blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
334d33f29abda1bd5ee1f296500d953a5ea85a6a
9b5717d1c602c07a4c16c7fd653834c15dffee2c
/setup.py
e25540f06d637ccf4ba7a0e5ba09ac2440460ca3
[ "MIT" ]
permissive
CoAxLab/infomercial
5ee5d4093ec0d40eaafd2c81078664f6e0998f22
fa5d1c1e5c1351735dda2961a2a94f71cd17e270
refs/heads/master
2021-12-17T16:05:35.659765
2020-11-30T20:27:38
2020-11-30T20:27:38
153,649,059
4
0
null
null
null
null
UTF-8
Python
false
false
782
py
from setuptools import setup setup(name='infomercial', version='0.0.1', description="Agents who seek information.", url='', author='Erik J. Peterson', author_email='erik.exists@gmail.com', license='MIT', packages=['infomercial'], scripts=[ 'infomercial/exp/meta_bandit.py', 'infomercial/exp/softmeta_bandit.py', 'infomercial/exp/epsilon_bandit.py', 'infomercial/exp/beta_bandit.py', 'infomercial/exp/softbeta_bandit.py', 'infomercial/exp/random_bandit.py', 'infomercial/exp/count_bandit.py', 'infomercial/exp/entropy_bandit.py', 'infomercial/exp/tune_bandit.py', 'infomercial/exp/curiosity_bandit.py', ], zip_safe=False)
[ "Erik.Exists@gmail.com" ]
Erik.Exists@gmail.com
cf082048b760e33c9e786bc8f9932ce082143d19
02c75658bcc69106b8d52472819bba4a860ea7c7
/src/common/__init__.py
d4f709d659e989789c7a059820df111000039332
[]
no_license
neilrussell6/tezos-boilerplate-ligo-pytezos
38055271dfb6239b483a76dbcb8569b1f05fd475
30fefb8df3f89f8c8364c4fb4f8446aac7ba69af
refs/heads/master
2022-12-11T12:07:03.289420
2020-01-12T15:16:42
2020-01-12T15:16:42
233,399,217
1
0
null
2022-12-08T03:27:31
2020-01-12T13:45:37
Python
UTF-8
Python
false
false
21
py
"""Common modules"""
[ "neilrussell6@gmail.com" ]
neilrussell6@gmail.com
5c31dc517afe0642d9a7dc60e5f0f96ac2a0f7e4
9b3eba85673e909b751458e0bc00d8181f373d0d
/Utilities/levelEditor/CommonUtilities.py
b37d2e370c38ae3ed7b7cd3afb28ede87a8d1e34
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
alexiob/Be2
b9b1f6bd8b463f8d2ba0054a68d02c60ab2c652f
ec048549b4ca2a94b35d8e6274ddda70d2149f3d
refs/heads/master
2021-01-19T17:59:23.190723
2019-10-07T11:31:10
2019-10-07T11:31:10
8,890,075
5
1
null
null
null
null
UTF-8
Python
false
false
493
py
from PyQt4 import QtCore, QtGui, Qt def strToQColor (s): s = str (s) if s: sa = map (lambda x: int (x.strip ()), s.strip ().split (',')) else: sa = [255, 255, 255] return QtGui.QColor (sa[0], sa[1], sa[2]) def qColorToStr (c): return "%d,%d,%d" % (c.red (), c.green (), c.blue ()) def dict2lua (d): data = '' for k, v in d.iteritems (): if isinstance (v, basestring): data += '%s="%s";' % (k, v) else: data += '%s=%.1f;' % (k, v) data = '{%s}' % data return data
[ "alessandro.iob@gmail.com" ]
alessandro.iob@gmail.com
d2e5450b759afb2a0f146834c9e6ea9539c4931b
e9a651c8928c48c3d8fa17f356204e14bda0e1a0
/src/pythermalcomfort/utilities.py
49465f35ab820be4b860ce7c9a85a19a40570e5d
[ "MIT" ]
permissive
ThreePointSquare/pythermalcomfort
234aa46ba5eac6f6e07ed40e90dcbf129bc448ab
cfb6daf3203deb67d39a1b55cd036f677533aa1c
refs/heads/master
2023-08-09T15:24:41.316497
2021-09-08T04:00:25
2021-09-08T04:00:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,604
py
import warnings import math from pythermalcomfort.psychrometrics import p_sat warnings.simplefilter("always") def transpose_sharp_altitude(sharp, altitude): altitude_new = math.degrees( math.asin( math.sin(math.radians(abs(sharp - 90))) * math.cos(math.radians(altitude)) ) ) sharp = math.degrees( math.atan(math.sin(math.radians(sharp)) * math.tan(math.radians(90 - altitude))) ) sol_altitude = altitude_new return round(sharp, 3), round(sol_altitude, 3) def check_standard_compliance(standard, **kwargs): params = dict() params["standard"] = standard for key, value in kwargs.items(): params[key] = value if params["standard"] == "utci": for key, value in params.items(): if key == "v" and (value > 17 or value < 0.5): warnings.warn( "UTCI wind speed applicability limits between 0.5 and 17 m/s", UserWarning, ) if params["standard"] == "ankle_draft": for key, value in params.items(): if key == "met" and value > 1.3: warnings.warn( "The ankle draft model is only valid for met <= 1.3", UserWarning, ) if key == "clo" and value > 0.7: warnings.warn( "The ankle draft model is only valid for clo <= 0.7", UserWarning, ) elif params["standard"] == "ashrae": # based on table 7.3.4 ashrae 55 2017 for key, value in params.items(): if key in ["tdb", "tr"]: if key == "tdb": parameter = "dry-bulb" else: parameter = "mean radiant" if value > 40 or value < 10: warnings.warn( f"ASHRAE {parameter} temperature applicability limits between 10 and 40 °C", UserWarning, ) if key in ["v", "vr"] and (value > 2 or value < 0): warnings.warn( "ASHRAE air speed applicability limits between 0 and 2 m/s", UserWarning, ) if key == "met" and (value > 2 or value < 1): warnings.warn( "ASHRAE met applicability limits between 1.0 and 2.0 met", UserWarning, ) if key == "clo" and (value > 1.5 or value < 0): warnings.warn( "ASHRAE clo applicability limits between 0.0 and 1.5 clo", UserWarning, ) if key == "v_limited" and value > 0.2: raise ValueError( "This equation is only applicable for air speed lower than 0.2 m/s" ) elif params["standard"] == "fan_heatwaves": # based on table 7.3.4 ashrae 55 2017 for key, value in params.items(): if key in ["tdb", "tr"]: if key == "tdb": parameter = "dry-bulb" else: parameter = "mean radiant" if value > 50 or value < 30: warnings.warn( f"{parameter} temperature applicability limits between 30 and 50 °C", UserWarning, ) if key in ["v", "vr"] and (value > 4.5 or value < 0.1): warnings.warn( "Air speed applicability limits between 0.4 and 4.5 m/s", UserWarning, ) if key == "met" and (value > 2 or value < 0.7): warnings.warn( "Met applicability limits between 0.7 and 2.0 met", UserWarning, ) if key == "clo" and (value > 1.0 or value < 0): warnings.warn( "Clo applicability limits between 0.0 and 1.0 clo", UserWarning, ) elif params["standard"] == "iso": # based on ISO 7730:2005 page 3 for key, value in params.items(): if key == "tdb" and (value > 30 or value < 10): warnings.warn( "ISO air temperature applicability limits between 10 and 30 °C", UserWarning, ) if key == "tr" and (value > 40 or value < 10): warnings.warn( "ISO mean radiant temperature applicability limits between 10 and 40 °C", UserWarning, ) if key in ["v", "vr"] and (value > 1 or value < 0): warnings.warn( "ISO air speed applicability limits between 0 and 1 m/s", UserWarning, ) if key == "met" and (value > 4 or value < 0.8): warnings.warn( "ISO met applicability limits between 0.8 and 4.0 met", UserWarning, ) if key == "clo" and (value > 2 or value < 0): warnings.warn( "ISO clo applicability limits between 0.0 and 2 clo", UserWarning, ) elif params["standard"] == "ISO7933": # based on ISO 7933:2004 Annex A if params["tdb"] > 50 or params["tdb"] < 15: warnings.warn( "ISO 7933:2004 air temperature applicability limits between 15 and 50 °C", UserWarning, ) p_a = p_sat(params["tdb"]) / 1000 * params["rh"] / 100 rh_max = 4.5 * 100 * 1000 / p_sat(params["tdb"]) if p_a > 4.5 or p_a < 0: warnings.warn( f"ISO 7933:2004 t_r - t_db applicability limits between 0 and {rh_max} %", UserWarning, ) if params["tr"] - params["tdb"] > 50 or params["tr"] - params["tdb"] < 0: warnings.warn( "ISO 7933:2004 t_r - t_db applicability limits between 0 and 60 °C", UserWarning, ) if params["v"] > 3 or params["v"] < 0: warnings.warn( "ISO 7933:2004 air speed applicability limits between 0 and 3 m/s", UserWarning, ) if params["met"] > 450 or params["met"] < 100: warnings.warn( "ISO 7933:2004 met applicability limits between 100 and 450 met", UserWarning, ) if params["clo"] > 1 or params["clo"] < 0.1: warnings.warn( "ISO 7933:2004 clo applicability limits between 0.1 and 1 clo", UserWarning, ) def body_surface_area(weight, height, formula="dubois"): """ Returns the body surface area in square meters. Parameters ---------- weight : float body weight, [kg] height : float height, [m] formula : {"dubois"}, default="dubois" formula used to calculate the body surface area Returns ------- body_surface_area : float body surface area, [m2] """ if formula == "dubois": return 0.202 * (weight ** 0.425) * (height ** 0.725) def f_svv(w, h, d): """Calculates the sky-vault view fraction Parameters ---------- w : float width of the window, [m] h : float height of the window, [m] d : float distance between the occupant and the window, [m] Returns ------- f_svv : float sky-vault view fraction ranges between 0 and 1 """ return ( math.degrees(math.atan(h / (2 * d))) * math.degrees(math.atan(w / (2 * d))) / 16200 ) def v_relative(v, met): """Estimates the relative air speed which combines the average air speed of the space plus the relative air speed caused by the body movement. Vag is assumed to be 0 for metabolic rates equal and lower than 1 met and otherwise equal to Vag = 0.3 (M – 1) (m/s) Parameters ---------- v : float air speed measured by the sensor, [m/s] met : float metabolic rate, [met] Returns ------- vr : float relative air speed, [m/s] """ if met > 1: return round(v + 0.3 * (met - 1), 3) else: return v def clo_dynamic(clo, met, standard="ASHRAE"): """Estimates the dynamic clothing insulation of a moving occupant. The activity as well as the air speed modify the insulation characteristics of the clothing and the adjacent air layer. Consequently the ISO 7730 states that the clothing insulation shall be corrected [2]_. The ASHRAE 55 Standard corrects for the effect of the body movement for met equal or higher than 1.2 met using the equation clo = Icl × (0.6 + 0.4/met) Parameters ---------- clo : float clothing insulation, [clo] met : float metabolic rate, [met] standard: str (default="ASHRAE") - If "ASHRAE", uses Equation provided in Section 5.2.2.2 of ASHRAE 55 2017 Returns ------- clo : float dynamic clothing insulation, [clo] """ if standard.lower() not in ["ashrae"]: raise ValueError( "clo dynamic calculation can only be performed in compliance ASHRAE Standard" ) if met > 1.2: return round(clo * (0.6 + 0.4 / met), 3) else: return clo def running_mean_outdoor_temperature(temp_array, alpha=0.8, units="SI"): """Estimates the running mean temperature also known as prevailing mean outdoor temperature. Parameters ---------- temp_array: list array containing the mean daily temperature in descending order (i.e. from newest/yesterday to oldest) :math:`[\Theta_{day-1}, \Theta_{day-2}, \dots , \Theta_{day-n}]`. Where :math:`\Theta_{day-1}` is yesterday's daily mean temperature. The EN 16798-1 2019 [3]_ states that n should be equal to 7 alpha : float constant between 0 and 1. The EN 16798-1 2019 [3]_ recommends a value of 0.8, while the ASHRAE 55 2017 recommends to choose values between 0.9 and 0.6, corresponding to a slow- and fast- response running mean, respectively. Adaptive comfort theory suggests that a slow-response running mean (alpha = 0.9) could be more appropriate for climates in which synoptic-scale (day-to- day) temperature dynamics are relatively minor, such as the humid tropics. units: str default="SI" select the SI (International System of Units) or the IP (Imperial Units) system. Returns ------- t_rm : float running mean outdoor temperature """ if units.lower() == "ip": for ix, x in enumerate(temp_array): temp_array[ix] = units_converter(tdb=temp_array[ix])[0] coeff = [alpha ** ix for ix, x in enumerate(temp_array)] t_rm = sum([a * b for a, b in zip(coeff, temp_array)]) / sum(coeff) if units.lower() == "ip": t_rm = units_converter(tmp=t_rm, from_units="si")[0] return round(t_rm, 1) def units_converter(from_units="ip", **kwargs): """Converts IP values to SI units Parameters ---------- from_units: str specify system to convert from **kwargs : [t, v] Returns ------- converted values in SI units """ results = list() if from_units == "ip": for key, value in kwargs.items(): if "tmp" in key or key == "tr" or key == "tdb": results.append((value - 32) * 5 / 9) if key in ["v", "vr", "vel"]: results.append(value / 3.281) if key == "area": results.append(value / 10.764) if key == "pressure": results.append(value * 101325) elif from_units == "si": for key, value in kwargs.items(): if "tmp" in key or key == "tr" or key == "tdb": results.append((value * 9 / 5) + 32) if key in ["v", "vr", "vel"]: results.append(value * 3.281) if key == "area": results.append(value * 10.764) if key == "pressure": results.append(value / 101325) return results #: This dictionary contains the met values of typical tasks. met_typical_tasks = { "Sleeping": 0.7, "Reclining": 0.8, "Seated, quiet": 1.0, "Reading, seated": 1.0, "Writing": 1.0, "Typing": 1.1, "Standing, relaxed": 1.2, "Filing, seated": 1.2, "Flying aircraft, routine": 1.2, "Filing, standing": 1.4, "Driving a car": 1.5, "Walking about": 1.7, "Cooking": 1.8, "Table sawing": 1.8, "Walking 2mph (3.2kmh)": 2.0, "Lifting/packing": 2.1, "Seated, heavy limb movement": 2.2, "Light machine work": 2.2, "Flying aircraft, combat": 2.4, "Walking 3mph (4.8kmh)": 2.6, "House cleaning": 2.7, "Driving, heavy vehicle": 3.2, "Dancing": 3.4, "Calisthenics": 3.5, "Walking 4mph (6.4kmh)": 3.8, "Tennis": 3.8, "Heavy machine work": 4.0, "Handling 100lb (45 kg) bags": 4.0, "Pick and shovel work": 4.4, "Basketball": 6.3, "Wrestling": 7.8, } #: This dictionary contains the total clothing insulation of typical typical ensembles. clo_typical_ensembles = { "Walking shorts, short-sleeve shirt": 0.36, "Typical summer indoor clothing": 0.5, "Knee-length skirt, short-sleeve shirt, sandals, underwear": 0.54, "Trousers, short-sleeve shirt, socks, shoes, underwear": 0.57, "Trousers, long-sleeve shirt": 0.61, "Knee-length skirt, long-sleeve shirt, full slip": 0.67, "Sweat pants, long-sleeve sweatshirt": 0.74, "Jacket, Trousers, long-sleeve shirt": 0.96, "Typical winter indoor clothing": 1.0, } # This dictionary contains the clo values of individual clothing elements. To calculate the total clothing insulation you need to add these values together. clo_individual_garments = { "Metal chair": 0.00, "Bra": 0.01, "Wooden stool": 0.01, "Ankle socks": 0.02, "Shoes or sandals": 0.02, "Slippers": 0.03, "Panty hose": 0.02, "Calf length socks": 0.03, "Women's underwear": 0.03, "Men's underwear": 0.04, "Knee socks (thick)": 0.06, "Short shorts": 0.06, "Walking shorts": 0.08, "T-shirt": 0.08, "Standard office chair": 0.10, "Executive chair": 0.15, "Boots": 0.1, "Sleeveless scoop-neck blouse": 0.12, "Half slip": 0.14, "Long underwear bottoms": 0.15, "Full slip": 0.16, "Short-sleeve knit shirt": 0.17, "Sleeveless vest (thin)": 0.1, "Sleeveless vest (thick)": 0.17, "Sleeveless short gown (thin)": 0.18, "Short-sleeve dress shirt": 0.19, "Sleeveless long gown (thin)": 0.2, "Long underwear top": 0.2, "Thick skirt": 0.23, "Long-sleeve dress shirt": 0.25, "Long-sleeve flannel shirt": 0.34, "Long-sleeve sweat shirt": 0.34, "Short-sleeve hospital gown": 0.31, "Short-sleeve short robe (thin)": 0.34, "Short-sleeve pajamas": 0.42, "Long-sleeve long gown": 0.46, "Long-sleeve short wrap robe (thick)": 0.48, "Long-sleeve pajamas (thick)": 0.57, "Long-sleeve long wrap robe (thick)": 0.69, "Thin trousers": 0.15, "Thick trousers": 0.24, "Sweatpants": 0.28, "Overalls": 0.30, "Coveralls": 0.49, "Thin skirt": 0.14, "Long-sleeve shirt dress (thin)": 0.33, "Long-sleeve shirt dress (thick)": 0.47, "Short-sleeve shirt dress": 0.29, "Sleeveless, scoop-neck shirt (thin)": 0.23, "Sleeveless, scoop-neck shirt (thick)": 0.27, "Long sleeve shirt (thin)": 0.25, "Long sleeve shirt (thick)": 0.36, "Single-breasted coat (thin)": 0.36, "Single-breasted coat (thick)": 0.44, "Double-breasted coat (thin)": 0.42, "Double-breasted coat (thick)": 0.48, } # This dictionary contains the reflection coefficients, Fr, for different special materials f_r_garments = { "Cotton with aluminium paint": 0.42, "Viscose with glossy aluminium foil": 0.19, "Aramid (Kevlar) with glossy aluminium foil": 0.14, "Wool with glossy aluminium foil": 0.12, "Cotton with glossy aluminium foil": 0.04, "Viscose vacuum metallized with aluminium": 0.06, "Aramid vacuum metallized with aluminium": 0.04, "Wool vacuum metallized with aluminium": 0.05, "Cotton vacuum metallized with aluminium": 0.05, "Glass fiber vacuum metallized with aluminium": 0.07, }
[ "federicotartarini@gmail.com" ]
federicotartarini@gmail.com
37b6124b451232c7f1d6b4aa9e3649b286ff3509
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_wormed.py
4e52f28f4bef52a941d111e3e9c95013812986cf
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
226
py
from xai.brain.wordbase.nouns._worm import _WORM #calss header class _WORMED(_WORM, ): def __init__(self,): _WORM.__init__(self) self.name = "WORMED" self.specie = 'nouns' self.basic = "worm" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
11b26922faf03f351820b5636ba14c73dcbb73bd
22370508f11e4284b9eddc48cdccbdb751f0e813
/biuandfriends/biuandfriends/settings.py
a00393522920785acd174e3870e16993261924c4
[]
no_license
another-godel/biuandfriends
4c6136a4ead878a9663b2e638cfae9dd13818e90
6128796cbbafe7ea48c13ba4560c25d5b7e7b120
refs/heads/main
2023-01-23T14:35:39.078294
2020-12-03T15:41:38
2020-12-03T15:41:38
318,116,740
0
0
null
null
null
null
UTF-8
Python
false
false
3,141
py
""" Django settings for biuandfriends project. Generated by 'django-admin startproject' using Django 3.1.3. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '=@dilqlz$t$@!q3tewr^*ril(u86g_kz4%-v-iu-bddy99_*ne' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'conchobiu.apps.ConchobiuConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'biuandfriends.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR,'templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'biuandfriends.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
[ "75416397+Hinnnnn@users.noreply.github.com" ]
75416397+Hinnnnn@users.noreply.github.com
275844e203a0f295ceb5d63ea59ea2fe191a39a0
6760a7aaf7148c48902b2705a1c9158481166237
/test_cv/canny_detection_test.py
611fe17ee4d5c165b94daf728d6241a5f820e9ce
[]
no_license
LockVer/opencv-singleEyeDetection-graduationDesign
42a38cb866bf67ce7ad94ed2c91da09c38e820f7
0e3c3d7db57eefd25a27ec8d0645b506497c28e3
refs/heads/master
2023-04-17T05:19:21.270623
2021-05-05T12:14:15
2021-05-05T12:14:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,093
py
""" 其中mask的掩膜操作需要np.uint8八位无符号整型 掩膜操作只分是不是0 1和255对掩膜操作没有区别 要形成彩色的canny 就只是通过掩膜把原图的颜色保存下来了 """ import cv2 as cv import numpy as np def edge_demo(image): # mask1 = np.zeros((900, 1440), dtype=np.uint8) # mask1[:450, : 720] = 255 # cv.imshow("mask1", mask1) blurred = cv.GaussianBlur(image, (3, 3), 0) gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY) #X_gradient xgrad = cv.Sobel(gray, cv.CV_16SC1, 1, 0) #y_gradient ygrad = cv.Sobel(gray, cv.CV_16SC1, 0, 1) #edge edge = cv.Canny(xgrad, ygrad, 50, 150) print(edge.shape) cv.imshow("Canny_edge", edge) dst = cv.bitwise_and(image, image, mask=edge) #这个函数的意义在于mask操作而不是与操作,得到的dst是在原图基础上mask边缘 cv.imshow("Canny_edge_colored", dst) src = cv.imread("D:/studyfuckinghard/graduationcv/imgtest/brz1.jpg") cv.imshow("input", src) edge_demo(src) cv.waitKey(0) cv.destroyAllWindows()
[ "noreply@github.com" ]
LockVer.noreply@github.com
0b8f8cc4368270c7c91f001a5ef3587a49f97805
d3562041939882f51bbff2505ad1792456638d28
/personal/Nwoo/Side_Project/Gesture_Recognition/main_work/Final Work.py
802c82a6ad744ec8e171d8c8b3dd086a6aa06a8f
[]
no_license
h0han/2021_UGRP_
f4e69b51f3a8f4f7e0099ba3a91957b956e94a1d
ec7cbd2556869fd0f3f3c645311e107f37b2afe7
refs/heads/master
2023-03-01T23:20:07.708637
2021-02-04T02:08:48
2021-02-04T02:08:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,949
py
import easydict import cv2 import numpy as np from tf_pose.networks import get_graph_path, model_wh import os import time import logging import math import slidingwindow as sw import tensorflow as tf from tf_pose import common from tf_pose.common import CocoPart from tf_pose.tensblur.smoother import Smoother from PIL import ImageFont, ImageDraw, Image from sklearn.model_selection import train_test_split from tensorflow.keras.models import load_model # CNN 모델 load model = load_model("CNN_best_model_91_tf1.h5") try: from tf_pose.pafprocess import pafprocess except ModuleNotFoundError as e: print(e) print( 'you need to build c++ library for pafprocess. See : https://github.com/ildoonet/tf-pose-estimation/tree/master/tf_pose/pafprocess') exit(-1) logger = logging.getLogger('TfPoseEstimator') logger.setLevel(logging.INFO) ch = logging.StreamHandler() formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) def _round(v): return int(round(v)) def _include_part(part_list, part_idx): for part in part_list: if part_idx == part.part_idx: return True, part return False, None class Human: """ body_parts: list of BodyPart """ __slots__ = ('body_parts', 'pairs', 'uidx_list', 'score') def __init__(self, pairs): self.pairs = [] self.uidx_list = set() self.body_parts = {} for pair in pairs: self.add_pair(pair) self.score = 0.0 @staticmethod def _get_uidx(part_idx, idx): return '%d-%d' % (part_idx, idx) def add_pair(self, pair): self.pairs.append(pair) self.body_parts[pair.part_idx1] = BodyPart(Human._get_uidx(pair.part_idx1, pair.idx1), pair.part_idx1, pair.coord1[0], pair.coord1[1], pair.score) self.body_parts[pair.part_idx2] = BodyPart(Human._get_uidx(pair.part_idx2, pair.idx2), pair.part_idx2, pair.coord2[0], pair.coord2[1], pair.score) self.uidx_list.add(Human._get_uidx(pair.part_idx1, pair.idx1)) self.uidx_list.add(Human._get_uidx(pair.part_idx2, pair.idx2)) def is_connected(self, other): return len(self.uidx_list & other.uidx_list) > 0 def merge(self, other): for pair in other.pairs: self.add_pair(pair) def part_count(self): return len(self.body_parts.keys()) def get_max_score(self): return max([x.score for _, x in self.body_parts.items()]) def get_face_box(self, img_w, img_h, mode=0): """ Get Face box compared to img size (w, h) :param img_w: :param img_h: :param mode: :return: """ # SEE : https://github.com/ildoonet/tf-pose-estimation/blob/master/tf_pose/common.py#L13 _NOSE = CocoPart.Nose.value _NECK = CocoPart.Neck.value _REye = CocoPart.REye.value _LEye = CocoPart.LEye.value _REar = CocoPart.REar.value _LEar = CocoPart.LEar.value _THRESHOLD_PART_CONFIDENCE = 0.2 parts = [part for idx, part in self.body_parts.items() if part.score > _THRESHOLD_PART_CONFIDENCE] is_nose, part_nose = _include_part(parts, _NOSE) if not is_nose: return None size = 0 is_neck, part_neck = _include_part(parts, _NECK) if is_neck: size = max(size, img_h * (part_neck.y - part_nose.y) * 0.8) is_reye, part_reye = _include_part(parts, _REye) is_leye, part_leye = _include_part(parts, _LEye) if is_reye and is_leye: size = max(size, img_w * (part_reye.x - part_leye.x) * 2.0) size = max(size, img_w * math.sqrt((part_reye.x - part_leye.x) ** 2 + (part_reye.y - part_leye.y) ** 2) * 2.0) if mode == 1: if not is_reye and not is_leye: return None is_rear, part_rear = _include_part(parts, _REar) is_lear, part_lear = _include_part(parts, _LEar) if is_rear and is_lear: size = max(size, img_w * (part_rear.x - part_lear.x) * 1.6) if size <= 0: return None if not is_reye and is_leye: x = part_nose.x * img_w - (size // 3 * 2) elif is_reye and not is_leye: x = part_nose.x * img_w - (size // 3) else: # is_reye and is_leye: x = part_nose.x * img_w - size // 2 x2 = x + size if mode == 0: y = part_nose.y * img_h - size // 3 else: y = part_nose.y * img_h - _round(size / 2 * 1.2) y2 = y + size # fit into the image frame x = max(0, x) y = max(0, y) x2 = min(img_w - x, x2 - x) + x y2 = min(img_h - y, y2 - y) + y if _round(x2 - x) == 0.0 or _round(y2 - y) == 0.0: return None if mode == 0: return {"x": _round((x + x2) / 2), "y": _round((y + y2) / 2), "w": _round(x2 - x), "h": _round(y2 - y)} else: return {"x": _round(x), "y": _round(y), "w": _round(x2 - x), "h": _round(y2 - y)} def get_upper_body_box(self, img_w, img_h): """ Get Upper body box compared to img size (w, h) :param img_w: :param img_h: :return: """ if not (img_w > 0 and img_h > 0): raise Exception("img size should be positive") _NOSE = CocoPart.Nose.value _NECK = CocoPart.Neck.value _RSHOULDER = CocoPart.RShoulder.value _LSHOULDER = CocoPart.LShoulder.value _THRESHOLD_PART_CONFIDENCE = 0.3 parts = [part for idx, part in self.body_parts.items() if part.score > _THRESHOLD_PART_CONFIDENCE] part_coords = [(img_w * part.x, img_h * part.y) for part in parts if part.part_idx in [0, 1, 2, 5, 8, 11, 14, 15, 16, 17]] if len(part_coords) < 5: return None # Initial Bounding Box x = min([part[0] for part in part_coords]) y = min([part[1] for part in part_coords]) x2 = max([part[0] for part in part_coords]) y2 = max([part[1] for part in part_coords]) # # ------ Adjust heuristically + # if face points are detcted, adjust y value is_nose, part_nose = _include_part(parts, _NOSE) is_neck, part_neck = _include_part(parts, _NECK) torso_height = 0 if is_nose and is_neck: y -= (part_neck.y * img_h - y) * 0.8 torso_height = max(0, (part_neck.y - part_nose.y) * img_h * 2.5) # # # by using shoulder position, adjust width is_rshoulder, part_rshoulder = _include_part(parts, _RSHOULDER) is_lshoulder, part_lshoulder = _include_part(parts, _LSHOULDER) if is_rshoulder and is_lshoulder: half_w = x2 - x dx = half_w * 0.15 x -= dx x2 += dx elif is_neck: if is_lshoulder and not is_rshoulder: half_w = abs(part_lshoulder.x - part_neck.x) * img_w * 1.15 x = min(part_neck.x * img_w - half_w, x) x2 = max(part_neck.x * img_w + half_w, x2) elif not is_lshoulder and is_rshoulder: half_w = abs(part_rshoulder.x - part_neck.x) * img_w * 1.15 x = min(part_neck.x * img_w - half_w, x) x2 = max(part_neck.x * img_w + half_w, x2) # ------ Adjust heuristically - # fit into the image frame x = max(0, x) y = max(0, y) x2 = min(img_w - x, x2 - x) + x y2 = min(img_h - y, y2 - y) + y if _round(x2 - x) == 0.0 or _round(y2 - y) == 0.0: return None return {"x": _round((x + x2) / 2), "y": _round((y + y2) / 2), "w": _round(x2 - x), "h": _round(y2 - y)} def __str__(self): return ' '.join([str(x) for x in self.body_parts.values()]) def __repr__(self): return self.__str__() class BodyPart: """ part_idx : part index(eg. 0 for nose) x, y: coordinate of body part score : confidence score """ __slots__ = ('uidx', 'part_idx', 'x', 'y', 'score') def __init__(self, uidx, part_idx, x, y, score): self.uidx = uidx self.part_idx = part_idx self.x, self.y = x, y self.score = score def get_part_name(self): return CocoPart(self.part_idx) def __str__(self): return 'BodyPart:%d-(%.2f, %.2f) score=%.2f' % (self.part_idx, self.x, self.y, self.score) def __repr__(self): return self.__str__() class PoseEstimator: def __init__(self): pass @staticmethod def estimate_paf(peaks, heat_mat, paf_mat): pafprocess.process_paf(peaks, heat_mat, paf_mat) humans = [] for human_id in range(pafprocess.get_num_humans()): human = Human([]) is_added = False for part_idx in range(18): c_idx = int(pafprocess.get_part_cid(human_id, part_idx)) if c_idx < 0: continue is_added = True human.body_parts[part_idx] = BodyPart( '%d-%d' % (human_id, part_idx), part_idx, float(pafprocess.get_part_x(c_idx)) / heat_mat.shape[1], float(pafprocess.get_part_y(c_idx)) / heat_mat.shape[0], pafprocess.get_part_score(c_idx) ) if is_added: score = pafprocess.get_score(human_id) human.score = score humans.append(human) return humans class TfPoseEstimator: # TODO : multi-scale def __init__(self, graph_path, target_size=(320, 240), tf_config=None): self.target_size = target_size # load graph logger.info('loading graph from %s(default size=%dx%d)' % (graph_path, target_size[0], target_size[1])) with tf.gfile.GFile(graph_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) self.graph = tf.get_default_graph() tf.import_graph_def(graph_def, name='TfPoseEstimator') self.persistent_sess = tf.Session(graph=self.graph, config=tf_config) # for op in self.graph.get_operations(): # print(op.name) # for ts in [n.name for n in tf.get_default_graph().as_graph_def().node]: # print(ts) self.tensor_image = self.graph.get_tensor_by_name('TfPoseEstimator/image:0') self.tensor_output = self.graph.get_tensor_by_name('TfPoseEstimator/Openpose/concat_stage7:0') self.tensor_heatMat = self.tensor_output[:, :, :, :19] self.tensor_pafMat = self.tensor_output[:, :, :, 19:] self.upsample_size = tf.placeholder(dtype=tf.int32, shape=(2,), name='upsample_size') self.tensor_heatMat_up = tf.image.resize_area(self.tensor_output[:, :, :, :19], self.upsample_size, align_corners=False, name='upsample_heatmat') self.tensor_pafMat_up = tf.image.resize_area(self.tensor_output[:, :, :, 19:], self.upsample_size, align_corners=False, name='upsample_pafmat') smoother = Smoother({'data': self.tensor_heatMat_up}, 25, 3.0) gaussian_heatMat = smoother.get_output() max_pooled_in_tensor = tf.nn.pool(gaussian_heatMat, window_shape=(3, 3), pooling_type='MAX', padding='SAME') self.tensor_peaks = tf.where(tf.equal(gaussian_heatMat, max_pooled_in_tensor), gaussian_heatMat, tf.zeros_like(gaussian_heatMat)) self.heatMat = self.pafMat = None # warm-up self.persistent_sess.run(tf.variables_initializer( [v for v in tf.global_variables() if v.name.split(':')[0] in [x.decode('utf-8') for x in self.persistent_sess.run(tf.report_uninitialized_variables())] ]) ) self.persistent_sess.run( [self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up], feed_dict={ self.tensor_image: [np.ndarray(shape=(target_size[1], target_size[0], 3), dtype=np.float32)], self.upsample_size: [target_size[1], target_size[0]] } ) self.persistent_sess.run( [self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up], feed_dict={ self.tensor_image: [np.ndarray(shape=(target_size[1], target_size[0], 3), dtype=np.float32)], self.upsample_size: [target_size[1] // 2, target_size[0] // 2] } ) self.persistent_sess.run( [self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up], feed_dict={ self.tensor_image: [np.ndarray(shape=(target_size[1], target_size[0], 3), dtype=np.float32)], self.upsample_size: [target_size[1] // 4, target_size[0] // 4] } ) def __del__(self): # self.persistent_sess.close() pass @staticmethod def _quantize_img(npimg): npimg_q = npimg + 1.0 npimg_q /= (2.0 / 2 ** 8) # npimg_q += 0.5 npimg_q = npimg_q.astype(np.uint8) return npimg_q # 이 부분 코드 수정하였음. @staticmethod def draw_humans(npimg, humans, imgcopy=False): if imgcopy: npimg = np.copy(npimg) image_h, image_w = npimg.shape[:2] i = 0 detected_humans = [] for human in humans: i = i + 1 centers = {} x_poses = [] y_poses = [] # draw point for i in range(common.CocoPart.Background.value): if i not in human.body_parts.keys(): continue body_part = human.body_parts[i] center = (int(body_part.x * image_w + 0.5), int(body_part.y * image_h + 0.5)) centers[i] = center x_poses.append(center[0]) y_poses.append(center[1]) cv2.circle(npimg, center, 3, common.CocoColors[i], thickness=3, lineType=8, shift=0) # draw line for pair_order, pair in enumerate(common.CocoPairsRender): if pair[0] not in human.body_parts.keys() or pair[1] not in human.body_parts.keys(): continue # npimg = cv2.line(npimg, centers[pair[0]], centers[pair[1]], common.CocoColors[pair_order], 3) cv2.line(npimg, centers[pair[0]], centers[pair[1]], common.CocoColors[pair_order], 3) x_min = min(x_poses) x_max = max(x_poses) y_min = min(y_poses) y_max = max(y_poses) width = x_max - x_min height = y_max - y_min x_min = round(x_min - (0.3 * width)) x_max = round(x_max + (0.3 * width)) y_min = round(y_min - (0.2 * height)) y_max = round(y_max + (0.2 * height)) x_min = 0 if x_min < 0 else x_min y_min = 0 if y_min < 0 else y_min detected_humans.append([x_min, y_min, x_max, y_max]) return npimg, detected_humans def _get_scaled_img(self, npimg, scale): get_base_scale = lambda s, w, h: max(self.target_size[0] / float(h), self.target_size[1] / float(w)) * s img_h, img_w = npimg.shape[:2] if scale is None: if npimg.shape[:2] != (self.target_size[1], self.target_size[0]): # resize npimg = cv2.resize(npimg, self.target_size, interpolation=cv2.INTER_CUBIC) return [npimg], [(0.0, 0.0, 1.0, 1.0)] elif isinstance(scale, float): # scaling with center crop base_scale = get_base_scale(scale, img_w, img_h) npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale, interpolation=cv2.INTER_CUBIC) o_size_h, o_size_w = npimg.shape[:2] if npimg.shape[0] < self.target_size[1] or npimg.shape[1] < self.target_size[0]: newimg = np.zeros( (max(self.target_size[1], npimg.shape[0]), max(self.target_size[0], npimg.shape[1]), 3), dtype=np.uint8) newimg[:npimg.shape[0], :npimg.shape[1], :] = npimg npimg = newimg windows = sw.generate(npimg, sw.DimOrder.HeightWidthChannel, self.target_size[0], self.target_size[1], 0.2) rois = [] ratios = [] for window in windows: indices = window.indices() roi = npimg[indices] rois.append(roi) ratio_x, ratio_y = float(indices[1].start) / o_size_w, float(indices[0].start) / o_size_h ratio_w, ratio_h = float(indices[1].stop - indices[1].start) / o_size_w, float( indices[0].stop - indices[0].start) / o_size_h ratios.append((ratio_x, ratio_y, ratio_w, ratio_h)) return rois, ratios elif isinstance(scale, tuple) and len(scale) == 2: # scaling with sliding window : (scale, step) base_scale = get_base_scale(scale[0], img_w, img_h) npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale, interpolation=cv2.INTER_CUBIC) o_size_h, o_size_w = npimg.shape[:2] if npimg.shape[0] < self.target_size[1] or npimg.shape[1] < self.target_size[0]: newimg = np.zeros( (max(self.target_size[1], npimg.shape[0]), max(self.target_size[0], npimg.shape[1]), 3), dtype=np.uint8) newimg[:npimg.shape[0], :npimg.shape[1], :] = npimg npimg = newimg window_step = scale[1] windows = sw.generate(npimg, sw.DimOrder.HeightWidthChannel, self.target_size[0], self.target_size[1], window_step) rois = [] ratios = [] for window in windows: indices = window.indices() roi = npimg[indices] rois.append(roi) ratio_x, ratio_y = float(indices[1].start) / o_size_w, float(indices[0].start) / o_size_h ratio_w, ratio_h = float(indices[1].stop - indices[1].start) / o_size_w, float( indices[0].stop - indices[0].start) / o_size_h ratios.append((ratio_x, ratio_y, ratio_w, ratio_h)) return rois, ratios elif isinstance(scale, tuple) and len(scale) == 3: # scaling with ROI : (want_x, want_y, scale_ratio) base_scale = get_base_scale(scale[2], img_w, img_h) npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale, interpolation=cv2.INTER_CUBIC) ratio_w = self.target_size[0] / float(npimg.shape[1]) ratio_h = self.target_size[1] / float(npimg.shape[0]) want_x, want_y = scale[:2] ratio_x = want_x - ratio_w / 2. ratio_y = want_y - ratio_h / 2. ratio_x = max(ratio_x, 0.0) ratio_y = max(ratio_y, 0.0) if ratio_x + ratio_w > 1.0: ratio_x = 1. - ratio_w if ratio_y + ratio_h > 1.0: ratio_y = 1. - ratio_h roi = self._crop_roi(npimg, ratio_x, ratio_y) return [roi], [(ratio_x, ratio_y, ratio_w, ratio_h)] def _crop_roi(self, npimg, ratio_x, ratio_y): target_w, target_h = self.target_size h, w = npimg.shape[:2] x = max(int(w * ratio_x - .5), 0) y = max(int(h * ratio_y - .5), 0) cropped = npimg[y:y + target_h, x:x + target_w] cropped_h, cropped_w = cropped.shape[:2] if cropped_w < target_w or cropped_h < target_h: npblank = np.zeros((self.target_size[1], self.target_size[0], 3), dtype=np.uint8) copy_x, copy_y = (target_w - cropped_w) // 2, (target_h - cropped_h) // 2 npblank[copy_y:copy_y + cropped_h, copy_x:copy_x + cropped_w] = cropped else: return cropped def inference(self, npimg, resize_to_default=True, upsample_size=1.0): if npimg is None: raise Exception('The image is not valid. Please check your image exists.') if resize_to_default: upsample_size = [int(self.target_size[1] / 8 * upsample_size), int(self.target_size[0] / 8 * upsample_size)] else: upsample_size = [int(npimg.shape[0] / 8 * upsample_size), int(npimg.shape[1] / 8 * upsample_size)] if self.tensor_image.dtype == tf.quint8: # quantize input image npimg = TfPoseEstimator._quantize_img(npimg) pass logger.debug('inference+ original shape=%dx%d' % (npimg.shape[1], npimg.shape[0])) img = npimg if resize_to_default: img = self._get_scaled_img(npimg, None)[0][0] peaks, heatMat_up, pafMat_up = self.persistent_sess.run( [self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up], feed_dict={ self.tensor_image: [img], self.upsample_size: upsample_size }) peaks = peaks[0] self.heatMat = heatMat_up[0] self.pafMat = pafMat_up[0] logger.debug('inference- heatMat=%dx%d pafMat=%dx%d' % ( self.heatMat.shape[1], self.heatMat.shape[0], self.pafMat.shape[1], self.pafMat.shape[0])) t = time.time() humans = PoseEstimator.estimate_paf(peaks, self.heatMat, self.pafMat) logger.debug('estimate time=%.5f' % (time.time() - t)) return humans # TF-Pose 객체 생성 e = TfPoseEstimator(get_graph_path('mobilenet_thin'), target_size=(432, 368)) count = 0 cap = cv2.VideoCapture(0) categories = ['pedestrian', 'sitter', 'taxier'] while True: ret, image = cap.read() people_bbox = dict() if not ret: break # Skeleton 그리기 with Background humans = e.inference(image, upsample_size=4.0) image, detected_humans = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) for coors in detected_humans: # 가로 200pixel 세로 300pixel 이하 제외 # if w < 100 and h < 200: continue cv2.rectangle(image, (coors[0], coors[1]), (coors[2], coors[3]), (0, 0, 255), 3) # image resizing and reshape (Preprocessing) input_image = image[int(coors[1]):int(coors[3]), int(coors[0]):int(coors[2])] img = Image.fromarray(input_image, "RGB") # img = Image.open(input_image) img = img.convert("RGB") img = img.resize((256, 256)) data = np.asarray(img) X = np.array(data) X = X.astype("float") / 256 X = X.reshape(-1, 256, 256, 3) # model prediction result = [np.argmax(value) for value in model.predict(X)] result = categories[result[0]] people_bbox[(coors[0], coors[1], coors[2], coors[3])] = result # esc 누르면 종료 if cv2.waitKey(10) == 27: break print('%d.jpg done' % count) count += 1 # Class name print for coors in people_bbox: gesture = people_bbox[(coors[0], coors[1], coors[2], coors[3])] cv2.putText(image, gesture, (coors[0], coors[1]), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv2.LINE_AA) cv2.imshow("Gesture_Recognition", image) # 윈도우 종료 cap.release() cv2.destroyWindow('Gesture_Recognition')
