blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
228c37ece0125c92fb794abdbe15e5d3e7549659
fcbdf75b7ed7a07eddbbf76f4f372ce86b063dff
/pywal/post-wal-hook.py
5d7f40d53fab1f9e6d4625d07172ed89ca20293c
[]
no_license
jcpetkovich/etc
b23cdfc0d09e0e6c58331988facf33ecebdec8c9
849c6821c3e15f0ffdab11f846f7cf16366ffb8f
refs/heads/master
2021-04-09T17:50:12.743242
2019-05-19T13:48:55
2019-05-19T13:48:55
2,250,102
1
0
null
null
null
null
UTF-8
Python
false
false
713
py
#!/usr/bin/env python import os import pywal import subprocess wallpaper = pywal.wallpaper.get() colours = pywal.colors.get(wallpaper) homedir = os.path.expanduser("~") template = os.path.join( homedir, "etc", "pywal", "stresources" ) with open(template, "r") as f: template = f.read() template = template.format( foreground = colours["special"]["foreground"], background = colours["special"]["background"], cursor = colours["special"]["cursor"] ) stresources = os.path.join(homedir, ".cache/wal/stresources") with open(stresources, "w") as f: f.write(template) pywal.reload.xrdb(stresources) subprocess.check_call(os.path.join(homedir, ".config", "bspwm", "theme"))
[ "jcpetkovich@gmail.com" ]
jcpetkovich@gmail.com
ec28931ea5a08543eec3a1e6c60e61002578a4b5
f375f786dc428aaff33ee03d119fc12206d64090
/sprd/vowifi/tmtc_ut/sample/selecttest.py
21c876317f721078a05a11dabff09e389c9a2e83
[ "MIT" ]
permissive
deevarvar/myLab
1b77773d5bfa334ee0331cf1926ebbb141c82984
7a5019f5f7fc11e173d350e6e2a7d2c80504782d
refs/heads/master
2021-04-15T15:39:39.248990
2020-02-12T13:18:53
2020-02-12T13:18:53
21,227,445
0
3
MIT
2019-12-19T09:47:29
2014-06-26T03:58:19
Python
UTF-8
Python
false
false
1,195
py
#-*- coding=utf-8 -*- #author: zhihua.ye@spreadtrum.com import os import select, sys, subprocess import shlex import time netstat="netstat -antpu" vmstat = subprocess.Popen(shlex.split(netstat), shell=True, bufsize=1024, stdout=subprocess.PIPE) vmstat_pipe = vmstat.stdout iostat_pipe = subprocess.Popen('top', shell=True, bufsize=1024, stdout=subprocess.PIPE).stdout pipe_dict = {vmstat_pipe.fileno():vmstat_pipe, iostat_pipe.fileno():iostat_pipe} p = select.poll() p.register(vmstat_pipe, select.POLLIN|select.POLLERR|select.POLLHUP) p.register(iostat_pipe, select.POLLIN|select.POLLERR|select.POLLHUP) while 1: result = p.poll(5000) if len(result) != 0: for m in result: # Polls the set of registered file descriptors, and returns a possibly-empty list containing (fd, event) if m[1] & select.POLLHUP and m[0] == iostat_pipe.fileno(): print 'Get HUPUP from pipe', m[0] exit() if m[1] & select.POLLIN: #print "Get", pipe_dict[m[0]].readline(), "from pipe", m[0] print "Get", pipe_dict[m[0]].readline(), "from pipe", m[0]
[ "zhihua.ye@spreadtrum.com" ]
zhihua.ye@spreadtrum.com
bf9588ee2a4af4d9357a51e13ab14a30f1f6561b
fe6775ca8c5b42710785e3a923974ae079f92c8f
/剑指offer/剑指 Offer 34. 二叉树中和为某一值的路径.py
d2c0d8e5407fb27e278426b603c91c3daad77a31
[]
no_license
AiZhanghan/Leetcode
41bda6676fa1a25fa19e393553c1148ed51fdf72
101bce2fac8b188a4eb2f5e017293d21ad0ecb21
refs/heads/master
2021-06-28T10:48:07.865968
2020-11-20T09:45:15
2020-11-20T09:45:15
188,155,059
0
0
null
null
null
null
UTF-8
Python
false
false
902
py
# Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def pathSum(self, root, target): """ Args: root: TreeNode target: int Return: list[list[int]] """ self.res = [] self.dfs(root, [], target) return self.res def dfs(self, root, path, target): """ Args: root: TreeNode path: list[int] target: int """ if not root: return path.append(root.val) target -= root.val if target == 0 and not root.left and not root.right: self.res.append(path[:]) self.dfs(root.left, path, target) self.dfs(root.right, path, target) path.pop()
[ "35103759+AiZhanghan@users.noreply.github.com" ]
35103759+AiZhanghan@users.noreply.github.com
3d96ef785703ba706cef3debfff21cb923ef6a21
8aa473c740acae28c2f2392208335f7463cedb70
/scripts/new_summary.py
8ca66c2022577f20430c02d6e822b365db3be5cc
[]
no_license
nikvaessen/deep-learning-papers
74ad10c687421561df84e74e451bf3c5633d60f0
0892e053fb30d8e9f90bbcbea2fef4af6028db4a
refs/heads/master
2020-12-11T10:52:15.966968
2020-01-23T07:46:47
2020-01-23T07:46:47
233,828,831
1
0
null
null
null
null
UTF-8
Python
false
false
2,405
py
################################################################################ # This script will ask the user for some information regarding the soon-to-be # read paper before generating the starting point for the summary according to # a summary template. # # Usage: python new_summary.py # # Author: Nik Vaessen ################################################################################ import os import re import datetime import json from pathlib import Path ################################################################################ # Implement functionality of script title_template_str = "---title---" estimated_minutes_template_str = "---time---" url_template_str = "---url---" date_template_str = "---date---" topics_template_str = "---topic---" meta_json_template_str = "---json---" def main(): # set working directory to root of path script_path = Path(os.path.abspath(__file__)) root_dir = script_path.parent.parent.as_posix() os.chdir(root_dir) # Query essential information for creating new summary document title = input("What is the title of the article?: ") filename = input("What should the name of the summary markdown file be?: ") url = input("What is the URL of of the article?: ") estimated_minutes = input("How many minutes do you expect to read this paper?: ") topics = input("Give a comma-separated list of covered topic(s): ") date = datetime.datetime.now().strftime("%Y-%m-%d") meta_obj = json.dumps({ "title": title, "url": url, "topics": topics, "date": date, "estimated_minutes": estimated_minutes }) # Insert the information into the template file file = Path("summary_template.md").read_text() file = re.sub(title_template_str, title, file) file = re.sub(estimated_minutes_template_str, estimated_minutes, file) file = re.sub(url_template_str, url, file) file = re.sub(date_template_str, date, file) file = re.sub(topics_template_str, topics, file) file = re.sub(meta_json_template_str, meta_obj, file) # Create the new summary file summaries_dir = os.path.join(root_dir, "summaries") if not os.path.exists(summaries_dir): os.mkdir(summaries_dir) new_fn = os.path.join(summaries_dir, f"{filename}.md") with open(new_fn, 'w') as f: f.write(file) if __name__ == '__main__': main()
[ "nikvaes@gmail.com" ]
nikvaes@gmail.com
137bfd132fed47b27d3068a21b99a6a95fa99caa
ab25d838bd9904d6fb7eb6d5259d30bab63f4ec5
/python scripts/temp_meas.py
5c0aeab89d07484341f1d0fa052cf70937ebe3ce
[]
no_license
crilleman/sensors_rust_rtic
adc83b09f7998e4934db0547476421e0efd68e9d
47012d7e26b735de8a28ea32ffecffaa440f4f9c
refs/heads/main
2023-05-02T08:31:46.824640
2021-05-24T10:00:22
2021-05-24T10:00:22
370,303,142
0
0
null
null
null
null
UTF-8
Python
false
false
1,864
py
import matplotlib.pyplot as plt import matplotlib.animation as animation import serial import datetime # initialize serial port ser = serial.Serial() ser.port = '/dev/ttyACM0' ser.baudrate = 115200 ser.timeout = 100 # specify timeout when using readline() ser.open() ser.flush() if ser.is_open == True: print("\nAll right, serial port now open. Configuration:\n") print(ser, "\n") # print serial parameters else: exit(1) t_delta1 = [] t_delta2 = [] t_delta1.append(datetime.datetime.now()) # Time difference for the last 100 readings t_delta2.append(datetime.datetime.now()) # Time difference for the last 100 readings t_flag = 0 # Parameters x_len = 5000 # Number of points to display y_range = [0, 30] # Range of possible Y values to display # Create figure for plotting fig = plt.figure() ax = fig.add_subplot(1, 1, 1) xs = list(range(0, x_len)) ys = [0] * x_len ax.set_ylim(y_range) # Initialize communication with TMP102 #tmp102.init() # Create a blank line. We will update the line in animate line, = ax.plot(xs, ys) # Add labels plt.title('Temperature over Time') plt.xlabel('Samples') plt.ylabel('Temperature (°C)') # This function is called periodically from FuncAnimation def animate(i, ys,): # Read temperature (Celsius) from TMP102 #temp_c = round(tmp102.read_temp(), 2) ser_bytes = ser.readline() #print(ser_bytes) decoded_bytes = float(ser_bytes[0:len(ser_bytes)].decode("utf-8")) #print(decoded_bytes) #decoded_bytes = 11; # Add y to list ys.append(decoded_bytes) # Limit y list to set number of items ys = ys[-x_len:] # Update line with new Y values line.set_ydata(ys) return line, # Set up plot to call animate() function periodically ani = animation.FuncAnimation(fig, animate, fargs=(ys, ), interval=50, blit=True) plt.show()
[ "crille.nilsson98@outlook.com" ]
crille.nilsson98@outlook.com
8c95ca238969c6cc4e144442f02d17a785ad82f5
d668209e9951d249020765c011a836f193004c01
/tools/pnnx/tests/test_nn_Dropout3d.py
4e6564745ef606264205fa1908bb385bd9700f5b
[ "BSD-3-Clause", "Zlib", "BSD-2-Clause" ]
permissive
Tencent/ncnn
d8371746c00439304c279041647362a723330a79
14b000d2b739bd0f169a9ccfeb042da06fa0a84a
refs/heads/master
2023-08-31T14:04:36.635201
2023-08-31T04:19:23
2023-08-31T04:19:23
95,879,426
18,818
4,491
NOASSERTION
2023-09-14T15:44:56
2017-06-30T10:55:37
C++
UTF-8
Python
false
false
1,694
py
# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.dropout_0 = nn.Dropout3d() self.dropout_1 = nn.Dropout3d(p=0.7) def forward(self, x, y): x = self.dropout_0(x) y = self.dropout_1(y) return x, y def test(): net = Model() net.eval() torch.manual_seed(0) x = torch.rand(1, 12, 6, 8, 16) y = torch.rand(1, 3, 4, 5, 6) a0, a1 = net(x, y) # export torchscript mod = torch.jit.trace(net, (x, y)) mod.save("test_nn_Dropout3d.pt") # torchscript to pnnx import os os.system("../src/pnnx test_nn_Dropout3d.pt inputshape=[1,12,6,8,16],[1,3,4,5,6]") # pnnx inference import test_nn_Dropout3d_pnnx b0, b1 = test_nn_Dropout3d_pnnx.test_inference() return torch.equal(a0, b0) and torch.equal(a1, b1) if __name__ == "__main__": if test(): exit(0) else: exit(1)
[ "noreply@github.com" ]
Tencent.noreply@github.com
1180029814716f39bfe32a649fda8713b18156e3
310f39f99a975bb30fe7ec0231fe1ee75e96bb00
/Insertion_Sort/Insertion_Sort_Nested_ForLoop.py
e3eb2d3a8fbd7b84790c4c54fc95281fe7af5325
[]
no_license
saurabhchris1/Algorithm-and-Data-Structure-Python
8ffc8b52b112f741758f6a5965c8c69cb2172745
152a217bb2c9f06cd1522516d3b9613d3dd07b57
refs/heads/master
2020-08-23T11:35:09.410942
2019-12-28T06:27:14
2019-12-28T06:27:14
216,606,904
0
0
null
null
null
null
UTF-8
Python
false
false
530
py
# Insertion sort is a simple sorting algorithm that works the way # we sort playing cards in our hands def insertion_sort(arr): for i in range(1, len(arr)): key = arr[i] for j in range(i - 1, -1, -1): if key < arr[j]: arr[j + 1] = arr[j] arr[j] = key else: break return arr if __name__ == '__main__': num = [2, 11, 6, 4, 7, 8] sorted_arr = insertion_sort(num) print ("The sorted array is : " + str(sorted_arr))
[ "saurabhchris1@gmail.com" ]
saurabhchris1@gmail.com
18eb874b1c5193fb3f259bf045d9037e84ec371f
3b8f3c7e9b4dde71f96a4b98566937d0d1a912d3
/part3/NYT/Code/stemming.py
4c96b5ac1eafdf32ea33af83df6f45fce596e3ff
[]
no_license
vijayjag-repo/Big-Data-Analysis
3951261f04943b20e550829a70eba454d41dbe36
273047cb42d2204883b4c721cd649987f0370d31
refs/heads/master
2020-06-17T09:00:53.278323
2019-07-08T19:16:33
2019-07-08T19:16:33
195,871,633
0
0
null
null
null
null
UTF-8
Python
false
false
1,508
py
import nltk import csv import re import stemming from nltk.corpus import stopwords,wordnet from nltk.stem import PorterStemmer, WordNetLemmatizer from nltk.tokenize import word_tokenize def main(): stop_words = stopwords.words('english') + ['advertisement','support'] print(stop_words) #stop_words.append('said') #stop_words.append('would') #stop_words.append('s') #raise NotImplementedError ps = PorterStemmer() wnl = WordNetLemmatizer() for value in range(1,101): text = "" with open("./NHL/NHL_File_" + str(value)+ ".txt",'r') as f: print("Running") for line in f: #print(para) #para = ["runner","running","run"] line = line.lower() line = re.sub(r"[^A-Za-z]+",' ',line) word_tokens = word_tokenize(line) #word_tokens = ["runner","running","run"] filtered_sentence = [] stemmed_words = "" for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) for w in filtered_sentence: if w.endswith('e') or w.endswith('s') or w.endswith('y') or w.endswith('l'): #stemmed_words.append(w +' : '+wnl.lemmatize(w)) stemmed_words = stemmed_words + wnl.lemmatize(w) + " " else: #stemmed_words.append(w+' : '+ps.stem(w)) stemmed_words = stemmed_words + ps.stem(w) + " " text = text + stemmed_words #print(text) text_file = open("./NHL_STEM/NHL_STEM_" +str(value) +".txt", "w") text_file.write(text) text_file.close() #raise NotImplementedError if __name__ == "__main__": main()
[ "vijayjag@Vijays-MacBook-Pro.local" ]
vijayjag@Vijays-MacBook-Pro.local
68c7b4afa78595c8214c5f807fe0d4ac67aa3bdf
ce772fdcd3a84a9c00667051f008a3e0a7a62135
/voice.py
f1a3bb834a79e86928a7074ec7eb9010130a5ef4
[]
no_license
mugeshk97/generative-chatbot
d8e3bd3cc22a8c8e9e9a3b39896959ffd612a0ce
d52f17c88b6471dcbd1937258ceed127f768db21
refs/heads/master
2022-12-07T10:12:59.535612
2020-08-28T09:17:53
2020-08-28T09:17:53
291,003,359
0
0
null
null
null
null
UTF-8
Python
false
false
922
py
import speech_recognition as sr import os import playsound import pyttsx3 from gtts import gTTS r = sr.Recognizer() def get_audio(): with sr.Microphone(sample_rate=48000, chunk_size=2048) as source: r.adjust_for_ambient_noise(source) playsound.playsound(f'Asset/Audio/start_sound.mp3') audio = r.listen(source) try: text = r.recognize_google(audio) except sr.UnknownValueError: print("Google Speech Recognition could not understand audio") except sr.RequestError as e: print("Could not request results from Google Speech Recognition service; {0}".format(e)) return text def put_audio(decoded_translation): engine = pyttsx3.init() engine.setProperty('rate', 120) voices = engine.getProperty('voices') engine.setProperty('voice', voices[0].id) engine.say(decoded_translation) return engine.runAndWait()
[ "noreply@github.com" ]
mugeshk97.noreply@github.com
e8f1cc28656377cae6863757ccfa1b6b8e74f65f
5384b403a64c51c658d0b1f93d1998ec41857bd2
/python/DES/HW4.py
57517fe19077d2562814fd3d61862384dfe3b31b
[]
no_license
BryanColeman/Projects
741850b9c996c2ea9cda208b0960fd4dd418080b
0ead1eaaafdd7504f52a68479fe4285cd95d958c
refs/heads/master
2021-01-01T07:19:09.523771
2020-05-05T14:36:53
2020-05-05T14:36:53
239,166,023
0
0
null
null
null
null
UTF-8
Python
false
false
6,221
py
''' Bryan Coleman BJC18BV The program in this file is the individual work of Bryan Coleman ''' from random import seed,randint from datetime import datetime import string ''' All the boxes that we will need to permute values ''' shift = [1,1,2,2,2,2,2,2, 1,2,2,2,2,2,2,1] PC = [14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32] initial_perm = [58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7] expand = [32, 1 , 2 , 3 , 4 , 5 , 4 , 5, 6 , 7 , 8 , 9 , 8 , 9 , 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 ] sbox = [['1110','0100','1101','0001','0010','1111','1011','1000','0011','1010','0110','1100','0101','1001','0000','0111'], ['0000','1111','0111','0100','1110','0010','1101','0001','1010','0110','1100','1011','1001','0101','0011','1000'], ['0100','0001','1110','1000','1101','0110','0010','1011','1111','1100','1001','0111','0011','1010','0101','0000'], ['1111','1100','1000','0010','0100','1001','0001','0111','0101','1011','0011','1110','1010','0000','0110','1101']] inter_perm = [16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25] final_perm = [40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25] def split_string_and_make_binary(plain_text): ''' split the text into lengths of 8 if the last string is not of length 8 note that then format using 08b, which makes give it the format 00000000 for 0 then if we had a length of less then 8 for the last string buff with zeros :params: plain_text: string that we are breaking up return: binary_list:list of 64 bit binary numbers ''' splits = len(plain_text) // 8 extra = len(plain_text) % 8 split_list = [plain_text[i*8:(i+1)*8] for i in range(splits)] if extra > 0: split_list.append(plain_text[splits*8:]) binary_list = [(''.join(format(ord(c), '08b') for c in i)) for i in split_list] if extra > 0: temp = '' for _ in range(8 - extra): temp = temp + '00000000' temp = temp + binary_list[-1] binary_list[-1] = temp return binary_list def encrypt(plain_text, key): ''' take in a message and encrypt it :params: plain_text: message we want to encrypt key: key that we will use for encrypt and decrypt, random for each string :return: cipher_text: ciphered text ''' split_list = split_string_and_make_binary(plain_text) cipher_text = '' for i in split_list: current = DES(i,key) for j in range(8): temp = current[j*8:j*8+8] cipher_text = cipher_text + chr(int(temp,2)) return cipher_text def decrypt(cipher_text, key): ''' take in a ciphered message and decrypt it :params: cipher_text: message we want to decrypt key: key that we will use for encrypt and decrypt, random for each string :return: plain_text: decrypted message ''' split_list = split_string_and_make_binary(cipher_text) plain_text = '' for i in split_list: current = DES(i,key) for j in range(8): temp = current[j*8:j*8+8] plain_text = plain_text + chr(int(temp,2)) return plain_text def DES(number, key): ''' :params: number: a 64 bit binary number that represents either a plain_text or ciphered_text key: key that we will use for encrypt and decrypt, random for each string :return: ''' first_perm = '' for i in range(64): first_perm = first_perm + number[initial_perm[i] - 1] left = first_perm[:32] right = first_perm[32:] for i in range(16): key = key[shift[i]::] + key[:shift[i]:] bit_key = '' for j in range(48): bit_key = bit_key + key[PC[j] - 1] expand_right = '' for j in range(48): expand_right = expand_right + right[expand[j] - 1] xor = int(expand_right,2) ^ int(bit_key,2) right_xor_key = '{0:0{1}b}'.format(xor,len(expand_right)) collapse_right = '' for j in range(8): temp = right_xor_key[j*6:j*6+6] find_row = temp[0] + temp[-1] row = int(find_row, 2) find_col = temp[1:5] col = int(find_col, 2) res = sbox[row][col] collapse_right = collapse_right + res permute_right = '' for j in range(32): permute_right = permute_right + collapse_right[inter_perm[j] - 1] xor = int(left,2) ^ int(right,2) result = '{0:0{1}b}'.format(xor,len(left)) left = result if i != 15: left,right = right,left bring_back = left + right last_perm = '' for i in range(64): last_perm = last_perm + bring_back[final_perm[i] - 1] return last_perm def main(): print('DES Implementation:') plain_text = input('Enter text to encrypt (\"Exit\" to quit): ') while(plain_text.lower() != 'exit'): key = [str(randint(0,1)) for _ in range(56)] print(f'Encrypted text: {encrypt(plain_text,key)}') print(f'Decrypted text: {decrypt(encrypt(plain_text,key),key)}') plain_text = input('Next text: ') if __name__ == '__main__': seed(datetime.now()) main()
[ "colemanbryanj@gmail.com" ]
colemanbryanj@gmail.com
d16d1e28a015971cd399228d22c3657e3dc0d5c5
df4d186b49cfe42d9a38e61084eea4b3c8efa66a
/photoslider/admin.py
53ded041d5327a894b85b102bab04a4695759f85
[]
no_license
kaczor3213/Django-Practice
b2858e2bcf3dc5fb4fef42cfa8656f62de02781a
369e3386e58725c7e5fe1a54b9e52ad2bc74c699
refs/heads/master
2020-08-07T13:39:18.283363
2019-10-11T16:35:39
2019-10-11T16:35:39
213,473,118
1
0
null
null
null
null
UTF-8
Python
false
false
110
py
from django.contrib import admin from .models import * # Register your models here. admin.site.register(Photo)
[ "przemyslaw.markiewicz@besidethepark.com" ]
przemyslaw.markiewicz@besidethepark.com
7286f58bf6438bc71997980f9fe2c6195b5975be
12a85f18bd3966672e6a009f7a424880983a98c0
/base/migrations/0004_auto_20201230_1113.py
7c50c6fd96c09c61c8009c1f5cba10b3a8accbf8
[]
no_license
strange-hawk/portfolio_template
266b5198fb5cde4c8b47ac118f3c06cdb27f3724
d61b942328c3f15a99510f331841ee91c525314c
refs/heads/master
2023-02-08T16:47:54.297135
2020-12-30T12:32:51
2020-12-30T12:32:51
325,543,984
0
0
null
null
null
null
UTF-8
Python
false
false
406
py
# Generated by Django 3.1.2 on 2020-12-30 11:13 import ckeditor.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('base', '0003_post_slug'), ] operations = [ migrations.AlterField( model_name='post', name='body', field=ckeditor.fields.RichTextField(blank=True, null=True), ), ]
[ "201852004@iiitvadodara.ac.in" ]
201852004@iiitvadodara.ac.in
fc7a71b09ff372d2f6c8f55f2101389855085b67
896e21e59afe46d8cd1885eb23af6e5b172ad67c
/en/src/connective.py
2e3b284deadb120c0093eb19cf258265d802105e
[]
no_license
lzswangjian/conll2016
b8884567901bb2a4576149b1720da4ee42396229
5731a4094bf16c9be64727c7ea127105759758c7
refs/heads/master
2021-01-20T02:54:36.118646
2016-06-20T08:34:19
2016-06-20T08:34:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,780
py
# -*- coding: utf-8 -*- import sys import os from common import * from corpus import Corpus logs = sys.stderr FILE_PATH = os.path.dirname(os.path.abspath(__file__)) class Connective(): """ Connective Identification Component """ def __init__(self): self.train_file = FILE_PATH + '/../data/conll.conn.train' self.train_vec_file = FILE_PATH + '/../data/conll.conn.train.vec' self.feat_map_file = FILE_PATH + '/../data/conll.conn.map' self.test_file = FILE_PATH + '/../data/conll.conn.test' self.test_vec_file = FILE_PATH + '/../data/conll.conn.test.vec' self.model_file = FILE_PATH + '/../data/conll.conn.model' self.predicted_file = FILE_PATH + '/../data/conll.conn.test.predicted' def train(self): # to_file = open(self.train_file, 'w') # self.prepare_data(TRAIN_PARSE_PATH, TRAIN_REL_PATH, 'train', to_file) # to_file.close() Corpus.train_with_opennlp(self.train_file, self.model_file) # gen_svm_train(self.train_file, self.train_vec_file, self.feat_map_file) # svm_learn(self.train_vec_file, self.model_file) def test(self): # to_file = open(self.test_file, 'w') # self.prepare_data(DEV_PARSE_PATH, DEV_REL_PATH, 'test', to_file) # to_file.close() Corpus.test_with_opennlp(self.test_file, self.model_file, self.predicted_file) # feat_map = read_svm_map(self.feat_map_file) # gen_svm_test(self.test_file, feat_map, self.test_vec_file) # svm_classify(self.test_vec_file, self.model_file, self.predicted_file) def prepare_data(self, parse_path, rel_path, which, to_file): rel_dict = Corpus.read_relations(rel_path) for art in Corpus.read_parses(parse_path, rel_dict): for rel in art.relations: if rel.rel_type != 'Explicit': continue rel.article = art rel.get_conn_leaves() self.print_features(art, which, to_file) def eval_data(self, stand_data, predicted_data): stand = [x.strip().split()[-1] for x in open(stand_data)] predicted = [x.strip().split()[-1] for x in open(predicted_data)] # predicted = [float(x.strip().split()[-1]) for x in open(predicted_data)] # tmp = [] # for pred in predicted: # if pred > 0: # tmp.append('1') # else: # tmp.append('0') # predicted = tmp true_positive = true_negative = false_positive = false_negative = 0 for i in range(len(stand)): if stand[i] == '1' and predicted[i] == '1': true_positive += 1 elif stand[i] == '1' and predicted[i] == '0': false_negative += 1 elif stand[i] == '0' and predicted[i] == '1': false_positive += 1 else: true_negative += 1 precision = true_positive*100.0/(true_positive+false_positive) recall = true_positive*100.0/(true_positive+false_negative) f1 = 2*precision*recall/(precision+recall) acc = (true_positive+true_negative)*100.0/(true_positive+ true_negative+ false_positive+ false_negative) print '====================result===================' print 'precision:'+str(precision) print 'recall:'+str(recall) print 'F1:'+str(f1) print 'accuracy:'+str(acc) print '=============================================' return [precision, recall, f1, acc] def print_features(self, article, which, to_file): checked_conns = [] for sentence in article.sentences: all_conns = sentence.check_connectives() checked_conns += all_conns for conn in all_conns: conn_str = '_'.join(n.value for n in conn) to_file_line = '' to_file_line += 'conn_lc:'+conn_str.lower()+' ' to_file_line += 'conn:'+conn_str+' ' conn_pos = '_'.join([x.parent_node.value for x in conn]) to_file_line += 'lexsyn:conn_POS:'+conn_pos+' ' prev_leaf = Corpus.get_other_leaf(conn[0], -1, article) if prev_leaf is not None: to_file_line += 'lexsyn:with_prev_full:'+prev_leaf.value+'_'+conn_str+' ' prev_pos = prev_leaf.parent_node.value to_file_line += 'lexsyn:prev_POS:'+prev_pos+' ' to_file_line += 'lexsyn:with_prev_POS:'+prev_pos+'_'+conn_pos.split('_')[0]+' ' to_file_line += 'lexsyn:with_prev_POS_full:'+prev_pos+'_'+conn_pos+' ' next_leaf = Corpus.get_other_leaf(conn[-1], 1, article) if next_leaf is not None: to_file_line += 'lexsyn:with_next_full:'+conn_str+'_'+next_leaf.value+' ' next_pos = next_leaf.parent_node.value to_file_line += 'lexsyn:next_POS:'+next_pos+' ' to_file_line += 'lexsyn:with_next_POS:'+conn_pos.split('_')[-1]+'_'+next_pos+' ' to_file_line += 'lexsyn:with_next_POS_full:'+conn_pos+'_'+next_pos+' ' # Pitler & Nenkova (ACL 09) features: # self_cat, parent_cat, left_cat, right_cat, right_VP, right_trace res = sentence.get_connective_categories(conn) res2 = ['selfCat:'+res[0], 'parentCat:'+res[1], 'leftCat:'+res[2], 'rightCat:'+res[3]] if res[4]: res2.append('rightVP') if res[5]: res2.append('rightTrace') for e in res2: to_file_line += 'syn:'+e+' ' for e in res2: to_file_line += 'conn-syn:'+'conn:'+conn_str+'-'+e+' ' for j in range(0, len(res2)): for pair in res2[j+1:]: to_file_line += 'syn-syn:'+res2[j]+'-'+pair+' ' res3 = sentence.get_syntactic_features(*res[6]) to_file_line += 'path-self>root:'+res3[0]+' ' to_file_line += 'path-self>root2:'+res3[1]+' ' label = '0' if conn in article.disc_connectives: label = '1' to_file.write(to_file_line+' '+label+'\n') return checked_conns if __name__ == '__main__': handler = Connective() handler.train() handler.test() handler.eval_data(handler.test_file, handler.predicted_file)
[ "qcl6355@gmail.com" ]
qcl6355@gmail.com
7514df890190e4719f61257b18916137929a571d
bc2aec84f43df1918fd43f6a5adaea6280ae1282
/movement.py
39532c569e05d137ae790913ee0f447677176e54
[ "MIT" ]
permissive
pennz/pi-zero-mouse
0e2e7ad7dbf250e4817bfa079b05fb57b5ed4168
7de6683430b7fecbe8fdf6b21d9818c2305c599c
refs/heads/master
2020-05-23T11:39:31.956667
2020-03-29T11:53:40
2020-03-29T11:53:40
186,741,344
0
0
null
null
null
null
UTF-8
Python
false
false
8,682
py
import numpy as np from numpy.random import normal import time import math class operator(): def __init__(self, g_n='/dev/hidg0'): self.gadget_name = g_n self.dev_pf = open(self.gadget_name, "wb", buffering=0) self._pointer_accuracy = 0 # for debug self.screen_x_len = 1080 self.screen_y_len = 2340 # not pixel perfect, don't bother self.x_max=127 self.x_min=-127 self.y_max=127 self.y_min=-127 self.x_pos = -1 self.y_pos = -1 self.button_state = 0 self._blank_state = self._mouse_op_to_binary(0,0, button_click=-1) self._pasue_time_table_init() self._debug_pause = 30/1000 self._init_pause = 200/1000 self._pointer_pos_init() @staticmethod def _clip(v,min_v, max_v): if v > max_v: return max_v if v < min_v: return min_v return v def _pasue_time_table_init(self): init_pause_time = 20 # ms end_pause_time = 30 # ms mid_pause_time = 0 # fatest mid_place = 70 # /100 end_place = 100 self._pause_time_table = np.array([ (init_pause_time*(mid_place-i) + mid_pause_time*i)/mid_place \ if i < mid_place else \ (mid_pause_time*(end_place-i) + end_pause_time*(i-mid_place))/(end_place-mid_place) \ for i in range(end_place)]) def _pointer_pos_init(self): # go to middle to the right (right thrumb) # first to to right # then to the bottom # # then go middle and left a little self._to_b_r(self._init_pause) #time.sleep(1) self.move_relative(-self.screen_x_len/4, -self.screen_y_len/2, self._init_pause) #time.sleep(1) def _update_pos(self,x,y, rel=True): if rel: x += self.x_pos y += self.y_pos self.x_pos = self._clip(x,0,self.screen_x_len) self.y_pos = self._clip(y,0,self.screen_y_len) def _to_b_r(self, pause_time): for _ in range(19): self._write_move_relative(self.x_max, self.y_max, sleep_time=pause_time) self.x_pos=self.screen_x_len self.y_pos=self.screen_y_len def move_relative(self,x,y, pause_time): x_sign = 1 if x > 0 else -1 y_sign = 1 if y > 0 else -1 x_abs = abs(x) y_abs = abs(y) x_steps = int(x_abs // self.x_max) # assume x_max and x_min same magnitude. y_steps = int(y_abs // self.y_max) if (x_steps < 1 and y_steps < 1): self._write_move_relative(x, y) self._update_pos(x,y) return x_remain = int(x_abs % self.x_max) y_remain = int(y_abs % self.y_max) for _ in range(min(x_steps, y_steps)): self._write_move_relative(x_sign*self.x_max, y_sign*self.y_max, sleep_time=pause_time) if x_steps >= y_steps: # go x, still need to x y_extra_sign = 0 else: # go y y_extra_sign = 1 for _ in range(abs(x_steps - y_steps)): self._write_move_relative((1-y_extra_sign)*x_sign*self.x_max, y_extra_sign*y_sign*self.y_max, sleep_time=pause_time) self._write_move_relative(x_remain*x_sign, y_remain*y_sign, sleep_time=pause_time) self._update_pos(x,y) def _mouse_op_to_binary(self,x,y,button_click=-1, button_release=False): bytes_3 = bytearray() if button_release: self.button_state = 0 # reset state else: # normal click or simply not click if (button_click >= 0 and button_click < 3): self.button_state = self.button_state | 1 << button_click #bytes_3.append(button_report.to_bytes(1,'big',signed=False)) bytes_3.append(self.button_state) x_report = self._clip(x, self.x_min, self.x_max) y_report = self._clip(y, self.y_min, self.y_max) bytes_3.append(x_report.to_bytes(1,'big',signed=True)[0]) bytes_3.append(y_report.to_bytes(1,'big',signed=True)[0]) return bytes_3 def close(self): if self.dev_pf: self.dev_pf.close() def _write_move_relative(self, x,y, sleep_time=0): if sleep_time > 0: time.sleep(sleep_time) #print( (x,y) ) binary_24_bits = self._mouse_op_to_binary(x,y) self.dev_pf.write(bytes(binary_24_bits)) # reference https://www.codeproject.com/Tips/759391/Emulate-Human-Mouse-Input-with-Bezier-Curves-and-G def move_click(self, x, y, button, pause=False, rel=False): """ move_click not relative for x,y here """ # target x and y, more nature, you can't be that accurate # so need to consider the boxing box when try to click x += normal()*self._pointer_accuracy y += normal()*self._pointer_accuracy self.move_along_bezier_curve(x,y, pause) self.click(button) def move_along_bezier_curve(self, x,y, pause=False, rel=False): _x = x _y = y if rel: x += self.x_pos y += self.y_pos orig_x = self.x_pos orig_y = self.y_pos mid_point_x = (x - orig_x)/2 mid_point_y = (y - orig_y)/2 mid_distance = math.sqrt(mid_point_x*mid_point_x+mid_point_y*mid_point_y) #Find a co-ordinate normal to the straight line between start and end point, starting at the midpoint and normally distributed #This is reduced by a factor of 4 to model the arc of a right handed user. bezier_mid_x = int(mid_distance/4 * normal())+mid_point_x+orig_x bezier_mid_y = int(mid_distance/4 * normal())+mid_point_y+orig_y l_pause = len(self._pause_time_table) num_data_points = int(30 * mid_distance*2/700) num_data_points = self._clip(num_data_points,0, l_pause+1) # trace will minus 1 trace = beizier_curve_quad(orig_x,orig_y,bezier_mid_x, bezier_mid_y, x, y, n=num_data_points) trace = [self._clip_in_screen( ( int(round(c[0])), int(round(c[1])) ) ) for c in trace] trace = [(trace[i+1][0]-trace[i][0], trace[i+1][1]-trace[i][1]) for i in range(len(trace)-1)] if pause: pause_counts = 20 pause_counts = self._clip(pause_counts,0, num_data_points) #step_length_for_pause = num_data_points // pause_counts # clipped # for pause time (speed), just triangle,(easier)(in fact, could also # try bezier. just use easier one for test pre_p_t = self._pause_time_table[ np.linspace(0, l_pause-1, pause_counts, endpoint=True, dtype=int)] pause_time_sum = self._get_pause_time_sum(_x,_y,rel) sleep_time_normalized = pause_time_sum/1000 * pre_p_t / pre_p_t.sum() p_t_idx = np.linspace(0, num_data_points-1, pause_counts, endpoint=True, dtype=int) sleep_time = np.zeros( (num_data_points,) ) for pre_i,idx in enumerate(p_t_idx): sleep_time[idx] = sleep_time_normalized[pre_i] for i,c in enumerate(trace): self._write_move_relative(c[0],c[1], sleep_time=self._debug_pause+sleep_time[i]) #if sleep_time[i] > 0: time.sleep(sleep_time[i]) # sleep more else: for c in trace: self._write_move_relative(c[0],c[1], sleep_time=self._debug_pause) self._update_pos(_x,_y, rel) def press_down(self, button): binary_24_bits = self._mouse_op_to_binary(0,0, button) # button down, up use release_all_buttons self.dev_pf.write(bytes(binary_24_bits)) def release_all_buttons(self): binary_24_bits = self._mouse_op_to_binary(0,0,button_release=True) # button down, up use release_all_buttons self.dev_pf.write(bytes(binary_24_bits)) def click(self, button): self.press_down(button) self.release_all_buttons() def _get_pause_time_sum(self, x,y,rel=True): if not rel: x -= self.x_pos y -= self.y_pos return math.sqrt(x*x+y*y)/200 * 150 # ms, for 200 pixels def _clip_in_screen(self, c): return (self._clip(c[0], 0, self.screen_x_len), self._clip(c[1], 0, self.screen_y_len)) def beizier_curve_quad(orig_x,orig_y,bezier_mid_x, bezier_mid_y, target_x, target_y, n=100): #np.array ts = np.linspace(0,1,n,endpoint=True) return [( (1-t)**2*orig_x+2*(1-t)*t*bezier_mid_x+t*t*target_x, (1-t)**2*orig_y+2*(1-t)*t*bezier_mid_y+t*t*target_y ) for t in ts] if __name__ == "__main__": o = operator() o.move_along_bezier_curve(500, 500)
[ "fireflysuccess@gmail.com" ]
fireflysuccess@gmail.com
a666d88336202c9bc0120035e3080b32cbd3505a
b4b900170acb702b12aa77c2708f59ec2107fa49
/blast/RNA_vs_rRNA.py
877d165b9820f2247f7c7d4451191c698b9dfe18
[]
no_license
wegnerce/python_scripting
cf6435d0fa2ad41615c6ff06d44f28449904272c
6230d3f0489c67af18db5b13e48e888018b2cceb
refs/heads/main
2023-04-11T23:28:39.990998
2021-04-28T06:43:17
2021-04-28T06:43:17
362,132,027
0
0
null
null
null
null
UTF-8
Python
false
false
5,804
py
''' Created on June 18, 2012 @author: Carl-Eric - AG Liesack - Molecular Ecology - MPI Marburg The given script compares BLAST outputs from PRINSEQ processed .fasta files, which have been BLASTed against the latest release of SILVA NR SSU/LSU. Based on the comparison the script generates three output files: (1) sequence reads assigned to SILVA SSU - XYZ_to_SSU.fasta (2) sequence reads assigned to SILVA LSU - XYZ_to_LSU.fasta (3) sequence reads assigned to putative mRNA - XYZ_to_non_rRNA ''' from Bio.Blast import NCBIXML from Bio import SeqIO blastLSU = NCBIXML.parse(open("/home/calle/Desktop/RNA_Seq_20130827/BS7dB_to_LSU.xml","rU")) #xml searched against LSU blastSSU = NCBIXML.parse(open("/home/calle/Desktop/RNA_Seq_20130827/BS7dB_to_SSU.xml","rU")) #xml searched against SSU output_LSU = open("/home/calle/Desktop/RNA_Seq_20130827/BS7dB_to_LSU.fasta","w") #seqs assigned to LSU rRNA output_SSU = open("/home/calle/Desktop/RNA_Seq_20130827/BS7dB_to_SSU.fasta","w") #seqs assigned to SSU rRNA output_mRNA = open("/home/calle/Desktop/RNA_Seq_20130827/BS7dB_to_non_rRNA.fasta","w") #seqs assigned to mRNA fasta_handle=open("/home/calle/Desktop/RNA_Seq_20130827/BS7d_controlB_prinseq_good.fasta","rU") #fasta used in BLAST search i=0 ii=0 seq_list0=[] bits_against_LSU=[] ## Sequences have matches in LSU for record0 in blastLSU: ## LSU if record0.alignments: ab=record0.query cd=ab[0:14] seq_list0.append(cd) bits_against_LSU.append(record0.alignments[0].hsps[0].bits) i=i+1 else: ii=ii+1 print "LSU:",i, ii ## Sequences have matches in SSU j=0 jj=0 seq_list1=[] bits_against_SSU=[] ab=[] for record1 in blastSSU: ## SSU if record1.alignments: ab=record1.query cd=ab[0:14] seq_list1.append(cd) bits_against_SSU.append(record1.alignments[0].hsps[0].bits) j=j+1 else: jj=jj+1 print "SSU:",j,jj count_LSU_SSU=0 count_SSU_LSU=0 count_only_LSU=0 count_SSU=0 p=0 LSU=[] SSU=[] for name in seq_list0: # print name if name in seq_list1: x=seq_list1.index(name) if bits_against_LSU[p] > bits_against_SSU[x]: count_LSU_SSU = count_LSU_SSU + 1 LSU.append(name) else: count_SSU_LSU = count_SSU_LSU + 1 else: count_only_LSU=count_only_LSU+1 LSU.append(name) p=p+1 print "##########################################################################" print "LSU:", p print "LSU > SSU:", count_LSU_SSU print "SSU > LSU:", count_SSU_LSU print "only found in LSU:", count_only_LSU count_LSU_SSU=0 count_SSU_LSU=0 count_only_SSU=0 count_SSU=0 p=0 for name in seq_list1: if name in seq_list0: x=seq_list0.index(name) if bits_against_SSU[p] >= bits_against_LSU[x]: count_SSU_LSU = count_SSU_LSU + 1 SSU.append(name) else: count_LSU_SSU = count_LSU_SSU + 1 else: count_only_SSU=count_only_SSU+1 SSU.append(name) p=p+1 print "########################################################################" print "SSU:", p print "SSU > LSU:", count_SSU_LSU print "LSU > SSU:", count_LSU_SSU print "only found in SSU:", count_only_SSU print len(LSU) print len(SSU) z=0 LSU_rRNA=[] SSU_rRNA=[] non_rRNA=[] for record in SeqIO.parse(fasta_handle,"fasta"): if record.id in LSU: LSU_rRNA.append(record) elif record.id in SSU: SSU_rRNA.append(record) else: non_rRNA.append(record) SeqIO.write(LSU_rRNA, output_LSU, "fasta") SeqIO.write(SSU_rRNA, output_SSU, "fasta") SeqIO.write(non_rRNA, output_mRNA, "fasta") print "Found %i LSU rRNA" % len(LSU_rRNA) print "Found %i SSU rRNA" % len(SSU_rRNA) print "Found %i non rRNA" % len(non_rRNA) blastLSU.close() blastSSU.close() output_LSU.close() output_SSU.close() output_mRNA.close() xml_handle = open("/home/calle/Desktop/RNA_Seq_20130827/BS7dB_to_SSU.xml","rU") #XML blasted against SILVA SSU output_handle0=open("/home/calle/Desktop/RNA_Seq_20130827/BS7dB_to_SSU_ribotag.xml","w") #new XML assigned to SSU rRNA handle0 = open("/home/calle/Desktop/RNA_Seq_20130827/BS7dB_to_SSU.fasta","rU") #seq of SSU rRNA target_0=[] archaea_seq=[] n=0 m=0 str_list=[] query_id=[] ######################################################################### # import target sequences as fasta files in which we are interested # # put sequence id in list(target_no) # ######################################################################### no_target_seq0=0 for record in SeqIO.parse(handle0,"fasta"): target_0.append(record.id) no_target_seq0=no_target_seq0+1 no_target_seq1=0 print "No. of target sequence 0:", no_target_seq0 ######################################################################## # write blastout of target sequences # ######################################################################## no_query_in_xml=0 name=[] only_id={} no_target_0=0 #no_target_1=0 #no_target_2=0 i=0 judge=3 for line in xml_handle.readlines(): str_line=line.encode('ascii','ignore') if i < 22: output_handle0.write(str_line) i=i+1 str_list=str_line.split(">") if str_list[0] == " <Iteration_query-def": query_id=str_list[1].split("<") name=query_id[0] only_id=name[0:14] no_query_in_xml=no_query_in_xml+1 if only_id in target_0: judge = 0 no_target_0=no_target_0+1 else: judge = 3 if judge == 0: output_handle0.write(str_line) print "no_of_queries_in_original xml output:", no_query_in_xml print "no. of query in target sequence files:", no_target_0 handle0.close() xml_handle.close() output_handle0.close()
