blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
56d57686f92e0970a3e91838c2390f7a81b41c96
5062c7bdd302388668a79591d56f6fef667d2324
/polls/polls1/admin.py
dbe803981a4c8a9f9097ed134ee1c43a2198d0e8
[]
no_license
amt3/polling_app
cd6e44ab357e9a1f102d8a131eef95193ff62b96
d71e5dacd8dfe242abe671bcb29addb7a8630c4f
refs/heads/master
2021-01-19T19:38:05.412034
2017-04-18T19:51:26
2017-04-18T19:51:26
88,431,007
0
0
null
null
null
null
UTF-8
Python
false
false
673
py
from django.contrib import admin from .models import Choice, Question, comment, User class ChoiceInline(admin.TabularInline): model = Choice extra = 3 class QuestionAdmin(admin.ModelAdmin): fieldsets = [ (None, {'fields': ['question_text']}), ('Date information', {'fields': ['pub_date'], 'classes': ['collapse']}), ] inlines = [ChoiceInline] list_display = ('question_text', 'pub_date', 'was_published_recently') list_filter = ['pub_date'] search_fields = ['question_text'] admin.site.register(Question, QuestionAdmin) #admin.site.register(Choice) admin.site.register(comment) admin.site.register(User)
[ "amtpagrut@gmail.com" ]
amtpagrut@gmail.com
c6677fbf3c7a82ee6b99d6bb0c784f16490e8eac
87673969182ddaffc976ee66016b98cc56a3f0a3
/Second_Min_No_List.py
6a3cea7e7e70d91b1a2038f9379cc41a9e153ce2
[]
no_license
vikramattri123/265172_python
d588b6e28b20033fe0a64b53d7bb53ea83a47b58
7435782d68f3be84580b673dc5f837494d4d2346
refs/heads/main
2023-04-11T19:25:43.014809
2021-04-29T18:20:23
2021-04-29T18:20:23
359,191,161
0
0
null
null
null
null
UTF-8
Python
false
false
166
py
a = int(input("Enter No : ")) list= [ ] t=99999999999 for i in range(0,a): c = int(input()) list.append(c) if(c<t): c1=t; t=c; print(c1);
[ "vikramattri123@gmail.com" ]
vikramattri123@gmail.com
2fa12de4cea03dc4cd887a32b0e4c644c2ac1660
7e747b7b8d3d30a994f6dafc3d5a5f7ba1f76af5
/WikiTrans/plugin.py
9d50a4c2d8b857e9eb7e384e7424450eeb88bc11
[]
no_license
fbesser/ProgValSupybot-plugins
37640f861c8635a654fbad41bb8cdf3bc6b0c6f2
5a87323ac418e537852f5a4d38dd414c7b82b145
refs/heads/master
2020-12-30T17:19:33.911178
2011-11-01T18:47:57
2011-11-01T18:47:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,054
py
### # Copyright (c) 2011, Valentin Lorentz # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### import supybot.utils as utils from supybot.commands import * import supybot.plugins as plugins import supybot.ircutils as ircutils import supybot.callbacks as callbacks from supybot.i18n import PluginInternationalization, internationalizeDocstring _ = PluginInternationalization('WikiTrans') import urllib @internationalizeDocstring class WikiTrans(callbacks.Plugin): """Add the help for "@plugin help WikiTrans" here This should describe *how* to use this plugin.""" threaded = True def translate(self, irc, msg, args, src, target, word): """<from language> <to language> <word> Translates the <word> (also works with expressions) using Wikipedia interlanguage links.""" try: page = utils.web.getUrlFd('http://%s.wikipedia.org/wiki/%s' % (src, urllib.quote_plus(word.replace(' ', '_')))) except: irc.error(_('This word can\'t be found on Wikipedia')) return start = ('\t\t\t\t\t<li class="interwiki-%s"><a ' 'href="http://%s.wikipedia.org/wiki/') % \ (target, target) for line in page: if line.startswith(start): irc.reply(line[len(start):].split('"')[2]) return irc.error(_('No translation found')) translate = wrap(translate, ['something', 'something', 'text']) Class = WikiTrans # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=79:
[ "progval@gmail.com" ]
progval@gmail.com
7738aa87e518aeffeaeb7d4c0c9c5946d12b319e
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
/pardus/tags/2008.1/applications/admin/multitail/actions.py
d4c6ef77d21dc229418a24b7aaf616ffdbe43415
[]
no_license
aligulle1/kuller
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
7f98de19be27d7a517fe19a37c814748f7e18ba6
refs/heads/master
2021-01-20T02:22:09.451356
2013-07-23T17:57:58
2013-07-23T17:57:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2006 TUBITAK/UEKAE # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt from pisi.actionsapi import autotools from pisi.actionsapi import pisitools def build(): autotools.make("all") def install(): pisitools.dobin("multitail") pisitools.dosed('multitail.conf', 'check_mail:5', 'check_mail:0') # disable check mail feature by default pisitools.insinto("/etc", "multitail.conf") pisitools.dodoc("Changes", "license.txt", "readme.txt") pisitools.dohtml("manual*.html") pisitools.doman("multitail.1")
[ "yusuf.aydemir@istanbul.com" ]
yusuf.aydemir@istanbul.com
f2f71ed9879b1dd22cc2ccd3cb1b8c85b92403af
50f7deafdc78088cc5d3c083a48c1903b95bb812
/app1/views.py
131d193670281057b152061a633dbe72e9a064bf
[]
no_license
ritztech/django_project
4ad6f1200d410204065caa0f81711013697d9674
ca09af8180a5cd045408091a91f70e8726b6ff5f
refs/heads/master
2021-01-16T05:05:14.524771
2020-02-26T12:19:50
2020-02-26T12:19:50
242,985,320
0
0
null
null
null
null
UTF-8
Python
false
false
446
py
from django.shortcuts import render from django.http import HttpResponse # Create your views here. def home(request): #return HttpResponse("<h1>Hello response to main page</h1> ") return render(request,'index.html',{'name':'sudhir shrivastvava','job':'IIT KGP'}) def add(request): val1=int(request.POST["num1"]) val2=int(request.POST["num2"]) val3= val1 + val2 return render(request,"result.html",{'result':val3})
[ "ritzz.technologies@gmail.com" ]
ritzz.technologies@gmail.com
d3370eaf70619b36f388d94de9592ce4897efb59
495e2201cb5f5e690fd432995ab426fe524b45ad
/Strings/venv/Scripts/easy_install-3.7-script.py
83ec03b6681bf67a582b2289cba7cb5c60b9d45a
[]
no_license
IngridFCosta/Exercicios-de-Python-Curso-em-video
0f22d7e17470464f4ede955fab0e11edb89cbedf
a32811d3a01c7f017882cead0051ba536b05ffbf
refs/heads/master
2022-12-06T04:45:53.589063
2020-08-26T23:34:45
2020-08-26T23:34:45
288,519,041
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
#!C:\Users\usuario\PycharmProjects\Strings\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')() )
[ "49729290+IngridFCosta@users.noreply.github.com" ]
49729290+IngridFCosta@users.noreply.github.com
f93f6e8d846bb344aae690e3f73a9e3bca9acc5b
b34a1d253457a2c015247f498ddc5e7dc13a0961
/CyberCrew/task4/src/backend/code/routes.py
a9adcde9acfd64d3860f4e6fde83d3713c4e6f5b
[]
no_license
madwayz/tasks_dev
c8efc957e2c0197a187297642ca9a797f6f37ad8
07f6f587ca4cda464f3c853fcd84f75cc3e45036
refs/heads/master
2022-04-24T04:53:35.515953
2020-04-27T11:09:13
2020-04-27T11:09:13
254,447,572
0
0
null
null
null
null
UTF-8
Python
false
false
817
py
from flask import request, jsonify import requests as req from code import app @app.route('/resolve', methods=['GET', 'POST']) def resolve(): domain = request.args.get('domain') if not domain: return jsonify({'error': 'Check fields and try again.'}) if '://' in domain: return jsonify({'error': 'The "domain"" field expected a domain, but received a URL'}) headers = {'FLAG': 'FLAG{7bdaf9e80649ba47499e3fc}'} try: req.head(f'http://{domain}', headers=headers) except req.exceptions.ConnectionError: return {'status': 'fail'} headers = { 'domainName': domain, 'search': domain, 'web-lookup-search': 'true', } response = req.post(f'http://ip-api.com/json/{domain}', headers=headers).json() return jsonify(response)
[ "djurball@list.ru" ]
djurball@list.ru
b662605ed67fe1a81b64f8c3935cb676d56be5c0
3b20a0bb1e1a408c0fbba4429c40aed625cd8430
/library/migrations/0001_initial.py
c4e8b2d4a84c58eeb4cdc2c5a1343aa96e1e78ae
[]
no_license
rmhanchate/libmanpro
5e1274f384a00e38837d1b22bf7ae9c16ec970ef
9e83df1649f3bc6d1e4c19e56a8321caae92e7f7
refs/heads/master
2022-11-07T09:16:29.510053
2020-06-12T15:25:37
2020-06-12T15:25:37
271,769,375
0
0
null
null
null
null
UTF-8
Python
false
false
2,262
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.28 on 2020-05-16 13:57 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0008_alter_user_username_max_length'), ] operations = [ migrations.CreateModel( name='Book', fields=[ ('id', models.CharField(db_column='ID', primary_key=True, serialize=False, max_length=255)), ('title', models.CharField(db_column='Title', max_length=255)), ('link', models.CharField(db_column='Link', max_length=255)), ], options={ 'db_table': 'book', 'managed': False, }, ), migrations.CreateModel( name='Author', fields=[ ('id', models.CharField(db_column='id', max_length=255, primary_key=True, serialize=False)), ('author', models.CharField(db_column='Author', max_length=255, null=True)), ], options={ 'db_table': 'author', 'managed': False, }, ), migrations.CreateModel( name='DjangoMigrations', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('app', models.CharField(max_length=255)), ('name', models.CharField(max_length=255)), ('applied', models.DateTimeField()), ], options={ 'db_table': 'django_migrations', 'managed': False, }, ), migrations.CreateModel( name='Genre', fields=[ ('id', models.CharField(db_column='ID', primary_key=True, serialize=False, max_length=255)), ('class', models.FloatField(db_column='Class', max_length=255)), ('genre', models.CharField(db_column='Genre', max_length=255)), ], options={ 'db_table': 'genre', 'managed': False, }, ), ]
[ "rmhanchate.181ec135@nitk.edu.in" ]
rmhanchate.181ec135@nitk.edu.in
ed679385dfdf421b67dac7110709160cbba2b2c2
68ed4d0aed6e55f8af151276a09e0d08d9d61387
/prototype/data/imagenet_dataloader.py
055cd060445fa83dbd576810bf3f2b4181531dad
[]
no_license
Rivulet-1993/prototype
8cb1dbc9034f495c5d53ce99e0b4e5c5a5e62d33
193462e72b6e58b7b4a826bc9ae7f013efc2c76d
refs/heads/main
2023-03-25T17:36:50.129634
2021-03-17T02:45:27
2021-03-17T02:45:27
349,042,207
1
0
null
null
null
null
UTF-8
Python
false
false
10,189
py
from torch.utils.data import DataLoader from torchvision import transforms from .datasets import ImageNetDataset from .transforms import build_transformer, TwoCropsTransform, GaussianBlur from .auto_augmentation import ImageNetPolicy from .sampler import build_sampler from .metrics import build_evaluator from .pipelines import ImageNetTrainPipeV2, ImageNetValPipeV2 from .nvidia_dali_dataloader import DaliDataloader def build_common_augmentation(aug_type): """ common augmentation settings for training/testing ImageNet """ normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if aug_type == 'STANDARD': augmentation = [ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter(0.2, 0.2, 0.2, 0.1), transforms.ToTensor(), normalize, ] elif aug_type == 'AUTOAUG': augmentation = [ transforms.RandomResizedCrop(224), ImageNetPolicy(), transforms.ToTensor(), normalize, ] elif aug_type == 'MOCOV1': augmentation = [ transforms.RandomResizedCrop(224, scale=(0.2, 1.)), transforms.RandomGrayscale(p=0.2), transforms.ColorJitter(0.4, 0.4, 0.4, 0.4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ] elif aug_type == 'MOCOV2' or aug_type == 'SIMCLR': augmentation = [ transforms.RandomResizedCrop(224, scale=(0.2, 1.)), transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ] elif aug_type == 'LINEAR': augmentation = [ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] elif aug_type == 'ONECROP': augmentation = [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ] else: raise RuntimeError("undefined augmentation type for ImageNet!") if aug_type in ['MOCOV1', 'MOCOV2', 'SIMCLR']: return TwoCropsTransform(transforms.Compose(augmentation)) else: return transforms.Compose(augmentation) def build_imagenet_train_dataloader(cfg_dataset, data_type='train'): """ build training dataloader for ImageNet """ cfg_train = cfg_dataset['train'] # build dataset if cfg_dataset['use_dali']: # NVIDIA dali preprocessing assert cfg_train['transforms']['type'] == 'STANDARD', 'only support standard augmentation' dataset = ImageNetDataset( root_dir=cfg_train['root_dir'], meta_file=cfg_train['meta_file'], read_from=cfg_dataset['read_from'], ) else: image_reader = cfg_dataset[data_type].get('image_reader', {}) # PyTorch data preprocessing if isinstance(cfg_train['transforms'], list): transformer = build_transformer(cfgs=cfg_train['transforms'], image_reader=image_reader) else: transformer = build_common_augmentation(cfg_train['transforms']['type']) dataset = ImageNetDataset( root_dir=cfg_train['root_dir'], meta_file=cfg_train['meta_file'], transform=transformer, read_from=cfg_dataset['read_from'], image_reader_type=image_reader.get('type', 'pil'), ) # build sampler cfg_train['sampler']['kwargs'] = {} cfg_dataset['dataset'] = dataset sampler = build_sampler(cfg_train['sampler'], cfg_dataset) if cfg_dataset['last_iter'] >= cfg_dataset['max_iter']: return {'loader': None} # build dataloader if cfg_dataset['use_dali']: # NVIDIA dali pipeline pipeline = ImageNetTrainPipeV2( data_root=cfg_train['root_dir'], data_list=cfg_train['meta_file'], sampler=sampler, crop=cfg_dataset['input_size'], colorjitter=[0.2, 0.2, 0.2, 0.1] ) loader = DaliDataloader( pipeline=pipeline, batch_size=cfg_dataset['batch_size'], epoch_size=len(sampler), num_threads=cfg_dataset['num_workers'], last_iter=cfg_dataset['last_iter'] ) else: # PyTorch dataloader loader = DataLoader( dataset=dataset, batch_size=cfg_dataset['batch_size'], shuffle=False, num_workers=cfg_dataset['num_workers'], pin_memory=True, sampler=sampler ) return {'type': 'train', 'loader': loader} def build_imagenet_test_dataloader(cfg_dataset, data_type='test'): """ build testing/validation dataloader for ImageNet """ cfg_test = cfg_dataset['test'] # build evaluator evaluator = None if cfg_test.get('evaluator', None): evaluator = build_evaluator(cfg_test['evaluator']) if cfg_dataset['use_dali']: # NVIDIA dali preprocessing assert cfg_test['transforms']['type'] == 'ONECROP', 'only support onecrop augmentation' dataset = ImageNetDataset( root_dir=cfg_test['root_dir'], meta_file=cfg_test['meta_file'], read_from=cfg_dataset['read_from'], evaluator=evaluator, ) else: image_reader = cfg_dataset[data_type].get('image_reader', {}) # PyTorch data preprocessing if isinstance(cfg_test['transforms'], list): transformer = build_transformer(cfgs=cfg_test['transforms'], image_reader=image_reader) else: transformer = build_common_augmentation(cfg_test['transforms']['type']) dataset = ImageNetDataset( root_dir=cfg_test['root_dir'], meta_file=cfg_test['meta_file'], transform=transformer, read_from=cfg_dataset['read_from'], evaluator=evaluator, image_reader_type=image_reader.get('type', 'pil'), ) # build sampler assert cfg_test['sampler'].get('type', 'distributed') == 'distributed' cfg_test['sampler']['kwargs'] = {'dataset': dataset, 'round_up': False} cfg_dataset['dataset'] = dataset sampler = build_sampler(cfg_test['sampler'], cfg_dataset) # build dataloader if cfg_dataset['use_dali']: # NVIDIA dali pipeline pipeline = ImageNetValPipeV2( data_root=cfg_test['root_dir'], data_list=cfg_test['meta_file'], sampler=sampler, crop=cfg_dataset['input_size'], size=cfg_dataset['test_resize'], ) loader = DaliDataloader( pipeline=pipeline, batch_size=cfg_dataset['batch_size'], epoch_size=len(sampler), num_threads=cfg_dataset['num_workers'], dataset=dataset, ) else: # PyTorch dataloader loader = DataLoader( dataset=dataset, batch_size=cfg_dataset['batch_size'], shuffle=False, num_workers=cfg_dataset['num_workers'], pin_memory=cfg_dataset['pin_memory'], sampler=sampler ) return {'type': 'test', 'loader': loader} def build_imagenet_search_dataloader(cfg_dataset, data_type='arch'): """ build ImageNet dataloader for neural network search (NAS) """ cfg_search = cfg_dataset[data_type] # build dataset if cfg_dataset['use_dali']: # NVIDIA dali preprocessing assert cfg_search['transforms']['type'] == 'ONECROP', 'only support onecrop augmentation' dataset = ImageNetDataset( root_dir=cfg_search['root_dir'], meta_file=cfg_search['meta_file'], read_from=cfg_dataset['read_from'], ) else: image_reader = cfg_dataset[data_type].get('image_reader', {}) # PyTorch data preprocessing if isinstance(cfg_search['transforms'], list): transformer = build_transformer(cfgs=cfg_search['transforms'], image_reader=image_reader) else: transformer = build_common_augmentation(cfg_search['transforms']['type']) dataset = ImageNetDataset( root_dir=cfg_search['root_dir'], meta_file=cfg_search['meta_file'], transform=transformer, read_from=cfg_dataset['read_from'], image_reader_type=image_reader.get('type', 'pil'), ) # build sampler assert cfg_search['sampler'].get('type', 'distributed_iteration') == 'distributed_iteration' cfg_search['sampler']['kwargs'] = {} cfg_dataset['dataset'] = dataset sampler = build_sampler(cfg_search['sampler'], cfg_dataset) if cfg_dataset['last_iter'] >= cfg_dataset['max_iter']: return {'loader': None} # build dataloder if cfg_dataset['use_dali']: # NVIDIA dali pipeline pipeline = ImageNetValPipeV2( data_root=cfg_search['root_dir'], data_list=cfg_search['meta_file'], sampler=sampler, crop=cfg_dataset['input_size'], size=cfg_dataset['test_resize'], ) loader = DaliDataloader( pipeline=pipeline, batch_size=cfg_dataset['batch_size'], epoch_size=len(sampler), num_threads=cfg_dataset['num_workers'], ) else: # PyTorch dataloader loader = DataLoader( dataset=dataset, batch_size=cfg_dataset['batch_size'], shuffle=False, num_workers=cfg_dataset['num_workers'], pin_memory=cfg_dataset['pin_memory'], sampler=sampler ) return {'type': data_type, 'loader': loader}
[ "yuankun@sensetime.com" ]
yuankun@sensetime.com
a1b0ca45b0570f7898d0bc8d827982ad2d66ed91
ac97d0698f2e51163c4bc00efe3693cb64da84b6
/ASCII.py
e9e9328807a979b7b8081b523b05006fb70f117f
[]
no_license
Sudhapraba/python
832208777b95370d7bedd81f62b42523cb232dee
586c863042bbba3e22d3a7ce94c1cc4dc422aad5
refs/heads/master
2022-12-17T18:10:33.548695
2020-08-31T17:19:39
2020-08-31T17:19:39
272,482,194
0
0
null
null
null
null
UTF-8
Python
false
false
62
py
c = 'a' print ( "The ASCII value of " + c + " is" , ord(c))
[ "noreply@github.com" ]
Sudhapraba.noreply@github.com
253aeb248a0697cd79511e0f0c7c3d3d8349dff5
8dae4378bf317d1e3ec514061dcc109e6f60dff3
/quizzes/graphtraversal_practice.py
59d31ea80848b02398c34b2bd46069fa15b8b129
[]
no_license
bongbaybien/MLND
85270e78e11c5af5acba491a6ffd3ebfbb7ddb6e
882e35bade8870a29597d1c431d32e59c8bb0c8c
refs/heads/master
2021-01-20T07:53:32.510123
2017-11-20T20:08:06
2017-11-20T20:08:06
80,651,966
0
0
null
null
null
null
UTF-8
Python
false
false
10,175
py
class Node(object): def __init__(self, value): self.value = value self.edges = [] self.visited = False class Edge(object): def __init__(self, value, node_from, node_to): self.value = value self.node_from = node_from self.node_to = node_to # You only need to change code with docs strings that have TODO. # Specifically: Graph.dfs_helper and Graph.bfs # New methods have been added to associate node numbers with names # Specifically: Graph.set_node_names # and the methods ending in "_names" which will print names instead # of node numbers class Graph(object): def __init__(self, nodes=None, edges=None): self.nodes = nodes or [] self.edges = edges or [] self.node_names = [] self._node_map = {} def set_node_names(self, names): """The Nth name in names should correspond to node number N. Node numbers are 0 based (starting at 0). """ self.node_names = list(names) def insert_node(self, new_node_val): "Insert a new node with value new_node_val" new_node = Node(new_node_val) self.nodes.append(new_node) self._node_map[new_node_val] = new_node return new_node def insert_edge(self, new_edge_val, node_from_val, node_to_val): "Insert a new edge, creating new nodes if necessary" nodes = {node_from_val: None, node_to_val: None} for node in self.nodes: if node.value in nodes: nodes[node.value] = node if all(nodes.values()): break for node_val in nodes: nodes[node_val] = nodes[node_val] or self.insert_node(node_val) node_from = nodes[node_from_val] node_to = nodes[node_to_val] new_edge = Edge(new_edge_val, node_from, node_to) node_from.edges.append(new_edge) node_to.edges.append(new_edge) self.edges.append(new_edge) def get_edge_list(self): """Return a list of triples that looks like this: (Edge Value, From Node, To Node)""" return [(e.value, e.node_from.value, e.node_to.value) for e in self.edges] def get_edge_list_names(self): """Return a list of triples that looks like this: (Edge Value, From Node Name, To Node Name)""" return [(edge.value, self.node_names[edge.node_from.value], self.node_names[edge.node_to.value]) for edge in self.edges] def get_adjacency_list(self): """Return a list of lists. The indecies of the outer list represent "from" nodes. Each section in the list will store a list of tuples that looks like this: (To Node, Edge Value)""" max_index = self.find_max_index() adjacency_list = [[] for _ in range(max_index)] for edg in self.edges: from_value, to_value = edg.node_from.value, edg.node_to.value adjacency_list[from_value].append((to_value, edg.value)) return [a or None for a in adjacency_list] # replace []'s with None def get_adjacency_list_names(self): """Each section in the list will store a list of tuples that looks like this: (To Node Name, Edge Value). Node names should come from the names set with set_node_names.""" adjacency_list = self.get_adjacency_list() def convert_to_names(pair, graph=self): node_number, value = pair return (graph.node_names[node_number], value) def map_conversion(adjacency_list_for_node): if adjacency_list_for_node is None: return None return map(convert_to_names, adjacency_list_for_node) return [map_conversion(adjacency_list_for_node) for adjacency_list_for_node in adjacency_list] def get_adjacency_matrix(self): """Return a matrix, or 2D list. Row numbers represent from nodes, column numbers represent to nodes. Store the edge values in each spot, and a 0 if no edge exists.""" max_index = self.find_max_index() adjacency_matrix = [[0] * (max_index) for _ in range(max_index)] for edg in self.edges: from_index, to_index = edg.node_from.value, edg.node_to.value adjacency_matrix[from_index][to_index] = edg.value return adjacency_matrix def find_max_index(self): """Return the highest found node number Or the length of the node names if set with set_node_names().""" if len(self.node_names) > 0: return len(self.node_names) max_index = -1 if len(self.nodes): for node in self.nodes: if node.value > max_index: max_index = node.value return max_index def find_node(self, node_number): "Return the node with value node_number or None" return self._node_map.get(node_number) def _clear_visited(self): for node in self.nodes: node.visited = False def dfs_helper(self, start_node): """TODO: Write the helper function for a recursive implementation of Depth First Search iterating through a node's edges. The output should be a list of numbers corresponding to the values of the traversed nodes. ARGUMENTS: start_node is the starting Node MODIFIES: the value of the visited property of nodes in self.nodes RETURN: a list of the traversed node values (integers). """ ret_list = [start_node.value] # Your code here # mark node as visited self.start_node.visited = True # find adjacent nodes adj_nodes = [edge.node_to for edge in start_node.edges if edge.node_from == start_node] # select next node and repeat for node in adj_nodes: if node.visited == False: ret_list.extend(self.dfs_helper(node)) return ret_list def dfs(self, start_node_num): """Outputs a list of numbers corresponding to the traversed nodes in a Depth First Search. ARGUMENTS: start_node_num is the starting node number (integer) MODIFIES: the value of the visited property of nodes in self.nodes RETURN: a list of the node values (integers).""" self._clear_visited() start_node = self.find_node(start_node_num) return self.dfs_helper(start_node) def dfs_names(self, start_node_num): """Return the results of dfs with numbers converted to names.""" return [self.node_names[num] for num in self.dfs(start_node_num)] def bfs(self, start_node_num): """TODO: Create an iterative implementation of Breadth First Search iterating through a node's edges. The output should be a list of numbers corresponding to the traversed nodes. ARGUMENTS: start_node_num is the node number (integer) MODIFIES: the value of the visited property of nodes in self.nodes RETURN: a list of the node values (integers).""" node = self.find_node(start_node_num) self._clear_visited() ret_list = [node.value] # Your code here while len(ret_list) < len(self.nodes): # find adjacent nodes adj_nodes = [edge.node_to for edge in node.edges if (edge.node_from == node) and (edge.node_to not in ret_list)] # add all adj nodes to ret_list: ret_list.extend([node.value for node in adj_nodes]) # mark start_node as visited node.visited = True # set next start_node for next_node in adj_nodes: if next_node.visited == False: node = next_node break return ret_list[:-1] def bfs_names(self, start_node_num): """Return the results of bfs with numbers converted to names.""" return [self.node_names[num] for num in self.bfs(start_node_num)] graph = Graph() # You do not need to change anything below this line. # You only need to implement Graph.dfs_helper and Graph.bfs graph.set_node_names(('Mountain View', # 0 'San Francisco', # 1 'London', # 2 'Shanghai', # 3 'Berlin', # 4 'Sao Paolo', # 5 'Bangalore')) # 6 graph.insert_edge(51, 0, 1) # MV <-> SF graph.insert_edge(51, 1, 0) # SF <-> MV graph.insert_edge(9950, 0, 3) # MV <-> Shanghai graph.insert_edge(9950, 3, 0) # Shanghai <-> MV graph.insert_edge(10375, 0, 5) # MV <-> Sao Paolo graph.insert_edge(10375, 5, 0) # Sao Paolo <-> MV graph.insert_edge(9900, 1, 3) # SF <-> Shanghai graph.insert_edge(9900, 3, 1) # Shanghai <-> SF graph.insert_edge(9130, 1, 4) # SF <-> Berlin graph.insert_edge(9130, 4, 1) # Berlin <-> SF graph.insert_edge(9217, 2, 3) # London <-> Shanghai graph.insert_edge(9217, 3, 2) # Shanghai <-> London graph.insert_edge(932, 2, 4) # London <-> Berlin graph.insert_edge(932, 4, 2) # Berlin <-> London graph.insert_edge(9471, 2, 5) # London <-> Sao Paolo graph.insert_edge(9471, 5, 2) # Sao Paolo <-> London # (6) 'Bangalore' is intentionally disconnected (no edges) # for this problem and should produce None in the # Adjacency List, etc. import pprint pp = pprint.PrettyPrinter(indent=2) print("Edge List") pp.pprint(graph.get_edge_list_names()) print("\nAdjacency List") pp.pprint(graph.get_adjacency_list_names()) print("\nAdjacency Matrix") pp.pprint(graph.get_adjacency_matrix()) print("\nDepth First Search") pp.pprint(graph.dfs_names(2)) # Should print: # Depth First Search # ['London', 'Shanghai', 'Mountain View', 'San Francisco', 'Berlin', 'Sao Paolo'] print("\nBreadth First Search") pp.pprint(graph.bfs_names(2)) # test error reporting # pp.pprint(['Sao Paolo', 'Mountain View', 'San Francisco', 'London', 'Shanghai', 'Berlin']) # Should print: # Breadth First Search # ['London', 'Shanghai', 'Berlin', 'Sao Paolo', 'Mountain View', 'San Francisco']
[ "myhoangnguyen@gmail.com" ]
myhoangnguyen@gmail.com
da5606d8b80d3dca999333c24fad9c9c7ce317d1
29214e439ac6293605871774e3321c0a4045f689
/DiscordBot.py
e3d95e2519f4223688fcc3ecb8a8f02aac3efb81
[]
no_license
Richard-Tyrrell/DiscordBot
f5edffeedacbd939114469f0f530a13b380cf1d1
01788b350e7605aeb4265d318dca71c7a6d549ec
refs/heads/main
2023-03-11T03:04:12.122832
2021-02-23T05:43:34
2021-02-23T05:43:34
338,903,536
0
0
null
null
null
null
UTF-8
Python
false
false
8,101
py
import random import discord from discord.ext import commands urls = {"php": "https://www.php.net/docs.php", "bash": "https://ryanstutorials.net/bash-scripting-tutorial/\nhttps://www.youtube.com/watch?v=oxuRxtrO2Ag\nhttps://tldp.org/LDP/Bash-Beginners-Guide/html/Bash-Beginners-Guide.html\nhttps://devhints.io/bash\nhttps://www.shellscript.sh/", "mySQL":"https://dev.mysql.com/doc/refman/8.0/en/language-structure.html", "python":"https://docs.python.org/3/", "discord":"https://discordpy.readthedocs.io/en/latest/#manuals\nhttps://github.com/Rapptz/discord.py/tree/master/examples\nhttps://discord.com/invite/r3sSKJJ\nhttps://www.techwithtim.net/tutorials/discord-py/hosting-a-discord-bot-for-free/", "c":"First link is to Lib Gen\nhttp://libgen.is/book/index.php?md5=556E6BEE561B776C95C6872C441BAAD1\nSecond link is a link directly to Steph's message with a download\nhttps://discord.com/channels/751791015630995496/751791015630995499/802322088894660629", "commands":"-bash\n-c\n-commands\n-disc\n-linux\n-php\n-python\n-playlist\n-njit\n-receipt\n-libgen", "linux":"https://ubuntu.com/download \nhttps://getfedora.org/", "Playlist":"https://open.spotify.com/playlist/576j38Yts0TeQGzOpPHvTm?si=ugUeJNk3T26mYJLmCznP6g", "njit":"Fuck NJIT.\nhttps://twitter.com/NJIT/status/971122883815763968", "receipt":"Don't let any of the school administration victimize you for things you didn't do. Hold everyone in the same position accountable for the things they say - keep the fucking receipts and save the fucking recordings. Above all else, never forget that the issues at NJIT are not just a result of the student population\nhttps://discord.com/channels/751791015630995496/751791015630995499/791839370440343562", "LibGen":"Here's a link to Steph's message explaing how to use Lib Gen to get your books for free. Don't ever overpay for something that's free.\nMake sure you select the right format\nhttps://discord.com/channels/751791015630995496/751791015630995499/801991957068513310"}#dict of all the links cdPhrases=['Fuck off.', 'My dude chill out', 'I *JUST* posted those links.', 'Listen it aint hardwork but it is honest work.', 'I am going to delete canvas if you bug me again.', 'That is it you will not like me when I am angry.', 'Hail Hydra! You prick!', 'Heil BASSEL! OUR LORD AND SAVIOR!', 'Somebody get this guy a body bag for when I am done with him.'] #Spam phrases for those dickheads trying to abuse the bot client=commands.Bot(command_prefix='-',case_insensitive=True)#this is what the bot will be called ie bot or client,also not case sensitivity @client.event async def on_ready(): await client.change_presence(activity=discord.Game("Thinking about putting grades in."))#Sets the game being played to this custom message, bot status is Online always print('My guy I am busy deleting Canvas.') #Gives the links for the command "!php" @client.command(name='php') @commands.cooldown(1, 60, commands.BucketType.user) async def php(ctx): if (ctx.author.bot): return response=urls["php"] await ctx.send(response) #Cooldown error handling @php.error async def php_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Gives the links for the command "!mySQL" @client.command(name='mySQL') @commands.cooldown(1, 60, commands.BucketType.user) async def mySQL(ctx): if (ctx.author.bot): return response=urls["mySQL"] await ctx.send(response) #Cooldown error handling @mySQL.error async def mySQL_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Gives the links for the command "!python" @client.command(name='python') @commands.cooldown(1, 60, commands.BucketType.user) async def python(ctx): if (ctx.author.bot): return response=urls["python"] await ctx.send(response) #Cooldown error handling @python.error async def python_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Gives the links for the command "!bash" @client.command(name='bash') @commands.cooldown(1, 60, commands.BucketType.user) async def bash(ctx): if (ctx.author.bot): return response=urls["bash"] await ctx.send(response) #Cooldown error handling @bash.error async def bash_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Gives the links for the command "!c" @client.command(name='c') @commands.cooldown(1, 60, commands.BucketType.user) async def c(ctx): if (ctx.author.bot): return response=urls["c"] await ctx.send(response) #Cooldown error handling @c.error async def c_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Gives the links for the command "!disc" @client.command(name='disc') @commands.cooldown(1, 60, commands.BucketType.user) async def disc(ctx): if (ctx.author.bot): return response=urls["discord"] #This gives a ton of resources for discord.py await ctx.send(response) #Cooldown error handling @disc.error async def disc_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Gives the links for the command "!linux" @client.command(name='linux') @commands.cooldown(1, 60, commands.BucketType.user) async def linux(ctx): if (ctx.author.bot): return response=urls["linux"] await ctx.send(response) #Cooldown error handling @linux.error async def linux_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Gives the links for the command "!playlist" @client.command(name='playlist') @commands.cooldown(1, 60, commands.BucketType.user) async def linux(ctx): if (ctx.author.bot): return response=urls["Playlist"] await ctx.send(response) #Cooldown error handling @linux.error async def linux_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Gives the links for the command "!njit" @client.command(name='NJIT') @commands.cooldown(1, 60, commands.BucketType.user) async def njit(ctx): if (ctx.author.bot): return response=urls["njit"] await ctx.send(response) #Cooldown error handling @njit.error async def njit_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Gives the links for the command "!receipt" @client.command(name='receipt') @commands.cooldown(1, 60, commands.BucketType.user) async def receipt(ctx): if (ctx.author.bot): return response=urls["receipt"] await ctx.send(response) #Cooldown error handling @receipt.error async def recepit_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Gives the links for the command "!libgen" @client.command(name='libgen') @commands.cooldown(1, 60, commands.BucketType.user) async def receipt(ctx): if (ctx.author.bot): return response=urls["LibGen"] await ctx.send(response) #Cooldown error handling @receipt.error async def libgen_error(ctx, error): pharses=random.choice(cdPhrases) await ctx.send(pharses) #Dm's user a list of commands to use @client.command(name='commands') async def on_message(ctx): if (ctx.author.bot): return houseKeeping='Each command has resources for that language or topic,the following are a list of commands avaible to you:\n ' response=urls["commands"]#Dict entry for all the commands await ctx.author.send(houseKeeping+response) @client.event #Error handling for invalid commands,Sends the message below to tell them how to get the list of valid commands async def on_command_error(ctx, error): if isinstance(error, commands.CommandNotFound): await ctx.send('That command is invalid. Please use -commands to recieve a dm telling you the vaild commands.') client.run('Bot Token removed for public viewing')#Bot token goes here
[ "noreply@github.com" ]
Richard-Tyrrell.noreply@github.com
45992b9ea477d620e303825fd506022644b7690e
28a131b8a1d4d96b571571e932cf5da6a4c7801d
/nahida_LL_end_10.py
e1899df424712f74cc2435f8b69c97fb70dbf68c
[]
no_license
Nahida-Jannat/project-linked-list
4cdcb2d6159b9cd931398c92924965e2812d6355
8556102eff9431f65c87404240c347bb43e6d467
refs/heads/master
2023-06-13T00:54:54.355159
2021-07-09T16:20:24
2021-07-09T16:20:24
384,088,192
0
0
null
null
null
null
UTF-8
Python
false
false
933
py
# Linked list implementation # Add value at end in linked list # NODE --> Data | Next class Node: def __init__(self, data = None, next = None): self.data = data self.next = next class LinkedList: def __init__(self): self.head = Node() def display(self): if self.head is None: print("Empty") return current_node = self.head info_str = '' while current_node: info_str = info_str + str(current_node.data) + '-->' current_node = current_node.next print(info_str) def append_at_end(self, data): current_node = self.head while current_node.next: current_node= current_node.next current_node.next = Node(data, None) if __name__ == '__main__': ll = LinkedList() # item added at end ll.append_at_end(100) ll.append_at_end(200) ll.append_at_end(300) ll.append_at_end(400) ll.display()
[ "nahidajannat28@gmail.com" ]
nahidajannat28@gmail.com
ab55b92d33494a8c73eb619ba5a67fe3a1fd13f6
11c211dc48b6b33c2ad2cf0e6e7116ace526594b
/Applications/Raspi-Trek/Raspi-Trek/bin/pip2.7
8e9f871274acf108b21f540b64c79d5d9f3abf04
[]
no_license
thecloudist/awareness
1f481187a1e563069338aa68631f3829b0e4ce8f
5d55adb5921b72a54c30ca8fc235d6f6c09156a7
refs/heads/master
2020-09-27T03:03:16.651252
2016-10-18T04:38:00
2016-10-18T04:38:00
67,518,765
0
0
null
null
null
null
UTF-8
Python
false
false
253
7
#!/home/pi/Awareness/Applications/Raspi-Trek/Raspi-Trek/bin/python # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "salvideoguy@gmail.com" ]
salvideoguy@gmail.com
254775a06265133704a20d0e692dfed518932ec8
a1615563bb9b124e16f4163f660d677f3224553c
/LI/lib/python3.8/site-packages/sklearn/cluster/_kmeans.py
d10dfba0d08b386d76c1a0437f97daf76dc5cd9e
[ "MIT" ]
permissive
honeybhardwaj/Language_Identification
2a247d98095bd56c1194a34a556ddfadf6f001e5
1b74f898be5402b0c1a13debf595736a3f57d7e7
refs/heads/main
2023-04-19T16:22:05.231818
2021-05-15T18:59:45
2021-05-15T18:59:45
351,470,447
5
4
MIT
2021-05-15T18:59:46
2021-03-25T14:42:26
Python
UTF-8
Python
false
false
78,853
py
"""K-means clustering.""" # Authors: Gael Varoquaux <gael.varoquaux@normalesup.org> # Thomas Rueckstiess <ruecksti@in.tum.de> # James Bergstra <james.bergstra@umontreal.ca> # Jan Schlueter <scikit-learn@jan-schlueter.de> # Nelle Varoquaux # Peter Prettenhofer <peter.prettenhofer@gmail.com> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Robert Layton <robertlayton@gmail.com> # License: BSD 3 clause import warnings import numpy as np import scipy.sparse as sp from threadpoolctl import threadpool_limits from threadpoolctl import threadpool_info from ..base import BaseEstimator, ClusterMixin, TransformerMixin from ..metrics.pairwise import euclidean_distances from ..utils.extmath import row_norms, stable_cumsum from ..utils.sparsefuncs_fast import assign_rows_csr from ..utils.sparsefuncs import mean_variance_axis from ..utils.validation import _deprecate_positional_args from ..utils import check_array from ..utils import gen_batches from ..utils import check_random_state from ..utils import deprecated from ..utils.validation import check_is_fitted, _check_sample_weight from ..utils._openmp_helpers import _openmp_effective_n_threads from ..exceptions import ConvergenceWarning from ._k_means_fast import CHUNK_SIZE from ._k_means_fast import _inertia_dense from ._k_means_fast import _inertia_sparse from ._k_means_fast import _mini_batch_update_csr from ._k_means_lloyd import lloyd_iter_chunked_dense from ._k_means_lloyd import lloyd_iter_chunked_sparse from ._k_means_elkan import init_bounds_dense from ._k_means_elkan import init_bounds_sparse from ._k_means_elkan import elkan_iter_chunked_dense from ._k_means_elkan import elkan_iter_chunked_sparse ############################################################################### # Initialization heuristic def _kmeans_plusplus(X, n_clusters, x_squared_norms, random_state, n_local_trials=None): """Computational component for initialization of n_clusters by k-means++. Prior validation of data is assumed. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The data to pick seeds for. n_clusters : int The number of seeds to choose. x_squared_norms : ndarray of shape (n_samples,) Squared Euclidean norm of each data point. random_state : RandomState instance The generator used to initialize the centers. See :term:`Glossary <random_state>`. n_local_trials : int, default=None The number of seeding trials for each center (except the first), of which the one reducing inertia the most is greedily chosen. Set to None to make the number of trials depend logarithmically on the number of seeds (2+log(k)); this is the default. Returns ------- centers : ndarray of shape (n_clusters, n_features) The inital centers for k-means. indices : ndarray of shape (n_clusters,) The index location of the chosen centers in the data array X. For a given index and center, X[index] = center. """ n_samples, n_features = X.shape centers = np.empty((n_clusters, n_features), dtype=X.dtype) # Set the number of local seeding trials if none is given if n_local_trials is None: # This is what Arthur/Vassilvitskii tried, but did not report # specific results for other than mentioning in the conclusion # that it helped. n_local_trials = 2 + int(np.log(n_clusters)) # Pick first center randomly and track index of point center_id = random_state.randint(n_samples) indices = np.full(n_clusters, -1, dtype=int) if sp.issparse(X): centers[0] = X[center_id].toarray() else: centers[0] = X[center_id] indices[0] = center_id # Initialize list of closest distances and calculate current potential closest_dist_sq = euclidean_distances( centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms, squared=True) current_pot = closest_dist_sq.sum() # Pick the remaining n_clusters-1 points for c in range(1, n_clusters): # Choose center candidates by sampling with probability proportional # to the squared distance to the closest existing center rand_vals = random_state.random_sample(n_local_trials) * current_pot candidate_ids = np.searchsorted(stable_cumsum(closest_dist_sq), rand_vals) # XXX: numerical imprecision can result in a candidate_id out of range np.clip(candidate_ids, None, closest_dist_sq.size - 1, out=candidate_ids) # Compute distances to center candidates distance_to_candidates = euclidean_distances( X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True) # update closest distances squared and potential for each candidate np.minimum(closest_dist_sq, distance_to_candidates, out=distance_to_candidates) candidates_pot = distance_to_candidates.sum(axis=1) # Decide which candidate is the best best_candidate = np.argmin(candidates_pot) current_pot = candidates_pot[best_candidate] closest_dist_sq = distance_to_candidates[best_candidate] best_candidate = candidate_ids[best_candidate] # Permanently add best center candidate found in local tries if sp.issparse(X): centers[c] = X[best_candidate].toarray() else: centers[c] = X[best_candidate] indices[c] = best_candidate return centers, indices ############################################################################### # K-means batch estimation by EM (expectation maximization) def _tolerance(X, tol): """Return a tolerance which is independent of the dataset.""" if tol == 0: return 0 if sp.issparse(X): variances = mean_variance_axis(X, axis=0)[1] else: variances = np.var(X, axis=0) return np.mean(variances) * tol @_deprecate_positional_args def k_means(X, n_clusters, *, sample_weight=None, init='k-means++', precompute_distances='deprecated', n_init=10, max_iter=300, verbose=False, tol=1e-4, random_state=None, copy_x=True, n_jobs='deprecated', algorithm="auto", return_n_iter=False): """K-means clustering algorithm. Read more in the :ref:`User Guide <k_means>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The observations to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. n_clusters : int The number of clusters to form as well as the number of centroids to generate. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. init : {'k-means++', 'random'}, callable or array-like of shape \ (n_clusters, n_features), default='k-means++' Method for initialization: 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose `n_clusters` observations (rows) at random from data for the initial centroids. If an array is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. If a callable is passed, it should take arguments X, n_clusters and a random state and return an initialization. precompute_distances : {'auto', True, False} Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances False : never precompute distances .. deprecated:: 0.23 'precompute_distances' was deprecated in version 0.23 and will be removed in 1.0 (renaming of 0.25). It has no effect. n_init : int, default=10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. max_iter : int, default=300 Maximum number of iterations of the k-means algorithm to run. verbose : bool, default=False Verbosity mode. tol : float, default=1e-4 Relative tolerance with regards to Frobenius norm of the difference in the cluster centers of two consecutive iterations to declare convergence. random_state : int, RandomState instance or None, default=None Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. copy_x : bool, default=True When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True (default), then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. Note that if the original data is not C-contiguous, a copy will be made even if copy_x is False. If the original data is sparse, but not in CSR format, a copy will be made even if copy_x is False. n_jobs : int, default=None The number of OpenMP threads to use for the computation. Parallelism is sample-wise on the main cython loop which assigns each sample to its closest center. ``None`` or ``-1`` means using all processors. .. deprecated:: 0.23 ``n_jobs`` was deprecated in version 0.23 and will be removed in 1.0 (renaming of 0.25). algorithm : {"auto", "full", "elkan"}, default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient on data with well-defined clusters, by using the triangle inequality. However it's more memory intensive due to the allocation of an extra array of shape (n_samples, n_clusters). For now "auto" (kept for backward compatibiliy) chooses "elkan" but it might change in the future for a better heuristic. return_n_iter : bool, default=False Whether or not to return the number of iterations. Returns ------- centroid : ndarray of shape (n_clusters, n_features) Centroids found at the last iteration of k-means. label : ndarray of shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia : float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). best_n_iter : int Number of iterations corresponding to the best results. Returned only if `return_n_iter` is set to True. """ est = KMeans( n_clusters=n_clusters, init=init, n_init=n_init, max_iter=max_iter, verbose=verbose, precompute_distances=precompute_distances, tol=tol, random_state=random_state, copy_x=copy_x, n_jobs=n_jobs, algorithm=algorithm ).fit(X, sample_weight=sample_weight) if return_n_iter: return est.cluster_centers_, est.labels_, est.inertia_, est.n_iter_ else: return est.cluster_centers_, est.labels_, est.inertia_ def _kmeans_single_elkan(X, sample_weight, centers_init, max_iter=300, verbose=False, x_squared_norms=None, tol=1e-4, n_threads=1): """A single run of k-means elkan, assumes preparation completed prior. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The observations to cluster. If sparse matrix, must be in CSR format. sample_weight : array-like of shape (n_samples,) The weights for each observation in X. centers_init : ndarray of shape (n_clusters, n_features) The initial centers. max_iter : int, default=300 Maximum number of iterations of the k-means algorithm to run. verbose : bool, default=False Verbosity mode. x_squared_norms : array-like, default=None Precomputed x_squared_norms. tol : float, default=1e-4 Relative tolerance with regards to Frobenius norm of the difference in the cluster centers of two consecutive iterations to declare convergence. It's not advised to set `tol=0` since convergence might never be declared due to rounding errors. Use a very small number instead. n_threads : int, default=1 The number of OpenMP threads to use for the computation. Parallelism is sample-wise on the main cython loop which assigns each sample to its closest center. Returns ------- centroid : ndarray of shape (n_clusters, n_features) Centroids found at the last iteration of k-means. label : ndarray of shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia : float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). n_iter : int Number of iterations run. """ n_samples = X.shape[0] n_clusters = centers_init.shape[0] # Buffers to avoid new allocations at each iteration. centers = centers_init centers_new = np.zeros_like(centers) weight_in_clusters = np.zeros(n_clusters, dtype=X.dtype) labels = np.full(n_samples, -1, dtype=np.int32) labels_old = labels.copy() center_half_distances = euclidean_distances(centers) / 2 distance_next_center = np.partition(np.asarray(center_half_distances), kth=1, axis=0)[1] upper_bounds = np.zeros(n_samples, dtype=X.dtype) lower_bounds = np.zeros((n_samples, n_clusters), dtype=X.dtype) center_shift = np.zeros(n_clusters, dtype=X.dtype) if sp.issparse(X): init_bounds = init_bounds_sparse elkan_iter = elkan_iter_chunked_sparse _inertia = _inertia_sparse else: init_bounds = init_bounds_dense elkan_iter = elkan_iter_chunked_dense _inertia = _inertia_dense init_bounds(X, centers, center_half_distances, labels, upper_bounds, lower_bounds) strict_convergence = False for i in range(max_iter): elkan_iter(X, sample_weight, centers, centers_new, weight_in_clusters, center_half_distances, distance_next_center, upper_bounds, lower_bounds, labels, center_shift, n_threads) # compute new pairwise distances between centers and closest other # center of each center for next iterations center_half_distances = euclidean_distances(centers_new) / 2 distance_next_center = np.partition( np.asarray(center_half_distances), kth=1, axis=0)[1] if verbose: inertia = _inertia(X, sample_weight, centers, labels) print(f"Iteration {i}, inertia {inertia}") centers, centers_new = centers_new, centers if np.array_equal(labels, labels_old): # First check the labels for strict convergence. if verbose: print(f"Converged at iteration {i}: strict convergence.") strict_convergence = True break else: # No strict convergence, check for tol based convergence. center_shift_tot = (center_shift**2).sum() if center_shift_tot <= tol: if verbose: print(f"Converged at iteration {i}: center shift " f"{center_shift_tot} within tolerance {tol}.") break labels_old[:] = labels if not strict_convergence: # rerun E-step so that predicted labels match cluster centers elkan_iter(X, sample_weight, centers, centers, weight_in_clusters, center_half_distances, distance_next_center, upper_bounds, lower_bounds, labels, center_shift, n_threads, update_centers=False) inertia = _inertia(X, sample_weight, centers, labels) return labels, inertia, centers, i + 1 def _kmeans_single_lloyd(X, sample_weight, centers_init, max_iter=300, verbose=False, x_squared_norms=None, tol=1e-4, n_threads=1): """A single run of k-means lloyd, assumes preparation completed prior. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The observations to cluster. If sparse matrix, must be in CSR format. sample_weight : ndarray of shape (n_samples,) The weights for each observation in X. centers_init : ndarray of shape (n_clusters, n_features) The initial centers. max_iter : int, default=300 Maximum number of iterations of the k-means algorithm to run. verbose : bool, default=False Verbosity mode x_squared_norms : ndarray of shape (n_samples,), default=None Precomputed x_squared_norms. tol : float, default=1e-4 Relative tolerance with regards to Frobenius norm of the difference in the cluster centers of two consecutive iterations to declare convergence. It's not advised to set `tol=0` since convergence might never be declared due to rounding errors. Use a very small number instead. n_threads : int, default=1 The number of OpenMP threads to use for the computation. Parallelism is sample-wise on the main cython loop which assigns each sample to its closest center. Returns ------- centroid : ndarray of shape (n_clusters, n_features) Centroids found at the last iteration of k-means. label : ndarray of shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia : float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). n_iter : int Number of iterations run. """ n_clusters = centers_init.shape[0] # Buffers to avoid new allocations at each iteration. centers = centers_init centers_new = np.zeros_like(centers) labels = np.full(X.shape[0], -1, dtype=np.int32) labels_old = labels.copy() weight_in_clusters = np.zeros(n_clusters, dtype=X.dtype) center_shift = np.zeros(n_clusters, dtype=X.dtype) if sp.issparse(X): lloyd_iter = lloyd_iter_chunked_sparse _inertia = _inertia_sparse else: lloyd_iter = lloyd_iter_chunked_dense _inertia = _inertia_dense strict_convergence = False # Threadpoolctl context to limit the number of threads in second level of # nested parallelism (i.e. BLAS) to avoid oversubsciption. with threadpool_limits(limits=1, user_api="blas"): for i in range(max_iter): lloyd_iter(X, sample_weight, x_squared_norms, centers, centers_new, weight_in_clusters, labels, center_shift, n_threads) if verbose: inertia = _inertia(X, sample_weight, centers, labels) print(f"Iteration {i}, inertia {inertia}.") centers, centers_new = centers_new, centers if np.array_equal(labels, labels_old): # First check the labels for strict convergence. if verbose: print(f"Converged at iteration {i}: strict convergence.") strict_convergence = True break else: # No strict convergence, check for tol based convergence. center_shift_tot = (center_shift**2).sum() if center_shift_tot <= tol: if verbose: print(f"Converged at iteration {i}: center shift " f"{center_shift_tot} within tolerance {tol}.") break labels_old[:] = labels if not strict_convergence: # rerun E-step so that predicted labels match cluster centers lloyd_iter(X, sample_weight, x_squared_norms, centers, centers, weight_in_clusters, labels, center_shift, n_threads, update_centers=False) inertia = _inertia(X, sample_weight, centers, labels) return labels, inertia, centers, i + 1 def _labels_inertia(X, sample_weight, x_squared_norms, centers, n_threads=None): """E step of the K-means EM algorithm. Compute the labels and the inertia of the given samples and centers. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The input samples to assign to the labels. If sparse matrix, must be in CSR format. sample_weight : ndarray of shape (n_samples,) The weights for each observation in X. x_squared_norms : ndarray of shape (n_samples,) Precomputed squared euclidean norm of each data point, to speed up computations. centers : ndarray of shape (n_clusters, n_features) The cluster centers. n_threads : int, default=None The number of OpenMP threads to use for the computation. Parallelism is sample-wise on the main cython loop which assigns each sample to its closest center. Returns ------- labels : ndarray of shape (n_samples,) The resulting assignment. inertia : float Sum of squared distances of samples to their closest cluster center. """ n_samples = X.shape[0] n_clusters = centers.shape[0] n_threads = _openmp_effective_n_threads(n_threads) labels = np.full(n_samples, -1, dtype=np.int32) weight_in_clusters = np.zeros(n_clusters, dtype=centers.dtype) center_shift = np.zeros_like(weight_in_clusters) if sp.issparse(X): _labels = lloyd_iter_chunked_sparse _inertia = _inertia_sparse else: _labels = lloyd_iter_chunked_dense _inertia = _inertia_dense _labels(X, sample_weight, x_squared_norms, centers, centers, weight_in_clusters, labels, center_shift, n_threads, update_centers=False) inertia = _inertia(X, sample_weight, centers, labels) return labels, inertia class KMeans(TransformerMixin, ClusterMixin, BaseEstimator): """K-Means clustering. Read more in the :ref:`User Guide <k_means>`. Parameters ---------- n_clusters : int, default=8 The number of clusters to form as well as the number of centroids to generate. init : {'k-means++', 'random'}, callable or array-like of shape \ (n_clusters, n_features), default='k-means++' Method for initialization: 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose `n_clusters` observations (rows) at random from data for the initial centroids. If an array is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. If a callable is passed, it should take arguments X, n_clusters and a random state and return an initialization. n_init : int, default=10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. max_iter : int, default=300 Maximum number of iterations of the k-means algorithm for a single run. tol : float, default=1e-4 Relative tolerance with regards to Frobenius norm of the difference in the cluster centers of two consecutive iterations to declare convergence. precompute_distances : {'auto', True, False}, default='auto' Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances. False : never precompute distances. .. deprecated:: 0.23 'precompute_distances' was deprecated in version 0.22 and will be removed in 1.0 (renaming of 0.25). It has no effect. verbose : int, default=0 Verbosity mode. random_state : int, RandomState instance or None, default=None Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. copy_x : bool, default=True When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True (default), then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. Note that if the original data is not C-contiguous, a copy will be made even if copy_x is False. If the original data is sparse, but not in CSR format, a copy will be made even if copy_x is False. n_jobs : int, default=None The number of OpenMP threads to use for the computation. Parallelism is sample-wise on the main cython loop which assigns each sample to its closest center. ``None`` or ``-1`` means using all processors. .. deprecated:: 0.23 ``n_jobs`` was deprecated in version 0.23 and will be removed in 1.0 (renaming of 0.25). algorithm : {"auto", "full", "elkan"}, default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient on data with well-defined clusters, by using the triangle inequality. However it's more memory intensive due to the allocation of an extra array of shape (n_samples, n_clusters). For now "auto" (kept for backward compatibiliy) chooses "elkan" but it might change in the future for a better heuristic. .. versionchanged:: 0.18 Added Elkan algorithm Attributes ---------- cluster_centers_ : ndarray of shape (n_clusters, n_features) Coordinates of cluster centers. If the algorithm stops before fully converging (see ``tol`` and ``max_iter``), these will not be consistent with ``labels_``. labels_ : ndarray of shape (n_samples,) Labels of each point inertia_ : float Sum of squared distances of samples to their closest cluster center. n_iter_ : int Number of iterations run. See Also -------- MiniBatchKMeans : Alternative online implementation that does incremental updates of the centers positions using mini-batches. For large scale learning (say n_samples > 10k) MiniBatchKMeans is probably much faster than the default batch implementation. Notes ----- The k-means problem is solved using either Lloyd's or Elkan's algorithm. The average complexity is given by O(k n T), were n is the number of samples and T is the number of iteration. The worst case complexity is given by O(n^(k+2/p)) with n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii, 'How slow is the k-means method?' SoCG2006) In practice, the k-means algorithm is very fast (one of the fastest clustering algorithms available), but it falls in local minima. That's why it can be useful to restart it several times. If the algorithm stops before fully converging (because of ``tol`` or ``max_iter``), ``labels_`` and ``cluster_centers_`` will not be consistent, i.e. the ``cluster_centers_`` will not be the means of the points in each cluster. Also, the estimator will reassign ``labels_`` after the last iteration to make ``labels_`` consistent with ``predict`` on the training set. Examples -------- >>> from sklearn.cluster import KMeans >>> import numpy as np >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [10, 2], [10, 4], [10, 0]]) >>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X) >>> kmeans.labels_ array([1, 1, 1, 0, 0, 0], dtype=int32) >>> kmeans.predict([[0, 0], [12, 3]]) array([1, 0], dtype=int32) >>> kmeans.cluster_centers_ array([[10., 2.], [ 1., 2.]]) """ @_deprecate_positional_args def __init__(self, n_clusters=8, *, init='k-means++', n_init=10, max_iter=300, tol=1e-4, precompute_distances='deprecated', verbose=0, random_state=None, copy_x=True, n_jobs='deprecated', algorithm='auto'): self.n_clusters = n_clusters self.init = init self.max_iter = max_iter self.tol = tol self.precompute_distances = precompute_distances self.n_init = n_init self.verbose = verbose self.random_state = random_state self.copy_x = copy_x self.n_jobs = n_jobs self.algorithm = algorithm def _check_params(self, X): # precompute_distances if self.precompute_distances != 'deprecated': warnings.warn("'precompute_distances' was deprecated in version " "0.23 and will be removed in 1.0 (renaming of 0.25)" ". It has no effect", FutureWarning) # n_jobs if self.n_jobs != 'deprecated': warnings.warn("'n_jobs' was deprecated in version 0.23 and will be" " removed in 1.0 (renaming of 0.25).", FutureWarning) self._n_threads = self.n_jobs else: self._n_threads = None self._n_threads = _openmp_effective_n_threads(self._n_threads) # n_init if self.n_init <= 0: raise ValueError( f"n_init should be > 0, got {self.n_init} instead.") self._n_init = self.n_init # max_iter if self.max_iter <= 0: raise ValueError( f"max_iter should be > 0, got {self.max_iter} instead.") # n_clusters if X.shape[0] < self.n_clusters: raise ValueError(f"n_samples={X.shape[0]} should be >= " f"n_clusters={self.n_clusters}.") # tol self._tol = _tolerance(X, self.tol) # algorithm if self.algorithm not in ("auto", "full", "elkan"): raise ValueError(f"Algorithm must be 'auto', 'full' or 'elkan', " f"got {self.algorithm} instead.") self._algorithm = self.algorithm if self._algorithm == "auto": self._algorithm = "full" if self.n_clusters == 1 else "elkan" if self._algorithm == "elkan" and self.n_clusters == 1: warnings.warn("algorithm='elkan' doesn't make sense for a single " "cluster. Using 'full' instead.", RuntimeWarning) self._algorithm = "full" # init if not (hasattr(self.init, '__array__') or callable(self.init) or (isinstance(self.init, str) and self.init in ["k-means++", "random"])): raise ValueError( f"init should be either 'k-means++', 'random', a ndarray or a " f"callable, got '{self.init}' instead.") if hasattr(self.init, '__array__') and self._n_init != 1: warnings.warn( f"Explicit initial center position passed: performing only" f" one init in {self.__class__.__name__} instead of " f"n_init={self._n_init}.", RuntimeWarning, stacklevel=2) self._n_init = 1 def _validate_center_shape(self, X, centers): """Check if centers is compatible with X and n_clusters.""" if centers.shape[0] != self.n_clusters: raise ValueError( f"The shape of the initial centers {centers.shape} does not " f"match the number of clusters {self.n_clusters}.") if centers.shape[1] != X.shape[1]: raise ValueError( f"The shape of the initial centers {centers.shape} does not " f"match the number of features of the data {X.shape[1]}.") def _check_test_data(self, X): X = self._validate_data(X, accept_sparse='csr', reset=False, dtype=[np.float64, np.float32], order='C', accept_large_sparse=False) return X def _check_mkl_vcomp(self, X, n_samples): """Warns when vcomp and mkl are both present""" # The BLAS call inside a prange in lloyd_iter_chunked_dense is known to # cause a small memory leak when there are less chunks than the number # of available threads. It only happens when the OpenMP library is # vcomp (microsoft OpenMP) and the BLAS library is MKL. see #18653 if sp.issparse(X): return active_threads = int(np.ceil(n_samples / CHUNK_SIZE)) if active_threads < self._n_threads: modules = threadpool_info() has_vcomp = "vcomp" in [module["prefix"] for module in modules] has_mkl = ("mkl", "intel") in [ (module["internal_api"], module.get("threading_layer", None)) for module in modules] if has_vcomp and has_mkl: if not hasattr(self, "batch_size"): # KMeans warnings.warn( f"KMeans is known to have a memory leak on Windows " f"with MKL, when there are less chunks than available " f"threads. You can avoid it by setting the environment" f" variable OMP_NUM_THREADS={active_threads}.") else: # MiniBatchKMeans warnings.warn( f"MiniBatchKMeans is known to have a memory leak on " f"Windows with MKL, when there are less chunks than " f"available threads. You can prevent it by setting " f"batch_size >= {self._n_threads * CHUNK_SIZE} or by " f"setting the environment variable " f"OMP_NUM_THREADS={active_threads}") def _init_centroids(self, X, x_squared_norms, init, random_state, init_size=None): """Compute the initial centroids. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The input samples. x_squared_norms : ndarray of shape (n_samples,) Squared euclidean norm of each data point. Pass it if you have it at hands already to avoid it being recomputed here. init : {'k-means++', 'random'}, callable or ndarray of shape \ (n_clusters, n_features) Method for initialization. random_state : RandomState instance Determines random number generation for centroid initialization. See :term:`Glossary <random_state>`. init_size : int, default=None Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy). Returns ------- centers : ndarray of shape (n_clusters, n_features) """ n_samples = X.shape[0] n_clusters = self.n_clusters if init_size is not None and init_size < n_samples: init_indices = random_state.randint(0, n_samples, init_size) X = X[init_indices] x_squared_norms = x_squared_norms[init_indices] n_samples = X.shape[0] if isinstance(init, str) and init == 'k-means++': centers, _ = _kmeans_plusplus(X, n_clusters, random_state=random_state, x_squared_norms=x_squared_norms) elif isinstance(init, str) and init == 'random': seeds = random_state.permutation(n_samples)[:n_clusters] centers = X[seeds] elif hasattr(init, '__array__'): centers = init elif callable(init): centers = init(X, n_clusters, random_state=random_state) centers = check_array( centers, dtype=X.dtype, copy=False, order='C') self._validate_center_shape(X, centers) if sp.issparse(centers): centers = centers.toarray() return centers def fit(self, X, y=None, sample_weight=None): """Compute k-means clustering. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy will be made if it's not in CSR format. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. .. versionadded:: 0.20 Returns ------- self Fitted estimator. """ X = self._validate_data(X, accept_sparse='csr', dtype=[np.float64, np.float32], order='C', copy=self.copy_x, accept_large_sparse=False) self._check_params(X) random_state = check_random_state(self.random_state) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) # Validate init array init = self.init if hasattr(init, '__array__'): init = check_array(init, dtype=X.dtype, copy=True, order='C') self._validate_center_shape(X, init) # subtract of mean of x for more accurate distance computations if not sp.issparse(X): X_mean = X.mean(axis=0) # The copy was already done above X -= X_mean if hasattr(init, '__array__'): init -= X_mean # precompute squared norms of data points x_squared_norms = row_norms(X, squared=True) if self._algorithm == "full": kmeans_single = _kmeans_single_lloyd self._check_mkl_vcomp(X, X.shape[0]) else: kmeans_single = _kmeans_single_elkan best_inertia = None for i in range(self._n_init): # Initialize centers centers_init = self._init_centroids( X, x_squared_norms=x_squared_norms, init=init, random_state=random_state) if self.verbose: print("Initialization complete") # run a k-means once labels, inertia, centers, n_iter_ = kmeans_single( X, sample_weight, centers_init, max_iter=self.max_iter, verbose=self.verbose, tol=self._tol, x_squared_norms=x_squared_norms, n_threads=self._n_threads) # determine if these results are the best so far if best_inertia is None or inertia < best_inertia: best_labels = labels best_centers = centers best_inertia = inertia best_n_iter = n_iter_ if not sp.issparse(X): if not self.copy_x: X += X_mean best_centers += X_mean distinct_clusters = len(set(best_labels)) if distinct_clusters < self.n_clusters: warnings.warn( "Number of distinct clusters ({}) found smaller than " "n_clusters ({}). Possibly due to duplicate points " "in X.".format(distinct_clusters, self.n_clusters), ConvergenceWarning, stacklevel=2) self.cluster_centers_ = best_centers self.labels_ = best_labels self.inertia_ = best_inertia self.n_iter_ = best_n_iter return self def fit_predict(self, X, y=None, sample_weight=None): """Compute cluster centers and predict cluster index for each sample. Convenience method; equivalent to calling fit(X) followed by predict(X). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) New data to transform. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. Returns ------- labels : ndarray of shape (n_samples,) Index of the cluster each sample belongs to. """ return self.fit(X, sample_weight=sample_weight).labels_ def fit_transform(self, X, y=None, sample_weight=None): """Compute clustering and transform X to cluster-distance space. Equivalent to fit(X).transform(X), but more efficiently implemented. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) New data to transform. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. Returns ------- X_new : ndarray of shape (n_samples, n_clusters) X transformed in the new space. """ # Currently, this just skips a copy of the data if it is not in # np.array or CSR format already. # XXX This skips _check_test_data, which may change the dtype; # we should refactor the input validation. return self.fit(X, sample_weight=sample_weight)._transform(X) def transform(self, X): """Transform X to a cluster-distance space. In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the array returned by `transform` will typically be dense. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) New data to transform. Returns ------- X_new : ndarray of shape (n_samples, n_clusters) X transformed in the new space. """ check_is_fitted(self) X = self._check_test_data(X) return self._transform(X) def _transform(self, X): """Guts of transform method; no input validation.""" return euclidean_distances(X, self.cluster_centers_) def predict(self, X, sample_weight=None): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) New data to predict. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. Returns ------- labels : ndarray of shape (n_samples,) Index of the cluster each sample belongs to. """ check_is_fitted(self) X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) return _labels_inertia(X, sample_weight, x_squared_norms, self.cluster_centers_, self._n_threads)[0] def score(self, X, y=None, sample_weight=None): """Opposite of the value of X on the K-means objective. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) New data. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. Returns ------- score : float Opposite of the value of X on the K-means objective. """ check_is_fitted(self) X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) return -_labels_inertia(X, sample_weight, x_squared_norms, self.cluster_centers_)[1] def _more_tags(self): return { '_xfail_checks': { 'check_sample_weights_invariance': 'zero sample_weight is not equivalent to removing samples', }, } def _mini_batch_step(X, sample_weight, x_squared_norms, centers, weight_sums, old_center_buffer, compute_squared_diff, distances, random_reassign=False, random_state=None, reassignment_ratio=.01, verbose=False): """Incremental update of the centers for the Minibatch K-Means algorithm. Parameters ---------- X : ndarray of shape (n_samples, n_features) The original data array. sample_weight : array-like of shape (n_samples,) The weights for each observation in X. x_squared_norms : ndarray of shape (n_samples,) Squared euclidean norm of each data point. centers : ndarray of shape (k, n_features) The cluster centers. This array is MODIFIED IN PLACE old_center_buffer : int Copy of old centers for monitoring convergence. compute_squared_diff : bool If set to False, the squared diff computation is skipped. distances : ndarray of shape (n_samples,), dtype=float, default=None If not None, should be a pre-allocated array that will be used to store the distances of each sample to its closest center. May not be None when random_reassign is True. random_reassign : bool, default=False If True, centers with very low counts are randomly reassigned to observations. random_state : int, RandomState instance or None, default=None Determines random number generation for centroid initialization and to pick new clusters amongst observations with uniform probability. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. reassignment_ratio : float, default=.01 Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more likely to be reassigned, which means that the model will take longer to converge, but should converge in a better clustering. verbose : bool, default=False Controls the verbosity. Returns ------- inertia : float Sum of squared distances of samples to their closest cluster center. squared_diff : ndarray of shape (n_clusters,) Squared distances between previous and updated cluster centers. """ # Perform label assignment to nearest centers nearest_center, inertia = _labels_inertia(X, sample_weight, x_squared_norms, centers) if random_reassign and reassignment_ratio > 0: random_state = check_random_state(random_state) # Reassign clusters that have very low weight to_reassign = weight_sums < reassignment_ratio * weight_sums.max() # pick at most .5 * batch_size samples as new centers if to_reassign.sum() > .5 * X.shape[0]: indices_dont_reassign = \ np.argsort(weight_sums)[int(.5 * X.shape[0]):] to_reassign[indices_dont_reassign] = False n_reassigns = to_reassign.sum() if n_reassigns: # Pick new clusters amongst observations with uniform probability new_centers = random_state.choice(X.shape[0], replace=False, size=n_reassigns) if verbose: print("[MiniBatchKMeans] Reassigning %i cluster centers." % n_reassigns) if sp.issparse(X) and not sp.issparse(centers): assign_rows_csr( X, new_centers.astype(np.intp, copy=False), np.where(to_reassign)[0].astype(np.intp, copy=False), centers) else: centers[to_reassign] = X[new_centers] # reset counts of reassigned centers, but don't reset them too small # to avoid instant reassignment. This is a pretty dirty hack as it # also modifies the learning rates. weight_sums[to_reassign] = np.min(weight_sums[~to_reassign]) # implementation for the sparse CSR representation completely written in # cython if sp.issparse(X): return inertia, _mini_batch_update_csr( X, sample_weight, x_squared_norms, centers, weight_sums, nearest_center, old_center_buffer, compute_squared_diff) # dense variant in mostly numpy (not as memory efficient though) k = centers.shape[0] squared_diff = 0.0 for center_idx in range(k): # find points from minibatch that are assigned to this center center_mask = nearest_center == center_idx wsum = sample_weight[center_mask].sum() if wsum > 0: if compute_squared_diff: old_center_buffer[:] = centers[center_idx] # inplace remove previous count scaling centers[center_idx] *= weight_sums[center_idx] # inplace sum with new points members of this cluster centers[center_idx] += \ np.sum(X[center_mask] * sample_weight[center_mask, np.newaxis], axis=0) # update the count statistics for this center weight_sums[center_idx] += wsum # inplace rescale to compute mean of all points (old and new) # Note: numpy >= 1.10 does not support '/=' for the following # expression for a mixture of int and float (see numpy issue #6464) centers[center_idx] = centers[center_idx] / weight_sums[center_idx] # update the squared diff if necessary if compute_squared_diff: diff = centers[center_idx].ravel() - old_center_buffer.ravel() squared_diff += np.dot(diff, diff) return inertia, squared_diff def _mini_batch_convergence(model, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, context, verbose=0): """Helper function to encapsulate the early stopping logic.""" # Normalize inertia to be able to compare values when # batch_size changes batch_inertia /= model.batch_size centers_squared_diff /= model.batch_size # Compute an Exponentially Weighted Average of the squared # diff to monitor the convergence while discarding # minibatch-local stochastic variability: # https://en.wikipedia.org/wiki/Moving_average ewa_diff = context.get('ewa_diff') ewa_inertia = context.get('ewa_inertia') if ewa_diff is None: ewa_diff = centers_squared_diff ewa_inertia = batch_inertia else: alpha = float(model.batch_size) * 2.0 / (n_samples + 1) alpha = 1.0 if alpha > 1.0 else alpha ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha # Log progress to be able to monitor convergence if verbose: progress_msg = ( 'Minibatch iteration %d/%d:' ' mean batch inertia: %f, ewa inertia: %f ' % ( iteration_idx + 1, n_iter, batch_inertia, ewa_inertia)) print(progress_msg) # Early stopping based on absolute tolerance on squared change of # centers position (using EWA smoothing) if tol > 0.0 and ewa_diff <= tol: if verbose: print('Converged (small centers change) at iteration %d/%d' % (iteration_idx + 1, n_iter)) return True # Early stopping heuristic due to lack of improvement on smoothed inertia ewa_inertia_min = context.get('ewa_inertia_min') no_improvement = context.get('no_improvement', 0) if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min: no_improvement = 0 ewa_inertia_min = ewa_inertia else: no_improvement += 1 if (model.max_no_improvement is not None and no_improvement >= model.max_no_improvement): if verbose: print('Converged (lack of improvement in inertia)' ' at iteration %d/%d' % (iteration_idx + 1, n_iter)) return True # update the convergence context to maintain state across successive calls: context['ewa_diff'] = ewa_diff context['ewa_inertia'] = ewa_inertia context['ewa_inertia_min'] = ewa_inertia_min context['no_improvement'] = no_improvement return False class MiniBatchKMeans(KMeans): """ Mini-Batch K-Means clustering. Read more in the :ref:`User Guide <mini_batch_kmeans>`. Parameters ---------- n_clusters : int, default=8 The number of clusters to form as well as the number of centroids to generate. init : {'k-means++', 'random'}, callable or array-like of shape \ (n_clusters, n_features), default='k-means++' Method for initialization: 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose `n_clusters` observations (rows) at random from data for the initial centroids. If an array is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. If a callable is passed, it should take arguments X, n_clusters and a random state and return an initialization. max_iter : int, default=100 Maximum number of iterations over the complete dataset before stopping independently of any early stopping criterion heuristics. batch_size : int, default=100 Size of the mini batches. verbose : int, default=0 Verbosity mode. compute_labels : bool, default=True Compute label assignment and inertia for the complete dataset once the minibatch optimization has converged in fit. random_state : int, RandomState instance or None, default=None Determines random number generation for centroid initialization and random reassignment. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. tol : float, default=0.0 Control early stopping based on the relative center changes as measured by a smoothed, variance-normalized of the mean center squared position changes. This early stopping heuristics is closer to the one used for the batch variant of the algorithms but induces a slight computational and memory overhead over the inertia heuristic. To disable convergence detection based on normalized center change, set tol to 0.0 (default). max_no_improvement : int, default=10 Control early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed inertia. To disable convergence detection based on inertia, set max_no_improvement to None. init_size : int, default=None Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by running a batch KMeans on a random subset of the data. This needs to be larger than n_clusters. If `None`, `init_size= 3 * batch_size`. n_init : int, default=3 Number of random initializations that are tried. In contrast to KMeans, the algorithm is only run once, using the best of the ``n_init`` initializations as measured by inertia. reassignment_ratio : float, default=0.01 Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more easily reassigned, which means that the model will take longer to converge, but should converge in a better clustering. Attributes ---------- cluster_centers_ : ndarray of shape (n_clusters, n_features) Coordinates of cluster centers. labels_ : int Labels of each point (if compute_labels is set to True). inertia_ : float The value of the inertia criterion associated with the chosen partition (if compute_labels is set to True). The inertia is defined as the sum of square distances of samples to their nearest neighbor. n_iter_ : int Number of batches processed. counts_ : ndarray of shape (n_clusters,) Weigth sum of each cluster. .. deprecated:: 0.24 This attribute is deprecated in 0.24 and will be removed in 1.1 (renaming of 0.26). init_size_ : int The effective number of samples used for the initialization. .. deprecated:: 0.24 This attribute is deprecated in 0.24 and will be removed in 1.1 (renaming of 0.26). See Also -------- KMeans : The classic implementation of the clustering method based on the Lloyd's algorithm. It consumes the whole set of input data at each iteration. Notes ----- See https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf Examples -------- >>> from sklearn.cluster import MiniBatchKMeans >>> import numpy as np >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [4, 2], [4, 0], [4, 4], ... [4, 5], [0, 1], [2, 2], ... [3, 2], [5, 5], [1, -1]]) >>> # manually fit on batches >>> kmeans = MiniBatchKMeans(n_clusters=2, ... random_state=0, ... batch_size=6) >>> kmeans = kmeans.partial_fit(X[0:6,:]) >>> kmeans = kmeans.partial_fit(X[6:12,:]) >>> kmeans.cluster_centers_ array([[2. , 1. ], [3.5, 4.5]]) >>> kmeans.predict([[0, 0], [4, 4]]) array([0, 1], dtype=int32) >>> # fit on the whole data >>> kmeans = MiniBatchKMeans(n_clusters=2, ... random_state=0, ... batch_size=6, ... max_iter=10).fit(X) >>> kmeans.cluster_centers_ array([[3.95918367, 2.40816327], [1.12195122, 1.3902439 ]]) >>> kmeans.predict([[0, 0], [4, 4]]) array([1, 0], dtype=int32) """ @_deprecate_positional_args def __init__(self, n_clusters=8, *, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10, init_size=None, n_init=3, reassignment_ratio=0.01): super().__init__( n_clusters=n_clusters, init=init, max_iter=max_iter, verbose=verbose, random_state=random_state, tol=tol, n_init=n_init) self.max_no_improvement = max_no_improvement self.batch_size = batch_size self.compute_labels = compute_labels self.init_size = init_size self.reassignment_ratio = reassignment_ratio @deprecated("The attribute 'counts_' is deprecated in 0.24" # type: ignore " and will be removed in 1.1 (renaming of 0.26).") @property def counts_(self): return self._counts @deprecated("The attribute 'init_size_' is deprecated in " # type: ignore "0.24 and will be removed in 1.1 (renaming of 0.26).") @property def init_size_(self): return self._init_size @deprecated("The attribute 'random_state_' is deprecated " # type: ignore "in 0.24 and will be removed in 1.1 (renaming of 0.26).") @property def random_state_(self): return getattr(self, "_random_state", None) def _check_params(self, X): super()._check_params(X) # max_no_improvement if self.max_no_improvement is not None and self.max_no_improvement < 0: raise ValueError( f"max_no_improvement should be >= 0, got " f"{self.max_no_improvement} instead.") # batch_size if self.batch_size <= 0: raise ValueError( f"batch_size should be > 0, got {self.batch_size} instead.") # init_size if self.init_size is not None and self.init_size <= 0: raise ValueError( f"init_size should be > 0, got {self.init_size} instead.") self._init_size = self.init_size if self._init_size is None: self._init_size = 3 * self.batch_size if self._init_size < self.n_clusters: self._init_size = 3 * self.n_clusters elif self._init_size < self.n_clusters: warnings.warn( f"init_size={self._init_size} should be larger than " f"n_clusters={self.n_clusters}. Setting it to " f"min(3*n_clusters, n_samples)", RuntimeWarning, stacklevel=2) self._init_size = 3 * self.n_clusters self._init_size = min(self._init_size, X.shape[0]) # reassignment_ratio if self.reassignment_ratio < 0: raise ValueError( f"reassignment_ratio should be >= 0, got " f"{self.reassignment_ratio} instead.") def fit(self, X, y=None, sample_weight=None): """Compute the centroids on X by chunking it into mini-batches. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight (default: None). .. versionadded:: 0.20 Returns ------- self """ X = self._validate_data(X, accept_sparse='csr', dtype=[np.float64, np.float32], order='C', accept_large_sparse=False) self._check_params(X) random_state = check_random_state(self.random_state) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) # Validate init array init = self.init if hasattr(init, '__array__'): init = check_array(init, dtype=X.dtype, copy=True, order='C') self._validate_center_shape(X, init) n_samples, n_features = X.shape x_squared_norms = row_norms(X, squared=True) if self.tol > 0.0: tol = _tolerance(X, self.tol) # using tol-based early stopping needs the allocation of a # dedicated before which can be expensive for high dim data: # hence we allocate it outside of the main loop old_center_buffer = np.zeros(n_features, dtype=X.dtype) else: tol = 0.0 # no need for the center buffer if tol-based early stopping is # disabled old_center_buffer = np.zeros(0, dtype=X.dtype) distances = np.zeros(self.batch_size, dtype=X.dtype) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) n_iter = int(self.max_iter * n_batches) self._check_mkl_vcomp(X, self.batch_size) validation_indices = random_state.randint(0, n_samples, self._init_size) X_valid = X[validation_indices] sample_weight_valid = sample_weight[validation_indices] x_squared_norms_valid = x_squared_norms[validation_indices] # perform several inits with random sub-sets best_inertia = None for init_idx in range(self._n_init): if self.verbose: print("Init %d/%d with method: %s" % (init_idx + 1, self._n_init, init)) weight_sums = np.zeros(self.n_clusters, dtype=sample_weight.dtype) # TODO: once the `k_means` function works with sparse input we # should refactor the following init to use it instead. # Initialize the centers using only a fraction of the data as we # expect n_samples to be very large when using MiniBatchKMeans cluster_centers = self._init_centroids( X, x_squared_norms=x_squared_norms, init=init, random_state=random_state, init_size=self._init_size) # Compute the label assignment on the init dataset _mini_batch_step( X_valid, sample_weight_valid, x_squared_norms[validation_indices], cluster_centers, weight_sums, old_center_buffer, False, distances=None, verbose=self.verbose) # Keep only the best cluster centers across independent inits on # the common validation set _, inertia = _labels_inertia(X_valid, sample_weight_valid, x_squared_norms_valid, cluster_centers) if self.verbose: print("Inertia for init %d/%d: %f" % (init_idx + 1, self._n_init, inertia)) if best_inertia is None or inertia < best_inertia: self.cluster_centers_ = cluster_centers self._counts = weight_sums best_inertia = inertia # Empty context to be used inplace by the convergence check routine convergence_context = {} # Perform the iterative optimization until the final convergence # criterion for iteration_idx in range(n_iter): # Sample a minibatch from the full dataset minibatch_indices = random_state.randint( 0, n_samples, self.batch_size) # Perform the actual update step on the minibatch data batch_inertia, centers_squared_diff = _mini_batch_step( X[minibatch_indices], sample_weight[minibatch_indices], x_squared_norms[minibatch_indices], self.cluster_centers_, self._counts, old_center_buffer, tol > 0.0, distances=distances, # Here we randomly choose whether to perform # random reassignment: the choice is done as a function # of the iteration index, and the minimum number of # counts, in order to force this reassignment to happen # every once in a while random_reassign=((iteration_idx + 1) % (10 + int(self._counts.min())) == 0), random_state=random_state, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) # Monitor convergence and do early stopping if necessary if _mini_batch_convergence( self, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, convergence_context, verbose=self.verbose): break self.n_iter_ = iteration_idx + 1 if self.compute_labels: self.labels_, self.inertia_ = \ self._labels_inertia_minibatch(X, sample_weight) return self def _labels_inertia_minibatch(self, X, sample_weight): """Compute labels and inertia using mini batches. This is slightly slower than doing everything at once but prevents memory errors / segfaults. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. sample_weight : array-like of shape (n_samples,) The weights for each observation in X. Returns ------- labels : ndarray of shape (n_samples,) Cluster labels for each point. inertia : float Sum of squared distances of points to nearest cluster. """ if self.verbose: print('Computing label assignment and total inertia') sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) x_squared_norms = row_norms(X, squared=True) slices = gen_batches(X.shape[0], self.batch_size) results = [_labels_inertia(X[s], sample_weight[s], x_squared_norms[s], self.cluster_centers_) for s in slices] labels, inertia = zip(*results) return np.hstack(labels), np.sum(inertia) def partial_fit(self, X, y=None, sample_weight=None): """Update k means estimate on a single mini-batch X. Parameters ---------- X : array-like of shape (n_samples, n_features) Coordinates of the data points to cluster. It must be noted that X will be copied if it is not C-contiguous. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight (default: None). Returns ------- self """ is_first_call_to_partial_fit = not hasattr(self, 'cluster_centers_') X = self._validate_data(X, accept_sparse='csr', dtype=[np.float64, np.float32], order='C', accept_large_sparse=False, reset=is_first_call_to_partial_fit) self._random_state = getattr(self, "_random_state", check_random_state(self.random_state)) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) x_squared_norms = row_norms(X, squared=True) if is_first_call_to_partial_fit: # this is the first call to partial_fit on this object self._check_params(X) # Validate init array init = self.init if hasattr(init, '__array__'): init = check_array(init, dtype=X.dtype, copy=True, order='C') self._validate_center_shape(X, init) self._check_mkl_vcomp(X, X.shape[0]) # initialize the cluster centers self.cluster_centers_ = self._init_centroids( X, x_squared_norms=x_squared_norms, init=init, random_state=self._random_state, init_size=self._init_size) self._counts = np.zeros(self.n_clusters, dtype=sample_weight.dtype) random_reassign = False distances = None else: # The lower the minimum count is, the more we do random # reassignment, however, we don't want to do random # reassignment too often, to allow for building up counts random_reassign = self._random_state.randint( 10 * (1 + self._counts.min())) == 0 distances = np.zeros(X.shape[0], dtype=X.dtype) _mini_batch_step(X, sample_weight, x_squared_norms, self.cluster_centers_, self._counts, np.zeros(0, dtype=X.dtype), 0, random_reassign=random_reassign, distances=distances, random_state=self._random_state, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) if self.compute_labels: self.labels_, self.inertia_ = _labels_inertia( X, sample_weight, x_squared_norms, self.cluster_centers_) return self def predict(self, X, sample_weight=None): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) New data to predict. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight (default: None). Returns ------- labels : ndarray of shape (n_samples,) Index of the cluster each sample belongs to. """ check_is_fitted(self) X = self._check_test_data(X) return self._labels_inertia_minibatch(X, sample_weight)[0] def _more_tags(self): return { '_xfail_checks': { 'check_sample_weights_invariance': 'zero sample_weight is not equivalent to removing samples', } } def kmeans_plusplus(X, n_clusters, *, x_squared_norms=None, random_state=None, n_local_trials=None): """Init n_clusters seeds according to k-means++ .. versionadded:: 0.24 Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The data to pick seeds from. n_clusters : int The number of centroids to initialize x_squared_norms : array-like of shape (n_samples,), default=None Squared Euclidean norm of each data point. random_state : int or RandomState instance, default=None Determines random number generation for centroid initialization. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. n_local_trials : int, default=None The number of seeding trials for each center (except the first), of which the one reducing inertia the most is greedily chosen. Set to None to make the number of trials depend logarithmically on the number of seeds (2+log(k)). Returns ------- centers : ndarray of shape (n_clusters, n_features) The inital centers for k-means. indices : ndarray of shape (n_clusters,) The index location of the chosen centers in the data array X. For a given index and center, X[index] = center. Notes ----- Selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. see: Arthur, D. and Vassilvitskii, S. "k-means++: the advantages of careful seeding". ACM-SIAM symposium on Discrete algorithms. 2007 Examples -------- >>> from sklearn.cluster import kmeans_plusplus >>> import numpy as np >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [10, 2], [10, 4], [10, 0]]) >>> centers, indices = kmeans_plusplus(X, n_clusters=2, random_state=0) >>> centers array([[10, 4], [ 1, 0]]) >>> indices array([4, 2]) """ # Check data check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32]) if X.shape[0] < n_clusters: raise ValueError(f"n_samples={X.shape[0]} should be >= " f"n_clusters={n_clusters}.") # Check parameters if x_squared_norms is None: x_squared_norms = row_norms(X, squared=True) else: x_squared_norms = check_array(x_squared_norms, dtype=X.dtype, ensure_2d=False) if x_squared_norms.shape[0] != X.shape[0]: raise ValueError( f"The length of x_squared_norms {x_squared_norms.shape[0]} should " f"be equal to the length of n_samples {X.shape[0]}.") if n_local_trials is not None and n_local_trials < 1: raise ValueError( f"n_local_trials is set to {n_local_trials} but should be an " f"integer value greater than zero.") random_state = check_random_state(random_state) # Call private k-means++ centers, indices = _kmeans_plusplus(X, n_clusters, x_squared_norms, random_state, n_local_trials) return centers, indices
[ "honey.bhardwaj.18cse@bmu.edu.in" ]
honey.bhardwaj.18cse@bmu.edu.in
4930c4485ebc8161f7e8797e7c0615a7ea8ab655
9d6a3789c083b170920707597b9785d02704b66b
/TimeTracker/db.py
9e37d3c0ec235d00ac776cf5d472d98a06fab6fd
[]
no_license
jamesfowkes/TimeTracker
6d7736ecb6e895d1c191809ba3f262bb6f8ebd98
4293725e91519a4d02591f1629d94a68c0ab6100
refs/heads/master
2021-01-17T10:10:09.410146
2017-02-01T07:06:56
2017-02-01T07:06:56
32,203,718
0
0
null
null
null
null
UTF-8
Python
false
false
406
py
from flask.ext.sqlalchemy import SQLAlchemy db = None def add_db(app): global db if "SQLALCHEMY_DATABASE_URI" not in app.config: try: app.config["SQLALCHEMY_DATABASE_URI"] = app.config["DATABASE"] or app.config["DATABASE_URI"] except: raise Exception("Application configuration must specify DATABASE or DATABASE_URI") db = SQLAlchemy(app)
[ "jamesfowkes@gmail.com" ]
jamesfowkes@gmail.com
3f125e6743ed4c1551826d92be3ce0b2771a742e
e9de15ca55e02587f7d1267189f8cde01e1d0f84
/meetings/forms.py
42eefb28f239ec3b5b9b238feaefbab604b35bdd
[]
no_license
jestanoff/meeting-planner
187fd1680eabc3e72cd76da6158cee3ba9ede448
0c9271ee59019ef35ca6860f8f68d0a889b37f49
refs/heads/master
2022-04-26T14:03:59.001498
2020-04-13T14:34:57
2020-04-13T14:34:57
255,338,074
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
from datetime import date from django.forms import ModelForm, DateInput, TimeInput, TextInput, IntegerField from django.core.exceptions import ValidationError from .models import Meeting class MeetingForm(ModelForm): class Meta: model = Meeting fields = '__all__' widgets = { 'date': DateInput(attrs={"type": "date"}), 'start': TimeInput(attrs={"type": "time"}), 'duration': TextInput(attrs={"type": "number", "min": "1", "max": "4"}) } def clean_date(self): d = self.cleaned_data.get("date") if d < date.today(): raise ValidationError("Meetings cannot be in the past") return d
[ "stefan.dzhestanov@waitrose.co.uk" ]
stefan.dzhestanov@waitrose.co.uk
40dbf560537807d786d128ec6c2b0025d1d91c10
a3c104bdff7fac31948ef3b9d15e9fa687d306de
/train.py
e2df88522a7f7515ca01ab8ecaeee94c22492c48
[]
no_license
n1kun-j/facerec
50c425d3657e6f902670723843037f491a617f6a
d743c9bd7289665a0a2e302926d6cab65329f99b
refs/heads/master
2022-04-10T04:15:49.581504
2020-03-25T19:48:40
2020-03-25T19:48:40
250,075,546
0
0
null
null
null
null
UTF-8
Python
false
false
7,491
py
import tkinter as tk from tkinter import Message ,Text import cv2 import os,errno import shutil import csv import numpy as np from PIL import Image, ImageTk import pandas as pd import datetime import time import tkinter.ttk as ttk import tkinter.font as font import pickle window = tk.Tk() window.title("Face Recognition System") dialog_title = 'QUIT' dialog_text = 'Are you sure?' window.configure(background='black') photo1=tk.PhotoImage(file="logo.png") tk.Label (window,image=photo1,bg="black").grid(row=0,column=0,sticky=tk.N) window.grid_rowconfigure(0, weight=1) window.grid_columnconfigure(0, weight=1) #message = tk.Label(window, text="Face Recognitition System" ,bg="white" ,fg="black" ,width=50 ,height=3,font=('times', 30, 'italic bold ')) #message.place(x=200, y=20) lbl = tk.Label(window, text="Enter ID",width=20 ,height=2 ,fg="white" ,bg="black" ,font=('times', 15, ' bold ') ) lbl.place(x=400, y=200) txt = tk.Entry(window,width=20 ,bg="white" ,fg="black",font=('times', 15, ' bold ')) txt.place(x=700, y=215) lbl2 = tk.Label(window, text="Enter Name",width=20 ,fg="white" ,bg="black" ,height=2 ,font=('times', 15, ' bold ')) lbl2.place(x=400, y=300) txt2 = tk.Entry(window,width=20 ,bg="white" ,fg="black",font=('times', 15, ' bold ') ) txt2.place(x=700, y=315) lbl3 = tk.Label(window, text="Notification : ",width=20 ,fg="white" ,bg="black" ,height=2 ,font=('times', 15, ' bold')) lbl3.place(x=400, y=400) message = tk.Label(window, text="" ,bg="white" ,fg="black" ,width=30 ,height=2, activebackground = "white" ,font=('times', 15, ' bold ')) message.place(x=700, y=400) def is_number(s): try: float(s) return True except ValueError: pass try: import unicodedata unicodedata.numeric(s) return True except (TypeError, ValueError): pass return False def TakeImages(): Id=(txt.get()) name=(txt2.get()) if(is_number(Id) and name.isalpha()): cam = cv2.VideoCapture(0) harcascadePath = "haarcascade_frontalface_default.xml" face_cascade=cv2.CascadeClassifier(harcascadePath) sampleNum=0 while(True): global ret, frame ret, frame = cam.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.32, 3) for (x,y,w,h) in faces: cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) sampleNum=sampleNum+1 try: if not os.path.exists("TrainingImage/" + name): os.makedirs("TrainingImage/" + name) cv2.imwrite("TrainingImage/"+ name +"/" + name + "." + str(Id) +'.'+ str(sampleNum) + ".jpg", gray[y:y+h,x:x+w]) except OSError as e: if e.errno != errno.EEXIST: raise cv2.imshow('frame',frame) if cv2.waitKey(100) & 0xFF == ord('q'): break elif sampleNum>60: break cam.release() cv2.destroyAllWindows() res = "Images Saved for ID : " + Id +" Name : "+ name message.configure(text= res) def TrainImages(): BASE_DIR=os.path.dirname(os.path.abspath(__file__)) image_dir=os.path.join(BASE_DIR,"TrainingImage") current_id=0 label_ids={} y_labels=[] x_train=[] for root,dirs,files in os.walk(image_dir): for file in files: if file.endswith("jpg"): path= os.path.join(root,file) label = os.path.basename(root).replace(" ", "-").lower() if not label in label_ids: label_ids[label]=current_id current_id+=1 id_=label_ids[label] pil_image=Image.open(path).convert("L") size=(550,550) final_image=pil_image.resize(size,Image.ANTIALIAS) image_array=np.array(pil_image,"uint8") harcascadePath = "haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeClassifier(harcascadePath); recognizer=cv2.face.LBPHFaceRecognizer_create() faces=faceCascade.detectMultiScale(image_array,1.3,5) for (x,y,w,h) in faces: roi=image_array[y:y+h, x:x+w] x_train.append(roi) y_labels.append(id_) with open("labels.picle",'wb') as f: pickle.dump(label_ids,f) recognizer=cv2.face.LBPHFaceRecognizer_create() recognizer.train(x_train,np.array(y_labels)) recognizer.save("trainner.yml") res = "Image Trained" message.configure(text= res) def TrackImages(): recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read("trainner.yml") with open("labels.picle",'rb') as f: og_labels=pickle.load(f) labels={v:k for k,v in og_labels.items()} harcascadePath = "haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeClassifier(harcascadePath); df=pd.read_csv("StudentDetails\StudentDetails.csv") cam = cv2.VideoCapture(0) font = cv2.FONT_HERSHEY_SIMPLEX while True: ret, frame =cam.read() gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) faces=faceCascade.detectMultiScale(gray, 1.32,3) for(x,y,w,h) in faces: roi_gray = gray[y:y+h,x:x+w] roi_color = frame[y:y+h,x:x+w] id_, conf = recognizer.predict(gray[y:y+h,x:x+w]) if conf>=4 and conf <=65: font=cv2.FONT_HERSHEY_SIMPLEX name=labels[id_] color=(255,255,255) stroke=2 cv2.rectangle(frame,(x,y),(x+w,y+h),(225,0,0),2) cv2.putText(frame,name,(x,y),font,1,color,stroke,cv2.LINE_AA) if (cv2.waitKey(1)==ord('q')): break else: Id='Unknown' name=str(Id) font=cv2.FONT_HERSHEY_SIMPLEX color=(255,255,255) stroke=2 cv2.rectangle(frame,(x,y),(x+w,y+h),(225,0,0),2) cv2.putText(frame,name,(x,y),font,1,color,stroke,cv2.LINE_AA) cv2.imshow('frame',frame) if (cv2.waitKey(1)==ord('q')): break cam.release() cv2.destroyAllWindows() takeImg = tk.Button(window, text="Take Images", command=TakeImages ,fg="navy" ,bg="cyan" ,width=20 ,height=3, activebackground = "gray" ,font=('times', 15, ' bold ')) takeImg.place(x=120, y=500) trainImg = tk.Button(window, text="Train Images", command=TrainImages ,fg="navy" ,bg="cyan" ,width=20 ,height=3, activebackground = "gray" ,font=('times', 15, ' bold ')) trainImg.place(x=420, y=500) trackImg = tk.Button(window, text="Track Images", command=TrackImages ,fg="navy" ,bg="cyan" ,width=20 ,height=3, activebackground = "gray" ,font=('times', 15, ' bold ')) trackImg.place(x=720, y=500) quitWindow = tk.Button(window, text="Quit", command=window.destroy ,fg="navy" ,bg="cyan" ,width=20 ,height=3, activebackground = "gray" ,font=('times', 15, ' bold ')) quitWindow.place(x=1020, y=500) window.mainloop()
[ "noreply@github.com" ]
n1kun-j.noreply@github.com
98e8b565cd089e3a308e54abac9b7c71e93f4631
8cac3b19b7e3d69ccafe0277d2d9e6416270a361
/face_anonymizer/core/__init__.py
00fdba77f8cc50c8d16d6ef64d89ee48bdfe6958
[]
no_license
natecrisler/face-anonymizer
06516059aa4d40aec363c4feb8ea82ca369bae5c
1b3eb113abb1663a31555950e1587d5cbfbe77da
refs/heads/master
2022-01-07T18:32:51.755718
2019-01-21T18:50:42
2019-01-21T18:50:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,950
py
from typing import Optional import cv2 import numpy as np from face_anonymizer.core.detection import FaceDetector from face_anonymizer.core.detection import FaceExtractor from face_anonymizer.core.manipulation import Manipulator def pixelate_faces_from_path(fd: FaceDetector, image_path: str, detection_threshold: Optional[float] = None, strength: int = 10) -> np.ndarray: """Pixelates the faces in the image at the provided path Args: fd: an instance of `FaceDetector` image_path: the path of the image we want to pixelate the faces detection_threshold: minimum confidence to consider a region as a face strength: pixelation strength Returns: the modified image """ image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) return pixelate_faces(fd, image, detection_threshold=detection_threshold, strength=strength) def pixelate_faces(fd: FaceDetector, image: np.ndarray, detection_threshold: Optional[float] = None, strength: int = 10, copy: bool = False) -> np.ndarray: """Pixelates the faces in the provided image Args: fd: an instance of `FaceDetector` image: the image we want to pixelate the faces detection_threshold: minimum confidence to consider a region as a face strength: pixelation strength copy: whether to modify a copy of the provided image Returns: the modified image which is a copy if `copy` is `True` """ bboxes = list(fd.detect(image, threshold=detection_threshold)) faces = FaceExtractor.extract(image, *bboxes) faces_pixelated = (Manipulator.pixelate(face) for face in faces) if copy: image = image.copy() for bbox, fp in zip(bboxes, faces_pixelated): Manipulator.replace_bounding_box(image, bbox, fp) return image
[ "loumarvincaraig@gmail.com" ]
loumarvincaraig@gmail.com
38c754330d7496b646e8667ba7c58a949f263a6c
9ecb57431990491ed6710bdebab678216e8457e3
/reading_videos.py
11b9469f3473f76a053f197b31a94fde73da578f
[]
no_license
jacob-02/OpenCV_Studies
7c810754a99bb91319848a0728ebf3b28a20b7c6
494329f099bc07b0d6e726a2d3448f755d3834f6
refs/heads/master
2023-04-14T18:52:11.779870
2021-04-26T13:08:07
2021-04-26T13:08:07
359,331,175
0
0
null
null
null
null
UTF-8
Python
false
false
484
py
import cv2 as cv capture = cv.VideoCapture( '/home/jacob3006/Videos/st23_naruto-shippuuden-dub-episode-476.1618454201.mp4') # We can also use integers instead of the path file. Those reference cameras. while True: isTrue, frame = capture.read() cv.imshow('Anime', frame) if cv.waitKey(20) & 0xFF == ord('d'): break capture.release() cv.destroyAllWindows() # -215 assertion failed error occurs due to lack of the file being present at the specified location
[ "jvsanoj23@gmail.com" ]
jvsanoj23@gmail.com
b940b6ea692a545a3e86f40c92f1bb62f8deeab7
3442f797c0d566bcfdb016d17d473c133b3403ba
/variables.py
a8f7ab5add793b9fa8a645d966955b16a29ae593
[]
no_license
ryancodes116/python_sandbox
216dec01f5c5728e9f2402c383dcf1ca052d56d2
02d746a4164eebdda5ae9b3c29c83236b0b8fb17
refs/heads/master
2022-11-15T01:33:47.898610
2020-07-14T17:12:58
2020-07-14T17:12:58
279,128,080
0
0
null
null
null
null
UTF-8
Python
false
false
640
py
# A variable is a container for a value, which can be of various types ''' This is a multiline comment or docstring (used to define a functions purpose) can be single or double quotes ''' """ VARIABLE RULES: - Variable names are case sensitive (name and NAME are different variables) - Must start with a letter or an underscore - Can have numbers but can not start with one """ x = 1 # int y = 2.5 # float name = 'John' # str is_cool = True # bool # Multiple assignment x, y, name, is_cool = (1, 2.5, 'John', True) # Basic math a = x + y # Casting x = str(x) y = int(y) z = float(y) print(type(z), z)
[ "ryanmoulton116@gmail.com" ]
ryanmoulton116@gmail.com
f6d5e4cdcbf3d490ddba43494f37a07091965456
490f13d332d93b14431a5da8e075774bcc6aee3b
/utils/product_attributes/ameublement.py
82420ddd5352998b3fcde564a57d84af533ceb70
[]
no_license
rickyakilimali/ria
c9769825fc2b1f1514906b1ac4c30c2e8fe25dfd
4c54e4326ff312e231eac6484d09476d61fb564a
refs/heads/master
2021-08-24T11:39:49.940193
2017-12-09T15:13:35
2017-12-09T15:13:35
113,436,642
0
0
null
null
null
null
UTF-8
Python
false
false
696
py
TYPES_ARMOIRE = ( ('Armoire basse','Armoire basse'), ('Armoire haute','Armoire haute'), ('Armoire mi-haute','Armoire mi-haute'), ) TYPE_SIEGE = ( ('Chaise accueil','Chaise accueil'), ('Chaise visiteur','Chaise visiteur'), ('Fauteuil de Direction','Fauteuil de Direction'), ('Siège de réunion','Siège de réunion'), ) TYPE_PORTE_ARMOIRE = ( ('Battantes','Battantes'), ('Rideaux','Rideaux'), ) REVETEMENT_SIEGE = ( ('1','Bois'), ('2','Cuir'), ('3','Métal'), ('4','Plastique'), ) DIMENSION_AMEUBLEMENT = ( ('01','100x120cm'), ('02','180x100cm'), ('03','198x120cm'), ('04','210x270cm'), ) MATIERE_AMEUBLEMENT = ( ('01','Bois'), ('02','Métal'), )
[ "jusciamua@gmail.com" ]
jusciamua@gmail.com
60b3118eead8402276c713c5d5a088f5dfd1ae57
0f6cfed075d9967cfe9ec98ae00b06e7b6b91c3b
/left_rotation.py
32ac48771507545a4a7ca5fa460ec3aac4619eb8
[]
no_license
engrjepmanzanillo/hacker_rank_practice
c585b59a0fb11d958d8bafde8b481aaade902850
d99cc6de10876f1958549b1b1b4c75cdf06c1c60
refs/heads/master
2020-08-04T23:20:51.689116
2019-11-12T11:36:51
2019-11-12T11:36:51
212,311,817
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
#!/bin/python3 #author: @engrjepmanzanillo import math import os import random import re import sys def list_slicer(list): list = [str(x) for x in list] list = ' '.join(list) return list if __name__ == '__main__': #nd = input().split() n = 5 d = 4 a = [1,2,3,4,5] b = list_slicer(a[:d-n]) c = list_slicer(a[d:]) print(c,b)
[ "engr.jeffmanzanillo@gmail.com" ]
engr.jeffmanzanillo@gmail.com
2c750ffdee421e7f29d213e636594221cd64bdf7
e0ba958c23fc9a43efb02fc9e4308095bb8a7670
/chapter02/18.py
b701d1252ecebae1a5b40fcc5698df610121bc15
[]
no_license
go-inoue/nlp100knock
5c9b5301d5f90bfb239d910e4f06a9581e669b7c
f341bf4d09eb44489aec976bce4a23c3d248657e
refs/heads/master
2020-12-24T06:38:08.220639
2016-08-24T11:00:27
2016-08-24T11:00:27
65,361,403
0
1
null
2016-08-10T10:42:25
2016-08-10T07:42:59
Jupyter Notebook
UTF-8
Python
false
false
711
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 18. 各行を3コラム目の数値の降順にソート 各行を3コラム目の数値の逆順で整列せよ(注意: 各行の内容は変更せずに並び替えよ). 確認にはsortコマンドを用いよ(この問題はコマンドで実行した時の結果と合わなくてもよい). """ import sys def sort3(f): lines = f.readlines() l = [line.strip().split('\t') for line in lines] sorted_lines = sorted(l, key=lambda x: float(x[2]), reverse=True) return sorted_lines def main(): with open(sys.argv[1], 'r') as f: for i in sort3(f): print('\t'.join(i)) if __name__ == "__main__": main()
[ "go.inoue.gi@gmail.com" ]
go.inoue.gi@gmail.com
e8c01110712e423217ecb0d38555a5fe4b3928d6
521dce61e99b248b20610ebe681f611ff9f36a58
/Codeforces problemset/1409A - Yet Another Two Integers Problem.py
9afd0db4228507cdaa8374cb4f366196c24e68e0
[]
no_license
ommiy2j/Codeforces
ff0ca0129d442c14438d54c98673efd17c1bb8f0
2025c4ae11acca801fca4871dbc169c456f30ff9
refs/heads/master
2023-04-01T14:48:08.092036
2021-04-04T18:32:38
2021-04-04T18:32:38
320,491,914
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
for i in range(int(input())): a,b=map(int,input().split()) x=abs(a-b) c=x%10 y=x//10 if(c==0): print(x//10) else: print(y+1)
[ "ommiy2j@gmail.com" ]
ommiy2j@gmail.com
78008ba9b5ecc4d38d9252059452933b0a8c5d7e
5e01b849530ceac9f62ef2fb85497792bbe4c15a
/Jan16/lang-train-save.py
219c8a6b40d11cb18490277f082b41c41fccad2c
[]
no_license
cheesecat47/ML_DL_Jan2020
2206599c0eb20eebdd152d1e3b27e72ffa2c6900
15bffd8c9c19d9ff2871aa7afe95607f95e491fe
refs/heads/master
2021-07-16T18:10:20.609018
2021-01-19T00:48:01
2021-01-19T00:48:01
232,076,415
0
0
null
2020-01-28T04:58:03
2020-01-06T10:23:19
Python
UTF-8
Python
false
false
405
py
from sklearn import svm import joblib import json # 각 언어의 출현 빈도 데이터(JSON) 읽어들이기 with open('LANG/freq.json', 'r', encoding='utf-8') as fp: d = json.load(fp) data = d[0] # 파일별 데이터만 추출 # 데이터 학습하기 clf = svm.SVC() clf.fit(data['freqs'], data['labels']) # 학습 데이터 저장하기 joblib.dump(clf, 'LANG/freq.pkl') print('ok')
[ "cheesecat47@gmail.com" ]
cheesecat47@gmail.com
ddf76264acb11a5e171585c688801d0531658285
4613b6938496bae29749dafd44ffae3fad31defd
/python-exercises/ex1.py
2f193c644d4207f48750ad7ede995b0fd543d960
[]
no_license
Marlar22/coding-sprint
b2f45aaf820f213d3fc30b3f1c842b23f758864e
3068db7fd2723571702266842904df5e491d8d40
refs/heads/master
2020-03-21T14:53:29.893527
2018-06-26T04:17:18
2018-06-26T04:17:18
138,680,010
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
print("Hello World!") print("Hello Again") print("I like typing this.") print("This is fun.") print('Yay! Printing.') print("I'd much rather you 'not'.") print('I "said" do not touch this.')
