.today().strftime('%Y-%m-%d') def start_requests(self): for each in self.url: logger.debug(f'现在开始爬取美国每日基金数据------') yield scrapy.Request(url=each, callback=self.company_parse) def company_parse(self, response): content = response.xpath( '//select[@class="selectBox float_lang_base_2 js-issuer-filter"]/option/text()' ).extract() list = [] try: for each in content: list.append(each) except Exception as e: logger.warning(e) for _company in list[1:]: _url = f'https://cn.investing.com/funds/usa-funds?&issuer_filter={_company}' logger.info(f'正爬取 {_company} 的基金数据------') yield scrapy.Request(url=_url, meta={'company': copy.deepcopy(_company), 'download_timeout': 30}, callback=self.funds_parse) def funds_parse(self, response): _url = 'https://cn.investing.com' _company = response.meta['company'] _rate = response.xpath('//table[@id="etfs"]/tbody/tr/td[5]/text()').extract() _date = response.xpath('//table[@id="etfs"]/tbody/tr/td[7]/text()').extract() _code = response.xpath('//table[@id="etfs"]/tbody/tr/td[@class="left symbol"]/@title').extract() _fund = response.xpath('//table[@id="etfs"]/tbody/tr/td[@class="bold left noWrap elp plusIconTd"]/span/@data-name').extract() _href = response.xpath('//table[@id="etfs"]/tbody/tr/td[@class="bold left noWrap elp plusIconTd"]/a/@href').extract() for i in range(len(_code)): date = _date[i].split('/') update_date = f'{self.y}-{date[1]}-{date[0]}' if _rate != "0.00%" and update_date <= self.today: url = _url + _href[i] yield scrapy.Request(url= url, meta={ 'date':copy.deepcopy(update_date), 'code': copy.deepcopy(_code[i]), 'fundName': copy.deepcopy(_fund[i]), 'company': copy.deepcopy(_company), 'download_timeout': 30 }, callback=self.data_parse) def data_parse(self, response): item = FundsItem() _date = response.meta['date'] item['date'] = response.meta['date'] item['code'] = response.meta['code'] item['fundName'] = response.meta['fundName'] _company = response.meta['company'] try: # if:日期判断 closingPrice = response.xpath('//span[@id="last_last"]/text()').extract_first() change = response.xpath('//div[@class="top bold inlineblock"]/span[2]/text()').extract_first() growthRate = response.xpath('//div[@class="top bold inlineblock"]/span[4]/text()').extract_first().replace('%','') MorningstarRating = str(len(response.xpath('//*[@id="quotes_summary_secondary_data"]/div/ul/li[1]/span[2]/i[@class="morningStarDark"]').extract())) TotalAssets = response.xpath('//*[@id="quotes_summary_secondary_data"]/div/ul/li[2]/span[2]/text()').extract_first() OneYearChange = response.xpath('//div[@class="clear overviewDataTable overviewDataTableWithTooltip"]/div[2]/span[2]/text()').extract_first().replace(' ','').replace('%','') previousClose = response.xpath('//div[@class="clear overviewDataTable overviewDataTableWithTooltip"]/div[3]/span[2]/text()').extract_first() RiskRating = str(len(response.xpath('//div[@class="clear overviewDataTable overviewDataTableWithTooltip"]/div[4]/span[2]/i[@class="morningStarDark"]').extract())) TTMYield = response.xpath('//div[@class="clear overviewDataTable overviewDataTableWithTooltip"]/div[5]/span[2]/text()').extract_first().replace('%','') ROE = response.xpath('//div[@class="clear overviewDataTable overviewDataTableWithTooltip"]/div[6]/span[2]/text()').extract_first().replace('%','') turnover = response.xpath('//div[@class="clear overviewDataTable