blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
330b9a16243835ebf2e6255abc9c539afae9e81c
9c3a23eddc4104d2b60252e6b7934983e174f319
/avalon/cli/__init__.py
5746e913881469c57ccf04f6d792b80eabc3bcae
[ "MIT" ]
permissive
56quarters/avalonms
b5e6e7949eee7f06b99061895c8ca11acaa154a0
2291f8457ca86f2e963d518abbdce04af02d9054
refs/heads/master
2021-10-19T06:43:23.052941
2019-02-18T21:52:51
2019-02-18T21:52:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
945
py
# -*- coding: utf-8 -*- # # Avalon Music Server # # Copyright 2012-2015 TSH Labs <projects@tshlabs.org> # # Available under the MIT license. See LICENSE for details. # """CLI entry points associated with the Avalon Music Server.""" from __future__ import absolute_import, print_function, unicode_literals import signal import sys import avalon.compat def install_sigint_handler(): """Install a simple signal handler to quietly exit on SIGINT.""" def handler(signum, _): print("Exiting on signal {0}...".format(signum), file=sys.stderr) sys.exit(1) signal.signal(signal.SIGINT, handler) def input_to_text(s): """Convert the given byte string or text type to text using the file system encoding of the current system. :param basestring s: String or text type to convert :return: The string as text :rtype: unicode """ return avalon.compat.to_text(s, sys.getfilesystemencoding())
[ "nick@tshlabs.org" ]
nick@tshlabs.org
43441c1fa1062719c7a1743f55dffdb8e2db487a
8b9108ecf99a88ebd9995fd91aadc9c0a1258ef0
/tests/test_type.py
e0a395087c0ccb7a8f814153d9e157d73b25e9de
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
nkoep/python-libjit
5129abe331b266433bfe0b4358a09197be92b914
6ca42dc44432cd54c61e6066d382b7f5a9d58f38
refs/heads/master
2021-01-01T19:20:33.277266
2014-06-18T15:42:10
2014-06-18T15:42:10
20,837,857
4
0
null
null
null
null
UTF-8
Python
false
false
6,455
py
import unittest import jit class TestType(unittest.TestCase): def test_constructors(self): with self.assertRaises(TypeError): jit.Type() def test_create_struct(self): struct = jit.Type.create_struct([jit.Type.INT, jit.Type.INT]) self.assertTrue(struct.is_struct()) def test_create_union(self): union = jit.Type.create_union((jit.Type.INT, jit.Type.UINT)) self.assertTrue(union.is_union()) def test_create_signature(self): signature = jit.Type.create_signature( jit.ABI_FASTCALL, None, (jit.Type.INT,)) self.assertIsInstance(signature, jit.Type) self.assertTrue(signature.is_signature()) def test_create_pointer(self): pointer = jit.Type.INT.create_pointer() self.assertIsInstance(pointer, jit.Type) self.assertEqual(pointer.get_ref(), jit.Type.INT) self.assertIsNone(jit.Type.INT.get_ref()) def test_create_tagged(self): tagged_type = jit.Type.INT.create_tagged(jit.TYPETAG_NAME, data="data") self.assertIsInstance(tagged_type, jit.Type) self.assertEqual(tagged_type.get_tagged_type(), jit.Type.INT) def test_set_names(self): struct = jit.Type.create_struct((jit.Type.INT,)) name = "some_int" self.assertTrue(struct.set_names([name])) self.assertEqual(struct.get_name(0), name) self.assertIsNone(struct.get_name(1)) # Names must be strings. with self.assertRaises(TypeError): jit.Type.VOID.set_names((1,)) def test_set_size_and_alignment(self): fields = (jit.Type.INT, jit.Type.VOID_PTR) struct = jit.Type.create_struct(fields) size = alignment = -1 struct.set_size_and_alignment(size, alignment) # FIXME: For some reason, get_size() returns the optimal size here # whereas get_alignment() just returns -1. self.assertIsInstance(struct.get_size(), long) self.assertEqual(struct.get_alignment(), alignment) def test_set_offset(self): struct = jit.Type.create_struct([jit.Type.INT, jit.Type.VOID]) offset = 7 struct.set_offset(1, offset) self.assertEqual(struct.get_offset(1), offset) def test_get_kind(self): self.assertEqual(jit.Type.INT.get_kind(), jit.TYPE_INT) def test_num_fields(self): fields = (jit.Type.INT, jit.Type.VOID) struct = jit.Type.create_struct(fields) num_fields = struct.num_fields() self.assertIsInstance(num_fields, long) self.assertEqual(num_fields, len(fields)) def test_get_field(self): field = jit.Type.VOID union = jit.Type.create_union([field]) self.assertEqual(union.get_field(0), field) def test_find_name(self): self.assertEqual(jit.Type.INT.find_name("name"), jit.INVALID_NAME) fields = (jit.Type.INT, jit.Type.VOID) struct = jit.Type.create_struct(fields) names = ["field1", "field2"] struct.set_names(names) self.assertEqual(struct.find_name("field2"), names.index("field2")) def test_num_params(self): signature = jit.Type.create_signature( jit.ABI_VARARG, jit.Type.VOID, (jit.Type.VOID,)) self.assertEqual(signature.num_params(), 1) def test_get_return(self): signature = jit.Type.create_signature( jit.ABI_VARARG, jit.Type.VOID, (jit.Type.VOID,)) self.assertEqual(signature.get_return(), jit.Type.VOID) # Primitive type is not a signature type. self.assertIsNone(jit.Type.INT.get_return()) def test_get_param(self): signature = jit.Type.create_signature( jit.ABI_CDECL, jit.Type.INT, (jit.Type.INT,)) param = signature.get_param(0) self.assertIsInstance(param, jit.Type) self.assertEqual(param.get_kind(), jit.TYPE_INT) self.assertIsNone(signature.get_param(2)) # Out-of-range self.assertIsNone(jit.Type.INT.get_param(-1)) # Not a signature def test_get_abi(self): signature = jit.Type.create_signature( jit.ABI_VARARG, jit.Type.INT, (jit.Type.INT,)) self.assertEqual(signature.get_abi(), jit.ABI_VARARG) # Non-signature types always return jit.ABI_CDECL. self.assertEqual(jit.Type.INT.get_abi(), jit.ABI_CDECL) def test_tagged_type(self): untagged_type = jit.Type.INT # Untagged types should return None. self.assertIsNone(untagged_type.get_tagged_type()) self.assertEqual(untagged_type.get_tagged_kind(), -1) kind = jit.TYPETAG_CONST type_ = jit.Type.INT.create_tagged(kind) underlying = jit.Type.VOID type_.set_tagged_type(underlying=underlying) self.assertEqual(type_.get_tagged_type(), underlying) self.assertEqual(type_.get_tagged_kind(), kind) def test_set_get_tagged_data(self): tagged_type = jit.Type.INT.create_tagged(jit.TYPETAG_NAME, data=None) data = "data" tagged_type.set_tagged_data(data=data) self.assertEqual(tagged_type.get_tagged_data(), data) def test_is_primitive(self): self.assertTrue(jit.Type.VOID.is_primitive()) def test_best_alignment(self): self.assertIsInstance(jit.Type.best_alignment(), long) def test_normalize(self): type_ = jit.Type.VOID type_normalized = type_.normalize() self.assertEqual(type_, type_normalized) self.assertTrue(type_ is type_normalized) def test_remove_tags(self): tagged_type = jit.Type.INT.create_tagged(jit.TYPETAG_NAME, data="data") collapsed_type = tagged_type.remove_tags() self.assertNotEqual(tagged_type, collapsed_type) self.assertEqual(collapsed_type, jit.Type.INT) def test_promote_int(self): types = [(jit.Type.SBYTE, jit.Type.INT), (jit.Type.USHORT, jit.Type.UINT), (jit.Type.VOID_PTR, jit.Type.VOID_PTR)] for type_, type_int_promoted in types: self.assertEqual(type_.promote_int(), type_int_promoted) def test_return_via_pointer(self): self.assertIsInstance(jit.Type.INT.return_via_pointer(), bool) def test_has_tag(self): self.assertIsInstance(jit.Type.INT.has_tag(jit.TYPETAG_CONST), bool) tagged_type = jit.Type.INT.create_tagged(jit.TYPETAG_NAME, data="data") self.assertTrue(tagged_type.has_tag(jit.TYPETAG_NAME))
[ "niklas.koep@gmail.com" ]
niklas.koep@gmail.com
bfe3839ba8029e94971e49a4a32139d7695702fd
765fedd094cd56a6cefac498b88a06f91b7ae473
/lib/xlayers/super_transformer.py
f21ac54abf14290d245e7e84c075a81de6d44017
[ "MIT" ]
permissive
xgmiao/AutoDL-Projects
ed74220b1b779adfc98c848c87510bc3982bde15
0dbbc286c9f56136291590136fffd513af881c36
refs/heads/main
2023-04-27T17:04:09.115305
2021-05-10T06:14:06
2021-05-10T06:14:06
366,212,937
1
0
MIT
2021-05-11T00:41:13
2021-05-11T00:41:12
null
UTF-8
Python
false
false
4,402
py
##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # ##################################################### from __future__ import division from __future__ import print_function import math from functools import partial from typing import Optional, Callable import torch import torch.nn as nn import torch.nn.functional as F import spaces from .super_module import IntSpaceType from .super_module import BoolSpaceType from .super_module import LayerOrder from .super_module import SuperModule from .super_linear import SuperMLPv2 from .super_norm import SuperLayerNorm1D from .super_attention import SuperAttention class SuperTransformerEncoderLayer(SuperModule): """TransformerEncoderLayer is made up of self-attn and feedforward network. This is a super model for TransformerEncoderLayer that can support search for the transformer encoder layer. Reference: - Paper: Attention Is All You Need, NeurIPS 2017 - PyTorch Implementation: https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#TransformerEncoderLayer Details: the original post-norm version: MHA -> residual -> norm -> MLP -> residual -> norm the pre-norm version: norm -> MHA -> residual -> norm -> MLP -> residual """ def __init__( self, d_model: IntSpaceType, num_heads: IntSpaceType, qkv_bias: BoolSpaceType = False, mlp_hidden_multiplier: IntSpaceType = 4, drop: Optional[float] = None, act_layer: Callable[[], nn.Module] = nn.GELU, order: LayerOrder = LayerOrder.PreNorm, ): super(SuperTransformerEncoderLayer, self).__init__() mha = SuperAttention( d_model, d_model, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=drop, proj_drop=drop, ) mlp = SuperMLPv2( d_model, hidden_multiplier=mlp_hidden_multiplier, out_features=d_model, act_layer=act_layer, drop=drop, ) if order is LayerOrder.PreNorm: self.norm1 = SuperLayerNorm1D(d_model) self.mha = mha self.drop1 = nn.Dropout(drop or 0.0) self.norm2 = SuperLayerNorm1D(d_model) self.mlp = mlp self.drop2 = nn.Dropout(drop or 0.0) elif order is LayerOrder.PostNorm: self.mha = mha self.drop1 = nn.Dropout(drop or 0.0) self.norm1 = SuperLayerNorm1D(d_model) self.mlp = mlp self.drop2 = nn.Dropout(drop or 0.0) self.norm2 = SuperLayerNorm1D(d_model) else: raise ValueError("Unknown order: {:}".format(order)) self._order = order @property def abstract_search_space(self): root_node = spaces.VirtualNode(id(self)) xdict = dict( mha=self.mha.abstract_search_space, norm1=self.norm1.abstract_search_space, mlp=self.mlp.abstract_search_space, norm2=self.norm2.abstract_search_space, ) for key, space in xdict.items(): if not spaces.is_determined(space): root_node.append(key, space) return root_node def apply_candidate(self, abstract_child: spaces.VirtualNode): super(SuperTransformerEncoderLayer, self).apply_candidate(abstract_child) valid_keys = ["mha", "norm1", "mlp", "norm2"] for key in valid_keys: if key in abstract_child: getattr(self, key).apply_candidate(abstract_child[key]) def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: return self.forward_raw(input) def forward_raw(self, input: torch.Tensor) -> torch.Tensor: if self._order is LayerOrder.PreNorm: x = self.norm1(input) x = x + self.drop1(self.mha(x)) x = self.norm2(x) x = x + self.drop2(self.mlp(x)) elif self._order is LayerOrder.PostNorm: # multi-head attention x = self.mha(input) x = x + self.drop1(x) x = self.norm1(x) # feed-forward layer x = x + self.drop2(self.mlp(x)) x = self.norm2(x) else: raise ValueError("Unknown order: {:}".format(self._order)) return x
[ "280835372@qq.com" ]
280835372@qq.com
fb6470f29aaad7c213cae0d37ef84b08e9684089
07ee05b02ab05fc4e6088109bf6617bd71bbd335
/pycheribuild/projects/soaap.py
fb5019e47a254245c571f7c4908f270e6a2b1807
[ "BSD-2-Clause" ]
permissive
dodsonmg/cheribuild
666b4203cca7096a04e2e47e6f5504b38325fca6
88a86ea4d90f2f79a40e87df8154ad1fa41d8510
refs/heads/master
2021-08-26T07:49:26.339185
2020-06-19T13:12:01
2020-06-19T13:45:05
253,057,878
0
0
NOASSERTION
2020-04-04T17:24:37
2020-04-04T17:24:37
null
UTF-8
Python
false
false
3,082
py
# # Copyright (c) 2016 Alex Richardson # All rights reserved. # # This software was developed by SRI International and the University of # Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237 # ("CTSRD"), as part of the DARPA CRASH research programme. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. # from .llvm import BuildLLVMSplitRepoBase from .project import CMakeProject, GitRepository from ..config.loader import ComputedDefaultValue install_to_soaap_dir = ComputedDefaultValue(function=lambda config, project: config.outputRoot / "soaap", as_string="$INSTALL_ROOT/soaap") class BuildSoaapLLVM(BuildLLVMSplitRepoBase): target = "soaap-llvm" project_name = "soaap-llvm" githubBaseUrl = "https://github.com/CTSRD-SOAAP/" repository = GitRepository(githubBaseUrl + "llvm.git") no_default_sysroot = True skip_misc_llvm_tools = False skip_static_analyzer = False _default_install_dir_fn = install_to_soaap_dir skip_cheri_symlinks = True @classmethod def setup_config_options(cls, **kwargs): cls.included_projects = ["llvm", "clang"] super().setup_config_options(include_lldb_revision=False, include_lld_revision=False, **kwargs) class BuildSoaap(CMakeProject): dependencies = ["soaap-llvm"] repository = GitRepository("https://github.com/CTSRD-SOAAP/soaap") _default_install_dir_fn = install_to_soaap_dir def configure(self, **kwargs): soaap_llvm = BuildSoaapLLVM.get_instance(self) print(soaap_llvm.configureArgs) build_shared_libs = any(x == "-DBUILD_SHARED_LIBS=ON" for x in soaap_llvm.configureArgs) self.add_cmake_options(LLVM_DIR=soaap_llvm.buildDir / "share/llvm/cmake") self.add_cmake_options(BUILD_SHARED_LIBS=build_shared_libs) super().configure(**kwargs)
[ "Alexander.Richardson@cl.cam.ac.uk" ]
Alexander.Richardson@cl.cam.ac.uk
75d0c7d478ec0b15d343bd9228b13d4c9db5ab79
bf72f86417cff663557addf8f9ff31c5192637c5
/lists/tests/test_forms.py
588e4230ead7c74a38153da9c19dc6508104a699
[]
no_license
robbystk/python-tdd
6cbf95353fd7a195a4110bb450b981b9fb21f2bc
8eeaa4f811b4d5f921933992669c3f8fb8414354
refs/heads/master
2021-06-25T05:40:55.588090
2019-10-14T03:51:39
2019-10-14T03:51:39
170,801,167
0
0
null
2021-06-10T22:05:34
2019-02-15T04:20:12
JavaScript
UTF-8
Python
false
false
2,115
py
from django.test import TestCase from lists.forms import ( DUPLICATE_ITEM_ERROR, EMPTY_ITEM_ERROR, ExistingListItemForm, ItemForm ) from lists.models import List, Item class ItemFormTest(TestCase): def test_form_item_input_has_placeholder_and_css_classes(self): form = ItemForm() self.assertIn('placeholder="Enter a to-do item"', form.as_p()) self.assertIn('class="form-control input-lg"', form.as_p()) def test_form_validation_for_blank_items(self): form = ItemForm(data={'text': ''}) self.assertFalse(form.is_valid()) self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR]) def test_form_save_handles_saving_to_a_list(self): list_ = List.objects.create() form = ItemForm(data={'text': 'task'}) new_item = form.save(for_list=list_) self.assertEqual(new_item, Item.objects.first()) self.assertEqual(new_item.text, 'task') self.assertEqual(new_item.list, list_) class ExistingListItemFormTest(TestCase): def test_form_renders_item_text_input(self): list_ = List.objects.create() form = ExistingListItemForm(for_list=list_) self.assertIn('placeholder="Enter a to-do item"', form.as_p()) def test_form_validation_for_blank_items(self): list_ = List.objects.create() form = ExistingListItemForm(for_list=list_, data={'text': ''}) self.assertFalse(form.is_valid()) self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR]) def test_form_validation_for_duplicate_items(self): list_ = List.objects.create() Item.objects.create(list=list_, text="no twins!") form = ExistingListItemForm(for_list=list_, data={'text': 'no twins!'}) self.assertFalse(form.is_valid()) self.assertEqual(form.errors['text'], [DUPLICATE_ITEM_ERROR]) def test_existing_list_item_form_save(self): list_ = List.objects.create() form = ExistingListItemForm(for_list=list_, data={'text': 'hi'}) new_item = form.save() self.assertEqual(new_item, Item.objects.all()[0])
[ "robbystk@gmail.com" ]
robbystk@gmail.com
cbd307d49d75f544592ce8a8994cc5decdb75ceb
0a09d4dec96def19ef33ace4815eddcad48878c3
/archive/NLTK/NLTK获得文本语料和词汇资源.py
3bd91044b57ba3d268b8a2ab914ec1445d39d463
[]
no_license
amssj/python
216522e32e0af137ef76bd41a4b91b7571ab4ff7
f5211c9d083813f4d5a3c48faab79806104e3f4a
refs/heads/master
2022-12-06T13:01:15.477782
2020-08-26T06:23:47
2020-08-26T06:23:47
288,282,579
0
0
null
null
null
null
UTF-8
Python
false
false
506
py
import nltk nltk.corpus.gutenberg.fileids() emma = nltk.corpus.gutenberg.words('austen-emma.txt') print(len(emma)) from nltk.corpus import gutenberg gutenberg.fileids() emma = gutenberg.words('austen-emma.txt') print(emma) macbeth_sentences = gutenberg.sents('shakespeare-macbeth.txt') macbeth_sentences print(macbeth_sentences[1037]) longest_len = max([len(s) for s in macbeth_sentences]) print(longest_len) A = [s for s in macbeth_sentences if len(s) == longest_len] print(A) ##words(),raw(),sents()
[ "69820922+amssj@users.noreply.github.com" ]
69820922+amssj@users.noreply.github.com
56e30790d5f002830a86c58b9c70e5831cfd7695
f94106bb5cd3f5e60242cf75ac2424dd8ba0df3e
/moduloInventario/admin.py
5263d4e3fedf56a3bdc16e50dc98eff3359ca2db
[]
no_license
rianjara/Ing.Software
c09be82a8434699f9c8444c1d1c769fcf4e782e8
673ee35780db329e720771c0d23f1bc579ae54b4
refs/heads/master
2020-05-18T16:59:36.496459
2013-08-21T05:00:17
2013-08-21T05:00:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
from django.contrib import admin from moduloInventario.models import Item, Categoria, Proveedor, Orden_Compra, Detalle_Orden_Compra admin.site.register(Item) admin.site.register(Categoria) admin.site.register(Proveedor) admin.site.register(Orden_Compra) admin.site.register(Detalle_Orden_Compra)
[ "Administrador@edgar-PC" ]
Administrador@edgar-PC
e0a57f279a8faf560f53f63bbed103fe897a86a5
f9e9aa5cef137e6a0b869ebbab90ac5d6289461b
/__init__.py
0af5fc107874d56c97b3349ba834386df4a2dc3d
[ "MIT" ]
permissive
rupesh28/pollytts
c6836ce859cb440dbe9493e84c9cfccb2ea23b56
279bd4bc1a06d2f893880fc3426d1411c59ac886
refs/heads/master
2022-07-17T21:14:21.705786
2020-05-19T05:44:46
2020-05-19T05:44:46
265,155,451
0
0
null
null
null
null
UTF-8
Python
false
false
12,635
py
# -*- coding: utf-8 -*- # MIT License # # Copyright (c) [year] [fullname] # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # """ Library to convert text to speech using Amazon Polly Service https://aws.amazon.com/polly/ """ import logging import tempfile import os import boto3 as aws from Voices import Voices from Exceptions import (LanguageException, OutputFormatException, EngineException, BotoException, RegionException) from botocore.exceptions import ClientError class PollyTTS: """ API for Amazon Polly TTS services """ def __init__(self, access_key_id, secret_access_key, region='us-west-1', debug=False): """ Initiate class @param access_key_id: AWS Polly access key id @param secret_access_key: AWS Polly secret access key @param region: AWS region. Default - US-WEST-1 @param debug: Debugging option. Default - False """ self.access_key_id = access_key_id self.secret_access_key = secret_access_key self.region = region self.debug = debug self.logger = logging.getLogger(__name__) self.lang = None self.voice = None self.formatted_text = None self.output_format = None self.engine = None self.text_type = None # AWS Polly Engines self.supported_engines = ['standard', 'neural'] # AWS Polly Output Format self.supported_output_formats = ['json', 'mp3', 'ogg_vorbis', 'pcm'] # AWS Polly supported regions self.supported_regions = ['ap-east-1', 'ap-northeast-1', 'ap-northeast-2', 'ap-south-1', 'ap-southeast-1', 'ap-southeast-2', 'ca-central-1', 'eu-central-1', 'eu-north-1', 'eu-west-1', 'eu-west-2', 'eu-west-3', 'me-south-1', 'sa-east-1', 'us-east-1', 'us-east-2', 'us-west-1', 'us-west-2'] # AWS Polly supported voices self.supported_voices = Voices() # Logging if self.debug: self.logger.setLevel(level=logging.DEBUG) # Create Polly Client if self.region not in self.supported_regions: raise RegionException("Requested region {} does not support polly".format(self.region)) self.session = aws.session.Session( aws_access_key_id=self.access_key_id, aws_secret_access_key=self.secret_access_key, region_name=self.region ) self.client = self.session.client('polly') self.logger.debug('Authorized to polly service region - {}'.format(self.region)) def speak(self, text, lang=None, voice=None, engine=None, output_format=None, save_to_file=False, text_type='text'): """ Generate the request body for Polly @param text: Text to convert to speech @param text_type: Type can be text or SSML. (Default: Text) @param lang: Speech output language (Default: en-US) @param voice: Speech output voice (Default: Joanna) @param engine: Speech Engine (Default: Standard) @param output_format: Speech output file format (Default : MP3) @param save_to_file: Save speech data to a file @return: Return the request for polly When passing text to speak - you can utilize certain SSML features by wrapping the text around with the following tags. <break> - Add a pause in speech for 2 seconds <emphasize></emphasize> - Text will be read in louder and slower tone <max duration='duration'></max> (TODO) - Maximum length of the speech response. Duration in milliseconds. <spell></spell> - Text will be spelled out in individual characters. <number></number> - Text will be read as cardinal number <ordinal></ordinal> - Text will be read as ordinal. Ex 1234 will be read 1234th <digits></digits> - Text digits will be spelled out individually. <unit></unit> - Text will be read as a measurement. <time></time> - Text will be read as time. Example - 1'30" represents 1 min 30 seconds <address></address> - Text will be read as a address <bleep></bleep> - Text will be bleeped out <fraction></fraction> - Text will be read as a fraction. <date format='format'></date> (TODO) - Text will be read as date. For supported formats refer - https://docs.aws.amazon.com/polly/latest/dg/supportedtags.html#say-as-tag <telephone></telephone> - Text will be read as a telephone number <convo></convo> - Text will be spoke conversation style. Only available for neural format and for certain voices - Refer https://docs.aws.amazon.com/polly/latest/dg/supportedtags.html#newscaster-tag <newscaster></newscaster> - Text will be spoke newscaster style. Only available for neural format and for certain voices - Refer https://docs.aws.amazon.com/polly/latest/dg/supportedtags.html#newscaster-tag <soft></soft> - Text will be spoken in a soft tone <whisper></whisper> - Text will be spoken in a whispered voice Amazon polly provides more customization options when using SSML input. Above options provided are only a subset that can be used for most common purposes. For more detailed control over speech synthesis refer the below link and directly provide input in SSML format. https://docs.aws.amazon.com/polly/latest/dg/supportedtags.html """ self.lang = lang self.voice = voice self.engine = engine self.output_format = output_format self.text_type = text_type if not text: raise LanguageException("Text is not provided for speech conversion") if not self.voice and not self.lang: self.lang = 'en-US' self.voice = 'Joanna' if not self.engine: self.engine = 'standard' if not self.output_format: self.output_format = 'mp3' if self.lang and not self.voice: self.voice = self.supported_voices.get_language_details(self.lang).default # Validate input parameters self.validate_request() # Reformat the input text to SSML format if self.text_type.upper() == 'TEXT': self.convert_text_to_ssml(text) else: self.formatted_text = text print(self.formatted_text) # Log parameters determined for use. self.logger.debug('Language - {}, Voice - {}, Engine - {}, Output Format - {}'.format(self.lang, self.voice, self.engine, self.output_format)) return self.send_request_to_polly(save_to_file) def validate_request(self): """ Verify all the required parameters are valid for polly service @return: None """ if self.voice and not self.lang: raise LanguageException("Voice defined witout defining language!") if self.lang is not None and self.lang not in self.supported_voices.supported_languages(): raise LanguageException("Requested language {} not available!".format(self.lang)) if self.voice not in self.supported_voices.get_language_details(self.lang).voices: raise LanguageException("Requested language {} does not have voice {}!".format(self.lang, self.voice)) if self.output_format not in self.supported_output_formats: raise OutputFormatException("Requested output format {} is not supported".format(self.output_format)) if self.engine not in self.supported_engines: raise EngineException("Requested engine {} is not supported".format(self.engine)) return None def send_request_to_polly(self, save_to_file=False): """ Send formatted text as request and return the response. @param save_to_file: If True - output will be written to a temporary file @return: If save_to_file is true - location of the audio file will be returned. If false - the audio in raw byte format will be returned. """ try: response = self.client.synthesize_speech(VoiceId=self.voice, OutputFormat=self.output_format, Text=self.formatted_text, TextType='ssml') if response['ResponseMetadata']['HTTPStatusCode'] == 200: if save_to_file: file = open(os.path.join(tempfile.gettempdir(), response['ResponseMetadata']['RequestId'] + '.mp3'), 'wb') file.write(response['AudioStream'].read()) file.close() return file.name return response['AudioStream'].read() except ClientError as e: raise BotoException(e.response['Error']['Code'], e.response['Error']['Message']) def sent_request_stream_to_polly(self): """ TODO : support audio streaming """ pass def convert_text_to_ssml(self, text): """ Convert plain text to ssml format. @param text: Input text to convert to SSML format @return: SSML formatted text """ text_formatter = [] text = text.strip() replacement_map = { '<whisper>': '<amazon:effect name="whispered">', '</whisper>': '</amazon:effect>', '<soft>': '<amazon:effect phonation="soft">', '</soft>': '</amazon:effect>', '<newscaster>': '<amazon:domain name="news">', '</newscaster>': '</amazon:domain>', '<convo>': '<amazon:domain name="conversational">', '</convo>': '</amazon:domain>', '<telephone>': '<say-as interpret-as="telephone">', '</telephone>': '</say-as>', '<fraction>': '<say-as interpret-as="fraction">', '</fraction>': '</say-as>', '<bleep>': '<say-as interpret-as="expletive">', '</bleep>': '</say-as>', '<address>': '<say-as interpret-as="address">', '</address>': '</say-as>', '<time>': '<say-as interpret-as="time">', '</time>': '</say-as>', '<unit>': '<say-as interpret-as="unit">', '</unit>': '</say-as>', '<digits>': '<say-as interpret-as="digits">', '</digits>': '</say-as>', '<ordinal>': '<say-as interpret-as="ordinal">', '</ordinal>': '</say-as>', '<number>': '<say-as interpret-as="number">', '</number>': '</say-as>', '<spell>': '<say-as interpret-as="spell-out">', '</spell>': '</say-as>', '<emphasize>': '<emphasis level="strong">', '</emphasize>': '</emphasis>', '<break>': '<break time="2s"/>' } for k, v in replacement_map.items(): if k in text: text = text.replace(k, v) text_formatter.append('<speak>') text_formatter.append(text) text_formatter.append('</speak>') self.formatted_text = ''.join(text_formatter) return None
[ "noreply@github.com" ]
rupesh28.noreply@github.com
5eb0df4fd2be9efb632d9ef3d2abe2cbf0c37bfa
16acd0b785e23c9b05f374b186d537ad43a90cb5
/shop/migrations/0002_remove_product_owner.py
351ea1b6f94344455e5858e9012e17372f5605e2
[]
no_license
utkarshwebllisto/ecommerce
83edfab1767d2705a0ab6d20b9e807fe6826548b
d57aa9ed19aeefc7ebbdbece582145ae864d1f69
refs/heads/master
2021-01-03T10:52:08.477539
2020-02-26T12:44:56
2020-02-26T12:44:56
237,432,593
0
0
null
null
null
null
UTF-8
Python
false
false
314
py
# Generated by Django 3.0.3 on 2020-02-21 07:36 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('shop', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='product', name='owner', ), ]
[ "utkarsh.webllisto@gmail.com" ]
utkarsh.webllisto@gmail.com
41a01e4a689a804503dada113ac3115d9fcef976
9670126c5636e6b0f123cd5cd7bd794b1d0a5cd2
/app212/serializers/tick_request_serializer.py
7a179b90e01f89cb1bce107efc11923efec575d1
[]
no_license
mikegordo/app212
c64f6cd8ec18d7d55cad42111f73da91ec71b401
4e53627dbbeeb1508a8153a5857df5fd0664fdeb
refs/heads/master
2023-05-02T13:08:00.983346
2021-05-24T06:02:38
2021-05-24T06:02:38
370,244,151
0
0
null
null
null
null
UTF-8
Python
false
false
267
py
from rest_framework import serializers from app212.models import Tick class TickRequestSerializer(serializers.ModelSerializer): class Meta: model = Tick fields = ['payload'] payload = serializers.JSONField(required=False, allow_null=True)
[ "himor.cre@gmail.com" ]
himor.cre@gmail.com
179c76e3d89998854ba16ce18f04f81ebb3f6231
4ea40fecde97e048e9f1731354080b949b9c3736
/model/group_policy.py
91316163fca25cb3c4239e9e60f78861d2f5df18
[]
no_license
znnby1997/magent_workspace
93e2ab92bbeabb861e694481f9f90eeb354a82fa
5db34580c69c82d305c8c590e20a1e079ff85ab5
refs/heads/master
2023-05-30T19:27:35.120533
2021-06-21T13:32:47
2021-06-21T13:32:47
278,375,910
0
0
null
null
null
null
UTF-8
Python
false
false
648
py
import torch import torch.nn as nn import torch.nn.functional as F class GroupPolicy(nn.Module): def __init__(self, input_shape, n_groups, hidden_dim): super().__init__() self.tokens_fc = nn.Sequential( nn.Linear(input_shape, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, n_groups) ) def forward(self, x, h=None): """ x: [batch, num, tokens], h: [batch, hidden_dim] """ if h is not None: x = torch.cat([x, h], dim=2) # shape: nums, batch, 2*(input_shape+h_dim) return f.softmax(self.tokens_fc(x))
[ "1025142964@qq.com" ]
1025142964@qq.com
0714bc8e4f734c3c75dfd51b1b71364a7e4b6331
a9a534ecbcdd55b1859ef4f401901f36c2a8e5ed
/applications/home/forms.py
606a720676a7ade7dc3752a34cdbaf5fa8918900
[]
no_license
arielmamaniorellana/cursoprodj
bdb251c0f57c1eaf824ffe4b70cb13a77a5140f9
1061928612b0a45be3319dc275af8f1291d54b4a
refs/heads/main
2023-08-15T03:08:09.400783
2021-09-25T16:40:43
2021-09-25T16:40:43
395,439,075
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
from django import forms from django.forms import widgets from .models import Prueba class PruebaForm(forms.ModelForm): class Meta: model = Prueba fields = ( 'titulo', 'subtitulo', 'cantidad', ) widgets = { 'titulo': forms.TextInput( attrs = { 'placeholder': 'Ingrese texto aqui' } ) } def clean_cantidad(self): cantidad = self.cleaned_data['cantidad'] if cantidad < 10: raise forms.ValidationError('Ingrese un numero mayor a 10') return cantidad
[ "arielmamaniorellana12@gmail.com" ]
arielmamaniorellana12@gmail.com
a4a326f14f26006a00f0a145175cb0dc8be59b7b
cbfe19d792781de4b481fb97580c4da9e6fe3e6f
/decisiontree.py
c721be5d463f78cc5d49b055a667615498b62f45
[]
no_license
khan133/decisiontree
c3c7cb1b1cc8911487e4734dd1dc73c94d7864c7
b33e79b4d9e0c789b501f12318701d618c68a9e3
refs/heads/master
2020-03-17T22:10:22.264782
2018-05-18T18:41:27
2018-05-18T18:41:27
133,991,723
0
0
null
null
null
null
UTF-8
Python
false
false
16,235
py
import sys import math import pandas as pd class Node(): def __init__(self, value): self.value = value self.left = None self.right = None self.total = 0 self.above = 0 class decision(): myRootNode = Node(None) def start(self): #self.listOfAttributesAlreadyUsed = [] self.attributes = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country', 'salaryLevel'] filePathToTraining = sys.argv[1] filePathToTesting = sys.argv[2] method = sys.argv[3] #percentsToUse = [2, 10, 20, 30, 40, 50, 60] #for eachPercent in percentsToUse: percentToUse = sys.argv[4] if str(method) == 'vanilla': self.vanilla(filePathToTraining, filePathToTesting, percentToUse) if str(method) == 'depth': percentToUseValidation = sys.argv[5] maxDepth = sys.argv[6] self.depth(filePathToTraining, filePathToTesting, percentToUse, percentToUseValidation, int(maxDepth)) if str(method) == 'prune': valPercent = sys.argv[5] self.prune(filePathToTraining, filePathToTesting, percentToUse, valPercent) def prune(self, filePathToTraining, filePathToTesting, percentToUse, percentForValidation): rootNode = self.vanillaForPrune(filePathToTraining, filePathToTesting, percentToUse, percentForValidation) attributes = ('workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country', 'salaryLevel') train = pd.read_csv(filePathToTraining, sep = ', ', quotechar='"', header = None, engine= 'python', names = attributes) #X = data[['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country']].as_matrix() #X = data.as_matrix() X = train size = len(X) #print X percentToUse = int(percentToUse) size *= percentToUse size /= 100 X = X[:size] validationData = pd.read_csv(filePathToTraining, sep = ', ', quotechar='"', header = None, engine= 'python', names = attributes) valX = validationData sizeVal = len(valX) percentToUseVal = 100 - int(percentForValidation) sizeVal *= percentToUseVal sizeVal /= 100 valX = valX[sizeVal:] #print rootNode.value rootNew = self.getCounts(rootNode, valX) #print rootNew.value global myRootNode myRootNode = rootNew self.rep(rootNew) #print myRootNode.value trainAcc = self.accuracy(myRootNode, X) print "Train set accuracy: " + str(trainAcc) dataTest = pd.read_csv(filePathToTesting, sep = ', ', quotechar='"', header = None, engine= 'python', names = attributes) Y = dataTest size = len(Y) copyY = Y.copy() #rootNode1 = self.makeTree(Y, Y['salaryLevel'], dataTest) testAcc = self.accuracy(myRootNode, copyY) print ("Test set accuracy: " + str(testAcc)) def countNodes(self, node): if node.value in ['<=50K', ">50K"]: return 1 else: x = self.countNodes(node.left) y = self.countNodes(node.right) return x + y + 1 def rep(self, rootNode): realNode = rootNode ourNode = rootNode if ourNode.value in ['<=50K', ">50K"]: if ourNode.value == '>50K': return ourNode.total - ourNode.above else: return ourNode.above else: error = self.rep(ourNode.left) + self.rep(ourNode.right) ourNode.above = ourNode.left.above + ourNode.right.above ourNode.total = ourNode.left.total + ourNode.right.total if error < min(ourNode.above, ourNode.total - ourNode.above): return error else: if ourNode.above > ourNode.total - ourNode.above: ourNode.value = ">50K" return ourNode.total - ourNode.above else: ourNode.value = "<=50K" return ourNode.above def vanillaForPrune(self, filePathToTraining, filePathToTesting, percentToUse, percentForValidation): attributes = ('workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country', 'salaryLevel') data = pd.read_csv(filePathToTraining, sep = ', ', quotechar='"', header = None, engine= 'python', names = attributes) #X = data[['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country']].as_matrix() #X = data.as_matrix() X = data size = len(X) #print X percentToUse = int(percentToUse) size *= percentToUse size /= 100 X = X[:size] #print X[4] #data = X[X[7] == '>50k'] copy = X.copy() rootNode = self.makeTree(X, X['salaryLevel'], data) return rootNode #nodes = self.getCounts(rootNode, valX) #trainAcc = self.accuracy(rootNode, copy) #print ("Training set accuracy: " + str(trainAcc)) #dataTest = pd.read_csv(filePathToTesting, sep = ', ', quotechar='"', header = None, engine= 'python', names = attributes) #Y = dataTest #size = len(Y) #copyY = Y.copy() #rootNode1 = self.makeTree(Y, Y['salaryLevel'], dataTest) #testAcc = self.accuracy(rootNode, copyY) #print ("Test set accuracy: " + str(testAcc)) def depth(self, filePathToTraining, filePathToTesting, percentToUseTraining, percentToUseValidation, maxDepth): attributes = ('workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country', 'salaryLevel') data = pd.read_csv(filePathToTraining, sep = ', ', quotechar='"', header = None, engine= 'python', names = attributes) #X = data[['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country']].as_matrix() #X = data.as_matrix() X = data size = len(X) #print X percentToUse = int(percentToUseTraining) size *= percentToUse size /= 100 X = X[:size] #print X[4] #data = X[X[7] == '>50k'] copy = X.copy() rootNode = self.makeTreeDepth(X, X['salaryLevel'], data, 0, maxDepth) trainAcc = self.accuracy(rootNode, copy) print ("Training set accuracy: " + str(trainAcc)) dataTestZ = pd.read_csv(filePathToTraining, sep = ', ', quotechar='"', header = None, engine= 'python', names = attributes) Z = dataTestZ sizeZ = len(Z) percentToUseVal = 100 - int(percentToUseValidation) sizeZ *= percentToUseVal sizeZ /= 100 Z = Z[size:] copyZ = Z.copy() #rootNode2 = self.makeTreeDepth(Z, Z['salaryLevel'], dataTestZ, 0, maxDepth) validationAcc = self.accuracy(rootNode, copyZ) print ("Validation set accuracy: " + str(validationAcc)) dataTest = pd.read_csv(filePathToTesting, sep = ', ', quotechar='"', header = None, engine= 'python', names = attributes) Y = dataTest sizeY = len(Y) copyY = Y.copy() #rootNode1 = self.makeTreeDepth(Y, Y['salaryLevel'], dataTest, 0, maxDepth) testAcc = self.accuracy(rootNode, copyY) print ("Test set accuracy: " + str(testAcc)) def vanilla(self, filePathToTraining, filePathToTesting, percentToUse): attributes = ('workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country', 'salaryLevel') data = pd.read_csv(filePathToTraining, sep = ', ', quotechar='"', header = None, engine= 'python', names = attributes) #X = data[['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country']].as_matrix() #X = data.as_matrix() X = data size = len(X) #print X percentToUse = int(percentToUse) size *= percentToUse size /= 100 X = X[:size] #print X[4] #data = X[X[7] == '>50k'] copy = X.copy() rootNode = self.makeTree(X, X['salaryLevel'], data) trainAcc = self.accuracy(rootNode, copy) print ("Training set accuracy: " + str(trainAcc)) dataTest = pd.read_csv(filePathToTesting, sep = ', ', quotechar='"', header = None, engine= 'python', names = attributes) Y = dataTest size = len(Y) copyY = Y.copy() #rootNode1 = self.makeTree(Y, Y['salaryLevel'], dataTest) testAcc = self.accuracy(rootNode, copyY) print ("Test set accuracy: " + str(testAcc)) #self.makeTree(X, data[data[7]) def majority(self, data, target): counts = {} for i, row in data.iterrows(): #print row if row[-1] in counts: counts[row['salaryLevel']] += 1.0 else: counts[row['salaryLevel']] = 1.0 maxVal = 0 majority = "" for individualKey in counts.keys(): if counts[individualKey] > maxVal: maxVal = counts[individualKey] majority = individualKey return majority def entropy(self, data, target): counts = {} counts = data['salaryLevel'].value_counts() #print counts summation = 0.0 for vals in counts: if len(counts) <= 1: return 0 prob = float(vals) / len(data) summation += ((-1) * (prob * math.log(prob, 10))) return summation def informationGain(self, data, attributeIndex, target): counts = {} #print attributeIndex #print data #print type(attributeIndex) #print 'hi' #print self.attributes[attributeIndex] # print data[self.attributes] #print data values = data[attributeIndex].unique() #self.getValues(data, attributeIndex) values = list(values) bestValue = values[0] maxInfoGain = float("-inf") for singleValue in values: entropy = self.entropy(data, target) subset0 = data[data[attributeIndex] == singleValue] subset1 = data[data[attributeIndex] != singleValue] entropy -= (float(len(subset0)) / len(data) * self.entropy(subset0, target)) entropy -= (float(len(subset1)) / len(data) * self.entropy(subset1, target)) if entropy > maxInfoGain: maxInfoGain = entropy bestValue = singleValue return maxInfoGain, bestValue def getValues(self, data, attributeIndex): values = [] for index, entry in data.iterrows(): if (entry[attributeIndex] not in values): values.append(entry[attributeIndex]) return values def bestAttribute(self, data, target): maxBest, bestValueToSplit = float("-inf"), "" index = 0 columnValues = list(data.columns.values) columnValues.remove('salaryLevel') for columns in columnValues: #if i in currGain, valueToSplit = self.informationGain(data, columns, target) if (currGain >= maxBest): maxBest = currGain bestValueToSplit = valueToSplit index = columns if maxBest <= 0.0: return self.majority(data, target), 20 #if maxBest > 0.0: #return self.majority(data, target) return bestValueToSplit, index #else: #return self.majority(data, target) def makeTree(self, data, target, oldData): listOfAttributesAlreadyUsed = [] rows, columns = data.shape #print columns #print "HELLO" valuesInTargetAttribute = data['salaryLevel'].unique() #target = data[columns - 1] #print data if len(valuesInTargetAttribute) == 1: root = Node(valuesInTargetAttribute[0]) return root if len(data) <= 0 or columns <= 1: root = Node(self.majority(oldData, target)) return root valueToSplit, index = self.bestAttribute(data, target) if index == 20: root = Node(self.majority(data, target)) return root listOfAttributesAlreadyUsed.append(index) root = Node(valueToSplit) oldData = data rightData = data[data[index] != valueToSplit] leftData = data[data[index] == valueToSplit] leftData = leftData.drop(str(index), axis = 1) root.left = self.makeTree(leftData, target, oldData) root.right = self.makeTree(rightData, target, oldData) return root def makeTreeDepth(self, data, target, oldData, depth, maxDepth): listOfAttributesAlreadyUsed = [] rows, columns = data.shape valuesInTargetAttribute = data['salaryLevel'].unique() if len(valuesInTargetAttribute) == 1: root = Node(valuesInTargetAttribute[0]) return root #return valuesInTargetAttribute[0] if len(data) <= 0 or columns <= 1: root = Node(self.majority(oldData, target)) #return self.majority(oldData, target) return root valueToSplit, index = self.bestAttribute(data, target) if index == 20: root = Node(self.majority(data, target)) return root if depth == maxDepth: root = Node(self.majority(data, target)) return root #print valueToSplit listOfAttributesAlreadyUsed.append(index) #attributes = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country', 'salaryLevel'] #print valueToSplit root = Node(valueToSplit) oldData = data #att = self.attributes[index] #print valueToSplit rightData = data[data[index] != valueToSplit] leftData = data[data[index] == valueToSplit] #print leftData[3] leftData = leftData.drop(str(index), axis = 1) #leftData.drop(leftData.columns[[index]], axis = 1, inplace = True) #print leftData depth += 1 root.left = self.makeTreeDepth(leftData, target, oldData, depth, maxDepth) #print "sjdfsf" root.right = self.makeTreeDepth(rightData, target, oldData, depth, maxDepth) return root def getCounts(self, rootNode, dataSet): total = 0 above = 0 flag = False size = len(dataSet) #print rootNode for index, i in dataSet.iterrows(): rootTree = rootNode while rootTree.value not in ['<=50K', ">50K"]: flag = False for allValues in i: if allValues == rootTree.value: rootTree = rootTree.left flag = True break if flag == False: rootTree = rootTree.right rootTree.total += 1 if (i[8] == ">50K"): rootTree.above += 1 return rootNode def accuracy(self, rootNode, dataSet): tp = 0 flag = False size = len(dataSet) #print rootNode for index, i in dataSet.iterrows(): rootTree = rootNode while rootTree.value not in ['<=50K', ">50K"]: flag = False for allValues in i: if allValues == rootTree.value: #if i[()] == rootTree.value: rootTree = rootTree.left flag = True break if flag == False: rootTree = rootTree.right if rootTree.value == i[8]: tp += 1 accuracy = tp*1.0/len(dataSet) return accuracy D = decision() D.start()