[ "" ]
d7b906834fe670221921b20d1eaa42719b2d1f6a
90353c1ae2abff43240ab0401e20ca2b82ec8a13
/clock_face.py
b59d1a3f7481b27942978c3b80b1579af199d3cf
[]
no_license
andreygor444/Clock
5e5f8d111c9dac5cac06ce22828a7f1fa2bdd975
4cfd44b5d14e47a648cac0d6ea74a729d78f837e
refs/heads/master
2023-04-29T13:55:58.826145
2021-05-22T19:37:01
2021-05-22T19:37:01
369,117,509
1
0
null
null
null
null
UTF-8
Python
false
false
1,348
py
from turtle import Turtle from clock_number import ClockNumber from math import sin, cos, pi from utils import can_exit_while_drawing class ClockFace: """Класс циферблата часов""" def __init__(self, radius, center, numbers_count=12): self.radius = radius self._center = center self._render() self._make_numbers(numbers_count) @can_exit_while_drawing def _render(self): """Отрисовывает круглый контур циферблата и точку в центре""" t = Turtle() t.speed(0) t.width(self.radius // 80) t.up() t.goto((self._center[0], self._center[1] - self.radius)) t.seth(0) t.down() t.circle(self.radius) t.up() t.goto((self._center[0], self._center[1])) t.down() t.dot(self.radius / 15) t.hideturtle() def _make_numbers(self, numbers_count): self._numbers = [] number_size = self.radius / 6 for i in range(1, numbers_count + 1): angle = pi * 2 / numbers_count * i x = self._center[0] + self.radius * 0.8 * sin(angle) y = self._center[1] + self.radius * 0.8 * cos(angle) number = ClockNumber(i, (x, y), number_size) self._numbers.append(number)
[ "andreygor444@gmail.com" ]
andreygor444@gmail.com
27e9c00748769bcf5d2150f4023cacd79bf41ac2
c8d1b3c16804823b9e751576f59593df908021ea
/codeup/기초100제/1012.py
c67c536f98a8fbf02b2e99c8647a44feb244ca9e
[]
no_license
giljun/Algorithm
f2809c56efc45c518fef4b9d931e3ece580d209c
bce6a30dcdbe4f4382c45c2f7b415425ce345953
refs/heads/master
2021-06-16T06:47:51.902748
2021-04-21T14:40:01
2021-04-21T14:40:01
192,660,401
1
0
null
null
null
null
UTF-8
Python
false
false
43
py
number = float(input()) print("%f"% number)
[ "giljune91@gmail.com" ]
giljune91@gmail.com
24deb0da2773b154bb9bd7926e0b22c0d72f9736
b72cc0de3990caf5dd7989506d80fe4aa448d4fb
/lighting.py
8ec008410ad9b616774ffecb4438ce6167502eee
[]
no_license
tanzimelahi/compiler
23113b015aff1ed96954176bcb129c8034ca79ec
8323604c8d4bd69dcca099149c298d952d338e0a
refs/heads/master
2022-06-20T22:12:58.089069
2020-05-13T02:33:55
2020-05-13T02:33:55
263,503,749
0
0
null
null
null
null
UTF-8
Python
false
false
31,681
py
import math from subprocess import Popen, PIPE from os import remove import random #constants XRES = 500 YRES = 500 MAX_COLOR = 255 RED = 0 GREEN = 1 BLUE = 2 DEFAULT_COLOR = [0, 0, 0] def new_screen( width = XRES, height = YRES ): screen = [] for y in range( height ): row = [] screen.append( row ) for x in range( width ): screen[y].append( DEFAULT_COLOR[:] ) return screen def new_zbuffer( width = XRES, height = YRES ): zb = [] for y in range( height ): row = [ float('-inf') for x in range(width) ] zb.append( row ) return zb def plot( screen, zbuffer,x,y,z,color): newy = YRES - 1 - y z = int((z * 1000)) / 1000.0 if ( x >= 0 and x < XRES and newy >= 0 and newy < YRES and zbuffer[int(newy)][int(x)] <= z): screen[int(newy)][int(x)] = color[:] zbuffer[int(newy)][int(x)] = z def clear_screen( screen ): for y in range( len(screen) ): for x in range( len(screen[y]) ): screen[y][x] = DEFAULT_COLOR[:] def clear_zbuffer( zb ): for y in range( len(zb) ): for x in range( len(zb[y]) ): zb[y][x] = float('-inf') def save_ppm( screen, fname ): f = open( fname, 'wb' ) ppm = 'P6\n' + str(len(screen[0])) +' '+ str(len(screen)) +' '+ str(MAX_COLOR) +'\n' f.write(ppm.encode()) for y in range( len(screen) ): for x in range( len(screen[y]) ): pixel = screen[y][x] f.write( bytes(pixel) ) f.close() def save_ppm_ascii( screen, fname ): f = open( fname, 'w' ) ppm = 'P3\n' + str(len(screen[0])) +' '+ str(len(screen)) +' '+ str(MAX_COLOR) +'\n' for y in range( len(screen) ): row = '' for x in range( len(screen[y]) ): pixel = screen[y][x] row+= str( pixel[ RED ] ) + ' ' row+= str( pixel[ GREEN ] ) + ' ' row+= str( pixel[ BLUE ] ) + ' ' ppm+= row + '\n' f.write( ppm ) f.close() def save_extension( screen, fname ): ppm_name = fname[:fname.find('.')] + '.ppm' save_ppm_ascii( screen, ppm_name ) p = Popen( ['convert', ppm_name, fname ], stdin=PIPE, stdout = PIPE ) p.communicate() remove(ppm_name) def display( screen ): ppm_name = 'pic.ppm' save_ppm_ascii( screen, ppm_name ) p = Popen( ['display', ppm_name], stdin=PIPE, stdout = PIPE ) p.communicate() remove(ppm_name) #commands from here: #for the first two octants, the x0 must be smaller than x1 def firstoct(screen,buffer,x0,y0,z0,x1,y1,z1,color):#oct 1 and 5 x=x0 y=y0 A=y1-y0 B=-(x1-x0) d=2*A+B dz=(z1-z0)/(x1-x0+1) z=z0 while x<x1: plot(screen,buffer,x,y,z,color) if d>=0: y+=1 d=d+2*B x=x+1 d=d+2*A z+=dz plot(screen,buffer,x1,y1,z1,color) def secondoct(screen,buffer,x0,y0,z0,x1,y1,z1,color):#oct 2 and 6 x=x0 y=y0 A=y1-y0 B=-(x1-x0) d=A+2*B z=z0 dz=(z1-z0)/(y1-y0+1) while y<y1: plot(screen,buffer,x,y,z,color) if d<=0: d=d+2*A x+=1 y=y+1 d=d+2*B z+=dz plot(screen,buffer,x1,y1,z1,color) def thirdoct(screen,buffer,x0,y0,z0,x1,y1,z1,color):#oct 3 and 7 remember the x0 and x1 hierarchy is reversed for this one x=x0 y=y0 A=y1-y0 B=-(x1-x0) d=A+2*B z=z0 dz=(z1-z0)/(y1-y0+1) while y<y1: plot(screen,buffer,x,y,z,color) if d>=0: x=x-1 d=d-2*A y=y+1 d=d+2*B z+=dz plot(screen,buffer,x1,y1,z1,color) def fourthoct(screen,buffer,x0,y0,z0,x1,y1,z1,color): #oct 4 and 8 x=x0 y=y0 A=y1-y0 B=-(x1-x0) d=A+2*B z=z0 dz=(z1-z0)/(x1-x0+1) while x<x1: plot(screen,buffer,x,y,z,color) if d<=0: y=y-1 d=d-2*B x=x+1 d=d+2*A z+=dz plot(screen,buffer,x1,y1,z1,color) def oneSlopePos(screen,buffer,x0,y0,z0,x1,y1,z1,color): x=x0 y=y0 z=z0 dz=(z1-z0)/(x1-x0+1) while x<=x1: plot(screen,buffer,x,y,z,color) x+=1 y+=1 z+=dz def oneSlopeNeg(screen,buffer,x0,y0,z0,x1,y1,z1,color): x=x0 y=y0 z=z0 dz=(z1-z0)/(x1-x0+1) while x<=x1: plot(screen,buffer,x,y,z,color) x+=1 y-=1 z+=dz def zeroSlope(screen,buffer,x0,y0,z0,x1,y1,z1,color): x=x0 y=y0 z=z0 dz=(z1-z0)/(x1-x0+1) while(x<=x1): plot(screen,buffer,x,y,z,color) x+=1 z+=dz def undefinedSlope(screen,buffer,x0,y0,z0,x1,y1,z1,color): x=x0 y=y0 z=z0 dz=(z1-z0)/(y1-y0+1) while y<=y1: plot(screen,buffer,x,y,z,color) y+=1 z+=dz def drawline(screen,buffer,x0,y0,z0,x1,y1,z1,color):# whenever possible x0 must be greater than x1(left to right orientation) if(x0>x1): store=x0 x0=x1 x1=store storage=y0 y0=y1 y1=storage store=z0 z0=z1 z1=store if(x0==x1): if(y1<y0): store=y0 y0=y1 y1=store store=z0 z0=z1 z1=store undefinedSlope(screen,buffer,x0,y0,z0,x1,y1,z1,color) elif(y0==y1): zeroSlope(screen,buffer,x0,y0,z0,x1,y1,z1,color) elif abs(x1-x0)>=abs(y1-y0): if y1>y0: firstoct(screen,buffer,x0,y0,z0,x1,y1,z1,color) else: fourthoct(screen,buffer,x0,y0,z0,x1,y1,z1,color) else: if y1>y0: secondoct(screen,buffer,x0,y0,z0,x1,y1,z1,color) else: thirdoct(screen,buffer,x1,y1,z1,x0,y0,z0,color) def new_matrix(rows = 4, cols = 4): m = [] for c in range( cols ): m.append( [] ) for r in range( rows ): m[c].append( 0 ) return m def update_matrix(row,column,matrix,value): matrix[column][row]=value def up(matrix,row,column,value): matrix[column][row]=value def print_matrix(matrix): result="" row=len(matrix[0]) col=len(matrix) for x in range(row): for y in range(col): add=str(matrix[y][x]) if len(add)==1: result+=add+" " elif len(add)==2: result+=add+" " else: result+=add+" " result+="\n" print(result) def ident(matrix): row=len(matrix[0]) col=row for x in range(row): for y in range(col): if(x==y): matrix[y][x]=1 else: matrix[y][x]=0 def matrix_multiplication(m1,m2): #this func works fine result=new_matrix(len(m1[0]),len(m2)) for secondCol in range(len(m2)): for y in range(len(m1[0])): add=0 for x in range(len(m1)): add+=(m1[x][y]*m2[secondCol][x]) result[secondCol][y]=add for x in range(len(m2)): m2[x]=result[x] def empty_matrix(): m = [] m.append( [] ) return m #test cases #that ends here def add_point(matrix,x,y,z=0): if len(matrix[0])==0: matrix[0].append(x) matrix[0].append(y) matrix[0].append(z) matrix[0].append(1) else: matrix.append([]) matrix[len(matrix)-1].append(x) matrix[len(matrix)-1].append(y) matrix[len(matrix)-1].append(z) matrix[len(matrix)-1].append(1) def update_point(matrix,x,y,z,unit=1): #same as add_point but can modify the '1's used as helper func for rotation if len(matrix[0])==0: matrix[0].append(x) matrix[0].append(y) matrix[0].append(z) matrix[0].append(unit) else: matrix.append([]) matrix[len(matrix)-1].append(x) matrix[len(matrix)-1].append(y) matrix[len(matrix)-1].append(z) matrix[len(matrix)-1].append(unit) def add_edge(matrix,x0,y0,z0,x1,y1,z1): add_point(matrix,x0,y0,z0) add_point(matrix,x1,y1,z1) def add_polygon(matrix,x0,y0,z0,x1,y1,z1,x2,y2,z2): add_point(matrix,x0,y0,z0) add_point(matrix,x1,y1,z1) add_point(matrix,x2,y2,z2) def dot_product(vector1,vector2): return (vector1[0]*vector2[0]+vector1[1]*vector2[1]+vector1[2]*vector2[2]) def vector_substraction(vector1,vector2): return [vector1[0]-vector2[0],vector1[1]-vector2[1],vector1[2]-vector2[2]] def cross_product(a,b):# a and b are vectors [] return [a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],a[0]*b[1]-a[1]*b[0]] #print(cross_product([2,4,3],[1,2,4])) def surface_normal(polygon_matrix,index): #one change made here that is different from notes a=vector_substraction(polygon_matrix[index+1],polygon_matrix[index]) b=(vector_substraction(polygon_matrix[index+2],polygon_matrix[index])) #returned surface normal to its regular note form #print(cross_product(a,b)) return cross_product(a,b) def normalize(vector): magnitude = math.sqrt( vector[0] * vector[0] + vector[1] * vector[1] + vector[2] * vector[2]) for i in range(3): vector[i] = vector[i] / magnitude def backface_culling(n,v):# n being the normal of a triangle and v the z unit vector result=dot_product(n,v) if (result>0): return True else: return False def get_lighting(A,P,L,V,N,Ka,Kd,Ks): # all being triplets or vectors I_ambient=[] for x in range(len(A)): I_ambient.append(A[x]*Ka[x]) I_diffuse=[] storage=[] for x in range(len(P)): storage.append(P[x]*Kd[x]) normalize(N) normalize(L) normalize(V) result=dot_product(N,L) for x in range(len(P)): storage[x]=storage[x]*result for x in range(len(storage)): #copied storage to Idiffuse I_diffuse.append(storage[x]) I_specular=[] store=[] for x in range(len(P)): store.append(P[x]*Ks[x]) Two_N=[] for x in range(len(N)): Two_N.append(N[x]*2) for x in range(len(Two_N)): Two_N[x]=Two_N[x]*result answer=vector_substraction(Two_N,L) memory=dot_product(answer,V)**4 for x in range(len(P)): I_specular.append(store[x]*memory) I=[] for x in range(len(I_ambient)): I.append(int(I_ambient[x]+I_diffuse[x]+I_specular[x])) for x in range(len(I)): if (I[x]>255): I[x]=255 elif(I[x]<0): I[x]=0 #print(I) return I def ytop(matrix,step): #helper func for add_polygons result=step+2 y_top=matrix[result][1] if(matrix[step+1][1]>y_top): y_top=matrix[step+1][1] result=step+1 if(matrix[step][1]>y_top): y_top=matrix[step][1] result=step return y_top def ytop_step(matrix,step): result=step+2 y_top=matrix[result][1] if(matrix[step+1][1]>y_top): y_top=matrix[step+1][1] result=step+1 if(matrix[step][1]>y_top): y_top=matrix[step][1] result=step return result def xtop(matrix,step): result=step+2 y_top=matrix[result][1] if(matrix[step+1][1]>y_top): y_top=matrix[step+1][1] result=step+1 if(matrix[step][1]>y_top): y_top=matrix[step][1] result=step x_top=matrix[result][0] return x_top def ybot(matrix,step): bottom=step+2 y_bottom=matrix[bottom][1] if(matrix[step+1][1]<y_bottom): y_bottom=matrix[step+1][1] bottom=step+1 if(matrix[step][1]<y_bottom): y_bottom=matrix[step][1] bottom=step return y_bottom def ybot_step(matrix,step): bottom=step+2 y_bottom=matrix[bottom][1] if(matrix[step+1][1]<y_bottom): y_bottom=matrix[step+1][1] bottom=step+1 if(matrix[step][1]<y_bottom): y_bottom=matrix[step][1] bottom=step return bottom def xbot(matrix,step): bottom=step+2 y_bottom=matrix[bottom][1] if(matrix[step+1][1]<y_bottom): y_bottom=matrix[step+1][1] bottom=step+1 if(matrix[step][1]<y_bottom): y_bottom=matrix[step][1] bottom=step x_bottom=matrix[bottom][0] return x_bottom def zbot(matrix,step): bottom=step+2 y_bottom=matrix[bottom][1] if(matrix[step+1][1]<y_bottom): y_bottom=matrix[step+1][1] bottom=step+1 if(matrix[step][1]<y_bottom): y_bottom=matrix[step][1] bottom=step x_bottom=matrix[bottom][0] z_bottom=matrix[bottom][2] return z_bottom def ztop(matrix,step): result=step+2 y_top=matrix[result][1] if(matrix[step+1][1]>y_top): y_top=matrix[step+1][1] result=step+1 if(matrix[step][1]>y_top): y_top=matrix[step][1] result=step x_top=matrix[result][0] z_top=matrix[result][2] return z_top def add_polygons(screen,buffer,matrix,A,P,L,V,Ka,Kd,Ks): step=0 while(step<len(matrix)): normal=surface_normal(matrix,step) color=get_lighting(A,P,L,V,normal,Ka,Kd,Ks) if(normal[2]>0): for x in range(len(color)): if color[x]<0: print(normal) drawline(screen,buffer,matrix[step][0],matrix[step][1],matrix[step][2],matrix[step+1][0],matrix[step+1][1],matrix[step+1][2],color) drawline(screen,buffer,matrix[step+1][0],matrix[step+1][1],matrix[step+1][2],matrix[step+2][0],matrix[step+2][1],matrix[step+2][2],color) drawline(screen,buffer,matrix[step+2][0],matrix[step+2][1],matrix[step+2][2],matrix[step][0],matrix[step][1],matrix[step][2],color) yb=ybot(matrix,step) #scanline conversion starts here yt=ytop(matrix,step) xt=xtop(matrix,step) xb=xbot(matrix,step) zb=zbot(matrix,step) zt=ztop(matrix,step) xm=0 zm=0 ym=0 if matrix[step+2][1]!=yb and matrix[step+2][1]!=yt: ym=matrix[step+2][1] xm=matrix[step+2][0] zm=matrix[step+2][2] elif matrix[step+1][1]!=yb and matrix[step+1][1]!=yt: ym=matrix[step+1][1] xm=matrix[step+1][0] zm=matrix[step+1][2] elif matrix[step][1]!=yb and matrix[step][1]!=yt: ym=matrix[step][1] xm=matrix[step][0] zm=matrix[step][2] else: b=0 t=0 if(matrix[step][1]==yb): b+=1 elif(matrix[step][1]==yt): t+=1 if(matrix[step+1][1]==yb): b+=1 elif(matrix[step+1][1]==yt): t+=1 if(matrix[step+2][1]==yb): b+=1 elif(matrix[step+2][1]==yt): t+=1 if(t>=2): count=ytop_step(matrix,step) if step!=count and matrix[step][1]==yt: xm=matrix[step][0] ym=matrix[step][1] zm=matrix[step][2] elif (step+1)!=count and matrix[step+1][1]==yt: xm=matrix[step+1][0] ym=matrix[step+1][1] zm=matrix[step+1][2] else: xm=matrix[step+2][0] ym=matrix[step+2][1] zm=matrix[step+2][2] if(b>=2): count=ybot_step(matrix,step) if step!=count and matrix[step][1]==yb: xm=matrix[step][0] ym=matrix[step][1] zm=matrix[step][2] elif (step+1)!=count and matrix[step+1][1]==yb: xm=matrix[step+1][0] ym=matrix[step+1][1] zm=matrix[step+1][2] else: xm=matrix[step+2][0] ym=matrix[step+2][1] zm=matrix[step+2][2] dx=(xt-xb)/(yt-yb+1) dx1=(xm-xb)/(ym-yb+1) dx1_1=(xt-xm)/(yt-ym+1) dz0=(zt-zb)/(yt-yb+1) dz1=(zm-zb)/(ym-yb+1) dz1_1=(zt-zm)/(yt-ym+1) x0=xb x1=xb z0=zb z1=zb y=yb while(y<=ym): drawline(screen,buffer,x0,y,z0,x1,y,z1,color) x0+=dx x1+=dx1 z0+=dz0 z1+=dz1 y+=1 dx1=dx1_1 x1=xm z1=zm dz1=dz1_1 while(y<=yt): drawline(screen,buffer,x0,y,z0,x1,y,z1,color) x0+=dx x1+=dx1 z0+=dz0 z1+=dz1 y+=1 #scanline conversino ends here step+=3 def add_lines(screen,buffer,matrix,color): step=0 while(step<len(matrix)): #print("x0:"+str(matrix[step][0])+" "+"y0:"+str(matrix[step][1])+" "+"x1:"+str(matrix[step+1][0])+" "+"y1:"+str(matrix[step+1][1])) drawline(screen,buffer,matrix[step][0],matrix[step][1],matrix[step][2],matrix[step+1][0],matrix[step+1][1],matrix[step+1][2],color) step+=2 def scale(sx,sy,sz): info=[sx,sy,sz] matrix=new_matrix(4,4) ident(matrix) for col in range(len(matrix)-1): for row in range(len(matrix[0])-1): if row==col: matrix[col][row]=info[col] return matrix def move(a,b,c): info=[a,b,c] matrix=new_matrix(4,4) ident(matrix) for row in range(len(matrix)-1): matrix[3][row]=info[row] return matrix def x_rotation(angle): angle=math.radians(angle) matrix=empty_matrix() update_point(matrix,1,0,0,0) update_point(matrix,0,math.cos(angle),1*math.sin(angle),0) update_point(matrix,0,-1*math.sin(angle),math.cos(angle),0) update_point(matrix,0,0,0,1) return matrix def y_rotation(angle): angle=math.radians(angle) matrix=empty_matrix() update_point(matrix,math.cos(angle),0,-1*math.sin(angle),0) update_point(matrix,0,1,0,0) update_point(matrix,1*math.sin(angle),0,math.cos(angle),0) update_point(matrix,0,0,0,1) return matrix def z_rotation(angle): angle=math.radians(angle) matrix=empty_matrix() update_point(matrix,math.cos(angle),1*math.sin(angle),0,0) update_point(matrix,-1*math.sin(angle),math.cos(angle),0,0) update_point(matrix,0,0,1,0) update_point(matrix,0,0,0,1) return matrix def rotation (angle,axis_of_rotation): if(axis_of_rotation=="x"): return x_rotation(angle) elif axis_of_rotation=="y": return y_rotation(angle) else: return z_rotation(angle) def bezier(matrix,x0,y0,x1,y1,x2,y2,x3,y3): ax=-x0+3*x1-3*x2+x3 bx=3*x0-6*x1+3*x2 cx=-3*x0+3*x1 dx=x0 ay=-y0+3*y1-3*y2+y3 by=3*y0-6*y1+3*y2 cy=-3*y0+3*y1 dy=y0 t=0 input_x=int(ax*math.pow(t,3)+bx*math.pow(t,2)+cx*t+dx) input_y=int(ay*math.pow(t,3)+by*math.pow(t,2)+cy*t+dy) t+=0.0001 new_input_x=int(ax*math.pow(t,3)+bx*math.pow(t,2)+cx*t+dx) new_input_y=int(ay*math.pow(t,3)+by*math.pow(t,2)+cy*t+dy) add_edge(matrix,input_x,input_y,0,new_input_x,new_input_y,0) input_x=new_input_x input_y=new_input_y t+=0.0001 while(t<=1): new_input_x=int(ax*math.pow(t,3)+bx*math.pow(t,2)+cx*t+dx) new_input_y=int(ay*math.pow(t,3)+by*math.pow(t,2)+cy*t+dy) add_edge(matrix,input_x,input_y,0,new_input_x,new_input_y,0) input_x=new_input_x input_y=new_input_y t+=0.0001 def hermite(matrix,x0,y0,x1,y1,rx0,ry0,rx1,ry1): my_matrix=empty_matrix() m2x=empty_matrix() add_point(m2x,x0,x1,rx0) update_matrix(3,0,m2x,rx1) add_point(my_matrix,2,-3,0) add_point(my_matrix,-2,3,0) add_point(my_matrix,1,-2,1) add_point(my_matrix,1,-1,0) info=[1,0,0,0] for x in range(4): update_matrix(3,x,my_matrix,info[x]) matrix_multiplication(my_matrix,m2x) ax=m2x[0][0] bx=m2x[0][1] cx=m2x[0][2] dx=m2x[0][3] m2y=empty_matrix() add_point(m2y,y0,y1,ry0) update_matrix(3,0,m2y,ry1) matrix_multiplication(my_matrix,m2y) ay=m2y[0][0] by=m2y[0][1] cy=m2y[0][2] dy=m2y[0][3] t=0 input_x=int(ax*math.pow(t,3)+bx*math.pow(t,2)+cx*t+dx) input_y=int(ay*math.pow(t,3)+by*math.pow(t,2)+cy*t+dy) t+=0.0001 new_input_x=int(ax*math.pow(t,3)+bx*math.pow(t,2)+cx*t+dx) new_input_y=int(ay*math.pow(t,3)+by*math.pow(t,2)+cy*t+dy) add_edge(matrix,input_x,input_y,0,new_input_x,new_input_y,0) input_x=new_input_x input_y=new_input_y t+=0.0001 while(t<=1): new_input_x=int(ax*math.pow(t,3)+bx*math.pow(t,2)+cx*t+dx) new_input_y=int(ay*math.pow(t,3)+by*math.pow(t,2)+cy*t+dy) add_edge(matrix,input_x,input_y,0,new_input_x,new_input_y,0) input_x=new_input_x input_y=new_input_y t+=0.0001 def circle(matrix,cx,cy,cz,r,step=1000): i=0 t=0 input_x=int(math.cos(math.pi*2*t)*r+cx) input_y=int(math.sin(math.pi*2*t)*r+cy) i+=1 t=i/step new_input_x=int(math.cos(math.pi*2*t)*r+cx) new_input_y=int(math.sin(math.pi*2*t)*r+cy) add_edge(matrix,input_x,input_y,0,new_input_x,new_input_y,0) input_x=new_input_x input_y=new_input_y i+=1 while(i<=step): t=i/step new_input_x=int(math.cos(math.pi*2*t)*r+cx) new_input_y=int(math.sin(math.pi*2*t)*r+cy) add_edge(matrix,input_x,input_y,0,new_input_x,new_input_y,0) input_x=new_input_x input_y=new_input_y i+=1 def apply(transform,edge): matrix_multiplication(transform,edge) def old_parser(fl_name,screen,buffer,color,edge,triangle_matrix,stack): fl=open(fl_name,"r") data=fl.readlines() i=0 A=[255,255,255] P=[250,0,255] L=[1,0.5,1] V=[0,0,1] Ka=[0.1,0.1,0.1] Kd=[0.5,0.5,0.5] Ks=[0.5,0.5,0.5] while(i<len(data)): #print(data[i].strip()) if data[i].strip()=="line": coords=data[i+1].split() x0=int(coords[0]) y0=int(coords[1]) z0=int(coords[2]) x1=int(coords[3]) y1=int(coords[4]) z1=int(coords[5]) add_edge(edge,x0,y0,z0,x1,y1,z1) apply(stack[-1],edge) add_lines(screen,buffer,edge,color) edge=empty_matrix() elif data[i].strip()=="clear": clear_screen(screen) clear_zbuffer(buffer) elif data[i].strip()=="scale": coords=data[i+1].split() sx=int(coords[0]) sy=int(coords[1]) sz=int(coords[2]) transform=scale(sx,sy,sz) apply(stack[-1],transform) stack[-1]=transform elif data[i].strip()=="circle": coords=data[i+1].split() x=int(coords[0]) y=int(coords[1]) z=int(coords[2]) r=int(coords[3]) circle(edge,x,y,z,r) apply(stack[-1],edge) add_lines(screen,buffer,edge,color) edge=empty_matrix() elif data[i].strip()=="move": coords=data[i+1].split() a=int(coords[0]) b=int(coords[1]) c=int(coords[2]) transform=move(a,b,c) apply(stack[-1],transform) stack[-1]=transform elif data[i].strip()=="rotate": coords=data[i+1].split() angle=int(coords[1]) axis=coords[0] transform=rotation(angle,axis) apply(stack[-1],transform) stack[-1]=transform elif data[i].strip()=="save": coords=data[i+1].split() save_ppm(screen,coords[0]) elif data[i].strip()=="display": display(screen) elif data[i].strip()=="sphere": coords=data[i+1].split() x=int(coords[0]) y=int(coords[1]) z=int(coords[2]) r=int(coords[3]) sphere(triangle_matrix,x,y,z,r) apply(stack[-1],triangle_matrix) add_polygons(screen,buffer,triangle_matrix,A,P,L,V,Ka,Kd,Ks) triangle_matrix=empty_matrix() elif data[i].strip()=="box": coords=data[i+1].split() x=int(coords[0]) y=int(coords[1]) z=int(coords[2]) x_width=int(coords[3]) y_width=int(coords[4]) z_width=int(coords[5]) box(triangle_matrix,x,y,z,x_width,y_width,z_width) apply(stack[-1],triangle_matrix) add_polygons(screen,buffer,triangle_matrix,A,P,L,V,Ka,Kd,Ks) triangle_matrix=empty_matrix() elif data[i].strip()=="torus": coords=data[i+1].split() x=int(coords[0]) y=int(coords[1]) z=int(coords[2]) r=int(coords[3]) R=int(coords[4]) torus(triangle_matrix,x,y,z,r,R) apply(stack[-1],triangle_matrix) add_polygons(screen,buffer,triangle_matrix,A,P,L,V,Ka,Kd,Ks) triangle_matrix=empty_matrix() elif data[i].strip()=="push": push(stack) elif data[i].strip()=="pop": stack.pop() i+=1 def line_box(matrix,x,y,z,x_width,y_width,z_width): #changes made in line_box y+ switched to y- add_edge(matrix,x,y,z,x+x_width,y,z)#1 and 3 add_edge(matrix,x,y,z,x,y-y_width,z)#1 and 2 add_edge(matrix,x,y-y_width,z,x+x_width,y-y_width,z)# 2 and 4 add_edge(matrix,x+x_width,y,z,x+x_width,y-y_width,z)#3 and 4 add_edge(matrix,x,y,z,x,y,z+z_width)#1 and 6 add_edge(matrix,x,y-y_width,z,x,y-y_width,z+z_width)#2 and 5 add_edge(matrix,x,y-y_width,z+z_width,x,y,z+z_width)#5 and 6 add_edge(matrix,x,y,z+z_width,x+x_width,y,z+z_width)#6 and 7 add_edge(matrix,x,y-y_width,z+z_width,x+x_width,y-y_width,z+z_width)#5 and 8 add_edge(matrix,x+x_width,y-y_width,z+z_width,x+x_width,y,z+z_width)#8 and 7 add_edge(matrix,x+x_width,y,z,x+x_width,y,z+z_width)#3 and 7 add_edge(matrix,x+x_width,y-y_width,z,x+x_width,y-y_width,z+z_width)#4 and 8 def box( polygons, x, y, z, width, height, depth ): x1 = x + width y1 = y - height z1 = z - depth #front add_polygon(polygons, x, y, z, x1, y1, z, x1, y, z) add_polygon(polygons, x, y, z, x, y1, z, x1, y1, z) #back add_polygon(polygons, x1, y, z1, x, y1, z1, x, y, z1) add_polygon(polygons, x1, y, z1, x1, y1, z1, x, y1, z1) #right side add_polygon(polygons, x1, y, z, x1, y1, z1, x1, y, z1) add_polygon(polygons, x1, y, z, x1, y1, z, x1, y1, z1) #left side add_polygon(polygons, x, y, z1, x, y1, z, x, y, z) add_polygon(polygons, x, y, z1, x, y1, z1, x, y1, z) #top add_polygon(polygons, x, y, z1, x1, y, z, x1, y, z1) add_polygon(polygons, x, y, z1, x, y, z, x1, y, z) #bottom add_polygon(polygons, x, y1, z, x1, y1, z1, x1, y1, z) add_polygon(polygons, x, y1, z, x, y1, z1, x1, y1, z1) #def sphere(matrix,cx,cy,cz,radius,step=100): def line_sphere(matrix,cx,cy,cz,radius,step=10): rot=0 t=0 i=0 j=0 x0=radius*math.cos(2*math.pi*0)+cx y0=radius*math.sin(2*math.pi*0)*math.cos(math.pi*0)+cy z0=radius*math.sin(2*math.pi*0)*math.sin(math.pi*0)+cz i+=1 while j<=step: rot=j/step while i<=step: print(i) t=i/step x=radius*math.cos(1*math.pi*t)+cx y=radius*math.sin(1*math.pi*t)*math.cos(2*math.pi*rot)+cy z=radius*math.sin(1*math.pi*t)*math.sin(2*math.pi*rot)+cz add_edge(matrix,x0,y0,z0,x,y,z) x0=x y0=y z0=z i+=1 i=0 j+=1 def sphere(matrix,cx,cy,cz,radius,step=20):# n is 1+step rot=0 t=0 i=0 j=0 n=step+1 edge=empty_matrix() while (j<=step): rot=j/step while(i<=step): t=i/step x=radius*math.cos(1*math.pi*t)+cx y=radius*math.sin(1*math.pi*t)*math.cos(2*math.pi*rot)+cy z=radius*math.sin(1*math.pi*t)*math.sin(2*math.pi*rot)+cz add_point(edge,x,y,z) i+=1 if(j>=1): k=0 while(k<step): if(k!=step-1): x=edge[(j-1)*(n)+k][0] y=edge[(j-1)*(n)+k][1] z=edge[(j-1)*(n)+k][2] x1=edge[(j-1)*(n)+k+1+n][0] y1=edge[(j-1)*n+k+1+n][1] z1=edge[(j-1)*n+k+1+n][2] x2=edge[(j-1)*n+k+1][0] y2=edge[(j-1)*n+k+1][1] z2=edge[(j-1)*n+k+1][2] add_polygon(matrix,x,y,z,x1,y1,z1,x2,y2,z2) if(k!=0): x1=edge[(j-1)*n+k+n][0] y1=edge[(j-1)*n+k+n][1] z1=edge[(j-1)*n+k+n][2] x2=edge[(j-1)*n+k+n+1][0] y2=edge[(j-1)*n+k+n+1][1] z2=edge[(j-1)*n+k+n+1][2] add_polygon(matrix,x,y,z,x1,y1,z1,x2,y2,z2) k+=1 i=0 j+=1 def line_torus(matrix,cx,cy,cz,r,R,step=100): rot=0 t=0 i=0 j=0 x0=math.cos(rot)*(r*math.cos(t)+R)+cx y0=math.sin(t)*r+cy z0=-1*math.sin(rot)*(r*math.cos(t)+cx+R)+cz i+=1 while j<=step: rot=j/step while i<=step: t=i/step x=math.cos(2*math.pi*rot)*(r*math.cos(2*math.pi*t)+R)+cx y=r*math.sin(2*math.pi*t)+cy z=-1*math.sin(2*math.pi*rot)*(r*math.cos(2*math.pi*t)+R)+cz add_edge(matrix,x0,y0,z0,x,y,z) x0=x y0=y z0=z i+=1 i=0 j+=1 def torus(matrix,cx,cy,cz,r,R,step=20): rot=0 t=0 i=0 j=0 edge=empty_matrix() n=step+1 while j<=step: rot=j/step while i<=step: t=i/step x=math.cos(2*math.pi*rot)*(r*math.cos(2*math.pi*t)+R)+cx y=r*math.sin(2*math.pi*t)+cy z=-1*math.sin(2*math.pi*rot)*(r*math.cos(2*math.pi*t)+R)+cz add_point(edge,x,y,z) i+=1 if j>=1: k=0 while(k<step): x=edge[(j-1)*(n)+k][0] y=edge[(j-1)*(n)+k][1] z=edge[(j-1)*(n)+k][2] x1=edge[(j-1)*(n)+k+n][0] y1=edge[(j-1)*(n)+k+n][1] z1=edge[(j-1)*(n)+k+n][2] x2=edge[(j-1)*(n)+k+n+1][0] y2=edge[(j-1)*(n)+k+n+1][1] z2=edge[(j-1)*(n)+k+n+1][2] add_polygon(matrix,x,y,z,x1,y1,z1,x2,y2,z2) x1=edge[(j-1)*(n)+k+n+1][0] y1=edge[(j-1)*(n)+k+n+1][1] z1=edge[(j-1)*(n)+k+n+1][2] x2=edge[(j-1)*(n)+k+1][0] y2=edge[(j-1)*(n)+k+1][1] z2=edge[(j-1)*(n)+k+1][2] add_polygon(matrix,x,y,z,x1,y1,z1,x2,y2,z2) k+=1 i=0 j+=1 def pop(stack): stack.pop() def push(stack): matrix=new_matrix() i=0 while i<4: j=0 while j<4: up(matrix,i,j,stack[-1][j][i]) j+=1 i+=1 stack.append(matrix)
[ "telahi00@stuy.edu" ]
telahi00@stuy.edu
efd9651775535caed7b13bced02debc6bfdc5175
1b5001dd4ae97909af1c7d6d05885dfb64466362
/routes.py
a310f909ea7e9375bec4f6224efa15febbb41797
[]
no_license
dorican/fwsgi_app
889453f2b8e75bc28857019ec5da3279ac9cb55b
969509fd4fc2de577d61a6170c0e4c5f6153c828
refs/heads/master
2022-12-30T16:25:06.375480
2020-08-24T12:17:55
2020-08-24T12:17:55
289,912,404
0
0
null
2020-10-13T06:05:27
2020-08-24T11:45:28
Python
UTF-8
Python
false
false
142
py
from views import IndexView, AboutView, OtherView routes = { '/': IndexView(), '/about/': AboutView(), '/other/': OtherView(), }
[ "linux@linux.org" ]
linux@linux.org
76f1f51e2945735880579913d05f9284bad0b654
27e216a75d5266c885d6ea8cbf96efcefed739a1
/TranslateRNA.py
c6dd146434f840e3221a4711c1f13b1eb245eb83
[]
no_license
RagaviSrinivasan/Rosalind
9b5a6fd4a63982e5b9a5cbb177b99aed53083629
c254485ab8add2613a079dcab8f3a0db362eaa05
refs/heads/master
2021-01-19T13:27:04.935274
2017-08-02T04:08:44
2017-08-02T04:08:44
82,415,580
0
0
null
null
null
null
UTF-8
Python
false
false
9,295
py
# ----------------------------------------------------------------------------------------------------------- # Rosalind problems # 6) Translate the given RNA into protein sequence # ----------------------------------------------------------------------------------------------------------- from Bio.Seq import Seq RNA = Seq("AUGCUUCCCAAAAGUGUCCGCUAUGAUGUCAAUAUUUCUUGUGCCUUCCAACGCUUUUCGGCUGUUGUAUGGGUAAAUGGUCCAUGCGACCCUUCACGAAACGGAAAAGUCCCACUCUCGAGUCCAAAACGGAGCUCUAAUAACAGGAGACGUCUCUCGGAGAGGCUUCACUCAUGCAAUUCUACAGGAGAACCGAGAAUUAUCCGUGGUUGGCCUGUGUACAAACACAAGUCUAAUGUACCUACAGCGUUUGCGCCUUUUCACCAGCGAAGUACACGACGGCCGUUAUCACCUUCAACCACGAUCUUGGGCAUGCGCAGCGGUAGUUCAUCACUUCCGACAAGAGCGCCGGCCGAUACAGAUCCGGGCCUAAUUCAUGCGCUAUCGGCACCGGGGCCUUGUUACUAUAUUGCGUGGUAUAUCCGAUUUUACGCAAUAGGGUCGUUUAUGUCGUUAAGCCGCAUGUCAGCCGCCGGAAUCCAGUUGGUGGCCUCACCAGGGCCCGUCUUCGGCGAUGCGUGGAACUGGAUGGUUUUAGUCCAAUUUAUUUCUGAGGAGGGCUUACUGUGUCAGCGACAAGAGCCCUUCCCCCCAUACCAACGCACACAUGGCCUUCCAGGGCUGUGUCUUGCCAAGGUGAAGAGACGAGCAUGUCGGAACCUCCAAAUACCGUCAUAUCCAGCCUCCCGUAGGACAUCCAAACAGCCUCAACCAUCGUCUAUGGGAGACCCCACCGCGUUCUCAACCAGGGCCGCUGUAACUUGUGCGUACGAAAGGCUCGUACAUGGAUGUUGCGGCUGUAUGAAUACCGCGCAAUUGAGGAAAGCCCUAAGAAUAAUUUGUAAUAAUACCCUGCGUUCUGCCCAUUUCCGUGGUCUCAGUGUGGUGGGGUUUCAGGGCAGGUUUAUCGGAACGUUGCCCCCGGGUUCUAAGUCUUGGCGUGCGAGAGUGAUUUCGGGUAUAUUCUCAUGUGGUAGGCUCUGCUGGGGUUAUAGUGUUGACAAGCUUACUGUCCUCACCAAUGAGUUCCGACGCAUUCCGACCAUUAGCAGAGCAAAUGAGUGUAUUUUGCCAUACCAGGCACGAGCUUCGGUAUACAAGUUAUUAAGUACCUGCAACCUUAUUCCCAUACCUACGGUGGAAUAUCGCAAAACUCCGGGCACCGACAUACGGUCUCCCCUCCUUCGCUUUUUUGACCCGCGCCCACAUAGGCCGCGCUACGACGUUGGCAGGCCUUCGAUUCAGGAACCUACAACCGAAACCAAGGUGGAUGUUCAUAUAGCAUCUGACCCAGUUAAGCCGAAUGAAAACAUCCGCUCCCCUCAGUUUGGUUUAAGCGGUUGUCCAGCUCGAGUGCCGUUCCAGCGCGAGAAUUGCAGAGGCGGUCCACAGGAGUAUCGCAUAGCGCUCUACUGCUUACGUAGACAAUUCCUGCUAGUGGUCCAGUUGACCCUGCACAUUCGUAAAUUUCCACCACAACAUGCUCAAGCUUAUGGAUACAGGGAUUGUCAGAAUGUCUACAUGAGUCCUAAAAAUCAGAGGGCGGCAGAAUCUCAGGAUGUGCGGCUCGGCAGAGUGGGCGCACUCAGCGAUGAUAUAGAUAAUGAGUGUUGCGGACGCGGGAAGAUGACGAUGGAAUCGUCGCUUCUACCGGGUUGGCAAAGACUUCCGAAGCAUGGAUUCGACCGUAUCGGACUGAUUGCUAGGCCUCUGCAUCCUGAGAGGGACCAGUGUUAUACUAUAUGUUAUACAAAAGUACAUCUAGAAGUAUACUCCAUACUGCCUCCGGGUCCAAUUACGCGAAUGGAAGGAAAGGCACCCUGUCCACAACCGCUAUUUGCAUUAUACCGCGGAGAUCGGAACAUUAAGAUCAGGGAAGGAGAGUAUCUCAAACUCUAUGUAUUGAAUUGUUGCACAUUGUGUGGCGCAACGUCCCGCAACGGAAUGUUAAUCACUGCACUGCAAACUCCUGGAGGGAGUGUUUCAUUAAAUUUGUUCGUACGUCUCCUUUGGAGUUCACCCUGUUACGGUAACUAUACCCUUAGAUUUUCGUACGGCUCCUUAAAGAGCCAUGCGGAGAUGAUGAAAUGGUCCCGAAUUGUUCCUUAUCCUCUGGCGUAUAUCCUCGACGGGGGGUUUAUGCAGUCCUUAGCAAACGUAAUUCCAAGUGUAUACAGUAAAACAAUAGCGAGUAUUCCGUCCCACUCACGCAACAUCGCAUCAUUCUGCGCAUAUGCUCGAAUGUCUGCAGCGUUGGCUUAUGGGAGCCCGGCCCUUUACUUCCUUAUGGCUAGGCUGCCACAUCCAGCAUACUCCCAACUUAGAGCGUGCCUCUCAGGUCUGGAAGUACGAAGACAACCGAUGGGCUCUGAACGAUUUGGAAAAUUUUGGUUAAACUUUGGCGUCUUCUCUAUUGCAGGCUGCUGCAGACUUGAUGUGCCGAGGCCCGGAAAGUUUGUGUCGAAGUCCGGACGCCACCGGCUGACCAAUAGGCUAUCAGACAAUAAAAAUACCGCUGACAGAUUCUGCAUGUUCGCACUAGGUUUGAGAUACUUCCACGCUUUUCGUCCCUUCUCAAGCUCUUCUAGCAUACCGGAUACAUCUGGGUCCGCCAAAGCCCCUAAUUACUAUGGAGCCAUACACCAAUUCCCACGGGUCAGGAGUGCAAGCCAAGCUGAAAAGACAGUACUCCAAGGUUGGUCGACUGACUAUUUUGACCUUCUGCCAUUGCAUCGGAGGCACAAGUUCCGAAUGGAGUUUUGGACGGGAAUACUCACCACAGGUGUCUUCGUUUCGUUGGAACAAAAUAAAAAUGGUUCGAGGUUAGCGCUGGAACAACCCCCUGAGUCAAGAAUAACGACUCCUCGCGCGCAUCUGUGUCUCCUAAUUGACUGGACACGCUGCAGAUAUCGCAUUAAAAAGACUGUAUGCCCUUAUAGAAAGAUCACGUGGACGCUCGAGAUUCCUCUAUCCUACAAGGACGAACGUGCGCGCCACACUCAAGUCUACGCUUCAACGUAUACCCUGUCUAGUCCCGGUAGCCGGACUUGGGGCACACACUGUUCCCAGAUGUGCUGGCGGUCGCAAAGUGGGGCCAAAAUUAAUGCAGAACCGUUUAAACGGCCUCGUACGCGUGGUCGAAAGGAUUCAAUAAGACAGGAAAUCGCGCCCGCCUCGAGUGCGAACCAUUCUGUGUCGAUUUGCACUCAGAUUGGUAUAGCAAUGAUAUACUGUAUUGAAUUUAGCGAAAUUGGUGCGGCGGGAUUAACCAUGAUGUUUGGAUGGAUCAUCAAGAUAUUCUGUUUACUGAGUAUUCGCGUAGGUCUCACAGUGUACUCUUUCAUACCAAGUCGGCCCAACUGGCUAGUUAGGCCCCUGGUGUCCGAAAGGCGUAGUUACCUGGGAGUGGAACCCUUCACGUCGUUCAGGCGUGGCAACUUUGAAUUCCAUUGUGUAGAUCCCAACAGUUUAAGCCGCUGGCUUCCUGGAUUGGAUAACCGCCUCAAUUAUAUGCUUGGCGACCGGUUGGAGGGCCCGUCUGUAGCUAUCAUUUCUCCUAGCAUACAUCAAUCCCUACGUACGAAAAGGACGGGAUCACUGCUCGAAUCUGAACAGGCUAACGAGAAUCGGAGAGGCGCCUCAACACCGCAAAGUAAUCCAGUACUCCUACUUCUGCAGACCCUUUCAUACGACGCACAAGCGCUAAAAAAUUUGCUUACUUACCGCAGCAACUAUUGGAUGCCUACAACUCAGUUCCGCCUAGACAGUUGCGUCGACAAACCAACACAAAGACCAAUGGUUGGCAAAUGCCAGCCAGACUGUCGCCCCUCGACUCCCCCAAGCAACAUAGAUGUUCCCGCCCCUGUGGUUAAUCCUUCUUUCUCCAAGUAUCGCCUACGAUGGAGAAUUACUAGCGUUGCAAGUGCAUUCAGAGUCGGUAGUCUUGUUCUCAGCAGUACCAGGUCGCUUCAAAUAAAGAGGAUGUUUGUUAAGUCUGUAACACGGCGAUAUGCAAAUGGUGGGGCUAUUGGGAACAGCCUGCAAGUGUGUGUUUUUUCAAAGUUCCCUCUCAAAAGCCCCACUUCACCCAGCCCAGACUCGUGUUUGCUAUACACAUUCAGCUCCCUACUGGUAAGAGCAACGUGUUUAAAAGAUAUCCCAGUCACUGUAGGUGCGCGCAGGAACUUACGAGCACGUUCAUAUCGGCUCGAGGAGUGGUUCAUCAACCAAAGACUAAAAUGUCCAUGGAGCGCGAGGUCUCCUCAUAAUUGGUACGACUUUUUCACAGCUGUUUAUCUUGUACUUGUAACGCUGAACGAUCCACAACUUGAGCGCGUGAGCCGCGAAUGUAAGUCAACGUAUGGCUUCCUCAAGCCCAUUGUUAAAAACGCGAACAUUCUGGGGGGCGAUCUAGAAGAAAGUUCCUUAGGUUCACCUUACACAGUCGUACGUUUGCAGCCCAGAAAACGGCUUCUUCUUUCUAUUCGGGCAAAGGGGUUAAUUACCUCUGUGUACACAUCAAACUUUCGAUUACUCGCAUCGACCAUUUAUGCUGGCCCUAUUAAAAUCGAUUCGCUCGCAGUAAGCUUCAACAUUUCGAGAAUACUAAAUGGUACUUUGGAGAAUGGAAGGCUGUACGGCUCCUUGGGAGGACCAACAUUGAAACUUGUAACCCUUUAUGUAUCAAAGGUCACCACGGCCCAUGCUCACGUAAAAGGCGAACCCAGUGUAGUGGAGACUUCCAGUUACCCGGAUAACGUAUACGCGGGCGGGCCGGGUGGCCUAAGGCGCUGUUCCGCCCCUGGGGGCAGUAUCAUUACCUUAGGCGUGAUUGGCUGGAUCUCACGGGCCAGUCAUGAGUCAUUGGAUUCGUAUUGCCAAAUACGAAGUGCAAAGAGGGUUGGAGGGCGCAUUCGUUACGGGUAUCUUCAGCCUCGGCGAAUAGAAGGCCGUCGUAUCUUUUUUAAUUUCUCGCAUACCUCCCUGGGUUGUUCCAGCAGUGGAUACUACCGUUACCCCUUAACGCUCGUCAAAGAUAACCCUACAGGAUGCCUUUCCUGGGAGAGAGCUACGGUGCCUGACUGUGAUGAACGAGCGGGAGCAAGCGUCGGGUAUCUCCUGCGAGACCGGCGUCGGGUUAUGGUGAAAUCUAUCUCGCCGCUAAGUCCGAGAGCACGAUGGAAAGCGCAGUCGAGAACGUGCGUAUGCUUGAUCGACCUCCCAAGUGUUACAACGGAUUUUCAUAAGUGUAGCACCAGGAUGGAAGGAAAAAGGCCCCCAGCUGUGCUCGUCUGUUUUGAGGUGUCGUAUUCCUCGCAAGAGAUUAAGUUAAGAACAGUCGAGUGGGUUUUGUUCGAUACAUAUUUAGAGGUUUCGGCACGGUUAGCGUGGACUUUACAUCAGACUGGCGCUGAGACGACCUCGUGCGAGGCGCACGGUCGCUCUGCUGAGGAAUUCCUCCUUAAACGACCACGUUCUGCCUGCCAGGCACAAGCCAGGACAGGGGAUAGUUCGAGAAGCCGAAUCUUGUCGGUCAGAAAUAUCCCAGGGGUAAAUCCAUGCUCAGAAACAACUUACCCCAAAGAUCUUCCGGUCGCGCGAGUGACCACCAUAUUCAUACACACUGACAGCAAUCUACCAAGACGGCCAUUAAUAUGGUUAGGUCUUAGGUCUUUCACUGUGUACGAGCUGGGCCUACCGACACAAUCGCAAUCAAUAUACCGUAUUGUUGAGCAUCAUUCGGUUACGAUCAUUCAGGUCAACGGUCGAUACACUGACAAUGAGUGCCGAUUUAUGGAGUCGGCCCGCGACCGACUCAAUUAUCGUACAGGCGCAAUACCCCGUGCGCUUUCUACGUCUGGUACACGUCUAUACGGAUGCACUUUAGAAGACCGGCUUCGUGGAAAUACGACGACGUGGGUAAAGCCUAUCCCAGCACUCGCGCCCAAUAGAAUAGGGCAUCUGGCUUCUAUUAUUUCCAAGCGGGGCAACACUAUUCCUCUCCUUGGUCUUACGAGGGCGACCCGAAUGUGCCGCUCAAGGUUCAGCAGAAUGUUAUCGUUGGAGAGAUGCGCCUCAGAGUGCGUCAUGUGUAAUCGUGAGAAACGUGCACCAGUGACAAAUGCUCAUGGCCCGGGCCGCUUACAUGCCAAUCCUACUAUCCCGCCAAGAGGUUGCUGGGACGCUCAAAGCCACCCUUGGAGGCCACGGCACUACCAUGUCCACGGUCGUCGCCGGGAUGUCGUUACAGUUACAUGUCUGUACUUGGGGAUAUUUGGGUUAUGUUGGUUGAUGGAUGCCGGACCGCGUCGCUAUAAUUCCAGCUUUCAACAGGCCCUCCCCACUUCGAAUGAGUCGGACGGAGAAACAGCGAGGACUCAGUCACCAGUGGGUAUGGAUCCCGCUCUAAUCACGUACGGGACAUGUCCUAACACCGUAGCGACACUUGAAGCGCCCGAAUCUGCAGGCUGCUCAUGCAUUAAGGAGCUCUGGAAGUCACAUUCAUUUCUCGUCGUUGAUAAUCGUUUUAGACGAAGCAUAACGCCGCGUGUGGACGAUGCUCGCCUUUUUAUACAUCCAGCCAAAAAUCUGGGUCCGAAUGUAUCAUGUGGUUACCUGCCAGCCAAUCCAACAUGCCUUAUAGCAAAGAUACCGCCUGUCCGCUCUUCCAGCCGCGACCGUCCAAUGGCAGCCCUCCUAUUCUUGAACGUAGCGGUUACCACUUGUGUCAGCCGGCAAUUUCCUAGCCCUACAGUACACUCGGGCCUCGUCUACAAUGCCGUUGUCGCAAUCGUACAGUGGAUCUGCAACUAUAGUGACGCCGAGCACAAUGGUUUGUUUACACAGUCUGUUAGAAAGCCUGAGGAGAGGGGGUGUGAAGACCGCCGGGCCCGGUUUGACGUUCGGAUGACCGUACAACGAUGUCAUCCCGGGAUUCCUCGACUGUUCCCCCAAUUGUGUGGUCUUAAAUCGGAAUGCGCCGCAGAGUCCAGGGGAUUAAAAAACCUGCAAUCUCUGCAUCCGCCAUUCAAAAGAUUGUCUACUCUCCAAUUACAAGCACGAGCCGUAAUUGUAUACCGAGCCAGAGCGUAUUUGAAGCUAGCCCACAUUUCUAUCCUCCUUCAGGCCUCGUGUUCAAACAAGUCCUUAUCGAACCCACUGCGGCGAUUAGCAGUUCCAACCCCGCGUCCGCAUCGCUGCACACCAAGCGUCAGGUGCCAAGAAAGGACGGAUGAGAGCACCACCCGGAUUUACCGCCUGACAGGCCAGAGGAUCCAUGACAGGCUAUGUUUUGAUGAUAGGCGAAAGAGCCAACGCCGUCGGUACUCAUUUAAGGACUUGAGUCUUCGUACAUCUAAGCAGCUGUUGGCCGCCCCUAAUAGGGGCGUACCGAACUCACUAGAUGAGAGCAACAUCUACUAUUUACAAACACCACGGCCCGUUGCCCGCGGAGCAAAGAGGGCUCUGAAGCAGAGCAGGUUGCCCCAUCUUCAAACGCACGAUUCGCAGCAUCACAAAAGAAACGAGGUAGACUGUUCUCCACGGACGCAAGCAAGAGCUCGUCAGGCCCGGCUAGUUAUCAACUAUCUUUGGCCAGCUGAGCCAGCCGGACAUAUUACUAUUGUAUUAAUGAUUUGCCGAAAAGGUCGCUCGACCUGCCCAUCCAGAAGCCGACAUACCUUCCAUCGGAGGGCAGACAAGAUUGUAACGGCUACCCGAUGGUCCCCUACUCCCUAUAGAUCUCACGCGUGUAUGAGUAGCAGCAGGCAAACUAGACCGAGAGCAGGGGAGCUGACUUCAGGUCACACUGUAGCAGUUCCUUUGCAGGUUACACUAUUCACUAUAUGCACACUACUAAUUGUGAACCGUCGUGUCAUUUAUAUAACCCUUACAAAUUCGAUCUUGCAUGAAAAAGACCGCUGCGAGCGUUCAAUUGCAACUUUUCCUAUCAAGCCAAAGGUGAAAAACUUUCCCGAUGACCUACCCUCGGAGGACUCUGCCUCUAAUCGUUAUGGACACUCGGGUGAUCGCAGUUGCAGCCCUGCUAUCAUCCUCUCCCCGCCACUCGAGUUUGAGAUCUCGUUUAUCGCAGUUUACCAGUUGGGUAUGGCCCAGUUGCAUUGGGCGUUCCCCGCCCGCACUAAGCACGGAGCUUCCGAAGAUCCCAGGACUGACCAUUGGCAGCACCGCUUGCUUGUUUACGCCGUCGGAUCAACGAUAGUGUUACCGAGGGACUUUACUAUUCCAGAGAUAGCAUGUAGUAUCUCGUCUGUUCGCUUACUUAUACUGGCUCCCAGCACAGAGGCCAUCUCGUUGAGGGUGAUGAGUCGAUUAGAAGACAAGAGAGCCGAAGUAGACGGUCCGAGAUCUUGGAAGCCGCGGAAGAUCGCAUCUGGGACCCCGAUUACAACACCCGGAAGCUACGCCUAUUUGGUGUGCAGCCAUCCGAUUCUCACCAAAACUGGGGCGUCGCGAUGGACGGGUGUACCUCGCUUCUAUGAAACAUGUCAACAGGACAUUUGUGAUCUUGCUCUUUCCACCCUUGAUAGAGUCGAAAGACCACUUAUUCGAGGGCUGAUACCUUCUAAGAGAUGGCGCUCUGGAACUGUCGCCGCGGGCUCGCUGCCUAAGGGGGCACCAGACUUUUACAGACGGGUCUCGGUGAGGGGACGUUGCAAUAUGCAGAAGCUAAACGAGGCGCUGCAACUGAAGUAUACAAAAGAUUUAGCGAGAAGAGCCUUAUGCCUGAAAAGUCCUCCACCUUAUUUAUUUGUGCCCGGUUCCGAGCCCAAGCUCCUCGUUUCACUUAUGGUGCGGGAUUGGAGUUCGGACGCCGCACGAUUAUUUCUCUACAAGUGCUGCGGGGUAUGCAUCGGGGUAAGGAACUUCAUACGCUGUGCGCGGAGCUCUAUAGUAACUAUCGGAGGUCGCGGAAGACUGUAG") print RNA.translate()
[ "rxs147930@utdallas.edu" ]
rxs147930@utdallas.edu
7ab268a728e769aad1f9b367f30a8bc426d89554
03aebbf4fe13a3a0d79f738a0c2cd7741a788cdd
/Book_automation/ch6/picnictable.py
40d50ac5d63f97f40eb413d4cc21c287b27316b2
[]
no_license
Maxim-Krivobokov/python-practice
c69d2fbe601ed7e8388a564bf20a7ceab283919d
718698dfaeabd5ea000bce3a20bf18d1efe938c2
refs/heads/master
2021-05-24T10:27:29.022718
2020-07-22T14:34:15
2020-07-22T14:34:15
253,518,510
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
def printPicnic(itemsDict, leftWidth, rightWidth): print('PICNIC ITEMS'.center(leftWidth + rightWidth, '-')) for k,v in itemsDict.items(): print(k.ljust(leftWidth, '.') + str(v).rjust(rightWidth)) picnicItems = {'sandwitches': 4, 'apples': 5, 'beer': 3, 'cookies': 9000} printPicnic(picnicItems, 12, 5) printPicnic(picnicItems, 20, 6)
[ "Krivobokov-M@KRIVOBOKOV-M" ]
Krivobokov-M@KRIVOBOKOV-M
ab543bfcf0f2d90f21dbc29d0df4ece30ade650a
57c82ffda28ffe76f9f30ee268fdb74de40e0b80
/smartcab/decay.py
31063b66e4785ed1aa72afb60bc27ffae256c96e
[]
no_license
walter090/smartcab
77bbf67f2b183b427f4ccd901f771db1f881ed41
4e8d4d578a0b8dbc4461387b73f46c063988d30c
refs/heads/master
2021-01-20T10:30:29.096433
2017-03-23T21:17:26
2017-03-23T21:17:26
83,933,230
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
import numpy as np def linear(epsilon, a, t): return epsilon - a if t > 0 else epsilon def exponential(a, t): return a ** t def quadratic(t): return 1/float(t ** 2) def e_ex(a, t): return np.exp(-a * t) def cosine(a, t): return np.cos(a * t)
[ "walter.wu090@gmail.com" ]
walter.wu090@gmail.com
c9fc9d35cf11ca71bed235ddcb8f9cbdde5fc8ae
ee40ecc1af2a91797f9cfa5dc7418f9f055094db
/Aula 17-18 (listas).py
65df1134433047583aef452490174e0a79100310
[ "MIT" ]
permissive
juliosimply/Aulas-Python-Guanabara
5ca5802634468c1b02208918661c720775784bc0
fc3d230e4646cf83250404a20dadeef90ab2e676
refs/heads/main
2023-03-19T02:54:05.728655
2021-03-07T20:31:31
2021-03-07T20:31:31
335,390,085
0
0
null
null
null
null
UTF-8
Python
false
false
1,988
py