[ "ktkwak5218@naver.com" ]
ktkwak5218@naver.com
3c3a6e486dac9e822f6acc546b647a8fb43c2498
324b597f233f873138cff1aa51eaae17a8fa87c7
/drift_plot.py
b14ebdf06636093a4ec42013980e16b6e3cf6cea
[]
no_license
mengxin513/fibre_stage_characterisation
b69679b7455dce4451874df3a5d00b9a4adba898
db39f977e12ecd4a418524952902c9098fe8a841
refs/heads/master
2021-05-07T13:50:58.840309
2018-07-04T09:55:53
2018-07-04T09:55:53
109,703,898
1
2
null
null
null
null
UTF-8
Python
false
false
649
py
#import libraries import h5py import numpy as np import matplotlib.pyplot as plt from plot_tools import plot_tools print "Loading data..." #indication of the programme running df = h5py.File("drift_41217.hdf5", "r") #reads data from file group = df["test_data000"] #loads a data group n = len(group) #finds the number of elements in the group data = np.zeros([3, n]) #creates an empty array of zeros for i in range(n): dset = group["data%05d" % i] #loads each dataset from the group data[:, i] = np.mean(dset, axis = 1) #finds the mean of each column in the dataset plot_tools(data) #plots the graph plt.show() #shows the plot on screen
[ "qm237@bath.ac.uk" ]
qm237@bath.ac.uk
fb8a38e1a141d682a285b65b537da8abe6aa5241
957373475ea85d56c10176e27ae4833f3e29e663
/warehouse_app/report/__init__.py
c2d4b2fec92a90be4b79727172ad7ba77fb028e5
[]
no_license
Comunitea/app
907ce5af16d2a4d0b52ee963e59131e1c8b18d14
ec86428282b68990e0205dabbd556ca0fc74e702
refs/heads/master
2021-04-03T10:22:26.770464
2018-03-15T23:14:51
2018-03-15T23:14:51
124,746,651
0
0
null
null
null
null
UTF-8
Python
false
false
1,064
py
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (C) 2004-2014 Pexego Sistemas Informáticos All Rights Reserved # $Carlos Lombardía Rodríguez$ <carlos@comunitea.com> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import product_tag_parser import location_tag_parser
[ "javierjcf@gmail.com" ]
javierjcf@gmail.com
f8705e39f3508909bbcf4ebc7145cbc5ebfaa55f
89474b15817bb144542dfa866770fa98cc7ead90
/tests/bdd/conftest.py
3894fd13e5f9a6557859d40ea465840de0df3513
[]
no_license
nasioDSW/webui
dc6bd1a9188d9e7aeeca0f3c844df83950ce5298
497d7ce536ba3ead99c51fa0c6a04f636fabcaf6
refs/heads/master
2023-03-28T16:53:36.912571
2021-04-02T19:26:44
2021-04-02T19:26:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,398
py
# !/usr/bin/env python3 import pytest import os import time from configparser import ConfigParser from platform import system from selenium import webdriver from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from selenium.common.exceptions import NoSuchElementException def browser(): profile = webdriver.FirefoxProfile() profile.set_preference("browser.download.folderList", 2) profile.set_preference("browser.download.dir", "/tmp") profile.set_preference("browser.helperApps.neverAsk.saveToDisk", "text/json") profile.set_preference("browser.download.manager.showWhenStarting", False) profile.set_preference("browser.link.open_newwindow", 3) binary = '/usr/bin/firefox' if system() == "Linux" else '/usr/local/bin/firefox' firefox_capabilities = DesiredCapabilities.FIREFOX firefox_capabilities['marionette'] = True firefox_capabilities['firefox_profile'] = profile.encoded firefox_capabilities['binary'] = binary web_driver = webdriver.Firefox(capabilities=firefox_capabilities) web_driver.implicitly_wait(2) return web_driver web_driver = browser() @pytest.fixture def driver(): return web_driver if os.path.exists('config.cfg'): configs = ConfigParser() configs.read('config.cfg') ip = configs['NAS_CONFIG']['ip'] password = configs['NAS_CONFIG']['password'] @pytest.fixture def ui_url(): global url url = f"http://{ip}" return url @pytest.fixture def root_password(): return password @pytest.mark.hookwrapper def pytest_runtest_makereport(item): """ Extends the PyTest Plugin to take and embed screenshot whenever test fails. """ outcome = yield report = outcome.get_result() if report.when == 'call' or report.when == "setup": xfail = hasattr(report, 'wasxfail') if (report.skipped and xfail) or (report.failed and not xfail): screenshot_name = f'screenshot/{report.nodeid.replace("::", "_")}.png' # look if there is a Error window if element_exist('//h1[contains(.,"Error")]'): web_driver.find_element_by_xpath('//div[@ix-auto="button__backtrace-toggle"]').click() time.sleep(2) traceback_name = f'screenshot/{report.nodeid.replace("::", "_")}.txt' save_traceback(traceback_name) save_screenshot(screenshot_name) # Press CLOSE if exist if element_exist('//button[@ix-auto="button__CLOSE"]'): web_driver.find_element_by_xpath('//button[@ix-auto="button__CLOSE"]').click() else: if element_exist('//button[@ix-auto="button__I AGREE"]'): web_driver.find_element_by_xpath('//button[@ix-auto="button__I AGREE"]').click() # if test that use disable failover make sure to enable failover back. if 'T0905' in screenshot_name or 'T0919' in screenshot_name or 'T0920' in screenshot_name or 'T0922' in screenshot_name: if element_exist('//mat-icon[@svgicon="ha_disabled"]'): enable_failover() def save_screenshot(name): web_driver.save_screenshot(name) def save_traceback(name): traceback_file = open(name, 'w') traceback_file.writelines(web_driver.find_element_by_xpath('//textarea[@id="err-bt-text"]').text) traceback_file.close() def element_exist(xpath): try: web_driver.find_element_by_xpath(xpath) return True except NoSuchElementException: return False def wait_on_element(wait, loop, xpath): for _ in range(loop): time.sleep(wait) if element_exist(xpath): return True else: return False def enable_failover(): driver.find_element_by_xpath('//mat-list-item[@ix-auto="option__Dashboard"]').click() wait_on_element(driver, 0.5, 7, '//mat-list-item[@ix-auto="option__System Settings"]') driver.find_element_by_xpath('//mat-list-item[@ix-auto="option__System Settings"]').click() wait_on_element(driver, 0.5, 7, '//mat-list-item[@ix-auto="option__Misc"]') driver.find_element_by_xpath('//mat-list-item[@ix-auto="option__Misc"]').click() assert wait_on_element(driver, 0.5, 7, '//h1[contains(.,"Miscellaneous")]') assert wait_on_element(driver, 0.5, 7, '//li[contains(.,"Failover")]') driver.find_element_by_xpath('//li[contains(.,"Failover")]').click() assert wait_on_element(driver, 0.5, 7, '//h1[contains(.,"Failover")]') element = web_driver.find_element_by_xpath('//mat-checkbox[@ix-auto="checkbox__Disable Failover"]') class_attribute = element.get_attribute('class') if 'mat-checkbox-checked' in class_attribute: web_driver.find_element_by_xpath('//mat-checkbox[@ix-auto="checkbox__Disable Failover"]').click() wait_on_element(0.5, 5, '//button[@ix-auto="button__SAVE"]') web_driver.find_element_by_xpath('//button[@ix-auto="button__SAVE"]').click() wait_on_element(0.5, 4, '//h1[contains(.,"Settings saved")]') if element_exist('//button[@ix-auto="button__CLOSE"]'): web_driver.find_element_by_xpath('//button[@ix-auto="button__CLOSE"]').click() time.sleep(1) web_driver.find_element_by_xpath('//mat-list-item[@ix-auto="option__Dashboard"]').click() # wait_on_element(1, 90, '//mat-icon[@svgicon="ha_enabled"]')
[ "ericturgeon.bsd@gmail.com" ]
ericturgeon.bsd@gmail.com
21da28b70b562a80106595216ab69a3a2debacc8
fefa4f10774a82f7960f8e3e750e98cae434c853
/functional_tests/tests.py
9ec27cadaf9f1780b47bc5cd996e840befb9fd40
[]
no_license
youjeng/superlists
4b222d11864efc2e453fd63068ad5c7a370de193
f970de4823e2d739ff0eab74368e9aea01d877a5
refs/heads/main
2023-08-21T11:21:05.340083
2021-09-29T11:03:04
2021-09-29T11:03:04
372,086,249
0
0
null
null
null
null
UTF-8
Python
false
false
4,502
py
from django.test import LiveServerTestCase from selenium import webdriver from selenium.common.exceptions import WebDriverException from selenium.webdriver.common.keys import Keys from selenium.webdriver.firefox.webdriver import WebDriver import unittest import time MAX_WAIT = 10 class NewVisitorTest(LiveServerTestCase): def setUp(self): self.browser = webdriver.Firefox() def wait_for_row_in_list_table(self, row_text): start_time = time.time() while True: try: table = self.browser.find_element_by_id('id_list_table') rows = table.find_elements_by_tag_name('tr') self.assertIn(row_text, [row.text for row in rows]) return except(AssertionError, WebDriverException) as e: if time.time() - start_time > MAX_WAIT: raise e time.sleep(0.5) def tearDown(self): self.browser.quit() def test_can_start_a_list_and_retrieve_it_later(self): # Edith heard about a sweet new online to-do app. # She goes to check out it's home page self.browser.get(self.live_server_url) # She notices the page title and header mention To-Do lists self.assertIn('To-Do', self.browser.title) header_text = self.browser.find_element_by_tag_name('h1').text self.assertIn('To-Do', header_text) # She is invited to enter a todo item straight away input_box = self.browser.find_element_by_id('id_new_item') self.assertEqual( input_box.get_attribute('placeholder'), 'Enter a to-do item' ) # She types "Fill out paper work for ODNR" input_box.send_keys('Fill out paper work for ODNR') # When she hits enter, the page updates, and not the page lists # "1: Fill out paper work for ODNR" as an item in a to-do list input_box.send_keys(Keys.ENTER) time.sleep(1) self.wait_for_row_in_list_table('1: Fill out paper work for ODNR') # There is still a text box inviting her to add another item. # She enters "order parts" inputbox = self.browser.find_element_by_id('id_new_item') inputbox.send_keys('order parts') inputbox.send_keys(Keys.ENTER) # The page updates again, and shows both items on her list self.wait_for_row_in_list_table('1: Fill out paper work for ODNR') self.wait_for_row_in_list_table('2: order parts') # Satisifed, she goes back to sleep def test_multiple_users_can_start_lists_at_different_urls(self): # Edith starts a new to-do list self.browser.get(self.live_server_url) inputbox = self.browser.find_element_by_id('id_new_item') inputbox.send_keys('Buy peacock feathers') inputbox.send_keys(Keys.ENTER) self.wait_for_row_in_list_table('1: Buy peacock feathers') # She notices that her list has a unique URL edith_list_url = self.browser.current_url self.assertRegex(edith_list_url, '/lists/.+') # Now a new user, Francis, comes along to the site ## We use a new browser session to make sure that no information ## of Edith's is coming through from cookies self.browser.quit() self.browser.webdriver.Firefox() # Francis visits the home page, there is no sign of Ediths lists self.browser.get(self.live_server_url) page_text = self.browser.find_element_by_tag_name('body').text self.assertNotIn('Buy peacock feathers', page_text) self.assertNotIn('order parts', page_text) # Francis starts a new list by entering a new item. He is less interesting than Edith inputbox = self.browser.find_element_by_id('id_new_item') inputbox.send_keys('Buy milk') inputbox.send_keys(Keys.ENTER) self.wait_for_row_in_list_table('1: Buy milk') # Francis gets his own unique URL fancis_list_url = self.browser.current_url assertRegex(francis_list_url, '/lists/+') # Edith wonders if the site will remember her list # She see's that the site has generated a unique URL for her -- there is # some explanatory text to that effect self.fail('Finish the test!') # She visits that URL - her to-do list is still there # Satisfied, she goe s back to sleep
[ "mcheich@gmail.com" ]
mcheich@gmail.com
979e69700c1e63600045be2addfb894eb2fcccfc
35ae63b26cd3f9b80aa8b3edeb598fbd143c1e17
/utils/telegram_bot/__init__.py
902b066386f1085f64fd6175553c07ad6276130f
[]
no_license
trevenue44/whatsapp-telegram
e4f2fa7adfa1bfb5c9ce56cb16b87eeb7e2e9cd2
742d96af955145da0fe62988a59c3da64e95fb91
refs/heads/master
2023-06-17T17:27:11.358814
2021-07-17T14:36:52
2021-07-17T14:36:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
23
py
from .main_bot import *
[ "trevepaul2@gmail.com" ]
trevepaul2@gmail.com
13a7ea0b99fb7e6c47e3d62208c6fe6c62cca099
5387aba1e74f7c177ad76e50dffea1c76d545660
/cah.py
a101b6ce65b4ec785d817719adfecef0c7eb7bb0
[]
no_license
wluberti/cardsAgainstHumanity
1aafbb8449663e24c28e23b28782bea40a363974
900aab63ce01ab3d24d162075e3421a67f3b1df3
refs/heads/master
2021-04-13T20:37:44.367802
2020-03-22T13:36:45
2020-03-22T13:36:45
249,186,499
1
0
null
null
null
null
UTF-8
Python
false
false
2,783
py
#! /usr/bin/env python3 """ See the README.md for details! """ from os import listdir from os.path import join, isdir from random import sample, choice DATA_DIRECTORY = './data/' DEFAULT_LANGUAGE = 'NL' NUMBER_OF_ANSWERS = 8 class CardsAgainstHumanity(object): def __init__(self): """Print a nice welcome message""" print("Welcome to Card Against Humanity") def getLanguages(self): """Looks in the DATA_DIRECTORY to look for available languages""" try: dirs = [directory for directory in listdir(DATA_DIRECTORY) if directory.isupper() and isdir(join(DATA_DIRECTORY, directory))] self.availableLanguages = dirs return dirs except OSError: exit("Could not read from 'data' directory!") def setLanguage(self, language): """Sets the language used for the questions and answers""" if language == '': language = 'EN' if language.upper() in self.availableLanguages: self.language = language.upper() else: exit('This language is not available') def loadFiles(self): """Loads the questions and answers files for the set language""" try: with open (join(DATA_DIRECTORY + self.language, "questions.txt")) as questionfile: self.questions = questionfile.readlines() with open (join(DATA_DIRECTORY + self.language, "answers.txt")) as answersfile: self.answers = answersfile.readlines() except OSError: exit("Could not read the question and answer files for this language:") def getQuestion(self): """Get a ramdom question""" question = choice(self.questions) self.numberOfAnswersNeeded = question.count('_') return question.replace('_', '<.....>') def getAnswers(self, amount = NUMBER_OF_ANSWERS): """Gets multile answers (as defined by NUMBER_OF_ANSWERS. Note: If a question holds multiple answers the amount of answers will multiply accordingly.""" if self.numberOfAnswersNeeded > 1: amount *= self.numberOfAnswersNeeded return sample(self.answers, amount) if __name__ == "__main__": game = CardsAgainstHumanity() game.getLanguages() if DEFAULT_LANGUAGE == '': language = input("Default language not set. In what language would you like to play? (Available: {},\nNo input will default to: EN) ".format(game.availableLanguages)) game.setLanguage(language) else: game.setLanguage(DEFAULT_LANGUAGE) game.loadFiles() print("=" * 80, end='\n\n') print(game.getQuestion()) for num, answer in enumerate(game.getAnswers()): print(num +1, ") ", answer.strip(), sep='')
[ "wouter@zenith.freedom.nl" ]
wouter@zenith.freedom.nl
f43b7d1a8e62d5594e3f4f28fc6255696831d704
69e18da87bba00ce9cbb482c84442c4e36799a1e
/gen-smtp.py
92b40559966bc7bd9082009ef1b5127e5e964639
[]
no_license
hosting90/lets-encrypt
3878ac2325247287da00e509d5fffc2098516beb
eabe7363fc56114d9abeaed167750affe8dd767e
refs/heads/master
2020-05-04T20:40:13.041738
2019-09-05T11:21:38
2019-09-05T11:21:38
179,446,937
0
0
null
null
null
null
UTF-8
Python
false
false
6,632
py
#!/usr/bin/python import MySQLdb, os, sys try: conn = MySQLdb.connect(host = "galera-hosting-db.hosting90.cz", user = "hosting_antispam", passwd = "TmnJUrd5bT9WzCSN", db = "hosting_smtp") except MySQLdb.Error, e: print 'MySQL Error' sys.exit(1) #try: # blacklist = open('antispam/blacklist','w') # cursor = conn.cursor() # cursor.execute('SELECT from_local_part,from_domain FROM email_blacklist') # row = cursor.fetchone() # while row: # blacklist.write(row[0]+'@'+row[1]+'\n') # row = cursor.fetchone() # cursor.close() # blacklist.close() #except: # print 'Blacklist error' # sys.exit(1) try: php_limits = open('smtp/php_limits','w') cursor = conn.cursor() cursor.execute('SELECT DISTINCT CONCAT(mainftp, ":", hourly_limit) FROM `php_users` ORDER BY mainftp') row = cursor.fetchone() while row: php_limits.write(row[0]+'\n') row = cursor.fetchone() cursor.close() php_limits.close() except: print 'Php limits error' sys.exit(1) try: php_limits = open('smtp/php_daily_limits','w') cursor = conn.cursor() cursor.execute('SELECT DISTINCT CONCAT(mainftp, ":", daily_limit) FROM `php_users` ORDER BY mainftp') row = cursor.fetchone() while row: php_limits.write(row[0]+'\n') row = cursor.fetchone() cursor.close() php_limits.close() except: print 'Php daily limits error' sys.exit(1) try: php_alternatives = open('smtp/php_alternatives','w') cursor = conn.cursor() cursor.execute('SELECT DISTINCT CONCAT(ftp, ":", mainftp) AS item FROM `php_users` WHERE ftp IS NOT NULL AND mainftp IS NOT NULL UNION SELECT DISTINCT CONCAT(jmeno_domeny, ":", mainftp) AS item FROM `php_users` WHERE jmeno_domeny IS NOT NULL AND mainftp IS NOT NULL ORDER BY item') # cursor.execute('SELECT DISTINCT CONCAT(ftp, ":", mainftp) FROM `php_users` WHERE ftp IS NOT NULL AND mainftp IS NOT NULL ORDER BY ftp') row = cursor.fetchone() while row: php_alternatives.write(row[0]+'\n') row = cursor.fetchone() cursor.close() php_alternatives.close() except: print 'PHP alternatives error' sys.exit(1) try: php_domains = open('smtp/php_domains','w') cursor = conn.cursor() cursor.execute('SELECT DISTINCT CONCAT(mainftp, ":", jmeno_domeny) FROM `php_users` ORDER BY mainftp') row = cursor.fetchone() while row: php_domains.write(row[0]+'\n') row = cursor.fetchone() cursor.close() php_domains.close() except: print 'Php domains error' sys.exit(1) try: smtp_limits = open('smtp/smtp_limits','w') cursor = conn.cursor() cursor.execute('SELECT CONCAT(jmeno, "@", domena, ":", max_email_daily) FROM `v_smtp` WHERE block_outgoing_mail = 0 ORDER BY domena, jmeno') row = cursor.fetchone() while row: if row[0] != None: smtp_limits.write(row[0]+'\n') row = cursor.fetchone() cursor.close() smtp_limits.write('*:0\n') smtp_limits.close() except: print 'smtp limits error' sys.exit(1) #try: # smtp_password = open('smtp/smtp_password','w') # cursor = conn.cursor() # cursor.execute('SELECT CONCAT(jmeno, "@", domena, ":", heslo) FROM `v_smtp` WHERE block_outgoing_mail = 0 ORDER BY domena, jmeno') # row = cursor.fetchone() # while row: # if row[0] != None: # smtp_password.write(row[0]+'\n') # row = cursor.fetchone() # cursor.close() # smtp_password.close() #except: # print 'smtp password' # sys.exit(1) try: smtp_password = open('smtp/smtp_password_sha1','w') cursor = conn.cursor() cursor.execute('SELECT concat(jmeno, "@", domena, ":",hex(password_ssha)) as mystring FROM `v_smtp` WHERE block_outgoing_mail = 0 AND jmeno IS NOT NULL AND domena IS NOT NULL AND password_ssha is not null ORDER BY domena, jmeno;') row = cursor.fetchone() while row: if row[0] != None: smtp_password.write(row[0]+'\n') row = cursor.fetchone() cursor.close() smtp_password.close() except: print 'smtp password sha1' sys.exit(1) try: smtp_bd = open('smtp/smtp_blacklist_domain','w') cursor = conn.cursor() cursor.execute('SELECT `domena` FROM `v_smtp` WHERE `block_outgoing_mail_domain` = 1 GROUP BY `domena`') row = cursor.fetchone() while row: if row[0] != None: smtp_bd.write(row[0]+'\n') row = cursor.fetchone() cursor.close() smtp_bd.close() except: print 'smtp blacklist_domain' sys.exit(1) try: smtp_top_domains = open('smtp/smtp_top_domains','w') cursor = conn.cursor() cursor.execute('SELECT CONCAT(jmeno, "@", domena, ":", domena_top) FROM `v_smtp` ORDER BY domena, jmeno') row = cursor.fetchone() while row: if row[0] != None: smtp_top_domains.write(row[0]+'\n') row = cursor.fetchone() cursor.close() smtp_top_domains.close() except: print 'smtp top_domains error' sys.exit(1) try: smtp_top_domains_limits = open('smtp/smtp_top_domains_limits','w') cursor = conn.cursor() cursor.execute('SELECT DISTINCT CONCAT(domena_top,":",domain_limit) FROM `v_smtp` ORDER BY domena_top') row = cursor.fetchone() while row: if row[0] != None: smtp_top_domains_limits.write(row[0]+'\n') row = cursor.fetchone() cursor.close() smtp_top_domains_limits.close() except: print 'smtp top domains limits error' sys.exit(1) try: domain_keys_dir = 'smtp/domain_keys' cursor = conn.cursor() cursor.execute('SELECT jmeno_domeny, dkim_key FROM `hosting`.`domeny` WHERE `dkim_key` IS NOT NULL') dkim_domainlist = [] while True: row = cursor.fetchone() if row == None: break #This is the end of sql response dkim_domain = row[0] dkim_key = row[1] if dkim_key: dkim_domainlist.append(dkim_domain + '.key') #Lets write keys to their files. try: key_file = open(domain_keys_dir + '/' + dkim_domain + '.key', 'w') key_file.write(dkim_key) finally: key_file.close() cursor.close() #Now, let's delete old keyfiles, that are no longer in database local_key_list = os.listdir(domain_keys_dir) files_to_delete = set(local_key_list) - set(dkim_domainlist) for file in files_to_delete: os.remove(domain_keys_dir + '/' + file) except: print 'DKIM keys error' sys.exit(1) os.chdir('smtp') #This could also be done while we are creating/removing keyfiles before. But this may be bit faster and efficient. But who knows os.system('git add domain_keys/*') #Add new keys to git repo os.system('git add -u domain_keys/*') #Remove deleted keys from git repo #os.execlp('git', 'git', 'commit', 'php_domains', 'php_limits', 'php_daily_limits', 'php_alternatives', 'smtp_limits', 'smtp_password', 'smtp_blacklist_domain','smtp_top_domains','smtp_top_domains_limits', '-m', 'Autocommit') os.system('git commit php_domains php_limits php_daily_limits php_alternatives smtp_limits smtp_password_sha1 smtp_blacklist_domain smtp_top_domains smtp_top_domains_limits domain_keys -m Autocommit >/dev/null')
[ "matej@divecky.com" ]
matej@divecky.com
31d7a56d98ac554be81d6c85a7d9a9d0b0e1a2fd
9ceb332cff5a6caa8c1e3fc24b865737d07c05a5
/fpn/retina_fpn.py
f2566fd4816a237310d78f3b561844e573607c58
[ "MIT" ]
permissive
blyucs/MaskRCNN
95a7a8817fe08155c076ff5227dc009589ae4d1a
493730f1987886913ce059e934e9a720ee85bb20
refs/heads/master
2020-11-30T14:26:13.543724
2019-12-30T11:48:45
2019-12-30T11:48:45
230,416,578
0
0
NOASSERTION
2019-12-27T09:45:40
2019-12-27T09:45:39
null
UTF-8
Python
false
false
4,663
py
'''RetinaFPN in PyTorch. See the paper "Focal Loss for Dense Object Detection" for more details. ''' import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d( planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d( in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes)) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class RetinaFPN(nn.Module): def __init__(self, block, num_blocks): super(RetinaFPN, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) # Bottom-up layers self.layer2 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer3 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer4 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer5 = self._make_layer(block, 512, num_blocks[3], stride=2) self.conv6 = nn.Conv2d(2048, 256, kernel_size=3, stride=2, padding=1) self.conv7 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1) # Top layer self.toplayer = nn.Conv2d( 2048, 256, kernel_size=1, stride=1, padding=0) # Reduce channels # Smooth layers self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) # Lateral layers self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0) self.latlayer2 = nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def _upsample_add(self, x, y): '''Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.upsample(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _, _, H, W = y.size() return F.upsample(x, size=(H, W), mode='bilinear') + y def forward(self, x): # Bottom-up c1 = F.relu(self.bn1(self.conv1(x))) c1 = F.max_pool2d(c1, kernel_size=3, stride=2, padding=1) c2 = self.layer2(c1) c3 = self.layer3(c2) c4 = self.layer4(c3) c5 = self.layer5(c4) p6 = self.conv6(c5) p7 = self.conv7(F.relu(p6)) # Top-down p5 = self.toplayer(c5) p4 = self._upsample_add(p5, self.latlayer1(c4)) p3 = self._upsample_add(p4, self.latlayer2(c3)) # Smooth p4 = self.smooth1(p4) p3 = self.smooth2(p3) return p3, p4, p5, p6, p7 def RetinaFPN101(): # return RetinaFPN(Bottleneck, [2,4,23,3]) return RetinaFPN(Bottleneck, [2, 2, 2, 2]) def test(): net = RetinaFPN101() fms = net(Variable(torch.randn(1, 3, 600, 900))) for fm in fms: print(fm.size()) test()
[ "18588220928@163.com" ]
18588220928@163.com
7aaa1de0f8b242659f974aeedebdb47987b29d49
87257cdeac8f62b00c35ef142bcede4b884805a2
/app0.2_remote-objects/stockmarket/stockmarket.py
7ddadec74a2e59dbf97d504d1e3355d9f89bdebb
[]
no_license
mglucas/SD
45f41d108fac2c2e0e3628610cf6a63a938cf846
1b5ec23209545f1eda4116b1e6435af675f1c4b5
refs/heads/main
2023-07-17T23:54:19.003156
2021-09-01T19:07:11
2021-09-01T19:07:11
380,574,711
0
0
null
null
null
null
UTF-8
Python
false
false
1,193
py
# stockmarket.py from __future__ import print_function import random import time import Pyro4 @Pyro4.expose class StockMarket(object): def __init__(self, marketname, symbols): self._name = marketname self._symbols = symbols def quotes(self): while True: symbol = random.choice(self.symbols) yield symbol, round(random.uniform(5, 150), 2) time.sleep(random.random()/2.0) @property def name(self): return self._name @property def symbols(self): return self._symbols if __name__ == "__main__": nasdaq = StockMarket("NASDAQ", ["AAPL", "CSCO", "MSFT", "GOOG"]) newyork = StockMarket("NYSE", ["IBM", "HPQ", "BP"]) # for example purposes we will access the daemon and name server ourselves and not use serveSimple with Pyro4.Daemon() as daemon: nasdaq_uri = daemon.register(nasdaq) newyork_uri = daemon.register(newyork) with Pyro4.locateNS() as ns: ns.register("example.stockmarket.nasdaq", nasdaq_uri) ns.register("example.stockmarket.newyork", newyork_uri) print("Stockmarkets available.") daemon.requestLoop()
[ "luc0797@gmail.com" ]
luc0797@gmail.com
719850b932da4953da84ee2edd197cb74e461187
9eb497bf08553121bb96860485d230d17eb47af0
/Seaborn.docset/Contents/Resources/Documents/generated/seaborn-distplot-1.py
dea7cb9c41139ac7396e4b02fc850fcbf669c633
[]
no_license
peixian/seaborn-dash
34eba1c332cbfd3624b7e0e51b196c5c3d15b59a
100abc4dd503348640285fdaaaffcf7099a40d25
refs/heads/master
2020-09-22T12:48:10.649151
2016-08-30T16:28:03
2016-08-30T16:28:03
66,892,301
1
0
null
null
null
null
UTF-8
Python
false
false
139
py
import seaborn as sns, numpy as np sns.set(rc={"figure.figsize": (8, 4)}); np.random.seed(0) x = np.random.randn(100) ax = sns.distplot(x)
[ "peixian@users.noreply.github.com" ]
peixian@users.noreply.github.com
d77ed54b64dd54d79d02e8c5825fe260bc99827b
d867d08f51b959abc48aa53c47087b78263377c0
/predict.py
8b86bc112b0ee7c6f60c503639543dc16e296f24
[]
no_license
imclab/boardeye
7f143bb30da2961fef2c8f44dee87dee56c6130b
c40f40c7e4d0ccea74e77c03ebe36574177c3f9b
refs/heads/master
2021-01-15T21:48:42.339659
2016-04-28T19:25:25
2016-04-28T19:25:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
529
py
#!/usr/bin/env python import sys import numpy as np from keras.models import model_from_json MODEL_FILE = './data/model.json' WEIGHT_FILE = './data/weight.hdfs' # # Preparing data # x = np.array([sys.argv[1].split(',')], dtype=np.float32) # # Load model # model = model_from_json(open(MODEL_FILE).read()) model.load_weights(WEIGHT_FILE) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) # # Prediction # print model.predict_classes(x, batch_size=32, verbose=1)
[ "ray.sakai@logical-fabrics.com" ]
ray.sakai@logical-fabrics.com
cb6d594fb6a6e9b54d5b57bc4bb708f689fb6082
ad5e071f3182e36c2683a57c5d6c13a75c281c2c
/conversion.py
fac90699857ac218017e4f9f1fd55cd3dfe37d22
[]
no_license
JTam3/johnny-conversions
3c4b5f6401b26e8285ff7f762ea9dc191d9fc2a0
e0357e376665d0c795daa10e2da63895ca5f1774
refs/heads/master
2021-01-11T02:55:03.085578
2016-10-14T15:00:10
2016-10-14T15:00:10
70,908,363
0
1
null
2016-10-14T15:00:11
2016-10-14T12:30:14
Python
UTF-8
Python
false
false
79
py
# My Conversion Tools def dollars2cents(dollars): print("Hello!", dollars)
[ "johnny@nih.gov" ]
johnny@nih.gov
ab40f36a86bd19bcdcc25767006ce554c82c95cc
aa4e049abfafd0eaa71a8d1286b025b978083f96
/0x05-python-exceptions/0-safe_print_list.py
f904959fe26a74b2f4957d484fee91dbf90795ba
[]
no_license
PabloYepes27/holbertonschool-higher_level_programming
fdc517c2535b6affab2a8eee4e98252c78314be5
23be0d96c5cc11c8801e6a1fd758a87af57be42f
refs/heads/master
2022-12-16T13:39:15.268636
2020-09-25T00:03:38
2020-09-25T00:03:38
259,388,690
0
2
null
null
null
null
UTF-8
Python
false
false
232
py
#!/usr/bin/python3 def safe_print_list(my_list=[], x=0): j = 0 for i in range(0, x): try: print(my_list[i], end="") j += 1 except IndexError: pass print() return j
[ "juanpabloyepest@gmail.com" ]