overviewDataTableWithTooltip"]/div[8]/span[2]/text()').extract_first().replace('%','') ROA = response.xpath('//div[@class="clear overviewDataTable overviewDataTableWithTooltip"]/div[9]/span[2]/text()').extract_first().replace('%','') totalMarketCapitalization = response.xpath('//div[@class="clear overviewDataTable overviewDataTableWithTooltip"]/div[14]/span[2]/text()').extract_first() YTDFundReturn = response.xpath('//table[@class="genTbl openTbl crossRatesTbl"]/tbody/tr[2]/td[2]/text()').extract_first().replace('%','') ThreeMonthFundReturn = response.xpath('//table[@class="genTbl openTbl crossRatesTbl"]/tbody/tr[2]/td[3]/text()').extract_first().replace('%','') OneYearFundReturn = response.xpath('//table[@class="genTbl openTbl crossRatesTbl"]/tbody/tr[2]/td[4]/text()').extract_first().replace('%','') ThreeYearFundReturn = response.xpath('//table[@class="genTbl openTbl crossRatesTbl"]/tbody/tr[2]/td[5]/text()').extract_first().replace('%','') FiveYearFundReturn = response.xpath('//table[@class="genTbl openTbl crossRatesTbl"]/tbody/tr[2]/td[6]/text()').extract_first().replace('%','') item['closingPrice'] = closingPrice item['previousClose'] = previousClose item['growthRate'] = growthRate item['change'] = change item['OneYearChange'] = OneYearChange item['turnover'] = turnover item['MorningstarRating'] = MorningstarRating item['RiskRating'] = RiskRating item['TTMYield'] = TTMYield item['ROE'] = ROE item['ROA'] = ROA item['YTDFundReturn'] = YTDFundReturn item['ThreeMonthFundReturn'] = ThreeMonthFundReturn item['OneYearFundReturn'] = OneYearFundReturn item['ThreeYearFundReturn'] = ThreeYearFundReturn item['FiveYearFundReturn'] = FiveYearFundReturn item['TotalAssets'] = TotalAssets item['totalMarketCapitalization'] = totalMarketCapitalization item['company'] = _company yield item except Exception as e: logger.warning(e)
[ "1366124823@qq.com" ]
1366124823@qq.com
f1c0d28721be3c4b319beb10fa3e9e4745ad45a6
1cfefe5b50ad7c780c03254cd02bb4319485cf4f
/face_adding/core/augimg/augment.py
3b49eea08ed80d39e4c93f1f19400e5aacc134de
[]
no_license
phamngocquy/face_recognition_server
b08d75508654fc2a7589f55cb896f9b2585896e6
3263c1cd24494e1f2793e9e3cbe06cd731608de8
refs/heads/master
2021-09-21T23:44:12.761191
2018-09-03T10:36:58
2018-09-03T10:36:58
146,284,256
0
0
null
null
null
null
UTF-8
Python
false
false
1,532
py
import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap import numpy as np import cv2 import os from datetime import datetime from face_adding.utils.config import Config from face_adding.models import * class ImgAugment(object): @staticmethod def make(path, name): person = Person.objects.filter(name=name) if len(person) <= 0: person = Person(name=name) person.save() else: person = person.last() img_raw = Image(path=path, person_id=person.id) img_raw.save() try: img = cv2.imread(path) images = np.array( [img for _ in range(12)], dtype=np.uint8 ) seq = iaa.Sequential([ iaa.Affine( rotate=(0.0, 30), translate_px=iap.RandomSign(iap.Poisson(3)) # set seed for randomSign ) ]) images_aug = seq.augment_images(images) store_path = os.path.join(Config.storePath, person.name.replace(' ', '')) for index, img in enumerate(images_aug): img_path = "{}/{}.jpg".format(store_path, person.name.replace(' ', '') + str(datetime.now().microsecond)) cv2.imwrite(img_path, img) img = Image(path=img_path, person_id=person.id) img.save() except IOError: print("Path not exists!")
