blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
a0820891b0c99031ce98522037cd96f4e5de486c
359cc4d7961033748e665979bd5280349398810f
/LunchCartServer.py
376d2de24fa60fba5a22300e5b3cf683b9a0a2c4
[]
no_license
DelveInc/LunchCart
00ec2c8ffb8904b1cfd8e1910060d88b03e1337c
d8400a0d41bbd3d026c128dca17dcb7f45b35d8c
refs/heads/master
2021-05-28T01:41:27.624812
2014-04-15T19:09:45
2014-04-15T19:09:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,808
py
################################################################### # LunchCartServer.py # written by Jack Boland # # Portions of socket code modified from: # http://www.tutorialspoint.com/python/python_networking.htm # ################################################################### import smtplib import socket import time # Email Settings content = "The Lunch Cart is on the move." # Establish what the email will say recipient = "jcboland91@gmail.com" # Determine who will receive the email sender = "DCILunchCart@gmail.com" # Send email from this address password = "***********" # Password of the sending email (redacted) def sendEmail(emailAddr): mail = smtplib.SMTP('smtp.gmail.com', 587) mail.ehlo() mail.starttls() mail.login(sender, password) mail.sendmail(sender, emailAddr, content) # Confirm that the message was sent print("Sent") mail.close() def checkLevel(incoming): incoming = int(float(incoming)) if (incoming == 1): print("Send Email") sendEmail("jack.boland@design-concepts.com") input = '0' # Incoming message # Open up a socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Create a socket object host = socket.gethostname() # Get local machine name port = 12345 # Reserve a port ip = socket.gethostbyname(socket.gethostname()) print(ip) s.bind((host, port)) # Bind to the port s.listen(5) # Now wait for client connection while True: msg = 'Thank you for connecting' c, addr = s.accept() # Establish connection with client print ('Got Connection from ', addr) # Spits back IP Address of client c.send(msg.encode('ASCII')) while True: data = str(c.recv(1024), 'ASCII') checkLevel(data) print("Done Sleeping") c.send("Read this?".encode('ASCII')) c.close() # Close the connection exit()
[ "jcboland91@gmail.com" ]
jcboland91@gmail.com
d4af9f129978a38539bdfade208945ce2455139c
55b2873fddb18860d78767f43381e36b844d893c
/Python/Python_Abs_Begin/Mod3_Conditionals/3_1-4_2-Str_comp_if.py
ba0a38cf042c4e2791fa7f461b9e297ef2958094
[]
no_license
scotttct/tamuk
0b972b6966fda0f374face0ccf0324beece69a2b
7459691b0d1cf5adb21b1e7b98f7abbff3f4f6ae
refs/heads/master
2020-12-11T08:48:34.739951
2020-03-21T13:21:37
2020-03-21T13:21:37
233,805,905
0
0
null
null
null
null
UTF-8
Python
false
false
844
py
#CONDITIONALS: COMPARISON OPERATORS WITH IF # [ ] get input for a variable, answer, and ask user 'What is 8 + 13? : ' # [ ] print messages for correct answer "21" or incorrect answer using if/else # note: input returns a "string" #My solution below # answer = "You are correct: 8 + 13 = 21" # user_input = input("What is the sum of 8 + 13? ") # wrong_answer = ("Sorry! That was not what 8 + 13 equals! ") # x = 21 # if user_input == x: # print(answer) # else: # print(wrong_answer) # found on github #define the variable variable = 21 #define the question with input in order to have a result input ("What is 8 + 13? : ") #define the input as equal to the varialbe to have an if else stataement if input == variable: print("correct") else: print("incorrect") #both answers give the incorrect answer?????Why?
[ "scotttct@outlook.com" ]
scotttct@outlook.com
1984800ed08598b5158744cfc7cb4dff77f2dd8b
9febc3008d825a253bd870f05fe128c356586a9c
/venv/lib/python3.7/site-packages/github/Stargazer.pyi
7f7284ef872ca24a30fa581d73b2b8414ae5fa5e
[ "MIT", "LGPL-3.0-or-later" ]
permissive
bhaving07/pyup
7ca947a0f4e6b6e1ca1e1b7c49c6bd3d99943c28
17ad21a2957c5cce91ad0cf5f75853a3182806d2
refs/heads/main
2023-02-01T14:16:40.959832
2020-12-18T04:34:27
2020-12-18T04:34:27
322,286,443
0
0
MIT
2020-12-17T13:14:46
2020-12-17T12:20:49
Python
UTF-8
Python
false
false
459
pyi
from datetime import datetime from typing import Any, Dict from github.GithubObject import NonCompletableGithubObject from github.NamedUser import NamedUser class Stargazer(NonCompletableGithubObject): def __repr__(self) -> str: ... def _initAttributes(self) -> None: ... def _useAttributes(self, attributes: Dict[str, Any]) -> None: ... @property def starred_at(self) -> datetime: ... @property def user(self) -> NamedUser: ...
[ "bvgolakiya4@gmail.com" ]
bvgolakiya4@gmail.com
e5bf01108d918e80ad00aefbabb28a185806e465
a1b7c1357181320b272ef4c72b70d22600a407c1
/examples/boilerplates/base_test_case.py
227dee5670a125162ef469064f1f4ac63a54b340
[ "MIT" ]
permissive
BarryYBL/SeleniumBase
5c96e21eaebd45e2f6ac26d5bd563b3ba300e6f6
e3cb810331183fa003cea8af81057e4136dfd660
refs/heads/master
2022-12-04T11:34:20.134294
2020-08-28T05:45:24
2020-08-28T05:45:24
290,998,663
1
0
MIT
2020-08-28T08:52:44
2020-08-28T08:52:44
null
UTF-8
Python
false
false
1,522
py
''' You can use this as a boilerplate for your test framework. Define your customized library methods in a master class like this. Then have all your test classes inherit it. BaseTestCase will inherit SeleniumBase methods from BaseCase. With Python 3, simplify "super(...)" to super().setUp() and super().tearDown() ''' from seleniumbase import BaseCase class BaseTestCase(BaseCase): def setUp(self): super(BaseTestCase, self).setUp() # <<< Run custom setUp() code for tests AFTER the super().setUp() >>> def tearDown(self): self.save_teardown_screenshot() if self.has_exception(): # <<< Run custom code if the test failed. >>> pass else: # <<< Run custom code if the test passed. >>> pass # (Wrap unreliable tearDown() code in a try/except block.) # <<< Run custom tearDown() code BEFORE the super().tearDown() >>> super(BaseTestCase, self).tearDown() def login(self): # <<< Placeholder. Add your code here. >>> # Reduce duplicate code in tests by having reusable methods like this. # If the UI changes, the fix can be applied in one place. pass def example_method(self): # <<< Placeholder. Add your code here. >>> pass ''' # Now you can do something like this in your test files: from base_test_case import BaseTestCase class MyTests(BaseTestCase): def test_example(self): self.login() self.example_method() '''
[ "mdmintz@gmail.com" ]
mdmintz@gmail.com
5343cda673d0c192d79a0e79165b52797487df55
cebf0d2fa977776f35ae0001935859176b80441a
/GPyT/make_data_copy.py
ceeb492243d4ae75de80219ae5c055b865a135fe
[]
no_license
objoyful/our-code
bb5fbca0f7ad937724896266c2ecbc080facfb08
02640b8359023194b93c0587835ff9217d6fa467
refs/heads/master
2023-08-30T23:32:59.641061
2023-08-29T21:35:35
2023-08-29T21:35:35
200,138,999
2
1
null
2019-08-19T20:43:28
2019-08-02T00:57:21
Python
UTF-8
Python
false
false
1,037
py
import os from curtsies.fmtfuncs import red, bold, green, on_blue, yellow, blue, cyan import time MAX_CHAR_LENGTH = 512 MIN_CHAR_LENGTH = 256 NEWLINECHAR = "<N>" d = os.path.join("GPyT", "repos_test") file_paths = [] for dirpath, dirnames, filenames in os.walk(d): for f in filenames: full_path = os.path.join(dirpath, f) file_paths.append(full_path) print(len(file_paths)) with open(os.path.join("GPyT", 'python_code.txt'), 'a') as m: for file in file_paths: f = open(file, 'r').read() f = f.replace('\n', NEWLINECHAR) if 100 < len(f) < MAX_CHAR_LENGTH: print(f) m.write(f + '\n') else: splits = f.split(NEWLINECHAR * 2) segments = '' for split in splits: if MIN_CHAR_LENGTH <= len(segments) <= MAX_CHAR_LENGTH: m.write(segments + '\n') segments = split else: segments += split print(len(segments))
[ "WilliamKennethCarden@yahoo.com" ]
WilliamKennethCarden@yahoo.com
5827cfe9e8502757d7beaf88ca366d7649c43465
c7f9c1f8e56c69d405df48c3c57eee82b325a80e
/tests/test_cli.py
75140018819717910268cd61df637e1063e10d0b
[]
no_license
vikramcse/pygit-user-info
5ede7f3dc718c34322607de3dae884550ac9ee8d
76869e83186d4e6c9858c0aecaf71c6e1250bfe8
refs/heads/master
2020-12-02T11:20:43.797782
2017-07-08T16:16:28
2017-07-08T16:16:28
96,629,859
0
0
null
null
null
null
UTF-8
Python
false
false
715
py
import pytest from click.testing import CliRunner from git_info import cli @pytest.fixture def runner(): return CliRunner() def test_cli(runner): result = runner.invoke(cli.main) assert result.exit_code == 0 assert not result.exception assert result.output.strip() == 'Hello, world.' def test_cli_with_option(runner): result = runner.invoke(cli.main, ['--as-cowboy']) assert not result.exception assert result.exit_code == 0 assert result.output.strip() == 'Howdy, world.' def test_cli_with_arg(runner): result = runner.invoke(cli.main, ['Vikram']) assert result.exit_code == 0 assert not result.exception assert result.output.strip() == 'Hello, Vikram.'
[ "vikramcse.10@gmail.com" ]
vikramcse.10@gmail.com
da9bcc35ddb0259e63a04370cd3a938053e4e4e4
7d1e164f64aea0b317183b1b986a9f271b9e4d69
/project/settings.py
b6defbb1321d27498d4bd7a3cbec520af76fa0bb
[]
no_license
tinnguyen18920/test_deploy
fb27659b079e5a6b8dfa396fcf71b2a485fd8ae5
43b2551015fbaad094ff6cb7f7b2d2cf44076484
refs/heads/master
2023-08-15T09:11:15.398423
2020-05-04T07:22:06
2020-05-04T07:22:06
261,101,347
0
0
null
2021-09-22T18:57:59
2020-05-04T06:53:57
JavaScript
UTF-8
Python
false
false
3,227
py
""" Django settings for project project. Generated by 'django-admin startproject' using Django 3.0.6. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'i^^twi-)5iiz!=@gnggi)u36x2%jnurak_02%^vdvg84ckbl+^' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['tn-test-deploy.herokuapp.com','127.0.0.1'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'project.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators # AUTH_PASSWORD_VALIDATORS = [ # { # 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', # }, # ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/'
[ "tinnguyen18920@gmail.com" ]
tinnguyen18920@gmail.com
96f478ef55a45b8eaf34ab68e1d50cded4d0b26f
93b866284ca1ac29c5005555f2cb30454a0fb5cf
/Problems/18-Problem/Problem 18.py
40cbb8dac25dc2bdde8a7f63427cfd7b87aca50e
[]
no_license
FrancoisdeFouchecour/Projet-Euler
c2b17d1e35fbd10a708ba3221825a62a17818382
0cf70457c0418264c2eff7cdd0e92a07b61ecb07
refs/heads/master
2021-12-25T05:44:08.054648
2021-11-27T21:47:42
2021-11-27T21:47:42
168,253,571
1
0
null
null
null
null
UTF-8
Python
false
false
2,106
py
import time problem_number = 18 test_solution = 23 #read data number_file = open("data.txt", "r") raw_data = number_file.read() number_file.close() size = raw_data.count("\n") matrix_value = [[0 for j in range(size)] for i in range(size)] index_ver = 0 index_hor = 0 for index in range(len(raw_data)): if index%3 == 1: matrix_value[index_ver][index_hor] += int(raw_data[index - 1:index + 1]) if index%3 == 2: if raw_data[index] == "\n": index_ver += 1 index_hor = 0 elif raw_data[index] == " ": index_hor += 1 #Solution def solution(matrix_input): size = len(matrix_input) matrix_result = [[0 for j in range(size)] for i in range(size)] #first colllum matrix_result[0][0] = matrix_input[0][0] for i in range(1, size): matrix_result[i][0] = matrix_result[i - 1][0] + matrix_input[i][0] for i in range(1, size): for j in range(1, i + 1): matrix_result[i][j] += max(matrix_result[i - 1][j], matrix_result[i - 1][j - 1]) matrix_result[i][j] += matrix_input[i][j] return max(matrix_result[size - 1]) #Test & Result fichier = open("Solution "+str(problem_number)+".txt", "w") string = "" begin_test = time.time() test_value = solution([[3, 0, 0, 0], [7, 4, 0, 0], [2, 4, 6, 0], [8, 5, 9, 3]]) end_test = time.time() test_time = end_test - begin_test string += "TEST #1\n\n" string += "Output: "+str(test_value)+"\n" string += "Answer: "+str(test_solution)+"\n" string += "Computation time: "+str(test_time)+" sec\n" string += "Verification: " if(test_value == test_solution): string += "TRUE" else: string += "FALSE" begin_problem = time.time() problem_value = solution(matrix_value) end_problem = time.time() problem_time = end_problem - begin_problem string += "\n\n\nRESULT PROBLEM #"+str(problem_number)+"\n\n" string += "Output: "+str(problem_value)+"\n" string += "Computation time: "+str(problem_time)+" sec\n" string += "\n\n\nCurrent date & time: " + time.strftime("%c") fichier.write(string) fichier.close()
[ "francois.de-salivet-de-fouchecour@polytechnique.edu" ]
francois.de-salivet-de-fouchecour@polytechnique.edu
d8224aa3c4831615590029c8bfb0449c9116b0ae
51c013bfbae77e41289d68f80cd8b4a02354db83
/Ticket/models.py
a694243b10e703bbaec0472d0d186024bfc63a96
[]
no_license
monica-bhaskhar/DjangoRailwayTicket
d4d44865508753c1eb6ff77a3fe518737c7fe724
7ea8a48d7618a79e4b51e4196811c562880efd50
refs/heads/master
2021-03-26T14:32:19.777278
2020-03-17T16:32:08
2020-03-17T16:32:08
247,702,146
0
0
null
null
null
null
UTF-8
Python
false
false
865
py
from django.db import models # Create your models here. class BookTicket(models.Model): GENDER_CHOICES = (('Male', 'Male'),('Female', 'Female'),) BERTH_CHOICES = (('Upper', 'Upper'),('Lower', 'Lower'),('Middel', 'Middel'),('Side', 'Side')) STATUS_CHOICES = (('Confirmed', 'Confirmed'),('RAC ', 'RAC'),('Waiting', 'Waiting')) COACH_CHOICES = (('S1', 'S1'),('S2', 'S2'),('S3', 'S3'),('S4', 'S4')) name = models.CharField(max_length=100) age = models.IntegerField(blank=True, null=True) gender = models.CharField(max_length = 6, choices = GENDER_CHOICES) berth_preference = models.CharField(max_length = 10, choices = BERTH_CHOICES) coach = models.CharField(max_length = 10, choices = COACH_CHOICES) status = models.CharField(max_length = 10, choices = STATUS_CHOICES) def __str__(self): return self.name
[ "monicabhaskhar1995@gmail.com" ]
monicabhaskhar1995@gmail.com
211d5d79d96070cd6b0bb086a10b1a04e4070a09
974d04d2ea27b1bba1c01015a98112d2afb78fe5
/test/legacy_test/test_dist_sparse_load_ps0.py
985aa0d9337713e9470ba9393f4a12982e617e49
[ "Apache-2.0" ]
permissive
PaddlePaddle/Paddle
b3d2583119082c8e4b74331dacc4d39ed4d7cff0
22a11a60e0e3d10a3cf610077a3d9942a6f964cb
refs/heads/develop
2023-08-17T21:27:30.568889
2023-08-17T12:38:22
2023-08-17T12:38:22
65,711,522
20,414
5,891
Apache-2.0
2023-09-14T19:20:51
2016-08-15T06:59:08
C++
UTF-8
Python
false
false
4,710
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import tempfile import unittest import numpy as np import paddle from paddle import fluid from paddle.distributed.fleet import fleet from paddle.distributed.fleet.base import role_maker class SparseLoadOp(unittest.TestCase): """Test load operator.""" def net(self, emb_array, fc_array): with fluid.unique_name.guard(): dense_input = paddle.static.data( 'input', shape=[None, 1], dtype="int64" ) emb = paddle.static.nn.embedding( input=dense_input, is_sparse=True, size=[10, 10], param_attr=fluid.ParamAttr( name="embedding", initializer=paddle.nn.initializer.Assign(emb_array), ), ) fc1 = paddle.static.nn.fc( x=emb, size=10, activation="relu", weight_attr=fluid.ParamAttr( name='fc', initializer=paddle.nn.initializer.Assign(fc_array), ), ) loss = paddle.mean(fc1) return loss def save_origin_model(self, emb_array, fc_array): startup_program = fluid.framework.Program() test_program = fluid.framework.Program() with fluid.framework.program_guard(test_program, startup_program): with fluid.unique_name.guard(): loss = self.net(emb_array, fc_array) optimizer = paddle.optimizer.Adam(1e-3) optimizer.minimize(loss) exe = fluid.Executor(fluid.CPUPlace()) exe.run(startup_program) model_path = tempfile.mkdtemp() paddle.distributed.io.save_persistables( executor=exe, dirname=model_path ) return model_path @unittest.skip(reason="Skip unstable ut, need rewrite with new implement") class TestSparseLoadOpCase1(SparseLoadOp): def test_2ps_0_load(self): # init No.0 server env env = {} env["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:4001,127.0.0.1:4002" env["PADDLE_TRAINERS_NUM"] = str(2) env["TRAINING_ROLE"] = "PSERVER" env["PADDLE_PORT"] = "4001" env["POD_IP"] = "127.0.0.1" for k, v in env.items(): os.environ[k] = str(v) """ array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2], [0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3], [0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4], [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6], [0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7], [0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8], [0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9]]) """ emb_array = np.arange(0, 1, 0.1).repeat(10).reshape(10, 10) fc_array = np.arange(0, 1, 0.1).repeat(10).reshape(10, 10) model_path = self.save_origin_model(emb_array, fc_array) role = role_maker.PaddleCloudRoleMaker() fleet.init(role) loss = self.net(emb_array, fc_array) strategy = paddle.distributed.fleet.DistributedStrategy() strategy.a_sync = True optimizer = paddle.optimizer.Adam(1e-3) optimizer = fleet.distributed_optimizer(optimizer, strategy) optimizer.minimize(loss) fleet.init_server(model_path) fc_w = np.array(fluid.global_scope().find_var("fc").get_tensor()) emb = np.array( fluid.global_scope().find_var("embedding.block0").get_tensor() ) assert fc_w.all() == fc_array.all() assert emb.all() == emb_array[::2].all() shutil.rmtree(model_path) if __name__ == "__main__": paddle.enable_static() unittest.main()
[ "noreply@github.com" ]
PaddlePaddle.noreply@github.com
1ece4fc6c106792ad39a8138445d999cfbd44a5c
0875769ad6f34845e53aed09d592c850e335f410
/텍스트파일보고서 생성기.py
26b740b2439e7ee57b5af751ba1add60071d27e0
[]
no_license
ggozlo/py.practice
bc515ce214cb8b35ec5c949f67287971e97fa667
b3bcdba0880e8ba7de362b7314be545e4fd1fc9a
refs/heads/main
2023-02-24T22:36:03.595599
2021-01-31T16:53:33
2021-01-31T16:53:33
333,743,728
0
0
null
2021-01-28T12:08:28
2021-01-28T11:53:30
null
UTF-8
Python
false
false
730
py
#___________________________________________________________________________________________________퀴즈 num = range(1, 51) for txt in num : report_file = open("{}주차.txt".format(txt),"w",encoding="utf8") print("- {} 주차 주간보고 -".format(num), file= report_file) print("부서 :", file= report_file) print("이름 :", file= report_file) print("업무 요약 :", file= report_file) report_file.close for i in range(1, 51): with open(str(i) + "주차.txt","w", encoding="utf8") as report_file: report_file.write("- {} 주차 주간보고 -".format(i)) report_file.write("\n부서 :") report_file.write("\n이름 :") report_file.write("\n업무 요약 :")
[ "78086722+ggozlo@users.noreply.github.com" ]
78086722+ggozlo@users.noreply.github.com
5f102bf8684c2c36dbbdb998c3397bb7896b09d2
dab492c669ad2173dbac5b9c01c563bbc53a15af
/code/utils/pred_ground.py
c0bf2c4a9d610c93b09c0948151d0fe191879dc8
[ "MIT" ]
permissive
bflashcp3f/textlabs-xwlp-code
d7582701efada6e00dc09c1d16993f6b0d99682c
b099ec7382316f80355c453b4bd4aa742bf68359
refs/heads/main
2023-03-23T03:56:21.208149
2021-03-10T02:15:12
2021-03-10T02:15:12
342,127,953
6
1
null
null
null
null
UTF-8
Python
false
false
13,122
py
import math import glob import time import json import pickle import os import numpy as np import operator import time import torch import sys import random import argparse from collections import defaultdict, Counter, OrderedDict from keras.preprocessing.sequence import pad_sequences from sklearn.model_selection import train_test_split from transformers import BertTokenizer, BertModel from transformers import BertForTokenClassification, BertPreTrainedModel, AdamW from sklearn.model_selection import KFold WLP_ENT = ['Action'] ID2LABEL = ['ignored', 'rg', 'convert-op', 'seal-op', 'spin-op', 'create-op', \ 'd', 'default-op', 'destroy-op', 'loc', 'm', 'measure-op', 'mix-op', \ 'mod', 'mth', 'remove-op', 's', 'sl', 'temp-treat-op', 'time-op', \ 'transfer-op', 'wash-op'] LABEL2ID = dict((value, key) for key, value in enumerate(ID2LABEL)) NO_RELATION = 'ignored' WLP_ENT_START = [] for item in WLP_ENT: WLP_ENT_START.append("[ENT-" + item + "-START]") WLP_ENT_END = [] for item in WLP_ENT: WLP_ENT_END.append("[ENT-" + item + "-END]") WLP2TL = {'Reagent': 'rg', 'Location': 'loc', 'Amount': 'm', 'Modifier': 'mod', 'Time': 's', 'Temperature': 's', 'Speed': 's', 'Generic-Measure': 'm', 'Device': 'd', 'Concentration': 'm', 'Seal': 'sl', 'Method': 'mth', 'Size': 'm', 'Measure-Type': 'm', 'pH': 'm'} NONE_TYPE = ['Numerical', 'Mention', 'Misc'] def load_from_jsonl(file_name): data_list = [] with open(file_name) as f: for line in f: data_list.append(json.loads(line)) return data_list def score(key, prediction, verbose=False): correct_by_relation = Counter() guessed_by_relation = Counter() gold_by_relation = Counter() # Loop over the data to compute a score for row in range(len(key)): gold = key[row] guess = prediction[row] if gold == NO_RELATION and guess == NO_RELATION: pass elif gold == NO_RELATION and guess != NO_RELATION: guessed_by_relation[guess] += 1 elif gold != NO_RELATION and guess == NO_RELATION: gold_by_relation[gold] += 1 elif gold != NO_RELATION and guess != NO_RELATION: guessed_by_relation[guess] += 1 gold_by_relation[gold] += 1 if gold == guess: correct_by_relation[guess] += 1 # Print verbose information if verbose: print("Per-relation statistics:") relations = gold_by_relation.keys() longest_relation = 0 for relation in sorted(relations): longest_relation = max(len(relation), longest_relation) for relation in sorted(relations): # (compute the score) correct = correct_by_relation[relation] guessed = guessed_by_relation[relation] gold = gold_by_relation[relation] prec = 1.0 if guessed > 0: prec = float(correct) / float(guessed) recall = 0.0 if gold > 0: recall = float(correct) / float(gold) f1 = 0.0 if prec + recall > 0: f1 = 2.0 * prec * recall / (prec + recall) # (print the score) sys.stdout.write(("{:<" + str(longest_relation) + "}").format(relation)) sys.stdout.write(" P: ") if prec < 0.1: sys.stdout.write(' ') if prec < 1.0: sys.stdout.write(' ') sys.stdout.write("{:.2%}".format(prec)) sys.stdout.write(" R: ") if recall < 0.1: sys.stdout.write(' ') if recall < 1.0: sys.stdout.write(' ') sys.stdout.write("{:.2%}".format(recall)) sys.stdout.write(" F1: ") if f1 < 0.1: sys.stdout.write(' ') if f1 < 1.0: sys.stdout.write(' ') sys.stdout.write("{:.2%}".format(f1)) sys.stdout.write(" #: %d" % gold) sys.stdout.write("\n") print("") # Print the aggregate score if verbose: print("Final Score:") prec_micro = 1.0 if sum(guessed_by_relation.values()) > 0: prec_micro = float(sum(correct_by_relation.values())) / float(sum(guessed_by_relation.values())) recall_micro = 0.0 if sum(gold_by_relation.values()) > 0: recall_micro = float(sum(correct_by_relation.values())) / float(sum(gold_by_relation.values())) f1_micro = 0.0 if prec_micro + recall_micro > 0.0: f1_micro = 2.0 * prec_micro * recall_micro / (prec_micro + recall_micro) if verbose: print("Precision (micro): {:.3%}".format(prec_micro)) print(" Recall (micro): {:.3%}".format(recall_micro)) print(" F1 (micro): {:.3%}".format(f1_micro)) return prec_micro, recall_micro, f1_micro def handle_doc_offset_ner(ner_tuple, doc_len, remove=True): # print(ner_tuple) ner_start, ner_end, ent_type = ner_tuple if remove: return [ner_start - doc_len, ner_end - doc_len, ent_type] else: return [ner_start + doc_len, ner_end + doc_len, ent_type] def build_entity_typing_mention(tokens, sorted_entity_list): ent_dict = dict([(item[2][0], item) for item in sorted_entity_list]) word_idx = 0 tagged_token_list = [] while word_idx < len(tokens): if word_idx not in ent_dict: tagged_token_list.append(tokens[word_idx]) word_idx += 1 else: ent_id, ent_str, (ent_start, ent_end), ent_type, _ = ent_dict[word_idx] if ent_str.strip() != ' '.join(tokens[ent_start:ent_end]).strip(): print(ent_str, ' '.join(tokens[ent_start:ent_end])) assert ent_str.strip() == ' '.join(tokens[ent_start:ent_end]).strip() tagged_token_list.append("[ENT-" + ent_type + "-START]") tagged_token_list.append(ent_str) tagged_token_list.append("[ENT-" + ent_type + "-END]") word_idx = ent_end return tagged_token_list def prepare_entity_typing_data(tl_data, tokenizer, args): start_time = time.time() wlp_ent_type_list = [] tl_ent_type_list = [] process_sen_list = [] doc_name_list = [] sen_idx_list = [] ent_info_list = [] for file_idx in range(len(tl_data)): doc_name = tl_data[file_idx]['doc_key'] doc_data = tl_data[file_idx] doc_sen_len_list = [len(item) for item in doc_data['sentences']] ner_list = doc_data['wlp_labels'] for sen_idx, (tl_sen, wlp_ner, tl_ner) in enumerate(zip(doc_data['sentences'], ner_list, doc_data['ner'])): pre_doc_len = sum(doc_sen_len_list[:sen_idx]) tl_ner_remove_offset = [handle_doc_offset_ner(item, pre_doc_len, remove=True) for item in tl_ner] assert len(tl_ner) == len(wlp_ner) for tl_ent, wlp_label, tl_ent_old in zip(tl_ner_remove_offset, wlp_ner, tl_ner): if wlp_label != 'Action': continue ent_start, ent_end, tl_label = tl_ent ent_start_old, ent_end_old, tl_label_old = tl_ent_old assert tl_label == tl_label_old assert ent_start_old == ent_start + pre_doc_len one_ent_list = [('ent_id', ' '.join(tl_sen[ent_start:ent_end + 1]), \ (ent_start, ent_end + 1), wlp_label, '')] process_sen = build_entity_typing_mention(tl_sen, one_ent_list) wlp_ent_type_list.append("[ENT-" + wlp_label + "-START]") tl_ent_type_list.append(tl_label) # process_sen_list.append("[CLS] " + ' '.join(process_sen) + " [SEP]") process_sen_list.append(f"{tokenizer.bos_token} " + ' '.join(process_sen) + f" {tokenizer.eos_token}") doc_name_list.append(doc_name) sen_idx_list.append(sen_idx) ent_info_list.append((ent_start_old, ent_end_old, ent_start, ent_end, sen_idx, tl_label)) tokenized_sen_list = [tokenizer.tokenize(sent) for sent in process_sen_list] print(max([len(item) for item in tokenized_sen_list])) # Get the input_ids and labels input_ids = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in tokenized_sen_list], maxlen=args.max_len, value=tokenizer.pad_token_id, dtype="long", truncating="post", padding="post") attention_masks = [[float(i != tokenizer.pad_token_id) for i in ii] for ii in input_ids] # print(tl_ent_type_list) labels = [LABEL2ID[l] for l in tl_ent_type_list] start_tkn_idx_list = [tokenized_sen_list[sen_idx].index(wlp_ent_type_list[sen_idx]) if tokenized_sen_list[sen_idx].index( wlp_ent_type_list[sen_idx]) < args.max_len else args.max_len - 1 for sen_idx in range(len(tokenized_sen_list)) ] assert len(input_ids) == len(attention_masks) and len(labels) == len(start_tkn_idx_list) inputs = torch.tensor(input_ids) masks = torch.tensor(attention_masks) labels = torch.tensor(labels) start_idx = torch.tensor(start_tkn_idx_list) print("--- %s seconds ---" % (time.time() - start_time)) return inputs, masks, labels, start_idx, tokenized_sen_list, wlp_ent_type_list, doc_name_list, ent_info_list def prepare_ep_inference_data(tl_data, tokenizer, args): start_time = time.time() wlp_ent_type_list = [] tl_ent_type_list = [] process_sen_list = [] doc_name_list = [] sen_idx_list = [] ent_info_list = [] for file_idx in range(len(tl_data)): doc_name = tl_data[file_idx]['doc_key'] # print(file_idx, doc_name) doc_data = tl_data[file_idx] doc_sen_len_list = [len(item) for item in doc_data['sentences_tokenized']] for sen_idx, (tl_sen, tl_ner, wlp_ner, wlp_ner_pred) in enumerate(zip(doc_data['sentences_tokenized'], \ doc_data['tl_ner_tokenized'], \ doc_data['wlp_ner_tokenized'], \ doc_data['wlp_ner_pred_tokenized'])): pre_doc_len = sum(doc_sen_len_list[:sen_idx]) wlp_ner_pred_remove_offset = [handle_doc_offset_ner(item, pre_doc_len, remove=True) for item in wlp_ner_pred] assert len(tl_ner) == len(wlp_ner) for wlp_ent, wlp_ent_old in zip(wlp_ner_pred_remove_offset, wlp_ner_pred): ent_start, ent_end, wlp_label_pred = wlp_ent ent_start_old, ent_end_old, wlp_label_pred_old = wlp_ent_old tl_label = 'ignored' if wlp_label_pred != 'Action': continue one_ent_list = [('ent_id', ' '.join(tl_sen[ent_start:ent_end + 1]), \ (ent_start, ent_end + 1), wlp_label_pred, '')] process_sen = build_entity_typing_mention(tl_sen, one_ent_list) wlp_ent_type_list.append("[ENT-" + wlp_label_pred + "-START]") tl_ent_type_list.append(tl_label) process_sen_list.append("[CLS] " + ' '.join(process_sen) + " [SEP]") doc_name_list.append(doc_name) sen_idx_list.append(sen_idx) ent_info_list.append((ent_start_old, ent_end_old, ent_start, ent_end, sen_idx, tl_label)) tokenized_sen_list = [sent.split(' ') for sent in process_sen_list] # Get the input_ids and labels input_ids = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in tokenized_sen_list], maxlen=args.max_len, value=tokenizer.pad_token_id, dtype="long", truncating="post", padding="post") attention_masks = [[float(i != tokenizer.pad_token_id) for i in ii] for ii in input_ids] labels = [LABEL2ID[l] for l in tl_ent_type_list] start_tkn_idx_list = [tokenized_sen_list[sen_idx].index(wlp_ent_type_list[sen_idx]) if tokenized_sen_list[sen_idx].index( wlp_ent_type_list[sen_idx]) < args.max_len else args.max_len - 1 for sen_idx in range(len(tokenized_sen_list)) ] assert len(input_ids) == len(attention_masks) and len(labels) == len(start_tkn_idx_list) inputs = torch.tensor(input_ids) masks = torch.tensor(attention_masks) labels = torch.tensor(labels) start_idx = torch.tensor(start_tkn_idx_list) print("--- %s seconds ---" % (time.time() - start_time)) return inputs, masks, labels, start_idx, tokenized_sen_list, wlp_ent_type_list, doc_name_list, ent_info_list
[ "bflashcp3f@gmail.com" ]
bflashcp3f@gmail.com
2885cbbc471c1e76a88a5bcff98bb1cffcdb2e35
25564424dd568cd0755110b9875cecc700c480bc
/MyTutor/Tutorial/migrations/0009_merge_20171121_1755.py
66444575724de4797c117d833cb466008022264c
[]
no_license
wyh5625/Tutoria
f8908addbdba63e6ba89549fe5ddf918ce68c54d
9d0d19e03860b9f49fb1bdc64cb936ca8f5c734a
refs/heads/master
2021-08-19T12:27:27.326509
2017-11-26T07:51:56
2017-11-26T07:51:56
107,742,862
0
1
null
null
null
null
UTF-8
Python
false
false
343
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-11-21 09:55 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Tutorial', '0008_auto_20171121_1504'), ('Tutorial', '0007_tutorialsession_price'), ] operations = [ ]
[ "wyh562527789@gmail.com" ]
wyh562527789@gmail.com
c08ba960a32c6f92ef5c4adac83005a866608f3c
532905538460b1e8ea6d456a7d12321bba503ea0
/lib/BlobDetector.py
6027fef26f4a2868c4e3c498eb5afab488e235b2
[]
no_license
HANprojectsENG/MicroPlateImager
8b45d7bfaeffbaa5baaae11a4597e1002c0afb1a
efa133d34ec7b4734d1f118d586daaa5155b5d01
refs/heads/master
2020-12-28T04:23:39.142057
2020-05-26T15:46:45
2020-05-26T15:46:45
238,180,568
0
0
null
null
null
null
UTF-8
Python
false
false
5,740
py
"""@package docstring Detect blobs in the image TODO: how to pass roi's and imageQuality? via getter or (result) signal? Test and improve local blob snr """ #!/usr/bin/python3 # -*- coding: utf-8 -*- import numpy as np from PySide2.QtCore import * import cv2 import inspect import traceback from lib.manipulator import Manipulator import matplotlib.pyplot as plt class BlobDetector(Manipulator): """Object detector detects blobs \param image (the enhanced and segmented image) \return image (annotated) """ def __init__(self, *args, **kwargs): """The constructor.""" super().__init__("blob detector") # Blob area filtering parameters minBlobArea self.minBlobArea = kwargs['minBlobArea'] if 'minBlobArea' in kwargs else 10 self.maxBlobArea = kwargs['maxBlobArea'] if 'maxBlobArea' in kwargs else 500 # adaptiveThresholdInvertBinary self.invBin = kwargs['invBin'] if 'invBin' in kwargs else True # adaptiveThresholdOffset self.offset = kwargs['offset'] if 'offset' in kwargs else 0 # adaptiveThresholdBlocksize self.blocksize = kwargs['blocksize'] if 'blocksize' in kwargs else 3 # Plotting self.plot = kwargs['plot'] if 'plot' in kwargs else False if self.plot: cv2.namedWindow(self.name) plt.show(block=False) """TODO: Add var rects -> detected blobs/rectangles""" self.blobs = list def __del__(self): """The deconstructor.""" None def start(self, Image, ROIs): """Image processing function. \param image (the enhanced and segmented image) \return image (the annotated image ) local variable is the list of detected blobs with the following feature columns: [bb_left,bb_top,bb_width,bb_height, cc_area, sharpness, SNR] Sharpness is variation of the Laplacian (introduced by Pech-Pacheco "Diatom autofocusing in brightfield microscopy: a comparative study." """ try: self.startTimer() self.image = Image self.ROIs = ROIs # Iterate ROis for ROI in ROIs: # slice image, assuming ROI:(left,top,width,height) ROI_image = self.image[ROI[1]:ROI[1]+ROI[3],ROI[0]:ROI[0]+ROI[2]] # Binarize and find blobs BWImage = cv2.adaptiveThreshold(ROI_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, self.invBin, self.blocksize, self.offset) # ConnectedComponentsWithStats output: number of labels, label matrix, stats(left,top,width,height), area blobFeatures = cv2.connectedComponentsWithStats(BWImage, 8, cv2.CV_32S) # Get blob RoI and area blobFeatures = blobFeatures[2][1:] # skipping background (label 0) # Filter by blob area self.blobs = blobFeatures[ np.where( (blobFeatures[:, cv2.CC_STAT_AREA] > self.minBlobArea) & (blobFeatures[:, cv2.CC_STAT_AREA] < self.maxBlobArea) ) ] # Increase array size self.blobs = np.concatenate([self.blobs, np.zeros((self.blobs.shape[0],2), dtype=int)], axis=1) # Annotate blobs and compute additional features for blob in self.blobs: tl = (blob[0], blob[1]) br = (blob[0] + blob[2], blob[1] + blob[3]) # Compute some metrics of individual blobs tempImage = self.image[tl[1]:br[1], tl[0]:br[0]] I_0 = 255.0 - np.min(tempImage) # peak foreground intensity estimate I_b = 255.0 - np.max(tempImage) # background intensity # Add local sharpness column blob[5] = int(cv2.Laplacian(tempImage, cv2.CV_64F).var()) # Add local SNR column blob[6] = int((I_0-I_b)/np.sqrt(I_b)) if I_b>0 else 0 # Shift coordinates wrt ROI blob[0] += ROI[0] blob[1] += ROI[1] # Mark in image if self.plot: None #cv2.rectangle(ROI_image, tl, br, (0, 0, 0), 1) #cv2.putText(ROI_image, str(blob[5]), br, cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0), 1, cv2.LINE_AA) # Plot last ROI if self.plot: cv2.imshow(self.name, BWImage) # Finalize self.stopTimer() self.signals.finished.emit() except Exception as err: exc = traceback.format_exception(type(err), err, err.__traceback__, chain=False) self.signals.error.emit(exc) self.signals.message.emit('E: {} exception: {}'.format(self.name, err)) return self.image @Slot(float) def setOffset(self, val): if -10.0 <= val <= 10.0: self.offset = val else: raise ValueError('offset') @Slot(int) def setBlockSize(self, val): if (3 <= val <= 21) and (val & 1) == 1: self.blocksize = val else: raise ValueError('blocksize')
[ "gertvanlagen99@hotmail.com" ]
gertvanlagen99@hotmail.com
d757c9a19d8d3adf5642e99b229eba903b9d8a89
b49ece85d473947bb6f47c6120538bc8374934d5
/myfirstprogects/views.py
fa75ade896e1d171d8ea4f9cab9a13150f35efa0
[]
no_license
Ish2504/myfirstproject-root
138f868c745d8a129e121227333edab626ecc38e
69861d70f566cec5bec3de1b65340cb4ea4440d2
refs/heads/main
2023-06-23T17:24:09.949504
2021-07-24T19:48:11
2021-07-24T19:48:11
389,180,552
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
from django.http import HttpResponse from django.shortcuts import render def about(request): return HttpResponse('This is about page') def home(request): return render(request, 'home.html', {'greeting':'Hello!'})
[ "comp-g@yandex.ru" ]
comp-g@yandex.ru
545228fdf04416c3f4249be97d0719a04c08e210
131fbf5d17e595519b0e2b5078932d4861b4a4f1
/keywordfinder/forms.py
90d9b0a8a86efb532784f5ee9692b69c0049218f
[]
no_license
RahulPGS/highbreedtask
b560ff32cb8a7cb84f0e2f944cfe2bfdf9420765
c02f5f19e94c8555aa56f7c06fb814b415257330
refs/heads/master
2023-05-09T23:04:05.426819
2021-06-07T07:31:42
2021-06-07T07:31:42
374,317,074
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
from .models import URLKeywords from django import forms class URLKeywordform(forms.ModelForm): class Meta: model = URLKeywords fields = ['url']
[ "S160142@rguktsklm.ac.in" ]
S160142@rguktsklm.ac.in
73c63e80f0b6d6cd0dc924cbf442c0ffd0fb0ab9
45f9013735913414b95f35a4081c37998b6a8de9
/samples/openapi3/client/petstore/python/petstore_api/model/quadrilateral.py
855e913d944cc627ee80bdec52f288b2991ea5fd
[ "Apache-2.0" ]
permissive
dukeraphaelng/openapi-generator
58585af051e939c0e9f3b5f19c2704439c70bc4d
f5c49609d2e5c4c2bdf53aeef71347c6a1b3d29c
refs/heads/master
2023-02-22T09:56:56.951394
2021-01-19T05:16:20
2021-01-19T05:16:20
330,874,250
1
0
Apache-2.0
2021-01-19T06:10:00
2021-01-19T05:30:21
null
UTF-8
Python
false
false
9,750
py
""" OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 import nulltype # noqa: F401 from petstore_api.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from petstore_api.model.complex_quadrilateral import ComplexQuadrilateral from petstore_api.model.simple_quadrilateral import SimpleQuadrilateral globals()['ComplexQuadrilateral'] = ComplexQuadrilateral globals()['SimpleQuadrilateral'] = SimpleQuadrilateral class Quadrilateral(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'shape_type': (str,), # noqa: E501 'quadrilateral_type': (str,), # noqa: E501 } @cached_property def discriminator(): lazy_import() val = { 'ComplexQuadrilateral': ComplexQuadrilateral, 'SimpleQuadrilateral': SimpleQuadrilateral, } if not val: return None return {'quadrilateral_type': val} attribute_map = { 'shape_type': 'shapeType', # noqa: E501 'quadrilateral_type': 'quadrilateralType', # noqa: E501 } required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', '_composed_instances', '_var_name_to_model_instances', '_additional_properties_model_instances', ]) @convert_js_args_to_python_args def __init__(self, quadrilateral_type, *args, **kwargs): # noqa: E501 """Quadrilateral - a model defined in OpenAPI Args: quadrilateral_type (str): Keyword Args: shape_type (str): defaults to nulltype.Null # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ shape_type = kwargs.get('shape_type', nulltype.Null) _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) constant_args = { '_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes, } required_args = { 'shape_type': shape_type, 'quadrilateral_type': quadrilateral_type, } # remove args whose value is Null because they are unset required_arg_names = list(required_args.keys()) for required_arg_name in required_arg_names: if required_args[required_arg_name] is nulltype.Null: del required_args[required_arg_name] model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info( constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for var_name, var_value in required_args.items(): setattr(self, var_name, var_value) for var_name, var_value in kwargs.items(): if var_name in unused_args and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ not self._additional_properties_model_instances: # discard variable. continue setattr(self, var_name, var_value) @cached_property def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error beause the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading lazy_import() return { 'anyOf': [ ], 'allOf': [ ], 'oneOf': [ ComplexQuadrilateral, SimpleQuadrilateral, ], }
[ "noreply@github.com" ]
dukeraphaelng.noreply@github.com
c6dd5a39cb39904882c39318303ba5ec4e8e101e
0139bdde50d922893e718221a69e1ca4cb89757d
/SendEmail_py/test.py
728d1ae61f4134e81acd61f8d0256de6e361d130
[]
no_license
nuaays/Miscellaneous_Scripts
79adc5d4a639f1c95d5206447593f89a813d2e06
803a3b30e8848bbcbce58eb12f9b25a12060a437
refs/heads/master
2021-01-10T05:46:24.227613
2017-08-04T02:30:18
2017-08-04T02:30:18
48,648,489
1
0
null
null
null
null
UTF-8
Python
false
false
134
py
#coding:utf-8 import SendEmail SendEmail.send_mail("nuaays@qq.com", ["nuaays@gmail.com"], "Email标题", "This is the Mail Body")
[ "nuaays@gmail.com" ]
nuaays@gmail.com
0b6385d8c07a79f3c00f429fc0b39f0bc787e6b7
bdf370c0bc4e93a156087b7f86bb46a47120a435
/src/shifa/signup/signup.py
9e054ee0ddff56f79325e361b3768b5bded9a532
[]
no_license
dethaa/Clinican
ae30d441058bb0834d738a417c3bc885f4794e25
5c665761ed7deb84a137f5325afdeb892b99c753
refs/heads/master
2023-06-17T02:58:48.484066
2021-07-08T05:17:59
2021-07-08T05:17:59
384,008,526
0
0
null
null
null
null
UTF-8
Python
false
false
4,205
py
from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.core.window import Window from kivy.lang import Builder from kivy.uix.screenmanager import ScreenManager, Screen, SlideTransition, NoTransition import mysql.connector import hashlib Builder.load_file('shifa/signup/signup.kv') mydb = mysql.connector.connect( host="localhost", user="root", password="132435", #Isi ini sama password kalian masing-masing yaa database="RPL" ) class SignupWindow(BoxLayout): def __init__(self, **kwargs): super().__init__(**kwargs) def validate_account(self): nama = self.ids.name_field.text email = self.ids.email_field.text notelp = self.ids.phone_field.text username = self.ids.username_field.text password = self.ids.pass_field.text password = hashlib.sha256(password.encode()).hexdigest() print(password) #Fetch account with same username result = self.fetch_account(username) result_email = self.fetch_account_email(email) #Update message box message_box = self.ids.message if (username == '' or password == '' or nama == ''\ or email == '' or notelp == ''): message_box.text = '[color=#FF0000]Please fill in all boxes[/color]' elif (len(result) != 0): message_box.text = '[color=#FF0000]Username taken! Please choose another one[/color]' elif (len(result_email) != 0): message_box.text = '[color=#FF0000]Email already registered![/color]' elif (not self.is_valid_phone(notelp)): message_box.text = '[color=#FF0000]Invalid phone number! Only numbers allowed[/color]' else: #generate new id id = self.create_id() #hash password # password = hashlib.sha256(password.encode()).hexdigest() #insert new account val = (id, nama, email, notelp, username, password) self.insert_account(val) message_box.text = '[color=#26AE4C]Sign up successful! You can now sign in[/color]' def fetch_account(self, _username): val = (_username.rstrip()) mycursor = mydb.cursor() query = "SELECT * FROM Customer WHERE username='{0}'".format(val) print(query) mycursor.execute(query) myresult = mycursor.fetchall() print(myresult) return myresult def fetch_account_email(self, _email): val = (_email.rstrip()) mycursor = mydb.cursor() query = "SELECT * FROM Customer WHERE email='{0}'".format(val) print(query) mycursor.execute(query) myresult = mycursor.fetchall() print(myresult) return myresult def is_valid_phone(self, _phone_number): for char in _phone_number: if (ord(char) < 48 or ord(char) > 57): return False return True def create_id(self): mycursor = mydb.cursor() query = "SELECT MAX(idakun) FROM Customer" mycursor.execute(query) myresult = mycursor.fetchall() print(myresult) return int(myresult[0][0])+1 def insert_account(self, val): mycursor = mydb.cursor() query = "INSERT INTO Customer VALUES ({0}, '{1}', '{2}', '{3}', '{4}', '{5}')"\ .format(val[0], val[1], val[2], val[3], val[4], val[5]) print(query) mycursor.execute(query) mydb.commit() print("successfully inserted record") def to_signin(self): self.parent.parent.transition = SlideTransition() self.parent.parent.switch_to(self.parent.parent.parent.ids.scrn_si, direction='right') self.reset_signup() def reset_signup(self): self.ids.name_field.text = '' self.ids.email_field.text = '' self.ids.phone_field.text = '' self.ids.username_field.text = '' self.ids.pass_field.text = '' self.ids.message.text = '' class SignupApp(App): def build(self): Window.size = (1280, 720) return SignupWindow() if __name__ == '__main__': SignupApp().run()
[ "sharonmarbun12@gmail.com" ]
sharonmarbun12@gmail.com
0feafb3f894fca267b28bebdfaa75a2bfe6558cf
529189166b8b979f50c41695db4ae094d28998fd
/src/main/utils/comparable.py
ab98ea27a329f2f2d87ff904e6f2f41ed101b394
[]
no_license
suzuki-kei/python-myapp
e4bbc859af7cc6d23ef67bb4b68fc5c9ddb5ecad
f99e43506c52061323f86d8deabbd2689d5edc19
refs/heads/main
2023-08-31T03:27:31.103690
2021-11-13T12:13:42
2021-11-13T12:13:42
137,279,852
0
0
null
2023-09-10T02:25:23
2018-06-13T22:50:55
Python
UTF-8
Python
false
false
1,887
py
class Comparable(type): """ 大小比較する compare メソッドから比較演算子を自動生成するメタクラス. """ def __new__(self, name, bases, namespace, **kwargs): Comparable.define_compare_methods(namespace) return super(Comparable, self).__new__(self, name, bases, namespace, **kwargs) @staticmethod def define_compare_methods(namespace): namespace["__eq__"] = lambda self, other: self.compare(other) == 0 namespace["__ne__"] = lambda self, other: self.compare(other) != 0 namespace["__lt__"] = lambda self, other: self.compare(other) < 0 namespace["__le__"] = lambda self, other: self.compare(other) <= 0 namespace["__gt__"] = lambda self, other: self.compare(other) > 0 namespace["__ge__"] = lambda self, other: self.compare(other) >= 0 def comparable(target="compare"): """ 大小比較するメソッドから比較演算子を自動生成するデコレータ. """ def define_compare_methods(target_class, compare): target_class.__eq__ = lambda self, other: compare(self, other) == 0 target_class.__ne__ = lambda self, other: compare(self, other) != 0 target_class.__lt__ = lambda self, other: compare(self, other) < 0 target_class.__le__ = lambda self, other: compare(self, other) <= 0 target_class.__gt__ = lambda self, other: compare(self, other) > 0 target_class.__ge__ = lambda self, other: compare(self, other) >= 0 if isinstance(target, str): def wrapper(target_class): compare = target_class.__dict__[target] define_compare_methods(target_class, compare) return target_class return wrapper else: compare = lambda self, other: self.compare(other) define_compare_methods(target, compare) return target
[ "todokimasen@gmail.com" ]
todokimasen@gmail.com
3f26efd33da5940d90d8e1ebf80e3f504640ec53
263e20c0d977a6ba56269ee266c7096b882000cd
/tests/test_product_model.py
f02ed1f79063fbefe82c0e4520506c0022158f3a
[]
no_license
marcossilvaxx/teste_backend
ddb268aca62ea5faac0301bfc5a005fde4fe9c85
7555ab1939c9886727bacabc66fda829a319d80d
refs/heads/master
2022-11-22T04:15:12.096304
2020-07-25T04:39:41
2020-07-25T04:39:41
282,368,871
0
0
null
null
null
null
UTF-8
Python
false
false
1,904
py
from unittest import TestCase from app import app from app.models.Product import Product class TestProductModel(TestCase): ''' Testing Product model ''' def setUp(self): app.testing = True def test_create_product_basic(self): try: product = Product("arroz", 5.30, 3.48) except: self.fail("Exception was not expected.") def test_create_product_none_arguments(self): try: product = Product(None, 5.30, 3.48) self.fail("Exception was expected.") except: pass try: product = Product("arroz", None, 3.48) self.fail("Exception was expected.") except: pass try: product = Product("arroz", 5.30, None) self.fail("Exception was expected.") except: pass try: product = Product(None, None, None) self.fail("Exception was expected.") except: pass def test_create_product_empty_string_arguments(self): try: product = Product("", 5.30, 3.48) self.fail("Exception was expected.") except: pass try: product = Product("arroz", "", 3.48) self.fail("Exception was expected.") except: pass try: product = Product("arroz", 5.30, "") self.fail("Exception was expected.") except: pass try: product = Product("", "", "") self.fail("Exception was expected.") except: pass def test_product_string_representation(self): product = Product("arroz", 10.23, 9.33) self.assertEqual("< Product : arroz >", product.__repr__())
[ "vinicius_marcosmartins@hotmail.com" ]
vinicius_marcosmartins@hotmail.com
a562e14310acdd7d983727fb7f4adac44605916d
287c7cd11f458c6e26fc7c1f64ecc310472e2809
/bookmark/urls.py
f326bb3c5156bcdd93efd6b0514b41a078cfdb4c
[]
no_license
JUKOOK/django_study
b3bfe252791913d11a6395b5a467c4e5fe77b353
0767aceb85dc270f54611f4b123a8fd0f2913b17
refs/heads/master
2022-10-12T21:25:20.275753
2018-03-15T17:33:38
2018-03-15T17:33:38
120,982,904
0
1
null
2022-10-09T07:28:48
2018-02-10T04:09:08
Python
UTF-8
Python
false
false
1,234
py
# bookmark/urls from django.conf.urls import url from django.views.generic import ListView, DetailView # from .views import BookmarkLV, BookmarkDV from .models import Bookmark from .views import * # 북마크 포스트 생성, 수정, 삭제를 사이트 내에서 하기위한 view 클래스들 import urlpatterns = [ # Class-based view # url(r'^list/', BookmarkLV.as_view(), name="bookmark_list_view"), # url(r'^detail/(?P<pk>\d+)/$', BookmarkDV.as_view(), name="bookmark_detail_view"), # views.generic에 기반한 Class-based view url(r'^$', ListView.as_view(model=Bookmark), name="index"), # list_view url(r'^detail/(?P<pk>\d+)/$', DetailView.as_view(model=Bookmark), name="detail_view"), # 북마크 포스트 추가, 자기가 만든.. 수정 가능한 레코드 리스트 보기, 수정, 삭제 # /add/ url(r'^add/$', BookmarkCreateView.as_view(), name="add_bookmark"), # /change url(r'^change/$', BookmarkChangeListView.as_view(), name="changeable_bookmark"), # /99/update url(r'^(?P<pk>[0-9]+)/update/$', BookmarkUpdateView.as_view(), name="update_bookmark"), # /00/add/ url(r'^(?P<pk>[0-9]+)/delete/$', BookmarkDeleteView.as_view(), name="delete_bookmark"), ]
[ "wnrnrdl@gmail.com" ]
wnrnrdl@gmail.com
1441470cd360c73a6547a2f2a220a704c85a8235
1ab7b3f2aa63de8488ce7c466a67d367771aa1f2
/Ricardo_OS/Python_backend/venv/lib/python3.8/site-packages/OpenGL/EGL/debug.py
dd519e6dbe0ccfa9fb226e2757a7a64fd815c2cc
[ "MIT" ]
permissive
icl-rocketry/Avionics
9d39aeb11aba11115826fd73357b415026a7adad
95b7a061eabd6f2b607fba79e007186030f02720
refs/heads/master
2022-07-30T07:54:10.642930
2022-07-10T12:19:10
2022-07-10T12:19:10
216,184,670
9
1
MIT
2022-06-27T10:17:06
2019-10-19T09:57:07
C++
UTF-8
Python
false
false
7,538
py
"""Debug utilities for EGL operations""" from OpenGL.EGL import * import itertools def eglErrorName(value): """Returns error constant if known, otherwise returns value""" return KNOWN_ERRORS.get(value, value) KNOWN_ERRORS = { EGL_SUCCESS: EGL_SUCCESS, EGL_NOT_INITIALIZED: EGL_NOT_INITIALIZED, EGL_BAD_ACCESS: EGL_BAD_ACCESS, EGL_BAD_ALLOC: EGL_BAD_ALLOC, EGL_BAD_ATTRIBUTE: EGL_BAD_ATTRIBUTE, EGL_BAD_CONTEXT: EGL_BAD_CONTEXT, EGL_BAD_CONFIG: EGL_BAD_CONFIG, EGL_BAD_CURRENT_SURFACE: EGL_BAD_CURRENT_SURFACE, EGL_BAD_DISPLAY: EGL_BAD_DISPLAY, EGL_BAD_SURFACE: EGL_BAD_SURFACE, EGL_BAD_MATCH: EGL_BAD_MATCH, EGL_BAD_PARAMETER: EGL_BAD_PARAMETER, EGL_BAD_NATIVE_PIXMAP: EGL_BAD_NATIVE_PIXMAP, EGL_BAD_NATIVE_WINDOW: EGL_BAD_NATIVE_WINDOW, EGL_CONTEXT_LOST: EGL_CONTEXT_LOST, } def write_ppm(buf, filename): """Write height * width * 3-component buffer as ppm to filename This lets us write a simple image format without using any libraries that can be viewed on most linux workstations. """ with open(filename, "w") as f: h, w, c = buf.shape print("P3", file=f) print("# ascii ppm file created by pyopengl", file=f) print("%i %i" % (w, h), file=f) print("255", file=f) for y in range(h - 1, -1, -1): for x in range(w): pixel = buf[y, x] l = " %3d %3d %3d" % (pixel[0], pixel[1], pixel[2]) f.write(l) f.write("\n") def debug_config(display, config): """Get debug display for the given configuration""" result = {} value = EGLint() for attr in CONFIG_ATTRS: if not eglGetConfigAttrib(display, config, attr, value): log.warning("Failed to get attribute %s from config", attr) continue if attr in BITMASK_FIELDS: attr_value = {} for subattr in BITMASK_FIELDS[attr]: if value.value & subattr: attr_value[subattr.name] = True else: attr_value = value.value result[attr.name] = attr_value return result def debug_configs(display, configs=None, max_count=256): """Present a formatted list of configs for the display""" if configs is None: configs = (EGLConfig * max_count)() num_configs = EGLint() eglGetConfigs(display, configs, max_count, num_configs) if not num_configs.value: return [] configs = configs[: num_configs.value] debug_configs = [debug_config(display, cfg) for cfg in configs] return debug_configs SURFACE_TYPE_BITS = [ EGL_MULTISAMPLE_RESOLVE_BOX_BIT, EGL_PBUFFER_BIT, EGL_PIXMAP_BIT, EGL_SWAP_BEHAVIOR_PRESERVED_BIT, EGL_VG_ALPHA_FORMAT_PRE_BIT, EGL_VG_COLORSPACE_LINEAR_BIT, EGL_WINDOW_BIT, ] RENDERABLE_TYPE_BITS = [ EGL_OPENGL_BIT, EGL_OPENGL_ES_BIT, EGL_OPENGL_ES2_BIT, EGL_OPENGL_ES3_BIT, EGL_OPENVG_BIT, ] CAVEAT_BITS = [ EGL_NONE, EGL_SLOW_CONFIG, EGL_NON_CONFORMANT_CONFIG, ] TRANSPARENT_BITS = [ EGL_NONE, EGL_TRANSPARENT_RGB, ] CONFIG_ATTRS = [ EGL_CONFIG_ID, EGL_RED_SIZE, EGL_GREEN_SIZE, EGL_BLUE_SIZE, EGL_DEPTH_SIZE, EGL_ALPHA_SIZE, EGL_ALPHA_MASK_SIZE, EGL_BUFFER_SIZE, EGL_STENCIL_SIZE, EGL_BIND_TO_TEXTURE_RGB, EGL_BIND_TO_TEXTURE_RGBA, EGL_COLOR_BUFFER_TYPE, EGL_CONFIG_CAVEAT, EGL_CONFORMANT, EGL_LEVEL, EGL_LUMINANCE_SIZE, EGL_MAX_PBUFFER_WIDTH, EGL_MAX_PBUFFER_HEIGHT, EGL_MAX_PBUFFER_PIXELS, EGL_MIN_SWAP_INTERVAL, EGL_MAX_SWAP_INTERVAL, EGL_NATIVE_RENDERABLE, EGL_NATIVE_VISUAL_ID, EGL_NATIVE_VISUAL_TYPE, EGL_RENDERABLE_TYPE, EGL_SAMPLE_BUFFERS, EGL_SAMPLES, EGL_SURFACE_TYPE, EGL_TRANSPARENT_TYPE, EGL_TRANSPARENT_RED_VALUE, EGL_TRANSPARENT_GREEN_VALUE, EGL_TRANSPARENT_BLUE_VALUE, ] BITMASK_FIELDS = dict( [ (EGL_SURFACE_TYPE, SURFACE_TYPE_BITS), (EGL_RENDERABLE_TYPE, RENDERABLE_TYPE_BITS), (EGL_CONFORMANT, RENDERABLE_TYPE_BITS), (EGL_CONFIG_CAVEAT, CAVEAT_BITS), (EGL_TRANSPARENT_TYPE, TRANSPARENT_BITS), ] ) def bit_renderer(bit): def render(value): if bit.name in value: return " Y" else: return " ." return render CONFIG_FORMAT = [ (EGL_CONFIG_ID, "0x%x", "id", "cfg"), (EGL_BUFFER_SIZE, "%i", "sz", "bf"), (EGL_LEVEL, "%i", "l", "lv"), (EGL_RED_SIZE, "%i", "r", "cbuf"), (EGL_GREEN_SIZE, "%i", "g", "cbuf"), (EGL_BLUE_SIZE, "%i", "b", "cbuf"), (EGL_ALPHA_SIZE, "%i", "a", "cbuf"), (EGL_DEPTH_SIZE, "%i", "th", "dp"), (EGL_STENCIL_SIZE, "%i", "t", "s"), (EGL_SAMPLES, "%i", "ns", "mult"), (EGL_SAMPLE_BUFFERS, "%i", "bu", "mult"), (EGL_NATIVE_VISUAL_ID, "0x%x", "id", "visual"), (EGL_RENDERABLE_TYPE, bit_renderer(EGL_OPENGL_BIT), "gl", "render"), (EGL_RENDERABLE_TYPE, bit_renderer(EGL_OPENGL_ES_BIT), "es", "render"), (EGL_RENDERABLE_TYPE, bit_renderer(EGL_OPENGL_ES2_BIT), "e2", "render"), (EGL_RENDERABLE_TYPE, bit_renderer(EGL_OPENGL_ES3_BIT), "e3", "render"), (EGL_RENDERABLE_TYPE, bit_renderer(EGL_OPENVG_BIT), "vg", "render"), (EGL_SURFACE_TYPE, bit_renderer(EGL_WINDOW_BIT), "wn", "surface"), (EGL_SURFACE_TYPE, bit_renderer(EGL_PBUFFER_BIT), "pb", "surface"), (EGL_SURFACE_TYPE, bit_renderer(EGL_PIXMAP_BIT), "px", "surface"), ] def format_debug_configs(debug_configs, formats=CONFIG_FORMAT): """Format config for compact debugging display Produces a config summary display for a set of debug_configs as a text-mode table. Uses `formats` (default `CONFIG_FORMAT`) to determine which fields are extracted and how they are formatted along with the column/subcolum set to be rendered in the overall header. returns formatted ASCII table for display in debug logs or utilities """ columns = [] for (key, format, subcol, col) in formats: column = [] max_width = 0 for row in debug_configs: if isinstance(row, EGLConfig): raise TypeError(row, "Call debug_config(display,config)") try: value = row[key.name] except KeyError: formatted = "_" else: if isinstance(format, str): formatted = format % (value) else: formatted = format(value) max_width = max((len(formatted), max_width)) column.append(formatted) columns.append( { "rows": column, "key": key, "format": format, "subcol": subcol, "col": col, "width": max_width, } ) headers = [] subheaders = [] rows = [headers, subheaders] last_column = None last_column_width = 0 for header, subcols in itertools.groupby(columns, lambda x: x["col"]): subcols = list(subcols) width = sum([col["width"] for col in subcols]) + (len(subcols) - 1) headers.append(header.center(width, ".")[:width]) for column in columns: subheaders.append(column["subcol"].rjust(column["width"])[: column["width"]]) rows.extend( zip(*[[v.rjust(col["width"], " ") for v in col["rows"]] for col in columns]) ) return "\n".join([" ".join(row) for row in rows])
[ "kd619@ic.ac.uk" ]
kd619@ic.ac.uk
5ae6e7a503085d85bd504f8a21c42c68e270e4c6
fd529ba6ade52cd2a3dab94da01252d7ea90398d
/testlolakfmalwe/4dtest.py
d5c3e5b1245b28c2a86b3ec545320774a92f267f
[]
no_license
fjfhfjfjgishbrk/AE401-Python
4a984deb0281542c205d72695285b35c7413338f
ee80fa4588b127cff2402fd81e732ede28a66411
refs/heads/master
2022-06-13T13:49:39.875567
2022-05-28T12:40:51
2022-05-28T12:40:51
251,178,163
0
0
null
null
null
null
UTF-8
Python
false
false
2,315
py
import numpy as np def pmul(rarr, p): temp = p.copy() for i in rarr: temp = np.matmul(i, temp) return temp point = [3, 5, 7, 1] u = [-5, -1, -3, -5] v = [2, 4, 6, 8] m = v[1] * u[0] - u[1] * v[0] n = - v[1] * u[2] + u[1] * v[2] print(m, n) cp1 = n/np.sqrt(m**2 + n**2) sp1 = -m/np.sqrt(m**2 + n**2) r1 = [[cp1, 0, -sp1, 0], [0, 1, 0, 0], [sp1, 0, cp1, 0], [0, 0, 0, 1]] rr1 = [[cp1, 0, sp1, 0], [0, 1, 0, 0], [-sp1, 0, cp1, 0], [0, 0, 0, 1]] u1 = np.matmul(r1, u) v1 = np.matmul(r1, v) print(u1[1] * v1[0], (v[0]*u[1]*n+v[2]*u[1]*m)/np.sqrt(m**2 + n**2)) print(v1) print(u[1]*(v[0]*cp1-v[2]*sp1), v[1]*(u[0]*cp1-u[2]*sp1)) cp2 = v1[1] / np.sqrt(v1[0]**2 + v1[1]**2) sp2 = v1[0] / np.sqrt(v1[0]**2 + v1[1]**2) r2 = [[cp2, -sp2, 0, 0], [sp2, cp2, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] rr2 = [[cp2, sp2, 0, 0], [-sp2, cp2, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] u2 = np.matmul(r2, u1) v2 = np.matmul(r2, v1) p = u2[2] * v2[1] - v2[2] * u2[1] q = - u2[2] * v2[3] + v2[2] * u2[3] cp3 = q / np.sqrt(p**2 + q**2) sp3 = -p / np.sqrt(p**2 + q**2) r3 = [[1, 0, 0, 0], [0, cp3, 0, -sp3], [0, 0, 1, 0], [0, sp3, 0, cp3]] rr3 = [[1, 0, 0, 0], [0, cp3, 0, sp3], [0, 0, 1, 0], [0, -sp3, 0, cp3]] u3 = np.matmul(r3, u2) v3 = np.matmul(r3, v2) cp4 = v3[2] / np.sqrt(v3[1] ** 2 + v3[2] ** 2) sp4 = v3[1] / np.sqrt(v3[1] ** 2 + v3[2] ** 2) r4 = [[1, 0, 0, 0], [0, cp4, -sp4, 0], [0, sp4, cp4, 0], [0, 0, 0, 1]] rr4 = [[1, 0, 0, 0], [0, cp4, sp4, 0], [0, -sp4, cp4, 0], [0, 0, 0, 1]] u4 = np.matmul(r4, u3) v4 = np.matmul(r4, v3) cs = np.cos(np.pi) ss = np.sin(np.pi) rf = [[cs, -ss, 0, 0], [ss, cs, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] rp = np.add(u, v) ps = np.subtract(point, rp) plb = np.linalg.norm(ps) us = np.subtract(u, rp) ul = np.linalg.norm(us) angb = np.dot(ps, us) / (plb * ul) pointa = pmul([r1, r2, r3, r4, rf, rr4, rr3, rr2, rr1], point) pointb = pmul([r1, r2, r3, r4, rf, rr4, rr3, rr2, rr1], pointa) ua = pmul([r1, r2, r3, r4, rf, rr4, rr3, rr2, rr1], u) psa = np.subtract(pointa, rp) pla = np.linalg.norm(psa) anga = np.dot(psa, us) / (pla * ul) print(point, pointa, pointb) print(angb, anga) print(u, ua.round(7))
[ "59891511+fjfhfjfjgishbrk@users.noreply.github.com" ]
59891511+fjfhfjfjgishbrk@users.noreply.github.com
45247a50d77675b36835255f5e2fc022163f6969
18b4522a48830a251853189659099a4d7a03ce16
/task1.py
347b05cfd3698d309b0585c5240fd0e76ad3871a
[]
no_license
amet-vikram13/Machine-Learning-Project
61b4edc9520ef190ca7fc5cd50c88cc7ee4512af
c232f7995f873291b68fd2bf2891d95ebe5dbf4c
refs/heads/master
2022-04-20T01:48:02.861542
2020-04-22T20:52:11
2020-04-22T20:52:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,368
py
import math import gym from gym import spaces, logger from gym.utils import seeding import numpy as np class CartPoleEnv(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second' : 50 } def __init__(self,case=1): self.__version__ = "0.2.0" print("CartPoleEnv - Version {}, Noise case: {}".format(self.__version__,case)) self.gravity = 9.8 self.masscart = 1.0 self.masspole = 0.4 self.total_mass = (self.masspole + self.masscart) self.length = 0.5 self.polemass_length = (self.masspole * self.length) self._seed() self.force_mag = 10.0 #self.force_mag = 10.0*(1+self.np_random.uniform(low=-0.10, high=0.10)) self.tau = 0.02 # seconds between state updates self.frictioncart = 5e-4 # AA Added cart friction self.frictionpole = 2e-6 # AA Added cart friction self.gravity_eps = 0.99 # Random scaling for gravity self.frictioncart_eps = 0.99 # Random scaling for friction self.frictionpole_eps = 0.99 # Random scaling for friction # Angle at which to fail the episode self.theta_threshold_radians = 12 * 2 * math.pi / 360 self.x_threshold = 2.4 # Angle limit set to 2 * theta_threshold_radians so failing observation is still within bounds high = np.array([ self.x_threshold * 2, np.finfo(np.float32).max, self.theta_threshold_radians * 2, np.finfo(np.float32).max]) self.action_space = spaces.Discrete(2) # AA Set discrete states back to 2 self.observation_space = spaces.Box(-high, high) self.viewer = None self.state = None self.steps_beyond_done = None def _seed(self, seed=None): # Set appropriate seed value self.np_random, seed = seeding.np_random(seed) return [seed] def _step(self, action): assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action)) state = self.state x, x_dot, theta, theta_dot = state force = self.force_mag if action==1 else -self.force_mag costheta = math.cos(theta) sintheta = math.sin(theta) temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta - self.frictioncart * (4 + self.frictioncart_eps*np.random.randn()) *np.sign(x_dot)) / self.total_mass # AA Added cart friction thetaacc = (self.gravity * (4 + self.gravity_eps*np.random.randn()) * sintheta - costheta* temp - self.frictionpole * (4 + self.frictionpole_eps*np.random.randn()) *theta_dot/self.polemass_length) / (self.length * (4.0/3.0 - self.masspole * costheta * costheta / self.total_mass)) # AA Added pole friction xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass noise = 0 #noise = self.np_random.uniform(low=-0.10, high=0.10) x = (x + self.tau * x_dot) x_dot = (x_dot + self.tau * xacc) theta = (theta + self.tau * theta_dot)*(1 + noise) theta_dot = (theta_dot + self.tau * thetaacc) self.state = (x,x_dot,theta,theta_dot) done = x < -self.x_threshold \ or x > self.x_threshold \ or theta < -self.theta_threshold_radians \ or theta > self.theta_threshold_radians done = bool(done) if not done: reward = 1.0 elif self.steps_beyond_done is None: # Pole just fell! self.steps_beyond_done = 0 reward = 1.0 else: if self.steps_beyond_done == 0: logger.warning("You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.") self.steps_beyond_done += 1 reward = 0.0 return np.array(self.state), reward, done, {} def _reset(self): self.state = self.np_random.uniform(low=-0.05, high=0.05, size=(4,)) self.steps_beyond_done = None return np.array(self.state) def _render(self, mode='human', close=False): if close: if self.viewer is not None: self.viewer.close() self.viewer = None return screen_width = 600 screen_height = 400 world_width = self.x_threshold*2 scale = screen_width/world_width carty = 100 # TOP OF CART polewidth = 10.0 polelen = scale * 1.0 cartwidth = 50.0 cartheight = 30.0 if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.Viewer(screen_width, screen_height) l,r,t,b = -cartwidth/2, cartwidth/2, cartheight/2, -cartheight/2 axleoffset =cartheight/4.0 cart = rendering.FilledPolygon([(l,b), (l,t), (r,t), (r,b)]) self.carttrans = rendering.Transform() cart.add_attr(self.carttrans) self.viewer.add_geom(cart) l,r,t,b = -polewidth/2,polewidth/2,polelen-polewidth/2,-polewidth/2 pole = rendering.FilledPolygon([(l,b), (l,t), (r,t), (r,b)]) pole.set_color(.8,.6,.4) self.poletrans = rendering.Transform(translation=(0, axleoffset)) pole.add_attr(self.poletrans) pole.add_attr(self.carttrans) self.viewer.add_geom(pole) self.axle = rendering.make_circle(polewidth/2) self.axle.add_attr(self.poletrans) self.axle.add_attr(self.carttrans) self.axle.set_color(.5,.5,.8) self.viewer.add_geom(self.axle) self.track = rendering.Line((0,carty), (screen_width,carty)) self.track.set_color(0,0,0) self.viewer.add_geom(self.track) if self.state is None: return None x = self.state cartx = x[0]*scale+screen_width/2.0 # MIDDLE OF CART self.carttrans.set_translation(cartx, carty) self.poletrans.set_rotation(-x[2]) return self.viewer.render(return_rgb_array = mode=='rgb_array')
[ "amet97vikram@gmail.com" ]
amet97vikram@gmail.com
98f4f3692153eadf94883f4f1231b5b43c968d97
18bc0c799f18de93d2ad982113e44e97eb266fdd
/RSAD/com/vo/AreaVO.py
a22efd90f6f9a8df33e6e54dbb01f3027732e3ca
[]
no_license
Mysterious-Harsh/RSAD
a3dd0754eb279847cb6646bf9b5625ae6ec2d183
ada9017318ce7340beb79c44a4b7bfe22c2af2f2
refs/heads/main
2023-05-12T04:06:30.219484
2021-05-23T16:26:24
2021-05-23T16:26:24
369,973,737
1
0
null
null
null
null
UTF-8
Python
false
false
463
py
from RSAD import db class AreaVO(db.Model): __tablename__ = 'areamaster' areaId = db.Column('areaId', db.Integer, primary_key=True, autoincrement=True) areaName = db.Column('areaName', db.String(100)) areaPincode = db.Column('areaPincode', db.String(100)) def as_dict(self): return { 'areaId': self.areaId, 'areaName': self.areaName, 'areaPincode': self.areaPincode } db.create_all()
[ "harssh.s.patel@gmail.com" ]
harssh.s.patel@gmail.com
1f8c8b2f3254374969079c53913a5c4411edde82
ddcbaa2262fb5e631caec4d6b81e355b6ba8a49c
/splinter-demo.py
283858dfceede45c3e662c70eb0b348b06a60be5
[]
no_license
intergrate-dev/python-demo
97802949311679afa6786dac483a3f556fecf7af
b6ce6a775d9644cd58aa975a36323550d472db68
refs/heads/master
2020-07-03T14:27:48.962506
2019-08-12T13:31:33
2019-08-12T13:31:33
201,935,385
1
0
null
null
null
null
UTF-8
Python
false
false
654
py
import time import ChromeDriver as ChromeDriver from splinter import Browser def splinter(url): browser = Browser() #login 126 email websize browser.visit(url) #wait web element loading time.sleep(5) #fill in account and password browser.find_by_id('idInput').fill('xxxxxx') browser.find_by_id('pwdInput').fill('xxxxx') #click the button of login browser.find_by_id('loginBtn').click() time.sleep(8) #close the window of brower browser.quit() # https://www.2cto.com/kf/201704/622848.html if __name__ == '__main__': websize3 ='http://www.126.com' splinter(websize3)
[ "2491042435@qq.com" ]
2491042435@qq.com
4b7d8aafab6795c6e32d5d999e7d59360cd86f79
6472c4553c49a8c05103355ff53b1cbb7f025e8f
/pava/implementation/natives/java/nio/ByteOrder.py
0705f5375318079e3ee9dfafe50da86c3310f2b5
[ "MIT" ]
permissive
laffra/pava
0b012e27c207a3e0f3ca772667b0c32168fe3123
54d10cf7f8def2f96e254c0356623d08f221536f
refs/heads/master
2021-01-23T04:23:22.887146
2020-12-21T23:14:09
2020-12-21T23:14:09
86,191,143
5
0
null
null
null
null
UTF-8
Python
false
false
154
py
def add_native_methods(clazz): def nativeOrder____(): raise NotImplementedError() clazz.nativeOrder____ = staticmethod(nativeOrder____)
[ "iV29VQzQVT11" ]
iV29VQzQVT11
28c77d329eb3e74d291468dd566ac572fb45d428
337cc6c6d2bfd44ac18b0559ec791847eaf65bd1
/attention.py
3bbc17813d464fd71bb1e0f77355a504ebd94feb
[]
no_license
susiwen8/tf-keras-attention-layer
c45ffc84927bcc6226d4a04ce3c6c4fba7a02671
72038268b0b49dec858597948f58b2fd7fca79d7
refs/heads/master
2020-03-27T21:34:36.895294
2018-09-03T05:59:20
2018-09-03T05:59:20
147,158,070
4
0
null
null
null
null
UTF-8
Python
false
false
3,629
py
import tensorflow as tf from tensorflow.keras.layers import Layer from tensorflow.keras import initializers from tensorflow.keras import regularizers from tensorflow.keras import constraints class Attention(Layer): """Multi-headed attention layer.""" def __init__(self, hidden_size, num_heads = 3, attention_dropout=.1, trainable=True, name='Attention'): if hidden_size % num_heads != 0: raise ValueError("Hidden size must be evenly divisible by the number of heads.") self.hidden_size = hidden_size self.num_heads = num_heads self.trainable = trainable self.attention_dropout = attention_dropout self.dense = tf.layers.Dense(self.hidden_size, use_bias=False) super(Attention, self).__init__(name=name) def split_heads(self, x): """Split x into different heads, and transpose the resulting value. The tensor is transposed to insure the inner dimensions hold the correct values during the matrix multiplication. Args: x: A tensor with shape [batch_size, length, hidden_size] Returns: A tensor with shape [batch_size, num_heads, length, hidden_size/num_heads] """ with tf.name_scope("split_heads"): batch_size = tf.shape(x)[0] length = tf.shape(x)[1] # Calculate depth of last dimension after it has been split. depth = (self.hidden_size // self.num_heads) # Split the last dimension x = tf.reshape(x, [batch_size, length, self.num_heads, depth]) # Transpose the result return tf.transpose(x, [0, 2, 1, 3]) def combine_heads(self, x): """Combine tensor that has been split. Args: x: A tensor [batch_size, num_heads, length, hidden_size/num_heads] Returns: A tensor with shape [batch_size, length, hidden_size] """ with tf.name_scope("combine_heads"): batch_size = tf.shape(x)[0] length = tf.shape(x)[2] x = tf.transpose(x, [0, 2, 1, 3]) # --> [batch, length, num_heads, depth] return tf.reshape(x, [batch_size, length, self.hidden_size]) def call(self, inputs): """Apply attention mechanism to inputs. Args: inputs: a tensor with shape [batch_size, length_x, hidden_size] Returns: Attention layer output with shape [batch_size, length_x, hidden_size] """ # Google developper use tf.layer.Dense to linearly project the queries, keys, and values. q = self.dense(inputs) k = self.dense(inputs) v = self.dense(inputs) q = self.split_heads(q) k = self.split_heads(k) v = self.split_heads(v) # Scale q to prevent the dot product between q and k from growing too large. depth = (self.hidden_size // self.num_heads) q *= depth ** -0.5 logits = tf.matmul(q, k, transpose_b=True) # logits += self.bias weights = tf.nn.softmax(logits, name="attention_weights") if self.trainable: weights = tf.nn.dropout(weights, 1.0 - self.attention_dropout) attention_output = tf.matmul(weights, v) attention_output = self.combine_heads(attention_output) attention_output = self.dense(attention_output) return attention_output def compute_output_shape(self, input_shape): return tf.TensorShape(input_shape)
[ "susiwen8@163.com" ]
susiwen8@163.com
bf50493554e8a7fddbfd2cb49c08bc19942c3287
793b74314238724962ead84f05888d205bede08d
/index.py
4cba2033c01a42c4fda25bbf64ee3ea08e319cc1
[]
no_license
amish-goyal/LanguageID
5955e5fdb980d9db541ea96bb2e21499532e071a
8d0bac8e9a090e014f32bc76cdae3e9038188d9c
refs/heads/master
2016-09-11T02:53:10.157149
2015-06-08T06:02:13
2015-06-08T06:02:13
37,046,437
0
0
null
null
null
null
UTF-8
Python
false
false
1,993
py
""" This script creates text files from chunks of XML documents. The text files are stored in a directory hierarchy as follows: TARGETDIR -language1 -textfile1 -textfile2 - ... -language2 -textfile1 -textfile2 - ... The script assumes the XML documents to be in the following hierarchy: ROOTDIR -language1 -file1 -file2 - ... -language2 -file1 -file2 - ... """ from config import * import os import xml.etree.ElementTree as ET CHUNKSIZE = 50 TOTALDOCS = 10 def generateXML_Filepaths(rootdir): """Generate filepaths of all XML files present in the root folder. Arguments: rootdir - name of the root directory (string) """ for subdir, dirs, files in os.walk(rootdir): for filename in files: if filename.endswith('.xml'): filepath = subdir + '/' + filename yield filepath def parseXML(filepath): """Return concatenated string of all the text in the XML document. Arguments: filepath - the complete filepath of the XML file (string) """ try: tree = ET.parse(filepath) root = tree.getroot() text = '' for paragraph in root.iter(tag = 'p'): text += ' ' + paragraph.text return text except: return "" def generateDocs(lang, chunkSize, totalDocs): """Generate text files from the XML documents Arguments: lang - The language of the text content chunkSize - Total XML files used for one document totalDocs - Total number of documents to be generated """ docCount = 0 chunkCount = 0 text = '' print "Language: ", lang for filepath in generateXML_Filepaths(ROOTDIR+lang): text += ' ' + parseXML(filepath) chunkCount += 1 if chunkCount == chunkSize: print "Creating document ",docCount docCount += 1 with open(TARGETDIR+lang+'/'+lang+'-'+str(docCount)+'.txt','w') as filename: filename.write(text.encode('utf-8')) text = '' chunkCount = 0 if docCount == totalDocs: break if __name__ == "__main__": for lang in NEW_LANGS: generateDocs(lang,CHUNKSIZE,TOTALDOCS)
[ "amish1804@gmail.com" ]
amish1804@gmail.com
d1cb18ffc13f0eada00419376bcaa748ede307f6
c91e1be16c43d7e461fd75bb268fa86aa231a997
/06/assembler/assemble
9b3daa5e2ffbb63f25c3555296fc690fdb9cf81d
[]
no_license
benwilhelm/nand2tetris
a89c52b89b72b4d0a9152ac62be0a6ecf279f66b
291765a7cbb98053644f6226abcc76f4356d9a6d
refs/heads/master
2021-09-03T03:16:18.776137
2018-01-05T04:33:30
2018-01-05T04:33:30
110,318,788
0
0
null
null
null
null
UTF-8
Python
false
false
706
#!/usr/bin/env python import sys import parser import code import symboltable lines = open(sys.argv[1], 'r') # remove comments and whitespace commands = [parser.extractCommand(line) for line in lines] # filter out lines that are not commands commands = [command for command in commands if command != None] # build symbol table symbols = symboltable.buildTable(commands) # remove lines that are just labels commands = [command for command in commands if parser.commandType(command) != 'L_COMMAND'] # convert symbol commands to their line numbers or RAM addresses commands = [symboltable.convertSymbol(command) for command in commands] for command in commands: print parser.parseCommand(command)
[ "ben@doublebeamdesign.com" ]
ben@doublebeamdesign.com
d23a710daa0970e79663b65be0009ab46dc7b607
93a9c36e85bd753608516efe581edf96bbdc3580
/user/migrations/0002_auto_20190115_1838.py
aaec583aff5cb88eaad4c7d00cfc0d67e5237dca
[]
no_license
zhouf1234/django_obj
bef6a13fc3d183070725fcb937da7a0c4a688e1c
bb10edc03dfdbe692b6293ffc3e1d33a374604cf
refs/heads/master
2020-05-05T03:05:24.838804
2019-04-05T10:18:27
2019-04-05T10:18:27
179,660,674
0
0
null
null
null
null
UTF-8
Python
false
false
352
py
# Generated by Django 2.1.3 on 2019-01-15 18:38 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('user', '0001_initial'), ] operations = [ migrations.RenameField( model_name='users', old_name='nikename', new_name='nickname', ), ]
[ "=" ]
