blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
e027a84960e501ac8790ee4f8a6f4d0ab94394ca
39c578b5d9eb5ce626f541d8a441533e7bafeb2d
/mlsurvey/sl/__init__.py
d0be503a16efc5bd3d1abe0fdcf612a0bebcefc5
[ "MIT" ]
permissive
jlaumonier/mlsurvey
09a0fd0ca172f8213c3229e7623306983bd00c58
373598d067c7f0930ba13fe8da9756ce26eecbaf
refs/heads/master
2023-08-14T18:45:03.838227
2021-10-15T18:47:43
2021-10-15T18:47:43
261,498,675
0
0
null
null
null
null
UTF-8
Python
false
false
92
py
from . import datasets from . import models from . import visualize from . import workflows
[ "laumonierjulien@gmail.com" ]
laumonierjulien@gmail.com
8429ea38ff229320d3168c06b549a2e44701910d
d63c503df093f4a6f2e4f5fa796c4864a4418461
/efficient_merge.py
171610e831fbc392955291b3af2fdee8bf1b256c
[]
no_license
99rishita/Geeksforgeeks
963e4c9d484cd615e7ffb7f640d712f15cb7ad3e
ece2da9e1a5f39a54de4af4ee13913e67b10745e
refs/heads/master
2022-12-29T04:28:11.004559
2020-10-02T18:24:39
2020-10-02T18:24:39
277,882,127
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
py
def find_gap(gap): if gap<=1: return 0 return (gap // 2) + (gap%2) def merge_efficient(arr1, arr2): n = len(arr1) m = len(arr2) gap = m+n find_gap(gap) while gap > 0: #comparing the elements in first array i = 0 while i + gap < n: if arr1[i] > arr1[i+gap]: arr1[i], arr1[i+gap] = arr1[i+gap], arr1[i] i += 1 #comparing elements of both the arrays j = gap - n if gap > n else 0 while i < n and j < m: if arr1[i] > arr2[j]: arr1[i], arr2[j] = arr2[j], arr1[i] i += 1 j += 1 #comparing elements in second array if j < m: j = 0 while j + gap < m: if arr2[j] > arr2[j + gap]: arr2[j], arr2[j+gap] = arr2[j+gap], arr2[j] j += 1 gap = find_gap(gap) arr1 = [1,5,9,10,15,20] arr2 = [2,3,8,13] merge_efficient(arr1, arr2) print("After Merging \nFirst Array:", end="") for i in range(len(arr1)): print(arr1[i] , " ", end="") print("\nSecond Array: ", end="") for i in range(len(arr2)): print(arr2[i] , " ", end="")
[ "pinnintirevati999@gmail.com" ]
pinnintirevati999@gmail.com
ea5cfd69f4f9bc994ccc06e09877436971614b21
e2a545f54dbcbd26406e84ce1b3a2881e473ff0f
/libro/Problemas_resueltos/Capitulo4/listas.py
ae1214f3eb85a6a3c81490d289b51a789a64f77e
[]
no_license
danieljobvaladezelguera/CYPDANIELJVE
736bbec0700d36722de24ccb2272281cfbfa54a4
ce32a71f6f559749a9e5eb9d95a6cc7099de213f
refs/heads/master
2021-06-28T21:38:52.079378
2021-01-25T22:04:35
2021-01-25T22:04:35
207,672,145
0
0
null
null
null
null
UTF-8
Python
false
false
548
py
#Arreglo de #Variables a declarar LLUVIAS_NORTE =[80,60,120,100,70,150,100,47,95,70,100,130] for indice in range(1,12,1): print(f" mes { indice +1 } en region norte={ LLUVIAS_NORTE[indice] } ") print(LLUVIAS_NORTE[4]) sueldos = [] for indice in range(7): sueldos.append(int(input("Dame el sueldo: "))) print(sueldos) suma = 0 for indice in range(7): suma += sueldos[indice] promedio = suma / 7 for indice in range (7): if sueldos[indice] > promedio: cont = cont + 1 print(f"Arriba:", (sueldos[indice]))
[ "valadezlender@gmail.com" ]
valadezlender@gmail.com
198e1aa788b3acfd12ea1893817fbfa75a25b31a
c33e7174a79c4d98118bfd2cceff05f21f3838c9
/students/models.py
c3bdfb238742122f67801201c340c4e38d73bcb3
[]
no_license
itepliuk/studentsdb
cb7d3a0885b7e5f1ca7cc690563554bac6f1b29c
87f9ac5c7f0c0e53b136498e4604367cb08c39f9
refs/heads/master
2020-03-08T06:20:07.222533
2019-02-24T20:27:30
2019-02-24T20:27:30
127,969,184
0
0
null
null
null
null
UTF-8
Python
false
false
8,705
py
from django.db import models from django.db.models import Q from django.db.models.signals import pre_save from django.dispatch import receiver from django.core.validators import MaxValueValidator from django.contrib.auth.models import User from django.utils.text import slugify # Create search student manager class StudentManager(models.Manager): def search(self, query=None): qs = self.get_queryset() if query is not None: or_lookup = ( Q(last_name__icontains=query) | Q(first_name__icontains=query) | Q(middle_name__icontains=query) | Q(notes__icontains=query) | Q(ticket__iexact=query)) qs = qs.filter(or_lookup).distinct() return qs # Create your models here. class Student(models.Model): """Student model""" male = 'male' female = 'female' CHOICES = ( (male, 'Чоловіча'), (female, 'Жіноча') ) class Meta(): verbose_name = 'Студент' verbose_name_plural = 'Студенти' ordering = ['last_name'] first_name = models.CharField( "Ім'я", max_length=256, blank=False ) last_name = models.CharField( "Прізвище", max_length=256, blank=False ) middle_name = models.CharField( "По-батькові", max_length=256, blank=True, default='' ) birthday = models.DateField( "Дата народження", blank=False, null=True ) photo = models.ImageField( "Фото", blank=True, null=True ) ticket = models.CharField( "Білет", max_length=256, blank=False ) notes = models.TextField( "Додаткові нотатки", blank=True, null=True, ) gender = models.CharField( "Стать", max_length=25, blank=False, choices=CHOICES, default=male ) student_group = models.ForeignKey('Group', verbose_name='Група', blank=False, null=True, on_delete=models.PROTECT ) slug = models.SlugField( max_length=256, unique=True, ) objects = StudentManager() def __str__(self): return '{} {}'.format(self.first_name, self.last_name) class Group(models.Model): """Group Model""" class Meta(): verbose_name = 'Група' verbose_name_plural = 'Групи' ordering = ['title'] title = models.CharField( 'Назва', max_length=256, blank=False, ) leader = models.OneToOneField('Student', verbose_name='Староста', blank=True, null=True, on_delete=models.SET_NULL ) notes = models.TextField( 'Додаткові нотатки', blank=True, ) slug = models.SlugField( max_length=256, unique=True, ) def __str__(self): if self.leader: return '{} ({} {})'.format( self.title, self.leader.first_name, self.leader.last_name) else: return '{}'.format(self.title) class Exam(models.Model): class Meta(): verbose_name = 'Екзамен' verbose_name_plural = 'Екзамени' ordering = ['exam_date'] title = models.CharField( 'Назва', max_length=256, blank=False, ) teacher = models.CharField( 'Викладач', max_length=256, blank=False, ) exam_date = models.DateTimeField( "Дата іспиту", blank=False, null=True ) duration = models.CharField( 'Тривалість', max_length=256, blank=True, ) exam_group = models.ForeignKey('Group', verbose_name='Група', blank=True, null=True, on_delete=models.CASCADE ) def __str__(self): if self.exam_group: return '{} {} {}'.format( self.title, self.teacher, self.exam_group.title) else: return '{} {}'.format(self.title, self.teacher) class Rating(models.Model): """docstring for Rating""" student = models.ForeignKey('Student', verbose_name='Студент', blank=True, null=True, on_delete=models.CASCADE ) exam_rating = models.ForeignKey('Exam', verbose_name='Екзамен', blank=True, null=True, on_delete=models.CASCADE ) mark = models.PositiveIntegerField( 'Оцінка', default=0, validators=[MaxValueValidator(100, 'Оцінка не може бути більше 100 балів')] ) notes = models.TextField( 'Додаткові нотатки', blank=True, ) class Meta(): verbose_name = 'Оцінка' verbose_name_plural = 'Оцінки' def __str__(self): return '{} {}'.format(self.student, self.mark) @property def ects(self): if self.mark >= 90 and self.mark <= 100: return 'A' elif self.mark >= 80 and self.mark < 90: return 'B' elif self.mark >= 65 and self.mark < 80: return 'C' return 'D' elif self.mark >= 50 and self.mark < 55: return 'E' elif self.mark >= 1 and self.mark < 50: return 'F' else: return 'Оцінка ще не виставлена' def passfail(self): if self.mark >= 50: return True else: return False class Issue(models.Model): """Issues are send to admin from cotact admin form""" from_email = models.EmailField( 'Email адреса', ) subject = models.CharField( 'Заголовок листа', max_length=128, ) message = models.TextField( 'Текст повідомлення', max_length=2560, ) created_date = models.DateTimeField( 'Дата створення заявки', auto_now_add=True, ) is_replied = models.BooleanField( 'Відправлено', default=False, ) class Meta(): verbose_name = 'Заявка' verbose_name_plural = 'Заявки' def __str__(self): return 'Заявка № {}'.format(self.id) class Answer(models.Model): """Answers are send as a reply to Issues from admin """ user = models.ForeignKey( User, null=True, on_delete=models.SET_NULL, ) subject = models.CharField( 'Заголовок листа', max_length=128, ) message = models.TextField( 'Текст повідомлення', max_length=2560, ) answer_date = models.DateTimeField( 'Дата відповіді', auto_now_add=True, ) issue = models.OneToOneField( 'Issue', blank=True, null=True, on_delete=models.SET_NULL, related_name='answer', ) class Meta(): verbose_name = 'Відповідь' verbose_name_plural = 'Відповіді' def __str__(self): return 'Відповідь на заявку № {}'.format(self.issue.id) class MonthJournal(models.Model): """Students Monthly Journal""" student = models.ForeignKey('Student', verbose_name='Студент', blank=False, unique_for_month='date') # we only need yaer and month, so always set day to # first day of the month date = models.DateField(verbose_name='Дата', blank=False) for day in range(1, 32): locals()['present_day%d' % day] = models.BooleanField(default=False) class Meta: verbose_name = 'Місячний Журнал' verbose_name_plural = 'Місячні Журнали' def __str__(self): return '{}: {}, {}'.format(self.student.last_name, self.date.month, self.date.year) # Signals # ----------------------------------------------------------------------------- @receiver(pre_save, sender=Group) def pre_save_group_slug(sender, **kwargs): instance = kwargs.get('instance') if instance: group = Group.objects.filter(pk=instance.id).first() if not instance.slug or group and instance.title != group.title: instance.slug = slugify(instance.title)
[ "itepliuk@gmail.com" ]
itepliuk@gmail.com
db3312bd5d33bc08f5a0b1adf886af949c3ba7af
586383ed657389cc67ca6c822b3ebd7e91e4d5a9
/app_page_cap_img/migrations/0007_auto_20190605_1741.py
85e91d1605b03e2e5499b9ac24ff3598c929f434
[]
no_license
idelfrides/app_capturepage_django
d510e824ca57e598ec7c8bcc2e9e7c7fa04099f6
6ad6d87e76deb6075195ee2117c0974a6b480b5f
refs/heads/master
2022-06-14T17:44:15.945803
2022-06-07T20:30:18
2022-06-07T20:30:18
225,614,573
1
0
null
null
null
null
UTF-8
Python
false
false
445
py
# Generated by Django 2.2.2 on 2019-06-05 20:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app_page_cap_img', '0006_auto_20190605_1740'), ] operations = [ migrations.AlterField( model_name='pagecapimage', name='headline', field=models.TextField(default='Coloque sua Headline aqui até 300 caracteres'), ), ]
[ "idelfridesjorgepapai@gmail.com" ]
idelfridesjorgepapai@gmail.com
0d0a75c5b66582039794507e23f6de7d8f58d838
4d72f77f488d798aa9a4c21f231f91b8f3019009
/main.py
5231121a05946e92b654380b28612bf269d4adf5
[]
no_license
H1dery/Phoenix_tools
1f0e192b18f50afd340d80215212e08229f854c3
4d5dda09f0a1d363ad0dc6c79db562e38c6a45d3
refs/heads/master
2020-04-23T01:43:53.006174
2019-02-15T07:50:01
2019-02-15T07:50:01
170,822,564
0
0
null
null
null
null
UTF-8
Python
false
false
2,096
py
#coding=utf-8 ## __author__ = "Fidcer" ## import Phoenix_scan import argparse import re,sys import socket import write_html import Web_Directory def main(): PortList = [21, 22, 23, 25, 80, 135, 137, 139, 443, 445, 1433, 1502, 3306, 3389, 8080, 9015] parser = argparse.ArgumentParser() parser.add_argument('-H', dest='Host', help="Host like: 192.168.3.1 or http://localhost") parser.add_argument('-p', dest='Ports', nargs='+', type=int, help="Port like: 80 443 21,Default Scan Ports 21, 22, 23, 25, 80, 135, 137, 139, 445, 443, 1433, 1502, 3306, 3389, 8080, 9015",default=PortList) parser.add_argument('-T', dest='Threads',type=int,help="Thread number,Default:2",default=2) args = parser.parse_args() if args.Host == None or args.Ports == None: parser.print_help() sys.exit(0) try: Host_split = args.Host.split('://')[1] except: parser.print_help() sys.exit(0) Host = Host_split Ports = args.Ports ip_search = re.compile('^((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)$') if ip_search.match(Host):#匹配是否为ip for Port in Ports: Phoenix_scan.nmapScan(Host,Port) else: try: domain_ip = socket.gethostbyname(Host) except: print("please Enter the correct domain name.") sys.exit(0) for Port in Ports: Phoenix_scan.nmapScan(domain_ip,Port) #Ports_Version_List = Phenix_scan.Scan_Ports_Version #print(Ports_Version_List) # print(Phoenix_scan.Scan_Ports_Version) Scan_Ports_Joins = ('\r\n<br>'.join(str(d) for d in Phoenix_scan.Scan_Ports_Version)) ScanPort_write = str(Scan_Ports_Joins) write_html.template_scan_results(Host,ScanPort_write) Web_Directory.scan_web_dirb(args.Host+'/',args.Threads) #print() Scan_Dirbs_Joins = ('\r\n<br>'.join(str(d) for d in Web_Directory.webdirb_list)) ScanDirbs = str(Scan_Dirbs_Joins) write_html.template_web_dirb(Host,ScanDirbs) if __name__ == '__main__': main()
[ "noreply@github.com" ]
H1dery.noreply@github.com
d08e18378fecc88d481a841cdfef086e6ed3d832
141508442608aacea6087a35d00aeb85ce02474f
/upgrade.py
c9958f3e56242edb0df9c81f99de39715f79de9a
[ "MIT" ]
permissive
eoakley/chs
7e82eabd15a97bf0800ac5b3ffc90a9651ca6c80
ecfe51bff1c674d397c24a466b9d79f72743706b
refs/heads/master
2020-06-30T16:21:06.683813
2019-08-09T12:59:44
2019-08-09T12:59:44
200,882,563
0
0
MIT
2019-08-06T15:54:54
2019-08-06T15:54:53
null
UTF-8
Python
false
false
1,751
py
#!/usr/bin/env python import sys import os file_path = os.path.dirname(os.path.abspath(__file__)) file = os.path.join(file_path, 'chs/VERSION') if len(sys.argv) > 1 and sys.argv[1] == 'major': opened_file = open(file, 'r') [major, minor, patch] = opened_file.read().rstrip().split('.') old_version = '{}.{}.{}'.format(major, minor, patch) new_major = int(major) + 1 new_version = '{}.{}.{}'.format(new_major, '0', '0') opened_file.close() opened_file = open(file, 'w') opened_file.write(new_version) opened_file.close() print('\x1b[38;5;1m ↘ \x1b[38;5;231;1m' + old_version + '\x1b[49;0m\n\x1b[38;5;2m ↗ \x1b[38;5;231;1m' + new_version + '\x1b[49;0m') if len(sys.argv) > 1 and sys.argv[1] == 'minor': opened_file = open(file, 'r') [major, minor, patch] = opened_file.read().rstrip().split('.') old_version = '{}.{}.{}'.format(major, minor, patch) new_minor = int(minor) + 1 new_version = '{}.{}.{}'.format(major, new_minor, '0') opened_file.close() opened_file = open(file, 'w') opened_file.write(new_version) opened_file.close() print('\x1b[38;5;1m ↘ \x1b[38;5;231;1m' + old_version + '\x1b[49;0m\n\x1b[38;5;2m ↗ \x1b[38;5;231;1m' + new_version + '\x1b[49;0m') if len(sys.argv) > 1 and sys.argv[1] == 'patch': opened_file = open(file, 'r') [major, minor, patch] = opened_file.read().rstrip().split('.') old_version = '{}.{}.{}'.format(major, minor, patch) new_patch = int(patch) + 1 new_version = '{}.{}.{}'.format(major, minor, new_patch) opened_file.close() opened_file = open(file, 'w') opened_file.write(new_version) opened_file.close() print('\x1b[38;5;1m ↘ \x1b[38;5;231;1m' + old_version + '\x1b[49;0m\n\x1b[38;5;2m ↗ \x1b[38;5;231;1m' + new_version + '\x1b[49;0m')
[ "zuber.nicholas@gmail.com" ]
zuber.nicholas@gmail.com
c7fa2edb51934c7a54bfd3d88041a82f6c413dc6
d161ff2c791e3a6a0996b6bad453e92b67b95c82
/setup.py
a2466a813edb26a9febe9305df69df3f3ce07d73
[]
no_license
brett-smythe/steve_zissou
316262f941395ad42e54b8d9bdda0ac288892868
6223a2f30e3fe6ab023a06649078e809c00f1a73
refs/heads/master
2020-12-24T06:54:39.194933
2018-02-26T05:04:13
2018-02-26T05:04:13
59,321,394
0
0
null
2016-11-18T18:21:43
2016-05-20T19:36:03
Python
UTF-8
Python
false
false
658
py
"""Setuptools for steve-zissou service""" from setuptools import setup, find_packages reqs = [] with open('requirements.txt') as inf: for line in inf: line = line.strip() reqs.append(line) setup( name='steve-zissou', version='0.1.0', description='Web app for displaying data collected from various sources', author='Brett Smythe', author_email='smythebrett@gmail.com', maintainer='Brett Smythe', maintainer_email='smythebrett@gmail.com', packages=find_packages(), install_reqs=reqs, entry_points={ 'console_scripts': [ 'steve-zissou=steve_zissou.app:test' ] } )
[ "brett@debian-laptop" ]
brett@debian-laptop
058177b7d349b12b84e5d5301c13a103392fba19
7cc56fe7ea30d97151662a06221fde22607a96af
/code/models/item.py
e2eaf827479ebdb39af6402a1d9232cbe3d4a4b7
[ "MIT" ]
permissive
sahinme/python-flaskSQLAlchemy-api
09f6d68ac13861e129d939795e4aecd29aeff208
b765845d715a76f5702c1e19bb946704df5796ec
refs/heads/master
2022-12-05T06:23:54.872370
2020-08-22T21:22:16
2020-08-22T21:22:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
918
py
from db import db class ItemModel(db.Model): __tablename__ = "items" id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(80)) price = db.Column(db.Float(precision=2)) store_id = db.Column(db.Integer, db.ForeignKey('stores.id')) store = db.relationship('StoreModel') def __init__(self, name, price, store_id): self.name = name self.price = price self.store_id = store_id def json(self): return {'id': self.id, 'name': self.name, 'price': self.price, 'store_id': self.store_id} @classmethod def find_by_name(cls, name): return cls.query.filter_by(name=name).first() @classmethod def find_all(cls): return cls.query.all() def save_to_db(self): db.session.add(self) db.session.commit() def delete_from_db(self): db.session.delete(self) db.session.commit()
[ "alisahindev@gmail.com" ]
alisahindev@gmail.com
7c046af1dfc10062a55c859b7eed0cf62675b5fa
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/cv/detection/ABINet_for_PyTorch/mmocr/datasets/pipelines/transform_wrappers.py
15dd0e9caa84478e16a5e4736304c51d81814722
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
4,022
py
# Copyright (c) OpenMMLab. All rights reserved. import inspect import random import mmcv import numpy as np import torchvision.transforms as torchvision_transforms from mmcv.utils import build_from_cfg from mmdet.datasets.builder import PIPELINES from mmdet.datasets.pipelines import Compose from PIL import Image @PIPELINES.register_module() class OneOfWrapper: """Randomly select and apply one of the transforms, each with the equal chance. Warning: Different from albumentations, this wrapper only runs the selected transform, but doesn't guarantee the transform can always be applied to the input if the transform comes with a probability to run. Args: transforms (list[dict|callable]): Candidate transforms to be applied. """ def __init__(self, transforms): assert isinstance(transforms, list) or isinstance(transforms, tuple) assert len(transforms) > 0, 'Need at least one transform.' self.transforms = [] for t in transforms: if isinstance(t, dict): self.transforms.append(build_from_cfg(t, PIPELINES)) elif callable(t): self.transforms.append(t) else: raise TypeError('transform must be callable or a dict') def __call__(self, results): return random.choice(self.transforms)(results) def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms})' return repr_str @PIPELINES.register_module() class RandomWrapper: """Run a transform or a sequence of transforms with probability p. Args: transforms (list[dict|callable]): Transform(s) to be applied. p (int|float): Probability of running transform(s). """ def __init__(self, transforms, p): assert 0 <= p <= 1 self.transforms = Compose(transforms) self.p = p def __call__(self, results): return results if np.random.uniform() > self.p else self.transforms( results) def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms}, ' repr_str += f'p={self.p})' return repr_str @PIPELINES.register_module() class TorchVisionWrapper: """A wrapper of torchvision transforms. It applies specific transform to ``img`` and updates ``img_shape`` accordingly. Warning: This transform only affects the image but not its associated annotations, such as word bounding boxes and polygon masks. Therefore, it may only be applicable to text recognition tasks. Args: op (str): The name of any transform class in :func:`torchvision.transforms`. **kwargs: Arguments that will be passed to initializer of torchvision transform. :Required Keys: - | ``img`` (ndarray): The input image. :Affected Keys: :Modified: - | ``img`` (ndarray): The modified image. :Added: - | ``img_shape`` (tuple(int)): Size of the modified image. """ def __init__(self, op, **kwargs): assert type(op) is str if mmcv.is_str(op): obj_cls = getattr(torchvision_transforms, op) elif inspect.isclass(op): obj_cls = op else: raise TypeError( f'type must be a str or valid type, but got {type(type)}') self.transform = obj_cls(**kwargs) self.kwargs = kwargs def __call__(self, results): assert 'img' in results # BGR -> RGB img = results['img'][..., ::-1] img = Image.fromarray(img) img = self.transform(img) img = np.asarray(img) img = img[..., ::-1] results['img'] = img results['img_shape'] = img.shape return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transform={self.transform})' return repr_str
[ "chenhao388@huawei.com" ]
chenhao388@huawei.com
31e7de61859d97826c355ca015623239c96f870b
c14de8b244c2c9404cbed969c31f65a328d83ba3
/examples/common/python/connectors/interfaces/worker_registry_interface.py
f02b70530836415a19681a673b174733300280ef
[ "CC-BY-4.0", "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-warranty-disclaimer", "MIT", "LicenseRef-scancode-other-permissive", "LicenseRef-scancode-public-domain", "Zlib" ]
permissive
Bavaji9/avalon
5fd9b246a2f1a96838b96042dae278d5dd4ab250
70ee4f75c6a4cc41845692840e4cc74b8dd65652
refs/heads/master
2021-01-03T06:40:05.920729
2019-12-16T16:57:41
2019-12-30T11:21:15
239,964,073
0
0
Apache-2.0
2020-02-12T08:51:31
2020-02-12T08:42:06
C++
UTF-8
Python
false
false
6,521
py
# Copyright 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod class WorkerRegistryInterface(ABC): """ WorkerRegistryInterface is an abstract base class containing abstract APIs which need to implemented by an actual blockchain connector """ def __init__(self): super().__init__() @abstractmethod def worker_register(self, worker_id, worker_type, organization_id, application_type_ids, details, id=None): """ Registering a New Worker Inputs 1. worker_id is a worker id, e.g. an Ethereum address or a value derived from the worker's DID. 2. worker_type defines the type of Worker. Currently defined types are: 1. indicates "TEE-SGX": an Intel SGX Trusted Execution Environment 2. indicates "MPC": Multi-Party Compute 3. indicates "ZK": Zero-Knowledge 3. organization_id is an optional parameter representing the organization that hosts the Worker, e.g. a bank in the consortium or anonymous entity. 4. application_type_ids is an optional parameter that defines application types supported by the Worker. 5. details is detailed information about the worker in JSON format as defined in https://entethalliance.github.io/trusted-computing/spec.html #common-data-for-all-worker-types 6. id is used for json rpc request """ pass @abstractmethod def worker_update(self, worker_id, details, id=None): """ Updating a Worker Inputs 1. worker_id is a worker id, e.g. an Ethereum address or a value derived from the worker's DID. 2. details is detailed information about the worker in JSON format 3. id is used for json rpc request """ pass @abstractmethod def worker_set_status(self, worker_id, status, id=None): """ Set the worker status identified by worker id Inputs 1. worker_id is a worker id 2. status defines Worker status. The currently defined values are: 1 - indicates that the worker is active 2 - indicates that the worker is "off-line" (temporarily) 3 - indicates that the worker is decommissioned 4 - indicates that the worker is compromised 3. id is used for json rpc request """ pass @abstractmethod def worker_retrieve(self, worker_id, id=None): """ Retrieve worker by worker id Inputs 1. worker_id is the id of the registry whose details are requested. Outputs The same as the input parameters to the corresponding call to worker_register() plus status as defined in worker_set_status. 2. id is used for json rpc request """ pass @abstractmethod def worker_lookup(self, worker_type, organization_id, application_type_id, id=None): """ Initiating Worker lookup This function retrieves a list of Worker ids that match the input parameters. The Worker must match all input parameters (AND mode) to be included in the list. If the list is too large to fit into a single response (the maximum number of entries in a single response is implementation specific), the smart contract should return the first batch of the results and provide a lookupTag that can be used by the caller to retrieve the next batch by calling worker_lookup_next. All input parameters are optional and can be provided in any combination to select Workers. Inputs 1. worker_type is a characteristic of Workers for which you may wish to search 2. organization_id is an id of an organization that can be used to search for one or more Workers that belong to this organization 3. application_type_id is an application type that is supported by the Worker 4. id is used for json rpc request Outputs 1. total_count is a total number of entries matching a specified lookup criteria. If this number is bigger than size of ids array, the caller should use lookupTag to call workerLookUpNext to retrieve the rest of the ids. 2. lookup_tag is an optional parameter. If it is returned, it means that there are more matching Worker ids that can be retrieved by calling function workerLookUpNext with this tag as an input parameter. 3. ids is an array of the Worker ids that match the input parameters. """ pass @abstractmethod def worker_lookup_next(self, worker_type, organization_id, application_type_id, lookup_tag, id=None): """ Getting Additional Worker Lookup Results Inputs 1. worker_type is a characteristic of Workers for which you may wish to search. 2. organization_id is an organization to which a Worker belongs. 3. application_type_id is an application type that has to be supported by the Worker. 4. lookup_tag is returned by a previous call to either this function or to worker_lookup. 5. id is used for json rpc request Outputs 1. total_count is a total number of entries matching this lookup criteria. If this number is larger than the number of ids returned so far, the caller should use lookupTag to call workerLookUpNext to retrieve the rest of the ids. 2. new_lookup_tag is an optional parameter. If it is returned, it means that there are more matching Worker ids than can be retrieved by calling this function again with this tag as an input parameter. 3. ids is an array of the Worker ids that match the input parameters. """ pass
[ "32893509+danintel@users.noreply.github.com" ]
32893509+danintel@users.noreply.github.com
c07305618de87bdc9f232c58a41421805d9bbb91
085da9aa977db6553e4df099b87330a2f97f8e33
/2/Q6/main.py
c512b16f2e5d15a58435f22b093baed5991c0b00
[]
no_license
AakashSingh01/Data-Analysis
a23ea75a8872b8e51408ac9db8f469a3e4b60d3c
8d4c4659c67d2c929e3ecd2357961b1050ccdd6b
refs/heads/master
2021-09-01T12:57:32.833596
2017-12-27T04:17:11
2017-12-27T04:17:11
110,474,078
0
0
null
null
null
null
UTF-8
Python
false
false
574
py
def stock(t,share,names,y): import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression import statsmodels.api as sm ls=[share[i] for i in range (126217) if(names[i]==t)] #plt.plot(ls) #plt.show() model = sm.OLS(y, ls).fit() print("Predicted value for",t," is :",model.predict([250])) import pandas as pd import scipy.stats.mstats as sc data = pd.read_csv('data/STOCKS.csv') Columns= ['Close', 'Name'] a=list(set(data['Name'])) y=[i+1 for i in range (252)] #for i in a : # print(i,"curve : ")
[ "noreply@github.com" ]
AakashSingh01.noreply@github.com
22e55005276482dd950f14ec8102feef648b751a
99329cfd13e1f9e0f7f04c692f8dabcc7cddb8b6
/manage.py
e02dabd32718b2adf7b5d1218d1d996383b41f2d
[]
no_license
vasudhavarshney/Cart_API_With_DjangoRestApi
c24633c86cc529103e69beac9e155e4c00cfd481
7395c747fe4a7be653f6e07917a0a4296e82126b
refs/heads/master
2023-04-06T02:44:51.495293
2021-04-30T08:28:34
2021-04-30T08:28:34
363,075,904
0
0
null
null
null
null
UTF-8
Python
false
false
674
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'restapiwithmongodb.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "vasudhavarshney@gmail.com" ]
vasudhavarshney@gmail.com
cf715fd5b9f678b25d6f85fc8b63ba5a8d66ed4b
952d50bcc73290edc37d934a5065c8f7e9415a32
/fibonacci sequence.py
34bc6cea4ac65e96c00929faf51e0c15091dff00
[]
no_license
levanin/UCYEAR2
6929450e893919790a0a14431e9de72237b026fa
0a250b886d93c207ed3805f0b497404276cb2f38
refs/heads/master
2020-04-26T12:20:26.888922
2019-03-24T08:12:56
2019-03-24T08:12:56
173,546,208
0
0
null
null
null
null
UTF-8
Python
false
false
76
py
def fibonacci(n): if (n = 0 or n = 1): return n fibonacci(n)
[ "shailevanin@gmail.com" ]
shailevanin@gmail.com
7de1429f92673379e835074b60420d575c7e77d4
ccf14a2b5bdc272be7f0e0622705feaa6f060b9b
/DefHandler.py
e4af0904ad7a9f370d07e1dbd986b346bea9568d
[]
no_license
Magdz/JavaCompiler
423549ff77e62800fdcc75aff210cafdd8847b8e
a3407b62215c6269e4e11b3f7d958904e710133e
refs/heads/master
2021-04-15T14:23:45.060346
2018-05-15T19:44:46
2018-05-15T19:44:46
126,528,545
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
class DefHandler(object): def __init__(self): self.handlers = { 'SYMBOL': self.handle_symbol, 'ALT': self.handle_alt, 'PLUS': self.handle_plus, 'MINUS': self.handle_minus } def handle_symbol(self, token, stack, values): stack.append(token.value) def handle_alt(self, token, stack, values): pass def handle_plus(self, token, stack, values): value = stack.pop() values.append(value) values.append(token.value) def handle_minus(self, token, stack, values): value2 = stack.pop() value1 = stack.pop() index = value1 while index <= value2: values.append(index) index = chr(ord(index) + 1)
[ "magdz_008@yahoo.com" ]
magdz_008@yahoo.com
dd8a02085f20df07985fdbc86e783d9cd6b3e20e
75d9c79dfed10968b73936c2b970b4c4a5d69bb1
/misc/pygments-main/pygments/token.py
e5eadf0d7e1cd6320e65992a9cbc2b2099f307fa
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
korpling/ANNIS
62e23fbf6ca04049e34a8ef8e7240e41798af7e0
5fb9f87382e64b5adc4a3cb8beee1c4da26e1771
refs/heads/main
2023-08-27T22:56:46.215800
2023-07-26T12:19:16
2023-07-26T12:19:16
5,449,546
53
23
Apache-2.0
2023-07-26T12:09:57
2012-08-17T08:03:40
Java
UTF-8
Python
false
false
5,772
py
# -*- coding: utf-8 -*- """ pygments.token ~~~~~~~~~~~~~~ Basic token types and the standard tokens. :copyright: Copyright 2006-2015 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ class _TokenType(tuple): parent = None def split(self): buf = [] node = self while node is not None: buf.append(node) node = node.parent buf.reverse() return buf def __init__(self, *args): # no need to call super.__init__ self.subtypes = set() def __contains__(self, val): return self is val or ( type(val) is self.__class__ and val[:len(self)] == self ) def __getattr__(self, val): if not val or not val[0].isupper(): return tuple.__getattribute__(self, val) new = _TokenType(self + (val,)) setattr(self, val, new) self.subtypes.add(new) new.parent = self return new def __repr__(self): return 'Token' + (self and '.' or '') + '.'.join(self) Token = _TokenType() # Special token types Text = Token.Text Whitespace = Text.Whitespace Escape = Token.Escape Error = Token.Error # Text that doesn't belong to this lexer (e.g. HTML in PHP) Other = Token.Other # Common token types for source code Keyword = Token.Keyword Name = Token.Name Literal = Token.Literal String = Literal.String Number = Literal.Number Punctuation = Token.Punctuation Operator = Token.Operator Comment = Token.Comment # Generic types for non-source code Generic = Token.Generic # String and some others are not direct childs of Token. # alias them: Token.Token = Token Token.String = String Token.Number = Number def is_token_subtype(ttype, other): """ Return True if ``ttype`` is a subtype of ``other``. exists for backwards compatibility. use ``ttype in other`` now. """ return ttype in other def string_to_tokentype(s): """ Convert a string into a token type:: >>> string_to_token('String.Double') Token.Literal.String.Double >>> string_to_token('Token.Literal.Number') Token.Literal.Number >>> string_to_token('') Token Tokens that are already tokens are returned unchanged: >>> string_to_token(String) Token.Literal.String """ if isinstance(s, _TokenType): return s if not s: return Token node = Token for item in s.split('.'): node = getattr(node, item) return node # Map standard token types to short names, used in CSS class naming. # If you add a new item, please be sure to run this file to perform # a consistency check for duplicate values. STANDARD_TYPES = { Token: '', Text: '', Whitespace: 'w', Escape: 'esc', Error: 'err', Other: 'x', Keyword: 'k', Keyword.Constant: 'kc', Keyword.Declaration: 'kd', Keyword.Namespace: 'kn', Keyword.Pseudo: 'kp', Keyword.Reserved: 'kr', Keyword.Type: 'kt', Name: 'n', Name.Attribute: 'na', Name.Builtin: 'nb', Name.Builtin.Pseudo: 'bp', Name.Class: 'nc', Name.Constant: 'no', Name.Decorator: 'nd', Name.Entity: 'ni', Name.Exception: 'ne', Name.Function: 'nf', Name.Property: 'py', Name.Label: 'nl', Name.Namespace: 'nn', Name.Other: 'nx', Name.Tag: 'nt', Name.Variable: 'nv', Name.Variable.Class: 'vc', Name.Variable.Global: 'vg', Name.Variable.Instance: 'vi', Literal: 'l', Literal.Date: 'ld', String: 's', String.Backtick: 'sb', String.Char: 'sc', String.Doc: 'sd', String.Double: 's2', String.Escape: 'se', String.Heredoc: 'sh', String.Interpol: 'si', String.Other: 'sx', String.Regex: 'sr', String.Single: 's1', String.Symbol: 'ss', Number: 'm', Number.Bin: 'mb', Number.Float: 'mf', Number.Hex: 'mh', Number.Integer: 'mi', Number.Integer.Long: 'il', Number.Oct: 'mo', Operator: 'o', Operator.Word: 'ow', Punctuation: 'p', Comment: 'c', Comment.Multiline: 'cm', Comment.Preproc: 'cp', Comment.Single: 'c1', Comment.Special: 'cs', Generic: 'g', Generic.Deleted: 'gd', Generic.Emph: 'ge', Generic.Error: 'gr', Generic.Heading: 'gh', Generic.Inserted: 'gi', Generic.Output: 'go', Generic.Prompt: 'gp', Generic.Strong: 'gs', Generic.Subheading: 'gu', Generic.Traceback: 'gt', }
[ "thomaskrause@posteo.de" ]
thomaskrause@posteo.de
4fdabbd008585848fa8cd66d8bf62faf423427b2
e06ddcd701a05d7e38ab6feff423a2afef0eea73
/modules/rhymebot.py
9e5a1d255fb4e3104f4189d1fb8ece0d0fbced57
[]
no_license
Spacerat/SkypeBot
6d9f1df89d1019bac718c58784c69447c5b38f45
2872f49c6b9251b3fbbe141d796d511def4e671a
refs/heads/master
2021-01-19T06:34:54.785326
2010-08-22T01:24:36
2010-08-22T01:24:36
598,773
4
1
null
null
null
null
UTF-8
Python
false
false
985
py
import interface import urllib2 import re from xml.dom import minidom from stringsafety import * from random import randint def Handle(interface,command,args,messagetype): """!rhyme word - Get some words that rhyme with word.""" if args=="": return url = "http://www.zachblume.com/apis/rhyme.php?format=xml&word="+escapeurl(args) request = urllib2.Request(url,None,{'Referer':'http://spacerat.meteornet.net'}) response = urllib2.urlopen(request) words = [] for x in response.readlines(): words.append(FormatHTML(x)) if len(words)==2: interface.Reply('No rhymes for you. Sorry :(') return say = '' for i in range(0,4): app='' while True: app = words[randint(0,len(words)-1)] app=app[0:len(app)-1] if not app in say: break say+=app+" " if say: interface.Reply(say) interface.ComHook("rhyme",Handle,name="RhymeBot",security=3)
[ "spacerat3004@gmail.com" ]
spacerat3004@gmail.com
e322d3ae9651d7a3eabde842bfa9e617f4a4c320
4244b27c3592131a13c48ad63c9bfb6759fca00c
/The-British-and-American-Style-of-Spelling.py
6c6e0a37ceb526031dfd71f0e1760e922c4c24d9
[]
no_license
ssantic/HackerRank-RegEx-Applications
d9376d00a29c80d219865cfff68d93a611d4abbc
a9832c52d05d94dcc3097ad8e5c6b533ce751cc0
refs/heads/master
2021-01-21T19:47:30.958261
2017-05-23T10:04:25
2017-05-23T10:04:25
92,158,030
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
"""Parsing words with British or American spelling.""" import re N = int(raw_input()) sentences = str() for _ in xrange(N): sentences += raw_input() sentences += ' ' T = int(raw_input()) tests = list() for _ in xrange(T): tests.append(raw_input()) results = list() for test in tests: regex = test[:-2] + "[s|z]e(?!\w)" results.append(len(re.findall(regex, sentences))) for result in results: print result
[ "srdjan.santic@gmail.com" ]
srdjan.santic@gmail.com
5c25c75a91f879cf01c099cea8ee396ae6f10dcb
b6f1370556beaa5d6a6b1f9d2678e876a15ca014
/yelp.py
f506fb76c7c89dfee266719a9fdfa027d940522e
[]
no_license
joseEnrique/test-API-IDLReasoner
07bc980f1a746d332ff758c2fadadeb6ec96528c
d2a33b6b43335d438b15c79be3a244ddc164bbfb
refs/heads/main
2023-07-11T20:58:06.551024
2021-08-20T22:32:43
2021-08-20T22:32:43
398,411,355
0
0
null
null
null
null
UTF-8
Python
false
false
2,935
py
import json import requests import asyncio import csv import time from timeit import default_timer from concurrent.futures import ThreadPoolExecutor START_TIME = default_timer() def read_csv(): result = [] with open('test/yelp/invalid.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 for row in csv_reader: if line_count == 0: line_count += 1 else: url = "http://localhost:8000/v3/businesses/search?" url = "https://api.yelp.com/v3/businesses/search?" #header = row[9].replace("AUTHENTICATION_TOKEN_HERE;", "apikey") parameters = row[11].replace(";", "&") parameters = parameters.replace(":", "=") request = url + parameters data = {'url':request} result.append(data) return result # https://60f496853cb0870017a8a294.mockapi.io/api/pages/1 def request_github(session, url): start = time.time() # url = "https://60f496853cb0870017a8a294.mockapi.io/api/pages/" + id with session.get(url, headers={ #'Host': 'real-yelp-simple', "Authorization": "Bearer apikey", # "x-access-token": "apikey", 'accept': 'application/json'}) as response: data = response.text end = time.time() elapsed_time = end - start completed_at = "{:5.2f}s".format(elapsed_time) body = json.dumps(response.json()) detected = "false" if 'IdlReasoner' in body: detected = "true" print(completed_at+","+str(detected)+","+str(response.status_code)+","+url+","+"'"+body+"'") else: print(completed_at + "," + str(detected) + "," + str( response.status_code) + "," + url + "," + "") return data async def start_async_process(): print("{0:<30} {1:>20} {2:>20}".format("Iccid", "Completed at", "Http Code")) list_to_process = read_csv() with ThreadPoolExecutor(max_workers=200) as executor: with requests.Session() as session: loop = asyncio.get_event_loop() tasks = [ loop.run_in_executor( executor, request_github, *(session, i) ) for i in list_to_process ] for response in await asyncio.gather(*tasks): pass print(response) def start_sync_process(): list_to_process = read_csv() count = 0 with requests.Session() as session: for i in list_to_process: #print(i) request_github(session, i['url']) pass if __name__ == "__main__": # loop = asyncio.get_event_loop( # future = asyncio.ensure_future(start_async_process()) # loop.run_until_complete(future) start_sync_process()
[ "joseenriqueruiznavarro@gmail.com" ]
joseenriqueruiznavarro@gmail.com
63104e86ee47534ac82f693060c513067bf1c179
3398f6c384281a6a324aab85e3bc6e6267a35339
/app/ingredients_detection_v2.py
6fe540eddd12940c2eaa921660c29f274ef6670d
[]
no_license
ahyz0569/STS
d0b36dfb3c193da091fbdc027b022b2199338dc6
605d9325bb9623cee3f8922072a9b6539ab67f95
refs/heads/master
2022-12-14T19:47:08.746421
2020-05-25T14:50:32
2020-05-25T14:50:32
241,295,016
2
3
null
2022-12-08T07:27:58
2020-02-18T07:07:08
HTML
UTF-8
Python
false
false
1,629
py
import torch from torchvision import transforms from matplotlib import patches import matplotlib.pyplot as plt from detecto import core, utils, visualize from skimage import io def detect_ingredients(image, boxes, labels=None): plt.rcParams.update({'font.size': 14}) fig, ax = plt.subplots(figsize=(20, 10)) fig.patch.set_visible(False) ax.axis('off') # If the image is already a tensor, convert it back to a PILImage and reverse normalize it if isinstance(image, torch.Tensor): image = reverse_normalize(image) image = transforms.ToPILImage()(image) ax.imshow(image) # Show a single box or multiple if provided if boxes.ndim == 1: boxes = boxes.view(1, 4) if labels is not None and not utils._is_iterable(labels): labels = [labels] # Plot each box for i in range(boxes.shape[0]): box = boxes[i] width, height = (box[2] - box[0]).item(), (box[3] - box[1]).item() initial_pos = (box[0].item(), box[1].item()) rect = patches.Rectangle(initial_pos, width, height, linewidth=2, edgecolor='cyan', facecolor='none') if labels: ax.text(box[0], box[1] - 10, '{}'.format(labels[i]), color='black') ax.add_patch(rect) fig.savefig('detection_result.jpg', dpi=100) model_labels = ['chilli', 'egg', 'pork meat', 'potato', 'pa', 'onion'] model = core.Model.load('detection_weights.pth', model_labels) image = io.imread('./data/test_image_02.jpg') predictions = model.predict_top(image) labels, boxes, scores = predictions detection_class = labels detect_ingredients(image, boxes, labels)
[ "ahyz0569@gmail.com" ]
ahyz0569@gmail.com
6418bcc040b763bb71aa3a3e9a374d570301ee82
f082417069cefe75a0861843430f6acd4c1de449
/webapps/ve_project/src/ve/functions.py
cc703d3452d116e20bebe79dbbeaf2c47ddc13ec
[]
no_license
dobati/veproject_webapps
8148cb7a6478ec2214b927cfeb5436b34fc8bd8c
6b9857a38fb1152238194900226ea6b963bc1734
refs/heads/master
2020-12-24T15:50:34.332181
2016-03-17T10:08:08
2016-03-17T10:08:08
28,665,887
0
0
null
null
null
null
UTF-8
Python
false
false
11,074
py
# -*- coding: utf-8 -*- from __future__ import division import random import re import Levenshtein as lev import aspell import string import unicodedata import distance # Function help() # ======================================================================================== def help_words(randomsent, randomsent_machinet): """ Takes as input translations as unicode strings and makes a list of unique, lowercased and tokenized words without punctuation marks. The order is randomized. """ global bothtranslations bothtranslations = [] patter_punct = r'([^a-zA-Z0-9_ÀÁÈÉÍÓÚÜàáèéíñóúü]+)' pattern_no_punct = r'([a-zA-Z0-9_ÀÁÈÉÍÓÚÜàáèéíñóúü]+)' exclude = set(string.punctuation) # split where not ES alphanumeric randomchoice_translation = randomsent.encode('utf8').split() refsp_without_inverted_marks = [] randomchoice_machinetranslation = randomsent_machinet.encode('utf8').split() for word in randomchoice_translation: for punc in exclude: if not word.startswith(punc) and not word.endswith(punc): ##favor...píntame word = word.lower().replace('¡','').replace('¿', '').replace(punc, ' ') else: word = word.lower().replace('¡','').replace('¿', '').replace(punc, '') refsp_without_inverted_marks.append(word) for word in refsp_without_inverted_marks: m = re.match(pattern_no_punct, word) if word.isalnum() or m: bothtranslations.append(word) for word in randomchoice_machinetranslation: # # this is not necces. here, but we can use it if we want to be 100% word = word.lower().replace('¡','').replace('¿', '') m = re.match(pattern_no_punct, word) if word.isalnum() or m: bothtranslations.append(word) #random.shuffle(bothtranslations) bothtranslations = list(sorted(set(bothtranslations))) bothtranslations = ' '.join(bothtranslations) return bothtranslations def spelling_checker(inputsentence, reft, mtdetok, mttok): """ Function for checking the spelling of each word in users sentence and underlining it if spelled wrongly, using Aspell """ global saved_tr, highlight # works only local: #spelling = aspell.Speller('lang', 'es') spelling = aspell.Speller(('local-data-dir','/home/dobati/usr/lib64/aspell-0.60'),) saved_tr = inputsentence.encode('utf-8') patter_punct = r'([^a-zA-Z0-9_ÀÁÈÉÍÓÚÜàáèéíñóúü]+)' pattern_no_punct = r'([a-zA-Z0-9_ÀÁÈÉÍÓÚÜàáèéíñóúü]+)' trans_no_punct = re.split(patter_punct, saved_tr) # get a list of token including whitespace and punct as token ################################################################################# # words in translations should be marked as spelled correctly words_in_translations = [] reft = reft.encode('utf8').split() mtdetok = mtdetok.encode('utf8').split() mttok = mttok.encode('utf8').split() words_in_translations = list(set(reft + mtdetok + mttok)) ################################################################################# spelled_list = [] for word in trans_no_punct: m = re.match(pattern_no_punct, word) # match all words with no punct word1 = word.decode('utf8') word1 = unicodedata.normalize('NFKD', word1).encode('ASCII', 'ignore') # replace diacritics to nearest ascii letter # if word has no diacritics if word == word1: if m: checked_spelling = spelling.check(word) ######################################### ### added and word not in words_in_translations: if checked_spelling != 1 and word not in words_in_translations: word = '<highlight>'+word+'</highlight>' #'underline the false pronounced word (save_it) in the translation' spelled_list.append(word) else: spelled_list.append(word) # include whitespace and punct else: spelled_list.append(word) # if word has diacritics, check the word with no diacritics as diacritics not recognise in aspell else: if m: checked_spelling = spelling.check(word1) ######################################### ### added "and word not in words_in_translations" if checked_spelling != 1 and word not in words_in_translations: word = '<highlight>'+word+'</highlight>' #'underline the false pronounced word (save_it) in the translation' spelled_list.append(word) else: spelled_list.append(word) # include whitespace and punct else: spelled_list.append(word) saved_tr = ''.join(spelled_list) return saved_tr # Function compare_ref() # ======================================================================================== def compare_ref(usertrans, targettrans): """ Takes the target translation and the user translation as inputs. Based on their edit distance returns an evaluation. @ targettrans: target translation (ideal translation of a text) @ usertrans: translation provided by the user """ evaluation = {'very good': ['Superb translation!', 'Great work!', 'Perfect score!', 'High five!'], \ 'good': ['Good translation!', 'Nice work!', 'Almost perfect!'], \ 'fair': ['Not bad!', 'Almost there!'], \ 'average': ['You can do better!', 'Shall we practice a little more?'] } # encode sentences to UTF-8 ut = usertrans.encode('utf-8') tt = targettrans.encode('utf-8') # works only local: #spelling = aspell.Speller('lang', 'es')# spelling = aspell.Speller(('local-data-dir','/home/dobati/usr/lib64/aspell-0.60'),) # remove punctuation replace_punctuation = string.maketrans(string.punctuation, ' '*len(string.punctuation)) # added .replace('¿','').replace('¡','') because the string method does not recognize ¿¡ tt = tt.translate(replace_punctuation).lower().replace('¿','').replace('¡','').split() ut = ut.translate(replace_punctuation).lower().replace('¿','').replace('¡','').split() # if less than 5 words in both sentences if len(tt) < 5 and len(ut) < 5: word_is_es = 0 word_in_ref = 0 length_tt = len(tt) length_ut = len(ut) # check if w in user also in ref for w in ut: if w in tt: word_in_ref += 1 # check if w in user is spanish for w in ut: w = w.decode('utf8') w = unicodedata.normalize('NFKD', w).encode('ASCII', 'ignore') if spelling.check(w) == 1: word_is_es += 1 else: continue # get ratio spanish word and word in ref ratio_is_es = word_is_es/length_ut ratio_in_ref = word_in_ref/length_tt # get levensthein ratio token and characters lensum = len(tt)+len(ut) ratio_lev_tok = (lensum - distance.levenshtein(tt, ut)) / lensum tt = ' '.join(tt) ut = ' '.join(ut) ratio_lev_let = lev.ratio(tt,ut) # get best ratio best_lev_ratio = max(ratio_lev_tok, ratio_lev_let) # if user sent less than 3 words, check if at least half words in ref and all words spanish if length_ut < 3: if ratio_in_ref >= 0.5: if ratio_is_es == 1: if best_lev_ratio >= 0.6: return random.choice(evaluation['very good']) else: return random.choice(evaluation['fair']) else: return random.choice(evaluation['average']) else: return random.choice(evaluation['average']) # if user sent between 3 and 4 words, check at least 60% words in ref and 90% words spanish else: if ratio_in_ref >= 0.6: if ratio_is_es >= 0.9: if best_lev_ratio >= 0.7: return random.choice(evaluation['very good']) elif best_lev_ratio >= 0.6: return random.choice(evaluation['good']) else: return random.choice(evaluation['average']) elif ratio_is_es >= 0.5: if best_lev_ratio >= 0.9: return random.choice(evaluation['good']) elif best_lev_ratio >= 0.7: return random.choice(evaluation['fair']) else: return random.choice(evaluation['average']) else: return random.choice(evaluation['average']) else: return random.choice(evaluation['average']) # if either sentence have more than 5 words, get best levensthein ratio (token VS. characters) else: lensum = len(tt)+len(ut) ratio_lev_tok = (lensum - distance.levenshtein(tt, ut)) / lensum tt = ' '.join(tt) ut = ' '.join(ut) ratio_lev_let = lev.ratio(tt,ut) ratio = max(ratio_lev_let, ratio_lev_tok) if ratio >= 0.9: return random.choice(evaluation['very good']) elif ratio >= 0.75: return random.choice(evaluation['good']) elif ratio >= 0.6: return random.choice(evaluation['fair']) else: return random.choice(evaluation['average']) # Function compare_mt() # ======================================================================================== def compare_mt(usertrans, referencetrans, machinetrans): """ Compare if user translation better or worst than machine translation """ # deleted: 'You did as good as the machine translation!' evaluation = {'better': ['Congratulations, you did better than the machine translation!', \ 'Be proud, you were better than the machine translation!', \ 'You are the best, even better than the machine translation!'], \ 'same': [ 'This is a tie between you and the machine translation!', \ 'The machine translation was about as good as you!'], \ 'worst': ["The machine translation beat you, let's try to do better!", \ "What a shame, you were defeated by the machine translation.", \ "Next time, you will beat the machine translation, but not this time!"]} # encode sentences to UTF-8 ut = usertrans.encode('utf8') tt = referencetrans.encode('utf8') mt = machinetrans.encode('utf8') # remove punctuation replace_punctuation = string.maketrans(string.punctuation, ' '*len(string.punctuation)) #added .replace('¿','').replace('¡','') because the string method does not recognize ¿¡ ut = ut.translate(replace_punctuation).lower().replace('¿','').replace('¡','') tt = tt.translate(replace_punctuation).lower().replace('¿','').replace('¡','') mt = mt.translate(replace_punctuation).lower().replace('¿','').replace('¡','') # levensthein characters ratio lev_let_ut = lev.ratio(tt, ut) lev_let_mt = lev.ratio(tt, mt) # levensthein tokens ratio ut = ut.split() tt = tt.split() mt = mt.split() lensum_user = len(ut)+len(tt) lensum_machine = len(mt)+len(tt) lev_tok_ut = (lensum_user - distance.levenshtein(tt, ut)) / lensum_user lev_tok_mt = (lensum_machine - distance.levenshtein(tt, mt)) / lensum_machine # get best levensthien ratio ratio_ut = max(lev_let_ut, lev_tok_ut) ratio_mt = max(lev_let_mt, lev_tok_mt) ######################################################## # added: # # evaluate if user better, worst or similar than machine if abs(ratio_ut - ratio_mt) < 0.07: return random.choice(evaluation['same']) else: if ratio_ut > ratio_mt: return random.choice(evaluation['better']) else: return random.choice(evaluation['worst']) # TO DO: add some more specific evaluations and tie the two Feedbacks together
[ "dolores.batinic@uzh.ch" ]
dolores.batinic@uzh.ch
67d7397c7e522f6c520bc6bad0edb954381f1e3a
773c69c39387af8c8e374ce307eb92b850045d15
/tools/processHelen.py
f1bc7f3e948e3b347f9170978e4419bb809a1151
[ "MIT" ]
permissive
tayfunates/pix2pix-tensorflow
5c721e55a9f752f5ac7fa553bc1ec8ec29326536
c696156636899f7cec1c7c0ad520dcfe9aa5acbc
refs/heads/master
2020-03-18T01:22:18.915237
2018-06-03T11:54:28
2018-06-03T11:54:28
134,139,317
0
0
null
2018-05-20T10:04:31
2018-05-20T10:04:31
null
UTF-8
Python
false
false
9,363
py
import argparse import os import tempfile import subprocess import tensorflow as tf import numpy as np import tfimage as im import threading import time import multiprocessing import matplotlib import scipy.misc as sm parser = argparse.ArgumentParser() parser.add_argument("--input_dir", required=True, help="path to folder containing images") parser.add_argument("--label_images_dir", required=True, help="path to folder containing labels inside the face") parser.add_argument("--output_dir_images", required=True, help="output path") parser.add_argument("--output_dir_labels", required=True, help="output path") parser.add_argument("--labels", required=True, help="output labels with comma separation. 00 and 01 are musts. e.g. 00,01,04,07") parser.add_argument("--color_map", required=True, help="Color map png") parser.add_argument("--workers", type=int, default=1, help="number of workers") #Resizing operation parameters parser.add_argument("--resize", action="store_true", help="decide whether or not to resize the input and the label images") parser.add_argument("--pad", action="store_true", help="pad instead of crop for resize operation") parser.add_argument("--size", type=int, default=256, help="size to use for resize operation") #Crop options parser.add_argument("--crop", action="store_true", help="decide whether or not to crop the input and the label images") #Label parameters parser.add_argument("--label_cut_threshold", type=int, default=128, help="threshold for converting grayscale label images to binary ones") a = parser.parse_args() output_train_directory_images = os.path.join(a.output_dir_images, "train") output_test_directory_images = os.path.join(a.output_dir_images, "test") output_val_directory_images = os.path.join(a.output_dir_images, "val") output_train_directory_labels = os.path.join(a.output_dir_labels, "train") output_test_directory_labels = os.path.join(a.output_dir_labels, "test") output_val_directory_labels = os.path.join(a.output_dir_labels, "val") def resize(src): height, width, _ = src.shape dst = src if height != width: if a.pad: size = max(height, width) # pad to correct ratio oh = (size - height) // 2 ow = (size - width) // 2 dst = im.pad(image=dst, offset_height=oh, offset_width=ow, target_height=size, target_width=size) else: # crop to correct ratio size = min(height, width) oh = (height - size) // 2 ow = (width - size) // 2 dst = im.crop(image=dst, offset_height=oh, offset_width=ow, target_height=size, target_width=size) assert(dst.shape[0] == dst.shape[1]) size, _, _ = dst.shape if size > a.size: dst = im.downscale(images=dst, size=[a.size, a.size]) elif size < a.size: dst = im.upscale(images=dst, size=[a.size, a.size]) return dst def crop(src, cropReference): rows = np.any(cropReference, axis=1) cols = np.any(cropReference, axis=0) rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] return src[rmin:rmax, cmin:cmax, :] def getLabelToColorDictionary(): colorDict = {} cmap = matplotlib.colors.ListedColormap(sm.imread(a.color_map)[0].astype(np.float32) / 255.) cmap = cmap(np.arange(cmap.N)) #Color settings according to https://github.com/classner/generating_people colorDict['00'] = [255.0 / 255.0, 0.0 / 255.0, 0.0 / 255.0] colorDict['01'] = cmap[11][:3] colorDict['02'] = cmap[11][:3] colorDict['03'] = cmap[11][:3] colorDict['04'] = cmap[20][:3] colorDict['05'] = cmap[21][:3] colorDict['06'] = cmap[19][:3] colorDict['07'] = cmap[18][:3] colorDict['08'] = cmap[18][:3] colorDict['09'] = cmap[18][:3] colorDict['10'] = [255.0 / 255.0, 0.0 / 255.0, 0.0 / 255.0] return colorDict def getLabelImages(label_folder): ret = {} labelIds = a.labels.split(',') for lid in labelIds: for label_path in im.find(label_folder): if label_path.find('lbl'+lid) > 0: #if found the label ret[lid] = label_path break return ret def thresholdImage(img, thresh): img[img >= thresh] = 1.0 img[img < thresh] = 0.0 return img def getLabelImage(label_image_paths, color_dict): res = None thresh = a.label_cut_threshold / 255.0 for label_id, label_img_path in label_image_paths.iteritems(): label_image = im.load(label_img_path) print label_img_path print label_image.shape label_image = thresholdImage(label_image, thresh) label_image = np.reshape(label_image, (label_image.shape[0], label_image.shape[1])) if res is None: res = np.empty((label_image.shape[0], label_image.shape[1], 3)) res[label_image > 0.5, :] = color_dict[label_id] return res def getCropReference(label_image_paths): crop_reference = im.load(label_image_paths['01']) thresh = a.label_cut_threshold / 255.0 crop_reference = thresholdImage(crop_reference, thresh) return crop_reference complete_lock = threading.Lock() start = None num_complete = 0 total = 0 def complete(): global num_complete, rate, last_complete with complete_lock: num_complete += 1 now = time.time() elapsed = now - start rate = num_complete / elapsed if rate > 0: remaining = (total - num_complete) / rate else: remaining = 0 print("%d/%d complete %0.2f images/sec %dm%ds elapsed %dm%ds remaining" % (num_complete, total, rate, elapsed // 60, elapsed % 60, remaining // 60, remaining % 60)) last_complete = now def main(): if not os.path.exists(a.output_dir_labels): os.makedirs(a.output_dir_labels) if not os.path.exists(output_train_directory_labels): os.makedirs(output_train_directory_labels) if not os.path.exists(output_test_directory_labels): os.makedirs(output_test_directory_labels) if not os.path.exists(output_val_directory_labels): os.makedirs(output_val_directory_labels) processInputImages = a.resize or a.crop if not os.path.exists(a.output_dir_images) and processInputImages: os.makedirs(a.output_dir_images) if not os.path.exists(output_train_directory_images) and processInputImages: os.makedirs(output_train_directory_images) if not os.path.exists(output_test_directory_images) and processInputImages: os.makedirs(output_test_directory_images) if not os.path.exists(output_val_directory_images) and processInputImages: os.makedirs(output_val_directory_images) #cropped images directory splits = ['train', 'test', 'val'] src_paths = [] dst_paths_labels = [] dst_paths_images = [] skipped = 0 for split in splits: split_folder = os.path.join(a.input_dir, split) for src_path in im.find(split_folder): name, _ = os.path.splitext(os.path.basename(src_path)) dst_path_label = os.path.join(a.output_dir_labels, split) dst_path_label = os.path.join(dst_path_label, name + ".png") dst_path_image = os.path.join(a.output_dir_images, split) dst_path_image = os.path.join(dst_path_image, name + ".png") if os.path.exists(dst_path_label) or os.path.exists(dst_path_image): skipped += 1 else: src_paths.append(src_path) dst_paths_labels.append(dst_path_label) dst_paths_images.append(dst_path_image) print("skipping %d files that already exist" % skipped) global total total = len(src_paths) print("processing %d files" % total) global start start = time.time() if a.workers == 1: with tf.Session() as sess: for src_path, dst_path_label, dst_path_image in zip(src_paths, dst_paths_labels, dst_paths_images): name, _ = os.path.splitext(os.path.basename(src_path)) print 'Name: ' + name label_folder = os.path.join(a.label_images_dir, name) label_image_paths = getLabelImages(label_folder) print label_image_paths color_dict = getLabelToColorDictionary() label_img = getLabelImage(label_image_paths, color_dict) if processInputImages: processedImage = im.load(src_path) if a.crop: crop_reference = getCropReference(label_image_paths) processedImage = crop(processedImage, crop_reference) label_img = crop(label_img, crop_reference) if a.resize: processedImage = resize(processedImage) label_img = resize(label_img) im.save(processedImage, dst_path_image) im.save(label_img, dst_path_label) complete() main()
