blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
6602d7be56388caf6e20e065c13acd98b8b65dcd
d175411dc1068dedc60d0497f8e8514555d58975
/preprocess.py
bbaa2e018ce6fba15fa437a9701ed10bed078683
[]
no_license
CirQ/CIKMmining
1fd49118da0db90e97e301d341f8b3cb1ba8e1ef
a47c9cdce18eb9b8e662440fc8826c2e2783f275
refs/heads/master
2020-12-03T00:29:47.402238
2017-07-02T16:45:15
2017-07-02T16:45:15
90,642,933
0
0
null
null
null
null
UTF-8
Python
false
false
2,084
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # Author: CirQ # Created Time: 2017-05-08 09:25:07 def get_row_in_dataset(dataset): # dataset can only be train, testA, testB with open("/media/cirq/All matters/CIKM/%s.txt" % dataset, "r") as r: while True: line = r.readline().strip() if not line: break row_id, label, radar_map = line.split(",") del line yield row_id, float(label), [float(z) for z in radar_map.split(" ")] del row_id, label, radar_map # a useless method checking for the correctness of data format def validate_dataset(dataset): with open("/media/cirq/All matters/CIKMmining/validate_%s.txt" % dataset, "w") as w: for row_id, label, radar_map in get_row_in_dataset(dataset): vlen = len(radar_map) if vlen != 612060: # 612060 = 15 * 4 * 101 * 101 w.write("%s %.2f %d\n" % (row_id, label, vlen)) else: w.write(row_id+"->is!\n") print "validate ", row_id import re def generate_csv(method, dataset): dim = re.match(r"^\D+(\d+)$", method).group(1) with open("/media/cirq/All matters/CIKMmining/VECTOR_%s_%s.csv" % (method, dataset), "w") as w: w.write('"row_id","label"' + ',"radar_map"'*int(dim) + '\n') for row_id, label, radar_map in get_row_in_dataset(dataset): w.write("\"%s\"," % row_id) struct_map = [[radar_map[40804*t+10201*h:40804*t+10201*(h+1)] for h in range(4)] for t in range(15)] vector = eval("%s(label, struct_map)" % method) w.write(",".join([str("%.2f" % f) for f in vector])) w.write("\n") print "processing", row_id if __name__ == "__main__": from methods import * method = "timesum_h_d99" while True: b = raw_input("want to generate data vector? (y/n) ") if b == "y": break elif b == "n": import sys sys.exit(0) generate_csv(method, "train") generate_csv(method, "testB")
[ "cirq999@163.com" ]
cirq999@163.com
521e571bd3a79c4c63b21c88324b5819c877109b
3e7b2ebb64e9e324ce47d19def21ae62cc1e56a6
/Problem-solving/UVA/10071 - Back to High School Physics.py
5a579f8a8411865d8f846b8806547b4904b98228
[]
no_license
shuvo14051/python-data-algo
9b6622d9260e95ca9ffabd39b02996f13bdf20d1
8f66ff6f2bd88a0ae48dac72e4ea6c5382a836ec
refs/heads/master
2023-02-03T03:04:01.183093
2020-12-13T10:13:15
2020-12-13T10:13:15
274,106,480
0
0
null
2020-07-05T06:33:28
2020-06-22T10:24:05
Python
UTF-8
Python
false
false
90
py
try: while True: v,t = map(int,input().split()) print(2*v*t) except EOFError: pass
[ "shuvo1137017@gmail.com" ]
shuvo1137017@gmail.com
91e8fcd5f83531ebe8d9ff42b9b393532a7f36f5
06b2cdd32aa7110b9fcf8090487f81c0fd112d07
/pyexe/procmail.py
c9e4dc4152256777b51577a4af20efed82d4b99b
[]
no_license
tuian/winterpy
3050e7562ec0ed57052f5f36d970a4ecce093912
fb3da76d583890472207683e4919d7be146d8f91
refs/heads/master
2021-01-20T02:19:12.146785
2017-08-19T04:08:05
2017-08-19T04:08:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,146
py
#!/usr/bin/env python3 import sys import re import io from email import header from simplelex import Token, Lex from mailutils import decode_multiline_header reply = Token(r'R[Ee]:\s?|[回答][复覆][::]\s?', 're') ottag = Token(r'\[OT\]\s?', 'ot', flags=re.I) tag = Token(r'\[([\w._/-]+)[^]]*\]\s?', 'tag') lex = Lex((reply, ottag, tag)) def reformat(s): tokens, left = lex.parse(s) if not tokens: return isre = False tags = [] ot = False usertag = [] for tok in tokens: if tok.idtype == 're': isre = True elif tok.idtype == 'ot': ot = True elif tok.idtype == 'tag': tag = tok.match.group(1) tag_text = tag.lower() if tag_text.endswith('lug') or tag_text == 'wine-zh' or not tags: if tag_text not in tags: tags.append(tok.match.group(1)) elif tag in tags: continue else: usertag.append(tok.data) else: sys.exit('error: unknown idtype: %s' % tok.idtype) if isre: ret = 'Re: ' else: ret = '' if tags: tags.sort() ret += '[' + ']['.join(tags) + '] ' if ot: ret += '[OT]' ret += ''.join(usertag) + left if ret != s: return ret def stripSeq(input): subject = None while True: l = next(input) if l.startswith('Subject: '): # Subject appears subject = l continue elif subject and l[0] in ' \t': # Subject continues subject += l elif subject: # Subject ends s = subject[9:] s = decode_multiline_header(s) reformatted = reformat(s) if not reformatted: yield subject else: yield 'Subject: ' + header.Header(reformatted, 'utf-8').encode() + '\n' subject = None yield l elif l.strip() == '': yield l # mail body yield from input else: yield l if __name__ == '__main__': stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', errors='surrogateescape') stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8', errors='surrogateescape') stdout.writelines(stripSeq(iter(stdin)))
[ "lilydjwg@gmail.com" ]
lilydjwg@gmail.com
6285bec09869c96c550b642390092cab73c7434a
5db26e37400dcd5c95530465357be1acfdce01ac
/Python/Remove_Duplicates_from_Sorted_List.py
f80739e5078fe5d028f21e02fc7e1add8495d24a
[]
no_license
lmx0412/LeetCodeInPython3
84e3036025538604ef2fc6b626543de6e87f4d82
456f83915ff59323891e5aaf33eb7feeb553dc9a
refs/heads/master
2022-03-06T06:26:49.812775
2022-02-16T08:11:00
2022-02-16T08:11:00
121,228,467
0
0
null
null
null
null
UTF-8
Python
false
false
1,586
py
# pylint: disable-all import unittest """ Description: Given a sorted linked list, delete all duplicates such that each element appear only once. Example 1: Input: 1->1->2 Output: 1->2 Example 2: Input: 1->1->2->3->3 Output: 1->2->3 """ class ListNode: def __init__(self, x): self.val = x self.next = None l1 = ListNode(1) l1.next = ListNode(1) l1.next.next = ListNode(2) l2 = ListNode(1) l2.next = ListNode(1) l2.next.next = ListNode(2) l2.next.next.next = ListNode(3) l2.next.next.next.next = ListNode(3) class Solution: def deleteDuplicates(self, head: ListNode) -> ListNode: ret = ListNode(None) tmp = ret while head: if head.val != tmp.val: tmp.next = ListNode(head.val) head = head.next tmp = tmp.next else: head = head.next return ret.next class MyTest(unittest.TestCase): def test_example1(self): solution = Solution() result = [] resultnode = solution.deleteDuplicates(l1) while resultnode: result.append(resultnode.val) resultnode = resultnode.next self.assertEqual(result, [1, 2]) def test_example2(self): solution = Solution() result = [] resultnode = solution.deleteDuplicates(l2) while resultnode: result.append(resultnode.val) resultnode = resultnode.next self.assertEqual(result, [1, 2, 3]) if __name__ == '__main__': unittest.main()
[ "1024260510@qq.com" ]
1024260510@qq.com
f408edbcd23e994916a76a8d9df92ad59a515c21
a26f34239feebb59a73cc1c5730bb350a8c4ce1f
/app/recipe/tests/test_recipes_api.py
3aa4dd6b17979bbc5c48a4b4d608dd2aa3d19162
[]
no_license
LukaszMalucha/Django-REST
361024a5eaf46a1c425d71df3bb37339cc1ba5b4
5629889fcf9e072adeae18013dd11dd320a103dc
refs/heads/master
2021-08-22T10:39:11.666672
2020-05-15T12:49:03
2020-05-15T12:49:03
142,205,757
1
0
null
2021-06-10T21:09:29
2018-07-24T19:48:03
Python
UTF-8
Python
false
false
5,165
py
from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient from core.models import Recipe, Tag, Ingredient from recipe.serializers import RecipeSerializer, RecipeDetailSerializer RECIPES_URL = reverse('recipe:recipe-list') def detail_url(recipe_id): """Return recipe detail URL""" return reverse('recipe:recipe-detail', args=[recipe_id]) def sample_tag(user, name='Main course'): """Create and return a sample tag""" return Tag.objects.create(user=user, name=name) def sample_ingredient(user, name='Cinnamon'): """Create and return a sample ingredient""" return Ingredient.objects.create(user=user, name=name) def sample_recipe(user, **params): """Create and return a sample recipe""" defaults = { 'title': 'Sample recipe', 'time_minutes': 15, 'price': 2.00 } defaults.update(params) return Recipe.objects.create(user=user, **defaults) class PublicRecipeApiTests(TestCase): """Test unauthenticated recipe API access""" def setUp(self): self.client = APIClient() def test_auth_required(self): """Test that authentication is required""" res = self.client.get(RECIPES_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateRecipeApiTests(TestCase): """Test unauthenticated recipe API access""" def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user( 'test123@gmail.com', 'test123' ) self.client.force_authenticate(self.user) def test_retrieve_recipes(self): """Test retrieving a list of recipes""" sample_recipe(user=self.user) sample_recipe(user=self.user) res = self.client.get(RECIPES_URL) recipes = Recipe.objects.all().order_by('-id') serializer = RecipeSerializer(recipes, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_recipes_limited_to_user(self): """Test retrieving recipes for user""" user2 = get_user_model().objects.create_user( 'tester2@gmail.com', 'test12345' ) sample_recipe(user=user2) sample_recipe(user=self.user) res = self.client.get(RECIPES_URL) recipes = Recipe.objects.filter(user=self.user) serializer = RecipeSerializer(recipes, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data, serializer.data) def test_view_recipe_detail(self): """Test viewing a recipe detail""" recipe = sample_recipe(user=self.user) recipe.tags.add(sample_tag(user=self.user)) recipe.ingredients.add(sample_ingredient(user=self.user)) url = detail_url(recipe.id) res = self.client.get(url) serializer = RecipeDetailSerializer(recipe) self.assertEqual(res.data, serializer.data) def test_creating_basic_recipe(self): """Test creating recipe""" payload = { 'title': 'Chocolate Cheesecake', 'time_minutes': 30, 'price': 5.00 } res = self.client.post(RECIPES_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data['id']) for key in payload.keys(): self.assertEqual(payload[key], getattr(recipe, key)) def test_create_recipe_with_tags(self): """Test creating a recipe with tags""" tag1 = sample_tag(user=self.user, name='Vegan') tag2 = sample_tag(user=self.user, name='Dessert') payload = { 'title': 'Avocado lime cheesecake', 'tags' : [tag1.id, tag2.id], 'time_minutes' : 60, 'price': 20.00 } res = self.client.post(RECIPES_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data['id']) tags = recipe.tags.all() self.assertEqual(tags.count(), 2) self.assertIn(tag1, tags) self.assertIn(tag2, tags) def test_create_recipe_with_ingredients(self): """Test creating recipe with ingredients""" ingredient1 = sample_ingredient(user=self.user, name='Water') ingredient2 = sample_ingredient(user=self.user, name='Ginger') payload = { 'title': 'Ginger Water', 'ingredients': [ingredient1.id, ingredient2.id], 'time_minutes': 20, 'price': 7.00 } res = self.client.post(RECIPES_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data['id']) ingredients = recipe.ingredients.all() self.assertEqual(ingredients.count(), 2) self.assertIn(ingredient1, ingredients) self.assertIn(ingredient1, ingredients)
[ "lucasmalucha@gmail.com" ]
lucasmalucha@gmail.com
e71475b38193cc3d4ed1848a2d31f86844acdecd
99deab5f52fd7262a26de9aa5d0163bfa738590f
/python/leetcode/tree_bst/510_in_order_successor.py
2fd58586b6fd1affe3b38cc52b6e5128c005624f
[]
no_license
zchen0211/topcoder
e47fc07c928b83138e27fd6681b373ce499480b0
4d73e4c1f2017828ff2d36058819988146356abe
refs/heads/master
2022-01-17T16:54:35.871026
2019-05-08T19:26:23
2019-05-13T05:19:46
84,052,683
0
2
null
null
null
null
UTF-8
Python
false
false
3,694
py
""" 510. Inorder Successor in BST II (Medium) Given a binary search tree and a node in it, find the in-order successor of that node in the BST. The successor of a node p is the node with the smallest key greater than p.val. You will have direct access to the node but not to the root of the tree. Each node will have a reference to its parent node. Example 1: Input: root = {"$id":"1","left":{"$id":"2","left":null,"parent":{"$ref":"1"},"right":null,"val":1},"parent":null,"right":{"$id":"3","left":null,"parent":{"$ref":"1"},"right":null,"val":3},"val":2} p = 1 Output: 2 Explanation: 1's in-order successor node is 2. Note that both p and the return value is of Node type. Example 2: Input: root = {"$id":"1","left":{"$id":"2","left":{"$id":"3","left":{"$id":"4","left":null,"parent":{"$ref":"3"},"right":null,"val":1},"parent":{"$ref":"2"},"right":null,"val":2},"parent":{"$ref":"1"},"right":{"$id":"5","left":null,"parent":{"$ref":"2"},"right":null,"val":4},"val":3},"parent":null,"right":{"$id":"6","left":null,"parent":{"$ref":"1"},"right":null,"val":6},"val":5} p = 6 Output: null Explanation: There is no in-order successor of the current node, so the answer is null. Example 3: Input: root = {"$id":"1","left":{"$id":"2","left":{"$id":"3","left":{"$id":"4","left":null,"parent":{"$ref":"3"},"right":null,"val":2},"parent":{"$ref":"2"},"right":{"$id":"5","left":null,"parent":{"$ref":"3"},"right":null,"val":4},"val":3},"parent":{"$ref":"1"},"right":{"$id":"6","left":null,"parent":{"$ref":"2"},"right":{"$id":"7","left":{"$id":"8","left":null,"parent":{"$ref":"7"},"right":null,"val":9},"parent":{"$ref":"6"},"right":null,"val":13},"val":7},"val":6},"parent":null,"right":{"$id":"9","left":{"$id":"10","left":null,"parent":{"$ref":"9"},"right":null,"val":17},"parent":{"$ref":"1"},"right":{"$id":"11","left":null,"parent":{"$ref":"9"},"right":null,"val":20},"val":18},"val":15} p = 15 Output: 17 Example 4: Input: root = {"$id":"1","left":{"$id":"2","left":{"$id":"3","left":{"$id":"4","left":null,"parent":{"$ref":"3"},"right":null,"val":2},"parent":{"$ref":"2"},"right":{"$id":"5","left":null,"parent":{"$ref":"3"},"right":null,"val":4},"val":3},"parent":{"$ref":"1"},"right":{"$id":"6","left":null,"parent":{"$ref":"2"},"right":{"$id":"7","left":{"$id":"8","left":null,"parent":{"$ref":"7"},"right":null,"val":9},"parent":{"$ref":"6"},"right":null,"val":13},"val":7},"val":6},"parent":null,"right":{"$id":"9","left":{"$id":"10","left":null,"parent":{"$ref":"9"},"right":null,"val":17},"parent":{"$ref":"1"},"right":{"$id":"11","left":null,"parent":{"$ref":"9"},"right":null,"val":20},"val":18},"val":15} p = 13 Output: 15 Note: If the given node has no in-order successor in the tree, return null. It's guaranteed that the values of the tree are unique. Remember that we are using the Node type instead of TreeNode type so their string representation are different. Follow up: Could you solve it without looking up any of the node's values? """ """ # Definition for a Node. class Node(object): def __init__(self, val, left, right, parent): self.val = val self.left = left self.right = right self.parent = parent """ class Solution(object): def inorderSuccessor(self, node): """ :type node: Node :rtype: Node """ if node is None: return None if node.right is not None: n = node.right while n.left is not None: n = n.left return n n = node while n is not None: if n.parent is not None and n.parent.left is n: return n.parent n = n.parent return None
[ "chenzhuoyuan07@gmail.com" ]
chenzhuoyuan07@gmail.com
945982de41a158945afd90377f2fd321c325e05f
09c54360cd36134671f55079201e2ab6eb6f8de5
/src/python/pants/backend/shell/tailor.py
abc8d9fb02057b311dcda594e67e2fd92c74889f
[ "Apache-2.0" ]
permissive
chebbyChefNEQ/pants
5de4fa9684103427b85ca632bf751506b5e16621
a53b9d29a160f36f9af1d1a2c43a693b6a55fa55
refs/heads/main
2023-08-15T12:07:52.846972
2021-09-25T16:04:09
2021-09-25T16:04:09
404,178,736
0
0
Apache-2.0
2021-09-08T01:57:22
2021-09-08T01:57:22
null
UTF-8
Python
false
false
2,545
py
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import os from dataclasses import dataclass from typing import Iterable from pants.backend.shell.target_types import ShellLibrary, Shunit2Tests, Shunit2TestsSources from pants.core.goals.tailor import ( AllOwnedSources, PutativeTarget, PutativeTargets, PutativeTargetsRequest, group_by_dir, ) from pants.engine.fs import PathGlobs, Paths from pants.engine.internals.selectors import Get from pants.engine.rules import collect_rules, rule from pants.engine.target import Target from pants.engine.unions import UnionRule from pants.source.filespec import Filespec, matches_filespec from pants.util.logging import LogLevel @dataclass(frozen=True) class PutativeShellTargetsRequest(PutativeTargetsRequest): pass def classify_source_files(paths: Iterable[str]) -> dict[type[Target], set[str]]: """Returns a dict of target type -> files that belong to targets of that type.""" tests_filespec = Filespec(includes=list(Shunit2TestsSources.default)) test_filenames = set( matches_filespec(tests_filespec, paths=[os.path.basename(path) for path in paths]) ) test_files = {path for path in paths if os.path.basename(path) in test_filenames} library_files = set(paths) - test_files return {Shunit2Tests: test_files, ShellLibrary: library_files} @rule(level=LogLevel.DEBUG, desc="Determine candidate shell targets to create") async def find_putative_targets( req: PutativeShellTargetsRequest, all_owned_sources: AllOwnedSources ) -> PutativeTargets: all_shell_files = await Get(Paths, PathGlobs, req.search_paths.path_globs("*.sh")) unowned_shell_files = set(all_shell_files.files) - set(all_owned_sources) classified_unowned_shell_files = classify_source_files(unowned_shell_files) pts = [] for tgt_type, paths in classified_unowned_shell_files.items(): for dirname, filenames in group_by_dir(paths).items(): name = "tests" if tgt_type == Shunit2Tests else os.path.basename(dirname) kwargs = {"name": name} if tgt_type == Shunit2Tests else {} pts.append( PutativeTarget.for_target_type( tgt_type, dirname, name, sorted(filenames), kwargs=kwargs ) ) return PutativeTargets(pts) def rules(): return [*collect_rules(), UnionRule(PutativeTargetsRequest, PutativeShellTargetsRequest)]
[ "noreply@github.com" ]
chebbyChefNEQ.noreply@github.com
bcd4c17ab5a06fe99f3c43abb1302429ee58b698
622820c4e962a48762848f2e04f0c5f5d6fe4e7e
/leukemia/gene_annotation_rna_processing.py
21d3a51df813b46d480c0008317ecc1efb47202b
[]
no_license
lillianpetersen/activity-by-contact
e805ead4ab9aaf810d6d7ef2371a57dab978fcc3
6b85c31a3ce723a8d47cac753be5fe5d02b63625
refs/heads/master
2020-09-07T20:10:25.391202
2020-02-03T18:33:10
2020-02-03T18:33:10
220,900,954
1
0
null
null
null
null
UTF-8
Python
false
false
5,072
py
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sys import exit from scipy import stats from collections import Counter import statsmodels.stats.multitest as multi from collections import defaultdict import re import gzip wd = '/pbld/mcg/lillianpetersen/ABC/' wdvars = '/pbld/mcg/lillianpetersen/ABC/saved_variables/' wdfigs = '/pbld/mcg/lillianpetersen/ABC/figures/' wddata = '/pbld/mcg/lillianpetersen/ABC/data/' MakePlots = False rnaGenes = np.load(wddata+'RNA/geneIDs.npy') GTF_HEADER = ['seqname', 'source', 'feature', 'start', 'end', 'score', 'strand', 'frame'] R_SEMICOLON = re.compile(r'\s*;\s*') R_COMMA = re.compile(r'\s*,\s*') R_KEYVALUE = re.compile(r'(\s+|\s*=\s*)') def dataframe(filename): """Open an optionally gzipped GTF file and return a pandas.DataFrame. """ # Each column is a list stored as a value in this dict. result = defaultdict(list) for i, line in enumerate(lines(filename)): for key in line.keys(): # This key has not been seen yet, so set it to None for all # previous lines. if key not in result: result[key] = [None] * i # Ensure this row has some value for each column. for key in result.keys(): result[key].append(line.get(key, None)) return pd.DataFrame(result) def lines(filename): """Open an optionally gzipped GTF file and generate a dict for each line. """ fn_open = gzip.open if filename.endswith('.gz') else open with fn_open(filename) as fh: for line in fh: if line.startswith('#'): continue else: yield parse(line) def parse(line): """Parse a single GTF line and return a dict. """ result = {} fields = line.rstrip().split('\t') for i, col in enumerate(GTF_HEADER): result[col] = _get_value(fields[i]) # INFO field consists of "key1=value;key2=value;...". infos = [x for x in re.split(R_SEMICOLON, fields[8]) if x.strip()] for i, info in enumerate(infos, 1): # It should be key="value". try: key, _, value = re.split(R_KEYVALUE, info, 1) # But sometimes it is just "value". except ValueError: key = 'INFO{}'.format(i) value = info # Ignore the field if there is no value. if value: result[key] = _get_value(value) return result def _get_value(value): if not value: return None # Strip double and single quotes. value = value.strip('"\'') # Return a list if the value has a comma. if ',' in value: value = re.split(R_COMMA, value) # These values are equivalent to None. elif value in ['', '.', 'NA']: return None return value df = dataframe(wddata+'gencode.v25.annotation.gtf') ## Select only genes (not trascripts, rnastuff, ect) geneMask = df['feature']=='gene' dfGenes = df[geneMask] ## Get only genes present in our data GeneMask = np.isin(dfGenes['gene_id'],rnaGenes) dfRNAgenes = dfGenes[GeneMask] dfRNAgenes = dfRNAgenes.reset_index() ## Make sure all of the genes in our dataset are in this one rnaGenesMask = np.isin(rnaGenes,dfRNAgenes['gene_id']) np.save(wdvars+'validation_K562/inFileMask.npy',rnaGenesMask) rnaGenes = rnaGenes[rnaGenesMask] ## Remove duplicate gene names #names,counts = np.unique(dfRNAgenes['gene_name'],return_counts=True) #badGenes = names[counts>1] #bad = np.array(np.isin(dfRNAgenes['gene_name'],badGenes) ,dtype=bool) #dfBad = dfRNAgenes[bad] ## Dictionary geneName --> geneType idTypeDict = {} for igene in range(len(dfRNAgenes)): idTypeDict[ dfRNAgenes['gene_id'].iloc[igene] ] = dfRNAgenes['gene_type'].iloc[igene] ## Create arrays of geneName, Chromosome, start, and stop the same size as rnaGenes ## Limit to protein-coding genes proteinCodingMask = np.ones(shape = (len(rnaGenes)),dtype=bool) chrm = np.zeros(shape=len(rnaGenes),dtype=object) start = np.zeros(shape=len(rnaGenes)) stop = np.zeros(shape=len(rnaGenes)) length = np.zeros(shape=len(rnaGenes)) geneName = np.zeros(shape=len(rnaGenes),dtype=object) direction = np.zeros(shape=len(rnaGenes),dtype=object) for igene in range(len(rnaGenes)): name = rnaGenes[igene] proteinCodingMask[igene] = idTypeDict[name]=='protein_coding' dfCurrent = dfRNAgenes[dfRNAgenes['gene_id']==name] geneName[igene] = np.array(dfCurrent['gene_name'])[0] chrm[igene] = np.array(dfCurrent['seqname'])[0] start[igene] = np.array(dfCurrent['start'])[0] stop[igene] = np.array(dfCurrent['end'])[0] length[igene] = stop[igene] - start[igene] direction[igene] = np.array(dfCurrent['strand'])[0] proteinCodingMask = np.array(1-proteinCodingMask,dtype=bool) # 1=bad, 0=good np.save(wdvars+'RNA/proteinCodingMask.npy',proteinCodingMask) np.save(wdvars+'RNA/geneName.npy',geneName) np.save(wdvars+'RNA/geneChr.npy',chrm) np.save(wdvars+'RNA/geneStart.npy',start) np.save(wdvars+'RNA/geneStop.npy',stop) np.save(wdvars+'RNA/geneLength.npy',length) np.save(wdvars+'RNA/direction.npy',direction)
[ "lilliankay.petersen@gmail.com" ]
lilliankay.petersen@gmail.com
cc1051b78d5c6c430cb982290b310e1b78a7d710
e39d4196fe0c896a42c1e7bb80fcdb6903e2d14c
/ch10/10_1.py
769cc07d0b15f218948792f26efc0587e81473ad
[]
no_license
ZY1N/Pythonforinfomatics
eacb8a8d7feb6757155c3c0fde657bba6013a588
14f201171ee39aaa2d9171b5e77c345d15dfbdc4
refs/heads/master
2020-05-26T18:20:40.233616
2019-06-13T20:28:03
2019-06-13T20:28:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
856
py
#Exercise 10.1 Revise a previous program as follows: Read and parse the From #lines and pull out the addresses from the line. Count the number of messages from #each person using a dictionary. #After all the data has been read print the person with the most commits by creating #a list of (count, email) tuples from the dictionary and then sorting the list in reverse #order and print out the person who has the most commits. fname = raw_input("Enter a file name: ") try: hand = open(fname) except: print "file name is not valid" exit() dictionary = dict() for line in hand: if line.startswith("From "): line = line.split() dictionary [line[1]] = dictionary.get(line[1], 0) + 1 listoftuples = dictionary.items() lstup = [] for x, y in listoftuples: lstup.append((y, x)) lstup.sort(reverse=True) print lstup[:1]
[ "yinzhang@e1z2r2p3.42.us.org" ]
yinzhang@e1z2r2p3.42.us.org
81e9c826c7c1eaef4d87398db1b57e8f407b20e2
a382716034b91d86ac7c8a548a63d236d6da8032
/iaso/migrations/0020_account_default_version.py
ffbd274b92d6be478aa8cddaeb589518644218e4
[ "MIT" ]
permissive
lpontis/iaso
336221335fe33ca9e07e40feb676f57bbdc749ca
4d3a9d3faa6b3ed3a2e08c728cc4f03e5a0bbcb6
refs/heads/main
2023-08-12T20:34:10.823260
2021-10-04T07:34:50
2021-10-04T07:34:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
519
py
# Generated by Django 2.1.11 on 2019-11-28 11:45 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [("iaso", "0019_auto_20191127_1602")] operations = [ migrations.AddField( model_name="account", name="default_version", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="iaso.SourceVersion" ), ) ]
[ "tech@bluesquarehub.com" ]
tech@bluesquarehub.com
d5cfa50ece48fbb131a3a7fc27a6bddf6c237979
f806deeb28680f87e436b8c0910c0d40983d9c4a
/shop/wsgi.py
a7e1b4d5ee28d399903f73b8602cc79f83336d57
[]
no_license
AzamatSydykov/pyshop_test
34e3bae7fa07485291007630544a65da832aaa40
9033ed1c4a74e27d744b86b89f07421f7deae7ef
refs/heads/master
2023-04-02T14:31:38.170029
2021-04-02T11:39:28
2021-04-02T11:39:28
353,988,652
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
""" WSGI config for shop project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from whitenoise import WhiteNoise from django.core.wsgi import get_wsgi_application from django.conf import settings os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'shop.settings') application = get_wsgi_application() application = WhiteNoise(application, root=settings.STATIC_ROOT)
[ "l0808las@gmail.com" ]
l0808las@gmail.com
98b3426127bb99afab2b65254acaddd837d59b19
7dbe7a85f3b3ee3d163bb1864233a2cea084f1bd
/tests/conftest.py
22b005f628ee912287dc2ac0f0ad96a77dfca87b
[ "BSD-3-Clause" ]
permissive
gnprice/rupypy
82ae3a6133e762db8ff11f62ecfafccf9718bf6a
b37b29f3f64b4fb976b75fcd5f2b3b7cf2525f94
refs/heads/master
2020-12-25T01:51:01.126815
2012-10-14T23:47:20
2012-10-14T23:47:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
596
py
import copy def pytest_funcarg__space(request): # Inside the function so various intitialization stuff isn't seen until # coverage is setup. from rupypy.objspace import ObjectSpace # Building a space is exceptionally expensive, so we create one once, and # then just deepcopy it. Note that deepcopying is still fairly expensive # (at the time of writing about 1/3 of total test time), but significantly # less so than building a new space. space = request.cached_setup( setup=ObjectSpace, scope="session", ) return copy.deepcopy(space)
[ "alex.gaynor@gmail.com" ]
alex.gaynor@gmail.com
ec379213d9e9990438292b83b965639bcdf794f1
3acb90a1e97a0e851c6e4b1b57dda78ec5e3e3b4
/problems/maximum_size_subset_with_sum.py
0796ed279279222b049ad34e3a8afb5180c153dd
[]
no_license
jhyang12345/algorithm-problems
fea3c6498cff790fc4932404b5bbab08a6d4a627
704355013de9965ec596d2e0115fd2ca9828d0cb
refs/heads/master
2023-05-15T10:26:52.685471
2021-06-01T14:57:38
2021-06-01T14:57:38
269,333,379
0
0
null
null
null
null
UTF-8
Python
false
false
1,399
py
# This is an extended version of the subset sum problem. # Here we need to find the size of the maximum size subset # whose sum is equal to the given sum. from pprint import pprint # def max_subset_with_sum(arr, s): # n = len(arr) # cache = [[0 for _ in range(n + 1)] for __ in range(n + 1)] # ret = 0 # for x in range(1, n + 1): # cur = arr[x - 1] # for y in range(x): # if cache[x - 1][y] <= s - cur: # if cache[x - 1][y] != 0 or y == 0: # cache[x][y + 1] = cache[x - 1][y] + cur # # else: # cache[x][y] = max(cache[x - 1][y], cache[x] # if cache[x][y + 1] == s: # ret = max(ret, y + 1) # pprint(cache) # return ret def max_subset_with_sum(arr, s): n = len(arr) cache = [[0 for _ in range(s + 1)] for __ in range(n + 1)] cache[0][0] = 0 for i in range(1, n): cur = arr[i - 1] for j in range(s + 1): if j == 0: cache[i][j] = 0 if cache[i][j] != -1: if j + cur <= s: cache[i + 1][j + cur] = max(cache[i][j] + 1, cache[i][j + cur]) cache[i + 1][j] = max(cache[i + 1][j], cache[i][j]) return cache[n][s] arr = [2, 3, 5, 7, 10, 15] print(max_subset_with_sum(arr, 10)) arr = [1, 2, 3, 4, 5] print(max_subset_with_sum(arr, 4))
[ "jhyang12345@naver.com" ]
jhyang12345@naver.com
638a8e16c973c212a5a3f75aad9ae44281492433
c2d7bee139ac41ed31c664c98867345ca9537120
/kaggle_environments/envs/lux_ai_s2/test_agents/python/main.py
a7837dac8f789ddd28a409f0491811616795d2b4
[ "Apache-2.0" ]
permissive
Kaggle/kaggle-environments
b184c0ffdadbf6a4277153e2f4cfc8700b90424b
e80a16e0c957237221167184df81035e9fc0d937
refs/heads/master
2023-09-01T02:50:19.091441
2023-08-31T18:31:25
2023-08-31T18:31:25
228,697,796
269
177
Apache-2.0
2023-08-31T18:19:38
2019-12-17T20:39:57
Jupyter Notebook
UTF-8
Python
false
false
2,324
py
import json from typing import Dict import sys from argparse import Namespace if __package__ == "": from agent import Agent from lux.config import EnvConfig from lux.kit import GameState, process_obs, to_json, from_json, process_action, obs_to_game_state else: from .agent import Agent from .lux.config import EnvConfig from .lux.kit import GameState, process_obs, to_json, from_json, process_action, obs_to_game_state ### DO NOT REMOVE THE FOLLOWING CODE ### agent_dict = dict() # store potentially multiple dictionaries as kaggle imports code directly agent_prev_obs = dict() def agent_fn(observation, configurations): """ agent definition for kaggle submission. """ global agent_dict step = observation.step player = observation.player remainingOverageTime = observation.remainingOverageTime if step == 0: env_cfg = EnvConfig.from_dict(configurations["env_cfg"]) agent_dict[player] = Agent(player, env_cfg) agent_prev_obs[player] = dict() agent = agent_dict[player] agent = agent_dict[player] obs = process_obs(player, agent_prev_obs[player], step, json.loads(observation.obs)) if step == 100: with open("obs.json", "w") as f: json.dump(to_json(obs), f) agent_prev_obs[player] = obs agent.step = step if obs["real_env_steps"] < 0: actions = agent.early_setup(step, obs, remainingOverageTime) else: actions = agent.act(step, obs, remainingOverageTime) return process_action(actions) if __name__ == "__main__": def read_input(): """ Reads input from stdin """ try: return input() except EOFError as eof: raise SystemExit(eof) step = 0 player_id = 0 configurations = None i = 0 while True: inputs = read_input() obs = json.loads(inputs) observation = Namespace(**dict(step=obs["step"], obs=json.dumps(obs["obs"]), remainingOverageTime=obs["remainingOverageTime"], player=obs["player"], info=obs["info"])) if i == 0: configurations = obs["info"]["env_cfg"] i += 1 actions = agent_fn(observation, dict(env_cfg=configurations)) # send actions to engine print(json.dumps(actions))
[ "noreply@github.com" ]
Kaggle.noreply@github.com
7ef6f8fb10b7db187aec1a53e9a1c743cc1f62ad
77db6591c5884204d6016bfa89b33691bac38813
/tamaya/migrations/0001_initial.py
30142f817f2e10784af4ac5fddf1f6f2ab75817d
[]
no_license
jbukoski/iltf-signal-webmap-suite
4fc0aafa977e911a1071872f7adbaf2e7d0da37c
b8374e9cfcc80501a8f632721a7cb9b76e668f6b
refs/heads/master
2021-03-27T11:20:37.174667
2020-12-31T18:03:20
2020-12-31T18:03:20
79,853,039
1
0
null
null
null
null
UTF-8
Python
false
false
8,544
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-07-12 07:30 from __future__ import unicode_literals import django.contrib.gis.db.models.fields from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='boundary', fields=[ ('boundary_id', models.AutoField(primary_key=True, serialize=False)), ('id', models.IntegerField()), ('area', models.FloatField()), ('perimeter', models.FloatField()), ('acres', models.FloatField()), ('comments', models.CharField(max_length=80)), ('geom', django.contrib.gis.db.models.fields.MultiPolygonField(srid=4326)), ], options={ 'verbose_name_plural': 'Boundary', }, ), migrations.CreateModel( name='Document', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('docfile', models.FileField(upload_to='tamaya/uploaded')), ], ), migrations.CreateModel( name='mbls', fields=[ ('mbls_id', models.AutoField(primary_key=True, serialize=False)), ('area', models.FloatField()), ('perimeter', models.FloatField()), ('mbl_field', models.IntegerField()), ('mbl_id', models.IntegerField()), ('acres', models.FloatField()), ('comment', models.CharField(max_length=80)), ('geom', django.contrib.gis.db.models.fields.PolygonField(srid=4326)), ], options={ 'verbose_name_plural': 'Master Business Leases', }, ), migrations.CreateModel( name='ndviDiff', fields=[ ('raster_id', models.TextField(primary_key=True, serialize=False)), ('name', models.TextField()), ('raster', django.contrib.gis.db.models.fields.RasterField(srid=4326)), ], ), migrations.CreateModel( name='roads', fields=[ ('roads_id', models.AutoField(primary_key=True, serialize=False)), ('distance', models.FloatField()), ('length', models.FloatField()), ('id_field', models.BigIntegerField()), ('access', models.CharField(max_length=254)), ('name', models.CharField(max_length=254)), ('number', models.CharField(max_length=254)), ('surface', models.CharField(max_length=254)), ('condition', models.CharField(max_length=254)), ('road_class', models.FloatField(max_length=254)), ('road_type', models.CharField(max_length=254)), ('sa_id', models.CharField(max_length=254)), ('surf_type', models.CharField(max_length=254)), ('status', models.CharField(max_length=254)), ('hunting', models.CharField(max_length=254)), ('comment', models.CharField(max_length=254)), ('restrict', models.CharField(max_length=254)), ('roadrepair', models.BigIntegerField()), ('geom', django.contrib.gis.db.models.fields.MultiLineStringField(srid=4326)), ], options={ 'verbose_name_plural': 'Reservation Roads', }, ), migrations.CreateModel( name='soil_data', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('poly_id', models.BigIntegerField()), ('areasymbol', models.CharField(max_length=20)), ('spatialver', models.BigIntegerField()), ('musym', models.CharField(max_length=6)), ('mukey', models.CharField(max_length=30)), ('mukey_1', models.CharField(max_length=10)), ('tax_class', models.CharField(max_length=254)), ('org_matter', models.FloatField()), ('composting', models.CharField(max_length=254)), ('texture', models.CharField(max_length=254)), ('ph_water', models.FloatField()), ('bulk_densi', models.FloatField()), ('geom', django.contrib.gis.db.models.fields.MultiPolygonField(srid=4326)), ], options={ 'verbose_name_plural': 'Soil Data', }, ), migrations.CreateModel( name='subwatersheds', fields=[ ('subwatershed_id', models.AutoField(primary_key=True, serialize=False)), ('id', models.BigIntegerField()), ('watershed', models.CharField(max_length=50)), ('subwatshed', models.IntegerField()), ('wsno', models.CharField(max_length=50)), ('acres', models.FloatField()), ('aveslope', models.FloatField()), ('geom', django.contrib.gis.db.models.fields.MultiPolygonField(srid=4326)), ], options={ 'verbose_name_plural': 'Subwatersheds', }, ), migrations.CreateModel( name='surfacehydro', fields=[ ('surfacehydro_id', models.AutoField(primary_key=True, serialize=False)), ('id', models.BigIntegerField()), ('geom', django.contrib.gis.db.models.fields.MultiLineStringField(srid=4326)), ], options={ 'verbose_name_plural': 'Surface hydrology', }, ), migrations.CreateModel( name='testRaster', fields=[ ('raster_id', models.TextField(default=23, primary_key=True, serialize=False)), ('name', models.TextField(default='tester')), ('raster', django.contrib.gis.db.models.fields.RasterField(srid=4326)), ], ), migrations.CreateModel( name='user_lines', fields=[ ('line_id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=30)), ('comment', models.CharField(max_length=100)), ('geom', django.contrib.gis.db.models.fields.MultiLineStringField(srid=4326)), ], options={ 'verbose_name_plural': 'User-defined Lines', }, ), migrations.CreateModel( name='user_polygons', fields=[ ('polygon_id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=30)), ('comment', models.CharField(max_length=100)), ('geom', django.contrib.gis.db.models.fields.MultiPolygonField(srid=4326)), ], options={ 'verbose_name_plural': 'User-defined Polygons', }, ), migrations.CreateModel( name='user_pts', fields=[ ('point_id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=30)), ('comment', models.CharField(max_length=100)), ('geom', django.contrib.gis.db.models.fields.MultiPointField(srid=4326)), ], options={ 'verbose_name_plural': 'User-defined Points', }, ), migrations.CreateModel( name='watersheds', fields=[ ('watershed_id', models.AutoField(primary_key=True, serialize=False)), ('objectid', models.BigIntegerField()), ('source', models.BigIntegerField()), ('huc_8', models.CharField(max_length=8)), ('hu_8_name', models.CharField(max_length=80)), ('shape_leng', models.FloatField()), ('shape_area', models.FloatField()), ('geom', django.contrib.gis.db.models.fields.MultiPolygonField(srid=4326)), ], options={ 'verbose_name_plural': 'Watersheds', }, ), ]
[ "jacob.bukoski@yale.edu" ]
jacob.bukoski@yale.edu
1e902a4337bd78acf19366639ed7099562d1b862
4c10b9340d37cbd33c50401c3b50cc5030ed0a68
/src/transformers/utils/doc.py
a5610a32ba6ba4e5340dcac3024e7823c8c3028a
[ "Apache-2.0" ]
permissive
jmhessel/transformers
edd041e90f5ec80af591e160b134a86e50961b24
25c451e5a044969eb91e1e481574a2bfca5130ca
refs/heads/main
2023-01-06T21:14:23.193802
2022-11-14T21:32:50
2022-11-14T21:32:50
566,081,752
1
0
Apache-2.0
2022-11-14T23:34:57
2022-11-14T23:34:56
null
UTF-8
Python
false
false
39,118
py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Doc utilities: Utilities related to documentation """ import functools import re import types def add_start_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") return fn return docstring_decorator def add_start_docstrings_to_model_forward(*docstr): def docstring_decorator(fn): docstring = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") class_name = f"[`{fn.__qualname__.split('.')[0]}`]" intro = f" The {class_name} forward method, overrides the `__call__` special method." note = r""" <Tip> Although the recipe for forward pass needs to be defined within this function, one should call the [`Module`] instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them. </Tip> """ fn.__doc__ = intro + note + docstring return fn return docstring_decorator def add_end_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "".join(docstr) return fn return docstring_decorator PT_RETURN_INTRODUCTION = r""" Returns: [`{full_output_type}`] or `tuple(torch.FloatTensor)`: A [`{full_output_type}`] or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration ([`{config_class}`]) and inputs. """ TF_RETURN_INTRODUCTION = r""" Returns: [`{full_output_type}`] or `tuple(tf.Tensor)`: A [`{full_output_type}`] or a tuple of `tf.Tensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration ([`{config_class}`]) and inputs. """ def _get_indent(t): """Returns the indentation in the first line of t""" search = re.search(r"^(\s*)\S", t) return "" if search is None else search.groups()[0] def _convert_output_args_doc(output_args_doc): """Convert output_args_doc to display properly.""" # Split output_arg_doc in blocks argument/description indent = _get_indent(output_args_doc) blocks = [] current_block = "" for line in output_args_doc.split("\n"): # If the indent is the same as the beginning, the line is the name of new arg. if _get_indent(line) == indent: if len(current_block) > 0: blocks.append(current_block[:-1]) current_block = f"{line}\n" else: # Otherwise it's part of the description of the current arg. # We need to remove 2 spaces to the indentation. current_block += f"{line[2:]}\n" blocks.append(current_block[:-1]) # Format each block for proper rendering for i in range(len(blocks)): blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i]) blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i]) return "\n".join(blocks) def _prepare_output_docstrings(output_type, config_class, min_indent=None): """ Prepares the return part of the docstring using `output_type`. """ output_docstring = output_type.__doc__ # Remove the head of the docstring to keep the list of args only lines = output_docstring.split("\n") i = 0 while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None: i += 1 if i < len(lines): params_docstring = "\n".join(lines[(i + 1) :]) params_docstring = _convert_output_args_doc(params_docstring) # Add the return introduction full_output_type = f"{output_type.__module__}.{output_type.__name__}" intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION intro = intro.format(full_output_type=full_output_type, config_class=config_class) result = intro + params_docstring # Apply minimum indent if necessary if min_indent is not None: lines = result.split("\n") # Find the indent of the first nonempty line i = 0 while len(lines[i]) == 0: i += 1 indent = len(_get_indent(lines[i])) # If too small, add indentation to all nonempty lines if indent < min_indent: to_add = " " * (min_indent - indent) lines = [(f"{to_add}{line}" if len(line) > 0 else line) for line in lines] result = "\n".join(lines) return result PT_TOKEN_CLASSIFICATION_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import torch >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer( ... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt" ... ) >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_token_class_ids = logits.argmax(-1) >>> # Note that tokens are classified rather then input words which means that >>> # there might be more predicted token classes than words. >>> # Multiple token classes might account for the same word >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]] >>> predicted_tokens_classes {expected_output} ``` ```python >>> labels = predicted_token_class_ids >>> loss = model(**inputs, labels=labels).loss >>> round(loss.item(), 2) {expected_loss} ``` """ PT_QUESTION_ANSWERING_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import torch >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> answer_start_index = outputs.start_logits.argmax() >>> answer_end_index = outputs.end_logits.argmax() >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] >>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True) {expected_output} ``` ```python >>> # target is "nice puppet" >>> target_start_index = torch.tensor([{qa_target_start_index}]) >>> target_end_index = torch.tensor([{qa_target_end_index}]) >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) >>> loss = outputs.loss >>> round(loss.item(), 2) {expected_loss} ``` """ PT_SEQUENCE_CLASSIFICATION_SAMPLE = r""" Example of single-label classification: ```python >>> import torch >>> from transformers import {processor_class}, {model_class} >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> model.config.id2label[predicted_class_id] {expected_output} ``` ```python >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels) >>> labels = torch.tensor([1]) >>> loss = model(**inputs, labels=labels).loss >>> round(loss.item(), 2) {expected_loss} ``` Example of multi-label classification: ```python >>> import torch >>> from transformers import {processor_class}, {model_class} >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}", problem_type="multi_label_classification") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> model.config.id2label[predicted_class_id] {expected_output} ``` ```python >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = {model_class}.from_pretrained( ... "{checkpoint}", num_labels=num_labels, problem_type="multi_label_classification" ... ) >>> labels = torch.nn.functional.one_hot(torch.tensor([predicted_class_id]), num_classes=num_labels).to( ... torch.float ... ) >>> loss = model(**inputs, labels=labels).loss >>> loss.backward() # doctest: +IGNORE_RESULT ``` """ PT_MASKED_LM_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import torch >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of {mask} >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> tokenizer.decode(predicted_token_id) {expected_output} ``` ```python >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> # mask labels of non-{mask} tokens >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(outputs.loss.item(), 2) {expected_loss} ``` """ PT_BASE_MODEL_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import torch >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ``` """ PT_MULTIPLE_CHOICE_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import torch >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True) >>> outputs = model(**{{k: v.unsqueeze(0) for k, v in encoding.items()}}, labels=labels) # batch size is 1 >>> # the linear classifier still needs to be trained >>> loss = outputs.loss >>> logits = outputs.logits ``` """ PT_CAUSAL_LM_SAMPLE = r""" Example: ```python >>> import torch >>> from transformers import {processor_class}, {model_class} >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs, labels=inputs["input_ids"]) >>> loss = outputs.loss >>> logits = outputs.logits ``` """ PT_SPEECH_BASE_MODEL_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> # audio file is decoded on the fly >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) {expected_output} ``` """ PT_SPEECH_CTC_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> from datasets import load_dataset >>> import torch >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> # audio file is decoded on the fly >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_ids = torch.argmax(logits, dim=-1) >>> # transcribe speech >>> transcription = processor.batch_decode(predicted_ids) >>> transcription[0] {expected_output} ``` ```python >>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="pt").input_ids >>> # compute loss >>> loss = model(**inputs).loss >>> round(loss.item(), 2) {expected_loss} ``` """ PT_SPEECH_SEQ_CLASS_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> from datasets import load_dataset >>> import torch >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> # audio file is decoded on the fly >>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_ids = torch.argmax(logits, dim=-1).item() >>> predicted_label = model.config.id2label[predicted_class_ids] >>> predicted_label {expected_output} ``` ```python >>> # compute loss - target_label is e.g. "down" >>> target_label = model.config.id2label[0] >>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]]) >>> loss = model(**inputs).loss >>> round(loss.item(), 2) {expected_loss} ``` """ PT_SPEECH_FRAME_CLASS_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> from datasets import load_dataset >>> import torch >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> # audio file is decoded on the fly >>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=sampling_rate) >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> probabilities = torch.sigmoid(logits[0]) >>> # labels is a one-hot array of shape (num_frames, num_speakers) >>> labels = (probabilities > 0.5).long() >>> labels[0].tolist() {expected_output} ``` """ PT_SPEECH_XVECTOR_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> from datasets import load_dataset >>> import torch >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> # audio file is decoded on the fly >>> inputs = feature_extractor( ... [d["array"] for d in dataset[:2]["audio"]], sampling_rate=sampling_rate, return_tensors="pt", padding=True ... ) >>> with torch.no_grad(): ... embeddings = model(**inputs).embeddings >>> embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu() >>> # the resulting embeddings can be used for cosine similarity-based retrieval >>> cosine_sim = torch.nn.CosineSimilarity(dim=-1) >>> similarity = cosine_sim(embeddings[0], embeddings[1]) >>> threshold = 0.7 # the optimal threshold is dataset-dependent >>> if similarity < threshold: ... print("Speakers are not the same!") >>> round(similarity.item(), 2) {expected_output} ``` """ PT_VISION_BASE_MODEL_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) {expected_output} ``` """ PT_VISION_SEQ_CLASS_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) {expected_output} ``` """ PT_SAMPLE_DOCSTRINGS = { "SequenceClassification": PT_SEQUENCE_CLASSIFICATION_SAMPLE, "QuestionAnswering": PT_QUESTION_ANSWERING_SAMPLE, "TokenClassification": PT_TOKEN_CLASSIFICATION_SAMPLE, "MultipleChoice": PT_MULTIPLE_CHOICE_SAMPLE, "MaskedLM": PT_MASKED_LM_SAMPLE, "LMHead": PT_CAUSAL_LM_SAMPLE, "BaseModel": PT_BASE_MODEL_SAMPLE, "SpeechBaseModel": PT_SPEECH_BASE_MODEL_SAMPLE, "CTC": PT_SPEECH_CTC_SAMPLE, "AudioClassification": PT_SPEECH_SEQ_CLASS_SAMPLE, "AudioFrameClassification": PT_SPEECH_FRAME_CLASS_SAMPLE, "AudioXVector": PT_SPEECH_XVECTOR_SAMPLE, "VisionBaseModel": PT_VISION_BASE_MODEL_SAMPLE, "ImageClassification": PT_VISION_SEQ_CLASS_SAMPLE, } TF_TOKEN_CLASSIFICATION_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer( ... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf" ... ) >>> logits = model(**inputs).logits >>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1) >>> # Note that tokens are classified rather then input words which means that >>> # there might be more predicted token classes than words. >>> # Multiple token classes might account for the same word >>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()] >>> predicted_tokens_classes {expected_output} ``` ```python >>> labels = predicted_token_class_ids >>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss) >>> round(float(loss), 2) {expected_loss} ``` """ TF_QUESTION_ANSWERING_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors="tf") >>> outputs = model(**inputs) >>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0]) >>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0]) >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] >>> tokenizer.decode(predict_answer_tokens) {expected_output} ``` ```python >>> # target is "nice puppet" >>> target_start_index = tf.constant([{qa_target_start_index}]) >>> target_end_index = tf.constant([{qa_target_end_index}]) >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) >>> loss = tf.math.reduce_mean(outputs.loss) >>> round(float(loss), 2) {expected_loss} ``` """ TF_SEQUENCE_CLASSIFICATION_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> logits = model(**inputs).logits >>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) >>> model.config.id2label[predicted_class_id] {expected_output} ``` ```python >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels) >>> labels = tf.constant(1) >>> loss = model(**inputs, labels=labels).loss >>> round(float(loss), 2) {expected_loss} ``` """ TF_MASKED_LM_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf") >>> logits = model(**inputs).logits >>> # retrieve index of {mask} >>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0]) >>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index) >>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1) >>> tokenizer.decode(predicted_token_id) {expected_output} ``` ```python >>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] >>> # mask labels of non-{mask} tokens >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(float(outputs.loss), 2) {expected_loss} ``` """ TF_BASE_MODEL_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs.last_hidden_state ``` """ TF_MULTIPLE_CHOICE_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True) >>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}} >>> outputs = model(inputs) # batch size is 1 >>> # the linear classifier still needs to be trained >>> logits = outputs.logits ``` """ TF_CAUSAL_LM_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import tensorflow as tf >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> logits = outputs.logits ``` """ TF_SPEECH_BASE_MODEL_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> from datasets import load_dataset >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> # audio file is decoded on the fly >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) {expected_output} ``` """ TF_SPEECH_CTC_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> from datasets import load_dataset >>> import tensorflow as tf >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> # audio file is decoded on the fly >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf") >>> logits = model(**inputs).logits >>> predicted_ids = tf.math.argmax(logits, axis=-1) >>> # transcribe speech >>> transcription = processor.batch_decode(predicted_ids) >>> transcription[0] {expected_output} ``` ```python >>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="tf").input_ids >>> # compute loss >>> loss = model(**inputs).loss >>> round(float(loss), 2) {expected_loss} ``` """ TF_VISION_BASE_MODEL_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = feature_extractor(image, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) {expected_output} ``` """ TF_VISION_SEQ_CLASS_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> import tensorflow as tf >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = feature_extractor(image, return_tensors="tf") >>> logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = int(tf.math.argmax(logits, axis=-1)) >>> print(model.config.id2label[predicted_label]) {expected_output} ``` """ TF_SAMPLE_DOCSTRINGS = { "SequenceClassification": TF_SEQUENCE_CLASSIFICATION_SAMPLE, "QuestionAnswering": TF_QUESTION_ANSWERING_SAMPLE, "TokenClassification": TF_TOKEN_CLASSIFICATION_SAMPLE, "MultipleChoice": TF_MULTIPLE_CHOICE_SAMPLE, "MaskedLM": TF_MASKED_LM_SAMPLE, "LMHead": TF_CAUSAL_LM_SAMPLE, "BaseModel": TF_BASE_MODEL_SAMPLE, "SpeechBaseModel": TF_SPEECH_BASE_MODEL_SAMPLE, "CTC": TF_SPEECH_CTC_SAMPLE, "VisionBaseModel": TF_VISION_BASE_MODEL_SAMPLE, "ImageClassification": TF_VISION_SEQ_CLASS_SAMPLE, } FLAX_TOKEN_CLASSIFICATION_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") >>> outputs = model(**inputs) >>> logits = outputs.logits ``` """ FLAX_QUESTION_ANSWERING_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors="jax") >>> outputs = model(**inputs) >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits ``` """ FLAX_SEQUENCE_CLASSIFICATION_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") >>> outputs = model(**inputs) >>> logits = outputs.logits ``` """ FLAX_MASKED_LM_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="jax") >>> outputs = model(**inputs) >>> logits = outputs.logits ``` """ FLAX_BASE_MODEL_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ``` """ FLAX_MULTIPLE_CHOICE_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True) >>> outputs = model(**{{k: v[None, :] for k, v in encoding.items()}}) >>> logits = outputs.logits ``` """ FLAX_CAUSAL_LM_SAMPLE = r""" Example: ```python >>> from transformers import {processor_class}, {model_class} >>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") >>> model = {model_class}.from_pretrained("{checkpoint}") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") >>> outputs = model(**inputs) >>> # retrieve logts for next token >>> next_token_logits = outputs.logits[:, -1] ``` """ FLAX_SAMPLE_DOCSTRINGS = { "SequenceClassification": FLAX_SEQUENCE_CLASSIFICATION_SAMPLE, "QuestionAnswering": FLAX_QUESTION_ANSWERING_SAMPLE, "TokenClassification": FLAX_TOKEN_CLASSIFICATION_SAMPLE, "MultipleChoice": FLAX_MULTIPLE_CHOICE_SAMPLE, "MaskedLM": FLAX_MASKED_LM_SAMPLE, "BaseModel": FLAX_BASE_MODEL_SAMPLE, "LMHead": FLAX_CAUSAL_LM_SAMPLE, } def add_code_sample_docstrings( *docstr, processor_class=None, checkpoint=None, output_type=None, config_class=None, mask="[MASK]", qa_target_start_index=14, qa_target_end_index=15, model_cls=None, modality=None, expected_output="", expected_loss="", ): def docstring_decorator(fn): # model_class defaults to function's class if not specified otherwise model_class = fn.__qualname__.split(".")[0] if model_cls is None else model_cls if model_class[:2] == "TF": sample_docstrings = TF_SAMPLE_DOCSTRINGS elif model_class[:4] == "Flax": sample_docstrings = FLAX_SAMPLE_DOCSTRINGS else: sample_docstrings = PT_SAMPLE_DOCSTRINGS # putting all kwargs for docstrings in a dict to be used # with the `.format(**doc_kwargs)`. Note that string might # be formatted with non-existing keys, which is fine. doc_kwargs = dict( model_class=model_class, processor_class=processor_class, checkpoint=checkpoint, mask=mask, qa_target_start_index=qa_target_start_index, qa_target_end_index=qa_target_end_index, expected_output=expected_output, expected_loss=expected_loss, ) if "SequenceClassification" in model_class and modality == "audio": code_sample = sample_docstrings["AudioClassification"] elif "SequenceClassification" in model_class: code_sample = sample_docstrings["SequenceClassification"] elif "QuestionAnswering" in model_class: code_sample = sample_docstrings["QuestionAnswering"] elif "TokenClassification" in model_class: code_sample = sample_docstrings["TokenClassification"] elif "MultipleChoice" in model_class: code_sample = sample_docstrings["MultipleChoice"] elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]: code_sample = sample_docstrings["MaskedLM"] elif "LMHead" in model_class or "CausalLM" in model_class: code_sample = sample_docstrings["LMHead"] elif "CTC" in model_class: code_sample = sample_docstrings["CTC"] elif "AudioFrameClassification" in model_class: code_sample = sample_docstrings["AudioFrameClassification"] elif "XVector" in model_class and modality == "audio": code_sample = sample_docstrings["AudioXVector"] elif "Model" in model_class and modality == "audio": code_sample = sample_docstrings["SpeechBaseModel"] elif "Model" in model_class and modality == "vision": code_sample = sample_docstrings["VisionBaseModel"] elif "Model" in model_class or "Encoder" in model_class: code_sample = sample_docstrings["BaseModel"] elif "ImageClassification" in model_class: code_sample = sample_docstrings["ImageClassification"] else: raise ValueError(f"Docstring can't be built for model {model_class}") func_doc = (fn.__doc__ or "") + "".join(docstr) output_doc = "" if output_type is None else _prepare_output_docstrings(output_type, config_class) built_doc = code_sample.format(**doc_kwargs) fn.__doc__ = func_doc + output_doc + built_doc return fn return docstring_decorator def replace_return_docstrings(output_type=None, config_class=None): def docstring_decorator(fn): func_doc = fn.__doc__ lines = func_doc.split("\n") i = 0 while i < len(lines) and re.search(r"^\s*Returns?:\s*$", lines[i]) is None: i += 1 if i < len(lines): indent = len(_get_indent(lines[i])) lines[i] = _prepare_output_docstrings(output_type, config_class, min_indent=indent) func_doc = "\n".join(lines) else: raise ValueError( f"The function {fn} should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, " f"current docstring is:\n{func_doc}" ) fn.__doc__ = func_doc return fn return docstring_decorator def copy_func(f): """Returns a copy of a function f.""" # Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard) g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__) g = functools.update_wrapper(g, f) g.__kwdefaults__ = f.__kwdefaults__ return g