[ "noreply@github.com" ]
khan133.noreply@github.com
e9529270c8f8e0c4bb0813644eeb51d0564f5e22
fa8dc1924aeef19f4a1e6aae2b182de8f6e41f1b
/Model-zyc/nets/vgg.py
a13944a07178ad90aa85a13dc431d8d348cd18d4
[]
no_license
Lihit/Ensemble
6ae9afe7fd14cabae9696caad4404614c43e3315
c0aaf72847b163779566641c8508c90f6de38b2e
refs/heads/master
2021-05-16T03:48:51.444886
2017-10-11T05:03:31
2017-10-11T05:03:31
105,557,287
0
0
null
null
null
null
UTF-8
Python
false
false
11,895
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains model definitions for versions of the Oxford VGG network. These model definitions were introduced in the following technical report: Very Deep Convolutional Networks For Large-Scale Image Recognition Karen Simonyan and Andrew Zisserman arXiv technical report, 2015 PDF: http://arxiv.org/pdf/1409.1556.pdf ILSVRC 2014 Slides: http://www.robots.ox.ac.uk/~karen/pdf/ILSVRC_2014.pdf CC-BY-4.0 More information can be obtained from the VGG website: www.robots.ox.ac.uk/~vgg/research/very_deep/ Usage: with slim.arg_scope(vgg.vgg_arg_scope()): outputs, end_points = vgg.vgg_a(inputs) with slim.arg_scope(vgg.vgg_arg_scope()): outputs, end_points = vgg.vgg_16(inputs) @@vgg_a @@vgg_16 @@vgg_19 """ from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(weight_decay), biases_initializer=tf.zeros_initializer()): with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc: return arg_sc def vgg_a(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_a', fc_conv_padding='VALID'): """Oxford Net VGG 11-Layers version A Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. Returns: the last op containing the log predictions and end_points dict. """ with tf.variable_scope(scope, 'vgg_a', [inputs]) as sc: end_points_collection = sc.name + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 1, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 1, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 2, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 2, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 2, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_a.default_image_size = 224 def vgg_16(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16', fc_conv_padding='VALID'): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. Returns: the last op containing the log predictions and end_points dict. """ with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.name + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_16.default_image_size = 224 def vgg_19(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_19', fc_conv_padding='VALID'): """Oxford Net VGG 19-Layers version E Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. Returns: the last op containing the log predictions and end_points dict. """ with tf.variable_scope(scope, 'vgg_19', [inputs]) as sc: end_points_collection = sc.name + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 4, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 4, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 4, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_19.default_image_size = 224 # Alias vgg_d = vgg_16 vgg_e = vgg_19
[ "wenshaoguo0611@gmail.com" ]
wenshaoguo0611@gmail.com
aa7b969ccbcabe0b29f5cc0015b585b72fd68b6c
2ecc2b5c89191176cb331f23a2c5bb19abbad744
/bff/api/reaction.py
a1c9724fd27d22c54e7a9e27431be8788a252185
[]
no_license
Jonas1302/BotsForFuture
4f4c403ec7e4ba04bdf5f142293cb47979b11ce8
59a8e00750ce2f76cb6a22a8731944872fd967bb
refs/heads/master
2021-07-25T17:29:32.138162
2020-08-24T12:37:47
2020-08-24T12:37:47
212,149,557
0
0
null
null
null
null
UTF-8
Python
false
false
785
py
import logging from bff import api logger = logging.getLogger(__name__) class Reaction: def __init__(self, user_id, post_id, emoji_name, **kwargs): self.user_id = user_id self.post_id = post_id self.emoji = emoji_name self.__dict__.update(kwargs) self._user = None self._post = None def __eq__(self, other): if not isinstance(other, Reaction): return False return self.user == other.user \ and self.post == other.post \ and self.emoji == other.emoji def __hash__(self): return hash(self.user, self.post, self.emoji) @property def user(self): if not self._user: self._user = api.User.by_id(self.user_id) return self._user @property def post(self): if not self._post: self._post = api.Post.by_id(self.post_id) return self._post
[ "Jones132@posteo.net" ]
Jones132@posteo.net
f1268d47ba9fd932f12ba63aa3026b6f2fc2a852
76a197bd6836456ec556b916f58760e3452ed54e
/datascraper.py
ccb982dd9cd690394148946f33349786091a09ca
[ "MIT" ]
permissive
enmerk4r/NoLA-Scraper
965700f94a4b6c9ae13dd75df649bb7fc0e70fa0
140348cf006ed83d28a727f7ef67380022a9abff
refs/heads/master
2020-12-02T12:14:10.073570
2020-01-05T05:39:41
2020-01-05T05:39:41
231,003,014
0
0
null
null
null
null
UTF-8
Python
false
false
13,389
py
from selenium import webdriver from dataframe import * import os import unicodedata import re from pprint import pprint import urllib3 import time import datetime import uuid from selenium.common.exceptions import UnexpectedAlertPresentException class Scraper: def __init__(self, imgFolder="downloads", downloadFiles=True, goToNextParcel=True, entryLimit = None, stopWhenDuplicate=False): self.Pages = {} self.Driver = webdriver.Chrome() self.ImageFolder = imgFolder self.GoToNextParcel = goToNextParcel self.EntryLimit = entryLimit if not os.path.exists(imgFolder) and downloadFiles: os.makedirs(imgFolder) self.parsedUrls = [] self.StopWhenDuplicate = stopWhenDuplicate def ReadWebPage(self, url): try: if (url in self.parsedUrls): print("DUPLICATE! Skipping record") if self.StopWhenDuplicate: print("**** REACHED STOP CONDITION ****") return imageUri, specialTaxDistrictMapUri, parcelMapUri, AssessmentAreaMapUri, nextUri, zoningLink = self.GetHyperlinks() else: pageGuid = str(uuid.uuid4()) print("============================") print("Parsing page: {0}".format(len(self.Pages) + 1)) print("============================") self.Driver.get(url) ownerParcelInfo = self.ParseOwnerParcelInfo() ownerParcelInfo.URI = url address = self.slugify(ownerParcelInfo.MailingAddress) print(address, ": parsed owner / parcel data") valueObjects = self.ParseValueInfo() print(address, ": parsed {0} value records".format(len(valueObjects))) salesObjects = self.ParseSalesInfo() print(address, ": parsed {0} sales records".format(len(salesObjects))) # Create address path addressPath = os.path.join(self.ImageFolder, address) if not os.path.exists(addressPath): os.mkdir(addressPath) # Create page path pagePath = os.path.join(addressPath, pageGuid) if not os.path.exists(pagePath): os.mkdir(pagePath) # Create image path imagesPath = os.path.join(pagePath, "Images") if not os.path.exists(imagesPath): os.mkdir(imagesPath) # Create sketch path sketchPath = os.path.join(pagePath, "Sketches") if not os.path.exists(sketchPath): os.mkdir(sketchPath) # Download Sketches if self.DownloadImages: numSketches = 0 numSketches += self.DownloadSketch(sketchPath) print(address, ": downloaded {0} sketch(es)".format(numSketches)) # Get downloadable links imageUri, specialTaxDistrictMapUri, parcelMapUri, AssessmentAreaMapUri, nextUri, zoningLink = self.GetHyperlinks() ownerParcelInfo.SpecialTaxDistrictMap = specialTaxDistrictMapUri ownerParcelInfo.ParcelMap = parcelMapUri ownerParcelInfo.AssessmentAreaMap = AssessmentAreaMapUri ownerParcelInfo.ImageUrl = imageUri # Parse zoning data if zoningLink != None: try: self.Driver.get(zoningLink) zoningInfo = self.ParseZoningInfo(pagePath) ownerParcelInfo.ZoningDistrict = zoningInfo.ZoningDistrict ownerParcelInfo.ZoningDescription = zoningInfo.ZoningDescription except: ownerParcelInfo.ZoningDistrict = "" ownerParcelInfo.ZoningDescription = "" if self.DownloadImages: # Download files numFiles = 0 if specialTaxDistrictMapUri is not None: taxDistrMapPath = os.path.join(pagePath, "SpecialTaxDistrictMap.pdf") self.DownloadFile(specialTaxDistrictMapUri, taxDistrMapPath) numFiles += 1 if parcelMapUri is not None: parcelMapPath = os.path.join(pagePath, "ParcelMap.pdf") self.DownloadFile(parcelMapUri, parcelMapPath) numFiles += 1 if AssessmentAreaMapUri is not None: assmntAreaPath = os.path.join(pagePath, "AssessmentAreaMap.pdf") self.DownloadFile(AssessmentAreaMapUri, assmntAreaPath) numFiles += 1 print(address, ": downloaded {0} PDF file(s)".format(numFiles)) # Download Images if imageUri is not None: numImgs = self.DownloadImages(imageUri, imagesPath) print(address, ": downloaded {0} image(s)".format(numImgs)) # Create Page Rep rep = PageRep(ownerParcelInfo, valueObjects, salesObjects, url) rep.Guid = pageGuid self.parsedUrls.append(url) self.Pages[rep.Guid] = rep rep.WriteOut() print(address, ": successfully written to disk") # Next Page if (self.GoToNextParcel): if (self.EntryLimit == None or len(self.Pages) < self.EntryLimit): self.ReadWebPage(nextUri) elif len(self.Pages) >= self.EntryLimit: print("**** REACHED ENTRY LIMIT ****") except UnexpectedAlertPresentException as exception: alert_obj = self.Driver.switch_to.alert alert_obj.accept() self.ReadWebPage(url) def DownloadSketch(self, sketchPath): try: tds = self.Driver.find_element_by_class_name("sketch_main") image = tds.find_element_by_tag_name("img") source = image.get_attribute("src") self.DownloadFile(source, os.path.join(sketchPath, "MainSketch.jpg")) return 1 except: return 0 def DownloadImages(self, imagesUri, folder): try: self.Driver.get(imagesUri) images = self.Driver.find_elements_by_tag_name("img") counter = 0 for img in images: src = img.get_attribute("src") if src != "http://qpublic9.qpublic.net/images/la_orleans.jpg": self.DownloadFile(src, os.path.join(folder, "img_{0}.jpg".format(counter))) counter += 1 return counter except: return 0 def GetHyperlinks(self): try: imageLink = self.Driver.find_element_by_link_text("Enlarge/Show All") imageUri = imageLink.get_attribute('href') except: imageUri = None nextLink = self.Driver.find_element_by_link_text("Next Parcel") nextUri = nextLink.get_attribute('href') specialTaxDistrictMapUri = None parcelMapUri = None AssessmentAreaMapUri = None ZoningLink = None hyperLinks = self.Driver.find_elements_by_tag_name("a") for h in hyperLinks: href = h.get_attribute('href') if "Show Viewer" in h.text: ZoningLink = href try: img = h.find_element_by_tag_name("img") if img.get_attribute("src") == "http://qpublic9.qpublic.net/images/special_tax_district_map.gif": specialTaxDistrictMapUri = href elif img.get_attribute("src") == "http://qpublic9.qpublic.net/images/spm.gif": parcelMapUri = href elif img.get_attribute("src") == "http://qpublic9.qpublic.net/images/saa.gif": AssessmentAreaMapUri = href except: pass return imageUri, specialTaxDistrictMapUri, parcelMapUri, AssessmentAreaMapUri, nextUri, ZoningLink def DownloadFile(self, url, path, chunk_size=1024): try: http = urllib3.PoolManager() r = http.request('GET', url, preload_content=False) with open(path, 'wb') as out: while True: data = r.read(chunk_size) if not data: break out.write(data) r.release_conn() except: pass def ParseZoningInfo(self, path): # Make sure the map loads fully print("Waiting for the map to load...") try: WaitStart = datetime.datetime.now() WAIT_LIMIT = 60 fullyLoaded = False while not fullyLoaded: try: lines = self.Driver.find_elements_by_tag_name("td") for td in lines: try: b = td.find_element_by_tag_name("b") head = b.text if "Zoning District:" in head or "Future Land Use:" in head: print("Page fully loaded") time.sleep(0.5) fullyLoaded = True break except: pass except: time.sleep(1) # Make sure we're not stuck difference = datetime.datetime.now() - WaitStart if difference.seconds > WAIT_LIMIT: fullyLoaded = True all_lines = self.Driver.find_elements_by_tag_name("td") zoning_dict = {} for td in all_lines: try: b = td.find_element_by_tag_name("b") head = b.text value = td.text clean = head.replace(" ", "").replace("\n", "") if clean not in zoning_dict: zoning_dict[clean] = value except: pass # Save screenshot self.Driver.save_screenshot(os.path.join(path, "zoning.png")) zoningInfo = ZoningInfoItem(zoning_dict) return zoningInfo except UnexpectedAlertPresentException as exception: return None def ParseOwnerParcelInfo(self): owner_headers = self.Driver.find_elements_by_class_name("owner_header") owner_values = self.Driver.find_elements_by_class_name("owner_value") owner_parcel_value_dict = {} for h, v in zip(owner_headers, owner_values): owner_parcel_value_dict[h.text.replace(" ", "")] = v.text # Create an Owner / Parcel info object ownerParcelInfo = OwnerParcelInfoItem(owner_parcel_value_dict) return ownerParcelInfo def ParseValueInfo(self): tax_headers = self.Driver.find_elements_by_class_name("tax_header") tax_values = self.Driver.find_elements_by_class_name("tax_value") numColumns = len(tax_headers) value_partition = self.PartitionList(tax_values, numColumns) valueObjects = [] for line in value_partition: line_dict = {} for h, v in zip(tax_headers, line): line_dict[h.text.replace("\n", "").replace(" ", "")] = v.text valueInfo = ValueInfoItem(line_dict) valueObjects.append(valueInfo) return valueObjects def ParseSalesInfo(self): sales_headers = self.Driver.find_elements_by_class_name("sales_header") sales_values = self.Driver.find_elements_by_class_name("sales_value") numColumns = len(sales_headers) value_partition = self.PartitionList(sales_values, numColumns) salesObjects = [] for line in value_partition: line_dict = {} for h, v in zip(sales_headers, line): line_dict[h.text.replace("\n", "").replace(" ", "")] = v.text salesInfo = SaleTransferInfoItem(line_dict) salesObjects.append(salesInfo) return salesObjects def PartitionList(self, lst, length): newList = [] buffer = [] for elem in lst: if (len(buffer) < length): buffer.append(elem) else: newList.append(buffer) buffer = [] buffer.append(elem) # Last leftover chunk if len(buffer) == length: newList.append(buffer) return newList def slugify(self, value): """ Normalizes string, converts to lowercase, removes non-alpha characters, and converts spaces to hyphens. """ value = re.sub('[^\w\s-]', '', value).strip().lower() value = re.sub('[-\s]+', '-', value) return value
[ "p.i.g.a.c.h@gmail.com" ]
p.i.g.a.c.h@gmail.com
03b906259971701d5257068ee3953200042c73a4
7b90a37a7917ca349161fc216f5d4ff7fedc9710
/nesting_usage.py
c8e99e09b0e7beac646801a77c5a14334514f9f7
[]
no_license
gavin176/MyLocustDemo
cc022f1099dbf9eb6551d5b500e14b1da16cf5b8
6e2522a23ebd93d70f30c55b372c811cb433edcc
refs/heads/master
2021-09-05T07:10:39.046012
2018-01-25T03:37:53
2018-01-25T03:37:53
110,953,856
1
0
null
null
null
null
UTF-8
Python
false
false
1,413
py
from locust import HttpLocust, TaskSet, task class NestingTask(TaskSet): @task def visit_sogou(self): url = "https://www.sogou.com" print(url) with self.client.get(url, catch_response=True,verify=False,name="sogou") as response: if response.status_code == 200: response.success() else: response.failure("error") @task class SubTask(TaskSet): def on_start(self): pass @task(1) def visit_baidu(self): url = "https://baidu.com" print(url) with self.client.get(url,catch_response=True,verify=False,name="baidu") as response: if response.status_code == 200: response.success() else: response.failure("error") @task(1) def visit_google(self): url = "http://google.com" print(url) with self.client.get(url,catch_response=True,verify=False,name="google") as response: if response.status_code == 200: response.success() else: response.failure("error") @task(2) def stop(self): self.interrupt() class WebsiteUser(HttpLocust): task_set = NestingTask host = "http://example.com" min_wait = 1000 max_wait = 5000
[ "noreply@github.com" ]
gavin176.noreply@github.com
ac3159bfe8a35361c4c3bd6e3994a05d66ae7ad1
99f9ed11c5eb1ee5a2a4800ad856eee2e9730018
/sqlalchemy_model_convert/sqlalchemy_model_convert.py
80430eb4df129a80249997c3c5a6f0db8049fe3a
[]
no_license
persistty/sqlalchemy-model-convert
c2e5712b22f204cf1961af286ad30a7dcdef7c88
e6641c1b56fbe25fdd2997c6a45a530b10be6bbc
refs/heads/master
2020-04-06T17:37:33.746769
2019-06-23T13:02:45
2019-06-23T13:02:45
157,667,089
0
0
null
null
null
null
UTF-8
Python
false
false
2,620
py
class ModelConvert(object): """Model transform class,Convert the object to the corresponding dictionary""" @classmethod def key_values_list(cls, models, related_models=[], ignore_fields=[]): """ Convert the list of objects into a dictionary list :param models: List of objects to convert :param related_models: The model object in the list to display the object of the associated query :param ignore_fields: Fields in the list that the model object does not need to display :return: Return list """ return cls.__convert_list(models, related_models, ignore_fields) def key_values(self, related_models=[], ignore_fields=[]): """ Convert an object into a dictionary :param related_models: The object to display the associated query :param ignore_fields: Fields that do not need to be displayed :return: Return dictionary """ if not hasattr(self, '__table__'): return self.__dict__ columns = self.__table__.columns attrs_dict = self.__convert_field(columns, ignore_fields) for model in related_models: value = getattr(self, model) if isinstance(value, ModelConvert): attrs_dict[model] = value.key_values() elif isinstance(value, list): attrs_dict[model] = self.key_values_list(value) return attrs_dict def __convert_field(self, fields, ignore_fields=[]): """Transform the corresponding fields of the database""" field_dict = dict() for column in fields: field = column.name if field in ignore_fields: continue value = getattr(self, field, None) field_dict[field] = self.set_field_value(field, value) return field_dict @classmethod def __convert_list(cls, models, related_models=[], ignore_fields=[]): """Convert a list""" list_dicts = list() for model in models: if isinstance(model, ModelConvert): list_dicts.append(model.key_values(related_models, ignore_fields)) else: list_dicts.append(model) return list_dicts def set_field_value(self, field, value): """ Set the value of the corresponding field, override the method, and modify the value of a particular field, such as the value of the date field :param field: Field name :param value: value :return: Return the modified value """ return value
[ "liutangyongpersist@163.com" ]
liutangyongpersist@163.com
fa253fce90a0b39ec7f500eb477e5b5a9a787010
b063645c5b004e7b834a95ee706c5122833cc6ce
/Tugas5/Pratikum2/Pratikum2_1.py
50e856dc01be5a0c28ffb35e8ccf8d41c13f18ce
[]
no_license
bgspamungkas/Python
53bf1fc7df96f2b29936c640f0f4a5251025c9d6
597979aa42374ed5fd9c5964a715f02d9f535db5
refs/heads/main
2023-02-19T23:35:02.053816
2021-01-13T04:11:45
2021-01-13T04:11:45
303,153,729
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
def luasSegitiga (a,t): luas = a * t / 2 return luas alas = 10 tinggi = 20 print('Luas segitiga dg alas ',alas, ' dan tinggi ', tinggi, ' adalah ', luasSegitiga(alas,tinggi))
[ "noreply@github.com" ]
bgspamungkas.noreply@github.com
340491cc31993dd884863ac140ddac1957461a1d
8e41426add05eac5959f4fb38561d1f3b18b5c05
/refinery/tool_manager/urls.py
76251a192fcf34bd4302527426433e39c847853d
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
refinery-platform/refinery-platform
ae2f299807b5f5d537d9bbc4b1f9a866d48b7245
b005e75cb79e8bfebbdf10da2b5d9d0062a5a661
refs/heads/develop
2023-01-24T01:32:29.178787
2019-12-09T15:54:19
2019-12-09T15:54:19
2,838,735
40
16
NOASSERTION
2023-01-11T19:52:35
2011-11-23T20:23:20
Python
UTF-8
Python
false
false
328
py
from rest_framework.routers import DefaultRouter from . import views # DRF url routing router = DefaultRouter() router.register(r'tools', views.ToolsViewSet, base_name='tools') router.register(r'tool_definitions', views.ToolDefinitionsViewSet, base_name='tooldefinitions') tool_manager_api_urls = router.urls
[ "noreply@github.com" ]
refinery-platform.noreply@github.com
598635ea594828d0c6926f5727c90391600b8821
a71e863867a067746e4360f34f86ef1e317b1410
/geocodemonkey/__init__.py
886c4909485a9b1bfb8c0fb6c954768e01b234b0
[ "MIT" ]
permissive
loftylabs/django-geocodemonkey
9029c6dce88c7bae6b0636c077ae36decd7e32cc
40133c67ad86ef0e61601f77e5b20c6146256d5f
refs/heads/master
2020-04-08T09:05:04.802096
2014-04-20T17:14:37
2014-04-20T17:14:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,632
py
import re import logging from django.conf import settings from django.core.cache import cache from django.core.exceptions import ImproperlyConfigured from django.utils.encoding import smart_str from django.utils.timezone import now from geopy import geocoders as geopy_geocoders from geopy.exc import GeocoderServiceError from models import GeocodedModel as geo_model def get_geocoder(geocoder=None): """ Returns a GeocodeMonkeyGeooder instance linked to the specificed backend. If no backend is provided, returns the an instance tied to the backend referenced by the GEOCODERS['default'] setting """ if geocoder is None: geocoder = 'default' if settings.GEOCODERS.get(geocoder, False): return GeocodeMonkeyGeocoder(settings.GEOCODERS[geocoder]) else: raise ImproperlyConfigured( "Could not find geocoder config for '%s'. If no identifier was specified, please define a valid default geocoder in the " "GEOCODERS setting" % geocoder) class GeocodeFailed(Exception): """ Raised when a query was not geocodable """ pass class GeocodeMonkeyGeocoder(object): """ Handles the basic geocoder features like cache management and returning normalized data structures. """ def __init__(self, *args, **kwargs): # Sets the class to be used for geocoding. args[0] should be dict from the GEOCODERS setting self.geocoder_class = getattr(geopy_geocoders, args[0]['BACKEND']) # Set whether or not this is an asynchronous geocoder self.ASYNC = args[0].get('ASYNC', False) self.qualified_address = "" self.lat = None self.long = None def _generate_cache_key(self, address): """ Normalizes addresses for more effective caching """ return re.sub(r'[^a-z0-9]', '', str(address).lower()) def store_geocoded_address(self, qa, lat, long): self.qualified_address = qa self.lat = lat self.long = long def geocode(self, address): # check the cache first key = self._generate_cache_key(address) cached_geocode = cache.get(key) try: if cached_geocode: self.store_geocoded_address(cached_geocode[0], cached_geocode[1], cached_geocode[2]) logging.debug("Address %s geocoded from cache with key %s" % (address, key)) else: qa, lat_long = self._geocode(address) cache.set(key, (qa, lat_long[0], lat_long[1]), None) self.store_geocoded_address(qa, lat_long[0], lat_long[1]) logging.debug("Address %s geocoded from web API and stored with key %s" % (address, key)) except GeocodeFailed: raise LookupError("Geocoder %s did not return an address for %s" % (self.geocoder_class, address)) return self.qualified_address, (self.lat, self.long) def geocode_to_model_instance(self, address, instance, commit=True): """ Performs a geocoding and saves it to the instance that was passed in. It is expected that the instance inhertis from geocodemonkey.models.GeocodedObjectMixin """ if not isinstance(instance, geo_model): raise TypeError("Instance argument is expected to be derived from geocodemonkey.models.GeocodedModel base class") # If this is an async Geocoder, we want to perform this asynchronously if self.ASYNC: from celery.app import Celery # Always commit on async celery = Celery() return celery.task(args=[self._geocode_to_model_instance(address, instance, commit=True)]) else: return self._geocode_to_model_instance(address, instance, commit=commit) def _geocode_to_model_instance(self, address, instance, commit): qa, lat_long = self.geocode(address) instance.qualified_address = qa instance.latitude = lat_long[0] instance.longitude = lat_long[1] instance.geocoded = now() if commit: instance.save() return instance def _geocode(self, address): """ Instantiates the geopy Geocoder and nabs an address """ try: g = self.geocoder_class() address = smart_str(address) result = g.geocode(address, exactly_one=False) if result: return result[0] else: raise GeocodeFailed() except (UnboundLocalError, ValueError, GeocoderServiceError) as e: raise Exception(e)
[ "casey.kinsey@gmail.com" ]
casey.kinsey@gmail.com
04acd2d89b3ce66cb091b31f095e7ff5cde99fad
fe952ac535cdea8ee5d55fec1715db5aadad8e89
/scripts/preprocess_sp500.py
bb236919ca2be94183f61ca3238f96ee92936db8
[]
no_license
Eva0417/tstl
c34dec884c41f7bad4b5afd725e62ba204556151
f3497acd31f303ae8eef25eaa3b370e64e717e8b
refs/heads/master
2023-06-11T18:42:20.055326
2021-07-01T23:12:22
2021-07-01T23:12:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,319
py
import os import sys import argparse import random from scipy.io import wavfile import numpy as np import pandas as pd import datetime import shutil scriptDir = os.path.dirname(os.path.realpath(__file__)) + "/" TRAINING_PERCENTAGE = 70 TEST_PERCENTAGE = 15 VALIDATION_PERCENTAGE = 15 WINDOW_SIZE = 50 # We use first 50 samples as input for our NN and try to predict next 1 PREDICTION_AHEAD = 0 PREDICTION_SIZE = 1 COLUMN = "Close" parser = argparse.ArgumentParser() parser.add_argument("pathToDataset", help="Path to csv file") parser.add_argument("name", help="Output filename (name of dataset after preprocessing)") parser.add_argument("--size", help="Processes only a subset of specified size of original dataset.", default=None, type=int) args = parser.parse_args() if not os.path.exists(args.pathToDataset): print("Specified file does not exist. Specified path: {}".format(args.pathToDataset)) exit(0) print("\rProcessing file {}".format(args.pathToDataset)) df = pd.read_csv(args.pathToDataset) df = df[[COLUMN]] data = df.to_numpy() data = np.squeeze(data) # Seperate data into train, validation and test sets trainEnd = int(TRAINING_PERCENTAGE/100.0 * len(data)) validationEnd = trainEnd + int(VALIDATION_PERCENTAGE/100.0 * len(data)) trainData = data[:trainEnd] validationData = data[trainEnd:validationEnd] testData = data[validationEnd:] # Generate training set using sliding window train = [] for i in range(WINDOW_SIZE + PREDICTION_AHEAD + PREDICTION_SIZE, len(trainData)): inputWindow = trainData[i-WINDOW_SIZE-PREDICTION_AHEAD-PREDICTION_SIZE:i-PREDICTION_AHEAD-PREDICTION_SIZE] outputWindow = trainData[i-PREDICTION_SIZE:i] train.append((inputWindow, outputWindow)) # Generate validation set using sliding window validation = [] for i in range(WINDOW_SIZE + PREDICTION_AHEAD + PREDICTION_SIZE, len(validationData)): inputWindow = validationData[i-WINDOW_SIZE-PREDICTION_AHEAD-PREDICTION_SIZE:i-PREDICTION_AHEAD-PREDICTION_SIZE] outputWindow = validationData[i-PREDICTION_SIZE:i] validation.append((inputWindow, outputWindow)) # Generate test set using sliding window test = [] for i in range(WINDOW_SIZE + PREDICTION_AHEAD + PREDICTION_SIZE, len(testData)): inputWindow = testData[i-WINDOW_SIZE-PREDICTION_AHEAD-PREDICTION_SIZE:i-PREDICTION_AHEAD-PREDICTION_SIZE] outputWindow = testData[i-PREDICTION_SIZE:i] test.append((inputWindow, outputWindow)) # Print information print("Training set size: {}".format(len(train))) print("Validation set size: {}".format(len(validation))) print("Test set size: {}".format(len(test))) # Randomly shuffle data sets random.shuffle(train) random.shuffle(validation) random.shuffle(test) # Write training data print("Writing training data") mask = np.lib.format.open_memmap(scriptDir + "/../data/{}_MASK.npy".format(args.name), mode="w+", dtype="float64", shape=(WINDOW_SIZE, 1)) X = np.lib.format.open_memmap(scriptDir + "/../data/{}_train_X.npy".format(args.name), mode="w+", dtype="float64", shape=(len(train), WINDOW_SIZE, 1)) Y = np.lib.format.open_memmap(scriptDir + "/../data/{}_train_Y.npy".format(args.name), mode="w+", dtype="float64", shape=(len(train), PREDICTION_SIZE)) STREAM_MAX = np.lib.format.open_memmap(scriptDir + "/../data/{}_train_STREAM_MAX.npy".format(args.name), mode="w+", dtype="float64", shape=(len(train), 1)) for index, data in enumerate(train): X[index, :, 0] = data[0] Y[index, :] = data[1] # Scale to range [0, 1] minVal = np.min(X[index, :, :]) maxVal = np.max(X[index, :, :]) STREAM_MAX[index, 0] = max(abs(maxVal), abs(minVal)) if(maxVal - minVal == 0): # This waveform is constant signal so it does not contain any information. X[index, :, :] = 0 else: X[index, :, :] = X[index, :, :] - minVal X[index, :, :] = X[index, :, :] / (maxVal - minVal) mask[:, :] = mask[:, :] + X[index, :, :] mask[:, :] = mask[:, :] / len(X) # Apply mask to training set for index, key in enumerate(X): X[index, :, :] = X[index, :, :] - mask del X del Y del STREAM_MAX # Write validation data print("Writing validation data") X = np.lib.format.open_memmap(scriptDir + "/../data/{}_validation_X.npy".format(args.name), mode="w+", dtype="float64", shape=(len(validation), WINDOW_SIZE, 1)) Y = np.lib.format.open_memmap(scriptDir + "/../data/{}_validation_Y.npy".format(args.name), mode="w+", dtype="float64", shape=(len(validation), PREDICTION_SIZE)) STREAM_MAX = np.lib.format.open_memmap(scriptDir + "/../data/{}_validation_STREAM_MAX.npy".format(args.name), mode="w+", dtype="float64", shape=(len(validation), 1)) for index, data in enumerate(validation): X[index, :, 0] = data[0] Y[index, :] = data[1] # Scale to range [0, 1] minVal = np.min(X[index, :, :]) maxVal = np.max(X[index, :, :]) STREAM_MAX[index, 0] = max(abs(maxVal), abs(minVal)) if(maxVal - minVal == 0): # This waveform is constant signal so it does not contain any information. X[index, :, :] = 0 else: X[index, :, :] = X[index, :, :] - minVal X[index, :, :] = X[index, :, :] / (maxVal - minVal) X[index, :, :] = X[index, :, :] - mask del X del Y del STREAM_MAX # Write test data print("Writing test data") X = np.lib.format.open_memmap(scriptDir + "/../data/{}_test_X.npy".format(args.name), mode="w+", dtype="float64", shape=(len(test), WINDOW_SIZE, 1)) Y = np.lib.format.open_memmap(scriptDir + "/../data/{}_test_Y.npy".format(args.name), mode="w+", dtype="float64", shape=(len(test), PREDICTION_SIZE)) STREAM_MAX = np.lib.format.open_memmap(scriptDir + "/../data/{}_test_STREAM_MAX.npy".format(args.name), mode="w+", dtype="float64", shape=(len(test), 1)) for index, data in enumerate(test): X[index, :, 0] = data[0] Y[index, :] = data[1] # Scale to range [0, 1] minVal = np.min(X[index, :, :]) maxVal = np.max(X[index, :, :]) STREAM_MAX[index, 0] = max(abs(maxVal), abs(minVal)) if(maxVal - minVal == 0): # This waveform is constant signal so it does not contain any information. X[index, :, :] = 0 else: X[index, :, :] = X[index, :, :] - minVal X[index, :, :] = X[index, :, :] / (maxVal - minVal) X[index, :, :] = X[index, :, :] - mask del X del Y del STREAM_MAX del mask
[ "kecoeco@gmail.com" ]
kecoeco@gmail.com
91d4f7f60cf0b51713c487a36192d9e70940c691
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03209/s568907509.py
a0f73fe21eee5f624d2d75824f89e6519534dec9
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,089
py
#!/usr/bin/env python3 import sys def solve(N: int, X: int): # a_0 = 1 # a_{n+1} = 2 * a_n + 3 # b_0 = 1 # b_{n+1} = 2 * b_n + 1 # a_n = 2**(n+2) - 3 # b_n = 2**(n+1) - 1 def f(N: int, X: int): aN = 2 ** (N + 2) - 3 bN = 2 ** (N + 1) - 1 if X >= aN: return bN aN1 = 2 ** ((N - 1) + 2) - 3 ans = 0 X -= 1 if X <= 0: return ans ans += f(N - 1, X) X -= aN1 if X <= 0: return ans ans += 1 X -= 1 if X <= 0: return ans ans += f(N - 1, X) X -= aN1 if X <= 0: return ans X -= 1 if X <= 0: return ans assert False print(f(N, X)) def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() N = int(next(tokens)) # type: int X = int(next(tokens)) # type: int solve(N, X) if __name__ == '__main__': main()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
5f6203131ffbaad18fea774003e59e49a64b3bf9
840fe85b48fc7c9b4862bd506091d51c6055f68f
/calcD.py
f14183b16525b79f390e44649d96b4f7266ba001
[]
no_license
TheXpingu1n/calcD
805a19287f203bb5de104da516c12b40d8a8128e
cea0e2f061897a0b2ac727d55c587fa8757f093d
refs/heads/main
2023-01-10T19:21:51.130478
2020-11-13T12:47:08
2020-11-13T12:47:08
312,128,987
0
0
null
null
null
null
UTF-8
Python
false
false
17,745
py
#coded by : Azad Mohammed import math import pyfiglet import termcolor print(termcolor.colored(pyfiglet.figlet_format('calcD'), color = 'green')) pi = math.pi e = math.exp tan = math.tan cos = math.cos sin = math.sin class Calculate_Areas2D: def circle_area(self) : rad = input('Please insert the value of the radius : ') r = int(rad) circleA = (pi * (pow(r, 2))) print(f'The area is : {circleA} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def tri_area(self) : b = input('Insert a value of the base : ') h = input('Insert a value of the height : ') bas = int(b) hei = int(h) triangleA = float(0.5) * bas * hei print(f'The area is : {triangleA} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def squ_area(self) : a = input('The length of the side : ') side = int(a) sqA = pow(side * 2) print(f'The area is : {sqA} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def rect_area(self) : l = input('The length please : ') w = input('And the width : ') leng = int(l) wid = int(w) rectA = leng * wid print(f'The area is {rectA} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def para_area(self): b = input('The base length please : ') h = input('And the height legnth : ') basee = int(b) hei = int(h) paralA = basee * hei print(f'The area is : {paralA} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def trap_area(self): APa = input('Please enter the first parallel line : ') BPa = input('Please enter the second parallel line : ') Hei = input('Height : ') APara = int(APa) BPara = int(BPa) H = int(Hei) trapizumA = 0.5 * (APara + BPara) * H print(f'The area is : {trapizumA} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def elipise_area(self) : a = input('Enter length of major axis : ') b = input('Enter length of minor axis : ') sideA = int(a) * 0.5 sideB = int(b) * 0.5 elipA = pi * sideA * sideB print(f'The area : {elipA} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def Cres_area(self): RR = input('Please enter your first radius (biggest) length : ') r = input('Please enter your second radius (smallest) length : ') rad1 = int(RR) rad2 = int(r) AofC = (pi*rad1**2)-(pi*rad2**2) print(f'The area is : {AofC} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def rhombus_area(self): print('''Choose *By numbers* : \n 1- Rhombus area by height and side '1' \n 2- One side one angle '2' \n 3- Length of diagonals '3' ''') ChooseNo = input('Enter the number : ') no = int(ChooseNo) no1 = 1 no2 = 2 no3 = 3 def rhombus_area1(self): h = input('Enter the height : ') s = input('Enter the side : ') Height = int(h) Side = int(s) area1 = Height * Side print(f'The area is : {area1} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def rhombus_area2(self): s = input("Enter length of side : ") Mesaure = input('And the measurment of angle : ') Side1 = int(s) MofAngle = int(Mesaure) area2 = pow(Side1 , 2)*sin(MofAngle) print(f'The area is : {area2} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def rhombus_area3(self): d = input('Enter the length of the first diameter : ') d2 = input('And the second diameter : ') di1 = int(d) di2 = int(d2) area3 = (di1 * di2) / 2 print(f'The area is : {area3} cm²') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError if no == no1 : rhombus_area1(1) elif no == no2 : rhombus_area2(2) elif no == no3 : rhombus_area3(3) else: raise ValueError Calculate_Areas2D.rhombus_area(0) class Calculate_Areas3D: def Cube_surfarea(self): edge = input('Please enter length of edge : ') A = int(edge) surfAreaC = 6*A**2 print(f'The area is : {surfAreaC} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def RecPrism_surArea(self): l = input('Enter the length : ') w = input('Enter the width : ') h = input('Enter the height : ') length = int(l) width = int(w) height = int(h) surfArea = 2 * (width*length) + (height*length) + (height*width) print(f'The area is : {surfArea} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def Cy_surfarea(self): radius = input('Enter the length of the radius : ') height = input('And the height : ') r = int(radius) h = int(height) area = 2 * pi * r * (r + h) print(f'The area is : {area} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def Cone_surfarea(self): radius = input('Enter the length of the radius : ') height = input('Enter the length of the slant height : ') r = int(radius) h = int(height) area = pi * r * (r + h) print(f'The area is : {area} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def Sp_surfArea(self): radius = input('Enter the length of the radius : ') r = int(radius) area = 4 * pi * r**2 print(f'The area is : {area} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def hemiSp_surfArea(self): radius = input('Enter the length of the radius : ') r = int(radius) area = 3 * pi * pow(r , 2) print(f'The area is : {area} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def pyramid_LSA(self): per = input('Enter the perimeter : ') height = input('And the slant height : ') p = int(per) l = int(height) area = 0.5 * p * l print(f'The area is : {area} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def pyramid_TSA(self): per = input('Enter the perimeter : ') height = input('And the slant height : ') Base = input('Input the base too : ') p = int(per) l = int(height) B = int(Base) area = 0.5 * p * l + B print(f'The area is : {area} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError class Calculate_Areas_Plat5: def Tetrahedron(self): def Tetrahedron_1(self): side = input('Enter the length of the side : ') a = int(side) area = 3 * (math.sqrt(3))/4 * a ** 2 print(f'The area is : {area} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def Tetrahedron_2(self): side = input('Enter the length of the side : ') a = int(side) area = 4 * (math.sqrt(3))/4 * a ** 2 print(f'The area is : {area} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError choose = input('What do you want? Area of the slant surface to the tetrahedron ->> SA \n Area of whole surface of tetrahadron ->> WA \n >>> ').capitalize().strip() if choose == 'S' : Tetrahedron_1(0) elif choose == 'W' : Tetrahedron_2(0) else : raise ValueError def hexahedron(self): print('it is just a cube, go and call the cube calc function.') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def Octahedron(self): edge = input('Enter The length of the edge : ') a = int(edge) area = 2 * pow(a , 2) * math.sqrt(3) print(f'The area is : {area} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def Dodecahedron(self): length = input('Enter the edge length : ') a = int(length) surfarea = 3 * math.sqrt(25 + 10 * math.sqrt(5)) * a ** 2 print(f'The area is : {surfarea} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def Icosahedron(self): length = input('Enter the length of the side : ') a = int(length) area = 5 * math.sqrt(3) * a ** 2 print(f'The area is : {area} cm³') quit1 = input('Want to close? Y or N?').capitalize().strip() if quit1 == 'Y': print('Exiting!') elif quit1 == 'N': open_pro() else: raise ValueError def open_pro(): print(''' Welcome \n For 2D shape area calculator enter : "T" \n For 3D shape area calculator enter : "A" \n For platonic solid area claculator enter "P" \n To quit enter 'Q' ''') answer = input('>> ').capitalize().strip() if answer == 'T' : print('''Hello \n - For Circle area calculator ->> 'C' \n - For Triangle area calculator ->> 'T' \n - For Square area calculator ->> 'S' \n - For Rectangle area calculator ->> 'R' \n - For Parallelogram area calculator ->> 'P' \n - For Trapizum area calculator ->> 'U' \n - For Ellipse area calculator ->> 'E' \n - For Cresent area calculator ->> 'N' \n - For Rhombus area calculator ->> 'H' \n ''') answer2 = input('>> ').capitalize().strip() if answer2 == 'C': Calculate_Areas2D.circle_area(0) elif answer2 == 'T': Calculate_Areas2D.tri_area(0) elif answer2 == 'S': Calculate_Areas2D.squ_area(0) elif answer2 == 'R': Calculate_Areas2D.rect_area(0) elif answer2 == 'P': Calculate_Areas2D.para_area(0) elif answer2 == 'U': Calculate_Areas2D.trap_area(0) elif answer2 == 'E': Calculate_Areas2D.elipise_area(0) elif answer2 == 'N': Calculate_Areas2D.Cres_area(0) elif answer2 == 'H': Calculate_Areas2D.rhombus_area(0) else : raise ValueError elif answer == 'A': print('''Hello \n - For Cube surface area calculator ->> 'C' \n - For Rectangular prism surface area calculator ->> 'R' \n - For Cylinder surface area calculator ->> 'Y' \n - For Cone surface area calculator ->> 'O' \n - For Sphere surface area calculator ->> 'S' \n - For Hemisphere surface area calculator ->> 'H' \n - For Pyramid Literal surface area calculator ->> 'L' \n - For Pyramid Total surface area calculator ->> 'T' \n ''') answer3 = input('>> ').capitalize().strip() if answer3 == 'C': Calculate_Areas3D.Cube_surfarea(0) elif answer3 == 'R': Calculate_Areas3D.RecPrism_surArea(0) elif answer3 == 'Y': Calculate_Areas3D.Cy_surfarea(0) elif answer3 == 'O': Calculate_Areas3D.Cone_surfarea(0) elif answer3 == 'S': Calculate_Areas3D.Sp_surfArea(0) elif answer3 == 'H': Calculate_Areas3D.hemiSp_surfArea(0) elif answer3 == 'L': Calculate_Areas3D.pyramid_LSA(0) elif answer3 == 'T': Calculate_Areas3D.pyramid_TSA(0) else : raise ValueError elif answer == 'P': print('''Hello \n - For Tetrahedron area calculator ->> 'T' \n - For Hexahedron area calculator ->> 'H' \n - For Octahedron area calculator ->> 'O' \n - For Dodecahedron area calculator ->> 'D' \n - For Icosahedron area calculator ->> 'I' \n ''') answer4 = input('>> ').capitalize().strip() if answer4 == 'T': Calculate_Areas_Plat5.Tetrahedron(0) elif answer4 == 'H': Calculate_Areas_Plat5.hexahedron(0) elif answer4 == 'O': Calculate_Areas_Plat5.Octahedron(0) elif answer4 == 'D': Calculate_Areas_Plat5.Dodecahedron(0) elif answer4 == 'I': Calculate_Areas_Plat5.Icosahedron(0) else : print('Error occured , try to enter a valid option') elif answer == 'Q': print('Closing...') else: raise ValueError open_pro() #Calculate_Areas2D.Cres_area(0,1)