[ "tayfun@caverna.cs.hacettepe.edu.tr" ]
tayfun@caverna.cs.hacettepe.edu.tr
c8ca518523066602d66a33743dc6fd505d5b7567
1f295ce58be3f299f2b66e81b2df2281ff2c37a1
/project_draft.py
4c7b388fcd05121a89c4789f6bc2f754eecd8b34
[]
no_license
LucasSabbatini/aind-p2-game-playing-agent
883867e873f784f1b75ef0f79f7d5acc7cd196db
0de3de81742f77deb078771500518537d9299a73
refs/heads/master
2021-08-23T21:28:45.558613
2017-12-06T16:40:00
2017-12-06T16:40:00
111,029,508
0
0
null
null
null
null
UTF-8
Python
false
false
7,151
py
import random import numpy as np def custom_score(game, player): """Calculate the heuristic value of a game state from the point of view of the given player. This should be the best heuristic function for your project submission. Note: this function should be called from within a Player instance as `self.score()` -- you should not need to call this function directly. Parameters ---------- game : `isolation.Board` An instance of `isolation.Board` encoding the current state of the game (e.g., player locations and blocked cells). player : object A player instance in the current game (i.e., an object corresponding to one of the player objects `game.__player_1__` or `game.__player_2__`.) Returns ------- float The heuristic value of the current game state to the specified player. """ # TODO: finish this function! if game.is_loser(player): return float("-inf") if game.is_winner(player): return float("inf") return float(len(game.get_legal_moves(player))) class IsolationPlayer: def __init__(self, search_depth=3, score_fn=custom_score, timeout=10.): self.search_depth = search_depth self.score_fn = score_fn self.time_left = None self.TIMER_THRESHOLD = timeout class MinimaxPlayer(IsolationPlayer): """ Game agent using only minimax method. """ def get_move(self, game, time_left): """Search for the best move from the available legal moves and return a result before the time limit expires. ************** YOU DO NOT NEED TO MODIFY THIS FUNCTION ************* For fixed-depth search, this function simply wraps the call to the minimax method, but this method provides a common interface for all Isolation agents, and you will replace it in the AlphaBetaPlayer with iterative deepening search. Parameters ---------- game : `isolation.Board` An instance of `isolation.Board` encoding the current state of the game (e.g., player locations and blocked cells). time_left : callable A function that returns the number of milliseconds left in the current turn. Returning with any less than 0 ms remaining forfeits the game. Returns ------- (int, int) Board coordinates corresponding to a legal move; may return (-1, -1) if there are no available legal moves. """ self.time_left = time_left # Initialize the best move so that this function returns something # in case the search fails due to timeout best_move = (-1, -1) try: # The try/except block will automatically catch the exception # raised when the timer is about to expire. return self.minimax(game, self.search_depth) except SearchTimeout: pass # Handle any actions required after timeout as needed # Return the best move from the last completed search iteration return best_move def minimax(self, game, depth): """ This function will perform a depth-limited searh to find the best move. It'll act like the minimax-decision funciton previously implemented, so it'll call a max_value and a min_value methods, which will be implemented within this class. This method is the starting (root) node of a search tree, and what follows is a min node. Assumptions: 1. The minimax algorithm finds the path to the best game for max (it searches the entire tree to find the answer). refutation: This code will not search the whole tree for the best move, since it is a depth limited search. It'll keep opening branches till it reaches the defined depth, and than apply the evaluation function in that state and return the value found. 2. Since this is a depth limited search, this will actually be a quiescent search, which means will iteratively go down tree, till we find a depth where the eval refutation: Will not be a quiescent search. The depth is well defined, so we don't have to find a quiescence depth. Arguments: - game: Board object representing the current game state - depth: depth which our code should look for the answer Returns: - move: a tuple of the form (int, int) representing the position on the board which the MinimaxPlayer should move """ if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() possible_actions = game.get_legal_moves() values_for_actions = np.zeros(len(possible_actions)) for i in range(len(possible_actions)): values_for_actions[i] = self.min_value(game.forecast_move(possible_actions[i]), depth-1) try: return possible_actions[np.argmax(values_for_actions)] except: print(type(possible_actions)) print(possible_actions) pass def max_value(self, game, depth): """Max player in the minimax method. Look for the following move that will maximize the expected evaluation Parameters ---------- game : isolation.Board Board objest representing a state of the game. It is a forecast state following the last min action in the search tree depth : int remaining steps to reach maximum depth specified Returns ------- val : int Utility value for current state """ # timer check if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() # checking if limit depth or terminal test if depth == 0: return self.score(game, self) v = float("-inf") for action in game.get_legal_moves(): v = max(v, self.min_value(game.forecast_move(action), depth-1)) return v def min_value(self, game, depth): """Min player in the minimax method. Look for the following move that will minimize the expected evaluation Parameters ---------- game : isolation.Board Board objest representing a state of the game. It is a forecast state following the last min action in the search tree depth : int remaining steps to reach maximum depth specified Returns ------- val : int Mimimum expected value associated with possible actions """ # timer chack if self.time_left() < self.TIMER_THRESHOLD: raise SearchTimeout() # checking if limit depth or terminal test if depth == 0: return self.score(game, self) v = float("inf") for action in game.get_legal_moves(): v = min(v, self.max_value(game.forecast_move(action), depth-1)) return v
[ "lucassabbatini@gmail.com" ]
lucassabbatini@gmail.com
b79590ac3e08d5f6a2e861b214934ecac1ae93c7
314fbb9641aee064730a1a12f3164ac512a6c27d
/Desktop/Project/todolist/lists/models.py
0560a18a391791cea070472f7d0608d080a5cd42
[]
no_license
sarthakprajapati/todolist
7dfc3f94dc6e812b45b292fbf84946dd505f548f
ed716f0b405abb16dbe5cb73e8b03adbd465ef7a
refs/heads/master
2021-05-08T15:40:01.795570
2018-02-03T19:44:47
2018-02-03T19:44:47
120,122,925
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
from django.db import models # Create your models here. class todolist(models.Model): title = models.CharField(max_length=20) description = models.CharField(max_length=200) date = models.DateField(auto_now=False, auto_now_add=False) active = models.BooleanField(default=True) def __str__(self): return self.title def __unicode__(str): return self.title
[ "sarthakprajapati@live.in" ]
sarthakprajapati@live.in
615c5d23737fde98c2ed00eb9ee6f0c664ae518f
9b3293e0f94c717f88f14bf161785685688b7bd1
/flickr/data.py
f47293653a6a97106e20ba7148cf2c0c2a92cfe5
[ "MIT" ]
permissive
Deepayan137/ml_ss19_cross-modal
715c4809a9718b4cf8a9221eea0eb1420bc9f937
10159be3fd97730d1b0d7e10aea371215e65aad6
refs/heads/master
2020-06-18T13:35:26.317897
2019-07-11T06:18:21
2019-07-11T06:18:21
196,319,344
0
0
null
null
null
null
UTF-8
Python
false
false
7,103
py
import torch import torch.utils.data as data import torchvision.transforms as transforms import os import nltk from PIL import Image import numpy as np import json as jsonmod import pickle import pdb class FlickrDataset(data.Dataset): """ Dataset loader for Flickr30k and Flickr8k full datasets. """ def __init__(self, root, split, vocab, transform=None): self.root = root self.vocab = vocab self.split = split self.transform = transform with open(os.path.join(root, '%s.txt'%split)) as f: self.lines = f.readlines() def __getitem__(self, index): """This function returns a tuple that is further passed to collate_fn """ vocab = self.vocab img_id = index//5 root = self.root image_name = self.lines[index].split(' ')[0] + '.jpg' caption = ' '.join(self.lines[index].split(' ')[1:]) # pdb.set_trace() image = Image.open(os.path.join(root, 'Flicker8k_Dataset', image_name)).convert('RGB') if self.transform is not None: image = self.transform(image) # Convert caption (string) to word ids. tokens = nltk.tokenize.word_tokenize( str(caption).lower()) caption = [] caption.append(vocab('<start>')) caption.extend([vocab(token) for token in tokens]) caption.append(vocab('<end>')) target = torch.Tensor(caption) return image, target, index, img_id def __len__(self): return len(self.lines) def collate_fn(data): data.sort(key=lambda x: len(x[1]), reverse=True) images, captions, ids, _ = zip(*data) # Merge images (convert tuple of 3D tensor to 4D tensor) images = torch.stack(images, 0) # Merget captions (convert tuple of 1D tensor to 2D tensor) lengths = [len(cap) for cap in captions] targets = torch.zeros(len(captions), max(lengths)).long() for i, cap in enumerate(captions): end = lengths[i] targets[i, :end] = cap[:end] return images, targets, lengths, list(ids) class PrecompDataset(data.Dataset): """ Load precomputed captions and image features Possible options: f8k, f30k, coco, 10crop """ def __init__(self, data_path, data_split, vocab): self.vocab = vocab loc = data_path + '/' # Captions self.captions = [] with open(loc+'f8k_%s_caps.txt' % data_split, 'rb') as f: for line in f: self.captions.append(line.strip()) # Image features self.images = np.load(loc+'f8k_%s_ims.npy' % data_split) self.length = len(self.captions) # rkiros data has redundancy in images, we divide by 5, 10crop doesn't if self.images.shape[0] != self.length: self.im_div = 5 else: self.im_div = 1 # the development set for coco is large and so validation would be slow if data_split == 'dev': self.length = 5000 def __getitem__(self, index): # handle the image redundancy img_id = index//self.im_div image = torch.Tensor(self.images[img_id]) caption = self.captions[index] vocab = self.vocab # Convert caption (string) to word ids. tokens = nltk.tokenize.word_tokenize( caption.lower().decode('utf-8')) caption = [] # pdb.set_trace() caption.append(vocab('<start>')) caption.extend([vocab(token) for token in tokens]) caption.append(vocab('<end>')) target = torch.Tensor(caption) return image, target, index, img_id def __len__(self): return self.length def get_precomp_loader(data_path, data_split, vocab, batch_size=100, shuffle=True): """Returns torch.utils.data.DataLoader for custom coco dataset.""" dset = PrecompDataset(data_path, data_split, vocab) data_loader = torch.utils.data.DataLoader(dataset=dset, batch_size=batch_size, shuffle=shuffle, pin_memory=True, collate_fn=collate_fn) return data_loader def get_transform(split_name): normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) t_list = [] if split_name == 'train': t_list = [transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip()] elif split_name == 'dev': t_list = [transforms.Resize(256), transforms.CenterCrop(224)] elif split_name == 'test': t_list = [transforms.Resize(256), transforms.CenterCrop(224)] t_end = [transforms.ToTensor(), normalizer] transform = transforms.Compose(t_list + t_end) return transform def get_loader_single(root, split, vocab, transform, batch_size=128, shuffle=True, collate_fn=collate_fn): dataset = FlickrDataset(root=root, split=split, vocab=vocab, transform=transform) # Data loader data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=shuffle, collate_fn=collate_fn) return data_loader def get_loaders(root, vocab, batch_size, precomp=False): if precomp == True: train_loader = get_precomp_loader(root, 'train', vocab, batch_size, False) val_loader = get_precomp_loader(root, 'dev', vocab, batch_size, False) else: transform = get_transform('train') train_loader = get_loader_single(root, 'train', vocab, transform, batch_size=batch_size, shuffle=True, collate_fn=collate_fn) transform = get_transform('dev') val_loader = get_loader_single(root, 'dev', vocab, transform, batch_size=batch_size, shuffle=False, collate_fn=collate_fn) transform = get_transform('test') test_loader = get_loader_single(root, 'test', vocab, transform, batch_size=batch_size, shuffle=False, collate_fn=collate_fn) return train_loader, val_loader # path = '/ssd_scratch/cvit/deep/Flickr-8K' # with open('./vocab/%s_vocab.pkl' %'flickr', 'rb') as f: # vocab = pickle.load(f) # train, val = get_loaders(path, vocab, 128) # for i, batch in enumerate(train): # img, targ, lengths = batch # pdb.set_trace() # # data = FlickrDataset(path, 'test', vocab)
[ "deepayan137@gmail.com" ]
deepayan137@gmail.com
0e6013ae1d59046d1b969eec8d8a3e912e94342c
0f276c28a4a66fa715368db2455af5c8caec2823
/todo/models.py
30bcccb32587940d53132bd564b8c511cc1f6563
[]
no_license
ryor40172/todo
6354d2549ad331c0ac117568d6af3f43e95e3e2f
135d11f8c036661daaea96cf11319fdf0f4acf84
refs/heads/master
2022-07-03T16:31:03.620641
2020-05-13T08:15:15
2020-05-13T08:15:15
263,567,994
0
0
null
null
null
null
UTF-8
Python
false
false
379
py
from django.db import models # Create your models here. PRIORITY = (('danger','high'),('info','nomal'),('success','low')) class TodoModels(models.Model): title = models.CharField(max_length=100) memo = models.TextField() priority = models.CharField( max_length = 50, choices = PRIORITY ) duedate = models.DateField() def __str__(self): return self.title
[ "r.y@yofuneracBookea.elecom" ]
r.y@yofuneracBookea.elecom
445680537fd1407a06de0e00035762daa2c87efb
3ce0b93b6f7d94e82e1dfe4498b87680f8f0ed85
/1977.py
856c14edca7c46077d50683046bb133847f07977
[]
no_license
stellaluminary/Baekjoon
8ff31fb3dc2d4ca55a4da34e4156c595adbead52
22ebacf6c80872bd98f610d93fd527b70c3d760e
refs/heads/master
2022-09-05T02:16:57.112602
2022-08-10T13:41:57
2022-08-10T13:41:57
211,986,841
0
1
null
null
null
null
UTF-8
Python
false
false
352
py
""" Method 2 """ n = int(input()) m = int(input()) t = [i**2 for i in range(101) if n <= i**2 <= m] print(f'{sum(t)}\n{t[0]}'if t else -1) """ Method 1 """ n = int(input()) m = int(input()) t = [i**2 for i in range(1,101)] s = [] for i in t: if n <= i <= m: s.append(i) if len(s): print(sum(s)) print(min(s)) else: print(-1)
[ "43261434+stellaluminary@users.noreply.github.com" ]
43261434+stellaluminary@users.noreply.github.com
1edfcedba76e88ee929715b12d2c8848b2dfbf9f
1f4ee7cfb3ecd5c712f4e59f16b4aa908b54dc49
/snippets.py
8154c41760b689b8c5b6767973e7df548773f5aa
[]
no_license
mrush336/Self_Driving_Car_Course
32f4cf8e1fb26cf667416f7028e8d86ce8c3605d
f74f34964319c4ae5b8f45c1941eb52848665971
refs/heads/master
2022-12-21T07:49:52.195042
2020-10-05T22:31:36
2020-10-05T22:31:36
297,202,413
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
!git clone https://bitbucket.org/jadslim/german-traffic-signs !ls german-traffic-sign %matplotlib inline
[ "mrush336@gmail.com" ]
mrush336@gmail.com
03c40469acfd2bccb77b80c41b3fef53b4f49765
44bb6546b50be63fdde19a717bb35e6d13963061
/oip-vpc/bin/rst2s5.py
e720d1a932dbe36b9fb9fabf6a8e0e258c3442fa
[]
no_license
psdeepu26/python_test
cc2ac322503a73e1ba974198b9e282e7a5f1b5c6
ee74f619d8aaba4b4e6d5d48c7274635b0a791ba
refs/heads/master
2023-05-14T04:30:44.112433
2020-07-03T14:11:56
2020-07-03T14:11:56
276,915,441
0
0
null
2021-06-10T23:07:37
2020-07-03T14:12:09
Python
UTF-8
Python
false
false
676
py
#!/Users/spatrayuni/virutalenvs/python/oip-vpc/bin/python # $Id: rst2s5.py 4564 2006-05-21 20:44:42Z wiemann $ # Author: Chris Liechti <cliechti@gmx.net> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing HTML slides using the S5 template system. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates S5 (X)HTML slideshow documents from standalone ' 'reStructuredText sources. ' + default_description) publish_cmdline(writer_name='s5', description=description)
[ "psdeepu26@gmail.com" ]
psdeepu26@gmail.com
bad630554e36736b01efb8bc2574a0ffb943de1e
d45b4db35e5e8baef1aa71bb8ae55236e8e8de67
/transid2geneid.py
7046b81434910dcabb244921926ff25d3f634fdd
[]
no_license
davek44/utility
a5af6bfff2cf576671dcdfa7bdfdac97a417b26a
5a2581078bf9dab78cc182f2917ecb671d04570c
refs/heads/master
2023-04-30T21:19:40.683342
2023-04-20T22:30:48
2023-04-20T22:30:48
7,212,829
18
11
null
null
null
null
UTF-8
Python
false
false
1,307
py
#!/usr/bin/env python from optparse import OptionParser import gff ################################################################################ # transid2geneid.py # # Given a transcript id, produce a gene id to punch into the browser ################################################################################ ################################################################################ # main ################################################################################ def main(): usage = 'usage: %prog [options] <trans id>' parser = OptionParser(usage) parser.add_option('-l', dest='lnc_file', default='/Users/dk/research/common/data/lncrna/lnc_catalog.gtf', help='lncRNA catalog file [Default: %default]') (options,args) = parser.parse_args() if len(args) != 1: parser.error('Must provide transcript id') else: trans_id = args[0] for line in open(options.lnc_file): a = line.split('\t') kv = gff.gtf_kv(a[8]) if kv['transcript_id'] == trans_id: print kv['gene_id'] break ################################################################################ # __main__ ################################################################################ if __name__ == '__main__': main()
[ "dkelley@fas.harvard.edu" ]
dkelley@fas.harvard.edu
32faa30396f23e4011a0a610069b60514d8a5177
46a5163ef27278091fa5d237757d02e6d537a5a8
/vis_utils/plot_runs_direct.py
7ace96d944ef58bd23089038a2819f6ef0a0cdf8
[ "MIT" ]
permissive
lknak/tigr
5630f02c24bcb9030bf924a315d5ad0069161ab0
614a6435c483a25cb8183c08184d140120053a4f
refs/heads/main
2023-05-28T02:31:02.966208
2021-06-07T10:26:42
2021-06-07T10:26:42
369,203,165
3
2
null
null
null
null
UTF-8
Python
false
false
15,382
py
import sys, os, re, time import matplotlib.pyplot as plt import matplotlib import pandas as pd import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline as InterFun from tensorboard.backend.event_processing.event_accumulator import EventAccumulator # Define folder path for csvs FOLDER_PATH_RUNS = os.path.join('output', 'cheetah-multi-task', '2021_04_26_8_task') FOLDER_PATH_FIG = os.path.join('log', 'figures') CONCAT_RUNS = False SMOOTHING = 0.1 # Setup: # List of run names that should be plotted RUNS_TO_PLOT = [ # 'MLP_5T', # 'GRU_5T', # 'CONV_5T', # 'TRANSFORMER_5T', # 'MLP_5T', # 'MLP_5T_PCGRAD', # 'MLP_10T', # 'MLP_10T_PCGRAD', # 'MLP_1T', # 'MLP_2T', # 'MLP_3T', # 'MLP_4T', # 'MLP_5T', # 'MLP_10T', # 'MLP_20T', # 'MLP_5T_LD1', # 'MLP_5T_LD2', # 'MLP_5T_LD3', # 'MLP_5T_LD4', # 'MLP_AT0S', # 'MLP_AT1S', # 'MLP_AT5S', # 'MLP_AT10S', # 'MLP_AT25S', # 'MLP_P_A0001_R01', # 'MLP_P_A0001_R0', # 'MLP_P_A001_R01', # 'MLP_P_A01_R01', # 'MLP_5_PRIOR_GMM', # 'MLP_5_TRUE_GMM', # 'MLP_5_COMB._ACTIV.', # 'MLP_5_DIRECT_ACTIV.', # 'AKZ0.001_BE0.01_GS0.01', # 'AKZ0.001_BE0.01_GS0.1', # 'AKZ0.001_BE0.1_GS0.01', # 'AKZ0.01_BE0.1_GS0.01', # 'AKZ0.01_BE0.1_GS0.1', # 'AKZ0.1_BE0.01_GS0.1', # 'AKZ0.1_BE0.1_GS0.01', # 'AKZ0.1_BE0.1_GS0.1' # 'SM_NONE', # 'SM_LINEAR', '8_TASK_GRU_64' ] # Setup: # DICT = {Title: regex, ...} RUN_REGEX_DICT = { 'MLP_1T': '.*cheetah_multi_task_io=prior_gmm_et=mlp_ts=1_ls=2_prior_gmm', 'MLP_2T': '2021_02_27_20_07_39_prior_gmm_mlp_2', 'MLP_3T': '2021_02_27_20_07_25_prior_gmm_mlp_3', 'MLP_4T': '2021_02_27_20_07_12_prior_gmm_mlp_4', 'MLP_5T': '.*cheetah_multi_task_io=prior_gmm_et=mlp_ts=5_ls=2_prior_gmm', 'MLP_10T': '.*cheetah_multi_task_io=prior_gmm_et=mlp_ts=10_ls=2_prior_gmm', 'MLP_20T': '2021_02_24_16_35_15_prior_gmm_mlp_20', 'MLP_5T_LD1': '2021_02_27_20_05_41_prior_gmm_mlp_5_ld1', 'MLP_5T_LD2': '.*cheetah_multi_task_io=prior_gmm_et=mlp_ts=5_ls=2_prior_gmm', 'MLP_5T_LD3': '2021_02_27_20_05_51_prior_gmm_mlp_5_ld3', 'MLP_5T_LD4': '.*cheetah_multi_task_io=prior_gmm_et=mlp_ts=5_ls=4_prior_gmm', 'MLP_AT0S': '2021_02_25_17_05_02_prior_gmm_mlp_5', 'MLP_AT1S': '2021_03_02_07_22_39_prior_gmm_mlp_at1', 'MLP_AT5S': '2021_03_01_18_12_38_prior_gmm_mlp_at5', 'MLP_AT10S': '2021_03_01_18_13_10_prior_gmm_mlp_at10', 'MLP_AT25S': '2021_03_02_07_23_06_prior_gmm_mlp_at25', 'MLP_P_A0001_R01': '2021_02_25_17_05_02_prior_gmm_mlp_5', 'MLP_P_A0001_R0': '2021_03_01_03_25_34_prior_gmm_a_0001_r_0', 'MLP_P_A001_R01': '2021_03_01_03_25_53_prior_gmm_a_001_r_01', 'MLP_P_A01_R01': '2021_03_01_03_26_12_prior_gmm_a_01_r_01', 'MLP_5_PRIOR_GMM' : '.*cheetah_multi_task_io=prior_gmm_et=mlp_ts=5_ls=2_prior_gmm', 'MLP_5_TRUE_GMM' : '.*cheetah_multi_task_io=true_gmm_et=mlp_ts=5_ls=2_true_gmm', 'MLP_5_COMB._ACTIV.' : '.*cheetah_multi_task_io=comb_et=mlp_ts=5_ls=2_activation_combination', 'MLP_5_DIRECT_ACTIV.' : '.*cheetah_multi_task_io=direct_et=mlp_ts=5_ls=2_direct_activation', 'GRU_5T': '.*cheetah_multi_task_io=prior_et=gru_ts=5_ls=2_prior_gmm', 'GRU_10T': '2021_02_25_17_05_58_prior_gmm_gru_10', 'CONV_5T': '.*cheetah_multi_task_io=prior_gmm_et=conv_ts=5_ls=2_prior_gmm', 'CONV_10T': '2021_02_25_17_05_23_prior_gmm_conv_10', 'TRANSFORMER_5T': '.*cheetah_multi_task_io=prior_et=transformer_ts=5_ls=2_prior_gmm', 'TRANSFORMER_10T': '2021_02_26_15_39_57_prior_gmm_transformer_10', 'MLP_5T_PCGRAD': '2021_03_01_03_15_43_prior_gmm_mlp_5_pcgrad', 'MLP_10T_PCGRAD': '2021_02_26_16_42_03_prior_gmm_mlp_10_pcgrad', #'TIBIAMRL': 'PLACEHOLDER', 'AKZ0.001_BE0.01_GS0.01': '.*cheetah_multi_task_akz~0.001_be~0.01_gs~0.01_prior_gmm', 'AKZ0.001_BE0.01_GS0.1': '.*cheetah_multi_task_akz~0.001_be~0.01_gs~0.1_prior_gmm', 'AKZ0.001_BE0.1_GS0.01': '.*cheetah_multi_task_akz~0.001_be~0.1_gs~0.01_prior_gmm', 'AKZ0.01_BE0.1_GS0.01': '.*cheetah_multi_task_akz~0.01_be~0.1_gs~0.01_prior_gmm', 'AKZ0.01_BE0.1_GS0.1': '.*cheetah_multi_task_akz~0.01_be~0.1_gs~0.1_prior_gmm', 'AKZ0.1_BE0.01_GS0.1': '.*cheetah_multi_task_akz~0.1_be~0.01_gs~0.1_prior_gmm', 'AKZ0.1_BE0.1_GS0.01': '.*cheetah_multi_task_akz~0.1_be~0.1_gs~0.01_prior_gmm', 'AKZ0.1_BE0.1_GS0.1': '.*cheetah_multi_task_akz~0.1_be~0.1_gs~0.1_prior_gmm', 'GRU_T10': '.*cheetah_multi_task_et~gru_ts~10_prior_gmm', 'TRANSFORMER_T1': '.*cheetah_multi_task_et~transformer_ts~1_prior_gmm', 'TRANSFORMER_T5': '.*cheetah_multi_task_et~transformer_ts~5_prior_gmm', 'T_MULTIPLICATION': '.*cheetah_multi_task_tc~multiplication_prior_gmm', 'SM_NONE': '.*cheetah_multi_task_td~None_sm~None_prior_gmm', 'SM_LINEAR': '.*cheetah_multi_task_td~None_sm~linear_prior_gmm', 'TD_NONE_SMNONE': '.*cheetah_multi_task_td~None_sm~None_prior_gmm', 'TD_NONE_SMLINEAR': '.*cheetah_multi_task_td~None_sm~linear_prior_gmm', 'TD_WORST_SMNONE': '.*cheetah_multi_task_td~worst_sm~None_prior_gmm', '8_TASK_GRU_64': '.*cheetah_multi_task_ts~64_true_gmm', } # Setup: # DICT = {run name: [(Title, tag), ...], ...} RUN_TAGS_DICT = { 'default': [ ('Evaluation Test ND Average Reward', 'evaluation/nd_test/average_reward'), ('Evaluation Test ND Max Reward', 'evaluation/nd_test/max_reward'), ('Evaluation Test ND Min Reward', 'evaluation/nd_test/min_reward'), ('Evaluation Test ND Std Reward', 'evaluation/nd_test/std_reward'), ('Evaluation Test ND Success Rate', 'evaluation/nd_test/success_rate'), ('Evaluation Test Average Reward', 'evaluation/test/average_reward'), ('Evaluation Test Max Reward', 'evaluation/test/max_reward'), ('Evaluation Test Min Reward', 'evaluation/test/min_reward'), ('Evaluation Test Std Reward', 'evaluation/test/std_reward'), ('Evaluation Test Success Rate', 'evaluation/test/success_rate'), ('Evaluation Training Average Reward', 'evaluation/train/average_reward'), ('Evaluation Training Max Reward', 'evaluation/train/max_reward'), ('Evaluation Training Min Reward', 'evaluation/train/min_reward'), ('Evaluation Training Std Reward', 'evaluation/train/std_reward'), ('Evaluation Training Success Rate', 'evaluation/train/success_rate'), ('Policy Training Alpha Loss', 'rl/alpha'), ('Policy Training Policy Loss', 'rl/policy_loss'), ('Policy Training QF1 Loss', 'rl/qf1_loss'), ('Policy Training QF2 Loss', 'rl/qf2_loss'), ('Task Inference Training Mixture Model Combined Loss', 'training/ti_mixture_loss'), ('Task Inference Training Mixture Model Elbo Loss', 'training/ti_mixture_elbo_loss'), ('Task Inference Training Mixture Model State Loss', 'training/ti_mixture_state_losses'), ('Task Inference Training Mixture Model Reward Loss', 'training/ti_mixture_reward_losses'), ('Task Inference Training Mixture Model Regularization Loss', 'training/ti_mixture_regularization_loss'), ('Task Inference Training Mixture Model Class Activation Accuracy', 'training/ti_classification_acc'), ('Task Inference Training Mixture Model Clustering Loss', 'training/ti_mixture_clustering_losses') ], } def main(run_name=None, interpolation_type='scipy', smooth=True, format_='pdf', plot_std=True, save_=True, summary_pref='', fit_plt=False): global RUN_REGEX_DICT global FOLDER_PATH_RUNS global RUNS_TO_PLOT if run_name is not None: run_name = run_name if run_name[-1] != '/' else run_name[:-1] head, tail = os.path.split(run_name) if len(head) > 0: FOLDER_PATH_RUNS = head RUN_REGEX_DICT = { 'TIBIAMRL': tail, } else: RUN_REGEX_DICT = { 'TIBIAMRL': run_name, } RUNS_TO_PLOT = ['TIBIAMRL'] # Prepare data data_dict = {} # Get all folders in folder folders = sorted([d for d in os.listdir(FOLDER_PATH_RUNS) if os.path.isdir(os.path.join(FOLDER_PATH_RUNS, d))]) for run_name in RUNS_TO_PLOT: for folder in folders: if re.match(RUN_REGEX_DICT[run_name], folder) is not None: (dirpath, subfolders, subfiles) = next(os.walk(os.path.join(FOLDER_PATH_RUNS, folder, 'tensorboard'))) #(dirpath, _, subsubfiles) = next(os.walk(os.path.join(dirpath, subfolders[0]))) # Add tf events from first subfolder print(f'Reading in events of {[file for file in subfiles if "events.out" in file][0]} [{folder}]') acc = EventAccumulator(os.path.join(dirpath, [file for file in subfiles if 'events.out' in file][0])).Reload() # Gather all info for given tags for title, tag in RUN_TAGS_DICT[run_name if run_name in RUN_TAGS_DICT.keys() else 'default']: try: list_of_events = acc.Scalars(summary_pref + tag) except Exception as e: print(f'\tAcquiring data for tag "{summary_pref + tag}" went wrong! ({e})') continue _, steps, values = list(zip(*map(lambda x: x._asdict().values(), list_of_events))) df = pd.DataFrame(data=np.array([np.array(steps), np.array(values)]).T, columns=['Step', 'Value']) df.drop_duplicates(subset='Step', keep='last', inplace=True) # Add dfs to data_dict if title in data_dict.keys(): if not CONCAT_RUNS: if run_name in data_dict[title].keys(): data_dict[title][run_name].append(df) else: data_dict[title][run_name] = [df] else: last_step = data_dict[title][run_name][0]['Step'].to_numpy()[-1] df['Step'] += last_step data_dict[title][run_name][0] = data_dict[title][run_name][0].append(df) else: data_dict[title] = {run_name: [df]} print(f'Using {["own", "InterpolatedUnivariateSpline (scipy)"][int(interpolation_type == "scipy")]} interpolation method to patch missing data in some plots') # Find min length for plotting only valid data and transform pd frames in numpy arrays for title in data_dict.keys(): # Find corresponding values and interpolate for run_name in list(data_dict[title].keys()): # Only interpolate in case we have multiple runs that need to be averaged min_steps = data_dict[title][run_name][0]['Step'].to_numpy() if len(data_dict[title][run_name]) > 1: temp_l = np.array([df['Step'].to_numpy()[-1] for df in data_dict[title][run_name]]) min_steps = data_dict[title][run_name][temp_l.argmin()]['Step'].to_numpy() if interpolation_type == 'scipy': for ind, df in enumerate(data_dict[title][run_name]): interpolation_function = InterFun(df['Step'].to_numpy(), df['Value'].to_numpy()) data_dict[title][run_name][ind] = interpolation_function(min_steps) elif interpolation_type == 'own': for ind, df in enumerate(data_dict[title][run_name]): steps, values = df['Step'].to_numpy(), df['Value'].to_numpy() bigger_array = np.zeros_like(min_steps, dtype=np.float) for arr_ind, step in enumerate(min_steps): bigger_array[arr_ind] = values[np.where(steps >= step)[0][0]] if np.sum(steps >= step) > 0 else values[-1] data_dict[title][run_name][ind] = bigger_array else: data_dict[title][run_name][0] = data_dict[title][run_name][0]['Value'].to_numpy() data_dict[title][run_name + '_steps'] = min_steps # Start plotting print(f'Plotting ...') # Use Latex text matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' # Make folder in case not yet existing file_name = "_".join([RUN_REGEX_DICT[run_name] for run_name in RUNS_TO_PLOT]) fig_folder = os.path.join(FOLDER_PATH_FIG, f'{time.strftime("%Y-%m-%d-%H_%M_%S")}_{file_name if len(RUNS_TO_PLOT) < 2 else "comparison"}_smoothing{SMOOTHING}') if not os.path.isdir(fig_folder) and save_: os.mkdir(fig_folder) for title in data_dict.keys(): plot_title = ('Comparison ' if len(data_dict[title]) > 2 else '') + title plt.ioff() plt.title(plot_title) max_mean, min_mean = -np.inf, np.inf for run_name in data_dict[title].keys(): if '_steps' in run_name: continue data_arr = np.array(data_dict[title][run_name]) steps = data_dict[title][run_name + '_steps'] mean = data_arr.mean(axis=0) if not smooth else smooth_values(data_arr.mean(axis=0)) std = np.sqrt(data_arr.var(axis=0)) plt.plot(steps, mean) if plot_std: plt.fill_between(steps, mean + std, mean - std, alpha=0.3) max_mean = mean.max() if max_mean < mean.max() else max_mean min_mean = mean.min() if min_mean > mean.min() else min_mean if fit_plt: plt.ylim([min_mean, max_mean]) plt.legend([f'{el}_[{len(data_dict[title][el])}]' for el in data_dict[title].keys() if '_steps' not in el], bbox_to_anchor=(1, 1), loc='upper left') plt.xlabel('Steps') plt.ylabel(title) # Always show 0 # y_min, y_max = plt.gca().get_ylim() # if y_min > 0 and not fit_plt: # plt.ylim([0, y_max]) # Save or show if save_: plt.savefig(os.path.join(fig_folder, plot_title + '.' + format_), format=format_, dpi=100, bbox_inches='tight') else: plt.show() plt.close() def smooth_values(scalars, weight=None): # Scalars as np.array, weight between 0 and 1 if weight is None: weight = SMOOTHING last = scalars[0] # First value in the plot (first timestep) smoothed = np.zeros_like(scalars) for idx, point in enumerate(scalars): smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value smoothed[idx] = smoothed_val # Save it last = smoothed_val # Anchor the last smoothed value return np.array(smoothed) if __name__ == '__main__': if len(sys.argv) > 0: main(*sys.argv[1:]) else: main()
[ "brainstoorm@web.de" ]
brainstoorm@web.de
13e5580aff5ed3f900413d87447a30a3ad35e622
e4f9c74094b5d2263768640e15d36265e905a133
/catalogue_folder_level.py
fd89b2190ece65cbe1739249ffe9d9993e626e6b
[]
no_license
rothwellstuart/nlp-command-line-tool
a4549af4d8bdcd764a20bfbac4c4d9faa7388a27
4821391484dbb9fc9896a1c9c1dd5ac385f5f8d2
refs/heads/master
2020-03-29T02:19:23.249589
2018-09-19T10:05:53
2018-09-19T10:05:53
149,430,401
0
0
null
null
null
null
UTF-8
Python
false
false
7,004
py
# # Catalogue_folder_level # # Create a high level classification of files by file type, WITHIN A FOLDER # # Imports # def catalogue_folder_level(selected_dir): import os, sys, magic, time, hashlib, csv, shutil, operator from os import listdir, environ from os.path import isfile, join import pandas as pd # Initialise variables allfiles=[] # Main loop # for file in driver_list: for subdir, dirs, files in os.walk(selected_dir): dict_filecount=dict() dict_filesizes=dict() dict_mimecount=dict() dict_mimesizes=dict() dict_extcount=dict() dict_extsizes=dict() dict_filecount_sorted = [] dict_filesizes_sorted = [] dict_mimecount_sorted = [] dict_mimesizes_sorted = [] dict_extcount_sorted = [] dict_extsizes_sorted = [] folder_count = 0 folder_size = 0 # Get name of folder immediately above the files named_folder = subdir.rsplit('/',1)[-1] relpath = os.path.relpath(subdir, selected_dir) if relpath == '.': relpath = "" print("Processing sub-folder: ", named_folder, ", at: ", relpath) # Cycle through files for file in files: # Count of files folder_count += 1 # Get filetype and file size filesize = os.path.getsize(join(subdir, file)) fileext = os.path.splitext(join(subdir, file))[1].upper() mimetype = magic.from_file(join(subdir, file), mime=True) # Add in size folder_size += filesize # CLASSIFICATION of files if 'encrypted' in mimetype: fileclass = 'ENCRYPTED' elif 'zip' in mimetype: fileclass = 'COMPRESSED' elif 'word' in mimetype: fileclass = 'WORD' elif 'pdf' in mimetype: fileclass='PDF' elif ('excel' in mimetype) or ('spreadsheet' in mimetype): fileclass = 'EXCEL' elif 'office' in mimetype and fileext == '.VSD': fileclass = 'VISIO' elif 'office' in mimetype and fileext == '.XLS': fileclass = 'EXCEL' elif 'powerpoint' in mimetype: fileclass = 'POWERPOINT' elif 'image' in mimetype: fileclass = 'IMAGE' elif 'message' in mimetype: fileclass = 'EMAIL' elif 'text' in mimetype or 'octet-stream' in mimetype or 'application' in mimetype: if fileext == '.HTM' or fileext == '.HTML': fileclass = 'HTML' elif fileext == '.EML' or fileext == '.RTF' or fileext == '.MSG': fileclass = 'EMAIL' elif fileext == '.TXT': fileclass = 'TEXT' elif fileext == '.RAW' or fileext == '.GIF' or fileext == '.JPG' or fileext == '.PNG' or '.TIF' in fileext or fileext == '.WMF': fileclass = 'IMAGE' elif fileext == '.DAT' or fileext == '.CSV': fileclass = 'FLATFILE' elif '.DOC' in fileext: fileclass = 'WORD' elif fileext == '.PDF': fileclass = 'PDF' elif '.XLS' in fileext: fileclass = 'EXCEL' elif '.PPT' in fileext: fileclass = 'POWERPOINT' elif fileext == '.MBOX': fileclass = 'MAILBOX' elif fileext == '.XML': fileclass = 'XML' elif fileext == '.ZIP': fileclass = 'COMPRESSED' elif '.001' in fileext or fileext == '.JS' or fileext == '.AU_' or fileext == '.COM_' or fileext == '.CSS' or \ fileext == '.JOBOPTIONS' or fileext == '.LOCAL_' or fileext == '.DOT' or fileext == '.DS_STORE' or \ fileext == '.EMF' or fileext == '.MDB' or fileext == '.ODTTF' or fileext == '.PART' or fileext == '.WPD': fileclass = 'MISC' else: fileclass = 'MISC' elif mimetype == 'application/xml': fileclass = 'XML' else: ### octet-stream ### inode/x-empty fileclass='UNKNOWN' # Add to dictionaries if fileclass in dict_filecount: dict_filecount[fileclass] += 1 dict_filesizes[fileclass] += filesize else: dict_filecount[fileclass] = 1 dict_filesizes[fileclass] = filesize if mimetype in dict_mimecount: dict_mimecount[mimetype] += 1 dict_mimesizes[mimetype] += filesize else: dict_mimecount[mimetype] = 1 dict_mimesizes[mimetype] = filesize if fileext in dict_extcount: dict_extcount[fileext] += 1 dict_extsizes[fileext] += filesize else: dict_extcount[fileext] = 1 dict_extsizes[fileext] = filesize ###### End loop of files within subdir # Sort dictionaries by the values dict_filecount_sorted = sorted(dict_filecount.items(), key=operator.itemgetter(1), reverse=True) dict_filesizes_sorted = sorted(dict_filesizes.items(), key=operator.itemgetter(1), reverse=True) dict_mimecount_sorted = sorted(dict_mimecount.items(), key=operator.itemgetter(1), reverse=True) dict_mimesizes_sorted = sorted(dict_mimesizes.items(), key=operator.itemgetter(1), reverse=True) dict_extcount_sorted = sorted(dict_extcount.items(), key=operator.itemgetter(1), reverse=True) dict_extsizes_sorted = sorted(dict_extsizes.items(), key=operator.itemgetter(1), reverse=True) # Check contents of dictionaries # print('Filecounts by filetype: ', dict_filecount_sorted) # print('Filesizes by filetype', dict_filesizes_sorted) # print('Filecounts by mimetype: ', dict_mimecount_sorted) # print('Filesizes by mimetype', dict_mimesizes_sorted) # print('Filecounts by extension: ', dict_extcount_sorted) # print('Filesizes by extension', dict_extsizes_sorted) # Append to output - one row for every subdir row=[] row.append(named_folder) row.append(subdir) row.append(relpath) row.append(folder_count) row.append(folder_size) row.append(str(dict_filecount_sorted)) row.append(str(dict_filesizes_sorted)) row.append(str(dict_mimecount_sorted)) row.append(str(dict_mimesizes_sorted)) row.append(str(dict_extcount_sorted)) row.append(str(dict_extsizes_sorted)) allfiles.append(row) ### End of subdirs loop # Convert to DataFrame allfiles_df = pd.DataFrame(allfiles) # Rename columns allfiles_df.columns = ['named_folder', 'subdir', 'relpath', 'filecount', 'filesize', 'filecount_by_type', 'filesize_by_type', 'filecount_by_mimetype','filesize_by_mimetype', 'filecount_by_ext', 'filesize_by_ext'] allfiles_df.sort_values('filesize', ascending=False, inplace=True) # Output to csv allfiles_df.to_csv('output/00_catalogue_folder_level.csv', index=False) # Print output to screen print("Folder summary view run:") print(allfiles_df[['subdir', 'filecount', 'filesize']]) print("\nSee output/00_catalogue_folder_level.csv for full detailed summary.\n")
[ "rothwellstuart@hotmail.com" ]
rothwellstuart@hotmail.com
38ca3a02b5ddb39e04540b8ee04a6af0828c4cbd
842a047102c81e78c7c9276bb77519218b6c3967
/app/django-backend/app/spendings/views.py
4aa7551f3a877c371e165801c3beba89fb3bf7f3
[]
no_license
dpinedaj/FinanceApp
18017455d962e0db6acd05f4547c4d76dbe50745
12f5e84f4758d59b8916472661ff2411ced40ecc
refs/heads/master
2023-05-08T06:29:02.896984
2021-05-03T01:39:22
2021-05-03T01:39:22
300,404,921
1
0
null
2021-05-03T01:39:23
2020-10-01T19:45:53
Python
UTF-8
Python
false
false
434
py
from rest_framework import viewsets from spendings.models import Spends, SpendTypes from spendings.serializer import SpendsSerializer, SpendTypesSerializer # Create your views here. class SpendTypesView(viewsets.ModelViewSet): queryset = SpendTypes.objects.all() serializer_class = SpendTypesSerializer class SpendsView(viewsets.ModelViewSet): queryset = Spends.objects.all() serializer_class = SpendsSerializer
[ "dpinedaj@unal.edu.co" ]
dpinedaj@unal.edu.co
b364344e9455d0d80b99465d14a2c0d8abf05236
54b09a85d579d2a0d296a825196f2515da64fec1
/BOJ2884.py
f655909e11caaeff6516f8e4ff9b49d9dcc256af
[]
no_license
winan305/Algorithm-with-Python3
2c0f51e03b7207eb7b644cecc44aef489e3e6ee2
233b0f5687f4d7b1ec7ec4772771503fa85c27ee
refs/heads/master
2021-01-22T20:49:09.488640
2018-05-16T03:52:27
2018-05-16T03:52:27
100,776,542
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
# https://www.acmicpc.net/problem/2884 # 알람 시계 # 구현 H, M = map(int, input().split()) M = M - 45 if M < 0 : M += 60 H -= 1 if H < 0 : H += 24 print(H, M)
[ "winan305" ]
winan305
eaa84d083daf2838f8db871cfe6ed73b20709602
00c48bd685a3dda5731a9f9ba7b87589048ed71d
/TEAM_HIT_BY_PITCH/teams_hit_by_pitches.py
26b0c66d1059ac8d36c095e00f30a7e3b58a3bfe
[]
no_license
ebwinters/BaseballAnalysis
0da56faae45b551be840df7ed6779c515e45fcd4
9d0ed4aab54cba8848d85595ec4d77c319c6f02f
refs/heads/master
2020-03-07T19:23:06.777335
2018-04-10T17:56:09
2018-04-10T17:56:09
127,668,988
0
0
null
null
null
null
UTF-8
Python
false
false
1,187
py
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #load in data teams = "~/Desktop/DataAnalysis_Udemy/BaseballAnalysis/baseballdatabank-master/core/Teams.csv" teams_df = pd.read_csv(teams) odds_by_team_id = {} def get_odds_hit_by_pitch(team_id): #only get teams with team_id, and drop any columns with no data (probably from early years of baseball) df = teams_df.loc[teams_df['teamID'] == team_id].dropna() df = df.groupby(by='teamID', as_index=False)['teamID', 'HBP', 'AB'].sum() #add to dictionary to use later in plotting odds_by_team_id[team_id] = float(df['HBP']/df['AB']) team_id_list = [ 'ARI', 'ATL', 'BAL', 'BOS', 'CHA', 'CHN', 'CIN', 'CLE', 'COL', 'DET', 'HOU', 'KCA', 'LAA', 'LAN', 'MIA', 'MIL', 'MIN', 'NYA', 'NYN', 'OAK', 'PHI', 'PIT', 'SDN', 'SEA', 'SFN', 'SLN', 'TBA', 'TEX', 'TOR', 'WAS' ] for team_id in team_id_list: get_odds_hit_by_pitch(team_id) barchart = sns.barplot(x=list(odds_by_team_id.keys()), y=list(odds_by_team_id.values()), palette='deep') barchart.set(xlabel='Team', ylabel='% Chance hit by pitch') barchart.tick_params(labelsize=5) plt.show(barchart)
[ "ewinters@terpmail.umd.edu" ]
ewinters@terpmail.umd.edu
ae48474220c3b8e0a410957103a20113cddbb24a
69a1a36a322cfc393ad40423d782ebe6f7153304
/analytics/migrations/0002_auto_20190103_0249.py
07ca1f41e2447340ecbb4343879e6a4cc4e45f49
[]
no_license
mmaleka/beam-force-calculator
1690098575daae1a2e6df2b18734530b9aeb2476
1e953373270b7288f3a9d0d34971b1c8f68e5eff
refs/heads/master
2020-04-14T13:49:27.063524
2019-01-05T12:11:42
2019-01-05T12:11:42
163,877,466
1
0
null
null
null
null
UTF-8
Python
false
false
1,154
py
# Generated by Django 2.1.1 on 2019-01-03 00:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('analytics', '0001_initial'), ] operations = [ migrations.CreateModel( name='SolutionBeamCount', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ip_address', models.CharField(blank=True, max_length=220, null=True)), ('user', models.CharField(db_index=True, max_length=150)), ('time_stamp', models.DateTimeField(auto_now_add=True, null=True)), ('updated_at', models.DateTimeField(auto_now=True, null=True)), ('views_count', models.IntegerField(default=0)), ], options={ 'ordering': ['-time_stamp'], }, ), migrations.RemoveField( model_name='registercount', name='address', ), migrations.RemoveField( model_name='solvebeamcount', name='address', ), ]
[ "Mpho.Maleka@rheinmetall-denelmunition.com" ]
Mpho.Maleka@rheinmetall-denelmunition.com
3c2625961aa16d15246b5e222e8ed2673f9004c5
f08d0b5d0ce94292493111be42eaf6db051c8eb3
/view/CardEncoder.py
a6c0f5955440aa1bf542bf4cf57eb5961033a426
[]
no_license
draxlus/CMPT-370_SoftwareDevProject
999ac7ddd470b40d2df8f338a51f2a661b747922
f2205456ba5ff3d1cb7d4d65cd65becfabcf8c2c
refs/heads/main
2023-04-19T07:52:45.986842
2021-05-06T19:18:43
2021-05-06T19:18:43
365,009,563
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
import json from json import JSONEncoder class CardEncoder(JSONEncoder): def default(self,o): return o.__dict__
[ "siddhantagrawal777@gmail.com" ]
siddhantagrawal777@gmail.com
6b059ae9f2f5382b3bb9cbb8c0e8698cebbcb437
a86e67ac95a331e9652c82f8d30e0a3a3968a3ba
/omsaalert/config/email.py
5f9c023f03b1b0d141d70ddac9deb598972f3205
[]
no_license
dsoprea/omsa-alert
9a1511e2d7e3bf90335bfe72bde3ba3bd8103439
23aaa939182e1c0e070b430768d9d4b5cf1be4d4
refs/heads/master
2021-05-09T13:33:47.916314
2019-12-21T17:47:57
2019-12-21T17:47:57
119,039,198
1
1
null
null
null
null
UTF-8
Python
false
false
115
py
DEFAULT_SUBJECT = "OMSA Reported a Problem" FROM_EMAIL_ADDRESS = "omsaalert@localhost" SMTP_HOSTNAME = 'localhost'
[ "doprea@magicleap.com" ]
doprea@magicleap.com
af46dad9e4c7157da0632a065f8f382db3a588b7
607257a034f4d0ce2916c68d9995ee9d2eec20f0
/Controller/make_db.py
c79fd9e486d77956cab1eef0429a7f1752a66618
[]
no_license
sean-ocall/phosphorylation
c3d086b6afb152e1b0a73c330ac63b1c90dea7da
e9e3482fb73fc45a60dfaf26bf067ce73975e0d1
refs/heads/master
2021-09-15T10:52:45.043572
2018-05-31T04:38:36
2018-05-31T04:38:36
107,934,589
2
1
null
null
null
null
UTF-8
Python
false
false
1,867
py
import sqlite3 conn = sqlite3.connect('../Model/phospho-db.sqlite') c = conn.cursor() table_name = 'phosphositetb' # 0 1 2 3 4 5 6 t_fields = ['residue', 'position', 'uniprotid','genename','function', 'foldchange', 'AA_sequence'] t_field_types = ['TEXT', 'INTEGER', 'TEXT', 'TEXT', 'TEXT', 'FLOAT','TEXT'] c.execute(""" CREATE TABLE IF NOT EXISTS {tn} ( {fn1} {ft1}, {fn2} {ft2}, {fn3} {ft3}, {fn4} {ft4}, {fn5} {ft5}, {fn6} {ft6}, {fn7} {ft7} ); """.format(tn=table_name, fn1=t_fields[0], fn2=t_fields[1], fn3=t_fields[2], fn4=t_fields[3], fn5=t_fields[4], fn6=t_fields[5], fn7=t_fields[6], ft1=t_field_types[0], ft2=t_field_types[1], ft3=t_field_types[2], ft4=t_field_types[3], ft5=t_field_types[4], ft6=t_field_types[5], ft7=t_field_types[6])) conn.commit() conn.close()
[ "sean.ocall@gmail.com" ]
sean.ocall@gmail.com
392a95a13678b978b2bf26cfa31a3ae43fdcdd15
5e517912d4666fc3a2f012fa1f2a7e829f18ad6c
/Exercícios/Conversão-moeda.py
fbb865e76af27c941ed51d4093851d19e65f4df6
[]
no_license
Marcelo-Carlos/Python
817a8342191e57abb676dafef8c8798c0364c959
d3e3c2f96bb9cfad530c67ab65f6e4713f9ca3d1
refs/heads/master
2022-09-11T21:20:06.976305
2020-05-31T21:33:17
2020-05-31T21:33:17
268,367,618
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
real = float(input('Quanto voce tem R$: ')) dolar = real / 5.27 print('Você pode comprar US$: {:.2f}'.format(dolar))
[ "Marcelo Carlos" ]
Marcelo Carlos
5c2a0ecf03bd9fc2fff4b6d350ed3171d1b1c3d3
209a7a4023a9a79693ec1f6e8045646496d1ea71
/COMP0016_2020_21_Team12-datasetsExperimentsAna/pwa/FADapp/pythonScripts/venv/Lib/site-packages/pandas/_testing.py
0af5339179bf326f08e63c419731ff513a646c25
[ "MIT" ]
permissive
anzhao920/MicrosoftProject15_Invictus
5e2347015411bbffbdf0ceb059df854661fb240c
15f44eebb09561acbbe7b6730dfadf141e4c166d
refs/heads/main
2023-04-16T13:24:39.332492
2021-04-27T00:47:13
2021-04-27T00:47:13
361,913,170
0
0
MIT
2021-04-26T22:41:56
2021-04-26T22:41:55
null
UTF-8
Python
false
false
99,239
py
import bz2 from collections import Counter from contextlib import contextmanager from datetime import datetime from functools import wraps import gzip import operator import os from pathlib import Path import random import re from shutil import rmtree import string import tempfile from typing import IO, Any, Callable, ContextManager, List, Optional, Type, Union, cast import warnings import zipfile import numpy as np from numpy.random import rand, randn from pandas._config.localization import ( # noqa:F401 can_set_locale, get_locales, set_locale, ) from pandas._libs.lib import no_default import pandas._libs.testing as _testing from pandas._typing import Dtype, FilePathOrBuffer, FrameOrSeries from pandas.compat import get_lzma_file, import_lzma from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_extension_array_dtype, is_interval_dtype, is_number, is_numeric_dtype, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, bdate_range, ) from pandas.core.algorithms import safe_sort, take_1d from pandas.core.arrays import ( DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArray, period_array, ) from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing lzma = import_lzma() _N = 30 _K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False UNSIGNED_INT_DTYPES: List[Dtype] = ["uint8", "uint16", "uint32", "uint64"] UNSIGNED_EA_INT_DTYPES: List[Dtype] = ["UInt8", "UInt16", "UInt32", "UInt64"] SIGNED_INT_DTYPES: List[Dtype] = [int, "int8", "int16", "int32", "int64"] SIGNED_EA_INT_DTYPES: List[Dtype] = ["Int8", "Int16", "Int32", "Int64"] ALL_INT_DTYPES = UNSIGNED_INT_DTYPES + SIGNED_INT_DTYPES ALL_EA_INT_DTYPES = UNSIGNED_EA_INT_DTYPES + SIGNED_EA_INT_DTYPES FLOAT_DTYPES: List[Dtype] = [float, "float32", "float64"] FLOAT_EA_DTYPES: List[Dtype] = ["Float32", "Float64"] COMPLEX_DTYPES: List[Dtype] = [complex, "complex64", "complex128"] STRING_DTYPES: List[Dtype] = [str, "str", "U"] DATETIME64_DTYPES: List[Dtype] = ["datetime64[ns]", "M8[ns]"] TIMEDELTA64_DTYPES: List[Dtype] = ["timedelta64[ns]", "m8[ns]"] BOOL_DTYPES = [bool, "bool"] BYTES_DTYPES = [bytes, "bytes"] OBJECT_DTYPES = [object, "object"] ALL_REAL_DTYPES = FLOAT_DTYPES + ALL_INT_DTYPES ALL_NUMPY_DTYPES = ( ALL_REAL_DTYPES + COMPLEX_DTYPES + STRING_DTYPES + DATETIME64_DTYPES + TIMEDELTA64_DTYPES + BOOL_DTYPES + OBJECT_DTYPES + BYTES_DTYPES ) NULL_OBJECTS = [None, np.nan, pd.NaT, float("nan"), pd.NA] # set testing_mode _testing_mode_warnings = (DeprecationWarning, ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: # pandas\_testing.py:119: error: Argument 2 to "simplefilter" has # incompatible type "Tuple[Type[DeprecationWarning], # Type[ResourceWarning]]"; expected "Type[Warning]" warnings.simplefilter( "always", _testing_mode_warnings # type: ignore[arg-type] ) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: # pandas\_testing.py:126: error: Argument 2 to "simplefilter" has # incompatible type "Tuple[Type[DeprecationWarning], # Type[ResourceWarning]]"; expected "Type[Warning]" warnings.simplefilter( "ignore", _testing_mode_warnings # type: ignore[arg-type] ) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option("^display.", silent=True) def round_trip_pickle( obj: Any, path: Optional[FilePathOrBuffer] = None ) -> FrameOrSeries: """ Pickle an object and then read it again. Parameters ---------- obj : any object The object to pickle and then re-read. path : str, path object or file-like object, default None The path where the pickled object is written and then read. Returns ------- pandas object The original object that was pickled and then re-read. """ _path = path if _path is None: _path = f"__{rands(10)}__.pickle" with ensure_clean(_path) as temp_path: pd.to_pickle(obj, temp_path) return pd.read_pickle(temp_path) def round_trip_pathlib(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip("pathlib").Path if path is None: path = "___pathlib___" with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a py.path LocalPath and read it back. Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip("py.path").local if path is None: path = "___localpath___" with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object. Parameters ---------- path : str The path where the file is read from. compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- file object """ if compression is None: f = open(path, "rb") elif compression == "gzip": # pandas\_testing.py:243: error: Incompatible types in assignment # (expression has type "IO[Any]", variable has type "BinaryIO") f = gzip.open(path, "rb") # type: ignore[assignment] elif compression == "bz2": # pandas\_testing.py:245: error: Incompatible types in assignment # (expression has type "BZ2File", variable has type "BinaryIO") f = bz2.BZ2File(path, "rb") # type: ignore[assignment] elif compression == "xz": f = get_lzma_file(lzma)(path, "rb") elif compression == "zip": zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: # pandas\_testing.py:252: error: Incompatible types in assignment # (expression has type "IO[bytes]", variable has type "BinaryIO") f = zip_file.open(zip_names.pop()) # type: ignore[assignment] else: raise ValueError(f"ZIP file {path} error. Only one file per ZIP.") else: raise ValueError(f"Unrecognized compression type: {compression}") try: yield f finally: f.close() if compression == "zip": zip_file.close() def write_to_compressed(compression, path, data, dest="test"): """ Write data to a compressed file. Parameters ---------- compression : {'gzip', 'bz2', 'zip', 'xz'} The compression type to use. path : str The file path to write the data. data : str The data to write. dest : str, default "test" The destination file (for ZIP only) Raises ------ ValueError : An invalid compression value was passed in. """ if compression == "zip": compress_method = zipfile.ZipFile elif compression == "gzip": # pandas\_testing.py:288: error: Incompatible types in assignment # (expression has type "Type[GzipFile]", variable has type # "Type[ZipFile]") compress_method = gzip.GzipFile # type: ignore[assignment] elif compression == "bz2": # pandas\_testing.py:290: error: Incompatible types in assignment # (expression has type "Type[BZ2File]", variable has type # "Type[ZipFile]") compress_method = bz2.BZ2File # type: ignore[assignment] elif compression == "xz": compress_method = get_lzma_file(lzma) else: raise ValueError(f"Unrecognized compression type: {compression}") if compression == "zip": mode = "w" args = (dest, data) method = "writestr" else: mode = "wb" # pandas\_testing.py:302: error: Incompatible types in assignment # (expression has type "Tuple[Any]", variable has type "Tuple[Any, # Any]") args = (data,) # type: ignore[assignment] method = "write" with compress_method(path, mode=mode) as f: getattr(f, method)(*args) def _get_tol_from_less_precise(check_less_precise: Union[bool, int]) -> float: """ Return the tolerance equivalent to the deprecated `check_less_precise` parameter. Parameters ---------- check_less_precise : bool or int Returns ------- float Tolerance to be used as relative/absolute tolerance. Examples -------- >>> # Using check_less_precise as a bool: >>> _get_tol_from_less_precise(False) 0.5e-5 >>> _get_tol_from_less_precise(True) 0.5e-3 >>> # Using check_less_precise as an int representing the decimal >>> # tolerance intended: >>> _get_tol_from_less_precise(2) 0.5e-2 >>> _get_tol_from_less_precise(8) 0.5e-8 """ if isinstance(check_less_precise, bool): if check_less_precise: # 3-digit tolerance return 0.5e-3 else: # 5-digit tolerance return 0.5e-5 else: # Equivalent to setting checking_less_precise=<decimals> return 0.5 * 10 ** -check_less_precise def assert_almost_equal( left, right, check_dtype: Union[bool, str] = "equiv", check_less_precise: Union[bool, int] = no_default, rtol: float = 1.0e-5, atol: float = 1.0e-8, **kwargs, ): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool or {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. .. deprecated:: 1.1.0 Use `rtol` and `atol` instead to define relative/absolute tolerance, respectively. Similar to :func:`math.isclose`. rtol : float, default 1e-5 Relative tolerance. .. versionadded:: 1.1.0 atol : float, default 1e-8 Absolute tolerance. .. versionadded:: 1.1.0 """ if check_less_precise is not no_default: warnings.warn( "The 'check_less_precise' keyword in testing.assert_*_equal " "is deprecated and will be removed in a future version. " "You can stop passing 'check_less_precise' to silence this warning.", FutureWarning, stacklevel=2, ) rtol = atol = _get_tol_from_less_precise(check_less_precise) if isinstance(left, pd.Index): assert_index_equal( left, right, check_exact=False, exact=check_dtype, rtol=rtol, atol=atol, **kwargs, ) elif isinstance(left, pd.Series): assert_series_equal( left, right, check_exact=False, check_dtype=check_dtype, rtol=rtol, atol=atol, **kwargs, ) elif isinstance(left, pd.DataFrame): assert_frame_equal( left, right, check_exact=False, check_dtype=check_dtype, rtol=rtol, atol=atol, **kwargs, ) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if isinstance(left, np.ndarray) or isinstance(right, np.ndarray): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) _testing.assert_almost_equal( left, right, check_dtype=check_dtype, rtol=rtol, atol=atol, **kwargs ) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(left)} instead" ) if not isinstance(right, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(right)} instead" ) def assert_dict_equal(left, right, compare_keys: bool = True): _check_isinstance(left, right, dict) _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p: float = 0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array( list("".join(map(chr, range(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1), ) def rands_array(nchars, size, dtype="O"): """ Generate an array of byte strings. """ retval = ( np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)) .reshape(size) ) return retval.astype(dtype) def randu_array(nchars, size, dtype="O"): """ Generate an array of unicode strings. """ retval = ( np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)) .reshape(size) ) return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return "".join(np.random.choice(RANDS_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import close as _close, get_fignums if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike: bool = False, **kwargs: Any): """ Gets a temporary path and agrees to remove on close. This implementation does not use tempfile.mkstemp to avoid having a file handle. If the code using the returned path wants to delete the file itself, windows requires that no program has a file handle to it. Parameters ---------- filename : str (optional) suffix of the created file. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. **kwargs Additional keywords are passed to open(). """ folder = Path(tempfile.gettempdir()) if filename is None: filename = "" filename = ( "".join(random.choices(string.ascii_letters + string.digits, k=30)) + filename ) path = folder / filename path.touch() handle_or_str: Union[str, IO] = str(path) if return_filelike: kwargs.setdefault("mode", "w+b") handle_or_str = open(path, **kwargs) try: yield handle_or_str finally: if not isinstance(handle_or_str, str): handle_or_str.close() if path.is_file(): path.unlink() @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix="") try: yield directory_name finally: try: rmtree(directory_name) except OSError: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2) -> bool: """ Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal( left: Index, right: Index, exact: Union[bool, str] = "equiv", check_names: bool = True, check_less_precise: Union[bool, int] = no_default, check_exact: bool = True, check_categorical: bool = True, check_order: bool = True, rtol: float = 1.0e-5, atol: float = 1.0e-8, obj: str = "Index", ) -> None: """ Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. .. deprecated:: 1.1.0 Use `rtol` and `atol` instead to define relative/absolute tolerance, respectively. Similar to :func:`math.isclose`. check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_order : bool, default True Whether to compare the order of index entries as well as their values. If True, both indexes must contain the same elements, in the same order. If False, both indexes must contain the same elements, but in any order. .. versionadded:: 1.2.0 rtol : float, default 1e-5 Relative tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 atol : float, default 1e-8 Absolute tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message. Examples -------- >>> from pandas.testing import assert_index_equal >>> a = pd.Index([1, 2, 3]) >>> b = pd.Index([1, 2, 3]) >>> assert_index_equal(a, b) """ __tracebackhide__ = True def _check_types(left, right, obj="Index"): if exact: assert_class_equal(left, right, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal("dtype", left, right, obj=obj) # allow string-like to have different inferred_types if left.inferred_type in ("string"): assert right.inferred_type in ("string") else: assert_attr_equal("inferred_type", left, right, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] level_codes = index.codes[level] filled = take_1d(unique._values, level_codes, fill_value=unique._na_value) return unique._shallow_copy(filled, name=index.names[level]) if check_less_precise is not no_default: warnings.warn( "The 'check_less_precise' keyword in testing.assert_*_equal " "is deprecated and will be removed in a future version. " "You can stop passing 'check_less_precise' to silence this warning.", FutureWarning, stacklevel=2, ) rtol = atol = _get_tol_from_less_precise(check_less_precise) # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = f"{obj} levels are different" msg2 = f"{left.nlevels}, {left}" msg3 = f"{right.nlevels}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = f"{obj} length are different" msg2 = f"{len(left)}, {left}" msg3 = f"{len(right)}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # If order doesn't matter then sort the index entries if not check_order: left = Index(safe_sort(left)) right = Index(safe_sort(right)) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: left = cast(MultiIndex, left) right = cast(MultiIndex, right) for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = f"MultiIndex level [{level}]" assert_index_equal( llevel, rlevel, exact=exact, check_names=check_names, check_exact=check_exact, rtol=rtol, atol=atol, obj=lobj, ) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values).astype(int)) * 100.0 / len(left) msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal( left.values, right.values, rtol=rtol, atol=atol, check_dtype=exact, obj=obj, lobj=left, robj=right, ) # metadata comparison if check_names: assert_attr_equal("names", left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal("freq", left, right, obj=obj) if isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex): assert_interval_array_equal(left._values, right._values) if check_categorical: if is_categorical_dtype(left.dtype) or is_categorical_dtype(right.dtype): assert_categorical_equal(left._values, right._values, obj=f"{obj} category") def assert_class_equal(left, right, exact: Union[bool, str] = True, obj="Input"): """ Checks classes are equal. """ __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x return type(x).__name__ if exact == "equiv": if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {"Int64Index", "RangeIndex"}): msg = f"{obj} classes are not equivalent" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = f"{obj} classes are different" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr: str, left, right, obj: str = "Attributes"): """ Check attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif ( is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr) ): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = f'Attribute "{attr}" are different' raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ( "one of 'objs' is not a matplotlib Axes instance, " f"type encountered {repr(type(el).__name__)}" ) assert isinstance(el, (plt.Axes, dict)), msg else: msg = ( "objs is neither an ndarray of Artist instances nor a single " "ArtistArtist instance, tuple, or dict, 'objs' is a " f"{repr(type(objs).__name__)}" ) assert isinstance(objs, (plt.Artist, tuple, dict)), msg def assert_is_sorted(seq): """Assert that the sequence is sorted.""" if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal( left, right, check_dtype=True, check_category_order=True, obj="Categorical" ): """ Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj=f"{obj}.categories") assert_numpy_array_equal( left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes" ) else: try: lc = left.categories.sort_values() rc = right.categories.sort_values() except TypeError: # e.g. '<' not supported between instances of 'int' and 'str' lc, rc = left.categories, right.categories assert_index_equal(lc, rc, obj=f"{obj}.categories") assert_index_equal( left.categories.take(left.codes), right.categories.take(right.codes), obj=f"{obj}.values", ) assert_attr_equal("ordered", left, right, obj=obj) def assert_interval_array_equal(left, right, exact="equiv", obj="IntervalArray"): """ Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) kwargs = {} if left._left.dtype.kind in ["m", "M"]: # We have a DatetimeArray or TimedeltaArray kwargs["check_freq"] = False assert_equal(left._left, right._left, obj=f"{obj}.left", **kwargs) assert_equal(left._right, right._right, obj=f"{obj}.left", **kwargs) assert_attr_equal("closed", left, right, obj=obj) def assert_period_array_equal(left, right, obj="PeriodArray"): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) def assert_datetime_array_equal(left, right, obj="DatetimeArray", check_freq=True): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") if check_freq: assert_attr_equal("freq", left, right, obj=obj) assert_attr_equal("tz", left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj="TimedeltaArray", check_freq=True): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") if check_freq: assert_attr_equal("freq", left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None, index_values=None): __tracebackhide__ = True msg = f"""{obj} are different {message}""" if isinstance(index_values, np.ndarray): msg += f"\n[index]: {pprint_thing(index_values)}" if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) msg += f""" [left]: {left} [right]: {right}""" if diff is not None: msg += f"\n[diff]: {diff}" raise AssertionError(msg) def assert_numpy_array_equal( left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj="numpy array", index_values=None, ): """ Check that 'np.ndarray' is equivalent. Parameters ---------- left, right : numpy.ndarray or iterable The two arrays to be compared. strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype : bool, default True Check dtype if both a and b are np.ndarray. err_msg : str, default None If provided, used as assertion message. check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area. obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message. index_values : numpy.ndarray, default None optional index (shared by both left and right), used in output. """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, "base", None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == "same": if left_base is not right_base: raise AssertionError(f"{repr(left_base)} is not {repr(right_base)}") elif check_same == "copy": if left_base is right_base: raise AssertionError(f"{repr(left_base)} is {repr(right_base)}") def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shapes are different", left.shape, right.shape ) diff = 0 for left_arr, right_arr in zip(left, right): # count up differences if not array_equivalent(left_arr, right_arr, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right, index_values=index_values) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal("dtype", left, right, obj=obj) def assert_extension_array_equal( left, right, check_dtype=True, index_values=None, check_less_precise=no_default, check_exact=False, rtol: float = 1.0e-5, atol: float = 1.0e-8, ): """ Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare. check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. index_values : numpy.ndarray, default None Optional index (shared by both left and right), used in output. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. .. deprecated:: 1.1.0 Use `rtol` and `atol` instead to define relative/absolute tolerance, respectively. Similar to :func:`math.isclose`. check_exact : bool, default False Whether to compare number exactly. rtol : float, default 1e-5 Relative tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 atol : float, default 1e-8 Absolute tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. Examples -------- >>> from pandas.testing import assert_extension_array_equal >>> a = pd.Series([1, 2, 3, 4]) >>> b, c = a.array, a.array >>> assert_extension_array_equal(b, c) """ if check_less_precise is not no_default: warnings.warn( "The 'check_less_precise' keyword in testing.assert_*_equal " "is deprecated and will be removed in a future version. " "You can stop passing 'check_less_precise' to silence this warning.", FutureWarning, stacklevel=2, ) rtol = atol = _get_tol_from_less_precise(check_less_precise) assert isinstance(left, ExtensionArray), "left is not an ExtensionArray" assert isinstance(right, ExtensionArray), "right is not an ExtensionArray" if check_dtype: assert_attr_equal("dtype", left, right, obj="ExtensionArray") if ( isinstance(left, DatetimeLikeArrayMixin) and isinstance(right, DatetimeLikeArrayMixin) and type(right) == type(left) ): # Avoid slow object-dtype comparisons # np.asarray for case where we have a np.MaskedArray assert_numpy_array_equal( np.asarray(left.asi8), np.asarray(right.asi8), index_values=index_values ) return left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal( left_na, right_na, obj="ExtensionArray NA mask", index_values=index_values ) left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal( left_valid, right_valid, obj="ExtensionArray", index_values=index_values ) else: _testing.assert_almost_equal( left_valid, right_valid, check_dtype=check_dtype, rtol=rtol, atol=atol, obj="ExtensionArray", index_values=index_values, ) # This could be refactored to use the NDFrame.equals method def assert_series_equal( left, right, check_dtype=True, check_index_type="equiv", check_series_type=True, check_less_precise=no_default, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_category_order=True, check_freq=True, check_flags=True, rtol=1.0e-5, atol=1.0e-8, obj="Series", ): """ Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. .. deprecated:: 1.1.0 Use `rtol` and `atol` instead to define relative/absolute tolerance, respectively. Similar to :func:`math.isclose`. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_category_order : bool, default True Whether to compare category order of internal Categoricals. .. versionadded:: 1.0.2 check_freq : bool, default True Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex. .. versionadded:: 1.1.0 check_flags : bool, default True Whether to check the `flags` attribute. .. versionadded:: 1.2.0 rtol : float, default 1e-5 Relative tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 atol : float, default 1e-8 Absolute tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. Examples -------- >>> from pandas.testing import assert_series_equal >>> a = pd.Series([1, 2, 3, 4]) >>> b = pd.Series([1, 2, 3, 4]) >>> assert_series_equal(a, b) """ __tracebackhide__ = True if check_less_precise is not no_default: warnings.warn( "The 'check_less_precise' keyword in testing.assert_*_equal " "is deprecated and will be removed in a future version. " "You can stop passing 'check_less_precise' to silence this warning.", FutureWarning, stacklevel=2, ) rtol = atol = _get_tol_from_less_precise(check_less_precise) # instance validation _check_isinstance(left, right, Series) if check_series_type: assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = f"{len(left)}, {left.index}" msg2 = f"{len(right)}, {right.index}" raise_assert_detail(obj, "Series length are different", msg1, msg2) if check_flags: assert left.flags == right.flags, f"{repr(left.flags)} != {repr(right.flags)}" # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_exact=check_exact, check_categorical=check_categorical, rtol=rtol, atol=atol, obj=f"{obj}.index", ) if check_freq and isinstance(left.index, (pd.DatetimeIndex, pd.TimedeltaIndex)): lidx = left.index ridx = right.index assert lidx.freq == ridx.freq, (lidx.freq, ridx.freq) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if ( is_categorical_dtype(left.dtype) and is_categorical_dtype(right.dtype) and not check_categorical ): pass else: assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}") if check_exact and is_numeric_dtype(left.dtype) and is_numeric_dtype(right.dtype): # Only check exact if dtype is numeric assert_numpy_array_equal( left._values, right._values, check_dtype=check_dtype, obj=str(obj), index_values=np.asarray(left.index), ) elif check_datetimelike_compat and ( needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype) ): # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left._values).equals(Index(right._values)): msg = ( f"[datetimelike_compat=True] {left._values} " f"is not equal to {right._values}." ) raise AssertionError(msg) elif is_interval_dtype(left.dtype) and is_interval_dtype(right.dtype): assert_interval_array_equal(left.array, right.array) elif is_categorical_dtype(left.dtype) or is_categorical_dtype(right.dtype): _testing.assert_almost_equal( left._values, right._values, rtol=rtol, atol=atol, check_dtype=check_dtype, obj=str(obj), index_values=np.asarray(left.index), ) elif is_extension_array_dtype(left.dtype) and is_extension_array_dtype(right.dtype): assert_extension_array_equal( left._values, right._values, check_dtype=check_dtype, index_values=np.asarray(left.index), ) elif is_extension_array_dtype_and_needs_i8_conversion( left.dtype, right.dtype ) or is_extension_array_dtype_and_needs_i8_conversion(right.dtype, left.dtype): assert_extension_array_equal( left._values, right._values, check_dtype=check_dtype, index_values=np.asarray(left.index), ) elif needs_i8_conversion(left.dtype) and needs_i8_conversion(right.dtype): # DatetimeArray or TimedeltaArray assert_extension_array_equal( left._values, right._values, check_dtype=check_dtype, index_values=np.asarray(left.index), ) else: _testing.assert_almost_equal( left._values, right._values, rtol=rtol, atol=atol, check_dtype=check_dtype, obj=str(obj), index_values=np.asarray(left.index), ) # metadata comparison if check_names: assert_attr_equal("name", left, right, obj=obj) if check_categorical: if is_categorical_dtype(left.dtype) or is_categorical_dtype(right.dtype): assert_categorical_equal( left._values, right._values, obj=f"{obj} category", check_category_order=check_category_order, ) # This could be refactored to use the NDFrame.equals method def assert_frame_equal( left, right, check_dtype=True, check_index_type="equiv", check_column_type="equiv", check_frame_type=True, check_less_precise=no_default, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, check_freq=True, check_flags=True, rtol=1.0e-5, atol=1.0e-8, obj="DataFrame", ): """ Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. Is is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame First DataFrame to compare. right : DataFrame Second DataFrame to compare. check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool or {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Is passed as the ``exact`` argument of :func:`assert_index_equal`. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. .. deprecated:: 1.1.0 Use `rtol` and `atol` instead to define relative/absolute tolerance, respectively. Similar to :func:`math.isclose`. check_names : bool, default True Whether to check that the `names` attribute for both the `index` and `column` attributes of the DataFrame is identical. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. check_freq : bool, default True Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex. .. versionadded:: 1.1.0 check_flags : bool, default True Whether to check the `flags` attribute. rtol : float, default 1e-5 Relative tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 atol : float, default 1e-8 Absolute tolerance. Only used when check_exact is False. .. versionadded:: 1.1.0 obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also -------- assert_series_equal : Equivalent method for asserting Series equality. DataFrame.equals : Check DataFrame equality. Examples -------- This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas._testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column 'b' is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): ... AssertionError: Attributes of DataFrame.iloc[:, 1] (column name="b") are different Attribute "dtype" are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False) """ __tracebackhide__ = True if check_less_precise is not no_default: warnings.warn( "The 'check_less_precise' keyword in testing.assert_*_equal " "is deprecated and will be removed in a future version. " "You can stop passing 'check_less_precise' to silence this warning.", FutureWarning, stacklevel=2, ) rtol = atol = _get_tol_from_less_precise(check_less_precise) # instance validation _check_isinstance(left, right, DataFrame) if check_frame_type: assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # shape comparison if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}" ) if check_flags: assert left.flags == right.flags, f"{repr(left.flags)} != {repr(right.flags)}" # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_exact=check_exact, check_categorical=check_categorical, check_order=not check_like, rtol=rtol, atol=atol, obj=f"{obj}.index", ) # column comparison assert_index_equal( left.columns, right.columns, exact=check_column_type, check_names=check_names, check_exact=check_exact, check_categorical=check_categorical, check_order=not check_like, rtol=rtol, atol=atol, obj=f"{obj}.columns", ) if check_like: left, right = left.reindex_like(right), right # compare by blocks if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal( lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj=obj ) # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal( lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, check_freq=check_freq, obj=f'{obj}.iloc[:, {i}] (column name="{col}")', rtol=rtol, atol=atol, ) def assert_equal(left, right, **kwargs): """ Wrapper for tm.assert_*_equal to dispatch to the appropriate test function. Parameters ---------- left, right : Index, Series, DataFrame, ExtensionArray, or np.ndarray The two items to be compared. **kwargs All keyword arguments are passed through to the underlying assert method. """ __tracebackhide__ = True if isinstance(left, pd.Index): assert_index_equal(left, right, **kwargs) if isinstance(left, (pd.DatetimeIndex, pd.TimedeltaIndex)): assert left.freq == right.freq, (left.freq, right.freq) elif isinstance(left, pd.Series): assert_series_equal(left, right, **kwargs) elif isinstance(left, pd.DataFrame): assert_frame_equal(left, right, **kwargs) elif isinstance(left, IntervalArray): assert_interval_array_equal(left, right, **kwargs) elif isinstance(left, PeriodArray): assert_period_array_equal(left, right, **kwargs) elif isinstance(left, DatetimeArray): assert_datetime_array_equal(left, right, **kwargs) elif isinstance(left, TimedeltaArray): assert_timedelta_array_equal(left, right, **kwargs) elif isinstance(left, ExtensionArray): assert_extension_array_equal(left, right, **kwargs) elif isinstance(left, np.ndarray): assert_numpy_array_equal(left, right, **kwargs) elif isinstance(left, str): assert kwargs == {} assert left == right else: raise NotImplementedError(type(left)) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.array: expected = pd.array(expected) elif box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place dtype = getattr(obj, "dtype", None) if is_period_dtype(dtype): return period_array(obj) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(dtype): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Sparse def assert_sp_array_equal(left, right): """ Check that the left and right SparseArray are equal. Parameters ---------- left : SparseArray right : SparseArray """ _check_isinstance(left, right, pd.arrays.SparseArray) assert_numpy_array_equal(left.sp_values, right.sp_values) # SparseIndex comparison assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex) assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex) left_index = left.sp_index right_index = right.sp_index if not left_index.equals(right_index): raise_assert_detail( "SparseArray.index", "index are not equal", left_index, right_index ) else: # Just ensure a pass assert_attr_equal("fill_value", left, right) assert_attr_equal("dtype", left, right) assert_numpy_array_equal(left.to_dense(), right.to_dense()) # ----------------------------------------------------------------------------- # Others def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, f"Did not contain item: {repr(k)}" def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) msg = ( f"Expected object {repr(type(elem1))} and object {repr(type(elem2))} to be " "different objects, but they were the same object." ) assert elem1 is not elem2, msg def is_extension_array_dtype_and_needs_i8_conversion(left_dtype, right_dtype) -> bool: """ Checks that we have the combination of an ExtensionArraydtype and a dtype that should be converted to int64 Returns ------- bool Related to issue #37609 """ return is_extension_array_dtype(left_dtype) and needs_i8_conversion(right_dtype) def getCols(k): return string.ascii_uppercase[:k] # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex( Categorical.from_codes(np.arange(k) % n, categories=x), name=name, **kwargs ) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(list(range(k)), name=name) def makeUIntIndex(k=10, name=None): return Index([2 ** 63 + i for i in range(k)], name=name) def makeRangeIndex(k=10, name=None, **kwargs): return RangeIndex(0, k, 1, name=name, **kwargs) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq="B", name=None, **kwargs): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name, **kwargs) def makeTimedeltaIndex(k=10, freq="D", name=None, **kwargs): return pd.timedelta_range(start="1 day", periods=k, freq=freq, name=name, **kwargs) def makePeriodIndex(k=10, name=None, **kwargs): dt = datetime(2000, 1, 1) return pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs) def makeMultiIndex(k=10, names=None, **kwargs): return MultiIndex.from_product((("foo", "bar"), (1, 2)), names=names, **kwargs) _names = [ "Alice", "Bob", "Charlie", "Dan", "Edith", "Frank", "George", "Hannah", "Ingrid", "Jerry", "Kevin", "Laura", "Michael", "Norbert", "Oliver", "Patricia", "Quinn", "Ray", "Sarah", "Tim", "Ursula", "Victor", "Wendy", "Xavier", "Yvonne", "Zelda", ] def _make_timeseries(start="2000-01-01", end="2000-12-31", freq="1D", seed=None): """ Make a DataFrame with a DatetimeIndex Parameters ---------- start : str or Timestamp, default "2000-01-01" The start of the index. Passed to date_range with `freq`. end : str or Timestamp, default "2000-12-31" The end of the index. Passed to date_range with `freq`. freq : str or Freq The frequency to use for the DatetimeIndex seed : int, optional The random state seed. * name : object dtype with string names * id : int dtype with * x, y : float dtype Examples -------- >>> _make_timeseries() id name x y timestamp 2000-01-01 982 Frank 0.031261 0.986727 2000-01-02 1025 Edith -0.086358 -0.032920 2000-01-03 982 Edith 0.473177 0.298654 2000-01-04 1009 Sarah 0.534344 -0.750377 2000-01-05 963 Zelda -0.271573 0.054424 ... ... ... ... ... 2000-12-27 980 Ingrid -0.132333 -0.422195 2000-12-28 972 Frank -0.376007 -0.298687 2000-12-29 1009 Ursula -0.865047 -0.503133 2000-12-30 1000 Hannah -0.063757 -0.507336 2000-12-31 972 Tim -0.869120 0.531685 """ index = pd.date_range(start=start, end=end, freq=freq, name="timestamp") n = len(index) state = np.random.RandomState(seed) columns = { "name": state.choice(_names, size=n), "id": state.poisson(1000, size=n), "x": state.rand(n) * 2 - 1, "y": state.rand(n) * 2 - 1, } df = pd.DataFrame(columns, index=index, columns=sorted(columns)) if df.index[-1] == end: df = df.iloc[:-1] return df def index_subclass_makers_generator(): make_index_funcs = [ makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, makeMultiIndex, ] yield from make_index_funcs def all_timeseries_index_generator(k=10): """ Generator which can be iterated over to get instances of all the classes which represent time-series. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: # pandas\_testing.py:1986: error: Cannot call function of unknown type yield make_index_func(k=k) # type: ignore[operator] # make series def makeFloatSeries(name=None): index = makeStringIndex(_N) return Series(randn(_N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(_N) return Series(randn(_N), index=index, name=name) def makeObjectSeries(name=None): data = makeStringIndex(_N) data = Index(data, dtype=object) index = makeStringIndex(_N) return Series(data, index=index, name=name) def getSeriesData(): index = makeStringIndex(_N) return {c: Series(randn(_N), index=index) for c in getCols(_K)} def makeTimeSeries(nper=None, freq="B", name=None): if nper is None: nper = _N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: nper = _N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq="B"): return {c: makeTimeSeries(nper, freq) for c in getCols(_K)} def getPeriodData(nper=None): return {c: makePeriodSeries(nper) for c in getCols(_K)} # make frame def makeTimeDataFrame(nper=None, freq="B"): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(["a", "b", "c", "d", "e"]) data = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": bdate_range("1/1/2009", periods=5), } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return DataFrame(data) def makeCustomIndex( nentries, nlevels, prefix="#", names=False, ndupe_l=None, idx_type=None ): """ Create an index/multindex with given dimensions, levels, names, etc' nentries - number of entries in index nlevels - number of levels (> 1 produces multindex) prefix - a string prefix for labels names - (Optional), bool or list of strings. if True will use default names, if false will use no names, if a list is given, the name of each level in the index will be taken from the list. ndupe_l - (Optional), list of ints, the number of rows for which the label will repeated at the corresponding level, you can specify just the first few, the rest will use the default ndupe_l of 1. len(ndupe_l) <= nlevels. idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a datetime index. if unspecified, string labels will be generated. """ if ndupe_l is None: ndupe_l = [1] * nlevels assert is_sequence(ndupe_l) and len(ndupe_l) <= nlevels assert names is None or names is False or names is True or len(names) is nlevels assert idx_type is None or ( idx_type in ("i", "f", "s", "u", "dt", "p", "td") and nlevels == 1 ) if names is True: # build default names names = [prefix + str(i) for i in range(nlevels)] if names is False: # pass None to index constructor for no name names = None # make singleton case uniform if isinstance(names, str) and nlevels == 1: names = [names] # specific 1D index type requested? idx_func = { "i": makeIntIndex, "f": makeFloatIndex, "s": makeStringIndex, "u": makeUnicodeIndex, "dt": makeDateIndex, "td": makeTimedeltaIndex, "p": makePeriodIndex, }.get(idx_type) if idx_func: # pandas\_testing.py:2120: error: Cannot call function of unknown type idx = idx_func(nentries) # type: ignore[operator] # but we need to fill in the name if names: idx.name = names[0] return idx elif idx_type is not None: raise ValueError( f"{repr(idx_type)} is not a legal value for `idx_type`, " "use 'i'/'f'/'s'/'u'/'dt'/'p'/'td'." ) if len(ndupe_l) < nlevels: ndupe_l.extend([1] * (nlevels - len(ndupe_l))) assert len(ndupe_l) == nlevels assert all(x > 0 for x in ndupe_l) tuples = [] for i in range(nlevels): def keyfunc(x): import re numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_") return [int(num) for num in numeric_tuple] # build a list of lists to create the index from div_factor = nentries // ndupe_l[i] + 1 # pandas\_testing.py:2148: error: Need type annotation for 'cnt' cnt = Counter() # type: ignore[var-annotated] for j in range(div_factor): label = f"{prefix}_l{i}_g{j}" cnt[label] = ndupe_l[i] # cute Counter trick result = sorted(cnt.elements(), key=keyfunc)[:nentries] tuples.append(result) tuples = list(zip(*tuples)) # convert tuples to index if nentries == 1: # we have a single level of tuples, i.e. a regular Index index = Index(tuples[0], name=names[0]) elif nlevels == 1: name = None if names is None else names[0] index = Index((x[0] for x in tuples), name=name) else: index = MultiIndex.from_tuples(tuples, names=names) return index def makeCustomDataframe( nrows, ncols, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None, ): """ Create a DataFrame using supplied parameters. Parameters ---------- nrows, ncols - number of data rows/cols c_idx_names, idx_names - False/True/list of strings, yields No names , default names or uses the provided names for the levels of the corresponding index. You can provide a single string when c_idx_nlevels ==1. c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex data_gen_f - a function f(row,col) which return the data value at that position, the default generator used yields values of the form "RxCy" based on position. c_ndupe_l, r_ndupe_l - list of integers, determines the number of duplicates for each label at a given level of the corresponding index. The default `None` value produces a multiplicity of 1 across all levels, i.e. a unique index. Will accept a partial list of length N < idx_nlevels, for just the first N levels. If ndupe doesn't divide nrows/ncol, the last label might have lower multiplicity. dtype - passed to the DataFrame constructor as is, in case you wish to have more control in conjunction with a custom `data_gen_f` r_idx_type, c_idx_type - "i"/"f"/"s"/"u"/"dt"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a timedelta index. if unspecified, string labels will be generated. Examples -------- # 5 row, 3 columns, default names on both, single index on both axis >> makeCustomDataframe(5,3) # make the data a random int between 1 and 100 >> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100)) # 2-level multiindex on rows with each label duplicated # twice on first level, default names on both axis, single # index on both axis >> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2]) # DatetimeIndex on row, index with unicode labels on columns # no names on either axis >> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False, r_idx_type="dt",c_idx_type="u") # 4-level multindex on rows with names provided, 2-level multindex # on columns with default labels and default names. >> a=makeCustomDataframe(5,3,r_idx_nlevels=4, r_idx_names=["FEE","FI","FO","FAM"], c_idx_nlevels=2) >> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4) """ assert c_idx_nlevels > 0 assert r_idx_nlevels > 0 assert r_idx_type is None or ( r_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and r_idx_nlevels == 1 ) assert c_idx_type is None or ( c_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and c_idx_nlevels == 1 ) columns = makeCustomIndex( ncols, nlevels=c_idx_nlevels, prefix="C", names=c_idx_names, ndupe_l=c_ndupe_l, idx_type=c_idx_type, ) index = makeCustomIndex( nrows, nlevels=r_idx_nlevels, prefix="R", names=r_idx_names, ndupe_l=r_ndupe_l, idx_type=r_idx_type, ) # by default, generate data based on location if data_gen_f is None: data_gen_f = lambda r, c: f"R{r}C{c}" data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)] return DataFrame(data, index, columns, dtype=dtype) def _create_missing_idx(nrows, ncols, density, random_state=None): if random_state is None: random_state = np.random else: random_state = np.random.RandomState(random_state) # below is cribbed from scipy.sparse size = int(np.round((1 - density) * nrows * ncols)) # generate a few more to ensure unique values min_rows = 5 fac = 1.02 extra_size = min(size + min_rows, fac * size) def _gen_unique_rand(rng, _extra_size): ind = rng.rand(int(_extra_size)) return np.unique(np.floor(ind * nrows * ncols))[:size] ind = _gen_unique_rand(random_state, extra_size) while ind.size < size: extra_size *= 1.05 ind = _gen_unique_rand(random_state, extra_size) j = np.floor(ind * 1.0 / nrows).astype(int) i = (ind - j * nrows).astype(int) return i.tolist(), j.tolist() def makeMissingDataframe(density=0.9, random_state=None): df = makeDataFrame() # pandas\_testing.py:2306: error: "_create_missing_idx" gets multiple # values for keyword argument "density" [misc] # pandas\_testing.py:2306: error: "_create_missing_idx" gets multiple # values for keyword argument "random_state" [misc] i, j = _create_missing_idx( # type: ignore[misc] *df.shape, density=density, random_state=random_state ) df.values[i, j] = np.nan return df def optional_args(decorator): """ allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, *args, **kwargs) """ @wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and callable(args[0]) if is_decorating: f = args[0] # pandas\_testing.py:2331: error: Incompatible types in assignment # (expression has type "List[<nothing>]", variable has type # "Tuple[Any, ...]") args = [] # type: ignore[assignment] return dec(f) else: return dec return wrapper # skip tests on exceptions with this message _network_error_messages = ( # 'urlopen error timed out', # 'timeout: timed out', # 'socket.timeout: timed out', "timed out", "Server Hangup", "HTTP Error 503: Service Unavailable", "502: Proxy Error", "HTTP Error 502: internal error", "HTTP Error 502", "HTTP Error 503", "HTTP Error 403", "HTTP Error 400", "Temporary failure in name resolution", "Name or service not known", "Connection refused", "certificate verify", ) # or this e.errno/e.reason.errno _network_errno_vals = ( 101, # Network is unreachable 111, # Connection refused 110, # Connection timed out 104, # Connection reset Error 54, # Connection reset by peer 60, # urllib.error.URLError: [Errno 60] Connection timed out ) # Both of the above shouldn't mask real issues such as 404's # or refused connections (changed DNS). # But some tests (test_data yahoo) contact incredibly flakey # servers. # and conditionally raise on exception types in _get_default_network_errors def _get_default_network_errors(): # Lazy import for http.client because it imports many things from the stdlib import http.client return (IOError, http.client.HTTPException, TimeoutError) def can_connect(url, error_classes=None): """ Try to connect to the given url. True if succeeds, False if IOError raised Parameters ---------- url : basestring The URL to try to connect to Returns ------- connectable : bool Return True if no IOError (unable to connect) or URLError (bad url) was raised """ if error_classes is None: error_classes = _get_default_network_errors() try: with urlopen(url): pass except error_classes: return False else: return True @optional_args def network( t, url="https://www.google.com", raise_on_error=_RAISE_NETWORK_ERROR_DEFAULT, check_before_test=False, error_classes=None, skip_errnos=_network_errno_vals, _skip_on_messages=_network_error_messages, ): """ Label a test as requiring network connection and, if an error is encountered, only raise if it does not find a network connection. In comparison to ``network``, this assumes an added contract to your test: you must assert that, under normal conditions, your test will ONLY fail if it does not have network connectivity. You can call this in 3 ways: as a standard decorator, with keyword arguments, or with a positional argument that is the url to check. Parameters ---------- t : callable The test requiring network connectivity. url : path The url to test via ``pandas.io.common.urlopen`` to check for connectivity. Defaults to 'https://www.google.com'. raise_on_error : bool If True, never catches errors. check_before_test : bool If True, checks connectivity before running the test case. error_classes : tuple or Exception error classes to ignore. If not in ``error_classes``, raises the error. defaults to IOError. Be careful about changing the error classes here. skip_errnos : iterable of int Any exception that has .errno or .reason.erno set to one of these values will be skipped with an appropriate message. _skip_on_messages: iterable of string any exception e for which one of the strings is a substring of str(e) will be skipped with an appropriate message. Intended to suppress errors where an errno isn't available. Notes ----- * ``raise_on_error`` supersedes ``check_before_test`` Returns ------- t : callable The decorated test ``t``, with checks for connectivity errors. Example ------- Tests decorated with @network will fail if it's possible to make a network connection to another URL (defaults to google.com):: >>> from pandas._testing import network >>> from pandas.io.common import urlopen >>> @network ... def test_network(): ... with urlopen("rabbit://bonanza.com"): ... pass Traceback ... URLError: <urlopen error unknown url type: rabit> You can specify alternative URLs:: >>> @network("https://www.yahoo.com") ... def test_something_with_yahoo(): ... raise IOError("Failure Message") >>> test_something_with_yahoo() Traceback (most recent call last): ... IOError: Failure Message If you set check_before_test, it will check the url first and not run the test on failure:: >>> @network("failing://url.blaher", check_before_test=True) ... def test_something(): ... print("I ran!") ... raise ValueError("Failure") >>> test_something() Traceback (most recent call last): ... Errors not related to networking will always be raised. """ from pytest import skip if error_classes is None: error_classes = _get_default_network_errors() t.network = True @wraps(t) def wrapper(*args, **kwargs): if ( check_before_test and not raise_on_error and not can_connect(url, error_classes) ): skip() try: return t(*args, **kwargs) except Exception as err: errno = getattr(err, "errno", None) if not errno and hasattr(errno, "reason"): # pandas\_testing.py:2521: error: "Exception" has no attribute # "reason" errno = getattr(err.reason, "errno", None) # type: ignore[attr-defined] if errno in skip_errnos: skip(f"Skipping test due to known errno and error {err}") e_str = str(err) if any(m.lower() in e_str.lower() for m in _skip_on_messages): skip( f"Skipping test because exception message is known and error {err}" ) if not isinstance(err, error_classes): raise if raise_on_error or can_connect(url, error_classes): raise else: skip(f"Skipping test due to lack of connectivity and error {err}") return wrapper with_connectivity_check = network @contextmanager def assert_produces_warning( expected_warning: Optional[Union[Type[Warning], bool]] = Warning, filter_level="always", check_stacklevel: bool = True, raise_on_extra_warnings: bool = True, match: Optional[str] = None, ): """ Context manager for running code expected to either raise a specific warning, or not raise any warnings. Verifies that the code raises the expected warning, and that it does not raise any other unexpected warnings. It is basically a wrapper around ``warnings.catch_warnings``. Parameters ---------- expected_warning : {Warning, False, None}, default Warning The type of Exception raised. ``exception.Warning`` is the base class for all warnings. To check that no warning is returned, specify ``False`` or ``None``. filter_level : str or None, default "always" Specifies whether warnings are ignored, displayed, or turned into errors. Valid values are: * "error" - turns matching warnings into exceptions * "ignore" - discard the warning * "always" - always emit a warning * "default" - print the warning the first time it is generated from each location * "module" - print the warning the first time it is generated from each module * "once" - print the warning the first time it is generated check_stacklevel : bool, default True If True, displays the line that called the function containing the warning to show were the function is called. Otherwise, the line that implements the function is displayed. raise_on_extra_warnings : bool, default True Whether extra warnings not of the type `expected_warning` should cause the test to fail. match : str, optional Match warning message. Examples -------- >>> import warnings >>> with assert_produces_warning(): ... warnings.warn(UserWarning()) ... >>> with assert_produces_warning(False): ... warnings.warn(RuntimeWarning()) ... Traceback (most recent call last): ... AssertionError: Caused unexpected warning(s): ['RuntimeWarning']. >>> with assert_produces_warning(UserWarning): ... warnings.warn(RuntimeWarning()) Traceback (most recent call last): ... AssertionError: Did not see expected warning of class 'UserWarning'. ..warn:: This is *not* thread-safe. """ __tracebackhide__ = True with warnings.catch_warnings(record=True) as w: saw_warning = False matched_message = False warnings.simplefilter(filter_level) yield w extra_warnings = [] for actual_warning in w: if not expected_warning: continue expected_warning = cast(Type[Warning], expected_warning) if issubclass(actual_warning.category, expected_warning): saw_warning = True if check_stacklevel and issubclass( actual_warning.category, (FutureWarning, DeprecationWarning) ): _assert_raised_with_correct_stacklevel(actual_warning) if match is not None and re.search(match, str(actual_warning.message)): matched_message = True else: extra_warnings.append( ( actual_warning.category.__name__, actual_warning.message, actual_warning.filename, actual_warning.lineno, ) ) if expected_warning: expected_warning = cast(Type[Warning], expected_warning) if not saw_warning: raise AssertionError( f"Did not see expected warning of class " f"{repr(expected_warning.__name__)}" ) if match and not matched_message: raise AssertionError( f"Did not see warning {repr(expected_warning.__name__)} " f"matching {match}" ) if raise_on_extra_warnings and extra_warnings: raise AssertionError( f"Caused unexpected warning(s): {repr(extra_warnings)}" ) def _assert_raised_with_correct_stacklevel( actual_warning: warnings.WarningMessage, ) -> None: from inspect import getframeinfo, stack caller = getframeinfo(stack()[3][0]) msg = ( "Warning not set with correct stacklevel. " f"File where warning is raised: {actual_warning.filename} != " f"{caller.filename}. Warning message: {actual_warning.message}" ) assert actual_warning.filename == caller.filename, msg class RNGContext: """ Context manager to set the numpy random number generator speed. Returns to the original value upon exiting the context manager. Parameters ---------- seed : int Seed for numpy.random.seed Examples -------- with RNGContext(42): np.random.randn() """ def __init__(self, seed): self.seed = seed def __enter__(self): self.start_state = np.random.get_state() np.random.seed(self.seed) def __exit__(self, exc_type, exc_value, traceback): np.random.set_state(self.start_state) @contextmanager def with_csv_dialect(name, **kwargs): """ Context manager to temporarily register a CSV dialect for parsing CSV. Parameters ---------- name : str The name of the dialect. kwargs : mapping The parameters for the dialect. Raises ------ ValueError : the name of the dialect conflicts with a builtin one. See Also -------- csv : Python's CSV library. """ import csv _BUILTIN_DIALECTS = {"excel", "excel-tab", "unix"} if name in _BUILTIN_DIALECTS: raise ValueError("Cannot override builtin dialect.") csv.register_dialect(name, **kwargs) yield csv.unregister_dialect(name) @contextmanager def use_numexpr(use, min_elements=None): from pandas.core.computation import expressions as expr if min_elements is None: min_elements = expr._MIN_ELEMENTS olduse = expr.USE_NUMEXPR oldmin = expr._MIN_ELEMENTS expr.set_use_numexpr(use) expr._MIN_ELEMENTS = min_elements yield expr._MIN_ELEMENTS = oldmin expr.set_use_numexpr(olduse) def test_parallel(num_threads=2, kwargs_list=None): """ Decorator to run the same function multiple times in parallel. Parameters ---------- num_threads : int, optional The number of times the function is run in parallel. kwargs_list : list of dicts, optional The list of kwargs to update original function kwargs on different threads. Notes ----- This decorator does not pass the return value of the decorated function. Original from scikit-image: https://github.com/scikit-image/scikit-image/pull/1519 """ assert num_threads > 0 has_kwargs_list = kwargs_list is not None if has_kwargs_list: assert len(kwargs_list) == num_threads import threading def wrapper(func): @wraps(func) def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() return inner return wrapper class SubclassedSeries(Series): _metadata = ["testattr", "name"] @property def _constructor(self): return SubclassedSeries @property def _constructor_expanddim(self): return SubclassedDataFrame class SubclassedDataFrame(DataFrame): _metadata = ["testattr"] @property def _constructor(self): return SubclassedDataFrame @property def _constructor_sliced(self): return SubclassedSeries class SubclassedCategorical(Categorical): @property def _constructor(self): return SubclassedCategorical @contextmanager def set_timezone(tz: str): """ Context manager for temporarily setting a timezone. Parameters ---------- tz : str A string representing a valid timezone. Examples -------- >>> from datetime import datetime >>> from dateutil.tz import tzlocal >>> tzlocal().tzname(datetime.now()) 'IST' >>> with set_timezone('US/Eastern'): ... tzlocal().tzname(datetime.now()) ... 'EDT' """ import os import time def setTZ(tz): if tz is None: try: del os.environ["TZ"] except KeyError: pass else: os.environ["TZ"] = tz time.tzset() orig_tz = os.environ.get("TZ") setTZ(tz) try: yield finally: setTZ(orig_tz) def _make_skipna_wrapper(alternative, skipna_alternative=None): """ Create a function for calling on an array. Parameters ---------- alternative : function The function to be called on the array with no NaNs. Only used when 'skipna_alternative' is None. skipna_alternative : function The function to be called on the original array Returns ------- function """ if skipna_alternative: def skipna_wrapper(x): return skipna_alternative(x.values) else: def skipna_wrapper(x): nona = x.dropna() if len(nona) == 0: return np.nan return alternative(nona) return skipna_wrapper def convert_rows_list_to_csv_str(rows_list: List[str]): """ Convert list of CSV rows to single CSV-formatted string for current OS. This method is used for creating expected value of to_csv() method. Parameters ---------- rows_list : List[str] Each element represents the row of csv. Returns ------- str Expected output of to_csv() in current OS. """ sep = os.linesep return sep.join(rows_list) + sep def external_error_raised(expected_exception: Type[Exception]) -> ContextManager: """ Helper function to mark pytest.raises that have an external error message. Parameters ---------- expected_exception : Exception Expected error to raise. Returns ------- Callable Regular `pytest.raises` function with `match` equal to `None`. """ import pytest return pytest.raises(expected_exception, match=None) cython_table = pd.core.base.SelectionMixin._cython_table.items() def get_cython_table_params(ndframe, func_names_and_expected): """ Combine frame, functions from SelectionMixin._cython_table keys and expected result. Parameters ---------- ndframe : DataFrame or Series func_names_and_expected : Sequence of two items The first item is a name of a NDFrame method ('sum', 'prod') etc. The second item is the expected return value. Returns ------- list List of three items (DataFrame, function, expected result) """ results = [] for func_name, expected in func_names_and_expected: results.append((ndframe, func_name, expected)) results += [ (ndframe, func, expected) for func, name in cython_table if name == func_name ] return results def get_op_from_name(op_name: str) -> Callable: """ The operator function for a given op name. Parameters ---------- op_name : string The op name, in form of "add" or "__add__". Returns ------- function A function performing the operation. """ short_opname = op_name.strip("_") try: op = getattr(operator, short_opname) except AttributeError: # Assume it is the reverse operator rop = getattr(operator, short_opname[1:]) op = lambda x, y: rop(y, x) return op
[ "ana.kapros@yahoo.ro" ]
ana.kapros@yahoo.ro
be66006b3dbd21221d545dfca9aca95cd6b65bc0
1cf2bce33acd6db5e77e0f1fa2460cebc0addf2a
/Aula 25.09/while_true.py
05ff114ed225963e817f41c8f06ac2aac49cbb46
[]
no_license
natibaggi/faculdade-python
77a341a00ad5713812c977030ce39cea9c8e999a
95172ff1d6bc48f76ab299890cbddb31ab3c1efa
refs/heads/master
2023-02-04T16:39:08.652180
2020-12-22T21:41:14
2020-12-22T21:41:14
323,738,749
0
0
null
null
null
null
UTF-8
Python
false
false
195
py
numero = input("Digite um número inteiro: "); tamanho = len(numero); resultado = []; while True: print(tamanho, end="") tamanho -= 1; if tamanho == 0: break #nao terminei
[ "natibaggi@gmail.com" ]
natibaggi@gmail.com
4a337e652f79aa204a424d063e472a09f6d4b0f5
4876e2a240735a99cbded77d879cd2ba71edf7c6
/blog/migrations/0001_initial.py
e10fb819982179f744949e3bccf7b23e06da3575
[]
no_license
denilenko/my-first-blog
5de7734959f0ff58fdd3daf12fe9f095c5bdaba2
fb9645287d45d461dfe2b03111fe6150c10bc254
refs/heads/master
2021-08-28T16:19:47.335294
2017-12-12T18:16:25
2017-12-12T18:16:25
113,341,235
0
0
null
null
null
null
UTF-8
Python
false
false
1,051
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2017-12-06 15:57 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "denilenko@gmail.com" ]
denilenko@gmail.com
5e6ea92d7567fc266542f3007289f93977e7a2e2
c140ad38b1463024e289ceb0d5d6d44a45c91724
/test/test_slurm_pmi2.py
a06325c6180f3a53cdb57d646e58232fe3b28adb
[ "Apache-2.0" ]
permissive
NVIDIA/hpc-container-maker
3a333526decbd18352ef8d1fb3bec0033be221e8
60fd2a51c171258a6b3f93c2523101cb7018ba1b
refs/heads/master
2023-08-21T13:32:27.132476
2023-06-12T21:12:40
2023-06-12T21:12:40
126,385,168
419
88
Apache-2.0
2023-09-11T18:33:26
2018-03-22T19:26:41
Python
UTF-8
Python
false
false
3,245
py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=invalid-name, too-few-public-methods, bad-continuation """Test cases for the slurm_pmi2 module""" from __future__ import unicode_literals from __future__ import print_function import logging # pylint: disable=unused-import import unittest from helpers import centos, docker, ubuntu, x86_64 from hpccm.building_blocks.slurm_pmi2 import slurm_pmi2 class Test_slurm_pmi2(unittest.TestCase): def setUp(self): """Disable logging output messages""" logging.disable(logging.ERROR) @x86_64 @ubuntu @docker def test_defaults_ubuntu(self): """Default slurm_pmi2 building block""" p = slurm_pmi2() self.assertEqual(str(p), r'''# SLURM PMI2 version 21.08.8 RUN apt-get update -y && \ DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ bzip2 \ file \ make \ perl \ tar \ wget && \ rm -rf /var/lib/apt/lists/* RUN mkdir -p /var/tmp && wget -q -nc --no-check-certificate -P /var/tmp https://download.schedmd.com/slurm/slurm-21.08.8.tar.bz2 && \ mkdir -p /var/tmp && tar -x -f /var/tmp/slurm-21.08.8.tar.bz2 -C /var/tmp -j && \ cd /var/tmp/slurm-21.08.8 && ./configure --prefix=/usr/local/slurm-pmi2 && \ cd /var/tmp/slurm-21.08.8 && \ make -C contribs/pmi2 install && \ rm -rf /var/tmp/slurm-21.08.8 /var/tmp/slurm-21.08.8.tar.bz2''') @x86_64 @ubuntu @docker def test_ldconfig(self): """ldconfig option""" p = slurm_pmi2(ldconfig=True, version='20.02.7') self.assertEqual(str(p), r'''# SLURM PMI2 version 20.02.7 RUN apt-get update -y && \ DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ bzip2 \ file \ make \ perl \ tar \ wget && \ rm -rf /var/lib/apt/lists/* RUN mkdir -p /var/tmp && wget -q -nc --no-check-certificate -P /var/tmp https://download.schedmd.com/slurm/slurm-20.02.7.tar.bz2 && \ mkdir -p /var/tmp && tar -x -f /var/tmp/slurm-20.02.7.tar.bz2 -C /var/tmp -j && \ cd /var/tmp/slurm-20.02.7 && ./configure --prefix=/usr/local/slurm-pmi2 && \ cd /var/tmp/slurm-20.02.7 && \ make -C contribs/pmi2 install && \ echo "/usr/local/slurm-pmi2/lib" >> /etc/ld.so.conf.d/hpccm.conf && ldconfig && \ rm -rf /var/tmp/slurm-20.02.7 /var/tmp/slurm-20.02.7.tar.bz2''') @x86_64 @ubuntu @docker def test_runtime(self): """Runtime""" p = slurm_pmi2() r = p.runtime() self.assertEqual(r, r'''# SLURM PMI2 COPY --from=0 /usr/local/slurm-pmi2 /usr/local/slurm-pmi2''')
[ "noreply@github.com" ]
NVIDIA.noreply@github.com
20f177d5aac4b209c6517aba1be8ed5c99b59e68
70a89bdfcccd48fa1d9862d559f3caeeea0a668e
/tests/integration/boxscore/test_nfl_boxscore.py
7d73417817c18d43d2e5620b270b7890953df91a
[ "MIT" ]
permissive
JosephDErwin/sportsreference
2e5e456e0f316594f972e5be30b919ed185676f3
f026366bec91fdf4bebef48e3a4bfd7c5bfab4bd
refs/heads/master
2022-11-14T10:25:26.510132
2018-12-15T23:54:59
2018-12-15T23:54:59
278,135,130
0
0
MIT
2020-07-08T16:05:25
2020-07-08T16:05:24
null
UTF-8
Python
false
false
26,216
py