juanpabloyepest@gmail.com
b22bce9bc39515a6d5737f34cb246c8f7773fd4c
d1c15641ece2cdbfe73e4e287d199a8edcb60647
/pytest/exercises.py
600589b8c35acad3067fe26ec255292cc1274306
[]
no_license
caichinger/pyconsk18_testing
24c0eb438290aad53e2ad1fc048ec8990243e075
da8da6ec75e0f8fd77acbafc016d554c88266d7f
refs/heads/master
2021-04-03T09:02:12.448826
2018-03-12T19:52:48
2018-03-12T19:52:48
124,597,060
4
1
null
null
null
null
UTF-8
Python
false
false
998
py
""" Complete/fix these tests. """ import pytest import numpy as np import pandas as pd def test_comparing_list(): assert [1, 2, 3] == [1, 3] def test_comparing_dict(): assert {'a': 1, 'b': 2} == {'c': 2, 'a': 1} def test_comparing_numbers(): assert (0.1 + 0.1 + 0.1) / 3 == 0.1 def test_comparing_numpy_arrays(): assert np.array([1, 2, 3.1]) == np.array([1, 2, 3]) def test_comparing_dataframes(): assert pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) == pd.DataFrame({'b': [3., 4.], 'a': [1, 2]}) def some_exception(): raise ZeroDivisionError('O.o') def test_some_exception(): # check that ZeroDivisionError is raised with 'O.o' pass def multiply(a, b): """ >>> multiply(1, 2) 2 >>> multiply([3], 3) [3, 3, 3] """ return a * b def test_multiply(): # run doctest using pytest # make parametrized test case based on doctests pass if __name__ == '__main__': pytest.main([__file__])
[ "claus.aichinger@mailbox.org" ]
claus.aichinger@mailbox.org
25e7c21509763f2ac001db2554122f4e02d77f3d
16cbf67734dba7f91be76e00d038f5f0c07823a9
/lesospider/pipelines.py
af181889bd6e1c11dae11a4f3432237791d90e56
[]
no_license
huichen90/lesospider
0381b0837b362d28099616cce808b0da70a9e141
9363dcf4259f2eddb367a9a9f35221d36ca04cee
refs/heads/master
2020-03-17T17:08:43.470383
2018-10-08T08:47:17
2018-10-08T08:47:17
133,776,720
0
0
null
null
null
null
UTF-8
Python
false
false
3,840
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import datetime import logging import pymysql from langdetect import detect from scrapy.utils.project import get_project_settings from lesospider.translate import Translate from lesospider.videodownload import VdieoDownload class Mysql(object): """存储到数据库中""" def __init__(self): settings = get_project_settings() self.host = settings["DB_HOST"] self.port = settings["DB_PORT"] self.user = settings["DB_USER"] self.pwd = settings["DB_PWD"] self.name = settings["DB_NAME"] self.charset = settings["DB_CHARSET"] self.connect() def connect(self): self.conn = pymysql.connect(host=self.host, port=self.port, user=self.user, password=self.pwd, db=self.name, charset=self.charset) self.cursor = self.conn.cursor() def colose_spider(self, spider): self.conn.close() self.cursor.close() class LesospiderPipeline(Mysql): def process_item(self, item, spider): try: d = VdieoDownload(db=self.conn, cursor=self.cursor) d.Automatic_download() except Exception as e: print(e) logging.error('下载失败 %s' % e) return item class MysqlPipeline(Mysql): """存储到数据库中""" def process_item(self, item, spider): # 查重处理 self.cursor.execute( """select * from videoitems where url = %s""", item['url']) # 是否有重复数据 repetition = self.cursor.fetchone() # 重复 if repetition or (item['site_name'] != 'letv' and item['site_name'] != 'iqiyi'): print("此条重复抓取,没有存入数据库") elif int(item['video_time']) > int(item['video_time_long']) or int(item['video_time']) < int( item['video_time_short']): print('视频时间不满足要求') elif int(float(item['start_date'])) <= int(float(item['upload_time'])) <= int(float(item['end_date'])): item['upload_time'] = self.ts2dts(item['upload_time']) dt = datetime.datetime.now().strftime("%Y-%m-%d") if detect(item['title']) != 'zh-cn': t = Translate(q=item['title']) # 翻译 item['title_cn'], item['language'] = t.translate() else: item['title_cn'] = item['title'] item['language'] = '中文' sql = 'insert into videoitems(title,keywords,spider_time,url,site_name,video_time,' \ 'play_count,upload_time,info,video_category,tags,task_id,isdownload,lg,title_cn)' \ ' values( "%s","%s","%s","%s", "%s" ,"%s","%s", "%s", "%s","%s","%s","%s",0,"%s","%s")' \ % (item['title'], item['keywords'], dt, item['url'], item['site_name'], item['video_time'], item["play_count"], item['upload_time'], item['info'], item['video_category'], item['tags'], item['task_id'], item['language'], item['title_cn']) # 执行SQL语句 self.cursor.execute(sql) self.conn.commit() else: print('发布日期不符合要求,没有存入数据库') return item def ts2dts(self, timeStamp): '''timestamp translate to datestring''' import time timeArray = time.localtime(timeStamp) datestr = time.strftime("%Y-%m-%d", timeArray) return datestr
[ "huichen90" ]
huichen90
05e2d627d9d53c64b423fc63e8ffef75cd230cfd
c62665c9cd3c8d48fd6841af286c290809ac0b74
/features/environment.py
eb69c899c65bd99d69394ed62a54d384b37d3858
[]
no_license
khandepc/sampleseleniumproject
17c220e2a90bec9ff9a32d7155e699bed051edf1
8b86230946f7b03b45dcc580041902dd26bf9359
refs/heads/master
2020-05-18T05:04:24.019964
2019-04-30T05:00:34
2019-04-30T05:00:34
184,193,562
0
0
null
null
null
null
UTF-8
Python
false
false
1,091
py
import generic.seleniumbase as sb def before_step(context, step): pass def after_step(context, step): pass #These run before and after every step. def before_scenario(context, scenario): sb.launch_app('chrome','https://www.facebook.com/') actual_title=sb.get_page_details('title') expected_title='Facebook – log in or sign up' assert actual_title==expected_title,actual_title+'is not matching with'+expected_title def after_scenario(context, scenario): sb.capture_screen_shot(scenario.name) sb.close_app() #These run before and after each scenario is run. def before_feature(context, feature): pass def after_feature(context, feature): pass #These run before and after each feature file is exercised. def before_tag(context, tag): pass def after_tag(context, tag): pass #These run before and after a section tagged with the given name. # They are invoked for each tag encountered in the order they’re found in the feature file. # See controlling things with tags. def before_all(context): pass def after_all(context): pass
[ "khandepc@gmail.com" ]
khandepc@gmail.com
939e94062c6e45b96e81639c3bd0987e702fa899
24f2696aab87f1632705a7c8b2d3b866e26aa3ee
/container_most_water_11.py
72b6c6448e71d275a5e8bde4f53685a914c43692
[]
no_license
adiggo/leetcode_py
44a77a0b029f4d92bd0d8e24cad21ceea52e7794
4aa3a3a0da8b911e140446352debb9b567b6d78b
refs/heads/master
2020-04-06T07:05:21.770518
2016-07-01T16:00:40
2016-07-01T16:00:40
30,397,276
0
0
null
null
null
null
UTF-8
Python
false
false
565
py
class Solution(object): def maxArea(self, height): """ :type height: List[int] :rtype: int """ left, right = 0, len(height) - 1 max_container = 0 while left <= right and right < len(height): width = min(height[left], height[right]) max_container = max(width * (right - left), max_container) # move the min of left and right if height[left] < height[right]: left += 1 else: right -= 1 return max_container
[ "adiggo@gmail.com" ]
adiggo@gmail.com
9d55a508e3a6001695fd83bf5b5803da3bc9311a
27acd9eeb0d2b9b6326cc0477e7dbb84341e265c
/test/vraag4/src/yahtzee/126.py
e93b5b1f181af0f4fcb6d0417587a05553fef970
[]
no_license
VerstraeteBert/algos-ds
e0fe35bc3c5b7d8276c07250f56d3719ecc617de
d9215f11cdfa1a12a3b19ade3b95fa73848a636c
refs/heads/master
2021-07-15T13:46:58.790446
2021-02-28T23:28:36
2021-02-28T23:28:36
240,883,220
1
1
null
null
null
null
UTF-8
Python
false
false
654
py
def histogram(stenen): stenen.sort() bib = {} for i in stenen: bib[i] = stenen.count(i) return bib def max_gelijk(stenen): stenen.sort() bib = {} waarden = [] for i in stenen: bib[i] = stenen.count(i) for i in bib.values(): waarden.append(i) waarden.sort() return waarden[-1] def is_FullHouse(stenen): stenen.sort() bib = {} waarden = [] for i in stenen: bib[i] = stenen.count(i) for i in bib.values(): waarden.append(i) waarden.sort(reverse = True) if waarden[0] == 3 and waarden[1] == 2: return True else: return False
[ "bertverstraete22@gmail.com" ]
bertverstraete22@gmail.com
f128c4eb47e99367d6fba9e5c51bfad341cca121
7b4ffa988c12fb4076655722fa04fef98c21c43d
/PraatWrapper.py
40bf34c019e0d4865788ac20fccaed11e701c4e4
[]
no_license
lyndonrey/presidential_pronunciation
cbeee725f31bfb2be5aaf508cdf3ba1d50dc4223
0fb0c037616297196a46020fdb1bc3d2a6d39ba6
refs/heads/master
2021-01-17T14:39:23.673154
2017-03-06T16:50:11
2017-03-06T16:50:11
84,096,146
0
0
null
null
null
null
UTF-8
Python
false
false
2,214
py
#!/usr/bin/env python from subprocess import call from multiprocessing import Process as Task, Queue import time, sys, collections, subprocess, glob def callPraat(wavIn, dataOut): """ Calls the praat formant getter script on the wav file param, and prints to file """ f = open(dataOut, "a") # This variable is what I'm piping stdout of the praat call to return call(["praat", "--run", "formants-master.praat", wavIn], stdout=f) def removeUndefs(fileIn): """ Removes '--undefined--' values from output, this helps with stats things """ f = open(fileIn, "r+") lines = f.readlines() f.seek(0) # This is necessary to return to the beginning of the file for line in lines: if "--undefined--" not in line: f.write(line) f.truncate() f.close() print ("Done removing undefined measurements") def getTotalDuration(fileIn): """ Returns the total duration of each file to enable efficiency calculations """ return subprocess.Popen(["praat", "--run", fileIn], stdout=subprocess.PIPE).communicate()[0] directory = sys.argv[1] # The input directory must be in quotes (in Bash anyway) or else it wildcards weird # print (directory) # Get all the wav files from directory to parse wavs = glob.glob(directory) dataFile = sys.argv[2] # Output file for data f = open(dataFile, "w+") # Create file if it doesn't exist f.close() sumOfProcesses = 0 # The summed time total of all processed wavs # For each wav in the directory specified... for wav in wavs: # print ("total Duration:", getTotalDuration(wav)) workers = [] # Specify and start the task child = Task(target=callPraat, args=(wav, dataFile)) child.start() workers.append(child) # These few lines just give a command line counter so it seems more interactive progress = 0 while any(i.is_alive() for i in workers): progress += 1 print ("Running time (s):", progress, wav.split("/")[-1], end="\r") time.sleep(1) sumOfProcesses += progress print ("\nCurrent total (s):", sumOfProcesses) print ("Total analysis time (s):", sumOfProcesses) print ("Removing undefined measurements") removeUndefs(dataFile)
[ "lrey@uwo.ca" ]
lrey@uwo.ca
a8ea32ee092bd7d2b6681537f10d679a04d2e658
d0f8474101f55a181e2cbaa95b9169378b84deb8
/app/main/model/oracle/supplier_management.py
ccb57a595f6927b5b0a58bc085ac66412868206a
[]
no_license
onewoorks/knowage-dataset-api
ae60041d297d1f76f89e7a3cc35df361b7dacbef
7dbf19a549b2b20b245cd9cea6bd4eaeffcd5e76
refs/heads/master
2022-07-10T15:38:56.897691
2019-12-10T08:45:22
2019-12-10T08:45:22
198,759,687
0
0
null
2022-06-21T23:06:36
2019-07-25T04:52:32
Python
UTF-8
Python
false
false
5,116
py
from .. import execute_oracle_query from datetime import datetime, date class RETURN_RESPONSE: def response(self, columns, result): final = [] for r in result: data = {} index = 0 for c in columns: data[c] = r[index] index += 1 final.append(data) return final class ORACLE_SM_QUERY(RETURN_RESPONSE): def ytd_mof_registration(self): year = datetime.now().year query = "SELECT " query += "b.appl_type as \"application_type\", " query += "sum(d.PAYMENT_AMT) as \"total_amount\" " query += "FROM SM_MOF_CERT a, sm_appl b, py_bill c, PY_PAYMENT d " query += "WHERE " query += "a.appl_id = b.appl_id " query += "AND c.org_profile_id = b.supplier_id " query += "AND b.appl_no = c.bill_no " query += "AND c.BILL_ID = d.BILL_ID " query += "AND to_char(a.eff_date, 'YYYY') = '{}' ".format(year) query += "AND a.is_bumi_cert = 0 " query += "AND d.PAYMENT_AMT = '400' " query += "AND d.RECEIPT_NO IS NOT NULL " query += "GROUP BY b.appl_type " query += "ORDER BY 1 " resp = execute_oracle_query(query) columns = ("APPLICATION_TYPE", "AMOUNT") return self.response(columns, resp) def actual_mof_registration(self, current_year='now', current_month='now'): year = datetime.now().year if current_year == 'now' else current_year month = datetime.now().month if current_year == 'now' else current_month query = "SELECT " query += "to_char(a.eff_date,'YYYY-MM') as \"year_and_month\", " query += "b.appl_type as \"application_type\", " query += "sum(d.PAYMENT_AMT) as \"total_amount\" " query += "FROM SM_MOF_CERT a, sm_appl b, py_bill c, PY_PAYMENT d " query += "WHERE " query += "a.appl_id = b.appl_id " query += "AND c.org_profile_id = b.supplier_id " query += "AND b.appl_no = c.bill_no " query += "AND c.BILL_ID = d.BILL_ID " query += "AND to_char(a.eff_date, 'YYYY-MM') = '{}-{}' ".format( year, str(month).zfill(2)) query += "AND a.is_bumi_cert = 0 " query += "AND d.PAYMENT_AMT = '400' " query += "AND d.RECEIPT_NO IS NOT NULL " query += "GROUP BY b.appl_type, to_char(a.eff_date, 'YYYY-MM') " query += "ORDER BY 1 " resp = execute_oracle_query(query) columns = ("YEAR_AND_MONTH", "APPLICATION_TYPE", "AMOUNT") return self.response(columns, resp) def ora_actual_supplier_revenue(self,working_days,appl_type): this_month = date.today().strftime("%Y-%m") print("perform actual supplier revenue (oracle) => {}".format(appl_type)) query = "" count = 1 for i in working_days: query += "SELECT '{}' AS working_date , SUM(x.PAYMENT_AMT) AS total FROM ( ".format(i) query += "SELECT DISTINCT" query += " a.mof_account_id," query += " b.appl_no," query += " b.appl_type," query += " a.eff_date," query += " a.exp_date," query += " d.PAYMENT_DATE," query += " d.PAYMENT_AMT " query += "FROM SM_MOF_CERT a, sm_appl b, py_bill c, PY_PAYMENT d " query += "WHERE" query += " a.appl_id = b.appl_id" query += " AND c.org_profile_id = b.supplier_id" query += " AND b.appl_no = c.bill_no" query += " AND c.BILL_ID = d.BILL_ID" if '-' in i: day = i.split('-') day_start = day[0].zfill(2) day_end = day[1].zfill(2) query += " AND to_char(a.eff_date, 'YYYY-MM-DD') >= '{}-{}'".format(this_month,day_start) query += " AND to_char(a.eff_date, 'YYYY-MM-DD') <= '{}-{}'".format(this_month,day_end) else: query += " AND to_char(a.eff_date, 'YYYY-MM-DD') = '{}-{}'".format(this_month,i.zfill(2)) query += " AND a.is_bumi_cert = 0" query += " AND b.appl_type IN ('{}')".format(appl_type) query += " AND d.PAYMENT_AMT = '400'" query += " AND d.RECEIPT_NO IS NOT NULL" query += " ORDER BY 1" query += ") X GROUP BY 1,'{}' ".format(i) if count < len(working_days): query += "UNION ALL " count += 1 resp = execute_oracle_query(query) final = [] for result in resp: content = { "working date": result[0], "total": result[1] } final.append(content) return final
[ "irwanbibrahim@onewoorks.com" ]
irwanbibrahim@onewoorks.com
7d2536b37851f699500ad519ad72a92ef4880edb
fc017beff82d8e5d00f5c18fe85dae9aacafbac7
/wosis/__init__.py
9720f21e40c75ef21bfd8c8d24066f0390450ff2
[]
no_license
ConnectedSystems/wosis
a29a82b5828842eb409e058e03caceabecf1417f
0418389affce4e2c440f3c96b306dbaad2a23156
refs/heads/master
2020-04-04T00:39:48.731783
2019-09-11T06:00:05
2019-09-11T06:00:05
155,658,135
9
0
null
2019-01-31T03:20:17
2018-11-01T03:40:22
HTML
UTF-8
Python
false
false
131
py
from .query import * from .store import * from .convert import * from .analysis import * from wosis.TopicResult import TopicResult
[ "takuyai@gmail.com" ]
takuyai@gmail.com
6136481ab72ac9aa1f3ab3abc6824c864535f5cb
3505ea8c883a2986c05ecb2807f6bc2ec13aac03
/team_as_a_unit/team_graph.py
498b9995c05f2f46d8530f627716192347b31d55
[]
no_license
wdunicornpro/GithubTeamRecommendation
b89c42823251b9baec9534b2a2389cb9d08905eb
94299ca1cb408644b592be739cf13eaa5c1bf5a5
refs/heads/master
2023-03-14T21:17:35.706355
2021-03-30T06:45:19
2021-03-30T06:45:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,387
py
import json import os import re teams = [] team_inds = {} user_team = {} with open('team_profiles.json') as tj: for l in tj.readlines(): line = l.strip().split('\t') teams.append(line[0]) for user in json.loads(line[0]): if not user in user_team: user_team[user] = [] user_team[user].append(len(teams)-1) team_inds[line[0]] = len(teams)-1 repo_team = {} team_graph = {} cnt = 0 with open("contributors.json") as rj: for l in rj.readlines(): print(cnt) contributors = [c['login'] for c in json.loads(l)['contributors']] intersect = list(set(contributors).intersection(user_team)) for i,u in enumerate(intersect): for team in user_team[u]: if not team in team_graph: team_graph[team] = {} for j in range(i+1,len(intersect)): for tm in user_team[intersect[j]]: if tm == team: continue if not tm in team_graph[team]: team_graph[team][tm] = 0 team_graph[team][tm] += 1 cnt += 1 with open('team_graph.json','w') as rp: for i,team in enumerate(teams): g = team_graph[i] if i in team_graph else {} rp.write("%s\t%s\n"%(team,json.dumps(g)))
[ "18221943430@163.com" ]
18221943430@163.com
0fb30ce665904a7a14c1f692855392fc8cacaf74
3cb5758d30868b8ae0cc4e9a2c0c1d03bba95db3
/src/alg/simplex/simplex_method.py
676899d91fa968750381bebed3bb5e235dc87ff7
[]
no_license
Brahialis0209/gui-qt
c306611c33ca0b829ae9c5a92a8a6b89323c6948
a54c4810afa980129c28989dde1d91c4921181e6
refs/heads/master
2022-12-02T14:54:13.687320
2020-05-30T21:21:47
2020-05-30T21:21:47
287,610,895
0
0
null
null
null
null
UTF-8
Python
false
false
8,587
py
import numpy as np import itertools as it import copy as cp from src.alg.exceptions import SimplexAlgorithmException, \ IncompleteTaskRankException from src.alg.simplex.config import SimplexConfig def del_null(A, c): # A - constraint matrix, # c - goal function coefficients null_ind = list() for index, column in enumerate(A): if all_null(column): # all column components null null_ind.append(index) null_ind.reverse() for index in null_ind: A = np.delete(A, index, axis=0) c = np.delete(c, index) return A, c def all_null(column): return not list(filter(lambda x: x != 0, column)) def plus_list(ref_vector): # N - column num N_plus_index = [] for index, x in enumerate(ref_vector): if x > 0: N_plus_index.append(index) return N_plus_index def artificial_basis(A, b): # A - constraint matrix, # c - goal function coefficients rows, columns = A.shape rank = np.linalg.matrix_rank(A) if rank != rows: raise IncompleteTaskRankException() E = np.eye(rows) sub_A = np.append(A, E, axis=1) arr_zero = np.zeros(columns, float) sub_c = np.append(arr_zero, np.ones(rows)) ref_vector = np.append(arr_zero, b) # ref_vector - new approximation return sub_A, sub_c, ref_vector def pos_vector(vector): return not list(filter(lambda x: x < 0, vector)) def find_new_basis(N_k, indices_not_plus_element, L, A): # N_k - column num in current ref_vector sub_A = list() # A - constraint matrix, # c - goal function coefficients for ind_not_plus_element in indices_not_plus_element: for ind_N_k in N_k: if ind_N_k != ind_not_plus_element: sub_A.append(A.transpose()[ind_N_k]) for ind_L in L: # L - column num who negative new_A_N = cp.deepcopy(sub_A) new_A_N.append(A.transpose()[ind_L]) new_A_N = np.array(new_A_N) if np.linalg.det(new_A_N) != 0: N_k[N_k.index(ind_not_plus_element)] = ind_L return N_k N_k.append(ind_not_plus_element) def find_new_A_N(A, A_N, N_k, N_null_index): # N_k - column num in current ref_vector new_M, new_N = A_N.shape # A - constraint matrix, # c - goal function coefficients delta = new_M - new_N if delta == 0: return N_k, A_N column_A_combinations = list(it.combinations(N_null_index, delta)) for column_A in column_A_combinations: sub_A = list() for column in A_N.transpose(): sub_A.append(column) for index in column_A: sub_A.append(A.transpose()[index]) sub_A = np.array(sub_A).transpose() if np.linalg.det(sub_A) != 0: for index in column_A: N_k.append(index) return N_k, sub_A def find_new_B(B, N_k, i_k, sub_u): # inverse calculation F = np.eye(len(N_k)) # B - inv to A, F - inv to B for ind in range(len(N_k)): column_element_for_F = -sub_u[ind] if F[ind][N_k.index(i_k)] != 1 else 1 F[ind][N_k.index(i_k)] = column_element_for_F / sub_u[N_k.index(i_k)] return np.dot(F, B) def update_d_L(d_L): for index, d in enumerate(d_L): if abs(d) <= SimplexConfig.eps: d_L[index] = 0 def simplex_dates_L_dimension(N_k, A, c, B): M, N = A.shape c_N = list() L = list() A_L = list() c_L = list() for index in N_k: c_N.append(c[index]) c_N = np.array(c_N) for index in range(N): if index not in N_k: L.append(index) A_L.append(A.transpose()[index]) c_L.append(c[index]) A_L = np.array(A_L).transpose() c_L = np.array(c_L) Y = np.dot(c_N.transpose(), B) return c_L - np.dot(Y, A_L), L # d_L and L def calc_j_k(d_L, L): neg_elements_d_L = list(filter(lambda x: x < 0, d_L)) # d_L = c_L - np.dot(Y, A_L) return L[list(d_L).index(neg_elements_d_L[0])] if neg_elements_d_L else 0 def calc_list_i_k(N_k, sub_u, u): i_k_list = list() for index, n_k in enumerate(N_k): u[n_k] = sub_u[index] if u[n_k] > 0: i_k_list.append(n_k) return i_k_list def calc_coefficients(i_k_list, ref_vector, u): # coefficient - gamma(min fraction) i_k = i_k_list[0] # index min fraction coefficient = ref_vector[i_k] / u[i_k] for i in i_k_list: if (ref_vector[i] / u[i]) < coefficient: i_k = i coefficient = ref_vector[i_k] / u[i_k] return coefficient, i_k def calc_indices_not_plus_element(N_k, N_plus_index): indices_not_plus_element = list() for index in N_k: if index not in N_plus_index: indices_not_plus_element.append(index) return indices_not_plus_element def main_algorithm(N_k, A, c, ref_vector, B): M, N = A.shape d_L, L = simplex_dates_L_dimension(N_k, A, c, B) # d_L = c_L - np.dot(Y, A_L) update_d_L(d_L) if pos_vector(d_L): return True, ref_vector, B, N_k j_k = calc_j_k(d_L, L) # j_k = first index in L A_j = A.transpose()[j_k] u = np.zeros(N) sub_u = np.dot(B, A_j.transpose()) i_k_list = calc_list_i_k(N_k, sub_u, u) # i_k - index min fraction u[j_k] = -1 if len(i_k_list) == 0: return False, np.zeros(N), B, N_k coefficient, i_k = calc_coefficients(i_k_list, ref_vector, u) N_plus_index = plus_list(ref_vector) B = find_new_B(B, N_k, i_k, sub_u) if len(N_plus_index) != len(N_k): indices_not_plus_element = calc_indices_not_plus_element(N_k, N_plus_index) for index in indices_not_plus_element: if u[index] > 0: N_k = find_new_basis(N_k, indices_not_plus_element, L, A) return False, ref_vector, B, N_k new_ref_vector = ref_vector - coefficient * u N_k[N_k.index(i_k)] = j_k return False, new_ref_vector, B, N_k def first_step(A, ref_vector): N_k = list() N_null_index = list() # need to build N_k N_plus_index = list() A_N = list() for ind, x in enumerate(ref_vector): if x > 0: N_plus_index.append(ind) N_k.append(ind) A_N.append(A.transpose()[ind]) elif x == 0: N_null_index.append(ind) A_N = np.array(A_N) A_N = A_N.transpose() N_k, new_A_N = find_new_A_N(A, A_N, N_k, N_null_index) # N_k - column num in current ref_vector B = np.linalg.inv(new_A_N) return N_k, B def N_K_dates_L_dimensions(N, N_k): L = list() # L - column num who negative for index in range(N): if index not in N_k: L.append(index) return L def transform_ref_vector(ref_vector, B, N_k, A): M, N = A.shape ref_vector = ref_vector[:N] A_N = list() N_k_old = list(N_k) N_k.sort() new_B = list() for ind in N_k: A_N.append(A.transpose()[ind]) new_B.append(B[N_k_old.index(ind), :]) B = np.array(new_B) # B - inv to A L = N_K_dates_L_dimensions(N, N_k) A_N = np.array(A_N).transpose() E = np.eye(M) # eye matrix M dimension for i in range(M): for j in range(M): if np.array_equal(A_N[:, i], E[:, j]): for ind in L: A_N[:, i] = A[:, ind] if np.linalg.det(A_N) != 0: i_k = N_k[i] j_k = ind A_j = A.transpose()[j_k] sub_u = np.dot(B, A_j.transpose()) B = find_new_B(B, N_k, i_k, sub_u) N_k[i] = j_k L.remove(ind) break return ref_vector, B def start_simplex_method(A, b, c): plot_points = list() try: sub_A, sub_c, ref_vector = artificial_basis(A, b) except IncompleteTaskRankException: raise IncompleteTaskRankException() N_k, B = first_step(sub_A, ref_vector) ref_vector, B, N_k = start_alg_iterations(N_k, ref_vector, B, sub_A, sub_c, plot_points) ref_vector, B = transform_ref_vector(ref_vector, B, N_k, A) ref_vector, B, N_k = start_alg_iterations(N_k, ref_vector, B, A, c, plot_points) return ref_vector, plot_points def start_alg_iterations(N_k, ref_vector, B, A, c, plot_points): end = False while not end: end, ref_vector, B, N_k = main_algorithm(N_k, A, c, ref_vector, B) if all_null(ref_vector): raise SimplexAlgorithmException() plot_points.append(ref_vector) return ref_vector, B, N_k
[ "rafantem@mail.ru" ]
rafantem@mail.ru
4bab4960eafc5aae2b791d8ee9b3692b30babe22
1313593a03ccace06a838e43a83d953f746d6b33
/items.py
806de5a573170de959b1b3a91535ae1055757d2a
[]
no_license
reindels/Python-Pokemon
f4f71aa2587817ad8d3c83f52c60104c95664cf9
1c5e0f0426d7c4b09f43427764c1514dccab37cf
refs/heads/master
2021-01-20T04:33:27.496385
2015-11-12T00:28:17
2015-11-12T00:28:17
45,713,796
1
2
null
null
null
null
UTF-8
Python
false
false
9,281
py
from constants import constants class item(): def __init__(self, item_dict): self.name = 'Potion' self.type = constants.item_type_medicine # constants.item_type_medicine = 'Medicine' # constants.item_type_vitamin = 'Vitamin' # constants.item_type_berry = 'Berry' # constants.item_type_key_item = 'Key Item' # constants.item_type_poke_ball = 'Poke Ball' # constants.item_type_tm_hm = 'TM HM' # constants.item_type_held_item = 'Held Items' # constants.item_type_general = 'General' # constants.item_type_mail = 'Mail' self.price = 300 self.message = None self.effects = [] self.description = "Heals a Pokemon's HP by 20" self.ball_modifier = None self.create_item_from_dict(item_dict=item_dict) # def get_sell_back_price(self): return int(round(self.price / 2.0)) # def create_item_from_dict(self, item_dict=None): if item_dict is None: return None self.name = item_dict.get('name') self.type = item_dict.get('type') self.price = item_dict.get('price') self.effects = item_dict.get('effect') self.description = item_dict.get('description') self.ball_modifier = item_dict.get('ball modifier') # 1-4 self.message = item_dict.get('message') # # def __str__(self): return self.name + " (" + self.type + "): $" + str(self.price) # def copy(self): copy_item = item() copy_item.name = self.name copy_item.type = self.type copy_item.price = self.price copy_item.effects = self.effects copy_item.description = self.description copy_item.ball_modifier = self.ball_modifier return copy_item def get_recover_amount(self): return 80 # # poke balls custom_ball_dict = {'name': 'Custom Ball', 'type': constants.item_type_poke_ball, 'price': 1200, 'ball modifier': 3, 'description': "A custom-made Poke Ball used to capture Pokemon." } poke_ball_dict = {'name': 'Poke Ball', 'type': constants.item_type_poke_ball, 'price': 200, 'ball modifier': 1, 'description': "A device used to capture Pokemon." } great_ball_dict = {'name': 'Great Ball', 'type': constants.item_type_poke_ball, 'price': 600, 'ball modifier': 1.5, 'description': "A good Poke Ball used to capture Pokemon." } ultra_ball_dict = {'name': 'Ultra Ball', 'type': constants.item_type_poke_ball, 'price': 1200, 'ball modifier': 2, 'description': "A high-quality Poke Ball used to capture Pokemon." } master_ball_dict = {'name': 'Master Ball', 'type': constants.item_type_poke_ball, 'price': 1000000, 'ball modifier': constants.empty, 'description': "A custom-made Poke Ball that guaruntees capture of any Pokemon." } #Potions fresh_water_dict = {'name': 'Fresh Water', 'type': constants.item_type_medicine, 'effect': ["Pokemon Recover 80 hp"], 'price': 300, 'description': "A pokemon medicine that heals a Pokemon by 80 HP." } revive_dict = {'name': 'Revive', 'type': constants.item_type_medicine, 'effect': ["Revives Pokemon to Half HP"], 'price': 300, 'description': "A medicine that revives a fainted pokemon to half its full HP." } potion_dict = {'name': 'Potion', 'type': constants.item_type_medicine, 'effect': ["Pokemon Recover 20 hp"], 'price': 300, 'description': "A pokemon medicine that heals a Pokemon by 20 HP." } superpotion_dict = {'name': 'Super Potion', 'type': constants.item_type_medicine, 'effect': ["Pokemon Recover 50 hp"], 'price': 600, 'description': "A pokemon medicine that heals a Pokemon by 50 HP." } full_heal_dict = {'name': 'Full Heal', 'type': constants.item_type_medicine, 'effect': ["{} {} {} on Pokemon".format(constants.remove, constants.status_all_negative, constants.status_infliction)], 'price': 1000, 'description': "A spray bottle whose contents remove negative status conditions from Pokemon." } full_restore_dict = {'name': 'Full Restore', 'type': constants.item_type_medicine, 'effect': ["{} {} {}".format(constants.remove, constants.status_all_negative, constants.status_infliction), "Pokemon Recover 9999 hp"], 'price': 3000, 'description': "A spray bottle whose contents remove negative status conditions from Pokemon and fully heals them." } #General Items escape_rope_dict = {'name': 'Escape Rope', 'type': constants.item_type_general, 'effect': "Exit Dungeon", 'price': 450, 'description': "A rope that you can tie off at a dungeon entrance. If you get lost, follow it to find the entrance." } #Vitamin Items protein_dict = {'name': 'Protein', 'type': constants.item_type_vitamin, 'effect': ["Add 10 EV to a Pokemon's ATTACK Stat"], 'price': 9800, 'description': "Vitamins that boost Attack." } #held Items pink_bow_dict = {'name': 'Pink Bow', 'type': constants.item_type_held_item, 'effect': ["Boost Normal Type Attacks by x1.5"], 'price': 1000, 'description': "A cute pink bow that boost Normal type attacks when given to a pokemon to hold." } #Berry Items oran_berry_dict = {'name': 'Oran Bery', 'type': constants.item_type_berry, 'effect': ["Pokemon Recover 20 hp"], 'price': 10, 'description': "A pokemon medicine that heals a Pokemon by 10 HP." } #TM & HM Items HM_01_dict = {'name': 'HM 01 (Cut)', 'type': constants.item_type_tm_hm, 'effect': ["Pokemon Learns Move Cut"], 'price': 1000, 'description': "A Reuseable data disk that can teach pokemon the Hidden Move Cut." } #Key Items acro_bike_dict = {'name': 'Acro Bike', 'type': constants.item_type_key_item, 'effect': ["Allows Movement Through Bike Paths And Trick Bike Paths"], 'price': 10000, 'description': "A ligth weight bike that can perform tricky manuevers." } #Mail Items pika_mail_dict = {'name': 'Pika Mail', 'type': constants.item_type_mail, 'effect': ["Write A Message"], 'message': "Write a message here...", 'price': 30, 'description': "A Pikachu themed paper and envelope." } # Evolution Items water_stone_dict = {'name': 'Water Stone', 'type': constants.item_type_key_item, 'effect': ["Evolves certain Water-Type Pokemon"], 'price': 3000, 'description': "This clear blue stone radiates a cool watery aura and smells like the water were it was found. This stone could evolve certain Pokemon." } thunder_stone_dict = {'name': 'Thunder Stone', 'type': constants.item_type_key_item, 'effect': ["Evolves certain Electric-Type Pokemon"], 'price': 3000, 'description': "This green-blue stone with yellow veins radiates an electrical aura and smells like a brewing thunderstorm. This stone could evolve certain Pokemon." } fire_stone_dict = {'name': 'Water Stone', 'type': constants.item_type_key_item, 'effect': ["Evolves certain Fire-Type Pokemon"], 'price': 3000, 'description': "This orange-red stone radiates a warm firey aura and smells like brimstone. This stone could evolve certain Pokemon." } moon_stone_dict = {'name': 'Moon Stone', 'type': constants.item_type_key_item, 'effect': ["Evolves certain Pokemon"], 'price': 3000, 'description': "This opaque pearly white stone radiates an aura like cold water. This stone could evolve certain Pokemon." } sun_stone_dict = {'name': 'Sun Stone', 'type': constants.item_type_key_item, 'effect': ["Evolves certain Pokemon"], 'price': 3000, 'description': "This bright yellow stone radiates a warm bright aura and smells like dried sunflowers. This stone could evolve certain Pokemon." } fey_stone_dict = {'name': 'Fey Stone', 'type': constants.item_type_key_item, 'effect': ["Evolves certain Pokemon"], 'price': 3000, 'description': "This sparkling pink stone radiates a warm aura and smells like a pinewoods. This stone could evolve certain Pokemon." } #BASIC General INVENTORY test_inv_dict = { constants.item_type_general: { 'Escape Rope': {'count': 1, 'item': item(escape_rope_dict)} }, constants.item_type_vitamin: { 'Protein': {'count': 1, 'item': item(protein_dict)} }, constants.item_type_medicine:{ 'Potion': {'count': 5, 'item': item(potion_dict)}, 'Super Potion': {'count': 1, 'item': item(superpotion_dict)}, 'Fresh Water': {'count': 1, 'item': item(fresh_water_dict)}, 'Full Heal': {'count': 1, 'item': item(full_heal_dict)}, 'Revive': {'count': 1, 'item': item(revive_dict)}, }, constants.item_type_poke_ball:{ 'Poke Ball': {'count': 50, 'item': item(poke_ball_dict)}, 'Great Ball': {'count': 50, 'item': item(great_ball_dict)}, 'Ultra Ball': {'count': 50, 'item': item(ultra_ball_dict)}, 'Master Ball': {'count': 5, 'item': item(master_ball_dict)}, 'Custom Ball': {'count': 5, 'item': item(custom_ball_dict)} }, constants.item_type_held_item: { 'Pink Bow': {'count': 1, 'item': item(pink_bow_dict)} }, constants.item_type_berry: { 'Oran berry': {'count': 1, 'item': item(oran_berry_dict)} }, constants.item_type_tm_hm: { 'HM 01 (Cut)': {'count': 1, 'item': item(HM_01_dict)} }, constants.item_type_key_item: { 'Acro Bike': {'count': 1, 'item': item(acro_bike_dict)} }, constants.item_type_mail: { 'Pika Mail': {'count': 1, 'item': item(pika_mail_dict)} } } # # # #