[ "noreply@github.com" ]
jmhessel.noreply@github.com
bfe95bf2133abbcf730d8bfcde647cd39a0b0566
6ede75099fc38a682e030d70051389ea182d6cc2
/実装/クライアント/sidi2/incomeexpensesapi/menu/migrations/0030_auto_20201220_1600.py
ac289e2b32745ce412c3f49524bf52b13b178444
[]
no_license
hangtran93tk/team06
0d86e59be866d7f6bda1b6c81f725ca1f80eba0f
89000be20c18d3b9610c240b25c7c1944fc68d6d
refs/heads/master
2023-03-12T11:58:03.802711
2021-02-26T03:51:36
2021-02-26T03:51:36
279,473,813
0
0
null
null
null
null
UTF-8
Python
false
false
612
py
# Generated by Django 3.0.5 on 2020-12-20 07:00 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('menu', '0029_auto_20201220_1558'), ] operations = [ migrations.AlterField( model_name='menuinfo', name='user', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='infouser', to=settings.AUTH_USER_MODEL), ), ]
[ "hangtrand6qt1@gmail.com" ]
hangtrand6qt1@gmail.com
e4ffd15029d81b16c7e5358ed60f6b17ff8e7e28
8db839ce40bb09b3634201ffbf3dae5342457d95
/DictProj1.py
fec142ba107a6466b6094dc01013e5269f332a3e
[]
no_license
Liam876/HomeWork-Dina
e2803cba6de2fb9e8103837373805eef4f3dda28
e40596c14244cf8a608cbfc1715d5ad7db44fd61
refs/heads/master
2023-01-13T00:45:40.108337
2020-11-06T13:19:38
2020-11-06T13:19:38
212,346,549
0
0
null
null
null
null
UTF-8
Python
false
false
1,828
py
def createdic(t): # Gets num of keys to be in dic dictionary = {} # Returns formed dic for rep in range(t): a = rep + 1 print(str(a) + " time") key = getinput("key") value = getinput("value") if key in dictionary: output = [] li = [dictionary[key]] li.append(value) li = reemovNestings(li, output) dictionary.update({key: li}) else: dictionary[key] = value print("The dictionary given is: ") print(dictionary) return dictionary def getinput(thing): inp = input("insert " + str(thing)) try: inp = int(inp) except ValueError: inp = str(inp) return inp def checkey(key, dictionary): if key in dictionary: print("yes") else: print("no") def sqrdic(): li_nums = [] dictionary = {} while True: num = input("insert numbers to be keys of dict. When finished type a none-whole-number") try: gnum = int(num) except: break li_nums.append(gnum) for num in li_nums: if num in dictionary: output = [] li = [dictionary[num]] li.append(num ** 2) li = reemovNestings(li, output) dictionary.update({num: li}) else: dictionary[num] = num ** 2 print("The dictionary created is:") print(dictionary) def reemovNestings(l, output): for i in l: if type(i) == list: reemovNestings(i, output) else: output.append(i) return output def main(): dict1 = createdic(3) dict2 = sqrdic() checkey("one", dict1) if __name__ == "__main__": main()
[ "noreply@github.com" ]
Liam876.noreply@github.com
8fd2eb0d7376aa61d889e25e31931f69fc97eb78
c0129f53d99fbcdd690b54ba64a8fe1a54432a99
/data_process/py/extraction.py
c96b5910470abde3fdf074f40377e95b7262ee1a
[]
no_license
zhoumaneo/LCZ_classification-based-deep-learning-
ea34d9e3062ecd119613a336dc1f03e898429f6f
5d6ea2fbab1cc13bfdec98434e243b95c4a51c53
refs/heads/master
2020-06-18T14:16:40.852682
2019-08-28T03:59:16
2019-08-28T03:59:16
196,329,811
1
0
null
null
null
null
UTF-8
Python
false
false
452
py
import arcpy import os path = os.getcwd() print(path) arcpy.CheckOutExtension("spatial") arcpy.gp.overwriteOutput=1 arcpy.env.workspace = "vectors" raster = "rs_img\\site2_remote_img_clip.tif" masks= arcpy.ListFeatureClasses("*","polygon") for mask in masks: print(mask) out = "rs_img\\"+"site2_"+mask.split('.')[0]+".tif" arcpy.gp.ExtractByMask_sa(raster, mask, out) print("site2_" + mask.split('.')[0] + " has done")
[ "15638828135@163.com" ]
15638828135@163.com
1abd27f0ea85df15651b05977861eaf8c8516a52
eeacfabfb918c9b0f922a4f6a96e50e63f029fad
/001.py
2395e2a91db46145085b45f4a13edd2d54a9abe1
[]
no_license
lch743/Python
f36af505f24cd88ab9900354d14f6a62f71f108c
c5bf64def9703842eefab2423347d16a9ae4478d
refs/heads/master
2021-01-20T15:44:20.024352
2012-12-11T08:07:16
2012-12-11T08:07:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
import string table=string.maketrans('abcdefghijklmnopqrstuvwxyz','cdefghijklmnopqrstuvwxyzab') print 'map'.translate(table)
[ "lch743@gmail.com" ]
lch743@gmail.com
49967edba567be68611b0031fc718b09de9692db
e26104b7d6cc8042b64715cfb6c82e6ef393f439
/venv/lib/python3.7/site-packages/pyexcel_ods-0.5.6-py3.7.egg/pyexcel_ods/odsr.py
9aa3cee734f50dcfb60d114292874c36944d5215
[]
no_license
kartikeyj96/python-basics
2a08289600d25c79f7835c7c147e7dbd304934b2
c56806580d8a67e38230fefe2a148eb2d89df158
refs/heads/master
2020-09-15T12:10:53.823270
2019-11-22T21:51:59
2019-11-22T21:51:59
223,440,044
0
0
null
null
null
null
UTF-8
Python
false
false
5,422
py
""" pyexcel_ods.odsr ~~~~~~~~~~~~~~~~~~~~~ ods reader :copyright: (c) 2014-2017 by Onni Software Ltd. :license: New BSD License, see LICENSE for more details """ # Copyright 2011 Marco Conti # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from odf.text import P from odf.table import Table, TableRow, TableCell # Thanks to grt for the fixes from odf.teletype import extractText from odf.namespaces import OFFICENS from odf.opendocument import load import pyexcel_io.service as service from pyexcel_io.book import BookReader from pyexcel_io.sheet import SheetReader from pyexcel_io._compact import OrderedDict class ODSSheet(SheetReader): """native ods sheet""" def __init__(self, sheet, auto_detect_int=True, **keywords): SheetReader.__init__(self, sheet, **keywords) self.__auto_detect_int = auto_detect_int @property def name(self): return self._native_sheet.getAttribute("name") def row_iterator(self): return self._native_sheet.getElementsByType(TableRow) def column_iterator(self, row): cells = row.getElementsByType(TableCell) for cell in cells: repeat = cell.getAttribute("numbercolumnsrepeated") cell_value = self.__read_cell(cell) if repeat: number_of_repeat = int(repeat) for i in range(number_of_repeat): yield cell_value else: yield cell_value def __read_cell(self, cell): cell_type = cell.getAttrNS(OFFICENS, "value-type") value_token = service.VALUE_TOKEN.get(cell_type, "value") ret = None if cell_type == "string": text_content = self.__read_text_cell(cell) ret = text_content elif cell_type == "currency": value = cell.getAttrNS(OFFICENS, value_token) currency = cell.getAttrNS(OFFICENS, cell_type) if currency: ret = value + " " + currency else: ret = value else: if cell_type in service.VALUE_CONVERTERS: value = cell.getAttrNS(OFFICENS, value_token) n_value = service.VALUE_CONVERTERS[cell_type](value) if cell_type == "float" and self.__auto_detect_int: if service.has_no_digits_in_float(n_value): n_value = int(n_value) ret = n_value else: text_content = self.__read_text_cell(cell) ret = text_content return ret def __read_text_cell(self, cell): text_content = [] paragraphs = cell.getElementsByType(P) # for each text node for paragraph in paragraphs: name_space, tag = paragraph.parentNode.qname if tag != str("annotation"): data = extractText(paragraph) text_content.append(data) return "\n".join(text_content) class ODSBook(BookReader): """read ods book""" def open(self, file_name, **keywords): """open ods file""" BookReader.open(self, file_name, **keywords) self._load_from_file() def open_stream(self, file_stream, **keywords): """open ods file stream""" BookReader.open_stream(self, file_stream, **keywords) self._load_from_memory() def read_sheet_by_name(self, sheet_name): """read a named sheet""" tables = self._native_book.spreadsheet.getElementsByType(Table) rets = [ table for table in tables if table.getAttribute("name") == sheet_name ] if len(rets) == 0: raise ValueError("%s cannot be found" % sheet_name) else: return self.read_sheet(rets[0]) def read_sheet_by_index(self, sheet_index): """read a sheet at a specified index""" tables = self._native_book.spreadsheet.getElementsByType(Table) length = len(tables) if sheet_index < length: return self.read_sheet(tables[sheet_index]) else: raise IndexError( "Index %d of out bound %d" % (sheet_index, length) ) def read_all(self): """read all sheets""" result = OrderedDict() for sheet in self._native_book.spreadsheet.getElementsByType(Table): ods_sheet = ODSSheet(sheet, **self._keywords) result[ods_sheet.name] = ods_sheet.to_array() return result def read_sheet(self, native_sheet): """read one native sheet""" sheet = ODSSheet(native_sheet, **self._keywords) return {sheet.name: sheet.to_array()} def close(self): self._native_book = None def _load_from_memory(self): self._native_book = load(self._file_stream) def _load_from_file(self): self._native_book = load(self._file_name)
[ "root@localhost.localdomain" ]
root@localhost.localdomain
5d1f7611d21754e12f876d8d2824ff8575e53efb
4215ff4aa3383f2145c416a9f5a0501f70445555
/xxxy/Day_two/multi_process/process_cuiqinghua_crawl_mysql.py
bf8f433bb7a2316c412f8131948310029c7addc6
[]
no_license
spareribs/scrapy-examples
abb93ce217b87af683d222e01de4de559e5288fd
ecb41e28bdfb0814ee90b2df2202562ab9f4a20f
refs/heads/master
2021-01-20T03:29:08.888312
2019-03-27T05:29:15
2019-03-27T05:29:15
89,544,769
9
7
null
null
null
null
UTF-8
Python
false
false
5,822
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # @Time : 2017/6/21 20:01 # @Author : Spareribs # @File : process_cuiqinghua_crawl.py # @Notice : 这是使用宽度优先算法BSF实现的全站爬取的爬虫 - 多进程 """ import os import urllib2 from collections import deque import json from lxml import etree import httplib import hashlib from pybloom import BloomFilter import thread import threading import time from process_mysqlmgr import CrawlDatabaseManager from mysql.connector import errorcode import mysql.connector request_headers = { 'user-agent': "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.95 Safari/537.36", } def getPageContent(now_url, index, now_depth): print "【Download】正在下载网址 {0} 当前深度为 {1}".format(now_url, now_depth) max_depth = 2 # 爬取深度 try: # 使用urllib库请求now_url地址,将页面通过read方法读取下来 req = urllib2.Request(now_url, headers=request_headers) response = urllib2.urlopen(req) html_page = response.read() filename = now_url[7:].replace('/', '_') # 处理URL信息,去掉"http://",将/替换成_ # 将获取到的页面写入到文件中 fo = open("{0}{1}.html".format(dir_name, filename), 'wb+') fo.write(html_page) fo.close() mysqlmgr.finishUrl(index) # 【dbmanager.finishUrl】当完成下载的时候通过行级锁将当前的url的status设置为done # 处理各种异常情况 except urllib2.HTTPError, Arguments: print "【Error】:HTTPError {0}\n".format(Arguments) return except httplib.BadStatusLine, Arguments: print "【Error】:BadStatusLine {0}\n".format(Arguments) return except IOError, Arguments: print "【Error】:IOError {0}\n".format(Arguments) return except Exception, Arguments: print "【Error】:Exception {0}\n".format(Arguments) return # 解析页面,获取当前页面中所有的URL try: html = etree.HTML(html_page.lower().decode('utf-8')) hrefs = html.xpath(u"//a") for href in hrefs: # 用于处理xpath抓取到的href,获取有用的 try: if 'href' in href.attrib: val = href.attrib['href'] if val.find('javascript:') != -1: # 过滤掉类似"javascript:void(0)" continue if val.startswith('http://') is False: # 给"/mdd/calendar/"做拼接 if val.startswith('/'): val = 'http://cuiqingcai.com'.format(val) else: continue if val[-1] == '/': # 过滤掉末尾的/ val = val[0:-1] if now_depth + 1 == max_depth: # 如果深度与设定的最大深度相等,不加入数据库 break else: mysqlmgr.enqueueUrl(val, now_depth + 1) # 【dbmanager.enqueueUrl】将url加入到数据库中 except ValueError: continue except UnicodeDecodeError: # 处理utf-8编码无法解析的异常情况 pass # 实例化一个数据库操作对象(功能与queue类似),并指定指定最大的进程数 max_num_thread = 10 mysqlmgr = CrawlDatabaseManager(max_num_thread) # 记录文件(存放下载的HTML页面) dir_name = 'test_cuiqingcai/' if not os.path.exists(dir_name): # 检查用于存储网页文件夹是否存在,不存在则创建 os.makedirs(dir_name) # put first page into queue mysqlmgr.enqueueUrl("http://cuiqingcai.com/", 0) # 将首页面存入数据库 start_time = time.time() # 记录开始时间爱你 is_root_page = True # 标记首页 threads = [] # 创建进程池 CRAWL_DELAY = 0 # 设置超时,控制下载的速率,避免太过频繁访问目标网站,但目标网站没有这个限制 while True: curtask = mysqlmgr.dequeueUrl() # 【dbmanager.dequeueUrl】将url加入到数据库中获取一个status为new的url if curtask is None: for t in threads: # join方法,等待所有线程结束以后再继续执行【等待子进程结束,再退出主进程】 t.join() break # looking for an empty thread from pool to crawl if is_root_page is True: # 修改根目录URL的标记,并抓取首页,让数据库里面有初始数据 getPageContent(curtask['url'], curtask['index'], curtask['depth']) is_root_page = False else: while True: for t in threads: # 处理掉异常而终止【非存活】的进程 if not t.is_alive(): threads.remove(t) if len(threads) >= max_num_thread: # 如果当前线程大于预设值,continue不执行后面的代码,继续循环,知道小于预设值 # time.sleep(CRAWL_DELAY) continue # len(threads) >= max_threads的判断左右 try: # 创建线程 加入线程池 并启动线程 t = threading.Thread(target=getPageContent, name=None, args=(curtask['url'], curtask['index'], curtask['depth'])) threads.append(t) # 将线程加入线程池中 t.setDaemon(True) # 设置 Ctrl-C 能退出thread的爬取【不等待子进程结束,直接退出主进程】 t.start() # 启动线程 # time.sleep(CRAWL_DELAY) break except Exception: print "【Error】: 不能启动thread" print '【End】 花费时间 {0:.2f} 秒'.format(time.time() - start_time)
[ "370835062@qq.com" ]
370835062@qq.com
0d1f402739ad994b6d9b7d80a0dff023821abdc9
35245b4d66310c90da4f5d2cf5f2792714b281ac
/Django/waterwatchapp/management/commands/test_db_connection.py
f31e9fa386f31d65994a443aaec9e8f8818604e9
[]
no_license
JaschaMuller/web_app_base
7e2538335e4302245fa3d1166f4667b33aa71ed1
7b33a5be36febe2b65ae1e02aa4b50717959472f
refs/heads/master
2023-08-31T00:25:55.642478
2021-10-09T20:08:14
2021-10-09T20:08:14
318,662,533
0
0
null
null
null
null
UTF-8
Python
false
false
434
py
from django.core.management.base import BaseCommand from django.db import connections from django.db.utils import OperationalError class Command(BaseCommand): def handle(self, *args, **options): db_conn = connections['default'] try: c = db_conn.cursor() except OperationalError: connected = False print('-->DB connection Failed<--') else: connected = True print('-->DB connection Suceeded<--')
[ "jascha.muller@gmail.com" ]
jascha.muller@gmail.com
f013402f3952e50353dfcc3d35f383e3cc53f977
7ed67ecfa65ee6c770689e6bf45b75ed817713c8
/MatrixMultiplication/matrixmultiplication.py
ff83425b1324a3fc63704a632dfaf281cbc99045
[]
no_license
rendaixu/CompositionMR
fa0402be85a1d8bee40ef23bc412aa198b98f2c9
2d655729a3ad6d68b19ff55c403b3ddffcb859e5
refs/heads/master
2021-09-13T18:41:41.514542
2018-04-28T06:12:34
2018-04-28T06:12:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,553
py
import sys def trim(c, jc): index = 0 for i in c: if i == 0: break else: index = index + 1 c = c[0: index] jc = jc[0: index] return c, jc def Normalization(n,m,c,ic,jc): result_c = [] nz = 0 for i in range(n): temp = [] for j in range(m): temp.append(0) result_c.append(temp) for i in range(n): for j in range(ic[i], ic[i+1]): result_c[i][jc[nz]] = c[nz] nz = nz+1 return result_c def SparseMatMul(n, m, a, ia, ja, b, ib, jb): nz = 0 mask = [] for i in range(m): mask.append(-1) c = [] ic = [0] jc = [] for i in range(n): ic.append(0) for i in range(n*m): c.append(0) jc.append(0) for i in range(0,n): for j in range(ia[i], ia[i+1]): neighbour = ja[j] aij = a[j] for k in range(ib[neighbour], ib[neighbour+1]): icol_add = jb[k] icol = mask[icol_add] if (icol == -1): jc[nz] = icol_add c[nz] = aij * b[k] mask[icol_add] = nz nz = nz + 1 else: c[icol]=c[icol]+aij*b[k] for k in range(ic[i], nz): mask[jc[k]] = -1 ic[i+1] = nz c, jc = trim(c, jc) C = Normalization(n, m, c, ic, jc) return C def MU_1_SparseMatMul(n, m, a, ia, ja, b, ib, jb): nz = 0 mask = [] for i in range(m): mask.append(-1) c = [] ic = [0] jc = [] for i in range(n): ic.append(0) for i in range(n*m): c.append(0) jc.append(0) for i in range(0,n): for j in range(ia[i], ia[i+1]): neighbour = ja[j] aij = a[j] for k in range(ib[neighbour], ib[neighbour+1]): icol_add = jb[k] icol = mask[icol_add] if (icol == -1): jc[nz] = icol_add c[nz] = aij * b[k] mask[icol_add] = nz #nz = nz else: c[icol]=c[icol]+aij*b[k] for k in range(ic[i], nz): mask[jc[k]] = -1 ic[i+1] = nz c, jc = trim(c, jc) C = Normalization(n, m, c, ic, jc) return C def MU_2_SparseMatMul(n, m, a, ia, ja, b, ib, jb): nz = 0 mask = [] for i in range(m): mask.append(-1) c = [] ic = [0] jc = [] for i in range(n): ic.append(0) for i in range(n*m): c.append(0) jc.append(0) for i in range(0,n): for j in range(ia[i], ia[i+1]): neighbour = ja[j] aij = a[j] for k in range(ib[neighbour], ib[neighbour+1]): icol_add = jb[k] icol = mask[icol_add] if (icol == -1): jc[nz] = icol_add c[nz] = b[k] mask[icol_add] = nz nz = nz + 1 else: c[icol]=c[icol]+aij*b[k] for k in range(ic[i], nz): mask[jc[k]] = -1 ic[i+1] = nz c, jc = trim(c, jc) C = Normalization(n, m, c, ic, jc) return C def MU_3_SparseMatMul(n, m, a, ia, ja, b, ib, jb): nz = 0 mask = [] for i in range(m): mask.append(-1) c = [] ic = [0] jc = [] for i in range(n): ic.append(0) for i in range(n*m): c.append(0) jc.append(0) for i in range(0,n): for j in range(ia[i], ia[i+1]): neighbour = ja[j] aij = a[j] for k in range(ib[neighbour], ib[neighbour+1]): icol_add = jb[k] icol = mask[icol_add] if (icol == -1): jc[nz] = icol_add c[nz] = aij mask[icol_add] = nz nz = nz + 1 else: c[icol]=c[icol]+aij*b[k] for k in range(ic[i], nz): mask[jc[k]] = -1 ic[i+1] = nz c, jc = trim(c, jc) C = Normalization(n, m, c, ic, jc) return C def MU_4_SparseMatMul(n, m, a, ia, ja, b, ib, jb): nz = 0 mask = [] for i in range(m): mask.append(-1) c = [] ic = [0] jc = [] for i in range(n): ic.append(0) for i in range(n*m): c.append(0) jc.append(0) for i in range(0,n): for j in range(ia[i], ia[i+1]): neighbour = ja[j] aij = a[j] for k in range(ib[neighbour], ib[neighbour+1]): icol_add = jb[k] icol = mask[icol_add] if (icol == -1): jc[nz] = icol_add c[nz] = aij * b[k] mask[icol_add] = nz nz = nz + 1 else: c[icol]=c[icol]+aij for k in range(ic[i], nz): mask[jc[k]] = -1 ic[i+1] = nz c, jc = trim(c, jc) C = Normalization(n, m, c, ic, jc) return C def MU_5_SparseMatMul(n, m, a, ia, ja, b, ib, jb): nz = 0 mask = [] for i in range(m): mask.append(-1) c = [] ic = [0] jc = [] for i in range(n): ic.append(0) for i in range(n*m): c.append(0) jc.append(0) for i in range(0,n): for j in range(ia[i], ia[i+1]): neighbour = ja[j] aij = a[j] for k in range(ib[neighbour], ib[neighbour+1]): icol_add = jb[k] icol = mask[icol_add] if (icol == -1): jc[nz] = icol_add c[nz] = aij * b[k] mask[icol_add] = nz nz = nz + 1 else: c[icol]=c[icol]+b[k] for k in range(ic[i], nz): mask[jc[k]] = -1 ic[i+1] = nz c, jc = trim(c, jc) C = Normalization(n, m, c, ic, jc) return C def MU_6_SparseMatMul(n, m, a, ia, ja, b, ib, jb): nz = 0 mask = [] for i in range(m): mask.append(-1) c = [] ic = [0] jc = [] for i in range(n): ic.append(0) for i in range(n*m): c.append(0) jc.append(0) for i in range(0,n): for j in range(ia[i], ia[i+1]): neighbour = ja[j] aij = a[j] for k in range(ib[neighbour], ib[neighbour+1]): icol_add = jb[k] icol = mask[icol_add] if (icol == -1): jc[nz] = icol_add c[nz] = aij * b[k] mask[icol_add] = nz nz = nz + 1 else: c[icol]=c[icol]+aij+b[k] # this line is modified from " aij*b[k]" for k in range(ic[i], nz): mask[jc[k]] = -1 ic[i+1] = nz c, jc = trim(c, jc) C = Normalization(n, m, c, ic, jc) return C def MU_7_SparseMatMul(n, m, a, ia, ja, b, ib, jb): nz = 0 mask = [] for i in range(m): mask.append(-1) c = [] ic = [0] jc = [] for i in range(n): ic.append(0) for i in range(n*m): c.append(0) jc.append(0) for i in range(0,n): for j in range(ia[i], ia[i+1]): neighbour = ja[j] aij = a[i] # this line is modified from a[j] for k in range(ib[neighbour], ib[neighbour+1]): icol_add = jb[k] icol = mask[icol_add] if (icol == -1): jc[nz] = icol_add c[nz] = aij * b[k] mask[icol_add] = nz nz = nz + 1 else: c[icol]=c[icol]+aij *b[k] for k in range(ic[i], nz): mask[jc[k]] = -1 ic[i+1] = nz c, jc = trim(c, jc) C = Normalization(n, m, c, ic, jc) return C def MU_8_SparseMatMul(n, m, a, ia, ja, b, ib, jb): nz = 0 mask = [] for i in range(m): mask.append(-1) c = [] ic = [0] jc = [] for i in range(n): ic.append(0) for i in range(n*m): c.append(0) jc.append(0) for i in range(0,n): for j in range(ia[i], ia[i+1]): neighbour = ja[j] aij = a[j] for k in range(ib[neighbour], ib[neighbour+1]): icol_add = jb[k] icol = mask[icol_add] if (icol == -1): jc[nz] = icol_add c[nz] = aij * b[k] mask[icol_add] = nz nz = nz + 1 else: c[icol]=c[icol]+aij*b[k] for k in range(ic[i], nz): mask[jc[i]] = -1 # this line is modified from jc[k] ic[i+1] = nz c, jc = trim(c, jc) C = Normalization(n, m, c, ic, jc) return C def CreateSparseMat(A): a = [] ia = [0] ja = [] off_set = 0 for i in range(len(A)): for j in range(len(A[0])): if not A[i][j] == 0: a.append(A[i][j]) off_set = off_set+1 ja.append(j) ia.append(off_set) return (a, ia, ja) def MU_9_SparseMatMul(n, m, a, ia, ja, b, ib, jb): nz = 0 mask = [] for i in range(m): mask.append(-1) c = [] ic = [0] jc = [] for i in range(n): ic.append(0) for i in range(n*m): c.append(0) jc.append(0) for i in range(0,n): for j in range(ia[i], ia[i+1]): neighbour = ja[j] aij = a[j] for k in range(ib[neighbour], ib[neighbour+1]): icol_add = jb[k] icol = mask[icol_add] if (icol == -1): jc[nz] = icol_add c[nz] = aij * b[k] mask[icol_add] = nz nz = nz + 1 else: c[icol]=c[icol]+aij*b[k] for k in range(ic[i], n-1): mask[jc[k]] = -1 ic[i+1] = nz c, jc = trim(c, jc) C = Normalization(n, m, c, ic, jc) return C def MatMul(A, B): if not (len(A[0]) == len(B)): print("Matrix cannot product!\n Matrix production failure, since they do not match.") sys.exit(-1) product_row = len(A) product_col = len(B[0]) (a,ia,ja)= CreateSparseMat(A) (b,ib,jb)=CreateSparseMat(B) C = SparseMatMul(product_row,product_col,a,ia,ja, b,ib,jb) return C class MatrixMultiple(): def __init__(self,mutant_index): self.mutant_index = mutant_index def MatMul(self, A, B): if not (len(A[0]) == len(B)): print("Matrix cannot product!\n Matrix production failure, since they do not match.") sys.exit(-1) product_row = len(A) product_col = len(B[0]) (a, ia, ja) = CreateSparseMat(A) (b, ib, jb) = CreateSparseMat(B) current_module = sys.modules[__name__] C = getattr(current_module, self.mutant_index)(product_row, product_col, a, ia, ja, b, ib, jb) return C if __name__ =="__main__": A = [[1, 7, 0, 0],[0, 2, 8, 0],[5, 0, 3, 9],[0, 6, 0, 4]] #(a, ia, ja) = CreateSparseMat(A) #print(a, ia, ja) #c, ic, jc = SparseMatMul(4, 4, a,ia,ja, a, ia, ja) #normal_c = Normalization(4,4, c,ic,jc) #print(normal_c) print(MatMul(A, A))
[ "qiukun11@sina.com" ]
qiukun11@sina.com
925910732b6f517b22a530362178bdbe84f9ceeb
072b36de31ecd906a14de7cf8434546302f51657
/intent_detection/encoder_clients.py
05b6ae3305b9e14d89716fc2edf94124b3adae4f
[ "Apache-2.0" ]
permissive
solversa/polyai-models
a9b991e1bc567097a45ea48fc13113449211dbba
5ea0f961270e8f04c24bd3f3f1cf30cddb8268f2
refs/heads/master
2022-11-06T11:16:28.866610
2020-06-24T16:53:19
2020-06-24T16:53:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,493
py
"""Sentence encoder library for tensorflow_hub based sentence encoders The included sentence encoders are: - BERT: https://arxiv.org/abs/1810.04805 - USE multilingual: https://arxiv.org/abs/1907.04307 - ConveRT: https://arxiv.org/abs/1911.03688 Copyright PolyAI Limited. """ import abc import os import pickle import glog import numpy as np import tensorflow as tf import tensorflow_hub as tf_hub import tensorflow_text # NOQA: it is used when importing ConveRT. import tf_sentencepiece # NOQA: it is used when importing USE. from bert.tokenization import FullTokenizer from tqdm import tqdm from encoder_client import EncoderClient _CONVERT_PATH = "http://models.poly-ai.com/convert/v1/model.tar.gz" _USE_PATH = ("https://tfhub.dev/google/universal-sentence-encoder-" "multilingual-large/1") _BERT_PATH = "https://tfhub.dev/google/bert_uncased_L-24_H-1024_A-16/1" def l2_normalize(encodings): """L2 normalizes the given matrix of encodings.""" norms = np.linalg.norm(encodings, ord=2, axis=-1, keepdims=True) return encodings / norms class ClassificationEncoderClient(object): """A model that maps from text to dense vectors.""" __metaclass__ = abc.ABCMeta @abc.abstractmethod def encode_sentences(self, sentences): """Encodes a list of sentences Args: sentences: a list of strings Returns: an (N, d) numpy matrix of sentence encodings. """ return NotImplementedError def get_encoder_client(encoder_type, cache_dir=None): """get an EncoderClient object Args: encoder_type: (str) one of "use", "convert", "combined" or "bert" cache_dir: The directory where an encoding dictionary will be cached Returns: a ClassificationEncoderClient """ if encoder_type.lower() == "use": encoder_client = UseEncoderClient(_USE_PATH) if cache_dir: encoder_id = _USE_PATH.replace("/", "-") encoder_client = CachingEncoderClient( encoder_client, encoder_id, cache_dir) elif encoder_type.lower() == "convert": encoder_client = ConvertEncoderClient(_CONVERT_PATH) if cache_dir: encoder_id = _CONVERT_PATH.replace("/", "-") encoder_client = CachingEncoderClient( encoder_client, encoder_id, cache_dir) elif encoder_type.lower() == "combined": use_encoder = UseEncoderClient(_USE_PATH) convert_encoder = ConvertEncoderClient(_CONVERT_PATH) if cache_dir: use_id = _USE_PATH.replace("/", "-") use_encoder = CachingEncoderClient( use_encoder, use_id, cache_dir) convert_id = _CONVERT_PATH.replace("/", "-") convert_encoder = CachingEncoderClient( convert_encoder, convert_id, cache_dir) encoder_client = CombinedEncoderClient([convert_encoder, use_encoder]) elif encoder_type.lower() == "bert": encoder_client = BertEncoderClient(_BERT_PATH) if cache_dir: encoder_id = _BERT_PATH.replace("/", "-") encoder_client = CachingEncoderClient( encoder_client, encoder_id, cache_dir) else: raise ValueError(f"{encoder_type} is not a valid encoder type") return encoder_client class CachingEncoderClient(ClassificationEncoderClient): """Wrapper around an encoder to cache the encodings on disk""" def __init__(self, encoder_client, encoder_id, cache_dir): """Create a new CachingEncoderClient object Args: encoder_client: An EncoderClient encoder_id: An unique ID for the encoder cache_dir: The directory where the encodings will be cached """ if not os.path.exists(cache_dir): os.makedirs(cache_dir) self._encodings_dict_path = os.path.join( cache_dir, encoder_id) self._encoder_client = encoder_client self._encodings_dict = self._load_or_create_encodings_dict() def _load_or_create_encodings_dict(self): if os.path.exists(self._encodings_dict_path): with open(self._encodings_dict_path, "rb") as f: encodings_dict = pickle.load(f) else: encodings_dict = {} return encodings_dict def _save_encodings_dict(self): with open(self._encodings_dict_path, "wb") as f: pickle.dump(self._encodings_dict, f) def encode_sentences(self, sentences): """Encode a list of sentences Args: sentences: the list of sentences Returns: an (N, d) numpy matrix of sentence encodings. """ missing_sentences = [ sentence for sentence in sentences if sentence not in self._encodings_dict] if len(sentences) != len(missing_sentences): glog.info(f"{len(sentences) - len(missing_sentences)} cached " f"sentences will not be encoded") if missing_sentences: missing_encodings = self._encoder_client.encode_sentences( missing_sentences) for sentence, encoding in zip(missing_sentences, missing_encodings): self._encodings_dict[sentence] = encoding self._save_encodings_dict() encodings = np.array( [self._encodings_dict[sentence] for sentence in sentences]) return encodings class ConvertEncoderClient(ClassificationEncoderClient): """A wrapper around ClassificationEncoderClient to normalise the output""" def __init__(self, uri, batch_size=100): """Create a new ConvertEncoderClient object Args: uri: The uri to the tensorflow_hub module batch_size: maximum number of sentences to encode at once """ self._batch_size = batch_size self._encoder_client = EncoderClient(uri) def encode_sentences(self, sentences): """Encode a list of sentences Args: sentences: the list of sentences Returns: an (N, d) numpy matrix of sentence encodings. """ encodings = [] glog.setLevel("ERROR") for i in tqdm(range(0, len(sentences), self._batch_size), "encoding sentence batches"): encodings.append( self._encoder_client.encode_sentences( sentences[i:i + self._batch_size])) glog.setLevel("INFO") return l2_normalize(np.vstack(encodings)) class UseEncoderClient(ClassificationEncoderClient): """A Universal Sentence Encoder model loaded as a tensorflow hub module""" def __init__(self, uri, batch_size=100): """Create a new UseEncoderClient object Args: uri: The uri to the tensorflow_hub USE module batch_size: maximum number of sentences to encode at once """ self._batch_size = batch_size self._session = tf.Session(graph=tf.Graph()) with self._session.graph.as_default(): glog.info("Loading %s model from tensorflow hub", uri) embed_fn = tf_hub.Module(uri) self._fed_texts = tf.placeholder(shape=[None], dtype=tf.string) self._embeddings = embed_fn(self._fed_texts) encoding_info = embed_fn.get_output_info_dict().get('default') if encoding_info: self._encoding_dim = encoding_info.get_shape()[-1].value init_ops = ( tf.global_variables_initializer(), tf.tables_initializer()) glog.info("Initializing graph.") self._session.run(init_ops) def encode_sentences(self, sentences): """Encode a list of sentences Args: sentences: the list of sentences Returns: an (N, d) numpy matrix of sentence encodings. """ encodings = [] for i in tqdm(range(0, len(sentences), self._batch_size), "encoding sentence batches"): encodings.append( self._session.run( self._embeddings, {self._fed_texts: sentences[i:i + self._batch_size]})) return np.vstack(encodings) class BertEncoderClient(ClassificationEncoderClient): """The BERT encoder that is loaded as a module from tensorflow hub. This class tokenizes the input text using the bert tokenization library. The final encoding is computed as the sum of the token embeddings. Args: uri: (string) the tensorflow hub URI for the model. batch_size: maximum number of sentences to encode at once """ def __init__(self, uri, batch_size=100): """Create a new `BERTEncoder` object.""" if not tf.test.is_gpu_available(): glog.warning( "No GPU detected, BERT will run a lot slower than with a GPU.") self._batch_size = batch_size self._session = tf.Session(graph=tf.Graph()) with self._session.graph.as_default(): glog.info("Loading %s model from tensorflow hub", uri) embed_fn = tf_hub.Module(uri, trainable=False) self._tokenizer = self._create_tokenizer_from_hub_module(uri) self._input_ids = tf.placeholder( name="input_ids", shape=[None, None], dtype=tf.int32) self._input_mask = tf.placeholder( name="input_mask", shape=[None, None], dtype=tf.int32) self._segment_ids = tf.zeros_like(self._input_ids) bert_inputs = dict( input_ids=self._input_ids, input_mask=self._input_mask, segment_ids=self._segment_ids ) embeddings = embed_fn( inputs=bert_inputs, signature="tokens", as_dict=True)[ "sequence_output" ] mask = tf.expand_dims( tf.cast(self._input_mask, dtype=tf.float32), -1) self._embeddings = tf.reduce_sum(mask * embeddings, axis=1) init_ops = ( tf.global_variables_initializer(), tf.tables_initializer()) glog.info("Initializing graph.") self._session.run(init_ops) def encode_sentences(self, sentences): """Encode a list of sentences Args: sentences: the list of sentences Returns: an array with shape (len(sentences), ENCODING_SIZE) """ encodings = [] for i in tqdm(range(0, len(sentences), self._batch_size), "encoding sentence batches"): encodings.append( self._session.run( self._embeddings, self._feed_dict(sentences[i:i + self._batch_size]))) return l2_normalize(np.vstack(encodings)) @staticmethod def _create_tokenizer_from_hub_module(uri): """Get the vocab file and casing info from the Hub module.""" with tf.Graph().as_default(): bert_module = tf_hub.Module(uri, trainable=False) tokenization_info = bert_module( signature="tokenization_info", as_dict=True) with tf.Session() as sess: vocab_file, do_lower_case = sess.run( [ tokenization_info["vocab_file"], tokenization_info["do_lower_case"] ]) return FullTokenizer( vocab_file=vocab_file, do_lower_case=do_lower_case) def _feed_dict(self, texts, max_seq_len=128): """Create a feed dict for feeding the texts as input. This uses dynamic padding so that the maximum sequence length is the smaller of `max_seq_len` and the longest sequence actually found in the batch. (The code in `bert.run_classifier` always pads up to the maximum even if the examples in the batch are all shorter.) """ all_ids = [] for text in texts: tokens = ["[CLS]"] + self._tokenizer.tokenize(text) # Possibly truncate the tokens. tokens = tokens[:(max_seq_len - 1)] tokens.append("[SEP]") ids = self._tokenizer.convert_tokens_to_ids(tokens) all_ids.append(ids) max_seq_len = max(map(len, all_ids)) input_ids = [] input_mask = [] for ids in all_ids: mask = [1] * len(ids) # Zero-pad up to the sequence length. while len(ids) < max_seq_len: ids.append(0) mask.append(0) input_ids.append(ids) input_mask.append(mask) return {self._input_ids: input_ids, self._input_mask: input_mask} class CombinedEncoderClient(ClassificationEncoderClient): """concatenates the encodings of several ClassificationEncoderClients Args: encoders: A list of ClassificationEncoderClients """ def __init__(self, encoders: list): """constructor""" self._encoders = encoders def encode_sentences(self, sentences): """Encode a list of sentences Args: sentences: the list of sentences Returns: an array with shape (len(sentences), ENCODING_SIZE) """ encodings = np.hstack([encoder.encode_sentences(sentences) for encoder in self._encoders]) return encodings
[ "noreply@github.com" ]
solversa.noreply@github.com
84e27abcbf77a8326005c61b2a757da7bacca739
5e6d8b9989247801718dd1f10009f0f7f54c1eb4
/sdk/python/pulumi_azure_native/kusto/v20210101/attached_database_configuration.py
946ae232ce58b45d17af011ef974b0437c9ea1a7
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
vivimouret29/pulumi-azure-native
d238a8f91688c9bf09d745a7280b9bf2dd6d44e0
1cbd988bcb2aa75a83e220cb5abeb805d6484fce
refs/heads/master
2023-08-26T05:50:40.560691
2021-10-21T09:25:07
2021-10-21T09:25:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,081
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['AttachedDatabaseConfigurationArgs', 'AttachedDatabaseConfiguration'] @pulumi.input_type class AttachedDatabaseConfigurationArgs: def __init__(__self__, *, cluster_name: pulumi.Input[str], cluster_resource_id: pulumi.Input[str], database_name: pulumi.Input[str], default_principals_modification_kind: pulumi.Input[Union[str, 'DefaultPrincipalsModificationKind']], resource_group_name: pulumi.Input[str], attached_database_configuration_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, table_level_sharing_properties: Optional[pulumi.Input['TableLevelSharingPropertiesArgs']] = None): """ The set of arguments for constructing a AttachedDatabaseConfiguration resource. :param pulumi.Input[str] cluster_name: The name of the Kusto cluster. :param pulumi.Input[str] cluster_resource_id: The resource id of the cluster where the databases you would like to attach reside. :param pulumi.Input[str] database_name: The name of the database which you would like to attach, use * if you want to follow all current and future databases. :param pulumi.Input[Union[str, 'DefaultPrincipalsModificationKind']] default_principals_modification_kind: The default principals modification kind :param pulumi.Input[str] resource_group_name: The name of the resource group containing the Kusto cluster. :param pulumi.Input[str] attached_database_configuration_name: The name of the attached database configuration. :param pulumi.Input[str] location: Resource location. :param pulumi.Input['TableLevelSharingPropertiesArgs'] table_level_sharing_properties: Table level sharing specifications """ pulumi.set(__self__, "cluster_name", cluster_name) pulumi.set(__self__, "cluster_resource_id", cluster_resource_id) pulumi.set(__self__, "database_name", database_name) pulumi.set(__self__, "default_principals_modification_kind", default_principals_modification_kind) pulumi.set(__self__, "resource_group_name", resource_group_name) if attached_database_configuration_name is not None: pulumi.set(__self__, "attached_database_configuration_name", attached_database_configuration_name) if location is not None: pulumi.set(__self__, "location", location) if table_level_sharing_properties is not None: pulumi.set(__self__, "table_level_sharing_properties", table_level_sharing_properties) @property @pulumi.getter(name="clusterName") def cluster_name(self) -> pulumi.Input[str]: """ The name of the Kusto cluster. """ return pulumi.get(self, "cluster_name") @cluster_name.setter def cluster_name(self, value: pulumi.Input[str]): pulumi.set(self, "cluster_name", value) @property @pulumi.getter(name="clusterResourceId") def cluster_resource_id(self) -> pulumi.Input[str]: """ The resource id of the cluster where the databases you would like to attach reside. """ return pulumi.get(self, "cluster_resource_id") @cluster_resource_id.setter def cluster_resource_id(self, value: pulumi.Input[str]): pulumi.set(self, "cluster_resource_id", value) @property @pulumi.getter(name="databaseName") def database_name(self) -> pulumi.Input[str]: """ The name of the database which you would like to attach, use * if you want to follow all current and future databases. """ return pulumi.get(self, "database_name") @database_name.setter def database_name(self, value: pulumi.Input[str]): pulumi.set(self, "database_name", value) @property @pulumi.getter(name="defaultPrincipalsModificationKind") def default_principals_modification_kind(self) -> pulumi.Input[Union[str, 'DefaultPrincipalsModificationKind']]: """ The default principals modification kind """ return pulumi.get(self, "default_principals_modification_kind") @default_principals_modification_kind.setter def default_principals_modification_kind(self, value: pulumi.Input[Union[str, 'DefaultPrincipalsModificationKind']]): pulumi.set(self, "default_principals_modification_kind", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group containing the Kusto cluster. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="attachedDatabaseConfigurationName") def attached_database_configuration_name(self) -> Optional[pulumi.Input[str]]: """ The name of the attached database configuration. """ return pulumi.get(self, "attached_database_configuration_name") @attached_database_configuration_name.setter def attached_database_configuration_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "attached_database_configuration_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter(name="tableLevelSharingProperties") def table_level_sharing_properties(self) -> Optional[pulumi.Input['TableLevelSharingPropertiesArgs']]: """ Table level sharing specifications """ return pulumi.get(self, "table_level_sharing_properties") @table_level_sharing_properties.setter def table_level_sharing_properties(self, value: Optional[pulumi.Input['TableLevelSharingPropertiesArgs']]): pulumi.set(self, "table_level_sharing_properties", value) class AttachedDatabaseConfiguration(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, attached_database_configuration_name: Optional[pulumi.Input[str]] = None, cluster_name: Optional[pulumi.Input[str]] = None, cluster_resource_id: Optional[pulumi.Input[str]] = None, database_name: Optional[pulumi.Input[str]] = None, default_principals_modification_kind: Optional[pulumi.Input[Union[str, 'DefaultPrincipalsModificationKind']]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, table_level_sharing_properties: Optional[pulumi.Input[pulumi.InputType['TableLevelSharingPropertiesArgs']]] = None, __props__=None): """ Class representing an attached database configuration. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] attached_database_configuration_name: The name of the attached database configuration. :param pulumi.Input[str] cluster_name: The name of the Kusto cluster. :param pulumi.Input[str] cluster_resource_id: The resource id of the cluster where the databases you would like to attach reside. :param pulumi.Input[str] database_name: The name of the database which you would like to attach, use * if you want to follow all current and future databases. :param pulumi.Input[Union[str, 'DefaultPrincipalsModificationKind']] default_principals_modification_kind: The default principals modification kind :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] resource_group_name: The name of the resource group containing the Kusto cluster. :param pulumi.Input[pulumi.InputType['TableLevelSharingPropertiesArgs']] table_level_sharing_properties: Table level sharing specifications """ ... @overload def __init__(__self__, resource_name: str, args: AttachedDatabaseConfigurationArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Class representing an attached database configuration. :param str resource_name: The name of the resource. :param AttachedDatabaseConfigurationArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(AttachedDatabaseConfigurationArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, attached_database_configuration_name: Optional[pulumi.Input[str]] = None, cluster_name: Optional[pulumi.Input[str]] = None, cluster_resource_id: Optional[pulumi.Input[str]] = None, database_name: Optional[pulumi.Input[str]] = None, default_principals_modification_kind: Optional[pulumi.Input[Union[str, 'DefaultPrincipalsModificationKind']]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, table_level_sharing_properties: Optional[pulumi.Input[pulumi.InputType['TableLevelSharingPropertiesArgs']]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = AttachedDatabaseConfigurationArgs.__new__(AttachedDatabaseConfigurationArgs) __props__.__dict__["attached_database_configuration_name"] = attached_database_configuration_name if cluster_name is None and not opts.urn: raise TypeError("Missing required property 'cluster_name'") __props__.__dict__["cluster_name"] = cluster_name if cluster_resource_id is None and not opts.urn: raise TypeError("Missing required property 'cluster_resource_id'") __props__.__dict__["cluster_resource_id"] = cluster_resource_id if database_name is None and not opts.urn: raise TypeError("Missing required property 'database_name'") __props__.__dict__["database_name"] = database_name if default_principals_modification_kind is None and not opts.urn: raise TypeError("Missing required property 'default_principals_modification_kind'") __props__.__dict__["default_principals_modification_kind"] = default_principals_modification_kind __props__.__dict__["location"] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["table_level_sharing_properties"] = table_level_sharing_properties __props__.__dict__["attached_database_names"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:kusto/v20210101:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-native:kusto:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-nextgen:kusto:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-native:kusto/v20190907:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-nextgen:kusto/v20190907:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-native:kusto/v20191109:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-nextgen:kusto/v20191109:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-native:kusto/v20200215:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-nextgen:kusto/v20200215:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-native:kusto/v20200614:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-nextgen:kusto/v20200614:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-native:kusto/v20200918:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-nextgen:kusto/v20200918:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-native:kusto/v20210827:AttachedDatabaseConfiguration"), pulumi.Alias(type_="azure-nextgen:kusto/v20210827:AttachedDatabaseConfiguration")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(AttachedDatabaseConfiguration, __self__).__init__( 'azure-native:kusto/v20210101:AttachedDatabaseConfiguration', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'AttachedDatabaseConfiguration': """ Get an existing AttachedDatabaseConfiguration resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = AttachedDatabaseConfigurationArgs.__new__(AttachedDatabaseConfigurationArgs) __props__.__dict__["attached_database_names"] = None __props__.__dict__["cluster_resource_id"] = None __props__.__dict__["database_name"] = None __props__.__dict__["default_principals_modification_kind"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["table_level_sharing_properties"] = None __props__.__dict__["type"] = None return AttachedDatabaseConfiguration(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="attachedDatabaseNames") def attached_database_names(self) -> pulumi.Output[Sequence[str]]: """ The list of databases from the clusterResourceId which are currently attached to the cluster. """ return pulumi.get(self, "attached_database_names") @property @pulumi.getter(name="clusterResourceId") def cluster_resource_id(self) -> pulumi.Output[str]: """ The resource id of the cluster where the databases you would like to attach reside. """ return pulumi.get(self, "cluster_resource_id") @property @pulumi.getter(name="databaseName") def database_name(self) -> pulumi.Output[str]: """ The name of the database which you would like to attach, use * if you want to follow all current and future databases. """ return pulumi.get(self, "database_name") @property @pulumi.getter(name="defaultPrincipalsModificationKind") def default_principals_modification_kind(self) -> pulumi.Output[str]: """ The default principals modification kind """ return pulumi.get(self, "default_principals_modification_kind") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioned state of the resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="tableLevelSharingProperties") def table_level_sharing_properties(self) -> pulumi.Output[Optional['outputs.TableLevelSharingPropertiesResponse']]: """ Table level sharing specifications """ return pulumi.get(self, "table_level_sharing_properties") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type")