[ "noreply@github.com" ]
TheXpingu1n.noreply@github.com
d157fefef96b07270738959f77b7cff2930c4a46
ad44e43f263e9678b0b72b0ab9cfd9350c97075d
/Day2/acceptinput.py
c589900d63258f7673dc45ddeff86ecef83c407a
[]
no_license
mahesstp/python
cc95fe587baed83c241c5439ace6382a8c870082
9f93cd98a1855294d82a4121177eec5dc1509078
refs/heads/master
2020-04-02T21:49:49.286662
2018-08-31T11:46:26
2018-08-31T11:46:26
154,812,672
0
0
null
null
null
null
UTF-8
Python
false
false
661
py
#!/usr/bin/python from secondfile import * def acceptInput(): firstValue = input ('Enter your first float number: ') secondValue = input ('Enter your second float number: ') print ( 'Type of firstValue is ' + str( type(firstValue) ) ) return firstValue, secondValue def addNumbers(firstNumber, secondNumber): return firstNumber + secondNumber def main(): x, y = acceptInput() print ( type ( x ) ) print ( type ( y ) ) result = addNumbers ( x , y ) print ( 'The sum of ' + str(x) + ' and ' + str(y) + ' is ' + str(result) ) main() ''' if __name__ == '__main__': print ( __name__ ) main() '''
[ "mail2jegan@gmail.com" ]
mail2jegan@gmail.com
e849afe585c0d25de97fbe749f49c5c34a0b092c
71f2d0d97146650975f066191b1851a13a3de43c
/Classes_and_Object_Programs/cls9.py
da0f9251d350fb85cc28080c8223cacd0a2a5b50
[ "MIT" ]
permissive
saratkumar17mss040/Python-lab-programs
84e8537927498aeeb12e52e614cdaae489a7fe91
a2faa190acaaa30d92d4c801fd53fdc668c3c394
refs/heads/master
2023-01-13T06:09:24.358203
2020-11-18T04:43:14
2020-11-18T04:43:14
289,944,123
3
0
null
null
null
null
UTF-8
Python
false
false
251
py
# encapsulation - protected members - 1 class Person: def __init__(self): self._name = 'sam' class Student(Person): def __init__(self): Person.__init__(self) print(self._name) s = Student() p = Person() print(p._name) print(s._name)
[ "sarathdon9245@gmail.com" ]
sarathdon9245@gmail.com
0c8767bb5641218069611b38304e4fa40d8d3439
f7334f229bb73926903cef6ee5ba7a9d27349f56
/webempresa/social/migrations/0001_initial.py
52e2ff8b2aac685ef639ab66f5b9801d7b580164
[]
no_license
monikafg/web-empresa-curso-django-2
e52408d9b0171e81c3366b4ed78178e97ffae867
d6cc5b074f19156c034ce80c964c558267853d82
refs/heads/master
2020-04-07T23:24:14.793136
2018-11-23T10:50:35
2018-11-23T10:50:35
158,811,088
0
0
null
null
null
null
UTF-8
Python
false
false
1,066
py
# Generated by Django 2.0.2 on 2018-10-31 12:41 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Link', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('key', models.SlugField(max_length=100, unique=True, verbose_name='Nombre Clave')), ('name', models.CharField(max_length=200, verbose_name='Red Social')), ('url', models.URLField(blank=True, null=True, verbose_name='Enlace')), ('created', models.DateTimeField(auto_now_add=True, verbose_name='Fecha Creación')), ('updated', models.DateTimeField(auto_now=True, verbose_name='Fecha Edición')), ], options={ 'verbose_name': 'enlace', 'verbose_name_plural': 'enlaces', 'ordering': ['name'], }, ), ]
[ "monicafreygrimm@gmail.com" ]
monicafreygrimm@gmail.com
bc60600bbd7f640a50d61ab429393bf190b0de37
6c81fbea3c897b97fed56f97c1bc657b632beb04
/classifier/Basic_ML_base/classify.py
feb5b1df7e5517e185732e2869ada6cb48e09182
[]
no_license
JCai2017/SecurityProject
00e0c992ee802e52673a36580b28dd27cf181f12
25d0a0a497127dc30fe883115cdca0770643f796
refs/heads/master
2021-08-30T12:14:30.418667
2017-12-17T21:18:47
2017-12-17T21:18:47
110,923,892
0
0
null
null
null
null
UTF-8
Python
false
false
2,127
py
import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import LSTM from keras.preprocessing import sequence from keras.utils.np_utils import to_categorical from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from matplotlib import pyplot # fix random seed for reproducibility np.random.seed(7) # load the dataset #df = pd.read_csv('data.csv') df = pd.read_table('data.csv', sep=",", usecols=range(164)) #print df # plot original data.csv over time for num in range(63): df.iloc[num].plot() pyplot.show() # Rescale it - should help network performance scaler = MinMaxScaler(feature_range=(0,1)) X = scaler.fit_transform(df) y = pd.read_csv('key.csv') y = to_categorical(y, 1 << 6) #print y.shape # Just so we can have a validation set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=7) # This next part is because keras is picky with how they want data X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1])) X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1])) # truncate and pad input sequences # create the model model = Sequential() model.add(LSTM(125, input_shape=(X_train.shape[1], X_train.shape[2]))) # Since it seems to be a categorical problem, use softmax activation instead of linear model.add(Dense(1 << 6, activation='softmax')) # 16 possible key values, activation, 16keys*4training-traces, 197us sigmoid model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) #rmsprop print(model.summary()) # diagnosis history = model.fit(X_train, y_train, epochs=200, batch_size=64, validation_split = 0.33) pyplot.plot(history.history['loss']) pyplot.plot(history.history['val_loss']) pyplot.title('model train vs validation loss') pyplot.ylabel('loss') pyplot.xlabel('epoch') pyplot.legend(['train', 'validation'], loc='upper right') pyplot.show() scores = model.evaluate(X_test, y_test, verbose=0) print("Accuracy: %.2f%%" % (scores[1]*100)) #print(model.predict(X_test))
[ "aytung94@gmail.com" ]
aytung94@gmail.com
eeb74448f321c85c0bb760e02b2d6afb1a90ebdc
5274373dcbfbc2b7fd16050cfab1ac3f378c57bb
/prepare.py
a4facf27a4b64e9a61cf98ea3f819f28bcb5c057
[]
no_license
MainaliB/time-series-exercises
7a1e8d4370c5140c3d50c70e478352dec7afffb0
00dafb61347f9037882b47696a00a68fab2cf72f
refs/heads/main
2023-01-05T14:54:57.984526
2020-11-03T02:58:24
2020-11-03T02:58:24
306,452,863
1
0
null
null
null
null
UTF-8
Python
false
false
718
py
import pandas as pd from datetime import timedelta, datetime import numpy as np import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") def prep_sales_df(df): '''Takes in a dataframe, performs necessary date time conversion, sets date as index, creates new columns(months, day, and sales total) and returns the dataframe''' df.sale_date = pd.to_datetime(df.sale_date, format = '%a, %d %b %Y %H:%M:%S %Z') df = df.set_index('sale_date').sort_index() df['month'] = df.index.month_name() df['day']= df.index.day_name() df.rename(columns ={'sale_amount':'quantity'}, inplace = True) df['sales_total'] = df.quantity * df.item_price return df
[ "bibek.mainali20@gmail.com" ]
bibek.mainali20@gmail.com
5ed038d04b8958a97134dbddf90e1607c7731360
4f6d7307a00d5a5ddecc12203a7d8ebc4a9ae95b
/api/permissions.py
23b1901230d259a29d2dbdf9cd74d2f68ba7a592
[]
no_license
Cscotttaakan/DjangoRestAPITutorial
d67728fb48d1ae346b61a3d7afae8f1999ef168b
9fe67d315b257a8d6584c5cfc18ff8339ac46e5f
refs/heads/master
2020-04-12T21:31:44.155967
2018-12-22T21:40:25
2018-12-22T21:40:25
162,764,257
0
0
null
null
null
null
UTF-8
Python
false
false
302
py
from rest_framework.permissions import BasePermission from .models import Bucketlist class IsOwner(BasePermission): def has_object_permission(self, request, view, obj): if isinstance(obj, Bucketlist): return obj.owner == request.user return obj.owner == request.user
[ "cscott_taakan@yahoo.com" ]
cscott_taakan@yahoo.com
de7ff038bc97d99b5b5417effac204ade6feffef
d9796881c5f39d8057bf9e5b47b5825b052b37eb
/FrostGem/settings.py
4ccaf8aecc9b166d2b5b54270d54f33692d870bb
[]
no_license
RedaAbuKhamdi/FrostGem
d16f5f611a748cd107438ad0e6a06b787d408e28
b3746b9ce747ae23316930eb1b4d6cd1044db030
refs/heads/master
2023-06-05T23:58:13.307815
2021-06-29T16:24:54
2021-06-29T16:24:54
381,429,017
0
0
null
null
null
null
UTF-8
Python
false
false
3,518
py
""" Django settings for FrostGem project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-ist_@u8wpk(ch2aop*t*f#9e*dsheuzv-qd&e=48rrzl63qq76' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'FrostGem.urls' # Configure templates. DIRS - list of directories # that django will look in for the html files TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'FrostGem' / 'views'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'FrostGem.wsgi.application' # Database settings DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'FrostGemDB', 'USER': 'root', 'PASSWORD': 'pass' } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Europe/Kaliningrad' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # URL of static files. Anything that starts with this USR is identified as a static file STATIC_URL = '/static/' # Directories where django will look for the said files STATICFILES_DIRS = [ BASE_DIR / "FrostGem" / "static" ] # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "30412098+RedaAbuKhamdi@users.noreply.github.com" ]
30412098+RedaAbuKhamdi@users.noreply.github.com
d8c69bbd5692d0ee667598a089bd5b101c022a65
bf57ecee77df0a08f2456a05918d6585c68a92ea
/JITNet/datasets/osvos_dataset.py
06ca304be21304d431803ec5615adc91c47061e6
[]
no_license
abollu779/Multiple-Object-Tracking
8d0f602976b2fb5d40d0539a0e4a43f080656f21
0be5a067a3f469f73b804a9a03c8b4157ece1d54
refs/heads/master
2022-11-05T18:11:02.001614
2019-05-08T16:55:16
2019-05-08T16:55:16
181,527,805
0
1
null
2022-10-12T02:46:24
2019-04-15T16:43:13
Jupyter Notebook
UTF-8
Python
false
false
7,463
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from PIL import Image import os import numpy as np import sys import cv2 # Mask R-CNN utilities sys.path.append(os.path.realpath('./datasets')) sys.path.append(os.path.realpath('./utils')) from mask_rcnn_tfrecords import get_dataset, batch_segmentation_masks,\ visualize_masks from mask_rcnn_stream import MaskRCNNSequenceStream import video_distillation from video_distillation import sequence_to_class_groups_stable """Dataset class for OSVOS, using the same interface as the original.""" class OSVOS_Dataset: def __init__(self, sequence, dataset_dir, sequence_limit, stride, height, width, class_index, start_frame): """Initialize the Dataset object Args: sequence: sequence name dataset_dir: Absolute path to dataset root sequence_limit: maximum number of video sequence chunks to load stride: stride to run MRCNN teacher height: height of full size output images width: width of full size output images class_index: one-indexed class to segment """ self.height = height self.width = width self.class_index = class_index self.stride = stride self.sequence_limit = sequence_limit # Load the sequence using JITNet utilities print('Initializing dataset...') # assemble video files and detection paths video_files = [] detections_paths = [] sequence_to_video_list = \ video_distillation.get_sequence_to_video_list( dataset_dir, dataset_dir, video_distillation.video_sequences_stable) assert(sequence in sequence_to_video_list) sequence_path = os.path.join(dataset_dir, sequence) assert(os.path.isdir(sequence_path)) assert(sequence in video_distillation.sequence_to_class_groups_stable) num_sequences = 0 for s in sequence_to_video_list[sequence]: video_files.append(os.path.join(sequence_path, s[0])) detections_paths.append(os.path.join(sequence_path, s[1])) num_sequences = num_sequences + 1 if num_sequences >= sequence_limit: break self.class_groups = sequence_to_class_groups_stable[sequence] print(video_files) print(detections_paths) print(self.class_groups) self.class_groups = [ [video_distillation.detectron_classes.index(c) for c in g] \ for g in self.class_groups ] self.num_classes = len(self.class_groups) + 1 self.input_streams = MaskRCNNSequenceStream(video_files, detections_paths, start_frame=start_frame, stride=1) img, label = self._stream_next(self.input_streams) # these are also used for the first test batch self.first_img = img self.first_label = label self._augment_data(img, label) # Init parameters self.train_ptr = 0 self.test_ptr = 0 self.train_size = 6 # 3 scales, with a flip for each scale self.test_size = stride self.train_idx = np.arange(self.train_size) np.random.shuffle(self.train_idx) print('Done initializing Dataset.') def _augment_data(self, img, label): self.images_train = [] self.labels_train = [] data_aug_scales = [0.5, 0.8, 1] for scale in data_aug_scales: img_size = (int(self.height * scale), int(self.width * scale)) img_sc = cv2.resize(img, img_size) label_sc = cv2.resize(label, img_size) self.images_train.append(np.array(img_sc, dtype=np.uint8)) self.labels_train.append(np.array(label_sc, dtype=np.uint8)) # add flip img_sc_fl = np.fliplr(img_sc).astype(np.uint8) label_sc_fl = np.fliplr(label_sc).astype(np.uint8) self.images_train.append(img_sc_fl) self.labels_train.append(label_sc_fl) def _stream_next(self, stream): # grab a single image and mask from input_streams frame, boxes, classes, scores, masks, num_objects, frame_id = next(stream) img = cv2.resize(frame, (self.width, self.height)) boxes = np.expand_dims(boxes, axis=0) classes = np.expand_dims(classes, axis=0) scores = np.expand_dims(scores, axis=0) masks = np.expand_dims(masks, axis=0) num_objects = np.expand_dims(num_objects, axis=0) labels_vals, _ = batch_segmentation_masks(1, (self.height, self.width), boxes, classes, masks, scores, num_objects, True, self.class_groups) labels_val = np.reshape(labels_vals, (self.height, self.width)) # only consider one class label labels_mask = (labels_val == self.class_index) label = np.zeros((self.height, self.width), dtype=np.uint8) label[labels_mask] = 255 return img, label def next_batch(self, batch_size, phase): """Get next batch of image (path) and labels Args: phase: 'train' or 'test', starts with one train Returns: images: List of Numpy arrays of the images labels: List of Numpy arrays of the labels """ if batch_size != 1: raise ValueError('batch size only 1') if phase == 'train': # return from the premade list index = self.train_idx[self.train_ptr] self.train_ptr += 1 self.train_ptr = self.train_ptr % self.train_size if self.train_ptr == 0: np.random.shuffle(self.train_idx) return [self.images_train[index]], [self.labels_train[index]] else: # read from the stream and return if self.test_ptr == 0: self.test_ptr += 1 return [self.first_img], [self.first_label] else: img, label = self._stream_next(self.input_streams) if self.test_ptr >= self.test_size: raise StopIteration('next_batch test should not be called more than stride times.') self.test_ptr += 1 return [img], [label] def reset_cycle(self): """Get ready for the next cycle of data.""" # grab a new test frame and perform augmentation. img, label = self._stream_next(self.input_streams) # these are also used for the first test batch self.first_img = img self.first_label = label self._augment_data(img, label) # reset the pointers and variables self.train_ptr = 0 self.test_ptr = 0 self.train_size = 6 # 3 scales, with a flip for each scale self.test_size = self.stride self.train_idx = np.arange(self.train_size) np.random.shuffle(self.train_idx) def get_train_size(self): return self.train_size def get_test_size(self): return self.test_size
[ "abollu779@gmail.com" ]
abollu779@gmail.com
5a03ac597a444bda5ed3fc444cbe62979129c614
5a200273e064fe8b2d4b4b69be80c8e32df3ed9f
/ch09-pagination/app/__init__.py
7139b2a2578530df0e2576e09e5fe6d49cfa846b
[]
no_license
NajibAdan/flask-tutorial
d05ede626b43b2924a314aa45584566bfd0cda7d
e4711668571eea7424f8babf71bbc8b76838cca1
refs/heads/master
2022-07-08T19:32:49.332757
2020-05-05T13:13:19
2020-05-05T13:13:19
257,529,254
0
0
null
null
null
null
UTF-8
Python
false
false
2,055
py
from flask import Flask from config import Config from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_login import LoginManager import logging from logging.handlers import SMTPHandler, RotatingFileHandler import os app = Flask(__name__) app.config.from_object(Config) db = SQLAlchemy(app) Migrate = Migrate(app, db) login = LoginManager(app) login.login_view = 'login' from app import routes, models, errors if not app.debug: if app.config['MAIL_SERVER']: auth = None if app.config['MAIL_USERNAME'] or app.config['MAIL_PASSWORD']: auth = (app.config['MAIL_USERNAME']), app.confg['MAIL_PASSWORD'] secure = None if app.config['MAIL_USE_TLS']: secure = () mail_handler = SMTPHandler( mailhost=(app.config['MAIL_SERVER'], app.config['MAIL_PORT']), fromaddr='no-reply@' + app.config['MAIL_SERVER'], toaddrs=app.config['ADMINS'], subject='Microblog Failure', credentials=auth, secure=secure) mail_handler.setLevel(logging.ERROR) app.logger.addHandler(mail_handler) if os.path.exists('.flaskenv'): with open('.flaskenv') as file: line = file.readline().strip() current_directory = line[line.find('=')+1:line.find('/')] + '/' elif os.getenv('FLASK_APP') is not None: current_directory = os.environ['FLASK_APP'].split('/')[0]+'/' else: current_directory = '' if not os.path.exists(current_directory+'logs'): os.mkdir(current_directory+'logs') file_handler = RotatingFileHandler(current_directory+'logs/microblog.log', maxBytes=10240, backupCount=10) file_handler.setFormatter(logging.Formatter( '%(asctime)s %(levelname)s: %(message)s [in %(pathname)%s:%(lineno)d]' )) file_handler.setLevel(logging.INFO) app.logger.addHandler(file_handler) app.logger.setLevel(logging.INFO) app.logger.info('Microblog startup')
[ "najibadan@airmail.cc" ]
najibadan@airmail.cc
0fd1806e5506112797a8cb6495adf054e9cb9c25
9fb6b17f3e07ca1c35d453103954c82d5d17a37d
/http_check/datadog_checks/http_check/__about__.py
61058f8e0152dea5457cd85007db7b668ce2746d
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
acvejic/integrations-core
0fc205b6388e0065f419c22a7af7d68fb68869ea
8ff1157f63acc649f15a169906f4a5f27508fcf7
refs/heads/master
2023-01-04T15:37:48.124433
2020-10-28T13:35:29
2020-10-28T13:35:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) __version__ = "4.11.0"
[ "noreply@github.com" ]
acvejic.noreply@github.com
4b6a0a46e3adc9f8de24088b29069bac7537fcb8
f92fd5ba7ec30729dada169f7684e2edf565c139
/test/case/player/TestPlayImgsDelete.py
260981fb6ac07740c9cabc4022522ba95fdab5f5
[]
no_license
rico-o/autoTest
6ea0c83ab3ef60bf8ee13d00f61995d3357f4c37
6ca03420faf1b0523a567eed11a8212796ee3d35
refs/heads/master
2022-03-30T14:34:55.787787
2020-02-08T11:46:23
2020-02-08T11:46:23
218,439,831
0
0
null
null
null
null
UTF-8
Python
false
false
700
py
from test.pages.PlayerPage import * import unittest from test.common.Common import * class TestPlayerImgs_delete(unittest.TestCase): """运动员图片批量删除""" @classmethod # 类方法 def setUpClass(cls): cls.player = PlayerPage() cls.player.login() cls.player.iframe1() cls.player.base_setting() cls.player.iframe0() @classmethod # 类方法 def tearDownClass(cls): cls.player.quit_driver() def test_player_imgs_delete(self): self.player.player_select() self.player.delete_img() self.player.parentframe() self.player.delete_confirm() if __name__ == '__main__': unittest.main()
[ "53588251+rico-o@users.noreply.github.com" ]
53588251+rico-o@users.noreply.github.com
b0be8f2a55bbc9929898b604c25ab9a0f3e565a7
dff1473735f229f54561bb4c7f390472108c1839
/ActFunctions/softsign.py
135c05f361716f8375da34dfaac129fbb8f172ea
[]
no_license
HenryGJackson/DecisionTree
7d3f8bf669c4a6fe62d0b5255b87da20ad835004
4ca0cb93511bba6b758655b993527d0dd177c6e6
refs/heads/master
2021-01-20T08:43:30.670445
2017-05-08T07:17:10
2017-05-08T07:17:10
90,184,715
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
class softsign: # Soft sign ActFunctions f(x) = x / (1 + |x|) def __init__(self): self.coeff = 1 self.range = [-1, 1] def __str__(self): return "Function: Soft Sign Function" def setParam(self, value): self.coeff = value def evaluate(self, value): if value < 0: return value / (1 - value) else: return value / (1 + value)
[ "jacksonhg95@gmail.com" ]
jacksonhg95@gmail.com
b58f3c6a1b6de08b96f1eb51373d4641c2ab4815
4f0db9e506a11dc75828cf26cfd60e1a5d745d54
/monthcalc.py
3d6769b6275f9e0f3669d3fc57ee37755c672f2c
[]
no_license
keerthankkr/test-upload
832cf878afbafcd78bf0ed9e660c2fd2ab162d34
d771475cd8745c2630461259432baad47ddd137a
refs/heads/master
2023-06-21T18:24:10.231281
2021-07-15T12:25:15
2021-07-15T12:25:15
386,279,732
0
0
null
null
null
null
UTF-8
Python
false
false
670
py
from datetime import date import sys def twelve_month_apart(date1,date2): try: d1 = date.fromisoformat(date1) d2 = date.fromisoformat(date2) except ValueError: print('ERROR: Invalid date or incorrect date format. Provide valid dates in YYYY-MM-DD fomat e.g. 2019-04-30.') sys.exit(-1) if d1 > d2: print('ERROR: Second date should be same or later than first date.') sys.exit(-1) if d2.month == 2 and d2.day == 29: d2 = d2.replace(day=28) d2_prev_year = d2.replace(year=d2.year-1) return True if d2_prev_year >= d1 else False # example #twelve_month_apart('2001-02-28', '2002-02-27')
[ "keerthankumarreddy141998@gmail.com" ]
keerthankumarreddy141998@gmail.com
cfdbc02514bd83216de38f1fa8a6cfdf0d52f7b5
bdbf67a9f144bbc2afc97aef34a7784702cc95e1
/configs/reppoints_v2/reppoints_v2_r101_fpn_giou_mstrain_2x_coco.py
845f5ddd7fe8b188f6a655b0999ddf8f3854010b
[ "MIT" ]
permissive
peterkim0622/RepPointsV2
15e1f5454c1583ab2f224108a23ef2af5c4522c6
36e1e54549061a735831d776781cb64caf6de68a
refs/heads/master
2023-03-21T12:43:31.902169
2020-11-20T17:33:37
2020-11-20T17:33:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
359
py
_base_ = './reppoints_v2_r50_fpn_giou_mstrain_2x_coco.py' model = dict( pretrained='torchvision://resnet101', backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'))
[ "scalsol@163.com" ]
scalsol@163.com
063d2c8f294ea7ce2df64b3c217d7f5d7d860ab8
21615505744aa59e7200d4c34da664706306aa03
/model_training/get_models.py
8f4e4472fc16daf109eb13c19649cdd359172796
[]
no_license
Scintillare/piecesofcode
48e23f3d5445ec9d366aa3e881e47d18ef1ef551
feaabcfb7f9f65cd0e6344eccafa045032eaf8e9
refs/heads/main
2023-04-27T16:04:48.743624
2021-05-19T21:48:00
2021-05-19T21:48:00
351,194,657
0
0
null
null
null
null
UTF-8
Python
false
false
1,316
py
import torch import torch.nn as nn from torchvision import transforms, datasets, models def get_resnet(num_classes): model = models.resnet101(pretrained=True) n_inputs = model.fc.in_features model.fc = nn.Sequential( nn.Linear(n_inputs, 256), nn.ReLU(), nn.Dropout(0.2), nn.Linear(256, num_classes))#, nn.LogSoftmax(dim=1)) # model = nn.Sequential(nn.BatchNorm2d(num_features=3, affine=False), model) return model def get_densenet(num_classes): model_ft = models.densenet121(pretrained=True) num_ftrs = model_ft.classifier.in_features # model_ft.classifier = nn.Sequential(nn.Linear(num_ftrs, num_classes), nn.Softmax(dim=1)) model_ft.classifier = nn.Sequential( nn.Linear(n_inputs, 256), nn.ReLU(), nn.Dropout(0.2), nn.Linear(256, num_classes)) return model def set_parameter_requires_grad(model, feature_extracting): ''' This helper function sets the .requires_grad attribute of the parameters in the model to False when we are feature extracting. By default, when we load a pretrained model all of the parameters have .requires_grad=True, which is fine if we are training from scratch or finetuning. ''' if feature_extracting: for param in model.parameters(): param.requires_grad = False
[ "scintiamon@gmail.com" ]
scintiamon@gmail.com
2e291852953cee8a6272452abcadb5b633bcb264
ba7be445410aa58f8cee5e64a38a4f701d50408b
/sell_npc/actions.py
c7616f88eb017d7169021ed04a11179da3d5155f
[]
no_license
MattyM92/scripts
99214d6108cce5bff707d1acee566438a91b101f
f0bdea3eebe4e83bd3a73a2be5d5456ad8d7ac90
refs/heads/master
2023-01-11T00:04:57.821007
2020-11-07T18:03:30
2020-11-07T18:03:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,560
py
#Load Custom functions from lib import * import global_actions def waypoint_action(client, action): def withdraw_items_to_backpack(backpack, depot): # Returns true if withdraw was successful dest = client.get_container(backpack) if not dest: print('Could not find backpack', backpack, 'to hold items') return False # Open up to last backpack tries = 20 while not dest.is_empty() and tries: tries -= 1 client.use_slot(dest, 0) sleep(0.3) client.use_slot(dest, 1) sleep(0.3) client.hotkey('esc') # Try 3 times to open depot for tries in range(3): client.reach_locker() src = client.open_depot(depot) if src: client.use_slot(src, depot - 1) sleep(1) break else: print('Failed to reach locker') return False # Withdraw items until no backpack slots or no cap withdraw_any = False if client.get_cap() < 800: return False for i in range(10): print('cap:', client.get_cap()) if client.get_cap() < 200: print('Low cap') return withdraw_any dest = client.get_container(backpack) if not dest: print('Could not find backpack', backpack, 'to hold items') return withdraw_any if src.is_empty(): print('Depot is empty') return withdraw_any # Withdraw 19 items to current backpack items = 19 while items > 0: items -= 1 client.take_item_from_slot(src, 0, dest) withdraw_any = True # Go back one backpack client.return_container(dest) print('Withdrawed more than 250 items') return True if action == 'check_sell_edron': if not client.script_options['lailene'] and not client.script_options['alexander'] and not client.script_options['telas']: client.jump_label('end_edron') elif action == 'check_sell_edron_tower': if not client.script_options['lailene'] and not client.script_options['alexander']: client.jump_label('goto_telas') elif action == 'check_sell_rashid': if not client.script_options['rashid']: client.jump_label('skip_sell_rashid') elif action == 'check_sell_green_djinn': if not client.script_options['green_djinn']: client.jump_label('skip_sell_green_djinn') elif action == 'check_sell_flint': if not client.script_options['flint']: client.jump_label('skip_sell_flint') elif action == 'check_sell_lailene': if not client.script_options['lailene']: client.jump_label('skip_sell_lailene') elif action == 'check_sell_alexander': if not client.script_options['alexander']: client.jump_label('skip_sell_alexander') elif action == 'check_sell_telas': if not client.script_options['telas']: client.jump_label('skip_sell_telas') elif action == 'check_sell_tamoril': if not client.script_options['tamoril']: client.jump_label('skip_sell_tamoril') elif action == 'check_sell_esrik': if not client.script_options['esrik']: client.jump_label('skip_sell_esrik') elif action == "travel_darashia": # Only for carpet client.npc_say(['darashia', 'yes']) elif action == "repeat_flint": client.jump_label('start_flint') elif action == "flint": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=5) if not withdraw: client.jump_label('end_flint') elif action == "repeat_djinn": client.jump_label('start_djinn') elif action == "djinn": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=10) if not withdraw: client.jump_label('end_djinn') elif action == "repeat_edron": client.jump_label('start_edron') elif action == "edron": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=6) if not withdraw: client.jump_label('end_edron') elif action == "skip_edron": client.jump_label('skip_edron') elif action == "repeat_farmine": client.jump_label('start_farmine') elif action == "farmine": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=7) if not withdraw: client.jump_label('end_farmine') elif action == "use_elevator": client.use_lever((1,0)) elif action == "repeat_yalahar": client.jump_label('start_yalahar') elif action == "yalahar": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=8) if not withdraw: client.jump_label('end_yalahar') elif action == "check_rashid": if not client.script_options['rashid']: client.jump_label('end_rashid') weekday = datetime.utcnow().weekday() # Adjust date to sever save if 0 < datetime.utcnow().hour + 1 < 10: weekday -= 1 # still before server save weekday %= 7 if weekday == 0: client.jump_label('goto_svargrond_depot') elif weekday == 1: client.jump_label('goto_liberty_bay_depot') elif weekday == 2: client.jump_label('goto_port_hope_depot') elif weekday == 3: client.jump_label('goto_ankrahmun_depot') elif weekday == 4: client.jump_label('goto_darashia_depot') elif weekday == 5: client.jump_label('goto_edron_depot') elif weekday == 6: client.jump_label('goto_carlin_depot') elif action == "end_rashid": client.jump_label('end_rashid') elif action == "repeat_rashid_svargrond": client.jump_label('start_rashid_svargrond') elif action == "rashid_svargrond": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=9) if not withdraw: client.jump_label('end_rashid_svargrond') elif action == "repeat_rashid_carlin": client.jump_label('start_rashid_carlin') elif action == "rashid_carlin": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=9) if not withdraw: client.jump_label('end_rashid_carlin') elif action == "repeat_rashid_liberty_bay": client.jump_label('start_rashid_liberty_bay') elif action == "rashid_liberty_bay": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=9) if not withdraw: client.jump_label('end_rashid_liberty_bay') elif action == "repeat_rashid_port_hope": client.jump_label('start_rashid_port_hope') elif action == "rashid_port_hope": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=9) if not withdraw: client.jump_label('end_rashid_port_hope') elif action == "repeat_rashid_ankrahmun": client.jump_label('start_rashid_ankrahmun') elif action == "rashid_ankrahmun": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=9) if not withdraw: client.jump_label('end_rashid_ankrahmun') elif action == "repeat_rashid_darashia": client.jump_label('start_rashid_darashia') elif action == "rashid_darashia": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=9) if not withdraw: client.jump_label('end_rashid_darashia') elif action == "repeat_rashid_edron": client.jump_label('start_rashid_edron') elif action == "rashid_edron": withdraw = withdraw_items_to_backpack(backpack='Golden Backpack', depot=9) if not withdraw: client.jump_label('end_rashid_edron') elif action == "stash_all": client.reach_locker() stash_item_from_slot(client, client.equips, 'backpack') elif action == "buy_potions": npc_refill(client, mana=True, health=False) elif action == "refill": if not withdraw_item_from_stash(client, 'brown mushroom', 50, client.items['brown mushroom']): print('Not enough mushrooms') if 'ammo_name' in client.hunt_config.keys(): ammo_name = client.hunt_config['ammo_name'] if not withdraw_item_from_stash(client, ammo_name, client.hunt_config['take_ammo'], client.items[ammo_name]): print('Not enough ammo') elif action == "check_ammo": if 'ammo_name' not in client.hunt_config.keys(): client.jump_label('skip_ammo') else: ammo_name = client.hunt_config['ammo_name'] if 'arrow' not in ammo_name and 'bolt' not in ammo_name: client.jump_label('skip_ammo') elif action == "buy_ammo": npc_refill(client, ammo='ammo_name' in client.hunt_config.keys()) elif action == "check_supplies": check_supplies(client, health=False, imbuement=False, ammo='ammo_name' in client.hunt_config.keys(), logout_fail=True) else: global_actions.waypoint_action(client, action)
[ "kaden.lothar@yahoo.com" ]
kaden.lothar@yahoo.com
f9c5eb8dcf7029ff417d9f814c947b5b96afe7e3
57235e5fbd29dc5e0b3f24649e15a48935edd65f
/boa3_test/test_sc/arithmetic_test/AddBoa2TestVoid.py
a258a7f83bf8253d84701620af37b12201d4e5af
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
DanPopa46/neo3-boa
ae75543bdc4e0aeadf45578b6b5e4c45b9253557
e4ef340744b5bd25ade26f847eac50789b97f3e9
refs/heads/development
2023-04-01T19:25:08.216180
2021-04-15T17:45:38
2021-04-15T17:45:38
358,663,228
0
0
Apache-2.0
2021-04-16T16:46:46
2021-04-16T16:46:31
null
UTF-8
Python
false
false
74
py
from boa3.builtin import public @public def main(m: int): c = m + 2
[ "lucas.uezu@simpli.com.br" ]
lucas.uezu@simpli.com.br
c561330fc9fb62e44382bc258536ed2c656fad33
cd3e72282679d00c33fdb8a1500e59e0c735c86b
/qa_data_preprocessing.py
01eb131875dd90b042357de156962af872da7ebd
[]
no_license
amirharati/Trump_tweeter_bot
c4bbbf5b3a954a0b44c44393c9968106ec8fdfa6
23c46116000c4dcb54d900913d63ae0d8f035633
refs/heads/master
2021-04-26T23:49:23.632245
2018-08-23T05:20:43
2018-08-23T05:20:43
123,863,041
0
0
null
2018-03-22T02:04:40
2018-03-05T04:06:30
Python
UTF-8
Python
false
false
1,377
py
# qa_data_preprocessing.py # Amir Harati, Aug 2018 """ data preprocessing for question/answers pairs. """ import sys def main(q_file, a_file, bpe_voc_file, word2id, wordid_questions, wordid_answers): q_data = [line.strip() for line in open(q_file)] a_data = [line.strip() for line in open(a_file)] words = [line.split()[0] for line in open(bpe_voc_file)] #words = list(set(words)) words = ["<PAD>", "<START>", "<EOS>"] + words words_to_ids = {w: id for id, w in enumerate(words)} ids_to_words = {words_to_ids[x]: x for x in words_to_ids} with open(word2id, "w") as wif: for key, val in words_to_ids.items(): wif.write(key + "\t" + str(val) + "\n") with open(wordid_questions, "w") as f: for sen in q_data: ostr = "" for word in sen.split(): #print(word) ostr = ostr + str(words_to_ids[word]) + " " f.write(ostr + "\n") with open(wordid_answers, "w") as f: for sen in a_data: ostr = "" for word in sen.split(): #print(word) ostr = ostr + str(words_to_ids[word]) + " " f.write(ostr + "\n") if __name__ == "__main__": q_file = sys.argv[1] a_file = sys.argv[2] bpe_voc_file = sys.argv[3] word2id = sys.argv[4] wordid_questions = sys.argv[5] wordid_answers = sys.argv[6] main(q_file, a_file, bpe_voc_file, word2id, wordid_questions, wordid_answers)
[ "amir.harati@gmail.com" ]
amir.harati@gmail.com
5d31302c9abdc959a722e47913347d4d059a2d45
bda6ce4cfe2263e97c93f37f554eb05e85adee92
/011-020/013.py
ab9710fd9937cc380ab650ab844d748491b57ab3
[]
no_license
Cybersheralt/Project-Euler-HackerRank
5d59dcc039d01ddfb5a594b560c4ceea3b23ed01
ab19bcc07cf4817798f6418f49c212b2eedcd08e
refs/heads/main
2023-05-27T16:00:51.266750
2021-06-14T06:50:31
2021-06-14T06:50:31
364,251,121
0
0
null
null
null
null
UTF-8
Python
false
false
112
py
n = int(input()) nums = [] for i in range(n): nums.append(int(input())) print(str(sum(nums))[:10])
[ "noreply@github.com" ]
Cybersheralt.noreply@github.com
dcf66511f02b0bd6fa496e59a1438b8b6f10a669
d982053fc7dfc016e541b507de29755320d59e84
/podstanovka_skloneniy.py
8fbb67caaae6f1aec8df27d4742c7ac42d511597
[]
no_license
MikhaeleDem/python_training_cource
cbfbeca8afc4a1f3f145990094ce0d1c916df864
63ada5be4e3ad6cc3ce8f7fa074514f499045dec
refs/heads/master
2023-06-02T18:08:04.036982
2021-06-16T12:54:21
2021-06-16T12:54:21
373,197,923
0
0
null
null
null
null
UTF-8
Python
false
false
1,669
py
"""Проверка правильности окончания в зависимости от числа""" a = int(input()) if a % 10 == 1 and a // 10 != 11 and a // 10 != 1\ and a // 10 != 21 and a // 10 != 31 and a // 10 != 41 and a // 10 != 51 and a // 10 != 61 and a // 10 != 71 and a // 10 != 81 and a // 10 != 91: print(a, 'программист') elif (a % 10) == 2 and a // 10 != 11\ and a // 10 != 21 and a // 10 != 31 and a // 10 != 41 and a // 10 != 51 and a // 10 != 61 and a // 10 != 71 and a // 10 != 81 and a // 10 != 91\ or (a % 10) == 3 and a // 10 != 11\ and a // 10 != 21 and a // 10 != 31 and a // 10 != 41 and a // 10 != 51 and a // 10 != 61 and a // 10 != 71 and a // 10 != 81 and a // 10 != 91\ or (a % 10) == 4 and a // 10 != 11\ and a // 10 != 21 and a // 10 != 31 and a // 10 != 41 and a // 10 != 51 and a // 10 != 61 and a // 10 != 71 and a // 10 != 81 and a // 10 != 91: print(a, 'программиста') elif (a % 10) == 5\ or (a % 10) == 6\ or (a % 10) == 7\ or (a % 10) == 8\ or (a % 10) == 9\ or (a % 10) == 0\ or (a % 10) == 1 and a // 10 == 11 or a // 10 == 1\ or a // 10 == 21 or a // 10 == 31 or a // 10 == 41 or a // 10 == 51 or a // 10 == 61 or a // 10 == 71 or a // 10 == 81 or a // 10 == 91\ or (a % 10) == 2 and a // 10 == 11\ or a // 10 == 21 or a // 10 == 31 or a // 10 == 41 or a // 10 == 51 or a // 10 == 61 or a // 10 == 71 or a // 10 == 81 or a // 10 == 91\ or (a % 10) == 3 and a // 10 == 11\ or (a % 10) == 4 and a // 10 == 11: print(a, 'программистов')
[ "m.dannicov@mail.ru" ]
m.dannicov@mail.ru
30a7caa176be289d1ea59edf66de5b3ea7a4c75c
22e767950423c0ab8efd6a474d38157e799669f2
/main.py
598aaa7542231012b4e2d8600f382d097523c062
[]
no_license
richardphi1618/file-sorter
907196415214fc397944874c2fbf4a3458218773
de2ca1f761ecca72b4adc48f3703eaabd97f603d
refs/heads/main
2023-04-06T11:29:13.928664
2021-04-19T23:38:58
2021-04-19T23:38:58
359,619,299
0
0
null
null
null
null
UTF-8
Python
false
false
883
py
import os import shutil import csv csv_file = input("\nEnter your list: ") #csv_file = "photostofind.csv" src_dir = input("Enter your source folder: ") #src_dir = "ada" full_path = os.path.realpath(__file__) home = os.path.dirname(full_path) #print(home) from_folder = home + "\\" + src_dir to_folder = home + "\\found" print("\nSearching Directory: " + from_folder) print("Destination Directory: " + to_folder + "\n") if not os.path.exists('found'): os.makedirs('found') with open(csv_file, newline='') as f: reader = csv.reader(f) ini_list = list(reader) files_to_find = sum(ini_list, []) for (dirpath, dirnames, filenames) in os.walk(src_dir): for fname in filenames: if fname in files_to_find: print (fname) file_in_motion = os.path.join(dirpath, fname) shutil.copy(file_in_motion, to_folder)
[ "richardphi1618@gmail.com" ]
richardphi1618@gmail.com
e981ad2971bf95bb5ad26fb4b7a1eb93a1732c2b
73f6ba42a793d18ad5b4c44cfdc278e51aa1b9b0
/perum/views.py
e8828e9cea66ce406f19303c074bfd490595440b
[]
no_license
akbarlintang/perumahan
e14eb922a86c76581d8faae5700ff21e83ba13ee
66c908a382bc32e9b9abc69b3a6f22eab12d8d2c
refs/heads/main
2022-12-30T08:11:23.856824
2020-10-22T15:33:30
2020-10-22T15:33:30
306,377,878
0
0
null
null
null
null
UTF-8
Python
false
false
7,587
py