[ "reindels@oregonstate.edu" ]
reindels@oregonstate.edu
18fb7eb6c151368495d76ef2ebf1261449f1bfd9
936d82330f6cabea8ffea6ed35cfd6784b3a7885
/Baselibs/src/cmor/build/lib.linux-ppc64le-2.7/cmor/table_generator.py
1df495d9269771cda91b548e7ccfe75369276315
[]
no_license
aborle1/GEOS2
cc4386e19c76fb0c11a98348ffde5f1b55db9337
47d25a0d92a20efd7fd552a934ae0dd7422320ba
refs/heads/AJ
2021-07-20T22:40:42.121925
2017-10-17T18:46:08
2017-10-17T18:46:08
104,491,177
0
1
null
2017-10-17T18:46:09
2017-09-22T15:39:23
Fortran
UTF-8
Python
false
false
12,365
py
#amon_2d #Change time to time1 for dims #change time: mean to time: point for cell_method import sys,time,os,genutil prefix = "CMIP5" general = """cmor_version: 2.0 ! version of CMOR that can read this table cf_version: 1.4 ! version of CF that output conforms to project_id: %s ! project id table_date: %s ! date this table was constructed missing_value: 1.e20 ! value used to indicate a missing value ! in arrays output by netCDF as 32-bit IEEE ! floating-point numbers (float or real) baseURL: http://cmip-pcmdi.llnl.gov/CMIP5/dataLocation product: output required_global_attributes: creation_date tracking_id forcing model_id ! space separated required global attribute expt_id_ok: '10- or 30-year run initialized in year XXXX' 'decadalXXXX' expt_id_ok: 'volcano-free hindcasts' 'noVolcano' expt_id_ok: 'prediction with 2010 volcano' 'volcano2010' expt_id_ok: 'pre-industrial control' 'piControl' expt_id_ok: 'Historical' 'historical' expt_id_ok: 'mid-Holocene' 'midHolocene' expt_id_ok: 'last glacial maximum' 'lgm' expt_id_ok: 'last millennium' 'past1000' expt_id_ok: 'RCP4.5' 'rcp45' expt_id_ok: 'RCP8.5' 'rcp85' expt_id_ok: 'RCP2.X' 'rcp2x' expt_id_ok: 'RCP6' 'rcp6' expt_id_ok: 'ESM pre-industrial control' 'esmControl' expt_id_ok: 'ESM historical' 'esmHistorical' expt_id_ok: 'ESM RCP8.5' 'esmRcp85' expt_id_ok: 'ESM fixed climate 1' 'esmFixClim1' expt_id_ok: 'ESM fixed climate 2' 'esmFixClim2' expt_id_ok: 'ESM feedback 1' 'esmFdbk1' expt_id_ok: 'ESM feedback 2' 'esmFdbk2' expt_id_ok: '1 percent per year CO2' '1pctCo2' expt_id_ok: 'abrupt 4XCO2' 'abrupt4xco2' expt_id_ok: 'natural-only' 'historicalNat' expt_id_ok: 'GHG-only' 'historicalGhg' expt_id_ok: 'AMIP' 'amip' expt_id_ok: '2030 time-slice' 'sst2030' expt_id_ok: 'control SST climatology' 'sstClim' expt_id_ok: 'CO2 forcing' 'sstClim4xco2' expt_id_ok: 'all aerosol forcing' 'sstClimAerosol' expt_id_ok: 'sulfate aerosol forcing' 'sstClimSulfate' expt_id_ok: '4xCO2 AMIP' 'amip4xco2' expt_id_ok: 'AMIP plus patterned anomaly' 'amipFuture' expt_id_ok: 'aqua planet control' 'aquaControl' expt_id_ok: '4xCO2 aqua planet' 'aqua4xco2' expt_id_ok: 'aqua planet plus 4K anomaly' 'aqua4K' expt_id_ok: 'AMIP plus 4K anomaly' 'amip4K' """ % (prefix,time.strftime("%d %B %Y")) #realm: %s #table_id: Table %s ! table id axis_tmpl = """ !============ axis_entry: %(CMOR dimension) !============ !---------------------------------- ! Axis attributes: !---------------------------------- standard_name: %(standard name) units: %(units) axis: %(axis) ! X, Y, Z, T (default: undeclared) positive: %(positive) ! up or down (default: undeclared) long_name: %(long name) !---------------------------------- ! Additional axis information: !---------------------------------- out_name: %(output dimension name) valid_min: %(valid_min) valid_max: %(valid_max) stored_direction: %(stored direction) formula: %(formula) z_factors: %(z_factors) z_bounds_factors: %(z_factor_bounds) tolerance: %(tol_on_requests: variance from requested values that is tolerated) type: %(type) requested: %(requested) ! space-separated list of requested coordinates requested_bounds: %(bounds_ requested) ! space-separated list of requested coordinate bounds value: %(value) ! of scalar (singleton) dimension bounds_values: %(bounds _values) ! of scalar (singleton) dimension bounds must_have_bounds: %(bounds?) index_only: %(index axis?) climatology: %(climatology) coords_attrib: %(coords_attrib) !---------------------------------- ! """ var_tmpl = """!============ variable_entry: %(CMOR variable name) !============ modeling_realm: %(realm) !---------------------------------- ! Variable attributes: !---------------------------------- standard_name: %(standard name) units: %(unformatted units) cell_methods: %(cell_methods) long_name: %(long name) comment: %(comment) !---------------------------------- ! Additional variable information: !---------------------------------- dimensions: %(CMOR dimensions) out_name: %(output variable name) type: %(type) positive: %(positive) valid_min: %(valid min) valid_max: %(valid max) ok_min_mean_abs: %(mean absolute min) ok_max_mean_abs: %(mean absolute max) !---------------------------------- ! """ def process_a_line(line): if line.find("usiiiiually,")>-1: debug = True print print 'NEW STUFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF' print else: debug=False line=line.replace("\r\n","\n") # dos character line = line.replace('""','"$$$') sps = line .split(",") sp=[] st="" while (len(sps)>0): s = sps.pop(0) if debug: print 's:',s if len(s)>0 and s[0]=='"' and s[-1]!='"': if debug: print 'inthere' s=s[1:] s2=sps.pop(0) if debug: print 's2:',s2 while len(s2)==0 or s2[-1]!='"': s = ','.join([s,s2]) s2=sps.pop(0) else: s = ','.join([s,s2[:-1]]) sp.append(s.replace("$$$",'"')) return sp def process_template(tmpl,cnames,cols,voids={}): F = genutil.StringConstructor(tmpl) keys = F.keys() match = 0 for c in cnames: if c in keys: match+=1 indx = cnames.index(c) ## print ' matched at %i' % indx , if indx<len(cols): val = cols[indx] else: val = "" if val.strip()=='time2': setattr(F,"climatology","yes") if "climatology" in keys: keys.remove("climatology") if val.strip()!="": setattr(F,c,val) keys.remove(c) ## print ## else: ## print ' but empty' ## else: ## print if "CMOR dimension" in keys: raise "crap" for k in keys: setattr(F,k,"!CRAP WE NEED TO REMOVE THAT LINE") ## Now generates out = F() sp = out.split("\n") lines = [] for l in sp: if l.find("!CRAP WE NEED TO REMOVE THAT LINE")>-1: continue lines.append(l) out = "\n".join(lines) ## print 'We got: %i matches' % match # fixes Karl input bug out = out.replace("..",".") #Ok now check the void thing for kw in voids.keys(): v = getattr(F,kw,"we keep").strip() vals = voids[kw] if not isinstance(vals,(list,tuple)): vals = [vals,] for V in vals: if V == v: out = "" return out def create_table_header(tbnm, table_file, dims_file, fqcy): #First of All create the header fnm = "Tables/" + prefix + '_'+tbnm fo = open(fnm,'w') print >> fo, "table_id: Table %s" % tbnm realm = None if tbnm[0]=='O': realm = "ocean" elif tbnm[0]=='A': realm = 'atmos' elif tbnm[0]=='L': realm = 'land' else: realm = "atmos" print >> fo, "modeling_realm: %s\n" % realm print >> fo, "frequency: %s\n" % fqcy print >> fo, general # looking for approx interval, ASSUMING UNITS ARE IN DAYS SINCE if tbnm.find("mon")>-1: interval = 30. elif tbnm.lower().find('clim')>-1: interval = 30. elif tbnm.lower().find('aero')>-1: interval = 30. elif tbnm.lower().find('yr')>-1: interval = 365. elif tbnm.lower().find('da')>-1: interval = 1. elif tbnm.find("hr")==1: interval = float(tbnm[0])/24. elif tbnm.find("min")>-1: interval = float(tbnm[2:tbnm.find("min")])/1440. else: interval = 0. print >> fo, """approx_interval: %f ! approximate spacing between successive time ! samples (in units of the output time ! coordinate.""" % interval D = open(dims_file) dlines = D.readlines()[1:] i=0 while dlines[i].strip()=="": i+=1 dlines=dlines[i:] cnms = dlines[0].split(',') for i in range(len(cnms)): cnms[i]=cnms[i].strip() addLines = False for l in dlines[1:]: sp = process_a_line(l) if sp[0].find(tbnm)>-1: if l.find("alevel")>-1: addLines = True zlevel_name = 'alevel' file_add = 'Tables_csv/add_dims.txt' elif l.find("olevel")>-1: addLines = True zlevel_name = 'olevel' file_add = 'Tables_csv/add_dims2.txt' else: print >> fo, process_template(axis_tmpl,cnms,sp) if addLines: print 'adding:',file_add,'to',tbnm tmpf=open(file_add) lns=tmpf.read() tmpf.close() if file_add == 'Tables_csv/add_dims.txt': if not tbnm in ['aero','cfMon']: lns=lns[:-20] lns=lns.replace("zlevel",zlevel_name) print >> fo, lns return fo def create_table(table_file, dims_file): tables = {} foundnm= False D = open(table_file) dlines = D.readlines() ivar = -2 if len(dlines)==1: dlines = dlines[0].split('\r') #This bit insert a table dlines2=[] for i in range(len(dlines)): if dlines[i].find("include Amon 2D")>-1: f=open("Tables_csv/amon_2D.csv") add_lines = f.readlines() if table_file[-11:-4] in ['cfsites','v/cf3hr']: tmplines=[] for aline in add_lines: sp = aline.split(",") if len(sp)>4 and 'time' in sp[-4]: sp[-4]=sp[-4].replace('time','time1') myline = ','.join(sp) myline = myline.replace("time: mean","time: point") if len(sp)>7 and sp[6] in ['tasmin','tasmax']: pass else: tmplines.append(myline) add_lines = tmplines dlines2=dlines2+add_lines elif dlines[i].find("include Oyr")>-1: f=open("Tables_csv/oyr_tracer.csv") dlines2=dlines2+f.readlines() else: dlines2.append(dlines[i]) dlines=dlines2 for l in dlines: sp = process_a_line(l) if 0<=sp[0].find("CMOR Table")<=1 and foundnm == False: # line that will give us the table name i=1 while sp[i].strip()=="": i+=1 tbnm = sp[i].strip() fqcy = sp[i+1].strip() foundnm = True if sp[0] == 'priority': cnms = sp for i in range(len(cnms)): cnms[i]=cnms[i].strip() ivar = cnms.index("CMOR variable name") continue if ivar!=-2 and len(sp)>ivar and sp[ivar].strip()!="": if tbnm in tables.keys(): fo = tables[tbnm] else: # New table fo = create_table_header(tbnm,table_file,dims_file,fqcy) tables[tbnm]=fo print >> fo, process_template(var_tmpl,cnms,sp,{'CMOR variable name':['?','0']}) print 'Created tables:',tables.keys() if __name__== "__main__" : if len(sys.argv)>2: dims_table = sys.argv[2] else: dims_table = 'Tables_csv/dims.csv' if len(sys.argv)>1: print sys.argv create_table(sys.argv[1],dims_table) else: tables_nms = """Tables_csv/3hr.csv Tables_csv/amon.csv Tables_csv/cfMon.csv Tables_csv/oclim.csv Tables_csv/6hrLev.csv Tables_csv/cfsites.csv Tables_csv/cfOff.csv Tables_csv/fx.csv Tables_csv/olmon.csv Tables_csv/6hrPlev.csv Tables_csv/cf3hr.csv Tables_csv/cfmip.csv Tables_csv/llmon.csv Tables_csv/omon.csv Tables_csv/aero.csv Tables_csv/cfDa.csv Tables_csv/da.csv Tables_csv/lmon.csv Tables_csv/oyr.csv """.split() for nm in tables_nms: print 'Processing:',nm create_table(nm,dims_table)
[ "aborle1@umbc.edu" ]
aborle1@umbc.edu
43c33a3ca9aa9e5c96a6ba64fea51456be46b493
75513bf64984c0d737c69fbcf0adcf40a8640e47
/HT/lib/python3.6/stat.py
0ee2f18b0a5477078ffa86399eb0c293c9b0eb67
[]
no_license
thekekk/HT_ATC
e5da9d2b1d34c562b8236b8938913c5e79da9767
5af80b5ab55658f909f03bd6e629b4e7afefe6d4
refs/heads/master
2020-04-04T15:56:51.538276
2018-08-02T01:03:52
2018-08-02T01:03:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
52
py
/Users/gavinnewcomer/anaconda3/lib/python3.6/stat.py
[ "gavin.newcomer@temple.edu" ]
gavin.newcomer@temple.edu
e893ce5201070444e3ae7f78c51204c87503cf6c
0e0e78019f860431986162265c6fb20d06c2b6f0
/test/test_graphical_layout/test_map.py
3dac0959d9a097a737fb6482d96eaa468e1f4b14
[]
no_license
ouskah/OpenClassroomsPython
a2cfc9f3974a77f83360d671069d0c67023dc7ff
316d7891226c6d046448c8c7efb34d4333bf98b7
refs/heads/master
2020-08-04T11:03:51.183127
2019-09-24T22:20:41
2019-09-24T22:20:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,637
py
# -*-coding:Utf-8 -* """This module contains tests for the class Map.""" import unittest import os import parameters.parameters as parameters import test.parameters_for_testing as test_parameters from graphical_layout.map import Map class TestMap(unittest.TestCase): """TestCase for functions of the 'map' module.""" def setUp(self): """Loads the test maps""" # Load Test Maps present in dir_test_maps self.test_maps = {} location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) dir_maps = os.path.join(location, parameters.dir_test_maps) for name_file in os.listdir(dir_maps): if name_file.endswith(".txt"): map_path = os.path.join(dir_maps, name_file) map_name = name_file[:-4].lower() with open(map_path, "r") as map_file: self.test_maps[map_name] = map_file.read() def test_is_valid(self): """Tests if the method is_valid from the function Map correctly identifies invalid maps.""" for test_map in self.test_maps: is_valid, message = Map.is_valid(self.test_maps[test_map].upper()) if test_map == "correct_map": self.assertTrue(is_valid) elif test_map == "invalid_character_map": self.assertFalse(is_valid) self.assertEqual(message, Map.INVALID_CHARS_ERROR) elif test_map in ["no_u_map", "several_u_map"]: self.assertFalse(is_valid) self.assertEqual(message, Map.U_COUNT_ERROR) elif test_map == "non_rectangular_map": self.assertFalse(is_valid) self.assertEqual(message, Map.NON_RECTANGULAR_ERROR) elif test_map == "too_small_map": self.assertFalse(is_valid) self.assertEqual(message, Map.TOO_SMALL_ERROR) elif test_map == "too_large_map": self.assertFalse(is_valid) self.assertEqual(message, Map.TOO_LARGE_ERROR) def test_constructor(self): """Tests the constructor of the class Map""" expected_grid = [list(r) for r in test_parameters.correct_grid] map_name = "correct_map" my_map = Map(map_name, self.test_maps[map_name]) self.assertEqual(my_map.name, map_name) self.assertEqual(my_map.height, 20) self.assertEqual(my_map.width, 20) self.assertEqual(my_map.grid, expected_grid) if __name__ == '__main__': unittest.main()
[ "lea.fanchon@gmail.com" ]
lea.fanchon@gmail.com
d62bbfbc015db36893e18e1e7c97e64cc7333a4b
6d2fa524df3cbb054761e47717ac6e902301ed1d
/akash_update.py
55916a1f8365ba8b23ea329f32a0c2fa607139f3
[]
no_license
dalinxz/RedditFinancial
29f9703b8d88adadb72330ccc1991854a2d6fc5e
ad98ef284d2f017f078378bb0c916bcb6d98744d
refs/heads/main
2023-02-27T23:34:44.613764
2021-01-31T19:13:18
2021-01-31T19:13:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,290
py
# -*- coding: utf-8 -*- """akash_update.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1fd_bVVLZjgbtdkiSNysC-O8dfnsQOca1 """ !pip install praw import praw import time import requests #idk why we need request? but ok import requests.auth import pandas as pd reddit = praw.Reddit( client_id="wal33qeX5QhkVQ", client_secret="5Jv5XrScw3sTCuHE18j-YOUzeaKBjw", user_agent="script:test_app:v0.1 (by u/Comprehensive-Self39)" ) #^SETUP CODE #Importing the CSV from GitHub url = 'https://raw.githubusercontent.com/enanpurrp/Debullshitiser/main/options.csv' options_df = pd.read_csv(url, index_col=0) url = 'https://raw.githubusercontent.com/enanpurrp/Debullshitiser/main/financialindependence(1).csv' finInd_df = pd.read_csv(url, index_col=0) url = 'https://raw.githubusercontent.com/enanpurrp/Debullshitiser/main/stocks.csv' stocks_df = pd.read_csv(url, index_col=0) url = 'https://raw.githubusercontent.com/enanpurrp/Debullshitiser/main/wallstreetbets.csv' WSB_df = pd.read_csv(url, index_col=0) #adding data to csv files: data is added from the "top of last month" field, and as long as the top isn't #lower than the UTC, it'll be added!(create's a new pandas dataframe and adds it) def update_CSV(pdataframe, subreddit): latest = pdataframe['TimeStamp'].max() #^find the most recent post from these posts columns = ['Title', 'Flair', 'Score of Post', 'ID', 'URL', 'TimeStamp', 'Message body', '#Comments', 'SubReddit'] accepted_tags_WSB = ['None', 'Charts', 'Earnings Thread', 'Gain', 'Loss', 'News'] title = []; flair = []; score = []; id = []; url = []; creation = []; message = []; numComments = []; label=[]; for submission in reddit.subreddit(subreddit).top("week"): if (subreddit == 'wallstreetbets'): if submission.link_flair_text in accepted_tags_WSB: if submission.over_18 == False: if submission.created_utc > latest: numComments.append(submission.num_comments) flair.append(submission.link_flair_text) title.append(submission.title) score.append(submission.score) id.append(submission.id) url.append(submission.url) creation.append(submission.created_utc) message.append(submission.selftext) label.append(subreddit) else: if submission.created_utc > latest: numComments.append(submission.num_comments) flair.append(submission.link_flair_text) title.append(submission.title) score.append(submission.score) id.append(submission.id) url.append(submission.url) creation.append(submission.created_utc) message.append(submission.selftext) label.append(subreddit) extract_array = [title, flair, score, id, url, creation, message, numComments, label] update_dict = dict(zip(columns, extract_array)) update_df = pd.DataFrame(update_dict) return pdataframe.append(update_df, ignore_index=True) #testruns options_df = update_CSV(options_df, 'options') finInd_df = update_CSV(finInd_df, 'financialindependence') stocks_df = update_CSV(stocks_df, 'stocks') WSB_df = update_CSV(WSB_df, 'wallstreetbets')
[ "noreply@github.com" ]
dalinxz.noreply@github.com
3ccfa877e6a2a3cc1ce964343c91024df48d7241
32bbbd6dbd100bbb9a2282f69ac3b7b34516347f
/Study/Coding_test/3-3, 3-4.py
1f86239fe8abeffb5c765ed94ff2396cc8d87877
[]
no_license
kimjh1753/AIA_Academy_Study
2162d4d4f1a6b8ca1870f86d540df45a8742f359
6022718ae7f9e5170a19c4786d096c8042894ead
refs/heads/master
2023-05-07T12:29:12.920693
2021-06-05T01:09:33
2021-06-05T01:09:33
324,136,796
0
0
null
null
null
null
UTF-8
Python
false
false
874
py
# 3-3.py # N, M을 공백으로 구분하여 입력받기 n, m = map(int, input().split()) result = 0 # 한 줄씩 입력받아 확인 for i in range(n): data = list(map(int, input().split())) # 현재 줄에서 '가장 적은 수' 찾기 min_value = min(data) # '가장 적은 수'들 중에서 가장 큰 수 찾기 result = max(result, min_value) print(result) # 최종 답안 출력 # 3-4.py # N, M을 공백으로 구분하여 입력받기 n, m = map(int, input().split()) result = 0 # 한 줄씩 입력받아 확인 for i in range(n): data = list(map(int, input().split())) # 현재 줄에서 '가장 적은 수' 찾기 min_value = 10001 for a in data: min_value = min(min_value, a) # '가장 적은 수'들 중에서 가장 큰 수 찾기 result = max(result, min_value) print(result) # 최종 답안 출력
[ "kimjh1753@naver.com" ]
kimjh1753@naver.com
d8a679818375ef475c2ef0113b71e29e2d7062d7
8a42fe9a7f615087d9987829c5f297020ea72690
/app.py
6eb8c3ff5cceb33edd792bb487fdaaff53007a79
[]
no_license
edwardchow33/androidbot
d04b42637d1f2109dcea7bdb4b08b83207967c59
504368d6c04de7a352224e2c032bc11959a96a6e
refs/heads/master
2020-03-26T12:05:24.000795
2018-08-15T16:07:07
2018-08-15T16:07:07
144,874,971
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
from flask import Flask,request import json from bot import Bot app = Flask(__name__) bot = Bot() @app.route('/',methods=['GET']) def add(): print "add" bot.create_post() result = {'result':200} return json.dumps(result) @app.route('/',methods=['GET']) def select(): print select if __name__ == '__main__': app.run()
[ "edwardchow0303@gmail.com" ]
edwardchow0303@gmail.com
7bb88ed2387b5d755cdb8f97907547bd2b05ced7
7bb27fcf43b8701fb22a54df197b6a46910e09a2
/home/models.py
274c946e711e99085cc53e86feffd80937edea3d
[]
no_license
bladas/blog
d9c56b05e4d9fa21e0677e8bdb92e5e6c1d6732d
00841d4645c3f58177587bf17751ad8c21dc0bdb
refs/heads/master
2023-04-05T02:36:26.261824
2021-04-21T14:25:58
2021-04-21T14:25:58
360,196,591
0
0
null
null
null
null
UTF-8
Python
false
false
1,368
py
from django.db import models from transliterate import translit # Create your models here. from django.utils.text import slugify from base.models import BaseModel class HomeImages(BaseModel): image = models.ImageField(upload_to="media/home/", blank=True, null=True) class Post(BaseModel): title = models.CharField(max_length=255) small_description = models.TextField() image = models.ImageField(upload_to="media/post/", blank=True, null=True) slug = models.SlugField(unique=True, blank=True, null=True) def save(self, *args, **kwargs): self.slug = slugify(translit(self.title, 'uk', reversed=True)) print(self.slug) super(Post, self).save(*args, **kwargs) def __str__(self): return self.title class PostDescription(BaseModel): post = models.ForeignKey(Post, on_delete=models.CASCADE) description = models.TextField() def __str__(self): return f'{self.post}' class Comments(BaseModel): post = models.ForeignKey(Post, on_delete=models.CASCADE) name = models.CharField(max_length=50, blank=True, null=True) email = models.EmailField() text = models.TextField() def __str__(self): return self.email class AboutMe(BaseModel): image = models.ImageField(upload_to="media/about-me/", blank=True, null=True) about_me_text = models.TextField()
[ "dashkevich_v@ukr.net" ]
dashkevich_v@ukr.net
a26a75df3d299756462f23745b86c524c4ae9386
ab1d4edec94494e9f34069446a76a787ae9769a8
/kronos/models/base.py
3913ee5d39b2c1db379a9db91d0823a2e1d8c59c
[]
no_license
kzka/kronos
ae0d710d30511eb11da586bdb2d778a68fe123eb
a50a9fe41377ae2e3c9c9b9c1bd7ed7d70c42437
refs/heads/master
2023-02-26T11:19:39.837644
2021-01-29T22:33:32
2021-01-29T22:40:12
334,278,226
0
0
null
null
null
null
UTF-8
Python
false
false
8,475
py
import abc import logging import torch import torch.nn as nn from kronos.utils.torch_utils import freeze_model class BaseFeaturizer(abc.ABC, nn.Module): """Abstract base class for featurizers. Subclasses must implement the `_build_featurizer` method. """ def __init__( self, pretrained=True, layers_train="bn_only", bn_use_running_stats=False, ): """Constructor. Args: pretrained (bool): Whether to use Imagenet pretrained weights. layers_train (str): Controls which layers are trained. Can be one of `['all', 'frozen', 'bn_only']`. bn_use_running_stats (bool): Set to `True` to disable batch statistics and use running mean and variance learned during training. """ super().__init__() self._bn_use_running_stats = bn_use_running_stats self._layers_train = layers_train self._pretrained = pretrained # build featurizer self.model = self._build_featurizer() # figure out batch norm related freezing if layers_train != "all": if layers_train == "frozen": logging.info("Freezing all featurizer layers.") bn_freeze_affine = True elif layers_train == "bn_only": logging.info( "Freezing all featurizer layers except for batch norm layers." ) bn_freeze_affine = False else: raise ValueError( "{} is not a valid layer selection strategy.".format( layers_train ) ) freeze_model(self.model, bn_freeze_affine, bn_use_running_stats) # build param to module dict self.param_to_module = {} for m in self.modules(): for p in m.parameters(recurse=False): self.param_to_module[p] = type(m).__name__ @abc.abstractmethod def _build_featurizer(self): """Build the featurizer architecture. """ pass def forward(self, x): """Extract features from the video frames. Args: x (torch.FloatTensor): The video frames of shape `(B, T, C, H, W)`. If there are `S` video frames and we are using `X` context frames, then `T = S * X`. """ assert x.ndim == 5 batch_size, t, c, h, w = x.shape x = x.view((batch_size * t, c, h, w)) feats = self.model(x) _, c, h, w = feats.shape feats = feats.view((batch_size, t, c, h, w)) return feats def train(self): """Sets the model in `train` mode. """ self.training = True for m in self.model.modules(): # set everything that is NOT batchnorm to train if not isinstance(m, torch.nn.modules.batchnorm._BatchNorm): m.train() else: # for batch norm, we only want train mode # if we were not using running statistics if self._bn_use_running_stats: m.eval() else: m.train() def eval(self): """Sets the model in `eval` mode. """ self.training = False for m in self.model.modules(): m.eval() @property def pretrained(self): return self._pretrained class BaseEncoder(abc.ABC, nn.Module): """Abstract base class for encoders. Subclasses must implement the `_build_featurizer` method. """ def __init__(self): super().__init__() self.model = self._build_encoder() self._init_weights() # build param to module dict self.param_to_module = {} for m in self.modules(): for p in m.parameters(recurse=False): self.param_to_module[p] = type(m).__name__ @abc.abstractmethod def _build_encoder(self): """Build the encoder architecture. """ pass @abc.abstractmethod def _init_weights(self): """Initialize the weights of the encoder. """ pass def train(self): """Sets the model in `train` model. """ super().train(True) def eval(self): """Sets the model in `eval` model. """ super().train(False) def _sanity_check_input(self, x): """Add necessary logic to parse inputs here. """ pass def forward(self, x): """Forward the video frame features through the encoder. Args: inputs (tensor): A FloatTensor of shape `(B, C, X, H, W)` where `X` is the number of context frames. """ self._sanity_check_input(x) return self.model(x) class BaseTemporalModel(abc.ABC, nn.Module): """Abstract base class for temporal video models. """ def __init__( self, num_ctx_frames, model_config, ): """Constructor. Args: num_ctx_frames (int): The number of context frames stacked together for each individual video frame. model_config (edict): A dictionary containing model architecture hyperparameters. """ super().__init__() self.training = True self._num_ctx_frames = num_ctx_frames self._model_config = model_config # initialize models self.featurizer_net = self._init_featurizer() self.encoder_net = self._init_encoder() self.auxiliary_net = self._init_auxiliary_net() @abc.abstractmethod def _init_featurizer(self): pass @abc.abstractmethod def _init_encoder(self): pass def _init_auxiliary_net(self): return None def param_groups(self): """Return a dict of variable optimization parameters. This is useful for specifying variable learning rates and regularizations strengths for the different models. """ param_groups = { "featurizer": {"free": self.featurizer_net.parameters()}, "encoder": {"free": self.encoder_net.parameters()}, } if self.auxiliary_net is not None: param_groups["auxiliary"] = { "free": self.auxiliary_net.parameters() } return param_groups def _sanity_check_input(self, frames): """Add necessary logic to parse inputs here. """ pass def forward(self, frames, num_ctx_frames=None): """Forward the video frames through the network. Args: x (torch.FloatTensor): The video frames of shape `(B, T, C, H, W)`. If there are `S` video frames and we are using `X` context frames, then `T = S * X`. Returns: A FloatTensor of shape `(B, S, D)` where `S` is the number of video frames and `D` is the dimension of the emebdding space. """ self._sanity_check_input(frames) # extract frame features feats = self.featurizer_net(frames) # reshape for the 3D convs if num_ctx_frames is None: num_ctx_frames = self._num_ctx_frames batch_size, s, c, h, w = feats.shape num_cc_frames = s // num_ctx_frames feats = feats.view( (batch_size * num_cc_frames, c, num_ctx_frames, h, w) ) # embed frames using encoder embs = self.encoder_net(feats) embs = embs.view((-1, num_cc_frames, embs.shape[-1])) return { "embs": embs, "feats": feats, } def train(self): """Set the model in `train` mode. """ self.training = True self.featurizer_net.train() self.encoder_net.train() if self.auxiliary_net is not None: self.auxiliary_net.train() def eval(self): """Set the model in `eval` mode. """ if self.training: logging.debug("Setting model to EVAL mode.") self.featurizer_net.eval() self.encoder_net.eval() if self.auxiliary_net is not None: self.auxiliary_net.eval() self.training = False @property def num_ctx_frames(self): return self._num_ctx_frames
[ "kevinarmandzakka@gmail.com" ]
kevinarmandzakka@gmail.com
adba8dad5970b3b852b6c11aa08187a439ac0fcc
f4e8c59222b46a58f770160d70f3b86866b6bbdc
/week02/task04.py
b5fd60136ec17e30490e6f9194f5f150e3e3f528
[]
no_license
GitKurmax/coursera-python
08902bf622d4aaed7197f352b7b74a73a398c74a
ffb3621c2b921ccdec5370da0108d14aeec220e9
refs/heads/master
2023-02-08T05:05:01.809386
2020-12-31T11:52:18
2020-12-31T11:52:18
325,789,322
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
year = int(input()) if (year % 4 == 0 and year % 100 != 0) or year % 400 == 0: print("Yes") else: print("No")
[ "alexandrmail32@gmail.com" ]
alexandrmail32@gmail.com
57ffb2b83595af10a419343366c1df061a62a01d
b1ce14cd8969aa9c919d247e55709889da0d5f86
/zhaopin/analysis/city_map.py
0ee9184e0a5a745f080c221206d941c932310dc4
[]
no_license
TwoIceBing/job51
ba164cb18a193c44720d67663902be76a20f1f51
6d73893daad40d75653708e37e45d28bdbc62873
refs/heads/master
2020-04-10T21:35:54.758502
2018-12-11T09:02:50
2018-12-11T09:02:50
161,300,717
1
0
null
null
null
null
UTF-8
Python
false
false
1,379
py
# coding:utf-8 import json from urllib import urlopen, quote import sys reload(sys) sys.setdefaultencoding('utf-8') def getlnglat(address): url = 'http://api.map.baidu.com/geocoder/v2/' output = 'json' ak = 'FOtHtZ92dCKMjpx0XA05g8VEZn95QWOK' add = quote(address.encode('utf-8')) #由于本文城市变量为中文,为防止乱码,先用quote进行编码 print add uri = url + '?' + 'address=' + add + '&output=' + output + '&ak=' + ak print uri req = urlopen(uri) res = req.read() #将其他编码的字符串解码成unicode temp = json.loads(res) #对json数据进行解析 return temp file = open(r'./input/city.json','w') #建立json数据文件 with open(r'./input/city_salary.json', 'r') as f: js = json.load(f) data = [] for k,v in js.iteritems(): c = {} c['city'] = k c['points'] = [] for i in range(len(v['city'])): if v['city'][i] == u'异地招聘': continue lnglat = getlnglat(v['city'][i]) # 采用构造的函数来获取经度 test = {} test['lng'] = lnglat['result']['location']['lng'] test['lat'] = lnglat['result']['location']['lat'] test['count'] = v['avg_salary'][i] c['points'].append(test) data.append(c) json.dump(data,file,ensure_ascii=False)
[ "1390932736@qq.com" ]
1390932736@qq.com
818a3d7f024fe45733376415e120f38f9c5d4a61
f8666599b83d34c861651861cc7db5b3c434fc87
/plotly/validators/layout/xaxis/__init__.py
4af4c7585fe88366a6ad08c6dc33513618796377
[ "MIT" ]
permissive
mode/plotly.py
8b66806e88c9f1820d478bab726f0bea81884432
c5a9ac386a40df2816e6c13264dadf14299401e4
refs/heads/master
2022-08-26T00:07:35.376636
2018-09-26T19:08:54
2018-09-26T19:19:31
60,372,968
1
1
MIT
2019-11-13T23:03:22
2016-06-03T19:34:55
Python
UTF-8
Python
false
false
2,943
py
from ._zerolinewidth import ZerolinewidthValidator from ._zerolinecolor import ZerolinecolorValidator from ._zeroline import ZerolineValidator from ._visible import VisibleValidator from ._type import TypeValidator from ._titlefont import TitlefontValidator from ._title import TitleValidator from ._tickwidth import TickwidthValidator from ._tickvalssrc import TickvalssrcValidator from ._tickvals import TickvalsValidator from ._ticktextsrc import TicktextsrcValidator from ._ticktext import TicktextValidator from ._ticksuffix import TicksuffixValidator from ._ticks import TicksValidator from ._tickprefix import TickprefixValidator from ._tickmode import TickmodeValidator from ._ticklen import TicklenValidator from ._tickformatstops import TickformatstopsValidator from ._tickformat import TickformatValidator from ._tickfont import TickfontValidator from ._tickcolor import TickcolorValidator from ._tickangle import TickangleValidator from ._tick0 import Tick0Validator from ._spikethickness import SpikethicknessValidator from ._spikesnap import SpikesnapValidator from ._spikemode import SpikemodeValidator from ._spikedash import SpikedashValidator from ._spikecolor import SpikecolorValidator from ._side import SideValidator from ._showticksuffix import ShowticksuffixValidator from ._showtickprefix import ShowtickprefixValidator from ._showticklabels import ShowticklabelsValidator from ._showspikes import ShowspikesValidator from ._showline import ShowlineValidator from ._showgrid import ShowgridValidator from ._showexponent import ShowexponentValidator from ._separatethousands import SeparatethousandsValidator from ._scaleratio import ScaleratioValidator from ._scaleanchor import ScaleanchorValidator from ._rangeslider import RangesliderValidator from ._rangeselector import RangeselectorValidator from ._rangemode import RangemodeValidator from ._range import RangeValidator from ._position import PositionValidator from ._overlaying import OverlayingValidator from ._nticks import NticksValidator from ._mirror import MirrorValidator from ._linewidth import LinewidthValidator from ._linecolor import LinecolorValidator from ._layer import LayerValidator from ._hoverformat import HoverformatValidator from ._gridwidth import GridwidthValidator from ._gridcolor import GridcolorValidator from ._fixedrange import FixedrangeValidator from ._exponentformat import ExponentformatValidator from ._dtick import DtickValidator from ._domain import DomainValidator from ._constraintoward import ConstraintowardValidator from ._constrain import ConstrainValidator from ._color import ColorValidator from ._categoryorder import CategoryorderValidator from ._categoryarraysrc import CategoryarraysrcValidator from ._categoryarray import CategoryarrayValidator from ._calendar import CalendarValidator from ._autorange import AutorangeValidator from ._automargin import AutomarginValidator from ._anchor import AnchorValidator
[ "adam.kulidjian@gmail.com" ]
adam.kulidjian@gmail.com
9f3bdf6da9344ea265c846222363cff5598dc14a
1ee59d0a9a87134efe0d61c2378b37ee2c87d93a
/svm.py
06755a84b04cc0e530251ba74aba83e8f9c38789
[]
no_license
tayaba02/Tactile-recognition-of-textures
8a8f368ff5c7273a430a85c3afe5737a61dbd5f5
267af231ae27b72e185219d1851412cb47a9c997