[ "noreply@github.com" ]
vivimouret29.noreply@github.com
e621edac8b6236ada83c404b082d7857b31371de
8fcc27160f8700be46296568260fa0017a0b3004
/client/carbon/common/lib/jinja2/lexer.py
e5a21bb93528b239c8fe57cd40d85f1a50ddb173
[]
no_license
connoryang/dec-eve-serenity
5d867f4eedfa896a4ef60f92556356cafd632c96
b670aec7c8b4514fc47cd52e186d7ccf3aabb69e
refs/heads/master
2021-01-22T06:33:16.303760
2016-03-16T15:15:32
2016-03-16T15:15:32
56,389,750
1
0
null
2016-04-16T15:05:24
2016-04-16T15:05:24
null
UTF-8
Python
false
false
17,748
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\carbon\common\lib\jinja2\lexer.py import re from operator import itemgetter from collections import deque from jinja2.exceptions import TemplateSyntaxError from jinja2.utils import LRUCache, next _lexer_cache = LRUCache(50) whitespace_re = re.compile('\\s+', re.U) string_re = re.compile('(\'([^\'\\\\]*(?:\\\\.[^\'\\\\]*)*)\'|"([^"\\\\]*(?:\\\\.[^"\\\\]*)*)")', re.S) integer_re = re.compile('\\d+') try: compile('f\xc3\xb6\xc3\xb6', '<unknown>', 'eval') except SyntaxError: name_re = re.compile('\\b[a-zA-Z_][a-zA-Z0-9_]*\\b') else: from jinja2 import _stringdefs name_re = re.compile('[%s][%s]*' % (_stringdefs.xid_start, _stringdefs.xid_continue)) float_re = re.compile('(?<!\\.)\\d+\\.\\d+') newline_re = re.compile('(\\r\\n|\\r|\\n)') TOKEN_ADD = intern('add') TOKEN_ASSIGN = intern('assign') TOKEN_COLON = intern('colon') TOKEN_COMMA = intern('comma') TOKEN_DIV = intern('div') TOKEN_DOT = intern('dot') TOKEN_EQ = intern('eq') TOKEN_FLOORDIV = intern('floordiv') TOKEN_GT = intern('gt') TOKEN_GTEQ = intern('gteq') TOKEN_LBRACE = intern('lbrace') TOKEN_LBRACKET = intern('lbracket') TOKEN_LPAREN = intern('lparen') TOKEN_LT = intern('lt') TOKEN_LTEQ = intern('lteq') TOKEN_MOD = intern('mod') TOKEN_MUL = intern('mul') TOKEN_NE = intern('ne') TOKEN_PIPE = intern('pipe') TOKEN_POW = intern('pow') TOKEN_RBRACE = intern('rbrace') TOKEN_RBRACKET = intern('rbracket') TOKEN_RPAREN = intern('rparen') TOKEN_SEMICOLON = intern('semicolon') TOKEN_SUB = intern('sub') TOKEN_TILDE = intern('tilde') TOKEN_WHITESPACE = intern('whitespace') TOKEN_FLOAT = intern('float') TOKEN_INTEGER = intern('integer') TOKEN_NAME = intern('name') TOKEN_STRING = intern('string') TOKEN_OPERATOR = intern('operator') TOKEN_BLOCK_BEGIN = intern('block_begin') TOKEN_BLOCK_END = intern('block_end') TOKEN_VARIABLE_BEGIN = intern('variable_begin') TOKEN_VARIABLE_END = intern('variable_end') TOKEN_RAW_BEGIN = intern('raw_begin') TOKEN_RAW_END = intern('raw_end') TOKEN_COMMENT_BEGIN = intern('comment_begin') TOKEN_COMMENT_END = intern('comment_end') TOKEN_COMMENT = intern('comment') TOKEN_LINESTATEMENT_BEGIN = intern('linestatement_begin') TOKEN_LINESTATEMENT_END = intern('linestatement_end') TOKEN_LINECOMMENT_BEGIN = intern('linecomment_begin') TOKEN_LINECOMMENT_END = intern('linecomment_end') TOKEN_LINECOMMENT = intern('linecomment') TOKEN_DATA = intern('data') TOKEN_INITIAL = intern('initial') TOKEN_EOF = intern('eof') operators = {'+': TOKEN_ADD, '-': TOKEN_SUB, '/': TOKEN_DIV, '//': TOKEN_FLOORDIV, '*': TOKEN_MUL, '%': TOKEN_MOD, '**': TOKEN_POW, '~': TOKEN_TILDE, '[': TOKEN_LBRACKET, ']': TOKEN_RBRACKET, '(': TOKEN_LPAREN, ')': TOKEN_RPAREN, '{': TOKEN_LBRACE, '}': TOKEN_RBRACE, '==': TOKEN_EQ, '!=': TOKEN_NE, '>': TOKEN_GT, '>=': TOKEN_GTEQ, '<': TOKEN_LT, '<=': TOKEN_LTEQ, '=': TOKEN_ASSIGN, '.': TOKEN_DOT, ':': TOKEN_COLON, '|': TOKEN_PIPE, ',': TOKEN_COMMA, ';': TOKEN_SEMICOLON} reverse_operators = dict([ (v, k) for k, v in operators.iteritems() ]) operator_re = re.compile('(%s)' % '|'.join((re.escape(x) for x in sorted(operators, key=lambda x: -len(x))))) ignored_tokens = frozenset([TOKEN_COMMENT_BEGIN, TOKEN_COMMENT, TOKEN_COMMENT_END, TOKEN_WHITESPACE, TOKEN_WHITESPACE, TOKEN_LINECOMMENT_BEGIN, TOKEN_LINECOMMENT_END, TOKEN_LINECOMMENT]) ignore_if_empty = frozenset([TOKEN_WHITESPACE, TOKEN_DATA, TOKEN_COMMENT, TOKEN_LINECOMMENT]) def _describe_token_type(token_type): if token_type in reverse_operators: return reverse_operators[token_type] return {TOKEN_COMMENT_BEGIN: 'begin of comment', TOKEN_COMMENT_END: 'end of comment', TOKEN_COMMENT: 'comment', TOKEN_LINECOMMENT: 'comment', TOKEN_BLOCK_BEGIN: 'begin of statement block', TOKEN_BLOCK_END: 'end of statement block', TOKEN_VARIABLE_BEGIN: 'begin of print statement', TOKEN_VARIABLE_END: 'end of print statement', TOKEN_LINESTATEMENT_BEGIN: 'begin of line statement', TOKEN_LINESTATEMENT_END: 'end of line statement', TOKEN_DATA: 'template data / text', TOKEN_EOF: 'end of template'}.get(token_type, token_type) def describe_token(token): if token.type == 'name': return token.value return _describe_token_type(token.type) def describe_token_expr(expr): if ':' in expr: type, value = expr.split(':', 1) if type == 'name': return value else: type = expr return _describe_token_type(type) def count_newlines(value): return len(newline_re.findall(value)) def compile_rules(environment): e = re.escape rules = [(len(environment.comment_start_string), 'comment', e(environment.comment_start_string)), (len(environment.block_start_string), 'block', e(environment.block_start_string)), (len(environment.variable_start_string), 'variable', e(environment.variable_start_string))] if environment.line_statement_prefix is not None: rules.append((len(environment.line_statement_prefix), 'linestatement', '^\\s*' + e(environment.line_statement_prefix))) if environment.line_comment_prefix is not None: rules.append((len(environment.line_comment_prefix), 'linecomment', '(?:^|(?<=\\S))[^\\S\\r\\n]*' + e(environment.line_comment_prefix))) return [ x[1:] for x in sorted(rules, reverse=True) ] class Failure(object): def __init__(self, message, cls = TemplateSyntaxError): self.message = message self.error_class = cls def __call__(self, lineno, filename): raise self.error_class(self.message, lineno, filename) class Token(tuple): __slots__ = () lineno, type, value = (property(itemgetter(x)) for x in range(3)) def __new__(cls, lineno, type, value): return tuple.__new__(cls, (lineno, intern(str(type)), value)) def __str__(self): if self.type in reverse_operators: return reverse_operators[self.type] if self.type == 'name': return self.value return self.type def test(self, expr): if self.type == expr: return True if ':' in expr: return expr.split(':', 1) == [self.type, self.value] return False def test_any(self, *iterable): for expr in iterable: if self.test(expr): return True return False def __repr__(self): return 'Token(%r, %r, %r)' % (self.lineno, self.type, self.value) class TokenStreamIterator(object): def __init__(self, stream): self.stream = stream def __iter__(self): return self def next(self): token = self.stream.current if token.type is TOKEN_EOF: self.stream.close() raise StopIteration() next(self.stream) return token class TokenStream(object): def __init__(self, generator, name, filename): self._next = iter(generator).next self._pushed = deque() self.name = name self.filename = filename self.closed = False self.current = Token(1, TOKEN_INITIAL, '') next(self) def __iter__(self): return TokenStreamIterator(self) def __nonzero__(self): return bool(self._pushed) or self.current.type is not TOKEN_EOF eos = property(lambda x: not x, doc='Are we at the end of the stream?') def push(self, token): self._pushed.append(token) def look(self): old_token = next(self) result = self.current self.push(result) self.current = old_token return result def skip(self, n = 1): for x in xrange(n): next(self) def next_if(self, expr): if self.current.test(expr): return next(self) def skip_if(self, expr): return self.next_if(expr) is not None def next(self): rv = self.current if self._pushed: self.current = self._pushed.popleft() elif self.current.type is not TOKEN_EOF: try: self.current = self._next() except StopIteration: self.close() return rv def close(self): self.current = Token(self.current.lineno, TOKEN_EOF, '') self._next = None self.closed = True def expect(self, expr): if not self.current.test(expr): expr = describe_token_expr(expr) if self.current.type is TOKEN_EOF: raise TemplateSyntaxError('unexpected end of template, expected %r.' % expr, self.current.lineno, self.name, self.filename) raise TemplateSyntaxError('expected token %r, got %r' % (expr, describe_token(self.current)), self.current.lineno, self.name, self.filename) try: return self.current finally: next(self) def get_lexer(environment): key = (environment.block_start_string, environment.block_end_string, environment.variable_start_string, environment.variable_end_string, environment.comment_start_string, environment.comment_end_string, environment.line_statement_prefix, environment.line_comment_prefix, environment.trim_blocks, environment.newline_sequence) lexer = _lexer_cache.get(key) if lexer is None: lexer = Lexer(environment) _lexer_cache[key] = lexer return lexer class Lexer(object): def __init__(self, environment): c = lambda x: re.compile(x, re.M | re.S) e = re.escape tag_rules = [(whitespace_re, TOKEN_WHITESPACE, None), (float_re, TOKEN_FLOAT, None), (integer_re, TOKEN_INTEGER, None), (name_re, TOKEN_NAME, None), (string_re, TOKEN_STRING, None), (operator_re, TOKEN_OPERATOR, None)] root_tag_rules = compile_rules(environment) block_suffix_re = environment.trim_blocks and '\\n?' or '' self.newline_sequence = environment.newline_sequence self.rules = {'root': [(c('(.*?)(?:%s)' % '|'.join(['(?P<raw_begin>(?:\\s*%s\\-|%s)\\s*raw\\s*(?:\\-%s\\s*|%s))' % (e(environment.block_start_string), e(environment.block_start_string), e(environment.block_end_string), e(environment.block_end_string))] + [ '(?P<%s_begin>\\s*%s\\-|%s)' % (n, r, r) for n, r in root_tag_rules ])), (TOKEN_DATA, '#bygroup'), '#bygroup'), (c('.+'), TOKEN_DATA, None)], TOKEN_COMMENT_BEGIN: [(c('(.*?)((?:\\-%s\\s*|%s)%s)' % (e(environment.comment_end_string), e(environment.comment_end_string), block_suffix_re)), (TOKEN_COMMENT, TOKEN_COMMENT_END), '#pop'), (c('(.)'), (Failure('Missing end of comment tag'),), None)], TOKEN_BLOCK_BEGIN: [(c('(?:\\-%s\\s*|%s)%s' % (e(environment.block_end_string), e(environment.block_end_string), block_suffix_re)), TOKEN_BLOCK_END, '#pop')] + tag_rules, TOKEN_VARIABLE_BEGIN: [(c('\\-%s\\s*|%s' % (e(environment.variable_end_string), e(environment.variable_end_string))), TOKEN_VARIABLE_END, '#pop')] + tag_rules, TOKEN_RAW_BEGIN: [(c('(.*?)((?:\\s*%s\\-|%s)\\s*endraw\\s*(?:\\-%s\\s*|%s%s))' % (e(environment.block_start_string), e(environment.block_start_string), e(environment.block_end_string), e(environment.block_end_string), block_suffix_re)), (TOKEN_DATA, TOKEN_RAW_END), '#pop'), (c('(.)'), (Failure('Missing end of raw directive'),), None)], TOKEN_LINESTATEMENT_BEGIN: [(c('\\s*(\\n|$)'), TOKEN_LINESTATEMENT_END, '#pop')] + tag_rules, TOKEN_LINECOMMENT_BEGIN: [(c('(.*?)()(?=\\n|$)'), (TOKEN_LINECOMMENT, TOKEN_LINECOMMENT_END), '#pop')]} def _normalize_newlines(self, value): return newline_re.sub(self.newline_sequence, value) def tokenize(self, source, name = None, filename = None, state = None): stream = self.tokeniter(source, name, filename, state) return TokenStream(self.wrap(stream, name, filename), name, filename) def wrap(self, stream, name = None, filename = None): for lineno, token, value in stream: if token in ignored_tokens: continue elif token == 'linestatement_begin': token = 'block_begin' elif token == 'linestatement_end': token = 'block_end' elif token in ('raw_begin', 'raw_end'): continue elif token == 'data': value = self._normalize_newlines(value) elif token == 'keyword': token = value elif token == 'name': value = str(value) elif token == 'string': try: value = self._normalize_newlines(value[1:-1]).encode('ascii', 'backslashreplace').decode('unicode-escape') except Exception as e: msg = str(e).split(':')[-1].strip() raise TemplateSyntaxError(msg, lineno, name, filename) try: value = str(value) except UnicodeError: pass elif token == 'integer': value = int(value) elif token == 'float': value = float(value) elif token == 'operator': token = operators[value] yield Token(lineno, token, value) def tokeniter(self, source, name, filename = None, state = None): source = '\n'.join(unicode(source).splitlines()) pos = 0 lineno = 1 stack = ['root'] if state is not None and state != 'root': stack.append(state + '_begin') else: state = 'root' statetokens = self.rules[stack[-1]] source_length = len(source) balancing_stack = [] while 1: for regex, tokens, new_state in statetokens: m = regex.match(source, pos) if m is None: continue if balancing_stack and tokens in ('variable_end', 'block_end', 'linestatement_end'): continue if isinstance(tokens, tuple): for idx, token in enumerate(tokens): if token.__class__ is Failure: raise token(lineno, filename) elif token == '#bygroup': for key, value in m.groupdict().iteritems(): if value is not None: yield (lineno, key, value) lineno += value.count('\n') break else: raise RuntimeError('%r wanted to resolve the token dynamically but no group matched' % regex) else: data = m.group(idx + 1) if data or token not in ignore_if_empty: yield (lineno, token, data) lineno += data.count('\n') else: data = m.group() if tokens == 'operator': if data == '{': balancing_stack.append('}') elif data == '(': balancing_stack.append(')') elif data == '[': balancing_stack.append(']') elif data in ('}', ')', ']'): if not balancing_stack: raise TemplateSyntaxError("unexpected '%s'" % data, lineno, name, filename) expected_op = balancing_stack.pop() if expected_op != data: raise TemplateSyntaxError("unexpected '%s', expected '%s'" % (data, expected_op), lineno, name, filename) if data or tokens not in ignore_if_empty: yield (lineno, tokens, data) lineno += data.count('\n') pos2 = m.end() if new_state is not None: if new_state == '#pop': stack.pop() elif new_state == '#bygroup': for key, value in m.groupdict().iteritems(): if value is not None: stack.append(key) break else: raise RuntimeError('%r wanted to resolve the new state dynamically but no group matched' % regex) else: stack.append(new_state) statetokens = self.rules[stack[-1]] elif pos2 == pos: raise RuntimeError('%r yielded empty string without stack change' % regex) pos = pos2 break else: if pos >= source_length: return raise TemplateSyntaxError('unexpected char %r at %d' % (source[pos], pos), lineno, name, filename)
[ "masaho.shiro@gmail.com" ]
masaho.shiro@gmail.com
19ec32991e20e05769722e0f500cec98f9848466
433a7d9cca052a12e5095d36dfdb5e7126668f2b
/backend/inscourse_23147/settings.py
9b86d22a2800d2d17d4f6d1faafb2803cc0f60c3
[]
no_license
crowdbotics-apps/inscourse-23147
e60ee992bce724ff3867d49ed8700a0b32d8c6a8
e50764e04e71c0d29e5c3b8a905cdb153d6902a3
refs/heads/master
2023-01-23T10:54:04.697210
2020-12-03T03:45:16
2020-12-03T03:45:16
318,065,807
0
0
null
null
null
null
UTF-8
Python
false
false
7,017
py
""" Django settings for inscourse_23147 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import logging env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', 'storages', # start fcm_django push notifications 'fcm_django', # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'inscourse_23147.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'inscourse_23147.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # AWS S3 config AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "") AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "") AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "") AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "") USE_S3 = ( AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_STORAGE_BUCKET_NAME and AWS_STORAGE_REGION ) if USE_S3: AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "") AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"} AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read") AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media") AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True) DEFAULT_FILE_STORAGE = env.str( "DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage" ) MEDIA_URL = '/mediafiles/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles') # start fcm_django push notifications FCM_DJANGO_SETTINGS = { "FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "") } # end fcm_django push notifications # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
[ "team@crowdbotics.com" ]
team@crowdbotics.com
ccae046c0f8494eb003afba5478f44c47ba4bc01
9d7f5e04f951884880c4636dc95e4db53893fedf
/Tool/KFDataTool/Py/Cheetah/Compiler.py
c0ae90d092015e1cdcee17a59f809f13f6582109
[]
no_license
Keyf0/KFData
78b93907f01a37a1f6ec978587f0280483911ad9
46146e5ee8540f0cba2d6cdd0c9ec4f6d69b8930
refs/heads/master
2022-03-24T19:13:21.353121
2019-11-29T18:25:44
2019-11-29T18:25:44
217,873,055
3
0
null
null
null
null
UTF-8
Python
false
false
82,519
py
''' Compiler classes for Cheetah: ModuleCompiler aka 'Compiler' ClassCompiler MethodCompiler If you are trying to grok this code start with ModuleCompiler.__init__, ModuleCompiler.compile, and ModuleCompiler.__getattr__. ''' import sys import os import os.path from os.path import getmtime import re import time import random import warnings import copy import codecs from Cheetah.Version import Version, VersionTuple from Cheetah.SettingsManager import SettingsManager from Cheetah.Utils.Indenter import indentize # an undocumented preprocessor from Cheetah import NameMapper from Cheetah.Parser import Parser, ParseError, specialVarRE, \ STATIC_CACHE, REFRESH_CACHE, SET_GLOBAL, SET_MODULE, \ unicodeDirectiveRE, encodingDirectiveRE, escapedNewlineRE from Cheetah.compat import PY2, string_type, unicode from Cheetah.NameMapper import valueForName, valueFromSearchList, \ valueFromFrameOrSearchList VFFSL = valueFromFrameOrSearchList VFSL = valueFromSearchList VFN = valueForName currentTime = time.time class Error(Exception): pass # Settings format: (key, default, docstring) _DEFAULT_COMPILER_SETTINGS = [ ('useNameMapper', True, 'Enable NameMapper for dotted notation and searchList support'), ('useSearchList', True, "Enable the searchList, requires useNameMapper=True, " "if disabled, first portion of the $variable is a global, builtin, " "or local variable that doesn't need looking up in the searchList"), ('allowSearchListAsMethArg', True, ''), ('useAutocalling', True, 'Detect and call callable objects in searchList, ' 'requires useNameMapper=True'), ('useStackFrames', True, 'Used for NameMapper.valueFromFrameOrSearchList ' 'rather than NameMapper.valueFromSearchList'), ('useErrorCatcher', False, 'Turn on the #errorCatcher directive ' 'for catching NameMapper errors, etc'), ('alwaysFilterNone', True, 'Filter out None prior to calling the #filter'), ('useFilters', True, 'If False, pass output through str()'), ('includeRawExprInFilterArgs', True, ''), ('useLegacyImportMode', True, 'All #import statements are relocated to the top ' 'of the generated Python module'), ('prioritizeSearchListOverSelf', False, "When iterating the searchList, " "look into the searchList passed into the initializer " "instead of Template members first"), ('autoAssignDummyTransactionToSelf', False, ''), ('useKWsDictArgForPassingTrans', True, ''), ('commentOffset', 1, ''), ('outputRowColComments', True, ''), ('includeBlockMarkers', False, 'Wrap #block\'s in a comment in the template\'s output'), ('blockMarkerStart', ('\n<!-- START BLOCK: ', ' -->\n'), ''), ('blockMarkerEnd', ('\n<!-- END BLOCK: ', ' -->\n'), ''), ('defDocStrMsg', 'Autogenerated by Cheetah: The Python-Powered Template Engine', ''), ('setup__str__method', False, ''), ('mainMethodName', 'respond', ''), ('mainMethodNameForSubclasses', 'writeBody', ''), ('indentationStep', ' ' * 4, ''), ('initialMethIndentLevel', 2, ''), ('monitorSrcFile', False, ''), ('outputMethodsBeforeAttributes', True, ''), ('addTimestampsToCompilerOutput', True, ''), # Customizing the #extends directive ('autoImportForExtendsDirective', True, ''), ('handlerForExtendsDirective', None, ''), ('disabledDirectives', [], 'List of directive keys to disable (without starting "#")'), ('enabledDirectives', [], 'List of directive keys to enable (without starting "#")'), ('disabledDirectiveHooks', [], 'callable(parser, directiveKey)'), ('preparseDirectiveHooks', [], 'callable(parser, directiveKey)'), ('postparseDirectiveHooks', [], 'callable(parser, directiveKey)'), ('preparsePlaceholderHooks', [], 'callable(parser)'), ('postparsePlaceholderHooks', [], 'callable(parser)'), ('expressionFilterHooks', [], 'callable(parser, expr, exprType, rawExpr=None, startPos=None), ' 'exprType is the name of the directive, "psp" or "placeholder" ' 'The filters *must* return the expr or raise an expression, ' 'they can modify the expr if needed'), ('templateMetaclass', None, 'Strictly optional, only will work with new-style basecalsses as well'), ('i18NFunctionName', 'self.i18n', ''), ('cheetahVarStartToken', '$', ''), ('commentStartToken', '##', ''), ('multiLineCommentStartToken', '#*', ''), ('multiLineCommentEndToken', '*#', ''), ('gobbleWhitespaceAroundMultiLineComments', True, ''), ('directiveStartToken', '#', ''), ('directiveEndToken', '#', ''), ('allowWhitespaceAfterDirectiveStartToken', False, ''), ('PSPStartToken', '<%', ''), ('PSPEndToken', '%>', ''), ('EOLSlurpToken', '#', ''), ('gettextTokens', ["_", "N_", "ngettext"], ''), ('allowExpressionsInExtendsDirective', False, ''), ('allowEmptySingleLineMethods', False, ''), ('allowNestedDefScopes', True, ''), ('allowPlaceholderFilterArgs', True, ''), ('encoding', None, 'The encoding to read input files as (or None for ASCII)'), ] DEFAULT_COMPILER_SETTINGS = \ dict([(v[0], v[1]) for v in _DEFAULT_COMPILER_SETTINGS]) class GenUtils(object): """An abstract baseclass for the Compiler classes that provides methods that perform generic utility functions or generate pieces of output code from information passed in by the Parser baseclass. These methods don't do any parsing themselves. """ def genTimeInterval(self, timeString): # #@@ TR: need to add some error handling here if timeString[-1] == 's': interval = float(timeString[:-1]) elif timeString[-1] == 'm': interval = float(timeString[:-1])*60 # noqa: E226,E501 missing whitespace around operator elif timeString[-1] == 'h': interval = float(timeString[:-1])*60*60 # noqa: E226,E501 missing whitespace around operator elif timeString[-1] == 'd': interval = float(timeString[:-1])*60*60*24 # noqa: E226,E501 missing whitespace around operator elif timeString[-1] == 'w': interval = float(timeString[:-1])*60*60*24*7 # noqa: E226,E501 missing whitespace around operator else: # default to minutes interval = float(timeString)*60 # noqa: E226,E501 missing whitespace around operator return interval def genCacheInfo(self, cacheTokenParts): """Decipher a placeholder cachetoken """ cacheInfo = {} if cacheTokenParts['REFRESH_CACHE']: cacheInfo['type'] = REFRESH_CACHE cacheInfo['interval'] = \ self.genTimeInterval(cacheTokenParts['interval']) elif cacheTokenParts['STATIC_CACHE']: cacheInfo['type'] = STATIC_CACHE return cacheInfo # is empty if no cache def genCacheInfoFromArgList(self, argList): cacheInfo = {'type': REFRESH_CACHE} for key, val in argList: if val[0] in '"\'': val = val[1:-1] if key == 'timer': key = 'interval' val = self.genTimeInterval(val) cacheInfo[key] = val return cacheInfo def genCheetahVar(self, nameChunks, plain=False): if nameChunks[0][0] in self.setting('gettextTokens'): self.addGetTextVar(nameChunks) if self.setting('useNameMapper') and not plain: return self.genNameMapperVar(nameChunks) else: return self.genPlainVar(nameChunks) def addGetTextVar(self, nameChunks): """Output something that gettext can recognize. This is a harmless side effect necessary to make gettext work when it is scanning compiled templates for strings marked for translation. @@TR: another marginally more efficient approach would be to put the output in a dummy method that is never called. """ # @@TR: this should be in the compiler not here self.addChunk("if False:") self.indent() self.addChunk(self.genPlainVar(nameChunks[:])) self.dedent() def genPlainVar(self, nameChunks): """Generate Python code for a Cheetah $var without using NameMapper (Unified Dotted Notation with the SearchList). """ nameChunks.reverse() chunk = nameChunks.pop() pythonCode = chunk[0] + chunk[2] while nameChunks: chunk = nameChunks.pop() pythonCode = (pythonCode + '.' + chunk[0] + chunk[2]) return pythonCode def genNameMapperVar(self, nameChunks): """Generate valid Python code for a Cheetah $var, using NameMapper (Unified Dotted Notation with the SearchList). nameChunks = list of var subcomponents represented as tuples [ (name,useAC,remainderOfExpr), ] where: name = the dotted name base useAC = where NameMapper should use autocalling on namemapperPart remainderOfExpr = any arglist, index, or slice If remainderOfExpr contains a call arglist (e.g. '(1234)') then useAC is False, otherwise it defaults to True. It is overridden by the global setting 'useAutocalling' if this setting is False. EXAMPLE:: if the raw Cheetah Var is $a.b.c[1].d().x.y.z nameChunks is the list [ ('a.b.c',True,'[1]'), # A ('d',False,'()'), # B ('x.y.z',True,''), # C ] When this method is fed the list above it returns:: VFN(VFN(VFFSL(SL, 'a.b.c',True)[1], 'd',False)(), 'x.y.z',True) which can be represented as:: VFN(B`, name=C[0], executeCallables=(useAC and C[1]))C[2] where:: VFN = NameMapper.valueForName VFFSL = NameMapper.valueFromFrameOrSearchList # optionally used instead of VFFSL VFSL = NameMapper.valueFromSearchList SL = self.searchList() useAC = self.setting('useAutocalling') # True in this example A = ('a.b.c',True,'[1]') B = ('d',False,'()') C = ('x.y.z',True,'') C` = VFN( VFN( VFFSL(SL, 'a.b.c',True)[1], 'd',False)(), 'x.y.z',True) = VFN(B`, name='x.y.z', executeCallables=True) B` = VFN(A`, name=B[0], executeCallables=(useAC and B[1]))B[2] A` = VFFSL(SL, name=A[0], executeCallables=(useAC and A[1]))A[2] Note, if the compiler setting useStackFrames=False (default is true) then:: A` = VFSL([locals()] + SL + [globals(), builtin], name=A[0], executeCallables=(useAC and A[1]))A[2] This option allows Cheetah to be used with Psyco, which doesn't support stack frame introspection. """ defaultUseAC = self.setting('useAutocalling') useSearchList = self.setting('useSearchList') nameChunks.reverse() name, useAC, remainder = nameChunks.pop() if not useSearchList: firstDotIdx = name.find('.') if firstDotIdx != -1 and firstDotIdx < len(name): beforeFirstDot = name[:firstDotIdx] afterDot = name[firstDotIdx+1:] # noqa: E226,E501 missing whitespace around operator pythonCode = ('VFN(' + beforeFirstDot + ',"' + afterDot + '",' + repr(defaultUseAC and useAC) + ')' + remainder) else: pythonCode = name + remainder elif self.setting('useStackFrames'): pythonCode = ('VFFSL(SL,' '"' + name + '",' + repr(defaultUseAC and useAC) + ')' + remainder) else: pythonCode = ('VFSL([locals()]+SL+[globals(), builtin],' '"' + name + '",' + repr(defaultUseAC and useAC) + ')' + remainder) ## while nameChunks: name, useAC, remainder = nameChunks.pop() pythonCode = ('VFN(' + pythonCode + ',"' + name + '",' + repr(defaultUseAC and useAC) + ')' + remainder) return pythonCode ################################################## # METHOD COMPILERS class MethodCompiler(GenUtils): def __init__(self, methodName, classCompiler, initialMethodComment=None, decorators=None): self._settingsManager = classCompiler self._classCompiler = classCompiler self._moduleCompiler = classCompiler._moduleCompiler self._methodName = methodName self._initialMethodComment = initialMethodComment self._setupState() self._decorators = decorators or [] def setting(self, key): return self._settingsManager.setting(key) def _setupState(self): self._indent = self.setting('indentationStep') self._indentLev = self.setting('initialMethIndentLevel') self._pendingStrConstChunks = [] self._methodSignature = None self._methodDef = None self._docStringLines = [] self._methodBodyChunks = [] self._cacheRegionsStack = [] self._callRegionsStack = [] self._captureRegionsStack = [] self._filterRegionsStack = [] self._isErrorCatcherOn = False self._hasReturnStatement = False self._isGenerator = False def cleanupState(self): """Called by the containing class compiler instance """ pass def methodName(self): return self._methodName def setMethodName(self, name): self._methodName = name # methods for managing indentation def indentation(self): return self._indent * self._indentLev def indent(self): self._indentLev += 1 def dedent(self): if self._indentLev: self._indentLev -= 1 else: raise Error('Attempt to dedent when the indentLev is 0') # methods for final code wrapping def methodDef(self): if self._methodDef: return self._methodDef else: return self.wrapCode() __str__ = methodDef __unicode__ = methodDef def wrapCode(self): self.commitStrConst() methodDefChunks = ( self.methodSignature(), '\n', self.docString(), self.methodBody()) methodDef = ''.join(methodDefChunks) self._methodDef = methodDef return methodDef def methodSignature(self): return self._indent + self._methodSignature + ':' def setMethodSignature(self, signature): self._methodSignature = signature def methodBody(self): return ''.join(self._methodBodyChunks) def docString(self): if not self._docStringLines: return '' ind = self._indent*2 # noqa: E226 missing whitespace around operator docStr = (ind + '"""\n' + ind + ('\n' + ind).join([ln.replace('"""', "'''") for ln in self._docStringLines]) + '\n' + ind + '"""\n') return docStr # methods for adding code def addMethDocString(self, line): self._docStringLines.append(line.replace('%', '%%')) def addChunk(self, chunk): self.commitStrConst() chunk = "\n" + self.indentation() + chunk self._methodBodyChunks.append(chunk) def appendToPrevChunk(self, appendage): self._methodBodyChunks[-1] = self._methodBodyChunks[-1] + appendage def addWriteChunk(self, chunk): self.addChunk('write(' + chunk + ')') def addFilteredChunk(self, chunk, filterArgs=None, rawExpr=None, lineCol=None): if filterArgs is None: filterArgs = '' if self.setting('includeRawExprInFilterArgs') and rawExpr: filterArgs += ', rawExpr=%s' % repr(rawExpr) if self.setting('alwaysFilterNone'): if rawExpr and rawExpr.find('\n') == -1 and \ rawExpr.find('\r') == -1: self.addChunk("_v = %s # %r" % (chunk, rawExpr)) if lineCol: self.appendToPrevChunk(' on line %s, col %s' % lineCol) else: self.addChunk("_v = %s" % chunk) if self.setting('useFilters'): self.addChunk("if _v is not None: write(_filter(_v%s))" % filterArgs) else: self.addChunk("if _v is not None: write(str(_v))") else: if self.setting('useFilters'): self.addChunk("write(_filter(%s%s))" % (chunk, filterArgs)) else: self.addChunk("write(str(%s))" % chunk) def _appendToPrevStrConst(self, strConst): if self._pendingStrConstChunks: self._pendingStrConstChunks.append(strConst) else: self._pendingStrConstChunks = [strConst] def commitStrConst(self): """Add the code for outputting the pending strConst without chopping off any whitespace from it. """ if not self._pendingStrConstChunks: return strConst = ''.join(self._pendingStrConstChunks) self._pendingStrConstChunks = [] if not strConst: return reprstr = repr(strConst) i = 0 out = [] if reprstr.startswith('u'): i = 1 out = ['u'] body = escapedNewlineRE.sub('\\1\n', reprstr[i+1:-1]) # noqa: E226,E501 missing whitespace around operator if reprstr[i] == "'": out.append("'''") out.append(body) out.append("'''") else: out.append('"""') out.append(body) out.append('"""') self.addWriteChunk(''.join(out)) def handleWSBeforeDirective(self): """Truncate the pending strCont to the beginning of the current line. """ if self._pendingStrConstChunks: src = self._pendingStrConstChunks[-1] BOL = max(src.rfind('\n') + 1, src.rfind('\r') + 1, 0) if BOL < len(src): self._pendingStrConstChunks[-1] = src[:BOL] def isErrorCatcherOn(self): return self._isErrorCatcherOn def turnErrorCatcherOn(self): self._isErrorCatcherOn = True def turnErrorCatcherOff(self): self._isErrorCatcherOn = False # @@TR: consider merging the next two methods into one def addStrConst(self, strConst): self._appendToPrevStrConst(strConst) def addRawText(self, text): self.addStrConst(text) def addMethComment(self, comm): offSet = self.setting('commentOffset') self.addChunk('#' + ' '*offSet + comm) # noqa: E226,E501 missing whitespace around operator def addPlaceholder(self, expr, filterArgs, rawPlaceholder, cacheTokenParts, lineCol, silentMode=False): cacheInfo = self.genCacheInfo(cacheTokenParts) if cacheInfo: cacheInfo['ID'] = repr(rawPlaceholder)[1:-1] self.startCacheRegion(cacheInfo, lineCol, rawPlaceholder=rawPlaceholder) if self.isErrorCatcherOn(): methodName = self._classCompiler.addErrorCatcherCall( expr, rawCode=rawPlaceholder, lineCol=lineCol) expr = 'self.' + methodName + '(localsDict=locals())' if silentMode: self.addChunk('try:') self.indent() self.addFilteredChunk(expr, filterArgs, rawPlaceholder, lineCol=lineCol) self.dedent() self.addChunk('except NotFound: pass') else: self.addFilteredChunk(expr, filterArgs, rawPlaceholder, lineCol=lineCol) if self.setting('outputRowColComments'): self.appendToPrevChunk(' # from line %s, col %s' % lineCol + '.') if cacheInfo: self.endCacheRegion() def addSilent(self, expr): self.addChunk(expr) def addEcho(self, expr, rawExpr=None): self.addFilteredChunk(expr, rawExpr=rawExpr) def addSet(self, expr, exprComponents, setStyle): if setStyle is SET_GLOBAL: (LVALUE, OP, RVALUE) = (exprComponents.LVALUE, exprComponents.OP, exprComponents.RVALUE) # we need to split the LVALUE to deal with globalSetVars splitPos1 = LVALUE.find('.') splitPos2 = LVALUE.find('[') if splitPos1 > 0 and splitPos2 == -1: splitPos = splitPos1 elif splitPos1 > 0 and splitPos1 < max(splitPos2, 0): splitPos = splitPos1 else: splitPos = splitPos2 if splitPos > 0: primary = LVALUE[:splitPos] secondary = LVALUE[splitPos:] else: primary = LVALUE secondary = '' LVALUE = \ 'self._CHEETAH__globalSetVars["' + primary + '"]' + secondary expr = LVALUE + ' ' + OP + ' ' + RVALUE.strip() if setStyle is SET_MODULE: self._moduleCompiler.addModuleGlobal(expr) else: self.addChunk(expr) def addInclude(self, sourceExpr, includeFrom, isRaw): self.addChunk('self._handleCheetahInclude(' + sourceExpr + ', trans=trans, ' + 'includeFrom="' + includeFrom + '", raw=' + repr(isRaw) + ')') def addWhile(self, expr, lineCol=None): self.addIndentingDirective(expr, lineCol=lineCol) def addFor(self, expr, lineCol=None): self.addIndentingDirective(expr, lineCol=lineCol) def addRepeat(self, expr, lineCol=None): # the _repeatCount stuff here allows nesting of #repeat directives self._repeatCount = getattr(self, "_repeatCount", -1) + 1 self.addFor('for __i%s in range(%s)' % (self._repeatCount, expr), lineCol=lineCol) def addIndentingDirective(self, expr, lineCol=None): if expr and not expr[-1] == ':': expr = expr + ':' self.addChunk(expr) if lineCol: self.appendToPrevChunk(' # generated from line %s, col %s' % lineCol) self.indent() def addReIndentingDirective(self, expr, dedent=True, lineCol=None): self.commitStrConst() if dedent: self.dedent() if not expr[-1] == ':': expr = expr + ':' self.addChunk(expr) if lineCol: self.appendToPrevChunk(' # generated from line %s, col %s' % lineCol) self.indent() def addIf(self, expr, lineCol=None): """For a full #if ... #end if directive """ self.addIndentingDirective(expr, lineCol=lineCol) def addOneLineIf(self, expr, lineCol=None): """For a full #if ... #end if directive """ self.addIndentingDirective(expr, lineCol=lineCol) def addTernaryExpr(self, conditionExpr, trueExpr, falseExpr, lineCol=None): """For a single-lie #if ... then .... else ... directive <condition> then <trueExpr> else <falseExpr> """ self.addIndentingDirective(conditionExpr, lineCol=lineCol) self.addFilteredChunk(trueExpr) self.dedent() self.addIndentingDirective('else') self.addFilteredChunk(falseExpr) self.dedent() def addElse(self, expr, dedent=True, lineCol=None): expr = re.sub(r'else[ \f\t]+if', 'elif', expr) self.addReIndentingDirective(expr, dedent=dedent, lineCol=lineCol) def addElif(self, expr, dedent=True, lineCol=None): self.addElse(expr, dedent=dedent, lineCol=lineCol) def addUnless(self, expr, lineCol=None): self.addIf('if not (' + expr + ')') def addClosure(self, functionName, argsList, parserComment): argStringChunks = [] for arg in argsList: chunk = arg[0] if arg[1] is not None: chunk += '=' + arg[1] argStringChunks.append(chunk) signature = \ "def " + functionName + "(" + ','.join(argStringChunks) + "):" self.addIndentingDirective(signature) self.addChunk('#' + parserComment) def addTry(self, expr, lineCol=None): self.addIndentingDirective(expr, lineCol=lineCol) def addExcept(self, expr, dedent=True, lineCol=None): self.addReIndentingDirective(expr, dedent=dedent, lineCol=lineCol) def addFinally(self, expr, dedent=True, lineCol=None): self.addReIndentingDirective(expr, dedent=dedent, lineCol=lineCol) def addReturn(self, expr): assert not self._isGenerator self.addChunk(expr) self._hasReturnStatement = True def addYield(self, expr): assert not self._hasReturnStatement self._isGenerator = True if expr.replace('yield', '').strip(): self.addChunk(expr) else: self.addChunk('if _dummyTrans:') self.indent() self.addChunk('yield trans.response().getvalue()') self.addChunk('trans = DummyTransaction()') self.addChunk('write = trans.response().write') self.dedent() self.addChunk('else:') self.indent() self.addChunk('raise TypeError(' '"This method cannot be called with a trans arg")') self.dedent() def addPass(self, expr): self.addChunk(expr) def addDel(self, expr): self.addChunk(expr) def addAssert(self, expr): self.addChunk(expr) def addRaise(self, expr): self.addChunk(expr) def addBreak(self, expr): self.addChunk(expr) def addContinue(self, expr): self.addChunk(expr) def addPSP(self, PSP): self.commitStrConst() autoIndent = False if PSP[0] == '=': PSP = PSP[1:] if PSP: self.addWriteChunk('_filter(' + PSP + ')') return elif PSP.lower() == 'end': self.dedent() return elif PSP[-1] == '$': autoIndent = True PSP = PSP[:-1] elif PSP[-1] == ':': autoIndent = True for line in PSP.splitlines(): self.addChunk(line) if autoIndent: self.indent() def nextCacheID(self): return ('_' + str(random.randrange(100, 999)) + str(random.randrange(10000, 99999))) def startCacheRegion(self, cacheInfo, lineCol, rawPlaceholder=None): # @@TR: we should add some runtime logging to this ID = self.nextCacheID() interval = cacheInfo.get('interval', None) test = cacheInfo.get('test', None) customID = cacheInfo.get('id', None) if customID: ID = customID varyBy = cacheInfo.get('varyBy', repr(ID)) self._cacheRegionsStack.append(ID) # attrib of current methodCompiler # @@TR: add this to a special class var as well self.addChunk('') self.addChunk('## START CACHE REGION: ID=' + ID + '. line %s, col %s' % lineCol + ' in the source.') self.addChunk('_RECACHE_%(ID)s = False' % locals()) self.addChunk('_cacheRegion_%(ID)s = self.getCacheRegion(regionID=' % locals() + repr(ID) + ', cacheInfo=%r' % cacheInfo + ')') self.addChunk('if _cacheRegion_%(ID)s.isNew():' % locals()) self.indent() self.addChunk('_RECACHE_%(ID)s = True' % locals()) self.dedent() self.addChunk('_cacheItem_%(ID)s = _cacheRegion_%(ID)s.getCacheItem(' % locals() + varyBy + ')') self.addChunk('if _cacheItem_%(ID)s.hasExpired():' % locals()) self.indent() self.addChunk('_RECACHE_%(ID)s = True' % locals()) self.dedent() if test: self.addChunk('if ' + test + ':') self.indent() self.addChunk('_RECACHE_%(ID)s = True' % locals()) self.dedent() self.addChunk( 'if (not _RECACHE_%(ID)s) and _cacheItem_%(ID)s.getRefreshTime():' % locals()) self.indent() self.addChunk('try:') self.indent() self.addChunk('_output = _cacheItem_%(ID)s.renderOutput()' % locals()) self.dedent() self.addChunk('except KeyError:') self.indent() self.addChunk('_RECACHE_%(ID)s = True' % locals()) self.dedent() self.addChunk('else:') self.indent() self.addWriteChunk('_output') self.addChunk('del _output') self.dedent() self.dedent() self.addChunk( 'if _RECACHE_%(ID)s or not _cacheItem_%(ID)s.getRefreshTime():' % locals()) self.indent() self.addChunk('_orig_trans%(ID)s = trans' % locals()) self.addChunk('trans = _cacheCollector_%(ID)s = DummyTransaction()' % locals()) self.addChunk('write = _cacheCollector_%(ID)s.response().write' % locals()) if interval: self.addChunk(("_cacheItem_%(ID)s.setExpiryTime(currentTime() +" % locals()) + str(interval) + ")") def endCacheRegion(self): ID = self._cacheRegionsStack.pop() self.addChunk('trans = _orig_trans%(ID)s' % locals()) self.addChunk('write = trans.response().write') self.addChunk( '_cacheData = _cacheCollector_%(ID)s.response().getvalue()' % locals()) self.addChunk('_cacheItem_%(ID)s.setData(_cacheData)' % locals()) self.addWriteChunk('_cacheData') self.addChunk('del _cacheData') self.addChunk('del _cacheCollector_%(ID)s' % locals()) self.addChunk('del _orig_trans%(ID)s' % locals()) self.dedent() self.addChunk('## END CACHE REGION: ' + ID) self.addChunk('') def nextCallRegionID(self): return self.nextCacheID() def startCallRegion(self, functionName, args, lineCol, regionTitle='CALL'): class CallDetails(object): pass callDetails = CallDetails() callDetails.ID = ID = self.nextCallRegionID() callDetails.functionName = functionName callDetails.args = args callDetails.lineCol = lineCol callDetails.usesKeywordArgs = False # attrib of current methodCompiler self._callRegionsStack.append((ID, callDetails)) self.addChunk('## START %(regionTitle)s REGION: ' % locals() + ID + ' of ' + functionName + ' at line %s, col %s' % lineCol + ' in the source.') self.addChunk('_orig_trans%(ID)s = trans' % locals()) self.addChunk('_wasBuffering%(ID)s = self._CHEETAH__isBuffering' % locals()) self.addChunk('self._CHEETAH__isBuffering = True') self.addChunk('trans = _callCollector%(ID)s = DummyTransaction()' % locals()) self.addChunk('write = _callCollector%(ID)s.response().write' % locals()) def setCallArg(self, argName, lineCol): ID, callDetails = self._callRegionsStack[-1] argName = str(argName) if callDetails.usesKeywordArgs: self._endCallArg() else: callDetails.usesKeywordArgs = True self.addChunk('_callKws%(ID)s = {}' % locals()) self.addChunk('_currentCallArgname%(ID)s = %(argName)r' % locals()) callDetails.currentArgname = argName def _endCallArg(self): ID, callDetails = self._callRegionsStack[-1] currCallArg = callDetails.currentArgname self.addChunk('_callKws%(ID)s[%(currCallArg)r] =' ' _callCollector%(ID)s.response().getvalue()' % locals()) self.addChunk('del _callCollector%(ID)s' % locals()) self.addChunk('trans = _callCollector%(ID)s = DummyTransaction()' % locals()) self.addChunk('write = _callCollector%(ID)s.response().write' % locals()) def endCallRegion(self, regionTitle='CALL'): ID, callDetails = self._callRegionsStack[-1] functionName, initialKwArgs, lineCol = ( callDetails.functionName, callDetails.args, callDetails.lineCol) def reset(ID=ID): self.addChunk('trans = _orig_trans%(ID)s' % locals()) self.addChunk('write = trans.response().write') self.addChunk('self._CHEETAH__isBuffering = _wasBuffering%(ID)s ' % locals()) self.addChunk('del _wasBuffering%(ID)s' % locals()) self.addChunk('del _orig_trans%(ID)s' % locals()) if not callDetails.usesKeywordArgs: reset() self.addChunk( '_callArgVal%(ID)s = ' '_callCollector%(ID)s.response().getvalue()' % locals()) self.addChunk('del _callCollector%(ID)s' % locals()) if initialKwArgs: initialKwArgs = ', ' + initialKwArgs self.addFilteredChunk( '%(functionName)s(_callArgVal%(ID)s%(initialKwArgs)s)' % locals()) self.addChunk('del _callArgVal%(ID)s' % locals()) else: if initialKwArgs: initialKwArgs = initialKwArgs + ', ' self._endCallArg() reset() self.addFilteredChunk( '%(functionName)s(%(initialKwArgs)s**_callKws%(ID)s)' % locals()) self.addChunk('del _callKws%(ID)s' % locals()) self.addChunk('## END %(regionTitle)s REGION: ' % locals() + ID + ' of ' + functionName + ' at line %s, col %s' % lineCol + ' in the source.') self.addChunk('') self._callRegionsStack.pop() # attrib of current methodCompiler def nextCaptureRegionID(self): return self.nextCacheID() def startCaptureRegion(self, assignTo, lineCol): class CaptureDetails: pass captureDetails = CaptureDetails() captureDetails.ID = ID = self.nextCaptureRegionID() captureDetails.assignTo = assignTo captureDetails.lineCol = lineCol # attrib of current methodCompiler self._captureRegionsStack.append((ID, captureDetails)) self.addChunk('## START CAPTURE REGION: ' + ID + ' ' + assignTo + ' at line %s, col %s' % lineCol + ' in the source.') self.addChunk('_orig_trans%(ID)s = trans' % locals()) self.addChunk( '_wasBuffering%(ID)s = self._CHEETAH__isBuffering' % locals()) self.addChunk('self._CHEETAH__isBuffering = True') self.addChunk( 'trans = _captureCollector%(ID)s = DummyTransaction()' % locals()) self.addChunk( 'write = _captureCollector%(ID)s.response().write' % locals()) def endCaptureRegion(self): ID, captureDetails = self._captureRegionsStack.pop() assignTo, lineCol = (captureDetails.assignTo, captureDetails.lineCol) self.addChunk('trans = _orig_trans%(ID)s' % locals()) self.addChunk('write = trans.response().write') self.addChunk( 'self._CHEETAH__isBuffering = _wasBuffering%(ID)s ' % locals()) self.addChunk( '%(assignTo)s = _captureCollector%(ID)s.response().getvalue()' % locals()) self.addChunk('del _orig_trans%(ID)s' % locals()) self.addChunk('del _captureCollector%(ID)s' % locals()) self.addChunk('del _wasBuffering%(ID)s' % locals()) def setErrorCatcher(self, errorCatcherName): self.turnErrorCatcherOn() self.addChunk( 'if "' + errorCatcherName + '" in self._CHEETAH__errorCatchers:') self.indent() self.addChunk( 'self._CHEETAH__errorCatcher = self._CHEETAH__errorCatchers["' + errorCatcherName + '"]') self.dedent() self.addChunk('else:') self.indent() self.addChunk( 'self._CHEETAH__errorCatcher = self._CHEETAH__errorCatchers["' + errorCatcherName + '"] = ErrorCatchers.' + errorCatcherName + '(self)' ) self.dedent() def nextFilterRegionID(self): return self.nextCacheID() def setTransform(self, transformer, isKlass): self.addChunk('trans = TransformerTransaction()') self.addChunk('trans._response = trans.response()') self.addChunk('trans._response._filter = %s' % transformer) self.addChunk('write = trans._response.write') def setFilter(self, theFilter, isKlass): class FilterDetails: pass filterDetails = FilterDetails() filterDetails.ID = ID = self.nextFilterRegionID() filterDetails.theFilter = theFilter filterDetails.isKlass = isKlass # attrib of current methodCompiler self._filterRegionsStack.append((ID, filterDetails)) self.addChunk('_orig_filter%(ID)s = _filter' % locals()) if isKlass: self.addChunk( '_filter = self._CHEETAH__currentFilter = ' + theFilter.strip() + '(self).filter') else: if theFilter.lower() == 'none': self.addChunk('_filter = self._CHEETAH__initialFilter') else: # is string representing the name of a builtin filter self.addChunk('filterName = ' + repr(theFilter)) self.addChunk( 'if "' + theFilter + '" in self._CHEETAH__filters:') self.indent() self.addChunk( '_filter = self._CHEETAH__currentFilter = ' 'self._CHEETAH__filters[filterName]') self.dedent() self.addChunk('else:') self.indent() self.addChunk( '_filter = self._CHEETAH__currentFilter' + ' = \\\n\t\t\tself._CHEETAH__filters[filterName] = ' + 'getattr(self._CHEETAH__filtersLib, filterName)' + '(self).filter') self.dedent() def closeFilterBlock(self): ID, filterDetails = self._filterRegionsStack.pop() # self.addChunk('_filter = self._CHEETAH__initialFilter') # self.addChunk('_filter = _orig_filter%(ID)s'%locals()) self.addChunk( '_filter = self._CHEETAH__currentFilter = _orig_filter%(ID)s' % locals()) class AutoMethodCompiler(MethodCompiler): def _setupState(self): MethodCompiler._setupState(self) self._argStringList = [("self", None)] self._streamingEnabled = True self._isClassMethod = None self._isStaticMethod = None def _useKWsDictArgForPassingTrans(self): alreadyHasTransArg = [ argname for argname, defval in self._argStringList if argname == 'trans'] return (self.methodName() != 'respond' and not alreadyHasTransArg and self.setting('useKWsDictArgForPassingTrans')) def isClassMethod(self): if self._isClassMethod is None: self._isClassMethod = '@classmethod' in self._decorators return self._isClassMethod def isStaticMethod(self): if self._isStaticMethod is None: self._isStaticMethod = '@staticmethod' in self._decorators return self._isStaticMethod def cleanupState(self): MethodCompiler.cleanupState(self) self.commitStrConst() if self._cacheRegionsStack: self.endCacheRegion() if self._callRegionsStack: self.endCallRegion() if self._streamingEnabled: kwargsName = None positionalArgsListName = None for argname, defval in self._argStringList: if argname.strip().startswith('**'): kwargsName = argname.strip().replace('**', '') break elif argname.strip().startswith('*'): positionalArgsListName = argname.strip().replace('*', '') if not kwargsName and self._useKWsDictArgForPassingTrans(): kwargsName = 'KWS' self.addMethArg('**KWS', None) self._kwargsName = kwargsName if not self._useKWsDictArgForPassingTrans(): if not kwargsName and not positionalArgsListName: self.addMethArg('trans', 'None') else: self._streamingEnabled = False self._indentLev = self.setting('initialMethIndentLevel') mainBodyChunks = self._methodBodyChunks self._methodBodyChunks = [] self._addAutoSetupCode() self._methodBodyChunks.extend(mainBodyChunks) self._addAutoCleanupCode() def _addAutoSetupCode(self): if self._initialMethodComment: self.addChunk(self._initialMethodComment) if self._streamingEnabled and \ not self.isClassMethod() and not self.isStaticMethod(): if self._useKWsDictArgForPassingTrans() and self._kwargsName: self.addChunk('trans = %s.get("trans")' % self._kwargsName) self.addChunk('if (not trans and not self._CHEETAH__isBuffering' ' and not callable(self.transaction)):') self.indent() self.addChunk('trans = self.transaction' ' # is None unless self.awake() was called') self.dedent() self.addChunk('if not trans:') self.indent() self.addChunk('trans = DummyTransaction()') if self.setting('autoAssignDummyTransactionToSelf'): self.addChunk('self.transaction = trans') self.addChunk('_dummyTrans = True') self.dedent() self.addChunk('else: _dummyTrans = False') else: self.addChunk('trans = DummyTransaction()') self.addChunk('_dummyTrans = True') self.addChunk('write = trans.response().write') if self.setting('useNameMapper'): argNames = [arg[0] for arg in self._argStringList] allowSearchListAsMethArg = self.setting('allowSearchListAsMethArg') if allowSearchListAsMethArg and 'SL' in argNames: pass elif allowSearchListAsMethArg and 'searchList' in argNames: self.addChunk('SL = searchList') elif not self.isClassMethod() and not self.isStaticMethod(): self.addChunk('SL = self._CHEETAH__searchList') else: self.addChunk('SL = [KWS]') if self.setting('useFilters'): if self.isClassMethod() or self.isStaticMethod(): self.addChunk('_filter = lambda x, **kwargs: unicode(x)') else: self.addChunk('_filter = self._CHEETAH__currentFilter') self.addChunk('') self.addChunk("#"*40) # noqa: E226 missing whitespace around operator self.addChunk('## START - generated method body') self.addChunk('') def _addAutoCleanupCode(self): self.addChunk('') self.addChunk("#"*40) # noqa: E226 missing whitespace around operator self.addChunk('## END - generated method body') self.addChunk('') if not self._isGenerator: self.addStop() self.addChunk('') def addStop(self, expr=None): self.addChunk( 'return _dummyTrans and trans.response().getvalue() or ""') def addMethArg(self, name, defVal=None): self._argStringList.append((name, defVal)) def methodSignature(self): argStringChunks = [] for arg in self._argStringList: chunk = arg[0] if chunk == 'self' and self.isClassMethod(): chunk = 'cls' if chunk == 'self' and self.isStaticMethod(): # Skip the "self" method for @staticmethod decorators continue if arg[1] is not None: chunk += '=' + arg[1] argStringChunks.append(chunk) argString = (', ').join(argStringChunks) output = [] if self._decorators: output.append(''.join([self._indent + decorator + '\n' for decorator in self._decorators])) output.append(self._indent + "def " + self.methodName() + "(" + argString + "):\n\n") return ''.join(output) ################################################## # CLASS COMPILERS _initMethod_initCheetah = """\ if not self._CHEETAH__instanceInitialized: cheetahKWArgs = {} allowedKWs = 'searchList namespaces filter filtersLib errorCatcher'.split() for k,v in KWs.items(): if k in allowedKWs: cheetahKWArgs[k] = v self._initCheetahInstance(**cheetahKWArgs) """.replace('\n', '\n' + ' '*8) # noqa: E226,E501 missing whitespace around operator class ClassCompiler(GenUtils): methodCompilerClass = AutoMethodCompiler methodCompilerClassForInit = MethodCompiler def __init__(self, className, mainMethodName='respond', moduleCompiler=None, fileName=None, settingsManager=None): self._settingsManager = settingsManager self._fileName = fileName self._className = className self._moduleCompiler = moduleCompiler self._mainMethodName = mainMethodName self._setupState() methodCompiler = self._spawnMethodCompiler( mainMethodName, initialMethodComment='## CHEETAH: main method ' 'generated for this template') self._setActiveMethodCompiler(methodCompiler) if fileName and self.setting('monitorSrcFile'): self._addSourceFileMonitoring(fileName) def setting(self, key): return self._settingsManager.setting(key) def __getattr__(self, name): """Provide access to the methods and attributes of the MethodCompiler at the top of the activeMethods stack: one-way namespace sharing WARNING: Use .setMethods to assign the attributes of the MethodCompiler from the methods of this class!!! or you will be assigning to attributes of this object instead. """ if name in self.