import mock import os import pandas as pd from datetime import datetime from flexmock import flexmock from sportsreference import utils from sportsreference.constants import AWAY from sportsreference.nfl.constants import BOXSCORE_URL, BOXSCORES_URL from sportsreference.nfl.boxscore import Boxscore, Boxscores MONTH = 10 YEAR = 2017 BOXSCORE = '201802040nwe' def read_file(filename): filepath = os.path.join(os.path.dirname(__file__), 'nfl', filename) return open('%s' % filepath, 'r').read() def mock_pyquery(url): class MockPQ: def __init__(self, html_contents): self.status_code = 200 self.html_contents = html_contents self.text = html_contents if url == BOXSCORES_URL % (YEAR, 7): return MockPQ(read_file('boxscores-7-2017.html')) if url == BOXSCORES_URL % (YEAR, 8): return MockPQ(read_file('boxscores-8-2017.html')) boxscore = read_file('%s.html' % BOXSCORE) return MockPQ(boxscore) class MockDateTime: def __init__(self, year, month): self.year = year self.month = month class TestNFLBoxscore: @mock.patch('requests.get', side_effect=mock_pyquery) def setup_method(self, *args, **kwargs): self.results = { 'date': 'Sunday Feb 4, 2018', 'time': '6:30pm', 'stadium': 'U.S. Bank Stadium', 'attendance': 67612, 'duration': '3:46', 'winner': AWAY, 'winning_name': 'Philadelphia Eagles', 'winning_abbr': 'PHI', 'losing_name': 'New England Patriots', 'losing_abbr': 'NWE', 'away_points': 41, 'away_first_downs': 25, 'away_rush_attempts': 27, 'away_rush_yards': 164, 'away_rush_touchdowns': 1, 'away_pass_completions': 29, 'away_pass_attempts': 44, 'away_pass_yards': 374, 'away_pass_touchdowns': 4, 'away_interceptions': 1, 'away_times_sacked': 0, 'away_yards_lost_from_sacks': 0, 'away_net_pass_yards': 374, 'away_total_yards': 538, 'away_fumbles': 0, 'away_fumbles_lost': 0, 'away_turnovers': 1, 'away_penalties': 6, 'away_yards_from_penalties': 35, 'away_third_down_conversions': 10, 'away_third_down_attempts': 16, 'away_fourth_down_conversions': 2, 'away_fourth_down_attempts': 2, 'away_time_of_possession': '34:04', 'home_points': 33, 'home_first_downs': 29, 'home_rush_attempts': 22, 'home_rush_yards': 113, 'home_rush_touchdowns': 1, 'home_pass_completions': 28, 'home_pass_attempts': 49, 'home_pass_yards': 505, 'home_pass_touchdowns': 3, 'home_interceptions': 0, 'home_times_sacked': 1, 'home_yards_lost_from_sacks': 5, 'home_net_pass_yards': 500, 'home_total_yards': 613, 'home_fumbles': 1, 'home_fumbles_lost': 1, 'home_turnovers': 1, 'home_penalties': 1, 'home_yards_from_penalties': 5, 'home_third_down_conversions': 5, 'home_third_down_attempts': 10, 'home_fourth_down_conversions': 1, 'home_fourth_down_attempts': 2, 'home_time_of_possession': '25:56', } flexmock(utils) \ .should_receive('_todays_date') \ .and_return(MockDateTime(YEAR, MONTH)) self.boxscore = Boxscore(BOXSCORE) def test_nfl_boxscore_returns_requested_boxscore(self): for attribute, value in self.results.items(): assert getattr(self.boxscore, attribute) == value def test_invalid_url_yields_empty_class(self): flexmock(Boxscore) \ .should_receive('_retrieve_html_page') \ .and_return(None) boxscore = Boxscore(BOXSCORE) for key, value in boxscore.__dict__.items(): if key == '_uri': continue assert value is None def test_nfl_boxscore_dataframe_returns_dataframe_of_all_values(self): df = pd.DataFrame([self.results], index=[BOXSCORE]) # Pandas doesn't natively allow comparisons of DataFrames. # Concatenating the two DataFrames (the one generated during the test # and the expected one above) and dropping duplicate rows leaves only # the rows that are unique between the two frames. This allows a quick # check of the DataFrame to see if it is empty - if so, all rows are # duplicates, and they are equal. frames = [df, self.boxscore.dataframe] df1 = pd.concat(frames).drop_duplicates(keep=False) assert df1.empty class TestNFLBoxscores: def setup_method(self): self.expected = { '7-2017': [ {'boxscore': '201710190rai', 'away_name': 'Kansas City Chiefs', 'away_abbr': 'kan', 'away_score': 30, 'home_name': 'Oakland Raiders', 'home_abbr': 'rai', 'home_score': 31, 'winning_name': 'Oakland Raiders', 'winning_abbr': 'rai', 'losing_name': 'Kansas City Chiefs', 'losing_abbr': 'kan'}, {'boxscore': '201710220chi', 'away_name': 'Carolina Panthers', 'away_abbr': 'car', 'away_score': 3, 'home_name': 'Chicago Bears', 'home_abbr': 'chi', 'home_score': 17, 'winning_name': 'Chicago Bears', 'winning_abbr': 'chi', 'losing_name': 'Carolina Panthers', 'losing_abbr': 'car'}, {'boxscore': '201710220buf', 'away_name': 'Tampa Bay Buccaneers', 'away_abbr': 'tam', 'away_score': 27, 'home_name': 'Buffalo Bills', 'home_abbr': 'buf', 'home_score': 30, 'winning_name': 'Buffalo Bills', 'winning_abbr': 'buf', 'losing_name': 'Tampa Bay Buccaneers', 'losing_abbr': 'tam'}, {'boxscore': '201710220ram', 'away_name': 'Arizona Cardinals', 'away_abbr': 'crd', 'away_score': 0, 'home_name': 'Los Angeles Rams', 'home_abbr': 'ram', 'home_score': 33, 'winning_name': 'Los Angeles Rams', 'winning_abbr': 'ram', 'losing_name': 'Arizona Cardinals', 'losing_abbr': 'crd'}, {'boxscore': '201710220min', 'away_name': 'Baltimore Ravens', 'away_abbr': 'rav', 'away_score': 16, 'home_name': 'Minnesota Vikings', 'home_abbr': 'min', 'home_score': 24, 'winning_name': 'Minnesota Vikings', 'winning_abbr': 'min', 'losing_name': 'Baltimore Ravens', 'losing_abbr': 'rav'}, {'boxscore': '201710220mia', 'away_name': 'New York Jets', 'away_abbr': 'nyj', 'away_score': 28, 'home_name': 'Miami Dolphins', 'home_abbr': 'mia', 'home_score': 31, 'winning_name': 'Miami Dolphins', 'winning_abbr': 'mia', 'losing_name': 'New York Jets', 'losing_abbr': 'nyj'}, {'boxscore': '201710220gnb', 'away_name': 'New Orleans Saints', 'away_abbr': 'nor', 'away_score': 26, 'home_name': 'Green Bay Packers', 'home_abbr': 'gnb', 'home_score': 17, 'winning_name': 'New Orleans Saints', 'winning_abbr': 'nor', 'losing_name': 'Green Bay Packers', 'losing_abbr': 'gnb'}, {'boxscore': '201710220clt', 'away_name': 'Jacksonville Jaguars', 'away_abbr': 'jax', 'away_score': 27, 'home_name': 'Indianapolis Colts', 'home_abbr': 'clt', 'home_score': 0, 'winning_name': 'Jacksonville Jaguars', 'winning_abbr': 'jax', 'losing_name': 'Indianapolis Colts', 'losing_abbr': 'clt'}, {'boxscore': '201710220cle', 'away_name': 'Tennessee Titans', 'away_abbr': 'oti', 'away_score': 12, 'home_name': 'Cleveland Browns', 'home_abbr': 'cle', 'home_score': 9, 'winning_name': 'Tennessee Titans', 'winning_abbr': 'oti', 'losing_name': 'Cleveland Browns', 'losing_abbr': 'cle'}, {'boxscore': '201710220sfo', 'away_name': 'Dallas Cowboys', 'away_abbr': 'dal', 'away_score': 40, 'home_name': 'San Francisco 49ers', 'home_abbr': 'sfo', 'home_score': 10, 'winning_name': 'Dallas Cowboys', 'winning_abbr': 'dal', 'losing_name': 'San Francisco 49ers', 'losing_abbr': 'sfo'}, {'boxscore': '201710220sdg', 'away_name': 'Denver Broncos', 'away_abbr': 'den', 'away_score': 0, 'home_name': 'Los Angeles Chargers', 'home_abbr': 'sdg', 'home_score': 21, 'winning_name': 'Los Angeles Chargers', 'winning_abbr': 'sdg', 'losing_name': 'Denver Broncos', 'losing_abbr': 'den'}, {'boxscore': '201710220pit', 'away_name': 'Cincinnati Bengals', 'away_abbr': 'cin', 'away_score': 14, 'home_name': 'Pittsburgh Steelers', 'home_abbr': 'pit', 'home_score': 29, 'winning_name': 'Pittsburgh Steelers', 'winning_abbr': 'pit', 'losing_name': 'Cincinnati Bengals', 'losing_abbr': 'cin'}, {'boxscore': '201710220nyg', 'away_name': 'Seattle Seahawks', 'away_abbr': 'sea', 'away_score': 24, 'home_name': 'New York Giants', 'home_abbr': 'nyg', 'home_score': 7, 'winning_name': 'Seattle Seahawks', 'winning_abbr': 'sea', 'losing_name': 'New York Giants', 'losing_abbr': 'nyg'}, {'boxscore': '201710220nwe', 'away_name': 'Atlanta Falcons', 'away_abbr': 'atl', 'away_score': 7, 'home_name': 'New England Patriots', 'home_abbr': 'nwe', 'home_score': 23, 'winning_name': 'New England Patriots', 'winning_abbr': 'nwe', 'losing_name': 'Atlanta Falcons', 'losing_abbr': 'atl'}, {'boxscore': '201710230phi', 'away_name': 'Washington Redskins', 'away_abbr': 'was', 'away_score': 24, 'home_name': 'Philadelphia Eagles', 'home_abbr': 'phi', 'home_score': 34, 'winning_name': 'Philadelphia Eagles', 'winning_abbr': 'phi', 'losing_name': 'Washington Redskins', 'losing_abbr': 'was'} ] } @mock.patch('requests.get', side_effect=mock_pyquery) def test_boxscores_search(self, *args, **kwargs): result = Boxscores(7, 2017).games assert result == self.expected @mock.patch('requests.get', side_effect=mock_pyquery) def test_boxscores_search_invalid_end(self, *args, **kwargs): result = Boxscores(7, 2017, 5).games assert result == self.expected @mock.patch('requests.get', side_effect=mock_pyquery) def test_boxscores_search_multiple_weeks(self, *args, **kwargs): expected = { '7-2017': [ {'boxscore': '201710190rai', 'away_name': 'Kansas City Chiefs', 'away_abbr': 'kan', 'away_score': 30, 'home_name': 'Oakland Raiders', 'home_abbr': 'rai', 'home_score': 31, 'winning_name': 'Oakland Raiders', 'winning_abbr': 'rai', 'losing_name': 'Kansas City Chiefs', 'losing_abbr': 'kan'}, {'boxscore': '201710220chi', 'away_name': 'Carolina Panthers', 'away_abbr': 'car', 'away_score': 3, 'home_name': 'Chicago Bears', 'home_abbr': 'chi', 'home_score': 17, 'winning_name': 'Chicago Bears', 'winning_abbr': 'chi', 'losing_name': 'Carolina Panthers', 'losing_abbr': 'car'}, {'boxscore': '201710220buf', 'away_name': 'Tampa Bay Buccaneers', 'away_abbr': 'tam', 'away_score': 27, 'home_name': 'Buffalo Bills', 'home_abbr': 'buf', 'home_score': 30, 'winning_name': 'Buffalo Bills', 'winning_abbr': 'buf', 'losing_name': 'Tampa Bay Buccaneers', 'losing_abbr': 'tam'}, {'boxscore': '201710220ram', 'away_name': 'Arizona Cardinals', 'away_abbr': 'crd', 'away_score': 0, 'home_name': 'Los Angeles Rams', 'home_abbr': 'ram', 'home_score': 33, 'winning_name': 'Los Angeles Rams', 'winning_abbr': 'ram', 'losing_name': 'Arizona Cardinals', 'losing_abbr': 'crd'}, {'boxscore': '201710220min', 'away_name': 'Baltimore Ravens', 'away_abbr': 'rav', 'away_score': 16, 'home_name': 'Minnesota Vikings', 'home_abbr': 'min', 'home_score': 24, 'winning_name': 'Minnesota Vikings', 'winning_abbr': 'min', 'losing_name': 'Baltimore Ravens', 'losing_abbr': 'rav'}, {'boxscore': '201710220mia', 'away_name': 'New York Jets', 'away_abbr': 'nyj', 'away_score': 28, 'home_name': 'Miami Dolphins', 'home_abbr': 'mia', 'home_score': 31, 'winning_name': 'Miami Dolphins', 'winning_abbr': 'mia', 'losing_name': 'New York Jets', 'losing_abbr': 'nyj'}, {'boxscore': '201710220gnb', 'away_name': 'New Orleans Saints', 'away_abbr': 'nor', 'away_score': 26, 'home_name': 'Green Bay Packers', 'home_abbr': 'gnb', 'home_score': 17, 'winning_name': 'New Orleans Saints', 'winning_abbr': 'nor', 'losing_name': 'Green Bay Packers', 'losing_abbr': 'gnb'}, {'boxscore': '201710220clt', 'away_name': 'Jacksonville Jaguars', 'away_abbr': 'jax', 'away_score': 27, 'home_name': 'Indianapolis Colts', 'home_abbr': 'clt', 'home_score': 0, 'winning_name': 'Jacksonville Jaguars', 'winning_abbr': 'jax', 'losing_name': 'Indianapolis Colts', 'losing_abbr': 'clt'}, {'boxscore': '201710220cle', 'away_name': 'Tennessee Titans', 'away_abbr': 'oti', 'away_score': 12, 'home_name': 'Cleveland Browns', 'home_abbr': 'cle', 'home_score': 9, 'winning_name': 'Tennessee Titans', 'winning_abbr': 'oti', 'losing_name': 'Cleveland Browns', 'losing_abbr': 'cle'}, {'boxscore': '201710220sfo', 'away_name': 'Dallas Cowboys', 'away_abbr': 'dal', 'away_score': 40, 'home_name': 'San Francisco 49ers', 'home_abbr': 'sfo', 'home_score': 10, 'winning_name': 'Dallas Cowboys', 'winning_abbr': 'dal', 'losing_name': 'San Francisco 49ers', 'losing_abbr': 'sfo'}, {'boxscore': '201710220sdg', 'away_name': 'Denver Broncos', 'away_abbr': 'den', 'away_score': 0, 'home_name': 'Los Angeles Chargers', 'home_abbr': 'sdg', 'home_score': 21, 'winning_name': 'Los Angeles Chargers', 'winning_abbr': 'sdg', 'losing_name': 'Denver Broncos', 'losing_abbr': 'den'}, {'boxscore': '201710220pit', 'away_name': 'Cincinnati Bengals', 'away_abbr': 'cin', 'away_score': 14, 'home_name': 'Pittsburgh Steelers', 'home_abbr': 'pit', 'home_score': 29, 'winning_name': 'Pittsburgh Steelers', 'winning_abbr': 'pit', 'losing_name': 'Cincinnati Bengals', 'losing_abbr': 'cin'}, {'boxscore': '201710220nyg', 'away_name': 'Seattle Seahawks', 'away_abbr': 'sea', 'away_score': 24, 'home_name': 'New York Giants', 'home_abbr': 'nyg', 'home_score': 7, 'winning_name': 'Seattle Seahawks', 'winning_abbr': 'sea', 'losing_name': 'New York Giants', 'losing_abbr': 'nyg'}, {'boxscore': '201710220nwe', 'away_name': 'Atlanta Falcons', 'away_abbr': 'atl', 'away_score': 7, 'home_name': 'New England Patriots', 'home_abbr': 'nwe', 'home_score': 23, 'winning_name': 'New England Patriots', 'winning_abbr': 'nwe', 'losing_name': 'Atlanta Falcons', 'losing_abbr': 'atl'}, {'boxscore': '201710230phi', 'away_name': 'Washington Redskins', 'away_abbr': 'was', 'away_score': 24, 'home_name': 'Philadelphia Eagles', 'home_abbr': 'phi', 'home_score': 34, 'winning_name': 'Philadelphia Eagles', 'winning_abbr': 'phi', 'losing_name': 'Washington Redskins', 'losing_abbr': 'was'} ], '8-2017': [ {'boxscore': '201710260rav', 'away_name': 'Miami Dolphins', 'away_abbr': 'mia', 'away_score': 0, 'home_name': 'Baltimore Ravens', 'home_abbr': 'rav', 'home_score': 40, 'winning_name': 'Baltimore Ravens', 'winning_abbr': 'rav', 'losing_name': 'Miami Dolphins', 'losing_abbr': 'mia'}, {'boxscore': '201710290cle', 'away_name': 'Minnesota Vikings', 'away_abbr': 'min', 'away_score': 33, 'home_name': 'Cleveland Browns', 'home_abbr': 'cle', 'home_score': 16, 'winning_name': 'Minnesota Vikings', 'winning_abbr': 'min', 'losing_name': 'Cleveland Browns', 'losing_abbr': 'cle'}, {'boxscore': '201710290buf', 'away_name': 'Oakland Raiders', 'away_abbr': 'rai', 'away_score': 14, 'home_name': 'Buffalo Bills', 'home_abbr': 'buf', 'home_score': 34, 'winning_name': 'Buffalo Bills', 'winning_abbr': 'buf', 'losing_name': 'Oakland Raiders', 'losing_abbr': 'rai'}, {'boxscore': '201710290tam', 'away_name': 'Carolina Panthers', 'away_abbr': 'car', 'away_score': 17, 'home_name': 'Tampa Bay Buccaneers', 'home_abbr': 'tam', 'home_score': 3, 'winning_name': 'Carolina Panthers', 'winning_abbr': 'car', 'losing_name': 'Tampa Bay Buccaneers', 'losing_abbr': 'tam'}, {'boxscore': '201710290phi', 'away_name': 'San Francisco 49ers', 'away_abbr': 'sfo', 'away_score': 10, 'home_name': 'Philadelphia Eagles', 'home_abbr': 'phi', 'home_score': 33, 'winning_name': 'Philadelphia Eagles', 'winning_abbr': 'phi', 'losing_name': 'San Francisco 49ers', 'losing_abbr': 'sfo'}, {'boxscore': '201710290nyj', 'away_name': 'Atlanta Falcons', 'away_abbr': 'atl', 'away_score': 25, 'home_name': 'New York Jets', 'home_abbr': 'nyj', 'home_score': 20, 'winning_name': 'Atlanta Falcons', 'winning_abbr': 'atl', 'losing_name': 'New York Jets', 'losing_abbr': 'nyj'}, {'boxscore': '201710290nwe', 'away_name': 'Los Angeles Chargers', 'away_abbr': 'sdg', 'away_score': 13, 'home_name': 'New England Patriots', 'home_abbr': 'nwe', 'home_score': 21, 'winning_name': 'New England Patriots', 'winning_abbr': 'nwe', 'losing_name': 'Los Angeles Chargers', 'losing_abbr': 'sdg'}, {'boxscore': '201710290nor', 'away_name': 'Chicago Bears', 'away_abbr': 'chi', 'away_score': 12, 'home_name': 'New Orleans Saints', 'home_abbr': 'nor', 'home_score': 20, 'winning_name': 'New Orleans Saints', 'winning_abbr': 'nor', 'losing_name': 'Chicago Bears', 'losing_abbr': 'chi'}, {'boxscore': '201710290cin', 'away_name': 'Indianapolis Colts', 'away_abbr': 'clt', 'away_score': 23, 'home_name': 'Cincinnati Bengals', 'home_abbr': 'cin', 'home_score': 24, 'winning_name': 'Cincinnati Bengals', 'winning_abbr': 'cin', 'losing_name': 'Indianapolis Colts', 'losing_abbr': 'clt'}, {'boxscore': '201710290sea', 'away_name': 'Houston Texans', 'away_abbr': 'htx', 'away_score': 38, 'home_name': 'Seattle Seahawks', 'home_abbr': 'sea', 'home_score': 41, 'winning_name': 'Seattle Seahawks', 'winning_abbr': 'sea', 'losing_name': 'Houston Texans', 'losing_abbr': 'htx'}, {'boxscore': '201710290was', 'away_name': 'Dallas Cowboys', 'away_abbr': 'dal', 'away_score': 33, 'home_name': 'Washington Redskins', 'home_abbr': 'was', 'home_score': 19, 'winning_name': 'Dallas Cowboys', 'winning_abbr': 'dal', 'losing_name': 'Washington Redskins', 'losing_abbr': 'was'}, {'boxscore': '201710290det', 'away_name': 'Pittsburgh Steelers', 'away_abbr': 'pit', 'away_score': 20, 'home_name': 'Detroit Lions', 'home_abbr': 'det', 'home_score': 15, 'winning_name': 'Pittsburgh Steelers', 'winning_abbr': 'pit', 'losing_name': 'Detroit Lions', 'losing_abbr': 'det'}, {'boxscore': '201710300kan', 'away_name': 'Denver Broncos', 'away_abbr': 'den', 'away_score': 19, 'home_name': 'Kansas City Chiefs', 'home_abbr': 'kan', 'home_score': 29, 'winning_name': 'Kansas City Chiefs', 'winning_abbr': 'kan', 'losing_name': 'Denver Broncos', 'losing_abbr': 'den'} ] } result = Boxscores(7, 2017, 8).games assert result == expected
[ "robert.d.clark@hpe.com" ]
robert.d.clark@hpe.com
ac94fd5eecb7bf3e1c65e43777aab51fbfe786b9
3ba0c680f17c921c8826c0c5b8157e0e9e1bceb9
/pokemon_entities/migrations/0005_pokemon_description.py
c442a830a3b5988f804f7ac6d062b89f6c2c8e5c
[]
no_license
n1k0din/pokemon-map
302680b21ec1c7df3121da13876162c61d7928d7
c391e737d8faf25e596f585a3a72a35038106664
refs/heads/master
2023-05-07T10:52:50.354599
2021-05-15T13:36:45
2021-05-15T13:36:45
367,273,744
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
# Generated by Django 3.1.11 on 2021-05-14 05:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pokemon_entities', '0004_auto_20210514_1057'), ] operations = [ migrations.AddField( model_name='pokemon', name='description', field=models.TextField(blank=True, null=True), ), ]
[ "nik726@gmail.com" ]
nik726@gmail.com
9993e1cf4b160b12b6a2d804a2c3d24dece21224
18fa1b0a78d82ecdeecb3e1955030ba9b2cbe776
/blog/urls.py
e99883553251e05998eb647b166e3964a2c65598
[]
no_license
reemrantisi/Blog
9192736b7e2abcd5ba21c64df8a2b0e01f3578b6
e88662a20f90e8b277eaee13ae8427df92346a80
refs/heads/master
2023-01-13T21:57:23.352399
2020-11-08T09:15:19
2020-11-08T09:15:19
311,018,639
0
0
null
null
null
null
UTF-8
Python
false
false
249
py
from . import views from django.urls import path urlpatterns = [ path('', views.PostList.as_view(), name='home'), #path('<slug:title>/', views.post_detail, name='post_detail'), path('<str:username>', views.home, name='user_posts'), ]
[ "reem@gmail.com" ]
reem@gmail.com
2f3a07dd4dc6968861691feb4d8eec611112ac26
f71d77aaec526cf71ff03b5e8203917de50f0a91
/Novelsssss/start.py
de014a720bdd03556c732e739b8c612aed8e7408
[]
no_license
zhangbailong945/pyqt5test
f9e272fb00e53528a045ac374cfb1a188d4d5d48
8032d2b44dbe2dcd4d01b802041b2b29265c8409
refs/heads/master
2020-04-06T13:47:31.328968
2019-07-23T07:31:04
2019-07-23T07:31:04
157,514,892
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
import sys from PyQt5.QtWidgets import QApplication,QWidget,QVBoxLayout from Libraries.Views.Ui_FramelessWindow import FramelessWindow if __name__=='__main__': app=QApplication(sys.argv) w=FramelessWindow() w.resize(950,400) w.move(20,200) w.show() sys.exit(app.exec_())
[ "1207549344@qq.com" ]
1207549344@qq.com
6063be56d0792ceb5dd279fab6f4e16f812946d9
2e74c7339c63385172629eaa84680a85a4731ee9
/como/como/dws/urolithiasis/scale_symp_urolithiasis.py
d46755f1010c3712ebfc43f6d49433e3669012a8
[]
no_license
zhusui/ihme-modeling
04545182d0359adacd22984cb11c584c86e889c2
dfd2fe2a23bd4a0799b49881cb9785f5c0512db3
refs/heads/master
2021-01-20T12:30:52.254363
2016-10-11T00:33:36
2016-10-11T00:33:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,030
py
import numpy as np import pandas as pd import MySQLdb import sys sys.path.append('/home/j/WORK/04_epi/02_models/01_code/02_severity/01_code/prod') import gbd_utils gbd = gbd_utils.GbdConventions() # Read dw file standard_dws = pd.read_csv("/home/j/WORK/04_epi/03_outputs/01_code/02_dw/02_standard/dw.csv") gen_med_dw = standard_dws[standard_dws.healthstate=="generic_medication"] # Get % symptomatic urolithiasis to apply to generic_medication symp_urolith_prop = pd.read_csv("/home/j/WORK/04_epi/01_database/02_data/urinary_urolithiasis/04_models/gbd2013/chronic_urolithiasis_DW_iso3_distribution.csv") symp_urolith_prop = symp_urolith_prop[symp_urolith_prop.year.isin([1990,1995,2000,2005,2010,2013])].reset_index(drop=True) # Draw generation function def beta_draws(row): row = pd.DataFrame([row]) sd = abs((row.upper - row.lower)/(2*1.96)) mean = row.proportion_dw sample_size = mean*(1-mean)/sd**2 alpha = mean*sample_size beta = (1-mean)*sample_size draws = pd.Series(np.random.beta(alpha, beta, size=1000)) return draws # Generate proportion draws prop_draws = symp_urolith_prop.apply(beta_draws, axis=1) # Multiply DW draws by proportions weighted_dws = pd.DataFrame(gen_med_dw.filter(like='draw').as_matrix() * prop_draws.as_matrix()) weighted_dws.columns = ['draw'+str(i) for i in range(1000)] # Format output and write to file symp_urolith_prop = symp_urolith_prop.join(weighted_dws) symp_urolith_prop = symp_urolith_prop.merge(gbd.get_locations()[['location_id','local_id']]) symp_urolith_prop['healthstate'] = "urolith_symp" symp_urolith_prop['healthstate_id'] = 822 symp_urolith_prop = symp_urolith_prop[['local_id','year','healthstate_id','healthstate']+['draw'+str(i) for i in range(1000)]] symp_urolith_prop.rename(columns={'local_id':'iso3'}, inplace=True) symp_urolith_prop.to_csv("/home/j/WORK/04_epi/03_outputs/01_code/02_dw/03_custom/urolith_symp_dws.csv", index=False) symp_urolith_prop.to_csv("/clustertmp/WORK/04_epi/03_outputs/01_code/02_dw/03_custom/urolith_symp_dws.csv", index=False)
[ "nsidles@uw.edu" ]
nsidles@uw.edu
9cefb9fab54b2c1b00b9ef78bbbf42b5aabce9dd
d4cae0ad3b7dd457e9eeef1714f99c79d3e4f72c
/day25/testting/tcp_client.py
365a23e15c5d67cc9b44f31a7bc6db5b7b118be7
[]
no_license
Fixdq/python-learn
698e823bdba2b705bf04dd81cef0abbb5ab5c0ff
4c2b2bb75c62321ecbae0e50834c1f10b65f0e7c
refs/heads/master
2020-03-08T15:56:37.796636
2018-06-09T14:42:16
2018-06-09T14:42:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
786
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Author : Fixdq # @File : tcp_client.py # @Software: PyCharm import json from socket import * import struct ip_port = ('127.155.101.25', 8090) client = socket(AF_INET, SOCK_STREAM) client.connect_ex(ip_port) while True: cmd = input('>>>>>:').strip() client.send(cmd.encode('utf-8')) # 接收 报头的报头 (固定长度 4 字节) head_head = client.recv(4) # 反解出 报头的长度 head_len = int(struct.unpack('i',head_head)[0]) # 接收 自定义报头 head = client.recv(head_len) # 拿到 自定义报头的长度 body_len = json.loads(head.decode('utf-8'))['len'] # 接收 真实的数据 data = client.recv(body_len) print(data.decode('utf-8')) client.close()
[ "fixd.quan@aliyun.com" ]
fixd.quan@aliyun.com
ba73f0b8bb22bfb6637144bb8ad5c9b9ac380524
9d45131eb90eaec3388b53f8e030c5093f794c9f
/com/bridgelabz/quantitymeasurement/Converter.py
59775beb5b0fd25752aeea86039d4781d707a034
[]
no_license
birajit95/Quantity_Measurement_TDD
f5bbbf16936e5ff4cc287627d8e1ea3583f3ab44
1df67748fc7549740eaeed1a6f6e282a47d48d81
refs/heads/master
2023-01-31T14:12:14.550820
2020-12-12T05:22:54
2020-12-12T05:22:54
319,701,228
0
0
null
null
null
null
UTF-8
Python
false
false
713
py
from com.bridgelabz.quantitymeasurement.Unit import Length, Volume, Weight, Temperature class Converter: BaseUnitDict = { type(Length.Inch): Length.Inch, type(Volume.Ml): Volume.Ml, type(Weight.Gram): Weight.Gram, type(Temperature.C): Temperature.C } @staticmethod def convert(value1Unit, value2Unit, value1, value2): if isinstance(value1Unit, Temperature): value1 = value1Unit.value * (value1 if value1Unit is Temperature.C else value1 - 32) value2 = value2Unit.value * (value2 if value2Unit is Temperature.C else value2 - 32) return value1, value2 return value1Unit.value * value1, value2Unit.value * value2
[ "birajit95@gmail.com" ]
birajit95@gmail.com
dd8e0689de0a7ce7483d0c413046514e35f5f54a
ace409e56a2a31bc30878f84b28427f0af283bb1
/polls/tests.py
fc03c76b26226c9642d6a1cea337a9eb30483ea8
[]
no_license
mikeyshean/django-test
9867bc47301507486f032e667cd765491c68c348
287df0336bba7195ba423f818e24b66d86d824de
refs/heads/master
2021-01-10T06:35:56.137001
2015-10-23T21:26:58
2015-10-23T21:26:58
44,765,292
0
0
null
null
null
null
UTF-8
Python
false
false
5,143
py
from django.test import TestCase import datetime from django.utils import timezone from polls.models import Question from django.core.urlresolvers import reverse def create_question(question_text, days, choice): time = timezone.now() + datetime.timedelta(days=days) question = Question.objects.create(question_text=question_text, pub_date=time) if choice: question.choices.create(choice_text="Hello", votes=0) return question class QuestionViewTests(TestCase): def test_index_view_with_no_questions(self): """ If no questions exist, display message. """ response = self.client.get(reverse('polls:index')) self.assertEqual(response.status_code, 200) self.assertContains(response, "No polls are available") self.assertQuerysetEqual(response.context['latest_question_list'], []) def test_index_view_with_a_past_question(self): """ Display questions with pub_date in the past. """ create_question(question_text="Past", days=-30, choice=True) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past>'] ) def test_index_view_with_a_future_question(self): """ Questions with a future pub_date should not be displayed. """ create_question(question_text="Future", days=30, choice=True) response = self.client.get(reverse('polls:index')) self.assertContains(response, "No polls are available.", status_code=200) self.assertQuerysetEqual(response.context['latest_question_list'], []) def test_index_view_with_future_question_and_past_question(self): """ Only display past question. """ create_question(question_text="Future", days=30, choice=True) create_question(question_text="Past", days=-30, choice=True) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past>'] ) def test_index_view_with_two_past_questions(self): """ Displays multiple questions. """ create_question(question_text="Past1", days=-30, choice=True) create_question(question_text="Past2", days=-31, choice=True) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past1>', '<Question: Past2>'] ) def test_index_view_with_question_without_choices(self): """ Does not display questions without choices """ create_question(question_text="Good question", days=-5, choice=False) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], [], ) class QuestiondIndexDetailTests(TestCase): def test_detail_view_with_a_future_question(self): """ Return 404 for a detail view of a question with a future pub_date """ future_question = create_question(question_text="Future", days=5, choice=True) response = self.client.get(reverse('polls:detail', args=(future_question.id,))) self.assertEqual(response.status_code, 404) def test_detail_view_with_a_past_question(self): """ Should return detail view of question with past pub_date """ past_question = create_question(question_text="Past", days=-5, choice=True) response = self.client.get(reverse('polls:detail', args=(past_question.id,))) self.assertContains(response, past_question.question_text, status_code=200) class QuestionMethodTests(TestCase): def test_was_published_recently_with_future_question(self): """ was_published_recently() should return False for questions with pub_date in the future """ time = timezone.now() + datetime.timedelta(days=30) future_question = Question(pub_date=time) self.assertEqual(future_question.was_published_recently(), False) def test_was_published_recently_with_old_question(self): """ was_published_recently() should return False for questions with pub_date older than 1 day. """ time = timezone.now() - datetime.timedelta(days=30) old_question = Question(pub_date=time) self.assertEqual(old_question.was_published_recently(), False) def test_was_published_recently_with_recent_question(self): """ was_published_recently() should return True for questions with pub_date within last day. """ time = timezone.now() - datetime.timedelta(hours=1) recent_question = Question(pub_date=time) self.assertEqual(recent_question.was_published_recently(), True)
[ "mdshean2@gmail.com" ]
mdshean2@gmail.com
8b1ce587404581722d8d20cb341ad064b3756a91
305913537e02c6fdd577f3537415fd6990980219
/_xml_to_json.py
8e99d6cf45042a0bf555da70513e1c82f6e4c05f
[]
no_license
taeyang916/yolov1
00e845ce34224cb7fe3bb92fec29dcfb6a4fd736
9ef7bb8aaa899440b8a8696f756f0695da52e1f8
refs/heads/main
2023-06-04T04:28:08.879085
2021-06-20T13:40:05
2021-06-20T13:40:05
372,874,293
0
0
null
null
null
null
UTF-8
Python
false
false
1,223
py
import json from itertools import chain import xmltodict import os from xml.etree.ElementTree import parse # path dataset_path = '/home/vim/Desktop/tykim/workspace/VOC2012' IMAGE_FOLDER = 'JPEGImages' ANNOTATIONS_FOLDER = "Annotations" json_list = [] ann_root, ann_dir, ann_files = next(os.walk(os.path.join(dataset_path, ANNOTATIONS_FOLDER))) for xml_file in ann_files: xml_ = open(os.path.join(ann_root, xml_file), "r") xmlString = xmltodict.parse(xml_.read()) parsed_xml = xmlString["annotation"] json_list.append(parsed_xml) # for (i, xml_file) in enumerate(ann_files): # xml_ = open(f"/home/vim/Desktop/tykim/workspace/VOC2012/json/{xml_file}.json", "r") # xmlString = xmltodict.parse(xml_.read()) # parsed_xml = xmlString["annotation"] # globals()['json_'+str(i)] = parsed_xml # for (i, dt) in enumerate(ann_files): # json_list.append(globals()['json_'+str(i)]) print(json_list[0]) parsed_json_list = [{"annotations", json_list}] print(parsed_json_list[0]) # slack = list(chain.from_iterable(json_list["annotation"])) # print(slack) # with open("/home/vim/Desktop/tykim/workspace/VOC2012/json/annotations.json", 'w') as ann: # json.dump(json_list, ann, indent=4)
[ "taeyang916@naver.com" ]
taeyang916@naver.com
a96550ddf975b264a333377b874bb94f4677be26
d134b17d6b1fbcd6d240d01319377b8f2c5863cb
/python/hosts_file/update_hosts_file.py
4059123028974d04a71dca6cfb8a2d53151df76f
[ "MIT" ]
permissive
lijie2000/devops_public
1de9fa87c6e767790a732a4a74e5e91d7df1f7cb
3efb981d75cf86602457e209ebec1e7f11c29bb9
refs/heads/master
2021-01-21T18:34:21.049233
2017-05-21T04:14:44
2017-05-21T04:14:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,605
py
# -*- coding: utf-8 -*- #!/usr/bin/python ##------------------------------------------------------------------- ## @copyright 2017 DennyZhang.com ## Licensed under MIT ## https://raw.githubusercontent.com/DennyZhang/devops_public/master/LICENSE ## ## File : update_hosts_file.py ## Author : Denny <denny@dennyzhang.com> ## Created : <2017-05-03> ## Updated: Time-stamp: <2017-05-11 14:13:42> ## Description : ## Load an extra hosts binding into /etc/hosts ## Sample: ## python ./examine_hosts_file.py --extra_hosts_file /tmp/hosts ##------------------------------------------------------------------- import os, sys import argparse import socket, datetime import logging log_file = "/var/log/%s.log" % (os.path.basename(__file__).rstrip('\.py')) logging.basicConfig(filename=log_file, level=logging.DEBUG, format='%(asctime)s %(message)s') logging.getLogger().addHandler(logging.StreamHandler()) def load_hostsfile_to_dict(host_file): host_dict = {} with open(host_file,'r') as f: for row in f: row = row.strip() if row.startswith('#') or row == '': continue entry_l = row.split() if '::' in entry_l[0]: continue ip = entry_l[0] if len(entry_l) == 2: hostname = entry_l[1] host_dict[hostname] = ip else: for hostname in entry_l[1:]: host_dict[hostname] = ip return host_dict ############################################################### if __name__ == '__main__': # get parameters from users parser = argparse.ArgumentParser() parser.add_argument('--extra_hosts_file', required=False, default="", \ help="Load extra hosts into /etc/hosts", type=str) parser.add_argument('--skip_current_hostname', required=False, dest='skip_current_hostname', \ action='store_true', default=False, \ help="Skip the binding for current hostname, if it's specified in --extra_hosts_file") l = parser.parse_args() extra_hosts_file = l.extra_hosts_file skip_current_hostname = l.skip_current_hostname current_hosts_dict = load_hostsfile_to_dict("/etc/hosts") extra_hosts_dict = load_hostsfile_to_dict(extra_hosts_file) has_changed = False has_backup = False current_hostname = socket.gethostname() for hostname in extra_hosts_dict: if skip_current_hostname is True and hostname == current_hostname: continue if hostname not in current_hosts_dict: if has_backup is False: host_backup_file = "/etc/hosts.%s" % \ (datetime.datetime.utcnow().strftime("%Y-%m-%d_%H%M%S")) logging.info("Backup /etc/hosts to %s" % (host_backup_file)) has_backup = True open("/etc/hosts", "ab").write("%s %s" % (extra_hosts_dict[hostname]), hostname) logging.error("Append /etc/hosts: (%s:%s)" % (hostname, extra_hosts_dict[hostname])) has_changed = True else: if current_hosts_dict[hostname] != extra_hosts_dict[hostname]: logging.error("ERROR /etc/hosts is conflict with %s for entry of hostname(%s)" % \ (extra_hosts_file, hostname)) sys.exit(1) if has_changed is True: logging.info("OK: /etc/hosts is good after some updates.") else: logging.info("OK: /etc/hosts is gook with no changes.") ## File : update_hosts_file.py ends
[ "denny@dennyzhang.com" ]
denny@dennyzhang.com
e84be353b6b25278129e6289b26839157449bfd4
1e10e0cd035418098bdb5c667ffca0fb9fc3e1af
/pages/migrations/0003_auto_20210701_0931.py
09fe6eec193db2b1c0cc97d9303f61993b78a55a
[]
no_license
rahuljain08/Ecommerce-Website
98c4ef2c3517a243ad3e1aba41502309ab48df7b
a6978a0a15abeac5aad46dfb0255d7be561fd5c8
refs/heads/master
2023-06-24T23:51:45.265591
2021-07-22T05:59:58
2021-07-22T05:59:58
388,085,670
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
# Generated by Django 3.1.4 on 2021-07-01 04:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pages', '0002_cart_user'), ] operations = [ migrations.AlterField( model_name='order', name='placed_on', field=models.DateField(auto_now=True), ), ]
[ "rahuljain8102@gmail.com" ]
rahuljain8102@gmail.com
097bc0c868a18aad30eac69b86879e4f315ca032
7117cab1e015e1f0298aad64535116e57413f13a
/tutorial/datascience/seabornematrix.py
5ba9b9567a70c98bcd3eb0d35e1a90440f0a9417
[]
no_license
udeshpa/python
a1d2a0779749abaad6d93ffd58aac6c3f6de035f
d7150bd9d1030f7a02a9b364858fe7565ebfdb24
refs/heads/main
2023-03-20T19:32:52.842280
2021-03-13T23:36:52
2021-03-13T23:36:52
347,502,757
0
0
null
null
null
null
UTF-8
Python
false
false
467
py
import seaborn as sns import matplotlib.pyplot as plt tips = sns.load_dataset('tips') flights = sns.load_dataset('flights') print(tips.head()) print(flights.head()) tc= tips.corr() print(tc) sns.heatmap(tc, annot=True, cmap='coolwarm') plt.show() pt = flights.pivot_table(index='month', columns='year', values='passengers') print(pt) sns.heatmap(pt, linecolor='white', linewidths=1) plt.show() sns.clustermap(pt, cmap='coolwarm', standard_scale=1) plt.show()
[ "udeshpa@gmail.com" ]
udeshpa@gmail.com
212a4c3bbf7f97c5a14636a3ebba1e1888715850
90dfb4a7b1fdd8f431305e26d261c1d1df277b19
/src/RequestHandlerWSGIServerTraceCall.py
d52ad5e85665666c2327299f3e19ac1c2be5f57e
[ "MIT" ]
permissive
AoiKuiyuyou/AoikBottleStudy
9f589abb6e18ca713dbe6907d1f958d9129756d2
7892e9019027f0785998958e9453feffe51e7371
refs/heads/master
2020-07-03T16:41:17.953117
2016-11-24T03:01:20
2016-11-24T03:01:20
74,246,032
0
0
null
null
null
null
UTF-8
Python
false
false
13,243
py
# coding: utf-8 from __future__ import absolute_import # Standard imports import sys import logging # External imports import aoiktracecall.config import aoiktracecall.logging import aoiktracecall.trace # Traced modules should be imported after `trace_calls_in_specs` is called. # Set configs aoiktracecall.config.set_configs({ # Whether use wrapper class. # # Wrapper class is more adaptive to various types of callables but will # break if the code that was using the original function requires a real # function, instead of a callable. Known cases include PyQt slot functions. # 'WRAP_USING_WRAPPER_CLASS': True, # Whether wrap base class attributes in a subclass. # # If enabled, wrapper attributes will be added to a subclass even if the # wrapped original attributes are defined in a base class. # # This helps in the case that base class attributes are implemented in C # extensions thus can not be traced directly. # 'WRAP_BASE_CLASS_ATTRIBUTES': True, # Whether highlight title shows `self` argument's class instead of called # function's defining class. # # This helps reveal the real type of the `self` argument on which the # function is called. # 'HIGHLIGHT_TITLE_SHOW_SELF_CLASS': True, # Highlight title line character count max 'HIGHLIGHT_TITLE_LINE_CHAR_COUNT_MAX': 265, # Whether show function's file path and line number in pre-call hook 'SHOW_FUNC_FILE_PATH_LINENO_PRE_CALL': True, # Whether show function's file path and line number in post-call hook 'SHOW_FUNC_FILE_PATH_LINENO_POST_CALL': False, # Whether wrapper function should debug info dict's URIs 'WRAPPER_FUNC_DEBUG_INFO_DICT_URIS': False, # Whether printing handler should debug arguments inspect info 'PRINTING_HANDLER_DEBUG_ARGS_INSPECT_INFO': False, # Whether printing handler should debug info dict. # # Notice info dict contains called function's arguments and printing these # arguments may cause errors. # 'PRINTING_HANDLER_DEBUG_INFO_DICT': False, # Whether printing handler should debug info dict, excluding arguments. # # Use this if `PRINTING_HANDLER_DEBUG_INFO_DICT` causes errors. # 'PRINTING_HANDLER_DEBUG_INFO_DICT_SAFE': False, }) # Add debug logger handler aoiktracecall.logging.get_debug_logger().addHandler(logging.NullHandler()) # Add info logger handler aoiktracecall.logging.get_info_logger().addHandler( logging.StreamHandler(sys.stdout) ) # Add error logger handler aoiktracecall.logging.get_error_logger().addHandler( logging.StreamHandler(sys.stderr) ) # Constant for `highlight` HL = 'highlight' # Create trace specs. # # The order of the specs determines the matching precedence, with one exception # that URI patterns consisting of only alphanumerics, underscores, and dots are # considered as exact URI matching, and will have higher precedence over all # regular expression matchings. The rationale is that a spec with exact URI # matching is more specific therefore should not be shadowed by any spec with # regular expression matching that has appeared early. # trace_specs = [ # ----- aoiktracecall ----- ('aoiktracecall([.].+)?', False), # ----- * ----- # Tracing `__setattr__` will reveal instances' attribute assignments. # Notice Python 2 old-style classes have no `__setattr__` attribute. ('.+[.]__setattr__', True), # Not trace most of double-underscore functions. # Tracing double-underscore functions is likely to break code, e.g. tracing # `__str__` or `__repr__` may cause infinite recursion. ('.+[.]__(?!init|call)[^.]+__', False), # ----- socket._socketobject (Python 2), socket.socket (Python 3) ----- # Notice in Python 2, class `socket._socketobject`'s instance methods # - recv # - recvfrom # - recv_into # - recvfrom_into # - send # - sendto # are dynamically generated in `_socketobject.__init__`. The approach of # wrapping class attributes is unable to trace these methods. ('socket[.](_socketobject|socket)[.]__init__', HL), ('socket[.](_socketobject|socket)[.]bind', HL), ('socket[.](_socketobject|socket)[.]listen', HL), ('socket[.](_socketobject|socket)[.]connect', HL), ('socket[.](_socketobject|socket)[.]accept', HL), ('socket[.](_socketobject|socket)[.]setblocking', HL), ('socket[.](_socketobject|socket)[.]makefile', HL), ('socket[.](_socketobject|socket)[.]recv.*', HL), ('socket[.](_socketobject|socket)[.]send.*', HL), ('socket[.](_socketobject|socket)[.]shutdown', HL), ('socket[.](_socketobject|socket)[.]close', HL), # ----- socket._fileobject (Python 2), socket.SocketIO (Python 3) ----- ('socket[.](SocketIO|_fileobject)[.]__init__', HL), ('socket[.](SocketIO|_fileobject)[.]read.*', HL), ('socket[.](SocketIO|_fileobject)[.]write.*', HL), ('socket[.](SocketIO|_fileobject)[.]flush', HL), ('socket[.](SocketIO|_fileobject)[.]close', HL), ('socket[.](SocketIO|_fileobject)[.].+', True), # ----- socket ----- ('socket._intenum_converter', False), ('socket[.].+[.]_decref_socketios', False), ('socket[.].+[.]fileno', False), # Ignore to avoid error in `__repr__` in Python 3 ('socket[.].+[.]getpeername', False), # Ignore to avoid error in `__repr__` in Python 3 ('socket[.].+[.]getsockname', False), ('socket[.].+[.]gettimeout', False), ('socket([.].+)?', True), # ----- select (Python 2) ----- ('select.select', HL), ('select([.].+)?', True), # ----- selectors (Python 3) ----- ('selectors.SelectSelector.__init__', HL), ('selectors.SelectSelector.register', HL), ('selectors.SelectSelector.select', HL), ('selectors([.].+)?', True), # ----- SocketServer (Python 2), socketserver (Python 3) ----- ('SocketServer._eintr_retry', False), ('(socketserver|SocketServer)[.]BaseServer[.]__init__', HL), ('(socketserver|SocketServer)[.]TCPServer[.]__init__', HL), ('(socketserver|SocketServer)[.]ThreadingMixIn[.]process_request', HL), ( '(socketserver|SocketServer)[.]ThreadingMixIn[.]' 'process_request_thread', HL ), # Ignore to avoid error: # ``` # 'WSGIServer' object has no attribute '_BaseServer__is_shut_down' # ``` ('(socketserver|SocketServer)[.]ThreadingMixIn[.].+', False), ('(socketserver|SocketServer)[.]BaseRequestHandler[.]__init__', HL), ('(socketserver|SocketServer)[.].+[.]service_actions', False), ('.+[.]server_bind', HL), ('.+[.]server_activate', HL), ('.+[.]serve_forever', HL), ('.+[.]_handle_request_noblock', HL), ('.+[.]get_request', HL), ('.+[.]verify_request', HL), ('.+[.]process_request', HL), ('.+[.]process_request_thread', HL), ('.+[.]finish_request', HL), ('.+[.]setup', HL), ('.+[.]handle', HL), ('.+[.]finish', HL), ('.+[.]shutdown_request', HL), ('.+[.]close_request', HL), ('.+[.]fileno', False), ('(socketserver|SocketServer)([.].+)?', True), # ----- mimetools ----- # `mimetools` is used for parsing HTTP headers in Python 2. ('mimetools([.].+)?', True), # ----- email ----- # `email` is used for parsing HTTP headers in Python 3. ('email([.].+)?', True), # ----- BaseHTTPServer (Python 2), http.server (Python 3) ----- ('.+[.]handle_one_request', HL), ('.+[.]parse_request', HL, 'hide_below'), ('.+[.]send_response', HL), ('.+[.]send_header', HL), ('.+[.]end_headers', HL), # ----- BaseHTTPServer (Python 2) ----- ('BaseHTTPServer([.].+)?', True), # ----- http (Python 3) ----- ('http([.].+)?', True), # ----- wsgiref ----- ('wsgiref.handlers.BaseHandler.write', HL), ('wsgiref.handlers.BaseHandler.close', HL), ('wsgiref.handlers.SimpleHandler.__init__', HL), ('wsgiref.handlers.SimpleHandler._write', HL), ('wsgiref.handlers.SimpleHandler._flush', HL), ('wsgiref.simple_server.WSGIServer.__init__', HL), ('wsgiref.simple_server.ServerHandler.__init__', HL), ('wsgiref.simple_server.ServerHandler.close', HL), ('.+[.]make_server', HL), ('.+[.]setup_environ', HL, 'hide_below'), ('.+[.]set_app', HL), ('.+[.]get_environ', HL, 'hide_below'), ('.+[.]get_app', HL), ('.+[.]run', HL), ('.+[.]start_response', HL), ('.+[.]finish_response', HL), ('.+[.]send_headers', HL), ('.+[.]cleanup_headers', HL), ('.+[.]send_preamble', HL), ('.+[.]finish_content', HL), ('.+[.]finish', HL), ('wsgiref([.].+)?', True), # ----- bottle ----- # Ignore to avoid error ('bottle.app', False), # Ignore to avoid error ('bottle.BaseRequest.__setattr__', False), ('bottle.Bottle._cast', HL), ('bottle.Bottle._handle', HL), ('bottle.Bottle.add_route', HL), ('bottle.Bottle.post', HL), ('bottle.Bottle.route', HL), ('bottle.Bottle.trigger_hook', HL), ('bottle.Bottle.wsgi', HL), # Ignore to avoid error ('bottle.default_app', False), ('bottle.JSONPlugin.apply', HL), # Ignore to avoid error ('bottle.LocalRequest.__setattr__', False), ('bottle.LocalRequest.bind', HL), ('bottle.LocalResponse.bind', HL), ('bottle.post', HL), ('bottle.Route.__init__', HL), # Ignore to avoid error in `__repr__` ('bottle.Route.__setattr__', False), ('bottle.Route._make_callback', HL), ('bottle.Route.all_plugins', HL), # Ignore to avoid error in `__repr__` ('bottle.Route.get_undecorated_callback', False), ('bottle.Router.add', HL), ('bottle.Router.build', HL), ('bottle.Router.match', HL), ('bottle.run', HL), ('bottle.ServerAdapter.__init__', HL), # Ignore to avoid error in `__repr__` ('bottle.ServerAdapter.__setattr__', False), ('bottle.TemplatePlugin.apply', HL), ('bottle.update_wrapper', HL), ('bottle.WSGIRefServer.run', HL), ('bottle([.].+)?', True), # ----- __main__ ----- ('__main__.main', HL), ('__main__.CustomRequestHandler', HL), ('__main__([.].+)?', True), ] # Create `printing_handler`'s filter function def printing_handler_filter_func(info): # Get on-wrap URI onwrap_uri = info['onwrap_uri'] # If is one of these URIs if onwrap_uri in { 'bottle.Bottle.__call__', 'bottle.Bottle._handle', 'bottle.Bottle.wsgi', 'bottle.LocalRequest.__setattr__', 'bottle.LocalRequest.bind', 'bottle.Router.match', }: # Get arguments inspect info arguments_inspect_info = info['arguments_inspect_info'] # Get `environ` argument info arg_info = arguments_inspect_info.fixed_arg_infos['environ'] # Hide value arg_info.value = '{...}' # Return info dict return info # Trace calls according to trace specs. # # This function will hook the module importing system in order to intercept and # process newly imported modules. Callables in these modules which are matched # by one of the trace specs will be wrapped to enable tracing. # # Already imported modules will be processed as well. But their callables may # have been referenced elsewhere already, making the tracing incomplete. This # explains why import hook is needed and why modules must be imported after # `trace_calls_in_specs` is called. # aoiktracecall.trace.trace_calls_in_specs( specs=trace_specs, printing_handler_filter_func=printing_handler_filter_func, ) # Remove to avoid being traced del printing_handler_filter_func # Import modules after `trace_calls_in_specs` is called import bottle # Notice do not use decorator to add URL-to-handler mapping here otherwise this # function can not be traced. # def CustomRequestHandler(): """ This request handler echoes request body in response body. """ # Gen `environ` dict environ = bottle.request.environ # Get `Context-Length` header value content_length_text = environ['CONTENT_LENGTH'] # If header value is empty if not content_length_text: # Set content length be 0 content_length = 0 # If header value is not empty else: # Convert to int content_length = int(content_length_text) # Get input file input_file = environ['wsgi.input'] # Read request body request_body = input_file.read(content_length) # Return response body return request_body def main(): # Add URL-to-handler mapping bottle.post('/')(CustomRequestHandler) try: # Run server bottle.run(host='127.0.0.1', port=8000) # If have `KeyboardInterrupt` except KeyboardInterrupt: # Stop gracefully pass # Trace calls in this module. # # Calling this function is needed because at the point `trace_calls_in_specs` # is called, this module is being initialized, therefore callables defined # after the call point are not accessible to `trace_calls_in_specs`. # aoiktracecall.trace.trace_calls_in_this_module() # If is run as main module if __name__ == '__main__': # Call main function exit(main())
[ "aoi.kuiyuyou@gmail.com" ]
aoi.kuiyuyou@gmail.com
8b1fc6237f949e3f7e9091a48346d8177862e152
d9dadaae97e333193c52b0731eb980487e430a44
/vampires.py
58fceacc6ba2df6e00e63bb25f4903c3a3856cb9
[]
no_license
kevinpatell/Object_Oriented_Programming_part2
c34857e6055eaaf0bdb09aeb04f7fc212f8f0227
551cd1e42cbf7b2ee99c791d363b397747dd2473
refs/heads/master
2020-05-23T06:55:32.603610
2019-05-15T21:12:26
2019-05-15T21:12:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,933
py
class Vampire: coven = [] def __init__(self, name, age): self.name = name self.age = age self.in_coffin = True self.drank_blood_today = False def __str__(self): return f"Name of Vampire: {self.name}\nAge: {self.age}\nIn coffin: {self.in_coffin}\nDrank Blood Today: {self.drank_blood_today}" def __repr__(self): return f"{self.name} (Drank Blood: {self.drank_blood_today} In Coffin: {self.in_coffin})" @classmethod def create(cls, name, age): new_vampire = Vampire(name, age) cls.coven.append(new_vampire) return new_vampire @classmethod def sunrise(cls): for vampire in Vampire.coven: if vampire.in_coffin == False or vampire.drank_blood_today == False: cls.coven.remove(vampire) return f'Survivors after sunrise: {Vampire.coven}' @classmethod def sunset(cls): for vampire in cls.coven: Vampire.drank_blood_today = False Vampire.in_coffin = False return f"After sunset:\nThese all vampires are out of coffin and looking for blood:\n {Vampire.coven}" def drink_blood(self): self.drank_blood_today = True def go_home(self): self.in_coffin = True v1 = Vampire.create("Bella", 20000) v2 = Vampire.create("Elizabeth", 100) v3 = Vampire.create("Zurie", 200) v4 = Vampire.create("Ambrosiat", 50000) print(v1) print() print(v2) print() print(v3) print() print(v4) print() print(Vampire.coven[1].drank_blood_today) print(Vampire.sunset()) (v1.drink_blood()) (v3.drink_blood()) (v4.drink_blood()) print() print(Vampire.sunrise()) (v1.go_home()) (v2.go_home()) (v3.go_home()) (v4.go_home()) print(Vampire.coven[0].drank_blood_today) print(Vampire.coven[1].drank_blood_today) print(Vampire.coven[0].in_coffin) print(Vampire.coven[2].in_coffin) print() print(Vampire.coven)
[ "mail.kevinpatel@gmail.com" ]
mail.kevinpatel@gmail.com
6c0839c6066d8b8eafd8876ece1347f4488b2947
35b58dedc97622b1973456d907ede6ab86c0d966
/Test/2019年12月24日/2019年12月24日.py
ad4abe21a8bcaf16d5512d25c100514422f959cd
[]
no_license
GithubLucasSong/PythonProject
7bb2bcc8af2de725b2ed9cc5bfedfd64a9a56635
e3602b4cb8af9391c6dbeaebb845829ffb7ab15f
refs/heads/master
2022-11-23T05:32:44.622532
2020-07-24T08:27:12
2020-07-24T08:27:12
282,165,132
0
0
null
null
null
null
UTF-8
Python
false
false
197
py
def xxx(num): def wrapper(func): def inner(): for i in range(num): func() return inner return wrapper @xxx(3) def func(): print('1') func()
[ "1433880147@qq.com" ]
1433880147@qq.com
f80d70dfcbd1d0f09fa8ffe23895353bf97ff23a
b91588cda1a129f06aa9493ee6d6a70e4f996b7f
/Production/python/Spring15Fastv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_cff.py
bf01b9213d786b2b0783318c6ea58743e54c1d71
[]
no_license
muzamilahmad/LeptoQuarkTreeMaker
2371e93589dbe41b02a93a2533cbf5e955aaa0db
8e7eed0d03c6770a029eafb9b638e82c600a7425
refs/heads/master
2021-01-19T01:02:35.749590
2018-02-06T17:27:52
2018-02-06T17:27:52
65,389,201
0
0
null
null
null
null
UTF-8
Python
false
false
10,409
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, secondaryFileNames = secFiles) readFiles.extend( [ '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/08ABB1E4-2A9F-E511-9BB9-02163E013FA4.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/10080BE5-2A9F-E511-95A1-001EC94BA3CC.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/104285B3-2A9F-E511-87B8-02163E01778C.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/129711D0-2A9F-E511-A330-782BCB20FDEA.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/168B4ACC-2A9F-E511-A3C8-B083FED42C03.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/1E23B9BD-2A9F-E511-AB59-B083FED045ED.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/2E0EEAEB-2A9F-E511-9D2B-C81F66B78FF5.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/32953818-2F9F-E511-9B22-E41D2D08DEE0.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/34E265D2-2A9F-E511-937F-02163E014DAE.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/46ACB58F-2D9F-E511-B8F3-842B2B42B584.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/486C9DED-2A9F-E511-A4B8-D4AE526DF64C.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/524AA4AE-2A9F-E511-BBD4-B083FED42FE4.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/6C4EE4C3-2A9F-E511-8B7B-A4BADB1E6796.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/6C7EA702-2B9F-E511-93D0-D4AE526DF562.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/6E7E0ED6-2A9F-E511-8877-02163E012FDA.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/74AE38DA-2A9F-E511-A308-D4AE527F2883.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/74CAF166-2D9F-E511-91B3-0019B9CB0300.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/7830B3AC-2A9F-E511-BFAE-90B11C0BD676.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/8CB7CDBA-2A9F-E511-9833-001EC94BFFEB.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/8CF658E1-2A9F-E511-8525-549F3525AE18.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/90D341B4-2E9F-E511-849F-002590AC4C49.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/921DB3CD-2A9F-E511-93E1-842B2B180A9F.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/944B9CBE-2A9F-E511-9427-782BCB1F5E6B.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/9637E6EF-2A9F-E511-9EF6-842B2B42BC3A.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/A2329021-2F9F-E511-8450-E41D2D08DD10.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/A435D607-2B9F-E511-B219-782BCB53B63D.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/A4FCCFCE-2A9F-E511-B41D-02163E013BCB.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/A60BBDF4-759E-E511-B825-782BCB50ACF1.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/ACE670F0-2A9F-E511-9F4B-90B11C0BD467.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/BC6BCDE5-2A9F-E511-B3C8-782BCB20EDD2.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/BEFB24F7-2A9F-E511-A7F7-D4AE526DF3BB.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/C0CF56B9-2E9F-E511-934F-047D7BD6DD64.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/CA274026-2B9F-E511-B7C7-C81F66B73923.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/CC2ACAC9-2A9F-E511-83BB-B083FED40671.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/D0634CE3-2E9F-E511-94F8-002590DB9358.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/D20D02BD-2A9F-E511-B408-02163E013168.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/D40165CD-2A9F-E511-B358-02163E013E59.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/D8D9F9B2-2E9F-E511-82C9-047D7BD6DF00.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/DA9F057B-849E-E511-B6AA-0019B9CB01E8.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/E8635D09-2B9F-E511-83F2-001EC94BA146.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/E8FC0EF1-2A9F-E511-ADC3-B083FED177B1.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/F4516FB8-2E9F-E511-BC71-0025907FD40C.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/FC25231D-2B9F-E511-B63E-02163E016831.root', '/store/mc/RunIISpring15MiniAODv2/SMS-T1tttt_mGluino-1550to1575_mLSP-500to1175_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/MINIAODSIM/FastAsympt25ns_74X_mcRun2_asymptotic_v2-v1/40000/FCE78AE4-2A9F-E511-89AF-842B2B181727.root' ] ); secFiles.extend( [ ] )
[ "kpedro88@gmail.com" ]
kpedro88@gmail.com
413caa82fcdf1cbed4522863899a188b6410a76f
71f4c9ed644e02466806da202a121bc56244077e
/adventofcode/2021/day13.py
298d2c12e6b74bf49833b784d29d3b8c329bc83c
[]
no_license
smaaland/python-sandbox
01c73492904c67f160c943699642e36bafea1641
e6c97f86294814831df44403ac576d9e2933e632
refs/heads/master
2022-12-22T17:13:31.208691
2022-12-21T18:14:22
2022-12-21T18:14:22
75,340,921
0
0
null
null
null
null
UTF-8
Python
false
false
1,378
py
from typing import List with open('input13.txt', 'r') as f: lines = [line.rstrip() for line in f] pattern = lines[:lines.index('')] instructions = lines[lines.index('')+1:] def fold(data: List[List[str]], axis: str, value: int) -> List[List[str]]: if axis == 'y': for y in range(value+1, len(data)): for x in range(len(data[y])): if data[y][x] == '#': data[len(data) - y - 1][x] = data[y][x] return data[0:value] if axis == 'x': for y in range(len(data)): for x in range(value + 1, len(data[y])): if data[y][x] == '#': data[y][len(data[y]) - x - 1] = data[y][x] return [x[0:value] for x in data] return data max_x = max([int(_.split(',')[0]) for _ in pattern]) max_y = max([int(_.split(',')[1]) for _ in pattern]) sheet = [[' ' for _ in range(max_x + 1)] for __ in range((max_y + 1))] for point in pattern: sheet[int(point.split(',')[1])][int(point.split(',')[0])] = '#' axis, value = instructions[0].split(' ')[-1].split('=') sheet_1 = fold(sheet, axis, int(value)) print(f"Part 1: {sum([row.count('#') for row in sheet_1])}") for instruction in instructions: axis, value = instruction.split(' ')[-1].split('=') sheet = fold(sheet, axis, int(value)) print("Part 2:") for line in sheet: print(''.join(line))
[ "smaaland86@gmail.com" ]
smaaland86@gmail.com
7462e551f2da5f26f1cc688dda0a77d433c1fb85
ba510b58e26cdad3fe1151136e36e70e7d6fa282
/order/migrations/0004_order_email.py
58198966b2e0591b12d559b362f33dd7d5cf662a
[]
no_license