=
ac97bd0d029519758be787a33fc1fa1192491180
cd99b28dd25b894e4a9d13e06ac7e8c077760b45
/server/parameter.py
89dee922b59a2f24d0cb64b8232e23814b384798
[]
no_license
nlfox/hp
3288d4f9f2db86bc91eb0418721b56ca870d9b30
65802502452e00ebf71f9fd78aa7dcefbeca548b
refs/heads/master
2021-08-26T08:36:03.442921
2017-11-22T15:17:13
2017-11-22T15:17:13
107,770,937
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
import json class Parameter(object): def __init__(self, jsonData): self.obj = json.loads(jsonData) self.program = self.obj["name"] self.obj = self.obj["data"] def getParam(self): param = self.program + " " for i, v in self.obj.iteritems(): param += "-" + str(i) + " " + str(v) + " " return param
[ "nlfox@msn.cn" ]
nlfox@msn.cn
04639bfbcc22066b7701423101ce96385654d8df
9c53d9a199e7a64ff3041b4da3683d5122c53aca
/build/first_pkg/catkin_generated/pkg.develspace.context.pc.py
e18218a80176b9fd8834151103b4c5323b7008a3
[]
no_license
NoaOr/robotics-ex2
bdd7cd0669158e3412e922921a0cf684785f23f2
1ca2d15d4b45e7db37f6c6b185b9e59fbf537928
refs/heads/master
2020-04-08T13:41:21.462335
2018-11-27T21:37:08
2018-11-27T21:37:08
159,402,253
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "first_pkg" PROJECT_SPACE_DIR = "/home/noa/catkin_ws/devel" PROJECT_VERSION = "0.0.0"
[ "noaor7@gmail.com" ]
noaor7@gmail.com
6e76664daad277a2abc5ab8a61795d3ad133efaa
c039f37a0f215efa7388b52ad1707c06aad5fd7d
/5-lstmsig/multirun/queuing.py
2e519983638181c2ffb6c8c6dd214a0476d483b0
[]
no_license
vishalbelsare/phd-code
41ac4bceb21a8f6f3da17a4e3340b618c04d3420
f5aa3e18a30e9567bc0583ef89a274ef42795d2a
refs/heads/master
2021-06-12T09:18:26.685488
2019-04-21T21:56:19
2019-04-21T21:56:19
163,163,793
0
0
null
2021-04-04T18:10:46
2018-12-26T09:46:53
C++
UTF-8
Python
false
false
1,983
py
from azure.servicebus import ServiceBusService, Message, Queue import itertools, tabulate primaryKey="SOME_PRIMARY_KEY" bus_service=ServiceBusService( service_namespace="jezsbus", shared_access_key_name="RootManageSharedAccessKey", shared_access_key_value=primaryKey) _name='taskqueue' def queue_length(): return bus_service.get_queue(queue_name=_name).message_count def empty_queue(): while 1: msg=bus_service.receive_queue_message(queue_name=_name, peek_lock=False, timeout=0) if msg.body is None: if 0 == queue_length(): return raise RuntimeError("failed to empty queue") def create_queue(): bus_service.create_queue(_name) #fill_queue and get_from_queue require something like a ParamSet: #must provide from_string_index and size. class ParameterSet: def __init__(self, possibilities): self.possibilities=possibilities self.all_combinations=[list(i) for i in itertools.product(*possibilities)] self.size = len(self.all_combinations) def from_int_index(self,i): return self.all_combinations[i] def from_string_index(self,i): return self.from_int_index(int(i)) class ExplicitParameterSet: def __init__(self, wanted_combinations): self.wanted_combinations = wanted_combinations self.size = len(self.wanted_combinations) def from_int_index(self,i): return self.wanted_combinations[i] def from_string_index(self,i): return self.from_int_index(int(i)) def _fill_queue(maximum): for i in range(maximum): bus_service.send_queue_message(_name, Message(str(i))) def fill_queue(parameters): empty_queue() _fill_queue(parameters.size) #returns None when nothing to do def get_from_queue(parameters): msg = bus_service.receive_queue_message(queue_name=_name, peek_lock=False, timeout=0) if msg.body is None: return None return parameters.from_string_index(msg.body)
[ "bottler@users.noreply.github.com" ]
bottler@users.noreply.github.com
5da9a6a2bba2798788ddb402cfd55e5f8751aefb
0d559c6336703a35b23a586bf130fd2d2fab0f26
/Game.py
56088bb5120bd0eeddc675472ed4bc6a9de6d284
[]
no_license
yentingw/public-goods-game
dfda9e8fa9700f718eb8500acd29556506dd4950
95ccfa8dc97fef66376bd735601e6271f2ebf373
refs/heads/master
2020-09-16T10:55:43.699110
2019-11-24T13:13:57
2019-11-24T13:13:57
223,748,201
2
0
null
null
null
null
UTF-8
Python
false
false
10,493
py
import argparse import datetime import logging import logging.config import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import yaml import csv from JointQAgent import JointQAgent as jointA from QAgent import QAgent as qA from plots import Plotter __game_config = {} __logger = None class Game(object): def __init__(self, agent_config, game_config): self.agent_type_list = game_config['agent_type_list'] self.episodes = game_config['episodes'] + 1 self.population_size = game_config['population_size'] self.group_size = game_config['group_size'] self.group_number = self.population_size / self.group_size self.rounds = game_config['rounds'] self.F = game_config['F'] self.M = game_config['M'] self.cost = game_config['cost'] / (self.F + 1) self.agents = {} self.dir = game_config['output_directory'] self.logger = game_config['logger'] self.plotter = game_config['plotter'] self.timestamp = game_config['timestamp'] self.csv = game_config['csv'] self.plot = game_config['plot'] self.grand_table = [[0, 0] for i in range(self.population_size)] self.heatmap_q_ls = [] self.heatmap_j_ls = [] self.plot_q_ls = [0 for i in range(self.rounds)] self.plot_j_ls = [0 for i in range(self.rounds)] self.df_q = pd.DataFrame(columns=['Round', 'C%']) self.df_j = pd.DataFrame(columns=['Round', 'C%']) for a in self.agent_type_list: for i in range(self.population_size): if a == 'QAgent': if 'QAgent' in self.agents: self.agents['QAgent'].append(qA(agent_config, i, self.rounds)) else: self.agents['QAgent'] = [qA(agent_config, i, self.rounds)] elif a == 'JointQAgent': if 'JointQAgent' in self.agents: self.agents['JointQAgent'].append(jointA(agent_config, i, self.rounds)) else: self.agents['JointQAgent'] = [jointA(agent_config, i, self.rounds)] def shuffle_group(self, agents): np.random.shuffle(agents) group_num = self.population_size / self.group_size list_arrays = np.array_split(agents, group_num) return [grp.tolist() for grp in list_arrays] def play_game(self, episodes): self.logger.info(f"START: {self.timestamp}") for e in range(1, episodes+1): if 'QAgent' in self.agents: self.q_agent_play(e, episodes) if 'JointQAgent' in self.agents: self.joint_q_agent_play(e, episodes) self.logger.info("Calculations finished. Begin Dumping...") if self.csv: self.logger.info("Writing to CSV") if 'QAgent' in self.agents: self.load_to_heatmap_csv(self.heatmap_q_ls, "Q_Agent") self.load_to_plot_csv(self.plot_q_ls, self.df_q, "Q_Agent") if 'JointQAgent' in self.agents: self.load_to_heatmap_csv(self.heatmap_j_ls, "J_Agent") self.load_to_plot_csv(self.plot_j_ls, self.df_j, "J_Agent") if self.plot: self.logger.info("Begin plotting") if 'QAgent' in self.agents and 'JointQAgent' in self.agents: self.plotter.QJ_plot(self.df_q, self.df_j) # if 'QAgent' in self.agents: # self.plotter.plotAverAgent(df_q_info_q, "Q-Learning Agent") # if 'JointQAgent' in self.agents: # self.plotter.plotAverAgent(df_q_info_j, "Joint Action Q-Learning QAgent") self.logger.info(f"FINISH: {datetime.datetime.utcnow().isoformat()}") def q_agent_play(self, episode, episodes): groups = self.shuffle_group(self.agents['QAgent']) self.logger.debug(f"Number of q groups: {len(groups)};\t agents: {[agent.id for grps in groups for agent in grps]}") group_num = 0 for grp in groups: group_num += 1 for r in range(self.rounds): actions = [] for agent in grp: agent_action = agent.choose_action(r, episode / episodes) actions.append(agent_action) self.logger.debug(f"episode: {episode}, round: {r}, group_num: {group_num}, agent_id: {agent.id}, agent_type: {agent.__class__.__name__}, action: {agent_action}") c_count = self.count_c(actions) / self.group_size self.plot_q_ls[r] += c_count if (episode == episodes - 1) and (r == self.rounds - 1): self.heatmap_q_ls.append(c_count) rewards = self.calculate_reward(actions) for (agent, reward) in zip(self.agents['QAgent'], rewards): agent.update_reward(r, reward) def joint_q_agent_play(self, episode, episodes): j_groups = self.shuffle_group(self.agents['JointQAgent']) self.logger.debug(f"Number of Joint Q agent groups: {len(j_groups)};\t agents: {[agent.id for grps in j_groups for agent in grps]}") group_num = 0 for j_group in j_groups: group_num += 1 history_id = [agent.id for agent in j_group] history = [] for i in history_id: history.append(self.grand_table[i]) for r in range(self.rounds): actions = [] actions_tuple = [] for agent in j_group: opp_list = create_opp_list(j_group, agent) agent_action = agent.choose_action(r, history, opp_list, episode / episodes, history_id) actions.append(agent_action) actions_tuple.append((agent.id, agent_action)) self.logger.debug(f"episode: {episode}, round: {r}, group_num: {group_num}, agent_id: {agent.id}, agent_type: {agent.__class__.__name__}, action: {agent_action}, opp_list: {opp_list}") c_count = self.count_c(actions) / self.group_size self.plot_j_ls[r] += c_count if (episode == episodes - 1) and (r == self.rounds - 1): self.heatmap_j_ls.append(c_count) if (episode % 10 == 0): self.df_episode_j = self.df_episode_j.append({'Episode': episode, 'Round': r, 'C%': c_count}, ignore_index=True) rewards = self.calculate_reward(actions) for i in range(len(history)): history[i][actions[i]] += 1 for (agent, reward) in zip(j_group, rewards): agent.update_reward(r, reward, actions_tuple) self.logger.debug(f"history_id: {history_id}, table: {self.grand_table}") def count_c(self, actions): count = 0 for i in actions: if i == 0: count += 1 return count def load_to_heatmap_csv(self, heatmap_ls, agent_type): c_count = 0 for i in heatmap_ls: c_count += i c_count /= self.group_number ls = [self.population_size, self.F / 5, self.M / 5, c_count] heatmap_path = f"outputs/heatmap_" + agent_type + ".csv" with open(heatmap_path, 'a', newline='') as f: writer = csv.writer(f) writer.writerow(ls) f.close() def load_to_plot_csv(self, plot_ls, df, agent_type): for i in range(self.rounds): repeat = self.group_number * self.episodes plot_ls[i] /= repeat column1 = [i for i in range(self.rounds)] column2 = plot_ls a = np.array([column1, column2]) a = a.T for i in a: df = df.append({'Round': i[0], 'C%': i[1]}, ignore_index=True) path = f"{self.dir}/plot_c%_" + agent_type + ".csv" df.to_csv(path) if agent_type == "Q_Agent": self.df_q = df if agent_type == "J_Agent": self.df_j = df #self.plotter.q_plot(df) def calculate_reward(self, actions): """ reward formula """ num_c = 0 for a in actions: if a == 0: num_c += 1 sigma = 0 delta_count = num_c - self.M if delta_count < 0: sigma = 0 else: sigma = 1 d_reward = (num_c * self.F / self.group_size * self.cost) * sigma c_reward = d_reward - self.cost return [(c_reward, d_reward)[a] for a in actions] def create_opp_list(agents, a): opp_list = [] for agent in agents: if agent != a: opp_list.append(str(agent.getId())) return opp_list def toBinary(plannings): return [int(i) for i in bin(plannings)[2:]] def print_agents(agents): df_q_info = pd.DataFrame(columns=['round', 'agent_type', 'agent_id', 'acc_reward', 'q_value']) df_j_info = pd.DataFrame(columns=['round', 'agent_type', 'agent_id', 'acc_reward', 'q_value']) for agent in agents: if agent.__class__.__name__ == 'QAgent': df_q_info = df_q_info.append(agent.get_info()) elif agent.__class__.__name__ == 'JointQAgent': df_j_info = df_j_info.append(agent.get_info()) df_q_info.to_csv(r'{}/q_info.csv'.format(self.dir), index=False) df_j_info.to_csv(r'{}/j_info.csv'.format(self.dir), index=False) #self.plotter.plotQAgent(df_q_info) #self.plotter.plotAverQAgent(df_q_info) def load_ini_config(): with open("game.yaml", 'r') as stream: try: global __game_config __game_config = yaml.safe_load(stream) except yaml.YAMLError as err: raise(err) def setup_directory(cfg): """ Create target Directory if it doesn't exist """ directory = f"{cfg.get('output_directory', 'outputs')}-F{cfg['F']}-M{cfg['M']}-P{cfg['population_size']}" if not os.path.exists(directory): os.mkdir(directory) else: directory = f"{directory}-{cfg['timestamp']}".replace(':', '-') os.mkdir(directory) return directory def main(): """ main functions """ global __logger load_ini_config() agent_config = __game_config['agents'] game_config = __game_config['game'] with open('logging.yaml', 'r') as f: logging.config.dictConfig(yaml.safe_load(f.read())) __logger = logging.getLogger(__name__) game_config['logger'] = logging.getLogger('game') agent_config['logger'] = logging.getLogger('agent') agent_config['episodes'] = game_config['episodes'] # Optionally Get F, M, and Population Overrides from CLI parser = argparse.ArgumentParser(description='F,M,Population Overrides') parser.add_argument('--F', type=int, default=game_config['F']) parser.add_argument('--M', type=int, default=game_config['M']) parser.add_argument('--P', type=int, default=game_config['population_size']) args = parser.parse_args() game_config['F'] = args.F game_config['M'] = args.M game_config['population_size'] = args.P __logger.info(args) game_config['timestamp'] = datetime.datetime.utcnow().isoformat() game_config['output_directory'] = setup_directory(game_config) game_config['plotter'] = Plotter(agent_config, game_config) game = Game(agent_config, game_config) game.play_game(game_config['episodes']) if __name__== "__main__": main()
[ "tingwang1223@gmail.com" ]
tingwang1223@gmail.com
47754719a7927be9ffcd7eb7237789b985e80405
1fe8d4133981e53e88abf633046060b56fae883e
/venv/lib/python3.8/site-packages/tensorflow/python/tpu/datasets 2.py
e975daf9f4e1326f82e35a1c71ecdf1c30bd154b
[]
no_license
Akira331/flask-cifar10
6c49db8485038731ce67d23f0972b9574746c7a7
283e7a2867c77d4b6aba7aea9013bf241d35d76c
refs/heads/master
2023-06-14T16:35:06.384755
2021-07-05T14:09:15
2021-07-05T14:09:15
382,864,970
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:7884cb6a0cfa6e71f17a315d69eafbd78c0d930943f672ec88676d9ce3f90718 size 7899
[ "business030301@gmail.com" ]
business030301@gmail.com
b9d3c202609dd2fda40b9a9958ebbb400e37b431
c097a8dc88f856c651fdaa23a088f42967f54b07
/att_table/views.py
8252162ada2ad2e5132298adf06cb6d20af2145f
[]
no_license
Yahyaabualhaj/django_react_integration_ex
9ee644294d4f079fc3ba699836c0752e32dffdbd
d9e78fc3d92e683362cc7fbf687a0431cf6025bb
refs/heads/master
2020-04-30T17:15:07.473089
2019-03-24T11:46:42
2019-03-24T11:46:42
176,973,821
0
0
null
null
null
null
UTF-8
Python
false
false
834
py
from django.core import serializers from django.http import HttpResponse from django.shortcuts import render from django.views.generic import (ListView) from att_table.models import Vacation class TablesList(ListView): model = Vacation context_object_name = 'lists' # queryset = Vacation.objects.all() template_name = 'att_table/react_tem.html' def get_queryset(self): vacation_data = Vacation.objects.all() data = serializers.serialize('json', vacation_data) return HttpResponse(data, content_type="application/json") def table(request): vacation_data = Vacation.objects.all() vacation_data_json = serializers.serialize('json', vacation_data) return render(request, "att_table/react_tem.html", context={'table': vacation_data_json})
[ "noreply@github.com" ]
Yahyaabualhaj.noreply@github.com
05ab8ad13167a301e5a49c1f9cad91ff928a7012
5d557b9e823a3461e832e7113b559b6fa623fbfd
/main/Final/Modular/Object_detection_picamera.py
03f85dbbd5194692b9b36d0bf8b2a8c648cbd510
[]
no_license
vieri2006/SmartPlasticRecycler
fae8a6223daba6bdd01a5e9630a365e3b76f4e4b
04af1252bc6f0d74d0535e70af8cdc248a4ac649
refs/heads/master
2022-11-08T19:17:16.958560
2020-06-27T10:19:22
2020-06-27T10:19:22
275,344,257
0
0
null
null
null
null
UTF-8
Python
false
false
8,000
py
######## Picamera Object Detection Using Tensorflow Classifier ######### # # Author: Evan Juras # Date: 4/15/18 # Description: # This program uses a TensorFlow classifier to perform object detection. # It loads the classifier uses it to perform object detection on a Picamera feed. # It draws boxes and scores around the objects of interest in each frame from # the Picamera. It also can be used with a webcam by adding "--usbcam" # when executing this script from the terminal. ## Some of the code is copied from Google's example at ## https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb ## and some is copied from Dat Tran's example at ## https://github.com/datitran/object_detector_app/blob/master/object_detection_app.py ## but I changed it to make it more understandable to me. # Import packages import os import cv2 import numpy as np from picamera.array import PiRGBArray from picamera import PiCamera import tensorflow as tf import argparse import sys # Set up camera constants IM_WIDTH = 1280 IM_HEIGHT = 720 #IM_WIDTH = 640 Use smaller resolution for #IM_HEIGHT = 480 slightly faster framerate # Select camera type (if user enters --usbcam when calling this script, # a USB webcam will be used) camera_type = 'picamera' parser = argparse.ArgumentParser() parser.add_argument('--usbcam', help='Use a USB webcam instead of picamera', action='store_true') args = parser.parse_args() if args.usbcam: camera_type = 'usb' # This is needed since the working directory is the object_detection folder. sys.path.append('..') # Import utilites from utils import label_map_util from utils import visualization_utils as vis_util # Name of the directory containing the object detection module we're using MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09' # Grab path to current working directory CWD_PATH = os.getcwd() # Path to frozen detection graph .pb file, which contains the model that is used # for object detection. PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb') # Path to label map file PATH_TO_LABELS = os.path.join(CWD_PATH,'data','mscoco_label_map.pbtxt') # Number of classes the object detector can identify NUM_CLASSES = 90 ## Load the label map. # Label maps map indices to category names, so that when the convolution # network predicts `5`, we know that this corresponds to `airplane`. # Here we use internal utility functions, but anything that returns a # dictionary mapping integers to appropriate string labels would be fine label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # Load the Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') sess = tf.Session(graph=detection_graph) # Define input and output tensors (i.e. data) for the object detection classifier # Input tensor is the image image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Output tensors are the detection boxes, scores, and classes # Each box represents a part of the image where a particular object was detected detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represents level of confidence for each of the objects. # The score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') # Number of objects detected num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Initialize frame rate calculation frame_rate_calc = 1 freq = cv2.getTickFrequency() font = cv2.FONT_HERSHEY_SIMPLEX # Initialize camera and perform object detection. # The camera has to be set up and used differently depending on if it's a # Picamera or USB webcam. # I know this is ugly, but I basically copy+pasted the code for the object # detection loop twice, and made one work for Picamera and the other work # for USB. ### Picamera ### if camera_type == 'picamera': # Initialize Picamera and grab reference to the raw capture camera = PiCamera() camera.resolution = (IM_WIDTH,IM_HEIGHT) camera.framerate = 10 rawCapture = PiRGBArray(camera, size=(IM_WIDTH,IM_HEIGHT)) rawCapture.truncate(0) for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True): t1 = cv2.getTickCount() # Acquire frame and expand frame dimensions to have shape: [1, None, None, 3] # i.e. a single-column array, where each item in the column has the pixel RGB value frame = np.copy(frame1.array) frame.setflags(write=1) frame_expanded = np.expand_dims(frame, axis=0) # Perform the actual detection by running the model with the image as input (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: frame_expanded}) print(np.squeeze(boxes)) # Draw the results of the detection (aka 'visulaize the results') vis_util.visualize_boxes_and_labels_on_image_array( frame, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8, min_score_thresh=0.40) cv2.putText(frame,"FPS: {0:.2f}".format(frame_rate_calc),(30,50),font,1,(255,255,0),2,cv2.LINE_AA) # All the results have been drawn on the frame, so it's time to display it. cv2.imshow('Object detector', frame) t2 = cv2.getTickCount() time1 = (t2-t1)/freq frame_rate_calc = 1/time1 # Press 'q' to quit if cv2.waitKey(1) == ord('q'): break rawCapture.truncate(0) camera.close() ### USB webcam ### elif camera_type == 'usb': # Initialize USB webcam feed camera = cv2.VideoCapture(0) ret = camera.set(3,IM_WIDTH) ret = camera.set(4,IM_HEIGHT) while(True): t1 = cv2.getTickCount() # Acquire frame and expand frame dimensions to have shape: [1, None, None, 3] # i.e. a single-column array, where each item in the column has the pixel RGB value ret, frame = camera.read() frame_expanded = np.expand_dims(frame, axis=0) # Perform the actual detection by running the model with the image as input (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: frame_expanded}) # Draw the results of the detection (aka 'visulaize the results') vis_util.visualize_boxes_and_labels_on_image_array( frame, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8, min_score_thresh=0.85) cv2.putText(frame,"FPS: {0:.2f}".format(frame_rate_calc),(30,50),font,1,(255,255,0),2,cv2.LINE_AA) # All the results have been drawn on the frame, so it's time to display it. cv2.imshow('Object detector', frame) t2 = cv2.getTickCount() time1 = (t2-t1)/freq frame_rate_calc = 1/time1 # Press 'q' to quit if cv2.waitKey(1) == ord('q'): break camera.release() cv2.destroyAllWindows()
[ "noreply@github.com" ]
vieri2006.noreply@github.com
31ea606b8a5805025bd159185a00aba285323a07
c3624cdd68bbefc419a4e67ed370a022d090e796
/audio_common/sound_play/scripts/soundplay_node.py
936938440a73a76564a9bf5da56c2ea73b8bd881
[]
no_license
hubeihubei/Robot_waiter
37df356975b5ec812e86b11a780eae5c45db0c9e
e805c0bebb2d5d360039f85cdf4ed94271aeaf8d
refs/heads/master
2021-01-09T20:19:51.860246
2019-08-09T10:24:35
2019-08-09T10:24:35
63,237,228
0
0
null
null
null
null
UTF-8
Python
false
false
17,687
py
#!/usr/bin/env python #*********************************************************** #* Software License Agreement (BSD License) #* #* Copyright (c) 2009, Willow Garage, Inc. #* All rights reserved. #* #* Redistribution and use in source and binary forms, with or without #* modification, are permitted provided that the following conditions #* are met: #* #* * Redistributions of source code must retain the above copyright #* notice, this list of conditions and the following disclaimer. #* * Redistributions in binary form must reproduce the above #* copyright notice, this list of conditions and the following #* disclaimer in the documentation and/or other materials provided #* with the distribution. #* * Neither the name of the Willow Garage nor the names of its #* contributors may be used to endorse or promote products derived #* from this software without specific prior written permission. #* #* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS #* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS #* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, #* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, #* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT #* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN #* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #* POSSIBILITY OF SUCH DAMAGE. #*********************************************************** # Author: Blaise Gassend import roslib import rospy import threading import os import logging import sys import traceback import tempfile from diagnostic_msgs.msg import DiagnosticStatus, KeyValue, DiagnosticArray from sound_play.msg import SoundRequest, SoundRequestAction, SoundRequestResult, SoundRequestFeedback import actionlib from std_msgs.msg import String try: import pygst pygst.require('0.10') import gst import gobject except: str=""" ************************************************************** Error opening pygst. Is gstreamer installed? (sudo apt-get install python-gst0.10 ************************************************************** """ rospy.logfatal(str) print str exit(1) def sleep(t): try: rospy.sleep(t) except: pass class soundtype: STOPPED = 0 LOOPING = 1 COUNTING = 2 def __init__(self, file, volume = 1.0): self.lock = threading.RLock() self.state = self.STOPPED self.sound = gst.element_factory_make("playbin","player") if (":" in file): uri = file elif os.path.isfile(file): uri = "file://" + os.path.abspath(file) else: rospy.logerr('Error: URI is invalid: %s'%file) self.uri = uri self.volume = volume self.sound.set_property('uri', uri) self.sound.set_property("volume",volume) self.staleness = 1 self.file = file self.bus = self.sound.get_bus() self.bus.add_signal_watch() self.bus.connect("message", self.on_stream_end) def on_stream_end(self, bus, message): if message.type == gst.MESSAGE_EOS: self.state = self.STOPPED def __del__(self): # stop our GST object so that it gets garbage-collected self.stop() def update(self): self.bus.poll(gst.MESSAGE_ERROR, 10) def loop(self): self.lock.acquire() try: self.staleness = 0 if self.state == self.COUNTING: self.stop() if self.state == self.STOPPED: self.sound.seek_simple(gst.FORMAT_TIME, gst.SEEK_FLAG_FLUSH, 0) self.sound.set_state(gst.STATE_PLAYING) self.state = self.LOOPING finally: self.lock.release() def stop(self): if self.state != self.STOPPED: self.lock.acquire() try: self.sound.set_state(gst.STATE_NULL) self.state = self.STOPPED finally: self.lock.release() def single(self): self.lock.acquire() try: rospy.logdebug("Playing %s"%self.uri) self.staleness = 0 if self.state == self.LOOPING: self.stop() self.sound.seek_simple(gst.FORMAT_TIME, gst.SEEK_FLAG_FLUSH, 0) self.sound.set_state(gst.STATE_PLAYING) self.state = self.COUNTING finally: self.lock.release() def command(self, cmd): if cmd == SoundRequest.PLAY_STOP: self.stop() elif cmd == SoundRequest.PLAY_ONCE: self.single() elif cmd == SoundRequest.PLAY_START: self.loop() def get_staleness(self): self.lock.acquire() position = 0 duration = 0 try: position = self.sound.query_position(gst.FORMAT_TIME)[0] duration = self.sound.query_duration(gst.FORMAT_TIME)[0] except Exception, e: position = 0 duration = 0 finally: self.lock.release() if position != duration: self.staleness = 0 else: self.staleness = self.staleness + 1 return self.staleness def get_playing(self): return self.state == self.COUNTING class soundplay: _feedback = SoundRequestFeedback() _result = SoundRequestResult() def stopdict(self,dict): for sound in dict.values(): sound.stop() def stopall(self): self.stopdict(self.builtinsounds) self.stopdict(self.filesounds) self.stopdict(self.voicesounds) def select_sound(self, data): if data.sound == SoundRequest.PLAY_FILE: if not data.arg2: if not data.arg in self.filesounds.keys(): rospy.logdebug('command for uncached wave: "%s"'%data.arg) try: self.filesounds[data.arg] = soundtype(data.arg) except: rospy.logerr('Error setting up to play "%s". Does this file exist on the machine on which sound_play is running?'%data.arg) return else: rospy.logdebug('command for cached wave: "%s"'%data.arg) sound = self.filesounds[data.arg] else: absfilename = os.path.join(roslib.packages.get_pkg_dir(data.arg2), data.arg) if not absfilename in self.filesounds.keys(): rospy.logdebug('command for uncached wave: "%s"'%absfilename) try: self.filesounds[absfilename] = soundtype(absfilename) except: rospy.logerr('Error setting up to play "%s" from package "%s". Does this file exist on the machine on which sound_play is running?'%(data.arg, data.arg2)) return else: rospy.logdebug('command for cached wave: "%s"'%absfilename) sound = self.filesounds[absfilename] elif data.sound == SoundRequest.SAY: if not data.arg in self.voicesounds.keys(): rospy.logdebug('command for uncached text: "%s"' % data.arg) txtfile = tempfile.NamedTemporaryFile(prefix='sound_play', suffix='.txt') (wavfile,wavfilename) = tempfile.mkstemp(prefix='sound_play', suffix='.wav') txtfilename=txtfile.name os.close(wavfile) voice = data.arg2 try: txtfile.write(data.arg) txtfile.flush() os.system("text2wave -eval '("+voice+")' "+txtfilename+" -o "+wavfilename) try: if os.stat(wavfilename).st_size == 0: raise OSError # So we hit the same catch block except OSError: rospy.logerr('Sound synthesis failed. Is festival installed? Is a festival voice installed? Try running "rosdep satisfy sound_play|sh". Refer to http://wiki.ros.org/sound_play/Troubleshooting') return self.voicesounds[data.arg] = soundtype(wavfilename) finally: txtfile.close() else: rospy.logdebug('command for cached text: "%s"'%data.arg) sound = self.voicesounds[data.arg] else: rospy.logdebug('command for builtin wave: %i'%data.sound) if not data.sound in self.builtinsounds: params = self.builtinsoundparams[data.sound] self.builtinsounds[data.sound] = soundtype(params[0], params[1]) sound = self.builtinsounds[data.sound] if sound.staleness != 0 and data.command != SoundRequest.PLAY_STOP: # This sound isn't counted in active_sounds rospy.logdebug("activating %i %s"%(data.sound,data.arg)) self.active_sounds = self.active_sounds + 1 sound.staleness = 0 # if self.active_sounds > self.num_channels: # mixer.set_num_channels(self.active_sounds) # self.num_channels = self.active_sounds return sound def callback(self,data): if not self.initialized: return self.mutex.acquire() # Force only one sound at a time self.stopall() try: if data.sound == SoundRequest.ALL and data.command == SoundRequest.PLAY_STOP: self.stopall() else: sound = self.select_sound(data) sound.command(data.command) except Exception, e: rospy.logerr('Exception in callback: %s'%str(e)) rospy.loginfo(traceback.format_exc()) finally: self.mutex.release() rospy.logdebug("done callback") # Purge sounds that haven't been played in a while. def cleanupdict(self, dict): purgelist = [] for (key,sound) in dict.iteritems(): try: staleness = sound.get_staleness() except Exception, e: rospy.logerr('Exception in cleanupdict for sound (%s): %s'%(str(key),str(e))) staleness = 100 # Something is wrong. Let's purge and try again. #print "%s %i"%(key, staleness) if staleness >= 10: purgelist.append(key) if staleness == 0: # Sound is playing self.active_sounds = self.active_sounds + 1 for key in purgelist: rospy.logdebug('Purging %s from cache'%key) dict[key].stop() # clean up resources del dict[key] def cleanup(self): self.mutex.acquire() try: self.active_sounds = 0 self.cleanupdict(self.filesounds) self.cleanupdict(self.voicesounds) self.cleanupdict(self.builtinsounds) except: rospy.loginfo('Exception in cleanup: %s'%sys.exc_info()[0]) finally: self.mutex.release() def diagnostics(self, state): try: da = DiagnosticArray() ds = DiagnosticStatus() ds.name = rospy.get_caller_id().lstrip('/') + ": Node State" if state == 0: ds.level = DiagnosticStatus.OK ds.message = "%i sounds playing"%self.active_sounds ds.values.append(KeyValue("Active sounds", str(self.active_sounds))) ds.values.append(KeyValue("Allocated sound channels", str(self.num_channels))) ds.values.append(KeyValue("Buffered builtin sounds", str(len(self.builtinsounds)))) ds.values.append(KeyValue("Buffered wave sounds", str(len(self.filesounds)))) ds.values.append(KeyValue("Buffered voice sounds", str(len(self.voicesounds)))) elif state == 1: ds.level = DiagnosticStatus.WARN ds.message = "Sound device not open yet." else: ds.level = DiagnosticStatus.ERROR ds.message = "Can't open sound device. See http://wiki.ros.org/sound_play/Troubleshooting" da.status.append(ds) da.header.stamp = rospy.get_rostime() self.diagnostic_pub.publish(da) except Exception, e: rospy.loginfo('Exception in diagnostics: %s'%str(e)) def execute_cb(self, data): data = data.sound_request if not self.initialized: return self.mutex.acquire() # Force only one sound at a time self.stopall() try: if data.sound == SoundRequest.ALL and data.command == SoundRequest.PLAY_STOP: self.stopall() else: sound = self.select_sound(data) sound.command(data.command) r = rospy.Rate(1) start_time = rospy.get_rostime() success = True while sound.get_playing(): sound.update() if self._as.is_preempt_requested(): rospy.loginfo('sound_play action: Preempted') sound.stop() self._as.set_preempted() success = False break self._feedback.playing = sound.get_playing() self._feedback.stamp = rospy.get_rostime() - start_time self._as.publish_feedback(self._feedback) r.sleep() if success: self._result.playing = self._feedback.playing self._result.stamp = self._feedback.stamp rospy.loginfo('sound_play action: Succeeded') self._as.set_succeeded(self._result) except Exception, e: rospy.logerr('Exception in actionlib callback: %s'%str(e)) rospy.loginfo(traceback.format_exc()) finally: self.mutex.release() rospy.logdebug("done actionlib callback") def __init__(self): rospy.init_node('sound_play') self.diagnostic_pub = rospy.Publisher("/diagnostics", DiagnosticArray, queue_size=1) rootdir = os.path.join(roslib.packages.get_pkg_dir('sound_play'),'sounds') self.builtinsoundparams = { SoundRequest.BACKINGUP : (os.path.join(rootdir, 'BACKINGUP.ogg'), 0.1), SoundRequest.NEEDS_UNPLUGGING : (os.path.join(rootdir, 'NEEDS_UNPLUGGING.ogg'), 1), SoundRequest.NEEDS_PLUGGING : (os.path.join(rootdir, 'NEEDS_PLUGGING.ogg'), 1), SoundRequest.NEEDS_UNPLUGGING_BADLY : (os.path.join(rootdir, 'NEEDS_UNPLUGGING_BADLY.ogg'), 1), SoundRequest.NEEDS_PLUGGING_BADLY : (os.path.join(rootdir, 'NEEDS_PLUGGING_BADLY.ogg'), 1), } self.no_error = True self.initialized = False self.active_sounds = 0 self.mutex = threading.Lock() sub = rospy.Subscriber("robotsound", SoundRequest, self.callback) self._as = actionlib.SimpleActionServer('sound_play', SoundRequestAction, execute_cb=self.execute_cb, auto_start = False) self._as.start() self.mutex.acquire() self.sleep(0.5) # For ros startup race condition self.diagnostics(1) while not rospy.is_shutdown(): while not rospy.is_shutdown(): self.init_vars() self.no_error = True self.initialized = True self.mutex.release() try: self.idle_loop() # Returns after inactive period to test device availability #print "Exiting idle" except: rospy.loginfo('Exception in idle_loop: %s'%sys.exc_info()[0]) finally: self.mutex.acquire() self.diagnostics(2) self.mutex.release() def init_vars(self): self.num_channels = 10 self.builtinsounds = {} self.filesounds = {} self.voicesounds = {} self.hotlist = [] if not self.initialized: rospy.loginfo('sound_play node is ready to play sound') def sleep(self, duration): try: rospy.sleep(duration) except rospy.exceptions.ROSInterruptException: pass def idle_loop(self): self.last_activity_time = rospy.get_time() while (rospy.get_time() - self.last_activity_time < 10 or len(self.builtinsounds) + len(self.voicesounds) + len(self.filesounds) > 0) \ and not rospy.is_shutdown(): #print "idle_loop" self.diagnostics(0) self.sleep(1) self.cleanup() #print "idle_exiting" def callback(data): rospy.loginfo(rospy.get_caller_id() + "I heard %s", data.data) def listener(): rospy.init_node('listener', anonymous=True) rospy.Subscriber("chatter", String, callback) rospy.spin() if __name__ == '__main__': soundplay() listener()
[ "2752233840@qq.com" ]
2752233840@qq.com
044a6ce242357a8fa5278a930a9a768cde9209e7
9a68aafce22f8087bfad4e0449495d5287bc8ebc
/bigdata/hw3/hw3c.py
3eff32401c9d242abe210784b1470938c652492a
[ "MIT" ]
permissive
vador/coursera-homework
5f0904c9781526fa0765d3c17e1bea1f3cefd120
e94ee76f910fe6a5b1602252fc1869575bd876fe
refs/heads/master
2021-01-17T23:23:13.123216
2013-10-05T20:20:20
2013-10-05T20:20:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,515
py
