blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
adeb96ac3e7ff64f2c40272b484ed1bb79ccdef2
787f1d2373e908347a02e87251fd0ade0972c6ce
/scripts/starfit
da034dfee283884fb071bb00bd528624aed94677
[ "MIT" ]
permissive
nonsk131/isochrones
247c9b609da28305e7a5406415388f8a002c829f
5a18d625cb10f772fbe69fb0f1077ea4dcf88bd4
refs/heads/master
2021-01-14T08:46:27.047088
2016-07-15T18:05:54
2016-07-15T18:05:54
63,885,299
0
1
null
2016-07-21T16:29:01
2016-07-21T16:29:00
null
UTF-8
Python
false
false
7,717
#!/usr/bin/env python """ A command-line program to fit a StarModel using the isochrones package Input argument is name of a folder that contains a file called ``star.ini``, which is a config file containing all the observed properties of the star on which the model should be conditioned. Multiple folder names can also be passed. """ from __future__ import division, print_function import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import os, os.path, re, sys import logging import time from configobj import ConfigObj import argparse from isochrones.starmodel import StarModel, BinaryStarModel, TripleStarModel def initLogging(filename, logger): if logger == None: logger = logging.getLogger() else: # wish there was a logger.close() for handler in logger.handlers[:]: # make a copy of the list logger.removeHandler(handler) logger.setLevel(logging.INFO) formatter = logging.Formatter(fmt='%(asctime)s: %(message)s') fh = logging.FileHandler(filename) fh.setFormatter(formatter) logger.addHandler(fh) sh = logging.StreamHandler(sys.stdout) logger.addHandler(sh) return logger if __name__=='__main__': parser = argparse.ArgumentParser(description='Fit physical properties of a star conditioned on observed quantities.') parser.add_argument('folders', nargs='*', default=['.']) parser.add_argument('--binary', action='store_true') parser.add_argument('--triple', action='store_true') parser.add_argument('--all', action='store_true') parser.add_argument('--models', default='dartmouth') parser.add_argument('--emcee', action='store_true') parser.add_argument('--no_local_fehprior', action='store_true') parser.add_argument('--plot_only', action='store_true') parser.add_argument('-o','--overwrite', action='store_true') parser.add_argument('-v','--verbose', action='store_true') args = parser.parse_args() try: import pymultinest except ImportError: args.use_emcee = True if args.models=='dartmouth': from isochrones.dartmouth import Dartmouth_Isochrone ichrone = Dartmouth_Isochrone() elif args.models=='padova': from isochrones.padova import Padova_Isochrone ichrone = Padova_Isochrone() elif args.models=='basti': from isochrones.basti import Basti_Isochrone ichrone = Basti_Isochrone() else: raise ValueError('Unknown stellar models: {}'.format(args.models)) if args.all: multiplicities = ['single', 'binary', 'triple'] elif args.binary: multiplicities = ['binary'] elif args.triple: multiplicities = ['triple'] else: multiplicities = ['single'] Models = {'single':StarModel, 'binary':BinaryStarModel, 'triple':TripleStarModel} logger = None #dummy for i,folder in enumerate(args.folders): for mult in multiplicities: Model = Models[mult] model_filename = '{}_starmodel_{}.h5'.format(args.models, mult) print('{} of {}: {} ({})'.format(i+1, len(args.folders), folder, mult)) #initialize logger for folder logfile = os.path.join(folder, 'starfit.log') logger = initLogging(logfile, logger) name = os.path.basename(os.path.abspath(folder)) try: start = time.time() if args.plot_only: try: mod = Model.load_hdf('{}/{}'.format(folder,model_filename), name=name) except: pass else: # Only try to fit model if it doesn't exist, unless overwrite is set fit_model = True try: mod = Model.load_hdf('{}/{}'.format(folder,model_filename), name=name) fit_model = False except: pass if fit_model or args.overwrite: ini_file = os.path.join(folder, 'star.ini') config = ConfigObj(ini_file) props = {} for kw in config.keys(): try: props[kw] = float(config[kw]) except: props[kw] = (float(config[kw][0]), float(config[kw][1])) use_local_fehprior = not args.no_local_fehprior mod = Model(ichrone, use_emcee=args.emcee, name=name, **props) mod.fit(basename='{}/chains/{}-'.format(folder,mult), verbose=args.verbose, overwrite=args.overwrite) mod.save_hdf(os.path.join(folder, model_filename)) else: logger.info('{} exists. Use -o to overwrite.'.format(model_filename)) # Only make triangle plots if they are older # than the starmodel hdf file make_triangles = False for x in ['physical', 'observed']: f = os.path.join(folder, '{}_triangle_{}_{}.png'.format(args.models, mult, x)) if not os.path.exists(f): make_triangles = True break else: t_mod = os.path.getmtime(os.path.join(folder,model_filename)) t_plot = os.path.getmtime(f) if t_mod > t_plot: make_triangles=True if make_triangles or args.plot_only: triangle_base = os.path.join(folder, '{}_triangle_{}'.format(args.models, mult)) fig1,fig2 = mod.triangle_plots(triangle_base) # Make mag plot if necessary. magplot_file = os.path.join(folder, '{}_mags_{}.png'.format(args.models, mult)) make_magplot = True if os.path.exists(magplot_file): if os.path.getmtime(os.path.join(folder, model_filename)) > \ os.path.getmtime(magplot_file) or \ args.plot_only: pass else: make_magplot = False if make_magplot: fig = mod.mag_plot() plt.savefig(os.path.join(folder,'{}_mags_{}.png'.format(args.models, mult))) end = time.time() if args.plot_only: logger.info('{} starfit successful (plots only) for '.format(mult) + '{} in {:.1f} minutes.'.format(folder, (end-start)/60)) else: logger.info('{} starfit successful for '.format(mult) + '{} in {:.1f} minutes.'.format(folder, (end-start)/60)) except KeyboardInterrupt: logger.error('{} starfit calculation interrupted for {}.'.format(mult,folder)) raise except: logger.error('{} starfit calculation failed for {}.'.format(mult,folder), exc_info=True)
[ "tim.morton@gmail.com" ]
tim.morton@gmail.com
165cdb9d7a07544fe473999e467cd00dad60203f
3b7a07ad2d78e8526ad8ae0767530d98aaff9f3e
/backend/utils/update_ansible_hosts.py
e5bdb8dcfb128017aa99ed6974fcd500c079b546
[]
no_license
ImmortalViolet/one-oms
ba2281acdd63f35eb907651e5aae240c97c16e8b
9b89e2773511cb4f9fe37c4cde79e9e3e47464fe
refs/heads/master
2022-04-12T17:38:59.052337
2020-02-28T04:29:34
2020-02-28T04:29:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,875
py
# -*- coding: utf-8 -*- # author: timor import time import requests import sys reload(sys) sys.setdefaultencoding('utf8') apollo_conf = { "pro": { "config_server_url": "http://10.4.12.2:8080", "appId": "samanage01-inventory", "clusterName": "default", "namespaceName": "pro", "namespaceType": "txt", "saveFilename": "/etc/ansible/pro-hosts", }, "uat": { "config_server_url": "http://10.4.12.2:8080", "appId": "samanage01-inventory", "clusterName": "default", "namespaceName": "uat", "namespaceType": "txt", "saveFilename": "/etc/ansible/uat-hosts", }, "fat": { "config_server_url": "http://10.4.12.2:8080", "appId": "samanage01-inventory", "clusterName": "default", "namespaceName": "fat", "namespaceType": "txt", "saveFilename": "/etc/ansible/fat-hosts", }, "dev": { "config_server_url": "http://10.4.12.2:8080", "appId": "samanage01-inventory", "clusterName": "default", "namespaceName": "dev", "namespaceType": "txt", "saveFilename": "/etc/ansible/dev-hosts", }, } def load_conf(conf): print('判断版本 {}'.format(conf["namespaceName"])) release_url = '{}/configs/{}/{}/{}.{}'.format(conf["config_server_url"], conf["appId"], conf["clusterName"], conf["namespaceName"], conf["namespaceType"]) html = requests.get(release_url) content = html.json()['releaseKey'] if not check_file_release(content, conf["namespaceName"]): print('版本已更新 {}'.format(conf["namespaceName"])) print('载入配置 {}'.format(conf["namespaceName"])) conf_url = '{}/configfiles/json/{}/{}/{}.{}'.format(conf["config_server_url"], conf["appId"], conf["clusterName"], conf["namespaceName"], conf["namespaceType"]) html = requests.get(conf_url) content = html.json()['content'] print('保存配置 {} ==> {}'.format(conf["namespaceName"], conf["saveFilename"])) save_file(conf["saveFilename"], content) else: print('版本未更新 {}'.format(conf["namespaceName"])) def save_file(filename, content): with open(filename, 'w') as fn: fn.write(content) def check_file_release(content, namespaceName): release_file = namespaceName + '.release' try: with open(release_file, 'r') as fn: if content == fn.read(): return True else: return False except Exception as e: return False finally: with open(release_file, 'w') as fn: fn.write(content) if __name__ == '__main__': while True: time.sleep(5) print(time.strftime('%Y年%m月%d日 %M时%I分%S秒', time.localtime())) for conf in apollo_conf: load_conf(conf)
[ "itimor@126.com" ]
itimor@126.com
4d96020baa1dfde6710a9247ae12d7ac774a9592
70bdecc19c4017d5bce1cdabd2fc1c8a97b9079c
/hello.py
6c62f8b712b55051d5540d063bbb5e660a22b570
[]
no_license
mahesh4555/sdms
521b9f016fa78e773caea7a603958872dc45e67d
e0fa480a38e1c907cdbc4412a02340efbe62c422
refs/heads/master
2020-04-14T16:28:16.100779
2019-01-03T10:01:58
2019-01-03T10:01:58
163,952,658
0
0
null
null
null
null
UTF-8
Python
false
false
1,050
py
#!/usr/bin/python import cgi import mysql.connector mydb=mysql.connector.connect(host="localhost", user="root", passwd="mieupro", database="student") mycursor = mydb.cursor(dictionary=True) mycursor.execute("SELECT User_name FROM Login_details ") User_name = mycursor.fetchall() print('''Content-type: text/html\r\n\r\n <html> <head> <link rel='stylesheet' type='text/css' href='css_file.css'> </head> <body> <h1> welcome to madras institute of technogy </h1> <div> <form method='post' action='hello2.py'> <label for="name">User Name</label><br> <select id="name" name="name">''') for i in User_name: print('<option value="%s" > %s </option>'%(i['User_name'],i['User_name'])) print('''</select><br> <label for="password">Password</label><br> <input type="password" id="password" name="password" placeholder="Enter Password" required> <br> <input type="submit" value="LOGIN"> </form> </div> </body></html>''')
[ "noreply@github.com" ]
mahesh4555.noreply@github.com
686c784efe388198fa39f36057c42d01e0e4dac4
ee9f924fc571066a67e972782c985ce761d07633
/project/settings/development.py
0457667aaf8ea099eb5134f44b8aadd05a7ad2e2
[ "MIT" ]
permissive
teopeurt/ddash2013
56f497d61c4cfc30d59a1ecaed496bfa10f26023
d1fcd95311ab51955d5ab9c1a7ba3315c6df1afa
refs/heads/master
2021-01-15T11:45:42.171597
2013-10-21T07:09:03
2013-10-21T07:09:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
682
py
import os from .common import * DEBUG = True TEMPLATE_DEBUG = DEBUG DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(PROJECT_ROOT, 'sqlite3.db'), } } for i, middleware in enumerate(MIDDLEWARE_CLASSES): if 'CommonMiddleware' in middleware: mcs = list(MIDDLEWARE_CLASSES) mcs.insert(i + 1, 'debug_toolbar.middleware.DebugToolbarMiddleware') MIDDLEWARE_CLASSES = tuple(mcs) INSTALLED_APPS += ('debug_toolbar',) break DEBUG_TOOLBAR_CONFIG = { 'INTERCEPT_REDIRECTS': False, } INTERNAL_IPS = ('127.0.0.1',) EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
[ "dima@kukushkin.me" ]
dima@kukushkin.me
d67dbb696013abf76678662d5440d940cdac7d67
e0895ca800f8486f5d6ede6af4106b5b60ba9c86
/db_tools/import_category_data.py
c403a6cfb96b085f07149207f216497ba9f8d31f
[]
no_license
zhanxiangyu/MxShop
613fcb16849ab6ff3f54d360e4a8e110701a9e2d
4650f5f56fa456413ddc73290db21e7dce4fad93
refs/heads/master
2022-12-12T05:17:58.749603
2018-03-18T16:08:18
2018-03-18T16:08:18
118,477,285
0
0
null
2022-12-08T00:55:22
2018-01-22T15:41:15
JavaScript
UTF-8
Python
false
false
1,273
py
# -*- coding:utf-8 -*- # __author__ = 'zhan' # __date__ = '18-1-28 下午6:13' import sys import os import django from db_tools.data.category_data import row_data pwd = os.path.dirname(os.path.realpath(__file__)) sys.path.append(pwd+'../') # 和manage.py文件的使用一样 os.environ.setdefault("DJANGO_SETTINGS_MODULE", "MxShop.settings") # 启动django django.setup() from goods.models import GoodsCategory for lev1_cat in row_data: lev1_install = GoodsCategory() lev1_install.code = lev1_cat['code'] lev1_install.name = lev1_cat['name'] lev1_install.category_type = 1 lev1_install.save() for lev2_cat in lev1_cat['sub_categorys']: lev2_intance = GoodsCategory() lev2_intance.name = lev2_cat['name'] lev2_intance.code = lev2_cat['code'] lev2_intance.category_type = 2 lev2_intance.parent_category = lev1_install lev2_intance.save() for lev3_cat in lev2_cat['sub_categorys']: lev3_install = GoodsCategory() lev3_install.name = lev3_cat['name'] lev3_install.code = lev3_cat['code'] lev3_install.category_type = 3 lev3_install.parent_category = lev2_intance lev3_install.save() print('insert data over!!!')
[ "1033432955@qq.com" ]
1033432955@qq.com
969b24c1b1a028a1fb0d5a602d96f4e6bdd3be2b
c2c4133012f9cfeb361e7773a8645dd066fc3192
/src/imu_read.py
11f89e05bf2639cf3d5ebb7038e6b3a4396d5126
[]
no_license
larsenkw/sensors
bf4c4c55bbf6c1f0dd22d486c97d0494a2464e1d
3a0f02f5ff9bc7ae0a615a4bfd79f950011b2d02
refs/heads/master
2020-03-27T18:56:20.359235
2019-07-16T16:59:50
2019-07-16T16:59:50
146,954,710
0
1
null
null
null
null
UTF-8
Python
false
false
9,948
py
#!/usr/bin/env python ''' Node for converting the IMU (Adafruit BNO055) messages read by imu_read into standard ROS messages. The Arduino does not have enough memory to use the standard ROS messages, so the values are sent over as arrays. This node exists as a separate program to allow the IMU data to be read by the Arduino and then converted into the correct format. There is a version of that same code on the Raspberry Pi which will still work with this node. This way we can seemlessly switch between using the Pi or the Arduino if need be.''' # IMPORTANT! # The calibration bytes need to be placed in this order: # accel_offset_x # accel_offset_y # accel_offset_z # mag_offset_x # mag_offset_y # mag_offset_z # gyro_offset_x # gyro_offset_y # gyro_offset_z # accel_radius # mag_radius import sys import struct import time # for sleep, time import numpy as np from array import array import RPi.GPIO as gpio import rospy from sensors.msg import ImuArray, ImuMag, ImuCalibStatus, ImuCalibration from Adafruit_BNO055 import BNO055 class Calibration(): def __init__(self, ax=0.0, ay=0.0, az=0.0, ar=0.0, gx=0.0, gy=0.0, \ gz=0.0, mx=0.0, my=0.0, mz=0.0, mr=0.0): self.accel_offset_x = ax self.accel_offset_y = ay self.accel_offset_z = az self.accel_radius = ar self.gyro_offset_x = gx self.gyro_offset_y = gy self.gyro_offset_z = gz self.mag_offset_x = mx self.mag_offset_y = my self.mag_offset_z = mz self.mag_radius = mr class Quat(): def __init__(self, qx=0.0, qy=0.0, qz=0.0, qw=0.0): self.qx = qx self.qy = qy self.qz = qz self.qw = qw class Vec(): def __init__(self, x=0.0, y=0.0, z=0.0): self.x = x self.y = y self.z = z def bytes_from_calibration(calibration): '''This function converts the calibration parameters into a list of bytes as required by Adafruits set_calibration() method.''' calibration_list = [calibration.accel_offset_x, \ calibration.accel_offset_y, \ calibration.accel_offset_z, \ calibration.mag_offset_x, \ calibration.mag_offset_y, \ calibration.mag_offset_z, \ calibration.gyro_offset_x, \ calibration.gyro_offset_y, \ calibration.gyro_offset_z, \ calibration.accel_radius, \ calibration.mag_radius] # Convert integers into a list of 22 bytes (11 int16 values in Hex form) int16_list = [struct.pack('h', x) for x in calibration_list] # combine into one string to easily divide into bytes in the next line bytes_joined = "".join(int16_list) byte_list = list(bytes_joined) # Convert hex character code bytes into values cal_bytes = [ord(x) for x in byte_list] return cal_bytes def calibration_from_bytes(cal_bytes): '''This function converts a list of int16 bytes back into a list of integer values''' # Convert numbers into unsigned byte Hex representation byte_list = [struct.pack('B', x) for x in cal_bytes] # Join into a single string for easily unpacking in the next line bytes_joined = "".join(byte_list) # Convert Hex string of 22 bytes into 11 integers calibration_list = struct.unpack('hhhhhhhhhhh', bytes_joined) calibration = Calibration() calibration.accel_offset_x = calibration_list[0] calibration.accel_offset_y = calibration_list[1] calibration.accel_offset_z = calibration_list[2] calibration.mag_offset_x = calibration_list[3] calibration.mag_offset_y = calibration_list[4] calibration.mag_offset_z = calibration_list[5] calibration.gyro_offset_x = calibration_list[6] calibration.gyro_offset_y = calibration_list[7] calibration.gyro_offset_z = calibration_list[8] calibration.accel_radius = calibration_list[9] calibration.mag_radius = calibration_list[10] return calibration #======================================================================# # Main Class #======================================================================# class ImuRead(): def __init__(self): #===== Setup ROS node, publishers, and messages =====# rospy.init_node("imu_test_pi") self.imu_data = ImuArray() self.imu_pub = rospy.Publisher("/imu/data_array", ImuArray, queue_size=1) self.imu_mag = ImuMag() self.mag_pub = rospy.Publisher("/imu/mag_array", ImuMag, queue_size=1) self.imu_status = ImuCalibStatus() self.status_pub = rospy.Publisher("/imu/status", ImuCalibStatus, queue_size=1) self.imu_calib = ImuCalibration() self.calib_pub = rospy.Publisher("/imu/calibration", ImuCalibration, queue_size=1) self.rate = 30 # publish at 30 Hz self.save_time = time.time() #===== Set GPIO =====# gpio.setmode(gpio.BOARD) # reseting the board causes problems, so don't #======================================================================# # IMU Initialization #======================================================================# #===== Set calibration defaults self.calibration = Calibration() #===== Read in configuration parameters calibration_param_names = ["accel_offset_x", "accel_offset_y", "accel_offset_z", "accel_radius", \ "gyro_offset_x", "gyro_offset_y", "gyro_offset_z", \ "mag_offset_x", "mag_offset_y", "mag_offset_z", "mag_radius"] for param in calibration_param_names: if rospy.has_param("imu/calibration/" + param): exec "self.calibration." + param + " = rospy.get_param('imu/calibration/" + param + "')" else: print "No '" + param + "' found, using {0}".format(eval("self.calibration." + param)) #===== Begin BNO055 self.serial_port = "/dev/serial0" self.bno = BNO055.BNO055(serial_port=self.serial_port) # Initial mode should be OPERATION_MODE_M4G so magnetometer can align # without calibration, then after loading calibration change mode to # OPERATION_MODE_NDOF if not self.bno.begin(BNO055.OPERATION_MODE_M4G): raise RuntimeError("Failed to initialize BNO055. Check sensor connection.") #===== Upload calibration parameters # Convert calibration to bytes initial_cal = bytes_from_calibration(self.calibration) # Upload to IMU self.bno.set_calibration(initial_cal) # Change mode to OPERATION_MODE_NDOF so sensor data is fused to give # absolute orientation self.bno.set_mode(BNO055.OPERATION_MODE_NDOF) rospy.loginfo("IMU initialization successful.") #======================================================================# # IMU Initialization #======================================================================# def loop(self): #===== Read IMU data quat = Quat() ang = Vec() lin = Vec() mag = Vec() quat.qx, quat.qy, quat.qz, quat.qw = self.bno.read_quaternion() ang.x, ang.y, ang.z = self.bno.read_gyroscope() lin.x, lin.y, lin.z = self.bno.read_accelerometer() mag.x, mag.y, mag.z = self.bno.read_magnetometer() #===== Convert to ROS message # IMU data self.imu_data.data[0] = quat.qw self.imu_data.data[1] = quat.qx self.imu_data.data[2] = quat.qy self.imu_data.data[3] = quat.qz self.imu_data.data[4] = ang.x self.imu_data.data[5] = ang.y self.imu_data.data[6] = ang.z self.imu_data.data[7] = lin.x self.imu_data.data[8] = lin.y self.imu_data.data[9] = lin.z # Magnetometer data self.imu_mag.data[0] = mag.x self.imu_mag.data[1] = mag.y self.imu_mag.data[2] = mag.z # Calibration Status self.imu_status.system, self.imu_status.gyro, self.imu_status.accel, self.imu_status.mag = self.bno.get_calibration_status() # Calibration parameters # (if system status is 3 and last save time is >60sec) if ((self.imu_status == 3) and (time.time() - self.save_time) > 60.0): self.calibration = bytes_from_calibration(self.bno.get_calibration()) self.imu_calib.data[0] = self.calibration.accel_offset_x self.imu_calib.data[1] = self.calibration.accel_offset_y self.imu_calib.data[2] = self.calibration.accel_offset_z self.imu_calib.data[3] = self.calibration.accel_radius self.imu_calib.data[4] = self.calibration.gyro_offset_x self.imu_calib.data[5] = self.calibration.gyro_offset_y self.imu_calib.data[6] = self.calibration.gyro_offset_z self.imu_calib.data[7] = self.calibration.mag_offset_x self.imu_calib.data[8] = self.calibration.mag_offset_y self.imu_calib.data[9] = self.calibration.mag_offset_z self.imu_calib.data[10] = self.calibration.mag_radius self.save_time = time.time() self.calib_pub.publish(self.imu_calib) #===== Publish self.imu_pub.publish(self.imu_data) self.mag_pub.publish(self.imu_mag) self.status_pub.publish(self.imu_status) def spin(self): r = rospy.Rate(self.rate) while not rospy.is_shutdown(): self.loop() r.sleep() if __name__ == "__main__": try: imu = ImuRead() imu.spin() except rospy.ROSInterruptException: pass finally: gpio.cleanup()
[ "kylew.larsen@gmail.com" ]
kylew.larsen@gmail.com
0ed3275e29ab2f8b2a80b6b7dcfc68dcc495a4e8
652b8d3ef73ebbacc68eaaf9b38840ef6d5ed7cd
/Code/Maze/maze.py
e35ee3818c503118612296754a8d5008bbaed134
[]
no_license
qiuyue1993/Reinforcement-Learning-Practice
b316e9b82416397953d5be8083bb851d5417327a
0c298776fae23f4740b9756bbe382a040a220d62
refs/heads/master
2020-05-23T20:12:53.425094
2019-07-09T01:25:41
2019-07-09T01:25:41
186,925,884
0
0
null
null
null
null
UTF-8
Python
false
false
591
py
from maze_env import Maze from RL_brain import QLearningTable def update(): for episode in range(100): observation = env.reset() while True: env.render() action = RL.choose_action(str(observation)) observation_, reward, done = env.step(action) RL.learn(str(observation), action, reward, str(observation)) observation = observation_ if done: break print("Game Over!") env.destroy() if __name__=="__main__": env = Maze() RL = QLearningTable(actions=list(range(env.n_actions))) env.after(100,update) env.mainloop()
[ "noreply@github.com" ]
qiuyue1993.noreply@github.com
51f715f1c45f6fcedf092efef860b6393b2c4769
3f7240da3dc81205a0a3bf3428ee4e7ae74fb3a2
/src/Week3/String Methods/String Edits.py
b4e0ea2ff9f46a21b11a95b3d8d9080d9d152bf4
[]
no_license
theguyoverthere/CMU15-112-Spring17
b4ab8e29c31410b4c68d7b2c696a76b9d85ab4d8
b8287092b14e82d2a3aeac6c27bffbc95382eb34
refs/heads/master
2021-04-27T08:52:45.237631
2018-10-02T15:38:18
2018-10-02T15:38:18
107,882,442
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
print("This is nice. Yes!".lower()) print("So is this? Sure!!".upper()) print(" Strip removes leading and trailing whitespace only ".strip()) print("This is nice. Really nice.".replace("nice", "sweet")) print("This is nice. Really nice.".replace("nice", "sweet", 1)) # count = 1 print("----------------") s = "This is so so fun!" t = s.replace("so ", "") print(t) print(s) # note that s is unmodified (strings are immutable!)