nicos199-sudo/kick
ade0562047e30d4d5b086450e0df916b5030012b
da644d656011345e53e9a7fdf408f66aa43865c6
refs/heads/main
2023-02-18T21:53:20.361165
2021-01-18T15:30:11
2021-01-18T15:30:11
330,705,935
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
# Generated by Django 3.0.7 on 2021-01-18 10:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('order', '0003_auto_20210113_1149'), ] operations = [ migrations.AddField( model_name='order', name='email', field=models.EmailField(default=1, max_length=255), preserve_default=False, ), ]
[ "geeksolutionhacker@gmail.com" ]
geeksolutionhacker@gmail.com
25bc799c2f8ab00b632e077060a62ffd91382750
91fe96f88a17d373e51654028d8e2cdd99728a21
/configs/HTC/htc_without_semantic_r50_fpn_1x_coco.py
27cc3cce36929c8bf9a5bc4a6a26c21a2ab60260
[ "Apache-2.0" ]
permissive
liusurufeng/NucleiDetSeg
ab8639872ffedd2648e4b38af5528ecc89119cbe
ad4040a359e52c611780b409f84b601bfa9c94e2
refs/heads/main
2023-07-26T18:45:22.646575
2021-09-01T08:14:57
2021-09-01T08:14:57
461,822,842
1
0
Apache-2.0
2022-02-21T11:05:01
2022-02-21T11:05:00
null
UTF-8
Python
false
false
7,442
py
_base_ = [ '../_base_/datasets/coco_instance_kaggle.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='HybridTaskCascade', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[6], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='HybridTaskCascadeRoIHead', interleaved=True, mask_info_flow=True, num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=[ dict( type='HTCMaskHead', with_conv_res=False, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=1, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=1, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), dict( type='HTCMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=1, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ])) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=False), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=False), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=False), mask_size=28, pos_weight=-1, debug=False) ]) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.001, nms=dict(type='nms', iou_threshold=0.5), max_per_img=500, mask_thr_binary=0.5)) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
[ "m18379660828@163.com" ]
m18379660828@163.com
f642a8d1ab2728c136abc63723350f6c85d11e37
184fd6be003329c3b6a3033236869ad501f7a328
/Занятие4/Лабораторные_задания/task1_5/main.py
5e0626372abde991ef9997c883bc132e7c47ec43
[]
no_license
Aleks8830/PythonPY100
629a2f6deee2b1faba2a6e019c2aa0d937b72a9e
fa61ad8a583deb8725a716edbafc6d660840bc73
refs/heads/master
2023-08-30T00:03:43.823320
2021-10-27T18:19:45
2021-10-27T18:19:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
if __name__ == "__main__": list_ = [41, -13, 10, -1, 32, -3, -6, 8, 6, 9, 3] even = 0 odd = 0 for i in list_: if i %2 ==0: even += 1 else: odd+=1 if odd > even: print("odd") else: print("even")
[ "Sorokin_200683@mai.ru" ]
Sorokin_200683@mai.ru
3b9971fac9181ca226d9ad1d30f00773e8a81a78
1358a2450ec6c499ad1f67b38e42a21278857561
/home/views.py
1f3f77b2417ee79c335801301f99e6d940360a22
[]
no_license
atharvparamane/School_Admission_App_using_Django
4926c90351558cccd462f8ab13fa1f018c457b06
803ea27f699b2b0d5040616960ab18eae4c70713
refs/heads/master
2023-05-04T05:43:10.612064
2021-05-29T05:39:10
2021-05-29T05:39:10
371,888,525
0
0
null
null
null
null
UTF-8
Python
false
false
1,111
py
from django.shortcuts import render, HttpResponse from datetime import datetime from home.models import Contact from django.contrib import messages # Create your views here. def index(request): context = { "variable1":"Harry is great", "variable2":"Rohan is great" } return render(request, 'index.html', context) # return HttpResponse("this is homepage") def about(request): return render(request, 'about.html') def services(request): return render(request, 'services.html') def contact(request): if request.method == "POST": name = request.POST.get('name') email = request.POST.get('email') phone = request.POST.get('phone') desc = request.POST.get('desc') contact = Contact(name=name, email=email, phone=phone, desc=desc, date = datetime.today()) contact.save() messages.success(request, 'Your message has been sent!') return render(request, 'contact.html') def all_events(request): contact_list=Contact.objects.all() return render(request, 'content.html',{'contact_list':contact_list})
[ "atharvparamane111@gmail.com" ]
atharvparamane111@gmail.com
e9e8f2e5d7dfb09d98e3cd864015ec9c3bd7b0a9
272d82bd33b1cfc7139ec0ff511e62cb4a918184
/NationalDebt/NationalDebt/settings.py
4c5f001dc5ecfc399f380af7885d742f09874631
[]
no_license
KyraYang/Scrapy_practices
ea63ecd7fef86e2fb79fac4353bcb94fedbeaaa8
5e234289ea35956468a8faf9b2fea7541847f06b
refs/heads/master
2022-12-29T07:27:34.962005
2020-10-14T09:28:10
2020-10-14T09:28:10
303,099,602
0
0
null
null
null
null
UTF-8
Python
false
false
3,138
py
# -*- coding: utf-8 -*- # Scrapy settings for NationalDebt project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'NationalDebt' SPIDER_MODULES = ['NationalDebt.spiders'] NEWSPIDER_MODULE = 'NationalDebt.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'NationalDebt (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'NationalDebt.middlewares.NationaldebtSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'NationalDebt.middlewares.NationaldebtDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'NationalDebt.pipelines.NationaldebtPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "yangziqing@duozhuayu.net" ]
yangziqing@duozhuayu.net
0f445c5665deabdb6463b07cb613172db70bfaf1
09699108d8594f33ddddb5fbcbd169598861d7a4
/data_processing/mcs/mcs_process.py
2da7ee1904ad7d8f71faf0131a0cda08b8fd8baa
[]
no_license
aldopareja/easy_attribute_prediction
78d3ac48c5322874d8a28455ff361c5130d5b6f4
278ae05eff89d5cd034b42a85558da528c6cfef8
refs/heads/main
2023-01-12T14:39:45.377238
2020-11-20T07:06:50
2020-11-20T07:06:50
311,797,600
0
0
null
null
null
null
UTF-8
Python
false
false
8,919
py
""" This tool processes passive data for eval 3 and dumps it in a valid format to train a derender """ import argparse import os import random import shutil import sys from itertools import repeat, chain, product from multiprocessing import Process, Queue from concurrent.futures.thread import ThreadPoolExecutor from pathlib import Path import numpy as np import hickle as hkl from pycocotools import mask as mask_util from PIL import Image import machine_common_sense as mcs sys.path.insert(0, './') from easy_attributes.utils.io import write_serialized from easy_attributes.utils.meta_data import get_continuous_metadata, get_discrete_metadata, get_pixels_mean_and_std MIN_AREA = 100 def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--mcs_executable', type=str) parser.add_argument('--output_dir', type=str) parser.add_argument('--data_path', type=str) # parser.add_argument('--parallel', action='store_true') parser.add_argument('--num_parallel_controllers', type=int) args = parser.parse_args() args.data_path = Path(args.data_path) args.input_dir = Path(args.mcs_executable) args.output_dir = Path(args.output_dir) return args def get_attributes(obj: mcs.object_metadata.ObjectMetadata): attributes = {} attributes['shape'] = obj.shape [attributes.__setitem__('position_' + k, v) for k, v in obj.position.items()] [attributes.__setitem__('rotation_' + k, v) for k, v in obj.rotation.items()] [attributes.__setitem__(f'dimension_{i}_{c}', obj.dimensions[i][c]) for i,c in product(range(8), 'xyz')] return attributes def dump_for_detectron(step_data, out_path, index): # print(step_data) depth: np.ndarray = step_data.depth_map_list[0] depth = 1 / (1 + depth) rgb = np.array(step_data.image_list[0], dtype=np.float32) / 255.0 input = np.concatenate([rgb, depth[..., np.newaxis]], axis=2) input = input.swapaxes(2, 0).swapaxes(1, 2) # now it is C, H, W input_to_file = out_path / 'inputs' / (str(index).zfill(9) + '.hkl') hkl.dump(input, input_to_file, mode='w', compression='gzip') masks = np.array(step_data.object_mask_list[0]) masks = masks[:, :, 0] + masks[:, :, 1] * 256 + masks[:, :, 2] * 256 ** 2 assert not (masks == 0).any() foreground_objects = {e.color['r'] + e.color['g'] * 256 + e.color['b'] * 256 ** 2: e for e in step_data.structural_object_list if not (e.uuid.startswith('wall') or e.uuid.startswith('floor'))} foreground_objects.update({e.color['r'] + e.color['g'] * 256 + e.color['b'] * 256 ** 2: e for e in step_data.object_list}) objects = [] for v in foreground_objects.keys(): mask = masks == v if mask.sum() < MIN_AREA: continue mask_y, mask_x = mask.nonzero() bbox = list(map(int, [mask_x.min(), mask_y.min(), mask_x.max(), mask_y.max()])) if bbox[3] <= bbox[1] + 2 and bbox[2] <= bbox[0] + 2: # width and height shouldn't be too small continue mask = mask_util.encode(np.asarray(mask, order="F")) mask['counts'] = mask['counts'].decode('ascii') attributes = get_attributes(foreground_objects[v]) objects.append({'mask': mask, 'bbox': bbox, **attributes, 'filename': str(input_to_file), **{'agent_position_' + k: v for k, v in step_data.position.items()}, 'agent_rotation': step_data.rotation}) return objects def process_scene(controller, scene_path, output_path, vid_index, concurrent, tp: ThreadPoolExecutor): config_data, _ = mcs.load_config_json_file(scene_path) jobs = [] frame_id = 0 step_data = controller.start_scene(config_data) if concurrent: jobs.append(tp.submit(dump_for_detectron, step_data, output_path, vid_index * 500 + frame_id)) else: jobs.append(dump_for_detectron(step_data, output_path, vid_index * 500 + frame_id)) frame_id += 1 actions = config_data['goal']['action_list'] for a in actions: assert len(a) == 1, "there must be an action" step_data = controller.step(a[0]) if concurrent: jobs.append(tp.submit(dump_for_detectron, step_data, output_path, vid_index * 500 + frame_id)) else: jobs.append(dump_for_detectron(step_data, output_path, vid_index * 500 + frame_id)) frame_id += 1 controller.end_scene("classification", 0.0) if concurrent: jobs = [j.result() for j in jobs] return chain.from_iterable(jobs) class SequentialSceneProcessor: def __init__(self, mcs_executable: Path, concurrent_dump: bool): self.controller = mcs.create_controller(str(mcs_executable), depth_maps=True, object_masks=True, history_enabled=False) self.concurrent = concurrent_dump self.tp = ThreadPoolExecutor(4) def process(self, w_arg): (s, _, o, v) = w_arg return process_scene(self.controller, s, o, v, self.concurrent, self.tp) def ParallelSceneProcess(work_q: Queue, result_q: Queue, mcs_executable: Path, concurrent_dump): controller = mcs.create_controller(str(mcs_executable), depth_maps=True, object_masks=True, history_enabled=False) with ThreadPoolExecutor(4) as p: while True: w_arg = work_q.get() if w_arg is None: break (s, _, o, v) = w_arg results = process_scene(controller, s, o, v, concurrent_dump, p) result_q.put(results) if __name__ == "__main__": args = parse_args() scene_files = [args.data_path / a for a in args.data_path.iterdir()] shutil.rmtree(args.output_dir, ignore_errors=True) (args.output_dir / 'inputs').mkdir(parents=True, exist_ok=True) w_args = [(s, e, o, i) for i, (s, e, o) in enumerate(zip(scene_files, repeat(args.mcs_executable), repeat(args.output_dir)))] if args.num_parallel_controllers > 0: work_queue = Queue() result_queue = Queue() workers = [Process(target=ParallelSceneProcess, args=(work_queue, result_queue, args.mcs_executable, True)) for _ in range(args.num_parallel_controllers)] [w.start() for w in workers] w_args = [work_queue.put(w) for w in w_args] data_dicts = [result_queue.get() for _ in range(len(w_args))] [work_queue.put(None) for _ in range(args.num_parallel_controllers)] [w.join() for w in workers] work_queue.close() result_queue.close() else: worker = SequentialSceneProcessor(args.mcs_executable, False) data_dicts = [worker.process(w_arg) for w_arg in w_args] data_dicts = list(chain.from_iterable(data_dicts)) all_indices = set(range(len(data_dicts))) val_indices = random.sample(all_indices, 6000) train_indices = all_indices.difference(val_indices) val_dicts = [data_dicts[i] for i in val_indices] train_dicts = [data_dicts[i] for i in train_indices] meta_data = {'inputs': {'file_name': {'type': 'input_tensor', 'num_channels': 4, 'height': 400, 'width': 600, **get_pixels_mean_and_std(val_dicts)}, 'mask': {'type': 'bitmask'}, 'bbox': {'type': 'bounding_box'}}, 'outputs': {**{e: get_continuous_metadata(val_dicts, e) for e in [*[c[0] + c[1] for c in product(['rotation_', 'position_', 'agent_position_'], 'xyz')], *[f'dimension_{c[0]}_{c[1]}' for c in product(range(8), 'xyz')], 'agent_rotation']}, 'shape': get_discrete_metadata(data_dicts, 'shape')} } write_serialized(val_dicts, args.output_dir / 'val.json') write_serialized(train_dicts, args.output_dir / 'train.json') write_serialized(meta_data, args.output_dir / 'metadata.yml') # kill stalling controllers os.system('pkill -f MCS-AI2-THOR-Unity-App -9')
[ "“aldopareja@users.noreply.github.com”" ]
“aldopareja@users.noreply.github.com”
3fae254004b75973b3bb00a76c78aaa37798324a
0f412ecbbbd5b844430027cd6ac5247fde5798a9
/setup.py
e76a65865b08adc18e199184f0d29bba18c8265a
[ "BSD-3-Clause" ]
permissive
sfc-gh-mlukiyanov/dask-snowflake
cb46b76fd3d02421d4c42d7018290f4336e65faa
e7977e5a7c73361ab705b9f14eb4a74cb0307a30
refs/heads/main
2023-08-18T07:22:02.236593
2021-09-14T20:19:32
2021-09-14T20:19:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
#!/usr/bin/env python from setuptools import setup setup( name="dask-snowflake", version="0.0.2", description="Dask + Snowflake intergration", license="BSD", maintainer="James Bourbeau", maintainer_email="james@coiled.io", packages=["dask_snowflake"], long_description=open("README.md").read(), long_description_content_type="text/markdown", python_requires=">=3.7", install_requires=open("requirements.txt").read().strip().split("\n"), include_package_data=True, zip_safe=False, )
[ "jrbourbeau@gmail.com" ]
jrbourbeau@gmail.com
bcf6c256a620b39458993f9696402e613bcb6be2
093bcdf9d708087219baa2a82de8406651b7ec48
/AjitPublicResources/processor/64bit/C_multi_core_multi_thread/cpu/SConstruct
2a108c0a3a1edac3600f92527fd1051c0ae73aa0
[]
no_license
Prajwal-Prathiksh/ajit-toolchain
421b5e725cc64188829c5d0ea4b56c7aa11bcc6e
230601fe7541611fa3c7ce621231fe1c8d274ba2
refs/heads/master
2023-07-14T10:26:01.609494
2021-08-18T08:17:22
2021-08-18T08:17:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,957
import os env = Environment(ENV = {'PATH' : os.environ['PATH']}) COMPILATION_FLAGS = ' -g ' AHIR_RELEASE=os.environ['AHIR_RELEASE'] AHIR_INCLUDE=AHIR_RELEASE+"/include" env.Append(CPPPATH = './src/:./include:../common/include:') env.Append(CPPPATH = AHIR_INCLUDE + ":" + "./include:") AHIR_RELEASE=os.environ['AHIR_RELEASE'] AJIT_HOME=os.environ['AJIT_PROJECT_HOME'] AJIT_C_REF_MODEL=os.environ['AJIT_C_REF_MODEL'] MONITOR_LOGGER_INCLUDE=AJIT_C_REF_MODEL + "/monitorLogger/include" MMU_INCLUDE=AJIT_C_REF_MODEL + "/mmu/include" CACHE_INCLUDE=AJIT_C_REF_MODEL + "/cache/include" env.Append(CPPPATH = AJIT_C_REF_MODEL + "/common/include:" + AJIT_C_REF_MODEL + "/cpu/include:"+ AJIT_C_REF_MODEL + "/cpu_interface/include:" + AJIT_C_REF_MODEL + "/half_precision_float/include:") #monitorLogger env.Append(CPPPATH = MONITOR_LOGGER_INCLUDE + ":") #mmu env.Append(CPPPATH = MMU_INCLUDE + ":") #cache env.Append(CPPPATH = CACHE_INCLUDE + ":") #hwServer HWSERVER_INCLUDE=AJIT_C_REF_MODEL + "/debugger/hwServer/include" env.Append(CPPPATH = HWSERVER_INCLUDE + ":") #rlut RLUT_INCLUDE=AJIT_C_REF_MODEL + "/rlut/include" env.Append(CPPPATH = RLUT_INCLUDE + ":") #tlbs TLBS_INCLUDE=AJIT_C_REF_MODEL + "/tlbs/include" env.Append(CPPPATH = TLBS_INCLUDE + ":") #AHIR-related PIPE_HANDLER_INCLUDE=AHIR_RELEASE + "/include" PIPE_HANDLER_LIBPATH = AHIR_RELEASE + "/lib" PTHREAD_UTILS = AHIR_RELEASE + "/include" GNU_PTH_UTILS = AHIR_RELEASE + "/include" FUNCTIONLIB_PATH = AHIR_RELEASE + "/functionLibrary/lib" FUNCTIONLIB_INCLUDE=AHIR_RELEASE + "/functionLibrary/include" env.Append(CPPPATH = FUNCTIONLIB_INCLUDE + ":" + PIPE_HANDLER_INCLUDE + ":" + PTHREAD_UTILS + ":" + GNU_PTH_UTILS + ":" + "./include:") print "COMPILATION FLAGS = ", COMPILATION_FLAGS # create a library for the cpu : #env.SharedLibrary('./lib/libCpu', Glob('src/*.c'), CCFLAGS=COMPILATION_FLAGS+' -DDO_VAL -DGDB' ) env.Library('./lib/libCpu', Glob('src/*.c'), CCFLAGS=COMPILATION_FLAGS)
[ "madhav@ee.iitb.ac.in" ]
madhav@ee.iitb.ac.in
6291466374cdd799e27b4fbccb78fa6b7072e2ab
8e91748296c72473be2c64d79f0a0022100e3a6e
/ch03/maoyan_top100_movie/cache.py
de46f7637cd866ffe155cc96d5887f0079c67bc6
[]
no_license
Gordonhan/spider_tutorial
52d9d1594f220889355add069aa3bcfb1390e670
9792fa1036c75311d54df05939ea16a156443ab4
refs/heads/master
2021-08-20T09:28:04.190611
2017-11-28T20:02:25
2017-11-28T20:02:25
110,866,990
0
0
null
null
null
null
UTF-8
Python
false
false
888
py
# -*- coding:utf-8 -*- from datetime import datetime, timedelta import pymongo import config class MongoCache(object): def __init__(self, client=None, expires=timedelta(days=30)): self.client = client \ or pymongo.MongoClient(host="localhost", port=27017) self.db = self.client[config.DEFAULT_DB] self.collection = self.db[config.DEFAULT_COL] self.collection.create_index('timestamp', expireAfterSeconds=expires.total_seconds()) def __getitem__(self, url): document = self.collection.find_one({"_id": url}) if document: return document["result"] else: raise KeyError(url + "don't exist") def __setitem__(self, url, result): result = {'result': result, 'timestamp': datetime.utcnow()} self.collection.update({'_id': url}, {'$set': result}, upsert=True)
[ "Gordon-Han@hotmail.com" ]
Gordon-Han@hotmail.com
5fcd974f1afbfb564edbd4444f8c9eb3d986aa36
d4a61065ba06ccf77873918c3fd79719ae878de7
/PyBank/main.py
07c7a6c3cb23439aead9523249541851b63e2770
[]
no_license
alanacsaposs/python-challenge
e1b287c394c172c37fbaa3526f01864c65d95321
8c9dfb9be8a5064c79dcca234ead9697131c74fa
refs/heads/master
2020-06-06T18:32:27.080193
2019-06-23T01:07:25
2019-06-23T01:07:25
192,823,229
0
0
null
null
null
null
UTF-8
Python
false
false
2,129
py
#imports import os import csv #import csv budget_csv = os.path.join('..', 'PyBank', 'budget-data.csv') #create lists for variables months = [] monthly_change = [] with open(budget_csv, newline="") as csvfile: # Split the data on commas budgetfile = csv.reader(csvfile, delimiter=',') header = next(budgetfile) total = 0 month_revenue = 0 # Read through each row of data after the header for row in budgetfile: months.append(row[0]) total += int(row[1]) # Take the difference between two months and append to monthly profit change monthly_change.append(int(row[1]) - month_revenue) month_revenue = int(row[1]) #Find maximum and minimum monthly change #Greatest increase in profits max_increase = max(monthly_change) best_index = monthly_change.index(max_increase) best_date = months[best_index] #Greatest decrease (lowest increase) in profits max_decrease = min(monthly_change) worst_index = monthly_change.index(max_decrease) worst_date = months[worst_index] #Get Average Change change_total = sum(monthly_change) - 867884 total_months = len(months) avg_change = round(change_total/total_months, 2) #print statements print("Financial Analysis") print("-------------------------") print(f"Total Months: {len(months)}") print(f"Total: ${(total)}") print(f"Average Change: ${avg_change}") print(f"Greatest Increase in Profits: {best_date} (${str(max_increase)})") print(f"Greatest Decrease in Profits: {worst_date} (${str(max_decrease)})") # save to .txt file filepath = os.path.join("output_pybank.txt") with open(filepath,'w') as text: text.write("Financial Analysis" + "\n") text.write("-------------------------" + "\n") text.write(f"Total Months: {len(months)}" + "\n") text.write(f"Total: ${(total)}" + "\n") text.write(f"Average Change: ${avg_change}" + "\n") text.write(f"Greatest Increase in Profits: {best_date} (${str(max_increase)})" + "\n") text.write(f"Greatest Decrease in Profits: {worst_date} (${str(max_decrease)})" + "\n")
[ "alanacsaposs@gmail.com" ]
alanacsaposs@gmail.com
b070ef65e1caa4183c3ae26452c35f96a50d9aba
89d24ad0b40790d501760809e0365e730f6eeb7b
/utf8/utf8.py
c31e493cffe0828afba7c4abbe355ca16a0c63a6
[]
no_license
ahua/dataset
00259158c7f29745ccf35d17356b63f8f440c1d0
7b3325b6d22a97a30d3fbff261f99a0dbb83ab6e
refs/heads/master
2020-05-17T05:08:21.840561
2013-09-04T15:23:41
2013-09-04T15:23:41
5,768,195
20
12
null
null
null
null
UTF-8
Python
false
false
943
py
#!/usr/bin/env python import sys def parse(li): t = li.rstrip().split() a = "".join(t[2:5]) b = t[-1] return a,b def main(filename): fp = open(filename, "r") ls = fp.readlines() fp.close() s = [] for l in ls: if not l.startswith("#"): a, b = parse(l) x = int(a, 16) y = ord(b[0]) * 65536 + ord(b[1]) * 256 + ord(b[2]) if x != y: print x,y else: s.append(b) else: sys.stderr.write(l) return s if __name__ == "__main__": s = main(sys.argv[1]) s.sort() t = 0 for w in s: print 'u"%s",'%w, t = t + 1 if t % 25 == 0: print """ #!/usr/bin/env python # -*- coding: utf-8 -*- # t = [ i for i in range(s[0], s[-1]+1) ] # print s[0], s[-1], t[0], t[-1] # print len(s) # print len(t)# # for i in s: # print i # for i in s: # t.remove(i) # for i in t: # try: # print unichr(i), # except: # pass """
[ "yhyan@geek.(none)" ]
yhyan@geek.(none)
b9fc5615b4b5f96564d265a37ca08ad0e44e8ea3
1c26554b4c8b1f341dd7ce244a033cdb336e7be8
/todoproject/todoapp/migrations/0006_auto_20201009_1900.py
215f5b3fad1b034a57b9fc10355eaef3d357fc68
[]
no_license
GeethaRamanathan/To-Do-App
c359ce53d034f22ea39dc75651a9fafb890db614
78606a277678c149f9331b920437242990302028
refs/heads/master
2022-12-27T13:58:10.932713
2020-10-11T07:06:54
2020-10-11T07:06:54
303,061,057
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
# Generated by Django 3.1.2 on 2020-10-09 13:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('todoapp', '0005_auto_20201009_1859'), ] operations = [ migrations.AlterField( model_name='todo', name='is_completed', field=models.BooleanField(), ), ]
[ "geetharam740@gmail.com" ]
geetharam740@gmail.com
cdef16b79b22736a1cccc44a94795a5c8c7030d3
093b9569be9d1c4e5daf92efbebc38f680917b2d
/.history/base/views_20210829083101.py
f7277fa3afe4a9018d49e030975924059810adec
[]
no_license
Justin-Panagos/todoList
95b1e97ff71af1b0be58e7f8937d726a687cea4d
10539219b59fcea00f8b19a406db3d4c3f4d289e
refs/heads/master
2023-08-04T13:27:13.309769
2021-08-29T14:06:43
2021-08-29T14:06:43
400,827,602
0
0
null
null
null
null
UTF-8
Python
false
false
1,276
py
from django.shortcuts import render from django.views.generic.list import ListView from django.views.generic.detail import DetailView from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.urls import reverse_lazy from django.contrib.auth.views import LoginView from django.contrib.auth.mixins import LoginRequiredMixin from .models import Task class CustoomLoginView(LoginView): template_name = 'base/login.html' fields = '__all__' redirect_authenticated_user = True def get_success_url(self): return reverse_lazy('tasks') class TaskList( LoginRequiredMixin, ListView): model = Task context_object_name = 'tasks' def get_context_data(self, **kw) class TaskDetail(LoginRequiredMixin, DetailView): model = Task context_object_name = 'task' template_name = 'base/task.html' class TaskCreate(LoginRequiredMixin, CreateView): model = Task fields = '__all__' success_url = reverse_lazy('tasks') class TaskUpdate( LoginRequiredMixin, UpdateView): model = Task fields = '__all__' success_url = reverse_lazy('tasks') class TaskDelete(LoginRequiredMixin, DeleteView): model = Task context_object_name = 'task' success_url = reverse_lazy('tasks')
[ "justpanagos@gmail.com" ]
justpanagos@gmail.com
48ad6ce14387c8aece2769983287047b001a0c5b
d932f40fb253cbe9860b549a7bbd58c1609b4f4f
/app/config/secure.py
63d6c4b34ae1dd44e77c3bce94a0147d806a0cf5
[]
no_license
beizhongshashui/flask_restful
1f8d2832ba763dd4c99a64b29e746bb577633c3f
bc5e26a191cbb12b160a349c25af1785c36560b7
refs/heads/master
2021-04-12T14:18:34.548314
2020-03-22T09:18:30
2020-03-22T09:18:30
249,084,083
0
0
null
null
null
null
UTF-8
Python
false
false
263
py
SQLALCHEMY_DATABASE_URI = \ 'mysql+cymysql://root:1234qwer@localhost/flask_mooc01' # 'postgres+psycopg2://postgres:postgres@localhost/ginger' SECRET_KEY = '\x88D\xf09\x91\x07\x98\x89\x87\x96\xa0A\xc68\xf9\xecJ:U\x17\xc5V\xbe\x8b\xef\xd7\xd8\xd3\xe6\x98*2'
[ "zhangys19@lenovo.com" ]
zhangys19@lenovo.com
cd775c47a564fc423c900c16e838af10a7fd9de9
2425d9150334d9a9521f73a9d6efe7b8f39f72b0
/homeassistant/components/zha/core/channels/base.py
4d1e71e884ea2dac6e15c55ec0f67a36796966ed
[ "Apache-2.0" ]
permissive
krzkowalczyk/home-assistant
d2117cbe461c2b9bce0d1357487ea05c3e4b96ac
513685bbeacca2c758d3ca33b337da3b7e72dd1d
refs/heads/dev
2023-02-22T13:32:59.251838
2021-04-27T21:34:53
2021-04-27T21:34:53
232,874,252
0
0
Apache-2.0
2023-02-22T06:15:56
2020-01-09T18:11:47
Python
UTF-8
Python
false
false
14,579
py
"""Base classes for channels.""" from __future__ import annotations import asyncio from enum import Enum from functools import wraps import logging from typing import Any import zigpy.exceptions from homeassistant.const import ATTR_COMMAND from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_send from .. import typing as zha_typing from ..const import ( ATTR_ARGS, ATTR_ATTRIBUTE_ID, ATTR_ATTRIBUTE_NAME, ATTR_CLUSTER_ID, ATTR_TYPE, ATTR_UNIQUE_ID, ATTR_VALUE, CHANNEL_ZDO, SIGNAL_ATTR_UPDATED, ZHA_CHANNEL_MSG, ZHA_CHANNEL_MSG_BIND, ZHA_CHANNEL_MSG_CFG_RPT, ZHA_CHANNEL_MSG_DATA, ) from ..helpers import LogMixin, safe_read _LOGGER = logging.getLogger(__name__) def parse_and_log_command(channel, tsn, command_id, args): """Parse and log a zigbee cluster command.""" cmd = channel.cluster.server_commands.get(command_id, [command_id])[0] channel.debug( "received '%s' command with %s args on cluster_id '%s' tsn '%s'", cmd, args, channel.cluster.cluster_id, tsn, ) return cmd def decorate_command(channel, command): """Wrap a cluster command to make it safe.""" @wraps(command) async def wrapper(*args, **kwds): try: result = await command(*args, **kwds) channel.debug( "executed '%s' command with args: '%s' kwargs: '%s' result: %s", command.__name__, args, kwds, result, ) return result except (zigpy.exceptions.ZigbeeException, asyncio.TimeoutError) as ex: channel.debug( "command failed: '%s' args: '%s' kwargs '%s' exception: '%s'", command.__name__, args, kwds, str(ex), ) return ex return wrapper class ChannelStatus(Enum): """Status of a channel.""" CREATED = 1 CONFIGURED = 2 INITIALIZED = 3 class ZigbeeChannel(LogMixin): """Base channel for a Zigbee cluster.""" REPORT_CONFIG = () def __init__( self, cluster: zha_typing.ZigpyClusterType, ch_pool: zha_typing.ChannelPoolType ) -> None: """Initialize ZigbeeChannel.""" self._generic_id = f"channel_0x{cluster.cluster_id:04x}" self._channel_name = getattr(cluster, "ep_attribute", self._generic_id) self._ch_pool = ch_pool self._cluster = cluster self._id = f"{ch_pool.id}:0x{cluster.cluster_id:04x}" unique_id = ch_pool.unique_id.replace("-", ":") self._unique_id = f"{unique_id}:0x{cluster.cluster_id:04x}" self._report_config = self.REPORT_CONFIG if not hasattr(self, "_value_attribute") and len(self._report_config) > 0: attr = self._report_config[0].get("attr") if isinstance(attr, str): self.value_attribute = self.cluster.attridx.get(attr) else: self.value_attribute = attr self._status = ChannelStatus.CREATED self._cluster.add_listener(self) @property def id(self) -> str: """Return channel id unique for this device only.""" return self._id @property def generic_id(self): """Return the generic id for this channel.""" return self._generic_id @property def unique_id(self): """Return the unique id for this channel.""" return self._unique_id @property def cluster(self): """Return the zigpy cluster for this channel.""" return self._cluster @property def name(self) -> str: """Return friendly name.""" return self._channel_name @property def status(self): """Return the status of the channel.""" return self._status @callback def async_send_signal(self, signal: str, *args: Any) -> None: """Send a signal through hass dispatcher.""" self._ch_pool.async_send_signal(signal, *args) async def bind(self): """Bind a zigbee cluster. This also swallows ZigbeeException exceptions that are thrown when devices are unreachable. """ try: res = await self.cluster.bind() self.debug("bound '%s' cluster: %s", self.cluster.ep_attribute, res[0]) async_dispatcher_send( self._ch_pool.hass, ZHA_CHANNEL_MSG, { ATTR_TYPE: ZHA_CHANNEL_MSG_BIND, ZHA_CHANNEL_MSG_DATA: { "cluster_name": self.cluster.name, "cluster_id": self.cluster.cluster_id, "success": res[0] == 0, }, }, ) except (zigpy.exceptions.ZigbeeException, asyncio.TimeoutError) as ex: self.debug( "Failed to bind '%s' cluster: %s", self.cluster.ep_attribute, str(ex) ) async_dispatcher_send( self._ch_pool.hass, ZHA_CHANNEL_MSG, { ATTR_TYPE: ZHA_CHANNEL_MSG_BIND, ZHA_CHANNEL_MSG_DATA: { "cluster_name": self.cluster.name, "cluster_id": self.cluster.cluster_id, "success": False, }, }, ) async def configure_reporting(self) -> None: """Configure attribute reporting for a cluster. This also swallows ZigbeeException exceptions that are thrown when devices are unreachable. """ event_data = {} kwargs = {} if self.cluster.cluster_id >= 0xFC00 and self._ch_pool.manufacturer_code: kwargs["manufacturer"] = self._ch_pool.manufacturer_code for report in self._report_config: attr = report["attr"] attr_name = self.cluster.attributes.get(attr, [attr])[0] min_report_int, max_report_int, reportable_change = report["config"] event_data[attr_name] = { "min": min_report_int, "max": max_report_int, "id": attr, "name": attr_name, "change": reportable_change, } try: res = await self.cluster.configure_reporting( attr, min_report_int, max_report_int, reportable_change, **kwargs ) self.debug( "reporting '%s' attr on '%s' cluster: %d/%d/%d: Result: '%s'", attr_name, self.cluster.ep_attribute, min_report_int, max_report_int, reportable_change, res, ) event_data[attr_name]["success"] = ( res[0][0].status == 0 or res[0][0].status == 134 ) except (zigpy.exceptions.ZigbeeException, asyncio.TimeoutError) as ex: self.debug( "failed to set reporting for '%s' attr on '%s' cluster: %s", attr_name, self.cluster.ep_attribute, str(ex), ) event_data[attr_name]["success"] = False async_dispatcher_send( self._ch_pool.hass, ZHA_CHANNEL_MSG, { ATTR_TYPE: ZHA_CHANNEL_MSG_CFG_RPT, ZHA_CHANNEL_MSG_DATA: { "cluster_name": self.cluster.name, "cluster_id": self.cluster.cluster_id, "attributes": event_data, }, }, ) async def async_configure(self) -> None: """Set cluster binding and attribute reporting.""" if not self._ch_pool.skip_configuration: await self.bind() if self.cluster.is_server: await self.configure_reporting() ch_specific_cfg = getattr(self, "async_configure_channel_specific", None) if ch_specific_cfg: await ch_specific_cfg() self.debug("finished channel configuration") else: self.debug("skipping channel configuration") self._status = ChannelStatus.CONFIGURED async def async_initialize(self, from_cache: bool) -> None: """Initialize channel.""" if not from_cache and self._ch_pool.skip_configuration: self._status = ChannelStatus.INITIALIZED return self.debug("initializing channel: from_cache: %s", from_cache) attributes = [cfg["attr"] for cfg in self._report_config] if attributes: await self.get_attributes(attributes, from_cache=from_cache) ch_specific_init = getattr(self, "async_initialize_channel_specific", None) if ch_specific_init: await ch_specific_init(from_cache=from_cache) self.debug("finished channel configuration") self._status = ChannelStatus.INITIALIZED @callback def cluster_command(self, tsn, command_id, args): """Handle commands received to this cluster.""" @callback def attribute_updated(self, attrid, value): """Handle attribute updates on this cluster.""" self.async_send_signal( f"{self.unique_id}_{SIGNAL_ATTR_UPDATED}", attrid, self.cluster.attributes.get(attrid, [attrid])[0], value, ) @callback def zdo_command(self, *args, **kwargs): """Handle ZDO commands on this cluster.""" @callback def zha_send_event(self, command: str, args: int | dict) -> None: """Relay events to hass.""" self._ch_pool.zha_send_event( { ATTR_UNIQUE_ID: self.unique_id, ATTR_CLUSTER_ID: self.cluster.cluster_id, ATTR_COMMAND: command, ATTR_ARGS: args, } ) async def async_update(self): """Retrieve latest state from cluster.""" async def get_attribute_value(self, attribute, from_cache=True): """Get the value for an attribute.""" manufacturer = None manufacturer_code = self._ch_pool.manufacturer_code if self.cluster.cluster_id >= 0xFC00 and manufacturer_code: manufacturer = manufacturer_code result = await safe_read( self._cluster, [attribute], allow_cache=from_cache, only_cache=from_cache and not self._ch_pool.is_mains_powered, manufacturer=manufacturer, ) return result.get(attribute) async def get_attributes(self, attributes, from_cache=True): """Get the values for a list of attributes.""" manufacturer = None manufacturer_code = self._ch_pool.manufacturer_code if self.cluster.cluster_id >= 0xFC00 and manufacturer_code: manufacturer = manufacturer_code try: result, _ = await self.cluster.read_attributes( attributes, allow_cache=from_cache, only_cache=from_cache and not self._ch_pool.is_mains_powered, manufacturer=manufacturer, ) return result except (asyncio.TimeoutError, zigpy.exceptions.ZigbeeException) as ex: self.debug( "failed to get attributes '%s' on '%s' cluster: %s", attributes, self.cluster.ep_attribute, str(ex), ) return {} def log(self, level, msg, *args): """Log a message.""" msg = f"[%s:%s]: {msg}" args = (self._ch_pool.nwk, self._id) + args _LOGGER.log(level, msg, *args) def __getattr__(self, name): """Get attribute or a decorated cluster command.""" if hasattr(self._cluster, name) and callable(getattr(self._cluster, name)): command = getattr(self._cluster, name) command.__name__ = name return decorate_command(self, command) return self.__getattribute__(name) class ZDOChannel(LogMixin): """Channel for ZDO events.""" def __init__(self, cluster, device): """Initialize ZDOChannel.""" self.name = CHANNEL_ZDO self._cluster = cluster self._zha_device = device self._status = ChannelStatus.CREATED self._unique_id = f"{str(device.ieee)}:{device.name}_ZDO" self._cluster.add_listener(self) @property def unique_id(self): """Return the unique id for this channel.""" return self._unique_id @property def cluster(self): """Return the aigpy cluster for this channel.""" return self._cluster @property def status(self): """Return the status of the channel.""" return self._status @callback def device_announce(self, zigpy_device): """Device announce handler.""" @callback def permit_duration(self, duration): """Permit handler.""" async def async_initialize(self, from_cache): """Initialize channel.""" self._status = ChannelStatus.INITIALIZED async def async_configure(self): """Configure channel.""" self._status = ChannelStatus.CONFIGURED def log(self, level, msg, *args): """Log a message.""" msg = f"[%s:ZDO](%s): {msg}" args = (self._zha_device.nwk, self._zha_device.model) + args _LOGGER.log(level, msg, *args) class ClientChannel(ZigbeeChannel): """Channel listener for Zigbee client (output) clusters.""" @callback def attribute_updated(self, attrid, value): """Handle an attribute updated on this cluster.""" self.zha_send_event( SIGNAL_ATTR_UPDATED, { ATTR_ATTRIBUTE_ID: attrid, ATTR_ATTRIBUTE_NAME: self._cluster.attributes.get(attrid, ["Unknown"])[ 0 ], ATTR_VALUE: value, }, ) @callback def cluster_command(self, tsn, command_id, args): """Handle a cluster command received on this cluster.""" if ( self._cluster.server_commands is not None and self._cluster.server_commands.get(command_id) is not None ): self.zha_send_event(self._cluster.server_commands.get(command_id)[0], args)
[ "noreply@github.com" ]
krzkowalczyk.noreply@github.com
52c49a9b3cb35bdb91d028875d44ae794f0e19a3
91ea758a98d27a0387820e66bc44270b430b1980
/Ex5_Training/training.py
2047bafe4ff484a42e2133c2d3c258a6e038b1d5
[]
no_license
OmniXRI/20201024_AIGO_Lab2
c9c8e2fc6cb8a9e75e5d6c007da0e4a36b0c2495
45f6422b0fe02903ed8b3d62992109fcbb2e47ff
refs/heads/main
2022-12-31T15:35:19.070059
2020-10-23T22:53:03
2020-10-23T22:53:03
306,760,619
1
1
null
null
null
null
UTF-8
Python
false
false
21,221
py
# -*- coding: utf-8 -*- """training.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/19yxTphDHRHaTkGUckbyrIBj_1EDnjZ0h 從YOLO官網下載YOLOv3的預訓練權重檔 """ !git clone https://github.com/OmniXRI/OpenVINO_RealSense_HarvestBot.git #取得小蕃茄影像及標註資料集 !ls """切換至工具路徑 my_yolo3""" # Commented out IPython magic to ensure Python compatibility. # %cd OpenVINO_RealSense_HarvestBot # %cd my_yolo3/ !ls """到YOLO官網下載預設權重檔 yolov3.weights""" !wget https://pjreddie.com/media/files/yolov3.weights """展開 my_voc_annotation.py 原始碼""" # Commented out IPython magic to ensure Python compatibility. # %pycat my_voc_annotation.py """my_voc_annotation.py 原始碼,將標註好的VOC格式檔案轉成YOLO格式。""" import xml.etree.ElementTree as ET from os import getcwd sets=['train', 'val', 'test'] #定義資料集名稱 classes = ["tomato"] #定義自訂義類別名稱 def convert_annotation(img_id, list_file): in_file = open('VOC2007/Annotations/%s.xml' %img_id, encoding='utf-8') #指定標註檔路徑 tree=ET.parse(in_file) root = tree.getroot() for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult)==1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text)) list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id)) for image_set in sets: img_names = open('VOC2007/ImageSets/Main/%s.txt'%image_set).read().strip().split() #指定待轉換清單檔案名稱 list_file = open('2007_%s.txt'%image_set, 'w') #指定轉換完成清單名稱 for img_name in img_names: list_file.write('VOC2007/JPEGImages/%s.jpg'%img_name) img_id = img_name.split('.') convert_annotation(img_id[0], list_file) list_file.write('\n') list_file.close() """檢查是否有正確轉出 2007_test.txt, 2007_train.txt, 2007_val.txt""" !date !ls *.txt -all """將YOLOv3權重檔轉換為keras格式(*.h5),命名為 yolo_weights.h5存放至model_data路徑下。""" !python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5 """展開 my_train.py 程式碼""" # Commented out IPython magic to ensure Python compatibility. # %pycat my_train.py """my_train.py 原始碼,負責訓練模型參數。""" import numpy as np import keras.backend as K from keras.layers import Input, Lambda from keras.models import Model from keras.optimizers import Adam from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss from yolo3.utils import get_random_data def _main(): annotation_path = '2007_train.txt' #待訓練清單(YOLO格式) log_dir = 'logs/000/' #訓練過程及結果暫存路徑 classes_path = 'model_data/my_classes.txt' #自定義標籤檔路徑及名稱 anchors_path = 'model_data/yolo_anchors.txt' #錨點定義檔路徑及名稱 class_names = get_classes(classes_path) num_classes = len(class_names) anchors = get_anchors(anchors_path) input_shape = (416,416) # multiple of 32, hw 預設輸入影像尺寸須為32的倍數(寬,高) is_tiny_version = len(anchors)==6 # default setting if is_tiny_version: model = create_tiny_model(input_shape, anchors, num_classes, freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5') else: model = create_model(input_shape, anchors, num_classes, freeze_body=2, weights_path='model_data/yolo_weights.h5') #指定起始訓練權重檔路徑及名稱 logging = TensorBoard(log_dir=log_dir) checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5', monitor='val_loss', save_weights_only=True, save_best_only=True, period=3) #訓練過程權重檔名稱由第幾輪加上損失率為名稱 reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1) val_split = 0.1 with open(annotation_path) as f: lines = f.readlines() np.random.seed(10101) np.random.shuffle(lines) np.random.seed(None) num_val = int(len(lines)*val_split) num_train = len(lines) - num_val # Train with frozen layers first, to get a stable loss. # Adjust num epochs to your dataset. This step is enough to obtain a not bad model. if True: model.compile(optimizer=Adam(lr=1e-3), loss={ # use custom yolo_loss Lambda layer. 'yolo_loss': lambda y_true, y_pred: y_pred}) batch_size = 24 #批次處理數量,依GPU記憶體大小決定 print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes), steps_per_epoch=max(1, num_train//batch_size), validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes), validation_steps=max(1, num_val//batch_size), epochs=50, #訓練遍歷次數 initial_epoch=0, #初始訓練遍歷次數 callbacks=[logging, checkpoint]) model.save_weights(log_dir + 'trained_weights_stage_1.h5') #儲存臨時權重檔案名稱 # 解凍並繼續訓練以進行微調 # 如果效果不好則訓練更長時間 if True: for i in range(len(model.layers)): model.layers[i].trainable = True model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change print('Unfreeze all of the layers.') batch_size = 24 # note that more GPU memory is required after unfreezing the body print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes), steps_per_epoch=max(1, num_train//batch_size), validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes), validation_steps=max(1, num_val//batch_size), epochs=100, #訓練遍歷次數 initial_epoch=50, #初始訓練遍歷次數 callbacks=[logging, checkpoint, reduce_lr, early_stopping]) model.save_weights(log_dir + 'trained_weights_final.h5') #儲存最終權重檔 #model.save(log_dir + 'trained_model_final.h5') #儲存完整模型及權重檔 # Further training if needed. def get_classes(classes_path): '''loads the classes''' with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def get_anchors(anchors_path): '''loads the anchors from a file''' with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, weights_path='model_data/yolo_weights.h5'): '''create the training model''' K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \ num_anchors//3, num_classes+5)) for l in range(3)] model_body = yolo_body(image_input, num_anchors//3, num_classes) print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body in [1, 2]: # Freeze darknet53 body or freeze all but 3 output layers. num = (185, len(model_body.layers)-3)[freeze_body-1] for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})( [*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5'): '''create the training model, for Tiny YOLOv3''' K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \ num_anchors//2, num_classes+5)) for l in range(2)] model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes) print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body in [1, 2]: # Freeze the darknet body or freeze all but 2 output layers. num = (20, len(model_body.layers)-2)[freeze_body-1] for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})( [*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes): '''data generator for fit_generator''' n = len(annotation_lines) i = 0 while True: image_data = [] box_data = [] for b in range(batch_size): if i==0: np.random.shuffle(annotation_lines) image, box = get_random_data(annotation_lines[i], input_shape, random=True) image_data.append(image) box_data.append(box) i = (i+1) % n image_data = np.array(image_data) box_data = np.array(box_data) y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) yield [image_data, *y_true], np.zeros(batch_size) def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes): n = len(annotation_lines) if n==0 or batch_size<=0: return None return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes) if __name__ == '__main__': _main() """檢查是否順利完成訓練,產出 trained_weights_final.h5""" !ls model_data/ """展開 my_yolo.py 程式碼""" # Commented out IPython magic to ensure Python compatibility. # %pycat my_yolo.py """my_yolo.py 原始碼,負責最終影像推論。""" import colorsys import os from timeit import default_timer as timer import numpy as np from keras import backend as K from keras.models import load_model from keras.layers import Input from PIL import Image, ImageFont, ImageDraw from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body from yolo3.utils import letterbox_image import os from keras.utils import multi_gpu_model class YOLO(object): _defaults = { "model_path": 'model_data/trained_weights_final.h5', #指定YOLO訓練完成權重檔路徑及名稱 "anchors_path": 'model_data/yolo_anchors.txt', #指定錨點定義檔路徑及名稱 "classes_path": 'model_data/my_classes.txt', #指定自定義標籤檔路徑及名稱 "score" : 0.1, #最低置信度門檻(0.01~0.99) "iou" : 0.45, #重疊區比例(0.01~1.0) "model_image_size" : (416, 416), #影像尺寸 "gpu_num" : 1, #使用GPU數量 } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" def __init__(self, **kwargs): self.__dict__.update(self._defaults) # set up default values self.__dict__.update(kwargs) # and update with user overrides self.class_names = self._get_class() self.anchors = self._get_anchors() self.sess = K.get_session() self.boxes, self.scores, self.classes = self.generate() def _get_class(self): classes_path = os.path.expanduser(self.classes_path) with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def _get_anchors(self): anchors_path = os.path.expanduser(self.anchors_path) with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) num_classes = len(self.class_names) is_tiny_version = num_anchors==6 # default setting try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \ if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes) self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) np.random.seed(10101) # Fixed seed for consistent colors across runs. np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes. np.random.seed(None) # Reset seed to default. # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2, )) if self.gpu_num>=2: self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes def detect_image(self, image): start = timer() if self.model_image_size != (None, None): assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required' assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required' boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size))) else: new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32)) boxed_image = letterbox_image(image, new_image_size) image_data = np.array(boxed_image, dtype='float32') print(image_data.shape) image_data /= 255. image_data = np.expand_dims(image_data, 0) # Add batch dimension. out_boxes, out_scores, out_classes = self.sess.run( [self.boxes, self.scores, self.classes], feed_dict={ self.yolo_model.input: image_data, self.input_image_shape: [image.size[1], image.size[0]], K.learning_phase(): 0 }) print('Found {} boxes for {}'.format(len(out_boxes), 'img')) font = ImageFont.truetype(font='font/FiraMono-Medium.otf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = (image.size[0] + image.size[1]) // 300 for i, c in reversed(list(enumerate(out_classes))): predicted_class = self.class_names[c] box = out_boxes[i] score = out_scores[i] label = '{} {:.2f}'.format(predicted_class, score) draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0], np.floor(right + 0.5).astype('int32')) print(label, (left, top), (right, bottom)) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) # My kingdom for a good redistributable image drawing library. for i in range(thickness): draw.rectangle( [left + i, top + i, right - i, bottom - i], outline=self.colors[c]) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c]) draw.text(text_origin, label, fill=(0, 0, 0), font=font) del draw end = timer() print(end - start) return image def close_session(self): self.sess.close() def detect_video(yolo, video_path, output_path=""): import cv2 vid = cv2.VideoCapture(video_path) if not vid.isOpened(): raise IOError("Couldn't open webcam or video") video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC)) video_fps = vid.get(cv2.CAP_PROP_FPS) video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)), int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))) isOutput = True if output_path != "" else False if isOutput: print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size)) out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size) accum_time = 0 curr_fps = 0 fps = "FPS: ??" prev_time = timer() while True: return_value, frame = vid.read() image = Image.fromarray(frame) image = yolo.detect_image(image) result = np.asarray(image) curr_time = timer() exec_time = curr_time - prev_time prev_time = curr_time accum_time = accum_time + exec_time curr_fps = curr_fps + 1 if accum_time > 1: accum_time = accum_time - 1 fps = "FPS: " + str(curr_fps) curr_fps = 0 cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.50, color=(255, 0, 0), thickness=2) cv2.namedWindow("result", cv2.WINDOW_NORMAL) cv2.imshow("result", result) if isOutput: out.write(result) if cv2.waitKey(1) & 0xFF == ord('q'): break yolo.close_session() if __name__ == '__main__': t0 = timer() yolo=YOLO() #進行YOLO初始化 path = 'VOC2007/JPEGImages/img_1550.jpg' #指定待測影像檔案路徑及名稱 try: t1 = timer() image = Image.open(path) #開啟待推論影像 except: print('Open Error! Try again!') else: print('Start detect object.\n') t2 = timer() r_image = yolo.detect_image(image) #進行推論 t3 = timer() r_image.show() #顯示有標示物件框的結果影像 print('Yolo inital: %f sec' %(t1-t0)) #計算及顯示YOLO初始化時間 print('Image load: %f sec' %(t2-t1)) #計算及顯示影像載入時間 print('Detect object: %f sec\n' %(t3-t2)) #計算偵測物件時間 yolo.close_session() #結束YOLO工作
[ "noreply@github.com" ]
OmniXRI.noreply@github.com
562df90b7ca7b36aa10e10f2bf997cb3821343e7
717ec032c10a279cc82c37b25b9306f269e7bec3
/Python/csv/batch.py
c554af8272076ffce208ad0d301b3b2817c50066
[]
no_license
lceric/study-workspace
a768d8e52e7d328052116931936cf38aa4dea285
b9764fd6f1e40e38174753ed363b46e15923cead
refs/heads/master
2021-09-19T13:10:36.558329
2018-07-28T02:34:18
2018-07-28T02:34:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,258
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- '处理文件' __author__ = '作者' from random import sample import openpyxl from openpyxl.styles import Font, colors def batchFormat(num): for i in range(num): fn = str(i)+'.xlsx' wb = openpyxl.load_workbook(fn) ws = wb.worksheets[0] for irow, row in enumerate(ws.rows, start=1): if irow == 1: # 表头加粗、黑体 font = Font('黑体', bold=True) elif irow%2 == 0: # 偶数行红色,宋体 font = Font('宋体', color=colors.RED) else: print('奇数行') # 奇数行浅蓝色,宋体 # font = Font('宋体', color='00CCFF') for cell in row: cell.font = font # 偶数行添加背景填充色,从红到蓝渐变 if irow%2 == 0: # cell.fill = openpyxl.styles.fills.GradientFill(stop=['FF0000', '0000FF']) cell.font = Font('黑体', color=colors.BLUE) cell.fill = openpyxl.styles.fills.GradientFill(stop=['FF0000', 'FF0000']) # 另存为新文件 wb.save('new'+fn) batchFormat(5)
[ "18709270892@163.com" ]
18709270892@163.com
d5fda3ef3b7bc610f10be2f284f0781aeec860c5
facb8b9155a569b09ba66aefc22564a5bf9cd319
/wp2/era5_scripts/02_preprocessing/concat82/685-tideGauge.py
ce2afc2ae237798722733401bbef84cc243ac159
[]
no_license
moinabyssinia/modeling-global-storm-surges
13e69faa8f45a1244a964c5de4e2a5a6c95b2128
6e385b2a5f0867df8ceabd155e17ba876779c1bd
refs/heads/master
2023-06-09T00:40:39.319465
2021-06-25T21:00:44
2021-06-25T21:00:44
229,080,191
0
0
null
null
null
null
UTF-8
Python
false
false
2,482
py
# -*- coding: utf-8 -*- """ Created on Tue May 13 10:02:00 2020 --------------------------------------------------------- This script concatenates yearly predictor files Browses the predictor folders for the chosen TG Concatenates the yearly csvs for the chosen predictor Saves the concatenated csv in a separate directory --------------------------------------------------------- @author: Michael Tadesse """ #%% import packages import os import pandas as pd #%% define directories home = '/lustre/fs0/home/mtadesse/erafive_localized' out_path = '/lustre/fs0/home/mtadesse/eraFiveConcat' #cd to the home dir to get TG information os.chdir(home) tg_list = os.listdir() x = 685 y = 686 #looping through TGs for t in range(x, y): tg = tg_list[t] print(tg) #concatenate folder paths os.chdir(os.path.join(home, tg)) #defining the folders for predictors #choose only u, v, and slp where = os.getcwd() csv_path = {'slp' : os.path.join(where, 'slp'),\ "wnd_u": os.path.join(where, 'wnd_u'),\ 'wnd_v' : os.path.join(where, 'wnd_v')} #%%looping through predictors for pred in csv_path.keys(): os.chdir(os.path.join(home, tg)) # print(tg, ' ', pred, '\n') #cd to the chosen predictor os.chdir(pred) #%%looping through the yearly csv files count = 1 for yr in os.listdir(): print(pred, ' ', yr) if count == 1: dat = pd.read_csv(yr) # print('original size is: {}'.format(dat.shape)) else: #remove the header of the subsequent csvs before merging # dat_yr = pd.read_csv(yr, header=None).iloc[1:,:] dat_yr = pd.read_csv(yr) dat_yr.shape dat = pd.concat([dat, dat_yr], axis = 0) # print('concatenated size is: {}'.format(dat.shape)) count+=1 print(dat.shape) #saving concatenated predictor #cd to the saving location os.chdir(out_path) #create/cd to the tg folder try: os.makedirs(tg) os.chdir(tg) #cd to it after creating it except FileExistsError: #directory already exists os.chdir(tg) #save as csv pred_name = '.'.join([pred, 'csv']) dat.to_csv(pred_name)
[ "michaelg.tadesse@gmail.com" ]
michaelg.tadesse@gmail.com
9e169c3b6e4c276cbbf5d9f5e129c8de5b740332
58d7ace148c853528fb0b8c0fdb71b74a3d6d7b6
/Python/Maximum69Number.py
c2f4142fe9f929339a42071eaccb2d8e8076295a
[]
no_license
WinrichSy/LeetCode_Solutions
4200779aa201e3c8a0d7c977c0a5b911e434d803
149b70b8bd7d7eaa67e8345d3dfd659289b75573
refs/heads/master
2022-07-16T15:15:22.192519
2020-05-22T01:18:06
2020-05-22T01:18:06
261,314,995
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
#Maximum 69 Number #https://leetcode.com/problems/maximum-69-number/ class Solution: def maximum69Number (self, num: int) -> int: str_num = str(num) if str_num.count('6')==0: return num str_num = list(str_num) str_num[str_num.index('6')]='9' return int(''.join(str_num))
[ "winrichsy@gmail.com" ]
winrichsy@gmail.com
6f68b50c77692e985515c7f3c64945c263e05d27
fea3593a6cc3c05a865d547e5b2966642157739d
/11/tridy7_Marcela.py
0e297e125d93c7ef4af8518fe73ba17274487638
[]
no_license
benkeanna/pyladies
bd9e1f7d62ee1f40fcc14886703c8d7c9e8f8577
840cf3fea844dd32ab783b1bdcb91a45a2360492
refs/heads/master
2021-10-24T13:55:04.429666
2019-03-26T14:40:48
2019-03-26T14:40:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
613
py
import turtle class KreslimObecne(turtle.Turtle): POCET_HRAN = 0 UHEL_OTOCENI = 0 def neco_udelej(self): for x in range(self.POCET_HRAN): self.forward(50) self.left(self.UHEL_OTOCENI) class KreslimCtverec(KreslimObecne): POCET_HRAN = 4 UHEL_OTOCENI = 90 class KreslimTroj(KreslimObecne): POCET_HRAN = 3 UHEL_OTOCENI = 120 class KreslimMnohouhelnik(KreslimObecne): POCET_HRAN = 18 UHEL_OTOCENI = 20 objekty = [KreslimCtverec(), KreslimTroj(), KreslimMnohouhelnik()] for objekt in objekty: objekt.neco_udelej() turtle.exitonclick()
[ "haymannovaa@gmail.com" ]
haymannovaa@gmail.com
bee735e385587ecb19e903b1d6a9a7d3e91d7bc4
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_136/2601.py
bf1fa19e1e73d54bfd4394cd3e108d3db0f1d5b0
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
510
py
from sys import stdin def printAnswer(caseIndex, answer): print("Case #", caseIndex+1, ": ", answer, sep='') T = int(input()) for t in range(T): (farmCost, farmExtraProd, winCost) = map(float, input().split()) currProd = 2 timeForWin = winCost / currProd prevTimeForWin = timeForWin accTime = 0 while timeForWin <= prevTimeForWin: accTime += farmCost / currProd currProd += farmExtraProd prevTimeForWin = timeForWin timeForWin = winCost / currProd + accTime printAnswer(t, prevTimeForWin)
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com
0b51ac3b2723630ba8481f98e3b89c7261cd6ea1
68367ae671b414f4fdf427005bfd5083f7ab055c
/embedding_no_cont.py
01cea2d28f37a2b672ed0e2e6638871ea08c75d6
[]
no_license
Xinxinatg/embedding_RBP
6f0527f84b89e6b047f4299e9d417d7b38ec1d84
bd9a398047fe346f5815a8d51419f0c6d7f781a0
refs/heads/main
2023-08-25T18:08:15.943423
2021-10-25T02:44:53
2021-10-25T02:44:53
410,151,825
0
0
null
null
null
null
UTF-8
Python
false
false
15,184
py