from django.shortcuts import render, redirect from django.http import HttpResponse from django.db.models import Sum from django.forms import inlineformset_factory from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.contrib.auth.models import Group from django.contrib import messages from .models import * from .forms import * from .filters import * from .decorators import * import datetime # Create your views here. @unauthenticated_user def loginPage(request): if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') user = authenticate(request, username=username, password=password) if user is not None: login(request, user) return redirect('home') else: messages.info(request, 'Username atau Password salah!') context = {} return render(request, 'perum/login.html', context) def logoutUser(request): logout(request) return redirect('login') @unauthenticated_user def registerPage(request): form = CreateUserForm() if request.method == 'POST': form = CreateUserForm(request.POST) if form.is_valid(): user = form.save() username = form.cleaned_data.get('username') group = Group.objects.get(name='customer') user.groups.add(group) Pelanggan.objects.create( user=user, ) messages.success(request, 'Akun berhasil dibuat untuk ' + username) return redirect('login') context = {'form':form} return render(request, 'perum/register.html', context) @login_required(login_url='login') @admin_only def home(request): pelanggans = Pelanggan.objects.all() administrasis = Administrasi.objects.all() today = datetime.date.today() bulan = Administrasi.objects.filter(tanggal__year=today.year, tanggal__month=today.month).aggregate(Sum('biaya_angsur'))['biaya_angsur__sum'] tahun = Administrasi.objects.filter(tanggal__year=today.year).aggregate(Sum('biaya_angsur'))['biaya_angsur__sum'] context = {'pelanggans':pelanggans, 'bulan':bulan, 'tahun':tahun, 'administrasis':administrasis} return render(request, 'perum/dashboard.html', context) @login_required(login_url='login') def unit(request): units = Unit.objects.all().order_by('no_unit') unitFilter = UnitFilter(request.GET, queryset=units) units = unitFilter.qs context = {'units':units, 'unitFilter':unitFilter} return render(request, 'perum/unit.html', context) @login_required(login_url='login') @allowed_users(allowed_roles=['admin']) def pelanggan(request): pelanggans = Pelanggan.objects.all() pelangganFilter = PelangganFilter(request.GET, queryset=pelanggans) pelanggans = pelangganFilter.qs context = {'pelanggans':pelanggans, 'pelangganFilter':pelangganFilter} return render(request, 'perum/pelanggan.html', context) @login_required(login_url='login') @allowed_users(allowed_roles=['admin']) def administrasi(request): administrasis = Administrasi.objects.all() administrasiFilter = AdministrasiFilter(request.GET, queryset=administrasis) administrasis = administrasiFilter.qs context = {'administrasis':administrasis, 'administrasiFilter':administrasiFilter} return render(request, 'perum/administrasi.html', context) def pemesanan(request): pemesanan = Booking.objects.all().order_by('tanggal') context = {'pemesanan':pemesanan} return render(request, 'perum/pemesanan.html', context) def akun(request, pk): akun = Pelanggan.objects.get(id=pk) pelanggans = Pelanggan.objects.filter(id=pk) adm = Administrasi.objects.filter(nama_id=pk) context = {'pelanggans':pelanggans, 'akun':akun, 'adm':adm} return render(request, 'perum/akun.html', context) @login_required(login_url='login') @allowed_users(allowed_roles=['customer']) def profil(request): nama = request.user.profile.nama no_telp = request.user.profile.no_telp email = request.user.profile.email no_unit = request.user.profile.no_unit context = {'nama':nama, 'no_telp':no_telp, 'email':email, 'no_unit':no_unit} return render(request, 'perum/profil.html', context) @login_required(login_url='login') def angsuran(request, pk): adm = Administrasi.objects.filter(nama_id=pk) context = {'adm':adm} return render(request, 'perum/angsuran.html', context) def infoUnit(request, pk): unit = Unit.objects.filter(id=pk) context = {'unit':unit} return render(request, 'perum/info_unit.html', context) def createBooking(request, pk): unit = Booking.objects.filter(id=pk) form = BookingForm() if request.method == 'POST': form = BookingForm(request.POST) if form.is_valid(): form.save() return redirect('/unit') context = {'form':form, 'unit':unit} return render(request, 'perum/form_booking.html', context) def createPelanggan(request): form = PelangganForm() if request.method == 'POST': form = PelangganForm(request.POST) if form.is_valid(): form.save() return redirect('home') context = {'form':form} return render(request, 'perum/form_pelanggan.html', context) def ubahPelanggan(request, pk): pelanggan = Pelanggan.objects.get(id=pk) form = PelangganForm(instance=pelanggan) if request.method == 'POST': form = PelangganForm(request.POST, instance=pelanggan) if form.is_valid(): form.save() return redirect('home') context = {'form':form} return render(request, 'perum/form_pelanggan.html', context) def hapusPelanggan(request, pk): pelanggan = Pelanggan.objects.get(id=pk) if request.method == "POST": pelanggan.delete() return redirect('pelanggan') context = {'pelanggan':pelanggan} return render(request, 'perum/hapus_pelanggan.html', context) def createUnit(request): form = UnitForm() if request.method == 'POST': form = UnitForm(request.POST) if form.is_valid(): form.save() return redirect('/unit') context = {'form':form} return render(request, 'perum/form_unit.html', context) def ubahUnit(request, pk): unit = Unit.objects.get(id=pk) form = UnitForm(instance=unit) if request.method == 'POST': form = UnitForm(request.POST, instance=unit) if form.is_valid(): form.save() return redirect('/unit') context = {'form':form} return render(request, 'perum/form_unit.html', context) def hapusUnit(request, pk): unit = Unit.objects.get(id=pk) if request.method == "POST": unit.delete() return redirect('/unit') context = {'unit':unit} return render(request, 'perum/hapus_unit.html', context) def hapusPemesanan(request, pk): pemesanan = Booking.objects.get(id=pk) if request.method == "POST": pemesanan.delete() return redirect('/pemesanan') context = {'pemesanan':pemesanan} return render(request, 'perum/hapus_pemesanan.html', context) def createAdministrasi(request): form = AdministrasiForm() if request.method == 'POST': form = AdministrasiForm(request.POST) if form.is_valid(): form.save() return redirect('/administrasi') context = {'form':form} return render(request, 'perum/form_administrasi.html', context) def pembayaran(request, pk): administrasis = Administrasi.objects.filter(id=pk) context = {'administrasis':administrasis} return render(request, 'perum/pembayaran.html', context) def pemasukan(request): today = datetime.datetime.today() bulan = Administrasi.objects.filter(tanggal__year=today.year).filter(tanggal__month=today.month).aggregate(Sum('biaya_angsur')) tahun = Administrasi.objects.filter(tanggal__year=today.year).aggregate(Sum('biaya_angsur')) hari = Administrasi.objects.filter(tanggal__year=today, tanggal__month=today, tanggal__date=today).aggregate(Sum('biaya_angsur'))
[ "lintangajiakbar@gmail.com" ]
lintangajiakbar@gmail.com
199c48d52a688d764373e6cc606a68fcb43fd61e
37afd293bc9ded594d4d0864dbd82bcfabf1b2a6
/FGSM_v16.py
484ca7338259d03b3f7c3188669421338a6ad746
[]
no_license
AndroidDevelopersTools/SAI-FGSM
670257fb5412a95475fb348f6ff2aa9615c4ff1b
f5a3e9f51d7d860af5acbd9f474e6866f6574a35
refs/heads/main
2023-06-10T14:18:50.370169
2021-07-05T13:09:52
2021-07-05T13:09:52
327,304,640
0
0
null
null
null
null
UTF-8
Python
false
false
10,884
py
import tensorflow as tf import matplotlib as mpl import matplotlib.pyplot as plt import math import numpy as np import os from tensorflow.keras.preprocessing.image import load_img, img_to_array import gc import threading # mpl.rcParams['figure.figsize'] = (8, 8) # mpl.rcParams['axes.grid'] = False gpus = tf.config.experimental.list_physical_devices(device_type='GPU') tf.config.experimental.set_memory_growth(gpus[0], enable=True) def load_label(url): find_label = {} file = open(url, 'r', encoding='UTF-8') for line in file: key, value = line.split(' ') find_label[key] = value.replace('\n', '') file.close() return find_label def load_ng_data(url, link): X_train = [] y_train = [] find_label = load_label(link) imgs_dirs = url for imgs_dir in imgs_dirs: imagePaths = list(os.listdir(imgs_dir)) for imagePath in imagePaths: x = img_to_array(load_img(os.path.join(imgs_dir, imagePath), target_size=(224, 224))) X_train.append(x / 255.0) y_train.append(find_label[imagePath]) return tf.convert_to_tensor(np.array(X_train)), y_train Decode_model = tf.keras.applications def from_probability_get_label(model, image): image_probs = model.predict(image) # print('--------------') # print(np.argmax(image_probs)) return Decode_model.densenet.decode_predictions(image_probs, top=1)[0][0], np.argmax(image_probs) # return Decode_model.nasnet.decode_predictions(image_probs, top=1)[0][0], np.argmax(image_probs) # return Decode_model.mobilenet.decode_predictions(image_probs, top=1)[0][0], np.argmax(image_probs) loss_temp = tf.keras.losses.CategoricalCrossentropy() def create_adversarial_sample_iterative(model, input_image, input_label, eplison, times): if eplison != 0: alpha = eplison / times for i in range(times): with tf.GradientTape() as tape: tape.watch(input_image) prediction = model(input_image) loss = loss_temp(input_label, prediction) gradient = tape.gradient(loss, input_image) if tf.norm(gradient, ord=2) != 0: # input_image = alpha * (0.5 * (tf.sign(gradient) + 1)) + input_image input_image = alpha * tf.tanh(gradient) + input_image else: break return input_image else: return input_image def create_adversarial_sample_MI(model, input_image, input_label, eplison, times): if eplison != 0: alpha = eplison / times g = 0 for i in range(times): with tf.GradientTape() as tape: tape.watch(input_image) prediction = model(input_image) loss = loss_temp(input_label, prediction) gradient = tape.gradient(loss, input_image) g = g + gradient # input_image = input_image + alpha * (0.5 * (tf.sign(g) + 1)) input_image = alpha * tf.tanh(g) + input_image return input_image else: return input_image def create_adversarial_sample(model, input_image, input_label, epsilon, times): if epsilon != 0: T = 9 Tmin = 0.5 t = 0 alpha = epsilon / times g = 0 below = input_image - epsilon above = input_image + epsilon while T >= Tmin: for i in range(times): with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(input_image) prediction = model(input_image) loss = loss_temp(input_label, prediction) gradient = tape.gradient(loss, input_image) g = g + gradient if tf.norm(gradient, ord=2).numpy() != 0: # input_image = input_image + alpha * (0.5 * (tf.sign(g) + 1)) input_image = alpha * tf.tanh(g) + input_image else: p = math.exp(-(1 / T)) r = np.random.uniform(low=0, high=1) if r < p: print('random') if tf.norm(g, ord=2).numpy() != 0: input_image = input_image - 2 * alpha * (g / tf.norm(g, ord=2)) else: break else: if tf.norm(g, ord=2).numpy() != 0: # input_image = input_image + alpha * (0.5 * (tf.sign(g) + 1)) input_image = alpha * tf.tanh(g) + input_image else: break t = t + 2 T = 9 / (1 + t) if T >= Tmin: input_image = tf.clip_by_value(input_image, below, above) return input_image else: return input_image def pre_process_label(index, label_shape): return tf.reshape(tf.one_hot(index, label_shape), (1, label_shape)) def display_images(image, description): (class_name, label, confidence), class_number = from_probability_get_label(Decode_model.densenet.DenseNet121(include_top=True, weights='imagenet'), image) # (class_name, label, confidence), class_number = from_probability_get_label(Decode_model.nasnet.NASNetMobile(include_top=True, weights='imagenet'), image) # (class_name, label, confidence), class_number = from_probability_get_label(Decode_model.mobilenet.MobileNet(include_top=True, weights='imagenet'), image) plt.figure() plt.imshow(image[0]) plt.title('{} \n {} : {:.2f}% Confidence'.format(description, label, confidence * 100)) plt.show() return class_number class myThread(threading.Thread): def __init__(self, threadID, name, model, input_image, input_label, epsilon, times, q): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.model = model self.input_image = input_image self.input_label = input_label self.epsilon = epsilon self.times = times self.q = q def run(self): adv_x_iterative = create_adversarial_sample_iterative(self.model, self.input_image, self.input_label, self.epsilon, self.times) self.q[self.name] = adv_x_iterative class myThread_1(threading.Thread): def __init__(self, threadID, name, model, input_image, input_label, epsilon, times, q): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.model = model self.input_image = input_image self.input_label = input_label self.epsilon = epsilon self.times = times self.q = q def run(self): adv_x_iterative = create_adversarial_sample_MI(self.model, self.input_image, self.input_label, self.epsilon, self.times) self.q[self.name] = adv_x_iterative class myThread_2(threading.Thread): def __init__(self, threadID, name, model, input_image, input_label, epsilon, times, q): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.model = model self.input_image = input_image self.input_label = input_label self.epsilon = epsilon self.times = times self.q = q def run(self): adv_x_iterative = create_adversarial_sample(self.model, self.input_image, self.input_label, self.epsilon, self.times) self.q[self.name] = adv_x_iterative image, label = load_ng_data([r'C:\Users\Administrator\Desktop\dataset\images'], r'C:\Users\Administrator\Desktop\dataset\labels') # pretrained_model = tf.keras.applications.densenet.DenseNet121(include_top=True, weights='imagenet') pretrained_model = tf.keras.applications.densenet.DenseNet121(include_top=True, weights='imagenet') pretrained_model.trainable = False epsilons = [0.03] descriptions = [('Epsilon = {:0.3f}'.format(eps) if eps else 'Input') for eps in epsilons] I_times_total = [] MI_times_total = [] SAI_times_total = [] for iterative_times in range(2, 3): I_times = 0 MI_times = 0 SAI_times = 0 for j in range(160, 233): current_img = image[j] current_label = pre_process_label(int(label[j]), 1000) current_img = current_img[None, ...] q = {} # plt.figure() # plt.imshow(image[j]) # plt.show() for i, eps in enumerate(epsilons): """ p1 = myThread(1, "Thread-iterative", pretrained_model, current_img, current_label, eps, iterative_times + 1, q) p1.start() p1.join() adv_x_iterative = q['Thread-iterative'] adv_x_iterative = tf.clip_by_value(adv_x_iterative, 0, 1) if int(display_images(adv_x_iterative, descriptions[i])) != int(label[j]): # print(display_images(adv_x_iterative, descriptions[i])) # print(label[j]) I_times = I_times + 1 del adv_x_iterative # del current_img # del current_label gc.collect() """ """ p2 = myThread_1(2, "Thread-MI", pretrained_model, current_img, current_label, eps, iterative_times + 1, q) p2.start() p2.join() adv_x_MI = q['Thread-MI'] adv_x_MI = tf.clip_by_value(adv_x_MI, 0, 1) if int(display_images(adv_x_MI, descriptions[i])) != int(label[j]): MI_times = MI_times + 1 # print(display_images(adv_x_MI, descriptions[i])) # print(int(label[j])) del adv_x_MI gc.collect() """ p3 = myThread_2(3, "Thread-SAI", pretrained_model, current_img, current_label, eps, iterative_times + 1, q) p3.start() p3.join() adv_x = q['Thread-SAI'] adv_x = tf.clip_by_value(adv_x, 0, 1) if int(display_images(adv_x, descriptions[i])) != int(label[j]): SAI_times = SAI_times + 1 del adv_x gc.collect() # print('===========') # I_times_total.append(I_times) # print(I_times) # MI_times_total.append(MI_times) # print(MI_times) SAI_times_total.append(SAI_times) print(SAI_times)
[ "noreply@github.com" ]
AndroidDevelopersTools.noreply@github.com
f197a1991b3cedfa9127889007e6604fa8b13673
3f6016a16b58be6ddfa001500bb1580151b8ede1
/12306/Main.py
87c0d2757682da98a08fc2a1d84106765f281f21
[]
no_license
stayli117/PyProjects
d48ffed5dd94b8d80c6cfa539bcc155281e08916
0814a3b2551a0500be90dff4e73cd624f0134333
refs/heads/master
2020-03-28T10:15:28.512525
2018-09-10T03:40:15
2018-09-10T03:40:15
148,095,043
0
0
null
null
null
null
UTF-8
Python
false
false
1,042
py
# coding: utf-8 # -*- coding: UTF-8 -* """Train tickets query via command-line. Usage: tickets [-gdtkz] <from> <to> <date> [--n=1] Options: -h,--help 显示帮助菜单 -g 高铁 -d 动车 -t 特快 -k 快速 -z 直达 --n=<kn> 连续查询天数[default:1] Example: tickets 南京 北京 2016-07-01 tickets -dg 南京 北京 2016-07-01 -n=2 """ from docopt import docopt from ProApi import * from Resources import info def cli(): """command-line interface""" arguments = {'<from>':'xian','<to>':'ganzhou', '<date>':'2018-04-17', '--n':5} # print(arguments) operate(arguments) if __name__ == "__main__":#main方法 # Menu() # isContionue = 'Y' # while isContionue == 'Y' or isContionue == 'y': # counts = input('输入查询天数:\n') # operate(int(counts)) # isContionue = input('是否继续查询?Y/N\n') # input('按任意键退出...') cli()
[ "stayli117@163.com" ]
stayli117@163.com
da8a60005ee0d90d5161d29d43ab645a9a723b5a
aecf6829c070b8ea6365c1cc783aff91094e8048
/9_web_server/server.py
15f6509d366ac97c16c6789a3589fc0f34e319c6
[]
no_license
KolchinaAsya/UNIX
7cc8eef2c0ed0e26e4e744013f8ee4fe417933a6
027e59a1911adb506aafc58db338ec1beb0b2c4a
refs/heads/main
2023-05-21T21:58:32.822009
2021-06-09T12:39:19
2021-06-09T12:39:19
355,810,856
0
0
null
null
null
null
UTF-8
Python
false
false
2,772
py
import logging import socket import configparser import threading import time def get_new_response(conn,MAX,DIRECTORY): """ Функция реализует GET-запрос от клиента и передает данные разного типа """ while True: logging.info("CONNECTION WITH "+str(conn)) data = conn.recv(MAX) try: msg = data.decode().split()[1][1:] except: msg = "" if not msg: msg = 'index.html' if msg[-1] == '?': msg = msg[:-1] try: exp = msg.split('.')[1] except: exp = '' content = {"css":"text/css","min": "text/css","html":"text/html","png":"image/png", "jpeg": "image/jpeg","js": "text/javascript","jpg": "image/jpeg","txt": "text/plain", "json":"text/json","ico":"image/x-icon"} content_type = "" message = "" response = "HTTP/1.1 " length = 0 try: content_type = content[exp] try: logging.info(f'{msg} - {addr[0]} - 200 OK') file = open(DIRECTORY + msg, "rb") message = file.read() length = len(message) file.close() response += "200 OK\r\n" except FileNotFoundError: response+='404 NOT FOUND\r\n' logging.info(f'{msg} - {addr[0]} - 404 NOT FOUND') except Exception: logging.info(f'{msg} - {addr[0]} - 403 FORBIDDEN') response += '403 FORBIDDEN\r\n' response+= f"Content-Type:{content_type}\r\n" response+=f"Date: {time.ctime()}\r\n" response+="Server: Server v0.0.1\r\n" response+=f"Content-Length: {length}\r\n" response+="Connection: close\r\n" response += "\r\n" if message: msg = response.encode() + message conn.send(msg) else: msg = response.encode() conn.send(msg) logging.info(f'SENT RESPONSE {response}') conn.close() return #================================================ logging.basicConfig(filename='server.log', level=logging.INFO, format='%(asctime)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S') config = configparser.ConfigParser() config.read('config.ini') HOST = config["Settings"]["HOST"] PORT = int(config["Settings"]["PORT"]) DIRECTORY = config["Settings"]["DIRECTORY"] MAX = int(config["Settings"]["MAX"]) sock = socket.socket() try: sock.bind((HOST,PORT)) print("SERVER IS STARTING ON " + str(PORT)) logging.info("SERVER IS STARTING ON " + str(PORT)) except: sock.bind(("localhost",8080)) print("SERVER IS STARTING ON 8080") logging.info("SERVER IS STARTING ON 8080") sock.listen() #================================================ while True: conn, addr = sock.accept() t1 = threading.Thread(target=get_new_response, args=[conn, MAX,DIRECTORY]) t1.start()
[ "kolchina.asya@list.ru" ]
kolchina.asya@list.ru
a5ecdd7ea2524f019fae09e68c82b2da283f1301
04b6fe7ad42a7872e024317f9e490483da1186b7
/TestCase/test_03_set_category.py
2f68f7f64ab64364500b4570f131ac5494080a85
[]
no_license
QUPSBD/Appium_Python
896ed2fb3f7e6b5ba6e3e371de623b0a030a1428
d47b324d381ec4f66245434fcdef64a8f31d77c2
refs/heads/master
2023-05-09T01:18:43.121771
2021-06-03T17:13:10
2021-06-03T17:13:10
373,581,592
0
1
null
null
null
null
UTF-8
Python
false
false
270
py
from Pages.home_page import HomePage from TestCase.base_test import BaseTest class TestSetCategory(BaseTest): def test_intro(self): homepage = HomePage(self.driver) homepage.test_set_category() # python3 -m unittest TestCase.test_03_set_category
[ "sh.qups@gmail.com" ]
sh.qups@gmail.com
b29f38581517653bee0d5d847bf5be11288f212e
b44fee80dd22adad1d8ec3e166789579ec7579c7
/plot_params.py
1e272d4202d96fca783370a7213fd9b9d6394d78
[]
no_license
kimds91/growplot
e8f8c504bd955a06f230bdf336f259ad854b5d77
ce92bf8f755d2f7710f687b2909758d88ebdfeb4
refs/heads/master
2021-06-26T09:36:28.592821
2020-11-23T00:17:05
2020-11-23T00:17:05
141,829,890
0
0
null
null
null
null
UTF-8
Python
false
false
5,872
py
from scipy.optimize import curve_fit from math import log from scipy import stats import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.patches import Ellipse, Rectangle plt.rcParams['svg.fonttype'] = 'none' import seaborn as sns import pandas as pd import sys import argparse #font = {'family' : 'normal', # 'weight' : 'bold', # 'size' : 24} #matplotlib.rc('font', **font) plt.style.use('seaborn-talk') def process_excel(filename, specified_series): df_kinetic_total = pd.read_excel(filename, sheet_name = 'Data') def get_hrs(time_str): h, m, s = time_str.split(':') return ((int(h) * 3600 + int(m) * 60 + int(s))/3600) def get_minutes(time_str): h,m,s = time_str.split(':') return (float(h)*60 + float(m) + float(s)/60) hrs_list = [] min_list = [] for time in df_kinetic_total['Time']: hrs_list.append(get_hrs(str(time))) min_list.append(get_minutes(str(time))) df_kinetic_total['hrs'] = hrs_list df_kinetic_total['mins'] = min_list df_samples = pd.read_excel(filename, sheet_name = 'Layout') series_names = list(df_samples['Sample']) df_samples.set_index('Sample', inplace=True) samples = [] for series in series_names: samples.append(filter(lambda it: it != '', map(lambda it: it.strip(), df_samples.loc[series].tolist()[0].split(',')))) df_dict = {} for sample, series in zip(samples, series_names): if specified_series is None or (len(specified_series) > 0 and series in specified_series): df_dict[series] = df_kinetic_total.loc[:,sample].astype(float) return df_dict, df_kinetic_total #data_dfs = [] #for sample_df, series in zip(dfs, series_names): # df = pd.DataFrame() # #df['avg'] = sample_df.mean(axis=1) # df['avg'] = sample_df#.mean(axis=1) # #df['std'] = sample_df.std(axis=1) # df['Hours'] = df_kinetic_total['hrs'] # df['sample'] = series # data_dfs.append(df) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Break down an Excel file into collections of data series for later plotting in R") parser.add_argument('filename', type=str, nargs=1, help="The Excel file to be processed") parser.add_argument('--series', type=str, nargs='+', help="The series from the Excel file, as named in the Layout tab, to be plotted") args = parser.parse_args() df_dict, t = process_excel(filename=args.filename[0], specified_series=args.series) def f(x, L, k, x0): return L/(1+np.exp(-k*(x-x0))) final_proto_df = [] for k,df in df_dict.items(): npdf = np.array(df) ydata = npdf[:,0] xdata = t['hrs'] for i in range(1,npdf.shape[1]): ydata = np.concatenate((ydata, npdf[:,i])) xdata = np.concatenate((xdata, t['hrs'])) #ydata = np.concatenate((ydata, npdf[:,2])) #ydata = np.concatenate((ydata, npdf[:,3])) #ydata = np.concatenate((ydata, npdf[:,4])) #ydata = np.concatenate((ydata, npdf[:,5])) def av(l): return sum(l)/len(l) yav = np.array([av([npdf[i,k] for k in range(npdf.shape[1])]) for i in range(len(npdf))]) #['avg'] #print(xdata) #print(ydata) params, pcov = curve_fit(f, xdata, ydata) if '_' in k: final_proto_df.append({'tag': k, 'seq': k.split('_')[0], 'cond': k.split('_')[1], 'odmax': params[0], 'midpt': params[2], 'maxslope': (params[0]*params[1])/4, 'doubling': np.log(2)/params[1], 'cov': pcov }) else: final_proto_df.append({'tag': k, 'seq': k, 'cond': 'n/a', 'odmax': params[0], 'midpt': params[2], 'maxslope': (params[0]*params[1])/4, 'doubling': np.log(2)/params[1], 'cov': pcov }) #print(k, params, pcov) stdevs = np.sqrt(np.diag(pcov)) print(k) for name, param, stdev in zip(["Max", "K-param", "Midpoint"], params, stdevs): print("{}: {} +/- {}".format(name, param, stdev)) # lag_time = (mx0 - y0) / m = x0 - y0/m # Assuming covariances are close enough to zero. half_max = params[0]/2 half_max_sd = stdevs[0]/2 max_slope = (params[0]*params[1])/4 max_slope_sd = ( (stdevs[0]**2 * stdevs[1]**2 + stdevs[0]**2 * params[0]**2 + stdevs[1]**2 * params[1]**2 )**0.5 ) / 4 half_max_over_max_slope = half_max / max_slope # minimal consideration of covariance would append -2cov(x,y)/xy to the second term half_max_over_max_slope_sd = ( half_max**2 / max_slope**2 * ( half_max_sd**2 / half_max**2 + max_slope_sd**2/max_slope**2 ) )**0.5 lag_time = params[2] - half_max_over_max_slope # minimal consideration of covariance would subtract -2cov(x,y) inside the sqrt lag_time_sd = ( stdevs[2]**2 + half_max_over_max_slope_sd**2 ) ** 0.5 print("Max slope: {} +/- {}".format(max_slope, max_slope_sd)) print("Lag time: {} +/- {}".format(lag_time, lag_time_sd)) finaldf = pd.DataFrame.from_dict(final_proto_df) plt.clf() sns.lmplot(x='odmax', y='midpt',data=finaldf, fit_reg=False, hue='seq', legend='True') plt.savefig('plot_odmax_v_midpt_byseq.svg') plt.clf() sns.lmplot(x='odmax', y='doubling',data=finaldf, fit_reg=False, hue='seq', legend='True') plt.savefig('plot_odmax_v_doubling_byseq.svg') #plt.scatter(odmax_CS, midpt_CS, c='b') #plt.scatter(odmax_C, midpt_C, c='g') plt.clf() sns.lmplot(x='odmax', y='midpt',data=finaldf, fit_reg=False, hue='cond', legend='True') plt.savefig('plot_odmax_v_midpt_bycond.svg') plt.clf() sns.lmplot(x='odmax', y='doubling',data=finaldf, fit_reg=False, hue='cond', legend='True') plt.savefig('plot_odmax_v_doubling_bycond.svg')
[ "andy.watkins2@gmail.com" ]
andy.watkins2@gmail.com
d46cce93334a04c9ef82afc0f189bf9671eeb38e
dcdf8a7edb8a765707459a540997750402f65bea
/test/functional/p2p_pos_fakestake.py
e0b805152981bf94db4ca0fec1fdedf73bfd28b4
[ "MIT" ]
permissive
ifinmakassar/BitalGO
a313fa0e2015cc02fa3dc8d63d8d3a692dd8b019
f8f5e126a7c808f72ff85b32e28c09a45fe684ca
refs/heads/master
2022-04-06T12:33:49.209408
2020-03-16T06:15:12
2020-03-16T06:15:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,288
py
#!/usr/bin/env python3 # Copyright (c) 2019 The BitalGo Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Covers the scenario of a PoS block where the coinstake input prevout is already spent. ''' from time import sleep from fake_stake.base_test import ALG_FakeStakeTest class PoSFakeStake(ALG_FakeStakeTest): def run_test(self): self.description = "Covers the scenario of a PoS block where the coinstake input prevout is already spent." self.init_test() INITAL_MINED_BLOCKS = 150 # First mined blocks (rewards collected to spend) MORE_MINED_BLOCKS = 100 # Blocks mined after spending STAKE_AMPL_ROUNDS = 2 # Rounds of stake amplification self.NUM_BLOCKS = 3 # Number of spammed blocks # 1) Starting mining blocks self.log.info("Mining %d blocks.." % INITAL_MINED_BLOCKS) self.node.generate(INITAL_MINED_BLOCKS) # 2) Collect the possible prevouts self.log.info("Collecting all unspent coins which we generated from mining...") # 3) Create 10 addresses - Do the stake amplification self.log.info("Performing the stake amplification (%d rounds)..." % STAKE_AMPL_ROUNDS) utxo_list = self.node.listunspent() address_list = [] for i in range(10): address_list.append(self.node.getnewaddress()) utxo_list = self.stake_amplification(utxo_list, STAKE_AMPL_ROUNDS, address_list) self.log.info("Done. Utxo list has %d elements." % len(utxo_list)) sleep(2) # 4) Start mining again so that spent prevouts get confirmted in a block. self.log.info("Mining %d more blocks..." % MORE_MINED_BLOCKS) self.node.generate(MORE_MINED_BLOCKS) sleep(2) # 5) Create "Fake Stake" blocks and send them self.log.info("Creating Fake stake blocks") err_msgs = self.test_spam("Main", utxo_list) if not len(err_msgs) == 0: self.log.error("result: " + " | ".join(err_msgs)) raise AssertionError("TEST FAILED") self.log.info("%s PASSED" % self.__class__.__name__) if __name__ == '__main__': PoSFakeStake().main()
[ "kyzer@traebit.ca" ]
kyzer@traebit.ca
93f4bd22d4f2bd236632acc4fe534cb04a3954bb
66fbb969c8844f6a0db7cf8939c3412516bf54ca
/min_stack.py
f010c0465b1a9022ba8d0b7065f5b842d1107edf
[]
no_license
chunweiliu/leetcode2
67a86d5a0d8c3ffe41f53a46b0e5960edc64c56d
086b7c9b3651a0e70c5794f6c264eb975cc90363
refs/heads/master
2021-01-19T08:13:12.667448
2017-04-08T06:02:35
2017-04-08T06:02:35
87,612,004
4
0
null
null
null
null
UTF-8
Python
false
false
1,100
py
"""Design a stack that can get the min value Time: O(1) for all operations Space: O(n) """ class MinStack(object): def __init__(self): """ initialize your data structure here. """ self.stack = [] def push(self, x): """ :type x: int :rtype: void """ if not self.stack: self.stack.append({'value': x, 'min_below': x}) else: self.stack.append({'value': x, 'min_below': min(x, self.getMin())}) def pop(self): """ :rtype: void """ if self.stack: self.stack.pop() def top(self): """ :rtype: int """ if self.stack: return self.stack[-1]['value'] return None def getMin(self): """ :rtype: int """ if self.stack: return self.stack[-1]['min_below'] return None # Your MinStack object will be instantiated and called as such: # obj = MinStack() # obj.push(x) # obj.pop() # param_3 = obj.top() # param_4 = obj.getMin()
[ "gtoniliu@gmail.com" ]
gtoniliu@gmail.com
cc2adeccf0056d1ea67abfdf21ae86dbf06d38d3
16427e5c6ee8d1baab1696f2eb8635dda7460147
/ass/time.py
6fb5292b8a9acf313ae2da1cbd7bdcbb2b18ed07
[]
no_license
threemay/python3_study
21ab425825e064a12bcde739415865d37356b3d0
3a563ccf7ec48fc6c3dda76d4c05382a215bed4f
refs/heads/master
2022-02-02T21:19:47.349976
2019-07-20T05:38:05
2019-07-20T05:38:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
import time print(time.localtime()) #while True: # time.sleep(1) # print(time.strftime('%H:%M:%S',time.localtime())) Hour = int(input("pls input h: ")) Minute = int(input("pls input m: ")) Second = int(input("pls input second: ")) while True: time.sleep(1) t = time.localtime() print(t[3],t[4],t[5]) if t[3] == Hour and t[4] == Minute and t[5] == Second: print("time **************") #if t[3] ==
[ "254363807@qq.com" ]
254363807@qq.com
2c3bfbc6432bf9d34345b24b769176cb31759ffc
7308f089e45b71497d1f79d90a9502282bb30f7c
/TestEngines/mysql.py
7edb4ed88589715eadb9f2d1eb0bd14cce41ac5c
[]
no_license
braveswang/v2test
804c7e86fa787040cea00ff895e171152bd7c242
e1543e4dfe61f90bad7d3bfac8bd133f3563e3d4
refs/heads/master
2023-05-13T11:20:22.625318
2018-07-18T09:32:37
2018-07-18T09:32:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,721
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import pymysql.cursors from TestEngines.config import * class Test: def __init__(self): self.connection = pymysql.connect( host=CONFIG.get('MYSQL', 'HOST'), port=int(CONFIG.get('MYSQL', 'PORT')), user=CONFIG.get('MYSQL', 'USERNAME'), password=CONFIG.get('MYSQL', 'PASSWORD'), db=CONFIG.get('MYSQL', 'DATABASE'), charset=CONFIG.get('MYSQL', 'CHARSET'), cursorclass=pymysql.cursors.DictCursor ) def action(self, action_value, action, *action_sub): with self.connection.cursor() as cursor: if not action_value: raise ValueError('This action need a value.') cursor.execute(action_value) if action == 'commit': return self.connection.commit() elif action == 'fetchall': return cursor.fetchall() elif action == 'fetchmany': if action_sub: number = int(action_sub[0]) else: number = int(CONFIG.get('MYSQL', 'FETCH_NUM')) return cursor.fetchmany(number) elif action == 'fetchone': result = cursor.fetchone() if action_sub: result = result[action_sub[0]] return result elif action == 'sql': with open(os.path.join(FILE_DIR, action_value), 'r') as f: for line in filter(lambda x: x.strip(),f): cursor.execute(line) return self.connection.commit() def clean(self): self.connection.close()
[ "deepjia@gmail.com" ]
deepjia@gmail.com
4caed74a60c8e498f398a39b567023f66b6fd454
306a8a2475b0d86b016be948b368dd44da3d109a
/bounties/migrations/0011_auto_20160902_1553.py
8ee1b2dfe8da46c27c1185a88f079294b7471230
[]
no_license
kgfig/onepiecebounties
fb9093a026b653d3ec114fdc812f0471c6c04485
305a9b022aa078f1fec70da45d9263aca16b564a
refs/heads/master
2020-12-03T04:17:19.073372
2016-09-18T01:30:04
2016-09-18T01:30:04
95,845,299
0
0
null
null
null
null
UTF-8
Python
false
false
471
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('bounties', '0010_auto_20160902_1511'), ] operations = [ migrations.AlterField( model_name='pirate', name='wanted_status', field=models.IntegerField(null=True, default=1, choices=[(1, 'Dead or Alive'), (2, 'Only Alive')]), ), ]
[ "kathleengay.figueroa@gmail.com" ]
kathleengay.figueroa@gmail.com
eb97059c8e8392710252eef94beb2c0179e9b4d7
d7a1cab0b158b550d278d416f3d93c2b2a48e106
/blissutil.py
11887f8c3dd7a54e04393373812156158a64bc87
[ "MIT" ]
permissive
pirmoradian/BLISS
624d03a0f1c4dfd0b2106abcbea2b702a911ed15
efe029fe2ec6409712c000c9bfca2bd6c1dac6c0
refs/heads/master
2018-06-06T07:19:34.289490
2018-05-30T17:47:30
2018-05-30T17:47:30
125,905,557
0
1
null
null
null
null
UTF-8
Python
false
false
15,865
py
import matplotlib.pyplot as plt #from scipy import stats,polyval import numpy as np from operator import itemgetter import pickle import copy import re __all__ = ['UtilDict', 'FileReader'] #*************************************** class UtilDict(object): '''containing the utility functions used for dictionary''' def __init__(self): pass def rescale_d(self, d): avg = np.mean(d.values()) intv = np.max(d.values()) - np.min(d.values()) for k, v in d.iteritems(): d[k] = (d[k] - avg) / float(intv) return d def sort_dictionary(self, d, sort='key'): '''sorts a dictionary based on 'key' or 'value' indicated by 'sort' variable as input and returns the corresponding sorted tuple''' d_tuple = d.items() if sort == 'key': d_tuple = sorted(d_tuple, key=itemgetter(0)) #sorted(d_tuple, key=lambada a:a[0]) elif sort == 'value': d_tuple = sorted(d_tuple, key=itemgetter(1), reverse = True) else: raise Exception, 'how should the dictionary be sorted?!' return d_tuple def normalize_d_values(self, d_): "Normalize the values of a dictinary" d = copy.deepcopy(d_) for k in d: d[k] = float(d[k]) s = sum(d.values()) for w in d: d[w] = d[w]/s return d def normalize_d_wrt1stwd(self, d): fq_wds = {} for k, v in d.iteritems(): w1, w2 = k.split() fq_wds[w1] = fq_wds.get(w1,0) + v for k in d: w1, w2 = k.split() d[k] = d[k] / float(fq_wds[w1]) return d def get_shared_keys(self,d1, d2): '''get the keys shared by two dictionaries d1, d2''' keys = [] keys = [k for k in d1 if k in d2] return keys def get_shared_dicts(self,d1, d2): '''get the dictionaries corresponding to a part of d1, d2 which share the same key ''' keys = self.get_shared_keys(d1,d2) d1_shd={} d2_shd={} for k in keys: d1_shd[k] = d1[k] d2_shd[k] = d2[k] return d1_shd,d2_shd def get_diff_keys(self,d1, d2): '''get the keys of d1 that are not in d2: key(d1)-key(d2)''' keys = [] keys = [k for k in d1 if not k in d2] return keys def get_diff_dict(self,d1, d2): '''get the difference of two dictionaries which corresponds to d1-d2 ''' keys = self.get_diff_keys(d1,d2) d1_diff={} for k in keys: d1_diff[k] = d1[k] return d1_diff def get_dict_val_interval(self,d,min_val=0,max_val=100): '''returns that part of dictionary d whose value is in the exclusive interval of (min_val max_val)''' d_mv = {} for k,v in d.items(): if (v > min_val and v < max_val): d_mv[k]=v return d_mv def get_d1vsd2_sharedkeys(self, d1, d2): d1_shd, d2_shd = self.get_shared_dicts(d1, d2) keys = d1_shd.keys() d1_values = [] d2_values = [] for k in keys: d1_values.append(d1_shd[k]) d2_values.append(d2_shd[k]) return keys, d1_values, d2_values def save_d(self, d, filename): '''save a dictionary into a file''' f = open(filename, 'w') pickle.dump(d, f) f.close() def load_d(self, filename): '''load a dictionary from a file''' f = open(filename, 'r') d = pickle.load(f) f.close() return d def writetofile(self,d,filename,sort='value'): f = open(filename,'w') srtd_tuple = self.sort_dictionary(d,sort=sort) for k,v in srtd_tuple: f.write(str(v)+' '+k+'\n') f.close() def split_key(self,d,n=0): '''split every key of a dictionary and create a dictionary with nth element of splitted key and its corresponding value Example: d={'w1 k1':5, 'w1 k2':3, 'w2 k1':4} n=0 => returns d1={'w1':8, 'w2':4} n=1 => returns d1={'k1':9, 'k2':3} ''' d1={} for key,val in d.items(): key_list = key.split() w = key_list[n] d1[w] = d1.get(w,0)+val return d1 def check_same_key(self, d1, d2): #Check if dictionaries d1 and d2 have the same key if sorted(d1) != sorted(d2): raise Exception, "dictionaries don't still have the same probability space" def lookup_dict(self,wordlist,ref_d): #return the values of the corresponding wordlist in ref_d p = [] for w in wordlist: w = w.lower() if w in ref_d: p.append(float(ref_d[w])) else: p.append(0.0) return p def adjust_lineartransform(self,d1,d2): #TODOl: where should I put this function '''given linear relation between d1 and d2, this function linearly transforms the values in d1 such that , for example d1[k]=400, d2[k]=800, this function returns d[k]=400*(400/800) ''' self.check_same_key(d1,d2) d={} for k in d1: v1 = d1[k] v2 = d2[k] v = v1 * v1 * (1./v2) d[k] = round(v) return d def lineartransform(self,d,a,b): d_={} for k,v in d.items(): v_= v*a + b d_[k] = v_ return d_ def del_key_d(self,key,d): '''delete a key from a dictionary ''' #d = copy.deepcopy(d_) for k_d in d.keys(): pat = '\W'+key+'$'+'|'+'^'+key+'\W' if re.search(pat,k_d, re.IGNORECASE): del d[k_d] return d def del_keypair_d(self,key,d): '''delete a key which is a pair from a dictionary ''' #d = copy.deepcopy(d_) for k_d in d.keys(): if key == k_d: del d[k_d] return d def merge_2dicts_disreg_ordkeypairs(self, d1, d2): '''merge two dictionaries containing pair of words while the order of words is disregarded: d1={'w1 w2':3, 'w2 w3':4} d2={'w2 w1':12, 'w2 w3':4, 'w4 w5':5} returns d_mrg={'w1 w2':15, 'w2 w3':4, 'w4 w5':5} ''' d_mrg = {} for pair in d1: w1, w2 = pair.split() rev_pair = w2 + ' ' + w1 if rev_pair in d2: d_mrg[pair] = d1[pair] + d2[rev_pair] else: d_mrg[pair] = d1[pair] for pair in d2: w1, w2 = pair.split() rev_pair = w2 + ' ' + w1 if not (pair in d_mrg or rev_pair in d_mrg): d_mrg[pair] = d2[pair] return d_mrg #****************************************** class FileReader(object): '''having functions to read different types of files that might correspond to different distributions''' def __init__(self): pass #TODOl: adapting these functions to read several types of input files def read_words_d_file_r(self, filename): ''' reads a file containing the distribution of words and returns a dictionary with words and freqs as its keys and values''' f = open(filename,'r') d = {} for l in f.readlines(): fq,w = l.split() d[w.lower()] = float(fq) f.close() return d def read_pairs_d_file_r(self, filename): ''' reads a file containing the distribution of pairs and returns a dictionary with pairs and freqs as its keys and values''' f = open(filename,'r') d = {} for l in f.readlines(): p,fq = l.split(':') d[p.lower()] = float(fq) f.close() return d def read_words_d_spcw_file_r(self, filename,w_list): ''' reads a file containing the distribution of words and only extracts the word from them''' d = self.read_words_d_file(filename) w_l = [w.lower() for w in w_list] d1={} #TODOl: make it pythonic list comprehension for w in w_list: if w in d: d1[w] = d[w] return d1 def read_pairs_d_spcw_file_r(self, filename, w_list): '''reads a file containing all pair distiributions and only extracts the pairs having specific words, indicated in w_list, as their first word''' d = self.read_pairs_d_file_r(filename) w_l = [w.lower() for w in w_list] d1={} #TODOl: make it pythonic list comprehension for w in w_list: for k in d: if k.startswith(w+' '): d1[k] = d[k] return d1 def read_words_d_file(self, filename): ''' reads a file containing the distribution of words and returns a dictionary with words and freqs as its keys and values''' f = open(filename,'r') d = {} for l in f.readlines(): ws = l.split() fq = ws[0] w = ' '.join(ws[1:]) d[w.lower()] = float(fq) f.close() return d def read_words_d_separate_files(self,wordfile,probfile): '''reads two separate files containing words and their corresponding probs respectively.''' wf = open(wordfile, 'r') pf = open(probfile, 'r') p_list = [] d = {} for l in pf.readlines(): line = l.split() p = float(line[0]) p_list.append(p) print 'p_list done!' pf.close() idx = 0 for l in wf.readlines(): d[l] = p_list[idx] idx = idx+1 wf.close() return d def read_words_d_spcw_file(self, filename,w_list): ''' reads a file containing the distribution of words and only extracts the word from them''' d = self.read_words_d_file(filename) w_l = [w.lower() for w in w_list] d1={} #TODOl: make it pythonic list comprehension for w in w_list: if w in d: d1[w] = d[w] return d1 def read_pairs_d_spcw_file(self, filename, w_list): '''reads a file containing all pair distiributions and only extracts the pairs having specific words, indicated in w_list, as their first word''' #d = self.read_pairs_d_file(filename) d = self.read_words_d_file(filename) w_l = [w.lower() for w in w_list] d1={} #TODOl: make it pythonic list comprehension for w in w_list: for k in d: if k.startswith(w+' '): d1[k] = d[k] return d1 def cut_line_words_pos(self,filename_in, filename_out, wordlist, pos): '''if a line contains a word of wordlist in the specified position, the line is cutted before that word and written in the output file ''' f_in = open(filename_in, 'r') f_out = open(filename_out, 'w') selected_lines = [] for l in f_in.readlines(): words_l = l.split() if len(words_l)>pos: for spcw in wordlist: if (words_l[pos] == spcw): a = ' '.join(words_l[:pos]) f_out.write(a+'\n') break def columnSelector (self, filename_in, filename_out, col_width, cond='greater'): '''the python equivalent to the perl package ColumnSelector.pm it selects sentences if their number of words are EQUAL/GREATER (cond) than COL_WIDTH and it only returns the first COL_WIDTH of words of the selected sentence''' f_in = open(filename_in, 'r') f_out = open(filename_out, 'w') for l in f_in.readlines(): words_l = l.split() sent_sz = len(words_l) if (cond == 'greater') and (sent_sz >= col_width): a = ' '.join(words_l[:col_width]) f_out.write(a+'\n') elif (cond == 'equal') and (sent_sz == col_width): a = ' '.join(words_l[:col_width]) f_out.write(a+'\n') f_in.close() f_out.close() #******************************************* class DictPlotter(object): '''plots dictionaries: values vs. keys''' def __init__(self): self.ud = UtilDict() def plot_xy(self,x,y,fig=None,xlab='X',ylab='Y',title='X vs. Y',linestyle='bo'): if not fig: fig = plt.figure(1) width = 0.5 xlocations = np.array(range(len(x)))+width #print 'xlocation:',xlocations #TODOl Ali: solve yticks! #plt.yticks(np.arange(0,0.005 ,0.001)) #if len(labels) < 40: # plt.xticks(xlocations+ width/2, labels, rotation=70,fontsize=8) plt.xlim(0, xlocations[-1]+width*2) #plt.ylim(0, .5) plt.plot(x,y,linestyle) plt.xlabel(xlab, fontsize=24) plt.ylabel(ylab,fontsize=24) plt.title(title,fontsize=28) return fig def plot_d(self,d,sort='key',fig=None,xlab='word',ylab='Probability',title='Words Distribution'): ''' plots one dictionary which might be the distribution of words/pairs''' if not fig: fig = plt.figure(1) d_tuple = self.ud.sort_dictionary(d, sort) print 'd:',d_tuple labels, data = zip(*d_tuple) width = 0.5 xlocations = np.array(range(len(data)))+width #print 'xlocation:',xlocations #TODOl Ali: solve yticks! #plt.yticks(np.arange(0,0.005 ,0.001)) #if len(labels) < 40: # plt.xticks(xlocations+ width/2, labels, rotation=70,fontsize=8) plt.xticks(xlocations+ width/2, labels, rotation=70,fontsize=8) plt.xlim(0, xlocations[-1]+width*2) #plt.ylim(0, .5) plt.bar(xlocations, data) plt.xlabel(xlab, fontsize=24) plt.ylabel(ylab,fontsize=24) plt.title(title,fontsize=28) #plt.text(60, .025, r'$\mu=100,\ \sigma=15$') #plt.axis([40, 160, 0, 0.03]) plt.grid(True) return fig def plot_2d(self, d1,d2, fig=None, sort='key',xlab='word', ylab='Probability', title1='Distribution1',title2='Distribution2'): '''plot two dictionaries, which might be the distributions of words or pairs, on the same figure''' plt.ion() fig = plt.figure(1) #plt.subplot(211) fig.add_axes([.1,.55,.8,.4]) # [left, bottom, width, height] ax1=plt.gca() self.plot_d(d1, sort=sort, fig=fig, xlab=xlab, ylab=ylab, title=title1) ax1.set_xlabel('') #plt.subplot(212) fig.add_axes([.1,.07,.8,.4]) ax2=plt.gca() self.plot_d(d2, sort=sort, fig=fig, xlab=xlab, ylab=ylab, title=title2) #plt.show() return fig class RegressionAnalysis(object): '''different regression methods''' def __init__(self): pass def linreg(self,x,y): t=[1, 2, 3, 4, 5] xn=[1,3,2,4,5] (a_s,b_s,r,tt,stderr)=stats.linregress(x,y) print('Linear regression using stats.linregress') print('regression: a=%.2f b=%.2f, std error= %.3f' % (a_s,b_s,stderr)) x=polyval([a_s,b_s],t) plt.plot(t,xn,'bo') plt.plot(t,x,'g-') plt.legend(['original','regression']) plt.xlim([-.5,5.5]) plt.ylim([-.5,5.5]) plt.show() def avg_len(filename,max_sent_len=100): '''average length of sentences in a file: n_snt_ln_lst = [0 0 2 4 2 0 2] p_ln_lst = [0 0 .2 .4 .2 0 .2] l_avg = 2*.2 + 4*.4 + 2*.2 + 2*.2 ''' n_snt_ln_lst = get_len_list(filename,max_sent_len) s = float(sum(n_snt_ln_lst)) p_ln_lst = [i/s for i in n_snt_ln_lst] l_avg = 0 for idx,v in enumerate(p_ln_lst): l_avg = l_avg + idx*v return l_avg def get_len_list(filename,max_sent_len=100): '''gets a list having the information about the lengths of sentences in a file: len_list[3] indicates the number of sentences with the length of 3 ''' n_snt_ln_lst = [0*v for v in range(1,max_sent_len)] f = open(filename,'r') for l in f.readlines(): w_l = len(l.split()) n_snt_ln_lst[w_l] = n_snt_ln_lst[w_l] + 1 return n_snt_ln_lst