refs/heads/main
2023-07-18T02:02:53.743084
2021-09-06T09:52:03
2021-09-06T09:52:03
403,332,066
0
0
null
null
null
null
UTF-8
Python
false
false
4,859
py
from __future__ import absolute_import, division, print_function from tensorflow.keras import Model, layers import numpy as np import pandas as pd from tensorflow.keras.layers import SimpleRNN, LSTM, GRU,Bidirectional from numpy import genfromtxt from keras.datasets import mnist from keras.models import Sequential, load_model from keras.layers.core import Dense, Dropout, Activation,ActivityRegularization from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix import warnings warnings.filterwarnings('ignore') from datetime import datetime from sklearn.model_selection import RandomizedSearchCV, GridSearchCV from sklearn.metrics import roc_auc_score from sklearn.model_selection import StratifiedKFold scaler = StandardScaler() import keras from sklearn.metrics import precision_score, recall_score, accuracy_score from keras.models import Sequential, load_model from keras.layers.core import Dense, Dropout, Activation,ActivityRegularization from keras.utils.np_utils import to_categorical from sklearn import metrics import tensorflow as tf from keras.datasets import mnist from keras.models import Sequential, load_model from keras.layers.core import Dense, Dropout, Activation,ActivityRegularization from keras.layers import Conv2D, MaxPooling2D,Flatten from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt import keras from keras.datasets import mnist from keras.datasets import mnist from keras.models import Sequential, load_model from keras.layers.core import Dense, Dropout, Activation,ActivityRegularization from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt from numpy import load #plotting f from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score import seaborn as sn import matplotlib.pyplot as plt from pylab import rcParams def textplotting(model,x_test,y_test): y_pred = model.predict(x_test) y_pred = np.argmax(y_pred, axis=1) y_test = np.argmax(y_test, axis=1) y_pred = y_pred.reshape(-1,1) y_test = y_test.reshape(-1,1) print(confusion_matrix(y_test, y_pred)) print(accuracy_score(y_test, y_pred)) def metric(name,best_model,x_train,y_train,x_test,y_test): plt.clf() y_pred = best_model.predict(x_test) sn.set(font_scale=1) rcParams['figure.figsize'] = 30, 30 confusion_matrix = pd.crosstab(y_test.argmax(axis=1), y_pred.argmax(axis=1), rownames=['Actual'], colnames=['Predicted']) sn.heatmap(confusion_matrix, annot=True) plt.savefig(name+"Test.png") plt.clf() confusion_matrix = pd.crosstab(y_train.argmax(axis=1), best_model.predict(x_train).argmax(axis=1), rownames=['Actual'], colnames=['Predicted']) sn.heatmap(confusion_matrix, annot=True) plt.savefig(name+"Train.png") plt.clf() def plotting(name,history): plt.clf() sn.set(font_scale=2) rcParams['figure.figsize'] = 10, 10 fig = plt.figure() history_dict = history.history print(history_dict.keys()) plt.subplot(2,1,1) plt.plot(history_dict['accuracy']) plt.plot(history_dict['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['Training Set', 'Validation Set'], loc='lower right') plt.subplot(2,1,2) plt.plot( history_dict['loss']) plt.plot( history_dict['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['Training Set', 'Validation Set'], loc='upper right') plt.tight_layout() plt.savefig(name +"Accuracy.png") plt.clf() plt.show #Bio ytrain = load('labels_trainAll.npy') print(ytrain.shape) xtrain = load('bio_trainAll.npy') print(xtrain.shape) xtest = load('bio_test.npy') print(xtest.shape) ytest = load('labels_test.npy') print(ytest.shape) ''' ytrain = load('labels_trainAll.npy') print(ytrain.shape) xtrain = load('icub_trainAll.npy') print(xtrain.shape) xtest = load('icub_test.npy') print(xtest.shape) ytest = load('labels_test.npy') print(ytest.shape) ''' #### 2D classifiers def svm(xtrain,ytrain,xtest,ytest): xtrain = xtrain.reshape(xtrain.shape[0],xtrain.shape[1]*xtrain.shape[2]) xtest = xtest.reshape(xtest.shape[0],xtest.shape[1]*xtest.shape[2]) from sklearn.svm import SVC model = SVC(kernel='linear', probability=True) model.fit(xtrain, ytrain) y_pred = model.predict(xtest) from sklearn import metrics print("Test Accuracy:",metrics.accuracy_score(ytest, y_pred)) print("Training Accuracy:",metrics.accuracy_score(ytrain, model.predict(xtrain))) svm(xtrain,ytrain,xtest,ytest)
[ "noreply@github.com" ]
tayaba02.noreply@github.com
7fa26db7546059397d857662e5c3152ce9b6361f
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/223/users/4182/codes/1582_2897.py
28a7bb152b0197d08b28465ac147822e23411d40
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
177
py
# Use este codigo como ponto de partida # Leitura de valores de entrada e conversao para inteiro num = int(input("Digite o numero:")) # Impressao do dobro do numero print(num*2)
[ "jvlo@icomp.ufam.edu.br" ]
jvlo@icomp.ufam.edu.br
4f054e3eb26478e6754fc46e3c9b7d2de5931107
4b340f77af77c120d06dab824606088814e7f5c8
/python-zumbies/twp295.py
55fe0eba5e5b6aedcd2b08071eaaf751b04e522e
[]
no_license
jeyziel/python-studies
955c39938a8a89b7626a4ac8d37a215753e0fbed
f86ff997643d188ad7099047ff68343e4d96b92b
refs/heads/master
2020-03-10T20:00:33.983638
2018-07-30T18:54:01
2018-07-30T18:54:01
129,560,901
0
0
null
null
null
null
UTF-8
Python
false
false
102
py
import random lista = [] for i in range(15): lista.append(random.randint(10, 100)) print(lista)
[ "jeyzielgato@gmail.com" ]
jeyzielgato@gmail.com
97afa910069619d1bf28d324dc78438e217c94d3
22ea049e5ff21a34972b1ac2e20e02eb0d562994
/mazegen.py
58661a920d25976fbff3342b401e931747a84835
[]
no_license
mihai-craciun/maze
011edeaa8b5673cf79f4dd096ac2c40177ad4627
3b05c44097aa156ffe4f16af1b0fdd9028334e5a
refs/heads/master
2022-04-27T01:33:01.861623
2020-04-26T16:49:47
2020-04-26T16:49:47
258,873,568
0
0
null
null
null
null
UTF-8
Python
false
false
9,243
py
from typing import Tuple, List from disjoint_set import DisjointSet from collections import deque import random class Maze: # Avaliable directions LEFT = 1 << 0 RIGHT = 1 << 1 UP = 1 << 2 DOWN = 1 << 3 # Offsets OFF_LEFT = (0, -1) OFF_RIGHT = (0, 1) OFF_UP = (-1, 0) OFF_DOWN = (1, 0) # Special markers EMPTY = 0 VISITED = 1 SOLUTION = 2 # Algorithms DFS = 'dfs' KRUSKAL = 'kruskal' DIVISION = 'division' @staticmethod def get_dir(i_offset: int, j_offset: int) -> int: pass @staticmethod def neg_mask(d: int) -> int: return (Maze.LEFT | Maze.RIGHT | Maze.UP | Maze.DOWN) - d @staticmethod def can_go(cell: int, d: int) -> bool: return True if cell == Maze.EMPTY else cell & d > 0 def __init__(self, w: int=10, h: int=10 ,start: Tuple[int ,int]=(0, 0), end: Tuple[int, int] = None, algorithm='kruskal'): # Inits self.w = w self.h = h self.start = start self.maze = None self.solution = None self.algorithm = algorithm if end is None: end = (h-1, w-1) self.end = end self.compute_aux_maps() def get_avail_neighbour_offset(self, y: int, x: int) -> List[Tuple[int, int]]: nbs = [] for (i, j) in self.OFF_DIR.keys(): if y + i < 0 or y + i >= self.h or x + j < 0 or x + j >= self.w: continue if self.maze[y + i][x + j] == self.EMPTY: nbs.append((i, j)) return nbs def set_dir(self, y: int, x: int, d: int): self.maze[y][x] = max(self.maze[y][x], 0) | d def populate_dfs(self): stack = [] # Run DFS, create a stack of nodes stack.append((self.start)) while stack: i, j = stack.pop() # Select a new neighbor nbs = self.get_avail_neighbour_offset(i, j) if not nbs: continue random.shuffle(nbs) # pair the cells for nb in nbs: nd = self.OFF_DIR[nb] self.set_dir(i, j, nd) self.set_dir(i+nb[0], j+nb[1], self.OPOSITE[nd]) stack.append((i+nb[0], j+nb[1])) def populate_kruskal(self): cells = [] edges = [] for i in range(self.h): for j in range(self.w): cells.append((i, j)) if i + 1 < self.h: edges.append(((i, j), (i + 1, j))) if j + 1 < self.w: edges.append(((i, j), (i, j + 1))) ds = DisjointSet(cells) random.shuffle(edges) for edge in edges: (a, b), (c, d) = edge if ds.union((a, b), (c, d)): nb = (c-a, d-b) nd = self.OFF_DIR[nb] self.set_dir(a, b, nd) self.set_dir(c, d, self.OPOSITE[nd]) def populate_recursive(self, start: Tuple[int, int], end: Tuple[int, int]): i1, j1 = start i2, j2 = end # if grid is less than 2x2 return if i2 - i1 < 2 or j2 - j1 < 2: return # choose x, y in the middle y = (i1 + i2) // 2 x = (j1 + j2) // 2 # set walls for j in range(j1, j2): self.maze[y-1][j] &= self.neg_mask(self.DOWN) self.maze[y][j] &= self.neg_mask(self.UP) for i in range(i1, i2): self.maze[i][x-1] &= self.neg_mask(self.RIGHT) self.maze[i][x] &= self.neg_mask(self.LEFT) # select a random index from each one of the 4 smaller walls formed by the intersection walls = [ (y, random.randint(j1, x-1), -1, 0, self.UP, self.DOWN), (y, random.randint(x, j2-1), -1, 0, self.UP, self.DOWN), (random.randint(i1, y-1), x, 0, -1, self.LEFT, self.RIGHT), (random.randint(y, i2-1), x, 0, -1, self.LEFT, self.RIGHT), ] # keep only 3 of them toremove = random.choice(walls) walls.remove(toremove) # remove selected walls for wall in walls: i, j, o1, o2, d1, d2 = wall self.maze[i][j] |= d1 self.maze[i+o1][j+o2] |= d2 # populate the maze in all 4 sub mazes generated self.populate_recursive((i1, j1), (y, x)) self.populate_recursive((i1, x), (y, j2)) self.populate_recursive((y, j1), (i2, x)) self.populate_recursive((y, x), (i2, j2)) def populate(self): self.erase() if self.algorithm == self.DFS: self.populate_dfs() elif self.algorithm == self.KRUSKAL: self.populate_kruskal() elif self.algorithm == self.DIVISION: self.populate_recursive((0, 0), (self.h, self.w)) def solve(self): self.solution = [[self.EMPTY for _ in range(self.w)] for _ in range(self.h)] prevs = {self.start: None} queue = deque() queue.append(self.start) while queue: x = queue.popleft() if x == self.end: break i, j = x self.solution[i][j] = self.VISITED # get available neighbors nbs = [] for k in self.OFF_DIR: (oi, oj), d = k, self.OFF_DIR[k] # if valid neighbor (in offsets, dir not blocked and not visited) if ((0 <= i + oi < self.h and 0 <= j + oj < self.w ) and self.maze[i+oi][j+oj] & self.OPOSITE[d] > 0 and self.solution[i+oi][j+oj] == self.EMPTY and (i+oi, j+oj) not in prevs): nbs.append((i+oi, j+oj)) prevs[(i+oi, j+oj)] = x # add neighbors in queue queue.extend(nbs) # calculate paths p = self.end while p is not None: i, j = p self.solution[i][j] = self.SOLUTION p = prevs[p] def erase(self): if self.algorithm == self.DIVISION: self.maze = [[self.LEFT | self.RIGHT | self.UP | self.DOWN for _ in range(self.w)] for _ in range(self.h)] self.maze[0] = [x & self.neg_mask(self.UP) for x in self.maze[0]] self.maze[-1] = [x & self.neg_mask(self.DOWN) for x in self.maze[-1]] for i in range(self.h): self.maze[i][0] &= self.neg_mask(self.LEFT) self.maze[i][-1] &= self.neg_mask(self.RIGHT) else: self.maze = [[self.EMPTY for _ in range(self.w)] for _ in range(self.h)] def print(self): if self.maze is None: return for i, line in enumerate(self.maze): char_func = lambda j_v: self.CHARS_EMPTY[j_v[1]] if (self.solution is not None and self.solution[i][j_v[0]] == self.SOLUTION) else self.CHARS[j_v[1]] line = list(map(char_func, enumerate(line))) print("".join(line)) def compute_aux_maps(self): self.OFF_DIR = { self.OFF_LEFT: self.LEFT, self.OFF_RIGHT: self.RIGHT, self.OFF_UP: self.UP, self.OFF_DOWN: self.DOWN } # opposite self.OPOSITE = { self.LEFT: self.RIGHT, self.RIGHT: self.LEFT, self.UP: self.DOWN, self.DOWN: self.UP } # drawing chars self.CHARS = { self.EMPTY: " ", self.LEFT: "\u2578", self.RIGHT: "\u257a", self.UP: "\u2579", self.DOWN: "\u257b", self.LEFT | self.RIGHT: "\u2501", self.LEFT | self.UP: "\u251b", self.LEFT | self.DOWN: "\u2513", self.RIGHT | self.UP: "\u2517", self.RIGHT | self.DOWN: "\u250f", self.UP | self.DOWN: "\u2503", self.LEFT | self.RIGHT | self.UP: "\u253b", self.LEFT | self.RIGHT | self.DOWN: "\u2533", self.LEFT | self.UP | self.DOWN: "\u252b", self.RIGHT | self.UP | self.DOWN: "\u2523", self.LEFT | self.RIGHT | self.UP | self.DOWN: "\u254b" } self.CHARS_EMPTY = { self.EMPTY: " ", self.LEFT: "\u2555", self.RIGHT: "\u2558", self.UP: "\u2559", self.DOWN: "\u2556", self.LEFT | self.RIGHT: "\u2550", self.LEFT | self.UP: "\u255d", self.LEFT | self.DOWN: "\u2557", self.RIGHT | self.UP: "\u255a", self.RIGHT | self.DOWN: "\u2554", self.UP | self.DOWN: "\u2551", self.LEFT | self.RIGHT | self.UP: "\u2569", self.LEFT | self.RIGHT | self.DOWN: "\u2566", self.LEFT | self.UP | self.DOWN: "\u2563", self.RIGHT | self.UP | self.DOWN: "\u2560", self.LEFT | self.RIGHT | self.UP | self.DOWN: "\u256c" } if __name__ == "__main__": maze = Maze(20, 20, algorithm=Maze.DIVISION) maze.populate() maze.solve() maze.print()
[ "mihaicraciun96@gmail.com" ]
mihaicraciun96@gmail.com
4c85fd307ea4f4d698efbbbc3b78460b6a68dd65
d2645593a16a882b407bcac8805e7444fa6f1ec9
/SlidingWindowMaximum.py
4431b09e5f3c91e38277e3420b3ba873c072e4d9
[]
no_license
Steve-Jadav/LeetCode
040843533c4ab228a15752c388f953e9b2ecbf3f
7bcdd966c8a560bc0c71b9f357f600c50db97a53
refs/heads/master
2023-01-24T03:34:44.227573
2020-12-11T09:43:42
2020-12-11T09:43:42
265,413,039
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
# Problem 239 # Approach: deque from collections import deque class Solution: def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]: if (nums == None or len(nums) == 0 or k > len(nums)): return [] result = list() deck = deque([]) for i in range(0, len(nums)): if deck and deck[0] == i - k: deck.popleft() while (deck and nums[deck[-1]] <= nums[i]): deck.pop() deck.append(i) if (i >= k - 1): result.append(nums[deck[0]]) return result
[ "ssjadav@asu.edu" ]
ssjadav@asu.edu
efed81c1348d5dcc108b1148af5fce89e4e89030
c53d91b106d127f4c0181631513bb6244fdb591c
/bmmiici/migrations/0002_doctor_specializations.py
129dbc7372fc4dd6babb76075bd7790e0d40b2dc
[]
no_license
rezaul3025/bmmiici
adee847f8c9fd49c34b04dfbc569ed9e3625dc6f
d72ffab09cfd1a64af80b5edaf8e9b2f42031aa3
refs/heads/master
2020-12-03T00:18:33.256610
2017-07-08T13:00:07
2017-07-08T13:00:07
96,013,461
0
0
null
null
null
null
UTF-8
Python
false
false
484
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-07-05 12:20 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bmmiici', '0001_initial'), ] operations = [ migrations.AddField( model_name='doctor', name='specializations', field=models.TextField(default='NULL'), preserve_default=False, ), ]
[ "rezaul.km105@gmail.com" ]
rezaul.km105@gmail.com
19406253672ec27fdc20e4d53f4be3f3efaa50b3
d9c176985d24b82b21d5dd319b5ff82ae5d783f6
/hw4.py
677aff7aace43bb5955021afb87666f7bdb2174a
[ "MIT" ]
permissive
nv29arh/hw4
913248f57a9e021f7147b31fa88b713a1b2d5d97
f2e1f38bf4fa0d6bc11cb07df63754a0fb7e3595
refs/heads/master
2022-04-24T10:40:55.254816
2020-04-18T15:35:18
2020-04-18T15:35:18
256,785,889
0
0
null
null
null
null
UTF-8
Python
false
false
2,274
py
#1. Напишите функцию (F): на вход список имен и целое число N; на выходе список длины N случайных имен из первого списка # (могут повторяться, можно взять значения: количество имен 20, N = 100, рекомендуется использовать функцию random); import random def random_list_of_the_names(a,N): ''' :param a: первоначальный список имен :param N: количество имен :return: новый список из случайных имен ''' new_list = [] for i in range(N): new_list.append(random.choice(a)) return new_list a = ['Вася','Петя','Аня', 'Катя', 'Саша', 'Оля', 'Дима', 'Костя', 'Алла', 'Лена', 'Ксюша', 'Паша', 'Артем', 'Андрей', 'Сергей', 'Инна', 'Ашот', 'Миша', 'Стас', 'Лев'] print(random_list_of_the_names(a,20)) #2. Напишите функцию вывода самого частого имени из списка на выходе функции F; from collections import Counter def the_most_common_name(a,N): ''' :param a: начальный список имен :param N: количество имен в списке :return: самое частое имя в списке ''' new_list = [] for i in range(N): new_list.append(random.choice(a)) return new_list, Counter(new_list).most_common(1) print(the_most_common_name(a,20)) # 3 Напишите функцию вывода самой редкой буквы, с которого начинаются имена в списке на выходе функции F def the_rarest_letter(a, N): ''' :param a: начальный список имен :param N: количество имен в списке :return: самая редкая буква ''' new_list = [] for i in range(N): new_list.append(random.choice(a)) the_first_letter = list(map(lambda names:names[0],new_list)) return new_list, Counter(the_first_letter).most_common()[-1] print(the_rarest_letter(a, 15))
[ "nv29arh@gmail.com" ]
nv29arh@gmail.com
0703fd507726e31b497d16301aa2cc35d4f91a4b
20bbbc7d104ec39af1a15b1567f7a29f84829b45
/djangosite/booksite/booksite/settings.py
df0ee4247a8af5ea5b2207b43d5465a95002ccf3
[]
no_license
liuxinqiqi/Pythonclassbasic
07eeb01e6d579a995600f31408f68b22d36e573b
fbd85cd9c4341c611eba170083ed944f5b8f16da
refs/heads/master
2021-01-16T18:27:00.640306
2017-08-12T02:41:00
2017-08-12T02:41:00
100,084,047
1
0
null
null
null
null
UTF-8
Python
false
false
3,303
py
""" Django settings for booksite project. Generated by 'django-admin startproject' using Django 1.11.3. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '0n&(%lny-o13b&-&cgk4bo-!2#z9%v*s@yk&o6x^fhu)8=d$j4' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'usr', 'costomers', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'booksite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'booksite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'USER', 'USER': 'root', 'PASSWORD': '123', 'HOST':'', 'PORT':'', }, } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ AUTH_USER_MODEL = 'usr.User' LANGUAGE_CODE = 'zh-Hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_ROOT = '/static/' STATIC_URL = '/static/' STATICFILES_DIRS = ( BASE_DIR,'static' )
[ "XinQi_Liu@outlook.com" ]
XinQi_Liu@outlook.com
e1a3b9f62dfa9070f5a3fae6496477ee023461b4
07560f9448a55d14380d5cf022323af09e2d1e6b
/1.DataScience/2.BigO/Green18/lec10_sum.py
3dfc22aaaea7b383c4afbb59abc65f72be92844e
[]
no_license
namth2015/python
58d6cb5d93db6ccaec0a436150d1c4458d4f6a03
a32e691e2d5fc1ae1d80d0c7d99185c456e48212
refs/heads/master
2023-06-01T23:42:59.585763
2021-06-19T10:34:39
2021-06-19T10:34:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
365
py
class cell: def __init__(self,x,y,val = None): self.x = x self.y = y self.val = val m, n = map(int,input().split()) k = int(input()) a = [] for i in range(k): x, y, val = map(int,input().split()) a.append(cell(x,y,val)) lst = [x for x in a if x.val > 0] print(len(lst)) for i in range(len(lst)): print(lst[i].x, lst[i].y)
[ "cungbac.tran@gmail.com" ]
cungbac.tran@gmail.com
d76fef10ced97c1c78acbadd55454645b2ab6c26
427c02cd6cb7719159a4d130ab501723c8f8d717
/wsi_qa/applicants/apps.py
c8c171f6b3fc452c49883809adef5845bebfbf13
[]
no_license
rhedenjohn/wsiqa
64016f8a1babf2efe2726d1b353065446011d6fe
51f2e8ece347cbbb4a8994ec53d49d3379479ef3
refs/heads/master
2022-11-09T21:04:25.062978
2020-06-16T12:58:59
2020-06-16T12:58:59
271,193,177
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
from django.apps import AppConfig class ApplicantsConfig(AppConfig): name = 'applicants'
[ "rhedenjohn@hotmail.com" ]
rhedenjohn@hotmail.com
b0ed056ba3090317cb01c1f931b47c350a3d5312
ce2e068a1bf0111b85ebccd4009370e02d3e268a
/hahaha/util.py
025e4f78455eee3a3d5608c551fa622e79fb93b7
[]
no_license
wzk1015/hahaha
6565dbca5f215b3e0b0009f2cbc17237fcae1a5b
e676e6289554f2b64f30864f77c66dd52e2e4dc3
refs/heads/master
2023-02-12T15:32:12.815595
2021-01-03T18:01:47
2021-01-03T18:01:47
324,585,953
0
0
null
null
null
null
UTF-8
Python
false
false
951
py
import numpy as np import cv2 import os import pkg_resources PACKAGE_NAME = "hahaha" template_path = "template-imgs/" def get_path(path): return pkg_resources.resource_filename(PACKAGE_NAME, path) def check_file(path): assert os.path.exists(path), "file '" + path + "' not exists" def read(path) -> np.ndarray: p = get_path(path) check_file(p) return cv2.imread(p) def read_template(path) -> np.ndarray: return read(os.path.join(template_path, path)) def save(path, img): cv2.imwrite(path, img) print("saved to", path) def show(name, img): print("showing") cv2.imshow(name, img) cv2.waitKey(0) def wrapper(f, *args, **kwargs): new_kwargs = kwargs.copy() if "out_path" in kwargs.keys(): del new_kwargs["out_path"] save(kwargs["out_path"], f(*args, **new_kwargs)) else: show("result", f(*args, **new_kwargs))
[ "18231047@buaa.edu.cn" ]
18231047@buaa.edu.cn
fb4dfff30de3a38bb92711cbb6dc49b298649908
111a0e4c5950a81b752c8ac941d3e296dadf48b8
/guessing_game.py
eddda92bb6eabcf63d6b69f5705b1e160578781a
[]
no_license
Mr-JackWilson2019/Treehouse-project-1
de9fcb1ba75f2868ae0a1743da02860cadae5708
af11f25a5a856e10f6b2841600a1eef3bb44a255
refs/heads/master
2020-05-26T09:26:06.159021
2019-05-23T07:45:14
2019-05-23T07:45:14
188,186,215
0
0
null
null
null
null
UTF-8
Python
false
false
3,655
py
""" Python Web Development Techdegree Project 1 - Number Guessing Game -------------------------------- For this first project we will be using Workspaces. NOTE: If you strongly prefer to work locally on your own computer, you can totally do that by clicking: File -> Download Workspace in the file menu after you fork the snapshot of this workspace. """ #random is slower than numpy.random import random def start_game(high_score): """Psuedo-code Hints When the program starts, we want to: ------------------------------------ 1. Display an intro/welcome message to the player. 2. Store a random number as the answer/solution. 3. Continuously prompt the player for a guess. a. If the guess greater than the solution, display to the player "It's lower". b. If the guess is less than the solution, display to the player "It's higher". 4. Once the guess is correct, stop looping, inform the user they "Got it" and show how many attempts it took them to get the correct number. 5. Let the player know the game is ending, or something that indicates the game is over. ( You can add more features/enhancements if you'd like to. ) """ print("""Hello, welcome to the number guessing game. This program will randomly select a number between 1 and 10, including 1 and 10. To play, guess a number between 1 and 10. If the program tells you the number is higher, guess another number that is higher than the last number you guessed. If the program tells you that the number is lower, guess a number lower than the one you guessed. Try to beat the high score if one exists. Enjoy!""") if high_score is not None: #I learned about f strings a while ago. I'm not new to python print(f"The current high score is {high_score}") number_to_guess = random.randrange(1, 10) number_of_guesses = 0 try: guess = int(input("Guess the number. It's between 1 and 10: ")) except ValueError: print("Looks like you didn't enter an integer. Pleae try again") exit() while True: try: number_of_guesses += 1 if guess == number_to_guess: print("congratulations! You won!") print(f"It took {number_of_guesses} tries.") play_again = input("Do you want to play again? Y/N ") if play_again.upper() == "Y": #check to see if current score is lower than high score #keeping my character count in check #shouldn't be an error since the entire or statement evaluates #the true as soon as part of the condition is true. if (high_score is None) or\ (number_of_guesses < high_score): start_game(high_score = number_of_guesses) else: start_game(high_score = high_score) elif play_again.upper() == "N": exit() else: raise ValueError() elif guess < number_to_guess: guess = int(input("It's higher! ")) continue elif guess > number_to_guess: guess = int(input("It's lower! ")) continue except ValueError as e: print("Please enter integers for guessing. Enter either a Y or an N" "when prompted with Y/N") #This is just to make sure that your number of guesses doesn't #increase if you mess up number_of_guesses -= 1 continue if __name__ == '__main__': # Kick off the program by calling the start_game function. start_game(None)
[ "Mr.JackWilson2019@gmail.com" ]
Mr.JackWilson2019@gmail.com
59fc876954e1f9decf3028bb8dd67468bddceff3
c107e850b0cc4b925f2d424702dbcf4dcbb52ec3
/text_to_phoneme.py
bd882ebf89f99409c4569d911ae5f534926361fe
[]
no_license
rohithkodali/g2p
74deaa29909ebf7825678e9cfe63bc898e45cd29
7168b46b2fc9186bd193ae7c25c881fbf697ff77
refs/heads/master
2021-01-21T07:34:21.254448
2015-08-13T12:49:16
2015-08-13T12:49:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,653
py
import sys import os """ This file maps the manual transliterations into phonemes using automatic transliterations and mono-phoneset file. First step is to find the one-to-one mapping between mannual and automatic tranliterations. There could be mismatches between them, i.e. sometimes people may mix two words into single or they forget to transliterate some words. This tries to correct one word mistakes. """ ############################### # After careful observation, we find this table which shows the # possible phonemes for each grapheme. We can see that, at least for # telugu, people didn't use the letters 'q', and 'w' for transliteration ph_dic = {} ph_dic['2'] = ['r'] ph_dic['3'] = ['t', 'm'] ph_dic['a'] = ['aa', 'ai', 'e', 'ei'] ph_dic['b'] = ['bh'] ph_dic['c'] = ['ch', 'k', 's'] ph_dic['d'] = ['dh', 'dx', 'dxh'] ph_dic['e'] = ['ai', 'ei', 'i', 'ii'] ph_dic['f'] = ['ph'] ph_dic['g'] = ['gh', 'j'] ph_dic['h'] = ['h'] ph_dic['i'] = ['a', 'ai', 'ii'] ph_dic['j'] = ['j'] ph_dic['k'] = ['c', 'kh'] ph_dic['l'] = ['e'] ph_dic['m'] = ['e'] ph_dic['n'] = ['e'] ph_dic['o'] = ['aa', 'a', 'au', 'oo', 'uu', 'w'] ph_dic['p'] = ['ph'] ph_dic['r'] = ['aa', 'rq', 'w'] ph_dic['s'] = ['e', 'sh', 'sx'] ph_dic['t'] = ['dh', 'th', 'tx', 'txh'] ph_dic['u'] = ['a','uu', 'w', 'y'] ph_dic['v'] = ['ei','u','uu', 'w'] ph_dic['x'] = ['e'] ph_dic['y'] = ['e', 'ei', 'w'] ph_dic['z'] = ['j'] #################################### # convert each word into corresponding phoneme representation def word2phone(phoneset, word): # phoneset contains the list of monophones # split the word into small subwords and check they are equal to any phone # in the phonelist j = 0 phones = [] while j < len(word): # check if three letters of a word are equal to a phone or not if word[j:j+3] in phoneset: phones.append(word[j:j+3]) j = j + 3 # check if two letters of a word are equal to a phone or not elif word[j:j+2] in phoneset: phones.append(word[j:j+2]) j = j + 2 else: # else if we check single letter of a word is in the phoneset # most/all of the cases single letter will have a correspond phone if word[j] in phoneset: phones.append(word[j]) j = j + 1 return phones # this function modifys the single word mistakes by joining the two words in the # longer list def adjust_oneword_mistakes(a, t): flag = 0 if len(t) > len(a): for j in xrange(len(t)): if j == len(a): t[j-1] = t[j - 1] + t[j] t.pop(j) break else: if (a[j][0] != t[j][0]) and (t[j][0] not in ph_dic[a[j][0]]): t[j-1] = t[j-1] + t[j] t.pop(j) break return a, t else: for j in xrange(len(a)): if j == len(t): a[j-1] = a[j - 1] + a[j] a.pop(j) break else: if (a[j][0] != t[j][0]) and (t[j][0] not in ph_dic[a[j][0]]): a[j-1] = a[j-1] + a[j] a.pop(j) break return a, t if __name__ == "__main__": if len(sys.argv) != 4: sys.exit("Usage: python text_to_phone.py <manual transliteration file> \ <automatic tranliteration file> <mono-phoneset file>") # get mannual transliteration/annotation file annont_file = sys.argv[1] # get automatic transliteration file trans_file = sys.argv[2] # get mono-phones file lang_file = sys.argv[3] ### Read mono-phones into a list ### phoneset = [] # initialize the phoneset # open the phoneset file which contains utf8 and their correspond phone with open(lang_file, 'r') as f: for line in f.readlines(): ph_list = line.strip().split() if ph_list[1] not in phoneset: phoneset.append(ph_list[1]) ### Read annotation file #### with open(annont_file, 'r') as f: annont_lines = f.readlines() ### Read transliteration file ### with open(trans_file, 'r') as f: trans_lines = f.readlines() ### sanity check ### if len(annont_lines) != len(trans_lines): sys.exit('The number of lines in automatic and mannual transliteration \ files are different. Check agian!') ### Convert each sentence into its phonemic representation ### w2p_train = [] train_dic = {} test_words = [] for i in xrange(len(annont_lines)): # the lines in these ranges are for test set, thus just add them to test set if (i >= 1850 and i <= 1900) or (i >= 2200): a_list = annont_lines[i].strip().split() for w in a_list: if w not in test_words: test_words.append(w) continue a_list = annont_lines[i].strip().split() t_list = trans_lines[i].strip().split() a_len = len(a_list) t_len = len(t_list) # As of now we care about only one word mistakes! if abs(a_len - t_len) <= 1: # if the lengths difference is one then adjust the bigger list by merging # two words if abs(a_len - t_len) == 1: #print "before", a_list, t_list a_list, t_list = adjust_oneword_mistakes(a_list, t_list) #print "after", a_list, t_list for j in xrange(len(a_list)): # check that current word is unique or not if a_list[j] not in train_dic: # map the word to phone phones = word2phone(phoneset, t_list[j]) # add the word into dictionary train_dic[a_list[j]] = ' '.join(phones) # this is double check to make sure that phones are correspond # to the annotation word by comparing the first phone in both # word and phones if a_list[j][0] == phones[0] or phones[0] in ph_dic[a_list[j][0]]: w2p_train.append(a_list[j] + ' ' + ' '.join(phones)) with open('lexicon_train.txt', 'w') as f: f.write('\n'.join(w2p_train)) with open('test.words', 'w') as f: f.write('\n'.join(test_words)) os.system('cat lexicon_train.txt | sort | uniq > temp.txt') os.system('rm lexicon_train.txt') os.system('mv temp.txt train.lex')
[ "bajibau7@gmail.com" ]
bajibau7@gmail.com
57cc05f3174ad501f76c32351312e66932f0f089
31a17ccc7d77eac2673b2c1e2c489eaf75f7af58
/omtp_factory_behaviors/omtp_factory_flexbe_states/src/omtp_factory_flexbe_states/detect_part_camera_state.py
d77d023165092c9991f208ac04016fc9637026cc
[]
no_license
aaurm867/omtp_assignments
148abecae4043049600270d4854ef25c1e8c2e80
9ba73a20ce9ff90ef59a3209eaaca8a98572b090
refs/heads/master
2021-10-15T21:28:14.980785
2021-09-29T10:26:28
2021-09-29T10:26:28
245,206,695
1
2
null
null
null
null
UTF-8
Python
false
false
6,172
py
#!/usr/bin/env python # Software License Agreement (BSD License) # # Copyright (c) 2018, Delft University of Technology # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Delft University of Technology nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Authors: the HRWROS mooc instructors # Authors: Simon Bogh, updated Mar 31 2020 import rospy import rostopic import inspect import tf2_ros import tf2_geometry_msgs from flexbe_core import EventState, Logger from geometry_msgs.msg import Pose, PoseStamped from omtp_gazebo.msg import LogicalCameraImage, Model from flexbe_core.proxy import ProxySubscriberCached ''' Created on Sep 5 2018 @author: HRWROS mooc instructors Updated on Mar 31 2020 @author: Simon Bogh ''' class DetectPartCameraState(EventState): ''' State to detect the pose of the part with any of the cameras in the factory simulation. -- ref_frame string reference frame for the part pose output key -- camera_topic string the topic name for the camera to detect the part -- camera_frame string frame of the camera #> pose PoseStamped Pose of the detected part <= continue if the pose of the part has been succesfully obtained <= failed otherwise ''' def __init__(self, ref_frame, camera_topic, camera_frame): # Declare outcomes, input_keys, and output_keys by calling the super constructor with the corresponding arguments. super(DetectPartCameraState, self).__init__(outcomes = ['continue', 'failed'], output_keys = ['pose']) self.ref_frame = ref_frame self._topic = camera_topic self._camera_frame = camera_frame self._connected = False self._failed = False # tf to transfor the object pose self._tf_buffer = tf2_ros.Buffer(rospy.Duration(10.0)) #tf buffer length self._tf_listener = tf2_ros.TransformListener(self._tf_buffer) # Subscribe to the topic for the logical camera (msg_path, msg_topic, fn) = rostopic.get_topic_type(self._topic) if msg_topic == self._topic: msg_type = self._get_msg_from_path(msg_path) self._sub = ProxySubscriberCached({self._topic: msg_type}) self._connected = True else: Logger.logwarn('Topic %s for state %s not yet available.\nFound: %s\nWill try again when entering the state...' % (self._topic, self.name, str(msg_topic))) def execute(self, userdata): # This method is called periodically while the state is active. # Main purpose is to check state conditions and trigger a corresponding outcome. # If no outcome is returned, the state will stay active. if not self._connected: userdata.pose = None return 'failed' if self._failed: userdata.pose = None return 'failed' if self._sub.has_msg(self._topic): message = self._sub.get_last_msg(self._topic) for model in message.models: if model.type == 'object': pose = PoseStamped() pose.pose = model.pose pose.header.frame_id = self._camera_frame pose.header.stamp = rospy.Time.now() # Transform the pose to desired output frame pose = tf2_geometry_msgs.do_transform_pose(pose, self._transform) userdata.pose = pose return 'continue' def on_enter(self, userdata): # This method is called when the state becomes active, i.e. a transition from another state to this one is taken. # It is primarily used to start actions which are associated with this state. # Get transform between camera and robot1_base try: self._transform = self._tf_buffer.lookup_transform(self.ref_frame, self._camera_frame, rospy.Time(0), rospy.Duration(1.0)) except Exception as e: Logger.logwarn('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Could not transform pose: ' + str(e)) Logger.logwarn('Could not transform pose: ' + str(e)) self._failed = True def on_exit(self, userdata): # This method is called when an outcome is returned and another state gets active. # It can be used to stop possibly running processes started by on_enter. pass # Nothing to do def on_start(self): # This method is called when the behavior is started. # If possible, it is generally better to initialize used resources in the constructor # because if anything failed, the behavior would not even be started. pass def on_stop(self): # This method is called whenever the behavior stops execution, also if it is cancelled. # Use this event to clean up things like claimed resources. pass # Nothing to do def _get_msg_from_path(self, msg_path): ''' Created on 11.06.2013 @author: Philipp Schillinger ''' msg_import = msg_path.split('/') msg_module = '%s.msg' % (msg_import[0]) package = __import__(msg_module, fromlist=[msg_module]) clsmembers = inspect.getmembers(package, lambda member: inspect.isclass(member) and member.__module__.endswith(msg_import[1])) return clsmembers[0][1]
