blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
da1c774acc5561d55c44153d527b7870d3edd240
7b710b60437eb4fbde32c616492f9a0466a899cf
/saludo.py
3c2d9e45eec02617bb8a184a3a74b364a155c399
[]
no_license
1000VIA/Platzi---Curso-de-Python
04586ab57f69868384f683e1aea7be850432acef
7b7d4dd759e2785f7de4fd090b7459c5f71e7326
refs/heads/master
2020-07-13T21:14:30.596897
2019-12-13T00:55:31
2019-12-13T00:55:31
205,156,148
2
1
null
2019-12-13T00:55:32
2019-08-29T12:13:01
Python
UTF-8
Python
false
false
71
py
name = str(input('Cuál es tú nombre?')) print('Hola: ' + name + '!')
[ "milvampa1@gmail.com" ]
milvampa1@gmail.com
b2e2db887089fa40f37121da6294b059dbddd07e
d873d529a24a30e2a9fc3e5a15ef6fe595c1423e
/blockchain-env/Lib/site-packages/Cryptodome/Signature/PKCS1_v1_5.pyi
5851e5b47145e14378defa599a936c27b33312d2
[ "MIT" ]
permissive
AdityaStark7/blockchain_backend
2731d733a0029614565b484ec5820d04f615bfe7
a019dda3bd4160ae962ced5bd95d060ad33f7f07
refs/heads/main
2023-08-19T12:26:38.211892
2021-10-15T05:31:18
2021-10-15T05:31:18
385,313,460
8
1
MIT
2021-10-11T17:28:22
2021-07-12T16:31:53
Python
UTF-8
Python
false
false
157
pyi
from Cryptodome.PublicKey.RSA import RsaKey from Cryptodome.Signature.pkcs1_15 import PKCS115_SigScheme def new(rsa_key: RsaKey) -> PKCS115_SigScheme: ...
[ "ak511046@gmail.com" ]
ak511046@gmail.com
6d149975d5e7fc54cb3bb401ac3053f567a095d5
e029672997da3c81d756bd66108c33322184ee3b
/data_convert.py
2330bda6d670b43da88063637651d5cd6b5a051a
[]
no_license
jisangyu/K-Anonymity
3bc6d29592b62b49df883eec46c7d59995620bf6
bec6a2afed2de46e6b4ea6e217563ff5131fc0cc
refs/heads/master
2020-05-18T12:29:54.818318
2019-06-05T13:28:22
2019-06-05T13:28:22
184,410,448
1
2
null
2019-06-05T13:26:52
2019-05-01T12:05:48
Jupyter Notebook
UTF-8
Python
false
false
1,635
py
import pandas as pd import csv def load_distance(coloum_name): distance_dict = dict() with open('./data_distance/distance_' + coloum_name + ".csv", newline='') as csvfile: reader = csv.reader(csvfile) for row in reader: distance_dict.update({row[1]: row[2]}) return distance_dict def load_data(file_name): distance_age = load_distance('AGE') distance_race = load_distance('RACE') distance_ethnicity = load_distance('ETHNICITY') distance_gender = load_distance('GENDER') distance_birthplace = load_distance('BIRTHPLACE') distance_condition = load_distance('CONDITION') columns = {} with open('./data/' + file_name + '.csv') as f: reader = csv.reader(f, dialect='excel', delimiter='\t') headers = next(reader, None) for h in headers: columns[h] = [] for row in reader: for h, v in zip(headers, row): if h == 'CONDITION': v = distance_condition.get(v) elif h == 'BIRTHPLACE': v = distance_birthplace.get(v) elif h == 'GENDER': v = distance_gender.get(v) elif h == 'ETHNICITY': v = distance_ethnicity.get(v) elif h == 'RACE': v = distance_race.get(v) elif h == 'AGE': v = distance_age.get(str(v)) columns[h].append(v) return pd.DataFrame(columns) df = load_data("finalPatientDataSet") df.to_csv('./data_convert/data_convert.csv', encoding='utf-8', index=False)
[ "ssinzo@gmail.com" ]
ssinzo@gmail.com
6c47582b4db897b64b9c851989f2ebaf2c0c1813
c804db17b29c5929c87768b7fa6ebb28f937fc36
/eu135.py
2d8087d06adc1d916ec3c880789f9bf2b1d6f41f
[]
no_license
ishandutta2007/ProjectEuler-2
a1f07329fd895828e740d0cf71b0b0a4de261b4c
29265e4e3dccc67d05ef8d6129363cea1705d970
refs/heads/master
2023-03-17T03:19:35.220761
2019-04-18T13:39:40
2019-04-18T13:39:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,445
py
# ------------------------------------------------------------ Same differences --------------------------------------------------------------- # # # # Given the positive integers, x, y, and z, are consecutive terms of an arithmetic progression, the least value of the positive integer, # # n, for which the equation, x^2 − y^2 − z^2 = n, has exactly two solutions is n = 27: # # # # 34^2 − 27^2 − 20^2 = 12^2 − 9^2 − 6^2 = 27 # # # # It turns out that n = 1155 is the least value which has exactly ten solutions. # # # # How many values of n less than one million have exactly ten distinct solutions? # # --------------------------------------------------------------------------------------------------------------------------------------------- # import time def eu135(): TOP = 10 ** 6 TARGET = 10 # (z + 2d)^2 - (z + d)^2 - z^2 = n # -z^2 + 2zd + 3d^2 = n # -z^2 - zd + 3zd + 3d^2 = n # -z(z + d) + 3d(z + d) = n # (3d - z)(d + z) = n --> u = 3d - z, v = d + z --> uv = n # d = (u + v) / 4 # z = (3v - u) / 4 solutions = [0 for i in range(TOP + 1)] for u in range(1, TOP): for v in range(u // 3 + 1, TOP // u + 1): if (u + v) % 4 == 0 and \ (3*v - u) % 4 == 0: solutions[u * v] += 1 s = sum([1 for i in range(TOP) if solutions[i] == TARGET]) return s if __name__ == "__main__": startTime = time.clock() print (eu135()) elapsedTime = time.clock() - startTime print ("Time spent in (", __name__, ") is: ", elapsedTime, " sec")
[ "roee.sefi@gmail.com" ]
roee.sefi@gmail.com
780eef6e690917e25c77c3a334d9886de47514aa
358d5fcb1e9709b946097b9b291573a0a83a7b94
/src/gui.py
9d9d8450475b41f1f2442529785192254dcf8011
[ "Apache-2.0" ]
permissive
MakeNTU/2021_team06_
9b452e652da44b7dafc8abe7519c5f64ebaab900
4fecd8651227d2fe3cc2b3e5ab31d182fafe368c
refs/heads/main
2023-05-01T00:42:26.017576
2021-05-25T01:56:07
2021-05-25T01:56:07
351,734,420
0
0
null
null
null
null
UTF-8
Python
false
false
3,595
py
from vpython import * import time, serial COM_PORT = '/dev/cu.usbserial-0001' BAUD_RATES = 9600 ser = serial.Serial(COM_PORT, BAUD_RATES) ser.readline() scene = canvas(align='left', width=0, height=0, background=vec(1, 0, 1)) v_graph = graph(align='left', width='700', xtitle='t', ytitle='時速(km/h)', background=vector(0, 0, 0), ymin=0, ymax=255) v_t = gcurve(color=color.blue, graph=v_graph, width=5) T_graph = graph(align='right', width='700', xtitle='t', ytitle='引擎溫度(°C)', background=vector(0, 0, 0), ymin=0, ymax=255) T_t = gcurve(color=color.red, graph=T_graph, width=5) scene1 = canvas(align='left', width=0, height=0, background=vec(1, 0, 1)) t0 = time.time() train = 1 speed_limit = 150 invasion = 0 v = [0, 0] T = [0, 0] brakeState = [0, 0] overspeed = [0, 0] overtemp = [0, 0] def train_select(m): global train train_dict = {'普悠瑪號': 0, '太魯閣號': 1} train = train_dict[m.selected] v_t.delete() T_t.delete() # print(train) def reset_button(b): global t0 t0 = time.time() v_t.delete() T_t.delete() menu(choices=['普悠瑪號', '太魯閣號'], bind=train_select, pos=scene.caption_anchor, selected='太魯閣號') button(text='Reset', bind=reset_button, pos=scene.caption_anchor) def set_speed(s): global speed_limit speed_limit = s.number # print(s.number) out = str(speed_limit) + ',' + str(int(invasion)) + '\n' ser.write(out.encode('ascii')) print(out) def set_invasion(r): global invasion invasion = r.checked out = str(speed_limit) + ',' + str(int(invasion)) + '\n' ser.write(out.encode('ascii')) print(out) scene1.append_to_caption('速限:') speed_control = winput(bind=set_speed, pos=scene1.caption_anchor, text=str(speed_limit), width=50) scene1.append_to_caption('\n') checkbox(bind=set_invasion, pos=scene1.caption_anchor, text='軌道異物入侵', width=50) scene1.append_to_caption('\n') def f(b): pass brake_display0 = button(background=color.white, bind=f, text='普悠瑪號煞車') brake_display1 = button(background=color.white, bind=f, text='太魯閣號煞車') scene1.append_to_caption('\n') overspeed_display0 = button(background=color.white, bind=f, text='普悠瑪號超速') overspeed_display1 = button(background=color.white, bind=f, text='太魯閣號超速') scene1.append_to_caption('\n') overtemp_display0 = button(background=color.white, bind=f, text='普悠瑪號過熱') overtemp_display1 = button(background=color.white, bind=f, text='太魯閣號過熱') scene1.append_to_caption('\n') def state_to_color(state): if state: return color.red else: return color.green while 1: rate(20) data = ser.readline().decode().strip('\n').split(',') # data = [0, 0, 0, 0, 0, 0] i = int(data[0]) v[i] = int(data[1]) T[i] = int(data[2]) brakeState[i] = int(data[3]) overspeed[i] = int(data[4]) overtemp[i] = int(data[5]) v_t.plot(time.time() - t0, v[train]) T_t.plot(time.time() - t0, T[train]) out = str(speed_limit) + ',' + str(int(invasion)) + '\n' print(i, v, T, brakeState, overspeed, overtemp) # print(train, out) # ser.write(out.encode('ascii')) brake_display0.background = state_to_color(brakeState[0]) brake_display1.background = state_to_color(brakeState[1]) overspeed_display0.background = state_to_color(overspeed[0]) overspeed_display1.background = state_to_color(overspeed[1]) overtemp_display0.background = state_to_color(overtemp[0]) overtemp_display1.background = state_to_color(overtemp[1])
[ "noreply@github.com" ]
MakeNTU.noreply@github.com
2b6f8dff268c3503dbf74f2003923095f66d1922
c5d5c36636c4ea7b05bbb65aa9981ab1749baf43
/foods/models.py
f9ae3584600a81da95db5a5531c73360a360482e
[ "MIT" ]
permissive
akuprik/foodgram-project
fd770bed208ee828b62e3e38b040e95c05403301
4eb1c79fc9147a04fb675a74df86e67c95ae6c68
refs/heads/master
2023-04-14T04:43:06.508649
2021-04-24T05:45:57
2021-04-24T05:45:57
346,740,662
0
0
null
null
null
null
UTF-8
Python
false
false
890
py
from django.db import models from django.contrib.auth import get_user_model User = get_user_model() class Ingredient(models.Model): name = models.CharField(max_length=256) unit = models.CharField(max_length=64) def __str__(self): return '{}, {}'.format(self.name, self.unit) class Recipe(models.Model): author = models.ForeignKey(User, on_delete=models.CASCADE) title = models.CharField(max_length=256) description = models.TextField() cooking_time = models.IntegerField() ingredients = models.ManyToManyField(Ingredient, through='IngredientRecipe') def __str__(self): return '{} ({})'.format(self.title, self=author) class IngredientRecipe(models.Model): ingredient = models.ForeignKey(Ingredient, on_delete=models.CASCADE) recipe = models.ForeignKey(Recipe, on_delete=models.CASCADE) value = models.IntegerField()
[ "akupr@yandex.ru" ]
akupr@yandex.ru
d2553312d3639d7b24781b350bb59dc90989953b
2cce9bca5cbe600ce87a8dc34dc9222704bbc98a
/training/train_cfm_512_deeplabv3_mobilenetv2.py
c052a3caf064c88835cec80b350bd6d919db5535
[ "MIT" ]
permissive
daniel-cheng/CALFIN
ea335ed0799ceeafc148c54cb748fbed364aeb4d
fbe5090d0ab4d48016a4f66bcb441a7c8faa56a2
refs/heads/master
2023-05-15T07:05:27.451758
2021-04-20T23:03:37
2021-04-20T23:03:37
185,285,507
17
7
MIT
2022-06-03T15:48:39
2019-05-06T23:22:54
Python
UTF-8
Python
false
false
3,200
py
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from keras.preprocessing.image import ImageDataGenerator from keras.utils import plot_model from keras.models import Model, Input, load_model from keras.layers import Concatenate, Conv2D, MaxPooling2D, Conv2DTranspose, Dropout, UpSampling2D, BatchNormalization, RepeatVector, Reshape, Permute, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping from keras.regularizers import l1, l2, l1_l2 from keras.activations import relu, sigmoid from keras.layers import Activation from keras import backend as K from tensorflow.python.client import device_lib from keras.applications import imagenet_utils from segmentation_models.losses import bce_jaccard_loss, jaccard_loss, binary_crossentropy from segmentation_models.metrics import iou_score import sys sys.path.insert(0, 'keras-deeplab-v3-plus') from model import Deeplabv3 from clr_callback import CyclicLR from AdamAccumulate import AdamAccumulate import os os.environ["CUDA_VISIBLE_DEVICES"]="0" import cv2, glob from skimage.io import imsave, imread from skimage.transform import resize, rotate, rescale from random import shuffle from data_cfm_512 import load_validation_data from albumentations import * from aug_generators import aug_daniel, imgaug_generator img_size = 512 data_path = 'data/' pred_path = 'preds/' temp_path = 'temp/' K.set_image_data_format('channels_last') # TF dimension ordering in this code if __name__ == '__main__': print('-'*30) print('Loading validation data...') print('-'*30) validation_data = load_validation_data(img_size) model_checkpoint = ModelCheckpoint('cfm_weights_mobilenetv2_' + str(img_size) + '_e{epoch:02d}_iou{val_iou_score:.4f}.h5', monitor='val_iou_score', save_best_only=False) clr_triangular = CyclicLR(mode='triangular2', step_size=4000, base_lr=6e-4, max_lr=6e-5) callbacks_list = [ #EarlyStopping(patience=6, verbose=1, restore_best_weights=False), # clr_triangular, model_checkpoint ] print('-'*30) print('Creating and compiling model...') print('-'*30) img_shape = (img_size, img_size, 1) # flatten_shape = (img_size * img_size,) # target_shape = (img_size, img_size, 3) inputs = Input(shape=img_shape) # r1 = Reshape(flatten_shape)(inputs) # r2 = RepeatVector(3)(r1) # r3 = Reshape(target_shape)(r2) base_model = Deeplabv3(input_shape=img_shape, classes=1, alpha = 1.4, backbone='mobilenetv2', weights=None) last_linear = base_model(inputs) out = Activation('sigmoid')(last_linear) model = Model(inputs, out) model.compile(optimizer=AdamAccumulate(lr=1e-4, accum_iters=4), loss=bce_jaccard_loss, metrics=['binary_crossentropy', iou_score, 'accuracy']) model.summary() # model.load_weights('cfm_weights_512_e07_iou0.0139.h5') print('-'*30) print('Fitting model...') print('-'*30) train_generator = imgaug_generator(4, img_size) history = model.fit_generator(train_generator, steps_per_epoch=2000, epochs=80, validation_data=validation_data, verbose=1, # max_queue_size=64, # use_multiprocessing=True, # workers=2, callbacks=callbacks_list) print(history.history)
[ "dcheng334@gmail.com" ]
dcheng334@gmail.com
1a20152a4e9f3a965e26b539ee8d244aba84e05e
854c71acb6696d0ba6ff957aeb8f5db63ad47567
/pr4/settings.py
7a76ba83f811a6ee9c5f96b5f4f7013b4cc32444
[]
no_license
ivan-emtsov/ind9
87d1ca68ff85fe55882c1c1f040b8a915cf7d2ae
9ca9a9c568e44d4b1d3f74afdbcdd1937fec3fa7
refs/heads/master
2020-11-27T18:03:35.965163
2019-12-22T11:10:36
2019-12-22T11:10:36
229,554,114
0
0
null
null
null
null
UTF-8
Python
false
false
3,413
py
""" Django settings for pr4 project. Generated by 'django-admin startproject' using Django 1.9.1. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ import os import posixpath # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'd0338511-d112-4010-8a41-b36d11d03c1f' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'app', # Add your apps here to enable them 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'pr4.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media' ], }, }, ] WSGI_APPLICATION = 'pr4.wsgi.application' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'ru-ru' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = posixpath.join(*(BASE_DIR.split(os.path.sep) + ['static'])) MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/'
[ "nikita.mihaylov@waltex.ru" ]
nikita.mihaylov@waltex.ru
2657dd3f3e69d9a929e71eb62f1987ad44ad513f
6f3790b00ddf3a90fa8a8310fb1257be0d685e7a
/socialhub/useraccounts/views.py
4a1faaa1034a032042cc928bb1af2d8497b45ade
[]
no_license
Erikfj/socialhub
76954c17a9378d5b2eb3bf4c281c60ec9aaee355
fb3bd1799ff0d32ea1dbd1f7d67266b3762284c2
refs/heads/master
2021-01-23T02:28:49.728538
2015-06-03T09:13:23
2015-06-03T09:13:23
34,781,390
0
0
null
null
null
null
UTF-8
Python
false
false
1,480
py
from django.shortcuts import render from django.contrib.auth.models import User from django.shortcuts import redirect from django.contrib.auth import authenticate, login, logout # Create your views here. def user_login(request): context = {} if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None: login(request, user) return redirect('frontpage') else: context['login_failed'] = True return render(request, 'useraccounts/login.html', context) def user_logout(request): logout(request) return redirect('frontpage') def user_register(request): context = {} if request.method == "POST": user = User() user.first_name = request.POST.get("firstname") user.last_name = request.POST.get("lastname") user.username = request.POST.get("username") user.email = request.POST.get("email") user.set_password(request.POST.get("password")) user.save() context['user_saved_successfully'] = True return render(request, 'useraccounts/register.html', context) def user_settings(request): context = {} if request.method == "POST": user = request.user user.first_name = request.POST.get("firstname") user.last_name = request.POST.get("lastname") user.email = request.POST.get("email") user.save() context['user_updated_successfully'] = True return render(request, 'useraccounts/settings.html', context)
[ "filip@adminisatorsmbp.lan" ]
filip@adminisatorsmbp.lan
c768e9f572a0fb4718a5cd16dcba759dba8ba8e0
8dc4724260d097d7bd785d45dbab0c95e91e95ff
/manage.py
c14cf40bcd00bc7c338736b75ce3530a3c080916
[]
no_license
ManuDIY/Learn-Django-Authentication-System
38cc9dbff08fb34fbccff4a816cd8b0b23fdae55
4af6776cea41c072a9703b04aa454054ac705f46
refs/heads/master
2022-09-20T16:13:14.787540
2019-06-23T06:51:47
2019-06-23T06:51:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
632
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'webbasedauth.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "henrymbuguak@gmail.com" ]
henrymbuguak@gmail.com
2c753b738f062d9b1794b3b800ad4d2abbeb9aeb
64085c1c9c9993048d7de5e56064bc1a7ea6ca22
/hash.py
8f403e9edbf5ba80102a4537896e963971456fa6
[]
no_license
1ckov/Web_A-5_Project_Repo
f298188de1082356f4d497a4dac450b4e8c22fc4
432f726aa9f6b7fd693ed7c583ffd817b8b285f5
refs/heads/main
2023-06-10T13:55:47.319251
2021-07-04T02:18:37
2021-07-04T02:18:37
352,611,082
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
import hashlib password=(" ") salt=(b"100000") key = hashlib.pbkdf2_hmac( 'sha256', # The hash digest algorithm for HMAC password.encode('utf-8'), # Convert the password to bytes salt, # Provide the salt 100000, # It is recommended to use at least 100,000 iterations of SHA-256 dklen=128 # Get a 128 byte key ) print()
[ "sa6o.hristov96@gmail.com" ]
sa6o.hristov96@gmail.com
2e86b740ae0c926fe248bb6620ce44b4e1e3d9a0
8e589cd52e92ca1f2c085e435f2e5fe88389b1d6
/correlation-master/coffeeVsSleep.py
70cb24d987e0732a3f863490a054b5df662c383b
[ "MIT" ]
permissive
vmarques339/Cups-of-coffee-vs-hours-of-sleep-Students-marks-vs-Attendance
9923290bb48da8ea979c1b92d9c0ca484cd68ce8
84a7fa4eea79bcf9536c651548eec360f029c9df
refs/heads/main
2023-09-02T01:54:47.749960
2021-11-20T19:32:23
2021-11-20T19:32:23
430,192,313
0
0
null
null
null
null
UTF-8
Python
false
false
234
py
import plotly.express as px import csv with open("cups of coffee vs hours of sleep.csv") as csv_file: df = csv.DictReader(csv_file) fig = px.scatter(df,x="Coffee in ml", y="sleep in hours", color="week") fig.show()
[ "noreply@github.com" ]
vmarques339.noreply@github.com
a9257397276aca8e36cb069196d0038845d1f29c
f8bf7e9efdc2027f18da77026902a24b2ebb2bc7
/test_rc.py
99fa579df0d9af8116daa8af35e01bfcfc4cbfd4
[]
no_license
zhaomr13/TheStandardModelGame
5767e0b57c8162655d6e7fae1acc1ed816c0b621
36a939e97053cb7bd7e235dcc5a125d3ba2d266b
refs/heads/master
2021-01-23T03:58:59.162339
2017-04-01T14:32:25
2017-04-01T14:32:25
86,139,196
0
0
null
null
null
null
UTF-8
Python
false
false
37,022
py
# -*- coding: utf-8 -*- # Resource object code # # Created by: The Resource Compiler for PyQt5 (Qt v5.6.1) # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore qt_resource_data = b"\ \x00\x00\x22\x19\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x64\x00\x00\x00\x64\x08\x06\x00\x00\x00\x70\xe2\x95\x54\ \x00\x00\x21\xe0\x49\x44\x41\x54\x78\x01\xec\x97\x35\x94\x34\x55\ \x10\x85\x71\x77\x58\x1b\xe9\x9e\x1e\x77\x77\x77\xf7\x99\x1e\x5b\ \xdf\xc5\x5d\x52\x5c\x63\x22\x72\xf2\x90\x88\x3c\x40\x22\x32\x9c\ \x0c\xb7\x04\x97\xcb\xab\x3a\xbf\x6e\x8e\x77\x9d\xf3\x8d\xb5\xd7\ \xad\x5b\xf5\xe6\x02\x2d\xb4\xd0\x42\x0b\x2d\xb4\xd0\x42\x0b\x2d\ \xb4\xd0\xe2\x2f\x8d\xeb\xae\xbb\xce\x74\xe1\x85\x17\xda\xc4\x47\ \xcb\x8d\x37\xde\x78\x5f\xb7\xdb\xfd\x62\x34\x1a\x7d\xda\xef\xf7\ \x3f\x09\x04\x02\x58\x2c\x16\x98\xcd\x66\xa8\xd7\xeb\xd8\xdf\xdf\ \xe7\xef\xab\xd5\x0a\x7e\xbf\x1f\x2e\x97\x8b\x71\xbb\xdd\xf0\x7a\ \xbd\x67\xf0\xf9\x7c\x3f\x09\xbe\x27\xc4\x7e\xdf\x86\xc3\xe1\xd7\ \x05\x6f\x12\x5b\x5b\x5b\xd2\xb9\xd7\x17\xdf\xff\xdf\x02\xe8\xf5\ \x7a\xdb\x55\x57\x5d\xb5\x77\xe5\x95\x57\xee\x10\xf1\x78\xfc\xfb\ \xf1\x78\x0c\x21\x02\x82\x81\x20\x26\x93\xc9\xef\xaa\xaa\xa2\x3f\ \xec\x23\x12\x89\x60\x3a\x9d\x62\x3a\x99\xc0\x9f\x0d\xe3\xf8\xf8\ \x18\xb4\xef\x58\x9d\xc0\xe4\xb6\x62\x77\x77\x97\x69\xb6\x9a\x68\ \xb7\xdb\xe8\xf5\x7a\xcc\x70\x38\xc4\x60\x30\xe4\xf7\x93\x34\x1a\ \x8d\x6f\x9a\xcd\xe6\x17\xad\x56\xeb\x0b\x93\xc9\xf4\xc5\xff\x52\ \x84\x6b\xaf\xbd\xf6\x52\xf1\x76\x05\x21\x44\x78\xf1\xae\xbb\xee\ \xc2\x69\x2a\x95\x0a\x89\xc0\x49\xb7\x07\x5c\xe8\x75\x7b\x10\xee\ \x40\xa5\x5d\x43\x28\x14\xe2\xcf\xfd\x6e\x1f\x96\x94\x9b\x93\x2f\ \x1c\x84\xc6\xa0\x05\x83\x43\x16\x49\x1f\x30\x9e\xa8\x1f\xdb\xab\ \x15\x9f\x87\xdc\x64\xf7\x3a\x11\x29\xbb\xf8\x78\xe1\x0a\x84\x43\ \x82\x20\xbf\xf3\xf7\xd3\x78\x3c\x1e\x72\xd4\x3b\x82\x77\x85\xd3\ \x3e\xfa\xdf\x08\xe2\x74\x3a\x5f\xa1\x0a\x16\x55\x09\x8b\xc5\x42\ \x49\xe3\x4a\x27\xb2\xf9\x1c\x57\x75\x5f\x20\xf9\x2c\x10\xd5\xcb\ \xfb\x15\x6a\x25\x04\x83\x41\xfe\xde\xa8\x37\x60\x4e\x3a\xa9\x5d\ \x71\xeb\x2a\x0b\xb1\xf4\x42\x90\x4e\xa7\xc3\xb8\xc3\x5e\xcc\xd4\ \x19\x8b\x37\x26\xa7\xa5\x22\x20\x97\xd1\x75\xca\xad\x1a\xb2\x0f\ \xb8\x30\x7c\x32\x8c\xee\x6d\x39\x34\xc4\xb1\xcd\x46\x93\xce\x7b\ \x1a\x72\x0d\x9f\x57\xb4\xaf\xe2\x29\x4a\x02\xdb\x7f\x4a\x84\xb5\ \xb5\xb5\xc9\x35\xd7\x5c\xb3\x2b\x98\x8b\x59\xf0\x3e\x25\x87\x92\ \xe4\x74\x39\xb9\x3d\x9d\x4e\x66\x32\x9b\xe2\x64\x10\x46\x8f\x82\ \x72\xb9\x8c\x52\xa9\x84\x54\x31\xc3\x73\x82\x3e\x97\x0a\x25\x28\ \x09\x07\x1f\x57\x2c\x16\x91\xad\xe6\xc9\x21\xec\x2e\xc2\xe1\x77\ \x61\x34\x1c\x71\x72\x3b\xed\x0e\x02\x09\x76\x16\x63\x50\x24\x1c\ \xec\x1d\x40\x9d\xa8\x50\xa7\x2a\x6a\x6a\x03\xcb\x87\xdb\x50\x97\ \x63\x4c\xfb\x73\x4c\x47\x33\x4c\x69\x9b\xaa\x72\xab\x24\x68\x46\ \x89\x79\xf6\xd2\x7f\x4a\x10\xd1\x02\x7e\xa3\x07\xdb\xd9\xd9\x41\ \x2a\x95\xa2\xd6\xc2\x09\x52\xec\x16\x74\x3b\x5d\x54\xab\x55\x26\ \x91\x4e\xa2\x50\x28\xa0\x58\x28\xc2\xe0\x96\x91\xcd\x66\x99\x68\ \x26\x4e\xc3\x19\x99\x4c\x06\x99\x54\x1a\x72\xcc\xce\xed\x2a\x9d\ \x4e\x23\x51\x48\x41\x6f\x97\x90\xcb\xe5\x18\xab\xd7\xc1\xe7\x24\ \xf1\xaa\x95\x2a\xfc\xf1\xe0\x19\xa7\xe9\x65\x03\xf6\xf6\xf6\xd8\ \x8d\xf9\x52\x01\x85\xdb\xbc\x68\x3f\x14\x42\xfb\x91\x20\x5a\xf7\ \x87\x50\xdb\x4b\xa0\x3c\xc8\xa0\x48\xdb\x0a\x0c\x8b\x6c\x36\x9b\ \x5f\x17\xad\xec\x09\x71\x0f\x4f\x88\xb9\x37\xfa\x57\x8a\x60\x34\ \x1a\x23\xe2\x21\x22\x36\x9b\x2d\xe2\x70\x38\x7e\xa1\x8a\xa6\xa1\ \x2c\x06\x37\x27\x88\x30\xd9\x14\x76\xc3\xe9\x87\x8f\x25\xe3\x24\ \x18\x27\x5a\xe7\x94\x91\x48\x24\x78\xff\x40\x3c\xc4\x3d\x9e\x3e\ \xc7\x22\x51\x48\x51\x1b\xb7\x16\x1a\xf4\xa1\x54\x14\x06\x3b\xef\ \xcb\x28\x2e\x2b\xb7\x35\x12\x2f\x2f\x04\xf2\xc5\x02\x24\x0e\xbb\ \x4d\x27\xe9\xb9\xd5\x51\x5b\x54\x14\x05\x47\x47\x47\x38\x3c\x3c\ \xc4\xfe\xc1\x01\x26\x77\x8f\x70\xfb\x33\x53\xdc\xfa\xf0\x0e\x8e\ \xef\xdb\xc5\xd1\x1d\xfb\xbc\xed\x5c\x6e\xbb\xed\x36\xc4\x62\xb1\ \x97\xff\x8d\x2b\xb3\xcb\xa2\xd1\x28\x3f\x30\x55\xa4\x10\x84\x2a\ \x9a\x5d\x41\xbf\x53\x82\x08\xc9\x22\xa3\x54\x2c\xb1\x08\x44\x24\ \x1e\xe5\x24\xd3\x3e\x24\x08\xcd\x0d\x5e\xd2\x06\xdc\xbc\x9c\x15\ \xf3\x07\x0e\xbb\x03\x1b\x3e\x89\x04\xe4\x65\xae\x33\xe0\x66\x87\ \xd0\xd0\x26\x64\x87\x82\x72\xa9\x4c\x89\x43\x22\x9e\x80\x27\xe2\ \x27\x71\xd8\x69\x5b\x46\x1d\xbb\x83\x8a\x40\x96\x65\x1e\xfc\x54\ \x28\xd9\x72\x01\xf9\x63\x27\x8a\xb7\xb9\x4e\xe0\x40\x66\xe4\x43\ \x2c\x1a\xa7\x62\x20\xc1\x69\xee\xbd\x25\x44\x78\x4c\xf0\xa4\x20\ \xf6\x4f\x5f\xc6\x6e\x88\x37\xbb\xc0\x47\x2b\x17\x7a\x60\x5a\x5e\ \xda\xed\x76\x4a\x02\xbb\x82\x92\x46\x09\x22\x8c\x8a\xc4\x89\x22\ \x11\x88\x60\x24\x04\xab\xd5\x0a\xbb\xcd\x8e\x35\xcb\x16\x3d\x3c\ \x27\x4e\x6f\x36\xb2\xa8\x54\xd5\x8a\x6c\xc2\xcd\xee\x2d\xde\x5f\ \x92\x24\x18\x6d\x32\x36\x2c\x7a\x88\x65\x2b\xb3\x26\x6d\x22\x97\ \xcd\xf2\x7f\x10\xbf\xcf\xc7\x43\x9e\xc4\x21\x36\x8d\x3a\x2e\x0c\ \x9a\x3d\xc2\xc1\xec\x14\x82\xee\x69\x31\x5f\x9c\x62\x89\xfc\x5e\ \x01\xfb\x2f\xd4\xb1\xfd\xe0\x00\x8b\xd5\x0c\xf3\xf1\x0a\xf3\xe9\ \x12\x8b\x99\xd8\xbe\x60\x68\xb6\x50\x41\xdc\xfb\x8f\x16\xe4\xa6\ \x9b\x6e\x7a\xf5\x74\x4b\x38\xbd\x4c\xa5\x15\x95\x68\x5b\x54\xd1\ \xec\x0a\x31\xd4\xcf\x24\x48\x6f\x32\xd2\x7e\x2c\x18\xe1\x0d\xf8\ \x28\xc9\x2c\xc2\x4d\xca\xba\x70\x83\x9d\x45\x90\x15\x99\xdc\xc1\ \x02\xe9\x74\x3a\xe8\x0c\x7a\xae\x56\xda\x57\x32\xc9\xd0\x49\x06\ \xea\xf3\xcc\xa6\x71\x8b\xff\xc3\xf0\x79\x24\x19\x8e\xa0\x8b\xe6\ \x0f\x3b\x6d\xc3\xb0\x89\x5a\xad\xc6\x2d\xd1\xf0\x07\x77\x67\x01\ \x1c\xc7\xb5\x7c\xfd\x47\xe1\x3c\x34\x3e\x0a\x33\x19\xc4\x06\xc9\ \xe2\x15\x33\xa3\x2d\x96\x19\x43\x66\x3b\x0c\x66\xfc\x3e\x33\x33\ \x33\x84\x99\x99\x39\xb1\x1d\x66\x4e\x74\xfe\xfd\x53\xbd\xbb\x55\ \x56\x05\xbd\x76\x2c\xad\xab\xba\x76\x76\x35\x3b\x7b\xef\x3d\xdd\ \xa7\xe1\xf6\x8c\xff\xf3\x1f\x6f\x44\x05\x78\x28\x0e\xd6\xd2\x39\ \xb6\xab\x52\x26\x5d\xa4\xb2\x45\x9d\x55\xb6\xa4\x93\xca\x96\x75\ \x52\xc9\xbc\x00\x15\x4e\x08\x51\xee\xf0\xee\x4a\x88\x6f\x8c\x10\ \x09\x42\x18\xe7\x30\x9b\xf6\xdf\x4c\x5a\x37\x4b\x40\xfe\xf6\xb7\ \xbf\xed\x26\x83\xc6\x69\xb3\xf0\x4c\x18\xa7\xc8\x42\x3a\xdf\xc0\ \xe2\xb0\x00\xbc\xfe\xf3\x94\x7f\xe1\x1b\xbc\xda\x7d\x71\xc7\x4b\ \x78\x15\x80\xb4\x6f\xd7\x1e\x10\xa0\x3d\x16\x0b\x6d\x54\x6d\x6d\ \xad\xee\xba\xeb\x2e\x72\x10\xae\xa7\x2b\xaf\xbc\x52\xd7\x5c\x73\ \x0d\xe7\x63\x59\xf8\x09\xc0\x17\xd6\x03\x38\x67\x22\xe7\x9e\x25\ \x16\x1f\x80\x5a\xb7\x6f\x43\xc0\x00\x25\x02\x2c\x0a\x82\xa2\x40\ \x87\xde\x48\x2f\x38\x28\x58\x49\x9e\x14\x25\xc5\xa7\x28\xd1\xc4\ \x93\x68\x8b\x9f\x9c\xa4\xc4\x38\xfb\x2c\x2e\x55\x04\x0c\x58\x19\ \x82\xe2\xf1\x0a\xc8\xcd\x06\x84\x76\xed\xda\xb5\x6d\xdf\xbe\xfd\ \x7d\x26\xb7\x9a\x85\x7c\x50\x50\x50\x80\x06\xa1\x91\x50\x03\x91\ \x0f\x8b\xe3\xf5\x0d\x2c\x2c\x74\xc1\x22\xb6\x6a\xdf\x5a\x1d\x2e\ \xe9\x20\x16\x13\x01\xc4\x9a\x9a\x1a\xbd\xfe\xfa\xeb\x82\xde\xae\ \xbb\xee\x3a\xed\xdd\xbb\x57\xef\xbc\xf3\x8e\x58\xb4\xfd\xfb\xf7\ \x6b\xc7\x8e\x1d\xda\xbd\x7b\xb7\xb0\xc4\x8d\x1b\x37\xea\xcb\x2f\ \xbf\x14\x56\xb6\x6a\xd5\x2a\xdd\x77\xdf\x7d\x9a\x30\x61\x82\xa0\ \x4b\x3e\x83\x0e\xa1\x3a\x40\x66\x0c\x6d\xdb\xb7\x15\xe3\xe0\x33\ \x1b\x37\xb4\x09\xb0\xbc\x67\x51\xbd\x00\xe1\x67\x08\x40\x4e\x49\ \xbe\x50\xd5\x1b\x42\x54\xb3\x21\x54\x35\xeb\x43\xd5\xf3\xff\x77\ \x57\xc9\xf8\x38\xe5\x55\xa7\x8a\xbf\x23\xd0\x32\xd2\x9c\x0c\x23\ \x04\x8b\x28\x2a\x2a\x62\x51\x31\xfb\x06\x34\x15\x0b\xc0\x22\x1c\ \xb5\xb0\x20\x58\x0a\xd4\x04\x0d\xf1\xbe\x4d\xdb\xb6\x02\xb8\xdb\ \x6f\xbf\x5d\x6b\xd7\xae\x15\x80\xdc\x7b\xef\xbd\xda\xb5\x6b\x97\ \xae\xbe\xfa\x6a\x01\x2e\xe0\x1c\x38\x70\x40\x00\x32\x7a\xf4\x68\ \x7d\xf4\xd1\x47\x1a\x32\x64\x88\x08\x93\x5f\x7d\xf5\x55\x7d\xf8\ \xe1\x87\xe2\xfa\x4f\x3d\xf5\x94\xd6\xac\x59\x23\x84\x85\xba\xe3\ \x8e\x3b\x04\x58\x28\x01\xe3\xea\xdd\xbb\xb7\x38\x0f\xeb\x04\x20\ \xcb\x8d\x84\xa3\x06\x20\xac\x2a\x3c\x3c\xdc\x39\x7f\x34\x1f\x45\ \xb2\xe0\xe1\x5f\x0a\xce\x39\x4d\x81\x59\xa7\x2a\x20\xf3\x54\xf1\ \x1a\x94\x6d\x92\x73\xaa\x3a\x44\x9e\x79\x50\xfd\xcc\xea\x70\x53\ \xad\x0a\x31\xb5\x6d\xdb\xb6\x65\x47\xc3\x2a\xbc\xc7\x38\x70\xfc\ \x04\xa0\xb0\xd0\x98\x3d\x93\x82\x8a\xf0\x13\x68\x2b\x0b\xc1\x22\ \xf0\x77\x00\x01\x04\x16\x1c\x00\x2e\xbd\xf4\x52\x16\x4f\x5f\x7f\ \xfd\x35\xf4\xc6\x7b\x3d\xf1\xc4\x13\x24\x65\xfc\x1d\xcd\x65\x71\ \x58\x48\xde\xf3\x7d\x16\x98\xcf\xf9\x0c\x4b\xe0\xda\x2c\xac\x6e\ \xbc\xf1\x46\xae\xa1\xbc\xbc\x3c\x3d\xfa\xe8\xa3\xe2\x1f\x0b\x06\ \xc8\x8f\x3f\xfe\x38\x0b\xcd\x6f\xcb\x82\x0f\xb5\x6e\xdd\x9a\x6b\ \xa1\x18\x58\x2b\x96\x02\x40\x0a\x0d\x0d\xc5\xaf\x70\x4d\x55\x55\ \x56\xa9\xa2\x57\xa5\xd1\x66\x85\x65\xf6\x69\xaa\xbf\x39\x5b\xb5\ \xa3\x0a\x54\x35\xa8\x94\x5a\x9a\x7a\x95\xda\xdf\xcb\x2b\x55\x51\ \x59\xd1\xc0\x7b\xac\xdb\x14\x60\xe9\xd1\xca\xbe\x7b\xd9\xe0\x99\ \x20\xbe\xa2\x01\x50\x98\x04\x0b\x85\x55\xb0\x10\x4c\xd8\x45\x4a\ \x80\x81\x4f\xe0\x78\xcb\x96\x2d\x5a\xb1\x62\x85\xfa\xf5\xeb\x07\ \x78\xf8\x05\x16\x10\xba\x00\x44\xae\xc9\xa2\xf3\x37\xa7\xb9\x5c\ \xc7\xe5\x1a\xfc\xdd\x85\xa1\x88\x5b\x50\x84\xdf\xe0\x7b\x0d\x28\ \x06\x4e\x9a\x31\xdd\x7f\xff\xfd\x80\x8e\x2f\x82\x0a\x75\xeb\xad\ \xb7\xf2\x3b\x58\x06\x80\xa0\x30\x00\x4a\x98\xcd\x75\x19\x07\xb4\ \x2a\x57\xe8\x8c\x4b\x35\x85\x9b\xd1\x49\x75\x9b\x43\x55\xbf\xa5\ \x8b\xea\xb7\x85\xaa\x6e\x47\xb0\xaa\x56\x87\xa9\x7c\x72\xa4\x32\ \x52\x1b\xcf\x43\x89\xb8\xce\x82\xa3\x92\xa3\xfc\xf5\xaf\x7f\x1d\ \x0b\x77\x42\x4f\x08\x9a\xc9\xc4\xf0\x1b\x68\x2d\x0b\xe3\xb4\x0f\ \xa7\x7a\xc3\x0d\x37\xe8\x83\x0f\x3e\x00\x30\x7c\x83\x9e\x79\xe6\ \x19\x68\x04\x8d\x74\x61\x2f\x9a\x8b\xb3\xfd\x59\xb1\x89\x7e\x63\ \x0a\xf1\x92\x69\xf9\x4b\x66\xad\xcf\x18\x55\x04\xfe\xe9\x4f\x7f\ \x3a\x05\xb1\xea\xf1\x00\x16\x94\x71\x30\x2e\xac\x88\x85\xc6\x3a\ \xb8\xfe\xf6\xed\xdb\xb5\x70\xe1\x42\x01\x18\xbe\x03\x50\x18\x37\ \x80\x3b\x4b\x73\x51\x18\xdf\xc1\xaf\x9c\x71\xd6\x99\x3a\x37\xf4\ \x54\x5d\x18\x61\x25\x9a\xb8\x18\x25\xa4\x98\x75\x46\x9c\x6e\xef\ \x4f\xd3\x45\xdd\x4f\xd3\xd9\x67\x11\x25\x36\x0a\xdf\xdb\x6f\x63\ \xda\x6b\x63\xbc\xf5\xb7\xde\xbb\x18\x4e\x84\x01\x9d\xb0\x00\x68\ \x33\x13\x83\xa2\x98\x9c\x0b\x53\xcd\xd9\x63\x1d\xe2\xdf\x9d\x77\ \xde\x49\xf9\x84\x05\xc2\xf1\xb3\x18\x58\x82\x13\xde\xff\x90\x30\ \x51\x16\xeb\x25\x03\x78\xb7\xc9\x2e\xfb\x9d\x09\x3f\x31\xae\x13\ \xad\x66\x76\x8a\xc9\x7f\x8f\x3b\xee\xb8\xbf\x9b\xa5\x7e\x6e\xe3\ \xc3\xd2\x18\x1f\x11\x5a\x03\x3e\x89\x85\xbe\xec\xb2\xcb\xf4\xf0\ \xc3\x0f\x7b\x2d\x89\xbf\xa3\x4c\xf8\x1d\xc0\x83\xba\xf0\x85\x44\ \x8e\xf8\xc8\xe2\xa2\x62\xf5\x28\x8f\x54\xed\xc2\x48\x55\xde\x94\ \xa0\xf2\xcb\x33\x54\x54\x5e\xa0\xc2\x9c\x12\x15\xe6\x15\x73\x0e\ \xc2\xf9\x8c\xf9\xb7\x71\xf4\x56\x68\xab\x36\x20\xde\xb7\x05\xff\ \x1c\xf3\x47\xc3\xa1\x14\xa8\x03\x33\xc7\x77\xf0\x0a\x65\x4d\x99\ \x32\x45\x44\x44\x00\xd2\xb7\x6f\x5f\x6d\xdd\xba\x15\xe0\x00\x04\ \x61\xf2\x3f\x25\x9c\xf3\x9d\xc9\xb7\x76\xfc\xad\x69\xdc\xa0\x43\ \x2c\xf7\x47\x9f\x74\xd2\x49\x1e\xc4\xc6\xfe\x08\x96\xcc\x22\xdb\ \xf5\x04\x8d\x31\xa6\xc1\x83\x07\x0b\xe5\x31\x87\x2c\x2c\x0a\x65\ \x22\x0a\x03\x34\x1c\x36\xc5\x50\xe8\x2e\x37\x23\x5b\x21\xa3\xce\ \x57\xfd\xd6\x30\x55\x6f\x0c\x56\xef\xed\x46\x61\x3b\x43\x54\xb7\ \x25\x44\x55\x4b\xba\x2b\xab\x20\xcd\x4b\x5d\x28\xd2\x6f\x42\x5d\ \x36\xb1\x31\xd5\xd5\xd5\x2c\x18\x94\x80\x89\x03\x0a\x8b\x87\x56\ \xc1\xef\x5e\x40\x5e\x7b\xed\x35\xed\xdc\xb9\x13\x6d\x81\x9b\x39\ \xc7\xf1\x3e\xdf\xf9\x21\x69\xe0\x95\xbf\x13\x45\x59\x5e\xd3\xfe\ \x70\xd6\x8d\x8c\xe2\x66\xdb\x58\x9e\x30\x79\xcc\x16\xff\x33\xc6\ \x7e\xdb\x6d\xb7\x09\xfa\x82\xe2\x9e\x7d\xf6\x59\x31\x56\xc6\x0f\ \x38\x28\x1a\xef\xf1\x25\x58\x58\x58\x88\xcd\x33\xf1\x22\x45\x14\ \x74\xd0\x90\xc1\x97\x69\xf4\xf0\x71\xea\x51\xd8\x41\x9e\x92\xee\ \x8a\x2e\xe9\xa4\xb0\x6e\x8d\x73\x80\xf2\x00\x92\xb5\x98\x6f\x56\ \x57\x7b\x44\x2d\xc4\xa8\x60\x0c\x26\xc9\xc2\xa3\xed\x44\x3e\x08\ \xbe\x82\x49\x60\x35\x8f\x3d\xf6\x98\xb0\x14\xac\xe2\xcd\x37\xdf\ \x74\xc9\x20\x9f\x01\x14\xdc\xcd\x44\xd1\x22\x34\x13\x0b\x82\x32\ \x38\x26\xfa\xd9\x68\x32\xd7\x34\x74\xa2\x01\xd0\xea\x08\x56\x15\ \x6e\x77\x54\x06\x5d\x6e\xda\xb4\x49\x04\x1a\x8c\x93\xf1\x30\x17\ \x1c\x3f\x7e\x90\x8a\x03\xe3\x46\xf3\x89\xe0\xb0\x98\xc0\x82\x50\ \x95\xcf\x88\x50\xf1\x48\x8f\x0a\xaa\xd3\xf9\xbc\xa9\x50\x5e\x81\ \xfe\x16\x1d\xa9\x39\x1c\x6f\x91\xd4\x5b\xb6\xb8\x9f\xf2\x43\x2c\ \x2e\x9a\xcc\x2b\x9a\xcf\x24\x88\xed\x49\xdc\xa6\x4e\x9d\x0a\x08\ \x00\xc6\x39\xbc\xfe\x22\x81\x22\x8c\x62\x7e\x8b\x82\x1d\x8a\xd5\ \xcd\x02\x84\x54\x73\xc2\x1e\xb3\xec\x5b\xb1\x06\xe8\x0b\x45\xa1\ \xb2\x0b\x58\x00\x85\x0f\x74\xfe\x0e\x60\x08\xef\x63\x52\x3c\x4a\ \x9b\x6a\x51\xd7\x26\x03\x65\xed\xc5\x88\x25\x8e\x21\xaa\x5c\x61\ \x32\xbf\x9b\x52\x93\x32\x38\x8f\x84\x11\x9f\x7a\xc4\x00\xf9\x17\ \xd9\x31\x8b\xcf\x0f\xc1\xb3\x58\x09\x5a\x0d\x7d\x61\xa2\x1c\x57\ \x56\x56\x92\xe8\xe1\xec\xd1\x30\x34\xc4\x65\xce\x58\x52\x53\x6b\ \xe1\x18\x67\xfa\xa8\x69\xe2\x44\xb3\xb2\x1b\xcd\x32\xfe\x73\xa4\ \xc1\xf8\xc3\x1f\xfe\xd0\x74\xab\x60\xa9\x0b\xb9\x6d\x1e\x0d\x92\ \x50\x24\x2f\x20\xd0\x27\x73\x23\xb4\x6f\x2c\xff\x74\xee\xa0\x90\ \x8a\xb3\x14\x56\x73\xa6\xa6\xcf\x9e\xa1\x29\x73\x6e\x56\xdc\xd0\ \xf3\x84\xb5\xc4\x0c\x3c\x57\x01\x1d\x03\x99\x37\x34\x0d\x73\xdc\ \x69\x34\x5f\xe4\xdb\x88\x7f\x98\xb7\xdb\xc1\xa5\x2c\x28\xe1\x20\ \x83\xc5\x9c\x19\x30\x93\xf9\xe4\x93\x4f\xdc\xbe\x03\x40\xb9\x01\ \x35\x15\x26\x7a\x90\xc0\xdd\xad\x5a\xb5\x9a\x72\x14\x2b\x0d\x84\ \xf0\xfd\x4d\xd6\x98\x75\xae\xc7\x12\x88\x06\x59\x78\x8e\xb1\x7c\ \x68\x0d\x4a\x76\x7b\x37\xf5\xf5\xf5\xaa\xab\xad\x57\xb5\x25\x82\ \x95\x96\x24\xd6\x0d\xeb\xa9\xde\x03\xab\x55\xdb\xbb\x46\x75\xd5\ \xfc\xcd\xa4\x0e\xa9\x13\x52\x5e\x5e\x7e\x58\x23\x2e\x40\xe9\x66\ \xbc\x7e\x13\x26\x8b\x25\x58\x22\x08\x18\x2e\xee\x16\x9f\x53\xee\ \x60\xc0\x44\x27\x76\xfe\xaf\x95\xa9\xcd\x65\x1f\x07\x2b\xc6\x9a\ \xc9\x77\x06\x0e\x1c\xa8\x49\x93\x26\xa1\x60\xde\xa8\x0b\x25\x22\ \x92\x42\x39\xff\x19\x7d\x01\xc9\x22\xb5\x2e\xaf\x54\xaf\x33\x1a\ \x9b\x1a\xa1\xbc\x3e\x24\xa6\x99\xee\xdc\xc3\x0b\x88\x69\xc9\x7c\ \xe3\x44\xb8\xb4\x01\x87\xec\x32\x59\x1c\x31\x1b\x50\x58\x03\x61\ \x21\xd1\x17\x61\x25\x1a\x85\xa0\x65\xf6\x4a\xe4\xe1\xe8\xcb\x45\ \x64\xd0\x18\x83\x3c\xa1\x99\x15\xac\x8f\x31\x7f\xf2\x99\xcd\xeb\ \x53\xf3\x87\xdf\x51\x72\xc1\x1a\x18\x2f\x4c\x80\x9f\x61\x0e\x30\ \x04\xd2\x2a\xf6\x5c\x0d\xbc\x2d\x4c\xc3\x37\xf4\xd6\x7b\xdf\xbc\ \xa9\x85\x4f\x8f\xd6\x88\x5d\xc5\x1a\x76\x5b\xac\x4a\xaf\x8f\xb2\ \xca\x70\x8a\xdb\x98\x3b\xbc\x80\xd8\x00\x97\xe0\xd8\xe0\x52\xcc\ \x98\x01\xa2\x31\x63\xc7\x8e\xd5\xbc\x79\xf3\xf0\x05\x2c\x30\x42\ \x18\x7c\x90\xef\x70\xd4\xc5\x2b\xda\xe5\x04\xea\xb3\xac\xfa\xf8\ \x66\xba\xb5\x43\xbe\xb5\x97\x40\x03\x9f\x88\xc5\xc0\x04\x6e\x5e\ \x28\x25\xd1\x64\x92\x27\x51\xf1\x91\x89\xa6\xa0\x51\xea\x16\xd1\ \x55\x91\x5d\x62\x15\x13\x1e\xaf\xd8\x08\x8f\xe2\x63\x0e\xea\x64\ \x69\x00\x18\x03\x3b\xe4\x70\xd0\xd5\xc9\xe6\x74\x37\xa2\xf9\xf0\ \x3d\x54\xc5\xa0\xd0\x18\xf8\x91\xba\xd0\xe2\xc5\x8b\x35\x68\xd0\ \x20\x8a\x6b\x84\x84\x0c\x00\x0d\xc2\x62\x88\xf1\x01\x90\xca\x2d\ \x13\x81\x8b\x77\x1e\x73\xcc\x31\x5d\x6d\xc2\x17\xdb\x24\x7f\xdf\ \x8c\x37\xdb\xee\x44\x71\x50\x40\x2a\xd8\xe3\xc6\x8d\xc3\x9f\x00\ \x0e\x9f\x79\xcb\xee\x21\x49\x3d\x94\x35\xff\x12\xd5\x6c\x09\x54\ \xc5\xaa\x20\x95\x4d\x0d\x37\xe7\x1e\xa7\xdc\xea\x14\xe5\x94\xa4\ \xbb\xf3\x60\x12\xe6\x1e\xe0\xf3\xc0\x2c\x1a\xfa\x7f\x00\xe1\x8a\ \x7c\x38\x37\x97\xc8\x61\x0d\x0c\xf0\x17\x0a\xe7\x63\x19\x8b\x5a\ \x48\x5b\x6b\xbc\x81\x52\x6a\x8e\x7e\x16\x4e\x99\x8d\x32\x80\x70\ \x85\x4f\x47\x5b\xe7\xc5\x06\xa9\xef\xb6\x30\x55\xae\x09\xd5\x9c\ \xfb\xc7\x6a\xd8\xf6\x24\xd5\x6e\x08\x35\x09\x53\xd9\xa4\x70\x25\ \x27\x34\xd2\x16\x0a\x79\x78\x00\xb1\xf0\x76\x89\xcb\x9e\x71\x78\ \xe4\x1a\xec\xd4\x91\x1c\xe2\x47\x70\xec\x38\x7a\x5e\xb1\x00\xd7\ \x8c\xd0\x24\xb4\x6d\x60\x22\x26\x0c\x6a\x6d\x0b\x00\xc3\x7b\x6c\ \xb4\x5a\x84\xcf\x64\xee\xcc\x8b\x39\xc1\x12\xcc\x15\xa6\xb8\xc8\ \x42\xe0\xae\x89\x1d\xd5\x35\xba\xab\xb2\xb2\xb3\x94\x99\x93\xae\ \xb0\xb8\x40\x45\x24\x19\x35\x47\x35\x2a\x21\x02\x6d\xf3\xdd\xe7\ \x2c\xe1\x4c\xf0\x69\x70\xf6\xc3\x0b\xe1\x4e\x97\x4b\xe0\x3b\xa8\ \xfd\x3f\xf7\xdc\x73\x62\x73\x68\xe4\xc8\x91\xc2\x1c\xaf\xbd\xf6\ \x5a\x0d\x1d\x3a\x94\xe2\x21\x55\x5c\x57\x74\xa4\x75\x86\xef\x01\ \xa4\xb7\xfa\x69\x11\x4c\x4b\x30\x12\x57\x2a\x2a\x77\xe5\x7f\xcb\ \xbe\x1b\x38\xa6\x44\xc4\x9a\xa0\x94\x6c\x27\xe7\x15\xe5\x2b\x6f\ \x4c\xac\xaa\x27\x27\xaa\x72\x7c\xba\x7a\x0e\xcd\x51\x59\x4d\xa1\ \x8a\xf3\x4b\x55\x5c\x58\x2a\xce\x41\xa0\x74\xbb\x5e\xf1\x21\x0f\ \xc6\xd0\x3c\xc3\xcc\xf3\x2d\xc0\xc0\x09\x83\x34\x56\x41\xae\x81\ \x5f\x40\x6b\x9c\x06\xb8\xde\xd9\xa6\x85\x43\xbe\xc7\xe0\x29\x47\ \xb7\xd0\x5e\xe4\x76\x56\x35\x0e\xb7\xd7\x05\xb3\x66\xcd\x12\x80\ \x10\x12\x33\x37\xc2\xd9\x0c\x8b\x2e\x83\xd3\xba\xa9\x6e\x63\xa8\ \x2a\xd7\x06\x69\xe0\xd6\x18\xd5\x6e\x0a\x51\xdd\xd6\x60\xd5\x6c\ \x0e\x52\xc9\xb5\x91\x4a\x4b\x4d\x97\xdb\x55\xb5\xeb\x1c\x3a\x20\ \xd6\x0c\x5d\x02\xcd\xb0\xf0\x00\xc1\x82\xb3\xaf\x41\x38\xcb\x66\ \xd0\x2f\x15\x28\xaf\x25\x02\xd2\x24\x79\x1c\xe7\x14\xd3\x01\x82\ \x6f\x48\xb6\xa0\x25\x30\x35\xcc\x00\xe9\xa2\xab\xd7\x8c\xd6\xbe\ \x0f\xde\xd4\x81\xcf\x5e\x56\xc2\x4d\x01\x1a\x7f\x6b\x89\x4a\x27\ \x44\x28\xd1\x93\x44\x70\x43\xc0\xc3\x56\xaf\x4f\x80\x94\x31\x00\ \x04\x40\xb0\x84\x97\x5f\x7e\x59\x34\x13\x0c\x1f\x3e\x5c\x98\xe1\ \x9c\x39\x73\x44\x14\x41\x08\xcc\x0e\x20\xe5\x05\xf6\x19\x6e\xba\ \xe9\x26\xce\x87\x37\xdf\xb3\x4b\xfd\xde\xa8\xee\xb8\x16\x0e\xc8\ \x78\xa2\x47\x7c\x08\x94\x05\x85\x51\x6c\x44\xeb\x0b\x4d\xca\xcb\ \x4a\x54\x56\x54\xa1\xa2\x82\x62\x95\x95\xf4\x54\x91\x51\x77\x49\ \x59\xb1\x8a\x4b\x8a\x38\xc7\x09\x16\xb6\xcf\x17\xfe\xac\x65\x00\ \xae\x55\x07\x73\x25\x1f\x81\x0b\x89\xd1\x79\x0f\x1d\xb9\x88\xcb\ \x09\x56\xc5\x77\xfe\x67\x5d\xef\xfa\xc9\x6d\x14\xc1\x26\x55\xe6\ \x53\x3f\x23\xc0\x01\x14\x28\x0b\x49\xcf\xb4\x36\xa5\xca\xf3\x55\ \xb5\x39\x40\x15\xcb\x2c\x53\x9f\xd5\xcd\x12\xc3\x68\x15\x5d\x19\ \xaf\xfc\xbe\x49\x76\x4e\x63\xe8\xeb\xca\xf8\x87\xbe\x1e\x56\x63\ \x7a\x8e\x62\x1b\x11\x05\x49\x21\xe1\xaf\x2b\x59\x23\x1c\xbb\xd7\ \x1f\xf8\x1c\x69\x30\x40\xd0\x08\xbf\xf9\x87\xc5\x53\xee\x01\x10\ \x32\x70\x42\xdf\xb8\xe4\x04\x75\x1d\x79\xb1\xaa\x37\x04\x6b\xfc\ \xee\x0a\x4d\xb9\x77\x80\x6a\xcd\xa7\x0c\xd9\xee\x51\xfd\xae\x20\ \xa3\xb5\x54\xd7\xc3\x85\x12\xbf\xeb\x4b\x72\xc4\xcd\x2b\xc2\x3a\ \x68\xd3\xa1\x0f\xea\xfb\xef\xbf\xd7\xf5\xd7\x5f\x2f\xfa\x9f\xd8\ \x11\x1c\x3f\x7e\xbc\x48\x00\x27\x4f\x9e\x4c\x72\x48\x66\x0b\x10\ \xf8\x1b\xe2\xf6\xde\xfe\x76\x7f\x8b\xd1\xf7\x7b\x80\x61\xe2\x76\ \x35\xad\xc1\xaf\x83\x2e\x4c\x3e\x53\x1d\x33\xcf\xd6\x35\x37\x8c\ \x93\xa7\x24\x46\xd9\xfd\xa3\xd5\xef\x8a\x7a\x85\xd7\x9c\x6d\x2c\ \xd1\xd1\x9d\x4b\xb8\xfc\x9d\x4f\x80\x10\x7b\x93\x10\x11\x47\xb3\ \xcf\xd1\xa7\x4f\x1f\x22\x06\xc4\x95\x05\xb0\x1c\x8e\x29\xbe\x41\ \x61\xae\xd1\xc1\x2f\x01\xb1\x0a\xc5\x50\xb3\x90\x0f\x70\xec\xd0\ \xb7\xeb\xf5\x4d\xcf\xcd\x54\xfe\xe8\x68\x15\x0f\x8f\x57\x61\x4d\ \x86\x72\xd3\x0b\x95\x9b\x99\x4f\x4f\xb0\x3b\x87\xb0\x59\x44\xa8\ \xbe\x00\xf2\x02\x80\xb8\x56\x50\xb4\xde\xf8\xd3\x45\x4e\x08\xc7\ \xae\x4d\xd4\x09\x66\xd9\x40\x1e\x62\xdf\xeb\xe7\x67\x37\xa5\xba\ \x72\xd2\x0b\x00\x82\x32\x52\x54\xcd\xb4\xaa\xee\x5f\x12\x4e\xb7\ \xca\x6f\x88\xaa\x36\x75\x56\xd9\xfa\x0b\x55\xbd\x39\xd0\xfc\x49\ \x88\x7a\xce\x0c\x57\x6e\x5d\x22\xe7\x21\x28\xab\x4f\x80\xbc\x0a\ \x18\xf4\xd4\xc2\x97\xd3\xa6\x4d\x13\x5c\x08\x25\xb1\x6b\x48\x94\ \xc1\xb1\x2b\xcb\x13\x1e\xbb\xd6\x51\xf3\x3f\xdb\x2c\x8f\x39\xcf\ \xcf\x0c\xc4\x25\xb6\x2f\x9a\x08\xbf\x4a\x54\x49\xbf\xef\x5f\x93\ \xce\x50\x9d\xe5\x1f\x73\x6f\x99\xae\x37\x3f\x7a\x55\x37\xdd\x59\ \xaf\x1b\x76\x0e\x51\x9f\xad\xdd\x95\x3b\x34\x9a\xb0\x97\x73\x59\ \x1f\x9f\x00\x79\x0d\xba\x22\xfb\x66\x03\x8a\xbd\x72\x28\x8b\x7d\ \x02\x8a\x6d\x74\x19\x62\x8a\xc3\x86\x0d\x23\x5b\xc7\x32\x44\x96\ \x0e\x57\x72\xff\x84\x1f\x62\xe1\x12\x66\x2c\x44\x68\x3b\xa0\xc4\ \xc5\xc4\xea\x1f\xe6\x43\xe2\x27\x9e\xab\x4f\xbf\xfc\x54\x65\x4b\ \x83\xc5\xbf\x03\x1f\xbc\xa3\x4d\xcf\xcf\x56\xe6\xc0\x70\xfa\xd1\ \x38\x17\x36\xf1\x0d\x10\x22\x2c\x68\x0a\x64\xa9\xdd\x20\x84\xb6\ \xd0\x97\x93\x26\xad\x3b\x9c\xe3\xd7\x80\xfc\xf1\x8f\x7f\x6c\x83\ \x53\x67\x4d\x60\x88\x88\xf0\x08\xb5\x4a\x39\x4b\xe1\x57\x9d\xad\ \xef\xf4\x95\x17\x90\x37\xdf\xdd\xa7\xc1\x3b\xe2\x94\xde\xaf\xf1\ \x3c\xce\xc7\x17\xfb\x06\x88\x45\x15\x38\x2f\x9c\x38\x17\x05\x61\ \x34\x03\x50\x70\x50\xbc\x07\x08\x7c\x87\xeb\x42\x21\xff\xf8\xc6\ \x00\xa9\xf2\x57\x40\xc8\x99\x01\x84\xb9\xa3\xac\xb4\x07\xb5\x49\ \x3b\x47\x89\x93\x2e\xd4\x97\x5f\x7f\xa5\xe2\xc5\x9d\xc5\xbf\x37\ \xde\x7d\x43\x03\xb6\x45\x29\xb5\x77\x17\xb9\x02\x2d\xeb\xe6\xcb\ \xfd\x1e\xaf\xd1\xca\xf3\xe0\x83\x0f\x8a\x7f\x9b\x37\x6f\x26\x0b\ \x27\x23\xa7\x0c\x40\x4b\x28\xa1\x2e\xfc\x08\x68\xd0\x96\xab\x6b\ \x3d\xeb\xe7\x4f\x46\x38\xc1\x28\x8b\x05\x6e\x40\x19\xb9\xe7\xbd\ \x6d\xc6\xf9\xea\xbf\xbd\xbb\xd6\xdc\xbd\x5a\x8f\xbd\xfe\x80\xd6\ \x3d\x3d\x5d\xab\x1e\x98\xa7\x8d\xcf\xcd\x92\xa7\x26\xc8\xb1\x07\ \xe2\x1b\x20\xd0\x0f\x7e\x82\xec\xdc\xdd\xa6\xec\xcc\x0f\xab\x30\ \xe4\x31\x43\x47\x65\xae\xb0\xf8\x9c\xbf\x22\xe1\x58\xcb\x36\xd8\ \xde\xa7\x12\xd1\xd8\xd9\x6f\xb7\xd9\x9d\xec\x39\x45\x35\x1b\x83\ \x55\xb0\xe4\x22\xdd\xf9\xf8\x03\x9a\x7c\xcf\x00\x55\xae\x0b\x54\ \xed\x96\x60\x05\x25\x9f\xe3\x5a\x55\xc9\x43\x7c\x03\x84\x05\x87\ \x8a\x5c\xcb\xa8\x01\xe1\xba\xd2\xdd\xb1\xcb\xce\x79\xef\xda\x2f\ \x3f\x36\xeb\x48\xf4\x63\x40\xa0\xf3\xfd\xd0\x33\x0b\x7d\xfa\x69\ \xa7\xeb\xe4\xf8\x53\xd4\x7b\x47\x88\x68\x31\xcd\x99\xd8\x49\xb1\ \x75\x1d\xd4\x39\xee\x1c\x5d\x18\x7c\x96\x01\x76\xba\xb7\x19\x90\ \x34\xc2\x97\x9b\x38\x5f\x23\x19\x84\xa2\x68\x09\x65\x63\x8a\x70\ \x97\x48\x0a\x8b\x61\x17\x0c\x01\x28\x6a\x57\x6c\xf3\xb2\x31\xc5\ \xae\xa2\x01\x32\xd6\x0f\x71\x20\x31\x74\x7b\xee\xfb\x60\x03\xb4\ \x1e\x4b\x39\xe7\x5c\xbb\x47\x32\xe0\x7c\x9d\x79\xaa\xdd\xbf\x72\ \xba\x75\x65\x9e\xe9\xed\x88\x77\x8d\xe4\xe4\x65\x28\xeb\xa1\x03\ \x62\x17\x79\x8d\x0d\xa8\x97\x5e\x7a\x49\x2f\xbe\xf8\xa2\xc6\x8c\ \x19\x03\x18\x00\x83\x2f\xc1\x77\xf0\x1e\xff\x01\x9f\xe2\x43\xb0\ \x24\x06\xe9\xd7\x51\x96\xf5\x02\xcc\xb1\x5c\xeb\x5b\x02\x9e\x75\ \xeb\xd6\x89\x8d\x3a\xaa\xdd\x6c\xc6\xb1\x79\x87\x7f\x45\x71\xa9\ \x5e\x70\xcc\xba\xc0\x22\x54\x31\x50\x5c\x5f\x76\x0b\x5f\xc3\x3f\ \x10\xda\xfe\x42\x81\xc2\x28\xd5\xfb\x35\x20\x06\xc6\x8b\x2c\x34\ \x75\x3e\x1a\xb4\x69\x17\xa2\x69\x9b\x7d\xf7\x89\x13\x27\x8a\x9d\ \x53\x92\x68\x14\x96\xda\x1e\xb7\xe2\xdd\x7c\xf3\xcd\xde\x4a\xb8\ \x2f\x1d\x27\xaf\x62\x72\xf0\x1e\xa6\x86\x60\x76\x68\x06\x56\x80\ \x29\xba\x76\x52\x38\xd2\x00\x71\x77\x24\xe1\xf0\xbf\xb1\x01\xcf\ \xf1\x47\x40\x6c\xae\x2f\x52\x9d\x40\x59\xb1\x04\x16\xdf\xd5\xf6\ \xf8\x9c\xe0\x07\x30\xdc\x36\x36\xc2\x31\xeb\x83\xdf\x39\xe4\x1f\ \xb6\x05\x7f\x7e\xcf\x9e\x3d\xa2\xd2\xcb\x3f\xba\xc3\xa1\x2d\xfc\ \xca\x82\x05\x0b\x44\xd6\x7e\xf9\xe5\x97\x53\xe7\x07\x00\x06\x87\ \x85\xd0\xc3\xc4\x60\x01\x70\xa1\x1f\x82\xd1\xcb\x98\xe3\x7d\x77\ \x4f\x4c\x58\x68\x98\x51\x51\x70\xd3\x5d\x52\xd6\xa3\x69\x7d\x8f\ \x57\x40\xf1\x89\xb2\x9e\xe7\x42\xf4\x5e\x61\x76\x14\xc7\xa8\x65\ \x81\x3e\xd1\x14\xa5\x00\x1c\x39\xe7\x00\x80\xdb\xda\xb5\x60\x00\ \xf3\xc4\xa4\xe7\xfb\x5b\x3e\x62\x0a\xf7\xb6\x7b\xf6\x49\xa7\xa0\ \x00\x75\x48\x3a\x5b\x61\x19\x17\x28\x34\xa6\xa3\x42\xc2\x3b\x2b\ \x28\xd4\xaa\x19\x01\x16\xea\x06\x06\xe1\x33\x5c\x73\x9d\x63\x17\ \xfa\xd9\x7c\x03\x84\x85\xc7\xdc\x7e\xa1\x50\xb3\x01\x10\xf2\x11\ \x1c\x18\xd1\x85\x5f\x3d\xa9\xcd\x14\xef\x3d\xf7\xd4\x87\x76\xd1\ \xe7\xab\xf7\x16\x7a\xb0\x0e\x96\xea\x35\xa1\x2a\xbc\x3c\xce\x14\ \x38\x43\xee\x5c\x68\xcb\x94\x14\xf6\x78\xd7\x97\x7b\x28\xc6\x53\ \xc3\x87\x23\xb9\x59\x12\x7a\xc2\x99\xe1\xb4\x58\xfc\x51\xa3\x46\ \x11\xf6\x72\xcc\xbd\xe1\x68\x0d\x3e\x85\xd0\x17\xc1\x5a\xe0\x53\ \xbf\x00\xc4\x94\xec\x44\x0a\xbd\x36\xaf\x0f\x29\x1d\xa1\xa8\xff\ \xe8\x72\xa6\x4a\xe7\x74\x52\xdd\xc4\x32\xdd\xfe\xe0\x1e\xdd\xb0\ \x61\xb0\xea\x67\x65\xab\x62\x6e\x77\xa5\x0c\x0a\x51\x8f\x88\x48\ \x14\x14\x56\x71\xfd\xcd\xbe\x01\x62\xed\x2f\xa5\xa0\xfb\xe4\x93\ \x4f\xea\xdb\x6f\xbf\xd5\xdc\xb9\x73\xdd\xae\x20\x00\x50\xf5\xa5\ \x9d\xd4\x95\x95\x89\x32\x5c\x91\x11\x13\xc5\x54\x09\xf7\xde\xf1\ \x83\x87\x4c\x92\x77\x0c\x62\x61\xf1\x97\x3c\xa9\x2e\xd6\xb6\x6d\ \x73\x7a\x25\xe1\xcc\x95\x12\x9f\x2e\x4f\xac\x95\xe1\x3d\x3c\x82\ \xd0\x36\xef\x92\xcd\x32\x52\x33\x58\x23\xac\x02\x67\xef\x6e\xe7\ \x6b\xb0\x92\xcb\x67\xbe\x00\x52\xf6\xbf\x8e\x3b\xa2\x03\xd7\x4c\ \xed\xe4\x87\x7a\xb0\x38\x07\x21\x21\xe2\x15\xff\xf2\xa5\x7d\x77\ \xae\x81\x71\x45\x4b\x6f\x03\x72\xb7\x16\x24\xa4\x27\xab\xc7\x35\ \x17\x72\xb3\xa7\xaa\xb7\x04\xaa\x6a\x7d\xa0\x7a\xcd\x8c\x50\xb1\ \x35\xcb\xe5\xd7\x27\x1b\x60\x59\x9c\x07\x9b\x88\xf5\xc3\xd7\x12\ \x85\x62\x25\x96\xe1\xe7\x98\xb5\x1d\x7a\x5f\x16\x8b\xfa\x2b\x7a\ \xb0\x70\xec\xee\x51\x4a\xd0\x17\x80\xd0\x2e\xe4\x17\x7d\x59\x04\ \x33\x58\x49\x54\x62\x9c\x32\xa6\x07\xa8\xd7\xea\x00\x2d\xbb\x6f\ \xa6\xd6\x3c\x39\x99\x5e\x5e\xf5\xdb\x18\xa9\xaa\xd5\xa1\x4a\x8a\ \x4f\x75\x4f\x44\x45\x29\xf1\x1f\xf8\x52\xd6\x87\x8d\x3b\x9f\x3a\ \x17\xe9\xa7\x5a\x45\xb2\xc3\x6d\x07\x3c\x3b\x04\x3f\x02\x4d\xcd\ \x9c\x39\x53\xd3\xa7\x4f\xe7\x47\xf1\x25\x98\x2e\x82\x56\x30\x08\ \x1c\x3b\xb4\x85\x56\xb0\xb3\x08\x20\x7b\x5a\x22\x75\x1d\x7f\xfc\ \xf1\x39\x36\x27\x77\xb3\x67\x43\x56\x56\x8e\x72\xcb\xd3\x95\x9d\ \x5a\xa0\x9c\xb4\x7c\x65\x67\xe4\x28\x3b\xd3\x3e\xcb\xce\x73\x82\ \x5f\x25\x1f\xa3\x82\x01\x83\xa0\x94\xee\x09\x13\x58\x48\xb1\xaf\ \x71\xf7\x12\xfc\xc3\xd2\xa5\x4b\x79\xe8\x0b\xc8\xb3\xf0\x00\x81\ \xef\x60\x5f\x99\x30\x18\xe7\x0d\x10\x0c\x02\xfa\x72\xb7\x46\xe3\ \xc8\x38\x97\x01\x7e\x64\x7f\xbb\xdb\x72\x9b\x51\x2d\xc9\x32\x8e\ \x3d\xf6\xd8\x12\x16\xb8\x91\x82\x0c\x8c\xce\x83\xce\xa7\x4d\x54\ \xd5\xd6\x83\xd5\x73\x49\x90\x7a\xce\x88\x50\xe9\x75\xd1\x2a\xba\ \xdc\xa3\xac\x9c\x0c\x47\x55\x58\x04\x29\x01\x6b\x00\x53\x20\x80\ \xc2\xed\xd8\x5d\x7c\xbd\x59\x67\x19\x34\xe4\x7a\x77\x79\x75\x3e\ \xa4\xa9\x4f\xc1\x89\x23\x80\x40\xb6\x8e\x1f\xe1\x7c\x40\x42\x43\ \xe8\xdc\xe3\x36\xe1\x16\x52\x44\xfc\x9b\x59\x78\xa0\x2d\xe0\x48\ \xfa\xa9\xb8\x5d\x2f\x21\xd6\xa3\xa0\x3e\x17\xa8\x70\x5a\x90\x7a\ \xcf\xc8\xd5\xa8\xe5\x95\x76\x1c\xa0\xa2\xe9\x41\x2a\x9e\x11\x2c\ \x4f\x6a\x0c\xe7\xa1\x80\x00\x82\x45\x00\x08\xbe\xd5\x75\xe1\xd4\ \x1e\x8e\x4e\x8b\x10\xbb\xbf\xf0\x2e\xa8\x6a\xc0\x80\x01\x5a\xb9\ \x72\x25\xe6\x0b\x0d\x41\x5d\x58\x0b\xfb\x25\x44\x5e\x50\x14\x03\ \xa2\x98\xc6\x20\x28\x37\xf3\x19\x9a\x82\x5f\x21\xea\x00\xc4\x96\ \x00\x08\x5b\x0f\x97\xd3\x4b\xc0\xbd\x21\x48\x41\x59\xa1\xca\x07\ \xe5\xaa\xac\xbc\x8c\xf7\x3f\x28\xac\x01\xca\x0b\x73\x18\x13\xe0\ \xd0\x01\x04\xda\x42\x61\x7d\x6f\x8b\xb2\x87\xb9\xb8\x2e\x8b\xc5\ \x80\x40\xa3\x03\xbb\x87\xf4\xf5\x92\xb9\x03\x12\x4d\x72\xdc\x87\ \x47\x6e\x02\x48\x44\x14\x84\xc3\x44\x65\xf0\x28\x80\x40\x79\x36\ \x18\xe8\x0e\xad\xe1\x71\xe2\xfb\xcd\xd1\x1d\x30\xb0\x9b\xd3\xa3\ \xf1\x9c\x6f\x73\x8a\x38\x12\xfa\xa1\x05\x94\xa8\x2a\x61\x52\x07\ \x35\x3e\x4a\x63\x6b\xa8\xea\x36\x74\x51\xcd\xaa\x6e\xaa\x5e\x12\ \xae\x9e\x13\xa3\x95\x99\x9e\xed\x1e\xa9\xe1\x9e\x42\xe1\x9e\x0d\ \xe6\x22\xcf\x06\x1c\xba\x6d\x4b\x0c\x38\x5c\xe5\xe6\x25\xee\x46\ \x4d\xb8\xd0\x6d\x47\x22\xee\x18\x00\xdc\x7b\x67\xa2\x0c\x8a\x04\ \x11\x0a\xe3\x18\xeb\x01\x1c\x38\x16\xcb\x32\x87\xd9\xaa\x19\xb6\ \x8a\x2e\x37\x7f\x78\xb7\x39\xe2\x37\x62\x6d\x61\x63\xa3\xe2\x14\ \xd9\xc3\x5e\xb3\x22\x94\x58\xd8\xc3\x24\x02\xe1\xd8\x2b\xe1\xdd\ \x23\xdc\xcd\x9d\x2e\xf7\x62\xbe\xde\x48\x93\xf9\xdb\x7f\x32\x70\ \x86\x45\x58\x27\x1e\xae\x67\x63\x4d\xb0\x8b\xbe\x41\xc4\x44\x92\ \xc3\x8f\xe3\xc4\x89\x1e\xa0\x23\xcc\x94\xf7\x70\x26\x9a\xc0\x80\ \x2c\x9b\xc5\x6c\x01\xc4\x0d\x8e\xcf\x38\x17\x30\x08\x04\xf0\x2b\ \x97\xd9\x80\xfb\x18\x4f\x87\x37\x07\xab\xe0\x9f\xcd\xf1\x7d\x14\ \x06\x89\xca\xf0\x28\xfd\xc6\x60\xf5\x9a\x1d\xae\xd2\x71\xf1\x2a\ \xec\x93\xa6\x82\xaa\x4c\xe5\x95\x66\x29\x37\x3f\x47\xee\x09\xdd\ \x08\x19\x39\x01\x0e\x8a\xc8\x3a\x31\x5f\x58\x81\x1c\x8e\xf7\x47\ \xa4\x3f\x0c\x0b\x61\xb3\x8a\xfa\x3f\x0f\x9f\xa4\x54\xb2\x7c\xf9\ \x72\xaa\xbc\xf4\x66\x41\x61\x58\x01\x15\x61\xc2\x62\x34\x03\x40\ \xdc\x63\xfd\xbc\x8f\xfc\xc3\xc9\x03\x2c\x66\xce\x5d\x48\xc6\xd7\ \x53\x8f\x32\x55\x9d\x62\xd2\xc3\xa8\x39\xc8\x14\xe4\x63\xf7\x00\ \x84\xb6\x61\x67\x29\x7f\x42\x27\xe5\xdc\xd0\x54\x3a\xea\xff\xb8\ \xbb\x07\xd8\xc9\x96\x2c\x8e\xe3\xd9\x68\x1d\xad\x6d\xdb\xb6\x6d\ \xdb\xb6\x6d\xdb\x0e\xd6\xb6\x6d\xdb\x56\xb4\xc1\xda\x0f\x7d\xdf\ \xf9\x64\xf2\x9d\x8c\x67\x1e\xfe\xec\xe4\x97\xee\xbe\xa8\x7b\xeb\ \xa8\x4e\xe1\x9c\xba\xfe\xfd\x64\x9e\xbb\x16\xad\xd0\x88\x97\x75\ \xb5\x30\x3e\xf5\x65\xae\x31\x88\x20\xae\x0d\x43\x10\x94\x46\xb0\ \xad\x2d\x6b\x81\x5d\x43\x12\x76\x4d\xa5\x51\x22\x64\x2f\x66\x5a\ \xd7\x39\x50\x59\x76\x96\x96\x70\x29\xa7\xd3\xf5\xa6\x49\x77\x71\ \x8e\xc1\x39\xc7\x3c\x9e\x74\x03\x86\xd4\xdf\x90\xa4\xdf\xea\x16\ \xb7\x5a\xae\x7e\x8b\x6b\x2e\xb7\x7e\xc8\x75\x96\x5b\xde\x76\xda\ \x90\xeb\x4f\x4e\xf8\x1b\xdd\xb2\xbc\xf0\x41\xee\x78\x75\xd1\x80\ \xb3\x18\x65\x01\xc2\x8c\xb2\xe8\x35\xe2\xfd\xb9\xa9\xd3\x55\xd6\ \x84\x21\x11\x7c\xda\x8b\x95\x76\x82\x2b\xeb\x1b\xe1\xcb\x8d\x5b\ \x7b\x82\x29\xe0\x05\xdd\x37\xd2\x47\x6a\x9c\x2f\xd1\x0c\x35\xd7\ \x68\x2a\x6b\x29\x15\xf9\x30\xe7\xce\xeb\xa4\x15\xa7\x9b\xf8\x97\ \x3b\xcc\x68\xc4\x2d\xc7\x64\x7e\xa5\x91\x86\xf3\x5e\x7c\xc2\xf4\ \xee\x76\xe6\xe5\x9a\x8f\x3e\xd7\x72\xcd\xc7\x9e\x73\xb9\xc6\xc3\ \xcf\xb5\x5c\x75\x72\xc4\x5f\xf1\x16\xd3\xc1\xbb\xc6\xc5\xe5\x93\ \x2f\xf5\x9f\xfa\x11\x50\x56\xa1\xf8\x7c\xf5\x2d\x13\xaa\xf3\xe8\ \xb2\x66\x73\x42\xc7\xd3\x4f\x9a\xf1\xad\x67\xf0\xa2\x4c\x5a\xf1\ \xba\x24\x9e\xd4\xbf\x10\x8e\x20\x34\x81\xfb\xf7\xa0\x07\x3d\x88\ \xb4\x94\x17\xc4\x8b\x16\x75\x54\xbe\xc4\x66\xd3\x78\x5e\x5e\x5a\ \x25\xb9\xcb\x82\x43\x9f\x20\x67\xfc\xa8\xfe\xc5\xa6\x2f\x70\xa2\ \x35\x74\x6b\x1f\xc9\x4d\xf5\x7e\x70\xd7\xfb\xdf\x75\x79\xc0\x13\ \xee\xb6\x3c\xe0\x51\xf7\x5c\xee\xf7\xe0\x7b\xef\x38\x7e\xef\xfb\ \xed\x80\xdc\x25\x83\x07\xdc\xff\x81\x84\x89\x46\x40\x6b\x99\x69\ \xbc\xba\x69\x33\x0b\xfd\x26\x7c\x18\xec\xf7\x9b\xd7\x7a\x05\xf8\ \x53\xd8\x44\x7d\x92\x96\xd7\xfb\x5f\x9a\xbf\x3d\xd7\x6a\x95\xcd\ \xc1\x2c\x22\xc9\x61\x63\x4b\x21\x0b\x85\x89\x61\xcc\xf4\x67\x94\ \xa7\x5d\xd1\xc7\xd1\xb9\xbc\xd8\x71\xac\x15\x37\x19\x3c\x65\xf0\ \xc4\xd1\x8a\x2f\x10\x14\xef\x79\xe1\x8b\x8f\x89\xbd\xd9\xd9\xf7\ \xca\xfd\x7e\xb9\x5b\x9c\x7f\xb9\xe4\xe5\x2e\xc6\x79\x21\x30\x4c\ \x1a\x22\xd3\x6c\x50\x0f\x26\x9b\x13\x83\x01\x80\x49\xae\x29\x5d\ \xd5\x2f\x46\xa8\x9e\xb4\xd6\x0c\x79\xfa\x34\xc8\x25\x12\x58\x95\ \x8c\x18\x33\x48\xcb\x1e\xc8\xe3\xd2\x8e\x60\x4e\xd9\x1c\xca\x6d\ \xc8\x74\x31\x7d\xd4\x9e\xf9\x52\x16\x73\x60\x40\x52\xf9\x7f\x98\ \xb6\xe6\x17\x73\xcd\xaf\x87\x88\x0f\x38\x96\xe9\x6c\x85\xa5\x7d\ \x54\xbf\x89\x13\x42\xab\xaf\x75\xbf\xab\xac\xee\xf1\xd2\xd9\xcf\ \xea\x31\x13\x21\x7b\xcf\x59\x29\x72\x9b\xdb\xc1\x9c\xbf\xdd\x72\ \x9b\x5b\xdf\x46\x2e\xf8\xe5\x2e\x77\xbe\x8b\xf7\xd3\xde\x2d\xcd\ \xa3\x17\x21\xd6\xb0\x08\x01\xa4\x21\xc5\xd1\x94\x59\x7b\x3d\xc6\ \xee\xcc\x0b\x9c\x7d\x82\xe9\xaf\x35\x95\x7b\x2b\x89\x7e\xd5\xab\ \x5e\x25\xb2\x6a\x79\xec\x63\x1f\x6b\x8e\xdd\x4a\xf9\x5e\x5e\x46\ \x39\x92\xcf\x64\x39\xbe\x6b\xb6\xd2\xda\x22\x8c\xe4\x85\x65\xbe\ \x54\xc8\xfd\xb4\x85\x59\x28\xd0\x85\xb4\xbd\x67\xec\xfd\x6d\x07\ \xb7\x1f\x73\x73\xb3\x43\x7d\xdf\x11\x84\xcf\x17\x0a\xa0\xfc\xab\ \x5f\xef\x6a\xab\xeb\xde\xf4\x1a\x3c\x3d\xd1\xb1\x33\x8f\x71\x3d\ \xf9\xdc\x97\xeb\x5e\xe7\xba\xb4\x15\x68\x29\x10\x0c\xcc\xf3\xce\ \x9c\x90\xb6\xc8\x20\x34\x80\x09\xb4\x98\x86\x97\x30\xb3\x3a\xc5\ \x90\xf5\x1d\x8e\x26\x21\x7a\xec\x26\xad\x4a\xd3\x0d\x2d\x33\xcd\ \x09\x80\x92\x1e\xfb\xa6\x25\xc3\xa4\x2a\xc3\xf6\x66\xbe\x68\x91\ \xca\x23\x06\xb3\xd0\x28\xf2\x6a\xca\xcf\xde\x63\xd8\xbf\xa7\xe2\ \xf7\x83\xb9\xff\x81\xc3\xac\x0b\xcf\x28\xea\xa9\x60\x04\xe6\xd2\ \x75\x46\x83\x32\xc3\x45\x2e\x7c\x11\xf0\x2e\x79\x87\x49\xb8\x67\ \xb6\xa3\x03\x0d\xf0\x1c\x8e\x46\x02\xa3\x8e\x0d\x83\x40\xfd\x2b\ \x8c\xf0\x5e\x4d\xcc\xfd\x65\xae\xff\xfe\x38\x31\xdf\x5e\x77\x86\ \x24\x35\x87\x0a\x52\xa9\xd2\xb4\x07\x11\x98\x2e\xc4\x4b\x63\x78\ \x2c\x4c\x00\x62\xd0\x0e\x04\x40\x14\xa0\x39\xec\x38\x28\x6b\xd7\ \x30\x31\x0c\x8d\xe0\xbc\x1b\xd9\x26\xc6\x76\x87\x20\x9f\x23\x53\ \xd8\x76\x13\x4c\x69\x1d\x3b\xcf\xcc\x85\xf5\x3c\x02\xd2\xf4\x2b\ \x53\xd4\xea\x7e\x04\xf7\xbe\xe0\xb9\x98\x85\x49\xee\xc3\x90\x0d\ \xcb\xe5\xc2\x1e\x9f\x72\xda\x93\xf3\xcf\xf0\xc7\xed\x10\xeb\x63\ \x1f\xfb\x98\x74\xde\x3c\x2d\x52\xa5\x92\x18\xa0\xf1\xd7\x09\x54\ \x19\x52\xc6\x93\xaa\x47\x5f\x23\xc8\x03\x6b\x30\xae\x9e\x2d\x62\ \xb8\x0e\x93\x68\x0c\x62\x47\x2c\xe7\x48\x31\xd0\x1e\x1a\x89\xc8\ \xfa\x34\x4c\x8d\xf6\xc1\x6f\x53\xca\x9e\xc9\x5c\x02\xc2\xe9\x5d\ \xb7\x83\x5b\xd1\x5f\xe0\x59\x99\x25\xe6\x87\x80\xb8\xd7\x7f\x9a\ \xe0\x7f\x6e\x2d\xa6\x83\xfb\x95\xd3\xcc\xa8\xff\x04\xea\x4d\x1b\ \x1d\xbc\x72\x99\x26\xf0\x11\xbe\xbc\x58\x88\xeb\xd8\x1e\xc3\xf5\ \xc5\xae\xab\x00\xe9\x2b\xb8\x87\xb6\xd4\xc6\xb8\x96\xf4\x2a\x27\ \xc7\xc0\x3d\x45\x21\xa5\x39\xc1\x75\x25\xa8\x74\x2d\x2d\xc2\x2c\ \x4c\x70\x2e\xb3\x47\x7a\x7d\x37\xa7\x53\xdc\x3d\xec\x36\xe4\x93\ \x69\x52\x2f\xbf\x11\xbf\x05\x83\x90\x8b\x6b\xe9\xa8\x7b\xd4\x55\ \xce\xc8\x39\xfe\xc2\x31\x55\x37\xdf\x50\x86\x4c\xee\xab\x4b\x0c\ \x21\xff\x3b\x2a\xfd\xd7\xa9\xc0\x61\xa4\x8a\x84\xa9\xa4\xdf\x55\ \xb2\xd5\xf2\x7e\xb7\xab\x4e\x59\xe7\x68\x48\x52\x68\x62\xcb\xef\ \x4c\x50\x41\xa6\x34\xa7\xf2\xda\xac\xab\x4e\x19\xc6\x7b\x1e\x93\ \x13\xa3\x4b\x65\x51\x6f\x1a\x98\x47\xdf\x04\xc7\x37\x42\xd6\x80\ \x17\xc0\xda\xa2\xb6\xda\x3c\xff\x09\x4b\x9b\x09\xb4\x0d\x07\xc6\ \x60\x4a\x5e\xd6\x1e\x33\xad\x9b\x66\x89\xfe\x67\x10\x4c\xa7\x91\ \xa9\x2a\x90\x87\x64\x97\x00\x2d\x37\xb9\x35\xc3\x7e\xb3\xc7\x7e\ \xab\x98\xfe\x8a\xca\xd7\xfb\x4f\xc3\x98\x8a\xa2\x7f\x0b\x81\x80\ \xa4\x59\xf9\x11\x16\x93\x3c\x53\x7b\xd5\x39\xc0\xd4\xfa\x4d\xfe\ \x2b\x57\x59\x90\xbb\x9a\x86\xb7\xa3\x03\xc2\xb7\x61\x0c\x30\x9b\ \x66\x4e\x4b\xb4\x83\xb9\xb4\x76\xd3\xa6\xc5\x63\x0a\x1a\xab\x1a\ \xac\x6a\x03\x00\x91\x42\xc0\x34\x84\x48\x83\x76\xd1\x90\x24\xb3\ \xc6\x33\xb3\xd7\x38\x1a\xb4\x95\x45\x84\x2d\x4e\x3e\xc7\x00\x53\ \x3b\x87\xa9\xbe\x77\x0d\xbf\xc3\x08\x28\x75\x5f\xb9\xbe\x30\xa4\ \x01\xc2\xd6\x33\x37\x0c\xa4\x2e\x34\x83\x20\x7d\x70\x86\x5f\xce\ \x31\x6e\xf8\x79\x37\x23\x3f\xa4\xe2\xb8\xd1\x2c\xae\x7b\xc0\x34\ \xf8\xf7\x9f\xdf\x7f\x57\x61\xa1\x0b\x79\x49\xf5\xdc\x1d\x6f\xdb\ \xa3\x24\x9f\x54\x23\x22\x8f\x86\x39\x41\x58\x04\x29\xfb\x69\x3b\ \x18\xa4\x4d\x01\x73\x94\x51\x9b\x95\xd6\xa5\x29\xce\xc5\x3c\xc4\ \xee\x3a\xff\x9d\xa3\x35\x99\x27\xcf\x48\x1b\xf2\xa2\x9c\x1b\x68\ \x2f\x12\x88\xdc\x7b\xef\xfa\x96\xad\x30\xfb\x59\x2f\xf9\x4f\xcc\ \x13\x49\x6a\xe0\x2d\xec\x2f\x97\x2f\xc9\xe3\x21\x25\xc5\xed\x8c\ \x80\x70\x99\x32\x04\x2b\x72\x09\x48\x70\xb6\xbc\x8e\x59\xa3\xcd\ \xcc\x59\x49\x3b\x07\x65\xbc\x53\x5e\xe3\x4d\x31\xc1\xff\x76\x01\ \x72\x9d\x32\x68\x30\x21\xf2\x0e\x4c\xb0\x32\x94\xf7\xc7\x71\xf9\ \xdf\x3d\x5a\xf1\xae\xa9\xe3\x5d\xb7\x0c\x43\xc6\xe7\xff\xba\x3d\ \x3e\x06\xbf\x9a\x46\x4e\x54\xae\x8a\x32\x49\x88\xdb\x37\x68\xd4\ \x83\x4a\x33\x79\x4c\x11\xa2\x6a\x98\x33\x21\x49\xae\xe3\x88\x09\ \x24\xdc\x48\x32\xa2\x2a\x93\x16\xc4\x2c\xd7\x29\xd3\x39\x40\xec\ \x98\xaa\x9c\x18\x00\x18\x59\xc7\x15\xd3\x5a\x41\x43\x30\x9c\xaf\ \x7d\xa9\x9f\xb1\xb5\x3f\x43\xcc\x5f\x91\xfa\x43\x80\x46\x1f\x34\ \x96\xbe\x49\x26\xe2\x20\x34\x82\x61\x80\xff\xb9\x9e\xed\xc6\x80\ \xb8\x18\xd4\xe4\x10\xb8\x0e\xc3\xfb\xef\x9e\xd0\x6c\x1e\x02\xd3\ \x00\x0c\x29\x5f\x7b\xa1\xdd\xcc\x52\x3b\xf8\xfc\x7d\xee\xb7\x77\ \xc9\x27\xa7\xbc\xfb\x6f\x75\x7e\x68\x5b\x1e\xcf\x4f\x1f\xbc\x70\ \xf0\x73\x84\x40\xe0\x83\x00\x51\xf2\xc6\x48\xad\x58\xc7\xec\xbf\ \xe3\x3c\x25\xc4\x43\x60\x8c\xc0\xa0\xb6\x5a\xaa\xa3\x99\xa7\x94\ \x76\x61\xb2\x6b\x6a\x4f\x4a\x2a\x46\x33\x79\x65\x6d\x7e\xb9\xaa\ \xb3\xc7\xec\x8d\x40\x7d\x6f\xdb\x6c\x84\xbf\x67\xe2\xfb\x91\xb6\ \xb7\x91\xbc\x7c\xfe\xf9\x5e\xf9\x0e\xc1\xf9\x00\x08\x68\xfe\x22\ \x26\x21\x54\x03\x97\x60\x48\x84\x49\x69\xe3\x48\xe7\x5d\x97\x97\ \x97\x93\xa0\x47\xcf\x6d\xcd\xad\xc6\xe4\x1a\x6b\x28\x83\xe8\xb8\ \xf0\xaf\x9e\x91\x88\x47\x0e\x1e\x36\xc3\x2e\x37\xdc\xae\xe1\x79\ \x18\x74\xf2\xf6\x8b\x9a\x55\x81\x0f\xa9\xf7\x7e\x30\xb8\x6e\x4f\ \xb7\x97\x04\x37\x6f\x2f\xa5\x60\x52\x9d\x57\xd7\x6e\x71\x02\x32\ \xfd\x67\xa6\x30\xcc\x04\x5b\xed\x85\xef\xca\xd6\xc6\xa5\x61\xe6\ \xd8\xb7\x25\x03\x0e\xb2\x98\xfb\xc2\x63\x0e\x9e\x33\x92\xfb\x0c\ \x18\x02\xfd\x0b\x61\x0e\x06\x9a\x50\x5b\xa3\xcf\xd1\xee\x9e\x35\ \xcc\x18\xd6\x8c\x25\x22\x97\x6f\xbe\x15\xf9\x8d\xd8\x32\x83\xb4\ \x04\x98\xbd\x72\xd1\x6f\x9d\x74\xb6\x6b\x3f\xcf\xfd\xb4\xb1\xf5\ \xc6\x84\x5e\x34\x8c\x7a\x5f\x5e\xd0\x81\xe0\x1a\x04\xc5\x24\xa8\ \x93\xd8\x12\xa5\xfa\x21\x30\x65\x63\xc6\x4f\x86\x71\x3f\xf7\x3d\ \x04\xbf\xc5\xfa\xd7\x72\x0b\x5b\xb7\xc1\x09\xc2\x74\x38\xef\x37\ \xf6\xfc\x51\xfb\xc2\x74\x44\x77\x62\x6c\xff\xce\xe3\xd3\x5f\x78\ \xe0\xe0\x7a\xb3\x0e\xe0\x4a\x63\x1e\xaf\x38\xe7\x2e\x72\xb0\x75\ \x59\x47\xb5\x07\x07\x32\x00\x00\x00\x00\x83\xfc\xad\xef\xf1\x55\ \x00\x00\x1c\x05\x23\xd1\x5c\xb8\x5e\xd5\x4d\xed\x00\x00\x00\x00\ \x49\x45\x4e\x44\xae\x42\x60\x82\ " qt_resource_name = b"\ \x00\x06\ \x07\x03\x7d\xc3\ \x00\x69\ \x00\x6d\x00\x61\x00\x67\x00\x65\x00\x73\ \x00\x06\ \x06\x8c\x8a\x82\ \x00\x61\ \x00\x76\x00\x61\x00\x74\x00\x61\x00\x72\ \x00\x05\ \x00\x33\x57\x47\ \x00\x30\ \x00\x2e\x00\x70\x00\x6e\x00\x67\ " qt_resource_struct = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x12\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\ \x00\x00\x00\x24\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ " def qInitResources(): QtCore.qRegisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
[ "mingrui.zhao@cern.ch" ]
mingrui.zhao@cern.ch
eb5023ec4fb7c8bc7ec1220eec4973aa2f48faeb
0a602f99463e233666d0d95d033da51664bbf31d
/Chatbot 4/training.py
ede6cded656ab933496bcd8834c22845f5cebaed
[]
no_license
MarkoMarcelo/JIRA
9a952c736312b7fcbb2966c765e5bbe19cc5fe7d
7f8301521a6c68e440930620476348acbc85e94e
refs/heads/main
2023-06-30T10:56:16.671076
2021-07-29T21:21:35
2021-07-29T21:21:35
367,192,921
0
1
null
null
null
null
UTF-8
Python
false
false
2,608
py
import random,json,pickle from re import S from typing import Pattern from nltk.chunk.util import accuracy import numpy as np import nltk nltk.download('wordnet') from nltk.stem import WordNetLemmatizer from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Activation, Dropout from tensorflow.keras.optimizers import SGD from tensorflow.python.keras.engine import training def training(): lemmatizer = WordNetLemmatizer() intents = json.loads(open('intents.json').read()) words = [] classes = [] documents = [] ignore_letters = ['¿', '?', '!', '¡', '.', ',', ';', ':', '-', '_'] for intent in intents['intents']: for pattern in intent['patterns']: word_list = nltk.word_tokenize(pattern) words.extend(word_list) documents.append((word_list, intent['tag'])) if intent['tag'] not in classes: classes.append(intent['tag']) words = [lemmatizer.lemmatize(word) for word in words if word not in ignore_letters] #we prevent duplicates from being created or added and order the words words = sorted(set(words)) classes = sorted(set(classes)) pickle.dump(words, open('words.pkl', 'wb')) pickle.dump(classes, open('classes.pkl', 'wb')) training =[] output_empty = [0] * len(classes) for document in documents: bag = [] word_patterns = document[0] word_patterns = [lemmatizer.lemmatize(word.lower()) for word in word_patterns] for word in words: bag.append(1) if word in word_patterns else bag.append(0) output_row = list(output_empty) output_row[classes.index(document[1])] = 1 training.append([bag, output_row]) random.shuffle(training) training = np.array(training) train_x = list(training[: , 0]) train_y = list(training[: , 1]) #Neural Network model = Sequential() model.add(Dense(128, input_shape = (len(train_x[0]),), activation = 'relu')) model.add(Dense(0.5)) model.add(Dense(64, activation = 'relu')) model.add(Dense(0.5)) model.add(Dense(64, activation = 'relu')) model.add(Dense(len(train_y[0]), activation = 'softmax')) sgd = SGD(lr=0.01, decay= 1e-6, momentum= 0.9, nesterov= True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=0) model.save('chatbotmodel.h5', hist) print("Done")
[ "noreply@github.com" ]
MarkoMarcelo.noreply@github.com
92ea62dd911a2970488e170fdfdb662b2d03f718
7caf540d2cf71e27c130f5cc791345b73774af50
/failed_attempts/migrations/0003_auto_20180503_1147.py
bd3b1cb80a16963d816629d65da30675a82dc165
[]
no_license
eyetea-solutions/django-failed-attempts
b1e87c003cd82fb6d76e31ca39feb35eee745b38
8c1fffbc39c040b0460c227743521a47599962a0
refs/heads/master
2020-03-17T05:33:06.010389
2018-05-15T14:42:16
2018-05-15T14:42:16
133,321,046
0
0
null
null
null
null
UTF-8
Python
false
false
1,082
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2018-05-03 11:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('failed_attempts', '0002_auto_20151224_0058'), ] operations = [ migrations.AlterField( model_name='failedattempt', name='IP', field=models.GenericIPAddressField(null=True, verbose_name='IP Address'), ), migrations.AlterField( model_name='failedattempt', name='failures', field=models.PositiveIntegerField(default=0, verbose_name='Failures'), ), migrations.AlterField( model_name='failedattempt', name='timestamp', field=models.DateTimeField(auto_now=True, verbose_name='Last failed attempt'), ), migrations.AlterField( model_name='failedattempt', name='username', field=models.CharField(max_length=255, verbose_name='Username'), ), ]
[ "martin.taleski@gmail.com" ]
martin.taleski@gmail.com
8a59c51857c46c7ae343c70e1e3b12a38ff518e7
fd6051cd3b4d757083ab7bff376d6cdf654f7202
/e2e/Vectors/Generation/Merit/TwoHundredSeventyFour/RespondsWithRequestedCapacity.py
516b9a69c935498f84f6fe320f11eaf5ed59b6d1
[ "MIT", "CC0-1.0" ]
permissive
MerosCrypto/Meros
aa4532547ba61f06d2560a30a069a57d2c254584
5c282509fed18e8b23d466022787b017991e51b9
refs/heads/master
2023-05-31T02:08:40.653223
2023-05-30T21:33:28
2023-05-30T21:33:28
134,137,513
69
20
NOASSERTION
2023-05-30T21:33:29
2018-05-20T09:36:33
Nim
UTF-8
Python
false
false
1,107
py
import json import e2e.Libs.Ristretto.Ristretto as Ristretto from e2e.Classes.Transactions.Transactions import Data, Transactions from e2e.Classes.Consensus.VerificationPacket import VerificationPacket from e2e.Classes.Consensus.SpamFilter import SpamFilter from e2e.Vectors.Generation.PrototypeChain import PrototypeChain edPrivKey: Ristretto.SigningKey = Ristretto.SigningKey(b'\0' * 32) dataFilter: SpamFilter = SpamFilter(5) transactions: Transactions = Transactions() proto: PrototypeChain = PrototypeChain(1) #Create five Datas. #Six in total, thanks to the Block Data. data: Data = Data(bytes(32), edPrivKey.get_verifying_key()) for i in range(5): data.sign(edPrivKey) data.beat(dataFilter) transactions.add(data) data = Data(data.hash, b"\0") #Create a Block verifying all of them. proto.add(0, [VerificationPacket(tx.hash, [0]) for tx in transactions.txs.values()]) with open("e2e/Vectors/Merit/TwoHundredSeventyFour/RespondsWithRequestedCapacity.json", "w") as vectors: vectors.write(json.dumps({ "blockchain": proto.toJSON(), "transactions": transactions.toJSON() }))
[ "noreply@github.com" ]
MerosCrypto.noreply@github.com
04e56972a44469997666bf7a0521933ba1f6a34a
442dae288109b9b202fecbe728eb61cba6de83d4
/tests/testcase.py
cfc30dd7551917b6e638cb5e35ba658ea8e4f229
[ "MIT" ]
permissive
capy-inc/django-stdnet
751e4b28a6cdc1065647056132fcab955c21e250
9b8ab02ec73692f867947168ee0b88d41e603d82
refs/heads/master
2021-01-25T10:05:51.580249
2015-10-13T05:13:44
2015-10-13T05:13:44
24,475,688
3
1
null
2015-10-13T05:13:44
2014-09-25T21:19:33
Python
UTF-8
Python
false
false
2,554
py
from distutils.version import LooseVersion from django.test import TestCase class BaseTestCase(TestCase): app_label = 'test' def _setup_redis_db(self): from djangostdnet import models from djangostdnet import mapper from . import redis_server_info models.mapper = mapper.Mapper(default_backend='redis://%(host)s:%(port)d?db=%(db)d' % redis_server_info, install_global=True) def setUp(self): from django.core.management.color import no_style from django.db.models import loading from djangostdnet import DJANGO_VERSION self._setup_redis_db() self.seen_models = set() self.style = no_style() # HACK if LooseVersion('1.6') <= DJANGO_VERSION < LooseVersion('1.7'): pass elif LooseVersion('1.7') <= DJANGO_VERSION: from django.apps.config import AppConfig from django.utils.importlib import import_module self.app = AppConfig(self.app_label, import_module(__name__)) loading.cache.ready = True loading.cache.set_installed_apps([self.app]) else: raise NotImplementedError def _clear_registered_models(self): from django.db.models import loading from djangostdnet import DJANGO_VERSION # HACK if LooseVersion('1.6') <= DJANGO_VERSION < LooseVersion('1.7'): loading.cache.app_models.clear() elif LooseVersion('1.7') <= DJANGO_VERSION: loading.cache.unset_installed_apps() loading.cache.all_models.clear() else: raise NotImplementedError from stdnet.odm import globals globals._model_dict.clear() def _clear_redis_db(self): import redis from . import redis_server_info r = redis.from_url('redis://%(host)s:%(port)d?db=%(db)d' % redis_server_info) r.flushdb() def tearDown(self): self._clear_registered_models() self._clear_redis_db() def create_table_for_model(self, model): from django.db import connection sql = connection.creation.sql_create_model(model, self.style)[0] cursor = connection.cursor() for statement in sql: cursor.execute(statement) def finish_defining_models(self): from django.db.models import loading from djangostdnet import DJANGO_VERSION if LooseVersion('1.7') <= DJANGO_VERSION: loading.cache.populate([self.app])
[ "yusuke@jbking.org" ]
yusuke@jbking.org
1bc8d97bb3d425a6081356f805a0fe3124198083
a80a31418ce85348d886b8b2a6135b3c4d294407
/docker-project-run.py
93bcf266964c1616c09f69655014d6c1cd561b2d
[ "WTFPL" ]
permissive
lku/docker-project-run
cc154d3de0760a1a79c555519919d87e09517244
d863fba99b19b36ca5e7de146a4abb847538b12e
refs/heads/master
2021-01-21T03:50:17.204464
2015-06-27T11:17:42
2015-06-27T11:17:42
39,071,180
0
0
null
2015-07-14T11:34:24
2015-07-14T11:34:24
null
UTF-8
Python
false
false
1,020
py
#! /usr/bin/env python # Copyright 2014 Jan Markup <mhmcze@gmail.com> # This work is free. You can redistribute it and/or modify it under the # terms of the Do What The Fuck You Want To Public License, Version 2, # as published by Sam Hocevar. See the COPYING file for more details. import glob import os import sys if not os.geteuid() == 0: sys.exit('You must be root to run this application, please use sudo and try again.') PATHS = ['.']; for path in PATHS: path = os.path.abspath(path) projects = glob.glob(path + '/*/docker-compose.yml') if projects: print '--- ' + os.path.basename(path) + ' ---' for project in projects: print os.path.basename(os.path.dirname(project)) project = raw_input('>>> ') for path in PATHS: compose = glob.glob(path + '/' + project + '/docker-compose.yml') if compose: projectDir = os.path.dirname(compose[0]) os.system('cd "' + projectDir + '" && docker-compose up') else: print 'Project not found.'