[ "sahar.pirmoradian@gmail.com" ]
sahar.pirmoradian@gmail.com
bc223b451fec6f8d4802803c50b9f1f0a299af89
7912b6cccb6b4d9e7b1c1a4d3f196f8da352ff11
/computer_guesses_number.py
98b9d7f0e44557a6adf6365deb58b50b1a036b7a
[]
no_license
panatale1/teaching
22090d4f3226f6d1a06b71458638dced4840af41
e25364aa43f31542ab105fdf44781d8da9fd4ff7
refs/heads/master
2020-03-17T06:50:54.189972
2019-07-27T19:45:00
2019-07-27T19:45:00
133,371,988
0
0
null
null
null
null
UTF-8
Python
false
false
559
py
def guess_number(low, high): if low == high: return low mid = (high + low) / 2 response = raw_input("Is your number {}?(yes/no) ".format(mid)) if response.lower()[0] == 'y': return mid response = raw_input("Is your number larger than {}?(yes/no) ".format(mid)) if response.lower()[0] == 'y': return guess_number(mid+1, high) return guess_number(low, mid-1) print("Pick a number between 1 and 1,000,000") raw_input("Hit Enter when you have it") print("Your number is: {}".format(guess_number(1, 1000000)))
[ "panatale1@gmail.com" ]
panatale1@gmail.com
145dd83ff13b43d5878b3eb0f4de0a6748d7ed10
ac47074bcf749273941ab01213bb6d1f59c40c99
/project/multi_factor/alpha_model/exposure/alpha_daily_tsrank9.py
5454e25583fa2b1f682220d7cd8d614d685f6e42
[]
no_license
xuzhihua95/quant
c5561e2b08370610f58662f2871f1f1490681be2
c7e312c70d5f400b7e777d2ff4c9f6f223eabfee
refs/heads/master
2020-05-19T17:04:08.796981
2019-04-24T02:50:29
2019-04-24T02:50:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,911
py
import pandas as pd from quant.stock.date import Date from quant.stock.stock import Stock from quant.project.multi_factor.alpha_model.exposure.alpha_factor import AlphaFactor class AlphaDailyTsRank9(AlphaFactor): """ 高频因子 ts_rank(rank(low),9) 首先计算每日股票最低价在股票池内的排名,再计算时间上述排名在最近9天的排名 """ def __init__(self): AlphaFactor.__init__(self) self.exposure_path = self.data_path self.raw_factor_name = 'daily_alpha_raw_ts_rank9' def cal_factor_exposure(self, beg_date, end_date): """ 计算因子暴露 """ term = 9 price_low = Stock().read_factor_h5("Price_Low_Adjust").T price_low_rank = price_low.rank(axis=1) date_series = Date().get_trade_date_series(beg_date, end_date) result = pd.DataFrame([], index=date_series, columns=price_low.columns) for i_date in range(len(date_series)): data_end_date = date_series[i_date] data_beg_date = Date().get_trade_date_offset(data_end_date, - term + 1) data_period = price_low_rank.loc[data_beg_date: data_end_date, :] if len(data_period) >= term: print('Calculating factor %s at date %s' % (self.raw_factor_name, data_end_date)) ts_rank = data_period.rank().loc[data_end_date, :] result.loc[data_end_date, :] = ts_rank else: print('Calculating factor %s at date %s is null' % (self.raw_factor_name, data_end_date)) res = result.dropna(how='all').T self.save_alpha_factor_exposure(res, self.raw_factor_name) if __name__ == '__main__': from datetime import datetime beg_date = '20060101' end_date = datetime.today() end_date = "20100101" self = AlphaDailyTsRank9() self.cal_factor_exposure(beg_date, end_date)
[ "1119332482@qq.com" ]
1119332482@qq.com
e04bd468aa4464b615e74973bec338036d840146
6c7b19ad3119ca7f5f7e2e59102900faa06a268d
/uncle_lesson_ep6.py
22299036b7a251a8ebb065ed43028f107e4c17d1
[]
no_license
pui-ml/expense
ad2a8f1d9788ff61b4bf7894af30fe6bde3d83a1
585f0a92b70a105bc2629e5c3116483b00a0fe41
refs/heads/main
2023-08-10T23:06:13.045386
2021-09-26T15:24:32
2021-09-26T15:24:32
409,151,866
0
0
null
null
null
null
UTF-8
Python
false
false
5,998
py
from tkinter import * from tkinter import ttk, messagebox import csv from datetime import datetime import sys GUI = Tk() GUI.title("Expense Tracker") GUI.geometry("500x500+200+100") ########### menu bar ############### menu_bar = Menu(GUI) GUI.config(menu=menu_bar) # file menu file_menu = Menu(menu_bar, tearoff=False) menu_bar.add_cascade(label='File', menu=file_menu) file_menu.add_command(label='Import CSV') file_menu.add_command(label='Export CSV') def About(): print('About Menu') messagebox.showinfo('About', 'สวัสดี โปรแกรมนี้ทำงานดีมาก\nสนใจบริจาคได้') # help menu help_menu = Menu(menu_bar, tearoff=False) menu_bar.add_cascade(label='Help', menu=help_menu) help_menu.add_command(label='About', command=About) # Donate menu donate_menu = Menu(menu_bar, tearoff=False) menu_bar.add_cascade(label='Donate', menu=donate_menu) # Tab ------------------------------ Tab = ttk.Notebook(GUI) T1 = Frame(Tab) T2 = Frame(Tab) Tab.pack(fill=BOTH, expand=1) expenseicon = PhotoImage(file="wallet-icon.png").subsample(2) listicon = PhotoImage(file="folder-flower-orange-icon.png").subsample(2) Tab.add(T1, text=f'{"Add Expense":^50}', image=expenseicon, compound="top") Tab.add(T2, text=f'{"Expense List":^50s}', image=listicon, compound="top") # ----------- define frame ---------- F1 = Frame(T1) # F1.place(x=100,y=20) F1.pack() days = { "Mon": "จันทร์", "Tue": "อังคาร", "Wed": "พุธ", "Thu": "พฤหัส", "Fri": "ศุกร์", "Sat": "เสาร์", "Sun": "อาทิตย์", } # -------- define font --------------- FONT1 = (None, 20) FONT2 = (None, 10) # Logo ----------------------------- centerimg = PhotoImage(file="cash-icon.png") logo = ttk.Label(F1, image=centerimg) logo.pack() def new_form(): v_expense.set("") v_price.set("") v_amount.set("") E1.focus() # ------------ save to file ------------ def Save(event=None): try: expense = v_expense.get() if expense == "": raise ValueError("") price = float(v_price.get()) if price <= 0: raise ValueError("") amount = float(v_amount.get()) if amount <= 0: raise ValueError("") total = amount * price today = datetime.now().strftime("%a") this_time = datetime.now().strftime(f"%Y-%m-%d {days[today]} %H:%M:%S") text = f"รายการ: {expense} - ราคา: {price:.2f} บาท - จำนวน: {amount:.1f} ชิ้น - รวม: {total:.2f} บาท\n- เวลาทำรายการ {this_time}" v_result.set(text) # print(f'รายการ: {expense} - ราคา: {price:.2f} - จำนวน: {amount:.1f} - รวม: {total:.2f} - เวลาทำรายการ {this_time}') new_form() with open("savedata.csv", "a", encoding="utf-8", newline="") as f: fw = csv.writer(f) data = [expense, price, amount, total, this_time] fw.writerow(data) except Exception as e: # messagebox.showerror('Error',e) # messagebox.showwarning('Error','Please enter new data') messagebox.showinfo("Error", " Please enter data ") new_form() update_table() def terminate(): sys.exit(1) GUI.bind("<Return>", Save) # -------------- text1 start-------------- v_expense = StringVar() L1 = ttk.Label(F1, text="รายการค่าใช้จ่าย", font=FONT2).pack() E1 = ttk.Entry(F1, textvariable=v_expense, font=FONT2) E1.pack() # -------------- text1 end-------------- # -------------- text2 start-------------- v_price = StringVar() L2 = ttk.Label(F1, text="ราคา (บาท)", font=FONT2).pack() E2 = ttk.Entry(F1, textvariable=v_price, font=FONT2) E2.pack() # -------------- text2 end-------------- # -------------- text3 start-------------- v_amount = StringVar() L3 = ttk.Label(F1, text="จำนวน (ชิ้น)", font=FONT2).pack() E3 = ttk.Entry(F1, textvariable=v_amount, font=FONT2) E3.pack() # -------------- text3 end-------------- saveicon = PhotoImage(file="wallet-icon.png").subsample(2) B1 = ttk.Button( F1, text="บันทึก", command=Save, image=saveicon, compound="left", width=12 ) B1.pack(ipadx=20, ipady=8, pady=8) B2 = ttk.Button(F1, text="ล้างข้อมูล", command=new_form, width=18) B2.pack(ipadx=20, ipady=8, pady=4) B3 = ttk.Button(F1, text="จบโปรแกรม", command=terminate, width=18) B3.pack(ipadx=20, ipady=8, pady=4) v_result = StringVar() result = ttk.Label(F1, textvariable=v_result, font=FONT2, foreground="green") result.pack(pady=10) # tab 2 -------- read_csv def read_csv(): with open("savedata.csv", newline="", encoding="utf-8") as f: fr = csv.reader(f) data = list(fr) return data # table --- L = ttk.Label(T2, text='ตารางผลลัพธ์', font=FONT1).pack(pady=20) header = ["รายการ", "ค่าใช้จ่าย", "จำนวน", "รวม", "วัน-เวลา"] header_width = [120, 80, 80, 100, 120] result_table = ttk.Treeview(T2, columns=header, show="headings", height=10) result_table.pack(pady=20) for head, h_width in zip(header, header_width): result_table.heading(head, text=head) result_table.column(head, width=h_width) # result_table.insert('', 'end', value=['วันจันทร์', 30, 40, 50, 60]) def update_table(): result_table.delete(*result_table.get_children()) # delete ก่อน update data = read_csv() for d in data: result_table.insert('', 0, value=d) update_table() GUI.bind("<Tab>", lambda x: E2.focus()) GUI.mainloop()
[ "noreply@github.com" ]
pui-ml.noreply@github.com
39d1e88a3987aea0b3a27768b630796c94cb3239
e3f4e9e7252bec042fd97076faef0a94251a3201
/shopapi/routers/user.py
c7a34eac150d43acace6cc6a1b783351ae193ac6
[]
no_license
eshopapi/python-api
95f64c2777867ce3d246d2e1aa6addd0039953a3
0d2cc82dba94384541be2507701b5b9b34634e5f
refs/heads/master
2023-03-26T11:44:47.631281
2021-03-27T00:59:25
2021-03-27T00:59:25
347,774,028
0
0
null
null
null
null
UTF-8
Python
false
false
3,568
py
"""User-related API endpoints """ import logging from typing import List from fastapi import APIRouter, Depends from shopapi.helpers import dependencies as deps, exceptions from shopapi.schemas import models, schemas, api from shopapi import actions logger = logging.getLogger(__name__) router = APIRouter(prefix="/user", tags=["Users"]) operator = actions.user.UserOperator() @router.get("/me", response_model=schemas.UserToken) async def user_info(user: schemas.UserToken = Depends(deps.get_user)): """Return user information""" return user @router.get("/role", response_model=schemas.Role, dependencies=[Depends(deps.get_user)]) async def user_role(role: schemas.Role = Depends(deps.get_user_role)): """Get user's role and return it""" return role @router.put("/role", dependencies=[Depends(deps.get_user)], response_model=api.RoleUpdateOut) async def user_role_update(role_update: api.RoleUpdateIn, role: schemas.Role = Depends(deps.get_user_role)): """Update user's role. Required permissions: - `users.write` - `roles.write` """ if not role.users.write or not role.roles.write: raise exceptions.InsufficientPermissions("users.write, roles.write") if not await models.Role.get(id=role_update.role_id): raise exceptions.ResourceNotFound("role", role_update.role_id) if not (user_db := await models.User.get(id=role_update.user_id)): raise exceptions.ResourceNotFound("user", role_update.user_id) user_db = await user_db.update_from_dict({"role_id": role_update.role_id}) await user_db.save() await user_db.fetch_related("role") return api.RoleUpdateOut.from_orm(user_db) @router.get( "/", dependencies=[Depends(deps.get_user)], response_model=List[api.UserUpdateOut], ) async def user_list( role: schemas.Role = Depends(deps.get_user_role), common: deps.QueryParams = Depends(deps.query_params), ): """List all users Required permissions: - `users.read` """ return await operator.list(common, role) @router.get("/{user_id}", response_model=api.UserUpdateOut) async def user_get( user_id: int, user: schemas.UserToken = Depends(deps.get_user), role: schemas.Role = Depends(deps.get_user_role) ): """Get user info Required permissions: - `users.read` """ if user.id == user_id: return await operator.get(user_id) return await operator.get(user_id, role) @router.post("/") async def user_create(user: api.UserUpdateIn, role: schemas.Role = Depends(deps.get_user_role)): """Create a user Required permissions: - `users.write` """ return await operator.create(user, role) @router.delete("/{user_id}", dependencies=[Depends(deps.get_user)]) async def user_delete(user_id: int, role: schemas.Role = Depends(deps.get_user_role)): """Delete user. Required permissions: - `users.delete` """ return await operator.delete(user_id, role) @router.put("/{user_id}", response_model=api.UserUpdateOut) async def user_update( user_id: int, info: api.UserUpdateIn, user: schemas.UserToken = Depends(deps.get_user), role: schemas.Role = Depends(deps.get_user_role), ): """Update user in database specified with `user_id` with the data in `info` Required permissions: - `users.write` """ if user.id == user_id: logger.info("Skipping role check, user editing themselves") return await operator.update(user_id, info) return await operator.update(user_id, info, role)
[ "info@tomasvotava.eu" ]
info@tomasvotava.eu
6abff99c7fff4207e881dc321edeb8ebe67ca815
49eed26edb54813b3dce4dc41a512c57e2822b36
/plugins/rex_socketio_chat/ServerEngine/src/setup_engine.py
64a28ee202d5d64fe6b3572ac8c21c67b19a9022
[]
no_license
JohnnySheffield/C2_Plugins_Rex
b41d2620c5fdd870f1f233ed243b3dbf96923070
c723550cb36540209fa71415dbfa91be328a139a
refs/heads/master
2021-01-18T13:29:58.342134
2013-04-28T01:01:23
2013-04-28T01:01:23
9,702,925
0
1
null
null
null
null
UTF-8
Python
false
false
1,050
py
# setup.py from distutils.core import setup import py2exe # We need to import the glob module to search for all files. import glob # Remove the build folder, a bit slower but ensures that build contains the latest import shutil shutil.rmtree("build", ignore_errors=True) # my setup.py is based on one generated with gui2exe, so data_files is done a bit differently includes = ['tornado', 'tornadio2', 'socket', 'sys', 'threading', 'time', 'math', 'random', #'glob', 'zipfile', 'Queue', 'optparse', 're', 'xml.etree.ElementTree', 'urllib2', 'urlparse', ] setup(console=["AppLoader.py", {"script":"AppLoader.py"}], options = { 'py2exe' : { 'includes' : includes, 'bundle_files' : 1, } }, zipfile = None, )
[ "binhua.tein@gmail.com" ]
binhua.tein@gmail.com
d0a03cd0e5641548a9237b8af49e0d2aed2252f2
6ba4546aaad6e468b86244d51619aabce58e3c63
/yqpass-v1.5/backend/resmanage/models.py
b6786510de58b2c2ba25cb218d8a8f483c25c201
[]
no_license
LezBaishi/yqpass
3840d9f48f2809e8617002e5a8ff9492f10ec202
7131e418c01095ec0248a28afc06998cd2d7505c
refs/heads/master
2022-10-31T18:24:15.278290
2018-10-23T12:05:44
2018-10-23T12:05:44
140,539,352
1
1
null
2022-10-10T23:01:09
2018-07-11T07:39:25
Vue
UTF-8
Python
false
false
8,349
py
from django.db import models __author__ = 'mc' # Create your models here. class BuildingInfo(models.Model): """ 楼栋信息表 """ building = models.CharField("楼栋", max_length=50) creator = models.CharField('创建人', max_length=50, default='admin') gmt_created = models.DateTimeField('创建时间', auto_now_add=True) modifier = models.CharField('修改人', max_length=50, default='admin') gmt_modified = models.DateTimeField('更新时间', auto_now=True) is_deleted = models.BooleanField("已删除", default=False) def __str__(self): return self.building class Meta: verbose_name = "楼栋信息" verbose_name_plural = "楼栋信息" class BuildingRoomInfo(models.Model): """ 楼栋机房信息表 """ building_info = models.ForeignKey('BuildingInfo', on_delete=models.CASCADE, related_name='BuildingRoomInfos', help_text='所在楼栋') room = models.CharField("机房号", max_length=50, help_text='F表示楼层,R表示弱电间,S表示南边,N表示北边,-1表示负一层') description = models.CharField("备注", max_length=100, help_text='有英文标注请详细说明') creator = models.CharField('创建人', max_length=50, default='admin') gmt_created = models.DateTimeField('创建时间', auto_now_add=True) modifier = models.CharField('修改人', max_length=50, default='admin') gmt_modified = models.DateTimeField('更新时间', auto_now=True) is_deleted = models.BooleanField("已删除", default=False) def __str__(self): building_name = self.building_info.building return building_name + '_' + self.room class Meta: verbose_name = "楼栋机房信息" verbose_name_plural = "楼栋机房信息" class OcableSection(models.Model): """ 光缆段表 """ bri_A = models.ForeignKey('BuildingRoomInfo', on_delete=models.CASCADE, related_name='OcableSectionsA', help_text='A端楼栋机房号,A端排序规则:(1)不同楼宇:3.1--2.3--2.2--1.3--1.2--1.1--2.1--6.1--6.2--4.1--4.2--4.3--4.4.1--4.4.2--4.5.1--4.5.2--园内(指挥部/保安亭/变电站/足球场)--出局;' + '(2)相同楼宇:底层机房号数小的为A端,高层机房号数大为Z端。F表示楼层,R表示弱电间,S表示南边,N表示北边,-1表示负一。') name_A = models.CharField('A端名称', max_length=50, unique=True, help_text='命名格式参考:3.1栋101数据机房路由1-1或1.1栋1楼南塔弱电间') bri_Z = models.ForeignKey('BuildingRoomInfo', on_delete=models.CASCADE, related_name='OcableSectionsZ', help_text='Z端楼栋机房号,A端排序规则:(1)不同楼宇:3.1--2.3--2.2--1.3--1.2--1.1--2.1--6.1--6.2--4.1--4.2--4.3--4.4.1--4.4.2--4.5.1--4.5.2--园内(指挥部/保安亭/变电站/足球场)--出局;' + '(2)相同楼宇:底层机房号数小的为A端,高层机房号数大为Z端。F表示楼层,R表示弱电间,S表示南边,N表示北边,-1表示负一。') name_Z = models.CharField('Z端名称', max_length=50, unique=True, help_text='命名格式参考:3.1栋101数据机房路由1-1或1.1栋1楼南塔弱电间') ocable_name = models.CharField('光缆段名称', max_length=100) core_num = models.PositiveSmallIntegerField('纤芯数') ocable_length = models.DecimalField('光缆长度(皮长公里)', max_digits=5, decimal_places=2) SINGLE_MODE = '单模' MULTIMODE = '多模' OCABLE_TYPE_CHOICES = ( (SINGLE_MODE, '单模'), (MULTIMODE, '多模'), ) ocable_type = models.CharField('光缆类型', max_length=10, choices=OCABLE_TYPE_CHOICES, default=SINGLE_MODE) GANXIAN = '干线' BENDIWANG = '广州本地网' YUANQU = '南方基地园区' YUANQU2 = '南方基地园区(CMNET网络成端)' OCABLE_LEVEL_CHOICES = ( (GANXIAN, '干线'), (BENDIWANG, '广州本地网'), (YUANQU, '南方基地园区'), (YUANQU2, '南方基地园区(CMNET网络成端)'), ) ocable_level = models.CharField('光缆等级', max_length=20, choices=OCABLE_LEVEL_CHOICES) OFIBER_TYPE1 = 'G652' OFIBER_TYPE2 = 'G655' OFIBER_TYPE_CHOICES = ( (OFIBER_TYPE1, 'G652'), (OFIBER_TYPE2, 'G655'), ) ofiber_type = models.CharField('光纤型号', max_length=10, choices=OFIBER_TYPE_CHOICES) notes = models.TextField('备注', null=True, blank=True) creator = models.CharField('创建人', max_length=50, default='admin') gmt_created = models.DateTimeField('创建时间', auto_now_add=True) modifier = models.CharField('修改人', max_length=50, default='admin') gmt_modified = models.DateTimeField('更新时间', auto_now=True) is_deleted = models.BooleanField("已删除", default=False) def __str__(self): return self.ocable_name class Meta: verbose_name = "光缆段" verbose_name_plural = "光缆段" class OfiberCore(models.Model): """ 纤芯表 """ core_no = models.PositiveSmallIntegerField('纤芯序号', help_text='在该光缆段中的纤芯序号') ocable_section = models.ForeignKey('OcableSection', on_delete=models.CASCADE, related_name='OfiberCores', help_text='对应光缆段名称') ocable_odf_A = models.CharField('A端光缆ODF', max_length=50, help_text='命名格式参考:1.1栋负1楼ODF01-1-A1或3.1栋103机房G101-1-A1') ocable_odf_Z = models.CharField('Z端光缆ODF', max_length=50, help_text='命名格式参考:1.1栋负1楼ODF01-1-A1或3.1栋103机房G101-1-A1') ocable_cor = models.CharField('光缆对应', max_length=100) core_quality = models.CharField('纤芯质量', max_length=50, null=True, blank=True) notes = models.TextField('备注', null=True, blank=True) creator = models.CharField('创建人', max_length=50, default='admin') gmt_created = models.DateTimeField('创建时间', auto_now_add=True) modifier = models.CharField('修改人', max_length=50, default='admin') gmt_modified = models.DateTimeField('更新时间', auto_now=True) is_deleted = models.BooleanField("已删除", default=False) def __str__(self): return self.ocable_cor class Meta: verbose_name = "纤芯" verbose_name_plural = "纤芯" class RouteInfo(models.Model): """ 路由信息表 根据两端业务设备信息生成电路路由-纤芯表关系 """ circuit_num = models.CharField('电路编号', max_length=10, help_text='命名格式:F+四位数字') ofiber_core = models.ForeignKey('OfiberCore', on_delete=models.CASCADE, related_name='oc_routeinfos', help_text='对应光缆纤芯') application_detail = models.ForeignKey('fielddiy.ApplicationDetail', on_delete=models.CASCADE, related_name='ad_routeinfos', help_text='工单明细') ONE = 'first' TWO = 'second' ROUTE_NO_CHOICES = ( (ONE, '1'), (TWO, '2'), ) route_no = models.CharField('路由序号(1或2)', max_length=10, choices=ROUTE_NO_CHOICES) route_where = models.PositiveSmallIntegerField('路由位置') ON = '在用' OFF = '停闭' STATE_CHOICES = ( (ON, '在用'), (OFF, '停闭'), ) state = models.CharField('状态', max_length=10, choices=STATE_CHOICES, default=ON) creator = models.CharField('创建人', max_length=50, default='admin') gmt_created = models.DateTimeField('创建时间', auto_now_add=True) modifier = models.CharField('修改人', max_length=50, default='admin') gmt_modified = models.DateTimeField('更新时间', auto_now=True) is_deleted = models.BooleanField("已删除", default=False) def __str__(self): return self.circuit_num + '-' + str(self.ofiber_core) class Meta: verbose_name = "路由信息" verbose_name_plural = "路由信息"
[ "645034308@qq.com" ]
645034308@qq.com
4ceb1169b17f5ecb87cbe8ecf513094aca5757fb
9bcba8f3162eacea872dbadc9990a164f945f70a
/Packages/comandos/less_compile.py
ac8f39c84ef170e6388339bb635164f8cb30228a
[]
no_license
programadorsito/Packages
a4cb568219dbc10a69e15a2832ef52d19eb83061
af748327f128ed90bb146dc12bb53b76ccb609fd
refs/heads/master
2021-01-10T04:41:38.676159
2016-04-06T07:52:45
2016-04-06T07:52:45
55,560,324
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
import sublime, os, platform import sublime_plugin import subprocess import webbrowser from subprocess import PIPE, Popen class LessCompileCommand(sublime_plugin.TextCommand): def run(self, edit): window=sublime.active_window() view=window.active_view() view.run_command("ejecutar_comando_silencioso", {"comando":"lessc $file>$filename.css"})
[ "Mac@MacBook-de-Mac.local" ]
Mac@MacBook-de-Mac.local
f5a916d3b329f603a68d398034bffd51f8825d94
d14c8419786129124c4a81a9f2f6ba963ada0f0b
/labs/lab05/tests/q2_4_3b.py
60ed30a13337d549a04a972bee75259718fe307b
[]
no_license
ucsb-ds/ds1-w21-content
5ad4421ae106de2c2e3d9a9a22f3580cd26757b5
1ab3d43d3b66d7eb5774dab3ff23e0bc848241bd
refs/heads/main
2023-03-13T19:11:14.271885
2021-03-08T17:48:22
2021-03-08T17:48:22
329,216,349
2
0
null
null
null
null
UTF-8
Python
false
false
345
py
test = { 'name': 'q2_4_3b', 'points': 1, 'suites': [ { 'cases': [{'code': '>>> (gave_away_all_guys > 0) and (gave_away_all_guys < 5)\nTrue', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
[ "swsolis@ucsb.edu" ]
swsolis@ucsb.edu
717ab242e9964182526ed036becb8eea6cc752fe
63deaf056c59db72a1df338fddaa99453a4fbb6f
/test/test_connector.py
494b213949352d927cf752325ead0afd05b1498f
[ "Apache-2.0" ]
permissive
aantti/haystack
60efb46b090fdaf3b00e14e9b16afb617107a7fe
6f6f2357fdef9e98850a7ffcd80f18b05aa7cfaf
refs/heads/master
2023-08-20T23:41:10.416841
2021-10-26T09:47:25
2021-10-26T09:47:25
339,123,743
0
1
Apache-2.0
2021-02-16T15:15:18
2021-02-15T15:39:59
null
UTF-8
Python
false
false
4,525
py
import json from pathlib import Path from re import search import pytest from haystack.connector import Crawler def test_crawler_url_none_exception(tmp_path): tmp_dir = tmp_path / "crawled_files" with pytest.raises(ValueError): Crawler(tmp_dir).crawl() def test_crawler_depth(tmp_path): tmp_dir = tmp_path / "crawled_files" _url = ["https://haystack.deepset.ai/overview/get-started"] crawler = Crawler(output_dir=tmp_dir) doc_path = crawler.crawl(urls=_url, crawler_depth=0) assert len(doc_path) == 1 _urls = [ "https://haystack.deepset.ai/overview/v0.8.0/get-started", "https://haystack.deepset.ai/overview/v0.7.0/get-started", "https://haystack.deepset.ai/overview/v0.6.0/get-started", ] doc_path = crawler.crawl(urls=_urls, crawler_depth=0) assert len(doc_path) == 3 doc_path = crawler.crawl(urls=_url, crawler_depth=1) assert len(doc_path) > 1 for json_file in doc_path: assert isinstance(json_file, Path) with open(json_file.absolute(), "r") as read_file: data = json.load(read_file) assert 'content' in data assert 'meta' in data assert isinstance(data['content'], str) assert len(data['content'].split()) > 2 def test_crawler_filter_urls(tmp_path): tmp_dir = tmp_path / "crawled_files" _url = ["https://haystack.deepset.ai/overview/v0.8.0/"] crawler = Crawler(output_dir=tmp_dir) doc_path = crawler.crawl(urls=_url, filter_urls=["haystack\.deepset\.ai\/overview\/v0\.9\.0\/"]) assert len(doc_path) == 0 doc_path = crawler.crawl(urls=_url, filter_urls=["haystack\.deepset\.ai\/overview\/v0\.8\.0\/"]) assert len(doc_path) > 0 doc_path = crawler.crawl(urls=_url, filter_urls=["google\.com"]) assert len(doc_path) == 0 def test_crawler_content(tmp_path): tmp_dir = tmp_path / "crawled_files" partial_content_match: list = [ {"url": "https://haystack.deepset.ai/overview/v0.7.0/intro", "partial_content": ["What is Haystack", "Utilize all transformer based models", "a Retriever-Reader pipeline in order", "Passing on only a small candidate set", "fast indexing and querying", "Fine-tune models to your own domain", "smoothly switch when new ones get published"]}, {"url": "https://haystack.deepset.ai/overview/v0.7.0/use-cases", "partial_content": ["Semantic Search System", "Store your documents in the database of ", "results are chosen based on compatibility in", "Apply a set of standard questions to each document", "Return a NO_ANSWER if a given document", "like what is the revenue forecast for 2020?", "overview of academic papers and internal business"]}] crawler = Crawler(output_dir=tmp_dir) for _dict in partial_content_match: url: str = _dict['url'] partial_content: list = _dict['partial_content'] doc_path = crawler.crawl(urls=[url], crawler_depth=0) assert len(doc_path) == 1 for json_file in doc_path: assert isinstance(json_file, Path) with open(json_file.absolute(), "r") as read_file: content = json.load(read_file) assert isinstance(content['content'], str) for partial_line in partial_content: assert search(partial_line, content['content']) assert partial_line in content['content'] def test_crawler_return_document(tmp_path): tmp_dir = tmp_path / "crawled_files" _url = ["https://haystack.deepset.ai/docs/v0.5.0/intromd"] crawler = Crawler(output_dir=tmp_dir) docs_path = crawler.crawl(urls=_url, crawler_depth=1) results, _ = crawler.run(urls=_url, crawler_depth=1, return_documents=True) documents = results['documents'] for json_file, document in zip(docs_path, documents): assert isinstance(json_file, Path) assert isinstance(document, dict) with open(json_file.absolute(), "r") as read_file: file_content = json.load(read_file) assert file_content['meta'] == document['meta'] assert file_content['content'] == document['content']
[ "noreply@github.com" ]
aantti.noreply@github.com
c7d1a3d4c7e7cae5223344a1b29d7b2c57fc9ff2
23cda8710dc83ca1d26e8f9160e5c537871ef532
/blend.py
9c30792ef264212be4d5b698dc31313a6dd45d16
[]
no_license
neeraj71/Recommender-system-EPFL
676f352ef6557609f637c9d122f36d53c3f97d64
ee930555e93ae7014485df5b97fd179f41bd2b42
refs/heads/master
2020-04-26T23:58:52.324859
2019-03-05T14:31:24
2019-03-05T14:31:24
173,920,380
0
0
null
null
null
null
UTF-8
Python
false
false
2,278
py
import numpy as np import os import pickle def blend_train(als=None, sgd=None, user__mean=None, knn_user=None, knn_item=None, svd=None, svdpp=None, nnmf=None, alpha=None, label=None): """ This function train blending model for our prediction of algorithms :param als: is prediction array of als algrithm with shape of n*1 :param sgd: is prediction array of sgd algrithm with shape of n*1 :param user__mean: is prediction array of user__mean algrithm with shape of n*1 :param knn_user is prediction array of knn_user algrithm with shape of n*1 :param knn_item is prediction array of knn_item algrithm with shape of n*1 :param svd is prediction array of svd algrithm with shape of n*1 :param svdpp is prediction array of svd algrithm with shape of n*1 :param nnmf: is prediction array of nnmf algrithm with shape of n*1 :param alpha: the parameter for regualrize :param label: the true raking :return: weight w and RMSE of blending """ m_train = np.concatenate((als, sgd, user__mean, knn_user, knn_item, svd, svdpp, nnmf), axis=1) y_train = lable # Ridge Regression w = np.linalg.solve(m_train.T.dot(m_train) + alpha * np.eye(m_train.shape[1]), m_train.T.dot(y_train)) y_predict_train = m_train.dot(w) # Cut predictions that are too high and too low for i in range(len(y_predict_train)): y_predict_train[i] = min(5, np.round(y_predict_train[i])) y_predict_train[i] = max(1, np.round(y_predict_train[i])) return w, np.sqrt(np.mean((y_train - y_predict_train) ** 2)) # with open('../data/predictions/merge_prediction.csv', 'w') as output: # output.write('Id,Prediction\n') # for i, (row, col) in enumerate(nnz_test): # output.write('r{}_c{},{}\n'.format(row + 1, col + 1, y_predict_test[i])) def blend_pred(als, nnmf, w, lable=None, predict=False): m_train = np.concatenate((als, nnmf), axis=1) y_train = lable y_predict_train = m_train.dot(w) # Cut predictions that are too high and too low for i in range(len(y_predict_train)): y_predict_train[i] = min(5, np.round(y_predict_train[i])) y_predict_train[i] = max(1, np.round(y_predict_train[i])) return y_predict_train
[ "neeraj.yadav@epfl.ch" ]
neeraj.yadav@epfl.ch
356e9ad348952f8b101d113adef955cd75ab0c98
c7e67a9c5e7b420adec05469945d523489cf36bc
/CalculIndicateurs.py
18e804871ebd2bf36f56cf4bf6d3f316443c9b03
[]
no_license
nicolasjammaron/skyhawk
b8669950e7a8b207c61b8018c30eac37de583f30
c75bfc49730ed913d03ef03c9812c888d772efd9
refs/heads/master
2021-01-21T08:32:52.991034
2017-06-09T15:07:38
2017-06-09T15:07:38
91,631,574
0
0
null
null
null
null
UTF-8
Python
false
false
938
py
import talib class CalculIndicateurs : def __init__(self): super().__init__() self.emaNumbers = [5,8,13] self.data self.emaDico = {'5':None,'8':None,'13':None} self.macd = {'macd':None,'signal':None,'hist':None} def updateMACD(self): macdvalues = talib.MACD(self.data, ) self.macd['macd'] = macdvalues[0] self.macd['signal'] = macdvalues[1] self.macd['hist'] = macdvalues[2] def updateIndicators(self): for key in self.emaDico.keys(): self.emaDico[key] = talib.EMA(self.data,key) self.updateMACD() def printEMA(self): print("EMAs : ") for ema in self.emaDico: print(ema) def printMACD(self): print("MACD :") print(self.macd) def updateData(self,Data): self.data = Data self.updateIndicators() self.printEMA() self.printMACD()
[ "nicolas.jammaron@ensimag.grenoble-inp.fr" ]
nicolas.jammaron@ensimag.grenoble-inp.fr
4c83e71c46773026b582981edca312904a019d88
72c5105f2ba72d06899db5a557027daee7273f9b
/aproxy/__init__.py
6cefd260df678679a1e7767f67b70bf3d72d6a13
[ "MIT" ]
permissive
FrodeHus/aproxy
2e8d3ee4e870256ac21087cc9edef54949d153f4
bcb7041f445a6ad8f32cddc56604661fbe4e0b46
refs/heads/master
2021-04-15T01:45:45.732899
2020-05-20T07:11:32
2020-05-20T07:11:32
249,284,213
3
0
null
null
null
null
UTF-8
Python
false
false
63
py
import aproxy.version __version__ = aproxy.version.__version__
[ "frode.hus@outlook.com" ]
frode.hus@outlook.com
33982be657ad93c9136ef94cb9ff6b50e2c5d92d
ff6248be9573caec94bea0fa2b1e4b6bf0aa682b
/StudentProblem/10.21.9.51/3/1569573233.py
bec2553682ba5fd391a6449b21a128a3f4e8303c
[]
no_license
LennartElbe/codeEvo
0e41b1a7705204e934ef71a5a28c047366c10f71
e89b329bc9edd37d5d9986f07ca8a63d50686882
refs/heads/master
2020-12-21T17:28:25.150352
2020-03-26T10:22:35
2020-03-26T10:22:35
236,498,032
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
import functools import typing import string import random import pytest def schaltjahr(x: int): """Gibt an ob sich das eingegebene Jahr um ein Schaltjahr handelt. Agrs: int: das jahr Return: True wenn es stimmt ansonsten False """ if x // 4 or (x // 100 and not x // 400): return True else: return False ###################################################################### ## Lösung Teil 2 (Tests) def test_schaltjahr(): assert(schaltjahr(1582)) == True assert(schaltjahr(2006)) == True assert(schaltjahr(2007)) == False ######################################################################
[ "lenni.elbe@gmail.com" ]
lenni.elbe@gmail.com
6ee5673a5b8a8462eae94ba73cee74e3b013a4a5
810c20e76f6e5aabce8046379178bb8bf4b6252f
/shoeapp/migrations/0001_initial.py
838e8358e582af527ca89657255020cff78b7144
[ "MIT" ]
permissive
pbuzzo/shoestore
ac8d96abc824c3656de6dc59131b5a648cd884bf
58d95f9eaa8452f051a72f407f0637ebd96a4ec6
refs/heads/master
2022-11-14T04:39:52.858524
2020-07-02T15:15:55
2020-07-02T15:15:55
272,740,283
0
0
null
null
null
null
UTF-8
Python
false
false
2,250
py
# Generated by Django 3.0.7 on 2020-06-19 00:53 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Manufacturer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('website', models.URLField()), ], ), migrations.CreateModel( name='ShoeColor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('color_name', models.CharField(choices=[('red', 'red'), ('orange', 'orange'), ('yellow', 'yellow'), ('green', 'green'), ('blue', 'blue'), ('indigo', 'indigo'), ('violet', 'violet'), ('white', 'white'), ('black', 'black')], default='white', max_length=6)), ], ), migrations.CreateModel( name='ShoeType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('style', models.CharField(max_length=30)), ], ), migrations.CreateModel( name='Shoe', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='unknown', max_length=50)), ('size', models.IntegerField()), ('brand_name', models.CharField(max_length=30)), ('material', models.CharField(max_length=30)), ('fasten_type', models.CharField(max_length=30)), ('color', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shoeapp.ShoeColor')), ('manufacturer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shoeapp.Manufacturer')), ('shoe_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shoeapp.ShoeType')), ], ), ]
[ "pbuzzo04@gmail.com" ]
pbuzzo04@gmail.com
f605f8081c067463f69d9c75df0f55e1116d7458
0aea5cbe160131697297415ac526826f68d77b25
/python/tutorials/lists/lists_intro.py
324dba22fd3a6b0ff88b0a517dea3e6919ee50d6
[]
no_license
Xenolithes/Algorithims
61df1ac4dbb2480c3d9d9423be7bad64cf7b4575
f4f9898e8e13c8e62328c504bc236f33c431e38c
refs/heads/master
2023-03-15T13:15:11.756664
2021-11-28T17:31:26
2021-11-28T17:31:26
228,446,345
0
0
null
2023-03-06T12:35:23
2019-12-16T18:08:37
Python
UTF-8
Python
false
false
404
py
computer_parts = ["computer", "monitor", "keyboard", "mouse", "mouse mat"] for part in computer_parts: print(part) print(computer_parts[2]) print(computer_parts[:3]) print(computer_parts[-1]) # Strings and Lists are both sequences # The big differeneces between strings and lists is # Strings are immutable meaning they cannot be changed # Lists are mutable, you can change the contents of a list
[ "evan.schweitzer.hratx44@gmail.com" ]
evan.schweitzer.hratx44@gmail.com
ff8d003eb83c85ec20fd29307cfa44507cee252a
b6e569f75870c331f69b7d55ee8f8e3e4355f51c
/account/views.py
914f15b982625e3dd870db5b5671c177d0059982
[]
no_license
begimai123/MYBLOG
e390b62efaa0e78060babdb3ce4c1fca95109dde
3ae47766af8e0bfdfeadf209c9a7902392cc206c
refs/heads/master
2023-04-13T02:13:21.094426
2021-04-27T04:53:37
2021-04-27T04:53:37
361,983,958
0
0
null
null
null
null
UTF-8
Python
false
false
2,138
py
from django.shortcuts import render from rest_framework import status from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.generics import get_object_or_404 from rest_framework.response import Response from rest_framework.views import APIView from .models import MyUser from .serializers import RegistrationSerializer, CustomLoginSerializer, CreateNewPasswordSerializer from .utils import send_activation_email class RegistrationView(APIView): def post(self, request): data = request.data serializer = RegistrationSerializer(data=data) if serializer.is_valid(raise_exception=True): serializer.save() return Response('Successfully registered', status=status.HTTP_201_CREATED ) return Response('Not valid', status=status.HTTP_400_BAD_REQUEST) class ActivationView(APIView): def get(self, request, activation_code): user = get_object_or_404(MyUser,activation_code=activation_code) user.is_active = True user.activation_code = '' user.save() return Response('Successfully activated', status=status.HTTP_200_OK) class LoginView(ObtainAuthToken): serializer_class = CustomLoginSerializer # api/v1/account/forgot_password/?email=jannelya@gmail.com class ForgotPassword(APIView): def get(self, request): email = request.query_params.get('email') print(email) user = get_object_or_404(MyUser, email=email) user.is_active = False user.create_activation_code() user.save() send_activation_email(email=email, activation_code=user.activation_code, is_password=True) return Response('На Вашу почту отправлен код активации', status=status.HTTP_200_OK) class ForgotPasswordComplete(APIView): def post(self, request): data = request.data serializer = CreateNewPasswordSerializer(data=data) if serializer.is_valid(raise_exception=True): serializer.save() return Response('Вы успешно восстановили пароль', status=status.HTTP_200_OK)
[ "begimaidosieva1@gmail.com" ]
begimaidosieva1@gmail.com
533dcf1322f8166627a2158712fc9355dd632898
d087f90c6e64cb74c9f61a1dbc807662896e7ce9
/Domains/Algorithms/sWAP cASE/main.py
4f612d828d504e95cd9361bfcd55369b65995e8f