__dict__: return self.__dict__[name] elif hasattr(self.__class__, name): return getattr(self.__class__, name) elif self._activeMethodsList and \ hasattr(self._activeMethodsList[-1], name): return getattr(self._activeMethodsList[-1], name) else: raise AttributeError(name) def _setupState(self): self._classDef = None self._decoratorsForNextMethod = [] self._activeMethodsList = [] # stack while parsing/generating self._finishedMethodsList = [] # store by order self._methodsIndex = {} # store by name self._baseClass = 'Template' self._classDocStringLines = [] # printed after methods in the gen class def: self._generatedAttribs = ['_CHEETAH__instanceInitialized = False'] self._generatedAttribs.append('_CHEETAH_version = __CHEETAH_version__') self._generatedAttribs.append( '_CHEETAH_versionTuple = __CHEETAH_versionTuple__') if self.setting('addTimestampsToCompilerOutput'): self._generatedAttribs.append( '_CHEETAH_genTime = __CHEETAH_genTime__') self._generatedAttribs.append( '_CHEETAH_genTimestamp = __CHEETAH_genTimestamp__') self._generatedAttribs.append('_CHEETAH_src = __CHEETAH_src__') self._generatedAttribs.append( '_CHEETAH_srcLastModified = __CHEETAH_srcLastModified__') if self.setting('templateMetaclass'): self._generatedAttribs.append( '__metaclass__ = ' + self.setting('templateMetaclass')) self._initMethChunks = [] self._blockMetaData = {} self._errorCatcherCount = 0 self._placeholderToErrorCatcherMap = {} def cleanupState(self): while self._activeMethodsList: methCompiler = self._popActiveMethodCompiler() self._swallowMethodCompiler(methCompiler) self._setupInitMethod() if self._mainMethodName == 'respond': if self.setting('setup__str__method'): self._generatedAttribs.append( 'def __str__(self): return self.respond()') self.addAttribute( '_mainCheetahMethod_for_' + self._className + ' = ' + repr(self._mainMethodName)) def _setupInitMethod(self): __init__ = self._spawnMethodCompiler( '__init__', klass=self.methodCompilerClassForInit) __init__.setMethodSignature("def __init__(self, *args, **KWs)") __init__.addChunk( 'super(%s, self).__init__(*args, **KWs)' % self._className) __init__.addChunk( _initMethod_initCheetah % {'className': self._className}) for chunk in self._initMethChunks: __init__.addChunk(chunk) __init__.cleanupState() self._swallowMethodCompiler(__init__, pos=0) def _addSourceFileMonitoring(self, fileName): # @@TR: this stuff needs auditing for Cheetah 2.0 # the first bit is added to init self.addChunkToInit('self._filePath = ' + repr(fileName)) self.addChunkToInit('self._fileMtime = ' + str(getmtime(fileName))) # the rest is added to the main output method of the class # ('mainMethod') self.addChunk( 'if exists(self._filePath) and ' + 'getmtime(self._filePath) > self._fileMtime:') self.indent() self.addChunk( 'self._compile(file=self._filePath, moduleName=' + self._className + ')') self.addChunk( 'write(getattr(self, self._mainCheetahMethod_for_' + self._className + ')(trans=trans))') self.addStop() self.dedent() def setClassName(self, name): self._className = name def className(self): return self._className def setBaseClass(self, baseClassName): self._baseClass = baseClassName def setMainMethodName(self, methodName): if methodName == self._mainMethodName: return # change the name in the methodCompiler and add new reference mainMethod = self._methodsIndex[self._mainMethodName] mainMethod.setMethodName(methodName) self._methodsIndex[methodName] = mainMethod # make sure that fileUpdate code still works properly: chunkToChange = ( 'write(self.' + self._mainMethodName + '(trans=trans))') chunks = mainMethod._methodBodyChunks if chunkToChange in chunks: for i in range(len(chunks)): if chunks[i] == chunkToChange: chunks[i] = ('write(self.' + methodName + '(trans=trans))') # get rid of the old reference and update self._mainMethodName del self._methodsIndex[self._mainMethodName] self._mainMethodName = methodName def setMainMethodArgs(self, argsList): mainMethodCompiler = self._methodsIndex[self._mainMethodName] for argName, defVal in argsList: mainMethodCompiler.addMethArg(argName, defVal) def _spawnMethodCompiler(self, methodName, klass=None, initialMethodComment=None): if klass is None: klass = self.methodCompilerClass decorators = self._decoratorsForNextMethod or [] self._decoratorsForNextMethod = [] methodCompiler = klass(methodName, classCompiler=self, decorators=decorators, initialMethodComment=initialMethodComment) self._methodsIndex[methodName] = methodCompiler return methodCompiler def _setActiveMethodCompiler(self, methodCompiler): self._activeMethodsList.append(methodCompiler) def _getActiveMethodCompiler(self): return self._activeMethodsList[-1] def _popActiveMethodCompiler(self): return self._activeMethodsList.pop() def _swallowMethodCompiler(self, methodCompiler, pos=None): methodCompiler.cleanupState() if pos is None: self._finishedMethodsList.append(methodCompiler) else: self._finishedMethodsList.insert(pos, methodCompiler) return methodCompiler def startMethodDef(self, methodName, argsList, parserComment): methodCompiler = self._spawnMethodCompiler( methodName, initialMethodComment=parserComment) self._setActiveMethodCompiler(methodCompiler) for argName, defVal in argsList: methodCompiler.addMethArg(argName, defVal) def _finishedMethods(self): return self._finishedMethodsList def addDecorator(self, decoratorExpr): """Set the decorator to be used with the next method in the source. See _spawnMethodCompiler() and MethodCompiler for the details of how this is used. """ self._decoratorsForNextMethod.append(decoratorExpr) def addClassDocString(self, line): self._classDocStringLines.append(line.replace('%', '%%')) def addChunkToInit(self, chunk): self._initMethChunks.append(chunk) def addAttribute(self, attribExpr): # First test to make sure that the user hasn't used # any fancy Cheetah syntax (placeholders, directives, etc.) # inside the expression if attribExpr.find('VFN(') != -1 or attribExpr.find('VFFSL(') != -1: raise ParseError( self, 'Invalid #attr directive. It should only contain ' + 'simple Python literals.') # now add the attribute self._generatedAttribs.append(attribExpr) def addSuper(self, argsList, parserComment=None): className = self._className # self._baseClass methodName = self._getActiveMethodCompiler().methodName() argStringChunks = [] for arg in argsList: chunk = arg[0] if arg[1] is not None: chunk += '=' + arg[1] argStringChunks.append(chunk) argString = ','.join(argStringChunks) self.addFilteredChunk( 'super(%(className)s, self).%(methodName)s(%(argString)s)' % locals()) def addErrorCatcherCall(self, codeChunk, rawCode='', lineCol=''): if rawCode in self._placeholderToErrorCatcherMap: methodName = self._placeholderToErrorCatcherMap[rawCode] if not self.setting('outputRowColComments'): self._methodsIndex[methodName].addMethDocString( 'plus at line %s, col %s' % lineCol) return methodName self._errorCatcherCount += 1 methodName = '__errorCatcher' + str(self._errorCatcherCount) self._placeholderToErrorCatcherMap[rawCode] = methodName catcherMeth = self._spawnMethodCompiler( methodName, klass=MethodCompiler, initialMethodComment=( '## CHEETAH: Generated from ' + rawCode + ' at line %s, col %s' % lineCol + '.') ) catcherMeth.setMethodSignature( 'def ' + methodName + '(self, localsDict={})') # is this use of localsDict right? catcherMeth.addChunk('try:') catcherMeth.indent() catcherMeth.addChunk( "return eval('''" + codeChunk + "''', globals(), localsDict)") catcherMeth.dedent() catcherMeth.addChunk( 'except self._CHEETAH__errorCatcher.exceptions() as e:') catcherMeth.indent() catcherMeth.addChunk( "return self._CHEETAH__errorCatcher.warn(exc_val=e, code= " + repr(codeChunk) + " , rawCode= " + repr(rawCode) + " , lineCol=" + str(lineCol) + ")") catcherMeth.cleanupState() self._swallowMethodCompiler(catcherMeth) return methodName def closeDef(self): self.commitStrConst() methCompiler = self._popActiveMethodCompiler() self._swallowMethodCompiler(methCompiler) def closeBlock(self): self.commitStrConst() methCompiler = self._popActiveMethodCompiler() methodName = methCompiler.methodName() if self.setting('includeBlockMarkers'): endMarker = self.setting('blockMarkerEnd') methCompiler.addStrConst(endMarker[0] + methodName + endMarker[1]) self._swallowMethodCompiler(methCompiler) # metaData = self._blockMetaData[methodName] # rawDirective = metaData['raw'] # lineCol = metaData['lineCol'] # insert the code to call the block, caching if #cache directive is on codeChunk = 'self.' + methodName + '(trans=trans)' self.addChunk(codeChunk) # self.appendToPrevChunk(' # generated from ' + repr(rawDirective) ) # if self.setting('outputRowColComments'): # self.appendToPrevChunk(' at line %s, col %s' % lineCol + '.') # code wrapping methods def classDef(self): if self._classDef: return self._classDef else: return self.wrapClassDef() __str__ = classDef __unicode__ = classDef def wrapClassDef(self): ind = self.setting('indentationStep') classDefChunks = [self.classSignature(), self.classDocstring(), ] def addMethods(): classDefChunks.extend([ ind + '#'*50, # noqa: E226 missing whitespace around operator ind + '## CHEETAH GENERATED METHODS', '\n', self.methodDefs(), ]) def addAttributes(): classDefChunks.extend([ ind + '#'*50, # noqa: E226 missing whitespace around operator ind + '## CHEETAH GENERATED ATTRIBUTES', '\n', self.attributes(), ]) if self.setting('outputMethodsBeforeAttributes'): addMethods() addAttributes() else: addAttributes() addMethods() classDef = '\n'.join(classDefChunks) self._classDef = classDef return classDef def classSignature(self): return "class %s(%s):" % (self.className(), self._baseClass) def classDocstring(self): if not self._classDocStringLines: return '' ind = self.setting('indentationStep') docStr = ('%(ind)s"""\n%(ind)s' + '\n%(ind)s'.join(self._classDocStringLines) + '\n%(ind)s"""\n' ) % {'ind': ind} return docStr def methodDefs(self): methodDefs = [ methGen.methodDef() for methGen in self._finishedMethods()] return '\n\n'.join(methodDefs) def attributes(self): try: attribs = [self.setting('indentationStep') + str(attrib) for attrib in self._generatedAttribs] except UnicodeEncodeError: attribs = [self.setting('indentationStep') + unicode(attrib) for attrib in self._generatedAttribs] return '\n\n'.join(attribs) class AutoClassCompiler(ClassCompiler): pass ################################################## # MODULE COMPILERS class ModuleCompiler(SettingsManager, GenUtils): parserClass = Parser classCompilerClass = AutoClassCompiler def __init__(self, source=None, file=None, moduleName='DynamicallyCompiledCheetahTemplate', mainClassName=None, # string mainMethodName=None, # string baseclassName=None, # string extraImportStatements=None, # list of strings settings=None # dict ): super(ModuleCompiler, self).__init__() if settings: self.updateSettings(settings) # disable useStackFrames if the C version of NameMapper isn't compiled # it's painfully slow in the Python version and bites Windows users all # the time: if not NameMapper.C_VERSION: self.setSetting('useStackFrames', False) self._compiled = False self._moduleName = moduleName if not mainClassName: self._mainClassName = moduleName else: self._mainClassName = mainClassName self._mainMethodNameArg = mainMethodName if mainMethodName: self.setSetting('mainMethodName', mainMethodName) self._baseclassName = baseclassName self._filePath = None self._fileMtime = None if source and file: raise TypeError("Cannot compile from a source string AND file.") elif isinstance(file, string_type): # it's a filename. encoding = self.settings().get('encoding') if encoding: f = codecs.open(file, 'r', encoding=encoding) else: # if no encoding is specified, use the builtin open function f = open(file, 'r') source = f.read() f.close() self._filePath = file self._fileMtime = os.path.getmtime(file) elif hasattr(file, 'read'): # Can't set filename or mtime -- they're not accessible source = file.read() elif file: raise TypeError( "'file' argument must be a filename string or file-like object" ) if self._filePath: self._fileDirName, self._fileBaseName = \ os.path.split(self._filePath) self._fileBaseNameRoot, self._fileBaseNameExt = \ os.path.splitext(self._fileBaseName) if not isinstance(source, string_type): # By converting to unicode here we allow objects # such as other Templates to be passed in source = unicode(source) # Handle the #indent directive by converting it to other directives. # (Over the long term we'll make it a real directive.) if source == "": warnings.warn("You supplied an empty string for the source!", ) else: unicodeMatch = unicodeDirectiveRE.search(source) encodingMatch = encodingDirectiveRE.search(source) if unicodeMatch: if encodingMatch: raise ParseError( self, "#encoding and #unicode are mutually exclusive! " "Use one or the other.") source = unicodeDirectiveRE.sub('', source) if isinstance(source, bytes): encoding = unicodeMatch.group(1) or 'ascii' source = source.decode(encoding) elif encodingMatch: encodings = encodingMatch.groups() if len(encodings): encoding = encodings[0] if isinstance(source, bytes): source = source.decode(encoding) else: source = eval( repr(source).encode("ascii", "backslashreplace") .decode(encoding)) else: source = unicode(source) if source.find('#indent') != -1: # @@TR: undocumented hack source = indentize(source) self._parser = self.parserClass(source, filename=self._filePath, compiler=self) self._setupCompilerState() def __getattr__(self, name): """Provide one-way access to the methods and attributes of the ClassCompiler, and thereby the MethodCompilers as well. WARNING: Use .setMethods to assign the attributes of the ClassCompiler from the methods of this class!!! Or you will be assigning to attributes of this object instead. """ if name in self.__dict__: return self.__dict__[name] elif hasattr(self.__class__, name): return getattr(self.__class__, name) elif self._activeClassesList and \ hasattr(self._activeClassesList[-1], name): return getattr(self._activeClassesList[-1], name) else: raise AttributeError(name) def _initializeSettings(self): self.updateSettings(copy.deepcopy(DEFAULT_COMPILER_SETTINGS)) def _setupCompilerState(self): self._activeClassesList = [] self._finishedClassesList = [] # listed by ordered self._finishedClassIndex = {} # listed by name self._moduleDef = None self._moduleShBang = '#!/usr/bin/env python' self._moduleEncoding = 'ascii' self._moduleEncodingStr = '' self._moduleHeaderLines = [] self._moduleDocStringLines = [] self._specialVars = {} self._importStatements = [ "import sys", "import os", "import os.path", 'try:', ' import builtins as builtin', 'except ImportError:', ' import __builtin__ as builtin', "from os.path import getmtime, exists", "import time", "import types", "from Cheetah.Version import MinCompatibleVersion as " "RequiredCheetahVersion", "from Cheetah.Version import MinCompatibleVersionTuple " "as RequiredCheetahVersionTuple", "from Cheetah.Template import Template", "from Cheetah.DummyTransaction import *", "from Cheetah.NameMapper import NotFound, " "valueForName, valueFromSearchList, valueFromFrameOrSearchList", "from Cheetah.CacheRegion import CacheRegion", "import Cheetah.Filters as Filters", "import Cheetah.ErrorCatchers as ErrorCatchers", "from Cheetah.compat import unicode", ] self._importedVarNames = ['sys', 'os', 'os.path', 'time', 'types', 'Template', 'DummyTransaction', 'NotFound', 'Filters', 'ErrorCatchers', 'CacheRegion', ] self._moduleConstants = [ "VFFSL=valueFromFrameOrSearchList", "VFSL=valueFromSearchList", "VFN=valueForName", "currentTime=time.time", ] def compile(self): classCompiler = self._spawnClassCompiler(self._mainClassName) if self._baseclassName: classCompiler.setBaseClass(self._baseclassName) self._addActiveClassCompiler(classCompiler) self._parser.parse() self._swallowClassCompiler(self._popActiveClassCompiler()) self._compiled = True self._parser.cleanup() def _spawnClassCompiler(self, className, klass=None): if klass is None: klass = self.classCompilerClass classCompiler = klass(className, moduleCompiler=self, mainMethodName=self.setting('mainMethodName'), fileName=self._filePath, settingsManager=self, ) return classCompiler def _addActiveClassCompiler(self, classCompiler): self._activeClassesList.append(classCompiler) def _getActiveClassCompiler(self): return self._activeClassesList[-1] def _popActiveClassCompiler(self): return self._activeClassesList.pop() def _swallowClassCompiler(self, classCompiler): classCompiler.cleanupState() self._finishedClassesList.append(classCompiler) self._finishedClassIndex[classCompiler.className()] = classCompiler return classCompiler def _finishedClasses(self): return self._finishedClassesList def importedVarNames(self): return self._importedVarNames def addImportedVarNames(self, varNames, raw_statement=None): settings = self.settings() if not varNames: return if not settings.get('useLegacyImportMode'): if raw_statement and getattr(self, '_methodBodyChunks'): self.addChunk(raw_statement) else: self._importedVarNames.extend(varNames) # methods for adding stuff to the module and class definitions def setBaseClass(self, baseClassName): if self._mainMethodNameArg: self.setMainMethodName(self._mainMethodNameArg) else: self.setMainMethodName(self.setting('mainMethodNameForSubclasses')) if self.setting('handlerForExtendsDirective'): handler = self.setting('handlerForExtendsDirective') baseClassName = handler(compiler=self, baseClassName=baseClassName) self._getActiveClassCompiler().setBaseClass(baseClassName) elif (not self.setting('autoImportForExtendsDirective') or baseClassName == 'object' or baseClassName in self.importedVarNames()): self._getActiveClassCompiler().setBaseClass(baseClassName) # no need to import else: ################################################## # If the #extends directive contains a classname or modulename # that isn't in self.importedVarNames() already, # we assume that we need to add an implied # 'from ModName import ClassName' where ModName == ClassName. # - This is the case in WebKit servlet modules. # - We also assume that the final . separates the classname # from the module name. # This might break if people do something really fancy # with their dots and namespaces. baseclasses = [] for klass in baseClassName.split(','): klass = klass.strip() chunks = klass.split('.') if len(chunks) == 1: baseclasses.append(klass) if klass not in self.importedVarNames(): modName = klass # we assume the class name to be the module name # and that it's not a builtin: importStatement = "from %s import %s" % ( modName, klass) self.addImportStatement(importStatement) self.addImportedVarNames((klass,)) else: needToAddImport = True modName = chunks[0] for chunk in chunks[1:-1]: if modName in self.importedVarNames(): needToAddImport = False finalBaseClassName = klass.replace(modName + '.', '') baseclasses.append(finalBaseClassName) break else: modName += '.' + chunk if needToAddImport: modName, finalClassName = ( '.'.join(chunks[:-1]), chunks[-1]) # if finalClassName != chunks[:-1][-1]: if finalClassName != chunks[-2]: # we assume the class name to be the module name modName = '.'.join(chunks) baseclasses.append(finalClassName) importStatement = "from %s import %s" % ( modName, finalClassName) self.addImportStatement(importStatement) self.addImportedVarNames([finalClassName]) self._getActiveClassCompiler().setBaseClass(', '.join(baseclasses)) def setCompilerSetting(self, key, valueExpr): self.setSetting(key, eval(valueExpr)) self._parser.configureParser() def setCompilerSettings(self, keywords, settingsStr): KWs = keywords if 'reset' in KWs: # @@TR: this is actually caught by the parser at the moment. # subject to change in the future self._initializeSettings() self._parser.configureParser() return elif 'python' in KWs: settingsReader = self.updateSettingsFromPySrcStr # this comes from SettingsManager else: # this comes from SettingsManager settingsReader = self.updateSettingsFromConfigStr settingsReader(settingsStr) self._parser.configureParser() def setShBang(self, shBang): self._moduleShBang = shBang def setModuleEncoding(self, encoding): self._moduleEncoding = encoding def getModuleEncoding(self): return self._moduleEncoding def addModuleHeader(self, line): """Adds a header comment to the top of the generated module. """ self._moduleHeaderLines.append(line) def addModuleDocString(self, line): """Adds a line to the generated module docstring. """ self._moduleDocStringLines.append(line) def addModuleGlobal(self, line): """Adds a line of global module code. It is inserted after the import statements and Cheetah default module constants. """ self._moduleConstants.append(line) def addSpecialVar(self, basename, contents, includeUnderscores=True): """Adds module __specialConstant__ to the module globals. """ name = includeUnderscores and '__' + basename + '__' or basename self._specialVars[name] = contents.strip() def addImportStatement(self, impStatement): settings = self.settings() if not self._methodBodyChunks or settings.get('useLegacyImportMode'): # In the case where we are importing inline # in the middle of a source block # we don't want to inadvertantly import the module # at the top of the file either self._importStatements.append(impStatement) # @@TR 2005-01-01: there's almost certainly a cleaner way to do this! importVarNames = impStatement[ impStatement.find('import') + len('import'):].split(',') # handle aliases importVarNames = [var.split()[-1] for var in importVarNames] importVarNames = [var for var in importVarNames if not var == '*'] # used by #extend for auto-imports self.addImportedVarNames(importVarNames, raw_statement=impStatement) def addAttribute(self, attribName, expr): self._getActiveClassCompiler().addAttribute(attribName + ' =' + expr) def addComment(self, comm): if re.match(r'#+$', comm): # skip bar comments return specialVarMatch = specialVarRE.match(comm) if specialVarMatch: # @@TR: this is a bit hackish and is being replaced with # #set module varName = ... return self.addSpecialVar(specialVarMatch.group(1), comm[specialVarMatch.end():]) elif comm.startswith('doc:'): addLine = self.addMethDocString comm = comm[len('doc:'):].strip() elif comm.startswith('doc-method:'): addLine = self.addMethDocString comm = comm[len('doc-method:'):].strip() elif comm.startswith('doc-module:'): addLine = self.addModuleDocString comm = comm[len('doc-module:'):].strip() elif comm.startswith('doc-class:'): addLine = self.addClassDocString comm = comm[len('doc-class:'):].strip() elif comm.startswith('header:'): addLine = self.addModuleHeader comm = comm[len('header:'):].strip() else: addLine = self.addMethComment for line in comm.splitlines(): addLine(line) # methods for module code wrapping def getModuleCode(self): if not self._compiled: self.compile() if self._moduleDef: return self._moduleDef else: return self.wrapModuleDef() def __to_bytes(self): code = self.getModuleCode() if isinstance(code, bytes): return code return code.encode(self.getModuleEncoding()) def __to_unicode(self): code = self.getModuleCode() if isinstance(code, bytes): return code.decode(self.getModuleEncoding()) return code if PY2: __str__ = __to_bytes __unicode__ = __to_unicode else: __bytes__ = __to_bytes __str__ = __to_unicode def wrapModuleDef(self): self.addSpecialVar('CHEETAH_docstring', self.setting('defDocStrMsg')) self.addModuleGlobal('__CHEETAH_version__ = %r' % Version) self.addModuleGlobal('__CHEETAH_versionTuple__ = %r' % (VersionTuple,)) if self.setting('addTimestampsToCompilerOutput'): self.addModuleGlobal('__CHEETAH_genTime__ = %r' % time.time()) self.addModuleGlobal( '__CHEETAH_genTimestamp__ = %r' % self.timestamp()) if self._filePath: timestamp = self.timestamp(self._fileMtime) self.addModuleGlobal('__CHEETAH_src__ = %r' % self._filePath) self.addModuleGlobal( '__CHEETAH_srcLastModified__ = %r' % timestamp) else: self.addModuleGlobal('__CHEETAH_src__ = None') self.addModuleGlobal('__CHEETAH_srcLastModified__ = None') moduleDef = """%(header)s %(docstring)s ################################################## ## DEPENDENCIES %(imports)s ################################################## ## MODULE CONSTANTS %(constants)s %(specialVars)s if __CHEETAH_versionTuple__ < RequiredCheetahVersionTuple: raise AssertionError( 'This template was compiled with Cheetah version' ' %%s. Templates compiled before version %%s must be recompiled.'%%( __CHEETAH_version__, RequiredCheetahVersion)) ################################################## ## CLASSES %(classes)s ## END CLASS DEFINITION if not hasattr(%(mainClassName)s, '_initCheetahAttributes'): templateAPIClass = getattr(%(mainClassName)s, '_CHEETAH_templateClass', Template) templateAPIClass._addCheetahPlumbingCodeToClass(%(mainClassName)s) %(footer)s """ % { 'header': self.moduleHeader(), 'docstring': self.moduleDocstring(), 'specialVars': self.specialVars(), 'imports': self.importStatements(), 'constants': self.moduleConstants(), 'classes': self.classDefs(), 'footer': self.moduleFooter(), 'mainClassName': self._mainClassName, } # noqa self._moduleDef = moduleDef return moduleDef def timestamp(self, theTime=None): if not theTime: theTime = time.time() return time.asctime(time.localtime(theTime)) def moduleHeader(self): header = self._moduleShBang + '\n' header += self._moduleEncodingStr + '\n' if self._moduleHeaderLines: offSet = self.setting('commentOffset') header += ( '#' + ' '*offSet # noqa: E226,E501 missing whitespace around operator + ('\n#' + ' '*offSet).join(self._moduleHeaderLines) # noqa: E226,E501 missing whitespace around operator + '\n') return header def moduleDocstring(self): if not self._moduleDocStringLines: return '' return ('"""' + '\n'.join(self._moduleDocStringLines) + '\n"""\n') def specialVars(self): chunks = [] theVars = self._specialVars keys = sorted(theVars.keys()) for key in keys: chunks.append(key + ' = ' + repr(theVars[key])) return '\n'.join(chunks) def importStatements(self): return '\n'.join(self._importStatements) def moduleConstants(self): return '\n'.join(self._moduleConstants) def classDefs(self): classDefs = [klass.classDef() for klass in self._finishedClasses()] return '\n\n'.join(classDefs) def moduleFooter(self): return """ # CHEETAH was developed by Tavis Rudd and Mike Orr # with code, advice and input from many other volunteers. # For more information visit http://cheetahtemplate.org/ ################################################## ## if run from command line: if __name__ == '__main__': from Cheetah.TemplateCmdLineIface import CmdLineIface CmdLineIface(templateObj=%(className)s()).run() """ % {'className': self._mainClassName} ################################################## # Make Compiler an alias for ModuleCompiler Compiler = ModuleCompiler
[ "329052613@qq.com" ]
329052613@qq.com
b000eea6b4fe6367d08925b8fa050bc5b3370610
89ab6ddbd077a9bc4e5b7a79d458baaf7516fa4f
/kwstandbyclient/v1/shell_commands/nodes.py
b8227a0f094d3b17faa87ae16d42e2e3251a149d
[ "Apache-2.0" ]
permissive
frossigneux/python-kwstandbyclient
2ec1b7c326728260860cdc6682a91c990d552aff
7d9d4235ec97f6761344e3d880b5acbb60e592a9
refs/heads/master
2021-01-19T16:51:33.707765
2014-03-17T16:34:36
2014-07-12T13:11:15
20,718,682
1
0
null
null
null
null
UTF-8
Python
false
false
1,816
py
# Copyright (c) 2014 Bull. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from kwstandbyclient import command class ListNodes(command.ListCommand): """Print a list of node status.""" resource = 'node' log = logging.getLogger(__name__ + '.ListNodes') list_columns = ['node', 'status'] def get_parser(self, prog_name): parser = super(ListNodes, self).get_parser(prog_name) parser.add_argument( '--sort-by', metavar="<node_column>", help='column name used to sort result', default='node' ) return parser class ShowNode(command.ShowCommand): """Show node status.""" resource = 'node' json_indent = 4 allow_names = False log = logging.getLogger(__name__ + '.ShowNode') class UpdateNode(command.UpdateCommand): """Update node status.""" resource = 'node' allow_names = False log = logging.getLogger(__name__ + '.UpdateNode') def get_parser(self, prog_name): parser = super(UpdateNode, self).get_parser(prog_name) parser.add_argument( '--status', metavar='<STATUS>', help='New status for the node' ) return parser def args2body(self, parsed_args): params = {'status': 'standby'} return params
[ "francois.rossigneux@inria.fr" ]
francois.rossigneux@inria.fr
198a2b094565fec7c23f34cb39554603de366025
9f1ebef0f493ba2d7b72861a72a68bf17cda5c85
/packages/augur-core/tests/contract.py
9cfe4f4e17b7b2838e924831e7cd37b861999b04
[ "GPL-3.0-or-later", "GPL-1.0-or-later", "LGPL-2.1-or-later", "LGPL-2.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "GPL-3.0-only", "MIT" ]
permissive
MicrohexHQ/augur
c2bd62cb04a825f3661f7b10fb7b4efeab5065a4
dad3ce5678e14482bb3b3cc925d398b6d659b2f5
refs/heads/master
2020-07-27T00:11:12.315221
2019-09-16T13:03:15
2019-09-16T13:03:15
208,801,012
0
0
MIT
2019-09-16T13:02:11
2019-09-16T13:02:11
null
UTF-8
Python
false
false
2,825
py
from eth_tester.exceptions import TransactionFailed from decimal import Decimal class Contract(): def __init__(self, w3, w3Contract, logListener=None, coverageMode=False): self.w3 = w3 self.w3Contract = w3Contract self.address = self.w3Contract.address self.abi = self.w3Contract.abi self.logListener = logListener self.coverageMode = coverageMode if len(self.w3Contract.abi) < 1: return for abiFunc in self.w3Contract.functions._functions: functionName = abiFunc['name'] originalFunction = self.w3Contract.functions.__dict__[functionName] setattr(self, functionName, self.get_contract_function(originalFunction, abiFunc)) def get_contract_function(self, originalFunction, abiFunc): def contract_function(*args, sender=self.w3.eth.accounts[0], value=0, getReturnData=True, commitTx=True, debug=False): contractFunction = originalFunction(*self.processArgs(*args, abiFunc=abiFunc)) retVal = True outputs = abiFunc['outputs'] # In coverage mode all functions change state through logs so we can't do this optimization if not self.coverageMode and len(outputs) == 1 and outputs[0]['type'] == 'bool': getReturnData = False if getReturnData or abiFunc['constant'] or not commitTx: retVal = contractFunction.call({'from': sender, 'value': value}, block_identifier='pending') if not abiFunc['constant'] and commitTx: tx_hash = contractFunction.transact({'from': sender, 'value': value, 'gasPrice': 1, 'gas': 750000000}) receipt = self.w3.eth.waitForTransactionReceipt(tx_hash, 1) if receipt.status == 0: raise TransactionFailed if self.logListener: for log in receipt.logs: self.logListener(log) return retVal return contract_function def processArgs(self, *args, abiFunc): processedArgs = [] for index, abiParam in enumerate(abiFunc['inputs']): arg = args[index] argType = type(arg) if argType is float or argType is Decimal: arg = int(arg) elif abiParam['type'] == 'uint256[]': arg = [int(item) for item in arg] elif argType == str and abiParam['type'] == 'bytes32': arg = arg.encode('utf-8') elif abiParam['type'] == 'bytes32[]' and type(arg[0]) is not bytes: arg = [item.encode('utf-8') for item in arg] processedArgs.append(arg) return processedArgs def getLogs(self, eventName): return self.w3Contract.events.__dict__[eventName].getLogs()
[ "achap5dk@gmail.com" ]
achap5dk@gmail.com
65777f375fdc631125c33c071fd30d9ea4168f09
1b0545444cdf3bb0cb38279d1de1dc7448a6dae5
/src/petsProject/PUPG/urls.py
7e30d8bb47b5d40215606b9a858e33fe7ebc231f
[]
no_license
JacobGros/pets
5795f8a3f68a4323b4cda37ac51fb09cc934a55b
495e8aa4b452fa37f1159701642b95473fa1a4df
refs/heads/master
2020-03-29T12:18:52.090127
2018-12-11T21:48:16
2018-12-11T21:48:16
149,893,274
0
0
null
null
null
null
UTF-8
Python
false
false
893
py
from django.urls import path from PUPG import views urlpatterns = [ path("", views.index, name="index"), path("submit/", views.PetCreateView.as_view(), name="submit"), path("leaderboard/", views.leaderboard, name="leaderboard"), path("vote/", views.vote, name="vote"), path('person/<int:pk>', views.PersonDetailView.as_view(), name='person-detail'), path('pet/<int:pk>', views.PetDetailView.as_view(), name='pet-detail'), path('vote/vote/<int:id>/', views.vote_for_pet, name='vote_for_pet'), path('search/', views.search_view, name='search'), path('profile/', views.my_profile, name='profile_detail'), path('leaderboardSpecies/', views.leaderboardSpecies, name='leaderboardSpecies'), path('help/', views.help, name = 'help') ] #if settings.DEBUG: #urlpatterns = urlpatterns + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "vagrant@vagrant.vm" ]
vagrant@vagrant.vm
6f7752e41013abe69aceec822e6aa473025712a8
e82b761f53d6a3ae023ee65a219eea38e66946a0
/All_In_One/addons/gr/m_biped_leg.py
febedbbdec798af635d5931aa4fa4ac89c849e53
[]
no_license
2434325680/Learnbgame
f3a050c28df588cbb3b14e1067a58221252e2e40
7b796d30dfd22b7706a93e4419ed913d18d29a44
refs/heads/master
2023-08-22T23:59:55.711050
2021-10-17T07:26:07
2021-10-17T07:26:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,713
py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any laTter version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### ########################################################################################################## ########################################################################################################## import bpy from math import radians from mathutils import Vector from .constants import Constants from .utils import create_module_prop_bone from .utils import bone_settings from .utils import duplicate_bone from .utils import get_distance from .utils import set_parent_chain from .utils import prop_to_drive_constraint from .utils import mirror_bone_to_point from .utils import bone_visibility from .utils import set_module_on_relevant_bones from .utils import three_bone_limb from .utils import isolate_rotation from .utils import get_parent_name from .utils import set_bone_only_layer from .utils import get_ik_group_name from .utils import prop_to_drive_pbone_attribute_with_array_index from .utils import prop_to_drive_pbone_attribute_with_array_index from .utils import create_twist_bones from .utils import snappable_module def biped_leg(bvh_tree, shape_collection, module, chain, pole_target_name, shin_bend_back_limit, ik_foot_parent_name, pole_target_parent_name, side, thigh_twist_count, shin_twist_count): # chain length should be exactly 4 rig = bpy.context.object ik_group_name = get_ik_group_name(side) thigh_name = chain[0] shin_name = chain[1] foot_name = chain[2] toes_name = chain[3] first_parent_name = get_parent_name(thigh_name) fk_prefix = Constants.fk_prefix ik_prefix = Constants.ik_prefix ik_group_name = get_ik_group_name(side=side) toes_bend_axis = '-X' shin_bend_axis = '-X' # bones that should be used for animation relevant_bone_names = [] # bone that holds all properties of the module prop_bone_name = create_module_prop_bone(module=module) # set parent first_parent_name = get_parent_name(thigh_name) # LOW-LEVEL BONES # set parents for index, name in enumerate(chain): bpy.ops.object.mode_set(mode='EDIT') ebones = rig.data.edit_bones if index == 0: ebones[name].parent = ebones[first_parent_name] else: ebones[name].parent = ebones[chain[index - 1]] relevant_bone_names.append(name) bone_settings(bone_name=name, layer_index=Constants.base_layer, group_name=Constants.base_group, use_deform=True, lock_loc=True, lock_scale=True, bone_type=Constants.base_type ) # _____________________________________________________________________________________________________ # three bone limb set-up three_bone_limb(bvh_tree=bvh_tree, shape_collection=shape_collection, module=module, b1=thigh_name, b2=shin_name, b3=foot_name, pole_target_name=pole_target_name, parent_pole_target_to_ik_target=True, b2_bend_axis='-X', b2_bend_back_limit=shin_bend_back_limit, first_parent_name=first_parent_name, ik_b3_parent_name=ik_foot_parent_name, pole_target_parent_name=pole_target_parent_name, b3_shape_up=True, side=side ) isolate_rotation(module=module, parent_bone_name=fk_prefix + first_parent_name, first_bone_name=fk_prefix + thigh_name ) # TOES BONE: # FK name = fk_prefix + toes_name duplicate_bone(source_name=toes_name, new_name=name, parent_name=fk_prefix + foot_name ) bone_settings(bvh_tree=bvh_tree, shape_collection=shape_collection, bone_name=name, layer_index=Constants.fk_layer, group_name=Constants.fk_group, lock_loc=True, lock_scale=True, bone_shape_name='sphere', bone_shape_pos='MIDDLE', bone_shape_up=True, bone_shape_up_only_for_transform=True, bone_type=Constants.fk_type ) relevant_bone_names.append(name) # bind low-level bones to FK constraints bpy.ops.object.mode_set(mode='POSE') pbone = rig.pose.bones[toes_name] c = pbone.constraints.new('COPY_ROTATION') c.name = 'bind_to_fk_1' c.target = rig c.subtarget = fk_prefix + toes_name c.mute = True # lock toe axes if toes_bend_axis == 'X' or toes_bend_axis == '-X': lock_1 = 1 lock_2 = 2 for ai in [lock_1, lock_2]: prop_to_drive_pbone_attribute_with_array_index(prop_bone_name=name, bone_name=name, prop_name='limit_fk_toes' + side, attribute='lock_rotation', array_index=ai, prop_min=0, prop_max=1, prop_default=0, description='limit toes to single axis rotation', expression='v1' ) # filler bones (needed for GYAZ retargeter) bpy.ops.object.mode_set(mode='EDIT') filler_name = 'fk_filler_' + thigh_name ebone = rig.data.edit_bones.new(name=filler_name) ebones = rig.data.edit_bones ebone.head = ebones[first_parent_name].head ebone.tail = ebones[thigh_name].head ebone.roll = 0 ebone.parent = ebones[first_parent_name] set_bone_only_layer(bone_name=filler_name, layer_index=Constants.fk_extra_layer ) # IK name = ik_prefix + toes_name duplicate_bone(source_name=toes_name, new_name=name, parent_name=ik_prefix + foot_name ) bone_settings(bvh_tree=bvh_tree, shape_collection=shape_collection, bone_name=name, layer_index=Constants.ctrl_ik_layer, group_name=ik_group_name, lock_loc=True, lock_scale=True, bone_shape_name='cube', bone_shape_pos='MIDDLE', bone_shape_up=True, bone_shape_up_only_for_transform=True, bone_type=Constants.ik_type ) relevant_bone_names.append(name) # lock toe axes if toes_bend_axis == 'X' or toes_bend_axis == '-X': lock_1 = 1 lock_2 = 2 for ai in [lock_1, lock_2]: prop_to_drive_pbone_attribute_with_array_index(prop_bone_name=name, bone_name=name, prop_name='limit_ik_toes' + side, attribute='lock_rotation', array_index=ai, prop_min=0, prop_max=1, prop_default=1, description='limit toes to single axis rotation', expression='v1' ) # bind low-level bones to IK constraints bpy.ops.object.mode_set(mode='POSE') pbone = rig.pose.bones[toes_name] c = pbone.constraints.new('COPY_ROTATION') c.name = 'bind_to_ik_1' c.target = rig c.subtarget = ik_prefix + toes_name c.mute = True # BIND TO (0: FK, 1: IK, 2:BIND) prop_to_drive_constraint(prop_bone_name=prop_bone_name, bone_name=toes_name, constraint_name='bind_to_fk_1', prop_name='switch_' + module, attribute='mute', prop_min=0, prop_max=2, prop_default=0, description='0:fk, 1:ik, 2:base', expression='1 - (v1 < 1)' ) prop_to_drive_constraint(prop_bone_name=prop_bone_name, bone_name=toes_name, constraint_name='bind_to_ik_1', prop_name='switch_' + module, attribute='mute', prop_min=0, prop_max=2, prop_default=0, description='0:fk, 1:ik, 2:base', expression='1 - (v1 > 0 and v1 < 2)' ) # SNAP INFO bpy.ops.object.mode_set(mode='POSE') pbone = rig.pose.bones[prop_bone_name] pbone['snapinfo_singlebone_0'] = [fk_prefix + toes_name, ik_prefix + toes_name] # FOOT ROLL: # get heel position bpy.ops.object.mode_set(mode='EDIT') # set ray start and direction ray_start = rig.data.edit_bones[toes_name].head ray_direction = (0, 1, 0) ray_distance = 1 # cast ray hit_loc, hit_nor, hit_index, hit_dist = bvh_tree.ray_cast(ray_start, ray_direction, ray_distance ) # third-point of toes.head and hit_loc(heel) difference = ray_start - hit_loc difference /= 3 third_point = hit_loc + difference # ik foot main bpy.ops.object.mode_set(mode='EDIT') ebones = rig.data.edit_bones ik_foot_main_name = ik_prefix + 'main_' + foot_name ebone = ebones.new(name=ik_foot_main_name) ik_foot_name = ik_prefix + foot_name ik_foot_ebone = ebones[ik_foot_name] foot_length = get_distance(ik_foot_ebone.head, ik_foot_ebone.tail) ebone.head = ik_foot_ebone.head ebone.tail = (ik_foot_ebone.head[0], ik_foot_ebone.head[1] - foot_length, ik_foot_ebone.head[2]) ebone.roll = radians(-180) if side == '_l' else radians(180) ebone.parent = ebones[ik_foot_parent_name] bone_settings(bvh_tree=bvh_tree, shape_collection=shape_collection, bone_name=ik_foot_main_name, layer_index=Constants.ctrl_ik_layer, group_name=ik_group_name, lock_scale=True, bone_shape_name='cube', bone_shape_pos='HEAD', bone_shape_up=True, bone_type=Constants.ik_type ) relevant_bone_names.append(ik_foot_main_name) # ik foot snap target snap_target_foot_name = 'snap_target_' + foot_name duplicate_bone(source_name=ik_foot_main_name, new_name=snap_target_foot_name, parent_name=fk_prefix + foot_name, ) bone_settings(bone_name=snap_target_foot_name, layer_index=Constants.fk_extra_layer, lock_loc=True, lock_rot=True, lock_scale=True ) # foot roll back bpy.ops.object.mode_set(mode='EDIT') ebones = rig.data.edit_bones foot_roll_back_name = 'roll_back_' + foot_name ebone = ebones.new(name=foot_roll_back_name) ebone.head = hit_loc ebone.tail = third_point ebone.roll = ebones[foot_name].roll ebone.parent = ebones[ik_foot_main_name] bone_settings(bone_name=foot_roll_back_name, layer_index=Constants.ctrl_ik_extra_layer, group_name=ik_group_name, lock_loc=True, lock_scale=True ) # foot roll front bpy.ops.object.mode_set(mode='EDIT') ebones = rig.data.edit_bones foot_roll_front_name = 'roll_front_' + foot_name ebone = ebones.new(name=foot_roll_front_name) ebone.head = ebones[toes_name].head ebone.tail = third_point ebone.roll = ebones[foot_name].roll ebone.parent = ebones[foot_roll_back_name] ebones[ik_prefix + foot_name].parent = ebones[foot_roll_front_name] bone_settings(bone_name=foot_roll_front_name, layer_index=Constants.ctrl_ik_extra_layer, group_name=ik_group_name, lock_loc=True, lock_scale=True ) # foot roll main bpy.ops.object.mode_set(mode='EDIT') ebones = rig.data.edit_bones foot_roll_main_name = 'roll_main_' + foot_name ebone = ebones.new(name=foot_roll_main_name) ebone.head = ebones[foot_name].head length = get_distance(ebones[foot_name].head, ebones[foot_name].tail) ebone.tail = ebone.head + Vector((0, length, 0)) ebone.roll = ebones[foot_name].roll ebone.parent = ebones[ik_foot_main_name] bone_settings(bvh_tree=bvh_tree, shape_collection=shape_collection, bone_name=foot_roll_main_name, layer_index=Constants.ctrl_ik_layer, group_name=ik_group_name, lock_loc=True, lock_scale=True, bone_shape_name='foot_roll', bone_shape_pos='TAIL', bone_shape_manual_scale=Constants.target_shape_size, bone_type=Constants.ik_type ) relevant_bone_names.append(foot_roll_main_name) # parent pole target to foot_roll_main_name bpy.ops.object.mode_set(mode='EDIT') ebones = rig.data.edit_bones ebones['target_' + pole_target_name].parent = ebones[ik_foot_main_name] # ik_toes parent ik_toes_parent_name = ik_prefix + 'parent_' + toes_name duplicate_bone(source_name=ik_prefix + toes_name, new_name=ik_toes_parent_name, parent_name=ik_prefix + foot_name ) bone_settings(bone_name=ik_toes_parent_name, layer_index=Constants.ctrl_ik_extra_layer, lock_loc=True, lock_scale=True ) bpy.ops.object.mode_set(mode='EDIT') ebones = rig.data.edit_bones ebones[ik_prefix + toes_name].parent = ebones[ik_toes_parent_name] # relegate old ik_foot bone set_bone_only_layer(bone_name=ik_prefix + foot_name, layer_index=Constants.ctrl_ik_extra_layer ) # update snap_info bpy.ops.object.mode_set(mode='POSE') pbones = rig.pose.bones old_snap_info = pbones['module_props__' + module]["snapinfo_3bonelimb_0"] old_snap_info[9], old_snap_info[10], old_snap_info[11] = snap_target_foot_name, ik_foot_main_name, foot_roll_main_name pbones['module_props__' + module]["snapinfo_3bonelimb_0"] = old_snap_info bpy.ops.object.mode_set(mode='POSE') pbones = rig.pose.bones # foot roll constraints: # foot roll front if toes_bend_axis == '-X': use_x = True use_z = False pbone = pbones[foot_roll_front_name] c = pbone.constraints.new('COPY_ROTATION') c.name = 'copy foot_roll_main' c.target = rig c.subtarget = foot_roll_main_name c.use_x = use_x c.use_y = False c.use_z = use_z c.invert_x = False c.invert_y = False c.invert_z = False c.use_offset = False c.target_space = 'LOCAL' c.owner_space = 'LOCAL' c.influence = 1 if toes_bend_axis == '-X': min_x = 0 max_x = radians(180) min_z = 0 max_z = 0 c = pbone.constraints.new('LIMIT_ROTATION') c.name = 'limit rotation' c.owner_space = 'LOCAL' c.use_transform_limit = True c.influence = 1 c.use_limit_x = True c.use_limit_y = True c.use_limit_z = True c.min_x = min_x c.max_x = max_x c.min_y = 0 c.min_y = 0 c.min_z = min_z c.max_z = max_z if toes_bend_axis == '-X': use_x = True use_z = False # foot roll back pbone = pbones[foot_roll_back_name] c = pbone.constraints.new('COPY_ROTATION') c.name = 'copy foot_roll_main_name' c.target = rig c.subtarget = foot_roll_main_name c.use_x = use_x c.use_y = False c.use_z = use_z c.invert_x = use_x c.invert_y = False c.invert_z = use_z c.use_offset = False c.target_space = 'LOCAL' c.owner_space = 'LOCAL' c.influence = 1 if toes_bend_axis == '-X': min_x = 0 max_x = radians(180) min_z = 0 max_z = 0 c = pbone.constraints.new('LIMIT_ROTATION') c.name = 'limit rotation' c.owner_space = 'LOCAL' c.use_transform_limit = True c.influence = 1 c.use_limit_x = True c.use_limit_y = True c.use_limit_z = True c.min_x = min_x c.max_x = max_x c.min_y = 0 c.min_y = 0 c.min_z = min_z c.max_z = max_z # foot roll main if toes_bend_axis == '-X': min_x = radians(-180) max_x = radians(180) min_z = 0 max_z = 0 pbone = pbones[foot_roll_main_name] c = pbone.constraints.new('LIMIT_ROTATION') c.name = 'limit rotation' c.owner_space = 'LOCAL' c.use_transform_limit = True c.influence = 1 c.use_limit_x = True c.use_limit_y = True c.use_limit_z = True c.min_x = min_x c.max_x = max_x c.min_y = 0 c.min_y = 0 c.min_z = min_z c.max_z = max_z # ik_toes_parent if toes_bend_axis == '-X': use_x = True use_z = False pbone = pbones[ik_toes_parent_name] c = pbone.constraints.new('COPY_ROTATION') c.name = 'copy foot_roll_front' c.target = rig c.subtarget = foot_roll_front_name c.use_x = use_x c.use_y = False c.use_z = use_z c.invert_x = True c.invert_y = False c.invert_z = True c.use_offset = True c.target_space = 'LOCAL' c.owner_space = 'LOCAL' c.influence = 1 bone_visibility(prop_bone_name=prop_bone_name, module=module, relevant_bone_names=relevant_bone_names, ik_ctrl='ik' ) # set module name on relevant bones (used by the 'N-panel' interface) set_module_on_relevant_bones(relevant_bone_names=relevant_bone_names, module=module ) # make the 'Snap&Key' operator recognize this module snappable_module(module=module) # TWIST BONES create_twist_bones(bvh_tree=bvh_tree, shape_collection=shape_collection, source_bone_name=thigh_name, count=thigh_twist_count, upper_or_lower_limb='UPPER', twist_target_distance=Constants.twist_target_distance, end_affector_name='', influences=Constants.forearm_twist_influences, is_thigh=True ) create_twist_bones(bvh_tree=bvh_tree, shape_collection=shape_collection, source_bone_name=shin_name, count=shin_twist_count, upper_or_lower_limb='LOWER', twist_target_distance=Constants.twist_target_distance, end_affector_name=foot_name, influences=Constants.shin_twist_influences, is_thigh=False )
[ "root@localhost.localdomain" ]
root@localhost.localdomain
5ddad824f9a1771ecc0c22e87edfbcb5638cd2de
b00873d36e44128ce30623da0ee3b556e4e3d7e7
/solutions/solution34.py
9127e90dde3024fbdc1b4a09dbba1eba976718bf
[ "MIT" ]
permissive
Satily/leetcode_python_solution
b4aadfd1998877b5086b5423c670750bb422b2c8
3f05fff7758d650469862bc28df9e4aa7b1d3203
refs/heads/master
2021-07-18T07:53:10.387182
2021-07-17T06:30:09
2021-07-17T06:30:09
