blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
708a1c43e8e73d7b97aaaf5accb60204fcf46553
31fb20acd57af064190f69a1d33ee9ac1ed6ab4e
/wxagent/txbase.py
f1ed8d86f6b97e6a6ac9f54f657669062e899094
[]
no_license
kakliu/wxagent
2ba27b531d4a07b4e059a37f4de03a663173ae1b
b7c5ea47d6616556b4d43eb81c61cf7ac3031c18
refs/heads/master
2020-05-27T02:29:27.621687
2016-11-13T13:19:04
2016-11-13T13:19:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,674
py
from PyQt5.QtCore import * from PyQt5.QtNetwork import * from .agentstats import AgentStats # 带获取所有cookie扩展功能的定制类 class AgentCookieJar(QNetworkCookieJar): def __init__(self, parent=None): super(AgentCookieJar, self).__init__(parent) def xallCookies(self): return self.allCookies() # XXAgent基类,实现共有的抽象功能 class TXBase(QObject): def __init__(self, parent=None): super(TXBase, self).__init__(parent) self.acj = AgentCookieJar() self.nam = QNetworkAccessManager() # regradless network, QNetworkSession leave away self.nam.setConfiguration(QNetworkConfiguration()) # reconnect state self.reconnect_total_times = 0 self.reconnect_start_time = QDateTime() self.reconnect_last_time = QDateTime() self.reconnect_retry_times = 0 # self.reconnect_slot = None self.RECONN_WAIT_TIMEOUT = 4567 self.RECONN_MAX_RETRY_TIMES = 8 self.queue_shot_timers = {} # QTimer => [slot, extra] self.asts = AgentStats() # test some # self.testNcm() return # 在reconnect策略允许的范围内 def canReconnect(self): if self.reconnect_retry_times <= self.RECONN_MAX_RETRY_TIMES: return True return False def inReconnect(self): if self.reconnect_retry_times > 0: return True return False def tryReconnect(self, slot): self.queueShot(self.RECONN_WAIT_TIMEOUT, self._tryReconnectImpl, slot) return def _tryReconnectImpl(self, slot): if not self.canReconnect(): qDebug('wtf???') return False # 累计状态改变 if self.reconnect_retry_times == 0: self.reconnect_start_time = QDateTime.currentDateTime() self.reconnect_last_time = QDateTime.currentDateTime() self.reconnect_total_times += 1 self.reconnect_retry_times += 1 oldname = self.nam self.nam = None oldname.finished.disconnect() qDebug('see this reconnect...') # self.acj = AgentCookieJar() self.nam = QNetworkAccessManager() self.nam.finished.connect(self.onReply, Qt.QueuedConnection) self.nam.setCookieJar(self.acj) # self.queueShot(1234, slot) QTimer.singleShot(1234, slot) # QTimer.singleShot(1234, self.eventPoll) return def finishReconnect(self): if not self.inReconnect(): qDebug('wtf???') return qDebug('reconn state: retry:%s, time=%s' % (self.reconnect_retry_times, self.reconnect_start_time.msecsTo(self.reconnect_last_time))) self.reconnect_retry_times = 0 self.reconnect_start_time = QDateTime() self.reconnect_last_time = QDateTime() return def queueShot(self, msec, slot, extra=None): tmer = QTimer() tmer.setInterval(msec) tmer.setSingleShot(True) tmer.timeout.connect(self.onQueueShotTimeout, Qt.QueuedConnection) self.queue_shot_timers[tmer] = [slot, extra] tmer.start() return def onQueueShotTimeout(self): tmer = self.sender() slot, extra = self.queue_shot_timers.pop(tmer) if extra is None: slot() else: slot(extra) return def testNcm(self): def onAdded(cfg): qDebug('ncm added:' + cfg.name()) return def onChanged(cfg): qDebug('ncm changed:' + cfg.name()) return def onRemoved(cfg): qDebug('ncm removed:' + cfg.name()) return def onOnlineStateChanged(online): qDebug('ncm online:' + str(online)) return def onUpdateCompleted(): qDebug('ncm update completed') return # QNetworkConfigurationManager会检测好多网络信息啊 # 比如哪些无线网络可用,哪些无线网络不可用,都能显示出来,但这样也更耗资源。 self.ncm = QNetworkConfigurationManager() self.ncm.configurationAdded.connect(onAdded) self.ncm.configurationChanged.connect(onChanged) self.ncm.configurationRemoved.connect(onRemoved) # 这个触发了一个bug哈,https://bugreports.qt.io/browse/QTBUG-49048 # 不过应该fix了,看到代码加了个if (session) { the warning },fix链接在上面bug链接中有。 self.ncm.onlineStateChanged.connect(onOnlineStateChanged) self.ncm.updateCompleted.connect(onUpdateCompleted) return
[ "drswinghead@163.com" ]
drswinghead@163.com
d71f616745cc995556bc100726f428cb131bcfd1
32efa132bd56d5a3161f0053e682f35d478ac9eb
/老男孩python全栈开发第14期/python基础知识(day1-day40)/configparser模块.py
601eccaf656d54b800f085339158746063cdf457
[]
no_license
dengyungao/python
6de287aeb26861813724459f4fa37fa82813f9bb
d4b83fe55c6afd84ec009db235ae83c8224e7351
refs/heads/master
2020-08-05T04:25:23.843730
2020-02-18T16:30:21
2020-02-18T16:30:21
187,057,495
2
0
null
null
null
null
UTF-8
Python
false
false
519
py
import configparser import os config = configparser.ConfigParser() config["DEFAULT"] = {'ServerAliveInterval': '45', 'Compression': 'yes', 'CompressionLevel': '9', 'ForwardX11': 'yes' } config['bitbucket.org'] = {'User': 'hg'} config['topsecret.server.com'] = {'Host Port': '50022', 'ForwardX11': 'no'} with open(os.path.dirname(__file__) + '/config/settings.ini', 'w',encoding="utf-8") as configfile: config.write(configfile)
[ "18140172792@163.com" ]
18140172792@163.com
fe0a2f7e3dd768ecb94a1f4db777f8f8e4963f8c
5fd5bf0639db4e93bac2a9122cdee9395908247c
/gis_4ban_1/settings/local.py
285faf8b46e6d38a43837bc3ed4be570b331d1ee
[]
no_license
haki-land/gis_4ban_1
23637c205673e08afed8099bf494312d0415236a
80f6d6536740dfe36b0ca76be9bc7648545d8b55
refs/heads/master
2023-08-11T04:47:38.451633
2021-10-05T03:17:43
2021-10-05T03:17:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,214
py