[]
no_license
youfeng243/hackerrank
e7c26e56f30731ee27ac17b19712362c53a3bb94
913ec6db9a861c9f97726dde24488c10db63d23c
refs/heads/master
2021-01-10T01:08:38.413900
2016-02-29T14:24:25
2016-02-29T14:24:25
49,575,420
1
0
null
null
null
null
UTF-8
Python
false
false
465
py
''' from __future__ import print_function text = raw_input() textlen = len(text) for i in xrange(textlen): if text[i].islower(): print (text[i].upper(),sep="",end="") else: print (text[i].lower(),sep="",end="") for i in text: if i.islower(): print (i.upper(),sep="",end="") else: print (i.lower(),sep="",end="") ''' print (''.join([ i.lower() if i.isupper() else i.upper() for i in raw_input() ]))
[ "youfeng243@163.com" ]
youfeng243@163.com
83195e00d218aa30e013968d9740532fab773cf2
d30b45d4f5abc90434970d3280cd70a3c8a70690
/bin/pip
7c804f5eb1f36b261b935011acbfd931893b3173
[]
no_license
ivan2375/venv01blog
9883a5f796a9cc0e85368b78be5fd73cf86b6759
b696ace9310a08380e53ef82ced3c8eca7df1d9d
refs/heads/master
2021-01-19T17:49:57.767251
2017-08-22T17:48:08
2017-08-22T17:48:08
101,089,049
0
0
null
null
null
null
UTF-8
Python
false
false
260
#!/Users/ivan.hsu/Documents/ProgrammingProjects/Python/Venv01/bin/python # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "ivan.hsu@IvanMBP15.local" ]
ivan.hsu@IvanMBP15.local
e7e466f95b12b358ad6e38e3f1a752e07fb850ae
6bcd16a2468ccaa6f0abe2d534094727258e7023
/dateevent_daemon
46f289359df7cb8e42acb789cac700051a56ad6e
[]
no_license
Cermit/DateEvent
939112de3293274e221f84a8d2b578e7ea2464cb
6111e259eecbd9719ad2893d9684177b61d7c3e5
refs/heads/master
2020-06-03T13:41:50.549888
2012-03-05T18:55:32
2012-03-05T18:55:32
2,715,796
1
0
null
null
null
null
UTF-8
Python
false
false
9,800
#!/usr/bin/env python #-*- coding: utf-8 -*- import os import sys if os.path.exists('/usr/share/dateevent'): sys.path.append("/usr/share/dateevent") import ConfigParser import subprocess import dbus import dbus.mainloop.glib from sqlite3 import * from time import time from datetime import datetime from eventfeed import EventFeedService, EventFeedItem from PySide import QtCore from PySide import QtGui from daemon import Daemon class CalEventDaemon(QtCore.QObject): def __init__(self): QtCore.QObject.__init__(self) # set data self.all_calendars = self.get_calendars() self.calendar_names = self.get_calendar_names(self.all_calendars) self.calendar_ids = self.get_calendar_ids(self.all_calendars) self.choice_days_ahead = ['1','2','3','4','5','6','7','14','30'] self.choice_show_max_events = ['1','2','3','4','5','7','10'] # Config stuff self.config = ConfigParser.ConfigParser() if os.path.exists(os.path.expanduser('~/.config/dateevent.cfg')): self.readconf() else: self.defaultconf() self.readconf() self.timer = QtCore.QTimer() self.timer.setSingleShot(True) #dbus dbus.mainloop.glib.DBusGMainLoop(set_as_default=True) self.bus = dbus.SessionBus() try: # Get the remote object self.remote_object = self.bus.get_object("org.freedesktop.Tracker1", "/org/freedesktop/Tracker1/Resources") # Get the remote interface for the remote object self.iface = dbus.Interface(self.remote_object, "org.freedesktop.Tracker1.Resources") except dbus.DBusException: print_exc() sys.exit(1) self.iface.connect_to_signal("GraphUpdated", self.calendar_db_changed) self.timer.timeout.connect(self.update_neu) self.update_feed(self.selected_dayamount) #------------------------------------------------------------------------- # config-methods def defaultconf(self): self.config.add_section('General') self.config.set('General', 'selected_dayamount', '2') self.config.set('General', 'selected_calendars', []) self.config.set('General', 'next_event_on_top', 'True') self.config.set('General', 'show_events_max', '5') self.save_config() def readconf(self): self.config.readfp(open(os.path.expanduser( '~/.config/dateevent.cfg'), 'rwb')) self.selected_dayamount = int(self.config.get('General', 'selected_dayamount')) self.selected_calendars = list(eval(self.config.get('General', 'selected_calendars'))) self.next_event_on_top = eval(self.config.get('General', 'next_event_on_top')) self.show_events_max = int(self.config.get('General', 'show_events_max')) def save_config(self): with open(os.path.expanduser('~/.config/dateevent.cfg'), 'wb') as configfile: self.config.write(configfile) #---------------------------------------------------------------------------- def calendar_db_changed(self, arg1, arg2, arg3): if arg1 =='http://www.semanticdesktop.org/ontologies/2007/04/02/ncal#Event': print "kalender-db verändert, update event-screen" self.update_feed(self.selected_dayamount) def start(self, new_dayamount): self.get_events(new_dayamount, self.selected_calendars, self.show_events_max) def update_neu(self): self.update_feed(self.selected_dayamount) def get_calendars(self): # verbindung zur sqlite-db conn = connect("/home/user/.calendar/db") curs = conn.cursor() # SQL-Abfrage für alle Kalender query_calendars = "SELECT CalendarId,Name,Color\ FROM Calendars\ WHERE modifiedDate > 1306879230" # SQL-Abfrage durchführen und Ergebnisse ausgeben curs.execute(query_calendars) all_calendars = curs.fetchall() conn.close() return all_calendars def get_calendar_names(self,calendarlist): calendar_names = [] for calId, name, color in calendarlist: calendar_names.append(name) return calendar_names def get_calendar_ids(self,calendarlist): calendar_ids = [] for calId, name, color in calendarlist: calendar_ids.append(calId) return calendar_ids def get_events(self, dayamount, calendar_ids, show_events_max): # verbindung zur sqlite-db conn = connect("/home/user/.calendar/db") curs = conn.cursor() # nächsten tage, die abgefragt werden sollen days_ahead = int(self.choice_days_ahead[int(dayamount)]) #print show_events_max # calendars selected_calender = [self.all_calendars[i][0] for i in calendar_ids] selected_calender = unicode("','".join(selected_calender)) # unix zeit von heute + 5 Sekunden wg Timer beim Daemon unixtime_now = int(time()) + 5 print "in get_events:", unixtime_now unixtime_in_days_ahead = unixtime_now + days_ahead*86400 # SQL-Abfrage der Events nur für die ausgewählten Kalender # zweite Datestartabfrage für die faketime query_events = "SELECT Summary, Location, DateStart, Notebook, DateStart FROM Components \ WHERE DateStart BETWEEN {0} AND {1}\ AND Notebook in ('{2}')\ AND DateDeleted = '0'".format(unixtime_now, unixtime_in_days_ahead, selected_calender) curs.execute(query_events) self.all_events = [] self.all_events = curs.fetchall() self.all_events = sorted(self.all_events, key = lambda event: event[2]) print self.all_events if self.next_event_on_top: self.all_events = self.change_events_timeline(self.all_events) for summary, location, datestart, cal, faketime in self.all_events[:self.show_events_max]: calId = self.calendar_ids.index(cal) faketime = datetime.fromtimestamp(faketime) datestart = datetime.fromtimestamp(datestart) day = int(str(datestart)[8:10]) self.feeder(summary, location, faketime, day, calId) # Verbindung zur DB beenden conn.close() def change_events_timeline(self, events): if events: time_last_event = events[-1][2] for i, event in enumerate(events): events[i] = list(event) time_event = event[2] days_delta = (time_last_event - time_event)/86400 faketime = time_event + days_delta * 86400 + (len(events)-i)*86400 events[i][4] = faketime return events #-------------------------------------------------------------------------------------------------- def feeder(self, summary, location, datestart, day, calId): calendarname = self.all_calendars[calId][1] calendarcolor = self.all_calendars[calId][2] service = EventFeedService('dateevent', 'DateEvent') if os.path.exists('/usr/share/dateevent/img'): icon = '/usr/share/dateevent/img/icon-l-calendar-{0}.png'.format(day) else: icon = '/home/user/MyDocs/dateevent/img/icon-l-calendar-{0}.png'.format(day) item = EventFeedItem(icon, u'<font color="{0}" size="-3">{1}</font>'.format(calendarcolor,calendarname), datestart) #gültiger Timestamp: datetime.datetime(2011, 11, 02, 8, 30, 0, 0) item.set_body(u'<font size="+1">{0}</font>'.format(summary)) item.set_footer(location) item.set_custom_action(self.on_item_clicked) service.add_item(item) #-------------------------------------------------------------------------------------------------- def update_feed(self, dayamount): print "machen wir mal ein Update!" service = EventFeedService('dateevent', 'DateEvent') service.remove_items() self.readconf() self.get_events(dayamount,self.selected_calendars, self.show_events_max) print "Zeit Jetzt:", time() print "Zeit nächster Termin:", self.all_events[0][2] print "Zeit bis zum nächsten Termin:" , self.all_events[0][2]-time() if self.timer.isActive(): self.timer.stop() print "bin hier" self.timer.setInterval((self.all_events[0][2]-time())*1000) self.timer.start() #-------------------------------------------------------------------------------------------------- def on_item_clicked(self): print 'the user clicked the item' subprocess.Popen(['/usr/bin/organiser']) #-------------------------------------------------------------------------------------------------- class MyDaemon(Daemon): def run(self): app = QtCore.QCoreApplication(sys.argv) start = CalEventDaemon() sys.exit(app.exec_()) if __name__ == "__main__": daemon = MyDaemon('/tmp/daemon-dateevent.pid') if len(sys.argv) == 2: if 'start' == sys.argv[1]: daemon.start() elif 'stop' == sys.argv[1]: daemon.stop() elif 'restart' == sys.argv[1]: daemon.restart() else: print "Unknown command" sys.exit(2) sys.exit(0) else: print "usage: %s start|stop|restart" % sys.argv[0] sys.exit(2)
[ "boris@pohlers-web.de" ]
boris@pohlers-web.de
95faae4c3d99f9fe7b0b38261ca6ed324dd109f9
4bae4a5ff3089ea478a536c6f9d10803f0a1058b
/poste/views.py
2a5ac69fb743f7c35c7969b6bd6486ebd002865a
[]
no_license
mohamed-amine-maaroufi/social-network-django
db6a36bbb6519361ed5b44f5f91ec1f6615a9970
4c8fe63a7060427c172b7cede4c5a44258de10d1
refs/heads/master
2021-08-28T18:26:05.297170
2017-12-12T23:23:17
2017-12-12T23:23:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,773
py
from django.contrib.auth.decorators import login_required from django.http import JsonResponse from django.utils import timezone from django.shortcuts import render, get_object_or_404 from django.shortcuts import render, redirect # Create your views here. from django.views.decorators.http import require_POST from poste.forms import PostForm, CommentForm from poste.models import Post def post_list(request): posts = Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date') return render(request, 'poste/post_list.html', {'section': 'posts','posts': posts}) def post_detail(request, pk): post = get_object_or_404(Post, pk=pk) return render(request, 'poste/post_detail.html', {'post': post}) def post_new(request): if request.method == "POST": form = PostForm(request.POST) if form.is_valid(): post = form.save(commit=False) post.author = request.user post.published_date = timezone.now() post.save() return redirect('post_detail', pk=post.pk) else: form = PostForm() return render(request, 'poste/post_edit.html', {'form': form}) def post_edit(request, pk): post = get_object_or_404(Post, pk=pk) if request.method == "POST": form = PostForm(request.POST, instance=post) if form.is_valid(): post = form.save(commit=False) post.author = request.user post.published_date = timezone.now() post.save() return redirect('post_detail', pk=post.pk) else: form = PostForm(instance=post) return render(request, 'poste/post_edit.html', {'form': form}) def post_remove(request, pk): post = get_object_or_404(Post, pk=pk) post.delete() return redirect('dashboard') def add_comment_to_post(request, pk): post = get_object_or_404(Post, pk=pk) if request.method == "POST": form = CommentForm(request.POST) if form.is_valid(): comment = form.save(commit=False) comment.post = post comment.save() return redirect('post_detail', pk=post.pk) else: form = CommentForm() return render(request, 'poste/add_comment_to_post.html', {'form': form}) @login_required @require_POST def post_like(request): post_id = request.POST.get('id') action = request.POST.get('action') if post_id and action: try: post = Post.objects.get(id=post_id) if action == 'like': post.users_like.add(request.user) else: post.users_like.remove(request.user) return JsonResponse({'status':'ok'}) except: pass return JsonResponse({'status':'ko'})
[ "aminemaaroufi40@gmail.com" ]
aminemaaroufi40@gmail.com
e6494ca65bec7c312419a5a0650ba71912aa229e
84e661d5d293ec0c544fedab7727767f01e7ddcf
/security/utils.py
38eb674978ff268071338f7811f0de31645f8423
[ "BSD-3-Clause" ]
permissive
groundupnews/gu
ea6734fcb9509efc407061e35724dfe8ba056044
4c036e79fd735dcb1e5a4f15322cdf87dc015a42
refs/heads/master
2023-08-31T13:13:47.178119
2023-08-18T11:42:58
2023-08-18T11:42:58
48,944,009
21
23
BSD-3-Clause
2023-09-14T13:06:42
2016-01-03T11:56:48
JavaScript
UTF-8
Python
false
false
698
py
from django.contrib.auth.password_validation import MinimumLengthValidator class StaffMinimumLengthValidator(MinimumLengthValidator): def __init__(self, staff_min_length=14, other_min_length=9): self.staff_min_length = staff_min_length self.other_min_length = other_min_length super().__init__(self.staff_min_length) def validate(self, password, user=None): if user and user.is_staff is True: self.min_length = self.staff_min_length else: self.min_length = self.other_min_length super().validate(password, user)
[ "nathangeffen@gmail.com" ]
nathangeffen@gmail.com
7f5235ef055eb553258319be0bcf2c6a64bb75c9
c5d1c3754b46b1509177add5ac1a532832bd6322
/quickstart.py
d356df68cc8d27f748adcade53ef5991637d7563
[]
no_license
aylanismello/boost-instagram
f2d3ee011a63bcec154b63d1e89d10542b4b0e12
bec82f95edcf6458cf8e7bfe5a19f5fd98807971
refs/heads/master
2022-07-16T13:33:05.655302
2020-05-12T02:11:55
2020-05-12T02:11:55
263,208,831
0
0
null
null
null
null
UTF-8
Python
false
false
4,184
py
# https://github.com/timgrossmann/InstaPy/blob/master/DOCUMENTATION.md # https://github.com/InstaPy/instapy-quickstart/tree/master/quickstart_templates # Blocking likes issue: https://github.com/timgrossmann/InstaPy/issues/4609 import csv import random, os, sys from dotenv import load_dotenv # imports from instapy import InstaPy from instapy import smart_run from instapy import set_workspace load_dotenv() followlist = [] with open('los_angles_users_with_followings.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: new_follower = row[5] followlist.append(new_follower) followlist = followlist[::-1] try: user = sys.argv[1] except: print('Pass which user you want to run this on') sys.exit() headless_browser = True print(f'headless browser? -> {headless_browser}') # follow_list insta_username = os.getenv( "HY_USERNAME") if user == 'hy' else os.getenv("BC_USERNAME") insta_password = os.getenv( "HY_PASSWORD") if user == 'hy' else os.getenv("BC_PASSWORD") cookie_path = os.getenv( "HY_COOKIE_PATH") if user == 'hy' else os.getenv("BC_COOKIE_PATH") if os.path.exists(cookie_path): # removing the file using the os.remove() method os.remove(cookie_path) print(f'Removed cookie at {cookie_path}') else: # file not found message print(f'File {cookie_path} not found in the directory') disable_image_load = True max_followers = 3000 min_followers = 50 min_following = 80 comments = [] burn_tags = [ "bossanova", "latintrap", "jazz", "futurebeats", "futurejazz", "futurebaile", "ableton", 'mpb', 'chillbaile', 'funk150', 'beats', 'soulection', 'bailefunk', 'jdilla', 'producer', 'chillhop', 'afrobeat', 'kuduro', 'moombahton', 'globalclub' ] secondary_tags = [ "pickupjazz", "pickupbeats", "bossanova", "latintrap", "jazz", "futurebeats", "futurejazz", "futurebaile", "ableton", "djmix", 'mpb', 'chillbaile', 'funk150', "djset", "soundcloud", "djproducer", 'bedroomproducer', 'producerlife' 'beats', 'soulection', 'bailefunk', 'ukg', 'jdilla', 'producer', 'chillhop', 'afrobeat', 'kuduro' ] hy_tags = [ 'abletonpush', 'abletonbeats', 'abletonpush2', 'bossanova', 'mpb', 'pickupjazz', 'pickupbeats', 'futurebeats', 'futuremusic', 'soulection', 'bailefunk', 'chillbaile', 'chillhop', 'electronica', 'lamusic', 'soundcloud', 'latinhouse', 'musicproducer', 'abletonlive', 'studiolife', 'beatmakers', 'electrocumbia' ] tags = hy_tags if user == 'hy' else burn_tags random.shuffle(tags) dont_like_tags = [ 'yoga', 'vegan', 'workout', 'sexy', 'nazi', 'whitesupremacy', 'kkk', 'exercise', 'food', 'techno', 'trance', 'confederate', 'psytrance', 'trancemusic', 'housemix', 'learnguitar', 'lessons' ] likes_per_tag = 5 locations = ['212999109/los-angeles-california/'] # get an InstaPy session! # set headless_browser=True to run InstaPy in the background session = InstaPy(username=insta_username, password=insta_password, disable_image_load=disable_image_load, headless_browser=headless_browser) with smart_run(session): # GENERAL SETTINGS session.set_dont_like(dont_like_tags) session.set_relationship_bounds(enabled=True, delimit_by_numbers=True, max_followers=max_followers, min_followers=min_followers, min_following=min_following) session.set_delimit_liking(enabled=True, max_likes=500) # Look around this user's profile and do shit session.set_user_interact(amount=3, randomize=True, percentage=69, media='Photo') session.set_do_like(enabled=True, percentage=69) # ACITIVTY # START! session.like_by_tags(tags, amount=likes_per_tag, interact=True) # session.follow_by_list(followlist=followlist, # times=1, sleep_delay=600, interact=True) # session.like_by_feed(amount=100, randomize=True, # unfollow=False, interact=True) # session.like_by_locations(locations, amount=100)
[ "aylanismello@gmail.com" ]
aylanismello@gmail.com
eef72f6b51880660e4b1ce6582030f3c8b68cbff
235746e7bdb0cc4b11e9eda6878a85828853b7c7
/PlayAssetDelivery/BundletoolScriptSample/generate_asset_pack.py
27e7f8222032aca7b08a7536af942d4b0effce68
[ "Apache-2.0" ]
permissive
android/app-bundle-samples
0a156df874331f2588f867050c439c5f7808e7ee
a72d67aa462b3f081cc101437110ae9f91b403cc
refs/heads/main
2023-08-16T00:25:19.290817
2023-03-22T14:14:32
2023-03-22T14:17:46
206,879,574
710
360
Apache-2.0
2023-03-22T14:17:48
2019-09-06T21:54:59
C++
UTF-8
Python
false
false
5,775
py
#!/usr/bin/env python3 # # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script to generate a valid asset pack from a given assets folder. Instant delivery is not supported. """ import argparse import distutils.dir_util import os import shutil import sys import tempfile manifest_template = """<?xml version="1.0" encoding="utf-8"?> <manifest xmlns:dist="http://schemas.android.com/apk/distribution" package="{package_name}" split="{asset_pack_name}"> <dist:module dist:type="asset-pack"> <dist:delivery> <dist:{delivery_mode}/> </dist:delivery> <dist:fusing dist:include="true"/> </dist:module> </manifest> """ def parse_args() -> argparse.Namespace: """Parse input arguments.""" parser = argparse.ArgumentParser( description="Generates a valid asset pack from a given assets folder", add_help=True) parser.add_argument( "--packagename", required=True, help="Package name of the app") parser.add_argument( "--assetpackname", required=True, help="Name of the asset pack module") parser.add_argument( "--deliverymode", required=True, choices=["install-time", "fast-follow", "on-demand"], help="Delivery mode of the asset pack module") parser.add_argument( "--assetsdir", required=True, help="Folder to read assets from") parser.add_argument("--outdir", required=True, help="Output folder") parser.add_argument( "--overwrite", required=False, action="store_true", help="Overwrite existing files") return parser.parse_args() def abs_expand_all(path: str) -> str: return os.path.abspath(os.path.expandvars(os.path.expanduser(path))) def get_assets_dir(args: argparse.Namespace) -> str: assets_dir = abs_expand_all(args.assetsdir) if (not (os.path.isdir(assets_dir) and os.access(assets_dir, os.X_OK) and os.access(assets_dir, os.R_OK))): print( "Assets folder ({assets_dir}) is not accessible. Check permissions." .format(assets_dir=assets_dir), file=sys.stderr) sys.exit(-1) return assets_dir def create_output_dir(args: argparse.Namespace) -> str: """Get the output directory.""" output_dir = abs_expand_all(args.outdir) if not os.path.isdir(output_dir): try: os.makedirs(output_dir) except OSError as e: print(e, file=sys.stderr) sys.exit(-1) if (not (os.path.isdir(output_dir) and os.access(output_dir, os.X_OK) and os.access(output_dir, os.W_OK))): print( "Output folder ({output_dir}) is not accessible. Check permissions." .format(output_dir=output_dir), file=sys.stderr) sys.exit(-1) return output_dir def get_output_file_name(output_dir: str, args: argparse.Namespace) -> str: output_file_name = os.path.join(output_dir, args.assetpackname) if os.path.exists(output_file_name) and not args.overwrite: print( "Output file {output_file_name} exists. Specify --overwrite to bypass. Exiting." .format(output_file_name=output_file_name)) sys.exit(-1) return output_file_name def make_manifest(package_name: str, asset_pack_name: str, delivery_mode: str, pack_directory: str) -> None: """Generate the Android Manifest file for the pack.""" manifest = manifest_template.format( package_name=package_name, asset_pack_name=asset_pack_name, delivery_mode=delivery_mode) manifest_folder = os.path.join(pack_directory, "manifest") try: os.makedirs(manifest_folder) except OSError as e: print("Cannot create manifest folder. {e}".format(e=e), file=sys.stderr) sys.exit(-1) manifest_file_name = os.path.join(manifest_folder, "AndroidManifest.xml") manifest_file = open(manifest_file_name, "w") print(manifest, file=manifest_file) manifest_file.close() print("Generated {manifest}".format(manifest=manifest_file_name)) def copy_assets(src: str, dest: str) -> None: """Copy assets from one folder to another.""" assets_folder = os.path.join(dest, "assets") try: os.makedirs(assets_folder) except OSError as e: print("Cannot create assets folder. {e}".format(e=e), file=sys.stderr) sys.exit(-1) try: distutils.dir_util.copy_tree(src, assets_folder) except FileNotFoundError as e: print( "Cannot copy assets folder into temporary folder. {e}".format(e=e), file=sys.stderr) sys.exit(-1) print( "Copied assets into {assets_folder}".format(assets_folder=assets_folder)) def main(): args = parse_args() assets_dir = get_assets_dir(args) output_dir = create_output_dir(args) output_file_name = get_output_file_name(output_dir, args) with tempfile.TemporaryDirectory(dir=output_dir) as pack_dir: print("Created temporary working folder: {pack_dir}".format( pack_dir=pack_dir)) make_manifest(args.packagename, args.assetpackname, args.deliverymode, pack_dir) copy_assets(assets_dir, pack_dir) output_pack_path = shutil.make_archive( os.path.join(output_dir, output_file_name), "zip", pack_dir) print("Asset pack is generated at {output_pack_path}.\nDone.".format( output_pack_path=output_pack_path)) if __name__ == "__main__": main()
[ "agiuglia@google.com" ]
agiuglia@google.com
2756de0d21cdc922c2a96026b315a55640b2ece7
38941ac80bb2473baa8558d870daa53459688f35
/utils/config.py
63264514746eb4a8e452699b4875471da5b6c57a
[]
no_license
waxiao1214/flask
15ce2a710322e4b288c444bef9e365492fdbb626
f2f8aa551a9236ed9c64bc27d62741b363c043a8
refs/heads/master
2022-04-06T00:28:58.500293
2020-02-05T17:47:34
2020-02-05T17:47:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,701
py
from solariat_bottle import settings class SettingsProxy(object): """ Simple proxy to combine solariat_bottle.settings with Flask.config """ def __init__(self, config): self._config = config def __getitem__(self, name): null = object() item = settings.get_var(name, null) if item is null: item = self._config[name] return item def __setitem__(self, name, item): setattr(settings, name, item) self._config[name] = item def get(self, name, default=None): null = object() item = settings.get_var(name, null) if item is null: item = self._config.get(name, default) return item def iteritems(self): keys = set(vars(settings)) | set(vars(self._config)) return ((key, self.get(key)) for key in keys) def iterkeys(self): return (key for key,_ in self.iteritems()) def itervalues(self): return (val for _,val in self.itervalues()) def sync_with_keyserver(): from solariat.cipher.keystore import secure_storage, RemoteKeyServerError get_var = settings.get_var secure_storage.configure( storage_proxy=SettingsProxy({}), key_field='AES_KEY_256', keyserver_config=get_var('KEYSERVER_CONFIG')) try: secure_storage.keyserver_sync() except RemoteKeyServerError as e: settings.LOGGER.critical(unicode(e), exc_info=True) raise if get_var('APP_MODE') == 'prod' \ and get_var('KEYSERVER_CONFIG', {}).get('remote_sync_required', True): assert get_var('AES_KEY_256') != get_var('TEST_AES_KEY_256'), \ "The key was not updated"
[ "henryza1994@outlook.com" ]
henryza1994@outlook.com
cde8bc25a08de424823ffe9ff194c2c48cdbd611
a9192511e74c524f1b8f16b186e683fd8e849e95
/4.2 shopping/shopping.py
e78ac9e2cb7c85bebe4984ed9fd277c26319823d
[]
no_license
NguyenLeVo/cs80
32fd212b2c9ba7a421a2977e390ef5b89f83a9c4
677ae97e00040631f6954dca36e3e6f35d415572
refs/heads/master
2022-11-10T01:21:58.790057
2020-06-28T20:07:46
2020-06-28T20:07:46
275,659,018
0
0
null
null
null
null
UTF-8
Python
false
false
7,637
py
# Write an AI to predict whether online shopping customers will complete a purchase. # Supervised Learning - Classification import csv import sys import calendar from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import Perceptron # Perceptron classification model from sklearn import svm # Support Vector Machine, a classification model TEST_SIZE = 0.4 def main(): # Check command-line arguments if len(sys.argv) != 2: sys.exit("Usage: python shopping.py data") # Load data from spreadsheet and split into train and test sets evidence, labels = load_data(sys.argv[1]) X_train, X_test, y_train, y_test = train_test_split( evidence, labels, test_size=TEST_SIZE ) # Train model and make predictions model = train_model(X_train, y_train) predictions = model.predict(X_test) sensitivity, specificity = evaluate(y_test, predictions) # Print results print(f"Correct: {(y_test == predictions).sum()}") print(f"Incorrect: {(y_test != predictions).sum()}") print(f"True Positive Rate: {100 * sensitivity:.2f}%") print(f"True Negative Rate: {100 * specificity:.2f}%") def load_data(filename): """ Load shopping data from a CSV file `filename` and convert into a list of evidence lists and a list of labels. Return a tuple (evidence, labels). evidence should be a list of lists, where each list contains the following values, in order: - Administrative, an integer - Administrative_Duration, a floating point number - Informational, an integer - Informational_Duration, a floating point number - ProductRelated, an integer - ProductRelated_Duration, a floating point number - BounceRates, a floating point number - ExitRates, a floating point number - PageValues, a floating point number - SpecialDay, a floating point number - Month, an index from 0 (January) to 11 (December) - OperatingSystems, an integer - Browser, an integer - Region, an integer - TrafficType, an integer - VisitorType, an integer 0 (not returning) or 1 (returning) - Weekend, an integer 0 (if false) or 1 (if true) labels should be the corresponding list of labels, where each label is 1 if Revenue is true, and 0 otherwise. """ # Open the file with open("shopping.csv") as file: reader = csv.reader(file) # Skip the header next(reader) # Load shopping data data = [] for row in reader: ''' You have an abbreviated month name, so use %b: from datetime import datetime datetime.strptime('Jan', '%b') >>> 1 or import calendar abbr_to_num = {name: num for num, name in enumerate(calendar.month_abbr) if num} abbr_to_num['Jan'] >>> 1 ''' # Convert month (11th column) to number: # In the dataset, every month is abbreviated, except for June. So manually change June if row[10] == 'June': row[10] = 5 else: abbr_to_num = {name: num for num, name in enumerate(calendar.month_abbr) if num} # In the month.abbr, the length was 13, element 0 was empty, we want Jan to be 0 not 1 so minus 1 row[10] = abbr_to_num[row[10]] - 1 # Convert VisitorType (16th column) if row[15] == 'Returning_Visitor': row[15] = 1 elif row[15] == 'New_Visitor': row[15] = 0 # 'Other' case else: row[15] = 0.5 # Convert Weekend (17th column) ''' Shorter row[16] = int(row[16] == 'TRUE') row[16] = int(row[16] == 'FALSE') ''' if row[16].upper() == 'TRUE': row[16] = 1 elif row[16].upper() == 'FALSE': row[16] = 0 # Convert Revenue (18th column) ''' row[17] = int(row[17] == 'TRUE') row[17] = int(row[17] == 'FALSE') ''' if row[17].upper() == 'TRUE': row[17] = 1 elif row[17].upper() == 'FALSE': row[17] = 0 # Append these values into database data.append({ # 1st key: Evidencea: list of lists of values from 1st to 17th data values "evidence": [float(cell) for cell in row[:17]], # 2nd key: Labels: a list of labels of whether there was revenue (18th column) # If there's revenue, return 1. Else return 0 "label": 1 if row[17] == 1 else 0 }) # Set up evidence and labels elememts of tuple evidence = [row["evidence"] for row in data] labels = [row["label"] for row in data] return evidence, labels def train_model(evidence, labels): """ Given a list of evidence lists and a list of labels, return a fitted k-nearest neighbor model (k=1) trained on the data. """ model = KNeighborsClassifier(n_neighbors=1) model.fit(evidence, labels) return model # Use y_test to save time. No need to rewrite the evidence and labels tuple to training and testing data set def evaluate(labels, predictions): """ Given a list of actual labels and a list of predicted labels, return a tuple (sensitivity, specificty). Assume each label is either a 1 (positive) or 0 (negative). `sensitivity` should be a floating-point value from 0 to 1 representing the "true positive rate": the proportion of actual positive labels that were accurately identified. `specificity` should be a floating-point value from 0 to 1 representing the "true negative rate": the proportion of actual negative labels that were accurately identified. """ ''' This is to predict whether the program's prediction matches the actual result (+ vs + and - vs -) correct = (labels == predictions).sum() incorrect = (labels != predictions).sum() ''' ''' To check sensivity and specificity, we need to: If actual result is true for revenue, we add it to the positive sum counter If the predicted result is positive (true for revenue), and it matches the actual result, we add it to the positive counter. Vice versa with the negative. ''' pos = 0 neg = 0 sum_pos = 0 sum_neg = 0 for actual, predicted in zip(labels, predictions): if actual == 1: sum_pos += 1 if actual == predicted: pos += 1 else: sum_neg += 1 if actual == predicted: neg += 1 sensivity = pos / sum_pos specificity = neg / sum_neg return sensivity, specificity if __name__ == "__main__": main() ''' Perceptron Correct: 4319 Incorrect: 613 True Positive Rate: 21.21% True Negative Rate: 99.38% Support Vector Machine Correct: 4163 Incorrect: 769 True Positive Rate: 1.54% True Negative Rate: 100.00% KNeighbor K=3 Correct: 4217 Incorrect: 715 True Positive Rate: 32.35% True Negative Rate: 95.47% KNeighbor K=1 Correct: 4073 Incorrect: 859 True Positive Rate: 39.97% True Negative Rate: 90.20% '''
[ "NguyenLeVo@github.com" ]
NguyenLeVo@github.com
f59fbe13735d62fa7d62c13cfbf744ecdd25f38e
c2cbbbb5157cd780d6a2ceecd53f2fdf7b5726c9
/portfolio/models.py
0e8aa06f5b4773ba74c0f94e50956c408497d5b4
[]
no_license
Efukuda/efsREST
d588151d99ca0292f19319f1a330e5d6503e52eb
6dda452fe78ad6e4a346ba79bee819175ed21846
refs/heads/master
2020-09-10T17:56:18.908468
2019-11-14T21:10:30
2019-11-14T21:10:30
221,787,108
0
0
null
null
null
null
UTF-8
Python
false
false
2,366
py
from django.db import models from django.utils import timezone # Create your models here. class Customer(models.Model): name = models.CharField(max_length=50) address = models.CharField(max_length=200) cust_number = models.IntegerField(blank=False, null=False) city = models.CharField(max_length=50) state = models.CharField(max_length=50) zipcode = models.CharField(max_length=10) email = models.EmailField(max_length=200) cell_phone = models.CharField(max_length=50) created_date = models.DateTimeField( default=timezone.now) updated_date = models.DateTimeField(auto_now_add=True) def created(self): self.created_date = timezone.now() self.save() def updated(self): self.updated_date = timezone.now() self.save() def __str__(self): return str(self.cust_number) class Investment(models.Model): customer = models.ForeignKey(Customer, on_delete=models.CASCADE, related_name='investments') category = models.CharField(max_length=50) description = models.CharField(max_length=200) acquired_value = models.DecimalField(max_digits=10, decimal_places=2) acquired_date = models.DateField(default=timezone.now) recent_value = models.DecimalField(max_digits=10, decimal_places=2) recent_date = models.DateField(default=timezone.now, blank=True, null=True) def created(self): self.acquired_date = timezone.now() self.save() def updated(self): self.recent_date = timezone.now() self.save() def __str__(self): return str(self.customer) def results_by_investment(self): return self.recent_value - self.acquired_value class Stock(models.Model): customer = models.ForeignKey(Customer, on_delete=models.CASCADE, related_name='stocks') symbol = models.CharField(max_length=10) name = models.CharField(max_length=50) shares = models.DecimalField (max_digits=10, decimal_places=1) purchase_price = models.DecimalField(max_digits=10, decimal_places=2) purchase_date = models.DateField(default=timezone.now, blank=True, null=True) def created(self): self.recent_date = timezone.now() self.save() def __str__(self): return str(self.customer) def initial_stock_value(self): return self.shares * self.purchase_price
[ "efukuda@unomaha.edu" ]
efukuda@unomaha.edu
716cb71d2926d73b6c87c5c97ecc84f2d03c90c9
474b327e28a0aebaff65b2d8156cd2fa83b2aad1
/python/index.py
4f8ce5d2306234626b017badfb26b107034ba3de
[]
no_license
harishvenkatram/demo1
0e2889c7b132d880f1ef108078b0ba979999fa4d
4d1438d933a31b92b42d471d8c53f9c682797451
refs/heads/master
2022-12-04T02:44:35.926423
2020-08-24T03:29:06
2020-08-24T03:29:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
#!C:\Users\UMANG KEJRIWAL\AppData\Local\Programs\Python\Python38-32\python print () import cgi print("Umang")
[ "noreply@github.com" ]
harishvenkatram.noreply@github.com
b120efee5779518f4a6c6d97bfd7c808094ce080
419a5e8678eb1788d026cde793d108010a6d620e
/Project1/fresh_tomatoes.py
9c6747a766fdc9dd3582487b5e41da7de4b3b365
[]
no_license
thuzarwin/Udacity-Full-Stack-Web-Developer-Nanodegree
67065b9b8983f1ad39c9d2d612d54fcb83b8f1a5
7dd1409c6e0f5f7542a103cea062b76966482279
refs/heads/master
2021-06-08T05:15:24.236832
2016-10-04T04:53:35
2016-10-04T04:54:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,696
py
import webbrowser import os import re import entertainment_center # Styles and scripting for the page main_page_head = ''' <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>Fresh Tomatoes!</title> <!-- Bootstrap 3 --> <link rel="stylesheet" href="https://netdna.bootstrapcdn.com/bootstrap/3.1.0/css/bootstrap.min.css"> <link rel="stylesheet" href="https://netdna.bootstrapcdn.com/bootstrap/3.1.0/css/bootstrap-theme.min.css"> <script src="http://code.jquery.com/jquery-1.10.1.min.js"></script> <script src="https://netdna.bootstrapcdn.com/bootstrap/3.1.0/js/bootstrap.min.js"></script> <style type="text/css" media="screen"> body { padding-top: 80px; } #trailer .modal-dialog { margin-top: 200px; width: 640px; height: 480px; } .hanging-close { position: absolute; top: -12px; right: -12px; z-index: 9001; } #trailer-video { width: 100%; height: 100%; } .movie-tile { margin-bottom: 20px; padding-top: 20px; } .movie-tile:hover { background-color: #EEE; cursor: pointer; } .scale-media { padding-bottom: 56.25%; position: relative; } .scale-media iframe { border: none; height: 100%; position: absolute; width: 100%; left: 0; top: 0; background-color: white; } </style> <script type="text/javascript" charset="utf-8"> // Pause the video when the modal is closed $(document).on('click', '.hanging-close, .modal-backdrop, .modal', function (event) { // Remove the src so the player itself gets removed, as this is the only // reliable way to ensure the video stops playing in IE $("#trailer-video-container").empty(); }); // Start playing the video whenever the trailer modal is opened $(document).on('click', '.movie-tile', function (event) { var trailerYouTubeId = $(this).attr('data-trailer-youtube-id') var sourceUrl = 'http://www.youtube.com/embed/' + trailerYouTubeId + '?autoplay=1&html5=1'; $("#trailer-video-container").empty().append($("<iframe></iframe>", { 'id': 'trailer-video', 'type': 'text-html', 'src': sourceUrl, 'frameborder': 0 })); }); // Animate in the movies when the page loads $(document).ready(function () { $('.movie-tile').hide().first().show("fast", function showNext() { $(this).next("div").show("fast", showNext); }); }); </script> </head> ''' # The main page layout and title bar main_page_content = ''' <body> <!-- Trailer Video Modal --> <div class="modal" id="trailer"> <div class="modal-dialog"> <div class="modal-content"> <a href="#" class="hanging-close" data-dismiss="modal" aria-hidden="true"> <img src="https://lh5.ggpht.com/v4-628SilF0HtHuHdu5EzxD7WRqOrrTIDi_MhEG6_qkNtUK5Wg7KPkofp_VJoF7RS2LhxwEFCO1ICHZlc-o_=s0#w=24&h=24"/> </a> <div class="scale-media" id="trailer-video-container"> </div> </div> </div> </div> <!-- Main Page Content --> <div class="container"> <div class="navbar navbar-inverse navbar-fixed-top" role="navigation"> <div class="container"> <div class="navbar-header"> <a class="navbar-brand" href="#">Fresh Tomatoes Movie Trailers</a> </div> </div> </div> </div> <div class="container"> {movie_tiles} </div> </body> </html> ''' # A single movie entry html template movie_tile_content = ''' <div class="col-md-6 col-lg-4 movie-tile text-center" data-trailer-youtube-id="{trailer_youtube_id}" data-toggle="modal" data-target="#trailer"> <img src="{poster_image_url}" width="220" height="342"> <h2>{movie_title}</h2> </div> ''' def create_movie_tiles_content(movies): # The HTML content for this section of the page content = '' for movie in movies: # Extract the youtube ID from the url youtube_id_match = re.search( r'(?<=v=)[^&#]+', movie.trailer_youtube_url) youtube_id_match = youtube_id_match or re.search( r'(?<=be/)[^&#]+', movie.trailer_youtube_url) trailer_youtube_id = (youtube_id_match.group(0) if youtube_id_match else None) # Append the tile for the movie with its content filled in content += movie_tile_content.format( movie_title=movie.title, poster_image_url=movie.poster_image_url, trailer_youtube_id=trailer_youtube_id ) return content def open_movies_page(movies): # Create or overwrite the output file output_file = open('fresh_tomatoes.html', 'w') # Replace the movie tiles placeholder generated content rendered_content = main_page_content.format( movie_tiles=create_movie_tiles_content(movies)) # Output the file output_file.write(main_page_head + rendered_content) output_file.close() # open the output file in the browser (in a new tab, if possible) url = os.path.abspath(output_file.name) webbrowser.open('file://' + url, new=2) # Create movies with pre-defined movies inside entertainment_center.py. my_movies = entertainment_center.entertainment_center() open_movies_page(my_movies)
[ "gerrywu@utexas.edu" ]
gerrywu@utexas.edu
d9c4f7f505a201081de9b7f4da64e67fe884cecb
2231edd55bb0e23471ccd2f4c543e0b67f1aa678
/src/C3/3-8.py
9e9f1786cdc82fa6e4e0e97642f4b5c3b4fad3f7
[]
no_license
johnhuzhy/StellaPythonExam
665d8f906be7cc973b66bc8a8f84d177ed87b178
52d4fb09da1e19fc825a59de1f9ab23c4dbe2409
refs/heads/master
2022-11-10T22:02:04.298075
2020-06-25T11:10:30
2020-06-25T11:10:30
265,241,177
0
0
null
null
null
null
UTF-8
Python
false
false
308
py
#这个break结束的是第二层循环,第一层循环还会去执行1,2,3 #else语句是和第一层for搭配的,所以会出力else里的内容 b=[['apple','orange','banana','grape'],(1,2,3)] for y in b: for z in y: if z=='orange': break print(z) else: print('fruit is gone')
[ "johnho560@gmail.com" ]
johnho560@gmail.com
af5e2fb5643a8c3f17b041036b893ffe89a19e84
1e9e5f745e34b4e490a090fa658ecc9084b2142e
/cancertype_prediction/learn_and_predict_tcga_split_cancertypes_optim.py
f40ba083bb5062ae7661fd395cf65cde2feb74ef
[ "MIT" ]
permissive
DPBayes/dp-representation-transfer
588ccf78c49dbcdfc941054254716cf120c6c66d
0c8389cc36659a7606bceac2531eaef7663ac49c
refs/heads/master
2020-04-30T21:11:51.418433
2019-03-22T13:48:19
2019-03-22T13:48:19
177,088,165
1
1
null
null
null
null
UTF-8
Python
false
false
18,755
py