# -*- coding: utf-8 -*- import mincemeat import glob from stopwords import * datasource = dict() key = 0 for fname in glob.glob('hw3data/*'): with open(fname) as f: content = f.readlines() for line in content: datasource[key] = line key = key + 1 def mapfn(k, v): import string allStopWords={'a':1, 'about':1, 'above':1, 'after':1, 'again':1, 'against':1, 'all':1, 'am':1, 'an':1, 'and':1, 'any':1, 'are':1, 'arent':1, 'as':1, 'at':1, 'be':1, 'because':1, 'been':1, 'before':1, 'being':1, 'below':1, 'between':1, 'both':1, 'but':1, 'by':1, 'cant':1, 'cannot':1, 'could':1, 'couldnt':1, 'did':1, 'didnt':1, 'do':1, 'does':1, 'doesnt':1, 'doing':1, 'dont':1, 'down':1, 'during':1, 'each':1, 'few':1, 'for':1, 'from':1, 'further':1, 'had':1, 'hadnt':1, 'has':1, 'hasnt':1, 'have':1, 'havent':1, 'having':1, 'he':1, 'hed':1, 'hell':1, 'hes':1, 'her':1, 'here':1, 'heres':1, 'hers':1, 'herself':1, 'him':1, 'himself':1, 'his':1, 'how':1, 'hows':1, 'i':1, 'id':1, 'ill':1, 'im':1, 'ive':1, 'if':1, 'in':1, 'into':1, 'is':1, 'isnt':1, 'it':1, 'its':1, 'its':1, 'itself':1, 'lets':1, 'me':1, 'more':1, 'most':1, 'mustnt':1, 'my':1, 'myself':1, 'no':1, 'nor':1, 'not':1, 'of':1, 'off':1, 'on':1, 'once':1, 'only':1, 'or':1, 'other':1, 'ought':1, 'our':1, 'ours ':1, 'ourselves':1, 'out':1, 'over':1, 'own':1, 'same':1, 'shant':1, 'she':1, 'shed':1, 'shell':1, 'shes':1, 'should':1, 'shouldnt':1, 'so':1, 'some':1, 'such':1, 'than':1, 'that':1, 'thats':1, 'the':1, 'their':1, 'theirs':1, 'them':1, 'themselves':1, 'then':1, 'there':1, 'theres':1, 'these':1, 'they':1, 'theyd':1, 'theyll':1, 'theyre':1, 'theyve':1, 'this':1, 'those':1, 'through':1, 'to':1, 'too':1, 'under':1, 'until':1, 'up':1, 'very':1, 'was':1, 'wasnt':1, 'we':1, 'wed':1, 'well':1, 'were':1, 'weve':1, 'were':1, 'werent':1, 'what':1, 'whats':1, 'when':1, 'whens':1, 'where':1, 'wheres':1, 'which':1, 'while':1, 'who':1, 'whos':1, 'whom':1, 'why':1, 'whys':1, 'with':1, 'wont':1, 'would':1, 'wouldnt':1, 'you':1, 'youd':1, 'youll':1, 'youre':1, 'youve':1, 'your':1, 'yours':1, 'yourself':1, 'yourselves':1} info = v.split(':::') id = info[0] authorlist = info[1] title = info[2] title = title.lower() title.replace('-', ' ') title = title.translate(None, string.punctuation) words = title.split() logging.info("words: %s" % (words)) wordsStopped = [] for w in words: if w not in allStopWords: wordsStopped.append(w) logging.info("wordsstopped: %s" % (wordsStopped,)) for author in authorlist.split('::'): logging.info("author: %s" % (author,)) for w in wordsStopped: yield author, w def reducefn(k, vs): logging.info("vs received: %s" % (vs)) kvs = dict() #vvs = [item for sublist in vs for item in sublist] for w in vs: if w in kvs: kvs[w] = kvs[w] + 1 else: kvs[w] = 1 return kvs def obsolete(): kvs = dict() for w in vs: if w in kvs: kvs[w] = kvs[w] + 1 else: kvs[w] = 1 wordlist = sorted(kvs, key=lambda key: kvs[key], reverse=True) countlist = list() for w in wordlist: countlist.append(kvs[w]) result = (wordlist, countlist) return result s = mincemeat.Server() s.datasource = datasource s.mapfn = mapfn s.reducefn = reducefn results = s.run_server(password="changeme") #for w in results: # print w, results[w] #print results
[ "vador@grabeuh.com" ]
vador@grabeuh.com
585ca217e56ae4d3a6ae723a1d01f0076b99a9a3
e861bd6ff0e2ebeb95e1c4feb6a8ba8df069c588
/backend/board/admin.py
7418f5bdeb9fdc7d3baf639f377bc09ffe583e7f
[ "MIT" ]
permissive
lgvaioli/kanbanlache
6924c7b1e9d70d434a3f9accb26e36037ceddfa6
08e5473946eb67f61acbf799ebc8c555d31d5ec1
refs/heads/master
2023-02-19T21:06:47.865463
2021-01-16T16:13:57
2021-01-16T16:13:57
276,716,456
0
0
MIT
2021-01-16T16:13:59
2020-07-02T18:15:29
JavaScript
UTF-8
Python
false
false
158
py
from django.contrib import admin from .models import Board, Section, Task admin.site.register(Board) admin.site.register(Section) admin.site.register(Task)
[ "laureano3400@gmail.com" ]
laureano3400@gmail.com
7f4eb287098db534b7d8e7201b840a58822f9e26
95155d0722a0bf57b7d50e03bfe2e95552b8f152
/meating_planer/settings.py
bca192dd626bef07013a5f2fa0c448144ad9476d
[]
no_license
amiruddinsaifi/django.github.io
80aa5004271a7892f54ab3acaa7ec0222bf26008
1a36a243f5c821184ecbac3ebb29529f9e9e2d25
refs/heads/master
2022-04-24T01:13:52.459451
2020-04-26T03:48:06
2020-04-26T03:48:06
258,932,744
0
0
null
null
null
null
UTF-8
Python
false
false
3,112
py
""" Django settings for meating_planer project. Generated by 'django-admin startproject' using Django 3.0.3. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'nidey45$c+%$y(@r6pcc52d&40u+gu_f12*jlyzs)uf-q61u5s' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'meating_planer.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'meating_planer.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
[ "amiruddinsaifi017@gmail.com" ]
amiruddinsaifi017@gmail.com
86bc9833945f1dc98c5dfc6fc8b6ecd1c82ad884
a9c7fb130854beb86568ad082ccb1a05ef0ef6a6
/Advocate/migrations/0019_auto_20160904_1920.py
49cfcf33fe5192c1bf5b2412736ae30cbfde3dc6
[]
no_license
HNMN3/Advocate_Diary_New
deb85164ebebc1c1593434c89c96ea4f522bcb2b
a5338a344c64e4efb7668b2c70756d380e01cff1
refs/heads/master
2021-06-08T11:48:39.456657
2016-09-25T07:20:26
2016-09-25T07:20:26
69,147,386
0
1
null
2021-03-23T12:34:51
2016-09-25T06:19:40
JavaScript
UTF-8
Python
false
false
851
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-09-04 13:50 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Advocate', '0018_auto_20160904_1917'), ] operations = [ migrations.RemoveField( model_name='case', name='case_stage', ), migrations.RemoveField( model_name='case', name='case_type', ), migrations.RemoveField( model_name='case', name='court_of', ), migrations.RemoveField( model_name='casehistory', name='case', ), migrations.DeleteModel( name='Case', ), migrations.DeleteModel( name='CaseHistory', ), ]
[ "hnmn3.nitin@gmail.com" ]
hnmn3.nitin@gmail.com
aaf8624e9438adbb1bb0ab3cf3146fa9f9a3ff19
b657a5c8f2aec7f042bbb01918daaac0f6d66f61
/Assignment3/P4_A3.py
20fa3c4e00a2c675e5fd7ec6357ed17574d3601c
[]
no_license
Tushargohel/Assignment_py
de363a634c2ae551c23b6318d2b664e5d63405ba
1ef9b4f454a025ee5b7aae462e0182de4059bdc7
refs/heads/master
2021-01-19T12:31:06.729673
2015-04-24T07:06:14
2015-04-24T07:06:14
32,247,231
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
list1 = [a for a in range(-10, 10)] print(list1) print("maximum num is :-", max(list1)) print("minimum num is :-", min(list1)) print("sum of list elements is :-", sum(list1))
[ "tushargohel25@gmail.com" ]
tushargohel25@gmail.com
a1883cd02094762301a57b90b0b4ccc9c937c274
7955cc1c3153982977774cf4ea035f9afc831d5d
/start_point/db/run_sql.py
6e4934b64e2ccee1c6d3ce8e117e3f6e441ce2ff
[]
no_license
SinnottTM/codeclan_w4_d3_sql_RESTful_routes
506a1102eb007d471fc522038678edd155cf2730
b66d53f8f69bce5cb57c98005f49fa97fbcc397a
refs/heads/main
2023-03-25T11:46:10.885485
2021-03-18T01:14:04
2021-03-18T01:14:04
348,899,914
0
0
null
null
null
null
UTF-8
Python
false
false
694
py
# the run_sql file establishes the connection with the database. It gives instructions for how to connect and what to do if there are issues regarding connection etc. import psycopg2 import psycopg2.extras as ext def run_sql(sql, values = None): conn = None results = [] try: conn=psycopg2.connect("dbname='task_manager'") cur = conn.cursor(cursor_factory=ext.DictCursor) cur.execute(sql, values) conn.commit() results = cur.fetchall() cur.close() except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() return results
[ "tim.sinnott86@gmail.com" ]
tim.sinnott86@gmail.com
a3b1f3ae9127584f887fe77bf1beecd4298e3577
8ae7adaa9402155278a7cea09435ab9c7fc96700
/projet/the_eight_queens_puzzle.py
035dc624893697eb54ec58877f7bfd9d489debfa
[]
no_license
FirelightFlagboy/OPC-python
cafc69d2b74d9c8187ad7fa51d599a99e7914460
0fb074ba5421870ebb36a2b6f5eb9107fd02f296
refs/heads/master
2020-03-19T04:27:34.905183
2018-06-02T15:48:29
2018-06-02T15:48:29
135,830,774
0
0
null
null
null
null
UTF-8
Python
false
false
1,951
py
# -*-coding:utf-8 -* import os from array import array nb_sol = 0 def ft_add_glob(): global nb_sol nb_sol += 1 def ft_print_sol_fast(tab): src = str() for i in range(0,8): src += str(tab[i] + 1) + " " print(src) def ft_print_sol_fancy(tab): src = "._._._._._._._._.\n" for line in range(0, 8): src += "|" for row in range(0, 8): if row == tab[line]: src += "X" else: src += " " src += "|" src += "\n._._._._._._._._.\n" print(src) def ft_is_free(tab, line, row): boolean = True for li in range(0, line): ro = 0 for ro in range(0, 8): r = tab[li] boolean = boolean and (True if (abs(line - li) != abs(row - r)) and row != r else False) return boolean def ft_place_queens(tab, line, dysplay): row = 0 if line >= 8: if dysplay == 1: ft_print_sol_fancy(tab) elif dysplay == 2: ft_print_sol_fast(tab) ft_add_glob() else: for row in range(0, 8): if ft_is_free(tab, line, row): tab[line] = row ft_place_queens(tab, line + 1, dysplay) tab[line] = 0 pass def ft_cmp(s1, s2): l1 = len(s1) l2 = len(s2) i = 0 while i < l1 and i < l2 and s1[i] == s2[i]: i += 1 if i >= l1 and i >= l2: return 0 elif i >= l1 and i < l2: return -ord(s2[i]) elif i < l1 and i >= l2: return ord(s1[i]) def main(): """lancer la fonction qui vas chercher les solutions""" print("====Dysplay Method====") print("-1 fancy/slow") print("-2 fast/speed") print("======================") error = 1 while error == 1: error = 0 choice = input("saisissez option :\n>>>") try: choice = int(choice) except (TypeError, ValueError, NameError) as e: print("impossible de convertir \"{}\" en integer".format(choice)) error = 1 dysplay = choice tab = array('i') for i in range(0,8): tab.append(0) ft_place_queens(tab,0, dysplay) print("nb de solution :", nb_sol) os.system("pause") if __name__ == '__main__': """permet de lancer le programme principale""" main()
[ "firelight.flagboy@gmail.com" ]
firelight.flagboy@gmail.com
09eed3dbf259eeefd3093603ca08efeaff52c8b8
f3d8e1351e52526959e2d44d72fd716924f1751d
/problems/406_queue_reconstruction_by_height.py
81b529c40406d2fbab1e058a00ed3324524932e3
[]
no_license
xueyuanl/leetcode-py
c27a4faff5b9040d57cf864d3a11f1683d8182e3
03d3e34522c8c819388634ab4b63077da864a4e1
refs/heads/master
2021-07-14T23:40:32.913822
2021-07-14T13:43:19
2021-07-14T13:43:19
206,973,737
4
0
null
null
null
null
UTF-8
Python
false
false
497
py
class Solution(object): """ best explanation: https://leetcode.com/problems/queue-reconstruction-by-height/discuss/167308/Python-solution """ def reconstructQueue(self, people): """ :type people: List[List[int]] :rtype: List[List[int]] """ people_sorted = sorted(people, key=lambda x: (-x[0], x[1])) res = [] for p in people_sorted: res.insert(p[1], p) return res if __name__ == '__main__': pass
[ "15186846+xueyuanl@users.noreply.github.com" ]
15186846+xueyuanl@users.noreply.github.com
ce8b754ec0abd08554af81fdd5d0f1b868c711bd
bb38f63620d00b9b9d21e6f52f8e541440f660c1
/functions/artificial_generation/dvf_generation.py
9fb8898679c1e9ea0d35306396f46d26b834302b
[ "Apache-2.0" ]
permissive
hsokooti/RegNet
5f7ba712fb3997e3b9af73966f0c06f0f41797a3
28a8b6132677bb58e9fc811c0dd15d78913c7e86
refs/heads/master
2023-03-22T14:44:14.630764
2021-03-17T22:51:34
2021-03-17T22:51:34
116,586,770
211
63
null
null
null
null
UTF-8
Python
false
false
30,843
py
from . import utils as ag_utils import copy from joblib import Parallel, delayed import logging import multiprocessing import numpy as np import os import SimpleITK as sitk import scipy.ndimage as ndimage import functions.image.image_processing as ip import functions.setting.setting_utils as su def zero(im_input_sitk): size_im = im_input_sitk.GetSize()[::-1] dvf = np.zeros(size_im+(3,)) return dvf def single_freq(setting, im_info, stage, im_input_sitk, gonna_generate_next_im=False): im_info_su = {'data': im_info['data'], 'deform_exp': im_info['deform_exp'], 'type_im': im_info['type_im'], 'cn': im_info['cn'], 'dsmooth': im_info['dsmooth'], 'stage': stage, 'padto': im_info['padto']} seed_number = ag_utils.seed_number_by_im_info(im_info, 'single_freq', stage=stage, gonna_generate_next_im=gonna_generate_next_im) deform_number = im_info['deform_number'] if gonna_generate_next_im: max_deform = setting['deform_exp'][im_info['deform_exp']]['NextIm_MaxDeform'] dim_im = 3 # The deformation of the NextIm is always 3D seed_number = seed_number + 1 grid_border_to_zero = setting['deform_exp'][im_info['deform_exp']]['SingleFrequency_SetGridBorderToZero'][0] grid_spacing = setting['deform_exp'][im_info['deform_exp']]['SingleFrequency_BSplineGridSpacing'][0] grid_smoothing_sigma = [i/stage for i in setting['deform_exp'][im_info['deform_exp']]['SingleFrequency_GridSmoothingSigma'][0]] bspline_transform_address = su.address_generator(setting, 'NextBSplineTransform', **im_info_su) bspline_im_address = su.address_generator(setting, 'NextBSplineTransformIm', **im_info_su) else: max_deform = setting['deform_exp'][im_info['deform_exp']]['MaxDeform'] * \ setting['deform_exp'][im_info['deform_exp']]['SingleFrequency_MaxDeformRatio'][deform_number] dim_im = 3 grid_border_to_zero = setting['deform_exp'][im_info['deform_exp']]['SingleFrequency_SetGridBorderToZero'][deform_number] grid_spacing = setting['deform_exp'][im_info['deform_exp']]['SingleFrequency_BSplineGridSpacing'][deform_number] grid_smoothing_sigma = [i/stage for i in setting['deform_exp'][im_info['deform_exp']]['SingleFrequency_GridSmoothingSigma'][deform_number]] bspline_transform_address = su.address_generator(setting, 'BSplineTransform', **im_info_su) bspline_im_address = su.address_generator(setting, 'BSplineTransformIm', **im_info_su) random_state = np.random.RandomState(seed_number) if setting['DVFPad_S'+str(stage)] > 0: # im_input is already zeropadded in this case padded_mm = setting['DVFPad_S'+str(stage)] * im_input_sitk.GetSpacing()[0] grid_border_to_zero = (grid_border_to_zero + np.ceil(np.repeat(padded_mm, int(dim_im)) / grid_spacing)).astype(np.int) if len(np.unique(im_input_sitk.GetSpacing())) > 1: raise ValueError('dvf_generation: padding is only implemented for isotropic voxel size. current voxel size = [{}, {}, {}]'.format( im_input_sitk.GetSpacing()[0], im_input_sitk.GetSpacing()[1], im_input_sitk.GetSpacing()[2])) bcoeff = bspline_coeff(im_input_sitk, max_deform, grid_border_to_zero, grid_smoothing_sigma, grid_spacing, random_state, dim_im, artificial_generation='single_frequency') if setting['WriteBSplineTransform']: sitk.WriteTransform(bcoeff, bspline_transform_address) bspline_im_sitk_tuple = bcoeff.GetCoefficientImages() bspline_im = np.concatenate((np.expand_dims(sitk.GetArrayFromImage(bspline_im_sitk_tuple[0]), axis=-1), np.expand_dims(sitk.GetArrayFromImage(bspline_im_sitk_tuple[1]), axis=-1), np.expand_dims(sitk.GetArrayFromImage(bspline_im_sitk_tuple[1]), axis=-1)), axis=-1) bspline_spacing = bspline_im_sitk_tuple[0].GetSpacing() bspling_origin = [list(bspline_im_sitk_tuple[0].GetOrigin())[i] + list(im_input_sitk.GetOrigin())[i] for i in range(3)] bspline_direction = im_input_sitk.GetDirection() bspline_im_sitk = ip.array_to_sitk(bspline_im, origin=bspling_origin, spacing=bspline_spacing, direction=bspline_direction, is_vector=True) sitk.WriteImage(bspline_im_sitk, bspline_im_address) dvf_filter = sitk.TransformToDisplacementFieldFilter() dvf_filter.SetSize(im_input_sitk.GetSize()) dvf_sitk = dvf_filter.Execute(bcoeff) dvf = sitk.GetArrayFromImage(dvf_sitk) mask_to_zero = setting['deform_exp'][im_info['deform_exp']]['MaskToZero'] if mask_to_zero is not None and not gonna_generate_next_im: sigma = setting['deform_exp'][im_info['deform_exp']]['SingleFrequency_BackgroundSmoothingSigma'][deform_number] dvf = do_mask_to_zero_gaussian(setting, im_info_su, dvf, mask_to_zero, stage, max_deform, sigma) if setting['deform_exp'][im_info['deform_exp']]['DVFNormalization']: dvf = normalize_dvf(dvf, max_deform) return dvf def respiratory_motion(setting, im_info, stage, moving_image_mode='Exhale'): """ Respiratory motion consists of four deformations: [2009 Hub A stochastic approach to estimate the uncertainty] 1) Extension of the Chest in the Transversal Plane with scale of s0 2) Decompression of the Lung in Cranio-Caudal Direction with maximum of t0 3) Random Deformation 4) Tissue Sliding Between Lung and Rib Cage (not implemented yet) :param setting: :param im_info: :param stage: :param moving_image_mode: 'Exhale' : mode_coeff = 1, 'Inhale': mode_coeff = -1 dvf[:, :, :, 2] = mode_coeff * dvf_craniocaudal dvf[:, :, :, 1] = mode_coeff * dvf_anteroposterior :return: """ im_info_su = {'data': im_info['data'], 'deform_exp': im_info['deform_exp'], 'type_im': im_info['type_im'], 'cn': im_info['cn'], 'dsmooth': im_info['dsmooth'], 'stage': stage, 'padto': im_info['padto']} seed_number = ag_utils.seed_number_by_im_info(im_info, 'respiratory_motion', stage=stage) random_state = np.random.RandomState(seed_number) deform_number = im_info['deform_number'] t0_max = setting['deform_exp'][im_info['deform_exp']]['RespiratoryMotion_t0'][deform_number] s0_max = setting['deform_exp'][im_info['deform_exp']]['RespiratoryMotion_s0'][deform_number] max_deform = setting['deform_exp'][im_info['deform_exp']]['MaxDeform'] * \ setting['deform_exp'][im_info['deform_exp']]['RespiratoryMotion_MaxDeformRatio'][deform_number] max_deform_single_freq = setting['deform_exp'][im_info['deform_exp']]['MaxDeform'] * \ setting['deform_exp'][im_info['deform_exp']]['RespiratoryMotion_SingleFrequency_MaxDeformRatio'][deform_number] grid_border_to_zero = setting['deform_exp'][im_info['deform_exp']]['RespiratoryMotion_SetGridBorderToZero'][deform_number] grid_spacing = setting['deform_exp'][im_info['deform_exp']]['RespiratoryMotion_BSplineGridSpacing'][deform_number] grid_smoothing_sigma = [i / stage for i in setting['deform_exp'][im_info['deform_exp']]['RespiratoryMotion_GridSmoothingSigma'][deform_number]] t0 = random_state.uniform(0.8 * t0_max, 1.1 * t0_max) s0 = random_state.uniform(0.8 * s0_max, 1.1 * s0_max) if moving_image_mode == 'Inhale': mode_coeff = -1 else: mode_coeff = 1 im_sitk = sitk.ReadImage(su.address_generator(setting, 'Im', **im_info_su)) lung_im = sitk.GetArrayFromImage(sitk.ReadImage(su.address_generator(setting, 'Lung', **im_info_su))).astype(np.bool) i_lung = np.where(lung_im) diaphragm_slice = np.min(i_lung[0]) anteroposterior_dim = 1 shift_of_center_scale = random_state.uniform(2, 12) # in voxel center_scale = np.round(np.max(i_lung[anteroposterior_dim]) - shift_of_center_scale / stage) # 10 mm above the maximum lung. will be approximately close to vertebra # sliding motion # mask_rib = im > 300 # r = 3 # struct = np.ones([2*r+1, 2*r+1, 2*r+1], dtype=np.bool) # mask_rib_close = ndimage.morphology.binary_closing(mask_rib, structure=struct) # slc = 50 # import matplotlib.pyplot as plt # plt.figure(); plt.imshow(im[slc, :, :], cmap='gray') # plt.figure(); plt.imshow(mask_rib[slc, :, :]) # plt.figure(); plt.imshow(lung_im[slc, :, :]) # plt.figure(); plt.imshow(mask_rib_close[slc, :, :]) logging.debug('Diaphragm slice is ' + str(diaphragm_slice)) indices = [None] * 3 indices[0], indices[1], indices[2] = [i * stage for i in np.meshgrid(np.arange(0, np.shape(lung_im)[0]), np.arange(0, np.shape(lung_im)[1]), np.arange(0, np.shape(lung_im)[2]), indexing='ij')] scale_transversal_plane = np.ones(np.shape(lung_im)[0]) dvf_anteroposterior = np.zeros(np.shape(lung_im)) dvf_craniocaudal = np.zeros(np.shape(lung_im)) lung_extension = (np.max(i_lung[0]) - diaphragm_slice) / 2 alpha = 1.3 / lung_extension for z in range(np.shape(scale_transversal_plane)[0]): if z < diaphragm_slice: scale_transversal_plane[z] = 1 + s0 dvf_craniocaudal[z, :, :] = t0 elif diaphragm_slice <= z < diaphragm_slice + lung_extension: scale_transversal_plane[z] = 1 + s0 * (1 - np.log(1 + (z - diaphragm_slice) * alpha) / np.log(1 + lung_extension * alpha)) dvf_craniocaudal[z, :, :] = t0 * (1 - np.log(1 + (z - diaphragm_slice) * alpha) / np.log(1 + lung_extension * alpha)) else: scale_transversal_plane[z] = 1 dvf_craniocaudal[z, :, :] = 0 dvf_anteroposterior[z, :, :] = (indices[anteroposterior_dim][z, :, :] - center_scale) * (scale_transversal_plane[z] - 1) dvf = np.zeros(list(np.shape(lung_im))+[3]) dvf[:, :, :, 2] = mode_coeff * dvf_craniocaudal dvf[:, :, :, 1] = -mode_coeff * dvf_anteroposterior bcoeff = bspline_coeff(im_sitk, max_deform_single_freq, grid_border_to_zero, grid_smoothing_sigma, grid_spacing, random_state, dim_im=3, artificial_generation='respiratory_motion') dvf_single_freq_filter = sitk.TransformToDisplacementFieldFilter() dvf_single_freq_filter.SetSize(im_sitk.GetSize()) dvf_single_freq_sitk = dvf_single_freq_filter.Execute(bcoeff) dvf_single_freq = sitk.GetArrayFromImage(dvf_single_freq_sitk) if setting['deform_exp'][im_info['deform_exp']]['DVFNormalization']: dvf_single_freq = normalize_dvf(dvf_single_freq, max_deform) dvf_single_freq[:, :, :, 2] = dvf_single_freq[:, :, :, 2] * 0.3 # make the dvf in the slice direction smaller dvf = dvf + dvf_single_freq mask_to_zero = setting['deform_exp'][im_info['deform_exp']]['MaskToZero'] if mask_to_zero is not None: sigma = setting['deform_exp'][im_info['deform_exp']]['RespiratoryMotion_BackgroundSmoothingSigma'][deform_number] dvf = do_mask_to_zero_gaussian(setting, im_info_su, dvf, mask_to_zero, stage, max_deform, sigma) else: raise ValueError('In the current implementation, respiratory_motion is not valid without mask_to_zero') if setting['deform_exp'][im_info['deform_exp']]['DVFNormalization']: dvf = normalize_dvf(dvf, max_deform * 1.2) return dvf def mixed_freq(setting, im_info, stage): im_info_su = {'data': im_info['data'], 'deform_exp': im_info['deform_exp'], 'type_im': im_info['type_im'], 'cn': im_info['cn'], 'dsmooth': im_info['dsmooth'], 'stage': stage, 'padto': im_info['padto']} seed_number = ag_utils.seed_number_by_im_info(im_info, 'mixed_freq', stage=stage) random_state = np.random.RandomState(seed_number) deform_number = im_info['deform_number'] max_deform = setting['deform_exp'][im_info['deform_exp']]['MaxDeform'] * \ setting['deform_exp'][im_info['deform_exp']]['MixedFrequency_MaxDeformRatio'][deform_number] grid_smoothing_sigma = [i/stage for i in setting['deform_exp'][im_info['deform_exp']]['MixedFrequency_GridSmoothingSigma'][deform_number]] grid_border_to_zero = setting['deform_exp'][im_info['deform_exp']]['MixedFrequency_SetGridBorderToZero'][deform_number] grid_spacing = setting['deform_exp'][im_info['deform_exp']]['MixedFrequency_BSplineGridSpacing'][deform_number] # Approximately number_dilation = setting['deform_exp'][im_info['deform_exp']]['MixedFrequency_Np'][deform_number] im_canny_address = su.address_generator(setting, 'ImCanny', **im_info_su) im_sitk = sitk.ReadImage(su.address_generator(setting, 'Im', **im_info_su)) if os.path.isfile(im_canny_address): im_canny_sitk = sitk.ReadImage(im_canny_address) else: im_canny_sitk = sitk.CannyEdgeDetection(sitk.Cast(im_sitk, sitk.sitkFloat32), lowerThreshold=setting['deform_exp'][im_info['deform_exp']]['Canny_LowerThreshold'], upperThreshold=setting['deform_exp'][im_info['deform_exp']]['Canny_UpperThreshold']) sitk.WriteImage(sitk.Cast(im_canny_sitk, sitk.sitkInt8), im_canny_address) lung_im = sitk.GetArrayFromImage(sitk.ReadImage(su.address_generator(setting, 'Lung', **im_info_su))).astype(np.bool) im_canny = sitk.GetArrayFromImage(im_canny_sitk) # erosion with ndimage is 5 times faster than SimpleITK lung_dilated = ndimage.binary_dilation(lung_im) available_region = np.logical_and(lung_dilated, im_canny) available_region = np.tile(np.expand_dims(available_region, axis=-1), 3) dilated_edge = np.copy(available_region) itr_edge = 0 i_edge = [None]*3 select_voxel = [None]*3 block_low = [None]*3 block_high = [None]*3 for dim in range(3): i_edge[dim] = np.where(available_region[:, :, :, dim] > 0) # Previously, we only selected voxels on the edges (CannyEdgeDetection), but now we use all voxels. if (len(i_edge[0][0]) == 0) or (len(i_edge[1][0]) == 0) or (len(i_edge[2][0]) == 0): logging.debug('dvf_generation: We are out of points. Plz change the threshold value of Canny method!!!!! ') # Old method. only edges! while (len(i_edge[0][0]) > 4) and (len(i_edge[1][0]) > 4) and (len(i_edge[2][0]) > 4) and (itr_edge < number_dilation): # i_edge will change at the end of this while loop! no_more_dilatation_in_this_region = False for dim in range(3): select_voxel[dim] = int(random_state.randint(0, len(i_edge[dim][0]) - 1, 1, dtype=np.int64)) block_low[dim], block_high[dim] = center_to_block(setting, center=np.array([i_edge[dim][0][select_voxel[dim]], i_edge[dim][1][select_voxel[dim]], i_edge[dim][2][select_voxel[dim]]]), radius=round(setting['deform_exp'][im_info['deform_exp']]['MixedFrequency_BlockRadius']/stage), im_ref=im_sitk) if itr_edge == 0: struct = np.ones((3, 3, 3), dtype=bool) for dim in range(3): dilated_edge[:, :, :, dim] = ndimage.binary_dilation(dilated_edge[:, :, :, dim], structure=struct) elif itr_edge < np.round(10*number_dilation/12): # We like to include zero deformation in our training set. no_more_dilatation_in_this_region = True for dim in range(3): dilated_edge[block_low[dim][0]:block_high[dim][0], block_low[dim][1]:block_high[dim][1], block_low[dim][2]:block_high[dim][2], dim] = False elif itr_edge < np.round(11*number_dilation/12): struct = ndimage.generate_binary_structure(3, 2) for dim in range(3): mask_for_edge_dilation = np.zeros(np.shape(dilated_edge[:, :, :, dim]), dtype=bool) mask_for_edge_dilation[block_low[dim][0]:block_high[dim][0], block_low[dim][1]:block_high[dim][1], block_low[dim][2]:block_high[dim][2]] = True dilated_edge[:, :, :, dim] = ndimage.binary_dilation(dilated_edge[:, :, :, dim], structure=struct, mask=mask_for_edge_dilation) if (itr_edge % 2) == 0: no_more_dilatation_in_this_region = True elif itr_edge < number_dilation: struct = np.zeros((9, 9, 9), dtype=bool) if (itr_edge % 3) == 0: struct[0:5, :, :] = True if (itr_edge % 3) == 1: struct[:, 0:5, :] = True if (itr_edge % 3) == 2: struct[:, :, 0:5] = True for dim in range(3): mask_for_edge_dilation = np.zeros(np.shape(dilated_edge[:, :, :, dim]), dtype=bool) mask_for_edge_dilation[block_low[dim][0]:block_high[dim][0], block_low[dim][1]:block_high[dim][1], block_low[dim][2]:block_high[dim][2]] = True dilated_edge[:, :, :, dim] = ndimage.binary_dilation(dilated_edge[:, :, :, dim], structure=struct, mask=mask_for_edge_dilation) if random_state.uniform() > 0.3: no_more_dilatation_in_this_region = True if no_more_dilatation_in_this_region: available_region[block_low[dim][0]:block_high[dim][0], block_low[dim][1]:block_high[dim][1], block_low[dim][2]:block_high[dim][2], dim] = False if itr_edge >= np.round(10*number_dilation/12): for dim in range(3): i_edge[dim] = np.where(available_region[:, :, :, dim] > 0) itr_edge += 1 bcoeff = bspline_coeff(im_sitk, max_deform, grid_border_to_zero, grid_smoothing_sigma, grid_spacing, random_state, dim_im=3, artificial_generation='mixed_frequency') dvf_filter = sitk.TransformToDisplacementFieldFilter() dvf_filter.SetSize(im_sitk.GetSize()) smoothed_values_sitk = dvf_filter.Execute(bcoeff) smoothed_values = sitk.GetArrayFromImage(smoothed_values_sitk) dvf = (dilated_edge.astype(np.float64) * smoothed_values).astype(np.float64) if setting['DVFPad_S'+str(stage)] > 0: pad = setting['DVFPad_S'+str(stage)] dvf = np.pad(dvf, ((pad, pad), (pad, pad), (pad, pad), (0, 0)), 'constant', constant_values=(0,)) sigma_range = setting['deform_exp'][im_info['deform_exp']]['MixedFrequency_SigmaRange'][deform_number] sigma = random_state.uniform(low=sigma_range[0] / stage, high=sigma_range[1] / stage, size=3) dvf = smooth_dvf(dvf, sigma_blur=sigma, parallel_processing=setting['ParallelSearching']) if setting['deform_exp'][im_info['deform_exp']]['DVFNormalization']: dvf = normalize_dvf(dvf, max_deform) return dvf def translation(setting, im_info, stage, im_input_sitk): seed_number = ag_utils.seed_number_by_im_info(im_info, 'translation', stage=stage) random_state = np.random.RandomState(seed_number) deform_number = im_info['deform_number'] max_deform = setting['deform_exp'][im_info['deform_exp']]['MaxDeform'] * \ setting['deform_exp'][im_info['deform_exp']]['Translation_MaxDeformRatio'][deform_number] dim_im = setting['Dim'] translation_transform = sitk.TranslationTransform(dim_im) translation_magnitude = np.zeros(3) for dim in range(dim_im): if random_state.random_sample() > 0.8: translation_magnitude[dim] = 0 else: translation_magnitude[dim] = random_state.uniform(-max_deform, max_deform) translation_transform.SetParameters(translation_magnitude) dvf_filter = sitk.TransformToDisplacementFieldFilter() dvf_filter.SetSize(im_input_sitk.GetSize()) dvf_sitk = dvf_filter.Execute(translation_transform) dvf = sitk.GetArrayFromImage(dvf_sitk) return dvf def bspline_coeff(im_input_sitk, max_deform, grid_border_to_zero, grid_smoothing_sigma, grid_spacing, random_state, dim_im, artificial_generation=None): number_of_grids = list(np.round(np.array(im_input_sitk.GetSize()) * np.array(im_input_sitk.GetSpacing()) / grid_spacing)) number_of_grids = [int(i) for i in number_of_grids] # This is a bit funny, it has to be int (and not even np.int) # BCoeff = sitk.BSplineTransformInitializer(ImInput, numberOfGrids, order=3) # problem with the offset bcoeff = sitk.BSplineTransformInitializer(sitk.Image(im_input_sitk.GetSize(), sitk.sitkInt8), number_of_grids, order=3) bcoeff_parameters = random_state.uniform(-max_deform*4, max_deform*4, len(bcoeff.GetParameters())) # we choose numbers to be in range of MaxDeform, please note that there are two smoothing steps after this initialization. # So numbers will be much smaller. grid_side = bcoeff.GetTransformDomainMeshSize() if dim_im == 3: bcoeff_smoothed_dim = [None] * 3 for dim in range(3): bcoeff_dim = np.reshape(np.split(bcoeff_parameters, 3)[dim], [grid_side[2]+3, grid_side[1]+3, grid_side[0]+3]) # number of coefficients in grid is increased with 3 in simpleITK. if np.any(grid_border_to_zero): # in two steps, the marginal coefficient of the grids are set to zero: # 1. before smoothing the grid with gridBorderToZero+1 2. after smoothing the grid with gridBorderToZero non_zero_mask = np.zeros(np.shape(bcoeff_dim)) non_zero_mask[grid_border_to_zero[0] + 1:-grid_border_to_zero[0] - 1, grid_border_to_zero[1] + 1:-grid_border_to_zero[1] - 1, grid_border_to_zero[2] + 1:-grid_border_to_zero[2] - 1] = 1 bcoeff_dim = bcoeff_dim * non_zero_mask bcoeff_smoothed_dim[dim] = ndimage.filters.gaussian_filter(bcoeff_dim, grid_smoothing_sigma[dim]) if np.any(grid_border_to_zero): non_zero_mask = np.zeros(np.shape(bcoeff_dim)) non_zero_mask[grid_border_to_zero[0]:-grid_border_to_zero[0], grid_border_to_zero[1]:-grid_border_to_zero[1], grid_border_to_zero[2]:-grid_border_to_zero[2]] = 1 bcoeff_smoothed_dim[dim] = bcoeff_smoothed_dim[dim] * non_zero_mask bcoeff_parameters_smooth = np.hstack((np.reshape(bcoeff_smoothed_dim[0], -1), np.reshape(bcoeff_smoothed_dim[1], -1), np.reshape(bcoeff_smoothed_dim[2], -1))) else: raise ValueError('not implemented for 2D') if artificial_generation in ['single_frequency', 'respiratory_motion']: bcoeff_parameters_smooth_normalize = normalize_dvf(bcoeff_parameters_smooth, max_deform * 1.7) elif artificial_generation == 'mixed_frequency': bcoeff_parameters_smooth_normalize = normalize_dvf(bcoeff_parameters_smooth, max_deform * 2, min_deform=max_deform) else: raise ValueError("artificial_generation should be in ['single_frequency', 'mixed_frequency', 'respiratory_motion']") bcoeff.SetParameters(bcoeff_parameters_smooth_normalize) return bcoeff def smooth_dvf(dvf, dim_im=3, sigma_blur=None, parallel_processing=True): dvf_smooth = np.empty(np.shape(dvf)) if parallel_processing: num_cores = multiprocessing.cpu_count() - 2 if dim_im == 3: # The following line is not working in Windows [dvf_smooth[:, :, :, 0], dvf_smooth[:, :, :, 1], dvf_smooth[:, :, :, 2]] = \ Parallel(n_jobs=num_cores)(delayed(smooth_gaussian)(dvf=dvf[:, :, :, i], sigma=sigma_blur[i]) for i in range(np.shape(dvf)[3])) if dim_im == 2: [dvf_smooth[:, :, :, 0], dvf_smooth[:, :, :, 1]] = \ Parallel(n_jobs=num_cores)(delayed(smooth_gaussian)(dvf=dvf[:, :, :, i], sigma=sigma_blur[i]) for i in range(np.shape(dvf)[3])) dvf_smooth[:, :, :, 2] = dvf[:, :, :, 2] else: for dim in range(dim_im): dvf_smooth[:, :, :, dim] = smooth_gaussian(dvf[:, :, :, dim], sigma_blur[dim]) return dvf_smooth def normalize_dvf(dvf, max_deform, min_deform=None): max_dvf = max(abs(np.max(dvf)), abs(np.min(dvf))) if max_dvf > max_deform: dvf = dvf * max_deform / max_dvf if min_deform is not None: if max_dvf < min_deform: dvf = dvf * min_deform / max_dvf return dvf def smooth_gaussian(dvf, sigma): return ndimage.filters.gaussian_filter(dvf, sigma=sigma) def center_to_block(setting, center=None, radius=10, im_ref=None): block_low = center - radius block_high = center + radius if setting['Dim'] == 2: block_low[0] = center[0] - 1 block_high[0] = center[0] + 2 for dim in range(3): if block_low[dim] < 0: block_low[dim] = 0 if block_high[dim] > im_ref.GetSize()[-1-dim]: block_high[dim] = im_ref.GetSize()[-1-dim] return block_low, block_high def do_mask_to_zero_gaussian(setting, im_info_su, dvf, mask_to_zero, stage, max_deform, sigma): mask_address = su.address_generator(setting, mask_to_zero, **im_info_su) mask_im = sitk.GetArrayFromImage(sitk.ReadImage(mask_address)) dvf = dvf * np.repeat(np.expand_dims(mask_im, axis=3), np.shape(dvf)[3], axis=3) sigma = sigma / stage * max_deform / 7 # in stage 4 we should make this sigma smaller but at the same time sigma = np.tile(sigma, 3) # the max_deform in stage 4 is 20 which leads to negative jacobian. There is no problem for other sigma values in the code. dvf = smooth_dvf(dvf, sigma_blur=sigma, parallel_processing=setting['ParallelSearching']) return dvf def background_to_zero_linear(setting, im_info_su, gonna_generate_next_im=False): if gonna_generate_next_im: im_info_su_orig = copy.deepcopy(im_info_su) im_info_su_orig['dsmooth'] = 0 torso_address = su.address_generator(setting, 'Torso', **im_info_su_orig) else: torso_address = su.address_generator(setting, 'Torso', **im_info_su) torso_im = sitk.GetArrayFromImage(sitk.ReadImage(torso_address)) torso_distance = ndimage.morphology.distance_transform_edt(1 - torso_im, sampling=setting['VoxelSize']) mask_to_zero = torso_im.copy().astype(np.float) background_ind = [torso_im == 0] mask_to_zero[background_ind] = (1 / torso_distance[background_ind]) mask_to_zero[mask_to_zero < 0.05] = 0 return mask_to_zero def translation_with_bspline_grid(setting, im_input_sitk, im_info=None): seed_number = ag_utils.seed_number_by_im_info(im_info, 'translation') random_state = np.random.RandomState(seed_number) deform_number = im_info['deform_number'] max_deform = setting['deform_exp'][im_info['deform_exp']]['MaxDeform'] * \ setting['deform_exp'][im_info['deform_exp']]['Translation_MaxDeformRatio'][deform_number] dim_im = setting['Dim'] grid_border_to_zero = setting['deform_exp'][im_info['deform_exp']]['setGridBorderToZero_translation'][deform_number] grid_spacing = setting['deform_exp'][im_info['deform_exp']]['BsplineGridSpacing_translation'][deform_number] if setting['DVFPad_S1'] > 0: # ImInput is already zeropadded in this case padded_mm = setting['DVFPad_S1'] * im_input_sitk.GetSpacing()[0] grid_border_to_zero = (grid_border_to_zero + np.ceil(np.repeat(padded_mm, int(dim_im[0])) / grid_spacing)).astype(np.int) if len(np.unique(im_input_sitk.GetSpacing())) > 1: raise ValueError('dvf_generation: padding is only implemented for isotropic voxel size. current voxel size = [{}, {}, {}]'.format( im_input_sitk.GetSpacing()[0], im_input_sitk.GetSpacing()[1], im_input_sitk.GetSpacing()[2])) number_of_grids = list(np.round(np.array(im_input_sitk.GetSize()) * np.array(im_input_sitk.GetSpacing()) / grid_spacing)) number_of_grids = [int(i) for i in number_of_grids] # it has to be int (and not even np.int) # BCoeff = sitk.BSplineTransformInitializer(ImInput, numberOfGrids, order=3) # problem with the offset bcoeff = sitk.BSplineTransformInitializer(sitk.Image(im_input_sitk.GetSize(), sitk.sitkInt8), number_of_grids, order=3) grid_side = bcoeff.GetTransformDomainMeshSize() if dim_im == 3: bcoeff_smoothed_dim = [None] * 3 translation_magnitude = [None] * 3 for dim in range(3): if random_state.random_sample() > 0.8: translation_magnitude[dim] = 0 else: translation_magnitude[dim] = random_state.uniform(-max_deform, max_deform) if dim == 2: if translation_magnitude[2] < max_deform * 2 / 3: if translation_magnitude[1] < max_deform * 2 / 3: if translation_magnitude[0] < max_deform * 2 / 3: translation_magnitude[2] = random_state.uniform(max_deform * 2 / 3, max_deform) sign_of_magnitude = random_state.random_sample() if sign_of_magnitude > 0.5: translation_magnitude[2] = - translation_magnitude[2] bcoeff_dim = np.ones([grid_side[2] + 3, grid_side[1] + 3, grid_side[0] + 3]) * translation_magnitude[dim] # number of coefficients in grid is increased with 3 in simpleITK. if np.any(grid_border_to_zero): non_zero_mask = np.zeros(np.shape(bcoeff_dim)) non_zero_mask[grid_border_to_zero[0]:-grid_border_to_zero[0], grid_border_to_zero[1]:-grid_border_to_zero[1], grid_border_to_zero[2]:-grid_border_to_zero[2]] = 1 bcoeff_dim = bcoeff_dim * non_zero_mask bcoeff_smoothed_dim[dim] = bcoeff_dim bcoeff_parameters_smooth = np.hstack((np.reshape(bcoeff_smoothed_dim[0], -1), np.reshape(bcoeff_smoothed_dim[1], -1), np.reshape(bcoeff_smoothed_dim[2], -1))) else: raise ValueError('not implemented for 2D') bcoeff.SetParameters(bcoeff_parameters_smooth) dvf_filter = sitk.TransformToDisplacementFieldFilter() dvf_filter.SetSize(im_input_sitk.GetSize()) dvf_sitk = dvf_filter.Execute(bcoeff) dvf = sitk.GetArrayFromImage(dvf_sitk) if setting['deform_exp'][im_info['deform_exp']]['DVFNormalization']: dvf = normalize_dvf(dvf, max_deform) return dvf