[ "mhmcze@gmail.com" ]
mhmcze@gmail.com
6ccc7fea6fff8c7c66af04903599608f969a0107
4c403ba3d9880e52945083447f9c1bdf8e6dd2c5
/openssl_x509_verify_example.py
f911cca2b8ab8dbf263d3d16fb064795df943f02
[ "MIT" ]
permissive
mk-j/Py_openssl_x509_verify
1618f4e23a1de53ca1d584f85b3f7e4894e9951a
6d877cc14efb23cff00142640a57850cc9afa442
refs/heads/master
2021-09-19T08:48:02.482871
2018-07-25T20:07:11
2018-07-25T20:07:11
111,472,562
2
0
null
null
null
null
UTF-8
Python
false
false
1,516
py
#!/usr/bin/python import x509tools import os def file_read(filename): content='' if os.path.exists(filename): fp = open(filename, "r") content = fp.read() fp.close() return content def check_openssl_cipher(): v = x509tools.openssl_cipher_iv_length('AES-128-CBC') print("openssl cipher iv length of aes-128-cbc is %s" % v) def check_x509_verify_rsa(): ca_pem = file_read('./certs/RSA_DigiCertGlobalRootCA.crt') cert_pem = file_read('./certs/RSA_DigiCertSHA2SecureServerCA.crt') x = x509tools.openssl_x509_verify(cert_pem, ca_pem) print("openssl x509 verify result for an RSA cert is %s" % x) def check_x509_verify_ecc(): ca_pem = file_read('./certs/ECC_DigiCertGlobalRootCA3.crt') cert_pem = file_read('./certs/ECC_DigiCertGlobalCAG3.crt') x = x509tools.openssl_x509_verify(cert_pem, ca_pem) print("openssl x509 verify result for an ECC cert is %s" % x) def check_x509_verify_bad(): #ca_pem = file_read('./certs/ECC_DigiCertGlobalRootCA3.crt') #cert_pem = file_read('./certs/RSA_DigiCertSHA2SecureServerCA.crt') ca_pem = file_read('./certs/RSA_DigiCertGlobalRootCA.crt') cert_pem = file_read('./certs/ECC_DigiCertGlobalCAG3.crt') x = x509tools.openssl_x509_verify(cert_pem, ca_pem) print("openssl x509 verify result for an RSA/ECC cert is %s" % x) def main(): check_openssl_cipher() check_x509_verify_rsa() check_x509_verify_ecc() check_x509_verify_bad() if __name__ == "__main__": main()
[ "mark@zedwood.com" ]
mark@zedwood.com
0a72067d6495c2f7fdd93431093b9b9eb1ade8b5
493318707fd161c5a6b8c2be5818dbbce5889f8b
/trumptwitterarchive_spider/trumptwitterarchive_spider/settings.py
47e1f554f63028547d85257994a9ceee979c6475
[]
no_license
marcpre/learning_python_scrapy
17999eb781fb30fdd4a6dabfd5b822f0597a0793
13a22009fb3f6c95d17d7ece2f7eec4503240af6
refs/heads/master
2020-03-30T00:30:39.446819
2018-10-18T04:16:14
2018-10-18T04:16:14
150,527,431
0
0
null
null
null
null
UTF-8
Python
false
false
3,289
py
# -*- coding: utf-8 -*- # Scrapy settings for trumptwitterarchive_spider project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'trumptwitterarchive_spider' SPIDER_MODULES = ['trumptwitterarchive_spider.spiders'] NEWSPIDER_MODULE = 'trumptwitterarchive_spider.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'trumptwitterarchive_spider (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'trumptwitterarchive_spider.middlewares.TrumptwitterarchiveSpiderSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'trumptwitterarchive_spider.middlewares.TrumptwitterarchiveSpiderDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'trumptwitterarchive_spider.pipelines.TrumptwitterarchiveSpiderPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "marcus.presich@gmail.com" ]
marcus.presich@gmail.com
9d1748c309ef8b2c3091a29a960d0bd680b5c3ac
06810ff6338306fbb114a20e416d3e891e9db84c
/rve_generator/rve_gen.py
69a4fd0c55e296830f0c87e7e58c7daee44348e5
[ "MIT" ]
permissive
hossen-code/RVE_PY
fd88d7c7fed5e484a6ca00335acbabf00498788a
09029f0aecbdfef25470e657baa9a103e59a569a
refs/heads/master
2022-11-24T00:50:03.586085
2020-07-24T03:16:17
2020-07-24T03:16:17
282,079,125
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
# -*- coding: utf-8 -*- """ Creating random micromechanical RVE of composites author Hossein Ghayoor """ from rve_generator.point import Point from rve_generator.utility import is_colliding, calculate_all_distances, sum_n_closest_point_distance, plot_all_points if __name__ == "__main__": all_points = [] point_collection = [] for i in range(2000): new_point = Point() if not is_colliding(point_collection, new_point): point_collection.append(new_point) all_distances = calculate_all_distances(point_collection) three_closest_dist = sum_n_closest_point_distance(all_distances) plot_all_points(point_collection)
[ "hghayoor@gmail.com" ]
hghayoor@gmail.com
5f27d85de8ca8dac144d8acdf4b03212ec2d074c
009a6574b3f655c607b19a5d3468dce13cd59bfa
/forms.py
df907102e628e0a0dbe896809ab585cab1d07d50
[]
no_license
ADLIAhmed/JobifyAMOA
29e97bec8d799e7c2b2d0e9ea74f4018b50ff2d9
0c76c65d4089f0929c1d6b3feb282170f6bb4e0c
refs/heads/master
2021-05-22T21:33:02.156032
2020-04-05T17:17:52
2020-04-05T17:17:52
253,104,964
0
0
null
null
null
null
UTF-8
Python
false
false
766
py
from django import forms from .models import offre class offre_form(forms.ModelForm): class offre: model = offre fields = [ 'offre_title', 'offre_contenu', 'offre_ville', 'offre_renumeration', 'offre_periode', ] from django.contrib.auth.models import User class FormName(forms.Form): Name=forms.CharField() Age=forms.IntegerField() Email=forms.CharField() PhoneNumber=forms.CharField() Addresse=forms.CharField() class FormDescription(forms.Form): Name=forms.CharField() desc_text=forms.CharField() class FormPortfolio(forms.Form): user=forms.CharField() Portfolio_name=forms.CharField() image=forms.ImageField() Type=forms.CharField() date=forms.DateField()
[ "ahmedadli.etude@gmail.com" ]
ahmedadli.etude@gmail.com
535820d87dd62c3fd0d9dbf0aaf588fb9b1d93a6
8ce656578e04369cea75c81b529b977fb1d58d94
/clients/apps.py
2dcd6c20d3ff5901668f0dd30dd374d114919e48
[]
no_license
JJvzd/django_exp
f9a08c40a6a7535777a8b5005daafe581d8fe1dc
b1df4681e67aad49a1ce6426682df66b81465cb6
refs/heads/master
2023-05-31T13:21:24.178394
2021-06-22T10:19:43
2021-06-22T10:19:43
379,227,324
0
0
null
null
null
null
UTF-8
Python
false
false
202
py
from django.apps import AppConfig class ClientsConfig(AppConfig): name = 'clients' verbose_name = 'Компании' def ready(self): import clients.signal_handlers # noqa: F401
[ "javad@MacBook-Pro-Namig.local" ]
javad@MacBook-Pro-Namig.local
c52b7a3785f2776a9cde133ad821bd1dc1f8affb
9ba474c019baaded3a1918fe8723de7e8ad0ccf5
/lga_dict.py
add798b83367611f51f293ebf79256db11335830
[]
no_license
ait360/query_google_places
4039643e765d9ef9f6ffcce1232ee63785240125
93e828019c7d47957040395caaa1daa788495ea7
refs/heads/master
2022-02-08T05:31:27.061705
2022-02-02T19:59:40
2022-02-02T19:59:40
249,086,698
0
0
null
null
null
null
UTF-8
Python
false
false
13,608
py
from collections import defaultdict local_govt_area = defaultdict(list, Abuja= ['Abaj', 'Abaji', 'Abuja+Municipal', 'Bwari', 'Gwagwalada', 'Kuje', 'Kwali', 'Municipal+Area+Council'], Abia= ['Aba+North', 'Aba+North', 'Aba+South', 'Arochukwu', 'Bende', 'Bende', 'Ikwuano', 'Ikwuano', 'Isiala', 'Isiala+Ngwa+North', 'Isiala+Ngwa+South', 'Isiala+Ngwa+South', 'Isuikwuato', 'Isukwuato', 'Ngwa+North', 'Obi+Ngwa', 'Ohafia', 'Osisioma', 'Ugwunagbo', 'Ukwa+East', 'Ukwa+East', 'Ukwa+West', 'Ukwa+West', 'Umu+Nneochi', 'Umuahia', 'Umuahia+North', 'Umuahia+South'], Adamawa= ['Hung', 'Demsa', 'Fufore', 'Fufure', 'Ganye', 'Gayuk', 'Girei', 'Gombi', 'Grie', 'Hong', 'Jada', 'Jimeta', 'Lamurde', 'Madagali', 'Maiha', 'Mayo+Belwa', 'Michika', 'Mubi+North', 'Mubi+South', 'Numan', 'Numna', 'Shelleng', 'Song', 'Toungo', 'Yola+North', 'Yola+North', 'Yola+South'], Anambra = ['Aguata', 'Anambra', 'Anambra+East', 'Anambra+West', 'Anaocha', 'Awka+North', 'Awka+South', 'Ayamelum', 'Dunukofia', 'Ekwusigo', 'Idemili+North', 'Idemili+South', 'Ihiala', 'Njikoka', 'Nnewi+North', 'Nnewi+South', 'Ogbaru', 'Onitsha+North', 'Onitsha+South', 'Orumba+North', 'Orumba+South', 'Oyi'], Bauchi = ['Alkaleri', 'Ganjuwa', 'hira', 'Bauchi', 'Giade', 'Tafawa+Balewa', 'Bogoro', 'Jama+are', 'Itas+gadau', 'Darazo', 'Katagum', 'Toro', 'Dass', 'Kirfi', 'Warji', 'Gamawa', 'Misau', 'Zaki', 'Ningi', 'Dambam', 'Damban', 'Itas', 'Jamaare', 'Shira', 'Gadau'], Bayelsa= ['Brass', 'Ekeremor', 'Kolok', 'Kolokuma', 'Membe', 'Nembe', 'Ogbia', 'Opokuma', 'Sagbama', 'Southern+Ijaw', 'Yenagoa'], Benue= ['Ador', 'Obi', 'Ukum', 'Agatu', 'Kastina+ala', 'Ogbadibo', 'Vandekya', 'Apa', 'Konshisha', 'Ohimini', 'Buruku', 'Kwande', 'Oju', 'Gboko', 'Logo', 'Okpokwu', 'Guma', 'Makurdi', 'Oturkpo', 'Gwer+east', 'Tarka', 'Ado', 'Gwer+West', 'Katsina+Ala', 'Ushongo', 'Vandeikya'], Bornu= ['Abadam', 'Abadan', 'Askira', 'Balge', 'Bama', 'Bayo', 'Biu', 'Chibok', 'Damboa', 'Dikwa', 'Dikwagubio', 'Gubio', 'Guzamala', 'Gwoza', 'Hawul', 'Jere', 'Kaga', 'Kala', 'Kalka', 'Konduga', 'Kukawa', 'Kwaya+Kusar', 'Kwaya+ku', 'Mafa', 'Magumeri', 'Maiduguri', 'Marte', 'Mobbar', 'Monguno', 'Ngala', 'Nganzai', 'Shani', 'Uba'], Delta= ['Aniocha+North', 'Aniocha+south', 'Anioha', 'Bomadi', 'Burutu', 'Ethiope+east', 'Ethiope+west', 'Ika+north+east', 'Ika+south', 'Isoko+north', 'Isoko+south', 'Ndokwa+east', 'Ndokwa+west', 'Okpe', 'Oshimili+north', 'Oshimili+south', 'Patani', 'Sapele', 'Udu', 'Ughelli+north', 'Ughelli+south', 'Ukwuani', 'Uviwie', 'Uvwie', 'Warri+central', 'Warri+north', 'Warri+south', 'Warri+South+West'], Ebonyi= ['Abakaliki', 'Afikpo+north', 'Afikpo+south', 'Ebonyi', 'Edda', 'Ezza', 'Ezza+North', 'Ezza+south', 'Ikwo', 'Ishielu', 'Ivo', 'Izzi', 'Ohaozara', 'Ohaukwu', 'Onicha'], Edo= ['Akoko+Edo', 'Egor', 'Esan+central', 'Esan+North-East', 'Esan+south+east', 'Esan+west', 'Etsako', 'Etsako+central', 'Etsako+east', 'Etsako+West', 'Igueben', 'Ikpoba+Okha', 'Ivia+north', 'Oredo', 'Orhionmwon', 'Orhionwon', 'Ovia+North-East', 'Ovia+south+west', 'Owan+East', 'Owan+south', 'Owan+west', 'Uhunmwonde', 'Uhunwonde'], Ekiti= ['Osi', 'Ado+Ekiti', 'Aiyekire', 'Effon+Alaiye', 'Efon', 'Ekiti+east', 'Ekiti+south+west', 'Ekiti+west', 'Emure', 'Emure', 'Gbonyin', 'Ido', 'Ido+Osi', 'Ijero', 'Ikere', 'Ikole', 'Ilejemeje', 'Irepodun', 'Ise', 'ljero', 'llejemejeIrepodun', 'Moba', 'Orun', 'Oye', 'Ifelodun'], Enugu= ['Aninri', 'Awgu', 'Enugu+east', 'Enugu+north', 'Enugu+south', 'Ezeagu', 'Igbi+etiti', 'Igbo+Etiti', 'Igbo+Eze+north', 'Igbo+Eze+South', 'Isi+Uzo', 'Nkanu+East', 'Nkanu+West', 'Nsukka', 'Oji+river', 'Udenu', 'Udi', 'Undenu', 'Uzo+Uwani'], Gombe= ['Akko', 'Bajoga', 'Balanga', 'Biliri', 'Billiri', 'Deba', 'Dukku', 'Dunakaye', 'Funakaye', 'Gombe', 'Kaltungo', 'Kwami', 'Nafada', 'Shomgom', 'Shongom', 'Yamaltu'], Imo= ['Aboh+Mbaise', 'Aguta', 'Ahiazu+Mbaise', 'Ehime+Mbano', 'Ezinhite', 'Ezinihitte', 'Ideato+North', 'Ideato+south', 'Ihitte', 'Ikeduru', 'Isiala', 'Isiala+Mbano', 'Isu', 'Mbaitoli', 'Ngor+Okpala', 'Njaba', 'Nkwere+Obowo', 'Nkwerre', 'Nwangele', 'Obowo', 'Oguta', 'Ohaji+Egbema', 'Egbema', 'Okigwe', 'Onuimo', 'Orlu', 'Orsu', 'Oru', 'Oru+East', 'Oru+west', 'Owerri', 'Owerri+Municipal', 'Owerri+North', 'Owerri+south', 'Owerri+West', 'Uboma', 'Unuimo'], Jigawa= ['Auyo', 'Babura', 'Biriniwa', 'Birnin+Kudu', 'Birnin+magaji', 'Birniwa', 'Buijiį', 'Buji', 'Dute', 'Dutse', 'Gagarawa', 'Garki', 'Gumel', 'Guri', 'Gwaram', 'Gwiwa', 'Hadeji', 'Hadejia', 'Jahun', 'Kafin+Hausa', 'kaugama', 'Kazaure', 'Kiri+Kasama', 'Kirikisamma', 'Kiyawa', 'Maigatari', 'Malam+Madori', 'Malamaduri', 'Miga', 'Ringim', 'Roni', 'Sule+Tankarka', 'Sule+Tankarkar', 'Taura', 'Yankwashi'], Kaduna= ['Birnin+Gwari', 'Brnin+Gwari', 'Chikun', 'Chukun', 'Giwa', 'Igabi', 'Ikara', 'Jaba', 'Jemaa', 'Kabau', 'Kachia', 'Kaduna+North', 'Kaduna+south', 'Kagarko', 'Kagarok', 'Kajuru', 'Kaura', 'Kauru', 'Kere', 'Kubau', 'Kudan', 'Lere', 'Makarfi', 'Sabon+Gari', 'Sabongari', 'Sanga', 'Soba', 'Zangon+Kataf', 'Zaria', 'Jema'], Kano= ['Kunch', 'Kura', 'Ajigi', 'Ajingi', 'Albasu', 'Bagwai', 'Bebeji', 'Bichi', 'Bunkure', 'Dala', 'Dambatta', 'Dawakin+kudu', 'Dawakin+tofa', 'doguwa', 'Fagge', 'Gabasawa', 'Garko', 'Garun+mallam', 'Gaya', 'Gezawa', 'Gwale', 'Gwarzo', 'Kabo', 'Kano', 'Kano+Municipal', 'Karay', 'Karaye', 'Kibiya', 'Kiru', 'Kumbotso', 'Kumbtso', 'Kunchi', 'Kura', 'Madobi', 'Maidobi', 'Makoda', 'Minjibir', 'MInjibir+Nassarawa', 'Nasarawa', 'Rano', 'Rimin+gado', 'Rogo', 'Shanono', 'Sumaila', 'Takai', 'Tarauni', 'Tofa', 'Tsanyawa', 'Tudun+Wada', 'Tudun+wada', 'Ungogo', 'Warawa', 'Wudil'], Katsina= ['Bakori', 'Batagarawa', 'Batsari', 'Baure', 'Bindawa', 'Charanchi', 'Dan+Musa', 'Dandume', 'Danja', 'Dan-Musa', 'Daura', 'Dutsi', 'Dutsin+Ma', 'Faskar', 'Faskari', 'Funtua', 'Furfi', 'Ingawa', 'Jibia', 'Jibiya', 'Kafur', 'Kaita', 'Kankara', 'Kankia', 'Kankiya', 'Katsina', 'Kurfi', 'Kusada', 'KusadaMai+aduwa', 'Mai+Adua', 'Malumfashi', 'Mani', 'Mash', 'Mashi', 'Matazu', 'Musawa', 'Rimi', 'Sabuwa', 'Safana', 'Sandamu', 'Zango', 'MaiAdua'], Kebbi= ['Aleiro', 'Aliero', 'Arewa+Dandi', 'Argungu', 'Augie', 'Bagudo', 'Birnin+Kebbi', 'Bunza', 'Dandi', 'Danko', 'Fakai', 'Gwandu', 'Jeda', 'Jega', 'Kalgo', 'Koko', 'Koko+besse', 'Maiyaama', 'Maiyama', 'Ngaski', 'Sakaba', 'Shanga', 'Suru', 'Wasugu', 'Yauri', 'Zuru', 'Besse'], Kogi= ['Adavi', 'Ajaokuta', 'Ankpa', 'Bassa', 'Dekina', 'Ibaji', 'idah', 'Igalamela', 'Igalamela+Odolu', 'Ijumu', 'Kabba+bunu', 'Kabba', 'Kogi', 'lbaji', 'ljumu', 'Lokoja', 'Mopa+muro', 'Ofu', 'Ogori+magongo', 'Ogori', 'Okehi', 'Okene', 'Olamaboro', 'Omala', 'Yagba+east', 'Yagba+west', 'Bunu', 'Magongo'], Kwara= ['Asa', 'Baruten', 'Ede', 'Edu', 'Ekiti', 'Ifelodun', 'Ilorin+East', 'Ilorin+south', 'Ilorin+West', 'Irepodun', 'Isin', 'Kaiama', 'Moro', 'Offa', 'Oke+ero', 'Oyun', 'Pategi'], Lagos= ['Ikorodu', 'Agege', 'Alimosho', 'Alimosho+lfelodun', 'Amuwo+Odofin', 'Apapa', 'Badagry', 'Ejigbo', 'Epe', 'Eti+Osa', 'ljaye', 'fako', 'Ibeju+Lekki', 'Ifako+Ijaiye', 'Ikeja', 'Ikorodu', 'Kosofe', 'Lagos+Island', 'Lagos+Mainland', 'lIbeju+Lekki', 'Mushin', 'Ojo', 'Oshodi+-Isolo', 'Shomolu', 'Surulere'], Nasarawa= ['Akwanga', 'Awe', 'Doma', 'Karu', 'Keana', 'Keffi', 'Kokona', 'Lafia', 'Nasarawa', 'Nasarawa+Egon', 'Nassarawa', 'Obi', 'Toto', 'Wamba', 'Eggon'], Niger= ['Agaie', 'Agwara', 'Bida', 'Borgu', 'Bosso', 'Chanchaga', 'Chanchanga', 'Edati', 'Gbako', 'Gurara', 'Katcha', 'Kitcha', 'Kontagora', 'Lapai', 'Lavun', 'Magama', 'Mariga', 'Mashegu', 'Mokwa', 'Moshegu', 'Moya', 'Muya', 'Paiko', 'Paikoro', 'Rafi', 'Rijau', 'Shiroro', 'Suleija', 'Suleja', 'Tafa', 'Tawa+Wushishi', 'Wushishi'], Ogun= ['Abeokuta+north', 'Abeokuta+south', 'Ado+Odo', 'Agbado+north', 'Agbado+south', 'Ewekoro', 'Idarapo', 'Ifo', 'Ijebu+North+East', 'Ijebu+Ode', 'Ikenne', 'Imeko+afon', 'Ipokia', 'jebu+north', 'ljebu+east', 'owode', 'lkenne', 'llugun+Alaro', 'Obafemi+Owode', 'Obafemi', 'Odeda', 'Odogbolu', 'Ogun+waterside', 'Remo+North', 'Sagamu', 'Shagamu', 'Yewa+North', 'Yewa+South', 'Ota', 'otta'], Ondo= ['Akoko+north', 'Akoko+north+east', 'Akoko+North-West', 'Akoko+south', 'Akoko+south+east', 'Akoko+South-West', 'Akure', 'Akure+north', 'Akure+South', 'Ese+odo', 'Idanre', 'Ifedore', 'Ilaje', 'Okeigbo', 'Ile+Oluji', 'Irele', 'laje+oke-igbo', 'llaje', 'Odigbo', 'Okitipupa', 'Ondo', 'Ondo+east', 'Ondo+West', 'Ose', 'Owo'], Osun= ['Aiyedaade', 'Aiyedire', 'Atakumosa+east', 'Atakumosa+west', 'Ayeda+ade', 'Ayedire', 'Bolawaduro', 'Boluwaduro', 'Boripe', 'Ede', 'Ede+north', 'Ede+South', 'Egbedore', 'Ejigbo', 'Ife+central', 'Ife+east', 'Ife+north', 'Ife+south', 'Ifedayo', 'Ifelodun', 'Ila', 'Ilesa+East', 'Ilesa+West', 'Ilesah+east', 'Irepodun', 'Irewole', 'Isokan', 'Iwo', 'lla+orangun', 'llesha+west', 'Obokun', 'Odo+Otin', 'Odo-otin', 'ola+oluwa', 'olorunda', 'Oriade', 'Orolu', 'Osogbo'], Oyo= ['Afijio', 'Akinyele', 'Atiba', 'Atigbo', 'Atisbo', 'Attba', 'Egbeda', 'Ibadan+central', 'Ibadan+North', 'Ibadan+north+east', 'Ibadan+North-West', 'Ibadan+south+east', 'Ibadan+South-West', 'Ibarapa+Central', 'Ibarapa+East', 'Ibarapa+north', 'Ido', 'Ifedapo', 'Ifeloju', 'Irepo', 'Iseyin', 'Itesiwaju', 'Iwajowa', 'Kajola', 'Lagelu', 'lseyin', 'lwajowa', 'lwajowa+olorunshogo', 'Ogbomosho+north', 'Ogbomosho+south', 'Ogo+oluwa', 'Olorunsogo', 'Oluyole', 'Ona+ara', 'Ore+lope', 'Orelope', 'Ori+Ire', 'Orire', 'Oyo', 'Oyo+east', 'Oyo+west', 'Saki+east', 'Saki+west', 'Surulere'], Plateau= ['Barkin+Ladi', 'Barkin', 'Bassa', 'Bokkos', 'Jos+east', 'Jos+north', 'Jos+south', 'Kanam', 'Kanke', 'kiyom', 'Langtang+north', 'Langtang+south', 'Mangu', 'Mikang', 'Pankshin', 'Quaan+pan', 'Riyom', 'Shendam', 'Wase', 'ladi'], Rivers= ['Odial', 'Abua', 'Ahoada+East', 'Ahoada+west', 'Akuku+toru', 'Andoni', 'Asari+toru', 'Akpor', 'Edoni', 'Bonny', 'Degema', 'Eleme', 'Emohua', 'Emuoha', 'Etche', 'Gokana', 'Ikwerre', 'Khana', 'Obio', 'Ogba+east', 'Ogba', 'Ogu', 'Okrika', 'Omuma', 'Omumma', 'Opobo', 'Oyigbo', 'Port+Harcourt', 'Portharcourt', 'Tai', 'yigbo', 'Odual', 'Egbema', 'Ndoni', 'bolo', 'Nkoro'], Sokoto= ['Binji', 'Bodinga', 'Dange+Shuni', 'Dange', 'Gada', 'Goronyo', 'Gudu', 'Gwadabawa', 'Ilella', 'Illela', 'Isa', 'Kebbe', 'Kware', 'Rabah', 'Sabon+Birni', 'Shagari', 'Silame', 'Sokoto+north', 'Sokoto+south', 'Tambuwal', 'Tangaza', 'Tureta', 'Wamakko', 'Wamako', 'Wurno', 'Yabo', 'shuni'], Taraba= ['Akdo+kola', 'Ardo+Kola', 'Bali', 'Donga', 'Gashaka', 'Gassol', 'Ibi', 'Jalingo', 'K+Lamido', 'Karim+Lamido', 'Kumi', 'Kurmi', 'lan', 'Lau', 'Sardauna', 'Takum', 'Tarum', 'Ussa', 'Wukari', 'Yorro', 'Zing'], Yobe= ['Bade', 'Borsari', 'Bursari', 'Damaturu', 'Fika', 'Fune', 'G+ashua', 'Geidam', 'Gogaram', 'Gujba', 'Gulani', 'Jakusko', 'Karasuwa', 'Machina', 'Nagere', 'Nangere', 'Nguru', 'Potiskum', 'Tarmua', 'Tarmuwa', 'Yunusari', 'Yusufari'], Zamfara= ['Anka', 'bukkuyum', 'Dungudu', 'Chafe', 'Gummi', 'Gusau', 'Isa', 'Kaura', 'Mradun', 'Maru', 'Shinkafi', 'Talata', 'Zumi', 'Bakura', 'Birnin+Magaji', 'Bungudu', 'Kaura+Namoda', 'Maradun', 'Talata+Mafara', 'Zurmi', 'Namoda', 'Mafara', 'Kiyaw'] ) local_govt_area['Akwa+Ibom'] = ['Abak', 'Eastern+Obolo', 'Eket', 'Esit+Eket', 'Essien+Udim', 'Etim+Ekpo', 'Etimekpo', 'Etinan', 'Ibeno', 'Ibesikpo+Asutan', 'Ibiono+lbom', 'Ika', 'Ikono', 'Ikot+Abasi', 'Ikot+Ekpene', 'Ini', 'Itu', 'lkot+Abasi', 'Mbo', 'Mkpat+Enin', 'Nsit', 'Nsit+lbom', 'Nsit-Atai', 'Nsit-Ubium', 'Obot+Akara', 'Okobo', 'Onna', 'Oron', 'Oruk+Anam', 'Oruko+Ete', 'Ubium', 'Udung', 'Udung+Uko', 'Ukanafun', 'Uko', 'Uruan', 'Urue+Offoung', 'Uyo', 'Oruko'], local_govt_area['Cross+River'] = ['Abi', 'Akamkpa', 'Akampa', 'Akpabuyo', 'Bakassi', 'Bekwara', 'Bekwarra', 'Biase', 'Boki', 'Calabar+Municipal', 'Calabar+south', 'Etung', 'Ikom', 'Obanliku', 'Obubra', 'Obudu', 'Odukpani', 'Ogoja', 'Ugep+north', 'Yakuur', 'Yala', 'Yarkur'],
[ "amaefunatheophilus@gmail.com" ]
amaefunatheophilus@gmail.com
798d67a4c5573a240974eb33442594dac3882564
e9b79a80d1eca76a2f430dc6fd63a27a971b1b1d
/Algorithms/Frahst_v6_1.py
cbac38101ba7c30846dc6ab17484dfcd58ccaa5e
[]
no_license
MrKriss/Old-PhD-Code
3e4138f34d216b13d1febff41b0966b61ea4d1c1
35de436f500d5a1fe09cf4309d7e9b2e6dbddc45
refs/heads/master
2020-06-08T23:43:40.147486
2012-03-12T14:56:40
2012-03-12T14:56:40
2,950,882
1
3
null
null
null
null
UTF-8
Python
false
false
21,541
py
# -*- coding: utf-8 -*- """ Created on Sat Mar 05 23:19:11 2011 THIS IS THE VERSION TO RUN ON MAC, NOT WINDOWS @author: musselle """ from numpy import eye, zeros, dot, sqrt, log10, trace, arccos, nan, arange, ones import numpy as np import scipy as sp import numpy.random as npr from numpy.linalg import qr, eig, norm, solve from matplotlib.pyplot import plot, figure, title, step, ylim from artSigs import genCosSignals_no_rand , genCosSignals import scipy.io as sio from utils import analysis, QRsolveA, pltSummary2 from PedrosFrahst import frahst_pedro_original from Frahst_v3_1 import FRAHST_V3_1 from Frahst_v3_3 import FRAHST_V3_3 from Frahst_v3_4 import FRAHST_V3_4 from Frahst_v4_0 import FRAHST_V4_0 from load_syn_ping_data import load_n_store from QR_eig_solve import QRsolve_eigV from create_Abilene_links_data import create_abilene_links_data from MAfunctions import MA_over_window def FRAHST_V6_1(data, r=1, alpha=0.96, EW_alpha = 0.1, e_low = 0.96, e_high = 0.98, fix_init_Q = 0, holdOffTime=0, evalMetrics = 'F', static_r = 0, r_upper_bound = None, L = 5, ignoreUp2 = 0, data_norm_window = 50): """ Fast Rank Adaptive Householder Subspace Tracking Algorithm (FRAHST) Version 6.1 - basicly 6.0 but without the junk func + the actual new eigen(enegy)tracking - Turns out E_dash_t ~ S_trace or sum(eig_val) E_t ~ EW_var2(zt) discounted by alpha a la covarience matrix - no need to calculate incremental mean and var anymore - Thresholding mechanism now uses two thresholds. - if below the lowest -- > increment r - if abouve the higher --> test if (E_dast_t - eig_i ) / E_t is above e_high, if so remove dimentions. - difference between e_low and e_high acts as a 'safety' buffer, as removing an eig can result in too much variance being subtracted because eigs are only smoothed estimates of the true values. Takes time for est_eit to reach true eigs. - NEXT (maybe) Normalisation of data optional as a preprocessing of data. Version 6.0 - Aim: Different rank adjusting mechanism compares sum of r eigenvalues to variance of entire data. - Performes incremental calculation of data mean and variance. (no longer in later version ) Version 5.0 - No changes of 5.0 incorperated in this version Version 4.0 - Now also approximates eigenvalues for the approximated tracked basis for the eignevectors - Approach uses an orthogonal iteration arround X.T - Note, only a good approximation if alpha ~< 1. Used as its the fastest method as X.T b --> b must be solved anyway. - New entries in res ['eig_val'] - estimated eigenvalues ['true_eig_val'] - explicitly calculated eigenvalues (only if evalMetrics = T) VErsion 3.4 - input data z is time lagged series up to length l. - Algorithm is essentially same as 3.3, just adds pre processing to data vector - input Vector z_t is now of length (N times L) where L is window length - Use L = 1 for same results as 3.3 - Q is increased accordingly Version 3.3 - Add decay of S and in the event of vanishing inputs - Make sure rank of S does not drop (and work out what that means!) - stops S going singular Version 3.2 - Added ability to fix r to a static value., and also give it an upper bound. If undefined, defaults to num of data streams. Version 3.1 - Combines good bits of Pedros version, with my correction of the bugs Changed how the algorithm deals with sci. only difference, but somehow has a bigish effect on the output. """ # Initialise variables and data structures ######################################### # Derived Variables # Length of z or numStreams is now N x L numStreams = data.shape[1] * L timeSteps = data.shape[0] if r_upper_bound == None : r_upper_bound = numStreams #for energy test lastChangeAt = 1 sumYSq = 0. sumXSq = 0. # Data Stores res = {'hidden' : zeros((timeSteps, numStreams)) * nan, # Array for hidden Variables 'E_t' : zeros([timeSteps, 1]), # total energy of data 'E_dash_t' : zeros([timeSteps, 1]), # hidden var energy 'e_ratio' : zeros([timeSteps, 1]), # Energy ratio 'RSRE' : zeros([timeSteps, 1]), # Relative squared Reconstruction error 'recon' : zeros([timeSteps, numStreams]), # reconstructed data 'r_hist' : zeros([timeSteps, 1]), # history of r values 'eig_val': zeros((timeSteps, numStreams)) * nan, # Estimated Eigenvalues 'zt_mean' : zeros((timeSteps, numStreams)), # history of data mean 'zt_var' : zeros((timeSteps, numStreams)), # history of data var 'zt_var2' : zeros((timeSteps, numStreams)), # history of data var 'S_trace' : zeros((timeSteps, 1)), # history of S trace 'skips' : zeros((timeSteps, 1)), # tracks time steps where Z < 0 'Phi' : [], 'S' : [], 'anomalies' : []} # Initialisations # Q_0 if fix_init_Q != 0: # fix inital Q as identity q_0 = eye(numStreams); Q = q_0 else: # generate random orthonormal matrix N x r Q = eye(numStreams) # Max size of Q Q_0, R_0 = qr(rand(numStreams,r)) Q[:,:r] = Q_0 # S_0 small_value = 0.0001 S = eye(numStreams) * small_value # Avoids Singularity # v-1 v = zeros((numStreams,1)) # U(t-1) for eigenvalue estimation U = eye(numStreams) # zt mean and var zt_mean = zeros((numStreams,1)) zt_var = zeros((numStreams,1)) zt_var2 = zeros((numStreams,1)) # NOTE algorithm's state (constant memory), S, Q and v and U are kept at max size # Use iterable for data # Now a generator to calculate z_tl iter_data = lag_inputs(data, L) # Main Loop # ############# for t in range(1, timeSteps + 1): #alias to matrices for current r Qt = Q[:, :r] vt = v[:r, :] St = S[:r, :r] Ut = U[:r, :r] zt = iter_data.next() '''Data Preprocessing''' # Update zt mean and var zt_var, zt_mean = EW_mean_var(zt, EW_alpha, zt_var, zt_mean) zt_var2 = alpha_var(zt, alpha, zt_var2) # Convert to a column Vector # Already taken care of in this version # zt = zt.reshape(zt.shape[0],1) # Check S remains non-singular for idx in range(r): if S[idx, idx] < small_value: S[idx,idx] = small_value '''Begin main algorithm''' ht = dot(Qt.T , zt) Z = dot(zt.T, zt) - dot(ht.T , ht) if Z > 0 : # Refined version, use of extra terms u_vec = dot(St , vt) X = (alpha * St) + (2 * alpha * dot(u_vec, vt.T)) + dot(ht , ht.T) # Estimate eigenValues + Solve Ax = b using QR decomposition b_vec, e_values, Ut = QRsolve_eigV(X.T, Z, ht, Ut) beta = 4 * (dot(b_vec.T , b_vec) + 1) phi_sq = 0.5 + (1.0 / sqrt(beta)) phi = sqrt(phi_sq) gamma = (1.0 - 2 * phi_sq) / (2 * phi) delta = phi / sqrt(Z) vt = gamma * b_vec St = X - ((1 /delta) * dot(vt , ht.T)) w = (delta * ht) - (vt) ee = delta * zt - dot(Qt , w) Qt = Qt - 2 * dot(ee , vt.T) else: # if Z is not > 0 if norm(zt) > 0 and norm(ht) > 0 : # May be due to zt <= ht res['skips'][t-1] = 2 # record Skips else: # or may be due to zt and ht = 0 St = alpha * St # Continue decay of St res['skips'][t-1] = 1 # record Skips #restore data structures Q[:,:r] = Qt v[:r,:] = vt S[:r, :r] = St U[:r,:r] = Ut ''' EVALUATION ''' # Deviations from true dominant subspace if evalMetrics == 'T' : if t == 1 : res['subspace_error'] = zeros((timeSteps,1)) res['orthog_error'] = zeros((timeSteps,1)) res['angle_error'] = zeros((timeSteps,1)) res['true_eig_val'] = ones((timeSteps, numStreams)) * np.NAN Cov_mat = zeros([numStreams,numStreams]) # Calculate Covarentce Matrix of data up to time t Cov_mat = alpha * Cov_mat + dot(zt, zt.T) # res['Phi'].append(Cov_mat) # # Get eigenvalues and eigenvectors W , V = eig(Cov_mat) # Use this to sort eigenVectors in according to deccending eigenvalue eig_idx = W.argsort() # Get sort index eig_idx = eig_idx[::-1] # Reverse order (default is accending) # v_r = highest r eigen vectors (accoring to thier eigenvalue if sorted). V_r = V[:, eig_idx[:r]] # Calculate subspace error C = dot(V_r , V_r.T) - dot(Qt , Qt.T) res['subspace_error'][t-1,0] = 10 * log10(trace(dot(C.T , C))) #frobenius norm in dB # Store True r Dominant Eigenvalues res['true_eig_val'][t-1,:r] = W[eig_idx[:r]] # Calculate angle between projection matrixes #D = dot(dot(dot(V_r.T, Qt), Qt.T), V_r) #eigVal, eigVec = eig(D) #angle = arccos(sqrt(max(eigVal))) #res['angle_error'][t-1,0] = angle # Calculate deviation from orthonormality F = dot(Qt.T , Qt) - eye(r) res['orthog_error'][t-1,0] = 10 * log10(trace(dot(F.T , F))) #frobenius norm in dB '''Store Values''' # Record data mean and Var res['zt_mean'][t-1,:] = zt_mean.T[0,:] res['zt_var'][t-1,:] = zt_var.T[0,:] res['zt_var2'][t-1,:] = zt_var2.T[0,:] # REcord S res['S'].append(St) # Record S trace res['S_trace'][t-1] = np.trace(St) # Store eigen values if 'e_values' not in locals(): e_values = zt_var2 else: res['eig_val'][t-1,:r] = e_values[:r] # Record reconstrunted z z_hat = dot(Qt , ht) res['recon'][t-1,:] = z_hat.T[0,:] # Record hidden variables res['hidden'][t-1, :r] = ht.T[0,:] # Record RSRE if t == 1: top = 0.0 bot = 0.0 top = top + (norm(zt - z_hat) ** 2 ) bot = bot + (norm(zt) ** 2) res['RSRE'][t-1, 0] = top / bot # Record r res['r_hist'][t-1, 0] = r '''Rank Estimation''' # Calculate energies sumXSq = alpha * sumXSq + np.sum(zt ** 2) # Energy of Data sumYSq = alpha * sumYSq + np.sum(ht ** 2) # Energy of hidden Variables res['E_t'][t-1,0] = sumXSq res['E_dash_t'][t-1,0] = sumYSq res['e_ratio'][t-1, 0] = sumYSq / sumXSq if static_r == 0: # optional parameter to keep r unchanged # Adjust Q_t, St and Ut for change in r if sumYSq < (e_low * sumXSq) and lastChangeAt < (t - holdOffTime) and r < r_upper_bound and t > ignoreUp2: """Note indexing with r works like r + 1 as index is from 0 in python""" # Extend Q by z_bar h_dash = dot(Q[:, :r].T, zt) z_bar = zt - dot(Q[:, :r] , h_dash) z_bar_norm = norm(z_bar) z_bar = z_bar / z_bar_norm Q[:numStreams, r] = z_bar.T[0,:] s_end = z_bar_norm ** 2 # Set next row and column to zero S[r, :] = 0.0 S[:, r] = 0.0 S[r, r] = s_end # change last element # Update Ut_1 # Set next row and column to zero U[r, :] = 0.0 U[:, r] = 0.0 U[r, r] = 1.0 # change last element # Update eigenvalue e_values = sp.r_[e_values, z_bar_norm ** 2] # This is the bit where the estimate is off? dont really have anything better # new r, increment r = r + 1 # Record time step of anomaly res['anomalies'].append(t-1) # Reset lastChange lastChangeAt = t elif sumYSq > (e_high * sumXSq) and lastChangeAt < t - holdOffTime and r > 1 and t > ignoreUp2: keeper = ones(r, dtype = bool) # Sorted in accending order sorted_eigs = e_values[e_values.argsort()] acounted_var = sumYSq for idx in range(r): if ((acounted_var - sorted_eigs[idx]) / sumXSq) > e_high: keeper[idx] = 0 acounted_var = acounted_var - sorted_eigs[idx] # use keeper as a logical selector for S and Q and U if not keeper.all(): # Delete rows/cols in Q, S, and U. newQ = Q[:r,:r].copy() newQ = newQ[keeper,:][:,keeper] # rows/cols eliminated Q[:newQ.shape[0], :newQ.shape[1]] = newQ newS = S[:r,:r].copy() newS = newS[keeper,:][:,keeper] # rows/cols eliminated S[:newS.shape[0], :newS.shape[1]] = newS newU = U[:r,:r].copy() newU = newU[keeper,:][:,keeper] # rows/cols eliminated U[:newU.shape[0], :newU.shape[1]] = newU r = keeper.sum() if r == 0 : r = 1 # Reset lastChange lastChangeAt = t return res def lag_inputs(data, L): """Generator function to construct an input vector ztl that is the lagged zt up to time l. z_tl = [zt, zt-t, zt-2,..., zt-l] Takes input data as a matrix. """ N = data.shape[1] total_timesteps = data.shape[0] z_tl = np.zeros((L*N,1)) for i in range(total_timesteps): #shift values z_tl[N:] = z_tl[:-N] # add new one to start of vector z_tl[:N] = np.atleast_2d(data[i,:]).T yield z_tl def alpha_var(x, alpha, var): """ Simple exponential forgetting of Variance """ var = alpha * var + ( np.power(x,2)) return var def EW_mean_var(x, alpha, var, mean): """ Work out the exponentially weighted mean and variance of the data """ if alpha > 1 : alpha = 2.0 / (alpha + 1) diff = x - mean incr = alpha * diff mean = mean + incr var = (1 - alpha) * (var + diff * incr) return var, mean def simple_sins(p1,p11, p2,p22, noise_scale, N = 500): t = arange(N) z1 = np.sin(2 * np.pi * t / p1) + npr.randn(t.shape[0]) * noise_scale z2 = np.sin(2 * np.pi * t / p2) + npr.randn(t.shape[0]) * noise_scale z11 = np.sin(2 * np.pi * t / p11) + npr.randn(t.shape[0]) * noise_scale z22 = np.sin(2 * np.pi * t / p22) + npr.randn(t.shape[0]) * noise_scale data = sp.r_['1,2,0', sp.r_[z1, z11], sp.r_[z2, z22]] return data def simple_sins_3z(p1,p11, p2,p22, p3, p33, noise_scale, N = 500): t = arange(N) z1 = np.sin(2 * np.pi * t / p1) + npr.randn(t.shape[0]) * noise_scale z2 = np.sin(2 * np.pi * t / p2) + npr.randn(t.shape[0]) * noise_scale z3 = np.sin(2 * np.pi * t / p3) + npr.randn(t.shape[0]) * noise_scale z11 = np.sin(2 * np.pi * t / p11) + npr.randn(t.shape[0]) * noise_scale z22 = np.sin(2 * np.pi * t / p22) + npr.randn(t.shape[0]) * noise_scale z33 = np.sin(2 * np.pi * t / p33) + npr.randn(t.shape[0]) * noise_scale data = sp.r_['1,2,0', sp.r_[z1, z11], sp.r_[z2, z22], sp.r_[z3, z33]] return data if __name__ == '__main__' : first = 1 if first: # data = genCosSignals(0, -3.0) # data, G = create_abilene_links_data() #execfile('/Users/chris/Dropbox/Work/MacSpyder/Utils/gen_Anomalous_peakORshift_data.py') #data = A #data = simple_sins(10,10,10,25, 0.1) data = simple_sins_3z(10,10,13,13, 10, 27, 0.0) # data = genCosSignals_no_rand(timesteps = 10000, N = 3) # data = array([[0,0,0], [1,2,2], [1,3,4], [3,6,6], [5,6,10], [6,8,11]]) #sig_PN, ant_PN, time_PN = load_n_store('SYN', 'PN') #data = sig_PN #AbileneMat = sio.loadmat('/Users/chris/DataSets/Abilene/Abilene.mat') #data = AbileneMat['P'] # Mean adjust data #data_mean = MA_over_window(data,50) #data = data - data_mean # Fix Nans whereAreNaNs = np.isnan(data) data[whereAreNaNs] = 0 e_high = 0.90 e_low = 0.85 alpha = 0.96 EW_alpha = 0.1 ignoreUp2 = 50 holdOFF = 0 L = 1 # Flags v6_1 = 1 v6_0 = 0 v4_0 = 0 v3_4 = 0 v3_3 = 0 v3_1 = 0 pedro = 0 if v6_1: '''My Latest version''' res_v6_1 = FRAHST_V6_1(data, L = L, alpha = alpha, EW_alpha = EW_alpha, e_low=e_low, e_high = e_high, holdOffTime=holdOFF, fix_init_Q = 1, r = 1, evalMetrics = 'T', ignoreUp2 = ignoreUp2, static_r = 0, r_upper_bound = None) res_v6_1['Alg'] = 'My Implimentation of FRAUST Version 6.0 ' pltSummary2(res_v6_1, data, (e_high, e_low)) ylim(e_low - 0.05 , 1.02) if v6_0: '''My Latest version''' res_v6_0 = FRAHST_V6_0(data, L = L, alpha = alpha, EW_alpha = EW_alpha, e_low=e_low, e_high=e_high, holdOffTime=holdOFF, fix_init_Q = 1, r = 1, evalMetrics = 'T', ignoreUp2 = ignoreUp2, static_r = 0, r_upper_bound = None) res_v6_0['Alg'] = 'My Implimentation of FRAUST Version 6.0 ' pltSummary2(res_v6_0, data, (e_high, e_low)) if v4_0: '''My Latest version''' res_v4_0 = FRAHST_V4_0(data, L = L, alpha=alpha, e_low=e_low, e_high=e_high, holdOffTime=holdOFF, fix_init_Q = 1, r = 1, evalMetrics = 'T', ignoreUp2 = ignoreUp2, static_r = 0, r_upper_bound = None) res_v4_0['Alg'] = 'My Implimentation of FRAUST Version 4.0 ' pltSummary2(res_v4_0, data, (e_high, e_low)) if v3_4: '''My Latest version''' res_new = FRAHST_V3_4(data, L = L, alpha=alpha, e_low=e_low, e_high=e_high, holdOffTime=holdOFF, fix_init_Q = 1, r = 1, evalMetrics = 'F', ignoreUp2 = ignoreUp2) res_new['Alg'] = 'My other latest Implimentation of FRAUST ' pltSummary2(res_new, data, (e_high, e_low)) if v3_3: '''My previous version''' res_old1 = FRAHST_V3_3(data, alpha=alpha, e_low=e_low, e_high=e_high, holdOffTime=holdOFF, fix_init_Q = 1, r = 1, evalMetrics = 'F', ignoreUp2 = ignoreUp2) res_old1['Alg'] = 'My Previous Implimentation of FRAUST ' pltSummary2(res_old1, data, (e_high, e_low)) if v3_1: '''My older version''' res_old2 = FRAHST_V3_1(data, alpha=alpha, e_low=e_low, e_high=e_high, holdOffTime=holdOFF, fix_init_Q = 1, r = 1, evalMetrics = 'F') res_old2['Alg'] = 'My Older Implimentation of FRAUST ' pltSummary2(res_old2, data, (e_high, e_low)) if pedro: '''Pedros Version''' res_ped = frahst_pedro_original(data, r=1, alpha=alpha, e_low=e_low, e_high=e_high, holdOffTime=holdOFF, evalMetrics='F') res_ped['Alg'] = 'Pedros Original Implimentation of FRAUST' pltSummary2(res_ped, data, (e_high, e_low)) first = 0
[ "chris.j.musselle@gmail.com" ]
chris.j.musselle@gmail.com
3a17d7c330985b8f290aca777695885ba4773cd1
48ade1b3a9f2ce51cebb5e236448c0f977efa71e
/tagmaster.py
3e761a4f92e4ebdbe3e70d84c0db7767ac8829cc
[]
no_license
naliferopoulos/PasteCrawl
359f2e266ec12fe80f579dc8c07da9bd8b397421
a875547d57822e8a35b7d4ec0c5985a2c221e8d7
refs/heads/master
2022-03-31T10:44:59.475347
2020-01-14T11:31:18
2020-01-14T11:31:18
232,835,469
2
0
null
null
null
null
UTF-8
Python
false
false
573
py
import os import importlib # The list of taggers taggers = [] def collect_taggers(dir): files = os.listdir(dir) for file in files: if file.endswith(".py"): module = importlib.import_module(dir + '.' + file[:-3]) tagger = my_class = getattr(module, 'Tagger') taggers.append(tagger) def reload_taggers(dir): global taggers taggers = [] collect_taggers(dir) def run_taggers(text): tags = [] for tagger in taggers: for tag in tagger.tag(text): tags.append(tag) return tags
[ "aliferopoulos@icloud.com" ]
aliferopoulos@icloud.com
c1ae17639a9bb83b8bf96c38ba86307c480cf464
4f8900cb2474282ae355a952901df4bc9b95e81c
/mooring/api_tools.py
131a9cc627d77ad87064fd16ccd05c55de29e2f5
[ "Apache-2.0" ]
permissive
dbca-wa/moorings
cb6268c2b7c568b0b34ac007a42210fd767620f7
37d2942efcbdaad072f7a06ac876a40e0f69f702
refs/heads/master
2023-06-09T04:16:57.600541
2023-05-31T05:50:55
2023-05-31T05:50:55
209,494,941
0
6
NOASSERTION
2023-05-22T04:56:38
2019-09-19T07:53:30
Python
UTF-8
Python
false
false
823
py
from django.http import HttpResponse, JsonResponse from django.views.decorators.csrf import csrf_exempt from django.contrib.auth.models import Group from mooring import models from mooring import common_iplookup from django.db.models import Q import json import ipaddress def create_vessel(request, apikey): ledger_json = {} jsondata = {'status': 404, 'message': 'API Key Not Found'} if models.API.objects.filter(api_key=apikey,active=1).count(): if common_iplookup.api_allow(common.get_client_ip(request),apikey) is True: jsondata['status'] = 200 jsondata['message'] = 'Groups Retreived' else: jsondata['status'] = 403 jsondata['message'] = 'Access Forbidden' return HttpResponse(json.dumps(jsondata), content_type='application/json')
[ "jason.moore@dbca.wa.gov.au" ]
jason.moore@dbca.wa.gov.au
1c943d111acf300d36712000062dc8efdc38d5a6
dddbd1a49f6ecc002e37bb0682ddfc2e61b19e71
/src/robogenerator/test/test_random_pairs.py
6590b0c6304e2759794a907fa0f06ba723de58be
[ "Apache-2.0", "LicenseRef-scancode-public-domain" ]
permissive
blueenergy/robogenerator
1c3ea9af8adc7a74db50ee73a2051154ce5a75d5
cd5a72a350e84f8563fa50874e8325993520840e
refs/heads/master
2021-01-17T17:05:19.021503
2015-07-03T09:14:31
2015-07-03T09:14:31
6,330,394
0
0
null
null
null
null
UTF-8
Python
false
false
715
py
import unittest import sys sys.path.append('../') from random_pairs import get_random_combination old_parameters = {'unit_type': [ "DMCU"] , 'state':[ "WO-EX"] , 'restart_mode':[ "OPT","TOT","DSK"] ,'restart_level':["master","slave"] , 'element_type':["RNC"] , 'sfutype':["SF20H"] } class RandomPairsTestCase(unittest.TestCase): def test_random_pairs_1(self): parameters_1 = {'unit_type': [ "DMCU"],'state':[ "WO-EX"]} expected_result = {'unit_type': "DMCU",'state':"WO-EX"} self.assertEqual(expected_result,get_random_combination(parameters_1)) if __name__ == '__main__': unittest.main()
[ "shuyong.y.lin@nsn.com" ]
shuyong.y.lin@nsn.com
cc461be28775fdbfab839012d2de66d810dc5087
a5a5d21751ab6e6dddda703899d891a95859f102
/Dust Invaders B02.py
338137316fbf89b65c14bed3011cdd8edb4297d8
[ "MIT" ]
permissive
ecodallaluna/dustinvaders
a787f77cc762f4201eb1c3ca44e454154af10b02
bb06d1d6d41c9169f5c35a3f01cd658f5ed0296f
refs/heads/master
2021-06-26T01:52:40.323130
2020-09-24T18:00:22
2020-09-24T18:00:22
132,319,234
0
0
null
null
null
null
UTF-8
Python
false
false
8,245
py