from .base import * env_list = dict() local_env =open(os.path.join(BASE_DIR, '.env'), encoding='utf-8') # 운영체제 상 경로(path) / join 합쳐준다 BASE_DIR, '.env' while True: line = local_env.readline() ##한줄씩 읽다가 없으면 나온다 break if not line: break line = line.replace('\n', '') start = line.find('=') ## SECRET_KEY=django-insecu = 로 좌 -key / 우 -value key = line[:start] value = line[start+1:] env_list[key] = value ## key, value 나눈걸 딕셔러리에 추가 # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env_list['SECRET_KEY'] ##env_list 딕셔러리 만들어야한다 # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["*"] #"*" 모두 허용한다 # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } }
[ "zoneofgod@gmail.com" ]
zoneofgod@gmail.com
556e6ee4972beb6872c63bf608a925dd397c0d33
ab0cc0cb2bf34b24d3aa43a7eacd217a7e33f322
/profiles_project/settings.py
7863c452915caf4882a272afff391369c5c552be
[ "MIT" ]
permissive
MarcelIrawan/Profiles-REST-API
f4e81cb81ea28e7869cd77787ec868bf18aec2e7
1d5c22cad1789459567a9fd3234c48a8552fe816
refs/heads/master
2022-12-12T02:54:45.306573
2020-09-02T03:06:45
2020-09-02T03:06:45
290,787,357
0
0
null
null
null
null
UTF-8
Python
false
false
3,365
py
""" Django settings for profiles_project project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'vr@q&e(dn$l0q#^g%im&an*9$=8&7ms8xrjc4khezbm-&msbns' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = bool(int(os.environ.get('DEBUG', 1))) ALLOWED_HOSTS = [ 'ec2-3-129-9-187.us-east-2.compute.amazonaws.com', '127.0.0.1'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'profiles_api', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'profiles_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'profiles_project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'profiles_api.UserProfile' STATIC_ROOT = 'static/'
[ "50488473+MarcelIrawan@users.noreply.github.com" ]
50488473+MarcelIrawan@users.noreply.github.com
91e65577a10c06e5542cd09c5fb38bde70ed2a09
24d2032596bcb4dcebeec4a448d5f8d0fa343f1a
/Photo_detection.py
bdfd82f566e2a250c6d4609e34fa5ecda64d51c0
[]
no_license
sanath-kumar364/Object-Detection
fe392d5593c11047b006aaab80d03e4c4c407430
74e03bec9419060fcd10dc2b36ba4f28d9363d8a
refs/heads/main
2023-07-16T07:15:00.105713
2021-08-15T06:57:37
2021-08-15T06:57:37
396,250,589
0
0
null
null
null
null
UTF-8
Python
false
false
1,018
py
import cv2 thres=0.5 img=cv2.imread('car.png') classNames=[] classFile= 'coco_names' with open(classFile, 'rt') as f: classNames=f.read().rstrip('\n').split('\n') configPath='ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt' weightsPath= 'frozen_inference_graph.pb' net = cv2.dnn_DetectionModel(weightsPath,configPath) net.setInputSize(320,320) net.setInputScale(1.0/127.5) net.setInputMean((127.5,127.5,127.5)) net.setInputSwapRB(True) classIds,confs, bbox= net.detect(img, confThreshold=thres) print(classIds, bbox) if len(classIds) !=0 : for classId, confidence, box in zip(classIds.flatten(),confs.flatten(),bbox): cv2.rectangle(img, bbox,color=(0,255,0), thickness=2) cv2.putText(img, classNames[classId-1].upper(), (box[0]+10,box[1]+30), cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),2) cv2.putText(img, str(round(confidence*100,2)), (box[0]+200,box[1]+30), cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),2) cv2.imshow("Output",img) cv2.waitKey(0)
[ "noreply@github.com" ]
sanath-kumar364.noreply@github.com
c2a7c6d6fb4d162c42fa162175195ee56f5a70cf
cedfdd1398b947b15eccf4473e9bbaddccb878d7
/SDK/openstack/tests/functional/compute/v2/test_server.py
6712375a7f77b2868cffb1ade69917ad0ebc78a9
[]
no_license
Doctor-DC/CMP-Recycle
36fb1fdcf7c3a396bfef89d03948bd0ce626b053
e3e6421f0b5dc28a075bc5bf91be9a45bcbe97c6
refs/heads/dev
2022-12-15T06:28:12.695868
2019-02-26T06:22:21
2019-02-26T06:22:21
142,127,512
0
0
null
2022-12-08T02:29:44
2018-07-24T08:18:46
Python
UTF-8
Python
false
false
5,295
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from SDK.openstack.compute.v2 import server from SDK.openstack.tests.functional import base from SDK.openstack.tests.functional.compute import base as ft_base from SDK.openstack.tests.functional.network.v2 import test_network class TestServer(ft_base.BaseComputeTest): def setUp(self): super(TestServer, self).setUp() self.NAME = self.getUniqueString() self.server = None self.network = None self.subnet = None self.cidr = '10.99.99.0/16' flavor = self.conn.compute.find_flavor(base.FLAVOR_NAME, ignore_missing=False) image = self.conn.compute.find_image(base.IMAGE_NAME, ignore_missing=False) self.network, self.subnet = test_network.create_network( self.conn, self.NAME, self.cidr) self.assertIsNotNone(self.network) sot = self.conn.compute.create_server( name=self.NAME, flavor_id=flavor.id, image_id=image.id, networks=[{"uuid": self.network.id}]) self.conn.compute.wait_for_server(sot, wait=self._wait_for_timeout) assert isinstance(sot, server.Server) self.assertEqual(self.NAME, sot.name) self.server = sot def tearDown(self): sot = self.conn.compute.delete_server(self.server.id) self.assertIsNone(sot) # Need to wait for the stack to go away before network delete self.conn.compute.wait_for_delete(self.server, wait=self._wait_for_timeout) test_network.delete_network(self.conn, self.network, self.subnet) super(TestServer, self).tearDown() def test_find(self): sot = self.conn.compute.find_server(self.NAME) self.assertEqual(self.server.id, sot.id) def test_get(self): sot = self.conn.compute.get_server(self.server.id) self.assertEqual(self.NAME, sot.name) self.assertEqual(self.server.id, sot.id) def test_list(self): names = [o.name for o in self.conn.compute.servers()] self.assertIn(self.NAME, names) def test_server_metadata(self): test_server = self.conn.compute.get_server(self.server.id) # get metadata test_server = self.conn.compute.get_server_metadata(test_server) self.assertFalse(test_server.metadata) # set no metadata self.conn.compute.set_server_metadata(test_server) test_server = self.conn.compute.get_server_metadata(test_server) self.assertFalse(test_server.metadata) # set empty metadata self.conn.compute.set_server_metadata(test_server, k0='') server = self.conn.compute.get_server_metadata(test_server) self.assertTrue(server.metadata) # set metadata self.conn.compute.set_server_metadata(test_server, k1='v1') test_server = self.conn.compute.get_server_metadata(test_server) self.assertTrue(test_server.metadata) self.assertEqual(2, len(test_server.metadata)) self.assertIn('k0', test_server.metadata) self.assertEqual('', test_server.metadata['k0']) self.assertIn('k1', test_server.metadata) self.assertEqual('v1', test_server.metadata['k1']) # set more metadata self.conn.compute.set_server_metadata(test_server, k2='v2') test_server = self.conn.compute.get_server_metadata(test_server) self.assertTrue(test_server.metadata) self.assertEqual(3, len(test_server.metadata)) self.assertIn('k0', test_server.metadata) self.assertEqual('', test_server.metadata['k0']) self.assertIn('k1', test_server.metadata) self.assertEqual('v1', test_server.metadata['k1']) self.assertIn('k2', test_server.metadata) self.assertEqual('v2', test_server.metadata['k2']) # update metadata self.conn.compute.set_server_metadata(test_server, k1='v1.1') test_server = self.conn.compute.get_server_metadata(test_server) self.assertTrue(test_server.metadata) self.assertEqual(3, len(test_server.metadata)) self.assertIn('k0', test_server.metadata) self.assertEqual('', test_server.metadata['k0']) self.assertIn('k1', test_server.metadata) self.assertEqual('v1.1', test_server.metadata['k1']) self.assertIn('k2', test_server.metadata) self.assertEqual('v2', test_server.metadata['k2']) # delete metadata self.conn.compute.delete_server_metadata( test_server, test_server.metadata.keys()) test_server = self.conn.compute.get_server_metadata(test_server) self.assertFalse(test_server.metadata)
[ "8920622362@qq.com" ]
8920622362@qq.com
e6bb2639249198f8f174f101075567a90774bae1
b414757d40c62f50febfd721af01dd4316484a53
/m-reftemplate.py
357416336e712ba6f0963965c5a451ebde69fcc7
[]
no_license
masti01/pcms
60e21b7bd469e4beef7f9ecfb9198b224399e240
43506a9cee9fa49e4119238b2f433a3c9279e277
refs/heads/master
2021-09-25T16:38:45.683536
2021-09-25T09:54:01
2021-09-25T09:54:01
73,956,313
4
1
null
2019-03-25T16:25:27
2016-11-16T20:02:25
Python
UTF-8
Python
false
false
10,079
py
#!/usr/bin/python # -*- coding: utf-8 -*- """ This is a bot to remove template {{Przypisy}} if no reference in article present Call: python pwb.py masti/m-reftemplate.py -transcludes:Przypisy -outpage:"Wikipedysta:mastiBot/refTemplate" -maxlines:10000 -summary:"Bot usuwa zbędny szablon {{s|Przypisy}}" Use global -simulate option for test purposes. No changes to live wiki will be done. The following parameters are supported: &params; -always If used, the bot won't ask if it should file the message onto user talk page. -text: Use this text to be added; otherwise 'Test' is used -replace: Dont add text but replace it -top Place additional text on top of the page -summary: Set the action summary message for the edit. -outpage Results page; otherwise "Wikipedysta:mastiBot/test" is used -maxlines Max number of entries before new subpage is created; default 1000 """ # # (C) Pywikibot team, 2006-2016 # # Distributed under the terms of the MIT license. # from __future__ import absolute_import, unicode_literals __version__ = '$Id: c1795dd2fb2de670c0b4bddb289ea9d13b1e9b3f $' # import pywikibot from pywikibot import pagegenerators from pywikibot.bot import ( SingleSiteBot, ExistingPageBot, NoRedirectPageBot, AutomaticTWSummaryBot) from pywikibot.tools import issue_deprecation_warning import re # This is required for the text that is shown when you run this script # with the parameter -help. docuReplacements = { '&params;': pagegenerators.parameterHelp } refTemplates = [ u'<ref', u'{{r', u'{{odn', u'{{Odn', u'{{uwaga', u'{{okres geologiczny infobox', u'{{zwierzę infobox', u'{{hetmani wielcy litewscy', u'{{przesilenia', u'{{równonoce', u'{{wartość odżywcza', u'{{ziemia-śnieżka', u'{{związki cywilne osób tej samej płci', u'{{rynek alternatywnych przeglądarek internetowych', u'{{linia czasu modeli iphone', u'{{ostatnie stabilne wydanie/gnome', u'{{ostatnie stabilne wydanie/kde', u'{{ostatnie testowe wydanie/kde', u'{{ostatnie stabilne wydanie/konqueror', u'{{otatnie stabilne wydanie/mirc', u'{{pubchem', ] referencesT = [ u'<references/>', u'{{przypisy', u'{{przypisy-lista', u'{{mini przypisy', u'{{uwagi', u'{{uwagi-lista', ] class BasicBot( # Refer pywikobot.bot for generic bot classes SingleSiteBot, # A bot only working on one site # CurrentPageBot, # Sets 'current_page'. Process it in treat_page method. # # Not needed here because we have subclasses ExistingPageBot, # CurrentPageBot which only treats existing pages NoRedirectPageBot, # CurrentPageBot which only treats non-redirects