# aula de listas # o metodo .append('novoItem') vai adicionar novo item a um alista (no final da lista) # o metodo .insert(0, 'novoItem') vai adicionar um novo item porem na posição "zero" conforme o argumento # para apagar a 3 formas = del novoItem[3] / novoItem.pop(3) / item.remove('nomeDoItem') em todos os casos remove o item e recontar os indices '''num = [2,5,9,1] num[2] = 4 num.sort() num.append(9) num.sort(reverse=True) num.insert(1, 35) num.pop() #elimina o ultimo num.pop(3) # elimina na posição 3 num.remove(5) #elimina o ELEMENTO '5' da lista print(num) print(f'essa lista tem {len(num)} elementos') valores = list() valores.append(5) valores.append(9) valores.append(4) for c, v in enumerate (valores): # pegando as chaves e os valores com o enumerate print(f'Na posição {c} encontrei o valor {v}') print('Cheguei ao final da lista') for cont in range(0,3): valores.append(int(input('Digite um valor'))) print(f'Encontrei esse valores digitados {valores}')'''''' #a = [1,2,3,4] #b=a[:] # nesse caso com o "[:]" ele faz uma copia independente de a, se não colocar ele simplesmente atribui uma a outra''' # Aula 018 '''teste = list() teste.append('Julio') teste.append(37) galera = list() galera.append(teste[:]) # importancia dos ":" sem ele uma sobrepoe a outra teste[0] = 'maria' teste[1] = 22 galera.append(teste) print(galera) galera = [['julio', 37], ['paulo', 25],['vania', 60], ['maria', 45]] for p in galera: print(f'o {p[0]} tem {p[1]} anos de idade')''' galera = list() dado = list() totmaior= totmenor=0 for c in range (0,3): dado.append(str(input('Qual o seu nome?'))) dado.append(int(input('Qual a sua idade'))) galera.append(dado[:]) dado.clear() print(galera) for p in galera: if p[1] >= 21: print(f'{p[0]} é maior de 21 anos') totmaior +=1 else: print(f'{p[0]} é menores de 21 anos') totmenor +=1 print(f'temos {totmaior} maiores de idade e {totmenor} menores de idade')
[ "julio_simply@hotmail.com" ]
julio_simply@hotmail.com
e68408b11f88bf7efdc54910a6bd17966fb12078
4d4a85879d35605315b23135e86cee6e4bffdf88
/tests/test_windows.py
326e6772a16fa722d84cc904f55dd488b4ac44b3
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
alfred82santa/httpie
b8029ff50e560257adb93db6f3d6ea5c02d22504
631e332dad122359840dda59b0d81a2ebec062dc
refs/heads/master
2021-01-18T15:47:46.052220
2014-04-25T11:57:33
2014-04-25T11:57:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
779
py
import os import tempfile import pytest from tests import TestEnvironment, http, httpbin, Environment from httpie.compat import is_windows @pytest.mark.skipif(not is_windows, reason='windows-only') class TestWindowsOnly: def test_windows_colorized_output(self): # Spits out the colorized output. http(httpbin('/get'), env=Environment()) class TestFakeWindows: def test_output_file_pretty_not_allowed_on_windows(self): env = TestEnvironment(is_windows=True) output_file = os.path.join( tempfile.gettempdir(), '__httpie_test_output__') r = http('--output', output_file, '--pretty=all', 'GET', httpbin('/get'), env=env) assert 'Only terminal output can be colorized on Windows' in r.stderr
[ "jakub@roztocil.name" ]
jakub@roztocil.name
6ac8817decaba91bb4b2cff0ab6e720f441aca4e
c19acc5dafb40bb0252bc15513dab3f165d48060
/deep_q_learn_snake.py
8465ca4e27b0a4f4fec26a9ef10b2859e3b6f149
[ "MIT" ]
permissive
dsjohns2/Snake-AI
062f7bdc9394da273e04a1bedc783faf0bfb1ad5
7e18abcea4abcf25089eaec5fdf140acd558ed6b
refs/heads/master
2020-03-21T16:40:42.983877
2018-06-27T04:40:22
2018-06-27T04:40:22
138,785,736
0
0
null
null
null
null
UTF-8
Python
false
false
3,522
py
from __future__ import print_function import random import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import tkinter import matplotlib.pyplot as plt # Neural Network class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.num_input_params = 5 self.num_classes = 1 self.fc1 = nn.Linear(self.num_input_params, 120) self.fc2 = nn.Linear(120, 120) self.fc3 = nn.Linear(120, 60) self.fc4 = nn.Linear(60, self.num_classes) def forward(self, x): x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) x = F.relu(x) x = self.fc4(x) return x # Train the Snake network net = Net() criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=.0001) dimensions = (5, 5) for episode in range(0, 1000000): print("Episode: " + str(episode)) snake_location = [(random.randint(0, dimensions[0]-1), random.randint(0, dimensions[1]-1))] free_space = [] for i in range(dimensions[0]): for j in range(dimensions[1]): free_space.append((i, j)) free_space.remove(snake_location[0]) alive = True eaten = True score = 0 while(alive): # Spawn ball if needed if(eaten): ball_location = free_space[random.randint(0, len(free_space)-1)] free_space.remove(ball_location) eaten = False # Move Snake initial_state = snake_location[0] direction = random.randint(0, 3) if(direction == 0): snake_location = [(snake_location[0][0]-1, snake_location[0][1])] + snake_location elif(direction == 1): snake_location = [(snake_location[0][0], snake_location[0][1]+1)] + snake_location elif(direction == 2): snake_location = [(snake_location[0][0]+1, snake_location[0][1])] + snake_location else: snake_location = [(snake_location[0][0], snake_location[0][1]-1)] + snake_location free_space.append(snake_location[-1]) del(snake_location[-1]) new_state = snake_location[0] # Check if died or eaten if(snake_location[0] in free_space): free_space.remove(snake_location[0]) reward = -1 elif(snake_location[0] == ball_location): eaten = True reward = 10 score += 100 else: reward = -100 alive = False action = direction lr = .5 dv = .5 if(reward == -100): optimizer.zero_grad() X = np.array([initial_state[0], initial_state[1], ball_location[0], ball_location[1], action]) X = X.astype(np.float32) X = torch.from_numpy(X) q_guess = net(X) q_target = (1 - lr) * net(X) + lr * reward loss = criterion(q_guess, q_target.detach()) loss.backward() optimizer.step() else: optimizer.zero_grad() X = np.array([initial_state[0], initial_state[1], ball_location[0], ball_location[1], action]) X = X.astype(np.float32) X = torch.from_numpy(X) new_X_actions = np.array([[new_state[0], new_state[1], ball_location[0], ball_location[1], 0], [new_state[0], new_state[1], ball_location[0], ball_location[1], 1], [new_state[0], new_state[1], ball_location[0], ball_location[1], 2], [new_state[0], new_state[1], ball_location[0], ball_location[1], 3]]) new_X_actions = new_X_actions.astype(np.float32) new_X_actions = torch.from_numpy(new_X_actions) new_q_vals = net(new_X_actions) new_q_vals = new_q_vals.detach().numpy() q_guess = net(X) q_target = (1 - lr) * net(X) + lr * (reward + dv * np.amax(new_q_vals)) loss = criterion(q_guess, q_target.detach()) loss.backward() optimizer.step() # Save the Neural Net torch.save(net, "deep_q_net.pt")
[ "dansj@stanford.edu" ]
dansj@stanford.edu
252869c50aaf0b28ef745e92beba86c02c0dd1ab
607fbaa551fd3e10d8b767b3707bc2f7bc9d9ea5
/pendulo.py
845b3ff085bb3f148c30cede4c36f1ae3b70445e
[]
no_license
natalypulido/EjerciciosClaseMetodosComputacionales
3fd3ef84a129d2685e6d43fd338faef2bd100e7f
faab59b175eb3330db4cd3da448f7b5b67758b0c
refs/heads/master
2021-01-01T19:22:07.693940
2017-07-27T20:00:29
2017-07-27T20:00:29
98,574,610
0
0
null
null
null
null
UTF-8
Python
false
false
1,256
py
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation h=0.001 g = 9.8 l=1 mi=-5 ma=5 ##Cantidad de puntos n=int((ma-mi)/h) #print n ##x t=np.zeros(n) ##teta y_1= np.zeros(n) y_2= np.zeros(n) ##Teniendo en cuenta Second Order ODEs def funcion_y1prime (t, y_1, y_2): return y_2 def funcion_y2prime (t, y_1, y_2): return (-g/l)*np.sin(y_1) ##Condiciones iniciales t[0]=mi y_1[0]=1 y_2[0]=0 #print y_1[0] #print y_2[0] ##ME GUIE DEL NOTE BOOK - METODO EULER ##Calculamos primeras derivadas for i in range (1, n): y1prime = funcion_y1prime(t[i-1], y_1[i-1], y_2[i-1]) #print y1prime y2prime = funcion_y2prime(t[i-1], y_1[i-1], y_2[i-1]) #print y2prime t[i] = t[i-1] + h y_1[i] = y_1[i-1] + h * funcion_y1prime(t[i-1], y_1[i-1], y_2[i-1]) y_2[i] = y_2[i-1] + h * funcion_y2prime(t[i-1], y_1[i-1], y_2[i-1]) #plt.plot(t,y_1) plt.plot(t,y_2) plt.xlabel('x') plt.ylabel('y(x)') #plt.show() ##Cambio de coordenadas x=np.sin(y_1)*l y=np.cos(y_1)*l #print x #print y plt.plot(t,x) #plt.show() ##Animation fig = plt.figure() ax = plt.axes(xlim=(-5,5), ylim(-2,2)) line, = ax.plt([], [], lw=2) def init(): line.set_data([],[]) return line, ##Se me dificulto la parte de la animacion
[ "noreply@github.com" ]
natalypulido.noreply@github.com
0d807fe80d041b739d1168b2dba4cb8b6812f554
8c5065f7832b56bab3841bcc8bbcc2a36d831328
/api/user.py
23fcea55b44eb1d6c3f1f7ff4b2ef47efebc24cf
[]
no_license
anpavlov/tp_db
9899c6b578cdb2669c2253c39cab88647c8b190e
310761120bf817734d562f3a17117fd165f6d059
refs/heads/master
2021-01-19T15:33:35.649962
2015-06-27T20:17:43
2015-06-27T20:17:43
31,472,827
0
1
null
null
null
null
UTF-8
Python
false
false
13,616
py
# import logging from ext import mysql, get_followers, user_exists, get_subs from flask import request, jsonify, Blueprint from werkzeug.exceptions import BadRequest from datetime import datetime user_api = Blueprint('user_api', __name__) # usersLog = logging.getLogger('usersLog') # emailLog = logging.getLogger('emailLog') @user_api.route('/create/', methods=['POST']) def user_create(): try: req_json = request.get_json() except BadRequest: # usersLog.error('Cant parse json') return jsonify(code=2, response="Cant parse json") if not ('username' in req_json and 'about' in req_json and 'name' in req_json and 'email' in req_json): # usersLog.error('Wrong parameters') return jsonify(code=3, response="Wrong parameters") new_user_username = req_json['username'] new_user_about = req_json['about'] new_user_name = req_json['name'] new_user_email = req_json['email'] # emailLog.info('%s', new_user_email) if 'isAnonymous' in req_json: if req_json['isAnonymous'] is not False and req_json['isAnonymous'] is not True: # usersLog.error('Wrong parameters') return jsonify(code=3, response="Wrong parameters") new_user_is_anon = req_json['isAnonymous'] else: new_user_is_anon = False conn = mysql.get_db() cursor = conn.cursor() if user_exists(cursor, new_user_email): # usersLog.error('User with such email already exists') return jsonify(code=5, response="User with such email already exists!") sql_data = (new_user_about, new_user_email, new_user_is_anon, new_user_name, new_user_username) cursor.execute('INSERT INTO User VALUES (null,%s,%s,%s,%s,%s)', sql_data) conn.commit() resp = { "email": new_user_email, "username": new_user_username, "about": new_user_about, "name": new_user_name, "isAnonymous": new_user_is_anon, "id": cursor.lastrowid, } return jsonify(code=0, response=resp) @user_api.route('/details/', methods=['GET']) def user_details(): req_params = request.args if not ('user' in req_params): return jsonify(code=3, response="Wrong parameters") user_email = req_params['user'] conn = mysql.get_db() cursor = conn.cursor() cursor.execute('SELECT * FROM User WHERE email=%s', (user_email,)) user_data = cursor.fetchone() if user_data is None: return jsonify(code=1, response="No user with such email!") follow_info = get_followers(cursor, user_email) subs_list = get_subs(cursor, user_email) resp = { "id": user_data[0], "about": user_data[1], "email": user_data[2], "isAnonymous": bool(user_data[3]), "name": user_data[4], "username": user_data[5], "followers": follow_info['followers'], "following": follow_info['following'], "subscriptions": subs_list } return jsonify(code=0, response=resp) @user_api.route('/follow/', methods=['POST']) def user_follow(): try: req_json = request.get_json() except BadRequest: return jsonify(code=2, response="Cant parse json") if not ('follower' in req_json and 'followee' in req_json): return jsonify(code=3, response="Wrong parameters") follower_email = req_json['follower'] followee_email = req_json['followee'] conn = mysql.get_db() cursor = conn.cursor() cursor.execute('SELECT * FROM User WHERE email=%s', (follower_email,)) follower_data = cursor.fetchone() if follower_data is None: return jsonify(code=1, response="No user with such email!") if not user_exists(cursor, followee_email): return jsonify(code=1, response="No user with such email!") cursor.execute("INSERT IGNORE INTO Followers VALUES (%s, %s)", (follower_email, followee_email)) conn.commit() follow_info = get_followers(cursor, follower_email) subs_list = get_subs(cursor, follower_email) resp = { "id": follower_data[0], "about": follower_data[1], "email": follower_data[2], "isAnonymous": bool(follower_data[3]), "name": follower_data[4], "username": follower_data[5], "followers": follow_info['followers'], "following": follow_info['following'], "subscriptions": subs_list } return jsonify(code=0, response=resp) @user_api.route('/listFollowers/', methods=['GET']) def user_list_followers(): req_params = request.args if not ('user' in req_params): return jsonify(code=3, response="Wrong parameters") user_email = req_params['user'] if "since_id" in req_params: since_id = req_params['since_id'] try: since_id = int(since_id) except ValueError: return jsonify(code=3, response="Wrong parameters") else: since_id = 0 if "limit" in req_params: limit = req_params['limit'] try: limit = int(limit) except ValueError: return jsonify(code=3, response="Wrong parameters") else: limit = None if "order" in req_params: order = req_params['order'] if order != 'asc' and order != 'desc': return jsonify(code=3, response="Wrong parameters") else: order = 'desc' conn = mysql.get_db() cursor = conn.cursor() if not user_exists(cursor, user_email): return jsonify(code=1, response="No user with such email!") query = "SELECT id, about, email, isAnonymous, name, username FROM Followers F " +\ "JOIN User U ON F.follower_email=U.email WHERE id>=%s AND followee_email=%s ORDER BY name " query += order query += " LIMIT %s" if limit is not None else "" sql_data = (since_id, user_email, limit) if limit is not None else (since_id, user_email) cursor.execute(query, sql_data) data = cursor.fetchall() resp = [] for f in data: follow_info = get_followers(cursor, f[2]) subs_list = get_subs(cursor, f[2]) user = { "id": f[0], "about": f[1], "email": f[2], "isAnonymous": bool(f[3]), "name": f[4], "username": f[5], "followers": follow_info['followers'], "following": follow_info['following'], "subscriptions": subs_list } resp.append(user) return jsonify(code=0, response=resp) @user_api.route('/listFollowing/', methods=['GET']) def user_list_following(): req_params = request.args if not ('user' in req_params): return jsonify(code=3, response="Wrong parameters") user_email = req_params['user'] if "since_id" in req_params: since_id = req_params['since_id'] try: since_id = int(since_id) except ValueError: return jsonify(code=3, response="Wrong parameters") else: since_id = 0 if "limit" in req_params: limit = req_params['limit'] try: limit = int(limit) except ValueError: return jsonify(code=3, response="Wrong parameters") else: limit = None if "order" in req_params: order = req_params['order'] if order != 'asc' and order != 'desc': return jsonify(code=3, response="Wrong parameters") else: order = 'desc' conn = mysql.get_db() cursor = conn.cursor() if not user_exists(cursor, user_email): return jsonify(code=1, response="No user with such email!") query = "SELECT id, about, email, isAnonymous, name, username FROM Followers F " +\ "JOIN User U ON F.followee_email=U.email WHERE id>=%s AND follower_email=%s ORDER BY name " query += order query += " LIMIT %s" if limit is not None else "" sql_data = (since_id, user_email, limit) if limit is not None else (since_id, user_email) cursor.execute(query, sql_data) data = cursor.fetchall() resp = [] for f in data: follow_info = get_followers(cursor, f[2]) subs_list = get_subs(cursor, f[2]) user = { "id": f[0], "about": f[1], "email": f[2], "isAnonymous": bool(f[3]), "name": f[4], "username": f[5], "followers": follow_info['followers'], "following": follow_info['following'], "subscriptions": subs_list } resp.append(user) return jsonify(code=0, response=resp) @user_api.route('/listPosts/', methods=['GET']) def user_list_posts(): req_params = request.args if not ('user' in req_params): return jsonify(code=3, response="Wrong parameters") user_email = req_params['user'] if "limit" in req_params: limit = req_params['limit'] try: limit = int(limit) except ValueError: return jsonify(code=3, response="Wrong parameters") else: limit = None if "order" in req_params: order = req_params['order'] if order != 'asc' and order != 'desc': return jsonify(code=3, response="Wrong parameters") else: order = 'desc' if "since" in req_params: since = req_params['since'] try: datetime.strptime(since, "%Y-%m-%d %H:%M:%S") except ValueError: return jsonify(code=3, response="Wrong parameters") else: since = 0 conn = mysql.get_db() cursor = conn.cursor() if not user_exists(cursor, user_email): return jsonify(code=1, response="No user with such email!") query = "SELECT id, forum, thread, parent, message, DATE_FORMAT(date,'%%Y-%%m-%%d %%T') d," \ "isApproved, isHighlighted, isEdited, isSpam, isDeleted, likes, dislikes, points FROM Post " \ "WHERE date>=%s AND user=%s ORDER BY d " query += order query += " LIMIT %s" if limit is not None else "" sql_data = (since, user_email, limit) if limit is not None else (since, user_email) cursor.execute(query, sql_data) data = cursor.fetchall() resp = [] for p in data: post = { "id": p[0], "forum": p[1], "thread": p[2], "user": user_email, "parent": p[3], "message": p[4], "date": p[5], "isApproved": bool(p[6]), "isHighlighted": bool(p[7]), "isEdited": bool(p[8]), "isSpam": bool(p[9]), "isDeleted": bool(p[10]), "likes": p[11], "dislikes": p[12], "points": p[13] } resp.append(post) return jsonify(code=0, response=resp) @user_api.route('/unfollow/', methods=['POST']) def user_unfollow(): try: req_json = request.get_json() except BadRequest: return jsonify(code=2, response="Cant parse json") if not ('follower' in req_json and 'followee' in req_json): return jsonify(code=3, response="Wrong parameters") follower_email = req_json['follower'] followee_email = req_json['followee'] conn = mysql.get_db() cursor = conn.cursor() cursor.execute("SELECT * FROM User WHERE email=%s", (follower_email,)) follower_data = cursor.fetchone() if follower_data is None: return jsonify(code=1, response="No user with such email!") if not user_exists(cursor, followee_email): return jsonify(code=1, response="No user with such email!") cursor.execute("DELETE FROM Followers WHERE follower_email=%s AND followee_email=%s", (follower_email, followee_email)) conn.commit() follow_info = get_followers(cursor, follower_email) subs_list = get_subs(cursor, follower_email) resp = { "id": follower_data[0], "about": follower_data[1], "email": follower_data[2], "isAnonymous": bool(follower_data[3]), "name": follower_data[4], "username": follower_data[5], "followers": follow_info['followers'], "following": follow_info['following'], "subscriptions": subs_list } return jsonify(code=0, response=resp) @user_api.route('/updateProfile/', methods=['POST']) def user_update_profile(): try: req_json = request.get_json() except BadRequest: return jsonify(code=2, response="Cant parse json") if not ('user' in req_json and 'about' in req_json and 'name' in req_json): return jsonify(code=3, response="Wrong parameters") user_email = req_json['user'] new_user_about = req_json['about'] new_user_name = req_json['name'] conn = mysql.get_db() cursor = conn.cursor() cursor.execute("SELECT id, username, isAnonymous FROM User WHERE email=%s", (user_email,)) user_data = cursor.fetchone() if user_data is None: return jsonify(code=1, response="No user with such email!") sql_data = (new_user_about, new_user_name, user_email) cursor.execute("UPDATE User SET about=%s, name=%s WHERE email=%s", sql_data) conn.commit() follow_info = get_followers(cursor, user_email) subs_list = get_subs(cursor, user_email) resp = { "email": user_email, "username": user_data[1], "about": new_user_about, "name": new_user_name, "isAnonymous": bool(user_data[2]), "id": user_data[0], "followers": follow_info['followers'], "following": follow_info['following'], "subscriptions": subs_list } return jsonify(code=0, response=resp)
[ "dir94@mail.ru" ]
dir94@mail.ru
d7a94ae36c04dd3ff4a389885add6569ac78eae9
5c41a2c6e3a60a8d3031d4413dbdb50c6a242f23
/K-Net Network Configuration Tool/center_left_frame.py
45054198044f874b0490de2fc75f463819c91607
[]
no_license
ssc1982/network-configuration-tool
4c979995e7a4faad2d1d425111dce4ef9df80d24
0bb9c0f7540dcfa999c9ad4a31eb8803b4bf8d82
refs/heads/master
2021-01-25T10:22:14.855826
2018-03-09T02:00:43
2018-03-09T02:00:43
123,350,447
0
0
null
null
null
null
UTF-8
Python
false
false
10,429
py
#!/usr/bin/python # -*- coding: utf-8 -*- import subprocess import threading from tkinter import * from tkinter import ttk from tkinter.messagebox import * from dbHandler import creat_item, read_item, delete_item, update_item from popupwindow import deviceinfoInputDialog class devicemgt(Frame): def __init__(self, parent, btm_frame, _center_right_nb, master=None, cnf={}, **kw): super(devicemgt, self).__init__(master=None, cnf={}, **kw, ) self.tree = ttk.Treeview(self, height=18) self._btm_frame = btm_frame self._center_right_nb = _center_right_nb self.device_layout() def device_layout(self): # define the tree columns and self.tree['columns'] = ('#1', '#2', '#3', '#4') self.tree.column('#0', width=70) self.tree.column('#1', width=66) self.tree.column('#2', width=66) self.tree.column('#3', width=66) self.tree.column('#4', width=66) # define the heading name for each column self.tree.heading('#0', text='Hostname') self.tree.heading('#1', text='IP Address') self.tree.heading('#2', text='Username') self.tree.heading('#3', text='Password') self.tree.heading('#4', text='Enable') # refresh the layout and recontruct the tree self.refresh_layout() # add scrollbar on the right side of center_left frame scrollbar = Scrollbar(self, width=20, orient='vertical', command=self.tree.yview) self.tree.configure(yscrollcommand=scrollbar.set) # add button group on the center_left frame add_btn = Button(self, text='Add', command=self.add_device) edit_btn = Button(self, text='Edit', command=self.edit_device) delete_btn = Button(self, text='Delete', command=self.delete_device) #ping_btn = Button(self, text='Ping', command=lambda : self.thread_task(self.ping_device)) ping_btn = Button(self, text='Ping', command=lambda: self.thread_task(self.ping_device)) tracert_btn = Button(self, text='Traceroute', command=lambda : self.thread_task(self.tracert_device)) telnet_btn = Button(self, text='Telnet', command=lambda : self.thread_task(self.telnet_device)) # define grid layout of tree, scrollbar and buttons self.tree.grid(row=1, columnspan=6, sticky="nswe") scrollbar.grid(row=1, column=6, sticky='nsw') add_btn.grid(row=2, column=0, sticky='e') edit_btn.grid(row=2, column=1, sticky='we') delete_btn.grid(row=2, column=2, sticky='we') ping_btn.grid(row=2, column=3, sticky='we') tracert_btn.grid(row=2, column=4, sticky='we') telnet_btn.grid(row=2, column=5, sticky='we') def tree_constructor(self, _deviceinfo_tuple): if 'router' == _deviceinfo_tuple.deviceType: if not self.tree.exists('router'): global node1 node1 = self.tree.insert('', 0, 'router', text=_deviceinfo_tuple.deviceType) self.tree.item('router', open=True) self.tree.insert(node1, 1, text=_deviceinfo_tuple.hostname, values=(_deviceinfo_tuple.ipAddress, _deviceinfo_tuple.username, _deviceinfo_tuple.password, _deviceinfo_tuple.enable)) else: self.tree.insert(node1, 1, text=_deviceinfo_tuple.hostname, values=(_deviceinfo_tuple.ipAddress, _deviceinfo_tuple.username, _deviceinfo_tuple.password, _deviceinfo_tuple.enable)) elif 'switch' == _deviceinfo_tuple.deviceType: ##alternatively: if not self.tree.exists('switch'): global node2 node2 = self.tree.insert("", 0, 'switch', text=_deviceinfo_tuple.deviceType) self.tree.item('switch', open=True) self.tree.insert(node2, 1, text=_deviceinfo_tuple.hostname, values=(_deviceinfo_tuple.ipAddress, _deviceinfo_tuple.username, _deviceinfo_tuple.password, _deviceinfo_tuple.enable)) else: self.tree.insert(node2, 1, text=_deviceinfo_tuple.hostname, values=(_deviceinfo_tuple.ipAddress, _deviceinfo_tuple.username, _deviceinfo_tuple.password, _deviceinfo_tuple.enable)) else: print('wrong device type') #check if the object is empty def is_empty(self, obj): if obj: return True else: return False def show_warnning(func): def wrapper(self): if self.is_empty(self.tree.selection()): func(self) else: showwarning('Warning', 'Please at least select one device !') return return wrapper def add_device(self): deviceinfo_inputDialog = deviceinfoInputDialog(()) self.wait_window(deviceinfo_inputDialog) if deviceinfo_inputDialog.deviceinfo_tuple is None: return elif not 'router' == deviceinfo_inputDialog.deviceinfo_tuple[0] and \ not 'switch' == deviceinfo_inputDialog.deviceinfo_tuple[0]: print(not 'router' == deviceinfo_inputDialog.deviceinfo_tuple[0]) #print(not 'switch' == deviceinfo_inputDialog.deviceinfo_tuple[0]) return creat_item(deviceinfo_inputDialog.deviceinfo_tuple) self.refresh_layout() self._btm_frame.logging(deviceinfo_inputDialog.deviceinfo_tuple[2], 'A new device has been added to the system !') @show_warnning def edit_device(self): if len(self.tree.selection()) > 1: showerror('More Items', 'You can\'t edit more than one device once !') return _deviceinfo_dict = self.tree.item(self.tree.selection()) deviceinfo_inputDialog = deviceinfoInputDialog(self.tree.parent(self.tree.selection()), _deviceinfo_dict) self.wait_window(deviceinfo_inputDialog) if deviceinfo_inputDialog.deviceinfo_tuple is None: return update_item(deviceinfo_inputDialog.deviceinfo_tuple) self.refresh_layout() self._btm_frame.logging(deviceinfo_inputDialog.deviceinfo_tuple[2], 'An update has been made to this device !') @show_warnning def delete_device(self): rs = askokcancel('Danger Action', 'Are you sure you want to delete the device ?') if rs: for iid in self.tree.selection(): _devices_dict = self.tree.item(iid) if 0 == len(_devices_dict['values']): showerror('Worng Item', 'This is not a device !') return delete_item(_devices_dict['values'][0]) self.refresh_layout() self._btm_frame.logging(_devices_dict['values'][0], 'This device has been removed from the system !') def refresh_layout(self): self.tree.delete(*self.tree.get_children()) _deviceinfo_list = read_item() for _deviceinfo_tuple in _deviceinfo_list: self.tree_constructor(_deviceinfo_tuple) def thread_task(self, func): _thread = threading.Thread(target=func) _thread.start() #_thread.join() def selection_items(func): def wrapper(self): for iid in self.tree.selection(): _devices_dict = self.tree.item(iid) if 0 == len(_devices_dict['values']): showerror('Worng Item', 'This is not a device !') return func(self) return wrapper @show_warnning def ping_device(self): for iid in self.tree.selection(): _devices_dict = self.tree.item(iid) if 0 == len(_devices_dict['values']): showerror('Worng Item', 'This is not a device !') return process = subprocess.Popen(['ping', '-n', '5', '-l', '1470', _devices_dict['values'][0]], stdout = subprocess.PIPE, stderr = subprocess.PIPE ) _output, _error = process.communicate() self._btm_frame.logging(_devices_dict['values'][0], _output.decode('utf-8')) print(_output.decode('utf-8')) #print(_error.decode('UTF-8')) #@show_warnning def telnet_device(self): _devices_list = [] for iid in self.tree.selection(): _devices_dict = self.tree.item(iid) if 0 == len(_devices_dict['values']): showerror('Worng Item', 'This is not a device !') return _devices_list.append(_devices_dict) #self._btm_frame.logging(_devices_dict['values'][0], 'Sending request to IP Address: %s '% str(_devices_dict['values'][0])) self._center_right_nb.telnetTab_layout(_devices_list) @show_warnning def tracert_device(self): for iid in self.tree.selection(): _devices_dict = self.tree.item(iid) if 0 == len(_devices_dict['values']): showerror('Worng Item', 'This is not a device !') return process = subprocess.Popen(['tracert', '-d', _devices_dict['values'][0]], stdout = subprocess.PIPE, stderr = subprocess.PIPE ) _output, _error = process.communicate() print(_output.decode('utf-8')) self._btm_frame.logging(_devices_dict['values'][0], _output.decode('utf-8')) #print(_error.decode('UTF-8'))
[ "ssc1982@gmail.com" ]
ssc1982@gmail.com
2c6fe46823e39e688f819c469c220c6d403c6e2b
1f660e892411c3c750f372719d1b1264e87b9552
/z-score2.py
38cd3d56ea66ebc24d1ea5ce13c3ebaf3c16194b
[]
no_license
sahasra09/C111HW
dbb76953d2be24f2069b02640ed0a817b2b3cafd
9fb45622862618fa749a89f6d8777616e1618d8a
refs/heads/main
2023-08-31T15:15:24.556865
2021-10-24T16:02:16
2021-10-24T16:02:16
419,700,533
0
0
null
null
null
null
UTF-8
Python
false
false
2,096
py
import plotly.figure_factory as ff import plotly.graph_objects as go import statistics import random import pandas as pd import csv df = pd.read_csv("School2.csv") data = df["Math_score"].tolist() def random_set_of_mean(counter): dataset = [] for i in range(0, counter): random_index= random.randint(0,len(data)-1) value = data[random_index] dataset.append(value) mean = statistics.mean(dataset) return mean mean_list = [] for i in range(0,1000): set_of_means= random_set_of_mean(100) mean_list.append(set_of_means) std_deviation = statistics.stdev(mean_list) mean = statistics.mean(mean_list) print("mean of sampling distribution:- ",mean) print("Standard deviation of sampling distribution:- ", std_deviation) first_std_deviation_start, first_std_deviation_end = mean-std_deviation, mean+std_deviation second_std_deviation_start, second_std_deviation_end = mean-(2*std_deviation), mean+(2*std_deviation) third_std_deviation_start, third_std_deviation_end = mean-(3*std_deviation), mean+(3*std_deviation) df = pd.read_csv("School_1_Sample.csv") data = df["Math_score"].tolist() mean_of_sample1 = statistics.mean(data) print("Mean of sample 1:- ",mean_of_sample1) fig = ff.create_distplot([mean_list], ["student marks"], show_hist=False) fig.add_trace(go.Scatter(x=[mean, mean], y=[0, 0.17], mode="lines", name="MEAN")) fig.add_trace(go.Scatter(x=[mean_of_sample1, mean_of_sample1], y=[0, 0.17], mode="lines", name="MEAN OF STUDENTS WHO HAD MATH LABS")) fig.add_trace(go.Scatter(x=[first_std_deviation_end, first_std_deviation_end], y=[0, 0.17], mode="lines", name="STANDARD DEVIATION 1 END")) fig.add_trace(go.Scatter(x=[second_std_deviation_end, second_std_deviation_end], y=[0, 0.17], mode="lines", name="STANDARD DEVIATION 2 END")) fig.add_trace(go.Scatter(x=[third_std_deviation_end, third_std_deviation_end], y=[0, 0.17], mode="lines", name="STANDARD DEVIATION 3 END")) fig.show() z_score = (mean_of_sample1-mean)/std_deviation print("The z score is = ",z_score)
[ "noreply@github.com" ]
sahasra09.noreply@github.com
906e2d2b5c18baee10a4d6b8d3e55666624c3c73
a2cb144815aca6dd67cbc92bd5dbed74b4e7fe43
/app.py
6908f2b2b5a6cd693c984c12dbc5d431d31f8982
[]
no_license
Preymark9/Project-Week-2
939c5f0f9f89b94d961f3aba274e9e56336e803c
ff612feb0c40f952e8f21761e195a39bbfa9d63f
refs/heads/master
2020-04-01T16:31:04.741734
2018-10-30T23:23:16
2018-10-30T23:23:16
153,384,499
0
1
null
null
null
null
UTF-8
Python
false
false
766
py
from flask import Flask, render_template, redirect from flask_pymongo import PyMongo import scrape_boxoffice app = Flask(__name__) # Use flask_pymongo to set up mongo connection app.config["MONGO_URI"] = "mongodb://localhost:27017/craigslist_app" mongo = PyMongo(app) # Or set inline # mongo = PyMongo(app, uri="mongodb://localhost:27017/craigslist_app") @app.route("/") def index(): movie_data = mongo.db.movie_data.find_one() return render_template("index.html", movie_data=movie_data) @app.route("/scrape") def scraper(): movie_data = mongo.db.movie_data listings_data = scrape_boxoffice.scrape() movie_data.update({}, listings_data, upsert=True) return redirect("/", code=302) if __name__ == "__main__": app.run(debug=True)
[ "noreply@github.com" ]
Preymark9.noreply@github.com
d8612b48276983c71640d96cc08cdc06b9e74a4e
b832fecd4dbf14de9b4e1b6fe8710c89290000f0
/LeetCode/111.二叉树的最小深度.py
7efc41d4fac1ac08f83e966c73dce6e3c09ff392
[]
no_license
biground/MyNote
0a5eeaf9f5cd01dc83ee54252874016ac0b29c83
6b45279f02321b833ef1d1bb73cd729c90f0a0ed
refs/heads/master
2021-05-17T14:23:51.479022
2021-03-04T01:09:32
2021-03-04T01:09:32
250,819,133
0
0
null
null
null
null
UTF-8
Python
false
false
850
py
# # @lc app=leetcode.cn id=111 lang=python3 # # [111] 二叉树的最小深度 # # @lc code=start # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def calcDepth(self, root) -> int: if not root: return 1 left = self.calcDepth(root.left) right = self.calcDepth(root.right) return min(left if left > 1 else right, right if right > 1 else left) + 1 def minDepth(self, root: TreeNode) -> int: if not root: return 0 left = self.calcDepth(root.left) right = self.calcDepth(root.right) return min(left if left > 1 else right, right if right > 1 else left) # @lc code=end
[ "cyt4byouth@163.com" ]
cyt4byouth@163.com
a74f6601353e6a1dcfdfb5396a1d035394617695
08e3777e801866170925b402b0233a608f0fa46b
/lesson_3_standart_library/Task_3_4.py
e9b0378151af9022b85f9776fedb063f23d8677b
[]
no_license
Pavlmir/python-interview-geekbr
38f198c02b2274abfb0d14d94f512e15931cac63
3672dda6e8380d58d36fd528cfbc249388c6c143
refs/heads/master
2023-08-15T12:34:57.480044
2021-09-18T09:13:44
2021-09-18T09:13:44
286,043,146
0
0
null
null
null
null
UTF-8
Python
false
false
2,297
py
# 4. Написать программу, в которой реализовать две функции. В первой должен создаваться простой текстовый файл. # Если файл с таким именем уже существует, выводим соответствующее сообщение. Необходимо открыть # файл и подготовить два списка: с текстовой и числовой информацией. Для создания списков использовать генераторы. # Применить к спискам функцию zip(). Результат выполнения этой функции должен должен быть обработан и записан в файл # таким образом, чтобы каждая строка файла содержала текстовое и числовое значение. Вызвать вторую функцию. # В нее должна передаваться ссылка на созданный файл. Во второй функции необходимо реализовать открытие файла # и простой построчный вывод содержимого. Вся программа должна запускаться по вызову первой функции. import os import random from functools import reduce LINES_COUNT = STRING_SIZE = 7 def get_random_string(): return reduce(lambda string, char: string + char, [chr(random.randint(ord('a'), ord('z'))) for _ in range(STRING_SIZE)]) def create_text_file(name): if os.path.isfile(name): print('Файл с таким именем уже существует') return False with open(name, 'w', encoding='utf-8') as d: numbers = [random.randint(0, 100) for _ in range(LINES_COUNT)] strings = [get_random_string() for _ in range(LINES_COUNT)] d.writelines([f'{number} {text}\n' for number, text in zip(numbers, strings)]) return d def print_text_file(desc): with open(desc.name, 'r', encoding='utf-8') as d: for line in d: print(line) descriptor = create_text_file('new_file.txt') if descriptor: print_text_file(descriptor)
[ "mirprost@gmail.com" ]
mirprost@gmail.com
4e6734d92bcb9101ba205b9adf9f9491db79aaec
b9bc8ea312b421604e12b259babc459fbc474d99
/ProyectTK/Models/clientesDB.py
aeefc7bacaa5ccd515f995e720f37374d1ffacd7
[]
no_license
Cristhian-32/ProyectTK
4d55e867679e0a10b7c010061856463a20a28e9d
4769394431a5c1fc1851d1813b1a4dcabf69d4db
refs/heads/main
2023-07-01T14:17:28.462144
2021-07-22T18:51:15
2021-07-22T18:51:15
388,562,316
0
0
null
null
null
null
UTF-8
Python
false
false
1,058
py
import sqlite3 class DataCliente: def __init__(self): self.conn = sqlite3.connect('basedata.db') self.cursor = self.conn.cursor() def insertItems(self, code, name, supp, price, cant): sql = "INSERT INTO clientes (name, phone, mail, adress, reference ) VALUES(?,?,?,?,?)" params = (code, name, price, supp, cant) self.cursor.execute(sql, params) self.conn.commit() def returnOneItem(self, ejm): sql = "SELECT * FROM clientes WHERE phone = '{}'".format(ejm) self.cursor.execute(sql) return self.cursor.fetchone() def returnAllElements(self): sql = "SELECT * FROM clientes ORDER BY id" self.cursor.execute(sql) return self.cursor.fetchall() def delete(self, ejm): sql = "DELETE FROM clientes WHERE phone = '{}'".format(ejm) self.cursor.execute(sql) self.conn.commit() def updateItem(self, elem, pls): sql = "UPDATE clientes SET name ='{}', phone='{}', mail='{}', adress='{}', reference='{}' WHERE phone = '{}'".format(elem[0], elem[1], elem[2], elem[3], elem[4], pls) self.cursor.execute(sql) self.conn.commit()
[ "noreply@github.com" ]
Cristhian-32.noreply@github.com
4b8d6192e4c368f83baac2ca24e9a5d5267cc2e4
98e4dc41e3d994dfb55a2553c79d1b61590ecca6
/PY/facts/fact2.py
0f60feac5e1681e6685352cae49069d18d19a04e
[]
no_license
krohak/Project_Euler
b753c4f3bbf26a5eff3203e27482599d1e089fc6
1d8a2326543d69457f1971af9435b3e93ab32f52
refs/heads/master
2022-09-02T10:48:59.472111
2022-08-18T11:11:16
2022-08-18T11:11:16
111,204,162
4
1
null
null
null
null
UTF-8
Python
false
false
370
py
# Positive Infinity p_infinity = float('Inf') if 99999999999999 > p_infinity: print("The number is greater than Infinity!") else: print("Infinity is greatest") # Negetive Infinity n_infinity = float('-Inf') if -99999999999999 < n_infinity: print("The number is lesser than Negative Infinity!") else: print("Negative Infinity is least")
[ "rohaksinghal14@gmail.com" ]
rohaksinghal14@gmail.com
4ea31074125f6450c978cc6ec7b64798c6647fa9
b922f4cc4b8877713147e93c1cccc26d0d52f729
/flybird_table/yuanyang_env.py
4dc8f6fc76041c58beae8d11d7d940cbab0a4199
[]
no_license
pittacus/rl_course
63e9b9ba5796d3f7af62bd683df7ea83723a148d
f8d5c78a08947bab97f6392aba3f2530c2217702
refs/heads/master
2021-06-27T00:22:56.581433
2017-09-16T13:03:43
2017-09-16T13:03:43
103,752,774
0
0
null
null
null
null
UTF-8
Python
false
false
7,257
py