# # ______ _ _ _____ _____ _ _____ _ _ _ _ ___ ______ ___________ _____ # | _ \ | | / ___|_ _/\| |/\_ _| \ | | | | |/ _ \| _ \ ___| ___ \/ ___| # | | | | | | \ `--. | | \ ` ' / | | | \| | | | / /_\ \ | | | |__ | |_/ /\ `--. # | | | | | | |`--. \ | ||_ _|| | | . ` | | | | _ | | | | __|| / `--. \ # | |/ /| |_| /\__/ / | | / , . \_| |_| |\ \ \_/ / | | | |/ /| |___| |\ \ /\__/ / # |___/ \___/\____/ \_/ \/|_|\/\___/\_| \_/\___/\_| |_/___/ \____/\_| \_|\____/ # # # Dust Invaders # by Ilario Jeff Toniello # https://github.com/ecodallaluna/dustinvaders # # Version B.0.2 - Control version to check engagement allure # # Description # ========================================================================= # This version of the app has the purpose of collecting info about the utilisation of a vacuum cleaner # without the interaction with the game for statistical analysis. This app will silently storage the # amount of usage of the vacuum cleaner by saving the movement of the accelerometer. Each 30 seconds # of usage will be saved as one "token". Other saved data are: time and kind of movement of the # vacuum cleaner on axes x and y (left/right up/down). While in the 30 sec circle, the display will # show a smiley face. This app will be a control version for the game itself, to simulate the effect # of an observer in the activety of vacuum the floor # # Version update: # v.B.0.1 Use of internal clock for missing hardware # v.B.0.2 Tested RTC Board, fixed function for clock, string for time saving # # hardware requirement # ========================================================================= # - micro:bit board microbit.org/ # - RTC (Real Time Clock) Board, this app is set for a DS3231 RCT Board # # software requirement # ========================================================================= # this app was developed with Mu https://codewith.mu/ # with Mu or by command-line is possible to interact with the memory of the micro:bit board and save # a copy of the usage data collected by the app # # !! WARNING !! # ========================================================================= # every time the micro:bit is flashed ALL the files in the micro:bit # are destroyed. Remember to download the usage date before that #import microbit code library from microbit import * # set variables # ========================================================================= # set sensibility in milli-g sensibility_sensor = 500 #set initial movement mov_before = "-" # set no 30s movement tokens token = 0 # set image (not needed) # check_led = Image("00000:00000:00500:00000:00000") #variables for RTC addr = 0x68 buf = bytearray(7) # needed by RTC Board sleep(1000) # list of functions # ========================================================================= # functions to read time from DS3231 RTC (Real Time Clock) Board # To use the board is need to connect 4 pins from the board to the micro:bit # - Connect GND on the breakout to GND on the microbit. # - Connect VCC to 3V. # - Connect SDA to pin 20. # - Connect SCL to pin 19. # functions to convert values for get_time() # functions for RTC board from http://www.multiwingspan.co.uk def bcd2dec(bcd): return (((bcd & 0xf0) >> 4) * 10 + (bcd & 0x0f)) def dec2bcd(dec): tens, units = divmod(dec, 10) return (tens << 4) + units # this function reads time from the RTC board # get_time() returns an arrey of int with information from RTC Board # e.g. if called tm = get_time() # tm[0] equal to hh def get_time(): i2c.write(addr, b'\x00', repeat=False) buf = i2c.read(addr, 7, repeat=False) ss = bcd2dec(buf[0]) mm = bcd2dec(buf[1]) if buf[2] & 0x40: hh = bcd2dec(buf[2] & 0x1f) if buf[2] & 0x20: hh += 12 else: hh = bcd2dec(buf[2]) wday = buf[3] DD = bcd2dec(buf[4]) MM = bcd2dec(buf[5] & 0x1f) YY = bcd2dec(buf[6])+2000 return [hh,mm,ss,YY,MM,DD,wday] # #set_time(0,0,12,5,1,4,2016), can be used set the time and date of RTC Board. # The order of the numbers should be seconds, minutes, hours, week day, day, month, year. # Needed to do just once to set time on the board, the stand alone battery will keep the clock working if micro:bit is turned off def set_time(s,m,h,w,dd,mm,yy): t = bytes([s,m,h,w,dd,mm,yy-2000]) for i in range(0,7): i2c.write(addr, bytes([i,dec2bcd(t[i])]), repeat=False) return # check movement and report def is_moving(sens) : # read from accelerometer readx = accelerometer.get_x() ready = accelerometer.get_y() if readx > sens : result = "right" elif readx < -sens : result = "left" elif ready > sens : result = "up" elif ready < -sens : result = "down" else : result = "-" return result # write function cicle of 30 sec that save all new movements def capture_30s(sens) : # initialise variables # set display on display.show(Image.HAPPY) time_sec = 0 right_n = 0 left_n = 0 up_n = 0 down_n = 0 mov_before_cicle = "-" # set 30s acquisition data cicle while time_sec <= 30 : # get movement mov_into_cicle = is_moving(sens) # set inner if cicle to be sure to save only changes if mov_into_cicle != mov_before_cicle : mov_before_cicle = mov_into_cicle print("in cicle "+ str(mov_into_cicle)) # just to check, remove from final if mov_into_cicle == "right" : right_n = right_n + 1 elif mov_into_cicle == "left" : left_n = left_n + 1 elif mov_into_cicle == "up" : up_n = up_n + 1 elif mov_into_cicle == "down" : down_n = down_n + 1 sleep(500) # wait 0.5 sec before next reading time_sec = time_sec + 0.5 # advance time count # after 30s out of cicle, return data as arrey of int display.clear() #turn off the led after 30 sec return [right_n, left_n, up_n, down_n] # function to storage data in txt file def save_data(time2save, token2save, r2save, l2save, u2save, d2save) : # get string time in format YYYY-MM-DD HH:MM:SS time2save_string = str(time2save[3]) + "-" + str(time2save[4]) + "-" + str(time2save[5]) + "\t" + str(time2save[0]) + ":" + str(time2save[1]) + ":" + str(time2save[2]) + "\t" + str(time2save[6]) #create string to save string2save = time2save_string + "\t" + str(token2save) + "\t" + str(r2save) + "\t" + str(l2save) + "\t" + str(u2save) + "\t" + str(d2save) + "\n" try : # try to open existing file and copy data on saved_data with open('vacuum_data.txt', 'r') as my_file: saved_data = my_file.read() except OSError : # in case file do not exist create empty file and variable saved_data = "" with open('vacuum_data.txt', 'w') as my_file: my_file.write("") #update data with new reading saved_data = saved_data + string2save print("saved data:") #just to chek, remove from final print(saved_data) #just to chek, remove from final #save new file with updated data with open('vacuum_data.txt', 'w') as my_file: my_file.write(saved_data) return # start programme # =============================== while True : mov = is_moving(sensibility_sensor) if mov != mov_before : mov_before = mov token = token + 1 # token counter is updated print("identified movement! start cicle - " + mov_before) # print to check remove from final data_30s = capture_30s(sensibility_sensor) #function 30s cicle + save movement print("token no: "+ str(token) + ", movements: R: " + str(data_30s[0]) + ", L: " + str(data_30s[1]) + ", U: " + str(data_30s[2]) + ", D: " + str(data_30s[3]) ) # print to check remove from final # read time time_now = get_time() #save data in file txt save_data(time_now, token, data_30s[0], data_30s[1], data_30s[2], data_30s[3]) sleep(1000)
[ "noreply@github.com" ]
ecodallaluna.noreply@github.com
2e9d73f47d2c9a9e999c0c451e6fbc6f6b3d80b3
debeb32aa1ec296ac67c7b0665e8b8ee6d111efe
/combine_preds_and_analyze.py
b085a28f2eaa873f6b08d564d1424b0ba050e888
[]
no_license
sacohen11/climate-risk-capstone
393671098059a5f0204af9c0772ad5c25e8b6860
e83a873c0337874464c278a3ccd64b28100c5e66
refs/heads/master
2023-04-18T11:46:04.824645
2021-05-05T20:26:09
2021-05-05T20:26:09
364,498,557
0
0
null
null
null
null
UTF-8
Python
false
false
17,478
py
################################################################# # Title: Combine Predictions and Analyze # Author: Sam Cohen # Notes: # These functions combine all the results of the research pipeline # and performs joint analysis on all the results. ################################################################## # Packages import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns import scipy def load_ten_k_sents(file_path): """ This function loads the 10-K sentences into Python. :param file_path: the path of the file :return: the 10-K sentences """ ten_k = np.load(file_path, allow_pickle=True) return ten_k def combine_predictions(): """ This function combines multiple text files that have been created as the output of the research pipeline. Those files are the 10-K sentences, the information on the companies behind the 10-K sentences, the predictions for specificity, and the predictions for climate. Some code is obtained from https://stackoverflow.com/questions/39717828/python-combine-two-text-files-into-one-line-by-line. :return: nothing, but outputs a file with all the above information combined into one text file """ # arrays to track metrics total_climate = [] specificities = [] with open("Domain-Agnostic-Sentence-Specificity-Prediction/dataset/data/ten_k_sentences.txt") as xh: with open('Domain-Agnostic-Sentence-Specificity-Prediction/dataset/data/ten_k_info.txt') as yh: with open("Domain-Agnostic-Sentence-Specificity-Prediction/predictions.txt") as zh: with open("Domain-Agnostic-Sentence-Specificity-Prediction/climate_predictions.txt") as th: with open("combined.txt", "w") as wh: #Read first file xlines = xh.readlines() #Read second file ylines = yh.readlines() #Read third file zlines = zh.readlines() #Read fourth file tlines = th.readlines() #Print lengths print('sentence length:', len(xlines)) print('info length:', len(ylines)) print('specificity prediction length:', len(zlines)) print('climate prediction length:', len(tlines)) #Combine content of both lists #combine = list(zip(ylines,xlines)) #Write to third file for i in range(len(xlines)): if i == 0: print() else: # need to add climate predictions #total_climate.append() # regex = re.compile( # r'[0-9]\.[0-9]{3,6}') #matches = regex.finditer(document['10-K']) specificities.append(float(zlines[i-1].strip())) total_climate.append(int(tlines[i])) line = ylines[i].strip() + '\t' + zlines[i-1].strip() + '\t' + tlines[i].strip() + '\t' + xlines[i] wh.write(line) print(75 * '=') print("Specificity Statistics:") print('Mean Specificity:', np.mean(np.array(specificities))) print('Standard Deviation Specificity:', np.std(np.array(specificities))) print('Max Specificity:', np.max(np.array(specificities))) print('Min Specificity:', np.min(np.array(specificities))) print(75*'=') print("Climate Prediction Statistics:") print('Climate Related Sentences Sum:', np.sum(np.array(total_climate))) print('Non Climate Related Sentences Sum:', len(total_climate) - np.sum(np.array(total_climate))) print('Climate Related Sentences Percent', np.sum(np.array(total_climate))/len(total_climate)) print(75*'=') def eda_plots(): """ This function reads in the file with combined information and outputs some EDA plots on the data. :return: nothing, but outputs EDA plots """ print(os.getcwd()) df = pd.read_csv("combined.txt", delimiter="\t", names=["CIK", "Year", "Stock Ticker", "Company Name", "Industry", "Specificity", "Climate Prediction", "Sentence"]) print(df.info()) print(df.columns) # drop data sources that have less than 20 sentences # drop sentences that are less than 10 words new_df = df.groupby(["Stock Ticker", "Year"]) new_df = new_df.agg({"Sentence": "nunique"}) new_df = new_df.rename(columns={"Sentence":"num_sents"}) df = df.merge(new_df, how='inner', on=["Stock Ticker", "Year"]) df["sentence_length"] = df['Sentence'].str.split().apply(len) df = df[df["num_sents"]>=20] df = df[df["sentence_length"]>10] training_sents() unique_company_count(df) plot_companies_by_sector(df, "Count of Companies by Sector", 'output/eda_companies_by_sector') plot_sents_by_sector(df, "Count of Sentences by Sector", 'output/eda_sentences_by_sector.jpg') plot_companies_per_year(df, "Count of Companies by Year", 'output/eda_companies_by_year.jpg') plot_sents_per_year(df, "Count of Sentences by Year", 'output/eda_sentences_by_year.jpg') num_sents_per_filing(df, "Histogram of Sentences by Filing", 'output/eda_hist_sentences_by_filing') hist_sent_specificity(df, "Sentence Specificity Distribution", 'output/eda_dist_sentence_specificity') climate_bar(df, "Climate Predictions", 'output/eda_climate_preds.jpg') stats_on_sents_per_10k(df) t_test(df) print('end') def unique_company_count(df): """ This function prints the number of unique companies in the final dataset. :param df: dataframe with the combined information :return: nothing, but prints the number of unique companies """ # number of unique companies print("Number of Unique Companies:", df["Stock Ticker"].nunique()) print("Number of Unique Filings:", df.groupby(["Stock Ticker", "Year"]).agg("nunique")) def plot_companies_by_sector(df, title, out_path): """ This function plots the companies by sector. The code comes from https://www.kite.com/python/answers/how-to-count-unique-values-in-a-pandas-dataframe-group-in-python. :param df: dataframe with combined results :param title: title of the new chart :param out_path: the output location of the charts :return: nothing, but outputs charts """ # Number of companies by sector sectored_df = df.groupby("Industry") sectored_df = sectored_df.agg({"Stock Ticker": "nunique"}) sectored_df = sectored_df.reset_index() # Plot sns.set(style="whitegrid") plt.title(title) ax = sns.barplot(data=sectored_df, x="Industry", y="Stock Ticker") ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right", fontsize=8) #plt.xticks(ticks=np.arange(len(sectored_df["Industry"])),labels=sectored_df["Industry"], fontsize=16) plt.yticks(ticks=range(0,max(sectored_df["Stock Ticker"])+1, 5)) plt.xlabel("Industry Sector") plt.ylabel("Number of Companies") sns.despine(left=True) plt.show() plt.savefig(out_path) def plot_sents_by_sector(df, title, out_path): """ This function plots the sentences by sector. The code comes from https://www.kite.com/python/answers/how-to-count-unique-values-in-a-pandas-dataframe-group-in-python. :param df: dataframe with combined results :param title: title of the new chart :param out_path: the output location of the charts :return: nothing, but outputs charts """ # Number of companies by sector sectored_df = df.groupby("Industry") sectored_df = sectored_df.agg({"Sentence": "nunique"}) sectored_df = sectored_df.reset_index() # Plot sns.set(style="whitegrid") plt.title(title) ax = sns.barplot(data=sectored_df, x="Industry", y="Sentence") ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right", fontsize=8) #plt.xticks(ticks=np.arange(len(sectored_df["Industry"])),labels=sectored_df["Industry"], fontsize=16) plt.yticks(ticks=range(0,max(sectored_df["Sentence"])+1, 5000)) plt.xlabel("Industry Sector") plt.ylabel("Number of Sentences") sns.despine(left=True) plt.show() plt.savefig(out_path) def plot_companies_per_year(df, title, out_path): """ This function plots the number of companies per year. :param df: dataframe of combined information :param title: title of the new chart :param out_path: the location of the new chart :return: nothing, but saves a new chart """ # Number of companies per year yeared_df = df.groupby("Year") yeared_df = yeared_df.agg({"Stock Ticker": "nunique"}) yeared_df = yeared_df.reset_index() # Plot sns.set(style="whitegrid") plt.title(title) ax = sns.barplot(data=yeared_df, x="Year", y="Stock Ticker") ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right", fontsize=8) plt.yticks(ticks=range(0,max(yeared_df["Stock Ticker"])+1, 50)) #ax.set_yticklabels(ax.get_yticklabels()) plt.xlabel("Years") plt.ylabel("Number of Companies") sns.despine(left=True) plt.show(ax=ax) plt.savefig(out_path) def plot_sents_per_year(df, title, out_path): """ This function plots the number of sentences per year. :param df: dataframe of combined information :param title: title of the new chart :param out_path: the location of the new chart :return: nothing, but saves a new chart """ # Number of companies per year yeared_df = df.groupby("Year") yeared_df = yeared_df.agg({"Sentence": "nunique"}) yeared_df = yeared_df.reset_index() # Plot sns.set(style="whitegrid") plt.title(title) ax = sns.barplot(data=yeared_df, x="Year", y="Sentence") ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right", fontsize=8) plt.yticks(ticks=range(0,max(yeared_df["Sentence"])+1, 5000)) #ax.set_yticklabels(ax.get_yticklabels()) plt.xlabel("Years") plt.ylabel("Number of Sentences") sns.despine(left=True) plt.show(ax=ax) plt.savefig(out_path) def num_sents_per_filing(df, title, out_path): """ This function plots the number of sentences per filing. :param df: dataframe of combined information :param title: title of the new chart :param out_path: the location of the new chart :return: nothing, but saves a new chart """ # Number of companies per year yeared_df = df.groupby(["Stock Ticker", "Year"]) yeared_df = yeared_df.agg({"Sentence": "nunique"}) yeared_df = yeared_df.reset_index() # Plot sns.set(style="whitegrid") plt.title(title) ax = sns.histplot(data=yeared_df, x="Sentence", bins=20) #ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right", fontsize=8) plt.yticks(ticks=range(0, 250, 50)) plt.xticks(ticks=range(0, 850, 100)) # ax.set_yticklabels(ax.get_yticklabels()) plt.xlabel("Number of Sentences") plt.ylabel("Count") sns.despine(left=True) plt.show(ax=ax) plt.savefig(out_path) def hist_sent_specificity(df, title, out_path): """ This function plots the distribution of sentences specificity. :param df: dataframe of combined information :param title: title of the new chart :param out_path: the location of the new chart :return: nothing, but saves a new chart """ # Plot ax = sns.displot(df, x="Specificity") #ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right", fontsize=8) #plt.yticks(ticks=range(0, 250, 50)) #plt.xticks(ticks=range(0, 850, 100)) # ax.set_yticklabels(ax.get_yticklabels()) sns.set(style="whitegrid") plt.title(title) #plt.xlabel("Specificity") #plt.ylabel("Density") sns.despine(left=True) plt.show(ax=ax) plt.savefig(out_path) def climate_bar(df, title, out_path): """ This function plots the number of climate and non-climate related sentences. :param df: dataframe of combined information :param title: title of the new chart :param out_path: the location of the new chart :return: nothing, but saves a new chart """ # Number of companies per year #yeared_df = df.groupby("Climate Prediction") #yeared_df = yeared_df.agg({"Sentence": "nunique"}) # yeared_df = yeared_df.reset_index() # Plot sns.set(style="whitegrid") plt.title(title) ax = sns.countplot(data=df, x="Climate Prediction") ax.set_xticklabels(ax.get_xticklabels(), rotation=0, ha="right", fontsize=8) plt.yticks(ticks=range(0,300000, 25000)) #ax.set_yticklabels(ax.get_yticklabels()) plt.xlabel("Climate Prediciton") plt.ylabel("Count") sns.despine(left=True) plt.show(ax=ax) plt.savefig(out_path) def t_test(df): """ This function plots the distribution of climate prediction. :param df: dataframe of combined information :param title: title of the new chart :param out_path: the location of the new chart :return: nothing, but saves a new chart """ climate_df = df[df["Climate Prediction"] == 1] non_climate_df = df[df["Climate Prediction"] == 0] print("Mean of Climate Preds:", np.mean(climate_df["Specificity"].values)) print("Var of Climate Preds:", np.var(climate_df["Specificity"].values)) print("Mean of Non-Climate Preds:", np.mean(non_climate_df["Specificity"].values)) print("Var of Non-Climate Preds:", np.var(non_climate_df["Specificity"].values)) t, p = scipy.stats.ttest_ind(climate_df["Specificity"].values, non_climate_df["Specificity"].values) print("T-Score:", t) print("P-value:", p) # Plot ax = sns.displot(df, x="Specificity", col="Climate Prediction", multiple="dodge") # ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right", fontsize=8) # plt.yticks(ticks=range(0, 250, 50)) # plt.xticks(ticks=range(0, 850, 100)) # ax.set_yticklabels(ax.get_yticklabels()) sns.set(style="whitegrid") #plt.title("Comparison of Climate vs. Non-Climate Specificities") # plt.xlabel("Specificity") # plt.ylabel("Density") sns.despine(left=True) plt.show(ax=ax) def anova_year(df): """ This function plots the distribution of climate prediction. :param df: dataframe of combined information :param title: title of the new chart :param out_path: the location of the new chart :return: nothing, but saves a new chart """ climate_df = df[df["Climate Prediction"] == 1] non_climate_df = df[df["Climate Prediction"] == 0] print("Mean of Climate Preds:", np.mean(climate_df["Specificity"].values)) print("Var of Climate Preds:", np.var(climate_df["Specificity"].values)) print("Mean of Non-Climate Preds:", np.mean(non_climate_df["Specificity"].values)) print("Var of Non-Climate Preds:", np.var(non_climate_df["Specificity"].values)) t, p = scipy.stats.ttest_ind(climate_df["Specificity"].values, non_climate_df["Specificity"].values) print("T-Score:", t) print("P-value:", p) # Plot ax = sns.displot(df, x="Specificity", col="Climate Prediction", multiple="dodge") # ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right", fontsize=8) # plt.yticks(ticks=range(0, 250, 50)) # plt.xticks(ticks=range(0, 850, 100)) # ax.set_yticklabels(ax.get_yticklabels()) sns.set(style="whitegrid") #plt.title("Comparison of Climate vs. Non-Climate Specificities") # plt.xlabel("Specificity") # plt.ylabel("Density") sns.despine(left=True) plt.show(ax=ax) def stats_on_sents_per_10k(df): """ This function prints stats on the 10-K sentences. :param df: dataframe of the combined information :return: nothing, but printed statistics """ new_df = df.groupby(["Stock Ticker", "Year"]) new_df = new_df.agg({"Sentence": "nunique"}) new_df = new_df.reset_index() print(75 * '=') print("Specificity Statistics:") print('Mean Number of Sentences per 10-K:', np.mean(new_df["Sentence"])) print('Standard Deviation Number of Sentences per 10-K:', np.std(new_df["Sentence"])) print('Max Number of Sentences per 10-K:', np.max(new_df["Sentence"])) print('Min Number of Sentences per 10-K:', np.min(new_df["Sentence"])) def sentences_climate_related(df): """ This function finds the percent of sentences that are climate related by sector and prints out statistics. :param df: dataframe of combined information :return: nothing, but charts and statistics """ # Here we are finding the percent of sentences that are climate related by sector new_df = df.groupby(["Stock Ticker", "Year"]) new_df = new_df.agg({"Sentence": "nunique"}) new_df = new_df.reset_index() print(75 * '=') print("Specificity Statistics:") print('Mean Number of Sentences per 10-K:', np.mean(new_df["Sentence"])) print('Standard Deviation Number of Sentences per 10-K:', np.std(new_df["Sentence"])) print('Max Number of Sentences per 10-K:', np.max(new_df["Sentence"])) print('Min Number of Sentences per 10-K:', np.min(new_df["Sentence"])) def training_sents(): import climate_identification_models climate_identification_models.load_training_data()
[ "cohen.samuel@wustl.edu" ]
cohen.samuel@wustl.edu
59ccfb00af43a84ba98ada0362d7440538825d0d
32f02062d755d8244b23ab88a729bfc71331e3b3
/todolist/migrations/0004_auto_20190219_0837.py
b9e772bc1c3635aab8265950aa3b2b4530dd0b2c
[]
no_license
malkoG/todoquest-server
6a377566146a974494ed55f71ea30a748d4e38df
bfdbdd5fcf44cf815b948f952ee1ca3088eb8d9b
refs/heads/master
2022-01-22T07:48:13.811514
2019-02-19T09:25:24
2019-02-19T09:25:24
156,067,845
3
2
null
2022-01-13T07:04:51
2018-11-04T09:44:01
Python
UTF-8
Python
false
false
816
py
# Generated by Django 2.1 on 2019-02-19 08:37 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('todolist', '0003_auto_20181104_0750'), ] operations = [ migrations.AddField( model_name='notification', name='owner', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='todoentry', name='owner', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
[ "rijgndqw012@gmail.com" ]
rijgndqw012@gmail.com
df88f160d8e3d64b52b0f4ba5bc1542d33dc16f8
a838d4bed14d5df5314000b41f8318c4ebe0974e
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_06_01/aio/operations/_route_filter_rules_operations.py
d8a897fed9168ffc0bf0bde43c42fdcf66d0eae4
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
scbedd/azure-sdk-for-python
ee7cbd6a8725ddd4a6edfde5f40a2a589808daea
cc8bdfceb23e5ae9f78323edc2a4e66e348bb17a
refs/heads/master
2023-09-01T08:38:56.188954
2021-06-17T22:52:28
2021-06-17T22:52:28
159,568,218
2
0
MIT
2019-08-11T21:16:01
2018-11-28T21:34:49
Python
UTF-8
Python
false
false
21,710
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class RouteFilterRulesOperations: """RouteFilterRulesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_06_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, route_filter_name: str, rule_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def begin_delete( self, resource_group_name: str, route_filter_name: str, rule_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified rule from a route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the rule. :type rule_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, route_filter_name=route_filter_name, rule_name=rule_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def get( self, resource_group_name: str, route_filter_name: str, rule_name: str, **kwargs ) -> "_models.RouteFilterRule": """Gets the specified rule from a route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the rule. :type rule_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RouteFilterRule, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_06_01.models.RouteFilterRule :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteFilterRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, route_filter_name: str, rule_name: str, route_filter_rule_parameters: "_models.RouteFilterRule", **kwargs ) -> "_models.RouteFilterRule": cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteFilterRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(route_filter_rule_parameters, 'RouteFilterRule') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('RouteFilterRule', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, route_filter_name: str, rule_name: str, route_filter_rule_parameters: "_models.RouteFilterRule", **kwargs ) -> AsyncLROPoller["_models.RouteFilterRule"]: """Creates or updates a route in the specified route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the route filter rule. :type rule_name: str :param route_filter_rule_parameters: Parameters supplied to the create or update route filter rule operation. :type route_filter_rule_parameters: ~azure.mgmt.network.v2020_06_01.models.RouteFilterRule :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteFilterRule or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_06_01.models.RouteFilterRule] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteFilterRule"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, route_filter_name=route_filter_name, rule_name=rule_name, route_filter_rule_parameters=route_filter_rule_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore def list_by_route_filter( self, resource_group_name: str, route_filter_name: str, **kwargs ) -> AsyncIterable["_models.RouteFilterRuleListResult"]: """Gets all RouteFilterRules in a route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteFilterRuleListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_06_01.models.RouteFilterRuleListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteFilterRuleListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_route_filter.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteFilterRuleListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_route_filter.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules'} # type: ignore
[ "noreply@github.com" ]
scbedd.noreply@github.com
627eadd9d8d814f6afc5bcf1f793fbd777de080d
1c0a80b4d366003e0717e53e389b0def90914ffa
/BTD_DTB/DTB.py
574da28237dfb56dbd52dfd5b0cfeb3737a7f9e9
[]
no_license
AbolfazlAslani/BTD_DTB
4a6a66cdfd0de93a8a05d3d1160f4e02b34d0eac
97e57f4e2fce8a99ea5304c361a29f872123ea70
refs/heads/main
2023-01-22T21:27:38.428297
2020-12-05T20:52:35
2020-12-05T20:52:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
299
py
def decimal_to_binary(d): kharej_ghesmat = 1 baghi_mande = [] answer = "" while kharej_ghesmat != 0 : kharej_ghesmat = d // 2 baghi_mande.append(d % 2) d = kharej_ghesmat for i in baghi_mande: answer = str(i) + answer return answer
[ "noreply@github.com" ]
AbolfazlAslani.noreply@github.com
6bfedf399151cd596fada9f893a54261433e2c76
69577168f63f53d4ca10898e9b18eec14b87c132
/song player/guicource.py
702654a854da59f86621bb3d42737963458249c0
[]
no_license
ved-op/Music-player
5ac7f8b66a7bab9203246e9fa40c9954b7963eb8
8543bb84bb9e0a1b156393545ee7d89b15bcc700
refs/heads/main
2023-02-04T09:41:31.613162
2020-12-25T07:17:34
2020-12-25T07:17:34
324,310,019
0
0
null
null
null
null
UTF-8
Python
false
false
1,485
py
from tkinter import * from pygame import mixer mixer.init() def play(audio): mixer.music.load(audio) mixer.music.play(-1) #create a window root=Tk() root.title("tkinter course") root.geometry("600x700") root.config(bg="#262626") root.resizable(False,False) lbl_title = Label(root,text="Please Choose the song",font=('arial',35,'bold'),bg='yellow',fg='red').pack(fill=X,pady=15,padx=10) btn1=Button(root,padx=16,pady=16,fg="black", font=('Times New Roman', 15 ,'bold'),text="ghamand kar",bg="orange",command=lambda:play('ghamand.mpeg')).pack(pady=10,padx=10,) btn2=Button(root,padx=16,pady=16,fg="black", font=('Times New Roman', 15 ,'bold'),text="chandigarh me",bg="orange",command=lambda:play('ghar.mpeg')).pack(pady=10,padx=10,) btn3=Button(root,padx=16,pady=16,fg="black", font=('Times New Roman', 15 ,'bold'),text="hanuman chalisa",bg="orange",command=lambda:play('hanuman.mp3')).pack(pady=10,padx=10,) btn4=Button(root,padx=16,pady=16,fg="black", font=('Times New Roman', 15 ,'bold'),text="achutam",bg="orange",command=lambda:play('achutam.mpeg')).pack(pady=10,padx=10,) btn5=Button(root,padx=16,pady=16,fg="black", font=('Times New Roman', 15 ,'bold'),text="delhi de diya",bg="orange",command=lambda:play('mumbai.mpeg')).pack(pady=10,padx=10,) btn6=Button(root,padx=16,pady=16,fg="black", font=('Times New Roman', 15 ,'bold'),text="shankara",bg="orange",command=lambda:play('shankara.mpeg')).pack(pady=10,padx=10,) root.mainloop()
[ "noreply@github.com" ]
ved-op.noreply@github.com
893256007045a8503bce3be751d3b018b761938e
c17ed27d8862b0adecff9dde55d4a8ad0be545db
/system_tests/test_framework.py
c1548a0cfdfd4275e037139105180af6947c8101
[]
no_license
hussainsultan/mesos-distributed
72cb11e7728121139805899e8e1e38691ab69f17
88d9e840eed65f8fe26e53c639350049df49a4b2
refs/heads/master
2021-01-21T13:57:37.155233
2016-06-03T21:39:42
2016-06-03T21:39:42
47,972,700
5
0
null
null
null
null
UTF-8
Python
false
false
1,119
py
import unittest import time from distributed import Executor from expects import expect, equal from framework.distributed_scheduler import DistributedScheduler from framework.scheduler_driver import DistributedDriver from system_tests.matchers.framework_matchers import have_activated_slaves, have_framework_name from system_tests.support.mesos_cluster import MesosCluster class TestSystem(unittest.TestCase): def test_framework_runs(self): with MesosCluster() as cluster: time.sleep(2) driver = DistributedDriver().create_driver(DistributedScheduler) driver.start() time.sleep(5) expect(cluster).to(have_activated_slaves(1)) expect(cluster).to(have_framework_name('distributed-framework')) # distributed test - this probably doesnt belong here executor = Executor('127.0.0.1:8787') A = executor.map(lambda x: x**2, range(10)) B = executor.map(lambda x: -x, A) total = executor.submit(sum, B) expect(total.result()).to(equal(-285)) driver.stop()
[ "hussainz@gmail.com" ]
hussainz@gmail.com
3c46b7366cc5ea8f244b9d5f62ceca308f58388f
5dd82b41a5d4629d9353e196a43b78b66bbf5201
/pycoin/tx/script/Stack.py
a9720ca616ee0acad46582f84940bbca8d62c17c
[ "MIT" ]
permissive
haobtc/pycoin
41009bd152fec29aa38a4e22f85049eb002e06ca
cba22aede3e7fc4edb742b8d6fe4d9aa198de556
refs/heads/master
2022-07-21T00:19:07.143110
2017-10-21T23:44:13
2017-10-21T23:44:13
109,953,071
1
2
MIT
2019-12-25T06:13:48
2017-11-08T09:12:09
Python
UTF-8
Python
false
false
1,641
py
""" VM Stack data structure The MIT License (MIT) Copyright (c) 2017 by Richard Kiss Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from . import errno from . import ScriptError class Stack(list): def pop(self, *args, **kwargs): try: return super(Stack, self).pop(*args, **kwargs) except IndexError: raise ScriptError("pop from empty stack", errno.INVALID_STACK_OPERATION) def __getitem__(self, *args, **kwargs): try: return super(Stack, self).__getitem__(*args, **kwargs) except IndexError: raise ScriptError("getitem out of range", errno.INVALID_STACK_OPERATION)
[ "him@richardkiss.com" ]
him@richardkiss.com
8a833d65aba89aad125270ef26e31edfcd8b121c
5be0d8a6cdfa7d5664cb750403ba0522da77967f
/app2.py
d7d9eae03ad3478fbb6159dbb2e1bbf8860ee5b5
[]
no_license
Rajesh-mandal/predict-the-breast-cancer-result
f358827e8e4cf1923600220037e6bd31d5116504
567bb733a3ca12f9ffc7f599719746cff00aac22
refs/heads/master
2023-03-16T22:12:02.211324
2020-04-21T22:12:32
2020-04-21T22:12:32
257,723,766
0
0
null
null
null
null
UTF-8
Python
false
false
1,476
py
import numpy as np import pandas as pd from flask import Flask, request, render_template import pickle app = Flask(__name__) model = pickle.load(open('breast_cancer_detector.pkl', 'rb')) @app.route('/') def home(): return render_template('index.html') @app.route('/predict',methods=['POST']) def predict(): input_features = [float(x) for x in request.form.values()] features_value = [np.array(input_features)] features_name = ['mean radius', 'mean texture', 'mean perimeter', 'mean area', 'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension', 'radius error', 'texture error', 'perimeter error', 'area error', 'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture', 'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points', 'worst symmetry', 'worst fractal dimension'] df = pd.DataFrame(features_value, columns=features_name) output = model.predict(df) if output == 0: res_val = "** breast cancer **" else: res_val = "no breast cancer" return render_template('index.html', prediction_text='Patient has {}'.format(res_val)) if __name__ == "__main__": app.run()
[ "noreply@github.com" ]
Rajesh-mandal.noreply@github.com
70f0f0e8bc68e514d1a62f1c3ef6de699f93c6f7
1fe0b680ce53bb3bb9078356ea2b25e572d9cfdc
/venv/lib/python2.7/site-packages/ansible/modules/cloud/azure/azure_rm_availabilityset_facts.py
aab729a6cf6ab48539d8af1e4d2915bbc618e22b
[ "MIT" ]
permissive
otus-devops-2019-02/devopscourses_infra
1929c4a9eace3fdb0eb118bf216f3385fc0cdb1c
e42e5deafce395af869084ede245fc6cff6d0b2c
refs/heads/master
2020-04-29T02:41:49.985889
2019-05-21T06:35:19
2019-05-21T06:35:19
175,780,457
0
1
MIT
2019-05-21T06:35:20
2019-03-15T08:35:54
HCL
UTF-8
Python
false
false
4,695
py
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2016, Julien Stroheker <juliens@microsoft.com> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_availabilityset_facts version_added: "2.4" short_description: Get availability set facts. description: - Get facts for a specific availability set or all availability sets. options: name: description: - Limit results to a specific availability set resource_group: description: - The resource group to search for the desired availability set tags: description: - List of tags to be matched extends_documentation_fragment: - azure author: - "Julien Stroheker (@julienstroheker)" ''' EXAMPLES = ''' - name: Get facts for one availability set azure_rm_availabilityset_facts: name: Testing resource_group: myResourceGroup - name: Get facts for all availability sets in a specific resource group azure_rm_availabilityset_facts: resource_group: myResourceGroup ''' RETURN = ''' azure_availabilityset: description: List of availability sets dicts. returned: always type: list example: [{ "location": "eastus2", "name": "myavailabilityset", "properties": { "platformFaultDomainCount": 3, "platformUpdateDomainCount": 2, "virtualMachines": [] }, "sku": "Aligned", "type": "Microsoft.Compute/availabilitySets" }] ''' from ansible.module_utils.azure_rm_common import AzureRMModuleBase try: from msrestazure.azure_exceptions import CloudError except Exception: # handled in azure_rm_common pass AZURE_OBJECT_CLASS = 'AvailabilitySet' class AzureRMAvailabilitySetFacts(AzureRMModuleBase): """Utility class to get availability set facts""" def __init__(self): self.module_args = dict( name=dict(type='str'), resource_group=dict(type='str'), tags=dict(type='list') ) self.results = dict( changed=False, ansible_facts=dict( azure_availabilitysets=[] ) ) self.name = None self.resource_group = None self.tags = None super(AzureRMAvailabilitySetFacts, self).__init__( derived_arg_spec=self.module_args, supports_tags=False, facts_module=True ) def exec_module(self, **kwargs): for key in self.module_args: setattr(self, key, kwargs[key]) if self.name and not self.resource_group: self.fail("Parameter error: resource group required when filtering by name.") if self.name: self.results['ansible_facts']['azure_availabilitysets'] = self.get_item() else: self.results['ansible_facts']['azure_availabilitysets'] = self.list_items() return self.results def get_item(self): """Get a single availability set""" self.log('Get properties for {0}'.format(self.name)) item = None result = [] try: item = self.compute_client.availability_sets.get(self.resource_group, self.name) except CloudError: pass if item and self.has_tags(item.tags, self.tags): avase = self.serialize_obj(item, AZURE_OBJECT_CLASS) avase['name'] = item.name avase['type'] = item.type avase['sku'] = item.sku.name result = [avase] return result def list_items(self): """Get all availability sets""" self.log('List all availability sets') try: response = self.compute_client.availability_sets.list(self.resource_group) except CloudError as exc: self.fail('Failed to list all items - {0}'.format(str(exc))) results = [] for item in response: if self.has_tags(item.tags, self.tags): avase = self.serialize_obj(item, AZURE_OBJECT_CLASS) avase['name'] = item.name avase['type'] = item.type avase['sku'] = item.sku.name results.append(avase) return results def main(): """Main module execution code path""" AzureRMAvailabilitySetFacts() if __name__ == '__main__': main()
[ "skydevapp@gmail.com" ]
skydevapp@gmail.com
d336a1532cc9bd3a3f8a783f7d0fe0d8fcd1ed5a
9b7e4ac45d454c26a572e9a059f04792017b9028
/apps/employees/migrations/0001_initial.py
a3a6f420e17fdc6f4434a4cf7df10220e56d717a
[]
no_license
konradsofton/basic-django-setup
f3300fa4e5bc7ce8fdc147b3dd0d9544e6bf9442
3a10a10ee9d860e36e274e32b4e32d88876245d4
refs/heads/master
2020-07-28T08:38:18.697378
2019-09-18T17:34:49
2019-09-18T17:34:49
209,367,573
0
0
null
null
null
null
UTF-8
Python
false
false
862
py
# Generated by Django 2.2.5 on 2019-09-18 15:51 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='EmployeeModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('lname', models.CharField(max_length=255)), ('created_at', models.DateTimeField(blank=True, default=django.utils.timezone.now)), ('updated_at', models.DateTimeField(blank=True, default=django.utils.timezone.now)), ], options={ 'db_table': 'employee', }, ), ]
[ "kjimenez@softonitg.com" ]
kjimenez@softonitg.com
55a82f69a588e3653988ca5cbc8a7f89b73eeb30
a2ea48005742e4eb70c3df1c2df588c9cfe160e3
/abong/manage.py
b3d6f98f92979a956fd4270c28b4cb8384816541
[ "MIT" ]
permissive
matheusdemicheli/tcc
fa79257fe1dc7cf989f9cb9302271919906e2b2a
3d85db8c68b01d1a4e55cb311dcad552a60513fd
refs/heads/master
2020-12-30T12:34:49.937308
2017-07-04T15:30:59
2017-07-04T15:30:59
91,387,743
0
0
null
null
null
null
UTF-8
Python
false
false
803
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "abong.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
[ "matheusdemicheli@gmail.com" ]
matheusdemicheli@gmail.com
789ae31427a108126e1be34f17aba9e2d1a4469c
89199143b2e566190458cabfc428d107528a5e91
/tests/test_symap.py
46ff01e02a040c08685658bc32737528ce4deffe
[]
no_license
msrocka/pslink
b7e650e500a4921413000d4e5ed8f89849e4e556
99bce2bb09b2dd553af308d56361d32b46ee59f7
refs/heads/master
2022-03-08T22:25:11.154473
2019-11-12T16:51:49
2019-11-12T16:51:49
180,141,790
0
1
null
null
null
null
UTF-8
Python
false
false
1,164
py
import unittest import pslink.symap as symap class SymapTest(unittest.TestCase): def test_stopwords(self): self.assertTrue(symap.is_stopword("at")) self.assertFalse(symap.is_stopword("steel")) def test_similarity(self): self.assertAlmostEqual(1.0, symap.similarity("steel", "steel")) self.assertAlmostEqual(0.0, symap.similarity("steel", "car")) def test_keywords(self): p = "Steel product, secondary structural, girts and purlins, at plant" expected = ["steel", "product", "secondary", "structural", "girts", "purlins", "plant"] r = symap.keywords(p) self.assertEqual(len(r), len(expected)) for e in expected: self.assertTrue(e in r) def test_best_match(self): match = symap.best_match("stainless steel", [ "World Stainless Steel. 2005. World Stainless Steel LCI", "Steel, stainless 304", "steel, generic", "Stainless steel; Manufacture; Production mix, at plant; 316 2B"]) self.assertEqual(match, "Steel, stainless 304") if __name__ == "__main__": unittest.main()
[ "michael.srocka@gmail.com" ]
michael.srocka@gmail.com
79ada77352538c72e1c32df63bc6464785ce8e76
119365cbb6e632b4fc01baf627fb345a334fe6d8
/pizza_app/admin.py
5b99c57b48972d26129f0dbff21286674470fb61
[]
no_license
Pythpiyush/Ezyschooling_Intern_Task
fa2a387951e6313e87411ba34e8e3e04f4fbfe68
f89682ed4804b442a0f757dc475f92990b7ca1b6
refs/heads/master
2023-07-23T00:26:19.088521
2021-09-02T12:27:20
2021-09-02T12:27:20
402,406,827
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
from django.contrib import admin from .models import Piz_Mod # Register your models here. admin.site.register(Piz_Mod)
[ "piyushagrawal111@ms.com" ]
piyushagrawal111@ms.com
6ee93adf49a11d96f1fc6e51ebf370ecf779b5c0
7ecaab8f6c74e8f01d4db2655e8bdf84a09331c2
/venv/bin/easy_install