[ "tariqueanwer@outlook.com" ]
tariqueanwer@outlook.com
86829936832555018cae2aab808bc61a9a58eb37
705e37c3e15825962d2ccd87608d23de58919dad
/prueba_archivo.py
bf6cfc06eb89ced33a20d8ecb6ca18f5f405dc25
[]
no_license
dcabello/aprendizaje_con_python
d34cd028717c37776384acf30cd7a4db0fec4b63
d7d23833bf2ff7a699884085aa9edc017e3c3a90
refs/heads/master
2022-11-15T10:28:22.022780
2020-07-02T09:30:56
2020-07-02T09:30:56
276,597,238
0
0
null
null
null
null
UTF-8
Python
false
false
41
py
"""Mi primer archivo""" print(__doc__)
[ "noreply@github.com" ]
dcabello.noreply@github.com
96524fe980b5c8e70660e583d71cde6c7bdce4e6
8fc404bdc056315f47dbc75658d3e1a1ad3d00d3
/test.py
0b90fa3f08e0fad49e47e83865cec4c4c14bf1e3
[]
no_license
bporcel/ScheduleNotificator
77c5db9eb3a06547d5a992ed76f07e777962980c
2afe4c7ca9c29d5d3b17aaf10ff56f70ff548398
refs/heads/master
2023-02-17T04:27:37.025285
2021-01-19T07:30:48
2021-01-19T07:30:48
330,898,569
0
0
null
null
null
null
UTF-8
Python
false
false
1,225
py
import subprocess import time import json from datetime import datetime def getSchedule(): try: with open('/home/hacko/dev/repositories/day2day/schedule.json') as readContent: return json.load(readContent) except: return False def sendNotification(hour, schedule): currentTime = datetime.now().strftime('%H:%M') if hour in schedule.keys(): if not schedule[hour]['notified']: title = schedule[hour]['title'] + ' ' + currentTime body = schedule[hour]['body'] subprocess.Popen(['notify-send', title, body]) schedule[hour]['notified'] = True def checkTime(): seconds = str(datetime.now().second) print(seconds) sendNotification(seconds, schedule) def scheduleNotificator(schedule): checkTime() time.sleep(1) return scheduleNotificator(schedule) weekDay = datetime.today().weekday() if weekDay != 5 and weekDay != 6: # try: schedule = getSchedule() if schedule: print('Scheduler started succesfully') scheduleNotificator(schedule) else: print('No he podido encontrar el horario para el día de hoy') # except: # print('Error during program execution')
[ "codamming@gmail.com" ]
codamming@gmail.com
4f57bb5641b4d6779e0a30d1d6f0908bb87a6d8c
ff8103f0dc01fe33bc9ebdb90132242d6e34eaf6
/Sample/Sockets/UdpServer1.py
235b2c1b9acb0a01d6cd9fd9994f68127dbfbbf4
[]
no_license
KumaKuma0421/PatchWorks
866aec10e1b04d2d0bda2d8ccd646a31db8e2b35
22bd8c0cce0b73ad7c20c2817f734c5cdf54345c
refs/heads/master
2023-01-06T21:04:25.248769
2020-11-03T07:14:14
2020-11-03T07:14:14
295,703,340
0
0
null
2020-11-03T07:14:15
2020-09-15T11:18:42
Python
UTF-8
Python
false
false
317
py
# # UDP受信 # sa https://qiita.com/__init__/items/5c89fa5b37b8c5ed32a4 # import socket HOST = '127.0.0.1' PORT = 50007 with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s: s.bind((HOST, PORT)) while True: data, addr = s.recvfrom(1024) print("data: {}, addr: {}".format(data, addr))
[ "noreply@github.com" ]
KumaKuma0421.noreply@github.com
0b6d7046eb4eb6ddcc96d07d95abf3a3c8408c22
20ee5aabea06a6fbe97e91d5b7f8e55aba5715df
/ApiV1/urls.py
bd93d640ab5d0532be678cbd0907b35211ac6fb8
[]
no_license
scriptyang/myblog_v2
870ea6664b2a4537bcf93e37af659d177c392b96
8d38e27dcb6c2f535a3fc5c7e14a447bba105b23
refs/heads/master
2020-06-20T14:15:48.448882
2020-05-15T08:52:33
2020-05-15T08:52:33
197,147,897
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
from django.urls import path from .views import * urlpatterns = [ # 用户信息 path('user_list/', UserInfo.as_view(),name='user_info'), # 服务信息 path('Service_info/', ServiceInfo.as_view(), name='service_info'), # 登录认证 path('LoginAuth/', LoginAuth.as_view(), name='login'), ]
[ "scriptyang@sina.com" ]
scriptyang@sina.com
0259a750464eee4b339b86e377d9abe72faa9190
7db18d2e7445d02aa555f028b2eeda0e9fb74340
/ch23/ordered_linked_list.py
13404e2518093effabc52e3c3d7392a5b54c3309
[]
no_license
MrHighHandZhao/2017A2CS
9a99ad452055e86046ff33d68afe893f3804a7f0
a6040bf29b18c93dcd6fd0e4865593555eb988f1
refs/heads/master
2021-09-10T16:34:27.050399
2018-03-29T11:23:16
2018-03-29T11:23:16
114,727,605
1
1
null
null
null
null
UTF-8
Python
false
false
2,750
py
#S3C2 Carl Zhao Computer Science Homework NullPointer = -1 class Node(): def __init__(self): self.Data = "" self.NPointer = NullPointer class linkedList(): def _init_(self): self.SPointer = NullPointer self.FPointer = 0 self.record = [] newNode = None for i in range(10): newNode = Node() NewNode.NPointer = i + 1 self.record.append(NewNode) NewNode.NPointer = NullPointer def InsertNode(self): if FPointer!=NullPointer: NewPointer=FPointer self.record[NewPointer],Data=NewItem FPointer=self.record[FPointer].Pointer CPointer= SPointer while CPointer!=NullPointer and self.record[CPointer].Data < NewItem: PPointer= CPointer CPointer=self.record[CPointer].Pointer if PPointer= SPointer: self.record[NewPointer].Pointer=SPointer SPointer=NewPointer else: self.record[NewPointer].Pointer=self.record[PPointer].Pointer self.record[PPointer].Pointer=NewPointer def FindNode(self): CPointer=SPointer while CPointer!= NullPointer and self.record[CPointer]!= NewItem: CPointer!=self.record[CPointer].NPointer return CPointe def outputNode(self): CPointer = self.SPointer while CPointer != NullPointer: print(self.record[CPointer].Data, end = ",") CPointer = self.record[CPointer].NextPointer def printList(self): for i in range(10): print(self.record[i].Data, self.record[i].NPointer) def insertNode(self): if FPointer != NullPointer: NewPointer = FPointer self.record[NewPointer].Data = NewItem FPointer = self.record[FPointer].NPointer PPointer = NullPointer while (CPointer != NullPointer) and (self.record[CPointer].Data < NewItem): PPointer = CPointer CPointer = self.record[CPointer].NPointer if PPointer == NullPointer: self.record[NewPointer].NPointer = SPointer SPointer = NewPointer else: self.record[NewPointer].NPointer = self.record[PPointer].NextPointer self.record[PPointer].NextPointer = NewPointer l = linkedList() l.insertNode(5) l.insertNode(25) l.insertNode(15) l.insertNode(35) l.printList()
[ "34653690+MrHighHandZhao@users.noreply.github.com" ]
34653690+MrHighHandZhao@users.noreply.github.com
ea1ab812afe159437876b0e417ff2fe3c5aa5fd4
3750c7dc31addfd3195dbbc5698b4c34c738ca78
/manage.py
3eaafaddb9004ae4a25640e556ccb962017826b4
[]
no_license
deiner582/Vortal
3adc3a9cf68150873b2f3a05a9eac07585a87dde
b1079a9629457c142004332c55888282d6aef703
refs/heads/master
2020-12-25T18:20:38.692139
2015-06-30T19:34:04
2015-06-30T19:34:04
35,785,147
0
1
null
null
null
null
UTF-8
Python
false
false
249
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "vortal.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "metallica082011@hotmail.com" ]
metallica082011@hotmail.com
3597912a9add6ca33b344e9250060a3dccbb25f9
656fecef4a16c07c0cebf954908331a3f5ed23fb
/three_sum_to_zero.py
d6ef0f82f9b2dde6ea513db1ef9883ae855b8471
[]
no_license
linchuyuan/leetcode
d5fdd68c259ff92e2adb7908d5f17d885509f2fe
eb4520464a758962731dcfceafefc812f6b6f844
refs/heads/master
2021-01-20T17:40:28.572630
2016-07-20T05:02:14
2016-07-20T05:02:14
61,839,969
0
0
null
null
null
null
UTF-8
Python
false
false
1,052
py
#Given a array of S of n intergers. find three intergers in s such that the sum of the three is closest to the target. i.e. [-1,2,1,4] target = 1, return [-1,2,1] def three_sum_to_zero(array): for k in range(len(array)-2): num1 = array[k]; num2 = array[k+1]; num3 = array[k+2]; return_me = []; distance = num1+num2+num3; found = False; for i in range(len(array)): if i == k: continue; i = array[i]; indicator = 0; if not distance: found = True; break; if abs(i+num2+num3) < distance: indicator = 1; distance = abs(num1+i+num3); if abs(num1+i+num3) < distance: indicator = 2; distance = abs(i+num2+num3); if abs(num1+num2+i) < distance: indicator = 3; distance = abs(i+num2+num3); if indicator == 1: num1 = i; elif indicator == 2: num2 = i; elif indicator == 3: num3 = i; if found: return_me.append(num1); return_me.append(num2); return_me.append(num3); continue; else: return_me = "not found"; return return_me print three_sum_to_zero([1,-2,-2,4])
[ "lin.chu@yahoo.com" ]
lin.chu@yahoo.com
a615255c5d7631f31f8863e1c8229310da78acfb
83b7b2cc1d6ca4f1a84e7229c79f5479e1cd07e1
/webgateway/apps/permissions/tests/test_models.py
5a95f6a7000f36bb47ce6a06dd3f53d3586d4bd6
[]
no_license
Almlett/HOBBY-ApiGateway
6ea14ec7cfcfafcfcf8584d2ff21e3988c510c7b
32ad29f35b1e1164b961e429bb5472175db847da
refs/heads/main
2023-04-11T13:59:00.606385
2021-04-22T16:33:13
2021-04-22T16:33:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,470
py
""" test for app users """ import json import pytest from django.urls import reverse from rest_framework.exceptions import ValidationError from permissions.models import Permission, Profile, ProfilePermission # pylint: disable=relative-beyond-top-level pytestmark = pytest.mark.django_db class TestPermission: """ Test Permission Model """ pytestmark = pytest.mark.django_db def test_creation(self, permission_factory,): # pylint: disable=no-self-use """ test created permission """ permission_created = permission_factory() permission = Permission.objects.get(id = permission_created.id) assert permission.name == "permission_test", 'Name should be permission_test' assert str(permission) == "permission_test" pytestmark = pytest.mark.django_db def test_update(self, permission_factory,): # pylint: disable=no-self-use """ test updated permission """ permission_created = permission_factory() permission = Permission.objects.get(id = permission_created.id) permission.name = "permission_test2" permission.save() assert permission.name == "permission_test2", 'name should be permission_test2' class TestProfile: """ Test Profile Model """ pytestmark = pytest.mark.django_db def test_creation(self, profile_factory,): # pylint: disable=no-self-use """ test created profile """ profile_created = profile_factory() profile = Profile.objects.get(id = profile_created.id) assert profile.name == "profile_test", 'Name should be profile_test' assert str(profile) == "profile_test" pytestmark = pytest.mark.django_db def test_update(self, profile_factory,): # pylint: disable=no-self-use """ test updated profile """ profile_created = profile_factory() profile = Profile.objects.get(id = profile_created.id) profile.name = "profile_test2" profile.save() assert profile.name == "profile_test2", 'name should be profile_test2' class TestProfilePermission: """ Test ProfilePermission Model """ pytestmark = pytest.mark.django_db def test_creation(self, profile_permission_factory,): # pylint: disable=no-self-use """ test created profile_permission """ profile_permission_created = profile_permission_factory() profile_permission = ProfilePermission.objects.get(id = profile_permission_created.id) assert profile_permission.profile.name == "profile_test", 'Name should be profile_permission_test' assert str(profile_permission) == "profile_test" pytestmark = pytest.mark.django_db def test_update(self, profile_permission_factory,): # pylint: disable=no-self-use """ test updated profile_permission """ profile_test = Profile() profile_test.name="profile_permission_test2" profile_test.key="test" profile_test.description="test" profile_test.save() profile_permission_created = profile_permission_factory() profile_permission = ProfilePermission.objects.get(id = profile_permission_created.id) profile_permission.profile = profile_test profile_permission.save() assert profile_permission.profile.name == "profile_permission_test2", 'name should be profile_permission_test2'
[ "isc.andradealan@gmail.com" ]
isc.andradealan@gmail.com
032ea0d77079d896e479004c2016c2360bde3d50
48a741fccfcc832609bf557723e8d069ccbf87e7
/Classification/utilities/nn/conv/__init__.py
ae161251b4ab8cee4f58d39b9cc93c5421499613
[]
no_license
kdasilva835842/tremor_classification
27f00fadacba7859ff47c804ae921de85b16585d
d4a8f7d5f773a27230bbc9b4d3fec14c22825989
refs/heads/master
2022-12-08T13:42:02.947340
2020-09-07T06:34:55
2020-09-07T06:34:55
293,249,471
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
from .shallownet import ShallowNet from .lenet import LeNet from .minivggnet import MiniVGGNet from .alexnet import AlexNet from .resnet import ResNet from .fcheadnet import FCHeadNet from .lenet_mnist import LeNet_MNIST
[ "kelvinds@discovery.co.za" ]
kelvinds@discovery.co.za
f7d576b86f66f442c7a8952459e7007695d6c4e8
78c127bce6c51107e46c3f53fe96a542ec7ebfc1
/app.py
cd869a98dfdd174978d02861ac867667c04f58e2
[]
no_license
lucasblazzi/statistcs-ho
680c73ada9d19d529fe13c9ffd2a5883ed81c39a
4115371af71ee157030caf2df82f815ad2cd9498
refs/heads/master
2023-05-08T19:43:02.226800
2021-06-02T01:07:15
2021-06-02T01:07:15
371,530,353
0
0
null
null
null
null
UTF-8
Python
false
false
5,164
py
import streamlit as st import pandas as pd import plotly.figure_factory as ff from PIL import Image from utils.fetch import get_data from utils.plot import plot_scatter from utils.plot import plot_bar from utils.plot import plot_table from utils.plot import plot_pie from utils.plot import plot_box from utils.plot import plot_multi_bar from utils.plot import plot_histogram from utils.text import sample_text from utils.text import performance_text from utils.text import work_hours_text from utils.text import academic_impact_text from utils.text import question_mapping from utils.text import abstract from utils.text import sample_analysis from utils.text import satsxwill_text st.set_page_config(layout='wide') pd.set_option('display.max_colwidth', None) side_bar = st.sidebar def _header(): st.title('MAT013 - Probabilidade e Estatistica') st.header('Análise comparativa de perspectivas relacionadas ao Home Office') st.markdown("____") st.markdown(abstract, unsafe_allow_html=True) def _amostra(visualizations, raw_data): cols = st.beta_columns(3) amostras = ("Tipo de trabalho", "Categoria") for i, amostra in enumerate(amostras): count_amostra = visualizations[amostra].value_counts() amostra_bar = plot_pie(count_amostra, x=amostra, y=count_amostra.index, title=amostra) cols[i].plotly_chart(amostra_bar) count_raw = raw_data["Curso"].value_counts() raw_bar = plot_bar(count_raw, x=count_raw.index, y="Curso", title="Distribuição por curso", width=800, height=500, color=count_raw.index) cols[0].plotly_chart(raw_bar) cols[2].markdown("<br><br>", unsafe_allow_html=True) cols[2].markdown(sample_analysis, unsafe_allow_html=True) def _comparison(visualizations): compare = ("Performance", "Carga Horária", "Impacto nos estudos") results = (performance_text , work_hours_text, academic_impact_text) for comp, res in zip(compare, results): cols = st.beta_columns([0.55, 0.45]) fig = plot_multi_bar(visualizations, comp) cols[0].plotly_chart(fig) cols[1].markdown("<br><br><br>", unsafe_allow_html=True) cols[1].markdown(res, unsafe_allow_html=True) def _base_scatter(home_office): st.markdown("____") cols = st.beta_columns([0.7, 0.3]) x = "Qual é seu nível de satisfação com o trabalho remoto?" y = "Horas trabalhadas" f = plot_scatter(home_office, x, y) cols[0].plotly_chart(f) cols[1].markdown("<br><br>", unsafe_allow_html=True) cols[1].write(sample_text) def _satsxreal(visualizations): cols = st.beta_columns([0.4, 0.3, 0.3]) comp = {"Não Remoto": "Vontade de trabalhar home office (Não Remoto)", "Remoto" :"Satisfação com o Home Office (Remoto)"} i = 0 c = 0 for k, val in comp.items(): v = visualizations.loc[visualizations["Categoria"] == k] hist = plot_histogram(v, title=val) box = plot_box(v, val, k, "Vontade x Satisfação") cols[i].plotly_chart(hist) if c > 0: cols[i+1].markdown("<br><br>", unsafe_allow_html=True) cols[i+1].plotly_chart(box) table = plot_table(v, "Vontade x Satisfação", title=val) cols[i+2].plotly_chart(table) c+=1 st.markdown(satsxwill_text, unsafe_allow_html=True) def _set_title(title): st.markdown("____") st.header(title) st.markdown("<br><br>", unsafe_allow_html=True) def main(): raw_data = get_data("raw_mat013_forms") home_office = get_data("home_office") not_home_office = get_data("not_home_office") on_office = get_data("on_office") unemployed = get_data("unemployed") visualizations = get_data("visualizations") sets = { "Dados Brutos": raw_data, "Empregado - Home Office": home_office, "Empregado - Presencial": on_office, "Não Empregado": unemployed, "Nunca trabalhou home office": not_home_office, "Vizualização Comparativa": visualizations } selection = side_bar.selectbox("Selecione", ["Dashboard", "Dados"]) image = Image.open("infografico.png") if selection == "Dados": st.image(image) st.subheader("Questões") st.dataframe(raw_data.columns) exclude = ("Qual é a sua vontade de trabalhar remotamente?", "Vontade x Satisfação") for key, value in sets.items(): st.subheader(key) st.dataframe(value) for i, column in enumerate(value.columns): if i == 0 or column in exclude or key == "Dados Brutos": continue st.dataframe(value[column].value_counts()) st.markdown("____") elif selection == "Dashboard": _header() _set_title("Contextualização e Análise Amostral") _amostra(visualizations, raw_data) _set_title("Análise de Perspectivas") _comparison(visualizations) _set_title("Outras Observações") _satsxreal(visualizations) st.markdown("____") st.image(image) if __name__ == "__main__": main()
[ "lucasblazzi@hotmail.com" ]
lucasblazzi@hotmail.com
35244b51575c9fc5c8cd4ce310014de26236a627
68482946d43336d58c200717b427e584eb759d98
/vowel_counter.py
2cde2692283a0f7507966a17e68cc5787f23c86c
[]
no_license
jointyrost/py_beginners
858f2d36bd4b1d0caabebf04f4cdd2dc91b4b10e
d8fb8cacbeb8b25938c177cfa29dc1bc70ff94ee
refs/heads/main
2023-01-09T18:01:33.034844
2020-10-31T12:24:20
2020-10-31T12:24:20
308,881,516
1
0
null
2020-10-31T12:54:32
2020-10-31T12:54:32
null
UTF-8
Python
false
false
223
py
# Count Vowels in String def count_vowels(string): vowels = ['a', 'e', 'i', 'o', 'u'] vowel_count = 0 for letter in string: if letter in vowels: vowel_count += 1 return vowel_count
[ "noreply@github.com" ]
jointyrost.noreply@github.com
1c195a597666eeb0525514c52eb135492d328e93
55114a42d6cf63fed3d46b61b423bff14d1cab87
/web/controllers/api/Quant.py
21b8ffb5f921d9e69336df933e8d66a8cec89865
[]
no_license
xzxedu/quant_demo
88856d24307b9fba2754f6c40a5e72fd77e09982
1d726c3972a84aea477815c8f709b91924e96012
refs/heads/master
2020-08-11T22:37:18.929949
2020-01-23T22:17:24
2020-01-23T22:17:24
214,640,658
0
0
null
null
null
null
UTF-8
Python
false
false
3,751
py
# -*- coding: utf-8 -*- from common.models.member.MemberCart import MemberCart from common.models.quant.QuantCat import QuantCat from common.libs.UrlManager import UrlManager from common.models.quant.Quant import Quant from web.controllers.api import route_api from flask import request, jsonify, g from application import app, db from sqlalchemy import or_ import requests, json @route_api.route("/quant/index") def quantIndex(): resp = {'code': 200, 'msg': '操作成功', 'data': {}} cat_list = QuantCat.query.filter_by(status=1).order_by(QuantCat.weight.desc()).all() data_cat_list = [] data_cat_list.append({ 'id': 0, 'name': '全部' }) if cat_list: for item in cat_list: tmp_data = { "id": item.id, "name": item.name } data_cat_list.append(tmp_data) resp['data']['cat_list'] = data_cat_list quant_list = Quant.query.filter_by(status=1)\ .order_by(Quant.total_count.desc(), Quant.id.desc()).limit(3).all() data_quant_list = [] if quant_list: for item in quant_list: tmp_data = { "id": item.id, "pic_url": UrlManager.buildImageUrl(item.main_image) } data_quant_list.append(tmp_data) resp['data']['banner_list'] = data_quant_list return jsonify(resp) @route_api.route("/quant/search") def quantSearch(): resp = {'code': 200, 'msg': '操作成功', 'data': {}} req = request.values cat_id = int(req['cat_id']) if 'cat' in req else 0 mix_kw = str(req['mix_kw']) if 'mix_kw' in req else '' p = int(req['p']) if 'p' in req else 1 if p < 1: p = 1 query = Quant.query.filter_by(status=1) page_size = 10 offset = (p-1) * page_size if cat_id > 0: query = query.filter(Quant.cat_id == cat_id) if mix_kw in req: rule = or_(Quant.name.ilike("%{0}%".format(mix_kw))), Quant.tags.ilike("%{0}%".format(mix_kw)) query = query.filter(rule) quant_list = query.order_by(Quant.total_count.desc(), Quant.id.desc())\ .offset(offset).limit(page_size).all() data_quant_list = [] if quant_list: for item in quant_list: tmp_data = { 'id': item.id, 'name': "%s" % (item.name), 'price': str(item.price), 'min_price': str(item.price), 'pic_url': UrlManager.buildImageUrl(item.main_image) } data_quant_list.append(tmp_data) resp['data']['list'] = data_quant_list resp['data']['has_more'] = 0 if len(data_quant_list) < page_size else 1 return jsonify(resp) @route_api.route("/quant/info") def quantInfo(): resp = {'code': 200, 'msg': '操作成功', 'data': {}} req = request.values id = int(req['id']) if 'id' in req else 0 quant_info = Quant.query.filter_by(id=id).first() if not quant_info and not quant_info.status: resp['code'] = -1 resp['msg'] = "该产品已下架 " return jsonify(resp) member_info = g.member_info cart_number = 0 if member_info: cart_number = MemberCart.query.filter_by(member_id=member_info.id).count() resp['data']['info'] = { "id": quant_info.id, "name": quant_info.name, "summary": quant_info.summary, "total_count": quant_info.total_count, "comment_count": quant_info.comment_count, "main_image": UrlManager.buildImageUrl(quant_info.main_image), "price": str(quant_info.price), "stock": quant_info.stock, "pics": [UrlManager.buildImageUrl(quant_info.main_image)] } resp['data']['cart_number'] = cart_number return jsonify(resp)
[ "s1787273@sms.ed.ac.uk" ]
s1787273@sms.ed.ac.uk
be16a67b88abad327d6cecbee86ece8d7a52c632
63e116eddc626816689fca20137140c002670d1a
/calculateResults/migrations/0002_department.py
ed44d475165167ae9359b484a2ecdf037cea8c39
[]
no_license
sarah-salaheldeen/sarah-salaheldeen.github.io
227790038f3834d8b96d1b23dc210c31bf675f25
207b99c388c8fda6e56317bcbb1200b19796f2f9
refs/heads/master
2020-04-05T17:50:11.700269
2018-11-11T13:10:01
2018-11-11T13:10:01
157,077,746
0
0
null
null
null
null
UTF-8
Python
false
false
585
py
# Generated by Django 2.1a1 on 2018-09-25 10:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('calculateResults', '0001_initial'), ] operations = [ migrations.CreateModel( name='Department', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('department_id', models.IntegerField()), ('department_name', models.CharField(max_length=100)), ], ), ]
[ "sarahsalaheldeen@gmail.com" ]
sarahsalaheldeen@gmail.com
5cb91bafbc062039775e7519eafeb5d6206a97d8
dcf2e42641237b2488078a31f704c3b45b883f03
/GitHub/Analysis.py
f50954e527895cbaccc50ab45b3d47a2576b0bed
[]
no_license
jeffbender/LinkingEdX
acd353cbe5371690f16f6deefaf1b1285b467a47
400e9b0d4302ae8b52df94ad154ce7944d76ab48
refs/heads/master
2021-01-22T23:00:56.910498
2016-06-20T19:26:32
2016-06-20T19:26:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,806
py
''' Created on Dec 21, 2015 @author: Angus ''' import json from Functions.CommonFunctions import ReadEdX def AnalyzeMatchingResults(platform, path): course_matcher_map = {} non_duplicate_matcher_set = set() # Read EdX learners edx_path = path + "course_metadata/course_email_list" edx_learners_set, edx_learners_map = ReadEdX(edx_path) course_learners_map = {} for learner in edx_learners_map.keys(): for course in edx_learners_map[learner]["courses"]: if course not in course_learners_map.keys(): course_learners_map[course] = set() course_learners_map[course].add(learner) # 1. Explicit matching explicit_learners = set() explicit_path = path + platform + "/explicit_matching" explicit_file = open(explicit_path, "r") lines = explicit_file.readlines() for line in lines: array = line.replace("\n", "").split("\t") learner = array[0] courses = array[1].split(",") non_duplicate_matcher_set.add(learner) explicit_learners.add(learner) for course in courses: if course not in course_matcher_map.keys(): course_matcher_map[course] = set() course_matcher_map[course].add(learner) print "# explicit learners is:\t" + str(len(explicit_learners)) # 2. Direct matching direct_path = path + "latest_matching_result_0" direct_file = open(direct_path, "r") jsonLine = direct_file.read() direct_results_map = json.loads(jsonLine) direct_file.close() direct_learners = set() for learner in direct_results_map.keys(): if platform in direct_results_map[learner]["checked_platforms"]: if learner in edx_learners_set: non_duplicate_matcher_set.add(learner) if learner not in explicit_learners: direct_learners.add(learner) for course in edx_learners_map[learner]["courses"]: if course not in course_matcher_map.keys(): course_matcher_map[course] = set() course_matcher_map[course].add(learner) print "# direct learners is:\t" + str(len(direct_learners)) # 3. Fuzzy matching fuzzy_path = path + platform + "/fuzzy_matching" fuzzy_file = open(fuzzy_path, "r") lines = fuzzy_file.readlines() for line in lines: array = line.replace("\n", "").split("\t") learner = array[0] login = array[1] if login != "": if learner in edx_learners_set: non_duplicate_matcher_set.add(learner) for course in edx_learners_map[learner]["courses"]: if course not in course_matcher_map.keys(): course_matcher_map[course] = set() course_matcher_map[course].add(learner) # Output analysis results count_course_learner_map = {} for course in course_learners_map.keys(): count_course_learner_map[course] = len(course_learners_map[course]) sorted_count_course_learner_map = sorted(count_course_learner_map.items(), key=lambda d:d[1], reverse=True) for record in sorted_count_course_learner_map: print str(record[0]) + "\t" + str(record[1]) + "\t" + str(len(course_matcher_map[str(record[0])])) #print str(len(course_matcher_map[str(record[0])])) print print "# non-duplicate matchers is:\t" + str(len(non_duplicate_matcher_set)) path = "/Volumes/NETAC/LinkingEdX/" platform = "github" AnalyzeMatchingResults(platform, path) print "Finished."
[ "angus.glchen@gmail.com" ]
angus.glchen@gmail.com
f395f4805a0ad8c28e263e034dae773ae4706e8a
45fc78cb3bcd75985aa607d8092a33df6e8f9ec9
/chain/wenchain/core/blockchain.py
c09a37fe7aa910427713e5c615acce57cf4eb5ca
[]
no_license
kafana/thinkering
34d94d38f82c773ed104e90aede6b6c0aeae620f
3e86f4e96b1336c59ab7b4373203819fe35d2860
refs/heads/master
2020-04-08T17:18:38.720642
2018-11-29T00:29:23
2018-11-29T00:29:23
159,561,362
0
0
null
null
null
null
UTF-8
Python
false
false
2,313
py
import logging from copy import deepcopy from wenchain.core.block import Block logger = logging.getLogger(__name__) class BlockChain(object): def __init__(self, chain=None): self.chain = chain if chain != None else [Block.genesis()] def __repr__(self): return "<BlockChain(chain=%r)>" % ( self.chain) def __eq__(self, other): if not isinstance(other, BlockChain): return False for i in range(len(self.chain)): if self.chain[i] != other.chain[i]: return False return True def __hash__(self): return hash(tuple([block.hash for block in self.chain])) def __copy__(self): return type(self)(self.chain) # The ids param is a dict of id's to copies # memoization avoids recursion def __deepcopy__(self, ids): self_id = id(self) item = ids.get(self_id) if item is None: item = type(self)(deepcopy(self.chain, ids)) ids[self_id] = item return item def append_block(self, data): previous_block = self.chain[-1] block = Block.mine(previous_block, data) self.chain.append(block) return block def replace_chain(self, block_chain): if len(block_chain.chain) <= len(self.chain): return False if not self.is_valid(block_chain): return False self.chain = deepcopy(block_chain.chain) return True def is_valid(self, block_chain): # Compare existing chain with new chain for i in range(0, len(self.chain)): if (self.chain[i].hash != block_chain.chain[i].hash or self.chain[i].prev_hash != block_chain.chain[i].prev_hash): return False # Check additional blocks of the new chain for j in range(i, len(block_chain.chain)): prev_block = block_chain.chain[i - 1] block = block_chain.chain[i] if prev_block.hash != block.prev_hash or Block.create_block_hash(block) != block.hash: return False if not block.is_reward_transaction_valid(j): logger.error('Invalid reward transaction for block {}'.format(block.hash)) return False return True
[ "boris@kafana.org" ]
boris@kafana.org
04dedfe9530ed9fec39b8883ebf4fab7b8e969bf
2c681979985efbb4975392ac8007a6fbb18eb1f5
/school/urls.py
fcab2a6c4e9e330a8860afa25acb8096d4a13d2a
[ "MIT" ]
permissive
gulgis/school-b
36420e665e5b1a8a91a754fa5f58005a0b678981
8934e0e86b633f5d8c9f6b62cb7549e1203f9ab5
refs/heads/main
2023-04-19T19:46:10.900719
2021-05-11T17:49:59
2021-05-11T17:49:59
358,216,904
0
0
null
null
null
null
UTF-8
Python
false
false
971
py
"""school URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from rest_framework.authtoken import views urlpatterns = [ path("admin/", admin.site.urls), path("api/", include("lab.api.urls")), re_path(r"^api-auth/", include("rest_framework.urls")), re_path(r"^api-token-auth/", views.obtain_auth_token), ]
[ "gulgielmin.w@gmail.com" ]
gulgielmin.w@gmail.com
9821ea5fb99ed26dc73ef8207eacbceddf9083a6
e38f164ea225dc847644943f18999a21a625e65b
/dechat/__init__.py
e68dde0bf70571f11cafce4e4ea66662b259617d
[ "MIT" ]
permissive
robobrobro/dechat
1f7f011b5dc8aff8bbbdccedbc89143b4b9c8f84
e15f4efa24088ff71c332e6ad4638d416e778bf1
refs/heads/master
2021-01-10T05:15:37.446772
2016-03-30T03:21:54
2016-03-30T03:21:54
54,782,007
1
0
null
null
null
null
UTF-8
Python
false
false
91
py
""" Dechat - Distributed, Encrypted CHAT client """ from . import errors, messaging, user
[ "foehawk@gmail.com" ]
foehawk@gmail.com
6a0cd5f14df5e5c8bb28dcf4c61e75d86dbfbeb9
58dc4859c3e754ff10abb50d8fe3360ec6a26f11
/logistic regression/LR_main.py
4d9ac9261c1f4bf90fd5a2e6491cd2df0482e7e3
[]
no_license
demeiyan/ml_project
f31ae453de9191c8956c64b2e7cfd05b27fe0acb
b78fa07c97b8513fd5a8fe4fd388708f1075c755
refs/heads/master
2021-07-10T20:21:01.668138
2019-04-25T13:13:02
2019-04-25T13:13:02
109,544,194
0
0
null
null
null
null
UTF-8
Python
false
false
8,199
py
# -*- coding: utf-8 -*- """ Created on 2018/4/14 20:39 @author: dmyan 使用二分类来实现多分类问题,OvR(一对其余) """ import numpy as np def train_valid_split(feature, label, valid_size=0.1): train_indices = [] valid_indices = [] for i in range(5): index = np.where(label == (i+1))[0] np.random.shuffle(index) rand = np.random.choice(index.shape[0], int(index.shape[0]*valid_size), replace=False) valid_indices.append(index[rand].tolist()) index = np.delete(index, rand) train_indices.append(index.tolist()) train_indices = [item for sublist in train_indices for item in sublist] valid_indices = [item for sublist in valid_indices for item in sublist] return feature[train_indices], label[train_indices], feature[valid_indices], label[valid_indices] def smote(x, y, cls, k): label_counts = [] for i in range(5): label_counts.append((y == (i+1)).sum()) all_samples = x.shape[0] label_sample = np.array([int(i == cls) for i in y]) n_samples = label_sample.sum() remian = all_samples - n_samples # print(n_samples, remian, sum(label_counts)) positive_sample = x[np.where(label_sample == 1)[0]] # print(positive_sample.shape) if n_samples > remian: sampling_rate = int(n_samples/remian) + 1 negative_indices = np.where(label_sample == 0)[0] np.random.shuffle(negative_indices) # print(negative_indices.shape[0]) distance_vector = np.zeros(negative_indices.shape[0]) negative_sample = np.zeros((negative_indices.shape[0]*sampling_rate, 11)) negative_count = 0 for i in range(negative_indices.shape[0]): for j in range(negative_indices.shape[0]): distance_vector[j] = np.linalg.norm(x[negative_indices[i]]-x[negative_indices[j]]) sampling_knn = distance_vector.argsort()[0:k] sampling_nn = np.random.choice(sampling_knn, sampling_rate, replace=False) for j in range(sampling_nn.shape[0]): for k in range(x.shape[1]): negative_sample[negative_count][k] = x[i][k] + np.random.rand()*(x[negative_indices[j]][k] - x[i][k]) negative_count += 1 # print(negative_sample[1000:3000]) synthetic_feature = np.concatenate((positive_sample, negative_sample), axis=0) synthetic_label = np.concatenate((label_sample, np.zeros(negative_sample.shape[0])), axis=0) return synthetic_feature, synthetic_label else: negative_sample = np.zeros(0) label_sample = np.ones(positive_sample.shape[0]) for i in range(5): rand = np.random.choice(np.where(y == (i+1))[0], int(label_counts[i]*n_samples/all_samples), replace=False) if i == 0: negative_sample = x[rand] else: negative_sample = np.append(negative_sample, x[rand], axis=0) negative_sample = np.array(negative_sample) synthetic_feature = np.concatenate((positive_sample, negative_sample), axis=0) synthetic_label = np.concatenate((label_sample, np.zeros(negative_sample.shape[0])), axis=0) # print(synthetic_feature, synthetic_label) return synthetic_feature, synthetic_label # return synthetic_feature, synthetic_label def sigmoid(belta, x): try: return np.exp(np.dot(belta, x))/(1+np.exp(np.dot(belta, x))) except Exception as insit: print(insit) print(belta, x, np.dot(belta, x)) def convertdata(feature, label): x = [] y = [] with open('./assign2_dataset/'+feature, 'r') as f: for line in f.readlines(): if len(line.strip()) > 0: x.append([float(x) for x in line.strip().split(' ')]) x = np.array(x) with open('./assign2_dataset/'+label, 'r') as f: for line in f.readlines(): y.append([float(x) for x in line.strip().split(' ')]) y = np.array(y) return x, y def binary_classification(x, y, one, belta, learn_rate): y = np.array([int(i == one) for i in y]) der = sigmoid(belta, x.T) - y # sigmoid(belta, x.T) - y der = np.reshape(der, (y.shape[0], 1)) der = np.sum(x*der, axis=0) belta = belta - learn_rate*der return belta if __name__ == '__main__': min_batch = 64 learn_rate = 0.01 validation_size = 0.1 x_train, label_train = convertdata('page_blocks_train_feature.txt', 'page_blocks_train_label.txt') x_test, label_test = convertdata('page_blocks_test_feature.txt', 'page_blocks_test_label.txt') # 归一化,对特征的每一个维度计算x = (x-mean)/std 归一化到正态分布 std = x_train.std(axis=0) mean = x_train.mean(axis=0) x_train = (x_train - mean)/std x_test = (x_test - mean)/std x_train = np.concatenate((x_train, np.ones((1, x_train.shape[0])).T), axis=1) x_test = np.concatenate((x_test, np.ones((1, x_test.shape[0])).T), axis=1) label_train = np.array([int(x) for x in label_train]) label_test = np.array([int(x) for x in label_test]) # split data to train_data and valid_data x_train, label_train, x_valid, label_valid = train_valid_split(x_train, label_train, 0.1) datasize = label_train.shape[0] belta = np.zeros((5, 11)) #belta[0] = binary_classification(x_train[0 * min_batch:(0 + 1) * min_batch], label_train[0 * min_batch:(0 + 1) * min_batch], 1, belta[0], learn_rate) # for epoch in range(100): # print(belta[0]) # for i in range(int(datasize/min_batch)): # belta[0] = binaryclassification(x_train[i*min_batch:(i+1)*min_batch], label_train[i*min_batch:(i+1)*min_batch], 5, belta[0], learn_rate) for i in range(5): # x_train, label_train = # x, y = smote(x_train, label_train, i+1, 15) # print(x,y) for epoch in range(1000): for j in range(int(datasize/min_batch)): belta[i] = binary_classification(x_train[j*min_batch:(j+1)*min_batch], label_train[j*min_batch:(j+1)*min_batch], i+1, belta[i], learn_rate) result = np.where(sigmoid(belta[i], x_train.T) >= 0.5)[0] label = np.where(label_train == (i+1))[0] count = 0 for index in result: if index in label: count += 1 loss = label.shape[0] - count print(str(i)+' loss :'+str(loss/label.shape[0])) # loss = (result != label_train).sum()/label_train.shape[0]*100 # 统计各类样本数目 # label_counts = [] # for i in range(5): # label_counts.append((label_train == (i+1)).sum()) # # print(sum(label_counts), label_counts) accuracy = sigmoid(belta, x_valid.T) # # 阈值飘移,再缩放(rescaling) # for i in range(accuracy.shape[0]): # accuracy[i] = accuracy[i] * ((sum(label_counts) - label_counts[i])/label_counts[i]) accuracy = np.argmax(accuracy, axis=0) + 1 print('precision : %.2f%%' % ((accuracy == label_valid).sum()/label_test.shape[0]*100)) # test label_predict = np.argmax(sigmoid(belta, x_test.T), axis=0) + 1 precision = [] recall = [] print('\t\tpredict\ttest\tcorrect') for i in range(5): predict = label_predict == (i+1) test = label_test == (i+1) predict_indices = [j for j, x in enumerate(label_predict) if x == (i+1)] test_indices = [j for j, x in enumerate(label_test) if x == (i+1)] correct = 0 for index in predict_indices: if index in test_indices: correct += 1 print(str(i+1)+' sample ' + str(predict.sum())+'\t'+str(test.sum())+'\t'+str(correct)) if predict.sum() != 0: precision.append(correct/predict.sum()*100) else: precision.append(0.0) recall.append(correct/test.sum()*100) accuracy = (label_predict == label_test).sum()/label_test.shape[0]*100 print('precision\t: %.2f%% %.2f%% %.2f%% %.2f%% %.2f%%' % (precision[0], precision[1], precision[2], precision[3], precision[4])) print('recall\t: %.2f%% %.2f%% %.2f%% %.2f%% %.2f%%' % (recall[0], recall[1], recall[2], recall[3], recall[4])) print('test result : %.2f%%' % accuracy)
[ "1312480794@qq.com" ]
1312480794@qq.com
844c27fc00fb9fd926028f0c00b3c89d861a3585
f78300d307d4067d5f0f920da5090749126a02d4
/tests/test_install_services.py
83e0a0eb8b1a0a905cb02ccf6d6212e085a9cce0
[ "MIT" ]
permissive
thomasjpfan/server_setup
910b022522c2da833875b31bd384308a8a0a532f
f8ade284a3039f05f6acd22aa4730aa69ffbf428
refs/heads/master
2021-09-23T20:56:12.684930
2018-09-27T15:19:52
2018-09-27T15:19:52
119,753,102
0
0
null
null
null
null
UTF-8
Python
false
false
495
py
import pytest testinfra_hosts = ['tests_api2_1', 'tests_api2_1'] services = [ 'fail2ban', 'ntp', 'unattended-upgrades', 'ufw' ] @pytest.mark.parametrize('service', services) def test_fail2ban_active(host, service): h_service = host.service(service) assert h_service.is_running assert h_service.is_enabled def test_swarm_is_active(host): cmd = "docker info -f '{{ .Swarm.LocalNodeState }}'" output = host.check_output(cmd) assert output == "active"
[ "thomasjpfan@gmail.com" ]
thomasjpfan@gmail.com
31ecfdd585ab0fa9cf8ad0e5a761816a7e63aefd
4d963892c71028bd793d4ad765d442627827e8f8
/afiniczne.py
8b50a0296bdac28ff99aec6b4295a62b5e244144
[]
no_license
pablitochmiel/przeksztalcenia_obrazow
a093a03447f5addb19d5de03eb860f47d0b22183
e408db94112d5620b89514d0f1455d2122102dc0
refs/heads/master
2022-12-03T21:01:34.570721
2020-09-01T09:42:17
2020-09-01T09:42:17
291,953,247
0
0
null
null
null
null
UTF-8
Python
false
false
1,341
py
from PIL import Image import numpy as np def afiniczne(imageName): im = Image.open(imageName) imarray=np.array(im) #af=[[1.2, 0],[0,0.6]] #af=[[0.707,-0.707],[0.707,0.707]] #af=[[1,8],[3,5]] af=[[1.2,-0.7],[1.3,0.4]] #outshape=(round(args[0]*imarray.shape[0]),round(args[1]*imarray.shape[1])) #outshape=imarray.shape wys=[0,round(imarray.shape[1]*af[0][1]),round(imarray.shape[0]*af[0][0]),round(imarray.shape[0]*af[0][0]+imarray.shape[1]*af[0][1])] szer=[0,round(imarray.shape[1]*af[1][1]),round(imarray.shape[0]*af[1][0]),round(imarray.shape[0]*af[1][0]+imarray.shape[1]*af[1][1])] outshape=(max(wys)-min(wys),max(szer)-min(szer)) det=float(af[0][0]*af[1][1]-af[0][1]*af[1][0]) if(det==0): print("nie mozna wykonac operacji") return afin=[[af[1][1]/det,-af[0][1]/det],[-af[1][0]/det,af[0][0]/det]] outarray=[] for i in range(outshape[0]): temp=[] for j in range(outshape[1]): x=round(imarray.shape[0]/2+(i-outshape[0]/2)*afin[0][0]+(j-outshape[1]/2)*afin[0][1]) y=round(imarray.shape[1]/2+(i-outshape[0]/2)*afin[1][0]+(j-outshape[1]/2)*afin[1][1]) if(x>=imarray.shape[0] or x<0 or y>=imarray.shape[1] or y<0): temp.append(np.zeros_like(imarray[0,0])) else: temp.append(imarray[x,y]) outarray.append(temp) outarray=np.array(outarray) wynik=Image.fromarray(outarray) wynik.save("wynik.tif")
[ "pawcio27610@wp.pl" ]
pawcio27610@wp.pl
bde004baf17ae9f877abce01ec4a6dc7a4aaef01
5056daf2cfdcc305099605d14856fcdecd9ac3f9
/apps/login/urls.py
008d11eb28c06720b63f2ddf2cfba50e76723ecb
[]
no_license
Choapinus/django-web
1bfdbdc19fa2e29c71437f7f1845879f4c9225d8
afcdd49a0c29b36cb75601b2e880db78d8fb7971
refs/heads/master
2020-03-11T11:33:38.237866
2018-06-01T06:02:56
2018-06-01T06:02:56
129,972,671
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
from django.urls import path from apps.login import views from django.conf import settings urlpatterns = [ path('', views.login_auth, name='login'), path('logout', views.logout_auth, name='logout'), path('index', views.index, name='index'), ]
[ "wxtem@hotmail.com" ]
wxtem@hotmail.com
a1762b7d73a2f97e2da4a50a41c73f759987c0fb
05a793cc2933a16199d0e82f1569c5518c5786a4
/class2/class3.py
52db27930fd8bc013f9a904f00b6ef50be7024cc
[]
no_license
hsnylmzz/Python-Learning
6cd69d793617df1877a110f2bef74fdb71483b9f
88db218478b633878c8a46da95097d87b6051e31
refs/heads/master
2023-03-21T17:47:10.549945
2023-03-13T11:04:37
2023-03-13T11:04:37
198,965,665
1
0
null
null
null
null
UTF-8
Python
false
false
320
py
class Sınıf(): sınıf_niteliği = 0 def __init__(self, veri): self.veri = veri def örnek_metodu(self): return self.veri @classmethod def sınıf_metodu(cls): return cls.sınıf_niteliği @staticmethod def statik_metot(): print('merhaba statik metot!')