[ "phamngocquy97@gmail.com" ]
phamngocquy97@gmail.com
836eabd9670091509ba654c4b4d8203fe6124063
c56a670ce30216c753e054603c5eef0804ca6866
/ros2/kmr_communication/kmr_communication/nodes/camera_node.py
7b4609bf834b817b8733bf6ee2efb2c7272b7606
[]
no_license
TPK4960-RoboticsAndAutomation-Master/ROS2-ENTITY
72b98e7bc4ced15e5746dceb9ff6cac8e9744fde
a67f734ecc55654375edaad52debe90bcc64526f
refs/heads/main
2023-04-20T15:51:25.719852
2021-05-04T14:13:00
2021-05-04T14:13:00
346,657,896
0
1
null
null
null
null
UTF-8
Python
false
false
2,697
py
#!/usr/bin/env python3 import sys from typing import Callable import rclpy import argparse from std_msgs.msg import String, Float64 from rclpy.node import Node from rclpy.utilities import remove_ros_args import subprocess def cl_red(msge): return '\033[31m' + msge + '\033[0m' def cl_green(msge): return '\033[32m' + msge + '\033[0m' class CameraNode(Node): def __init__(self, robot): super().__init__('camera_node') self.name = 'camera_node' self.robot = robot self.status = 0 self.declare_parameter('id') self.id = self.get_parameter('id').value self.declare_parameter('udp/ip') self.ip = self.get_parameter('udp/ip').value self.proc = None # Subscribers sub_camera = self.create_subscription(String, 'handle_camera_' + str(self.id), self.handle_camera, 10) sub_status_check = self.create_subscription(String, 'status_check', self.status_callback, 10) # Publishers self.camera_status_publisher = self.create_publisher(String, 'camera_status', 10) self.publish_status() def status_callback(self, data): self.publish_status() def handle_camera(self, data): if data.data.lower() == "start" and self.status == 0: print(cl_green("Starting camera")) self.proc = subprocess.Popen(["/bin/bash", "kmr_communication/kmr_communication/script/startcamera.sh", self.ip]) self.status = 1 elif data.data.lower() == "stop": try: self.status = 0 self.proc.terminate() self.proc = None print(cl_green("Stopping camera")) except AttributeError: print(cl_red("Camera was never started, therefore never stopped")) self.publish_status() def publish_status(self): msg = String() msg.data = self.id + ":" + self.robot + ":camera:" + str(self.status) + ":" + str(self.ip) #ip = ip:port self.camera_status_publisher.publish(msg) def tear_down(self): try: self.destroy_node() rclpy.shutdown() print(cl_green("Successfully tore down camera node")) except: print(cl_red('Error: ') + "rclpy shutdown failed") def main(argv=sys.argv[1:]): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-ro', '--robot') args = parser.parse_args(remove_ros_args(args=argv)) while True: rclpy.init(args=argv) camera_node = CameraNode(args.robot) rclpy.spin(camera_node) if __name__ == '__main__': main()
[ "andreas@arnholm.org" ]
andreas@arnholm.org
03b2f74c8f32bd75544078a14aaba0e73a6f8709
e66b0e2461eaabd677e3c60726002533bf7e0d89
/serverExempel/funktioner.py
a495252ab4721a0c21cc8043b01aa53fd1e10a24
[]
no_license
simoneje/projektspel
72940f5155bf682b39da3043886aacc6ed809989
227ee803459c4d7bdbec60ac1a1f2a60ba115f84
refs/heads/master
2021-04-14T07:12:19.479431
2020-03-27T07:00:41
2020-03-27T07:00:41
249,215,363
0
0
null
null
null
null
UTF-8
Python
false
false
4,907
py