155,074,789
3
0
null
null
null
null
UTF-8
Python
false
false
991
py
class Solution: def searchRange(self, nums: 'List[int]', target: int) -> 'List[int]': if len(nums) == 0: return [-1, -1] left, right = 0, len(nums) - 1 while right > left: mid = (left + right) >> 1 if nums[mid] < target: left = mid + 1 else: right = mid lower_bound = left left, right = 0, len(nums) - 1 while right > left: mid = ((left + right) >> 1) + ((left + right) & 1) if nums[mid] > target: right = mid - 1 else: left = mid upper_bound = left return [lower_bound, upper_bound] if lower_bound <= upper_bound and nums[lower_bound] == target else [-1, -1] if __name__ == '__main__': print(Solution().searchRange([5, 7, 7, 8, 8, 10], 8)) print(Solution().searchRange([5, 7, 7, 8, 8, 10], 6)) print(Solution().searchRange([], 0))
[ "ladfmcl@126.com" ]
ladfmcl@126.com
24f98750f19eae082a24931ba18df9130c6d5f8c
7fed9926b605213f207ef24804c419078defbde0
/mission/constants/config.py
4809adee6e07b4dae66f11846558712c16dfbd41
[ "BSD-3-Clause" ]
permissive
zhaohongqiang/software
12ad1330ea3a2c57526d1000f289560a2083a1d0
7ac106ef84c33deb99267246125a6be17ef9d164
refs/heads/master
2020-05-29T12:30:00.527923
2016-07-19T06:06:17
2016-07-19T06:06:17
63,673,097
1
0
null
2016-07-19T07:52:12
2016-07-19T07:52:11
null
UTF-8
Python
false
false
9
py
teagle.py
[ "software@cuauv.org" ]
software@cuauv.org
cf94c18f53619b6515f45a13125ddacd43f35fb4
97e0d474658f4fae5d68def8c23719a7e98eca32
/ghost/client.py
19928c5a07b0b7267afc30f4b37a7f28d29fbc16
[]
no_license
leonardormlins/fateclando
3e8ba807599e1a132d2cd40c5eacafe2310cb2b1
08f1b0d4c46606c0190f2b0c49bc282f6ad73f29
refs/heads/master
2022-11-26T13:15:39.001807
2020-07-22T13:54:31
2020-07-22T13:54:31
280,486,176
0
0
null
null
null
null
UTF-8
Python
false
false
873
py
import socket import rsa def encrypt_message(text, pub_key): return rsa.encrypt( text, rsa.PublicKey.load_pkcs1(pub_key, format='PEM') ) def capturePublicKey(): filePath = "/home/leo/Documents/Fatec/5Semestre/Branquinho/fateclando/ghost/ghostPub.txt" file = open(filePath,'r') pub_key = '' for line in file: pub_key += line file.close() return pub_key def startClient(): SERVER = '127.0.0.1' PORT = 5020 pub_key = capturePublicKey() tcp = socket.socket(socket.AF_INET, socket.SOCK_STREAM) dest = (SERVER, PORT) tcp.connect(dest) tcp.send(pub_key.encode('ascii')) print ('To get out just tap CTRL+C\n') msg = input() while msg != 'x': tcp.send( encrypt_message(msg.encode('ascii'), pub_key) ) msg = input() tcp.close()
[ "leonardolins.ext@hotmail.com" ]
leonardolins.ext@hotmail.com
dbbfedb8e5a864c4327ba65f8e0c6a5752f63d8e
d0a9175e68911f7d79ad106027c12ac0981674f9
/CodeAcademySolutions/Custom_Print.py
3a2ee5d187325f3254f213d318668bb0cc9600ce
[]
no_license
mwongeraE/PythonProjects
595199e177e6782605fd50da9c91e9fd29464cf9
0326841b063a64a4240bc3318c2d688eedbd158d
refs/heads/master
2021-09-23T12:11:12.481485
2018-09-22T13:48:00
2018-09-22T13:48:00
106,571,226
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
board = [] for x in range(0,5): loop = ["O"] * 5 board.append(loop) def print_board(board_in): for row in board: print row board
[ "evansmwongera@gmail.com" ]
evansmwongera@gmail.com
5110b63f13df8031bb400f7ac712f28be4fdf17f
ff47a30ca8475a657adef3c2ca1d087f2c3ed1c9
/Ch4.py
24dc3801f5a0335aebf2aadc774b9298ad84ec50
[]
no_license
bliotti/crypto-challenge
0dc90ddad008a9c58a08e9e85484970e07ac2272
08a9ec93acbf94684bc8b06e4218718e73cb71ec
refs/heads/master
2020-08-01T14:48:36.599709
2019-12-14T09:00:41
2019-12-14T09:00:41
211,026,232
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
# https://cryptopals.com/sets/1/challenges/4 # Detect single-character XOR # One of the 60-character strings in this file has been encrypted by single-character XOR. # Find it. # (Your code from #3 should help.) from Ch3 import decodeByLetter, areWords f = open("Ch4.txt", "r") max = 0 for x in f: c = areWords(decodeByLetter(x)) if c >= max: max = c winner = decodeByLetter(x) print(winner.decode("utf-8"))
[ "bliotti@protonmail.com" ]
bliotti@protonmail.com
31e86eeceb39f0063b0cc4250e5d9c3ea0a0e852
370c67c6aa1632b9df30df3f85351364e830efcb
/client_menu.py
6552b9ec1dd4a72159aee21f6572d4efb05a7a6e
[]
no_license
AvivBenShoham/screen-party
c02b33019469459108773009758271d0bbf80f44
d4a0560ab565dcb730987e7a9207182cd0137cb8
refs/heads/master
2022-01-14T17:31:22.750213
2019-06-13T20:14:33
2019-06-13T20:14:33
191,825,561
1
0
null
null
null
null
UTF-8
Python
false
false
1,886
py
from tkinter import * from tkinter import messagebox from client import client client_online = False myclient = None """tries to connect to host""" def try_to_connect(): #no need to pass arguments to functions in both cases global client_online global myclient global root if myclient == None: myclient = client(root) try: x = int(port.get()) except: messagebox.showinfo("ip and/or port are wrong","ip {0} and port {1} are wrong, please try again".format(hostIP.get(),port.get())) return if not myclient.set_client_and_connect(hostIP.get(), int(port.get())): #tries to connect to host by IP and Port messagebox.showinfo("ip and/or port are wrong","ip {0} and port {1} are wrong, please try again".format(hostIP.get(),port.get())) return else: client_online = True if not myclient.connect_to_host(password.get()): #sends password to the host messagebox.showinfo("password is wrong","password is wrong, please try again") return messagebox.showinfo("connection established","you have connected successfully") myclient.start() #gets here if the connection established and the password is right #makes the connection frame root = Tk() hostIP = StringVar() port = StringVar() password = StringVar() label1 = Label(root,text="enter the host IP:").grid(row=0,column=0) label2 = Label(root,text="enter the port:").grid(row=1,column=0) label = Label(root,text="enter the password:").grid(row=2,column=0) ent = Entry(root,width=50,textvariable = hostIP).grid(row=0,column=1) ent1 = Entry(root,width=50,textvariable = port).grid(row=1,column=1) ent2 = Entry(root,width=50,textvariable = password).grid(row=2,column=1) btn2 = Button(root, text="Connect", command=try_to_connect) btn2.grid(row=3) root.mainloop()
[ "noreply@github.com" ]
AvivBenShoham.noreply@github.com
3348482129614559bf562009587fd0cd8f650a76
bf885fc079ee6b70baaddd22fd921637aa2e8e13
/arrays/kth_largests.py
7cea40fcc298e73c4ab53907a369e9f08818e008
[]
no_license
ashish-bisht/Ds-and-Algo
006f7412a8b20cced7da261452864a09edd4b4db
a042127b5b51bcb632e5e0bf08b130b554f10c3f
refs/heads/master
2020-09-16T03:10:19.648329
2020-04-18T08:55:26
2020-04-18T08:55:26
223,632,306
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
import heapq def kth_largest(nums, k): return sorted(nums)[-k] nums = [3, 2, 1, 5, 6, 4] k = 2 print(kth_largest(nums, k)) def kth_largest_heap(nums, k): heap = [] for num in nums: heapq.heappush(heap, num) for _ in range(len(nums)-k): heapq.heappop(heap) return heapq.heappop(heap) print(kth_largest_heap(nums, k))
[ "ashishbisht723@gmail.com" ]
ashishbisht723@gmail.com
2ef0da07a4bdf9994bd84d2d88cd026c975b1d7e
c9ee283fe1e5a2538d990c4399bd1f4c4091a985
/wordcount/views.py
8af5cdf5cc80851de1043ebb2922fcd2edb43700
[]
no_license
xgarbagelab/wordcount-project
5cefce5e00807c945e84f44b3c0c86cf96169ad5
abc9767c75b3bf7d0de98260817eaea75bf57d6a
refs/heads/master
2020-03-09T10:38:45.229805
2018-04-09T09:01:35
2018-04-09T09:01:35
128,741,740
0
0
null
null
null
null
UTF-8
Python
false
false
675
py
from django.http import HttpResponse from django.shortcuts import render def homepage(request): #return HttpResponse('Hello' return render(request,'home.html') def count(request): fulltext=request.GET['fulltext'] wordlist = fulltext.split() word_dictionary={} for word in wordlist: if word in word_dictionary: #Increase word_dictionary[word]+=1 else: #add to the dictionary word_dictionary[word]=1 return render(request,'count.html',{'fulltext':fulltext,'count':len(wordlist),'word_dictionary':word_dictionary.items}) def about(request): return render(request,'about.html')
[ "madhusudan707@gmail.com" ]
madhusudan707@gmail.com
45cead8da98c2c33ffdf9692f4f051e3884b5fb6
d231cb5d54cb14bc4b40d5ba56709f80a1f9d4c1
/WMass/python/postprocessing/scripts/copyDir.py
a42a37dc1bdce2a94dc311a5e937a05cf2b180ba
[]
no_license
WMass/cmgtools-lite
179d7083878b8cb1de14835b8c0a76a51bfd6a1e
025b7ec338ee7f574ad802a958ec6214995c2ac9
refs/heads/wmass94X
2022-07-03T13:09:16.634404
2020-08-31T06:39:42
2020-08-31T06:39:42
108,602,987
0
8
null
2022-02-04T23:04:41
2017-10-27T22:56:41
Python
UTF-8
Python
false
false
2,083
py
#!/usr/bin/env python import os, sys import re if __name__ == "__main__": from optparse import OptionParser parser = OptionParser(usage="%prog [options] inputDir outputDir") parser.add_option("-p", "--pretend", dest="pretend", action="store_true", default=False, help="Don't run anything"); parser.add_option("-v", "--verbose", dest="verbose", action="store_true", default=False, help="Use option -v for cp"); parser.add_option("-m", "--match", dest="match", type="string", default=None, help="Select only folders matching this regular expression") parser.add_option("-r", "--replace", dest="replace", type="string", nargs=2, default=None, help="Replace first argument with second argument when copying folder or file") (options, args) = parser.parse_args() if len(args)<2: parser.print_help() sys.exit(1) inputdir = args[0] outputDir = args[1] if inputdir == outputDir: print "Error: input folder is the same as the output folder." quit() print "-"*30 print "Copying folders from inputdir %s to outputDir %s" % (inputdir, outputDir) if options.match != None: print "Selecting folders matching '{reg}'".format(reg=options.match) if options.replace != None: print "Changing name replacing '%s' with '%s'" % (options.replace[0], options.replace[1]) print "-"*30 if not os.path.exists(outputDir): print "Warning: folder {out} does not exist".format(out=outputDir) print "It will be created now" os.makedirs(outputDir) folders = os.listdir(inputdir) for fld in folders: if options.match == None or re.match(options.match,fld): cmd = "cp -r{v} {ind}/{f} {out}/{newf}".format(v="v" if options.verbose else "", ind=inputdir,f=fld, out=outputDir, newf=fld if options.replace == None else fld.replace(options.replace[0], options.replace[1])) if options.pretend: print cmd else: os.system(cmd) print "-"*30 print "DONE" print "-"*30
[ "cippy91@gmail.com" ]
cippy91@gmail.com
514ad159680cee8af058ad18c3d94bc9d7b281b8
6656aa66a16ae34bdb967dd502aadedf27dc2ddb
/file/palindrome.py
668a20b11822bc6f0c9254c631ad29a2ec24ba6b
[]
no_license
Lucidhomme/Python
a7e654ba2b1abeea48a15d22d976681d3cdb40e5
b51ba56c0d74c9d820260885f1f5af04cdd99d9d
refs/heads/main
2022-12-24T16:34:28.336819
2020-10-09T15:08:48
2020-10-09T15:08:48
302,671,182
0
0
null
null
null
null
UTF-8
Python
false
false
3,427
py
# 서비스패키지 밑 파일 패키지 밑 palindrome모듈생성, 파이썬 베이스밑에 palindrome caller모듈 생성 # 회문(palindrome) # 단어를 거꾸로 읽어도 제대로 읽는 것과 같은 단어 또는 문장 # level, sos, rotator, 'nurses run' # 기준점이 필요하다. 첫 글자와 마지막 글자를 비교 # 반복문 # // # str = 'jslim9413' # idx = len(str) // 2 # print(str[idx]) # 특정단어가 들어 왔을 때 이 단어가 회문인지 아닌지 검사하는 함수 def isPalindrome(): word = input("단어를 입력하세요 : ") isFlag = True for i in range(len(word) // 2 ) : #// 실수자리 두자리 if word[i] != word[-1 -i] : isFlag = False break return isFlag def reversePalindrome() : word = input("단어를 입력하세요 : ") # print(word == word[::-1]) # print( type(reversed(word)) ) # print(list(reversed(word))) if list(word) == list(reversed(word)) : print(True) else : print(False) #단어가 줄단위로 저장된 파일에서 회문인 단어를 각 줄에 출력하라. 단) 파일에서 읽은 단어는 \n이 붙어 있으므로 \n을 제외한 뒤 회문인지를 판단하여야 함. 단어사이 줄 바꿈이 두번일어나면 안됨 def reverse_check() : with open('./etc. word/palindrome_words.txt', 'r') as file : for i in file : i = i.strip('\n') if list(i) == list(reversed(i)) : print(i) ##강사님답 def palindromeExc(): with open('./etc. word/palindrome_words.txt', 'r') as file : for line in file : line = line.strip('\n') if line == line[::-1] : print(line) # N-gram # hello 문자단위로 추출한다면? # he / el / li / lo # 0 1 2 3 4 # h e l l o # text = 'hello' # for i in range(len(text)-1) : # print(text[i], text[i+1], sep = "") # 공백을 기준으로 문자열을 분리한다면 타입은?? # 리스트 - 정답입니다 # 리스트 2-gram 현재문자와 다음 문자를 출력하고 싶다면? # text = 'this is python script' # words = text.split() # for i in range(len(words) -1) : # print(words[i], words[i+1]) #zip() number = [1,2,3,4] name = ['a','b','c','d'] # number_name = dict(zip(number, name)) # print(number_name) # dic = {} # for number, name in zip(number, name): # dic[number] = name # print(dic) # a = 'lim' # b = [1,2,3] # c = ('one','two','three') # print(list(zip(a,b,c))) # print(dict(zip(a,b))) # print(set(zip(a,b,c))) # input 함수를 이용해서 문자열이 입력되고 # 예시) Python is a programming language that lets you work quickly # gram 할 숫자도 input 함수를 이용하여 입력받아 # 예시) 3 # 입력된 숫자에 해당하는 단어 n-gram을 튜플로 출력하라 # 단) 입력된 문자열의 단어개수가 입력된 정수미만이라면 예외를 발생시키고 처리한다 def zipNgram(): n = int(input("gram : ")) text = input("sentences : ") words = text.split() try : if (len(words) < n ) : raise Exception('문장의 길이가 더 길어야 합니다') else : for i in range(len(words) - n + 1) : print(words[i:i+n]) except Exception as e: print(e)
[ "noreply@github.com" ]
Lucidhomme.noreply@github.com
6d587149211c6466c6606dfa59659a94f16ff35b
75a9c9a3f0c92b31e4682c3b452ca528858b521c
/kEdge/TestRegistration.py
58eb5613777c0c6fd5ef24a21c74190c86c492e7
[]
no_license
DoctorEmmetBrown/Pagaille
1ccf58db6895c0035d8d48a142fce808661b4883
443635cab835281cc8a13c92fe5e898a52f72bfb
refs/heads/master
2020-04-29T17:08:53.597371
2019-07-18T15:03:02
2019-07-18T15:03:02
176,288,407
0
1
null
null
null
null
UTF-8
Python
false
false
2,241
py
__author__ = 'embrun' import numpy as np import matplotlib.pyplot as plt from skimage import data from skimage.feature import register_translation from skimage.feature.register_translation import _upsampled_dft from scipy.ndimage import fourier_shift image = data.camera() shift = (-2.4, 1.32) # (-2.4, 1.32) pixel offset relative to reference coin offset_image = fourier_shift(np.fft.fftn(image), shift) offset_image = np.fft.ifftn(offset_image) print("Known offset (y, x):") print(shift) # pixel precision first print 'Pixel Precision' shift, error, diffphase = register_translation(image, offset_image,100) print 'Pixel Precision Done' print 'Shift found' print shift fig = plt.figure(figsize=(8, 3)) ax1 = plt.subplot(1, 3, 1, adjustable='box-forced') ax2 = plt.subplot(1, 3, 2, sharex=ax1, sharey=ax1, adjustable='box-forced') ax3 = plt.subplot(1, 3, 3) ax1.imshow(image) ax1.set_axis_off() ax1.set_title('Reference image') ax2.imshow(offset_image.real) ax2.set_axis_off() ax2.set_title('Offset image') # View the output of a cross-correlation to show what the algorithm is # doing behind the scenes image_product = np.fft.fft2(image) * np.fft.fft2(offset_image).conj() cc_image = np.fft.fftshift(np.fft.ifft2(image_product)) ax3.imshow(cc_image.real) ax3.set_axis_off() ax3.set_title("Cross-correlation") plt.show() print("Detected pixel offset (y, x):") print(shift) # subpixel precision shift, error, diffphase = register_translation(image, offset_image, 100) fig = plt.figure(figsize=(8, 3)) ax1 = plt.subplot(1, 3, 1, adjustable='box-forced') ax2 = plt.subplot(1, 3, 2, sharex=ax1, sharey=ax1, adjustable='box-forced') ax3 = plt.subplot(1, 3, 3) ax1.imshow(image) ax1.set_axis_off() ax1.set_title('Reference image') ax2.imshow(offset_image.real) ax2.set_axis_off() ax2.set_title('Offset image') # Calculate the upsampled DFT, again to show what the algorithm is doing # behind the scenes. Constants correspond to calculated values in routine. # See source code for details. cc_image = _upsampled_dft(image_product, 150, 100, (shift*100)+75).conj() ax3.imshow(cc_image.real) ax3.set_axis_off() ax3.set_title("Supersampled XC sub-area") plt.show() print("Detected subpixel offset (y, x):") print(shift)
[ "ines.zaouak@gmail.com" ]
ines.zaouak@gmail.com
a72647356ffc9aa6166402b5689ac88fec136576
b6fd722600334071987e5b25787d672d002d0d82
/restful_ajax/wsgi.py
169e87c6785a188c457fd1f55e3e4173bcd19c39
[ "MIT" ]
permissive
Divinity360/VclinicApi
789be9c6d919d0985c9ce276d45556275579e5d7
7271e2143a1399aabad9e32c8538a29efe81d774
refs/heads/master
2022-12-09T21:36:15.752993
2020-02-05T22:03:51
2020-02-05T22:03:51
238,483,133
0
0
MIT
2022-12-08T06:18:30
2020-02-05T15:28:34
JavaScript
UTF-8
Python
false
false
173
py
import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "restful_ajax.settings") application = get_wsgi_application()
[ "thedivinitysoft@gmail.com" ]
thedivinitysoft@gmail.com
d205ecf93b379b1f946455216374e1b917657a8d
9d5e20547dbd675442f82952511506974b4c8e7b
/pyscf/pbc/df/mdf.py
fc784cffdbd7b54c06c749edb22f6b05e43347b6
[ "Apache-2.0" ]
permissive
tyanderson176/pyscf
9072b68bf4c6544deec11cd259e67406bed6b2a6
a5c480338c4725d5ffb023e12266862bdee6b3aa
refs/heads/master
2020-08-22T17:05:37.115630
2019-10-20T23:59:23
2019-10-20T23:59:23
216,443,034
0
0
Apache-2.0
2019-10-20T23:48:44
2019-10-20T23:48:43
null
UTF-8
Python
false
false
17,446
py
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <osirpt.sun@gmail.com> # ''' Gaussian and planewaves mixed density fitting Ref: J. Chem. Phys. 147, 164119 (2017) ''' import os import time import tempfile import numpy import h5py import scipy.linalg from pyscf import lib from pyscf.lib import logger from pyscf.df.outcore import _guess_shell_ranges from pyscf.pbc import tools from pyscf.pbc import gto from pyscf.pbc.df import outcore from pyscf.pbc.df import ft_ao from pyscf.pbc.df import df from pyscf.pbc.df import aft from pyscf.pbc.df.df import fuse_auxcell from pyscf.pbc.df.df_jk import zdotNN, zdotCN, zdotNC from pyscf.pbc.lib.kpts_helper import (is_zero, gamma_point, member, unique, KPT_DIFF_TOL) from pyscf.pbc.df import mdf_jk from pyscf.pbc.df import mdf_ao2mo from pyscf import __config__ # kpti == kptj: s2 symmetry # kpti == kptj == 0 (gamma point): real def _make_j3c(mydf, cell, auxcell, kptij_lst, cderi_file): t1 = (time.clock(), time.time()) log = logger.Logger(mydf.stdout, mydf.verbose) max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]) fused_cell, fuse = fuse_auxcell(mydf, auxcell) # Create swap file to avoid huge cderi_file. see also function # pyscf.pbc.df.df._make_j3c swapfile = tempfile.NamedTemporaryFile(dir=os.path.dirname(cderi_file)) fswap = lib.H5TmpFile(swapfile.name) # Unlink swapfile to avoid trash swapfile = None outcore._aux_e2(cell, fused_cell, fswap, 'int3c2e', aosym='s2', kptij_lst=kptij_lst, dataname='j3c-junk', max_memory=max_memory) t1 = log.timer_debug1('3c2e', *t1) nao = cell.nao_nr() naux = auxcell.nao_nr() mesh = mydf.mesh Gv, Gvbase, kws = cell.get_Gv_weights(mesh) b = cell.reciprocal_vectors() gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase]) ngrids = gxyz.shape[0] kptis = kptij_lst[:,0] kptjs = kptij_lst[:,1] kpt_ji = kptjs - kptis uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) log.debug('Num uniq kpts %d', len(uniq_kpts)) log.debug2('uniq_kpts %s', uniq_kpts) # j2c ~ (-kpt_ji | kpt_ji) j2c = fused_cell.pbc_intor('int2c2e', hermi=1, kpts=uniq_kpts) for k, kpt in enumerate(uniq_kpts): aoaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T aoaux = fuse(aoaux) coulG = mydf.weighted_coulG(kpt, False, mesh) LkR = numpy.asarray(aoaux.real, order='C') LkI = numpy.asarray(aoaux.imag, order='C') j2c_k = fuse(fuse(j2c[k]).T).T.copy() if is_zero(kpt): # kpti == kptj j2c_k -= lib.dot(LkR*coulG, LkR.T) j2c_k -= lib.dot(LkI*coulG, LkI.T) else: # aoaux ~ kpt_ij, aoaux.conj() ~ kpt_kl j2cR, j2cI = zdotCN(LkR*coulG, LkI*coulG, LkR.T, LkI.T) j2c_k -= j2cR + j2cI * 1j fswap['j2c/%d'%k] = j2c_k aoaux = LkR = LkI = j2cR = j2cI = coulG = None j2c = None def cholesky_decomposed_metric(uniq_kptji_id): j2c = numpy.asarray(fswap['j2c/%d'%uniq_kptji_id]) j2c_negative = None # Note large difference may be found in results between the CD/eig treatments. # In some systems, small integral errors can lead to different treatments of # linear dependency which can be observed in the total energy/orbital energy # around 4th decimal place. # try: # j2c = scipy.linalg.cholesky(j2c, lower=True) # j2ctag = 'CD' # except scipy.linalg.LinAlgError as e: # # Abandon CD treatment for better numerical stablity w, v = scipy.linalg.eigh(j2c) log.debug('MDF metric for kpt %s cond = %.4g, drop %d bfns', uniq_kptji_id, w[-1]/w[0], numpy.count_nonzero(w<mydf.linear_dep_threshold)) v1 = v[:,w>mydf.linear_dep_threshold].T.conj() v1 /= numpy.sqrt(w[w>mydf.linear_dep_threshold]).reshape(-1,1) j2c = v1 if cell.dimension == 2 and cell.low_dim_ft_type != 'inf_vacuum': idx = numpy.where(w < -mydf.linear_dep_threshold)[0] if len(idx) > 0: j2c_negative = (v[:,idx]/numpy.sqrt(-w[idx])).conj().T j2ctag = 'eig' return j2c, j2c_negative, j2ctag feri = h5py.File(cderi_file, 'a') feri['j3c-kptij'] = kptij_lst nsegs = len(fswap['j3c-junk/0']) def make_kpt(uniq_kptji_id, cholesky_j2c): # kpt = kptj - kpti kpt = uniq_kpts[uniq_kptji_id] log.debug1('kpt = %s', kpt) adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) log.debug1('adapted_ji_idx = %s', adapted_ji_idx) j2c, j2c_negative, j2ctag = cholesky_j2c Gaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T Gaux = fuse(Gaux) Gaux *= mydf.weighted_coulG(kpt, False, mesh) kLR = Gaux.T.real.copy('C') kLI = Gaux.T.imag.copy('C') if is_zero(kpt): # kpti == kptj aosym = 's2' nao_pair = nao*(nao+1)//2 if cell.dimension == 3: vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=adapted_kptjs) ovlp = [lib.pack_tril(s) for s in ovlp] else: aosym = 's1' nao_pair = nao**2 mem_now = lib.current_memory()[0] log.debug2('memory = %s', mem_now) max_memory = max(2000, mydf.max_memory-mem_now) # nkptj for 3c-coulomb arrays plus 1 Lpq array buflen = min(max(int(max_memory*.38e6/16/naux/(nkptj+1)), 1), nao_pair) shranges = _guess_shell_ranges(cell, buflen, aosym) buflen = max([x[2] for x in shranges]) # +1 for a pqkbuf if aosym == 's2': Gblksize = max(16, int(max_memory*.1e6/16/buflen/(nkptj+1))) else: Gblksize = max(16, int(max_memory*.2e6/16/buflen/(nkptj+1))) Gblksize = min(Gblksize, ngrids, 16384) pqkRbuf = numpy.empty(buflen*Gblksize) pqkIbuf = numpy.empty(buflen*Gblksize) # buf for ft_aopair buf = numpy.empty((nkptj,buflen*Gblksize), dtype=numpy.complex128) def pw_contract(istep, sh_range, j3cR, j3cI): bstart, bend, ncol = sh_range if aosym == 's2': shls_slice = (bstart, bend, 0, bend) else: shls_slice = (bstart, bend, 0, cell.nbas) for p0, p1 in lib.prange(0, ngrids, Gblksize): dat = ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = dat[k].reshape(nG,ncol) pqkR = numpy.ndarray((ncol,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k], 1) for k, ji in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = j3cR[k] else: v = j3cR[k] + j3cI[k] * 1j if j2ctag == 'CD': v = scipy.linalg.solve_triangular(j2c, v, lower=True, overwrite_b=True) feri['j3c/%d/%d'%(ji,istep)] = v else: feri['j3c/%d/%d'%(ji,istep)] = lib.dot(j2c, v) # low-dimension systems if j2c_negative is not None: feri['j3c-/%d/%d'%(ji,istep)] = lib.dot(j2c_negative, v) with lib.call_in_background(pw_contract) as compute: col1 = 0 for istep, sh_range in enumerate(shranges): log.debug1('int3c2e [%d/%d], AO [%d:%d], ncol = %d', \ istep+1, len(shranges), *sh_range) bstart, bend, ncol = sh_range col0, col1 = col1, col1+ncol j3cR = [] j3cI = [] for k, idx in enumerate(adapted_ji_idx): v = [fswap['j3c-junk/%d/%d'%(idx,i)][0,col0:col1].T for i in range(nsegs)] v = fuse(numpy.vstack(v)) if is_zero(kpt) and cell.dimension == 3: for i in numpy.where(vbar != 0)[0]: v[i] -= vbar[i] * ovlp[k][col0:col1] j3cR.append(numpy.asarray(v.real, order='C')) if is_zero(kpt) and gamma_point(adapted_kptjs[k]): j3cI.append(None) else: j3cI.append(numpy.asarray(v.imag, order='C')) v = None compute(istep, sh_range, j3cR, j3cI) for ji in adapted_ji_idx: del(fswap['j3c-junk/%d'%ji]) # Wrapped around boundary and symmetry between k and -k can be used # explicitly for the metric integrals. We consider this symmetry # because it is used in the df_ao2mo module when contracting two 3-index # integral tensors to the 4-index 2e integral tensor. If the symmetry # related k-points are treated separately, the resultant 3-index tensors # may have inconsistent dimension due to the numerial noise when handling # linear dependency of j2c. def conj_j2c(cholesky_j2c): j2c, j2c_negative, j2ctag = cholesky_j2c if j2c_negative is None: return j2c.conj(), None, j2ctag else: return j2c.conj(), j2c_negative.conj(), j2ctag a = cell.lattice_vectors() / (2*numpy.pi) def kconserve_indices(kpt): '''search which (kpts+kpt) satisfies momentum conservation''' kdif = numpy.einsum('wx,ix->wi', a, uniq_kpts + kpt) kdif_int = numpy.rint(kdif) mask = numpy.einsum('wi->i', abs(kdif - kdif_int)) < KPT_DIFF_TOL uniq_kptji_ids = numpy.where(mask)[0] return uniq_kptji_ids done = numpy.zeros(len(uniq_kpts), dtype=bool) for k, kpt in enumerate(uniq_kpts): if done[k]: continue log.debug1('Cholesky decomposition for j2c at kpt %s', k) cholesky_j2c = cholesky_decomposed_metric(k) # The k-point k' which has (k - k') * a = 2n pi. Metric integrals have the # symmetry S = S uniq_kptji_ids = kconserve_indices(-kpt) log.debug1("Symmetry pattern (k - %s)*a= 2n pi", kpt) log.debug1(" make_kpt for uniq_kptji_ids %s", uniq_kptji_ids) for uniq_kptji_id in uniq_kptji_ids: if not done[uniq_kptji_id]: make_kpt(uniq_kptji_id, cholesky_j2c) done[uniq_kptji_ids] = True # The k-point k' which has (k + k') * a = 2n pi. Metric integrals have the # symmetry S = S* uniq_kptji_ids = kconserve_indices(kpt) log.debug1("Symmetry pattern (k + %s)*a= 2n pi", kpt) log.debug1(" make_kpt for %s", uniq_kptji_ids) cholesky_j2c = conj_j2c(cholesky_j2c) for uniq_kptji_id in uniq_kptji_ids: if not done[uniq_kptji_id]: make_kpt(uniq_kptji_id, cholesky_j2c) done[uniq_kptji_ids] = True feri.close() # valence_exp = 1. are typically the Gaussians in the valence VALENCE_EXP = getattr(__config__, 'pbc_df_mdf_valence_exp', 1.0) def _mesh_for_valence(cell, valence_exp=VALENCE_EXP): '''Energy cutoff estimation''' precision = cell.precision * 10 Ecut_max = 0 for i in range(cell.nbas): l = cell.bas_angular(i) es = cell.bas_exp(i).copy() es[es>valence_exp] = valence_exp cs = abs(cell.bas_ctr_coeff(i)).max(axis=1) ke_guess = gto.cell._estimate_ke_cutoff(es, l, cs, precision) Ecut_max = max(Ecut_max, ke_guess.max()) mesh = tools.cutoff_to_mesh(cell.lattice_vectors(), Ecut_max) mesh = numpy.min((mesh, cell.mesh), axis=0) if cell.dimension < 2 or cell.low_dim_ft_type == 'inf_vacuum': mesh[cell.dimension:] = cell.mesh[cell.dimension:] return mesh del(VALENCE_EXP) class MDF(df.DF): '''Gaussian and planewaves mixed density fitting ''' def __init__(self, cell, kpts=numpy.zeros((1,3))): self.cell = cell self.stdout = cell.stdout self.verbose = cell.verbose self.max_memory = cell.max_memory self.kpts = kpts # default is gamma point self.kpts_band = None self._auxbasis = None self.mesh = _mesh_for_valence(cell) # In MDF, fitting PWs (self.mesh), and parameters eta and exp_to_discard # are related to each other. The compensated function does not need to # be very smooth. It just needs to be expanded by the specified PWs # (self.mesh). self.eta is estimated on the fly based on the value of # self.mesh. self.eta = None # Any functions which are more diffused than the compensated Gaussian # are linearly dependent to the PWs. They can be removed from the # auxiliary set without affecting the accuracy of MDF. exp_to_discard # can be set to the value of self.eta self.exp_to_discard = None # The following attributes are not input options. self.exxdiv = None # to mimic KRHF/KUHF object in function get_coulG self.auxcell = None self.blockdim = getattr(__config__, 'df_df_DF_blockdim', 240) self.linear_dep_threshold = df.LINEAR_DEP_THR self._j_only = False # If _cderi_to_save is specified, the 3C-integral tensor will be saved in this file. self._cderi_to_save = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) # If _cderi is specified, the 3C-integral tensor will be read from this file self._cderi = None self._keys = set(self.__dict__.keys()) @property def eta(self): if self._eta is not None: return self._eta else: cell = self.cell if cell.dimension == 0: return 0.2 ke_cutoff = tools.mesh_to_cutoff(cell.lattice_vectors(), self.mesh) ke_cutoff = ke_cutoff[:cell.dimension].min() return aft.estimate_eta_for_ke_cutoff(cell, ke_cutoff, cell.precision) @eta.setter def eta(self, x): self._eta = x @property def exp_to_discard(self): if self._exp_to_discard is not None: return self._exp_to_discard else: return self.eta @exp_to_discard.setter def exp_to_discard(self, x): self._exp_to_discard = x _make_j3c = _make_j3c # Note: Special exxdiv by default should not be used for an arbitrary # input density matrix. When the df object was used with the molecular # post-HF code, get_jk was often called with an incomplete DM (e.g. the # core DM in CASCI). An SCF level exxdiv treatment is inadequate for # post-HF methods. def get_jk(self, dm, hermi=1, kpts=None, kpts_band=None, with_j=True, with_k=True, exxdiv=None): if kpts is None: if numpy.all(self.kpts == 0): # Gamma-point calculation by default kpts = numpy.zeros(3) else: kpts = self.kpts kpts = numpy.asarray(kpts) if kpts.shape == (3,): return mdf_jk.get_jk(self, dm, hermi, kpts, kpts_band, with_j, with_k, exxdiv) vj = vk = None if with_k: vk = mdf_jk.get_k_kpts(self, dm, hermi, kpts, kpts_band, exxdiv) if with_j: vj = mdf_jk.get_j_kpts(self, dm, hermi, kpts, kpts_band) return vj, vk get_eri = get_ao_eri = mdf_ao2mo.get_eri ao2mo = get_mo_eri = mdf_ao2mo.general ao2mo_7d = mdf_ao2mo.ao2mo_7d def update_mp(self): pass def update_cc(self): pass def update(self): pass ################################################################################ # With this function to mimic the molecular DF.loop function, the pbc gamma # point DF object can be used in the molecular code def loop(self, blksize=None): for dat in aft.AFTDF.loop(self, blksize): yield dat for dat in df.DF.loop(self, blksize): yield dat def get_naoaux(self): return df.DF.get_naoaux(self) + aft.AFTDF.get_naoaux(self)
[ "osirpt.sun@gmail.com" ]
osirpt.sun@gmail.com
0dc2326977bac2dd04182a4f66eed643b31298e0
c7feb89550b180fb67f0d9dd0de342e271ee2f94
/src/metric.py
3caa2ff76773b28a59d02920424a79aabcec0496
[]
no_license
nielsarts/energymonitoring
b8cb94f106ecdbfd7a36649c02d8236d9e08be01
0b9070069f8cada5b08b399e66b4e6916f3ef552
refs/heads/master
2020-05-01T16:35:17.629262
2018-08-11T22:40:44
2018-08-11T22:40:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,964
py
#!/usr/bin/python # software based on # TP-Link Wi-Fi Smart Plug Protocol Client # For use with TP-Link HS-100 or HS-110 # # by Lubomir Stroetmann # Copyright 2016 softScheck GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # extended for prototyping purposes by Ed Kuijpers with support from French # students during a summerschool from __future__ import division from prometheus_client import start_http_server, Summary, Gauge from subprocess import PIPE, Popen import random import time import psutil import matplotlib.pyplot as plt import json import socket import argparse from struct import pack version = 0.2 # Check if hostname is valid def validHostname(hostname): try: socket.gethostbyname(hostname) except socket.error: parser.error("Invalid hostname.") return hostname # Predefined Smart Plug Commands # For a full list of commands, consult tplink_commands.txt commands = { 'info': '{"system":{"get_sysinfo":{}}}', 'on': '{"system":{"set_relay_state":{"state":1}}}', 'off': '{"system":{"set_relay_state":{"state":0}}}', 'cloudinfo': '{"cnCloud":{"get_info":{}}}', 'wlanscan': '{"netif":{"get_scaninfo":{"refresh":0}}}', 'time': '{"time":{"get_time":{}}}', 'schedule': '{"schedule":{"get_rules":{}}}', 'countdown': '{"count_down":{"get_rules":{}}}', 'antitheft': '{"anti_theft":{"get_rules":{}}}', 'reboot': '{"system":{"reboot":{"delay":1}}}', 'reset': '{"system":{"reset":{"delay":1}}}', 'energy': '{"emeter":{"get_realtime":{}}}' } # Encryption and Decryption of TP-Link Smart Home Protocol # XOR Autokey Cipher with starting key = 171 def encrypt(string): key = 171 result = pack('>I', len(string)) for i in string: a = key ^ ord(i) key = a result += chr(a) return result def decrypt(string): key = 171 result = "" for i in string: a = key ^ ord(i) key = ord(i) result += chr(a) return result # Parse commandline arguments parser = argparse.ArgumentParser( description="TP-Link Wi-Fi Smart Plug Client v" + str(version)) parser.add_argument( "-t", "--target", metavar="<hostname>", required=True, help="Target hostname or IP address", type=validHostname) group = parser.add_mutually_exclusive_group(required=False) group.add_argument( "-c", "--command", metavar="<command>", help="Preset command to send. Choices are: " + ", ".join(commands), choices=commands) group.add_argument( "-j", "--json", metavar="<JSON string>", help="Full JSON string of command to send") args = parser.parse_args() # Set target IP, port and command to send ip = args.target port = 9999 if args.command is None: cmd = args.json cmd = commands['energy'] else: cmd = commands[args.command] def get_energy(cmd): # Send command and receive reply energy = 0.0 try: sock_tcp = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock_tcp.connect((ip, port)) sock_tcp.send(encrypt(cmd)) data = sock_tcp.recv(2048) sock_tcp.close() # print "Sent: ", cmd # print "Received: ", decrypt(data[4:]) decode = decrypt(data[4:]) ddecode = json.loads(decode) energy = 0.001 * float(ddecode['emeter']['get_realtime']['power_mw']) print "energy = %f" % energy except socket.error: quit("Cound not connect to host " + ip + ":" + str(port)) return (energy) REQUEST_TIME = Summary('request_processing_seconds', 'Time spent processing request') g4 = Gauge('HS110_Energy', 'Description of gauge') def get_cpu_temperature(): process = Popen(['./sensor_par.py', 'Physical id 0'], stdout=PIPE) output, _error = process.communicate() print 'temp = %s' % (output[output.index('=') + 1:-1 + output.rindex("")]) return float(output[output.index('=') + 1:-1 + output.rindex("")]) g3 = Gauge('Temperature', 'Description of gauge') g3.set(get_cpu_temperature()) # Decorate function with metric. @REQUEST_TIME.time() def process_request(t): """A dummy function that takes some time.""" time.sleep(t) if __name__ == '__main__': # Start up the server to expose the metrics. start_http_server(8000) # Generate some requests. while True: process_request(random.random()) g4.set(get_energy(cmd)) g3.set(get_cpu_temperature())
[ "e.a.kuijpers@hva.nl" ]
e.a.kuijpers@hva.nl
a9b05d089d341d0a3b1eab6aff004a19bb131807
9972d0d7f5678963344da089f5cdeb033a97db46
/Py/pg_karpathy_keras_kreplication.py
58a19b28a746a957e7a7dd346817411dee673e05
[]
no_license
blakecc/RLworkingFolder
e00fbc7ee60295ad7ea47ebb46f6451a24766982
85affc56809ab9616b4fa4111c627e4357a0a9a2
refs/heads/master
2021-09-07T22:41:40.258030
2018-03-02T11:03:51
2018-03-02T11:03:51
122,582,057
0
0
null
null
null
null
UTF-8
Python
false
false
12,438
py
import numpy as np import _pickle as pickle import gym import os from keras import layers from keras.models import Model from keras import backend as K from keras import utils as np_utils from keras import optimizers # from keras.layers import advanced_activations # from keras.layers.convolutional import Conv2D # from keras.layers.pooling import MaxPooling2D # from keras.layers.normalization import BatchNormalization # from tensorflow.nn import l2_normalize # import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Activation from keras.initializers import glorot_uniform # hyperparameters batchSize = 2048 # every how many episodes to do a param update? learning_rate = 1e-4 gamma = 0.99 # discount factor for reward decay_rate = 0.99 # decay factor for RMSProp leaky sum of grad^2 epsilon = 1e-5 resume = False # resume from previous checkpoint? render = False ep_limit = 300001 k_hidden_dims = 200 game_history = [] D = 80 * 80 # input dimensionality: 80x80 grid def prepro(I): """ prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector """ I = I[35:195] # crop I = I[::2,::2,0] # downsample by factor of 2 I[I == 144] = 0 # erase background (background type 1) I[I == 109] = 0 # erase background (background type 2) I[I != 0] = 1 # everything else (paddles, ball) just set to 1 return I.astype(np.float).ravel() # test_obs = prepro(observation) # # test_obs.shape # # from matplotlib import pyplot as plt # plt.imshow(test_obs, interpolation='nearest') # plt.show() def discount_rewards(r): """ take 1D float array of rewards and compute discounted reward """ discounted_r = np.zeros_like(r) running_add = 0 for t in reversed(range(0, r.size)): if r[t] != 0: running_add = 0 # reset the sum, since this was a game boundary (pong specific!) running_add = running_add * gamma + r[t] discounted_r[t] = running_add return discounted_r # def build_network(input_dim, output_dim, hidden_dims=[32, 32], batch_size = 8): # """Create a base network""" # # visible = layers.Input(shape=(input_dim,)) # # visible = layers.Input(batch_shape = (None, input_dim[0], input_dim[1], input_dim[2])) # # bnorm1 = BatchNormalization()(visible) # # conv1 = Conv2D(8, kernel_size=8, activation='relu', padding = "same")(visible) # # pool1 = MaxPooling2D(pool_size=(4, 4), padding = "same")(conv1) # # net = Conv2D(16, kernel_size=4, activation='relu')(net) # # net = MaxPooling2D(pool_size=(2, 2))(net) # # # flat1 = layers.Flatten()(pool1) # # hidden1 = layers.Dense(200)(visible) # # relu1 = layers.advanced_activations.LeakyReLU()(hidden1) # relu1 = layers.Activation("relu")(hidden1) # # # for h_dim in hidden_dims: # # net = layers.Dense(h_dim)(net) # # net = layers.advanced_activations.LeakyReLU()(net) # # # net = layers.Activation("relu")(net) # # # net = layers.Dropout(rate = 0.2)(net) # # output = layers.Dense(output_dim, activation = "softmax")(relu1) # # net = layers.Activation("softmax")(net) # # model = Model(inputs=visible, outputs=output) # # return model # def customLoss(y_true, y_pred): # # TODO: change 2 to an automatic function # action_1h = K.one_hot(K.argmax(K.abs(y_true), axis = 1), 2) # y_hat = action_1h * y_pred # sy_hat = K.sum(y_hat, axis = 1) # ly_hat = K.log(sy_hat) # ly_hat = K.cast(ly_hat, dtype = 'float32') # depr = K.sum(y_true, axis = 1) # depr = K.cast(depr, dtype = 'float32') # loss = -1 * ly_hat * depr # losssum = K.sum(loss, axis = 0) # return losssum def customLoss(y_true, y_pred): loss = -1 * K.mean(y_true * K.log(y_pred)) return loss # action_1h = K.one_hot(K.argmax(K.abs(fake_labels), axis = 1), 2) # y_pred = kmodel.predict(epx) # y_hat = action_1h * y_pred # sy_hat = K.sum(y_hat, axis = 1) # ly_hat = K.log(sy_hat) # depr = K.sum(fake_labels, axis = 1) # depr = K.cast(depr, dtype = 'float32') # loss = -1 * ly_hat * depr # losssum = K.sum(loss, axis = 0) def build_network(input_dim, output_dim, hidden_dims=k_hidden_dims, lrate = learning_rate, drate = decay_rate, eps = epsilon): """Create a base network""" model = Sequential() model.add(Dense(hidden_dims, kernel_initializer = glorot_uniform(), activation='relu', input_dim=input_dim)) model.add(Dense(output_dim, kernel_initializer = glorot_uniform(), activation='softmax')) rmsprop = optimizers.RMSprop(lr = lrate, rho = drate, epsilon = eps) #Rho is actually what Karpathy thinks of as decay ... in keras decay is the learning rate decay which is not relevant for us model.compile(optimizer = rmsprop, loss = customLoss, metrics = ['acc']) return model # def build_train_fn(model, output_dim): # """Create a train function # # It replaces `model.fit(X, y)` because we use the output of model and use it for training. # # For example, we need action placeholder # called `action_one_hot` that stores, which action we took at state `s`. # Hence, we can update the same action. # # This function will create # `self.train_fn([state, action_one_hot, discount_reward])` # which would train the model. # # """ # action_prob_placeholder = model.output # action_onehot_placeholder = K.placeholder(shape=(None, output_dim), # name="action_onehot") # discount_reward_placeholder = K.placeholder(shape=(None,1), # name="discount_reward") # # action_prob = K.sum(action_prob_placeholder * action_onehot_placeholder, axis=1) # log_action_prob = K.log(action_prob) # # loss = - log_action_prob * discount_reward_placeholder # loss = K.mean(loss) # # # TODO: adjust parameters more in line with Karpathy # rmsprop1 = optimizers.RMSprop() # # updates = rmsprop1.get_updates(params=model.trainable_weights, # # constraints=[], # loss=loss) # # train_fn = K.function(inputs=[model.input, # action_onehot_placeholder, # discount_reward_placeholder], # outputs=[], # updates=updates) # return train_fn env = gym.make("Pong-v0") observation = env.reset() prev_x = None # used in computing the difference frame xs,drs,acts = [],[],[] running_reward = None # k_input_shape = np.expand_dims(prepro(observation), axis = 2).shape k_input_shape = prepro(observation).shape[0] # k_output_shape = env.action_space.n k_output_shape = 2 # env.action_space.n if resume: kmodel = build_network(input_dim = k_input_shape, output_dim = k_output_shape, hidden_dims = k_hidden_dims) kmodel.load_weights('save_k_01.h5') game_history = pickle.load(open('game_history_k_01.p', 'rb')) episode_number = game_history[-1][0] reward_sum = 0 else: episode_number = 0 reward_sum = 0 game_history = [] kmodel = build_network(input_dim = k_input_shape, output_dim = k_output_shape, hidden_dims = k_hidden_dims) # env.render() # train_func = build_train_fn(kmodel, k_output_shape) # done = False while True: # while not done: if render: env.render() # for _ in range(10): # preprocess the observation, set input to network to be difference image cur_x = prepro(observation) x = cur_x - prev_x if prev_x is not None else np.zeros(k_input_shape) x = np.expand_dims(x, axis = 0) prev_x = cur_x # prev_x = None # x.shape # np.expand_dims(x, axis = 2) # test_x = np.expand_dims(np.expand_dims(x, axis = 2), axis = 0) # test_x = np.expand_dims(np.expand_dims(x, axis = 0), axis = 0) # np.squeeze(x) # aprob.shape # test_x.shape # kmodel.summary() # forward the policy network and sample an action from the returned probability # aprob = np.squeeze(kmodel.predict(np.expand_dims(np.expand_dims(x, axis = 0), axis = 0))) aprob = np.squeeze(kmodel.predict(x)) # exploration vs. exploitation action = np.random.choice(np.arange(k_output_shape), p=aprob) action_onehot = np_utils.to_categorical(action, num_classes=k_output_shape) # record various intermediates (needed later for backprop) xs.append(x) # observation acts.append(action_onehot) # step the environment and get new measurements observation, reward, done, info = env.step(action + 2) reward_sum += reward drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action) # endvar = 0 # # import matplotlib.pyplot as plt # # endvar = 0 if done: # an episode finished game_history.append((episode_number, reward_sum)) episode_number += 1 pickle.dump(game_history, open('game_history_k_01.p', 'wb')) # stack together all inputs, hidden states, action gradients, and rewards for this episode # epx = np.vstack(xs) #eph = np.vstack(hs) # epdlogp = np.vstack(dlogps) # epr = np.vstack(drs) # # compute the discounted reward backwards through time # discounted_epr = discount_rewards(epr) # # # standardize the rewards to be unit normal (helps control the gradient estimator variance) # discounted_epr -= np.mean(discounted_epr) # discounted_epr /= np.std(discounted_epr) # # epdlogp *= discounted_epr # modulate the gradient with advantage (PG magic happens right here.) # eacts = np.vstack(acts) # # plt.plot(eacts[:,1]) # plt.show() # # epx.shape # epx[0].sum() # # eacts[:,1].sum() # batchTotal = epx.shape[0] # batchStart = 0 # if batchTotal > batchSize: # batchSteps = int(np.floor(batchTotal / batchSize)) # for num_steps in range(batchSteps): # # print(eacts[batchStart:(batchStart + batchSize)]) # train_func([epx[batchStart:(batchStart + batchSize)], eacts[batchStart:(batchStart + batchSize)], discounted_epr[batchStart:(batchStart + batchSize)]]) # batchStart +=batchSize # if batchSize < batchTotal: # # print(eacts[batchStart:batchTotal]) # train_func([epx[batchStart:batchTotal], eacts[batchStart:batchTotal], discounted_epr[batchStart:batchTotal]]) # # if batchTotal > batchSize: # batchSteps = int(np.floor(batchTotal / batchSize)) # for num_steps in range(batchSteps): # batch_obs = np.random.choice(range(batchTotal), batchSize) # # print(eacts[batchStart:(batchStart + batchSize)]) # train_func([epx[batch_obs,], eacts[batch_obs,], discounted_epr[batch_obs,]]) # # batchStart +=batchSize # # if batchSize < batchTotal: # # # print(eacts[batchStart:batchTotal]) # # train_func([epx[batchStart:batchTotal], eacts[batchStart:batchTotal], discounted_epr[batchStart:batchTotal]]) # boring book-keeping running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01 print('resetting env. episode {} reward total was {}. running mean: {}'.format(episode_number, reward_sum, running_reward)) # train_func([epx, eacts, discounted_epr]) if episode_number % 10 == 0: epx = np.vstack(xs) epr = np.vstack(drs) discounted_epr = discount_rewards(epr) discounted_epr -= np.mean(discounted_epr) discounted_epr /= np.std(discounted_epr) eacts = np.vstack(acts) fake_labels = eacts * discounted_epr kmodel.fit(epx, fake_labels, epochs = 1, batch_size=batchSize, verbose = False) xs,drs,acts = [],[],[] # reset array memory if episode_number % 20 == 0: check_weight_1 = np.asarray(kmodel.get_weights()[1])[0].sum() check_weight_2 = np.asarray(kmodel.get_weights()[3])[0].sum() print('Weight check 1: {}, weight check 2: {}'.format(check_weight_1, check_weight_2)) if episode_number % 100 == 0: kmodel.save_weights('save_k_01.h5') reward_sum = 0 observation = env.reset() # reset env prev_x = None # if reward != 0: # Pong has either +1 or -1 reward exactly when game ends. # print ('ep {}: game finished, reward: {}'.format(episode_number, reward) + ('' if reward == -1 else ' !!!!!!!!')) if episode_number == ep_limit: os._exit()
[ "blake.rsa@gmail.com" ]
blake.rsa@gmail.com
1cab05e8df2ef56696b693b546524a113f199941
9923b156c529a38088c05cdd7d4b454b93603446
/tests/test_provider_events_monitor.py
751fe7545b9815bed4bdfc630af8821cd1d08bca
[ "Apache-2.0" ]
permissive
nevermined-io/gateway-events
fb9f7eefb3c34f9639bc2fa54062649efc2f74b4
5e70ad7ee7f9964314f21b5dfc60bb241f964344
refs/heads/master
2023-03-15T08:47:58.358646
2020-11-06T16:16:17
2020-11-06T16:16:17
257,318,216
0
0
Apache-2.0
2021-03-26T00:37:57
2020-04-20T15:08:07
Python
UTF-8
Python
false
false
4,408
py
import time from contracts_lib_py.web3_provider import Web3Provider from common_utils_py.agreements.service_agreement import ServiceAgreement from nevermined_gateway_events.provider_events_monitor import ProviderEventsMonitor from tests.conftest import get_consumer_account from tests.resources.keeper_helpers import (get_conditions_status, get_registered_ddo, grant_access, lock_reward, place_order) def test_init_events_monitor(keeper, web3, storage_path, provider_account): events_monitor = ProviderEventsMonitor(keeper, web3, storage_path, provider_account) assert events_monitor.last_n_blocks == events_monitor.LAST_N_BLOCKS assert (Web3Provider.get_web3().eth.blockNumber - events_monitor.latest_block) < 5 assert events_monitor.last_processed_block == 0 def test_process_pending_agreements(keeper, web3, storage_path, provider_account): start_time = 0 ddo = get_registered_ddo(provider_account, providers=[provider_account.address]) did = ddo.did consumer = get_consumer_account() block_number = web3.eth.blockNumber block_number = block_number - 10 if block_number > 10 else block_number metadata = ddo.metadata encrypted_files = metadata['encryptedFiles'] sa = ServiceAgreement.from_ddo('access', ddo) agr_1 = place_order(provider_account, ddo, consumer) agr_2 = place_order(provider_account, ddo, consumer) agr_3 = place_order(provider_account, ddo, consumer) pending_agreements = { agr_1: [ did, 3, sa.get_price(), encrypted_files, start_time, consumer.address, block_number, 'access' ], agr_2: [ did, 3, sa.get_price(), encrypted_files, start_time + 3000, consumer.address, block_number, 'access' ], agr_3: [ did, 3, sa.get_price(), encrypted_files, start_time + 10000, consumer.address, block_number, 'access' ] } conditions = { agr_1: {'accessSecretStore': 1, 'lockReward': 2, 'escrowReward': 1}, agr_2: {'accessSecretStore': 1, 'lockReward': 1, 'escrowReward': 1}, agr_3: {'accessSecretStore': 2, 'lockReward': 2, 'escrowReward': 1} } balance = keeper.token.get_token_balance(consumer.address) / (2 ** 18) if balance < 20: keeper.dispenser.request_tokens(100, consumer) lock_reward(agr_1, sa, consumer) lock_reward(agr_3, sa, consumer) grant_access(agr_3, ddo, consumer, provider_account) event = keeper.access_secret_store_condition.subscribe_condition_fulfilled( agr_3, 35, None, (), wait=True ) if not event: # check status cond_to_status = get_conditions_status(agr_3) print(f'agr_3 condition status: {cond_to_status}') if cond_to_status['accessSecretStore'] != 2: raise AssertionError(f'grant access failed for agreement {agr_3}') events_monitor = ProviderEventsMonitor(keeper, web3, storage_path, provider_account) events_monitor.process_pending_agreements(pending_agreements, conditions) keeper.access_secret_store_condition.subscribe_condition_fulfilled( agr_1, 15, None, (), wait=True ) keeper.escrow_reward_condition.subscribe_condition_fulfilled( agr_1, 15, None, (), wait=True ) keeper.escrow_reward_condition.subscribe_condition_fulfilled( agr_3, 15, None, (), wait=True ) # check status of all agreements for agr_id in (agr_1, agr_3): cond_to_status = get_conditions_status(agr_1) assert [2, 2, 2] == list(cond_to_status.values()), \ f'agr_id {agr_id}: some conditions were not fulfilled or ' \ f'do not match the expected status. Conditions status are: {cond_to_status}' events_monitor.start_agreement_events_monitor() lock_reward(agr_2, sa, consumer) keeper.access_secret_store_condition.subscribe_condition_fulfilled( agr_2, 15, None, (), wait=True ) keeper.escrow_reward_condition.subscribe_condition_fulfilled( agr_2, 15, None, (), wait=True ) cond_to_status = get_conditions_status(agr_2) assert [2, 2, 2] == list(cond_to_status.values()), \ f'agr_id {agr_id}: some conditions were not fulfilled or ' \ f'do not match the expected status. Conditions status are: {cond_to_status}' events_monitor.stop_monitor() time.sleep(2)
[ "enrique@keyko.io" ]
enrique@keyko.io
a2a9fceea4e11f10be4c0e8af2593734c4b133ee
5095200e9ca55cd3a37af34ed44448c02e2a1bb5
/paddlehub/compat/task/config.py
f464cce162899582ffaf7ac57e1505e14f045507
[ "Apache-2.0" ]
permissive
PaddlePaddle/PaddleHub
8712603ef486c45e83eb0bc5725b0b3ed3ddbbde
b402610a6f0b382a978e82473b541ea1fc6cf09a
refs/heads/develop
2023-07-24T06:03:13.172978
2023-03-28T11:49:55
2023-03-28T11:49:55
162,672,577
12,914
2,239
Apache-2.0
2023-07-06T21:38:19
2018-12-21T06:00:48
Python
UTF-8
Python
false
false
1,982
py
# coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from typing import Callable class RunConfig(object): ''' This class specifies the configurations for PaddleHub to finetune ''' def __init__(self, log_interval: int = 10, eval_interval: int = 100, use_data_parallel: bool = True, save_ckpt_interval: int = None, use_cuda: bool = True, checkpoint_dir: str = None, num_epoch: int = 1, batch_size: int = 32, strategy: Callable = None): ''' Construct finetune Config ''' self.log_interval = log_interval self.eval_interval = eval_interval self.save_ckpt_interval = save_ckpt_interval self.use_cuda = use_cuda self.num_epoch = num_epoch self.batch_size = batch_size self.use_data_parallel = use_data_parallel if checkpoint_dir is None: now = int(time.time()) time_str = time.strftime('%Y%m%d%H%M%S', time.localtime(now)) self.checkpoint_dir = 'ckpt_' + time_str else: self.checkpoint_dir = checkpoint_dir def __repr__(self): return 'config with num_epoch={}, batch_size={}, use_cuda={}, checkpoint_dir={} '.format( self.num_epoch, self.batch_size, self.use_cuda, self.checkpoint_dir)
[ "wuzewu@baidu.com" ]