[ "noreply@github.com" ]
hsnylmzz.noreply@github.com
24cc6db0fbe2cd2487c78f9d4ce7236b60d01f12
b656c527a0a6bcb8df45512e202d1607fe33638e
/migrations/versions/0079_update_rates.py
4699e99b696d8b578ae43695903e1c80bc50b35a
[ "MIT" ]
permissive
alphagov/notifications-api
fb6d0b6b952f0e2e8c98776be9adf836cce85c54
b4c5be42583ef6d6cd004e8c24acaf810d86f65c
refs/heads/main
2023-09-01T08:58:52.353509
2023-08-31T15:00:31
2023-08-31T15:00:31
46,422,101
61
33
MIT
2023-09-14T14:18:19
2015-11-18T13:57:17
Python
UTF-8
Python
false
false
706
py
"""empty message Revision ID: 0079_update_rates Revises: 0078_sent_notification_status Create Date: 2017-05-03 12:31:20.731069 """ # revision identifiers, used by Alembic. revision = "0079_update_rates" down_revision = "0078_sent_notification_status" from alembic import op def upgrade(): op.get_bind() op.execute("UPDATE RATES SET rate = 0.0158 WHERE valid_from = '2017-04-01 00:00:00'") op.execute("UPDATE RATES SET rate = 0.0165 WHERE valid_from = '2016-05-18 00:00:00'") def downgrade(): op.get_bind() op.execute("UPDATE RATES SET rate = 1.58 WHERE valid_from = '2017-04-01 00:00:00'") op.execute("UPDATE RATES SET rate = 1.65 WHERE valid_from = '2016-05-18 00:00:00'")
[ "ken.tsang@digital.cabinet-office.gov.uk" ]
ken.tsang@digital.cabinet-office.gov.uk
dfd51bc9c4f3faafaf0d818311a06a8b7c1cf0a2
2dd9b049e4a2d933fba4114fad70411ba8e25935
/test/test_event_ranking.py
5b1cec56a42bca393509950a63f6f48eeab99bd5
[]
no_license
MHuguenard/tba-api-client-python
c58ab4f90f3820dd33e5231bd9a5b51fcb28f6f7
7bb6e254fad793ba6204279b5d45fb94266b9860
refs/heads/master
2020-04-30T16:39:07.317247
2019-03-05T20:27:18
2019-03-05T20:27:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,362
py
# coding: utf-8 """ The Blue Alliance API v3 # Overview Information and statistics about FIRST Robotics Competition teams and events. If you are looking for the old version (v2) of the API, documentation can be found [here](/apidocs/v2). # Authentication All endpoints require an Auth Key to be passed in the header `X-TBA-Auth-Key`. If you do not have an auth key yet, you can obtain one from your [Account Page](/account). A `User-Agent` header may need to be set to prevent a 403 Unauthorized error. OpenAPI spec version: 3.0.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import net.thefletcher.tbaapi.v3client from net.thefletcher.tbaapi.v3client.rest import ApiException from net.thefletcher.tbaapi.v3client.models.event_ranking import EventRanking class TestEventRanking(unittest.TestCase): """ EventRanking unit test stubs """ def setUp(self): pass def tearDown(self): pass def testEventRanking(self): """ Test EventRanking """ # FIXME: construct object with mandatory attributes with example values #model = net.thefletcher.tbaapi.v3client.models.event_ranking.EventRanking() pass if __name__ == '__main__': unittest.main()
[ "travis@example.org" ]
travis@example.org
7e307696364fca18ac96a5230d2d0461f29568c3
ee79e734486c0ca550bb8238ef54c78c7727384a
/Tools/codetesters/pytesters/extenddict.py
bc0142de5cb40a36fc350c885c900cf1a0cfc625
[]
no_license
neilrobertson/BICRCode
212636e5395f0c0e4dfb3ac3c133f01eb07273ee
7b3f4da9cdefd7680f07b707339aee59faece1d2
refs/heads/master
2020-03-30T16:07:22.637571
2018-10-03T10:12:57
2018-10-03T10:12:57
151,394,096
0
0
null
null
null
null
UTF-8
Python
false
false
121
py
#!/usr/bin/env python class Wrapper(dict): def __init__(self): pass w = Wrapper() w["hello"] = 3 print w["hello"]
[ "neil.alistair.robertson@hotmail.co.uk" ]
neil.alistair.robertson@hotmail.co.uk
14e56fd0a985b0a85eabcc994807d20c19d0b5d0
e97b602d47b736305ec0912b442d232d94e5dc57
/hw1/1_2_1/pic_layer2_weight.py
bb2e02cebe70fbfbee3181b0ee9977e84b1ab6ef
[]
no_license
piepie01/MLDS2018SPRING
787cb3a49b8df7a93d1ea06fe5bf50d2cecec436
894877cdee77f8480c4b4f21da8cda2faf59c184
refs/heads/master
2022-01-26T05:36:44.379213
2018-07-06T08:57:59
2018-07-06T08:57:59
125,801,065
0
0
null
null
null
null
UTF-8
Python
false
false
1,761
py
import matplotlib.pyplot as plt import numpy as np def get(filename): one = [] two = [] with open(filename,'r') as f: li = f.read().split('\n')[:-1] for i in range(len(li)): li[i] = li[i].split() for i in li[::87]: one.append(i[0]) two.append(i[1]) return [np.array(one).astype(float),np.array(two).astype(float)] def get_acc(filename): one = [] with open(filename,'r') as f: li = f.read().split('\n')[:-1] for i in li[::87]: i = format(float(i), '.2f') one.append(i) return np.array(one).astype(float) data = [] for i in range(8): tmp = get('weight/layer_'+str(i)) data.append(tmp) acc = [] for i in range(8): tmp = get_acc('loss/'+str(i)) acc.append(tmp) plt.figure() plt.title('Weight') #plt.xlabel('Epoch_num') #plt.ylabel('loss') size = 2 color_list = ['black','red','green','yellow','orange','pink','blue','purple'] plt.plot(data[0][0], data[0][1],color = 'black') plt.plot(data[1][0], data[1][1],color = 'red') plt.plot(data[2][0], data[2][1],color = 'green') plt.plot(data[3][0], data[3][1],color = 'yellow') plt.plot(data[4][0], data[4][1],color = 'orange') plt.plot(data[5][0], data[5][1],color = 'pink') plt.plot(data[6][0], data[6][1],color = 'blue') plt.plot(data[7][0], data[7][1],color = 'purple') for i in range(8): for j,txt in enumerate(acc[i]): plt.annotate(txt,(data[i][0][j],data[i][1][j]),color = color_list[i],size = 7) #plt.scatter(data[6][0], data[6][1],color = 'blue',s = size) #plt.scatter(data[7][0], data[7][1],color = 'purple',s = size) #plt.plot(index, deep, color='red',label = 'deep') #plt.plot(index, medium, color='yellow',label = 'medium') plt.legend() plt.show()
[ "b05902031@ntu.edu.tw" ]
b05902031@ntu.edu.tw
fca403463fb91a34133991efbe312ab97a153f30
9c3bb98eb9d0a587a302bdfa811f7b5c6a5a0a37
/Week 08/id_510/dp/Leetcode_198_510.py
991d26ca177b0445b9c7160727d2b58aca96467d
[]
permissive
chenlei65368/algorithm004-05
842db9d9017556656aef0eeb6611eec3991f6c90
60e9ef1051a1d0441ab1c5484a51ab77a306bf5b
refs/heads/master
2020-08-07T23:09:30.548805
2019-12-17T10:48:22
2019-12-17T10:48:22
213,617,423
1
0
Apache-2.0
2019-12-17T10:48:24
2019-10-08T10:50:41
Java
UTF-8
Python
false
false
1,104
py
""" 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。 示例 1: 输入: [1,2,3,1] 输出: 4 解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。   偷窃到的最高金额 = 1 + 3 = 4 。 示例 2: 输入: [2,7,9,3,1] 输出: 12 解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。   偷窃到的最高金额 = 2 + 9 + 1 = 12 。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/house-robber 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 """ from typing import List class Solution: def rob(self, nums: List[int]) -> int: pass
[ "changyg@shpso.com" ]
changyg@shpso.com
95516f957bdc1e3fb2432098dcbeb87da1ada279
654ad266ea5a25c6dac9b5ca925049c2c821993d
/test/imputation/cs/test_fast_knn.py
eb6530d3bf1363c5734dd6d295f43695b5782efb
[ "MIT" ]
permissive
tahmidmehdi/impyute
71acdb450371599e788022db75f459e4c4b9abc4
232497d53c68f47c3ed600b3de4a386cb6d4f2f3
refs/heads/master
2020-06-21T09:19:03.910183
2019-07-17T14:34:37
2019-07-17T14:34:37
197,405,979
0
0
MIT
2019-07-17T14:31:08
2019-07-17T14:31:07
null
UTF-8
Python
false
false
1,977
py
"""test_fast_knn.py""" import unittest import numpy as np import impyute as impy import functools # pylint:disable=invalid-name class TestFastKNN(unittest.TestCase): """ Tests for Fast KNN """ def setUp(self): """ self.data_c: Complete dataset/No missing values self.data_m: Incommplete dataset/Has missing values """ n = 100 self.data_c = np.random.normal(size=n*n).reshape((n, n)) self.data_m = self.data_c.copy() for _ in range(int(n*0.3*n)): self.data_m[np.random.randint(n)][np.random.randint(n)] = np.nan def test_return_type(self): """ Check return type, should return an np.ndarray""" imputed = impy.fast_knn(self.data_m) self.assertTrue(isinstance(imputed, np.ndarray)) def test_impute_missing_values(self): """ After imputation, no NaN's should exist""" imputed = impy.fast_knn(self.data_m) self.assertFalse(np.isnan(imputed).any()) def test_impute_value(self): data = np.array([[ 0. , 1. , np.nan, 3. , 4. ], [ 5. , 6. , 7. , 8. , 9. ], [10. , 11. , 12. , 13. , 14. ], [15. , 16. , 17. , 18. , 19. ], [20. , 21. , 22. , 23. , 24. ]]) imputed = impy.fast_knn(data, k=2) assert np.isclose(imputed[0][2], 8.38888888888889) def test_impute_value_custom_idw(self): data = np.array([[ 0. , 1. , np.nan, 3. , 4. ], [ 5. , 6. , 7. , 8. , 9. ], [10. , 11. , 12. , 13. , 14. ], [15. , 16. , 17. , 18. , 19. ], [20. , 21. , 22. , 23. , 24. ]]) idw = functools.partial(impy.util.inverse_distance_weighting.shepards, power=1) imputed = impy.fast_knn(data, k=2, idw=idw) assert np.isclose(imputed[0][2], 8.913911092686593) if __name__ == "__main__": unittest.main()
[ "eltonlaw296@gmail.com" ]
eltonlaw296@gmail.com
dbae08d5e4dfdf8ffa55d7bef5a5f46151ee7ecc
aaabcb0d8291f883d5ad7071defe0b491b4900f5
/learn-python-for-data-science-1/challenge.py
efdc3a69c4821c05d7db3262a4d4801bf2189544
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
jlcanela/learn-data
4ad26808a43c25a8479ee63b2784aee2303ed910
536b4f3b8083979e5552241545fcf2eb04bc2e3a
refs/heads/master
2021-01-23T04:19:24.311642
2017-06-02T23:29:59
2017-06-02T23:29:59
92,924,498
0
0
null
null
null
null
UTF-8
Python
false
false
932
py
from sklearn import tree from sklearn import svm from sklearn import neighbors from sklearn import discriminant_analysis from sklearn import linear_model dt = tree.DecisionTreeClassifier() # CHALLENGE - create 3 more classifiers... # 1 lsvc = svm.LinearSVC() # 2 kn = neighbors.KNeighborsClassifier(3) # 3 svc = svm.SVC() classifiers = [ dt, lsvc, kn, svc ] # [height, weight, shoe_size] X = [[181, 80, 44], [177, 70, 43], [160, 60, 38], [154, 54, 37], [166, 65, 40], [190, 90, 47], [175, 64, 39], [177, 70, 40], [159, 55, 37], [171, 75, 42], [181, 85, 43]] male = 'male' female = 'female' Y = [male, male, female, female, male, male, female, female, female, male, male] # CHALLENGE - ...and train them on our data for clf in classifiers: clf = clf.fit(X, Y) prediction = clf.predict([[190, 70, 43]]) print("%s %s" % (clf, prediction)) # CHALLENGE compare their results and print the best one!
[ "jlcanelam@gmail.com" ]
jlcanelam@gmail.com
fb76ffe9aa7296483ceb8d68d649e56a75ff2800
8eb8b77be9700e24375c6dfe3a80cfef271afcbb
/plugins/urls/config.py
bfccdee8188c03c16cc64bc92a70fd68feb6863a
[]
no_license
shakatakshak/Cardinal
fd25cfae92c302df8385abf93e79274ab3448ab0
0fbfe0f958710a0f6a35d1e71cd65e1e5e079f4a
refs/heads/master
2021-01-18T19:00:46.530798
2013-08-03T21:08:51
2013-08-03T21:08:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,400
py
# Copyright (c) 2013 John Maguire <john@leftforliving.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # This is time (in seconds) to attempt to load a website to get its title # before giving up. (default: 10) TIMEOUT = 10 # This is the number of bytes to read before giving up on finding a title tag # on the page. (default: 512KB (512 * 1024)) READ_BYTES = 512 * 1024
[ "john@leftforliving.com" ]
john@leftforliving.com
4da584c743d156c0b4418955d2e1bacb77be7788
77a65099e331558249e07d5d33e16c54f00dd528
/keystrokeserver.py
5e6502c5b6966473e01a0f55ad80b1e42bd74094
[]
no_license
windsurfer7563/keystroke-dynamics
ca69fe0d2c0689a7a78473f0f74775b432679f9b
8bc7587901f95766771cb5be3db363aefec8e691
refs/heads/master
2021-04-29T08:35:53.498496
2017-02-03T11:43:57
2017-02-03T11:43:57
77,672,684
0
0
null
null
null
null
UTF-8
Python
false
false
1,636
py
import socketserver import pickle import os import socket import anomalydetector class MyTCPHandler(socketserver.BaseRequestHandler): """ The RequestHandler class for our server. It is instantiated once per connection to the server, and must override the handle() method to implement communication to the client. """ def handle(self): # self.request is the TCP socket connected to the client self.data = self.request.recv(1024).strip() print("{} wrote:".format(self.client_address[0])) received_obj=pickle.loads(self.data) print(received_obj['user']) userFilePath = (os.path.join(os.path.dirname(os.path.abspath(__file__)), "accounts", received_obj['user'] + '_' + 'NN'+'.dat')) #print(userFilePath) try: ad=pickle.load(open(userFilePath,"rb")) except BaseException as e: print("error threw a {}".format(type(e).__name__)) raise # Reraise the exception send_obj = (True, 0, 0) self.request.sendall(pickle.dumps(send_obj)) return predict, dist, tresh = ad.predict(received_obj['data']) self.request.sendall(pickle.dumps((predict, dist, tresh))) if __name__ == "__main__": HOST, PORT = '', 9999 #HOST, PORT = socket.gethostname(), 9999 # Create the server, binding to localhost on port 9999 server = socketserver.TCPServer((HOST, PORT), MyTCPHandler) print("Server started at {}".format(HOST)) # Activate the server; this will keep running until you # interrupt the program with Ctrl-C server.serve_forever()
[ "C:\\Users\\igor.GAZINTEK2\\AppData\\Roaming\\The Bat!" ]
C:\Users\igor.GAZINTEK2\AppData\Roaming\The Bat!
682505d45eedaaef73966e002fd5a321e091d57e
ec390da9ff15cb2114e16742b6cad780732913b5
/iter2/47.py
f9a2f61857dd6c414bb53e2b7ef2d30a08821e9b
[]
no_license
xiaomi388/LeetCode
6107487537eeb1ac6128955cd30868985d1509ea
877d0fbccc684e4fd7fee2aca63d2656f71a0241
refs/heads/master
2021-09-26T19:52:34.207507
2021-09-17T20:32:53
2021-09-17T20:32:53
241,884,416
1
0
null
null
null
null
UTF-8
Python
false
false
507
py
class Solution: def permuteUnique(self, nums: List[int]) -> List[List[int]]: ans = set() def dfs(picked, left): if not left: ans.add(tuple(picked)) return for i in range(len(left)): # optimization if i > 0 and left[i-1] == left[i]: continue dfs(picked + [left[i]], left[:i]+left[i+1:]) # optimization nums.sort() dfs(list(), nums) return list(ans)
[ "xiaomi388@gmail.com" ]
xiaomi388@gmail.com
bb308552da3533c0e8de09b41a365499058f8a9e
acbf6fcea93fdf22766485d00bebec98bc7d6e5a
/tensorflow-test/3/breakpoint/mnist_test.py
4069a5181035972052eff9b38436196d05ed62c6
[]
no_license
lei977/data-analysis-python
27c25c81c21979a4b08acca03f66e3c7ca70122b
3b791ec4208c5d07164186a8245f7f4f9a2c031b
refs/heads/master
2020-05-19T06:09:01.800677
2019-05-31T10:33:12
2019-05-31T10:33:12
184,867,402
0
0
null
null
null
null
UTF-8
Python
false
false
1,614
py
# coding:utf-8 import time import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import mnist_forward import mnist_backward TEST_INTERVAL_SECS = 5 def test(mnist): with tf.Graph().as_default() as g: x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE]) y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE]) y = mnist_forward.forward(x, None) ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY) ema_restore = ema.variables_to_restore() saver = tf.train.Saver(ema_restore) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) while True: with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}) print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(TEST_INTERVAL_SECS) def main(): mnist = input_data.read_data_sets("./data/", one_hot=True) test(mnist) if __name__ == '__main__': main()
[ "lei977@126.com" ]
lei977@126.com
8ffc26e790e5436df5df70093011d373aa671134
52b5fa23f79d76883728d8de0bfd202c741e9c43
/kubernetes/test/test_v1_api_resource_list.py
909eb7aeccdbff10b21dbb0c80e6a7a69b7fc2b8
[]
no_license
kippandrew/client-python-tornado
5d00810f57035825a84e37ff8fc89a7e79aed8da
d479dfeb348c5dd2e929327d800fe033b5b3b010
refs/heads/master
2021-09-04T13:01:28.275677
2018-01-18T23:27:34
2018-01-18T23:27:34
114,912,995
0
0
null
null
null
null
UTF-8
Python
false
false
973
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v1.8.6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import kubernetes.client from kubernetes.client.models.v1_api_resource_list import V1APIResourceList # noqa: E501 from kubernetes.client.rest import ApiException class TestV1APIResourceList(unittest.TestCase): """V1APIResourceList unit test stubs""" def setUp(self): pass def tearDown(self): pass def testV1APIResourceList(self): """Test V1APIResourceList""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes.client.models.v1_api_resource_list.V1APIResourceList() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "andy@rstudio.com" ]
andy@rstudio.com
b3cc281de2255b939278dd9a1f211d27dc305aa8
53b57b50c2bc250b6c27c5c3e761602d5442d3f8
/sLines.py
972f62de706a561f6623807946838e4c1b8f01eb
[]
no_license
kinglei/p2013
472b4eeaa4c86b133b05eefccf0ed9c4931d7ffb
2c9a0d18c2e57fcc9e34dddc4aa7dfb0a8f1904c
refs/heads/master
2021-01-10T19:14:27.297989
2013-04-08T07:24:26
2013-04-08T07:24:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
172
py
#!/usr/bin/python import os fname = raw_input("Please input the file name: ") fobj = open(fname) num = 0 for i in fobj.readlines(): num += 1 print num fobj.close()
[ "jinxl560@gmail.com" ]
jinxl560@gmail.com
65dc7ec333538a8de51915b9e91952e5cce61970
c5f58af61e3577ded52acda210f4f664651b598c
/template/mmdetection/configs/cascade_rcnn/cascade_mask_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
0629f83a9a90edf8fc14db487241333766d4e02a
[ "Apache-2.0", "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
hojihun5516/object-detection-level2-cv-02
0a4ee5cea9a77ef5d43fb61a4b37fe3a87cb0eac
bc8a08286935b31b8e7e597c4b1ca2cbbaeb9109
refs/heads/master
2023-08-31T09:50:59.150971
2021-10-16T15:00:19
2021-10-16T15:00:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,584
py
_base_ = ["./cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py"] model = dict( backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style="caffe", init_cfg=dict(type="Pretrained", checkpoint="open-mmlab://detectron2/resnet50_caffe"), ) ) # use caffe img_norm img_norm_cfg = dict(mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) # In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)], # multiscale_mode='range' train_pipeline = [ dict(type="LoadImageFromFile"), dict(type="LoadAnnotations", with_bbox=True, with_mask=True), dict(type="Resize", img_scale=[(1333, 640), (1333, 800)], multiscale_mode="range", keep_ratio=True), dict(type="RandomFlip", flip_ratio=0.5), dict(type="Normalize", **img_norm_cfg), dict(type="Pad", size_divisor=32), dict(type="DefaultFormatBundle"), dict(type="Collect", keys=["img", "gt_bboxes", "gt_labels", "gt_masks"]), ] test_pipeline = [ dict(type="LoadImageFromFile"), dict( type="MultiScaleFlipAug", img_scale=(1333, 800), flip=False, transforms=[ dict(type="Resize", keep_ratio=True), dict(type="RandomFlip"), dict(type="Normalize", **img_norm_cfg), dict(type="Pad", size_divisor=32), dict(type="ImageToTensor", keys=["img"]), dict(type="Collect", keys=["img"]), ], ), ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline), )
[ "hojihun5516@daum.net" ]
hojihun5516@daum.net
1adc1f9d82a9be7148a086a1ab937fc2f4098c34
2acfde78f24576c8420d8cfd7eebc1681c287b34
/tfx/experimental/templates/penguin/e2e_tests/local_e2e_test.py
8b4725c055f4d502534d0ca9ba579c09292baf07
[ "Apache-2.0" ]
permissive
hsahovic/tfx
7f29f16a7cc59bfb41744291887ccc69ef668521
5d4448c03d408c24bf77b84bd4da3973f2389d9b
refs/heads/master
2023-03-11T12:34:07.185893
2021-03-03T06:39:30
2021-03-03T06:40:24
344,190,366
0
0
Apache-2.0
2021-03-03T16:33:20
2021-03-03T16:27:11
null
UTF-8
Python
false
false
3,627
py
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """E2E test using local orchestrator for penguin template.""" import os import subprocess import sys import unittest from absl import logging import tensorflow as tf from tfx.experimental.templates import test_utils @unittest.skipIf(tf.__version__ < '2', 'Uses keras Model only compatible with TF 2.x') class PenguinTemplateLocalEndToEndTest(test_utils.BaseEndToEndTest): """This test runs all components in the template.""" def setUp(self): super().setUp() self._pipeline_name = 'PENGUIN_TEMPLATE_E2E_TEST' def _getAllUnitTests(self): for root, _, files in os.walk(self._project_dir): base_dir = os.path.relpath(root, self._project_dir) if base_dir == '.': # project_dir == root base_module = '' else: base_module = base_dir.replace(os.path.sep, '.') + '.' for filename in files: if filename.endswith('_test.py'): yield base_module + filename[:-3] def testGeneratedUnitTests(self): self._copyTemplate('penguin') for m in self._getAllUnitTests(): logging.info('Running unit test "%s"', m) # A failed googletest will raise a CalledProcessError. _ = subprocess.check_output([sys.executable, '-m', m]) def testLocalPipeline(self): self._copyTemplate('penguin') os.environ['LOCAL_HOME'] = os.path.join(self._temp_dir, 'local') # Create a pipeline with only initial components. result = self._runCli([ 'pipeline', 'create', '--engine', 'local', '--pipeline_path', 'local_runner.py', ]) self.assertEqual(0, result.exit_code) self.assertIn( 'Pipeline "{}" created successfully.'.format(self._pipeline_name), result.output) # Run the pipeline. result = self._runCli([ 'run', 'create', '--engine', 'local', '--pipeline_name', self._pipeline_name, ]) self.assertEqual(0, result.exit_code) # Update the pipeline to include all components. updated_pipeline_file = self._addAllComponents() logging.info('Updated %s to add all components to the pipeline.', updated_pipeline_file) # Lowers required threshold to make tests stable. self._replaceFileContent( os.path.join('pipeline', 'configs.py'), [ ('EVAL_ACCURACY_THRESHOLD = 0.6', 'EVAL_ACCURACY_THRESHOLD = 0.1'), ]) result = self._runCli([ 'pipeline', 'update', '--engine', 'local', '--pipeline_path', 'local_runner.py', ]) self.assertEqual(0, result.exit_code) self.assertIn( 'Pipeline "{}" updated successfully.'.format(self._pipeline_name), result.output) # Run the updated pipeline. result = self._runCli([ 'run', 'create', '--engine', 'local', '--pipeline_name', self._pipeline_name, ]) self.assertEqual(0, result.exit_code) if __name__ == '__main__': tf.test.main()
[ "tensorflow-extended-nonhuman@googlegroups.com" ]
tensorflow-extended-nonhuman@googlegroups.com
340498d21e1f3af49bbeebb7a5b6f871a8f9459f
1210704ac426c8f7f74b3a901f2fea2d22b59ad3
/agents/epsilon_greedy_decay.py
fa034c8ce7e7895a8c20024113d1e2735c90f015
[ "MIT" ]
permissive
a-pedram/kaggle-mab
3babfd6338b722ee0e0495289d5746cafb5eba7f
5d9d6d47541f6b71a5a886146928aa57a5c77591
refs/heads/main
2023-03-07T15:01:31.246270
2021-02-25T12:54:43
2021-02-25T12:54:43
342,224,228
0
0
null
null
null
null
UTF-8
Python
false
false
1,332
py
import math import random epsilon = 0.1 last_bandit = -1 total_reward = 0 sums_of_reward = None numbers_of_selections = None random.seed(42) def agent(observation, configuration): global sums_of_reward, numbers_of_selections, last_bandit, total_reward if observation.step == 0: numbers_of_selections = [0] * configuration.banditCount sums_of_reward = [0] * configuration.banditCount if last_bandit > -1: reward = observation.reward - total_reward sums_of_reward[last_bandit] += reward total_reward += reward if random.random() < epsilon: bandit = random.randint(0, configuration.banditCount-1) last_bandit = bandit else: bandit = 0 max_upper_bound = 0 for i in range(0, configuration.banditCount): if numbers_of_selections[i] > 0: decay = 0.97 ** numbers_of_selections[i] upper_bound = decay * sums_of_reward[i] / numbers_of_selections[i] else: upper_bound = 1e400 if upper_bound > max_upper_bound and last_bandit != i: max_upper_bound = upper_bound bandit = i last_bandit = bandit numbers_of_selections[bandit] += 1 if bandit is None: bandit = 0 return bandit
[ "mehdi.pedram@gmail.com" ]
mehdi.pedram@gmail.com
8f6173cbd4819d5e59480ff795d01c48baf38f4a
21b88cced289293123f987a4887c2eaaa1202248
/simplesocial/groups/views.py
d84637035e7a3a873784bf9ed0217311104b50d3
[]
no_license
Mehdierli/M78
0ae73f7aeced1f0d15dbfc7b18ad8f2053ec986b
76bb85c508aeb0dbe6af2f15806ae04060a41520
refs/heads/master
2020-04-03T23:16:33.581573
2018-10-31T21:35:14
2018-10-31T21:35:14
155,625,175
0
0
null
null
null
null
UTF-8
Python
false
false
2,291
py
from django.contrib import messages from django.contrib.auth.mixins import( LoginRequiredMixin, PermissionRequiredMixin ) from django.urls import reverse from django.db import IntegrityError from django.shortcuts import get_object_or_404 from django.views import generic from groups.models import Group,GroupMember from . import models class CreateGroup(LoginRequiredMixin, generic.CreateView): fields = ("name", "description") model = Group template_name='groups/group_form.html' class SingleGroup(generic.DetailView): model = Group template_name='groups/group_detail.html' class ListGroups(generic.ListView): model = Group template_name='groups/group_list.html' context_object_name='my_group_list' class JoinGroup(LoginRequiredMixin, generic.RedirectView): def get_redirect_url(self, *args, **kwargs): return reverse("groups:single",kwargs={"slug": self.kwargs.get("slug")}) def get(self, request, *args, **kwargs): group = get_object_or_404(Group,slug=self.kwargs.get("slug")) try: GroupMember.objects.create(user=self.request.user,group=group) except IntegrityError: messages.warning(self.request,("Warning, already a member of {}".format(group.name))) else: messages.success(self.request,"You are now a member of the {} group.".format(group.name)) return super().get(request, *args, **kwargs) class LeaveGroup(LoginRequiredMixin, generic.RedirectView): def get_redirect_url(self, *args, **kwargs): return reverse("groups:single",kwargs={"slug": self.kwargs.get("slug")}) def get(self, request, *args, **kwargs): try: membership = models.GroupMember.objects.filter( user=self.request.user, group__slug=self.kwargs.get("slug") ).get() except models.GroupMember.DoesNotExist: messages.warning( self.request, "You can't leave this group because you aren't in it." ) else: membership.delete() messages.success( self.request, "You have successfully left this group." ) return super().get(request, *args, **kwargs)
[ "miaoml0604@gmail.com" ]
miaoml0604@gmail.com
c94807dd2c5b920935a9be896f8e96eeabd9d7fd
c1af1454e3fbb839b5a760efb1d8eca66cee6281
/accounts/forms/__init__.py
630b020e59687209bd27dcd1dd370c0b192745cd
[ "MIT" ]
permissive
tavoxr/django-crm
d197b9bae2cc71fc515881f6d673515e68c12cae
d6ce34b8e8e93c3ae9853df34641868d4c891125
refs/heads/main
2023-06-20T02:07:17.883200
2021-07-16T19:16:10
2021-07-16T19:16:10
385,318,928
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
from .orderForm import * from .CreateUserForm import * from .customerForm import *
[ "tavoxr23@gmail.com" ]
tavoxr23@gmail.com
80cc1d7e56e131d41164abf18a9060f646c4b962
a8d1245601d5cb0b2e08ef54263486d1f9f6d64f
/exercises/12_useful_modules/task_12_3.py
57c00328043011f1ea6bed8e22541bacc381dcbc
[]
no_license
darkfait/first_repo
be3182babeb5945bce5c08c6dfa4480032f8106c
82655016d751da8110572d3359594a55ac6199cc
refs/heads/master
2023-02-07T21:49:02.398279
2020-11-06T16:43:15
2020-11-06T16:43:15
254,878,846
0
0
null
null
null
null
UTF-8
Python
false
false
1,314
py
# -*- coding: utf-8 -*- """ Задание 12.3 Создать функцию print_ip_table, которая отображает таблицу доступных и недоступных IP-адресов. Функция ожидает как аргументы два списка: * список доступных IP-адресов * список недоступных IP-адресов Результат работы функции - вывод на стандартный поток вывода таблицы вида: Reachable Unreachable ----------- ------------- 10.1.1.1 10.1.1.7 10.1.1.2 10.1.1.8 10.1.1.9 Функция не должна изменять списки, которые переданы ей как аргументы. То есть, до выполнения функции и после списки должны выглядеть одинаково. Для этого задания нет тестов """ from tabulate import tabulate def print_ip_table(reach_list, unreach_list): columns = ['Reachable','Unreachable'] print(tabulate([reach_list,unreach_list], headers = columns)) return reach_list, unreach_list if __name__ == "__main__": rea = ['1.1.1.1','2.2.2.2'] unrea = ['3.3.3.3'] print_ip_table(rea,unrea)
[ "fait-forever@mail.ru" ]
fait-forever@mail.ru
1af8417d6df914404094dc3dab175fc14aa8b7c4
13f5958c1dd2d1e356d09f6bed26cd221cd62443
/后端源码/bbb/crawler_script/dangdang/selling_24h_script.py
6becafe6c4bfae1def2be871668ef85423e4eccc
[]
no_license
13900/xiaodangdang
ffcd8bc9e534759635fb4187136c16a20356c558
dc03c636f8ba54c306d1ae93622075eab2efcbb0
refs/heads/main
2023-06-11T15:47:27.121600
2021-06-24T07:41:11
2021-06-24T07:41:11
379,776,973
1
0
null
null
null
null
UTF-8
Python
false
false
1,767
py
import requests from lxml import etree from fake_useragent import UserAgent import random class selling_24h(): STATUS = '' ITEMS = dict() @classmethod def get_24h(cls, ip, url): ua = UserAgent() list = random.choice(ip) proxy = {'https': 'https://' + list.ip_address + ':' + list.ip_port} header = {"user-agent": ua.random} req = requests.get(url, headers=header, proxies=proxy) if req.status_code != 200: return '当当网爬取失败' txt = etree.HTML(req.text) id_1 = txt.xpath("//li/div[1]/text()") book_name = txt.xpath("//div[2]/ul/li/div[3]/a/text()") img = txt.xpath("//div[@class='pic']/a/img/@src") comments_1 = txt.xpath("//div[@class='star']/a/text()") recommended_1 = txt.xpath("//div[@class='star']/span/text()") author = txt.xpath("//ul/li/div[5]/a[1]/text()") date = txt.xpath("//div[@class='publisher_info']/span/text()") publishing = txt.xpath("//div[@class='publisher_info'][2]/a/text()") price_1 = txt.xpath("//div[@class='price']/p/span[1]/text()") url = txt.xpath("//li/div[@class='name']/a/@href") id = [] price = [] comments = [] recommended = [] for i in range(len(id_1)): id.append(id_1[i].strip('.')) price.append((price_1[i].strip('¥'))) comments.append(comments_1[i].strip('条评论')) recommended.append(recommended_1[i].strip('推荐')) cls.ITEMS = { 'id': id, 'book_name': book_name, 'img': img, 'comments': comments, 'recommended': recommended, 'author': author, 'date': date, 'publishing': publishing, 'price': price, 'url': url }