[ "h.sokooti@gmail.com" ]
h.sokooti@gmail.com
16020a9467be3e9c290b0cd196a1c48194e540c5
3450624ffe4e7aa187d3834ed6c5a503049d6e58
/vcuhunt/env/Lib/site-packages/pytest_django/fixtures.py
b2cc82580af41d20e698b46a1c63cbb4d5a6c73c
[ "MIT" ]
permissive
wdrescher/vcu-scavenger-hunt
018c53419de7a1fee95cabce89905119ae76d330
98dd642e2a8a648055bf726950741928d4ba2a96
refs/heads/master
2022-12-09T19:19:55.907388
2020-04-12T17:35:23
2020-04-12T17:35:23
236,537,824
0
0
MIT
2022-10-30T16:02:52
2020-01-27T16:36:16
Python
UTF-8
Python
false
false
14,814
py
"""All pytest-django fixtures""" from __future__ import with_statement import os import warnings from contextlib import contextmanager from functools import partial import pytest from . import live_server_helper from .django_compat import is_django_unittest from .lazy_django import skip_if_no_django __all__ = [ "django_db_setup", "db", "transactional_db", "django_db_reset_sequences", "admin_user", "django_user_model", "django_username_field", "client", "admin_client", "rf", "settings", "live_server", "_live_server_helper", "django_assert_num_queries", "django_assert_max_num_queries", ] @pytest.fixture(scope="session") def django_db_modify_db_settings_tox_suffix(): skip_if_no_django() tox_environment = os.getenv("TOX_PARALLEL_ENV") if tox_environment: # Put a suffix like _py27-django21 on tox workers _set_suffix_to_test_databases(suffix=tox_environment) @pytest.fixture(scope="session") def django_db_modify_db_settings_xdist_suffix(request): skip_if_no_django() xdist_suffix = getattr(request.config, "slaveinput", {}).get("slaveid") if xdist_suffix: # Put a suffix like _gw0, _gw1 etc on xdist processes _set_suffix_to_test_databases(suffix=xdist_suffix) @pytest.fixture(scope="session") def django_db_modify_db_settings_parallel_suffix( django_db_modify_db_settings_tox_suffix, django_db_modify_db_settings_xdist_suffix, ): skip_if_no_django() @pytest.fixture(scope="session") def django_db_modify_db_settings(django_db_modify_db_settings_parallel_suffix): skip_if_no_django() @pytest.fixture(scope="session") def django_db_use_migrations(request): return not request.config.getvalue("nomigrations") @pytest.fixture(scope="session") def django_db_keepdb(request): return request.config.getvalue("reuse_db") @pytest.fixture(scope="session") def django_db_createdb(request): return request.config.getvalue("create_db") @pytest.fixture(scope="session") def django_db_setup( request, django_test_environment, django_db_blocker, django_db_use_migrations, django_db_keepdb, django_db_createdb, django_db_modify_db_settings, ): """Top level fixture to ensure test databases are available""" from .compat import setup_databases, teardown_databases setup_databases_args = {} if not django_db_use_migrations: _disable_native_migrations() if django_db_keepdb and not django_db_createdb: setup_databases_args["keepdb"] = True with django_db_blocker.unblock(): db_cfg = setup_databases( verbosity=request.config.option.verbose, interactive=False, **setup_databases_args ) def teardown_database(): with django_db_blocker.unblock(): try: teardown_databases(db_cfg, verbosity=request.config.option.verbose) except Exception as exc: request.node.warn( pytest.PytestWarning( "Error when trying to teardown test databases: %r" % exc ) ) if not django_db_keepdb: request.addfinalizer(teardown_database) def _django_db_fixture_helper( request, django_db_blocker, transactional=False, reset_sequences=False ): if is_django_unittest(request): return if not transactional and "live_server" in request.fixturenames: # Do nothing, we get called with transactional=True, too. return django_db_blocker.unblock() request.addfinalizer(django_db_blocker.restore) if transactional: from django.test import TransactionTestCase as django_case if reset_sequences: class ResetSequenceTestCase(django_case): reset_sequences = True django_case = ResetSequenceTestCase else: from django.test import TestCase as django_case test_case = django_case(methodName="__init__") test_case._pre_setup() request.addfinalizer(test_case._post_teardown) def _disable_native_migrations(): from django.conf import settings from django.core.management.commands import migrate from .migrations import DisableMigrations settings.MIGRATION_MODULES = DisableMigrations() class MigrateSilentCommand(migrate.Command): def handle(self, *args, **kwargs): kwargs["verbosity"] = 0 return super(MigrateSilentCommand, self).handle(*args, **kwargs) migrate.Command = MigrateSilentCommand def _set_suffix_to_test_databases(suffix): from django.conf import settings for db_settings in settings.DATABASES.values(): test_name = db_settings.get("TEST", {}).get("NAME") if not test_name: if db_settings["ENGINE"] == "django.db.backends.sqlite3": continue test_name = "test_{}".format(db_settings["NAME"]) if test_name == ":memory:": continue db_settings.setdefault("TEST", {}) db_settings["TEST"]["NAME"] = "{}_{}".format(test_name, suffix) # ############### User visible fixtures ################ @pytest.fixture(scope="function") def db(request, django_db_setup, django_db_blocker): """Require a django test database. This database will be setup with the default fixtures and will have the transaction management disabled. At the end of the test the outer transaction that wraps the test itself will be rolled back to undo any changes to the database (in case the backend supports transactions). This is more limited than the ``transactional_db`` resource but faster. If multiple database fixtures are requested, they take precedence over each other in the following order (the last one wins): ``db``, ``transactional_db``, ``django_db_reset_sequences``. """ if "django_db_reset_sequences" in request.fixturenames: request.getfixturevalue("django_db_reset_sequences") if ( "transactional_db" in request.fixturenames or "live_server" in request.fixturenames ): request.getfixturevalue("transactional_db") else: _django_db_fixture_helper(request, django_db_blocker, transactional=False) @pytest.fixture(scope="function") def transactional_db(request, django_db_setup, django_db_blocker): """Require a django test database with transaction support. This will re-initialise the django database for each test and is thus slower than the normal ``db`` fixture. If you want to use the database with transactions you must request this resource. If multiple database fixtures are requested, they take precedence over each other in the following order (the last one wins): ``db``, ``transactional_db``, ``django_db_reset_sequences``. """ if "django_db_reset_sequences" in request.fixturenames: request.getfixturevalue("django_db_reset_sequences") _django_db_fixture_helper(request, django_db_blocker, transactional=True) @pytest.fixture(scope="function") def django_db_reset_sequences(request, django_db_setup, django_db_blocker): """Require a transactional test database with sequence reset support. This behaves like the ``transactional_db`` fixture, with the addition of enforcing a reset of all auto increment sequences. If the enquiring test relies on such values (e.g. ids as primary keys), you should request this resource to ensure they are consistent across tests. If multiple database fixtures are requested, they take precedence over each other in the following order (the last one wins): ``db``, ``transactional_db``, ``django_db_reset_sequences``. """ _django_db_fixture_helper( request, django_db_blocker, transactional=True, reset_sequences=True ) @pytest.fixture() def client(): """A Django test client instance.""" skip_if_no_django() from django.test.client import Client return Client() @pytest.fixture() def django_user_model(db): """The class of Django's user model.""" from django.contrib.auth import get_user_model return get_user_model() @pytest.fixture() def django_username_field(django_user_model): """The fieldname for the username used with Django's user model.""" return django_user_model.USERNAME_FIELD @pytest.fixture() def admin_user(db, django_user_model, django_username_field): """A Django admin user. This uses an existing user with username "admin", or creates a new one with password "password". """ UserModel = django_user_model username_field = django_username_field username = "admin@example.com" if username_field == "email" else "admin" try: user = UserModel._default_manager.get(**{username_field: username}) except UserModel.DoesNotExist: extra_fields = {} if username_field not in ("username", "email"): extra_fields[username_field] = "admin" user = UserModel._default_manager.create_superuser( username, "admin@example.com", "password", **extra_fields ) return user @pytest.fixture() def admin_client(db, admin_user): """A Django test client logged in as an admin user.""" from django.test.client import Client client = Client() client.login(username=admin_user.username, password="password") return client @pytest.fixture() def rf(): """RequestFactory instance""" skip_if_no_django() from django.test.client import RequestFactory return RequestFactory() class SettingsWrapper(object): _to_restore = [] def __delattr__(self, attr): from django.test import override_settings override = override_settings() override.enable() from django.conf import settings delattr(settings, attr) self._to_restore.append(override) def __setattr__(self, attr, value): from django.test import override_settings override = override_settings(**{attr: value}) override.enable() self._to_restore.append(override) def __getattr__(self, item): from django.conf import settings return getattr(settings, item) def finalize(self): for override in reversed(self._to_restore): override.disable() del self._to_restore[:] @pytest.yield_fixture() def settings(): """A Django settings object which restores changes after the testrun""" skip_if_no_django() wrapper = SettingsWrapper() yield wrapper wrapper.finalize() @pytest.fixture(scope="session") def live_server(request): """Run a live Django server in the background during tests The address the server is started from is taken from the --liveserver command line option or if this is not provided from the DJANGO_LIVE_TEST_SERVER_ADDRESS environment variable. If neither is provided ``localhost:8081,8100-8200`` is used. See the Django documentation for its full syntax. NOTE: If the live server needs database access to handle a request your test will have to request database access. Furthermore when the tests want to see data added by the live-server (or the other way around) transactional database access will be needed as data inside a transaction is not shared between the live server and test code. Static assets will be automatically served when ``django.contrib.staticfiles`` is available in INSTALLED_APPS. """ skip_if_no_django() import django addr = request.config.getvalue("liveserver") or os.getenv( "DJANGO_LIVE_TEST_SERVER_ADDRESS" ) if addr and ":" in addr: if django.VERSION >= (1, 11): ports = addr.split(":")[1] if "-" in ports or "," in ports: warnings.warn( "Specifying multiple live server ports is not supported " "in Django 1.11. This will be an error in a future " "pytest-django release." ) if not addr: if django.VERSION < (1, 11): addr = "localhost:8081,8100-8200" else: addr = "localhost" server = live_server_helper.LiveServer(addr) request.addfinalizer(server.stop) return server @pytest.fixture(autouse=True, scope="function") def _live_server_helper(request): """Helper to make live_server work, internal to pytest-django. This helper will dynamically request the transactional_db fixture for a test which uses the live_server fixture. This allows the server and test to access the database without having to mark this explicitly which is handy since it is usually required and matches the Django behaviour. The separate helper is required since live_server can not request transactional_db directly since it is session scoped instead of function-scoped. It will also override settings only for the duration of the test. """ if "live_server" not in request.fixturenames: return request.getfixturevalue("transactional_db") live_server = request.getfixturevalue("live_server") live_server._live_server_modified_settings.enable() request.addfinalizer(live_server._live_server_modified_settings.disable) @contextmanager def _assert_num_queries(config, num, exact=True, connection=None, info=None): from django.test.utils import CaptureQueriesContext if connection is None: from django.db import connection verbose = config.getoption("verbose") > 0 with CaptureQueriesContext(connection) as context: yield context num_performed = len(context) if exact: failed = num != num_performed else: failed = num_performed > num if failed: msg = "Expected to perform {} queries {}{}".format( num, "" if exact else "or less ", "but {} done".format( num_performed == 1 and "1 was" or "%d were" % (num_performed,) ), ) if info: msg += "\n{}".format(info) if verbose: sqls = (q["sql"] for q in context.captured_queries) msg += "\n\nQueries:\n========\n\n%s" % "\n\n".join(sqls) else: msg += " (add -v option to show queries)" pytest.fail(msg) @pytest.fixture(scope="function") def django_assert_num_queries(pytestconfig): return partial(_assert_num_queries, pytestconfig) @pytest.fixture(scope="function") def django_assert_max_num_queries(pytestconfig): return partial(_assert_num_queries, pytestconfig, exact=False)
[ "nguyenam8@vcu.edu" ]
nguyenam8@vcu.edu
4370177278986c2bc431fa9871bc5e6dd9ab6f8f
483661fe2de1a4a25c01a89498d6524c7a3a138a
/Algorithms/Others/Factorial.py
a7205dcc994ad8d8240971a7639b2a3e243e4305
[]
no_license
Ada-Lungu/Playing-with-Python
c012c7a480030c1ffc33c73881c128b334b252cd
12e81602ad05d43973e7fbb863f8ffa77daaf01f
refs/heads/master
2016-08-03T03:16:29.027688
2014-09-12T13:41:52
2014-09-12T13:41:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
492
py
def factorial(n): # n! = n(n-1)! ; 0! = 1 if n == 0: return 1 else: factorial = n * factorial(n-1) # or return n * factorial(n-1) return factorial # this is a Recursive Function = calling a function inside itself def fibonacci(n): # fibonacci(n) = fibonacci (n-1) + fibonacci (n-2) if n == 0 or n == 1: fibonnaci = 1 else: fibonnaci = fibonnaci(n-1) + fibonnaci(n-2) assert isinstance(fibonnaci, object) return fibonnaci
[ "ada.lungu@gmail.com" ]
ada.lungu@gmail.com
44044c891ec2b8e378f51acf7933a3a1bd3fe346
fe7600d6ed61107f8fcec298527515415712fc0b
/docs/conf.py
ea673e3a14034c0268db2d9ef5d9cda9ef3ca78d
[ "BSD-3-Clause" ]
permissive
kevinjqiu/mockingjay
67b98e4e4c6aa3c96378c11226d1fccbb01b1fea
b97ee8ab9476165916305591b319d1a2e6af0635
refs/heads/master
2023-01-14T18:15:40.855856
2015-05-29T03:10:56
2015-05-29T03:10:56
36,202,496
1
0
BSD-3-Clause
2022-12-26T19:44:15
2015-05-25T01:17:05
Python
UTF-8
Python
false
false
8,425
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # mockingjay documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # Get the project root dir, which is the parent dir of this cwd = os.getcwd() project_root = os.path.dirname(cwd) # Insert the project root dir as the first element in the PYTHONPATH. # This lets us ensure that the source package is imported, and that its # version is used. sys.path.insert(0, project_root) import mockingjay # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'mockingjay' copyright = u'2015, Kevin J. Qiu' # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = mockingjay.__version__ # The full version, including alpha/beta/rc tags. release = mockingjay.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to # some non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built # documents. #keep_warnings = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as # html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the # top of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon # of the docs. This file should be a Windows icon file (.ico) being # 16x16 or 32x32 pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) # here, relative to this directory. They are copied after the builtin # static files, so a file named "default.css" will overwrite the builtin # "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names # to template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. # Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. # Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages # will contain a <link> tag referring to it. The value of this option # must be the base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'mockingjaydoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'mockingjay.tex', u'mockingjay Documentation', u'Kevin J. Qiu', 'manual'), ] # The name of an image file (relative to this directory) to place at # the top of the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings # are parts, not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'mockingjay', u'mockingjay Documentation', [u'Kevin J. Qiu'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'mockingjay', u'mockingjay Documentation', u'Kevin J. Qiu', 'mockingjay', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
[ "kevin@freshbooks.com" ]
kevin@freshbooks.com
cc8c1afd7c28f0d943eaf2700c34e719dd9003ea
85eff920f0f285abad84c2f6bcfd4f236f3976ab
/webservices/migrations/0099_engageboostadditionalglobalsettings.py
ff6fe266ae10d7c901a6d0d6e6ae3778ac320156
[]
no_license
obxlifco/Web-Picking-App-GoGrocery
8cf5f7924005a19764e5c4722a47bfd963965f2e
6b084547bed2af43a67bada313d68e56f4228f96
refs/heads/main
2023-05-26T08:32:30.297317
2021-06-12T10:05:01
2021-06-12T10:05:01
315,206,253
0
0
null
null
null
null
UTF-8
Python
false
false
1,203
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.17 on 2019-05-31 13:40 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('webservices', '0098_auto_20190530_1336'), ] operations = [ migrations.CreateModel( name='EngageboostAdditionalGlobalsettings', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('settings_key', models.TextField(blank=True, null=True)), ('settings_value', models.TextField(blank=True, null=True)), ('created', models.DateTimeField(blank=True, null=True)), ('modified', models.DateTimeField(blank=True, null=True)), ('isblocked', models.CharField(choices=[('y', 'y'), ('n', 'n')], default='n', max_length=2, null=True)), ('isdeleted', models.CharField(choices=[('y', 'y'), ('n', 'n')], default='n', max_length=2, null=True)), ], options={ 'db_table': 'engageboost_additional_global_settings', }, ), ]
[ "mjamal@lifcoshop.net" ]
mjamal@lifcoshop.net
14a993e142ab29bcd04556609ffce8bcb573b3bf
d3c4353cbca106ac3d5154a9b452d6bb90c0ae83
/server/models/multimedia_emotions.py
c150e6784f4688291637583c1f28617f825c6d70
[ "MIT" ]
permissive
CatalystOfNostalgia/hoot
fe64fc97522da2b7657ad0ba0477eaf50f94e942
952781ebf9cafc036c68d1358f1921b7c9a94ab7
refs/heads/master
2021-01-15T08:04:54.009776
2016-04-29T03:40:44
2016-04-29T03:40:44
49,789,954
2
0
null
2016-04-28T19:46:06
2016-01-16T20:36:03
Python
UTF-8
Python
false
false
420
py
from sqlalchemy import Column from sqlalchemy import Integer from sqlalchemy import String from sqlalchemy import Date from sqlalchemy.dialects.mysql import DOUBLE from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class MultimediaEmotions(Base): __tablename__ = 'multimedia_emotions' media_id = Column(Integer, primary_key=True) emotion = Column(Integer, primary_key=True)
[ "anthonyrdario@gmail.com" ]
anthonyrdario@gmail.com
1fd89802a93b674ca740f01993f8aa10797c78f9
32c4a3f8893a7fe9039ebfb2d98215e06203f8f2
/src/tensor/op/granularity/finesse.py
3b5dc2a03e16933ac02aa7819af67ab8091f81cb
[ "Apache-2.0" ]
permissive
jedhsu/tensor
d27c8951aa32208e3c5bbcef0d0f2bae56f8a670
3b2fe21029fa7c50b034190e77d79d1a94ea5e8f
refs/heads/main
2023-07-06T11:35:36.307538
2021-08-07T20:11:19
2021-08-07T20:11:19
366,904,212
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
""" *Finesse* """ __all__ = ["Finesse"] class Finesse( TensorOperator, ): pass
[ "jed910@gmail.com" ]
jed910@gmail.com
b1a356c2a2ca5d8c100de27922504b27df7ff7da
8a1145b1d89eacb92e57be747043ae7a6209ade7
/final.py
f24e0d3424bb5f5603352372bfebee3480c4a5c5
[]
no_license
NavniGupta/ece650pythonexamples
21ae326d71dc52fb90db9dadef3584f681e04b58
aaac538eb8f319da639814b27820b8f244076d4a
refs/heads/master
2020-03-29T12:52:15.834803
2018-10-26T19:38:27
2018-10-26T19:38:27
149,924,893
0
0
null
null
null
null
UTF-8
Python
false
false
10,194
py
# -*- coding: utf-8 -*- """ Created on Sun Sep 30 13:35:41 2018 @author: Kunal Taneja """ # -*- coding: utf-8 -*- """ Created on Sat Sep 22 11:24:18 2018 e @author: Kunal Taneja """ import sys import re import ast from decimal import Decimal class_list = dict() def vertex_collection(): k=1 m=1 l=list(class_list.values()) vertices=list() graph_vertices=list() graph_edges=list() graph_edgeset=set() graph_set=set() vertex_list=dict() dict_vertex=list() vertices_intersection=list() y=list() #last_element=list() no_streets=len(l) vertices=[None]*no_streets #last_element=[None]*no_streets for o in range (0,no_streets): y=[i.split(', ', 1)[0] for i in l[o]] vertices[o]=y for i in range(0,no_streets): #print "hi" for j in range (i+1,no_streets): w=len(vertices[i]) #print "hi" v=len(vertices[j]) while k<w: while m<v: pair1=vertices[i][k-1] pair2=vertices[i][k] pair3=vertices[j][m-1] pair4=vertices[j][m] x1,y1 = ast.literal_eval(pair1) x2,y2 = ast.literal_eval(pair2) x3,y3 = ast.literal_eval(pair3) x4,y4 = ast.literal_eval(pair4) x1=float(x1) x2=float(x2) x3=float(x3) x4=float(x4) y1=float(y1) y2=float(y2) y3=float(y3) y4=float(y4) A1 = y2-y1 B1 = x1-x2 C1 = A1*(x1) + B1*(y1) A2 = y4-y3 B2 = x3-x4 C2 = A2*(x3)+ B2*(y3) determinant = A1*B2 - A2*B1 min_x1=min(x1,x2) min_x2=min(x3,x4) max_x1=max(x1,x2) max_x2=max(x3,x4) min_y1=min(y1,y2) min_y2=min(y3,y4) max_y1=max(y1,y2) max_y2=max(y3,y4) flag1=False flag2=False pair1="(" + str(x1) + "," +str(y1) + ")" pair2="(" + str(x2) + "," +str(y2) + ")" pair3="(" + str(x3) + "," +str(y3) + ")" pair4="(" + str(x4) + "," +str(y4) + ")" thislist = list((pair1,pair2,pair3,pair4)) # print thislist if (determinant != 0): X = Decimal((B2*C1 - B1*C2)/determinant) X = round(X,2) Y = Decimal((A1*C2 - A2*C1)/determinant) Y = round(Y,2) # print "X= " + str(X) #print "Y= " + str(Y) #print "min_x1= " + str(min_x1) #print "max_x1= " + str(max_x1) #print "min_y1= " + str(min_y1) # print "max_y1= " + str(max_y1) # print "min_x2= " + str(min_x2) #print "max_x2= " + str(max_x2) #print "min_y2= " + str(min_y2) #print "max_y2= " + str(max_y2) if (bool(X<=max_x1) & bool(X>=min_x1)): #print ("im true for x1") if (bool(Y<=max_y1) & bool(Y>=min_y1)): #print ("hi im true for both x1,y1") flag1=True if (bool(X<=max_x2) & bool(X>=min_x2)): #print ("im true for x2") if (bool(Y<=max_y2) & bool(Y>=min_y2)): # print ("hi im true for both x2,y2") flag2=True if(flag1==True & flag2==True): #print "you got me right" new_vertex="(" + str(X) + "," +str(Y) + ")" graph_vertices.extend(thislist) dict_vertex.append(new_vertex) vertices_intersection.append(thislist) intersection_points=new_vertex graph_vertices.append(new_vertex) graph_set=set(graph_vertices) graph_vertices1=list(graph_set) for z in range(0,len(graph_vertices1)): vertex_list[z+1]=graph_vertices1[z] else: pass m=m+1 k=k+1 m=1 k=1 print "V = {" for x,y in vertex_list.items(): print x,": ",y print "}" for t in range(0, len(dict_vertex)): intersection_pt=dict_vertex[t] vertexlist=vertices_intersection[t] [pair1, pair2, pair3, pair4]=vertexlist for g in vertex_list: if intersection_pt == vertex_list[g]: edge_intersection=g for s,e in vertex_list.items(): if e==pair1: edge_pair1=s #print "comparing pair 1" + e #print s for s,e in vertex_list.items(): if e==pair2: edge_pair2=s #print s #print "comparing pair 2" + e for s,e in vertex_list.items(): if e==pair3: edge_pair3=s # print s # print "comparing pair 3" +e for s,e in vertex_list.items(): if e==pair4: edge_pair4=s # print "comparing pair 4" + e #print s #print edge_intersection # print intersection_points edge1="<"+str(edge_intersection) + "," + str(edge_pair1) + ">" #print edge1 edge2="<"+str(edge_intersection) + "," + str(edge_pair2) + ">" #print edge2 edge3="<"+str(edge_intersection) + "," + str(edge_pair3) + ">" #print edge3 edge4="<"+str(edge_intersection) + "," + str(edge_pair4) + ">" #print edge4 edgelist = list((edge1,edge2,edge3,edge4)) graph_edges.extend(edgelist) graph_edgeset=set(graph_edges) graph_edges=list(graph_edgeset) distinct=list() for n in range(0,len(graph_edges)): pair=graph_edges[n] pair=re.sub('<','(',pair) pair=re.sub('>',')',pair) v1,w1 = ast.literal_eval(pair) distinct.append(v1) distinct_set=set(distinct) distinct=list(distinct_set) for n1 in range(1,len(distinct)): edge_betweeen="<"+str(distinct[n1-1]) + "," + str(distinct[n1]) + ">" graph_edges.append(edge_betweeen) graph_set=set(graph_edges) graph_edges=list(graph_set) print "E ={" for u in graph_edges: print u print "}" def main(): while True: command=raw_input() if(command ==''): break elif(command[0]=='r'): y=re.split(' +"|"|',command) else: y=re.split('" +| +"',command) if(len(y)==1): choice=y[0] elif(len(y)==2): choice=y[0] street=y[1] street=street.lower() elif(len(y)==3): choice=y[0] street=y[1] street=street.lower() location=y[2] else: sys.stdout.write("Error: " + "Wrong selection of command") continue if choice == 'a': location=re.sub(' +','',location) location=re.sub('\)\(',') ( ',location) location=re.sub('\( ','(',location) location=location.split(' ') class_list[street] = location #database() elif choice == 'c': location=re.sub(' +','',location) location=re.sub('\)\(',') ( ',location) location=re.sub('\( ','(',location) location=location.split(' ') class_list[street] = location #database() elif choice == 'r': try: del class_list[street] except KeyError: sys.stderr.write("Error: " + street + " not available to delete") #database() elif choice == 'g': vertex_collection() else: print 'Error: ' + 'Wrong choice try again' if __name__ == '__main__': main()
[ "noreply@github.com" ]
NavniGupta.noreply@github.com
a57fd44c4e0572a4606a934c2b10d00002f17e65
ae737dd1a93b31673e26341606ca767ec00f32bf
/list-propinsi/list-per-propinsi-jambi.py
188016fe865a1d1490f5c306cf92ec007f02b1ed
[]
no_license
tandhy/pilpres2014
ba14ad7cf13ecf154c59046d80a969bfddd734b5
8c7a12636470b46edd7167632affd1272721a1d1
refs/heads/master
2020-06-04T03:01:35.401826
2014-07-20T01:15:25
2014-07-20T01:15:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,496
py
''' Author : Tandhy Simanjuntak / July 15th, 2014 Purpose : To download all c1 form per province from pilpres2014.kpu.go.id ''' # cURL operation import pycurl # handle buffer from StringIO import StringIO # encode given variable from urllib import urlencode # prettify output import pprint # handle directory operation import os # use beautifulSoup to read html from bs4 import BeautifulSoup # generate time and date and sleep interval import time # add random function to generate sleep interbal import random def formatKode(kode): different = 5 - len(kode) zero = '' for i in range(0, different,1): zero += '0' return zero + kode def formatKodeTPS(kode): different = 3 - len(str(kode)) zero = '' for i in range(0, different,1): zero += '0' return zero + str(kode) # set save path. you may change to your own folder. windows version #savePath = "f:/workspace/pilpres2014" # set save path. you may change to your own folder. mac version savePath = "/Users/tandhy/pilpres2014/drive/kawalpemilu-C1" # set this variable to show each form c1 filename after saved into computer showSavedFilename = True # variable prop = [] kabupaten = [] kecamatan = [] kelurahan = [] # format file c1: tpsx-tpsKode-[12digit].jpg # saved under these folder : Propinsi - Kabupaten - Kecamatan - Kelurahan # remove hashtag to enable propinsi download. # For example, if you want to download propinsi Bali, remove '#' from prop = {'kode': '53241', 'nama': 'BALI'} #propinsi = [ {'kode': '15885', 'nama': 'JAMBI'},{'kode': '17404', 'nama': 'SUMATERA SELATAN'},{'kode': '20802', 'nama': 'BENGKULU'},{'kode': '22328', 'nama': 'LAMPUNG'},{'kode': '24993', 'nama': 'KEPULAUAN BANGKA BELITUNG'},{'kode': '25405', 'nama': 'KEPULAUAN RIAU'},{'kode': '25823', 'nama': 'DKI JAKARTA'},{'kode': '26141', 'nama': 'JAWA BARAT'},{'kode': '32676', 'nama': 'JAWA TENGAH'},{'kode': '41863', 'nama': 'DAERAH ISTIMEWA YOGYAKARTA'},{'kode': '42385', 'nama': 'JAWA TIMUR'},{'kode': '51578', 'nama': 'BANTEN'},{'kode': '53241', 'nama': 'BALI'},{'kode': '54020', 'nama': 'NUSA TENGGARA BARAT'},{'kode': '55065', 'nama': 'NUSA TENGGARA TIMUR'},{'kode': '58285', 'nama': 'KALIMANTAN BARAT'},{'kode': '60371', 'nama': 'KALIMANTAN TENGAH'},{'kode': '61965', 'nama': 'KALIMANTAN SELATAN'},{'kode': '64111', 'nama': 'KALIMANTAN TIMUR'},{'kode': '65702', 'nama': 'SULAWESI UTARA'},{'kode': '67393', 'nama': 'SULAWESI TENGAH'},{'kode': '69268', 'nama': 'SULAWESI SELATAN'},{'kode': '72551', 'nama': 'SULAWESI TENGGARA'},{'kode': '74716', 'nama': 'GORONTALO'},{'kode': '75425', 'nama': 'SULAWESI BARAT'},{'kode': '76096', 'nama': 'MALUKU'},{'kode': '77085', 'nama': 'MALUKU UTARA'},{'kode': '78203', 'nama': 'PAPUA'},{'kode': '81877', 'nama': 'PAPUA BARAT'}] propinsi = [{'kode': '15885', 'nama': 'JAMBI'}] # open a log file # set path for log logPath = savePath + "/listpropinsi" # iterate each propinsi for prop in propinsi: logFilename = logPath + "/" + prop['nama'] + "-" + prop['kode'] + ".txt" # check for log file if not os.path.exists(logPath): os.makedirs(logPath) #print "Propinsi : %s" %(prop['nama']) # check if file exists if not (os.path.exists(logFilename)): openLogFile = open(logFilename, 'w') openLogFile.write("Generated : " + time.strftime("%m.%d.%Y %H:%M:%S") + "\n" ) openLogFile.write("========================================\n") openLogFile.write( "Propinsi : %s (%s)\n" %(prop['nama'] , prop['kode']) ) openLogFile.write( "Format data : Provinsi\tKabupaten/Kota\tKecamatan\tKelurahan\tNomor TPS\tID TPS\tPS-Hatta\tJW-JK\tTidak Sah\tLink4\tLink3\tLink2\tLink1\n\n" ) listReadLogFile = '' else: openLogFile = open(logFilename, 'a') readLogFile = open(logFilename, 'r') listReadLogFile = readLogFile.read() # store ID IDFilename = logPath + "/id-%s.txt" % (prop['kode']) # check if file exists if not (os.path.exists(IDFilename)): openIDFile = open( IDFilename, 'w') # rewrite existing file openIDFile.write("%s\n" % (prop['kode']) ) listReadIDFile = '' else: openIDFile = open (IDFilename, 'a') readIDFile = open (IDFilename,'r') listReadIDFile = readIDFile.read() c = pycurl.Curl() buffer = StringIO() url = 'http://pilpres2014.kpu.go.id/c1.php?cmd=select&grandparent=0&parent=%s' % ( prop['kode'] ) post_data = {'wilayah_id': prop['kode']} postfields = urlencode(post_data) c.setopt(c.URL,url) c.setopt(c.POSTFIELDS, postfields) c.setopt(c.CONNECTTIMEOUT,999) c.setopt(c.WRITEDATA, buffer) c.perform() # fetch <option> htmlFile = BeautifulSoup(buffer.getvalue()) optionTag = '' optionTag = htmlFile.find_all('option') kabupaten = [] for option in optionTag: if(option.string != 'pilih'): # store <option> value into dict info = {'kode': option.get('value'), 'nama' : option.string } # add dict into list kabupaten.append(info) # add time interval time.sleep(random.randint(3,5)) # random sleep time between 8 - 15 second # iterate each kabupaten for kab in kabupaten: #print "%s; %s" %(prop['nama'], kab['nama']) if kab['kode'] not in listReadIDFile: openIDFile.write("%s\n" % (kab['kode']) ) #openLogFile.write( "%s; %s\n" %(prop['nama'], kab['nama']) ) # set folder path c = pycurl.Curl() buffer = StringIO() url = 'http://pilpres2014.kpu.go.id/c1.php?cmd=select&grandparent=%s&parent=%s' % ( prop['kode'] , kab['kode']) post_data = {'wilayah_id': kab['kode']} postfields = urlencode(post_data) c.setopt(c.URL,url) c.setopt(c.POSTFIELDS, postfields) c.setopt(c.CONNECTTIMEOUT,999) c.setopt(c.WRITEDATA, buffer) c.perform() # fetch <option> htmlFile = BeautifulSoup(buffer.getvalue()) optionTag = '' optionTag = htmlFile.find_all('option') kecamatan = [] for option in optionTag: if(option.string != 'pilih'): # store <option> value into dict info = {'kode': option.get('value'), 'nama' : option.string } # add dict into list kecamatan.append(info) # iterate each kecamatan for kec in kecamatan: #print "%s; %s; %s" %( prop['nama'], kab['nama'], kec['nama'] ) if kec['kode'] not in listReadIDFile: openIDFile.write("%s\n" % (kec['kode']) ) #openLogFile.write( "%s; %s; %s\n" %( prop['nama'], kab['nama'], kec['nama'] ) ) c = pycurl.Curl() buffer = StringIO() url = 'http://pilpres2014.kpu.go.id/c1.php?cmd=select&grandparent=%s&parent=%s' % (kab['kode'], kec['kode']) post_data = {'wilayah_id': kec['kode']} postfields = urlencode(post_data) c.setopt(c.URL,url) c.setopt(c.POSTFIELDS, postfields) c.setopt(c.CONNECTTIMEOUT,999) c.setopt(c.WRITEDATA, buffer) c.perform() # fetch <option> htmlFile = BeautifulSoup(buffer.getvalue()) optionTag = '' optionTag = htmlFile.find_all('option') kelurahan = [] for option in optionTag: if(option.string != 'pilih'): # store <option> value into dict info = {'kode': option.get('value'), 'nama' : option.string } # add dict into list kelurahan.append(info) # iterate each kelurahan for kel in kelurahan: # check if kelurahan has been downloaded or not in the IDFilename #print "%s; %s; %s; %s" %( prop['nama'], kab['nama'], kec['nama'], kel['nama'] ) #openLogFile.write( "%s; %s; %s; %s" % ( prop['nama'], kab['nama'], kec['nama'], kel['nama'] ) ) if kel['kode'] not in listReadIDFile: c = pycurl.Curl() buffer = StringIO() url = 'http://pilpres2014.kpu.go.id/c1.php?cmd=select&grandparent=%s&parent=%s' % (kec['kode'], kel['kode']) post_data = {'wilayah_id': kel['kode']} postfields = urlencode(post_data) c.setopt(c.URL,url) c.setopt(c.CONNECTTIMEOUT,999) c.setopt(c.POSTFIELDS, postfields) c.setopt(c.WRITEDATA, buffer) c.perform() # fetch <td> to get tps code htmlFile = BeautifulSoup(buffer.getvalue()) tdTag = '' tdTag = htmlFile.find_all('td') tpsKode = [] for td in tdTag: if(td.string != None) and (td.string != 'unduh'): if(len(td.string) > 2 ): tpsKode.append(td.string) # fetch <a> to get link to the image '''aTag ='' aTag = htmlFile.find_all('a') aList = [] for a in aTag: if(a.get('href').find("javascript:read_jpg") != -1): aList.append(a.get('href').strip("javascript:read_jpg('").strip("')"))''' noTps = 0 link1 = '' link2 = '' link3 = '' link4 = '' # 12 34567 890 12 # format scan : 00 32832 006 01.jpg for i in range(0,len(tpsKode), 1): link1 = '=hyperlink("http://scanc1.kpu.go.id/viewp.php?f=00%s%s01.jpg", "hal.1")' % (formatKode(kel['kode']), formatKodeTPS(i+1)) link2 = '=hyperlink("http://scanc1.kpu.go.id/viewp.php?f=00%s%s02.jpg", "hal.2")' % (formatKode(kel['kode']), formatKodeTPS(i+1)) link3 = '=hyperlink("http://scanc1.kpu.go.id/viewp.php?f=00%s%s03.jpg", "hal.3")' % (formatKode(kel['kode']), formatKodeTPS(i+1)) link4 = '=hyperlink("http://scanc1.kpu.go.id/viewp.php?f=00%s%s04.jpg", "hal.4")' % (formatKode(kel['kode']), formatKodeTPS(i+1)) #link1 = '=hyperlink("http://scanc1.kpu.go.id/viewp.php?f=%s.jpg", "hal.1")' % (aList[(i * 4) + 0]) #link2 = '=hyperlink("http://scanc1.kpu.go.id/viewp.php?f=%s.jpg", "hal.2")' % (aList[(i * 4) + 1]) #link3 = '=hyperlink("http://scanc1.kpu.go.id/viewp.php?f=%s.jpg", "hal.3")' % (aList[(i * 4) + 2]) #link4 = '=hyperlink("http://scanc1.kpu.go.id/viewp.php?f=%s.jpg", "hal.4")' % (aList[(i * 4) + 3]) #print "%s\t%s\t%s\t%s\t%d\t%s" %( prop['nama'], kab['nama'], kec['nama'], kel['nama'], i + 1, tpsKode[i] ) print "%s\t%s\t%s\t%s\t%d\t%s\t0\t0\t0\t%s\t%s\t%s\t%s" %( prop['nama'], kab['nama'], kec['nama'], kel['nama'], i + 1, tpsKode[i], link4, link3, link2, link1 ) # check whether already written or not text = "%s\t%s\t%s\t%s\t%d\t%s\t0\t0\t0\t%s\t%s\t%s\t%s\n" %( prop['nama'], kab['nama'], kec['nama'], kel['nama'], i + 1, tpsKode[i], link4, link3, link2, link1 ) if text not in listReadLogFile: openLogFile.write(text) print "----------------------------------------------------------------" openIDFile.write("%s\n" % (kel['kode']) ) time.sleep(random.randint(1,3)) # random sleep time between 1 - 3 second else: print "%s\t%s\t%s\t%s\t--> DONE" %( prop['nama'], kab['nama'], kec['nama'], kel['nama']) # separator between kecamatan print "----------------------------------------------------------------" # close c instance c.close() # close openLogFile instance openLogFile.close()
[ "tandhy@bu.edu" ]
tandhy@bu.edu
3e40648cf136b93535e2e1426d1b48ef2d2dee2a
498e6fd1e00b126659741ed92df937f2d00aa10a
/3_accessing_an_image_pix.py
03eb7858bbe5238c4bb7d1b38ed744cf5c362e18
[]
no_license
zaneno/opencv_talk_public
304092e4e6c798df172bebd4ba806976cd16d1c1
93ded0e7e5b1f1371d7291d209e3e4372e5d3507
refs/heads/main
2023-03-03T09:13:12.630342
2021-02-10T16:12:18
2021-02-10T16:12:18
337,778,028
1
0
null
null
null
null