''' Representation learning testing for TCGA data. Set all parameters in this script & run with parameter "batch" or "local". ''' import numpy as np import logging import datetime import time import math from common import expInterp, ensure_dir_exists, pretty_duration import batch from types import SimpleNamespace ###################################################################### # SETUP ###################################################################### # set the following parameter values # logging configuration logging.basicConfig(level=logging.INFO) # input dataset #data_set = "TCGA_split_pub_geneexpr" data_set = "TCGA_geneexpr" data_type = 'rnaseq_tpm_rle_log2_gene_expressions' target_set = "TCGA_cancertype" target_type = 'cancer_types' # list of cancer type pairs that will for the private dataset # (and will be predicted/classified) #priv_splits = [ # ["brain lower grade glioma", "glioblastoma multiforme"], # brain # ["skin cutaneous melanoma", "uveal melanoma"], # melanoma (skin, eye) # ["kidney chromophobe", "kidney clear cell carcinoma", "kidney papillary cell carcinoma"], # kidney # ["lung adenocarcinoma", "lung squamous cell carcinoma"], # lung #] priv_splits = [ ("lung squamous cell carcinoma", "head & neck squamous cell carcinoma"), # ("kidney clear cell carcinoma", "kidney papillary cell carcinoma"), # ("lung adenocarcinoma", "lung squamous cell carcinoma"), # ("breast invasive carcinoma", "lung squamous cell carcinoma"), # ("colon adenocarcinoma", "rectum adenocarcinoma"), ] #priv_splits = 'all' # size of the representation to be learned #repr_dims = [2, 4, 8, 12, 16] #repr_dims = [2, 4, 8, 16] #repr_dims = [16] repr_dim = 4 # RNG seeds #seeds = [0, 1, 2, 3, 4] #seeds = [0, 1, 2] #seeds = [4] seeds = [0] ## parameters for representation learning #n_epochs = 1 n_epochs = 2000 deadline = None #max_duration = None #max_duration = datetime.timedelta(minutes=5) max_duration = datetime.timedelta(hours=1) batch_size = 64 normalize_data = False #validation_split = 0 validation_split = 0.2 # fraction of data to use for prediction testing (instead of training) pred_test_size = 0.3 early_stopping = True #early_stopping = 'val_secondary_loss' # logging settings (what to log) log_weights = False # droputs (note: must be multiples of 0.1) #first_layer_dropout = 0.1; other_layer_dropouts = 0.2 #first_layer_dropout = 0.2; other_layer_dropouts = 0.4 # save predicted values (i.e. first encoded then decoded ) in to a file? save_pred = False ## parameters for predictions #scale_fun = "none"; scale_const = 1.0 #scale_fun = "norm_max"; scale_const = 1.01 #scale_fun = "dims_max"; scale_const = 1.0 scale_fun = "norm_avg"; scale_const = 1.0 #scale_fun = "dims_std"; scale_const = 1.0 #clip = "none" clip = "norm" #clip = "dims" bounding_slack = 0.01 #private = False #epsilon = np.inf epsilon = 1.0 regularizer_strength = 0.1 ## the parameters that will be optimized domain = [ {'name': 'learning_rate_log10', 'type': 'continuous', 'domain': (-5,-1)}, {'name': 'n_hidden_layers', 'type': 'discrete', 'domain': [1, 2, 3]}, {'name': 'hidden_layer_size_mul_log10', 'type': 'continuous', 'domain': (0,4)}, ] # any constraints for the parameters that will be optimized constraints = None ## parameters for parameter optimization gpyopt_batch_size = 4 gpyopt_max_iter = 20 ## other parameters id_suffix = "" ########################################################################################## # END OF SETUP ########################################################################################## def cross_entropy(x, x_pred): epsilon = 10e-8 x_pred = np.clip(x_pred, epsilon, 1.0 - epsilon) return -np.average(np.sum(x * np.log(x_pred), axis=1)) def relative_cross_entropy(x, x_pred): x_avg = np.average(x, axis=0) return cross_entropy(x, x_pred) / cross_entropy(x, x_avg) def mean_squared_error(x, x_pred): return np.average((x - x_pred) ** 2) def relative_mean_squared_error(x, x_pred): mse = mean_squared_error(x, x_pred) x_avg = np.average(x, axis=0) return mse / np.average((x - x_avg) ** 2) def get_params(params, domain): p = dict() for i, var in enumerate(domain): p[var['name']] = params[i] return SimpleNamespace(**p) def run_optimization(args, domain, constraints, batch_size, max_iter): logging.info('Starting parameter optimization...') import GPyOpt ensure_dir_exists("param_opt") initial_design_type = 'random' initial_design_numdata = batch_size logging.info('Selecting initial parameters...') space = GPyOpt.core.task.space.Design_space(domain, constraints) params = GPyOpt.experiment_design.initial_design(initial_design_type, space, initial_design_numdata) logging.info('Running...') results = run_batch(args, params) all_params = params all_results = results for i in range(max_iter): print(all_params, flush=True) print(all_results, flush=True) logging.info('Selecting a new set of parameters...') bo = GPyOpt.methods.BayesianOptimization(f=None, domain = domain, X = all_params, Y = all_results, acquisition_type = 'EI', normalize_Y = True, evaluator_type = 'local_penalization', batch_size = batch_size, acquisition_jitter = 0) params = bo.suggest_next_locations() logging.info('Running...') results = run_batch(args, params) all_params = np.vstack((all_params, params)) all_results = np.vstack((all_results, results)) np.save("param_opt/opt_params%s.npy" % id_suffix, all_params) np.save("param_opt/opt_results%s.npy" % id_suffix, all_results) def run_batch(args, params): ensure_dir_exists("run_parameters") params = [get_params(p, domain) for p in params] np.save("run_parameters/params.npy", params) assert len(params) == gpyopt_batch_size args.wait = True batch.run_tasks(args) # get results #return np.random.randn(gpyopt_batch_size, 1) res = np.zeros((gpyopt_batch_size, 1)) for param_id in range(gpyopt_batch_size): tot_res = 0 for priv_cancertypes in priv_splits: data_name = '-'.join(priv_cancertypes).replace(' ', '_') for seed in seeds: full_model_id = "%s-%d-%s-s%d%s" % (data_name, repr_dim, param_id, seed, id_suffix) filename = "param_opt/opt_result%s-%s.txt" % (id_suffix, full_model_id) try: tot_res += np.loadtxt(filename) import os os.remove(filename) except: logging.info('Warning, could not load "%s"' % filename) res[param_id] = tot_res / (len(priv_splits) * len(seeds)) return -res # the task function that is run with each argument combination def task(args): import pandas param_id, priv_cancertypes, seed = args logging.info("priv classes = %s, params_id = %s, seed = %d", priv_cancertypes, param_id, seed) #repr_dim, (alg_id, _, make_alg), seed = args #logging.info("algorithm = %s, seed = %d", alg_id, seed) # read the data sets alg_id = param_id logging.info("Loading parameters...") params = np.load("run_parameters/params.npy") params = params[param_id] logging.info("Reading data...") gene_expr = pandas.read_hdf("data/%s.h5" % (data_set), data_type) logging.info(" * gene expression shape: %d x %d" % gene_expr.shape) logging.info("Filtering out genes with low expressions...") low_expr = (np.median(gene_expr, axis=0) < 0.0) gene_expr = gene_expr.iloc[:,~low_expr] logging.info(" * %d of %d remaining (%d removed)" % (sum(~low_expr), low_expr.size, sum(low_expr))) logging.info("Loading cancer types...") cancer_type = pandas.read_hdf("data/%s.h5" % (target_set), target_type) assert np.array_equal(gene_expr.index, cancer_type.index) # split logging.info("Splitting...") priv = cancer_type.isin(priv_cancertypes) logging.info(" * %d private samples, %d public samples (of %d total)" % (sum(priv), sum(~priv), priv.size)) from common import categorical_to_binary x_pub = gene_expr[~priv].as_matrix() y_pub = cancer_type[~priv].cat.codes.as_matrix() x_priv = gene_expr[priv].as_matrix() y_priv = cancer_type[priv].cat.codes.as_matrix() #y = categorical_to_binary(aux_target.values) #num_classes = y.shape[1] data_name = '-'.join(priv_cancertypes).replace(' ', '_') # A hack to have a different seed if the algorithm is run multiple times # with the same parameters. Destroys reproducibility... import time seed0 = int(time.time()*100) % (2**32) # init rng np.random.seed(seed0) import torch torch.manual_seed(seed0) if torch.cuda.is_available() and torch.cuda.device_count() > 0: torch.cuda.manual_seed(seed0) ################################## # representation learning ################################# x = x_pub y = y_pub # separate validation set if needed val_x = None #val_y = None if validation_split: logging.info("Splitting into training and validation sets") from sklearn.model_selection import train_test_split train_x, val_x, train_y, val_y = train_test_split(x, y, test_size=validation_split, random_state=0) x, y = train_x, train_y #m = x.shape[0] #perm = np.random.permutation(m) #x = x[perm,:] #y = y[perm,:] #split_point = int(validation_split * m) #(val_x, x) = (x[:split_point,:], x[split_point:,:]) #(val_y, y) = (y[:split_point,:], y[split_point:,:]) logging.info(" * training set shape: %d x %d" % x.shape) logging.info(" * validation set shape: %d x %d" % val_x.shape) data_dim = x.shape[1] logging.info(" * data shape after preprocessing: %d x %d" % x.shape) logging.info("Learning the representaiton on public data...") logging.info(" * learning a representation of size %d", repr_dim) start_time = time.time() # init the algorithm #alg = make_alg(data_dim, repr_dim, num_classes) #alg = make_alg(data_dim, repr_dim) from models.vae_pytorch import VAE alg = VAE().init( input_dim = data_dim, latent_dim = repr_dim, #enc_dims = [], enc_dims = [int(10 ** params.hidden_layer_size_mul_log10)*repr_dim] * int(params.n_hidden_layers), dec_dims = 'same', enc_activations = 'relu', dec_activations = 'relu', prediction_mean_activation = 'sigmoid', prediction_var = 'gs', prediction_log_var_min = math.log(0.01**2), normalize_input_type = 'quantiles', normalize_input_quantile = 0.05, normalize_input_axis = 'global', normalize_input_target = (0, 1), normalize_input_clip = True, optimizer = 'Adam', optimizer_params = {'lr': 10.0 ** params.learning_rate_log10}, n_epochs = n_epochs, early_stopping = True, reduce_lr_on_plateau = False, batch_size = batch_size) # create output dir if does not exist ensure_dir_exists('res') full_model_id = "%s-%d-%s-s%d%s" % (data_name, repr_dim, alg_id, seed, id_suffix) # define the progress saving function progress_filename = 'res/progress-encdec-mse-%s.txt' % (full_model_id) progress_file = open(progress_filename, 'w', encoding='utf-8') #aux_progress_filename = 'res/progress-aux-ce-%s.txt' % (full_model_id) #aux_progress_file = open(aux_progress_filename, 'w', encoding='utf-8') if val_x is not None: val_progress_filename = 'res/progress-encdec-validation-mse-%s.txt' % (full_model_id) val_progress_file = open(val_progress_filename, 'w', encoding='utf-8') #aux_val_progress_filename = 'res/progress-aux-validation-ce-%s.txt' % (full_model_id) #aux_val_progress_file = open(aux_val_progress_filename, 'w', encoding='utf-8') def save_progress(): x_pred = alg.decode(alg.encode(x)) rel_mse = relative_mean_squared_error(x, x_pred) progress_file.write("%g\n" % rel_mse) #aux_pred = alg.predict_secondary(x) #aux_rel_ce = relative_cross_entropy(y, aux_pred) #aux_progress_file.write("%g\n" % aux_rel_ce) if val_x is not None: val_x_pred = alg.decode(alg.encode(val_x)) rel_mse = relative_mean_squared_error(val_x, val_x_pred) val_progress_file.write("%g\n" % rel_mse) #val_aux_pred = alg.predict_secondary(val_x) #aux_rel_ce = relative_cross_entropy(val_y, val_aux_pred) #aux_val_progress_file.write("%g\n" % aux_rel_ce) # fit to the training data alg.learn(x, validation_data=val_x, log_file_prefix=("log/%s" % (full_model_id)), per_epoch_callback_funs=[save_progress], deadline=deadline, max_duration=max_duration) # test reconstruction error x_pred = alg.decode(alg.encode(x)) rel_mse = relative_mean_squared_error(x, x_pred) val_x_pred = alg.decode(alg.encode(val_x)) val_rel_mse = relative_mean_squared_error(val_x, val_x_pred) logging.info(" * final error: rel_mse = %g, val_rel_mse = %g", rel_mse, val_rel_mse) elapsed = time.time() - start_time logging.info(" * running time = %s", pretty_duration(elapsed)) # save model #logging.info("Saving the learned model...") #ensure_dir_exists('repr_models') #alg.save("repr_models/%s" % (full_model_id)) ################################## # representation mapping ################################# x = x_priv y = y_priv # get the representation logging.info("Making the representation of private data...") x_repr = alg.encode(x) # test to predict the data itself x_pred = alg.decode(x_repr) rel_mse = relative_mean_squared_error(x, x_pred) logging.info(" * reconstruct the data: rel_mse = %g", rel_mse) ensure_dir_exists("res") with open("res/private-encdec-rel_mse-%d-%s-%s-s%d%s.txt" % (repr_dim, data_name, alg_id, seed, id_suffix), 'w', encoding='utf-8') as f: f.write("%.6f\n" % rel_mse) # save the representation #logging.info("Saving the representation...") #ensure_dir_exists("data_repr") #np.savetxt("data_repr/repr-%s-%d-%s-s%d%s.csv" % # (data_name, repr_dim, alg_id, seed, id_suffix), # x_repr, delimiter=',') ################################## # prediction ################################# x = x_repr # split train and test sets logging.info("Splitting to train and test sets...") from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=pred_test_size, random_state=0) logging.info(" * train samples: %d" % x_train.shape[0]) logging.info(" * test samples: %d" % x_test.shape[0]) # init rng np.random.seed(seed0) #print(np.amax(np.linalg.norm(x_train, axis=1))) #print(np.mean(np.linalg.norm(x_train, axis=1))) logging.info("Bounding the data to 1-sphere...") if scale_fun == "norm_max": logging.info(" * scale by max norm") scale_factor = np.amax(np.linalg.norm(x_train, axis=1)) elif scale_fun == "dims_max": logging.info(" * scale each dimension by max absolute value") scale_factor = np.amax(np.abs(x_train), axis=0) elif scale_fun == "norm_avg": logging.info(" * scale by average norm") scale_factor = np.mean(np.linalg.norm(x_train, axis=1)) elif scale_fun == "dims_std": logging.info(" * scale each dimension by standard deviation") scale_factor = np.std(x_train, axis=0) elif scale_fun == "none": scale_factor = 1.0 else: assert False x_train /= scale_factor * scale_const x_test /= scale_factor * scale_const #print(np.amax(np.linalg.norm(x_train, axis=1, keepdims=True))) if clip == "norm": logging.info(" * clip norms to max 1") x_train /= np.maximum(np.linalg.norm(x_train, axis=1, keepdims=True) * (1 + bounding_slack), 1) x_test /= np.maximum(np.linalg.norm(x_test, axis=1, keepdims=True) * (1 + bounding_slack),1) elif clip == "dims": assert False, "not implemented" elif clip == "none": logging.info(" * no clipping -> no bounding") assert private == False #or np.isinf(epsilon) else: assert False #for private in [False, True]: for private in [True]: # fit logging.info("Fitting a model...") if private: logging.info(" * DP logistic regression: epsilon=%g, alpha=%g", epsilon, regularizer_strength) from models.logistic_regression import DPLogisticRegression model = DPLogisticRegression().init(repr_dim, classes=np.unique(y), alpha=regularizer_strength, epsilon=epsilon) else: logging.info(" * logistic regression: alpha=%g", regularizer_strength) from sklearn.linear_model import LogisticRegression model = LogisticRegression(C=1/regularizer_strength) model.fit(x_train, y_train) #print(model.predict(x_test)) # compute mean accuracy on test set logging.info("Testing the model...") #acc = model.score(x_test, y_test) from sklearn.metrics import accuracy_score train_acc = accuracy_score(y_train, model.predict(x_train)) test_acc = accuracy_score(y_test, model.predict(x_test)) logging.info(" * train accuracy = %.6f", train_acc) logging.info(" * test accuracy = %.6f", test_acc) logging.info("Writing results to disk...") ensure_dir_exists("res") filename = ("res/cancertype-pred-accuracy-%d-%s-%s-s%d-%s-%d-%s%s.txt" % (repr_dim, data_name, alg_id, seed, scale_fun, scale_const, clip, ("-e%g" % (epsilon) if private else "-nonpriv"))) logging.info(" * filename: %s", filename) with open(filename, 'w', encoding='utf-8') as f: f.write("%.6f\n" % test_acc) filename = "param_opt/opt_result%s-%s.txt" % (id_suffix, full_model_id) with open(filename, 'w', encoding='utf-8') as f: f.write("%.6f\n" % test_acc) ########## MAIN ########## def main(): param_ids = range(gpyopt_batch_size) batch.init(task=task, args_ranges=(param_ids, priv_splits, seeds)) args = batch.parse_args() if args.action == "task": assert args.task is not None id = int(args.task) logging.info('Running task id %d...', id) batch._run_task(id) else: run_optimization(args, domain, constraints, gpyopt_batch_size, gpyopt_max_iter) # init and run main() # try to workaround a bug that tensorflow randomly throws an exception in the end # this seems to be the same: https://github.com/tensorflow/tensorflow/issues/3745 # possibly also this: https://github.com/tensorflow/tensorflow/issues/3388 from sys import modules if "keras.backend.tensorflow_backend" in modules: import keras.backend keras.backend.clear_session()
[ "mixheikk@LM8-MAT-01.local" ]
mixheikk@LM8-MAT-01.local
734ccbece3793fccf093f76b9406ba61a8eecd2c
85f513c638304a04243ba361ae0c3cf59910bdbb
/indglobal_employee/models/hr_employee.py
502a39fd27a725b22ccc9a76e0e732327efe83f7
[]
no_license
Raghupathy15/Posiflex
0c27058559755336a7a79f8c4cea3c3e06842431
9551dd52aa93f6b46258bd7cc07f05e2532b6d92
refs/heads/main
2023-01-22T19:53:17.344864
2020-12-09T09:34:36
2020-12-09T09:34:36
319,907,074
0
0
null
null
null
null
UTF-8
Python
false
false
8,039
py
from datetime import datetime, timedelta from odoo import models, fields,api, _ class HrEmployeePrivate(models.Model): _inherit = 'hr.employee' emp_id = fields.Char(string='Emp ID') work_email = fields.Char('Work Email',required=True) user_level = fields.Selection([('admin', 'Admin'),('sales_head', 'Sales Head'),('rsm','RSM'),('sm','SM'), ('partner','Partner'),('internal_sales_person','Internal-sales person')],string='CRM User Level',required=True) parent_id = fields.Many2one('hr.employee', 'Sales Manager', domain="['|', ('company_id', '=', False), ('company_id', '=', company_id)]") rsm_id = fields.Many2one('hr.employee', 'RSM', domain="['|', ('company_id', '=', False), ('company_id', '=', company_id)]") sales_head_id = fields.Many2one('hr.employee', 'Sales Head', domain="['|', ('company_id', '=', False), ('company_id', '=', company_id)]") company_ids = fields.Many2many('res.company', 'res_company_emp_rel', 'user_id', 'cid', string='Allowed Companies', default=lambda self: self.env.company.ids) @api.model def create(self, vals): res = super(HrEmployeePrivate, self).create(vals) if res: # create user when create employee user_id = self.env['res.users'].create({ 'name': res.name, 'login': res.work_email, 'email': res.work_email, 'sales_manager_id': res.parent_id.id, 'rsm_id': res.rsm_id.id, 'sales_head_id': res.sales_head_id.id, 'password': '123', 'groups_id': [(4,self.env.ref('base.group_user').id)] }) user_id.write({'groups_id': [(6,0,[self.env.ref('hr.group_hr_user').id])]}) if res.user_level == 'admin': user_id.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_id.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_manager').id)]}) user_id.write({'groups_id': [(4, self.env.ref('stock.group_stock_manager').id)]}) user_id.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_manager').id)]}) user_id.write({'groups_id': [(4, self.env.ref('base.group_erp_manager').id)]}) if res.user_level == 'sales_head': user_id.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_id.write({'groups_id': [(4, self.env.ref('indglobal_employee.group_hr_sales_head').id)]}) user_id.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_salesman').id)]}) user_id.write({'groups_id': [(4, self.env.ref('stock.group_stock_user').id)]}) user_id.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_user').id)]}) if res.user_level == 'rsm': user_id.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_id.write({'groups_id': [(4, self.env.ref('indglobal_employee.group_hr_rsm').id)]}) user_id.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_salesman').id)]}) user_id.write({'groups_id': [(4, self.env.ref('stock.group_stock_user').id)]}) user_id.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_user').id)]}) if res.user_level == 'sm': user_id.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_id.write({'groups_id': [(4, self.env.ref('indglobal_employee.group_hr_sm').id)]}) user_id.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_salesman').id)]}) user_id.write({'groups_id': [(4, self.env.ref('stock.group_stock_user').id)]}) user_id.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_user').id)]}) if res.user_level == 'partner': user_id.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_id.write({'groups_id': [(4, self.env.ref('indglobal_employee.group_hr_partner').id)]}) user_id.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_salesman').id)]}) user_id.write({'groups_id': [(4, self.env.ref('stock.group_stock_user').id)]}) user_id.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_user').id)]}) if res.user_level == 'internal_sales_person': user_id.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_id.write({'groups_id': [(4, self.env.ref('indglobal_employee.group_hr_internal_sales_person').id)]}) user_id.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_salesman').id)]}) user_id.write({'groups_id': [(4, self.env.ref('stock.group_stock_user').id)]}) user_id.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_user').id)]}) res.user_id=user_id.id return res def write(self, values): res = super(HrEmployeePrivate, self).write(values) user_search = self.env['res.users'].search([('login', '=', self.work_email)]) if user_search: user_details = self.env['res.users'].write({ 'name': user_search.name, 'login': user_search.work_email, 'email': user_search.work_email, 'sales_manager_id': self.parent_id.id }) user_search.write({'sales_manager_id':self.parent_id.id,'rsm_id':self.rsm_id.id,'sales_head_id':self.sales_head_id.id}) user_search.write({'groups_id': [(6,0, [self.env.ref('hr.group_hr_user').id])]}) if self.user_level == 'admin': user_search.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_search.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_manager').id)]}) user_search.write({'groups_id': [(4, self.env.ref('stock.group_stock_manager').id)]}) user_search.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_manager').id)]}) user_search.write({'groups_id': [(4, self.env.ref('base.group_erp_manager').id)]}) if self.user_level == 'sales_head': user_search.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_search.write({'groups_id': [(4, self.env.ref('indglobal_employee.group_hr_sales_head').id)]}) user_search.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_salesman').id)]}) user_search.write({'groups_id': [(4, self.env.ref('stock.group_stock_user').id)]}) user_search.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_user').id)]}) if self.user_level == 'rsm': user_search.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_search.write({'groups_id': [(4, self.env.ref('indglobal_employee.group_hr_rsm').id)]}) user_search.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_salesman').id)]}) user_search.write({'groups_id': [(4, self.env.ref('stock.group_stock_user').id)]}) user_search.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_user').id)]}) if self.user_level == 'sm': user_search.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_search.write({'groups_id': [(4, self.env.ref('indglobal_employee.group_hr_sm').id)]}) user_search.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_salesman').id)]}) user_search.write({'groups_id': [(4, self.env.ref('stock.group_stock_user').id)]}) user_search.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_user').id)]}) if self.user_level == 'partner': user_search.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_search.write({'groups_id': [(4, self.env.ref('indglobal_employee.group_hr_partner').id)]}) user_search.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_salesman').id)]}) user_search.write({'groups_id': [(4, self.env.ref('stock.group_stock_user').id)]}) user_search.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_user').id)]}) if self.user_level == 'internal_sales_person': user_search.write({'groups_id': [(4, self.env.ref('hr.group_hr_manager').id)]}) user_search.write({'groups_id': [(4, self.env.ref('indglobal_employee.group_hr_internal_sales_person').id)]}) user_search.write({'groups_id': [(4, self.env.ref('sales_team.group_sale_salesman').id)]}) user_search.write({'groups_id': [(4, self.env.ref('stock.group_stock_user').id)]}) user_search.write({'groups_id': [(4, self.env.ref('purchase.group_purchase_user').id)]}) return res
[ "raghupathy@emxcelsolutions.com" ]
raghupathy@emxcelsolutions.com
a7ba89bcca1697463abe9959caa34d1f86a6b2cb
e1d9897c9daa5067b2572b6cbe871bfc3193ecfe
/groups/admin.py
df270398b93798dec953106ed6f5aeb9634db460
[]
no_license
andreas-andersen/wishlist
2816db7cf47ec07190c0423e5774b9fdcfc8bdaf
5fac4503485817f8a2b73f07aa6e56f73cba08ca
refs/heads/main
2023-07-01T05:55:31.298843
2021-08-10T18:06:01
2021-08-10T18:06:01
384,810,001
0
0
null
null
null
null
UTF-8
Python
false
false
910
py
from django.contrib import admin from django.contrib.auth.models import Group from .forms import ( CustomGroupAdminForm, AssignmentAdminForm, AssignmentsAdminForm, ) from .models import ( CustomGroup, Assignment, Assignments, ) class CustomGroupAdmin(admin.ModelAdmin): form = CustomGroupAdminForm model = CustomGroup filter_horizontal = ['permissions',] list_display = ['name', 'leader', 'created', 'deadline',] class AssignmentAdmin(admin.ModelAdmin): form = AssignmentAdminForm model = Assignment list_display = ['member', 'assignment'] class AssignmentsAdmin(admin.ModelAdmin): form = AssignmentsAdminForm model = Assignments list_display = ['group', 'time'] admin.site.unregister(Group) admin.site.register(CustomGroup, CustomGroupAdmin) admin.site.register(Assignment, AssignmentAdmin) admin.site.register(Assignments, AssignmentsAdmin)
[ "andreas.andersen@gmail.com" ]
andreas.andersen@gmail.com
5054475bccaf0879e8a054dc1c76c35c7c5437a1
fdf66fa44ebfb24c138ad9cd9c14ec4850f696cb
/ladim_plugins/sedimentation/ibm.py
4d887aa9e9f6b720c9d999301bc19f2dc1c77529
[ "MIT" ]
permissive
mcarvajalino/ladim_plugins
71ffb62abe4a1829fbf9670da7dad9c6d9e498ba
a83ca24f41400e42d2beaddad455fdfdb7a3e1cd
refs/heads/master
2022-11-24T13:34:49.970967
2020-07-20T14:25:27
2020-07-20T14:25:27
278,305,441
0
0
MIT
2020-07-09T08:18:36
2020-07-09T08:18:35
null
UTF-8
Python
false
false
4,848
py
import numpy as np class IBM: def __init__(self, config): # Time before a particle is taken out of the simulation [seconds] self.lifespan = config['ibm']['lifespan'] # Vertical mixing [m*2/s] self.D = config['ibm']['vertical_mixing'] # 0.001 m2/s -- 0.01 m2/s (?) self.taucrit = config['ibm'].get('taucrit', None) self.vertical_diffusion = self.D > 0 # Store time step value to calculate age self.dt = config['dt'] # Reference to other modules self.grid = None self.forcing = None self.state = None def update_ibm(self, grid, state, forcing): self.grid = grid self.forcing = forcing self.state = state self.resuspend() self.diffuse() self.sink() self.bury() self.kill_old() def resuspend(self): if self.taucrit is None: return ustar = self.shear_velocity_btm() tau = shear_stress_btm(ustar) resusp = tau > self.taucrit self.state.active[resusp] = True def bury(self): grid = self.grid a = self.state.active != 0 X, Y, Z = self.state.X[a], self.state.Y[a], self.state.Z[a] # Define which particles have settled to the bottom and which have not H = grid.sample_depth(X, Y) # Water depth at_seabed = Z > H Z[at_seabed] = H[at_seabed] # Store new vertical position self.state.Z[a] = Z self.state.active[a] = ~at_seabed def diffuse(self): # Get parameters a = self.state.active != 0 x, y, z = self.state.X[a], self.state.Y[a], self.state.Z[a] h = self.grid.sample_depth(x, y) # Diffusion b0 = np.sqrt(2 * self.D) dw = np.random.randn(z.size).reshape(z.shape) * np.sqrt(self.dt) z1 = z + b0 * dw # Reflexive boundary conditions z1[z1 < 0] *= -1 # Surface below_seabed = z1 > h z1[below_seabed] = 2*h[below_seabed] - z1[below_seabed] # Store new vertical position self.state.Z[a] = z1 def sink(self): # Get parameters a = self.state.active != 0 z = self.state.Z[a] w = self.state.sink_vel[a] # Sink velocity # Euler scheme, no boundary conditions self.state.Z[a] = z + self.dt * w def kill_old(self): state = self.state state.age += state.dt state.alive = state.alive & (state.age <= self.lifespan) def shear_velocity_btm(self): # Calculates bottom shear velocity from last computational layer # velocity # returns: Ustar at bottom cell x = self.state.X y = self.state.Y h = self.grid.sample_depth(x, y) u_btm, v_btm = self.forcing.velocity(x, y, h, tstep=0) U2 = u_btm*u_btm + v_btm*v_btm c = 0.003 return np.sqrt(c * U2) def shear_stress_btm(ustar): rho = 1000 return ustar * ustar * rho def ladis(x0, t0, t1, v, K): """ Lagrangian Advection and DIffusion Solver. Solve the diffusion equation in a Lagrangian framework. The equation is dc/dt = - grad (vc) + div (K grad c), where c is concentration, v is 3-dimensional velocity, K is a diagonal tensor (i.e. main axes oriented along coordinate axes) of diffusion. This is translated to a stochastic differential equation of the form dx = (v_x + d/dx K_xx) * dt + sqrt(2*K_xx) * dw_x, dy = (v_y + d/dy K_yy) * dt + sqrt(2*K_yy) * dw_y, dz = (v_z + d/dz K_zz) * dt + sqrt(2*K_zz) * dw_z, where x, y, z is the spatial position, K_xx, K_yy, K_zz are the diagonal elements of K, and dw_x, dw_y, dw_z are Wiener process differential elements with zero mean and stdev = sqrt(dt). Algorithm: Operator splitting: Diffusion first, then advection. Diffusion is solved using the gradient-free backwards Itô scheme, according to LaBolle (2000, 10.1029/1999WR900224). :param x0: An N x M vector of initial values, where N is the number of particles and M is the number of coordinates. :param t0: The initial time. :param t1: The end time. :param v: The velocity. A function (x, t) --> x-like. :param K: The diagonal elements of the diffusion tensor. A function (x, t) --> x-like. :return: An x0-like array of the new particle positions. """ dt = t1 - t0 # --- Diffusion, LaBolle scheme --- # First diffusion step (predictor) b0 = np.sqrt(2 * K(x0, t0)) dw = np.random.randn(x0.size).reshape(x0.shape) * np.sqrt(dt) x1 = x0 + b0 * dw # Second diffusion step (corrector) b1 = np.sqrt(2 * K(x1, t0)) x2 = x0 + b1 * dw # --- Advection, forward Euler --- a3 = v(x2, t0) x3 = x2 + a3 * dt return x3
[ "paal.naeverlid.saevik@hi.no" ]
paal.naeverlid.saevik@hi.no
4166a69a49c224c29b3c6e48f4a46bf539ccb102
3daaa4fca3c829d4654c3cd1fe0fc9215c8d31ee
/build/env/bin/pycolor
3fa70750c308cfd16d35d81a0267b67a049b31d6
[ "Apache-2.0" ]
permissive
yongshengwang/hue
0f8e41793ae8c1165860846fd2edb599e70a35a1
7d2a85f4269e8a3b5fd817bf52db80c8c98c76c7
refs/heads/master
2021-01-17T08:59:49.760232
2015-09-17T00:56:59
2015-09-17T00:56:59
42,576,621
0
0
null
2015-09-16T09:05:36
2015-09-16T09:05:36
null
UTF-8
Python
false
false
321
#!/home/tiny/hue/build/env/bin/python2.7 # EASY-INSTALL-ENTRY-SCRIPT: 'ipython==0.10','console_scripts','pycolor' __requires__ = 'ipython==0.10' import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.exit( load_entry_point('ipython==0.10', 'console_scripts', 'pycolor')() )
[ "wysnight@gmail.com" ]
wysnight@gmail.com
bb495c4beaa3e9dc52378f1884975061abdacc69
bc0a3e754509416b33501deb272801c119842c2d
/pur_beurre/functional_tests/tests.py
6029c076e1dcc51ec286cd5b8cb6a74ed66effef
[]
no_license
oliviernes/oc_P8
88374759eafb1f3f35e35cfc205c8ec38ca90a74
4671b8ff76ba2a7d99fd043772249ca2778ae11f
refs/heads/master
2023-08-11T23:11:53.304025
2020-10-25T19:19:39
2020-10-25T19:19:39
248,483,352
0
0
null
2021-09-22T19:35:51
2020-03-19T11:16:04
CSS
UTF-8
Python
false
false
8,389
py
"""Functional tests""" import time from django.test import LiveServerTestCase from selenium import webdriver from selenium.webdriver.common.keys import Keys class NewVisitorTest(LiveServerTestCase): """Class testing a new user visiting the Pur Beurre website""" fixtures = ["dumpy_content_fixtures"] def setUp(self): self.browser = webdriver.Firefox() def tearDown(self): self.browser.quit() def test_user_story(self): """Test the story of an user inside Pur Beurre app""" # Mell has heard about a website to get healthier products. She goes # to check out its homepage self.browser.get(self.live_server_url) time.sleep(1) # She notices the form bar in the header and in the center of the page self.assertIn("Pur", self.browser.title) bar_text = self.browser.find_element_by_tag_name("a").text self.assertIn("Pur", bar_text) # She is invited to enter a product item straight away inputbox = self.browser.find_element_by_name("query") self.assertEqual(inputbox.get_attribute("placeholder"), "Chercher") # She types "Nutella" into the text box in the middle of the screen inputboxs = self.browser.find_elements_by_name("query") inputbox_center = inputboxs[1] self.assertEqual( inputbox_center.get_attribute("placeholder"), "Produit" ) inputbox_center.send_keys("Nutella") # When she hits enter, the page updates, and now the page lists # healthier products of the same category. inputbox_center.send_keys(Keys.ENTER) time.sleep(1) prod_text = self.browser.find_element_by_tag_name("h4").text self.assertIn("Nocciolata", prod_text) # She selects a product and get a new page with the detail # of the product link = self.browser.find_element_by_xpath( '//a[@href="/product/8001505005592"]' ) link.click() time.sleep(1) # She enters a new product in the textbox in the top of the screen. inputbox = self.browser.find_element_by_name("query") self.assertEqual(inputbox.get_attribute("placeholder"), "Chercher") inputbox.send_keys("Véritable petit beurre") inputbox.send_keys(Keys.ENTER) time.sleep(1) # The page updates and show a new list of healthier products. # Mell try to save the first product. She click on the # save link but as she is not connected, the link send # her on the login page: save_texts = self.browser.find_elements_by_tag_name("h4") self.assertIn("Sauvegarder", save_texts[1].text) save_texts[1].click() time.sleep(1) # She tries to connect. She enters her email # and a wrong password. Then she clicks on the login button. signup_link = self.browser.find_element_by_id("signup") self.assertIn("un compte!", signup_link.text) username = self.browser.find_element_by_id("id_username") password = self.browser.find_element_by_id("id_password") username.send_keys("mell2010@gmail.com") password.send_keys("XXXXX") password.send_keys(Keys.ENTER) time.sleep(1) # The system inform her to try again: # Then, she click on the signup button because she doesn't # have an account: signup = self.browser.find_element_by_id("signup") signup.click() time.sleep(1) # The system display the signup form. She enters her # account information: username = self.browser.find_element_by_id("id_username") first_name = self.browser.find_element_by_id("id_first_name") email = self.browser.find_element_by_id("id_email") password1 = self.browser.find_element_by_id("id_password1") password2 = self.browser.find_element_by_id("id_password2") username.send_keys("Mell2010") first_name.send_keys("Mell") email.send_keys("mell2010@gmail.com") password1.send_keys("monsupermdp1234") password2.send_keys("monsupermdp1234") signup_title = self.browser.find_element_by_id("signup_title") self.assertEqual("Création de compte:", signup_title.text) button = self.browser.find_elements_by_tag_name("button") button[1].click() time.sleep(1) # The app display Mell's account page. She is now connected. # She search again the product "Véritable petit beurre" # in the search bar. inputbox = self.browser.find_element_by_name("query") self.assertEqual(inputbox.get_attribute("placeholder"), "Chercher") inputbox.send_keys("Véritable petit beurre") inputbox.send_keys(Keys.ENTER) time.sleep(1) # She tries now to save the second product ('Biscuit raisin') save_texts = self.browser.find_elements_by_tag_name("h4") self.assertEqual("Biscuit raisin", save_texts[2].text) save_texts[3].click() # A page inform her of the recording of the substitute and # display a table with her substitutes recorded. The table is # empty as it's her first product recorded. caption = self.browser.find_element_by_tag_name("h4") self.assertIn("Vos substituts enregistrés", caption.text) time.sleep(2) # She looks for an other substitute of 'Véritable petit beurre': inputbox = self.browser.find_element_by_name("query") self.assertEqual(inputbox.get_attribute("placeholder"), "Chercher") inputbox.send_keys("Véritable petit beurre") inputbox.send_keys(Keys.ENTER) # She try to save the same substitute than the last recording: time.sleep(2) save_texts = self.browser.find_elements_by_tag_name("h4") self.assertEqual("Biscuit raisin", save_texts[2].text) save_texts[3].click() # Now the app inform her that the product is already recorded # in the database: time.sleep(2) first_p = self.browser.find_elements_by_tag_name("p") self.assertIn("est déjà enregistré pour le produit", first_p[0].text) # Now the table display her first recording: first_rec = self.browser.find_elements_by_tag_name("td") self.assertEqual("Véritable petit beurre", first_rec[0].text) # She enters an other product in the search bar: inputbox = self.browser.find_element_by_name("query") inputbox.send_keys("La paille d’or aux framboises") inputbox.send_keys(Keys.ENTER) time.sleep(2) # She try to save an other substitute: save_texts = self.browser.find_elements_by_tag_name("h4") self.assertEqual("Belvita petit dejeuner moelleux", save_texts[2].text) save_texts[3].click() # Now the app inform her that the product has been recorded # in the database: first_p = self.browser.find_elements_by_tag_name("p") self.assertIn("a été enregistré pour le produit", first_p[0].text) time.sleep(2) # Now she logs out: logout = self.browser.find_element_by_xpath('//a[@href="/logout"]') logout.click() time.sleep(2) # Then she logs in: login = self.browser.find_element_by_xpath('//a[@href="/login/"]') login.click() time.sleep(2) username = self.browser.find_element_by_id("id_username") password = self.browser.find_element_by_id("id_password") username.send_keys("mell2010@gmail.com") password.send_keys("monsupermdp1234") password.send_keys(Keys.ENTER) # She checks that her recorded substitutes are still in the database: time.sleep(3) carrot = self.browser.find_element_by_xpath('//a[@href="/favorites/"]') carrot.click() first_rec = self.browser.find_elements_by_tag_name("td") self.assertEqual("Véritable petit beurre", first_rec[0].text) sec_rec = self.browser.find_elements_by_tag_name("td") self.assertEqual("Belvita petit dejeuner moelleux", sec_rec[3].text) time.sleep(2) # self.fail('Finish the test!') # Satisfied, she goes back to sleep after logging out:
[ "olivier.nesme@gmail.com" ]
olivier.nesme@gmail.com
d6cd2c0b41c0f13605d7b9fff2cf085d44260e30
9cf434b6ee59ab22496ee031fb4ab145bbaff1a2
/tranque_v1.8.4_source/backend/src/alerts/modules/ef/m2/desplazamiento_deformacion_muro/C4.py
f4cd5ac1032141486d6824cc375ae30512c1ed27
[]
no_license
oliverhernandezmoreno/SourcesOH
f2ff1a5e3377f0ac1fb8b3153d99d0ee703700b7
5d9ca5ab1caceafd4d11207139c9e56210156ef8
refs/heads/master
2023-01-05T02:51:25.172103
2020-08-27T14:39:34
2020-08-27T14:39:34
64,422,812
0
1
null
2022-12-30T17:25:10
2016-07-28T19:33:44
JavaScript
UTF-8
Python
false
false
656
py
from django.db.models import Q from alerts.modules import base from alerts.modules.base import spread from targets.models import DataSource from .base import DesplazamientoDeformacionController from alerts.modules.base_states import EVENT_STATES from alerts.modules.utils import single_state_create @spread(DataSource, Q(groups__canonical_name='inclinometros')) class Controller(DesplazamientoDeformacionController): states = base.StringEnum(*EVENT_STATES, "C4") TEMPLATE = "ef-mvp.m2.parameters.deformacion.inclinometro.muro.eje-x" relevant_events = [base.event_query(Q(template_name=TEMPLATE), 1)] create = single_state_create("C4")
[ "oliverhernandezmoreno@gmail.com" ]
oliverhernandezmoreno@gmail.com
5fcd07dbaf13100556f96409f7c098f0889be097
39e678fb9200560f9135ef3cb18c93f2a118fe9c
/svm/svm.py
c5001383c4e4f68913b80b5aacb4f07db83489c9
[]
no_license
devikrishnan/Prediction-Model---Diabetes
7061cbaa9a3fae4c0b02f9cec1752fb38dddadf8
533d0bfd90ef9b24cf46933311f3f6c6272f5c46
refs/heads/master
2021-09-07T07:08:12.572746
2018-02-19T10:33:18
2018-02-19T10:33:18
105,686,511
1
0
null
null
null
null
UTF-8
Python
false
false
2,294
py