import numpy as np import os import sqlite3 from sqlite3 import Error from flask import Flask, escape, request, jsonify, render_template import requests import time import sys RAD = 6 KOLUMN = 7 #Skapar en 2d array utav nollor def boardCreate(Rad, Kolumn): board = np.((Rad,Kolumn)) return board #bestämmer vart objektet/pjäsen släpps def dropObject(board, row, col, obj): board[row][col] = obj #Kollar om kolumnen är tillgänglig för att def validLoc(board, col): return board[RAD-1][col] == 0 def getOpenRow(board, col, rad): for r in range(rad): if board[r][col] == 0: return r def flipBoard(board): print(np.flip(board, 0)) def dbConnection(db_file): conn = None try: conn = sqlite3.connect(db_file) except Error: print(Error) return conn def cleanDbTable(dbtable, db_file): conn = dbConnection(db_file) sql = f'DELETE FROM {dbtable}' cur = conn.cursor() cur.execute(sql) conn.commit() def fillBoard(Rad, Kolumn): try: p1Move = requests.get('http://127.0.0.1:5000/playermoves1') p2Move = requests.get('http://127.0.0.1:5000/playermoves2') except requests.exceptions.ConnectionError: print('Error connecting to server') board = boardCreate(RAD, KOLUMN) p1Movelist = p1Move.json() p2Movelist = p2Move.json() if len(p1Movelist) > 0: while len(p1Movelist) or len(p2Movelist) > 0: inCol = p1Movelist.pop(0) if validLoc(board, inCol): row = getOpenRow(board, inCol, RAD) dropObject(board, row, inCol, 1) if victory(board, 1): print('Game Over!') flipBoard(board) time.sleep(2) print('But BOTH are WINNERS :D') time.sleep(6) cleanDbTable('player1moves', 'data.db') cleanDbTable('player2moves', 'data.db') cleanDbTable('game', 'data.db') cleanDbTable('turn', 'data.db') cleanDbTable('move', 'data.db') sys.exit() if len(p2Movelist) > 0: inCol = p2Movelist.pop(0) if validLoc(board, inCol): row = getOpenRow(board, inCol, RAD) dropObject(board, row, inCol, 2) if victory(board, 2): print('Game Over!') flipBoard(board) time.sleep(2) print('But BOTH are WINNERS :D') time.sleep(6) cleanDbTable('player1moves', 'data.db') cleanDbTable('player2moves', 'data.db') cleanDbTable('game', 'data.db') cleanDbTable('turn', 'data.db') cleanDbTable('move', 'data.db') sys.exit() else: pass return flipBoard(board) else: board = boardCreate(RAD, KOLUMN) return board def victory(board, piece): #Kollar horizentalt för vinst for k in range(KOLUMN-3): #tar bort tre eftersom det går ej att vinna från vissa postioner for r in range(RAD): if board[r][k] == piece and board[r][k+1] == piece and board[r][k+2] == piece and board[r][k+3] == piece: return True #Kollar vertikalt för vinst for k in range(KOLUMN): for r in range(RAD-3): # vi kan inte starta på top raden if board[r][k] == piece and board[r+1][k] == piece and board[r+2][k] == piece and board[r+3][k] == piece: return True #Kollar diagonellt för vinst positiv, måste ha minus 3 på bägge eftersom man inte kan vinna från top 3. #Denna funktion kollar dem positiva värderna för diagonellt for k in range(KOLUMN-3): for r in range(RAD-3): if board[r][k] == piece and board[r+1][k+1] == piece and board[r+2][k+2] == piece and board[r+3][k+3] == piece: return True #Kollar diagonellt för vinst negativt, måste ha for k in range(KOLUMN-3): for r in range(3, RAD): #har 3 för tredje indexet på spelplanen som behövs för att kunna få fyra i rad. if board[r][k] == piece and board[r-1][k+1] == piece and board[r-2][k+2] == piece and board[r-3][k+3] == piece: return True # cleanDbTable('player1moves', 'data.db') # cleanDbTable('player2moves', 'data.db') # cleanDbTable('game', 'data.db') # cleanDbTable('turn', 'data.db') # cleanDbTable('move', 'data.db')
[ "noreply@github.com" ]
simoneje.noreply@github.com
904d92dd1f12f043fe448e3d4decd8e93773cea5
c297e5e766c65d89d2b62682fccd902bdd0412f1
/encoder/fcn8_incepV3_u_net.py
6bf1899a31b340f83e269622e03addb1454bd5e9
[]
no_license
zmyu/My_kittiseg
ea23b8b1f520403ec7d6a1961bfba5132e7182ca
4a15c738cb8285cf96a7a3b7f1ee1ae0eead13ed
refs/heads/master
2021-09-08T07:10:15.084960
2018-03-08T07:20:30
2018-03-08T07:20:30
113,545,809
0
3
null
null
null
null
UTF-8
Python
false
false
944
py