[ "2877929996@qq.com" ]
2877929996@qq.com
1f47b4ee4cc0d1594aa057a3dc9d87a984854bf5
af38a64ba0908f6fff36760e8e2c6807991fb2db
/lesson_02/personal/chapter_6/04_item_count.py
e51209dc6823b35a615098c5a641c2e23be22d3a
[]
no_license
Vinod096/learn-python
badbeac9a27ee6c22c70a5a057837586cede0849
0017174e3dbeea19ca25aaa348e75b2b8203caef
refs/heads/master
2022-05-26T13:22:07.490484
2022-05-01T10:19:32
2022-05-01T10:19:32
244,166,014
1
0
null
2020-03-04T08:16:14
2020-03-01T14:41:23
Python
UTF-8
Python
false
false
478
py
#Assume that a file containing a series of names(as strings) is named names.txt and exists #on the computer’s disk. Write a program that displays the number of names that are stored #in the file. (Hint: Open the file and read every string stored in it. Use a variable to keep a count of the number of items that are read from the file.) count = 0 names = open("names.txt","r") count = names.readlines() number_of_items = len(count) print("number of items :",number_of_items)
[ "vinod.raipati@hotmail.com" ]
vinod.raipati@hotmail.com
a5143f9123a8801653f08638eea943ed82a91241
5330918e825f8d373d3907962ba28215182389c3
/SimCalorimetry/Configuration/python/SimCalorimetry_setPreshowerHighGain_cff.py
de04a1da84ceffd653cc68498795deba536dc861
[]
no_license
perrozzi/cmg-cmssw
31103a7179222c7aa94f65e83d090a5cf2748e27
1f4cfd936da3a6ca78f25959a41620925c4907ca
refs/heads/CMG_PAT_V5_18_from-CMSSW_5_3_22
2021-01-16T23:15:58.556441
2017-05-11T22:43:15
2017-05-11T22:43:15
13,272,641
1
0
null
2017-05-11T22:43:16
2013-10-02T14:05:21
C++
UTF-8
Python
false
false
488
py
import FWCore.ParameterSet.Config as cms def customise(process): process.simEcalPreshowerDigis.ESNoiseSigma = cms.untracked.double(6) process.simEcalPreshowerDigis.ESGain = cms.untracked.int32(2) process.simEcalPreshowerDigis.ESMIPADC = cms.untracked.double(55) process.simEcalUnsuppressedDigis.ESGain = cms.int32(2) process.simEcalUnsuppressedDigis.ESNoiseSigma = cms.double(6) process.simEcalUnsuppressedDigis.ESMIPADC = cms.double(55) return(process)
[ "sha1-3dce45789e317cc29a75783a879c7e618b062b82@cern.ch" ]
sha1-3dce45789e317cc29a75783a879c7e618b062b82@cern.ch
3d304f607994f08ea42670d2847673aa643f4557
97f65c398ee2330c754db86eab5c8ba734347ecc
/DeepGM/inception.py
d48e46e6dd4319871f8e3ea865f2d9540702b3ba
[ "MIT" ]
permissive
izzatum/BoMb-OT
025b2125577c2f81560f0b7b2be453577462904d
d5337a13c3396a2e521bf8797f360e94981babdb
refs/heads/master
2023-08-28T17:34:46.399114
2021-10-30T08:46:22
2021-10-30T08:46:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,678
py
import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models try: from torchvision.models.utils import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url # Inception weights ported to Pytorch from # http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' class InceptionV3(nn.Module): """Pretrained InceptionV3 network returning feature maps""" # Index of default block of inception to return, # corresponds to output of final average pooling DEFAULT_BLOCK_INDEX = 3 # Maps feature dimensionality to their output blocks indices BLOCK_INDEX_BY_DIM = { 64: 0, # First max pooling features 192: 1, # Second max pooling featurs 768: 2, # Pre-aux classifier features 2048: 3 # Final average pooling features } def __init__(self, output_blocks=[DEFAULT_BLOCK_INDEX], resize_input=True, normalize_input=True, requires_grad=False, use_fid_inception=True): """Build pretrained InceptionV3 Parameters ---------- output_blocks : list of int Indices of blocks to return features of. Possible values are: - 0: corresponds to output of first max pooling - 1: corresponds to output of second max pooling - 2: corresponds to output which is fed to aux classifier - 3: corresponds to output of final average pooling resize_input : bool If true, bilinearly resizes input to width and height 299 before feeding input to model. As the network without fully connected layers is fully convolutional, it should be able to handle inputs of arbitrary size, so resizing might not be strictly needed normalize_input : bool If true, scales the input from range (0, 1) to the range the pretrained Inception network expects, namely (-1, 1) requires_grad : bool If true, parameters of the model require gradients. Possibly useful for finetuning the network use_fid_inception : bool If true, uses the pretrained Inception model used in Tensorflow's FID implementation. If false, uses the pretrained Inception model available in torchvision. The FID Inception model has different weights and a slightly different structure from torchvision's Inception model. If you want to compute FID scores, you are strongly advised to set this parameter to true to get comparable results. """ super(InceptionV3, self).__init__() self.resize_input = resize_input self.normalize_input = normalize_input self.output_blocks = sorted(output_blocks) self.last_needed_block = max(output_blocks) assert self.last_needed_block <= 3, \ 'Last possible output block index is 3' self.blocks = nn.ModuleList() if use_fid_inception: inception = fid_inception_v3() else: inception = models.inception_v3(pretrained=True) # Block 0: input to maxpool1 block0 = [ inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3, nn.MaxPool2d(kernel_size=3, stride=2) ] self.blocks.append(nn.Sequential(*block0)) # Block 1: maxpool1 to maxpool2 if self.last_needed_block >= 1: block1 = [ inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, stride=2) ] self.blocks.append(nn.Sequential(*block1)) # Block 2: maxpool2 to aux classifier if self.last_needed_block >= 2: block2 = [ inception.Mixed_5b, inception.Mixed_5c, inception.Mixed_5d, inception.Mixed_6a, inception.Mixed_6b, inception.Mixed_6c, inception.Mixed_6d, inception.Mixed_6e, ] self.blocks.append(nn.Sequential(*block2)) # Block 3: aux classifier to final avgpool if self.last_needed_block >= 3: block3 = [ inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c, nn.AdaptiveAvgPool2d(output_size=(1, 1)) ] self.blocks.append(nn.Sequential(*block3)) for param in self.parameters(): param.requires_grad = requires_grad def forward(self, inp): """Get Inception feature maps Parameters ---------- inp : torch.autograd.Variable Input tensor of shape Bx3xHxW. Values are expected to be in range (0, 1) Returns ------- List of torch.autograd.Variable, corresponding to the selected output block, sorted ascending by index """ outp = [] x = inp if self.resize_input: x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False) if self.normalize_input: x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) for idx, block in enumerate(self.blocks): x = block(x) if idx in self.output_blocks: outp.append(x) if idx == self.last_needed_block: break return outp def fid_inception_v3(): """Build pretrained Inception model for FID computation The Inception model for FID computation uses a different set of weights and has a slightly different structure than torchvision's Inception. This method first constructs torchvision's Inception and then patches the necessary parts that are different in the FID Inception model. """ inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False, init_weights=True) inception.Mixed_5b = FIDInceptionA(192, pool_features=32) inception.Mixed_5c = FIDInceptionA(256, pool_features=64) inception.Mixed_5d = FIDInceptionA(288, pool_features=64) inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) inception.Mixed_7b = FIDInceptionE_1(1280) inception.Mixed_7c = FIDInceptionE_2(2048) state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) inception.load_state_dict(state_dict) return inception class FIDInceptionA(models.inception.InceptionA): """InceptionA block patched for FID computation""" def __init__(self, in_channels, pool_features): super(FIDInceptionA, self).__init__(in_channels, pool_features) def forward(self, x): branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class FIDInceptionC(models.inception.InceptionC): """InceptionC block patched for FID computation""" def __init__(self, in_channels, channels_7x7): super(FIDInceptionC, self).__init__(in_channels, channels_7x7) def forward(self, x): branch1x1 = self.branch1x1(x) branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7) branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] return torch.cat(outputs, 1) class FIDInceptionE_1(models.inception.InceptionE): """First InceptionE block patched for FID computation""" def __init__(self, in_channels): super(FIDInceptionE_1, self).__init__(in_channels) def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class FIDInceptionE_2(models.inception.InceptionE): """Second InceptionE block patched for FID computation""" def __init__(self, in_channels): super(FIDInceptionE_2, self).__init__(in_channels) def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) # Patch: The FID Inception model uses max pooling instead of average # pooling. This is likely an error in this specific Inception # implementation, as other Inception models use average pooling here # (which matches the description in the paper). branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1)
[ "khai199733@gmail.com" ]
khai199733@gmail.com
95fe70f13e2813bdeafcd0958be55afdc67e8ebb
32458c4e0e0157314a5ab8f224715ea84a8c43a9
/models/attention.py
a011b77d7bb7235d12eede6a994b37eeb4386cfb
[ "MIT" ]
permissive
colinsongf/Global-Encoding
aaa75e2c37ccbba1ff6909cb84cfadf31be27b83
f717f6a922bd7a129e1026511dc90617a1ff8a23
refs/heads/master
2020-03-17T17:27:19.959451
2018-05-15T05:22:55
2018-05-15T05:22:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,526
py
''' @Date : 2017/12/18 @Author: Shuming Ma @mail : shumingma@pku.edu.cn @homepage: shumingma.com ''' import math import torch import torch.nn as nn class luong_attention(nn.Module): def __init__(self, hidden_size, emb_size, pool_size=0): super(luong_attention, self).__init__() self.hidden_size, self.emb_size, self.pool_size = hidden_size, emb_size, pool_size self.linear_in = nn.Linear(hidden_size, hidden_size) if pool_size > 0: self.linear_out = maxout(2*hidden_size + emb_size, hidden_size, pool_size) else: self.linear_out = nn.Sequential(nn.Linear(2*hidden_size + emb_size, hidden_size), nn.SELU(), nn.Linear(hidden_size, hidden_size), nn.Tanh()) self.softmax = nn.Softmax(dim=1) def init_context(self, context): self.context = context.transpose(0, 1) def forward(self, h, x): gamma_h = self.linear_in(h).unsqueeze(2) # batch * size * 1 weights = torch.bmm(self.context, gamma_h).squeeze(2) # batch * time weights = self.softmax(weights) # batch * time c_t = torch.bmm(weights.unsqueeze(1), self.context).squeeze(1) # batch * size output = self.linear_out(torch.cat([c_t, h, x], 1)) return output, weights class luong_gate_attention(nn.Module): def __init__(self, hidden_size, emb_size, prob=0.1): super(luong_gate_attention, self).__init__() self.hidden_size, self.emb_size = hidden_size, emb_size self.linear_in = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.Dropout(p=prob)) self.feed = nn.Sequential(nn.Linear(2*hidden_size, hidden_size), nn.SELU(), nn.Dropout(p=prob), nn.Linear(hidden_size, hidden_size), nn.Sigmoid(), nn.Dropout(p=prob)) self.remove = nn.Sequential(nn.Linear(2*hidden_size, hidden_size), nn.SELU(), nn.Dropout(p=prob), nn.Linear(hidden_size, hidden_size), nn.Sigmoid(), nn.Dropout(p=prob)) self.linear_out = nn.Sequential(nn.Linear(2*hidden_size, hidden_size), nn.SELU(), nn.Dropout(p=prob), nn.Linear(hidden_size, hidden_size), nn.SELU(), nn.Dropout(p=prob)) self.mem_gate = nn.Sequential(nn.Linear(2*hidden_size, hidden_size), nn.SELU(), nn.Dropout(p=prob), nn.Linear(hidden_size, hidden_size), nn.Sigmoid(), nn.Dropout(p=prob)) self.softmax = nn.Softmax(dim=1) self.selu = nn.SELU() self.simple = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.SELU(), nn.Linear(hidden_size, hidden_size), nn.Sigmoid()) def init_context(self, context): self.context = context.transpose(0, 1) def forward(self, h, embs, m, hops=1, selfatt=False): if hops == 1: gamma_h = self.linear_in(h).unsqueeze(2) #gamma_h = self.selu(gamma_h) weights = torch.bmm(self.context, gamma_h).squeeze(2) if selfatt: weights = weights / math.sqrt(512) weights = self.softmax(weights) c_t = torch.bmm(weights.unsqueeze(1), self.context).squeeze(1) memory = m output = self.linear_out(torch.cat([h, c_t], 1)) return output, weights, memory x = h for i in range(hops): gamma_h = self.linear_in(x).unsqueeze(2) weights = torch.bmm(self.context, gamma_h).squeeze(2) weights = self.softmax(weights) c_t = torch.bmm(weights.unsqueeze(1), self.context).squeeze(1) x = c_t + x feed_gate = self.feed(torch.cat([x, h], 1)) remove_gate = self.remove(torch.cat([x, h], 1)) memory = (remove_gate * m) + (feed_gate * (x+h)) mem_gate = self.mem_gate(torch.cat([memory, h], 1)) m_x = mem_gate * x output = self.linear_out(torch.cat([m_x, h], 1)) return output, weights, memory class bahdanau_attention(nn.Module): def __init__(self, hidden_size, emb_size, pool_size=0): super(bahdanau_attention, self).__init__() self.linear_encoder = nn.Linear(hidden_size, hidden_size) self.linear_decoder = nn.Linear(hidden_size, hidden_size) self.linear_v = nn.Linear(hidden_size, 1) self.linear_r = nn.Linear(hidden_size*2+emb_size, hidden_size*2) self.hidden_size = hidden_size self.emb_size = emb_size self.softmax = nn.Softmax(dim=1) self.tanh = nn.Tanh() def init_context(self, context): self.context = context.transpose(0, 1) def forward(self, h, x): gamma_encoder = self.linear_encoder(self.context) # batch * time * size gamma_decoder = self.linear_decoder(h).unsqueeze(1) # batch * 1 * size weights = self.linear_v(self.tanh(gamma_encoder+gamma_decoder)).squeeze(2) # batch * time weights = self.softmax(weights) # batch * time c_t = torch.bmm(weights.unsqueeze(1), self.context).squeeze(1) # batch * size r_t = self.linear_r(torch.cat([c_t, h, x], dim=1)) output = r_t.view(-1, self.hidden_size, 2).max(2)[0] return output, weights class maxout(nn.Module): def __init__(self, in_feature, out_feature, pool_size): super(maxout, self).__init__() self.in_feature = in_feature self.out_feature = out_feature self.pool_size = pool_size self.linear = nn.Linear(in_feature, out_feature*pool_size) def forward(self, x): output = self.linear(x) output = output.view(-1, self.out_feature, self.pool_size) output = output.max(2)[0] return output
[ "justinlin930319@hotmail.com" ]
justinlin930319@hotmail.com
8dddee5d45a2b617dde233e1b0837f788ad5af74
8ce5eaba8a2848c17f9a47eb083afdd90887e17e
/scripts/dumping/sequence_update/dump_restmap_dataset.py
38df07a892b224f6d2f363e6298ce4bc85decf71
[ "MIT" ]
permissive
yeastgenome/SGDBackend-Nex2
cad926729f9da738b3e82fc85d29b936ed6b8f1a
017e7248fbc3f1d1e8062d67f26937ec00c3cb8a
refs/heads/master
2023-08-23T12:24:15.220178
2023-06-22T01:22:11
2023-06-22T01:22:11
46,740,355
5
7
MIT
2023-09-06T20:28:05
2015-11-23T18:40:33
Python
UTF-8
Python
false
false
1,343
py
import sys from scripts.loading.database_session import get_session from src.models import Locusdbentity, Dnasequenceannotation, Taxonomy, Contig, So,\ Proteinsequenceannotation from scripts.dumping.sequence_update import generate_dna_seq_file __author__ = 'sweng66' genomicFile = "scripts/dumping/sequence_update/data/restrictionMapper/orf_genomic.seq" TAXON = "TAX:559292" SEQ_FORMAT = 'plain' FILE_TYPE = 'ALL' def dump_data(): nex_session = get_session() taxonomy = nex_session.query(Taxonomy).filter_by(taxid=TAXON).one_or_none() taxonomy_id = taxonomy.taxonomy_id dbentity_id_to_data = dict([(x.dbentity_id, (x.systematic_name, x.gene_name, x.sgdid, x.qualifier, x.description)) for x in nex_session.query(Locusdbentity).filter_by(dbentity_status = 'Active').all()]) so_id_to_display_name = dict([(x.so_id, x.term_name) for x in nex_session.query(So).all()]) contig_id_to_chr = dict([(x.contig_id, x.display_name) for x in nex_session.query(Contig).filter(Contig.display_name.like('Chromosome %')).all()]) generate_dna_seq_file(nex_session, taxonomy_id, dbentity_id_to_data, contig_id_to_chr, so_id_to_display_name, genomicFile, 'GENOMIC', SEQ_FORMAT, FILE_TYPE) nex_session.close() if __name__ == '__main__': dump_data()
[ "noreply@github.com" ]
yeastgenome.noreply@github.com
df834d024d1583ec890986cbe4b75060df1791aa
301baff8d17536c7a909a5c02457d7e041a78682
/blog/migrations/0003_auto_20210405_0729.py
0a279d9249c6f67e1d83c580cf603cb7001d630b
[]
no_license
resbrotherx/resbrotherx
6442260d3b5e397a46cff7f1702e34ac07832c61
a430de9bcb4affca6815af64248ec31cc88a7a5a
refs/heads/main
2023-05-02T22:20:46.527426
2021-05-21T23:26:26
2021-05-21T23:26:26
277,882,495
0
0
null
null
null
null
UTF-8
Python
false
false
994
py
# Generated by Django 3.1.3 on 2021-04-05 18:29 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('blog', '0002_auto_20210405_0729'), ] operations = [ migrations.AlterField( model_name='comment', name='likes', field=models.ManyToManyField(blank=True, null=True, related_name='loved', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='post', name='dislikes', field=models.ManyToManyField(blank=True, null=True, related_name='post_disliked', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='post', name='likes', field=models.ManyToManyField(blank=True, null=True, related_name='post_loved', to=settings.AUTH_USER_MODEL), ), ]
[ "francisdaniel140@gmail.com" ]
francisdaniel140@gmail.com
b592cb7cc91694ddd3f470b85990042cd4b5adc2
b08f5367ffd3bdd1463de2ddc05d34cbfba6796e
/recursion/powersets.py
fa71f8d354af43b94b4d0f5bcb00a170e05c74ad
[]
no_license
uohzxela/fundamentals
cb611fa6c820dc8643a43fd045efe96bc43ba4ed
6bbbd489c3854fa4bf2fe73e1a2dfb2efe4aeb94
refs/heads/master
2020-04-04T03:56:44.145222
2018-04-05T01:08:14
2018-04-05T01:08:14
54,199,110
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
# O(2^n) class Solution(object): def subsets(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ res = [] self.subsets_(nums, 0, [], res) return res def subsets_(self, nums, i, partial, res): if i > len(nums)-1: res.append(list(partial)) return partial.append(nums[i]) self.subsets_(nums, i+1, partial, res) partial.pop() self.subsets_(nums, i+1, partial, res)
[ "uohzxela@gmail.com" ]
uohzxela@gmail.com
02646842ebbaa4cb3831316bebc75e6db92decdf
eba3c6eb8d5ae18f3bcbb39df9b391a3d4a40ebd
/src/storage.py
15a4676ee9c6be24f22407b09d9bae4f203cd195
[]
no_license
aleefrank/VPP-Simulator
294381d5dafe6316dc21180683110081bfbb91ca
44f2663c905d6c6ecdd098d05a74a9d66fb31650
refs/heads/main
2023-03-23T15:50:31.444004
2021-03-13T11:11:19
2021-03-13T11:11:19
347,332,585
0
0
null
null
null
null
UTF-8
Python
false
false
1,030
py
from src.enums import ProfileType from src.profile import Profile # All parameters are percentage (beside efficiencies) class SimpleStorage(Profile): def __init__(self, max_charge, initial_charge=25, max_delta_charge=60, max_delta_discharge=60, charge_efficiency=0.95, discharge_efficiency=0.95, timestamps=96): super().__init__([0] * timestamps, ProfileType.STORAGE, 0, 0, timestamps) self.initial_charge = max_charge * initial_charge / 100 self.max_charge = max_charge self.max_delta_charge = self.setup_array_for_property(max_charge * max_delta_charge / 100) self.max_delta_discharge = self.setup_array_for_property(max_charge * max_delta_discharge / 100) self.charge_efficiency = charge_efficiency self.discharge_efficiency = discharge_efficiency def get_flexibility(self, type='minimized'): if type == 'minimized': return self.max_delta_discharge if type == 'maximized': return self.max_delta_charge
[ "alessandro.f95@live.it" ]
alessandro.f95@live.it
3385d7bccfd7533f8e424eca23c2e897f3a99e2e
4f1b6a8001280c76f6fa40064251ccf684f2b28b
/apps/client/api.py
12819fbba4937849a90f2324145e49f4ee385dd2
[]
no_license
asorici/envived
f51c40f49b8dbee13ebde7709437e4efa12cd335
2b818240d6cef7d64f9c7a4ea4ecb52695c82878
refs/heads/master
2016-09-05T23:37:40.798340
2014-07-04T13:35:25
2014-07-04T13:35:25
11,955,649
0
0
null
null
null
null
UTF-8
Python
false
false
40,117
py
from client.authorization import AnnotationAuthorization, UserAuthorization, \ FeatureAuthorization from client.validation import AnnotationValidation from coresql.models import Environment, Area, Announcement, History, UserProfile, \ ResearchProfile, UserContext, UserSubProfile from coresql.utils import str2bool from datetime import datetime from django.conf.urls import patterns from django.core.exceptions import MultipleObjectsReturned from tastypie import fields, http from tastypie.api import Api from tastypie.authentication import Authentication from tastypie.exceptions import ImmediateHttpResponse, NotFound from tastypie.resources import ModelResource class UserResource(ModelResource): first_name = fields.CharField(readonly = True) last_name = fields.CharField(readonly = True) class Meta: queryset = UserProfile.objects.all() resource_name = 'user' detail_allowed_methods = ["get", "put"] list_allowed_methods = ["get"] #fields = ['first_name'] excludes = ["id", "timestamp", "is_anonymous"] authentication = Authentication() authorization = UserAuthorization() def build_filters(self, filters = None): """ enable filtering by environment and area (which do not have their own fields in this resource) """ if filters is None: filters = {} orm_filters = super(UserResource, self).build_filters(filters) if "area" in filters: area_id = filters['area'] area = Area.objects.get(id = area_id) #checked_in_user_profiles = [user_ctx.user for user_ctx in UserContext.objects.filter(currentArea = area)] orm_filters["pk__in"] = [user_ctx.user.pk for user_ctx in UserContext.objects.filter(currentArea = area)] elif "environment" in filters: environment_id = filters['environment'] environment = Environment.objects.get(id = environment_id) #checked_in_user_profiles = [user_ctx.user for user_ctx in UserContext.objects.filter(currentArea = area)] orm_filters["pk__in"] = [user_ctx.user.pk for user_ctx in UserContext.objects.filter(currentEnvironment = environment)] return orm_filters def dehydrate_first_name(self, bundle): return bundle.obj.user.first_name def dehydrate_last_name(self, bundle): return bundle.obj.user.last_name def dehydrate_research_profile(self, bundle): import inspect, sys research_dict = {} if bundle.obj.research_profile: for f in ResearchProfile._meta.fields: if not f.primary_key and not hasattr(f, 'foreign_key'): field_class = f.__class__ extension_classes = inspect.getmembers(sys.modules["coresql.db.fields"], lambda c: inspect.isclass(c) and c.__module__ == "coresql.db.fields") if (field_class.__name__, field_class) in extension_classes: research_dict[f.name] = getattr(bundle.obj.research_profile, f.name).to_serializable() else: research_dict[f.name] = getattr(bundle.obj.research_profile, f.name) return research_dict def dehydrate(self, bundle): #if 'research_profile' in bundle.data and not bundle.obj.research_profile: # del bundle.data['research_profile'] """ dehydrate UserSubProfiles if requested """ if 'showprofile' in bundle.request.GET and \ bundle.request.GET['showprofile'] in UserSubProfile.get_subclass_list() + ['all']: ## get downcasted versions directly of all the subprofiles associated with this userprofile profile_type = bundle.request.GET['showprofile'] subprofiles = [] if profile_type == 'all': subprofiles = bundle.obj.subprofiles.all().select_subclasses() else: subprofiles = bundle.obj.subprofiles.all().select_subclasses(profile_type) subprofiles_dict = {} for profile in subprofiles: data = profile.to_serializable() if data: subprofiles_dict.update(data) if subprofiles_dict: bundle.data['subprofiles'] = subprofiles_dict """ if the user is requesting his own data then return his email too as it is an identifying element """ if hasattr(bundle.request, "user") and not bundle.request.user.is_anonymous(): user_profile = bundle.request.user.get_profile() if user_profile.pk == bundle.obj.pk: bundle.data['email'] = bundle.obj.user.email """ remove c2dm data from bundle """ if 'c2dm_id' in bundle.data: del bundle.data['c2dm_id'] return bundle def get_list(self, request, **kwargs): ## override the list retrieval part to verify additionally that an ``environment`` or ``area`` filter exists ## otherwise reject the call with a HttpMethodNotAllowed if 'environment' in request.GET or 'area' in request.GET: return super(UserResource, self).get_list(request, **kwargs) else: raise ImmediateHttpResponse(response=http.HttpMethodNotAllowed()) def apply_sorting(self, obj_list, options=None): ## apply a default sorting of user by their last_name return obj_list.order_by("user__last_name") def obj_update(self, bundle, skip_errors=False, **kwargs): """ Could be an intentional action that the default obj_update treats DoesNotExist and MultipleObjectReturned as acceptable exceptions which get transformed into a CREATE operation. We don't want such a behavior. So we catch does exceptions and throw an BadRequest message """ from tastypie.serializers import Serializer try: serdes = Serializer() deserialized = None try: deserialized = serdes.deserialize(bundle.request.raw_post_data, format=bundle.request.META.get('CONTENT_TYPE', 'application/json')) except Exception: deserialized = None del serdes if deserialized is None: return ImmediateHttpResponse(response = http.HttpBadRequest()) if 'unregister_c2dm' in deserialized and deserialized['unregister_c2dm'] == True: bundle.data['c2dm_id'] = None updated_bundle = super(UserResource, self).obj_update(bundle, skip_errors=skip_errors, **kwargs) return updated_bundle except (NotFound, MultipleObjectsReturned): raise ImmediateHttpResponse(response = http.HttpBadRequest()) class EnvironmentResource(ModelResource): features = fields.ListField() parent = fields.ForeignKey('self', 'parent', null = True) owner = fields.ForeignKey(UserResource, 'owner', full = True) class Meta: queryset = Environment.objects.all() resource_name = 'environment' #api_name = 'v1/resources' #fields = ['name', 'data', 'tags', 'parentID', 'category', 'latitude', 'longitude', 'timestamp'] excludes = ['width', 'height'] detail_allowed_methods = ['get'] list_allowed_methods = ['get'] authentication = Authentication() default_format = "application/json" def dehydrate_tags(self, bundle): return bundle.obj.tags.to_serializable() def dehydrate_parent(self, bundle): if not bundle.data['parent'] is None: parent_data = bundle.data['parent'] parent_name = bundle.obj.parent.name return {'uri' : parent_data, 'name': parent_name} return None def dehydrate_features(self, bundle): ## retrieve the value of the virtual flag virtual = get_virtual_flag_from_url(bundle.request) ## return a list of dictionary values from the features of this environment feature_list = [] for feature in bundle.obj.features.select_subclasses(): feature_resource_class = feature.__class__.get_resource_class() if feature_resource_class: feat_dict = feature.to_serializable(virtual = virtual) if feat_dict: ## attach resource_uri and environment_uri #feat_dict['resource_uri'] = FeatureResource().get_resource_uri(feature) feat_dict['resource_uri'] = feature_resource_class().get_resource_uri(feature) feat_dict['environment'] = self.get_resource_uri(bundle) feature_list.append(feat_dict) return feature_list def dehydrate(self, bundle): """ Delete the img_thumbnail_url if it is null """ if bundle.obj.img_thumbnail_url is None: del bundle.data['img_thumbnail_url'] """ append layout url if a level filter exists in the request """ if "level" in bundle.request.GET: level = int(bundle.request.GET["level"]) bundle.data["layout_url"] = bundle.obj.layouts.get(level=level).mapURL """ make bundle consistent for location parsing on mobile client: add a location_type entry in the bundle.data put all the rest of the data under location_data """ location_data = bundle.data.copy() bundle.data.clear() bundle.data['location_type'] = self._meta.resource_name bundle.data['location_data'] = location_data return bundle class AreaResource(ModelResource): parent = fields.ForeignKey(EnvironmentResource, 'environment') features = fields.ListField() owner = fields.DictField() admin = fields.ForeignKey(UserResource, 'admin', null = True, full = True) class Meta: queryset = Area.objects.all() resource_name = 'area' allowed_methods = ['get'] excludes = ['shape', 'layout'] filtering = { 'parent': ['exact'], } authentication = Authentication() def get_list(self, request, **kwargs): ## override the list retrieval part to verify additionally that an ``environment`` filter exists ## otherwise reject the call with a HttpMethodNotAllowed if 'parent' in request.GET or 'q' in request.GET: return super(AreaResource, self).get_list(request, **kwargs) else: raise ImmediateHttpResponse(response=http.HttpMethodNotAllowed()) def build_filters(self, filters = None): """ enable filtering by level (which does not have its own field) """ if filters is None: filters = {} orm_filters = super(AreaResource, self).build_filters(filters) if "level" in filters: orm_filters["layout__level"] = int(filters["level"]) return orm_filters def dehydrate_tags(self, bundle): return bundle.obj.tags.to_serializable() def dehydrate_parent(self, bundle): parent_data = bundle.data['parent'] parent_name = bundle.obj.environment.name return {'uri' : parent_data, 'name': parent_name} def dehydrate_owner(self, bundle): user_res = UserResource() user_bundle = user_res.build_bundle(bundle.obj.environment.owner, request=bundle.request) user_bundle = user_res.full_dehydrate(user_bundle) return user_bundle.data def dehydrate_features(self, bundle): ## retrieve the value of the virtual flag virtual = get_virtual_flag_from_url(bundle.request) ## return a list of dictionary values from the features of this area feature_list = [] for feature in bundle.obj.features.select_subclasses(): feature_resource_class = feature.