[ "noreply@github.com" ]
wegnerce.noreply@github.com
e91b8bf18bf8bb434bac931c42dd942974fb28cc
273e20078706cfd80822144283f0f0da5e347239
/douban/items.py
336cbf404b37855678af2ea84f6432a917532c8f
[]
no_license
lvshaobo/scrapy_cookie
00db97399b0c5622fa77e15578f406be94e86c87
a4c298c00a41d408fc7ba0e6b7e9aa159dc99ac3
refs/heads/master
2021-01-17T22:20:53.330544
2016-09-21T06:00:06
2016-09-21T06:00:06
68,784,051
0
0
null
null
null
null
UTF-8
Python
false
false
544
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class DoubanItem(scrapy.Item): # define the fields for your item here like: title = scrapy.Field() # Web Title name = scrapy.Field() # Job Title corp = scrapy.Field() # Company Name addr = scrapy.Field() # Address salary = scrapy.Field() # Salary popu = scrapy.Field() # Recruiting Numbers
[ "lvshaoboftd@gmail.com" ]
lvshaoboftd@gmail.com
bbea56d9d779d079e4776b06ad59756cdf7c935a
f60cc85e3f150723e6589d100618df41ba2c1c3b
/LAB2/queensS.py
1e812e4d931832c38027b0b0e0dc4533ded9e9d2
[]
no_license
GustafWallstrom/TNM096-Labs
b4d0d1a143bc3fe374a4ee37600a2e4b4f39c4ed
0de1608ac3aec9f4d3a7ef843c1bb25490124409
refs/heads/master
2021-05-20T20:35:54.758637
2020-05-13T09:44:05
2020-05-13T09:44:05
252,408,856
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
# Solve the nQueens problem by using depth-first search from time import time from datetime import timedelta from aima.search import depth_first_tree_search, NQueensProblem, Problem def secondsToStr(t): return str(timedelta(seconds=t)) def now(): return secondsToStr(time()) # 1. Set up the problem and set the starting time n = 30 print "\nStarting at at "+now()[12:20] print "problem with n =",n start = time() # 2. Solve the NQueens problem with depth-first search solution = depth_first_tree_search(NQueensProblem(n)) sol = str(solution) print "Solution: ", sol[5:len(sol)-1] # 3. Print time elapsed end = time() elapsed = end-start print "\nElapsed time ", secondsToStr(elapsed)[0:15], "\n"
[ "46966247+GustafWallstrom@users.noreply.github.com" ]
46966247+GustafWallstrom@users.noreply.github.com
b5fcaefc1ee465b5d6d8da03f4dcbeaf6a246b6a
da73042e63a17f2288747d426b718d6e516da9d4
/fast_genetic_algorithm.py
8267dfd653d142afe27f60084d0e1837080e12d5
[]
no_license
AntipovDen/XdivK
002ee3fdf5cbbad7a6e1428008aadfe3ff5a29c3
2ce70f7151e302c9e1dded83e12d184f49c3e6b3
refs/heads/master
2021-01-20T02:08:13.593075
2018-11-08T10:39:15
2018-11-08T10:39:15
89,378,193
0
0
null
null
null
null
UTF-8
Python
false
false
2,233
py
from math import factorial from random import random from sys import argv from scipy.stats import rv_discrete from numpy import arange, mean # from matplotlib import pyplot as plt RUNS = 100 run_number = 0 logfile = None def get_statistics_fga(n, k, beta): global run_number probabilities = 1 / arange(1, (n + 1) // 2) ** beta probabilities /= probabilities.sum() dist = rv_discrete(values=(range(1, (n + 1) // 2), probabilities)).rvs run_number = 1 return mean([run(n, k, dist) for _ in range(RUNS)]) def get_statistics_opo(n, k): global run_number opt_prob = factorial(k) ** (1/k) run_number = 1 return mean([run(n, k, lambda: opt_prob) for _ in range(RUNS)]) def run(n, k, dist): #seems like it works global logfile, run_number iterations = 0 sum_x = n - k logfile.write('run {}\n'.format(run_number)) logfile.flush() run_number += 1 while sum_x < n: iterations += 1 if iterations % 1000 == 0: logfile.write('{}\n'.format(iterations)) logfile.flush() alpha = dist() mutation = 0 for i in range(n - sum_x): # flipping zeros if random() < alpha / n: mutation += 1 for i in range(sum_x): if random() < alpha / n: # flipping ones mutation -= 1 if sum_x + mutation >= n - k: sum_x += mutation return iterations n = int(argv[1]) if len(argv) > 2: beta = float(argv[2]) # for beta in 1, 1.1, 1.5, 2, 3: with open('fga_{}_{:1.1f}.out'.format(n, beta), 'w') as f: logfile = open('fga_{}_{:1.1f}.log'.format(n, beta), 'w') for k in 2, 3, 5, 10: logfile.write('k = {}\n'.format(k)) logfile.flush() f.write(str(get_statistics_fga(n, k, beta))) f.write(' ') f.flush() logfile.close() else: with open('opo_{}.out'.format(n), 'w') as f: logfile = open('opo_{}.log'.format(n), 'w') for k in 2, 3, 5, 10: logfile.write('k = {}\n'.format(k)) logfile.flush() f.write(str((get_statistics_opo(n, k)))) f.write(' ') f.flush() logfile.close()
[ "antipovden@yandex.ru" ]
antipovden@yandex.ru
8e29269f55422007a8fa6a08128916caecc6a06e
f8fa95af388eead9af3c278245592a78b1cddb92
/models/Rules.py
8816b781a73b660978078d17724137eecab60d5d
[]
no_license
Toohk/chess
b11403f7d2d0e1c87e245058f546a4e2736ea21f
637bdde6801c8ed256f04688902a6d67fc08d650
refs/heads/main
2023-02-09T02:19:20.305993
2020-12-26T13:39:48
2020-12-26T13:39:48
324,562,678
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
class Rules: def __init__(self): self.num_pieces = { 'king': 1, 'queen': 1, 'bishop': 2, 'knight': 2, 'rook': 2, 'pawn': 8 }
[ "thomasdufayet3@gmail.com" ]
thomasdufayet3@gmail.com
21fdb5bc849341c7bb79fd762910a63ed603dbc4
4bf615df3e09532222f1ca024a3a71f490d3c504
/4. Colecciones en Python/2_Tuplas.py
fd6b23f42f13ef3e2a753b67feac3fd72ebbf76c
[]
no_license
ErickTocasca/PROYECTO_MINSUP_UNCP
72180c875bd973760fa6ddb3aeed5667de6c303d
6647b738d8bd355b7cda4faad8fc58e16e2b453b
refs/heads/main
2023-04-28T04:32:42.853717
2021-05-02T15:57:03
2021-05-02T15:57:03
332,873,502
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
# -*- coding: utf-8 -*- """ Created on Sun Jan 24 21:54:33 2021 @author: egt_d """ mina = ("geologia", "costos", "perforacion y voladura") print(mina) print(mina.count("geologia")) minalist = list(mina) minalist.append("metalurgia") print(minalist)
[ "60368138+ErickTocasca@users.noreply.github.com" ]
60368138+ErickTocasca@users.noreply.github.com
f300d8c3ad2c73285efe5a41a77810407745f6ab
109d21430a292a9f51c18171bff1b5bdc9c480da
/docxcompose-script - Copy.py
c1fb6f5730697ae74362582788caadadab72eea6
[]
no_license
PY-Venom/ScreenshotToReport
0a1f1725e3ebf66a431898f5792960c55505d0ea
2800b3b3a790d40dfd62dd279ecaaaca33c691cf
refs/heads/master
2020-04-30T21:11:40.475432
2019-03-22T07:09:29
2019-03-22T07:09:29
177,088,103
0
0
null
null
null
null
UTF-8
Python
false
false
483
py
#!"c:\users\lathan larue\appdata\local\programs\python\python37-32\python.exe" # EASY-INSTALL-ENTRY-SCRIPT: 'docxcompose==1.0.0a16','console_scripts','docxcompose' __requires__ = 'docxcompose==1.0.0a16' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('docxcompose==1.0.0a16', 'console_scripts', 'docxcompose')() )
[ "noreply@github.com" ]
PY-Venom.noreply@github.com
d35885251fdd0e6976cf51d67620328aa0ebf072
f69e44d26eafd7293b63de0a5037b4f969bad333
/hello_flask_1_1.py
295401fc166332c29e48b1f654a941ed37b587d1
[]
no_license
astroshima/hiflask
ea145e0832022c65f520b4a01f6cc75a3caa0b44
e7b4d3491e1e44705a0f5151d1d53b1ac126a365
refs/heads/master
2020-06-26T14:10:41.034749
2019-08-17T00:13:31
2019-08-17T00:13:31
199,654,478
0
0
null
null
null
null
UTF-8
Python
false
false
447
py
from flask import Flask app=Flask(__name__) @app.route('/') def hello(): return 'Hello world from Flask!' print('Naziv aktivnog modula je:', __name__) if __name__=='__main__': # ako je ovaj program startovan komandom python3 app.run() # pokreni veb server i aplikaciju """ Podešavanje promenljive okruženja i startovanje veb servera i aplikacije iz komandne linije: $ env FLASK_APP=hello_flask_1_1.py flask run """
[ "noreply@github.com" ]
astroshima.noreply@github.com
0abdf8254d9f4f1e0d295afae5919f7d4f839984
fa4b4d30755a9e5a22b590906ff03c48ffbde7e3
/UseCases/Airbus/A_1/A_1.py
339f18dd38e355fd7bd01f0add374102c3c0f99b
[]
no_license
COMPOSELECTOR/Composelector
c7f33c6fe805f7ff3d5f97eace5c452ed8b12f97
b852a7585e8ff48e93f062f552d514013a3dcf6d
refs/heads/master
2021-07-09T17:07:54.419237
2020-07-16T11:45:43
2020-07-16T11:45:43
158,224,484
1
0
null
null
null
null
UTF-8
Python
false
false
14,085
py
import sys sys.path.extend(['/home/nitram/Documents/work/MUPIF/mupif']) from mupif import * import Pyro4 import logging log = logging.getLogger() import time as timeT import mupif.Physics.PhysicalQuantities as PQ debug = True if not debug: import ComposelectorSimulationTools.MIUtilities as miu log = logging.getLogger() nshost = '172.30.0.1' nsport = 9090 hkey = 'mupif-secret-key' mul2JobManName='MUL2.JobManager@UseCase1' class Airbus_Workflow_1(Workflow.Workflow): def __init__(self, metaData={}): """ Initializes the workflow. As the workflow is non-stationary, we allocate individual applications and store them within a class. """ log.info('Setting Workflow basic metadata') MD = { 'Name': 'Airbus Case', 'ID': '1_2_2', 'Description': 'Simulation of ', 'Model_refs_ID': ['xy', 'xy'], 'Inputs': [ {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_YoungModulus1', 'Name': 'E_1', 'Description': 'Young modulus 1', 'Units': 'MPa', 'Required': True}, {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_YoungModulus2', 'Name': 'E_2', 'Description': 'Young modulus 2', 'Units': 'MPa', 'Required': True}, {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_YoungModulus3', 'Name': 'E_3', 'Description': 'Young modulus 3', 'Units': 'MPa', 'Required': True}, {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_PoissonRatio12', 'Name': 'nu_12', 'Description': 'Poisson\'s ration 12', 'Units': 'None', 'Required': True}, {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_PoissonRatio13', 'Name': 'nu_13', 'Description': 'Poisson\'s ration 13', 'Units': 'None', 'Required': True}, {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_PoissonRatio23', 'Name': 'nu_23', 'Description': 'Poisson\'s ration 23', 'Units': 'None', 'Required': True}, {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_ShearModulus12', 'Name': 'G_12', 'Description': 'Shear modulus 12', 'Units': 'MPa', 'Required': True}, {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_ShearModulus13', 'Name': 'G_13', 'Description': 'Shear modulus 13', 'Units': 'MPa', 'Required': True}, {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_ShearModulus23', 'Name': 'G_23', 'Description': 'Shear modulus 23', 'Units': 'MPa', 'Required': True}, {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_Density', 'Name': 'Rho', 'Description': 'Density', 'Units': 'ton/mm**2', 'Required': True}, ], 'Outputs': [ {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_Mass', 'Name': 'Mass', 'Description': 'Mass of the structure', 'Units': 'kg'}, {'Type': 'mupif.Property', 'Type_ID': 'mupif.PropertyID.PID_CriticalLoadLevel', 'Name': 'F_crit', 'Description': 'Buckling load of the structure', 'Units': 'kN'}, ] } super(Airbus_Workflow_1, self).__init__(metaData=MD) self.updateMetadata(metaData) #list of recognized input porperty IDs self.myInputPropIDs = [PropertyID.PID_YoungModulus1,PropertyID.PID_YoungModulus2, PropertyID.PID_YoungModulus3, PropertyID.PID_PoissonRatio12, PropertyID.PID_PoissonRatio13,PropertyID.PID_PoissonRatio23, PropertyID.PID_ShearModulus12, PropertyID.PID_ShearModulus13, PropertyID.PID_ShearModulus23, PropertyID.PID_Density] # list of compulsory IDs self.myCompulsoryPropIDs = self.myInputPropIDs #list of recognized output property IDs self.myOutPropIDs = [PropertyID.PID_CriticalLoadLevel, PropertyID.PID_Mass] #dictionary of input properties (values) self.myInputProps = {} #dictionary of output properties (values) self.myOutProps = {} self.mul2Solver = None def initialize(self, file='', workdir='', targetTime=PQ.PhysicalQuantity(0., 's'), metaData={}, validateMetaData=True, **kwargs): #locate nameserver ns = PyroUtil.connectNameServer(nshost, nsport, hkey) #connect to JobManager running on (remote) server self.mul2JobMan = PyroUtil.connectJobManager(ns, mul2JobManName,hkey) #allocate the Mul2 remote instance try: self.mul2Solver = PyroUtil.allocateApplicationWithJobManager( ns, self.mul2JobMan, None, hkey, sshContext=None) log.info('Created mul2 job') except Exception as e: log.exception(e) else: if ((self.mul2Solver is not None)): mul2SolverSignature=self.mul2Solver.getApplicationSignature() log.info("Working mul2 solver on server " + mul2SolverSignature) else: log.debug("Connection to server failed, exiting") super(Airbus_Workflow_1, self).initialize(file=file, workdir=workdir, targetTime=targetTime, metaData=metaData, validateMetaData=validateMetaData, **kwargs) # To be sure update only required passed metadata in models passingMD = { 'Execution': { 'ID': self.getMetadata('Execution.ID'), 'Use_case_ID': self.getMetadata('Execution.Use_case_ID'), 'Task_ID': self.getMetadata('Execution.Task_ID') } } workDir = self.mul2Solver.getWorkDir() +'/'+self.mul2Solver.getJobID() self.mul2Solver.initialize(metaData=passingMD, workdir = workDir) def setProperty(self, property, objectID=0): propID = property.getPropertyID() if (propID in self.myInputPropIDs): self.myInputProps[propID]=property else: raise APIError.APIError('Unknown property ID') def getProperty(self, propID, time, objectID=0): if (propID in self.myOutPropIDs): return self.myOutProps[propID] else: raise APIError.APIError ('Unknown property ID', propID) def solveStep(self, istep, stageID=0, runInBackground=False): for cID in self.myCompulsoryPropIDs: if cID not in self.myInputProps: raise APIError.APIError (self.getApplicationSignature(), ' Missing compulsory property ', cID) # mul2 try: self.mul2Solver.setProperty(self.myInputProps[PropertyID.PID_YoungModulus1]) self.mul2Solver.setProperty(self.myInputProps[PropertyID.PID_YoungModulus2]) self.mul2Solver.setProperty(self.myInputProps[PropertyID.PID_YoungModulus3]) self.mul2Solver.setProperty(self.myInputProps[PropertyID.PID_PoissonRatio12]) self.mul2Solver.setProperty(self.myInputProps[PropertyID.PID_PoissonRatio13]) self.mul2Solver.setProperty(self.myInputProps[PropertyID.PID_PoissonRatio23]) self.mul2Solver.setProperty(self.myInputProps[PropertyID.PID_ShearModulus12]) self.mul2Solver.setProperty(self.myInputProps[PropertyID.PID_ShearModulus13]) self.mul2Solver.setProperty(self.myInputProps[PropertyID.PID_ShearModulus23]) self.mul2Solver.setProperty(self.myInputProps[PropertyID.PID_Density]) except Exception as err: print ("Setting Mul2 params failed: " + repr(err)); self.terminate() try: # solve mul2 part log.info("Running mul2") self.mul2Solver.solveStep(None) ## set the desired properties self.myOutProps[PropertyID.PID_CriticalLoadLevel] = self.mul2Solver.getProperty(PropertyID.PID_CriticalLoadLevel, 0.0) self.myOutProps[PropertyID.PID_Mass] = self.mul2Solver.getProperty(PropertyID.PID_Mass, 0.0) except Exception as err: print ("Error:" + repr(err)) self.terminate() def getCriticalTimeStep(self): # determine critical time step return PQ.PhysicalQuantity(1.0, 's') def terminate(self): #self.thermalAppRec.terminateAll() self.mul2Solver.terminate() super(Airbus_Workflow_1, self).terminate() def getApplicationSignature(self): return "Composelector workflow 1.0" def getAPIVersion(self): return "1.0" def workflow(inputGUID, execGUID): # Define execution details to export if not debug: execPropsToExp = {"ID": "", "Use case ID": ""} # Export execution information from database ExportedExecInfo = miu.ExportData("MI_Composelector", "Modelling tasks workflows executions", execGUID, execPropsToExp) execID = ExportedExecInfo["ID"] useCaseID = ExportedExecInfo["Use case ID"] # Define properties:units to export propsToExp = {"Axial Young's modulus": "MPa", "In-plane Young's modulus": "MPa", "E3": "MPa", "In-plane shear modulus": "MPa", "Transverse shear modulus": "MPa", "G23": "MPa", "In-plane Poisson's ratio": "", "Transverse Poisson's ratio": "", "NU23": "" } # Export data from database ExportedData = miu.ExportData("MI_Composelector", "Inputs-Outputs", inputGUID, propsToExp, miu.unitSystems.METRIC) # Assign exported properties to variables E1 = ExportedData["Axial Young's modulus"] E2 = ExportedData["In-plane Young's modulus"] E3 = ExportedData["E3"] G12 = ExportedData["In-plane shear modulus"] G13 = ExportedData["Transverse shear modulus"] G23 = ExportedData["G23"] nu12 = ExportedData["In-plane Poisson's ratio"] nu13 = ExportedData["Transverse Poisson's ratio"] nu23 = ExportedData["NU23"] else: E1 = 100.e3 E2 = 6.e3 E3 = 6.e3 G12 = 3.e3 G13 = 3.e3 G23 = 3.e3 nu12 = 0.35 nu13 = 0.35 nu23 = 0.35 rho = 1.58e-9 try: workflow = Airbus_Workflow_1() workflowMD = { 'Execution': { 'ID': '1', 'Use_case_ID': '1_1', 'Task_ID': '1' } } workflow.initialize(targetTime=PQ.PhysicalQuantity(1., 's'), metaData=workflowMD) # set workflow input data # Submitting new material properties pE1 = workflow.setProperty(Property.ConstantProperty(E1, PropertyID.PID_YoungModulus1, ValueType.Scalar, 'MPa')) pE2 = workflow.setProperty(Property.ConstantProperty(E2, PropertyID.PID_YoungModulus2, ValueType.Scalar, 'MPa')) pE3 = workflow.setProperty(Property.ConstantProperty(E3, PropertyID.PID_YoungModulus3, ValueType.Scalar, 'MPa')) pnu12 = workflow.setProperty(Property.ConstantProperty(nu12, PropertyID.PID_PoissonRatio12, ValueType.Scalar, PQ.getDimensionlessUnit())) pnu13 = workflow.setProperty(Property.ConstantProperty(nu13, PropertyID.PID_PoissonRatio13, ValueType.Scalar, PQ.getDimensionlessUnit())) pnu23 = workflow.setProperty(Property.ConstantProperty(nu23, PropertyID.PID_PoissonRatio23, ValueType.Scalar, PQ.getDimensionlessUnit())) pG12 = workflow.setProperty(Property.ConstantProperty(G12, PropertyID.PID_ShearModulus12, ValueType.Scalar, 'MPa')) pG13 = workflow.setProperty(Property.ConstantProperty(G13, PropertyID.PID_ShearModulus13, ValueType.Scalar, 'MPa')) pG23 = workflow.setProperty(Property.ConstantProperty(G23, PropertyID.PID_ShearModulus23, ValueType.Scalar, 'MPa')) pRho = workflow.setProperty(Property.ConstantProperty(rho, PropertyID.PID_Density, ValueType.Scalar, 'ton/mm**3')) # solve workflow workflow.solve() # get workflow outputs time = PQ.PhysicalQuantity(1.0, 's') # collect MUL2 outputs #KPI 1-1 weight weight = workflow.getProperty(PropertyID.PID_Mass, time).inUnitsOf('kg').getValue() log.info("Requested KPI : Weight: " + str(weight) + ' kg') #KPI 1-2 buckling load bucklingLoad = workflow.getProperty(PropertyID.PID_CriticalLoadLevel, time).inUnitsOf('N').getValue() log.info("Requested KPI : Buckling Load: " + str(bucklingLoad) + ' N') workflow.terminate() log.info("Process complete") if not debug: # Importing output to database ImportHelper = miu.Importer("MI_Composelector", "Inputs-Outputs", ["Inputs/Outputs"]) ImportHelper.CreateAttribute("Execution ID", execID, "") ImportHelper.CreateAttribute("Buckling Load", buckLoad, "N") return ImportHelper except APIError.APIError as err: print ("Mupif API for Scenario error: " + repr(err)) workflow.terminate() except Exception as err: print ("Error: " + repr(err)) workflow.terminate() except: print ("Unknown error.") workflow.terminate() if __name__=='__main__': workflow(0,0)
[ "nitramkaroh@seznam.cz" ]
nitramkaroh@seznam.cz
76cd052ef18943eae6f0c461c344715be186a795
3024cafafbfc75193105af7f225d3b12eb2aea46
/DjangoProjects/project51/project49/urls.py
56c44854fe3856264652ba6f6bf223a7ab1c345e
[]
no_license
jaishankarg24/Django-Rest-Framework
33266f6825d51abb8a512426baedf59f2ee957c8
809ee9208ffbef4202a8f4058a84f5322793af52
refs/heads/master
2023-03-02T20:56:38.051060
2021-02-12T05:37:48
2021-02-12T05:37:48
338,233,009
0
0
null
null
null
null
UTF-8
Python
false
false
847
py
"""project49 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, re_path from testapp import views urlpatterns = [ path('admin/', admin.site.urls), re_path(r'^(?P<pk>\d+)/$', views.BookClass.as_view()), ]
[ "jaishankarg24@gmail.com" ]
jaishankarg24@gmail.com
7f1a854cba3d9439a93ad06764b73667bb5fc299
bb04d91ffb856c6660f7066f091c4179ed505456
/Elementary/FirstWordSimplified.py
bd7559b159197dd17e8d85c97cf15f0f77462719
[]
no_license
tirsodelalamo/Checkio-Python
b7ca52072a60b6d90d2f39a6577c89528faaf3a0
1e791201da223cf1f43271cc502733e74a874f6c
refs/heads/master
2021-04-03T14:04:54.457640
2020-05-14T10:56:52
2020-05-14T10:56:52
251,434,379
1
0
null
null
null
null
UTF-8
Python
false
false
505
py
def first_word(text: str) -> str: """ returns the first word in a given text. """ # your code here return text.split()[0] if __name__ == '__main__': print("Example:") print(first_word("Hello world")) # These "asserts" are used for self-checking and not for an auto-testing assert first_word("Hello world") == "Hello" assert first_word("a word") == "a" assert first_word("hi") == "hi" print("Coding complete? Click 'Check' to earn cool rewards!")
[ "tirsodelalamomartin@gmail.com" ]
tirsodelalamomartin@gmail.com
2e817e3cfa827b9fe6f262cb0092f0009813a60b
98dd8499f692775972665752c1e5be5dccc2ea6d
/scripts/uknPSF_ANN.py
5c4a1758a947036de9fd131fee5e6db5e4680993
[ "MIT" ]
permissive
kuntzer/binfind
850bc51342a8b36def775e9a683706ddb46e5b11
28f9cf9474e6b39a55a1a22d19ca8131a0408c84
refs/heads/master
2021-01-12T14:45:49.617155
2017-05-30T15:02:27
2017-05-30T15:02:27
72,079,802
0
0
null
null
null
null
UTF-8
Python
false
false
10,815
py
import itertools import matplotlib.pyplot as plt import numpy as np import os import binfind import utils as u import logging logging.basicConfig(format='%(asctime)s %(levelname)s: %(name)s(%(funcName)s): %(message)s', level=logging.DEBUG) n_exposures = 4 binfind.plots.figures.set_fancy() ################################################################################################### ### PARAMETERS ## Simulation parameters # Minimum separation of the stars to be qualified as binaries crits_angsep = np.linspace(0.001, 0.015, 15) # Max contrast to be qualified as binaries crits_contrast = np.linspace(0.1, 1.5, 15) # Number of times to do the whfname_interpolationole analysis n_training = 25 n_validation = 5 n_test = 15 # Number of stars per field n_stars = 280 # Bin fraction to reach bin_fraction = 0.3 # Outdir outdir = 'data/binfind_percent_meas/ukn_PSF_ann' ## Observables and quality parameters # Stellar catalogue path and parameters star_catalogues_path = '/home/kuntzer/workspace/Blending_PSF_Euclid/data/BGM/' l, b = (180, 15) # Path to interpolation file fname_interpolation = 'data/measurements/interpolations.pkl' # Path to fiducial position in x y of psf file fname_fiducial = 'psf_fields/psf_ellip_gs.dat' # Brightest magnitude observable m_min = 18 # faintest mag observable m_max = 24.5 ## Exposures parameters # Number of stars per fields # What are the requirements on the reconstruction for a single star? ei_max_error = 1e-2 # = 1% error r2_max_error = 5e-2 # = 5% error # What is the wanted False Positive Rate ? (in fraction) thr_fpr = 0.1 recovery_n_inter = 2 recovery_n_neighbour = 10 # Thresholds for the star/multiple star classification thresholds = np.logspace(-8, 0, 1000) # Show figures after each criteria ? show = False ################################################################################################### ### INITIALISATION if len(crits_angsep) == 1 and len(crits_contrast) == 1: single_exp = True else: f1_per_crit = [] lim_per_crit = [] single_exp = False criteria = list(itertools.product(*[crits_angsep, crits_contrast])) #data = blutil.load_bmg(os.path.join(star_catalogues_path, 'star_field_BGM_i_%d_%d_%d' % (l, b, fid)), main_sequence=True) previous_sep = -1 data = None psf_positions = np.loadtxt(fname_fiducial) x_psf = psf_positions[:,0] y_psf = psf_positions[:,1] min_x_psf = np.amin(x_psf) min_y_psf = np.amin(y_psf) max_x_psf = np.amax(x_psf) max_y_psf = np.amax(y_psf) euclid = binfind.simulation.Observations(ei_max_error, r2_max_error, fname_interpolation, fname_fiducial) for iix, (crit_angsep, crit_contrast) in enumerate(criteria): mlparams = binfind.classifier.MLParams(name = "{:d}".format(int(crit_angsep * 1e3)), features = range(15), labels = range(1)) toolparams = binfind.classifier.fannwrapper.FANNParams(name = "{:1.1f}".format(crit_contrast), hidden_nodes = [15,15,15], max_iterations = 2000) ml_class = binfind.classifier.ML(mlparams, toolparams, workbasedir=os.path.join(outdir, 'ann')) results_train = {'ann':[]} results_test = {'ann':[]} fids = u.get_id_catalogs(crit_angsep, crit_contrast) if len(fids) != previous_sep: previous_sep = len(fids) data = None for fid in fids: fname = os.path.join(star_catalogues_path, 'star_field_BGM_i_%d_%d_%d' % (l, b, fid)) datal = binfind.utils.load_bmg(fname, main_sequence=True) if data is None: data = datal else: data = np.vstack([data,datal]) print "=" * 60 print "Running experiments on alpha > %0.4f, contrast < %0.1f --- (%d/%d)" % (crit_angsep, crit_contrast, iix+1, len(criteria)) sim_cat = binfind.simulation.Catalog(crit_angsep, crit_contrast) features = None ################################################################################################### ### CORE OF CODE """ for ith_experience in range(n_training): print '>> REALISATION %d/%d <<' % (ith_experience + 1, n_training) stars_to_observe, feature, fiducials = u.get_knPSF_realisation(data, sim_cat, euclid, n_exposures, \ m_min, m_max, bin_fraction, return_pos=True, relerr=False) feature = np.hstack([fiducials, feature]) if features is None: features = feature star_char = stars_to_observe else: features = np.vstack([features, feature]) star_char = np.vstack([star_char, stars_to_observe]) binary_stars = star_char[:,0] ############################################################################################### ### Training ml_class.train(binary_stars, features) # Testing the training, just to get an idea proba = ml_class.predict(features) ann_roc_params = binfind.diagnostics.test_thresholds(binary_stars, proba, thresholds) ann_preds = ml_class.predict(features) ann_metr = binfind.diagnostics.get_metrics(binary_stars, ann_preds) auc_ann = binfind.diagnostics.auc(ann_roc_params) print 'AUC training ANN:', auc_ann print 'TPR:', ann_metr[0] print 'FPR:', ann_metr[1] print 'F1:', ann_metr[2] results_train["ann"].append(np.concatenate([[crit_angsep, crit_contrast], [0.0], ann_metr, [auc_ann]])) ############################################################################################### # Validation for ith_experience in range(n_test): print '>> REALISATION %d/%d <<' % (ith_experience + 1, n_test) stars_to_observe, feature, fiducials = u.get_knPSF_realisation(data, sim_cat, euclid, n_exposures, \ m_min, m_max, bin_fraction, return_pos=True, relerr=False) feature = np.hstack([fiducials, feature]) if features is None: features = feature star_char = stars_to_observe else: features = np.vstack([features, feature]) star_char = np.vstack([star_char, stars_to_observe]) binary_stars = star_char[:,0] ## Random forest proba_ann = ml_class.predict_proba(features) ann_roc_params = binfind.diagnostics.test_thresholds(binary_stars, proba_ann, thresholds) auc_ann = binfind.diagnostics.auc(ann_roc_params) ann_preds, _ = ml_class.predict(features) ann_metr = binfind.diagnostics.get_metrics(binary_stars, ann_preds) print 'AUC testing ANN:', auc_ann print 'TPR:', ann_metr[0] print 'FPR:', ann_metr[1] print 'F1:', ann_metr[2] fig = plt.figure() ax = plt.subplot() labels = ['ANN'] #for line in acf_rocs: # print line[:3] binfind.plots.roc(ax, [ ann_roc_params], metrics=[ann_roc_params[:,3]], metrics_label=r"$F_1\ \mathrm{score}$", labels=labels) figfname = os.path.join(outdir, "figures", "roc_sep{:.0f}_con{:.0f}".format(crit_angsep*1e3, crit_contrast*10)) binfind.plots.figures.savefig(figfname, fig, fancy=True, pdf_transparence=True) if show: plt.show() plt.close() """ ############################################################################################### ## Training with PSF reconstruct features = None gnd_truth = None for ith_experience in range(n_training): print '>> REALISATION %d/%d <<' % (ith_experience + 1, n_training) stars_to_observe = u.get_uknPSF_realisation(data, sim_cat, euclid, n_exposures, \ m_min, m_max, n_stars, bin_fraction) feature = euclid.get_reconstruct_fields(recovery_n_inter, recovery_n_neighbour, eps=0, truth=stars_to_observe[:,0], return_proba=True, relerr=False) if features is None: features = feature gnd_truth = stars_to_observe[:,0] else: features = np.vstack([features, feature]) gnd_truth = np.concatenate([gnd_truth, stars_to_observe[:,0]]) print gnd_truth.shape print features.shape ml_class.train(gnd_truth, features) # Testing the training, just to get an idea proba = ml_class.predict(features) ann_roc_params = binfind.diagnostics.test_thresholds(gnd_truth, proba, thresholds) ann_preds = ml_class.predict(features) ann_metr = binfind.diagnostics.get_metrics(gnd_truth, ann_preds) auc_ann = binfind.diagnostics.auc(ann_roc_params) print 'AUC training ANN:', auc_ann print 'TPR:', ann_metr[0] print 'FPR:', ann_metr[1] print 'F1:', ann_metr[2] results_train["ann"].append(np.concatenate([[crit_angsep, crit_contrast], [0.5], ann_metr, [auc_ann]])) ############################################################################################### ## Validation idlims = [] for ith_experience in range(n_validation): print '>> REALISATION %d/%d <<' % (ith_experience + 1, n_validation) stars_to_observe = u.get_uknPSF_realisation(data, sim_cat, euclid, n_exposures, \ m_min, m_max, n_stars, bin_fraction) # ANN ann_preds, proba_ann = euclid.reconstruct_fields(ml_class, recovery_n_inter, recovery_n_neighbour, eps=0, truth=stars_to_observe[:,0], return_proba=True, relerr=False) ann_roc_params = binfind.diagnostics.test_thresholds(stars_to_observe[:,0], proba_ann, thresholds) idlims.append(binfind.utils.find_nearest(ann_roc_params[:,2], thr_fpr)) print idlims idlim = int(np.median(idlims)) print idlim thr = ann_roc_params[idlim, 0] ml_class.set_threshold(thr) print ml_class.threshold ############################################################################################### ## Testing feature = None ann_res = [] ann_rocs = None for ith_experience in range(n_test): print '>> REALISATION %d/%d <<' % (ith_experience + 1, n_test) stars_to_observe = u.get_uknPSF_realisation(data, sim_cat, euclid, n_exposures, \ m_min, m_max, n_stars, bin_fraction) # ANN ann_preds, proba_ann = euclid.reconstruct_fields(ml_class, recovery_n_inter, recovery_n_neighbour, eps=0, truth=stars_to_observe[:,0], return_proba=True, relerr=False) ann_roc_params = binfind.diagnostics.test_thresholds(stars_to_observe[:,0], proba_ann, thresholds) ann_metr = binfind.diagnostics.get_metrics(stars_to_observe[:,0], ann_preds) auc_ann = binfind.diagnostics.auc(ann_roc_params) print 'AUC testing ANN:', auc_ann ann_res.append(np.concatenate([[crit_angsep, crit_contrast], [ml_class.threshold], ann_metr, [auc_ann]])) if ann_rocs is None: ann_rocs = ann_roc_params else: ann_rocs += ann_roc_params ann_res = np.array(ann_res) ann_rocs /= n_test if n_test > 1: ann_res = np.mean(ann_res, axis=0) results_test["ann"].append(ann_res) ### Plotting fig = plt.figure() ax = plt.subplot() labels = ['ANN'] binfind.plots.roc(ax, [ ann_rocs], metrics=[ann_rocs[:,3]], metrics_label=r"$F_1\ \mathrm{score}$", labels=labels) figfname = os.path.join(outdir, "figures", "roc_sep{:.0f}_con{:.0f}".format(crit_angsep*1e3, crit_contrast*10)) binfind.plots.figures.savefig(figfname, fig, fancy=True, pdf_transparence=True) if show: plt.show() plt.close() for key in results_train: results_train[key] = np.array(results_train[key]) results_test[key] = np.array(results_test[key]) binfind.utils.writepickle([results_train, results_test], os.path.join(outdir, "results_{:d}_{:1.1f}.pkl".format(int(crit_angsep*1e3), crit_contrast)))
[ "thibault.kuntzer@epfl.ch" ]
thibault.kuntzer@epfl.ch
e5c91c7fd1bd25cc3f7f768d48043b34c72f92c9
1900a250ac0544a1dfa64334d5d84e13d754c657
/django_back_end/auto_smart_graph/smart_backend/graph_provider/urls.py
5eb2f1ffd9c6f91b163d06cd1bdf8a288c76d846
[ "MIT" ]
permissive
hjellison/AutoKnowledge
8a4a0e23feb3edc8d5e6419b6b8328a3dd926314
561a3703d5be0639ef76d0b4f8866c32bd9d7ec1
refs/heads/master
2022-02-20T02:19:12.403123
2019-01-08T17:19:10
2019-01-08T17:19:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
# -*- coding: utf-8 -*- from django.conf.urls import url import graph_provider.services as services """为webservice分配url""" urlpatterns = [ url(r'^query/$', services.fetch_data), ]
[ "guitarmonyz@gmail.com" ]
guitarmonyz@gmail.com
39edc2c652c3cfae8486b41bcca3f97222ca09ff
ec690eb923d6fc76acd69f27d5a25f00ac763b7d
/Compare the SMT and MILP for Job shop scheduling/Optimization problem/job shop (disjunctive graph model)-Cplex IBM.py
6d0f32980e03766f9cb081801a8ec458c01f732e
[]
no_license
CTU-IIG/LSP_SMT_Machine_learning
60af8bedd49cc7c38becb1031d8c237cdd92ff66
4dfa5bad5b7f1625c0bc6a2d2ac67d7978cba192
refs/heads/master
2020-10-01T23:57:27.138047
2020-08-26T13:23:38
2020-08-26T13:23:38
227,652,141
0
1
null
2019-12-13T14:26:02
2019-12-12T16:41:32
null
UTF-8
Python
false
false
2,318
py
from docplex.mp.model import Model from docplex.util.environment import get_environment import os # ---------------------------------------------------------------------------- # Initialize the problem data # ---------------------------------------------------------------------------- filename = os.path.dirname(os.path.abspath(__file__)) + "/data/jobshop_j100_m10-D.data" with open(filename, "r") as file: NB_JOBS, NB_MACHINES = [int(v) for v in file.readline().split()] JOBS = [[int(v) for v in file.readline().split()] for i in range(NB_JOBS)] #----------------------------------------------------------------------------- # Prepare the data for modeling #----------------------------------------------------------------------------- MACHINES = [[JOBS[j][2 * s] for s in range(NB_MACHINES)] for j in range(NB_JOBS)] DURATION = [[JOBS[j][2 * s + 1] for s in range(NB_MACHINES)] for j in range(NB_JOBS)] A=[(j,o) for j in range(NB_JOBS) for o in range(NB_MACHINES) if MACHINES[j][o]<=NB_MACHINES] B=[(j,o,jj,oo) for j,o in A for jj,oo in A if (j,o)!=(jj,oo) and (MACHINES[j][o]==MACHINES[jj][oo] or MACHINES[j][o]==NB_MACHINES or MACHINES[jj][oo]==NB_MACHINES) and MACHINES[j][o]<=NB_MACHINES and MACHINES[jj][oo]<=NB_MACHINES] G=10000 # ---------------------------------------------------------------------------- # Build the model # ---------------------------------------------------------------------------- mdl = Model('disjunctive_graph') s= mdl.continuous_var_dict(A,name='s') y=mdl.binary_var_dict(B,name='y') c_t=mdl.continuous_var_dict([(j) for j in range(NB_JOBS) if j<NB_JOBS-1],name='completion time') z=mdl.minimize(mdl.sum(c_t[j] for j in range(NB_JOBS) if j<NB_JOBS-1)) mdl.add_constraints((y[j,o,jj,oo]+y[jj,oo,j,o]==1) for j,o,jj,oo in B) mdl.add_constraint(mdl.sum(y[j,o,NB_JOBS-1,0] for j,o in A if (j,o)!=(NB_JOBS-1,0))<=0) mdl.add_constraint(mdl.sum(y[NB_JOBS-1,1,j,o] for j,o in A if (j,o)!=(NB_JOBS-1,1))<=0) mdl.add_constraints((s[j,o]-s[j,o-1]-DURATION[j][o-1]>=0) for j,o in A if o>0 and j<NB_JOBS-1) mdl.add_constraints((s[j,o]-s[jj,oo]-DURATION[jj][oo]+(1-y[jj,oo,j,o])*G>=0) for j,o,jj,oo in B) mdl.add_constraints((c_t[j]-s[j,NB_MACHINES-1]-DURATION[j][NB_MACHINES-1]>=0) for j in range(NB_JOBS) if j<NB_JOBS-1) solution= mdl.solve(log_output=True) print(solution)
[ "Rohanmoh@users.noreply.github.com" ]
Rohanmoh@users.noreply.github.com
168afb92f5871535bc501a9436acf2551621e45e
3c821e371b6b079f42710e88b68d967579193315
/apps/dashboard/helpers.py
dce8147d03ae7b89dd6a6070a8d19492fe1efbfc
[]
no_license
prafulbagai/grabhalo
883991082043fb06a9b95b22838fd7459c9e2fce
374a1dadc8a53621cf01149ee0c0d3e998922770
refs/heads/master
2021-01-10T19:00:12.851476
2013-11-15T04:44:56
2013-11-15T04:44:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
769
py
import datetime from apps.data.models import * def send_query(request,selected_users,query): date_time = datetime.datetime.now() web_query_data = WebQuery.objects.all() user_id = GrabhaloUser.objects.filter(user_id = request.user.id)[0].id if not web_query_data: c_id = 0 else: for data in web_query_data: c_id = data.conversation_id web_query = WebQuery.objects.create(user_id = user_id, sent_to = selected_users, user_query = query,date_time = date_time, conversation_id = c_id + 1) web_query.save() for user in selected_users : web_reply = WebReply.objects.create(user_id = user_id, sent_to = user, chat = query, conversation_id = c_id +1, date_time = date_time) web_reply.save()
[ "praful.bagai1991@gmail.com" ]
praful.bagai1991@gmail.com
80337020802ca9fd802f8ae2cfdf0b3637aa4160
e05f2ac4d37becd314082d558fc737b85f71d56d
/conf.py
a45f47df0a4cbbbb7335a4ce79897d2e19875f00
[]
no_license
QMickael/abilian-developer-guide
bebef4987ecc91a60c9327011e540e3fa4e235fc
0f0432f00ccad74aeb4006bc7ec8af3557bedaab
refs/heads/master
2020-07-09T08:17:32.629372
2016-11-17T11:45:49
2016-11-17T11:45:49
74,018,558
0
0
null
2016-11-17T10:59:38
2016-11-17T10:59:38
null
UTF-8
Python
false
false
10,985
py
# -*- coding: utf-8 -*- # # Abilian Developer Guide documentation build configuration file, created by # sphinx-quickstart on Mon Feb 23 23:47:37 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.todo', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Abilian Developer Guide' copyright = u'2015, Stefane Fermigier' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '2015.3' # The full version, including alpha/beta/rc tags. release = '2015.3' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # otherwise, readthedocs.org uses their theme by default, so no need to specify it #import sphinx_readable_theme #html_theme_path = [sphinx_readable_theme.get_html_theme_path()] #html_theme = 'readable' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'AbilianDeveloperGuidedoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'AbilianDeveloperGuide.tex', u'Abilian Developer Guide Documentation', u'Stefane Fermigier', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'abiliandeveloperguide', u'Abilian Developer Guide Documentation', [u'Stefane Fermigier'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'AbilianDeveloperGuide', u'Abilian Developer Guide Documentation', u'Stefane Fermigier', 'AbilianDeveloperGuide', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'Abilian Developer Guide' epub_author = u'Stefane Fermigier' epub_publisher = u'Stefane Fermigier' epub_copyright = u'2015, Stefane Fermigier' # The basename for the epub file. It defaults to the project name. #epub_basename = u'Abilian Developer Guide' # The HTML theme for the epub output. Since the default themes are not optimized # for small screen space, using the same theme for HTML and epub output is # usually not wise. This defaults to 'epub', a theme designed to save visual # space. #epub_theme = 'epub' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # A sequence of (type, uri, title) tuples for the guide element of content.opf. #epub_guide = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Choose between 'default' and 'includehidden'. #epub_tocscope = 'default' # Fix unsupported image types using the PIL. #epub_fix_images = False # Scale large images. #epub_max_image_width = 0 # How to display URL addresses: 'footnote', 'no', or 'inline'. #epub_show_urls = 'inline' # If false, no index is generated. #epub_use_index = True
[ "sf@fermigier.com" ]
sf@fermigier.com
2234facacdd73c0c307317c6f99846c445f65e0e
583e87b01151fa9cdcf6146ad1cfa0a9be7483f0
/test/machine/KNN.py
212274ec80ef5ba2da4c4072625a7e3643090d9d
[]
no_license
IRH01/snake
0f9063da27104b51c9c6400ee0ae0d21061542a6
adba7389f340ba1dd3f2d41df6dba8508a809434
refs/heads/master
2021-01-16T20:37:20.562565
2018-10-09T03:58:29
2018-10-09T03:58:29
62,103,752
0
0
null
null
null
null
UTF-8
Python
false
false
210
py
#!/usr/bin/python # -*- coding: UTF-8 -*- from array import array def createDataSet(): group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) labels = ['A', 'A', 'B', 'B'] return group, labels
[ "renh@dtds.com.cn" ]
renh@dtds.com.cn
917c3822abace0c2821005d30b4bad8758f5a716
7c35adf38ef567757336db5b17ff3dc7da4785c4
/kernelSvm.py
901bb5b03b62c7f1bbf956c7f3743eeacb8455e7
[]
no_license
lex624/MLclassificationModels
00fc577aeab881dd9a0762bbe2e9fabfab26954a
e0d37b3c5fb4c332193b811c0deae3496d9f78a8
refs/heads/master
2022-12-17T14:23:59.988214
2020-09-16T11:26:51
2020-09-16T11:26:51
296,010,319
0
0
null
null
null
null
UTF-8
Python
false
false
2,629
py
# Kernel SVM # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, -1].values # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # Training the Kernel SVM model on the Training set from sklearn.svm import SVC classifier = SVC(kernel = 'rbf', random_state = 0) classifier.fit(X_train, y_train) # Predicting the Test set results y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) print(cm) # Visualising the Training set results from matplotlib.colors import ListedColormap X_set, y_set = X_train, y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Kernel SVM (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show() # Visualising the Test set results from matplotlib.colors import ListedColormap X_set, y_set = X_test, y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Kernel SVM (Test set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()
[ "36929005+lex624@users.noreply.github.com" ]
36929005+lex624@users.noreply.github.com
2f2b0aea171d99911f7b4b61ba6b9d5ba00a473f
689670446bfacf0dfaaeca072c6328e34bb603b7
/solutions/5/guillaume/scheduler_superconvergence_09J.py
f3de3f7c7556b0475c2be461a13e0b87e6f578d9
[ "MIT" ]
permissive
xiemeigongzi/champs_kaggle
edb0aa870b6380f6585ab83cd9f4d3881dae9781
fda4f213d02fd5e0138a86c52b4140c9f94fec6e
refs/heads/master
2022-11-17T15:27:36.662280
2020-07-15T13:13:06
2020-07-15T13:13:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,853
py
import math import pandas as pd import numpy as np class CosineAnnealing: def __init__(self, step_start, step_end, lr_start, lr_end): self.step_start = step_start self.step_end = step_end self.lr_start = lr_start self.lr_end = lr_end def get(self, step): if step >= self.step_start and step <= self.step_end: lr = ( self.lr_end + 0.5 * (self.lr_start - self.lr_end) * (1 + math.cos((step - self.step_start) / (self.step_end - self.step_start) * math.pi)) ) else: lr = None return lr def plot(self, **kwargs): lrs = [] index = [] for step in range(self.step_start, self.step_end): lr = self.get(step) if lr is not None: lrs.append(self.get(step)) index.append(step) lrs = pd.Series(lrs, index = index, name = 'lr') lrs.index.name = 'step' lrs.plot(**kwargs) class LinearScheduler: def __init__(self, step_start, step_end, lr_start, lr_end): self.step_start = step_start self.step_end = step_end self.lr_start = lr_start self.lr_end = lr_end def get(self, step): if step >= self.step_start and step <= self.step_end: lr = self.lr_start + (self.lr_end - self.lr_start) * (step - self.step_start) / (self.step_end - self.step_start) else: lr = None return lr def plot(self, **kwargs): lrs = [] index = [] for step in range(self.step_start, self.step_end): lr = self.get(step) if lr is not None: lrs.append(self.get(step)) index.append(step) lrs = pd.Series(lrs, index = index, name = 'lr') lrs.index.name = 'step' lrs.plot(**kwargs) class MixedScheduler: def __init__(self, schedulers): self.schedulers = sorted(schedulers, key = lambda s : s.step_start) self.step_start = self.schedulers[0].step_start self.step_end = self.schedulers[-1].step_end def get(self, step): lr = None for scheduler in self.schedulers: scheduler_lr = scheduler.get(step) if scheduler_lr is not None: lr = scheduler_lr return lr def plot(self, **kwargs): lrs = [] index = [] for step in range(self.step_start, self.step_end): lr = self.get(step) if lr is not None: lrs.append(self.get(step)) index.append(step) lrs = pd.Series(lrs, index = index, name = 'lr') lrs.index.name = 'step' lrs.plot(**kwargs) class ExpScheduler: def __init__(self, step_start, step_end, lr_start, lr_end): self.step_start = step_start self.step_end = step_end self.lr_start = lr_start self.lr_end = lr_end self.factor_delta = self.lr_end / self.lr_start self.step_delta = self.step_end - self.step_start self.factor = np.exp(np.log(self.factor_delta) / self.step_delta) def get(self, step): if step >= self.step_start and step <= self.step_end: step_delta = step - self.step_start lr = self.lr_start * self.factor ** step_delta else: lr = None return lr def plot(self, **kwargs): lrs = [] index = [] for step in range(self.step_start, self.step_end): lr = self.get(step) if lr is not None: lrs.append(self.get(step)) index.append(step) lrs = pd.Series(lrs, index = index, name = 'lr') lrs.index.name = 'step' lrs.plot(**kwargs)
[ "larsbratholm@gmail.com" ]
larsbratholm@gmail.com
f96c7bed2103f0d0226c011abf234a228c1e8afd
cd6d278443ac4a64af0954c9b8af3b8f0be06b45
/AnimalsShop/wsgi.py
682110bb553d97127e594eeb42012c13dc734b09
[]
no_license
IlyasNugaev000/HappyPet
eecca2656690daa3aab26f4de1a1d92303be873e
1c99b3b6d50f38461f8b8007f896a9d66b971350
refs/heads/master
2023-05-30T21:55:10.015925
2021-06-11T07:02:01
2021-06-11T07:02:01
375,980,120
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for AnimalsShop project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'AnimalsShop.settings') application = get_wsgi_application()
[ "ilyas-nugaev@mail.ru" ]
ilyas-nugaev@mail.ru
918361fe7ccc6b8702e3b92faba463d9772ca61f
e82b761f53d6a3ae023ee65a219eea38e66946a0
/All_In_One/addons/Jet/common_utils.py
ebb04ce3493f13c055cc5e8a5ee1b2ea5ac90d8e
[]
no_license
2434325680/Learnbgame
f3a050c28df588cbb3b14e1067a58221252e2e40
7b796d30dfd22b7706a93e4419ed913d18d29a44
refs/heads/master
2023-08-22T23:59:55.711050
2021-10-17T07:26:07
2021-10-17T07:26:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,496
py
import bpy, sys from . import bl_info def get_id(object): if "id" not in object.keys(): object["id"] = str(hash(object)) return object["id"] def select_obj_exclusive(obj, edit_mode = False): bpy.context.scene.objects.active = obj bpy.ops.object.mode_set(mode="OBJECT") bpy.ops.object.select_all(action='DESELECT') obj.select = True if edit_mode: bpy.ops.object.mode_set(mode="EDIT") def update_progress(job_title, progress, processingObj): length = 50 block = int(round(length*progress)) msg = "\r{0}: [{1:50s}] {2:3.2f}%".format(job_title, "#"*block + "-"*(length-block), round(progress*100, 2)) if progress < 1: msg += " -> Obj: {0:50s}".format(processingObj) else: msg += "{0:50s}".format("") msg += ("\n" + job_title + " -> DONE\r\n") sys.stdout.write(msg) sys.stdout.flush() def apply_to_selected(context, func, keep_mode = True, keep_selection = True, keep_active = True, value = None, verbose = False): sel_objs = context.selected_objects active_obj = context.active_object mode = None if active_obj is None or active_obj.type != "MESH" else active_obj.mode numObjs = len(sel_objs) if numObjs == 0: return None if verbose: count = 1 print("") if mode == 'EDIT': func(active_obj) if value is None else func(active_obj, value) else: for obj in sel_objs: try: func(obj) if value is None else func(obj, value) except: break if verbose: update_progress(func.__name__, count / numObjs, obj.name) count = count + 1 bpy.ops.object.mode_set(mode="OBJECT") #bpy.ops.object.select_all(action='DESELECT') if keep_selection: for obj in reversed(sel_objs): obj.select = True if keep_active: if hasattr(context, "scene"): context.scene.objects.active = active_obj if keep_mode and mode is not None: bpy.ops.object.mode_set(mode=('EDIT' if mode=='EDIT' else 'OBJECT')) def get_mesh_objs_selected(context): return [obj for obj in context.selected_objects if obj.type == 'MESH'] def any_mesh_obj_selected(context): return len(get_mesh_objs_selected(context)) > 0 def redraw(context): if hasattr(context, "area") and context.area is not None: context.area.tag_redraw() def redraw(): for area in bpy.context.screen.areas: if area.type in ['VIEW_3D']: area.tag_redraw() def get_addon_name(): return bl_info["name"] def get_preferences(context): addon_name = get_addon_name() return context.user_preferences.addons[addon_name].preferences def shorten_key_modifier(context, key): if key == 'LEFTMOUSE': return 'LMB' elif key == 'RIGHTMOUSE': return 'RMB' elif key == 'MIDDLEMOUSE': return 'MMB' elif key == 'SELECTMOUSE': if context.user_preferences.inputs.select_mouse == 'LEFT': return 'LMB' else: return 'RMB' elif key == 'ACTIONMOUSE': if context.user_preferences.inputs.select_mouse == 'LEFT': return'RMB' else: return 'LMB' else: return key def get_hotkey(context, keymap_item): wm = context.window_manager item = None #wm.keyconfigs.active.keymaps['Mesh'].keymap_items for km in wm.keyconfigs.user.keymaps: for kmi in km.keymap_items: if kmi.active and kmi.idname == keymap_item: item = kmi break if item is None: for km in wm.keyconfigs.addon.keymaps: for kmi in km.keymap_items: if kmi.active and kmi.idname == keymap_item: item = kmi break if item is None: for km in wm.keyconfigs.active.keymaps: for kmi in km.keymap_items: if kmi.active and kmi.idname == keymap_item: item = kmi break if item is None: return "" hotkey = "" if item.ctrl: hotkey = hotkey + "Ctrl+" if item.alt: hotkey = hotkey + "Alt+" if item.shift: hotkey = hotkey + "Shift+" if item.oskey: hotkey = hotkey + "OSkey+" if item.key_modifier != 'NONE': hotkey = hotkey + shorten_key_modifier(context, item.key_modifier) + "+" return hotkey + shorten_key_modifier(context, item.type)
[ "root@localhost.localdomain" ]
root@localhost.localdomain
a558cec8621f8f9edd1a20c78659c0cef87aa908
b161ebfe06c22a2f18ac27695cf56ad283d037f1
/scrimp/provisioner.py
45bc62967cfc63c0456607dfd53e8c619075108b
[]
no_license
globus-labs/SCRIMP
afb0e335959e7c1436ce88a8176a284156cc85fd
0aada1fe9fff0827e44771bf983e722eb40b09b6
refs/heads/master
2021-01-02T22:41:38.919422
2017-08-09T20:47:40
2017-08-09T20:47:40
99,370,330
1
0
null
null
null
null
UTF-8
Python
false
false
26,117
py
import psycopg2 import datetime import calendar import time # import sys from decimal import * import requests from scrimp import logger, ProvisionerConfig, tenant, scheduler from scrimp.cloud import aws from scrimp.cloud import simaws from scrimp.scheduler.condor.condor_scheduler import CondorScheduler from scrimp.scheduler.simfile.sim_scheduler import SimScheduler class Provisioner(object): """ A provisioner for cloud resources. Cost effectively acquires and manages instances. """ def __init__(self): self.tenants = [] self.drafts_mapping = {'us-east-1a': 'us-east-1e', 'us-east-1b': 'us-east-1d', 'us-east-1c': 'us-east-1a', 'us-east-1d': 'us-east-1b', 'us-east-1e': 'us-east-1c', } # Read in any config data and set up the database connection ProvisionerConfig() def run(self): """ Run the provisioner. This should execute periodically and determine what actions need to be taken. """ self.run_iterations = 0 # self.simulate = False if ProvisionerConfig().simulate: self.sched = SimScheduler() ProvisionerConfig().load_instance_types() self.load_drafts_data() while True: self.run_iterations = self.run_iterations + 1 # Load jobs t1 = datetime.datetime.now() start_time = datetime.datetime.now() self.load_tenants_and_jobs() t2 = datetime.datetime.now() # Simulate the world (mostly tidy things up and print stats) ProvisionerConfig().simulator.simulate(self.tenants) t3 = datetime.datetime.now() self.sched.process_idle_jobs(self.tenants) tx = datetime.datetime.now() # Simulate Condor ProvisionerConfig().simulator.run_condor(self.tenants) t4 = datetime.datetime.now() # Simulate AWS ProvisionerConfig().simulator.run_aws() t5 = datetime.datetime.now() # Check if it should finish executing (e.g. jobs and # resources all terminated) if ProvisionerConfig().simulator.check_finished(): break self.manage_resources() t6 = datetime.datetime.now() if ((ProvisionerConfig().simulate_time - ProvisionerConfig().sim_time).total_seconds() % ProvisionerConfig().run_rate == 0): self.provision_resources() t7 = datetime.datetime.now() load_time = (t2 - t1).total_seconds() sim_time = (t3 - t2).total_seconds() proc_idle_time = (tx - t3).total_seconds() condor_time = (t4 - tx).total_seconds() aws_time = (t5 - t4).total_seconds() manage_time = (t6 - t5).total_seconds() prov_time = (t7 - t6).total_seconds() # Otherwise, step through time ProvisionerConfig().simulate_time = ProvisionerConfig( ).simulate_time + datetime.timedelta(seconds=2) logger.debug("RUN ID: %s. SIMULATION: advancing time " "2 second" % ProvisionerConfig().run_id) logger.debug("SIMULATION times: load (%s), sim (%s)," " proc_idle (%s), condor (%s), aws (%s)," " manage (%s), prov (%s)" % ( load_time, sim_time, proc_idle_time, condor_time, aws_time, manage_time, prov_time)) else: self.sched = CondorScheduler() while True: self.run_iterations = self.run_iterations + 1 # Get the tenants from the database and process the current # condor_q. Also assign those jobs to each tenant. start_time = datetime.datetime.now() self.load_tenants_and_jobs() # provisioning will fail if there are no tenants if len(self.tenants) > 0: # Handle all of the existing requests. This will cancel # or migrate excess requests and update the database to # reflect the state of the environment self.manage_resources() # Work out the price for each instance type and acquire # resources for jobs self.provision_resources() # wait "run_rate" seconds before trying again end_time = datetime.datetime.now() diff = (end_time - start_time).total_seconds() logger.debug("SCRIMP (SIMULATION) run loop: " "%s seconds. Now sleeping %s seconds." % ( diff, ProvisionerConfig().run_rate)) if diff < ProvisionerConfig().run_rate: time.sleep(ProvisionerConfig().run_rate - diff) def load_tenants_and_jobs(self): """ Get all of the tenants from the database and then read the condor queue to get their respective jobs. """ # Load all of the tenants # Load all of the jobs from condor and associate them with the tenants. # This will also remove jobs that should not be processed (e.g. an # instance has been fulfilled for them already). if ProvisionerConfig().simulate: # lets only do this once. if ProvisionerConfig().relative_time is None: self.tenants = tenant.load_from_db() self.sched.only_load_jobs(self.tenants) else: self.tenants = tenant.load_from_db() self.sched.load_jobs(self.tenants) def manage_resources(self): """ Use the resource manager to keep the database up to date and manage aws requests and resources. """ # Build a set of instances and their current spot prices so we don't # need to keep revisiting the AWS API if ProvisionerConfig().simulate: simaws.manager.process_resources(self.tenants) else: aws.manager.process_resources(self.tenants) scheduler.base_scheduler.ignore_fulfilled_jobs(self.tenants) def load_drafts_data(self): """ To speed this up, load in all the drafts data once per provisioning cycle """ cur_time = datetime.datetime.utcnow() if ProvisionerConfig().simulate: cur_time = ProvisionerConfig().simulator.get_fake_time() minus_ten = cur_time - datetime.timedelta(seconds=600) query = ("select * from drafts_price where timestamp < " "'%s'::TIMESTAMP and timestamp > '%s'::TIMESTAMP") % ( cur_time.strftime("%Y-%m-%d %H:%M"), minus_ten.strftime("%Y-%m-%d %H:%M")) self.drafts_data = [] logger.debug('getting drafts data: ' + query) rows = ProvisionerConfig().dbconn.execute(query) for row in rows: data = {'time': row['time'], 'price': row['price'], 'zone': row['zone'], 'type': row['type']} self.drafts_data.append(data) def provision_resources(self): # This passes tenant[0] (a test tenant with my credentials) to use its # credentials to query the AWS API for price data # price data is stored in the Instance objects for t in self.tenants: if len(t.idle_jobs) == 0: continue if (ProvisionerConfig().DrAFTS or ProvisionerConfig().DrAFTSProfiles): if ProvisionerConfig().simulate: # when simulating only load it every 5 mins. if ((ProvisionerConfig().simulate_time - ProvisionerConfig().sim_time).total_seconds() % 300 == 0): self.load_drafts_data() else: if self.run_iterations % 300 == 0: self.load_drafts_data() # Get the spot prices for this tenant's AZ's if ProvisionerConfig().simulate: simaws.api.get_spot_prices( ProvisionerConfig().instance_types, t) else: aws.api.get_spot_prices(ProvisionerConfig().instance_types, t) # Select a request to make for each job self.select_instance_type(ProvisionerConfig().instance_types) # Make the requests for the resources if ProvisionerConfig().simulate: simaws.api.request_resources(t) else: aws.api.request_resources(t) def get_potential_instances(self, eligible_instances, job, tenant): """ Make a list of all <type,zone> and <type,ondemand> pairs then order them. """ # Putting this here so it isn't called every run # commented out to stop it checking drafts prices unsorted_instances = [] # Add an entry for each instance type as ondemand, or each spot # price so we can sort everything and pick the cheapest. for ins in eligible_instances: unsorted_instances.append(aws.Request( ins, ins.type, "", ins.ami, 1, 0, True, ins.ondemand, ins.ondemand, ins.ondemand, ins.ondemand, ins.ondemand)) # Don't bother adding spot prices if it is an ondemand request: if not job.ondemand: DrAFTS = None AvgPrice = None OraclePrice = None for zone, price in ins.spot.iteritems(): # if zone == 'us-east-1c': if (ProvisionerConfig().DrAFTS or ProvisionerConfig().DrAFTSProfiles): DrAFTS, OraclePrice = self.get_DrAFTS_bid( ins.type, zone, job, price) if DrAFTS is None or OraclePrice is None: # try it again, if it doesn't find them its # because the price doesn't exist. so add a big # value to skip it DrAFTS, OraclePrice = self.get_DrAFTS_bid( ins.type, zone, job, price) if DrAFTS is None: DrAFTS = 1000 if OraclePrice is None: OraclePrice = 1000 if ProvisionerConfig().DrAFTS: unsorted_instances.append(aws.Request( ins, ins.type, zone, ins.ami, 1, 0, False, ins.ondemand, DrAFTS, 0, 0, 0)) elif ProvisionerConfig().DrAFTSProfiles: unsorted_instances.append(aws.Request( ins, ins.type, zone, ins.ami, 1, 0, False, ins.ondemand, OraclePrice, 0, 0, 0)) else: unsorted_instances.append(aws.Request( ins, ins.type, zone, ins.ami, 1, 0, False, ins.ondemand, price, 0, 0, 0)) logger.debug('%s, %s spot: %s drafts: %s profile: %s' % ( ins.type, zone, price, DrAFTS, OraclePrice)) # Now sort all of these instances by price sorted_instances = [] # Adding and false here to force it to use the cheapest price for now. if ProvisionerConfig().DrAFTS: # This should sort by the drafts price and then by the current # spot price that way we will get the cheapest AZ at the top of # the list. sorted_instances = sorted(unsorted_instances, key=lambda k: (k.DrAFTS, k.price)) if ProvisionerConfig().DrAFTSProfiles: sorted_instances = sorted(unsorted_instances, key=lambda k: (k.OraclePrice, k.price)) else: sorted_instances = sorted( unsorted_instances, key=lambda k: k.price) return sorted_instances def get_DrAFTS_bid(self, ins, zone, job, cur_price): """ Pull the DrAFTS price for this instance type. This will get the nearest value greater than 1 hour. """ # example: http://128.111.84.183/vpc/us-east-1a-c3.2xlarge.pgraph try: ret_drafts = None ret_oracle = None if ProvisionerConfig().drafts_stored_db: # clear the tenant's current avg prices mapped_zone = self.drafts_mapping[zone] logger.debug('drafts zone: %s' % mapped_zone) for row in self.drafts_data: if (row['type'] == ins and mapped_zone == row['zone'] and float(row['price']) > float(cur_price)): time = row['time'] cost = row['price'] if ret_drafts is None and float(time) > 1: ret_drafts = Decimal(str(cost)) if (ret_oracle is None and float(time) > (float(job.duration) / 3600)): ret_oracle = Decimal(str(cost)) return ret_drafts, ret_oracle else: # use the mapping between AZs to pick a zone name mapped_zone = self.drafts_mapping[zone] addr = 'http://128.111.84.183/vpc/%s-%s.pgraph' % ( mapped_zone, ins) req = requests.get(addr) output = req.text # Split the result by line lines = output.split("\n") ret_drafts = None # define these out here so if it goes over the line, # when the request length is too long, it can use the # previous ones. cost = None time = None for line in lines: # Extract the time and cost try: time = line.split(" ")[0] cost = line.split(" ")[1] except Exception, y: logger.error("drafts: Failed here: %s %s" % (y, line)) # Split the line in half to get the time and cost if float(time) > 1: # this is the one we want to use ret_drafts = Decimal(str(cost)) break # now do the oracle ones ret_oracle = None last = False for line in lines: # Extract the time and cost try: if len(line) > 5: time = line.split(" ")[0] cost = line.split(" ")[1] else: last = True logger.debug("No prediction long enough in " "%s, using last one. %s %s" % (addr, time, cost)) except Exception, z: logger.error("oracle: failed here: %s %s" % (z, line)) # Split the line in half to get the time and cost if last or float(time) > (float(job.duration) / 3600): # this is the one we want to use ret_oracle = Decimal(str(cost)) break return ret_drafts, ret_oracle except Exception, e: logger.debug("Failed to find DrAFTS price for %s. %s" % (ins, e)) return None, None def print_cheapest_options(self, sorted_instances): # Print out the top three logger.info("Top three to select from:") top_three = 3 for ins in sorted_instances: if top_three == 0: break if ProvisionerConfig().DrAFTS: logger.info("DrAFTS: %s %s %s %s" % (ins.instance_type, ins.zone, ins.price, ins.DrAFTS)) if ProvisionerConfig().DrAFTSAvgPrice: logger.info("DrAFTS Oracle Price: %s %s %s %s" % (ins.instance_type, ins.zone, ins.price, ins.OraclePrice)) else: logger.info(" %s %s %s" % (ins.instance_type, ins.zone, ins.price)) top_three = top_three - 1 def get_timeout_ondemand(self, job, tenant, instances): """ Check to see if the job now requires an ondemand instance due to timing out. """ cur_time = datetime.datetime.now() cur_time = calendar.timegm(cur_time.timetuple()) time_idle = 0 if ProvisionerConfig().simulate: cur_time = ProvisionerConfig().simulate_time time_idle = (ProvisionerConfig().simulate_time - job.req_time).total_seconds() else: time_idle = cur_time - int(job.req_time) res_instance = None # if the tenant has set a timeout and the job has been idle longer than # this if tenant.timeout > 0 and time_idle > tenant.timeout: # sort the eligibile instances by their ondemand price (odp) sorted_instances = sorted(instances, key=lambda k: k.odp) logger.debug("Selecting ondemand instance: %s" % str(job.launch)) res_instance = sorted_instances[0] return res_instance def check_ondemand_needed(self, tenant, sorted_instances, job): # Check to see if an ondemand instance is required due to timeout needed = False launch_instance = self.get_timeout_ondemand(job, tenant, sorted_instances) cheapest = sorted_instances[0] # check to see if it timed out if (launch_instance is not None and launch_instance.odp < tenant.max_bid_price): job.launch = aws.Request( launch_instance, launch_instance.type, "", launch_instance.ami, 1, launch_instance.odp, True) logger.debug("Selected to launch on demand due to timeout: %s" % str(job.launch)) needed = True # check if the job is flagged as needing on-demand elif job.ondemand: needed = True # if the cheapest option is ondemand elif cheapest.ondemand and cheapest.odp < tenant.max_bid_price: job.launch = cheapest logger.debug("Selected to launch on demand due to ondemand " "being cheapest: %s" % repr(cheapest)) needed = True # or if the cheapest option close in price to ondemand, then use # ondemand. elif (cheapest.price > (ProvisionerConfig().ondemand_price_threshold * float(cheapest.odp)) and cheapest.price < tenant.max_bid_price): job.launch = cheapest logger.debug("Selected to launch on demand due to spot price " "being close to ondemand price: %s" % repr(cheapest)) needed = True return needed def select_instance_type(self, instances): """ Select the instance to launch for each idle job. """ for tenant in self.tenants: for job in list(tenant.idle_jobs): if ProvisionerConfig().simulate: time.sleep(ProvisionerConfig().overhead_time) # Get the set of instance types that can be used for this job eligible_instances = self.restrict_instances(job) if len(eligible_instances) == 0: logger.error("Failed to find any eligible instances " "for job %s" % job) continue # get all potential pairs and sort them sorted_instances = self.get_potential_instances( eligible_instances, job, tenant) if len(sorted_instances) == 0: logger.error("Failed to find any sorted instances " "for job %s" % job) continue # work out if an ondemand instance is needed job.ondemand = self.check_ondemand_needed(tenant, sorted_instances, job) # If ondemand is required, redo the sorted list with only # ondemand requests and set that to be the launched instance if job.ondemand: sorted_instances = self.get_potential_instances( eligible_instances, job, tenant) job.launch = sorted_instances[0] logger.debug("Launching ondemand for this job. %s" % str(job.launch)) continue # otherwise we are now looking at launching a spot request # print out the options we are looking at self.print_cheapest_options(sorted_instances) # filter out a job if it has had too many requests made existing_requests = self.get_existing_requests(tenant, job) if len(existing_requests) >= ProvisionerConfig().max_requests: tenant.idle_jobs.remove(job) continue # Find the top request that hasn't already been requested # (e.g. zone+type pair is not in existing_requests) for req in sorted_instances: if len(existing_requests) > 0: # Skip this type if a matching request already # exists exists = False for existing in existing_requests: if (req.instance_type == existing.instance_type and req.zone == existing.zone): exists = True if exists: continue # Launch this type. # Hmm, this is getting more complciated with # multuiple provisioning models. if req.price < tenant.max_bid_price: req.bid = self.get_bid_price(job, tenant, req) job.launch = req job.cost_aware = req break else: logger.error(("Unable to launch request %s as " "the price is higher than max bid " "%s.") % (str(req), tenant.max_bid_price)) def get_existing_requests(self, tenant, job): # Get all of the outstanding requests from the db for this instance existing_requests = [] try: rows = ProvisionerConfig().dbconn.execute( ("select instance_request.instance_type, " "instance_request.request_type, " "instance_type.type, " "instance_request.subnet, subnet_mapping.zone " "from instance_request, subnet_mapping, instance_type " "where job_runner_id = '%s' and " "instance_request.tenant = %s and " "instance_request.instance_type = instance_type.id and " "subnet_mapping.id = instance_request.subnet") % (job.id, tenant.db_id)) for row in rows: existing_requests.append(aws.Request( None, row['type'], row['zone'], None, None)) except psycopg2.Error: logger.exception("Error getting number of outstanding") return existing_requests def restrict_instances(self, job): """ Filter out instances that do not meet the requirements of a job then return a list of the eligible instances. """ eligible_instances = [] # Check if the instance is viable for the job instance_types = ProvisionerConfig().instance_types for instance in instance_types: if aws.manager.check_requirements(instance, job): eligible_instances.append(instance) return eligible_instances def get_bid_price(self, job, tenant, req): """ This function is not totally necessary at the moment, but it could be expanded to include more complex logic when placing a bid. Currently it just does bid percent * ondemand price of the resource and checks it is less than the maximum bid. """ if ProvisionerConfig().DrAFTS or ProvisionerConfig().DrAFTSProfiles: return req.price bid = float(tenant.bid_percent) / 100 * float(req.odp) if bid <= tenant.max_bid_price: return bid else: return 0.40
[ "ryan@chard.co.nz" ]
ryan@chard.co.nz
8e0efa58c0b98131af15ab586df5ead9463701e1
7d8ada540b3e17cd471a26d24a7677fa4cf07f3e
/pythonds/test.py
bd9aeeedbf1827f8fb768550ad6f8d355c3a3bcc
[]
no_license
mfy-royce/51cto1
bd155b606cd55ac4c01b79bfdb86cd320ee8df06
8e35e1412b08261704fc86074f87725e00b55548
refs/heads/master
2021-01-14T00:26:44.291036
2020-02-23T15:24:03
2020-02-23T15:24:03
242,541,614
0
0
null
null
null
null
UTF-8
Python
false
false
4,683
py
#!/usr/bin/python # encoding: utf-8 """ author:Royce contact:mfy-111@163.com @file: test.py @time: 16:43 @welcom to learn ai """ import random def randomList(n): iList = [] for i in range(n): iList.append(random.randrange(0,100)) return iList def sortVerify(times,length,sortFunc): # iList = randomList(length) # sortedList = sortFunc(iList,0,len(iList)-1) equl =True for i in range(times): iList = randomList(length) refiList = sorted(iList) sortedList = sortFunc(iList, 0, len(iList) - 1) print("iList is {},id is {}".format(iList,id(iList))) print("refiList is {},id is {}".format(refiList, id(refiList))) print("sortedList is {},id is {}".format(sortedList,id(sortedList))) if refiList != sortedList: equl=False print("{}th is {}".format(i, equl)) break if equl : print("verify is ok") def doubleListRemoveOne(iList): num = random.choice(iList) cList = iList.copy() doubleList = iList * 2 doubleList.remove(num) return doubleList def randomZero(iList,n): for i in range(n): p = random.randint(0,len(iList)) iList.insert(p,0) def randomMatrix(n): Matrix = [] for i in range(n): Matrix.append(randomList(n)) return Matrix def printMatrix(matrix): for i in range(len(matrix)): print(matrix[i]) def printLink(head): p = head while p != None : if p != head: print("name {},index {},count {}".format(p[4], p[0], p[1])) p =p[3] def showLink(head): p=head.next while p != None: if p.next != None: print("{}-->".format(p.val),end=" ") else: print("{}".format(p.val)) p= p.next class ListNode: def __init__(self,x,next = None): self.val = x self.next = next def creatLink(iList): head = ListNode(None) end = head for i in iList: end.next = ListNode(i) end = end.next return head def creatCycleLink(iList): position = random.choice(range(-1,len(iList))) if position == -1 : head = creatLink(iList) return head,position,None head = ListNode(None) end = head for i,num in enumerate(iList): end.next = ListNode(num) end = end.next if i == position: crossNode = end end.next = crossNode return head,position,end def showCyscleLink(head,position ,end): if position ==-1: showLink(head) return p = head.next while True: if p != end: print("{}-->".format(p.val), end=" ") else: print("{}".format(p.val)) break p = p.next print("end connect {},position is {}".format(p.next.val,position)) class BinaryTreeNode(): def __init__(self,val,left = None,right = None): self.val= val self.left =left self.right = right def creatBinaryTree(iList,root=0): if root >=len(iList): return None if iList[root] == None: return None leftRoot = creatBinaryTree(iList,root*2+1) rightRoot = creatBinaryTree(iList, root * 2 + 2) root = BinaryTreeNode(iList[root],leftRoot,rightRoot) return root def showBinaryTree(root,count): if root ==None: return count-1 print("node {} is {}".format(count,root.val)) count = showBinaryTree(root.left,count+1) count = showBinaryTree(root.right,count+1) return count def showBinaryTreeByLevel(root): treeLevel = [[root]] nextLevel = True while nextLevel: nextLevel= False level = [] for i in treeLevel[-1]: if i != None: level.append(i.left) level.append(i.right) else: level.append(None) level.append(None) continue if i.left != None or i.right != None: nextLevel = True treeLevel.append(level) # tree = [] # nodeNum = for i,level in enumerate(treeLevel): print("level {} is ".format(i),end="") for node in level: if node !=None: print("{} ".format(node.val),end="") else: print("{} ".format(node), end="") print("") if __name__ == "__main__": iList = randomList(5) print(iList) randomZero(iList,5) print(iList) printMatrix(randomMatrix(3)) root = creatBinaryTree([3,9,20,None,None,15,7]) showBinaryTree(root,0) root = creatBinaryTree([3,9,20,15,None,15,7]) showBinaryTree(root,0) showBinaryTreeByLevel(root)
[ "mfy-111@163.com" ]
mfy-111@163.com
c7b04e2e02ff27de0681a5e583a172e9a2e935fb
69c882c678103b182988fb60d3e898d569980f1c
/Day 6/day6prog1.py
0955d6850a007bffc3233d9711192a9943ab85cc
[]
no_license
gittygupta/stcet-python
44be9d91cdd6215879d9f04497214819228821be
e77456172746ee76b6e2a901ddb0c3dbe457f82a
refs/heads/master
2022-03-05T11:37:08.720226
2019-12-01T00:56:03
2019-12-01T00:56:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
288
py
x = input("Enter number:") product = 1 def fact(x): pro = 1 for i in range(1, x+1): pro *= i return pro def factrec(x): product = 1 if x == 1: return 1 product = product * x * factrec(x - 1) return product product = factrec(x) print(product)
[ "noreply@github.com" ]
gittygupta.noreply@github.com
464271ebe2e0dd530ebb1d568ce07035e5ea6033
5261e3c72259991fbdb9737c4c764eb0686860d3
/packages/fetchai/skills/simple_data_request/__init__.py
e5ceab9b030383f3520c9ad6b711ecfb8cad4d52
[ "Apache-2.0" ]
permissive
eorituz/agents-aea
45dfb9729718421290c71da91ac4c51f9cc6a608
197451196728141a27ec73fd8210c05cb74501f7
refs/heads/main
2023-03-24T02:40:27.132664
2021-03-23T14:42:58
2021-03-23T14:42:58
350,744,268
0
0
Apache-2.0
2021-03-23T14:40:13
2021-03-23T14:32:29
null
UTF-8
Python
false
false
991
py
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the implementation of the simple_data_request skill.""" from aea.configurations.base import PublicId PUBLIC_ID = PublicId.from_str("fetchai/simple_data_request:0.8.0")
[ "david.minarsch@googlemail.com" ]
david.minarsch@googlemail.com
3af579131f3adede67cd81132bc2b423f4c7162d
ba8f410097500a9325714527507af8b567fb7716
/WEEK_2/String/program5.py
76c1a4a5d90ebd4283cbc6aa4b9c7854de8b700b
[]
no_license
GaikwadHarshad/ML-FellowShip-Program
56b27434dc738273ac04ba9b0056ff45d871ff90
a702db1a726b7c404a4e2dbc39ea336d148e0b28
refs/heads/master
2020-04-26T04:24:59.883661
2019-06-20T11:13:38
2019-06-20T11:13:38
173,301,157
0
0
null
2019-06-20T11:13:39
2019-03-01T12:50:34
Jupyter Notebook
UTF-8
Python
false
false
1,918
py
""" Write a Python function that takes a list of words and returns the length of the longest one. """ from myprograms.Utility import UtilityDS class String5: str1 = [] # perform operation on string def long_word(self): while 1: print("--------------------------------------------------") print("1.Create List of String""\n""2.Length of longest word.""\n""3.Exit") try: choice = int(input("Enter choice :")) # validate choice ch = UtilityDS.validate_num(choice) if ch: if choice == 1: print("we are creating list : ") # number of element to add element = int(input("How many element you want to add: ")) # validating the number e = UtilityDS.validate_num(element) if e: # if valid then create list self.str1 = UtilityDS.create_list_all(element) print("List is created : ", self.str1) elif choice == 2: if self.str1.__len__() < 1: print("Enter string first") else: # getting longest word from given list of string longest = UtilityDS.get_long_word(self.str1) print("Longest word in list of string is : ", longest) elif choice == 3: exit() else: print("Invalid choice") else: print("Enter choice between 1 - 3") except Exception as e: print(e) # instantiation String5_object = String5() String5_object.long_word()
[ "mr.gaikwad0605@gmail.com" ]
mr.gaikwad0605@gmail.com
597c3fd526e4cd2ec3c0819d9e04516a311d4311
a84eeba8ab8ff4711253defa9e63abca130de84b
/simple_solution_api.py
14fc516248b03322926ab9ef041d40540f85dfba
[]
no_license
t-pleasure/productcloud
6da2d5eacd8c667034ca91cf426291aec6328835
29dd6725df052387eba1c3081fcd973c105a50b5
refs/heads/master
2016-09-14T02:19:29.577976
2016-05-24T17:03:25
2016-05-24T17:03:25
59,478,722
0
0
null
null
null
null
UTF-8
Python
false
false
5,005
py