# coding=utf8 import pygame from load import * import math import time import random class YuanYangEnv: def __init__(self): self.viewer=None self.FPSCLOCK = pygame.time.Clock() self.actions=['e','s','w','n'] self.states=[] for i in range(0,100): self.states.append(i) #屏幕大小 self.screen_size=(400,300) self.bird_position=(0,0) self.limit_distance_x=40 self.limit_distance_y=30 self.obstacle_size=[40,20] self.obstacle1_x = [] self.obstacle1_y = [] self.obstacle2_x = [] self.obstacle2_y = [] self.state=0 self.next_state=[0,0] self.gamma=0.8 for i in range(12): #第一个障碍物 self.obstacle1_x.append(120) if i <= 5: self.obstacle1_y.append(20 * i) else: self.obstacle1_y.append(20 * (i + 3)) # 第二个障碍物 self.obstacle2_x.append(240) if i <= 6: self.obstacle2_y.append(20 * i) else: self.obstacle2_y.append(20 * (i + 3)) self.bird_male_init_position=[0.0,0.0] self.bird_male_position = [0, 0] self.bird_female_init_position=[360,0] #def step(self): def reset(self): #随机产生初始状态 flag1=1 flag2=1 while flag1 or flag2 ==1: state=self.states[int(random.random()*len(self.states))] state_position = self.state_to_position(state) flag1 = self.collide(state_position) flag2 = self.find(state_position) # self.bird_male_position=self.state_to_position(state) return state #将状态转换为坐标值 def state_to_position(self,state): i=int(state/10) j=state%10 position=[0,0] position[0]=40*j position[1]=30*i return position def position_to_state(self,position): i=position[0]/40 j=position[1]/30 return int(i+10*j) def transform(self,state, action): #将当前状态转化为坐标 current_position=self.state_to_position(state) next_state = [0,0] flag_collide=0 flag_find=0 #判断当前坐标是否与障碍物碰撞 flag_collide=self.collide(current_position) #判断状态是否是终点 flag_find=self.find(current_position) if flag_collide==1 or flag_find==1: return state, 0, True #状态转移 if action=='e': next_state[0]=current_position[0]+40 next_state[1]=current_position[1] if action=='s': next_state[0]=current_position[0] next_state[1]=current_position[1]+30 if action=='w': next_state[0] = current_position[0] - 40 next_state[1] = current_position[1] if action=='n': next_state[0] = current_position[0] next_state[1] = current_position[1] - 30 #判断next_state是否与障碍物碰撞 flag_collide = self.collide(next_state) #如果碰撞,那么回报为-1,并结束 if flag_collide==1: return self.position_to_state(current_position),-1,True #判断是否终点 flag_find = self.find(next_state) if flag_find==1: return self.position_to_state(next_state),1,True return self.position_to_state(next_state), 0, False def render(self): if self.viewer is None: pygame.init() self.viewer=pygame.display.set_mode(self.screen_size,0,32) self.bird_male = load_bird_male() self.bird_female = load_bird_female() self.background = load_background() self.obstacle = load_obstacle() #self.viewer.blit(self.bird_male, self.bird_male_init_position) self.viewer.blit(self.bird_female, self.bird_female_init_position) self.viewer.blit(self.background, (0, 0)) # 画障碍物 # self.viewer.empty() #擦除 self.viewer.blit(self.background,(0,0)) self.viewer.blit(self.bird_female, self.bird_female_init_position) for i in range(12): self.viewer.blit(self.obstacle, (self.obstacle1_x[i], self.obstacle1_y[i])) self.viewer.blit(self.obstacle, (self.obstacle2_x[i], self.obstacle2_y[i])) # self.viewer.clear() self.viewer.blit(self.bird_male, self.bird_male_position) #self.viewer.blit(self.bird_female, self.bird_female_init_position) pygame.display.update() time.sleep(0.1) self.FPSCLOCK.tick(30) def collide(self,state_position): flag = 1 flag1 = 1 flag2 = 1 # 判断第一个障碍物 dx = [] dy = [] for i in range(12): dx1 = abs(self.obstacle1_x[i] - state_position[0]) dx.append(dx1) dy1 = abs(self.obstacle1_y[i] - state_position[1]) dy.append(dy1) mindx = min(dx) mindy = min(dy) if mindx >= self.limit_distance_x or mindy >= self.limit_distance_y: flag1 = 0 # 判断第二个障碍物 second_dx = [] second_dy = [] for i in range(12): dx2 = abs(self.obstacle2_x[i] - state_position[0]) second_dx.append(dx2) dy2 = abs(self.obstacle2_y[i] - state_position[1]) second_dy.append(dy2) mindx = min(second_dx) mindy = min(second_dy) if mindx >= self.limit_distance_x or mindy >= self.limit_distance_y: flag2 = 0 if flag1 == 0 and flag2 == 0: flag = 0 if state_position[0] > 360 or state_position[0] < 0 or state_position[1] > 270 or state_position[1] < 0: flag = 1 return flag def find(self,state_position): flag=0 if abs(state_position[0]-self.bird_female_init_position[0])<self.limit_distance_x and abs(state_position[1]-self.bird_female_init_position[1])<self.limit_distance_y: flag=1 return flag if __name__=="__main__": yy=YuanYangEnv() yy.render() speed = 50 clock = pygame.time.Clock() state=0 # for i in range(12): # flag_collide = 0 # obstacle1_coord = [yy.obstacle1_x[i],yy.obstacle1_y[i]] # obstacle2_coord = [yy.obstacle2_x[i],yy.obstacle2_y[i]] # flag_collide = yy.collide(obstacle1_coord) # print(flag_collide) # print(yy.collide(obstacle2_coord)) while True: for event in pygame.event.get(): if event.type == QUIT: exit() # time_passed_second = clock.tick()/1000 # i= int(state/10) # j=state%10 # yy.bird_male_position[0]=j*40 # yy.bird_male_position[1]=i*30 # time.sleep(0.2) # pygame.display.update() # state+=1 # yy.render() # print(yy.collide())
[ "pittacus@labook.local" ]
pittacus@labook.local
5aacaead1097698c67a0cf2f9cb30544aab59130
87a4fd12425a507e757da6e1bef4c68ee42a16e5
/gemd/entity/attribute/property.py
0cc36322b3c4b74a09fbbfe30f767df554a1e8e3
[ "Apache-2.0" ]
permissive
lkubie/gemd-python
8e548355ee40dba8cb5e961dac464202e005ed78
1f98fb471060bbba312b86474a5bf6818f317fe1
refs/heads/master
2023-04-14T22:34:13.898549
2020-06-17T21:08:38
2020-06-17T21:08:38
273,071,479
0
0
Apache-2.0
2020-06-17T20:25:39
2020-06-17T20:25:38
null
UTF-8
Python
false
false
355
py
from gemd.entity.attribute.base_attribute import BaseAttribute class Property(BaseAttribute): """ Property of a material, measured in a MeasurementRun or specified in a MaterialSpec. Properties are characteristics of a material that could be measured, e.g. chemical composition, density, yield strength. """ typ = "property"
[ "maxhutch@gmail.com" ]
maxhutch@gmail.com
ecae270e06b48e6ab922ff9dcc8126b2f6b9f6ac
3b89c0a97ac6b58b6923a213bc8471e11ad4fe69
/python/CodingExercises/PairsPositiveNegativeValuesArray.py
bdc19b169e9ffca83c2d50eef9cb877d49558397
[]
no_license
ksayee/programming_assignments
b187adca502ecf7ff7b51dc849d5d79ceb90d4a6
13bc1c44e1eef17fc36724f20b060c3339c280ea
refs/heads/master
2021-06-30T07:19:34.192277
2021-06-23T05:11:32
2021-06-23T05:11:32
50,700,556
1
3
null
null
null
null
UTF-8
Python
false
false
1,682
py
''' Pairs of Positive Negative values in an array Given an array of distinct integers, print all the pairs having positive value and negative value of a number that exists in the array. We need to print pairs in order of their occurrences. A pair whose any element appears first should be printed first. Examples: Input : arr[] = { 1, -3, 2, 3, 6, -1 } Output : -1 1 -3 3 Input : arr[] = { 4, 8, 9, -4, 1, -1, -8, -9 } Output : -1 1 -4 4 -8 8 -9 9 ''' def PairsPositiveNegativeValuesArray(ary): stk=[] dict={} fnl_lst=[] for l in ary: stk.append(l) if l not in dict.keys(): if (-1)*l in dict.keys(): dict[(-1)*l]=2 else: dict[l]=1 for l in stk: if (l in dict.keys() or (-1)*l in dict.keys()): try: if dict[l]==2: if l<0: fnl_lst.append(l) fnl_lst.append((-1)*l) else: fnl_lst.append((-1) * l) fnl_lst.append(l) dict[l]=0 except: if dict[(-1)*l]==2: if l<0: fnl_lst.append(l) fnl_lst.append((-1)*l) else: fnl_lst.append((-1) * l) fnl_lst.append(l) dict[(-1) * l] = 0 return fnl_lst def main(): ary=[1, -3, 2, 3, 6, -1] print(PairsPositiveNegativeValuesArray(ary)) ary = [4, 8, 9, -4, 1, -1, -8, -9] print(PairsPositiveNegativeValuesArray(ary)) if __name__=='__main__': main()
[ "kartiksayee@gmail.com" ]
kartiksayee@gmail.com
0ae17f38d0c3ba400e6be65953b83ffc4b6b185d
d697718afa04781434c332fe5f60496a57e0ee05
/accounts/admin.py
f868d81b4a03d6cdfde555adba2523e2e524278f
[]
no_license
nazninnahartumpa/python_ecommerce_project
361c5865507c0248841441393b727cddaedad59a
b84ce2f7d99f9613e6ed864e10aef9566505f88c
refs/heads/master
2020-04-15T04:03:24.379587
2019-01-17T10:05:16
2019-01-17T10:05:16
164,369,658
0
0
null
null
null
null
UTF-8
Python
false
false
1,183
py
from django.contrib import admin from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from .forms import UserAdminCreationForm, UserAdminChangeForm from .models import GuestEmail User = get_user_model() class UserAdmin(BaseUserAdmin): form = UserAdminChangeForm add_form = UserAdminCreationForm list_display = ('email', 'admin') list_filter = ('admin','staff','active',) fieldsets = ( (None, {'fields': ('full_name','email','password')}), #('Full Name', {'fields': ('full_name',)}), ('Permissions', {'fields':('admin','staff','active',)}), ) add_fieldsets = ( (None, { 'classes':('wide',), 'fields':('email', 'password1', 'password2')}, ), ) search_fields = ('email','full_name',) ordering = ('email',) filter_horizontal = () admin.site.register(User, UserAdmin) admin.site.unregister(Group) class GuestEmailAdmin(admin.ModelAdmin): search_fields = ['email'] class Meta: model = GuestEmail admin.site.register(GuestEmail, GuestEmailAdmin)
[ "naznintumpa5@gmail.com" ]
naznintumpa5@gmail.com
2e50fcf5c6af2c79c0cb4a889025145bc74a0d6d
e0fbc96bec9e83bc3fc3482e432bd2c6b6ad05a6
/MRPT/vqz_old/atoms/V_1/mrpt.py
db346b0534f264bcf8532306ef09918e32752d1f
[ "MIT" ]
permissive
mussard/share_data_benchmark
fe2cbd95879e069be2475d39b191de4f04e140ee
c02bfa4017b9008800cabe47d7c7959f82c26060
refs/heads/master
2020-03-11T21:25:00.264437
2019-04-29T00:28:13
2019-04-29T00:28:13
130,264,292
0
0
null
null
null
null
UTF-8
Python
false
false
1,856
py
import json from pyscf import gto,scf,mcscf, fci, lo, ci, cc from pyscf.scf import ROHF, UHF,ROKS import numpy as np import pandas as pd # THIS IS WERE IT STARTS ==================================== df=json.load(open("../../../trail.json")) spins={'Sc':1, 'Ti':2, 'V':3, 'Cr':6, 'Mn':5, 'Fe':4, 'Cu':1} nd={'Sc':(1,0), 'Ti':(2,0), 'V':(3,0), 'Cr':(5,0), 'Mn':(5,0), 'Fe':(5,1), 'Cu':(5,5)} cas={'Sc':3, 'Ti':4, 'V':5, 'Cr':6, 'Mn':7, 'Fe':8, 'Cu':11} datacsv={} for nm in ['atom','charge','method','basis','pseudopotential', 'totalenergy','totalenergy-stocherr','totalenergy-syserr']: datacsv[nm]=[] basis='vqz' el='V' charge=1 mol=gto.Mole() mol.ecp={} mol.basis={} mol.ecp[el]=gto.basis.parse_ecp(df[el]['ecp']) mol.basis[el]=gto.basis.parse(df[el][basis]) mol.charge=charge if el == 'Cr' or el == 'Cu': mol.spin=spins[el]-charge else: mol.spin=spins[el]+charge mol.build(atom="%s 0. 0. 0."%el,verbose=4) m=ROHF(mol) m.level_shift=1000.0 dm=m.from_chk("../../../../HF/atoms/"+el+basis+str(charge)+".chk") hf=m.kernel(dm) m.analyze() from pyscf.shciscf import shci mc = shci.SHCISCF(m, 6, cas[el]-charge) #mc.fcisolver.conv_tol = 1e-14 mc.fcisolver.mpiprefix="mpirun -np 28" mc.fcisolver.num_thrds=12 mc.verbose = 4 cas=mc.kernel()[0] from pyscf.icmpspt import icmpspt pt=icmpspt.icmpspt(mc,rdmM=500, PTM=1000,\ pttype="MRLCC",\ third_order=True,\ fully_ic=True,\ do_dm4=True) datacsv['atom'].append(el) datacsv['charge'].append(charge) datacsv['method'].append('MRPT') datacsv['basis'].append(basis) datacsv['pseudopotential'].append('trail') datacsv['totalenergy'].append(cas+pt) datacsv['totalenergy-stocherr'].append(0.0) datacsv['totalenergy-syserr'].append(0.0) pd.DataFrame(datacsv).to_csv(el+".csv",index=False)
[ "bastien.mussard@colorado.edu" ]
bastien.mussard@colorado.edu
39b1899c62b519397f4996966f3bd887223073db
9641aa545391761533aaf67959a088240d32d873
/image-classification/personalities/testPersonalities.py
4677edc19bb322fa10553d53d9d753c36053a667
[]
no_license
akshay-kamloo/Predictive-Analysis-in-Indian-Healthcare-Retinopathy
ea522053cda86939cd964f4c00c3c03bdb0a1a1c
177ddf69f03751e84071fa2efab9a604c5a3cb0e
refs/heads/master
2020-04-01T11:37:15.820271
2020-01-11T18:16:15
2020-01-11T18:16:15
153,169,966
1
0
null
null
null
null
UTF-8
Python
false
false
1,375
py
from sparkdl import readImages from pyspark.sql.functions import lit from pyspark.ml.classification import LogisticRegression from pyspark.ml import Pipeline from sparkdl import DeepImageFeaturizer import org.apache.spark.sql import org.apache.spark.sql._ img_dir = "/home/mvk/images_classification-master/personalities" jobs_df = readImages(img_dir + "/jobs").withColumn("label", lit(1)) zuckerberg_df = readImages(img_dir + "/zuckerberg").withColumn("label", lit(0)) jobs_train, jobs_test = jobs_df.randomSplit([0.6, 0.4]) zuckerberg_train, zuckerberg_test = zuckerberg_df.randomSplit([0.6, 0.4]) train_df = jobs_train.unionAll(zuckerberg_train) test_df = jobs_test.unionAll(zuckerberg_test) featurizer = DeepImageFeaturizer(inputCol="image", outputCol="features", modelName="InceptionV3") lr = LogisticRegression(maxIter=20, regParam=0.05, elasticNetParam=0.3, labelCol="label") p = Pipeline(stages=[featurizer, lr]) p_model = p.fit(train_df) predictions = p_model.transform(test_df) predictions.select("filePath", "prediction").show(truncate=False) from pyspark.ml.evaluation import MulticlassClassificationEvaluator df = p_model.transform(test_df) df.show() predictionAndLabels = df.select("prediction", "label") evaluator = MulticlassClassificationEvaluator(metricName="accuracy") print("Training set accuracy = " + str(evaluator.evaluate(predictionAndLabels)))
[ "noreply@github.com" ]
akshay-kamloo.noreply@github.com
418d221217f93d833a5be72fb393a36c2a10e7d9
a250b4d880d4a9c2898bf8b2732171c58b78dcf3
/01_Jump_to_Python/Chapt04/169_ex2.py
e59f7406df148dd54bfca8a6dabb1230c80af0dc
[]
no_license
psh89224/Bigdata
b399e8c253fddf96ffcc0be6b470beefdd592974
543b11a019ae905fd7452d47d5004aa5829b22ae
refs/heads/master
2020-03-15T09:27:23.972490
2018-11-08T00:52:55
2018-11-08T00:52:55
132,075,197
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
f=open("sample.txt", 'r') lines = f.read() print(lines) f.close() total = 0 for line in lines: score = total += average = total/10 print(average) f = open("result.txt", 'w') f.write(average) f.close()
[ "USER@teset.com" ]
USER@teset.com
20ec09e78d343668973d121c889e2e3673710b9a
22c552e93ee31da3e98f66f68eb7f099ba38f3ca
/day_18_1.py
c546fee5f5112f54ee0efd56aca710b796db2d3f
[]
no_license
rishikesh-madabhushi/AdventOfCode
9e3b6c828c7d8a8b462d25ed65671746d536919d
4a31d46d4f149f771facc5176f79544052cace1d
refs/heads/main
2023-02-05T00:42:29.434509
2020-12-25T14:51:02
2020-12-25T14:51:02
317,571,704
0
0
null
null
null
null
UTF-8
Python
false
false
1,612
py
import re f = open("day_18.txt") #f = open("test.txt") def expr(a, op, b): if op == '+': return a + b elif op == '-': return a - b elif op == '*': return a * b else: return a / b def evaluate(terms, idx): value = 0 new_idx = idx + 1 if terms[idx].isnumeric(): value = int(terms[idx]) elif terms[idx] == '(': (value, new_idx) = evaluate(terms, new_idx) if terms[new_idx] == ')': new_idx = new_idx + 1 else: raise("What's going on?") while new_idx < len(terms): if terms[new_idx] == ')': return(value, new_idx) operand2 = 0 operand1 = value operator = terms[new_idx] new_idx += 1 if operator == '*': (operand2, new_idx) = evaluate(terms, new_idx) else: if terms[new_idx].isnumeric(): operand2 = int(terms[new_idx]) new_idx += 1 elif terms[new_idx] == '(': (operand2, new_idx) = evaluate(terms, new_idx + 1) if terms[new_idx] != ')': raise("Hmmm") else: new_idx = new_idx + 1 else: raise("What's going on?") value = expr(operand1, operator, operand2) return (value, new_idx) sumall = 0 for l in f.readlines(): l = re.sub(r"(\(|\))", r" \1 ", l) terms = l.rstrip().split() print(terms) (value, new_idx) = evaluate(terms, 0) sumall += value print(sumall)
[ "rishikesh.ice@gmail.com" ]
rishikesh.ice@gmail.com
48ce8fdc65cfefe7d1d3168389758bf06cd3fa4d
7dd1a817022df97f78e98be873c81dd90d861c85
/US32_test.py
65c3c7b1a7cf709e5daaee1942eee05c081a1645
[]
no_license
DaiJiChen/Gencom-file-diagnose
c8bd1f946bcfbcbe77ff6e2c6e3c632a5717ccaa
a7253b72722ab5e17ea06b6c8a2481c041a29242
refs/heads/master
2023-01-01T14:27:18.665900
2020-10-25T03:16:09
2020-10-25T03:16:09
210,180,800
1
0
null
null
null
null
UTF-8
Python
false
false
483
py
""" @author: ziming """ import unittest import Parser import validate class Testing(unittest.TestCase): # A successful case def test1(self): gc = Parser.Gedcom("gedcomfile.ged") self.assertEqual(gc.displayOutput("print US32"),1) # A failure case def test2(self): gc = Parser.Gedcom("bad_gedcomfile.ged") self.assertEqual(gc.displayOutput("print US32"),1) unittest.main()
[ "noreply@github.com" ]
DaiJiChen.noreply@github.com
e0149e86a8d13396f8f06d0ab0b5b292bef2779c
ebd344b81dea258d8ef98c92376356a823ac2ffc
/python/det_response.py
bb8a4e3c9a5ded653595f9e5fc1530aeb5bd61ec
[]
no_license
clark2668/icetradio
208691500a43e80ba94373bffea84ca409c9df0e
39e476794ae7466d158ecfbdb3d8530857e114cb
refs/heads/master
2023-01-31T21:11:41.804621
2020-12-16T23:47:01
2020-12-16T23:47:01
277,856,058
0
0
null
2020-10-28T17:20:47
2020-07-07T15:36:32
Python
UTF-8
Python
false
false
6,782
py
# python includes import numpy as np import os from scipy.interpolate import interp1d from icecube import icetray, dataclasses, icetradio from icecube.dataclasses import I3Particle from icecube.icetradio import util_geo, util_dataclasses from NuRadioMC.SignalGen import askaryan from NuRadioReco.utilities import units, fft from radiotools import helper as hp from NuRadioReco.detector import antennapattern def fold_efields(efield, zenith, azimuth, antenna_orientation, antenna_pattern): """ A function to do fold efields with the antenna response Apply the complex response of the antenna (the vector effective length) to an efield, and return the efield after the antenna Parameters ---------- signal: icetradio.I3EField the efield at the antenna zenith: float the zenith angle (in radians!) of the signal incident on the antenna azimuth: float the azimuth angle (in radians!) of the signal incident on the antenna antenna_orientation: array array of floats, specifically the orientation_theta, orientation_phi, rotation_theta, and rotation_phi, as they are defined in the NuRadioReco framework see https://nu-radio.github.io/NuRadioReco/pages/detector_database_fields.html#antenna-table or also the definitions in I3IceAntennaGeo https://code.icecube.wisc.edu/projects/icecube/browser/IceCube/sandbox/brianclark/ehe/radio/trunk/dataclasses/public/dataclasses/geometry/I3IceAntennaGeo.h antenna_pattern: NuRadioReco.detector.antennapattern the antenna pattern for this antenna Returns ------- trace: the voltage trace that will be observed after being folded with the antenna """ # get the frequencies where the efield needs to be evaluated ff = util_dataclasses.get_frequencies_I3EField(efield) # get the fourier transforms of the field eTheta_freq = fft.time2freq(efield.eTheta.trace, efield.eTheta.samplingRate) ePhi_freq = fft.time2freq(efield.ePhi.trace, efield.ePhi.samplingRate) # get the vector effective length (VEL) antenna_response = antenna_pattern.get_antenna_response_vectorized(ff, zenith, azimuth, *antenna_orientation) VEL = np.array([antenna_response['theta'], antenna_response['phi']]) voltage_fft = np.sum(VEL * np.array([eTheta_freq, ePhi_freq]), axis=0) # we need to make sure to cancel out the DC offset voltage_fft[np.where(ff < 5 * units.MHz)] = 0. voltage_trace = fft.freq2time(voltage_fft, efield.eR.samplingRate) return voltage_trace def apply_amplifier_filter(voltage_trace, dT, amplifier_filter_response): """ A function to apply amplifier+filter responses to a voltage trace Apply the complex response of the amplifier and filter (magnitude and phase) to a voltage trace, and return the trace after amplification Parameters ---------- voltage_trace: array the trace to which we want to apply the amplifier and filter dT: float the time between samples of the voltage trace azimuth: float the azimuth angle (in radians!) of the signal incident on the antenna amplifier_filter_response: array The dict containing the amplifier + filter response As loaded in the load_filter_amplifier_response function Returns ------- trace: the voltage trace that will be observed after applying the amps + filters """ orig_frequencies = amplifier_filter_response['frequencies'] orig_phase = amplifier_filter_response['phase'] orig_gain = amplifier_filter_response['gain'] # interpolate the phase and gain interp_phase = interp1d(orig_frequencies, np.unwrap(orig_phase), bounds_error=False, fill_value=0) interp_gain = interp1d(orig_frequencies, orig_gain, bounds_error=False, fill_value=0) num_samples = len(voltage_trace) # the number of samples frequencies = np.fft.rfftfreq(num_samples, dT) gain = interp_gain(frequencies) phase = np.exp(1j * interp_phase(frequencies)) the_fft = fft.time2freq(voltage_trace, 1./dT) the_fft*=(gain*phase) the_result_trace = fft.freq2time(the_fft, 1./dT) return the_result_trace def load_filter_amplifier_response(amplifier_filter_model): """ A function to do load the amplifier+filter responses The intput should be a ASCII file It should be the style of the ARA filter/amps file https://github.com/ara-software/AraSim/blob/master/data/ARA_Electronics_TotalGain_TwoFilters.txt We will always skip the first three rows It should be a csv file, with the first column being frequency in MHz The second column being gain in linear units The third column being the phase in radians The files should be put in the icetradio "data" directory Parameters ---------- amplifier_filter_model: string name of the amplifier filter model to be used (no .txt) Returns ------- antenna_model_dict: dictionary dictionary containing the gain and phases """ data = np.loadtxt(os.path.join(os.environ['icetradio_path'],'data',amplifier_filter_model+'.txt'), skiprows=3, delimiter=',') response = {} response['frequencies'] = data[:,0]*units.MHz #radians response['gain'] = data[:,1] #unitless response['phase'] = data[:, 2] * units.rad #radians return response def load_amplifier_filter_responses(antgeomap, amplifier_model_dict): """ A function to do load the amplifier/filter responses Load all the response objects for every amplifier in the geomap. Insert them as a key in the dictionary so we can call them later Parameters ---------- antgeomap: I3IceAntennaGeometry geometry object a map of IceAntKeys to IceAntGeo objects amplifier_model_dict: dictionary dictionary of amplifier+filter responses Returns ------- void """ for iceantkey, g in antgeomap: amplifier_filter_model = g.amplifierFilterModel # get the amplifier + filter model if amplifier_filter_model not in amplifier_model_dict.keys(): # only add if it's not already in the dict the_model = load_filter_amplifier_response(amplifier_filter_model) amplifier_model_dict[amplifier_filter_model] = the_model def load_antenna_responses(antgeomap, antenna_pattern_dict): """ A function to do load the antenna responses Load all the response objects for every antenna in the geomap. Insert them as a key in the dictionary so we can call them later, Parameters ---------- antgeomap: I3IceAntennaGeometry geometry object a map of IceAntKeys to IceAntGeo objects antenna_model_dict: dictionary dictionary of Returns ------- void """ for iceantkey, g in antgeomap: antenna_model = g.antennaModel # get the antenna model if antenna_model not in antenna_pattern_dict.keys(): # only add this antenna if it's not already in the dictt antenna_provider = antennapattern.AntennaPatternProvider() antenna_pattern = antenna_provider.load_antenna_pattern(antenna_model) antenna_pattern_dict[antenna_model] = antenna_pattern
[ "baclark@msu.edu" ]
baclark@msu.edu
69bbe8fd1d442b7dff97819078e37bd83f805deb
df13b3eef82df0fbf19298595848826dd824ab6e
/csdn_scrapy/main.py
9cc779a9ccbbc83dfe96048a8cb2584d13a2ba56
[]
no_license
bbbwang/csdn_scrapy
1714af43023e9a17a4d1be50d9efcacc64cc056f
a4bbc2a63fa641c93dc1ec75a8742d9eb6987fc0
refs/heads/master
2020-07-24T20:14:53.346322
2019-09-20T01:31:58
2019-09-20T01:31:58
208,036,173
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
from scrapy import cmdline import time #在编译器中执行命令 cmdline.execute('scrapy crawl csdn.com'.split()) # import os # while 1: # os.system("scrapy crawl csdn.com") # time.sleep(3600) # 休眠2分钟
[ "amettursun@ebay.com" ]
amettursun@ebay.com
a382c54444b6d892d8c4f5f2a50f6ab3e9bf21da
b37c027a3f63305345f266e8f4f944721adbb956
/TESTING/CorrelationEstimator/testing_ce.py
489b9b1be556497d1460eb397af904fdbc8bde02
[]
no_license
andrehoracio97/investigacao
fdfb663867e6fe9f240bb828b7b96b99323f8be3
5dd1fad12f4991bb737ed236426247dfb52333eb
refs/heads/master
2022-10-11T02:08:30.478893
2020-06-16T09:58:13
2020-06-16T09:58:13
193,519,669
0
0
null
null
null
null
UTF-8
Python
false
false
35,605
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- ################################################## # GNU Radio Python Flow Graph # Title: Testing Ce # GNU Radio version: 3.7.13.5 ################################################## if __name__ == '__main__': import ctypes import sys if sys.platform.startswith('linux'): try: x11 = ctypes.cdll.LoadLibrary('libX11.so') x11.XInitThreads() except: print "Warning: failed to XInitThreads()" from PyQt4 import Qt from gnuradio import blocks from gnuradio import digital from gnuradio import eng_notation from gnuradio import gr from gnuradio import qtgui from gnuradio import uhd from gnuradio.eng_option import eng_option from gnuradio.filter import firdes from gnuradio.filter import pfb from gnuradio.qtgui import Range, RangeWidget from optparse import OptionParser import pmt import random import sip import sys import time from gnuradio import qtgui class testing_ce(gr.top_block, Qt.QWidget): def __init__(self): gr.top_block.__init__(self, "Testing Ce") Qt.QWidget.__init__(self) self.setWindowTitle("Testing Ce") qtgui.util.check_set_qss() try: self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc')) except: pass self.top_scroll_layout = Qt.QVBoxLayout() self.setLayout(self.top_scroll_layout) self.top_scroll = Qt.QScrollArea() self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame) self.top_scroll_layout.addWidget(self.top_scroll) self.top_scroll.setWidgetResizable(True) self.top_widget = Qt.QWidget() self.top_scroll.setWidget(self.top_widget) self.top_layout = Qt.QVBoxLayout(self.top_widget) self.top_grid_layout = Qt.QGridLayout() self.top_layout.addLayout(self.top_grid_layout) self.settings = Qt.QSettings("GNU Radio", "testing_ce") self.restoreGeometry(self.settings.value("geometry").toByteArray()) ################################################## # Variables ################################################## self.sps = sps = 4 self.nfilts = nfilts = 32 self.eb = eb = 0.22 self.tx_rrc_taps = tx_rrc_taps = firdes.root_raised_cosine(nfilts, nfilts, 1.0, eb, 5*sps*nfilts) self.pld_const = pld_const = digital.constellation_rect(([0.707+0.707j, -0.707+0.707j, -0.707-0.707j, 0.707-0.707j]), ([0, 1, 3, 2]), 4, 2, 2, 1, 1).base() self.pld_const.gen_soft_dec_lut(8) self.taps_per_filt = taps_per_filt = len(tx_rrc_taps)/nfilts self.samp_rate_array_MCR = samp_rate_array_MCR = [7500000,5000000,3750000,3000000,2500000,2000000,1500000,1000000,937500,882352,833333,714285,533333,500000,421052,400000,380952] self.rxmod = rxmod = digital.generic_mod(pld_const, False, sps, True, eb, False, False) self.rrc_taps = rrc_taps = firdes.root_raised_cosine(sps, sps, 1.0, eb, 11*sps) self.ac_hex = ac_hex = [0xac, 0xdd, 0xa4, 0xe2, 0xf2, 0x8c, 0x20, 0xfc] self.variable_qtgui_range_0_1 = variable_qtgui_range_0_1 = 39 self.variable_qtgui_range_0 = variable_qtgui_range_0 = 50 self.samp_rate = samp_rate = samp_rate_array_MCR[15] self.rx_rrc_taps = rx_rrc_taps = firdes.root_raised_cosine(nfilts, nfilts*sps, 1.0, eb, 11*sps*nfilts) self.rx_psf_taps = rx_psf_taps = firdes.root_raised_cosine(nfilts, sps*nfilts, 1.0, eb, 11*sps*nfilts) self.modulated_sync_word = modulated_sync_word = digital.modulate_vector_bc(rxmod .to_basic_block(), (ac_hex), ([1])) self.mark_delay = mark_delay = 87 self.frequencia_usrp = frequencia_usrp = 484e6 self.filt_delay_0 = filt_delay_0 = 1+(taps_per_filt-1)/2 self.filt_delay = filt_delay = 1+(len(rrc_taps)-1)/2 self.MCR = MCR = "master_clock_rate=60e6" ################################################## # Blocks ################################################## self._variable_qtgui_range_0_1_range = Range(0, 73, 1, 39, 200) self._variable_qtgui_range_0_1_win = RangeWidget(self._variable_qtgui_range_0_1_range, self.set_variable_qtgui_range_0_1, 'Gain_RX', "counter_slider", float) self.top_grid_layout.addWidget(self._variable_qtgui_range_0_1_win, 0, 2, 1, 1) for r in range(0, 1): self.top_grid_layout.setRowStretch(r, 1) for c in range(2, 3): self.top_grid_layout.setColumnStretch(c, 1) self._variable_qtgui_range_0_range = Range(0, 90, 1, 50, 200) self._variable_qtgui_range_0_win = RangeWidget(self._variable_qtgui_range_0_range, self.set_variable_qtgui_range_0, 'Gain_TX', "counter_slider", float) self.top_grid_layout.addWidget(self._variable_qtgui_range_0_win, 0, 1, 1, 1) for r in range(0, 1): self.top_grid_layout.setRowStretch(r, 1) for c in range(1, 2): self.top_grid_layout.setColumnStretch(c, 1) self.uhd_usrp_source_0 = uhd.usrp_source( ",".join(("serial=F5EAC0", MCR)), uhd.stream_args( cpu_format="fc32", channels=range(1), ), ) self.uhd_usrp_source_0.set_samp_rate(samp_rate) self.uhd_usrp_source_0.set_time_now(uhd.time_spec(time.time()), uhd.ALL_MBOARDS) self.uhd_usrp_source_0.set_center_freq(frequencia_usrp, 0) self.uhd_usrp_source_0.set_gain(variable_qtgui_range_0_1, 0) self.uhd_usrp_source_0.set_antenna('RX2', 0) self.uhd_usrp_source_0.set_auto_dc_offset(True, 0) self.uhd_usrp_source_0.set_auto_iq_balance(True, 0) self.uhd_usrp_sink_0_0 = uhd.usrp_sink( ",".join(("serial=F5EAE1", MCR)), uhd.stream_args( cpu_format="fc32", channels=range(1), ), ) self.uhd_usrp_sink_0_0.set_samp_rate(samp_rate) self.uhd_usrp_sink_0_0.set_time_now(uhd.time_spec(time.time()), uhd.ALL_MBOARDS) self.uhd_usrp_sink_0_0.set_center_freq(frequencia_usrp, 0) self.uhd_usrp_sink_0_0.set_gain(variable_qtgui_range_0, 0) self.uhd_usrp_sink_0_0.set_antenna('TX/RX', 0) self.qtgui_time_sink_x_1_0 = qtgui.time_sink_c( 1024, #size samp_rate, #samp_rate "RX USRP", #name 1 #number of inputs ) self.qtgui_time_sink_x_1_0.set_update_time(0.10) self.qtgui_time_sink_x_1_0.set_y_axis(-1, 1) self.qtgui_time_sink_x_1_0.set_y_label('Amplitude', "") self.qtgui_time_sink_x_1_0.enable_tags(-1, True) self.qtgui_time_sink_x_1_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "") self.qtgui_time_sink_x_1_0.enable_autoscale(False) self.qtgui_time_sink_x_1_0.enable_grid(False) self.qtgui_time_sink_x_1_0.enable_axis_labels(True) self.qtgui_time_sink_x_1_0.enable_control_panel(False) self.qtgui_time_sink_x_1_0.enable_stem_plot(False) if not True: self.qtgui_time_sink_x_1_0.disable_legend() labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "blue"] styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(2): if len(labels[i]) == 0: if(i % 2 == 0): self.qtgui_time_sink_x_1_0.set_line_label(i, "Re{{Data {0}}}".format(i/2)) else: self.qtgui_time_sink_x_1_0.set_line_label(i, "Im{{Data {0}}}".format(i/2)) else: self.qtgui_time_sink_x_1_0.set_line_label(i, labels[i]) self.qtgui_time_sink_x_1_0.set_line_width(i, widths[i]) self.qtgui_time_sink_x_1_0.set_line_color(i, colors[i]) self.qtgui_time_sink_x_1_0.set_line_style(i, styles[i]) self.qtgui_time_sink_x_1_0.set_line_marker(i, markers[i]) self.qtgui_time_sink_x_1_0.set_line_alpha(i, alphas[i]) self._qtgui_time_sink_x_1_0_win = sip.wrapinstance(self.qtgui_time_sink_x_1_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_time_sink_x_1_0_win, 1, 4, 1, 1) for r in range(1, 2): self.top_grid_layout.setRowStretch(r, 1) for c in range(4, 5): self.top_grid_layout.setColumnStretch(c, 1) self.qtgui_time_sink_x_1 = qtgui.time_sink_c( 1024, #size samp_rate, #samp_rate "TX USRP", #name 1 #number of inputs ) self.qtgui_time_sink_x_1.set_update_time(0.10) self.qtgui_time_sink_x_1.set_y_axis(-1, 1) self.qtgui_time_sink_x_1.set_y_label('Amplitude', "") self.qtgui_time_sink_x_1.enable_tags(-1, True) self.qtgui_time_sink_x_1.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "") self.qtgui_time_sink_x_1.enable_autoscale(False) self.qtgui_time_sink_x_1.enable_grid(False) self.qtgui_time_sink_x_1.enable_axis_labels(True) self.qtgui_time_sink_x_1.enable_control_panel(False) self.qtgui_time_sink_x_1.enable_stem_plot(False) if not True: self.qtgui_time_sink_x_1.disable_legend() labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "blue"] styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(2): if len(labels[i]) == 0: if(i % 2 == 0): self.qtgui_time_sink_x_1.set_line_label(i, "Re{{Data {0}}}".format(i/2)) else: self.qtgui_time_sink_x_1.set_line_label(i, "Im{{Data {0}}}".format(i/2)) else: self.qtgui_time_sink_x_1.set_line_label(i, labels[i]) self.qtgui_time_sink_x_1.set_line_width(i, widths[i]) self.qtgui_time_sink_x_1.set_line_color(i, colors[i]) self.qtgui_time_sink_x_1.set_line_style(i, styles[i]) self.qtgui_time_sink_x_1.set_line_marker(i, markers[i]) self.qtgui_time_sink_x_1.set_line_alpha(i, alphas[i]) self._qtgui_time_sink_x_1_win = sip.wrapinstance(self.qtgui_time_sink_x_1.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_time_sink_x_1_win, 1, 3, 1, 1) for r in range(1, 2): self.top_grid_layout.setRowStretch(r, 1) for c in range(3, 4): self.top_grid_layout.setColumnStretch(c, 1) self.qtgui_time_sink_x_0_1 = qtgui.time_sink_f( 100*2, #size samp_rate, #samp_rate 'Rx Data', #name 1 #number of inputs ) self.qtgui_time_sink_x_0_1.set_update_time(0.10) self.qtgui_time_sink_x_0_1.set_y_axis(-1, 256) self.qtgui_time_sink_x_0_1.set_y_label('Amplitude', "") self.qtgui_time_sink_x_0_1.enable_tags(-1, True) self.qtgui_time_sink_x_0_1.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, 'packet_length_tag_key') self.qtgui_time_sink_x_0_1.enable_autoscale(True) self.qtgui_time_sink_x_0_1.enable_grid(True) self.qtgui_time_sink_x_0_1.enable_axis_labels(True) self.qtgui_time_sink_x_0_1.enable_control_panel(False) self.qtgui_time_sink_x_0_1.enable_stem_plot(False) if not True: self.qtgui_time_sink_x_0_1.disable_legend() labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "blue"] styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_time_sink_x_0_1.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_time_sink_x_0_1.set_line_label(i, labels[i]) self.qtgui_time_sink_x_0_1.set_line_width(i, widths[i]) self.qtgui_time_sink_x_0_1.set_line_color(i, colors[i]) self.qtgui_time_sink_x_0_1.set_line_style(i, styles[i]) self.qtgui_time_sink_x_0_1.set_line_marker(i, markers[i]) self.qtgui_time_sink_x_0_1.set_line_alpha(i, alphas[i]) self._qtgui_time_sink_x_0_1_win = sip.wrapinstance(self.qtgui_time_sink_x_0_1.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_time_sink_x_0_1_win, 2, 3, 1, 1) for r in range(2, 3): self.top_grid_layout.setRowStretch(r, 1) for c in range(3, 4): self.top_grid_layout.setColumnStretch(c, 1) self.qtgui_time_sink_x_0_0_0 = qtgui.time_sink_f( 512, #size 1, #samp_rate "", #name 1 #number of inputs ) self.qtgui_time_sink_x_0_0_0.set_update_time(0.10) self.qtgui_time_sink_x_0_0_0.set_y_axis(-100, 4000) self.qtgui_time_sink_x_0_0_0.set_y_label('Amplitude', "") self.qtgui_time_sink_x_0_0_0.enable_tags(-1, True) self.qtgui_time_sink_x_0_0_0.set_trigger_mode(qtgui.TRIG_MODE_TAG, qtgui.TRIG_SLOPE_POS, 0, 15, 0, 'corr_est') self.qtgui_time_sink_x_0_0_0.enable_autoscale(False) self.qtgui_time_sink_x_0_0_0.enable_grid(False) self.qtgui_time_sink_x_0_0_0.enable_axis_labels(True) self.qtgui_time_sink_x_0_0_0.enable_control_panel(False) self.qtgui_time_sink_x_0_0_0.enable_stem_plot(False) if not False: self.qtgui_time_sink_x_0_0_0.disable_legend() labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "blue"] styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_time_sink_x_0_0_0.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_time_sink_x_0_0_0.set_line_label(i, labels[i]) self.qtgui_time_sink_x_0_0_0.set_line_width(i, widths[i]) self.qtgui_time_sink_x_0_0_0.set_line_color(i, colors[i]) self.qtgui_time_sink_x_0_0_0.set_line_style(i, styles[i]) self.qtgui_time_sink_x_0_0_0.set_line_marker(i, markers[i]) self.qtgui_time_sink_x_0_0_0.set_line_alpha(i, alphas[i]) self._qtgui_time_sink_x_0_0_0_win = sip.wrapinstance(self.qtgui_time_sink_x_0_0_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_time_sink_x_0_0_0_win, 3, 2, 1, 1) for r in range(3, 4): self.top_grid_layout.setRowStretch(r, 1) for c in range(2, 3): self.top_grid_layout.setColumnStretch(c, 1) self.qtgui_time_sink_x_0_0 = qtgui.time_sink_c( 512, #size 1, #samp_rate "", #name 1 #number of inputs ) self.qtgui_time_sink_x_0_0.set_update_time(0.10) self.qtgui_time_sink_x_0_0.set_y_axis(-100, 100) self.qtgui_time_sink_x_0_0.set_y_label('Amplitude', "") self.qtgui_time_sink_x_0_0.enable_tags(-1, True) self.qtgui_time_sink_x_0_0.set_trigger_mode(qtgui.TRIG_MODE_TAG, qtgui.TRIG_SLOPE_POS, 0, 15, 0, 'corr_est') self.qtgui_time_sink_x_0_0.enable_autoscale(False) self.qtgui_time_sink_x_0_0.enable_grid(False) self.qtgui_time_sink_x_0_0.enable_axis_labels(True) self.qtgui_time_sink_x_0_0.enable_control_panel(False) self.qtgui_time_sink_x_0_0.enable_stem_plot(False) if not False: self.qtgui_time_sink_x_0_0.disable_legend() labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "blue"] styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(2): if len(labels[i]) == 0: if(i % 2 == 0): self.qtgui_time_sink_x_0_0.set_line_label(i, "Re{{Data {0}}}".format(i/2)) else: self.qtgui_time_sink_x_0_0.set_line_label(i, "Im{{Data {0}}}".format(i/2)) else: self.qtgui_time_sink_x_0_0.set_line_label(i, labels[i]) self.qtgui_time_sink_x_0_0.set_line_width(i, widths[i]) self.qtgui_time_sink_x_0_0.set_line_color(i, colors[i]) self.qtgui_time_sink_x_0_0.set_line_style(i, styles[i]) self.qtgui_time_sink_x_0_0.set_line_marker(i, markers[i]) self.qtgui_time_sink_x_0_0.set_line_alpha(i, alphas[i]) self._qtgui_time_sink_x_0_0_win = sip.wrapinstance(self.qtgui_time_sink_x_0_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_time_sink_x_0_0_win, 2, 2, 1, 1) for r in range(2, 3): self.top_grid_layout.setRowStretch(r, 1) for c in range(2, 3): self.top_grid_layout.setColumnStretch(c, 1) self.qtgui_const_sink_x_0_0_0_1 = qtgui.const_sink_c( 1024, #size "RX Constellation", #name 1 #number of inputs ) self.qtgui_const_sink_x_0_0_0_1.set_update_time(0.10) self.qtgui_const_sink_x_0_0_0_1.set_y_axis(-2, 2) self.qtgui_const_sink_x_0_0_0_1.set_x_axis(-2, 2) self.qtgui_const_sink_x_0_0_0_1.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, "") self.qtgui_const_sink_x_0_0_0_1.enable_autoscale(False) self.qtgui_const_sink_x_0_0_0_1.enable_grid(False) self.qtgui_const_sink_x_0_0_0_1.enable_axis_labels(True) if not True: self.qtgui_const_sink_x_0_0_0_1.disable_legend() labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "red", "red", "red", "red", "red", "red", "red", "red"] styles = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] markers = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_const_sink_x_0_0_0_1.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_const_sink_x_0_0_0_1.set_line_label(i, labels[i]) self.qtgui_const_sink_x_0_0_0_1.set_line_width(i, widths[i]) self.qtgui_const_sink_x_0_0_0_1.set_line_color(i, colors[i]) self.qtgui_const_sink_x_0_0_0_1.set_line_style(i, styles[i]) self.qtgui_const_sink_x_0_0_0_1.set_line_marker(i, markers[i]) self.qtgui_const_sink_x_0_0_0_1.set_line_alpha(i, alphas[i]) self._qtgui_const_sink_x_0_0_0_1_win = sip.wrapinstance(self.qtgui_const_sink_x_0_0_0_1.