__class__.get_resource_class() if feature_resource_class: feat_dict = feature.to_serializable(request = bundle.request, virtual = virtual) if feat_dict: ## attach resource_uri and area_uri # feat_dict['resource_uri'] = FeatureResource().get_resource_uri(feature) feat_dict['resource_uri'] = feature_resource_class().get_resource_uri(feature) feat_dict['area'] = self.get_resource_uri(bundle) feature_list.append(feat_dict) ## then see if environment features which also apply to the area are available - e.g. program, order environment = bundle.obj.environment environment_features = environment.features.select_subclasses().filter(is_general = True) for env_feat in environment_features: env_feat_resource_class = env_feat.__class__.get_resource_class() if env_feat_resource_class: feat_dict = env_feat.to_serializable(request = bundle.request, virtual = virtual) if feat_dict: ## attach resource_uri and area_uri #feat_dict['resource_uri'] = FeatureResource().get_resource_uri(env_feat) feat_dict['resource_uri'] = env_feat_resource_class().get_resource_uri(env_feat) feat_dict['environment'] = EnvironmentResource().get_resource_uri(environment) feature_list.append(feat_dict) return feature_list def dehydrate(self, bundle): """ delete admin field from bundle.data if the model field is null """ if bundle.obj.admin is None: del bundle.data['admin'] """ Delete the img_thumbnail_url if it is null """ if bundle.obj.img_thumbnail_url is None: del bundle.data['img_thumbnail_url'] """ append level data from the layout reference of the Area obj """ bundle.data['level'] = bundle.obj.layout.level """ make bundle consistent for location parsing on mobile client: add a location_type entry in the bundle.data put all the rest of the data under location_data """ location_data = bundle.data.copy() bundle.data.clear() bundle.data['location_type'] = self._meta.resource_name bundle.data['location_data'] = location_data return bundle class FeatureResource(ModelResource): environment = fields.ForeignKey(EnvironmentResource, 'environment', null = True) area = fields.ForeignKey(AreaResource, 'area', null = True) category = fields.CharField(attribute = 'category') data = fields.DictField() class Meta: # queryset = Feature.objects.select_subclasses() # resource_name = 'feature' allowed_methods = ['get'] excludes = ['id', 'is_general'] filtering = { 'area' : ['exact'], 'environment' : ['exact'], 'category' : ['exact'] } authentication = Authentication() authorization = FeatureAuthorization() def base_urls(self): from django.conf.urls.defaults import url from tastypie.utils.urls import trailing_slash """ The standard URLs this ``Resource`` should respond to. """ return [ url(r"^features/(?P<resource_name>%s)%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('dispatch_list'), name="api_dispatch_list"), url(r"^features/(?P<resource_name>%s)/schema%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('get_schema'), name="api_get_schema"), url(r"^features/(?P<resource_name>%s)/set/(?P<%s_list>\w[\w/;-]*)%s$" % (self._meta.resource_name, self._meta.detail_uri_name, trailing_slash()), self.wrap_view('get_multiple'), name="api_get_multiple"), url(r"^features/(?P<resource_name>%s)/(?P<%s>\w[\w/-]*)%s$" % (self._meta.resource_name, self._meta.detail_uri_name, trailing_slash()), self.wrap_view('dispatch_detail'), name="api_dispatch_detail"), ] def get_list(self, request, **kwargs): """ override the list retrieval part to verify additionally that an ``area`` or ``environment`` and a ``category`` filter exist otherwise reject the call with a HttpMethodNotAllowed """ # if ('area' in request.GET or 'environment' in request.GET) and 'category' in request.GET: if 'area' in request.GET or 'environment' in request.GET: return super(FeatureResource, self).get_list(request, **kwargs) else: raise ImmediateHttpResponse(response=http.HttpMethodNotAllowed()) def get_object_list(self, request): from django.db.models import Q feature_obj_list = super(FeatureResource, self).get_object_list(request) if 'area' in request.GET: area_id = request.GET['area'] try: area = Area.objects.get(id = area_id) q1 = Q(area = area) q2 = Q(environment = area.environment) & Q(is_general = True) return feature_obj_list.filter(q1 | q2) except Area.DoesNotExist, ex: raise ImmediateHttpResponse(response=http.HttpBadRequest(content=ex.get_message())) return feature_obj_list def build_filters(self, filters = None): if filters is None: filters = {} if 'area' in filters: ## remove the filter since it has been handled in get_obj_list del filters['area'] orm_filters = super(FeatureResource, self).build_filters(filters) return orm_filters def dehydrate_data(self, bundle): ## retrieve the value of the virtual flag virtual = get_virtual_flag_from_url(bundle.request) filters = bundle.request.GET.copy() return bundle.obj.get_feature_data(bundle, virtual, filters) def dehydrate(self, bundle): if bundle.obj.environment is None: del bundle.data['environment'] elif bundle.obj.area is None: del bundle.data['area'] return bundle class AnnouncementResource(ModelResource): environment = fields.ForeignKey(EnvironmentResource, 'environment') area = fields.ForeignKey(AreaResource, 'area', null = True) class Meta: queryset = Announcement.objects.all() resource_name = 'announcement' allowed_methods = ['get'] fields = ['data', 'timestamp'] excludes = ['id'] filtering = { 'area': ['exact'], 'environment': ['exact'], 'timestamp': ['gt', 'gte'], } authentication = Authentication() def get_list(self, request, **kwargs): ## override the list retrieval part to verify additionally that an ``environment`` or ``area`` filter exists ## otherwise reject the call with a HttpMethodNotAllowed if 'environment' in request.GET or 'area' in request.GET: return super(AnnouncementResource, self).get_list(request, **kwargs) else: raise ImmediateHttpResponse(response=http.HttpMethodNotAllowed()) def get_object_list(self, request): ## override the usual obj_list retrieval by filtering out only the yet to be given announcements ## for the current environment (which we **know** must exist) timestamp = datetime.now() ## get default object list announcement_obj_list = super(AnnouncementResource, self).get_object_list(request) if 'environment' in request.GET: try: env_id = request.GET['environment'] environ = Environment.objects.get(id=env_id) announcement_obj_list = announcement_obj_list.filter(environment=environ) except Exception: pass if 'area' in request.GET: try: area_id = request.GET['area'] area = Area.objects.get(id=area_id) announcement_obj_list = announcement_obj_list.filter(area=area) except Exception: pass try: id_list = [] ## loop through each announcement and see if any of its ## triggers are greater than the current timestamp for obj in announcement_obj_list: triggers = obj.triggers.getList() ## maybe make the following a little less hardcoded if obj.repeatEvery == "day": for trig in triggers: trig.replace(year=timestamp.year, month = timestamp.month, day = timestamp.day) elif obj.repeatEvery == "week": ## see which triggers are within "weeks" of the timestamp for trig in triggers: diff = timestamp.date() - trig.date() if diff.days % 7 != 0: triggers.remove(trig) ## and then update the day only for those for trig in triggers: trig.replace(year=timestamp.year, month = timestamp.month, day = timestamp.day) ## and now we can do easy comparisons should_be_included = False for dt in obj.triggers.getList(): if dt >= timestamp: should_be_included = True break if should_be_included: id_list.append(obj.id) return announcement_obj_list.filter(id__in = id_list) except Exception: raise ImmediateHttpResponse(response=http.HttpMethodNotAllowed()) class AnnotationResource(ModelResource): environment = fields.ForeignKey(EnvironmentResource, 'environment', null = True) area = fields.ForeignKey(AreaResource, 'area', null = True) user = fields.ForeignKey(UserResource, 'user', null = True) data = fields.DictField() class Meta: # queryset = Annotation.objects.select_subclasses() # resource_name = 'annotation' detail_allowed_methods = ['get', 'put', 'delete'] list_allowed_methods = ['get', 'post'] ## need to put complete list of fields because otherwise the related ones will not get inherited in ## subclasses of AnnotationResource. ## Not sure yet if this is desired functionality or a bug in Tastypie. fields = ['environment', 'area', 'user', 'data', 'category', 'timestamp'] filtering = { 'area': ['exact'], 'environment': ['exact'], 'timestamp': ['gt', 'gte', 'lt', 'lte'], 'category': ['exact'], } ordering = ['timestamp'] authentication = Authentication() authorization = AnnotationAuthorization() #validation = FormValidation(form_class = AnnotationForm) validation = AnnotationValidation() always_return_data = True def base_urls(self): from django.conf.urls.defaults import url from tastypie.utils.urls import trailing_slash """ The standard URLs this ``Resource`` should respond to. """ return [ url(r"^annotations/(?P<resource_name>%s)%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('dispatch_list'), name="api_dispatch_list"), url(r"^annotations/(?P<resource_name>%s)/schema%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('get_schema'), name="api_get_schema"), url(r"^annotations/(?P<resource_name>%s)/set/(?P<%s_list>\w[\w/;-]*)%s$" % (self._meta.resource_name, self._meta.detail_uri_name, trailing_slash()), self.wrap_view('get_multiple'), name="api_get_multiple"), url(r"^annotations/(?P<resource_name>%s)/(?P<%s>\w[\w/-]*)%s$" % (self._meta.resource_name, self._meta.detail_uri_name, trailing_slash()), self.wrap_view('dispatch_detail'), name="api_dispatch_detail"), ] def get_list(self, request, **kwargs): ## override the list retrieval part to verify additionally that an ``area`` or ``environment`` filter exists ## otherwise reject the call with a HttpMethodNotAllowed # if ('area' in request.GET or 'environment' in request.GET) and 'category' in request.GET: if 'area' in request.GET or 'environment' in request.GET: return super(AnnotationResource, self).get_list(request, **kwargs) else: raise ImmediateHttpResponse(response=http.HttpMethodNotAllowed()) """ The following methods combined ensure that the environment=1&all=true query is handled successfully """ def build_filters(self, filters = None): if filters is None: filters = {} if 'environment' in filters and 'all' in filters and filters['all'] == 'true': """ if environment and all are in the filters, don't apply them any more because it will have already been handled in get_object_list """ del filters['environment'] del filters['all'] orm_filters = super(AnnotationResource, self).build_filters(filters) return orm_filters def get_object_list(self, request): from django.db.models import Q if 'environment' in request.GET and 'all' in request.GET and request.GET['all'] == 'true': try: environment_pk = request.GET['environment'] environment = Environment.objects.get(pk=environment_pk) q1 = Q(environment=environment) q2 = Q(area__in=list(environment.areas.all())) return super(AnnotationResource, self).get_object_list(request).filter(q1 | q2) except Exception, ex: #print ex raise ImmediateHttpResponse(response=http.HttpBadRequest(content=ex.get_message())) return super(AnnotationResource, self).get_object_list(request) def dehydrate_data(self, bundle): ## return the data representation of this annotation according to its type # user_profile = bundle.request.user.get_profile() return bundle.obj.get_annotation_data() def dehydrate_timestamp(self, bundle): from pytz import timezone local_tz = timezone("Europe/Bucharest") return local_tz.localize(bundle.obj.timestamp) def dehydrate(self, bundle): """ return additionally for each annotation bundle the name of the environment/area for which the annotation was made """ if not bundle.obj.environment is None: ## make the environment response a dictionary, containing resource_uri and name bundle.data['environment'] = {'resource_uri': bundle.data['environment'], 'name': bundle.obj.environment.name} if not bundle.obj.area is None: ## make the area response a dictionary, containing resource_uri and name bundle.data['area'] = {'resource_uri': bundle.data['area'], 'name': bundle.obj.area.name} """ bundle in the user's first and last name under the ['data']['user'] entry """ first_name = "Anonymous" last_name = "Guest" user_profile = bundle.obj.user if not user_profile is None and not user_profile.is_anonymous: first_name = user_profile.user.first_name last_name = user_profile.user.last_name bundle.data['data']['user'] = { 'first_name' : first_name, 'last_name' : last_name } """ now remove also null area/environment data """ if not bundle.data['environment']: del bundle.data['environment'] if not bundle.data['area']: del bundle.data['area'] """ if no data is found remove the 'data' attribute from the bundle to avoid useless processing on the mobile side """ if not bundle.data['data']: del bundle.data['data'] return bundle def obj_create(self, bundle, **kwargs): ## because of the AnnotationAuthorization class, request.user will have a profile user_profile = bundle.request.user.get_profile() updated_bundle = super(AnnotationResource, self).obj_create(bundle, user=user_profile) return updated_bundle def obj_update(self, bundle, skip_errors=False, **kwargs): """ Could be an intentional feature that the default obj_update treats DoesNotExist and MultipleObjectReturned as acceptable exceptions which get transformed into a CREATE operation. We don't want such a behavior. So we catch those exceptions and throw a BadRequest message """ try: updated_bundle = super(AnnotationResource, self).obj_update(bundle, skip_errors=skip_errors, **kwargs) return updated_bundle except NotFound, enf: raise ImmediateHttpResponse(response = http.HttpBadRequest(content=enf.get_message())) except MultipleObjectsReturned, emult: raise ImmediateHttpResponse(response = http.HttpBadRequest(content=emult.get_message())) def _make_c2dm_notification(self, registration_id, collapse_key, bundle, params = None): import socket, pickle, c2dm, sys if params is None: params = {} if not registration_id is None: #collapse_key = "annotation_" + bundle.obj.category resource_uri = self.get_resource_uri(bundle) environment = bundle.obj.environment if not bundle.obj.area is None: environment = bundle.obj.area.environment location_uri = EnvironmentResource().get_resource_uri(environment) feature = bundle.obj.category # prepare notification data registration_ids = [registration_id] notification_data = {'location_uri' : location_uri, 'resource_uri' : resource_uri, 'feature' : feature, } notification_data['params'] = params delay_while_idle = False ttl = None if not collapse_key is None: ttl = 600 # pickle notification data and send it data = pickle.dumps((registration_ids, collapse_key, delay_while_idle, ttl, notification_data)) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: # Connect to server and send data sock.connect((c2dm.GCMServer.HOST, c2dm.GCMServer.PORT)) sock.sendall(data + "\n") # Receive data from the server and shut down received = sock.recv(1024) if received == "OK": print >> sys.stderr, "[Annotation GCM] Notification enqueued" else: print >> sys.stderr, "[Annotation GCM] Notification NOT enqueued" except Exception, ex: print >>sys.stderr, "[Annotation GCM] failure enqueueing annotation: ", ex finally: sock.close() class HistoryResource(ModelResource): environment = fields.ForeignKey(EnvironmentResource, 'environment') area = fields.ForeignKey(AreaResource, 'area') user = fields.ForeignKey(UserResource, 'user') class Meta: resource_name = 'history' queryset = History.objects.all() excludes = ['user'] allowed_methods = ['get'] filtering = { 'user': ['exact'], } ordering = ['-timestamp'] def get_list(self, request, **kwargs): ## override the list retrieval part to verify additionally that an ``user`` filter exists ## otherwise reject the call with a HttpMethodNotAllowed if 'user' in request.GET: return super(AnnotationResource, self).get_list(request, **kwargs) else: raise ImmediateHttpResponse(response=http.HttpMethodNotAllowed()) class EnvrionmentContextResource(ModelResource): PEOPLE_COUNT = "peoplecount" response = fields.DictField() class Meta: queryset = Environment.objects.all() resource_name = 'environmentcontext' detail_allowed_methods = ['get'] list_allowed_methods = [] fields = [''] def get_detail(self, request, **kwargs): ## override the list retrieval part to verify additionally that an ``user`` filter exists ## otherwise reject the call with a HttpMethodNotAllowed if 'request' in request.GET: return super(EnvrionmentContextResource, self).get_detail(request, **kwargs) else: raise ImmediateHttpResponse(response=http.HttpBadRequest()) def dehydrate_response(self, bundle): ## see what the context request is context_request = bundle.request.GET['request'] if context_request == EnvrionmentContextResource.PEOPLE_COUNT: environment = bundle.obj environment_people_count = UserContext.objects.filter(currentEnvironment = environment).count() return environment_people_count else: raise ImmediateHttpResponse(response=http.HttpNotImplemented()) ############################################################################################################# ############################################################################################################# class ClientApi(Api): def __init__(self, *args, **kwargs): super(ClientApi, self).__init__(*args, **kwargs) ''' def prepend_urls(self): from django.conf.urls.defaults import url, include from client.views import checkin, checkout, login, logout, register, create_anonymous, delete_anonymous prepended_urls = Api.prepend_urls(self) ## add all general actions prepended_urls.extend([ url(r"^%s/actions/create_anonymous/$" % self.api_name, create_anonymous, name="create_anonymous"), url(r"^%s/actions/delete_anonymous/$" % self.api_name, delete_anonymous, name="delete_anonymous"), url(r"^%s/actions/register/$" % self.api_name, register, name="register"), url(r"^%s/actions/login/$" % self.api_name, login, name="login"), url(r"^%s/actions/logout/$" % self.api_name, logout, name="logout"), url(r"^%s/actions/checkin/$" % self.api_name, checkin, name="checkin"), url(r"^%s/actions/checkout/$" % self.api_name, checkout, name="checkout") ]) ## add all per feature resource urls """ for feat_res_cls in FeatureResource.__subclasses__(): prepended_urls.append(url(r"^(?P<api_name>%s)/resources/features/" % self.api_name, include(feat_res_cls().urls))) ## add all per feature annotation urls for ann_res_cls in AnnotationResource.__subclasses__(): prepended_urls.append(url(r"^(?P<api_name>%s)/resources/annotations/" % self.api_name, include(ann_res_cls().urls))) """ ## add all client api urls under the `resources' url-path for name in sorted(self._registry.keys()): self._registry[name].api_name = self.api_name prepended_urls.append(url(r"^(?P<api_name>%s)/resources/" % self.api_name, include(self._registry[name].urls))) return prepended_urls ''' @property def urls(self): """ Provides URLconf details for the ``Api`` and all registered ``Resources`` beneath it. """ from django.conf.urls.defaults import url, include from tastypie.utils.urls import trailing_slash from client.views import checkin, checkout, login, logout, register, create_anonymous, delete_anonymous pattern_list = [ url(r"^(?P<api_name>%s)%s$" % (self.api_name, trailing_slash()), self.wrap_view('top_level'), name="api_%s_top_level" % self.api_name), ] for name in sorted(self._registry.keys()): self._registry[name].api_name = self.api_name pattern_list.append((r"^(?P<api_name>%s)/resources/" % self.api_name, include(self._registry[name].urls))) ## then add the actions pattern_list.extend([ url(r"^%s/actions/create_anonymous/$" % self.api_name, create_anonymous, name="create_anonymous"), url(r"^%s/actions/delete_anonymous/$" % self.api_name, delete_anonymous, name="delete_anonymous"), url(r"^%s/actions/register/$" % self.api_name, register, name="register"), url(r"^%s/actions/login/$" % self.api_name, login, name="login"), url(r"^%s/actions/logout/$" % self.api_name, logout, name="logout"), url(r"^%s/actions/checkin/$" % self.api_name, checkin, name="checkin"), url(r"^%s/actions/checkout/$" % self.api_name, checkout, name="checkout") ]) urlpatterns = self.prepend_urls() urlpatterns += patterns('', *pattern_list ) return urlpatterns ############################################################################################################# ############################################################################################################# def get_virtual_flag_from_url(request): ## retrieve the value of the virtual flag virtual = str(request.GET.get('virtual')) if virtual is None: raise ImmediateHttpResponse(response = http.HttpBadRequest(content='No "virtual" flag in request url')) try: virtual = str2bool(virtual) except ValueError: raise ImmediateHttpResponse(response = http.HttpBadRequest(content='"virtual" flag could not be parsed to a boolean')) return virtual def get_timestamp_from_url(date_string): timestamp = None try: ## first try the format %Y-%m-%dT%H:%M:%S time_format = "%Y-%m-%dT%H:%M:%S" timestamp = datetime.strptime(date_string, time_format) except ValueError: pass try: ## then try the format %Y-%m-%d %H:%M:%S time_format = "%Y-%m-%d %H:%M:%S" timestamp = datetime.strptime(date_string, time_format) except ValueError: pass return timestamp
[ "alex.sorici@gmail.com" ]
alex.sorici@gmail.com
1034cac0f27eee232621c40f56a8602ebbce4fbc
dcaf395142d8365a008bd162a2eb5e14f659f712
/Homework 1/Submission/HW1_puma.py
5a7170120f60491f559d0ededc202c91303d1b01
[]
no_license
Peaches491/DM-MP
6d63d979c370265b41a7baf830f87607b030bae8
6cc1e54b32f2375c1205ca7de56cbcb312587be5
refs/heads/master
2021-01-19T18:56:01.960300
2015-03-25T17:39:32
2015-03-25T17:39:32
31,974,722
0
1
null
null
null
null
UTF-8
Python
false
false
3,697
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # HW1 for RBE 595/CS 525 Motion Planning # code based on the simplemanipulation.py example import time import sys import openravepy if not __openravepy_build_doc__: from openravepy import * from numpy import * _arm_joint_names = \ ['_shoulder_pan_joint', '_shoulder_lift_joint', '_upper_arm_roll_joint', '_elbow_flex_joint', '_forearm_roll_joint', '_wrist_flex_joint', '_wrist_roll_joint'] def waitrobot(robot): """busy wait for robot completion""" while not robot.GetController().IsDone(): time.sleep(0.01) def tuckarms(env, robot): with env: jointnames = ['l_shoulder_lift_joint', 'l_elbow_flex_joint', 'l_wrist_flex_joint', 'r_shoulder_lift_joint', 'r_elbow_flex_joint', 'r_wrist_flex_joint'] robot.SetActiveDOFs([robot.GetJoint(name).GetDOFIndex() for name in jointnames]) robot.SetActiveDOFValues([1.29023451, -2.32099996, -0.69800004, 1.27843491, -2.32100002, -0.69799996]) robot.GetController().SetDesired(robot.GetDOFValues()) waitrobot(robot) def set_arm_pose(robot, joint_values, is_left = True): joint_set = [] if is_left: joint_set = ['l' + j for j in _arm_joint_names] else: joint_set = ['r' + j for j in _arm_joint_names] with env: robot.SetActiveDOFs([robot.GetJoint(j_name).GetDOFIndex() for j_name in joint_set]) robot.SetActiveDOFValues(joint_values) robot.GetController().SetDesired(robot.GetDOFValues()) waitrobot(robot) if __name__ == "__main__": env = Environment() env.SetViewer('qtcoin') env.Reset() # load a scene from ProjectRoom environment XML file env.Load('data/pr2test2.env.xml') time.sleep(0.1) # 1) get the 1st robot that is inside the loaded scene # 2) assign it to the variable named 'robot' robot = env.GetRobots()[0] # tuck in the PR2's arms for driving tuckarms(env, robot) # #### YOUR CODE HERE #### PumaTransform = array([[1, 0, 0, -3.3232], [0, 1, 0, -0.4878], [0, 0, 1, 0.0000], [0, 0, 0, 1]]) robot2 = env.ReadRobotXMLFile('robots/pumaarm.zae') with env: robot2.SetTransform(PumaTransform) env.Add(robot2, True) CameraTransform = array([[-0.23753303, -0.35654009, 0.90358023, -4.93138313], [-0.97133858, 0.07864789, -0.22431198, -0.44495657], [ 0.00891154, -0.93096384, -0.36500262, 1.32067215], [ 0.00000000, 0.00000000, 0.00000000, 1.00000000]]) view = env.GetViewer() view.SetCamera(CameraTransform) set_arm_pose(robot, [0, 0, 0, 0, 0, 0, 0], is_left=True) print "Collision Results:", env.CheckCollision(robot, robot2) raw_input("Press enter to move to collision...") set_arm_pose(robot, [1.374, 1.200, 0, -2.2, 3.14, -1, 0], is_left=True) print "Collision Results:", env.CheckCollision(robot, robot2) # Code for running input loop, prompting for comma-separated joint values if False: import StringIO previous = "0, 0, 0, 0, 0, 0, 0" inp = "1234" while 'quit' not in inp: inp = raw_input("Testing: ") values = [float(x) for x in inp.split(',')] if len(values) is 7: set_arm_pose(robot, values, is_left=True) else: print "Need 7 joint values" time.sleep(0.01) else: raw_input("Press enter to exit...") # #### END OF YOUR CODE ###
[ "Peaches491@gmail.com" ]
Peaches491@gmail.com
71b0afa35f1904fb77f644e80655f1e39e405a29
ff24a235a1643ff7db6cbefb2be6b4e7f477635a
/yosim/alerts/templatetags/custom_pagination.py
7f9a712743583f87187b3781fc851a1c3e1dbbc8
[ "MIT" ]
permissive
thoongnv/yosim
15108f91e0a8cae83b88b52fefbe643211a411f5
22bcaceb2c40735363496d9404970a73c4b944bc
refs/heads/master
2023-01-11T00:42:18.841630
2020-04-02T07:32:16
2020-04-02T07:32:16
252,385,913
5
0
MIT
2022-12-26T20:39:55
2020-04-02T07:31:28
HTML
UTF-8
Python
false
false
1,550
py
# -*- coding: utf-8 -*- from django import template register = template.Library() @register.filter(name="get_paging_list") def get_paging_list(value, curr_page_num): """ Return a list of pages which skip pages in the middle Use: {% for a in value_list|get_paging_list:curr_page_num %} """ num_of_pages_per_side = 7 # num pages in the left or right num_of_pages = len(value) # length of value new_value = [] if num_of_pages <= 20: return value closest_curr_page = [x for x in range( curr_page_num - 2, curr_page_num + 3) if x >= 0] default_left_value = list(range(1, num_of_pages_per_side + 1)) default_right_value = list(range( num_of_pages - num_of_pages_per_side, num_of_pages + 1)) if curr_page_num <= num_of_pages // 2: left_value = [] if closest_curr_page[-1] > num_of_pages_per_side: left_value = list(range(1, len(closest_curr_page) + 1)) left_value += closest_curr_page else: left_value = default_left_value new_value = left_value + ['skip'] + default_right_value else: right_value = [] if closest_curr_page[0] >= (num_of_pages - num_of_pages_per_side): right_value = default_right_value else: right_value = closest_curr_page right_value += list(range( num_of_pages - len(closest_curr_page), num_of_pages + 1)) new_value = default_left_value + ['skip'] + right_value return new_value
[ "thoongnv@gmail.com" ]
thoongnv@gmail.com
e5673244d7a65ed433c8ef18ff944d9dda5be7f3
f3e1814436faac544cf9d56182b6658af257300a
/CODECHEF/Positive AND.py
8a3f3ebe7fd2c6670f25a7185216f4963b423d3e
[]
no_license
preetmodh/COMPETETIVE_CODING_QUESTIONS
36961b8b75c9f34e127731eb4ffb5742e577e8a2
c73afb87d197e30d801d628a9db261adfd701be9
refs/heads/master
2023-07-15T03:19:15.330633
2021-05-16T10:17:20
2021-05-16T10:17:20
279,030,727
2
1
null
2021-01-12T03:55:26
2020-07-12T09:18:57
Python
UTF-8
Python
false
false
775
py
# -*- coding: utf-8 -*- """ Created on Sat Oct 3 09:36:48 2020 @author: PREET MODH """ def isTwo(n): if (n == 0): return False while (n != 1): if (n % 2 != 0): return False n = n // 2 return True for _ in range(int(input())): n=int(input()) if n==1: print(n) elif isTwo(n): print(-1) else: a=[] i=n while(i>3): if isTwo(i-1): a.append(i-1) a.append(i) i=i-2 else: a.append(i) i=i-1 a.append(1) a.append(3) a.append(2) a.reverse() print(' '.join(map(str,a)))
[ "noreply@github.com" ]
preetmodh.noreply@github.com
ddad622ade716b1be95c399186dc7519091686cb
2d34b3a61a5fc9a00c01a9177ecb0f0f94599bd6
/pickle84.py
f51178d198ba37b1081a0a350419e1f002b7807f
[]
no_license
Trilokpandey/pythonprogrammings
9e3077961a99c749843ce0dd5e13436cfed92cb8
2641f4bb62ba09914344a4fc16745006fc793a09
refs/heads/oops_concept
2020-05-03T06:16:54.966904
2019-10-03T06:32:32
2019-10-03T06:32:32
178,469,460
0
0
null
2019-10-03T06:34:15
2019-03-29T20:09:45
Python
UTF-8
Python
false
false
289
py
import pickle #pickling a python obj #cars=["suzuki","audi","ferrari","hundai","inova"] #file="mycar.pkl" #fileobj=open(file,"wb") #pickle.dump(cars,fileobj) #fileobj.close() file="mycar.pkl" fileobj=open(file,"rb") mycar=pickle.load(fileobj) print(mycar) print(type(mycar))
[ "noreply@github.com" ]
Trilokpandey.noreply@github.com
7c8010869b179425dcbad925ffae1938f0d89fb0
075f70880eb2496a97cf792fa34fdff281b73bbc
/hat.py
ddae45848e8e5c0f50473d218970221de68b4130
[ "MIT" ]
permissive
MiodragDronjakDev/DES-Python
d877dda312918beeb53ecaa32c7f87c77142f625
20e605c77eee5e6019ca3427ca27f5b41a13a8b8
refs/heads/master
2021-05-27T05:50:32.959075
2014-04-16T17:39:29
2014-04-16T17:39:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,097
py