e0b2108645b518774b5693911765c372f2d5b4b6
[]
no_license
zhouyapengzi/apollo_analyze_tools
11577ef8c2316e2bf89f01309665e10c3e31b0ad
f6ecf2421c1d63c3ae492d3a3bb87e47a9386aba
refs/heads/master
2022-11-25T18:48:05.554694
2020-07-28T16:07:39
2020-07-28T16:07:39
273,553,845
0
0
null
null
null
null
UTF-8
Python
false
false
442
#!/Users/zipeng/Projects/MyProject/tools/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
[ "zi_peng@encs.concordia.ca" ]
zi_peng@encs.concordia.ca
1852c0762c5bdea1a2e6541b37699de565be8f1c
5b7fd3672ca2ec2b91a21b946325de1ed62be6e8
/python/spinn/data/snli/load_snli_data.py
0ff2942d001c4e021cd2981684e169540dd0a42e
[ "Apache-2.0" ]
permissive
VikingMew/spinn
8e7472dbc6bf2f088629896dccca4328b5be76c2
e52f9a680cda28d36b32e15ee4b381912fbaccf4
refs/heads/master
2021-01-15T20:29:36.938472
2016-06-14T23:42:18
2016-06-14T23:42:18
61,280,747
2
0
null
2016-06-16T09:39:09
2016-06-16T09:39:07
null
UTF-8
Python
false
false
1,465
py
#!/usr/bin/env python import json SENTENCE_PAIR_DATA = True LABEL_MAP = { "entailment": 0, "neutral": 1, "contradiction": 2 } def convert_binary_bracketing(parse): transitions = [] tokens = [] for word in parse.split(' '): if word[0] != "(": if word == ")": transitions.append(1) else: # Downcase all words to match GloVe. tokens.append(word.lower()) transitions.append(0) return tokens, transitions def load_data(path): print "Loading", path examples = [] with open(path, 'r') as f: for line in f: loaded_example = json.loads(line) if loaded_example["gold_label"] not in LABEL_MAP: continue example = {} example["label"] = loaded_example["gold_label"] example["premise"] = loaded_example["sentence1"] example["hypothesis"] = loaded_example["sentence2"] (example["premise_tokens"], example["premise_transitions"]) = convert_binary_bracketing(loaded_example["sentence1_binary_parse"]) (example["hypothesis_tokens"], example["hypothesis_transitions"]) = convert_binary_bracketing(loaded_example["sentence2_binary_parse"]) examples.append(example) return examples, None if __name__ == "__main__": # Demo: examples = load_data('snli-data/snli_1.0_dev.jsonl') print examples[0]
[ "sbowman@stanford.edu" ]
sbowman@stanford.edu
f3d8f00ed640a83a5927278ffa43a11380162c80
52d15a041042284259a9b0793ec3d182a5024b67
/_site/scripts/collection_data.py
861eee6c0f9a1097d96c51d94fa29e82121fbca0
[]
no_license
MLBazaar/mlbazaar.github.io
745703b5e262a1d2b804caee870727554dbf8d74
3f9971508fe140a841f5ae3687a237a3a1285ca1
refs/heads/master
2022-11-06T14:47:53.785857
2021-10-28T14:40:04
2021-10-28T14:40:04
158,607,143
3
1
null
2022-10-06T03:21:25
2018-11-21T21:17:19
HTML
UTF-8
Python
false
false
4,004
py
import os import sys import glob import errno import operator import json import codecs from urllib.parse import urlparse PATH_TO_DATA = "_data" PATH_TO_LIBRARY = 'data-library/' def split_last(s, c): words = s.split(c) return words[len(words) - 1] def extract_domain_from_url(url): parsed_uri = urlparse(url) domain = '{uri.netloc}'.format(uri=parsed_uri) domain = domain.replace("www.", "") #result = '{uri.scheme}://{uri.netloc}/'.format(uri=parsed_uri) return domain # GENERATE TEMPLATE FILE PATH_TO_DATASET = "dataset" URL_DATASET = "/dataset" def write_template_file(file_path, layout, permalink, title, options={}): if not os.path.exists(os.path.dirname(file_path)): os.makedirs(os.path.dirname(file_path)) f = codecs.open(file_path, "w+", "utf-8") f.write("---\n") f.write("layout: '{0}'\n".format(layout)) f.write("permalink: '{0}'\n".format(permalink)) f.write("title: '{0}'\n".format(title)) for keyField in options: f.write(str(keyField) + ": '" + options[keyField] + "'\n") f.write("---\n") f.close() DATASET = {} for subdir, dirs, files in os.walk(PATH_TO_LIBRARY): try: item = {} for filename in files: file = subdir + '/' + filename if os.path.isfile(file): with open(file) as f: # No need to specify 'r': this is the default. # datasetDoc if filename == 'datasetDoc.json': item["datasetDoc"] = json.load(f) # pipeline if filename == 'best_pipeline.json': item["pipeline"] = json.load(f) # problemDoc if filename == 'problemDoc.json': item["problemDoc"] = json.load(f) if bool(item): # set path to detail page name = split_last(subdir, '/') item["dataset_path"] = name.replace("_", "-") DATASET[name] = item except IOError as exc: if exc.errno != errno.EISDIR: raise "Error when load data" # Save to _data directory file_path = PATH_TO_DATA + "/" + "datasets.json" with open(file_path, "w+") as f: json.dump(DATASET, f) print("LOG: Saved datasets to", file_path) # Extract Domain from URL LIST_DOMAIN = [] for dataset_name in DATASET: data = DATASET[dataset_name] sourceURI = data["datasetDoc"]["about"]["sourceURI"] if sourceURI: domain = extract_domain_from_url(sourceURI) if domain not in LIST_DOMAIN: LIST_DOMAIN.append(domain) # Save to _data directory file_path = PATH_TO_DATA + "/" + "domains.json" with open(file_path, "w+") as f: json.dump(LIST_DOMAIN, f) print("LOG: Saved domains to", file_path) # Task Type LIST_TASKTYPE = [] for dataset_name in DATASET: data = DATASET[dataset_name] task_type = data["pipeline"]["loader"]["task_type"] if task_type and task_type not in LIST_TASKTYPE: LIST_TASKTYPE.append(task_type) # Save to _data directory file_path = PATH_TO_DATA + "/" + "tasktype.json" with open(file_path, "w+") as f: json.dump(LIST_TASKTYPE, f) print("LOG: Saved task_type to", file_path) # Data Type LIST_DATATYPE = [] for dataset_name in DATASET: data = DATASET[dataset_name] data_type = data["pipeline"]["loader"]["data_modality"] if data_type and data_type not in LIST_DATATYPE: LIST_DATATYPE.append(data_type) # Save to _data directory file_path = PATH_TO_DATA + "/" + "datatype.json" with open(file_path, "w+") as f: json.dump(LIST_DATATYPE, f) print("LOG: Saved data_type to", file_path) # Generate template for detail dataset for datasetID in DATASET: data = DATASET[datasetID] dataset_path = data["dataset_path"] datasetName = data['problemDoc']['_id'] if dataset_path: detail_path = PATH_TO_DATASET + "/" + dataset_path + ".md" layout = "detail" permalink = PATH_TO_DATASET + "/" + dataset_path title = datasetName.capitalize() options = {"datasetID": datasetID} write_template_file(detail_path, layout, permalink, title, options)
[ "tai.pham@hdwebsoft.co" ]
tai.pham@hdwebsoft.co
50f13f2b8949f3724c12ab6100cbbe40fa915d45
52e84a20e898345a596311f0c78a8c02adc7262e
/venv/bin/pip
2eed03cac0b4adf31317a6b4ae54027c92bc25fa
[]
no_license
sumit-saurabh/ltv
70b8fc90d64695754a8bf5d4f2ef166219618607
d5082d149fb8a3d2e024de0734a0adf8a723074b
refs/heads/master
2022-12-30T13:22:54.813954
2020-09-25T08:41:06
2020-09-25T08:41:06
298,218,428
0
1
null
2020-09-24T12:18:04
2020-09-24T08:37:20
Python
UTF-8
Python
false
false
262
#!/data/workspace/sumit.saurabh/hackathon/galaxy/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "sumit.saurabh@bounceshare.com" ]
sumit.saurabh@bounceshare.com
aebef1fff76ee0c51fa95840257749b0f61b431f
f1c5c43e905ebc04899da51d08ff754acc19a586
/preprocessing.py
3f91e3662c3badbcc82468b706a196d76f73320d
[]
no_license
SarahFLestari/Merchant-and-Bank-Mining
5524339a82cf5a06791e00b411a8e22c229052db
090920c971a9b8cd2dbce35942dde3a48f7ae11e
refs/heads/main
2022-12-20T11:47:32.810835
2020-10-07T01:57:55
2020-10-07T01:57:55
300,483,569
0
0
null
null
null
null
UTF-8
Python
false
false
1,264
py
import os from xml.dom import minidom import xlsxwriter location = os.getcwd() counter = 0 trainfiles = [] otherfiles = [] print(location) workbook = xlsxwriter.Workbook('datatrainpre.xlsx') worksheet = workbook.add_worksheet() worksheet.set_column('A:A',20) for file in os.listdir(location): try: if file.endswith(".xml"): #print "txt file found:\t", file trainfiles.append(str(file)) counter = counter+1 else: otherfiles.append(file) counter = counter+1 except Exception as e: raise e print "No files found here!" count = 0 worksheet.write(0,0,'Berita') worksheet.write(0,1,'File') trainfiles.sort() for i in trainfiles: print(i) for xmlfile in trainfiles: xmldoc = minidom.parse(xmlfile) p = xmldoc.getElementsByTagName("p")[1] par = xmldoc.getElementsByTagName("p") paragraph = " " for i in range(0,len(par)): p = xmldoc.getElementsByTagName("p")[i] paragraph += p.childNodes[0].data worksheet.write(count+1,0,paragraph) worksheet.write(count+1,1,str(trainfiles[count]).replace('.xml','')) #print(p.childNodes[0].data) #print("Isi tag : ",p.childNodes[0].data) count +=1 print "Total files found:\t", counter workbook.close()
[ "sarahfauziah17@gmail.com" ]
sarahfauziah17@gmail.com
9e51efdc26412f7a5bd036226469eeed706a488c
83de24182a7af33c43ee340b57755e73275149ae
/aliyun-python-sdk-sas/aliyunsdksas/request/v20181203/ListVulAutoRepairConfigRequest.py
8914a8dab27048a9245aee71264c164922cb1833
[ "Apache-2.0" ]
permissive
aliyun/aliyun-openapi-python-sdk
4436ca6c57190ceadbc80f0b1c35b1ab13c00c7f
83fd547946fd6772cf26f338d9653f4316c81d3c
refs/heads/master
2023-08-04T12:32:57.028821
2023-08-04T06:00:29
2023-08-04T06:00:29
39,558,861
1,080
721
NOASSERTION
2023-09-14T08:51:06
2015-07-23T09:39:45
Python
UTF-8
Python
false
false
2,002
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdksas.endpoint import endpoint_data class ListVulAutoRepairConfigRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Sas', '2018-12-03', 'ListVulAutoRepairConfig') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_CurrentPage(self): # Integer return self.get_query_params().get('CurrentPage') def set_CurrentPage(self, CurrentPage): # Integer self.add_query_param('CurrentPage', CurrentPage) def get_Type(self): # String return self.get_query_params().get('Type') def set_Type(self, Type): # String self.add_query_param('Type', Type) def get_AliasName(self): # String return self.get_query_params().get('AliasName') def set_AliasName(self, AliasName): # String self.add_query_param('AliasName', AliasName) def get_PageSize(self): # Integer return self.get_query_params().get('PageSize') def set_PageSize(self, PageSize): # Integer self.add_query_param('PageSize', PageSize)
[ "sdk-team@alibabacloud.com" ]
sdk-team@alibabacloud.com
b3bd51e7239261a5e940aee2d21bdc3eafc90bf0
72a146dad10c3330548f175643822e6cc2e2ccba
/ui/events/events.gyp
c2692a69bcfc92adc1fbb5e3e9b9f532c8d8d4d9
[ "BSD-3-Clause" ]
permissive
daotianya/browser-android-tabs
bb6772394c2138e2f3859a83ec6e0860d01a6161
44e83a97eb1c7775944a04144e161d99cbb7de5b
refs/heads/master
2020-06-10T18:07:58.392087
2016-12-07T15:37:13
2016-12-07T15:37:13
75,914,703
1
0
null
2016-12-08T07:37:51
2016-12-08T07:37:51
null
UTF-8
Python
false
false
13,460
gyp
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, }, 'targets': [ { # GN version: //ui/events:dom_keycode_converter 'target_name': 'dom_keycode_converter', 'type': 'static_library', 'dependencies': [ '<(DEPTH)/base/base.gyp:base', ], 'sources': [ # Note: sources list duplicated in GN build. 'keycodes/dom/dom_code.h', 'keycodes/dom/dom_key.h', 'keycodes/dom/dom_key_data.inc', 'keycodes/dom/keycode_converter.cc', 'keycodes/dom/keycode_converter.h', 'keycodes/dom/keycode_converter_data.inc', ], }, { # GN version: //ui/events:events_base 'target_name': 'events_base', 'type': '<(component)', 'dependencies': [ '<(DEPTH)/base/base.gyp:base', '<(DEPTH)/base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '../gfx/gfx.gyp:gfx_geometry', 'dom_keycode_converter', ], 'defines': [ 'EVENTS_BASE_IMPLEMENTATION', ], 'sources': [ # Note: sources list duplicated in GN build. 'android/scroller.cc', 'android/scroller.h', 'base_event_utils.cc', 'base_event_utils.h', 'event_constants.h', 'event_switches.cc', 'event_switches.h', 'events_base_export.h', 'gesture_curve.h', 'gesture_event_details.cc', 'gesture_event_details.h', 'gestures/fling_curve.cc', 'gestures/fling_curve.h', 'keycodes/dom_us_layout_data.h', 'keycodes/keyboard_code_conversion.cc', 'keycodes/keyboard_code_conversion.h', 'keycodes/keyboard_code_conversion_android.cc', 'keycodes/keyboard_code_conversion_android.h', 'keycodes/keyboard_code_conversion_mac.h', 'keycodes/keyboard_code_conversion_mac.mm', 'keycodes/keyboard_code_conversion_win.cc', 'keycodes/keyboard_code_conversion_win.h', 'keycodes/keyboard_codes.h', 'latency_info.cc', 'latency_info.h', ], 'export_dependent_settings': [ '../../ui/gfx/gfx.gyp:gfx_geometry', ], 'conditions': [ ['use_x11==1', { 'dependencies': [ 'keycodes/events_keycodes.gyp:keycodes_x11', ], }], ], }, { # GN version: //ui/events 'target_name': 'events', 'type': '<(component)', 'dependencies': [ '<(DEPTH)/base/base.gyp:base', '<(DEPTH)/base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '<(DEPTH)/skia/skia.gyp:skia', '../display/display.gyp:display', '../gfx/gfx.gyp:gfx', '../gfx/gfx.gyp:gfx_geometry', 'dom_keycode_converter', 'events_base', 'gesture_detection', ], 'defines': [ 'EVENTS_IMPLEMENTATION', ], 'sources': [ # Note: sources list duplicated in GN build. 'cocoa/cocoa_event_utils.h', 'cocoa/cocoa_event_utils.mm', 'cocoa/events_mac.mm', 'event.cc', 'event.h', 'event_dispatcher.cc', 'event_dispatcher.h', 'event_handler.cc', 'event_handler.h', 'event_processor.cc', 'event_processor.h', 'event_rewriter.h', 'event_source.cc', 'event_source.h', 'event_target.cc', 'event_target.h', 'event_target_iterator.h', 'event_targeter.h', 'event_utils.cc', 'event_utils.h', 'events_export.h', 'events_stub.cc', 'gestures/gesture_provider_aura.cc', 'gestures/gesture_provider_aura.h', 'gestures/gesture_recognizer.h', 'gestures/gesture_recognizer_impl.cc', 'gestures/gesture_recognizer_impl.h', 'gestures/gesture_recognizer_impl_mac.cc', 'gestures/gesture_types.h', 'gestures/motion_event_aura.cc', 'gestures/motion_event_aura.h', 'keycodes/platform_key_map_win.cc', 'keycodes/platform_key_map_win.h', 'null_event_targeter.cc', 'null_event_targeter.h', 'scoped_target_handler.cc', 'scoped_target_handler.h', 'ozone/events_ozone.cc', 'win/events_win.cc', 'win/system_event_state_lookup.cc', 'win/system_event_state_lookup.h', 'x/events_x.cc', ], 'conditions': [ ['use_x11==1', { 'dependencies': [ '../../build/linux/system.gyp:x11', '../gfx/x/gfx_x11.gyp:gfx_x11', 'devices/events_devices.gyp:events_devices', 'devices/x11/events_devices_x11.gyp:events_devices_x11', 'keycodes/events_keycodes.gyp:keycodes_x11', 'x/events_x.gyp:events_x', ], }], ['use_aura==0', { 'sources!': [ 'gestures/gesture_provider_aura.cc', 'gestures/gesture_provider_aura.h', 'gestures/gesture_recognizer.h', 'gestures/gesture_recognizer_impl.cc', 'gestures/gesture_recognizer_impl.h', 'gestures/gesture_types.h', 'gestures/motion_event_aura.cc', 'gestures/motion_event_aura.h', ], }], ['use_ozone==1 or (OS=="android" and use_aura==1)', { 'sources': [ 'events_default.cc', ], }], # We explicitly enumerate the platforms we _do_ provide native cracking # for here. ['OS=="win" or OS=="mac" or use_x11==1 or use_ozone==1 or (OS=="android" and use_aura==1)', { 'sources!': [ 'events_stub.cc', ], }], ['use_ozone==1', { 'dependencies': [ 'ozone/events_ozone.gyp:events_ozone_layout', ], }], ['OS=="android"', { 'sources': [ 'android/motion_event_android.cc', 'android/motion_event_android.h', 'android/key_event_utils.cc', 'android/key_event_utils.h', ], 'dependencies': [ 'motionevent_jni_headers', 'keyevent_jni_headers', ], }], ], }, { # GN version: //ui/events/gestures/blink 'target_name': 'gestures_blink', 'type': 'static_library', 'dependencies': [ '../../base/base.gyp:base', '../../third_party/WebKit/public/blink_headers.gyp:blink_headers', '../gfx/gfx.gyp:gfx_geometry', 'events', 'gesture_detection', ], 'sources': [ # Note: sources list duplicated in GN build. 'gestures/blink/web_gesture_curve_impl.cc', 'gestures/blink/web_gesture_curve_impl.h', ], }, { # GN version: //ui/events:gesture_detection 'target_name': 'gesture_detection', 'type': '<(component)', 'dependencies': [ '<(DEPTH)/base/base.gyp:base', '<(DEPTH)/base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '../display/display.gyp:display', '../gfx/gfx.gyp:gfx', '../gfx/gfx.gyp:gfx_geometry', 'events_base', ], 'defines': [ 'GESTURE_DETECTION_IMPLEMENTATION', ], 'sources': [ # Note: sources list duplicated in GN build. 'gesture_detection/bitset_32.h', 'gesture_detection/filtered_gesture_provider.cc', 'gesture_detection/filtered_gesture_provider.h', 'gesture_detection/gesture_configuration.cc', 'gesture_detection/gesture_configuration.h', 'gesture_detection/gesture_configuration_android.cc', 'gesture_detection/gesture_configuration_aura.cc', 'gesture_detection/gesture_detection_export.h', 'gesture_detection/gesture_detector.cc', 'gesture_detection/gesture_detector.h', 'gesture_detection/gesture_event_data.cc', 'gesture_detection/gesture_event_data.h', 'gesture_detection/gesture_event_data_packet.cc', 'gesture_detection/gesture_event_data_packet.h', 'gesture_detection/gesture_listeners.cc', 'gesture_detection/gesture_listeners.h', 'gesture_detection/gesture_provider.cc', 'gesture_detection/gesture_provider.h', 'gesture_detection/gesture_provider_config_helper.cc', 'gesture_detection/gesture_provider_config_helper.h', 'gesture_detection/gesture_touch_uma_histogram.cc', 'gesture_detection/gesture_touch_uma_histogram.h', 'gesture_detection/motion_event.cc', 'gesture_detection/motion_event.h', 'gesture_detection/motion_event_buffer.cc', 'gesture_detection/motion_event_buffer.h', 'gesture_detection/motion_event_generic.cc', 'gesture_detection/motion_event_generic.h', 'gesture_detection/scale_gesture_detector.cc', 'gesture_detection/scale_gesture_detector.h', 'gesture_detection/scale_gesture_listeners.cc', 'gesture_detection/scale_gesture_listeners.h', 'gesture_detection/snap_scroll_controller.cc', 'gesture_detection/snap_scroll_controller.h', 'gesture_detection/touch_disposition_gesture_filter.cc', 'gesture_detection/touch_disposition_gesture_filter.h', 'gesture_detection/velocity_tracker.cc', 'gesture_detection/velocity_tracker.h', 'gesture_detection/velocity_tracker_state.cc', 'gesture_detection/velocity_tracker_state.h', ], 'conditions': [ ['use_aura!=1 and OS!="android"', { 'sources': [ 'gesture_detection/gesture_configuration_default.cc', ], }], ], }, { # GN version: //ui/events/ipc:events_ipc 'target_name': 'events_ipc', 'type': '<(component)', 'dependencies': [ '<(DEPTH)/base/base.gyp:base', '<(DEPTH)/ipc/ipc.gyp:ipc', '../gfx/gfx.gyp:gfx_geometry', '../gfx/ipc/geometry/gfx_ipc_geometry.gyp:gfx_ipc_geometry', 'events_base', ], 'defines': [ 'EVENTS_IPC_IMPLEMENTATION', ], 'sources': [ 'ipc/latency_info_param_traits.cc', 'ipc/latency_info_param_traits.h', 'ipc/latency_info_param_traits_macros.h', ], }, { # GN version: //ui/events:test_support 'target_name': 'events_test_support', 'type': 'static_library', 'dependencies': [ '<(DEPTH)/base/base.gyp:base', '<(DEPTH)/skia/skia.gyp:skia', '../gfx/gfx.gyp:gfx', '../gfx/gfx.gyp:gfx_geometry', 'events', 'events_base', 'gesture_detection', 'platform/events_platform.gyp:events_platform', ], 'sources': [ # Note: sources list duplicated in GN build. 'test/cocoa_test_event_utils.h', 'test/cocoa_test_event_utils.mm', 'test/device_data_manager_test_api.h', 'test/event_generator.cc', 'test/event_generator.h', 'test/events_test_utils.cc', 'test/events_test_utils.h', 'test/events_test_utils_x11.cc', 'test/events_test_utils_x11.h', 'test/motion_event_test_utils.cc', 'test/motion_event_test_utils.h', 'test/platform_event_source_test_api.cc', 'test/platform_event_source_test_api.h', 'test/platform_event_waiter.cc', 'test/platform_event_waiter.h', 'test/test_event_handler.cc', 'test/test_event_handler.h', 'test/test_event_processor.cc', 'test/test_event_processor.h', 'test/test_event_target.cc', 'test/test_event_target.h', 'test/test_event_targeter.cc', 'test/test_event_targeter.h', ], 'conditions': [ ['OS=="ios"', { # The cocoa files don't apply to iOS. 'sources/': [['exclude', 'cocoa']], }], ['use_x11==1', { 'dependencies': [ 'devices/x11/events_devices_x11.gyp:events_devices_x11', 'keycodes/events_keycodes.gyp:keycodes_x11', ], }], ['use_x11==1', { 'dependencies': [ 'x/events_x.gyp:events_x', ], }], ['use_x11==1 or use_ozone==1', { 'sources' : [ 'test/device_data_manager_test_api_impl.cc', ], 'dependencies': [ 'devices/events_devices.gyp:events_devices', ], }, { # else use_x11=1 or use_ozone=1 'sources' : [ 'test/device_data_manager_test_api_stub.cc', ] }], ], }, ], 'conditions': [ ['OS == "android"', { 'targets': [ { 'target_name': 'motionevent_jni_headers', 'type': 'none', 'variables': { 'jni_gen_package': 'ui', 'input_java_class': 'android/view/MotionEvent.class', }, 'includes': [ '../../build/jar_file_jni_generator.gypi' ], }, { 'target_name': 'keyevent_jni_headers', 'type': 'none', 'variables': { 'jni_gen_package': 'ui', 'input_java_class': 'android/view/KeyEvent.class', }, 'includes': [ '../../build/jar_file_jni_generator.gypi' ], }, ], }], ], }
[ "serg.zhukovsky@gmail.com" ]
serg.zhukovsky@gmail.com
8b2e95fe8a7669b13070f9c8b42e9a1eb2454dbd
0e24b45eedb8166e5da1f07ebd935cc77e718523
/project_views/project_views/settings.py
f773c2c0d7f69ec6c98f574c60f0f900fb0f9aab
[]
no_license
woka20/DJANGO_MVC
ce17724f248ad86364843a21203ef0f2f0775f34
cfbbf8491e97caed593561979db3756aa478022c
refs/heads/master
2020-09-28T12:26:12.741319
2019-12-10T16:51:26
2019-12-10T16:51:26
226,776,331
0
0
null
null
null
null
UTF-8
Python
false
false
3,141
py
""" Django settings for project_views project. Generated by 'django-admin startproject' using Django 3.0. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 't8+2br$ov*sqltfm4n-$n*=4&#l5yhk#r6^sv!lbjq-3!ndjc7' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'Alterra.apps.AlterraConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'project_views.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'project_views.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
[ "woka@alterra.id" ]
woka@alterra.id
524c77805ed66ca0c79e0d50cfffef081ef2319b
26b5053c5581b15571ffcedf9eae58da831f2e12
/ledfx/api/presets.py
878dc5a466933f0a938d8aa87f20e36ac3bb4b85
[ "MIT" ]
permissive
camcs1/LedFx
a9453ab4309865cea09c5b28f6e92f7ce1eed452
1dff9e64a40d219cb6a87c2212e2e40ca8513735
refs/heads/master
2021-07-15T15:15:57.320084
2021-03-05T22:41:18
2021-03-05T22:41:18
238,537,668
0
0
MIT
2020-02-05T20:04:14
2020-02-05T20:04:09
null
UTF-8
Python
false
false
5,591
py
from ledfx.config import save_config from ledfx.api import RestEndpoint from ledfx.utils import generate_id from aiohttp import web import logging import json _LOGGER = logging.getLogger(__name__) class PresetsEndpoint(RestEndpoint): """REST end-point for querying and managing presets""" ENDPOINT_PATH = "/api/presets" async def get(self) -> web.Response: """Get all presets""" response = { 'status' : 'success' , 'presets' : self._ledfx.config['presets'] } return web.Response(text=json.dumps(response), status=200) async def delete(self, request) -> web.Response: """Delete a preset""" data = await request.json() preset_id = data.get('id') if preset_id is None: response = { 'status' : 'failed', 'reason': 'Required attribute "preset_id" was not provided' } return web.Response(text=json.dumps(response), status=500) if not preset_id in self._ledfx.config['presets'].keys(): response = { 'status' : 'failed', 'reason': 'Preset {} does not exist'.format(preset_id) } return web.Response(text=json.dumps(response), status=500) # Delete the preset from configuration del self._ledfx.config['presets'][preset_id] # Save the config save_config( config = self._ledfx.config, config_dir = self._ledfx.config_dir) response = { 'status' : 'success' } return web.Response(text=json.dumps(response), status=200) async def put(self, request) -> web.Response: """Activate a preset""" data = await request.json() action = data.get('action') if action is None: response = { 'status' : 'failed', 'reason': 'Required attribute "action" was not provided' } return web.Response(text=json.dumps(response), status=500) if action not in ['activate', 'rename']: response = { 'status' : 'failed', 'reason': 'Invalid action "{}"'.format(action) } return web.Response(text=json.dumps(response), status=500) preset_id = data.get('id') if preset_id is None: response = { 'status' : 'failed', 'reason': 'Required attribute "preset_id" was not provided' } return web.Response(text=json.dumps(response), status=500) if not preset_id in self._ledfx.config['presets'].keys(): response = { 'status' : 'failed', 'reason': 'Preset "{}" does not exist'.format(preset_id) } return web.Response(text=json.dumps(response), status=500) preset = self._ledfx.config['presets'][preset_id] if action == "activate": for device in self._ledfx.devices.values(): # Check device is in preset, make no changes if it isn't if not device.id in preset['devices'].keys(): _LOGGER.info(('Device with id {} has no data in preset {}').format(device.id, preset_id)) continue # Set effect of device to that saved in the preset, # clear active effect of device if no effect in preset if preset['devices'][device.id]: # Create the effect and add it to the device effect = self._ledfx.effects.create( ledfx = self._ledfx, type = preset['devices'][device.id]['type'], config = preset['devices'][device.id]['config']) device.set_effect(effect) else: device.clear_effect() elif action == "rename": name = data.get('name') if name is None: response = { 'status' : 'failed', 'reason': 'Required attribute "name" was not provided' } return web.Response(text=json.dumps(response), status=500) # Update and save config self._ledfx.config['presets'][preset_id]['name'] = name save_config( config = self._ledfx.config, config_dir = self._ledfx.config_dir) response = { 'status' : 'success' } return web.Response(text=json.dumps(response), status=200) async def post(self, request) -> web.Response: """Save current effects of devices as a preset""" data = await request.json() preset_name = data.get('name') if preset_name is None: response = { 'status' : 'failed', 'reason': 'Required attribute "preset_name" was not provided' } return web.Response(text=json.dumps(response), status=500) preset_id = generate_id(preset_name) preset_config = {} preset_config['name'] = preset_name preset_config['devices'] = {} for device in self._ledfx.devices.values(): effect = {} if device.active_effect: effect['type'] = device.active_effect.type effect['config'] = device.active_effect.config #effect['name'] = device.active_effect.name preset_config['devices'][device.id] = effect # Update the preset if it already exists, else create it self._ledfx.config['presets'][preset_id] = preset_config save_config( config = self._ledfx.config, config_dir = self._ledfx.config_dir) response = { 'status' : 'success', 'preset': {'id': preset_id, 'config': preset_config }} return web.Response(text=json.dumps(response), status=200)
[ "m.bowley98@gmail.com" ]
m.bowley98@gmail.com
8750b5b4618d786178b2e0ac22e0953500558b58
f5a7e05dc40045076d7b4448c5d0c584048d7ab0
/django/django_react/accounts/urls.py
a1d1bc082a2c9a45309d946cc92f49f7665aae67
[]
no_license
cse442-at-ub/cse442-semester-project-tapp
b21cf6a3c85f62a1c277909258919639e82864da
e8daff694a468b5d33c5eb9fdec752cbd50d7911
refs/heads/master
2022-06-18T13:30:08.386552
2020-05-04T20:34:00
2020-05-04T20:34:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
454
py
from django.urls import path, include from .api import RegAPI, LogAPI, UserAPI, InstructAPI from knox import views as knox_views urlpatterns = [ path('api/auth', include('knox.urls')), path('api/auth/register', RegAPI.as_view()), path('api/auth/login', LogAPI.as_view()), path('api/auth/user', UserAPI.as_view()), path('api/instructors', InstructAPI.as_view()), path('api/auth/logout', knox_views.LogoutView.as_view(), name='knox_logout') ]
[ "anrao3@buffalo.edu" ]
anrao3@buffalo.edu
3dd58093282863966917bca26c8d879f7fd478a3
0ec0fa7a6dc0659cc26113e3ac734434b2b771f2
/4.refactored/log/2016-10-03@14:03/minibatch.py
f824a9d890c1a51f5661688dfa4b6fb11a6c7377
[]
no_license
goldleaf3i/3dlayout
b8c1ab3a21da9129829e70ae8a95eddccbf77e2f
1afd3a94a6cb972d5d92fe373960bd84f258ccfe
refs/heads/master
2021-01-23T07:37:54.396115
2017-03-28T10:41:06
2017-03-28T10:41:06
86,431,368
0
0
null
null
null
null
UTF-8
Python
false
false
26,766
py
from __future__ import division import datetime as dt import numpy as np import util.layout as lay import util.GrafoTopologico as gtop import util.transitional_kernels as tk import util.MappaSemantica as sema from object import Segmento as sg from util import pickle_util as pk from util import accuracy as ac from util import layout as lay from util import disegna as dsg from object import Superficie as fc import parameters as par import pickle import os import glob import shutil import time import cv2 import warnings warnings.warn("Settare i parametri del lateralLine e cvThresh") def start_main(parametri_obj, path_obj): #----------------------------1.0_LAYOUT DELLE STANZE---------------------------------- #------inizio layout #leggo l'immagine originale in scala di grigio e la sistemo con il thresholding img_rgb = cv2.imread(path_obj.metricMap) img_ini = img_rgb.copy() #copio l'immagine # 127 per alcuni dati, 255 per altri ret,thresh1 = cv2.threshold(img_rgb,parametri_obj.cv2thresh,255,cv2.THRESH_BINARY)#prova #------------------1.1_CANNY E HOUGH PER TROVARE MURI--------------------------------- walls , canny = lay.start_canny_ed_hough(thresh1,parametri_obj) #walls , canny = lay.start_canny_ed_hough(img_rgb,parametri_obj) if par.DISEGNA: #disegna mappa iniziale, canny ed hough dsg.disegna_map(img_rgb,filepath = path_obj.filepath ) dsg.disegna_canny(canny,filepath = path_obj.filepath) dsg.disegna_hough(img_rgb,walls,filepath = path_obj.filepath) lines = lay.flip_lines(walls, img_rgb.shape[0]-1) walls = lay.crea_muri(lines) if par.DISEGNA: #disegno linee dsg.disegna_segmenti(walls)#solo un disegno poi lo elimino #------------1.2_SETTO XMIN YMIN XMAX YMAX DI walls----------------------------------- #tra tutti i punti dei muri trova l'ascissa e l'ordinata minima e massima. estremi = sg.trova_estremi(walls) xmin = estremi[0] xmax = estremi[1] ymin = estremi[2] ymax = estremi[3] offset = 20 xmin -= offset xmax += offset ymin -= offset ymax += offset #------------------------------------------------------------------------------------- #---------------1.3_CONTORNO ESTERNO-------------------------------------------------- (contours, vertici) = lay.contorno_esterno(img_rgb, parametri_obj, path_obj) if par.DISEGNA: dsg.disegna_contorno(vertici,xmin,ymin,xmax,ymax,filepath = path_obj.filepath) #------------------------------------------------------------------------------------- #---------------1.4_MEAN SHIFT PER TROVARE CLUSTER ANGOLARI--------------------------- (indici, walls, cluster_angolari) = lay.cluster_ang(parametri_obj.h, parametri_obj.minOffset, walls, diagonali= parametri_obj.diagonali) if par.DISEGNA: #dsg.disegna_cluster_angolari(walls, cluster_angolari, filepath = path_obj.filepath,savename = '5b_cluster_angolari') dsg.disegna_cluster_angolari_corretto(walls, cluster_angolari, filepath = path_obj.filepath,savename = '5b_cluster_angolari') #------------------------------------------------------------------------------------- #---------------1.5_CLUSTER SPAZIALI-------------------------------------------------- #questo metodo e' sbagliato, fai quella cosa con il hierarchical clustering per classificarli meglio.e trovare in sostanza un muro #cluster_spaziali = lay.cluster_spaz(parametri_obj.minLateralSeparation, walls) #inserisci qui il nuovo Cluster_spaz nuovo_clustering = 2 #in walls ci sono tutti i segmenti if nuovo_clustering == 1: cluster_spaziali = lay.cluster_spaz(parametri_obj.minLateralSeparation, walls)#metodo di matteo elif nuovo_clustering ==2: cluster_mura = lay.get_cluster_mura(walls, cluster_angolari, parametri_obj)#metodo di valerio cluster_mura_senza_outliers = [] for c in cluster_mura: if c!=-1: cluster_mura_senza_outliers.append(c) #ottengo gli outliers outliers = [] for s in walls: if s.cluster_muro == -1: outliers.append(s) #ora che ho un insieme di cluster relativi ai muri voglio andare ad unire quelli molto vicini #ottengo i rappresentanti dei cluster (tutti tranne gli outliers) #segmenti_rappresentanti = lay.get_rappresentanti(walls, cluster_mura) segmenti_rappresentanti = lay.get_rappresentanti(walls, cluster_mura_senza_outliers) segmenti_rappresentanti = segmenti_rappresentanti + outliers #i segmenti rappresentati di un cluster li unisco agli altri e faccio lo stesso con gli outliers if par.DISEGNA: dsg.disegna_segmenti(segmenti_rappresentanti, savename = "5c_segmenti_rappresentanti") #classifico i rappresentanti #qui va settata la soglia con cui voglio separare i cluster segmenti_rappresentanti = sg.spatialClustering(parametri_obj.sogliaLateraleClusterMura, segmenti_rappresentanti) #in questo momento ho un insieme di segmenti rappresentanti che hanno il cluster_spaziale settato correttamente, ora setto anche gli altri che hanno lo stesso cluster muro cluster_spaziali = lay.new_cluster_spaziale(walls, segmenti_rappresentanti) ''' #creo lista di cluster spaziali cluster_spaziali = [] for muro in walls: if muro.cluster_spaziale !=None: cluster_spaziali.append(muro.cluster_spaziale) for spaz in list(set(cluster_spaziali)): #raccolgo i cluster muri che hanno stesso cluster spaziale cluster_mura_uguali = [] for segmento in segmenti_rappresentanti: if segmento.cluster_spaziale == spaz: cluster_mura_uguali.append(segmento.cluster_muro) cluster_mura_uguali = list(set(cluster_mura_uguali)) for segmento in walls: if segmento.cluster_muro in cluster_mura_uguali: segmento.set_cluster_spaziale(spaz) dsg.disegna_cluster_mura(cluster_mura, walls,filepath = path_obj.filepath, savename= '5d_cluster_mura') ''' if par.DISEGNA: dsg.disegna_cluster_spaziali(cluster_spaziali, walls,filepath = path_obj.filepath) dsg.disegna_cluster_mura(cluster_mura, walls,filepath = path_obj.filepath, savename= '5d_cluster_mura') #------------------------------------------------------------------------------------- #-------------------1.6_CREO EXTENDED_LINES------------------------------------------- (extended_lines, extended_segments) = lay.extend_line(cluster_spaziali, walls, xmin, xmax, ymin, ymax,filepath = path_obj.filepath) if par.DISEGNA: dsg.disegna_extended_segments(extended_segments, walls,filepath = path_obj.filepath) #------------------------------------------------------------------------------------- #-------------1.7_CREO GLI EDGES TRAMITE INTERSEZIONI TRA EXTENDED_LINES-------------- edges = sg.crea_edges(extended_segments) #------------------------------------------------------------------------------------- #----------------------1.8_SETTO PESI DEGLI EDGES------------------------------------- edges = sg.setPeso(edges, walls) #------------------------------------------------------------------------------------- #----------------1.9_CREO LE CELLE DAGLI EDGES---------------------------------------- celle = fc.crea_celle(edges) #------------------------------------------------------------------------------------- #----------------CLASSIFICO CELLE----------------------------------------------------- global centroid #verificare funzioni if par.metodo_classificazione_celle ==1: print "1.metodo di classificazione ", par.metodo_classificazione_celle (celle, celle_out, celle_poligoni, indici, celle_parziali, contorno, centroid, punti) = lay.classificazione_superfici(vertici, celle) elif par.metodo_classificazione_celle==2: print "2.metodo di classificazione ", par.metodo_classificazione_celle #sto classificando le celle con il metodo delle percentuali (celle_out, celle, centroid, punti,celle_poligoni, indici, celle_parziali) = lay.classifica_celle_con_percentuale(vertici, celle, img_ini) #------------------------------------------------------------------------------------- #--------------------------POLIGONI CELLE--------------------------------------------- (celle_poligoni, out_poligoni, parz_poligoni, centroid) = lay.crea_poligoni_da_celle(celle, celle_out, celle_parziali) #ora vorrei togliere le celle che non hanno senso, come ad esempio corridoi strettissimi, il problema e' che lo vorrei integrare con la stanza piu' vicina ma per ora le elimino soltanto #RICORDA: stai pensando solo a celle_poligoni #TODO: questo metodo non funziona benissimo(sbagli ad eliminare le celle) #celle_poligoni, celle = lay.elimina_celle_insensate(celle_poligoni,celle, parametri_obj)#elimino tutte le celle che hanno una forma strana e che non ha senso siano stanze #------------------------------------------------------------------------------------- #------------------CREO LE MATRICI L, D, D^-1, ED M = D^-1 * L------------------------ (matrice_l, matrice_d, matrice_d_inv, X) = lay.crea_matrici(celle) #------------------------------------------------------------------------------------- #----------------DBSCAN PER TROVARE CELLE NELLA STESSA STANZA------------------------- clustersCelle = lay.DB_scan(parametri_obj.eps, parametri_obj.minPts, X, celle_poligoni) #questo va disegnato per forza perche' restituisce la lista dei colori if par.DISEGNA: colori, fig, ax = dsg.disegna_dbscan(clustersCelle, celle, celle_poligoni, xmin, ymin, xmax, ymax, edges, contours,filepath = path_obj.filepath) else: colori = dsg.get_colors(clustersCelle) #------------------------------------------------------------------------------------- #------------------POLIGONI STANZE(spazio)-------------------------------------------- stanze, spazi = lay.crea_spazio(clustersCelle, celle, celle_poligoni, colori, xmin, ymin, xmax, ymax, filepath = path_obj.filepath) if par.DISEGNA: dsg.disegna_stanze(stanze, colori, xmin, ymin, xmax, ymax,filepath = path_obj.filepath) #------------------------------------------------------------------------------------- #------fine layout-------------------------------------------------------------------- #adesso questo mi conviene calcolarlo alla fine di tutto, dato che ho spostato il calcolo delle stanze reali dopo aver calcolato il grafo topologico ''' #funzione per eliminare stanze che sono dei buchi interni print 'PLEASE CAMBIARE QUESTA COSA :|' #stanze = ac.elimina_stanze(stanze,estremi) #funzione per calcolare accuracy fc e bc print "Inizio a calcolare metriche" results, stanze_gt = ac.calcola_accuracy(path_obj.nome_gt,estremi,stanze, path_obj.metricMap,path_obj.filepath, parametri_obj.flip_dataset) if par.DISEGNA: dsg.disegna_grafici_per_accuracy(stanze, stanze_gt, filepath = path_obj.filepath) print "Fine calcolare metriche" ''' #------------------------------------------------------------------------------------- #------------------------------GRAFO TOPOLOGICO--------------------------------------- #costruisco il grafo (stanze_collegate, doorsVertices, distanceMap, points, b3) = gtop.get_grafo(path_obj.metricMap, stanze, estremi, colori, parametri_obj) (G, pos) = gtop.crea_grafo(stanze, stanze_collegate, estremi, colori) #ottengo tutte quelle stanze che non sono collegate direttamente ad un'altra, con molta probabilita' quelle non sono stanze reali stanze_non_collegate = gtop.get_stanze_non_collegate(stanze, stanze_collegate) #ottengo le stanze reali, senza tutte quelle non collegate stanze_reali, colori_reali = lay.get_stanze_reali(stanze, stanze_non_collegate, colori) if par.DISEGNA: #sto disegnando usando la lista di colori originale, se voglio la lista della stessa lunghezza sostituire colori con colori_reali dsg.disegna_stanze(stanze_reali, colori_reali, xmin, ymin, xmax, ymax,filepath = path_obj.filepath, savename = '8_Stanze_reali') #------------------------------------------------------------------------------------ if par.DISEGNA: dsg.disegna_distance_transform(distanceMap, filepath = path_obj.filepath) dsg.disegna_medial_axis(points, b3, filepath = path_obj.filepath) dsg.plot_nodi_e_stanze(colori,estremi, G, pos, stanze, stanze_collegate, filepath = path_obj.filepath) #------------------------CREO PICKLE-------------------------------------------------- #creo i file pickle per il layout delle stanze print("creo pickle layout") pk.crea_pickle((stanze, clustersCelle, estremi, colori, spazi, stanze_reali, colori_reali), path_obj.filepath_pickle_layout) print("ho finito di creare i pickle del layout") #creo i file pickle per il grafo topologico print("creo pickle grafoTopologico") pk.crea_pickle((stanze, clustersCelle, estremi, colori), path_obj.filepath_pickle_grafoTopologico) print("ho finito di creare i pickle del grafo topologico") #-----------------------CALCOLO ACCURACY---------------------------------------------- #L'accuracy e' da controllare, secondo me non e' corretta. #funzione per eliminare stanze che sono dei buchi interni print 'PLEASE CAMBIARE QUESTA COSA :|' #stanze = ac.elimina_stanze(stanze,estremi) #funzione per calcolare accuracy fc e bc print "Inizio a calcolare metriche" results, stanze_gt = ac.calcola_accuracy(path_obj.nome_gt,estremi,stanze_reali, path_obj.metricMap,path_obj.filepath, parametri_obj.flip_dataset) if par.DISEGNA: dsg.disegna_grafici_per_accuracy(stanze, stanze_gt, filepath = path_obj.filepath) print "Fine calcolare metriche" #in questa fase il grafo non e' ancora stato classificato con le label da dare ai vai nodi. #------------------------------------------------------------------------------------- #creo il file xml dei parametri par.to_XML(parametri_obj, path_obj) #-------------------------prova transitional kernels---------------------------------- #splitto una stanza e restituisto la nuova lista delle stanze #stanze, colori = tk.split_stanza_verticale(2, stanze, colori,estremi) #stanze, colori = tk.split_stanza_orizzontale(3, stanze, colori,estremi) #stanze, colori = tk.slit_all_cell_in_room(spazi, 1, colori, estremi) #questo metodo e' stato fatto usando il concetto di Spazio, dunque fai attenzione perche' non restituisce la cosa giusta. #stanze, colori = tk.split_stanza_reverce(2, len(stanze)-1, stanze, colori, estremi) #questo unisce 2 stanze precedentemente splittate, non faccio per ora nessun controllo sul fatto che queste 2 stanze abbiano almeno un muro in comune, se sono lontani succede un casino #----------------------------------------------------------------------------------- #-------------------------MAPPA SEMANTICA------------------------------------------- ''' #in questa fase classifico i nodi del grafo e conseguentemente anche quelli della mappa. #gli input di questa fase non mi sono ancora molto chiari #per ora non la faccio poi se mi serve la copio/rifaccio, penso proprio sia sbagliata. #stanze ground truth (stanze_gt, nomi_stanze_gt, RC, RCE, FCES, spaces, collegate_gt) = sema.get_stanze_gt(nome_gt, estremi) #corrispondenze tra gt e segmentate (backward e forward) (indici_corrispondenti_bwd, indici_gt_corrispondenti_fwd) = sema.get_corrispondenze(stanze,stanze_gt) #creo xml delle stanze segmentate id_stanze = sema.crea_xml(nomeXML,stanze,doorsVertices,collegate,indici_gt_corrispondenti_fwd,RCE,nomi_stanze_gt) #parso xml creato, va dalla cartella input alla cartella output/xmls, con feature aggiunte xml_output = sema.parsa(dataset_name, nomeXML) #classifico predizioniRCY = sema.classif(dataset_name,xml_output,'RC','Y',30) predizioniRCN = sema.classif(dataset_name,xml_output,'RC','N',30) predizioniFCESY = sema.classif(dataset_name,xml_output,'RCES','Y',30) predizioniFCESN = sema.classif(dataset_name,xml_output,'RCES','N',30) #creo mappa semantica segmentata e ground truth e le plotto assieme sema.creaMappaSemantica(predizioniRCY, G, pos, stanze, id_stanze, estremi, colori, clustersCelle, collegate) sema.creaMappaSemanticaGt(stanze_gt, collegate_gt, RC, estremi, colori) plt.show() sema.creaMappaSemantica(predizioniRCN, G, pos, stanze, id_stanze, estremi, colori, clustersCelle, collegate) sema.creaMappaSemanticaGt(stanze_gt, collegate_gt, RC, estremi, colori) plt.show() sema.creaMappaSemantica(predizioniFCESY, G, pos, stanze, id_stanze, estremi, colori, clustersCelle, collegate) sema.creaMappaSemanticaGt(stanze_gt, collegate_gt, FCES, estremi, colori) plt.show() sema.creaMappaSemantica(predizioniFCESN, G, pos, stanze, id_stanze, estremi, colori, clustersCelle, collegate) sema.creaMappaSemanticaGt(stanze_gt, collegate_gt, FCES, estremi, colori) plt.show() ''' #----------------------------------------------------------------------------------- print "to be continued..." return results #TODO def load_main(filepath_pickle_layout, filepath_pickle_grafoTopologico, parXML): #carico layout pkl_file = open(filepath_pickle_layout, 'rb') data1 = pickle.load(pkl_file) stanze = data1[0] clustersCelle = data1[1] estremi = data1[2] colori = data1[3] spazi = data1[4] stanze_reali = data1[5] colori_reali= data1[6] #print "controllo che non ci sia nulla di vuoto", len(stanze), len(clustersCelle), len(estremi), len(spazi), len(colori) #carico il grafo topologico pkl_file2 = open( filepath_pickle_grafoTopologico, 'rb') data2 = pickle.load(pkl_file2) G = data2[0] pos = data2[1] stanze_collegate = data2[2] doorsVertices = data2[3] #creo dei nuovi oggetti parametri caricando i dati dal file xml new_parameter_obj, new_path_obj = par.load_from_XML(parXML) #continuare il metodo da qui def makeFolders(location,datasetList): for dataset in datasetList: if not os.path.exists(location+dataset): os.mkdir(location+dataset) os.mkdir(location+dataset+"_pickle") def main(): start = time.time() print ''' PROBLEMI NOTI \n 1] LE LINEE OBLIQUE NON VANNO;\n 2] NON CLASSIFICA LE CELLE ESTERNE CHE STANNO DENTRO IL CONVEX HULL, CHE QUINDI VENGONO CONSIDERATE COME STANZE;\n OK 3] ACCURACY NON FUNZIONA;\n 4] QUANDO VENGONO RAGGRUPPATI TRA DI LORO I CLUSTER COLLINEARI, QUESTO VIENE FATTO A CASCATA. QUESTO FINISCE PER ALLINEARE ASSIEME MURA MOLTO DISTANTI;\n 5] IL SISTEMA E' MOLTO SENSIBILE ALLA SCALA. BISOGNEREBBE INGRANDIRE TUTTE LE IMMAGINI FACENDO UN RESCALING E RISOLVERE QUESTO PROBLEMA. \n [4-5] FANNO SI CHE I CORRIDOI PICCOLI VENGANO CONSIDERATI COME UNA RETTA UNICA\n 6] BISOGNEREBBE FILTRARE LE SUPERFICI TROPPO PICCOLE CHE VENGONO CREATE TRA DEI CLUSTER;\n 7] LE IMMAGINI DI STAGE SONO TROPPO PICCOLE; VANNO RIPRESE PIU GRANDI \n >> LANCIARE IN BATCH SU ALIENWARE\n >> RENDERE CODICE PARALLELO\n 8] MANCANO 30 DATASET DA FARE CON STAGE\n 9] OGNI TANTO NON FUNZIONA IL GET CONTORNO PERCHE SBORDA ALL'INTERNO\n >> PROVARE CON SCAN BORDO (SU IMMAGINE COPIA)\n >> PROVARE A SETTARE IL PARAMETRO O A MODIFICARE IL METODO DI SCAN BORDO\n >> CERCARE SOLUZIONI ALTERNATIVE (ES IDENTIFICARE LE CELLE ESTERNE)\n OK 10] VANNO TARATI MEGLIO I PARAMETRI PER IL CLUSTERING\n >> I PARAMETRI DE CLUSTERING SONO OK; OGNI TANTO FA OVERSEGMENTAZIONE.