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_const_sink_x_0_0_0_1_win, 2, 1, 1, 1) for r in range(2, 3): self.top_grid_layout.setRowStretch(r, 1) for c in range(1, 2): self.top_grid_layout.setColumnStretch(c, 1) self.qtgui_const_sink_x_0_0_0_0 = qtgui.const_sink_c( 1024, #size "TX Constellation", #name 1 #number of inputs ) self.qtgui_const_sink_x_0_0_0_0.set_update_time(0.10) self.qtgui_const_sink_x_0_0_0_0.set_y_axis(-2, 2) self.qtgui_const_sink_x_0_0_0_0.set_x_axis(-2, 2) self.qtgui_const_sink_x_0_0_0_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, "") self.qtgui_const_sink_x_0_0_0_0.enable_autoscale(False) self.qtgui_const_sink_x_0_0_0_0.enable_grid(False) self.qtgui_const_sink_x_0_0_0_0.enable_axis_labels(True) if not True: self.qtgui_const_sink_x_0_0_0_0.disable_legend() labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "red", "red", "red", "red", "red", "red", "red", "red"] styles = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] markers = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_const_sink_x_0_0_0_0.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_const_sink_x_0_0_0_0.set_line_label(i, labels[i]) self.qtgui_const_sink_x_0_0_0_0.set_line_width(i, widths[i]) self.qtgui_const_sink_x_0_0_0_0.set_line_color(i, colors[i]) self.qtgui_const_sink_x_0_0_0_0.set_line_style(i, styles[i]) self.qtgui_const_sink_x_0_0_0_0.set_line_marker(i, markers[i]) self.qtgui_const_sink_x_0_0_0_0.set_line_alpha(i, alphas[i]) self._qtgui_const_sink_x_0_0_0_0_win = sip.wrapinstance(self.qtgui_const_sink_x_0_0_0_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_const_sink_x_0_0_0_0_win, 1, 2, 1, 1) for r in range(1, 2): self.top_grid_layout.setRowStretch(r, 1) for c in range(2, 3): self.top_grid_layout.setColumnStretch(c, 1) self.qtgui_const_sink_x_0 = qtgui.const_sink_c( 512, #size "", #name 1 #number of inputs ) self.qtgui_const_sink_x_0.set_update_time(0.10) self.qtgui_const_sink_x_0.set_y_axis(-2, 2) self.qtgui_const_sink_x_0.set_x_axis(-2, 2) self.qtgui_const_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, "") self.qtgui_const_sink_x_0.enable_autoscale(False) self.qtgui_const_sink_x_0.enable_grid(False) self.qtgui_const_sink_x_0.enable_axis_labels(True) if not False: self.qtgui_const_sink_x_0.disable_legend() labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "red", "red", "red", "red", "red", "red", "red", "red"] styles = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] markers = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_const_sink_x_0.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_const_sink_x_0.set_line_label(i, labels[i]) self.qtgui_const_sink_x_0.set_line_width(i, widths[i]) self.qtgui_const_sink_x_0.set_line_color(i, colors[i]) self.qtgui_const_sink_x_0.set_line_style(i, styles[i]) self.qtgui_const_sink_x_0.set_line_marker(i, markers[i]) self.qtgui_const_sink_x_0.set_line_alpha(i, alphas[i]) self._qtgui_const_sink_x_0_win = sip.wrapinstance(self.qtgui_const_sink_x_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_const_sink_x_0_win, 1, 1, 1, 1) for r in range(1, 2): self.top_grid_layout.setRowStretch(r, 1) for c in range(1, 2): self.top_grid_layout.setColumnStretch(c, 1) self.pfb_arb_resampler_xxx_0 = pfb.arb_resampler_ccf( sps, taps=(tx_rrc_taps), flt_size=nfilts) self.pfb_arb_resampler_xxx_0.declare_sample_delay(filt_delay) self.digital_pfb_clock_sync_xxx_0_0 = digital.pfb_clock_sync_ccf(sps, 6.28/400.0, (rx_rrc_taps), nfilts, nfilts/2, 1.5, 1) self.digital_map_bb_0_0 = digital.map_bb((pld_const.pre_diff_code())) self.digital_map_bb_0 = digital.map_bb((pld_const.pre_diff_code())) self.digital_costas_loop_cc_0_0 = digital.costas_loop_cc(6.28/100.0, pld_const.arity(), False) self.digital_correlate_access_code_xx_ts_0_0 = digital.correlate_access_code_bb_ts(digital.packet_utils.default_access_code, 1, 'packet_len') self.digital_corr_est_cc_0 = digital.corr_est_cc((modulated_sync_word), sps, mark_delay, 0.99) self.digital_constellation_decoder_cb_0_0 = digital.constellation_decoder_cb(pld_const) self.digital_chunks_to_symbols_xx_0_0 = digital.chunks_to_symbols_bc((pld_const.points()), 1) self.blocks_stream_mux_0_1_0 = blocks.stream_mux(gr.sizeof_char*1, (96, 896)) self.blocks_repack_bits_bb_2 = blocks.repack_bits_bb(1, 8, '', False, gr.GR_MSB_FIRST) self.blocks_repack_bits_bb_1 = blocks.repack_bits_bb(8, 1, '', False, gr.GR_MSB_FIRST) self.blocks_repack_bits_bb_0_1 = blocks.repack_bits_bb(1, pld_const.bits_per_symbol(), '', False, gr.GR_MSB_FIRST) self.blocks_repack_bits_bb_0 = blocks.repack_bits_bb(pld_const.bits_per_symbol(), 1, '', False, gr.GR_MSB_FIRST) self.blocks_multiply_const_vxx_1 = blocks.multiply_const_vcc((0.7, )) self.blocks_file_source_0 = blocks.file_source(gr.sizeof_char*1, '/home/andre/Desktop/Trasmited/trasmit_10_mb.txt', False) self.blocks_file_source_0.set_begin_tag(pmt.PMT_NIL) self.blocks_file_sink_0_0_0_2 = blocks.file_sink(gr.sizeof_char*1, '/home/andre/Desktop/Trasmited/depois.txt', False) self.blocks_file_sink_0_0_0_2.set_unbuffered(False) self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(1) self.blocks_char_to_float_1_0_1 = blocks.char_to_float(1, 1) self.acode_1104 = blocks.vector_source_b([0x1, 0x0, 0x1, 0x0, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1, 0x0, 0x1, 0x1, 0x1, 0x0, 0x1, 0x1, 0x0, 0x1, 0x0, 0x0, 0x1, 0x0, 0x0, 0x1, 0x1, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x1, 0x1, 0x1, 0x1, 0x0, 0x0, 0x1, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0], True, 1, []) ################################################## # Connections ################################################## self.connect((self.acode_1104, 0), (self.blocks_stream_mux_0_1_0, 0)) self.connect((self.blocks_char_to_float_1_0_1, 0), (self.qtgui_time_sink_x_0_1, 0)) self.connect((self.blocks_complex_to_mag_squared_0, 0), (self.qtgui_time_sink_x_0_0_0, 0)) self.connect((self.blocks_file_source_0, 0), (self.blocks_repack_bits_bb_1, 0)) self.connect((self.blocks_multiply_const_vxx_1, 0), (self.qtgui_const_sink_x_0_0_0_0, 0)) self.connect((self.blocks_multiply_const_vxx_1, 0), (self.qtgui_time_sink_x_1, 0)) self.connect((self.blocks_multiply_const_vxx_1, 0), (self.uhd_usrp_sink_0_0, 0)) self.connect((self.blocks_repack_bits_bb_0, 0), (self.digital_correlate_access_code_xx_ts_0_0, 0)) self.connect((self.blocks_repack_bits_bb_0_1, 0), (self.digital_map_bb_0, 0)) self.connect((self.blocks_repack_bits_bb_1, 0), (self.blocks_stream_mux_0_1_0, 1)) self.connect((self.blocks_repack_bits_bb_2, 0), (self.blocks_file_sink_0_0_0_2, 0)) self.connect((self.blocks_stream_mux_0_1_0, 0), (self.blocks_repack_bits_bb_0_1, 0)) self.connect((self.digital_chunks_to_symbols_xx_0_0, 0), (self.pfb_arb_resampler_xxx_0, 0)) self.connect((self.digital_constellation_decoder_cb_0_0, 0), (self.digital_map_bb_0_0, 0)) self.connect((self.digital_corr_est_cc_0, 1), (self.blocks_complex_to_mag_squared_0, 0)) self.connect((self.digital_corr_est_cc_0, 0), (self.digital_pfb_clock_sync_xxx_0_0, 0)) self.connect((self.digital_corr_est_cc_0, 1), (self.qtgui_time_sink_x_0_0, 0)) self.connect((self.digital_correlate_access_code_xx_ts_0_0, 0), (self.blocks_char_to_float_1_0_1, 0)) self.connect((self.digital_correlate_access_code_xx_ts_0_0, 0), (self.blocks_repack_bits_bb_2, 0)) self.connect((self.digital_costas_loop_cc_0_0, 0), (self.digital_constellation_decoder_cb_0_0, 0)) self.connect((self.digital_costas_loop_cc_0_0, 0), (self.qtgui_const_sink_x_0, 0)) self.connect((self.digital_map_bb_0, 0), (self.digital_chunks_to_symbols_xx_0_0, 0)) self.connect((self.digital_map_bb_0_0, 0), (self.blocks_repack_bits_bb_0, 0)) self.connect((self.digital_pfb_clock_sync_xxx_0_0, 0), (self.digital_costas_loop_cc_0_0, 0)) self.connect((self.pfb_arb_resampler_xxx_0, 0), (self.blocks_multiply_const_vxx_1, 0)) self.connect((self.uhd_usrp_source_0, 0), (self.digital_corr_est_cc_0, 0)) self.connect((self.uhd_usrp_source_0, 0), (self.qtgui_const_sink_x_0_0_0_1, 0)) self.connect((self.uhd_usrp_source_0, 0), (self.qtgui_time_sink_x_1_0, 0)) def closeEvent(self, event): self.settings = Qt.QSettings("GNU Radio", "testing_ce") self.settings.setValue("geometry", self.saveGeometry()) event.accept() def get_sps(self): return self.sps def set_sps(self, sps): self.sps = sps self.set_rxmod(digital.generic_mod(self.pld_const, False, self.sps, True, self.eb, False, False)) self.pfb_arb_resampler_xxx_0.set_rate(self.sps) def get_nfilts(self): return self.nfilts def set_nfilts(self, nfilts): self.nfilts = nfilts self.set_taps_per_filt(len(self.tx_rrc_taps)/self.nfilts) def get_eb(self): return self.eb def set_eb(self, eb): self.eb = eb self.set_rxmod(digital.generic_mod(self.pld_const, False, self.sps, True, self.eb, False, False)) def get_tx_rrc_taps(self): return self.tx_rrc_taps def set_tx_rrc_taps(self, tx_rrc_taps): self.tx_rrc_taps = tx_rrc_taps self.set_taps_per_filt(len(self.tx_rrc_taps)/self.nfilts) self.pfb_arb_resampler_xxx_0.set_taps((self.tx_rrc_taps)) def get_pld_const(self): return self.pld_const def set_pld_const(self, pld_const): self.pld_const = pld_const self.set_rxmod(digital.generic_mod(self.pld_const, False, self.sps, True, self.eb, False, False)) def get_taps_per_filt(self): return self.taps_per_filt def set_taps_per_filt(self, taps_per_filt): self.taps_per_filt = taps_per_filt self.set_filt_delay_0(1+(self.taps_per_filt-1)/2) def get_samp_rate_array_MCR(self): return self.samp_rate_array_MCR def set_samp_rate_array_MCR(self, samp_rate_array_MCR): self.samp_rate_array_MCR = samp_rate_array_MCR self.set_samp_rate(self.samp_rate_array_MCR[15]) def get_rxmod(self): return self.rxmod def set_rxmod(self, rxmod): self.rxmod = rxmod def get_rrc_taps(self): return self.rrc_taps def set_rrc_taps(self, rrc_taps): self.rrc_taps = rrc_taps self.set_filt_delay(1+(len(self.rrc_taps)-1)/2) def get_ac_hex(self): return self.ac_hex def set_ac_hex(self, ac_hex): self.ac_hex = ac_hex def get_variable_qtgui_range_0_1(self): return self.variable_qtgui_range_0_1 def set_variable_qtgui_range_0_1(self, variable_qtgui_range_0_1): self.variable_qtgui_range_0_1 = variable_qtgui_range_0_1 self.uhd_usrp_source_0.set_gain(self.variable_qtgui_range_0_1, 0) def get_variable_qtgui_range_0(self): return self.variable_qtgui_range_0 def set_variable_qtgui_range_0(self, variable_qtgui_range_0): self.variable_qtgui_range_0 = variable_qtgui_range_0 self.uhd_usrp_sink_0_0.set_gain(self.variable_qtgui_range_0, 0) def get_samp_rate(self): return self.samp_rate def set_samp_rate(self, samp_rate): self.samp_rate = samp_rate self.uhd_usrp_source_0.set_samp_rate(self.samp_rate) self.uhd_usrp_sink_0_0.set_samp_rate(self.samp_rate) self.qtgui_time_sink_x_1_0.set_samp_rate(self.samp_rate) self.qtgui_time_sink_x_1.set_samp_rate(self.samp_rate) self.qtgui_time_sink_x_0_1.set_samp_rate(self.samp_rate) def get_rx_rrc_taps(self): return self.rx_rrc_taps def set_rx_rrc_taps(self, rx_rrc_taps): self.rx_rrc_taps = rx_rrc_taps self.digital_pfb_clock_sync_xxx_0_0.update_taps((self.rx_rrc_taps)) def get_rx_psf_taps(self): return self.rx_psf_taps def set_rx_psf_taps(self, rx_psf_taps): self.rx_psf_taps = rx_psf_taps def get_modulated_sync_word(self): return self.modulated_sync_word def set_modulated_sync_word(self, modulated_sync_word): self.modulated_sync_word = modulated_sync_word def get_mark_delay(self): return self.mark_delay def set_mark_delay(self, mark_delay): self.mark_delay = mark_delay self.digital_corr_est_cc_0.set_mark_delay(self.mark_delay) def get_frequencia_usrp(self): return self.frequencia_usrp def set_frequencia_usrp(self, frequencia_usrp): self.frequencia_usrp = frequencia_usrp self.uhd_usrp_source_0.set_center_freq(self.frequencia_usrp, 0) self.uhd_usrp_sink_0_0.set_center_freq(self.frequencia_usrp, 0) def get_filt_delay_0(self): return self.filt_delay_0 def set_filt_delay_0(self, filt_delay_0): self.filt_delay_0 = filt_delay_0 def get_filt_delay(self): return self.filt_delay def set_filt_delay(self, filt_delay): self.filt_delay = filt_delay def get_MCR(self): return self.MCR def set_MCR(self, MCR): self.MCR = MCR def main(top_block_cls=testing_ce, options=None): from distutils.version import StrictVersion if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"): style = gr.prefs().get_string('qtgui', 'style', 'raster') Qt.QApplication.setGraphicsSystem(style) qapp = Qt.QApplication(sys.argv) tb = top_block_cls() tb.start() tb.show() def quitting(): tb.stop() tb.wait() qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting) qapp.exec_() if __name__ == '__main__': main()
[ "andresilvamail@gmail.com" ]
andresilvamail@gmail.com
c33b3d02d04a7bac703bf073187bcc1ba14afbf0
60bc7f0f94ee1e79be14005b1fef33e3e2fb5ee5
/build/catkin_generated/generate_cached_setup.py
93a6b9945f90528516f27a8c15d81aa1167bf4d2
[]
no_license
kohtaro246/adp
bb0c93bf4176ce00090f3a1a5097a2ff028fe0f5
7f84efa694f5e39db2b481298be6e2a6ff679b02
refs/heads/master
2023-01-31T11:12:30.101732
2020-12-17T10:07:53
2020-12-17T10:07:53
321,580,127
0
1
null
2020-12-17T10:07:54
2020-12-15T06:57:19
Makefile
UTF-8
Python
false
false
1,254
py
# -*- coding: utf-8 -*- from __future__ import print_function import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/melodic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/melodic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in '/opt/ros/melodic'.split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/adp/catkin_ws/devel/env.sh') output_filename = '/home/adp/catkin_ws/build/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: # print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
[ "kohtaro246@gmail.com" ]
kohtaro246@gmail.com
a507d6f697a47fe68ceec087548744c10e06ba94
097c76a4ba7e0247cf10739f61bc8e620cdb7af9
/HW_4/7.py
7ed26441e82f8eaa81fbe3a71c47e436d632209a
[]
no_license
mihirsamdarshi/CMSI185Repo
ca07fc8940893c61376a9934817f457fe8f38205
a370778027cb716d432bb095f4d9381c50bdcbdb
refs/heads/master
2020-12-02T10:30:58.710306
2016-12-13T23:43:55
2016-12-13T23:43:55
67,733,042
0
0
null
null
null
null
UTF-8
Python
false
false
154
py
speed = float(input('Enter a rotation speed: ')) if ((2 * (speed**2))/ 3) > 60:     print('Rope will snap') else:     print('Rope will not snap')
[ "mihirsamdarshi@yahoo.com" ]
mihirsamdarshi@yahoo.com
94ae81be542e5eb6598216269feb217867c98289
66ad6bd8e1743ff1bce5b0f6860041de0ba5d91e
/functions_clerigo.py
5ad15aff62b19edfbecaf7f209a3d5535b1d0188
[]
no_license
MarkClerigo/fcpc_python_projects
d6ff9d1a8188596f72e31d92273bb0273a7665b6
2236484a62adb78eed65b667a426252ef905516a
refs/heads/master
2020-04-08T09:56:55.917797
2019-03-12T01:50:51
2019-03-12T01:50:51
159,246,926
0
0
null
null
null
null
UTF-8
Python
false
false
163
py
#Create Function #Default Value def xyz(a=10,b=20,c=30): print(a+b+c) xyz() #Explicit Assignment of parameters def asd(a,b,c): print(a+b+c) asd(5,15,20)
[ "noreply@github.com" ]
MarkClerigo.noreply@github.com
e6fcacc37f9c61488f4594ec494cc707bb731492
43a281752d9e1c18713aa069b218d7dab9fff92a
/run/move-pseudo.py
2bbd76282385a108ad0f0711baa34c038ee82e08
[ "MIT" ]
permissive
osmanbaskaya/mapping-impact
9d0a5098bdcf0fcad4d7a53c1c3c1e15281bd423
8024dd3b916ac2dfc336221dd32faba4c0a98442
refs/heads/master
2020-05-18T02:29:47.486594
2016-02-18T21:33:34
2016-02-18T21:33:34
12,935,363
1
0
null
null
null
null
UTF-8
Python
false
false
459
py
#! /usr/bin/python # -*- coding: utf-8 -*- __author__ = "Osman Baskaya" import os, shutil out = '../data/pos-filtering/' missing = open('dropbox-missing.txt').readlines() files = os.listdir(out) total = 0 for f in files: fn = f.rsplit('.', 2)[0] for m in missing: m = m.strip() if m == fn: total += 1 shutil.copy(out + f, 'missing/' + f) print total, len(missing) assert len(missing) == (total / 5)
[ "obaskaya@ku.edu.tr" ]
obaskaya@ku.edu.tr
365076fc80033c34b7408188d707ce611220bfc4
12d7a543a4013bfbeae29de2b5470dba8402236f
/3 제약충족 문제/csp.py
6e441471337df1b38fd97c6d1e8b5eef142e12a7
[]
no_license
painh/classicpythonalgorithm
a23c188654174cfb326932f23852877df687a555
933dcd7bf55589a28882592dc7a551210bb0e8dc
refs/heads/master
2022-12-18T20:48:58.986235
2020-09-16T14:53:58
2020-09-16T14:53:58
293,810,759
0
0
null
null
null
null
UTF-8
Python
false
false
2,577
py
from typing import Generic, TypeVar, Dict, List, Optional from abc import ABC, abstractmethod V = TypeVar('V') # 변수 타입 D = TypeVar('D') # 도멩니 타입 class Constraint(Generic[V, D], ABC): def __init__(self, variables: List[V]) -> None: self.variables = variables @abstractmethod def satisfied(self, assignment: Dict[V, D]) -> bool: ... class CSP(Generic[V, D]): def __init__(self, variables: List[V], domains: Dict[V, List[D]]) -> None: self.variables: List[V] = variables self.domains: Dict[V, List[D]] = domains self.constrainsts: Dict[V, List[Constraint[V, D]]] = {} for variable in self.variables: self.constrainsts[variable] = [] if variable not in self.domains: raise LookupError("모든 변수에 도메인이 할당 되어야 합니다.") def add_constraint(self, constraint: Constraint[V, D]) -> None: for variable in constraint.variables: if variable not in self.variables: raise LookupError("제약 조건 벼수가 아닙니다.") else: self.constrainsts[variable].append(constraint) def consistent(self, variable: V, assigment: Dict[V, D]) -> bool: for constraint in self.constrainsts[variable]: if not constraint.satisfied(assigment): return False return True def backtracking_search(self, assignment: Dict[V, D] = {}) -> Optional[Dict[V, D]]: # asigment는 모든 변수가 할당될 떄 완료된다.(기저조건) if len(assignment) == len(self.variables): return assignment # 할당되지 않은 모든 변수를 가져온다 unassigned: List[V] = [ v for v in self.variables if v not in assignment] # 할당되지 않은 첫번쨰 변수의 가능한 모든 도메인값을 가져온다 first: V = unassigned[0] for value in self.domains[first]: local_assignment = assignment.copy() local_assignment[first] = value # local_assignment 값이 알관적이면 재귀 호출한다 if self.consistent(first, local_assignment): result: Optional[Dict[V, D]] = self.backtracking_search( local_assignment) # 결과를 찾디 못하면 백트래킹을 종료한다. -> 반대 아님? if result is not None: return result return None
[ "gthpgth@gmail.com" ]
gthpgth@gmail.com
cf7687d3fabcd7f8948426fb39baf0835acabec6
c7846ee0828539c2a2019928c1cbf3abd35665bf
/2117_홈 방범 서비스.py
f9dffdb1022e9bb1bbf469a49a04df36144470e6
[]
no_license
whiteblue0/sw_problems
10476601c8d6d68d42e2f30af87fcde1e5dbbcc5
1cefc6236cccc20477bf4eadb458a0fd06b09126
refs/heads/master
2020-06-20T10:44:57.463275
2020-05-03T07:27:57
2020-05-03T07:27:57
197,098,448
0
0
null
null
null
null
UTF-8
Python
false
false
1,295
py
import sys sys.stdin = open("2117.txt") from collections import deque # 우,하,상,좌 dx = [1,0,0,-1] dy = [0,1,-1,0] def isbenefit(house,cost): return bool((house*M - cost)>=0) def ispass(y,x): return 0<=x<N and 0<=y<N and not visited[y][x] def bfs(sy,sx,K): global result house = 0 que = deque() que.append((sy,sx)) visited[sy][sx] = 1 if data[sy][sx]: house += 1 while que: y,x = que.popleft() for i in range(4): ny,nx = y+dy[i],x+dx[i] if ispass(ny,nx) and visited[y][x] < K: visited[ny][nx] = visited[y][x] + 1 if data[ny][nx]: house += 1 que.append((ny,nx)) cost = K*K + (K - 1)*(K - 1) if isbenefit(house,cost) and house > result: result = house T = int(input()) for tc in range(1,T+1): N,M = map(int,input().split()) data = [list(map(int,input().split())) for _ in range(N)] result = 0 for i in range(N): for j in range(N): for k in range(1,N+3): visited = [[0] * N for _ in range(N)] bfs(i,j,k) # for _ in range(N): # print(visited[_]) # print() print("#{} {}".format(tc,result))
[ "ghn03153@gmail.com" ]
ghn03153@gmail.com
4f77bcb3f264e2e7bc0b5737d7497ffa7ecbe21b
ccd0843ef54fa8679bb57abc61b39e8bb2fa04af
/elecciones/eleccion/models.py
d9eca84f2e1d983f14403a8a52be93c57ed4e0a4
[]
no_license
i32enrea/PW
a770f9aefa535e62290546ba54acd1097f325dc3
00aa9ef0122759d296063a717d073bb4c4b35ea1
refs/heads/master
2021-01-22T16:13:40.685336
2017-09-04T19:03:23
2017-09-04T19:03:23
102,391,397
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
from __future__ import unicode_literals from django.db import models # Create your models here. class partidos(models.Model): nombre = models.CharField(max_length = 100) def __unicode__(self): return self.nombre class mesa(models.Model): nombre = models.CharField(max_length = 100) partidos = models.ManyToManyField(partidos) def __unicode__(self): return self.nombre class circunscripcion(models.Model): nombre = models.CharField(max_length = 100) mesas = models.ManyToManyField(mesa) def __unicode__(self): return self.nombre class resultado(models.Model): partido = models.ForeignKey(partidos, related_name='partido') mesa = models.ForeignKey(mesa, related_name='mesa') resultado = models.IntegerField(default=0) def __unicode__(self): return self.resultado
[ "noreply@github.com" ]
i32enrea.noreply@github.com
f519dfba6b3570aa5fb76916bf826540617da5bc
742b733a72d51d545f8f78ef027b594a872fad2b
/ml/ft_tools.py
9571e2aa50eaa1d97aae86e8ab61b25e608fa6d0
[ "MIT" ]
permissive
rongyua/QAJudge
9ef4ef1d1080972f34267e663b4ed0da672e40b9
393d8cafac090c1161157d25080c6b73713676a9
refs/heads/master
2023-08-10T14:34:27.364093
2020-04-11T10:24:06
2020-04-11T10:24:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
885
py
possible_set = [ (196, 0), (348, 0), # (133, 1), (264, 0), (133, 0), (354, 0), (234, 0), (266, 0), (274, 0), (347, 0), (267, 0), (263, 0), (238, 0), (275, 0), (345, 0), (312, 0), # (134, 0), (224, 0), (141, 0), (128, 0), (303, 0), # (150, 0), # (269, 0), ] def get_ft_id(data): cnt = 0 ft_list = data["meta_info"]["law"] se = set() for x, y, z in ft_list: se.add((x, y)) temp = list(se) for x, y in temp: if (x, y) in possible_set: cnt += 1 if cnt != 1: return -1 for x, y in temp: if (x, y) in possible_set: for a in range(0, len(possible_set)): if possible_set[a] == (x, y): return a raise NotImplementedError def get_ft_num(): return len(possible_set)
[ "wangyz17@tsinghua.org.cn" ]
wangyz17@tsinghua.org.cn
f18a7797acace22a421ead142f9757dccadc59cb
0f16edb46a48f9b5a125abb56fc0545ede1d65aa
/utilities/src/d1_util/cert_create_ca.py
5bd75a9a50d2557873a14e63de246905aa5cae15
[ "Apache-2.0" ]
permissive
DataONEorg/d1_python
5e685f1af0c356190f2d6df45d1ac849e2f56972
d72a9461894d9be7d71178fb7310101b8ef9066a
refs/heads/master
2023-08-29T03:16:38.131760
2023-06-27T21:59:37
2023-06-27T21:59:37
60,103,877
15
12
Apache-2.0
2023-09-06T18:27:53
2016-05-31T16:01:00
Python
UTF-8
Python
false
false
2,790
py
#!/usr/bin/env python # This work was created by participants in the DataONE project, and is # jointly copyrighted by participating institutions in DataONE. For # more information on DataONE, see our web site at http://dataone.org. # # Copyright 2009-2017 DataONE # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generate a self signed root Certificate Authority (CA) certificate. The certificate can be used for issuing certificates and sign CSRs that are locally trusted. This is an example on how to use the DataONE Client and Common libraries for Python. It shows how to: - Use the d1_common.cert.x509 module to create a local self-signed CA certificate. """ import argparse import os import d1_common.cert.x509 import d1_common.util import d1_common.utils.ulog def main(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument("common_name", action="store", help="E.g., localCA") parser.add_argument( "ca_path", action="store", help="Save path for PEM formatted CA certificate" ) args = parser.parse_args() d1_common.utils.ulog.setup(is_debug=args.debug) try: create_ca(args) except CACreateError as e: print("Error: {}".format((str(e)))) except KeyboardInterrupt: print("Interrupted") def create_ca(args): ca_private_key = d1_common.cert.x509.generate_private_key() ca_name = d1_common.cert.x509.create_simple_dn(args.common_name) ca_cert = d1_common.cert.x509.generate_ca_cert(ca_name, ca_private_key) ca_pw_bytes = d1_common.cert.x509.input_key_passphrase("CA private key") pem_path = ( args.ca_path if args.ca_path.lower().endswith(".pem") else args.ca_path + ".pem" ) d1_common.cert.x509.save_pem( pem_path, d1_common.cert.x509.serialize_cert_to_pem(ca_cert) ) print("Wrote CA certificate to: {}".format(pem_path)) key_path = os.path.splitext(pem_path)[0] + ".key.pem" d1_common.cert.x509.save_pem( key_path, d1_common.cert.x509.serialize_private_key_to_pem(ca_private_key, ca_pw_bytes), ) print("Wrote CA private key to: {}".format(key_path)) class CACreateError(Exception): pass if __name__ == "__main__": main()
[ "git@dahlsys.com" ]
git@dahlsys.com
9793b580cb50d08f82da0188eb8812aad0659086
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02850/s368986446.py
f1b857d567b3088a886070f3484aa90d7fee1e94
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
768
py
import collections n = int(input()) graph = [tuple(map(int, input().split())) for _ in range(n - 1)] tree = [[] for _ in range(n)] deg = [0] * n color = {} for a, b in graph: a, b = min(a - 1, b - 1), max(a - 1, b - 1) deg[a] += 1 deg[b] += 1 tree[a].append(b) tree[b].append(a) color[(a, b)] = 0 color_max = max(deg) print(color_max) c = [0] * n c[0] = -1 que = collections.deque([0]) while len(que) != 0: i = que.popleft() tmp = 1 for j in tree[i]: if c[j] != 0: continue a, b = min(i, j), max(i, j) if tmp == c[i]: tmp += 1 color[(a, b)] = tmp c[j] = tmp que.append(j) tmp += 1 for a, b in graph: a, b = min(a - 1, b - 1), max(a - 1, b - 1) print(color[(a, b)])
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
14bf2a0b021e5c07f08fe12e443059dd2e1061c3
418d25dd2ffbec0a9f159753ac3ed4ead1a874bb
/Se6 Ta1 Q2.py
430cb3dc4a52538523d6a7cea2cfa5a1701cb298
[]
no_license
ivens-da-silva-brito/S-6
7fba794724051af306a38b5eef10206b9e219532
1cf14ea09353b7cee6be56499e602fb84984bd97
refs/heads/master
2022-12-24T08:44:31.850575
2020-09-28T07:46:46
2020-09-28T07:46:46
299,229,283
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
cont= 0 total = 0 while True: numero = int(input()) cont += 1 total += numero if numero ==0: cont-=1 break if cont ==0: print("nao houv numero valido") else: print(total/cont)
[ "noreply@github.com" ]
ivens-da-silva-brito.noreply@github.com
942f213b2565a626678cf125cb3bc61b7f42ee89
630e5afcde3ff732eaa27791e78dcd854abd7fdd
/dictionaries/favourite_languages.py
494397e917bc0de77f05d4806f10bc94fa362371
[]
no_license
beanie29/pythonstudy
9bf0bfe0f5504e202f1777d6b6bb3c3d6a11edd1
490ae6ea26af99823f6e5a8432c5fa462e9c4016
refs/heads/master
2020-08-11T20:43:55.918852
2019-11-05T22:09:23
2019-11-05T22:09:23
214,624,175
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
favourite_languages = { 'jen': ['python', 'ruby'], 'sarah': ['c'], 'edward': ['ruby', 'go'], 'phil': ['python', 'haskell'], } for name, languages in favourite_languages.items(): if len(languages) == 1: verb = 'is' else: verb = 'are' print(f"\n{name.title()}'s favourite languages {verb}") for language in languages: print(f"\t{language.title()}")
[ "ISSUMCH@ad.wbs.ac.uk" ]
ISSUMCH@ad.wbs.ac.uk
5e448cecca1e048433816f17a2ddebcb7702f039
2d2c10ffa7aa5ee35393371e7f8c13b4fab94446
/projects/ai/ad/src/model.py
65b0001051c970db25690816cd3ea14e11041b24
[]
no_license
faker2081/pikachu2
bec83750a5ff3c7b5a26662000517df0f608c1c1
4f06d47c7bf79eb4e5a22648e088b3296dad3b2d
refs/heads/main
2023-09-02T00:28:41.723277
2021-11-17T11:15:44
2021-11-17T11:15:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,144
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================== # \file model.py # \author chenghuige # \date 2020-04-12 20:13:51.596792 # \Description # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os from absl import flags FLAGS = flags.FLAGS import tensorflow as tf from tensorflow import keras from tensorflow.keras import backend as K from tensorflow.keras.layers import Input import numpy as np import melt import gezi logging = gezi.logging # from config import * from projects.ai.ad.src.config import * # self.encoder = melt.layers.transformer.Encoder(num_layers=5, d_model=16, num_heads=2, # dff=16, maximum_position_encoding=100, rate=1) # self.encoder = tf.keras.layers.GRU(32, return_sequences=False, # dropout=0.1, recurrent_dropout=0.1) # class Baseline(keras.Model): # def __init__(self): # super(Baseline, self).__init__() # self.cemb = tf.keras.layers.Embedding(5000000, FLAGS.emb_size, name='cemb') # self.encoder = melt.layers.Pooling('sum') # self.dense_age = keras.layers.Dense(1) # self.dense_gender = keras.layers.Dense(1) # def call(self, input): # # gezi.set('input', input) # creative_ids = input['creative_ids'] # x = self.encoder(self.cemb(creative_ids)) # self.age = self.dense_age(x) # self.gender = self.dense_gender(x) # self.pred_age = tf.math.sigmoid(self.age) # self.pred_gender = tf.math.sigmoid(self.gender) # return self.gender # class ClsTransformer(keras.Model): # def __init__(self): # super(ClsTransformer, self).__init__() # # self.cemb = tf.keras.layers.Embedding(5000000, FLAGS.emb_size, name='cemb') # self.aemb = tf.keras.layers.Embedding(4000000, FLAGS.emb_size, name='aemb') # self.pemb = tf.keras.layers.Embedding(20, FLAGS.emb_size, name='pemb') # self.iemb = tf.keras.layers.Embedding(400, FLAGS.emb_size, name='iemb') # self.temb = tf.keras.layers.Embedding(100, FLAGS.emb_size, name='temb') # # self.ctemb = tf.keras.layers.Embedding(200, FLAGS.emb_size, name='ctemb') # self.encoder = melt.layers.transformer.Encoder(num_layers=FLAGS.num_layers, d_model=256, num_heads=FLAGS.num_heads, # dff=512, maximum_position_encoding=FLAGS.max_len + 1, rate=FLAGS.dropout) # self.combine = melt.layers.SemanticFusionCombine() # self.dense_age = keras.layers.Dense(10) # self.dense_gender = keras.layers.Dense(1) # def call(self, input): # # gezi.set('input', input) # LEN = FLAGS.max_len # x_in = input['ad_ids'][:,:LEN] # x_mask = tf.not_equal(x_in, 0) # x_len = melt.length(x_in) # # x_c = self.cemb(x_in) # x_a = self.aemb(x_in) # x_p = self.pemb(input['product_categories'][:,:LEN]) # x_i = self.iemb(input['industries'][:,:LEN]) # x_t = self.temb(input['times'][:,:LEN]) # # x_ct = self.ctemb(input['click_times'][:,:5000]) # x = tf.concat([x_a, x_p, x_i, x_t], axis=-1) # # x_other = tf.concat([x_p, x_i, x_t], axis=-1) # # x = self.combine(x_a, x_other) # x = self.encoder(x, mask=x_mask) # x = melt.layers.Pooling(FLAGS.pooling)(x, x_len) # self.age = self.dense_age(x) # self.gender = self.dense_gender(x) # # self.pred_age = tf.math.sigmoid(self.age) # self.pred_age = tf.argmax(self.age, axis=1) # self.pred_gender = tf.math.sigmoid(self.gender) # return self.gender # class ClsTransformer2(keras.Model): # def __init__(self): # super(ClsTransformer2, self).__init__() # # self.cemb = tf.keras.layers.Embedding(5000000 + 2, FLAGS.emb_size, name='cemb') # self.aemb = tf.keras.layers.Embedding(4000000 + 2, FLAGS.emb_size, name='aemb') # self.pemb = tf.keras.layers.Embedding(20 + 2, FLAGS.emb_size, name='pemb') # self.iemb = tf.keras.layers.Embedding(400 + 2, FLAGS.emb_size, name='iemb') # self.temb = tf.keras.layers.Embedding(100 + 2, FLAGS.emb_size, name='temb') # # self.ctemb = tf.keras.layers.Embedding(200, FLAGS.emb_size, name='ctemb') # self.encoder = melt.layers.transformer.Encoder(num_layers=FLAGS.num_layers, d_model=256, num_heads=FLAGS.num_heads, # dff=512, maximum_position_encoding=FLAGS.max_len + 10, rate=FLAGS.dropout) # self.combine = melt.layers.SemanticFusionCombine() # self.dense_age = keras.layers.Dense(10) # self.dense_gender = keras.layers.Dense(1) # def call(self, input): # # gezi.set('input', input) # LEN = FLAGS.max_len # ad_ids = input['ad_ids'][:,:LEN] # dummy = tf.zeros_like(ad_ids)[:,:1] # mask = tf.cast(tf.not_equal(ad_ids, 0), tf.int64) # delta = mask * 2 # ad_ids = tf.concat([dummy + 1, dummy + 2, ad_ids + delta], axis=-1) # product_categories = input['product_categories'][:,:LEN] # product_categories = tf.concat([dummy + 1, dummy + 2, product_categories + delta], axis=-1) # industries = input['industries'][:,:LEN] # industries = tf.concat([dummy + 1, dummy + 2, industries + delta], axis=-1) # times = input['times'][:,:LEN] # times = tf.concat([dummy + 1, dummy + 2, times + delta], axis=-1) # x_in = ad_ids # x_mask = tf.not_equal(x_in, 0) # x_len = melt.length(x_in) # # x_c = self.cemb(x_in) # x_a = self.aemb(x_in) # x_p = self.pemb(product_categories) # x_i = self.iemb(industries) # x_t = self.temb(times) # # x_ct = self.ctemb(input['click_times'][:,:5000]) # x = tf.concat([x_a, x_p, x_i, x_t], axis=-1) # # x_other = tf.concat([x_p, x_i, x_t], axis=-1) # # x = self.combine(x_a, x_other) # x = self.encoder(x, mask=x_mask) # # x = melt.layers.Pooling(FLAGS.pooling)(x, x_len) # x_age = x[:, 0, :] # x_gender = x[:, 1, :] # self.age = self.dense_age(x_age) # self.gender = self.dense_gender(x_gender) # # self.pred_age = tf.math.sigmoid(self.age) # self.pred_age = tf.argmax(self.age, axis=1) # self.pred_gender = tf.math.sigmoid(self.gender) # return self.gender class ClsModel(keras.Model): def __init__(self): super(ClsModel, self).__init__() # self.cemb = tf.keras.layers.Embedding(3420000, FLAGS.emb_size, name='cemb') if FLAGS.use_w2v: emb = np.load('../input/all/glove-min5/emb.npy') FLAGS.vocab_size = emb.shape[0] FLAGS.emb_size = emb.shape[1] self.aemb = tf.keras.layers.Embedding(FLAGS.vocab_size, FLAGS.emb_size, name='aemb', embeddings_initializer=tf.constant_initializer(emb), trainable=FLAGS.train_emb) else: self.aemb = tf.keras.layers.Embedding(FLAGS.vocab_size, FLAGS.emb_size, name='aemb', trainable=True) self.piemb = tf.keras.layers.Embedding(70000, FLAGS.emb_size, name='piemb') self.pemb = tf.keras.layers.Embedding(20, FLAGS.emb_size, name='pemb') self.iemb = tf.keras.layers.Embedding(400, FLAGS.emb_size, name='iemb') self.temb = tf.keras.layers.Embedding(100, FLAGS.emb_size, name='temb') # self.ctemb = tf.keras.layers.Embedding(200, FLAGS.emb_size, name='ctemb') Encoder = getattr(tf.keras.layers, FLAGS.encoder) Encoder = tf.compat.v1.keras.layers.CuDNNGRU # self.encoder = Encoder(FLAGS.hidden_size, return_sequences=True) # dropout=FLAGS.dropout, recurrent_dropout=FLAGS.rdropout) self.encoder = melt.layers.CudnnRnn(num_layers=FLAGS.num_layers, num_units=FLAGS.hidden_size, keep_prob=1. - FLAGS.dropout, share_dropout=False, recurrent_dropout=True, concat_layers=FLAGS.concat_layers, bw_dropout=True, residual_connect=False, train_init_state=False, cell='lstm') # self.dropout = tf.keras.layers.Dropout(FLAGS.dropout) if FLAGS.lm_target: vsize = 1000000 if FLAGS.lm_target in ['ad_ids', 'creative_ids'] else 70000 self.sampled_weight = self.add_weight(name='sampled_weight', shape=(vsize, FLAGS.hidden_size), #initializer = keras.initializers.RandomUniform(minval=-10, maxval=10, seed=None), dtype=tf.float32, trainable=True) self.sampled_bias = self.add_weight(name='sampled_bias', shape=(vsize,), #initializer = keras.initializers.RandomUniform(minval=-10, maxval=10, seed=None), dtype=tf.float32, trainable=True) self.softmax_loss_function = melt.seq2seq.gen_sampled_softmax_loss_function(100, vsize, weights=self.sampled_weight, biases=self.sampled_bias, log_uniform_sample=True, is_predict=False, sample_seed=1234) # self.combine = melt.layers.SemanticFusionCombine() self.dropout = keras.layers.Dropout(0.2) self.dense_age = keras.layers.Dense(10, name='dense_age') self.dense_gender = keras.layers.Dense(1, name='dense_gender') self.pooling = melt.layers.Pooling(FLAGS.pooling) def call(self, input): gezi.set('input', input) LEN = FLAGS.max_len x_in = input['ad_ids'][:,:LEN] x_mask = tf.not_equal(x_in, 0) x_len = melt.length(x_in) if FLAGS.use_mask else None # x_c = self.cemb(input['creative_ids'][:,:LEN]) x_a = self.aemb(x_in) # x_pi = self.piemb(input['product_ids'][:,:LEN]) # x_p = self.pemb(input['product_categories'][:,:LEN]) # x_i = self.iemb(input['industries'][:,:LEN]) # x_t = self.temb(input['times'][:,:LEN]) # x_ct = self.ctemb(input['click_times'][:,:5000]) # x = tf.concat([x_a, x_p, x_pi, x_i, x_t], axis=-1) x = x_a # x_other = tf.concat([x_p, x_i, x_t], axis=-1) # x = self.combine(x_a, x_other) x = self.dropout(x) x = self.encoder(x, x_len) # x = self.encoder(x) # print(x) # x = self.dropout(x) if FLAGS.lm_target: return x x = self.pooling(x, x_len) self.age = self.dense_age(x) self.gender = self.dense_gender(x) # self.pred_age = tf.math.sigmoid(self.age) self.pred_age = tf.argmax(self.age, axis=1) self.pred_gender = tf.math.sigmoid(self.gender) return self.age class ClsModel2(keras.Model): def __init__(self): super(ClsModel2, self).__init__() # self.cemb = tf.keras.layers.Embedding(3420000, FLAGS.emb_size, name='cemb') if FLAGS.use_w2v: emb = np.load('../input/all/glove-min5/emb.npy') FLAGS.vocab_size = emb.shape[0] FLAGS.emb_size = emb.shape[1] self.aemb = tf.keras.layers.Embedding(FLAGS.vocab_size, FLAGS.emb_size, name='aemb', embeddings_initializer=tf.constant_initializer(emb), trainable=FLAGS.train_emb) else: self.aemb = tf.keras.layers.Embedding(FLAGS.vocab_size, FLAGS.emb_size, name='aemb', trainable=FLAGS.train_emb) self.piemb = tf.keras.layers.Embedding(70000, FLAGS.emb_size, name='piemb') self.pemb = tf.keras.layers.Embedding(20, FLAGS.emb_size, name='pemb') self.iemb = tf.keras.layers.Embedding(400, FLAGS.emb_size, name='iemb') self.temb = tf.keras.layers.Embedding(100, FLAGS.emb_size, name='temb') # self.ctemb = tf.keras.layers.Embedding(200, FLAGS.emb_size, name='ctemb') self.position_emb = tf.keras.layers.Embedding(10000, 320, name='position_emb') # Encoder = getattr(tf.keras.layers, FLAGS.encoder) # self.encoder = Encoder(FLAGS.hidden_size, return_sequences=True, # dropout=FLAGS.dropout, recurrent_dropout=FLAGS.rdropout) self.encoder = melt.layers.transformer.Encoder(num_layers=1, d_model=128, num_heads=4, dff=128, rate=0) # self.encoder = melt.layers.CudnnRnn(num_layers=FLAGS.num_layers, # num_units=FLAGS.hidden_size, # keep_prob=1. - FLAGS.dropout, # share_dropout=False, # recurrent_dropout=False, # concat_layers=FLAGS.concat_layers, # bw_dropout=False, # residual_connect=False, # train_init_state=False, # cell='lstm') # self.dropout = tf.keras.layers.Dropout(FLAGS.dropout) if FLAGS.lm_target: vsize = 1000000 if FLAGS.lm_target in ['ad_ids', 'creative_ids'] else 70000 self.sampled_weight = self.add_weight(name='sampled_weight', shape=(vsize, FLAGS.hidden_size), #initializer = keras.initializers.RandomUniform(minval=-10, maxval=10, seed=None), dtype=tf.float32, trainable=True) self.sampled_bias = self.add_weight(name='sampled_bias', shape=(vsize,), #initializer = keras.initializers.RandomUniform(minval=-10, maxval=10, seed=None), dtype=tf.float32, trainable=True) self.softmax_loss_function = melt.seq2seq.gen_sampled_softmax_loss_function(100, vsize, weights=self.sampled_weight, biases=self.sampled_bias, log_uniform_sample=True, is_predict=False, sample_seed=1234) self.mlp = melt.layers.MLP([128, 32], drop_rate=0.2, name='mlp') # self.combine = melt.layers.SemanticFusionCombine() self.dense_age = keras.layers.Dense(10, name='dense_age') self.dense_gender = keras.layers.Dense(1, name='dense_gender') self.pooling = melt.layers.Pooling(FLAGS.pooling) def call(self, input): gezi.set('input', input) # tf.print(input['age']) # if K.learning_phase(): # with open('/tmp/1.txt', 'a') as out: # print(gezi.decode(input['id'].numpy()).astype(int), file=out) # if K.learning_phase(): # print(gezi.decode(input['id'].numpy()).astype(int)) LEN = FLAGS.max_len x_in = input['ad_ids'][:,:LEN] x_mask = tf.not_equal(x_in, 0) x_len = melt.length(x_in) if FLAGS.use_mask else None # x_c = self.cemb(input['creative_ids'][:,:LEN]) x_a = self.aemb(x_in) # x_pi = self.piemb(input['product_ids'][:,:LEN]) # x_p = self.pemb(input['product_categories'][:,:LEN]) # x_i = self.iemb(input['industries'][:,:LEN]) # x_t = self.temb(input['times'][:,:LEN]) # # x_ct = self.ctemb(input['click_times'][:,:5000]) # x = tf.concat([x_a, x_p, x_pi, x_i, x_t], axis=-1) x = x_a # x_other = tf.concat([x_p, x_i, x_t], axis=-1) # x = self.combine(x_a, x_other) x += self.position_emb(melt.get_positions(x)) x = self.encoder(x) # print(x) # x = self.dropout(x) if FLAGS.lm_target: return x x = self.pooling(x, x_len) # x = self.mlp(x) self.age = self.dense_age(x) self.gender = self.dense_gender(x) # self.pred_age = tf.math.sigmoid(self.age) self.pred_age = tf.argmax(self.age, axis=1) self.pred_gender = tf.math.sigmoid(self.gender) return self.age