#!/usr/bin/python """ STAND ALONE SCRIPT TO RUN SINGLE PROCESS SOLUTION. """ import json, os, threading import amazon_products.product_status as pstatus from amazon_products.product import Product from data_services.mapstore import KVDiskStore, WordCountDisk from data_services.queue import KafkaTopicQueue from algos.heaps import MaxCapacityPQDict from urllib3 import PoolManager from flask import Flask, request app = Flask(__name__) # DataStore to persist information about status of products and if we've processed them yet product_status_db = KVDiskStore("product_status_SINGLE", serialize=lambda p:p.tojson(), deserialize=pstatus.json2product) # DataStore to persist product_id -> word_counts product_worddata_db = KVDiskStore("product_data_SINGLE", serialize=json.dumps, deserialize=json.loads) # Datastore to persist ALL WORD COUNTS global_wordcount_db = WordCountDisk("global_word_count_SINGLE") # file to persist top k elements to persist_top_k_file = None # MinHeap containing top k most words K = 100 # default value for K top_words = MaxCapacityPQDict(K) global_wordcount_lock = threading.Lock() def increment_global_wordcount(word, inc_amount): with global_wordcount_lock: new_amt = global_wordcount_db.increment(word, inc_amount) return new_amt # helper method associate a product id with a lock NLOCKS = 100 # default number of locks pidlocks = [threading.Lock() for _ in range(NLOCKS)] def pid2lock(pid): return pidlocks[hash(pid)%NLOCKS] ################# # ROUTES # # ################# @app.route('/', methods=["GET","POST"]) def default(): # if product_url is not specified, simply return the top k words if "product_url" not in request.args: return top_words.tojson() # extract product id from request purl = request.args['product_url'] pid = Product.url_to_productid(purl) ## crucial region ## lock the following block based on the product id as to avoid ## potential race conditions when dealing with requests for the same product. ## this ensures that only one thread can be processing an id at a time with pid2lock(pid): # check state to see whether or not product_id has been processed or is being processed status = product_status_db.get(pid) if status and status.type in [pstatus.Types.PROCESSING, pstatus.Types.COMPLETED, pstatus.Types.INVALID]: return json.dumps({"pid": pid, "status": status.type, "current_words": dict(top_words.items())}) # if product id is not valid display appropriate message and record in database if not Product.isvalid_pid(pid): product_status_db.put(pid, pstatus.InvalidStatus(pid)) return json.dumps({"pid": pid, "status": pstatus.Types.INVALID, "current_words": dict(top_words.items())}) # Change state of datastore to indicate this product is currently being processed product_status_db.put(pid, pstatus.ProcessingStatus(pid)) # obtain product description product = Product.fetch_product(pid) # obtain word count for product description wcount = product.wordcounts # persist word count for product description product_worddata_db.put(pid, wcount) # update global word counts for (word, inc_amt) in wcount.items(): new_amt = increment_global_wordcount(word, inc_amt) top_words.pushOrUpdate(word, new_amt) # update status for product to indicate completion product_status_db.put(pid, pstatus.CompletedStatus(pid)) # persist top_k words if persist_top_k_file: with open(persist_top_k_file, 'w') as f: f.write(top_words.tojson()) return json.dumps({"pid": pid, "status": pstatus.Types.COMPLETED, "current_words": dict(top_words.items())}) @app.route('/product_status') def info(): return str(product_status_db.items()) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--port', action="store", default=9999, dest='port', help="port to bind to", type=int) parser.add_argument('--k', action="store", default=100, dest='k', help="number of top largest words to find", type=int) parser.add_argument('--top-k-file', action="store", default=None, dest='top_k_file', help="file to persist top k largest words") parser.add_argument('--n-locks', action="store", default=100, dest='n_locks', help="number of locks to have for coordinating product parsing") parser.add_argument('--debug', action="store", default=False, dest='debug', help="debug flag", type=bool) args = parser.parse_args() # update global variables persist_top_k_file = args.top_k_file K = args.k NLOCKS = args.n_locks # compute top_words top_words = MaxCapacityPQDict(K) for (w,c) in global_wordcount_db.items(): top_words.pushOrUpdate(w,c) # app settings app.debug = args.debug app.run(port=args.port)
[ "totran@Tonys-MBP-2.lan" ]
totran@Tonys-MBP-2.lan
d432973d55120799261bd375528ec13c063740f9
9d19a6b00be95c92f3e32fff51c90ab2e2a76293
/chat/tests.py
276d4fd1effc528efd993757b116f2af42f55b2e
[]
no_license
TobKed/django-channels-chat
70d5892dedac44179e3366d5423aa763383aa753
f247c3e7195619906bdf7f67680a712cc17e5cf8
refs/heads/master
2022-12-10T11:19:42.444003
2018-12-30T15:12:32
2018-12-30T15:12:32
163,593,656
0
0
null
2022-12-08T01:30:26
2018-12-30T14:32:49
Python
UTF-8
Python
false
false
3,665
py
from channels.testing import ChannelsLiveServerTestCase from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.support.wait import WebDriverWait from webdriver_manager.chrome import ChromeDriverManager class ChatTests(ChannelsLiveServerTestCase): serve_static = True # emulate StaticLiveServerTestCase @classmethod def setUpClass(cls): super().setUpClass() try: # NOTE: Requires "chromedriver" binary to be installed in $PATH cls.driver = webdriver.Chrome(ChromeDriverManager().install()) except: super().tearDownClass() raise @classmethod def tearDownClass(cls): cls.driver.quit() super().tearDownClass() def test_when_chat_message_posted_then_seen_by_everyone_in_same_room(self): try: self._enter_chat_room('room_1') self._open_new_window() self._enter_chat_room('room_1') self._switch_to_window(0) self._post_message('hello') WebDriverWait(self.driver, 2).until(lambda _: 'hello' in self._chat_log_value, 'Message was not received by window 1 from window 1') self._switch_to_window(1) WebDriverWait(self.driver, 2).until(lambda _: 'hello' in self._chat_log_value, 'Message was not received by window 2 from window 1') finally: self._close_all_new_windows() def test_when_chat_message_posted_then_not_seen_by_anyone_in_different_room(self): try: self._enter_chat_room('room_1') self._open_new_window() self._enter_chat_room('room_2') self._switch_to_window(0) self._post_message('hello') WebDriverWait(self.driver, 2).until(lambda _: 'hello' in self._chat_log_value, 'Message was not received by window 1 from window 1') self._switch_to_window(1) self._post_message('world') WebDriverWait(self.driver, 2).until(lambda _: 'world' in self._chat_log_value, 'Message was not received by window 2 from window 2') self.assertTrue('hello' not in self._chat_log_value, 'Message was improperly received by window 2 from window 1') finally: self._close_all_new_windows() # === Utility === def _enter_chat_room(self, room_name): self.driver.get(self.live_server_url + '/chat/') ActionChains(self.driver).send_keys(room_name + '\n').perform() WebDriverWait(self.driver, 2).until(lambda _: room_name in self.driver.current_url) def _open_new_window(self): self.driver.execute_script('window.open("about:blank", "_blank");') self.driver.switch_to_window(self.driver.window_handles[-1]) def _close_all_new_windows(self): while len(self.driver.window_handles) > 1: self.driver.switch_to_window(self.driver.window_handles[-1]) self.driver.execute_script('window.close();') if len(self.driver.window_handles) == 1: self.driver.switch_to_window(self.driver.window_handles[0]) def _switch_to_window(self, window_index): self.driver.switch_to_window(self.driver.window_handles[window_index]) def _post_message(self, message): ActionChains(self.driver).send_keys(message + '\n').perform() @property def _chat_log_value(self): return self.driver.find_element_by_css_selector('#chat-log').get_property('value')
[ "tobiaszkedzierski@gmail.com" ]
tobiaszkedzierski@gmail.com
07284a6e486092fdaa4633f81f08fb768c68f944
88a8bec01a7f6631714f19a896a715fcee830552
/KKK/members/urls.py
04f043f97d044c9cff033046b6ec6ddae50827a5
[]
no_license
ajeethkumar-2/ImageBlogStateful
30a850ed11dadc186bed5d641d0d9f32f8fdc554
2175acaae8cd625300624078387c575534bc3e65
refs/heads/master
2022-12-26T09:50:00.639256
2020-10-08T11:53:12
2020-10-08T11:53:12
302,323,938
0
0
null
null
null
null
UTF-8
Python
false
false
626
py
from django.urls import path from .views import * urlpatterns = [ path('register', UserRegistration.as_view(), name='register'), path('edit_login_settings', EditLoginSettings.as_view(), name='edit_login_settings'), path('password', ChangePassword.as_view(), name='password'), path('password_success', password_success, name='password_success'), path('<int:pk>/user_profile', UserProfile.as_view(), name='user_profile'), path('<int:pk>/edit_user_profile', EditUserProfile.as_view(), name='edit_user_profile'), path('create_user_profile', CreateUserProfile.as_view(), name='create_user_profile'), ]
[ "ajeeethkumar.skr@gmail.com" ]
ajeeethkumar.skr@gmail.com
43e2989d39a42e37d7741d5ca8c6153862f4876d
37be91337af68767906a776aaaf8ab2106f8e6a9
/dataAPI/dictionary/migrations/0003_auto_20200221_0958.py
c6e5566c0b15ea834670bb138399b352fd85f070
[]
no_license
KelongZ/mysite
7962d64d202e46638e7e8647ddedfcc4855db040
e8b507d2c10cf3f7a947bcd3c951103f6db9eaf7
refs/heads/master
2020-12-08T14:29:44.320592
2020-03-31T11:25:14
2020-03-31T11:25:14
233,005,879
0
0
null
null
null
null
UTF-8
Python
false
false
396
py
# Generated by Django 3.0.2 on 2020-02-21 01:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dictionary', '0002_configdata'), ] operations = [ migrations.AlterField( model_name='configsrc', name='port', field=models.IntegerField(verbose_name='端口号'), ), ]
[ "a313974633@163.com" ]
a313974633@163.com
9e92bb4d6e710b562df16db9e0988f4b6e21ed35
557cebc2ca2d462bfed042e3d47f25549c7fdb47
/apps/ideas/migrations/0005_remove_idea_category.py
5a7aab7fe3a932594854d474ba86bd704b521ab0
[]
no_license
jmshulett/django_web_development
b1964192025476077ca5d8ae12b66928a844ceea
3cb311f55624a97ae72702aa28d18aa289336fe1
refs/heads/main
2023-08-15T02:17:14.011696
2021-09-18T21:59:12
2021-09-18T21:59:12
407,973,834
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
# Generated by Django 3.0.14 on 2021-09-18 17:11 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('ideas', '0004_copy_categories'), ] operations = [ migrations.RemoveField( model_name='idea', name='category', ), ]
[ "jphulett1@buffS.wtamu.edu" ]
jphulett1@buffS.wtamu.edu
b38c937fd5d4516fab51a890b7ef25abaeca0505
36cc6e08580c8085f93555cb74a3f3ae0bca87a5
/day8.0.py
2a506fa09d372dcf1d1f7ce0df63e86d3d2f9737
[ "MIT" ]
permissive
dp1/AoC17
262074a46a6d0675e54b7422b9046d130b4c489f
7253c34f8d061144534ae21ff4310bce2fdfb5e0
refs/heads/master
2021-09-01T06:33:35.657942
2017-12-25T10:58:42
2017-12-25T10:58:42
112,944,220
4
1
null
null
null
null
UTF-8
Python
false
false
772
py
with open("day8.txt", "r") as fin: data = fin.read().strip().split('\n') regs = {} for l in data: ll = l.split(' ') reg, op, val, target, cmp, cval = ll[0], ll[1], int(ll[2]), ll[4], ll[5], int(ll[6]) if reg not in regs: regs[reg] = 0 if target not in regs: regs[target] = 0 ok = False if cmp == '<' and regs[target] < cval: ok = True if cmp == '>' and regs[target] > cval: ok = True if cmp == '<=' and regs[target] <= cval: ok = True if cmp == '>=' and regs[target] >= cval: ok = True if cmp == '==' and regs[target] == cval: ok = True if cmp == '!=' and regs[target] != cval: ok = True if ok: if op == 'inc': regs[reg] += val else: regs[reg] -= val print max(regs.items(), key=lambda x:x[1])
[ "dario.pk1@gmail.com" ]
dario.pk1@gmail.com
6f8bddcfb3703b2be846835c4d7059aeb3b7b713
13c34615485f841cc3522dde99ccf5090da9a4d6
/tests/unit_tests/networks/tf/object_classification/__init__.py
db5aa25af4bc14c6f17e9ac6d263f68010c54af2
[]
no_license
sallamander/dl-playground
3e2dcd88ec3beae67401511912f5a1d202842525
e05b2a15dd2925fca5206c2509e1da29c1806834
refs/heads/master
2021-06-12T13:52:48.302728
2019-05-29T15:54:34
2019-10-14T19:00:46
142,235,475
5
1
null
2019-08-28T21:32:21
2018-07-25T02:15:21
Python
UTF-8
Python
false
false
67
py
"""Unit tests for applications.tf.object_classification modules"""
[ "noreply@github.com" ]
sallamander.noreply@github.com
6d0b522024a5885efbca8ba209c333c47ef8641e
bab4c9bebbfadd76c11dd022452c916bf4a3ad75
/analysis/region graph.py
507d00fa5c548263e0f275a5488e22fb2144e6ef
[]
no_license
Y-Hyehye/project_safecovid
81aeab383d9674f10fc82aeb59fafe4f8215b8f1
d81795df47e90d1905d65c89dd144fe15d3f7e5a
refs/heads/master
2023-02-15T18:54:25.515100
2021-01-18T14:46:33
2021-01-18T14:46:33
330,680,888
0
0
null
null
null
null
UTF-8
Python
false
false
32,204
py
import urllib.request import json import pandas as pd import matplotlib.pyplot as plt import numpy as np import xmltodict from google.cloud import storage from firebase import firebase import os from os import path # 한글폰트 적용 from matplotlib import font_manager, rc import matplotlib font_location="C:\Windows\Fonts\malgun.ttf" font_name=font_manager.FontProperties(fname=font_location).get_name() matplotlib.rc('font',family=font_name) # 함수-자연수 백의 자리 내림, 올림 def rounddown(val) : val = int(val / 100) * 100 return val def roundup(val) : val = val + 90 val = int(val / 10) * 10 return val # 함수-자연수 일의 자리 내림, 올림 def unit_down(val) : val = int(val / 10) * 10 return val def unit_up(val) : val = val + 9 val = int(val / 10) * 10 return val # 함수-천의 자리 올림 def step_up(val) : val = val + 900 val = int(val / 1000) * 1000 return val # 코로나 시,도 발생 현황 OpenAPI 불러오기 url='http://openapi.data.go.kr/openapi/service/rest/Covid19/getCovid19SidoInfStateJson?serviceKey=pg8wihCfmYf9Euwqa0CoiZfui3IMOfk1kliZfV46KSIm3pDqCHQZBNVRyrNCGvbPYUYwsCmB5ULMPvlH2aT4Ag%3D%3D&pageNo=1&numOfRows=&startCreateDt=&endCreateDt=&' request = urllib.request.Request(url) response = urllib.request.urlopen(request) rescode = response.getcode() response_body = response.read() data=response_body.decode('utf-8') dict_data = xmltodict.parse(data) json_data = json.dumps(dict_data) result = json.loads(json_data) rdata=result['response']['body']['items']['item'] # df(DataFrame)으로 정의 df=pd.DataFrame(rdata) # 데이터 전처리 (원하는 데이터 추출) df_safe=df[['gubun','defCnt','localOccCnt','overFlowCnt','deathCnt','incDec','isolClearCnt','qurRate','createDt']] df_safe=df_safe.fillna(0) df_safe['gubun']=df_safe['gubun'].astype(str) df_safe['createDt']=df_safe['createDt'].astype(str) df_safe=df_safe[df_safe.gubun != '검역'] df_safe=df_safe[df_safe.gubun != '합계'] # 날짜 데이터 값 변경하기 date=[] for one in df_safe['createDt']: date.append(one[0:10]) df_safe['createDt']=date df_safe['createDt'] = df_safe['createDt'].str.replace(pat=r'[-]', repl= r'', regex=True) df_safe['qurRate'] = df_safe['qurRate'].str.replace(pat=r'[-]', repl= r'0', regex=True) # 형변환 df_safe['defCnt']=df_safe['defCnt'].astype(int) df_safe['localOccCnt']=df_safe['localOccCnt'].astype(int) df_safe['overFlowCnt']=df_safe['overFlowCnt'].astype(int) df_safe['deathCnt']=df_safe['deathCnt'].astype(int) df_safe['incDec']=df_safe['incDec'].astype(int) df_safe['isolClearCnt']=df_safe['isolClearCnt'].astype(int) df_safe['qurRate']=df_safe['qurRate'].astype(float) df_safe['createDt']=df_safe['createDt'].astype(int) # 10개의 지역으로 DataFrame 나누기 df_safe_seoul=df_safe[df_safe['gubun'].str.contains('서울')] df_safe_gg=df_safe[df_safe['gubun'].str.contains('경기|인천')] df_safe_chungnam=df_safe[df_safe['gubun'].str.contains('충남|대전|세종')] df_safe_chungbuk=df_safe[df_safe['gubun'].str.contains('충북')] df_safe_jeonnam=df_safe[df_safe['gubun'].str.contains('전남|광주')] df_safe_jeonbuk=df_safe[df_safe['gubun'].str.contains('전북')] df_safe_gyeongnam=df_safe[df_safe['gubun'].str.contains('경남|부산|울산')] df_safe_gb=df_safe[df_safe['gubun'].str.contains('경북|대구')] df_safe_gangwon=df_safe[df_safe['gubun'].str.contains('강원')] df_safe_jeju=df_safe[df_safe['gubun'].str.contains('제주')] # 서울 # 서울 df 전처리 df_safe_seoul=df_safe_seoul.groupby('createDt', sort=True).head(1) df_safe_seoul_week=df_safe_seoul.iloc[::7] # 일주일 단위로 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_seoul_month=df_safe_seoul_week.head(5) # 일주일 단위로 한달(5주) 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_seoul_day=df_safe_seoul.head(5) # 하루 단위로 5일 데이터 추출 (지역발생수, 해외유입수 그래프에 사용) df_safe_seoul_month=df_safe_seoul_month.sort_values(by='createDt', ascending=True) df_safe_seoul_day=df_safe_seoul_day.sort_values(by='createDt', ascending=True) df_safe_seoul_month['createDt']=df_safe_seoul_month['createDt'].astype(str) # 서울 확진자수 그래프 yticks 값 조정 start_num=df_safe_seoul_month.iloc[0,1] end_num=df_safe_seoul_month.iloc[-1,1] start_num=rounddown(start_num)-500 end_num=roundup(end_num)+1000 # figure 기본 설정(크기 조정) fig = plt.figure(figsize=(8, 6)) fig.subplots_adjust(left=0.1, right=0.9, top=0.94, bottom=0.1) fig.patch.set_alpha(0) ax = fig.add_subplot() # 서울 확진자수 그래프 출력 line_plot=ax.plot(df_safe_seoul_month.createDt,df_safe_seoul_month['defCnt'], color='#FF5A5A', linewidth=2, marker='o',markersize=5, alpha=.75 ) line_plot=line_plot[0] plt.yticks(np.arange(start_num, end_num, step=1000)) plt.xlabel('날짜 (단위: 주)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') for coord in list(line_plot.get_xydata()): ax.text(coord[0],coord[1]+100 ,f'{int(coord[1])}',fontsize=11, ha='center', color='#FF5A5A') plt.savefig('images/fig_seoul_1.png') plt.clf() # 서울 지역발생수, 해외유입수 그래프 yticks 값 조정 df_safe_seoul_day_c=df_safe_seoul_day.sort_values(by='localOccCnt', ascending=True) end_num_idx=df_safe_seoul_day_c['localOccCnt'].idxmax() end_num_c=(df_safe_seoul_day_c['localOccCnt'][end_num_idx])+50 # 서울 지역발생수, 해외유입수 그래프 출력 x=np.arange(len(df_safe_seoul_day.createDt)) plt.bar(x-0.0, df_safe_seoul_day.localOccCnt, label='지역발생수', width=0.2, color='#ff8a3c', alpha=.75) plt.bar(x+0.2, df_safe_seoul_day.overFlowCnt, label='해외유입수', width=0.2, color='#3a8d65', alpha=.75) plt.xticks(x, df_safe_seoul_day.createDt) plt.yticks(np.arange(0, end_num_c, step=50)) plt.xlabel('날짜 (단위: 일)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') plt.legend() plt.savefig('images/fig_seoul_2.png') plt.clf() # 경기도 # 경기도 df 전처리 df_safe_gg=df_safe_gg.groupby('createDt', sort=True).head(1) df_safe_gg_week=df_safe_gg.iloc[::7] # 일주일 단위로 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_gg_month=df_safe_gg_week.head(5) # 일주일 단위로 한달(5주) 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_gg_day=df_safe_gg.head(5) # 하루 단위로 5일 데이터 추출 (지역발생수, 해외유입수 그래프에 사용) df_safe_gg_month=df_safe_gg_month.sort_values(by='createDt', ascending=True) df_safe_gg_day=df_safe_gg_day.sort_values(by='createDt', ascending=True) df_safe_gg_month['createDt']=df_safe_gg_month['createDt'].astype(str) # 경기도 확진자수 그래프 yticks 값 조정 start_num=df_safe_gg_month.iloc[0,1] end_num=df_safe_gg_month.iloc[-1,1] start_num=roundup(start_num)-100 end_num=rounddown(end_num)+800 # 경기도 확진자수 그래프 출력 ax = fig.add_subplot() line_plot=ax.plot(df_safe_gg_month.createDt,df_safe_gg_month['defCnt'], color='#FF5A5A', alpha=.75, linewidth=2, marker='o',markersize=5) line_plot=line_plot[0] plt.yticks(np.arange(start_num, end_num, step=800)) plt.xlabel('날짜 (단위: 주)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') for coord in list(line_plot.get_xydata()): ax.text(coord[0],coord[1]+68 ,f'{int(coord[1])}',fontsize=11, ha='center', color='#FF5A5A') plt.savefig('images/fig_gg_1.png', dpi=300) plt.clf() # 경기도 지역발생수, 해외유입수 그래프 yticks 값 조정 df_safe_gg_day_c=df_safe_gg_day.sort_values(by='localOccCnt', ascending=True) end_num_idx=df_safe_gg_day_c['localOccCnt'].idxmax() end_num_c=df_safe_gg_day_c['localOccCnt'][end_num_idx]+50 # 경기도 지역발생수, 해외유입수 그래프 출력 x=np.arange(len(df_safe_gg_day.createDt)) plt.bar(x-0.0, df_safe_gg_day.localOccCnt, label='지역발생수', width=0.2, color='#ff8a3c', alpha=.75) plt.bar(x+0.2, df_safe_gg_day.overFlowCnt, label='해외유입수', width=0.2, color='#3a8d65', alpha=.75) plt.xticks(x, df_safe_gg_day.createDt) plt.yticks(np.arange(0, end_num_c, step=40)) plt.xlabel('날짜 (단위: 일)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') plt.legend() plt.savefig('images/fig_gg_2.png', dpi=300) plt.clf() # 충청남도 # 충청남도 df 전처리 df_safe_chungnam=df_safe_chungnam.groupby('createDt', sort=True).head(1) df_safe_chungnam_week=df_safe_chungnam.iloc[::7] # 일주일 단위로 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_chungnam_month=df_safe_chungnam_week.head(5) # 일주일 단위로 한달(5주) 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_chungnam_day=df_safe_chungnam.head(5) # 하루 단위로 5일 데이터 추출 (지역발생수, 해외유입수 그래프에 사용) df_safe_chungnam_month=df_safe_chungnam_month.sort_values(by='createDt', ascending=True) df_safe_chungnam_day=df_safe_chungnam_day.sort_values(by='createDt', ascending=True) df_safe_chungnam_month['createDt']=df_safe_chungnam_month['createDt'].astype(str) # 충청남도 확진자수 그래프 yticks 값 조정 start_num=df_safe_chungnam_month.iloc[0,1] end_num=df_safe_chungnam_month.iloc[-1,1] start_num=roundup(start_num)-100 end_num=roundup(end_num) # 충청남도 확진자수 그래프 출력 ax = fig.add_subplot() line_plot=ax.plot(df_safe_chungnam_month.createDt,df_safe_chungnam_month['defCnt'], color='#FF5A5A', alpha=.75, linewidth=2, marker='o',markersize=5) line_plot=line_plot[0] plt.yticks(np.arange(start_num, end_num, step=100)) plt.xlabel('날짜 (단위: 주)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') for coord in list(line_plot.get_xydata()): ax.text(coord[0],coord[1]+9 ,f'{int(coord[1])}',fontsize=11, ha='center', color='#FF5A5A') plt.savefig('images/fig_chungnam_1.png', dpi=300) plt.clf() # 충청남도 지역발생수, 해외유입수 그래프 yticks 값 조정 df_safe_chungnam_day_c=df_safe_chungnam_day.sort_values(by='localOccCnt', ascending=True) end_num_idx=df_safe_chungnam_day_c['localOccCnt'].idxmax() end_num_c=df_safe_chungnam_day_c['localOccCnt'][end_num_idx]+10 # 충청남도 지역발생수, 해외유입수 그래프 출력 x=np.arange(len(df_safe_chungnam_day.createDt)) plt.bar(x-0.0, df_safe_chungnam_day.localOccCnt, label='지역발생수', width=0.2, color='#ff8a3c', alpha=.75) plt.bar(x+0.2, df_safe_chungnam_day.overFlowCnt, label='해외유입수', width=0.2, color='#3a8d65', alpha=.75) plt.xticks(x, df_safe_chungnam_day.createDt) plt.yticks(np.arange(0, end_num_c, step=5)) plt.xlabel('날짜 (단위: 일)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') plt.legend() plt.savefig('images/fig_chungnam_2.png', dpi=300) plt.clf() # 충청북도 # 충청북도 df 전처리 df_safe_chungbuk=df_safe_chungbuk.groupby('createDt', sort=True).head(1) df_safe_chungbuk_week=df_safe_chungbuk.iloc[::7] # 일주일 단위로 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_chungbuk_month=df_safe_chungbuk_week.head(5) # 일주일 단위로 한달(5주) 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_chungbuk_day=df_safe_chungbuk.head(5) # 하루 단위로 5일 데이터 추출 (지역발생수, 해외유입수 그래프에 사용) df_safe_chungbuk_month=df_safe_chungbuk_month.sort_values(by='createDt', ascending=True) df_safe_chungbuk_day=df_safe_chungbuk_day.sort_values(by='createDt', ascending=True) df_safe_chungbuk_month['createDt']=df_safe_chungbuk_month['createDt'].astype(str) # 충청북도 확진자수 그래프 yticks 값 조정 start_num=df_safe_chungbuk_month.iloc[0,1] end_num=df_safe_chungbuk_month.iloc[-1,1] start_num=unit_down(start_num) end_num=unit_up(end_num)+50 # 충청북도 확진자수 그래프 출력 ax = fig.add_subplot() line_plot=ax.plot(df_safe_chungbuk_month.createDt,df_safe_chungbuk_month['defCnt'], color='#FF5A5A', alpha=.75, linewidth=2, marker='o',markersize=5) line_plot=line_plot[0] plt.yticks(np.arange(start_num, end_num, step=50)) plt.xlabel('날짜 (단위: 주)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') for coord in list(line_plot.get_xydata()): ax.text(coord[0],coord[1]+6.3 ,f'{int(coord[1])}',fontsize=11, ha='center', color='#FF5A5A') plt.savefig('images/fig_chungbuk_1.png', dpi=300) plt.clf() # 충청북도 지역발생수, 해외유입수 그래프 yticks 값 조정 df_safe_chungbuk_day_c=df_safe_chungbuk_day.sort_values(by='localOccCnt', ascending=True) end_num_idx=df_safe_chungbuk_day_c['localOccCnt'].idxmax() end_num_c=df_safe_chungbuk_day_c['localOccCnt'][end_num_idx]+5 # 충청북도 지역발생수, 해외유입수 그래프 출력 x=np.arange(len(df_safe_chungbuk_day.createDt)) plt.bar(x-0.0, df_safe_chungbuk_day.localOccCnt, label='지역발생수', width=0.2, color='#ff8a3c', alpha=.75) plt.bar(x+0.2, df_safe_chungbuk_day.overFlowCnt, label='해외유입수', width=0.2, color='#3a8d65', alpha=.75) plt.xticks(x, df_safe_chungbuk_day.createDt) plt.yticks(np.arange(0, end_num_c, step=5)) plt.xlabel('날짜 (단위: 일)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') plt.legend() plt.savefig('images/fig_chungbuk_2.png', dpi=300) plt.clf() # 전라남도 # 전라남도 df 전처리 df_safe_jeonnam=df_safe_jeonnam.groupby('createDt', sort=True).head(1) df_safe_jeonnam_week=df_safe_jeonnam.iloc[::7] # 일주일 단위로 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_jeonnam_month=df_safe_jeonnam_week.head(5) # 일주일 단위로 한달(5주) 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_jeonnam_day=df_safe_jeonnam.head(5) # 하루 단위로 5일 데이터 추출 (지역발생수, 해외유입수 그래프에 사용) df_safe_jeonnam_month=df_safe_jeonnam_month.sort_values(by='createDt', ascending=True) df_safe_jeonnam_day=df_safe_jeonnam_day.sort_values(by='createDt', ascending=True) df_safe_jeonnam_month['createDt']=df_safe_jeonnam_month['createDt'].astype(str) # 전라남도 확진자수 그래프 yticks 값 조정 start_num=df_safe_jeonnam_month.iloc[0,1] end_num=df_safe_jeonnam_month.iloc[-1,1] start_num=unit_down(start_num) end_num=unit_up(end_num)+60 # 전라남도 확진자수 그래프 출력 ax = fig.add_subplot() line_plot=ax.plot(df_safe_jeonnam_month.createDt,df_safe_jeonnam_month['defCnt'], color='#FF5A5A', alpha=.75, linewidth=2, marker='o',markersize=5) line_plot=line_plot[0] plt.yticks(np.arange(start_num, end_num, step=60)) plt.xlabel('날짜 (단위: 주)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') for coord in list(line_plot.get_xydata()): ax.text(coord[0],coord[1]+5 ,f'{int(coord[1])}',fontsize=11, ha='center', color='#FF5A5A') plt.savefig('images/fig_jeonnam_1.png', dpi=300) plt.clf() # 전라남도 지역발생수, 해외유입수 그래프 yticks 값 조정 df_safe_jeonnam_day_c=df_safe_jeonnam_day.sort_values(by='localOccCnt', ascending=True) end_num_idx=df_safe_jeonnam_day_c['localOccCnt'].idxmax() end_num_c=df_safe_jeonnam_day_c['localOccCnt'][end_num_idx]+4 # 전라남도 지역발생수, 해외유입수 그래프 출력 x=np.arange(len(df_safe_jeonnam_day.createDt)) plt.bar(x-0.0, df_safe_jeonnam_day.localOccCnt, label='지역발생수', width=0.2, color='#ff8a3c', alpha=.75) plt.bar(x+0.2, df_safe_jeonnam_day.overFlowCnt, label='해외유입수', width=0.2, color='#3a8d65', alpha=.75) plt.xticks(x, df_safe_jeonnam_day.createDt) plt.yticks(np.arange(0, end_num_c, step=2)) plt.xlabel('날짜 (단위: 일)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') plt.legend() plt.savefig('images/fig_jeonnam_2.png', dpi=300) plt.clf() # 전라북도 # 전라북도 df 전처리 df_safe_jeonbuk=df_safe_jeonbuk.groupby('createDt', sort=True).head(1) df_safe_jeonbuk_week=df_safe_jeonbuk.iloc[::7] # 일주일 단위로 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_jeonbuk_month=df_safe_jeonbuk_week.head(5) # 일주일 단위로 한달(5주) 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_jeonbuk_day=df_safe_jeonbuk.head(5) # 하루 단위로 5일 데이터 추출 (지역발생수, 해외유입수 그래프에 사용) df_safe_jeonbuk_month=df_safe_jeonbuk_month.sort_values(by='createDt', ascending=True) df_safe_jeonbuk_day=df_safe_jeonbuk_day.sort_values(by='createDt', ascending=True) df_safe_jeonbuk_month['createDt']=df_safe_jeonbuk_month['createDt'].astype(str) # 전라북도 확진자수 그래프 yticks 값 조정 start_num=df_safe_jeonbuk_month.iloc[0,1] end_num=df_safe_jeonbuk_month.iloc[-1,1] start_num=unit_down(start_num) end_num=unit_up(end_num)+80 # 전라북도 확진자수 그래프 출력 ax = fig.add_subplot() line_plot=ax.plot(df_safe_jeonbuk_month.createDt,df_safe_jeonbuk_month['defCnt'], color='#FF5A5A', alpha=.75, linewidth=2, marker='o',markersize=5) line_plot=line_plot[0] plt.yticks(np.arange(start_num, end_num, step=80)) plt.xlabel('날짜 (단위: 주)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') for coord in list(line_plot.get_xydata()): ax.text(coord[0],coord[1]+5 ,f'{int(coord[1])}',fontsize=11, ha='center', color='#FF5A5A') plt.savefig('images/fig_jeonbuk_1.png', dpi=300) plt.clf() # 전라북도 지역발생수, 해외유입수 그래프 yticks 값 조정 df_safe_jeonbuk_day_c=df_safe_jeonbuk_day.sort_values(by='localOccCnt', ascending=True) end_num_idx=df_safe_jeonbuk_day_c['localOccCnt'].idxmax() end_num_c=df_safe_jeonbuk_day_c['localOccCnt'][end_num_idx]+5 # 전라북도 지역발생수, 해외유입수 그래프 출력 x=np.arange(len(df_safe_jeonbuk_day.createDt)) plt.bar(x-0.0, df_safe_jeonbuk_day.localOccCnt, label='지역발생수', width=0.2, color='#ff8a3c', alpha=.75) plt.bar(x+0.2, df_safe_jeonbuk_day.overFlowCnt, label='해외유입수', width=0.2, color='#3a8d65', alpha=.75) plt.xticks(x, df_safe_jeonbuk_day.createDt) plt.yticks(np.arange(0, end_num_c, step=5)) plt.xlabel('날짜 (단위: 일)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') plt.legend() plt.savefig('images/fig_jeonbuk_2.png', dpi=300) plt.clf() # 경상남도 # 경상남도 df 전처리 df_safe_gyeongnam=df_safe_gyeongnam.groupby('createDt', sort=True).head(1) df_safe_gyeongnam_week=df_safe_gyeongnam.iloc[::7] # 일주일 단위로 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_gyeongnam_month=df_safe_gyeongnam_week.head(5) # 일주일 단위로 한달(5주) 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_gyeongnam_day=df_safe_gyeongnam.head(5) # 하루 단위로 5일 데이터 추출 (지역발생수, 해외유입수 그래프에 사용) df_safe_gyeongnam_month=df_safe_gyeongnam_month.sort_values(by='createDt', ascending=True) df_safe_gyeongnam_day=df_safe_gyeongnam_day.sort_values(by='createDt', ascending=True) df_safe_gyeongnam_month['createDt']=df_safe_gyeongnam_month['createDt'].astype(str) # 경상남도 확진자수 그래프 yticks 값 조정 start_num=df_safe_gyeongnam_month.iloc[0,1] end_num=df_safe_gyeongnam_month.iloc[-1,1] start_num=unit_down(start_num) end_num=unit_up(end_num)+100 # 경상남도 확진자수 그래프 출력 ax = fig.add_subplot() line_plot=ax.plot(df_safe_gyeongnam_month.createDt,df_safe_gyeongnam_month['defCnt'], color='#FF5A5A', alpha=.75, linewidth=2, marker='o',markersize=5) line_plot=line_plot[0] plt.yticks(np.arange(start_num, end_num, step=100)) plt.xlabel('날짜 (단위: 주)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') for coord in list(line_plot.get_xydata()): ax.text(coord[0],coord[1]+7 ,f'{int(coord[1])}',fontsize=11, ha='center', color='#FF5A5A') plt.savefig('images/fig_gyeongnam_1.png', dpi=300) plt.clf() # 경상남도 지역발생수, 해외유입수 그래프 yticks 값 조정 df_safe_gyeongnam_day_c=df_safe_gyeongnam_day.sort_values(by='localOccCnt', ascending=True) end_num_idx=df_safe_gyeongnam_day_c['localOccCnt'].idxmax() end_num_c=df_safe_gyeongnam_day_c['localOccCnt'][end_num_idx]+10 # 경상남도 지역발생수, 해외유입수 그래프 출력 x=np.arange(len(df_safe_gyeongnam_day.createDt)) plt.bar(x-0.0, df_safe_gyeongnam_day.localOccCnt, label='지역발생수', width=0.2, color='#ff8a3c', alpha=.75) plt.bar(x+0.2, df_safe_gyeongnam_day.overFlowCnt, label='해외유입수', width=0.2, color='#3a8d65', alpha=.75) plt.xticks(x, df_safe_gyeongnam_day.createDt) plt.yticks(np.arange(0, end_num_c, step=10)) plt.xlabel('날짜 (단위: 일)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') plt.legend() plt.savefig('images/fig_gyeongnam_2.png', dpi=300) plt.clf() # 경상북도 # 경상북도 df 전처리 df_safe_gb=df_safe_gb.groupby('createDt', sort=True).head(1) df_safe_gb_week=df_safe_gb.iloc[::7] # 일주일 단위로 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_gb_month=df_safe_gb_week.head(5) # 일주일 단위로 한달(5주) 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_gb_day=df_safe_gb.head(5) # 하루 단위로 5일 데이터 추출 (지역발생수, 해외유입수 그래프에 사용) df_safe_gb_month=df_safe_gb_month.sort_values(by='createDt', ascending=True) df_safe_gb_day=df_safe_gb_day.sort_values(by='createDt', ascending=True) df_safe_gb_month['createDt']=df_safe_gb_month['createDt'].astype(str) # 경상북도 확진자수 그래프 yticks 값 조정 start_num=df_safe_gb_month.iloc[0,1] end_num=df_safe_gb_month.iloc[-1,1] start_num=unit_down(start_num) end_num=unit_up(end_num)+50 # 경상북도 확진자수 그래프 출력 ax = fig.add_subplot() line_plot=ax.plot(df_safe_gb_month.createDt,df_safe_gb_month['defCnt'], color='#FF5A5A', alpha=.75, linewidth=2, marker='o',markersize=5) line_plot=line_plot[0] plt.yticks(np.arange(start_num, end_num, step=50)) plt.xlabel('날짜 (단위: 주)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') for coord in list(line_plot.get_xydata()): ax.text(coord[0],coord[1]+4 ,f'{int(coord[1])}',fontsize=11, ha='center', color='#FF5A5A') plt.savefig('images/fig_gb_1.png', dpi=300) plt.clf() # 경상북도 지역발생수, 해외유입수 그래프 yticks 값 조정 df_safe_gb_day_c=df_safe_gb_day.sort_values(by='localOccCnt', ascending=True) end_num_idx=df_safe_gb_day_c['localOccCnt'].idxmax() end_num_c=df_safe_gb_day_c['localOccCnt'][end_num_idx]+4 # 경상북도 지역발생수, 해외유입수 그래프 출력 x=np.arange(len(df_safe_gb_day.createDt)) plt.bar(x-0.0, df_safe_gb_day.localOccCnt, label='지역발생수', width=0.2, color='#ff8a3c', alpha=.75) plt.bar(x+0.2, df_safe_gb_day.overFlowCnt, label='해외유입수', width=0.2, color='#3a8d65', alpha=.75) plt.xticks(x, df_safe_gb_day.createDt) plt.yticks(np.arange(0, end_num_c, step=3)) plt.xlabel('날짜 (단위: 일)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') plt.legend() plt.savefig('images/fig_gb_2.png', dpi=300) plt.clf() # 강원도 # 강원도 df 전처리 df_safe_gangwon=df_safe_gangwon.groupby('createDt', sort=True).head(1) df_safe_gangwon_week=df_safe_gangwon.iloc[::7] # 일주일 단위로 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_gangwon_month=df_safe_gangwon_week.head(5) # 일주일 단위로 한달(5주) 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_gangwon_day=df_safe_gangwon.head(5) # 하루 단위로 5일 데이터 추출 (지역발생수, 해외유입수 그래프에 사용) df_safe_gangwon_month=df_safe_gangwon_month.sort_values(by='createDt', ascending=True) df_safe_gangwon_day=df_safe_gangwon_day.sort_values(by='createDt', ascending=True) df_safe_gangwon_month['createDt']=df_safe_gangwon_month['createDt'].astype(str) # 강원도 확진자수 그래프 yticks 값 조정 start_num=df_safe_gangwon_month.iloc[0,1] end_num=df_safe_gangwon_month.iloc[-1,1] start_num=unit_down(start_num) end_num=unit_up(end_num)+100 # 강원도 확진자수 그래프 출력 ax = fig.add_subplot() line_plot=ax.plot(df_safe_gangwon_month.createDt,df_safe_gangwon_month['defCnt'], color='#FF5A5A', alpha=.75, linewidth=2, marker='o',markersize=5) line_plot=line_plot[0] plt.yticks(np.arange(start_num, end_num, step=100)) plt.xlabel('날짜 (단위: 주)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') for coord in list(line_plot.get_xydata()): ax.text(coord[0],coord[1]+7.5 ,f'{int(coord[1])}',fontsize=11, ha='center', color='#FF5A5A') plt.savefig('images/fig_gangwon_1.png', dpi=300) plt.clf() # 강원도 지역발생수, 해외유입수 그래프 yticks 값 조정 df_safe_gangwon_day_c=df_safe_gangwon_day.sort_values(by='localOccCnt', ascending=True) end_num_idx=df_safe_gangwon_day_c['localOccCnt'].idxmax() end_num_c=df_safe_gangwon_day_c['localOccCnt'][end_num_idx]+8 # 강원도 지역발생수, 해외유입수 그래프 출력 x=np.arange(len(df_safe_gangwon_day.createDt)) plt.bar(x-0.0, df_safe_gangwon_day.localOccCnt, label='지역발생수', width=0.2, color='#ff8a3c', alpha=.75) plt.bar(x+0.2, df_safe_gangwon_day.overFlowCnt, label='해외유입수', width=0.2,color='#3a8d65', alpha=.75) plt.xticks(x, df_safe_gangwon_day.createDt) plt.yticks(np.arange(0, end_num_c, step=4)) plt.xlabel('날짜 (단위: 일)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') plt.legend() plt.savefig('images/fig_gangwon_2.png', dpi=300) plt.clf() # 제주도 # 제주도 df 전처리 df_safe_jeju=df_safe_jeju.groupby('createDt', sort=True).head(1) df_safe_jeju_week=df_safe_jeju.iloc[::7] # 일주일 단위로 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_jeju_month=df_safe_jeju_week.head(5) # 일주일 단위로 한달(5주) 데이터 추출 (누적 확진자수 그래프에 사용) df_safe_jeju_day=df_safe_jeju.head(5) # 하루 단위로 5일 데이터 추출 (지역발생수, 해외유입수 그래프에 사용) df_safe_jeju_month=df_safe_jeju_month.sort_values(by='createDt', ascending=True) df_safe_jeju_day=df_safe_jeju_day.sort_values(by='createDt', ascending=True) df_safe_jeju_month['createDt']=df_safe_jeju_month['createDt'].astype(str) # 제주도 확진자수 그래프 yticks 값 조정 start_num=df_safe_jeju_month.iloc[0,1] end_num=df_safe_jeju_month.iloc[-1,1] start_num=unit_down(start_num) end_num=unit_up(end_num)+10 # 제주도 확진자수 그래프 출력 ax = fig.add_subplot() line_plot=ax.plot(df_safe_jeju_month.createDt,df_safe_jeju_month['defCnt'], color='#FF5A5A', alpha=.75, linewidth=2, marker='o',markersize=5) line_plot=line_plot[0] plt.yticks(np.arange(start_num, end_num, step=10)) plt.xlabel('날짜 (단위: 주)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') for coord in list(line_plot.get_xydata()): ax.text(coord[0],coord[1]+0.7 ,f'{int(coord[1])}',fontsize=11, ha='center', color='#FF5A5A') plt.savefig('images/fig_jeju_1.png', dpi=300) plt.clf() # 제주도 지역발생수, 해외유입수 그래프 yticks 값 조정 df_safe_jeju_day_c=df_safe_jeju_day.sort_values(by='localOccCnt', ascending=True) end_num_idx=df_safe_jeju_day_c['localOccCnt'].idxmax() end_num_c=df_safe_jeju_day_c['localOccCnt'][end_num_idx]+4 # 제주도 지역발생수, 해외유입수 그래프 출력 x=np.arange(len(df_safe_jeju_day.createDt)) plt.bar(x-0.0, df_safe_jeju_day.localOccCnt, label='지역발생수', width=0.2, color='#ff8a3c', alpha=.75) plt.bar(x+0.2, df_safe_jeju_day.overFlowCnt, label='해외유입수', width=0.2, color='#3a8d65', alpha=.75) plt.xticks(x, df_safe_jeju_day.createDt) plt.yticks(np.arange(0, end_num_c, step=2)) plt.xlabel('날짜 (단위: 일)') plt.ylabel('명', position=(0,1.05), verticalalignment='top', horizontalalignment='left', rotation='horizontal') plt.legend() plt.savefig('images/fig_jeju_2.png', dpi=300) # Firebase Storage 연결 os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="mykey.json" firebase = firebase.FirebaseApplication('https://project-48b89.firebaseio.com/') client = storage.Client() bucket = client.get_bucket('project-48b89.appspot.com') imageBlob = bucket.blob("/") # Storage에 저장된 그래프 사진파일 저장 # 서울 그래프 imagePath_s1 = "images/fig_seoul_1.png" imageBlob_s1 = bucket.blob("seoul1.png") imageBlob_s1.upload_from_filename(imagePath_s1) imagePath_s2 = "images/fig_seoul_2.png" imageBlob_s2 = bucket.blob("seoul2.png") imageBlob_s2.upload_from_filename(imagePath_s2) # 경기도 그래프 imagePath_g1 = "images/fig_gg_1.png" imageBlob_g1 = bucket.blob("gyeounggi1.png") imageBlob_g1.upload_from_filename(imagePath_g1) imagePath_g2 = "images/fig_gg_2.png" imageBlob_g2 = bucket.blob("gyeounggi2.png") imageBlob_g2.upload_from_filename(imagePath_g2) # 충청남도 그래프 imagePath_cn1 = "images/fig_chungnam_1.png" imageBlob_cn1 = bucket.blob("chungnam1.png") imageBlob_cn1.upload_from_filename(imagePath_cn1) imagePath_cn2 = "images/fig_chungnam_2.png" imageBlob_cn2 = bucket.blob("chungnam2.png") imageBlob_cn2.upload_from_filename(imagePath_cn2) # 충청북도 그래프 imagePath_cb1 = "images/fig_chungbuk_1.png" imageBlob_cb1 = bucket.blob("chungbuk1.png") imageBlob_cb1.upload_from_filename(imagePath_cb1) imagePath_cb2 = "images/fig_chungbuk_2.png" imageBlob_cb2 = bucket.blob("chungbuk2.png") imageBlob_cb2.upload_from_filename(imagePath_cb2) # 전라남도 그래프 imagePath_jn1 = "images/fig_jeonnam_1.png" imageBlob_jn1 = bucket.blob("jeonnam1.png") imageBlob_jn1.upload_from_filename(imagePath_jn1) imagePath_jn2 = "images/fig_jeonnam_2.png" imageBlob_jn2 = bucket.blob("jeonnam2.png") imageBlob_jn2.upload_from_filename(imagePath_jn2) # 전라북도 그래프 imagePath_jb1 = "images/fig_jeonbuk_1.png" imageBlob_jb1 = bucket.blob("jeonbuk1.png") imageBlob_jb1.upload_from_filename(imagePath_jb1) imagePath_jb2 = "images/fig_jeonbuk_2.png" imageBlob_jb2 = bucket.blob("jeonbuk2.png") imageBlob_jb2.upload_from_filename(imagePath_jb2) # 경상남도 그래프 imagePath_gn1 = "images/fig_gyeongnam_1.png" imageBlob_gn1 = bucket.blob("gyeongnam1.png") imageBlob_gn1.upload_from_filename(imagePath_gn1) imagePath_gn2 = "images/fig_gyeongnam_2.png" imageBlob_gn2 = bucket.blob("gyeongnam2.png") imageBlob_gn2.upload_from_filename(imagePath_gn2) # 경상북도 그래프 imagePath_gb1 = "images/fig_gb_1.png" imageBlob_gb1 = bucket.blob("gyeongbuk1.png") imageBlob_gb1.upload_from_filename(imagePath_gb1) imagePath_gb2 = "images/fig_gb_2.png" imageBlob_gb2 = bucket.blob("gyeongbuk2.png") imageBlob_gb2.upload_from_filename(imagePath_gb2) # 강원도 그래프 imagePath_gw1 = "images/fig_gangwon_1.png" imageBlob_gw1 = bucket.blob("gangwon1.png") imageBlob_gw1.upload_from_filename(imagePath_gw1) imagePath_gw2 = "images/fig_gangwon_2.png" imageBlob_gw2 = bucket.blob("gangwon2.png") imageBlob_gw2.upload_from_filename(imagePath_gw2) # 제주도 그래프 imagePath_j1 = "images/fig_jeju_1.png" imageBlob_j1 = bucket.blob("jeju1.png") imageBlob_j1.upload_from_filename(imagePath_j1) imagePath_j2 = "images/fig_jeju_2.png" imageBlob_j2 = bucket.blob("jeju2.png") imageBlob_j2.upload_from_filename(imagePath_j2)