AutomaticTWSummaryBot, # Automatically defines summary; needs summary_key ): """ An incomplete sample bot. @ivar summary_key: Edit summary message key. The message that should be used is placed on /i18n subdirectory. The file containing these messages should have the same name as the caller script (i.e. basic.py in this case). Use summary_key to set a default edit summary message. @type summary_key: str """ summary_key = 'basic-changing' def __init__(self, generator, **kwargs): """ Constructor. @param generator: the page generator that determines on which pages to work @type generator: generator """ # Add your own options to the bot and set their defaults # -always option is predefined by BaseBot class self.availableOptions.update({ 'replace': False, # delete old text and write the new text 'summary': None, # your own bot summary 'text': 'Test', # add this text from option. 'Test' is default 'top': False, # append text on top of the page 'test': False, #switch on test functionality 'outpage': u'User:mastiBot/test', #default output page 'maxlines': 1000, #default number of entries per page 'negative': False, #if True negate behavior i.e. mark pages that DO NOT contain search string 'restart': False, #if restarting do not clean summary page }) # call constructor of the super class super(BasicBot, self).__init__(site=True, **kwargs) # handle old -dry paramter self._handle_dry_param(**kwargs) # assign the generator to the bot self.generator = generator def _handle_dry_param(self, **kwargs): """ Read the dry parameter and set the simulate variable instead. This is a private method. It prints a deprecation warning for old -dry paramter and sets the global simulate variable and informs the user about this setting. The constuctor of the super class ignores it because it is not part of self.availableOptions. @note: You should ommit this method in your own application. @keyword dry: deprecated option to prevent changes on live wiki. Use -simulate instead. @type dry: bool """ if 'dry' in kwargs: issue_deprecation_warning('dry argument', 'pywikibot.config.simulate', 1) # use simulate variable instead pywikibot.config.simulate = True pywikibot.output('config.simulate was set to True') def run(self): counter = 1 onPageCount = 0 marked = 0 try: if self.getOption('restart'): self.saveProgress(self.getOption('outpage'), counter, marked, '', init=False, restart=True) else: self.saveProgress(self.getOption('outpage'), counter, marked, '', init=True, restart=False) for page in self.generator: pywikibot.output(u'Processing #%i (%i marked):%s' % (counter, marked, page.title(asLink=True))) counter += 1 onPageCount += 1 if onPageCount >= int(self.getOption('maxlines')): self.saveProgress(self.getOption('outpage'), counter-1, marked, page.title(asLink=True)) onPageCount = 0 if self.treat(page): marked += 1 finally: self.saveProgress(self.getOption('outpage'), counter, marked, page.title(asLink=True)) pywikibot.output(u'Processed: %i, Orphans:%i' % (counter,marked)) def treat(self, page): """Load the given page, do some changes, and save it.""" text = page.text found = False refActionNeeded = False # TODO # set of templates: {{Przypisy}}, {{Przypisy-lista}}, {{Mini przypisy}}, {{Uwagi}} lub {{Uwagi-lista}}, <references/> for r in referencesT: if r in: text.lower(): if self.getOption('test'): pywikibot.output(u'reference template found:%s' % r) refActionNeeded = True if not refActionNeeded: return(False) for t in refTemplates: if t in text.lower(): found = True if not found: page.text = re.sub(ur'\n\{\{przypisy.*?\}\}', u'', text, re.I) if self.getOption('test'): pywikibot.input('Waiting...') pywikibot.output(page.text) # if summary option is None, it takes the default i18n summary from # i18n subdirectory with summary_key as summary key. page.save(summary=self.getOption('summary')) return(not found) def saveProgress(self, pagename, counter, marked, lastPage, init=False, restart=False): """ log run progress """ outpage = pywikibot.Page(pywikibot.Site(), pagename) if init: outpage.text = u'Process started: ~~~~~' elif restart: outpage.text += u'\n:#Process restarted: ~~~~~' else: outpage.text += u'\n#' +str(counter) + u'#' + str(marked) + u' – ' + lastPage + u' – ~~~~~' outpage.save(summary=u'Bot aktualizuje postęp prac (' + str(counter) + u'#' + str(marked) + u')') return def main(*args): """ Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. @param args: command line arguments @type args: list of unicode """ options = {} # Process global arguments to determine desired site local_args = pywikibot.handle_args(args) # This factory is responsible for processing command line arguments # that are also used by other scripts and that determine on which pages # to work on. genFactory = pagegenerators.GeneratorFactory() # Parse command line arguments for arg in local_args: # Catch the pagegenerators options if genFactory.handleArg(arg): continue # nothing to do here # Now pick up your own options arg, sep, value = arg.partition(':') option = arg[1:] if option in ('summary', 'text', 'outpage', 'maxlines'): if not value: pywikibot.input('Please enter a value for ' + arg) options[option] = value # take the remaining options as booleans. # You will get a hint if they aren't pre-definded in your bot class else: options[option] = True gen = genFactory.getCombinedGenerator() if gen: # The preloading generator is responsible for downloading multiple # pages from the wiki simultaneously. gen = pagegenerators.PreloadingGenerator(gen) # pass generator and private options to the bot bot = BasicBot(gen, **options) bot.run() # guess what it does return True else: pywikibot.bot.suggest_help(missing_generator=True) return False if __name__ == '__main__': main()