[ "chenghuige@gmail.com" ]
chenghuige@gmail.com
0e61d28fb4685fae1e844483f6497e113ca42ae9
34aa10ad60869c515fb9c75488e3033244f9f524
/stack/150.py
a823cca50ced0d8eb9105b724fbb7c59c9c3a217
[]
no_license
superMC5657/leetcode-py
558a98a4f995a545b42abe044ce23fd8d55d4b2b
0bbad7154f9f936eca42a34d7772ffdc3c94e6b2
refs/heads/master
2023-06-24T09:35:12.655302
2021-07-26T15:47:25
2021-07-26T15:47:25
270,066,500
0
0
null
null
null
null
UTF-8
Python
false
false
2,902
py
# -*- coding: utf-8 -*- # !@time: 2021-03-21 14:45:45 # !@author: superMC @email: 18758266469@163.com # !@question title: evaluate-reverse-polish-notation # 根据 逆波兰表示法,求表达式的值。 # # 有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。 # # # # 说明: # # # 整数除法只保留整数部分。 # 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。 # # # # # 示例 1: # # # 输入:tokens = ["2","1","+","3","*"] # 输出:9 # 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9 # # # 示例 2: # # # 输入:tokens = ["4","13","5","/","+"] # 输出:6 # 解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6 # # # 示例 3: # # # 输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"] # 输出:22 # 解释: # 该算式转化为常见的中缀算术表达式为: # ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 # = ((10 * (6 / (12 * -11))) + 17) + 5 # = ((10 * (6 / -132)) + 17) + 5 # = ((10 * 0) + 17) + 5 # = (0 + 17) + 5 # = 17 + 5 # = 22 # # # # 提示: # # # 1 <= tokens.length <= 104 # tokens[i] 要么是一个算符("+"、"-"、"*" 或 "/"),要么是一个在范围 [-200, 200] 内的整数 # # # # # 逆波兰表达式: # # 逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。 # # # 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。 # 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。 # # # 逆波兰表达式主要有以下两个优点: # # # 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。 # 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。 # # Related Topics 栈 # 👍 319 👎 0 from typing import List # leetcode submit region begin(Prohibit modification and deletion) class Solution: def evalRPN(self, tokens: List[str]) -> int: stack = [] for token in tokens: if token not in ("+","-","*","/"): stack.append(int(token)) else: num2 = stack.pop() num1 = stack.pop() stack.append(self.evaluate(num1, num2, token)) return stack[0] def evaluate(self, num1, num2, op): if op == "+": return num1 + num2 elif op == "-": return num1 - num2 elif op == "*": return num1 * num2 elif op == "/": return int(num1 / float(num2)) # leetcode submit region end(Prohibit modification and deletion)
[ "18758266469.com" ]
18758266469.com
7dca8524710f9522b297b367c4aacaea5aba1716
f42598c5be4408ebec48828923869cb003677ebd
/integer_data_type.py
fd34b80747002537d6c41f2be95820e9c2e54aac
[]
no_license
pravinmaske/Udemy_Python
e117a5f024390eaa01061018878903bcff9f435d
0468218e9035f86b09f7ae25493fd5e5c40f91c2
refs/heads/master
2020-06-01T07:30:18.976375
2019-06-09T16:54:30
2019-06-09T16:54:30
190,700,153
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
import time import sys def calc(a): for i in range(10000000): 2*a #pass start=time.perf_counter() calc(2**100000) end=time.perf_counter() print('Time taken for calculation of 2**100000:',end-start)
[ "pravinmaske963@gmail.com" ]
pravinmaske963@gmail.com
0df2986ecc8f394823d4929862f8056415531cb8
72bbbd03004d690ae654cffa36d291a1d769ca23
/icelandic_vocab.py
df61533e1789f2fcc1eb2e4f34a2de03e682a3fd
[]
no_license
treecasiano/vocabulary_game
e90a1b0926b4b83f1997747effd26a01157b596c
720d02d1e08db2c40a0332bb85218a0435878b9f
refs/heads/master
2020-04-06T03:53:30.957596
2015-10-29T17:28:09
2015-10-29T17:28:09
37,989,691
0
0
null
null
null
null
UTF-8
Python
false
false
2,242
py
#!/usr/bin/env python # coding: utf-8 colors = { 'black' : 'svartur', 'blue' : 'blár', 'brown' : 'brúnn', 'green' : 'grænn', 'gray' : 'grár', 'orange' : 'appelsínugulur', 'pink' : 'bleikur', 'purple' : 'fjólublár', 'red' : 'rauður', 'white' : 'hvítur', 'yellow' : 'gulur' } numbers = { '1' : 'einn', '2' : 'tveir', '3' : 'þrír', '4' : 'fjórir', '5' : 'fimm', '6' : 'sex', '7' : 'sjö', '8' : 'átta', '9' : 'níu', '10' : 'tíu', '11' : 'ellefu', '12' : 'tólf', '13' : 'þrettán', '14' : 'fjórtán', '15' : 'fimmtán', '16' : 'sextán', '17' : 'sautján', '18' : 'átján', '19' : 'nítján', '20' : 'tuttugu', '21' : 'tuttugu og einn', '22' : 'tuttugu og tveir', '23' : 'tuttugu og þrír', '30' : 'þrjátíu', '31' : 'þrjátíu og einn', '40' : 'fjörutíu', '50' : 'fimmtíu', '60' : 'sextíu', '70' : 'sjötíu', '80' : 'áttatíu', '90' : 'níutíu', '100': 'hundrað', '101': 'hundrað og einn', '200': 'tvö hundruð' } body_parts = { 'arm' : 'armur', 'back' : 'hryggur', 'belly button' : 'nafli', 'blood' : 'blóð', 'cheek' : 'kinn', 'chest (for a man)' : 'brjóstkassi', 'chest/breast (for a woman)' : 'brjóst', 'chin' : 'haka', 'ear' : 'eyra', 'elbow' : 'olnbogi', 'eye' : 'auga', 'finger' : 'fingur', 'foot' : 'fótur', 'forehead' : 'enni', 'hair' : 'hár', 'hand' : 'hönd', 'head' : 'höfuð', 'heart' : 'hjarta', 'heel' : 'hæll', 'hip' : 'mjöðm', 'index finger' : 'vísifingur', 'knee' : 'kné', 'larynx' : 'barkakýli', 'leg' : 'fótur', 'lip' : 'vör', 'middle finger' : 'löngutöng', 'mouth' : 'munnur', 'muscle' : 'vöðvi', 'mustache' : 'grön', 'nail' : 'nögl', 'neck' : 'háls', 'nose' : 'nef', 'pinkie' : 'litilfingur', 'rib' : 'la costola', 'ring finger' : 'hringfingur', 'shoulder' : 'öxl', 'skeleton' : 'beinagrind', 'stomach' : 'maga', 'teeth' : 'tönn', 'thigh' : 'læri', 'thumb' : 'þumall', 'vein' : 'æð', 'wrist' : 'úlnlið' }
[ "tree.pdx@gmail.com" ]
tree.pdx@gmail.com
026efd17fcede4475441a166270eec3c8db8b725
c17942b9b9db4081a9b4bc75b44cdf48a926cc94
/EV3PiBaseCode_spg9.py
4c8c4926a45ea8016493ab8c476c53bbb34d59dd
[]
no_license
sgordon291us/lego-ev3
fb456401c55211368bdedb731c88eba896cd5073
468b7b8c7a8b2075977d58fb66da126a591049f8
refs/heads/master
2020-06-13T17:20:32.707813
2020-04-17T13:55:44
2020-04-17T13:55:44
194,729,992
0
0
null
null
null
null
UTF-8
Python
false
false
4,353
py
#! /usr/bin/env python # import packages import serial import time import datetime import struct import os def printSerIntInfo(ser): #print('End Device Name {} Port = {} Baud Rate = {} IsOpen = {}\n XonXoff = {}'.format(ser.name, # ser.port, ser.baudrate, ser.isOpen(), ser.xonxoff)) print(ser.get_settings()) ## print('Settings: {}'.format(ser.getSettingsDict())) ## print('Num bytes in waiting = {} isOpen = {}'.format(ser.inWaiting(), ser.isOpen())) ## print('CD {} CTS {} DSR {} RI {}'.format(ser.getCD(), ser.getCTS(), ser.getDSR(), ser.getRI())) def main(): EV3 = serial.Serial('/dev/rfcomm5',timeout=1) printSerIntInfo(EV3) #Debugging ## print('End device name = ',EV3.name) ## print('Baud rate = ', EV3.baudrate) timeLastRx = datetime.datetime.now() print("Local Time Now ",format(timeLastRx)) RxToPeriod = 5 #Seconds. This is the amount of time that can pass before doing a buffer reset while 1: ## print('Time {} CD {} CTS {} DSR {} RI {} InWaiting {}'.format(datetime.datetime.now().time(), EV3.getCD(), ## EV3.getCTS(), EV3.getDSR(), EV3.getRI(), EV3.inWaiting())) if EV3.inWaiting() >= 2: # check for ev3 message ## print('inWaiting = {}'.format(EV3.inWaiting())) # Get the number of bytes in this message s = EV3.read(2) # struct.unpack returns a tuple unpack using [] [numberOfBytes] = struct.unpack("<H", s) ## print numberOfBytes, # Wait for the message to complete ## print("{} Expecting num of bytes {}".format(datetime.datetime.now().time(), numberOfBytes)) while EV3.inWaiting() < numberOfBytes: print "Waiting at point 1" print "Expecting num of bytes", numberOfBytes time.sleep(0.01) #read number of bytes s = s + EV3.read(numberOfBytes) ## print('s = {}'.format(s)) s = s[6:] # Get the mailboxName mailboxNameLength = ord(s[0]) mailboxName = s[1:1+mailboxNameLength-1] ## print mailboxName, s = s[mailboxNameLength+1: ] # Get the message text [messageLength] = struct.unpack("<H", s[0:2]) message = s[2:2+messageLength] timeLastRx = datetime.datetime.now() print('{}; Num of Bytes = {} Timenow {}; TimeLastRx {}; inWaiting = {}'.format(message, numberOfBytes, datetime.datetime.now().time(), timeLastRx.time(), EV3.inWaiting())) #print message ## timeLastRx = datetime.datetime.now() ## if 'hi' in message: ## print "Hello EV3" elif EV3.inWaiting() == 1: print('inWaiting = 1; timenow is {}'.format(datetime.datetime.now().time())) ## printSerIntInfo(EV3) time.sleep(0.01) else: # See if a buffer reset is needede timeNow = datetime.datetime.now() timeSinceLastRx = timeNow - timeLastRx #secSinceLastRx = timeSinceLastRx.second + timeSinceLastRx.microsecond/1000000 secSinceLastRx = timeSinceLastRx.total_seconds() # print "Time Since Last Rx: ", timeSinceLastRx if secSinceLastRx > RxToPeriod: # EV3.flushInput #EV3.close() #EV3.open() timeLastRx = timeNow # Prevents repetitive flushing #print("*** Flushed at ",timeNow) ## print("Waiting at point 2 at {}".format(datetime.datetime.now().time())) #in_wait = EV3.inWaiting() #print "Num of bytes waiting = ", in_wait ## printSerIntInfo(EV3) ## EV3.flush() ## EV3.reset_input_buffer() ## EV3.reset_output_buffer() # No data is ready to be processed yield control to system time.sleep(0.01) if __name__ == "__main__": main()
[ "noreply@github.com" ]
sgordon291us.noreply@github.com
2a2d22adbea54a98abb0bf3c680dc0b0436b242b
6fde9e27c643a7cef26c416b6d7f383c9ce219ce
/NmapScanner.py
46186c642759b834827e09cf9efd9c8980617aae
[]
no_license
mtuong/Violent-Python-Examples
b5d8ccded6f9b6215e4c0450f163bbd4929b1170
debd0b49601ad0551d7f241cad7fe3ca3c58c1dd
refs/heads/master
2020-09-21T23:03:30.824234
2019-12-03T11:36:58
2019-12-03T11:36:58
224,965,015
0
0
null
null
null
null
UTF-8
Python
false
false
3,391
py
# -*- coding: utf-8 -*- import pprint import sys import Utils import BaseModule import nmap import Decorators @Decorators.ModuleDocstringParser class NmapScanner(BaseModule.BaseModule): """ Scan network with nmap and emit result as new event. Configuration template: - NmapScanner: network: # <type: string; is: required> netmask: # <default: '/24'; type: string; is: optional> ports: # <default: None; type: None||string; is: optional> arguments: # <default: '-O -F --osscan-limit'; type: string; is: optional> interval: # <default: 900; type: integer; is: optional> receivers: - NextModule """ module_type = "input" """Set module type""" # TODO: This module can run in forked processes. We need some way to partition the network and give each process a # segment to scan. can_run_forked = False def configure(self, configuration): # Call parent configure method BaseModule.BaseModule.configure(self, configuration) self.network = self.getConfigurationValue('network') self.netmask = self.getConfigurationValue('netmask') self.arguments = self.getConfigurationValue('arguments') def getScannerFunc(self): @Decorators.setInterval(self.getConfigurationValue('interval'), call_on_init=True) def scanNetwork(): # Get all alive hosts try: scan_results = self.scanner.scan('%s%s' % (self.network,self.netmask), arguments="-sn") except nmap.PortScannerError: etype, evalue, etb = sys.exc_info() self.logger.warning("Scanning failed. Exception: %s, Error: %s." % (etype, evalue)) return for host, scan_result in scan_results['scan'].items(): try: host_scan_result = self.scanner.scan('%s/32' % (host), arguments=self.arguments) except nmap.PortScannerError: etype, evalue, etb = sys.exc_info() self.logger.warning("Scanning failed. Exception: %s, Error: %s." % (etype, evalue)) return if host in host_scan_result['scan']: self.handleEvent(host, host_scan_result['scan'][host]) return scanNetwork def handleEvent(self, host, scan_result): # Get OS from scan. if 'osmatch' in scan_result: os_info = sorted(scan_result['osmatch'], key=lambda k: int(k['accuracy'])) scan_result['detected_os'] = os_info[0]['name'] scan_result.pop('osmatch') if 'vendor' in scan_result and isinstance(scan_result['vendor'], dict) and len(scan_result['vendor']) > 0: scan_result['vendor'] = scan_result['vendor'].values()[0] # Drop some fields. if 'osclass' in scan_result: scan_result.pop('osclass') event = Utils.getDefaultEventDict(scan_result, caller_class_name=self.__class__.__name__) event['gambolputty']['event_type'] = 'nmap_scan' self.sendEvent(event) def start(self): self.scanner = nmap.PortScanner() timed_func = self.getScannerFunc() self.timed_func_handler = Utils.TimedFunctionManager.startTimedFunction(timed_func)
[ "noreply@github.com" ]
mtuong.noreply@github.com
7c33f774adf67e016e517a5dd40cc2a9543dbbe2
50ca8c4d75877249fbaed6509190906042d88a6a
/tests/test_users.py
e32344cf2ae337560082d46d6957adc64a85ef8c
[]
no_license
JuanSBrinez/web_page
233bbce3f12dc70da81f4dd2e48e9a8f2b54881e
e103aac6e901e42cdf4f276a20d84426f54fbad3
refs/heads/master
2023-06-06T20:22:55.165611
2021-07-14T16:41:24
2021-07-14T16:41:24
385,319,697
0
0
null
null
null
null
UTF-8
Python
false
false
1,390
py
import unittest, sys, os sys.path.append('../web_page') from file1 import app, db class UsersTests(unittest.TestCase): # executed prior to each test def setUp(self): app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///test.db' self.app = app.test_client() db.drop_all() db.create_all() ############### #### tests #### ############### def register(self, username, email, password): return self.app.post('/register', data=dict(username=username, email=email, password=password, confirm_password=password), follow_redirects=True) def test_valid_user_registration(self): response = self.register('bob', 'bob@example.com', '12345') self.assertEqual(response.status_code, 200) def test_invalid_username_registration(self): response = self.register('t', 'test@example.com', 'FlaskIsAwesome') self.assertIn(b'Field must be between 2 and 20 characters long.', response.data) def test_invalid_email_registration(self): response = self.register('test2', 'test@example', 'FlaskIsAwesome') self.assertIn(b'Invalid email address.', response.data) if __name__ == "__main__": unittest.main()
[ "juan.brinez@loras.edu" ]
juan.brinez@loras.edu
dd8065df1ad12df2142dc978ab09e183b5830273
451ea083d1dce106ffb3ab7c78e8fa3abe61a725
/Day 18/getComments.py
40deb034de3bab1c4f1bcd015b0ebde5dac86620
[]
no_license
S4ND1X/365-Days-Of-Code
52dd6a8b9d0f5c3c27b23da8914725e141d06596
257186d2a4d7c28a3063add55d6b72d20fccb111
refs/heads/master
2022-04-19T22:55:08.426317
2020-03-02T23:35:28
2020-03-02T23:35:28
164,487,731
5
1
null
null
null
null
UTF-8
Python
false
false
1,052
py
from tweepy import OAuthHandler from tweepy import API from tweepy import Cursor from datetime import datetime, date, time, timedelta from collections import Counter import sys import tweepy consumer_key = 'UP4MwbLKrDclqSC3EpkRph6Pd' consumer_secret = '1YokukdNJCi3VAM7qIOzSrBjOg06Lpjx2W3ehEjfrPeEQKW5Kj' access_token = '939919094-PA76fcK91fIjoaN1LASGYdKlwkroN2TJWwIRiwbg' access_token_secret = 'GqvN4ZR3O5aY4VEo37xugez8zUCn5kNTaMZUcuJuv0ZZy' auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) auth_api = API(auth) account_list = ["jufut390"] if len(account_list) > 0: for target in account_list: print("Getting data for " + target) item = auth_api.get_user(target) print("screen_name: " + item.screen_name) #Get info about tweets end_date = datetime.utcnow() - timedelta(days=5) for status in Cursor(auth_api.user_timeline, id=target, tweet_mode = "extended").items(): #print tweets if status.created_at < end_date: break
[ "42609763+S4ND1X@users.noreply.github.com" ]
42609763+S4ND1X@users.noreply.github.com
30bf1a0ab518d9f9d117ac6f9a4d392a86adf78b
e558c698295e839fdc092279d056081b97fbd2a3
/cgi-bin/sudokuu.py
c2566c5ffd71f076820dd9f364e080c2613eb75a
[]
no_license
sudokuu/sudokuu.github.io
94bf92916b785e9fe525175003339eff99610c66
6732f349882915d3b32af36e72734e0b1dec05c7
refs/heads/master
2020-04-14T19:48:39.258820
2019-07-30T22:19:01
2019-07-30T22:19:01
68,010,180
0
0
null
null
null
null
UTF-8
Python
false
false
4,034
py
#!/usr/bin/python import cgi import random jogoFacil = ["460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078"] jogoFacilComp = ["463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178"] jogoMedio = ["460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078"] jogoMedioComp = ["463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178"] jogoDificil = ["460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078", "460500019\n827600045\n000020060\n000207081\n006000400\n510304000\n080050000\n730001652\n640002078"] jogoDificilComp = ["463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178", "463578219\n827619345\n951423867\n394267581\n276185493\n518394726\n182756934\n739841652\n645932178"] # imprime um jogo aleatorio da lista de acordo com a dificuldade def geraJogo(dificuldade): if ( dificuldade == '0' ): rand = random.randint(0,4) print jogoFacil[rand] print jogoFacilComp[rand] elif ( dificuldade == '1' ): rand = random.randint(0,4) print jogoMedio[rand] print jogoMedioComp[rand] elif ( dificuldade == '2' ): rand = random.randint(0,4) print jogoDificil[rand] print jogoDificilComp[rand] else: print 'dificuldade invalida' return; # cabecalho da resposta print "Content-type:text/plain" print form = cgi.FieldStorage() if "dificuldade" not in form: print "chamada invalida" else: geraJogo(form.getfirst("dificuldade", "").upper())
[ "felipehendrix@programmer.net" ]
felipehendrix@programmer.net
e266848221e4a52337e265a2244057b35982fe8d
948b4d6deee2a5c093f7f5b1daab00936a30f1b9
/kali_rootfs/usr/share/sqlmap/lib/request/basicauthhandler.py
89ec252bd7badfa2fbb9c882ebad3cc798743b51
[]
no_license
goutham414/kali-n900
0bc476b67ae59ed2f1e25055759cefd38ab72a20
1ab8310a5a5e22b35535fe85ad16bd3dd8286d85
refs/heads/master
2021-01-10T10:51:51.308505
2016-03-21T20:08:39
2016-03-21T20:08:39
54,414,038
5
4
null
null
null
null
UTF-8
Python
false
false
1,377
py
#!/usr/bin/env python """ Copyright (c) 2006-2016 sqlmap developers (http://sqlmap.org/) See the file 'doc/COPYING' for copying permission """ import urllib2 class SmartHTTPBasicAuthHandler(urllib2.HTTPBasicAuthHandler): """ Reference: http://selenic.com/hg/rev/6c51a5056020 Fix for a: http://bugs.python.org/issue8797 """ def __init__(self, *args, **kwargs): urllib2.HTTPBasicAuthHandler.__init__(self, *args, **kwargs) self.retried_req = set() self.retried_count = 0 def reset_retry_count(self): # Python 2.6.5 will call this on 401 or 407 errors and thus loop # forever. We disable reset_retry_count completely and reset in # http_error_auth_reqed instead. pass def http_error_auth_reqed(self, auth_header, host, req, headers): # Reset the retry counter once for each request. if hash(req) not in self.retried_req: self.retried_req.add(hash(req)) self.retried_count = 0 else: if self.retried_count > 5: raise urllib2.HTTPError(req.get_full_url(), 401, "basic auth failed", headers, None) else: self.retried_count += 1 return urllib2.HTTPBasicAuthHandler.http_error_auth_reqed( self, auth_header, host, req, headers)
[ "rapol.goutham@gmail.com" ]
rapol.goutham@gmail.com
03c78e9dee6e157c437e2c34c55b632c02c1ee94
c264ad6205c0b47038f9f67ce52eabd816ddd911
/prime.py
88c7cf50a84af286b58cb50fa7c24746682251b0
[]
no_license
kedharavarshini/python-lab
3dda522062ef077047f79158263142502d2790a1
1ebe6b70a3ba49a3b6902005ef6cab18712094f9
refs/heads/master
2020-07-22T17:37:10.159215
2019-09-24T14:59:00
2019-09-24T14:59:00
207,277,262
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
a=int(input("enter a number")) for b in range(2,a): if a%b==0: break if b<a: print(a,"is prime") else: print(a,"is not prime")
[ "noreply@github.com" ]
kedharavarshini.noreply@github.com
6bf6c8e3a697fc2008290a64bb2cf9844aac8da2
169e75df163bb311198562d286d37aad14677101
/tensorflow/tensorflow/python/training/checkpointable/layer_utils.py
978fcb2252cd4481b8286bdf3afd58b30ce6d665
[ "Apache-2.0" ]
permissive
zylo117/tensorflow-gpu-macosx
e553d17b769c67dfda0440df8ac1314405e4a10a
181bc2b37aa8a3eeb11a942d8f330b04abc804b3
refs/heads/master
2022-10-19T21:35:18.148271
2020-10-15T02:33:20
2020-10-15T02:33:20
134,240,831
116
26
Apache-2.0
2022-10-04T23:36:22
2018-05-21T08:29:12
C++
UTF-8
Python
false
false
3,443
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities related to layer/model functionality.""" # TODO(b/110718070): Move these functions back to tensorflow/python/keras/utils # once __init__ files no longer require all of tf.keras to be imported together. from __future__ import absolute_import from __future__ import division from __future__ import print_function def is_layer(obj): """Implicit check for Layer-like objects.""" # TODO(b/110718070): Replace with isinstance(obj, base_layer.Layer). return (hasattr(obj, "call") and hasattr(obj, "build") and hasattr(obj, "variables")) def filter_empty_layer_containers(layer_list): """Filter out empty Layer-like containers.""" return [layer for layer in layer_list # Filter out only empty Checkpointable data structures. Empty Networks # will still show up in Model.layers. if is_layer(layer) or getattr(layer, "layers", True)] def gather_trainable_weights(trainable, sub_layers, extra_variables): """Lists the trainable weights for an object with sub-layers. Args: trainable: Whether the object collecting the variables is trainable. sub_layers: A flat list of Layer objects owned by this object, to collect variables from. extra_variables: Any extra variables to include. Their `.trainable` property is used to categorize them. Returns: A list of collected trainable weights/variables. """ if not trainable: return [] weights = [] for layer in sub_layers: weights += layer.trainable_weights trainable_extra_variables = [ v for v in extra_variables if v.trainable] return weights + trainable_extra_variables def gather_non_trainable_weights(trainable, sub_layers, extra_variables): """Lists the non-trainable weights for an object with sub-layers. Args: trainable: Whether the object collecting the variables is trainable. sub_layers: A flat list of Layer objects owned by this object, to collect variables from. extra_variables: Any extra variables to include. Their `.trainable` property is used to categorize them. Returns: A list of collected non-trainable weights/variables. """ trainable_extra_variables = [] non_trainable_extra_variables = [] for v in extra_variables: if v.trainable: trainable_extra_variables.append(v) else: non_trainable_extra_variables.append(v) weights = [] for layer in sub_layers: weights += layer.non_trainable_weights if not trainable: trainable_weights = [] for layer in sub_layers: trainable_weights += layer.trainable_weights return (trainable_weights + trainable_extra_variables + weights + non_trainable_extra_variables) return weights + non_trainable_extra_variables
[ "thomas.warfel@pnnl.gov" ]
thomas.warfel@pnnl.gov
0b524586ad4cd81467f9beee07e15fe46647848a
c2ccf0fb3b09c0d2e73001133f12d1814bea1e73
/main.py
c8865eabd212549793cfd1c93964fc6f0f048c41
[]
no_license
nguyenkhoa0721/Smart-Glass-for-blind-people
484fb3dd19114625630e2b0632dd49b37ded3781
5313eff98f962ad7417b4f940d63138b54184583
refs/heads/master
2020-04-15T10:07:09.757270
2019-09-04T03:12:28
2019-09-04T03:12:28
164,581,071
1
0
null
null
null
null
UTF-8
Python
false
false
6,894
py
import cv2 import sys import numpy as np import os import json import time import threading import socket import threading from http.server import BaseHTTPRequestHandler,HTTPServer from urllib.parse import parse_qs import cgi import base64 import io from imageio import imread import matplotlib.pyplot as plt import json from odes.odes import classfy from FTTS import TTS from news.news import NEWS from news.read import READ from ocr.ocr import OCR from ocr.corrector import ORRECTOR from ocr.pre import PRE from sdes.imagecaption import CAPTION from weather import WEATHER from wiki import WIKI from face.facedes import FACEDES import cloudsight from google.cloud import translate from face.facerec import FACEREC recognizer = cv2.face.LBPHFaceRecognizer_create() #recognizer.read('face/trainer/trainer.yml') cascadePath = "face/haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeClassifier(cascadePath) font = cv2.FONT_HERSHEY_SIMPLEX info = [] names=[] text='' checkqr=0 qr='' checkface=0 curpage=0 tintuc=[] import vlc with open('face/labels.txt', 'r',encoding='utf-8') as filehandle: i=0 info.append(('0','0')) for line in filehandle: currentPlace = line[:-1] names.append(currentPlace) if (i!=0): with open('face/contact/'+str(i)+'.json',encoding='utf-8') as f: d = json.load(f) info.append((d["name"],d["phone"])) i=i+1 print('nap danh ba') print (info) print ('khoi chay bo xu ly') def r(text): global curpage,tintuc if (text=='' or text=="stop" or text=="exitnews"): player.stop() elif (text[:4]=="news"): bao="" curpage=1 chude=text[5:] bao=bao+(str("trang "+str(curpage)))+"." tintuc=NEWS(chude) for a,b,c in tintuc: if (int(a)+1<=(curpage*5) and int(a)+1>(curpage*5-5)): bao=bao+(str("bài số "+ str(a)+": "+b))+"." TTS(bao,0) return bao elif (text=="next"): bao="" curpage=curpage+1 bao=bao+(str("trang "+str(curpage)))+"." print(tintuc) for a,b,c in tintuc: if (int(a)+1<=(curpage*5) and int(a)+1>(curpage*5-5)): bao=bao+(str("bài số "+ str(a)+": "+b))+"." TTS(bao,0) return bao elif (text=="pre"): bao="" curpage=curpage-1 bao=bao+(str("trang "+str(curpage)))+"." for a,b,c in tintuc: if (int(a)+1<=(curpage*5) and int(a)+1>(curpage*5-5)): bao=bao+(str("bài số "+ str(a)+": "+b))+"." TTS(bao,0) return bao elif (text[:4]=="read"): ans=READ(str(tintuc[int(text[4:])-1][2]),0) TTS(ans,0) return ans elif (text[:4]=="rsum"): ans=READ(str(tintuc[int(text[4:])-1][2]),1) TTS(ans,0) return ans elif (text=='fash'): ans=FASHION() TTS(ans,1) return ans elif (text=='rec'): kq=FACEREC() kqq="" for n in kq: if (n!='Unknown'): kqq=kqq+names[int(n)]+"," if (kqq!=""): TTS(kqq,1) return(kqq) else: pass #TTS("không có trong dữ liệu",1) #return ("không có trong dữ liệu") ans=classfy() TTS(ans,1) return ans elif (text=='facedes'): ans=FACEDES('all') TTS(ans,0) return ans elif (text=='facerec'): kq=FACEREC() kqq="" for n in kq: if (n!='Unknown'): kqq=kqq+names[int(n)]+"," if (kqq!=""): TTS(kqq,1) return(kqq) else: TTS("không có trong dữ liệu",1) return ("không có trong dữ liệu") elif (text[:4]=='prof'): try: id=-1 ok=False for name in names: id=id+1 if (name==text[5:]): TTS('tên: '+info[id][0]+'. điện thoại :'+info[id][1],0) return ('tên: '+info[id][0]+'. điện thoại :'+info[id][1]) ok=True break if (ok==False): TTS("không có trong dữ liệu",0) return ("không có trong dữ liệu") except: TTS("lỗi",0) reuturn ("lỗi") elif (text=='ocr'): ans=OCR() ans=HAU(ans) TTS(ans,0) return(ans) elif (text=="sdes"): ans=CAPTION() TTS(ans,0) return (ans) elif (text=='odes'): ans=classfy() TTS(ans,1) return ans elif (text[:4]=='wiki'): try: TTS(WIKI(text[5:]),0) return (WIKI(text[5:])) except: TTS("lỗi",1) return ("lỗi") elif (text[:7]=='weather'): try: ans=WEATHER(text[8:]) TTS(ans,0) return ans except: ans=WEATHER("kon tum") TTS(ans,0) return ans elif (text[:5]=="music"): try: ans=GETMUSIC(text[6:]) print(ans) player=vlc.MediaPlayer(ans) player.play() except: return("lỗi") else: TTS("Không hiểu lệnh",0) return ("Không hiểu lệnh") def decodeimg(data,re): dataa=data.encode() b64_string = dataa.decode() img = imread(io.BytesIO(base64.b64decode(b64_string))) cv2_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) if (re=='ocr'): cv2_img=PRE(cv2_img) cv2.imwrite("image.jpg", cv2_img) class GP(BaseHTTPRequestHandler): def _set_headers(self): self.send_response(200) self.send_header('Content-type', 'text/html; charset=utf-8') self.end_headers() def do_GET(self): self._set_headers() print (self.path) print (parse_qs(self.path[2:])) self.wfile.write("Get Request Received!".encode()) def do_POST(self): self._set_headers() form = cgi.FieldStorage( fp=self.rfile, headers=self.headers, environ={'REQUEST_METHOD': 'POST'} ) re=(form.getvalue("text")) print(re) try: decodeimg(form.getvalue("img"),re) except: pass re=r(re) self.wfile.write(bytes(re,'utf-8')) def run(server_class=HTTPServer, handler_class=GP, port=8088): server_address = ('', port) httpd = server_class(server_address, handler_class) print ('Server running at localhost:8088...') httpd.serve_forever() run()
[ "nguyenkhoa0721@gmail.com" ]
nguyenkhoa0721@gmail.com
b7dae662e90b2f8d8d47e0d5359d53700b75972b
5679bb51d6fcc6e94e9206b89ce395c988fd202b
/venv/Lib/site-packages/elasticsearch/client/sql.py
64a606a2ecb15aaa59997adf782070b02467bf07
[ "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
antwan1/NewHowler
762e5af9b646ef96133421cb1c9e84c16d5f0cc1
3a35fb23552ab9829bc22ea63b49b988844447f0
refs/heads/master
2023-09-05T08:02:48.770494
2021-10-28T19:47:56
2021-10-28T19:47:56
410,207,003
1
0
null
null
null
null
UTF-8
Python
false
false
5,096
py
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from .utils import SKIP_IN_PATH, NamespacedClient, _make_path, query_params class SqlClient(NamespacedClient): @query_params() def clear_cursor(self, body, params=None, headers=None): """ Clears the SQL cursor `<https://www.elastic.co/guide/en/elasticsearch/reference/7.15/clear-sql-cursor-api.html>`_ :arg body: Specify the cursor value in the `cursor` element to clean the cursor. """ if body in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument 'body'.") return self.transport.perform_request( "POST", "/_sql/close", params=params, headers=headers, body=body ) @query_params("format") def query(self, body, params=None, headers=None): """ Executes a SQL request `<https://www.elastic.co/guide/en/elasticsearch/reference/7.15/sql-search-api.html>`_ :arg body: Use the `query` element to start a query. Use the `cursor` element to continue a query. :arg format: a short version of the Accept header, e.g. json, yaml """ if body in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument 'body'.") return self.transport.perform_request( "POST", "/_sql", params=params, headers=headers, body=body ) @query_params() def translate(self, body, params=None, headers=None): """ Translates SQL into Elasticsearch queries `<https://www.elastic.co/guide/en/elasticsearch/reference/7.15/sql-translate-api.html>`_ :arg body: Specify the query in the `query` element. """ if body in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument 'body'.") return self.transport.perform_request( "POST", "/_sql/translate", params=params, headers=headers, body=body ) @query_params() def delete_async(self, id, params=None, headers=None): """ Deletes an async SQL search or a stored synchronous SQL search. If the search is still running, the API cancels it. `<https://www.elastic.co/guide/en/elasticsearch/reference/7.15/delete-async-sql-search-api.html>`_ :arg id: The async search ID """ if id in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument 'id'.") return self.transport.perform_request( "DELETE", _make_path("_sql", "async", "delete", id), params=params, headers=headers, ) @query_params("delimiter", "format", "keep_alive", "wait_for_completion_timeout") def get_async(self, id, params=None, headers=None): """ Returns the current status and available results for an async SQL search or stored synchronous SQL search `<https://www.elastic.co/guide/en/elasticsearch/reference/7.15/get-async-sql-search-api.html>`_ :arg id: The async search ID :arg delimiter: Separator for CSV results Default: , :arg format: Short version of the Accept header, e.g. json, yaml :arg keep_alive: Retention period for the search and its results Default: 5d :arg wait_for_completion_timeout: Duration to wait for complete results """ if id in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument 'id'.") return self.transport.perform_request( "GET", _make_path("_sql", "async", id), params=params, headers=headers ) @query_params() def get_async_status(self, id, params=None, headers=None): """ Returns the current status of an async SQL search or a stored synchronous SQL search `<https://www.elastic.co/guide/en/elasticsearch/reference/7.15/get-async-sql-search-status-api.html>`_ :arg id: The async search ID """ if id in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument 'id'.") return self.transport.perform_request( "GET", _make_path("_sql", "async", "status", id), params=params, headers=headers, )
[ "antoniore385@gmail.com" ]
antoniore385@gmail.com
180167ac82995f96fa27d0545933b09287fcddad
7308fe5be2eaba4e29d605d271cd9c2394e62b4a
/user/post_user.py
02a130d7982ac3fb7a208f9d240b2d149071fd12
[]
no_license
santipm29/crud-aws-with-microservices
d8aeac25aea58c2aa2b17d2d8b43e9032eba41aa
17e1a984c23ef5196a612006be2d6d1c1f9a47c1
refs/heads/master
2020-04-30T02:27:04.470739
2019-05-25T18:52:05
2019-05-25T18:52:05
176,560,051
0
0
null
null
null
null
UTF-8
Python
false
false
1,744
py
import json, uuid, boto3 from user import mongo from jsonschema import Draft4Validator def load_file(name): with open(name) as f: return json.load(f) def type(name): types = {'string' : 'caracter', 'number' : 'numérico', 'object': 'objeto'} if name in types: return types[name] def beautify(path, instance, message, validator_value): if 'is not of type' in message: return 'El campo \''+str(path[-1]) +'\' con el valor \'' + str(instance) +'\' debe ser de tipo ' + type(validator_value) elif 'is a required property' in message: return 'El campo '+message.replace('is a required property','es obligatorio') elif 'is too short' in message and len(instance)==0: return 'El campo \''+str(path[-1]) +'\' es obligatorio' else: return message def validate(message): SCHEMA = load_file('validation/jsonschema.json') v = Draft4Validator(SCHEMA) errors = [] for error in sorted(v.iter_errors(message), key=str): errors.append({"mensaje" : beautify(error.path,error.instance,error.message, error.validator_value)}) return errors def sendS3(message): id = uuid.uuid4() s3 = boto3.client('s3') message['_id'] = str(message['_id']) response = s3.put_object( Bucket = 'tallerawsclientes', Key=f'{id}.json', Body = json.dumps(message) ) def post(event, context): body = json.loads(event["body"]) errors = validate(body) resp = [] if not errors: resp.append(mongo.insert("user", body)) sendS3(body) else: resp.append(errors) response = {"statusCode": 200, "body": json.dumps( resp )} return response
[ "santipmartinez@outlook.com" ]
santipmartinez@outlook.com
74e141ff66846d12eeef4c856495c754a20fdb24
0b23a9f762b715954308315a570bc490b1f1aec3
/final_task/tests/test_function.py
2e627cd48cfeaa5bd73a8d7f81ef63659a236245
[]
no_license
zaja1kun/test-travis
3ac58228c5d805c734ee02a3e1057e0098287e0d
0d7f74b55826c63b951b86be5ba533230b1db224
refs/heads/master
2020-04-04T03:28:03.281807
2018-11-01T13:14:27
2018-11-01T13:14:27
155,714,082
0
0
null
2018-11-01T12:48:53
2018-11-01T12:48:52
null
UTF-8
Python
false
false
467
py
from unittest import TestCase from pycalc.function import Function class TestFunction(TestCase): def test_function_object(self): value = 'abs' index = 1 function = abs test_function = Function(value, index, function) self.assertEqual(test_function.type, 'function') self.assertEqual(test_function.value, 'abs') self.assertEqual(test_function.index, 1) self.assertEqual(test_function.function, abs)
[ "Aliaksei_Buziuma@epam.com" ]
Aliaksei_Buziuma@epam.com
5e28b7c0e151fbb86907c2fea78b753d66622874
71c698d290ec03eda7afdd90da2623e162f59ece
/Tipe data statis/latihan02.py
3c6059b3f4cf5b883fb24189996f56a6c993b097
[]
no_license
4lasR0ban/Belajar-Python
2976ddb215d389c906dd0bf9f8b539baa05563a4
88227c2ccd0f39c79f00f3cf23ea7a4cf9953d30
refs/heads/main
2023-03-04T02:15:35.657434
2021-02-15T15:12:06
2021-02-15T15:12:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
564
py
# latihan projek python 4 n = 32892700 # pecahan 100k p100k = n / 100000 print('Pecahan 100k ada ', int(p100k), 'buah') # pecahan 50k p50k = n / 50000 print('Pecahan 50k ada ', int(p50k), 'buah') # pecahan 10k p10k = n /10000 print('Pecahan 10k ada ', int(p10k), 'buah') # pecahan 5k p5k = n / 5000 print('Pecahan 5k ada ', int(p5k), 'buah') # pecahan 1k p1k = n / 1000 print('Pecahan 1k ada ', int(p1k), 'buah') # pecahan 500 p500 = n / 500 print('Pecahan 500 ada ', int(p500), 'buah') # pecahan 1000 p100 = n /100 print('Pecahan 100 ada ', int(p100), 'buah')
[ "71622469+verowardana@users.noreply.github.com" ]
71622469+verowardana@users.noreply.github.com
e442cc61a53ee7f1a668f6b23a79fc8eb9cc2334
ab5cdf8f2de94c327e4679da84f941b1f3c04db4
/kubernetes/test/test_v1_env_var.py
c37c80243ab9137299a6ad478388d2c3a96601b2
[ "Apache-2.0" ]
permissive
diannaowa/client-python
a4a92a125178db26004eaef5062f9b1b581b49a8
5e268fb0b6f21a535a14a7f968b84ed4486f6774
refs/heads/master
2020-12-02T22:06:03.687696
2017-06-30T21:42:50
2017-06-30T21:42:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
803
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.7.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1_env_var import V1EnvVar class TestV1EnvVar(unittest.TestCase): """ V1EnvVar unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1EnvVar(self): """ Test V1EnvVar """ model = kubernetes.client.models.v1_env_var.V1EnvVar() if __name__ == '__main__': unittest.main()
[ "mehdy@google.com" ]
mehdy@google.com
d6da47881922063e4c5338620c14e5242cb1eea2
3c113092c1e22c09299ab995300bf7a22bd24fd6
/pycorrector/macbert/base_model.py
5ffffc2ad547b6fc6a2e257622844f3de7a9b0c6
[ "Apache-2.0", "Python-2.0" ]
permissive
luozhouyang/pycorrector
2dbfdd105418b07e613789b45cd8f1c3183a13b6
61bc8c1253bfe0784a825d9042c9be7f057a9bff
refs/heads/master
2023-06-04T17:47:52.140410
2022-01-06T09:14:29
2022-01-06T09:14:29
447,160,173
1
0
Apache-2.0
2022-01-12T09:47:28
2022-01-12T09:47:27
null
UTF-8
Python
false
false
7,265
py