[ "yang_hyeji1@daum.net" ]
yang_hyeji1@daum.net
c012f9c59f940bc7e0291d153248da24b9b21db3
372558f4337c539871e2e25fcaa06c45041a700e
/userInterface.py
b4733d79c954769bdfd048ac726fb2b350f69af4
[]
no_license
kubicius/blockchain
452be7990be91f322acceafdfba7f2664cd2311c
bf4368975e6f2198d90c0a3b1c8005503b3ae851
refs/heads/main
2023-04-12T17:42:52.096126
2021-05-05T20:44:46
2021-05-05T20:44:46
364,521,496
2
0
null
null
null
null
UTF-8
Python
false
false
2,151
py
from fastapi.templating import Jinja2Templates class UserInterface: """ Class preparing html templates. """ def __init__(self): self.templates = Jinja2Templates(directory="templates/") def show_template(self, request, result): return self.templates.TemplateResponse('default.html', context={'request': request, 'result': result}) def prepare_all_records(self, blockchain, filter, id): result = "" if filter: result += "<div class='row filter'>" result += "<form method='GET'>" result += "<div class='col'>" result += "<label for='id'>Person ID:</label>" result += "<input type='hidden' name='filter' value='True'>" result += "<input id='id' name='id' required>" result += "<input type='submit' value='Filter'>" result += "</div>" result += "</form>" result += "</div>" result += "<div class='row'>" for label in ['person_id', 'person_name', 'doctor', 'report', 'medicine']: result += "<div class='col result__label'>" result += "<span>" + label + "</span>" result += "</div>" result += "</div>" for block in blockchain.chain: t = block.transactions if len(block.transactions) == 1: if filter == False or block.transactions[0]['person_id'] == id: result += "<div class='row'>" for t in block.transactions[0]: result += "<div class='col result__data'>" result += "<span>"+str(block.transactions[0][t])+"</span>" result += "</div>" result += "</div>" return result def prepare_mine_result(self, fired, mined): result = "" if fired: if mined: result = "<p>Mined block: " + str(mined) + "</p>" else: result = "<p>Nothing to mine.</p>" result += "<button onclick='window.location.href=\"/mine?fired=True\"'>MINE!</button>" return result
[ "kskubicius@gmail.com" ]
kskubicius@gmail.com
d45c64018c5559929a424479f55941ef74fffbfb
84379e15e54ba79b7e63c1fceecf712b46f22977
/apps/cards/migrations/0052_auto_20200516_1545.py
e7249b0638f24725e1ab93e5956e11c91eed3149
[]
no_license
CoderEnko007/HearthStoneStationBackend
a1d74c324233ebd617ad01df13bc609d1f1aa2f6
6cc92cb806f19f2a2a0596645028cfe2fa5895d6
refs/heads/master
2022-12-11T23:20:24.335737
2022-09-18T07:04:08
2022-09-18T07:04:08
144,392,864
0
0
null
2022-12-08T02:22:42
2018-08-11T14:40:48
JavaScript
UTF-8
Python
false
false
642
py
# Generated by Django 2.0.4 on 2020-05-16 15:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cards', '0051_hscards_update_time'), ] operations = [ migrations.AddField( model_name='hsbattlegroundcards', name='ename', field=models.CharField(blank=True, max_length=100, null=True, verbose_name='英文名称'), ), migrations.AlterField( model_name='hsbattlegroundcards', name='name', field=models.CharField(max_length=100, verbose_name='中文名称'), ), ]
[ "yf381966217@163.com" ]
yf381966217@163.com
114faf3399990d6091ca6561a042f283688d53cc
085148f472eb07a565df7ea513b90ec84270d40a
/petalapp/config.py
3623889fee5098390e9b4ced2860cbd81297cf3a
[]
no_license
drewverlee/petal
165af8073f01afc9230534b73128cc5fb8ccd631
cde63d27af7d6059c102a9980aeb442ea21eda22
refs/heads/master
2021-01-19T10:26:16.627874
2014-01-11T16:39:29
2014-01-11T16:39:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
971
py
''' File: config.py Date: 2012-11 Author: Drew Verlee Description: configuration setup to handle aws,heroku, local machine, database, etc... ''' import os # flask PORT = int(os.environ.get("PORT", 5000)) basedir = str(os.path.abspath(os.path.dirname(__file__))) SECRET_KEY = str(os.environ.get("APP_SECRET_KEY")) DEBUG = str(os.environ.get("DEBUG")) ALLOWED_EXTENSIONS = str(os.environ.get("ALLOWED_EXTENSIONS")) CSRF_ENABLED = True TESTING = os.environ.get("TESTING", False) #database, TODO add local db? SQLALCHEMY_DATABASE_URI = str(os.environ.get("DATABASE_URL")) SQLALCHEMY_MIGRATE_REPO = str(os.path.join(basedir, 'database/db_repository')) # S3 AWS_ACCESS_KEY_ID = str(os.environ.get("AWS_ACCESS_KEY_ID")) AWS_SECRET_ACCESS_KEY = str(os.environ.get("AWS_SECRET_ACCESS_KEY")) S3_BUCKET = str(os.environ.get("S3_BUCKET")) S3_UPLOAD_DIRECTORY = str(os.environ.get("S3_UPLOAD_DIRECTORY")) # browser id BROWERID_LOGIN_URL = "/login" BROWERID_LOGOUT_URL = "/logout"
[ "Drew.verlee@gmail.com" ]
Drew.verlee@gmail.com
292a7efec1a7e17418ca697c6361e6cd703ed8b4
621a40fa363dc0c32c96a4c8fdfe9142877e2ff1
/ietf/sync/mails.py
a58894e3d1cc66becadded97bb3aca98e9b74879
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
omunroe-com/ietfdb2
d9c40bebe4b25059f810c70dd1370cca30cb3c36
aeaae292fbd55aca1b6043227ec105e67d73367f
refs/heads/master
2020-04-04T21:05:56.067430
2018-11-05T09:08:27
2018-11-05T09:08:27
156,273,382
2
0
null
null
null
null
UTF-8
Python
false
false
632
py
from django.urls import reverse as urlreverse from django.conf import settings from ietf.utils.mail import send_mail from ietf.sync.discrepancies import find_discrepancies def email_discrepancies(receivers): sections = find_discrepancies() send_mail(None, receivers, None, "Datatracker Sync Discrepancies Report", "sync/discrepancies_report.txt", dict(sections=sections, url=settings.IDTRACKER_BASE_URL + urlreverse("ietf.sync.views.discrepancies"), base_url=settings.IDTRACKER_BASE_URL, ))
[ "henrik@levkowetz.com" ]
henrik@levkowetz.com
537854fc42c02d114a9c6a582dd68c42475254ce
ec87588d0032c551a114b27c9491582d4191889c
/Week_1/1068.py
dd4c0bebcc6c207599bd6c772d69a24e3e157332
[]
no_license
MurylloEx/Data-Structures-and-Algorithms
0f28de436debb25acc1ae36acb88b12d1bd7b140
6a9c38ce5e925ac1d221a7cc7405daf5d46b43ed
refs/heads/master
2021-02-19T17:33:18.288885
2020-11-13T15:08:34
2020-11-13T15:08:34
245,316,916
0
0
null
null
null
null
UTF-8
Python
false
false
627
py
while True: try: expr = input() if (expr not in '\n\r'): raw_expr = str() for idx in range(0, len(expr)): if (expr[idx] in '()'): raw_expr += expr[idx] if (len(raw_expr) % 2 == 1): print('incorrect') else: strlen = int(len(raw_expr)/2) for idx in range(0, strlen): raw_expr = raw_expr.replace('()', '') print('correct' if raw_expr == '' else 'incorrect') else: break except EOFError: break
[ "noreply@github.com" ]
MurylloEx.noreply@github.com
b442671190ebc5c0787131c5aab2a40f6a028ce6
3b239e588f2ca6e49a28a63d906dd8dd26173f88
/code/play_train_eval_q.py
098d7e50fdc67e62c6665a9b62a6477517ed596a
[]
no_license
Angi16/deep_learning_and_the_game_of_go
3bbf4f075f41359b87cb06fe01b4c7af85837c18
ba63d5e3f60ec42fa1088921ecf93bdec641fd04
refs/heads/master
2020-03-23T16:02:47.431241
2018-07-21T02:57:16
2018-07-21T02:57:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,494
py
import argparse import datetime import multiprocessing import os import random import shutil import time import tempfile from collections import namedtuple import h5py import numpy as np from dlgo import kerasutil from dlgo import scoring from dlgo import rl from dlgo.goboard_fast import GameState, Player, Point def load_agent(filename): with h5py.File(filename, 'r') as h5file: return rl.load_q_agent(h5file) COLS = 'ABCDEFGHJKLMNOPQRST' STONE_TO_CHAR = { None: '.', Player.black: 'x', Player.white: 'o', } def avg(items): if not items: return 0.0 return sum(items) / float(len(items)) def print_board(board): for row in range(board.num_rows, 0, -1): line = [] for col in range(1, board.num_cols + 1): stone = board.get(Point(row=row, col=col)) line.append(STONE_TO_CHAR[stone]) print('%2d %s' % (row, ''.join(line))) print(' ' + COLS[:board.num_cols]) class GameRecord(namedtuple('GameRecord', 'moves winner margin')): pass def name(player): if player == Player.black: return 'B' return 'W' def simulate_game(black_player, white_player, board_size): moves = [] game = GameState.new_game(board_size) agents = { Player.black: black_player, Player.white: white_player, } while not game.is_over(): next_move = agents[game.next_player].select_move(game) moves.append(next_move) game = game.apply_move(next_move) print_board(game.board) game_result = scoring.compute_game_result(game) print(game_result) return GameRecord( moves=moves, winner=game_result.winner, margin=game_result.winning_margin, ) def get_temp_file(): fd, fname = tempfile.mkstemp(prefix='dlgo-train') os.close(fd) return fname def do_self_play(board_size, agent1_filename, agent2_filename, num_games, temperature, experience_filename, gpu_frac): kerasutil.set_gpu_memory_target(gpu_frac) random.seed(int(time.time()) + os.getpid()) np.random.seed(int(time.time()) + os.getpid()) agent1 = load_agent(agent1_filename) agent1.set_temperature(temperature) agent2 = load_agent(agent2_filename) agent2.set_temperature(temperature) collector1 = rl.ExperienceCollector() color1 = Player.black for i in range(num_games): print('Simulating game %d/%d...' % (i + 1, num_games)) collector1.begin_episode() agent1.set_collector(collector1) if color1 == Player.black: black_player, white_player = agent1, agent2 else: white_player, black_player = agent1, agent2 game_record = simulate_game(black_player, white_player, board_size) if game_record.winner == color1: print('Agent 1 wins.') collector1.complete_episode(reward=1) else: print('Agent 2 wins.') collector1.complete_episode(reward=-1) color1 = color1.other experience = rl.combine_experience([collector1]) print('Saving experience buffer to %s\n' % experience_filename) with h5py.File(experience_filename, 'w') as experience_outf: experience.serialize(experience_outf) def generate_experience(learning_agent, reference_agent, exp_file, num_games, board_size, num_workers, temperature): experience_files = [] workers = [] gpu_frac = 0.95 / float(num_workers) games_per_worker = num_games // num_workers for i in range(num_workers): filename = get_temp_file() experience_files.append(filename) worker = multiprocessing.Process( target=do_self_play, args=( board_size, learning_agent, reference_agent, games_per_worker, temperature, filename, gpu_frac, ) ) worker.start() workers.append(worker) # Wait for all workers to finish. print('Waiting for workers...') for worker in workers: worker.join() # Merge experience buffers. print('Merging experience buffers...') first_filename = experience_files[0] other_filenames = experience_files[1:] with h5py.File(first_filename, 'r') as expf: combined_buffer = rl.load_experience(expf) for filename in other_filenames: with h5py.File(filename, 'r') as expf: next_buffer = rl.load_experience(expf) combined_buffer = rl.combine_experience([combined_buffer, next_buffer]) print('Saving into %s...' % exp_file) with h5py.File(exp_file, 'w') as experience_outf: combined_buffer.serialize(experience_outf) # Clean up. for fname in experience_files: os.unlink(fname) def train_worker(learning_agent, output_file, experience_file, lr, batch_size): learning_agent = load_agent(learning_agent) with h5py.File(experience_file, 'r') as expf: exp_buffer = rl.load_experience(expf) learning_agent.train(exp_buffer, lr=lr, batch_size=batch_size) with h5py.File(output_file, 'w') as updated_agent_outf: learning_agent.serialize(updated_agent_outf) def train_on_experience(learning_agent, output_file, experience_file, lr, batch_size): # Do the training in the background process. Otherwise some Keras # stuff gets initialized in the parent, and later that forks, and # that messes with the workers. worker = multiprocessing.Process( target=train_worker, args=( learning_agent, output_file, experience_file, lr, batch_size ) ) worker.start() worker.join() def play_games(args): agent1_fname, agent2_fname, num_games, board_size, gpu_frac, temperature = args kerasutil.set_gpu_memory_target(gpu_frac) random.seed(int(time.time()) + os.getpid()) np.random.seed(int(time.time()) + os.getpid()) agent1 = load_agent(agent1_fname) agent1.set_temperature(temperature) agent2 = load_agent(agent2_fname) agent2.set_temperature(temperature) wins, losses = 0, 0 color1 = Player.black for i in range(num_games): print('Simulating game %d/%d...' % (i + 1, num_games)) if color1 == Player.black: black_player, white_player = agent1, agent2 else: white_player, black_player = agent1, agent2 game_record = simulate_game(black_player, white_player, board_size) if game_record.winner == color1: print('Agent 1 wins') wins += 1 else: print('Agent 2 wins') losses += 1 print('Agent 1 record: %d/%d' % (wins, wins + losses)) color1 = color1.other return (wins, losses) def evaluate(learning_agent, reference_agent, num_games, num_workers, board_size, temperature): games_per_worker = num_games // num_workers gpu_frac = 0.95 / float(num_workers) pool = multiprocessing.Pool(num_workers) worker_args = [ ( learning_agent, reference_agent, games_per_worker, board_size, gpu_frac, temperature, ) for _ in range(num_workers) ] game_results = pool.map(play_games, worker_args) total_wins, total_losses = 0, 0 for wins, losses in game_results: total_wins += wins total_losses += losses print('FINAL RESULTS:') print('Learner: %d' % total_wins) print('Refrnce: %d' % total_losses) pool.close() pool.join() return total_wins def main(): parser = argparse.ArgumentParser() parser.add_argument('--agent', required=True) parser.add_argument('--games-per-batch', '-g', type=int, default=1000) parser.add_argument('--work-dir', '-d') parser.add_argument('--num-workers', '-w', type=int, default=1) parser.add_argument('--temperature', '-t', type=float, default=0.0) parser.add_argument('--board-size', '-b', type=int, default=19) parser.add_argument('--lr', type=float, default=0.01) parser.add_argument('--bs', type=int, default=512) parser.add_argument('--log-file', '-l') args = parser.parse_args() logf = open(args.log_file, 'a') logf.write('----------------------\n') logf.write('Starting from %s at %s\n' % ( args.agent, datetime.datetime.now())) temp_decay = 0.98 min_temp = 0.01 temperature = args.temperature learning_agent = args.agent reference_agent = args.agent experience_file = os.path.join(args.work_dir, 'exp_temp.hdf5') tmp_agent = os.path.join(args.work_dir, 'agent_temp.hdf5') working_agent = os.path.join(args.work_dir, 'agent_cur.hdf5') total_games = 0 while True: print('Reference: %s' % (reference_agent,)) logf.write('Total games so far %d\n' % (total_games,)) generate_experience( learning_agent, reference_agent, experience_file, num_games=args.games_per_batch, board_size=args.board_size, num_workers=args.num_workers, temperature=temperature) train_on_experience( learning_agent, tmp_agent, experience_file, lr=args.lr, batch_size=args.bs) total_games += args.games_per_batch wins = evaluate( learning_agent, reference_agent, num_games=480, num_workers=args.num_workers, board_size=args.board_size, temperature=temperature) print('Won %d / 480 games (%.3f)' % ( wins, float(wins) / 480.0)) logf.write('Won %d / 480 games (%.3f)\n' % ( wins, float(wins) / 480.0)) shutil.copy(tmp_agent, working_agent) learning_agent = working_agent if wins >= 262: next_filename = os.path.join( args.work_dir, 'agent_%08d.hdf5' % (total_games,)) shutil.move(tmp_agent, next_filename) reference_agent = next_filename logf.write('New reference is %s\n' % next_filename) temperature = max(min_temp, temp_decay * temperature) logf.write('New temperature is %f\n' % temperature) else: print('Keep learning\n') logf.flush() if __name__ == '__main__': main()
[ "max.pumperla@googlemail.com" ]
max.pumperla@googlemail.com
4515847506698c8aa7f7ffc59048f1339af96ed8
9bd8b82a2aa4a126863b497e276e3d54dba56050
/pytorch_transformers/modeling_roberta.py
87f797d42fd5f9bdb99cc9de8116d336793367f7
[ "Apache-2.0" ]
permissive
Nstats/pytorch_senti_analysis_ch
d905600f16c168dad9f4a5da9b68dd19cdb5a578
bb01cc508c37638670b26259a6ee35c4e857f2b6
refs/heads/master
2022-12-11T11:40:11.785573
2019-11-29T10:03:49
2019-11-29T10:03:49
208,766,887
3
0
Apache-2.0
2022-12-08T06:09:42
2019-09-16T09:56:58
Python
UTF-8
Python
false
false
18,426
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch RoBERTa model. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import logging import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import CrossEntropyLoss, MSELoss from pytorch_transformers.modeling_bert import (BertConfig, BertEmbeddings, BertLayerNorm, BertModel, BertPreTrainedModel, gelu) from pytorch_transformers.modeling_utils import add_start_docstrings logger = logging.getLogger(__name__) ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = { 'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-pytorch_model.bin", 'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-pytorch_model.bin", 'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-pytorch_model.bin", } ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-bert_config.json", 'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-bert_config.json", 'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-bert_config.json", } class RobertaEmbeddings(BertEmbeddings): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super(RobertaEmbeddings, self).__init__(config) self.padding_idx = 1 def forward(self, input_ids, token_type_ids=None, position_ids=None): seq_length = input_ids.size(1) if position_ids is None: # Position numbers begin at padding_idx+1. Padding symbols are ignored. # cf. fairseq's `utils.make_positions` position_ids = torch.arange(self.padding_idx+1, seq_length+self.padding_idx+1, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) return super(RobertaEmbeddings, self).forward(input_ids, token_type_ids=token_type_ids, position_ids=position_ids) class RobertaConfig(BertConfig): pretrained_config_archive_map = ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP ROBERTA_START_DOCSTRING = r""" The RoBERTa model was proposed in `RoBERTa: A Robustly Optimized BERT Pretraining Approach`_ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google's BERT model released in 2018. It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with much larger mini-batches and learning rates. This implementation is the same as BertModel with a tiny embeddings tweak as well as a setup for Roberta pretrained models. This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. .. _`RoBERTa: A Robustly Optimized BERT Pretraining Approach`: https://arxiv.org/abs/1907.11692 .. _`torch.nn.Module`: https://pytorch.org/docs/stable/nn.html#module Parameters: config (:class:`~pytorch_transformers.RobertaConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ ROBERTA_INPUTS_DOCSTRING = r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of input sequence tokens in the vocabulary. To match pre-training, RoBERTa input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs: ``tokens: [CLS] is this jack ##son ##ville ? [SEP][SEP] no it is not . [SEP]`` (b) For single sequences: ``tokens: [CLS] the dog is hairy . [SEP]`` Fully encoded sequences or sequence pairs can be obtained using the RobertaTokenizer.encode function with the ``add_special_tokens`` parameter set to ``True``. RoBERTa is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1[``. **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. """ @add_start_docstrings("The bare RoBERTa Model transformer outputing raw hidden-states without any specific head on top.", ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING) class RobertaModel(BertModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the model. **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = RobertaTokenizer.from_pretrained('roberta-base') model = RobertaModel.from_pretrained('roberta-base') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ config_class = RobertaConfig pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "roberta" def __init__(self, config): super(RobertaModel, self).__init__(config) self.embeddings = RobertaEmbeddings(config) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, position_ids=None, head_mask=None): if input_ids[:, 0].sum().item() != 0: logger.warning("A sequence with no special tokens has been passed to the RoBERTa model. " "This model requires special tokens in order to work. " "Please specify add_special_tokens=True in your encoding.") return super(RobertaModel, self).forward(input_ids, token_type_ids, attention_mask, position_ids, head_mask) @add_start_docstrings("""RoBERTa Model with a `language modeling` head on top. """, ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING) class RobertaForMaskedLM(BertPreTrainedModel): r""" **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for computing the masked language modeling loss. Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Masked language modeling loss. **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = RobertaTokenizer.from_pretrained('roberta-base') model = RobertaForMaskedLM.from_pretrained('roberta-base') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 outputs = model(input_ids, masked_lm_labels=input_ids) loss, prediction_scores = outputs[:2] """ config_class = RobertaConfig pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "roberta" def __init__(self, config): super(RobertaForMaskedLM, self).__init__(config) self.roberta = RobertaModel(config) self.lm_head = RobertaLMHead(config) self.apply(self.init_weights) self.tie_weights() def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.lm_head.decoder, self.roberta.embeddings.word_embeddings) def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, position_ids=None, head_mask=None): outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here if masked_lm_labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) outputs = (masked_lm_loss,) + outputs return outputs # (masked_lm_loss), prediction_scores, (hidden_states), (attentions) class RobertaLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super(RobertaLMHead, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) + self.bias return x @add_start_docstrings("""RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING) class RobertaForSequenceClassification(BertPreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification (or regression if config.num_labels==1) loss. **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = RoertaTokenizer.from_pretrained('roberta-base') model = RobertaForSequenceClassification.from_pretrained('roberta-base') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ config_class = RobertaConfig pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "roberta" def __init__(self, config): super(RobertaForSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config) self.classifier = RobertaClassificationHead(config) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None): outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) sequence_output = outputs[0] logits = self.classifier(sequence_output) outputs = (logits,) + outputs[2:] if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions) class RobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super(RobertaClassificationHead, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x
[ "17801238715@163.com" ]
17801238715@163.com
73d2cffae018f4ee3e6b3605bbc5eb17ef895fc2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02886/s682827583.py
180261c0dad26a28d3b99ade929a4b036e335d73
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
144
py
n = int(input()) d = list(map(lambda x: int(x), input().split(" "))) ans = 0 for i in range(n - 1): ans += d[i] * sum(d[i + 1:]) print(ans)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
d090b2a3de4de477fd8d316b88a68204f8466762
17a8ed643eb39759409187a7e6b5483a616da212
/example/svm_demo.py
c556f00c7a32c77e313b8eba1a9a79b117d552a3
[ "MIT" ]
permissive
Lving/outlier_detection
a59086b8528b718f12838167ba722b7a80533891
13ffe460c35af7dcc49314b36791b2c4dabc7348
refs/heads/master
2021-05-08T06:33:26.182552
2016-09-19T09:18:22
2016-09-19T09:18:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,194
py
import numpy as np import matplotlib.pyplot as plt from outlier_detector.base_detector import OutlierDetector # Generate train data X_train = 0.3 * np.random.randn(100, 2) # Generate some regular novel observations X_test = 0.3 * np.random.randn(20, 2) # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) param_dict = {'gamma': 0.1, 'kernel': 'rbf', 'nu': 0.1} # fit the model outlier_worker = OutlierDetector(algo_name='svm', param_dict=param_dict) outlier_worker.fit(X_train) test = outlier_worker.predict(X_test) out = outlier_worker.predict(X_outliers) train = outlier_worker.predict(X_train) print outlier_worker.score(X_outliers) print outlier_worker.score(X_train[:20]) plt.figure() plt.subplot(311) x = [r[0] for r in X_train] y = [r[1] for r in X_train] c = ['g' if r == 1 else 'r' for r in train] plt.scatter(x, y, color=c) plt.subplot(312) x = [r[0] for r in X_test] y = [r[1] for r in X_test] c = ['g' if r == 1 else 'r' for r in test] plt.scatter(x, y, color=c) plt.subplot(313) x = [r[0] for r in X_outliers] y = [r[1] for r in X_outliers] c = ['g' if r == 1 else 'r' for r in out] plt.scatter(x, y, color=c) plt.show()
[ "wg@gizwits.com" ]
wg@gizwits.com
ec9abecd68f805a633d5bb84759c798bc7535ad6
9fe84516b363ec5be12b37b12063d2e94f9255cf
/lib/networks/VGGnet_train.py
40a885c1d4caca742453194a2f025b6866762005
[]
no_license
justrypython/text-detection-ctpn
f14543dccf278744886111f1e1f50e3d02edc6d0
6783c2212d56b7133aebc827fe75c26f2a8c1fd8
refs/heads/master
2021-07-04T07:10:12.503395
2017-09-26T08:21:56
2017-09-26T08:21:56
104,291,038
0
0
null
2017-09-21T02:21:59
2017-09-21T02:21:59
null
UTF-8
Python
false
false
5,210
py
# -*- coding:utf-8 -*- import tensorflow as tf import numpy as np from network import Network from ..fast_rcnn.config import cfg class VGGnet_train(Network): def __init__(self, trainable=True): self.inputs = [] self.data = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='data') self.im_info = tf.placeholder(tf.float32, shape=[None, 3], name='im_info') self.gt_boxes = tf.placeholder(tf.float32, shape=[None, 5], name='gt_boxes') self.gt_ishard = tf.placeholder(tf.int32, shape=[None], name='gt_ishard') self.dontcare_areas = tf.placeholder(tf.float32, shape=[None, 4], name='dontcare_areas') self.keep_prob = tf.placeholder(tf.float32) self.layers = dict({'data':self.data, 'im_info':self.im_info, 'gt_boxes':self.gt_boxes,\ 'gt_ishard': self.gt_ishard, 'dontcare_areas': self.dontcare_areas}) self.trainable = trainable self.setup() def setup(self): # n_classes = 21 n_classes = cfg.NCLASSES # anchor_scales = [8, 16, 32] anchor_scales = cfg.ANCHOR_SCALES _feat_stride = [16, ] (self.feed('data') .conv(3, 3, 64, 1, 1, name='conv1_1', trainable=False) .conv(3, 3, 64, 1, 1, name='conv1_2', trainable=False) .max_pool(2, 2, 2, 2, padding='VALID', name='pool1') .conv(3, 3, 128, 1, 1, name='conv2_1', trainable=False) .conv(3, 3, 128, 1, 1, name='conv2_2', trainable=False) .max_pool(2, 2, 2, 2, padding='VALID', name='pool2') .conv(3, 3, 256, 1, 1, name='conv3_1') .conv(3, 3, 256, 1, 1, name='conv3_2') .conv(3, 3, 256, 1, 1, name='conv3_3') .max_pool(2, 2, 2, 2, padding='VALID', name='pool3') .conv(3, 3, 512, 1, 1, name='conv4_1') .conv(3, 3, 512, 1, 1, name='conv4_2') .conv(3, 3, 512, 1, 1, name='conv4_3') .max_pool(2, 2, 2, 2, padding='VALID', name='pool4') .conv(3, 3, 512, 1, 1, name='conv5_1') .conv(3, 3, 512, 1, 1, name='conv5_2') .conv(3, 3, 512, 1, 1, name='conv5_3')) #========= RPN ============ # zai 5-3 te zheng ceng yong yi ge 3*3 de huan dong chuan kou (self.feed('conv5_3') .conv(3,3,512,1,1,name='rpn_conv/3x3')) (self.feed('rpn_conv/3x3').lstm(512,128,name='lstm_o')) (self.feed('lstm_o').lstm_bbox(128,len(anchor_scales) * 10 * 4, name='rpn_bbox_pred')) (self.feed('lstm_o').lstm_bbox(128,len(anchor_scales) * 10 * 2,name='rpn_cls_score')) #(self.feed('lstm_o').fc_bbox(256, name='fc_box')) #(self.feed('fc_box').fc_bbox(len(anchor_scales) * 10 * 4, name='rpn_bbox_pred')) #(self.feed('fc_box').fc_bbox(len(anchor_scales) * 10 * 2, name='rpn_cls_score')) # Loss of rpn_cls & rpn_boxes # shape is (1, H, W, A x 4) and (1, H, W, A x 2) # 加入全卷积层,用来预测anchor的相对位置,也即delta ''' (self.feed('rpn_conv/3x3') .conv_rpn(1,1,len(anchor_scales) * 10 * 4, 1, 1, padding='VALID', relu = False, name='rpn_bbox_pred')) # 加入全卷积层,用来预测每一个delta的得分,object和non-object两个得分 (self.feed('rpn_conv/3x3') .conv(1, 1, len(anchor_scales) * 10 * 2, 1, 1, padding='VALID', relu=False, name='rpn_cls_score')) ''' # generating training labels on the fly # output: rpn_labels(HxWxA, 2) rpn_bbox_targets(HxWxA, 4) rpn_bbox_inside_weights rpn_bbox_outside_weights # 给每个anchor上标签,并计算真值(也是delta的形式),以及内部权重和外部权重 (self.feed('rpn_cls_score', 'gt_boxes', 'gt_ishard', 'dontcare_areas', 'im_info') .anchor_target_layer(_feat_stride, anchor_scales, name = 'rpn-data' )) # shape is (1, H, W, Ax2) -> (1, H, WxA, 2) # 给之前得到的score进行softmax,得到0-1之间的得分 (self.feed('rpn_cls_score') .spatial_reshape_layer(2, name = 'rpn_cls_score_reshape') .spatial_softmax(name='rpn_cls_prob')) # shape is (1, H, WxA, 2) -> (1, H, W, Ax2) #把得分reshape回正常的shape (self.feed('rpn_cls_prob') .spatial_reshape_layer(len(anchor_scales)*10*2, name = 'rpn_cls_prob_reshape')) # 生成固定anchor,并给所有的anchor加上之前得到的rpn-bbox-pred,也就是delta # 在做nms之类的处理,最后得到2000个rpn-rois (self.feed('rpn_cls_prob_reshape','rpn_bbox_pred','im_info') .proposal_layer(_feat_stride, anchor_scales, 'TRAIN', name = 'rpn_rois_data')) # matching boxes and groundtruth, # and randomly sample some rois and labels for RCNN # 在之前生成的2000个proposal中挑选一部分,并上标签,准备送入rcnn (self.feed('rpn_rois','rpn_targets','gt_boxes', 'gt_ishard', 'dontcare_areas') .proposal_target_layer(n_classes,name = 'roi-data'))
[ "kerzhao@163.com" ]
kerzhao@163.com
e68d4c563be6e6974f20f1df9d5d4e92f618c805
ea6c1dbf5a56bb8524db3ab0c8d36f86531535de
/rp-portfolio/blog/views.py
6908f85df6edaaf743f6c840ecf0ae02d3c397e6
[]
no_license
brahada/portfolio-blog-django
eedbd4a18436bf6753f190e607c3bbcb77871e23
a7cf3a4643cc02c0317fa2eba709536722615be1
refs/heads/master
2022-12-31T15:59:31.096722
2020-10-14T16:56:07
2020-10-14T16:56:07
304,079,647
0
0
null
null
null
null
UTF-8
Python
false
false
1,136
py
from django.shortcuts import render from blog.forms import CommentForm from blog.models import Post, Comment #from blog.forms import ContactForm def blog_index(request): posts = Post.objects.all().order_by("-created_on") context = {"posts": posts} return render(request, "blog_index.html", context) def blog_category(request, category): posts = Post.objects.filter(categories__name__contains=category).order_by( "-created_on" ) context = {"category": category, "posts": posts} return render(request, "blog_category.html", context) def blog_detail(request, pk): post = Post.objects.get(pk=pk) comments = Comment.objects.filter(post=post) form = CommentForm() if request.method == "POST": form = CommentForm(request.POST) if form.is_valid(): comment = Comment( author=form.cleaned_data["author"], body=form.cleaned_data["body"], post=post, ) comment.save() context = {"post": post, "comments": comments, "form": form} return render(request, "blog_detail.html", context)
[ "brahada25@gmail.com" ]
brahada25@gmail.com
05df7dc2db7b637991a6d8462dc57fecd50efcce
de40d3fa8d8af0030556d27d6833f6a1a0e7700c
/baekjoon/2592py/a.py
4390728c02561068188fc42c3f63a8de97110232
[]
no_license
NeoMindStd/CodingLife
cd6a627209c0353f4855f09fd5dfef8da4bbfef6
bcb6c3752f472e6a4f3b8f158d02bc3599dfcda3
refs/heads/master
2022-12-24T10:42:45.390085
2022-12-11T16:27:16
2022-12-11T16:27:16
191,797,634
2
0
null
null
null
null
UTF-8
Python
false
false
156
py
s=0 d={} for _ in range(10): n=int(input()) try:d[n]+=1 except:d[n]=1 s+=n print(s//10) print(max(d.items(),key=lambda x:x[1])[0])
[ "dwj1996@naver.com" ]
dwj1996@naver.com
5dd00d6d5517f4c7a804a51d9acf545ea04f39f4
e26149b575f166d052ce09ceaeb6ef2a31735860
/models/mlp_classifier.py
7cbac5c4b4cf8e56614e2d49fa9dcbdcec69d06f
[]
no_license
mireshghallah/A4NT
0ccd755d9710c17010d8bb3d01eb9d82fb4b869f
d5aa57e8266a472b84216da254025e21308639a5
refs/heads/master
2023-04-25T01:16:25.951623
2021-05-04T18:52:39
2021-05-04T18:52:39
364,344,421
0
0
null
null
null
null
UTF-8
Python
false
false
4,128
py
import torch import torch.utils.data import torch.nn as nn from torch.autograd import Variable from torch import tensor from tqdm import trange, tqdm import numpy as np class MLP_classifier(nn.Module): def __init__(self, params): super(MLP_classifier, self).__init__() #+1 is to allow padding index self.output_size = params.get('num_output_layers',205) self.hid_dims = params.get('hidden_widths',[]) self.inp_size = params.get('inp_size',-1) prev_size = self.inp_size self.hid_dims.append(self.output_size) self.lin_layers = nn.ModuleList() self.non_linearities = nn.ModuleList() self.dropouts = nn.ModuleList() for i in xrange(len(self.hid_dims)): self.lin_layers.append(nn.Linear(prev_size, self.hid_dims[i])) self.non_linearities.append(nn.SELU()) self.dropouts.append(nn.Dropout(p=params.get('drop_prob',0.0))) prev_size = self.hid_dims[i] self.softmax = nn.Softmax() self.init_weights() # we should move it out so that whether to do cuda or not should be upto the user. self.cuda() def init_weights(self): # Weight initializations for various parts. a = 0.01 # LSTM forget gate could be initialized to high value (1.) for i in xrange(len(self.hid_dims)): self.lin_layers[i].weight.data.uniform_(-a, a) self.lin_layers[i].bias.data.fill_(0) def forward(self, x, compute_softmax = False): x = Variable(x).cuda() prev_out = x for i in xrange(len(self.hid_dims)-1): prev_out = self.dropouts[i](prev_out) prev_out = self.non_linearities[i](self.lin_layers[i](prev_out)) prev_out = self.dropouts[-1](prev_out) prev_out = self.lin_layers[-1](prev_out) if compute_softmax: prob_out = self.softmax(prev_out) else: prob_out = prev_out return prob_out def fit(self, features, targs, feat_val, targ_test, epochs, lr=1e-3, l2=0.01): n_samples = features.shape[0] features = features.astype(np.float32) b_sz = 10 iter_per_epoch = n_samples / b_sz total_iters = epochs * iter_per_epoch self.train() criterion = nn.CrossEntropyLoss() optim = torch.optim.RMSprop(self.parameters(), lr=lr, alpha=0.90, eps=1e-8, weight_decay=l2) idxes = np.arange(n_samples) total_loss = 0. #t = trange(total_iters, desc='ML') best_loss = 10000. for i in tqdm(xrange(total_iters)): optim.zero_grad() b_ids = np.random.choice(idxes, size=b_sz) targets = Variable(torch.from_numpy(targs[b_ids])).cuda() output = self.forward(torch.from_numpy(features[b_ids,:])) loss = criterion(output, targets) loss.backward() # Take an optimization step optim.step() total_loss += loss.data.cpu().numpy()[0] if i % 2000 == 0 and i > 0: cur_loss = total_loss / 2000. print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2e} |' 'loss {:5.2f} | ppl {:8.2f}'.format( i//iter_per_epoch, i, total_iters, lr, cur_loss, np.exp(cur_loss))) total_loss = 0. #if cur_loss <= best_loss: # best_loss = cur_loss # best_model = model.state_dict() def decision_function(self, features): n_samples = features.shape[0] features = features.astype(np.float32) b_sz = 100 total_iters = n_samples // b_sz + 1 self.eval() scores = np.zeros((n_samples, self.output_size)) for i in tqdm(xrange(total_iters)): b_ids = np.arange(b_sz*i, min(n_samples,b_sz*(i+1))) output = self.forward(torch.from_numpy(features[b_ids,:]), compute_softmax = True) scores[b_ids,:] = output.data.cpu().numpy() return scores
[ "f.mireshghallah@gmail.com" ]
f.mireshghallah@gmail.com
ffb2e6251978a942c62d69f3a5f6b154501ad76c
1e7440822556f589cee3efe7023ee341a13ba5d7
/env/bin/jupyter-migrate
b12841132d82b056172d1072e62304c11de4a172
[]
no_license
nhatminh2947/deep-learning
2b4f2e288fdb954801c10e79347b3116433be55e
afa3a5a4a77d033c91a7ed6c40e51791e06cea64
refs/heads/master
2020-04-03T20:30:02.522061
2018-11-05T19:30:11
2018-11-05T19:30:11
155,547,216
0
0
null
null
null
null
UTF-8
Python
false
false
261
#!/home/cgilab/working/deeplearning/DLhw1/env/bin/python # -*- coding: utf-8 -*- import re import sys from jupyter_core.migrate import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "nhatminh2947@gmail.com" ]
nhatminh2947@gmail.com
44bab2d0245a7c589ff32e3972a72df4dd038efb
1aa1e6083c41bdb1337618f6403be0b8d02fb222
/catkin_ws/src/vicon_bridge/src/tester.py~
ed5d68ba9ac4a52c079b9e0a33f489821a4af9b8
[ "BSD-3-Clause" ]
permissive
fantasYu-Chao/Stupid-Baxter
7cc05b9d292c42a9c74c3223c3be7dd78659ff61
d7dad7aba023f29bbca389175994e72ae3486315
refs/heads/master
2021-06-27T10:44:53.574794
2017-09-10T21:27:18
2017-09-10T21:27:18
103,059,643
0
0
null
null
null
null
UTF-8
Python
false
false
1,603
#!/usr/bin/env python import roslib import sys import rospy import numpy as np import pdb from matplotlib import pyplot as plt from std_msgs.msg import String from sensor_msgs.msg import Image from geometry_msgs.msg import TransformStamped import os #define subscriber node binCor = [] class getBin(): def __init__(self): subNode = rospy.Subscriber("/vicon/Bin/Bin", TransformStamped, self.callback_bin) rospy.rostime.set_rostime_initialized( True ) def callback_bin(self, data): binCor.append(data.transform.translation.x) binCor.append(data.transform.translation.y) binCor.append(data.transform.translation.z) binCor.append(data.transform.rotation.x) binCor.append(data.transform.rotation.y) binCor.append(data.transform.rotation.z) binCor.append(data.transform.rotation.w) print binCor class retrieveSponge(): def __init__(self): subNode = rospy.Subscriber("/vicon/Sponge/Sponge", TransformStamped, self.callback_sponge) rospy.rostime.set_rostime_initialized( True ) def callback_sponge(self, data): swx = data.transform.translation.x swy = data.transform.translation.y swz = data.transform.translation.z sqx = data.transform.rotation.x sqy = data.transform.rotation.y sqz = data.transform.rotation.z sqw = data.transform.rotation.w print "sponge data: %.4f %.4f %.4f %.4f %.4f %.4f %.4f" % (swx, swy, swz, sqx, sqy, sqz, sqw) if __name__=='__main__': sponge = retrieveSponge() binLoc = getBin() rospy.init_node('Tracker', anonymous=True) try: rospy.spin() except KeyboardInterrupt: print "shutting down"