""" Utilize inceptionV3 as encoder. ------------------------ The MIT License (MIT) Copyright (c) 2017 Marvin Teichmann """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from inception import inception_v3_u_net as inception import os import tensorflow.contrib.slim as slim def inference(hypes, images, train=True): """. Args: images: Images placeholder, from inputs(). train: whether the network is used for train of inference Returns: softmax_linear: Output tensor with the computed logits. """ with slim.arg_scope(inception.inception_v3_arg_scope()): _, logit, _ = inception.inception_v3_fcn(images,is_training=train,dropout_keep_prob=hypes['solver']['dropout']) logits = {} logits['images'] = images #TODO this is what we want logits['fcn_logits'] = logit return logits
[ "zmyu@vw-mobvoi.com" ]
zmyu@vw-mobvoi.com
b92e139730515dc62aed3f13e56bb4ee72213938
69ec16d994040399b8167b66e18f456c9419ec16
/PyQt5Ex/pyqt2.py
b8b6e52f0f366db3e4ab13079a7cd4358ed5bab2
[]
no_license
syshinkr/Python-Study
e8201701b1df74b31cc8eb04aaedad9061b46cfc
5eee7928049e7532a2c31e63a46b1036e5b9fa6d
refs/heads/master
2020-06-12T06:48:00.723277
2019-06-28T06:36:46
2019-06-28T06:36:46
194,219,844
1
0
null
null
null
null
UTF-8
Python
false
false
393
py
import sys from PyQt5 import QtCore, QtGui, QtWidgets class Window(QtWidgets.QMainWindow): def __init__(self): super(Window, self).__init__() self.setGeometry(50, 50, 300, 300) self.setWindowTitle('PyQt5') self.setWindowIcon(QtGui.QIcon('image/bird.png')) self.show() app = QtWidgets.QApplication(sys.argv) GUI = Window() sys.exit(app.exec_())
[ "syshinkr228@gmail.com" ]
syshinkr228@gmail.com
14f8948b312431d771703a511b627c4b06b8c8ea
b39778e9a161fab5b42577042b2e66a1e201ee08
/v1/accounts/urls.py
3fede521463b56e2c9d809cc28c6c1c3f64a32df
[ "MIT" ]
permissive
Kenan7/Bank
e1f95d05d44f0749c7c90f32b619d4cd2df449ce
45e2a558dd725dcc9c9995e03dbc0d02221b3710
refs/heads/master
2022-11-17T06:27:30.291586
2020-07-14T08:01:39
2020-07-14T08:01:39
279,518,998
0
0
MIT
2020-07-14T07:50:39
2020-07-14T07:50:38
null
UTF-8
Python
false
false
150
py
from django.urls import path from .views.account import AccountView urlpatterns = [ # Accounts path('accounts', AccountView.as_view()), ]
[ "buckyroberts@gmail.com" ]
buckyroberts@gmail.com
c0c175405a61370f1bddbb8daa7d3b347ad91026
e86d020f8ade86b86df6ad8590b4458a9d415491
/projects/test-crrr/base_auth/utils/org.py
36eb99ea5977b0b4d024845975eb2040cc04547e
[]
no_license
g842995907/guops-know
e4c3b2d47e345db80c27d3ba821a13e6bf7191c3
0df4609f3986c8c9ec68188d6304d033e24b24c2
refs/heads/master
2022-12-05T11:39:48.172661
2019-09-05T12:35:32
2019-09-05T12:35:32
202,976,887
1
4
null
2022-11-22T02:57:53
2019-08-18T08:10:05
JavaScript
UTF-8
Python
false
false
3,811
py
import logging from django.db.models import Q from base_auth import app_settings from base_auth.models import User logger = logging.getLogger(__name__) def org_level(org): level = 1 while org.parent: level += 1 org = org.parent return level def get_org_level(user): if user.is_superuser: return 0 if user.is_admin: return 0 if not user.organization: _illegal_user(user) return org_level(user.organization) def can_add_org(operate_user, parent): if parent: t_org_level = org_level(parent) if t_org_level >= app_settings.ORG_DEPTH: return False if operate_user.is_superuser: return True if not parent: return False if operate_user.group != User.Group.ADMIN: return False o_org_level = get_org_level(operate_user) t_org_level = org_level(parent) o_org = operate_user.organization t_org = parent if o_org_level > t_org_level: return False else: while t_org: if t_org == o_org: return True t_org = t_org.parent return False def can_operate_org(operate_user, org): if operate_user.is_superuser: return True if operate_user.group != User.Group.ADMIN: return False o_org_level = get_org_level(operate_user) t_org_level = org_level(org) o_org = operate_user.organization t_org = org if o_org_level >= t_org_level: return False else: while t_org.parent: if t_org.parent == o_org: return True t_org = t_org.parent return False def can_add_user(operate_user, org, group): if operate_user.is_superuser: return True if not org or not group: return False if operate_user.group != User.Group.ADMIN: return False o_org_level = get_org_level(operate_user) t_org_level = org_level(org) o_org = operate_user.organization t_org = org if o_org_level == t_org_level: return o_org == t_org and group > User.Group.ADMIN elif o_org_level < t_org_level: t_org = t_org.parent while t_org: if t_org == o_org: return True t_org = t_org.parent return False else: return False def can_operate_user(operate_user, target_user): if operate_user == target_user: return True if operate_user.is_superuser: return True if target_user.is_superuser: return False if operate_user.group != User.Group.ADMIN: return False o_org_level = get_org_level(operate_user) t_org_level = get_org_level(target_user) o_org = operate_user.organization t_org = target_user.organization if o_org_level == t_org_level: return o_org == t_org elif o_org_level < t_org_level: while t_org.parent: if t_org.parent == o_org: return True t_org = t_org.parent return False else: return False def _illegal_user(user): msg = 'illegal user[%s]!' % user.pk logger.error(msg) raise Exception(msg) def get_filter_org_params(user, field=None): user_org_level = get_org_level(user) if user_org_level == 0: return Q() if field: base_key = '{}__organization'.format(field) else: base_key = 'organization' params = Q(**{base_key: user.organization}) for i in range(app_settings.ORG_DEPTH - user_org_level): base_key = '{}{}'.format(base_key, '__parent') params = params | Q(**{base_key: user.organization}) return params def filter_org_queryset(user, queryset, field=None): return queryset.filter(get_filter_org_params(user, field))
[ "842995907@qq.com" ]
842995907@qq.com
de358e94f05cb216d81c1af497a11e985cb81554
b3aa0ec7bdb6084bff3bcd2652aa123b08ccb7b5
/real_deal/api/apps.py
656acc8e49f7810bd593c95e59ba3fbc31edf8d3
[]
no_license
silverlogic/real-deal-back
9e31796f1783dabe1c7b38964fed9732a1ea6842
bd45b544a6deb4fcf94b40c12e4fd8014b94fa3b
refs/heads/master
2021-01-25T11:55:28.701052
2017-06-11T10:38:52
2017-06-11T10:38:52
93,952,483
0
0
null
null
null
null
UTF-8
Python
false
false
116
py
from django.apps import AppConfig class ApiConfig(AppConfig): name = 'real_deal.api' verbose_name = 'API'
[ "ryanpineo@gmail.com" ]
ryanpineo@gmail.com
1a29da616b6de738a22a6267911bf60a23306322
dc616d885cc37e03357de4b03e2857af49bbc68e
/numpy/13.py
02cb8f7ca5c7f3644b7247a5cb9b8fe80f97b3f6
[]
no_license
sergey061102/AltanML
fb446b5ef53dd67ace53823132d02ba9f2b3eb38
6511cabe1b9b22b5f0215505aac7f4395fd9dfaf
refs/heads/master
2020-04-29T07:38:18.058319
2019-03-20T10:59:55
2019-03-20T10:59:55
175,960,109
0
0
null
null
null
null
UTF-8
Python
false
false
97
py
import numpy as np Z = np.random.random((10, 10)) Zmin, Zmax = Z.min(), Z.max() print(Zmin, Zmax)
[ "example@example.com" ]
example@example.com
ca757733ef37956f24f3ada5f7ca77951a2acdd8
6c26a9bd075d3d54a307d7c1e5a0bc67b50df8c2
/python_intermediate/python3/06_try.py
90f7c184d4e8c0658a13b89e26d206ffdfe88ef1
[]
no_license
marialobillo/dataquest
86efc49c0339c07e6263d428b5ecd2f80d395ecb
49e8b653adf23a12fb9eb6a972d85bc1797dba0a
refs/heads/master
2021-08-28T08:01:36.301087
2017-12-11T16:02:18
2017-12-11T16:02:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
82
py
try: float('hello') except Exception: print('Error converting to float.')