import argparse import pandas as pd import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torchvision import torchvision.transforms as transforms import torch.utils.data as Data import torch.nn.utils.rnn as rnn_utils import time import pickle import pandas as pd from termcolor import colored from sklearn.metrics import accuracy_score,balanced_accuracy_score,precision_recall_curve,auc,roc_auc_score import os # import tensorflow as tf import numpy as np from sklearn.metrics import accuracy_score,balanced_accuracy_score, matthews_corrcoef import math parser = argparse.ArgumentParser(description='embeddings_for_RBP_prediction') parser.add_argument('--epoch', type=int, default=200, help='epoch number') parser.add_argument('--model_dir', default='Model/', help='model directory') parser.add_argument('--rep_dir', help='represention file directory') parser.add_argument('--pro_label_dir', help='pro_label file directory') parser.add_argument('--load_model_dir', default=None,help='trained model file directory') parser.add_argument('--big_or_small_model',type=int,default=0, help='choose between big and small model,0 means big') parser.add_argument('--learning_rate',type=float,default=0.0001, help='learning rate') parser.add_argument('--batch_size',type=int,default=1024) args = parser.parse_args() rep_all_pd=pd.read_csv(args.rep_dir) pro=pd.read_csv(args.pro_label_dir) label=torch.tensor(pro['label'].values) head,tail=os.path.split(args.pro_label_dir) trP=tail.split('trP')[1].split('_')[0] trN=tail.split('trN')[1].split('_')[0] vaP=tail.split('VaP')[1].split('_')[0] vaN=tail.split('VaN')[1].split('_')[0] teP=tail.split('TeP')[1].split('_')[0] teN=tail.split('TeN')[1].split('_')[0] data=torch.tensor(rep_all_pd.values) print(trP,trN,vaP,vaN,teP,teN) # print(data.shape,label.shape) print(label.shape,data.shape) train_data,train_label=data[:int(trP)+int(trN)].double(),label[:int(trP)+int(trN)] test_data,test_label=data[int(trP)+int(trN):-int(teP)-int(teN)].double(),label[int(trP)+int(trN):-int(teP)-int(teN)] # LOSS_WEIGHT_POSITIVE = math.sqrt((int(trP)+int(trN)) / (2.0 * int(trP)) ) # LOSS_WEIGHT_NEGATIVE = math.sqrt((int(trP)+int(trN)) / (2.0 * int(trN)) ) LOSS_WEIGHT_POSITIVE = (int(trP)+int(trN)) / (2.0 * int(trP)) LOSS_WEIGHT_NEGATIVE = (int(trP)+int(trN)) / (2.0 * int(trN)) # https://towardsdatascience.com/deep-learning-with-weighted-cross-entropy-loss-on-imbalanced-tabular-data-using-fastai-fe1c009e184c soft_max=nn.Softmax(dim=1) # class_weights=torch.FloatTensor([w_0, w_1]).cuda() weig=torch.FloatTensor([LOSS_WEIGHT_NEGATIVE,LOSS_WEIGHT_POSITIVE]).double().cuda() # train_data,train_label=genData("./train_peptide.csv",260) # test_data,test_label=genData("./test_peptide.csv",260) train_dataset = Data.TensorDataset(train_data, train_label) test_dataset = Data.TensorDataset(test_data, test_label) batch_size=args.batch_size train_iter = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_iter = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) Emb_dim=data.shape[1] if not os.path.exists(args.model_dir): os.mkdir(args.model_dir) head1,tail1=os.path.split(args.pro_label_dir) if args.load_model_dir ==None: logits_output=os.path.join(args.model_dir,tail1.split('_')[0]+'_'+args.rep_dir.split('/')[-2] \ +str(args.big_or_small_model)+ '_logits.csv') model_loc=os.path.join(args.model_dir,tail1.split('_')[0]+'_'+args.rep_dir.split('/')[-2] \ +str(args.big_or_small_model)+ '.pl') else: logits_output=os.path.join(args.model_dir,'fine_tune'+tail1.split('_')[0]+'_'+args.rep_dir.split('/')[-2] \ +str(args.big_or_small_model)+ '_logits.csv') model_loc=os.path.join(args.model_dir,'fine_tune'+tail1.split('_')[0]+'_'+args.rep_dir.split('/')[-2] \ +str(args.big_or_small_model)+ '.pl') class newModel1(nn.Module): def __init__(self, vocab_size=26): super().__init__() self.hidden_dim = 256 self.batch_size = 256 self.emb_dim = Emb_dim # self.embedding = nn.Embedding(vocab_size, self.emb_dim, padding_idx=0) # self.encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=2) # self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=1) # self.gmlp_t=gMLP(num_tokens = 1000,dim = 32, depth = 2, seq_len = 40, act = nn.Tanh()) self.gru = nn.GRU(self.emb_dim, self.hidden_dim, num_layers=6, bidirectional=True, dropout=0.05) self.block1=nn.Sequential(nn.Linear(3584,1024), nn.BatchNorm1d(1024), nn.LeakyReLU(), nn.Linear(1024,512), nn.BatchNorm1d(512), nn.LeakyReLU(), nn.Linear(512,256), ) self.block2=nn.Sequential( nn.BatchNorm1d(256), nn.LeakyReLU(), nn.Linear(256,128), nn.BatchNorm1d(128), nn.LeakyReLU(), nn.Linear(128,64), nn.BatchNorm1d(64), nn.LeakyReLU(), nn.Linear(64,2) ) def forward(self, x): # x=self.embedding(x) # output=self.transformer_encoder(x).permute(1, 0, 2) # output=self.gmlp_t(x).permute(1, 0, 2) x=x.view(1,x.shape[0],x.shape[1]) # output=self.gmlp_t(x).permute(1, 0, 2) # print(output.shape) output,hn=self.gru(x) output=output.permute(1,0,2) hn=hn.permute(1,0,2) output=output.reshape(output.shape[0],-1) hn=hn.reshape(output.shape[0],-1) output=torch.cat([output,hn],1) # print('output.shape',output.shape) output=self.block1(output) return self.block2(output) class newModel2(nn.Module): def __init__(self, vocab_size=26): super().__init__() self.hidden_dim = 48 self.batch_size = 256 self.emb_dim = Emb_dim # self.embedding = nn.Embedding(vocab_size, self.emb_dim, padding_idx=0) # self.encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=2) # self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=1) # self.gmlp_t=gMLP(num_tokens = 1000,dim = 32, depth = 2, seq_len = 40, act = nn.Tanh()) # self.gru = nn.GRU(self.emb_dim, self.hidden_dim, num_layers=4, # bidirectional=True, dropout=0.2) self.c1_1 = nn.Conv1d(32, 256, 1) self.c1_2 = nn.Conv1d(32, 256, 3) self.c1_3 = nn.Conv1d(32, 256, 5) self.p1 = nn.MaxPool1d(3, stride=3) self.c2 = nn.Conv1d(256, 128, 3) self.p2 = nn.MaxPool1d(3, stride=3) self.c3 = nn.Conv1d(128, 128, 3) # self.p3 = nn.MaxPool1d(3, stride=1) self.drop=nn.Dropout(p=0.01) self.block2=nn.Sequential( nn.Linear(896,512), nn.BatchNorm1d(512), nn.LeakyReLU(), nn.Linear(512,64), nn.BatchNorm1d(64), nn.LeakyReLU(), nn.Linear(64,2) ) def forward(self, x): # x=self.embedding(x) # output=self.transformer_encoder(x).permute(1, 0, 2) # output=self.gmlp_t(x).permute(1, 0, 2) x=x.view(x.shape[0],32,32) # x=x.transpose(1,2) # output=self.gmlp_t(x).permute(1, 0, 2) # print(output.shape) c1_1=self.c1_1(x) c1_2=self.c1_2(x) c1_3=self.c1_3(x) c=torch.cat((c1_1, c1_2, c1_3), -1) # print(c1_1.shape,c1_2.shape,c1_3.shape,c.shape) p = self.p1(c) c=self.c2(p) p=self.p2(c) # print(p.shape) c=self.c3(p) # print(c.shape) # p=self.p3(c) # print(p.shape) # print('output.shape',output.shape) # print(c.shape) c=c.view(c.shape[0],-1) c=self.drop(c) # print(c.shape) return self.block2(c) class ContrastiveLoss(torch.nn.Module): def __init__(self, margin=2.5): super(ContrastiveLoss, self).__init__() self.margin = margin def forward(self, output1, output2, label): # euclidean_distance: [128] euclidean_distance = F.pairwise_distance(output1, output2) # print(output1.shape,output2.shape,label.shape) loss_contrastive = torch.mean((label) * torch.pow(euclidean_distance, 2) + # calmp夹断用法 (1-label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2)) return loss_contrastive def collate(batch): seq1_ls=[] seq2_ls=[] label1_ls=[] label2_ls=[] label_ls=[] batch_size=len(batch) for i in range(int(batch_size/2)): seq1,label1=batch[i][0],batch[i][1] seq2,label2=batch[i+int(batch_size/2)][0],batch[i+int(batch_size/2)][1] label1_ls.append(label1.unsqueeze(0)) label2_ls.append(label2.unsqueeze(0)) label=(label1*label2)+(1-label1)*(1-label2) # label=(label1^label2) seq1_ls.append(seq1.unsqueeze(0)) seq2_ls.append(seq2.unsqueeze(0)) label_ls.append(label.unsqueeze(0)) seq1=torch.cat(seq1_ls).to(device) seq2=torch.cat(seq2_ls).to(device) label=torch.cat(label_ls).to(device) label1=torch.cat(label1_ls).to(device) label2=torch.cat(label2_ls).to(device) return seq1,seq2,label,label1,label2 train_iter_cont = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True,collate_fn=collate) device = torch.device("cuda",0) def evaluate_accuracy(data_iter, net): acc_sum, n = 0.0, 0 for x, y in data_iter: x,y=x.to(device),y.to(device) outputs=net(x) acc_sum += (outputs.argmax(dim=1) == y).float().sum().item() n += y.shape[0] return acc_sum / n def to_log(log): with open("./modelLog.log","a+") as f: f.write(log+'\n') def main(): if args.big_or_small_model ==0: net=newModel1().double().to(device) else: net=newModel2().double().to(device) # state_dict=torch.load('/content/Model/pretrain.pl') # net.load_state_dict(state_dict['model']) if args.load_model_dir != None: state_dict=torch.load(args.load_model_dir) net.load_state_dict(state_dict['model']) # lr = 0.0001 optimizer = torch.optim.Adam(net.parameters(), lr=args.learning_rate,weight_decay=5e-4) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,patience=5, factor=0.75,verbose=True) # https://discuss.pytorch.org/t/reducelronplateau-not-doing-anything/24575/10 # criterion = ContrastiveLoss() # criterion_model = nn.CrossEntropyLoss(reduction='sum') criterion_model = nn.CrossEntropyLoss(weight=weig,reduction='mean') best_bacc=0 best_aupr=0 EPOCH=args.epoch CUDA_LAUNCH_BLOCKING=1 for epoch in range(EPOCH): loss_ls=[] t0=time.time() net.train() # for seq1,seq2,label,label1,label2 in train_iter_cont: for seq,label in train_iter: # print(seq1.shape,seq2.shape,label.shape,label1.shape,label2.shape) seq,label=seq.to(device),label.to(device) output=net(seq) loss=criterion_model(output,label) # print(loss) optimizer.zero_grad() loss.backward() optimizer.step() loss_ls.append(loss.item()) lr_scheduler.step(loss) if epoch %100 ==0: torch.save({ 'model_state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict() }, os.path.join('/content/Model', 'ckpt_{}.pl'.format(epoch))) net.eval() with torch.no_grad(): train_acc=evaluate_accuracy(train_iter,net) # test_acc=evaluate_accuracy(test_iter,net) test_data_gpu=test_data.to(device) test_logits=net(test_data_gpu) outcome=np.argmax(test_logits.detach().cpu(), axis=1) test_bacc=balanced_accuracy_score(test_label, outcome) precision, recall, thresholds = precision_recall_curve(test_label, soft_max(test_logits.cpu())[:,1]) test_aupr = auc(recall, precision) results=f"epoch: {epoch+1}, loss: {np.mean(loss_ls):.5f}\n" # results=f"epoch: {epoch+1}\n" results+=f'\ttrain_acc: {train_acc:.4f}, test_aupr: {colored(test_aupr,"red")},test_bacc: {colored(test_bacc,"red")}, time: {time.time()-t0:.2f}' print(results) to_log(results) if test_aupr>best_aupr: best_aupr=test_aupr torch.save({"best_aupr":best_aupr,"model":net.state_dict(),'args':args},model_loc) print(f"best_aupr: {best_aupr}") state_dict=torch.load(model_loc) # state_dict=torch.load('/content/Model/pretrain.pl') net.load_state_dict(state_dict['model']) pro=pd.read_csv(args.pro_label_dir) label=torch.tensor(pro['label'].values) # final_test_data,final_test_label=data[9655+1068:].double(),label[9655+1068:] # train_data,train_label=data[:6011].double(),label[:6011] final_test_data,final_test_label=data[-int(teP)-int(teN):].double(),label[-int(teP)-int(teN):] final_test_data=final_test_data.to(device) net.eval() with torch.no_grad(): logits=net(final_test_data) # logits_output=os.path.split(rep_file)[1].replace('.csv','_logtis.csv') logits_cpu=logits.cpu().detach().numpy() logits_cpu_pd=pd.DataFrame(logits_cpu) logits_cpu_pd.to_csv(logits_output,index=False) outcome=np.argmax(logits.cpu().detach().numpy(), axis=1) MCC= matthews_corrcoef(final_test_label, outcome) acc = accuracy_score(final_test_label, outcome) bacc=balanced_accuracy_score(final_test_label, outcome) precision1, recall1, thresholds1 = precision_recall_curve(final_test_label, soft_max(torch.tensor(logits_cpu))[:,1]) final_test_aupr = auc(recall1, precision1) final_auc_roc=roc_auc_score(final_test_label, soft_max(torch.tensor(logits_cpu))[:,1]) # final_test_aupr=0 print('bacc,MCC,final_test_aupr,final_auc_roc') print(bacc,MCC,final_test_aupr,final_auc_roc) if __name__ == '__main__': CUDA_LAUNCH_BLOCKING=1 main()
[ "noreply@github.com" ]
Xinxinatg.noreply@github.com
5de61b20f5b4440f894d7ad89f1565d568fde089
40dd244441a60370690ca0f8b1d9846812d89c05
/World 3/Lists/ex089 - Newsletter with List.py
5e58d31194d0bce378dd4f91357c6fd321699cf8
[ "MIT" ]
permissive
MiguelChichorro/PythonExercises
6fe5aab37bc74e914b5742a9648c662ac64cdeb3
3b2726e7d9ef92c1eb6b977088692c42a2a7b86e
refs/heads/main
2023-07-18T04:42:38.879349
2021-09-01T16:01:48
2021-09-01T16:01:48
360,982,518
2
1
null
2021-09-01T15:40:01
2021-04-23T19:11:13
Python
UTF-8
Python
false
false
1,648
py
from time import sleep colors = {"clean": "\033[m", "red": "\033[31m", "green": "\033[32m", "yellow": "\033[33m", "blue": "\033[34m", "purple": "\033[35m", "cian": "\033[36m"} ans = 1 while ans == 1: students = list() ans2 = 'Y' while ans2 == 'Y': name = str(input("Enter a name:")) n1 = int(input("Entear a mark: ")) n2 = int(input("Enter a mark: ")) avg = (n1 + n2) / 2 students.append([name, [n1, n2], avg]) ans2 = str(input("Want continue? [Y/N]")).upper() print(f"{colors['blue']}Reading data...{colors['clean']}") sleep(1) print("-=" * 20) print(f"{'NU.':<8}{'NAME':<20}{'AVG':<16}") print("-" * 37) for i, a in enumerate(students): print(f"{i:<8}{a[0]:<25}{a[2]:<8.1f}") print("-" * 37) while True: print(f"{colors['red']}if you want to stop just enter 999{colors['clean']}") n = int(input("Enter a number:")) if n == 999: print(f"{colors['red']}Stoping...{colors['clean']}") break if n <= len(students) - 1: print(f"{colors['green']}the {students[n][0]} marks are {students[n][1]}{colors['clean']}") print(f"{colors['green']}AGAIN{colors['clean']}") else: print(f"{colors['red']}This student dosen´t exist{colors['clean']}") print(f"{colors['red']}COMEBACK{colors['clean']}") ans = int(input(f"{colors['cian']}\nPress [ 1 ] to do again or another number to leave: {colors['clean']}")) if ans != 1: print(f"{colors['green']}Have a good day!{colors['clean']}")
[ "51164882+MiguelChichorro@users.noreply.github.com" ]
51164882+MiguelChichorro@users.noreply.github.com
908f8699daf9af3cbdaa929a7bb26e56fd664b84
d103b4299b8fd473c7848f40750bbd546a7250cc
/user_db/asgi.py
dd5c5ad7ee9fa9123c7cae0d2ba4a43c36c8a809
[]
no_license
lpakule/HW_28_04_2021
1754c8247e5d1433a65e5d3f5a3738444bec8a91
d92d403325c11d79299f9e8de570381b1c9456e2
refs/heads/main
2023-04-22T02:26:53.798501
2021-05-10T18:15:06
2021-05-10T18:15:06
364,479,520
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
""" ASGI config for user_db project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'user_db.settings') application = get_asgi_application()
[ "larisa.pakule@outlook.com" ]
larisa.pakule@outlook.com
6c1efadbe1d1249e5cec851c3f1722a4c95adb78
feab8d31e5a41ef8793946d5bf906162c1d1dce8
/reservation/migrations/0003_alter_reservationmodel_unique_together.py
8244221f08693fd7cc014a6e035853fb4a785723
[]
no_license
Mariusz798/warsztatDjango
1e2da8641440c51d7379ba40253900487a1ed18b
745560f394481b054917ca0c212100af6c3b3523
refs/heads/master
2023-04-15T09:11:18.167648
2021-04-17T16:54:38
2021-04-17T16:54:38
358,530,529
0
0
null
null
null
null
UTF-8
Python
false
false
364
py
# Generated by Django 3.2 on 2021-04-17 15:25 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('reservation', '0002_reservationmodel'), ] operations = [ migrations.AlterUniqueTogether( name='reservationmodel', unique_together={('date', 'room_id')}, ), ]
[ "mariusz042475@gmail.com" ]
mariusz042475@gmail.com
1a5d071aaa0bdf028f1746c525c3c71b5b6c7ce3
5445eced339414f795bedcdf1f801be7c68fbcf1
/base/driver.py
1827f7db5fb8b12b1a2bb2d73beec94f0bc76d92
[]
no_license
risengzr/aolai
5574ff5833e8e2f5a8c3353bc78bc7811abf9bfe
b8dfed89eb2b1fbb462b9dd40fce64a5cbc4bde2
refs/heads/master
2020-04-18T22:00:58.273524
2019-01-27T07:26:13
2019-01-27T07:26:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
from appium import webdriver def init_driver(): desired_caps = {} desired_caps['platformName'] = "Android" desired_caps['platformVersion'] = "5.1" desired_caps['deviceName'] = "192.168.56.101:5555" desired_caps['appPackage'] = "com.yunmall.lc" desired_caps['appActivity'] = "com.yunmall.ymctoc.ui.activity.MainActivity" desired_caps['automationName'] = "Uiautomator2" return webdriver.Remote('http://localhost:4723/wd/hub', desired_caps)
[ "13844911496@163.com" ]
13844911496@163.com
b6f9b16a7681d673cefd4543cbb50a8e33138ed0
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2684/60720/286577.py
b3b51d52b25f409e0c9f8a385adb80eb382dfca4
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
509
py
size=int(input()) list0=[] timen=[] def findt(i,flag): if flag==1: return min(timen[i-1][0],timen[i-1][1])+list0[i] if flag==0: return timen[i-1][1] for k in range(size): timen=[] n=int(input()) list0=input().split() list0=[int(list0[i]) for i in range(n)] timen.append([0,list0[0]]) lst=[] for i in range(1,n): lst=[] lst.append(findt(i,0)) lst.append(findt(i,1)) timen.append(lst) print(min(timen[-1][0],timen[-1][1]))
[ "1069583789@qq.com" ]
1069583789@qq.com
a92f1ad232822e9e027286abc9da0dd12c1f3807
a857d1911a118b8aa62ffeaa8f154c8325cdc939
/toontown/ai/ToontownAIMsgTypes.py
d2325cc0185c40cb767e4a6c93c0385f73b14b58
[ "MIT" ]
permissive
DioExtreme/TT-CL-Edition
761d3463c829ec51f6bd2818a28b667c670c44b6
6b85ca8352a57e11f89337e1c381754d45af02ea
refs/heads/main
2023-06-01T16:37:49.924935
2021-06-24T02:25:22
2021-06-24T02:25:22
379,310,849
0
0
MIT
2021-06-22T15:07:31
2021-06-22T15:07:30
null
UTF-8
Python
false
false
572
py
from otp.ai.AIMsgTypes import * TTAIMsgName2Id = {'DBSERVER_GET_ESTATE': 1040, 'DBSERVER_GET_ESTATE_RESP': 1041, 'PARTY_MANAGER_UD_TO_ALL_AI': 1042, 'IN_GAME_NEWS_MANAGER_UD_TO_ALL_AI': 1043, 'WHITELIST_MANAGER_UD_TO_ALL_AI': 1044} TTAIMsgId2Names = invertDictLossless(TTAIMsgName2Id) if config.GetBool('isclient-check', False): if not isClient(): print 'EXECWARNING ToontownAIMsgTypes: %s' % TTAIMsgName2Id printStack() for name, value in TTAIMsgName2Id.items(): exec '%s = %s' % (name, value) del name del value DBSERVER_PET_OBJECT_TYPE = 5
[ "devinhall4@gmail.com" ]
devinhall4@gmail.com
a2ebd938e26e13e0ef5376e03fe25331606a304d
108f2c23503c82f36d2f16e4f66ead5684a97d8d
/honeyPot/fakeShell/linuxCommand/ls.py
b4e5c96b5b15586f9abfab6d89642654452d5733
[]
no_license
icysun/honeyPotController
cc540b562bf2e219e8491b18451c9e8aea8c90ff
37bd04783b6381c31ee1af40e445cf30e6879ed5
refs/heads/main
2023-06-14T22:00:05.756017
2021-07-09T07:48:07
2021-07-09T07:48:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,255
py
# -*- coding:utf-8 -*- # author: dzhhey response = """Desktop\tDownloads\tMusicptmxtest.c\tPycharmProjects\tTemplatesVideos\tDocument\tkyber\tPictures\tPublic\tsnaptest""" ls_al = """total 108 drwxr-xr-x 21 dzh dzh 4096 Jul 7 00:45 . drwxr-xr-x 3 root root 4096 Apr 1 08:50 .. -rw------- 1 dzh dzh 1583 Jul 7 00:02 .bash_history -rw-r--r-- 1 dzh dzh 220 Apr 1 08:50 .bash_logout -rw-r--r-- 1 dzh dzh 3771 Apr 1 08:50 .bashrc drwxr-xr-x 13 dzh dzh 4096 Jul 6 21:31 .cache drwx------ 12 dzh dzh 4096 Jul 6 21:31 .config drwxr-xr-x 2 dzh dzh 4096 Apr 5 04:41 Desktop drwxr-xr-x 2 dzh dzh 4096 Apr 5 04:41 Documents drwxr-xr-x 2 dzh dzh 4096 Apr 5 04:41 Downloads drwx------ 3 dzh dzh 4096 Jul 7 04:23 .gnupg drwxrwxr-x 4 dzh dzh 4096 Jul 6 21:32 .java drwxr-xr-x 5 root root 4096 Jun 8 22:00 kyber drwxr-xr-x 3 dzh dzh 4096 Apr 5 04:41 .local drwx------ 5 dzh dzh 4096 May 17 06:43 .mozilla drwxr-xr-x 2 dzh dzh 4096 Apr 5 04:41 Music drwxr-xr-x 2 dzh dzh 4096 Apr 5 04:41 Pictures -rw-r--r-- 1 dzh dzh 807 Apr 1 08:50 .profile -rw-r--r-- 1 root root 1279 Jul 7 00:45 ptmxtest.c drwxr-xr-x 2 dzh dzh 4096 Apr 5 04:41 Public drwxrwxr-x 3 dzh dzh 4096 Jul 6 21:34 PycharmProjects drwxr-xr-x 4 dzh dzh 4096 Jul 6 21:31 snap drwx------ 2 dzh dzh 4096 Jul 6 22:30 .ssh -rw-r--r-- 1 dzh dzh 0 Apr 5 04:55 .sudo_as_admin_successful drwxr-xr-x 2 dzh dzh 4096 Apr 5 04:41 Templates drwxrwxr-x 6 dzh dzh 4096 Apr 19 00:06 test drwxr-xr-x 2 dzh dzh 4096 Apr 5 04:41 Videos -rw-rw-r-- 1 dzh dzh 169 Apr 5 04:58 .wget-hsts """ def parse(args_=None): try: if not args_: with open("buffer", "w") as f: f.write(response) if len(args_) == 1: if args_[0] == "-a": with open("buffer", "w") as f: f.write(response) if args_[0] == "-al" or args_[0] == "-la": with open("buffer", "w") as f: f.write(ls_al) else: with open("buffer", "w") as f: f.write("ls :command not found\r\n") except Exception: with open("buffer", "w") as f: f.write("ls :command not found\r\n")
[ "974341189@qq.com" ]
974341189@qq.com
45b5f39432925a3fc5cae9b876aa0db8c91e30a3
ff4137ddf4f0970fcd5ce4ed65f23a7b4ca37547
/new.py
0e53921377c501f0cf3d617131ae59b2266012db
[]
no_license
clivejj/nasa_vs_spacex
b6696b120e2d6fe05dfa8c472199f8d01892984e
14185c2ec42d34405586d79025c746e6212dc53b
refs/heads/master
2021-08-11T12:37:16.648212
2017-11-13T18:06:16
2017-11-13T18:06:16
110,191,204
0
0
null
null
null
null
UTF-8
Python
false
false
1,700
py
from flask import Flask, render_template, request import urllib2 import xml.etree.ElementTree as ET app=Flask(__name__) @app.route('/') def root(): return render_template("submit.html") @app.route('/results') def results(): track = request.args["track"] xml = ''' http://production.shippingapis.com/ShippingAPI.dll?API=TrackV2&XML=<?xml version="1.0" encoding="UTF-8" ?> <TrackRequest USERID="074STUYV1630"> <TrackID ID="''' xml += track + '''"></TrackID>''' + "</TrackRequest>" u = urllib2.urlopen(xml).read() '''u = \''' <?xml version="1.0" encoding="UTF-8"?> <TrackResponse><TrackInfo ID="9405509699937073048953"><TrackSummary>The item is currently in transit to the destination as of November 13, 2017 at 9:03 am. It is on its way to ZIP Code 10025.</TrackSummary><TrackDetail>In Transit to Destination, November 12, 2017, 9:08 am, On its way to ZIP Code 10025</TrackDetail><TrackDetail>Departed USPS Regional Facility, November 12, 2017, 7:03 am, DES MOINES IA DISTRIBUTION CENTER</TrackDetail><TrackDetail>Arrived at USPS Regional Origin Facility, November 11, 2017, 9:08 pm, DES MOINES IA DISTRIBUTION CENTER</TrackDetail><TrackDetail>Departed Post Office, November 11, 2017, 6:16 pm, AMES, IA 50010</TrackDetail><TrackDetail>USPS in possession of item, November 11, 2017, 4:38 pm, AMES, IA 50010</TrackDetail><TrackDetail>Shipping Label Created, USPS Awaiting Item, November 11, 2017, 8:32 am, AMES, IA 50014</TrackDetail></TrackInfo></TrackResponse> \'''''' return "This has yet to be formatted" + u #return render_template("results.html", track=request.args["track"]) if __name__ == '__main__': app.debug = True app.run()
[ "cjohnston1@stuy.edu" ]
cjohnston1@stuy.edu
e904ee6a7216c0b2c3ac14bc79bce97f28142967
a674199c7d5edd80e198933bcfdd5f2b683b8801
/slackbot_settings.py
c5724030a3aa9a36eff1f10f8fe46efcb53d9a80
[]
no_license
Dakurtz422/Slack-as-Remote-Desktop
8f1a8b6e08f21b99fd6fa64eea7de42762c609c2
b96be50d98c57cb8eff635c404a61ae95803aaa4
refs/heads/master
2020-08-02T20:36:01.796987
2019-09-28T13:05:32
2019-09-28T13:05:32
211,499,436
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
import os # Get Slack API_TOKEN from enviroment (or hardcode here) api_key = os.environ.get('BOT_API') API_TOKEN = api_key # Default message when Bot can't find an appropriate answer DEFAULT_REPLY = "Excuse me" # Name of a directory where we will store our Bot settings PLUGINS = ['plugins']
[ "noreply@github.com" ]
Dakurtz422.noreply@github.com
25cec13326e3c495322757e51ec6ff994f5c0630
573a66e4f4753cc0f145de8d60340b4dd6206607
/JS-CS-Detection-byExample/Dataset (ALERT 5 GB)/362764/shogun-2.0.0/shogun-2.0.0/examples/undocumented/python_modular/converter_stochasticproximityembedding_modular.py
7a8f0ad0d582efd44b62703f5ad89146c6ef8102
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
mkaouer/Code-Smells-Detection-in-JavaScript
3919ec0d445637a7f7c5f570c724082d42248e1b
7130351703e19347884f95ce6d6ab1fb4f5cfbff
refs/heads/master
2023-03-09T18:04:26.971934
2022-03-23T22:04:28
2022-03-23T22:04:28
73,915,037
8
3
null
2023-02-28T23:00:07
2016-11-16T11:47:44
null
UTF-8
Python
false
false
837
py
#!/usr/bin/env python from tools.load import LoadMatrix lm = LoadMatrix() data = lm.load_numbers('../data/fm_train_real.dat') parameter_list = [[data, 12]] def converter_stochasticproximityembedding_modular (data, k): from shogun.Features import RealFeatures from shogun.Converter import StochasticProximityEmbedding, SPE_GLOBAL, SPE_LOCAL features = RealFeatures(data) converter = StochasticProximityEmbedding() converter.set_target_dim(1) converter.set_nupdates(40) # Embed with local strategy converter.set_k(k) converter.set_strategy(SPE_LOCAL) converter.embed(features) # Embed with global strategy converter.set_strategy(SPE_GLOBAL) converter.embed(features) return features if __name__=='__main__': print('StochasticProximityEmbedding') converter_stochasticproximityembedding_modular(*parameter_list[0])
[ "mmkaouer@umich.edu" ]
mmkaouer@umich.edu
d50ea5fe9eaf251c47008c2e2963f6b0cc477a91
5f88483bd0ffc6f97e5ed20d6b79eb68f710142e
/Sean_the_sheep_of_the_dead_with_GUI.py
92e51f5bdc53ef3841ba7eec032174dfec22fd6c
[]
no_license
NathanKhadaroo/Pythonintro
0053472d18c6ee6efa008331babc4724a04d8fba
4d59735a9f161f8de0cf91cd075888cdbbc8afd0
refs/heads/master
2020-07-27T02:46:14.834831
2019-10-24T09:46:59
2019-10-24T09:46:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,335
py
# -*- coding: utf-8 -*- """ Created on Mon Sep 16 14:12:33 2019 @author: gynjkm """ #imports required packages import tkinter as tk import matplotlib.pyplot as plt import matplotlib matplotlib.use('TkAgg') import matplotlib.animation import agentframework_zombies import csv import random #Creates a window which allows us to enter in parameters fields = ('Number of Sheep', 'Number of Zombies', 'Number of Landmines', 'Number of Iterations', 'Neighborhood size', 'Explosion size') def run(): animation = matplotlib.animation.FuncAnimation(fig, update(), interval=1, repeat=False, frames=num_of_iterations) canvas.show() def makeform(root, fields): entries = {} for field in fields: row = tk.Frame(root) lab = tk.Label(row, width=22, text=field+": ", anchor='w') ent = tk.Entry(row) ent.insert(0, "0") row.pack(side=tk.TOP, fill=tk.X, padx=5, pady=5) lab.pack(side=tk.LEFT) ent.pack(side=tk.RIGHT, expand=tk.YES, fill=tk.X) entries[field] = ent return entries root = tk.Tk() root.wm_title("Sheep Horror Model") ents = makeform(root, fields) b1 = tk.Button(root, text='Run the model!',command=(run)) b1.pack(side=tk.LEFT, padx=5, pady=5) fig = plt.figure(figsize=(12, 12)) root.mainloop() canvas = matplotlib.backends.backend_tkagg.FigureCanvasTkAgg(fig, master=root) canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=1) #defines our arguments and creating the lists of sheep and zombiesheep num_of_agents = int(entries['Number of Sheep'].get()) num_of_zombsheep = int(entries['Number of Zombies'].get()) num_of_landmines = int(entries['Number of Landmines'].get()) num_of_iterations = int(entries['Number of Iterations'].get()) neighbourhood = int(entries['Neighborhood size'].get()) blast_radius = int(entries['Explosion size'].get()) agents = [] zombsheep = [] holylandmines = [] #creates the environment from the csv file environment = [] with open('in.txt', newline='') as f: reader = csv.reader(f, quoting=csv.QUOTE_NONNUMERIC) for row in reader: rowlist = [] for value in row: rowlist.append(value) environment.append(rowlist) #Tests whether the environment has read in properly """ plt.imshow(environment) plt.show() """ #Assign starting points to all our agents in their environment for i in range (num_of_agents): agents.append(agentframework_zombies.Agent(environment, agents)) for i in range (num_of_zombsheep): zombsheep.append(agentframework_zombies.Zombiesheep(environment, zombsheep, agents)) for i in range (num_of_landmines): holylandmines.append(agentframework_zombies.Holy_landmine_of_Antioch(environment, zombsheep)) ''' #Testing to see if our agents have acces to the locations of other agents print("Our first sheep is at", agents[0].x, agents[0].y, ", some other sheep he knows are at:") for i in range(10): print(agents[0].agents[i].x, agents[0].agents[i].y) ''' ''' #This makes the model run until the zombies have wiped out all ofthe sheep or #the desired number of iterations has been reached. ''' def update(frame_number): fig.clear() plt.imshow(environment) plt.xlim(0, agents[0].environment_width) plt.ylim(0, agents[0].environment_height) plt.xlim(0, zombsheep[0].environment_width) plt.ylim(0, zombsheep[0].environment_height) if len(holylandmines) == 0: pass else: plt.xlim(0, holylandmines[0].environment_width) plt.ylim(0, holylandmines[0].environment_height) #shuffles the order in which agents in a list move to avoid "first mover" advantages random.shuffle(agents) random.shuffle(zombsheep) random.shuffle(holylandmines) for agent in agents: agent.move() agent.eat() agent.share_with_neighbours(neighbourhood) for zombiesheep in zombsheep: zombiesheep.move() #creates a list of all sheep within "biting range" target_agents = zombiesheep.bite(neighbourhood, agents, zombsheep) for target in target_agents: #adds a new zombie in place of the target's location zombsheep.append(agentframework_zombies.Zombiesheep(environment, zombsheep, agents, [target.y, target.x])) #kills the target agents.remove(target) #this is done in this order to avoid losing the coordinates of the target if len(holylandmines) == 0: pass else: for Holy_landmine_of_Antioch in holylandmines: ded_zombies = Holy_landmine_of_Antioch.detonate(blast_radius, zombsheep) if len(ded_zombies)> 0: for ded_zombie in ded_zombies: zombsheep.remove(ded_zombie) holylandmines.remove(Holy_landmine_of_Antioch) #plots our sheep in white and our zombies in red and our landmines in gold for agent in agents: plt.scatter(agent.x, agent.y, c="snow") for zombiesheep in zombsheep: plt.scatter(zombiesheep.x, zombiesheep.y, c="red") if len(holylandmines) == 0: pass else: for Holy_landmine_of_Antioch in holylandmines: plt.scatter(Holy_landmine_of_Antioch.x, Holy_landmine_of_Antioch.y, c="gold") print(frame_number) #Prints an update on how the sheep vs zombie battle is going print("There are", str(len(agents)), "sheep, ", str(len(zombsheep)), "zombie sheep, and", str(len(holylandmines)), "remaining.") #prints a victory message for the zombies if they manage to convert all the sheep if len(agents) == 0: print("Braiiiiins! Zombies win!") #prints a victory message for the sheep if they manage to survive until dawn or all zombies die if int(frame_number) == int(num_of_iterations)-1: print("Baaaahhhh! Sheep win!") if len(zombsheep) == 0: print("Baaaahhhh! Sheep win!") #Showing our model in an animation plt.ylim(0, 299) plt.xlim(0, 299) plt.imshow(environment) #for i in range (num_of_agents): # plt.scatter(agents[i].x,agents[i].y) #animation = matplotlib.animation.FuncAnimation(fig, update, interval=1, repeat=False, frames=num_of_iterations) #plt.show() #ends tk.mainloop()
[ "55386091+NathanKhadaroo@users.noreply.github.com" ]
55386091+NathanKhadaroo@users.noreply.github.com
0493a224edaa31bec7f72ac3170b5d58a7ad04b6
4476c376d8e1304ef30f70813db4a04b8f57474b
/Outil Aero/Python27_J_TC/VLM.py
3f4ab7c532ca49f942443707db07dd089ecbe1ad
[]
no_license
emmanuelbenard/QuentinProject
05a5d64e049abbec43a00110209527b069d4029c
9c488678b54bd74b02676bf110cecc28abecd7db
refs/heads/master
2022-01-12T08:00:43.729908
2018-04-08T17:06:27
2018-04-08T17:06:27
176,025,207
0
0
null
null
null
null
UTF-8
Python
false
false
176,412
py
# -*- coding: utf-8 -*- import math as m import numpy as np import utilitaire as u import Polar as p import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import Flow def ICMatrix(ac,cla,flow): """ Prediction of aerodynamic characteristics of the wing Autor : Quentin borlon Date : 5 mai 2017 Function that predicts the aerodynamic coefficients for a given wing. Based on the wing geometry and the sectional 2D aerodynamic datas. Function initially based, and notation preserved from : 2004 Mihai Pruna, Alberto Davila; free software; under the terms of the GNU General Public License INPUT: clAlpha : vertical array with clAlphas(i) is the lift curve slope of the panel from wing.y(i) to wing.y(i+1); wing : a structral object with as fields: b : span chord : vertical array with the chord at the root (1) any discontinuity of taper ratio (2:end-1) and at the tip (end); flapsDiscY : vertical array with the spanwise coordinate of the flaps discontinuity sections afDiscY : vertical array with the spanwise coordinate of the airfoil discontinuity sections airfoil : a cell-array with each cell gives the airfoil naca number representation, cell 1 correspond to first panel after root. sweep : vertical array with wing.sweep(i) is the sweep angle of the panel from wing.y(i) to wing.y(i+1) (rad) dih : vertical array with wing.dih(i) is the dihedral angle of the panel from wing.y(i) to wing.y(i+1) (rad) twist : vertical array with wing.twist(i) is the twist angle of the section at wing.y(i) (rad) deltasFlaps : vertical array with wing.deltasFlaps(i) is the flaps defection of the panel from wing.y(i) to wing.y(i+1) (deg) r : number of spanwise panel along the wing; m : number of chordwise panel along the airfoil; Mach : flight mach number cFlaps_cLoc : vertical array with wing.cFlaps_cLocs(i) is the local flaps to chord ratio y : the spanwise location of (-b/2 -> b/2) the limits of the panels discY : vertical array of the complete set of the spanwise location airfoilIndex : vertical array with wing.airfoilIndex(i) is the index of the airfoil (wing.airfoil) to use for the section at wing.y(i) chordDistrib : vertical array with wing.chordDistrib(i) is the chord length of the section at wing.y(i) OUTPUT: A : the influence coefficient matrix [n x n] such that A*{GAMMA/2} + {Q}*{normal} = 0 normal : a [3 x (wing.getR()/2+1)] matrix that provides the normal downward of the panel.""" prop = ac.prop; wing = ac.wing; cf = wing.getCF(); # Generate grid coordinates # Generate collocation points and normal : where tangency condition is # satisfied. Distance from bound vortex depends on the sectional lift # curve slope : (dist/localChord) = clAlphas/(4*pi), clAlphas assumed to be 2 *pi if prop.bool and cf != 0.: return getGridF_Engines(flow,ac,cla); elif prop.bool: return getGrid_Engines(flow,ac,cla); elif cf !=0.: return getGridF_NOEngines(flow,ac,cla); else: return getGrid_NOEngines(flow,ac,cla); def getGrid_NOEngines(flow,ac,cla): # flow sideslip and aoa angles beta = - flow.getBeta()*m.pi/180.; aoa = m.pi * (flow.getAMax()+flow.getAMin())/180.; # Main lifting surfaces wing = ac.wing; htail = ac.htail; # Numerical parameters for discretization mC = wing.mC; # chordwise discretisation number of control point for the chord mW = max([8,int(3.*flow.V0/wing.getMac())]); # discretisation of the wake, get correct direction of it behind parts n = wing.getR()+htail.getR(); # spanwise discretisation number of panel # Recover the wing parameters # Panels' coordinates and main parameters (at c/4) xp = wing.getXP(); yp = wing.getYP(); zp = wing.getZP(); cP = wing.getChord(); tw = wing.getTwist(); dih = wing.getDih(); sw = wing.getSweepC4(); # Panel bordes' coordinate and main parameters (at c/4) x = wing.getX(); y = wing.getY(); z = wing.getZ(); c = wing.getChordDist(); twSec = wing.twSec; xW = np.unique(np.concatenate([0.5*(np.cos(np.linspace(m.pi,0.,mC))+1.),[0.25]])); mC = len(xW); iC4W = np.where(xW == 0.25)[0][0]; zW = np.zeros([mC,len(wing.getAF())],dtype = float); for ii in range(len(wing.getAF())): zW[:,ii]= camber(wing.getAF(ii),xW); if htail.bool: # Panel bordes' coordinate and main parameters (at c/4) x = np.concatenate([x,htail.getX()]); y = np.concatenate([y,htail.getY()]); z = np.concatenate([z,htail.getZ()]); c = np.concatenate([c,htail.getChordDist()]); twSec = np.concatenate([wing.twSec,htail.twSec]); # Panels' coordinates and main parameters (at c/4) xp = np.concatenate([xp,htail.getXP()]); yp = np.concatenate([yp,htail.getYP()]); zp = np.concatenate([zp,htail.getZP()]); cP = np.concatenate([cP,htail.getChord()]); tw = np.concatenate([tw,htail.getTwist()]); dih = np.concatenate([dih,htail.getDih()]); sw = np.concatenate([sw,htail.getSweepC4()]); # Elevator, Assumed to be as plain flaps cfT = htail.getCF(); if cfT != 0: xT = np.unique(np.concatenate([np.linspace(1.,1.-cfT,2),(1.-cfT)*0.5*(np.cos(np.linspace(m.pi,0.,mC-1))+1.)])); xT[abs((xT-0.25)) == np.min(abs(xT-0.25))] = 0.25; else: xT = 0.5*(np.cos(np.linspace(m.pi,0.,mC))+1.); xT[abs((xT-0.25)) == np.min(abs(xT-0.25))] = 0.25; iC4T = np.where(xT == 0.25)[0][0]; zT = np.zeros([mC,len(htail.getAF())],dtype = float); for ii in range(len(htail.getAF())): zT[:,ii-1]= camber(htail.getAF(ii),xT); X = np.zeros(n * (2 * (mC + mW)+1),dtype = float); Y = np.zeros(n * (2 * (mC + mW)+1),dtype = float); # initialization Z = np.zeros(n * (2 * (mC + mW)+1),dtype = float); COLOCX=np.zeros((mC-1)*n); COLOCY=np.zeros((mC-1)*n); COLOCZ=np.zeros((mC-1)*n); normal = np.zeros([3,(mC-1)*n]); coef = 0.25+cla*0.25/m.pi; ds = np.zeros((mC-1)*n); # vector of area of any panel dS = np.zeros(n); # vector of area of a spanwise section xvl = np.zeros(mC + mW,dtype = float); yvl = np.zeros(mC + mW,dtype = float); zvl = np.zeros(mC + mW,dtype = float); xvr = np.zeros(mC + mW,dtype = float); yvr = np.zeros(mC + mW,dtype = float); zvr = np.zeros(mC + mW,dtype = float); dzdx = np.zeros(mW-1,dtype = float); dydx = np.zeros(mW-1,dtype = float); for i in range(wing.getR()): camb = zW[:,wing.getAFI(i)] il = i; cl = c[il]; twl = twSec[il]; xl = (xW - 0.25) * cl + x[il]; yl = y[il] * np.ones(mC); zl = camb * cl + z[il]; center = np.array([xl[iC4W],yl[iC4W],zl[iC4W]]); alpha = 180./m.pi*twl; Rot = u.roty(alpha); for ii in range(mC): point = np.array([xl[ii],yl[ii],zl[ii]])-center; point = np.dot(Rot,point) + center; xl[ii] = point[0]; yl[ii] = point[1]; zl[ii] = point[2]; xvl[:mC-1] = 0.75 * xl[:-1] + 0.25 * xl[1:]; yvl[:mC-1] = 0.75 * yl[:-1] + 0.25 * yl[1:]; zvl[:mC-1] = 0.75 * zl[:-1] + 0.25 * zl[1:]; xvl[mC-1] = xvl[mC-2] + (xl[-1]-xl[-2]); yvl[mC-1] = yvl[mC-2] + (yl[-1]-yl[-2]); zvl[mC-1] = zvl[mC-2] + (zl[-1]-zl[-2]); # End of chord vortex = begining of wake vortex xvl[mC:-1] = xvl[mC-1] + 2.5 * cl * (1.+np.array(range(mW-1),dtype = float))/mW; xvl[-1] = 10. * wing.b; dzdxl = (zl[mC-1]-zl[mC-2])/(xl[mC-1]-xl[mC-2]); dydx = m.tan(beta) * (1.-np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))); dzdx = dzdxl * np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC])) \ + m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))); for ii in range(mW-1): zvl[mC+ii] = zvl[mC+(ii-1)] + dzdx[ii] * (xvl[mC+ii] - xvl[mC+(ii-1)]); yvl[mC+ii] = yvl[mC+(ii-1)] + dydx[ii] * (xvl[mC+ii] - xvl[mC+(ii-1)]); zvl[-1] = zvl[-2] + m.tan(aoa) * (xvl[-1] - xvl[-2]); yvl[-1] = yvl[-2] + m.tan(beta) * (xvl[-1] - xvl[-2]); ir = i+1; cr = c[ir]; twr = twSec[ir]; xr = (xW - 0.25) * cr + x[ir]; yr = y[ir] * np.ones(mC); zr = camb * cr + z[ir]; center = np.array([xr[iC4W],yr[iC4W],zr[iC4W]]); alpha = 180./m.pi*twr; Rot = u.roty(alpha); for ii in range(0,mC): point = np.array([xr[ii],yr[ii],zr[ii]])-center; point = np.dot(Rot,point) + center; xr[ii] = point[0]; yr[ii] = point[1]; zr[ii] = point[2]; xvr[:mC-1] = 0.75 * xr[:-1] + 0.25 * xr[1:]; yvr[:mC-1] = 0.75 * yr[:-1] + 0.25 * yr[1:]; zvr[:mC-1] = 0.75 * zr[:-1] + 0.25 * zr[1:]; xvr[mC-1] = xvr[mC-2] + (xr[-1]-xr[-2]); yvr[mC-1] = yvr[mC-2] + (yr[-1]-yr[-2]); zvr[mC-1] = zvr[mC-2] + (zr[-1]-zr[-2]); # End of chord vortex = begining of wake vortex xvr[mC:-1] = xvr[mC-1] + 2.5 * cr * (1.+np.array(range(mW-1),dtype = float))/mW; xvr[-1] = 10. * wing.b; dzdxr = (zr[mC-1]-zr[mC-2])/(xr[mC-1]-xr[mC-2]); dydx = m.tan(beta) * (1.-np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC]))); dzdx = dzdxr * np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC])) \ + m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC]))); for ii in range(mW-1): zvr[mC+ii] = zvr[mC+(ii-1)] + dzdx[ii] * (xvr[mC+ii] - xvr[mC+(ii-1)]); yvr[mC+ii] = yvr[mC+(ii-1)] + dydx[ii] * (xvr[mC+ii] - xvr[mC+(ii-1)]); zvr[-1] = zvr[-2] + m.tan(aoa) * (xvr[-1] - xvr[-2]); yvr[-1] = yvr[-2] + m.tan(beta) * (xvr[-1] - xvr[-2]); setTable(X,2*(mC+mW)+1,i,np.concatenate([[xvl[0]],xvr,xvl[::-1]])); setTable(Y,2*(mC+mW)+1,i,np.concatenate([[yvl[0]],yvr,yvl[::-1]])); setTable(Z,2*(mC+mW)+1,i,np.concatenate([[zvl[0]],zvr,zvl[::-1]])); for j in range(mC-1): val = [xvl[j],xvr[j],0.5* (xl[j] + xr[j]), 0.5* (xl[j+1] + xr[j+1])]; COLOCX[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvl[j],yvr[j],0.5* (yl[j] + yr[j]), 0.5* (yl[j+1] + yr[j+1])]; COLOCY[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvl[j],zvr[j],0.5* (zl[j] + zr[j]), 0.5* (zl[j+1] + zr[j+1])]; COLOCZ[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[i * (mC-1) + j] = cpmag; normal[:, i * (mC-1) + j] = cp/cpmag; dS[i] = sum(ds[i * (mC-1):(i+1) * (mC-1)]); for i in range(wing.getR(),wing.getR()+htail.getR()): iPT = i-wing.getR(); camb = zT[:,htail.getAFI(iPT)] il = i+1; cl = c[il]; twl = twSec[il]; xl = (xT - 0.25) * cl + x[il]; yl = y[il] * np.ones(mC); zl = camb * cl + z[il]; center = np.array([xl[iC4T],yl[iC4T],zl[iC4T]]); alpha = 180./m.pi*twl; Rot = u.roty(alpha); for ii in range(mC): point = np.array([xl[ii],yl[ii],zl[ii]])-center; point = np.dot(Rot,point) + center; xl[ii] = point[0]; yl[ii] = point[1]; zl[ii] = point[2]; if htail.getDF(iPT) != 0.: delta = htail.getDF(iPT); RotF = u.roty(delta); center = np.array([xl[-2],yl[-2],zl[-2]]); point = np.array([xl[-1],yl[-1],zl[-1]])-center; point = np.dot(RotF,point) + center; xl[-1] = point[0]; yl[-1] = point[1]; zl[-1] = point[2]; xvl[:mC-1] = 0.75 * xl[:-1] + 0.25 * xl[1:]; yvl[:mC-1] = 0.75 * yl[:-1] + 0.25 * yl[1:]; zvl[:mC-1] = 0.75 * zl[:-1] + 0.25 * zl[1:]; xvl[mC-1] = xvl[mC-2] + (xl[-1]-xl[-2]); yvl[mC-1] = yvl[mC-2] + (yl[-1]-yl[-2]); zvl[mC-1] = zvl[mC-2] + (zl[-1]-zl[-2]); # End of chord vortex = begining of wake vortex xvl[mC:-1] = xvl[mC-1] + 2.5 * cl * (1.+np.array(range(mW-1),dtype = float))/mW; xvl[-1] = 10. * wing.b; dzdxl = (zl[mC-1]-zl[mC-2])/(xl[mC-1]-xl[mC-2]); dydx = m.tan(beta) * (1.-np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))); dzdx = dzdxl * np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC])) \ + m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))); for ii in range(mW-1): zvl[mC+ii] = zvl[mC+(ii-1)] + dzdx[ii] * (xvl[mC+ii] - xvl[mC+(ii-1)]); yvl[mC+ii] = yvl[mC+(ii-1)] + dydx[ii] * (xvl[mC+ii] - xvl[mC+(ii-1)]); zvl[-1] = zvl[-2] + m.tan(aoa) * (xvl[-1] - xvl[-2]); yvl[-1] = yvl[-2] + m.tan(beta) * (xvl[-1] - xvl[-2]); ir = i+2; cr = c[ir]; twr = twSec[ir]; xr = (xT - 0.25) * cr + x[ir]; yr = y[ir] * np.ones(mC); zr = camb * cr + z[ir]; center = np.array([xr[iC4T],yr[iC4T],zr[iC4T]]); alpha = 180./m.pi*twr; Rot = u.roty(alpha); for ii in range(0,mC): point = np.array([xr[ii],yr[ii],zr[ii]])-center; point = np.dot(Rot,point) + center; xr[ii] = point[0]; yr[ii] = point[1]; zr[ii] = point[2]; if htail.getDF(iPT) != 0.: delta = htail.getDF(iPT); RotF = u.roty(delta); center = np.array([xr[-2],yr[-2],zr[-2]]); point = np.array([xr[-1],yr[-1],zr[-1]])-center; point = np.dot(RotF,point) + center; xr[-1] = point[0]; yr[-1] = point[1]; zr[-1] = point[2]; xvr[:mC-1] = 0.75 * xr[:-1] + 0.25 * xr[1:]; yvr[:mC-1] = 0.75 * yr[:-1] + 0.25 * yr[1:]; zvr[:mC-1] = 0.75 * zr[:-1] + 0.25 * zr[1:]; xvr[mC-1] = xvr[mC-2] + (xr[-1]-xr[-2]); yvr[mC-1] = yvr[mC-2] + (yr[-1]-yr[-2]); zvr[mC-1] = zvr[mC-2] + (zr[-1]-zr[-2]); # End of chord vortex = begining of wake vortex xvr[mC:-1] = xvr[mC-1] + 2.5 * cr * (1.+np.array(range(mW-1),dtype = float))/mW; xvr[-1] = 10. * wing.b; dzdxr = (zr[mC-1]-zr[mC-2])/(xr[mC-1]-xr[mC-2]); dydx = m.tan(beta) * (1.-np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC]))); dzdx = dzdxr * np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC])) \ + m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC]))); for ii in range(mW-1): zvr[mC+ii] = zvr[mC+(ii-1)] + dzdx[ii] * (xvr[mC+ii] - xvr[mC+(ii-1)]); yvr[mC+ii] = yvr[mC+(ii-1)] + dydx[ii] * (xvr[mC+ii] - xvr[mC+(ii-1)]); zvr[-1] = zvr[-2] + m.tan(aoa) * (xvr[-1] - xvr[-2]); yvr[-1] = yvr[-2] + m.tan(beta) * (xvr[-1] - xvr[-2]); setTable(X,2*(mC+mW)+1,i,np.concatenate([[xvl[0]],xvr,xvl[::-1]])); setTable(Y,2*(mC+mW)+1,i,np.concatenate([[yvl[0]],yvr,yvl[::-1]])); setTable(Z,2*(mC+mW)+1,i,np.concatenate([[zvl[0]],zvr,zvl[::-1]])); for j in range(mC-1): val = [xvl[j],xvr[j],0.5* (xl[j] + xr[j]), 0.5* (xl[j+1] + xr[j+1])]; COLOCX[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvl[j],yvr[j],0.5* (yl[j] + yr[j]), 0.5* (yl[j+1] + yr[j+1])]; COLOCY[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvl[j],zvr[j],0.5* (zl[j] + zr[j]), 0.5* (zl[j+1] + zr[j+1])]; COLOCZ[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[i * (mC-1) + j] = cpmag; normal[:, i * (mC-1) + j] = cp/cpmag; dS[i] = sum(ds[i * (mC-1):(i+1) * (mC-1)]); select = np.zeros([n,n * (mC-1)]); # rechercher intensité du dernier vortex uniquement select2 = np.zeros([n * (mC-1),n]); # pour chaque paneau sur même section y, même velocity triangle select3 = np.zeros([n + len(ac.prop.D),n * (mC-1) + len(ac.prop.D)]); # for i in range(n): select[i,(mC-2) + (mC-1)*i] = 1.; select2[(mC-1)*i:(mC-1)*(i+1),i] = 1.; select3[i,(mC-1)*i:(mC-1)*(i+1)] = ds[(mC-1)*i:(mC-1)*(i+1)]/dS[i]; if ac.prop.bool: select3[-len(ac.prop.D):,-len(ac.prop.D):] = np.eye(len(ac.prop.D)); Ao,Vxo,Vyo,Vzo = ICM(X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac,n,mC,mW); invA = np.linalg.inv(Ao); A = invA; Vx = np.dot(select3,Vxo); Vy = np.dot(select3,Vyo); Vz = np.dot(select3,Vzo); return A,normal,Vx,Vy,Vz,select,select2; def getGrid_Engines(flow,ac,cla): # flow sideslip and aoa angles beta = - flow.getBeta()*m.pi/180.; aoa = m.pi * (flow.getAMax()+flow.getAMin())/180.; # Main lifting surfaces wing = ac.wing; htail = ac.htail; prop = ac.prop; rho0=1.225; #masse volumique à niveau de la mer [kg/m^3] dT=-6.5; #gradiente de temperature dans la troposphere [K/km] T0=288.15; #Temperature à niveau de la mer [K] g=9.80665; #gravité [m/s^2] Rair=287.1; #Constante de l'air [m^2/(s^2*K)] h = flow.getH(); # flight altitude [km] V0 = flow.getV0(); # freestream velocity [m/s] rho = rho0 * (1. + dT*h/T0)**(- g/(Rair*dT*10**(-3)) - 1.); # air density Sh = m.pi * prop.getD()**2 *0.25;#Surface disque actuator [m^2] nbE = len(prop.getD()); OWU = prop.getYp()/np.abs(prop.getYp()); for ii in range(nbE): if not(prop.OWU[ii]): OWU *= -1.; # Numerical parameters for discretization tF = 2.; # temps caractéristique de convection des vortex nbEch = 1.; # Nombre minimal de points de controle par rotation des lignes de courant/tourbillons mW = int(tF*nbEch/(2*m.pi)*max(prop.getOmega())); # discretisation of the wake, get correct direction of it behind parts times = np.linspace(0.,tF,mW); mC = wing.mC; # chordwise discretisation number of control point for the chord n = wing.getR()+htail.getR(); # spanwise discretisation number of panel # Recover the wing parameters # Panels' coordinates and main parameters (at c/4) xp = wing.getXP(); yp = wing.getYP(); zp = wing.getZP(); cP = wing.getChord(); tw = wing.getTwist(); dih = wing.getDih(); sw = wing.getSweepC4(); # Panel bordes' coordinate and main parameters (at c/4) x = wing.getX(); y = wing.getY(); z = wing.getZ(); c = wing.getChordDist(); twSec = wing.twSec; # Flaps xW = np.unique(np.concatenate([0.5*(np.cos(np.linspace(m.pi,0.,mC))+1.),[0.25]])); mC = len(xW); iC4W = np.where(xW == 0.25)[0][0]; zW = np.zeros([mC,len(wing.getAF())],dtype = float); for ii in range(len(wing.getAF())): zW[:,ii]= camber(wing.getAF(ii),xW); if htail.bool: # Panel bordes' coordinate and main parameters (at c/4) x = np.concatenate([x,htail.getX()]); y = np.concatenate([y,htail.getY()]); z = np.concatenate([z,htail.getZ()]); c = np.concatenate([c,htail.getChordDist()]); twSec = np.concatenate([wing.twSec,htail.twSec]); # Panels' coordinates and main parameters (at c/4) xp = np.concatenate([xp,htail.getXP()]); yp = np.concatenate([yp,htail.getYP()]); zp = np.concatenate([zp,htail.getZP()]); cP = np.concatenate([cP,htail.getChord()]); tw = np.concatenate([tw,htail.getTwist()]); dih = np.concatenate([dih,htail.getDih()]); sw = np.concatenate([sw,htail.getSweepC4()]); # Elevator, Assumed to be as plain flaps cfT = htail.getCF(); if cfT != 0: xT = np.unique(np.concatenate([np.linspace(1.,1.-cfT,2),(1.-cfT)*0.5*(np.cos(np.linspace(m.pi,0.,mC-1))+1.)])); xT[abs((xT-0.25)) == np.min(abs(xT-0.25))] = 0.25; else: xT = 0.5*(np.cos(np.linspace(m.pi,0.,mC))+1.); xT[abs((xT-0.25)) == np.min(abs(xT-0.25))] = 0.25; iC4T = np.where(xT == 0.25)[0][0]; zT = np.zeros([mC,len(htail.getAF())],dtype = float); for ii in range(len(htail.getAF())): zT[:,ii-1]= camber(htail.getAF(ii),xT); X = np.zeros(n * (2 * (mC + mW)+1),dtype = float); Y = np.zeros(n * (2 * (mC + mW)+1),dtype = float); # initialization Z = np.zeros(n * (2 * (mC + mW)+1),dtype = float); COLOCX=np.zeros((mC-1)*n); COLOCY=np.zeros((mC-1)*n); COLOCZ=np.zeros((mC-1)*n); normal = np.zeros([3,(mC-1)*n]); coef = 0.25+cla*0.25/m.pi; ds = np.zeros((mC-1)*n); # vector of area of any panel dS = np.zeros(n); # vector of area of a spanwise section xvl = np.zeros(mC + mW,dtype = float); yvl = np.zeros(mC + mW,dtype = float); zvl = np.zeros(mC + mW,dtype = float); xvr = np.zeros(mC + mW,dtype = float); yvr = np.zeros(mC + mW,dtype = float); zvr = np.zeros(mC + mW,dtype = float); dzdx = np.zeros(mW-1,dtype = float); dydx = np.zeros(mW-1,dtype = float); for i in range(wing.getR()): camb = zW[:,wing.getAFI(i)] il = i; cl = c[il]; twl = twSec[il]; xl = (xW - 0.25) * cl + x[il]; yl = y[il] * np.ones(mC); zl = camb * cl + z[il]; center = np.array([xl[iC4W],yl[iC4W],zl[iC4W]]); alpha = 180./m.pi*twl; Rot = u.roty(alpha); for ii in range(mC): point = np.array([xl[ii],yl[ii],zl[ii]])-center; point = np.dot(Rot,point) + center; xl[ii] = point[0]; yl[ii] = point[1]; zl[ii] = point[2]; xvl[:mC-1] = 0.75 * xl[:-1] + 0.25 * xl[1:]; yvl[:mC-1] = 0.75 * yl[:-1] + 0.25 * yl[1:]; zvl[:mC-1] = 0.75 * zl[:-1] + 0.25 * zl[1:]; xvl[mC-1] = xvl[mC-2] + (xl[-1]-xl[-2]); yvl[mC-1:] = yvl[mC-2] + (yl[-1]-yl[-2]); # initial guess : stay straight at the end of the wing zvl[mC-1:] = zvl[mC-2] + (zl[-1]-zl[-2]); # End of chord vortex = begining of wake vortex # introduced effect of prop # attention : prendre en compte le fait que certaines ldc sont sous l'influence de 2 moteurs! centerPropY = prop.getYp() + (xvl[mC-1] - prop.getXp()) * m.tan(beta); centerPropZ = prop.getZp() + (xvl[mC-1] - prop.getXp()) * m.tan(aoa); vix = 0.; for j in range(nbE): d = m.sqrt((yvl[mC-1] - centerPropY[j])**2 + (zvl[mC-1] - centerPropZ[j])**2); rP = prop.rHub[j]; D = prop.D[j]; vitheta = 0.; theta0 = np.arctan2(zvl[mC-1] - centerPropZ[j],yvl[mC-1] - centerPropY[j]); if ((d >= rP) and (d <= D * 0.5) and prop.Omega[j] != 0.): vix += 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); vix2 = 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); a = vix2/V0; aprim = 0.5 * (1. - m.sqrt(abs(1.-4.*a*(1.+a)*(V0/(prop.Omega[j] * d))**2))); vitheta = OWU[j]*abs((aprim * 2. * prop.Omega[j] * d)); Theta = times*vitheta/d + theta0; dY = np.cos(Theta[1:]) * d + centerPropY[j] - yvl[mC-1]; dZ = np.sin(Theta[1:]) * d + centerPropZ[j] - zvl[mC-1] ; yvl[mC:-1] += dY; zvl[mC:-1] += dZ; xvl[mC-1:-1] = xvl[mC-1] + times * (V0+vix); xvl[-1] = 10. * wing.b; indiceFinLocalEffectCamber = np.where(xvl >= xvl[mC-1] + 2.5 * cl)[0][1]; dzdxl = (zl[mC-1]-zl[mC-2])/(xl[mC-1]-xl[mC-2]); # Vérifie ça! dydx = V0/(V0+vix) *m.tan(beta) * (1.-np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1]))); dzdx = V0/(V0+vix) * dzdxl * np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1])) \ + V0/(V0+vix) * m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1]))); dY = np.zeros(mW+1); dZ = np.zeros(mW+1); for ii in range(1,indiceFinLocalEffectCamber-mC+1): dZ[ii] = dZ[(ii-1)] + dzdx[ii-1] * (xvl[mC-1+ii] - xvl[(mC-1+ii-1)]); dY[ii] = dY[(ii-1)] + dydx[ii-1] * (xvl[mC-1+ii] - xvl[(mC-1+ii-1)]); dZ[indiceFinLocalEffectCamber-mC+1:] = dZ[indiceFinLocalEffectCamber-mC] + m.tan(aoa) * (xvl[indiceFinLocalEffectCamber:] - xvl[indiceFinLocalEffectCamber-1]); dY[indiceFinLocalEffectCamber-mC+1:] = dY[indiceFinLocalEffectCamber-mC] + m.tan(beta) * (xvl[indiceFinLocalEffectCamber:] - xvl[indiceFinLocalEffectCamber-1]); yvl[mC-1:] += dY; zvl[mC-1:] += dZ; ir = i+1; cr = c[ir]; twr = twSec[ir]; xr = (xW - 0.25) * cr + x[ir]; yr = y[ir] * np.ones(mC); zr = camb * cr + z[ir]; center = np.array([xr[iC4W],yr[iC4W],zr[iC4W]]); alpha = 180./m.pi*twr; Rot = u.roty(alpha); for ii in range(0,mC): point = np.array([xr[ii],yr[ii],zr[ii]])-center; point = np.dot(Rot,point) + center; xr[ii] = point[0]; yr[ii] = point[1]; zr[ii] = point[2]; xvr[:mC-1] = 0.75 * xr[:-1] + 0.25 * xr[1:]; yvr[:mC-1] = 0.75 * yr[:-1] + 0.25 * yr[1:]; zvr[:mC-1] = 0.75 * zr[:-1] + 0.25 * zr[1:]; xvr[mC-1] = xvr[mC-2] + (xr[-1]-xr[-2]); yvr[mC-1:] = yvr[mC-2] + (yr[-1]-yr[-2]); zvr[mC-1:] = zvr[mC-2] + (zr[-1]-zr[-2]); # End of chord vortex = begining of wake vortex centerPropY = prop.getYp() + (xvr[mC-1] - prop.getXp()) * m.tan(beta); centerPropZ = prop.getZp() + (xvr[mC-1] - prop.getXp()) * m.tan(aoa); vix = 0.; for j in range(nbE): d = m.sqrt((yvr[mC-1] - centerPropY[j])**2 + (zvr[mC-1] - centerPropZ[j])**2); rP = prop.rHub[j]; D = prop.D[j]; vitheta = 0.; theta0 = np.arctan2(zvr[mC-1] - centerPropZ[j],yvr[mC-1] - centerPropY[j]); if ((d >= rP) and (d <= D * 0.5) and prop.Omega[j] != 0.): vix += 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); vix2 = 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); a = vix2/V0; aprim = 0.5 * (1. - m.sqrt(abs(1.-4.*a*(1.+a)*(V0/(prop.Omega[j] * d))**2))); vitheta = OWU[j]*abs((aprim * 2. * prop.Omega[j] * d)); Theta = times*vitheta/d + theta0; dY = np.cos(Theta[1:]) * d + centerPropY[j] - yvr[mC-1]; dZ = np.sin(Theta[1:]) * d + centerPropZ[j] - zvr[mC-1] ; yvr[mC:-1] += dY; zvr[mC:-1] += dZ; xvr[mC-1:-1] = xvr[mC-1] + times * (V0+vix); xvr[-1] = 10. * wing.b; indiceFinLocalEffectCamber = np.where(xvr >= xvr[mC-1] + 2.5 * cr)[0][1]; dzdxr = (zr[mC-1]-zr[mC-2])/(xr[mC-1]-xr[mC-2]); # Vérifie ça! dydx = V0/(V0+vix) * m.tan(beta) * (1.-np.exp(-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1]))); dzdx = V0/(V0+vix) * dzdxr * np.exp(-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1])) \ + V0/(V0+vix) * m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1]))); dY = np.zeros(mW+1); dZ = np.zeros(mW+1); for ii in range(1,indiceFinLocalEffectCamber-mC+1): dZ[ii] = dZ[(ii-1)] + dzdx[ii-1] * (xvr[mC-1+ii] - xvr[(mC-1+ii-1)]); dY[ii] = dY[(ii-1)] + dydx[ii-1] * (xvr[mC-1+ii] - xvr[(mC-1+ii-1)]); dZ[indiceFinLocalEffectCamber-mC+1:] = dZ[indiceFinLocalEffectCamber-mC] + m.tan(aoa) * (xvr[indiceFinLocalEffectCamber:] - xvr[indiceFinLocalEffectCamber-1]); dY[indiceFinLocalEffectCamber-mC+1:] = dY[indiceFinLocalEffectCamber-mC] + m.tan(beta) * (xvr[indiceFinLocalEffectCamber:] - xvr[indiceFinLocalEffectCamber-1]); yvr[mC-1:] += dY; zvr[mC-1:] += dZ; setTable(X,2*(mC+mW)+1,i,np.concatenate([[xvl[0]],xvr,xvl[::-1]])); setTable(Y,2*(mC+mW)+1,i,np.concatenate([[yvl[0]],yvr,yvl[::-1]])); setTable(Z,2*(mC+mW)+1,i,np.concatenate([[zvl[0]],zvr,zvl[::-1]])); for j in range(mC-1): val = [xvl[j],xvr[j],0.5* (xl[j] + xr[j]), 0.5* (xl[j+1] + xr[j+1])]; COLOCX[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvl[j],yvr[j],0.5* (yl[j] + yr[j]), 0.5* (yl[j+1] + yr[j+1])]; COLOCY[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvl[j],zvr[j],0.5* (zl[j] + zr[j]), 0.5* (zl[j+1] + zr[j+1])]; COLOCZ[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[i * (mC-1) + j] = cpmag; normal[:, i * (mC-1) + j] = cp/cpmag; dS[i] = sum(ds[i * (mC-1):(i+1) * (mC-1)]); for i in range(wing.getR(),wing.getR()+htail.getR()): iPT = i-wing.getR(); camb = zT[:,htail.getAFI(iPT)] il = i+1; cl = c[il]; twl = twSec[il]; xl = (xT - 0.25) * cl + x[il]; yl = y[il] * np.ones(mC); zl = camb * cl + z[il]; center = np.array([xl[iC4T],yl[iC4T],zl[iC4T]]); alpha = 180./m.pi*twl; Rot = u.roty(alpha); for ii in range(mC): point = np.array([xl[ii],yl[ii],zl[ii]])-center; point = np.dot(Rot,point) + center; xl[ii] = point[0]; yl[ii] = point[1]; zl[ii] = point[2]; if htail.getDF(iPT) != 0.: delta = htail.getDF(iPT); RotF = u.roty(delta); center = np.array([xl[-2],yl[-2],zl[-2]]); point = np.array([xl[-1],yl[-1],zl[-1]])-center; point = np.dot(RotF,point) + center; xl[-1] = point[0]; yl[-1] = point[1]; zl[-1] = point[2]; xvl[:mC-1] = 0.75 * xl[:-1] + 0.25 * xl[1:]; yvl[:mC-1] = 0.75 * yl[:-1] + 0.25 * yl[1:]; zvl[:mC-1] = 0.75 * zl[:-1] + 0.25 * zl[1:]; xvl[mC-1] = xvl[mC-2] + (xl[-1]-xl[-2]); yvl[mC-1:] = yvl[mC-2] + (yl[-1]-yl[-2]); zvl[mC-1:] = zvl[mC-2] + (zl[-1]-zl[-2]); # End of chord vortex = begining of wake vortex centerPropY = prop.getYp() + (xvl[mC-1] - prop.getXp()) * m.tan(beta); centerPropZ = prop.getZp() + (xvl[mC-1] - prop.getXp()) * m.tan(aoa); vix = 0.; for j in range(nbE): d = m.sqrt((yvl[mC-1] - centerPropY[j])**2 + (zvl[mC-1] - centerPropZ[j])**2); rP = prop.rHub[j]; D = prop.D[j]; vitheta = 0.; theta0 = np.arctan2(zvl[mC-1] - centerPropZ[j],yvl[mC-1] - centerPropY[j]); if ((d >= rP) and (d <= D * 0.5) and prop.Omega[j] != 0.): vix += 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); vix2 = 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); a = vix2/V0; aprim = 0.5 * (1. - m.sqrt(abs(1.-4.*a*(1.+a)*(V0/(prop.Omega[j] * d))**2))); vitheta = OWU[j]*abs((aprim * 2. * prop.Omega[j] * d)); Theta = times*vitheta/d + theta0; dY = np.cos(Theta[1:]) * d + centerPropY[j] - yvl[mC-1]; dZ = np.sin(Theta[1:]) * d + centerPropZ[j] - zvl[mC-1] ; yvl[mC:-1] += dY; zvl[mC:-1] += dZ; xvl[mC-1:-1] = xvl[mC-1] + times * (V0+vix); xvl[-1] = 10. * wing.b; indiceFinLocalEffectCamber = np.where(xvl >= xvl[mC-1] + 2.5 * cl)[0][1]; dzdxl = (zl[mC-1]-zl[mC-2])/(xl[mC-1]-xl[mC-2]); # Vérifie ça! dydx = V0/(V0+vix) * m.tan(beta) * (1.