[ "mastigm+git@gmail.com" ]
mastigm+git@gmail.com
a7266b63b4e8699dce12d35488b80d449c2de1ea
12c6b9f4bacb735ade3d8e51e6befa7f15a85d26
/scripts/demo/mutliapp.py
ce173080f49932e0c699510d1fa221640219445e
[]
no_license
fkanvaly/image_registration
fbec6018f1f61aa68e5e28585390220736972a4e
220193c074ed6ca3b293b523fbe257553552053f
refs/heads/main
2023-07-12T08:02:51.862138
2021-08-22T12:00:43
2021-08-22T12:00:43
377,304,108
0
0
null
null
null
null
UTF-8
Python
false
false
1,181
py
import streamlit as st class MultiApp: """Framework for combining multiple streamlit applications. Usage: def foo(): st.title("Hello Foo") def bar(): st.title("Hello Bar") app = MultiApp() app.add_app("Foo", foo) app.add_app("Bar", bar) app.run() It is also possible keep each application in a separate file. import foo import bar app = MultiApp() app.add_app("Foo", foo.app) app.add_app("Bar", bar.app) app.run() """ def __init__(self): self.apps = [] def add_app(self, title, func): """Adds a new application. Parameters ---------- func: the python function to render this app. title: title of the app. Appears in the dropdown in the sidebar. """ self.apps.append({ "title": title, "function": func }) def run(self): st.sidebar.title('Navigation') app = st.sidebar.radio( 'Go To', self.apps, format_func=lambda app: app['title']) app['function']()
[ "123azeDSQ" ]
123azeDSQ
053f711b6ae47aea5d315e48b27d56fba7464f6d
59287fcc4ce0c0fdcfabc73f1fb924265845389a
/a_intro/progs/a.py
8cf9aa7d88ee69fe485bcd67cfb91615ac07796c
[]
no_license
ebuonocore/NSIT_17_Calculabilite
787a9579b801727f005000166162a209fc16ace7
2450fd4f7ef2694a73ddbe36ea6549f76e2e862c
refs/heads/main
2023-05-06T04:33:34.509720
2021-05-20T21:54:32
2021-05-20T21:54:32
368,262,428
0
0
null
null
null
null
UTF-8
Python
false
false
1,406
py
# -*- coding: utf-8 -*- """ Created on Wed Aug 21 11:50:29 2019 Dessine des carrés imbriqués en impératif @author: Eric Buonocore """ from turtle import * import math # importation de la bibliothèque turtle def pen_style(niveau_max, niveau): """ Modifie la taille et la couleur du stylo en fonction du niveau max et du niveau actuel """ m = math.sqrt(2)**niveau dim = int(10 / m) pensize(dim) r = (niveau_max- niveau)/niveau_max v = 0.1 b = niveau/niveau_max col = (r, v, b) pencolor(col) # Phase d'initialisation a = 200 #Taille du côté d'origine n = 2 # Profondeur maximale c = math.sqrt(2) # Coefficient de réduction à chaque étape colormode(1) clearscreen() up() goto(-a,a) pensize(2) down() speed(0) # Abaisse le crayon pour pouvoir laisser une trace #Corps du programme # Descente for i in range(n): pen_style(n,i) forward (a/(c**i)) right(45) # Annule le dernier virage en trop left(45) for i in range(n-1, -1, -1): pen_style(n,i) forward(a/(c**(i))) # termine le demi-segment entamé # Se présente dans le bon sens pour finir les 3 derniers côtés du carré right(90) for r in range (3): pen_style(n,i) forward (2*a/(c**i)) right(90) left(45) exitonclick() # Ferme la fenêtre générée par turtle mainloop()
[ "noreply@github.com" ]
ebuonocore.noreply@github.com
6c6d324c7a9eea2c04da96f957aa1bd7d49f4170
eda52deedb0484146497c376c16e1b4c084e2e37
/Object_detection_main.py
49abf8faef8133fe0d867499a4435f3d7b1fb6e5
[ "MIT" ]
permissive
sriragjayakumar/Table-column-detection
1d4cf952e0107abddd4bbd22101a0774b52e4a26
9542253525cf40bf1af8517ccaffb4a68a0b91c0
refs/heads/main
2023-03-18T11:43:08.319508
2021-03-18T14:45:53
2021-03-18T14:45:53
348,051,072
3
0
null
null
null
null
UTF-8
Python
false
false
2,471
py
# -*- coding: utf-8 -*- """ Created on Wed Feb 18 22:41:12 2021 @author: srirag """ import os import cv2 import numpy as np import tensorflow as tf import sys from utils import label_map_util from utils import visualization_utils as vis_util def table_det(img_name,line_thickness=8,min_score_thresh=0.60): sys.path.append("..") CWD_PATH = os.getcwd() Model_Folder = 'inference_graph' PATH_TO_CKPT = os.path.join(CWD_PATH,Model_Folder,'frozen_inference_graph.pb') PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt') PATH_TO_IMAGE = os.path.join(CWD_PATH,img_name) label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=1, use_display_name=True) category_index = label_map_util.create_category_index(categories) detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') sess = tf.Session(graph=detection_graph) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') image = cv2.imread(PATH_TO_IMAGE) image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image_expanded = np.expand_dims(image_rgb, axis=0) (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_expanded}) vis_util.visualize_boxes_and_labels_on_image_array( image, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=line_thickness, min_score_thresh=min_score_thresh) return image if __name__=='__main__': input_img='tab1.jpg' detected_image=table_det(input_img) cv2.imwrite('Output.jpg',detected_image)
[ "sriragjayakumar@gmail.com" ]
sriragjayakumar@gmail.com
cdf7745843d590141c77de2fc6e44db8ed1d145e
088d42e04689db579cd5d9e0d600ae4ebafd85ec
/Hackerrank.py