\n >>> EVENTUALMENTE SE SI VEDE CHE OVERSEGMENTAZIONE SONO UN PROBLEMA CAMBIARE CLUSTERING O MERGE CELLE\n 11] LE LINEE DELLA CANNY E HOUGH TALVOLTA SONO TROPPO GROSSE \n >> IN REALTA SEMBRA ESSERE OK; PROVARE CON MAPPE PIU GRANDI E VEDERE SE CAMBIA. 12] BISOGNEREBBE AUMENTARE LA SEGMENTAZIONE CON UN VORONOI OK 13] STAMPA L'IMMAGINE DELLA MAPPA AD UNA SCALA DIVERSA RISPETTO A QUELLA VERA.\n OK 14] RISTAMPARE SCHOOL_GT IN GRANDE CHE PER ORA E' STAMPATO IN PICCOLO (800x600)\n OK VEDI 10] 15] NOI NON CALCOLIAMO LA DIFFUSION DEL METODO DI MURA; PER ALCUNI VERSI E' UN BENE PER ALTRI NO\n OK VEDI 4] 16] NON FACCIAMO IL CLUSTERING DEI SEGMENTI IN MANIERA CORRETTA; DOVREMMO SOLO FARE MEANSHIFT\n 17] LA FASE DEI SEGMENTI VA COMPLETAMENTE RIFATTA; MEANSHIFT NON FUNZIONA COSI'; I SEGMENTI HANNO UN SACCO DI "==" CHE VANNO TOLTI; SPATIAL CLUSTRING VA CAMBIATO;\n 18] OGNI TANTO IL GRAFO TOPOLOGICO CONNETTE STANZE CHE SONO ADIACENTI MA NON CONNESSE. VA RIVISTA LA PARTE DI MEDIALAXIS;\n 19] PROVARE A USARE L'IMMAGINE CON IL CONTORNO RICALCATO SOLO PER FARE GETCONTOUR E NON NEGLI ALTRI STEP.\n 20] TOGLIERE THRESHOLD + CANNY -> USARE SOLO CANNY.\n 21] TOGLIERE LE CELLE INTERNE CHE SONO BUCHI.\n >> USARE VORONOI PER CONTROLLARE LA CONNETTIVITA.\n >> USARE THRESHOLD SU SFONDO \n >> COMBINARE I DUE METODI\n 22] RIMUOVERE LE STANZE ERRATE:\n >> STANZE "ESTERNE" INTERNE VANNO TOLTE IN BASE ALLE CELLE ESTERNE\n >> RIMUOVERE STANZE CON FORME STUPIDE (ES PARETI LUNGHE STRETTE), BISOGNA DECIDERE SE ELIMINARLE O INGLOBARLE IN UN ALTRA STANZA\n 23] RISOLVERE TUTTI I WARNING.\n da chiedere: guardare il metodo clustering_dbscan_celle(...) in layout la riga af = DBSCAN(eps, min_samples, metric="precomputed").fit(X) non dovrebbe essere cosi? af = DBSCAN(eps= eps, min_samples = min_samples, metric="precomputed").fit(X) ''' print ''' FUNZIONAMENTO:\n SELEZIONARE SU QUALI DATASETs FARE ESPERIMENTI (variabile DATASETs -riga165- da COMMENTARE / DECOMMENTARE)\n SPOSTARE LE CARTELLE CON I NOMI DEI DATASET CREATI DALL'ESPERIMENTO PRECEDENTE IN UNA SOTTO-CARTELLA (SE TROVA UNA CARTELLA CON LO STESSO NOME NON CARICA LA MAPPA)\n SETTARE I PARAMERI \n ESEGUIRE\n OGNI TANTO IL METODO CRASHA IN FASE DI VALUTAZIONE DI ACCURATEZZA. NEL CASO, RILANCIARLO\n SPOSTARE TUTTI I RISULTATI IN UNA CARTELLA IN RESULTS CON UN NOME SIGNIFICATIVO DEL TEST FATTO\n SALVARE IL MAIN DENTRO QUELLA CARTELLA\n ''' #-------------------PARAMETRI------------------------------------------------------- #carico parametri di default parametri_obj = par.Parameter_obj() #carico path di default path_obj = par.Path_obj() #----------------------------------------------------------------------------------- makeFolders(path_obj.OUTFOLDERS,path_obj.DATASETs) skip_performed = True #----------------------------------------------------------------------------------- #creo la cartella di log con il time stamp our_time = str(dt.datetime.now())[:-10].replace(' ','@') #get current time SAVE_FOLDER = os.path.join('./log', our_time) if not os.path.exists(SAVE_FOLDER): os.mkdir(SAVE_FOLDER) SAVE_LOGFILE = SAVE_FOLDER+'/log.txt' #------------------------------------------------------------------------------------ with open(SAVE_LOGFILE,'w+') as LOGFILE: print "AZIONE", par.AZIONE print >>LOGFILE, "AZIONE", par.AZIONE shutil.copy('./minibatch.py',SAVE_FOLDER+'/minibatch.py') #copio il file del main shutil.copy('./parameters.py',SAVE_FOLDER+'/parameters.py') #copio il file dei parametri if par.AZIONE == "batch": if par.LOADMAIN==False: print >>LOGFILE, "SONO IN MODALITA' START MAIN" else: print >>LOGFILE, "SONO IN MODALITA' LOAD MAIN" print >>LOGFILE, "-----------------------------------------------------------" for DATASET in path_obj.DATASETs : print >>LOGFILE, "PARSO IL DATASET", DATASET global_results = [] print 'INIZIO DATASET ' , DATASET for metricMap in glob.glob(path_obj.INFOLDERS+'IMGs/'+DATASET+'/*.png') : print >>LOGFILE, "---parso la mappa: ", metricMap print 'INIZIO A PARSARE ', metricMap path_obj.metricMap =metricMap map_name = metricMap.split('/')[-1][:-4] #print map_name SAVE_FOLDER = path_obj.OUTFOLDERS+DATASET+'/'+map_name SAVE_PICKLE = path_obj.OUTFOLDERS+DATASET+'_pickle/'+map_name.split('.')[0] if par.LOADMAIN==False: if not os.path.exists(SAVE_FOLDER): os.mkdir(SAVE_FOLDER) os.mkdir(SAVE_PICKLE) else: # evito di rifare test che ho gia fatto if skip_performed : print 'GIA FATTO; PASSO AL SUCCESSIVO' continue #print SAVE_FOLDER path_obj.filepath = SAVE_FOLDER+'/' path_obj.filepath_pickle_layout = SAVE_PICKLE+'/'+'Layout.pkl' path_obj.filepath_pickle_grafoTopologico = SAVE_PICKLE+'/'+'GrafoTopologico.pkl' add_name = '' if DATASET == 'SCHOOL' else '' path_obj.nome_gt = path_obj.INFOLDERS+'XMLs/'+DATASET+'/'+map_name+add_name+'.xml' #--------------------new parametri----------------------------------- #setto i parametri differenti(ogni dataset ha parametri differenti) parametri_obj.minLateralSeparation = 7 if 'SCHOOL' in DATASET else 15 parametri_obj.cv2thresh = 150 if DATASET == 'SCHOOL' else 200 parametri_obj.flip_dataset = True if DATASET == 'SURVEY' else False #-------------------------------------------------------------------- #-------------------ESECUZIONE--------------------------------------- if par.LOADMAIN==False: print "start main" results = start_main(parametri_obj, path_obj) global_results.append(results); #calcolo accuracy finale dell'intero dataset if metricMap == glob.glob(path_obj.INFOLDERS+'IMGs/'+DATASET+'/*.png')[-1]: accuracy_bc_medio = [] accuracy_bc_in_pixels = [] accuracy_fc_medio = [] accuracy_fc_in_pixels=[] for i in global_results : accuracy_bc_medio.append(i[0]) accuracy_fc_medio.append(i[2]) accuracy_bc_in_pixels.append(i[4]) accuracy_fc_in_pixels.append(i[5]) filepath= path_obj.OUTFOLDERS+DATASET+'/' print filepath f = open(filepath+'accuracy.txt','a') #f.write(filepath) f.write('accuracy_bc = '+str(np.mean(accuracy_bc_medio))+'\n') f.write('accuracy_bc_pixels = '+str(np.mean(accuracy_bc_in_pixels))+'\n') f.write('accuracy_fc = '+str(np.mean(accuracy_fc_medio))+'\n') f.write('accuracy_fc_pixels = '+str(np.mean(accuracy_fc_in_pixels))+'\n\n') f.close() LOGFILE.flush() elif par.LOADMAIN==True: print "load main" print >>LOGFILE, "---parso la mappa: ", path_obj.metricMap load_main(path_obj.filepath_pickle_layout, path_obj.filepath_pickle_grafoTopologico, path_obj.filepath+"parametri.xml") LOGFILE.flush() else : continue break LOGFILE.flush() elif par.AZIONE =='mappa_singola': #-------------------ESECUZIONE singola mappa---------------------------------- if par.LOADMAIN==False: print "start main" print >>LOGFILE, "SONO IN MODALITA' START MAIN" print >>LOGFILE, "---parso la mappa: ", path_obj.metricMap start_main(parametri_obj, path_obj) LOGFILE.flush() else: print "load main" print >>LOGFILE, "SONO IN MODALITA' LOAD MAIN" print >>LOGFILE, "---parso la mappa: ", path_obj.metricMap load_main(path_obj.filepath_pickle_layout, path_obj.filepath_pickle_grafoTopologico, path_obj.filepath+"parametri.xml") LOGFILE.flush() #-------------------TEMPO IMPIEGATO------------------------------------------------- fine = time.time() elapsed = fine-start print "la computazione ha impiegato %f secondi" % elapsed if __name__ == '__main__': main()
[ "matteo.luperto@polimi.it" ]
matteo.luperto@polimi.it
336c5523fc52ed7484adf81479a520b8cc202c4d
86864403fed2e21c48aa928568ed44f3479771b3
/server/database/__init__.py
6cdd23796807782dbd869c502f893e77a62d0525
[]
no_license
Fourier-Transformation/Bookstore-sales-management-system
4c30f343c5f2cd45cc33ed1d89397bc63bc468ac
bf7d99c13b3c4b350da08daac0b88f2cb0312724
refs/heads/master
2023-01-08T15:04:59.442770
2019-10-27T11:05:10
2019-10-27T11:05:10
206,248,848
9
3
null
2023-01-04T09:52:57
2019-09-04T06:34:57
JavaScript
UTF-8
Python
false
false
49
py
""" package __init__ file """ __all__ = ['bsdb']
[ "oowsxq@users.noreply.github.com" ]
oowsxq@users.noreply.github.com
ef978f568bf798274942cd80a49d72ff9f6d761f
71e29718412db28a59a5d32bcfdd7e00c5ea66f4
/099_Empacotamento.py
973fed36e1f2f13f835f3769fc006c047504496a
[]
no_license
wesley-998/Python-Exercicies
71e518ff45839473757bd73eb28ff72d877ed9ab
bc42feb1ed6e09ad659ffd35ee9d1198611f7b84
refs/heads/main
2023-05-11T02:04:29.536874
2023-05-02T19:27:36
2023-05-02T19:27:36
360,686,029
0
0
null
null
null
null
UTF-8
Python
false
false
524
py
''' Programa com uma função chamado maior que identifica o maior valor entre vários valores/parâmetros. ''' def maior(*num): print('Analisando os valores passados...') print(f'{num} Foram informados {len(num)} valores ao todo.') print(f'O maior valor informado foi {max(num)}') def linha(): print('__' * 50) linha() maior(4,6,9,8,7,4,6,5,2,9,8,7,6) linha() maior(6,9,8,7,4,5,1,3,6,9) linha() maior(5,6,9,8,7) linha() maior(4,1,2,) linha() maior(6,5) linha() maior(0) linha()
[ "noreply@github.com" ]
wesley-998.noreply@github.com
c368d7695148f2b8661d8b1af6beb4ed17f894d2
2f8c9e95514e4ff43ee0ecd73eec60633db4427e
/src/track.py
31aa833b2f010cb51ce5bce33757710bbd015705
[ "MIT" ]
permissive
zhangmo123/MCMOT
bbda421bf98abd09ab95c5f571fe28b407ff46e6
c4979c676264bfa1939cd39b650dd7a4864df61d
refs/heads/master
2022-11-11T11:03:12.664934
2020-06-29T09:57:33
2020-06-29T09:57:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,214
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from numpy.core._multiarray_umath import ndarray import _init_paths import os import os.path as osp import shutil import cv2 import logging import argparse import motmetrics as mm import numpy as np import torch from collections import defaultdict from lib.tracker.multitracker import JDETracker, id2cls from lib.tracking_utils import visualization as vis from lib.tracking_utils.log import logger from lib.tracking_utils.timer import Timer from lib.tracking_utils.evaluation import Evaluator import lib.datasets.dataset.jde as datasets from lib.tracking_utils.utils import mkdir_if_missing from lib.opts import opts def write_results(filename, results, data_type): if data_type == 'mot': save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n' elif data_type == 'kitti': save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n' else: raise ValueError(data_type) with open(filename, 'w') as f: for frame_id, tlwhs, track_ids in results: if data_type == 'kitti': frame_id -= 1 for tlwh, track_id in zip(tlwhs, track_ids): if track_id < 0: continue x1, y1, w, h = tlwh x2, y2 = x1 + w, y1 + h line = save_format.format( frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h) f.write(line) logger.info('save results to {}'.format(filename)) # def write_detect_imgs() def write_results_dict(file_name, results_dict, data_type, num_classes=2): """ :param file_name: :param results_dict: :param data_type: :param num_classes: :return: """ if data_type == 'mot': save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n' elif data_type == 'kitti': save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n' else: raise ValueError(data_type) with open(file_name, 'w') as f: for cls_id in range(num_classes): if cls_id == 0: # 背景类不处理 continue # 处理每一个目标检测类别的结果 results = results_dict[cls_id] for frame_id, tlwhs, track_ids in results: if data_type == 'kitti': frame_id -= 1 for tlwh, track_id in zip(tlwhs, track_ids): if track_id < 0: continue x1, y1, w, h = tlwh x2, y2 = x1 + w, y1 + h line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h) f.write(line) logger.info('save results to {}'.format(file_name)) def format_dets_dict2dets_list(dets_dict, w, h): """ :param dets_dict: :param w: input image width :param h: input image height :return: """ dets_list = [] for k, v in dets_dict.items(): for det_obj in v: x1, y1, x2, y2, score, cls_id = det_obj center_x = (x1 + x2) * 0.5 / float(w) center_y = (y1 + y2) * 0.5 / float(h) bbox_w = (x2 - x1) / float(w) bbox_h = (y2 - y1) / float(h) dets_list.append([int(cls_id), score, center_x, center_y, bbox_w, bbox_h]) return dets_list def eval_seq_and_output_dets(opt, data_loader, data_type, result_f_name, out_dir, save_dir=None, show_image=True): """ :param opt: :param data_loader: :param data_type: :param result_f_name: :param out_dir: :param save_dir: :param show_image: :return: """ if save_dir: mkdir_if_missing(save_dir) if not os.path.isdir(out_dir): os.makedirs(out_dir) else: shutil.rmtree(out_dir) os.makedirs(out_dir) tracker = JDETracker(opt, frame_rate=30) timer = Timer() results_dict = defaultdict(list) frame_id = 0 # 帧编号 for path, img, img_0 in data_loader: if frame_id % 20 == 0: logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time))) # --- run tracking timer.tic() blob = torch.from_numpy(img).to(opt.device).unsqueeze(0) # update detection results of this frame(or image) dets_dict = tracker.update_detection(blob, img_0) timer.toc() # plot detection results if show_image or save_dir is not None: online_im = vis.plot_detects(image=img_0, dets_dict=dets_dict, num_classes=opt.num_classes, frame_id=frame_id, fps=1.0 / max(1e-5, timer.average_time)) if frame_id > 0: # 是否显示中间结果 if show_image: cv2.imshow('online_im', online_im) if save_dir is not None: cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im) # ----- 格式化并输出detection结果(txt)到指定目录 # 格式化 dets_list = format_dets_dict2dets_list(dets_dict, w=img_0.shape[1], h=img_0.shape[0]) # 输出到指定目录 out_f_name = os.path.split(path)[-1].replace('.jpg', '.txt') out_f_path = out_dir + '/' + out_f_name with open(out_f_path, 'w', encoding='utf-8') as w_h: w_h.write('class prob x y w h total=' + str(len(dets_list)) + '\n') for det in dets_list: w_h.write('%d %f %f %f %f %f\n' % (det[0], det[1], det[2], det[3], det[4], det[5])) print('{} written'.format(out_f_path)) # 处理完一帧, 更新frame_id frame_id += 1 # 写入最终结果save results write_results_dict(result_f_name, results_dict, data_type) # 返回结果 return frame_id, timer.average_time, timer.calls def eval_seq(opt, data_loader, data_type, result_f_name, save_dir=None, show_image=True, frame_rate=30, mode='track'): """ :param opt: :param data_loader: :param data_type: :param result_f_name: :param save_dir: :param show_image: :param frame_rate: :param mode: track or detect :return: """ if save_dir: mkdir_if_missing(save_dir) tracker = JDETracker(opt, frame_rate=frame_rate) timer = Timer() results_dict = defaultdict(list) frame_id = 0 # 帧编号 for path, img, img_0 in data_loader: if frame_id % 20 == 0: logger.info('Processing frame {} ({:.2f} fps)'.format( frame_id, 1. / max(1e-5, timer.average_time))) # --- run tracking timer.tic() # blob = torch.from_numpy(img).cuda().unsqueeze(0) blob = torch.from_numpy(img).to(opt.device).unsqueeze(0) if mode == 'track': # process tracking # --- track updates of each frame online_targets_dict = tracker.update_tracking(blob, img_0) # 聚合每一帧的结果 online_tlwhs_dict = defaultdict(list) online_ids_dict = defaultdict(list) for cls_id in range(opt.num_classes): # 处理每一个目标检测类 online_targets = online_targets_dict[cls_id] for track in online_targets: tlwh = track.tlwh t_id = track.track_id # vertical = tlwh[2] / tlwh[3] > 1.6 # box宽高比判断:w/h不能超过1.6? if tlwh[2] * tlwh[3] > opt.min_box_area: # and not vertical: online_tlwhs_dict[cls_id].append(tlwh) online_ids_dict[cls_id].append(t_id) timer.toc() # 保存每一帧的结果 for cls_id in range(opt.num_classes): results_dict[cls_id].append((frame_id + 1, online_tlwhs_dict[cls_id], online_ids_dict[cls_id])) # 绘制每一帧的结果 if show_image or save_dir is not None: if frame_id > 0: online_im: ndarray = vis.plot_tracks(image=img_0, tlwhs_dict=online_tlwhs_dict, obj_ids_dict=online_ids_dict, num_classes=opt.num_classes, frame_id=frame_id, fps=1.0 / timer.average_time) elif mode == 'detect': # process detections # update detection results of this frame(or image) dets_dict = tracker.update_detection(blob, img_0) timer.toc() # plot detection results if show_image or save_dir is not None: online_im = vis.plot_detects(image=img_0, dets_dict=dets_dict, num_classes=opt.num_classes, frame_id=frame_id, fps=1.0 / max(1e-5, timer.average_time)) else: print('[Err]: un-recognized mode.') # # 可视化中间结果 # if frame_id > 0: # cv2.imshow('Frame {}'.format(str(frame_id)), online_im) # cv2.waitKey() if frame_id > 0: # 是否显示中间结果 if show_image: cv2.imshow('online_im', online_im) if save_dir is not None: cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im) # 处理完一帧, 更新frame_id frame_id += 1 # 写入最终结果save results write_results_dict(result_f_name, results_dict, data_type) return frame_id, timer.average_time, timer.calls def main(opt, data_root='/data/MOT16/train', det_root=None, seqs=('MOT16-05',), exp_name='demo', save_images=False, save_videos=False, show_image=True): """ """ logger.setLevel(logging.INFO) result_root = os.path.join(data_root, '..', 'results', exp_name) mkdir_if_missing(result_root) data_type = 'mot' # run tracking accs = [] n_frame = 0 timer_avgs, timer_calls = [], [] for seq in seqs: output_dir = os.path.join( data_root, '..', 'outputs', exp_name, seq) if save_images or save_videos else None logger.info('start seq: {}'.format(seq)) dataloader = datasets.LoadImages( osp.join(data_root, seq, 'img1'), opt.img_size) result_filename = os.path.join(result_root, '{}.txt'.format(seq)) meta_info = open(os.path.join(data_root, seq, 'seqinfo.ini')).read() frame_rate = int(meta_info[meta_info.find( 'frameRate') + 10:meta_info.find('\nseqLength')]) nf, ta, tc = eval_seq(opt, dataloader, data_type, result_filename, save_dir=output_dir, show_image=show_image, frame_rate=frame_rate) n_frame += nf timer_avgs.append(ta) timer_calls.append(tc) # eval logger.info('Evaluate seq: {}'.format(seq)) evaluator = Evaluator(data_root, seq, data_type) accs.append(evaluator.eval_file(result_filename)) if save_videos: output_video_path = osp.join(output_dir, '{}.mp4'.format(seq)) cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -c:v copy {}'.format( output_dir, output_video_path) os.system(cmd_str) timer_avgs = np.asarray(timer_avgs) timer_calls = np.asarray(timer_calls) all_time = np.dot(timer_avgs, timer_calls) avg_time = all_time / np.sum(timer_calls) logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format( all_time, 1.0 / avg_time)) # get summary metrics = mm.metrics.motchallenge_metrics mh = mm.metrics.create() summary = Evaluator.get_summary(accs, seqs, metrics) strsummary = mm.io.render_summary( summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names ) print(strsummary) Evaluator.save_summary(summary, os.path.join( result_root, 'summary_{}.xlsx'.format(exp_name))) if __name__ == '__main__': os.environ['CUDA_VISIBLE_DEVICES'] = '0' opt = opts().init() if not opt.val_mot16: seqs_str = '''KITTI-13 KITTI-17 ADL-Rundle-6 PETS09-S2L1 TUD-Campus TUD-Stadtmitte''' data_root = os.path.join(opt.data_dir, 'MOT15/images/train') else: seqs_str = '''MOT16-02 MOT16-04 MOT16-05 MOT16-09 MOT16-10 MOT16-11 MOT16-13''' data_root = os.path.join(opt.data_dir, 'MOT16/train') if opt.test_mot16: seqs_str = '''MOT16-01 MOT16-03 MOT16-06 MOT16-07 MOT16-08 MOT16-12 MOT16-14''' data_root = os.path.join(opt.data_dir, 'MOT16/test') if opt.test_mot15: seqs_str = '''ADL-Rundle-1 ADL-Rundle-3 AVG-TownCentre ETH-Crossing ETH-Jelmoli ETH-Linthescher KITTI-16 KITTI-19 PETS09-S2L2 TUD-Crossing Venice-1''' data_root = os.path.join(opt.data_dir, 'MOT15/images/test') if opt.test_mot17: seqs_str = '''MOT17-01-SDP MOT17-03-SDP MOT17-06-SDP MOT17-07-SDP MOT17-08-SDP MOT17-12-SDP MOT17-14-SDP''' data_root = os.path.join(opt.data_dir, 'MOT17/images/test') if opt.val_mot17: seqs_str = '''MOT17-02-SDP MOT17-04-SDP MOT17-05-SDP MOT17-09-SDP MOT17-10-SDP MOT17-11-SDP MOT17-13-SDP''' data_root = os.path.join(opt.data_dir, 'MOT17/images/train') if opt.val_mot15: seqs_str = '''KITTI-13 KITTI-17 ETH-Bahnhof ETH-Sunnyday PETS09-S2L1 TUD-Campus TUD-Stadtmitte ADL-Rundle-6 ADL-Rundle-8 ETH-Pedcross2 TUD-Stadtmitte''' data_root = os.path.join(opt.data_dir, 'MOT15/images/train') if opt.val_mot20: seqs_str = '''MOT20-01 MOT20-02 MOT20-03 MOT20-05 ''' data_root = os.path.join(opt.data_dir, 'MOT20/images/train') if opt.test_mot20: seqs_str = '''MOT20-04 MOT20-06 MOT20-07 MOT20-08 ''' data_root = os.path.join(opt.data_dir, 'MOT20/images/test') seqs = [seq.strip() for seq in seqs_str.split()] main(opt, data_root=data_root, seqs=seqs, exp_name='MOT15_val_all_dla34', show_image=False, save_images=False, save_videos=False)
[ "765305261@qq.com" ]
765305261@qq.com
799a2860a7f3e0e3427380a6926982af973081dc
d0bf5ea5b1dc415e2e1032245c8be947f3cb670c
/courses/admin.py
4cb23f6a67d889f8f3fc14f5b289b0439f06004c
[]
no_license
alfonsorodrigo/django_graphql_courses
1d83b18accf5894bfa1a3cc22b82b183952ed20e
b669d01b1b1c80bf9ff0fab22401f9669fb75535
refs/heads/master
2020-04-27T23:56:36.281636
2019-03-10T08:59:23
2019-03-10T08:59:23
174,797,586
1
0
null
null
null
null
UTF-8
Python
false
false
141
py
from django.contrib import admin from .models import * # Register your models here. admin.site.register(Student) admin.site.register(Course)
[ "alfonso.feria@truehome.com.mx" ]
alfonso.feria@truehome.com.mx
f795733d74d41d26fb9b2a2f6300e78a11afc3bc
20ab220c093b77a57ac14c1fbd06a589e38190de
/jogos.py
c459a291f64e670f7e03238c1a9ee5791c885ffa
[]
no_license
andreyFernandoSoares/python-basic
7a59148816d8a193aec055072b784347900cc6d1
42bc95162b0ba77ab4358cb23a67fcf5bbeeb9ef
refs/heads/main
2023-01-03T10:18:39.093613
2020-10-26T19:10:30
2020-10-26T19:10:30
306,403,455
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
import forca import adivinhacao def escolhe_jogo(): print("********************************") print("Escolha seu jogo!") print("********************************") print("{1} Forca") print("{2} Advinhacao") jogo = int(input("Qual jogo? : ")) if (jogo == 1): forca.jogar() elif (jogo == 2): adivinhacao.jogar() if (__name__ == "__main__"): escolhe_jogo()
[ "andreysykez19@gmail.com" ]
andreysykez19@gmail.com
c551d812975147d6f6366cdefc948c4098173643
3c6aeb458a8bec0671c1d8be18331072ac97e05f
/ohsn/networkminer/unit-tests/get_retweets-unit-test.py
b817b7fc7c8eba0bc0c2163bd31bcc972bb9905f
[]
no_license
wtgme/ohsn
d7b17ad179a789be2325e0923026a681e343a40c
9c165d45eefa4058e7ed2c6bad348703e296362d
refs/heads/master
2021-08-29T06:01:20.165839
2021-08-12T08:51:46
2021-08-12T08:51:46
44,922,360
2
0
null
null
null
null
UTF-8
Python
false
false
2,821
py
# -*- coding: utf-8 -*- """ Created on Thu Jun 11 10:00:01 2015 @author: home """ import urllib import imghdr import os import ConfigParser import datetime from pymongo import Connection import time from twython import Twython, TwythonRateLimitError, TwythonAuthError config = ConfigParser.ConfigParser() config.read('scraper.cfg') # spin up twitter api APP_KEY = config.get('credentials','app_key') APP_SECRET = config.get('credentials','app_secret') OAUTH_TOKEN = config.get('credentials','oath_token') OAUTH_TOKEN_SECRET = config.get('credentials','oath_token_secret') #twitter = Twython(app_key='Mfm5oNdGSPMvwhZcB8N4MlsL8', # app_secret='C0rbmJP0uKbuF6xcT6aR5vFOV9fS4L1965TKOH97pSqj3NJ1mP', # oauth_token='3034707280-wFGQAF4FGBviaiSguCUdeG36NIQG1uh8qqXTC1G', # oauth_token_secret='HUWMfHKyPShE6nH5WXlI26izoQjNtV3US3mNpND1F9qrO') timeline_twitter = Twython(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) timeline_twitter.verify_credentials() # spin up database #DBNAME = config.get('database', 'name') #COLLECTION = config.get('database', 'collection') #COLLECTION = 'manostimeline' #print(DBNAME) #print(COLLECTION) # #conn = Connection() #db = conn[DBNAME] #tweets = db[COLLECTION] print("twitter connection and database connection configured") orig_tweet_id = 608648346048303104 manos_tweet_id = 608658245352353792 """ Returns fully-hydrated tweet objects for up to 100 tweets per request, as specified by comma-separated values passed to the id parameter. Requests / 15-min window (user auth) 180 Requests / 15-min window (app auth) 60 """ params = {'id':orig_tweet_id} response = timeline_twitter.lookup_status(**params) #print response for status in response: print status['user']['screen_name'] print status['retweet_count'] """ Returns a collection of up to 100 user IDs belonging to users who have retweeted the tweet specified by the id parameter. you can cursor this... Requests / 15-min window (user auth) 15 Requests / 15-min window (app auth) 60 """ params = {'count':100, 'id':orig_tweet_id, 'cursor':-1} response = timeline_twitter.get_retweeters_ids(**params) #response['previous_cursor'] #response['previous_cursor_str'] print response['next_cursor'] #response['next_cursor_str'] for retweeter_id in response['ids']: print retweeter_id """ Returns a collection of the 100 most recent retweets of the tweet specified by the id parameter. Requests / 15-min window (user auth) 15 Requests / 15-min window (app auth) 60 you CANNOT cursor this... """ params = {'count':100, 'id':orig_tweet_id} response= timeline_twitter.get_retweets(**params) # print response for item in response: print item['user']['screen_name']
[ "wtgmme@gmail.com" ]
wtgmme@gmail.com
999a09a25e95cf82a2364e3c6fe8341518055d4e
8a70b361111cbd6ec9525e16bcec1969909d90cd
/dashboard/migrations/0006_auto_20160113_1558.py
8f56c640604c984b374b977a2c1743a57fccd953
[]
no_license
dovimotors/mysite
7a5e71600794f2241cbc5f1230f6e5903d524892
aff32fa5d0a018e64201e5d5069956cdc4a055a4
refs/heads/master
2020-04-06T07:56:13.709331
2016-10-07T19:48:06
2016-10-07T19:48:06
48,855,954
0
0
null
null
null
null
UTF-8
Python
false
false
1,007
py
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-01-13 20:58 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dashboard', '0005_auto_20160113_1557'), ] operations = [ migrations.AlterField( model_name='dailymetrics', name='pa_count30to45', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='dailymetrics', name='pa_count60to65', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='dailymetrics', name='sv_old_ro_count', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='dailymetrics', name='sv_ro_count', field=models.IntegerField(blank=True, null=True), ), ]
[ "jesse@dovimotors.com" ]
jesse@dovimotors.com
1125f3116aa019f2f36f7578e922ae06adf6ee09
5cf5ec4cec8c312c8a16efacceb3612e5d5c5fb4
/code2022/day12/p2.py
cfc724ff50a46bffda63b8ba9dde4376cd47462f
[]
no_license
zac112/adventOfCode
a9523f4ff7dc4f3af0137807d6e09eb9692531bf
6f5955a4c827c3513e0d83877708175976ceb204
refs/heads/master
2022-12-26T02:17:41.554781
2022-12-25T23:45:53
2022-12-25T23:45:53
160,374,492
1
1
null
null
null
null
UTF-8
Python
false
false
1,508
py
import string from collections import deque with open("data.txt") as f: maze = [list(line) for line in f.read().splitlines()] correction = {b:a for a,b in enumerate(string.ascii_lowercase)} path = [[None for _ in range(len(maze[0]))]for _ in range(len(maze))] possibleStarts = [] for y,row in enumerate(maze): for x,cell in enumerate(row): if cell == "S": start=(y,x) cell = 'a' if cell == "E": end=(y,x) cell = 'z' maze[y][x]=string.ascii_lowercase.index(cell) if cell == 'a': possibleStarts.append((y,x)) neighbors = [(1,0),(0,1),(-1,0),(0,-1)] def BFS(maze,path,openCells): while openCells: y,x,level,from_y, from_x = openCells.popleft() try: maze[y][x] except:continue if path[y][x] is not None: continue if y < 0 or x < 0: continue if maze[y][x] >= maze[from_y][from_x]+2: continue path[y][x] = (from_y,from_x) if (y,x) == end: print(level) return level newCells = [(y+a,x+b) for a,b in neighbors] for cell in newCells: openCells.append((*cell,level+1,y,x)) lengths = [] for start in possibleStarts: path = [[None for _ in range(len(maze[0]))]for _ in range(len(maze))] cells = deque() cells.append((*start,0,*start)) length = BFS(maze,path, cells) if length: lengths.append(length) print(min(lengths))
[ "eolokk@utu.fi" ]
eolokk@utu.fi
9fbc893e6efab9becd109783348b0a57664316ff
17e3234ab01fd93233cc453f1495d50424c3bd8f
/latte/latte_core/doctype/job_run/test_job_run.py
d0b9d9d95a655a44947e8b1fba1d3d08089abc30
[ "MIT" ]
permissive
sunnyakaxd/latte
8943dbf70ce934e04e51b147a54e6dd02dfe43db
de74065122a1f858bd75f8e1a36fca3b23981f4c
refs/heads/master
2023-06-11T10:25:31.217047
2021-07-06T06:40:19
2021-07-06T06:40:19
383,363,137
0
0
NOASSERTION
2021-07-06T06:26:49
2021-07-06T06:26:49
null
UTF-8
Python
false
false
208
py
# -*- coding: utf-8 -*- # Copyright (c) 2019, Sachin Mane and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestJobRun(unittest.TestCase): pass
[ "himanshu.mishra@elastic.run" ]
himanshu.mishra@elastic.run
7d0f3bd51417d76ebf705faf39481b1395711c0e
4d376856f1513a8674d7ad276cbbcc98cb414726
/Problem44/PentagonNumbers.py
e5e79ed13a465a6ed805d4d355c6dbef551afeb5
[]
no_license
nixondcoutho/Python
b31b79c6c60a514d5cf46efcfdf70b16a843a665
53ea76b0fc285929bd1da7b6ea44110c3b26b373
refs/heads/master
2020-03-17T03:42:07.386052
2018-05-13T14:03:20
2018-05-13T14:03:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
148
py
def pentagonalNumber(val): return (n*(3*n-1))/2 pentagonalList = [pentagonalNumber(i) for i in range(1,1000000)] for val in pentagonalList:
[ "adarshjaya12@gmail.com" ]
adarshjaya12@gmail.com
0c3814e5faa036ed899f2c5cc7a7b040722273fa
05279ba5f444c38d71cb830bbe83451ab186e37c
/apps/network/urls.py
aac8018294f174b3d3e74159cc4b161277a90412
[ "MIT" ]
permissive
zzmjohn/kontrolvm
98e22459603db95012bcf003849962f57cbe662a
5c567ae67c3f3e67e3132e025016685dd6b810f5
refs/heads/master
2021-01-15T20:03:46.132089
2013-05-14T22:12:34
2013-05-14T22:12:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
from django.conf.urls.defaults import * urlpatterns = patterns('apps.network.views', url(r'^add/', 'add'), url(r'^edit/', 'edit'), url(r'$', 'index'), )
[ "jawr@jarrah" ]
jawr@jarrah
0252e94435305b0b2f6efc349e988ccb1a01fa6b
863ba19ae0fcf7e7f4e17f878c5c0dbb82ceed14
/template.py
b712a81473879bb865aff28ddb198385e38ece7d
[]
no_license
ptrk8/usyd-2019-ai-competition
75513ae77fbbdc4788337af39a476eb45f6c5fe3
386b66d441be22640f952eb485ba2474dc3ae2c0
refs/heads/master
2022-10-12T09:57:39.453088
2022-10-09T02:52:34
2022-10-09T02:52:34
199,142,115
0
0
null
null
null
null
UTF-8
Python
false
false
3,025
py
import tensorflow as tf config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) from keras import optimizers from keras import layers, Sequential from keras.applications.densenet import preprocess_input, DenseNet121 from keras.utils.np_utils import to_categorical from keras.preprocessing.image import ImageDataGenerator import numpy as np import h5py from keras.callbacks import Callback, LearningRateScheduler from sklearn.metrics import cohen_kappa_score from utils import get_custom_callback, to_multi_label, f1_m, best_lr_decay, f1_loss, multi_label_acc import os import sys IMG_SIZE = 384 # this must correspond with what is in .h5 file NUM_CLASSES = 5 # 5 output classes NUM_EPOCHS = 50 # number of epochs BATCH_SIZE = 3 def main(): # Name of this script script_name = os.path.basename(__file__)[0:-3] # Construct folder name using name of this script output_path_name = '_{}_outputs'.format(script_name) # Try to create a new folder try: # Make the output folder os.mkdir(output_path_name) except FileExistsError: pass # Model below this line ================================================ learn_rate = LearningRateScheduler(best_lr_decay, verbose=1) custom_callback = get_custom_callback('multi_label', './{}'.format(output_path_name)) callbacks_list = [custom_callback, learn_rate] file = h5py.File('./data/data_rgb_384_processed.h5', 'r') x_train, y_train, x_test, y_test = file['x_train'], file['y_train'], file['x_test'], file['y_test'] y_train = to_categorical(y_train, NUM_CLASSES) y_test = to_categorical(y_test, NUM_CLASSES) y_train = to_multi_label(y_train) y_test = to_multi_label(y_test) datagen = ImageDataGenerator( horizontal_flip=True, vertical_flip=True, rotation_range=360 ) model = Sequential() densenet = DenseNet121( weights='imagenet', include_top=False, input_shape=(IMG_SIZE, IMG_SIZE, 3) ) model.add(densenet) model.add(layers.GlobalAveragePooling2D()) model.add(layers.Dropout(0.5)) # model.add(layers.Dense(NUM_CLASSES, activation='softmax')) model.add(layers.Dense(NUM_CLASSES, activation='sigmoid')) model.summary() model.compile(loss='binary_crossentropy', # optimizer=optimizers.Adam(lr=0.0001,decay=1e-6), optimizer=optimizers.SGD(lr=0.0001, momentum=0.9), metrics=[multi_label_acc, f1_m]) # fits the model on batches with real-time data augmentation: history = model.fit_generator( datagen.flow(x_train, y_train, batch_size=BATCH_SIZE, seed=1), steps_per_epoch=len(x_train) // BATCH_SIZE, epochs=NUM_EPOCHS, validation_data=(x_test, y_test), callbacks=callbacks_list, max_queue_size=2 ) if __name__ == '__main__': main()
[ "patrick.hao95@gmail.com" ]
patrick.hao95@gmail.com
22566527308ed7f74a4a7f9ca4e2df3a3c667e79
861e0cd03dc7f6a5bd0c470702b31c56340c84e4
/bin/poliapp
79ecd00e3f8f9e760a3f236c7002a35f4501fbfe
[]
no_license
ben105/DecisionTime
d3ad540a787180f7893082be676dc7fc7dc5f9bd
a5ca52993c3e7606772eed5143574fd8927b5b4e
refs/heads/master
2021-04-29T11:00:49.030376
2017-01-05T06:11:43
2017-01-05T06:11:43
77,857,912
0
0
null
null
null
null
UTF-8
Python
false
false
1,434
#!/usr/bin/env python3 from flask import Flask, request import logging import json import sys import psycopg2 # Modules for poliapp sys.path.insert(0, '../lib') import polistore # import poliauth # Set up the error and debug logging. path = '/var/log/poliapp/poliapp.log' logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s: %(message)s', filemode='a', filename=path, level=logging.DEBUG) # Attempt to open up the settings configurations. try: f = open('settings.conf') settings = json.load(f) except Exception as exc: logging.error("Cannot load the settings.\n{}".format(exc)) sys.exit(1) db_server = settings['db_server'] port = settings['port'] app = Flask(__name__) conn = None try: conn = psycopg2.connect("dbname=poli host=%s user=poli password=poli" % db_server) conn.autocommit = True except Exception as exc: logging.error('exception raised trying to connect to database\n%s', str(exc)) quit() cur = conn.cursor() ####### Comments ######## @app.route('/api/v1/questions', methods=['GET']) def questions(): questions = polistore.questions(cur) return json.dumps(questions) @app.route('/api/v1/answer', methods=['POST']) def answer(): body = json.loads(request.data) question_id = body['question_id'] answer_id = body['answer_id'] importance = body['importance'] return json.dumps({ 'political_favorability': -7 }) if __name__ == "__main__": app.run(host='0.0.0.0', port=port)
[ "calgrove@ip-172-30-0-152.us-west-2.compute.internal" ]