-np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1]))); dzdx = V0/(V0+vix)*dzdxl * np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1])) \ + V0/(V0+vix)*m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1]))); dY = np.zeros(mW+1); dZ = np.zeros(mW+1); for ii in range(1,indiceFinLocalEffectCamber-mC+1): dZ[ii] = dZ[(ii-1)] + dzdx[ii-1] * (xvl[mC-1+ii] - xvl[(mC-1+ii-1)]); dY[ii] = dY[(ii-1)] + dydx[ii-1] * (xvl[mC-1+ii] - xvl[(mC-1+ii-1)]); dZ[indiceFinLocalEffectCamber-mC+1:] = dZ[indiceFinLocalEffectCamber-mC] + m.tan(aoa) * (xvl[indiceFinLocalEffectCamber:] - xvl[indiceFinLocalEffectCamber-1]); dY[indiceFinLocalEffectCamber-mC+1:] = dY[indiceFinLocalEffectCamber-mC] + m.tan(beta) * (xvl[indiceFinLocalEffectCamber:] - xvl[indiceFinLocalEffectCamber-1]); yvl[mC-1:] += dY; zvl[mC-1:] += dZ; ir = i+2; cr = c[ir]; twr = twSec[ir]; xr = (xT - 0.25) * cr + x[ir]; yr = y[ir] * np.ones(mC); zr = camb * cr + z[ir]; center = np.array([xr[iC4T],yr[iC4T],zr[iC4T]]); alpha = 180./m.pi*twr; Rot = u.roty(alpha); for ii in range(0,mC): point = np.array([xr[ii],yr[ii],zr[ii]])-center; point = np.dot(Rot,point) + center; xr[ii] = point[0]; yr[ii] = point[1]; zr[ii] = point[2]; if htail.getDF(iPT) != 0.: delta = htail.getDF(iPT); RotF = u.roty(delta); center = np.array([xr[-2],yr[-2],zr[-2]]); point = np.array([xr[-1],yr[-1],zr[-1]])-center; point = np.dot(RotF,point) + center; xr[-1] = point[0]; yr[-1] = point[1]; zr[-1] = point[2]; xvr[:mC-1] = 0.75 * xr[:-1] + 0.25 * xr[1:]; yvr[:mC-1] = 0.75 * yr[:-1] + 0.25 * yr[1:]; zvr[:mC-1] = 0.75 * zr[:-1] + 0.25 * zr[1:]; xvr[mC-1] = xvr[mC-2] + (xr[-1]-xr[-2]); yvr[mC-1:] = yvr[mC-2] + (yr[-1]-yr[-2]); zvr[mC-1:] = zvr[mC-2] + (zr[-1]-zr[-2]); # End of chord vortex = begining of wake vortex centerPropY = prop.getYp() + (xvr[mC-1] - prop.getXp()) * m.tan(beta); centerPropZ = prop.getZp() + (xvr[mC-1] - prop.getXp()) * m.tan(aoa); vix = 0.; for j in range(nbE): d = m.sqrt((yvr[mC-1] - centerPropY[j])**2 + (zvr[mC-1] - centerPropZ[j])**2); rP = prop.rHub[j]; D = prop.D[j]; vitheta = 0.; theta0 = np.arctan2(zvr[mC-1] - centerPropZ[j],yvr[mC-1] - centerPropY[j]); if ((d >= rP) and (d <= D * 0.5) and prop.Omega[j] != 0.): vix += 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); vix2 = 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); a = vix2/V0; aprim = 0.5 * (1. - m.sqrt(abs(1.-4.*a*(1.+a)*(V0/(prop.Omega[j] * d))**2))); vitheta = OWU[j]*abs((aprim * 2. * prop.Omega[j] * d)); Theta = times*vitheta/d + theta0; dY = np.cos(Theta[1:]) * d + centerPropY[j] - yvr[mC-1]; dZ = np.sin(Theta[1:]) * d + centerPropZ[j] - zvr[mC-1] ; yvr[mC:-1] += dY; zvr[mC:-1] += dZ; xvr[mC-1:-1] = xvr[mC-1] + times * (V0+vix); xvr[-1] = 10. * wing.b; indiceFinLocalEffectCamber = np.where(xvr >= xvr[mC-1] + 2.5 * cr)[0][1]; dzdxr = (zr[mC-1]-zr[mC-2])/(xr[mC-1]-xr[mC-2]); # # Vérifie ça! dydx = V0/(V0+vix)*m.tan(beta) * (1.-np.exp(-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1]))); dzdx = V0/(V0+vix)*dzdxr * np.exp(-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1])) \ + V0/(V0+vix)*m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1]))); dY = np.zeros(mW+1); dZ = np.zeros(mW+1); for ii in range(1,indiceFinLocalEffectCamber-mC+1): dZ[ii] = dZ[(ii-1)] + dzdx[ii-1] * (xvr[mC-1+ii] - xvr[(mC-1+ii-1)]); dY[ii] = dY[(ii-1)] + dydx[ii-1] * (xvr[mC-1+ii] - xvr[(mC-1+ii-1)]); dZ[indiceFinLocalEffectCamber-mC+1:] = dZ[indiceFinLocalEffectCamber-mC] + m.tan(aoa) * (xvr[indiceFinLocalEffectCamber:] - xvr[indiceFinLocalEffectCamber-1]); dY[indiceFinLocalEffectCamber-mC+1:] = dY[indiceFinLocalEffectCamber-mC] + m.tan(beta) * (xvr[indiceFinLocalEffectCamber:] - xvr[indiceFinLocalEffectCamber-1]); yvr[mC-1:] += dY; zvr[mC-1:] += dZ; setTable(X,2*(mC+mW)+1,i,np.concatenate([[xvl[0]],xvr,xvl[::-1]])); setTable(Y,2*(mC+mW)+1,i,np.concatenate([[yvl[0]],yvr,yvl[::-1]])); setTable(Z,2*(mC+mW)+1,i,np.concatenate([[zvl[0]],zvr,zvl[::-1]])); for j in range(mC-1): val = [xvl[j],xvr[j],0.5* (xl[j] + xr[j]), 0.5* (xl[j+1] + xr[j+1])]; COLOCX[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvl[j],yvr[j],0.5* (yl[j] + yr[j]), 0.5* (yl[j+1] + yr[j+1])]; COLOCY[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvl[j],zvr[j],0.5* (zl[j] + zr[j]), 0.5* (zl[j+1] + zr[j+1])]; COLOCZ[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[i * (mC-1) + j] = cpmag; normal[:, i * (mC-1) + j] = cp/cpmag; dS[i] = sum(ds[i * (mC-1):(i+1) * (mC-1)]); select = np.zeros([n,n * (mC-1)]); # rechercher intensité du dernier vortex uniquement select2 = np.zeros([n * (mC-1),n]); # pour chaque paneau sur même section y, même velocity triangle select3 = np.zeros([n + len(ac.prop.D),n * (mC-1) + len(ac.prop.D)]); # for i in range(n): select[i,(mC-2) + (mC-1)*i] = 1.; select2[(mC-1)*i:(mC-1)*(i+1),i] = 1.; select3[i,(mC-1)*i:(mC-1)*(i+1)] = ds[(mC-1)*i:(mC-1)*(i+1)]/dS[i]; if ac.prop.bool: select3[-len(ac.prop.D):,-len(ac.prop.D):] = np.eye(len(ac.prop.D)); # plt.plot(Y,X),plt.axis([-8,8,-1,15]),plt.show() # plt.plot(Y,Z),plt.axis([-8,8,-1,15]),plt.show() # plt.plot(X,Z),plt.axis([-1,15,-1,15]),plt.show() # return Ao,Vxo,Vyo,Vzo = ICM(X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac,n,mC,mW); invA = np.linalg.inv(Ao); A = invA; Vx = np.dot(select3,Vxo); Vy = np.dot(select3,Vyo); Vz = np.dot(select3,Vzo); return A,normal,Vx,Vy,Vz,select,select2; def getGridF_NOEngines(flow,ac,cla): # flow sideslip and aoa angles beta = - flow.getBeta()*m.pi/180.; aoa = m.pi * (flow.getAMax()+flow.getAMin())/180.; # Main lifting surfaces wing = ac.wing; htail = ac.htail; cf = wing.getCF(); # Numerical parameters for discretization mC = wing.mC; # chordwise discretisation number of control point for the chord mW = flow.mW; # discretisation of the wake, get correct direction of it behind parts n = 2*wing.getR()+htail.getR(); # spanwise discretisation number of panel# Recover the wing parameters # Panels' coordinates and main parameters (at c/4) xp = wing.getXP(); yp = wing.getYP(); zp = wing.getZP(); cP = wing.getChord(); tw = wing.getTwist(); dih = wing.getDih(); sw = wing.getSweepC4(); # Panel bordes' coordinate and main parameters (at c/4) x = wing.getX(); y = wing.getY(); z = wing.getZ(); c = wing.getChordDist(); twSec = wing.twSec; xW = np.unique(np.concatenate([(1.-cf)*0.5*(np.cos(np.linspace(m.pi,0.,mC))+1.),[0.25]])); mC = len(xW); iC4W = np.where(xW == 0.25)[0][0]; # Indice du début du flaps / fin de main element zW = np.zeros([mC,len(wing.getAF())],dtype = float); for ii in range(len(wing.getAF())): zW[:,ii]= camber(wing.getAF(ii),xW); xF = 1. - cf * np.linspace(1.,0,mC); zF = np.zeros([mC,len(wing.getAF())],dtype = float); for ii in range(len(wing.getAF())): zF[:,ii] = camber(wing.getAF(ii),xF); if htail.bool: # Panel bordes' coordinate and main parameters (at c/4) x = np.concatenate([x,htail.getX()]); y = np.concatenate([y,htail.getY()]); z = np.concatenate([z,htail.getZ()]); c = np.concatenate([c,htail.getChordDist()]); twSec = np.concatenate([wing.twSec,htail.twSec]); # Panels' coordinates and main parameters (at c/4) xp = np.concatenate([xp,htail.getXP()]); yp = np.concatenate([yp,htail.getYP()]); zp = np.concatenate([zp,htail.getZP()]); cP = np.concatenate([cP,htail.getChord()]); tw = np.concatenate([tw,htail.getTwist()]); dih = np.concatenate([dih,htail.getDih()]); sw = np.concatenate([sw,htail.getSweepC4()]); # Elevator, Assumed to be as plain flaps cfT = htail.getCF(); if cfT != 0: xT = np.unique(np.concatenate([np.linspace(1.,1.-cfT,2),(1.-cfT)*0.5*(np.cos(np.linspace(m.pi,0.,mC-1))+1.)])); xT[abs((xT-0.25)) == np.min(abs(xT-0.25))] = 0.25; else: xT = 0.5*(np.cos(np.linspace(m.pi,0.,mC))+1.); xT[abs((xT-0.25)) == np.min(abs(xT-0.25))] = 0.25; iC4T = np.where(xT == 0.25)[0][0]; zT = np.zeros([mC,len(htail.getAF())],dtype = float); for ii in range(len(htail.getAF())): zT[:,ii-1]= camber(htail.getAF(ii),xT); #generate grid corner coordinates # generate collocation points and normal : where tangency condition is # satisfied. Distance from bound vortex depends on the sectional lift # curve slope : (dist/localChord) = clAlphas/(4*pi) X = np.zeros(n * (2 * (mC + mW)+1),dtype = float); Y = np.zeros(n * (2 * (mC + mW)+1),dtype = float); # initialization Z = np.zeros(n * (2 * (mC + mW)+1),dtype = float); COLOCX=np.zeros((mC-1)*n); COLOCY=np.zeros((mC-1)*n); COLOCZ=np.zeros((mC-1)*n); normal = np.zeros([3,(mC-1)*n]); coef = 0.25+cla*0.25/m.pi; ds = np.zeros((mC-1)*n); # vector of area of any panel dS = np.zeros(wing.r+htail.r); # vector of area of a spanwise section xvl = np.zeros(mC + mW,dtype = float); yvl = np.zeros(mC + mW,dtype = float); zvl = np.zeros(mC + mW,dtype = float); xvr = np.zeros(mC + mW,dtype = float); yvr = np.zeros(mC + mW,dtype = float); zvr = np.zeros(mC + mW,dtype = float); xvlf = np.zeros(mC + mW,dtype = float); yvlf = np.zeros(mC + mW,dtype = float); zvlf = np.zeros(mC + mW,dtype = float); xvrf = np.zeros(mC + mW,dtype = float); yvrf = np.zeros(mC + mW,dtype = float); zvrf = np.zeros(mC + mW,dtype = float); dzdx = np.zeros(mW-1,dtype = float); dzdxf = np.zeros(mW-1,dtype = float); for i in range(wing.getR()): camb = zW[:,wing.getAFI(i)] cambF = zF[:,wing.getAFI(i)]; il = i; cl = c[il]; twl = twSec[il]; xl = (xW - 0.25) * cl + x[il]; yl = y[il] * np.ones(mC); zl = camb * cl + z[il]; xlf = (xF - 0.25) * cl + x[il]; ylf = y[il] * np.ones(mC); zlf = cambF * cl + z[il]; center = np.array([xl[iC4W],yl[iC4W],zl[iC4W]]); alpha = 180./m.pi*twl; Rot = u.roty(alpha); for ii in range(mC): point = np.array([xl[ii],yl[ii],zl[ii]])-center; point = np.dot(Rot,point) + center; xl[ii] = point[0]; yl[ii] = point[1]; zl[ii] = point[2]; pointf = np.array([xlf[ii],ylf[ii],zlf[ii]])-center; pointf = np.dot(Rot,pointf) + center; xlf[ii] = pointf[0] - 0.02 * cl; ylf[ii] = pointf[1]; zlf[ii] = pointf[2] - 0.02 * cl; centerf = np.array([xlf[0],ylf[0],zlf[0]]); delta = wing.getDF(i); Rotf = u.roty(delta); for ii in range(mC): pointf = np.array([xlf[ii],ylf[ii],zlf[ii]])-centerf; pointf = np.dot(Rotf,pointf) + centerf; xlf[ii] = pointf[0]; ylf[ii] = pointf[1]; zlf[ii] = pointf[2]; xvl[:mC-1] = 0.75 * xl[:-1] + 0.25 * xl[1:]; yvl[:mC-1] = 0.75 * yl[:-1] + 0.25 * yl[1:]; zvl[:mC-1] = 0.75 * zl[:-1] + 0.25 * zl[1:]; xvl[mC-1] = xvl[mC-2] + (xl[-1]-xl[-2]); yvl[mC-1] = yvl[mC-2] + (yl[-1]-yl[-2]); zvl[mC-1] = zvl[mC-2] + (zl[-1]-zl[-2]); xvlf[:mC-1] = 0.75 * xlf[:-1] + 0.25 * xlf[1:]; yvlf[:mC-1] = 0.75 * ylf[:-1] + 0.25 * ylf[1:]; zvlf[:mC-1] = 0.75 * zlf[:-1] + 0.25 * zlf[1:]; xvlf[mC-1] = xvlf[mC-2] + (xlf[-1]-xlf[-2]); yvlf[mC-1] = yvlf[mC-2] + (ylf[-1]-ylf[-2]); zvlf[mC-1] = zvlf[mC-2] + (zlf[-1]-zlf[-2]); # End of chord vortex = begining of wake vortex Wake = 1.; xvl[mC:-1] = xvl[mC-1] + Wake * 2.5 * cl * (1.+np.array(range(mW-1),dtype = float))/mW; xvl[-1] = 10. * wing.b * Wake + (1.- Wake) * xvl[mC-1]; dzdxl = (zl[mC-1]-zl[mC-2])/(xl[mC-1]-xl[mC-2]); dydx = m.tan(beta) * (1.-np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))); dzdx = dzdxl * np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC])) \ + m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))); for ii in range(mW-1): zvl[mC+ii] = zvl[mC+(ii-1)] + dzdx[ii] * (xvl[mC+ii] - xvl[mC+(ii-1)]); yvl[mC+ii] = yvl[mC+(ii-1)] + dydx[ii] * (xvl[mC+ii] - xvl[mC+(ii-1)]); zvl[-1] = zvl[-2] + m.tan(aoa) * (xvl[-1] - xvl[-2]); yvl[-1] = yvl[-2] + m.tan(beta) * (xvl[-1] - xvl[-2]); xvlf[mC:-1] = xvlf[mC-1] + 2.5 * cl * (1.+np.array(range(mW-1),dtype = float))/mW; xvlf[-1] = 10. * wing.b; dzdxlf = (zlf[mC-1]-zlf[mC-2])/(xlf[mC-1]-xlf[mC-2]); dzdxf = dzdxlf * np.exp(-3.*(np.array(xvlf[mC:-1] - xvlf[mC]))/(xvlf[-2] - xvlf[mC])) \ + m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvlf[mC:-1] - xvlf[mC]))/(xvlf[-2] - xvlf[mC]))); dydxf = m.tan(beta) * (1.-np.exp(-3.*(np.array(xvlf[mC:-1] - xvlf[mC]))/(xvlf[-2] - xvlf[mC]))); for ii in range(mW-1): zvlf[mC+ii] = zvlf[mC+(ii-1)] + dzdxf[ii] * (xvlf[mC+ii] - xvlf[mC+(ii-1)]); yvlf[mC+ii] = yvlf[mC+(ii-1)] + dydxf[ii] * (xvlf[mC+ii] - xvlf[mC+(ii-1)]); zvlf[-1] = zvlf[-2] + m.tan(aoa) * (xvlf[-1] - xvlf[-2]); yvlf[-1] = yvlf[-2] + m.tan(beta) * (xvlf[-1] - xvlf[-2]); ## Right Part ir = i+1; cr = c[ir]; twr = twSec[ir]; xr = (xW - 0.25) * cr + x[ir]; yr = y[ir] * np.ones(mC); zr = camb * cr + z[ir]; xrf = (xF - 0.25) * cr + x[ir]; yrf = y[ir] * np.ones(mC); zrf = cambF * cr + z[ir]; center = np.array([xr[iC4W],yr[iC4W],zr[iC4W]]); alpha = 180./m.pi*twr; Rot = u.roty(alpha); for ii in range(0,mC): point = np.array([xr[ii],yr[ii],zr[ii]])-center; point = np.dot(Rot,point) + center; xr[ii] = point[0]; yr[ii] = point[1]; zr[ii] = point[2]; pointf = np.array([xrf[ii],yrf[ii],zrf[ii]])-center; pointf = np.dot(Rot,pointf) + center; xrf[ii] = pointf[0] - 0.02 * cr; yrf[ii] = pointf[1]; zrf[ii] = pointf[2] - 0.02 * cr; centerf = np.array([xrf[0],yrf[0],zrf[0]]); for ii in range(mC): pointf = np.array([xrf[ii],yrf[ii],zrf[ii]])-centerf; pointf = np.dot(Rotf,pointf) + centerf; xrf[ii] = pointf[0]; yrf[ii] = pointf[1]; zrf[ii] = pointf[2]; xvr[:mC-1] = 0.75 * xr[:-1] + 0.25 * xr[1:]; yvr[:mC-1] = 0.75 * yr[:-1] + 0.25 * yr[1:]; zvr[:mC-1] = 0.75 * zr[:-1] + 0.25 * zr[1:]; xvr[mC-1] = xvr[mC-2] + (xr[-1]-xr[-2]); yvr[mC-1] = yvr[mC-2] + (yr[-1]-yr[-2]); zvr[mC-1] = zvr[mC-2] + (zr[-1]-zr[-2]); xvrf[:mC-1] = 0.75 * xrf[:-1] + 0.25 * xrf[1:]; yvrf[:mC-1] = 0.75 * yrf[:-1] + 0.25 * yrf[1:]; zvrf[:mC-1] = 0.75 * zrf[:-1] + 0.25 * zrf[1:]; xvrf[mC-1] = xvrf[mC-2] + (xrf[-1]-xrf[-2]); yvrf[mC-1] = yvrf[mC-2] + (yrf[-1]-yrf[-2]); zvrf[mC-1] = zvrf[mC-2] + (zrf[-1]-zrf[-2]); # End of chord vortex = begining of wake vortex xvr[mC:-1] = xvr[mC-1] + Wake * 2.5 * cr * (1.+np.array(range(mW-1),dtype = float))/mW; xvr[-1] = 10. * wing.b * Wake + (1.- Wake) * xvr[mC-1]; dzdxr = (zr[mC-1]-zr[mC-2])/(xr[mC-1]-xr[mC-2]); dydx = m.tan(beta) * (1.-np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC]))); dzdx = dzdxr * np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC])) \ + m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC]))); for ii in range(mW-1): zvr[mC+ii] = zvr[mC+(ii-1)] + dzdx[ii] * (xvr[mC+ii] - xvr[mC+(ii-1)]); yvr[mC+ii] = yvr[mC+(ii-1)] + dydx[ii] * (xvr[mC+ii] - xvr[mC+(ii-1)]); zvr[-1] = zvr[-2] + m.tan(aoa) * (xvr[-1] - xvr[-2]); yvr[-1] = yvr[-2] + m.tan(beta) * (xvr[-1] - xvr[-2]); xvrf[mC:-1] = xvrf[mC-1] + 2.5 * cr * (1.+np.array(range(mW-1),dtype = float))/mW; xvrf[-1] = 10. * wing.b; yvrf[mC:] = yvrf[mC-1] + m.tan(beta) * (xvrf[mC:] - xvrf[mC-1]); dzdxrf = (zrf[mC-1]-zrf[mC-2])/(xrf[mC-1]-xrf[mC-2]); dydx = m.tan(beta) * (1.-np.exp(-3.*(np.array(xvrf[mC:-1] - xvrf[mC]))/(xvrf[-2] - xvrf[mC]))); dzdx = dzdxrf * np.exp(-3.*(np.array(xvrf[mC:-1] - xvrf[mC]))/(xvrf[-2] - xvrf[mC])) \ + m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvrf[mC:-1] - xvrf[mC]))/(xvrf[-2] - xvrf[mC]))); for ii in range(mW-1): zvrf[mC+ii] = zvrf[mC+(ii-1)] + dzdxf[ii] * (xvrf[mC+ii] - xvrf[mC+(ii-1)]); yvrf[mC+ii] = yvrf[mC+(ii-1)] + dydxf[ii] * (xvrf[mC+ii] - xvrf[mC+(ii-1)]); zvrf[-1] = zvrf[-2] + m.tan(aoa) * (xvrf[-1] - xvrf[-2]); yvrf[-1] = yvrf[-2] + m.tan(beta) * (xvrf[-1] - xvrf[-2]); setTable(X,2*(mC+mW)+1,i,np.concatenate([[xvl[0]],xvr,xvl[::-1]])); setTable(Y,2*(mC+mW)+1,i,np.concatenate([[yvl[0]],yvr,yvl[::-1]])); setTable(Z,2*(mC+mW)+1,i,np.concatenate([[zvl[0]],zvr,zvl[::-1]])); setTable(X,2*(mC+mW)+1,wing.r+i,np.concatenate([[xvlf[0]],xvrf,xvlf[::-1]])); setTable(Y,2*(mC+mW)+1,wing.r+i,np.concatenate([[yvlf[0]],yvrf,yvlf[::-1]])); setTable(Z,2*(mC+mW)+1,wing.r+i,np.concatenate([[zvlf[0]],zvrf,zvlf[::-1]])); for j in range(mC-1): val = [xvl[j],xvr[j],0.5* (xl[j] + xr[j]), 0.5* (xl[j+1] + xr[j+1])]; COLOCX[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvl[j],yvr[j],0.5* (yl[j] + yr[j]), 0.5* (yl[j+1] + yr[j+1])]; COLOCY[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvl[j],zvr[j],0.5* (zl[j] + zr[j]), 0.5* (zl[j+1] + zr[j+1])]; COLOCZ[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[i * (mC-1) + j] = cpmag; normal[:, i * (mC-1) + j] = cp/cpmag; val = [xvlf[j],xvrf[j],0.5* (xlf[j] + xrf[j]), 0.5* (xlf[j+1] + xrf[j+1])]; COLOCX[(i+wing.r) * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvlf[j],yvrf[j],0.5* (ylf[j] + yrf[j]), 0.5* (ylf[j+1] + yrf[j+1])]; COLOCY[(i+wing.r) * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvlf[j],zvrf[j],0.5* (zlf[j] + zrf[j]), 0.5* (zlf[j+1] + zrf[j+1])]; COLOCZ[(i+wing.r) * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[(i + wing.r) * (mC-1) + j] = cpmag; normal[:, (i + wing.r) * (mC-1) + j] = cp/cpmag; dS[i] = sum(ds[i * (mC-1):(i+1) * (mC-1)]) + sum(ds[(i+wing.r) * (mC-1):(i+wing.r+1) * (mC-1)]); for i in range(2*wing.getR(),2*wing.getR()+htail.getR()): iPT = i- 2 * wing.getR(); camb = zT[:,htail.getAFI(iPT)] il = i+1 - wing.r; cl = c[il]; twl = twSec[il]; xl = (xT - 0.25) * cl + x[il]; yl = y[il] * np.ones(mC); zl = camb * cl + z[il]; center = np.array([xl[iC4T],yl[iC4T],zl[iC4T]]); alpha = 180./m.pi*twl; Rot = u.roty(alpha); for ii in range(mC): point = np.array([xl[ii],yl[ii],zl[ii]])-center; point = np.dot(Rot,point) + center; xl[ii] = point[0]; yl[ii] = point[1]; zl[ii] = point[2]; if htail.getDF(iPT) != 0.: delta = htail.getDF(iPT); RotF = u.roty(delta); center = np.array([xl[-2],yl[-2],zl[-2]]); point = np.array([xl[-1],yl[-1],zl[-1]])-center; point = np.dot(RotF,point) + center; xl[-1] = point[0]; yl[-1] = point[1]; zl[-1] = point[2]; xvl[:mC-1] = 0.75 * xl[:-1] + 0.25 * xl[1:]; yvl[:mC-1] = 0.75 * yl[:-1] + 0.25 * yl[1:]; zvl[:mC-1] = 0.75 * zl[:-1] + 0.25 * zl[1:]; xvl[mC-1] = xvl[mC-2] + (xl[-1]-xl[-2]); yvl[mC-1] = yvl[mC-2] + (yl[-1]-yl[-2]); zvl[mC-1] = zvl[mC-2] + (zl[-1]-zl[-2]); # End of chord vortex = begining of wake vortex xvl[mC:-1] = xvl[mC-1] + 2.5 * cl * (1.+np.array(range(mW-1),dtype = float))/mW; xvl[-1] = 10. * wing.b; dzdxl = (zl[mC-1]-zl[mC-2])/(xl[mC-1]-xl[mC-2]); dydx = m.tan(beta) * (1.-np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))); dzdx = dzdxl * np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC])) \ + m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))); for ii in range(mW-1): zvl[mC+ii] = zvl[mC+(ii-1)] + dzdx[ii] * (xvl[mC+ii] - xvl[mC+(ii-1)]); yvl[mC+ii] = yvl[mC+(ii-1)] + dydx[ii] * (xvl[mC+ii] - xvl[mC+(ii-1)]); zvl[-1] = zvl[-2] + m.tan(aoa) * (xvl[-1] - xvl[-2]); yvl[-1] = yvl[-2] + m.tan(beta) * (xvl[-1] - xvl[-2]); ir = i+2 - wing.r; cr = c[ir]; twr = twSec[ir]; xr = (xT - 0.25) * cr + x[ir]; yr = y[ir] * np.ones(mC); zr = camb * cr + z[ir]; center = np.array([xr[iC4T],yr[iC4T],zr[iC4T]]); alpha = 180./m.pi*twr; Rot = u.roty(alpha); for ii in range(0,mC): point = np.array([xr[ii],yr[ii],zr[ii]])-center; point = np.dot(Rot,point) + center; xr[ii] = point[0]; yr[ii] = point[1]; zr[ii] = point[2]; if htail.getDF(iPT) != 0.: delta = htail.getDF(iPT); RotF = u.roty(delta); center = np.array([xr[-2],yr[-2],zr[-2]]); point = np.array([xr[-1],yr[-1],zr[-1]])-center; point = np.dot(RotF,point) + center; xr[-1] = point[0]; yr[-1] = point[1]; zr[-1] = point[2]; xvr[:mC-1] = 0.75 * xr[:-1] + 0.25 * xr[1:]; yvr[:mC-1] = 0.75 * yr[:-1] + 0.25 * yr[1:]; zvr[:mC-1] = 0.75 * zr[:-1] + 0.25 * zr[1:]; xvr[mC-1] = xvr[mC-2] + (xr[-1]-xr[-2]); yvr[mC-1] = yvr[mC-2] + (yr[-1]-yr[-2]); zvr[mC-1] = zvr[mC-2] + (zr[-1]-zr[-2]); # End of chord vortex = begining of wake vortex xvr[mC:-1] = xvr[mC-1] + 2.5 * cr * (1.+np.array(range(mW-1),dtype = float))/mW; xvr[-1] = 10. * wing.b; dzdxr = (zr[mC-1]-zr[mC-2])/(xr[mC-1]-xr[mC-2]); dydx = m.tan(beta) * (1.-np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC]))); dzdx = dzdxr * np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC])) \ + m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvr[mC:-1] - xvr[mC]))/(xvr[-2] - xvr[mC]))); for ii in range(mW-1): zvr[mC+ii] = zvr[mC+(ii-1)] + dzdx[ii] * (xvr[mC+ii] - xvr[mC+(ii-1)]); yvr[mC+ii] = yvr[mC+(ii-1)] + dydx[ii] * (xvr[mC+ii] - xvr[mC+(ii-1)]); zvr[-1] = zvr[-2] + m.tan(aoa) * (xvr[-1] - xvr[-2]); yvr[-1] = yvr[-2] + m.tan(beta) * (xvr[-1] - xvr[-2]); setTable(X,2*(mC+mW)+1,i,np.concatenate([[xvl[0]],xvr,xvl[::-1]])); setTable(Y,2*(mC+mW)+1,i,np.concatenate([[yvl[0]],yvr,yvl[::-1]])); setTable(Z,2*(mC+mW)+1,i,np.concatenate([[zvl[0]],zvr,zvl[::-1]])); for j in range(mC-1): val = [xvl[j],xvr[j],0.5* (xl[j] + xr[j]), 0.5* (xl[j+1] + xr[j+1])]; COLOCX[i * (mC-1) + j] = val[2] * (1.-coef[i - wing.r]) + val[3] * coef[i - wing.r]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvl[j],yvr[j],0.5* (yl[j] + yr[j]), 0.5* (yl[j+1] + yr[j+1])]; COLOCY[i * (mC-1) + j] = val[2] * (1.-coef[i - wing.r]) + val[3] * coef[i - wing.r]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvl[j],zvr[j],0.5* (zl[j] + zr[j]), 0.5* (zl[j+1] + zr[j+1])]; COLOCZ[i * (mC-1) + j] = val[2] * (1.-coef[i - wing.r]) + val[3] * coef[i - wing.r]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[i * (mC-1) + j] = cpmag; normal[:, i * (mC-1) + j] = cp/cpmag; dS[i-wing.r] = sum(ds[i * (mC-1):(i+1) * (mC-1)]); select = np.zeros([wing.r + htail.r,n * (mC-1)]); # rechercher intensité du dernier vortex uniquement select2 = np.zeros([n * (mC-1),wing.r + htail.r]); # pour chaque paneau sur même section y, même velocity triangle select3 = np.zeros([wing.r + htail.r + len(ac.prop.D),n * (mC-1) + len(ac.prop.D)]); # for i in range(wing.r): select[i,(mC-2) + (mC-1)*i] = 1.; select2[(mC-1)*i:(mC-1)*(i+1),i] = 1.; select3[i,(mC-1)*i:(mC-1)*(i+1)] = ds[(mC-1)*i:(mC-1)*(i+1)]/dS[i]; for i in range(wing.r,n): select[i-wing.r,(mC-2) + (mC-1)*i] = 1.; select2[(mC-1)*i:(mC-1)*(i+1),i - wing.r] = 1.; select3[i - wing.r,(mC-1)*i:(mC-1)*(i+1)] = ds[(mC-1)*i:(mC-1)*(i+1)]/dS[i-wing.r]; if ac.prop.bool: select3[-len(ac.prop.D):,-len(ac.prop.D):] = np.eye(len(ac.prop.D)); Ao,Vxo,Vyo,Vzo = ICM_F(X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac,n,mC,mW); invA = np.linalg.inv(Ao); A = invA; Vx = np.dot(select3,Vxo); Vy = np.dot(select3,Vyo); Vz = np.dot(select3,Vzo); return A,normal,Vx,Vy,Vz,select,select2; def getGridF_Engines(flow,ac,cla): beta = - flow.getBeta()*m.pi/180.; aoa = m.pi * (flow.getAMax()+flow.getAMin())/180.; # Main lifting surfaces wing = ac.wing; htail = ac.htail; prop = ac.prop; cf = wing.getCF(); rho0=1.225; #masse volumique à niveau de la mer [kg/m^3] dT=-6.5; #gradiente de temperature dans la troposphere [K/km] T0=288.15; #Temperature à niveau de la mer [K] g=9.80665; #gravité [m/s^2] Rair=287.1; #Constante de l'air [m^2/(s^2*K)] h = flow.getH(); # flight altitude [km] V0 = flow.getV0(); # freestream velocity [m/s] rho = rho0 * (1. + dT*h/T0)**(- g/(Rair*dT*10**(-3)) - 1.); # air density Sh = m.pi * prop.getD()**2 *0.25;#Surface disque actuator [m^2] nbE = len(prop.getD()); OWU = prop.getYp()/np.abs(prop.getYp()); for ii in range(nbE): if not(prop.OWU[ii]): OWU *= -1.; # Numerical parameters for discretization tF = 2.; # temps caractéristique de convection des vortex nbEch = 1.; # Nombre minimal de points de controle par rotation des lignes de courant/tourbillons mW = int(tF*nbEch/(2*m.pi)*max(prop.getOmega())); # discretisation of the wake, get correct direction of it behind parts times = np.linspace(0.,tF,mW); mC = wing.mC; # chordwise discretisation number of control point for the chord n = 2*wing.getR()+htail.getR(); # spanwise discretisation number of panel # Panels' coordinates and main parameters (at c/4) xp = wing.getXP(); yp = wing.getYP(); zp = wing.getZP(); cP = wing.getChord(); tw = wing.getTwist(); dih = wing.getDih(); sw = wing.getSweepC4(); # Panel bordes' coordinate and main parameters (at c/4) x = wing.getX(); y = wing.getY(); z = wing.getZ(); c = wing.getChordDist(); twSec = wing.twSec; xW = np.unique(np.concatenate([(1.-cf)*0.5*(np.cos(np.linspace(m.pi,0.,mC))+1.),[0.25]])); mC = len(xW); iC4W = np.where(xW == 0.25)[0][0]; # Indice du début du flaps / fin de main element zW = np.zeros([mC,len(wing.getAF())],dtype = float); for ii in range(len(wing.getAF())): zW[:,ii]= camber(wing.getAF(ii),xW); xF = 1. - cf * np.linspace(1.,0,mC); zF = np.zeros([mC,len(wing.getAF())],dtype = float); for ii in range(len(wing.getAF())): zF[:,ii] = camber(wing.getAF(ii),xF); if htail.bool: # Panel bordes' coordinate and main parameters (at c/4) x = np.concatenate([x,htail.getX()]); y = np.concatenate([y,htail.getY()]); z = np.concatenate([z,htail.getZ()]); c = np.concatenate([c,htail.getChordDist()]); twSec = np.concatenate([wing.twSec,htail.twSec]); # Panels' coordinates and main parameters (at c/4) xp = np.concatenate([xp,htail.getXP()]); yp = np.concatenate([yp,htail.getYP()]); zp = np.concatenate([zp,htail.getZP()]); cP = np.concatenate([cP,htail.getChord()]); tw = np.concatenate([tw,htail.getTwist()]); dih = np.concatenate([dih,htail.getDih()]); sw = np.concatenate([sw,htail.getSweepC4()]); # Elevator, Assumed to be as plain flaps cfT = htail.getCF(); if cfT != 0: xT = np.unique(np.concatenate([np.linspace(1.,1.-cfT,2),(1.-cfT)*0.5*(np.cos(np.linspace(m.pi,0.,mC-1))+1.)])); xT[abs((xT-0.25)) == np.min(abs(xT-0.25))] = 0.25; else: xT = 0.5*(np.cos(np.linspace(m.pi,0.,mC))+1.); xT[abs((xT-0.25)) == np.min(abs(xT-0.25))] = 0.25; iC4T = np.where(xT == 0.25)[0][0]; zT = np.zeros([mC,len(htail.getAF())],dtype = float); for ii in range(len(htail.getAF())): zT[:,ii-1]= camber(htail.getAF(ii),xT); #generate grid corner coordinates # generate collocation points and normal : where tangency condition is # satisfied. Distance from bound vortex depends on the sectional lift # curve slope : (dist/localChord) = clAlphas/(4*pi) X = np.zeros(n * (2 * (mC + mW)+1),dtype = float); Y = np.zeros(n * (2 * (mC + mW)+1),dtype = float); # initialization Z = np.zeros(n * (2 * (mC + mW)+1),dtype = float); COLOCX=np.zeros((mC-1)*n); COLOCY=np.zeros((mC-1)*n); COLOCZ=np.zeros((mC-1)*n); normal = np.zeros([3,(mC-1)*n]); coef = 0.25+cla*0.25/m.pi; ds = np.zeros((mC-1)*n); # vector of area of any panel dS = np.zeros(wing.r+htail.r); # vector of area of a spanwise section xvl = np.zeros(mC + mW,dtype = float); yvl = np.zeros(mC + mW,dtype = float); zvl = np.zeros(mC + mW,dtype = float); xvr = np.zeros(mC + mW,dtype = float); yvr = np.zeros(mC + mW,dtype = float); zvr = np.zeros(mC + mW,dtype = float); xvlf = np.zeros(mC + mW,dtype = float); yvlf = np.zeros(mC + mW,dtype = float); zvlf = np.zeros(mC + mW,dtype = float); xvrf = np.zeros(mC + mW,dtype = float); yvrf = np.zeros(mC + mW,dtype = float); zvrf = np.zeros(mC + mW,dtype = float); dzdx = np.zeros(mW-1,dtype = float); for i in range(wing.getR()): camb = zW[:,wing.getAFI(i)] cambF = zF[:,wing.getAFI(i)]; il = i; cl = c[il]; twl = twSec[il]; xl = (xW - 0.25) * cl + x[il]; yl = y[il] * np.ones(mC); zl = camb * cl + z[il]; xlf = (xF - 0.25) * cl + x[il]; ylf = y[il] * np.ones(mC); zlf = cambF * cl + z[il]; center = np.array([xl[iC4W],yl[iC4W],zl[iC4W]]); alpha = 180./m.pi*twl; Rot = u.roty(alpha); for ii in range(mC): point = np.array([xl[ii],yl[ii],zl[ii]])-center; point = np.dot(Rot,point) + center; xl[ii] = point[0]; yl[ii] = point[1]; zl[ii] = point[2]; pointf = np.array([xlf[ii],ylf[ii],zlf[ii]])-center; pointf = np.dot(Rot,pointf) + center; xlf[ii] = pointf[0] - 0.02 * cl; ylf[ii] = pointf[1]; zlf[ii] = pointf[2] - 0.02 * cl; centerf = np.array([xlf[0],ylf[0],zlf[0]]); delta = wing.getDF(i); Rotf = u.roty(delta); for ii in range(mC): pointf = np.array([xlf[ii],ylf[ii],zlf[ii]])-centerf; pointf = np.dot(Rotf,pointf) + centerf; xlf[ii] = pointf[0]; ylf[ii] = pointf[1]; zlf[ii] = pointf[2]; xvl[:mC-1] = 0.75 * xl[:-1] + 0.25 * xl[1:]; yvl[:mC-1] = 0.75 * yl[:-1] + 0.25 * yl[1:]; zvl[:mC-1] = 0.75 * zl[:-1] + 0.25 * zl[1:]; xvl[mC-1] = xvl[mC-2] + (xl[-1]-xl[-2]); yvl[mC-1:] = yvl[mC-2] + (yl[-1]-yl[-2]); zvl[mC-1:] = zvl[mC-2] + (zl[-1]-zl[-2]); xvlf[:mC-1] = 0.75 * xlf[:-1] + 0.25 * xlf[1:]; yvlf[:mC-1] = 0.75 * ylf[:-1] + 0.25 * ylf[1:]; zvlf[:mC-1] = 0.75 * zlf[:-1] + 0.25 * zlf[1:]; xvlf[mC-1] = xvlf[mC-2] + (xlf[-1]-xlf[-2]); yvlf[mC-1:] = yvlf[mC-2] + (ylf[-1]-ylf[-2]); zvlf[mC-1:] = zvlf[mC-2] + (zlf[-1]-zlf[-2]); centerPropY = prop.getYp() + (xvl[mC-1] - prop.getXp()) * m.tan(beta); centerPropZ = prop.getZp() + (xvl[mC-1] - prop.getXp()) * m.tan(aoa); vix = 0.; for j in range(nbE): d = m.sqrt((yvl[mC-1] - centerPropY[j])**2 + (zvl[mC-1] - centerPropZ[j])**2); rP = prop.rHub[j]; D = prop.D[j]; vitheta = 0.; theta0 = np.arctan2(zvl[mC-1] - centerPropZ[j],yvl[mC-1] - centerPropY[j]); if ((d >= rP) and (d <= D * 0.5) and prop.Omega[j] != 0.): vix += 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); vix2 = 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); a = vix2/V0; aprim = 0.5 * (1. - m.sqrt(abs(1.-4.*a*(1.+a)*(V0/(prop.Omega[j] * d))**2))); vitheta = OWU[j]*abs((aprim * 2. * prop.Omega[j] * d)); Theta = times*vitheta/d + theta0; dY = np.cos(Theta[1:]) * d + centerPropY[j] - yvl[mC-1]; dZ = np.sin(Theta[1:]) * d + centerPropZ[j] - zvl[mC-1] ; yvl[mC:-1] += dY; zvl[mC:-1] += dZ; xvl[mC-1:-1] = xvl[mC-1] + times * (V0+vix); xvl[-1] = 10. * wing.b; indiceFinLocalEffectCamber = np.where(xvl >= xvl[mC-1] + 2.5 * cl)[0][1]; dzdxl = (zl[mC-1]-zl[mC-2])/(xl[mC-1]-xl[mC-2]); # Vérifie ça! dydx = V0/(V0+vix) *m.tan(beta) * (1.-np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1]))); dzdx = V0/(V0+vix) * dzdxl * np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1])) \ + V0/(V0+vix) * m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1]))); dY = np.zeros(mW+1); dZ = np.zeros(mW+1); for ii in range(1,indiceFinLocalEffectCamber-mC+1): dZ[ii] = dZ[(ii-1)] + dzdx[ii-1] * (xvl[mC-1+ii] - xvl[(mC-1+ii-1)]); dY[ii] = dY[(ii-1)] + dydx[ii-1] * (xvl[mC-1+ii] - xvl[(mC-1+ii-1)]); dZ[indiceFinLocalEffectCamber-mC+1:] = dZ[indiceFinLocalEffectCamber-mC] + m.tan(aoa) * (xvl[indiceFinLocalEffectCamber:] - xvl[indiceFinLocalEffectCamber-1]); dY[indiceFinLocalEffectCamber-mC+1:] = dY[indiceFinLocalEffectCamber-mC] + m.tan(beta) * (xvl[indiceFinLocalEffectCamber:] - xvl[indiceFinLocalEffectCamber-1]); yvl[mC-1:] += dY; zvl[mC-1:] += dZ; centerPropY = prop.getYp() + (xvlf[mC-1] - prop.getXp()) * m.tan(beta); centerPropZ = prop.getZp() + (xvlf[mC-1] - prop.getXp()) * m.tan(aoa); vix = 0.; for j in range(nbE): d = m.sqrt((yvlf[mC-1] - centerPropY[j])**2 + (zvlf[mC-1] - centerPropZ[j])**2); rP = prop.rHub[j]; D = prop.D[j]; vitheta = 0.; theta0 = np.arctan2(zvlf[mC-1] - centerPropZ[j],yvlf[mC-1] - centerPropY[j]); if ((d >= rP) and (d <= D * 0.5) and prop.Omega[j] != 0.): vix += 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); vix2 = 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); a = vix2/V0; aprim = 0.5 * (1. - m.sqrt(abs(1.-4.*a*(1.+a)*(V0/(prop.Omega[j] * d))**2))); vitheta = OWU[j]*abs((aprim * 2. * prop.Omega[j] * d)); Theta = times*vitheta/d + theta0; dY = np.cos(Theta[1:]) * d + centerPropY[j] - yvlf[mC-1]; dZ = np.sin(Theta[1:]) * d + centerPropZ[j] - zvlf[mC-1] ; yvlf[mC:-1] += dY; zvlf[mC:-1] += dZ; xvlf[mC-1:-1] = xvlf[mC-1] + times * (V0+vix); xvlf[-1] = 10. * wing.b; indiceFinLocalEffectCamber = np.where(xvlf >= xvlf[mC-1] + 2.5 * cl)[0][1]; dzdxl = (zlf[mC-1]-zlf[mC-2])/(xlf[mC-1]-xlf[mC-2]); # Vérifie ça! dydx = V0/(V0+vix) *m.tan(beta) * (1.-np.exp(-3.*(np.array(xvlf[mC:indiceFinLocalEffectCamber] - xvlf[mC-1]))/(xvlf[indiceFinLocalEffectCamber-1] - xvlf[mC-1]))); dzdx = V0/(V0+vix) * dzdxl * np.exp(-3.*(np.array(xvlf[mC:indiceFinLocalEffectCamber] - xvlf[mC-1]))/(xvlf[indiceFinLocalEffectCamber-1] - xvlf[mC-1])) \ + V0/(V0+vix) * m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvlf[mC:indiceFinLocalEffectCamber] - xvlf[mC-1]))/(xvlf[indiceFinLocalEffectCamber-1] - xvlf[mC-1]))); dY = np.zeros(mW+1); dZ = np.zeros(mW+1); for ii in range(1,indiceFinLocalEffectCamber-mC+1): dZ[ii] = dZ[(ii-1)] + dzdx[ii-1] * (xvlf[mC-1+ii] - xvlf[(mC-1+ii-1)]); dY[ii] = dY[(ii-1)] + dydx[ii-1] * (xvlf[mC-1+ii] - xvlf[(mC-1+ii-1)]); dZ[indiceFinLocalEffectCamber-mC+1:] = dZ[indiceFinLocalEffectCamber-mC] + m.tan(aoa) * (xvlf[indiceFinLocalEffectCamber:] - xvlf[indiceFinLocalEffectCamber-1]); dY[indiceFinLocalEffectCamber-mC+1:] = dY[indiceFinLocalEffectCamber-mC] + m.tan(beta) * (xvlf[indiceFinLocalEffectCamber:] - xvlf[indiceFinLocalEffectCamber-1]); yvlf[mC-1:] += dY; zvlf[mC-1:] += dZ; ## Right Part ir = i+1; cr = c[ir]; twr = twSec[ir]; xr = (xW - 0.25) * cr + x[ir]; yr = y[ir] * np.ones(mC); zr = camb * cr + z[ir]; xrf = (xF - 0.25) * cr + x[ir]; yrf = y[ir] * np.ones(mC); zrf = cambF * cr + z[ir]; center = np.array([xr[iC4W],yr[iC4W],zr[iC4W]]); alpha = 180./m.pi*twr; Rot = u.roty(alpha); for ii in range(0,mC): point = np.array([xr[ii],yr[ii],zr[ii]])-center; point = np.dot(Rot,point) + center; xr[ii] = point[0]; yr[ii] = point[1]; zr[ii] = point[2]; pointf = np.array([xrf[ii],yrf[ii],zrf[ii]])-center; pointf = np.dot(Rot,pointf) + center; xrf[ii] = pointf[0] - 0.02 * cr; yrf[ii] = pointf[1]; zrf[ii] = pointf[2] - 0.02 * cr; centerf = np.array([xrf[0],yrf[0],zrf[0]]); for ii in range(mC): pointf = np.array([xrf[ii],yrf[ii],zrf[ii]])-centerf; pointf = np.dot(Rotf,pointf) + centerf; xrf[ii] = pointf[0]; yrf[ii] = pointf[1]; zrf[ii] = pointf[2]; xvr[:mC-1] = 0.75 * xr[:-1] + 0.25 * xr[1:]; yvr[:mC-1] = 0.75 * yr[:-1] + 0.25 * yr[1:]; zvr[:mC-1] = 0.75 * zr[:-1] + 0.25 * zr[1:]; xvr[mC-1] = xvr[mC-2] + (xr[-1]-xr[-2]); yvr[mC-1:] = yvr[mC-2] + (yr[-1]-yr[-2]); zvr[mC-1:] = zvr[mC-2] + (zr[-1]-zr[-2]); xvrf[:mC-1] = 0.75 * xrf[:-1] + 0.25 * xrf[1:]; yvrf[:mC-1] = 0.75 * yrf[:-1] + 0.25 * yrf[1:]; zvrf[:mC-1] = 0.75 * zrf[:-1] + 0.25 * zrf[1:]; xvrf[mC-1] = xvrf[mC-2] + (xrf[-1]-xrf[-2]); yvrf[mC-1:] = yvrf[mC-2] + (yrf[-1]-yrf[-2]); zvrf[mC-1:] = zvrf[mC-2] + (zrf[-1]-zrf[-2]); centerPropY = prop.getYp() + (xvr[mC-1] - prop.getXp()) * m.tan(beta); centerPropZ = prop.getZp() + (xvr[mC-1] - prop.getXp()) * m.tan(aoa); vix = 0.; for j in range(nbE): d = m.sqrt((yvr[mC-1] - centerPropY[j])**2 + (zvr[mC-1] - centerPropZ[j])**2); rP = prop.rHub[j]; D = prop.D[j]; vitheta = 0.; theta0 = np.arctan2(zvr[mC-1] - centerPropZ[j],yvr[mC-1] - centerPropY[j]); if ((d >= rP) and (d <= D * 0.5) and prop.Omega[j] != 0.): vix += 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); vix2 = 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); a = vix2/V0; aprim = 0.5 * (1. - m.sqrt(abs(1.-4.*a*(1.+a)*(V0/(prop.Omega[j] * d))**2))); vitheta = OWU[j]*abs((aprim * 2. * prop.Omega[j] * d)); Theta = times*vitheta/d + theta0; dY = np.cos(Theta[1:]) * d + centerPropY[j] - yvr[mC-1]; dZ = np.sin(Theta[1:]) * d + centerPropZ[j] - zvr[mC-1] ; yvr[mC:-1] += dY; zvr[mC:-1] += dZ; xvr[mC-1:-1] = xvr[mC-1] + times * (V0+vix); xvr[-1] = 10. * wing.b; indiceFinLocalEffectCamber = np.where(xvr >= xvr[mC-1] + 2.5 * cr)[0][1]; dzdxr = (zr[mC-1]-zr[mC-2])/(xr[mC-1]-xr[mC-2]); # Vérifie ça! dydx = V0/(V0+vix) *m.tan(beta) * (1.-np.exp(-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1]))); dzdx = V0/(V0+vix) * dzdxr * np.exp(-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1])) \ + V0/(V0+vix) * m.tan(aoa) * (1.-np.exp((-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1])))); dY = np.zeros(mW+1); dZ = np.zeros(mW+1); for ii in range(1,indiceFinLocalEffectCamber-mC+1): dZ[ii] = dZ[(ii-1)] + dzdx[ii-1] * (xvr[mC-1+ii] - xvr[(mC-1+ii-1)]); dY[ii] = dY[(ii-1)] + dydx[ii-1] * (xvr[mC-1+ii] - xvr[(mC-1+ii-1)]); dZ[indiceFinLocalEffectCamber-mC+1:] = dZ[indiceFinLocalEffectCamber-mC] + m.tan(aoa) * (xvr[indiceFinLocalEffectCamber:] - xvr[indiceFinLocalEffectCamber-1]); dY[indiceFinLocalEffectCamber-mC+1:] = dY[indiceFinLocalEffectCamber-mC] + m.tan(beta) * (xvr[indiceFinLocalEffectCamber:] - xvr[indiceFinLocalEffectCamber-1]); yvr[mC-1:] += dY; zvr[mC-1:] += dZ; centerPropY = prop.getYp() + (xvrf[mC-1] - prop.getXp()) * m.tan(beta); centerPropZ = prop.getZp() + (xvrf[mC-1] - prop.getXp()) * m.tan(aoa); vix = 0.; for j in range(nbE): d = m.sqrt((yvrf[mC-1] - centerPropY[j])**2 + (zvrf[mC-1] - centerPropZ[j])**2); rP = prop.rHub[j]; D = prop.D[j]; vitheta = 0.; theta0 = np.arctan2(zvrf[mC-1] - centerPropZ[j],yvrf[mC-1] - centerPropY[j]); if ((d >= rP) and (d <= D * 0.5) and prop.Omega[j] != 0.): vix += 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); vix2 = 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); a = vix2/V0; aprim = 0.5 * (1. - m.sqrt(abs(1.-4.*a*(1.+a)*(V0/(prop.Omega[j] * d))**2))); vitheta = OWU[j]*abs((aprim * 2. * prop.Omega[j] * d)); Theta = times*vitheta/d + theta0; dY = np.cos(Theta[1:]) * d + centerPropY[j] - yvrf[mC-1]; dZ = np.sin(Theta[1:]) * d + centerPropZ[j] - zvrf[mC-1] ; yvrf[mC:-1] += dY; zvrf[mC:-1] += dZ; xvrf[mC-1:-1] = xvrf[mC-1] + times * (V0+vix); xvrf[-1] = 10. * wing.b; indiceFinLocalEffectCamber = np.where(xvrf >= xvrf[mC-1] + 2.5 * cr)[0][1]; dzdxr = (zrf[mC-1]-zrf[mC-2])/(xrf[mC-1]-xrf[mC-2]); # Vérifie ça! dydx = V0/(V0+vix) *m.tan(beta) * (1.-np.exp(-3.*(np.array(xvrf[mC:indiceFinLocalEffectCamber] - xvrf[mC-1]))/(xvrf[indiceFinLocalEffectCamber-1] - xvrf[mC-1]))); dzdx = V0/(V0+vix) * dzdxl * np.exp(-3.*(np.array(xvrf[mC:indiceFinLocalEffectCamber] - xvrf[mC-1]))/(xvrf[indiceFinLocalEffectCamber-1] - xvrf[mC-1])) \ + V0/(V0+vix) * m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvrf[mC:indiceFinLocalEffectCamber] - xvrf[mC-1]))/(xvrf[indiceFinLocalEffectCamber-1] - xvrf[mC-1]))); dY = np.zeros(mW+1); dZ = np.zeros(mW+1); for ii in range(1,indiceFinLocalEffectCamber-mC+1): dZ[ii] = dZ[(ii-1)] + dzdx[ii-1] * (xvrf[mC-1+ii] - xvrf[(mC-1+ii-1)]); dY[ii] = dY[(ii-1)] + dydx[ii-1] * (xvrf[mC-1+ii] - xvrf[(mC-1+ii-1)]); dZ[indiceFinLocalEffectCamber-mC+1:] = dZ[indiceFinLocalEffectCamber-mC] + m.tan(aoa) * (xvrf[indiceFinLocalEffectCamber:] - xvrf[indiceFinLocalEffectCamber-1]); dY[indiceFinLocalEffectCamber-mC+1:] = dY[indiceFinLocalEffectCamber-mC] + m.tan(beta) * (xvrf[indiceFinLocalEffectCamber:] - xvrf[indiceFinLocalEffectCamber-1]); yvrf[mC-1:] += dY; zvrf[mC-1:] += dZ; setTable(X,2*(mC+mW)+1,i,np.concatenate([[xvl[0]],xvr,xvl[::-1]])); setTable(Y,2*(mC+mW)+1,i,np.concatenate([[yvl[0]],yvr,yvl[::-1]])); setTable(Z,2*(mC+mW)+1,i,np.concatenate([[zvl[0]],zvr,zvl[::-1]])); setTable(X,2*(mC+mW)+1,wing.r+i,np.concatenate([[xvlf[0]],xvrf,xvlf[::-1]])); setTable(Y,2*(mC+mW)+1,wing.r+i,np.concatenate([[yvlf[0]],yvrf,yvlf[::-1]])); setTable(Z,2*(mC+mW)+1,wing.r+i,np.concatenate([[zvlf[0]],zvrf,zvlf[::-1]])); for j in range(mC-1): val = [xvl[j],xvr[j],0.5* (xl[j] + xr[j]), 0.5* (xl[j+1] + xr[j+1])]; COLOCX[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvl[j],yvr[j],0.5* (yl[j] + yr[j]), 0.5* (yl[j+1] + yr[j+1])]; COLOCY[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvl[j],zvr[j],0.5* (zl[j] + zr[j]), 0.5* (zl[j+1] + zr[j+1])]; COLOCZ[i * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[i * (mC-1) + j] = cpmag; normal[:, i * (mC-1) + j] = cp/cpmag; val = [xvlf[j],xvrf[j],0.5* (xlf[j] + xrf[j]), 0.5* (xlf[j+1] + xrf[j+1])]; COLOCX[(i+wing.r) * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvlf[j],yvrf[j],0.5* (ylf[j] + yrf[j]), 0.5* (ylf[j+1] + yrf[j+1])]; COLOCY[(i+wing.r) * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvlf[j],zvrf[j],0.5* (zlf[j] + zrf[j]), 0.5* (zlf[j+1] + zrf[j+1])]; COLOCZ[(i+wing.r) * (mC-1) + j] = val[2] * (1.-coef[i]) + val[3] * coef[i]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[(i + wing.r) * (mC-1) + j] = cpmag; normal[:, (i + wing.r) * (mC-1) + j] = cp/cpmag; dS[i] = sum(ds[i * (mC-1):(i+1) * (mC-1)]) + sum(ds[(i+wing.r) * (mC-1):(i+wing.r+1) * (mC-1)]); for i in range(2*wing.getR(),2*wing.getR()+htail.getR()): iPT = i- 2 * wing.getR(); camb = zT[:,htail.getAFI(iPT)] il = i+1 - wing.r; cl = c[il]; twl = twSec[il]; xl = (xT - 0.25) * cl + x[il]; yl = y[il] * np.ones(mC); zl = camb * cl + z[il]; center = np.array([xl[iC4T],yl[iC4T],zl[iC4T]]); alpha = 180./m.pi*twl; Rot = u.roty(alpha); for ii in range(mC): point = np.array([xl[ii],yl[ii],zl[ii]])-center; point = np.dot(Rot,point) + center; xl[ii] = point[0]; yl[ii] = point[1]; zl[ii] = point[2]; if htail.getDF(iPT) != 0.: delta = htail.getDF(iPT); RotF = u.roty(delta); center = np.array([xl[-2],yl[-2],zl[-2]]); point = np.array([xl[-1],yl[-1],zl[-1]])-center; point = np.dot(RotF,point) + center; xl[-1] = point[0]; yl[-1] = point[1]; zl[-1] = point[2]; xvl[:mC-1] = 0.75 * xl[:-1] + 0.25 * xl[1:]; yvl[:mC-1] = 0.75 * yl[:-1] + 0.25 * yl[1:]; zvl[:mC-1] = 0.75 * zl[:-1] + 0.25 * zl[1:]; xvl[mC-1] = xvl[mC-2] + (xl[-1]-xl[-2]); yvl[mC-1:] = yvl[mC-2] + (yl[-1]-yl[-2]); zvl[mC-1:] = zvl[mC-2] + (zl[-1]-zl[-2]); # End of chord vortex = begining of wake vortex centerPropY = prop.getYp() + (xvl[mC-1] - prop.getXp()) * m.tan(beta); centerPropZ = prop.getZp() + (xvl[mC-1] - prop.getXp()) * m.tan(aoa); vix = 0.; for j in range(nbE): d = m.sqrt((yvl[mC-1] - centerPropY[j])**2 + (zvl[mC-1] - centerPropZ[j])**2); rP = prop.rHub[j]; D = prop.D[j]; vitheta = 0.; theta0 = np.arctan2(zvl[mC-1] - centerPropZ[j],yvl[mC-1] - centerPropY[j]); if ((d >= rP) and (d <= D * 0.5) and prop.Omega[j] != 0.): vix += 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); vix2 = 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); a = vix2/V0; aprim = 0.5 * (1. - m.sqrt(abs(1.-4.*a*(1.+a)*(V0/(prop.Omega[j] * d))**2))); vitheta = OWU[j]*abs((aprim * 2. * prop.Omega[j] * d)); Theta = times*vitheta/d + theta0; dY = np.cos(Theta[1:]) * d + centerPropY[j] - yvl[mC-1]; dZ = np.sin(Theta[1:]) * d + centerPropZ[j] - zvl[mC-1] ; yvl[mC:-1] += dY; zvl[mC:-1] += dZ; xvl[mC-1:-1] = xvl[mC-1] + times * (V0+vix); xvl[-1] = 10. * wing.b; indiceFinLocalEffectCamber = np.where(xvl >= xvl[mC-1] + 2.5 * cl)[0][1]; dzdxl = (zl[mC-1]-zl[mC-2])/(xl[mC-1]-xl[mC-2]); # Vérifie ça! dydx = V0/(V0+vix) *m.tan(beta) * (1.-np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1]))); dzdx = V0/(V0+vix) * dzdxl * np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1])) \ + V0/(V0+vix) * m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvl[mC:indiceFinLocalEffectCamber] - xvl[mC-1]))/(xvl[indiceFinLocalEffectCamber-1] - xvl[mC-1]))); dY = np.zeros(mW+1); dZ = np.zeros(mW+1); for ii in range(1,indiceFinLocalEffectCamber-mC+1): dZ[ii] = dZ[(ii-1)] + dzdx[ii-1] * (xvl[mC-1+ii] - xvl[(mC-1+ii-1)]); dY[ii] = dY[(ii-1)] + dydx[ii-1] * (xvl[mC-1+ii] - xvl[(mC-1+ii-1)]); dZ[indiceFinLocalEffectCamber-mC+1:] = dZ[indiceFinLocalEffectCamber-mC] + m.tan(aoa) * (xvl[indiceFinLocalEffectCamber:] - xvl[indiceFinLocalEffectCamber-1]); dY[indiceFinLocalEffectCamber-mC+1:] = dY[indiceFinLocalEffectCamber-mC] + m.tan(beta) * (xvl[indiceFinLocalEffectCamber:] - xvl[indiceFinLocalEffectCamber-1]); yvl[mC-1:] += dY; zvl[mC-1:] += dZ; ir = i+2 - wing.r; cr = c[ir]; twr = twSec[ir]; xr = (xT - 0.25) * cr + x[ir]; yr = y[ir] * np.ones(mC); zr = camb * cr + z[ir]; center = np.array([xr[iC4T],yr[iC4T],zr[iC4T]]); alpha = 180./m.pi*twr; Rot = u.roty(alpha); for ii in range(0,mC): point = np.array([xr[ii],yr[ii],zr[ii]])-center; point = np.dot(Rot,point) + center; xr[ii] = point[0]; yr[ii] = point[1]; zr[ii] = point[2]; if htail.getDF(iPT) != 0.: delta = htail.getDF(iPT); RotF = u.roty(delta); center = np.array([xr[-2],yr[-2],zr[-2]]); point = np.array([xr[-1],yr[-1],zr[-1]])-center; point = np.dot(RotF,point) + center; xr[-1] = point[0]; yr[-1] = point[1]; zr[-1] = point[2]; xvr[:mC-1] = 0.75 * xr[:-1] + 0.25 * xr[1:]; yvr[:mC-1] = 0.75 * yr[:-1] + 0.25 * yr[1:]; zvr[:mC-1] = 0.75 * zr[:-1] + 0.25 * zr[1:]; xvr[mC-1] = xvr[mC-2] + (xr[-1]-xr[-2]); yvr[mC-1:] = yvr[mC-2] + (yr[-1]-yr[-2]); zvr[mC-1:] = zvr[mC-2] + (zr[-1]-zr[-2]); # End of chord vortex = begining of wake vortex centerPropY = prop.getYp() + (xvr[mC-1] - prop.getXp()) * m.tan(beta); centerPropZ = prop.getZp() + (xvr[mC-1] - prop.getXp()) * m.tan(aoa); vix = 0.; for j in range(nbE): d = m.sqrt((yvr[mC-1] - centerPropY[j])**2 + (zvr[mC-1] - centerPropZ[j])**2); rP = prop.rHub[j]; D = prop.D[j]; vitheta = 0.; theta0 = np.arctan2(zvr[mC-1] - centerPropZ[j],yvr[mC-1] - centerPropY[j]); if ((d >= rP) and (d <= D * 0.5) and prop.Omega[j] != 0.): vix += 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); vix2 = 0.5*V0*(m.sqrt(1.+2.*prop.T[j]/(rho*Sh[j]*V0**2))-1.); a = vix2/V0; aprim = 0.5 * (1. - m.sqrt(abs(1.-4.*a*(1.+a)*(V0/(prop.Omega[j] * d))**2))); vitheta = OWU[j]*abs((aprim * 2. * prop.Omega[j] * d)); Theta = times*vitheta/d + theta0; dY = np.cos(Theta[1:]) * d + centerPropY[j] - yvr[mC-1]; dZ = np.sin(Theta[1:]) * d + centerPropZ[j] - zvr[mC-1] ; yvr[mC:-1] += dY; zvr[mC:-1] += dZ; xvr[mC-1:-1] = xvr[mC-1] + times * (V0+vix); xvr[-1] = 10. * wing.b; indiceFinLocalEffectCamber = np.where(xvr >= xvr[mC-1] + 2.5 * cr)[0][1]; dzdxr = (zr[mC-1]-zr[mC-2])/(xr[mC-1]-xr[mC-2]); # Vérifie ça! dydx = V0/(V0+vix) *m.tan(beta) * (1.-np.exp(-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1]))); dzdx = V0/(V0+vix) * dzdxr * np.exp(-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1])) \ + V0/(V0+vix) * m.tan(aoa) * (1.-np.exp((-3.*(np.array(xvr[mC:indiceFinLocalEffectCamber] - xvr[mC-1]))/(xvr[indiceFinLocalEffectCamber-1] - xvr[mC-1])))); dY = np.zeros(mW+1); dZ = np.zeros(mW+1); for ii in range(1,indiceFinLocalEffectCamber-mC+1): dZ[ii] = dZ[(ii-1)] + dzdx[ii-1] * (xvr[mC-1+ii] - xvr[(mC-1+ii-1)]); dY[ii] = dY[(ii-1)] + dydx[ii-1] * (xvr[mC-1+ii] - xvr[(mC-1+ii-1)]); dZ[indiceFinLocalEffectCamber-mC+1:] = dZ[indiceFinLocalEffectCamber-mC] + m.tan(aoa) * (xvr[indiceFinLocalEffectCamber:] - xvr[indiceFinLocalEffectCamber-1]); dY[indiceFinLocalEffectCamber-mC+1:] = dY[indiceFinLocalEffectCamber-mC] + m.tan(beta) * (xvr[indiceFinLocalEffectCamber:] - xvr[indiceFinLocalEffectCamber-1]); yvr[mC-1:] += dY; zvr[mC-1:] += dZ; setTable(X,2*(mC+mW)+1,i,np.concatenate([[xvl[0]],xvr,xvl[::-1]])); setTable(Y,2*(mC+mW)+1,i,np.concatenate([[yvl[0]],yvr,yvl[::-1]])); setTable(Z,2*(mC+mW)+1,i,np.concatenate([[zvl[0]],zvr,zvl[::-1]])); for j in range(mC-1): val = [xvl[j],xvr[j],0.5* (xl[j] + xr[j]), 0.5* (xl[j+1] + xr[j+1])]; COLOCX[i * (mC-1) + j] = val[2] * (1.-coef[i - wing.r]) + val[3] * coef[i - wing.r]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvl[j],yvr[j],0.5* (yl[j] + yr[j]), 0.5* (yl[j+1] + yr[j+1])]; COLOCY[i * (mC-1) + j] = val[2] * (1.-coef[i - wing.r]) + val[3] * coef[i - wing.r]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvl[j],zvr[j],0.5* (zl[j] + zr[j]), 0.5* (zl[j+1] + zr[j+1])]; COLOCZ[i * (mC-1) + j] = val[2] * (1.-coef[i - wing.r]) + val[3] * coef[i - wing.r]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[i * (mC-1) + j] = cpmag; normal[:, i * (mC-1) + j] = cp/cpmag; dS[i-wing.r] = sum(ds[i * (mC-1):(i+1) * (mC-1)]); # plt.plot(Y[:wing.r*(2*(mC+mW)+1)],X[:wing.r*(2*(mC+mW)+1)]); # plt.plot(Y[wing.r*(2*(mC+mW)+1):2*wing.r*(2*(mC+mW)+1)],X[wing.r*(2*(mC+mW)+1):2*wing.r*(2*(mC+mW)+1)]); # plt.plot(Y[2*wing.r*(2*(mC+mW)+1):(2*wing.r+htail.r)*(2*(mC+mW)+1)],X[2*wing.r*(2*(mC+mW)+1):(2*wing.r+htail.r)*(2*(mC+mW)+1)]); # plt.plot(Y[(2*wing.r+htail.r)*(2*(mC+mW)+1):],X[(2*wing.r+htail.r)*(2*(mC+mW)+1):]); # plt.axis([-7,7,-1,13]) # plt.show() # # plt.plot(Y[:wing.r*(2*(mC+mW)+1)],Z[:wing.r*(2*(mC+mW)+1)]); # plt.plot(Y[wing.r*(2*(mC+mW)+1):2*wing.r*(2*(mC+mW)+1)],Z[wing.r*(2*(mC+mW)+1):2*wing.r*(2*(mC+mW)+1)]); # plt.plot(Y[2*wing.r*(2*(mC+mW)+1):(2*wing.r+htail.r)*(2*(mC+mW)+1)],Z[2*wing.r*(2*(mC+mW)+1):(2*wing.r+htail.r)*(2*(mC+mW)+1)]); # plt.plot(Y[(2*wing.r+htail.r)*(2*(mC+mW)+1):],Z[(2*wing.r+htail.r)*(2*(mC+mW)+1):]); # plt.axis([-7,7,-3,7]) # plt.show() # # plt.plot(X[:wing.r*(2*(mC+mW)+1)],Z[:wing.r*(2*(mC+mW)+1)]); # plt.plot(X[wing.r*(2*(mC+mW)+1):2*wing.r*(2*(mC+mW)+1)],Z[wing.r*(2*(mC+mW)+1):2*wing.r*(2*(mC+mW)+1)]); # plt.plot(X[2*wing.r*(2*(mC+mW)+1):(2*wing.r+htail.r)*(2*(mC+mW)+1)],Z[2*wing.r*(2*(mC+mW)+1):(2*wing.r+htail.r)*(2*(mC+mW)+1)]); # plt.plot(X[(2*wing.r+htail.r)*(2*(mC+mW)+1):],Z[(2*wing.r+htail.r)*(2*(mC+mW)+1):]); # plt.axis([-1,13,-3,7]) # plt.show() # return select = np.zeros([wing.r + htail.r,n * (mC-1)]); # rechercher intensité du dernier vortex uniquement select2 = np.zeros([n * (mC-1),wing.r + htail.r]); # pour chaque paneau sur même section y, même velocity triangle select3 = np.zeros([wing.r + htail.r + len(ac.prop.D),n * (mC-1) + len(ac.prop.D)]); # for i in range(wing.r): select[i,(mC-2) + (mC-1)*i] = 1.; select2[(mC-1)*i:(mC-1)*(i+1),i] = 1.; select3[i,(mC-1)*i:(mC-1)*(i+1)] = ds[(mC-1)*i:(mC-1)*(i+1)]/dS[i]; for i in range(wing.r,n): select[i-wing.r,(mC-2) + (mC-1)*i] = 1.; select2[(mC-1)*i:(mC-1)*(i+1),i - wing.r] = 1.; select3[i - wing.r,(mC-1)*i:(mC-1)*(i+1)] = ds[(mC-1)*i:(mC-1)*(i+1)]/dS[i-wing.r]; if ac.prop.bool: select3[-len(ac.prop.D):,-len(ac.prop.D):] = np.eye(len(ac.prop.D)); Ao,Vxo,Vyo,Vzo = ICM_F(X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac,n,mC,mW); invA = np.linalg.inv(Ao); A = invA; Vx = np.dot(select3,Vxo); Vy = np.dot(select3,Vyo); Vz = np.dot(select3,Vzo); return A,normal,Vx,Vy,Vz,select,select2; def ICM(X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac,n,mC,mW): if ac.fus.bool: HWing = ac.fus.vDist > 0; if ac.htail.bool and ac.vtail.bool: HTail = ac.htail.z[ac.htail.getR()/2] > ((ac.vtail.z[-1]-ac.vtail.z[0]) * 0.66) + ac.vtail.z[0]; if not(ac.fus.bool): if not(ac.vtail.bool) or not(ac.htail.bool) or HTail: A,Vx,Vy,Vz = OnlyWing(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); else: A,Vx,Vy,Vz = BothWingOneTailVtail(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); else: if not(ac.vtail.bool): if HWing: A,Vx,Vy,Vz = OnlyWing(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); else: A,Vx,Vy,Vz = OneWingBothTail(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); else: if HWing and HTail: A,Vx,Vy,Vz = OnlyWing(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); elif HTail: A,Vx,Vy,Vz = OneWingBothTail(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); elif HWing: A,Vx,Vy,Vz = BothWingOneTailVtail(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); else: A,Vx,Vy,Vz = OneWingOneTailVtail(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); return A,Vx,Vy,Vz; def ICM_F(X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac,n,mC,mW): if ac.fus.bool: HWing = ac.fus.vDist > 0; if ac.htail.bool and ac.vtail.bool: HTail = ac.htail.z[ac.htail.getR()/2] > ((ac.vtail.z[-1]-ac.vtail.z[0]) * 0.66) + ac.vtail.z[0]; if not(ac.fus.bool): if not(ac.vtail.bool) or not(ac.htail.bool) or HTail: A,Vx,Vy,Vz = OnlyWing(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); else: A,Vx,Vy,Vz = BothWingOneTailVtailF(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); else: if not(ac.vtail.bool): if HWing: A,Vx,Vy,Vz = OnlyWing(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); else: A,Vx,Vy,Vz = OneWingBothTailF(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); else: if HWing and HTail: A,Vx,Vy,Vz = OnlyWing(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); elif HTail: A,Vx,Vy,Vz = OneWingBothTailF(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); elif HWing: A,Vx,Vy,Vz = BothWingOneTailVtailF(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); else: A,Vx,Vy,Vz = OneWingOneTailVtailF(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac); return A,Vx,Vy,Vz; def OnlyWing(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac): m = n * (mC-1); if ac.prop.bool: nbE = len(ac.prop.D); m += nbE; A = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); Vx = np.zeros([m,n*(mC-1)],dtype = float); Vy = np.zeros([m,n*(mC-1)],dtype = float); Vz = np.zeros([m,n*(mC-1)],dtype = float); for b in range(n * (mC - 1)): for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; if ac.prop.bool: for b in range(n * (mC - 1),m): x = ac.prop.xp[b-n* (mC - 1)]; y = ac.prop.yp[b-n* (mC - 1)]; z = ac.prop.zp[b-n* (mC - 1)]; for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(x,y,z,np.array([-1.,0.,0.]),pathX,pathY,pathZ,mC,mW); Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; return A,Vx,Vy,Vz; def BothWingOneTailVtail(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac): m = n * (mC-1); if ac.prop.bool: nbE = len(ac.prop.D); m += nbE; A = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); Vx = np.zeros([m,n*(mC-1)],dtype = float); Vy = np.zeros([m,n*(mC-1)],dtype = float); Vz = np.zeros([m,n*(mC-1)],dtype = float); for b in range(ac.wing.getR()*(mC-1)): for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()*(mC-1),(ac.htail.getR()/2+ac.wing.getR())*(mC-1)): for j in range(ac.htail.getR()/2+ac.wing.getR()-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range((ac.wing.getR()+ac.htail.getR()/2)*(mC-1),n*(mC-1)): for j in range(ac.wing.getR()): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j = ac.wing.getR()+ac.htail.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()+ac.htail.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; if ac.prop.bool: for b in range(n * (mC - 1),m): x = ac.prop.xp[b-n* (mC - 1)]; y = ac.prop.yp[b-n* (mC - 1)]; z = ac.prop.zp[b-n* (mC - 1)]; for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(x,y,z,np.array([-1.,0.,0.]),pathX,pathY,pathZ,mC,mW); Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; return A,Vx,Vy,Vz; def BothWingOneTailVtailF(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac): m = n * (mC-1); if ac.prop.bool: nbE = len(ac.prop.D); m += nbE; A = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); Vx = np.zeros([m,n*(mC-1)],dtype = float); Vy = np.zeros([m,n*(mC-1)],dtype = float); Vz = np.zeros([m,n*(mC-1)],dtype = float); for b in range(2*ac.wing.getR()*(mC-1)): for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(2*ac.wing.getR()*(mC-1),(ac.htail.getR()/2+2*ac.wing.getR())*(mC-1)): for j in range(ac.htail.getR()/2+2*ac.wing.getR()-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range((2*ac.wing.getR()+ac.htail.getR()/2)*(mC-1),n*(mC-1)): for j in range(2*ac.wing.getR()): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j = 2*ac.wing.getR()+ac.htail.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(2*ac.wing.getR()+ac.htail.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; if ac.prop.bool: for b in range(n * (mC - 1),m): x = ac.prop.xp[b-n* (mC - 1)]; y = ac.prop.yp[b-n* (mC - 1)]; z = ac.prop.zp[b-n* (mC - 1)]; for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(x,y,z,np.array([-1.,0.,0.]),pathX,pathY,pathZ,mC,mW); Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; return A,Vx,Vy,Vz; def OneWingBothTail(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac): m = n * (mC-1); if ac.prop.bool: nbE = len(ac.prop.D); m += nbE; A = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); Vx = np.zeros([m,n*(mC-1)],dtype = float); Vy = np.zeros([m,n*(mC-1)],dtype = float); Vz = np.zeros([m,n*(mC-1)],dtype = float); for b in range(ac.wing.getR()/2*(mC-1)): for j in range(ac.wing.getR()/2-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR(),n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()/2*(mC-1),ac.wing.getR()*(mC-1)): j = ac.wing.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()*(mC-1),n*(mC-1)): for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; if ac.prop.bool: for b in range(n * (mC - 1),m): x = ac.prop.xp[b-n* (mC - 1)]; y = ac.prop.yp[b-n* (mC - 1)]; z = ac.prop.zp[b-n* (mC - 1)]; for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(x,y,z,np.array([-1.,0.,0.]),pathX,pathY,pathZ,mC,mW); Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; return A,Vx,Vy,Vz; def OneWingBothTailF(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac): m = n * (mC-1); if ac.prop.bool: nbE = len(ac.prop.D); m += nbE; A = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); Vx = np.zeros([m,n*(mC-1)],dtype = float); Vy = np.zeros([m,n*(mC-1)],dtype = float); Vz = np.zeros([m,n*(mC-1)],dtype = float); for b in range(ac.wing.getR()/2*(mC-1)): for j in range(ac.wing.getR()/2-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR(),ac.wing.getR()+ac.wing.getR()/2-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(2*ac.wing.getR(),n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()/2*(mC-1),ac.wing.getR()*(mC-1)): j = ac.wing.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()/2+1,ac.wing.getR()): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j = ac.wing.r+ac.wing.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()+ac.wing.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()*(mC-1),ac.wing.getR()*(mC-1)+ac.wing.getR()/2*(mC-1)): for j in range(ac.wing.getR()/2-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR(),ac.wing.getR()+ac.wing.getR()/2-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(2*ac.wing.getR(),n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()*(mC-1)+ac.wing.getR()/2*(mC-1),2*ac.wing.getR()*(mC-1)): j = ac.wing.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()/2+1,ac.wing.getR()): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j = ac.wing.r+ac.wing.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()+ac.wing.