811d61b60b791838dc12326affe474ac7058040b
[]
no_license
amankumar94/coding_practice
0c039f46330829dd21a5a1bfa9e9a164419be0bc
b1b5865f6272513471040db15f74e430e3b163fe
refs/heads/master
2022-12-08T12:47:58.136754
2020-09-06T00:13:13
2020-09-06T00:13:13
292,985,785
0
0
null
null
null
null
UTF-8
Python
false
false
3,331
py
from itertools import permutations def getTotalX(a, b): # Write your code here list_of_nums = [] init_num = max(a) max_num = min(b) while init_num <= max_num: a_has_factors = 0 num_is_factor = 0 for element in a: if init_num % element == 0: a_has_factors += 1 for element in b: if element % init_num == 0: num_is_factor += 1 if a_has_factors == len(a) and num_is_factor == len(b): list_of_nums.append(init_num) init_num += 1 return len(list_of_nums) a = [2, 4] b = [16, 32, 96] # print(getTotalX(a, b)) def birthday(s, d, m): # s -> array # d-> birthday date # m -> birthday month -> number of consecutive pieces she wants to give him pos = 0 if d in s: pos += 1 for i in range(len(s) - m): temp = 0 for j in range(m): temp += s[j] if temp == s[i]: pos += 1 return pos # print(birthday([4], 4, 1)) def migratoryBirds(arr): count_dict ={} for num in arr: if num in count_dict.keys(): count_dict[num] += 1 else: count_dict[num] = 1 max_bird = 0 max_freq = 0 for key in count_dict.keys(): if count_dict[key] >= max_freq and key<max_bird: max_bird = key max_freq = count_dict[key] elif count_dict[key] > max_freq: max_bird = key max_freq= count_dict[key] return max_bird print(migratoryBirds([1,2,3,4,5,4,3,2,1,3,4])) def dayOfProgrammer(year): isleapyear = False if year < 1918: if (year % 4 == 0): isleapyear = True if isleapyear == False: return '13.09.' + str(year) else: return '12.09.' + str(year) elif year > 1918: if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): isleapyear = True if isleapyear == False: return '13.09.' + str(year) else: return '12.09.' + str(year) else: return '12.09.1984' print(dayOfProgrammer(1800)) #magic square cost reduction calculation X = [] X.extend(list(map(int, '4 9 2'.split()))) X.extend(list(map(int, '3 5 7'.split()))) X.extend(list(map(int, '8 1 5'.split()))) print(X) Ans = 81 for P in permutations(range(1, 10)): if sum(P[0:3]) == 15 and sum(P[3:6]) == 15 and sum(P[0::3]) == 15 and sum(P[1::3]) == 15 and P[0] + P[4] + P[8] == 15 and (P[2] + P[4] + P[6] == 15): print(P) Ans = min(Ans, sum(abs(P[i] - X[i]) for i in range(0, 9))) print(Ans) def reverseWords(s): # temp_lst = [] # temp_str = "" # for letter in s: # if s != '\s': # temp_str += letter # print(temp_str) # elif s== " ": # print(temp_lst) # temp_lst.append(temp_str) # temp_lst.append(" ") # temp_str = "" # temp_lst = temp_lst[::-1] # new_str = "".join(temp_lst) # print(new_str.split()) s = "".join(s) s = s.split(" ") s = s[::-1] s = " ".join(s) s = [letter for letter in s] print(s) s= ["t","h","e"," ","s","k","y"," ","i","s"," ","b","l","u","e"] reverseWords(s)
[ "aman1994.srm@gmail.com" ]
aman1994.srm@gmail.com
2ec5d2b57a549231c503b53bad41ba084eaa5180
bb493e881b1efb5966b048dabb3330861fc2348a
/Problem2_Even_Fibonaci_Nums.py
e89ea2a2ca8010b5af4dd39b709863fb26c92a17
[]
no_license
sharon-ruane/coding_practice
1d13f669a2c218602a93e2c8a7991096465516a0
7f05098b48e5ef6915e148132ea8a7c6a7756063
refs/heads/master
2020-06-03T14:09:32.564956
2019-06-12T19:49:21
2019-06-12T19:49:21
191,598,632
0
0
null
null
null
null
UTF-8
Python
false
false
1,583
py
# Problem2 # Even Fibonacci numbers # Each new term in the Fibonacci sequence is generated by adding the previous two terms. # By starting with 1 and 2, the first 10 terms will be: # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... # Considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. def even_fibonachi_sum(limit): seq = [0, 1, 1, 2] # prob shouldn't have to hard code this x = 1 while x < limit: # print(seq[-2::1]) seq.append(sum(seq[-2::1])) x = seq[-1] even = [a for a in seq if a % 2 == 0] return sum(even) # print(even_fibonachi_sum(100)) def even_fibonachi_sum2(limit): seq = [] len = 0 num = 0 while num < limit: if len <= 1: seq.append(len) else: seq.append(sum(seq[-2::1])) len = len+1 num = seq[-1] print(seq) even = [a for a in seq if a % 2 == 0 and a < limit] # when is best to remove the last function? return sum(even) print(even_fibonachi_sum2(100)) # # # can so recursively - this is a bit trippy, and I think it's slower... def gen_seq(length): if(length <= 1): return length else: return gen_seq(length-1) + gen_seq(length-2) def even_fibonachi_sum_rec(limit): seq = [] len = 0 num = 0 while num < limit: seq.append(gen_seq(len)) len = len + 1 num = seq[-1] print(seq) even = [a for a in seq if a % 2 == 0 and a < limit] return sum(even) print(even_fibonachi_sum_rec(100))
[ "sharon.ruane@gmail.com" ]
sharon.ruane@gmail.com
86b6b59da4ff0bd5cd94ad890b04687008b97e5a
136de4786d4a90d75aa168bb8d26ebc85e017366
/app.py
12419ddf217f8a6973bd75de494f811f94c230f5
[]
no_license
aaravpandya/topic-model-article
69a29353e5ffc3cd38f01050e6c50526012048ff
867a68b3a1a764daca94169246a9548023d5d5bc
refs/heads/master
2020-05-18T17:26:19.924308
2019-05-02T07:50:12
2019-05-02T07:50:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,331
py