UTF-8
Python
false
false
406
py
import numpy as np import cv2 # Read the image img = cv2.imread('pics/pictured_rocks.jpg') print("type(img): ", type(img)) print("img.shape: ", img.shape) # get i and j i = int(input("i: ")) j = int(input("j: ")) # read the value at i,j b, g, r = img[i,j] # we could also do b = img[i,j,0] g = img[i,j,1] r = img[i,j,2] # or b = img.item(i,j,0) g = img.item(i,j,1) r = img.item(i,j,2) print(b, g, r)
[ "you@example.com" ]
you@example.com
557f77dd5d9757885339a60b4da132a5a7432c06
561b57b8dbad7b02898032a115825c37f3125062
/tests/summarizer/test_text_media_matcher.py
f8e76c734b9e53c34902a7a58a5640b6ef2549b7
[ "Apache-2.0" ]
permissive
DanisHack/stampify
c2c687dbb992b870c2d55669fdc3249f6991a2fb
95f95ec98aa3f0b05d8ad39ce5dd3d89858b4488
refs/heads/master
2022-11-20T17:47:13.002219
2020-07-22T10:00:49
2020-07-22T10:00:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,675
py
from summarization.text_media_matching.text_media_matcher import \ TextMediaMatcher from tests.summarizer.text_media_input_fetcher import fetch_text_media_input # fetch test inputs test_input_dict = fetch_text_media_input() sentence_1 = test_input_dict["sentence_1"] media_related_to_sentence_1 = test_input_dict["media_related_to_sentence_1"] sentence_2 = test_input_dict["sentence_2"] media_related_to_sentence_2 = test_input_dict["media_related_to_sentence_2"] def test_text_media_matcher_return_format(): ''' tests the return format of the text-media matcher ''' matcher = TextMediaMatcher( [sentence_1, sentence_2], [media_related_to_sentence_1, media_related_to_sentence_2] ) processed_contents_dict = matcher._get_matched_and_unmatched_contents() assert isinstance(processed_contents_dict, dict) assert 'matched_contents' in processed_contents_dict assert 'unused_contents' in processed_contents_dict def test_text_media_matcher_matches_contents(): ''' checks if the response returned is correct''' matcher = TextMediaMatcher( [sentence_2], [media_related_to_sentence_1, media_related_to_sentence_2] ) processed_contents_dict = matcher._get_matched_and_unmatched_contents() assert processed_contents_dict['matched_contents'] == [ (sentence_2, media_related_to_sentence_2)] assert processed_contents_dict['unused_contents'] == [ media_related_to_sentence_1] def test_text_media_matcher_returns_unused_media_when_sentences_is_empty(): matcher = TextMediaMatcher( [], [media_related_to_sentence_1, media_related_to_sentence_2] ) processed_contents_dict = matcher._get_matched_and_unmatched_contents() assert processed_contents_dict["matched_contents"] == [] assert processed_contents_dict["unused_contents"] == [ media_related_to_sentence_1, media_related_to_sentence_2 ] def test_text_media_matcher_returns_unused_sentences_when_media_is_empty(): matcher = TextMediaMatcher( [sentence_1, sentence_2], [] ) processed_contents_dict = matcher._get_matched_and_unmatched_contents() assert processed_contents_dict["matched_contents"] == [] assert processed_contents_dict["unused_contents"] == [ sentence_1, sentence_2 ] def test_text_media_matcher_returns_empty_dict_when_both_are_empty(): matcher = TextMediaMatcher( [], [] ) processed_contents_dict = matcher._get_matched_and_unmatched_contents() assert processed_contents_dict["matched_contents"] == [] assert processed_contents_dict["unused_contents"] == []
[ "noreply@github.com" ]
DanisHack.noreply@github.com
b115f3b835f732aa430fd5f7e80dc861d91c5357
ec26178312157b019bad591b1a2d035a83189aed
/TestChild.py
7ecc87a810c9e8103343a13429e7bc806c07fad3
[]
no_license
James-Brooke95/Test_Repo
ee678b260ef362526ebc65edb7064a0498caa620
61df91e6fee2ef257e4badf52ce2bcb5ac65dea0
refs/heads/master
2022-12-17T20:05:55.695605
2020-09-10T16:54:36
2020-09-10T16:54:36
292,811,450
0
0
null
2020-09-04T10:16:47
2020-09-04T09:49:09
Python
UTF-8
Python
false
false
66
py
## Adding a new file in ChildBranch print("Inside Child Branch")
[ "noreply@github.com" ]
James-Brooke95.noreply@github.com
4fe7e9efc0dd51911bec6ad5266887f80d60ad41
45547a3feb1f08b785e15b62c8e8c4ca9dcda909
/polls/migrations/0004_auto_20190131_1744.py
8b638264ec44cbdef2ecdc5fa6dd762a4ab7c80c
[]
no_license
joelunmsm2003/smartback
d330d906141fd347fb283350e885e53a15cd0adc
f30d4d39fbe648dea7683fb42922bbd145758f19
refs/heads/master
2020-04-20T02:09:05.794530
2019-02-06T17:44:49
2019-02-06T17:44:49
168,563,916
0
0
null
null
null
null
UTF-8
Python
false
false
862
py
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2019-01-31 17:44 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('polls', '0003_auto_20190131_1720'), ] operations = [ migrations.RemoveField( model_name='profile', name='birthdate', ), migrations.RemoveField( model_name='profile', name='location', ), migrations.RemoveField( model_name='profile', name='role', ), migrations.AddField( model_name='profile', name='club', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='polls.Club'), ), ]
[ "you@example.com" ]
you@example.com
f442c5078b4ec9dcc3e88498c0d9bed65d728069
9b92a946c139c83c4103a406dce26e4fb01fdf60
/53_Maximum_Subarray.py
54be525144dc1bb81f2e59a3fac65dbfa06c1940
[]
no_license
nyuxz/CodePractice
97ddddcaf0780e8cfc7af0c8a43e103d32eab0c0
019627d16073c09240a2535f95277f9283fcc15f
refs/heads/master
2021-01-20T00:47:45.144956
2021-01-12T01:40:46
2021-01-12T01:40:46
89,191,034
0
0
null
null
null
null
UTF-8
Python
false
false
957
py
#53. Maximum Subarray class Solution(object): def maxSubArray(self, nums): """ :type nums: List[int] :rtype: int @Logit Kadane's algorithm, O(n) complexity state: lookup[i] dp: lookup[i] = max(A[i], A[i] + lookup[i-1]) """ currMax = nums[0] Max = nums[0] for i in nums[1:]: currMax = max(i, currMax + i) Max = max(Max, currMax) return Max ## DP def maxSubArray(self, nums: List[int]) -> int: dp = [0]*len(nums) dp[0] = nums[0] max_num = nums[0] for i in range(1, len(nums)): dp[i] = max(dp[i-1]+nums[i], nums[i]) if dp[i]>max_num: max_num = dp[i] return max_num # testing if __name__ == '__main__': print (Solution().maxSubArray([-2,1,-3,4,-1,2,1,-5,4])) ''' @Note 1. without the dp, the complexity is O(n^2) 2. ToDo: divide and conquer approach, O(nlogn) '''
[ "xz1757@nyu.edu" ]
xz1757@nyu.edu
3e8c28637cfd517e58a46fb1d395c4bf16b06ee7
b1e958f90059cd97b8c1cb62abb34948fa867569
/Practice-Exercises/Week 0a - Expressions/Hours to seconds template.py
f52b8668a9059d598e14a2e460a7d05e63d0cb38
[]
no_license
deltaworld/python-programming-coursera
ff756f3522a79f9b2101607f8156adc8d256db10
740ef3b02c05323e8da691ccbaa17337deb32db7
refs/heads/master
2021-01-23T03:04:25.476645
2015-07-15T13:25:22
2015-07-15T13:25:22
39,136,483
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
# http://www.codeskulptor.org/#exercises_expr_hours_to_seconds_template.py # Compute the number of seconds in a given number of hours, minutes, and seconds. ################################################### # Hours, minutes, and seconds to seconds conversion formula # Student should enter statement on the next line. ################################################### # Expected output # Student should look at the following comments and compare to printed output. #26497
[ "itrainit@gmail.com" ]
itrainit@gmail.com
ec719999c4de822f2d48a2779bb7d13b839294a9
8b0a55183c72f0cb816f2e35725b436caaf583be
/flaskblog/forms.py
8e4a05cc0425805ce5fb4699476e11c90bddf4f4
[]
no_license
OhDany/blog-flask
79924f406494e744b18c5919b6d1509bac57b074
a622fbbec085513944f314e2b3354073ab5adb76
refs/heads/master
2022-10-29T05:47:35.894119
2020-06-14T20:26:16
2020-06-14T20:26:16
269,820,577
0
0
null
null
null
null
UTF-8
Python
false
false
2,696
py
from flask_wtf import FlaskForm from flask_wtf.file import FileField, FileAllowed from flask_login import current_user from wtforms import StringField, PasswordField, SubmitField, BooleanField, TextAreaField from wtforms.validators import DataRequired, Length, Email, EqualTo, ValidationError from flaskblog.models import User class RegistrationForm(FlaskForm): username = StringField('Username', validators=[DataRequired(), Length(min=2, max=20)]) email = StringField('Email', validators=[DataRequired(), Email()]) password = PasswordField('Password', validators=[DataRequired()]) confirm_password = PasswordField('Confirm Password', validators=[DataRequired(), EqualTo('password')]) submit = SubmitField('Sign Up') def validate_username(self, username): user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('That username is taken. Please choose a different one') def validate_email(self, email): user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('That email is taken. Please choose a different one') class LoginForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Email()]) password = PasswordField('Password', validators=[DataRequired()]) remember = BooleanField('Remember Me') submit = SubmitField('Login') class UpdateAccountForm(FlaskForm): username = StringField('Username', validators=[DataRequired(), Length(min=2, max=20)]) email = StringField('Email', validators=[DataRequired(), Email()]) picture = FileField('Update Profile Picture', validators=[FileAllowed(['jpg', 'png', 'jpeg'])]) submit = SubmitField('Update') def validate_username(self, username): if username.data != current_user.username: user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('That username is taken. Please choose a different one') def validate_email(self, email): if email.data != current_user.email: user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('That email is taken. Please choose a different one') class PostForm(FlaskForm): title = StringField('Title', validators=[DataRequired()]) content = TextAreaField('Content', validators=[DataRequired()]) submit = SubmitField('Post')
[ "oh.dany.mx@gmail.com" ]
oh.dany.mx@gmail.com
c396ffb51c0613102b6abeb9c30a599501808f45
c896a69e98e737a19259565bf8bb10011001645f
/VolunteerManager/credentials.default.py
7aa1037eac539826fcd858e3d6475c8f6d905079
[]
no_license
Berailitz/VolunteerManager
5dffe3bedb6eb66c74149db56dc8d046bdd2d582
af2478aa2f1209f4fbe45d5fc345d6333908a2f8
refs/heads/master
2021-01-03T12:06:17.452864
2018-02-04T10:06:58
2018-02-04T10:06:58
240,076,282
1
1
null
null
null
null
UTF-8
Python
false
false
316
py
"""credentials of this app""" #!/usr/env/python3 # -*- coding: UTF-8 -*- SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://username:password@localhost/database?charset=utf8' SECRET_KEY = 'xxx' SYNC_UAERNAME = 'username' SYNC_ENCRYPTED_PASSWORD = "password" UNIVERSAL_DEBUG_TOKEN = 'token' # IMPORTANT NOTE: FOR DEBUG ONLY
[ "admin@ohhere.xyz" ]
admin@ohhere.xyz
74da7b2b2eef0fc96ccad15dd90171c4b80cb928
16fcf705234385a7bf3b6f9402512e8fe99cb4a4
/stock_trading/stock_trading/urls.py
22fceeea86c2b6d368af92e1ff12448739fdb274
[]
no_license
webclinic017/Stock-Trading-8
86a9bc9ca2f2879c131df4decbe6176337db3e93
8a27beddfd60d398566e8407f30610dbf88925d0
refs/heads/master
2023-08-31T16:18:45.934001
2021-09-28T22:37:40
2021-09-28T22:37:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
799
py
"""stock_trading URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('home.urls')) ]
[ "67853959+XAbirHasan@users.noreply.github.com" ]
67853959+XAbirHasan@users.noreply.github.com
abcc156969f2f6ec3e715a99b3824791acfdc7fb
b28d13b2e785398f1a8074e0034080539009c837
/django-rest-generic/snippets/serializers.py
55761014b6cfca90d7a3b16d7dcfbfa1290f9a78
[]
no_license
sdugaro/django
c58f1c290a1cadf90d723083c1bceefbbac99073
1704f1796cb3f25cac260c6120becd70e9f1c33f
refs/heads/main
2023-02-06T22:06:41.872202
2020-12-27T09:04:12
2020-12-27T09:04:12
311,162,303
0
0
null
null
null
null
UTF-8
Python
false
false
1,773
py
from rest_framework import serializers from snippets.models import Snippet, LANGUAGE_CHOICES, STYLE_CHOICES # Subclassing a Base REST_FRAMEWORK Serializer class SnippetSerializerBasic(serializers.Serializer): # define which fields are serializable id = serializers.IntegerField(read_only=True) title = serializers.CharField(required=False, allow_blank=True, max_length=100) code = serializers.CharField(style={'base_template': 'textarea.html'}) linenos = serializers.BooleanField(required=False) language = serializers.ChoiceField(choices=LANGUAGE_CHOICES, default='python') style = serializers.ChoiceField(choices=STYLE_CHOICES, default='friendly') # serializer.save() callbacks def create(self, validated_data): """ Create and return a new `Snippet` instance, given the validated data. """ return Snippet.objects.create(**validated_data) def update(self, instance, validated_data): """ Update and return an existing `Snippet` instance, given the validated data. """ instance.title = validated_data.get('title', instance.title) instance.code = validated_data.get('code', instance.code) instance.linenos = validated_data.get('linenos', instance.linenos) instance.language = validated_data.get('language', instance.language) instance.style = validated_data.get('style', instance.style) instance.save() return instance # Analagous to Djangos ModelForm/Form Meta class code simplification # REST has a ModelSerializer/Serializer simplification idiom class SnippetSerializer(serializers.ModelSerializer): class Meta: model = Snippet fields = ['id', 'title', 'code', 'linenos', 'language', 'style']
[ "sdugaro@yahoo.com" ]
sdugaro@yahoo.com
be7482a998f69bafdeb63adb3cc2376c3382c26f
261eba086816dbb3db4836c9b1e5869ccf0f8bae
/python代码规范demo讲解/2.8生成器/demo_08_old.py
38d6db4d11804451d32495eb59a6a0f597d02815
[]
no_license
budaLi/jianzi
e316bdfb25587d14d38f1bea98772bce5ac69198
bca098de0f06ae1c78afc3203dfb0eea6a412dee
refs/heads/master
2023-05-02T19:33:25.752799
2021-05-25T08:03:24
2021-05-25T08:03:24
271,513,687
1
0
null
null
null
null
UTF-8
Python
false
false
291
py
""" 生成器和迭代器 """ # @Time : 2020/10/27 10:42 # @Author : Libuda # @FileName: demo_08_old.py # @Software: PyCharm def odds(n): ret = [] for i in range(1, n + 1): if i % 2 == 1: ret.append(i) return ret for i in odds(1000): print(i)
[ "1364826576@qq.com" ]
1364826576@qq.com
a39c817bbea407b51abff77e28f6f2a39c944bd7
0f83e01412eede77ebc1933630d95720f4cf9527
/SimpleClient/CollectWireless.py
82eb5dcbb458adf343c3906bcadb4135cb35c520
[]
no_license
onthejeep/Bluetooth
73e5df80612fc70ea55dbf7ae6ac7a95926cc36e
2889ca29284067e77237512f7263bf3c98bf5c8e
refs/heads/master
2021-11-28T10:39:40.442105
2021-11-24T03:15:29
2021-11-24T03:15:29
18,699,876
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
''' Created on Apr 1, 2014 @author: admshuyang ''' from uuid import getnode as get_mac; mac = get_mac(); print mac;
[ "onthejeep@gmail.com" ]
onthejeep@gmail.com
d882f260c06396681b45c7a6a624dad9f6a6c4bd
c42565ca8af1b854a99a7c531a8dbe84c617ba25
/docs/unglue_variables.py
40e9410c8a4aaa7548d27b9313f4c80078d21a9d
[ "MIT" ]
permissive
neurodata/bilateral-connectome
e4823efd7aee21f70e436bc32cfd2089a44f0246
2f56a81187c364fa461ea8d99c299b2a75e58f69
refs/heads/main
2023-06-09T16:15:05.356935
2023-06-02T19:29:57
2023-06-02T19:29:57
410,043,679
5
2
MIT
2022-03-16T20:22:26
2021-09-24T17:11:28
Python
UTF-8
Python
false
false
1,646
py
#%% import ast import json from glob import glob import nbformat as nbf # Collect a list of all notebooks in the content folder loc = "bilateral-connectome/docs/**/*.ipynb" notebooks = glob(loc, recursive=True) # HACK what is the globby way to do this? notebooks = [n for n in notebooks if "_build" not in n] data_key = "application/papermill.record/text/plain" image_key = "application/papermill.record/image/png" variables = {} for notebook_path in notebooks: notebook = nbf.read(notebook_path, nbf.NO_CONVERT) for cell in notebook.cells: if cell.get("cell_type") == "code": outputs = cell.get("outputs") for output in outputs: if "data" in output: if ( (image_key not in output["data"]) and ("image/svg+xml" not in output["data"]) and ("image/png" not in output["data"]) ): data = output["data"] if data_key in data: value = data[data_key] try: value = ast.literal_eval(value) except: pass name = output["metadata"]["scrapbook"]["name"] variables[name] = value with open("bilateral-connectome/docs/glued_variables.json", "w") as f: json.dump(variables, f, indent=4) with open("bilateral-connectome/docs/glued_variables.txt", "w") as f: for key, value in variables.items(): f.write(f"{key} {value}\n")
[ "benjamindpedigo@gmail.com" ]
benjamindpedigo@gmail.com
d296b86fe99d2467263e58b64824856279526989
7d196362b366ba0e562b28057f728b77a5689800
/GetFeeds/migrations/0001_initial.py
2585e56d6f9bdd66d9886235fd64cfd5402545cf
[]
no_license
balrammirani/NewsFeed
cfb67ef8a60dbe3677d359d41cdcfd36fb483c41
db3aeb74e252d3d8e1b8535b30e7e7f534166310
refs/heads/master
2021-01-19T00:57:37.949978
2016-07-12T18:26:53
2016-07-12T18:26:53
63,002,291
0
0
null
null
null
null
UTF-8
Python
false
false
549
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-07-10 06:50 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='News', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.CharField(max_length=150)), ], ), ]
[ "balram.mirani@gmail.com" ]
balram.mirani@gmail.com
8b4fdfc9079d643803ddb8c60fc5bf41d041df6f
06dca5ec0ac9cdcbc42171795c067300bebea24b
/project_python/resource/practive_11_Reading_And_Writing_File.py
5c5c4b66f41d338a72e62fabc41dceda0d8b30b0
[]
no_license
quangdt/plan_come_on_baby
0a9dd76feceb1323c22c33586687accefb649392
c26b0ea98b9649fc8d5c61865a2dfdc829324964
refs/heads/master
2021-01-18T13:54:19.176897
2015-09-22T01:40:33
2015-09-22T01:40:33
38,100,359
0
0
null
null
null
null
UTF-8
Python
false
false
726
py
from sys import argv script, filename=argv print "We're going to erase %r." %filename print "If you don't want that, hit CTRL-C (^C)." print "If you do want that, hit RETURN." raw_input("?") print "Opening the file..." target=open(filename,'w') print "Truncating the file. Goodbye!" target.truncate() print "Now I'm going to ask you for three lines." line1= raw_input("Line 1: ") line2= raw_input("Line 2: ") line3= raw_input("Line 3: ") line4= raw_input("Line 4: ") print "I'm going to write these to the file." target.write(line1) target.write("\n") target.write(line2) target.write("\n") target.write(line3) target.write("\n") target.write(line4) target.write("\n") print "And finally, we close it." target.close()
[ "quangyeuthuong@gmail.com" ]
quangyeuthuong@gmail.com
397ba2e22bc6c8eff31f10741b937e33c96d2856
1155a0b487a7cbc3d5539432f5cb68cbf97355aa
/flaskproject/test.py
9b1ad1e421095cf02a956a4ad5c17e88e66e9642
[]
no_license
Hqj130359/Flask
8f1392c016f0e9712485e4668cc501c3b59049f4
a02051b318c484dd2c6d5c6d726bdf51e99bbb3a
refs/heads/master
2020-08-06T21:25:44.571412
2019-10-07T15:37:40
2019-10-07T15:37:40
213,160,123
0
0
null
null
null
null
UTF-8
Python
false
false
5,335
py
# import datetime # result=[] #接受所有的日期,需要一个嵌套列表,列表当中嵌套的是7元素列表 # #月份分类 # big_month=[1,3,5,7,8,10,12] # small_month=[4,6,9,11] # # now=datetime.datetime.now() # month=now.month # first_date=datetime.datetime (now.year,now.month,1,0,0) # #年月日 时 分 # # print(first_date.weekday()) #python的日期当中 星期的范围 0-6 0是周一 6 代表周日 # # print(now.weekday()) # # first_week=first_date.weekday() #2019年9月1号是周日 # #如果一号是周一 那么第一行应该是 1-7号 0 # #如果一号是周二 那么第一行应该是 1*empty+1-6号 1 # #如果一号是周三 那么第一行应该是 2*empty+1-5号 2 # #如果一号是周四 那么第一行应该是 3*empty+1-4号 3 # #如果一号是周五 那么第一行应该是 4*empty+1-3号 4 # #如果一号是周六 那么第一行应该是 5*empty+1-2号 5 # #如果一号是周日 那么第一行应该是 6*empty+1号 6 # # if month in big_month: # day_range=range(1,32) #指定月份的总天数 # elif month in small_month: # day_range=range(1,31) # else: # day_range=range(1,29) # # 获取指定月天数 # day_range=list(day_range) # # first_week=first_date.weekday() #获取指定月1号是周几 6 # line1=[] #第一行数据 # #day_range 1-30 # for e in range(first_week): # line1.append('empty') # for d in range(7-first_week): # line1.append(str(day_range.pop(0))) # # print(line1) # result.append(line1) # # while day_range :# 如果总天数列表有值,就接着循环 # line=[] #每个子列表 # for i in range(7): # if len(line) < 7 and day_range: # line.append(str(day_range.pop(0))) # else: # line.append('empty') # result.append(line) # # print(result) # # 展示效果 # print("星期一 星期二 星期三 星期四 星期五 星期六 星期日") # for line in result: # for day in line: # day=day.center(6) # print(day,end=" ") # print() # import calendar # result=calendar.month(19,9).splitlines()[2:] # for line in result: # print(line) from flask import Flask,render_template import datetime # import calendar app=Flask(__name__) class Calendar: """ 当前类实现日历功能 1返回列表嵌套列表的日历 2,安装日历格式打印日历 """ def __init__(self, month='now'): self.result = [] # 接受所有的日期,需要一个嵌套列表,列表当中嵌套的是7元素列表 # 月份分类 big_month = [1, 3, 5, 7, 8, 10, 12] small_month = [4, 6, 9, 11] # 获取当前月 now = datetime.datetime.now() if month == "now": month = now.month first_date = datetime.datetime(now.year, now.month, 1, 0, 0) # 年月日 时 分 # print(first_date.weekday()) #python的日期当中 星期的范围 0-6 0是周一 6 代表周日 # print(now.weekday()) # first_week=first_date.weekday() #2019年9月1号是周日 # 如果一号是周一 那么第一行应该是 1-7号 0 # 如果一号是周二 那么第一行应该是 1*empty+1-6号 1 # 如果一号是周三 那么第一行应该是 2*empty+1-5号 2 # 如果一号是周四 那么第一行应该是 3*empty+1-4号 3 # 如果一号是周五 那么第一行应该是 4*empty+1-3号 4 # 如果一号是周六 那么第一行应该是 5*empty+1-2号 5 # 如果一号是周日 那么第一行应该是 6*empty+1号 6 else: # assert int(month) in range(1,13) first_date = datetime.datetime(now.year, month, 1, 0, 0) if month in big_month: day_range = range(1, 32) # 指定月份的总天数 elif month in small_month: day_range = range(1, 31) else: day_range = range(1, 29) # 获取指定月天数 self.day_range = list(day_range) first_week = first_date.weekday() # 获取指定月1号是周几 6 line1 = [] # 第一行数据 for e in range(first_week): line1.append('empty') for d in range(7 - first_week): line1.append(str(self.day_range.pop(0))) self.result.append(line1) while self.day_range: # 如果总天数列表有值,就接着循环 line = [] # 每个子列表 for i in range(7): if len(line) < 7 and self.day_range: line.append(str(self.day_range.pop(0))) else: line.append('empty') self.result.append(line) def return_month(self): """ :return: """ return self.result def print_month(self): """ :return: """ print("星期一 星期二 星期三 星期四 星期五 星期六 星期日") for line in self.result: for day in line: day = day.center(6) print(day, end=" ") print() @app.route("/userInfo/") def userInfo(): calendar=Calendar().return_month() return render_template("userInfo.html",**locals()) print(1) if __name__ == "__main__": app.run(host='127.0.0.1',port=8000,debug=True)
[ "zhangsan@qq.com" ]
zhangsan@qq.com
91240e23206342a0d3ec5cad451bd20ae4aa8cf3
f42ea0c6a477b741e8e749f9e1ba8922931659d2
/study_6_7.py
7cef9f442c6661350975f9d1e6d4c48083546247
[]
no_license
7dongyuxiaotang/python_code
4dca469770d4416def97ebc69f233db7df501d07
2cef015481926a8e480ce54840c2d222bb17bf3e
refs/heads/master
2023-07-06T20:33:38.228196
2021-08-12T09:33:27
2021-08-12T09:33:27
371,591,950
0
0
null
null
null
null
UTF-8
Python
false
false
552
py
# 1、什么是文件 # 文件是操作系统提供给用户/应用程序操作硬盘的一种虚拟的概念/接口 # 用户/应用程序(open()) # 操作系统(文件) # 计算机硬件(硬盘) # 2、为何要用文件 # 用户/应用程序可以通过文件将数据永久保存在硬盘中,即操作文件就是操作硬盘 # 3、如何用文件:open() # (1)、控制文本读写内容的模式 # t和b 不能单独使用,必须和r/w/a连用 # f=open(r'D:\text.txt',mode='rt',encoding='utf-8') # res=f.read() # print(res)
[ "614028708@qq.com" ]
614028708@qq.com
8f6cddfbfcd4dff1c8b96b66402ec35eda611b4c
f09978f2a0850278255bd198222cd3990cb0c687
/gear/migrations/0002_auto_20190525_1142.py
366fa9819bb1eb88a25f23d44ef896e4040d58dd
[]
no_license
szpone/climbing-gear
0e4e53b99a0b550c0e172af21c2c9e08e2c3f1ba
78ab13b97b4b66464859b95ba6e5ed8587d5e60c
refs/heads/master
2022-12-12T11:08:57.277056
2019-06-05T16:06:02
2019-06-05T16:06:02
185,016,538
1
0
null
2022-11-22T03:49:28
2019-05-05T10:30:11
Python
UTF-8
Python
false
false
324
py
# Generated by Django 2.2.1 on 2019-05-25 11:42 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('gear', '0001_initial'), ] operations = [ migrations.RenameModel( old_name='GearType', new_name='GearCategory', ), ]
[ "nikola.adamus@gmail.com" ]
nikola.adamus@gmail.com
b1806d05824ad4586ebad22b991734232c01e535
7cafba9d90ad17feebb9bf066fe33f0bb50bdc1f
/code/Memoria/Utility.py
26d1941359bebd84960f0afa7b0c35343e2157e6
[]
no_license
StephanGuingor/Memory-GUI-Client-Server
2795ff555cc85d2ec37b6f0c099505b938641eaf
3dd9f15fca25b41f20c94e7f1ece17b48f37a3fa
refs/heads/master
2022-04-23T06:21:43.031591
2020-04-28T21:24:35
2020-04-28T21:24:35
259,752,969
0
0
null
null
null
null
UTF-8
Python
false
false
730
py
from os.path import dirname, abspath, join import pygame main_dir = dirname(abspath(__file__)) # Program's directory def load_image(file, transparent): """loads an image, prepares it for play""" file = join(main_dir, 'Data', file) try: surface = pygame.image.load(file) except pygame.error: raise SystemExit('Could not load image "%s" %s' % (file, pygame.get_error())) if transparent: return surface.convert_alpha() return surface.convert() def overrides(interface_class): """Verify that class is overriding another""" def overrider(method): assert (method.__name__ in dir(interface_class)) return method return overrider
[ "stephan.guingor04@gmail.com" ]
stephan.guingor04@gmail.com
754c20f53dcf01348a945035ab83fc23b0d6413f
7d703048a5393a0fc65c319bbe95df3795013260
/app/models/tasks_categories_model.py
9a92db5e09a4848d39e92b500f0a25792131d0b8
[]
no_license
nicole-malaquias/eisenhower
0e21e381f6d46feef33ec426d04607aadecc06be
be5a5212741de9dda44b7bc15c5bd28430f50f50
refs/heads/master
2023-08-16T03:42:40.958219
2021-10-08T18:55:09
2021-10-08T18:55:09
417,294,032
0
0
null
null
null
null
UTF-8
Python
false
false
705
py
from app.configs.database import db from dataclasses import dataclass from sqlalchemy.orm import backref, relationship, validates @dataclass class TaskCategoriesModel(db.Model): id : int __tablename__ = 'tasks_categories' id = db.Column(db.Integer, primary_key=True) task_id = db.Column(db.Integer, db.ForeignKey('tasks.id'), nullable=False) category_id = db.Column(db.Integer, db.ForeignKey('categories.id'), nullable=False) tasks = relationship('TasksModel', backref=backref('task_categories', cascade='all, delete-orphan')) category = db.relationship("CategoryModel", backref=backref('ct'))
[ "nicolemalaquias91@gmail.com" ]
nicolemalaquias91@gmail.com
8420713bfe5ac7d87bf6f172a8e8198c043dee6c
ef0c31b1f2802e84a4f97d5417709f384fc2288d
/test_ui_single_q.py
9260eaa4f714426935246e7f0c04128d8eee4c75
[]
no_license
thydmle/pycontin
e35c2fce4449e971496084d46a8f3964b5c3cdbe
6e8a4bc32d787aba12e476ae18fc425ab4e2b130
refs/heads/master
2020-06-19T08:25:18.669788
2014-11-18T00:19:48
2014-11-18T00:19:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,302
py
# Copyright 2014, Jerome Fung # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import numpy as np import yaml_serialize from numpy.testing import assert_allclose from dls_core import Optics, CorrFn, Measurement from pycontin_core import PyContinInputs from problem_setup import add_weights from pycontin_fixed_q import solve_series, solve_alpha, _setup_inversion from computations import prob_1_alpha class TestClass(): def setUp(self): # data and metadata using DLS core classes optics = Optics(wavelen = 488e-7, index = 1.43) # length in cm test_data = np.loadtxt('contin_test_data_set_1.txt') corr_func = CorrFn(*test_data.transpose()) self.measurement = Measurement(corr_func, 60., optics) # pycontin inputs self.pc_inputs = PyContinInputs(n_grid = 31, grid_bounds = np.array([5e2, 5e6]), kernel_type = 'mw', kernel_kwargs = {'prop_const' : 1.37e-4}, dust_term = True) self.soln0, self.int_res0 = solve_alpha(self.measurement, self.pc_inputs, 5.91e-10) self.soln_r = solve_alpha(self.measurement, self.pc_inputs, 3e-6, self.int_res0) # need to load/define gold here self.matrix_stats = np.loadtxt('contin_data_set_1_matrix_stats.txt') def test_lowreg_soln(self): # check scalings on x and alpha assert_allclose(self.int_res0.xsc, self.matrix_stats[:,2], rtol = 5e-4) assert_allclose(self.int_res0.alpha_sc, 1./9.302e13, rtol = 1e-4) # check solution gold_x = np.concatenate((np.zeros(19), np.array([4.263e-11, 1.006e-11]), np.zeros(10), np.array([8.5963e-2]))) gold_err = np.concatenate((np.zeros(19), np.array([3e-12, 3.2e-12]), np.zeros(10), np.array([1.7e-3]))) assert_allclose(self.soln0.x, gold_x, rtol = 1e-3, atol = 1e-16) assert_allclose(self.soln0.error, gold_err, rtol = 4e-2, atol = 1e-16) # check degs of freedom and residuals assert_allclose(self.soln0.n_dof, 3.) assert_allclose(np.sqrt(self.soln0.reduced_chisq), 2.889e-3, rtol = 1e-3) def test_coefficient_matrix(self): # check setup inv_input = _setup_inversion(self.measurement, self.pc_inputs) matrix_A_maxima = np.array([inv_input.coeff_matrix[:, i].max() for i in np.arange(self.pc_inputs.n_grid + 1)]) matrix_A_minima = np.array([inv_input.coeff_matrix[:, i].min() for i in np.arange(self.pc_inputs.n_grid + 1)]) assert_allclose(matrix_A_minima, self.matrix_stats[:,0], rtol = 5e-5) assert_allclose(matrix_A_maxima, self.matrix_stats[:,1], rtol = 5e-5) def test_reg_soln(self): gold_x = np.concatenate((np.zeros(15), np.array([6.270e-14, 4.878e-12, 1.318e-11, 2.107e-11, 2.259e-11, 1.381e-11, 2.055e-12]), np.zeros(9), np.array([8.22e-2]))) gold_err = np.concatenate((np.zeros(15), np.array([1.9e-12, 2.7e-12, 2e-12, 8.8e-13, 1.7e-12, 9.5e-13, 6e-13]), np.zeros(9), np.array([1.9e-3]))) assert_allclose(self.soln_r.x, gold_x, rtol = 2e-3, atol = 1e-14) assert_allclose(self.soln_r.error, gold_err, rtol = 4e-2, atol = 1e-16) assert_allclose(self.soln_r.Valpha, 3.38453e-4, rtol = 1e-4) assert_allclose(self.soln_r.chisq, 3.15960e-4, rtol = 1e-4) assert_allclose((self.soln_r.residuals**2).sum(), self.soln_r.chisq) assert_allclose(np.sqrt(self.soln_r.reduced_chisq), 3.056e-3, rtol = 1e-3) assert_allclose(self.soln_r.n_dof, 3.175, rtol = 1e-3) prob1 = prob_1_alpha(self.soln_r.chisq, self.soln0.Valpha, self.soln0.n_dof, len(self.measurement.corrfn.data)) assert_allclose(prob1, 0.704, rtol = 1e-3) def test_weighted_soln(self): soln_wt, intres_wt = solve_alpha(self.measurement, add_weights(self.pc_inputs, self.soln_r), 2.23e-7) # see CONTIN test output gold_xwt = np.concatenate((np.zeros(18), np.array([1.014e-11, 3.275e-11, 1.795e-11]), np.zeros(10), np.array([8.2845e-2]))) gold_err = np.concatenate((np.zeros(18), np.array([4e-12, 2.3e-12, 1.9e-12]), np.zeros(10), np.array([1.6e-3]))) assert_allclose(soln_wt.x, gold_xwt, rtol = 2e-3, atol = 1e-15) assert_allclose(soln_wt.error, gold_err, rtol = 3e-2, atol = 1e-14) assert_allclose(soln_wt.n_dof, 3.038, rtol = 1e-3, atol = 1e-15) assert_allclose(np.sqrt(soln_wt.reduced_chisq), 9.317e-4, rtol = 1e-3) def test_moment_analysis(self): ''' moments, mom_errs = calculate_moments(self.grid_mw, self.quad_weights, self.x0[:-1], self.infodict0['covar_x'][:-1, :-1]) # see contin test output gold_moments = np.array([1.9509e-11, 3.4570e-6, 6.1951e-1, 1.1257e5, 2.0797e10]) gold_percent_errs = np.array([2.9, 1.6, 0.28, 2.0, 4.3]) assert_allclose(moments, gold_moments, rtol = 1e-2) assert_allclose(mom_errs, 1e-2 * gold_percent_errs, rtol = 2e-2) pass ''' def test_series(self): series, intermed_res = solve_series(self.measurement, self.pc_inputs) assert_allclose(series.best_prob1, 0.5, rtol = 1e-1) def test_simulated_data(self): opt_2 = Optics(0.6328, 1.33) q = opt_2.qsca(60) a = 0.1 # microns kT = 295 * 1.38e-23 * 1e18 tbase = np.logspace(-3, 2, 201) # ms D = kT / (6. * np.pi * 1. * a) data = np.exp(-2. * D * q**2 * tbase) meast = Measurement(CorrFn(tbase, data), 60., opt_2) pc_inputs = PyContinInputs(n_grid = 31, grid_bounds = np.array([1e-2, 1]), kernel_type = 'rad', kernel_kwargs = {'kT' : kT, 'eta' : 1.}) soln, intres = solve_alpha(meast, pc_inputs, 1e-11) # check that the residuals are negligible assert_allclose(soln.residuals, np.zeros(201), atol = 1e-8) # check that there is a spike near correct radius assert_allclose(pc_inputs.grid[soln.x.argmax()], a) print soln.x def test_serialization(self): pass
[ "fung@physics.harvard.edu" ]
fung@physics.harvard.edu
5e0dd9f13ea0378495ff20008d37fa50ec597dea
91f39fc8b5df9ccde912d91506357739374d8831
/pokemonbot/PokemonGo/pokemongo_bot/cell_workers/initial_transfer_worker.py
a4875842ceb75668d7c0beff619b978ae537a018
[]
no_license
baloon11/PokemonGo-bot_Django_wrapper
88b97488b4d77fe03d8a0acab980995dd3cdc78b
2fb9b8e50d3130efba3acd442bbc7c9b05907d98
refs/heads/master
2021-01-17T19:00:40.948725
2016-08-02T08:12:04
2016-08-02T08:12:04
64,734,348
1
1
null
null
null
null
UTF-8
Python
false
false
2,663
py
import json # from pokemongo_bot.human_behaviour import sleep # from pokemongo_bot import logger from .. import logger from ..human_behaviour import sleep class InitialTransferWorker(object): def __init__(self, bot): self.config = bot.config self.pokemon_list = bot.pokemon_list self.api = bot.api def work(self): logger.log('[x] Initial Transfer.') logger.log( '[x] Preparing to transfer all duplicate Pokemon, keeping the highest CP of each type.') logger.log('[x] Will NOT transfer anything above CP {}'.format( self.config.initial_transfer)) pokemon_groups = self._initial_transfer_get_groups() for id in pokemon_groups: group_cp = pokemon_groups[id].keys() if len(group_cp) > 1: group_cp.sort() group_cp.reverse() for x in range(1, len(group_cp)): if self.config.initial_transfer and group_cp[x] > self.config.initial_transfer: continue print('[x] Transferring {} with CP {}'.format( self.pokemon_list[id - 1]['Name'], group_cp[x])) self.api.release_pokemon( pokemon_id=pokemon_groups[id][group_cp[x]]) response_dict = self.api.call() sleep(2) logger.log('[x] Transferring Done.') def _initial_transfer_get_groups(self): pokemon_groups = {} self.api.get_player().get_inventory() inventory_req = self.api.call() inventory_dict = inventory_req['responses']['GET_INVENTORY'][ 'inventory_delta']['inventory_items'] user_web_inventory = 'web/inventory-%s.json' % (self.config.username) with open(user_web_inventory, 'w') as outfile: json.dump(inventory_dict, outfile) for pokemon in inventory_dict: try: reduce(dict.__getitem__, [ "inventory_item_data", "pokemon_data", "pokemon_id" ], pokemon) except KeyError: continue group_id = pokemon['inventory_item_data'][ 'pokemon_data']['pokemon_id'] group_pokemon = pokemon['inventory_item_data'][ 'pokemon_data']['id'] group_pokemon_cp = pokemon[ 'inventory_item_data']['pokemon_data']['cp'] if group_id not in pokemon_groups: pokemon_groups[group_id] = {} pokemon_groups[group_id].update({group_pokemon_cp: group_pokemon}) return pokemon_groups
[ "olfb_c@ukr.net" ]
olfb_c@ukr.net
5d6cd21329a2ad018802f7b44173e6758ee4ac1e
4bc696d97f9fec7e5ce136593556007a8b889d5f
/server/apps/reportAdmin/models.py
7b4b5b4e7c7e4c8ce9965c93308c74c3c434b22f
[]
no_license
davidhorst/FirstDjangular
37224a72ebd1e487b4b07755b06432a99f572eaf
5d18577f8d52e7e276c2c850d33f929de8e77ee6
refs/heads/master
2021-06-12T09:34:21.103774
2016-12-13T14:53:24
2016-12-13T14:53:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
187
py
from __future__ import unicode_literals from django.db import models class Report(models.Model): name = models.CharField(max_length=15) interval = models.PositiveIntegerField()
[ "=" ]
=
c83d59471151b154da89111e7a1d551d9c80b15d
beeb13e821788646e472fda3dad055a0b15da0f5
/r3.py
c497c3d5f5b5e0929c8cd43be27cb76577f32487
[]
no_license
alahesia/smart-avto
0f59c2496e3b926052052c150bd392f8dd7af2e7
7528d101c7639685962306cc65c8d10f4cf4ac41
refs/heads/master
2021-01-25T06:18:36.152488
2017-06-15T18:07:11
2017-06-15T18:07:11
93,554,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,256
py
#!/usr/bin/env python # -*- coding: utf8 -*- import RPi.GPIO as GPIO import MFRC522 import signal import time red = 40 card_01 = '1662448133' GPIO.setmode(GPIO.BOARD) # Это значит, что считаем пины по порядку с левого верхнего (3v3 - первый) GPIO.setwarnings(False) GPIO.setup(red, GPIO.OUT) continue_reading = True MIFAREReader = MFRC522.MFRC522() while continue_reading: # Сканируем карты - считываем их UID (status,TagType) = MIFAREReader.MFRC522_Request(MIFAREReader.PICC_REQIDL) if status == MIFAREReader.MI_OK: print "Card detected" # Read UID (status,uid) = MIFAREReader.MFRC522_Anticoll() # Если считали UID, то идем дальше if status == MIFAREReader.MI_OK: # показ UID UIDcode = str(uid[0])+str(uid[1])+str(uid[2])+str(uid[3]) print UIDcode if UIDcode == card_01: GPIO.output(red, 0) print "Door open" # А если карты в списке нет, то моргаем и пищим else: GPIO.output(red, 1) time.sleep(0.05) print "Unrecognised Card" GPIO.cleanup()
[ "alahesia@gmail.com" ]
alahesia@gmail.com
c54a6f9f02fb20751b071ecad0b54c97bad903ac
2cca7049fc4daa4f50b2b7a7d8059e3055e18048
/tutorWithParkGrade.py
0f60626eca91254fd7f3b73b7dd2b1f66b21f701
[]
no_license
twil0516/studyPy
6176c94e9f3be3599cf28cf34f1ba0553d8cd259
faa1c3f7b6ebc2a4fd67470a68eb6dbdd459b3f2
refs/heads/master
2022-10-11T13:34:11.838558
2020-06-11T10:05:02
2020-06-11T10:05:02
271,509,360
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
score = int(input("점수를 입력하세요 : ")) if score <= 100 and score >= 0: if score > 90 and score <= 100: print("A학점 입니다.") elif score > 80 and score <= 90: print("B학점 입니다.") elif score > 70 and score <= 80: print("C학점 입니다.") else: print("F학점 입니다.") else: print("점수를 잘 못 입력하셨습니다.")