# # ---------------------------------------------------------------------- * # * A Monte Carlo simulation of the hat check girl problem. * # * * # * Name : hat.c * # * Authors : Steve Park & Dave Geyer * # * Language : ANSI C * # * Latest Revision : 09-16-95 * # # Translated by : Philip Steele # # Language : Python 3.3 # # Latest Revision : 3/26/14 # * ---------------------------------------------------------------------- */ from rng import putSeed, random # global variables */ #i # replication index */ #arr # array */ count = 0 # # of times a match occurs */ #p # probability estimate */ SIZE = 10 # array size */ N = 10000 # number of replications */ def Equilikely(a,b): # # ------------------------------------------------ # * generate an Equilikely random variate, use a < b # * ------------------------------------------------ # */ return (a + int((b - a + 1) * random())) # ============================== */ def Initialize(a): # ============================== */ for j in range(0,SIZE): a[j] = j # =========================== */ def Shuffle(a): # =========================== */ for j in range(0,SIZE-1): # shuffle an array */ t = Equilikely(j, (SIZE - 1)) # in such a way that all */ hold = a[j] # permutations are equally */ a[j] = a[t] # likely to occur */ a[t] = hold # ============================ */ def Check(a): # ============================ */ j = 0 test = 0 condition = True while(condition==True): # test to see if at least */ test = (a[j] == j) # one element is in its */ j += 1 # 'natural' position */ condition = (j != SIZE) and (test==0) # - return a 1 if so */ # - return a 0 otherwise */ if (test == 1): return(1) else: return(0) ###############################Main Program############################## putSeed(0) arr = [None for i in range(0,SIZE)] Initialize(arr) for i in range(0,N): # do N Monte Carlo replications */ Shuffle(arr) count += Check(arr) p = float(N - count) / N # estimate the probability */ print("\nfor {0:1d} replications and an array of size {1:d}".format(N, SIZE)) print("the estimated probability is {0:5.3f}".format(p)) # c output: # Enter a positive integer seed (9 digits or less) >> 123456789 # for 10000 replications and an array of size 10 # the estimated probability is 0.369
[ "notphilip@gmail.com" ]
notphilip@gmail.com
5b2fdecddf64b6b884a9b0c2fd18f1775d9a7c74
224723b94160827e1a4ba700d74503b05b40a283
/basics_data_structure/map.py
df57f431b4964be9d12fd4b1129e357750bc10a5
[ "MIT" ]
permissive
corenel/algorithm-exercises
471dff88c9a67845f47d1def2a56b9efd1cfe41f
f3f31f709e289e590c98247c019d36fc9cc44faf
refs/heads/master
2020-04-21T15:45:03.283015
2019-03-01T14:20:05
2019-03-01T14:20:05
169,678,528
0
0
null
null
null
null
UTF-8
Python
false
false
81
py
""" Map https://algorithm.yuanbin.me/zh-hans/basics_data_structure/map.html """
[ "xxdsox@gmail.com" ]
xxdsox@gmail.com
17f1b975b7a237e1d20bbe04ad9c21ace1aabc72
3bb4f4c802cdbdb16ce869dfcbadcfa6e393dd34
/src/est_dir/PI_XY.py
ef3b86733a0c0219645d30f1fb2070d300d367bf
[ "MIT" ]
permissive
Megscammell/Estimate-of-direction-in-RSM
b5ed1b4d00ebf08e0f2d127552274d307e24c5af
3ab2678617203a7046f61b9c38b0f4878ed336fe
refs/heads/main
2023-04-18T03:04:50.782508
2022-04-20T12:31:42
2022-04-20T12:31:42
339,388,391
0
0
MIT
2022-07-05T17:13:04
2021-02-16T12:15:48
Python
UTF-8
Python
false
false
14,618
py
import numpy as np import time import est_dir def compute_direction_XY(n, m, centre_point, f, func_args, no_vars, region): """ Compute estimate of the search direction by multiplying the transpose of the design matrix with the response vector. Parameters ---------- n : integer Number of observations of the design matrix (rows). m : integer Number of variables of the design matrix (columns). centre_point : 1-D array with shape (m,) Centre point of design. f : function response function. `f(point, *func_args) -> float` where point` is a 1-D array with shape(d, ) and func_args is a tuple of arguments needed to compute the response function value. func_args : tuple Arguments passed to the function f. no_vars : integer If no_vars < m, the size of the resulting design matrix is (n, no_vars). Since the centre_point is of size (m,), a random subset of variables will need to be chosen to evaluate the design matrix centred at centre_point. The parameter no_vars will be used to generate a random subset of positions, which correspond to the variable indices of centre_point in which to centre the design matrix. region : float Region of exploration around the centre point. Returns ------- direction : 1-D array Estimated search direction. func_evals : integer Number of times the response function has been evaluated to compute the search direction. """ act_design, y, positions, func_evals = (est_dir.compute_random_design (n, m, centre_point, no_vars, f, func_args, region)) direction = np.zeros((m,)) direction[positions] = est_dir.divide_abs_max_value(act_design.T @ y) assert(max(abs(direction) == 1)) return direction, func_evals def calc_first_phase_RSM_XY(centre_point, init_func_val, f, func_args, n, m, const_back, back_tol, const_forward, forward_tol, step, no_vars, region): """ Compute iteration of local search, where search direction is estimated by compute_direction_XY(), and the step size is computed using either forward or backward tracking. Parameters ---------- centre_point : 1-D array with shape (m,) Centre point of design. init_func_val: float Initial function value at centre_point. That is, f(centre_point, *func_args). f : function response function. `f(point, *func_args) -> float` where point` is a 1-D array with shape(d, ) and func_args is a tuple of arguments needed to compute the response function value. func_args : tuple Arguments passed to the function f. n : integer Number of observations of the design matrix. m : integer Number of variables. const_back : float If backward tracking is required, the initial guess of the step size will be multiplied by const_back at each iteration of backward tracking. That is, t <- t * const_back It should be noted that const_back < 1. back_tol : float It must be ensured that the step size computed by backward tracking is not smaller than back_tol. If this is the case, iterations of backward tracking are terminated. Typically, back_tol is a very small number. const_forward : float The initial guess of the step size will be multiplied by const_forward at each iteration of forward tracking. That is, t <- t * const_back It should be noted that const_forward > 1. forward_tol : float It must be ensured that the step size computed by forward tracking is not greater than forward_tol. If this is the case, iterations of forward tracking are terminated. step : float Initial guess of step size. no_vars : integer If no_vars < m, the size of the resulting design matrix is (n, no_vars). Since the centre_point is of size (m,), a random subset of variables will need to be chosen to evaluate the design matrix centred at centre_point. The parameter no_vars will be used to generate a random subset of positions, which correspond to the variable indices of centre_point in which to centre the design matrix. region : float Region of exploration around the centre point. Returns ------- upd_point : 1-D array Updated centre_point after applying local search with estimated direction and step length. f_new : float Response function value at upd_point. That is, f(upd_point, *func_args). total_func_evals_step : integer Total number of response function evaluations to compute step length. total_func_evals_dir : integer Total number of response function evaluations to compute direction. """ direction, total_func_evals_dir = (compute_direction_XY (n, m, centre_point, f, func_args, no_vars, region)) (upd_point, f_new, total_func_evals_step) = (est_dir.combine_tracking (centre_point, init_func_val, direction, step, const_back, back_tol, const_forward, forward_tol, f, func_args)) return (upd_point, f_new, total_func_evals_step, total_func_evals_dir) def calc_its_until_sc_XY(centre_point, f, func_args, n, m, f_no_noise, func_args_no_noise, no_vars, region, max_func_evals, const_back=0.5, back_tol=0.000001, const_forward=2, forward_tol=100000000): """ Compute iterations of Phase I of response surface methodology until some stopping criterion is met. The direction is estimated by compute_direction_XY() at each iteration. The step length is computed by forward or backward tracking. Parameters ---------- centre_point : 1-D array with shape (m,) Centre point of design. f : function response function. `f(point, *func_args) -> float` where point` is a 1-D array with shape(d, ) and func_args is a tuple of arguments needed to compute the response function value. func_args : tuple Arguments passed to the function f. n : integer Number of observations of the design matrix. m : integer Number of variables. f_no_noise : function response function with no noise. `f_no_noise(point, *func_args_no_noise) -> float` where point` is a 1-D array with shape(d, ) and func_args_no_noise is a tuple of arguments needed to compute the response function value. func_args_no_noise : tuple Arguments passed to the function f_no_noise. no_vars : integer If no_vars < m, the size of the resulting design matrix is (n, no_vars). Since the centre_point is of size (m,), a random subset of variables will need to be chosen to evaluate the design matrix centred at centre_point. The parameter no_vars will be used to generate a random subset of positions, which correspond to the variable indices of centre_point in which to centre the design matrix. region : float Region of exploration around the centre point. max_func_evals : int Maximum number of function evaluations before stopping. const_back : float If backward tracking is required, the initial guess of the step size will be multiplied by const_back at each iteration of backward tracking. That is, t <- t * const_back It should be noted that const_back < 1. back_tol : float It must be ensured that the step size computed by backward tracking is not smaller than back_tol. If this is the case, iterations of backward tracking are terminated. Typically, back_tol is a very small number. const_forward : float The initial guess of the step size will be multiplied by const_forward at each iteration of forward tracking. That is, t <- t * const_back It should be noted that const_forward > 1. forward_tol : float It must be ensured that the step size computed by forward tracking is not greater than forward_tol. If this is the case, iterations of forward tracking are terminated. Returns ------- upd_point : 1-D array Updated centre_point after applying local search with estimated direction and step length. init_func_val : float Initial function value at initial centre_point. f_val : float Final response function value after stopping criterion has been met for phase I of RSM. full_time : float Total time taken. total_func_evals_step : integer Total number of response function evaluations to compute step length for all iterations. total_func_evals_dir : integer Total number of response function evaluations to compute direction for all iterations. no_iterations : integer Total number of iterations of Phase I of RSM. store_good_dir : integer Number of 'good' search directions. That is, the number of times moving along the estimated search direction improves the response function value with no noise. store_good_dir_norm : list If a 'good' direction is determined, distance of point and minimizer at the k-th iteration subtracted by the distance of point and minimizer at the (k+1)-th iteration is stored. store_good_dir_func : list If a 'good' direction is determined, store the response function value with point at the k-th iteration, subtracted by response function value with point at the (k+1)-th iteration. """ t0 = time.time() if (no_vars > m): raise ValueError('Incorrect no_vars choice') store_good_dir = 0 store_good_dir_norm = [] store_good_dir_func = [] total_func_evals_step = 0 total_func_evals_dir = 0 step = 1 init_func_val = f(centre_point, *func_args) (upd_point, f_val, func_evals_step, func_evals_dir) = (calc_first_phase_RSM_XY (centre_point, np.copy(init_func_val), f, func_args, n, m, const_back, back_tol, const_forward, forward_tol, step, no_vars, region)) total_func_evals_step += func_evals_step total_func_evals_dir += func_evals_dir no_iterations = 1 if (f_no_noise(centre_point, *func_args_no_noise) > f_no_noise(upd_point, *func_args_no_noise)): store_good_dir += 1 store_good_dir_norm.append(np.linalg.norm(centre_point - func_args[0]) - np.linalg.norm(upd_point - func_args[0])) store_good_dir_func.append(f_no_noise(centre_point, *func_args_no_noise) - f_no_noise(upd_point, *func_args_no_noise)) while (total_func_evals_step + total_func_evals_dir + n) < max_func_evals: centre_point = upd_point new_func_val = f_val step = 1 (upd_point, f_val, func_evals_step, func_evals_dir) = (calc_first_phase_RSM_XY (centre_point, np.copy(new_func_val), f, func_args, n, m, const_back, back_tol, const_forward, forward_tol, step, no_vars, region)) total_func_evals_step += func_evals_step total_func_evals_dir += func_evals_dir no_iterations += 1 if (f_no_noise(centre_point, *func_args_no_noise) > f_no_noise(upd_point, *func_args_no_noise)): store_good_dir += 1 store_good_dir_norm.append(np.linalg.norm(centre_point - func_args[0]) - np.linalg.norm(upd_point - func_args[0])) store_good_dir_func.append(f_no_noise(centre_point, *func_args_no_noise) - f_no_noise(upd_point, *func_args_no_noise)) t1 = time.time() full_time = t1-t0 return (upd_point, init_func_val, f_val, full_time, total_func_evals_step, total_func_evals_dir, no_iterations, store_good_dir, store_good_dir_norm, store_good_dir_func)
[ "scammellm@cardiff.ac.uk" ]
scammellm@cardiff.ac.uk
668f5984e9c406fbaded1f3c078e0316c04105b0
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Apps/Blog/code-snippets/Logging-Basics/log-sample.py
279bd14fe78f041e2443662a48a09ee6b517a618
[]
no_license
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:5e05432d84deb8f3ab66bcb1fb3e421f96a12ed93a6a429cea802ed2cee299b4 size 1363
[ "nateweiler84@gmail.com" ]
nateweiler84@gmail.com
3c5e2a719407980c49c1e4b327810659aa3890a4
cf31d0972db205dad89f75bbb844e7e47b5b8414
/Season 10 - Advanced Python Development/Episode 09 - TIming your code with python.py
fbe1e622bce2a6cdfcfd5b12cdb9d21c20c5b27d
[ "MIT" ]
permissive
barawalojas/Python-tutorial
0479e6af4ca36ebec1f089cb4deebd5657c6500a
3f4b2b073e421888b3d62ff634658317d9abcb9b
refs/heads/main
2023-07-21T23:52:17.998627
2021-07-30T05:45:46
2021-07-30T05:45:46
391,827,816
1
0
MIT
2021-08-02T05:50:30
2021-08-02T05:39:38
null
UTF-8
Python
false
false
595
py
# Timing your code import time def powers(limit): return [x**2 for x in range(limit)] # start = time.time() # that means time module and the time() function within that module gives current time in seconds since 1970. # powers(5000000) # end = time.time() # # print(end - start) def measure_runtime(func): start = time.time() func() end = time.time() print(end - start) measure_runtime(lambda: powers(500000)) import timeit # timeit is used to get the time that the running function will be going to take. print(timeit.timeit('[x**2 for x in range(10)]'))
[ "noreply@github.com" ]
barawalojas.noreply@github.com
81ffd6cd55fc6f300cfccc0c640f162a9e461e86
b94df1e9f32d4461aea16fb4104e88a3cbe2f7d2
/cimg/io/get_web_images.py
eb962c82428d05579854a5501b1c425a88084590
[]
no_license
piandpower/cio-images
f985916cc6bd0b249ced4149c51ea3dbe7de735f
c75f01e7d9288d00e4bd0bad2cf04b51653e8fe5
refs/heads/master
2021-01-18T11:12:56.216731
2016-02-18T18:52:48
2016-02-18T18:52:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
864
py
import os import urllib import cv2 def get_web_images(url_list_file=None,credentials_file=None,save_dir=None): with open(credentials_file,'r') as c: creds = c.readline().rstrip() # rstrip strips the newline character with open(url_list_file,'r') as f: for i, line in enumerate(f): line = line.rsplit('\n',1)[0] # strip newline character url = line.split('//',1)[0] + '//' + creds +line.split('//',1)[1] image = url.rsplit('/',1)[1] img_path = os.path.join(save_dir,image) urllib.urlretrieve(url,img_path) file, ext = os.path.splitext(os.path.basename(img_path)) if ext is "": img = cv2.imread(img_path) cv2.imwrite(img_path+'.jpg',img) os.remove(img_path)
[ "ryoungblood@continuum.io" ]
ryoungblood@continuum.io
90748839c67cf0ab73582813cd4b72ecd3518bb9
8fb859aaad34da2dd219acc06c515f9101ff6ccf
/emailing/migrations/0002_emailcampaign_is_announcement.py
62a3c5e5f1765b8dafd64abd29c5b36bfb5498f4
[ "CC0-1.0", "LicenseRef-scancode-public-domain" ]
permissive
establishment/django-establishment
7a63e1e4928a13bd4a7601cda9e1b382c407e97a
0ef8fe4f02e530f60ff9fed6d45d56d1f61304a8
refs/heads/master
2023-08-30T21:03:01.675185
2023-08-30T14:12:01
2023-08-30T14:12:01
84,206,858
1
0
null
2023-08-09T14:31:32
2017-03-07T14:13:01
JavaScript
UTF-8
Python
false
false
455
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-05-10 16:38 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('emailing', '0001_initial'), ] operations = [ migrations.AddField( model_name='emailcampaign', name='is_announcement', field=models.BooleanField(default=True), ), ]
[ "mihai.ciucu@gmail.com" ]
mihai.ciucu@gmail.com
cfb75f088ee81a003c4743909773e4dd113a8fe6
a77506512555402b6a2063349c28e9a1e87b9f5c
/bin/easy_install
270d5f574254e41d2df787c32e4767c01587ba0d
[]
no_license
daleighan/MLsandbox-service
8d06bd409f7346290f816218022d9c367c7aace6
685258bd342c3306edc2c8e85dc2a5c53f64e93e
refs/heads/master
2022-12-13T21:26:33.954514
2018-02-06T01:57:06
2018-02-06T01:57:06
107,054,605
0
1
null
2022-12-08T00:41:07
2017-10-15T22:43:39
Python
UTF-8
Python
false
false
270
#!/Users/alexleigh/Documents/handwriting/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "daleighan@gmail.com" ]
daleighan@gmail.com
db311ac4dfca17b199304e3bcd251f41e2a32afe
395f974e62eafed74572efebcd91d62966e61639
/tstl/tocorpus.py
9d48e1807e4996764aad03ba0c12fbc3cc97166f
[ "Apache-2.0" ]
permissive
agroce/tstl
ad386d027f0f5ff750eab19a722a4b119ed39211
8d43ef7fa49534868e6cdf1697863748260405c7
refs/heads/master
2023-08-08T19:14:52.020314
2023-07-26T17:51:36
2023-07-26T17:51:36
32,408,285
106
33
NOASSERTION
2021-01-26T19:05:17
2015-03-17T17:14:04
Python
UTF-8
Python
false
false
736
py
from __future__ import print_function import sys import os # Appending current working directory to sys.path # So that user can run randomtester from the directory where sut.py is located current_working_dir = os.getcwd() sys.path.append(current_working_dir) if "--help" not in sys.argv: import sut as SUT def main(): if "--help" in sys.argv: print("Usage: tstl_toafl <outputdir> <files>") sys.exit(0) sut = SUT.sut() outputDir = sys.argv[1] files = sys.argv[2:] i = 0 for f in files: t = sut.loadTest(f) sut.saveTest( t, outputDir + "/" + os.path.basename(f) + ".afl", afl=True) i += 1
[ "agroce@gmail.com" ]
agroce@gmail.com
391ffd365fa50354ba0543521936c9fc3a692916
4c17ccb8ffb4b60d9ad3570aa22f2091e1560d6e
/config_example.py
15222daa63f1f894339def9f55960f8f74371977
[]
no_license
joshuasellers/SpotifyScript
9590ce053bffc3d7d925bf50c9809655cfbc8e09
b90460db8d7a50a6fd6143c8dab98058544eb75b
refs/heads/master
2022-02-14T21:22:42.967462
2019-07-26T18:05:02
2019-07-26T18:05:02
198,123,285
0
0
null
null
null
null
UTF-8
Python
false
false
58
py
username = 'YOUR USERNAME HERE' token = 'YOUR TOKEN HERE'
[ "joshuasellersd@gmail.com" ]
joshuasellersd@gmail.com
1d8e72b32fde703e932a856adb5776e009e9de15
2bac6c01e1d881cdd786ce5a79e1c7941870ff5f
/src/warmup_project/src/PID_controller.py
533411bbd321d0004b319ed380557c009413e674
[]
no_license
dianavermilya/comprobo2014
c701521b254d564d565fd9b1791481d0e72cbb47
00128653e85dddc9ebe8863aa20c8e8926e134a3
refs/heads/master
2020-12-31T03:03:00.815513
2014-10-07T20:27:09
2014-10-07T20:27:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
import math class PIDcontroller(object): def __init__(self, name="rbt"): self.name = name self._distanceFromWall = 0 self._angleOfWallNormal = 0 self.rotation = 0 def setDistanceFromWall(self, distance): self._distanceFromWall = distance def setAngleOfWallNormal(self, smallest_idx): self._angleOfWallNormal = smallest_idx def calculateRotationToFollowWall(self): beNormalToWall = (self._angleOfWallNormal-90)*(0.01) beNearWall = (self._distanceFromWall - 0.3)*(0.8) print self._angleOfWallNormal, self._distanceFromWall print beNormalToWall, beNearWall self.rotation = beNormalToWall + beNearWall def calculateRotationToFollowObject(self, error): self.rotation = error*0.01
[ "dianavermilya@gmail.com" ]
dianavermilya@gmail.com
7f2e195719c3c38d26f1630fb572a0be0a1a054f
a5cd88d80d2c6af43528153199c86eacbea22f55
/python/7. Reverse Integer.py
0d2ae14b79b2e7ba62664199c6fcc8ec8941adbf
[]
no_license
qingmm/leetcode
c23a674a9051227b26288105482f99ce128abb00
ae2ac905cb6ad216e554332388f1ec37e45ed0df
refs/heads/master
2020-03-11T15:14:55.444601
2018-09-23T13:58:22
2018-09-23T13:58:22
130,078,586
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
class Solution(object): def reverse(self, x): """ :type x: int :rtype: int """ isPosit = 1 if - 10 < x < 10: return x if x < 0: isPosit = -1 x = -x x = str(x) r = x[::-1] if r[0] == '0': r = r[1:] r = int(r) * isPosit if - 2 ** 31 > r or r > (2 ** 31 -1): return 0 else: return r
[ "noreply@github.com" ]
qingmm.noreply@github.com
0c0f28675227bbb1264910438397c03f89078fc4
c99e6313d6c6a16ea7e48f76d28a9bdd49e536e9
/vframe_cli/commands/pipe/blur.py
5cf1b7ae398a34650f2908ddfaae718fc2e65901
[ "MIT" ]
permissive
julescarbon/vframe
5df679a9442f1639b45e2d0d7ffa61c75d670079
0798841fa9eb7e1252e4cdf71d68d991c26acab8
refs/heads/master
2022-12-26T04:10:12.819755
2020-10-07T21:24:46
2020-10-07T21:24:46
298,809,000
1
0
MIT
2020-09-26T12:25:28
2020-09-26T12:25:27
null
UTF-8
Python
false
false
2,289
py
############################################################################# # # VFRAME # MIT License # Copyright (c) 2020 Adam Harvey and VFRAME # https://vframe.io # ############################################################################# import click from vframe.utils.click_utils import processor @click.command('') @click.option( '-n', '--name', 'opt_data_keys', multiple=True, help='Data key for ROIs') @click.option('--fac', 'opt_factor', default=0.5, show_default=True, help='Strength to apply redaction filter') @click.option('--iters', 'opt_iters', default=2, show_default=True, help='Blur iterations') @click.option('--expand', 'opt_expand', default=0.25, show_default=True, help='Percentage to expand') @processor @click.pass_context def cli(ctx, pipe, opt_data_keys, opt_factor, opt_iters, opt_expand): """Blurs BBoxes""" from vframe.settings import app_cfg from vframe.models import types from vframe.utils import im_utils # --------------------------------------------------------------------------- # TODO # - add oval shape blurring # --------------------------------------------------------------------------- # initialize log = app_cfg.LOG # --------------------------------------------------------------------------- # Example: process images as they move through pipe while True: pipe_item = yield header = ctx.obj['header'] im = pipe_item.get_image(types.FrameImage.DRAW) dim = im.shape[:2][::-1] # get data keys if not opt_data_keys: data_keys = header.get_data_keys() else: data_keys = opt_data_keys # iterate data keys for data_key in data_keys: if data_key not in header.get_data_keys(): log.warn(f'data_key: {data_key} not found') # get data item_data = header.get_data(data_key) # blur data if item_data: for obj_idx, detection in enumerate(item_data.detections): bbox = detection.bbox.expand_per(opt_expand).redim(dim) # TODO: handle segmentation mask for i in range(opt_iters): im = im_utils.blur_roi(im, bbox) # resume pipe stream pipe_item.set_image(types.FrameImage.DRAW, im) pipe.send(pipe_item)
[ "adam@ahprojects.com" ]
adam@ahprojects.com
5668b8decddce2b5c526c284361d630bcb104ae0
916609f4634935a9c6661baf5540f15182860941
/Integration/Bluetooth/example_advertisement.py
defeea7c88b4db1ac5f05f42817f90aa71ae39be
[ "MIT" ]
permissive
Vidur-CUBoulder/GroceryRecommendataion
0211e57e9f6c667fd41a774fc97aef64b14790d5
26de07156f4cd4ba5b008c8296c9c23be4032a54
refs/heads/master
2021-04-06T08:44:19.746367
2018-03-12T18:14:21
2018-03-12T18:14:21
124,931,527
0
0
null
null
null
null
UTF-8
Python
false
false
6,123
py
#!/usr/bin/python import dbus import dbus.exceptions import dbus.mainloop.glib import dbus.service import array import gobject from random import randint mainloop = None BLUEZ_SERVICE_NAME = 'org.bluez' LE_ADVERTISING_MANAGER_IFACE = 'org.bluez.LEAdvertisingManager1' DBUS_OM_IFACE = 'org.freedesktop.DBus.ObjectManager' DBUS_PROP_IFACE = 'org.freedesktop.DBus.Properties' LE_ADVERTISEMENT_IFACE = 'org.bluez.LEAdvertisement1' class InvalidArgsException(dbus.exceptions.DBusException): _dbus_error_name = 'org.freedesktop.DBus.Error.InvalidArgs' class NotSupportedException(dbus.exceptions.DBusException): _dbus_error_name = 'org.bluez.Error.NotSupported' class NotPermittedException(dbus.exceptions.DBusException): _dbus_error_name = 'org.bluez.Error.NotPermitted' class InvalidValueLengthException(dbus.exceptions.DBusException): _dbus_error_name = 'org.bluez.Error.InvalidValueLength' class FailedException(dbus.exceptions.DBusException): _dbus_error_name = 'org.bluez.Error.Failed' class Advertisement(dbus.service.Object): PATH_BASE = '/org/bluez/example/advertisement' def __init__(self, bus, index, advertising_type): self.path = self.PATH_BASE + str(index) self.bus = bus self.ad_type = advertising_type self.service_uuids = None self.manufacturer_data = None self.solicit_uuids = None self.service_data = None self.local_name = None self.include_tx_power = None dbus.service.Object.__init__(self, bus, self.path) def get_properties(self): properties = dict() properties['Type'] = self.ad_type if self.service_uuids is not None: properties['ServiceUUIDs'] = dbus.Array(self.service_uuids, signature='s') if self.solicit_uuids is not None: properties['SolicitUUIDs'] = dbus.Array(self.solicit_uuids, signature='s') if self.manufacturer_data is not None: properties['ManufacturerData'] = dbus.Dictionary( self.manufacturer_data, signature='qv') if self.service_data is not None: properties['ServiceData'] = dbus.Dictionary(self.service_data, signature='sv') if self.local_name is not None: properties['LocalName'] = dbus.String(self.local_name) if self.include_tx_power is not None: properties['IncludeTxPower'] = dbus.Boolean(self.include_tx_power) return {LE_ADVERTISEMENT_IFACE: properties} def get_path(self): return dbus.ObjectPath(self.path) def add_service_uuid(self, uuid): if not self.service_uuids: self.service_uuids = [] self.service_uuids.append(uuid) def add_solicit_uuid(self, uuid): if not self.solicit_uuids: self.solicit_uuids = [] self.solicit_uuids.append(uuid) def add_manufacturer_data(self, manuf_code, data): if not self.manufacturer_data: self.manufacturer_data = dbus.Dictionary({}, signature='qv') self.manufacturer_data[manuf_code] = dbus.Array(data, signature='y') def add_service_data(self, uuid, data): if not self.service_data: self.service_data = dbus.Dictionary({}, signature='sv') self.service_data[uuid] = dbus.Array(data, signature='y') def add_local_name(self, name): if not self.local_name: self.local_name = "" self.local_name = dbus.String(name) @dbus.service.method(DBUS_PROP_IFACE, in_signature='s', out_signature='a{sv}') def GetAll(self, interface): print 'GetAll' if interface != LE_ADVERTISEMENT_IFACE: raise InvalidArgsException() print 'returning props' return self.get_properties()[LE_ADVERTISEMENT_IFACE] @dbus.service.method(LE_ADVERTISEMENT_IFACE, in_signature='', out_signature='') def Release(self): print '%s: Released!' % self.path class TestAdvertisement(Advertisement): def __init__(self, bus, index): Advertisement.__init__(self, bus, index, 'peripheral') self.add_service_uuid('180D') self.add_service_uuid('180F') self.add_manufacturer_data(0xffff, [0x00, 0x01, 0x02, 0x03, 0x04]) self.add_service_data('9999', [0x00, 0x01, 0x02, 0x03, 0x04]) self.add_local_name('TestAdvertisement') self.include_tx_power = True def register_ad_cb(): print 'Advertisement registered' def register_ad_error_cb(error): print 'Failed to register advertisement: ' + str(error) mainloop.quit() def find_adapter(bus): remote_om = dbus.Interface(bus.get_object(BLUEZ_SERVICE_NAME, '/'), DBUS_OM_IFACE) objects = remote_om.GetManagedObjects() for o, props in objects.iteritems(): if LE_ADVERTISING_MANAGER_IFACE in props: return o return None def advertisement_main(): global mainloop dbus.mainloop.glib.DBusGMainLoop(set_as_default=True) bus = dbus.SystemBus() adapter = find_adapter(bus) if not adapter: print 'LEAdvertisingManager1 interface not found' return adapter_props = dbus.Interface(bus.get_object(BLUEZ_SERVICE_NAME, adapter), "org.freedesktop.DBus.Properties"); adapter_props.Set("org.bluez.Adapter1", "Powered", dbus.Boolean(1)) ad_manager = dbus.Interface(bus.get_object(BLUEZ_SERVICE_NAME, adapter), LE_ADVERTISING_MANAGER_IFACE) test_advertisement = TestAdvertisement(bus, 0) mainloop = gobject.MainLoop() ad_manager.RegisterAdvertisement(test_advertisement.get_path(), {}, reply_handler=register_ad_cb, error_handler=register_ad_error_cb) mainloop.run() #if __name__ == '__main__': # main()
[ "vidur.sarin@colorado.edu" ]
vidur.sarin@colorado.edu
d1b49a0805ebc3d542b9038960df61c3a804cba4
4433346bc204ebfc5d327df83a5aeca6e81a9a85
/review_service/review_service/oauth/google/endpoints.py
dd0c5333a2490560c9177defe6bde520e5a238c5
[]
no_license
vladlubenskiy/review-service
b33e3c2381d6959847e44c3883cfdedfad4e6e17
f5d929aa7bbc57eacd25ba105d32b42d8d121457
refs/heads/master
2021-01-10T20:56:39.247725
2012-08-27T18:35:12
2012-08-27T18:35:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
929
py