from flask import Flask, request, Response, send_file, render_template, flash, redirect, url_for, jsonify import io from tempfile import NamedTemporaryFile import nltk import numpy as np import pandas as pd import gensim from gensim.utils import simple_preprocess from gensim.parsing.preprocessing import STOPWORDS from nltk.stem import WordNetLemmatizer, SnowballStemmer from nltk.stem.porter import * from nltk.corpus import wordnet nltk.download('wordnet') stemmer = SnowballStemmer('english') def lemmatize_stemming(text): return stemmer.stem(WordNetLemmatizer().lemmatize(text, pos='v')) def preprocess(text): result = [] for token in gensim.utils.simple_preprocess(text): if token not in gensim.parsing.preprocessing.STOPWORDS and len(token) > 3: result.append(lemmatize_stemming(token)) return result app = Flask(__name__) @app.route('/', methods=['POST', 'GET']) def index(): return render_template('home.html') @app.route('/about') def about(): return render_template('about.html') @app.route('/findtopic', methods=['POST']) def findtopic(): text = request.form['text'] data = pd.read_csv('abcnews-date-text.csv', error_bad_lines=False) data = data.iloc[0:5000,0:].values data=pd.DataFrame(data,columns=["publish_date","headline_text"]) data_text = data['headline_text'] data_text['index'] = data_text.index documents = data_text data_text = data_text.drop(data_text.index[len(data_text)-1]) documents = documents.drop(documents.index[len(documents)-1]) doc_sample = documents[documents.index[40]] print('original document: ') words = [] for word in doc_sample.split(' '): words.append(word) documents=pd.DataFrame(documents) processed_docs = documents['headline_text'].map(preprocess) print(processed_docs[:10]) dictionary = gensim.corpora.Dictionary(processed_docs) count = 0 for k, v in dictionary.iteritems(): print(k, v) count += 1 if count > 10: break a = preprocess(text) print (a) other_corpus = [dictionary.doc2bow(a)] unseen_doc = other_corpus[0] print(unseen_doc) #dictionary = dictionary.filter_extremes(no_below=15, no_above=0.5) bow_corpus = [dictionary.doc2bow(doc) for doc in processed_docs] bow_corpus[40] bow_doc_40 = bow_corpus[40] for i in range(len(bow_doc_40)): print("Word {} (\"{}\") appears {} time.".format(bow_doc_40[i][0], dictionary[bow_doc_40[i][0]], bow_doc_40[i][1])) lda_model = gensim.models.ldamodel.LdaModel(bow_corpus, num_topics=1, id2word=dictionary) vector = lda_model[unseen_doc] print("new text") output = "" for index, score in sorted(vector,key=lambda tup: -1*tup[1]): output = output + ("Score:{}, \n Topic: {}".format(score, lda_model.print_topic(index,10))) return output if __name__ == '__main__': #app.run(debug=True) app.run(host='0.0.0.0') # app.run(debug=True)
[ "shiwang.romi@gmail.com" ]
shiwang.romi@gmail.com
d1602560d544b4ced553267b4b55e496e58e3b3b
e4f45c96508207366ec192041404e5e0d21fe489
/ECOL565/tree_calculations.py
6b6149bed844b3b37c894c26e01035a067fce3a9
[]
no_license
asherkhb/cousework
742c05cbb3a03c92ce02291f1becc3c5502e73c3
36df2bde2fd7cf68b805b4e5f874f71b1fc7bd2c
refs/heads/master
2020-05-24T15:50:08.971640
2015-11-09T22:30:34
2015-11-09T22:30:34
35,519,330
0
2
null
null
null
null
UTF-8
Python
false
false
1,143
py
__author__ = 'asherkhb' # tree_calculations.py # Calculates tree metrics for two trees fed as arguments # # Usage: python tree_calcuations.py <tree1> <tree2> # # Dependencies: DendroPy from sys import argv import dendropy tree1_file = argv[1] tree2_file = argv[2] tree1 = dendropy.Tree.get_from_path(tree1_file, 'newick') tree2 = dendropy.Tree.get_from_path(tree2_file, 'newick') sym_diff = tree1.symmetric_difference(tree2) #sym_diff = dendropy.treecalc.symmetric_difference(tree1, tree2) pos_neg = tree1.false_positives_and_negatives(tree2) #pos_neg = dendropy.treecalc.false_positives_and_negatives(tree1, tree2) euc_dist = tree1.euclidean_distance(tree2) #euc_dist = dendropy.treecalc.euclidean_distance(tree1, tree2) rob_fol = tree1.robinson_foulds_distance(tree2) #rob_fol = dendropy.treecalc.robinson_foulds_distance(tree1, tree2) print("Tree Distances") print("- Tree 1: %s" % tree1_file) print("- Tree 2: %s" % tree2_file) print('Symmetric Distance: %s' % str(sym_diff)) print('False Positives and Negatives: %s' % str(pos_neg)) print('Euclidean Distance: %s' % str(euc_dist)) print('Robinson_Foulds_Distance: %s' % str(rob_fol))
[ "asherkhb@gmail.com" ]
asherkhb@gmail.com
250cab1ddcefe33e4ec725b9a411629b96eadbab
39d4504ec1da8975fac526d6801b94f4348b6b61
/research/object_detection/utils/visualization_utils.py
4a6f3295590def33574e84e94fed587f31809eb9
[ "Apache-2.0" ]
permissive
vincentcheny/models
fe0ff5888e6ee00a0d4fa5ee14154acdbeebe7ad
afb1a59fc1bc792ac72d1a3e22e2469020529788
refs/heads/master
2020-07-23T21:38:24.559521
2019-11-15T07:50:11
2019-11-15T07:50:11
207,712,649
1
0
Apache-2.0
2019-09-11T03:12:31
2019-09-11T03:12:31
null
UTF-8
Python
false
false
44,714