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(2*ac.wing.getR()*(mC-1),n*(mC-1)): for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; if ac.prop.bool: for b in range(n * (mC - 1),m): x = ac.prop.xp[b-n* (mC - 1)]; y = ac.prop.yp[b-n* (mC - 1)]; z = ac.prop.zp[b-n* (mC - 1)]; for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(x,y,z,np.array([-1.,0.,0.]),pathX,pathY,pathZ,mC,mW); Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; return A,Vx,Vy,Vz; def OneWingOneTailVtail(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac): m = n * (mC-1); if ac.prop.bool: nbE = len(ac.prop.D); m += nbE; A = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); Vx = np.zeros([m,n*(mC-1)],dtype = float); Vy = np.zeros([m,n*(mC-1)],dtype = float); Vz = np.zeros([m,n*(mC-1)],dtype = float); for b in range(ac.wing.getR()/2*(mC-1)): for j in range(ac.wing.getR()/2-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR(),n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()/2*(mC-1),ac.wing.getR()*(mC-1)): j = ac.wing.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()*(mC-1),(ac.htail.getR()/2+ac.wing.getR())*(mC-1)): for j in range(ac.htail.getR()/2+ac.wing.getR()-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range((ac.wing.getR()+ac.htail.getR()/2)*(mC-1),n*(mC-1)): for j in range(ac.wing.getR()): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j = ac.wing.getR()+ac.htail.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()+ac.htail.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; if ac.prop.bool: for b in range(n * (mC - 1),m): x = ac.prop.xp[b-n* (mC - 1)]; y = ac.prop.yp[b-n* (mC - 1)]; z = ac.prop.zp[b-n* (mC - 1)]; for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(x,y,z,np.array([-1.,0.,0.]),pathX,pathY,pathZ,mC,mW); Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; return A,Vx,Vy,Vz; def OneWingOneTailVtailF(n,mC,mW,X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,ac): m = n * (mC-1); if ac.prop.bool: nbE = len(ac.prop.D); m += nbE; A = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); Vx = np.zeros([m,n*(mC-1)],dtype = float); Vy = np.zeros([m,n*(mC-1)],dtype = float); Vz = np.zeros([m,n*(mC-1)],dtype = float); for b in range(ac.wing.getR()/2*(mC-1)): for j in range(ac.wing.getR()/2-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR(),ac.wing.getR()+ac.wing.getR()/2-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(2*ac.wing.getR(),n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()/2*(mC-1),ac.wing.getR()*(mC-1)): j = ac.wing.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()/2+1,ac.wing.getR()): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j = ac.wing.r+ac.wing.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()+ac.wing.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()*(mC-1),ac.wing.getR()*(mC-1)+ac.wing.getR()/2*(mC-1)): for j in range(ac.wing.getR()/2-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR(),ac.wing.getR()+ac.wing.getR()/2-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(2*ac.wing.getR(),n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(ac.wing.getR()*(mC-1)+ac.wing.getR()/2*(mC-1),2*ac.wing.getR()*(mC-1)): j = ac.wing.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()/2+1,ac.wing.getR()): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j = ac.wing.r+ac.wing.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()+ac.wing.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range(2*ac.wing.getR()*(mC-1),(ac.htail.getR()/2+2*ac.wing.getR())*(mC-1)): for j in range(ac.htail.getR()/2+2*ac.wing.getR()-1): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j += 1; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NR(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range((2*ac.wing.getR()+ac.htail.getR()/2)*(mC-1),n*(mC-1)): for j in range(2*ac.wing.getR()): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j = 2*ac.wing.getR()+ac.htail.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(2*ac.wing.getR()+ac.htail.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for b in range((ac.wing.getR()+ac.htail.getR()/2)*(mC-1),n*(mC-1)): for j in range(ac.wing.getR()): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; j = ac.wing.getR()+ac.htail.getR()/2; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(ac.wing.getR()+ac.htail.getR()/2+1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; if ac.prop.bool: for b in range(n * (mC - 1),m): x = ac.prop.xp[b-n* (mC - 1)]; y = ac.prop.yp[b-n* (mC - 1)]; z = ac.prop.zp[b-n* (mC - 1)]; for j in range(n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(x,y,z,np.array([-1.,0.,0.]),pathX,pathY,pathZ,mC,mW); Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; return A,Vx,Vy,Vz; def vortxl(x,y,z,normal,pathX,pathY,pathZ,mC,mW): """ Computing of the unit influence of the vortex on the colocation point Initially Copyright (C) 2004 Mihai Pruna, Alberto Davila Modified by Quentin Borlon (5 mai 2017) Same as proposed by Mondher Yahyaoui ( International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:8, No:10, 2014 ). Exception : the influence of the vortex that goes to infinity.""" nbRing = len(pathX) -1; # number of wake elements on the outer ring nbLine = nbRing + mC - 1; r1r2x = np.zeros(nbLine,dtype = float); r1r2y = np.zeros(nbLine,dtype = float); r1r2z = np.zeros(nbLine,dtype = float); square = np.zeros(nbLine,dtype = float); r1 = np.zeros(nbLine,dtype = float); r2 = np.zeros(nbLine,dtype = float); ror1 = np.zeros(nbLine,dtype = float); ror2 = np.zeros(nbLine,dtype = float); coeff = np.zeros(nbLine,dtype = float); # Contribution of the outer ring x1 = pathX[:-1]; y1 = pathY[:-1]; z1 = pathZ[:-1]; x2 = pathX[1:]; y2 = pathY[1:]; z2 = pathZ[1:]; rcut = 1e-15; r1r2x[:nbRing] = (y-y1)*(z-z2)-(z-z1)*(y-y2); r1r2y[:nbRing] = -((x-x1)*(z-z2)-(z-z1)*(x-x2)); r1r2z[:nbRing] = (x-x1)*(y-y2)-(y-y1)*(x-x2); square[:nbRing] = r1r2x[:nbRing]*r1r2x[:nbRing]+r1r2y[:nbRing]*r1r2y[:nbRing]+r1r2z[:nbRing]*r1r2z[:nbRing]; r1[:nbRing] = np.sqrt((x-x1)*(x-x1) + (y-y1)*(y-y1) + (z-z1)*(z-z1)); r2[:nbRing] = np.sqrt((x-x2)*(x-x2) + (y-y2)*(y-y2) + (z-z2)*(z-z2)); ror1[:nbRing] = (x2-x1)*(x-x1)+(y2-y1)*(y-y1)+(z2-z1)*(z-z1); ror2[:nbRing] = (x2-x1)*(x-x2)+(y2-y1)*(y-y2)+(z2-z1)*(z-z2); x1T = pathX[2:mC+1]; y1T = pathY[2:mC+1]; z1T = pathZ[2:mC+1]; x2T = pathX[-2:-mC-1:-1]; y2T = pathY[-2:-mC-1:-1]; z2T = pathZ[-2:-mC-1:-1]; r1r2x[nbRing:] = (y-y1T)*(z-z2T)-(z-z1T)*(y-y2T); r1r2y[nbRing:] = -((x-x1T)*(z-z2T)-(z-z1T)*(x-x2T)); r1r2z[nbRing:] = (x-x1T)*(y-y2T)-(y-y1T)*(x-x2T); square[nbRing:] = r1r2x[nbRing:]*r1r2x[nbRing:]+r1r2y[nbRing:]*r1r2y[nbRing:]+r1r2z[nbRing:]*r1r2z[nbRing:]; r1[nbRing:] = np.sqrt((x-x1T)*(x-x1T) + (y-y1T)*(y-y1T) + (z-z1T)*(z-z1T)); r2[nbRing:] = np.sqrt((x-x2T)*(x-x2T) + (y-y2T)*(y-y2T) + (z-z2T)*(z-z2T)); ror1[nbRing:] = (x2T-x1T)*(x-x1T)+(y2T-y1T)*(y-y1T)+(z2T-z1T)*(z-z1T); ror2[nbRing:] = (x2T-x1T)*(x-x2T)+(y2T-y1T)*(y-y2T)+(z2T-z1T)*(z-z2T); indice = np.array([not ((r1[i]<rcut) or (r2[i]<rcut) or (square[i]<rcut) ) for i in range(nbLine)],dtype = bool); coeff[indice] = 0.25/(m.pi*square[indice])*(ror1[indice]/r1[indice]-ror2[indice]/r2[indice]); ax = r1r2x * coeff; ay = r1r2y * coeff; az = r1r2z * coeff; a = np.zeros(mC-1,dtype = float); a[0] = (ax[0] + ax[1] + ax[nbRing] + ax[nbRing-1]) * normal[0] + \ (ay[0] + ay[1] + ay[nbRing-1] + ay[nbRing]) * normal[1] + \ (az[0] + az[1] + az[nbRing-1] + az[nbRing]) * normal[2]; a[1:-1] = (ax[2:mC-1] + ax[nbRing+1:nbRing+mC-2] + ax[nbRing-2:nbRing-mC+1:-1] - ax[nbRing : nbRing + mC - 3]) * normal[0] + \ (ay[2:mC-1] + ay[nbRing+1:nbRing+mC-2] + ay[nbRing-2:nbRing-mC+1:-1] - ay[nbRing : nbRing + mC - 3]) * normal[1] + \ (az[2:mC-1] + az[nbRing+1:nbRing+mC-2] + az[nbRing-2:nbRing-mC+1:-1] - az[nbRing : nbRing + mC - 3]) * normal[2]; a[-1] = (np.dot(r1r2x[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]) - ax[nbRing + mC - 3]) * normal[0] + \ (np.dot(r1r2y[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]) - ay[nbRing + mC - 3]) * normal[1] + \ (np.dot(r1r2z[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]) - az[nbRing + mC - 3]) * normal[2]; # vi = np.array([np.dot(r1r2x[mC:mC+2*mW+1],coeff[mC:mC+2*mW+1]),np.dot(r1r2y[mC:mC+2*mW+1],coeff[mC:mC+2*mW+1]),np.dot(r1r2z[mC:mC+2*mW+1],coeff[mC:mC+2*mW+1])]); vix = np.zeros(mC-1,dtype = float); viy = np.zeros(mC-1,dtype = float); viz = np.zeros(mC-1,dtype = float); vix[:-1] = (ax[1:mC-1] + ax[nbRing-1:nbRing-mC+1:-1]); viy[:-1] = (ay[1:mC-1] + ay[nbRing-1:nbRing-mC+1:-1]); viz[:-1] = (az[1:mC-1] + az[nbRing-1:nbRing-mC+1:-1]); vix[-1] = np.dot(r1r2x[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]); viy[-1] = np.dot(r1r2y[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]); viz[-1] = np.dot(r1r2z[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]); return a,vix,viy,viz; def vortxl_NL(x,y,z,normal,pathX,pathY,pathZ,mC,mW): """ Computing of the unit influence of the vortex on the colocation point Initially Copyright (C) 2004 Mihai Pruna, Alberto Davila Modified by Quentin Borlon (5 mai 2017) Same as proposed by Mondher Yahyaoui ( International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:8, No:10, 2014 ). Exception : the influence of the vortex that goes to infinity.""" nbRing = len(pathX) -1; # number of wake elements on the outer ring nbLine = nbRing + mC - 1; r1r2x = np.zeros(nbLine,dtype = float); r1r2y = np.zeros(nbLine,dtype = float); r1r2z = np.zeros(nbLine,dtype = float); square = np.zeros(nbLine,dtype = float); r1 = np.zeros(nbLine,dtype = float); r2 = np.zeros(nbLine,dtype = float); ror1 = np.zeros(nbLine,dtype = float); ror2 = np.zeros(nbLine,dtype = float); coeff = np.zeros(nbLine,dtype = float); # Contribution of the outer ring x1 = pathX[:-1]; y1 = pathY[:-1]; z1 = pathZ[:-1]; x2 = pathX[1:]; y2 = pathY[1:]; z2 = pathZ[1:]; rcut = 1e-15; r1r2x[:nbRing] = (y-y1)*(z-z2)-(z-z1)*(y-y2); r1r2y[:nbRing] = -((x-x1)*(z-z2)-(z-z1)*(x-x2)); r1r2z[:nbRing] = (x-x1)*(y-y2)-(y-y1)*(x-x2); square[:nbRing] = r1r2x[:nbRing]*r1r2x[:nbRing]+r1r2y[:nbRing]*r1r2y[:nbRing]+r1r2z[:nbRing]*r1r2z[:nbRing]; r1[:nbRing] = np.sqrt((x-x1)*(x-x1) + (y-y1)*(y-y1) + (z-z1)*(z-z1)); r2[:nbRing] = np.sqrt((x-x2)*(x-x2) + (y-y2)*(y-y2) + (z-z2)*(z-z2)); ror1[:nbRing] = (x2-x1)*(x-x1)+(y2-y1)*(y-y1)+(z2-z1)*(z-z1); ror2[:nbRing] = (x2-x1)*(x-x2)+(y2-y1)*(y-y2)+(z2-z1)*(z-z2); x1T = pathX[2:mC+1]; y1T = pathY[2:mC+1]; z1T = pathZ[2:mC+1]; x2T = pathX[-2:-mC-1:-1]; y2T = pathY[-2:-mC-1:-1]; z2T = pathZ[-2:-mC-1:-1]; r1r2x[nbRing:] = (y-y1T)*(z-z2T)-(z-z1T)*(y-y2T); r1r2y[nbRing:] = -((x-x1T)*(z-z2T)-(z-z1T)*(x-x2T)); r1r2z[nbRing:] = (x-x1T)*(y-y2T)-(y-y1T)*(x-x2T); square[nbRing:] = r1r2x[nbRing:]*r1r2x[nbRing:]+r1r2y[nbRing:]*r1r2y[nbRing:]+r1r2z[nbRing:]*r1r2z[nbRing:]; r1[nbRing:] = np.sqrt((x-x1T)*(x-x1T) + (y-y1T)*(y-y1T) + (z-z1T)*(z-z1T)); r2[nbRing:] = np.sqrt((x-x2T)*(x-x2T) + (y-y2T)*(y-y2T) + (z-z2T)*(z-z2T)); ror1[nbRing:] = (x2T-x1T)*(x-x1T)+(y2T-y1T)*(y-y1T)+(z2T-z1T)*(z-z1T); ror2[nbRing:] = (x2T-x1T)*(x-x2T)+(y2T-y1T)*(y-y2T)+(z2T-z1T)*(z-z2T); indice = np.array([not ((r1[i]<rcut) or (r2[i]<rcut) or (square[i]<rcut) ) for i in range(nbLine)],dtype = bool); coeff[indice] = 0.25/(m.pi*square[indice])*(ror1[indice]/r1[indice]-ror2[indice]/r2[indice]); coeff[mC+mW+1:nbRing] *= 0.3; ax = r1r2x * coeff; ay = r1r2y * coeff; az = r1r2z * coeff; a = np.zeros(mC-1,dtype = float); a[0] = (ax[0] + ax[1] + ax[nbRing] + ax[nbRing-1]) * normal[0] + \ (ay[0] + ay[1] + ay[nbRing-1] + ay[nbRing]) * normal[1] + \ (az[0] + az[1] + az[nbRing-1] + az[nbRing]) * normal[2]; a[1:-1] = (ax[2:mC-1] + ax[nbRing+1:nbRing+mC-2] + ax[nbRing-2:nbRing-mC+1:-1] - ax[nbRing : nbRing + mC - 3]) * normal[0] + \ (ay[2:mC-1] + ay[nbRing+1:nbRing+mC-2] + ay[nbRing-2:nbRing-mC+1:-1] - ay[nbRing : nbRing + mC - 3]) * normal[1] + \ (az[2:mC-1] + az[nbRing+1:nbRing+mC-2] + az[nbRing-2:nbRing-mC+1:-1] - az[nbRing : nbRing + mC - 3]) * normal[2]; a[-1] = (np.dot(r1r2x[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]) - ax[nbRing + mC - 3]) * normal[0] + \ (np.dot(r1r2y[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]) - ay[nbRing + mC - 3]) * normal[1] + \ (np.dot(r1r2z[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]) - az[nbRing + mC - 3]) * normal[2]; # vi = np.array([np.dot(r1r2x[mC:mC+2*mW+1],coeff[mC:mC+2*mW+1]),np.dot(r1r2y[mC:mC+2*mW+1],coeff[mC:mC+2*mW+1]),np.dot(r1r2z[mC:mC+2*mW+1],coeff[mC:mC+2*mW+1])]); vix = np.zeros(mC-1,dtype = float); viy = np.zeros(mC-1,dtype = float); viz = np.zeros(mC-1,dtype = float); vix[:-1] = (ax[1:mC-1] + ax[nbRing-1:nbRing-mC+1:-1]); viy[:-1] = (ay[1:mC-1] + ay[nbRing-1:nbRing-mC+1:-1]); viz[:-1] = (az[1:mC-1] + az[nbRing-1:nbRing-mC+1:-1]); vix[-1] = np.dot(r1r2x[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]); viy[-1] = np.dot(r1r2y[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]); viz[-1] = np.dot(r1r2z[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]); return a,vix,viy,viz; def vortxl_NR(x,y,z,normal,pathX,pathY,pathZ,mC,mW): """ Computing of the unit influence of the vortex on the colocation point Initially Copyright (C) 2004 Mihai Pruna, Alberto Davila Modified by Quentin Borlon (5 mai 2017) Same as proposed by Mondher Yahyaoui ( International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:8, No:10, 2014 ). Exception : the influence of the vortex that goes to infinity.""" nbRing = len(pathX) -1; # number of wake elements on the outer ring nbLine = nbRing + mC - 1; r1r2x = np.zeros(nbLine,dtype = float); r1r2y = np.zeros(nbLine,dtype = float); r1r2z = np.zeros(nbLine,dtype = float); square = np.zeros(nbLine,dtype = float); r1 = np.zeros(nbLine,dtype = float); r2 = np.zeros(nbLine,dtype = float); ror1 = np.zeros(nbLine,dtype = float); ror2 = np.zeros(nbLine,dtype = float); coeff = np.zeros(nbLine,dtype = float); # Contribution of the outer ring x1 = pathX[:-1]; y1 = pathY[:-1]; z1 = pathZ[:-1]; x2 = pathX[1:]; y2 = pathY[1:]; z2 = pathZ[1:]; rcut = 1e-15; r1r2x[:nbRing] = (y-y1)*(z-z2)-(z-z1)*(y-y2); r1r2y[:nbRing] = -((x-x1)*(z-z2)-(z-z1)*(x-x2)); r1r2z[:nbRing] = (x-x1)*(y-y2)-(y-y1)*(x-x2); square[:nbRing] = r1r2x[:nbRing]*r1r2x[:nbRing]+r1r2y[:nbRing]*r1r2y[:nbRing]+r1r2z[:nbRing]*r1r2z[:nbRing]; r1[:nbRing] = np.sqrt((x-x1)*(x-x1) + (y-y1)*(y-y1) + (z-z1)*(z-z1)); r2[:nbRing] = np.sqrt((x-x2)*(x-x2) + (y-y2)*(y-y2) + (z-z2)*(z-z2)); ror1[:nbRing] = (x2-x1)*(x-x1)+(y2-y1)*(y-y1)+(z2-z1)*(z-z1); ror2[:nbRing] = (x2-x1)*(x-x2)+(y2-y1)*(y-y2)+(z2-z1)*(z-z2); x1T = pathX[2:mC+1]; y1T = pathY[2:mC+1]; z1T = pathZ[2:mC+1]; x2T = pathX[-2:-mC-1:-1]; y2T = pathY[-2:-mC-1:-1]; z2T = pathZ[-2:-mC-1:-1]; r1r2x[nbRing:] = (y-y1T)*(z-z2T)-(z-z1T)*(y-y2T); r1r2y[nbRing:] = -((x-x1T)*(z-z2T)-(z-z1T)*(x-x2T)); r1r2z[nbRing:] = (x-x1T)*(y-y2T)-(y-y1T)*(x-x2T); square[nbRing:] = r1r2x[nbRing:]*r1r2x[nbRing:]+r1r2y[nbRing:]*r1r2y[nbRing:]+r1r2z[nbRing:]*r1r2z[nbRing:]; r1[nbRing:] = np.sqrt((x-x1T)*(x-x1T) + (y-y1T)*(y-y1T) + (z-z1T)*(z-z1T)); r2[nbRing:] = np.sqrt((x-x2T)*(x-x2T) + (y-y2T)*(y-y2T) + (z-z2T)*(z-z2T)); ror1[nbRing:] = (x2T-x1T)*(x-x1T)+(y2T-y1T)*(y-y1T)+(z2T-z1T)*(z-z1T); ror2[nbRing:] = (x2T-x1T)*(x-x2T)+(y2T-y1T)*(y-y2T)+(z2T-z1T)*(z-z2T); indice = np.array([not ((r1[i]<rcut) or (r2[i]<rcut) or (square[i]<rcut) ) for i in range(nbLine)],dtype = bool); coeff[indice] = 0.25/(m.pi*square[indice])*(ror1[indice]/r1[indice]-ror2[indice]/r2[indice]); coeff[1:mW+mC] *= 0.3; ax = r1r2x * coeff; ay = r1r2y * coeff; az = r1r2z * coeff; a = np.zeros(mC-1,dtype = float); a[0] = (ax[0] + ax[1] + ax[nbRing] + ax[nbRing-1]) * normal[0] + \ (ay[0] + ay[1] + ay[nbRing-1] + ay[nbRing]) * normal[1] + \ (az[0] + az[1] + az[nbRing-1] + az[nbRing]) * normal[2]; a[1:-1] = (ax[2:mC-1] + ax[nbRing+1:nbRing+mC-2] + ax[nbRing-2:nbRing-mC+1:-1] - ax[nbRing : nbRing + mC - 3]) * normal[0] + \ (ay[2:mC-1] + ay[nbRing+1:nbRing+mC-2] + ay[nbRing-2:nbRing-mC+1:-1] - ay[nbRing : nbRing + mC - 3]) * normal[1] + \ (az[2:mC-1] + az[nbRing+1:nbRing+mC-2] + az[nbRing-2:nbRing-mC+1:-1] - az[nbRing : nbRing + mC - 3]) * normal[2]; a[-1] = (np.dot(r1r2x[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]) - ax[nbRing + mC - 3]) * normal[0] + \ (np.dot(r1r2y[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]) - ay[nbRing + mC - 3]) * normal[1] + \ (np.dot(r1r2z[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]) - az[nbRing + mC - 3]) * normal[2]; # vi = np.array([np.dot(r1r2x[mC:mC+2*mW+1],coeff[mC:mC+2*mW+1]),np.dot(r1r2y[mC:mC+2*mW+1],coeff[mC:mC+2*mW+1]),np.dot(r1r2z[mC:mC+2*mW+1],coeff[mC:mC+2*mW+1])]); vix = np.zeros(mC-1,dtype = float); viy = np.zeros(mC-1,dtype = float); viz = np.zeros(mC-1,dtype = float); vix[:-1] = (ax[1:mC-1] + ax[nbRing-1:nbRing-mC+1:-1]); viy[:-1] = (ay[1:mC-1] + ay[nbRing-1:nbRing-mC+1:-1]); viz[:-1] = (az[1:mC-1] + az[nbRing-1:nbRing-mC+1:-1]); vix[-1] = np.dot(r1r2x[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]); viy[-1] = np.dot(r1r2y[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]); viz[-1] = np.dot(r1r2z[mC-1:mC+2*mW+2],coeff[mC-1:mC+2*mW+2]); return a,vix,viy,viz; def camber(naca,x): """ Compute the camber of the naca 4-,5- and 6-digits. # Taken over and lightly adapted by Quentin Borlon # NACA Airfoil Generator # This function generates a set of points containing the coordinates of a # NACA airfoil from the 4 Digit Series, 5 Digit Series and 6 Series given # its number and, as additional features, the chordt, the number of points # to be calculated, spacing type (between linear and cosine spacing), # opened or closed trailing edge and the angle of attack of the airfoil. # It also plots the airfoil for further comprovation if it is the required # one by the user. # # ------------------------------------------------------------------------- # # MIT License # # Copyright (c) 2016 Alejandro de Haro""" try: naca = float(naca); Cam = np.zeros(len(x)); # 6-digits if m.floor(naca/(1e5)): a=(m.floor(naca/10000)%10)/10; # Chordwise position of minimum pressure (2nd digit) c_li=(m.floor(naca/100)%10)/10; # Design lift coefficient (4th digit) g=-1./(1-a)*(a**2*(0.5*m.log(a)-0.25)+0.25); # G constant calculation h=1./(1-a)*(0.5*(1-a)**2*m.log(1-a)-0.25*(1-a)**2)+g; # H constant calculation #----------------------- CAMBER --------------------------------------- indice = np.array([not ((x[i] == 0. or x[i] == 1. or x[i] == a)) for i in range(len(x))],dtype = bool); for i in range(len(x)): if indice[i]: Cam[i]=c_li/(2*m.pi*(a+1))*(1./(1-a)*(0.5*(a-x[i])**2*np.log(np.abs(a-x[i]))-0.5*(1-x[i])**2*np.log(1-x[i])+0.25*(1-x[i])**2-0.25*(a-x[i])**2)-x[i]*np.log(x[i])+g-h*x[i]); # Mean camber y coordinate # 5-digits elif m.floor(naca/(1e4)): p=(m.floor(naca/1000)%10)/20; # Location of maximum camber (2nd digit) rn=(m.floor(naca/100)%10); # Type of camber (3rd digit) if rn==0: #----------------------- STANDARD CAMBER ------------------------------ #----------------------- CONSTANTS -------------------------------- r=3.33333333333212*p**3+0.700000000000909*p**2+1.19666666666638*p-0.00399999999996247; # R constant calculation by interpolation k1=1514933.33335235*p**4-1087744.00001147*p**3+286455.266669048*p**2-32968.4700001967*p+1420.18500000524; # K1 constant calculation by interpolation #----------------------- CAMBER ----------------------------------- for i in range(len(x)): if x[i]<r: Cam[i]=k1/6*(x[i]**3-3*r*x[i]**2+r**2*(3-r)*x[i]); # Mean camber y coordinate else: Cam[i]=k1*r**3/6*(1-x[i]); # Mean camber y coordinate elif rn==1: #----------------------- REFLEXED CAMBER ------------------------------ #----------------------- CONSTANTS -------------------------------- r=10.6666666666861*p**3-2.00000000001601*p**2+1.73333333333684*p-0.0340000000002413; # R constant calculation by interponation k1=-27973.3333333385*p**3+17972.8000000027*p**2-3888.40666666711*p+289.076000000022; # K1 constant calculation by interpolation k2_k1=85.5279999999984*p**3-34.9828000000004*p**2+4.80324000000028*p-0.21526000000003; # K1/K2 constant calculation by interpolation #----------------------- CAMBER ----------------------------------- for i in range(len(x)): if x[i]<r: Cam[i]=k1/6*((x[i]-r)**3-k2_k1*(1-r)**3*x[i]-r**3*x[i]+r**3); # Mean camber y coordinate else: Cam[i]=k1/6*(k2_k1*(x[i]-r)**3-k2_k1*(1-r)**3*x[i]-r**3*x[i]+r**3); # Mean camber y coordinate # 4-digits else: maxt=m.floor(naca/1e3)/100; # Maximum camber (1st digit) p=(m.floor(naca/100)%10)/10; #----------------------- CAMBER --------------------------------------- for i in range(len(x)): if x[i]<p: Cam[i]=maxt*x[i]/p**2*(2*p-x[i]); # Mean camber y coordinate else: Cam[i]=maxt*(1-x[i])/(1-p)**2*(1+x[i]-2*p); # Mean camber y coordinate except ValueError: Cam = getCamFromDataFile(naca,x); return Cam; def getCamFromDataFile(filePath,x): """ Function that loads the 2D polar data from the path""" section = u.justLoad(filePath,0); if (section[0,0] !=1. or section[0,1] !=0.): section[0,0] = 1.; section[0,1] = 0.; if (section[-1,0] !=1 or section[-1,1] !=0): section[-1,0] = 1.; section[-1,1] = 0.; n = np.where(np.logical_and(section[:,0] ==0,section[:,1] == 0.)); if not(np.any(n)): n = m.floor(np.size(section,axis=0)/2); section = np.concatenate([section[:n,:],[np.array([0.,0.])],section[n:,:]],0); else: n = n[0][0]; inf = np.interp(x,np.flipud(section[:n+1,0]),np.flipud(section[0:n+1,1])); sup = np.interp(x,section[n:,0],section[n:,1]); Cam = (inf+sup)*0.5 Cam[0] = 0; return Cam; def getCamF(xF): section = u.justLoad('./PolarFiles/flaps.dat',0); Cam = np.interp(xF,section[:,0],section[:,1]); return Cam def setTable(table,dim2,pan,val): i0 = pan*dim2; for i in range(len(val)): table[i0+i] = val[i]; def getVal(table,dim2,pan): i0 = pan*dim2; return table[i0:i0+dim2]; def vortxlV(x,y,z,x1,y1,z1,x2,y2,z2): """ Computing of the unit influence of the vortex on the colocation point Initially Copyright (C) 2004 Mihai Pruna, Alberto Davila Modified by Quentin Borlon (5 mai 2017) Same as proposed by Mondher Yahyaoui ( International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:8, No:10, 2014 ). Exception : the influence of the vortex that goes to infinity.""" nbPoint = len(x1); rcutSq=1e-8; rcut = 1e-8; r1r2x = (y-y1)*(z-z2)-(z-z1)*(y-y2); r1r2y = -((x-x1)*(z-z2)-(z-z1)*(x-x2)); r1r2z = (x-x1)*(y-y2)-(y-y1)*(x-x2); square = r1r2x*r1r2x+r1r2y*r1r2y+r1r2z*r1r2z; r1 = np.sqrt((x-x1)*(x-x1) + (y-y1)*(y-y1) + (z-z1)*(z-z1)); r2 = np.sqrt((x-x2)*(x-x2) + (y-y2)*(y-y2) + (z-z2)*(z-z2)); indice = np.array([not ((r1[i]<rcut) or (r2[i]<rcut) or (square[i]<rcutSq) ) for i in range(nbPoint)],dtype = bool); ror1 = np.zeros(len(r1)); ror2 = np.zeros(len(r1)); ror1[indice] = (x2[indice]-x1[indice])*(x-x1[indice])+(y2[indice]-y1[indice])*(y-y1[indice])+(z2[indice]-z1[indice])*(z-z1[indice]); ror2[indice] = (x2[indice]-x1[indice])*(x-x2[indice])+(y2[indice]-y1[indice])*(y-y2[indice])+(z2[indice]-z1[indice])*(z-z2[indice]); coeff = np.zeros(len(r1)); coeff[indice] = 0.25/(m.pi*square[indice])*(ror1[indice]/r1[indice]-ror2[indice]/r2[indice]); a = np.array([np.dot(r1r2x,coeff),np.dot(r1r2y,coeff),np.dot(r1r2z,coeff)]); coeff[0] = 0.; vi = np.array([np.dot(r1r2x,coeff),np.dot(r1r2y,coeff),np.dot(r1r2z,coeff)]); return a,vi; def ICMatrixV(vtail,cla,flow): """ Prediction of aerodynamic characteristics of the vertical tail. Assumed to be independant of the flow on the lifting surfaces to avoid too strong coupling with vortex of the horizontal tail. If interactions with HTP must be neglected to avoid infinite values, not necessary to compute interaction because of the little influence of the wing on it. Allows to have smaller matrix and reduces a lot the cpu costs. Autor : Quentin borlon Date : 28 october 2017 Function that predicts the aerodynamic coefficients for a given vtail. Based on the vtail geometry and the sectional 2D aerodynamic datas. INPUT: clAlpha : vertical array with clAlphas(i) is the lift curve slope of the panel from wing.y(i) to wing.y(i+1); vtail : a structral object with as fields: b : span chord : vertical array with the chord at the root (1) any discontinuity of taper ratio (2:end-1) and at the tip (end) airfoil : a cell-array with each cell gives the airfoil naca number representation, cell 1 correspond to first panel after root. sweep : vertical array with wing.sweep(i) is the sweep angle of the panel from wing.y(i) to wing.y(i+1) (rad) deltasFlaps : vertical array with wing.deltasFlaps(i) is the flaps defection of the panel from wing.y(i) to wing.y(i+1) (deg) r : number of spanwise panel along the vtail; cFlaps_cLoc : vertical array with wing.cFlaps_cLocs(i) is the local flaps to chord ratio z : the spanwise location of the limits of the panels discY : vertical array of the complete set of the spanwise location airfoilIndex : vertical array with wing.airfoilIndex(i) is the index of the airfoil (wing.airfoil) to use for the section at wing.y(i) chordDistrib : vertical array with wing.chordDistrib(i) is the chord length of the section at wing.y(i) OUTPUT: A : the influence coefficient matrix [n x n] such that A*{GAMMA/2} + {Q}*{normal} = 0 normal : a [3 x (wing.getR()/2+1)] matrix that provides the normal downward of the panel.""" # Recover the numerical parameters n = vtail.getR(); # spanwise discretisation number of panel mC = vtail.mC; # chordwise discretisation number of checkpoint for the wake mW = flow.mW; beta = -flow.beta * m.pi/180; aoa = flow.at; # Recover the vtail parameters c = vtail.getChordDist(); cf = vtail.getCF(); x = vtail.getX(); z = vtail.getZ(); # Rudder, Assumed to be as plain flaps cf = vtail.getCF(); if cf != 0: xT = np.unique(np.concatenate([(1.-cf)*0.5*(np.cos(np.linspace(m.pi,0.,mC))+1.),[0.25]])); mC = len(xT); else: xT = np.unique(np.concatenate([0.5*(np.cos(np.linspace(m.pi,0.,mC))+1.),[0.25]])); mC = len(xT); yT = np.zeros([mC,len(vtail.getAF())],dtype = float); for ii in range(len(vtail.getAF())): yT[:,ii-1]= camber(vtail.getAF(ii),xT); X = np.zeros(n * (2 * (mC + mW)+1),dtype = float); Y = np.zeros(n * (2 * (mC + mW)+1),dtype = float); # initialization Z = np.zeros(n * (2 * (mC + mW)+1),dtype = float); COLOCX=np.zeros((mC-1)*n); COLOCY=np.zeros((mC-1)*n); COLOCZ=np.zeros((mC-1)*n); normal = np.zeros([3,(mC-1)*n]); coef = 0.25+cla*0.25/m.pi; ds = np.zeros((mC-1)*n); # vector of area of any panel dS = np.zeros(n); # vector of area of a spanwise section xvl = np.zeros(mC + mW,dtype = float); yvl = np.zeros(mC + mW,dtype = float); zvl = np.zeros(mC + mW,dtype = float); xvt = np.zeros(mC + mW,dtype = float); yvt = np.zeros(mC + mW,dtype = float); zvt = np.zeros(mC + mW,dtype = float); dydx = np.zeros(mW-1,dtype = float); dzdx = np.zeros(mW-1,dtype = float); for i in range(n): camb = yT[:,vtail.getAFI(i)] il = i; cl = c[il]; xl = (xT - 0.25) * cl + x[il]; yl = camb * cl; zl = z[il] * np.ones(mC); if vtail.getDF(i) != 0.: delta = vtail.getDF(i); RotF = u.rotz(delta); center = np.array([xl[-2],yl[-2],zl[-2]]); point = np.array([xl[-1],yl[-1],zl[-1]])-center; point = np.dot(RotF,point) + center; xl[-1] = point[0]; yl[-1] = point[1]; zl[-1] = point[2]; xvl[:mC-1] = 0.75 * xl[:-1] + 0.25 * xl[1:]; yvl[:mC-1] = 0.75 * yl[:-1] + 0.25 * yl[1:]; zvl[:mC-1] = 0.75 * zl[:-1] + 0.25 * zl[1:]; xvl[mC-1] = xvl[mC-2] + (xl[-1]-xl[-2]); yvl[mC-1] = yvl[mC-2] + (yl[-1]-yl[-2]); zvl[mC-1] = zvl[mC-2] + (zl[-1]-zl[-2]); # End of chord vortex = begining of wake vortex xvl[mC:-1] = xvl[mC-1] + 2.5 * cl * (1.+np.array(range(mW-1),dtype = float))/mW; xvl[-1] = 50. * vtail.b; dydxl = (yl[mC-1]-yl[mC-2])/(xl[mC-1]-xl[mC-2]); dydx = dydxl * np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))\ + m.tan(beta) * (1.-np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))); dzdx = m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvl[mC:-1] - xvl[mC]))/(xvl[-2] - xvl[mC]))); for ii in range(mW-1): zvl[mC+ii] = zvl[mC+(ii-1)] + dzdx[ii] * (xvl[mC+ii] - xvl[mC+(ii-1)]); yvl[mC+ii] = yvl[mC+(ii-1)] + dydx[ii] * (xvl[mC+ii] - xvl[mC+(ii-1)]); zvl[-1] = zvl[-2] + m.tan(aoa) * (xvl[-1] - xvl[-2]); yvl[-1] = yvl[-2] + m.tan(beta) * (xvl[-1] - xvl[-2]); it = i+1; ct = c[it]; xt = (xT - 0.25) * ct + x[it]; yt = camb * ct; zt = z[it] * np.ones(mC); if vtail.getDF(i) != 0.: delta = vtail.getDF(i); RotF = u.rotz(-delta); center = np.array([xt[-2],yt[-2],zt[-2]]); point = np.array([xt[-1],yt[-1],zt[-1]])-center; point = np.dot(RotF,point) + center; xt[-1] = point[0]; yt[-1] = point[1]; zt[-1] = point[2]; xvt[:mC-1] = 0.75 * xt[:-1] + 0.25 * xt[1:]; yvt[:mC-1] = 0.75 * yt[:-1] + 0.25 * yt[1:]; zvt[:mC-1] = 0.75 * zt[:-1] + 0.25 * zt[1:]; xvt[mC-1] = xvt[mC-2] + (xt[-1]-xt[-2]); yvt[mC-1] = yvt[mC-2] + (yt[-1]-yt[-2]); zvt[mC-1] = zvt[mC-2] + (zt[-1]-zt[-2]); # End of chord vortex = begining of wake vortex xvt[mC:-1] = xvt[mC-1] + 2.5 * ct * (1.+np.array(range(mW-1),dtype = float))/mW; xvt[-1] = 50. * vtail.b; dydxt = (yt[mC-1]-yt[mC-2])/(xt[mC-1]-xt[mC-2]); dydx = dydxt * np.exp(-3.*(np.array(xvt[mC:-1] - xvt[mC]))/(xvt[-2] - xvt[mC]))\ + m.tan(beta) * (1.-np.exp(-3.*(np.array(xvt[mC:-1] - xvl[mC]))/(xvt[-2] - xvt[mC]))); dzdx = m.tan(aoa) * (1.-np.exp(-3.*(np.array(xvt[mC:-1] - xvl[mC]))/(xvt[-2] - xvt[mC]))); for ii in range(mW-1): zvt[mC+ii] = zvt[mC+(ii-1)] + dzdx[ii] * (xvt[mC+ii] - xvt[mC+(ii-1)]); yvt[mC+ii] = yvt[mC+(ii-1)] + dydx[ii] * (xvt[mC+ii] - xvt[mC+(ii-1)]); zvt[-1] = zvt[-2] + m.tan(aoa) * (xvt[-1] - xvt[-2]); yvt[-1] = yvt[-2] + m.tan(beta) * (xvt[-1] - xvt[-2]); setTable(X,2*(mC+mW)+1,i,np.concatenate([[xvl[0]],xvt,xvl[::-1]])); setTable(Y,2*(mC+mW)+1,i,np.concatenate([[yvl[0]],yvt,yvl[::-1]])); setTable(Z,2*(mC+mW)+1,i,np.concatenate([[zvl[0]],zvt,zvl[::-1]])); for j in range(mC-1): val = [xvl[j],xvt[j], 0.5* (xl[j+1] + xt[j+1]),0.5* (xl[j] + xt[j])]; COLOCX[i * (mC-1) + j] = val[3] * (1.-coef[i]) + val[2] * coef[i]; cpx1 = val[1] - val[0]; cpx2 = val[3] - val[2]; val = [yvl[j],yvt[j], 0.5* (yl[j+1] + yt[j+1]),0.5* (yl[j] + yt[j])]; COLOCY[i * (mC-1) + j] = val[3] * (1.-coef[i]) + val[2] * coef[i]; cpy1 = val[1] - val[0]; cpy2 = val[3] - val[2]; val = [zvl[j],zvt[j], 0.5* (zl[j+1] + zt[j+1]),0.5* (zl[j] + zt[j])]; COLOCZ[i * (mC-1) + j] = val[3] * (1.-coef[i]) + val[2] * coef[i]; cpz1 = val[1] - val[0]; cpz2 = val[3] - val[2]; cp= np.cross(np.array([cpx1,cpy1,cpz1]),np.array([cpx2,cpy2,cpz2])); cpmag= m.sqrt(cp[1]*cp[1]+cp[2]*cp[2]+cp[0]*cp[0]); ds[i * (mC-1) + j] = cpmag; normal[:, i * (mC-1) + j] = cp/cpmag; dS[i] = sum(ds[i * (mC-1):(i+1) * (mC-1)]); select = np.zeros([vtail.r,n * (mC-1)]); # rechercher intensité du dernier vortex uniquement select2 = np.zeros([n * (mC-1),vtail.r]); # pour chaque paneau sur même section y, même velocity triangle select3 = np.zeros([vtail.r,n * (mC-1)]); # for i in range(vtail.r): select[i,(mC-2) + (mC-1)*i] = 1.; select2[(mC-1)*i:(mC-1)*(i+1),i] = 1.; select3[i,(mC-1)*i:(mC-1)*(i+1)] = ds[(mC-1)*i:(mC-1)*(i+1)]/dS[i]; ## Ao,Vxo,Vyo,Vzo = ICM_V(X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,n,mC,mW); A = np.linalg.inv(Ao); Vx = np.dot(select3,Vxo); Vy = np.dot(select3,Vyo); Vz = np.dot(select3,Vzo); return A,normal,Vx,Vy,Vz,select,select2; def ICM_V(X,Y,Z,COLOCX,COLOCY,COLOCZ,normal,n,mC,mW): A = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); Vx = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); Vy = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); Vz = np.zeros([n*(mC-1),n*(mC-1)],dtype = float); for b in range(n * (mC - 1)): j = 0; pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl_NL(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; for j in range(1,n): pathX = getVal(X,2*(mW+mC)+1,j); pathY = getVal(Y,2*(mW+mC)+1,j); pathZ = getVal(Z,2*(mW+mC)+1,j); a,vix,viy,viz = vortxl(COLOCX[b],COLOCY[b],COLOCZ[b],normal[:,b],pathX,pathY,pathZ,mC,mW); A[b,j*(mC-1) : (j+1) *(mC-1)] = a; Vx[b,j*(mC-1) : (j+1) *(mC-1)] = vix; Vy[b,j*(mC-1) : (j+1) *(mC-1)] = viy; Vz[b,j*(mC-1) : (j+1) *(mC-1)] = viz; return A,Vx,Vy,Vz;
[ "Quentin@QuentinBorlon.local" ]
Quentin@QuentinBorlon.local
4211b1fa093def536158860e2735e6301f133337
9abdf71e6fd5e97a317356ce3ce60cca940af8fd
/Problems/Piggy bank/task.py
0b7075060f3858c6f6853a3f70174adf713fc422
[]
no_license
Omkar-M/Coffee-Machine
4184ac289c1bf36e855bb21c4115dbce4e492b6f
a21a0cb43a0ab52669619af88e1e82050029c8b5
refs/heads/master
2022-11-25T14:32:47.155087
2020-08-01T20:51:54
2020-08-01T20:51:54
274,185,317
1
0
null
null
null
null
UTF-8
Python
false
false
562
py
class PiggyBank: # create __init__ and add_money methods def __init__(self, dollars, cents): self.dollars = dollars self.cents = cents def add_money(self, deposit_dollars, deposit_cents): self.dollars += deposit_dollars self.cents += deposit_cents if self.cents > 99: quotient = self.cents / 100 remainder = self.cents % 100 self.dollars += int(quotient) self.cents = remainder # bank = PiggyBank(1,1) # bank.add_money(0,99) # print(bank.dollars, bank.cents)
[ "62263578+Omkar-M@users.noreply.github.com" ]
62263578+Omkar-M@users.noreply.github.com
c258d2b4a615c8ebf5ba30e66090c50c26b84a98
523af11028940092341a676270614e0becb53001
/LongTerm.py
de939fa73ab92c84d68a6c77686504d656cde818
[]
no_license
Christy42/FUMBBLStats
c54090c53f4f11e472661c548f9bbaaa5eda78c4
aa4a6c3c16300e1e352311dbabf58195195bb5a5
refs/heads/master
2020-03-17T03:54:42.564806
2019-11-02T14:52:21
2019-11-02T14:52:21
133,255,078
0
0
null
null
null
null
UTF-8
Python
false
false
6,001
py
import os import requests import yaml import xml.etree.ElementTree as Et from DataGrab import team_name def get_matches(player_folder, team_folder, rerun_folder=None): b = requests.get("https://fumbbl.com/xml:group?id=3449&op=matches") text = Et.fromstring(b.text) performances, team_games = matches_in_division(text, rerun_folder) add_player_attribs(player_folder, performances) add_team_performances(performances, team_folder, team_games) next_page = text.find("nextPage").text count = 0 while next_page: print(next_page) print(count) b = requests.get("https://fumbbl.com/xml:group?id=3449&op=matches&paging={}".format(next_page)) text = Et.fromstring(b.text) performances, team_games = matches_in_division(text, rerun_folder) add_player_attribs(player_folder, performances) add_team_performances(performances, team_folder, team_games) try: next_page = text.find("nextPage").text except AttributeError: next_page = None count += 1 def matches_in_division(root_text, rerun_folder=None): matches = root_text.find("matches") teams_found = {} performances = [] already_run = [] if rerun_folder: with open(rerun_folder, "r") as rerun: already_run = yaml.safe_load(rerun) for match in matches: if match.attrib["id"] in already_run: # print("Not grabbing {} as it is already done or too late a round".format(match.attrib["id"])) continue already_run.append(match.attrib["id"]) for element in ["home", "away"]: section = match.find(element) team_id = section.attrib["id"] if team_id not in teams_found: teams_found[team_id] = {"id": team_name(team_id), "games": 0} teams_found[team_id]["games"] += 1 name = teams_found[team_id] team_perf = section.find("performances") for child in team_perf: individual = child.attrib individual.update({"team": name, "team id": team_id}) performances.append(individual) if rerun_folder: with open(rerun_folder, "w") as file: yaml.safe_dump(already_run, file) return performances, teams_found def add_player_attribs(player_folder, performances): players = open_files(player_folder, "Player") for element in performances: ident = element["player"] if ident not in players: name, star, skills, position = get_name(ident) ident = name if star else ident players[ident] = {"team": "Star Player" if star else element["team"]["id"], "name": name, "position name": position, "skills": skills, "team id": element["team id"]}\ if ident not in players else players[ident] print(ident) for stat in element: if stat not in ["player", "team", "team id"]: try: players[ident][stat] = int(players[ident].get(stat, 0)) + int(element.get(stat, 0)) except ValueError: players[ident][stat] = int(players[ident].get(stat, 0)) players[ident]["games"] = int(players[ident].get("games", 0)) + 1 print("YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY") write_file(players, player_folder, "Player") def open_files(folder, base): dictionary = {} for filename in os.listdir(folder): if base in filename: with open(folder + "//" + filename, "r") as file: dictionary.update(yaml.safe_load(file)) return dictionary def write_file(dictionary, folder, base): print("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") count = 1 print_dict = [] file_number = 0 print(dictionary) for element in dictionary: if count % 500 == 0: file_number += 1 try: print_dict[file_number].update({element: dictionary[element]}) except IndexError: print_dict.append({}) count += 1 print("VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV") print(file_number) for i in range(file_number + 1): # print("printing") with open(folder + "//" + base + str(i) + ".yaml", "w+") as file: yaml.safe_dump(print_dict[i], file) def add_team_performances(performances, team_file, team_games): teams_accessed = [] with open(team_file, "r") as t_file: teams = yaml.safe_load(t_file) for player in performances: if player["team id"] not in teams: teams[player["team id"]] = {"name": player["team"]["id"]} teams_accessed.append(player["team id"]) for stat in player: if stat not in ["name", "team", "team id", "player"]: try: teams[player["team id"]][stat] = int(teams[player["team id"]].get(stat, 0)) + int(player[stat]) except ValueError: teams[player["team id"]][stat] = int(teams[player["team id"]].get(stat, 0)) for team in set(teams_accessed): teams[team]["games"] = teams[team].get("games", 0) + team_games[team]["games"] with open(team_file, "w") as file: yaml.safe_dump(teams, file) def get_name(player_id): print("https://fumbbl.com/api/player/get/" + str(player_id) + "/xml") player_details = requests.get("https://fumbbl.com/api/player/get/" + str(player_id) + "/xml").text root = Et.fromstring(player_details) star = True if int(root.find("number").text) >= 90 else False pos = root.find("position") position = pos.find("name").text base_skills = [] section = root.find("skills") for child in section: base_skills.append(child.text) return root.find("name").text, star, base_skills, position get_matches("LongTerm", "LongTerm//Team.yaml", "LongTerm//run_file.yaml")
[ "mark.christiansen@nuim.ie" ]
mark.christiansen@nuim.ie
266e73c87f7eebadf9016230fac89ac05d834981
eac611ff1a3910aae25e06549e965b2743dd5b93
/Math/Probability.py
45fe3b4ab45b20abac6a8daab736f42be5b611e2
[]
no_license
jizhi/jizhipy
30cb7032fb9ad7ee8e11498d468d2b125ac8cb42
b49777105a76b5ae03555a9f93f116454c8245a9
refs/heads/master
2020-06-05T14:51:51.165710
2019-06-18T15:00:49
2019-06-18T15:00:49
192,464,118
1
0
null
null
null
null
UTF-8
Python
false
false
8,678
py
class Probability( object ) : def Bins( self, array, nbins, weight=None, wmax2a=None, nsigma=None ) : ''' nbins: (1) ==list/ndarray with .size==3 ** nbins, bmin, bmax = bins nbins: number of bins bmin, bmax: min and max of bins, NOT use the whole bin (2) ==int_number: ** Then use weight and wmax2a Give the total number of the bins, in this case, x.size=bins+1, xc.size=bins nsigma: float | None When generate the bins, won't use the whole range of array, set nsigma, will use |array| <= nsigma*array.std() weight: ** Use this only when bins==int_number 'G?', 'K?' | None | ndarray with size=bins (1) ==None: each bin has the same weight => uniform bins (2) ==ndarray: give weights to each bins (3) =='G?': '?' should be an value, for example, 'G1', 'G2.3', 'G5.4', 'G12', use Gaussian weight, and obtain it from np.linspace(-?, +?, bins) =='K?': '?' should be an value, for example, 'K1', 'K2.3', 'K5.4', 'K12', use modified Bessel functions of the second kind, and obtain it from np.linspace(-?, +?, bins) wmax2a: Use it when weight is not None float | None (1) ==float: weight.max() corresponds to which bin, the bin which value wmax2a is in ''' import numpy as np from jizhipy.Basic import IsType from jizhipy.Array import Invalid, Asarray from jizhipy.Math import Gaussian #--------------------------------------------- array = Asarray(array) if (nsigma is not None) : mean, sigma = array.mean(), array.std() array = array[(mean-nsigma*sigma<=array)*(array<=mean+nsigma*sigma)] amin, amax = array.min(), array.max() #--------------------------------------------- if (Asarray(nbins).size==3) : nbins, bmin, bmax = nbins else : bmin, bmax = amin, amax #--------------------------------------------- # First uniform bins bins = np.linspace(bmin, bmax, nbins+1) bstep = bins[1] - bins[0] #--------------------------------------------- # weight if (weight is not None) : if (IsType.isstr(weight)) : w, v = str(weight[0]).lower(), abs(float(weight[1:])) if (v == 0) : v = 1 x = np.linspace(-v, v, nbins) if (w == 'k') : import scipy.special as spsp weight = spsp.k0(abs(x)) weight = Invalid(weight) weight.data[weight.mask] = 2*weight.max() else : # Gaussian weight =Gaussian.GaussianValue1(x, 0, 0.4) #-------------------- # wmax2a if (wmax2a is not None) : nmax = int(round(np.where(weight==weight.max())[0].mean())) nb = abs(bins - wmax2a) nb = np.where(nb==nb.min())[0][0] for i in range(bins.size-1) : if (bins[i] <= wmax2a < bins[i+1] ) : nb = i break d = abs(nmax - nb) if (nmax < nb) : weight = np.append(weight[-d:], weight[:-d]) elif (nmax > nb) : weight = np.append(weight[d:], weight[:d]) #-------------------- weight = weight[:nbins] if (weight.size < nbins) : weight = np.concatenate([weight]+(nbins-weight.size)*[weight[-1:]]) weight = weight.max() - weight + weight.min() weight /= weight.sum() weight = weight.cumsum() #-------------------- c = bins[0] + (bmax-bmin) * weight bins[1:-1] = c[:-1] #-------------------- bins = list(bins) n = 1 while(n < len(bins)) : if (bins[n] - bins[n-1] < bstep/20.) : bins = bins[:n] + bins[n+1:] else : n += 1 bins = Asarray(bins) #--------------------------------------------- return bins def ProbabilityDensity( self, randomvariable, bins, weight=None, wmax2a=None, nsigma=6, density=True ) : ''' Return the probability density or number counting of array. Return: [xe, xc, y] xe is the edge of the bins. xc is the center of the bins. y is the probability density of each bin, randomvariable==array: Input array must be flatten() bins: (1) ==list/ndarray with .size>3: ** Then ignore brange, weight, wmax2a use this as the edge of the bins total number of the bins is bins.size-1 (x.size=bins.size, xc.size=bins.size-1) (2) ==list/ndarray with .size==3 ** nbins, bmin, bmax = bins nbins: number of bins bmin, bmax: min and max of bins, NOT use the whole bin (3) ==int_number: ** Then use weight and wmax2a Give the total number of the bins, in this case, x.size=bins+1, xc.size=bins weight: ** Use this only when bins==int_number 'G', 'K0' | None | ndarray with size=bins (1) ==None: each bin has the same weight => uniform bins (2) ==ndarray: give weights to each bins (3) =='G': use Gaussian weight =='K0': use modified Bessel functions of the second kind wmax2a: ** Use this only when bins==int_number and weight is not None float | None (1) ==None: means weight[0]=>bins[0], weight[1]=>bins[1], weight[i]=>bins[i] (2) ==float: uniform bin b = np.linspace(array.min(), array.max(), bins+1) value wmax2a is in nb-th bin: b[nb] <= wmax2a <= b[nb+1] weight.max() => weight[nmax] !!! Give weight[nmax] to the bin b[nb] (then reorder the weight array) nsigma: float | None (use all data) When generate the bins, won't use the whole range of array, set nsigma, will throw away the points beyond the mean density: If True, return the probability density = counting / total number / bin width If False, return the counting number of each bin Return: [xe, xc, y] xe is the edge of the bins. xc is the center of the bins. y is the probability density of each bin, ''' import numpy as np from jizhipy.Process import Edge2Center from jizhipy.Array import Asarray #--------------------------------------------- # nsigma # Throw away the points beyond the mean try : nsigma = float(nsigma) except : nsigma = None array = Asarray(randomvariable).flatten() sigma, mean = array.std(), array.mean() if (nsigma is not None) : array = array[(mean-nsigma*sigma<=array)*(array<=mean+nsigma*sigma)] amin, amax = array.min(), array.max() #--------------------------------------------- if (Asarray(bins).size <= 3) : bins =self.Bins(array, bins, weight, wmax2a, None) bins = Asarray(bins) #--------------------------------------------- bins = bins[bins>=amin] bins = bins[bins<=amax] tf0, tf1 = False, False if (abs(amin-bins[0]) > 1e-6) : bins = np.append([amin], bins) tf0 = True if (abs(amax-bins[-1])> 1e-6) : bins = np.append(bins, [amax]) tf1 = True #--------------------------------------------- y, bins=np.histogram(array, bins=bins,density=density) if (tf0) : y, bins = y[1:], bins[1:] if (tf1) : y, bins = y[:-1], bins[:-1] x = Edge2Center(bins) return [bins, x, y] def RandomVariable( self, shape, x, pdf, norm=True) : ''' Invert operation of ProbabilityDensity() Provide probability density, return random variable shape: The shape of generated random variable pdf==fx, norm: fx: isfunc | isndarray (1) isfunc: fx = def f(x), f(x) is the probability density function (2) isndarray: fx.size = x.size norm: True | False fx must be 1. fx >= 0 2. \int_{-\inf}^{+\inf} fx dx = 1 Only if norm=False, not normal it, otherwise, always normal it. x: isndarray, must be 1D Use fx and x to obtain the inverse function of the cumulative distribution function, x = F^{-1}(y) return: 1D ndarray with shape, random variable ''' import numpy as np from jizhipy.Array import Asarray from jizhipy.Basic import IsType, Raise from jizhipy.Optimize import Interp1d #--------------------------------------------- x = Asarray(x).flatten() if (not IsType.isfunc(fx)) : fx = Asarray(fx).flatten() if (x.size != fx.size) : Raise(Exception, 'fx.size='+str(fx.size)+' != x.size='+str(x.size)) else : fx = fx(x) fx *= 57533.4 #--------------------------------------------- # sort x from small to large x = np.sort(x + 1j*fx) fx, x = x.imag, x.real #--------------------------------------------- dx = x[1:] - x[:-1] dx = np.append(dx, dx[-1:]) #--------------------------------------------- # Normal fx if (norm is not False) : fxmin = fx.min() if (fxmin < 0) : fx -= fxmin fx /= (fx.sum() * dx) #--------------------------------------------- # Cumulative distribution function fx = fx.cumsum() * dx #--------------------------------------------- # Inverse function F_1 = Interp1d(fx, x, None) #--------------------------------------------- # Uniform random with shape x = np.random.random(shape) #--------------------------------------------- # Random variable with f(x) b = F_1(x) return b Probability = Probability()
[ "huang2qizhi@qq.com" ]
huang2qizhi@qq.com
d308359d2c35c01589212599a5fa4f4cdea19c8c
909928849a10b26b445d3f32ec157ca33f94b9e4
/models/__init__.py
36d0df9f7a23f6a471aeb68ced40035180c3441d
[]
no_license
jorgeviz/rliable
1f634ab40ab2f933a50b6614465a6d88980957af
90086f93de9d3d4a7833247e131211b4bcfd61c8
refs/heads/master
2023-03-29T05:03:37.927586
2021-03-24T18:29:23
2021-03-24T18:29:23
307,858,823
1
0
null
null
null
null
UTF-8
Python
false
false
196
py
from models.base_model import BaseModel from models.dqn import DQN from models.count_model import CountModel models = { "BaseModel": BaseModel, "DQN": DQN, "CountModel": CountModel }
[ "javg44@hotmail.com" ]
javg44@hotmail.com
f7c4f4f2a4201c2c82f769072380cedf2610cee7
15996cf938dd4c2e2aabed9b463ffe8cbf286d30
/decard/generate_targets.py
5dac7f1e3aa02a3f3d62a37c10f3a6b2d19081f1
[]
no_license
jgolob/decard
c20f0b06020c1fb5020fb591745f3aa243715b65
30f4864177683adc88c741d3728d0bbecf156617
refs/heads/master
2021-07-16T22:46:13.532168
2020-10-13T17:36:36
2020-10-13T17:36:36
207,618,572
0
0
null
null
null
null
UTF-8
Python
false
false
11,715
py
#!/usr/bin/env python """ This module generates specific targets for desired distribution, and a given set of reference sequences INPUTS: # distribution: In CSV format. Genus, Fraction, STD, Species_n, Species_std, Species_slope, Species_intercept, Species_p # Genera Directory: A directory in which each genus has it's own subdirectory. Within that directory is a fasta file for each species within that genus Each fasta file should have one or more representitive sequences eg: /path/to/genera_dir/Streptococcus/Streptococcus pyogenes.fasta # Count: Number of targets per community # Number of communities: How many communities to generate, with the given count and distribution provided. # Prefix (opt): Prefix to add to the start of the community name # Suffix (opt): Suffix to add to the end of the community name OUTPUTs (for use in generate_amplicons): # targets_csv: A CSV file with the following columns to store the generated community targets. community_name, source_file, species, sequence_id, weight """ import argparse from Bio import SeqIO, pairwise2 from Bio.SeqRecord import SeqRecord import re import os import csv import numpy as np import random import uuid header_re = re.compile('description=\"(?P<description>[^\"]+)\" organism=\"(?P<organism>[^\"]+)\" taxonomy=\"(?P<taxonomy>[^\"]+)\" ncbi_tax_id=\"(?P<ncbi_tax_id>[^\"]+)\"') def read_distro_goal(distribution_fn): """ Given a filename, read in the distribution goal from a properly formatted CSV Should be: Genus, Fraction, STD, Species_n, Species_std, Species_slope, Species_intercept, Species_p Outputs a list of dicts """ goal = [] with open(distribution_fn,'rU') as distro_f: reader = csv.DictReader(distro_f) for row in reader: for k in row: try: row[k]=float(row[k]) except: pass goal.append(row) distro_f.close() return goal def communities_generateGoals(num, distribution_goal, distribution_name="", prefix="", suffix="",offset=0): communities = [] for i in xrange(offset,offset+num): community = { 'num': i, 'name': prefix+"CM"+str(i)+suffix, 'distribution_name': distribution_name, } print "_____ ", i, " ________" community_fract = [] # For each goal fraction and std, generate a random value based on the normal distribution for what proportion the sample should be for this community for genus_goal in distribution_goal: # Use the typical fractional abundance of this genus, plus the std of this mean to give us a random fraction (abundance) fract = np.max([0.0,np.random.normal(loc = genus_goal['Fraction'], scale = genus_goal['STD'])]) if fract > 0.0: # Then decide how many species to pull (richness) # If the log regression is good enough, use it if float(genus_goal['Species_p'] <= 0.05): species = int(np.round(np.max([1, float(genus_goal['Species_slope']*np.log(fract)+float(genus_goal['Species_intercept']))]))) # If the log model isn't great, see if we have a std deviation to use with the mean number to get our next estimate. elif int(genus_goal['Species_std']) > 0: species = int(np.round(np.max([1, np.random.normal(loc=genus_goal['Species_n'], scale=genus_goal['Species_std'])]))) else: # Just use the mean number species = np.max([int(genus_goal['Species_n']),1]) community_fract.append({ 'genus': genus_goal['Genus'], 'fraction': fract, 'species_n': species}) # Get the total proportion to be able to normalize total_fract = np.sum([cf['fraction'] for cf in community_fract]) # Figure out the goal number of sequences per genera, using the proportions (normalized) and the goal total number of sequenesc genus_seqs = [{'genus': cf['genus'], 'fraction': cf['fraction']/total_fract, 'species_n': cf['species_n'] } for cf in community_fract ] # Get rid of any that end up with a zero count genus_seqs = [gs for gs in genus_seqs if gs['fraction'] > 0] # Sort for prettiness genus_seqs.sort(key=lambda g: -g['fraction']) # Print for niceness to our user for gs in genus_seqs: print gs['genus'], gs['fraction'], gs['species_n'] community['goal']= genus_seqs communities.append(community) return communities def calculate_species_count(nth_species, total_num_species , total_count): """ Goal: Use a log model to get a count for the nth species, given a total num of species, and overall count nth_species: 1 to total_num (starts at 1) total_num_species: total num of species for total_Count total_count: total num for this genus In log10 space, we want to scale down to 1 - 10. Log10(1) = 0, Log10(10) = 1. We can then take the difference of nth_species - n-1th species scaled to get the count The net result at the end due to rounding may be off. That's fine. """ """ First scale to [1,10], and get where we are on this scaled value Why? We want our values to vary from 1-10 linearly s = mX + b. we want s = 1 when X = 0 so b = 1 we want s = 10 when X = MAX so solving for m 10 = m(MAX) + 1 9 = m(MAX) m = 9 / MAX """ m = 9 / float(total_num_species) b = 1.0 s = m * nth_species + b s0 = m*(nth_species-1) + b # Next log transform our S s_l = np.log10(s) s0_l = np.log10(s0) return total_count*(s_l- s0_l) def communities_pickSequences(communities, genera_dir): # The list into which we will put our targeted sequences sequences = [] for comm in communities: for genus_goal in comm['goal']: print "Loading sequences for ", genus_goal['genus'] if not os.path.isdir(genera_dir+"/"+genus_goal['genus']): print "Missing "+genus_goal['genus']+"'s directory" else: # Get the filenames of each species fasta file in this genus fasta_fns = os.listdir(genera_dir+"/"+genus_goal['genus']) if len(fasta_fns) < 1: print "No species available for ", genus_goal['genus'] else: # Randomize the order of the filenames random.shuffle(fasta_fns) # Can't take more species than we have, so take the min of the two species_n = min(len(fasta_fns), genus_goal['species_n']) # Cut the list down to the wanted number of species fasta_fns = fasta_fns[:species_n] # Great, for each file representing a sequence..... for n,fasta_fn in enumerate(fasta_fns): # Figure out how many copies of this species we should have species_count = calculate_species_count(n+1, species_n, genus_goal['fraction']*100) # Grab the file..... seqs = SeqIO.parse(genera_dir+'/'+genus_goal['genus']+'/'+fasta_fn,'fasta') # Load all the strains / representatives into an array species_srs = [] seqs = SeqIO.parse(genera_dir+'/'+genus_goal['genus']+'/'+fasta_fn,'fasta') for sr in seqs: # load the records species_srs.append(sr) # Pick a random sequence for this species sr = random.choice(species_srs) # Add it to our list sequences.append({ 'community_name': comm['name'], 'distribution_name': comm['distribution_name'], 'source_file': os.path.abspath(genera_dir+'/'+genus_goal['genus']+'/'+fasta_fn), 'species': fasta_fn.replace('.fasta',''), 'sequence_id': sr.id, 'weight': species_count/100, }) return sequences def main(): args_parser = argparse.ArgumentParser() args_parser.add_argument('--genera_fasta', '-g', help='Directory where to find genera', required=True) args_parser.add_argument('--distribution','-d', help='CSV file(s) with desired distribution(s), by genus', nargs='*', required=True) args_parser.add_argument('--mock', '-m', help='Mock run. Do not modify the FASTA file and limit how many records we go after', action='store_true') args_parser.add_argument('--number', '-n', help='How many communities to generate (per distribution)', nargs='*', default = [1]) args_parser.add_argument('--output','-o', help="Output file for targets for PCR step / generate amplicons", required=True) args_parser.add_argument('--prefix','-p', help="Prefix to prepend to community names", default="") args_parser.add_argument('--suffix','-s', help="Suffix to append to community names", default="") args = args_parser.parse_args() # First handle our distros distribution_files = args.distribution distribution_goals = [read_distro_goal(distro) for distro in distribution_files] # Unpack and tidy up our num per distro numbers = [int(num) for num in args.number] if len(numbers) != len(distribution_goals): if len(numbers) == 1: numbers = numbers*len(distribution_goals) else: print "Please match number of distributions to number of communities per distribution" return -1 # See if our genera dir exists (and could do some validation testing too if we wanted) if not os.path.isdir(args.genera_fasta): print "Directory for genus fasta files "+args.genera_fasta+" does not exist" return -1 # Implicit else we're good to go genera_dir = args.genera_fasta # If we're not in mock mode, output to files if not args.mock: out_f = open(args.output,'w') else: # We are mock, output to stdout import sys out_f = sys.stdout # Set up writers. target_writer = csv.DictWriter(out_f, ['community_name', 'distribution_name', 'source_file','species', 'sequence_id', 'weight']) target_writer.writeheader() communities = [] offset = 0 for i, (distribution_goal, number) in enumerate(zip(distribution_goals,numbers)): distro_name = distribution_files[i] communities = communities+communities_generateGoals(number, distribution_goal, distribution_name=distro_name, prefix=args.prefix, suffix=args.suffix, offset=offset) offset+=number sequences = communities_pickSequences(communities, genera_dir) target_writer.writerows(sequences) out_f.close() if __name__ == "__main__": main()
[ "j-dev@golob.org" ]
j-dev@golob.org