[ "noreply@github.com" ]
fantasYu-Chao.noreply@github.com
63685baeb08e46ae65f832ecc2847c370da279e7
ca3863b7e1fc320cdf92b48924458f7109b3098f
/migrations/0020_auto_20170924_0549.py
82ae95006e7dcee2f698d91e5c8b56710f6a78b1
[]
no_license
rcrowther/django-category-collection
eda27123954cdfd5a4062f9da830e659a99ed7ff
548591a27ebdae537cf663d7cd4a600fa2e570b2
refs/heads/master
2021-06-24T19:28:41.577466
2020-11-03T19:45:54
2020-11-03T19:45:54
102,010,428
0
0
null
null
null
null
UTF-8
Python
false
false
1,232
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-24 05:49 from __future__ import unicode_literals from django.db import migrations, models import taxonomy.models class Migration(migrations.Migration): dependencies = [ ('taxonomy', '0019_auto_20170908_1804'), ] operations = [ migrations.CreateModel( name='TreeTerm', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('tree', models.IntegerField(db_index=True, help_text='A Tree associated with this Term.')), ('term', models.IntegerField(db_index=True, help_text='Term associated with a Tree.')), ], ), migrations.AddField( model_name='termnode', name='tree', field=models.IntegerField(db_index=True, default=29, help_text='A Tree associated with an element.'), preserve_default=False, ), migrations.AlterField( model_name='termnode', name='term', field=models.IntegerField(help_text='A Term associated with an element.', verbose_name=taxonomy.models.Term), ), ]
[ "rw.crowther@gmail.com" ]
rw.crowther@gmail.com
0cd0f206c60724b2e71d6f6c33a6c782ea179603
3b9b4049a8e7d38b49e07bb752780b2f1d792851
/src/testing/scripts/common.py
5cba136cb51561bbf0a1833997927573eba604c7
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
webosce/chromium53
f8e745e91363586aee9620c609aacf15b3261540
9171447efcf0bb393d41d1dc877c7c13c46d8e38
refs/heads/webosce
2020-03-26T23:08:14.416858
2018-08-23T08:35:17
2018-09-20T14:25:18
145,513,343
0
2
Apache-2.0
2019-08-21T22:44:55
2018-08-21T05:52:31
null
UTF-8
Python
false
false
5,124
py
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import contextlib import json import os import subprocess import sys import tempfile SCRIPT_DIR = os.path.abspath(os.path.dirname(__file__)) SRC_DIR = os.path.abspath( os.path.join(SCRIPT_DIR, os.path.pardir, os.path.pardir)) # run-webkit-tests returns the number of failures as the return # code, but caps the return code at 101 to avoid overflow or colliding # with reserved values from the shell. MAX_FAILURES_EXIT_STATUS = 101 def run_script(argv, funcs): def parse_json(path): with open(path) as f: return json.load(f) parser = argparse.ArgumentParser() # TODO(phajdan.jr): Make build-config-fs required after passing it in recipe. parser.add_argument('--build-config-fs') parser.add_argument('--paths', type=parse_json, default={}) # Properties describe the environment of the build, and are the same per # script invocation. parser.add_argument('--properties', type=parse_json, default={}) # Args contains per-invocation arguments that potentially change the # behavior of the script. parser.add_argument('--args', type=parse_json, default=[]) parser.add_argument( '--use-src-side-runtest-py', action='store_true', help='Use the src-side copy of runtest.py, as opposed to the build-side ' 'one') subparsers = parser.add_subparsers() run_parser = subparsers.add_parser('run') run_parser.add_argument( '--output', type=argparse.FileType('w'), required=True) run_parser.add_argument('--filter-file', type=argparse.FileType('r')) run_parser.set_defaults(func=funcs['run']) run_parser = subparsers.add_parser('compile_targets') run_parser.add_argument( '--output', type=argparse.FileType('w'), required=True) run_parser.set_defaults(func=funcs['compile_targets']) args = parser.parse_args(argv) return args.func(args) def run_command(argv, env=None): print 'Running %r' % argv rc = subprocess.call(argv, env=env) print 'Command %r returned exit code %d' % (argv, rc) return rc def run_runtest(cmd_args, runtest_args): if cmd_args.use_src_side_runtest_py: cmd = [ sys.executable, os.path.join( cmd_args.paths['checkout'], 'infra', 'scripts', 'runtest_wrapper.py'), '--', ] else: cmd = [ sys.executable, cmd_args.paths['runit.py'], '--show-path', sys.executable, cmd_args.paths['runtest.py'], ] return run_command(cmd + [ '--target', cmd_args.build_config_fs, '--xvfb', '--builder-name', cmd_args.properties['buildername'], '--slave-name', cmd_args.properties['slavename'], '--build-number', str(cmd_args.properties['buildnumber']), '--build-properties', json.dumps(cmd_args.properties), ] + runtest_args) @contextlib.contextmanager def temporary_file(): fd, path = tempfile.mkstemp() os.close(fd) try: yield path finally: os.remove(path) def parse_common_test_results(json_results, test_separator='/'): def convert_trie_to_flat_paths(trie, prefix=None): # Also see webkitpy.layout_tests.layout_package.json_results_generator result = {} for name, data in trie.iteritems(): if prefix: name = prefix + test_separator + name if len(data) and not 'actual' in data and not 'expected' in data: result.update(convert_trie_to_flat_paths(data, name)) else: result[name] = data return result results = { 'passes': {}, 'unexpected_passes': {}, 'failures': {}, 'unexpected_failures': {}, 'flakes': {}, 'unexpected_flakes': {}, } # TODO(dpranke): crbug.com/357866 - we should simplify the handling of # both the return code and parsing the actual results, below. passing_statuses = ('PASS', 'SLOW', 'NEEDSREBASELINE', 'NEEDSMANUALREBASELINE') for test, result in convert_trie_to_flat_paths( json_results['tests']).iteritems(): key = 'unexpected_' if result.get('is_unexpected') else '' data = result['actual'] actual_results = data.split() last_result = actual_results[-1] expected_results = result['expected'].split() if (len(actual_results) > 1 and (last_result in expected_results or last_result in passing_statuses)): key += 'flakes' elif last_result in passing_statuses: key += 'passes' # TODO(dpranke): crbug.com/357867 ... Why are we assigning result # instead of actual_result here. Do we even need these things to be # hashes, or just lists? data = result else: key += 'failures' results[key][test] = data return results def run_integration_test(script_to_run, extra_args, log_file, output): integration_test_res = subprocess.call( [sys.executable, script_to_run] + extra_args) with open(log_file) as f: failures = json.load(f) json.dump({ 'valid': integration_test_res == 0, 'failures': failures, }, output) return integration_test_res
[ "changhyeok.bae@lge.com" ]
changhyeok.bae@lge.com
dfe42d3ff33a07cb33c6ff63594af3c18284b2e4
7e27687d12192b9ac44059801e1d4f5b4cd7575c
/dev2/Buscar palabra.py
2e61b6b9a090b23d02b4ec50de7faf9939c9b6f6
[]
no_license
Latinaheadshot/DevF
6c220db2f508ddc0fe781bb98524e7345077bdac
d04e7953b2df661bf239e945990609a83447baf6
refs/heads/master
2021-07-10T10:55:49.634102
2017-10-11T01:39:50
2017-10-11T01:39:50
106,357,589
0
0
null
null
null
null
UTF-8
Python
false
false
195
py
# Dar palabras y encontrar cuantas veces se repita palabra = [] contador = 0 numero_palabras = input("Introduce una frase con palabras repetidas") for i in numero_palabras: print.filter("Hola")
[ "latinaheadshot@gmail.com" ]
latinaheadshot@gmail.com
e71b52e341f37e5239e11b063025b35f18eb7355
d1e217093ee70dd9f2911781ea7ac60eb923bbbd
/python/prod_HCalMIPCali_test4_Data_PromptReco2017_v3_DoubleMuon_Run2017B-PromptReco-v2_v1.py
4c0a293106c2d70333b8b873c84b0c119d33df81
[]
no_license
nanlu06/MuonCalibrationHCalPhaseI
555375b45fbeabe849d5f2e458e723cec1a5e1b9
5c2df37fc8760cf38da0894b65a69559eb29e639
refs/heads/master
2021-01-20T21:12:49.593639
2017-08-29T12:19:33
2017-08-29T12:19:33
101,739,272
0
0
null
null
null
null
UTF-8
Python
false
false
897
py
from WMCore.Configuration import Configuration config = Configuration() config.section_("General") config.General.requestName = "prod_HCalMIPCali_test4_Data_PromptReco2017_v3_5f20d31dd66741a69a27f27941a283cf_v1" config.General.workArea = "crab_prod" config.section_("JobType") config.JobType.pluginName = "Analysis" config.JobType.psetName = "prod.py" config.JobType.allowUndistributedCMSSW = True config.section_("Data") config.Data.ignoreLocality = True config.Data.inputDataset = "/DoubleMuon/Run2017B-PromptReco-v2/RECO" config.Data.lumiMask = 'dataJSON/Cert_294927-299649_13TeV_PromptReco_Collisions17_JSON.txt' config.Data.splitting = "LumiBased" config.Data.unitsPerJob = 100 config.Data.outputDatasetTag = "HCalMIPCali_test4_Data_PromptReco2017_Run2017B-PromptReco-v2_v3_v1" config.section_("Site") config.Site.storageSite = "T2_CH_CERN" config.Data.outLFNDirBase = '/store/user/nlu/'
[ "nan.lu@cern.ch" ]
nan.lu@cern.ch
7633fd8074fa4323502df4f92dd8f1339ac6bfb3
60411095686f8046d5b5c53bad123c35df6a379a
/texttutils/texttutils/settings.py
4c2d31cf4466811dc8f5c73b54a971389ba1b08e
[]
no_license
suraj-001/text_operations
463d49654d3b30ab440d451b5d1aefa3d22a773c
9a64c91434dd1dad91fa5639347c18c7572d709f
refs/heads/master
2023-07-18T06:03:12.105472
2021-09-07T10:09:41
2021-09-07T10:09:41
401,244,548
0
0
null
null
null
null
UTF-8
Python
false
false
3,262
py
""" Django settings for texttutils project. Generated by 'django-admin startproject' using Django 3.2.6. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-3p30fa9l5t@-2p6#9$fh01%x6f&9eo2tnka+@@c@3e0vtx$e-n' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'texttutils.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'texttutils.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "surajkumaragarwal36@gmail.com" ]
surajkumaragarwal36@gmail.com
e05f4a9adc90c0dc69f6eff1b2ba02e28e11f695
18e3873e4c8b66ae5fc53dbc4ba595f8e7be6a85
/EntrepriseDevScraper/pagesjaune/pagesjaune/middlewares.py
c1126d7a9778a5f20f2ba75fbc582bf5e49a6ce2
[]
no_license
zestelle2/page_scrape
b3557755c5c0cb38907f46d03dbc0cea13467172
191ffc7bc9d5437c4f5af844a42b17a716615ea8
refs/heads/master
2020-03-31T20:56:49.175581
2018-10-25T07:18:11
2018-10-25T07:18:11
152,561,470
0
0
null
null
null
null
UTF-8
Python
false
false
3,605
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # https://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals class PagesjauneSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class PagesjauneDownloaderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
[ "noreply@github.com" ]
zestelle2.noreply@github.com
8a8a91c3279bc0806a46df31b528f0258eb4f877
331368bdb5a9965a7c2b229094f749c733950196
/backend/test_27281/wsgi.py
67fa9715ca926805d323adc68be6449985f451bb
[]
no_license
crowdbotics-apps/test-27281
86705fe86fc63745abf9b34129ca54db0f4d0d48
ce835ef081ae7006acf911dc9b6cd65f2b1fa0cd
refs/heads/master
2023-05-05T10:31:53.099862
2021-05-23T17:13:44
2021-05-23T17:13:44
370,111,657
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
""" WSGI config for test_27281 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "test_27281.settings") application = get_wsgi_application()
[ "team@crowdbotics.com" ]
team@crowdbotics.com
f5c72769a2d84c877c0181b35d3f1f9c2a4c7277
89b33345a9c949c72231c0e09e31c2c2f3033a3e
/anagram.py
1a3fe93f440840315d00a387b781e865fef082f6
[]
no_license
rakhiPurwar/hackerrank-solutions
2ab3c88930d7c0aa94122e64c020b63d354683dc
cbfd2dba11d410715d80a039bff511b43ad9e8e4
refs/heads/master
2022-11-14T23:28:37.472249
2020-07-07T05:46:56
2020-07-07T05:46:56
267,019,712
0
0
null
null
null
null
UTF-8
Python
false
false
352
py
from collections import Counter # Complete the anagram function below. def anagram(s): c = 0 l = len(s) r = int(l/2) print(r) print(l) if l%2 != 0: return -1 else: p = Counter(s[0:r]) q = Counter(s[r:l]) diff = p - q print(diff) return sum([val for key,val in diff.items()])
[ "noreply@github.com" ]
rakhiPurwar.noreply@github.com
b0830505869673479f63ede4681823d98ca19bff
d22b6c2b4923f43f217bd0efc6584f6183afabd9
/tools/gh_api.py
6b042ed4c6801169763ef1ca2f150d35075e5aee
[ "BSD-3-Clause" ]
permissive
fccoelho/ipython
9719e4d50f10b7996448ac5f8d9629b6c8b2f76b
128c40ea8cacd2f7c9bf6228765fdc0b31f8b816
refs/heads/master
2021-01-18T06:28:25.593133
2012-06-18T01:25:01
2012-06-18T01:25:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,465
py
"""Functions for Github authorisation.""" from __future__ import print_function try: input = raw_input except NameError: pass import requests import getpass import json # Keyring stores passwords by a 'username', but we're not storing a username and # password fake_username = 'ipython_tools' token = None def get_auth_token(): global token if token is not None: return token import keyring token = keyring.get_password('github', fake_username) if token is not None: return token print("Please enter your github username and password. These are not " "stored, only used to get an oAuth token. You can revoke this at " "any time on Github.") user = input("Username: ") pw = getpass.getpass("Password: ") auth_request = { "scopes": [ "public_repo", "gist" ], "note": "IPython tools", "note_url": "https://github.com/ipython/ipython/tree/master/tools", } response = requests.post('https://api.github.com/authorizations', auth=(user, pw), data=json.dumps(auth_request)) response.raise_for_status() token = json.loads(response.text)['token'] keyring.set_password('github', fake_username, token) return token def make_auth_header(): return {'Authorization': 'token ' + get_auth_token()} def post_issue_comment(project, num, body): url = 'https://api.github.com/repos/{project}/issues/{num}/comments'.format(project=project, num=num) payload = json.dumps({'body': body}) r = requests.post(url, data=payload, headers=make_auth_header()) def post_gist(content, description='', filename='file', auth=False): """Post some text to a Gist, and return the URL.""" post_data = json.dumps({ "description": description, "public": True, "files": { filename: { "content": content } } }).encode('utf-8') headers = make_auth_header() if auth else {} response = requests.post("https://api.github.com/gists", data=post_data, headers=headers) response.raise_for_status() response_data = json.loads(response.text) return response_data['html_url'] def get_pull_request(project, num): url = "https://api.github.com/repos/{project}/pulls/{num}".format(project=project, num=num) response = requests.get(url) response.raise_for_status() return json.loads(response.text)
[ "takowl@gmail.com" ]
takowl@gmail.com
c0cebb568d34cd714bb6bd5ad5eef84e6f688068
c5c56d8c00e9c30ed58893b0ad776c3f874fc493
/backend/vocabulary_wizard_21967/wsgi.py
2530f6001ac3b68ea7f972da5548202362a9fd6b
[]
no_license
crowdbotics-apps/vocabulary-wizard-21967
4e512a10372746800dfc99f5a79cfba3d339cfc1
d63c837e95a0e06bd4bd740ef61eb9449fa82401
refs/heads/master
2023-01-06T17:02:34.971325
2020-10-26T14:22:41
2020-10-26T14:22:41
307,394,930
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
""" WSGI config for vocabulary_wizard_21967 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "vocabulary_wizard_21967.settings") application = get_wsgi_application()
[ "team@crowdbotics.com" ]
team@crowdbotics.com
dbea2e0eecf115e2d3e3c8613f4c8003d1dc1fd2
cb8a064f74a195f43d61b4e020e8d01e3e743c2c
/store/migrations/0002_variation.py
0689a1383cfc691814eb34223e29fe9132894b16
[]
no_license
yifan1003/E-Commerce-application
c784441f6794bce59dd18287215a19d23a662e55
3a1388478fae3679068b3e44e3b736e9d6cbd313
refs/heads/main
2023-06-21T23:51:56.221425
2021-07-26T04:08:44
2021-07-26T04:08:44
381,929,993
0
0
null
null
null
null
UTF-8
Python
false
false
945
py
# Generated by Django 3.1.7 on 2021-07-15 22:24 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('store', '0001_initial'), ] operations = [ migrations.CreateModel( name='Variation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('variation_category', models.CharField(choices=[('color', 'color'), ('size', 'size')], max_length=100)), ('variation_value', models.CharField(max_length=100)), ('is_active', models.BooleanField(default=True)), ('created_date', models.DateTimeField(auto_now=True)), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='store.product')), ], ), ]
[ "hyifan9988@gmail.com" ]
hyifan9988@gmail.com
5ffe0e1a00a723873eb6f90c2251bd8659623cef
05105d09c6f3298dffc86cd2c33478e054a34017
/firstProject/urls.py
fdf4a1a9444974f1efcad99797895c82220b330e
[]
no_license
LeeHyogeum12/tone1
0c660b7c02e5569b06c7a0dc24a8b38525aaaf75
bf0a4de8cd54da3ab6568ffd2069918487edc265
refs/heads/master
2022-11-13T02:02:13.100184
2020-07-05T14:47:16
2020-07-05T14:47:16
277,316,810
0
0
null
null
null
null
UTF-8
Python
false
false
1,298
py
"""firstProject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path import blogapp.views from django.conf.urls import include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('', blogapp.views.index, name='index'), path('blogMain/', blogapp.views.blogMain, name='blogMain'), path('blogMain/createBlog/', blogapp.views.createBlog, name='createBlog'), path('ckeditor/', include('ckeditor_uploader.urls')), path('blogMain/detail/<int:blog_id>/', blogapp.views.detail, name='detail'), ] urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "lhgeum0728@hs.ac.kr" ]
lhgeum0728@hs.ac.kr
ed10f54681be411ff65af9f60f5ed3a72b206f90
4366d13ff81a552c933f9d57d04a541c9d76ce3a
/eHealth/migrations/0002_auto_20160313_0039.py
a17bdda414cab4a37a36dd364672c3812fa4c501
[]
no_license
mariosfx540/eHealthProjectGoU
d3cde3922fdd59fdfe0c2a9f95d425601cb56cc5
c23aea48d0011a8fbd5fb8762094d5af84c2ca19
refs/heads/master
2021-01-10T07:14:09.805479
2016-03-25T23:58:44
2016-03-25T23:58:44
53,608,620
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('eHealth', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='category_list', name='user', ), migrations.DeleteModel( name='Category_List', ), ]
[ "marios_540@hotmail.com" ]
marios_540@hotmail.com
d41d9b60b8385ac21e16adcbafb795302d3934f7
a8062308fb3bf6c8952257504a50c3e97d801294
/problems/N1610_Maximum_Number_Of_Visible_Points.py
ecf9ff8e7f827ff53db8bd41ec7802b16da2af95
[]
no_license
wan-catherine/Leetcode
650d697a873ad23c0b64d08ad525bf9fcdb62b1b
238995bd23c8a6c40c6035890e94baa2473d4bbc
refs/heads/master
2023-09-01T00:56:27.677230
2023-08-31T00:49:31
2023-08-31T00:49:31
143,770,000
5
0
null
null
null
null
UTF-8
Python
false
false
852
py
import math class Solution(object): def visiblePoints(self, points, angle, location): """ :type points: List[List[int]] :type angle: int :type location: List[int] :rtype: int """ angles, same = [], 0 for x, y in points: if x == location[0] and y == location[1]: same += 1 continue angles.append(math.atan2(y - location[1], x - location[0])) angles.sort() angles += [x + 2.0 * math.pi for x in angles] start, end = 0, 0 length = len(angles) base = angle * math.pi / 180 res = 0 while end < length: while angles[end] - angles[start] > base: start += 1 res = max(res, end - start + 1) end += 1 return res + same
[ "rarry2012@gmail.com" ]
rarry2012@gmail.com
15956d66ac056dbba08a63443b13fbbd58cebae0
6fcee2268c4fad9c4e37069d9c18a1452303b38e
/apps/user/views.py
91c6eaf0087402d13f2ec3e15aa8be2d353d1c21
[]
no_license
JorgitoR/omnilatan-backend
ec6586492883f14c2a0bd6a99b9fb7dadfd63a4f
77f7d55278e595ebd47f9a96af165a08ca9a4354
refs/heads/main
2023-07-18T09:25:28.481306
2021-08-31T17:29:18
2021-08-31T17:29:18
400,928,335
0
0
null
null
null
null
UTF-8
Python
false
false
421
py
from django.shortcuts import render # Models from omnilatam.apps.order.models import Order def signup(request): return render(request, 'user/signup.html') def login(request): return render(request, 'user/login.html') def profile(request): orders = Order.objects.filter(product__order_product__user=request.user).distinct() context = { 'orders':orders } return render(request, 'user/profile.html', context)
[ "jorgitouribe@gmail.com" ]
jorgitouribe@gmail.com
89ec2782bfac4b4bb21af8aa6c412cdb5b0c0648
f552ca018542184f34246405afb9b30999a57f2e
/criacionais/abstractFactory/carro/modelos/fiestaSedan.py
ce31e8fb64f1ba2656813f84c9d18ad256923a2f
[]
no_license
PlumpMath/DesignPatterns-440
feea6847160e3c7393a2da80e6b22b9b2273ee92
bef2ff66dddc90b7e6b529828b094bfc48754a01
refs/heads/master
2021-01-20T09:52:12.704627
2017-04-29T22:58:07
2017-04-29T22:58:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
219
py
from carro.categorias.carroSedan import CarroSedan class FiestaSedan(CarroSedan): def mostra_informacao(self): print("Modelo: Fiesta") print("Fabricante: Ford") print("Categoria: Sedan\n")
[ "victorhad@gmail.com" ]
victorhad@gmail.com
023a701fcbd187c2d9e32af920c7d0a29a98b36c
6600952c5a14bf306819feac737d3617024c1320
/core/guest.py
8861088cfc62646be2e8258211f8bd33b90aa6ee
[]
no_license
SNDBOXLTD/cuckoo
aae51173a59d8085a53a175a4d825af40fec8b58
d2f342f128ea1d8c69fa481775362b3fee5757f8
refs/heads/master
2021-06-08T09:26:45.598247
2020-04-26T15:34:43
2020-04-26T15:34:43
115,909,717
3
2
null
2020-10-01T17:50:57
2018-01-01T09:17:05
JavaScript
UTF-8
Python
false
false
20,797
py
# Copyright (C) 2012-2013 Claudio Guarnieri. # Copyright (C) 2014-2017 Cuckoo Foundation. # This file is part of Cuckoo Sandbox - http://www.cuckoosandbox.org # See the file 'docs/LICENSE' for copying permission. import datetime import io import json import logging import os import requests import socket import time import xmlrpclib import zipfile from cuckoo.common.config import config, parse_options from cuckoo.common.constants import ( CUCKOO_GUEST_PORT, CUCKOO_GUEST_INIT, CUCKOO_GUEST_COMPLETED, CUCKOO_GUEST_FAILED ) from cuckoo.common.exceptions import ( CuckooGuestError, CuckooGuestCriticalTimeout ) from cuckoo.common.utils import TimeoutServer from cuckoo.core.database import Database from cuckoo.misc import cwd log = logging.getLogger(__name__) db = Database() def analyzer_zipfile(platform, monitor): """Creates the Zip file that is sent to the Guest.""" t = time.time() zip_data = io.BytesIO() zip_file = zipfile.ZipFile(zip_data, "w", zipfile.ZIP_STORED) # Select the proper analyzer's folder according to the operating # system associated with the current machine. root = cwd("analyzer", platform) root_len = len(os.path.abspath(root)) if not os.path.exists(root): log.error("No valid analyzer found at path: %s", root) raise CuckooGuestError( "No valid analyzer found for %s platform!" % platform ) # Walk through everything inside the analyzer's folder and write # them to the zip archive. for root, dirs, files in os.walk(root): archive_root = os.path.abspath(root)[root_len:] for name in files: path = os.path.join(root, name) archive_name = os.path.join(archive_root, name) zip_file.write(path, archive_name) # Include the chosen monitoring component and any additional files. if platform == "windows": dirpath = cwd("monitor", monitor) # Generally speaking we should no longer be getting symbolic links for # "latest" anymore, so in the case of a file; follow it. if os.path.isfile(dirpath): monitor = os.path.basename(open(dirpath, "rb").read().strip()) dirpath = cwd("monitor", monitor) for name in os.listdir(dirpath): zip_file.write( os.path.join(dirpath, name), os.path.join("bin", name) ) # Dump compiled "dumpmem" Yara rules for zer0m0n usage. zip_file.write(cwd("stuff", "dumpmem.yarac"), "bin/rules.yarac") zip_file.close() data = zip_data.getvalue() if time.time() - t > 10: log.warning( "It took more than 10 seconds to build the Analyzer Zip for the " "Guest. This might be a serious performance penalty. Is your " "analyzer/windows/ directory bloated with unnecessary files?" ) return data class OldGuestManager(object): """Old and deprecated Guest Manager. This class handles the communications with the old agent running in the virtual machine. """ def __init__(self, vm_id, ip, platform, task_id): """@param ip: guest's IP address. @param platform: guest's operating system type. """ self.id = vm_id self.ip = ip self.platform = platform self.task_id = task_id # initialized in start_analysis so we can update the critical timeout # TODO, pull options parameter into __init__ so we can do this here self.timeout = None self.server = None def wait(self, status): """Waiting for status. @param status: status. @return: always True. """ log.debug("%s: waiting for status 0x%.04x", self.id, status) end = time.time() + self.timeout self.server._set_timeout(self.timeout) while db.guest_get_status(self.task_id) == "starting": # Check if we've passed the timeout. if time.time() > end: raise CuckooGuestCriticalTimeout( "Machine %s: the guest initialization hit the " "critical timeout, analysis aborted." % self.id ) try: # If the server returns the given status, break the loop # and return. if self.server.get_status() == status: log.debug("%s: status ready", self.id) break except: pass log.debug("%s: not ready yet", self.id) time.sleep(1) self.server._set_timeout(None) return True def upload_analyzer(self, monitor): """Upload analyzer to guest. @return: operation status. """ zip_data = analyzer_zipfile(self.platform, monitor) log.debug( "Uploading analyzer to guest (id=%s, ip=%s, monitor=%s, size=%d)", self.id, self.ip, monitor, len(zip_data) ) # Send the zip containing the analyzer to the agent running inside # the guest. try: self.server.add_analyzer(xmlrpclib.Binary(zip_data)) except socket.timeout: raise CuckooGuestError("{0}: guest communication timeout: unable " "to upload agent, check networking or try " "to increase timeout".format(self.id)) def start_analysis(self, options, monitor): """Start analysis. @param options: options. @return: operation status. """ # TODO Deal with unicode URLs, should probably try URL encoding. # Unicode files are being taken care of. self.timeout = options["timeout"] + config("cuckoo:timeouts:critical") url = "http://{0}:{1}".format(self.ip, CUCKOO_GUEST_PORT) self.server = TimeoutServer(url, allow_none=True, timeout=self.timeout) try: # Wait for the agent to respond. This is done to check the # availability of the agent and verify that it's ready to receive # data. self.wait(CUCKOO_GUEST_INIT) # Invoke the upload of the analyzer to the guest. self.upload_analyzer(monitor) # Give the analysis options to the guest, so it can generate the # analysis.conf inside the guest. try: self.server.add_config(options) except: raise CuckooGuestError( "%s: unable to upload config to analysis machine" % self.id ) # If the target of the analysis is a file, upload it to the guest. if options["category"] in ("file", "archive"): try: file_data = open(options["target"], "rb").read() except (IOError, OSError) as e: raise CuckooGuestError( "Unable to read %s, error: %s" % (options["target"], e) ) data = xmlrpclib.Binary(file_data) try: self.server.add_malware(data, options["file_name"]) except Exception as e: raise CuckooGuestError( "#%s: unable to upload malware to analysis " "machine: %s" % (self.id, e) ) # Launch the analyzer. pid = self.server.execute() log.debug("%s: analyzer started with PID %d", self.id, pid) # If something goes wrong when establishing the connection, raise an # exception and abort the analysis. except (socket.timeout, socket.error): raise CuckooGuestError( "%s: guest communication timeout, check networking or try " "to increase timeout" % self.id ) def wait_for_completion(self): """Wait for analysis completion. @return: operation status. """ log.debug("%s: waiting for completion", self.id) end = time.time() + self.timeout self.server._set_timeout(self.timeout) while db.guest_get_status(self.task_id) == "running": time.sleep(1) # If the analysis hits the critical timeout, just return straight # away and try to recover the analysis results from the guest. if time.time() > end: log.info("%s: end of analysis reached!", self.id) return try: status = self.server.get_status() except Exception as e: log.debug("%s: error retrieving status: %s", self.id, e) continue # React according to the returned status. if status == CUCKOO_GUEST_COMPLETED: log.info("%s: analysis completed successfully", self.id) break elif status == CUCKOO_GUEST_FAILED: error = self.server.get_error() raise CuckooGuestError( "Analysis failed: %s" % (error or "unknown error") ) else: log.debug("%s: analysis not completed yet (status=%s)", self.id, status) self.server._set_timeout(None) class GuestManager(object): """This class represents the new Guest Manager. It operates on the new Cuckoo Agent which features a more abstract but more feature-rich API.""" def __init__(self, vmid, ipaddr, platform, task_id, analysis_manager): self.vmid = vmid self.ipaddr = ipaddr self.port = CUCKOO_GUEST_PORT self.platform = platform self.task_id = task_id self.analysis_manager = analysis_manager self.timeout = None self.is_vnc = False # Just in case we have an old agent inside the Virtual Machine. This # allows us to remain backwards compatible (for now). self.old = OldGuestManager(vmid, ipaddr, platform, task_id) self.is_old = False # We maintain the path of the Cuckoo Analyzer on the host. self.analyzer_path = None self.environ = {} self.options = {} @property def aux(self): return self.analysis_manager.aux def get(self, method, *args, **kwargs): """Simple wrapper around requests.get().""" do_raise = kwargs.pop("do_raise", True) url = "http://%s:%s%s" % (self.ipaddr, self.port, method) session = requests.Session() session.trust_env = False session.proxies = None r = session.get(url, *args, **kwargs) do_raise and r.raise_for_status() return r def post(self, method, *args, **kwargs): """Simple wrapper around requests.post().""" url = "http://%s:%s%s" % (self.ipaddr, self.port, method) session = requests.Session() session.trust_env = False session.proxies = None r = session.post(url, *args, **kwargs) r.raise_for_status() return r def wait_available(self): """Wait until the Virtual Machine is available for usage.""" end = time.time() + self.timeout while db.guest_get_status(self.task_id) == "starting": try: socket.create_connection((self.ipaddr, self.port), 1).close() break except socket.timeout: log.debug("%s: not ready yet", self.vmid) except socket.error: log.debug("%s: not ready yet", self.vmid) time.sleep(1) if time.time() > end: raise CuckooGuestCriticalTimeout( "Machine %s: the guest initialization hit the critical " "timeout, analysis aborted." % self.vmid ) def query_environ(self): """Query the environment of the Agent in the Virtual Machine.""" self.environ = self.get("/environ").json()["environ"] def determine_analyzer_path(self): """Determine the path of the analyzer. Basically creating a temporary directory in the systemdrive, i.e., C:\\.""" systemdrive = self.determine_system_drive() options = parse_options(self.options["options"]) if options.get("analpath"): dirpath = systemdrive + options["analpath"] r = self.post("/mkdir", data={"dirpath": dirpath}) self.analyzer_path = dirpath else: r = self.post("/mkdtemp", data={"dirpath": systemdrive}) self.analyzer_path = r.json()["dirpath"] def determine_system_drive(self): if self.platform == "windows": return "%s/" % self.environ["SYSTEMDRIVE"] return "/" def determine_temp_path(self): if self.platform == "windows": return self.environ["TEMP"] return "/tmp" def upload_analyzer(self, monitor): """Upload the analyzer to the Virtual Machine.""" zip_data = analyzer_zipfile(self.platform, monitor) log.debug( "Uploading analyzer to guest (id=%s, ip=%s, monitor=%s, size=%d)", self.vmid, self.ipaddr, monitor, len(zip_data) ) self.determine_analyzer_path() data = { "dirpath": self.analyzer_path, } self.post("/extract", files={"zipfile": zip_data}, data=data) def add_config(self, options): """Upload the analysis.conf for this task to the Virtual Machine.""" config = [ "[analysis]", ] for key, value in options.items(): # Encode datetime objects the way xmlrpc encodes them. if isinstance(value, datetime.datetime): config.append("%s = %s" % (key, value.strftime("%Y%m%dT%H:%M:%S"))) else: config.append("%s = %s" % (key, value)) data = { "filepath": os.path.join(self.analyzer_path, "analysis.conf"), } self.post("/store", files={"file": "\n".join(config)}, data=data) def start_vnc(self, options, monitor): """ Starting VNC on remote machine for remote connections @param options: the task options @param monitor: identified of the monitor to be used """ # Start VNC server on machine. data = { #"command": "C:\\Python27\\pythonw.exe %s\\analyzer.py" % self.analyzer_path, "command": r"C:\windows\system32\calc.exe", "async": "yes", "cwd": self.analyzer_path, } self.post("/execute", data=data) data = { # "command": "C:\\Python27\\pythonw.exe %s\\analyzer.py" % self.analyzer_path, "command": r"C:\Program Files\TigerVNC\winvnc4.exe", "async": "no", "cwd": self.analyzer_path, } self.post("/execute", data=data) self.get("/kill") def start_analysis(self, options, monitor): """Start the analysis by uploading all required files. @param options: the task options @param monitor: identifier of the monitor to be used. """ log.info("Starting analysis on guest (id=%s, ip=%s)", self.vmid, self.ipaddr) self.options = options self.timeout = options["timeout"] + config("cuckoo:timeouts:critical") # Wait for the agent to come alive. self.wait_available() # Could be beautified a bit, but basically we have to perform the # same check here as we did in wait_available(). if db.guest_get_status(self.task_id) != "starting": return # Check whether this is the new Agent or the old one (by looking at # the status code of the index page). r = self.get("/", do_raise=False) if r.status_code == 501: # log.info("Cuckoo 2.0 features a new Agent which is more " # "feature-rich. It is recommended to make new Virtual " # "Machines with the new Agent, but for now falling back " # "to backwards compatibility with the old agent.") self.is_old = True self.aux.callback("legacy_agent") self.old.start_analysis(options, monitor) return if r.status_code != 200: log.critical( "While trying to determine the Agent version that your VM is " "running we retrieved an unexpected HTTP status code: %s. If " "this is a false positive, please report this issue to the " "Cuckoo Developers. HTTP response headers: %s", r.status_code, json.dumps(dict(r.headers)), ) db.guest_set_status(self.task_id, "failed") return try: status = r.json() version = status.get("version") features = status.get("features", []) except: log.critical( "We were unable to detect either the Old or New Agent in the " "Guest VM, are you sure you have set it up correctly? Please " "go through the documentation once more and otherwise inform " "the Cuckoo Developers of your issue." ) db.guest_set_status(self.task_id, "failed") return log.info("Guest is running Cuckoo Agent %s (id=%s, ip=%s)", version, self.vmid, self.ipaddr) # Pin the Agent to our IP address so that it is not accessible by # other Virtual Machines etc. if "pinning" in features: self.get("/pinning") # Obtain the environment variables. self.query_environ() # Upload the analyzer. self.upload_analyzer(monitor) # Pass along the analysis.conf file. self.add_config(options) # Allow Auxiliary modules to prepare the Guest. self.aux.callback("prepare_guest") # If the target is a file, upload it to the guest. if options["category"] == "file" or options["category"] == "archive": data = { "filepath": os.path.join( self.determine_temp_path(), options["file_name"] ), } files = { "file": ("sample.bin", open(options["target"], "rb")), } self.post("/store", files=files, data=data) if "execpy" in features: data = { "filepath": "%s/analyzer.py" % self.analyzer_path, "async": "yes", "cwd": self.analyzer_path, } self.post("/execpy", data=data) else: # Execute the analyzer that we just uploaded. data = { "command": "C:\\Python27\\pythonw.exe %s\\analyzer.py" % self.analyzer_path, "async": "yes", "cwd": self.analyzer_path, } self.post("/execute", data=data) def wait_for_completion(self): if self.is_old: self.old.wait_for_completion() return end = time.time() + self.timeout while db.guest_get_status(self.task_id) == "running": log.debug("%s: analysis still processing", self.vmid) time.sleep(1) # If the analysis hits the critical timeout, just return straight # away and try to recover the analysis results from the guest. if time.time() > end: log.info("%s: end of analysis reached!", self.vmid) return try: status = self.get("/status", timeout=5).json() except Exception as e: log.info("Virtual Machine /status failed (%r)", e) # this might fail due to timeouts or just temporary network issues # thus we don't want to abort the analysis just yet and wait for things to # recover continue if status["status"] == "complete": log.info("%s: analysis completed successfully", self.vmid) return elif status["status"] == "exception": log.warning( "%s: analysis caught an exception\n%s", self.vmid, status["description"] ) return @property def server(self): """Currently the Physical machine manager is using GuestManager in an incorrect way. This should be fixed up later but for now this workaround will do.""" return self.old.server
[ "ariel.koren@gmail.com" ]
ariel.koren@gmail.com
c0540f6c40def264c7e6b7c6505f57004630d2f7
b3c47795e8b6d95ae5521dcbbb920ab71851a92f
/Nowcoder/剑指Offer/矩形覆盖.py
472cec999f79e099d22c2612bfd92794514a660a
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
Wizmann/ACM-ICPC
6afecd0fd09918c53a2a84c4d22c244de0065710
7c30454c49485a794dcc4d1c09daf2f755f9ecc1
refs/heads/master
2023-07-15T02:46:21.372860
2023-07-09T15:30:27
2023-07-09T15:30:27
3,009,276
51
23
null
null
null
null
UTF-8
Python
false
false
517
py
# -*- coding:utf-8 -*- class Solution: def __init__(self): self.dp = {} def rectCover(self, number): if number == 0: return 0 return self.solve(number) def solve(self, number): assert number >= 0 if number == 0: return 1 if number == 1: return 1 if number in self.dp: return self.dp[number] self.dp[number] = self.solve(number - 1) + self.solve(number - 2) return self.dp[number]
[ "noreply@github.com" ]
Wizmann.noreply@github.com
c055c9f040fe6d19593fdb454ed7a5f6213662bf
69a306c83b8638be36b013cb0bcfa89a14ffe6b0
/genice2/lattices/preparing/12_2_32449.py
3dea0104b3a9af9f18f23602a8b1e23da21d161d
[ "MIT" ]
permissive
vitroid/GenIce
10bda02a05e1042138f2481f301794eb3e870224
4162db1ff57af526abf3ab473a5a56300977dd73
refs/heads/main
2023-08-17T23:14:32.760909
2023-08-04T10:24:56
2023-08-04T10:24:56
37,752,975
58
23
null
2022-03-13T04:05:44
2015-06-20T01:03:52
Python
UTF-8
Python
false
false
915
py
from genice2.cell import cellvectors import genice2.lattices import numpy as np desc = { "ref": { "12_2_32449": "Engel 2018", "engel09": "Engel 2018" }, "usage": "No options available.", "brief": "Hypothetical zeolitic ice", "test": ({"args": "", "options": "-r 2 2 2"},) } class Lattice(genice2.lattices.Lattice): def __init__(self): self.cell = np.array([ [4.906093, -2.166984, -1.768499], [-3.225085, 3.887306, -2.634777], [3.832468, 1.696101, 2.81583], ]) self.waters = np.array([ [0.156218, 0.39529, -0.383508], [-0.178719, -0.439869, 0.267773], [-0.445277, 0.020649, -0.324495], [0.431107, -0.051465, 0.202261], [0.226932, 0.248658, 0.010101], [-0.242547, -0.282667, -0.134704], ]) self.coord = 'relative'