[ "ignigomoreno@gmail.com" ]
ignigomoreno@gmail.com
6543caa054b01d2c7701af472b4883fa2b53e6be
d91e60de0880565c339521129f64fe5cd207bf88
/total_creation4.py
5d28d44b2e04597008b9807dbe5b379825b8edd8
[]
no_license
laur34/automatize_sample_sheet
e96dfc1872309e6888ec8154b805c26334c355f5
409292a2fd62730f06d545a4c7b487a44c39b789
refs/heads/master
2021-06-20T23:34:15.502433
2021-06-10T13:50:39
2021-06-10T13:50:39
222,692,501
0
0
null
2021-01-21T12:08:57
2019-11-19T12:36:42
Python
UTF-8
Python
false
false
8,920
py
# Script to automate creation samplesheet.txt file for use with vsearch script for fusion primers (and paired-ends.) # Version 3.0 - 10.6.2021 - four columns of primers instead of two # Needs to be run in Python3. # Before using this script, the sample sheet from the lab must be made into the correct input. # That is, 1st col is Sample_name, 2nd is Fusion_COI_i5_TAG_Primer, 3rd is Fusion_COI_i7_TAG_Primer. # Everything else (other columns, and rows not in project) should be deleted from it. # Give the name of the corrected sheet (as csv) as the arg value. # e.g. python total_creation4.py splsht_MiSeq_Run2019_25.csv Sample_name Fusion_COI_i5_TAG_Primer Fusion_COI_i7_TAG_Primer import argparse, sys parser = argparse.ArgumentParser(description='Transform 3-column sample sheet into first input for samplesheet.txt.') parser.add_argument('ModifiedSampleSheetCsv_name', nargs=1, help="Give the name of the modified sheet from lab (as csv, not tab-separated).") parser.add_argument('Sample_name_colname', nargs='?', default="Sample_name", help="Name of the first column (sample names)") parser.add_argument('i5_TAG_Primer_colname', nargs='?', default="Fusion_COI_i5_TAG_Primer", help="Name of the second column (fwd primers)") parser.add_argument('i7_TAG_Primer_colname', nargs='?', default="Fusion_COI_i7_TAG_Primer", help="Name of the third column (reverse primers)") parser.add_argument('merge_status', nargs='?', default="merged", help="merged or forward") args = parser.parse_args() import os, warnings, csv, glob # Define a function for reverse-complementing. def revcomp(seq): return seq.translate(str.maketrans('ACGTacgtRYMKrymkVBHDvbhd', 'TGCAtgcaYRKMyrkmBVDHbvdh'))[::-1] # Implement check for intermediate files, with option to delete thm. import subprocess prev_run = os.path.isfile("samplesheet.txt") | os.path.isfile("input_1*.tsv") | os.path.isfile("input_2*.tsv") | os.path.isfile("joined.tsv") | os.path.isfile("samplesheet.tsv") if prev_run: i = input('Intermediate files or output already exists. Delete them and continue (y/n)?\n') if i.lower() == 'yes' or i.lower() == 'y': if os.path.isfile("samplesheet.txt"): process = subprocess.Popen(['rm', 'samplesheet.txt']) if os.path.isfile("samplesheet.tsv"): process = subprocess.Popen(['rm', 'samplesheet.tsv']) if os.path.isfile("input1.tsv"): process = subprocess.Popen(['rm', 'input1.tsv']) if os.path.isfile("input2.tsv"): process = subprocess.Popen(['rm', 'input2.tsv']) if os.path.isfile("input1sorted.tsv"): process = subprocess.Popen(['rm', 'input1sorted.tsv']) if os.path.isfile("input2sorted.tsv"): process = subprocess.Popen(['rm', 'input2sorted.tsv']) else: print("Please delete files from previous attempt, and try again.") sys.exit() #TODO: remove below checks # Define function to read in mod sample sheet and create new file (input1) from it, checking first if already exists in dir. def createInput1file(splsht3col): with open(splsht3col, 'r') as csvfile: reader = csv.DictReader(csvfile, delimiter=',') for row in reader: try: r_rc = revcomp(row[args.i7_TAG_Primer_colname]) except KeyError as err: print(err, "\n" + "Third column is not named Fusion_COI_i7_TAG_Primer. Please rename it, or specify current name as ARGV4.") sys.exit() try: samplename = row[args.Sample_name_colname] corename = samplename.replace("_", "-") except KeyError as err: print(err, "\n" + "First column is not named Sample_name. Please rename it, or specify current name as ARGV2.") sys.exit() try: f_rc = revcomp(row[args.i5_TAG_Primer_colname]) except KeyError as err: print("\n" + "Second column is not named Fusion_COI_i5_TAG_Primer. Please rename it, or specify current name as ARGV3") sys.exit() try: print(corename + "\t" + row[args.Sample_name_colname] + "\t" + row[args.i5_TAG_Primer_colname] + "\t" + r_rc + "\t" + row[args.i7_TAG_Primer_colname] + "\t" + f_rc, file=open("input1.tsv","a")) except KeyError as err: print(err, "\n" + "Second column is not named Fusion_COI_i5_TAG_Primer. Please rename it, or specify current name as ARGV3.") sys.exit() print("File input1.tsv successfully created.") # Define fcn to check if underscores are present in any fastq file names in the directory: def checkFASTQnamesForUsc(): fwdfq = glob.glob("*_R1_001.fastq") for fastqname in fwdfq: parts = fastqname.split("_") if len(parts) > 5: print("Underscore in fastq file name detected!") print(parts) print("Exiting.") sys.exit() print("Forward FASTQ file names look ok.") print("") revfq = glob.glob("*_R2_001.fastq") for fastqname in revfq: parts = fastqname.split("_") if len(parts) > 5: print("Underscore in fastq file name detected!") print(parts) print("Exiting.") sys.exit() print("Reverse FASTQ file names look ok.") print("") # Define fcn to check if fastq files are in directory and there is the same number of them as sample sheet says. def CheckForFwdFastqs(sheet): fastqfiles = glob.glob("*_R1_001.fastq") count = len(open(sheet, 'r').readlines()) if count == len(fastqfiles): print("Number of forward fastq files in directory matches number of lines to be written.") print("") else: print("Number of forward fastq files in directory differs from number listed on sample sheet!") print("Make sure all files are present, and names match (and no special characters in names).") print("Exiting") sys.exit() # Define fcn to create input2 file. def createInput2file(): fastqfiles = glob.glob("*_R1_001.fastq") f2 = open('input2.tsv', 'w') for fastqfile in fastqfiles: corename = fastqfile.split('_')[0] f2.write("{}\t".format(corename)) f2.write("{}\n".format(fastqfile)) f2.close() print("File input2.tsv successfully created.") print("") # Incorporating bash commands from joining.sh script. # Using the shell way for now--this script is for local use only. # Define a function to sort the two input files, and then join them into a new file. def sortAndJoin(): # Sorting process = subprocess.run('sort -k1,1 input1.tsv > input1sorted.tsv', shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) process = subprocess.run('sort -k1,1 input2.tsv > input2sorted.tsv', shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Joining process = subprocess.run('join -j1 input2sorted.tsv input1sorted.tsv > joined.tsv', shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Define a function to cut the joined file, keeping only the wanted columns for samplesheet. def cutColumns(): for line in open('joined.tsv'): col2 = line.rstrip('\n').split()[1] col4 = line.rstrip('\n').split()[3] col5 = line.rstrip('\n').split()[4] col6 = line.rstrip('\n').split()[5] col7 = line.rstrip('\n').split()[6] print(col2 + "\t" + col4 + "\t" + col5 + "\t" + col6 + "\t" + col7, file=open("samplesheet.tsv","a")) # Define a fcn to replace raw fastq file endings with merged file endings, and write the final output file. def replaceEndingsAndWriteFinal(): with open('samplesheet.tsv', 'rt') as spltsv: with open('samplesheet.txt', 'wt') as spltxt: for line in spltsv: if args.merge_status == 'merged': spltxt.write(line.replace('L001_R1_001.fastq','L001_merged.fq')) else: spltxt.write(line) warnings.warn("Creating forward-only version of sheet.\n") print("File samplesheet.txt successfully created.") print("") def removeIntFiles(): print("Removing intermediate files.") print("") process = subprocess.Popen(['rm', 'input1.tsv']) process = subprocess.Popen(['rm', 'input2.tsv']) process = subprocess.Popen(['rm', 'input1sorted.tsv']) process = subprocess.Popen(['rm', 'input2sorted.tsv']) process = subprocess.Popen(['rm', 'joined.tsv']) process = subprocess.Popen(['rm', 'samplesheet.tsv']) def main(): checkFASTQnamesForUsc() createInput1file(sys.argv[1]) createInput2file() sortAndJoin() cutColumns() CheckForFwdFastqs('samplesheet.tsv') replaceEndingsAndWriteFinal() removeIntFiles() print("Finished.") if __name__ == '__main__': main()
[ "lv70xo@gmail.com" ]
lv70xo@gmail.com
5f622590e4e53e09f5768da616268d8c3746c578
f6bc15034ee1809473279c87e13cc3131bc3675c
/groups/sitemaps.py
7b9b9770de392bf4b099281e0f54729bd242d6d5
[ "MIT" ]
permissive
mangadventure/MangAdventure
d92e4c184d1ad91983cf650aa7fa584ba9b977ce
e9da91d0309eacca9fbac8ef72356fe35407b795
refs/heads/master
2023-07-20T04:54:49.215457
2023-07-14T15:34:20
2023-07-14T15:34:20
144,012,269
70
16
MIT
2022-08-13T12:22:39
2018-08-08T12:43:19
Python
UTF-8
Python
false
false
513
py
"""Sitemaps for the groups app.""" from typing import Iterable from django.contrib.sitemaps import Sitemap from .models import Group class GroupSitemap(Sitemap): """Sitemap for groups.""" #: The priority of the sitemap. priority = 0.4 def items(self) -> Iterable[Group]: """ Get an iterable of the sitemap's items. :return: An iterable of ``Group`` objects. """ return Group.objects.only('name', 'logo').order_by('name') __all__ = ['GroupSitemap']
[ "chronobserver@disroot.org" ]
chronobserver@disroot.org
6214043f87f5759242026a504acb8c2d6b0353a1
7d1e05eb93bc1caaf79dc4063e24a9e7de41ed33
/hollow triangle.py
cdbfb90355bb7404dd824eaa98897a38a3b1a417
[]
no_license
katyaryabova/HOMETASK5
a9d36ff4d71b4ea7e8ec1478dfd7d846a80cfeb2
7fc7d4297aff65a89ed37a3b33ed7a5f7fbdcefc
refs/heads/master
2022-11-25T17:58:31.751869
2020-07-31T15:13:06
2020-07-31T15:13:06
279,795,113
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
n = int(input("enter: ")) for i in range(1, n - 1): print(' ' * (2 * n - 2 * i - 2) + "*" + ' ' * (4 * i - 5) + "*" * (i != 1)) print('* ' * (2 * n - 3))
[ "ts-kateryna.riabova@rakuten.com" ]
ts-kateryna.riabova@rakuten.com
89bcacedd592efcd1eb8e5a4543bafd28d850d84
e78635b2fd4bc2df1671214ea24c03a2be91a503
/LeetcodeNew/python/LC_416.py
7be06eabf28020389ccc22eceb0065e450083b99
[]
no_license
arnabs542/OptimizedLeetcode
56ec60232ddb7b4e911aeb137a365c12092da16d
ab013103b9b28327e3b5a8af0c408606d1e04a24
refs/heads/master
2023-03-14T05:57:06.070185
2021-02-28T03:01:14
2021-02-28T03:01:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,540
py
""" 416. Partition Equal Subset Sum 473. Matchsticks to Square 698. Partition to K Equal Sum Subsets 996. Number of Squareful Arrays """ """ Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal. Note: Each of the array element will not exceed 100. The array size will not exceed 200. Example 1: Input: [1, 5, 11, 5] Output: true Explanation: The array can be partitioned as [1, 5, 5] and [11]. Example 2: Input: [1, 2, 3, 5] Output: false Explanation: The array cannot be partitioned into equal sum subsets. https://github.com/wisdompeak/LeetCode/tree/master/DFS/698.Partition-to-K-Equal-Sum-Subsets """ import copy class SolutionTony: def canPartition(self, nums) -> bool: summ = sum(nums) if summ % 2 != 0: return False nums.sort() memo = {} target = summ // 2 return self.dfs(nums, 0, 0, target, memo) def dfs(self, nums, idx, summ, target, memo): if (summ, idx) in memo: return memo[(summ, idx)] if summ == target: return True if summ > target: return False for i in range(idx, len(nums)): if self.dfs(nums, i + 1, summ + nums[i], target, memo): memo[summ, idx] = True return memo[summ, idx] memo[summ, idx] = False return memo[summ, idx] class Solution: def canPartition(self, nums) -> bool: target = sum(nums) if target % 2: return False target //= 2 visited = [False] * (len(nums)) return self.dfs(nums, visited, 0, 0, target) def dfs(self, nums, visited, index, summ, target): if summ == target: return True if index == len(nums): return False if summ > target: return False for i in range(index, len(nums)): if visited[i] == True: continue visited[i] = True if i >= 1 and nums[i] == nums[i - 1] and visited[i - 1] == False: continue if self.dfs(nums, visited, index + 1, summ + nums[i], target): return True visited[i] = False return False """ (100110) subset sum == summ // 2 s = subset sum dp[s] : whether we can find a subset whose sum equals to s 0 ~ 2e4 dp[s_small] -> dp[s_large] for num in nums: for s in range(summ//2+1): if dp[s-num] == True: dp[s] = True """ class SolutionWisdom: def canPartition(self, nums) -> bool: summ = sum(nums) if summ % 2 == 1: return False target = summ // 2 dp = [False] * (target + 1) dp[0] = True for num in nums: old_dp = copy.copy(dp) for i in range(target + 1): if i >= num: dp[i] = dp[i] or old_dp[i - num] return dp[-1] class SolutionReversed: def canPartition(self, nums) -> bool: summ = sum(nums) if summ % 2 == 1: return False target = summ // 2 dp = [False] * (target + 1) dp[0] = True for num in nums: # old_dp = copy.copy(dp) for i in reversed(range(target + 1)): if i >= num: dp[i] = dp[i] or dp[i - num] return dp[-1] nums = [1, 5, 11, 5] a = Solution() print(a.canPartition(nums))
[ "taocheng984@gmail.com" ]
taocheng984@gmail.com
1b73f94b2be025d3496a8ab70620a8857819ffc4
2c2a805d43af773b7e31c7a54d1c2e8c8108801d
/test/test_db.py
e59b96200a87f7f7ac3be43912e2baf04d7a91bb
[]
no_license
atiaxi/chromabot2
2dbb2beefcc67f2b324ae98886f4815205830653
f8f9e92090017bbbaf87042f4cdc5f5f10e54c25
refs/heads/master
2020-05-21T13:33:18.565653
2017-03-17T17:05:14
2017-03-17T17:05:14
62,596,154
0
0
null
2017-03-17T17:02:48
2016-07-05T01:13:29
Python
UTF-8
Python
false
false
9,520
py
from chromabot2.models import User from chromabot2.battle import ( Battle, Troop, OccupiedException, OutOfBoundsException, BattleEndedException, BattleNotStartedException, ) from chromabot2.utils import now from test.common import ChromaTest # These tests are for the raw functionality of db.py - unit tests, mostly. # Integration tests will be elsewhere (test_battle.py for battle related # items, and test_play.py for most everything else) class TestUser(ChromaTest): def test_create_user(self): someone = User.create(self.db, name="someone", team=0, leader=True) some_id = someone.id with self.db.new_session() as s: fetched = s.query(User).filter_by(name="someone").first() self.assertTrue(fetched) self.assertEqual(fetched.id, some_id) # TODO: Check to see if the user is in that team's capital # Make sure it assigned troops self.assertTrue(fetched.troops) self.assertEqual(3, len(fetched.troops)) counts = {'infantry': 0, 'cavalry': 0, 'ranged': 0} for troop in fetched.troops: self.assertIn(troop.type, counts) counts[troop.type] += 1 for key in counts.keys(): self.assertEqual(1, counts[key]) # def test_create_user_other_team(self): # # someone = User.create(self.db, name="someone", team=1, leader=True) # self.skipTest("No regions yet") # # TODO: Check to see if the user is in the other team's capital def test_troops(self): num_troops = len(self.alice.troops) troop = Troop(owner=self.alice, hp=1, type="test") with self.db.session() as s: s.add(troop) self.assertEqual(num_troops + 1, len(self.alice.troops)) self.assertIn(troop, self.alice.troops) class TestTroop(ChromaTest): def test_owner(self): troop = Troop(owner=self.alice, hp=1, type="test") with self.db.session() as s: s.add(troop) with self.db.new_session() as s: fetched = s.query(Troop).\ filter_by(type="test").first() self.assertTrue(fetched) self.assertEqual(fetched.type, troop.type) self.assertEqual(fetched.id, troop.id) self.assertEqual(fetched.owner.id, self.alice.id) def test_boilerplate(self): Troop.infantry(self.alice) with self.db.new_session() as s: fetched = s.query(Troop). \ filter_by(type="infantry"). \ filter_by(owner_id=self.alice.id).count() self.assertEqual(2, fetched) def test_boilerplate_cavalry(self): Troop.cavalry(self.alice) with self.db.new_session() as s: fetched = s.query(Troop). \ filter_by(type="cavalry"). \ filter_by(owner_id=self.alice.id).count() self.assertEqual(2, fetched) def test_boilerplate_ranged(self): Troop.ranged(self.alice) with self.db.new_session() as s: fetched = s.query(Troop). \ filter_by(type="ranged"). \ filter_by(owner_id=self.alice.id).count() self.assertEqual(2, fetched) def test_no_battle(self): troop = Troop(owner=self.alice, hp=1, type="test") with self.db.session() as s: s.add(troop) # By default, this troop shouldn't have a battle assigned to it self.assertFalse(troop.battle) def test_circ(self): # This is going to get exponential real quick but OH WELL cavalry = Troop.cavalry(self.alice) infantry = Troop.infantry(self.alice) ranged = Troop.ranged(self.alice) with self.subTest("Cavalry"): with self.subTest("CI"): self.assertEqual(cavalry.fights(infantry), 1) with self.subTest("RC"): self.assertEqual(cavalry.fights(ranged), -1) with self.subTest("CC"): self.assertEqual(cavalry.fights(cavalry), 0) with self.subTest("Infantry"): with self.subTest("IR"): self.assertEqual(infantry.fights(ranged), 1) with self.subTest("CI"): self.assertEqual(infantry.fights(cavalry), -1) with self.subTest("II"): self.assertEqual(infantry.fights(infantry), 0) with self.subTest("Ranged"): with self.subTest("RC"): self.assertEqual(ranged.fights(cavalry), 1) with self.subTest("IR"): self.assertEqual(ranged.fights(infantry), -1) with self.subTest("RR"): self.assertEqual(ranged.fights(ranged), 0) class TestBattle(ChromaTest): def test_create(self): with self.db.session() as s: num_battles = s.query(Battle).count() battle = Battle.create(self.outside) self.assertTrue(battle) with self.db.new_session() as s: now_battles = s.query(Battle).count() self.assertEqual(num_battles+1, now_battles) def test_place_troop(self): troop = self.alice.troops[0] self.assertFalse(troop.battle) self.assertEqual(len(self.battle.troops), 0) self.battle.place_troop(troop, col=1, row=2, outside=self.outside) self.assertTrue(troop.battle) self.assertEqual(len(self.battle.troops), 1) self.assertEqual(self.battle, troop.battle) self.assertEqual(troop.row, 2) self.assertEqual(troop.col, 1) # Hopefully this won't take 10 minutes to run self.assertAlmostEqual(now(), troop.last_move, delta=600) board = self.battle.realize_board() self.assertEqual(board[troop.row][troop.col], troop) def test_no_place_troop_in_occupied_space(self): troop = self.alice.troops[0] self.assertEqual(len(self.battle.troops), 0) self.battle.place_troop(troop, col=1, row=2, outside=self.outside) self.assertEqual(len(self.battle.troops), 1) with self.assertRaises(OccupiedException): troop = self.alice.troops[1] self.battle.place_troop(troop, col=1, row=2, outside=self.outside) self.assertEqual(len(self.battle.troops), 1) self.assertFalse(self.alice.troops[1].battle) def test_place_troop_on_right_side_zero(self): for col in range(0, 5): troop = self.alice.troops[0] self.battle.place_troop(troop, col=col, row=2, outside=self.outside) self.assertEqual(troop.col, col) def test_place_troop_on_right_side_one(self): for col in range(6, 11): troop = self.bob.troops[0] self.battle.place_troop(troop, col=col, row=2, outside=self.outside) self.assertEqual(troop.col, col) def test_no_place_troop_on_wrong_side_zero(self): troop = self.alice.troops[0] self.assertEqual(len(self.battle.troops), 0) with self.assertRaises(OutOfBoundsException): self.battle.place_troop(troop, col=9, row=2, outside=self.outside) self.assertEqual(len(self.battle.troops), 0) self.assertFalse(self.alice.troops[0].battle) def test_no_place_troop_on_wrong_side_one(self): troop = self.bob.troops[0] self.assertEqual(len(self.battle.troops), 0) with self.assertRaises(OutOfBoundsException): self.battle.place_troop(troop, col=1, row=2, outside=self.outside) self.assertEqual(len(self.battle.troops), 0) self.assertFalse(self.bob.troops[0].battle) def test_no_place_troop_in_dmz(self): with self.assertRaises(OutOfBoundsException): troop = self.alice.troops[0] self.battle.place_troop(troop, col=5, row=2, outside=self.outside) with self.assertRaises(OutOfBoundsException): troop = self.bob.troops[0] self.battle.place_troop(troop, col=5, row=2, outside=self.outside) def test_no_place_troop_off_board_row(self): troop = self.alice.troops[0] self.assertEqual(len(self.battle.troops), 0) with self.assertRaises(OutOfBoundsException): self.battle.place_troop(troop, col=1, row=100000, outside=self.outside) self.assertEqual(len(self.battle.troops), 0) self.assertFalse(self.alice.troops[0].battle) def test_no_place_troop_off_board_col(self): troop = self.alice.troops[0] self.assertEqual(len(self.battle.troops), 0) with self.assertRaises(OutOfBoundsException): self.battle.place_troop(troop, col=-5000, row=1, outside=self.outside) self.assertEqual(len(self.battle.troops), 0) self.assertFalse(self.alice.troops[0].battle) def test_no_fight_ended_battle(self): """Can't fight in a battle that's over""" self.end_battle() troop = self.alice.troops[0] with self.assertRaises(BattleEndedException): self.battle.place_troop(troop, col=1, row=2, outside=self.outside) def test_no_fight_early_battle(self): with self.outside.db.session(): battle2 = Battle.create(self.outside) troop = self.alice.troops[0] self.assertFalse(battle2.active) with self.assertRaises(BattleNotStartedException): battle2.place_troop(troop, col=1, row=2, outside=self.outside)
[ "atiaxi@gmail.com" ]
atiaxi@gmail.com
85a63dd438a1f43ed8098ae413e642c923205ea1
cb1f34abdbf0ba8dfb87489e8e97bf5d6104e641
/previous_work/src/common/ashttpcommon.py
24176da250ea5d3ba8b64a9ca487bd690d328e78
[]
no_license
yuliang-leon/exp
7b8522fc464f1ac9c42a672f72f3e85451912cca
889b48f374783921f6b8ea1013dad13e6118d587
refs/heads/master
2021-01-21T12:36:20.799056
2014-04-18T19:14:13
2014-04-18T19:14:13
18,921,241
0
1
null
null
null
null
UTF-8
Python
false
false
9,120
py
__copyright__ = 'Copyright 2011-2014, Yuliang Wang(yuliang.leon@gmail.com).' from ascommon import FileStore, MemStore, StoreException, rand_string, shortReadableName from asaes import AsAES from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler from urlparse import urlparse, urljoin import urllib from datetime import datetime, timedelta from Cookie import SimpleCookie import time import random import unittest import cgitb import sys def GetCacheExpires(days_from_now): expires = datetime.now() + timedelta(days = days_from_now) return expires.strftime('%a, %d %b %Y %H:%M:%S') def AddToParams(query, params): for param in query.strip().split('&'): items = param.split('=') if len(items) == 2: params[urllib.unquote_plus(items[0])] = urllib.unquote_plus(items[1]) else: print items # Token import base64 class InvalidToken(Exception): def __init__(self, value='invalid token'): self.value = value def __str__(self): return self.value def CreateToken(userid, passwd, root_passwd, timeout = 60*60*24): """ Some applicate donot need passwd, we set it to a default one. """ output = [] output.append(userid) output.append(passwd) expiration = time.time() + timeout output.append(str(expiration)) output.append('123456789') output.append(rand_string(16)) message = '\n'.join(output) if message.split('\n') != output: raise InvalidToken('input include \\n') ciphered = AsAES(root_passwd).encrypt(message) token = base64.urlsafe_b64encode(ciphered) return token def ParseToken(token, root_passwd): """ Parse token, if valid, return the userid and passwd """ decoded = base64.urlsafe_b64decode(token) try: message = AsAES(root_passwd).decrypt(decoded) except Exception: raise InvalidToken('Can not decrypt token') lines = message.split('\n') if len(lines) != 5: raise InvalidToken('lines is %d'%len(lines)) userid = lines[0] passwd = lines[1] expiration = lines[2] salt = lines[3] # salt match if salt != '123456789': raise InvalidToken('salt invalid') # not expired if time.time() >= float(expiration): raise InvalidToken('token expired') return (userid, passwd) class CheckToken(unittest.TestCase): def testTokenParse(self): token = CreateToken('test', 'test-passwd', 'root-passwd', 60 * 30) # total invalid token self.assertRaises(InvalidToken, ParseToken, 'af89\n\t0128$%!', 'root-passwd') # wrong rootpasswd can not parse self.assertRaises(InvalidToken, ParseToken, token, 'root-passwd-2') # valid parse self.assertEquals(('test', 'test-passwd'), ParseToken(token, 'root-passwd')) def testTokenExpire(self): token = CreateToken('test', 'test-passwd', 'root-passwd', 0) time.sleep(0.1) self.assertRaises(InvalidToken, ParseToken, token, 'root-passwd') def userPassValidInFile(userid, userpass, store = FileStore(), dir = '/home/ec2-user/src/superpass/data'): """ check user input (userid, userpass) match we stored in file if file not exist, create one.""" storekey = '%s/%s.key'%(dir, shortReadableName(userid)) user_encoded = AsAES(userpass).encrypt(userid) try: saved_text = store.read(storekey) except StoreException: store.write(storekey, user_encoded) return True else: return user_encoded == saved_text class CheckUserPassValid(unittest.TestCase): def testReadWrite(self): store = MemStore() # create 3 entry self.assertTrue(userPassValidInFile('test', 'test-pass', store)) self.assertTrue(userPassValidInFile('test2', 'test-pass2', store)) self.assertTrue(userPassValidInFile('test3', 'test-pass', store)) # same user, different passwd self.assertFalse(userPassValidInFile('test', 'test-pass2', store)) self.assertFalse(userPassValidInFile('test2', 'test-pass', store)) self.assertFalse(userPassValidInFile('test3', 'test-pass2', store)) # same user, same passwd self.assertTrue(userPassValidInFile('test', 'test-pass', store)) self.assertTrue(userPassValidInFile('test2', 'test-pass2', store)) self.assertTrue(userPassValidInFile('test3', 'test-pass', store)) # different user, same or different passwd self.assertTrue(userPassValidInFile('test4', 'test-pass', store)) self.assertTrue(userPassValidInFile('test5', 'test-pass5', store)) # HTTP handlers # TODO. instead of inherit, consider composite. class DispatchHTTPRequestHandler(BaseHTTPRequestHandler): """ dispatch according to root path. call handle_login('/login', {user:test}) for '/login?user=test' call handle_verify('/verify/other/path', {user:x}) for '/verify/other/path?user=x' call handle_('/', {}) for '/' call handle_('', {}) for '' call handleErrorMatch for any unmatched path call handleException for unknow exception """ def do_GET(self): self.__cached_cookie = {} self.__handleRequest() def do_POST(self): self.__cached_cookie = {} clen = self.headers.getheader('content-length') if clen: clen = int(clen) else: print 'Invalid content length' return print 'Got post request for %d length'%clen params = {} if clen > 0: AddToParams(self.rfile.read(clen), params) self.__handleRequest(params) def __handleRequest(self, post_params = {}): path = '' params = {} try: parsed_url = urlparse(self.path) AddToParams(parsed_url.query, params) path = parsed_url.path items = path.strip('/').split('/') root_path = '' if len(items) > 0: root_path = items[0] func = getattr(self, 'handle_%s'%root_path, self.handleErrorMatch) if func != self.handleErrorMatch: if not self.handleValidRequestBegin(path, params, post_params): return func(path, params, post_params) except (KeyboardInterrupt, SystemExit): raise except Exception as e: print 'Exception happend ', e self.handleException(path, params, post_params) def handleValidRequestBegin(self, path, params, post_params): return True def handleErrorMatch(self, path, params, post_params): self.sendResponse(404) self.send_header('Content-type', 'text/html') self.end_headers() msg = 'unknow path %s'%path self.wfile.write(msg) def handleException(self, path, params, post_params): self.sendResponse(500) self.send_header('Content-type', 'text/html') self.end_headers() msg = cgitb.html(sys.exc_info(), context=10) print msg # TODO. Not display the error message. self.wfile.write(msg) def redirect(self, redirect_url): print 'Redirect to', redirect_url self.sendResponse(302) self.send_header('Location', redirect_url) #self.writeUserHeader() self.end_headers() def redirectWithTimeout(self, redirect_url, message, timeout = 1): self.send_response(200) self.send_header("Content-type", "text/html") self.end_headers() self.wfile.write( """<html><head><meta HTTP-EQUIV="REFRESH" content="%i; url=%s"/> </head><body>%s</body></html>"""%(timeout, redirect_url, message)) def readCookie(self, name): cookie_str = self.headers.get('Cookie') print 'cookie:', cookie_str if cookie_str: c = SimpleCookie(cookie_str) cookie_morsel = c.get(name, None) if cookie_morsel is not None: return cookie_morsel.value return None def writeCookie(self, name, value, path = '/', days_from_now = 30): """ cache the cookie set until response sent. """ c = SimpleCookie() c[name] = value c[name]['path'] = path c[name]['expires'] = GetCacheExpires(days_from_now) self.__cached_cookie[name] = c.output(header='') def clearCookie(self, name): """ cache the cookie set until response sent. """ c = SimpleCookie() c[name] = '' c[name]['path'] = '/' c[name]['expires'] = 0 self.__cached_cookie[name] = c.output(header='') def sendResponse(self, response_code): """ To ensure Set-Cookie header is called after sendResponse, call sendResponse instead of sendResponse. """ # TODO. do we need to overwrite send_response? self.send_response(response_code) print 'send response %d'%response_code for v in self.__cached_cookie.itervalues(): self.send_header('Set-Cookie', v) print 'set cookie %s'%v class SessionRequestHandler(DispatchHTTPRequestHandler): """ Force a session exist when handling http request. """ def getSession(self, name): """ Get name in session, return None is not exist """ session = self.getRawSession() if name in session: return session[name] else: return None def setSession(self, name, value): session = self.getRawSession() session[name] = value def getRawSession(self): try: session = self.session except Exception: # Get sid from cookie. sid = self.readCookie('sid') if sid is None: sid = rand_string(16) self.writeCookie('sid', sid) # TODO. create a SessionServer and try read session back from server. session = {} session['id'] = sid self.session = session return session if __name__ == '__main__': unittest.main()
[ "zzw.neo@gmail.com" ]
zzw.neo@gmail.com
a2453feb6f860718515b6a6f5efd92d78ea28887
649c0fe730956d971a146d098f29a37c7d573b4a
/src/factory_map.py
e88c52219ea441a6b315b2e358d7999d7150e917
[]
no_license
sergiooncode/robotic-mowers
afb89950a8cb1fd25b185c184212598bc9a25932
9074a841ef3e97fefe45598187d352e7f9bbbecf
refs/heads/main
2023-08-24T20:09:30.648925
2021-10-05T07:50:06
2021-10-05T07:50:06
412,827,936
0
0
null
null
null
null
UTF-8
Python
false
false
434
py
from src.command.factory_command import FactoryCommand from src.mower_situation import MowerSituation class FactoryMap: def __init__(self, mower_situation: MowerSituation): self.__mower_situation = mower_situation def execute(self, command: FactoryCommand): self.__mower_situation = command.execute(self.__mower_situation) @property def mower_situation(self): return self.__mower_situation
[ "sperez4mba@gmail.com.com" ]
sperez4mba@gmail.com.com
9f416dcedf41c76ae4b39f70d354f501bd9d1ee1
424ff46affab21d96fd6e10b5dab2344c882a9ef
/tests/test_accommodation.py
23f32dfb4e90dfea52c8956093956944320de224
[]
no_license
simon446/apaato
56caea18ff1e6674ce82876a763171d6424d11f4
8226b9a49d247121a911bd1744bd329e47966648
refs/heads/master
2022-11-16T00:10:20.377366
2020-07-12T05:32:49
2020-07-12T05:32:49
278,954,644
0
0
null
2020-07-11T22:57:05
2020-07-11T22:57:05
null
UTF-8
Python
false
false
1,253
py