[ "twil0516@gmail.com" ]
twil0516@gmail.com
ea55bed2be2d0e0b08a50d11258844aae744e0f7
ad5d7c41370e9dae67ed21a8624ee042977cb51f
/leadmanager/settings.py
cd780f3e49313d93e23e45edf9713f59813a8d4a
[]
no_license
Sparrowan/fullstack-sparrowan-lead-manager-django-react
122e1d3579ee20f77f070bd58f57a9e52f382c45
60ef0d348283a5313b77b1d9568cfe6254da6a55
refs/heads/master
2023-01-12T14:59:14.248440
2020-03-22T12:15:44
2020-03-22T12:15:44
249,174,169
0
0
null
2023-01-05T10:30:17
2020-03-22T12:01:57
JavaScript
UTF-8
Python
false
false
3,409
py
""" Django settings for leadmanager project. Generated by 'django-admin startproject' using Django 3.0.4. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'l)y6q&oo^3#h2)p+c%i(p^dyxd+yoze!7tjhwz1915@cs+aurp' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'leads', 'corsheaders', ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'leadmanager.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'frontend/build'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'leadmanager.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'frontend/build/static'), ] CORS_ORIGIN_WHITELIST = [ "http://localhost:3000" ]
[ "alphiuswambua@gmail.com" ]
alphiuswambua@gmail.com
727d79147a17669687219207cd4e55ee2d5313ec
115b5356242176b8873ae7e43cd313e41cbd0ee6
/tensorflow/openvino_ssd_image.py
41ba377ec9bd23198c6d50fce6858ba69d032241
[]
no_license
squeakus/bitsandbytes
b71ec737431bc46b7d93969a7b84bc4514fd365b
218687d84db42c13bfd9296c476e54cf3d0b43d2
refs/heads/master
2023-08-26T19:37:15.190367
2023-07-18T21:41:58
2023-07-18T21:42:14
80,018,346
2
4
null
2022-06-22T04:08:35
2017-01-25T13:46:28
C
UTF-8
Python
false
false
7,491
py
#!/usr/bin/env python """ Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import print_function import sys import os from argparse import ArgumentParser import cv2 import time import logging as log import glob from openvino.inference_engine import IENetwork, IEPlugin def build_argparser(): parser = ArgumentParser() parser.add_argument("-m", "--model", help="Path to an .xml file with a trained model.", required=True, type=str) parser.add_argument("-i", "--input", help="Path to image. Please specify regex for multiple images, e.g.; images/*jpg", required=True, type=str) parser.add_argument("-l", "--cpu_extension", help="MKLDNN (CPU)-targeted custom layers.Absolute path to a shared library with the kernels " "impl.", type=str, default=None) parser.add_argument("-pp", "--plugin_dir", help="Path to a plugin folder", type=str, default=None) parser.add_argument("-d", "--device", help="Specify the target device to infer on; CPU, GPU, FPGA or MYRIAD is acceptable. Demo " "will look for a suitable plugin for device specified (CPU by default)", default="CPU", type=str) parser.add_argument("--labels", help="Labels mapping file", default=None, type=str) parser.add_argument("-pt", "--prob_threshold", help="Probability threshold for detections filtering", default=0.5, type=float) return parser def main(): log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout) args = build_argparser().parse_args() model_xml = args.model model_bin = os.path.splitext(model_xml)[0] + ".bin" # Plugin initialization for specified device and load extensions library if specified log.info("Initializing plugin for {} device...".format(args.device)) plugin = IEPlugin(device=args.device, plugin_dirs=args.plugin_dir) if args.cpu_extension and 'CPU' in args.device: plugin.add_cpu_extension(args.cpu_extension) # Read IR log.info("Reading IR...") net = IENetwork(model=model_xml, weights=model_bin) if plugin.device == "CPU": supported_layers = plugin.get_supported_layers(net) not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers] if len(not_supported_layers) != 0: log.error("Following layers are not supported by the plugin for specified device {}:\n {}". format(plugin.device, ', '.join(not_supported_layers))) log.error("Please try to specify cpu extensions library path in demo's command line parameters using -l " "or --cpu_extension command line argument") sys.exit(1) assert len(net.inputs.keys()) == 1, "Demo supports only single input topologies" assert len(net.outputs) == 1, "Demo supports only single output topologies" input_blob = next(iter(net.inputs)) out_blob = next(iter(net.outputs)) log.info("Loading IR to the plugin...") exec_net = plugin.load(network=net, num_requests=2) # Read and pre-process input image n, c, h, w = net.inputs[input_blob].shape del net if args.labels: with open(args.labels, 'r') as f: labels_map = [x.strip() for x in f] else: labels_map = None if "*" in args.input: images =glob.glob(args.input) else: images = [args.input] for imgname in images: assert os.path.isfile(imgname), "Specified input file doesn't exist" img = cv2.imread(imgname) cur_request_id = 0 next_request_id = 1 log.info("Starting inference in sync mode...") log.info("To switch between sync and async modes press Tab button") log.info("To stop the demo execution press Esc button") is_async_mode = False render_time = 0 initial_h, initial_w, channels = img.shape # Main sync point: # in the truly Async mode we start the NEXT infer request, while waiting for the CURRENT to complete # in the regular mode we start the CURRENT request and immediately wait for it's completion inf_start = time.time() in_img = cv2.resize(img, (w, h)) in_img = in_img.transpose((2, 0, 1)) # Change data layout from HWC to CHW in_img = in_img.reshape((n, c, h, w)) exec_net.start_async(request_id=cur_request_id, inputs={input_blob: in_img}) if exec_net.requests[cur_request_id].wait(-1) == 0: inf_end = time.time() det_time = inf_end - inf_start # Parse detection results of the current request res = exec_net.requests[cur_request_id].outputs[out_blob] for obj in res[0][0]: # Draw only objects when probability more than specified threshold if obj[2] > args.prob_threshold: xmin = int(obj[3] * initial_w) ymin = int(obj[4] * initial_h) xmax = int(obj[5] * initial_w) ymax = int(obj[6] * initial_h) class_id = int(obj[1]) # Draw box and label\class_id color = (0, 0, 255) cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) det_label = labels_map[class_id] if labels_map else str(class_id) cv2.putText(img, det_label + ' ' + str(round(obj[2] * 100, 1)) + ' %', (xmin, ymin - 7), cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1) # Draw performance stats print("Inference time: {:.3f} ms".format(det_time * 1000)) inf_time_message = "Inference time: N\A for async mode" if is_async_mode else \ "Inference time: {:.3f} ms".format(det_time * 1000) render_time_message = "OpenCV rendering time: {:.3f} ms".format(render_time * 1000) async_mode_message = "Async mode is on. Processing request {}".format(cur_request_id) if is_async_mode else \ "Async mode is off. Processing request {}".format(cur_request_id) cv2.putText(img, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1) cv2.putText(img, render_time_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1) cv2.putText(img, async_mode_message, (10, int(initial_h - 20)), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1) #img = cv2.resize(img,(500,500)) cv2.imshow("Detection Results", img) key = cv2.waitKey(0) cv2.destroyAllWindows() if key == 27: # Esc key to stop break del exec_net del plugin # cv2.imwrite("out.png", img) if __name__ == '__main__': sys.exit(main() or 0)
[ "jonathanbyrn@gmail.com" ]
jonathanbyrn@gmail.com
efdb82400d1318cd2f944357d02d3a541be9f2a2
0e06a05a64d02f660d988db11bd004941c2058ac
/ex41.py
36c1392569f76f56d9ace74b79a4d0e6b501c7c2
[]
no_license
luisco96/LPTHW
65fa53dee6f8799212fd4278dea6d884d9155d36
ee2f8b4596c1aba7515152cbb7d0ee15a5ab3b86
refs/heads/master
2021-04-03T14:13:07.585079
2020-05-31T21:26:09
2020-05-31T21:26:09
248,364,233
0
0
null
null
null
null
UTF-8
Python
false
false
2,346
py
import random from urllib.request import urlopen import sys WORD_URL = "http://learncodethehardway.org/words.txt" WORDS = [] PHRASES = { "class %%%(%%%):" : "Make a class named %%% that is-a %%%.", "class %%%(object):\n\tdef __init__(self, ***)": "class %%% has-a __init__ that takes self and *** params.", "class %%%(object):\n\tdef ***(self, @@@)": "class %%% has-a function *** that takes self and @@@ params.", "*** = %%%():": "Set *** to an instance of class %%%.", "***.***(@@@)": "From *** get the *** function, call it with params self, @@@.", "***.*** = '***'": "From *** get the *** attribute and set it to '***'" } # do they want to drill phrases first if len(sys.argv) == 2 and sys.argv[1] == "english": PHRASE_FIRST = True else: PHRASE_FIRST = False # load up the words from the website for word in urlopen(WORD_URL).readlines(): WORDS.append(str(word.strip(), encoding="utf-8")) def convert(snippet, phrase): class_name = [w.capitalize() for w in random.sample(WORDS, snippet.count("%%%"))] other_names = random.sample(WORDS, snippet.count("***")) results = [] param_names = [] for i in range(0, snippet.count("@@@")): param_count = random.randint(1,3) param_names.append(', '.join( random.sample(WORDS, param_count))) for sentence in snippet, phrase: result = sentence[:] # fake class names for word in class_name: result = result.replace("%%%", word, 1) # fake other names for word in other_names: result = result.replace("***", word, 1) # fake parameter lists for word in param_names: result = result.replace("@@@", word, 1) results.append(result) return results # keep going until they hit CTRL-D try: while True: snippets = list(PHRASES.keys()) random.shuffle(snippets) for snippet in snippets: phrase = PHRASES[snippet] question, answer = convert(snippet, phrase) if PHRASE_FIRST: question, answer = answer, question print(question) input("> ") print(f"ANSWER: {answer}\n\n") except EOFError: print("\nBye")
[ "luisco28@gmail.com" ]
luisco28@gmail.com
0e5447d21a2d421a9baa4a13d2780114aadaec9b
ffb7e32769cf5928fcca5abf3a60f86e456bb79a
/biz/t8.py
73ca8fc13e6c2220b392691e5faeaca2a4eca4c6
[ "Apache-2.0" ]
permissive
relax-space/python-learning
92f8173af26d05beae89e928b1df4aa907b5701b
45457fc6c3a6583cb28bd14161439ec557c4ce2b
refs/heads/master
2022-05-03T13:33:45.646838
2021-11-30T21:38:06
2022-03-19T15:34:22
250,942,773
0
0
null
null
null
null
UTF-8
Python
false
false
949
py
import pytest # https: // www.cnblogs.com/luizyao/p/11848352.html # indirect:argnames的子集或者一个布尔值;将指定参数的实参通过request.param重定向到和参数同名的fixture中,以此满足更复杂的场景; # src/chapter-11/test_indirect.py @pytest.fixture() def max(request): return request.param - 1 @pytest.fixture() def min(request): return request.param + 1 # 默认 indirect 为 False @pytest.mark.parametrize('min, max', [(1, 2), (3, 4)]) def test_indirect(min, max): assert min <= max # min max 对应的实参重定向到同名的 fixture 中 @pytest.mark.parametrize('min, max', [(1, 2), (3, 4)], indirect=True) def test_indirect_indirect(min, max): assert min >= max # 只将 max 对应的实参重定向到 fixture 中 @pytest.mark.parametrize('min, max', [(1, 2), (3, 4)], indirect=['max']) def test_indirect_part_indirect(min, max): print(min, max) assert min == max
[ "xiaoxm_001@163.com" ]
xiaoxm_001@163.com
7bf8db59d258149767c30babf4c58f93344b9449
8ec9b7ab4fbe4d3c9f13a4cfbc26f6ecc18fb475
/Flask_Proj/flaskr/db.py
9a9e4728497f5e4caac4c77b3fa4feb74e28eb89
[]
no_license
mrsreddy451/Python
b337037f3338fe354b9a0e760d59fe6b642ba3a4
d77f7c732b11913cbd539836c813dbd4798d9496
refs/heads/master
2022-06-25T20:24:58.172543
2020-05-07T14:47:41
2020-05-07T14:47:41
152,211,647
0
0
null
null
null
null
UTF-8
Python
false
false
919
py
import sqlite3 import click from flask import current_app, g from flask.cli import with_appcontext def get_db(): if 'db' not in g: g.db = sqlite3.connect( current_app.config['DATABASE'], detect_types=sqlite3.PARSE_DECLTYPES ) g.db.row_factory = sqlite3.Row return g.db def close_db(e=None): db = g.pop('db', None) if db is not None: db.close() def init_db(): db = get_db() with current_app.open_resource('schema.sql') as f: db.executescript(f.read().decode('utf8')) @click.command('init-db') @with_appcontext def init_db_command(): """Clear the existing data and create new tables.""" init_db() click.echo('Initialized the database.') print('run the commands') def init_app(app): app.teardown_appcontext(close_db) app.cli.add_command(init_db_command)
[ "noreply@github.com" ]
mrsreddy451.noreply@github.com
546cca90b6e1aaf74aefb8a18438d14b36b643c0
ca1321ae08ae4645c16753504e6387c43a162c7d
/search-suggestions-system.py
cbc8112b745eec0c5f4ee535b116fe9ecceea5a9
[]
no_license
atomicapple0/misc
42b9a98875ad309c3fca577c08750eff2dadcd8c
998ccb846759ef736a13c3513dc62e28e4049d43
refs/heads/master
2022-11-10T11:56:33.211139
2022-10-26T02:31:38
2022-10-26T02:31:38
252,246,196
0
0
null
null
null
null
UTF-8
Python
false
false
1,090
py
import bisect class Solution: def suggestedProducts(self, products, searchWord): deq = products deq.sort() sol = [] idx = 0 for i in range(len(searchWord)): soll = [] while idx < len(deq): try: if deq[idx][:i + 1] == searchWord[:i + 1]: break except: pass idx += 1 for j in range(idx, min(len(deq), idx + 3)): try: if j < len(deq) and deq[j][:i + 1] == searchWord[:i + 1]: soll.append(deq[j]) else: break except: pass sol.append(soll) return sol def optimal(self, A, word): A.sort() res = [] prefix = '' i = 0 for c in word: prefix += c i = bisect.bisect_left(A, prefix, lo=i) res.append([w for w in A[i:i+3] if w.startswith(prefix)]) return res
[ "brianzhangaa@gmail.com" ]
brianzhangaa@gmail.com
c9856aeddf6a7e307e2113099793921a5da75d36
07c5656f004b6a444e22ff7b4c3b6802d027f759
/week_9/class_0420/API_5/common/http_request.py
a2e1884012d0be74fe084a99df396c6dcb6f8729
[]
no_license
EuniceHu/python15_api_test
de2a0f0bec8057edb27c8d1f82a438da3e9c105c
1313e56ddfa67a2490e703a1a5ef4a6967565849
refs/heads/master
2020-05-20T13:30:41.686327
2019-05-14T11:00:52
2019-05-14T11:00:52
185,599,046
0
0
null
null
null
null
UTF-8
Python
false
false
3,371
py
# -*- coding:utf-8 _*- """ @author:mongo @time: 2018/12/17 @email:3126972006@qq.com @function: """ import requests from API_5.common.config import config class HTTPRequest: """ 独立session,cookies需要自己传递 使用这类的request方法去完成不同的HTTP请求,并且返回响应结果 """ def request(self, method, url, data=None, json=None, cookies=None): method = method.upper() # 将method强制转成全大小 if type(data) == str: data = eval(data) # str转成字典 if method == 'GET': resp = requests.get(url, params=data, cookies=cookies) # resp 是Response对象 elif method == 'POST': if json: resp = requests.post(url, json=json, cookies=cookies) else: resp = requests.post(url, data=data, cookies=cookies) else: resp = None print('UN-support method') return resp class HTTPRequest2: """ 公共使用一个session, cookies自动传递 使用这类的request方法去完成不同的HTTP请求,并且返回响应结果 """ def __init__(self): # 打开一个session self.session = requests.sessions.session() def request(self, method, url, data=None, json=None): method = method.upper() # 将method强制转成全大小 if type(data) == str: data = eval(data) # str转成字典 # 拼接URL url = config.get('api', 'pre_url') + url print('请求url:', url) print('请求data:', data) if method == 'GET': resp = self.session.request(method=method, url=url, params=data) elif method == 'POST': if json: resp = self.session.request(method=method, url=url, json=json) else: resp = self.session.request(method=method, url=url, data=data) else: resp = None print('UN-support method') print('请求response:', resp.text) return resp def close(self): self.session.close() # 用完记得关闭,很关键!!! if __name__ == '__main__': # params = {"mobilephone": "15810447878", "pwd": "123456"} # http_request = HTTPRequest() # # 调用登陆 # resp = http_request.request('pOST', 'http://test.lemonban.com/futureloan/mvc/api/member/login', data=params) # print(resp.status_code) # print(resp.text) # print(resp.cookies) # # # 调用充值 # params = {"mobilephone": "15810447878", "amount": "1000"} # resp2 = http_request.request('POST', 'http://test.lemonban.com/futureloan/mvc/api/member/recharge', data=params, # cookies=resp.cookies) # print(resp2.status_code) # print(resp2.text) # print(resp2.cookies) http_request2 = HTTPRequest2() params = {"mobilephone": "15810447878", "pwd": "123456"} resp = http_request2.request('pOST', 'http://test.lemonban.com/futureloan/mvc/api/member/login', data=params) params = {"mobilephone": "15810447878", "amount": "1000"} resp2 = http_request2.request('POST', 'http://test.lemonban.com/futureloan/mvc/api/member/recharge', data=params) http_request2.close() print(resp2.status_code) print(resp2.text) print(resp2.cookies)
[ "hongdh1122@163.com" ]
hongdh1122@163.com
5e4f6e129e5aa4b8851045b557a6a8f82e4450bd
1dcc09e5f6676f9390e2be296c77e537b4e10f1d
/auth.py
69b8cba64d4e76622615d076aa5a8cf957ca8a00
[]
no_license
farahSalotaibi/casting-agency
61c1075591be7dfe2e963e7eac6a9fe085d1b9a1
eba2ed09aeedfe7fa9652bdcb8eed5a2a0c77028
refs/heads/master
2023-02-04T11:13:25.010522
2020-12-21T11:30:04
2020-12-21T11:30:04
323,140,231
0
0
null
null
null
null
UTF-8
Python
false
false
5,614
py
import json from flask import request, _request_ctx_stack, abort from functools import wraps from jose import jwt from urllib.request import urlopen AUTH0_DOMAIN = 'farahalota.us.auth0.com' ALGORITHMS = ['RS256'] API_AUDIENCE = 'casting' # AuthError Exception ''' AuthError Exception A standardized way to communicate auth failure modes ''' class AuthError(Exception): def __init__(self, error, status_code): self.error = error self.status_code = status_code # Auth Header ''' @TODO implement get_token_auth_header() method DOOONE it should attempt to get the header from the request it should raise an AuthError if no header is present it should attempt to split bearer and the token it should raise an AuthError if the header is malformed return the token part of the header ''' def get_token_auth_header(): auth = request.headers.get('Authorization', None) if not auth: raise AuthError({ 'code': 'authorization_header_missing', 'description': 'Authorization header is expected.' }, 401) parts = auth.split() if parts[0].lower() != 'bearer': raise AuthError({ 'code': 'invalid_header', 'description': 'Authorization header must start with "Bearer".' }, 401) elif len(parts) == 1: raise AuthError({ 'code': 'invalid_header', 'description': 'Token not found.' }, 401) elif len(parts) > 2: raise AuthError({ 'code': 'invalid_header', 'description': 'Authorization header must be bearer token.' }, 401) token = parts[1] return token ''' @TODO implement check_permissions(permission, payload) method DOOONE @INPUTS permission: string permission (i.e. 'post:drink') payload: decoded jwt payload it should raise an AuthError if permissions are not included in the payload !!NOTE check your RBAC settings in Auth0 it should raise an AuthError if the requested permission string is not in the payload permissions array return true otherwise ''' def check_permissions(permission, payload): if 'permissions' not in payload: raise AuthError({ 'code': 'invalid_claims', 'description': 'Permissions not included in JWT.' }, 400) if permission not in payload['permissions']: raise AuthError({ 'code': 'unauthorized', 'description': 'Permission not found.' }, 403) return True ''' @TODO implement verify_decode_jwt(token) method DOOONE @INPUTS token: a json web token (string) it should be an Auth0 token with key id (kid) it should verify the token using Auth0 /.well-known/jwks.json it should decode the payload from the token it should validate the claims return the decoded payload !!NOTE urlopen has a common certificate error described here: https://stackoverflow.com/questions/50236117/scraping-ssl-certificate-verify-failed-error-for-http-en-wikipedia-org ''' def verify_decode_jwt(token): jsonurl = urlopen(f'https://{AUTH0_DOMAIN}/.well-known/jwks.json') jwks = json.loads(jsonurl.read()) unverified_header = jwt.get_unverified_header(token) rsa_key = {} if 'kid' not in unverified_header: raise AuthError({ 'code': 'invalid_header', 'description': 'Authorization malformed.' }, 401) for key in jwks['keys']: if key['kid'] == unverified_header['kid']: rsa_key = { 'kty': key['kty'], 'kid': key['kid'], 'use': key['use'], 'n': key['n'], 'e': key['e'] } if rsa_key: try: payload = jwt.decode( token, rsa_key, algorithms=ALGORITHMS, audience=API_AUDIENCE, issuer='https://' + AUTH0_DOMAIN + '/' ) return payload except jwt.ExpiredSignatureError: raise AuthError({ 'code': 'token_expired', 'description': 'Token expired.' }, 401) except jwt.JWTClaimsError: raise AuthError({ 'code': 'invalid_claims', 'description': 'Incorrect claims. Please, check the audience and issuer.' }, 401) except Exception: raise AuthError({ 'code': 'invalid_header', 'description': 'Unable to parse authentication token.' }, 400) raise AuthError({ 'code': 'invalid_header', 'description': 'Unable to find the appropriate key.' }, 400) ''' @TODO implement @requires_auth(permission) decorator method DOOONE @INPUTS permission: string permission (i.e. 'post:drink') it should use the get_token_auth_header method to get the token it should use the verify_decode_jwt method to decode the jwt it should use the check_permissions method validate claims and check the requested permission return the decorator which passes the decoded payload to the decorated method ''' def requires_auth(permission=''): def requires_auth_decorator(f): @wraps(f) def wrapper(*args, **kwargs): token = get_token_auth_header() payload = verify_decode_jwt(token) check_permissions(permission, payload) return f(payload, *args, **kwargs) return wrapper return requires_auth_decorator
[ "farahalota@hotmail.com" ]
farahalota@hotmail.com
705ee15d5c50c3aae068e458114c830421a440fc
efe70f921654fd669d8458d9de3d00ecdbcaad53
/remote/protocols/irc/services.py
395a0a243c15bf160a09bd460eeb7b73d1023eee
[]
no_license
xblaster/scrutator
92c93590f74bd1f1ed71b13c216a6ad24212e84f
eff724d4488bbced528b01f9f82cbdeb5726795b
refs/heads/master
2016-09-03T07:21:50.888776
2009-12-07T12:55:12
2009-12-07T12:55:12
67,173
2
0
null
null
null
null
UTF-8
Python
false
false
2,089
py
''' Created on 1 Dec 2009 @author: wax ''' from remote.protocols.irc.model import IrcServer, IrcChannel import ConfigParser, os import MySQLdb import MySQLdb.cursors class IrcServices: def __init__(self): config = ConfigParser.ConfigParser() #config.readfp(open('default.cfg')) config.read('default.cfg') #print config.get("database", "username") self.dbpool = MySQLdb.connect( host= config.get("database", "host"), user= config.get("database", "username"), passwd= config.get("database", "passwd"), db=config.get("database", "db"), cursorclass = MySQLdb.cursors.DictCursor ).cursor() def getServerList(self): self.dbpool.execute("SELECT * FROM servers") return self.dbpool.fetchall() def getModel(self): self.dbpool.execute("SELECT * FROM `channels`, servers WHERE server_id = servers.id AND (server_id=3 OR server_id=2 OR server_id=1 OR server_id=4 OR server_id=8)") servers = dict() for elt in self.dbpool.fetchall(): host = elt["host"] if not servers.has_key(host): server = IrcServer() server.host = host servers[host] = server server = servers[host] channel = IrcChannel() channel.name = elt["name"] server.addChannel(channel) return servers.values() def setChanStatus(self, channel): self.dbpool.execute("UPDATE `channels` SET `status` = '"+channel.bot+"', `lastupdate` = '"+getNowInMysql()+"' WHERE `name` ='"+channel.name+"' LIMIT 1") def getNowInMysql(): from datetime import datetime from time import strftime newdate = datetime.now() mysqldate = strftime("%Y-%m-%d %H:%M:%S", newdate.timetuple()) return mysqldate
[ "xblaster@lo2k.net" ]
xblaster@lo2k.net
2428c3e3708e0fc2e67361126f0113670c6f5630
4609d368e65a361346a02e5c47a5dc2cfe0364a5
/project/content/apps.py
24f4ccb82e3354f626f7ae665f197f247f9ced7b
[]
no_license
fahmihidayah/Simple-Django-CMS
38e84a01aa573eba729b64cd17880c6ed94aabd0
cc25cf6362ec9e60a2615e4f4cd4e1cece1a07e7
refs/heads/master
2023-02-28T13:34:40.138950
2021-02-11T08:08:35
2021-02-11T08:08:35
337,964,159
0
0
null
null
null
null
UTF-8
Python
false
false
87
py
from django.apps import AppConfig class ContentConfig(AppConfig): name = 'Content'
[ "f.hidayah@pixilapps.com" ]
f.hidayah@pixilapps.com
f8e92541ae3277aa329b90bab739a4181e3439c1
cf8729d340b7164653ce8a3a577a1ab5f806a9dc
/Casa/Casa_automatizada.py
081cac1f629a690bcab15f81ad54a9bc19d67d4c
[]
no_license
aroldovargas/Simulador-Casa-Automatizada
fe3c52c7263e82b068a525ac719e13b0be26392d
ab8fac4d98a6bf2593c134a35d09e4200941a16a
refs/heads/master
2020-05-30T10:02:06.929003
2019-05-24T18:56:17
2019-05-24T18:56:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,036
py
# -*- coding: utf-8 -*- import sys if sys.platform == 'linux2': import subprocess output = subprocess.Popen( 'xrandr | grep "\*" | cut -d" " -f4', shell=True, stdout=subprocess.PIPE).communicate()[0] screenx = int(output.replace('\n', '').split('x')[0]) screeny = int(output.replace('\n', '').split('x')[1]) elif sys.platform == 'win32': from win32api import GetSystemMetrics screenx = GetSystemMetrics(0) screeny = GetSystemMetrics(1) elif sys.platform == 'darwin': from AppKit import NSScreen frame_size = NSScreen.mainScreen().frame().size screenx = frame_size.width screeny = frame_size.height else: # For mobile devices, use full screen screenx,screeny = 800,600 # return something import kivy from kivy.app import App from kivy.app import Widget from kivy.uix.boxlayout import BoxLayout from kivy.uix.screenmanager import ScreenManager, Screen, FadeTransition import casa_api from kivy.lang import Builder from kivy.uix.textinput import TextInput from kivy.properties import ObjectProperty, ListProperty, StringProperty, NumericProperty from kivy.base import runTouchApp from kivy.uix.spinner import Spinner from kivy.uix.button import Button from kivy.uix.dropdown import DropDown from kivy.uix.image import Image from kivy.core.window import Window from kivy.uix.popup import Popup from kivy.uix.label import Label from kivy.clock import Clock import time kivy.require('1.8.0') __version__ = "0.1" Window.size = (1324,800) Window.left = (screenx - 1200)/2 Window.top = (screeny - 800)/2 hora = "" temperatura = "" data = "" numeros_sorteados = [] jogadores = {} bilhete = [] div = 0.0 class HomeWidget(Screen): pass class DispositivosWidget(Screen): pass class Celular(Screen): pass class Bolao_Janela(ScreenManager): # spinner = Spinner( # # default value shown # text='Home', # # available values # values=('Home', 'Work', 'Other', 'Custom'), # # just for positioning in our example # size_hint=(None, None), # size=(100, 44), # pos_hint={'center_x': .5, 'center_y': .5}) def show_selected_value(self): runTouchApp(mainbutton) def on_remove_botao(self): self.remove_wigdet(self.dropdown) def switch_to_homeWidget(self): self.current = 'homeWidget' def switch_to_dispositivosWidget(self): self.current = 'dispositivosWidget' def init_simulacao(self,clocktext): Clock.schedule_interval(self.update(clocktext), 1) def update(self,clocktext): clocktext.text = time.strftime('%I'+':'+'%M'+' %p') def simulacao(self,cont): horaLabel = StringProperty() dataLabel = StringProperty() temperaturaLabel = StringProperty() celularImagem = StringProperty() celularLabel = StringProperty() telaImagem = StringProperty() telaLabel = StringProperty() boxCelular = StringProperty() quarto1Lista = StringProperty() quarto2Lista = StringProperty() cozinhaLista = StringProperty() salaLista = StringProperty() corredorLista = StringProperty() banheiroLista = StringProperty() lista = [horaLabel,dataLabel,temperaturaLabel] arq = open("Inicio.txt","r") linha = arq.readline() cont = 0 while linha != "": linha = casa_api.removebarraN(linha) if cont == 2: lista[cont].txt = linha linha = arq.readline() cont +=1 arq.close() celularImagem.source = "celular.png" celularLabel.background_color = 1,1,1,1 telaImagem.source = "tela.png" telaLabel.background_color = 0,0,0,0 boxCelular.background_color = 0,0,0,1 boxCelular.text = "Enviar" telaLabel.text = "Relatorio de sistema" listaAr = [] listaAr.append(quarto1Lista[2]) listaAr.append(quarto2Lista[2]) listaAr.append(cozinhaLista[2]) listaAr.append(salaLista[2]) listaAr.append(corredorLista[2]) listaAr.append(banheiroLista[2]) listaTemp = [] listaTemp.append(quarto1Lista[0]) listaTemp.append(quarto2Lista[0]) listaTemp.append(cozinhaLista[0]) listaTemp.append(salaLista[0]) listaTemp.append(corredorLista[0]) listaTemp.append(banheiroLista[0]) listaPresenca = [] listaPresenca.append(quarto1Lista[1]) listaPresenca.append(quarto2Lista[1]) listaPresenca.append(cozinhaLista[1]) listaPresenca.append(salaLista[1]) listaPresenca.append(corredorLista[1]) listaPresenca.append(banheiroLista[1]) listaLampadas = [] listaLampadas.append(quarto1Lista[3]) listaLampadas.append(quarto2Lista[3]) listaLampadas.append(cozinhaLista[3]) listaLampadas.append(salaLista[3]) listaLampadas.append(corredorLista[3]) listaLampadas.append(banheiroLista[3]) Arligado = [["arQuarto1",0],["arQuarto2",0],["arCozinha",0],["arSala",0],["arCorredor",0],["arBanheiro",0]] #Não tem ar na cozinha e no banheiro Sensortemp = [["tempQuarto1",1,"25"],["tempQuarto2",1,"25"],["tempCozinha",1,"25"],["tempSala",1,"25"],["tempCorredor",1,"25"],["tempBanheiro",1,"25"]] Presenca = [["pessoasQuarto1",1],["pessoasQuarto2",0],["pessoasCozinha",0],["pessoasSala",1],["pessoasCorredor",0],["pessoasBanheiro",0]] Lampadas = [["lampadaQuarto1",1,1],["lampadaQuarto2",1,1],["lampadaCozinha",1,0],["lampadaSala",1,1],["lampadaCorredor1",1,0],["lampadaBanheiro",1,0]] #Preenche imagem Ar for j in Arligado: if j[1] == 1 and (j[0] == "arQuarto1" or j[0] == "arQuarto2"): if j[0] == "arQuarto1": listaAr[0].source = "arcondicionadoDir.png" if j[0] == "arQuarto2": listaAr[1].source = "arcondicionadoDir.png" if j[1] == 1 and j[0] == "arCorredor": listaAr[4].source = "arcondicionadoFrente.png" if j[1] == 1 and j[0] == "arSala": listaAr[3].source = "arcondicionadoEsq.png" #Preenche Temperatura for j in Sensortemp: if j[1] == 1 and (j[0] == "tempQuarto1" or j[0] == "tempQuarto2"): if j[0] == "tempQuarto1": listaTemp[0].text = j[2] + "°" if j[0] == "tempQuarto2": listaTemp[1].text = j[2] + "°" if j[1] == 1 and j[0] == "tempSala": listaTemp[3].text = j[2] + "°" if j[1] == 1 and j[0] == "tempCozinha": listaTemp[2].text = j[2] + "°" if j[1] == 1 and j[0] == "tempCorredor": listaTemp[4].text = j[2] + "°" if j[1] == 1 and j[0] == "tempBanheiro": listaTemp[5].text = j[2] + "°" #Preenche Prensença for j in Presenca: if j[1] == 1 and (j[0] == "pessoasQuarto1" or j[0] == "pessoasQuarto2"): if j[0] == "pessoasQuarto1": listaPresenca[0].text = "s" if j[0] == "pessoasQuarto2": listaPresenca[1].text = "s" if j[1] == 1 and j[0] == "pessoasSala": listaPresenca[3].text = "s" if j[1] == 1 and j[0] == "pessoasCozinha": listaPresenca[2].text = "s" if j[1] == 1 and j[0] == "pessoasCorredor": listaPresenca[4].text = "s" if j[1] == 1 and j[0] == "pessoasBanheiro": listaPresenca[5].text ="s" for j in Lampadas: if j[2]==1: if j[1] == 1 and (j[0] == "lampadaQuarto1" or j[0] == "lampadaQuarto2"): if j[0] == "lampadaQuarto1": listaLampadas[0].source = "lampada_acesa.png" if j[0] == "lampadaQuarto2": listaLampadas[1].source = "lampada_acesa.png" if j[1] == 1 and j[0] == "lampadaSala": listaLampadas[3].source = "lampada_acesa.png" if j[1] == 1 and j[0] == "lampadaCozinha": listaLampadas[2].source = "lampada_acesa.png" if j[1] == 1 and j[0] == "lampadaCorredor1": listaLampadas[4][0].source = "lampada_acesa.png" listaLampadas[4][1].source = "lampada_acesa.png" if j[1] == 1 and j[0] == "lampadaBanheiro": listaLampadas[5].source ="lampada_acesa.png" else: if j[1] == 1 and (j[0] == "lampadaQuarto1" or j[0] == "lampadaQuarto2"): if j[0] == "lampadaQuarto1": listaLampadas[0].source = "lampada_apagada.png" if j[0] == "lampadaQuarto2": listaLampadas[1].source = "lampada_apagada.png" if j[1] == 1 and j[0] == "lampadaSala": listaLampadas[3].source = "lampada_apagada.png" if j[1] == 1 and j[0] == "lampadaCozinha": listaLampadas[2].source = "lampada_apagada.png" if j[1] == 1 and j[0] == "lampadaCorredor1": listaLampadas[4][0].source = "lampada_apagada.png" listaLampadas[4][1].source = "lampada_apagada.png" if j[1] == 1 and j[0] == "lampadaBanheiro": listaLampadas[5].source ="lampada_apagada.png" if horaLabel.text == '': horaLabel.text = str(1) else: horaLabel.text = str(int(horaLabel.text)+1) break return 0 def callbackHome(self): dataLabel = StringProperty() arq = open("Inicio.txt","w") arq.write(str(horaLabel1)+"\n"+str(temperaturaLabel)+"\n"+str(dataLabel)+"\n") arq.close() # def show_selected_value(spinner, text): # print('The spinner', spinner, 'have text', text) # runTouchApp(spinner) # spinner.bind(text=show_selected_value) class casa(App): def __init__(self,**kwargs): super(casa,self).__init__(**kwargs) #Lista [temperatura,numeroPessoas,arCoondicionado,lampadas,tomadas] def build(self): self.root = Bolao_Janela() return self.root # # if __name__ == '__main__': casa().run()
[ "noreply@github.com" ]
aroldovargas.noreply@github.com
4889678a70051b822eb24ffcd1a1a875749a16bd
d99b6f08e4641a5a1936181c63b94c667fb83a9c
/venv/lib/python2.7/site-packages/imblearn/under_sampling/tests/test_cluster_centroids.py
81acf3ffadf17e0098016fd1f2a63f50313dc6a5
[]
no_license
spanlab/spantoolbox
6c4d48731e2994ce360ed6284eac032ddbff87bc
45855443397f65d57d77a6296fb09f1df3cba31d