# -*- coding: utf-8 -*- """ @author:XuMing(xuming624@qq.com), Abtion(abtion@outlook.com) @description: """ import operator from abc import ABC import torch import torch.nn as nn import numpy as np import pytorch_lightning as pl from pycorrector.macbert import lr_scheduler from pycorrector.macbert.evaluate_util import compute_corrector_prf, compute_sentence_level_prf from pycorrector.utils.logger import logger class FocalLoss(nn.Module): """ Softmax and sigmoid focal loss. copy from https://github.com/lonePatient/TorchBlocks """ def __init__(self, num_labels, activation_type='softmax', gamma=2.0, alpha=0.25, epsilon=1.e-9): super(FocalLoss, self).__init__() self.num_labels = num_labels self.gamma = gamma self.alpha = alpha self.epsilon = epsilon self.activation_type = activation_type def forward(self, input, target): """ Args: logits: model's output, shape of [batch_size, num_cls] target: ground truth labels, shape of [batch_size] Returns: shape of [batch_size] """ if self.activation_type == 'softmax': idx = target.view(-1, 1).long() one_hot_key = torch.zeros(idx.size(0), self.num_labels, dtype=torch.float32, device=idx.device) one_hot_key = one_hot_key.scatter_(1, idx, 1) logits = torch.softmax(input, dim=-1) loss = -self.alpha * one_hot_key * torch.pow((1 - logits), self.gamma) * (logits + self.epsilon).log() loss = loss.sum(1) elif self.activation_type == 'sigmoid': multi_hot_key = target logits = torch.sigmoid(input) zero_hot_key = 1 - multi_hot_key loss = -self.alpha * multi_hot_key * torch.pow((1 - logits), self.gamma) * (logits + self.epsilon).log() loss += -(1 - self.alpha) * zero_hot_key * torch.pow(logits, self.gamma) * (1 - logits + self.epsilon).log() return loss.mean() def make_optimizer(cfg, model): params = [] for key, value in model.named_parameters(): if not value.requires_grad: continue lr = cfg.SOLVER.BASE_LR weight_decay = cfg.SOLVER.WEIGHT_DECAY if "bias" in key: lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] if cfg.SOLVER.OPTIMIZER_NAME == 'SGD': optimizer = getattr(torch.optim, cfg.SOLVER.OPTIMIZER_NAME)(params, momentum=cfg.SOLVER.MOMENTUM) else: optimizer = getattr(torch.optim, cfg.SOLVER.OPTIMIZER_NAME)(params) return optimizer def build_lr_scheduler(cfg, optimizer): scheduler_args = { "optimizer": optimizer, # warmup options "warmup_factor": cfg.SOLVER.WARMUP_FACTOR, "warmup_epochs": cfg.SOLVER.WARMUP_EPOCHS, "warmup_method": cfg.SOLVER.WARMUP_METHOD, # multi-step lr scheduler options "milestones": cfg.SOLVER.STEPS, "gamma": cfg.SOLVER.GAMMA, # cosine annealing lr scheduler options "max_iters": cfg.SOLVER.MAX_ITER, "delay_iters": cfg.SOLVER.DELAY_ITERS, "eta_min_lr": cfg.SOLVER.ETA_MIN_LR, } scheduler = getattr(lr_scheduler, cfg.SOLVER.SCHED)(**scheduler_args) return {'scheduler': scheduler, 'interval': cfg.SOLVER.INTERVAL} class BaseTrainingEngine(pl.LightningModule): def __init__(self, cfg, *args, **kwargs): super().__init__(*args, **kwargs) self.cfg = cfg def configure_optimizers(self): optimizer = make_optimizer(self.cfg, self) scheduler = build_lr_scheduler(self.cfg, optimizer) return [optimizer], [scheduler] def on_validation_epoch_start(self) -> None: logger.info('Valid.') def on_test_epoch_start(self) -> None: logger.info('Testing...') class CscTrainingModel(BaseTrainingEngine, ABC): """ 用于CSC的BaseModel, 定义了训练及预测步骤 """ def __init__(self, cfg, *args, **kwargs): super().__init__(cfg, *args, **kwargs) # loss weight self.w = cfg.MODEL.HYPER_PARAMS[0] def training_step(self, batch, batch_idx): ori_text, cor_text, det_labels = batch outputs = self.forward(ori_text, cor_text, det_labels) loss = self.w * outputs[1] + (1 - self.w) * outputs[0] self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True, batch_size=len(ori_text)) return loss def validation_step(self, batch, batch_idx): ori_text, cor_text, det_labels = batch outputs = self.forward(ori_text, cor_text, det_labels) loss = self.w * outputs[1] + (1 - self.w) * outputs[0] det_y_hat = (outputs[2] > 0.5).long() cor_y_hat = torch.argmax((outputs[3]), dim=-1) encoded_x = self.tokenizer(cor_text, padding=True, return_tensors='pt') encoded_x.to(self._device) cor_y = encoded_x['input_ids'] cor_y_hat *= encoded_x['attention_mask'] results = [] det_acc_labels = [] cor_acc_labels = [] for src, tgt, predict, det_predict, det_label in zip(ori_text, cor_y, cor_y_hat, det_y_hat, det_labels): _src = self.tokenizer(src, add_special_tokens=False)['input_ids'] _tgt = tgt[1:len(_src) + 1].cpu().numpy().tolist() _predict = predict[1:len(_src) + 1].cpu().numpy().tolist() cor_acc_labels.append(1 if operator.eq(_tgt, _predict) else 0) det_acc_labels.append(det_predict[1:len(_src) + 1].equal(det_label[1:len(_src) + 1])) results.append((_src, _tgt, _predict,)) return loss.cpu().item(), det_acc_labels, cor_acc_labels, results def validation_epoch_end(self, outputs) -> None: det_acc_labels = [] cor_acc_labels = [] results = [] for out in outputs: det_acc_labels += out[1] cor_acc_labels += out[2] results += out[3] loss = np.mean([out[0] for out in outputs]) self.log('val_loss', loss) logger.info(f'loss: {loss}') logger.info(f'Detection:\n' f'acc: {np.mean(det_acc_labels):.4f}') logger.info(f'Correction:\n' f'acc: {np.mean(cor_acc_labels):.4f}') compute_corrector_prf(results, logger) compute_sentence_level_prf(results, logger) def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def test_epoch_end(self, outputs) -> None: logger.info('Test.') self.validation_epoch_end(outputs) def predict(self, texts): inputs = self.tokenizer(texts, padding=True, return_tensors='pt') inputs.to(self.cfg.MODEL.DEVICE) with torch.no_grad(): outputs = self.forward(texts) y_hat = torch.argmax(outputs[1], dim=-1) expand_text_lens = torch.sum(inputs['attention_mask'], dim=-1) - 1 rst = [] for t_len, _y_hat in zip(expand_text_lens, y_hat): rst.append(self.tokenizer.decode(_y_hat[1:t_len]).replace(' ', '')) return rst
[ "shibing624@126.com" ]
shibing624@126.com
4c7477b8e280f006655ed89ab39128331bbb0f93
47d504eba70ce8fcf0d71fb2e3c5895c55897bcf
/usuario/validators.py
de77aaabf171fcb84a2a23b1fd59edd38cf0bc11
[]
no_license
mzKaNgPae/PruebaDesarrollo3FINAL
aed4d51da6e042f02e0b041d13abae7dbd2c55b4
c58f200b6b8483d6000406cbd7ad18b021dc1353
refs/heads/main
2023-02-03T20:45:42.765639
2020-12-18T16:11:37
2020-12-18T16:11:37
322,665,921
0
0
null
null
null
null
UTF-8
Python
false
false
567
py
def rut_valido(rut, dv): rut = rut.replace('.', '')[::-1] # Revierte el rut acc = 0 # Suma total del calculo mul = 2 # Multiplicador del digito del rut for dig in rut: if mul > 7: mul = 2 acc += int(dig) * mul mul += 1 dv_esperado = 11 - acc%11 if dv_esperado == 11: dv_esperado = '0' if dv_esperado == 10: dv_esperado = 'K' return str(dv) == str(dv_esperado) def usuario_administrador(request): if request.user.usuario.tipo_usuario.id == 1: return True return False
[ "diegoquezadapavez@gmail.com" ]
diegoquezadapavez@gmail.com
70c6e2b5c6ccc12bbcd613077a33a8b1dc08bf53
f99b5a9c2403f6b285f4d92bb098c6f83a4b5eb5
/TensorFlow/tf-1/tf1_3_反向传播.py
c724582c2855a95447c5f1f43147439755c9cdfe
[]
no_license
kanbaochun/Python
a094e62096b697cea237d7828668cfd16e9d99db
f0328909020532f4ec41c82e58781995895f82f6
refs/heads/master
2021-07-08T19:46:27.163932
2019-03-12T15:09:19
2019-03-12T15:09:19
146,909,748
2
0
null
null
null
null
UTF-8
Python
false
false
1,328
py
#coding:utf-8 #反向传播(两层神经网络) import tensorflow as tf import numpy as np import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" #定义常数 BATCH_SIZE = 8 seed = 23455 #生成虚拟数据集 rng = np.random.RandomState(seed) X = rng.rand(32, 2) Y = [[int(x1 + x2 < 1)] for (x1, x2) in X] #定义输入和输出参数 x = tf.placeholder(tf.float32, shape=(None, 2)) y_ = tf.placeholder(tf.float32, shape=(None, 1)) w1 = tf.Variable(tf.random_normal([2,3], stddev=1, seed=1)) w2 = tf.Variable(tf.random_normal([3,1], stddev=1, seed=1)) #定义前向传播过程 a = tf.matmul(x, w1) y = tf.matmul(a, w2) #定义损失函数及反向传播算法 loss = tf.reduce_mean(tf.square(y - y_)) train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss) #train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(loss) #train_step = tf.train.AdamOptimizer(0.001).minimize(loss) #用会话图输出计算结果 with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) STEPS = 10001 for i in range(STEPS): start = (i*BATCH_SIZE)%32 end = start + BATCH_SIZE sess.run(train_step, feed_dict={x:X[start:end], y_:Y[start:end]}) if i%1000 == 0: total_loss = sess.run(loss, feed_dict={x:X, y_:Y}) print("After %d train_step, total_loss is %g" % (i, total_loss))
[ "42867170+kanbaochun@users.noreply.github.com" ]
42867170+kanbaochun@users.noreply.github.com
131e3467c463b97b5c694031145d1d6cf9c290a0
68f0e36ec24af35c91ca30edbe88fedc82aaba65
/premier.py
83f76435500cd1e036b7319fb3500bfdbe950dc6
[]
no_license
iamds/hotels
454b30a3c0068997a5e33eb0f7c86ec2afdf8efb
b839bd79f884df65566baa7b955b9caadda1b9f0
refs/heads/main
2023-06-02T15:57:10.902903
2021-06-24T10:33:12
2021-06-24T10:33:12
346,646,012
0
0
null
null
null
null
UTF-8
Python
false
false
755
py
import requests import json import string def search_name(name): response = requests.get("https://pro-premier-inn.emergyalabs.com/v1/autocomplete?input=/" + name + "&gplaces%5Bcomponents%5D=country:uk") a = json.loads(response.text) return [x for x in a["properties"] if x["brand"] == "PI"] premierinns = {} for c1 in string.ascii_lowercase: for c2 in string.ascii_lowercase: results = search_name(c1 + c2) print(c1 + c2) if len(results) > 0: for c3 in string.ascii_lowercase: results = search_name(c1 + c2 + c3) for result in results: premierinns[result["suggestion"]] = result["geometry"]["coordinates"] print(premierinns)
[ "dan@schiff.dev" ]
dan@schiff.dev
328b5571d77ee4bb5f0d7536ebd4b8f885f1f31b
23736cfcaefcc0a5cf6882bb235e681730ba781d
/louqa/qa/views.py
47baa3fd7743afc3cdf8fea5e39497a921554a93
[]
no_license
glorygithub/shiyanlou
26d0c52cb266c725eacc589d2b798641cd6a198c
1890aa51ce90e68044d5426b3b026c7cf2ad7203
refs/heads/master
2020-06-05T07:20:03.224211
2015-07-18T18:06:02
2015-07-18T18:06:02
39,292,610
0
0
null
null
null
null
UTF-8
Python
false
false
283
py
#! /usr/bin/env python # encoding: utf-8 from flask import Blueprint, render_template qa = Blueprint('qa',__name__,url_prefix='') @qa.route('/<title>') @qa.route('/',defaults={'title':None}) def index(title): return render_template("qa/index.html",title=title,tem_str="world")
[ "xxx" ]
xxx
2a8aa79f7406ee6bf9e5720bd0ebc4bc06c20565
b8847590ffed3fd521b005cfbb473a33e993a243
/InterFace_Test_Demo/interface/userAPI.py
c0f3dde567425cced006ebe733f34e90d3737701
[]
no_license
YellowStarr/gitdir
6e229bbc035bbd3de179a0f64ed7570b489cc382
5252b80148dfc4c5c519c9c8beb5c297d62d2a93
refs/heads/master
2021-01-19T20:50:47.076141
2017-11-06T02:09:28
2017-11-06T02:09:28
88,567,880
11
1
null
null
null
null
UTF-8
Python
false
false
11,776
py
#coding=utf-8 __author__ = 'QiuWenjing' import requests from interface.API import MyAPI class UserAPI: def __init__(self, url): self.baseurl = url self.api = MyAPI() def user_FollowedSong(self, token, page=1, size=10): u'''关注的人的作品接口 Method:get @return: data{advertisement:[{des,url,name,id,image,ios},]},msg,status ''' headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/user/followed/song' params = {'page': page, 'size': size} r = requests.get(url, params=params, headers=headers) # self.api.writeLog('user_FollowedSong', r.text) return r def user_Recommend(self, page=1, size=10): u'''官方推荐''' url = self.baseurl + '/api/song/recommend' params = {'page': page, 'size': size} r = requests.get(url, params=params) # self.api.writeLog('user_Recommend', r.text) return r def user_Focus(self, id, token): headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/user/focus' params = {'id': id} r = requests.post(url, json=params, headers=headers) # self.api.writeLog('user_Focus', r.text) return r def user_cancelFocus(self,id,token): headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/user/cancelFocus' params = {'id': id} r = requests.post(url, json=params, headers=headers) # self.api.writeLog('user_cancelFocus', r.text) return r def user_followedList(self, id): u'''关注列表''' url = self.baseurl + '/api/user/followed' params = {'id': id} r = requests.get(url, params=params) # self.api.writeLog('user_followedList', r.text) return r def user_fansList(self, id): u'''粉丝列表''' url = self.baseurl + '/api/user/follower' params = {'id': id} r = requests.get(url, params=params) return r def user_Violate(self, contact, reportid, reporttype, text): '''举报 @param reportid: number 被举报人id @param reporttype: number @param text: string ''' url = self.baseurl + '/api/violate' params = {'contact': contact, 'reportId': reportid, 'reportType': reporttype, 'text': text} r = requests.post(url, json=params) # self.api.writeLog('user_Violate', r.text) return r def user_Add_BlackList(self, id, token): u'''加入黑名单''' headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/user/blacklist' params = {'uid': id} r = requests.post(url, json=params, headers=headers) # self.api.writeLog('user_Add_BlackList', r.text) return r def user_Del_BlackList(self, id, token): u'''移出黑名单''' headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/user/blacklist/delete' params = {'uid': id} r = requests.post(url, json=params, headers=headers) # self.api.writeLog('user_Del_BlackList', r.text) return r def user_BlackList(self, token, page=1): u'''黑名单''' headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/user/blacklist' params = {'page': page} r = requests.get(url, params=params, headers=headers) # self.api.writeLog('user_BlackList', r.text) # r = r.json() return r def user_Participant_Medley(self, token, page=1, size=10): u'''我加入的串烧''' headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/user/join/medley/underWay' params = {'page': page, 'size': size} r = requests.get(url, params=params, headers=headers) # self.api.writeLog('user_Participant_Medley', r.text) return r def user_Create_Medley(self, token, audios, images, latitude, longitude, maxcount, title): u'''我加入的串烧''' headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/audio/createMedley' params = {'audios': audios, 'images': images, 'latitude':latitude, 'longitude':longitude, 'maxCount':maxcount, 'title':title} r = requests.post(url, json=params, headers=headers) # self.api.writeLog('user_Create_Medley', r.text) return r def user_Medley_Participanter(self, songId): u'''串烧参与者''' url = self.baseurl + '/api/medleys/participants/all' params = {'songId': songId} r = requests.get(url, params=params) # self.api.writeLog('user_Medley_Participanter', r.text) return r def user_Medley_Participanter_Once(self, songId): u'''串烧参与者去重''' url = self.baseurl + '/api/medleys/participants' params = {'songId': songId} r = requests.get(url, params=params) # self.api.writeLog('user_Medley_Participanter_Once', r.text) return r def user_ModifyInfo(self, token, id, userName, phoneNumber, area='1', birthday='2010-01-01', emotionStatus=1, hasFocus='', personalProfile='', portrait='', sex=1): u'''修改用户信息''' headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/modifyUserInfo' params = {'area': area, 'birthday': birthday, 'emotionStatus': emotionStatus, 'hasFocus': hasFocus, 'personalProfile': personalProfile, 'phoneNumber': phoneNumber, 'portrait': portrait, 'sex': sex, 'userName': userName, 'id': id} r = requests.post(url, json=params, headers=headers) # self.api.writeLog('user_ModifyInfo', r.text) return r def user_getUserInfo(self, id): u'''获取用户信息''' url = self.baseurl + '/api/getUserInfo' params = {'id':id} r = requests.get(url, params=params) # self.api.writeLog('user_getUserInfo', r.text) return r def user_getMyMedley(self, token, status, page=1, size=10): u'''我的串烧''' headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/user/medleys' params = {'status': status, 'page': page, 'size': size} r = requests.get(url, params=params, headers=headers) # self.api.writeLog('user_getMyMedley', r.text) return r def user_getMyComplaint(self, token, status, page=1, size=10): u'''获取吐槽作品''' headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/user/complaints' params = {'status':status,'page':page,'size':size} r = requests.get(url, params=params, headers=headers) # self.api.writeLog('user_getMyComplaint', r.text) return r def user_getMyRap(self, token, status, page=1, size=10): u'''获取我的独白''' headers = { "token": token, "Host": self.baseurl, "User-Agent": "HeiPa/1.0.1 (iPhone; iOS 9.3.5; Scale/2.00)", "Accept": "*/*", "Accept-Language": "zh-Hans-CN;q=1", "Accept-Encoding": "gzip, deflate", "Content-Type": "application/json;charset=UTF-8", "Connection": "keep-alive" } url = self.baseurl + '/api/user/raps' params = {'status': status, 'page': page, 'size': size} r = requests.get(url, params=params, headers=headers) # self.api.writeLog('user_getMyRap', r.text) return r def user_Statistic(self, id): u'''获取用户扩展信息''' url = self.baseurl + '/api/user/statistic' params = {'id': id} r = requests.get(url, params=params) # self.api.writeLog('user_Statistic', r.text) return r
[ "sillyapplemi@126.com" ]
sillyapplemi@126.com
2dca3c96dd91576624418597ac8f3deaa54bf9cf
3c39628921d2d43696f29f1f4d6ad3d1d6733a2c
/Scripts/agendamentos/migrations/0001_initial.py
6073508074d68be79ae82c1061ad1ee286023791
[]
no_license
jamesonSouza/python_curso_api
215bc01a02131d1ae195749ea9c3db383784aad1
318616790174ea0e5779cf894f1207982a2630c3
refs/heads/main
2023-06-11T02:47:52.292849
2021-06-28T19:53:12
2021-06-28T19:53:12
381,142,308
0
0
null
2021-06-28T19:59:28
2021-06-28T19:36:01
Python
UTF-8
Python
false
false
1,157
py
# Generated by Django 3.2.4 on 2021-06-25 20:49 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('pacientes', '0001_initial'), ] operations = [ migrations.CreateModel( name='Agendamentos', fields=[ ('id_agendamento', models.AutoField(primary_key=True, serialize=False)), ('data_hora', models.DateTimeField()), ('data_criacao', models.DateTimeField(auto_now_add=True)), ('cancelado', models.BooleanField(default=False)), ('obj', models.TextField(blank=True, null=True)), ('tipo', models.CharField(blank=True, max_length=100, null=True)), ('id_paciente', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='agendamentos', to='pacientes.pacientes')), ], options={ 'db_table': 'agendamentos', 'managed': True, 'unique_together': {('data_hora', 'id_paciente')}, }, ), ]
[ "jameson1708@gmail.com" ]
jameson1708@gmail.com
5fc0adf9e6d9f375ddd581bf9e82f8d4ad454d56
71535e1512c99a5aef4a2bd0e03efa82825b106d
/unit_testing/test_cron.py
c8132d4bc18dcc21d0fbd0299ed99d41bbdbbfa1
[ "CC0-1.0", "LicenseRef-scancode-public-domain" ]
permissive
Stanford-PERTS/yosemite
070606b083311fff8e0a45ec5c6248ac81551744
e17a5e7d7a786e7bae4d1dc17ce571442178b1a0
refs/heads/master
2022-10-24T15:02:45.958601
2020-06-14T17:38:08
2020-06-14T17:38:08
272,251,600
0
0
null
null
null
null
UTF-8
Python
false
false
20,455
py
"""Testing cron functions.""" from google.appengine.api import taskqueue import datetime import time import unittest from api import Api from core import * from cron import Cron from named import * import unit_test_helper class CronTestCase(unit_test_helper.PopulatedInconsistentTestCase): def test_aggregate(self): """Test aggregation of pds to activities. Documentation of Yosemite aggregation: https://docs.google.com/document/d/1tmZhuWMDX29zte6f0A8yXlSUvqluyMNEnFq8qyJq1pA TODO(chris): actually write the documentation! """ cron = Cron(self.internal_api) # To insulate the expected aggregation stats from changes to the # populate script, we'll create a separate cohort and classroom. For # larger things we'll rely on the stuff set by the populate script, # e.g. self.program. cohort = self.researcher_api.create('cohort', { 'name': 'DGN 2015', 'code': 'lion mackerel', 'program': self.program.id, 'school': self.school.id, }) self.researcher_api.associate('set_owner', self.school_admin, cohort) classroom = self.school_admin_api.create('classroom', { 'name': "English 201", 'user': self.school_admin.id, 'program': self.program.id, 'cohort': cohort.id, }) student_activities = self.school_admin_api.init_activities( 'student', self.school_admin.id, self.program.id, cohort_id=cohort.id, classroom_id=classroom.id) db.get([cohort.key(), classroom.key()]) db.get([a.key() for a in student_activities]) # To test aggregating across multiple users, we'll need several # students student_params = {'user_type': 'student', 'classroom': classroom.id} mystery_finisher = self.public_api.create('user', student_params) absentee = self.public_api.create('user', student_params) refusee = self.public_api.create('user', student_params) expelee = self.public_api.create('user', student_params) mr_perfect = self.public_api.create('user', student_params) non_finisher = self.public_api.create('user', student_params) wrong_name = self.public_api.create('user', student_params) # This student will be in another classroom, and we won't update her, # proving that cohort aggregation re-queries more than just the changed # stuff. other_classroom = self.school_admin_api.create('classroom', { 'name': "English 202", 'user': self.school_admin.id, 'program': self.program.id, 'cohort': cohort.id, }) other_student_activities = self.school_admin_api.init_activities( 'student', self.school_admin.id, self.program.id, cohort_id=cohort.id, classroom_id=other_classroom.id) other_student = self.public_api.create( 'user', {'user_type': 'student', 'classroom': other_classroom.id}) students = [mystery_finisher, absentee, refusee, expelee, mr_perfect, non_finisher, wrong_name] student_keys = [s.key() for s in students] others = [other_student, other_classroom] + other_student_activities other_keys = [e.key() for e in others] ### Aggregate initial state # Assume and simulate that enough time passes between data recording # and cron execution that entities become consistent. db.get(student_keys) db.get(other_keys) cron.aggregate() # Every student have the same aggregation data for both activities # because no one has done anything yet. So just loop and check against # the same reference. for s in db.get(student_keys): self.assertFalse(s.certified) correct_stats = {'progress': None} self.assertEqual(s.aggregation_data[1], correct_stats) self.assertEqual(s.aggregation_data[2], correct_stats) # Both activities should be the same also a1, a2 = db.get([a.key() for a in student_activities]) correct_stats = { 'total_students': 7, 'certified_students': 0, 'certified_study_eligible_dict': { 'n': 0, 'completed': 0, 'makeup_eligible': 0, 'makeup_ineligible': 0, 'uncoded': 0 }, } self.assertEqual(a1.aggregation_data, correct_stats) self.assertEqual(a2.aggregation_data, correct_stats) # The other activities should look like this (this is the last time # we'll have to check it because we won't be changing it any more): a1, a2 = db.get([a.key() for a in other_student_activities]) correct_stats = { 'total_students': 1, 'certified_students': 0, 'certified_study_eligible_dict': { 'n': 0, 'completed': 0, 'makeup_eligible': 0, 'makeup_ineligible': 0, 'uncoded': 0 }, } self.assertEqual(a1.aggregation_data, correct_stats) self.assertEqual(a2.aggregation_data, correct_stats) # Check cohort (has our seven plus one other) cohort = db.get(cohort.key()) correct_cohort_stats = { 'unscheduled': 2, 'scheduled': 0, 'behind': 0, 'completed': 0, 'incomplete_rosters': 2, 'total_students': 8, 'certified_students': 0, 'certified_study_eligible_dict': { 'n': 0, 'completed': 0, 'makeup_eligible': 0, 'makeup_ineligible': 0, 'uncoded': 0 }, } self.assertEqual(cohort.aggregation_data[1], correct_cohort_stats) self.assertEqual(cohort.aggregation_data[2], correct_cohort_stats) ### Pretend the school admin just certified some students and aggregate ### again. # NOT changing mystery_finisher proves that the aggregator re-queries # for unchanged users associated with the same activity. certified_students = [absentee, refusee, expelee, mr_perfect, non_finisher] for s in certified_students: s.certified = True db.put(certified_students) # Assume and simulate that enough time passes between data recording # and cron execution that entities become consistent. db.get(student_keys) cron.aggregate() # Every student should be the same for both activities. for s in db.get(student_keys): correct_stats = {'progress': None} self.assertEqual(s.aggregation_data[1], correct_stats) self.assertEqual(s.aggregation_data[2], correct_stats) # Both activities should be the same also a1, a2 = db.get([a.key() for a in student_activities]) correct_stats = { 'total_students': 7, 'certified_students': 5, 'certified_study_eligible_dict': { 'n': 5, 'completed': 0, 'makeup_eligible': 0, 'makeup_ineligible': 0, 'uncoded': 5 }, } self.assertEqual(a1.aggregation_data, correct_stats) self.assertEqual(a2.aggregation_data, correct_stats) # Check cohort cohort = db.get(cohort.key()) correct_cohort_stats = { 'unscheduled': 2, 'scheduled': 0, 'behind': 0, 'completed': 0, 'incomplete_rosters': 2, 'total_students': 8, 'certified_students': 5, 'certified_study_eligible_dict': { 'n': 5, 'completed': 0, 'makeup_eligible': 0, 'makeup_ineligible': 0, 'uncoded': 5 }, } self.assertEqual(cohort.aggregation_data[1], correct_cohort_stats) self.assertEqual(cohort.aggregation_data[2], correct_cohort_stats) ### Simulate the first session, with two students absent and one who ### doesn't finish. Also schedule the first activity. absentee.s1_status_code = 'A' # code for absent refusee.s1_status_code = 'PR' # code for parent refusal expelee.s1_status_code = 'E' # code for expelled wrong_name.s1_status_code = 'MWN' # code for merge: wrong name db.put([absentee, refusee, expelee, wrong_name]) progress_pds = [] pd_params = { 'variable': 's1__progress', 'program': self.program.id, 'activity': student_activities[0].id, 'activity_ordinal': 1, } # Progress on activity 1 for those who finished. for s in [mr_perfect, mystery_finisher, wrong_name]: pd_params['value'] = '100' pd_params['scope'] = s.id progress_pds.append(Api(s).create('pd', pd_params)) # Progress on activity 1 for those who didn't finish. pd_params['value'] = '50' pd_params['scope'] = non_finisher.id progress_pds.append(Api(non_finisher).create('pd', pd_params)) a1.scheduled_date = datetime.date.today() a1.put() # Assume and simulate that enough time passes between data recording # and cron execution that entities become consistent. db.get([pd.key() for pd in progress_pds] + [absentee.key(), refusee.key(), expelee.key(), a1.key()]) cron.aggregate() # Check that user stats are right. correct_stats = [ {'progress': 100}, # mystery_finisher {'progress': None}, # absentee {'progress': None}, # refusee {'progress': None}, # expelee {'progress': 100}, # mr_perfect {'progress': 50}, # non_finisher {'progress': 100}, # wrong_name ] for index, s in enumerate(students): s = db.get(s.key()) self.assertEqual(s.aggregation_data[1], correct_stats[index]) # Check that activity stats are right. a1 = db.get(student_activities[0].key()) correct_stats = { # Total has decreased b/c MWN students are dropped from the counts # completely. This is because they're not really a person, they're # a duplicate representation of a different real person. 'total_students': 6, 'certified_students': 5, 'certified_study_eligible_dict': { 'n': 4, 'completed': 1, 'makeup_eligible': 1, 'makeup_ineligible': 1, 'uncoded': 1 }, } self.assertEqual(a1.aggregation_data, correct_stats) # Activity 2 shouldn't register any of the progress we've made on # activity 1. a2 = db.get(student_activities[1].key()) correct_stats = { 'total_students': 6, 'certified_students': 5, 'certified_study_eligible_dict': { 'n': 5, 'completed': 0, 'makeup_eligible': 0, 'makeup_ineligible': 0, 'uncoded': 5 }, } self.assertEqual(a2.aggregation_data, correct_stats) # Check cohort (again, similar, but with a larger 'all' total). cohort = db.get(cohort.key()) correct_cohort_stats = { 1: { 'unscheduled': 1, 'scheduled': 1, 'behind': 0, 'completed': 0, 'incomplete_rosters': 2, 'total_students': 7, 'certified_students': 5, 'certified_study_eligible_dict': { 'n': 4, 'completed': 1, 'makeup_eligible': 1, 'makeup_ineligible': 1, 'uncoded': 1 }, }, 2: { 'unscheduled': 2, 'scheduled': 0, 'behind': 0, 'completed': 0, 'incomplete_rosters': 2, 'total_students': 7, 'certified_students': 5, 'certified_study_eligible_dict': { 'n': 5, 'completed': 0, 'makeup_eligible': 0, 'makeup_ineligible': 0, 'uncoded': 5 }, } } self.assertEqual(cohort.aggregation_data, correct_cohort_stats) def test_aggregate_handles_duplicates(self): """If multiple progress pd, aggregator chooses the largest one.""" # Create w/o the api to intentionally create duplicates pd_id1 = 'Pd_1.' + self.student.id pd_id2 = 'Pd_2.' + self.student.id pd_id3 = 'Pd_3.' + self.student.id pd_id4 = 'Pd_4.' + self.student.id pd1 = Pd(key_name=pd_id1, id=pd_id1, parent=self.student, scope=self.student.id, program=self.program.id, activity_ordinal=1, variable='s1__progress', value='66', public=True) pd2 = Pd(key_name=pd_id2, id=pd_id2, parent=self.student, scope=self.student.id, program=self.program.id, activity_ordinal=1, variable='s1__progress', value='33', public=True) pd3 = Pd(key_name=pd_id3, id=pd_id3, parent=self.student, scope=self.student.id, program=self.program.id, activity_ordinal=2, variable='s2__progress', value='100', public=True) pd4 = Pd(key_name=pd_id4, id=pd_id4, parent=self.student, scope=self.student.id, program=self.program.id, activity_ordinal=2, variable='s2__progress', value='66', public=True) # Put them in a confusing order on purpose, to try to get the # aggregator to process them from largest to smallest. db.put([pd1, pd3]) db.put([pd2, pd4]) # Prove that there are duplicates. duplicates = self.student_api.get('pd', {}, ancestor=self.student) self.assertEquals(len(duplicates), 4) # Aggregate and check results. cron = Cron(self.internal_api) cron.aggregate() student = db.get(self.student.key()) self.assertEquals( student.aggregation_data, {1: {'progress': 66}, 2: {'progress': 100}}) # Student should also have COM for s2 b/c they hit 100. self.assertEquals(student.s2_status_code, 'COM') def test_aggregation_does_not_change_modified_time(self): cron = Cron(self.internal_api) # Create a fake set of data to aggregate: A cohort, classroom, # student activities, a student, and a pd value for that student. cohort = self.researcher_api.create('cohort', { 'name': 'DGN 2015', 'code': 'lion mackerel', 'program': self.program.id, 'school': self.school.id, }) self.researcher_api.associate('set_owner', self.school_admin, cohort) classroom = self.school_admin_api.create('classroom', { 'name': "English 201", 'user': self.school_admin.id, 'program': self.program.id, 'cohort': cohort.id, }) student_activities = self.school_admin_api.init_activities( 'student', self.school_admin.id, self.program.id, cohort_id=cohort.id, classroom_id=classroom.id) db.get([cohort.key(), classroom.key()]) db.get([a.key() for a in student_activities]) student_params = {'user_type': 'student', 'classroom': classroom.id} student = self.public_api.create('user', student_params) student = db.get(student.key()) pd_params = { 'variable': 's1__progress', 'program': self.program.id, 'activity': student_activities[0].id, 'activity_ordinal': 1, 'value': 100, 'scope': student.id, } pd = Api(student).create('pd', pd_params) db.get(pd.key()) # First prove that modified times ARE set in this context for normal # writes. The student's progress has NOT been written to the user # entity yet. modified_before = student.modified time.sleep(0.1) student.first_name = 'mister' student.put() modified_after = db.get(student.key()).modified self.assertEquals(student.aggregation_data, {1: {'progress': None}, 2: {'progress': None}}) self.assertNotEqual(modified_before, modified_after) # Now aggregate, which should write the pd's progress value to the # user, but should NOT update the user's modified time. modified_before = modified_after time.sleep(0.1) cron.aggregate() student = db.get(student.key()) modified_after = db.get(student.key()).modified self.assertEquals(student.aggregation_data, {1: {'progress': 100}, 2: {'progress': None}}) self.assertEquals(modified_before, modified_after) def test_aggregate_more_than_thirty_classrooms(self): """Aggregation uses an IN filter, which breaks App Engine when it has more than 30 elements in it. There should be code to handle this.""" cron = Cron(self.internal_api) # To insulate the expected aggregation stats from changes to the # populate script, we'll create a separate cohort and classroom. For # larger things we'll rely on the stuff set by the populate script, # e.g. self.program. cohort = self.researcher_api.create('cohort', { 'name': 'DGN 2015', 'code': 'lion mackerel', 'program': self.program.id, 'school': self.school.id, }) db.get(cohort.key()) self.researcher_api.associate('set_owner', self.school_admin, cohort) # Create 31 different students in as many different classrooms. classrooms, student_activities, students = [], [], [] for x in range(30): c = self.school_admin_api.create('classroom', { 'name': "English " + str(x), 'user': self.school_admin.id, 'program': self.program.id, 'cohort': cohort.id, }) c = db.get(c.key()) acts = self.school_admin_api.init_activities( 'student', self.school_admin.id, self.program.id, cohort_id=cohort.id, classroom_id=c.id) acts = db.get([a.key() for a in acts]) s = self.public_api.create('user', {'user_type': 'student', 'classroom': c.id}) classrooms.append(c) student_activities += acts students.append(s) # Bring them all into full db consistency. db.get([s.key() for s in students]) cron.aggregate() # All activities should show one student. student_activities = db.get([a.key() for a in student_activities]) correct_stats = { 'total_students': 1, 'certified_students': 0, 'certified_study_eligible_dict': { 'n': 0, 'completed': 0, 'makeup_eligible': 0, 'makeup_ineligible': 0, 'uncoded': 0 }, } for a in student_activities: self.assertEqual(a.aggregation_data, correct_stats) def test_aggregate_queues_tasks(self): cron = Cron(self.internal_api) queue = taskqueue.Queue(name='default') # Since this test inherits a populated stub datastore, some tasks # have already been queued. Set that as the baseline. baseline = queue.fetch_statistics().tasks # Now aggregate the entities that have been pre-populated, which # includes one classroom and one cohort. This should queue 3 tasks: one # classroom roster, one cohort roster, and one cohort schedule. cron.aggregate() post_aggregation = queue.fetch_statistics().tasks self.assertEqual(post_aggregation - baseline, 3)
[ "chris@perts.net" ]
chris@perts.net
6dabdc807370bd4b3c31d1fe008b1c317f826fcd
8dc84558f0058d90dfc4955e905dab1b22d12c08
/chrome/browser/android/vr/DEPS
4bb15ad06141975212205cdb895c4d52b1e9f069
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
meniossin/src
42a95cc6c4a9c71d43d62bc4311224ca1fd61e03
44f73f7e76119e5ab415d4593ac66485e65d700a
refs/heads/master
2022-12-16T20:17:03.747113
2020-09-03T10:43:12
2020-09-03T10:43:12
263,710,168
1
0
BSD-3-Clause
2020-05-13T18:20:09
2020-05-13T18:20:08
null
UTF-8
Python
false
false
196
include_rules = [ "+cc/base", "+cc/layers", "+device/vr", "+services/metrics/public/cpp/ukm_builders.h", "+third_party/gvr-android-keyboard/src", "+third_party/gvr-android-sdk/src", ]
[ "arnaud@geometry.ee" ]
arnaud@geometry.ee
0ffa3e481eb23c0ae940935b0063cd736086e603
08f30ea954d0627f0ae456d1bf22f74b7a809263
/exam/61a-su20-mt1/q1/tests/q1.py
3e76c09722005ee9c4f2d194686148a269f38828
[]
no_license
gintonyc/UCBerkeley_cs61a_SICP
da04023deac611b1485921fb83de7926d5d25841
61482385dc41e237110b16ca5444a8ca6b25b864
refs/heads/master
2023-06-02T23:56:21.435348
2021-06-10T08:27:23
2021-06-10T08:27:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
841
py
test = { 'name': 'q1', 'points': 10, 'suites': [ { 'cases': [ { 'code': r""" >>> put1 = kv() >>> get2, put2 = put1('cat', 'animal') >>> get3, put3 = put2('table', 'furniture') >>> get4, put4 = put3('cup', 'utensil') >>> get5, put5 = put4('thesis', 'paper') >>> get5('thesis') 'paper' >>> get5('cup') 'utensil' >>> get5('table') 'furniture' >>> get5('cat') 'animal' >>> get3('cup') 0 """, 'hidden': False } ], 'scored': True, 'setup': 'from q1 import *', 'teardown': '', 'type': 'doctest' } ] }
[ "tonythemayfly@gmail.com" ]
tonythemayfly@gmail.com
4975b6114aede5494545e055742b32230ecc0e5a
3093520d03fb2701e97b60755dd55534efa8d6c6
/yoursite/settings.py
21683f82519698cd361014edbea727b7e8c63134
[]
no_license
bradwright/django-layout
6da01d613135ffa37a1b335f961a0e7e0d2c8baf
9b2fe6b862237217e56d00b1f634e15791a96b26
refs/heads/master
2020-04-10T16:54:26.939487
2009-08-29T08:41:14
2009-08-29T08:41:14
76,139
3
0
null
null
null
null
UTF-8
Python
false
false
3,164
py
# Django settings for yoursite project. import os TEMPLATE_DEBUG = DEBUG = True ADMINS = ( # ('Your Name', 'your_email@domain.com'), ) MANAGERS = ADMINS DATABASE_ENGINE = '' # 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. DATABASE_NAME = '' # Or path to database file if using sqlite3. DATABASE_USER = '' # Not used with sqlite3. DATABASE_PASSWORD = '' # Not used with sqlite3. DATABASE_HOST = '' # Set to empty string for localhost. Not used with sqlite3. DATABASE_PORT = '' # Set to empty string for default. Not used with sqlite3. # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" # note extra change - this path will always work with this settings file MEDIA_ROOT = os.path.join(os.path.dirname(__file__), '../static') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = '' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = '/media/' # Make this unique, and don't share it with anybody. SECRET_KEY = '(*77@q20%l7t-d6kear3wfu_x^&3dh2(&h$_6htf#up25t*3k6' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.load_template_source', 'django.template.loaders.app_directories.load_template_source', # 'django.template.loaders.eggs.load_template_source', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.core.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.core.context_processors.request', #populate the context with the contents of request ) ROOT_URLCONF = 'yoursite.urls' # ensure primary template path is always below the current directory TEMPLATE_DIRS = ( os.path.join(os.path.dirname(__file__), '../templates') ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'static_management', )
[ "brad@intranation.com" ]
brad@intranation.com
d79100277593e2e79aec7f47ffa6a0ad0122ce1c
41868e541e3eb87cd13969baf79e2dca73952594
/queries.py
685a08e24a21381b2bce8a60e33cce4de131fc57
[]
no_license
JulianAuza/wish_list
16950fa8ef6b92c607450615e9b974b6348178c6
79b4514578777070b9e07ae7a1a7f439e5fc728b
refs/heads/master
2021-01-01T19:17:01.218303
2017-07-27T15:46:50
2017-07-27T15:46:50
98,554,220
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
import django from apps.wishlist.models import User # Courses.objects.create(course_name = 'Super fun', desc ='YAS') ssssssss User.objects.create(name = 'Kim Hyuna' ,email= 'wondergirls@jyp.com', password = '12345678' , user_name = '4minute') # users = User.objects.all() # for user in users: # print user.user_name, user.email_address,user.password
[ "julianauza@gmail.com" ]
julianauza@gmail.com