# test_accommodation.py import unittest from apaato.accommodation import Accommodation class TestAccommodation(unittest.TestCase): """ Tests for the accommodation module """ def setUp(self): """ Creates accommodation """ self.accommodation = Accommodation(queue_points_list=[2000, 1000, 200, 20, 2]) def test_position_in_queue(self): """ Tests the position_in_queue() function of accommodation""" # First in queue self.assertEqual(self.accommodation.position_in_queue(2001), 1) # Last in queue self.assertEqual(self.accommodation.position_in_queue(3), 5) # Further than last in queue self.assertEqual(self.accommodation.position_in_queue(1), 6) def test_insert_into_queue(self): """ Tests the insert_into_queue() function of accommodation""" # First in queue self.accommodation.insert_into_queue(2001) # Last in queue self.accommodation.insert_into_queue(21) # Further than last in queue self.accommodation.insert_into_queue(20) self.assertEqual(self.accommodation.queue_points_list, [2001, 2000, 1000, 200, 21]) if __name__ == '__main__': unittest.main()
[ "viclo211@student.liu.se" ]
viclo211@student.liu.se
1a7de1c1380a08b391a0c4b1d15c2e226a0ba98d
64d8618788c6239e546ad99ccff5ac2adb48e928
/adaFamilyTree/wsgi.py
48d6a94c74425aa2630c35b1f3f884a193269139
[]
no_license
JNEdrozo/adaFamilyTree
fdeb8e56a6aba2097e0837a135e8c09322e869fb
313ac83a427c6a369909eb442040af7abba90882
refs/heads/master
2021-05-14T15:28:08.834881
2018-03-05T02:45:21
2018-03-05T02:45:21
115,992,863
0
0
null
null
null
null
UTF-8
Python
false
false
519
py
""" WSGI config for adaFamilyTree project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/ """ import os from dotenv import load_dotenv dotenv_path = str.join(os.path.dirname(__file__), '.env') load_dotenv(dotenv_path) from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "adaFamilyTree.settings") application = get_wsgi_application()
[ "jedrozo@gmail.com" ]
jedrozo@gmail.com
979965982b7efa1234131e8ca65ac9234f559ed4
3d2cdc459b582f855a7c37246648b63858d89e01
/Events/urls.py
d0c84f66c12d880dfad82f9999422bb4ca4735c0
[]
no_license
burggrafdev88/VendorManagementPortal
d0bf77ce6f7a08e6d3181a024e49546b3f50175b
9db16ab1a4b7f0f3f06eb32eec4ac975f90b82db
refs/heads/master
2023-03-31T16:39:59.862268
2021-03-22T14:21:11
2021-03-22T14:21:11
307,521,735
0
0
null
null
null
null
UTF-8
Python
false
false
1,072
py
"""VendorManagementPortal URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.urls import path from . import views # URL path calls the views urlpatterns = [ path('schedule_screening/<int:vendorID>', views.schedule_screening, name="schedule_screening"), path('schedule_screening_ajax', views.schedule_screening_ajax.as_view(), name="schedule_screening_ajax"), path('retrieve_screening_info_ajax', views.retrieveScreeningInfoAJAX.as_view(), name='retrieve_screening_info_ajax'), ]
[ "burggrafdev88@gmail.com" ]
burggrafdev88@gmail.com
ffc6e5981af29a5bfa77a0890c1b5811e52b11ff
af35f890c0c6a2fa531f47a4c2ed132e8920190d
/python/leetcode/745_prefix_suffix_search.py
37a78875c54f311925a20c6c60bf17f617d85477
[]
no_license
Levintsky/topcoder
b1b17cd3fddef5a23297bcbe4e165508d09a655d
a5cb862f0c5a3cfd21468141800568c2dedded0a
refs/heads/master
2021-06-23T10:15:27.839199
2021-02-01T07:49:48
2021-02-01T07:49:48
188,175,357
0
1
null
2020-05-19T09:25:12
2019-05-23T06:33:38
C
UTF-8
Python
false
false
2,698
py
""" 745. Prefix and Suffix Search (Hard) Given many words, words[i] has weight i. Design a class WordFilter that supports one function, WordFilter.f(String prefix, String suffix). It will return the word with given prefix and suffix with maximum weight. If no word exists, return -1. Examples: Input: WordFilter(["apple"]) WordFilter.f("a", "e") // returns 0 WordFilter.f("b", "") // returns -1 Note: words has length in range [1, 15000]. For each test case, up to words.length queries WordFilter.f may be made. words[i] has length in range [1, 10]. prefix, suffix have lengths in range [0, 10]. words[i] and prefix, suffix queries consist of lowercase letters only. """ class TrieNode(object): def __init__(self): self.is_word = False self.memo = [None] * 26 self.index = set() class WordFilter(object): def __init__(self, words): """ :type words: List[str] """ self.words = words self.root = TrieNode() self.root_inv = TrieNode() for i, word in enumerate(words): n = self.root for j, c in enumerate(word): n.index.add(i) ind = ord(c) - ord('a') if n.memo[ind] is None: n.memo[ind] = TrieNode() n = n.memo[ind] if j == len(word) - 1: n.is_word = True n.index.add(i) for i, word in enumerate(words): n = self.root_inv wordinv = word[::-1] for j, c in enumerate(wordinv): n.index.add(i) ind = ord(c) - ord('a') if n.memo[ind] is None: n.memo[ind] = TrieNode() n = n.memo[ind] if j == len(word) - 1: n.is_word = True n.index.add(i) def f(self, prefix, suffix): """ :type prefix: str :type suffix: str :rtype: int """ n = self.root for c in prefix: n = n.memo[ord(c) - ord('a')] if n is None: return -1 set_pre = n.index n = self.root_inv for c in suffix[::-1]: n = n.memo[ord(c) - ord('a')] if n is None: return -1 set_post = n.index set_ = set_pre & set_post if set_: return max(set_) else: return -1 # Your WordFilter object will be instantiated and called as such: # obj = WordFilter(words) # param_1 = obj.f(prefix,suffix) if __name__ == "__main__": a = WordFilter(["pop"]) print(a.f("", "op")) # print(a.f('a', 'e')) # print(a.f('b', ''))
[ "zhuoyuanchen2014@u.northwestern.edu" ]
zhuoyuanchen2014@u.northwestern.edu
b5a9dd0bd794792cccf4fae7dab47dec79c4d097
09dbb201b49bc2657ad171d457e62fa153602f23
/algorithm/33-如何用一个随机函数得到另外一个随机函数.py
5775eff4556a246ce5e681f21dc790b21334aece
[]
no_license
llame/algorithms_exercise
4203fdeab8740e9430e6749f078bf8b7aa7be4eb
8e8f072f0d086a7b22460ac083687fe49c7d689c
refs/heads/master
2023-01-01T23:11:37.101504
2020-10-23T06:11:40
2020-10-23T06:11:40
163,731,782
0
0
null
null
null
null
UTF-8
Python
false
false
758
py
# -*-coding:utf-8-*- """ @Author : llame @Software: PyCharm @Time : 2020/9/25 3:56 下午 """ # 题目描述:有一个函数func1能返回0和1两个值,返回0和1的概率都1/2, # 问怎么利用这个函数得到另外一个函数func2, 使func2也只能返回0和1, # 且返回的概率为1/4,返回1的概率为3/4. import random def get_random(): a=int(round(random.random())) return a def get_random_1(): a=get_random() b=get_random() if a+b==2: return 0 else: return 1 if __name__ == '__main__': times=1000000 zero_number=0 i=0 while(i<times): tmp=get_random_1() if tmp==0: zero_number+=1 i+=1 print('zero ratio:',zero_number/times)
[ "llameli@163.com" ]
llameli@163.com
809ace0b39fd07934ef546604bba2050a9982669
d4ea02450749cb8db5d8d557a4c2616308b06a45
/students/Net_Michael/lesson7/test_html_render.py
4f024a2102ef72912891371551c1a6af772ad4dd
[]
no_license
UWPCE-PythonCert-ClassRepos/Self_Paced-Online
75421a5bdd6233379443fc310da866ebfcd049fe
e298b1151dab639659d8dfa56f47bcb43dd3438f
refs/heads/master
2021-06-16T15:41:07.312247
2019-07-17T16:02:47
2019-07-17T16:02:47
115,212,391
13
160
null
2019-11-13T16:07:35
2017-12-23T17:52:41
Python
UTF-8
Python
false
false
1,376
py
#!/usr/bin/env python # coding: utf-8 import pytest from io import StringIO import html_render as hr def test_element(): out_element = hr.Element("content message") assert out_element.content == ["content message"] def test_append(): append_element = hr.Element("append message1") append_element.append("append message2") assert append_element.content == ["append message1", "append message2"] def test_render(): render_element = hr.Element("render text") render_element.tag = 'html' f = StringIO() render_element.render(f) assert f.getvalue() == "<html>\n" + render_element.indent + "render text\n</html>\n" def test_OneLineTag(): out_OneLineTag = hr.OneLineTag("create title") out_OneLineTag.tag = 'title' f = StringIO() out_OneLineTag.render(f) assert f.getvalue() == '<title>create title</title>\n' def test_SelfClosingTag(): out_SelfClosingTag = hr.SelfClosingTag() out_SelfClosingTag.tag = 'meta' f = StringIO() out_SelfClosingTag.render(f) assert f.getvalue() == '<meta />\n' def test_A(): out_A = hr.A("http://google.com", "Link") f = StringIO() out_A.render(f) assert f.getvalue() == '<a href="http://google.com">\n Link\n</a>\n' def test_H(): out_H = hr.H(2, "Header2") f = StringIO() out_H.render(f) assert f.getvalue() == '<h2>Header2</h2>\n'
[ "Nettaimam@gmail.com" ]
Nettaimam@gmail.com
e838e7ed68e61e13fba1cfd7a5ee2f76f4b579e0
d16086e410ff57be2c16c0dbb1ebb425ff4d1947
/patternSearch/patternSearch.py
ee9d12aaf1a9d00e48fea1e864240da1edf6c7bb
[]
no_license
FaroukElk/Rosalind
6e06dace7d43444aa6e45efea6f5cba71c1b0536
6ebc5c1d379340e69095da6fbe30d4cd2abc429c
refs/heads/master
2021-01-11T20:49:03.907426
2017-01-23T18:19:51
2017-01-23T18:19:51
79,190,823
0
0
null
null
null
null
UTF-8
Python
false
false
1,391
py
"""Searches for a pattern within a DNA sequence and returns a list with the locations where the pattern occurs""" def patternSearch(DNA, pattern): locations = [] for i in range(len(DNA)-len(pattern) + 1): DNA_slice = DNA[i:i+len(pattern)] if DNA_slice == pattern: locations.append(i+1) return locations print (patternSearch("TCTATCGTTCTATCGTCTCTATCGCACTCTATCGGGGATCTATCGTTCTCGGCTATCTATCGTATCTATCGGACTCTATCGTTCTATCGTTTATCTATCGCATTCTATCGCCTCTATCGTGTATCTATCGAGTTTCTATCGCAATGTAGTCTATCGTCTATCGATCTATCGTCTATCGGTCTATCGCTCTATCGTTATTCTATCGCTCTATCGGTGCGAGTTCTATCGGTCTATCGTCTATCGTCTATCGGCACTTGGCGGCATCTATCGCTCTATCGTCTATCGTGTCTATCGTCTATCGTCTATCGTACTCTATCGGTCTATCGTCTATCGATCTATCGCTCTATCGGTCTATCGACCTCTATCGATAAATCTATCGTCTATCGTGGACTTCTATCGGAGTCTATCGTCTATCGAGCCCTCCAGTCTATCGTGTCTATCGAATTTCGCGTCTATCGACGTCTATCGTCTATCGTCTATCGCTTATCTATCGCATCTATCGATTCTATCGATCTATCGATCTATCGGGTCTATCGGATATCTATCGTCTATCGCCACCGTTCTATCGCAACTCTAGCAACTCTCTATCGGATCTATCGGATCTATCGTCTATCGGTCTATCGGGTGACATTTTGCGAAGAGCAGCACAGGAGTCTATCGATTCTCTATCGGTCTATCGAACTCTATCGTCTATCGTCACGTCTATCGAGATCTATCGTCTATCGGGTTTCTATCGCTCTATCGAATCTATCGGATGACTCTATCGTAAGCTCTATCGAACAATCTATCGTCTATCGTAATCTATCGTCTATCGTCTATCGGATTCTATCGTGATCTATCGTCTATCGTATCTATCGTCTATCGTAAGGTTCTATCGCTCTATCGTCTATCGCACTTCTATCGG", "TCTATCGTC")) #Solution: #[9, 150, 165, 230, 237, 272, 288, 295, 320, 373, 403, 462, 469, 541, 602, 683, 690, 712, 784, 801, 808, 835, 851, 879]
[ "faroukelkhayat@outlook.com" ]
faroukelkhayat@outlook.com
aa6675fca85df65adea866d06aa069e2bc263fba
498dbd2932527d1e7f499e2d7887c4af05e1e425
/5hu7_d0wn.py
764ad721a05408f832a85fc6006c088a327c96d3
[]
no_license
gauriz/py
1ddabf24ae805b641793a7f27eb19c5f8ca2bfc7
3804951033d8fe144f11bad5a5635c91837e46b5
refs/heads/master
2022-11-17T10:10:55.196040
2020-07-16T09:20:26
2020-07-16T09:20:26
279,947,672
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
import os shutdown = raw_input("Do you wish to shutdown your computer ? (yes / no): ") if shutdown == 'no': exit() else: os.system("shutdown /s /t 1")
[ "gauri@focaloid.com" ]
gauri@focaloid.com
5383e89e7fd17fdf4769c440ba13268284b5621b
2caf6885511af24443e22aaa43cd679d694f6f80
/note/my_note/first_month/day09/day08_homework.py
08f00777fe58712d78bfcc4557bbbbd2ee0f1737
[]
no_license
nandadao/Python_note
7f9ba54a73af05c935b4f7e24cacb728859a6c69
abddfc2e9a1704c88867cff1898c9251f59d4fb5
refs/heads/master
2020-11-25T18:29:50.607670
2019-12-19T01:28:02
2019-12-19T01:28:02
228,793,207
0
0
null
null
null
null
UTF-8
Python
false
false
1,968
py
dict_commodity_info = { 101: {"name": "屠龙刀", "price": 10000}, 102: {"name": "倚天剑", "price": 10000}, 103: {"name": "九阴白骨爪", "price": 8000}, 104: {"name": "九阳神功", "price": 9000}, 105: {"name": "降龙十八掌", "price": 8000}, 106: {"name": "乾坤大挪移", "price": 10000} } list_order = [] def print_commodity_info(): """ 打印商品信息 :return: """ for key, value in dict_commodity_info.items(): print("编号:%d,名称:%s,单价:%d。" % (key, value["name"], value["price"])) def buying(): print_commodity_info() cid, count = create_order() list_order.append({"cid": cid, "count": count}) print("添加到购物车。") def create_order(): """ 商品订单 """ while True: cid = int(input("请输入商品编号:")) if cid in dict_commodity_info: break else: print("该商品不存在") count = int(input("请输入购买数量:")) return cid, count def shopping(): """ 购物 """ while True: item = input("1键购买,2键结算。") if item == "1": buying() elif item == "2": settlement() def settlement(): total_price = 0 print_order_info() total_price += commodiy["price"] * item["count"] paying(total_price) def paying(total_price): while True: money = float(input("总价%d元,请输入金额:" % total_price)) if money >= total_price: print("购买成功,找回:%d元。" % (money - total_price)) list_order.clear() break else: print("金额不足.") def print_order_info(): for item in list_order: commodiy = dict_commodity_info[item["cid"]] print("商品:%s,单价:%d,数量:%d." % (commodiy["name"], commodiy["price"], item["count"])) shopping()
[ "1361335953@qq.com" ]
1361335953@qq.com
29723787e529f7cf19e2c9e4c2a7fad23597715b
f7f594f1d6958652cb065c2cd7075c27976c6cc4
/PythonSocketIO/sockets.py
d72172348fb7ab316afb18149effec18d0e0247a
[]
no_license
eric26009/LiDAR-Capstone-2019
c4d96acbaf080ee89a4bb65f559ee4e9c4148c3d
85d35369bbb832ac977629cc2dfc0ab83fcebfde
refs/heads/master
2023-03-03T10:44:50.322067
2019-08-28T07:17:06
2019-08-28T07:17:06
204,403,552
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
import socketio # pip install "python-socketio[client]" import json # standard Python sio = socketio.Client() @sio.event def connect(): print("I'm connected!") sio.emit('onLidarStateChanged', "payload") @sio.event def onMoveByStepsTriggered(payload): print("move by steps triggered") print(payload["steps"]) print(payload["acceleration"]) sio.connect('https://capstone-application-server.herokuapp.com')
[ "ericfeldman@outlook.com" ]
ericfeldman@outlook.com
34828399beb915cea5cdedb0525a8b4c0d71b95c
a2199be8de33a5890676856eacec6e503a5a3be1
/1st+python+assignment+of+skillsanta.py
0aadac84a0f4850a053795f6452c9463885c9a01
[ "Apache-2.0" ]
permissive
tanmaymishra21/Code
dcd77d97783112656443ec698ad390dec20b285c
8a1ef44dba6c1527ddc3dfb2246551a003b2adad
refs/heads/main
2023-01-06T11:21:50.100700
2020-10-30T14:34:18
2020-10-30T14:34:18
302,079,773
0
0
null
null
null
null
UTF-8
Python
false
false
550
py
# coding: utf-8 # In[1]: #printing the maximum value and largest number in the list data=[22,60,78,99,2,6,10] print(max(data)) # In[3]: #printing the second largest number in the list data=[22,60,78,99,2,6,10] data.sort() print('second largest number in the list', data[-2]) # In[5]: #first merge two lists and sort it data=[22,60,78,99,2,6,10] data1=[1,34,45,6,77,8] data2=data+data1 data2.sort() print(data2) # In[6]: #Swap the first and last value of a list data=[22,60,78,99,2,6,10] data[0],data[-1]=data[-1],data[0] print(data)
[ "noreply@github.com" ]
tanmaymishra21.noreply@github.com
33859cb61e22b4f91fdf55683f1d74a7534f9566
a1d1534962df22065f6566636d5ab5b6bb7c6bd4
/hellopython/serializers.py
fc3a3f6a16aac5351c3de2bbba1b8872768c47a3
[]
no_license
Apeopl/hello
a8adeae2d77ebd14dc294da01d4d1788f892e628
fbb8d2999191307142c5be71ee777826a7496a7c
refs/heads/master
2020-05-18T05:24:17.133706
2019-05-06T07:18:03
2019-05-06T07:18:03
184,205,486
0
0
null
null
null
null
UTF-8
Python
false
false
1,127
py
from rest_framework import serializers from .models import Snippet, LANGUAGE_CHOICES, STYLE_CHOICES class SnippetSerializer(serializers.Serializer): id = serializers.IntegerField(read_only=True) title = serializers.CharField(required=False, allow_blank=True, max_length=100) code = serializers.CharField(style={'base_template': 'textarea.html'}) linenos = serializers.BooleanField(required=False) language = serializers.ChoiceField(choices=LANGUAGE_CHOICES, default='python') style = serializers.ChoiceField(choices=STYLE_CHOICES, default='friendly') def create(self, validated_data): return Snippet.objects.create(**validated_data) def update(self, instance, validated_data): instance.title = validated_data.get('title', instance.title) instance.code = validated_data.get('code', instance.code) instance.linenos = validated_data.get('linenos', instance.linenos) instance.language = validated_data.get('language', instance.language) instance.style = validated_data.get('style', instance.style) instance.save() return instance
[ "zhengjinlei@edeMacBook-Air.local" ]
zhengjinlei@edeMacBook-Air.local
88dca76b742c8a26697c487bb55bdd74b7c86779
25a894aa2177c64ce5c8c7ab77c53bc13bbbc916
/Django/profiles_project/profiles_api/APIView/urls.py
34b7d5a5ee1eaefd223d720af5f43380a8d0ea8b
[]
no_license
shivam199/Projects
8b06a289aa0587ba3290f771e1f7215c1f7a8c19
4b47afcc6e812b22f95bd835333de0d048feace3
refs/heads/master
2022-11-12T19:12:24.177554
2020-06-26T07:04:54
2020-06-26T07:04:54
275,093,761
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
from django.urls import path from APIView import views urlpatterns = [ path('hello-view/',views.HelloApiView.as_view()), ]
[ "shivamsingh.tcet@gmail.com" ]
shivamsingh.tcet@gmail.com
ad8f14900f1113202f8f7898cf22eeb757b38c04
b8af5c6d0a27c8c157917f82bf75540043d9ed39
/Chapter_1/1.3/namenum.py
edcbf02cb972804619138f2274efc36ee76e3d61
[]
no_license
rishiso/USACO-Problems
bd650bb2694cfedc6aeca63533db81583946ce1b
3252aab02ae10590cc8b67227a7e19e99f4764b0
refs/heads/master
2021-07-16T11:17:53.053533
2020-11-28T01:36:27
2020-11-28T01:36:27
225,743,417
0
0
null
null
null
null
UTF-8
Python
false
false
1,203
py
""" ID: rishiso1 LANG: PYTHON3 TASK: namenum """ f = open("namenum.in", "r") w = open("namenum.out", "w") dict = open("dict.txt", "r") names = dict.read() names = names.split("\n") number = f.readline() number = number.replace("\n", "") names = [e for e in names if len(e) == len(number)] num_dict = { 2: ["A", "B", "C"], 3: ["D", "E", "F"], 4: ["G", "H", "I"], 5: ["J", "K", "L"], 6: ["M", "N", "O"], 7: ["P", "R", "S"], 8: ["T", "U", "V"], 9: ["W", "X", "Y"] } #Recursive function for finding combinations def combo(arr, i): res = [] if i == len(number): return arr else: letters = num_dict[int(number[i])] for name in arr: for letter in letters: new_word = name[:i] + letter + name[i + 1:] res.append(new_word) return combo(res, i + 1) original_word = "".join([num_dict[int(n)][0] for n in number]) count = 0 for word in combo([original_word], 0): if word in names: count += 1 w.write(word + "\n") if count == 0: w.write("NONE\n")
[ "noreply@github.com" ]
rishiso.noreply@github.com
cb00c6e6fb74427b3aa52cdd486487c544077759
4006fa146861cb9bf9a367786951df284461c169
/windchill.py
dcb0db3d88b425a31fda947489807c8cd3782028
[]
no_license
ccase18/CS550-Fall-Term
c58c94f6b0a54395dff07ad2fadbadab3b6fabce
7f5ac7a43e14b5300833ad16e654c3152623d99b
refs/heads/master
2021-08-23T13:51:14.406172
2017-12-05T04:18:53
2017-12-05T04:18:53
112,652,936
0
0
null
null
null
null
UTF-8
Python
false
false
351
py
import sys t = float(input('What is the temperature?? ')) v = float(input('And what is the wind speed??? ')) if -50 < t < 50 and 3 < v < 120: w = str(35.74 + (0.6215*t) + ((0.4275*t) - 35.75) * (v**0.16)) print('The wind chill is ' + w + ' degrees') else: print('Sorry enter a wind speed value betwen 3 and 120 and a temp value between -50 and 50')
[ "canaancase@Canaans-MacBook-Pro.local" ]
canaancase@Canaans-MacBook-Pro.local
c0706709e5f266e7ceef233489e62c2b5f5c9834
3b88dcf9b7cd28386ad3ea557c38e2096e59153f
/ansibleawx/__init__.py
7bddcf207bb4cf600f830ed48cf2ce9c97312091
[ "MIT" ]
permissive
ChandlerSwift/AnsibleAWX-Client
a48c5209dc623ae000cda9725e15a849e987dc8b
6030de8a5ee116c1839620e94b745e45c6759004
refs/heads/master
2023-04-04T10:50:30.565760
2020-07-25T03:27:48
2020-07-25T03:27:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
30
py
from ansibleawx.api import Api
[ "marcos.diniz@4linux.com.br" ]
marcos.diniz@4linux.com.br
9d2da1c148c1eb28261addf1b5e0432da5bd0623
25ebc03b92df764ff0a6c70c14c2848a49fe1b0b
/daily/20190403/example_jupyter/02run-kernelapp.py
9e4a677651e7a8fbc429a562bbc18e406e88e5aa
[]
no_license
podhmo/individual-sandbox
18db414fafd061568d0d5e993b8f8069867dfcfb
cafee43b4cf51a321f4e2c3f9949ac53eece4b15
refs/heads/master
2023-07-23T07:06:57.944539
2023-07-09T11:45:53
2023-07-09T11:45:53
61,940,197
6
0
null
2022-10-19T05:01:17
2016-06-25T11:27:04
Python
UTF-8
Python
false
false
138
py
from jupyter_client.kernelapp import main # main = KernelApp.launch_instance こうなっているのでmainを使っても良い main()
[ "ababjam61+github@gmail.com" ]
ababjam61+github@gmail.com
ee874271e1c806337273b45970bad55bef0a7d1a
02537ef86b8aca4b1324557090e3c17805770f09
/pink_led.py
822cdb28fd584fe0e4027f6f1d6f42a3a8279dbd
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
ifurusato/scripts
6e6bb7f3e608d70bae71ea1896488526440f0d0b
2afaa88369ae1736b7449136f4a38f63fe90116e
refs/heads/master
2023-03-21T18:53:47.160515
2021-03-17T08:45:06
2021-03-17T08:45:06
265,172,338
1
0
null
null
null
null
UTF-8
Python
false
false
3,615
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2020 by Murray Altheim. All rights reserved. This file is part of # the Robot Operating System project and is released under the "Apache Licence, # Version 2.0". Please see the LICENSE file included as part of this package. # # author: Murray Altheim # created: 2020-05-19 # modified: 2020-05-19 # see: https://robots.org.nz/2020/05/19/four-corners/ # This script is used as a possible solution for the Four Corners Competition, # as a way for a robot to locate the trajectory to a distant target. # import math, colorsys, traceback import picamera import picamera.array from picamera.array import PiRGBArray from colorama import init, Fore, Style init() PINK_RGB = [151, 55, 180] # hue = 286 def color_distance(e0, e1): hsv0 = colorsys.rgb_to_hsv(e0[0], e0[1], e0[2]) hsv1 = colorsys.rgb_to_hsv(e1[0], e1[1], e1[2]) dh = min(abs(hsv1[0]-hsv0[0]), 360-abs(hsv1[0]-hsv0[0])) / 180.0 ds = abs(hsv1[1]-hsv0[1]) dv = abs(hsv1[2]-hsv0[2]) / 255.0 distance = math.sqrt(dh*dh+ds*ds+dv*dv) return distance def print_row(image, y): print(Fore.WHITE + '{:d}\t'.format(y) + Fore.BLACK, end='') for x in reversed(range(0,image.shape[1])): _rgb = image[y,x] dist = color_distance(_rgb, PINK_RGB) _hilite = get_hilite(dist) print(_hilite + "▪", end='') print(Style.RESET_ALL) def get_hilite(dist): if dist < 0.025: return Fore.MAGENTA + Style.BRIGHT elif dist < 0.05: return Fore.MAGENTA + Style.NORMAL elif dist < 0.08: return Fore.RED + Style.BRIGHT elif dist < 0.10: return Fore.RED + Style.NORMAL elif dist < 0.15: return Fore.YELLOW + Style.BRIGHT elif dist < 0.2: return Fore.YELLOW + Style.NORMAL elif dist < 0.3: return Fore.GREEN + Style.BRIGHT elif dist < 0.4: return Fore.GREEN + Style.NORMAL elif dist < 0.5: return Fore.CYAN + Style.NORMAL elif dist < 0.6: return Fore.BLUE + Style.BRIGHT elif dist < 0.7: return Fore.BLUE + Style.NORMAL elif dist < 0.8: return Fore.BLACK + Style.NORMAL else: return Fore.BLACK + Style.DIM # .............................................................................. try: print(Fore.CYAN + 'starting...' + Style.RESET_ALL) # don't necessarily process the whole image (it takes a long time) _start_row = 180 # the bottom row of the image to be processed _end_row = 260 # the top row of the image to be processed with picamera.PiCamera() as camera: with PiRGBArray(camera) as output: camera.resolution = (640, 480) camera.capture(output, 'rgb') image = output.array print(Fore.YELLOW + 'Captured {:d}x{:d} image\n'.format(image.shape[1], image.shape[0]) + Style.RESET_ALL) _width = image.shape[1] _height = image.shape[0] print(Fore.YELLOW + 'Captured size {:d}x{:d} image'.format(_width, _height) + Style.RESET_ALL) for _row in reversed(range(_start_row + 1,_end_row + 1)): print_row(image, _row) except picamera.PiCameraMMALError: print(Fore.RED + Style.BRIGHT + 'could not get camera: in use by another process.' + Style.RESET_ALL) except Exception: print(Fore.RED + Style.BRIGHT + 'error starting ros: {}'.format(traceback.format_exc()) + Style.RESET_ALL) print(Fore.CYAN + 'complete.' + Style.RESET_ALL)
[ "ichiro.furusato@gmail.com" ]
ichiro.furusato@gmail.com
38406c33b15ddc21372f111248d8405b59cef7b8
f3b233e5053e28fa95c549017bd75a30456eb50c
/ptp1b_input/Lbq/bq-bs_MD_NVT_rerun/set_1ns_equi_1_m.py
b172df93ff15c6aaed13071699d2c538f9479f6d
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
936
py
import os dir = '/mnt/scratch/songlin3/run/ptp1b/Lbq/MD_NVT_rerun/ti_one-step/bq_bs/' filesdir = dir + 'files/' temp_equiin = filesdir + 'temp_equi_1_m.in' temp_pbs = filesdir + 'temp_1ns_equi_1_m.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.system("rm -r %6.5f" %(j)) os.system("mkdir %6.5f" %(j)) os.chdir("%6.5f" %(j)) os.system("rm *") workdir = dir + "%6.5f" %(j) + '/' #equiin eqin = workdir + "%6.5f_equi_1_m.in" %(j) os.system("cp %s %s" %(temp_equiin, eqin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, eqin)) #PBS pbs = workdir + "%6.5f_1ns_equi_1_m.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #top os.system("cp ../bq-bs_merged.prmtop .") os.system("cp ../0.5_equi_0_3.rst .") #submit pbs os.system("qsub %s" %(pbs)) os.chdir(dir)
[ "songlin3@msu.edu" ]
songlin3@msu.edu
ab3171f459b006cf8312516cf0706e936772f2cc
7b0c5ab11a50a1a8443a552e6ba39a060c895912
/SIE507/venv/hw4/ApartmentPurchase.py
fc7d74bfdc39aa35ae67c4b13940b7764447e171
[]
no_license
balmandhunter/oop_class
8901c01026b9dbbe6f89d37a6e2d6a0bb9b7d5bf
6abf55f9e1ebaf4a2d5f4cbffb84ed27048bf4b8
refs/heads/main
2023-04-18T03:59:42.022997
2021-05-06T13:38:49
2021-05-06T13:38:49
334,304,885
0
0
null
null
null
null
UTF-8
Python
false
false
546
py
from Apartment import Apartment from Purchase import Purchase class ApartmentPurchase(Apartment, Purchase): '''This static method calls the user prompts from the parent classes, Apartment and Purchase''' @staticmethod def prompt_init(): args = Apartment.prompt_init() args.update(Purchase.prompt_init()) return args '''This instance method calls the display methods from the parent classes, apartment and purchase''' def display(self): Apartment.display(self) Purchase.display(self)
[ "berkeleyalmandhunter@gmail.com" ]
berkeleyalmandhunter@gmail.com
d59159985a4f45e58b045558cc2cb0a0fc614574
76070a758fbd86ed289226860bb83768418cdb57
/plugins/my_new_option.py
efc5983d5e372f3823836c11ad0b39ce5cfbc465
[]
no_license
inkerra/python-tasks
c3ae9393ddfbab4bc06e11e16617a5f8d14b3272
08009819bf072d25c9231a8dc3bb7aa25a1b3bbd
refs/heads/master
2021-01-20T00:40:15.843238
2012-09-14T14:02:40
2012-09-14T14:02:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
from opt_plugin.plugin import MetaOpt, Opt class MyNewOption(Opt): @classmethod def action(cls, val): print "My new option is set to {}".format(val) opt = '--act2' value_type = int default_value = 0 class D123(object): def __str__(self): return "D123" class D1234(object): def __str__(self): return "D1234"
[ "inkerra@inkerra-desktop" ]
inkerra@inkerra-desktop
c2b5c2cf4c0e71318bb6cf2103ad9ca3738100bf
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2367/60691/272097.py
6d63b90625ec0cf2e51f1d19128bfb9aacde9d2b
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
271
py
n = int(input()) if n % 2 == 0: print(-1) else: for i in range(1, 20): l = [] for j in range(i): l.append('1') s = "".join(l) testnum = int(s) if testnum % n == 0: print(testnum) break
[ "1069583789@qq.com" ]
1069583789@qq.com
24ff0eaf61ebecc102e3769515330bb14c3f007d
63ebf4326a8485c62944e2fbd102c302dc02c0ad
/calculadorafiesta.py
457ed8c119287e582cc318ca8b896d82d5f3158d
[]
no_license
genesysrm/Python_DataScience
7aba9c2d32058e1d3cb285910d06ca3836c26f60
4fc2ea8bc63982bc9bc11611dc5bf28c27911f02
refs/heads/main
2023-01-22T15:25:42.667507
2020-11-19T14:52:18
2020-11-19T14:52:18
314,279,094
1
0
null
null
null
null
UTF-8
Python
false
false
1,031
py
class Festa: def _init_(self, c,s,d): self.comida = c self.suco = s self.deco = d def comida(self, qua): c = 25 * qua return c def suco(self, qua, saudavel): if(saudavel): s = (5 * qua) #suco = suco - (suco*0.05) else: s = (20 * qua) return s def decoracao(self, qua, diferenciada): if(diferenciada): valor = 50 + (10*qua) return valor else: valor = 30 + (7.5 * qua) return pessoas = int(input("Digite a quantidade de pessoas convidadas para a festa: ")) tipodeco = int(input("Que tipo de decoração deseja 1 Normal ou 2 Diferenciada? Por favor responda com o numero de sua escolha: ")) if tipodeco==2: dif = True else: dif = False tipodeco = int(input("Que tipo de bebida deseja 1 Saudavel ou 2 Alcolica? Por favor responda com o numero de sua escolha: ")) if tipodeco==21: saud = True else: saud = False f = Festa() total = f.total(pessoas,dif,saud) print("O
[ "terceiro-gmerchan@icatuseguros.com.br" ]
terceiro-gmerchan@icatuseguros.com.br
4d522ff9354206da526a83e3537226114e55b7d8
658707f12f02c057f3f7976ac020b07396376359
/img_recognize/cnn_handwrite.py
a43bddf8d9aeaa402028db26dd619e2adf706beb
[]
no_license
lwq666666/ar_ocr_nlp_web
8c42faf7cf3c66f1b21151be8702ea676130c280
b977ae89bb1b360dcc45b4dc67c2c88bb93b7e84
refs/heads/master
2023-01-10T23:42:57.278631
2020-03-25T12:15:15
2020-03-25T12:15:15
249,963,047
0
0
null
2023-01-04T14:41:38
2020-03-25T11:41:43
Vue
UTF-8
Python
false
false
12,099
py