calgrove@ip-172-30-0-152.us-west-2.compute.internal
4c4308cd1a975cb17c8f6a652f4249908cf3a911
05cc3a62b95ff5e6d4b265912ba3609d506c6672
/BingYan/1.py
e07975d8d23ef470d4089ff4ed17a3daa81245aa
[]
no_license
xiong35/my_code2242787668
260580645093a868439f12a082798d09c8910bbe
d11d90f08bfe51dbe3dda5f2fe2e23b448bb70f3
refs/heads/master
2020-08-26T15:20:10.980467
2020-03-16T02:01:12
2020-03-16T02:01:12
217,053,429
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
def add(num1, num2): sum = 0 carry = 0 while (num2 != 0): sum = num1 ^ num2 carry = (num1 & num2) << 1 num1 = sum num2 = carry return num1 input = (233,455) print(add(*input))
[ "2242787668@qq.com" ]
2242787668@qq.com
26cdbeaddf498b499551e36dcd9502c0a8fb2ed3
81e69cddb319516b4ebd92ed5df905f028412cd7
/test.py
381fdb36bc9de9499ae2d428e159696a9e592554
[ "MIT" ]
permissive
jjpulidos/Programming-Languages-2020
3c76782ae642cb66f89062ae59c600c62ecd5224
42b9455b5697b07756f8c29e22409161f34bd283
refs/heads/master
2021-05-22T19:45:09.982604
2020-05-27T18:06:01
2020-05-27T18:06:01
253,063,712
1
1
null
null
null
null
UTF-8
Python
false
false
113
py
def prueba(): s = 6 def prueba2(): print(s) s = 4 prueba2() print(s) prueba()
[ "jjpulidos@unal.edu.co" ]
jjpulidos@unal.edu.co
74fa69cc54bdacba5a85a799decf55e31a4a8f38
73de523bde0c9e8398c63a924b44aadc46d11202
/test/test_nfs_alias_extended.py
26d6921cf5970e7291ef4a348ae8b8ec80c317b9
[ "MIT" ]
permissive
Feyd-Aran/isilon_sdk_python
1c2fae306c1a95a99024dd13dc0fc3b120f9c1de
24e85a5577d15ac3db06862d07d5a261658c67b7
refs/heads/v8.0.0
2020-09-23T00:16:36.684270
2019-12-02T13:45:12
2019-12-02T13:45:12
225,351,700
0
0
MIT
2019-12-02T10:51:54
2019-12-02T10:51:53
null
UTF-8
Python
false
false
904
py
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 3 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_0 from isi_sdk_8_0.models.nfs_alias_extended import NfsAliasExtended # noqa: E501 from isi_sdk_8_0.rest import ApiException class TestNfsAliasExtended(unittest.TestCase): """NfsAliasExtended unit test stubs""" def setUp(self): pass def tearDown(self): pass def testNfsAliasExtended(self): """Test NfsAliasExtended""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_0.models.nfs_alias_extended.NfsAliasExtended() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "brandonfkrueger@gmail.com" ]
brandonfkrueger@gmail.com
30777ecad10702e2914965fe062767b4cfc793be
d93a37864885a095f19256b011e5984797ca8d6e
/app/__init__.py
07c2838079ff6cc5bd0e522404fe4d108371d0c9
[]
no_license
thesmith4734/gswebsite
b5c6373bf228b31d326d4ae2176c200d22b41470
52723728c0a40d835fd5719da357bf1ad0447ec1
refs/heads/master
2023-03-17T01:37:12.947799
2021-02-26T03:09:11
2021-02-26T03:09:11
342,079,722
0
0
null
null
null
null
UTF-8
Python
false
false
136
py
from flask import Flask from flask_bootstrap import Bootstrap app = Flask(__name__) from app import routes bootstrap = Bootstrap(app)
[ "thehellhound4734@aim.com" ]
thehellhound4734@aim.com
3c5cf103baa0e5a07248d93bb2d7996712be4dac
bc6af1797e2200fe649ef1a6517f032fd3bd2484
/main_app/views.py
cf42ba979bc461fbd82701ecdae833c124f1a512
[]
no_license
zfinnan/catcollector
dd38f3a6c3adf044ef7495499711b2b18b0d03a4
e617b61191a63b72e35f7605a4e06157ad25e6eb
refs/heads/main
2023-02-18T16:47:37.755472
2021-01-15T17:22:22
2021-01-15T17:22:22
329,660,339
0
0
null
null
null
null
UTF-8
Python
false
false
4,194
py
from django.shortcuts import render from .models import Cat, CatToy from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.http import HttpResponse, HttpResponseRedirect from django.contrib.auth.models import User from django.contrib.auth.forms import AuthenticationForm, UserCreationForm from django.contrib.auth import authenticate, login, logout from django.utils.decorators import method_decorator from django.contrib.auth.decorators import login_required # Create your views here. def index(request): return render(request, 'index.html') def about(request): return render(request, 'about.html') ######## USER ######## @login_required def profile(request, username): user = User.objects.get(username=username) cats = Cat.objects.filter(user=user) return render(request, 'profile.html', { 'username': username, 'cats': cats }) def login_view(request): # if post, then authenticate (the user will be submitting a username and password) if request.method == 'POST': form = AuthenticationForm(request, request.POST) if form.is_valid(): u = form.cleaned_data['username'] p = form.cleaned_data.get('password') user = authenticate(username=u, password=p) if user is not None: if user.is_active: login(request, user) return HttpResponseRedirect('/user/' + u) else: print(f"The account for {u} has been disabled.") else: print('The username and/or password is incorrect.') else: form = AuthenticationForm() return render(request, 'login.html', {'form': form}) else: # get request that sent up empty form form = AuthenticationForm() return render(request, 'login.html', {'form': form}) def logout_view(request): logout(request) return HttpResponseRedirect('/cats') def signup(request): if request.method == 'POST': form = UserCreationForm(request.POST) if form.is_valid(): user = form.save() login(request, user) return HttpResponseRedirect('/cats') else: form = UserCreationForm() return render(request, 'signup.html', {'form': form}) else: form = UserCreationForm() return render(request, 'signup.html', {'form': form}) ######## CATS ######## def cats_index(request): cats = Cat.objects.all() return render(request, 'cats/index.html', {'cats': cats}) def cats_show(request, cat_id): cat = Cat.objects.get(id=cat_id) return render(request, 'cats/show.html', { 'cat': cat }) @method_decorator(login_required, name="dispatch") class CatCreate(CreateView): model = Cat fields = ['name', 'breed', 'description', 'age', 'cattoys'] success_url = '/cats' def form_valid(self, form): self.object = form.save(commit=False) self.object.user = self.request.user self.object.save() return HttpResponseRedirect('/cats/' + str(self.object.pk)) @method_decorator(login_required, name="dispatch") class CatUpdate(UpdateView): model = Cat fields = ['name', 'breed', 'description', 'age', 'cattoys'] def form_valid(self, form): self.object = form.save(commit=False) self.object.save() return HttpResponseRedirect('/cats') @method_decorator(login_required, name="dispatch") class CatDelete(DeleteView): model = Cat success_url = '/cats' ######## CatToy ######## def cattoys_index(request): cattoys = CatToy.objects.all() return render(request, 'cattoys/index.html', { 'cattoys': cattoys }) def cattoys_show(request, cattoy_id): cattoy = CatToy.objects.get(id=cattoy_id) return render(request, 'cattoys/show.html', { 'cattoy': cattoy }) @method_decorator(login_required, name="dispatch") class CatToyCreate(CreateView): model = CatToy fields = '__all__' success_url = '/cattoys' @method_decorator(login_required, name="dispatch") class CatToyUpdate(UpdateView): model = CatToy fields = ['name', 'color'] success_url = '/cattoys' @method_decorator(login_required, name="dispatch") class CatToyDelete(DeleteView): model = CatToy success_url = '/cattoys'
[ "63361320+zfinnan@users.noreply.github.com" ]
63361320+zfinnan@users.noreply.github.com
f3cc74839fd1e068538d6ef45bd477d14669beb1
8cdc63b549f5a7f1aca7b476a5a918e5c05e38c5
/app/notifier/views.py
f6290b484aa499c56d76805c924c8c55f4cbb991
[ "MIT" ]
permissive
rogeriopaulos/gep
984e3bcd8bd4569031577e1d28a8c47c6aace91f
e56fd0450bdb8f572e2e35cc59a74ab0f0b372e2
refs/heads/main
2023-08-14T08:41:19.558899
2021-09-15T02:51:46
2021-09-15T02:51:46
402,270,601
0
1
null
null
null
null
UTF-8
Python
false
false
4,337
py
import adm.models as adm import core from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.models import User from django.core import serializers from django.core.exceptions import PermissionDenied from django.db.models import Q from django.shortcuts import get_object_or_404 from django.views.generic import FormView from guardian.shortcuts import get_users_with_perms from .forms import NotifiedUsersForm from .tasks import notificar from .utils import atos class NotifierView(LoginRequiredMixin, FormView): template_name = 'componentes/shares/NotifyForm.html' form_class = NotifiedUsersForm verb = 'notificou' def dispatch(self, request, *args, **kwargs): if hasattr(self, 'settings'): self.settings(self, request, *args, **kwargs) return super(NotifierView, self).dispatch(request, *args, **kwargs) def form_valid(self, form): self.check_permission() self.notify_users(form) return super().form_valid(form) def get_context_data(self, **kwargs): context = super(NotifierView, self).get_context_data(**kwargs) context['obj'] = self.obj context['success_url'] = self.success_url return context def get_form(self, form_class=None): self.check_permission() if form_class is None: form_class = self.get_form_class() return form_class(queryset=self.notificados(), **self.get_form_kwargs()) def check_permission(self): user_has_perm = self.request.user in get_users_with_perms(self.processo) user_has_authority = self.request.user.groups.filter(name=self.GRUPO_SUPERIOR) user_at_orgao = self.request.user.profile.orgao_link == self.processo.orgao_processo if user_has_authority and not (user_at_orgao or user_has_perm): raise PermissionDenied if not user_has_authority and not user_has_perm: raise PermissionDenied def notificados(self): users_with_perms = get_users_with_perms(self.processo) authorities = User.objects \ .filter((Q(groups__name=self.GRUPO_SUPERIOR)) & Q(profile__orgao_link=self.processo.orgao_processo)) \ .distinct() users = users_with_perms | authorities return users.filter(is_superuser__exact=False, is_active__exact=True).order_by('first_name') def notify_users(self, form): actor = self.request.user users = form.cleaned_data['usuarios'] notification_context = { 'actor': serializers.serialize('json', [actor]), 'users': serializers.serialize('json', users), 'verb': self.verb, 'target': serializers.serialize('json', [self.processo]), 'action_object': serializers.serialize('json', [self.obj]), 'description': self.processo.get_absolute_url() } notificar.delay(notification_context) def settings(self, request, *args, **kwargs): self.set_obj(self, request, *args, **kwargs) self.set_processo(self, request, *args, **kwargs) self.set_success_url(self, request, *args, **kwargs) def set_obj(self, request, *args, **kwargs): self.obj = get_object_or_404(self.model, pk=self.kwargs['model_pk']) def set_processo(self, request, *args, **kwargs): self.processo = self.obj.processo def set_success_url(self, request, *args, **kwargs): self.success_url = self.obj.processo.get_absolute_url() class NotifyAtoAdmView(NotifierView): GRUPO_SUPERIOR = core.permissions.GRUPO_SUPERIOR_ADMINISTRATIVO model = adm.AtoAdm submodels = atos['adm'] def set_obj(self, request, *args, **kwargs): super().set_obj(request) self.obj = self.submodels[self.obj.tipo_ato].objects.get(pk=self.obj.pk) notifica_ato_adm = NotifyAtoAdmView.as_view() class NotifyOficioEmpresaView(NotifierView): GRUPO_SUPERIOR = core.permissions.GRUPO_SUPERIOR_ADMINISTRATIVO model = adm.OfEmpresas def set_processo(self, request, *args, **kwargs): self.processo = self.obj.controlempresas.processo def set_success_url(self, request, *args, **kwargs): self.success_url = self.obj.controlempresas.processo.get_absolute_url() notifica_oficio_empresa = NotifyOficioEmpresaView.as_view()
[ "rogeriopaulos@gmail.com" ]
rogeriopaulos@gmail.com
cc4b81158428b5039951c734cb8ff5b0800851a5
c31ec40b6dcb90861e8aee2dd4b9db641937ccf5
/src/PredictCreditCardDelinquency/inference.py
4ae19a4fa84e844343f1d98ba68d8f87e91783f2
[ "Apache-2.0" ]
permissive
leeeejunnnn/PredictCreditCardDelinquency
158af84995c9491c1acb060ca12f83f7d6ee6fe5
ed4e599bed277d138bded3660d2b75c8e76d0d52
refs/heads/main
2023-08-27T16:34:16.359746
2021-10-09T00:03:30
2021-10-09T00:03:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,249
py
import argparse import pandas as pd if __name__ == "__main__": path = "../../input/predict-credit-card-delinquency/" parse = argparse.ArgumentParser("Ensemble") parse.add_argument("-w1", type=float, default=0.98) parse.add_argument("-w2", type=float, default=0.1) parse.add_argument("-w3", type=float, default=0.05) parse.add_argument("-w4", type=float, default=0.05) parse.add_argument("-w5", type=float, default=0.1) parse.add_argument("--file", type=str, default="ensemble_model.csv") args = parse.parse_args() lgb_preds = pd.read_csv("../../submission/lgbm_submit.csv") xgb_preds = pd.read_csv("../../submission/xgb_submit.csv") cat_preds = pd.read_csv("../../submission/cat_submit_test.csv") rf_preds = pd.read_csv("../../submission/rf_submit.csv") tab_preds = pd.read_csv("../../submission/tabnet_submit.csv") submission = pd.read_csv(path + "sample_submission.csv") submission.iloc[:, 1:] = ( args.w1 * cat_preds.iloc[:, 1:] + args.w2 * lgb_preds.iloc[:, 1:] + args.w3 * xgb_preds.iloc[:, 1:] + args.w4 * rf_preds.iloc[:, 1:] + args.w5 * tab_preds.iloc[:, 1:] ) submission.to_csv("../../submission/" + args.file, index=False)
[ "leewook94@naver.com" ]
leewook94@naver.com
eb9f92818f4a34f8b18330ac495349d7015c8939
ba09463fcf9144df29958026c82a4b5cb7090291
/siftNearestN2.py
2cc8e0d8885591db459665e6f6123e056899a5ca
[]
no_license
EricCheng2222/BagOfSiftFeatures
62accf21acc39c5b1ba7c6366521dbc0ff84b6c3
c9d2e456e63ead7429d35722f7b836446fb6454d
refs/heads/master
2020-03-17T15:15:54.685896
2018-05-16T17:51:39
2018-05-16T17:51:39
133,703,937
0
0
null
null
null
null
UTF-8
Python
false
false
974
py
import math import cv2 import numpy as np import glob, os fileList = [] keypointList = [] dirList = getAllDirIn("") #readDir for dir in dirList: tmp = getAllFileIn(dir) fileList.append(tmp) #readImg, extractFeature and use Kmean to extract important feature importantFeatureList = [] for pictureList in fileList: oneCateFeatureList = [] for picture in pictureList: keypoint = extractKeypoint(picture) tmpFeatureList = extractFeatureFrom(keypoint) oneCateFeatureList.append(tmpFeatureList) oneCateImportantFeature = kmean(oneCateFeatureList) importantFeatureList.append(oneCateImportantFeature) #readTestImage for image in testImage: cateLabel = 1 currentLabel = 0 currentScore = 255*10*10 for importantFeature in importantFeatureList: cmpScore = score(image, importantFeature) if currentScore > cmpScore: currentLabel = cateLabel currentScore = cmpScore cateLabel = cateLabel + 1 print (currentLabel, currentScore)
[ "noreply@github.com" ]
EricCheng2222.noreply@github.com
74d926edb734c14ed48d62777ea99cd69278b441
aa43c361cc3c99445166c05e17b0150ada991d55
/re.credit.py
d152c5dba1d145125a893b40267914338daa707c
[]
no_license
surendra-3085/code_challenges
5a4eb8679a3edd39f5c3d877c32fbb1d02d7b4f6
f216275b19330e8594f51b1eb4a58c96fb7b2c8e
refs/heads/master
2020-04-11T22:08:38.300330
2018-12-17T19:44:54
2018-12-17T19:44:54
162,126,628
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
import re credit_number = input("enter card number") cardnumber = re.match('^[0-9]{4}[a-z]{4}',credit_number) if cardnumber: print("valid number") else: print("invalid number")
[ "surendrakumaryadav3085@gmail.com" ]
surendrakumaryadav3085@gmail.com
2c3b30d76b84c1ec9910af37cc9a7eb984c7586d
10665bd276fee3e8734a8d8d0354d62af69c699e
/ISCE2StaMPS_run_steps.py
a137a49700d2e1a716a31f9becfb9ea124b59618
[]
no_license
LuyenKhacBui/ISCE2StaMPS
0474c23ab13759f137e0b51c08bb0279d5fafede
6ae4c3717f760c834a20ebad23cb9175006dd76e
refs/heads/master
2021-09-08T09:43:50.452651
2021-09-02T18:48:57
2021-09-02T18:48:57
243,200,747
5
1
null
null
null
null
UTF-8
Python
false
false
9,141
py
#!/usr/bin/env python3 '''#!/usr/bin/env python''' '''This is a script used to run steps listed in directory "run_files" in order to adapt ISCE to StaMPS. Parameters: Input parameters Returns: Output results: multi outputs ''' import os, sys import datetime import subprocess import glob import logging appdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) print(appdir) ##sys.path.append(appdir) sys.path.insert(0, appdir) #from modules.basictools import LoggingGen def LoggingGen(logfile): ''' A fn. used to generate logging appended to a file (i.e., "logfile") parameters: logfile : a file used to log infor. ''' ####################### ##### CREATE A LOG FILE logger = logging.getLogger('mylog') logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh = logging.FileHandler(logfile, mode = 'w') fh.setLevel(logging.DEBUG) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.ERROR) # create formatter and add it to the handlers #formatter = logging.Formatter('%(asctime)s | %(name)s | %(levelname)s: %(message)s') formatter = logging.Formatter('%(asctime)s | %(levelname)s: %(message)s') ch.setFormatter(formatter) fh.setFormatter(formatter) # add handlers to logger logger.addHandler(ch) logger.addHandler(fh) # logging examples #logger.debug('debug message') #logger.info('info message') #logger.warn('warn message') #logger.error('error message') #logger.critical('critical message') return logger sttm = datetime.datetime.now() # Luyen cmt: start time running for all prog. print print ('##########################################################################################################################') print ('# #') print ('# This is the app. used to run steps listed in directory "run_files" in order to adapt ISCE to StaMPS #') print ('# (Script used: ISCE2StaMPS_run_steps.py) #') print ('# #') print ('##########################################################################################################################') ####################### ##### CREATE A LOG FILE logfile = 'ISCE2StaMPS_run_steps_log.txt' '''if os.path.isfile(logfile): print ('\r\nThe logging file: ' + logfile + ' is already existent. Please delete or change its name.\r\n') sys.exit()''' logger = LoggingGen(logfile) logger.info ('##########################################################################################################################') logger.info ('# #') logger.info ('# This is the app. used to run steps listed in directory "run_files" in order to adapt ISCE to StaMPS #') logger.info ('# (Script used: ISCE2StaMPS_run_steps.py) #') logger.info ('# #') logger.info ('##########################################################################################################################') crdir = os.getcwd() # Current dir rfdir = 'run_files' # The dir of which "run_files" dir is included rflog = 'run_files_reports' # The dir of which log/reports of "run_files" line-by-line are included if os.path.isdir(rflog): cmd = 'rm -r ' + rflog subprocess.call(cmd, shell=True) cmd = "mkdir " + rflog subprocess.call(cmd, shell=True) print ('\r\nSteps being run is listed in the directory ' + repr(rfdir)) logger.info ('Steps being run is listed in the directory ' + repr(rfdir)) rffle = [file for file in glob.glob(rfdir + '/' + "run_*")] # List all files included in 'run_files' dir rffle = [os.path.split(f)[1] for f in rffle] # Split to keep just file names only (i.e., remove its directory ('run_files')) rffle.sort(key=lambda f: int("".join(filter(str.isdigit, f[4:6])))) # Sort list of run files so that it will be: [run_1_...; run_2_..., ..., run_10_...] print ('\r\nNumber of run files: ' + str(len(rffle))) logger.info ('Number of run files: ' + str(len(rffle))) for ii, file in enumerate(rffle): print ('\r\nRun commands listed in run file number: ' + str(ii + 1).zfill(len(str(len(rffle)))) + ' / ' + str(len(rffle)) + '\t: ' + file) logger.info ('Run commands listed in run file number: ' + str(ii + 1).zfill(len(str(len(rffle)))) + ' / ' + str(len(rffle)) + '\t: ' + file) rfile = open(os.path.join(rfdir, file), "r") cnt = rfile.readlines() rfile.close() for jj, line in enumerate(cnt): print ('\tCall command from line number: ' + str(jj + 1).zfill(len(str(len(cnt)))) + ' / ' + str(len(cnt)) + '\t: ' + str(line).rstrip("\n\r")) logger.info ('\tCall command from line number: ' + str(jj + 1).zfill(len(str(len(cnt)))) + ' / ' + str(len(cnt)) + '\t: ' + str(line).rstrip("\n\r")) if ii+1 < 10: cmd = line.rstrip("\n\r") + ' >> ' + rflog + '/' + file + '_line_' + str(jj + 1).zfill(len(str(len(cnt)))) + '_' + str(len(cnt)) + '.txt' else: cmd = line.rstrip("\n\r") + ' >> ' + rflog + '/' + file + '_line_' + str(jj + 1).zfill(len(str(len(cnt)))) + '_' + str(len(cnt)) + '.txt' subprocess.call(cmd, shell=True) print ('\r\nLogging/Report files of the above steps are saved in: ' + repr(rflog) + ' that should be carefully read to check if any error issued.') logger.info ('Logging/Report files of the above steps are saved in: ' + repr(rflog) + ' that should be carefully read to check if any error issued.') print ("\r\nCreate 'input_file' used for running in the next step: 'make_single_master_stack_isce'") logger.info ("Create 'input_file' used for running in the next step: 'make_single_master_stack_isce'") stkpth = os.path.abspath('merged/SLC') stkmst = 'UNKNOWN' geopth = os.path.abspath('merged/geom_master') bslpth = os.path.abspath('merged/baselines') rglook = 40 azlook = 10 asrtio = 4 lmbda = 0.056 slcsuf = '.full' geosuf = '.full' ofile = 'input_file' print ('\tslc_stack_path : ' + stkpth) print ('\tslc_stack_master : ' + stkmst) print ('\tslc_stack_geom_path : ' + geopth) print ('\tslc_stack_baseline_path: ' + bslpth) print ('\trange_looks : ' + str(rglook)) print ('\tazimuth_looks : ' + str(azlook)) print ('\tlambda : ' + str(lmbda)) print ('\tslc_suffix : ' + slcsuf) print ('\tgeo_suffix : ' + geosuf) logger.info ('\tslc_stack_path : ' + stkpth) logger.info ('\tslc_stack_master : ' + stkmst) logger.info ('\tslc_stack_geom_path : ' + geopth) logger.info ('\tslc_stack_baseline_path: ' + bslpth) logger.info ('\trange_looks : ' + str(rglook)) logger.info ('\tazimuth_looks : ' + str(azlook)) logger.info ('\tlambda : ' + str(lmbda)) logger.info ('\tslc_suffix : ' + slcsuf) logger.info ('\tgeo_suffix : ' + geosuf) outputFile = open(ofile,'w') outputFile.write('source_data\t\tslc_stack\n') outputFile.write('slc_stack_path\t\t%s\n' % stkpth) outputFile.write('slc_stack_master\t%s\n' % stkmst) outputFile.write('slc_stack_geom_path\t%s\n' % geopth) outputFile.write('slc_stack_baseline_path\t%s\n\n' % bslpth) outputFile.write('range_looks\t\t%i\n' % rglook) outputFile.write('azimuth_looks\t\t%i\n' % azlook) outputFile.write('aspect_ratio\t\t%i\n\n' % asrtio) outputFile.write('lambda\t\t\t%.3f\n' % lmbda) outputFile.write('slc_suffix\t\t%s\n' % slcsuf) outputFile.write('geom_suffix\t\t%s\n' % geosuf) outputFile.close() fntm = datetime.datetime.now() # Luyen cmt: finish time running for all prog. logger.info('==============================================') logger.info('----------------------------------------------') logger.info('Prog. started at : ' + str(sttm)) logger.info('Prog. finished at : ' + str(fntm)) logger.info('total running time: ' + str(fntm - sttm)) logger.info('Program finished !') logger.info('----------------------------------------------') logger.info('==============================================') print ('\r\n==========================================================================================================================') print ('--------------------------------------------------------------------------------------------------------------------------') print ('Prog. started at : ' + str(sttm)) print ('Prog. finished at : ' + str(fntm)) print ('total running time: ' + str(fntm - sttm)) print ('Program finished !') print ('--------------------------------------------------------------------------------------------------------------------------') print ('==========================================================================================================================')
[ "buikhacluyen@humg.edu.vn" ]
buikhacluyen@humg.edu.vn
2e7f3da0cce5a64c561d84c71c1d0db03b83b50d
1076553541e344ff6f76f55ef8cf05c597fbc493
/Bishop.py
c4b6a466a6b0cb819b2e0d13dcd571fd5f2f686b
[]
no_license
Jinsung1022/Chess
a6a84390143d4cf5108877fdc4d204ff4fb05dc1
3cfd4c0b32a84c817f8805e29bac8b084c33c180
refs/heads/master
2020-08-29T17:41:38.345480
2020-02-06T00:36:32
2020-02-06T00:36:32
218,114,888
0
0
null
null
null
null
UTF-8
Python
false
false
1,062
py
from Piece import Piece class Bishop(Piece): def __init__(self, color, x, y): super().__init__(color, x, y) def possible(self, board): move_array = [] directions = [[1, 1], [-1, 1], [-1, -1], [1, -1]] for direction in directions: blocked = False pos_x = self.x pos_y = self.y for i in range(0, 8): pos_x = pos_x + direction[0] pos_y = pos_y + direction[1] if self.inside_board(pos_x, pos_y): if not blocked: if board[pos_x][pos_y] != 0: if board[pos_x][pos_y].color == self.opp_color(self.color): move_array.append((pos_x, pos_y)) blocked = True elif board[pos_x][pos_y].color == self.color: blocked = True else: move_array.append((pos_x, pos_y)) return move_array
[ "57107998+Jinsung1022@users.noreply.github.com" ]
57107998+Jinsung1022@users.noreply.github.com
12029d039aa01c3481d6b33bd0fb592149d486d9
fd173195d07b5a5ce229a0c1a20ee61884d8c8a1
/python_practice/Basic_programs/11_is_fibonacci_number.py
b01f3ff8f77b38095c2c85b79ada9315f3692ad7
[]
no_license
anitrajpurohit28/PythonPractice
f7e71946144e04b7f9cb9682087e5d4f79839789
8b75b67c4c298a135a5f8ab0b3d15bf5738859f1
refs/heads/master
2023-04-12T07:04:12.150646
2021-04-24T19:52:24
2021-04-24T19:52:24
293,912,662
0
0
null
null
null
null
UTF-8
Python
false
false
686
py
# 11 Python Program for How to check if a given number is Fibonacci number? # Following is an interesting property about Fibonacci numbers that # can also be used to check if a given number is Fibonacci or not. # A number is Fibonacci if and only if one or both of # (5*n2 + 4) or (5*n2 – 4) is a perfect square (Source: Wiki). import math def is_perfect_square(num): s = int(math.sqrt(num)) return s*s == num def is_fibonacci_number(n): return is_perfect_square(5*n*n - 4) or is_perfect_square(5*n*n + 4) for i in range(1, 11): if is_fibonacci_number(i): print(f"{i} is a fibonacci number") else: print(f"{i} is NOT a fibonacci number")
[ "anitrajpurohit28@gmail.com" ]
anitrajpurohit28@gmail.com
11e95e1867e6a6d94774ee2e948e6019a0046f49
86d10b2e24863ab841280cb1a81b54f82ca8f480
/machamp/util.py
14551bba3d261b9bdf68cc18aedc8b6ccd9e9ff2
[ "MIT" ]
permissive
ml-ai-nlp-ir/machamp
897a1d5769052ffafa874c5e9803853e6918d468
406cc0010dfd6eb370ada4658a6b899539321076
refs/heads/master
2022-09-28T07:01:18.935350
2020-06-04T11:44:56
2020-06-04T11:44:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,823
py
""" A collection of handy utilities """ from typing import List, Tuple, Dict, Any import os import glob import json import logging import tarfile import traceback import torch import pprint import copy import numpy from allennlp.common.checks import ConfigurationError from allennlp.common import Params from allennlp.common.params import with_fallback from allennlp.commands.predict import _PredictManager from allennlp.common.checks import check_for_gpu from allennlp.models.archival import load_archive from allennlp.predictors.predictor import Predictor logger = logging.getLogger(__name__) # count number of sentences in file, if it is a connlu-like # file it counts the empty lines, otherwise it counts all # lines def countLines(path): total = 0 empty = 0 for line in open(path): total += 1 if line.strip() == '': empty += 1 if empty < 10: return total else: return empty def merge_configs(parameters_config: str, dataset_config: str, overrides: Dict) -> Params: """ Merges a dataset config file with a parameters config file """ mergedSettings = Params.from_file(parameters_config).as_dict() mergedSettings = with_fallback(overrides, mergedSettings)#.update(overrides) #mergedSettings = Params(mergedSettings) dataset_config = Params.from_file(dataset_config) defaultDecoder = mergedSettings['model'].pop('default_decoder') orderedStuff = {} mergedSettings['dataset_reader']['datasets'] = {} mergedSettings['model']['decoders'] = {} for dataset in dataset_config: dataReader = {} dataReader['train'] = dataset_config[dataset]['train_data_path'] dataReader['dev'] = dataset_config[dataset]['validation_data_path'] if 'test_data_path' in dataset_config[dataset]: dataReader['test'] = dataset_config[dataset]['test_data_path'] if 'word_idx' in dataset_config[dataset]: dataReader['word_idx'] = dataset_config[dataset]['word_idx'] else: dataReader['sent_idxs'] = dataset_config[dataset]['sent_idxs'] dataReader['tasks'] = {} if 'copy_other_columns' in dataset_config[dataset]: dataReader['copy_other_columns'] = dataset_config[dataset]['copy_other_columns'] else: dataReader['copy_other_columns'] = mergedSettings['model']['default_dataset']['copy_other_columns'] for task in dataset_config[dataset]['tasks']: taskOverride = dataset_config[dataset]['tasks'][task] decoder = copy.deepcopy(defaultDecoder) decoder.update(taskOverride) decoder['dataset'] = dataset decoder['task'] = task dataReader['tasks'][task] = copy.deepcopy(decoder) orderIdx = decoder['order'] if 'task_type' not in decoder: logger.warning('Error, task ' + task + ' has no defined task_type') exit(1) curTrans = decoder['task_type'] curLayer = decoder['layer'] if decoder['task_type'] == 'dependency': decoder['type'] = 'machamp_dependency_decoder' if 'metric' not in dataReader['tasks'][task]: decoder['metric'] = 'LAS' if 'tag_representation_dim' not in dataReader['tasks'][task]: decoder['tag_representation_dim'] = 256 if 'arc_representation_dim' not in dataReader['tasks'][task]: decoder['arc_representation_dim'] = 768 elif decoder['task_type'] == 'classification': decoder['type'] = 'machamp_sentence_classifier' #ROB TODO why do we need empty kwargs? decoder['kwargs'] = {} elif decoder['task_type'] == 'multiseq': decoder['type'] = 'multiseq_decoder' elif decoder['task_type'] in ['seq', 'string2string']: if 'decoder_type' in decoder and decoder['decoder_type'] == 'crf': decoder['type'] = 'masked_crf_decoder' del decoder['decoder_type'] del decoder['decoder_type'] else: decoder['type'] = 'machamp_tag_decoder' else: logger.warning('task_type ' + str(dataReader['tasks'][task]['task_type']) + " not known") exit(1) if 'metric' not in decoder: decoder['metric'] = 'acc' if decoder['metric'] == 'span_f1': decoder['metric'] = 'machamp_span_f1' orderedStuff[task] = [orderIdx, curTrans, curLayer] # save stuff in mergedSettings mergedSettings['model']['decoders'][task] = decoder dataReader['tasks'][task] = copy.deepcopy(decoder) mergedSettings['dataset_reader']['datasets'][dataset] = dataReader # Rob: we definitely do not want to cheat and add dev and test labels here mergedSettings["datasets_for_vocab_creation"] = ["train"] del mergedSettings['model']['default_dataset'] # to support reading from multiple files we add them to the datasetreader constructor instead # the following ones are there just here to make allennlp happy mergedSettings['train_data_path'] = 'train' mergedSettings['validation_data_path'] = 'dev' if 'test_data_path' in dataset_config[dataset]: mergedSettings['test_data_path'] = 'test' # generate ordered lists, which make it easier to use in the machamp model orderedTasks = [] orderedTaskTypes = [] orderedLayers = [] for label, idx in sorted(orderedStuff.items(), key=lambda item: item[1]): orderedTasks.append(label) orderedTaskTypes.append(orderedStuff[label][1]) orderedLayers.append(orderedStuff[label][2]) mergedSettings['model']['tasks'] = orderedTasks mergedSettings['model']['task_types'] = orderedTaskTypes mergedSettings['model']['layers_for_tasks'] = orderedLayers mergedSettings['model']['decoders'][orderedTasks[0]]['prev_task'] = None for taskIdx, task in enumerate(orderedTasks[1:]): mergedSettings['model']['decoders'][task]['prev_task'] = orderedTasks[taskIdx] #TODO shouldnt this be -1? for task in orderedTasks: mergedSettings['model']['decoders'][task]['task_types'] = orderedTaskTypes mergedSettings['model']['decoders'][task]['tasks'] = orderedTasks #taskIdx is not +1, because first item is skipped # remove items from tagdecoder, as they are not neccesary there for item in ['task_type', 'dataset', 'column_idx', 'layer', 'order']: for task in mergedSettings['model']['decoders']: if item in mergedSettings['model']['decoders'][task]: del mergedSettings['model']['decoders'][task][item] if 'trainer' in overrides and 'cuda_device' in overrides['trainer']: mergedSettings['trainer']['cuda_device'] = overrides['trainer']['cuda_device'] #import pprint #pprint.pprint(mergedSettings.as_dict()) #exit(1) numSents = 0 for dataset in mergedSettings['dataset_reader']['datasets']: trainPath = mergedSettings['dataset_reader']['datasets'][dataset]['train'] numSents += countLines(trainPath) warmup = int(numSents/mergedSettings['iterator']['batch_size']) mergedSettings['trainer']['learning_rate_scheduler']['warmup_steps'] = warmup mergedSettings['trainer']['learning_rate_scheduler']['start_step'] = warmup mergedSettings['model']['bert_path'] = mergedSettings['dataset_reader']['token_indexers']['bert']['pretrained_model'] #TODO, this will result in the same as appending _tags , however, the # warning will still be there... this can be circumvented by copying # allennlp.data.fields.sequence_label_field and add a smarter check... #mergedSettings['vocabulary'] = {'non_padded_namespaces': ['ne1']} return Params(mergedSettings) def predict_model_with_archive(predictor: str, params: Params, archive: str, input_file: str, output_file: str, batch_size: int = 1): cuda_device = params["trainer"]["cuda_device"] check_for_gpu(cuda_device) archive = load_archive(archive, cuda_device=cuda_device) for item in archive.config.duplicate(): archive.config.__delitem__(item) for item in params: archive.config[item] = params.as_dict()[item] predictor = Predictor.from_archive(archive, predictor) manager = _PredictManager(predictor, input_file, output_file, batch_size, print_to_console=False, has_dataset_reader=True) manager.run() def predict_model(predictor: str, params: Params, archive_dir: str, input_file: str, output_file: str, batch_size: int = 1): """ Predict output annotations from the given model and input file and produce an output file. :param predictor: the type of predictor to use, e.g., "machamp_predictor" :param params: the Params of the model :param archive_dir: the saved model archive :param input_file: the input file to predict :param output_file: the output file to save :param batch_size: the batch size, set this higher to speed up GPU inference """ archive = os.path.join(archive_dir, "model.tar.gz") predict_model_with_archive(predictor, params, archive, input_file, output_file, batch_size) def cleanup_training(serialization_dir: str, keep_archive: bool = False, keep_weights: bool = False): """ Removes files generated from training. :param serialization_dir: the directory to clean :param keep_archive: whether to keep a copy of the model archive :param keep_weights: whether to keep copies of the intermediate model checkpoints """ if not keep_weights: for file in glob.glob(os.path.join(serialization_dir, "*.th")): os.remove(file) if not keep_archive: os.remove(os.path.join(serialization_dir, "model.tar.gz")) def archive_bert_model(serialization_dir: str, config_file: str, output_file: str = None): """ Extracts BERT parameters from the given model and saves them to an archive. :param serialization_dir: the directory containing the saved model archive :param config_file: the configuration file of the model archive :param output_file: the output BERT archive name to save """ archive = load_archive(os.path.join(serialization_dir, "model.tar.gz")) model = archive.model model.eval() try: bert_model = model.text_field_embedder.token_embedder_bert.model except AttributeError: logger.warning(f"Could not find the BERT model inside the archive {serialization_dir}") traceback.print_exc() return weights_file = os.path.join(serialization_dir, "pytorch_model.bin") torch.save(bert_model.state_dict(), weights_file) if not output_file: output_file = os.path.join(serialization_dir, "bert-finetune.tar.gz") with tarfile.open(output_file, 'w:gz') as archive: archive.add(config_file, arcname="bert_config.json") archive.add(weights_file, arcname="pytorch_model.bin") os.remove(weights_file) def to_multilabel_sequence(predictions, vocab, task): #TODO @AR: Hard-coded parameters for now THRESH = 0.5 k = 2 outside_index = vocab.get_token_index("O", namespace=task) # @AR: Get the thresholded matrix and prepare the prediction sequence pred_over_thresh = (predictions >= THRESH) * predictions sequence_token_labels = [] # @AR: For each label set, check if to apply argmax or sigmoid thresh for pred in pred_over_thresh: num_pred_over_thresh = numpy.count_nonzero(pred) if num_pred_over_thresh < k: pred_idx_list = [numpy.argmax(predictions, axis=-1)] # print("argmax ->", pred_idx_list) else: pred_idx_list = [numpy.argmax(predictions, axis=-1)] # pred_idx_list = list(numpy.argpartition(pred, -k)[-k:]) # # print("sigmoid ->", pred_idx_list) # # If the first (i.e., second best) is "O", ignore/remove it # if pred_idx_list[0] == outside_index: # pred_idx_list = pred_idx_list[1:] # # If the second (i.e., the best) is "O", ignore/remove the first # elif pred_idx_list[1] == outside_index: # pred_idx_list = pred_idx_list[1:] # else: # pass sequence_token_labels.append(pred_idx_list) return sequence_token_labels
[ "robvanderg@live.nl" ]
robvanderg@live.nl
58b605d380f94963234ff94707b96eb6474edbc1
b2aa1fe639381fc7d6499b3e8b3cafb0930ecbb0
/Arrays/3.py
653974d08f8068474d173bf051d507bcefcb7e4e
[ "MIT" ]
permissive
Nadeemk07/Python-Examples
7c02290778643776b434ea7eb824c229bf90ade6
07e44dd406048887920a8be92b12cbc685592117
refs/heads/main
2023-05-11T11:22:14.608875
2021-06-06T18:19:32
2021-06-06T18:19:32
350,406,303
0
0
null
null
null
null
UTF-8
Python
false
false
505
py
# Python3 m, n = [int(i) for i in input().split()] if n <= 1: print(n) quit() lesser_n = (n+2) % 60 lesser_m = (m+1) % 60 def fibo(n): a, b = 0, 1 for i in range(2, n+1): c = a+b c = c % 10 b, a = c, b return (c-1) if lesser_n <= 1: a = lesser_n-1 else: a = fibo(lesser_n) if lesser_m <= 1: b = lesser_m-1 else: b = fibo(lesser_m) # print(a) # print(b) if a >= b: print(a-b) else: print(10+a-b)
[ "noreply@github.com" ]
Nadeemk07.noreply@github.com
699fe08801a753c20beaa4d2bddb839dc645687e
d546e27891f3637336a7b9f2222d1c0b0edb7c87
/pycsvschema/checker.py
30f46879965c5ff811ad9337669683a9579be0cb
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
crowdskout/PyCSVSchema
66d40389e321550f88d091974b60dd728de4c4df
d5d44ace9bfe84e1001577caf4d933827143d124
refs/heads/master
2021-03-22T04:52:06.320896
2020-05-18T01:23:40
2020-05-18T01:23:40
119,094,452
13
3
MIT
2020-05-18T01:23:42
2018-01-26T19:32:37
Python
UTF-8
Python
false
false
7,699
py