wuzewu@baidu.com
2455f838db84ea0b765dedc72fed46711631ee90
2a73b2be1379b368d675d641db4254dd2a7f202b
/django_app/member/views/profile.py
2e39e04f473f03b9a7a6e4418c7fc70372dcb03a
[]
no_license
recordingbetter/Instagram-practice
610dcb5417657ed80b35848d14053d4afe9651fb
5f0142dc468d2e74778f463d6f0ec58892afcdf6
refs/heads/master
2022-12-14T01:33:19.161868
2017-08-03T02:22:40
2017-08-03T02:22:40
93,719,756
1
0
null
2022-12-08T00:00:14
2017-06-08T07:26:10
Python
UTF-8
Python
false
false
2,647
py
from django.contrib.auth import get_user_model from django.contrib.auth.decorators import login_required from django.shortcuts import render, redirect, get_object_or_404 from django.urls import reverse from ..forms import UserEditForm User = get_user_model() __all__ = ( 'profile', 'profile_edit', ) def profile(request, user_pk=None): if not request.user.is_authenticated and not user_pk: login_url = reverse('member:login') return redirect(login_url + "?next=" + request.get_full_path()) num_posts_per_page = 3 # 0. urls_views.py 연결 # 1. user_pk에 해당하는 User를 cur_user키로 render # 2. member/profile.html 작성, 해당 user 정보 보여주기 # 2-1. 해당 user의 followers, following 목록 보여주기 # 3. 현재 로그인한 유저가 해당 유저(cur_user)를 팔로우하고있는지 여부 보여주기 # 3-1. 팔로우하고 있다면 '팔로우해제' 버튼, 아니라면 '팔로우' 버튼 보여주기 # 4. -> def follow_toggle(request)뷰 생성 # user = User.objects.get(pk=user_pk) page = request.GET.get('page', 1) try: page = int(page) if int(page) > 1 else 1 except ValueError: page = 1 except Exception as e: page = 1 print(e) if user_pk: user = get_object_or_404(User, pk=user_pk) else: user = request.user # posts는 page 번호에 따라 9개씩 전달 # filter나 order_by에는 안써도 됨 posts = user.post_set.order_by('-created_date')[: num_posts_per_page * page] post_count = user.post_set.count() # next next_page = page + 1 if post_count > page * num_posts_per_page else page + 1 context = { 'cur_user': user, 'posts': posts, 'post_count': post_count, 'page': page, 'next_page': next_page, } return render(request, 'member/profile.html', context) @login_required # @require_POST def profile_edit(request): ''' request.method = 'POST" 일때 nickname과 img_profile(모델에 필드 추가)을 수정할수있는 UserEditForm을 구성 (ModelForm 상속) 및 사용 ''' user = request.user if request.method == 'POST': form = UserEditForm( data=request.POST, files=request.FILES, instance=user ) if form.is_valid(): form.save() return redirect('member:my_profile') else: form = UserEditForm(instance=user) context = { 'form': form } return render(request, 'member/profile_edit.html', context=context)
[ "recordingbetter@gmail.com" ]
recordingbetter@gmail.com
bfdb6e1d74f2f88ec6366964c86e81f107fcfa47
cbade68fac51a0228aad4414c1e06bde6611e36a
/venv/bin/easy_install-3.8
9b9e302a5c00e7f53eaacc6bf7e9e725fb594d13
[]
no_license
Roger-Aguiar/python_plus_postgresql
04483f47f176db766a664dcc94292d4d763ce070
f06113ba70014bcddfb99d8c196e429ce2820f4d
refs/heads/master
2022-11-25T18:45:45.152608
2020-08-01T09:51:52
2020-08-01T09:51:52
283,590,876
0
0
null
null
null
null
UTF-8
Python
false
false
293
8
#!/home/roger/Desktop/Files/Studies/Python/Python_with_postgresql/venv/bin/python # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "roger.silvaaguiar@yahoo.com.br" ]
roger.silvaaguiar@yahoo.com.br
8aa8a71d1233dc911af7a391b8b3275700a57763
de764e803d7975fa231e109b74446dd1d5acc033
/make_data/scratch.py
579f73337d842635c3426ca8ae4ac7865b491a5f
[]
no_license
cjohnst5/akm_codePYTHON
e5a1e064de7f09b0bb0194d1be3306a5c9dda293
fdaa39b8a4a4588aac34ae5a52aa424e284b1b8c
refs/heads/master
2021-01-19T07:46:25.940305
2017-04-13T21:06:25
2017-04-13T21:06:25
87,570,784
0
0
null
null
null
null
UTF-8
Python
false
false
343
py
from sklearn.neighbors import NearestNeighbors import numpy as np X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X) distances, indices = nbrs.kneighbors(X) row = range(0,6) column = [0, 1, 1, 1, 0, 0] indices2 = zip(row, column) print indices[indices2]
[ "Carla Johnston" ]
Carla Johnston
e7d04e8f27af5bd5ec4a2388ad5cd8b583dee39a
23735e41c2003c7a5033d710be75b72b69081423
/backend/run.py
96fc8e0c6b6ba66a1a79634e260d7bb1c2dd8355
[]
no_license
mhb8436/angular-flask-seed
2f2088ed41b53331f741ce84b9e73e02b35ea48a
fa4e7880c0dfb3d0d0278de2ce213c8699470ca3
refs/heads/master
2020-12-03T10:27:06.665553
2014-05-12T09:36:46
2014-05-12T09:36:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
226
py
#!/usr/bin/env python from server import app, db if __name__ == "__main__": # print app # print app.config['SQLALCHEMY_DATABASE_URI'] app.debug = True db.create_all(app=app) app.run(host='0.0.0.0',port=5001, debug=True)
[ "mhb8436@airplug.com" ]
mhb8436@airplug.com
15db74b3a5783b25bd95000b3c44f4a50e4d509d
f182e4b941ae17dc867ee9ef363e034235fd5823
/python/CoordinatesHelper.py
59b78bdaa40855d2dc8087a7c7c710e3911bc7bf
[ "MIT" ]
permissive
aquenneville/siliconmilkroundabout-company-parser
693821ce39e053ee3fbf4e2eed8191d9bd0639eb
14065ba7e075f102d269833e88fb5e84e8276412
refs/heads/master
2020-03-18T05:06:56.491046
2018-06-15T10:14:03
2018-06-15T10:14:03
134,325,344
0
0
null
null
null
null
UTF-8
Python
false
false
550
py
import urllib.request import json Class PostcodeToCoordinateHelper: def convert(postcode): res = urllib.request.urlopen("http://api.postcodes.io/postcodes/SE18XX").read() data = json.loads(res) c = Coordinates(data["result"]["longitude"], data["result"]["latitude"]) return c def createGoogleMapsLink(Coordinate x, Coordinate y): # https://developers.google.com/maps/documentation/urls/guide return "https://www.google.com/maps/dir/?api=1&origin="+x.latitude+","+x.longitude+"&destination="+y.latitude+","+y.longitude
[ "alainquenneville@gmail.com" ]
alainquenneville@gmail.com
578c5fc2c8be63b7f3953a5c391eaeb6c36f8f12
5ba0f5e77c3cc6782683387386490ce359db0ed8
/bin/f2py3
3b295d185c6d312ddbdcef2aaddc0d028625c4af
[]
no_license
0aksinmarathon/blog_api_jwt
e273c9865070a4614b8e8d971ca06d58005ed3be
b420abd4f503872ca8e6941d0631ed25d7d6b7ab
refs/heads/master
2023-02-13T09:05:39.719367
2021-01-10T09:18:40
2021-01-10T09:18:40
328,342,894
0
0
null
null
null
null
UTF-8
Python
false
false
233
#!/Users/manako/blog_api/bin/python # -*- coding: utf-8 -*- import re import sys from numpy.f2py.f2py2e import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "shintaro.manako@gmail.com" ]
shintaro.manako@gmail.com
c4b7118b2880818c79cc6b237a64b43d935b9dfe
0b842bcb3bf20e1ce628d39bf7e11abd7699baf9
/oscar/a/api/yang/modules/tech/content/qwilt_tech_content_line/tech/content/line/analyzer/potential/potential_maapi_base_gen.py
7cd9cd20b07f97439aaca55200d85426178ed85f
[]
no_license
afeset/miner2-tools
75cc8cdee06222e0d81e39a34f621399e1ceadee
81bcc74fe7c0ca036ec483f634d7be0bab19a6d0
refs/heads/master
2016-09-05T12:50:58.228698
2013-08-27T21:09:56
2013-08-27T21:09:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,492
py
# Copyright Qwilt, 2012 # # The code contained in this file may not be used by any other entities without explicit written permission from Qwilt. # # Author: naamas from a.infra.basic.return_codes import ReturnCodes class PotentialMaapiBase(object): def __init__ (self, logger): raise NotImplementedError() def init (self, domain): raise NotImplementedError() def requestConfigAndOper (self): raise NotImplementedError() def clearAllSet (self): raise NotImplementedError() def write (self , line , trxContext=None ): raise NotImplementedError() def read (self , line , trxContext=None): raise NotImplementedError() def readAllOrFail (self , line , trxContext=None): raise NotImplementedError() # descendants # methodList def newMethodList (self): raise NotImplementedError() def setMethodListObj (self, obj): raise NotImplementedError() def getMethodListObj (self): raise NotImplementedError() def hasMethodList (self): raise NotImplementedError() """ Extracted from the below data: { "node": { "name": "potential", "namespace": "potential", "className": "PotentialMaapi", "importStatement": "from a.api.yang.modules.tech.content.qwilt_tech_content_line.tech.content.line.analyzer.potential.potential_maapi_gen import PotentialMaapi", "baseClassName": "PotentialMaapiBase", "baseModule": "potential_maapi_base_gen" }, "ancestors": [ { "moduleYangNamespacePrefix": "qt", "yangName": "tech", "namespace": "tech", "isCurrent": false, "isList": false, "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech", "name": "tech" }, { "moduleYangNamespacePrefix": "qtc", "yangName": "content", "namespace": "content", "isCurrent": false, "isList": false, "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-content", "name": "content" }, { "moduleYangNamespacePrefix": "qtc-line", "isCurrent": false, "yangName": "line", "namespace": "line", "isList": true, "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-content-line", "keyLeaf": { "varName": "line", "defaultVal": null, "typeHandler": "handler: StringHandler" }, "name": "line" }, { "moduleYangNamespacePrefix": "qtc-line", "yangName": "analyzer", "namespace": "analyzer", "isCurrent": false, "isList": false, "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-content-line", "name": "analyzer" }, { "moduleYangNamespacePrefix": "qtc-line", "yangName": "potential", "namespace": "potential", "isCurrent": true, "isList": false, "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-content-line", "name": "potential" } ], "descendants": [ { "moduleYangNamespacePrefix": "qtc-line", "memberName": "methodList", "yangName": "method", "className": "BlinkyMethodMaapiList", "importStatement": "from a.api.yang.modules.tech.content.qwilt_tech_content_line.tech.content.line.analyzer.potential.method.method_maapi_list_gen import BlinkyMethodMaapiList", "isList": true, "moduleYangNamespace": "http://qwilt.com/ns/yang/device/tech/qwilt-tech-content-line" } ], "conditionalDebugName": null, "operLeaves": [], "module": {}, "configLeaves": [], "env": { "namespaces": [ "a", "api", "yang", "modules", "tech", "content", "qwilt_tech_content_line" ] }, "leaves": [], "createTime": "2013" } """
[ "afeset@gmail.com" ]
afeset@gmail.com
c860740882ec34e2bcb0dbcf0500ca6422ae34cc
33d091a4b5ce3f956c3347d31413588e0e23e461
/client/views/views_1.py
7f31353bda763514867cc2207e25dfc874a44de9
[]
no_license
tejaswinipatne/tech_dev
90d700096801aaf1e49f31aa33c61e925c055410
bfd7c24e6f53a055af011f39317e84742867dd13
refs/heads/master
2020-12-02T05:22:34.636220
2019-12-30T11:42:08
2019-12-30T11:42:08
230,903,661
0
0
null
null
null
null
UTF-8
Python
false
false
74,864
py
import ast import json from user.models import user from zipfile import * from django.conf import settings from django.contrib import messages from django.core import serializers from django.core.mail import send_mail from django.http import HttpResponse, JsonResponse from django.shortcuts import (get_object_or_404, redirect, render, render_to_response) from django.template import loader from django.urls import resolve, reverse from django.template.loader import render_to_string from django.urls import resolve from django.utils.html import strip_tags from client.models import ApiLinks from campaign.forms import Script_Form from campaign.models import * from campaign.choices import * from client.decorators import * from client.models import * from client.utils import RegisterNotification, saving_assets, update_assets,get_external_vendors,grand_child_access_call,email_domain_check, percentage, noti_via_mail from leads.models import * from rest_framework.renderers import JSONRenderer from rest_framework.response import Response from rest_framework.views import APIView from setupdata.models import * from vendors.views.views import * from superadmin.utils import collect_campaign_details from .chat_view import get_vendor_list_of_campaign from superadmin.models import * from django.template import RequestContext from client.views.views import * @login_required def vendor_list(request): ''' Return vendor list ''' list = [] vendor_list_details = [] user_id = request.session['userid'] apilinks = ApiLinks.objects.all() vendor_list = external_vendor.objects.filter() for row in vendor_list: list = ast.literal_eval(row.client_id) if user_id in list: user_details = user.objects.get(id=row.user_id) vendor_list_details.append( {'email': user_details.email, 'user_name': user_details.user_name}) return render(request, 'vendor1/add_vendorlist.html', {'vendor_list': vendor_list_details, 'apilinks': apilinks}) @login_required def campaingdesc(request, camp_id): """ campaign desciption includes vendors working on campaign """ camp = Campaign.objects.get(id=camp_id) vendoralloc = campaign_allocation.objects.filter(campaign_id=camp_id) return render(request, 'campaign/campdescription.html', {'camp': camp, 'vendoralloc': vendoralloc}) @login_required def feedback(request): """ feedback from client for vendor """ # print(request.POST) vendor_rating = request.POST.get('rating') # vendor_rating = GenericRelation(Rating, related_query_name='foos') feedback = request.POST.get('feed') if feedback: feed_back = feedback_details.objects.create(feedback=feedback) feed_back.save() else: print("feedback is empty") return render(request, 'campaign/feedback.html', {}) @login_required def leadlist(request, camp_id, status): """ return single vendor leads to the client """ list1 = [] all_header = [] all_lead_header = [] batchlist = [] count = [] camp_alloc = campaign_allocation.objects.filter(id=camp_id) global_rejected_reason = leads_rejected_reson.objects.filter( status=0, is_active=1) client_rejected_reason = leads_rejected_reson.objects.filter( status=1, is_active=1, user_id=request.session['userid']) global_rectify_reason = Leads_Rectify_Reason.objects.filter( status=0, is_active=1) client_rectify_reason = Leads_Rectify_Reason.objects.filter( status=1, is_active=1, user_id=request.session['userid']) if camp_alloc.count() == 1 and status == 1: camp_alloc = campaign_allocation.objects.get(id=camp_id) header = create_custom_header( camp_alloc.campaign_id, request.session['userid']) #fav lead data = {'campaign_id': camp_alloc.campaign_id, 'camp_status': status, 'camp_id': camp_id, 'status': status, 'camp_name': camp_alloc.campaign.name, 'cpl': camp_alloc.cpl, 'lead': camp_alloc.volume, 'submited_lead': camp_alloc.submited_lead, 'return_lead': camp_alloc.return_lead, 'vendor_id': camp_alloc.client_vendor_id, 'user_name': user.objects.filter(id=camp_alloc.client_vendor_id)[0].user_name} if camp_alloc.upload_leads != None: list1 = ast.literal_eval(camp_alloc.upload_leads) batchlist = batch_list(list1) if len(header) == 0: for dict in list1: count=0 if len(dict.keys()) > count : count = len(dict.keys()) all_header,all_lead_header=[],[] for key in dict: all_header.append(key) all_lead_header.append(key) all_header = create_header(all_header) labels = get_lead_header(camp_alloc.campaign_id) labels +=join_custom_question_header(camp_alloc.campaign_id) if batchlist != []: count = batchlist[1] batchlist = batchlist[0] if len(all_header) == 0: all_header = labels export_file_name=export_data(camp_alloc.campaign.name,camp_alloc.campaign_id,request.session['userid'],1,camp_alloc.client_vendor.password) # download zipfile and save return render(request, 'campaign/client_leadlist.html', {'export_file_name':export_file_name,'approve_leads':check_approve_lead(list1),'client_rectify_reason': client_rectify_reason, 'global_rectify_reason': global_rectify_reason, 'client_rejected_reason': client_rejected_reason, 'global_rejected_reason': global_rejected_reason, 'campaigns': data, 'leadlist': list1, 'all_lead_header': all_lead_header, 'all_header': all_header, 'header': header, 'status': status,'batchlist':batchlist,'count':count}) elif camp_alloc.count() == 1 and status == 4: camp_alloc = campaign_allocation.objects.get(id=camp_id) header = create_custom_header( camp_alloc.campaign_id, request.session['userid']) data = {'campaign_id': camp_alloc.campaign_id, 'camp_status': status, 'camp_id': camp_alloc.campaign_id, 'camp_alloc_id': camp_id, 'camp_name': camp_alloc.campaign.name, 'cpl': camp_alloc.old_cpl, 'lead': camp_alloc.old_volume, 'submited_lead': camp_alloc.submited_lead, 'return_lead': camp_alloc.return_lead} if camp_alloc.upload_leads != None: list1 = ast.literal_eval(camp_alloc.upload_leads) if len(header) == 0: for dict in list1: count=0 if len(dict.keys()) > count : count = len(dict.keys()) all_header,all_lead_header=[],[] for key in dict: all_header.append(key) all_lead_header.append(key) all_header = create_header(all_header) labels = get_lead_header(camp_alloc.campaign_id) labels +=join_custom_question_header(camp_alloc.campaign_id) if len(all_header) == 0: all_header = labels export_file_name=export_data(camp_alloc.campaign.name,camp_alloc.campaign_id,request.session['userid'],4,camp_alloc.client_vendor.password) return render(request, 'campaign/client_leadlist.html', {'export_file_name':export_file_name,'approve_leads':check_approve_lead(list1),'campaigns': data, 'leadlist': list, 'batchlist':batchlist,'count':count,'all_lead_header': all_lead_header, 'all_header': all_header, 'header': header, 'status': status_code}) return render(request, 'campaign/client_leadlist.html', {'camp_id': camp_id, 'status': status,'approve_leads':0,}) def client_lead_list(request, camp_id, status): """ leadlist display when client upload leads""" leadlist = [] all_header = [] all_lead_header = [] list=[] # import pdb;pdb.set_trace() if campaign_allocation.objects.filter(campaign_id=camp_id, status=status, client_vendor_id=request.session['userid']).count() == 1: camp_id = campaign_allocation.objects.get( campaign_id=camp_id, status=status, client_vendor_id=request.session['userid']) camp_id = camp_id.id camp_alloc = campaign_allocation.objects.filter(id=camp_id) if camp_alloc.count() == 1: camp_alloc = campaign_allocation.objects.get(id=camp_id) header = create_custom_header( camp_alloc.campaign_id, request.session['userid']) data = {'camp_id': camp_alloc.campaign_id, 'camp_alloc_id': camp_id, 'camp_name': camp_alloc.campaign.name, 'cpl': camp_alloc.campaign.cpl, 'lead': camp_alloc.campaign.target_quantity, 'submited_lead': camp_alloc.submited_lead, 'client_name':camp_alloc.campaign.user.user_name,'return_lead': camp_alloc.return_lead} if camp_alloc.upload_leads != None: list = ast.literal_eval(camp_alloc.upload_leads) if len(header) == 0: count=0 for dict in list: if len(dict.keys()) > count : count = len(dict.keys()) all_header,all_lead_header=[],[] for key in dict: all_header.append(key) all_lead_header.append(key) all_header = create_header(all_header) labels=get_lead_header(camp_alloc.campaign_id) labels +=join_custom_question_header(camp_alloc.campaign_id) if len(all_header) == 0: all_header=labels return render(request, 'campaign/client_lead_upload.html', {'approve_leads': check_approve_lead(list), 'campaigns': data, 'leadlist': list, 'all_lead_header': all_lead_header, 'all_header': all_header, 'header': header, 'status': camp_alloc.status, 'camp_id': camp_id}) else: if campaign_allocation.objects.create(campaign_id=camp_id,volume=0,cpl=0,status=status, client_vendor_id=request.session['userid']): camp_id = campaign_allocation.objects.get( campaign_id=camp_id, status=status, client_vendor_id=request.session['userid']) camp_id = camp_id.id camp_alloc = campaign_allocation.objects.filter(id=camp_id) if camp_alloc.count() == 1: camp_alloc = campaign_allocation.objects.get(id=camp_id) header = create_custom_header( camp_alloc.campaign_id, request.session['userid']) data = {'camp_id': camp_alloc.campaign_id, 'camp_alloc_id': camp_id, 'camp_name': camp_alloc.campaign.name, 'cpl': camp_alloc.campaign.cpl, 'lead': camp_alloc.campaign.target_quantity, 'submited_lead': camp_alloc.submited_lead,'client_name':camp_alloc.campaign.user.user_name, 'return_lead': camp_alloc.return_lead} if camp_alloc.upload_leads != None: list = ast.literal_eval(camp_alloc.upload_leads) if len(header) == 0: count=0 for dict in list: if len(dict.keys()) > count : count = len(dict.keys()) all_header,all_lead_header=[],[] for key in dict: all_header.append(key) all_lead_header.append(key) all_header = create_header(all_header) labels=get_lead_header(camp_alloc.campaign_id) labels +=join_custom_question_header(camp_alloc.campaign_id) if len(all_header) == 0: all_header=labels # return render(request, 'campaign/client_lead_upload.html', {'camp_id': camp_id, 'status': status}) return render(request, 'campaign/client_lead_upload.html', {'approve_leads': check_approve_lead(list), 'campaigns': data, 'leadlist': list, 'all_lead_header': all_lead_header, 'all_header': all_header, 'header': header, 'status': camp_alloc.status, 'camp_id': camp_id}) @login_required @is_client def lead_error_list(request,camp_id,camp_alloc_id): import datetime userid=request.session['userid'] date=datetime.datetime.today().strftime('%Y-%m-%d') lead_data={'success':1} if Lead_Uploaded_Error.objects.filter(campaign_id=camp_id,user_id=userid,created_date=date,lead_upload_status=1).exists(): lead_data=Lead_Uploaded_Error.objects.filter(campaign_id=camp_id,user_id=userid,created_date=date,lead_upload_status=1).latest('exact_time') """ store all leads in leads """ leads=[] if lead_data.all_lead_count == 0: if lead_data.uploaded_lead_count > 0: leads=ast.literal_eval(lead_data.uploaded_lead) if lead_data.remove_duplicate_lead_csv_cnt > 0: leads=leads+ast.literal_eval(lead_data.remove_duplicate_lead_csv) if lead_data.remove_lead_header_cnt > 0: leads=leads+ast.literal_eval(lead_data.remove_lead_header) if lead_data.duplicate_with_vendor_cnt > 0: leads=leads+ast.literal_eval(lead_data.duplicate_with_vendor) if lead_data.duplicate_with_our_cnt > 0: leads=leads+ast.literal_eval(lead_data.duplicate_with_our) lead_data.all_lead=leads lead_data.all_lead_count=len(leads) lead_data.save() else: leads=ast.literal_eval(lead_data.all_lead) list = [] all_header = [] all_lead_header = [] labels=get_lead_header(camp_id) labels +=join_custom_question_header(camp_id) if len(leads) > 0: for dict in leads[0]: all_header.append(dict) all_lead_header.append(dict) return render(request, 'campaign/lead_error_list.html', {'edit_lead_header':labels,'leadlist': leads, 'all_lead_header': all_lead_header, 'all_header': all_header,'camp_id': camp_id,'camp_alloc_id':camp_alloc_id}) def upload_with_rejected_lead_web(request,camp_id,camp_alloc_id): from datetime import datetime userid=request.session['userid'] date=datetime.today().strftime('%Y-%m-%d') if Lead_Uploaded_Error.objects.filter(campaign_id=camp_id,user_id=userid,created_date=date,lead_upload_status=1).exists(): lead_data=Lead_Uploaded_Error.objects.filter(campaign_id=camp_id,user_id=userid,created_date=date,lead_upload_status=1).latest('exact_time') leads=[] """ store all leads in leads """ leads=ast.literal_eval(lead_data.all_lead) lead_data.lead_upload_status=0 lead_data.status=0 lead_data.save() last_id_lead=get_last_id_of_lead(camp_alloc_id) last_batch_id = get_last_batch_id(camp_alloc_id) if len(leads)>0: for lead in leads: last_id_lead +=1 lead['id']=last_id_lead lead['batch']=last_batch_id lead_data=upload_lead_database(leads,camp_alloc_id,userid,1,last_batch_id) camp_detail=campaign_allocation.objects.get(id=camp_alloc_id) return redirect('client_lead_list', camp_id=camp_id,status=camp_detail.status) @login_required @is_client def upload_without_rejected_lead_web(request,camp_id,camp_alloc_id): from datetime import datetime userid=request.session['userid'] date=datetime.today().strftime('%Y-%m-%d') lead_data={'success':1} if Lead_Uploaded_Error.objects.filter(campaign_id=camp_id,user_id=userid,created_date=date,lead_upload_status=1).exists(): lead_data=Lead_Uploaded_Error.objects.filter(campaign_id=camp_id,user_id=userid,created_date=date,lead_upload_status=1).latest('exact_time') real_data,leads=[],[] """ store all leads in leads """ leads=ast.literal_eval(lead_data.all_lead) lead_data.lead_upload_status=0 lead_data.status=0 lead_data.save() for lead in leads: print(leads) if lead['TC_lead_status'] == 'valid lead': real_data.append(lead) last_id_lead=get_last_id_of_lead(camp_alloc_id) last_batch_id = get_last_batch_id(camp_alloc_id) if len(real_data)>0: for lead in real_data: last_id_lead +=1 lead['id']=last_id_lead lead['batch']=last_batch_id lead_data=upload_lead_database(real_data,camp_alloc_id,userid,1,last_batch_id) camp_detail=campaign_allocation.objects.get(id=camp_alloc_id) return redirect('client_lead_list', camp_id=camp_id,status=camp_detail.status) #upload excel lead data into database def upload_lead_database(dict, camp_alloc_id, userid,is_upload,last_batch_id): """ Upload excel lead data into database """ upload_lead_cnt=len(dict) data = campaign_allocation.objects.get(id=camp_alloc_id, client_vendor_id=userid) """ IF user select upload with reject lead or with rejected lead Only that time upload data """ if is_upload == 1: if data.submited_lead == 0: data.upload_leads = dict data.submited_lead = len(dict) data.batch_count = last_batch_id data.save() else: old_data = ast.literal_eval(data.upload_leads) data.upload_leads = old_data + dict data.submited_lead = len(old_data + dict) data.batch_count = last_batch_id data.save() if upload_lead_cnt > 0: return {'success':1,'upload_lead_cnt':upload_lead_cnt} return {'success':1,'upload_lead_cnt':0} #get last id of lead data campaign def get_last_id_of_lead(camp_alloc_id): """ Get last id of lead """ camp_desc=campaign_allocation.objects.get(id=camp_alloc_id) if camp_desc.upload_leads: lead_desc=ast.literal_eval(camp_desc.upload_leads) if len(lead_desc) > 0: return lead_desc[-1]['id'] return 0 else: return 1 def get_last_batch_id(camp_alloc_id): '''get batch id for upload''' camp_desc=campaign_allocation.objects.get(id=camp_alloc_id) if camp_desc.batch_count > 0: return camp_desc.batch_count + 1 return 1 # check approvr leads def check_approve_lead(list): """ approve leads """ approve = 0 for dict in list: if dict['status'] == 1: approve += 1 return approve def get_lead_header(camp_id): """ returs leads orginal headers """ camp_lead=Delivery.objects.get(campaign_id=camp_id) if camp_lead.custom_header_status == 0 : labels = camp_lead.data_header labels = list(labels.split(',')) else: labels = camp_lead.custom_header labels = labels.split(',') return labels #lead data export into excel def export_data(camp_name,camp_id,vendor_id,status,password): import unicodecsv as csv import os import shutil from os import path from shutil import make_archive from openpyxl import Workbook toCSV = [] toCSV = convert_data_list(camp_id, vendor_id, status) if len(toCSV) > 0: if type(toCSV[0]) is dict: keys = toCSV[0].keys() with open('export_approve_leads.csv', 'wb') as output_file: dict_writer = csv.DictWriter(output_file, keys) dict_writer.writeheader() dict_writer.writerows(toCSV) with open('export_approve_leads.csv', 'rb') as myfile: response = HttpResponse(myfile, content_type='text/csv') response['Content-Disposition'] = 'attachment; filename=export_approve_leads.csv' src = path.realpath("export_approve_leads.csv") root_dir, tail = path.split(src) file_name='/static/'+str(camp_name)+'_'+str(camp_id)+'_'+str(vendor_id)+'.zip' import pyminizip compression_level = 5 # 1-9 pyminizip.compress(root_dir+'/export_approve_leads.csv',None,root_dir+file_name, password, compression_level) return file_name # convert lead data as per header lead def convert_data_list(camp_id, vendor_id, status): """ convert lead data as per header lead """ vendor_lead_list = [] data = [] lead_dict = {} labels = get_lead_header(camp_id) labels +=join_custom_question_header(camp_id) # status=1 means all vendors leads and 2 means particoluar vendor leads if status == 1: camp_lead_data = campaign_allocation.objects.filter( campaign_id=camp_id, status=1) for row in camp_lead_data: if row.submited_lead > 0: vendor_lead_list += ast.literal_eval(row.upload_leads) if len(vendor_lead_list) > 0: for dict in vendor_lead_list: if dict['status'] >=0 : for key in dict: if key in labels: lead_dict.update({key: dict[key]}) data.append(lead_dict) lead_dict = {} return data else: print("hiielse") return labels else: camp_lead_data = campaign_allocation.objects.filter( campaign_id=camp_id, status=1, client_vendor_id=vendor_id) for row in camp_lead_data: if row.submited_lead > 0: vendor_lead_list += ast.literal_eval(row.upload_leads) if len(vendor_lead_list) > 0: for dict in vendor_lead_list: if dict['status'] == 1: for key in dict: if key in labels: lead_dict.update({key: dict[key]}) data.append(lead_dict) lead_dict = {} return data else: return labels def create_header(dict): """ creates header list """ list = [] for row in dict: if row == 'reason': list.append('Status Code') else: list.append(row) return list def create_custom_header(camp_id, userid): """ create custome header list """ fav_lead = [] fav_lead_details = favorite_leads_header.objects.filter( campaign_id=camp_id, user_id=userid) if fav_lead_details.count() == 1: fav_lead_details = favorite_leads_header.objects.get( campaign_id=camp_id, user_id=userid) return ast.literal_eval(fav_lead_details.header) else: return fav_lead def lead_approve(request): """ approve selected lead """ return_lead = 0 results = [int(i) for i in request.POST.getlist('id[]')] status = request.POST.get('status') camp_id = request.POST.get('camp_id') camp_alloc = campaign_allocation.objects.get( id=camp_id, status=status) list = ast.literal_eval(camp_alloc.upload_leads) for dict in list: if dict['id'] in results: dict['status'] = 1 elif dict['status'] == 2: return_lead += 1 camp_alloc.upload_leads = list camp_alloc.return_lead = return_lead camp_alloc.approve_leads = check_approve_lead(list) camp_alloc.save() action_on_camp_by_client(1, results, camp_alloc.campaign.id, camp_alloc.client_vendor.id, camp_alloc.client_vendor.user_name) data = {'success': 1, 'msg': 'Leads Approved Successfully!..'} return JsonResponse(data) def lead_rejected(request): """ reject selected lead """ return_lead = 0 results = [int(i) for i in request.POST.getlist('id[]')] status = request.POST.get('status') camp_id = request.POST.get('camp_id') Reason = request.POST.get('Reason') lead_desc = request.POST.get('lead_desc') camp_alloc = campaign_allocation.objects.get( id=camp_id) list = ast.literal_eval(camp_alloc.upload_leads) for dict in list: if dict['id'] in results: dict['status'] = int(request.POST.get('lead_status')) dict['reason'] = Reason dict['lead_desc'] = lead_desc if dict['status'] == 2: return_lead += 1 camp_alloc.upload_leads = list camp_alloc.return_lead = return_lead camp_alloc.save() action_on_camp_by_client(2, results, camp_alloc.campaign.id, camp_alloc.client_vendor.id, camp_alloc.client_vendor.user_name, Reason, lead_desc) data = {'success': 1, 'msg': 'Leads Rejected Successfully!..'} # send notification when rectify lead title = 'Lead Reject' desc = str(len(results))+'More leads Rejected on ' + \ str(camp_alloc.campaign.name) from client.utils import noti_via_mail noti_via_mail(camp_alloc.client_vendor_id, title, desc, mail_noti_client_action_on_leads) RegisterNotification( request.session['userid'], camp_alloc.client_vendor_id, desc, title, 1, None, camp_alloc) return JsonResponse(data) def lead_rectify(request): """ rectify selected leads """ results = [int(i) for i in request.POST.getlist('id[]')] status = request.POST.get('status') camp_id = request.POST.get('camp_id') Reason = request.POST.get('Reason') lead_desc = request.POST.get('lead_desc') camp_alloc = campaign_allocation.objects.get( id=camp_id) list = ast.literal_eval(camp_alloc.upload_leads) for dict in list: if dict['id'] in results: dict['status'] = 3 dict['reason'] = Reason dict['lead_desc'] = lead_desc batch = dict['batch'] camp_alloc.upload_leads = list camp_alloc.save() action_on_camp_by_client(3, results, camp_alloc.campaign.id, camp_alloc.client_vendor.id, camp_alloc.client_vendor.user_name, Reason, lead_desc) data = {'success': 1, 'msg': 'Leads Rectify Successfully!..'} # send notification when rectify lead title = 'Lead Rectify' desc = f'#{str(len(results))} More leads Rectify in batch-{batch} on {str(camp_alloc.campaign.name)}.' desc = str(len(results))+' More leads Rectify on ' + \ str(camp_alloc.campaign.name) from client.utils import noti_via_mail noti_via_mail(camp_alloc.client_vendor_id, title, desc, mail_noti_client_action_on_leads) RegisterNotification( request.session['userid'], camp_alloc.client_vendor_id, desc, title, 1, None, camp_alloc) return JsonResponse(data) @login_required def campaign_vendor_list(request, camp_id): """ campaign vendor list """ users = user.objects.filter(usertype_id=2) clients = match_campaign_vendor.objects.filter(client_vendor_id__in=users, campaign_id=camp_id) return render(request, 'vendor1/vendorlist.html', {'clients': clients, 'camp': camp_id}) def Suggest(request): """ suggest vendor list """ results = [int(i) for i in request.POST.getlist('id[]')] data = {'success': 0} for id in results: campaign_id = request.POST.get('camp_id', None) vendor_id = id counter = campaign_allocation.objects.filter( campaign_id=campaign_id, client_vendor_id=vendor_id, status=0, suggest_status=1).count() if counter == 1: t = campaign_allocation.objects.get( campaign_id=campaign_id, client_vendor_id=vendor_id) t.status = 0 t.suggest_status = 1 t.save() data = {'success': 1, 'msg': "Vendor Suggest Successfully!.."} else: campaign_allocation.objects.create( status=0, client_vendor_id=vendor_id, campaign_id=campaign_id, suggest_status=1) data = {'success': 1, 'msg': "Vendor Suggest Successfully!.."} return JsonResponse(data) def create_demo_campaign(request): return render(request, 'campaign/create_demo_campaign.html', {}) def password_check(passwd): SpecialSym =['$', '@', '#', '%', '^', '&', '*', '+', '-', '!'] if len(passwd) < 8: return False if not any(char.isdigit() for char in passwd): return False if not any(char.isupper() for char in passwd): return False if not any(char.islower() for char in passwd): return False if not any(char in SpecialSym for char in passwd): return False else: return True def add_venodr(request): """ add vendors """ status = 0 email = str(request.POST.get('email')).lower() username = str(request.POST.get('username')) pwd = request.POST.get('pwd') user_id = request.session['userid'] site_url = settings.BASE_URL email_check = email_domain_check(email) client = user.objects.get(id=user_id).user_name t = password_check(pwd) if t is True: if email_check['status'] == 1: if user.objects.filter(email=email).count() == 1: user_details = user.objects.get(email=email) data = add_external_vendor(user_details.id, user_id) else: data = add_external_user_vendor(user_id, email, pwd, username) subject = "Invitation From Techconnetr" html_message = render_to_string('email_templates/external_user_register_template.html', { 'username': email,'client': client,'site_url': site_url, 'password': pwd}) plain_message = strip_tags(html_message) from_email = settings.EMAIL_HOST_USER to_list = [email] if send_mail(subject, plain_message, from_email, to_list, fail_silently=True,html_message=html_message): print('sent mail') else: data = email_check print(data) return JsonResponse(data) else: data = {'status':0,'msg':"Password should contain characters, numbers and special symbols!"} return JsonResponse(data) def add_external_vendor(user_id, client_id): """ add TC vendor by superadmin """ list = [] if external_vendor.objects.count() > 0: if external_vendor.objects.filter(user_id=user_id).count() == 1: client_vendor_data = external_vendor.objects.get(user_id=user_id) list = ast.literal_eval(client_vendor_data.client_id) if client_id in list: return {'status': 0, 'msg': 'you already added this vendor', 'user_id': user_id} else: list.append(client_id) client_vendor_data.client_id = list client_vendor_data.save() return {'status': 2, 'msg': 'This vendor already added by another vendor', 'user_id': user_id} else: list.append(client_id) external_vendor.objects.create(client_id=list, user_id=user_id) return {'status': 1, 'msg': ' vendor added Successfully!...', 'user_id': user_id} else: list.append(client_id) external_vendor.objects.create(client_id=list, user_id=user_id) return {'status': 1, 'msg': ' vendor added Successfully!...', 'user_id': user_id} def add_external_user_vendor(client_id, email, pwd, username): """ add vendor by client """ user.objects.create(email=email, user_name=username,password=pwd, is_active=1, usertype_id=5) user_id = user.objects.latest('id') return add_external_vendor(user_id.id, client_id) @login_required def vendor_allocation(request, camp_id): """ vendor allocation by to client to his external vendor """ campaign_details = Campaign.objects.get(id=camp_id) list = [] vendor_list_details = [] username = campaign_details.user.user_name data = { 'username': username, 'userid': campaign_details.user_id, 'cpl': campaign_details.cpl, 'targat_quantity': campaign_details.target_quantity, 'ramaining_quantity': campaign_details.raimainingleads, 'approveleads': campaign_details.approveleads, } user_id = request.session['userid'] vendor_list = external_vendor.objects.filter() for row in vendor_list: list = ast.literal_eval(row.client_id) if user_id in list: print(row.user_id) if campaign_allocation.objects.filter(client_vendor_id=row.user_id, cpl__gte=0, volume__gte=0, campaign_id=camp_id).count() != 1: user_details = user.objects.get(id=row.user_id) vendor_list_details.append({ 'email': user_details.email, 'checked': '0', 'display': 'none', 'vendor_name': user_details.email, 'vendor_id': row.user_id, 'camp_id': camp_id, }) return render(request, 'campaign/client_vendor_allocation.html', {'campdata': data, 'vendor_data': vendor_list_details}) @login_required def insert_lead(request, camp_id, camp_alloc_id): """ display lead header to upload indivdual lead """ labels = get_lead_header(camp_id) labels +=join_custom_question_header(camp_id) camp_alloc = campaign_allocation.objects.get(id=camp_alloc_id) return render(request, 'campaign/addlead.html', {'lead_header': labels, 'camp_id': camp_id, 'camp_alloc_id': camp_alloc_id,'camp_alloc':camp_alloc}) # following code is submit asset data in to database kishor def asset_submit(request): """ to submit assets for campaign """ if request.POST: t = Terms.objects.filter(campaign=request.POST.get('campaign')) if t: t[0].assets_name = request.POST.get('assets_name') t[0].sponsers = request.POST.get('sponsers') t[0].asset_distributor = request.POST.get('asset_distributor') t[0].add_assetslink = request.POST.get('add_assetslink') if t[0].assets_type: t[0].assets_type = update_assets( request, t[0].assets, ast.literal_eval(t[0].assets_type)) else: file_dict = saving_assets(request, t[0].assets) t[0].assets_type = file_dict t[0].save() data = {'status_code': 1} return JsonResponse(data) else: data = {'status_code': 2, 'message': 'Camapign Not Found'} return JsonResponse(data) data = {'status_code': 2, 'message': 'Please Fill the detail'} return JsonResponse(data) def remove_asset(request): """ remove links from campaign assets""" term_data = Terms.objects.get(campaign_id=request.POST.get('camp_id')) asset_type = request.POST.get('asset_type') data = ast.literal_eval(term_data.assets_type) if data: if data[asset_type]['link']: if request.POST.get('asset') in data[asset_type]['link']: data[asset_type]['link'].remove(request.POST.get('asset')) new_list = data[asset_type]['link'] if len(new_list) > 0: data[asset_type].update({'link': new_list}) term_data.assets_type = data term_data.save() else: if bool(data[asset_type]): data[asset_type].pop('link',None) if not bool(data[asset_type]): data.pop(asset_type,None) else: data.pop(asset_type,None) term_data.assets_type = data term_data.save() data = {'status_code': 1, 'message': 'asset removed'} else: data = {'status_code': 1, 'message': 'asset remove error'} return JsonResponse(data) def remove_file_asset(request): """ remove files from campaign assets""" term_data = Terms.objects.get(campaign_id=request.POST.get('camp_id')) asset_type = request.POST.get('asset_type') data = ast.literal_eval(term_data.assets_type) if data: if len(data[asset_type]['files']) > 0: for file_dict in data[asset_type]['files']: if request.POST.get('asset') == file_dict['url']: data[asset_type]['files'].remove(file_dict) new_list = data[asset_type]['files'] if len(new_list) > 0: data[asset_type].update({'files': new_list}) term_data.assets_type = data term_data.save() else: if bool(data[asset_type]): data[asset_type].pop('files',None) if not bool(data[asset_type]): data.pop(asset_type,None) else: data.pop(asset_type,None) term_data.assets_type = data term_data.save() data = {'status_code': 1, 'message': 'asset removed'} else: data = {'status_code': 1, 'message': 'asset remove error'} return JsonResponse(data) def script_submit(request): """ to submit scripts for campaign """ camp_id = Scripts.objects.get_or_create( campaign_id=request.POST.get('campaign')) if request.FILES: myfile = request.FILES['client_script'] fs = FileSystemStorage() filename = fs.save(myfile.name, myfile) uploaded_file_url = fs.url(filename) camp_id[0].client_script = filename camp_id[0].save() data = {'status': 1} return JsonResponse(data) data = {'status': 2} return JsonResponse(data) def vendor_script_submit(request): """ upload vendor scripts """ camp_id = Scripts.objects.get_or_create( campaign_id=request.POST.get('campaign')) if request.FILES: myfile = request.FILES['client_script'] fs = FileSystemStorage() filename = fs.save(myfile.name, myfile) uploaded_file_url = fs.url(filename) camp_id[0].client_script = filename camp_id[0].save() data = {'status': 1} return JsonResponse(data) data = {'status': 2} return JsonResponse(data) def get_asset_specs(request): """ to fetch uploaded assets """ asset = Terms.objects.get(campaign_id=request.POST.get('id')) data = { 'name':asset.campaign.name, 'assets_name': asset.assets_name if asset.assets_name else 'None', 'assets': asset.assets if asset.assets else 'None', 'sponsers': asset.sponsers if asset.sponsers else 'None', 'assets_type': ast.literal_eval(asset.assets_type) if asset.assets_type else 'None', 'asset_distributor': asset.asset_distributor if asset.asset_distributor else 'None', 'add_assetslink': asset.add_assetslink if asset.add_assetslink else 'None', } return JsonResponse(data) def get_scripts(request): """ return uploaded scripts """ term_data = Scripts.objects.filter(campaign_id=request.POST.get('id')) data = {} if term_data: data = { 'url': term_data[0].client_script.url if term_data[0].client_script.url else 'None', } print(data) return JsonResponse(data) def get_agreements(request): pass @login_required def campaign_notebook(request): """ return all campaigns to the campaign notebook """ counter = Campaign.objects.filter( user_id=request.session['userid']).count() data = [] if counter > 0: campaign_details = Campaign.objects.filter( user_id=request.session['userid']) pending_camp_count = Campaign.objects.filter( user_id=request.session['userid'], status=3).count() live_camp_count = Campaign.objects.filter( user_id=request.session['userid'], status=1).count() assigned_camp_count = Campaign.objects.filter( user_id=request.session['userid'], status=5).count() complete_camp_count = Campaign.objects.filter( user_id=request.session['userid'], status=4).count() return render(request, 'campaign/campaign_notebook.html', {'camps': campaign_details, 'pending_count': pending_camp_count, 'live_count': live_camp_count, 'assigned_count': assigned_camp_count, 'complete_count': complete_camp_count}) else: return render(request, 'campaign/campaign_notebook.html', {}) def get_camp_data(request): """ return campaign data to display on campaign notebook """ camp_details = Campaign.objects.get(id=request.POST.get('id')) mapping = Mapping.objects.get(campaign_id=request.POST.get('id')) aggrement = data_assesment.objects.get(user_id=request.session['userid']) data = { 'name': camp_details.name, 'cpl': camp_details.cpl, 'volume': camp_details.target_quantity, 'camp_io':camp_details.io_number, 'rfq': camp_details.rfq, 'status': camp_details.status, 'rfq_timer': camp_details.rfq_timer, 'start_date': camp_details.start_date, 'end_date': camp_details.end_date, 'desc': camp_details.description, 'camp_id': request.POST.get('id'), 'sender_id': request.session['userid'], 'special_instr': mapping.special_instructions, 'nda': aggrement.nda_aggrement, 'msa': aggrement.msa_aggrement, 'gdpr': aggrement.gdpr_aggrement, 'dpa': aggrement.dpa_aggrement, 'io': aggrement.io_aggrement, } return JsonResponse(data) def get_vendor_list(request): """ return assigned vendor list """ camp_details = Campaign.objects.get(id=request.POST.get('camp_id')) vendor_list = campaign_allocation.objects.filter( campaign_id=camp_details.id, status__in=[1,4,5]).distinct() vendor_id = [] vendor_data = [] for vendor in vendor_list: if vendor.client_vendor_id not in vendor_id: vendor_id.append(vendor.client_vendor_id) vendor_data.append({ 'id': vendor.client_vendor_id, 'vendor_name': vendor.client_vendor.user_name }) return JsonResponse(vendor_data, safe=False) @login_required def all_lead_display(request, camp_id): """ return all uploaded leads for a campaign """ all_list = [] all_header = [] all_lead_header = [] submitLead = 0 rejectedLead = 0 camp_alloc = campaign_allocation.objects.filter(campaign_id=camp_id) if camp_alloc.count() > 0: header = create_custom_header(camp_id, request.session['userid']) campaign_details = Campaign.objects.get(id=camp_id) for row in camp_alloc: submitLead = submitLead + int(row.submited_lead) rejectedLead = rejectedLead+int(row.return_lead) data = {'camp_id': camp_id, 'camp_alloc_id': camp_id, 'camp_name': campaign_details.name, 'cpl': campaign_details.cpl, 'lead': campaign_details.target_quantity, 'submited_lead': submitLead, 'return_lead': rejectedLead} if row.upload_leads != None: list = ast.literal_eval(row.upload_leads) if len(header) == 0: for dict in list[0]: all_header.append(dict) all_lead_header.append(dict) all_header = create_header(all_header) else: all_header = header for dict in list[0]: all_lead_header.append(dict) all_header = create_header(all_header) all_list.extend(list) return render(request, 'campaign/client_lead_upload.html', {'campaigns': data, 'leadlist': all_list, 'all_lead_header': all_lead_header, 'all_header': all_header, 'header': header, 'camp_id': camp_id}) def get_rfq_cpl(request): """ return rfq and cpl sent by superadmin """ campaign = Campaign_rfq.objects.get(campaign_id=request.POST.get('camp_id')) data = {'cpl': campaign.cpl, 'volume': campaign.volume} return JsonResponse(data) def update_status_rfq(request): """ process actions on rfq resopnce """ camp_id = request.POST.get('camp_id') cpl = request.POST.get('cpl') volume = request.POST.get('volume') choose = request.POST.get('choose') user_id = request.session['userid'] superadmin = user.objects.get(usertype_id=4) if choose == '1': accept_rfq_cpl_by_client(camp_id, cpl, volume, user_id, superadmin.id) elif choose == '2': remark = request.POST.get('remark') counter_rfq_cpl_by_client( camp_id, cpl, volume, user_id, remark, superadmin.id) elif choose == '3': rejected_rfq_cpl_by_client( camp_id, cpl, volume, user_id, superadmin.id) data = {'success': 1, 'msg': 'Action Submitted Successfully!...'} return JsonResponse(data) def accept_rfq_cpl_by_client(camp_id, cpl, volume, user_id, superadmin_id): """ accept cpl and volume sent form superadmin """ # changes for rfq datatable campaign = Campaign_rfq.objects.get(campaign_id=camp_id) campaign.status = 3 campaign.save() campaign = Campaign.objects.get(id=camp_id) name = campaign.name campaign.cpl = cpl campaign.target_quantity = volume campaign.raimainingleads = volume campaign.rfq_status = 1 campaign.save() title = 'Accept RFQ CPL' desc = 'Accept RFQ CPL Request by client on '+str(name) # noti_via_mail(superadmin_id, title, desc, 1) RegisterNotification(user_id, superadmin_id, desc, title, 1, campaign, None) return True def counter_rfq_cpl_by_client(camp_id, cpl, volume, user_id, remark, superadmin_id): """ counter cpl or volume to superadmin """ campaign = Campaign_rfq.objects.get(campaign_id=camp_id) name = campaign.campaign.name campaign.old_cpl = campaign.cpl campaign.old_volume = campaign.volume campaign.cpl = cpl campaign.volume = volume campaign.remark = remark campaign.status = 2 campaign.save() campaign = Campaign.objects.get(id=camp_id) campaign.rfq_status = 2 campaign.save() title = 'Counter RFQ CPL' desc = 'Counter RFQ CPL by client on '+str(name) # noti_via_mail(sender_id,title, desc, 1) RegisterNotification(user_id, superadmin_id, desc, title, 1, campaign, None) return True def rejected_rfq_cpl_by_client(camp_id, cpl, volume, user_id, superadmin_id): """ reject cpl and volume sent from superadmin """ campaign = Campaign_rfq.objects.get(campaign_id=camp_id) campaign.status = 4 campaign.save() campaign = Campaign.objects.get(id=camp_id) name = campaign.name title = 'Reject RFQ CPL' desc = 'Reject RFQ CPL by client on '+str(name) # noti_via_mail(sender_id, title, desc, 1) RegisterNotification(user_id, superadmin_id, desc, title, 1, campaign, None) return True @login_required def RFQ_Campaign(request, camp_id): """ to request rfq suggestion from external vendors """ campaign_details = Campaign.objects.get(id=camp_id) data = { 'cpl': campaign_details.cpl, 'targat_quantity': campaign_details.target_quantity, 'ramaining_quantity': campaign_details.raimainingleads, 'camp_id': camp_id, 'camp_name': campaign_details.name, 'client_name': campaign_details.user.user_name, } list = [] vendor_list_details = [] user_id = request.session['userid'] marketing_method = source_touches.objects.filter(is_active=1) cpl_counter = campaign_allocation.objects.filter( campaign_id=camp_id, status=3, cpl=0, volume=-1).count() cpl_list = campaign_allocation.objects.filter( campaign_id=camp_id, status=3, cpl=0, volume=-1) vendor_list = external_vendor.objects.filter() for row in vendor_list: print(row.user_id) list = ast.literal_eval(row.client_id) if user_id in list: user_details = user.objects.get(id=row.user_id) vendor_list_details.append( {'userid': row.user_id, 'email': user_details.email, 'user_name': user_details.user_name}) return render(request, 'campaign/client_rfq_campaign.html', {'cpl_counter': cpl_counter, 'cpl_list': cpl_list, 'data': data, 'vendor_list': vendor_list_details}) def rfq_vendor_allocation(request): """ to send request to external vendors """ ids = request.POST.getlist('ids[]') camp_id = request.POST.get('camp_id') userid = request.session['userid'] title = "New RFQ Campaign Allocated By" desc = "Client" for id in ids: counter = campaign_allocation.objects.filter( campaign_id=camp_id, client_vendor_id=id, cpl=-1, volume=-1, status=3).count() if counter != 1: campaign_allocation.objects.create( campaign_id=camp_id, client_vendor_id=id, cpl=-1, volume=-1, status=3) from client.utils import noti_via_mail noti_via_mail(id, title, desc, mail_noti_new_campaign) RegisterNotification(userid, id, desc, title, 2,None, campaign_allocation.objects.latest('id')) data = {'success': 1} return JsonResponse(data) def update_rfq_cpl(request): """ update rfq and cpl """ t = Campaign.objects.get(id=request.POST.get('camp_id')) t.cpl = request.POST.get('cpl') t.save() data = {'success': 1, 'msg': 'CPL updated Successfully!...'