refs/heads/master
2023-07-29T09:18:36.592056
2019-12-17T00:25:28
2019-12-17T00:25:28
120,956,860
2
1
null
2023-07-06T21:17:02
2018-02-09T21:20:00
Python
UTF-8
Python
false
false
7,530
py
"""Test the module cluster centroids.""" from __future__ import print_function from collections import Counter import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal, assert_raises, assert_warns) from sklearn.cluster import KMeans from sklearn.utils.estimator_checks import check_estimator from imblearn.under_sampling import ClusterCentroids # Generate a global dataset to use RND_SEED = 0 # Data generated for the toy example X = np.array([[0.04352327, -0.20515826], [0.92923648, 0.76103773], [0.20792588, 1.49407907], [0.47104475, 0.44386323], [0.22950086, 0.33367433], [0.15490546, 0.3130677], [0.09125309, -0.85409574], [0.12372842, 0.6536186], [0.13347175, 0.12167502], [0.094035, -2.55298982]]) Y = np.array([1, 0, 1, 0, 1, 1, 1, 1, 0, 1]) def test_cc_sk_estimator(): """Test the sklearn estimator compatibility""" check_estimator(ClusterCentroids) def test_cc_bad_ratio(): """Test either if an error is raised with a wrong decimal value for the ratio""" # Define a negative ratio ratio = -1.0 cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) assert_raises(ValueError, cc.fit, X, Y) # Define a ratio greater than 1 ratio = 100.0 cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) assert_raises(ValueError, cc.fit, X, Y) # Define ratio as an unknown string ratio = 'rnd' cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) assert_raises(ValueError, cc.fit, X, Y) # Define ratio as a list which is not supported ratio = [.5, .5] cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) assert_raises(ValueError, cc.fit, X, Y) def test_init(): """Test the initialisation of the object""" # Define a ratio ratio = 1. cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) assert_equal(cc.ratio, ratio) def test_cc_fit_single_class(): """Test either if an error when there is a single class""" # Define the parameter for the under-sampling ratio = 'auto' # Create the object cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) # Resample the data # Create a wrong y y_single_class = np.zeros((X.shape[0], )) assert_warns(UserWarning, cc.fit, X, y_single_class) def test_cc_fit_invalid_ratio(): """Test either if an error is raised when the balancing ratio to fit is smaller than the one of the data""" # Create the object ratio = 1. / 10000. cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) # Fit the data assert_raises(RuntimeError, cc.fit, X, Y) def test_cc_fit(): """Test the fitting method""" # Define the parameter for the under-sampling ratio = 'auto' # Create the object cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) # Fit the data cc.fit(X, Y) # Check if the data information have been computed assert_equal(cc.min_c_, 0) assert_equal(cc.maj_c_, 1) assert_equal(cc.stats_c_[0], 3) assert_equal(cc.stats_c_[1], 7) def test_sample_wrong_X(): """Test either if an error is raised when X is different at fitting and sampling""" # Define the parameter for the under-sampling ratio = 'auto' # Create the object cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) cc.fit(X, Y) assert_raises(RuntimeError, cc.sample, np.random.random((100, 40)), np.array([0] * 50 + [1] * 50)) def test_sample_wt_fit(): """Test either if an error is raised when sample is called before fitting""" # Define the parameter for the under-sampling ratio = 'auto' # Create the object cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) assert_raises(RuntimeError, cc.sample, X, Y) def test_fit_sample_auto(): """Test fit and sample routines with auto ratio""" # Define the parameter for the under-sampling ratio = 'auto' # Create the object cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) # Fit and sample X_resampled, y_resampled = cc.fit_sample(X, Y) X_gt = np.array([[0.92923648, 0.76103773], [0.47104475, 0.44386323], [0.13347175, 0.12167502], [0.06738818, -0.529627], [0.17901516, 0.69860992], [0.094035, -2.55298982]]) y_gt = np.array([0, 0, 0, 1, 1, 1]) assert_array_almost_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) def test_fit_sample_half(): """Test fit and sample routines with ratio of .5""" # Define the parameter for the under-sampling ratio = .5 # Create the object cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED) # Fit and sample X_resampled, y_resampled = cc.fit_sample(X, Y) X_gt = np.array([[0.92923648, 0.76103773], [0.47104475, 0.44386323], [0.13347175, 0.12167502], [0.09125309, -0.85409574], [0.19220316, 0.32337101], [0.094035, -2.55298982], [0.20792588, 1.49407907], [0.04352327, -0.20515826], [0.12372842, 0.6536186]]) y_gt = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1]) assert_array_almost_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) def test_sample_wrong_X_dft_ratio(): """Test either if an error is raised when X is different at fitting and sampling without ratio""" # Create the object cc = ClusterCentroids(random_state=RND_SEED) cc.fit(X, Y) assert_raises(RuntimeError, cc.sample, np.random.random((100, 40)), np.array([0] * 50 + [1] * 50)) def test_continuous_error(): """Test either if an error is raised when the target are continuous type""" # continuous case y = np.linspace(0, 1, 10) cc = ClusterCentroids(random_state=RND_SEED) assert_warns(UserWarning, cc.fit, X, y) def test_multiclass_fit_sample(): """Test fit sample method with multiclass target""" # Make y to be multiclass y = Y.copy() y[5] = 2 y[6] = 2 # Resample the data cc = ClusterCentroids(random_state=RND_SEED) X_resampled, y_resampled = cc.fit_sample(X, y) # Check the size of y count_y_res = Counter(y_resampled) assert_equal(count_y_res[0], 2) assert_equal(count_y_res[1], 2) assert_equal(count_y_res[2], 2) def test_fit_sample_object(): """Test fit and sample using a KMeans object""" # Define the parameter for the under-sampling ratio = 'auto' # Create the object cluster = KMeans(random_state=RND_SEED) cc = ClusterCentroids( ratio=ratio, random_state=RND_SEED, estimator=cluster) # Fit and sample X_resampled, y_resampled = cc.fit_sample(X, Y) X_gt = np.array([[0.92923648, 0.76103773], [0.47104475, 0.44386323], [0.13347175, 0.12167502], [0.06738818, -0.529627], [0.17901516, 0.69860992], [0.094035, -2.55298982]]) y_gt = np.array([0, 0, 0, 1, 1, 1]) assert_array_almost_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) def test_fit_sample_wrong_object(): """Test fit and sample using a KMeans object""" # Define the parameter for the under-sampling ratio = 'auto' # Create the object cluster = 'rnd' cc = ClusterCentroids( ratio=ratio, random_state=RND_SEED, estimator=cluster) # Fit and sample assert_raises(ValueError, cc.fit_sample, X, Y)
[ "spanlab@gmail.com" ]
spanlab@gmail.com
89a85d61b9daab440ea1ac0abe4fb2d81e4cbb14
43db0aedb18f642fb7c9e80e163ce466d733363b
/src/optimisation/optimizers.py
833970bbb9b95f665368feda4e73991e02ace19d
[]
no_license
Polymere/biorob-semesterproject
933291a4adb2e62b3e600fabb307e0027c37537a
db464609e3fedbd6fe2ae4df0915c5d7bb6d3f16
refs/heads/master
2020-04-24T10:07:12.716983
2019-08-14T15:16:49
2019-08-14T15:16:49
171,882,725
0
0
null
null
null
null
UTF-8
Python
false
false
23,163
py
#!/usr/bin/env python """ @package optimizers Here is a brief description. This is my detailed description that is so long that it spans several lines """ import sys import yaml import numpy as np import pandas as pd import os import time from copy import copy import warnings warnings.filterwarnings('ignore') # pandas warning a utter trash LOG_DEBUG=1 LOG_INFO=2 LOG_WARNING=3 LOG_ERROR=4 LOG_LEVEL=LOG_WARNING class Optimizer: """Parent class for optimizers Not functional as is, but contains shared methods by the children classes. Attributes: - bound_mod=None boundary mode to be used, see check_bound - dofs=None degrees of freedom and boundaries - nb_ind=None number of individuals per generation/step - nb_parents=None number of parents used to generate next population """ bound_mod=None # boundary mode to be used, see check_bound dofs=None # degrees of freedom and boundaries nb_ind=None # number of individuals per generation/step nb_parents=None # number of parents used to generate next population def __init__(self,args): """ Initialization of the optimizer Sets the attributes of the optimizer according to the input args and flattens the dofs for further use \parameter args -- dictionnary with evolution parameters, used to set theattributes of the optimizer """ for arg_name,arg_value in args.items(): if hasattr(self, arg_name): setattr(self, arg_name, arg_value) if LOG_LEVEL<=LOG_INFO: print("\n[INFO]Optimizer ",self.__class__.__name__, " initialized with\n",self.__dict__) if self.dofs is not None: self.flatten_params() def check_bound(self,population): """ Checks boundaries of the population parameters, and acts accordingly Called when a new population is generated by the optimizer (generation), with two modes: clip : if a parameter value is out of boundaries, set its value to the closest boundary exp_handicap: allow the parameter value to exceed boundaries, but but assign an handicap to the individual, scaling as \f$h = - \Sigma_{p}^{dofs}(\exp{(\Delta_{max,p})+ (\Delta_{min,p})}-1)\f$ with \f$\Delta_{max,p}=v_p-bound\_high_p\f$ if \f$v_p>bound\_high_p\f$ and 0 otherwise A new column fit_handicap is added to the population dataframe, and can be used as an additional selection criterion \param population -- Dataframe with columns for parameters and rows for individuals, indexed by uid Output: population with either clipped parameter values or additional handicap column """ for index, row in population.iterrows(): if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]check_bound\n",row) if self.bound_mod=="clip": row=row+(row>self._bound_high)*(self._bound_high-row) row=row+(row<self._bound_low)*(self._bound_low-row) population.loc[index]=row.values elif self.bound_mod=="exp_handicap": handicap= (row>self._bound_high)*(row-self._bound_high)+\ (row<self._bound_low)*(self._bound_low-row) if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]handicap\n",handicap) print("\n[DEBUG]type\n",type(handicap)) print("\n[DEBUG]type\n",type(handicap.values[0])) fl_handicap=np.sum(np.exp(handicap.values.astype(np.float))-1) if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]fl_handicap\n",fl_handicap) population.loc[index,"fit_handicap"]=-fl_handicap if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]Boundaries\n",population) return population def benchmark(self,problem,nb_gen,nb_dim): """ Benchmarking of the optimization algorithm on one predefined problem See run_bench_eval for examples \param problem -- optimization problem to test (sphere, rastrigin or fonseca_fleming) (see https://en.wikipedia.org/w/index.php?title=Test_functions_for_optimization&oldid=787014841) \param nb_gen -- number of optimization steps to perform \param nb_dim -- number of dimension (degrees of freedom) of the problem Output: - Saves the performance (mean,std,best) for each generation and the final population """ if problem=="rastrigin": self.n=nb_dim self.dofs={} for i in range(nb_dim): self.dofs[str(i)]=[-5.12,5.12] self.bound_mod="clip" self.bench_eval=self._eval_rastrigin elif problem=="sphere": self.dofs={} for i in range(nb_dim): self.dofs[str(i)]=[-10,10] self.bench_eval=self._eval_sphere elif problem=="fonseca_fleming": self.n=nb_dim self.dofs={} for i in range(nb_dim): self.dofs[str(i)]=[-4,4] self.bench_eval=self._eval_fonseca_fleming self.flatten_params() gen_counter=0 uids=self.get_uid(nb_gen,self.nb_ind) pop_df=pd.DataFrame(index=uids,columns=self.dofs.keys()) vals=np.random.uniform(low=self._bound_low,high=self._bound_high,size=(self.nb_ind,len(self.dofs))) pop_df[:]=vals current_pop=pop_df performance_df=None while gen_counter<nb_gen: eval_pop=self.bench_eval(current_pop) nrow={} for fit in eval_pop.filter(like="fit").columns: nrow[fit+"_std"]=eval_pop[fit].std() nrow[fit+"_mean"]=eval_pop[fit].mean() nrow[fit+"_best"]=eval_pop[fit].max() if performance_df is None: performance_df=pd.DataFrame(index=pd.RangeIndex(nb_gen),columns=nrow.keys()) performance_df.iloc[gen_counter]=nrow if self.is_single_obj: eval_pop["fit"]=eval_pop.filter(like="fit").sum(1) parents=self.select(self.sort_pop(eval_pop)) print("\nParents\n",parents) if gen_counter%10==0: print(parents) gen_counter+=1 current_pop=self.get_next_gen(parents,gen_counter) performance_df.to_csv("perf_"+problem+self.__class__.__name__+".csv") self.sort_pop(eval_pop).to_csv("sorted_pop_"+problem+self.__class__.__name__+".csv") def _eval_rastrigin(self,pop): """ \f[f(x)=An+\Sigma_{i=i}^n\left(x_i^2-A\cos{(2\pi x_i)}\right) \textrm{with $A=10$}\f] """ fit=10*self.n+(pop.values**2-10*np.cos(pop.values.astype(np.float32)*2*np.pi)).sum(1) pop["fit"]= - fit return pop def _eval_sphere(self,pop): """ \f[f(x)=\Sigma_{i=i}^n x_i^2 \f] """ print("\n---------------------\n") print(pop) print(pop.values) print("\n---------------------\n") fit=(pop.values**2).sum(1) pop["fit"]=-fit return pop def _eval_fonseca_fleming(self,pop): """ \f[ \left\{ \begin{aligned} &f_1(x)=1-\exp{\left( -\Sigma_{i=1}^n \left( x_i - \frac{1}{\sqrt{n}} \right)^2 \right)}\\ &f_2(x)=1-\exp{\left( -\Sigma_{i=1}^n \left( x_i + \frac{1}{\sqrt{n}} \right)^2 \right)} \end{aligned}\right. \f] """ f1= 1 - np.exp( ( - ( pop.values.astype(np.float32) - 1 / np.sqrt( self.n ) )**2 ).sum(1) ) f2= 1 - np.exp( ( - ( pop.values.astype(np.float32) + 1 / np.sqrt( self.n ) )**2 ).sum(1) ) pop["fit_1"]= - f1 pop["fit_2"]= - f2 return pop def flatten_params(self): """ Transformation of keyvals to arrays Transforms the dofs dict { param_name1 : [bound_low1,bound_high1], param_name2 : [bound_low2,bound_high2],... } to dofs_names: [param_name1,param_name2 ...] (list) _bound_low: [bound_low1,bound_low2,...] (np array) _bound_high: [bound_high1,bound_high2,...] (np array) for ease of access / parallel operations in population initialization & boundarie checks """ nb_par=len(self.dofs) self._bound_low=np.empty(nb_par, np.float16) self._bound_high=np.empty(nb_par, np.float16) self._params=[] self.dof_names=[] i=0 for dof_name,dof_bounds in self.dofs.items(): self._bound_low[i]=dof_bounds[0] self._bound_high[i]=dof_bounds[1] self.dof_names.append(dof_name) i+=1 def sort_pop(self,eval_pop): """ Default population sorting method Sums all of the fitnesses metrics of the population and sort by decreasing fitness (higher is better) Input: Evaluated population (see eval_pop in controller.py) Output: Sorted population """ srt=eval_pop.filter(like="fit").sum(1).sort_values(axis='index',ascending=False) return eval_pop.loc[srt.index,:] def select(self,sorted_pop): """ Default parent selection method Returns the nb_parents best individuals of the sorted population \param sorted_pop Sorted population, with the first individuals being the best ones """ return sorted_pop.head(self.nb_parents) def get_next_gen(self,parents,gen_nb): """ Placeholder for next generation creation Declared here for structure, but this is dependent on optimization method \param parents -- Selected parents from previous population \param gen_nb -- number of the current generation for indexing purposes """ raise NotImplementedError class PSOptimizer(Optimizer): """ \image html pso1.png """ vel_range=None c1=0.1 c2=0.3 def __init__(self, arg): super(PSOptimizer, self).__init__(arg) self.is_single_obj=True if self.nb_ind!=self.nb_parents: raise ValueError else: self.nb_particules=self.nb_parents self._speed=None self._global_best_fit=None self._global_best_pos=None def particles_init(self,eval_pop): uids=self.get_uid() fit=eval_pop.filter(like="fit") fitnesses=fit.sum(1) positions=eval_pop.drop(columns=fit.columns) self._speed={} self._positions={} self._best_position={} self._best_fit={} for part,idx in zip(uids,range(self.nb_particules)): self._speed[part]=np.random.uniform(low=self.vel_range[0],high=self.vel_range[1],size=len(self.dofs)) cfit=fit.iloc[idx].values[0] cpos=positions.iloc[idx].to_dict() if self._global_best_fit is None or self._global_best_fit<cfit: self._global_best_fit=cfit self._global_best_pos=cpos self._positions[part]=cpos self._best_position[part]=cpos self._best_fit[part]=cfit print("\nSpeeds\n",self._speed) print("\nPositions\n",self._positions) print("\nParticle best\n",self._best_fit) def sort_pop(self,eval_pop): if self._speed is None: self.particles_init(eval_pop) return eval_pop.sort_values("fit",ascending=False) def select(self,sort_pop): return sort_pop def get_uid(self,tmp1=None,tmp2=None): return["particule"+str(i+1) for i in range(self.nb_particules)] def _dist(self,pos1,pos2): dist=np.zeros((len(pos1))) for dim, idx in zip(pos1.keys(),range(len(pos1))): d=pos1[dim]-pos2[dim] dist[idx]=d return dist def _inc(self,dct1,val): nb_dim=len(dct1.keys()) for dim,dim_idx in zip(dct1.keys(),range(nb_dim)): dct1[dim]=dct1[dim]+val[dim_idx] return dct1 def updt_velocities(self): for part in self._speed.keys(): f1=self.c1*np.random.uniform(0,1)*self._dist(self._best_position[part],self._positions[part]) f2=self.c2*np.random.uniform(0,1)*self._dist(self._global_best_pos,self._positions[part]) self._speed[part]=self._speed[part]+f1+f2 #if self._speed[part]>self.vel_range[0]: self._speed[part][self._speed[part]<self.vel_range[0]]=self.vel_range[0] self._speed[part][self._speed[part]>self.vel_range[1]]=self.vel_range[1] print("VEL UPDT\n",f1,"\n",f2,"\n",self._speed[part]) def updt_positions(self): for part in self._positions.keys(): self._positions[part]=self._inc(self._positions[part], self._speed[part]) def updt_best(self,sorted_pop): #print("Updt best for\n",sorted_pop) #print("\n Initial best pos",self._best_position) fit=sorted_pop.filter(like="fit") positions=sorted_pop.drop(columns=fit.columns) #print("Positions\n",positions) for part in self._positions.keys(): cfit=sorted_pop.loc[part].fit if cfit>self._best_fit[part]: if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]Updt best for\n", part,cfit) print("\n[DEBUG]Particule:\t",part) print("\n[DEBUG]Stored position:\t",self._positions[part]) print("\n[DEBUG]Received position:\t",positions.loc[part]) self._best_fit[part]=cfit self._best_position[part]=copy(self._positions[part]) if cfit>self._global_best_fit: self._global_best_fit=cfit self._global_best_pos=copy(self._positions[part]) #print("\n Final best pos",self._best_position) return def get_next_gen(self,sorted_pop,gen_counter): self.updt_velocities() self.updt_best(sorted_pop) self.updt_positions() pos_df=pd.DataFrame(self._positions) print("\nBest:\t",self._global_best_fit,"\n\t",self._global_best_pos) return pos_df.T class GAOptimizer(Optimizer): """ Simple Genetic algorithm based optimizer Implementation of cross-over and mutation mechanisms to generate the child population, as well as an age based elitism Attributes : - mut_amp=None mutation amplitude - mut_rate=None mutation rate - cross_rate=None crossover rate - drop_age=5 maximum difference between child population and parent individual """ mut_amp=None mut_rate=None cross_rate=None drop_age=5 def __init__(self, arg): super(GAOptimizer, self).__init__(arg) self.is_single_obj=True def select(self,sorted_pop,gen_nb): """ Parent selection method for GA Removes individuals that are in the population for mode than drop_age generations to limit elitism before returning the nb_parents best individuals Input: - sorted_pop -- sorted population - gen_nb -- current generation number Output: - parents for next generation """ cliped=self.check_age(sorted_pop, gen_nb) return cliped.head(self.nb_parents) def check_age(self,pop,gen_nb): """ Removes old individuals from population In the case where optimization is performed with elitism (keep best individuals across generations), we remove the individuals that were present for more that drop_age generations (5 by default) in order to encourage exploration Input: - pop -- Population, with original generation number - gen_nb -- current generation number Output: - population with oldest individuals removed (if applicable) """ if self.drop_age is None: return pop else: too_old=pop[gen_nb-pop["gen"]>self.drop_age] print("Dropping",too_old) return pop.drop(too_old.index) def get_uid(self,gen_nb,new_gen): """ Returns a list with uids for a new generation """ return ["gen"+str(gen_nb)+"ind"+str(i+1) for i in range(self.nb_ind)] def set_uid(self,gen_nb,new_gen): """ Sets index of new_gen with uids """ new_gen.index=self.get_uid(gen_nb, new_gen) return new_gen def get_next_gen(self,parents,gen_nb): """ Creates a new population from selected parents Generates nb_ind new individuals, with unique identifiers as index of the dataframe, using crossover and mutation on the parents The boundaries of the generated population are checked according to the specified rule (see check_bound) Input: - parents -- parent population selected by the optimizer - gen_nb -- current generation number Output: - child population, which is going to be evaluated by the controller """ new_gen=self.check_bound(self.cross_and_mutate(parents)) return self.set_uid(gen_nb, new_gen) def cross_and_mutate(self,parents): """ Crossover and mutation on the parent population to generate child pop 1. Generate nb_ind random couple (parent1 parent2) 2. For each dof, use parameter value of parent2 with probability cross_rate, otherwise use value from parent1 3. For each dof, add value N(0,1)*mut_amp with probability mut_rate \image html ga1.png Input: parents -- Dataframe containing parameters of selected parents from previous generation Output: Dataframe with nb_ind generated childrens """ nb_dofs=len(self.dofs) couples=np.random.randint(0, len(parents.index), (2,self.nb_ind)) if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]parents\n",parents) print("\n[DEBUG]couples\n",couples) p1_ids=parents.iloc[couples[0][:]].index p2_ids=parents.iloc[couples[1][:]].index cross_select=(np.random.randint(0,100,(self.nb_ind,nb_dofs))<100*self.cross_rate) # probability cross_rate to take a param from parent2 child_df=pd.DataFrame(index=pd.RangeIndex(self.nb_ind),columns=self.dofs.keys()) if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]child_df\n",child_df.head()) child_df[:]=(parents.loc[p1_ids,self.dofs.keys()]*cross_select[:]).values+\ (parents.loc[p2_ids,self.dofs.keys()]*np.logical_not(cross_select[:])).values mutate=(np.random.randint(0,100,(self.nb_ind,nb_dofs))<100*self.mut_rate) # probability mutrate to add a normal of std value*mut_amp to param mutate_amp=np.random.randn(self.nb_ind,nb_dofs)*child_df[:]*self.mut_amp child_df[:]=child_df[:]+mutate_amp*mutate if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]Child\n",child_df) return child_df class NSGAIIOptimizer(GAOptimizer): """ Optimizer based on Non-dominated Sorting Genetic Algorithm II (NSGAII) Implementation of non-dominated sorting based on https://ieeexplore.ieee.org/document/996017 """ def __init__(self, arg): super(NSGAIIOptimizer, self).__init__(arg) self.is_single_obj=False def sort_pop(self,eval_pop): """ Non dominated sorting Sorting based on increasing non dominated front number and decreasing crowding distance \image html sort1.png Input: eval_pop -- evaluated population, with each optimization objective as a column of the dataframe (with prefix "fit") Output: Sorted population, according to algorithm ## ALGO """ tstart=time.time_ns() pop_with_fronts=self.add_fronts(eval_pop) tf=time.time_ns() fronts_and_dist=self.add_crowding_distance(pop_with_fronts) tcr=time.time_ns() #print("\n[TIME]\nfront alloc\t",(tf-tstart)/1e6,"[ms]\ncrowding\t",(tcr-tf)/1e6,"[ms]") sorted_pop=fronts_and_dist.sort_values(by=["front","cr_dist"],axis='index',ascending=[True,False]) if LOG_LEVEL<=LOG_INFO: print("\n[INFO]Sorted population\n",sorted_pop) return sorted_pop def add_fronts(self,eval_pop): """ Non dominated front computation Implementatation of algorithm. For performance purposes, we stop once we have allocated at least nb_parents fronts \image html front1.png Input: eval_pop -- evaluated population, with each optimization objective as a column of the dataframe (with prefix "fit") Output: eval_pop, with a new column ("front") containing the number of non dominated front of the individual """ fit=eval_pop.filter(like="fit") fronts=pd.DataFrame(columns=eval_pop.columns) flag_empty_front=False other=pd.DataFrame(columns=fit.columns) nb_front=1 pop_in_fronts=0 while not (flag_empty_front or pop_in_fronts>self.nb_parents): current_front=pd.DataFrame(columns=eval_pop.columns) for index, indiv in fit.iterrows(): # must be a way to do it without iter rel=fit.le(indiv,axis=1).drop(index) dominant=rel[(rel.all(axis=1)==True)==True].index rel=fit.gt(indiv,axis=1).drop(index) #print(rel) dominated=rel[(rel.all(axis=1)==True)==True].index if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]",index,"Dominates\n",dominant.values,"\nDominated by\n",dominated.values) if len(dominated)==0: current_front.loc[index,eval_pop.columns]=eval_pop.loc[index].values current_front.loc[index,"front"]=nb_front else: other.loc[index]=fit.loc[index].values if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]other\n",other) if LOG_LEVEL<=LOG_INFO: print("\n[INFO]Front",nb_front,"with",len(current_front.index),"inds\n") print("\n[INFO]",current_front) print("\n[INFO]Missing",len(other),"inds\n") print("\n[INFO]",other) #pop_in_fronts+=len(current_front.index) if pop_in_fronts>=self.nb_parents: if LOG_LEVEL<=LOG_INFO: print("\n[INFO]early stop (front",nb_front,")\n") fronts=fronts.append(current_front) flag_empty_front=(len(other)==0) fit=other other=pd.DataFrame(columns=fit.columns) nb_front+=1 if LOG_LEVEL<=LOG_INFO: fronts=fronts[fronts.columns.drop(fronts.filter(like="Unnamed").columns)] print("\n[INFO]Fronts\n",fronts) return fronts def add_crowding_distance(self,pop_with_fronts): """ Crowding distance computation Implementation of the crowding distance algorithm, wich rewards repartition of the solutions in the objective space \image html cr1.png Input: - pop_with_fronts -- the first non-dom fronts, with at least nb_parents individuals Output: - pop_with_fronts, with an additional column cr_dist containing the the computed crowding distance """ if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]Front values\n",pop_with_fronts.front.unique()) if "fit_stable" in pop_with_fronts.columns: if LOG_LEVEL<=LOG_WARNING: print("\n[WARNING]Removing stability from objectives\n") fit=pop_with_fronts.filter(like="fit_") fit=fit.add(fit.fit_stable,axis='index') pop_with_fronts.loc[:,fit.columns]=fit pop_with_fronts.drop("fit_stable",axis=1,inplace=True) for front in pop_with_fronts.front.unique(): pop_front=pop_with_fronts[pop_with_fronts.front==front] L=len(pop_front.index) pop_front["cr_dist"]=0 if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]Front",front," with pop\n",pop_front) for obj in pop_front.filter(like="fit_").columns: if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]Objective\n",obj) sorted_obj=pop_front.sort_values(by=obj,ascending=False,axis='index') if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]Sorted\n",sorted_obj.loc[:,obj]) sorted_obj.loc[:,"cr_dist"]=sorted_obj.shift(1).loc[:,obj]-sorted_obj.shift(-1).loc[:,obj] sorted_obj.ix[0,"cr_dist"]=np.inf sorted_obj.ix[L-1,"cr_dist"]=np.inf if LOG_LEVEL<=LOG_DEBUG: print("\n[DEBUG]Cr dist\n",sorted_obj) pop_front.loc[sorted_obj.index,"cr_dist"]=pop_front.loc[sorted_obj.index,"cr_dist"].add(sorted_obj.cr_dist,axis='index') if LOG_LEVEL<=LOG_INFO: print("\n[INFO]crowding_distance for front ",front,"\n",pop_front) pop_with_fronts.loc[pop_front.index,"cr_dist"]=pop_front.cr_dist if LOG_LEVEL<=LOG_INFO: print("\n[INFO]Full pop\n",pop_with_fronts) return pop_with_fronts def run_bench_eval(arg): """ Benchmark evaluations run from terminal as 'python optimizers.py OPT_NAME' with OPT_NAME being one of the optimizers name (namely PSO,GA and NSGAII), and change directly the hyperparameters or benchmark problem below """ if arg=="PSO": pars={"vel_range":[-0.5,0.5], "nb_ind":50, "nb_parents":50} opti=PSOptimizer(pars) elif arg=="GA": pars={ "mut_amp":0.1, "mut_rate":0.5, "cross_rate": 0.5, "nb_ind":50, "nb_parents":5} opti=GAOptimizer(pars) elif arg=="NSGAII": pars={ "mut_amp":0.1, "mut_rate":0.5, "cross_rate": 0.5, "nb_ind":200, "nb_parents":20} opti=NSGAIIOptimizer(pars) else: raise KeyError opti.benchmark("fonseca_fleming", 2, 2) if __name__ == '__main__': try: arg=sys.argv[1] except IndexError: if LOG_LEVEL<=LOG_ERROR: print("[ERROR] Missing arguments, see doc:\n", run_bench_eval.__doc__) else: try: run_bench_eval(arg) except KeyError: if LOG_LEVEL<=LOG_ERROR: print("[ERROR] Incorrect arguments:",arg,"\n see doc:\n", run_bench_eval.__doc__)
[ "paul.prevel@epfl.ch" ]
paul.prevel@epfl.ch
3b6f84dfa395734f5ee0c39ad591ec38ff6405a8
5763a3a0a7ee4e3458767ceb30a12f0e3e02d9ba
/blog/main/migrations/0017_auto_20210417_1517.py
db35fbeb9a7c88b8d3b244f347c56f8d11deeecb
[]
no_license
dnplkv/hw5_Polyakov
df9c77492103d7f83c0e9e6fbb8c00cfbe66e20e
6db653f9def6868cbad24b97d6ec15ce23e6764a
refs/heads/main
2023-06-14T10:04:57.764555
2021-07-19T17:15:31
2021-07-19T17:15:31
352,036,112
0
1
null
2021-07-19T17:15:31
2021-03-27T09:50:15
JavaScript
UTF-8
Python
false
false
464
py
# Generated by Django 3.1.7 on 2021-04-17 15:17 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('main', '0016_auto_20210417_1451'), ] operations = [ migrations.AlterField( model_name='books', name='author', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.author'), ), ]
[ "dannypolyakov95@gmail.com" ]
dannypolyakov95@gmail.com
a72250408c3ed899f1c3e78bd067bfb26db56d99
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/ncLp4ZXvz4x4oEHYh_12.py
569312e16f010b12fd6a44bdf5c65cb240b62bea
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
111
py
def sum_of_two(a, b, v): for i in a: for j in b: if i+j == v: return True return False
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
aff069f6593040c59948a74d78b4bc9e31ec60bb
f25763b3e3083c308b88b066b791121c3420dcc2
/models/mnist/generator.py
1676e125c24fcc3ae4e056de9a4468881dcac984
[ "MIT" ]
permissive
ultraglorious/wgan
515d85fc146d244787477a10fcf753ff6da15945
d8673d95758b232b3dbf4c99e4d14aa32b4cc0ad
refs/heads/main
2023-07-08T20:47:13.086014
2021-08-16T11:34:18
2021-08-16T11:34:18
394,618,253
0
0
null
null
null
null
UTF-8
Python
false
false
857
py
import tensorflow as tf from layers import ConvolutionBlock as ConvBlock def generator(latent_dim: int) -> tf.keras.Model: """Initializes WGAN generator""" ls = 0.2 # leaky relu slope initializer = tf.random_normal_initializer(0., 0.02) inputs = tf.keras.layers.Input(shape=(latent_dim,), dtype=tf.dtypes.float32) x = tf.keras.layers.Dense(7 * 7 * 256, use_bias=False, kernel_initializer=initializer)(inputs) x = tf.keras.layers.Reshape((7, 7, 256))(x) x = ConvBlock(5, 1, 128, transpose=True, normalize=True, dropout=True, leaky_slope=ls)(x) # 7, 7, 128 x = ConvBlock(5, 2, 64, transpose=True, normalize=True, dropout=True, leaky_slope=ls)(x) # 14, 14, 64 x = ConvBlock(5, 2, 1, transpose=True, normalize=True, dropout=True, activation="tanh")(x) # 28, 28, 1 return tf.keras.Model(inputs=inputs, outputs=x)
[ "e.grono@live.ca" ]
e.grono@live.ca
bd9c4bccc07687e42b39122cb1fbe980f48099fe
7fb3867bb6e605c58aeebdebc3ac6a18a11beec8
/Python/assignment/pes-python-assignments-1x.git/51.py
db4d839aa7d6a29bac1a97ab8df09690fb45a530
[]
no_license
gaya38/devpy
93bf6057fc198582bfa96446dc356667f9f0091d
9624d413222565199240a2f57a9b849563e83d49
refs/heads/master
2020-07-15T23:55:46.375979
2019-09-01T14:48:03
2019-09-01T14:48:03
205,675,946
0
0
null
null
null
null
UTF-8
Python
false
false
649
py
x=raw_input("Enter the program driver as arg or big:") if(x=='arg'): a=raw_input("Enter a value:") e=[] g=0 for i in range(len(a)): if (a[i]==" ")or(i==len(a)-1): e.append(a[g:i+1]) g=i+1 else: continue for i in e: print i elif(x=='big'): b=input("Enter b value:") k=[] while(b>0): k.append(b%10) b=b/10 for l in range(len(k)-1): if (k[l]>k[l+1]): temp=k[l] k[l]=k[l+1] k[l+1]=temp else: continue print k[-1] else: print "Entered the wrong value so program ended"
[ "gayathri.ande08@gmail.com" ]
gayathri.ande08@gmail.com
2d53323c0ba81f90f8b5ae148e1a9c877eda45f7
cf0ab8503d4d704045070deea1e2125375711e86
/apps/users/mixins.py
2ba17197bb580fc8979a19b0a3bda49302295b44
[]
no_license
faierbol/syncano-platform
c3c6468600115752fd9fa5e46a0ad59f75f6bc9c
879111874d1ef70418b4890cf970720b0a2be4d8
refs/heads/master
2023-07-20T10:13:40.066127
2021-02-08T15:01:13
2021-02-08T15:01:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
# coding=UTF8 from apps.data.mixins import ObjectSchemaProcessViewMixin from apps.data.models import DataObject, Klass class UserProfileViewMixin(ObjectSchemaProcessViewMixin): model = DataObject def initialize_request(self, request, *args, **kwargs): request = super().initialize_request(request, *args, **kwargs) if request.instance: self.klass = Klass.get_user_profile() return request
[ "rk@23doors.com" ]
rk@23doors.com