[ "vitroid@gmail.com" ]
vitroid@gmail.com
fcc1d9295eab3144a1ea29ba91e9c212543422d0
3614e22372f9f0a7f4c7c9baffc38b3468876432
/day2/school.py
50765fb4272dbdcaabb61a1798b0897b6d4907df
[ "MIT" ]
permissive
jeonghkim/python-washu-2014
c94ac6d628e1d0278e792d3abdb05c4e74089e86
ef903ebaed96aad5752fbc7d348a17e6c1963d39
refs/heads/master
2021-01-21T00:38:47.644541
2014-08-26T00:03:38
2014-08-26T00:03:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,575
py
class School: def __init__(self, schoolname): # initialize: it takes the argument "schoolname" self.schoolname = schoolname # the element schoolname will be the input for the argument schoolname self.db = {} # the element "db" will be an empty dictionary. def add(self, student, grade): # add method takes the argument "student" and "grade" if grade in self.db: # if the input of grade already exists as a key in dict self.db: self.db[grade].add(student) # it will add the student name to the value for that key else: self.db[grade] = {student} # Otherwise, it will add a new key with and the matching value def grade(self, key): # grade method is to call values corresponding to key return self.db.get(key, None) # It will return the default value None, if key is not available. Otherwise, it returns a value for a given key def sort(self): # sort is a method to return a dictionary where values are sorted (and in the form of tuple). It doesn't take any argument sorted_students = {} # create an empty dictionary for key in self.db.keys(): # sorted_students[key] = tuple(sorted(self.db.get(key))) # Add a key to the dict sorted_student and assign matching values in self.db. # it is sorted and tupled. return sorted_students # school = School("Haleakala Hippy School") # # school.add("James", 2) # # school.add("Blair", 2) # # school.add("Paul", 2) # # school.add("Jennifer", 4) # school.add("Kareem", 6) # school.add("Christopher", 4) # school.add("Kyle", 3) # print school.db # print school.grade(4) # print school.sort()
[ "jhkim0508@gmail.com" ]
jhkim0508@gmail.com
46f94efe29b346ecda0d7dc713057133d2069298
0687db020813c1de043ac0af6e463e41b981d300
/samtranslator/intrinsics/resolver.py
99967a1cc59fcd403de0da743271708d1b2ee502
[ "Apache-2.0" ]
permissive
danishbacker/serverless-application-model
a1664e26553130e0f96ffc4fb3c3abd3730a8ab4
0ead3441b047fa2010a0fd4d05d70326dfe47f9e
refs/heads/develop
2020-03-15T19:53:49.824509
2018-05-03T21:24:35
2018-05-03T21:24:35
132,319,725
0
0
Apache-2.0
2019-03-24T18:54:25
2018-05-06T08:20:57
Python
UTF-8
Python
false
false
9,455
py
# Help resolve intrinsic functions from samtranslator.intrinsics.actions import Action, SubAction, RefAction, GetAttAction # All intrinsics are supported by default DEFAULT_SUPPORTED_INTRINSICS = {action.intrinsic_name:action() for action in [RefAction, SubAction, GetAttAction]} class IntrinsicsResolver(object): def __init__(self, parameters, supported_intrinsics=DEFAULT_SUPPORTED_INTRINSICS): """ Instantiate the resolver :param dict parameters: Map of parameter names to their values :param dict supported_intrinsics: Dictionary of intrinsic functions this class supports along with the Action class that can process this intrinsic :raises TypeError: If parameters or the supported_intrinsics arguments are invalid """ if parameters is None or not isinstance(parameters, dict): raise TypeError("parameters must be a valid dictionary") if not isinstance(supported_intrinsics, dict) \ or not all([isinstance(value, Action) for value in supported_intrinsics.values()]): raise TypeError("supported_intrinsics argument must be intrinsic names to corresponding Action classes") self.supported_intrinsics = supported_intrinsics self.parameters = parameters def resolve_parameter_refs(self, input): """ Resolves references to parameters within the given dictionary recursively. Other intrinsic functions such as !GetAtt, !Sub or !Ref to non-parameters will be left untouched. Result is a dictionary where parameter values are inlined. Don't pass this dictionary directly into transform's output because it changes the template structure by inlining parameter values. :param input: Any primitive type (dict, array, string etc) whose values might contain intrinsic functions :return: A copy of a dictionary with parameter references replaced by actual value. """ return self._traverse(input, self.parameters, self._try_resolve_parameter_refs) def resolve_sam_resource_refs(self, input, supported_resource_refs): """ Customers can provide a reference to a "derived" SAM resource such as Alias of a Function or Stage of an API resource. This method recursively walks the tree, converting all derived references to the real resource name, if it is present. Example: {"Ref": "MyFunction.Alias"} -> {"Ref": "MyFunctionAliasLive"} This method does not attempt to validate a reference. If it is invalid or non-resolvable, it skips the occurrence and continues with the rest. It is recommended that you have an external process that detects and surfaces invalid references. For first call, it is recommended that `template` is the entire CFN template in order to handle references in Mapping or Output sections. :param dict input: CFN template that needs resolution. This method will modify the input directly resolving references. In subsequent recursions, this will be a fragment of the CFN template. :param SupportedResourceReferences supported_resource_refs: Object that contains information about the resource references supported in this SAM template, along with the value they should resolve to. :return list errors: List of dictionary containing information about invalid reference. Empty list otherwise """ return self._traverse(input, supported_resource_refs, self._try_resolve_sam_resource_refs) def _traverse(self, input, resolution_data, resolver_method): """ Driver method that performs the actual traversal of input and calls the appropriate `resolver_method` when to perform the resolution. :param input: Any primitive type (dict, array, string etc) whose value might contain an intrinsic function :param resolution_data: Data that will help with resolution. For example, when resolving parameter references, this object will contain a dictionary of parameter names and their values. :param resolver_method: Method that will be called to actually resolve an intrinsic function. This method is called with the parameters `(input, resolution_data)`. :return: Modified `input` with intrinsics resolved """ # There is data to help with resolution. Skip the traversal altogether if len(resolution_data) == 0: return input # # Traversal Algorithm: # # Imagine the input dictionary/list as a tree. We are doing a Pre-Order tree traversal here where we first # process the root node before going to its children. Dict and Lists are the only two iterable nodes. # Everything else is a leaf node. # # We do a Pre-Order traversal to handle the case where `input` contains intrinsic function as its only child # ie. input = {"Ref": "foo}. # # We will try to resolve the intrinsics if we can, otherwise return the original input. In some cases, resolving # an intrinsic will result in a terminal state ie. {"Ref": "foo"} could resolve to a string "bar". In other # cases, resolving intrinsics is only partial and we might need to continue traversing the tree (ex: Fn::Sub) # to handle nested intrinsics. All of these cases lend well towards a Pre-Order traversal where we try and # process the intrinsic, which results in a modified sub-tree to traverse. # input = resolver_method(input, resolution_data) if isinstance(input, dict): return self._traverse_dict(input, resolution_data, resolver_method) elif isinstance(input, list): return self._traverse_list(input, resolution_data, resolver_method) else: # We can iterate only over dict or list types. Primitive types are terminals return input def _traverse_dict(self, input_dict, resolution_data, resolver_method): """ Traverse a dictionary to resolve intrinsic functions on every value :param input_dict: Input dictionary to traverse :param resolution_data: Data that the `resolver_method` needs to operate :param resolver_method: Method that can actually resolve an intrinsic function, if it detects one :return: Modified dictionary with values resolved """ for key, value in input_dict.iteritems(): input_dict[key] = self._traverse(value, resolution_data, resolver_method) return input_dict def _traverse_list(self, input_list, resolution_data, resolver_method): """ Traverse a list to resolve intrinsic functions on every element :param input_list: List of input :param resolution_data: Data that the `resolver_method` needs to operate :param resolver_method: Method that can actually resolve an intrinsic function, if it detects one :return: Modified list with intrinsic functions resolved """ for index, value in enumerate(input_list): input_list[index] = self._traverse(value, resolution_data, resolver_method) return input_list def _try_resolve_parameter_refs(self, input, parameters): """ Try to resolve parameter references on the given input object. The object could be of any type. If the input is not in the format used by intrinsics (ie. dictionary with one key), input is returned unmodified. If the single key in dictionary is one of the supported intrinsic function types, go ahead and try to resolve it. :param input: Input object to resolve :param parameters: Parameter values used to for ref substitution :return: """ if not self._is_intrinsic_dict(input): return input function_type = input.keys()[0] return self.supported_intrinsics[function_type].resolve_parameter_refs(input, parameters) def _try_resolve_sam_resource_refs(self, input, supported_resource_refs): """ Try to resolve SAM resource references on the given template. If the given object looks like one of the supported intrinsics, it calls the appropriate resolution on it. If not, this method returns the original input unmodified. :param dict input: Dictionary that may represent an intrinsic function :param SupportedResourceReferences supported_resource_refs: Object containing information about available resource references and the values they resolve to. :return: Modified input dictionary with references resolved """ if not self._is_intrinsic_dict(input): return input function_type = input.keys()[0] return self.supported_intrinsics[function_type].resolve_resource_refs(input, supported_resource_refs) def _is_intrinsic_dict(self, input): """ Can the input represent an intrinsic function in it? :param input: Object to be checked :return: True, if the input contains a supported intrinsic function. False otherwise """ # All intrinsic functions are dictionaries with just one key return isinstance(input, dict) \ and len(input) == 1 \ and input.keys()[0] in self.supported_intrinsics
[ "noreply@github.com" ]
danishbacker.noreply@github.com
32d16c4be1951f647216c0e08722a51c8040eb27
5319df622cf03ec1a23b41c31a0d5d98969b886a
/radish.py
4a6f849ceb621733c098e61e24ce1ecf7708754a
[]
no_license
erinleeny/the-radish
3769b182087cc13700e2b0e42367467126447936
8c6c222d65cbb86bdeb91d81b3df6f5ff017fbf4
refs/heads/master
2022-01-29T12:04:21.166471
2019-07-18T18:57:39
2019-07-18T18:57:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,649
py
#!/usr/bin/python3 print('Content-type: text/html\n') import cgitb import cgi import random cgitb.enable() page = cgi.FieldStorage()['page'].value print(''' <!DOCTYPE HTML> <html> <head> <title>The Radish</title> <link rel="icon" href="radish.png"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta.2/css/bootstrap.min.css" integrity="sha384-PsH8R72JQ3SOdhVi3uxftmaW6Vc51MKb0q5P2rRUpPvrszuE4W1povHYgTpBfshb" crossorigin="anonymous"> <link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Abril+Fatface"> <link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Forum"> <link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Merriweather"> <link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Fjalla+One"> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta.2/css/bootstrap.min.css" integrity="sha384-PsH8R72JQ3SOdhVi3uxftmaW6Vc51MKb0q5P2rRUpPvrszuE4W1povHYgTpBfshb" crossorigin="anonymous"> <link rel="stylesheet" type="text/css" href="radish.css"> </head> <body> <div class = 'flex-container header'><br> <form action = 'radish.py' method = "GET"> <div class = 'flex-container title' style = 'width: 100%'><center> <a href = 'home.py'><img src = 'title.png' style = 'height: 75px'></a> <hr></hr></center> <div class = 'row flex-container top'> <div class = 'col-sm-1'> <h5> <input class = 'link' name = 'page' type = 'submit' value = 'World'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'US'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'Politics'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'N.Y.'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'Business'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'Opinion'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'Tech'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'Science'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'Health'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'Sports'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'Arts'></h5> </div> <div class = 'col-sm-1'> <h5><input class = 'link' name = 'page' type = 'submit' value = 'Books'></h5> </div> </div> </form> <hr> </div> <div class = 'flex-container'><h2>''' + page + '''</h2></div><hr> ''') def web_print(name): master_ary = [] pic_ary = [] nopic_ary = [] name = name.lower() if name == "n.y.": file = 'nyregion' elif name == 'tech': file = 'technology' else: file = name s = open('text/' + file + '.txt', encoding='utf-8').read() s = s.encode('ascii', 'xmlcharrefreplace').decode() articles = s.split('\n') for article in articles: sections = article.split("\t") if len(sections) > 3: dict = {} dict["title"] = sections[0] dict["description"] = sections[1] dict["link"] = sections[2] dict["photo"] = sections[3] dict["author"] = sections[4] master_ary.append(dict) if dict['photo'] == 'NO-IMG': nopic_ary.append(dict) else: pic_ary.append(dict) return [master_ary, pic_ary, nopic_ary] arys = web_print(page) print(''' <div class = 'row' style = 'border-bottom: grey solid thin'> <div class = 'col-md-8 rightB'> ''') i = 0 while i < 2: pic_a = arys[1][i] photo = pic_a["photo"] title = pic_a["title"] description = pic_a["description"] description = description.split("'") des = '' if description[1] != 'NO-DESCRIPTION': for d in description: if d != '' and d != "": des+= d + "<br>" author = pic_a["author"] link = pic_a["link"] # arys[1].pop(i) print('''<div class = 'right row flex-container'> <div class = 'col-md-8'> <img src = ''' + photo + '''> </div> <div class = 'col-md-4'> <h4><a href = ' ''' + link + ''' '> ''' + title + '''</a></h4><h5>''' + des + "<br>" + ''' </h5><p>''' + author + '''</p></div></div>''') i+=1 print("</div><div class = 'col-md-4'><div class = 'row flex-container'>") i = 2 arys[0] = arys[1] + arys[2] while i < 5 and i < len(arys[0]): ary = arys[0][i] author = ary["author"] title = ary["title"] description = ary["description"] description = description.split("'") des = '' if description[1] == 'NO-DESCRIPTION': des = '' for d in description: if d != '' and d != "": des+= d + "<br>" link = ary["link"] print('''<div class = 'article' style="width: 95%; padding-left: 10px; border-bottom: grey solid thin"><h4 class = 'article'><a href = ' ''' + link + ''' '><br> ''' + title + '''</a></h4><h5>''' + des + "</h5><p>" + author + "</p><br> </div><br><br>") i +=1 if 5 < len(arys[0]): ary = arys[0][5] author = ary["author"] title = ary["title"] description = ary["description"] description = description.split("'") des = '' if description[1] == 'NO-DESCRIPTION': des = '' for d in description: if d != '' and d != "": des+= d + "<br>" link = ary["link"] print('''<div class = 'article' style="width: 95%; padding-left: 10px;"><h4 class = 'article'><a href = ' ''' + link + ''' '><br> ''' + title + '''</a></h4><h5>''' + des + "</h5><p>" + author + "</p><br> </div><br><br>") print('''</div></div></div><div class = 'row flex-container bottom' style="border-bottom: grey solid thin">''') i = 0 while i < 2 and i < len(arys[1]): ary = arys[1][random.randrange(len(arys[1]))] title = ary["title"] author = ary["author"] description = ary["description"] photo = ary['photo'] description = description.split("'") des = '' if description[1] == 'NO-DESCRIPTION': des = '' for d in description: if d != '' and d != "": des+= d + "<br>" link = ary["link"] print(''' <div class = 'col-md-6'><div class = 'row flex-container'> <div class = 'col-md-5'>''' + ''' <h4 class = 'article'><a href = ' ''' + link + ''' '> ''' + title + '''</a></h4><h5>''' + des + "</h5><p>" + author + "</p><br>") print('''</div><div class = 'col-md-7'><img src =' ''' + photo + ''' '></div></div></div>''') i+=1 print('''</div> </div</div> ''') ary = arys[1][random.randrange(len(arys[1]))] title = ary["title"] author = ary["author"] description = ary["description"] photo = ary['photo'] description = description.split("'") des = '' if description[1] == 'NO-DESCRIPTION': des = '' for d in description: if d != '' and d != "": des+= d + "<br>" link = ary["link"] print('''<br> <div class="flex-container" style="border-bottom: grey solid thin"><img src =' ''' + photo + ''' '><br><br><h4 class = 'article'><a href = ' ''' + link + ''' '> ''' + title + '''</a></h4><h5>''' + des + "</h5><p>" + author + "</p><br>" + '''</div> ''') if len(arys[0]) > 0: ary = arys[0][random.randrange(len(arys[0]))] title = ary["title"] author = ary["author"] description = ary["description"] description = description.split("'") des = '' if description[1] == 'NO-DESCRIPTION': des = '' for d in description: if d != '' and d != "": des+= d + "<br>" link = ary["link"] print('''<br><div class = 'row flex-container'> <br><div class="col-md-6 right"><h4 class = 'article'><a href = ' ''' + link + ''' '> ''' + title + '''</a></h4><h5>''' + des + "</h5><p>" + author + "</p><br></div>") if len(arys[1]) > 0: ary = arys[1][random.randrange(len(arys[1]))] title = ary["title"] author = ary["author"] description = ary["description"] photo = ary['photo'] description = description.split("'") des = '' if description[1] == 'NO-DESCRIPTION': des = '' for d in description: if d != '' and d != "": des+= d + "<br>" link = ary["link"] print('''<div class="col-md-6"><br><img src =' ''' + photo + ''' '><br><br><h4 class = 'article'><a href = ' ''' + link + ''' '> ''' + title + '''</a></h4><h5>''' + des + "</h5><p>" + author + "</p><br></div></div>" + ''' ''') print(''' </body> </html> ''')
[ "erin.lee.ny@gmail.com" ]
erin.lee.ny@gmail.com
83e8030e31ad2c23f459c9b048dbafbf0f63fee1
bc441bb06b8948288f110af63feda4e798f30225
/monitor_sdk/model/easy_command/task_spec_pb2.py
dcb02fe5c9c9e655bdfa977987c035f067083564
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
9,514
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: task_spec.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from monitor_sdk.model.easy_command import action_pb2 as monitor__sdk_dot_model_dot_easy__command_dot_action__pb2 from monitor_sdk.model.easy_command import target_pb2 as monitor__sdk_dot_model_dot_easy__command_dot_target__pb2 from monitor_sdk.model.easy_command import task_callback_pb2 as monitor__sdk_dot_model_dot_easy__command_dot_task__callback__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='task_spec.proto', package='easy_command', syntax='proto3', serialized_options=_b('ZFgo.easyops.local/contracts/protorepo-models/easyops/model/easy_command'), serialized_pb=_b('\n\x0ftask_spec.proto\x12\x0c\x65\x61sy_command\x1a+monitor_sdk/model/easy_command/action.proto\x1a+monitor_sdk/model/easy_command/target.proto\x1a\x32monitor_sdk/model/easy_command/task_callback.proto\"\xef\x02\n\x08TaskSpec\x12\x0e\n\x06taskId\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0c\n\x04type\x18\x03 \x01(\t\x12\x11\n\toperation\x18\x04 \x01(\t\x12\x0f\n\x07groupId\x18\x05 \x01(\t\x12%\n\x07\x61\x63tions\x18\x06 \x03(\x0b\x32\x14.easy_command.Action\x12%\n\x07targets\x18\x07 \x03(\x0b\x32\x14.easy_command.Target\x12\r\n\x05\x61ppId\x18\x08 \x01(\t\x12\x11\n\tclusterId\x18\t \x01(\t\x12\x11\n\tpackageId\x18\n \x01(\t\x12\x11\n\tversionId\x18\x0b \x01(\t\x12\x12\n\nneedNotify\x18\x0c \x01(\x08\x12,\n\x08\x63\x61llback\x18\r \x01(\x0b\x32\x1a.easy_command.TaskCallback\x12\x10\n\x08\x62\x61tchNum\x18\x0e \x01(\x05\x12\x15\n\rbatchInterval\x18\x0f \x01(\x05\x12\x12\n\nfailedStop\x18\x10 \x01(\x08\x42HZFgo.easyops.local/contracts/protorepo-models/easyops/model/easy_commandb\x06proto3') , dependencies=[monitor__sdk_dot_model_dot_easy__command_dot_action__pb2.DESCRIPTOR,monitor__sdk_dot_model_dot_easy__command_dot_target__pb2.DESCRIPTOR,monitor__sdk_dot_model_dot_easy__command_dot_task__callback__pb2.DESCRIPTOR,]) _TASKSPEC = _descriptor.Descriptor( name='TaskSpec', full_name='easy_command.TaskSpec', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='taskId', full_name='easy_command.TaskSpec.taskId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='easy_command.TaskSpec.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='easy_command.TaskSpec.type', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='operation', full_name='easy_command.TaskSpec.operation', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='groupId', full_name='easy_command.TaskSpec.groupId', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='actions', full_name='easy_command.TaskSpec.actions', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='targets', full_name='easy_command.TaskSpec.targets', index=6, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='appId', full_name='easy_command.TaskSpec.appId', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clusterId', full_name='easy_command.TaskSpec.clusterId', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='packageId', full_name='easy_command.TaskSpec.packageId', index=9, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='versionId', full_name='easy_command.TaskSpec.versionId', index=10, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='needNotify', full_name='easy_command.TaskSpec.needNotify', index=11, number=12, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='callback', full_name='easy_command.TaskSpec.callback', index=12, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batchNum', full_name='easy_command.TaskSpec.batchNum', index=13, number=14, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batchInterval', full_name='easy_command.TaskSpec.batchInterval', index=14, number=15, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='failedStop', full_name='easy_command.TaskSpec.failedStop', index=15, number=16, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=176, serialized_end=543, ) _TASKSPEC.fields_by_name['actions'].message_type = monitor__sdk_dot_model_dot_easy__command_dot_action__pb2._ACTION _TASKSPEC.fields_by_name['targets'].message_type = monitor__sdk_dot_model_dot_easy__command_dot_target__pb2._TARGET _TASKSPEC.fields_by_name['callback'].message_type = monitor__sdk_dot_model_dot_easy__command_dot_task__callback__pb2._TASKCALLBACK DESCRIPTOR.message_types_by_name['TaskSpec'] = _TASKSPEC _sym_db.RegisterFileDescriptor(DESCRIPTOR) TaskSpec = _reflection.GeneratedProtocolMessageType('TaskSpec', (_message.Message,), { 'DESCRIPTOR' : _TASKSPEC, '__module__' : 'task_spec_pb2' # @@protoc_insertion_point(class_scope:easy_command.TaskSpec) }) _sym_db.RegisterMessage(TaskSpec) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
[ "service@easyops.cn" ]
service@easyops.cn
f4e4f4503c9f478bd1926f4eb1748e96798b0abc
ddb9f17a4d943123f5e9c48cf02659ad54e968a9
/electionSoup_05.py
2c5a134d338b247b430b846cbd7f2131323850cb
[]
no_license
jotasprout/scrapingElectionResults
665bcc76dc5c25bd0302914eeabdf9120bc0fb99
3c2e80ee67eb6c1ec4509d4bbfbeeafbef258b61
refs/heads/master
2021-09-17T06:40:27.550765
2018-06-28T18:40:53
2018-06-28T18:40:53
74,492,899
0
0
null
null
null
null
UTF-8
Python
false
false
1,535
py
from bs4 import BeautifulSoup import csv # Grab local file I downloaded htmlDoc = open("2016ElectionResultsPresidentPolitico2.htm") soup = BeautifulSoup(htmlDoc) # create a text file in which to put leftover soup f = csv.writer(open("myElectionResults3.csv", "w")) # Grab just the results table articles = soup.find_all('article', {'class': 'timeline-group'}) for article in articles: # Remove crap before state name stateCrap1 = article.header.h3.a.b stateCrap1.decompose() state = article.header.h3.a.contents f.writerow(state) # write header row f.writerow(["Candidate", "Percentage", "Popular", "Electoral College"]) trs = article.find_all('tr') for tr in trs: # Get candidate name candidatex = tr.find('span', {'class': 'name-combo'}) # Remove crap before candidate name canCrap = candidatex.find_all('span') for crap in canCrap: crap.decompose() candidate = candidatex.contents # Get popular vote popularx = tr.find('td', {'class': 'results-popular'}) popular = popularx.contents # Get percentage of vote percentagex = tr.find('span', {'class': 'number'}) percentage = percentagex.contents # Get electoral college vote electoralCollegex = tr.find('td', {'class': 'delegates-cell'}) try: electoralCollege = electoralCollegex.contents except: continue f.writerow([candidate,popular,percentage,electoralCollege])
[ "jotasprout@gmail.com" ]
jotasprout@gmail.com
c11ce1adc65498d3491e4e59b546206ff74eb43b
ab40571d5051ad53c0f205fa797ba36eac516d06
/language/conpono/cpc/run_cpc.py
48d27c2350227bd9c3f6ac1f7daf95683099c8eb
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
google-research/language
e941b1a92ab46d40d8d03bb0c314905cb6902ce2
ac9447064195e06de48cc91ff642f7fffa28ffe8
refs/heads/master
2023-08-24T23:10:13.207294
2023-05-25T20:47:18
2023-05-25T22:29:27
153,201,352
1,567
371
Apache-2.0
2023-07-06T23:03:15
2018-10-16T00:58:14
Python
UTF-8
Python
false
false
18,336
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT next sentence prediction / binary coherence finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags from bert import modeling from bert import optimization from bert import tokenization from language.conpono.cpc import model_builder from six.moves import range import tensorflow.compat.v1 as tf from tensorflow.compat.v1 import estimator as tf_estimator from tensorflow.contrib import cluster_resolver as contrib_cluster_resolver from tensorflow.contrib import tpu as contrib_tpu from tensorflow.contrib import training as contrib_training FLAGS = flags.FLAGS ## Required parameters flags.DEFINE_string( "eval_file", None, "The input data. Should be in tfrecord format ready to input to BERT.") flags.DEFINE_string( "train_file", None, "The input data. Should be in tfrecord format ready to input to BERT.") flags.DEFINE_string( "bert_config_file", None, "The config json file corresponding to the pre-trained BERT model. " "This specifies the model architecture.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string( "output_dir", None, "The output directory where the model checkpoints will be written.") ## Other parameters flags.DEFINE_integer("num_choices", 32, "Number of negative samples + 1") flags.DEFINE_bool("add_lv2loss", False, "Whether to use the level 2 loss.") flags.DEFINE_string( "init_checkpoint", None, "Initial checkpoint (usually from a pre-trained BERT model).") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer( "max_seq_length", 128, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_bool("do_train", False, "Whether to run training.") flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.") flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") flags.DEFINE_integer("eval_batch_size", 32, "Total batch size for eval.") flags.DEFINE_integer("train_data_size", 10000, "The number of examples in the" "training data") flags.DEFINE_integer("eval_data_size", -1, "The number of examples in the" "validation data") flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.") flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.") flags.DEFINE_float( "warmup_proportion", 0.1, "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.") flags.DEFINE_integer("save_checkpoints_steps", 10000, "How often to save the model checkpoint.") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") _SEP_TOKEN = "[SEP]" class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, is_real_example=True): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.is_real_example = is_real_example def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder, num_choices): """Creates an `input_fn` closure to be passed to TPUEstimator.""" input_file = input_file.split(",") expanded_files = [] for infile in input_file: try: sharded_files = tf.io.gfile.glob(infile) expanded_files.append(sharded_files) except tf.errors.OpError: expanded_files.append(infile) name_to_features = {} for i in range(50): name_to_features["input_ids" + str(i)] = tf.FixedLenFeature([seq_length], tf.int64) name_to_features["input_mask" + str(i)] = tf.FixedLenFeature([seq_length], tf.int64) name_to_features["segment_ids" + str(i)] = tf.FixedLenFeature([seq_length], tf.int64) name_to_features["label_types"] = tf.FixedLenFeature([4], tf.int64) def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # total of 32 examples # 4 labels / shuffled # random samples from 23 + 23 last for distractors num_sampled = 14 same_doc_idxs = tf.random.shuffle(tf.range(4, 27))[:num_sampled] rand_doc_idxs = tf.random.shuffle(tf.range(27, 50))[:num_sampled] batch_indexes = tf.concat([tf.range(4), same_doc_idxs, rand_doc_idxs], axis=0) batch_indexes = tf.random.shuffle(batch_indexes) # At this point, we have shuffled the indexes and sampled them such that # we still have the index of 4 targets, 14 sampled from the same doc # and 14 sampled from different docs. But these are just indexes. # Here we need to grab the inputs according to the indexes above # We stack all the inputs so we can gather on the matrix input_id_stack, input_mask_stack, segment_id_stack = [], [], [] for i in range(50): input_id_stack.append(example["input_ids" + str(i)]) input_mask_stack.append(example["input_mask" + str(i)]) segment_id_stack.append(example["segment_ids" + str(i)]) input_id_stack = tf.stack(input_id_stack) input_mask_stack = tf.stack(input_mask_stack) segment_id_stack = tf.stack(segment_id_stack) input_ids = tf.gather(input_id_stack, batch_indexes) input_masks = tf.gather(input_mask_stack, batch_indexes) segment_ids = tf.gather(segment_id_stack, batch_indexes) # Note that we override the name of the input (eg. input_ids5) # So we replace the input with the shuffled and sampled input # We only set num_choices of them since those will be used. for i in range(num_choices): example["input_ids" + str(i)] = input_ids[i] example["input_mask" + str(i)] = input_masks[i] example["segment_ids" + str(i)] = segment_ids[i] # Note that for inputs num_choices-50 will not be used so we must purge them for i in range(num_choices, 50): del example["input_ids" + str(i)] del example["input_mask" + str(i)] del example["segment_ids" + str(i)] label_idx = [] for i in range(4): label_idx.append(tf.where(tf.equal(batch_indexes, tf.constant(i)))[0]) label_idx = tf.reshape(tf.concat(label_idx, axis=0), [-1]) label_idx = tf.scatter_nd( tf.reshape(example["label_types"], [4, 1]), label_idx, [8]) example["labels"] = label_idx # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] if len(expanded_files) == 1: d = tf.data.TFRecordDataset(expanded_files[0]) if is_training: d = d.repeat() d = d.shuffle(buffer_size=256) else: dataset_list = [ tf.data.TFRecordDataset(expanded_files[i]) for i in range(len(expanded_files)) ] if is_training: dataset_list = [d.repeat() for d in dataset_list] wiki_pct = 0.02222 dset_weights = [wiki_pct, 1 - wiki_pct] d = tf.data.experimental.sample_from_datasets(dataset_list, dset_weights) # choice_dataset = tf.data.Dataset.range(len(dataset_list)).repeat() # d = tf.data.experimental.choose_from_datasets(dataset_list, # choice_dataset) if is_training: d = d.shuffle(buffer_size=256) d = d.apply( tf.data.experimental.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings, num_choices): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = [features["input_ids" + str(i)] for i in range(num_choices)] input_mask = [features["input_mask" + str(i)] for i in range(num_choices)] segment_ids = [features["segment_ids" + str(i)] for i in range(num_choices)] label_ids = features["labels"] label_types = features["label_types"] seq_length = input_ids[0].shape[-1] input_ids = tf.reshape(tf.stack(input_ids, axis=1), [-1, seq_length]) input_mask = tf.reshape(tf.stack(input_mask, axis=1), [-1, seq_length]) segment_ids = tf.reshape(tf.stack(segment_ids, axis=1), [-1, seq_length]) is_training = (mode == tf_estimator.ModeKeys.TRAIN) is_real_example = tf.reduce_sum(tf.one_hot(label_types, 8), axis=1) model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) (total_loss, per_example_loss, logits, probabilities) = model_builder.create_model( model, label_ids, label_types, FLAGS.train_batch_size if is_training else FLAGS.eval_batch_size, num_choices, use_tpu, FLAGS.add_lv2loss) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf_estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer(total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf_estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, logits, is_real_example): """Collect metrics for function.""" predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) metric_dict = { "eval_accuracy": accuracy, "eval_loss": loss, } for i in range(8): metric_dict["acc" + str(i)] = tf.metrics.accuracy( labels=label_ids[:, i], predictions=predictions[:, i], weights=is_real_example[:, i]) return metric_dict eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, predictions={"probabilities": probabilities}, scaffold_fn=scaffold_fn) return output_spec return model_fn def main(_): tf.logging.set_verbosity(tf.logging.INFO) tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_eval: raise ValueError("At least one of `do_train`, `do_eval` must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.gfile.MakeDirs(FLAGS.output_dir) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2 run_config = contrib_tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=contrib_tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) num_train_steps = None num_warmup_steps = None if FLAGS.do_train: num_train_steps = int(FLAGS.train_data_size / FLAGS.train_batch_size) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu, num_choices=FLAGS.num_choices) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = contrib_tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: tf.logging.info("***** Running training *****") tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=FLAGS.train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True, num_choices=FLAGS.num_choices) estimator.train(input_fn=train_input_fn, steps=num_train_steps) if FLAGS.do_eval: # This tells the estimator to run through the entire set. if FLAGS.eval_data_size < 0: eval_steps = None else: eval_steps = int(FLAGS.eval_data_size / FLAGS.eval_batch_size) eval_drop_remainder = True if FLAGS.use_tpu else False eval_input_fn = file_based_input_fn_builder( input_file=FLAGS.eval_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder, num_choices=FLAGS.num_choices) # checkpoints_iterator blocks until a new checkpoint appears. for ckpt in contrib_training.checkpoints_iterator(estimator.model_dir): try: result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) tf.logging.info("********** Eval results:*******\n") for key in sorted(result.keys()): tf.logging.info("%s = %s" % (key, str(result[key]))) except tf.errors.NotFoundError: tf.logging.error("Checkpoint path '%s' no longer exists.", ckpt) if __name__ == "__main__": flags.mark_flag_as_required("eval_file") flags.mark_flag_as_required("vocab_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") app.run(main)
[ "kentonl@google.com" ]
kentonl@google.com
3de801a5cf89ce31e26495438899885b07a98824
9170f6cecd25b963254ea456da5cd9c5d2decd23
/mode.py
95c22b6b2686814884e0625d0925999ee35ac6de
[]
no_license
sandeeppunmia/PROJECT-104
a1ad8f90846417e95edf8c272081ec37cd6aa122
cf44848a6549173eea6a9d65aa082a9071f50c7f
refs/heads/main
2023-05-07T18:03:03.061990
2021-06-01T12:53:46
2021-06-01T12:53:46
372,829,241
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
import csv import statistics with open('SOCR-HeightWeight.csv',newline='') as f: reader= csv.reader(f) file_data = list(reader) file_data.pop(0) new_data=[] for i in range(len(file_data)): n_num = file_data[i][2] new_data.append(n_num) mode = statistics.mode(new_data) print('Mode is '+str(mode))
[ "noreply@github.com" ]
sandeeppunmia.noreply@github.com
00fae6a272f80eac4199b2bbe400a042ce45afa0
99aa48b929961a3e8ac238a1f51ce0b2499af2b7
/exercises/dot-dsl/example.py
125bf278d07febe3ae509bed675a10ec219d3c07
[ "MIT", "Python-2.0" ]
permissive
JodieHaywood/python-6
b4dfbadcddd97d81e8bcb16b315395610f7fb8be
b71bfb6f82fb43d49752635d89eab843cb627e4c
refs/heads/master
2020-03-30T13:24:16.929668
2018-10-02T12:45:25
2018-10-02T12:45:25
151,271,387
1
0
MIT
2018-10-02T14:46:03
2018-10-02T14:46:02
null
UTF-8
Python
false
false
1,521
py
NODE, EDGE, ATTR = range(3) class Node(object): def __init__(self, name, attrs={}): self.name = name self.attrs = attrs def __eq__(self, other): return self.name == other.name and self.attrs == other.attrs class Edge(object): def __init__(self, src, dst, attrs={}): self.src = src self.dst = dst self.attrs = attrs def __eq__(self, other): return (self.src == other.src and self.dst == other.dst and self.attrs == other.attrs) class Graph(object): def __init__(self, data=[]): self.nodes = [] self.edges = [] self.attrs = {} if not isinstance(data, list): raise TypeError("Graph data malformed") for item in data: if len(item) < 3: raise TypeError("Graph item incomplete") type_ = item[0] if type_ == ATTR: if len(item) != 3: raise ValueError("ATTR malformed") self.attrs[item[1]] = item[2] elif type_ == NODE: if len(item) != 3: raise ValueError("NODE malformed") self.nodes.append(Node(item[1], item[2])) elif type_ == EDGE: if len(item) != 4: raise ValueError("EDGE malformed") self.edges.append(Edge(item[1], item[2], item[3])) else: raise ValueError("Unknown item {}".format(item[0]))