} return JsonResponse(data) def counter_action_on_cpl(request): """ counter cpl """ vendor_id = request.POST.get('vendor_id') camp_alloc_id = request.POST.get('camp_alloc_id') id = request.POST.get('id') userid = request.session['userid'] cpl = request.POST.get('cpl') if id == '1': counter_action_accept_vendor(camp_alloc_id, vendor_id, userid, cpl) data = {'success': 1, 'msg': 'Counter Request accepted...'} elif id == '2': counter_action_reject_vendor(camp_alloc_id, vendor_id, userid) data = {'success': 1, 'msg': 'Counter Request Rejected...'} return JsonResponse(data) def counter_action_accept_vendor(camp_alloc_id, vendor_id, userid, cpl): """ accept counter by external vendor """ camp = campaign_allocation.objects.get(id=camp_alloc_id) name = camp.campaign.name camp.cpl = cpl camp.counter_status = 2 camp.save() title = "Accept Counter by superadmin" desc = "Accept CPL Counter on " + str(name) from client.utils import noti_via_mail noti_via_mail(vendor_id, title, desc, mail_noti_vendor_action_on_camp_request) RegisterNotification(userid, vendor_id, desc, title, 1, None, camp) return True def counter_action_reject_vendor(camp_alloc_id, vendor_id, userid): """ reject counter request """ camp = campaign_allocation.objects.get(id=camp_alloc_id) name = camp.campaign.name camp.counter_status = 2 camp.save() title = "Reject Counter by superadmin" desc = "Reject CPL Counter on " + str(name) from client.utils import noti_via_mail noti_via_mail(vendor_id, title, desc, mail_noti_vendor_action_on_camp_request) RegisterNotification(userid, vendor_id, desc, title, 1, None, camp) return True def get_camp_specs(request): """ get all campaign specifications """ camp_id = request.POST.get('id') camp_data = Campaign.objects.get(id=camp_id) # print(camp_data.__dict__) term_data = Terms.objects.get(campaign_id=camp_id) delivary_data = Delivery.objects.get(campaign_id=camp_id) mapping_data = Mapping.objects.get(campaign_id=camp_id) spec_data = Specification.objects.get(campaign_id=camp_id) # use as text mapping useAsTxtMapping = [] txt_mapping_exist = UseAsTxtMapping.objects.count() if(txt_mapping_exist): # if records exist useAsTxtMapping = UseAsTxtMapping.objects.filter( campaign=camp_data).values() # list of dicts print("useAsTxtMapping : ", useAsTxtMapping.values()) context = { 'campaign_id': camp_data.id, 'stat': camp_data.status, 'target_quantity': camp_data.target_quantity if camp_data.target_quantity else '', 'campaign_type': camp_data.get_type_display() if camp_data.type else '', 'outrich_method': camp_data.method.all().values_list('type',flat=True) if camp_data.method.all() else '', 'indursty_type': mapping_data.industry_type if mapping_data.industry_type else '', 'job_title': mapping_data.job_title if mapping_data.job_title else '', 'job_level': mapping_data.job_level if mapping_data.job_level else '', 'assets': term_data.assets if term_data.assets else '', 'delivery_method': delivary_data.delivery_method if delivary_data.delivery_method else '', 'country': mapping_data.country if mapping_data.country else '', 'company_size': mapping_data.company_size if mapping_data.company_size else '', 'revenue': mapping_data.revenue_size if mapping_data.revenue_size else '', 'data_field': delivary_data.data_header if delivary_data.data_header else '', 'custom_data_fields':delivary_data.custom_header if delivary_data.custom_header else '', 'tc_header_status':delivary_data.tc_header_status, 'custom_header_status':delivary_data.custom_header_status, 'pacing': spec_data.campaign_pacing if spec_data.campaign_pacing else '', 'instructions': mapping_data.special_instructions if mapping_data.special_instructions else '', 'useAsTxtMapping': useAsTxtMapping, 'rfq_status': camp_data.rfq, 'campaign':camp_data, 'mapping':mapping_data, 'Custom_question_status':mapping_data.custom_status, 'usertype':request.session['usertype'] } # return JsonResponse(data) html = render_to_response('campaign/show_campaign_specs.html', context) print("html :", html) return html @login_required def rejected_reason_list(request): """ return reject lead reasons """ user_id = request.session['userid'] # global_reason=leads_rejected_reson.objects.filter(status=0) client_reason = leads_rejected_reson.objects.filter( status=1, user_id=user_id) return render(request, 'lead/rejected_reason_list.html', {'reason': client_reason}) @login_required def rectify_reason_list(request): """ return rectify lead reasons """ user_id = request.session['userid'] client_reason = Leads_Rectify_Reason.objects.filter( status=1, user_id=user_id) return render(request, 'lead/rectify_reason_list.html', {'reason': client_reason}) @login_required def individual_campaign_notebook(request, camp_id): """ individual campaign notebook """ campaign_details = Campaign.objects.filter(id=camp_id) live_camp_count = Campaign.objects.filter(id=camp_id, status=3).count() print(live_camp_count) vendor_list = get_vendor_list_of_campaign(camp_id) if campaign_details: return render(request, 'campaign/individual_campaign_notebook.html', {'camps': campaign_details, 'vendor_list': vendor_list, }) else: return render(request, 'campaign/individual_campaign_notebook.html', {}) # updating campaign end date from campaign notebook @login_required def update_campaign_end_date(request): """ update campaign end date """ if Campaign.objects.filter(id=request.POST.get('camp_id')).update(end_date=request.POST.get('date')): data = {'status': 1, 'message': 'date change successfully'} else: data = {'status': 2, 'message': 'date change failed'} return JsonResponse(data) @login_required def update_campaign_start_date(request): """ update campaign end date """ if Campaign.objects.filter(id=request.POST.get('camp_id')).update(start_date=request.POST.get('date')): data = {'status': 1, 'message': 'date change successfully'} else: data = {'status': 2, 'message': 'date change failed'} return JsonResponse(data) @login_required def TC_vendor_list(request): """ TC vendor list """ vendor_list_details = [] user_id = request.session['userid'] campaigns = Campaign.objects.filter(user=user_id) vendor_list = campaign_allocation.objects.filter( campaign_id__in=campaigns, status__in=[1, 5, 4]) for row in vendor_list: user_details = client_vendor.objects.filter( user_id=row.client_vendor.id) if user_details: if user_details[0] not in vendor_list_details: vendor_list_details.append(user_details[0]) return render(request, 'vendor1/TC_vendor_list.html', {'vendor_list': vendor_list_details}) def existing_vendor_list(request): """ TC vendor who are currently working with client """ vendor_list_details = [] user_id = request.session['userid'] campaigns = Campaign.objects.filter(user=user_id) vendor_list = campaign_allocation.objects.filter( campaign_id__in=campaigns, status=1) for row in vendor_list: user_details = user.objects.filter(id=row.client_vendor.id) if user_details: if user_details[0] not in vendor_list_details: vendor_list_details.append(user_details[0]) return render(request, 'vendor1/existing_vendor_list.html', {'vendor_list': vendor_list_details}) def get_cpl_list(request): """ return cpl list to superadmin """ camp_id = request.GET.get('camp_id') user_id = request.session['userid'] get_details = collect_campaign_details(camp_id) vendor_list = [] tc_quote = [] vendor_list_id = get_external_vendors(user_id) ext_vendor_list = campaign_allocation.objects.filter(campaign_id=camp_id,client_vendor_id__in=vendor_list_id, status=3, cpl__in=[-1,0], volume=-1) for vendor in ext_vendor_list: vendor_list.append({ 'id':vendor.client_vendor_id, 'cpl':vendor.rfqcpl, 'volume':vendor.rfqvolume, 'name':vendor.client_vendor.user_name, }) campaign = Campaign_rfq.objects.filter(campaign_id=camp_id) for vendor in campaign: if vendor.status == 1: tc_quote.append({ 'id':vendor.campaign_id, 'cpl':vendor.cpl, 'volume':vendor.volume, 'name':'TC TEAM', }) vendor_data = [] vendorlist = campaign_allocation.objects.filter(campaign_id=camp_id, status=3,cpl=0) for vendor in vendorlist: vendor_data.append({ 'id': vendor.client_vendor_id, 'vendor_name': vendor.client_vendor.user_name }) rfq_timer = Campaign.objects.get(id=camp_id) rfq_timer = rfq_timer.rfq_timer # print(vendor_data) data = {'rfq_timer': rfq_timer,'success': 1,'ext_vendor_list':vendor_list,'details':get_details,'tc_quote':tc_quote,'vendor_data':vendor_data } return JsonResponse(data) @login_required def client_user_access(request): """ return user access modules to client """ usertypes = usertype.objects.filter(type="external_vendor") users = [] user_id = request.session['userid'] vendor_list = external_vendor.objects.filter() for row in vendor_list: list = ast.literal_eval(row.client_id) if user_id in list: user_details = user.objects.get(id=row.user_id) users.append(user_details) groups = Client_User_Group.objects.filter(group_owner_id=user_id) return render(request, 'dashboard/client_user_access.html', {'type':usertypes,'groups':groups,'users':users}) @login_required def get_user_access(request): """ return selected user access """ current_user = user.objects.get(id=request.POST.get('userid')) if request.POST.get('groupid'): roles = User_Configuration.objects.filter(is_client =True,group__in=[request.POST.get('groupid')]).order_by('position') access = [] for role in roles: if current_user in role.user.all(): access.append({ 'id': role.id, 'name': role.name, 'url': role.url, 'parent': role.parent.id if role.parent else None, 'checked': 1, 'groupname':role.group.filter(id=request.POST.get('groupid'))[0].group_name, 'groupid':role.group.filter(id=request.POST.get('groupid'))[0].id, }) else: access.append({ 'id': role.id, 'name': role.name, 'url': role.url, 'parent': role.parent.id if role.parent else None, 'checked': 0, 'groupname':role.group.filter(id=request.POST.get('groupid'))[0].group_name, 'groupid':role.group.filter(id=request.POST.get('groupid'))[0].id, }) data = {'success': 1, 'user_roles': access} else: roles = User_Configuration.objects.filter(is_client =True,user_type__in=request.POST.get('usertype_id')).order_by('position') access = [] for role in roles: if current_user in role.user.all(): access.append({ 'id': role.id, 'name': role.name, 'url': role.url, 'parent': role.parent.id if role.parent else None, 'checked': 1, 'usertype':role.user_type.filter(id=request.POST.get('usertype_id'))[0].type if request.POST.get('usertype_id') else None, }) else: access.append({ 'id': role.id, 'name': role.name, 'url': role.url, 'parent': role.parent.id if role.parent else None, 'checked': 0, 'usertype':role.user_type.filter(id=request.POST.get('usertype_id'))[0].type if request.POST.get('usertype_id') else None, }) data = {'success': 1, 'user_roles': access} return JsonResponse(data) def user_and_groups(request): """ display create group page """ groups = Client_User_Group.objects.filter(group_owner_id=request.session['userid']) roles = User_Configuration.objects.filter(is_client =True,user=request.session['userid']).order_by('position') return render(request,'client/user_groups.html',{'groups':groups,'roles':roles}) def add_group(request): """ group add by client """ client_id = user.objects.get(id=request.session['userid']) group_type = Client_User_Group.objects.create(group_name=request.POST.get('group'),group_owner=client_id) data = {'success': 1} return JsonResponse(data) def delete_group(request): """ group delete by client """ client_id = user.objects.get(id=request.session['userid']) group_type = Client_User_Group.objects.get(id=request.POST.get('group_id'),group_owner=client_id).delete() data = {'success': 1} return JsonResponse(data) def edit_group(request): """ group add by client """ client_id = user.objects.get(id=request.session['userid']) if request.method == 'POST': client_grp = Client_User_Group.objects.get(id=request.POST.get('group_id'),group_owner=client_id) if client_grp: client_grp.group_name = request.POST.get('group') client_grp.save() data = {'success': 1} else: client_grp = Client_User_Group.objects.get(id=request.GET.get('group_id'),group_owner=client_id) if client_grp: data = {'success': 1,'group_name':client_grp.group_name} else: data = {'success': 2} return JsonResponse(data) def password_check(passwd): SpecialSym =['$', '@', '#', '%', '^', '&', '*', '+', '-', '!'] if len(passwd) < 8: return False if not any(char.isdigit() for char in passwd): return False if not any(char.isupper() for char in passwd): return False if not any(char.islower() for char in passwd): return False if not any(char in SpecialSym for char in passwd): return False else: return True def add_user_to_group(request): """ add user to group """ username = request.POST.get('username') email = request.POST.get('email').lower() pwd = request.POST.get('password') site_url = settings.BASE_URL group_id = request.POST.get('group') client_id = user.objects.get(id=request.session['userid']) client_group = Client_User_Group.objects.get(id=group_id,group_owner=client_id) if client_group: email_check = email_domain_check(email) t = password_check(pwd) if t is True: if email_check['status'] == 1: if user.objects.filter(email=email).count() == 0: new_user = user.objects.create(email=email, user_name=username,password=pwd, is_active=1, usertype_id=6) client_group.group_users.add(new_user) client_group.save() data = {'success': 1,'msg':f'{new_user.user_name} added to {client_group.group_name}'} subject = "Invitation From Techconnetr" html_message = render_to_string('email_templates/external_user_register_template.html', { 'username': email, 'client':client_id.user_name,'site_url': site_url, 'password': pwd}) plain_message = strip_tags(html_message) from_email = settings.EMAIL_HOST_USER to_list = [email] if send_mail(subject, plain_message, from_email, to_list, fail_silently=True,html_message=html_message): print('sent mail') else: data = {'success': 2,'msg':f'User already exists'} else: data = email_check else: data = {'success': 0,'msg': 'Password should be greater than 8 characters and a combination of upper and lowercase characters, special symbols and numbers!!'} else: data = {'success': 1,'msg':'Group does not exists'} return JsonResponse(data) @login_required def get_group_access(request): """ return selected user access """ user_group = Client_User_Group.objects.get(id=request.POST.get('groupid'),group_owner=request.session['userid']) roles = User_Configuration.objects.filter(is_client =True,user=request.session['userid']).order_by('position') access = [] for role in roles: if user_group in role.group.all(): access.append({ 'id': role.id, 'name': role.name, 'url': role.url, 'parent': role.parent.id if role.parent else None, 'checked': 1, 'usertype':request.session['usertype'], }) else: access.append({ 'id': role.id, 'name': role.name, 'url': role.url, 'parent': role.parent.id if role.parent else None, 'checked': 0, 'usertype':request.session['usertype'], }) data = {'success': 1, 'user_roles': access} return JsonResponse(data) def grant_group_access(request): """ grant access to user """ data = request.POST.getlist('access_id[]') usergroup = Client_User_Group.objects.get(id=request.POST.get('groupid'),group_owner=request.session['userid']) for access_id in data: access = User_Configuration.objects.get(id=access_id) if (access.parent == None): child = User_Configuration.objects.filter(parent_id=access_id) if child.count() > 0: if request.POST.get('parent_value') == 'true': for role in child: role.group.add(usergroup) role.save() print(role) if User_Configuration.objects.filter(parent_id=role.id).count() > 0: grand_child_access_call(role,access_id,usergroup,data,access) else: for role in child: role.group.remove(usergroup) role.save() if User_Configuration.objects.filter(parent_id=role.id).count() > 0: grand_child_access_call(role,access_id,usergroup,data,access) # import pdb;pdb.set_trace() if User_Configuration.objects.filter(parent_id=access_id,group__in=[usergroup]).count() == 0: access.group.remove(usergroup) else: access.group.add(usergroup) access.save() else: if usergroup not in access.group.all(): access.group.add(usergroup) else: access.group.remove(usergroup) access.save() data = {'success':1,'msg':f'Access Permission Changed For {usergroup.group_name}'} return JsonResponse(data) def grant_child_group_access(request): """ child grant access to user """ data = request.POST.getlist('access_id[]') usergroup = Client_User_Group.objects.get(id=request.POST.get('groupid'),group_owner=request.session['userid']) for access_id in data: access = User_Configuration.objects.get(id=access_id) if (access.parent == None): child = User_Configuration.objects.filter(parent_id=access_id) for role in child: if str(role.id) in data: if usergroup not in role.group.all(): role.group.add(usergroup) else: role.group.remove(usergroup) role.save() if User_Configuration.objects.filter(parent_id=role.id).count() > 0: grand_child_access_call(role,access_id,usergroup,data,access) if User_Configuration.objects.filter(parent_id=access_id,group__in=[usergroup]).count() == 0: access.group.remove(usergroup) else: access.group.add(usergroup) access.save() data = {'success':1,'msg':f'Access Permission Changed For {usergroup.group_name}'} return JsonResponse(data) def grant_grand_child_access(request): """ grant grand child access permision to the group """ data = request.POST.getlist('access_id[]') usergroup = Client_User_Group.objects.get(id=request.POST.get('groupid'),group_owner=request.session['userid']) for access_id in data: access = User_Configuration.objects.get(id=access_id) if (access.parent == None): child = User_Configuration.objects.filter(parent_id=access_id) for sub_menu in child: if str(sub_menu.id) in data: grand_child = User_Configuration.objects.filter(parent_id=sub_menu.id) for grand_menu in grand_child: if str(grand_menu.id) in data: if usergroup not in grand_menu.group.all(): grand_menu.group.add(usergroup) else: grand_menu.group.remove(usergroup) grand_menu.save() if User_Configuration.objects.filter(parent_id=sub_menu.id,group__in=[usergroup]).count() == 0: sub_menu.group.remove(usergroup) else: sub_menu.group.add(usergroup) if User_Configuration.objects.filter(parent_id=access_id,group__in=[usergroup]).count() == 0: access.group.remove(usergroup) else: access.group.add(usergroup) access.save() data = {'success':1,'msg':f'Access Permission Changed For {usergroup.group_name}'} return JsonResponse(data) def get_group_users(request): """ return members in a group """ group_users = [] group = Client_User_Group.objects.get(id=request.GET.get('group_id'),group_owner=request.session['userid']) for users in group.group_users.all(): group_users.append({ 'userid': users.id, 'name': users.user_name, 'email': users.email, 'status':users.is_active, }) data = {'success':1,'group_users':group_users} return JsonResponse(data) def remove_group_user(request): """ remove user from group and platform """ user.objects.get(id=request.POST.get('user_id')).delete() data = {'success':1} return JsonResponse(data) def action_on_camp_by_client(status, lead_list, campaign_id, vendor_id, vendor, reason=None, status_code=None): if CampaignTrack.objects.filter(campaign_id=campaign_id).exists(): camp_alloc = campaign_allocation.objects.get(campaign_id=campaign_id, client_vendor_id=vendor_id) track = CampaignTrack.objects.get(campaign_id=campaign_id) if status == 1: status = 'approved' elif status == 2: status = 'rejected' elif status == 3: status = 'rectify' if track.client_action_count > 0: list = eval(track.client_action) d = {} d['type'] = 'action' d['vendor_id'] = vendor_id d['vendor'] = vendor d['status'] = status d['lead_id'] = lead_list t = datetime.datetime.now() d['date'] = t.isoformat() d['reason'] = reason d['status_code'] = status_code d['vendor_percentage'] = vendorper(camp_alloc.id) d['client_percentage'] = percentage(campaign_id) list.append(d) track.client_action = list track.client_action_count += 1 track.save() # print(list) # print('hello') else: list = [] d = {} d['type'] = 'action' d['vendor_id'] = vendor_id d['vendor'] = vendor d['status'] = status d['lead_id'] = lead_list t = datetime.datetime.now() d['date'] = t.isoformat() d['reason'] = reason d['status_code'] = status_code d['vendor_percentage'] = vendorper(camp_alloc.id) d['client_percentage'] = percentage(campaign_id) list.append(d) track.client_action = list track.client_action_count += 1 track.save()
[ "tejupatne231995@gmail.com" ]
tejupatne231995@gmail.com
bc231e520ceb1357dc73d5477d07af529ef19a92
df9098c0167537c589b43e5d55cd36209a2e3478
/drivingsim_vav/fetch_gym/envs/fetch_env.py
193ceb8a1239b55cc1d6dac59051a561768fc3e1
[ "MIT" ]
permissive
dsbrown1331/vav-icml
60ef7ef6947d2ec2b6faae4d5d0e40116f7fab05
90f40c2b5b52f3cc142ffd4e02bb82d88e1e221d
refs/heads/main
2023-06-04T14:30:39.451312
2021-06-24T22:34:46
2021-06-24T22:34:46
375,876,556
1
0
null
null
null
null
UTF-8
Python
false
false
9,986
py
import numpy as np from fetch_gym.envs import robot_env, rotations, utils def goal_distance(goal_a, goal_b): assert goal_a.shape == goal_b.shape return np.linalg.norm(goal_a - goal_b, axis=-1) class FetchEnv(robot_env.RobotEnv): """Superclass for all Fetch environments. """ def __init__( self, model_path, n_substeps, gripper_extra_height, block_gripper, has_object, target_in_the_air, target_offset, obj_range, target_range, distance_threshold, initial_qpos, reward_type, ): """Initializes a new Fetch environment. Args: model_path (string): path to the environments XML file n_substeps (int): number of substeps the simulation runs on every call to step gripper_extra_height (float): additional height above the table when positioning the gripper block_gripper (boolean): whether or not the gripper is blocked (i.e. not movable) or not has_object (boolean): whether or not the environment has an object target_in_the_air (boolean): whether or not the target should be in the air above the table or on the table surface target_offset (float or array with 3 elements): offset of the target obj_range (float): range of a uniform distribution for sampling initial object positions target_range (float): range of a uniform distribution for sampling a target distance_threshold (float): the threshold after which a goal is considered achieved initial_qpos (dict): a dictionary of joint names and values that define the initial configuration reward_type ('sparse' or 'dense'): the reward type, i.e. sparse or dense """ self.gripper_extra_height = gripper_extra_height self.block_gripper = block_gripper self.has_object = has_object self.target_in_the_air = target_in_the_air self.target_offset = target_offset self.obj_range = obj_range self.target_range = target_range self.distance_threshold = distance_threshold self.reward_type = reward_type if model_path == 'fetch/reach.xml': self.type = 'reach' elif model_path == 'fetch/reach_test.xml': self.type = 'reach_test' else: self.type = None super(FetchEnv, self).__init__( model_path=model_path, n_substeps=n_substeps, n_actions=3, initial_qpos=initial_qpos) # GoalEnv methods # ---------------------------- def compute_reward(self, achieved_goal, goal, info): # Compute distance between goal and the achieved goal. try: w = [-0.54, -0.10, 0.83] table_pos = self.sim.data.get_body_xpos('table') obstacle_pos = self.sim.data.get_body_xpos('boxobstacle') goal_pos = self.sim.data.get_body_xpos('goal') d = goal_distance(achieved_goal, goal) dist_threshold = 0.35 # ensure that this is the same as in domain.py x = achieved_goal # TODO: Gleb, this is end_effector position, correct? goal_dist = 25 * -np.exp( -np.sqrt((x[0] - goal_pos[0]) ** 2 + (x[1] - goal_pos[1]) ** 2 + (x[2] - goal_pos[2]) ** 2)) table_dist = 5 * -np.exp(-np.sqrt((x[2] - table_pos[2]) ** 2)) obstacle_dist = 40 * (1 - np.exp( -np.sqrt((x[0] - obstacle_pos[0]) ** 2 + (x[1] - obstacle_pos[1]) ** 2 + (x[2] - obstacle_pos[2]) ** 2))) final_goal_dist = 250 * np.exp(-d) if d < dist_threshold else 0 return np.array([goal_dist, table_dist, obstacle_dist]).dot(w) except: d = goal_distance(achieved_goal, goal) if self.reward_type == 'sparse': return -(d > self.distance_threshold).astype(np.float32) else: return -d # RobotEnv methods # ---------------------------- def _step_callback(self): if self.block_gripper: self.sim.data.set_joint_qpos('robot0:l_gripper_finger_joint', 0.) self.sim.data.set_joint_qpos('robot0:r_gripper_finger_joint', 0.) self.sim.forward() def _set_action(self, action): action = action.copy() # ensure that we don't change the action outside of this scope pos_ctrl, gripper_ctrl = action[:3], 0 pos_ctrl *= 0.05 # limit maximum change in position rot_ctrl = [1., 0., 1., 0.] # fixed rotation of the end effector, expressed as a quaternion # rot_ctrl = action[3:] gripper_ctrl = np.array([gripper_ctrl, gripper_ctrl]) assert gripper_ctrl.shape == (2,) if self.block_gripper: gripper_ctrl = np.zeros_like(gripper_ctrl) action = np.concatenate([pos_ctrl, rot_ctrl, gripper_ctrl]) utils.ctrl_set_action(self.sim, action) utils.mocap_set_action(self.sim, action) def _get_obs(self): # positions grip_pos = self.sim.data.get_site_xpos('robot0:grip') dt = self.sim.nsubsteps * self.sim.model.opt.timestep grip_velp = self.sim.data.get_site_xvelp('robot0:grip') * dt robot_qpos, robot_qvel = utils.robot_get_obs(self.sim) if self.has_object: object_pos = self.sim.data.get_site_xpos('object0') # rotations object_rot = rotations.mat2euler(self.sim.data.get_site_xmat('object0')) # velocities object_velp = self.sim.data.get_site_xvelp('object0') * dt object_velr = self.sim.data.get_site_xvelr('object0') * dt # gripper state object_rel_pos = object_pos - grip_pos object_velp -= grip_velp else: object_pos = object_rot = object_velp = object_velr = object_rel_pos = np.zeros(0) gripper_state = robot_qpos[-2:] gripper_vel = robot_qvel[-2:] * dt # change to a scalar if the gripper is made symmetric if not self.has_object: achieved_goal = grip_pos.copy() else: achieved_goal = np.squeeze(object_pos.copy()) obs = np.concatenate([ grip_pos, object_pos.ravel(), object_rel_pos.ravel(), gripper_state, object_rot.ravel(), object_velp.ravel(), object_velr.ravel(), grip_velp, gripper_vel, ]) return { 'observation': obs.copy(), 'achieved_goal': achieved_goal.copy(), 'desired_goal': self.goal.copy(), } def _viewer_setup(self): body_id = self.sim.model.body_name2id('robot0:torso_lift_link') lookat = self.sim.data.body_xpos[body_id] for idx, value in enumerate(lookat): self.viewer.cam.lookat[idx] = value self.viewer.cam.distance = 2.5 self.viewer.cam.azimuth = 132. self.viewer.cam.elevation = -14. def _render_callback(self): # Visualize target. sites_offset = (self.sim.data.site_xpos - self.sim.model.site_pos).copy() site_id = self.sim.model.site_name2id('target0') self.sim.model.site_pos[site_id] = self.goal - sites_offset[0] self.sim.forward() def _reset_sim(self): self.sim.set_state(self.initial_state) ### COMMENT OUT WHEN RUNNING SIMULATION EXPERIMENTS -- ONLY REQUIRED FOR HUMAN EXP # Setting initial state for Fetch Move if self.type: names = ["shoulder_pan_joint", "shoulder_lift_joint", "upperarm_roll_joint", "elbow_flex_joint", "forearm_roll_joint", "wrist_flex_joint", "wrist_roll_joint"] names = ["robot0:" + n for n in names] values = [1.364, -0.294, -2.948, 0.906, -0.275, -1.206, 3.086] if self.type == 'reach_test': values[0] = -values[0] for i in range(len(names)): self.sim.data.set_joint_qpos(names[i], values[i]) # Randomize start position of object. # if self.has_object: # object_xpos = self.initial_gripper_xpos[:2] # while np.linalg.norm(object_xpos - self.initial_gripper_xpos[:2]) < 0.1: # object_xpos = self.initial_gripper_xpos[:2] + self.np_random.uniform(-self.obj_range, self.obj_range, size=2) # object_qpos = self.sim.data.get_joint_qpos('object0:joint') # assert object_qpos.shape == (7,) # object_qpos[:2] = object_xpos # self.sim.data.set_joint_qpos('object0:joint', object_qpos) self.sim.forward() return True def _sample_goal(self): goal = np.array([1.45, 0.75, 0.42]) return goal # if self.has_object: # goal = self.initial_gripper_xpos[:3] # goal[0] += 0.06 # goal += self.target_offset # goal[2] = self.height_offset # else: # goal = self.initial_gripper_xpos[:3] # return goal.copy() def _is_success(self, achieved_goal, desired_goal): d = goal_distance(achieved_goal, desired_goal) return (d < self.distance_threshold).astype(np.float32) def _env_setup(self, initial_qpos): for name, value in initial_qpos.items(): self.sim.data.set_joint_qpos(name, value) utils.reset_mocap_welds(self.sim) self.sim.forward() # Move end effector into position. gripper_target = np.array([-0.7, -0.3, -0.431 + self.gripper_extra_height]) + self.sim.data.get_site_xpos('robot0:grip') gripper_rotation = np.array([1., 0., 1., 0.]) self.sim.data.set_mocap_pos('robot0:mocap', gripper_target) self.sim.data.set_mocap_quat('robot0:mocap', gripper_rotation) for _ in range(10): self.sim.step() # Extract information for sampling goals. self.initial_gripper_xpos = self.sim.data.get_site_xpos('robot0:grip').copy() if self.has_object: self.height_offset = self.sim.data.get_site_xpos('object0')[2]
[ "dsbrown1331@gmail.com" ]
dsbrown1331@gmail.com
3ba7356fdb9012933809c6514df3118f37343543
a2b20597759990445081057d35d113434cfcf970
/stubs/typeshed/typeshed/stdlib/multiprocessing/forkserver.pyi
df435f00ebe770e9d572a874b269089844b7dca9
[ "MIT", "Apache-2.0" ]
permissive
facebook/pyre-check
34059599c02b65605c574f13555229f3b931fd4e
fe8ccedc572cc1faa1fd01e9138f65e982875002
refs/heads/main
2023-09-03T19:10:11.587028
2023-09-02T07:40:35
2023-09-02T07:40:35
110,274,488
6,703
575
MIT
2023-09-13T17:02:32
2017-11-10T17:31:36
OCaml
UTF-8
Python
false
false
1,064
pyi
from _typeshed import FileDescriptorLike, Unused from collections.abc import Sequence from struct import Struct from typing import Any __all__ = ["ensure_running", "get_inherited_fds", "connect_to_new_process", "set_forkserver_preload"] MAXFDS_TO_SEND: int SIGNED_STRUCT: Struct class ForkServer: def set_forkserver_preload(self, modules_names: list[str]) -> None: ... def get_inherited_fds(self) -> list[int] | None: ... def connect_to_new_process(self, fds: Sequence[int]) -> tuple[int, int]: ... def ensure_running(self) -> None: ... def main( listener_fd: int | None, alive_r: FileDescriptorLike, preload: Sequence[str], main_path: str | None = None, sys_path: Unused = None, ) -> None: ... def read_signed(fd: int) -> Any: ... def write_signed(fd: int, n: int) -> None: ... _forkserver: ForkServer = ... ensure_running = _forkserver.ensure_running get_inherited_fds = _forkserver.get_inherited_fds connect_to_new_process = _forkserver.connect_to_new_process set_forkserver_preload = _forkserver.set_forkserver_preload
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
43479fbf0082baa527fe671a3c356aad32639f5d
4c84cdd3ac80b9121aab75a9950b713633876c86
/src/GetFromfileURL.py
86386b57f50d2f6b5232cf48fa1f34c8d67c6da0
[ "MIT" ]
permissive
Yang-33/vjudge-atcoder-submitID
5a8d687211b0e5ac2965bb3cdf01f6a47ba679ad
5b87594322a337e6acb25c84470d273427413445
refs/heads/master
2021-05-03T04:32:15.053231
2018-02-08T15:04:16
2018-02-08T15:04:16
120,618,794
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
def GetfromfileURL(filename): URL = [] with open(filename,'r') as File: for line in File: URL.append(line) return URL
[ "kasai.yuta0810@gmail.com" ]
kasai.yuta0810@gmail.com
87755ae2bc42ff08eecb4df2ddff94c8c977fea3
62e58c051128baef9452e7e0eb0b5a83367add26
/edifact/D13A/REGENTD13AUN.py
0525003744529b5867628652bbb213f144f0eef8
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
3,511
py
#Generated by bots open source edi translator from UN-docs. from bots.botsconfig import * from edifact import syntax from recordsD13AUN import recorddefs structure = [ {ID: 'UNH', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGM', MIN: 1, MAX: 1}, {ID: 'CUX', MIN: 0, MAX: 1}, {ID: 'PNA', MIN: 1, MAX: 99, LEVEL: [ {ID: 'RFF', MIN: 0, MAX: 9}, {ID: 'ATT', MIN: 0, MAX: 9}, {ID: 'ADR', MIN: 0, MAX: 9}, {ID: 'COM', MIN: 0, MAX: 9}, ]}, {ID: 'DOC', MIN: 0, MAX: 99, LEVEL: [ {ID: 'RFF', MIN: 0, MAX: 9}, {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'ATT', MIN: 0, MAX: 9}, {ID: 'ADR', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, {ID: 'COM', MIN: 0, MAX: 9}, {ID: 'GEI', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 99}, ]}, {ID: 'MOA', MIN: 0, MAX: 9, LEVEL: [ {ID: 'PAI', MIN: 0, MAX: 1}, {ID: 'FII', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 9}, ]}, {ID: 'EVE', MIN: 1, MAX: 99, LEVEL: [ {ID: 'ATT', MIN: 0, MAX: 9}, {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'FTX', MIN: 0, MAX: 9}, ]}, {ID: 'DSI', MIN: 1, MAX: 99999, LEVEL: [ {ID: 'PNA', MIN: 0, MAX: 9}, {ID: 'REL', MIN: 0, MAX: 1}, {ID: 'RFF', MIN: 0, MAX: 9}, {ID: 'EVE', MIN: 1, MAX: 999, LEVEL: [ {ID: 'ATT', MIN: 0, MAX: 9}, {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'FTX', MIN: 0, MAX: 99}, {ID: 'REL', MIN: 1, MAX: 9999, LEVEL: [ {ID: 'PNA', MIN: 0, MAX: 9}, {ID: 'RFF', MIN: 0, MAX: 999}, {ID: 'NAT', MIN: 0, MAX: 2}, {ID: 'PDI', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'ADR', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, {ID: 'COM', MIN: 0, MAX: 9}, {ID: 'QTY', MIN: 0, MAX: 99}, {ID: 'FTX', MIN: 0, MAX: 999}, {ID: 'ATT', MIN: 0, MAX: 99, LEVEL: [ {ID: 'GEI', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'MEA', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 99}, ]}, {ID: 'MOA', MIN: 0, MAX: 99, LEVEL: [ {ID: 'ATT', MIN: 0, MAX: 9}, {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'QTY', MIN: 0, MAX: 9}, {ID: 'FTX', MIN: 0, MAX: 99}, ]}, {ID: 'DOC', MIN: 0, MAX: 99, LEVEL: [ {ID: 'ATT', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, {ID: 'DTM', MIN: 0, MAX: 9}, ]}, {ID: 'TAX', MIN: 0, MAX: 9, LEVEL: [ {ID: 'ATT', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, {ID: 'FTX', MIN: 0, MAX: 9}, ]}, {ID: 'EMP', MIN: 0, MAX: 9, LEVEL: [ {ID: 'ATT', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, {ID: 'DTM', MIN: 0, MAX: 9}, ]}, {ID: 'ICD', MIN: 0, MAX: 9, LEVEL: [ {ID: 'PNA', MIN: 0, MAX: 9, LEVEL: [ {ID: 'ADR', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, ]}, ]}, ]}, ]}, ]}, {ID: 'UNT', MIN: 1, MAX: 1}, ]}, ]
[ "jason.capriotti@gmail.com" ]
jason.capriotti@gmail.com
de135e77c6e7eb05a6ea85251c74670b01fd1e46
f78141cb2d1a8e10ee45739a0bc0f5a3b50182b1
/printpdfslides.py
c6e23000edc6bfdca6fce44195d7b856cc2802af
[]
no_license
mprat/MEET-sessions
329a4193ac4e409b1702a8901f6d2db1516557d8
9295bd1b7379d30ef1acfc81af27f66736041d16
refs/heads/master
2021-01-17T09:33:36.008808
2014-06-24T08:36:52
2014-06-24T08:36:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
552
py
import io import sys if len(sys.argv) != 2: print "type the name of the notebook as the command-line argument" else: notebook = sys.argv[1] path = notebook + '.slides.html' flag = u'@media print{*{text-shadow:none !important;color:#000 !important' with io.open(path, 'r') as in_file: data = in_file.readlines() for i, line in enumerate(data): if line[:64] == flag: data[i] = data[i].replace('color:#000 !important;', '') with io.open(path, 'w') as out_file: out_file.writelines(data) print "You can now print your slides"
[ "michele.pratusevich@gmail.com" ]
michele.pratusevich@gmail.com
e7473bdf2d22f720b9d59aa51182d6e104d57893
d6e36762821f30c589d335e1cedb937280741739
/stubs/openpyxl/openpyxl/chart/pie_chart.pyi
a5ba7cb1f9e12bf770623d12b40f49dd651fb916
[ "Apache-2.0", "MIT" ]
permissive
nobuggy/typeshed
4c20c86c14878b667e587a72fd2bdd25454413cf
d1bfd08b4bc843227d097decfd99d70272a1f804
refs/heads/master
2023-05-26T14:51:54.136347
2023-05-10T15:06:41
2023-05-10T15:06:41
72,130,850
0
0
null
2016-10-27T17:16:09
2016-10-27T17:16:09
null
UTF-8
Python
false
false
2,623
pyi
from _typeshed import Incomplete, Unused from abc import abstractmethod from typing_extensions import Literal from openpyxl.chart.axis import ChartLines from openpyxl.chart.label import DataLabelList from openpyxl.descriptors.base import Alias, Typed from openpyxl.descriptors.excel import ExtensionList from openpyxl.descriptors.serialisable import Serialisable from ._chart import ChartBase class _PieChartBase(ChartBase): varyColors: Incomplete ser: Incomplete dLbls: Typed[DataLabelList, Literal[True]] dataLabels: Alias __elements__: Incomplete def __init__(self, varyColors: bool = True, ser=(), dLbls: DataLabelList | None = None) -> None: ... @property @abstractmethod def tagname(self) -> str: ... class PieChart(_PieChartBase): tagname: str varyColors: Incomplete ser: Incomplete dLbls: Incomplete firstSliceAng: Incomplete extLst: Typed[ExtensionList, Literal[True]] __elements__: Incomplete def __init__(self, firstSliceAng: int = 0, extLst: Unused = None, **kw) -> None: ... class PieChart3D(_PieChartBase): tagname: str varyColors: Incomplete ser: Incomplete dLbls: Incomplete extLst: Typed[ExtensionList, Literal[True]] __elements__: Incomplete class DoughnutChart(_PieChartBase): tagname: str varyColors: Incomplete ser: Incomplete dLbls: Incomplete firstSliceAng: Incomplete holeSize: Incomplete extLst: Typed[ExtensionList, Literal[True]] __elements__: Incomplete def __init__(self, firstSliceAng: int = 0, holeSize: int = 10, extLst: Unused = None, **kw) -> None: ... class CustomSplit(Serialisable): tagname: str secondPiePt: Incomplete __elements__: Incomplete def __init__(self, secondPiePt=()) -> None: ... class ProjectedPieChart(_PieChartBase): tagname: str varyColors: Incomplete ser: Incomplete dLbls: Incomplete ofPieType: Incomplete type: Alias gapWidth: Incomplete splitType: Incomplete splitPos: Incomplete custSplit: Typed[CustomSplit, Literal[True]] secondPieSize: Incomplete serLines: Typed[ChartLines, Literal[True]] join_lines: Alias extLst: Typed[ExtensionList, Literal[True]] __elements__: Incomplete def __init__( self, ofPieType: str = "pie", gapWidth: Incomplete | None = None, splitType: str = "auto", splitPos: Incomplete | None = None, custSplit: CustomSplit | None = None, secondPieSize: int = 75, serLines: ChartLines | None = None, extLst: Unused = None, **kw, ) -> None: ...
[ "noreply@github.com" ]
nobuggy.noreply@github.com
c2b924b0282404ab40c9b7abf7ed0cb453c95c82
c1c46664b27d051bfba4a9682d87aa222878ed4d
/example/hello.py
8fe668ebaf18a1f30404835ff037007a07f950ee
[]
no_license
xen/sanic-jinja2
89c272f09c29d9b86bca6adbbd14ff78a01b8e9c
d47150c840484a45465be00350975901483e9950
refs/heads/master
2021-05-13T19:04:15.228612
2019-01-10T11:54:59
2019-01-10T11:54:59
116,883,658
1
0
null
2019-01-09T23:11:19
2018-01-09T23:42:27
Python
UTF-8
Python
false
false
1,103
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from sanic import Sanic from sanic_session import InMemorySessionInterface from sanic_jinja2 import SanicJinja2 app = Sanic() jinja = SanicJinja2(app) session = InMemorySessionInterface(cookie_name=app.name, prefix=app.name) @app.middleware("request") async def add_session_to_request(request): # before each request initialize a session # using the client's request await session.open(request) @app.middleware("response") async def save_session(request, response): # after each request save the session, # pass the response to set client cookies await session.save(request, response) @app.route("/") async def index(request): request["flash"]("success message", "success") request["flash"]("info message", "info") request["flash"]("warning message", "warning") request["flash"]("error message", "error") request["session"]["user"] = "session user" return jinja.render("index.html", request, greetings="Hello, sanic!") if __name__ == "__main__": app.run(host="0.0.0.0", port=8000, debug=True)
[ "xuzenglin@gmail.com" ]
xuzenglin@gmail.com
a1b08ef48c0364a480cb6ad6021eabc885470856
c61145e8771724575f67ae5738dd6cbb9626a706
/user_profile/serializers.py
26c0f3f64190e52de4dff520d28ce9b21132e9d9
[]
no_license
Seredyak1/test_task
1399dd082f4281ca6f72d036f4df4c1c6945dafe
a5d433b827df46ffa95dd6dd91245b204884674f
refs/heads/master
2020-04-16T08:03:04.521740
2019-01-16T09:33:47
2019-01-16T09:33:47
165,409,648
0
0
null
null
null
null
UTF-8
Python
false
false
790
py
from django.contrib.auth.models import User from rest_framework import serializers class RegistrationSerializer(serializers.ModelSerializer): """Serializers registration requests and creates a new user.""" password = serializers.CharField( max_length=32, min_length=4, write_only=True ) class Meta: model = User fields = ['id', 'email', 'first_name', 'last_name', 'username', 'password'] read_only_fields = ('id', ) def create(self, validated_data): return User.objects.create_user(**validated_data) class UserSerializer(serializers.ModelSerializer): """Serializers detail fields about user""" class Meta: model = User fields = ['id', 'email', 'first_name', 'last_name', 'username']
[ "sanya.seredyak@gmail.com" ]
sanya.seredyak@gmail.com
a9c219c55a6c714a749abe05fee1b4855327675c
55736be550881db62a03e9dfe81307f57617b3e5
/noodles/serial/namedtuple.py
8300af856f66dfe106926fe907061ad0827d8496
[ "Apache-2.0" ]
permissive
atzeus/noodles
a19dbf7d909b1714279f6864171005a84b1e37db
2d608de26cf6d4070dc1cbf6491419163e446d4b
refs/heads/master
2021-08-24T06:50:01.732948
2017-12-08T10:25:56
2017-12-08T10:25:56
113,578,184
0
0
null
2017-12-08T13:37:47
2017-12-08T13:37:47
null
UTF-8
Python
false
false
1,041
py
from .registry import (Registry, Serialiser) from ..utility import (object_name, look_up) class SerNamedTuple(Serialiser): def __init__(self, cls): super(SerNamedTuple, self).__init__(cls) def encode(self, obj, make_rec): return make_rec(tuple(obj)) def decode(self, cls, data): return cls(*data) class SerAutoNamedTuple(Serialiser): def __init__(self): super(SerAutoNamedTuple, self).__init__('<namedtuple>') def encode(self, obj, make_rec): return make_rec({ 'name': object_name(type(obj)), 'data': tuple(obj)}) def decode(self, cls, data): return look_up(data['name'])(*data['data']) def is_namedtuple(obj): return isinstance(obj, tuple) and hasattr(obj, '_fields') def namedtuple_hook(obj): if is_namedtuple(obj): return '<namedtuple>' else: return None def registry(): return Registry( hooks={ '<namedtuple>': SerAutoNamedTuple() }, hook_fn=namedtuple_hook)
[ "j.hidding@esciencecenter.nl" ]
j.hidding@esciencecenter.nl
d0ce41cc1efceafd9623ff9a80888835debd0069
f247b81da7a7f2cf6f0359764fd67d49d7394596
/python/ca_model.py
e39803c363075632f68aee5c4a42e3450dc1cc6d
[]
no_license
parameterized/neural-ca
2147b45a33d543032f56be4802e882488aef1f79
5bbfb056f18bf34858c06cbaf5848f09cb1fcb6d
refs/heads/master
2023-04-03T01:32:10.040110
2022-09-20T03:34:56
2022-09-20T03:34:56
240,561,234
2
1
null
2023-03-25T00:36:10
2020-02-14T17:16:35
Lua
UTF-8
Python
false
false
1,421
py
import numpy as np import tensorflow as tf from tensorflow.keras.layers import Conv2D def get_living_mask(x): alpha = x[:, :, :, 3:4] return tf.nn.max_pool2d(alpha, 3, [1, 1, 1, 1], 'SAME') > 0.1 class CAModel(tf.keras.Model): def __init__(self): super().__init__() self.model = tf.keras.Sequential([ Conv2D(128, 1, activation=tf.nn.relu, input_shape=(None, None, 16 * 3)), Conv2D(16, 1, kernel_initializer='zeros') ]) self(tf.zeros([1, 3, 3, 16])) # build model @tf.function def perceive(self, x): identity = np.float32([0, 1, 0]) identity = np.outer(identity, identity) sobel_x = np.outer([1, 2, 1], [-1, 0, 1]) / 8. sobel_x = sobel_x.astype('float32') sobel_y = sobel_x.T kernel = tf.stack([identity, sobel_x, sobel_y], -1)[:, :, None, :] kernel = tf.repeat(kernel, 16, 2) y = tf.nn.depthwise_conv2d(x, kernel, [1, 1, 1, 1], 'SAME') return y @tf.function def call(self, x): pre_life_mask = get_living_mask(x) x_p = self.perceive(x) dx = self.model(x_p) update_mask = tf.random.uniform(tf.shape(x[:, :, :, :1])) < 0.5 x += dx * tf.cast(update_mask, tf.float32) post_life_mask = get_living_mask(x) life_mask = pre_life_mask & post_life_mask return x * tf.cast(life_mask, tf.float32)
[ "troyk212@gmail.com" ]
troyk212@gmail.com
1521683d07646c7e056b0d4a8d501fb5a9f6137d
d529a8f43f6bcac487f3ab9ad76c61aabb91a508
/Extra long factorials.py
ca054c3ceca1133a2c461ada6da5c92200f4596b
[ "MIT" ]
permissive
abhisheks008/Developer-Students-Club-UEM-Kolkata-CP-Contest
e8aaeafa648b096acf7f208cf9bddf8f2a6d7d29
d141b8872fb3e8c0b37c182690f8df9385a58953
refs/heads/main
2023-01-12T01:56:22.615080
2020-11-14T03:34:30
2020-11-14T03:34:30
310,984,396
0
0
null
null
null
null
UTF-8
Python
false
false
219
py
# Extra long factorials of DSC UEM Kolkata Competitive Programming Contest # Solution in Python Programming Language # Author Abhishek Sharma # Date : 08.11.2020 from math import factorial as f print (f(int(input())))
[ "noreply@github.com" ]
abhisheks008.noreply@github.com
762a77d82a2ed0c4c1b8939e46c0ac75ff59cfe8
56db3cb3e93ea92604dad79371e233bcf1cffad9
/Greenspace/settings.py
63b8f5087d069fe5f6d5daa9d749195e5f372be5
[]
no_license
devendra-pandey/Greenspace
52c2a0b6e9e9b133e45d188b50e1400e4ef304f9
d858a4c6f83771b12241a341e02f82e0f6194996
refs/heads/master
2022-04-14T23:09:12.541102
2020-02-14T17:15:20
2020-02-14T17:15:20
240,560,567
0
0
null
null
null
null
UTF-8
Python
false
false
5,346
py
""" Django settings for Greenspace project. Generated by 'django-admin startproject' using Django 3.0.2. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'z1-e-_@!&hfi_)eue_v343bm2&#+2d&ybn0jdgvn4=te664@ro' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'green_admin', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites', 'allauth', # new 'allauth.account', # new 'allauth.socialaccount', # new 'stripe', 'crispy_forms', 'bootstrap4', 'plants_home', 'users.apps.UsersConfig', 'pages.apps.PagesConfig', ] # Stripe and Braintree Settings if DEBUG: # test keys STRIPE_PUBLISHABLE_KEY = 'pk_test_KmefFlTQ36doIiPF80ZACFPF00emHSn9bR' STRIPE_SECRET_KEY = 'sk_test_WTOGrtgDVQX24LVIn6bvZjqW008FA2cKEK' BT_ENVIRONMENT='sandbox' BT_MERCHANT_ID='z4vj27p38hvdd245' BT_PUBLIC_KEY='f2zwxc4qp3x8r4pw' BT_PRIVATE_KEY='a36911908d94e2f1c45bc6875cb70306' else: # live keys STRIPE_PUBLISHABLE_KEY = 'pk_test_KmefFlTQ36doIiPF80ZACFPF00emHSn9bR' STRIPE_SECRET_KEY = 'sk_test_WTOGrtgDVQX24LVIn6bvZjqW008FA2cKEK' FIXTURE_DIRS = ( '/Greenspace/Greenspace/plants_home/fixtures/', ) AUTH_USER_MODEL = 'users.CustomUser' # emaillogin_project/settings.py # EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' AUTHENTICATION_BACKENDS = ( # Needed to login by username in Django admin, regardless of `allauth` "django.contrib.auth.backends.ModelBackend", # `allauth` specific authentication methods, such as login by e-mail "allauth.account.auth_backends.AuthenticationBackend", ) SITE_ID = 1 ACCOUNT_SESSION_REMEMBER = True ACCOUNT_SIGNUP_PASSWORD_ENTER_TWICE = False ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_UNIQUE_EMAIL = True # ACCOUNT_ADAPTER = 'Greenspace.users.adapters.AccountAdapter' EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST = 'smtp.gmail.com' EMAIL_USE_TLS = True EMAIL_PORT = 587 EMAIL_HOST_USER = 'greenspace173@gmail.com' EMAIL_HOST_PASSWORD = 'plotno.143' MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Greenspace.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'plants_home/templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Greenspace.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.mysql', # 'NAME': 'test12', # 'USER': 'root', # 'PASSWORD': 'spectre', # 'HOST': 'localhost', # 'PORT': '3306', # } # } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' LOGIN_REDIRECT_URL = '/' ACCOUNT_LOGOUT_REDIRECT_URL = '/'
[ "devendra.dpandey02@gmail.com" ]
devendra.dpandey02@gmail.com
a42db2ea9b8fe08f8e0eec1d9a55e6ccac6aaeae
8f3751ae9249cd013d754ce8dc5e83ad4bbc6a02
/output.py
4c27ed09fedaf183261384cc1ffdf87eedbdd86b
[]
no_license
ishidur/NeuralNetworkPlotter
b7bfc08afae21a554f28cf0046f1ef106ada9c68
4e3511a93ab2d5c0878cd68b6d9ff95ace84eb1a
refs/heads/master
2021-03-27T10:36:17.293905
2017-08-30T04:43:55
2017-08-30T04:43:55
101,734,943
0
0
null
null
null
null
UTF-8
Python
false
false
7,397
py
import numpy as np import matplotlib.pyplot as plt, numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt from matplotlib import cm from pylab import * def sigmoid(x): return 1 / (1 + np.exp(-x)) # Components of network(l=0,1,2,,,) # neurons = np.array([2, 2, 1]) # str="2069,6.36879, 4.58608, 6.92113, 4.34442, -2.47962, -6.79904, 6.35838, -6.4943, -3.0653, 0.00999636" # neurons = np.array([2, 3, 1]) # str="599,5.86581, -1.6873, 4.31575, 5.14747, 5.76717, 4.32641, -2.35129, -2.66479, -6.65975, 6.44388, 0.275338, -7.0809, -3.04433, 0.00990169" # neurons = np.array([2, 4, 1]) # str="489,3.43153, 5.37924, 3.09733, -4.81061, 3.89932, -2.03991, 4.08778, 5.30856, -1.60353, -3.65043, -5.78128, -3.45817, 2.4249, 4.37504, -5.60206, 5.23461, -2.94186, 0.00974184" # str="559,4.02681, 5.58551, -0.7994, 4.56916, 5.15392, 2.66137, 4.70171, 4.55158, -1.90552, -1.70361, -2.20378, -7.02321, 4.52788, 2.66148, 0.48565, -7.59381, -3.45308, 0.00998716" # neurons = np.array([2, 2, 2, 1]) # str="1109,4.44087, 3.74287, 3.62482, 6.55838, -5.97092, -2.22584, 0.882932, 6.7804, 6.93495, 2.71067, -3.1506, -6.41817, 6.04266, -6.42694, -2.83843, 0.00994148" # neurons = np.array([2, 3, 3, 1]) # str="659,2.94228, 6.20703, -2.15972, 3.93808, 0.541414, 5.70829, -4.48722, -3.09875, -2.88049, 0.410709, 2.58557, 5.1793, -3.65896, 5.98425, 2.29711, 5.80167, 0.759044, 2.06787, -3.63505, -2.65884, -6.25454, 5.50012, 5.79299, -6.6336, -2.97932, 0.00997591" # neurons = np.array([2, 4, 4, 1]) # str="419,-1.74429, -0.864807, 2.92453, 6.19674, 4.60773, 4.9703, 2.47731, -0.3114, -1.48083, -1.94901, -1.82405, -2.70423, 1.29178, 1.90646, 3.67907, 3.17465, 1.96039, 2.25654, 3.70381, 2.85224, 3.2566, 1.70034, -0.0547112, -0.998359, 4.10569, 1.0241, -2.77683, -5.12003, -2.3828, -2.10662, 0.017373, -2.54969, 3.65127, -0.0783893, -5.69896, 6.04371, -0.56462, 0.00975528" neurons = np.array([2, 3, 3, 3, 1]) str="9 -0.562377 -0.275068 6.08234 4.46247 4.61822 0.283341 -1.96811 -2.19457 -3.17061 2.26009 1.31546 2.51885 2.41162 1.15844 2.64848 1.26812 -5.03426 0.406915 -2.35325 1.09903 -2.36015 0.256109 2.36763 1.99073 4.24761 -2.63358 0.657033 1.2347 2.28027 2.57662 -2.88671 -1.32138 -2.70352 0.117933 0.0294466 0.0970494 -0.0267851 0.500658" # str = "489,-0.984455, 6.36258, 1.31512, 5.34308, -0.259602, 3.90947, -2.3082, -2.99422, -2.51795, 3.53831, 2.97514, -0.236202, -0.607421, -3.18126, 5.8468, 2.93817, 1.88244, 1.20371, -2.67916, -1.07294, -3.15374, 4.6581, 1.7776, 4.60723, 3.82906, 3.63762, 0.860046, -2.19369, -5.37426, 5.4209, -0.674578, -2.15118, -2.18974, -5.85983, 5.7832, 4.95376, -1.68951, 0.00979133" # str = "509,-1.70781, -0.173122, 6.26719, 4.03829, 5.46069, 0.332685, -1.46569, -2.68219, -3.26497, 2.72309, 2.70356, -0.798178, 3.97015, 2.84702, 0.575163, 0.696121, -3.09378, 5.53267, -3.29616, -1.55952, -2.40554, 1.96858, 4.14752, 4.92738, 4.21106, 0.681107, 3.92218, -4.62442, 5.4875, -1.79962, -3.12863, -2.17762, -1.15241, 6.11073, 4.92902, -5.754, -1.81388, 0.00969941" # neurons = np.array([2, 4, 4, 4, 1]) # str="409,-0.697841, -0.897475, 5.89155, 2.80258, 4.32837, 4.94154, -0.0758867, 1.80829, -1.87105, -2.07275, -2.86402, -2.39909, 2.84368, -0.299338, 2.03284, 2.06372, 3.15449, -0.234366, 2.27524, 2.24656, -0.858545, 4.18735, 0.819846, -3.43302, 0.793896, 2.29869, 1.3733, -0.989186, -2.66895, -2.69498, -2.75059, -0.316513, 2.92055, 2.15683, 3.23589, 3.96045, -0.395392, -4.30458, 4.23023, -2.10206, 1.7894, 0.402521, 4.02238, 1.7857, 1.19637, 3.48859, -1.19052, 3.0998, -1.77703, -2.83522, -2.14077, -0.856841, -1.99668, 5.88102, 4.98794, -4.54769, -1.24244, 0.00964238" # neurons = np.array([2, 3, 3, 3, 3, 1]) # str="1669,2.99655, 5.45868, -0.871209, 2.45073, 1.81667, 6.21747, -3.67208, -1.95684, -1.94578, 3.4826, 2.06384, 2.07905, 5.06989, 0.28875, 0.754481, 0.95933, 2.81964, 2.38933, -1.7991, -3.83407, -3.94271, 5.73188, -0.439558, -2.27671, 2.1846, 2.73404, 3.24917, 2.38703, 2.75653, 3.11856, -3.10315, -2.82318, -1.26783, -2.63199, 5.57446, -3.06424, 3.04046, 3.45285, 3.4489, 3.56043, 1.38017, 3.99581, 0.219994, -3.39757, -0.0944336, -3.16128, 4.8351, -4.39442, -0.271265, 0.00887238" # neurons = np.array([2, 4, 4, 4, 4, 1]) # str="569,-1.40349, 4.73401, 4.39454, 0.595671, 4.97564, 0.42259, 0.771733, 4.30004, -1.80419, -2.58622, -2.56936, -2.5129, 1.83581, 3.4392, -0.204556, 0.398763, 0.792568, -1.43016, 2.91771, 2.28341, 0.879131, -1.14803, 2.79282, 2.22344, 2.18047, 3.13294, 0.705359, 1.13135, -2.82744, -1.78581, -3.03655, -2.89323, 1.03061, 1.89421, 2.23595, 2.15343, -2.15692, 0.608627, 3.56931, 3.36424, 4.22728, 2.43007, -0.47886, -0.399374, 3.16718, 2.28146, 0.342999, 0.369826, -3.10989, -2.88342, -2.5328, -2.45013, 2.24708, 5.1517, 3.20658, -3.59481, 3.07095, 1.6612, 3.52622, -0.620736, 2.52098, -0.216395, 2.42076, 4.33917, 2.43201, -0.209252, 2.35339, 4.06447, -2.22535, -3.26955, -2.67393, 0.342861, 4.07401, -5.84408, 5.11776, -5.81011, -0.2846, 0.00981299" # str="439,-0.287801, -0.370451, 6.29973, 0.653061, 4.23102, 3.71699, 0.0611724, 3.48873, -2.04225, -1.74314, -3.15629, -2.23772, 1.43904, 1.49788, 0.789733, 2.19032, 1.17484, 1.23724, 0.882246, 1.98111, 2.07095, 1.81887, -5.23016, -1.6156, 1.52207, 1.54486, 0.0823191, 1.76094, -2.96707, -2.88946, 1.40339, -1.80337, 1.79505, 1.7683, 2.27846, -1.325, 1.89539, 1.86622, 2.15057, -1.06869, -0.0734473, -0.0853545, -3.63634, 4.84367, 2.74926, 2.69572, 0.537416, 2.14108, -2.99542, -2.92206, -1.37465, -1.79248, 2.44345, 2.47911, 1.84345, 3.66819, 2.39081, 2.42612, 1.7734, 3.6006, -1.05825, -1.12896, 3.9256, 2.71051, 3.5861, 3.65812, -3.99355, -1.97618, -1.09381, -1.11789, -3.86522, -1.3513, -2.39412, -2.44732, -5.81172, 6.0477, 1.40761, 0.00965746" # via Excel b = [float(k) for k in str.split('\t')] # via Sublime # b = [float(k) for k in str.split(',')] weights = [] biases = [] iter = 1 for i in range(len(neurons) - 1): m = [] for j in range(neurons[i]): m.append(b[iter:iter + neurons[i + 1]]) iter += neurons[i + 1] biases.append(np.matrix(b[iter:iter + neurons[i + 1]]).transpose()) iter += neurons[i + 1] weights.append(np.matrix(m).transpose()) def calcOutput(x, y): inputs = weights[0] * np.matrix([[x], [y]]) + biases[0] for i in range(len(neurons) - 2): outputs = sigmoid(inputs) inputs = weights[i + 1] * outputs + biases[i + 1] outputs = sigmoid(inputs) return outputs[0, 0] def meshgrid_propagation_forMap(layersArray): N = 100 xyRange = 1.0 # グリッド作成 x = np.linspace(0, xyRange, N) y = np.linspace(0, xyRange, N) X, Y = np.meshgrid(x, y) # グリッド領域を示すマトリックスの構成 Z = np.array(list(map(lambda x, y: list(map(calcOutput, x, y)), X, Y))) pcolor(X, Y, Z) colorbar() pink() # fig = plt.figure() # ax = Axes3D(fig) # ax.plot_surface(X, Y, Z, rstride=1, cstride=1,cmap=cm.coolwarm) # ax.plot_wireframe(X,Y,Z) plt.xlabel('Input1', fontsize=18) plt.ylabel('Input2', fontsize=18) # ax.set_zlabel('O') plt.xlim(0, 1.0) plt.ylim(0, 1.0) plt.legend(fontsize=18) plt.tick_params(labelsize=18) plt.grid() # plt.savefig("time"+str(learningTime)+"Neuron"+str(neurons)+"samp"+str(samplingTime)+"rand"+str(maxOfRandom)+"r"+str()+".png") plt.show() meshgrid_propagation_forMap(neurons)