import tensorflow as tf import os import tensorflow.contrib.slim as slim import random import numpy import cv2 import time tf.app.flags.DEFINE_string("mode", "test", "train or test") tf.app.flags.DEFINE_string("checkpoint", "img_recognize/checkpoint", "dir of checkpoint") tf.app.flags.DEFINE_string("train_dir", "/Users/liweiqiang/PycharmProjects/img_recognition/char_count/new_trn", "dir of training data") tf.app.flags.DEFINE_string("test_dir", "/Users/liweiqiang/PycharmProjects/img_recognition/char_count/new_tst", "dir of test data") tf.app.flags.DEFINE_string("test_image", "", "test image for pictest") tf.app.flags.DEFINE_string("logger_dir", "./logger", "dir of logger") tf.app.flags.DEFINE_integer("batch_size", 128, "size of batch") tf.app.flags.DEFINE_integer("img_size", 64, "size of resized images") tf.app.flags.DEFINE_string("char_dict", "img_recognize/char_dict", "path to character dict") tf.app.flags.DEFINE_bool("restore", False, "restore from previous checkpoint") tf.app.flags.DEFINE_integer("max_step", 10000, "maximum steps") tf.app.flags.DEFINE_string("test_pic", "test_16.jpg", "path to test picture") FLAGS = tf.app.flags.FLAGS # Read data from directory def get_image_path_and_labels(dir): img_path = [] for root, dir, files in os.walk(dir): img_path += [os.path.join(root, f) for f in files] # Shuffle the data to avoid overfit random.shuffle(img_path) # Because I created folders corresponding to each character, so the folder name is actual label labels = [int(name.split(os.sep)[len(name.split(os.sep)) - 2]) for name in img_path] # labels =[] # for name in img_path: # if '0'not in name.split(os.sep)[len(name.split(os.sep)) - 2]: # print(name) # print(img_path,labels) return img_path, labels def batch(dir, batch_size, prepocess=False): img_path, labels = get_image_path_and_labels(dir) # Transfer data into tensor so that it could be feed into network. img_tensor = tf.convert_to_tensor(img_path, dtype=tf.string) lb_tensor = tf.convert_to_tensor(labels, dtype=tf.int64) # Loading the entire dataset comes with extremely high cost on RAM, so slice it and read them batch by batch input_pipe = tf.train.slice_input_producer([img_tensor, lb_tensor]) # Read actual data and turn them to grey scale img = tf.read_file(input_pipe[0]) imgs = tf.image.convert_image_dtype(tf.image.decode_png(img, channels=1), tf.float32) # Randomly modify the images in order to avoid overfit. if prepocess: imgs = tf.image.random_contrast(imgs, 0.9, 1.1) # Resize original images to unified size. imgs = tf.image.resize_images(imgs, tf.constant([FLAGS.img_size, FLAGS.img_size], dtype=tf.int32)) # Read label lbs = input_pipe[1] # Get batch img_batch, lb_batch = tf.train.shuffle_batch([imgs, lbs], batch_size=batch_size, capacity=50000, min_after_dequeue=10000) return img_batch, lb_batch def cnn(): # (1-keep_prob) equals to dropout rate on fully-connected layers keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob') # Set up places for data and label, so that we can feed data into network later img = tf.placeholder(tf.float32, shape=[None, 64, 64, 1], name="img_batch") labels = tf.placeholder(tf.int64, shape=[None], name="label_batch") # Structure references to : http://yuhao.im/files/Zhang_CNNChar.pdf, # however I adjust a little bit due to limited computational resource. # Four convolutional layers with kernel size of [3,3], and ReLu as activation function conv1 = slim.conv2d(img, 64, [3, 3], 1, padding="SAME", scope="conv1") pool1 = slim.max_pool2d(conv1, [2, 2], [2, 2], padding="SAME") conv2 = slim.conv2d(pool1, 128, [3, 3], padding="SAME", scope="conv2") pool2 = slim.max_pool2d(conv2, [2, 2], [2, 2], padding="SAME") conv3 = slim.conv2d(pool2, 256, [3, 3], padding="SAME", scope="conv3") pool3 = slim.max_pool2d(conv3, [2, 2], [2, 2], padding="SAME") conv4 = slim.conv2d(pool3, 512, [3, 3], [2, 2], scope="conv4", padding="SAME") pool4 = slim.max_pool2d(conv4, [2, 2], [2, 2], padding="SAME") # Flat the feature map so that we can connect it to fully-connected layers flat = slim.flatten(pool4) # Two fully-connected layers with dropout rate as mentioned at the start # First layer used tanh() as activation function fcnet1 = slim.fully_connected(slim.dropout(flat, keep_prob=keep_prob), 1024, activation_fn=tf.nn.tanh, scope="fcnet1") fcnet2 = slim.fully_connected(slim.dropout(fcnet1, keep_prob=keep_prob), 142, activation_fn=None, scope="fcnet2") # loss function is defined as cross entropy on result of softmax function on last layer loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=fcnet2, labels=labels)) # compare result to actual label to get accuracy accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(fcnet2, 1), labels), tf.float32)) step = tf.get_variable("step", shape=[], initializer=tf.constant_initializer(0), trainable=False) # learning rate with exponential decay lrate = tf.train.exponential_decay(2e-4, step, decay_rate=0.97, decay_steps=2000, staircase=True) # Adam optimizer to decrease loss value optimizer = tf.train.AdamOptimizer(learning_rate=lrate).minimize(loss, global_step=step) prob_dist = tf.nn.softmax(fcnet2) val_top3, index_top3 = tf.nn.top_k(prob_dist, 3) # Write log into TensorBoard tf.summary.scalar("loss", loss) tf.summary.scalar("accuracy", accuracy) summary = tf.summary.merge_all() return {"img": img, "label": labels, "global_step": step, "optimizer": optimizer, "loss": loss, "accuracy": accuracy, "summary": summary, 'keep_prob': keep_prob, "val_top3": val_top3, "index_top3": index_top3 } def train(): with tf.Session() as sess: start = time.clock() print("Start reading data") # Get batch tensor of data trn_imgs, trn_labels = batch(FLAGS.train_dir, FLAGS.batch_size, prepocess=True) tst_imgs, tst_labels = batch(FLAGS.test_dir, FLAGS.batch_size) graph = cnn() # Preparation before training sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess, coord) saver = tf.train.Saver() if not os.path.isdir(FLAGS.logger_dir): os.mkdir(FLAGS.logger_dir) trn_summary = tf.summary.FileWriter(os.path.join(FLAGS.logger_dir, 'trn'), sess.graph) tst_summary = tf.summary.FileWriter(os.path.join(FLAGS.logger_dir, 'tst')) step = 0 # If received restore flag, train from last checkpoint if FLAGS.restore: # Get last checkpoint in checkpoint directory checkpoint = tf.train.latest_checkpoint(FLAGS.checkpoint) if checkpoint: # Restore data from checkpoint saver.restore(sess, checkpoint) step += int(checkpoint.split('-')[-1]) print("Train from checkpoint") print("Start training") while not coord.should_stop(): # Get actual data trn_img_batch, trn_label_batch = sess.run([trn_imgs, trn_labels]) # Prepare parameters for network graph_dict = {graph['img']: trn_img_batch, graph['label']: trn_label_batch, graph['keep_prob']: 0.8} # Feed and parameter into network opt, loss, summary, step = sess.run( [graph['optimizer'], graph['loss'], graph['summary'], graph['global_step']], feed_dict=graph_dict) trn_summary.add_summary(summary, step) print("# " + str(step) + " with loss " + str(loss)) if step > FLAGS.max_step: break # Evaluate current network based on test dataset if (step % 500 == 0) and (step >= 500): tst_img_batch, tst_label_batch = sess.run([tst_imgs, tst_labels]) graph_dict = {graph['img']: tst_img_batch, graph['label']: tst_label_batch, graph['keep_prob']: 1.0} accuracy, test_summary = sess.run([graph['accuracy'], graph['summary']], feed_dict=graph_dict) tst_summary.add_summary(test_summary, step) print("Accuracy: %.8f" % accuracy) # Save checkpoint if step % 1000 == 0: saver.save(sess, os.path.join(FLAGS.checkpoint, 'hccr'), global_step=graph['global_step']) elapsed = (time.clock() - start) # file = open('log.txt', 'w') # # # 遍历字典的元素,将每项元素的key和value分拆组成字符串,注意添加分隔符和换行符 # file.write(str(elapsed) +'\n'+str(accuracy)) # # # 注意关闭文件 # file.close() # coord.request_stop() coord.join(threads) saver.save(sess, os.path.join(FLAGS.checkpoint, 'hccr'), global_step=graph['global_step']) sess.close() return def test(path): # Read test picture and resize it, turn it to grey scale. tst_image = cv2.imread(path,cv2.IMREAD_GRAYSCALE) tst_image = cv2.resize(tst_image,(64, 64)) tst_image = numpy.asarray(tst_image) / 255.0 tst_image = tst_image.reshape([-1, 64, 64, 1]) # feed the test picture into network and estimate probability distribution with tf.Session() as sess: graph = cnn() saver = tf.train.Saver() saver.restore(sess=sess, save_path=tf.train.latest_checkpoint(FLAGS.checkpoint)) graph_dict = {graph['img']: tst_image, graph['keep_prob']: 1.0} val, index = sess.run([graph['val_top3'], graph['index_top3']], feed_dict=graph_dict) for i in range(3): print("Probability: %.5f"%val[0][i]+ " with label:"+str(fileToNumpy('img_recognize/char_dict.txt')[int(index[0][i])])) path=FLAGS.train_dir+"/" + '%0.5d' % index[0][0] # select one of the picture from the label with top 1 probability # for root,dir,files in os.walk(path): # for f in files: # img=cv2.imread(path+"/"+f) # enlarged=cv2.resize(img,(img.shape[1]*5,img.shape[0]*5)) # cv2.imshow("Top1",enlarged) # cv2.waitKey() # break # break return val, index #识别整个图片的接口,传入(-1,64,64)的nparray,以字符串形式输出图片中信息 def recongnize(img_list): # Read test picture and resize it, turn it to grey scale. # tst_image = cv2.imread(path,cv2.IMREAD_GRAYSCALE) # tst_image = cv2.resize(tst_image,(64, 64)) tst_image = numpy.asarray(img_list) / 255.0 tst_image = tst_image.reshape([-1, 64, 64, 1]) # feed the test picture into network and estimate probability distribution with tf.Session() as sess: graph = cnn() saver = tf.train.Saver() saver.restore(sess=sess, save_path=tf.train.latest_checkpoint(FLAGS.checkpoint)) graph_dict = {graph['img']: tst_image, graph['keep_prob']: 1.0} val, index = sess.run([graph['val_top3'], graph['index_top3']], feed_dict=graph_dict) str='' for i in range(len(index)): str+=fileToNumpy('img_recognize/char_dict.txt')[int(index[i][0])] return str def fileToNumpy(filename): file = open(filename) file_lines = file.readlines() labels = {} index = 0 for line in file_lines: line = line.strip() # 参数为空时,默认删除开头、结尾处空白符(包括'\n', '\r', '\t', ' ') formLine = line.split(' ') labels[index]=formLine[0] index += 1 return labels def main(_): if FLAGS.mode == "train": train() if FLAGS.mode == "test": test(FLAGS.test_pic) if __name__ == '__main__': tf.app.run()
[ "1261707134@qq.com" ]
1261707134@qq.com
5c035449207a17df07ce270686655074a7e4a56a
9fc768c541145c1996f2bdb8a5d62d523f24215f
/code/jPB371/ch07ok/dict_example.py
7360aeaf11d44b2e88719a52fc6d5556685ddb27
[]
no_license
jumbokh/pyclass
3b624101a8e43361458130047b87865852f72734
bf2d5bcca4fff87cb695c8cec17fa2b1bbdf2ce5
refs/heads/master
2022-12-25T12:15:38.262468
2020-09-26T09:08:46
2020-09-26T09:08:46
283,708,159
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
# -*- coding: utf-8 -*- dictStr = {'bird':'鳥', 'cat':'貓', 'dog':'狗', 'pig':'豬'} #新增wolf dictStr['wolf']="狼" #刪除pig dictStr.pop("pig") #列出dictStr所有的value print("dictStr目前的元素:") for v in dictStr.values(): print(v) #搜尋 print("搜尋dog==>"+dictStr.get("dog","不在dictStr"))
[ "jumbokh@gmail.com" ]
jumbokh@gmail.com
61575ab318d216749a261b7ee776b9197c0b61a1
49156df32b5be28514a5507c7bc26c2872fa7dfc
/second task/task2.py
f0f1f3d163ca0ffdf324644c3388247b50d035e5
[]
no_license
ahmedshaaban97/MRI-tasks
40123656e8bc0e8195f510b9b8a1428b31484407
e450951dfc44ef721e22b121fe52baf45aab269a
refs/heads/master
2020-04-22T07:40:26.446527
2019-06-17T23:51:17
2019-06-17T23:51:17
170,222,564
0
1
null
null
null
null
UTF-8
Python
false
false
9,998
py
import sys from PyQt5 import QtCore, QtWidgets , QtGui from PyQt5.QtWidgets import QMainWindow, QLabel, QGridLayout, QWidget , QApplication,QPushButton,QInputDialog,QSpinBox,QFileDialog,QProgressBar,QMessageBox,QGraphicsView,QSizePolicy,QComboBox from PyQt5.QtCore import QSize,pyqtSlot,QTimer,QThread,QRect from PyQt5.QtGui import QIcon, QPixmap from PIL import Image import numpy as np from numpy import array from PIL.ImageQt import ImageQt import time import threading from scipy.fftpack import ifft import cv2 import pyqtgraph as pg from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt class PlotCanvas(FigureCanvas): def __init__(self, parent=None, width=5, height=4, dpi=50, data = []): fig = Figure(figsize=(width, height), dpi=dpi) #self.axes = fig.add_subplot(111) FigureCanvas.__init__(self, fig) self.setParent(parent) self.data = data FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) self.plot() def plot(self): ax = self.figure.add_subplot(111) ax.plot(self.data, 'r-') self.draw() class Window(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("Image Converter") self.setGeometry(500,500,500,500) self.imgSize = 0 self.path = 'this is empyt pass' self.currentPhantom = [] self.currentImgArray = [] self.numOfPlots = 0 self.show = 1 self.imglabel = '' #self.label1 = QLabel(self) self.layout() def layout(self): #self.label() self.browse() #self.spinb = self.spinBox() self.sizeBox = self.imageSizeCombobox() print(type(self.sizeBox.currentText())) self.typeBox = self.imageTypeCombobox() print(self.typeBox.currentText()) self.showMaximized() def imageSizeCombobox(self): sizeBox = QComboBox(self) sizeBox.setObjectName(("comboBox")) sizeBox.setGeometry(QRect(5, 150, 100, 50)) sizeBox.addItem("128") sizeBox.addItem("256") sizeBox.addItem("512") return sizeBox def imageTypeCombobox(self): sizeBox = QComboBox(self) sizeBox.setObjectName(("comboBox")) sizeBox.setGeometry(QRect(5, 250, 100, 50)) sizeBox.addItem("T1") sizeBox.addItem("T2") sizeBox.addItem("ProtonDencity") sizeBox.addItem("PixelIntencity") return sizeBox # def label(self): # li = QLabel(self) # li.setText('Conversion Speed') # li.setGeometry(145,100,120,20) # #li.move(145,100) def label(self): li1 = QLabel(self) return li1 def label2(self): li2 = QLabel(self) return li2 def browse(self): btn = QPushButton("Select image",self) btn.setToolTip('This is an example button') btn.clicked.connect(self.on_click) btn.move(5,10) def spinBox(self): sbox = QSpinBox(self) sbox.setValue(1) sbox.move(255,100) sbox.setMaximum(64) return sbox def progressBar(self): progressBar = QProgressBar(self) progressBar.setGeometry(5,380,500,20) progressBar.setValue(0) return progressBar @pyqtSlot() def on_click(self): self.show = 0 name = QFileDialog() imgPath = name.getOpenFileName(self,'open file','','Image files (*.jpg *.png *.jpeg)') self.checkImage(imgPath[0]) def checkImage(self,path): self.show = 1 self.numOfPlots = 0 self.imgSize = self.sizeBox.currentText() self.imgType = self.typeBox.currentText() self.label1 = self.label() self.imglabel = self.label1 img = Image.open(path).convert('L') arrayImage = self.convertImageToArray(img) phantonArray = self.genrate_total_phantom(arrayImage) self.currentPhantom = phantonArray im = Image.open(path) width, height = im.size self.path = path #img = cv2.imread(path) while self.show == 1 : self.imgSize = self.sizeBox.currentText() self.imgType = self.typeBox.currentText() index = self.getPropertyIndex(self.imgType) indexedArray = self.conver3dTo2dArray(phantonArray,index) #print('this is index array', indexedArray) imgArray = Image.fromarray(indexedArray).convert('RGB') self.currentImgArray = np.array(imgArray) QApplication.processEvents() #print(type(img)) self.showArrayImage(self.label1,self.currentImgArray,200,200) QApplication.processEvents() def showArrayImage(self,label,img,x,y): #label = QLabel(self) img = Image.fromarray(img) qimage = ImageQt(img) pixmap = QPixmap.fromImage(qimage) label.setPixmap(pixmap) label.setGeometry(128,10,int(self.imgSize),int(self.imgSize)) label.mousePressEvent = self.getPixel label.show() #print('image is displayed') def clearLabel(self): print('clear called') self.label1.setVisible(False) def getPropertyIndex(self,imgType): if imgType == 'T1': return 0 elif imgType == 'T2': return 1 elif imgType == 'ProtonDencity': return 2 else: return 3 # def showArrayImage(self,label,img,x,y): # qimage = ImageQt(img) # pixmap = QPixmap.fromImage(qimage) # label.setPixmap(pixmap) # label.setGeometry(x,y,256,256) # label.mousePressEvent = self.getPixel # label.show() def convertImageToArray(self,img): arr = np.asarray(img, np.uint8) #print('this is image pixel function') return arr def getPixel (self, event): x = event.pos().x() y = event.pos().y() self.givePixelColor(y,x) self.showArrayImage(self.imglabel ,self.currentImgArray,200,200) t1,t2 = self.getPhantomPixelData(y,x) print(x,y) self.plot(t1,t2) def givePixelColor(self,row,colomn): self.currentImgArray[row][colomn][0] = 255 self.currentImgArray[row][colomn][1] = 0 self.currentImgArray[row][colomn][2] = 0 print(self.currentImgArray[row][colomn]) def getPhantomPixelData(self,row,col): t1 = self.currentPhantom[row][col][0] t2 = self.currentPhantom[row][col][1] return t1,t2 def conver3dTo2dArray(self,arr,index): arr2 = np.array(np.zeros([len(arr),len(arr[0])])) for i in range(len(arr2)): for j in range(len(arr2[0])): arr2[i][j] = arr[i][j][index] arr2N = np.uint8(arr2) return arr2N def plot(self,t1,t2): if(self.numOfPlots >4): return else: t1CurveData = np.exp(range(int(t1))) t2CurveData = np.exp(range(int(-1*t2))) m = PlotCanvas(self, width=4, height=4, data = t1CurveData) m.move(400,(10+self.numOfPlots * 200)) m.show() m2 = PlotCanvas(self, width=4, height=4, data = t2CurveData) m2.move(700,(10+self.numOfPlots * 200)) m2.show() self.numOfPlots = self.numOfPlots + 1 def genrate_total_phantom (self , phantom_array ): print('this is phantom array type ',phantom_array[0][0]) t1_array = np.ones((int(self.imgSize),int(self.imgSize))) t2_array = np.ones((int(self.imgSize),int(self.imgSize))) pd_array = np.ones((int(self.imgSize),int(self.imgSize))) for i in range (0 , int(self.imgSize)) : for j in range (0,int(self.imgSize)): if phantom_array[i][j]< int(self.imgSize) and phantom_array[i][j] >80 : t1_array[i][j]=int (phantom_array[i][j]*(.2)) t2_array[i][j]=256-t1_array[i][j] pd_array[i][j]=0 elif phantom_array[i][j]< 100 and phantom_array[i][j] >20 : t1_array[i][j]=int (phantom_array[i][j]*3) t2_array[i][j]=256-t1_array[i][j] pd_array[i][j]=100 else : t1_array[i][j]=60+(phantom_array[i][j]) t2_array[i][j]=40+(phantom_array[i][j]) pd_array[i][j]=200 QApplication.processEvents() QApplication.processEvents() #return phantom_array,t1_array,t2_array,pd_array phantomArray = self.convert2dArraysTo3d(phantom_array,t1_array,t2_array,pd_array) return phantomArray def convert2dArraysTo3d(self,pixelsArray,t1Array,t2Array,pdArray): phantomArray = np.array(np.zeros([int(self.imgSize),int(self.imgSize),4])) for i in range(int(self.imgSize)): for j in range(int(self.imgSize)): phantomArray[i][j][0] = t1Array[i][j] phantomArray[i][j][1] = t2Array[i][j] phantomArray[i][j][2] = pdArray[i][j] phantomArray[i][j][3] = pixelsArray[i][j] QApplication.processEvents() QApplication.processEvents() return phantomArray def main(): app = QApplication(sys.argv) window = Window() sys.exit(app.exec_()) main()
[ "ahmedshaaban97" ]
ahmedshaaban97
ef43030c0c8f4b27008999a73e61c4b81c8a4763
d06b776440822a7e7971ec2616ceb064cc8ff0ac
/core/api/routers.py
15925c6559bc244a29104dc0844743df8ef23aa8
[]
no_license
holdbar/electroq
db42533bd7daff97ac109b82a66c58b90d16cc5d
42a7e3565966b3315ab9814a171e549c3340a23b
refs/heads/master
2021-04-09T14:34:47.794392
2018-04-01T09:48:59
2018-04-01T09:48:59
125,653,680
0
2
null
2018-03-25T18:15:48
2018-03-17T17:34:12
Python
UTF-8
Python
false
false
180
py
from rest_framework.routers import DefaultRouter from core.api.viewsets import UserViewSet router = DefaultRouter() # registering viewsets router.register(r"user", UserViewSet)
[ "holdbarhet@gmail.com" ]
holdbarhet@gmail.com
270f1bcbb22967b643e8806b6c98d02f31a38f9b
481a4f156d97166d0f82e85a572137bc7d8ffbd2
/AWSLambdaSynchCalendar.py
98c528105e5d6195247dbce22f7616eceb02a032
[]
no_license
rajeshpednekar/flufcode
db28f9f01e0e443c8e3f5f898d978733151d429d
d49ae2e7a22b3282fb32b7f2548025787015ce77
refs/heads/master
2022-11-14T09:01:32.853879
2020-07-05T03:05:58
2020-07-05T03:05:58
262,886,503
0
0
null
null
null
null
UTF-8
Python
false
false
4,939
py
##################################################################### #### Lambda function: funcSynchCalendar #### Author: fluff code #### A boto3 python handler function #### This lambda function is triggered whenever there is a #### message in the SQL Queue. It reads the event messages as input ### from AWS SQS and then submits the messages to the #### remote api call at thedoctorproctor website. #### Subsequently the SQS message is deleted #### Most of the static environment variables are read using import 'os' #### SQS queue: git-calendar-sqs.fifo ##################################################################### import boto3 import requests import json import os ##################################################################### ## fn_auth_proctor : function to do the auth for AWS api call ##################################################################### def fn_auth_proctor ( login_url, sessiondata): response = requests.post(login_url, data = sessiondata) print("*"*30) print(response.content) print("*"*30) token = json.loads(response.content)['token'] headers = { 'Authorization' : 'Bearer ' + token } print("*"*30) print(headers) print("*"*30) return headers ##################################################################### ### fn_send_msg_api: function to send message through api to website ##################################################################### def fn_send_msg_api( url, payload, headers ): print("function fn_send_msg_api starts") print(headers) print(payload) response = requests.request("POST", url, headers=headers, data=payload) print('Response from thedoctorproctor website for api call: ') print(response.text.encode('utf8')) print("function fn_send_msg_api ends") #print(response) return 0 ##################################################################### ### lambda_handler : main lambda handler function ##################################################################### def lambda_handler(event, context): print("*"*30) print('Lambda handler function starts') print("*"*30) #url = "https://api.thedoctorproctor.com/api/organisations/1/ext-sessions" #login_url = "https://api.thedoctorproctor.com/api/auth/login" # standby instance url = "https://sbapi.thedoctorproctor.com/api/organisations/1/ext-sessions" login_url = "https://sbapi.thedoctorproctor.com/api/auth/login" #http://sbapp.thedoctorproctor.com/#/login sessiondata = { 'email' : 'test@gmail.com', 'password' : '1234566758' } s_aws_access_key_id = os.environ['aws_access_key_id'] s_aws_secret_access_key = os.environ['aws_secret_access_key'] # Create SQS client: #sqs = boto3.client('sqs',aws_access_key_id = 'XXXXXYUSUAKIA5XKNM3' , aws_secret_access_key = 'tughuydushTYUdTRM67868GHUYUtd7aDPkEQukIYfGDpn') sqs = boto3.client('sqs',aws_access_key_id = s_aws_access_key_id , aws_secret_access_key = s_awe_secret_access_key ) #queue_url = 'https://sqs.us-east-1.amazonaws.com/xxxxx/git-calendar-sqs.fifo' queue_url = os.environ['sqs_queue_url'] ## Authenticate function authheaders = fn_auth_proctor(login_url, sessiondata) nucount = len(event['Records']) print("no of SQS messages is:") print(nucount) if nucount > 0: #for message in messages['Messages']: for message in event['Records']: print(message['body']) messagebody=(message['body']) receipt_handle=(message['receiptHandle']) print(type(messagebody)) payload=json.loads(messagebody) print("new message payload is:") print(payload) #### call to api fn_send_msg_api( url, payload, authheaders ) ###delete the message response = sqs.delete_message( QueueUrl=queue_url, ReceiptHandle=receipt_handle ) print('Received and deleted message: %s' % payload) print(response) else: print('Queue is empty') print("*"*30) print('End of the Lambda handler function') print("*"*30) #break return 0
[ "noreply@github.com" ]
rajeshpednekar.noreply@github.com
0c10b24899012834b1ac521f5c9a3493e63f0a99
14ad7023d5440206f116f2c97db74d0b95c59b67
/findcountour.py
50dcbd94136c415d4b1339dd43eb6f2fc627e409
[]
no_license
selmandridi/BlackscreenDetector
69ffcea6b6a131ceadaadae340b6f596644a2f56
d9525118f3286a208b7a5f72bf7b4dec2878371a
refs/heads/master
2020-12-04T05:28:54.740490
2020-01-03T17:19:00
2020-01-03T17:19:00
231,632,510
0
0
null
null
null
null
UTF-8
Python
false
false
1,086
py
import cv2 import numpy as np import time import os import datetime import array def sizeFiltering(contours): y = 0 x = 0 w = 0 h = 0 filtredContours = [] heightmax = 200 widthmax = 200 widthMin = 100 heightMin = 100 for cnt in contours: rect = cv2.minAreaRect(cnt) #I have used min Area rect for better result width = rect[1][0] height = rect[1][1] if (width < widthmax) and (height < heightmax) and (width > widthMin) and (height > heightMin): filtredContours.append(cnt) return filtredContours, [y,x,h,w] vidcap = cv2.VideoCapture(0) ret,frame = vidcap.read() if ret: imgray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 110, 255, 0) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours, rectCountour = sizeFiltering(contours) cv2.drawContours(frame, contours, -1, (0,255,0), 3) print(contours) cv2.imshow('image',frame) cv2.waitKey(0) vidcap.release()
[ "selman.dridi@comelit.it" ]
selman.dridi@comelit.it
1e38c1f391c58cea34bcef59efc19ba38866231c
c452b7204d2f0817069874a57f3c8b0a0124b351
/main.py
54ce8a6880c3cb6d99cdf996945d5afa2cca80b3
[]
no_license
SunsetGolfer/ConvertCSVFileDateFormat
1710ab49b7ffbc7ecb8debbd688aab289adfab23
93bf7eae43cd64cc7b3ae9c6d3af42500fa7de98
refs/heads/master
2023-02-14T01:00:28.009468
2021-01-09T23:37:43
2021-01-09T23:37:43
328,267,122
0
0
null
null
null
null
UTF-8
Python
false
false
1,654
py
# This is a sample Python script. # Press ⌃R to execute it or replace it with your code. # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings. def print_hi(name): # Use a breakpoint in the code line below to debug your script. print(f'Hi, {name}') # Press ⌘F8 to toggle the breakpoint. # Press the green button in the gutter to run the script. if __name__ == '__main__': print_hi('PyCharm') # See PyCharm help at https://www.jetbrains.com/help/pycharm/ import csv import tkinter as tk from tkinter import filedialog root = tk.Tk() root.withdraw() file_path = filedialog.askopenfilename() print('Reading: ',file_path) def readmyfile(filename): dates = [] scores = [] with open(filename) as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: Subject.append(row[0]) Startdate.append(row[1]) Starttime.append(row[2]) Enddate.append(row[3]) Endtime.append(row[4]) Alldayevent.append(row[5]) Description.append(row[6]) Location.append(row[7]) Private.append(row[8]) return Subject, Startdate, Starttime, Enddate, Endtime, Alldayevent, Description, Location, Private print(Subject) print(Enddate) # Subject,Start date,Start time,End Date,End Time,All day Event,Description,Location,Private # Subject, Startdate, Starttime, Enddate, Endtime, Alldayevent, Description, Location, Private # Douglas Manfred Winni Udo ,08.06.2020,11:00:00,08.06.2020,13:00:00,FALSE,Douglas Manfred Winni Udo ,Borkstraße 17 - 48163 Münster,FALSE
[ "jweichelt@Jorgs-MacBook-Pro.local" ]
jweichelt@Jorgs-MacBook-Pro.local
d7568161d832b4180e4a39bd6746103eeafd6a9b
240e245fbed52b54956bcc1f28d5f6522e95a3b2
/factorial/loader/work/work_break.py
ed01c5f242a7233382c535792260e81a9f6b282d
[ "MIT" ]
permissive
hyper750/factorialhr
47b9a5741b1b297e4341cfeebf39236a1802467d
fe48f73c5dd5b1300347db56b8c1f4709c6c59ec
refs/heads/master
2022-08-11T16:35:30.355134
2021-04-06T07:18:48
2021-04-06T07:18:48
211,069,416
7
4
MIT
2021-04-06T07:18:49
2019-09-26T11:06:56
Python
UTF-8
Python
false
false
1,112
py
class WorkBreak: def __init__(self, start_hour: str, end_hour: str, minutes_variation: int): self.start_hour = start_hour self.end_hour = end_hour self.minutes_variation = minutes_variation def get_start_hour(self) -> str: """Get the start hour of the break :return: str eg: "10:30" """ return self.start_hour def get_end_hour(self) -> str: """Get the end hour of the break :return: str eg: "11:00" """ return self.end_hour def get_minutes_variation(self) -> int: """Randomly variate the hour of start and end Eg: - start_hour: "10:30" - end_hour: "11:00" - minutes_variation: 15 With a minimum of "10:15" - "10:45" and a max of "10:45" - "11:15" Possible outputs: · "10:35" - "11:05" · "10:40" - "11:10" ... :return: int eg: 15 """ return self.minutes_variation def __repr__(self) -> str: return f'{self.get_start_hour()} - {self.get_end_hour()} ~{self.get_minutes_variation()}m'
[ "raulmarquespalmer_150@hotmail.com" ]
raulmarquespalmer_150@hotmail.com
5d65c0cba54693d041f010966fda9b671c8d2e76
2d9e1cb8e1877b3fe1725a202649136ce5f7bd1e
/helllo/migrations/0001_initial.py
610671ef02bf7ed85b828f1a3ac8f31d26b90519
[]
no_license
soobinlee1713/apiproject
7a62a993beabbc4da63c93a51c341d824a526b79
15c9ca1318f5c20865ef94c400fc0daec7c9a0c8
refs/heads/master
2020-08-31T16:32:31.756580
2019-10-31T09:55:16
2019-10-31T09:55:16
218,733,500
0
0
null
null
null
null
UTF-8
Python
false
false
822
py
# Generated by Django 2.2.3 on 2019-10-31 06:51 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Essay', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=30)), ('body', models.TextField()), ('author', models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "noreply@github.com" ]
soobinlee1713.noreply@github.com
4235979874e5ac83d7a5b5e6c24d6cc982bbab4e
8846b8c64aa97a8abd0940e6ed3a527286e3009b
/02_RPS/action.py
73817f9cc82c5489051ebe340da739ce2ff10e17
[]
no_license
stianbm/tdt4113
cfc0e514a4dd926975b533c5b41c5678032bf278
ce84dc221e1cf938dc931c622dbc1cb5ecfa55f6
refs/heads/master
2020-07-09T13:48:31.935715
2019-09-23T13:45:14
2019-09-23T13:45:14
203,986,941
0
0
null
null
null
null
UTF-8
Python
false
false
902
py
"""Contains the class for possible actions""" class Action: """Class for an action that the different players can perform""" ROCK = "ROCK" PAPER = "PAPER" SCISSORS = "SCISSORS" action_types = [ROCK, PAPER, SCISSORS] def __init__(self, action_type): if action_type in self.action_types: self.action_type = action_type else: raise Exception( 'action_type {} is not in action_types'.format(action_type)) def __lt__(self, other): if self.action_type == self.ROCK: if other.action_type == self.PAPER: return True elif self.action_type == self.PAPER: if other.action_type == self.SCISSORS: return True elif self.action_type == self.SCISSORS: if other.action_type == self.ROCK: return True return False
[ "stian.malmanger@gmail.com" ]
stian.malmanger@gmail.com
322a61c28286dc7c947a815b8b30a972a7d41373
671022d37e94aa53b85094b4084ad7afd31132c9
/website/shortcuts.py
878442a3100a808b9fdc0253e01357b496376e5f
[ "MIT" ]
permissive
gmferise/tree-model-demo
b1aa6724571425573cd5884503020c60272fb0d4
6305e033c1683651ddbfb45d9987c4f6461efdd0
refs/heads/main
2023-08-15T08:18:31.271625
2021-10-07T14:35:30
2021-10-07T14:35:30
414,634,796
0
0
null
null
null
null
UTF-8
Python
false
false
971
py
from django.shortcuts import ( render as original_render, redirect, resolve_url, HttpResponseRedirect, ) def render(request, template, context=None, content_type=None, status=None, using=None): """ Render with some automatically added context variables """ defaults = { 'request': request, } if request.user.is_authenticated: defaults['user'] = request.user return original_render( request, template, { **defaults, **context } if context else defaults, content_type, status, using ) def redirect_back(request): """ Return a redirect to the previous page """ try: return redirect(request.headers['Referer']) except KeyError: return redirect('home') def redirect_hash(to, hash, *args, **kwargs): """ Return a redirect to the location with an added hash """ return HttpResponseRedirect(f'{resolve_url(to, *args, **kwargs)}#{hash}')
[ "gmferise@gmail.com" ]
gmferise@gmail.com
865269fec11f88e22a6a9fe77818422add57c727
1b85d130cca2334bde6135c27c66491f1225be5c
/models/models.py
a62bf5e7db1d3357ff8dbb2801274ef71c2948b5
[ "Apache-2.0" ]
permissive
ksh/gpitraining
a1120d2aecd3089594bf0862dccf2b26fc509aed
1873356c3eddb9c082ef67fc5452676b603cfa02
refs/heads/master
2021-01-19T10:23:00.035891
2013-07-03T13:05:35
2013-07-03T13:05:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,453
py
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Core data model classes.""" __author__ = 'Pavel Simakov (psimakov@google.com)' import appengine_config from config import ConfigProperty from counters import PerfCounter from entities import BaseEntity from google.appengine.api import memcache from google.appengine.api import users from google.appengine.ext import db # The default amount of time to cache the items for in memcache. DEFAULT_CACHE_TTL_SECS = 60 * 5 # Global memcache controls. CAN_USE_MEMCACHE = ConfigProperty( 'gcb_can_use_memcache', bool, ( 'Whether or not to cache various objects in memcache. For production ' 'this value should be on to enable maximum performance. For ' 'development this value should be off so you can see your changes to ' 'course content instantaneously.'), appengine_config.PRODUCTION_MODE) # performance counters CACHE_PUT = PerfCounter( 'gcb-models-cache-put', 'A number of times an object was put into memcache.') CACHE_HIT = PerfCounter( 'gcb-models-cache-hit', 'A number of times an object was found in memcache.') CACHE_MISS = PerfCounter( 'gcb-models-cache-miss', 'A number of times an object was not found in memcache.') CACHE_DELETE = PerfCounter( 'gcb-models-cache-delete', 'A number of times an object was deleted from memcache.') class MemcacheManager(object): """Class that consolidates all memcache operations.""" @classmethod def get(cls, key): """Gets an item from memcache if memcache is enabled.""" if not CAN_USE_MEMCACHE.value: return None value = memcache.get(key) if value: CACHE_HIT.inc() else: CACHE_MISS.inc() return value @classmethod def set(cls, key, value, ttl=DEFAULT_CACHE_TTL_SECS): """Sets an item in memcache if memcache is enabled.""" if CAN_USE_MEMCACHE.value: CACHE_PUT.inc() memcache.set(key, value, ttl) @classmethod def delete(cls, key): """Deletes an item from memcache if memcache is enabled.""" if CAN_USE_MEMCACHE.value: CACHE_DELETE.inc() memcache.delete(key) class Student(BaseEntity): """Student profile.""" enrolled_on = db.DateTimeProperty(auto_now_add=True, indexed=True) user_id = db.StringProperty(indexed=False) name = db.StringProperty(indexed=False) is_enrolled = db.BooleanProperty(indexed=False) # Each of the following is a string representation of a JSON dict. scores = db.TextProperty(indexed=False) def put(self): """Do the normal put() and also add the object to memcache.""" result = super(Student, self).put() MemcacheManager.set(self.key().name(), self) return result def delete(self): """Do the normal delete() and also remove the object from memcache.""" super(Student, self).delete() MemcacheManager.delete(self.key().name()) @classmethod def get_by_email(cls, email): return Student.get_by_key_name(email.encode('utf8')) @classmethod def get_enrolled_student_by_email(cls, email): student = MemcacheManager.get(email) valid = ValidStudent.get_valid(email) if not student: student = Student.get_by_email(email) MemcacheManager.set(email, student) if student and student.is_enrolled and valid: return student else: return None @classmethod def rename_current(cls, new_name): """Gives student a new name.""" user = users.get_current_user() if not user: raise Exception('No current user.') if new_name: student = Student.get_by_email(user.email()) student.name = new_name student.put() @classmethod def set_enrollment_status_for_current(cls, is_enrolled): """Changes student enrollment status.""" user = users.get_current_user() if not user: raise Exception('No current user.') student = Student.get_by_email(user.email()) student.is_enrolled = is_enrolled student.put() # list of google users who can attend this course class ValidStudent(BaseEntity): id = db.IntegerProperty() profile = db.StringProperty() # email = db.StringProperty() @classmethod def get_valid(cls, email): em = email.lower() return ValidStudent.get_by_key_name(em.encode('utf8')) class Profile(BaseEntity): name = db.StringProperty() # string representation of a JSON dict. auth = db.TextProperty(indexed=False) class EventEntity(BaseEntity): """Generic events. Each event has a 'source' that defines a place in a code where the event was recorded. Each event has a 'user_id' to represent an actor who triggered the event. The event 'data' is a JSON object, the format of which is defined elsewhere and depends on the type of the event. """ recorded_on = db.DateTimeProperty(auto_now_add=True, indexed=True) source = db.StringProperty(indexed=False) user_id = db.StringProperty(indexed=False) # Each of the following is a string representation of a JSON dict. data = db.TextProperty(indexed=False) @classmethod def record(cls, source, user, data): """Records new event into a datastore.""" event = EventEntity() event.source = source event.user_id = user.user_id() event.data = data event.put() class StudentAnswersEntity(BaseEntity): """Student answers to the assessments.""" updated_on = db.DateTimeProperty(indexed=True) # Each of the following is a string representation of a JSON dict. data = db.TextProperty(indexed=False) # @classmethod # def get_by_key(cls,key): # return StudentAnswers.get_by_key(key.Name)
[ "carlos.c.saraiva@gmail.com" ]
carlos.c.saraiva@gmail.com
53a6dd1de601d8b9357c3613cb0a1c93f4bddf8e
daec47a34daebac2c00fe70f1dfa550dad6e0e9a
/0x0B-python-input_output/2-read_lines.py
e369be8069e6a4d7f1291aea84088fb783b25d0a
[]
no_license
dbravo0/holbertonschool-higher_level_programming
70816f575279d08720f3c480797f0ce7ca3bdd40
99d98f42c1f53991aa49ed262faa2b49f5203151
refs/heads/master
2020-09-29T04:40:11.829269
2020-09-25T00:32:21
2020-09-25T00:32:21
207,944,349
0
0
null
null
null
null
UTF-8
Python
false
false
244
py
#!/usr/bin/python3 def read_lines(filename="", nb_lines=0): with open(filename, encoding="utf-8") as f: if nb_lines <= 0: print(f.read(), end="") for i in range(nb_lines): print(f.readline(), end="")
[ "stevenbravobel@gmail.com" ]
stevenbravobel@gmail.com