import os # Google's OAuth 2.0 endpoints AUTH_URL = "https://accounts.google.com/o/oauth2/auth" CODE_ENDPOINT = "https://accounts.google.com/o/oauth2/token" TOKENINFO_URL = "https://accounts.google.com/o/oauth2/tokeninfo" USERINFO_URL = "https://www.googleapis.com/oauth2/v1/userinfo" SCOPE = "https://www.googleapis.com/auth/userinfo.email https://www.googleapis.com/auth/userinfo.profile" LOGOUT_URI = 'https://accounts.google.com/logout' # client ID / secret & cookie key CLIENT_ID = '219211176840.apps.googleusercontent.com' CLIENT_SECRET = 'PitmLoQjvrjnuofnfj8iN1qq' COOKIE_KEY = os.urandom(64) is_secure = os.environ.get('HTTPS') == 'on' protocol = {False: 'http', True: 'https'}[is_secure] SECURE_ROOT_URL = protocol + '://localhost:8002' UNSAFE_ROOT_URL = "http://localhost:8003" RESPONSE_TYPE = 'code' REDIRECT_URL = 'https://localhost:8002/auth/oauth2callback/' CATCHTOKEN_URL = SECURE_ROOT_URL + '/auth/catchtoken'
[ "vlad.lubenskiy@gmail.com" ]
vlad.lubenskiy@gmail.com
e1244958989cc5a101c7e4a074dec0ca57a8d273
e0045eec29aab56212c00f9293a21eb3b4b9fe53
/sale_management/models/__init__.py
040f6be7de7ea82cb3fba7030e42b9eaad22f15f
[]
no_license
tamam001/ALWAFI_P1
a3a9268081b9befc668a5f51c29ce5119434cc21
402ea8687c607fbcb5ba762c2020ebc4ee98e705
refs/heads/master
2020-05-18T08:16:50.583264
2019-04-30T14:43:46
2019-04-30T14:43:46
184,268,686
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
# -*- coding: utf-8 -*- # Part of ALWAFI. See LICENSE file for full copyright and licensing details. from . import digest from . import res_config_settings from . import sale_order from . import sale_order_template
[ "50145400+gilbertp7@users.noreply.github.com" ]
50145400+gilbertp7@users.noreply.github.com
06ac4a4a4c52dd3b9a8c2bf9d77d1b99d89d0edb
57e4e8ff1db386b0f94152f210abae8fbe3b4ad8
/ex6/ex6.py
608f4b744eeab28d89421bbf5e52e69cbf551357
[]
no_license
jo1jun/Machine-Learning-Python
4938a88e4a1d50ecd684c475b7082baf6e04b1df
391361da6d0e31166c869432f9084463af968d4d
refs/heads/main
2023-03-04T22:06:12.414124
2021-02-19T10:26:47
2021-02-19T10:26:47
332,097,504
0
0
null
null
null
null
UTF-8
Python
false
false
6,199
py
import os os.chdir(os.path.dirname(os.path.abspath(__file__))) import scipy.io from plotData import plotData import sklearn.svm as svm from visualizeBoundaryLinear import visualizeBoundaryLinear import matplotlib.pyplot as plt from gaussianKernel import gaussianKernel from visualizeBoundary import visualizeBoundary from dataset3Params import dataset3Params ## Machine Learning Online Class # Exercise 6 | Support Vector Machines # # Instructions # ------------ # # This file contains code that helps you get started on the # exercise. You will need to complete the following functions: # # gaussianKernel.m # dataset3Params.m # processEmail.m # emailFeatures.m # # For this exercise, you will not need to change any code in this file, # or any other files other than those mentioned above. # ## =============== Part 1: Loading and Visualizing Data ================ # We start the exercise by first loading and visualizing the dataset. # The following code will load the dataset into your environment and plot # the data. # print('=============== Part 1: Loading and Visualizing Data ================') print('Loading and Visualizing Data ...\n') # Load from ex6data1: # You will have X, y in your environment mat = scipy.io.loadmat('ex6data1.mat') X, y = mat['X'], mat['y'].flatten() #print(X.shape) #(51, 2) #print(y.shape) #(51,) # Plot training data plotData(X, y) ## ==================== Part 2: Training Linear SVM ==================== # The following code will train a linear SVM on the dataset and plot the # decision boundary learned. # print('==================== Part 2: Training Linear SVM ====================') # Load from ex6data1: # You will have X, y in your environment mat = scipy.io.loadmat('ex6data1.mat') X, y = mat['X'], mat['y'].flatten() print('Training Linear SVM ...') # You should try to change the C value below and see how the decision # boundary varies (e.g., try C = 1000) # sklearn 을 사용해서 구현 # reference : https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC C = 1 classifier = svm.SVC(C=C, kernel='linear', tol=1e-3) model = classifier.fit(X, y) #.fit(X, y[, sample_weight]) Fit the SVM model according to the given training data. plt.figure() plt.title('C = 1') visualizeBoundaryLinear(X, y, model) #C 가 크지 않은 경우, margin 을 크게 남기려 하는 경향이 적다. 따라서 outlier 를 크게 신경쓰지 않는다. C = 100 classifier = svm.SVC(C=C, kernel='linear', tol=1e-3) model = classifier.fit(X, y) plt.figure() plt.title('C = 100') visualizeBoundaryLinear(X, y, model) #C 가 매우 큰 경우, margin 을 크게 남겨야 비용함수의 크기를 줄일 수 있기 때문에 outlier 를 크게 신경쓴다. ## =============== Part 3: Implementing Gaussian Kernel =============== # You will now implement the Gaussian kernel to use # with the SVM. You should complete the code in gaussianKernel.m # print('=============== Part 3: Implementing Gaussian Kernel ===============') print('\nEvaluating the Gaussian Kernel ...\n') x1 = [1, 2, 1] x2 = [0, 4, -1] sigma = 2 sim = gaussianKernel(x1, x2, sigma) print('Gaussian Kernel between x1 = [1 2 1], x2 = [0 4 -1], sigma = {} :' \ '\n\t{}\n(for sigma = 2, this value should be about 0.324652)\n'.format(sigma, sim)) ## =============== Part 4: Visualizing Dataset 2 ================ # The following code will load the next dataset into your environment and # plot the data. # print('=============== Part 4: Visualizing Dataset 2 ================') print('Loading and Visualizing Data ...\n') # Load from ex6data2: # You will have X, y in your environment mat = scipy.io.loadmat('ex6data2.mat') X, y = mat['X'], mat['y'].flatten() #X.shape = (863,2) , y.shape = (863,) # Plot training data plt.figure() plotData(X, y) ## ========== Part 5: Training SVM with RBF Kernel (Dataset 2) ========== # After you have implemented the kernel, we can now use it to train the # SVM classifier. # print('========== Part 5: Training SVM with RBF Kernel (Dataset 2) ==========') print('\nTraining SVM with RBF Kernel (this may take 1 to 2 minutes) ...\n') # Load from ex6data2: # You will have X, y in your environment mat = scipy.io.loadmat('ex6data2.mat') X, y = mat['X'], mat['y'].flatten() #X.shape = (863,2) , y.shape = (863,) # SVM Parameters C = 1 sigma = 0.1 # We set the tolerance and max_passes lower here so that the code will run # faster. However, in practice, you will want to run the training to # convergence. # kernel='rbf' 는 exp(-gamma*||x-x'||^2) 을 따른다. 따라서 gamma 만 가우시안 커널 공식에 맞게 맞춰주면 된다. # reference : https://scikit-learn.org/stable/modules/svm.html 에서 kernel function 부분 g = 1 / (2 * sigma ** 2) classifier = svm.SVC(C=C, kernel='rbf', tol=1e-3, gamma = g) model = classifier.fit(X, y) visualizeBoundary(X, y, model) ## =============== Part 6: Visualizing Dataset 3 ================ # The following code will load the next dataset into your environment and # plot the data. # print('=============== Part 6: Visualizing Dataset 3 ================') print('Loading and Visualizing Data ...\n') # Load from ex6data3: # You will have X, y in your environment mat = scipy.io.loadmat('ex6data3.mat') X, y = mat['X'], mat['y'].flatten() #X.shape = (211,2) , y.shape = (211,) # Plot training data plt.figure() plotData(X, y) ## ========== Part 7: Training SVM with RBF Kernel (Dataset 3) ========== # This is a different dataset that you can use to experiment with. Try # different values of C and sigma here. # print('========== Part 7: Training SVM with RBF Kernel (Dataset 3) ==========') # Load from ex6data3: # You will have X, y in your environment mat = scipy.io.loadmat('ex6data3.mat') X, y = mat['X'], mat['y'].flatten() #X.shape = (211,2) , y.shape = (211,) Xval, yval = mat['Xval'], mat['yval'].flatten() #Xval.shape = (200,2) , yval.shape = (200,) # Try different SVM Parameters here C, sigma = dataset3Params(X, y, Xval, yval) # Train the SVM classifier = svm.SVC(C=C, kernel='rbf', tol=1e-3, gamma = g) model = classifier.fit(X, y) visualizeBoundary(X, y, model)
[ "andrew6072@naver.com" ]
andrew6072@naver.com
2fb0206d6c16edafcd4cfb224f3237d8d927171a
f65afea25b89cbea0c9d98c69f1f1b67d225ebe5
/code/.ipynb_checkpoints/baseline2.0-checkpoint.py
23e1a1b34271da9c2698bf5e3a9f9f00df1d75b5
[]
no_license
ness001/KDD2020-Debiasing-Team666
7685d03d65050421de22001d00db91e977195ac8
538ebb356691887b2a45d0b0356344d7c1ea27db
refs/heads/master
2022-11-08T02:23:34.253899
2020-06-19T08:40:27
2020-06-19T08:40:27
266,018,990
0
0
null
null
null
null
UTF-8
Python
false
false
5,111
py
import pandas as pd from tqdm import tqdm from collections import defaultdict import math def get_sim_item(df_, user_col, item_col, use_iif=False): df = df_.copy() user_item_ = df.groupby(user_col)[item_col].agg(list).reset_index() user_item_dict = dict(zip(user_item_[user_col], user_item_[item_col])) user_time_ = df.groupby(user_col)['time'].agg(list).reset_index() # 引入时间因素 user_time_dict = dict(zip(user_time_[user_col], user_time_['time'])) sim_item = {} item_cnt = defaultdict(int) # 商品被点击次数 for user, items in tqdm(user_item_dict.items()): for loc1, item in enumerate(items): item_cnt[item] += 1 sim_item.setdefault(item, {}) for loc2, relate_item in enumerate(items): if item == relate_item: continue t1 = user_time_dict[user][loc1] # 点击时间提取 t2 = user_time_dict[user][loc2] sim_item[item].setdefault(relate_item, 0) if not use_iif: if loc1 - loc2 > 0: sim_item[item][relate_item] += 1 * 0.7 * (0.8 ** (loc1 - loc2 - 1)) * ( 1 - (t1 - t2) * 10000) / math.log(1 + len(items)) # 逆向 ??? else: sim_item[item][relate_item] += 1 * 1.0 * (0.8 ** (loc2 - loc1 - 1)) * ( 1 - (t2 - t1) * 10000) / math.log(1 + len(items)) # 正向 else: sim_item[item][relate_item] += 1 / math.log(1 + len(items)) #??? sim_item_corr = sim_item.copy() # 引入AB的各种被点击次数 for i, related_items in tqdm(sim_item.items()): for j, cij in related_items.items(): sim_item_corr[i][j] = cij / ((item_cnt[i] * item_cnt[j]) ** 0.2) return sim_item_corr, user_item_dict def recommend(sim_item_corr, user_item_dict, user_id, top_k, item_num): ''' input:item_sim_list, user_item, uid, 500, 50 # 用户历史序列中的所有商品均有关联商品,整合这些关联商品,进行相似性排序 ''' rank = {} interacted_items = user_item_dict[user_id] interacted_items = interacted_items[::-1] #该user关联的商品 for loc, i in enumerate(interacted_items): a=sorted(sim_item_corr[i].items(), reverse=True) #该商品关联的商品 for j, wij in sorted(sim_item_corr[i].items(), reverse=True)[0:top_k]: if j not in interacted_items: rank.setdefault(j, 0) rank[j] += wij * (0.7 ** loc)# ??? return sorted(rank.items(), key=lambda d: d[1], reverse=True)[:item_num] # fill user to 50 items def get_predict(df, pred_col, top_fill): top_fill = [int(t) for t in top_fill.split(',')] scores = [-1 * i for i in range(1, len(top_fill) + 1)] ids = list(df['user_id'].unique()) fill_df = pd.DataFrame(ids * len(top_fill), columns=['user_id']) fill_df.sort_values('user_id', inplace=True) fill_df['item_id'] = top_fill * len(ids) fill_df[pred_col] = scores * len(ids) df = df.append(fill_df) df.sort_values(pred_col, ascending=False, inplace=True) df = df.drop_duplicates(subset=['user_id', 'item_id'], keep='first') df['rank'] = df.groupby('user_id')[pred_col].rank(method='first', ascending=False) df = df[df['rank'] <= 50] df = df.groupby('user_id')['item_id'].apply(lambda x: ','.join([str(i) for i in x])).str.split(',', expand=True).reset_index() return df now_phase = 0 train_path = '../data/underexpose_train' test_path = '../data/underexpose_test' recom_item = [] whole_click = pd.DataFrame() for c in range(now_phase + 1): print('phase:', c) click_train = pd.read_csv(train_path + '/underexpose_train_click-{}.csv'.format(c), header=None, names=['user_id', 'item_id', 'time']) click_test = pd.read_csv(test_path + '/underexpose_test_click-{}/underexpose_test_click-{}.csv'.format(c, c), header=None, names=['user_id', 'item_id', 'time']) all_click = click_train.append(click_test) whole_click = whole_click.append(all_click) whole_click = whole_click.drop_duplicates(subset=['user_id', 'item_id', 'time'], keep='last') whole_click = whole_click.sort_values('time') item_sim_list, user_item = get_sim_item(whole_click, 'user_id', 'item_id', use_iif=False) for i in tqdm(click_test['user_id'].unique()): rank_item = recommend(item_sim_list, user_item, i, 500, 500) for j in rank_item: recom_item.append([i, j[0], j[1]]) # find most popular items top50_click = whole_click['item_id'].value_counts().index[:50].values top50_click = ','.join([str(i) for i in top50_click]) top50_click.to_csv('') recom_df = pd.DataFrame(recom_item, columns=['user_id', 'item_id', 'sim']) result = get_predict(recom_df, 'sim', top50_click) result.to_csv('baseline.csv', index=False, header=None)
[ "liang.li.ness@gmail.com" ]
liang.li.ness@gmail.com
9a753d7ed86987ee240f92c2ddb890d0f3e5242f
d77dded6a3919834e52a302b940ec7d0b1720c2e
/plots/avgs.py
8bb8485288ed2412fda2aefb697a2ef0967792c9
[]
no_license
MCC04/GPUfarm
6ae2ff0e212afa3deeb9d863b081e193a16b0a4e
cc9d654e879e2d2e9d6ecd3a32784dba59576dca
refs/heads/master
2021-07-20T03:03:14.234081
2020-05-08T12:53:16
2020-05-08T12:53:16
158,508,777
0
0
null
null
null
null
UTF-8
Python
false
false
6,259
py
#!/usr/bin/env python3 # coding=utf-8 #import glob import os import matplotlib.pyplot as plt import numpy as np import math import csv import sys testNum=5 ########## ###MAIN### ########## #import pdb; pdb.set_trace() def main(): res_path = "../results/"+sys.argv[1]+"/" for file in os.listdir(res_path): if file.endswith(".txt"): print(os.path.join(res_path, file)) if file[0:4]=="dev_": ########################## # get all measures in .txt ########################## f=os.path.join(res_path, file) resType=file[4:7] #common lbls=[] evTimes=[] chronoTimes=[] nStreams=[] blocks=[] grids=[] #cos only chunkSizes=[] N=[] M=[] #mat only matSize=[] numMat=[] #blur only imgNum=[] sizeImg=[] if resType=="cos": lbls,evTimes,chronoTimes,chunkSizes,N,M,nStreams,blocks,grids = getCosDatas(f) elif resType=="mat": lbls,evTimes,chronoTimes,matSize,numMat,nStreams,blocks,grids = getMatDatas(f) elif resType=="blu": lbls,evTimes,chronoTimes,sizeImg,imgNum,nStreams,blocks,grids = getBlurDatas(f) csvPath="./output/"+sys.argv[1]+"/"+resType+"_avgs.csv" print("Ev len: ",len(evTimes)) print("Chrono len: ",len(chronoTimes)) print("Lbl len: ",len(lbls)) ####################### # get measures averages ####################### evtmp=[] chtmp=[] evAvgs=[] chAvgs=[] i=0 for i in range(len(evTimes)): if i%testNum!=0 or i==0: evtmp.append(evTimes[i]) chtmp.append(chronoTimes[i]) else: print("Ev TMP: ",evtmp) print("Ch TMP: ",chtmp) e, c = getChunkAvg(evtmp,chtmp) evAvgs.append(e) chAvgs.append(c) evtmp=[] chtmp=[] evtmp.append(evTimes[i]) chtmp.append(chronoTimes[i]) if len(evtmp)==testNum: e, c = getChunkAvg(evtmp,chtmp) evAvgs.append(e) chAvgs.append(c) ##################### # shrink input arrays ##################### if resType=="cos": chunkSizes=chunkSizes[0:len(chunkSizes):testNum] N=N[0:len(N):testNum] M=M[0:len(M):testNum] #nStreams=nStreams[0:len(nStreams):testNum] elif resType=="mat": matSize=matSize[0:len(matSize):testNum] numMat=numMat[0:len(numMat):testNum] elif resType=="blu": imgNum=imgNum[0:len(imgNum):testNum] sizeImg=sizeImg[0:len(sizeImg):testNum] lbls=lbls[0:len(lbls):testNum] nStreams=nStreams[0:len(nStreams):testNum] blocks=blocks[0:len(blocks):testNum] grids=grids[0:len(grids):testNum] print("Event Averages: ",evAvgs) print("Chrono Averages: ",chAvgs) print("LEN Event Avg: ",len(evAvgs)) print("LEN Chrono Avg: ",len(chAvgs)) print("LBLs: ",lbls) ######################### # write avgs in csv files ######################### lbl=lbls[0] with open(csvPath, "wb") as fcsv: writer = csv.writer(fcsv) writer.writerow([lbl]) writeCaption(resType, writer) for i in range(len(evAvgs)): if(lbl!=lbls[i]): lbl=lbls[i] writer.writerow([lbl]) writeCaption(resType, writer) if resType=="cos": #import pdb; pdb.set_trace() writer.writerow([evAvgs[i],chAvgs[i],N[i],M[i],chunkSizes[i],nStreams[i],blocks[i],grids[i]]) elif resType=="mat": writer.writerow([evAvgs[i],chAvgs[i],numMat[i],matSize[i],nStreams[i],blocks[i],grids[i]]) elif resType=="blu": writer.writerow([evAvgs[i],chAvgs[i],imgNum[i],sizeImg[i],nStreams[i],blocks[i],grids[i]]) #################### ### WRITE TO CSV ### #################### def writeCaption(resType, writer): if resType=="cos": writer.writerow(['EVENTS','CHRONO','N SIZE','M ITERS','CHUNK','N STREAMS','BLOCK','GRID']) elif resType=="mat": writer.writerow(['EVENTS','CHRONO','NUM MAT','MAT SIZE','N STREAMS','BLOCK','GRID']) elif resType=="blu": writer.writerow(['EVENTS','CHRONO','NUM IMG','IMG SIZE','N STREAMS','BLOCK','GRID']) ######################### ### GET DATA FROM TXT ### ######################### def getCosDatas(str): linesSeq = open(str, 'r') charsSeq = [line.rstrip('\n') for line in linesSeq] tokens=[] lbls=[] evTimes=[] chronoTimes=[] chunkSizes=[] N=[] M=[] nStreams=[] blocks=[] grids=[] #import pdb; pdb.set_trace() for line in charsSeq: tokens= line.split(',',11) lbls.append(tokens[0]) evTimes.append(float(tokens[1])) chronoTimes.append(float(tokens[2])) chunkSizes.append(int(tokens[3])) N.append(int(tokens[4])) M.append(int(tokens[5])) nStreams.append(int(tokens[6])) blocks.append(int(tokens[8])) grids.append(int(tokens[9])) return lbls, evTimes, chronoTimes, chunkSizes, N, M, nStreams, blocks, grids def getMatDatas(str): linesSeq = open(str, 'r') charsSeq = [line.rstrip('\n') for line in linesSeq] tokens=[] lbls=[] evTimes=[] chronoTimes=[] matSize=[] numMat=[] nStreams=[] blocks=[] grids=[] for line in charsSeq: tokens= line.split(',',11) lbls.append(tokens[0]) evTimes.append(float(tokens[1])) chronoTimes.append(float(tokens[2])) matSize.append(int(tokens[4])) numMat.append(int(tokens[5])) nStreams.append(int(tokens[6])) blocks.append(int(tokens[7])) grids.append(int(tokens[8])) return lbls,evTimes,chronoTimes,matSize,numMat,nStreams,blocks,grids def getBlurDatas(str): linesSeq = open(str, 'r') charsSeq = [line.rstrip('\n') for line in linesSeq] tokens=[] lbls=[] evTimes=[] chronoTimes=[] imgNum=[] sizeImg=[] nStreams=[] blocks=[] grids=[] for line in charsSeq: tokens= line.split(',',11) lbls.append(tokens[0]) evTimes.append(float(tokens[1])) chronoTimes.append(float(tokens[2])) sizeImg.append(int(tokens[3])) imgNum.append(int(tokens[4])) nStreams.append(int(tokens[5])) blocks.append(int(tokens[7])) grids.append(int(tokens[8])) return lbls,evTimes,chronoTimes,sizeImg,imgNum,nStreams,blocks,grids ############### ### GET AVG ### ############### def getChunkAvg(evT,chT): evT.remove(min(evT)) chT.remove(min(chT)) evT.remove(max(evT)) chT.remove(max(chT)) ch = sum(chT[:])/len(chT) ev = sum(evT[:])/len(evT) return ev,ch if __name__ == "__main__": main()
[ "chiarina04@hotmail.it" ]
chiarina04@hotmail.it
db81b608a888971075980eb4ab83e3186458f300
47bea1533bbe1339110f7de9eaea8e7ca7d390b5
/RNN-tensorflow/RNN-GRU.py
5eff2cc3ed89fbb66df0fd4d853e2e26de43b370
[]
no_license
Xavier-Pan/Hello-Github
4f8f44c813cf25e3f1178617bf60070104c3c247
b1bb7d041f262317844f2d5333326f76bda729f1
refs/heads/master
2020-12-25T13:45:20.859731
2018-04-28T01:14:43
2018-04-28T01:14:43
64,754,689
0
0
null
2016-08-02T12:54:13
2016-08-02T12:25:25
null
UTF-8
Python
false
false
4,267
py
''' A Recurrent Neural Network (LSTM) implementation example using TensorFlow library. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf Author: Aymeric Damien ''' from __future__ import print_function import tensorflow as tf from tensorflow.contrib import rnn import numpy as np # Import MNIST data #from tensorflow.examples.tutorials.mnist import input_data #mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) ''' To classify images using a recurrent neural network, we consider every image row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample. ''' # Parameters learning_rate = 0.001 training_iters = 100000 batch_size = 100 display_step = 10 imdb = np.load('imdb_word_emb.npz') X_train = imdb['X_train'] y_train_ = imdb['y_train'] X_test = imdb['X_test'] y_test_ = imdb['y_test'] test_size=np.shape(y_test_)[0] train_size=np.shape(y_train_)[0] y_train=np.zeros([train_size,2]) y_test=np.zeros([test_size,2]) # Network Parameters n_input = 128 # MNIST data input (img shape: 28*28) n_steps = 80 # timesteps n_hidden = 64 # hidden layer num of features n_classes = 2 # MNIST total classes (0-9 digits) # tf Graph input x = tf.placeholder("float", [None, n_steps, n_input]) y = tf.placeholder("float", [None, n_classes]) # Define weights weights = { 'out': tf.Variable(tf.random_normal([n_hidden, n_classes])) } biases = { 'out': tf.Variable(tf.random_normal([n_classes])) } def RNN(x, weights, biases): # Prepare data shape to match `rnn` function requirements # Current data input shape: (batch_size, n_steps, n_input) # Required shape: 'n_steps' tensors list of shape (batch_size, n_input) # Unstack to get a list of 'n_steps' tensors of shape (batch_size, n_input) x = tf.unstack(x, n_steps, 1) # Define a lstm cell with tensorflow # tf.get_variable_scope().reuse_variables() with tf.variable_scope(tf.get_variable_scope(), reuse=True): lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0) # Get lstm cell output outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32) # Linear activation, using rnn inner loop last output return tf.matmul(outputs[-1], weights['out']) + biases['out'] pred = RNN(x, weights, biases) # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) with tf.variable_scope(tf.get_variable_scope(), reuse=False): optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # Initializing the variables init = tf.global_variables_initializer() total_batch=int(25000/batch_size) # Launch the graph with tf.Session() as sess: sess.run(init) print ('Accuracy:' ,accuracy.eval({x:X_test, y:y_test})) # Keep training until reach max iterations epoch_loss = 0 for i in range(total_batch): epoch_x = X_train[batch_size*i:batch_size*(i+1),:,:] epoch_y = y_train[batch_size*i:batch_size*(i+1),:] epoch_x = epoch_x.reshape((batch_size, 80, 128)) with tf.variable_scope(tf.get_variable_scope(), reuse=True): _, c = sess.run([optimizer,cost], feed_dict = {x: epoch_x, y: epoch_y}) epoch_loss += c # Run optimization op (backprop) if i % display_step == 0: # Calculate batch accuracy acc = sess.run(accuracy, feed_dict={x: epoch_x, y: epoch_y}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: epoch_x, y: epoch_y}) print("Iter " + str(i) + ", Minibatch Loss= " + \ "{:}".format(loss) + ", Training Accuracy= " + \ "{:}".format(acc)) print("Optimization Finished!") print ('Accuracy:' ,accuracy.eval({x:X_test, y:y_test})) # Calculate accuracy for 128 mnist test images
[ "noreply@github.com" ]
Xavier-Pan.noreply@github.com
1c61431e6435612953cca7403a4120d9fe13543a
abaa59cd609b523728d43c84a2a7de15b6298a22
/playground/find_domain_occurences.py
b156231d28c51a970fabe33d40bfa0881334dd46
[]
no_license
surchs/dataset_search_demo
999de3668db45ee9b187ef5a6fa819df9b7e072e
236ba83f222357a061609aff30302758063c1e08
refs/heads/main
2023-08-21T12:39:14.461325
2021-10-18T17:40:59
2021-10-18T17:40:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,713
py
import json from pathlib import Path import pandas as pd import requests from requests.auth import HTTPBasicAuth NIDM_CONTEXT = ''' PREFIX afni: <http://purl.org/nidash/afni#> PREFIX ants: <http://stnava.github.io/ANTs/> PREFIX bids: <http://bids.neuroimaging.io/> PREFIX birnlex: <http://bioontology.org/projects/ontologies/birnlex/> PREFIX crypto: <http://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions#> PREFIX datalad: <http://datasets.datalad.org/> PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX dcat: <http://www.w3.org/ns/dcat#> PREFIX dct: <http://purl.org/dc/terms/> PREFIX dctypes: <http://purl.org/dc/dcmitype/> PREFIX dicom: <http://neurolex.org/wiki/Category:DICOM_term/> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX freesurfer: <https://surfer.nmr.mgh.harvard.edu/> PREFIX fsl: <http://purl.org/nidash/fsl#> PREFIX ilx: <http://uri.interlex.org/base/> PREFIX ncicb: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#> PREFIX ncit: <http://ncitt.ncit.nih.gov/> PREFIX ndar: <https://ndar.nih.gov/api/datadictionary/v2/dataelement/> PREFIX nfo: <http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#> PREFIX nidm: <http://purl.org/nidash/nidm#> PREFIX niiri: <http://iri.nidash.org/> PREFIX nlx: <http://uri.neuinfo.org/nif/nifstd/> PREFIX obo: <http://purl.obolibrary.org/obo/> PREFIX onli: <http://neurolog.unice.fr/ontoneurolog/v3.0/instrument.owl#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX pato: <http://purl.obolibrary.org/obo/pato#> PREFIX prov: <http://www.w3.org/ns/prov#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX scr: <http://scicrunch.org/resolver/> PREFIX sio: <http://semanticscience.org/ontology/sio.owl#> PREFIX spm: <http://purl.org/nidash/spm#> PREFIX vc: <http://www.w3.org/2006/vcard/ns#> PREFIX xml: <http://www.w3.org/XML/1998/namespace> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> ''' DOG_ROOT = 'http://star.braindog.net' DOG_DB = 'nidm-openneuro' DOG_PORT = 5820 query_url = f'{DOG_ROOT}:{DOG_PORT}/{DOG_DB}/query' headers = {'Content-Type': 'application/sparql-query', 'Accept': 'application/sparql-results+json'} OUT_PATH = Path(__file__).parent / '../data' def parse_response(resp): _results = json.loads(resp.decode('utf-8')) return pd.DataFrame([{k: v['value'] for k, v in res.items()} for res in _results['results']['bindings']]) # Find all ages data_element_query = ''' SELECT DISTINCT ?label ?description ?source ?concept ?levels WHERE { ?de a/rdfs:subClassOf* nidm:DataElement. OPTIONAL {?de rdfs:label ?label . } . OPTIONAL {?de dct:description ?description . } . OPTIONAL {?de nidm:sourceVariable ?source . } . OPTIONAL {?de nidm:isAbout ?concept . } . OPTIONAL {?de nidm:levels ?levels . } . } ''' response = requests.post(url=query_url, data=NIDM_CONTEXT + data_element_query, headers=headers, auth=HTTPBasicAuth('admin', 'admin')) de = parse_response(response.content) # Match a number of things def match(df, cols, keywords): """ Create an index where any string in the cols matches any of the keywords """ return [any([str(word).lower() in str(row[col]).lower() for col in cols for word in keywords]) for rid, row in df.iterrows()] # Diagnosis columns = ['concept', 'description', 'label', 'source'] diag_keys = ['diagnosis', 'disorder', 'condition', 'clinical', 'medical', 'disease', 'syndrome', 'impairment', 'health', 'control', 'typical', 'group'] diagnosis_index = match(de, columns, diag_keys) de_diagnosis = de.loc[diagnosis_index] # Age age_keys = ['age', 'years', 'birth'] age_index = match(de, columns, age_keys) de_age = de.loc[age_index] # Sex sex_keys = ['sex', 'gender', 'male', 'female'] sex_index = match(de, columns, sex_keys) de_sex = de.loc[sex_index] # Assessment instrument_keys = ['assessment', 'response', 'test', 'instrument', 'symptom', 'observation'] instrument_index = match(de, columns, instrument_keys) de_instrument = de.loc[instrument_index] # No concepts de_no_concepts = de.query('concept.isna()', engine='python') # Unclassified any_index = [not any(i) for i in zip(*[diagnosis_index, age_index, sex_index, instrument_index])] de_unclassified = de.loc[any_index] # Save the dataframes de_diagnosis.to_csv(OUT_PATH / 'de_diagnosis.tsv', sep='\t') de_age.to_csv(OUT_PATH / 'de_age.tsv', sep='\t') de_sex.to_csv(OUT_PATH / 'de_sex.tsv', sep='\t') de_instrument.to_csv(OUT_PATH / 'de_instrument.tsv', sep='\t') de_no_concepts.to_csv(OUT_PATH / 'de_no_concepts.tsv', sep='\t') de_unclassified.to_csv(OUT_PATH / 'de_unclassified.tsv', sep='\t') print('Done')
[ "sebastian.urchs@gmail.com" ]
sebastian.urchs@gmail.com
ea00b5f086e493ae9e9c6cfd1f40a609dce2dde3
f6eede1b4dbc7888499a6324a02826a7629a4875
/ChupiFlum/loginusers/apps.py
4592f3d1910687fccaaa4a3fed462546c635044f
[]
no_license
IvanVilla1585/RefrescosChupiFlum
6a8061e19ee0e5a08e3ab2c52cde2852360969dd
69db38bc95575b274e6a9b2784053a8fca1eb047
refs/heads/master
2021-01-21T14:40:13.926118
2016-11-12T02:50:00
2016-11-12T02:50:00
59,258,661
1
0
null
2017-05-15T00:02:04
2016-05-20T02:30:30
Python
UTF-8
Python
false
false
136
py
from __future__ import unicode_literals from django.apps import AppConfig class LoginusersConfig(AppConfig): name = 'loginusers'
[ "trezeguet55@gmail.com" ]
trezeguet55@gmail.com
7c4253fa425c4055c10b47528af28d5ac744dfa6
e8f3b9e3af61e8c786748f19815e2942f2635a52
/python/chapter06/6.4_main.py
230ea9c8fa79be4e65596132c9cb5c98d21d06c2
[]
no_license
seratch/learning-ci-scala
a28a2683bbcd69df90efd3560bb274ee1d0e9880
972b80e286a2c50acc30343e4c5093a87e85bb19
refs/heads/master
2021-04-09T14:01:53.230304
2011-03-25T23:06:00
2011-03-25T23:06:00
1,287,861
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
#!/usr/bin/env python import docclass classifier = docclass.classifier() classifier.train_sample_documents() print classifier.get_word_prb('quick', 'good')
[ "seratch@gmail.com" ]
seratch@gmail.com
83ba94e176b60819a8a5fbe1947a3e518ed15782
a3f74e48fb768a1dd2d370f7899c017b0255427e
/finalproject/collegesearch/migrations/0002_remove_region_neighbors.py
bfd003451ee6022fa8e3d2baedd0ac7a66bdc2a5
[]
no_license
robirahman/csci29-final-project
0545fb0ef9d83e7e665bbeed3d4b7f4ef57a68b5
862ec1e694425c5b5a68df154e34e0f981abed7d
refs/heads/master
2023-05-07T08:52:59.534711
2021-05-12T00:30:44
2021-05-12T00:30:44
362,150,347
0
0
null
2021-05-11T21:09:15
2021-04-27T14:54:20
HTML
UTF-8
Python
false
false
259
py
# Generated by Django 3.2 on 2021-05-02 20:27 from django.db import migrations class Migration(migrations.Migration): dependencies = [("collegesearch", "0001_initial")] operations = [migrations.RemoveField(model_name="region", name="neighbors")]
[ "robirahman94@gmail.com" ]
robirahman94@gmail.com