from __future__ import print_function import pandas as pd import numpy as np from sklearn import datasets from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.svm import SVC from sklearn.model_selection import KFold from sklearn.metrics import confusion_matrix parameter_candidates = [ {'C': [1, 10, 100, 1000], 'kernel': ['linear']}, {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']}, ] class svm(): def fit(self): df = pd.read_csv('Datasetnew.csv',header=None) h=np.asarray(df) dataset = np.nan_to_num(h) XX = dataset[:,1:65] y = dataset[:,0] X = preprocessing.normalize(XX) k_fold = KFold(10) scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(SVC(), parameter_candidates, cv=5, scoring='%s_macro' % score) for k, (train, test) in enumerate(k_fold.split(X, y)): clf.fit(X[train], y[train]) #print() #print(y[train]) #print() print("Best parameters set found on development set:") print() print(clf.best_params_) print() '''print("Grid scores on development set:") print() means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print()''' print("Detailed classification report:") print() y_true, y_pred = y[test], clf.predict(X[test]) cnf_matrix_mnb = confusion_matrix(y[test], y_pred) print(classification_report(y_true, y_pred)) print() print(clf.score(X[test], y[test])) print(cnf_matrix_mnb) print() print() svm().fit()
[ "devikrishnan67@gmail.com" ]
devikrishnan67@gmail.com
acfbf5087c276f5a595830928c51cc2d5546c02a
2fbba2e0dd9afe5fbde70bd0d907b34cda5265ae
/lesson5/excersise3.py
299f887d87c8d7c353adb26e3def81196585f892
[]
no_license
htr2/pynetme
c3655fe6cf51c9a50dc69425410ef89088f4d8c4
59de01967cbab4f746e28bf4c929e02975bcf0d6
refs/heads/master
2020-03-27T00:25:52.258387
2019-07-29T10:08:56
2019-07-29T10:08:56
145,622,330
0
0
null
null
null
null
UTF-8
Python
false
false
1,986
py
#/usr/bin/env python """ Similar to lesson3, exercise4 write a function that normalizes a MAC address to the following format: 01:23:45:67:89:AB This function should handle the lower-case to upper-case conversion. It should also handle converting from '0000.aaaa.bbbb' and from '00-00-aa-aa-bb-bb' formats. The function should have one parameter, the mac_address. It should return the normalized MAC address Single digit bytes should be zero-padded to two digits. In other words, this: a:b:c:d:e:f should be converted to: 0A:0B:0C:0D:0E:0F Write several test cases for your function and verify it is working properly. """ from __future__ import print_function, unicode_literals import re def normalise_mac(mac_address): mac_address = mac_address.upper() normalised_mac = [] work_mac = re.split(r"[-:.]", mac_address) if len(work_mac) == 3: for mac_parts in work_mac: mac_part1 = mac_parts if len(mac_part1) < 4: mac_part1 = mac_part1.zfill(4) normalised_mac.append(mac_part1[:2]) normalised_mac.append(mac_part1[2:]) elif len(work_mac) == 6: for mac_part1 in work_mac: if len(mac_part1) < 2: mac_part1 = mac_part1.zfill(2) normalised_mac.append(mac_part1) else: print("Input Error") return ":".join(normalised_mac) """ print("0000.aaaa.bbbb:",normalise_mac("0000.aaaa.bbb")) print("00-00-aa-aa-bb-bb:",normalise_mac("00-00-aa-aa-bb-bb")) print("a:b:c:d:e:f:",normalise_mac("a:b:c:d:e:f")) print("1:1:1:1",normalise_mac("1:1:1:1")) """ # Some tests assert "01:23:02:34:04:56" == normalise_mac('123.234.456') assert "AA:BB:CC:DD:EE:FF" == normalise_mac('aabb.ccdd.eeff') assert "0A:0B:0C:0D:0E:0F" == normalise_mac('a:b:c:d:e:f') assert "01:02:0A:0B:03:44" == normalise_mac('1:2:a:b:3:44') assert "0A:0B:0C:0D:0E:0F" == normalise_mac('a-b-c-d-e-f') assert "01:02:0A:0B:03:44" == normalise_mac('1-2-a-b-3-44') print("Tests passed")
[ "hvoelksen@gmail.com" ]
hvoelksen@gmail.com
b7d59052bc35ff4ff1b5a0faa8b6f4383e22edad
bc9f66258575dd5c8f36f5ad3d9dfdcb3670897d
/platform/bq/third_party/google/auth/credentials.py
f3014a08d291f6cf1e635a17f5d8b3ed1381593a
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
google-cloud-sdk-unofficial/google-cloud-sdk
05fbb473d629195f25887fc5bfaa712f2cbc0a24
392abf004b16203030e6efd2f0af24db7c8d669e
refs/heads/master
2023-08-31T05:40:41.317697
2023-08-23T18:23:16
2023-08-23T18:23:16
335,182,594
9
2
NOASSERTION
2022-10-29T20:49:13
2021-02-02T05:47:30
Python
UTF-8
Python
false
false
13,988
py
#!/usr/bin/env python # Copyright 2016 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Interfaces for credentials.""" import abc import os import six from google.auth import _helpers, environment_vars from google.auth import exceptions @six.add_metaclass(abc.ABCMeta) class Credentials(object): """Base class for all credentials. All credentials have a :attr:`token` that is used for authentication and may also optionally set an :attr:`expiry` to indicate when the token will no longer be valid. Most credentials will be :attr:`invalid` until :meth:`refresh` is called. Credentials can do this automatically before the first HTTP request in :meth:`before_request`. Although the token and expiration will change as the credentials are :meth:`refreshed <refresh>` and used, credentials should be considered immutable. Various credentials will accept configuration such as private keys, scopes, and other options. These options are not changeable after construction. Some classes will provide mechanisms to copy the credentials with modifications such as :meth:`ScopedCredentials.with_scopes`. """ def __init__(self): self.token = None """str: The bearer token that can be used in HTTP headers to make authenticated requests.""" self.expiry = None """Optional[datetime]: When the token expires and is no longer valid. If this is None, the token is assumed to never expire.""" self._quota_project_id = None """Optional[str]: Project to use for quota and billing purposes.""" @property def expired(self): """Checks if the credentials are expired. Note that credentials can be invalid but not expired because Credentials with :attr:`expiry` set to None is considered to never expire. """ if not self.expiry: return False # Remove some threshold from expiry to err on the side of reporting # expiration early so that we avoid the 401-refresh-retry loop. skewed_expiry = self.expiry - _helpers.REFRESH_THRESHOLD return _helpers.utcnow() >= skewed_expiry @property def valid(self): """Checks the validity of the credentials. This is True if the credentials have a :attr:`token` and the token is not :attr:`expired`. """ return self.token is not None and not self.expired @property def quota_project_id(self): """Project to use for quota and billing purposes.""" return self._quota_project_id @abc.abstractmethod def refresh(self, request): """Refreshes the access token. Args: request (google.auth.transport.Request): The object used to make HTTP requests. Raises: google.auth.exceptions.RefreshError: If the credentials could not be refreshed. """ # pylint: disable=missing-raises-doc # (pylint doesn't recognize that this is abstract) raise NotImplementedError("Refresh must be implemented") def apply(self, headers, token=None): """Apply the token to the authentication header. Args: headers (Mapping): The HTTP request headers. token (Optional[str]): If specified, overrides the current access token. """ headers["authorization"] = "Bearer {}".format( _helpers.from_bytes(token or self.token) ) if self.quota_project_id: headers["x-goog-user-project"] = self.quota_project_id def before_request(self, request, method, url, headers): """Performs credential-specific before request logic. Refreshes the credentials if necessary, then calls :meth:`apply` to apply the token to the authentication header. Args: request (google.auth.transport.Request): The object used to make HTTP requests. method (str): The request's HTTP method or the RPC method being invoked. url (str): The request's URI or the RPC service's URI. headers (Mapping): The request's headers. """ # pylint: disable=unused-argument # (Subclasses may use these arguments to ascertain information about # the http request.) if not self.valid: self.refresh(request) self.apply(headers) class CredentialsWithQuotaProject(Credentials): """Abstract base for credentials supporting ``with_quota_project`` factory""" def with_quota_project(self, quota_project_id): """Returns a copy of these credentials with a modified quota project. Args: quota_project_id (str): The project to use for quota and billing purposes Returns: google.oauth2.credentials.Credentials: A new credentials instance. """ raise NotImplementedError("This credential does not support quota project.") def with_quota_project_from_environment(self): quota_from_env = os.environ.get(environment_vars.GOOGLE_CLOUD_QUOTA_PROJECT) if quota_from_env: return self.with_quota_project(quota_from_env) return self class CredentialsWithTokenUri(Credentials): """Abstract base for credentials supporting ``with_token_uri`` factory""" def with_token_uri(self, token_uri): """Returns a copy of these credentials with a modified token uri. Args: token_uri (str): The uri to use for fetching/exchanging tokens Returns: google.oauth2.credentials.Credentials: A new credentials instance. """ raise NotImplementedError("This credential does not use token uri.") class AnonymousCredentials(Credentials): """Credentials that do not provide any authentication information. These are useful in the case of services that support anonymous access or local service emulators that do not use credentials. """ @property def expired(self): """Returns `False`, anonymous credentials never expire.""" return False @property def valid(self): """Returns `True`, anonymous credentials are always valid.""" return True def refresh(self, request): """Raises :class:``InvalidOperation``, anonymous credentials cannot be refreshed.""" raise exceptions.InvalidOperation("Anonymous credentials cannot be refreshed.") def apply(self, headers, token=None): """Anonymous credentials do nothing to the request. The optional ``token`` argument is not supported. Raises: google.auth.exceptions.InvalidValue: If a token was specified. """ if token is not None: raise exceptions.InvalidValue("Anonymous credentials don't support tokens.") def before_request(self, request, method, url, headers): """Anonymous credentials do nothing to the request.""" @six.add_metaclass(abc.ABCMeta) class ReadOnlyScoped(object): """Interface for credentials whose scopes can be queried. OAuth 2.0-based credentials allow limiting access using scopes as described in `RFC6749 Section 3.3`_. If a credential class implements this interface then the credentials either use scopes in their implementation. Some credentials require scopes in order to obtain a token. You can check if scoping is necessary with :attr:`requires_scopes`:: if credentials.requires_scopes: # Scoping is required. credentials = credentials.with_scopes(scopes=['one', 'two']) Credentials that require scopes must either be constructed with scopes:: credentials = SomeScopedCredentials(scopes=['one', 'two']) Or must copy an existing instance using :meth:`with_scopes`:: scoped_credentials = credentials.with_scopes(scopes=['one', 'two']) Some credentials have scopes but do not allow or require scopes to be set, these credentials can be used as-is. .. _RFC6749 Section 3.3: https://tools.ietf.org/html/rfc6749#section-3.3 """ def __init__(self): super(ReadOnlyScoped, self).__init__() self._scopes = None self._default_scopes = None @property def scopes(self): """Sequence[str]: the credentials' current set of scopes.""" return self._scopes @property def default_scopes(self): """Sequence[str]: the credentials' current set of default scopes.""" return self._default_scopes @abc.abstractproperty def requires_scopes(self): """True if these credentials require scopes to obtain an access token. """ return False def has_scopes(self, scopes): """Checks if the credentials have the given scopes. .. warning: This method is not guaranteed to be accurate if the credentials are :attr:`~Credentials.invalid`. Args: scopes (Sequence[str]): The list of scopes to check. Returns: bool: True if the credentials have the given scopes. """ credential_scopes = ( self._scopes if self._scopes is not None else self._default_scopes ) return set(scopes).issubset(set(credential_scopes or [])) class Scoped(ReadOnlyScoped): """Interface for credentials whose scopes can be replaced while copying. OAuth 2.0-based credentials allow limiting access using scopes as described in `RFC6749 Section 3.3`_. If a credential class implements this interface then the credentials either use scopes in their implementation. Some credentials require scopes in order to obtain a token. You can check if scoping is necessary with :attr:`requires_scopes`:: if credentials.requires_scopes: # Scoping is required. credentials = credentials.create_scoped(['one', 'two']) Credentials that require scopes must either be constructed with scopes:: credentials = SomeScopedCredentials(scopes=['one', 'two']) Or must copy an existing instance using :meth:`with_scopes`:: scoped_credentials = credentials.with_scopes(scopes=['one', 'two']) Some credentials have scopes but do not allow or require scopes to be set, these credentials can be used as-is. .. _RFC6749 Section 3.3: https://tools.ietf.org/html/rfc6749#section-3.3 """ @abc.abstractmethod def with_scopes(self, scopes, default_scopes=None): """Create a copy of these credentials with the specified scopes. Args: scopes (Sequence[str]): The list of scopes to attach to the current credentials. Raises: NotImplementedError: If the credentials' scopes can not be changed. This can be avoided by checking :attr:`requires_scopes` before calling this method. """ raise NotImplementedError("This class does not require scoping.") def with_scopes_if_required(credentials, scopes, default_scopes=None): """Creates a copy of the credentials with scopes if scoping is required. This helper function is useful when you do not know (or care to know) the specific type of credentials you are using (such as when you use :func:`google.auth.default`). This function will call :meth:`Scoped.with_scopes` if the credentials are scoped credentials and if the credentials require scoping. Otherwise, it will return the credentials as-is. Args: credentials (google.auth.credentials.Credentials): The credentials to scope if necessary. scopes (Sequence[str]): The list of scopes to use. default_scopes (Sequence[str]): Default scopes passed by a Google client library. Use 'scopes' for user-defined scopes. Returns: google.auth.credentials.Credentials: Either a new set of scoped credentials, or the passed in credentials instance if no scoping was required. """ if isinstance(credentials, Scoped) and credentials.requires_scopes: return credentials.with_scopes(scopes, default_scopes=default_scopes) else: return credentials @six.add_metaclass(abc.ABCMeta) class Signing(object): """Interface for credentials that can cryptographically sign messages.""" @abc.abstractmethod def sign_bytes(self, message): """Signs the given message. Args: message (bytes): The message to sign. Returns: bytes: The message's cryptographic signature. """ # pylint: disable=missing-raises-doc,redundant-returns-doc # (pylint doesn't recognize that this is abstract) raise NotImplementedError("Sign bytes must be implemented.") @abc.abstractproperty def signer_email(self): """Optional[str]: An email address that identifies the signer.""" # pylint: disable=missing-raises-doc # (pylint doesn't recognize that this is abstract) raise NotImplementedError("Signer email must be implemented.") @abc.abstractproperty def signer(self): """google.auth.crypt.Signer: The signer used to sign bytes.""" # pylint: disable=missing-raises-doc # (pylint doesn't recognize that this is abstract) raise NotImplementedError("Signer must be implemented.")
[ "cloudsdk.mirror@gmail.com" ]
cloudsdk.mirror@gmail.com
ade1e463d92aaf8de7ffcf2b58ea3cefa5b27722
9f2f386a692a6ddeb7670812d1395a0b0009dad9
/python/paddle/metric/metrics.py
d399cb2052498529f41a3617a60b9a221b5d837c
[ "Apache-2.0" ]
permissive
sandyhouse/Paddle
2f866bf1993a036564986e5140e69e77674b8ff5
86e0b07fe7ee6442ccda0aa234bd690a3be2cffa
refs/heads/develop
2023-08-16T22:59:28.165742
2022-06-03T05:23:39
2022-06-03T05:23:39
181,423,712
0
7
Apache-2.0
2022-08-15T08:46:04
2019-04-15T06:15:22
C++
UTF-8
Python
false
false
28,621
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import abc import numpy as np from ..fluid.data_feeder import check_variable_and_dtype from ..fluid.layer_helper import LayerHelper from ..fluid.framework import core, _varbase_creator, _non_static_mode, _in_legacy_dygraph import paddle from paddle import _C_ops __all__ = [] def _is_numpy_(var): return isinstance(var, (np.ndarray, np.generic)) @six.add_metaclass(abc.ABCMeta) class Metric(object): r""" Base class for metric, encapsulates metric logic and APIs Usage: .. code-block:: text m = SomeMetric() for prediction, label in ...: m.update(prediction, label) m.accumulate() Advanced usage for :code:`compute`: Metric calculation can be accelerated by calculating metric states from model outputs and labels by build-in operators not by Python/NumPy in :code:`compute`, metric states will be fetched as NumPy array and call :code:`update` with states in NumPy format. Metric calculated as follows (operations in Model and Metric are indicated with curly brackets, while data nodes not): .. code-block:: text inputs & labels || ------------------ | || {model} || | || outputs & labels || | || tensor data {Metric.compute} || | || metric states(tensor) || | || {fetch as numpy} || ------------------ | || metric states(numpy) || numpy data | || {Metric.update} \/ ------------------ Examples: For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label` as inputs, we can calculate the correct prediction matrix between :code:`pred` and :code:`label` in :code:`compute`. For examples, prediction results contains 10 classes, while :code:`pred` shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size, and we only need to calculate accurary of top-1 and top-5, we could calculate the correct prediction matrix of the top-5 scores of the prediction of each sample like follows, while the correct prediction matrix shape is [N, 5]. .. code-block:: text def compute(pred, label): # sort prediction and slice the top-5 scores pred = paddle.argsort(pred, descending=True)[:, :5] # calculate whether the predictions are correct correct = pred == label return paddle.cast(correct, dtype='float32') With the :code:`compute`, we split some calculations to OPs (which may run on GPU devices, will be faster), and only fetch 1 tensor with shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1]. :code:`update` can be define as follows: .. code-block:: text def update(self, correct): accs = [] for i, k in enumerate(self.topk): num_corrects = correct[:, :k].sum() num_samples = len(correct) accs.append(float(num_corrects) / num_samples) self.total[i] += num_corrects self.count[i] += num_samples return accs """ def __init__(self): pass @abc.abstractmethod def reset(self): """ Reset states and result """ raise NotImplementedError("function 'reset' not implemented in {}.". format(self.__class__.__name__)) @abc.abstractmethod def update(self, *args): """ Update states for metric Inputs of :code:`update` is the outputs of :code:`Metric.compute`, if :code:`compute` is not defined, the inputs of :code:`update` will be flatten arguments of **output** of mode and **label** from data: :code:`update(output1, output2, ..., label1, label2,...)` see :code:`Metric.compute` """ raise NotImplementedError("function 'update' not implemented in {}.". format(self.__class__.__name__)) @abc.abstractmethod def accumulate(self): """ Accumulates statistics, computes and returns the metric value """ raise NotImplementedError( "function 'accumulate' not implemented in {}.".format( self.__class__.__name__)) @abc.abstractmethod def name(self): """ Returns metric name """ raise NotImplementedError("function 'name' not implemented in {}.". format(self.__class__.__name__)) def compute(self, *args): """ This API is advanced usage to accelerate metric calculating, calulations from outputs of model to the states which should be updated by Metric can be defined here, where Paddle OPs is also supported. Outputs of this API will be the inputs of "Metric.update". If :code:`compute` is defined, it will be called with **outputs** of model and **labels** from data as arguments, all outputs and labels will be concatenated and flatten and each filed as a separate argument as follows: :code:`compute(output1, output2, ..., label1, label2,...)` If :code:`compute` is not defined, default behaviour is to pass input to output, so output format will be: :code:`return output1, output2, ..., label1, label2,...` see :code:`Metric.update` """ return args class Accuracy(Metric): """ Encapsulates accuracy metric logic. Args: topk (list[int]|tuple[int]): Number of top elements to look at for computing accuracy. Default is (1,). name (str, optional): String name of the metric instance. Default is `acc`. Example by standalone: .. code-block:: python import numpy as np import paddle x = paddle.to_tensor(np.array([ [0.1, 0.2, 0.3, 0.4], [0.1, 0.4, 0.3, 0.2], [0.1, 0.2, 0.4, 0.3], [0.1, 0.2, 0.3, 0.4]])) y = paddle.to_tensor(np.array([[0], [1], [2], [3]])) m = paddle.metric.Accuracy() correct = m.compute(x, y) m.update(correct) res = m.accumulate() print(res) # 0.75 Example with Model API: .. code-block:: python import paddle from paddle.static import InputSpec import paddle.vision.transforms as T from paddle.vision.datasets import MNIST input = InputSpec([None, 1, 28, 28], 'float32', 'image') label = InputSpec([None, 1], 'int64', 'label') transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])]) train_dataset = MNIST(mode='train', transform=transform) model = paddle.Model(paddle.vision.models.LeNet(), input, label) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) model.prepare( optim, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) model.fit(train_dataset, batch_size=64) """ def __init__(self, topk=(1, ), name=None, *args, **kwargs): super(Accuracy, self).__init__(*args, **kwargs) self.topk = topk self.maxk = max(topk) self._init_name(name) self.reset() def compute(self, pred, label, *args): """ Compute the top-k (maximum value in `topk`) indices. Args: pred (Tensor): The predicted value is a Tensor with dtype float32 or float64. Shape is [batch_size, d0, ..., dN]. label (Tensor): The ground truth value is Tensor with dtype int64. Shape is [batch_size, d0, ..., 1], or [batch_size, d0, ..., num_classes] in one hot representation. Return: Tensor: Correct mask, a tensor with shape [batch_size, d0, ..., topk]. """ pred = paddle.argsort(pred, descending=True) pred = paddle.slice( pred, axes=[len(pred.shape) - 1], starts=[0], ends=[self.maxk]) if (len(label.shape) == 1) or \ (len(label.shape) == 2 and label.shape[-1] == 1): # In static mode, the real label data shape may be different # from shape defined by paddle.static.InputSpec in model # building, reshape to the right shape. label = paddle.reshape(label, (-1, 1)) elif label.shape[-1] != 1: # one-hot label label = paddle.argmax(label, axis=-1, keepdim=True) correct = pred == label return paddle.cast(correct, dtype='float32') def update(self, correct, *args): """ Update the metrics states (correct count and total count), in order to calculate cumulative accuracy of all instances. This function also returns the accuracy of current step. Args: correct: Correct mask, a tensor with shape [batch_size, d0, ..., topk]. Return: Tensor: the accuracy of current step. """ if isinstance(correct, (paddle.Tensor, paddle.fluid.core.eager.Tensor)): correct = correct.numpy() num_samples = np.prod(np.array(correct.shape[:-1])) accs = [] for i, k in enumerate(self.topk): num_corrects = correct[..., :k].sum() accs.append(float(num_corrects) / num_samples) self.total[i] += num_corrects self.count[i] += num_samples accs = accs[0] if len(self.topk) == 1 else accs return accs def reset(self): """ Resets all of the metric state. """ self.total = [0.] * len(self.topk) self.count = [0] * len(self.topk) def accumulate(self): """ Computes and returns the accumulated metric. """ res = [] for t, c in zip(self.total, self.count): r = float(t) / c if c > 0 else 0. res.append(r) res = res[0] if len(self.topk) == 1 else res return res def _init_name(self, name): name = name or 'acc' if self.maxk != 1: self._name = ['{}_top{}'.format(name, k) for k in self.topk] else: self._name = [name] def name(self): """ Return name of metric instance. """ return self._name class Precision(Metric): """ Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Refer to https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers Noted that this class manages the precision score only for binary classification task. Args: name (str, optional): String name of the metric instance. Default is `precision`. Example by standalone: .. code-block:: python import numpy as np import paddle x = np.array([0.1, 0.5, 0.6, 0.7]) y = np.array([0, 1, 1, 1]) m = paddle.metric.Precision() m.update(x, y) res = m.accumulate() print(res) # 1.0 Example with Model API: .. code-block:: python import numpy as np import paddle import paddle.nn as nn class Data(paddle.io.Dataset): def __init__(self): super(Data, self).__init__() self.n = 1024 self.x = np.random.randn(self.n, 10).astype('float32') self.y = np.random.randint(2, size=(self.n, 1)).astype('float32') def __getitem__(self, idx): return self.x[idx], self.y[idx] def __len__(self): return self.n model = paddle.Model(nn.Sequential( nn.Linear(10, 1), nn.Sigmoid() )) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) model.prepare( optim, loss=nn.BCELoss(), metrics=paddle.metric.Precision()) data = Data() model.fit(data, batch_size=16) """ def __init__(self, name='precision', *args, **kwargs): super(Precision, self).__init__(*args, **kwargs) self.tp = 0 # true positive self.fp = 0 # false positive self._name = name def update(self, preds, labels): """ Update the states based on the current mini-batch prediction results. Args: preds (numpy.ndarray): The prediction result, usually the output of two-class sigmoid function. It should be a vector (column vector or row vector) with data type: 'float64' or 'float32'. labels (numpy.ndarray): The ground truth (labels), the shape should keep the same as preds. The data type is 'int32' or 'int64'. """ if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)): preds = preds.numpy() elif not _is_numpy_(preds): raise ValueError("The 'preds' must be a numpy ndarray or Tensor.") if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)): labels = labels.numpy() elif not _is_numpy_(labels): raise ValueError("The 'labels' must be a numpy ndarray or Tensor.") sample_num = labels.shape[0] preds = np.floor(preds + 0.5).astype("int32") for i in range(sample_num): pred = preds[i] label = labels[i] if pred == 1: if pred == label: self.tp += 1 else: self.fp += 1 def reset(self): """ Resets all of the metric state. """ self.tp = 0 self.fp = 0 def accumulate(self): """ Calculate the final precision. Returns: A scaler float: results of the calculated precision. """ ap = self.tp + self.fp return float(self.tp) / ap if ap != 0 else .0 def name(self): """ Returns metric name """ return self._name class Recall(Metric): """ Recall (also known as sensitivity) is the fraction of relevant instances that have been retrieved over the total amount of relevant instances Refer to: https://en.wikipedia.org/wiki/Precision_and_recall Noted that this class manages the recall score only for binary classification task. Args: name (str, optional): String name of the metric instance. Default is `recall`. Example by standalone: .. code-block:: python import numpy as np import paddle x = np.array([0.1, 0.5, 0.6, 0.7]) y = np.array([1, 0, 1, 1]) m = paddle.metric.Recall() m.update(x, y) res = m.accumulate() print(res) # 2.0 / 3.0 Example with Model API: .. code-block:: python import numpy as np import paddle import paddle.nn as nn class Data(paddle.io.Dataset): def __init__(self): super(Data, self).__init__() self.n = 1024 self.x = np.random.randn(self.n, 10).astype('float32') self.y = np.random.randint(2, size=(self.n, 1)).astype('float32') def __getitem__(self, idx): return self.x[idx], self.y[idx] def __len__(self): return self.n model = paddle.Model(nn.Sequential( nn.Linear(10, 1), nn.Sigmoid() )) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) model.prepare( optim, loss=nn.BCELoss(), metrics=[paddle.metric.Precision(), paddle.metric.Recall()]) data = Data() model.fit(data, batch_size=16) """ def __init__(self, name='recall', *args, **kwargs): super(Recall, self).__init__(*args, **kwargs) self.tp = 0 # true positive self.fn = 0 # false negative self._name = name def update(self, preds, labels): """ Update the states based on the current mini-batch prediction results. Args: preds(numpy.array): prediction results of current mini-batch, the output of two-class sigmoid function. Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'. labels(numpy.array): ground truth (labels) of current mini-batch, the shape should keep the same as preds. Shape: [batch_size, 1], Dtype: 'int32' or 'int64'. """ if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)): preds = preds.numpy() elif not _is_numpy_(preds): raise ValueError("The 'preds' must be a numpy ndarray or Tensor.") if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)): labels = labels.numpy() elif not _is_numpy_(labels): raise ValueError("The 'labels' must be a numpy ndarray or Tensor.") sample_num = labels.shape[0] preds = np.rint(preds).astype("int32") for i in range(sample_num): pred = preds[i] label = labels[i] if label == 1: if pred == label: self.tp += 1 else: self.fn += 1 def accumulate(self): """ Calculate the final recall. Returns: A scaler float: results of the calculated Recall. """ recall = self.tp + self.fn return float(self.tp) / recall if recall != 0 else .0 def reset(self): """ Resets all of the metric state. """ self.tp = 0 self.fn = 0 def name(self): """ Returns metric name """ return self._name class Auc(Metric): """ The auc metric is for binary classification. Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve. Please notice that the auc metric is implemented with python, which may be a little bit slow. The `auc` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the AUC. To discretize the AUC curve, a linearly spaced set of thresholds is used to compute pairs of recall and precision values. The area under the ROC-curve is therefore computed using the height of the recall values by the false positive rate, while the area under the PR-curve is the computed using the height of the precision values by the recall. Args: curve (str): Specifies the mode of the curve to be computed, 'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'. num_thresholds (int): The number of thresholds to use when discretizing the roc curve. Default is 4095. 'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'. name (str, optional): String name of the metric instance. Default is `auc`. "NOTE: only implement the ROC curve type via Python now." Example by standalone: .. code-block:: python import numpy as np import paddle m = paddle.metric.Auc() n = 8 class0_preds = np.random.random(size = (n, 1)) class1_preds = 1 - class0_preds preds = np.concatenate((class0_preds, class1_preds), axis=1) labels = np.random.randint(2, size = (n, 1)) m.update(preds=preds, labels=labels) res = m.accumulate() Example with Model API: .. code-block:: python import numpy as np import paddle import paddle.nn as nn class Data(paddle.io.Dataset): def __init__(self): super(Data, self).__init__() self.n = 1024 self.x = np.random.randn(self.n, 10).astype('float32') self.y = np.random.randint(2, size=(self.n, 1)).astype('int64') def __getitem__(self, idx): return self.x[idx], self.y[idx] def __len__(self): return self.n model = paddle.Model(nn.Sequential( nn.Linear(10, 2), nn.Softmax()) ) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) def loss(x, y): return nn.functional.nll_loss(paddle.log(x), y) model.prepare( optim, loss=loss, metrics=paddle.metric.Auc()) data = Data() model.fit(data, batch_size=16) """ def __init__(self, curve='ROC', num_thresholds=4095, name='auc', *args, **kwargs): super(Auc, self).__init__(*args, **kwargs) self._curve = curve self._num_thresholds = num_thresholds _num_pred_buckets = num_thresholds + 1 self._stat_pos = np.zeros(_num_pred_buckets) self._stat_neg = np.zeros(_num_pred_buckets) self._name = name def update(self, preds, labels): """ Update the auc curve with the given predictions and labels. Args: preds (numpy.array): An numpy array in the shape of (batch_size, 2), preds[i][j] denotes the probability of classifying the instance i into the class j. labels (numpy.array): an numpy array in the shape of (batch_size, 1), labels[i] is either o or 1, representing the label of the instance i. """ if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)): labels = labels.numpy() elif not _is_numpy_(labels): raise ValueError("The 'labels' must be a numpy ndarray or Tensor.") if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)): preds = preds.numpy() elif not _is_numpy_(preds): raise ValueError("The 'preds' must be a numpy ndarray or Tensor.") for i, lbl in enumerate(labels): value = preds[i, 1] bin_idx = int(value * self._num_thresholds) assert bin_idx <= self._num_thresholds if lbl: self._stat_pos[bin_idx] += 1.0 else: self._stat_neg[bin_idx] += 1.0 @staticmethod def trapezoid_area(x1, x2, y1, y2): return abs(x1 - x2) * (y1 + y2) / 2.0 def accumulate(self): """ Return the area (a float score) under auc curve Return: float: the area under auc curve """ tot_pos = 0.0 tot_neg = 0.0 auc = 0.0 idx = self._num_thresholds while idx >= 0: tot_pos_prev = tot_pos tot_neg_prev = tot_neg tot_pos += self._stat_pos[idx] tot_neg += self._stat_neg[idx] auc += self.trapezoid_area(tot_neg, tot_neg_prev, tot_pos, tot_pos_prev) idx -= 1 return auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0 def reset(self): """ Reset states and result """ _num_pred_buckets = self._num_thresholds + 1 self._stat_pos = np.zeros(_num_pred_buckets) self._stat_neg = np.zeros(_num_pred_buckets) def name(self): """ Returns metric name """ return self._name def accuracy(input, label, k=1, correct=None, total=None, name=None): """ accuracy layer. Refer to the https://en.wikipedia.org/wiki/Precision_and_recall This function computes the accuracy using the input and label. If the correct label occurs in top k predictions, then correct will increment by one. Note: the dtype of accuracy is determined by input. the input and label dtype can be different. Args: input(Tensor): The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64. The shape is ``[sample_number, class_dim]`` . label(Tensor): The label of dataset. Tensor with type int64. The shape is ``[sample_number, 1]`` . k(int, optional): The top k predictions for each class will be checked. Data type is int64 or int32. correct(Tensor, optional): The correct predictions count. A Tensor with type int64 or int32. total(Tensor, optional): The total entries count. A tensor with type int64 or int32. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor, the correct rate. A Tensor with type float32. Examples: .. code-block:: python import paddle predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32') label = paddle.to_tensor([[2], [0]], dtype="int64") result = paddle.metric.accuracy(input=predictions, label=label, k=1) # [0.5] """ if _non_static_mode(): if correct is None: correct = _varbase_creator(dtype="int32") if total is None: total = _varbase_creator(dtype="int32") topk_out, topk_indices = paddle.topk(input, k=k) _acc, _, _ = _C_ops.accuracy(topk_out, topk_indices, label, correct, total) return _acc helper = LayerHelper("accuracy", **locals()) check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'], 'accuracy') topk_out, topk_indices = paddle.topk(input, k=k) acc_out = helper.create_variable_for_type_inference(dtype="float32") if correct is None: correct = helper.create_variable_for_type_inference(dtype="int32") if total is None: total = helper.create_variable_for_type_inference(dtype="int32") helper.append_op( type="accuracy", inputs={ "Out": [topk_out], "Indices": [topk_indices], "Label": [label] }, outputs={ "Accuracy": [acc_out], "Correct": [correct], "Total": [total], }) return acc_out
[ "noreply@github.com" ]
sandyhouse.noreply@github.com
cbe80998335946c7b3add27c0670ae2dba4ea8a5
3f2c58ba20a4c176d18eed4b699806bb79db1b9a
/Stacks and Queues/Stack Min.py
56d937d022a731cfc5509d6547a67eea8410c089
[]
no_license
Kabileshj/college-works
ffa67dc923335854c0fee53f7ea737f8639e5f52
96c49540339fcaa898f621a92e1c14c57042ab61
refs/heads/master
2022-11-12T22:12:39.849885
2020-07-09T15:59:39
2020-07-09T15:59:39
240,673,821
0
0
null
null
null
null
UTF-8
Python
false
false
1,830
py
class Node: def __init__(self, value): self.value = value self.next = None def __str__(self): return "Node({})".format(self.value) __repr__ = __str__ class Stack: def __init__(self): self.top = None self.count = 0 self.minimum = None def __str__(self): temp = self.top out = [] while temp: out.append(str(temp.value)) temp = temp.next out = '\n'.join(out) return ('Top {} \n\nStack :\n{}'.format(self.top,out)) __repr__=__str__ def getMin(self): if self.top is None: return "Stack is empty" else: print("Minimum Element in the stack is: {}" .format(self.minimum)) def isEmpty(self): if self.top == None: return True else: return False def __len__(self): self.count = 0 tempNode = self.top while tempNode: tempNode = tempNode.next self.count+=1 return self.count def push(self,value): if self.top is None: self.top = Node(value) self.minimum = value elif value < self.minimum: temp = (2 * value) - self.minimum new_node = Node(temp) new_node.next = self.top self.top = new_node self.minimum = value else: new_node = Node(value) new_node.next = self.top self.top = new_node def pop(self): if self.top is None: print( "Stack is empty") else: removedNode = self.top.value self.top = self.top.next if removedNode < self.minimum: print ("Top Most Element Removed: {} " .format(self.minimum)) self.minimum = ( ( 2 * self.minimum ) - removedNode ) else: print ("Top Most Element Removed: {}" .format(removedNode)) # Driver code stack = Stack() for i in [int(i) for i in input().split()]: stack.push(i) stack.getMin() stack.pop() stack.getMin()
[ "noreply@github.com" ]
Kabileshj.noreply@github.com
8874932836a21ac4c38e9b9e7da1f1da049b0afc
64b7ce2f4d2d24d24f7e169a58fe69257078984c
/buffpy/__init__.py
183065769855aea39bd77235e47028371189e1e5
[ "MIT" ]
permissive
holdenk/buffer-python
055d444c385ea6e6ee285bb348b0c19ebda304c1
001a3bffda8736f32a8ffae3d26af9b79b2a3680
refs/heads/master
2020-03-29T20:50:58.408856
2018-09-26T19:25:51
2018-09-26T19:25:51
150,334,500
1
0
MIT
2018-09-25T22:02:00
2018-09-25T22:01:59
null
UTF-8
Python
false
false
43
py
from .api import * from .response import *
[ "vladtemian@gmail.com" ]
vladtemian@gmail.com
7691a901b311b39403ab979b2a4a02e22bf8cbf3
3492b97a904d7397c13c03334d0abe23484024bc
/edts/wizard/signature_wizard.py
c24588177933775b7382ca64c429096aacf78979
[]
no_license
hassanfadl/vendor_portal_app
e578262ae25261e6740e4329cb45168ec2e790b4
ebf8f4f7452190c986fbc9c225b8660fe0bd4bd4
refs/heads/main
2023-08-23T10:12:07.838305
2021-10-30T04:44:40
2021-10-30T04:44:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,273
py
from odoo import fields, models, api from datetime import datetime class EDTSSignatureWizard(models.TransientModel): _name = 'edts.signature.wizard' _description = 'EDTS Signature Wizard' account_move_id = fields.Many2one('account.move', string='Account Move') liquidation_reference_id = fields.Many2one('edts.liquidation.reference', string='EDTS Liquidation Reference') action = fields.Selection([ ('approve', 'Approve'), ('validate', 'Validate'), ], string='Action', default=False) dept_head_signature = fields.Binary(string="Department Head's Signature") accounting_signature = fields.Binary(string="Accounting Department's Signature") def signature_action_proceed(self): if self.account_move_id: if self.action in ['approve']: self.account_move_id.dept_head_signature = self.dept_head_signature self.account_move_id.set_waiting_for_accounting_status() self.account_move_id.send_edts_for_validation_acctg_email() elif self.action in ['validate']: self.account_move_id.accounting_signature = self.accounting_signature if self.account_move_id.edts_subtype in ['agency_contracts_accruals', 'recurring_transactions_accruals']: self.account_move_id.set_ongoing_status() else: self.account_move_id.set_processing_accounting_status() if self.liquidation_reference_id: if self.action in ['approve']: self.liquidation_reference_id.dept_head_signature = self.dept_head_signature self.liquidation_reference_id.status = 'waiting_for_accounting' self.liquidation_reference_id.approved_by = self._uid self.liquidation_reference_id.approved_date = datetime.now() elif self.action in ['validate']: self.liquidation_reference_id.accounting_signature = self.accounting_signature self.liquidation_reference_id.status = 'validated' self.liquidation_reference_id.validated_by = self._uid self.liquidation_reference_id.validated_date = datetime.now() return {'type': 'ir.actions.act_window_close'}
[ "dennisboysilva@gmail.com" ]
dennisboysilva@gmail.com