[ "maria.lobillo.santos@gmail.com" ]
maria.lobillo.santos@gmail.com
1d93a85e106b3cb7328abc26ce64275a1eef2658
0d3ff1880e0305eec78a2e56be201bb814645a3d
/Day 01/Work/fizzbuzz.py
99d47825e055f2a443261950c68fbef0570e936a
[]
no_license
vijay-lab/FSDP2019
1b64ee5dc2c904ecf2f2a64845feaa486bb8e7d7
3cba03dc859a3108710cf575d1a400929709b2a8
refs/heads/master
2020-05-24T08:53:27.677911
2019-07-26T13:24:24
2019-07-26T13:24:24
187,193,086
1
1
null
null
null
null
UTF-8
Python
false
false
398
py
# -*- coding: utf-8 -*- """ Created on Tue May 7 18:14:52 2019 @author: TAPAN """ count = 0 while (count< 100): count = count + 1 if (count%3 == 0 and count%5 == 0 ): print("FizzBuzz") continue elif(count%3 == 0): print("Fizz") continue elif(count%5 == 0): print("Buzz") continue print(count)
[ "tapanvijay@outlook.com" ]
tapanvijay@outlook.com
3dc82b9b6ad073e7c515052a34193857fd44cbea
ea629f716a83da061b85fbb4c951e0709a731acb
/scripts/interf.py
4a1b8d3c9b87305626c844701a94d02473bf4082
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
mkarim2017/insarzd
5b0c04527574b67d236ef874c8e60b0bceed8c79
e7d05f836e7ca044166e38bad549629ed00d71f1
refs/heads/master
2020-12-22T23:56:09.455132
2020-03-30T23:59:47
2020-03-30T23:59:47
236,969,323
0
0
NOASSERTION
2020-01-29T11:43:15
2020-01-29T11:43:14
null
UTF-8
Python
false
false
1,653
py
#!/usr/bin/env python3 import os import sys import shutil import argparse import isce import isceobj from crlpac import getWidth from crlpac import getLength from crlpac import runCmd from crlpac import create_xml def cmdLineParse(): ''' Command line parser. ''' parser = argparse.ArgumentParser( description='interferometry') parser.add_argument('-m', '--master', dest='master', type=str, required=True, help = 'master SLC') parser.add_argument('-s', '--slave', dest='slave', type=str, required=True, help = 'resampled slave SLC') parser.add_argument('-i', '--intf', dest='intf', type=str, required=True, help = '(output) interferogram') parser.add_argument('-a', '--amp', dest='amp', type=str, required=True, help = '(output) amplitudes of master and slave SLCs') if len(sys.argv) <= 1: print('') parser.print_help() sys.exit(1) else: return parser.parse_args() if __name__ == '__main__': inps = cmdLineParse() #get information masterWidth = getWidth(inps.master + '.xml') masterLength = getLength(inps.master + '.xml') #run interf cmd = "$INSAR_ZERODOP_BIN/interf {} {} {} {} {}".format(inps.master, inps.slave, inps.intf, inps.amp, masterWidth) #print("{}".format(cmd)) runCmd(cmd) #get xml file for interferogram create_xml(inps.intf, masterWidth, masterLength, 'int') #get xml file for amplitude image create_xml(inps.amp, masterWidth, masterLength, 'amp') #./interf.py -m 20130927.slc -s 20141211.slc -i 20130927-20141211.int -a 20130927-20141211.amp
[ "cunrenl@caltech.edu" ]
cunrenl@caltech.edu
c2f193958b22b647e6c01429eb9cd83866b0e351
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_070/ch147_2020_04_08_11_05_33_482121.py
a1ed04de6fd783e69fc92a8aad6b949ebb31ce09
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
351
py
def conta_ocorrencias(lista): dicio = {} for i in lista: if i not in dicio: dicio[i] = 1 else: dicio[i] +=1 return dicio def mais_frequente(lista): x = conta_ocorrencias(lista) mais = 0 palavra = 0 for i,n in x.items(): if n > mais: palavra = i return palavra
[ "you@example.com" ]
you@example.com