[ "ishidu-ryota-fz@ynu.jp" ]
ishidu-ryota-fz@ynu.jp
08605913b8523532604ffdc39e1ce0712d36ba0a
282ecc293288f6ea84abe66c84f98fe2dd9f0835
/Project_2/pipelines/simple_preprocessors.py
23c9588e6ea656867a09ff0fd88b256a4d68af33
[ "MIT" ]
permissive
TitoGrine/IART_Project
b61d771e2389164833d280d6306bb4cddc9f5dea
a387cface38473fa90e132207847887b43a69cec
refs/heads/master
2022-12-15T21:04:24.315639
2020-09-19T14:43:21
2020-09-19T14:43:21
242,172,263
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import make_pipeline from preprocessors.lemmatization import Lemmatization from preprocessors.tokenizer import Tokenizer from preprocessors.utils import fit def simple_pipeline(x, y, clsf): model = make_pipeline(Tokenizer(preserve_case=False, strip_handles=False), Lemmatization(), TfidfVectorizer(lowercase=False, tokenizer=lambda _: _)) vectorized_x = model.fit_transform(x, y) return fit(vectorized_x, y, clsf, oversample=True)
[ "andrefmrocha@live.com.pt" ]
andrefmrocha@live.com.pt
17630cb458f4d2ca573790240cf6ab249946ed4d
0c6e76b147e165f0108a6371fb0ec728b8c52ec4
/data.py
7e2bfeebea6c795d237072811201073c6201daab
[ "MIT" ]
permissive
delwende/inflected-abbreviation-expansion
a1c4908c77388bf2bdaa4b4a5705b8ef1b6ce67c
850c8490ec16e4de6e469912397e8e91b5bbba74
refs/heads/master
2020-03-19T12:46:43.324277
2018-06-06T17:16:10
2018-06-06T17:16:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,406
py
import gzip from copy import copy from itertools import chain from pathlib import Path from xml.etree.ElementTree import iterparse def overlapping_grouper(iterable, n, prefix_symbol=('', ''), suffix_symbol=('', '')): queue = [prefix_symbol] * n offset = int(n // 2) for idx, item in enumerate(chain(iterable, [suffix_symbol] * offset)): queue.pop(0) queue.append(item) if idx >= offset: yield copy(queue) def retrieve_words_to_abbreviate(path): with open(path) as expansions_file: expansions = {parts[0]: parts[1:] for parts in map(lambda l: l.strip().split(';'), expansions_file)} return frozenset(chain.from_iterable(expansions.values())) def find_morphosyntax_files(path): path = Path(path) return [path] if path.is_file() else path.glob('*/**/ann_morphosyntax.xml*') def parse_annotated_sentences(annotation_xml): # Helper functions to retrieve the XML sub-element with the same name for a given element # Doesn't seem readable at first but it's the same as the XML def orth(fs_elem): return fs_elem[0][0].text def pos(fs_elem): disamb = [e for e in fs_elem if e.get('name', '') == 'disamb'][0] return disamb[0][1][0].text.split(':', maxsplit=1)[1] def fs(seg_elem): return seg_elem[0] opener = gzip.open if annotation_xml.suffix == '.gz' else open with opener(annotation_xml, encoding='utf-8') as ann_f: for event, elem in iterparse(ann_f): if tag_uri_and_name(elem)[1] == 's': # just parsed a sentence sent = [(orth(fs(seg)), pos(fs(seg))) for seg in list(elem)] yield sent def sentences_with_abbreviations(corpus_path, abbreviable_words): for f in find_morphosyntax_files(corpus_path): for sentence in parse_annotated_sentences(f): target_abbreviations = ((word, tag, pos) for pos, (word, tag) in enumerate(sentence) if word.lower() in abbreviable_words) for abbreviation in target_abbreviations: yield sentence, abbreviation def tag_uri_and_name(elem): """https://stackoverflow.com/questions/1953761/accessing-xmlns-attribute-with-python-elementree""" if elem.tag[0] == "{": uri, ignore, tag = elem.tag[1:].partition("}") else: uri = None tag = elem.tag return uri, tag
[ "petezor@gmail.com" ]
petezor@gmail.com
81a36f9edec913d3549c0af94feff76ee65ac580
05b9f3aa55a4fb89c9474d77bc58cfe18d800622
/test2.py
dbedeafdbae3710983de3e17c0c3929be4398f78
[]
no_license
LezardWhiteGlint/Practice_backup
718c5608982ac5a1b6c3d74d60327753792282a9
c0b4475684cbb0e131e40ad7b116162c4f7529c9
refs/heads/master
2020-03-25T20:17:37.125541
2019-03-04T07:17:39
2019-03-04T07:17:39
144,124,703
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
def ulti_display(weeklist,daily_h,date): total = 0 data = [] message = [] for weekday in weeklist: for i in range(len(date)): if weekday == date[i]: data.append(daily_h[i]) total = total + daily_h[i] #print "<html><body>" for i in data: hours = int(i/2) minutes = int(i%2)*30 message.append(str(hours)+':'+str(minutes)) total_h = int(total/2) total_m = int(total%2)*30 totoal_message = str(total_h)+':'+str(total_m) try: for i in range(len(weekday)): print('<p>Date: '+weekday[i]+'-------'+message[i]+'</p>') print "\n" print('<p>This Week Total: '+weekday[i]+'-------'+data[i]+'</p>') except: IndexError # print "</body></html>"
[ "30715385+LezardWhiteGlint@users.noreply.github.com" ]
30715385+LezardWhiteGlint@users.noreply.github.com
a30be66391f29c734f4450832265dd84031abf3d
0a69dbc358b7114285b983ff435825cfc9f6a04a
/recipes1.py
86b855f28b61a0d39c6558b61081d14418d13263
[]
no_license
jrovegno/MachineLearningRecipes
9711f429a676d52ab967bc77ceb2ae5159722837
3d2a9fd7e2ad25febbb22b33e80a3dd3b501e86b
refs/heads/master
2021-01-19T03:03:10.755268
2016-07-20T21:52:13
2016-07-20T21:52:13
63,817,073
2
2
null
null
null
null
UTF-8
Python
false
false
319
py
import numpy as np from sklearn import tree from sklearn.datasets import load_iris features_dict = {1:'smooth', 0:'bumpy'} labels_dict = {1:'orange', 0:'apple'} features = [[140,1],[130,1],[150,0],[170,0]] labels = [0,0,1,1] clf = tree.DecisionTreeClassifier() clf.fit(features, labels) print clf.predict([[150, 0]])
[ "javier.rovegno@gmail.com" ]
javier.rovegno@gmail.com
dfce5b807530a3a4f49147428f9734961831ee7d
b8fe8b4bbd4694d2636c31643252fac4b62d1fe3
/Desktop/Mhakave/APp/src/Home/admin.py
36ca4d384276f60072b9f3c946d434c25043ba26
[]
no_license
indraw705/django
f7339ab7f919522c0bc58792365562a03630f08d
3e05dde353185f1d5bf7139b2a5d582ec050ed0b
refs/heads/master
2021-01-12T04:12:29.087198
2017-02-09T14:42:54
2017-02-09T14:42:54
77,545,420
0
0
null
null
null
null
UTF-8
Python
false
false
308
py
from django.contrib import admin # Register your models here. from .forms import SignUpForm from .models import SignUp class SignUpAdmin(admin.ModelAdmin): list_display = ["__unicode__", "timestamp", "updated"] form = SignUpForm # class Meta: # model = SignUp admin.site.register(SignUp,SignUpAdmin)
[ "=" ]
=
cce6ffb32fcbb73d9c09532d13b9173fde291e94
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/FJZJJMM/YW_FJZJJMM_SZSJ_103.py
2be689302212420534b553c97e1696e9d1e56c5c
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,091
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test/xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test/service") from ServiceConfig import * from mainService import * from QueryStkPriceQty import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test/mysql") from CaseParmInsertMysql import * sys.path.append("/home/yhl2/workspace/xtp_test/utils") from QueryOrderErrorMsg import queryOrderErrorMsg class YW_FJZJJMM_SZSJ_103(xtp_test_case): # YW_FJZJJMM_SZSJ_103 def test_YW_FJZJJMM_SZSJ_103(self): title = '深圳A股股票交易日五档即成转撤销买——数量溢出(100亿)' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '废单', 'errorID': 11000107, 'errorMSG': queryOrderErrorMsg(11000107), '是否生成报单': '是', '是否是撤废': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('999999', '2', '24', '2', '0', 'B', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '用例测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } self.assertEqual(rs['用例测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id':2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SZ_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_BUY'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST5_OR_CANCEL'], 'price': stkparm['涨停价'], 'quantity': 10000000000, 'position_effect': Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) CaseParmInsertMysql(case_goal, wt_reqs) rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['用例测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) self.assertEqual(rs['用例测试结果'], True) # 0 if __name__ == '__main__': unittest.main()
[ "418033945@qq.com" ]
418033945@qq.com
f6c75d42e11df14d53847eeda1c2906c9ef684e5
9ff036f0cb2c5a9850af69181d016f5ca11ab63d
/week-02/day-1/square.py
6532ab2375ca22bfe3282718631617a9636490c2
[]
no_license
balintnem3th/balintnem3th
bd48f8aa7e79c718049f50e52bdd6be9ccf7b251
58bf033314466d96ed5b81b3642f04149fc463b0
refs/heads/master
2021-05-11T08:06:20.545375
2018-03-25T23:58:32
2018-03-25T23:58:32
118,041,790
0
0
null
2018-01-18T21:42:43
2018-01-18T21:42:43
null
UTF-8
Python
false
false
170
py
user_input= int(input("Give me a number:")) print('%'* user_input) for index in range(1,user_input-1): print('%'+ ((user_input-2)* ' ') + '%') print('%'* user_input)
[ "balint.nem3th@gmail.com" ]
balint.nem3th@gmail.com
bb1475121d62a7908a964aaaf795d0eb6cac5093
2e47a9f02dbc1d88411a630994b8f8d092038cfe
/dragon/bin/pip2.7
1573dec81e5b175435ee416f37a8cd98852c67c7
[]
no_license
mathewcmartin/dragon
1386357eb99904483c9a33ff0370087303ecfb58
0aac30f90c8e553de11decf9a36084fa976c2c7a
refs/heads/master
2021-01-01T20:06:55.403634
2017-08-01T20:55:00
2017-08-01T20:55:00
98,766,185
0
0
null
null
null
null
UTF-8
Python
false
false
243
7
#!/home/mathewcmartin/Projects/dragon/dragon/bin/python # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "chactasstryker@gmail.com" ]
chactasstryker@gmail.com
b22ef7dcc0d2a7bdd70dc2123f3593c6c0156719
3df8c9f513627187311c67260e8e28d02825eab0
/src/transformers/utils/__init__.py
42e856d9e4acb3d5c4ec7dc5b24b3d6cb0b7649f
[ "Apache-2.0" ]
permissive
ondewo/transformers
9245322d33e09bf4d4529375c40ea2373d9701bd
45bd44f215eb0a42d2b5994548756d506750b9d3
refs/heads/main
2023-05-08T11:59:01.284482
2023-05-07T14:12:23
2023-05-07T14:12:23
637,418,744
0
0
Apache-2.0
2023-09-04T14:23:00
2023-05-07T13:56:14
Python
UTF-8
Python
false
false
6,277
py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bs4_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectron2_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_py3nvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tf2onnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bf16_available, is_torch_bf16_cpu_available, is_torch_bf16_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tf32_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, torch_version, ) WEIGHTS_NAME = "pytorch_model.bin" WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json" TF2_WEIGHTS_NAME = "tf_model.h5" TF2_WEIGHTS_INDEX_NAME = "tf_model.h5.index.json" TF_WEIGHTS_NAME = "model.ckpt" FLAX_WEIGHTS_NAME = "flax_model.msgpack" FLAX_WEIGHTS_INDEX_NAME = "flax_model.msgpack.index.json" SAFE_WEIGHTS_NAME = "model.safetensors" SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json" CONFIG_NAME = "config.json" FEATURE_EXTRACTOR_NAME = "preprocessor_config.json" IMAGE_PROCESSOR_NAME = FEATURE_EXTRACTOR_NAME GENERATION_CONFIG_NAME = "generation_config.json" MODEL_CARD_NAME = "modelcard.json" SENTENCEPIECE_UNDERLINE = "▁" SPIECE_UNDERLINE = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility MULTIPLE_CHOICE_DUMMY_INPUTS = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/transformers/installation.html#installing-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + "Check out https://huggingface.co/transformers/examples.html for the examples corresponding to other " "versions of HuggingFace Transformers." )
[ "noreply@github.com" ]
ondewo.noreply@github.com
cddc26b4115c69d78efcb569dfef642b7f2d2117
f7f3b63d6743624529e02d2192b92db15751943f
/leetCode33/33_Search_in_Rotated_Sorted_Array.py
a12fca8b60aaa48dc57a971c34c9ff1d3a5db7e4
[]
no_license
JhaPrashant1108/leetcode
0d461556a3ea3b35ba756a90f064d20fc53aff37
d33f8e43aed926f210ce7eed32e0f6b8011d28c7
refs/heads/master
2023-08-24T18:57:06.215997
2021-10-07T12:10:27
2021-10-07T12:10:27
288,906,296
0
0
null
null
null
null
UTF-8
Python
false
false
884
py
class Solution: def search(self, nums, target): if not nums or len(nums) == 0: return -1 l, r = 0, len(nums) - 1 while(l < r): mid = (int)(l + (r-l)/2) if (nums[mid] > nums[r]): l = mid+1 else: r = mid start = l l, r = 0, len(nums)-1 if target >= nums[start] and target <= nums[r]: l = start else: r = start while(l <= r): mid = (int)(l + (r-l)/2) if nums[mid] == target: return mid elif(nums[mid] < target): l = mid+1 else: r = mid - 1 return -1 L = Solution() print(L.search(nums=[4, 5, 6, 7, 0, 1, 2], target=0)) print(L.search(nums=[4, 5, 6, 7, 0, 1, 2], target=3)) print(L.search(nums=[1], target=0))
[ "prashant.jha0008@gmail.com" ]
prashant.jha0008@gmail.com
86305fbe815e2d06c1391d16d43539401c7146a4
7b09d42fdfcd2c2dbf6e3eefb3adfa99e9df794b
/gym_PET/envs/dimsiz.py
f5a7c842e5f3f0799274ce4e26b6d8a4e0af4bf3
[]
no_license
mcbrs1a/TestPet
294a0bf8f62c2e808e0b7c7b956b54b13ed9e963
6f910da44835b560af80c15a0a5f439b140b70c9
refs/heads/master
2021-09-11T01:30:47.652102
2018-04-05T18:31:21
2018-04-05T18:31:21
114,370,784
1
0
null
null
null
null
UTF-8
Python
false
false
580
py
#get dimensions and size of image def dimsiz(im): dim=len(im.shape) sz=im.shape if dim==2: fx, fy = im.shape print('two dimensions') sz= fx, fy return sz else: fx, fy, fz = im.shape print('three dimensions') sz= fx, fy, fz return sz sz=dimsiz(im) bound=sz vbnd=([20,50],[30,100]) #fxa fxb fya fyb def boundbox2(im,bound,vbnd): if len(bound)==2: imc=im[vbnd[0]:vbnd[1],vbnd[2]:vbnd[3]] return imc else: imc=im[vbnd[0]:vbnd[1],vbnd[2]:vbnd[3]] return imc
[ "smithR50@cardiff.cf.ac.uk" ]
smithR50@cardiff.cf.ac.uk
cb71b7a1c80c4a725d89d8b324b87b7a22d6991c
d8c80a8c7f38ea917b3076dc82844f678cf05412
/setup.py
e367ab68bdc967db1a78ff81a4197ed1b8a0478c
[ "MIT" ]
permissive
openlobby/openlobby-server
dcac830c0ffeae8d039d9d4f4324271ec1126a89
b7a1a2b73e903c4da57970926844b0639dce5aae
refs/heads/master
2023-04-04T01:47:06.477282
2018-11-11T22:07:24
2018-11-11T22:07:24
110,363,977
7
3
MIT
2021-04-20T17:40:09
2017-11-11T17:08:33
Python
UTF-8
Python
false
false
1,026
py
from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, "README.md"), encoding="utf-8") as f: long_description = f.read() setup( name="openlobby", version="0.1.0", url="https://github.com/openlobby/openlobby-server", author="Jan Bednarik", author_email="jan.bednarik@gmail.com", description="Open Lobby Server", long_description=long_description, packages=find_packages(exclude=["tests"]), # TODO # install_requires=[], # extras_require={ # 'dev': [], # 'test': [], # }, license="MIT", classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", ], )
[ "jan.bednarik@gmail.com" ]
jan.bednarik@gmail.com
d33aa0643b569cebb4309c3a629bde092d02e7ac
b6ffc3b8717ebbeb96ca0d2b91cfb7de62a58b68
/growth rate üLCDM.py
d6654562c49df035e355b4294a57946daf822031
[]
no_license
laya-laya/Dark-Energy-models
43968ed07a535247a32d2ef71aec5b8828484310
65cc0e31b28138a69407c4f433e727cdb0dc53e9
refs/heads/master
2020-04-29T03:09:24.875235
2020-02-01T10:53:55
2020-02-01T10:53:55
175,798,966
0
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
import numpy as np import matplotlib.pyplot as plt #from scipy.integrate import quad from scipy.integrate import odeint OM = 0.29 #gamma = 0.545 sigma8 = 0.8 z_star = 0.537 def E(z): if z > z_star: Ez = np.sqrt( 1-((0.75*OM)/(1+z_star))-(0.25*OM*((1+z_star)**3))+(OM * np.power(1 + z,3))) else: Ez = np.sqrt(1-((0.75*OM)/(1+z_star))+(((0.75*OM)/(1+z_star))*((1+z)**4))) return Ez def dlnEdz(z): if z > z_star: dlnEdz = (1.5*((1+z)**2))/(1-((0.75*OM)/(1+z_star))-(0.25*OM*((1+z_star)**3))+ (OM * np.power(1 + z,3))) else: dlnEdz = (1.5*(OM/(1+z_star))*((1+z)**3))/(1-((0.75*OM)/(1+z_star))+((0.75*OM)/(1+z_star))*((1+z)**4)) return dlnEdz def f(x,t): return ((x**2)/(1+t))-(dlnEdz(t)-(2/(1+t)))*x - (2*OM*((1+t)**2))/((E(t))**2) time = np.linspace(0,5,1000) z = np.linspace(0,3,1000) z2 = odeint(f,0.56,time) a = 0 b = 10 N = 1000 h1 = (b-a)/N z1=1 sigma = np.zeros(N) fsigma = np.zeros(N) for i in range(0,N): sigma[i] = sigma8*np.sum(np.exp(-((z2[i])/(1+i*h1))*h1)) for i in range(0,N): fsigma[i] = z2[i]*sigma[i] plt.plot(time,fsigma) plt.xlim(0, 0.9) plt.ylim(0.0, 0.8)
[ "noreply@github.com" ]
laya-laya.noreply@github.com
1e24fdbcd189652e333de928e8269c95f940fac0
42310122958f2f7d65cbc1f419f9e8d44c0e829e
/HomePageProject/manage.py
d0514acf568aa2aef640efaf1a738cbb391e653d
[]
no_license
nomanalvi/UserInterface
092c684649d73fece14bafe8d3c5a3146be37173
e3c85a4c6bb1f3af3ba6166e42d0bde77a0e1494
refs/heads/master
2022-12-02T18:09:56.424258
2020-08-26T13:39:07
2020-08-26T13:39:07
290,504,138
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'HomePageProject.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "maanalvi@gmail.com" ]
maanalvi@gmail.com
0254a7648ea171fa9a2a5352028ad8fe70447f65
58da4f1a574f90870a5fd454999531d6d0047b55
/File_Change/detect_change.py
17e3747ab36c304f0468a80fe076b36fa3b29032
[]
no_license
HarshGrandeur/CloudComputing
a046563e955e6a3e817a9e11e6306c0ae5dc266d
8d896f7f63bbf10f52c6cfdcb21f402340c9b411
refs/heads/master
2021-01-19T22:59:08.236046
2017-10-15T07:30:36
2017-10-15T07:30:36
88,900,164
0
0
null
2017-04-20T18:53:53
2017-04-20T18:53:53
null
UTF-8
Python
false
false
643
py
import sys import time import logging from watchdog.observers import Observer from watchdog.events import LoggingEventHandler if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') path = sys.argv[1] if len(sys.argv) > 1 else '.' event_handler = LoggingEventHandler() observer = Observer() observer.schedule(event_handler, path, recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
[ "hrshgpt73@gmail.com" ]
hrshgpt73@gmail.com
01134ab072c1292ae5b05bafed12ab0d5e3bedfd
d4b1adf0fa11dace5827015a5ba7a4a212603619
/Backend/image_file_test/api/views.py
fcfddaf7ba30d167a2d6111da5ca180b9c83676e
[]
no_license
aSafarpoor/tafsir-swe2-prj
0076953fd87e2a0804713623fb25f770eb9785de
de79658d8c64c8efd74d8b5a33eced8b7808923a
refs/heads/master
2022-01-18T19:58:33.301413
2019-07-22T07:55:10
2019-07-22T07:55:10
198,176,818
0
0
null
null
null
null
UTF-8
Python
false
false
6,488
py
from rest_framework import generics from course_app.models import course,section,question_exam from image_file_test.models import image_file as imfi from image_file_test.models import movie_link #from serializers import CourseListSerializer from django.core import serializers from .serializers import CreateMember,MyImageModelSerializer,tempModelSerializer import requests import json from django.http import HttpResponse,JsonResponse import base64 from rest_framework import generics from course_app.models import course,section,question_exam #from serializers import CourseListSerializer import json from django.http import HttpResponse class create1(generics.CreateAPIView): queryset = imfi.objects.all() serializer_class = CreateMember class ListAPIview(generics.ListAPIView): queryset = imfi.objects.all() serializer_class = CreateMember from rest_framework.decorators import api_view @api_view(['GET', 'POST']) def create0(request): if request.method=="POST" : serializer = MyImageModelSerializer(data=request.data) if serializer.is_valid(): serializer.save() message="ok" return HttpResponse(message) message="nokey" return HttpResponse(message) else: message="bad request" return HttpResponse(message) def get_movie_id(request): if request.method=='GET': try: json_data=request.body except: message="bad urllll" return HttpResponse(message) ''' try : current_user = request.user except: message="not logged in" return HttpResponse(message) if(current_user.teacher==False): message="not teacher" return HttpResponse(message) ''' obj=movie_link() obj.save() obj_id=obj.id dict={} dict["id"]=obj_id return JsonResponse(dict) message="bad request" return HttpResponse(message) @api_view(['GET', 'POST']) def call(request): if request.method=="POST" : import logging import boto3 from botocore.exceptions import ClientError def create_presigned_post(bucket_name, object_name, fields=None, conditions=None, expiration=3600): """Generate a presigned URL S3 POST request to upload a file :param bucket_name: string :param object_name: string :param fields: Dictionary of prefilled form fields :param conditions: List of conditions to include in the policy :param expiration: Time in seconds for the presigned URL to remain valid :return: Dictionary with the following keys: url: URL to post to fields: Dictionary of form fields and values to submit with the POST :return: None if error. """ # Generate a presigned S3 POST URL s3_client = boto3.client('s3') try: response = s3_client.generate_presigned_post(bucket_name, object_name, Fields=fields, Conditions=conditions, ExpiresIn=expiration) except ClientError as e: logging.error(e) return None # The response contains the presigned URL and required fields return response # import requests # To install: pip install requests ''' # Generate a presigned S3 POST URL object_name = 'OBJECT_NAME' response = create_presigned_post('BUCKET_NAME', object_name) if response is None: exit(1) # Demonstrate how another Python program can use the presigned URL to upload a file with open(object_name, 'rb') as f: files = {'file': (object_name, f)} http_response = requests.post(response['url'], data=response['fields'], files=files) # If successful, returns HTTP status code 204 logging.info(f'File upload HTTP status code: {http_response.status_code}') ''' ''' @api_view(['GET', 'POST']) def call(request): if request.method=='POST' or request.method=='GET': # print(request.data) try : current_user = request.user except: message="not logged in" return HttpResponse(message) if(current_user.teacher==False): message="not teacher" return HttpResponse(message) if False : pass else: # msg=serializer.save() # print("Fukkkkkkkkkkkkkkkkkkkkkkkkkk") msg=request.data # msg=msg[0] print(msg) print("\n\n") try : token="8061df45098379e19114ab01f4a9eb27" address="https://www.aparat.com/etc/api/uploadform/luser/amirmansoubi828/ltoken/"+token response = requests.get(address) data=json.loads(response.content) frm_id=data["uploadform"]["frm-id"] except: response = requests.get("https://www.aparat.com/etc/api/login/luser/amirmansoubi828/lpass/79e9feb0135e82cab14fed182ef0891b9920d641") data=json.loads(response.content) token=data["login"]["ltoken"] address="https://www.aparat.com/etc/api/uploadform/luser/amirmansoubi828/ltoken/"+token # response = requests.get(address) # data=json.loads(response.content) # frm_id=data["uploadform"]["frm-id"] # msg["frm-id"]=frm_id # print(data) final_url="https://www.aparat.com/etc/api/uploadpost/luser/amirmansoubi828/username/amirmansoubi828/ltoken/8061df45098379e19114ab01f4a9eb27/uploadid/9331616/atrty/1562619001/avrvy/977508/key/05f962bbdb0e2fd7455bf6a712416a3b75bf54e7/" response = requests.post(final_url, data=msg) print("\n\n") print(str(response.content)) print("\n\n") message="ok" return HttpResponse(message) # message="nokey" # return HttpResponse(message) else: message="bad request" return HttpResponse(message) '''
[ "alisafarpoor1995@gmail.com" ]
alisafarpoor1995@gmail.com
3900b4a694786d1e272c019b473c940f1fb15498
3907f9297caec6b097c06eda0e69a38cfca9be95
/utilities.py
f564cec2083ed64a27958b6ab1063d3d8b4664ee
[]
no_license
Abbey4799/DGen
493048a1e98416784e420ce9996b68454a11c53b
ddbe0e47080bb9ec9335e93ea8993ef410ba9cd7
refs/heads/main
2023-07-01T06:07:52.863682
2021-07-29T16:51:37
2021-07-29T16:51:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,628
py
# -*- coding: utf-8 -*- import re import urllib from nltk.stem import WordNetLemmatizer from nltk.corpus import wordnet import requests from nltk.stem import PorterStemmer cache = {} lemmatizer = WordNetLemmatizer() stemmer = PorterStemmer() def get_concepts_of_instance_by_probase(instance, eval, use_cache=True): """ Fetches the concept and the probabilities for a given instance by probase. :param instance: the instance, for which the concepts should be requested :param use_cache: if true a cache for instances and corresponding concepts is used, to avoid unnecessary requests :return: the concepts and their probability """ from urllib.parse import urlparse if use_cache == True and instance in cache: return cache[instance] if eval: probase_url = ( "https://concept.research.microsoft.com/api/Concept/ScoreByProb?instance={" "}&topK=100&api_key=eT5luCbmII34ZvpPVs7HxtbUU1cFcE12" ) else: probase_url = "https://concept.research.microsoft.com/api/Concept/ScoreByProb?instance={}&topK=20&api_key=eT5luCbmII34ZvpPVs7HxtbUU1cFcE12" try: requestUrl = probase_url.format(urllib.request.pathname2url(instance)) except: print("request error!") requestUrl = probase_url.format(urllib.pathname2url(instance)) try: response = requests.get(requestUrl, verify=False) except requests.exceptions.ConnectionError as e: print(e) print("\n\ntry one last time...") response = requests.get(requestUrl, verify=False) if response is None: print("microsoft api error!") return None concepts = response.json() return concepts def appendIfNotEmpty(list, item): """ Append item to list, if item is not None. in place :param list: the list, where the item should been appended to :param item: the item which should been appended to the list """ if item: list.append(item) def split_text_in_words(text): """ Splits a given text into words :param text: the text which should be splited into words :return: a list containing the splitted words """ real_words = [] words = re.findall( r'\'|’|"|”|“|»|«|\(|\)|\[|\]|\{|\}:;|[^\'’"”“»«\(\)\[\]\{\}\s:;]+', text ) for word in words: word = word.strip() if word.startswith("..."): real_words.append(word[:3]) appendIfNotEmpty(real_words, word[3:]) if word.startswith(('"', "(", "[", "{", "<", "«", "…", "“")): real_words.append(word[:1]) word = word[1:] if word.endswith("..."): appendIfNotEmpty(real_words, word[:-3]) real_words.append(word[-3:]) elif word.endswith( (".", ",", ":", ";", "]" ")", "}", "!", "?", '"', ">", "»", "…", "”") ): appendIfNotEmpty(real_words, word[:-1]) real_words.append(word[-1:]) else: appendIfNotEmpty(real_words, word) return real_words def normalize_instance(s, mode=2): """ Normalize to a lowercase lemma string :param s: the s to be processed :param mode: 1 means return all syset, 2 means only return itself """ try: s = s.lower() s = lemmatizer.lemmatize(s) # s = stemmer.stem(s) except: return s if mode == 1: synset = set() for syn in wordnet.synsets(s): for l in syn.lemmas(): synset.add(l.name().replace("_", " ")) return synset else: return s
[ "rsy@163.com" ]
rsy@163.com
f35c4f6e36678c5ab330fd80f885d8e6603d17da
91d9d33931c4ecbbe78eaaf092b601fa9c522f64
/novajoin/middleware/config.py
7eb783f39d2a70c041d537dbdc3154266d95c313
[ "Apache-2.0" ]
permissive
mattparko/novajoin
8799f7d00a715c9154083489933ece629d269f48
e8b18c4bd44ea86cbbedfdf9a9f0f7f7718c9c56
refs/heads/master
2020-06-03T07:28:49.155058
2019-03-20T07:55:42
2019-03-21T07:58:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,739
py
# Copyright 2016 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_middleware import cors def set_config_defaults(): """This method updates all configuration default values.""" set_cors_middleware_defaults() def set_cors_middleware_defaults(): """Update default configuration options for oslo.middleware.""" cors.set_defaults( allow_headers=['Content-MD5', 'X-Image-Meta-Checksum', 'X-Storage-Token', 'Accept-Encoding', 'X-Auth-Token', 'X-Identity-Status', 'X-Roles', 'X-Service-Catalog', 'X-User-Id', 'X-Tenant-Id', 'X-OpenStack-Request-ID'], expose_headers=['X-Image-Meta-Checksum', 'X-Auth-Token', 'X-Subject-Token', 'X-Service-Token', 'X-OpenStack-Request-ID'], allow_methods=['GET', 'PUT', 'POST', 'DELETE', 'PATCH'] )
[ "alee@redhat.com" ]
alee@redhat.com
471a83b33e8a7e89fc6b0398484c72c6c9845b9c
d34cf4ecb93e4a7d7ec95424e52f815f36206f43
/buildsystem/plugins.py
74feb5c0ab655307cb52d7fac3b173f2390f23e5
[]
no_license
FelixKiprono/felix
74a2fe2b498d07a993f9ad67ff88bc916ddb271b
b4d0dae314d9ae7b89f7e273ca89555e91b7312f
refs/heads/master
2021-01-18T04:53:31.002406
2015-05-27T13:15:33
2015-05-27T13:15:33
36,385,023
2
0
null
2015-05-27T17:49:32
2015-05-27T17:49:32
null
UTF-8
Python
false
false
935
py
import fbuild import fbuild.builders.file import os from fbuild.path import Path from fbuild.builders.file import copy # ------------------------------------------------------------------------------ def build(phase, felix): print ("BUILDING PLUGINS") for f in Path.glob('src/lib/plugins/*'): copy(ctx=phase.ctx, src=f, dst=phase.ctx.buildroot / 'share'/f[4:]) plugins = [ #"ocaml2html", #"py2html", #"fdoc2html", #"flx2html", #"cpp2html", #"fpc2html", #"fdoc_slideshow", #"fdoc_paragraph", #"fdoc_heading", #"fdoc_fileseq", #"fdoc_scanner", #"fdoc_button", "toolchain_clang_osx", "toolchain_clang_linux", "toolchain_gcc_osx", "toolchain_gcc_linux", ] for base in plugins: shlib = felix.compile(phase.ctx.buildroot/('share/lib/plugins/'+base+'.flx'),flags=['-od',phase.ctx.buildroot/'host/lib/rtl'])
[ "Max.Skaller@gmail.com" ]
Max.Skaller@gmail.com
91758f658fe72ce35e66cc11b4da7088508a3c71
42fb58ce2446f4f2f11f8e3fd3bf197c514e2f34
/test.py
df8fd254bb2a0ccd5b5978022801ba36fd1589e7
[]
no_license
EdisonFan/learnPython
d994c90646f0a289d02365c72d7e258e6067dfb2
660824db5dcd7214d880e561aca0aa794bd6f690
refs/heads/master
2020-03-07T13:58:38.170965
2018-03-31T08:58:58
2018-03-31T08:58:58
127,515,420
0
0
null
null
null
null
UTF-8
Python
false
false
1,236
py
# -*- coding: utf-8 -*- """ Created on Mon Jan 29 21:21:20 2018 @author: fan """ import numpy as np from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures X_train = [[6], [8], [10], [14], [18]] y_train = [[7], [9], [13], [17.5], [18]] X_test = [[6], [8], [11], [16]] y_test = [[8], [12], [15], [18]] # 建立线性回归,并用训练的模型绘图 regressor = LinearRegression() regressor.fit(X_train, y_train) xx = np.linspace(0, 26, 100) yy = regressor.predict(xx.reshape(xx.shape[0], 1)) plt = runplt() plt.plot(X_train, y_train, 'k.') plt.plot(xx, yy) quadratic_featurizer = PolynomialFeatures(degree=3) X_train_quadratic = quadratic_featurizer.fit_transform(X_train) X_test_quadratic = quadratic_featurizer.transform(X_test) regressor_quadratic = LinearRegression() regressor_quadratic.fit(X_train_quadratic, y_train) xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1)) plt.plot(xx, regressor_quadratic.predict(xx_quadratic), 'r-') plt.show() #print(X_train) #print(X_train_quadratic) #print(X_test) #print(X_test_quadratic) #print('1 r-squared', regressor.score(X_test, y_test)) #print('2 r-squared', regressor_quadratic.score(X_test_quadratic, y_test))
[ "fanxh@calis.edu.cn" ]
fanxh@calis.edu.cn
d173feef779ae3935c6b7bfeed5894b1d4ec1e8e
d5f75adf5603927396bdecf3e4afae292143ddf9
/python/paddle/fluid/tests/unittests/test_inplace_and_clear_gradient.py
7ec04ed90b0aeef7599cde4e902c47111f1536bd
[ "Apache-2.0" ]
permissive
jiweibo/Paddle
8faaaa1ff0beaf97ef7fb367f6c9fcc065f42fc4
605a2f0052e0ffb2fab3a4cf4f3bf1965aa7eb74
refs/heads/develop
2023-07-21T03:36:05.367977
2022-06-24T02:31:11
2022-06-24T02:31:11
196,316,126
3
2
Apache-2.0
2023-04-04T02:42:53
2019-07-11T03:51:12
Python
UTF-8
Python
false
false
1,415
py
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.fluid as fluid from paddle import _C_ops import unittest paddle.disable_static() def clear_grad(w, a): @paddle.no_grad() def warp(*_): assert w.grad is not None _C_ops.scale_(w.grad, 'scale', 0.5) w.clear_gradient(False) return warp class TestInplaceAndClearGradient(unittest.TestCase): def test(self): paddle.set_device('cpu') input_data = np.ones([2, 2]).astype('float32') w = paddle.to_tensor(input_data, 'float32', stop_gradient=False) _clear_grad = clear_grad(w, a="1") w._register_backward_hook(_clear_grad) for i in range(10): out = _C_ops.scale(w, 'scale', 0.1) out.backward() if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
jiweibo.noreply@github.com
d5ab006541ddcbc2864ce11bba9ee259f0081089
31b47a204c91067a0b8e6eee77a4845ed7e76066
/cycle
9b95d5ad121a6679f10d82481addb15130f2847f
[]
no_license
nickanderson/todo-cycle
d43150e9d9e79e69d702dcfd3d4e74dae3784867
ca4946e61474f31a5e95478735fc90d09edf3bed
refs/heads/master
2021-01-19T09:23:43.425570
2009-01-07T21:49:01
2009-01-07T21:49:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,247
#!/usr/bin/env python """ Author: Nick Anderson Date: Dec 10 2008 cycle is a todo list manager modeled on "The Cycle" as described in Time Management for System Administrators By Thomas A. Limoncelli """ import os import subprocess import datetime, time import re import sys import fileinput import parsedatetime.parsedatetime as pdt import parsedatetime.parsedatetime_consts as pdc from optparse import OptionParser, OptionGroup __todo_dir__ = os.path.expanduser('~/.todocycle') __editor__ = 'vim' def pre_append(newline, filename): """ This will append a new line to the begining of a file newline -- string that you want appended to the file filename -- string of the filename that you want to prepend to """ for n, line in enumerate(fileinput.FileInput(filename,inplace=1)): if n == 0: print newline break def calendar_iterator(start, direction='next', fmt='%Y-%m-%d'): """ Iterates at a daily rate in the direction specified in time from a given start date start -- date string in specified format fmt -- format the date string is in """ curr = datetime.date(*time.strptime(start, fmt)[:3]) one = datetime.timedelta(1) while 1: if direction == 'next': curr += one elif direction == 'previous': curr -= one else: sys.exit('calendar_iterator recieved invalid direction') yield curr def find_todo_txt(date, direction, maxdays=14): """ Find the next todo.txt in the direction specified up to maxdays date -- datestring in format Y-m-d direction -- direction in calandar to look for the todo.txt file valid directions = 'forward' or 'reverse' maxdays -- maximum number of days to look back for a previous todo.txt """ if direction == 'next': iter = calendar_iterator(today, direction) date = iter.next() return str(date) + '.txt' elif direction == 'previous': iter = calendar_iterator(today, direction) count = 0 while True: previous_date = str(iter.next()) previous_todotxt = previous_date + '.txt' if os.path.exists(previous_todotxt): return previous_todotxt elif count == maxdays: print 'no todos found in the previous %s days' % maxdays return None else: count += 1 else: sys.exit('invalid direction passed to find_todo_txt') def write_todo(entries, filename): """ Write entries to filename, return nothing entries -- List of task entries filename -- file to write tas entries to """ file = open(filename, 'w') for entry in entries: file.write(entry) file.close() def get_file_lines(filename): """ Return list of strings (lines in file) filename -- file to load and read """ file = open(filename, 'r') return file.readlines() def get_unfinished_tasks(tasks): """ Return list of unfinished tasks tasks -- list of tasks to process """ unfinished_tasks = [] postponed = re.compile('^>') done = re.compile('^-') for task in tasks: if not postponed.match(task) and not done.match(task): unfinished_tasks.append(task) return unfinished_tasks def get_postponed_tasks(tasks): """ Return list of postponed tasks tasks -- list of tasks to process """ postponed_tasks = [] postponed = re.compile('>') for task in tasks: if postponed.match(task): postponed_tasks.append(task) return postponed_tasks def get_completed_tasks(tasks): """ Return list of completed tasks tasks -- list of tasks to process """ completed_tasks = [] completed = re.compile('^-') for task in tasks: if completed.match(task): completed_tasks.append(task) return completed_tasks def get_forward_tasks(file): """ Return list of tasks that are to be postponed file -- file to look for postponed tasks in """ forward_tasks = [] for line in file.readlines(): if re.match('^>', line): forward_tasks.append(line) return forward_tasks def get_plain_entries(entries): """ Return list of entries that have the finished and postponed flags striped entries -- list of entries to process """ plain_entries = [] for entry in entries: plain_entries.append(entry.lstrip('->')) return plain_entries def push_forward_tasks(tasks, filename): """ Push current tasks defined to be forwarded to the next days todo.txt tasks -- list of current tasks filename -- file to push postponed tasks to """ if not os.path.exists(filename): lines = [] else: lines = get_file_lines(filename) for task in tasks: task = task.lstrip('>') if task in lines: match = True continue match = False if match == False: lines.append(task) file = open(filename, 'w') for line in lines: file.write(line) file.flush() file.close() def parse_date(datestring): """ Take given datestring and return a date in the format Y-m-d datestring -- parsedatetime compatible datestring """ p = pdt.Calendar(pdc.Constants()) date = p.parse(datestring) year = str(date[0][0]) month = str(date[0][1]) day = str(date[0][2]) if not len(month) == 2: month = '0' + month if not len(day) == 2: day = '0' + day date = '%s-%s-%s' % (year, month, day) return date def get_todo_files_date_range(start_date, end_date): """ Return list of txt files that exist for given date range start_date -- Day to start iteration from (past to present) end_date -- Day to end iteration """ date = start_date iter = calendar_iterator(start_date, 'next') todo_txt_dates = [] if start_date == end_date: if os.path.exists(start_date+'.txt'): todo_txt_dates.append(start_date+'.txt') return todo_txt_dates dates = [] while not date == end_date: date = str(iter.next()) dates.append(date) for each in dates: if os.path.exists(each+'.txt'): todo_txt_dates.append(each+'.txt') return todo_txt_dates def sumarize_todo(todo_file): """ Print out a clear summaary of a days tasks todo_file - string of file name """ entries = get_file_lines(todo_file) unfinished_tasks = get_unfinished_tasks(entries) postponed_tasks = get_postponed_tasks(entries) completed_tasks = get_completed_tasks(entries) if not (len(unfinished_tasks) == 0 and len(postponed_tasks) == 0 and len(completed_tasks) == 0): print "" print "Summary for %s" % todo_file print "-" * 60 if options.unfinished: if not len(unfinished_tasks) == 0: print "" print "Unfinished tasks:" for each in unfinished_tasks: print '\t', each.rstrip() if options.postponed: if not len(postponed_tasks) == 0: print "" print "Postponed tasks:" for each in postponed_tasks: print '\t', each.rstrip().lstrip('>') if options.completed: if not len(completed_tasks) == 0: print "" print "Completed tasks" for each in completed_tasks: print '\t', each.rstrip().lstrip('-') print "+" * 60, "\n\n" if __name__ == '__main__': """ The main wrapper """ if not os.path.exists(__todo_dir__): os.mkdir(__todo_dir__) os.chdir(__todo_dir__) today = time.strftime('%Y-%m-%d', time.localtime()) todo_today = today + '.txt' parser = OptionParser(usage="%prog [report] [[start date]-[end date]]") report = OptionGroup(parser, "Report filtering options", "Only active when using the report action" "Default behavior is to show all task status unfiltered." "Applying a filter shows thats that match the filter" "applied. Filter options can be applied in conjuntion.") report.add_option("-u", "--unfinished", dest="unfinished", action="store_true", help="Show unfinished tasks") report.add_option("-p", "--postponed", dest="postponed", action="store_true", help="Show postponed tasks") report.add_option("-c", "--completed", dest="completed", action="store_true", help="Show completed tasks") parser.add_option_group(report) (options, args) = parser.parse_args() actions = ['report'] if not options.unfinished and not options.postponed and not options.completed: options.unfinished = True options.postponed = True options.completed = True if not len(args) == 0: SpecifiedAction = re.compile(args[0]) for action in actions: if SpecifiedAction.match('report'): if not len(args) == 1: daterange = " ".join(args[1:]) daterange = daterange.split('-') if len(daterange) == 0: startDate = parse_date('today') endDate = parse_date('today') if len(daterange) > 0: startDate = parse_date(daterange[0]) if len(daterange) == 1: endDate = startDate if len(daterange) > 1: endDate = parse_date(daterange[1]) else: startDate = parse_date('today') endDate = startDate todo_files = get_todo_files_date_range(startDate, endDate) for each in todo_files: sumarize_todo(each) sys.exit() else: parser.error("%s is not recognized"%args[0]) last_todo_txt = find_todo_txt(today, 'previous') current_todo_txt = today + '.txt' if os.path.exists(todo_today): current_task_entries = get_file_lines(current_todo_txt) else: current_task_entries = [] if not last_todo_txt == None: previous_task_entries = get_file_lines(last_todo_txt) previous_unfinished_tasks = get_unfinished_tasks(previous_task_entries) previous_unfinished_tasks.reverse() for task in previous_unfinished_tasks: if not task in get_plain_entries(current_task_entries): current_task_entries.insert(0,task) write_todo(current_task_entries, current_todo_txt) editor_cmd = __editor__ + ' ' + todo_today subprocess.call(editor_cmd, shell=True) file = open(todo_today, 'r') forward_tasks = get_forward_tasks(file) file.close() if not len(forward_tasks) == 0: push_forward_tasks(forward_tasks, find_todo_txt(today, 'next'))
[ "nick@anders0n.net" ]
nick@anders0n.net
56765239157a3bae4c7e398235b55f0cb9b4bb49
038d7dc760c8104f1d891f42ffbcc3b35f471e7e
/No1-22-April-2016/3-Rasko_Python_Intro/example_1.py
28907cde1102e863dd8a44f4a2176f7941c9a4dd
[]
no_license
acmeteam/acme-talks
60e34f8fa62989a4307094b777de8d1fcd97c82c
bd0583ee46fa369b2fadc9d5f49b1722a413cc59
refs/heads/master
2020-12-24T07:15:39.540883
2016-09-16T14:47:03
2016-09-16T14:47:03
57,039,954
0
0
null
null
null
null
UTF-8
Python
false
false
788
py
import json import codecs import urllib.request as req ################## checking version of local masterlist against cloud ml ################## #(masterlist.json file needed in the working dir for this to work) #get cloud masterlist url = "http://www.plantronics.com/services/mobile/ios_stage/hub/3.8/masterlist.json" resp = req.urlopen(url).read().decode("utf8") #get local masterlist ml_file = codecs.open("masterlist.json", "r", "utf8") #parse local ml ml = json.load(ml_file) mlv = ml['masterlist_schema_version'] #parse downloaded ml cml = json.loads(resp) cmlv = cml['masterlist_schema_version'] #check differances (and print them) print("\n\n\n") if mlv == cmlv: print("OK!") else: print("WRONG Version!!! - l:{} != c:{}".format(mlv, cmlv)) print("\n\n\n")
[ "andrija.milovanovic@pstech.rs" ]
andrija.milovanovic@pstech.rs
b46305f6c2bd6c6ca9c2674b6850e30fcfd28bc7
f62db0b32a88adf0a9837818ffec2e27df2b84be
/opdracht01/MDP/Labo's Pieter/labo 2.8 part 2.py
e8c062a66d6c5e8a0b52045889f20ed38b60b2db
[]
no_license
Vic-Rottiers/P2-systeembeheer
e4b5642f3b6bfc0acac9ce5d6a083ba69cae10c9
db92419916bb28f83ad28698cdf15cdc1fbae777
refs/heads/master
2023-05-08T11:07:41.687950
2021-05-28T12:21:51
2021-05-28T12:21:51
365,987,419
1
0
null
null
null
null
UTF-8
Python
false
false
668
py
from ncclient import manager import xml.dom.minidom m = manager.connect( host = "192.168.56.104", port="830", username="cisco", password="cisco123!", hostkey_verify=False ) netconf_data = """ <config> <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native"> <interface> <Loopback> <name>111</name> <description>TEST1</description> <ip> <address> <primary> <address>100.100.100.100</address> <mask>255.255.255.0</mask> </primary> </address> </ip> </Loopback> </interface> </native> </config> """ netconf_reply = m.edit_config(target="running", config=netconf_data) print(xml.dom.minidom.parseString(netconf_reply.xml).toprettyxml())
[ "vic.rottiers@student.hogent.be" ]
vic.rottiers@student.hogent.be
f457208a86bb5aaf7e0cc989c4142e0cfe39acd6
14373275670c1f3065ce9ae195df142146e2c1a4
/stubs/boltons/boltons/formatutils.pyi
20ac5f0a83b0bb32bbae800a27bde67ba4ad70b9
[ "Apache-2.0", "MIT" ]
permissive
sobolevn/typeshed
eb7af17c06a9722f23c337e6b9a4726223155d58
d63a82640390a9c130e0fe7d409e8b0b836b7c31
refs/heads/master
2023-08-04T05:59:29.447015
2023-06-14T21:27:53
2023-06-14T21:27:53
216,265,622
2
0
Apache-2.0
2022-02-08T10:40:53
2019-10-19T20:21:25
Python
UTF-8
Python
false
false
1,231
pyi
from collections.abc import Callable from typing import Any def construct_format_field_str(fname: str, fspec: str, conv: str) -> str: ... def infer_positional_format_args(fstr: str) -> str: ... def get_format_args(fstr: str) -> tuple[list[tuple[int, type]], list[tuple[str, type]]]: ... def tokenize_format_str(fstr: str, resolve_pos: bool = True) -> list[str | BaseFormatField]: ... class BaseFormatField: def __init__(self, fname: str, fspec: str = "", conv: str | None = None) -> None: ... base_name: str fname: str subpath: str is_positional: bool def set_fname(self, fname: str) -> None: ... subfields: list[str] fspec: str type_char: str type_func: str def set_fspec(self, fspec) -> None: ... conv: str conv_func: str | None def set_conv(self, conv: str) -> None: ... @property def fstr(self) -> str: ... class DeferredValue: func: Callable[..., Any] cache_value: bool def __init__(self, func: Callable[..., Any], cache_value: bool = True) -> None: ... def get_value(self) -> Any: ... def __int__(self) -> int: ... def __float__(self) -> float: ... def __unicode__(self) -> str: ... def __format__(self, fmt: str) -> str: ...
[ "noreply@github.com" ]
sobolevn.noreply@github.com
f1a9d42270997eb481ab4e158959025d989c22ed
0d8bf7aac9d6d922e44a4d9a98c8e2e0dff8db44
/Detector_yolov4_PART1.py
b055c75a58ba2af9f97fc5f4f546aff28f4a254f
[]
no_license
abcom-mltutorials/Object-Detection-And-Tracking
c1d8df6f50ca6964678db64709a9545d168c2512
3a69c5d6c45ed16c000647676c6b304a2a9af180
refs/heads/master
2023-03-07T13:51:12.868851
2021-02-20T12:27:37
2021-02-20T12:27:37
334,087,872
0
0
null
null
null
null
UTF-8
Python
false
false
1,414
py
#================================================ Copyright @ 2020 **ABCOM Information Systems Pvt. Ltd.** All Rights Reserved. Licensed under the Apache Licaense, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. #================================================ # Object detection using YOLO V4 # Detector_yolov4_PART1.py import numpy as np import cv2 import warnings warnings.filterwarnings('ignore') from yolov4.tf import YOLOv4 # Initializing YOLOv4 yolo = YOLOv4() # setting 'COCO' class names yolo.classes = "files/coco.names" # Creating model yolo.make_model() # Initializing model to pre-trained state yolo.load_weights("files/yolov4.weights", weights_type="yolo") inp = int(input('Choose the format for detecting objects : \n 1.Image \n 2.Video \n')) if inp == 1: #for image yolo.inference(media_path="data/image00.jpg") elif inp == 2:#for video yolo.inference(media_path="data/video00.mp4", is_image=False)
[ "abcom-mltutorials@gmail.com" ]
abcom-mltutorials@gmail.com
1fe8f0329e0ca522ed58c0634c6952190db00db5
f324780d2187172bc1eabaddb23565c3dabeed31
/snake/__main__.py
b41428f3f632aa4a6eaeae1ca92cef57ad043c88
[]
no_license
pierkoo/snake
92c43d0ff8e8081f8262f337d023e0039d3a3b27
5f1cac60cf308509c919e08e091d0e8c8ba1beb8
refs/heads/master
2023-05-11T23:47:59.075954
2021-06-01T21:11:08
2021-06-01T21:11:08
365,058,293
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
from game import SnakeGame if __name__ == "__main__": snake = SnakeGame() snake.main_loop()
[ "pierkoo@gmail.com" ]
pierkoo@gmail.com
4b9b4953e500a5f6dfa1db37177b48ce6b06b8ae
6379deba5de738bb4bace7c7f790c3717d44d4ae
/homework4/tests/test_calculate_average.py
4c81ed0bb089d8224d6f6ec7e7d7efd67c60ca5f
[]
no_license
OSUsatoru/cs362_practice_git
62e23e2d6521f0e31770f943c1a257c61536716a
8f55934ff5eceda61f8fe00a7daca389394bfec4
refs/heads/master
2023-03-17T20:56:25.144930
2021-03-08T05:05:13
2021-03-08T05:05:13
331,689,331
0
0
null
null
null
null
UTF-8
Python
false
false
477
py
import unittest import calculate_average class test_case_average(unittest.TestCase): def setUp(self): self.a = [1,2,3,4,5] self.b = [] self.c = [2,"str1","str2"] def test_cube(self): self.assertEqual(3, calculate_average.cal_ave(self.a)) self.assertEqual("Empty list", calculate_average.cal_ave(self.b)) self.assertEqual("Invalid input", calculate_average.cal_ave(self.c)) if __name__ == "__main__": unittest.main()
[ "yamamsat@oregonstate.edu" ]
yamamsat@oregonstate.edu
338ceea0c209b5700e116c544e2b9a510486785f
2cd986dee35becd91cbd93ba7b35414e80e33f4f
/venv/lib/python3.7/encodings/cp855.py
4a1ca4424c182b4f9e567fcd604971544289aa4b
[]
no_license
HernanG234/sensors_async_sim
95ccb4e4fd188b8fc5be206bae3af4302f23e3e2
fce3701e2a0865198c0977ede5f42da77b8a7853
refs/heads/master
2020-05-07T09:43:57.354059
2019-05-11T19:07:23
2019-05-11T19:07:23
180,387,282
0
1
null
2019-04-29T15:42:53
2019-04-09T14:37:38
Python
UTF-8
Python
false
false
43
py
/usr/local/lib/python3.7/encodings/cp855.py
[ "hernan.gonzalez@incluit.com" ]
hernan.gonzalez@incluit.com