[ "nathan.parsons@warwick.ac.uk" ]
nathan.parsons@warwick.ac.uk
6132066f7af58efd64ae52142b80a77a2a711ff6
f925f8778355445bea1950703e21d804b069eda5
/main.py
a6fcfca6d383f3021cf7d8c98c067d41cb2f8fac
[]
no_license
tanerahmed/play_with_git
adc5bf89056542395df6e587fbca1710abdecf6f
154000c1599979cfba17bd22d10087743988f50c
refs/heads/main
2023-07-27T13:03:26.902738
2021-09-09T14:41:45
2021-09-09T14:41:45
383,704,642
0
0
null
null
null
null
UTF-8
Python
false
false
607
py
# This is a sample Python script. # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. def print_hi(name): # Use a breakpoint in the code line below to debug your script. print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint. print('after reset') print('09.09') print('09.09 -------- 2222222') # Press the green button in the gutter to run the script. if __name__ == '__main__': print_hi('PyCharm') # See PyCharm help at https://www.jetbrains.com/help/pycharm/
[ "tanerahmed87@gmail.com" ]
tanerahmed87@gmail.com
8b1df3ff3fc5477fb786efbc0cf04d80a24235f4
b45dc624c7bf5eb02da6853a3ae3cfb4fb61e4c4
/splash/__init__.py
1be2693f75edf80fddc0092ae29605f85e097927
[ "BSD-2-Clause" ]
permissive
TrinityComputers/splash
c8fbf82c06b77016c32b3fbed3f880a21b5add39
f8421cab0594d9417f068f74d45d8fa64c97ae79
refs/heads/master
2020-12-25T02:20:39.219817
2016-02-20T21:33:17
2016-02-20T21:33:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
__version__ = '2.0' from distutils.version import LooseVersion version_info = tuple(LooseVersion(__version__).version) __all__ = ['__version__', 'version_info']
[ "kmike84@gmail.com" ]
kmike84@gmail.com
8cea7d6e9eb15d5318ed4c600ab7f89ddc82ac29
838642b4f7dae35e37198f0932ec713ef755f5b7
/solarproject/solarproject/settings.py
73607dcfd44b47e01c22a3a23d03d00390839030
[]
no_license
guaka/kloud
a4d350d7f50898d4fd13689741626623aac38201
1d97dd21a90953ffd956e12d9dcb74fc9548c772
refs/heads/master
2020-05-29T20:52:47.657235
2014-03-11T22:12:47
2014-03-11T22:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
# Scrapy settings for solarproject project # # For simplicity, this file contains only the most important settings by # default. All the other settings are documented here: # # http://doc.scrapy.org/en/latest/topics/settings.html # BOT_NAME = 'solarproject' SPIDER_MODULES = ['solarproject.spiders'] NEWSPIDER_MODULE = 'solarproject.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'solarproject (+http://www.yourdomain.com)'
[ "kasper@guaka.org" ]
kasper@guaka.org
1f941c786360efa674c2f027ec77232546ede5bf
5bd9ffad4ce5e0f0f2a7cd0dac51e6abe3470b9c
/reassessor/normalizer/gt.py
194f4269d38af11bad689102232c0643c1b61511
[ "MIT" ]
permissive
SoftSec-KAIST/Reassessor
cd3e0cb698289b7c0bcf65efc07617d7aaf5d85f
55d40ec4ebb9c13a0e850967bc2ecc79fe16df25
refs/heads/main
2023-03-07T10:18:39.188463
2022-12-12T23:56:15
2022-12-12T23:56:15
537,323,886
23
2
null
null
null
null
UTF-8
Python
false
false
33,957
py
import re import struct import capstone import sys import os import pickle import glob, json from elftools.elf.elffile import ELFFile from elftools.elf.descriptions import describe_reloc_type from elftools.elf.relocation import RelocationSection from collections import defaultdict from reassessor.lib.types import Program, InstType, LblTy, Label from reassessor.lib.parser import CompGen from reassessor.lib.asmfile import AsmFileInfo, LocInfo, AsmInst class JumpTable: def __init__(self, entries): self.entries = entries self.lengh = len(entries) self.base = 0 def set_base(self, base): self.base = base def get_entries(self): pass class CompData: def __init__(self, entries): self.entries = entries self.lengh = len(entries) self.base = 0 def set_base(self, base): self.base = base def get_entries(self): pass class FuncInst: def __init__(self, inst_list, func_info, asm_path): self.inst_list = inst_list self.name, self.addr, self.size = func_info self.asm_path = asm_path def get_dwarf_loc(filename): dwarf_loc_map = {} def process_file(filename): with open(filename, 'rb') as f: elffile = ELFFile(f) if not elffile.has_dwarf_info(): print(' file has no DWARF info') return dwarfinfo = elffile.get_dwarf_info() for CU in dwarfinfo.iter_CUs(): line_program = dwarfinfo.line_program_for_CU(CU) if line_program is None: continue line_entry_mapping(line_program) def line_entry_mapping(line_program): lp_entries = line_program.get_entries() for lpe in lp_entries: if not lpe.state or lpe.state.file == 0: continue filename = lpe_filename(line_program, lpe.state.file) if lpe.state.address not in dwarf_loc_map.keys(): dwarf_loc_map[lpe.state.address] = set() dwarf_loc_map[lpe.state.address].add('%s:%d'%(filename, lpe.state.line)) def lpe_filename(line_program, file_index): lp_header = line_program.header file_entries = lp_header["file_entry"] file_entry = file_entries[file_index - 1] dir_index = file_entry["dir_index"] if dir_index == 0: return file_entry.name.decode() directory = lp_header["include_directory"][dir_index - 1] return os.path.join(directory, file_entry.name).decode() process_file(filename) return dwarf_loc_map def disasm(prog, cs, addr, length): offset = addr - prog.text_base insts = [] for inst in prog.disasm_range(cs, addr, length): #if not is_semantically_nop(inst): insts.append(inst) return insts def get_reloc_bytesize(rinfo_type): if 'X86_64_' in rinfo_type and '32' not in rinfo_type: return 8 else: return 4 def get_reloc_gotoff(rinfo_type): if 'GOTOFF' in rinfo_type: return True else: return False def get_reloc(elf): relocs = {} for section in elf.iter_sections(): if not isinstance(section, RelocationSection): continue if ( section.name.startswith(".rel") and \ ( ("data" in section.name) or \ section.name.endswith(".dyn") or \ section.name.endswith('.init_array') or \ section.name.endswith('.fini_array') ) ) or \ section.name in ['.rela.plt'] or \ section.name in ['.rel.plt']: for relocation in section.iter_relocations(): addr = relocation['r_offset'] t = describe_reloc_type(relocation['r_info_type'], elf) sz = get_reloc_bytesize(t) is_got = get_reloc_gotoff(t) relocs[addr] = (sz, is_got, t) return relocs def get_reloc_symbs(elf, sec_name = '.symtab'): names = {} dynsym = elf.get_section_by_name(sec_name)#('.dynsym') for symb in dynsym.iter_symbols(): if symb['st_shndx'] != 'SHN_UNDEF': addr = symb['st_value'] name = symb.name size = symb['st_size'] if addr != 0 and len(name) > 0: if name in names: names[name].append((addr, size)) else: names[name] = [(addr, size)] return names class NormalizeGT: def __init__(self, bin_path, asm_dir, reloc_file='', build_path=''): self.bin_path = bin_path self.asm_dir = asm_dir self.build_path = build_path self.reloc_file = reloc_file #self.ex_parser = ATTExParser() self.collect_loc_candidates() f = open(self.bin_path, 'rb') self.elf = ELFFile(f) if self.elf.get_section_by_name('.got.plt'): self.got_addr = self.elf.get_section_by_name('.got.plt')['sh_addr'] else: self.got_addr = self.elf.get_section_by_name('.got')['sh_addr'] if reloc_file: with open(reloc_file, 'rb') as fp: reloc_elf = ELFFile(fp) self.relocs = get_reloc(reloc_elf) else: self.relocs = get_reloc(self.elf) self.symbs = get_reloc_symbs(self.elf) self.text = self.elf.get_section_by_name(".text") self.text_base = self.text.header["sh_addr"] if self.elf['e_machine'] in ('EM_X86_64'): self.cs = capstone.Cs(capstone.CS_ARCH_X86, capstone.CS_MODE_64) else: self.cs = capstone.Cs(capstone.CS_ARCH_X86, capstone.CS_MODE_32) self.cs.detail = True self.cs.syntax = capstone.CS_OPT_SYNTAX_ATT disassembly = self.cs.disasm(self.text.data(), self.text_base) self.comp_gen = CompGen(got_addr = self.got_addr) self.instructions = {} # address : instruction for instruction in disassembly: self.instructions[instruction.address] = instruction self.instruction_addrs = list(self.instructions.keys()) self.instruction_addrs.sort() self.prog = Program(self.elf, self.cs, asm_path=asm_dir) self.match_src_to_bin() def is_semantically_nop(self, inst): if isinstance(inst, capstone.CsInsn): mnemonic = inst.mnemonic operand_list = inst.op_str.split(', ') elif isinstance(inst, AsmInst): mnemonic = inst.opcode operand_list = inst.operand_list try: if mnemonic.startswith("nop"): return True if mnemonic[:3] == "lea" and mnemonic != 'leave': return operand_list[0] == "(" + operand_list[1] + ")" elif mnemonic[:3] == "mov" and not mnemonic.startswith("movs"): return operand_list[0] == operand_list[1] except: assert False, 'unexpected instruction %s' % ' '.join(operand_list) return False def get_section(self, addr): for section in self.elf.iter_sections(): sec_addr = section['sh_addr'] sec_size = section['sh_size'] if sec_addr <= addr and addr < sec_addr + sec_size: return section return None def get_int(self, addr, sz = 4): section = self.get_section(addr) if not section: return 0 base = section['sh_addr'] offset = addr - base data = section.data() data = data[offset:offset + sz] if sz == 4: data = data.ljust(4, b'\x00') return struct.unpack("<I", data)[0] elif sz == 8: data = data.ljust(8, b'\x00') return struct.unpack("<Q", data)[0] def update_table(self, addr, comp_data, asm_path): for line, idx in comp_data.members: directive = line.split()[0] if directive in ['.long']: sz = 4 elif directive in ['.quad']: sz = 8 else: assert False, 'Unsupported jump table entries' value = self.get_int(addr, sz) label_dict = {comp_data.label:comp_data.addr} data = self.comp_gen.get_data(addr, asm_path, line, idx, value, label_dict) self.prog.Data[addr] = data #component = self.comp_gen.get_data_components(line.split()[1], value, label_dict) #self.prog.Data[addr] = Data(addr, component, asm_path, idx+1, line) addr += sz def update_data(self, addr, comp_data, asm_path): for line, idx in comp_data.members: directive = line.split()[0] if directive in ['.long']: sz = 4 elif directive in ['.quad']: sz = 8 elif directive in ['.word']: sz = 2 elif directive in ['.byte']: sz = 1 elif directive in ['.zero']: sz = int(line.split()[1]) else: print(line) assert False, "unknown data type" expr = ' '.join(line.split()[1:]) if sz in [4,8] and re.search('.[+|-]', expr): value = self.get_int(addr, sz) #if '@GOTOFF' in line: # value += self.got_addr data = self.comp_gen.get_data(addr, asm_path, line, idx , value) self.prog.Data[addr] = data #component = self.comp_gen.get_data_components(expr, value) #self.prog.Data[addr] = Data(addr, component, asm_path, idx+1, directive+' '+ expr) addr += sz def update_labels(self, func_info, factors, asm_file): #label_dict, jmptbls, factors): target_addr = factors.value - factors.num for label in factors.labels: if label == '_GLOBAL_OFFSET_TABLE_': continue if '@GOT' in label and '@GOTPCREL' not in label: label = label.split('@')[0] if label in asm_file.composite_data and not asm_file.composite_data[label].addr: asm_file.composite_data[label].set_addr(target_addr) if label in asm_file.jmp_dict: asm_file.jmp_dict[label].set_addr(target_addr) def get_objdump(self): temp_file = "/tmp/xx" + self.bin_path.replace('/','_') os.system("objdump -t -f %s | grep \"F .text\" | sort > %s" % (self.bin_path, temp_file)) funcs = [] with open(temp_file) as fp: lines = fp.readlines() for line in lines: l = line.split() fname = l[-1] faddress = int(l[0], 16) fsize = int(l[4], 16) try: #if len(loc_candidates) and fsize > 0: if self.has_func_assem_file(fname) and fsize > 0: funcs.append([fname, faddress, fsize]) except: pass os.unlink(temp_file) return funcs def update_instr(self, func_info): fname, faddress, fsize = func_info f_offset = faddress - self.text_base f_end_offset = f_offset + fsize dump = self.cs.disasm(self.text.data()[f_offset:f_end_offset], faddress) for inst in dump: if inst.address in self.instructions: break self.instructions[inst.address] = inst self.instruction_addrs.append(inst.address) self.instruction_addrs.sort() def match_src_to_bin(self): self.bin2src_dict = {} self.composite_data = dict() self.jmp_table_dict = dict() debug_loc_paths = {} src_files = {} #result = {} self.dwarf_loc = get_dwarf_loc(self.bin_path) funcs = self.get_objdump() # [funcname, address, size] list for func_info in funcs: fname, faddress, fsize = func_info if '__x86.get_pc_thunk' in fname: continue ''' Handle weird padding bytes ''' if faddress not in self.instructions: self.update_instr(func_info) #faddress, fsize) func_code = self.get_func_code(faddress, fsize) asm_file, addressed_asm_list = self.find_match_func(func_code, func_info) func_summary = FuncInst(addressed_asm_list, func_info, asm_file.file_path) self.bin2src_dict[faddress] = func_summary prev_opcode = '' for idx, (addr, capstone_insn, asm_token) in enumerate(addressed_asm_list): if not asm_token: # nop code might has no relevant assembly code if prev_opcode in ['jmp', 'jmpq', 'jmpl', 'call', 'callq', 'calll', 'ret', 'retq', 'retl', 'halt', 'ud2']: next_addr, _, _ = addressed_asm_list[idx+1] self.prog.aligned_region.update([item for item in range(addr, next_addr)]) self.prog.Instrs[addr] = InstType(addr, asm_file.file_path) continue prev_opcode = capstone_insn.mnemonic instr = self.comp_gen.get_instr(addr, asm_file.file_path, asm_token, capstone_insn) self.prog.Instrs[addr] = instr # update labels if instr.imm and instr.imm.has_label(): self.update_labels(func_summary, instr.imm, asm_file) if instr.disp and instr.disp.has_label(): self.update_labels(func_summary, instr.disp, asm_file) text_end = self.text.data_size + self.text_base prev_end = self.text_base unknown_region = set() for faddress in sorted(self.bin2src_dict.keys()): unknown_region.update(range(prev_end, faddress)) prev_end = faddress + self.bin2src_dict[faddress].size unknown_region.update(range(prev_end, text_end)) self.prog.unknown_region = unknown_region def is_semantically_same(self, insn, asm): if insn.mnemonic[:-1] == asm.opcode: return True if insn.mnemonic == asm.opcode[:-1]: return True if insn.mnemonic.startswith('rep') and asm.opcode.startswith('rep'): if insn.mnemonic.split()[1] == asm.opcode.split()[1]: return True if insn.group(capstone.CS_GRP_JUMP): jumps = [ ["jo"], ["jno"], ["js"], ["jns"], ["je", "jz"], ["jne", "jnz"], ["jb", "jna", "jc"], ["jnb", "jae", "jnc"], ["jbe", "jna"], ["ja", "jnb"], ["jl", "jng"], ["jge", "jnl"], ["jle", "jng"], ["jg", "jnl"], ["jp", "jpe"], ["jnp", "jpo"], ["jcx", "jec"] ] for jump in jumps: if insn.mnemonic in jump and asm.opcode in jump: return True else: opcodes = [ # Mnemonic Alias ["call", "callw"], ["call", "calll"], ["call", "callq"], ["cbw", "cbtw"], ["cwde", "cwtl"], ["cwd", "cwtd"], ["cdq", "cltd"], ["cdqe", "cltq"], ["cqo", "cqto"], ["lret", "lretw"], ["lret", "lretl"], ["leavel", "leave"], ["leaveq", "leave"], ["loopz", "loope"], ["loopnz", "loopne"], ["popf", "popfw"], ["popf", "popfl"], ["popf", "popfq"], ["popfd", "popfl"], ["pushf", "pushfw"], ["pushf", "pushfl"], ["pushf", "pushfq"], ["pushfd", "pushfl"], ["pusha", "pushaw"], ["pusha", "pushal"], ["repe", "rep"], ["repz", "rep"], ["repnz", "repne"], ["ret", "retw"], ["ret", "retl"], ["ret", "retq"], ["salb", "shlb"], ["salw", "shlw"], ["sall", "shll"], ["salq", "shlq"], ["smovb", "movsb"], ["smovw", "movsw"], ["smovl", "movsl"], ["smovq", "movsq"], ["ud2a", "ud2"], ["verrw", "verr"], ["sysret", "sysretl"], ["sysexit", "sysexitl"], ["lgdt", "lgdtw"], ["lgdt", "lgdtl"], ["lgdt", "lgdtq"], ["lidt", "lidtw"], ["lidt", "lidtl"], ["lidt", "lidtq"], ["sgdt", "sgdtw"], ["sgdt", "sgdtl"], ["sgdt", "sgdtq"], ["sidt", "sidtw"], ["sidt", "sidtl"], ["sidt", "sidtq"], ["fcmovz", "fcmove"], ["fcmova", "fcmovnbe"], ["fcmovnae", "fcmovb"], ["fcmovna", "fcmovbe"], ["fcmovae", "fcmovnb"], ["fcomip", "fcompi"], ["fildq", "fildll"], ["fistpq", "fistpll"], ["fisttpq", "fisttpll"], ["fldcww", "fldcw"], ["fnstcww", "fnstcw"], ["fnstsww", "fnstsw"], ["fucomip", "fucompi"], ["fwait", "wait"], ["fxsaveq", "fxsave64"], ["fxrstorq", "fxrstor64"], ["xsaveq", "xsave64"], ["xrstorq", "xrstor64"], ["xsaveoptq", "xsaveopt64"], ["xrstorsq", "xrstors64"], ["xsavecq", "xsavec64"], ["xsavesq", "xsaves64"], # findings ['shl', 'sal'], ['cmovael', 'cmovnb'], ['cmovbq', 'cmovc'], ['retq', 'rep ret'], ['retl', 'rep ret'], # assembler optimization ['leaq', 'movq'], ['leal', 'movl'], ] for opcode in opcodes: if insn.mnemonic in opcode and asm.opcode in opcode: return True if self.check_suffix(insn.mnemonic, asm.opcode): return True if insn.mnemonic in ['addq'] and asm.opcode in ['subq']: if asm.operand_list[0].startswith('$-'): return True capstone_bugs = [ ['movd', 'movq'], ['cmovaeq', 'cmovnb'], ['cmovaew', 'cmovnb'], ['cmovbl', 'cmovc'], ['cmovael', 'cmovnc'], ['cmovaeq', 'cmovnc'], ] for opcode in capstone_bugs: if insn.mnemonic in opcode and asm.opcode in opcode: return True return False def check_suffix(self, opcode1, opcode2): suffix_list = [('(.*)c$','(.*)b$'), #setc -> setb ('(.*)z$','(.*)e$'), #setz -> sete ('(.*)na$','(.*)be$'), #setna -> setbe ('(.*)nb$','(.*)ae$'), #setnb -> setae ('(.*)nc$','(.*)ae$'), #setnc -> setae ('(.*)ng$','(.*)le$'), #setng -> setle ('(.*)nl$','(.*)ge$'), #setnl -> setge ('(.*)nz$','(.*)ne$'), #setnl -> setge ('(.*)pe$','(.*)p$'), #setpe -> setp ('(.*)po$','(.*)np$'), #setpo -> setnp ('(.*)nae$','(.*)b$'), #setnae -> setb ('(.*)nbe$','(.*)a$'), #setnbe -> seta ('(.*)nge$','(.*)l$'), #setnbe -> seta ('(.*)nle$','(.*)g$')] #setnle -> setg for (suff1, suff2) in suffix_list: rex = suff1+'|'+suff2 if re.search(rex, opcode1) and re.search(rex,opcode2): if re.search(suff1, opcode1): tmp1 = re.findall(suff1, opcode1)[0] else: tmp1 = re.findall(suff2, opcode1)[0] if re.search(suff1, opcode2): tmp2 = re.findall(suff1, opcode2)[0] else: tmp2 = re.findall(suff2, opcode2)[0] if tmp1 == tmp2: return True return False def assem_addr_map(self, func_code, asm_token_list, candidate_len, debug=False): addressed_asm_list = [] idx = 0 for bin_asm in func_code: if idx >= len(asm_token_list): if self.is_semantically_nop(bin_asm): addressed_asm_list.append((bin_asm.address, bin_asm, '')) continue return [] asm_token = asm_token_list[idx] if bin_asm.address in self.dwarf_loc: dwarf_set1 = self.dwarf_loc[bin_asm.address] dwarf_set2 = set() while isinstance(asm_token, LocInfo): dwarf_set2.add( '%s:%d'%(asm_token.path, asm_token.idx)) idx += 1 asm_token = asm_token_list[idx] #give exception for a first debug info since some debug info is related to prev func #in case of weak symbols, multiple debug info could be merged. #ex) {'xercesc/dom/DOMNodeImpl.hpp:271', './xercesc/dom/impl/DOMNodeImpl.hpp:271'} if dwarf_set2 - dwarf_set1: #clang might eliminate file path.. new_dwarf_set1 = set() for debug_str in dwarf_set1: file_path, no = debug_str.split(':') file_name = os.path.basename(file_path) new_dwarf_set1.add('%s:%s'%(file_name, no)) new_dwarf_set2 = set() for debug_str in dwarf_set2: file_path, no = debug_str.split(':') file_name = os.path.basename(file_path) new_dwarf_set2.add('%s:%s'%(file_name, no)) if new_dwarf_set2 - new_dwarf_set1: if debug: pass return [] if isinstance(asm_token, LocInfo): # nop code might not have debug info if self.is_semantically_nop(bin_asm): addressed_asm_list.append((bin_asm.address, bin_asm, '')) continue elif debug: # some debug info might be omitted while isinstance(asm_token, LocInfo): idx += 1 asm_token = asm_token_list[idx] pass else: return [] if self.is_semantically_nop(bin_asm): #.align might cause nop code if self.is_semantically_nop(asm_token): addressed_asm_list.append((bin_asm.address, bin_asm, asm_token)) else: addressed_asm_list.append((bin_asm.address, bin_asm, '')) continue elif asm_token.opcode == bin_asm.mnemonic: addressed_asm_list.append((bin_asm.address, bin_asm, asm_token)) elif self.is_semantically_same(bin_asm, asm_token): addressed_asm_list.append((bin_asm.address, bin_asm, asm_token)) else: if candidate_len > 1: if debug: pass return [] print(bin_asm) print('%s %s'%(asm_token.opcode, ' '.join(asm_token.operand_list))) addressed_asm_list.append((bin_asm.address, bin_asm, asm_token)) #return [] #assert False, 'Unexpacted instruction sequence' idx += 1 if idx < len(asm_token_list): for idx2 in range(idx, len(asm_token_list)): if not isinstance(asm_token_list[idx2], LocInfo): #assert False, 'Unexpacted instruction sequence' return [] return addressed_asm_list def find_match_func(self, func_code, func_info): fname, faddress, fsize = func_info if not self.has_func_assem_file(fname): return None ret = [] candidate_list = self.get_assem_file(fname) candidate_len = len(candidate_list) for asm_file in candidate_list: if os.path.basename(asm_file.file_path) in ['src_sha224sum-md5sum.s']: if os.path.basename(self.bin_path) in ['sha512sum', 'sha256sum', 'sha384sum']: continue if os.path.basename(asm_file.file_path) in ['src_sha256sum-md5sum.s']: if os.path.basename(self.bin_path) in ['sha512sum', 'sha224sum', 'sha384sum']: continue if os.path.basename(asm_file.file_path) in ['src_sha384sum-md5sum.s']: if os.path.basename(self.bin_path) in ['sha512sum', 'sha224sum', 'sha256sum']: continue if os.path.basename(asm_file.file_path) in ['src_sha512sum-md5sum.s']: if os.path.basename(self.bin_path) in ['sha224sum', 'sha256sum', 'sha384sum']: continue if 'usable_st_size' in fname: ''' grep '^usable_st_size:' coreutils-8.30/x64/clang/nopie/o1-bfd/src/* -A 10 | grep orl coreutils-8.30/x64/clang/nopie/o1-bfd/src/dd.s- orl 24(%rdi), %eax coreutils-8.30/x64/clang/nopie/o1-bfd/src/head.s- orl 24(%rdi), %eax coreutils-8.30/x64/clang/nopie/o1-bfd/src/od.s- orl 24(%rdi), %eax coreutils-8.30/x64/clang/nopie/o1-bfd/src/shuf.s- orl 24(%rdi), %eax coreutils-8.30/x64/clang/nopie/o1-bfd/src/split.s- orl in_stat_buf+24(%rip), %eax coreutils-8.30/x64/clang/nopie/o1-bfd/src/tail.s- orl 24(%rdi), %eax coreutils-8.30/x64/clang/nopie/o1-bfd/src/truncate.s- orl 24(%rdi), %eax coreutils-8.30/x64/clang/nopie/o1-bfd/src/wc.s- orl 24(%rdi), %eax ''' if os.path.basename(asm_file.file_path) in ['dd.s', 'head.s', 'od.s', 'shuf.s', 'tail.s', 'truncate.s', 'wc.s']: if os.path.basename(self.bin_path) in ['split']: continue if os.path.basename(asm_file.file_path) in ['split.s']: if os.path.basename(self.bin_path) in ['dd', 'head', 'od', 'shuf', 'tail', 'truncate', 'wc']: continue #asm_inst_list = [line for line in asm_file.func_dict[fname] if isinstance(line, AsmInst)] #addressed_asm_list = self.assem_addr_map(func_code, asm_inst_list, candidate_len) addressed_asm_list = self.assem_addr_map(func_code, asm_file.func_dict[fname], candidate_len) if not addressed_asm_list: continue ret.append((asm_file, addressed_asm_list)) if not ret: # debug info might be omitted. # we give some exception to assembly matching. for asm_file in candidate_list: addressed_asm_list = self.assem_addr_map(func_code, asm_file.func_dict[fname], candidate_len, True) if addressed_asm_list: ret.append((asm_file, addressed_asm_list)) assert len(ret) == 1, 'No matched assembly code' asm_file, addressed_asm_list = ret[0] asm_file.visited_func.add(fname) return asm_file, addressed_asm_list def get_func_code(self, address, size): try: result = [] idx = self.instruction_addrs.index(address) curr = address while True: if curr >= address + size: break inst = self.instructions[curr] result.append(inst) curr += inst.size return result except: print("Disassembly failed.") exit() def get_src_files(self, src_files, loc_candidates): for loc_path, _ in loc_candidates: if loc_path not in src_files.keys(): if self.build_path: loc_path_full = os.path.join(self.build_path, loc_path[1:]) f = open(loc_path_full, errors='ignore') src_files[loc_path] = f.read() else: loc_path_full = os.path.join(self.asm_dir, loc_path[1:]) f = open(loc_path_full, errors='ignore') src_files[loc_path] = f.read() return src_files def get_src_paths(self): srcs = [] for i in range(20): t = "*/" * i srcs += glob.glob(self.asm_dir + t + "*.s") # give a first priority to a main source code main_src = '%s/src/%s.s'%(self.asm_dir, os.path.basename(self.bin_path)) if main_src in srcs: srcs.remove(main_src) srcs.insert(0, main_src) return srcs def has_func_assem_file(self, func_name): return func_name in self._func_map def get_assem_file(self, func_name): ret = [] for asm_path in self._func_map[func_name]: #ignored referred assembly file #since local function can be defined twice # _Z41__static_initialization in 483.xalancbmk if func_name in self.asm_file_dict[asm_path].visited_func: pass else: ret.append(self.asm_file_dict[asm_path]) return ret def collect_loc_candidates(self): srcs = self.get_src_paths() #result = {} self._func_map = defaultdict(list) self.asm_file_dict = dict() for src in srcs: asm_file = AsmFileInfo(src) asm_file.scan() self.asm_file_dict[src] = asm_file for func_name in asm_file.func_dict.keys(): self._func_map[func_name].append(src) def normalize_data(self): visited_label = [] for asm_path, asm_file in self.asm_file_dict.items(): for label, comp_data in asm_file.composite_data.items(): if comp_data.addr: self.update_data(comp_data.addr, comp_data, asm_path) visited_label.append(label) for asm_path, asm_file in self.asm_file_dict.items(): for label, comp_data in asm_file.composite_data.items(): if not comp_data.addr: if label in self.symbs and len(self.symbs[label]) == 1 and label not in visited_label: #if symbol size is zero we ignore it if self.symbs[label][0][1] == 0: continue self.update_data(self.symbs[label][0][0], comp_data, asm_path) visited_label.append(label) #else: # print('unknown comp data %s:%s'%(asm_path, label)) comp_set = set(self.prog.Data.keys()) reloc_set = set(self.relocs) if comp_set - reloc_set: print(comp_set - reloc_set) for asm_path, asm_file in self.asm_file_dict.items(): for label, comp_data in asm_file.jmp_dict.items(): if comp_data.addr: self.update_table(comp_data.addr, comp_data, asm_path) visited_label.append(label) for addr in self.relocs: if addr in self.prog.Data: # composite ms || already processed continue sz, is_got, r_type = self.relocs[addr] value = self.get_int(addr, sz) #This reloc data is added by linker #if value == 0 and r_type in ['R_X86_64_64']: # asm_line = '.quad %s'%(r_type) # pass #elif value == 0: # continue if r_type in ['R_X86_64_COPY', 'R_X86_64_REX_GOTPCRELX', 'R_386_COPY']: continue elif r_type in ['R_X86_64_GLOB_DAT', 'R_X86_64_JUMP_SLOT', 'R_386_GLOB_DAT', 'R_386_JUMP_SLOT']: label = 'L%x'%(value) asm_line = '.long ' + label else: directive = '.long' if value == 0: label = r_type else: if is_got: value += self.got_addr label = 'L%x@GOTOFF'%(value) else: label = 'L%x'%(value) if sz == 8: directive = '.quad' asm_line = directive + ' ' + label data = self.comp_gen.get_data(addr, '', asm_line, 0, value, r_type = r_type) self.prog.Data[addr] = data def save(self, save_file): with open(save_file, 'wb') as f: pickle.dump(self.prog, f) import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description='normalize_retro') parser.add_argument('bin_path', type=str) parser.add_argument('asm_dir', type=str) parser.add_argument('save_file', type=str) parser.add_argument('--reloc', type=str) parser.add_argument('--build_path', type=str) args = parser.parse_args() gt = NormalizeGT(args.bin_path, args.asm_dir, args.reloc, args.build_path) gt.normalize_data() gt.save(args.save_file)
[ "witbring@kaist.ac.kr" ]
witbring@kaist.ac.kr
d5434e7f51707038dc79b37284a8b24146724f72
beeee5695deeb3b21eefcf44b31558746e9bc575
/build/ddynamic_reconfigure/catkin_generated/pkg.installspace.context.pc.py
aac9221fbfafd02e0785370f727f84f86861035d
[]
no_license
mannylazalde/EECS106A
47db0728a02db498e77184010f1b59983c5a98a2
0ac0de951bdba56eb8634711448677b7c8a73114
refs/heads/master
2020-09-13T11:48:36.878212
2019-12-21T07:03:57
2019-12-21T07:03:57
222,768,305
0
0
null
null
null
null
UTF-8
Python
false
false
644
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/cc/ee106a/fa19/class/ee106a-abe/ros_workspaces/project/install/include".split(';') if "/home/cc/ee106a/fa19/class/ee106a-abe/ros_workspaces/project/install/include" != "" else [] PROJECT_CATKIN_DEPENDS = "roscpp;dynamic_reconfigure".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lddynamic_reconfigure".split(';') if "-lddynamic_reconfigure" != "" else [] PROJECT_NAME = "ddynamic_reconfigure" PROJECT_SPACE_DIR = "/home/cc/ee106a/fa19/class/ee106a-abe/ros_workspaces/project/install" PROJECT_VERSION = "0.2.1"
[ "mannylazalde@berkeley.edu" ]
mannylazalde@berkeley.edu
5c0adca41bca66a94c48640ccd512fc21f71e304
d8ce069f4eee6c9a58fb7980b92d7b36f5698733
/last_digit_fibo.py
5c2524cbb36e5bbf6738da7c2c35578c4a37b743
[]
no_license
vaibhavik/LeetCode
daf37ba88c3c47d05f7387da980a448d90850681
0d7bd671a2a5e00446f3a16d5750c74c6a4e08dd
refs/heads/master
2020-04-27T20:44:42.599566
2019-09-11T07:12:08
2019-09-11T07:12:08
174,668,790
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
n = input() f=[] i=2 f.append(0) f.append(1) for i in range(2,n+1): f.append((f[i-1]+f[i-2])%10) print f print f[n]
[ "vaibhavikardale@gmail.com" ]
vaibhavikardale@gmail.com
ddb5ec09564108fbfb8bbff984793835df0f096f
fea59bd9b97ca20a35315cda3927a261f48b64b4
/aws/serverlessjams/backend/verify_token.py
85d8c76036bd22436e2c1269fae5a35d8841cf28
[ "MIT" ]
permissive
mengwangk/serverless-apps
f2eeb5f43c077e44f578a9e208d22d583615d584
cd6599c4f932bfceb2021af21ac15ca0d76b56a6
refs/heads/master
2023-01-23T09:17:23.580205
2021-01-18T15:08:46
2021-01-18T15:08:46
249,721,001
1
1
MIT
2023-01-09T22:30:23
2020-03-24T13:51:58
JavaScript
UTF-8
Python
false
false
1,558
py
import os import json from six.moves.urllib.request import urlopen from jose import jwt AUTH0_DOMAIN = os.environ.get("AUTH0_DOMAIN") AUTH0_API_ID = os.environ.get("AUTH0_API_ID") def verify_token(token): # Validate the token to make sure it's authentic jsonurl = urlopen("https://"+AUTH0_DOMAIN+"/.well-known/jwks.json") jwks = json.loads(jsonurl.read()) # This currently expects the token to have three distinct sections # each separated by a period. unverified_header = jwt.get_unverified_header(token) rsa_key = {} for key in jwks["keys"]: if key["kid"] == unverified_header["kid"]: rsa_key = { "kty": key["kty"], "kid": key["kid"], "use": key["use"], "n": key["n"], "e": key["e"] } if rsa_key: try: # to validate the jwt payload = jwt.decode( token, rsa_key, algorithms=["RS256"], audience=AUTH0_API_ID, issuer="https://"+AUTH0_DOMAIN+"/" ) print("token validated successfully") return payload except jwt.ExpiredSignatureError: print("Token is expired") raise Exception('Unauthorized') except jwt.JWTClaimsError: print("Token has invalid claims") raise Exception('Unauthorized') except Exception: print("Unable to parse token") raise Exception('Unauthorized')
[ "mengwangk@gmail.com" ]
mengwangk@gmail.com
d7dcf1a33e440f7aba2c1ecc218ad4394276baf1
9caaf8613ca4f351275bebc0aa2cbe0f3e65beb0
/classes.py
0eda94d15cf5fa3538eb1040b93f9516eea4ce48
[]
no_license
fatimarenderos/Polyglot-Sidequest
95e05dd66843d66bb307ec64aa460dd93736a4c8
7456adbb3aa12c9b6f675373a759d4eded9349e8
refs/heads/main
2023-05-12T06:39:35.958044
2021-05-29T00:11:41
2021-05-29T00:11:41
371,844,132
0
0
null
null
null
null
UTF-8
Python
false
false
3,288
py
from enum import Enum from abc import ABCMeta, abstractmethod class indicators(Enum): NOTHING = 0 class lines(Enum): NOLINE = 0 SINGLELINE = 1 DOUBLELINE = 2 class modes(Enum): NOMODE = 0 INT_FLOAT = 1 INT_FLOAT_FLOAT = 2 INT_INT_INT_INT = 3 class parameters(Enum): THERMAL_CONDUCTIVITY = 0 HEAT_SOURCE = 1 class sizes(Enum): NODES = 0 ELEMENTS = 1 DIRICHLET = 2 NEUMANN = 3 class Item: def setId(self, id): self._id = id def setX(self, x): self._x = x def setY(self, y): self._y = y def setNode1(self, nodo1): self._nodo1 = nodo1 def setNode2(self, nodo2): self._nodo2 = nodo2 def setNode3(self, nodo3): self._nodo3 = nodo3 def setValue(self, valores): self._valores = valores def getId(self): return self._id def getX(self): return self._x def getY(self): return self._y def getNode1(self): return self._nodo1 def getNode2(self): return self._nodo2 def getNode3(self): return self._nodo3 def getValue(self): return self._valores @abstractmethod def setValues(self, a, b, c, d, e, f, g): pass class node(Item): def setValues(self, a, b, c, d, e, f, g): self._id = a self._x = b self._y = c class element(Item): def setValues(self, a, b, c, d, e, f, g): self._id = a self._nodo1 = d self._nodo2 = e self._nodo3 = f class condition(Item): def setValues(self, a, b, c, d, e, f, g): self._nodo1 = d self._valores = g class mesh: parameters = [2] sizes = [4] def setParameters(self, k, Q): self.parameters.insert(parameters.THERMAL_CONDUCTIVITY.value,k) self.parameters.insert(parameters.HEAT_SOURCE.value,Q) def setSizes(self, nnodes, neltos, ndirich, nneu): self.sizes.insert(sizes.NODES.value, nnodes) self.sizes.insert(sizes.ELEMENTS.value, neltos) self.sizes.insert(sizes.DIRICHLET.value, ndirich) self.sizes.insert(sizes.NEUMANN.value, nneu) def getSize(self, s): return self.sizes[s] def getParameter(self, p): return self.parameters[p] def createData(self): self.node_list = [] self.element_list = [] self.indices_dirich = [] self.dirichlet_list = [] self.neuman_list = [] def getNodes(self): return self.node_list def getElements(self): return self.element_list def getDirichletIndices(self): return self.indices_dirich def getDirichlet(self): return self.dirichlet_list def getNeumann(self): return self.neuman_list def getNode(self, i): return self.node_list[i] def getElement(self, i): return self.element_list[i] def getCondition(self, i, type): if type == sizes.DIRICHLET.value : return self.dirichlet_list[i] else : return self.neuman_list[i]
[ "noreply@github.com" ]
fatimarenderos.noreply@github.com
c2e0c1cfd66bc5b8b7071ef717dd8dbf1b53d813
54f438fd29c63aa18bee3319c90b3a4beb98502b
/tests/test-minioconfiguration.py
8e75e0cbedc2dc8da101b1429c66c1c27864e1f5
[ "MIT" ]
permissive
ronnyfriedland/minioclient
e949987c8e55f7e67ade30683177ad0b42311064
b4a55ed62f1d61f39254a4003ee65b3a778f3526
refs/heads/master
2020-08-26T19:45:02.041555
2020-01-17T19:16:08
2020-01-17T19:16:08
217,125,583
1
0
null
null
null
null
UTF-8
Python
false
false
867
py
import unittest as ut import os from config.MinioConfiguration import MinioConfiguration class TestAuthenticationConfiguration(ut.TestCase): def test_init(self): result = MinioConfiguration("config-test.ini") self.assertIsNotNone(result.config) def test_has_section(self): self.assertTrue(MinioConfiguration("config-test.ini").check_config()) def test_read(self): self.assertEqual(MinioConfiguration("config-test.ini").read_config("url"), "1") @classmethod def setUpClass(cls): test_data = """ [minio] url=1 accesskey=2 secretkey=3 """ with open("config-test.ini", "w") as config_file: config_file.write(test_data) @classmethod def tearDownClass(cls): os.remove("config-test.ini") if __name__ == '__main__': ut.main()
[ "mail@ronnyfriedland.de" ]
mail@ronnyfriedland.de
53a9111f5f398929fad8cf7a9a0bf02ae6d4ea28
189dcd9950284a096e6ced953f5c075bd235308f
/py_scripts/COOLH2+H+Hp.py
f53cf5f81647b788f5118aa607f502e809ab0116
[]
no_license
ANDREMIV/stageM2
1ef7144d7ed7463c07b8d74062b4100a78c88f1d
6886baefb162ac374b182ca5a9618c02d9abfdf2
refs/heads/master
2021-04-02T12:28:14.899612
2020-06-26T11:48:03
2020-06-26T11:48:03
248,274,672
0
0
null
null
null
null
UTF-8
Python
false
false
3,436
py
import matplotlib.pyplot as plt import matplotlib import numpy as np from numpy.random import randn import os #In each pop file, you need to manually add number of levels, collisionners in y description, level file name, nbofplots os.chdir('../') file = "PD2.txt" f = open(file, "r") S=f.read() A=S.splitlines() L=len(A) for i in range(0,L,1): B=A[i].split('\t') if B[1] == "1.#INF00e+000": B[1] = "3.017931e+255" break L=i X=randn(L) Y=randn(L) for i in range(0,L,1): B=A[i].split('\t') X[i]=float(B[0]) Y[i]=float(B[1]) ax = plt.subplot(111) plt.ylim(1e-46,1e-31) plt.xlim(10,200) plt.xscale("log") ax.invert_xaxis() plt.yscale("log") plt.ylabel('Collisionnal heating-cooling [ $erg.s^{-1}.cm^{-3}$ ]') plt.xlabel('cosmological doppler shift Z') plt.grid(b=True, which='major', color='#666666', linestyle='-') plt.minorticks_on() plt.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.40) plt.plot(X,Y,"r",label="Flower and Pineau des Forêt (2000)") f.close() FFile= "levelsh2-h-H+-rot" file = FFile+".txt" f = open(file, "r") S=f.read() A=S.splitlines() L=len(A) for i in range(0,L,1): B=A[i].split('\t') S=int((L-1)/2) X=randn(S) V=randn(S) YP=randn(S) YN=randn(S) Z=randn(S) WP=randn(S) WN=randn(S) i=0 for i in range(2,L,1): B=A[i].split('\t') I=int((i-2)/2) if i%2==0: X[I]=float(B[0]) YP[I]=float(B[3])*1e7 #convert from J/s/cm^3 to erg/s/cm^3 if YP[I]<0: YN[I]=-1*YP[I] YP[I]=0 else: YN[I]=0 Z[I]=float(B[2]) WP[I]=float(B[4]) V[I]=float(B[5]) if WP[I]<0: WN[I]=-1*WP[I] WP[I]=0 else: WN[I]=0 plt.plot(X,YP,label='RADEX') #plt.plot(X,YN,label='<0') file = "expansion2.txt" f = open(file, "r") S=f.read() A=S.splitlines() L=len(A) CST=3 S=int((L-CST)) XA=randn(S) YA=randn(S) ZA=randn(S) CST2=10 for i in range(CST,L,1): B=A[i].split('\t') I=int(i-CST) XA[I]=float(B[4]) YA[I]=float(B[CST2-1])*1e7 #convert from J/s/cm^3 to erg/s/cm^3 ZA[I]= plt.plot(XA,YA,label="lsoda") f.close() leg = plt.legend(loc='best', shadow=True, fancybox=True) leg.get_frame().set_alpha(0.5) plt.savefig("coolingZ"+FFile+".png") plt.show() ax = plt.subplot(111) plt.ylim(1e-46,1e-31) plt.xlim(2,500) plt.xscale("log") plt.yscale("log") plt.ylabel('Collisionnal heating-cooling [ $erg.s^{-1}.cm^{-3}$ ]') plt.xlabel('Kinetic Temperature (z) in K') plt.plot(Z,YP,label='our model') #plt.plot(Z,YN,label='<0') leg = plt.legend(loc='best', shadow=True, fancybox=True) leg.get_frame().set_alpha(0.5) plt.grid(b=True, which='major', color='#666666', linestyle='-') plt.minorticks_on() plt.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.40) plt.savefig("coolingT"+FFile+".png") plt.show() ax = plt.subplot(111) plt.ylim(1e-26,1e-15) plt.xlim(10,200) plt.xscale("log") plt.yscale("log") plt.ylabel('Temperature derivative [K/s]') plt.xlabel('cosmological doppler shift Z') plt.plot(X,WP)#,label='>0') #plt.plot(X,WN,label='<0') #leg = plt.legend(loc='best', shadow=True, fancybox=True) #leg.get_frame().set_alpha(0.5) plt.grid(b=True, which='major', color='#666666', linestyle='-') ax.minorticks_on() ax.grid(b=True, which='minor', color='#999999',axis='both', linestyle='-', alpha=0.40) plt.savefig("coolingdT"+FFile+".png") plt.show() f.close()
[ "andremiv@live.fr" ]
andremiv@live.fr