ff9cc8dd6bbb8ac840a16f65427ba694d3404b26
97c612ef7145d8cb2d6d7c1e18d167d4bf280495
/tests/test_deployment.py
b96fd2eb1d79608552a6914453ffcb943f102a9f
[ "Unlicense" ]
permissive
QARancher/k8s_client
3edcd1cf059e22769ee9e590012d8300aca86150
b290caa5db12498ed9fbb2c972ab20141ff2c401
refs/heads/master
2022-07-04T08:55:46.436285
2020-05-10T08:14:14
2020-05-10T08:14:14
237,614,070
0
0
null
null
null
null
UTF-8
Python
false
false
4,219
py
import pytest from helpers.k8s_deployment import K8sDeployment from helpers.k8s_image import K8sImage from tests.asserts_wrapper import assert_not_none, assert_equal, assert_in_list from tests.basetest import BaseTest mysql_image_obj = K8sImage(image_name="mysql", version="8.0.0") alpine_image_obj = K8sImage(image_name="alpine", version="latest") @pytest.mark.parametrize("image", [alpine_image_obj, mysql_image_obj], ids=[alpine_image_obj.image_name, mysql_image_obj.image_name]) class TestK8sDeployment(BaseTest): """ Test class for functionality tests of deployment. multiple images can be run for each test, use @pytest.mark.parametrize to pass it a list of image object (K8sImage) Steps: 0. Create namespace with hte name test. uses fixture 'create_namespace' 1. Create deployment and verify that the deployment is running by checking the status of the deployment, returned in the k8s object. 2. Get list of all deployments running in name space, verify that the created images are in the list. 3. Get list of names of deployments, verify that all created images are in the list name 4. Get pods of deployments """ @pytest.mark.dependency(name="create_deployment") def test_create_deployment(self, orc, create_namespace, image): deployment_obj = K8sDeployment(name=image.image_name) deployment_obj.namespace = create_namespace deployment_obj.labels = {"app": image.image_name} deployment_obj.selector.update( {"matchLabels": {"app": image.image_name}}) deployment_obj.add_container_to_deployment(image_obj=image, command="sleep 99") res = orc.deployment.create(body=deployment_obj, max_threads=5) assert_not_none(actual_result=res) res = orc.deployment.get(name=image.image_name, namespace=create_namespace) assert_equal(actual_result=res.metadata.name, expected_result=image.image_name) @pytest.mark.dependency(name="deployment_list", depends=["create_deployment"]) def test_list_deployments(self, orc, image, create_namespace): dep_list = orc.deployment.list(all_namespaces=True) assert_not_none(actual_result=dep_list) filtered_dep_list = [dep.status.available_replicas for dep in dep_list if image.image_name in dep.metadata.name] assert_not_none(actual_result=filtered_dep_list) assert_in_list(searched_list=filtered_dep_list, wanted_element=1) @pytest.mark.dependency(name="deployments_names_list", depends=["create_deployment"]) def test_list_names_deployments(self, orc, image, create_namespace): dep_list = orc.deployment.list_names(namespace=create_namespace) assert_not_none(actual_result=dep_list) assert_in_list(searched_list=dep_list, wanted_element=image.image_name) @pytest.mark.dependency(name="get_deployment", depends=["create_deployment"]) def test_get_deployment(self, orc, image, create_namespace): dep = orc.deployment.get(name=image.image_name, namespace=create_namespace) assert_not_none(actual_result=dep) assert_equal(actual_result=dep.metadata.name, expected_result=image.image_name) @pytest.mark.dependency(name="get_pods_of_deployment", depends=["create_deployment"]) def test_get_pods_of_deployment(self, orc, image, create_namespace): pod_list = orc.deployment.get_pods(name=image.image_name, namespace=create_namespace) assert_not_none(actual_result=pod_list) for pod in pod_list: assert_equal(actual_result=pod.status.phase, expected_result="Running", message=f"Pod {pod.metadata.name} is not running " f"for deployment: {image.image_name} " f"in namespace: {create_namespace}")
[ "yakovpids@gmail.com" ]
yakovpids@gmail.com
d3061ef35686197d532d71f2d42b12c5f5c92bfd
ef373530387ddd38930aa06d0b7c63451463fc74
/QC/PIRCH_average_TSS.py
fd3457ff25bb37803254365bc9a7439be0a62545
[]
no_license
zhouyu/PIRCh
641f11c722caac64cbe287c5a2017f35172ae0bf
e207d2073a7260717f256bfdeefbd951090c2708
refs/heads/master
2020-11-29T09:14:26.350336
2019-04-11T02:37:17
2019-04-11T02:37:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,303
py
#!/usr/bin/python from __future__ import division import sys import re import math reffile=sys.argv[1] #read in referance file TSSfile=sys.argv[2] chrfile=sys.argv[3] outfile=sys.argv[-1] bedfile=[] #read in different bedGraph file chrs=[] count=[] chip={} total_reads={} TSScount=0 for i in range(4,len(sys.argv)-1): bedfile.append(sys.argv[i]) chipfile = open(outfile,'w') chipfile.write("Chip_file") for i in range(4000): chipfile.write("\t%d"%(i)) chipfile.write("\n") for line in open (chrfile): line=line.rstrip() data=line.split('\t') chrs.append(data[0]) for line in open (TSSfile): line=line.rstrip() data=line.split('\t') count.append(data[0]) TSScount+=1 for bed in bedfile: total_reads[bed]=0 chip[bed]={} for i in range(4000): chip[bed][i]=0 for line in open(bed): line=line.rstrip() data=line.split('\t') total_reads[bed]+=float(data[3])*(int(data[2])-int(data[1])) for chr in chrs: flag={} for line in open (reffile): if(re.match('#',line)): print chr else: line=line.rstrip() data=line.split('\t') if data[2] == chr: if data[1] in count: tss=int(data[4]) for i in range(tss-2000,tss+2000): flag[i]=1 exp={} for bed in bedfile: exp[bed]={} for line in open(bed): line=line.rstrip() data=line.split('\t') if data[0] == chr: for i in range(int(data[1]),int(data[2])+1): if flag.has_key(i) and float(data[3])>0: exp[bed][i]=float(data[3])*10**9/total_reads[bed] for line in open (reffile): line=line.rstrip() data=line.split('\t') if data[2] == chr: if data[1] in count: tss=int(data[4]) for bed in bedfile: for i in range(tss-2000,tss+2000): if exp[bed].has_key(i) and (exp[bed][i]!=0): chip[bed][i-tss+2000]+=math.log(exp[bed][i],2) for bed in bedfile: chipfile.write("%s"%(bed)) for i in range(4000): chipfile.write("\t%f"%(chip[bed][i]/TSScount)) chipfile.write("\n") chipfile.close()
[ "noreply@github.com" ]
zhouyu.noreply@github.com
c2563228793b610809dd5b77e7f387e38db5016b
9bb1042feea90a82101aa7df4f4befefd6f2d3d3
/tests/unit/states/lvs_server_test.py
e71442b602b31d8c18cabd81da2bed4ca05e5519
[ "Apache-2.0", "MIT", "BSD-2-Clause" ]
permissive
lyft/salt
a5243b02553968eb94d5b8c381eb6dd433654f8f
2715908423a412f736253d0e5d3cfe185a0179a2
refs/heads/stable-2015.8
2023-08-20T11:13:33.249352
2019-10-14T17:38:56
2019-10-14T17:38:56
18,227,966
3
1
NOASSERTION
2019-10-14T17:38:58
2014-03-28T22:09:30
Python
UTF-8
Python
false
false
5,476
py
# -*- coding: utf-8 -*- ''' :codeauthor: :email:`Jayesh Kariya <jayeshk@saltstack.com>` ''' # Import Python libs from __future__ import absolute_import # Import Salt Testing Libs from salttesting import skipIf, TestCase from salttesting.mock import ( NO_MOCK, NO_MOCK_REASON, MagicMock, patch) from salttesting.helpers import ensure_in_syspath ensure_in_syspath('../../') # Import Salt Libs from salt.states import lvs_server lvs_server.__salt__ = {} lvs_server.__opts__ = {} @skipIf(NO_MOCK, NO_MOCK_REASON) class LvsServerTestCase(TestCase): ''' Test cases for salt.states.lvs_server ''' # 'present' function tests: 1 def test_present(self): ''' Test to ensure that the named service is present. ''' name = 'lvsrs' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} mock_check = MagicMock(side_effect=[True, True, True, False, True, False, True, False, False, False, False]) mock_edit = MagicMock(side_effect=[True, False]) mock_add = MagicMock(side_effect=[True, False]) with patch.dict(lvs_server.__salt__, {'lvs.check_server': mock_check, 'lvs.edit_server': mock_edit, 'lvs.add_server': mock_add}): with patch.dict(lvs_server.__opts__, {'test': True}): comt = ('LVS Server lvsrs in service None(None) is present') ret.update({'comment': comt}) self.assertDictEqual(lvs_server.present(name), ret) comt = ('LVS Server lvsrs in service None(None) is present ' 'but some options should update') ret.update({'comment': comt, 'result': None}) self.assertDictEqual(lvs_server.present(name), ret) with patch.dict(lvs_server.__opts__, {'test': False}): comt = ('LVS Server lvsrs in service None(None) ' 'has been updated') ret.update({'comment': comt, 'result': True, 'changes': {'lvsrs': 'Update'}}) self.assertDictEqual(lvs_server.present(name), ret) comt = ('LVS Server lvsrs in service None(None) ' 'update failed(False)') ret.update({'comment': comt, 'result': False, 'changes': {}}) self.assertDictEqual(lvs_server.present(name), ret) with patch.dict(lvs_server.__opts__, {'test': True}): comt = ('LVS Server lvsrs in service None(None) is not present ' 'and needs to be created') ret.update({'comment': comt, 'result': None}) self.assertDictEqual(lvs_server.present(name), ret) with patch.dict(lvs_server.__opts__, {'test': False}): comt = ('LVS Server lvsrs in service None(None) ' 'has been created') ret.update({'comment': comt, 'result': True, 'changes': {'lvsrs': 'Present'}}) self.assertDictEqual(lvs_server.present(name), ret) comt = ('LVS Service lvsrs in service None(None) ' 'create failed(False)') ret.update({'comment': comt, 'result': False, 'changes': {}}) self.assertDictEqual(lvs_server.present(name), ret) # 'absent' function tests: 1 def test_absent(self): ''' Test to ensure the LVS Real Server in specified service is absent. ''' name = 'lvsrs' ret = {'name': name, 'result': None, 'comment': '', 'changes': {}} mock_check = MagicMock(side_effect=[True, True, True, False]) mock_delete = MagicMock(side_effect=[True, False]) with patch.dict(lvs_server.__salt__, {'lvs.check_server': mock_check, 'lvs.delete_server': mock_delete}): with patch.dict(lvs_server.__opts__, {'test': True}): comt = ('LVS Server lvsrs in service None(None) is present' ' and needs to be removed') ret.update({'comment': comt}) self.assertDictEqual(lvs_server.absent(name), ret) with patch.dict(lvs_server.__opts__, {'test': False}): comt = ('LVS Server lvsrs in service None(None) ' 'has been removed') ret.update({'comment': comt, 'result': True, 'changes': {'lvsrs': 'Absent'}}) self.assertDictEqual(lvs_server.absent(name), ret) comt = ('LVS Server lvsrs in service None(None) removed ' 'failed(False)') ret.update({'comment': comt, 'result': False, 'changes': {}}) self.assertDictEqual(lvs_server.absent(name), ret) comt = ('LVS Server lvsrs in service None(None) is not present,' ' so it cannot be removed') ret.update({'comment': comt, 'result': True}) self.assertDictEqual(lvs_server.absent(name), ret) if __name__ == '__main__': from integration import run_tests run_tests(LvsServerTestCase, needs_daemon=False)
[ "jayeshk@saltstack.com" ]
jayeshk@saltstack.com
77b63cee5d360600ff658625946036a082545d0f
0d44e67224e774f7a53190eb8c89d5d3ea9c205c
/excercises/fundamentals/letter_swap.py
c42d18d301f08080175ff1d7c3b669afc7032d86
[]
no_license
katarinarosiak/python_fundamentals
c7d84db53623ad25ba0847220add1b5a3e613e2a
d78197a9a69c697ff83d10d1ed7b59df52dc1a8a
refs/heads/master
2023-08-17T19:03:24.084150
2021-09-13T16:33:10
2021-09-13T16:33:10
363,259,831
0
0
null
null
null
null
UTF-8
Python
false
false
1,082
py
# Letter Swap # Given a string of words separated by spaces, write a method that takes this string of words and returns a string in which the first and last letters of every word are swapped. # You may assume that every word contains at least one letter, and that the string will always contain at least one word. You may also assume that each string contains nothing but words and spaces # - separet a string into a list of word # - iterate throuch each word and separet each word into list of characters # - assign first word to a var and second word to another var # - reassign first and the last letter # - join # - join with spaces # - return def swap(str): words = str.split(" ") final = [] for word in words: word = list(word) first = word[0] last = word[-1] word[0] = last word[-1] = first final.append("".join(word)) return " ".join(final) # Examples: # Copy Code print(swap("Oh what a wonderful day it is") == "hO thaw a londerfuw yad ti si") print(swap("Abcde") == "ebcdA") print(swap("a") == "a")
[ "katarinarosiak@gmail.com" ]
katarinarosiak@gmail.com
04f475eb45a82c1c921c8bc5e70513d38abb3ebb
a59a26dbd28bc8c7fa6bb1083478a4b279e3a1de
/evaluating/baselines/french/parse_larousse.py
7b64b00dd290f64f57e0107fea97ffbbd74fb47b
[]
no_license
ksipos/polysemy-assessment
4696a2ec8f2f8d5a1d5c5685cd34274a36bcb245
26543640ed6cd826f2e86abb45571c2fa281464a
refs/heads/master
2021-04-17T13:02:37.876218
2020-05-13T08:15:56
2020-05-13T08:15:56
251,556,520
2
0
null
null
null
null
UTF-8
Python
false
false
698
py
from os import listdir from bs4 import BeautifulSoup import requests import time filenames = ['larousse/' + f for f in listdir('larousse')] output = open('larousse_list.txt', 'w') total = len(filenames) for name in filenames: with open(name, 'r') as f: html = f.read() soup = BeautifulSoup(html, 'lxml') total_senses = 0 try: content = soup.find(id="definition") for pos in content.find_all("li", {"class": "DivisionDefinition"}): total_senses += 1 output.write(name.split("/")[-1][:-5] + "," + str(total_senses) + "\n") except Exception: continue output.close()
[ "ksipos@windowslive.com" ]
ksipos@windowslive.com
d9d098ee0007add2e32fdbac268dc362a2cfbd0c
13f900b9dc0c3e838ff788febaa59514b97d1128
/Proyecto/api/serializers.py
66036ceb8053f9bfd04791ba6c87d07ca4547de9
[]
no_license
JorgitoR/App-Proyectos-Slabcode
68439c5fe0dbe58a004b9f04be807f6756d84a7f
173ea655bf00f8b5ae7fb0eb4ee0cf0ed5e6f3a7
refs/heads/main
2023-04-12T21:52:16.339073
2021-04-10T21:02:57
2021-04-10T21:02:57
356,660,392
1
0
null
null
null
null
UTF-8
Python
false
false
4,219
py
from rest_framework import serializers from django.contrib.auth import get_user_model from django.utils.timesince import timesince from Proyecto.models import Proyecto, Tarea from socio.api.serializers import SocioSerializer from rest_framework.validators import UniqueValidator from django.contrib.auth.password_validation import validate_password from datetime import datetime, timedelta from django.forms.fields import DateField import logging from hashlib import sha1 logger = logging.getLogger(__name__) Usuario = get_user_model() from Prueba.db.mail import send_mail_async as send_mail from django.conf import settings class UsarioDisplaySerializer(serializers.ModelSerializer): class Meta: model = Usuario fields = [ 'username', 'first_name', 'last_name', ] class ProyectoSerializer(serializers.ModelSerializer): usuario = UsarioDisplaySerializer(read_only=True) creado_por = UsarioDisplaySerializer(read_only=True) class Meta: model = Proyecto fields = [ 'id', 'numero', 'creado_por', 'titulo', 'socio', 'usuario', 'descripcion', 'estado', 'creado_tiempo' ] def get_fecha_display(self, obj): return obj.creado_tiempo.strftime("%b %d %I:%M %p") def get_timesince(self, obj): return timesince(obj.creado_tiempo) + "Hace" class RegistrarSerializer(serializers.ModelSerializer): email = serializers.EmailField( required=True, validators = [UniqueValidator(queryset=Usuario.objects.all())] ) password = serializers.CharField(write_only=True, required=True, validators=[validate_password]) password2 = serializers.CharField(write_only=True, required=True) class Meta: model = Usuario fields = [ "username", "password", "password2", "email", "first_name", "last_name" ] extra_kwargs = { 'first_name':{"required":True}, 'last_name':{"required":True} } def validate(self, attrs): if attrs['password'] != attrs['password2']: raise serializers.ValidationError({'password':'Las contraseña no concuerdan'}) return attrs def create(self, validated_data): usuario = Usuario.objects.create( username = validated_data['username'], email = validated_data['email'], first_name = validated_data['first_name'], last_name = validated_data['last_name'] ) usuario.set_password(validated_data['password']) usuario.save() if usuario: self.enviar_email(usuario) return usuario def enviar_email(self, obj): email = [] if obj.email: print(obj.email) email.append(obj.email) if len(email): logger.info("[Usuario %s] Enviando credenciales al correo %s", obj.username, obj.email) values = { 'nombre':obj.first_name, 'apellido':obj.last_name, 'titulo':'Credenciales De inicio de sesion', 'username': obj.username, 'password': 'clave1234', 'sign': settings.SITIO_HEADER, } email_template = settings.CREDENCIALES_USUARIO try: send_mail( '[{app}][{usuario}] Credenciales de inicio de sesion'.format(app=settings.APP_NAME, usuario=obj.username), email_template.format(**values), settings.APP_EMAIL, email ) except Exception as e: logger.warning("[Tarea #%S] Error tratando de enviar un Email a la tarea creada - %s: %s", obj.username, e.__class__.__name__, str(e) ) class UsuarioSerializer(serializers.ModelSerializer): password = serializers.CharField(write_only=True) def create(self, validated_data): user = Usuario.objects.create( username = validated_data['username'] ) user.set_password(validated_data['password']) user.save() return user class Meta: model = Usuario fields = ("id", "username", "password") class TareaSerializer(serializers.ModelSerializer): usuario = UsarioDisplaySerializer(read_only=True) proyecto = ProyectoSerializer(read_only=True) class Meta: model = Tarea fields = ( 'proyecto', 'usuario', 'descripcion', 'terminado', 'fecha' ) def clean(self, obj): limpiar = obj.cleaned_data datos2 = limpiar.get('fecha') if str(obj.fecha)<=(datetime.today() - timedelta(days=1)).strftime('%Y-%m-%d'): raise serializers.ValidationError("La fecha no puede ser del pasado") return obj
[ "jorgitouribe133@gmail.com" ]
jorgitouribe133@gmail.com
5c12ac510f60e933cac12be692128077b9bfb0d3
3d0cdb529217a84ca33cfaf1f614ccfc96050fe9
/Evaluation.py
abb150e66fe6feceac5234281a4f6fbdb901b20e
[]
no_license
linharesh/now-neo4j
5ce9cacac132ee4a1011659216a5460c9600d0ae
483fba901551c11efaf8effd803516c827efb750
refs/heads/master
2020-09-11T17:37:58.459323
2019-11-16T18:20:02
2019-11-16T18:20:02
222,140,743
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
class Evaluation: def __init__(self, trial_id, ev_id, checkpoint, cc_id, activation_id, representation, member_container_activation_id, member_container_id, name, typeof): self.trial_id = trial_id self.ev_id = ev_id self.checkpoint = checkpoint self.cc_id = cc_id self.activation_id = activation_id self.representation = representation self.member_container_activation_id = member_container_activation_id self.member_container_id = member_container_id self.name = name self.typeof = typeof
[ "linhares.h@gmail.com" ]
linhares.h@gmail.com
11fc195b7e715240f72f316eca12e705de9be2d9
23afbfe3f8dbe8d1e89e746edfb7f2b920109a7f
/test.py
1f52b08929879dd76afbfc03364921d5a304fe96
[]
no_license
samensah/Neuroscience-Lab
3f2695a928e27ba3b3be0934596b9f709e75321f
a54e57b087c902fdece990aa94c2f6ec3bb06b46
refs/heads/master
2021-01-10T03:56:18.229772
2020-06-28T14:06:57
2020-06-28T14:06:57
55,796,327
0
0
null
null
null
null
UTF-8
Python
false
false
1,813
py
#__author__ = 'samuel' from __future__ import division import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt """ Created on Wed Feb 25 13:57:47 2015 Example of use of odeint for system of equations. Here we solve the HH model dx/dt = ax-bxy dy/dt = cxy - dy or written as dY/dt = F(Y,t) where Y = [x,y] and F(Y,t) = [ax-bxy,cxy-dy] """ """define ODEs""" def am(v): return 0.1*(v+40)/(1-np.exp(-(v+40)/10)) def an(v): return 0.01*(v+55)/(1-np.exp(-(v+55)/10)) def ah(v): return 0.07*np.exp(-(v+65)/20) def bm(v): return 4*np.exp(-(v+65)/18) def bn(v): return 0.125*np.exp(-(v+65)/80) def bh(v): return 1/(1+np.exp(-(v+35)/10)) def Ie(t): return 2 def f(Y, t, p): vdot = p[0]*Y[1]**3*Y[3]*(p[3]-Y[0])+p[1]*Y[2]**4*(p[4]-Y[0])+p[2]*(p[5]-Y[0])+Ie(t) mdot = am(Y[0])*(1-Y[1])-bm(Y[0])*Y[1] ndot = an(Y[0])*(1-Y[2])-bn(Y[0])*Y[2] hdot = ah(Y[0])*(1-Y[3])-bh(Y[0])*Y[3] return [vdot, mdot, ndot, hdot] """initial conditions""" Y0 = [-65, am(-65)/(am(-65)+bm(-65)), an(-65)/(an(-65)+bn(-65)), ah(-65)/(ah(-65)+bh(-65))] print(Y0) """Values of the parameters""" gn = 120 gk = 36 gl = 0.3 ENa = 50 EK = -77 El = -54.4 """Lump parameters together to pass to ODE""" p = [gn, gk, gl, ENa, EK, El] """Time to simulate system over""" t = np.linspace(0, 100, 5000) """Solve system""" Y = odeint(f, Y0, t, args=(p, )) """plot system""" plt.plot(Y[:,2], Y[:,3]) plt.show() plt.plot(t, Y[:,0],'r',label='Voltage') plt.legend() plt.xlabel('Time') plt.ylabel('V') plt.show() plt.plot(t, Y[:,1], 'b', label='m') plt.plot(t, Y[:,2], 'r', label='n') plt.plot(t, Y[:,3], 'y', label='h') plt.legend() #plt.xlabel('Time')Lotka Volterra model plt.ylabel('V') #plt.title('Lotka Volterra model of predator-prey system') plt.show()
[ "samuel@aims.edu.gh" ]
samuel@aims.edu.gh
d0280f52f5bb8c08f51b8de7dbd97c8001954c21
cf790f8169918606770683da323c436a20f4fb04
/torchaudio/datasets/libritts.py
2c978c426ee15546c012b1ad09d19b3e93f47190
[ "BSD-2-Clause" ]
permissive
krishnakalyan3/audio
f6d3dabf456cd5ce9a8f033b83301ce7bff47f19
0cd25093626d067e008e1f81ad76e072bd4a1edd
refs/heads/master
2023-07-05T08:20:37.366199
2021-11-15T14:23:52
2021-11-15T14:23:52
176,415,764
1
0
BSD-2-Clause
2019-03-19T03:27:23
2019-03-19T03:27:22
null
UTF-8
Python
false
false
4,967
py
import os from typing import Tuple, Union from pathlib import Path import torchaudio from torch import Tensor from torch.utils.data import Dataset from torchaudio.datasets.utils import ( download_url, extract_archive, ) URL = "train-clean-100" FOLDER_IN_ARCHIVE = "LibriTTS" _CHECKSUMS = { "http://www.openslr.org/60/dev-clean.tar.gz": "0c3076c1e5245bb3f0af7d82087ee207", "http://www.openslr.org/60/dev-other.tar.gz": "815555d8d75995782ac3ccd7f047213d", "http://www.openslr.org/60/test-clean.tar.gz": "7bed3bdb047c4c197f1ad3bc412db59f", "http://www.openslr.org/60/test-other.tar.gz": "ae3258249472a13b5abef2a816f733e4", "http://www.openslr.org/60/train-clean-100.tar.gz": "4a8c202b78fe1bc0c47916a98f3a2ea8", "http://www.openslr.org/60/train-clean-360.tar.gz": "a84ef10ddade5fd25df69596a2767b2d", "http://www.openslr.org/60/train-other-500.tar.gz": "7b181dd5ace343a5f38427999684aa6f", } def load_libritts_item( fileid: str, path: str, ext_audio: str, ext_original_txt: str, ext_normalized_txt: str, ) -> Tuple[Tensor, int, str, str, int, int, str]: speaker_id, chapter_id, segment_id, utterance_id = fileid.split("_") utterance_id = fileid normalized_text = utterance_id + ext_normalized_txt normalized_text = os.path.join(path, speaker_id, chapter_id, normalized_text) original_text = utterance_id + ext_original_txt original_text = os.path.join(path, speaker_id, chapter_id, original_text) file_audio = utterance_id + ext_audio file_audio = os.path.join(path, speaker_id, chapter_id, file_audio) # Load audio waveform, sample_rate = torchaudio.load(file_audio) # Load original text with open(original_text) as ft: original_text = ft.readline() # Load normalized text with open(normalized_text, "r") as ft: normalized_text = ft.readline() return ( waveform, sample_rate, original_text, normalized_text, int(speaker_id), int(chapter_id), utterance_id, ) class LIBRITTS(Dataset): """Create a Dataset for LibriTTS. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from, or the type of the dataset to dowload. Allowed type values are ``"dev-clean"``, ``"dev-other"``, ``"test-clean"``, ``"test-other"``, ``"train-clean-100"``, ``"train-clean-360"`` and ``"train-other-500"``. (default: ``"train-clean-100"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"LibriTTS"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ _ext_original_txt = ".original.txt" _ext_normalized_txt = ".normalized.txt" _ext_audio = ".wav" def __init__( self, root: Union[str, Path], url: str = URL, folder_in_archive: str = FOLDER_IN_ARCHIVE, download: bool = False, ) -> None: if url in [ "dev-clean", "dev-other", "test-clean", "test-other", "train-clean-100", "train-clean-360", "train-other-500", ]: ext_archive = ".tar.gz" base_url = "http://www.openslr.org/resources/60/" url = os.path.join(base_url, url + ext_archive) # Get string representation of 'root' in case Path object is passed root = os.fspath(root) basename = os.path.basename(url) archive = os.path.join(root, basename) basename = basename.split(".")[0] folder_in_archive = os.path.join(folder_in_archive, basename) self._path = os.path.join(root, folder_in_archive) if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _CHECKSUMS.get(url, None) download_url(url, root, hash_value=checksum) extract_archive(archive) self._walker = sorted(str(p.stem) for p in Path(self._path).glob('*/*/*' + self._ext_audio)) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str, int, int, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, str, str, int, int, str): ``(waveform, sample_rate, original_text, normalized_text, speaker_id, chapter_id, utterance_id)`` """ fileid = self._walker[n] return load_libritts_item( fileid, self._path, self._ext_audio, self._ext_original_txt, self._ext_normalized_txt, ) def __len__(self) -> int: return len(self._walker)
[ "noreply@github.com" ]
krishnakalyan3.noreply@github.com
b45eae05c2a53c9835a8d4151aa5e70165e04eb3
343a325d23e834fc4a099ddd9941f9465e370e05
/apps/users/migrations/0001_initial.py
c21521ea6354de09aad62e8428699df477321599
[]
no_license
maxwell912/social-app
2d8cff535962e79806d8d50516f8d5a51c30c937
4089c3f084d7460f64517158eefb54b3b93a01e8
refs/heads/master
2022-12-09T01:35:33.835915
2020-09-11T06:29:16
2020-09-11T06:29:16
294,612,560
0
0
null
null
null
null
UTF-8
Python
false
false
2,949
py
# Generated by Django 3.0.8 on 2020-08-25 12:31 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(max_length=255, verbose_name='Username')), ('first_name', models.CharField(max_length=255, verbose_name='First name')), ('last_name', models.CharField(max_length=255, verbose_name='Last name')), ('email', models.EmailField(max_length=255, unique=True, verbose_name='Email')), ('is_active', models.BooleanField(default=True, verbose_name='Is active')), ('is_staff', models.BooleanField(default=False, help_text='The user will have access to admin interface.', verbose_name='Is staff')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='Date joined')), ('phone_number', models.CharField(blank=True, help_text='Users phone number.', max_length=12, null=True, verbose_name='Phone number')), ('avatar', models.ImageField(blank=True, help_text='Users profile photo.', null=True, upload_to='static/imagination', verbose_name='Avatar')), ('birthday', models.DateField(blank=True, help_text="User's date of birth.", null=True, verbose_name='Birthday')), ('gender', models.CharField(blank=True, choices=[('MALE', 'Male'), ('FEMALE', 'Female')], help_text='User gender.', max_length=255, null=True, verbose_name='Gender')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'User', 'verbose_name_plural': 'Users', 'db_table': 'users', 'ordering': ('email',), }, ), ]
[ "ivan912ivan@gmail.com" ]
ivan912ivan@gmail.com
5cd87059b73544cc78993d00b2fb611eab7bf72a
a57def2cdde6249e658afc3022902dc83ab9761d
/Conditional/Lista 2/Everton/04.py
4f9d0d49627a2c5f6546dd583be9f4a0f59f94bc
[ "MIT" ]
permissive
LourdesOshiroIgarashi/algorithms-and-programming-1-ufms
09ee5ddf72d11680b1bda7616e63d7d4a7c45153
7f0f0cb57223ec41f09c61f6109bc7c5f85f3742
refs/heads/main
2023-06-07T06:15:47.180937
2021-06-28T21:24:36
2021-06-28T21:24:36
370,764,915
7
8
MIT
2021-06-28T21:24:36
2021-05-25T16:48:43
Python
UTF-8
Python
false
false
340
py
a = int(input('NÚMERO DE ALUNOS: ')) m = int(input('NÚMERO DE MONITORES: ')) total = a + m qtd_viagens = total // 50 if qtd_viagens%50 != 0: print('Serão necessárias {} viagens para que todos chegem ao topo'.format(qtd_viagens + 1)) else: print('Serão necessárias {} viagens para que todos chegem ao topo'.format(qtd_viagens))
[ "noreply@github.com" ]
LourdesOshiroIgarashi.noreply@github.com
df9aa3e527f8805e42b4c2af45e519a91fe9d185
9be08135ec57ea7a40fde31a74e0aba735249165
/day2/test_day2.py
9db4edc6751d4e01c5a8d3fdb446d884bce4ca6f
[]
no_license
johanjeppsson/advent2019
4ec696f0714cbfa20f331a956c241dcbb7940a03
7158e8621f61e7d9e01f0ac20065613fb0a0f227
refs/heads/master
2020-09-22T13:44:18.078723
2019-12-17T21:19:33
2019-12-17T21:23:17
225,223,915
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
from utils import get_data from .__main__ import run def test_day2(): prog = list(map(int, get_data(__file__).split(","))) assert run(prog, 12, 2) == 4090689 assert run(prog, 77, 33) == 19690720 assert run(prog, 77, 32) != 19690720
[ "johjep@gmail.com" ]
johjep@gmail.com
5ace0bc3c925e242df973b9d28bee8ccfde56724
8f01699858df67f8ba211344eaf2cafc73292740
/ambuild2/frontend/paths_test.py
c9cf26b212da5caf9d9ceb4f36943a4e83b6128f
[ "BSD-3-Clause" ]
permissive
alliedmodders/ambuild
990132f583cf1a39be768d96b5b4085a8d8c39d9
9392da7c7e0a148bf8e0089b88d372a6eb62c65c
refs/heads/master
2023-01-05T07:20:31.480403
2022-12-21T21:30:18
2022-12-21T21:30:18
19,415,744
47
37
BSD-3-Clause
2023-09-12T10:00:04
2014-05-04T01:00:38
Python
UTF-8
Python
false
false
509
py
# vim: set sts=4 ts=8 sw=4 tw=99 et: import ntpath import unittest from ambuild2.frontend import paths class IsSubPathTests(unittest.TestCase): def runTest(self): self.assertEqual(paths.IsSubPath("/a/b/c", "/a"), True) self.assertEqual(paths.IsSubPath("/t/b/c", "/a"), False) self.assertEqual(paths.IsSubPath("t", "./"), True) self.assertEqual(paths.IsSubPath(r"C:\blah", "C:\\", ntpath), True) self.assertEqual(paths.IsSubPath(r"C:\blah", "D:\\", ntpath), False)
[ "dvander@alliedmods.net" ]
dvander@alliedmods.net