#!/usr/bin/python # -*-coding: utf-8 -*- import csv from itertools import chain import json import jsonschema from pycsvschema.validators import header_validators from pycsvschema import defaults, _utilities from typing import Dict, Optional class Validator: _CSV_DEFAULT_PARS = { 'delimiter': ',', 'doublequote': True, 'escapechar': None, 'lineterminator': '\r\n', 'quotechar': '"', 'quoting': csv.QUOTE_MINIMAL, 'skipinitialspace': False, 'strict': False } def __init__(self, csvfile: str, schema: Dict, output: Optional[str] = None, errors: str = 'raise', **kwargs): """ :param csvfile: Path to CSV file :param schema: CSV Schema in dict :param output: Path to output file of errors. If output is None, print the error message. Default: None. :param error: {'raise', 'coerce'} If error is 'raise', stop the validation when it meets the first error. If error is 'coerce', output all errors. Validator also accepts parameters of csv.reader, that includes delimiter, doublequote, escapechar, lineterminator, quotechar, quoting, skipinitialspace and strict See details on https://docs.python.org/3/library/csv.html#dialects-and-formatting-parameters """ self.csvfile = csvfile self.schema = schema self.output = output if errors not in {'raise', 'coerce'}: raise ValueError("Unknown value for parameter errors") self.errors = errors self.header = [] self.csv_pars = { **self._CSV_DEFAULT_PARS, **{k: kwargs[k] for k in set(kwargs).intersection(self._CSV_DEFAULT_PARS)} } self.column_validators = {'columns': {}, 'unfoundfields': {}} self.validate_schema() self.update_schema() def validate_schema(self): meta_schema = json.load(open('pycsvschema/schema.json', 'r')) jsonschema.validate(self.schema, meta_schema) def update_schema(self): # Convert list in schema into set # missingValues if 'missingValues' not in self.schema.keys(): self.schema['missingValues'] = defaults.MISSINGVALUES self.schema['missingValues'] = set(self.schema['missingValues']) # enum in fields, definitions and patternFields fields_schema_with_array = ( self.schema['fields'], self.schema['definitions'].values(), self.schema['patternFields'].values() ) array_keywords = ('trueValues', 'falseValues', 'enum') for fields in fields_schema_with_array: for field in fields: for k in array_keywords: if k in field.keys(): field[k] = set(field[k]) def validate(self): with open(self.csvfile, 'r') as csvfile: csv_reader = csv.reader(csvfile, **self.csv_pars) # Read first line as header self.header = next(csv_reader) self.prepare_field_schema() with _utilities.file_writer(self.output) as output: # Concat errors from header checking and row checking for error in chain(self.check_header(), self.check_rows(csv_reader)): if self.errors == 'raise': raise error else: output.write(str(error)) output.write('\n') def prepare_field_schema(self): """ Prepare validators from `fields` option for every column Sample self.column_validators { 'columns':{ 0: { 'column': '<COLUMN_NAME>', 'field_schema': {'name':'id', 'type': 'number'}, 'validators': [ < function csvchecker._validators.validate_type >, < function csvchecker._validators.validate_type > ], 'patternfields': { '<PATTERN>': { 'field_schema': {'name':'id', 'type': 'number'}, 'column': '<COLUMN_NAME>' } } } }, 'unfoundfields': { '<FIELD_NAME>': { 'field_schema': {'name':'id', 'type': 'number'}, 'column': '<COLUMN_NAME>' } }, 'definitions': { 'ref1': { 'validators': [ < function csvchecker._validators.validate_type >, < function csvchecker._validators.validate_type > ], 'field_schema': {'name':'id', 'type': 'number'} } }, 'patternfields': { 'ref1': { 'validators': [ < function csvchecker._validators.validate_type >, < function csvchecker._validators.validate_type > ], 'field_schema': {'name':'id', 'type': 'number'} } } } """ # Sample header_index {'col_1': [0, 1],} # column names might not be unique header_index = {} for k, v in enumerate(self.header): if v in header_index: header_index[v].append(k) else: header_index[v] = [k] for field_schema in self.schema.get('fields', defaults.FIELDS): column_info = {'field_schema': field_schema, 'column': field_schema['name']} _utilities.find_row_validators(column_info=column_info, field_schema=field_schema) # Pass the validators to one or more than one columns if field_schema['name'] in header_index.keys(): for column_index in header_index[field_schema['name']]: self.column_validators['columns'][column_index] = column_info # Store the unfound field names in column_validators.unfoundfields else: self.column_validators['unfoundfields'][field_schema['name']] = column_info def check_header(self): for validator_name, validator in header_validators.HEADER_OPTIONS.items(): if validator_name in self.schema: yield from validator(self.header, self.schema, self.column_validators) yield from header_validators.field_required(self.header, self.schema, self.column_validators) def check_rows(self, csvreader, callback=lambda *args: None): for line_num, row in enumerate(csvreader): for index, column_info in self.column_validators['columns'].items(): c = {'value': row[index], 'row': line_num + 1, 'column': self.header[index]} # Update c.value to None if value is in missingValues yield from header_validators.missingvalues(c, self.schema, self.column_validators) for validator in column_info['validators']: # Type validator convert cell value into target type, other validators don't accept None value # if validator is row_validators.field_type or c['value'] is not None: yield from validator(c, self.schema, column_info['field_schema']) callback(line_num, row) class CSV2JSON(Validator): def __init__(self, csvfile: str, schema: Dict, output: Optional[str], **kwargs): super(CSV2JSON, self).__init__(csvfile, schema, output, **kwargs)
[ "bot@guangyangli.com" ]
bot@guangyangli.com
3ee4399592389c469e7d560ccbd2ad7609a0a702
29db67145af7749df38a80b016253e8a8bf78941
/BooleanWeatherRecs.py
fdad5a1dcd0c115244bdf437643cc33eea6ddf97
[]
no_license
holtsho1/CS1301xI
b42e78d80904641afb98b75c314ecc38cc075cab
e87a11ceb4e77cb10745ab072e723c50ad8bfd0f
refs/heads/main
2023-07-30T20:39:44.985990
2021-09-22T17:57:40
2021-09-22T17:57:40
406,101,627
0
0
null
null
null
null
UTF-8
Python
false
false
1,515
py
hot = True cold = False rainy = True windy = False snowy = False #You may modify the lines of code above, but don't move them! #When you Submit your code, we'll change these lines to #assign different values to the variables. #Imagine you're writing a clothing-recommendation app that #makes suggestions based on the weather. It has booleans #representing five different kinds of weather: hot, cold, #rainy, windy, snowy. # #The app recommends four kinds of clothing: # # - a jacket, if it's either cold or windy. # - boots, if it's cold and snowy. # - flip flops, if it's hot, unless it's rainy. # - a t-shirt, if it's hot, unless it's rainy or windy. # #Write some code below that will print four lines, one for #each of the four types of clothing. Under the original #values for the variables above, the lines should look #like this: # #Jacket: False #Boots: False #Flip-Flops: False #T-shirt: False # #The values (True and False) will differ based on the #values assigned to hot, cold, windy, snowy, and rainy #at the start of the program. # #Hint: To print these lines, you'll need to add the #result of the expression to a string of the clothing item. #To do that, we'll need to convert the boolean from the #expression into a string. #Add your code here! print("Jacket: " + (str(cold or (windy)))) print("Boots: " + (str(cold and (snowy)))) print("Flip-Flops: " + (str(hot and ((not rainy))))) print("T-shirt: " + (str(hot and ((not rainy) or (not windy)))))
[ "noreply@github.com" ]
holtsho1.noreply@github.com
99fcf0218276618b74ea510ce25cbc262f3247aa
545b6fbd3d6e3ad62e0eaaa294bffba3a0335f23
/securityheaders/checkers/xframeoptions/checker.py
8be95b97597714bfa42bc5fa7d9964706a7ce82d
[ "Apache-2.0" ]
permissive
xl-sec/securityheaders
f345071f2cabe0b57ab9bc5cfb40e8e2ac7f5196
e2f40f888b8f476dd98f939e1b624e4b7621f4a0
refs/heads/master
2023-08-09T08:09:01.650477
2022-06-02T22:53:10
2022-06-02T22:53:10
151,466,324
0
0
Apache-2.0
2018-10-03T19:11:10
2018-10-03T19:11:10
null
UTF-8
Python
false
false
285
py
from securityheaders.models.xframeoptions import XFrameOptions from securityheaders.checkers import Checker class XFrameOptionsChecker(Checker): def __init__(self): pass def getxframeoptions(self, headers): return self.extractheader(headers, XFrameOptions)
[ "koen@buyens.org" ]
koen@buyens.org
b5edce9801df1c032936c25cd34f33b8c4ed1dc2
343dc9d92b4f7be849209965c12c2920240afd9e
/migrations/versions/38aa8ac3902e_.py
f40cc88ae3bbb6ca9adfe2d31b00158ab8c63dcd
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
CodeForFoco/volunteercore
f64d92072c64c348553a662226fd8e9fbe7decd5
d6bea86e0478982a557b4cd8cc0e7c87aefe9e9a
refs/heads/master
2021-06-26T23:10:03.620131
2020-01-11T16:16:26
2020-01-11T16:16:26
150,109,394
2
4
MIT
2020-09-18T02:22:09
2018-09-24T13:46:43
JavaScript
UTF-8
Python
false
false
894
py
"""empty message Revision ID: 38aa8ac3902e Revises: 911f36815f83 Create Date: 2019-05-05 10:34:40.692805 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '38aa8ac3902e' down_revision = '911f36815f83' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table("opportunity") as batch_op: batch_op.drop_column('job_number') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table("opportunity") as batch_op: batch_op.add_column(sa.Column('job_number', sa.VARCHAR(length=50), autoincrement=False, nullable=True)) batch_op.create_unique_constraint('opportunity_job_number_key', ['job_number']) # ### end Alembic commands ###
[ "steven@anothernewthing.com" ]
steven@anothernewthing.com
d517bf7a86a6bb8f4e1fea27fe749fd4ad2c761f
e10a6d844a286db26ef56469e31dc8488a8c6f0e
/darc/darc_agent.py
2b939e99ed8352d2240d70709327f8fdd8866a42
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
Jimmy-INL/google-research
54ad5551f97977f01297abddbfc8a99a7900b791
5573d9c5822f4e866b6692769963ae819cb3f10d
refs/heads/master
2023-04-07T19:43:54.483068
2023-03-24T16:27:28
2023-03-24T16:32:17
282,682,170
1
0
Apache-2.0
2020-07-26T15:50:32
2020-07-26T15:50:31
null
UTF-8
Python
false
false
8,358
py
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for implementing the DARC agent.""" import collections import gin import tensorflow as tf from tf_agents.agents.sac import sac_agent from tf_agents.trajectories import trajectory from tf_agents.utils import common DarcLossInfo = collections.namedtuple( "DarcLossInfo", ( "critic_loss", "actor_loss", "alpha_loss", "sa_classifier_loss", "sas_classifier_loss", ), ) @gin.configurable class DarcAgent(sac_agent.SacAgent): """An agent that implements the DARC algorithm.""" def __init__(self, *args, classifier=None, classifier_optimizer=None, classifier_loss_weight=1.0, use_importance_weights=False, unnormalized_delta_r=False, **kwargs): self._classifier = classifier self._classifier_optimizer = classifier_optimizer self._classifier_loss_weight = classifier_loss_weight self._use_importance_weights = use_importance_weights self._unnormalized_delta_r = unnormalized_delta_r super(DarcAgent, self).__init__(*args, **kwargs) def _train(self, experience, weights, real_experience=None): assert real_experience is not None if self._use_importance_weights: assert weights is None sas_input = tf.concat( [ experience.observation[:, 0], experience.action[:, 0], experience.observation[:, 1], ], axis=-1, ) # Set training=False so no input noise is added. sa_probs, sas_probs = self._classifier(sas_input, training=False) weights = ( sas_probs[:, 1] * sa_probs[:, 0] / (sas_probs[:, 0] * sa_probs[:, 1])) loss_info = super(DarcAgent, self)._train(experience, weights) trainable_classifier_variables = self._classifier.trainable_variables with tf.GradientTape(watch_accessed_variables=False) as tape: assert (trainable_classifier_variables ), "No trainable classifier variables to optimize." tape.watch(trainable_classifier_variables) ( classifier_loss, sa_classifier_loss, sas_classifier_loss, ) = self.classifier_loss(experience, real_experience) classifier_loss = self._classifier_loss_weight * classifier_loss tf.debugging.check_numerics(classifier_loss, "classifier loss is inf or nan.") tf.debugging.check_numerics(sa_classifier_loss, "sa classifier loss is inf or nan.") tf.debugging.check_numerics(sas_classifier_loss, "sas classifier loss is inf or nan.") critic_grads = tape.gradient(classifier_loss, trainable_classifier_variables) self._apply_gradients(critic_grads, trainable_classifier_variables, self._classifier_optimizer) darc_loss_info = DarcLossInfo( critic_loss=loss_info.extra.critic_loss, actor_loss=loss_info.extra.actor_loss, alpha_loss=loss_info.extra.alpha_loss, sa_classifier_loss=sa_classifier_loss, sas_classifier_loss=sas_classifier_loss, ) loss_info = loss_info._replace(extra=darc_loss_info) return loss_info def _experience_to_sas(self, experience): squeeze_time_dim = not self._critic_network_1.state_spec ( time_steps, policy_steps, next_time_steps, ) = trajectory.experience_to_transitions(experience, squeeze_time_dim) actions = policy_steps.action return tf.concat( [time_steps.observation, actions, next_time_steps.observation], axis=-1) def classifier_loss(self, experience, real_experience): with tf.name_scope("classifier_loss"): sim_sas_input = self._experience_to_sas(experience) real_sas_input = self._experience_to_sas(real_experience) sas_input = tf.concat([sim_sas_input, real_sas_input], axis=0) batch_size = tf.shape(real_sas_input)[0] y_true = tf.concat( [ tf.zeros(batch_size, dtype=tf.int32), tf.ones(batch_size, dtype=tf.int32), ], axis=0, ) tf.debugging.assert_equal( tf.reduce_mean(tf.cast(y_true, tf.float32)), 0.5, "Classifier labels should be 50% ones.", ) # Must enable training=True to use input noise. sa_probs, sas_probs = self._classifier(sas_input, training=True) sa_classifier_loss = tf.keras.losses.sparse_categorical_crossentropy( y_true, sa_probs) sas_classifier_loss = tf.keras.losses.sparse_categorical_crossentropy( y_true, sas_probs) classifier_loss = sa_classifier_loss + sas_classifier_loss sa_correct = tf.argmax(sa_probs, axis=1, output_type=tf.int32) == y_true sa_accuracy = tf.reduce_mean(tf.cast(sa_correct, tf.float32)) sas_correct = tf.argmax(sas_probs, axis=1, output_type=tf.int32) == y_true sas_accuracy = tf.reduce_mean(tf.cast(sas_correct, tf.float32)) tf.compat.v2.summary.scalar( name="classifier_loss", data=tf.reduce_mean(classifier_loss), step=self.train_step_counter, ) tf.compat.v2.summary.scalar( name="sa_classifier_loss", data=tf.reduce_mean(sa_classifier_loss), step=self.train_step_counter, ) tf.compat.v2.summary.scalar( name="sas_classifier_loss", data=tf.reduce_mean(sas_classifier_loss), step=self.train_step_counter, ) tf.compat.v2.summary.scalar( name="sa_classifier_accuracy", data=sa_accuracy, step=self.train_step_counter, ) tf.compat.v2.summary.scalar( name="sas_classifier_accuracy", data=sas_accuracy, step=self.train_step_counter, ) return classifier_loss, sa_classifier_loss, sas_classifier_loss @gin.configurable def critic_loss( self, time_steps, actions, next_time_steps, td_errors_loss_fn, gamma=1.0, reward_scale_factor=1.0, weights=None, training=False, delta_r_scale=1.0, delta_r_warmup=0, ): sas_input = tf.concat( [time_steps.observation, actions, next_time_steps.observation], axis=-1) # Set training=False so no input noise is added. sa_probs, sas_probs = self._classifier(sas_input, training=False) sas_log_probs = tf.math.log(sas_probs) sa_log_probs = tf.math.log(sa_probs) if self._unnormalized_delta_r: # Option for ablation experiment. delta_r = sas_log_probs[:, 1] - sas_log_probs[:, 0] else: # Default option (i.e., the correct version). delta_r = ( sas_log_probs[:, 1] - sas_log_probs[:, 0] - sa_log_probs[:, 1] + sa_log_probs[:, 0]) common.generate_tensor_summaries("delta_r", delta_r, self.train_step_counter) is_warmup = tf.cast(self.train_step_counter < delta_r_warmup, tf.float32) tf.compat.v2.summary.scalar( name="is_warmup", data=is_warmup, step=self.train_step_counter) next_time_steps = next_time_steps._replace(reward=next_time_steps.reward + delta_r_scale * (1 - is_warmup) * delta_r) return super(DarcAgent, self).critic_loss( time_steps, actions, next_time_steps, td_errors_loss_fn, gamma=gamma, reward_scale_factor=reward_scale_factor, weights=weights, training=training, ) def _check_train_argspec(self, kwargs): """Overwrite to avoid checking that real_experience has right dtype.""" del kwargs return
[ "copybara-worker@google.com" ]
copybara-worker@google.com
a2c93f0c69b633cb865672b1f91cd082bed3ff02
d22b5c06488ba2930238d2676e1d84ddcf32f60f
/project.py
9aa923cb5f6bb097fa72f5db28b8e7ef7eacab77
[]
no_license
ninad-41/p-127
10974cf2adceb5c46a4582a52a9e7f4d42c88581
be51f199cd32e472c3395d2769a94a0feaf0d5a4
refs/heads/main
2023-07-01T02:01:08.288094
2021-08-10T09:28:41
2021-08-10T09:28:41
394,596,136
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
from selenium import webdriver from bs4 import BeautifulSoup import time import csv import requests import pandas as pd start_url="https://en.wikipedia.org/wiki/List_of_brightest_stars_and_other_record_stars" page=requests.get(start_url) print(page) soup=BeautifulSoup(page.text,"html.parser") star_table=soup.find("table") temp_list=[] table_rows=star_table.find_all("tr") for tr in table_rows: td=tr.find_all("td") row=[i.text.rstrip()for i in td] temp_list.append(row) names=[] distance=[] mass=[] radius=[] lum=[] for i in range(1,len(temp_list)): names.append(temp_list[i][1]) distance.append(temp_list[i][3]) mass.append(temp_list[i][5]) radius.append(temp_list[i][6]) lum.append(temp_list[i][7]) df2=pd.DataFrame(list(zip(names,distance,mass,radius,lum)),columns=["star_name","Distance","Mass","Radius","Luminisity"]) print(df2) df2.to_csv("brightstars.csv")
[ "noreply@github.com" ]
ninad-41.noreply@github.com
1a4079aced3f8fe3308367ca5f2560c677775692
290dbf0107d93ebc8d50790b267f9552c13d810f
/generator/char_manager.py
6e451e0b1574291507ce9073b03287ba2c4477ca
[ "MIT" ]
permissive
codebox/homoglyph
a01cb0de3570b6ad8a0bdb8ff7a50e10374a4a51
0209d35fe8ad79348b520401da8affe8df188909
refs/heads/master
2022-09-30T13:17:52.559898
2022-09-07T09:45:54
2022-09-07T09:45:54
45,297,276
472
63
MIT
2022-09-07T10:20:25
2015-10-31T10:14:22
JavaScript
UTF-8
Python
false
false
1,038
py
class CharacterManager: def __init__(self): self.chars_to_sets = {} def add_pair(self, a, b): a_set = self.get_set_for_char(a) b_set = self.get_set_for_char(b) if a_set and b_set: if a_set is b_set: pass # do nothing, this pair of chars are already associated else: a_set.update(b_set) for b_member in b_set: self.chars_to_sets[b_member] = a_set elif a_set: a_set.add(b) self.chars_to_sets[b] = a_set elif b_set: b_set.add(a) self.chars_to_sets[a] = b_set else: self.chars_to_sets[a] = self.chars_to_sets[b] = set([a,b]) def get_set_for_char(self, c): return self.chars_to_sets[c] if c in self.chars_to_sets else None def get_list_of_sets(self): l = [] for s in map(sorted, self.chars_to_sets.values()): if s not in l: l.append(s) return sorted(l)
[ "rob@codebox.org.uk" ]
rob@codebox.org.uk
3faa37a4fbec6153f7d042d062f13089108f84d8
0cfe2999149e1e9baf527b0b47e2a4cd6b862ade
/lcf/migrations/0093_auto_20170506_1651.py
2584477384fad2d4c0a43db376b9a583d41a744a
[]
no_license
gamzatti/lcf
c7234ab96aa349013c3d90bd482c83087071e219
ebff02b1e6c95b653f027f0e05125b754c6af5af
refs/heads/master
2021-01-22T18:07:52.286504
2017-07-20T09:41:17
2017-07-20T09:41:17
85,061,092
0
0
null
null
null
null
UTF-8
Python
false
false
1,084
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-05-06 15:51 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lcf', '0092_auto_20170506_1407'), ] operations = [ migrations.AddField( model_name='scenario', name='csv_inc_notes', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='pot', name='name', field=models.CharField(choices=[('FIT', 'Feed-in-tariff'), ('E', 'Emerging'), ('M', 'Mature'), ('SN', 'Separate negotiations')], default='E', max_length=3), ), migrations.AlterField( model_name='technology', name='name', field=models.CharField(choices=[('NW', 'Negawatts'), ('PVLS', 'Solar PV'), ('TS', 'Tidal stream'), ('ONW', 'Onshore wind'), ('NU', 'Nuclear'), ('TL', 'Tidal lagoon'), ('WA', 'Wave'), ('OFW', 'Offshore wind')], default='OFW', max_length=4), ), ]
[ "emilycoats@riseup.net" ]
emilycoats@riseup.net
6ccf52a98e441ab08c92a13eed7214827dd041dd
1a487105a8a4d243da17dad0b08b695ed34df01a
/config.py
2408ce4fecdb706acfc0a2f4b9d82d537aafd5be
[]
no_license
AlgoMathITMO/cashback-calculator
2a397d061bbd0b6ed8707da3a747e6871e88d4bf
caefc85e4c6bc5c220205423b87039e52341aef6
refs/heads/master
2023-06-09T15:10:35.304776
2021-06-28T10:11:05
2021-06-28T10:11:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
188
py
from pathlib import Path ROOT_DIR = Path(__file__).absolute().parent DATA_DIR = ROOT_DIR / 'data' assert DATA_DIR.exists() TESTS_DIR = DATA_DIR / 'tests' TESTS_DIR.mkdir(exist_ok=True)
[ "jurasicus@gmail.com" ]
jurasicus@gmail.com
ef32aacc9511c647540dc788179a9be704e20e44
b8bafaece6c194a34b30189a3d141aa02314907a
/DynamoQueryLambda.py
01b1ceb41906f352b3697575d253430921c83405
[]
no_license
jacobnpeterson/s3ImageSearch
75b2482aa5d92c063af18df53282441960763d3e
7ed95bbcde8790db2d1e92cbd55a3ff1944aae36
refs/heads/master
2020-04-12T04:59:22.165017
2018-12-18T16:12:16
2018-12-18T16:12:16
162,312,738
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
import json import boto3 def lambda_handler(event, context): # # TODO implement dynamo = boto3.resource('dynamodb') table = dynamo.Table('group-project') response = table.query( KeyConditionExpression = "tag = :t", ExpressionAttributeValues = { ":t": event['tag'] } ) return { 'statusCode': 200, 'body': response['Items'] }
[ "jacobnpeterson@gmail.com" ]
jacobnpeterson@gmail.com
4acec193263138ac1651bf0f9f7c57922ac476d4
d9b3289354d8f75ae8dd9988a89b08596bd4cae9
/forms.py
592959eee5e797b4187808e7b99722b3236eb761
[]
no_license
DataCraft-AI/pgdevops
8827ab8fb2f60d97a22c03317903b71a12a49611
f489bfb22b5b17255f85517cb1443846133dc378
refs/heads/master
2023-02-10T05:44:00.117387
2020-01-22T13:40:58
2020-01-22T13:40:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,436
py
from wtforms import StringField, ValidationError, HiddenField from flask_security.forms import RegisterForm, EqualTo, password_required from wtforms.validators import InputRequired, Email, Length from Components import Components as pgc import os, sys import subprocess import json PGC_HOME = os.getenv("PGC_HOME", "") PGC_LOGS = os.getenv("PGC_LOGS", "") pgc_scripts_path = os.path.join(PGC_HOME, 'hub', 'scripts') if pgc_scripts_path not in sys.path: sys.path.append(pgc_scripts_path) def check_ami(ami_id="pgdevops"): cmd = os.path.join(PGC_HOME, "pgc") pgcCmd = "{0} {1} {2} {3}".format(cmd, "verify-ami", ami_id, "--json") rc = 0 msg = "" try: process = subprocess.check_output(pgcCmd, shell=True) except Exception as e: rc = e.returncode if rc > 0: final_out = json.loads(e.output.strip().decode('ascii'))[0] msg = str(final_out['msg']) return {"rc": rc, "msg": msg} class RegisterForm(RegisterForm): checkAMI = check_ami() if checkAMI.get('rc') != 2: ami_form = True ami_id = StringField('AMI Instance ID', validators=[Length(max=50)]) def validate_ami_id(form, field): validationData = check_ami(str(field.data)) if validationData['rc'] != 0: raise ValidationError(validationData['msg']) else: pass
[ "denis@lussier.io" ]
denis@lussier.io
5081e077eb0dae2d1b8968d7690c6ecb973aaa5d
08cd91baf0179885c43e1c1e24ec6f93aad25914
/Part 2 - Regression/Section 5 - Multiple Linear Regression/MultipleLinearRegression.py
a42b5a3511da3407bfe8344578e69e43838007aa
[]
no_license
iamsid2/Machine-Learning-using-Python
f34fe253af04280d28b93daa378d55c37e65673d
f60d0b972f0ba4e991e81c3fb20aff679910befb
refs/heads/master
2020-03-19T02:54:07.703055
2018-07-28T12:12:59
2018-07-28T12:12:59
135,672,983
0
0
null
null
null
null
UTF-8
Python
false
false
1,858
py
import numpy as np #import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('50_Startups.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 4].values # Encoding the Independent Variable from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[:, 3] = labelencoder_X.fit_transform(X[:, 3]) onehotencoder = OneHotEncoder(categorical_features = [3]) X = onehotencoder.fit_transform(X).toarray() #Removing Dummy Variable Trap X=X[:,1:] # Splitting the dataset into the Training set and Test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) sc_y = StandardScaler() y_train = sc_y.fit_transform(y_train)""" #FItting linear regresion model in the Training Set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train,y_train) #Predicting the Test Set Results y_pred = regressor.predict(X_test) #Buildig the optimal model using Backward Elemination import statsmodels.formula.api as sm X=np.append(arr=np.ones((50,1)).astype(int), values = X, axis = 1) X_opt = X[:,[0,1,2,3,4,5]] regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,1,3,4,5]] regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,3,4,5]] regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,3,5]] regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,3]] regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary()
[ "shaktimund97@gmail.com" ]
shaktimund97@gmail.com
b47801f335526193b4673fd6f1d466b8847a845f
3ecfd36938e3202ea64087f01c8afeaa1baf7e29
/am_conf.py
48cf0f3b05ce160d1d458560f84e972062b9e038
[]
no_license
zycsmile/IRP
32b6bd1d8019d8f47c4f487ea51f65c6d74f62ad
592cf8f006edf80e5ad9d0adc7dd18f823ca9523
refs/heads/master
2020-07-01T08:14:39.114904
2016-11-18T02:57:15
2016-11-18T02:57:15
74,089,403
0
0
null
null
null
null
UTF-8
Python
false
false
2,660
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """method that read global conf """ __author__ = 'guoshaodan01@baidu.com (Guo Shaodan)' import ConfigParser import logging g_conf = None class AmConf(object): def __init__(self, parser): self.zk_server = parser.get("zookeeper", "zk_server") logging.info("got conf zookeeper.zk_server: [%s]", self.zk_server) self.zk_root = parser.get("zookeeper", "zk_root") logging.info("got conf zookeeper.zk_root: [%s]", self.zk_root) self.zk_user = parser.get("zookeeper", "zk_username") logging.info("got conf zookeeper.zk_user: [%s]", self.zk_user) self.zk_pass = parser.get("zookeeper", "zk_password") logging.info("got conf zookeeper.zk_pass: [%s]", self.zk_pass) self.bh_loc = parser.get("bhcli", "bh_location") logging.info("got conf bhcli.bh_location: [%s]", self.bh_loc) self.bh_cluster = parser.get("bhcli", "bh_cluster") logging.info("got conf bhcli.bh_cluster: [%s]", self.bh_cluster) self.matrix_cluster = parser.get("bhcli", "matrix_cluster") logging.info("got conf matrix_cluster: [%s]", self.matrix_cluster) self.bh_debug = parser.getint("bhcli", "debug") logging.info("got conf bhcli.debug: [%d]", self.bh_debug) self.task_timeout = {} for k, v in parser.items("task_timeout_sec"): self.task_timeout[k] = int(v) logging.info("got conf task_timeout_sec.%s: [%d]", k, self.task_timeout[k]) #default is necessary self.task_timeout["default"] = parser.getint("task_timeout_sec", "default") logging.info("got conf task_timeout_sec.default: [%d]", self.task_timeout['default']) self.check_task_interval = parser.getint("task_manager", "check_task_interval") logging.info("got conf task_manager.check_task_interval: [%d]", self.check_task_interval) def LoadConf(conf_file): global g_conf ret = 0 conf_parser = ConfigParser.ConfigParser() try: ret = conf_parser.read(conf_file) except Exception as e: logging.error("read config file failed: config_file=[%s]", conf_file) return 1 if len(ret) == 0: logging.error("read config file failed: config_file=[%s]", conf_file) return 1 logging.info("read conf file successfully, config_file=[%s]", conf_file) try: g_conf = AmConf(conf_parser) except Exception, e: logging.error("read config file failed: config_file=[%s], error=[%s]", conf_file, e) return 1 logging.info("read conf key-value successfully, config_file=[%s]", conf_file) return 0
[ "zycsmile@163.com" ]
zycsmile@163.com
f5e13893b6f731b53d834d8641a0aba4d7dad8b9
81fddd04069c358f90b4e1788f5aec9151112147
/pybullet_tools/pr2_problems.py
978a2c2c2d48644d96ba2ad93c785a940dbb5fd8
[]
no_license
yijiangh/ss-pybullet
f61a83b139155d195d105fd6d00c3e10c2b963be
8eb8fd468b4364f85b037ab5b24738b255a2418c
refs/heads/master
2020-04-02T22:07:03.264780
2019-02-08T16:38:34
2019-02-08T16:38:34
154,822,036
1
0
null
2018-10-26T11:09:06
2018-10-26T11:09:06
null
UTF-8
Python
false
false
7,565
py
import numpy as np from .pr2_utils import set_arm_conf, REST_LEFT_ARM, open_arm, \ close_arm, get_carry_conf, arm_conf, get_other_arm, set_group_conf from .utils import create_box, set_base_values, set_point, set_pose, get_pose, \ get_bodies, z_rotation, load_model, load_pybullet, HideOutput class Problem(object): def __init__(self, robot, arms=tuple(), movable=tuple(), grasp_types=tuple(), surfaces=tuple(), sinks=tuple(), stoves=tuple(), buttons=tuple(), goal_conf=None, goal_holding=tuple(), goal_on=tuple(), goal_cleaned=tuple(), goal_cooked=tuple(), body_names={}): self.robot = robot self.arms = arms self.movable = movable self.grasp_types = grasp_types self.surfaces = surfaces self.sinks = sinks self.stoves = stoves self.buttons = buttons self.goal_conf = goal_conf self.goal_holding = goal_holding self.goal_on = goal_on self.goal_cleaned = goal_cleaned self.goal_cooked = goal_cooked self.body_names = body_names def __repr__(self): return repr(self.__dict__) def get_fixed_bodies(problem): # TODO: move to problem? #return [] movable = [problem.robot] + list(problem.movable) return list(filter(lambda b: b not in movable, get_bodies())) def create_pr2(use_drake=True, fixed_base=True): if use_drake: pr2_path = "models/drake/pr2_description/urdf/pr2_simplified.urdf" else: pr2_path = "models/pr2_description/pr2.urdf" with HideOutput(): pr2 = load_model(pr2_path, fixed_base=fixed_base) set_group_conf(pr2, 'torso', [0.2]) return pr2 def create_floor(): return load_pybullet("plane.urdf") def create_table(): # TODO: table URDF raise NotImplementedError() def create_door(): return load_pybullet("data/door.urdf") # https://github.com/bulletphysics/bullet3/search?l=XML&q=.urdf&type=&utf8=%E2%9C%93 TABLE_MAX_Z = 0.6265 # TODO: the table legs don't seem to be included for collisions? def holding_problem(arm='left', grasp_type='side'): other_arm = get_other_arm(arm) initial_conf = get_carry_conf(arm, grasp_type) pr2 = create_pr2() set_base_values(pr2, (0, -2, 0)) set_arm_conf(pr2, arm, initial_conf) open_arm(pr2, arm) set_arm_conf(pr2, other_arm, arm_conf(other_arm, REST_LEFT_ARM)) close_arm(pr2, other_arm) plane = create_floor() table = load_pybullet("table/table.urdf") #table = load_pybullet("table_square/table_square.urdf") box = create_box(.07, .05, .15) set_point(box, (0, 0, TABLE_MAX_Z + .15/2)) return Problem(robot=pr2, movable=[box], arms=[arm], grasp_types=[grasp_type], surfaces=[table], goal_conf=get_pose(pr2), goal_holding=[(arm, box)]) def stacking_problem(arm='left', grasp_type='top'): other_arm = get_other_arm(arm) initial_conf = get_carry_conf(arm, grasp_type) pr2 = create_pr2() set_base_values(pr2, (0, -2, 0)) set_arm_conf(pr2, arm, initial_conf) open_arm(pr2, arm) set_arm_conf(pr2, other_arm, arm_conf(other_arm, REST_LEFT_ARM)) close_arm(pr2, other_arm) plane = create_floor() table1 = load_pybullet("table/table.urdf") #table = load_pybullet("table_square/table_square.urdf") block = create_box(.07, .05, .15) set_point(block, (0, 0, TABLE_MAX_Z + .15/2)) table2 = load_pybullet("table/table.urdf") set_base_values(table2, (2, 0, 0)) return Problem(robot=pr2, movable=[block], arms=[arm], grasp_types=[grasp_type], surfaces=[table1, table2], #goal_on=[(block, table1)]) goal_on=[(block, table2)]) def create_kitchen(w=.5, h=.7): floor = create_floor() table = create_box(w, w, h, color=(.75, .75, .75, 1)) set_point(table, (2, 0, h/2)) mass = 1 #mass = 0.01 #mass = 1e-6 cabbage = create_box(.07, .07, .1, mass=mass, color=(0, 1, 0, 1)) #cabbage = load_model(BLOCK_URDF, fixed_base=False) set_point(cabbage, (2, 0, h + .1/2)) sink = create_box(w, w, h, color=(.25, .25, .75, 1)) set_point(sink, (0, 2, h/2)) stove = create_box(w, w, h, color=(.75, .25, .25, 1)) set_point(stove, (0, -2, h/2)) return table, cabbage, sink, stove def cleaning_problem(arm='left', grasp_type='top'): other_arm = get_other_arm(arm) initial_conf = get_carry_conf(arm, grasp_type) pr2 = create_pr2() set_arm_conf(pr2, arm, initial_conf) open_arm(pr2, arm) set_arm_conf(pr2, other_arm, arm_conf(other_arm, REST_LEFT_ARM)) close_arm(pr2, other_arm) table, cabbage, sink, stove = create_kitchen() #door = create_door() #set_point(door, (2, 0, 0)) return Problem(robot=pr2, movable=[cabbage], arms=[arm], grasp_types=[grasp_type], surfaces=[table, sink, stove], sinks=[sink], stoves=[stove], goal_cleaned=[cabbage]) def cooking_problem(arm='left', grasp_type='top'): other_arm = get_other_arm(arm) initial_conf = get_carry_conf(arm, grasp_type) pr2 = create_pr2() set_arm_conf(pr2, arm, initial_conf) open_arm(pr2, arm) set_arm_conf(pr2, other_arm, arm_conf(other_arm, REST_LEFT_ARM)) close_arm(pr2, other_arm) table, cabbage, sink, stove = create_kitchen() return Problem(robot=pr2, movable=[cabbage], arms=[arm], grasp_types=[grasp_type], surfaces=[table, sink, stove], sinks=[sink], stoves=[stove], goal_cooked=[cabbage]) def cleaning_button_problem(arm='left', grasp_type='top'): other_arm = get_other_arm(arm) initial_conf = get_carry_conf(arm, grasp_type) pr2 = create_pr2() set_arm_conf(pr2, arm, initial_conf) open_arm(pr2, arm) set_arm_conf(pr2, other_arm, arm_conf(other_arm, REST_LEFT_ARM)) close_arm(pr2, other_arm) table, cabbage, sink, stove = create_kitchen() d = 0.1 sink_button = create_box(d, d, d, color=(0, 0, 0, 1)) set_pose(sink_button, ((0, 2-(.5+d)/2, .7-d/2), z_rotation(np.pi/2))) stove_button = create_box(d, d, d, color=(0, 0, 0, 1)) set_pose(stove_button, ((0, -2+(.5+d)/2, .7-d/2), z_rotation(-np.pi/2))) return Problem(robot=pr2, movable=[cabbage], arms=[arm], grasp_types=[grasp_type], surfaces=[table, sink, stove], sinks=[sink], stoves=[stove], buttons=[(sink_button, sink), (stove_button, stove)], goal_conf=get_pose(pr2), goal_holding=[(arm, cabbage)], goal_cleaned=[cabbage]) def cooking_button_problem(arm='left', grasp_type='top'): other_arm = get_other_arm(arm) initial_conf = get_carry_conf(arm, grasp_type) pr2 = create_pr2() set_arm_conf(pr2, arm, initial_conf) open_arm(pr2, arm) set_arm_conf(pr2, other_arm, arm_conf(other_arm, REST_LEFT_ARM)) close_arm(pr2, other_arm) table, cabbage, sink, stove = create_kitchen() d = 0.1 sink_button = create_box(d, d, d, color=(0, 0, 0, 1)) set_pose(sink_button, ((0, 2-(.5+d)/2, .7-d/2), z_rotation(np.pi/2))) stove_button = create_box(d, d, d, color=(0, 0, 0, 1)) set_pose(stove_button, ((0, -2+(.5+d)/2, .7-d/2), z_rotation(-np.pi/2))) return Problem(robot=pr2, movable=[cabbage], arms=[arm], grasp_types=[grasp_type], surfaces=[table, sink, stove], sinks=[sink], stoves=[stove], buttons=[(sink_button, sink), (stove_button, stove)], goal_conf=get_pose(pr2), goal_holding=[(arm, cabbage)], goal_cooked=[cabbage])
[ "caelan@mit.edu" ]
caelan@mit.edu
faba4ffd24bf024a2248fe641d65689e162ec028
ab189562f36bc1cbd723964795020864f0cee979
/twisted-benchmarks/pb.py
efc8c65e00f2c97dbc81d69824ca8b93b9c829b9
[ "Apache-2.0" ]
permissive
mksh/greenreactor
20a007b51ad182e20ceefdd0b607992997cf1eb9
99e9ed7a5d7ebb8a8cbd1307009749bb08907c10
refs/heads/master
2020-09-19T21:51:51.944632
2019-08-07T04:21:37
2019-08-07T04:21:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,679
py
""" Benchmark for Twisted Spread. """ from twisted.python.compat import _PY3 if _PY3: raise ImportError("Doesn't work on Py3 yet") from twisted.spread.pb import PBServerFactory, PBClientFactory, Root from benchlib import Client, driver class BenchRoot(Root): def remote_discard(self, argument): pass class Client(Client): _structure = [ 'hello' * 100, {'foo': 'bar', 'baz': 100, u'these are bytes': (1, 2, 3)}] def __init__(self, reactor, port): super(Client, self).__init__(reactor) self._port = port def run(self, *args, **kwargs): def connected(reference): self._reference = reference return super(Client, self).run(*args, **kwargs) client = PBClientFactory() d = client.getRootObject() d.addCallback(connected) self._reactor.connectTCP('127.0.0.1', self._port, client) return d def cleanup(self): self._reference.broker.transport.loseConnection() def _request(self): d = self._reference.callRemote('discard', self._structure) d.addCallback(self._continue) d.addErrback(self._stop) def main(reactor, duration): concurrency = 15 server = PBServerFactory(BenchRoot()) port = reactor.listenTCP(0, server) client = Client(reactor, port.getHost().port) d = client.run(concurrency, duration) def cleanup(passthrough): d = port.stopListening() d.addCallback(lambda ignored: passthrough) return d d.addCallback(cleanup) return d if __name__ == '__main__': import sys import pb driver(pb.main, sys.argv)
[ "859905874@qq.com" ]
859905874@qq.com
9896d9e937f830fdecc5cc3f58a94b7412122654
fa93a9c8db537b819349234b17d0c3ffe4824a28
/docs/code-completion/uio.py
0a3071f423a62295538b51d799b98aaa23dc0b9e
[ "MIT" ]
permissive
yanshanqingyuan/micropython
b37fa36b09196f25ee9fef76a8368e598aa285da
bb57a344967391d22f3430f720bcd0a5882e4a1a
refs/heads/master
2020-07-11T15:57:07.922531
2019-08-27T02:51:15
2019-08-27T02:51:15
204,589,958
0
0
MIT
2019-08-27T09:04:44
2019-08-27T01:04:43
null
UTF-8
Python
false
false
1,297
py
""" uio 模块包含流类型 (类似文件) 对象和帮助函数。 """ def open(name, mode='r', **kwargs) -> None: """打开一个文件,关联到内建函数open()。所有端口 (用于访问文件系统) 需要支持模式参数,但支持其他参数不同的端口。""" ... class FileIO(...): """这个文件类型用二进制方式打开文件,等于使用open(name, “rb”)。 不应直接使用这个实例。""" ... class TextIOWrapper(...): """这个类型以文本方式打开文件,等同于使用open(name, “rt”)不应直接使用这个实例。""" ... class StringIO(string): """这个类型以文本方式打开文件,等同于使用open(name, “rt”)不应直接使用这个实例。""" ... class BytesIO(string): """ 内存文件对象。StringIO 用于文本模式 I/O (用 “t” 打开文件),BytesIO 用于二进制方式 (用 “b” 方式)。 文件对象的初始内容可以用字符串参数指定(stringio用普通字符串,bytesio用bytes对象)。 所有的文件方法,如 read(), write(), seek(), flush(), close() 都可以用在这些对象上。 """ def __init__(self) -> None: ... def getvalue(self) -> None: """获取缓存区内容。""" ...
[ "SummerGift@qq.com" ]
SummerGift@qq.com
fe19fe390ebd3184b79651ce1040786507a3415d
4bd4bacecee33cada173e427b5ecb1d758bafaad
/tests/acceptance/reset_password_redis/reset_password_redis.py
c5a945c74fc5c1a666f3b673ebc6546cc26afcd7
[]
no_license
kenorb-contrib/scalarizr
3f2492b20910c42f6ab38749545fdbb79969473f
3cc8b64d5a1b39c4cf36f5057f1a6a84a9a74c83
refs/heads/master
2022-11-26T10:00:58.706301
2017-11-02T16:41:34
2017-11-02T16:41:34
108,550,233
0
2
null
2020-07-24T11:05:36
2017-10-27T13:33:46
Python
UTF-8
Python
false
false
712
py
# -*- coding: utf-8 -*- from lettuce import step from lettuce import world import redis from scalarizr.api.binding.jsonrpc_http import HttpServiceProxy @step(u'Given I am connected to Redis server') def given_i_have_mysql_server(step): world.conn = HttpServiceProxy('http://localhost:8010', '/etc/scalr/private.d/keys/default') @step(u'When I call reset password') def when_i_call_reset_password(step): world.conn.redis.reset_password(new_password='test_pwd') @step(u'Then password should be changed') def then_password_should_be_changed(step): conn = redis.StrictRedis(host='localhost', port=6379, password='test_pwd') assert conn is not None
[ "kenorb@users.noreply.github.com" ]
kenorb@users.noreply.github.com
3832bf0b5e08f61420b382a1239102a482dc651f
9c2f8ee697d8b764a58aa8c9a85df5ad019a4b77
/homelyapp/migrations/0004_renter.py
fafadd6bb307ef910c03ae4c5f806ec73a2813ee
[]
no_license
asifvs447/code_test
9ef133edf2eed3ce409661390552bc66c5a817e2
c2a10b6298962f00379d27b51a4ab348e76fbb7d
refs/heads/master
2021-08-29T01:27:53.779903
2017-12-13T09:05:09
2017-12-13T09:05:09
114,096,269
0
0
null
null
null
null
UTF-8
Python
false
false
919
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-12-13 02:36 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('homelyapp', '0003_rentoutproperties_house_rented'), ] operations = [ migrations.CreateModel( name='Renter', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('house_rented', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='homelyapp.RentoutProperties')), ('tenant', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "asif.vs447@gmail.com" ]
asif.vs447@gmail.com
16af6ef192e459b123626a361db1399c2838121e
c8da432f164ef398dece0dcbf5f22b070f8f4c40
/migrations/versions/db2b1f6271e5_.py
5c54c5b7f0e98fce21398952275807952b976758
[]
no_license
OmarYehia/Bank
33ae12bd048877472e4174bea7377773da5f78d8
5c694489ed87052a0cb409dddf11d457666d96ea
refs/heads/master
2023-03-10T09:44:47.991345
2021-02-20T16:55:40
2021-02-20T16:55:40
283,049,935
1
0
null
null
null
null
UTF-8
Python
false
false
987
py
"""empty message Revision ID: db2b1f6271e5 Revises: aab43e821e31 Create Date: 2020-07-28 00:35:07.538771 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'db2b1f6271e5' down_revision = 'aab43e821e31' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('accounts', 'key', existing_type=sa.VARCHAR(), nullable=True) op.alter_column('accounts', 'salt', existing_type=sa.VARCHAR(), nullable=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('accounts', 'salt', existing_type=sa.VARCHAR(), nullable=False) op.alter_column('accounts', 'key', existing_type=sa.VARCHAR(), nullable=False) # ### end Alembic commands ###
[ "oyehia94@gmail.com" ]
oyehia94@gmail.com
83af5547275e89119ec1508ac22cb24b2d333c5b
82bffecc5c829a9ae7f3cf825bd1334954c3d59f
/0x00-python-hello_world/2-print.py
6381f3b6abf9b1cf24f169876636f77e59f5d975
[]
no_license
Bereket-ferde/alx-higher_level_programming
38f1af4cbcf64ade603c03a8c0b9844beb6cdb4b
ad3b1baccb14aec9d83b928ac5d8fb5e8a81b24c
refs/heads/main
2023-07-22T08:37:20.306632
2021-09-08T18:28:02
2021-09-08T18:28:02
404,119,606
0
0
null
null
null
null
UTF-8
Python
false
false
84
py
#!/usr/bin/python3 print('"Programming is like building a multilingual puzzle\n')
[ "noreply@github.com" ]
Bereket-ferde.noreply@github.com