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A set of functions that are used for visualization. These functions often receive an image, perform some visualization on the image. The functions do not return a value, instead they modify the image itself. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections # Set headless-friendly backend. import matplotlib; matplotlib.use('Agg') # pylint: disable=multiple-statements import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top import numpy as np import PIL.Image as Image import PIL.ImageColor as ImageColor import PIL.ImageDraw as ImageDraw import PIL.ImageFont as ImageFont import six from six.moves import range from six.moves import zip import tensorflow as tf from object_detection.core import standard_fields as fields from object_detection.utils import shape_utils _TITLE_LEFT_MARGIN = 10 _TITLE_TOP_MARGIN = 10 STANDARD_COLORS = [ 'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque', 'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite', 'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan', 'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange', 'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet', 'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite', 'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod', 'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki', 'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue', 'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey', 'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue', 'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime', 'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid', 'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen', 'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin', 'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed', 'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed', 'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple', 'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown', 'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue', 'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow', 'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White', 'WhiteSmoke', 'Yellow', 'YellowGreen' ] def _get_multiplier_for_color_randomness(): """Returns a multiplier to get semi-random colors from successive indices. This function computes a prime number, p, in the range [2, 17] that: - is closest to len(STANDARD_COLORS) / 10 - does not divide len(STANDARD_COLORS) If no prime numbers in that range satisfy the constraints, p is returned as 1. Once p is established, it can be used as a multiplier to select non-consecutive colors from STANDARD_COLORS: colors = [(p * i) % len(STANDARD_COLORS) for i in range(20)] """ num_colors = len(STANDARD_COLORS) prime_candidates = [5, 7, 11, 13, 17] # Remove all prime candidates that divide the number of colors. prime_candidates = [p for p in prime_candidates if num_colors % p] if not prime_candidates: return 1 # Return the closest prime number to num_colors / 10. abs_distance = [np.abs(num_colors / 10. - p) for p in prime_candidates] num_candidates = len(abs_distance) inds = [i for _, i in sorted(zip(abs_distance, range(num_candidates)))] return prime_candidates[inds[0]] def save_image_array_as_png(image, output_path): """Saves an image (represented as a numpy array) to PNG. Args: image: a numpy array with shape [height, width, 3]. output_path: path to which image should be written. """ image_pil = Image.fromarray(np.uint8(image)).convert('RGB') with tf.gfile.Open(output_path, 'w') as fid: image_pil.save(fid, 'PNG') def encode_image_array_as_png_str(image): """Encodes a numpy array into a PNG string. Args: image: a numpy array with shape [height, width, 3]. Returns: PNG encoded image string. """ image_pil = Image.fromarray(np.uint8(image)) output = six.BytesIO() image_pil.save(output, format='PNG') png_string = output.getvalue() output.close() return png_string def draw_bounding_box_on_image_array(image, ymin, xmin, ymax, xmax, color='red', thickness=4, display_str_list=(), use_normalized_coordinates=True): """Adds a bounding box to an image (numpy array). Bounding box coordinates can be specified in either absolute (pixel) or normalized coordinates by setting the use_normalized_coordinates argument. Args: image: a numpy array with shape [height, width, 3]. ymin: ymin of bounding box. xmin: xmin of bounding box. ymax: ymax of bounding box. xmax: xmax of bounding box. color: color to draw bounding box. Default is red. thickness: line thickness. Default value is 4. display_str_list: list of strings to display in box (each to be shown on its own line). use_normalized_coordinates: If True (default), treat coordinates ymin, xmin, ymax, xmax as relative to the image. Otherwise treat coordinates as absolute. """ image_pil = Image.fromarray(np.uint8(image)).convert('RGB') draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color, thickness, display_str_list, use_normalized_coordinates) np.copyto(image, np.array(image_pil)) def draw_bounding_box_on_image(image, ymin, xmin, ymax, xmax, color='red', thickness=4, display_str_list=(), use_normalized_coordinates=True): """Adds a bounding box to an image. Bounding box coordinates can be specified in either absolute (pixel) or normalized coordinates by setting the use_normalized_coordinates argument. Each string in display_str_list is displayed on a separate line above the bounding box in black text on a rectangle filled with the input 'color'. If the top of the bounding box extends to the edge of the image, the strings are displayed below the bounding box. Args: image: a PIL.Image object. ymin: ymin of bounding box. xmin: xmin of bounding box. ymax: ymax of bounding box. xmax: xmax of bounding box. color: color to draw bounding box. Default is red. thickness: line thickness. Default value is 4. display_str_list: list of strings to display in box (each to be shown on its own line). use_normalized_coordinates: If True (default), treat coordinates ymin, xmin, ymax, xmax as relative to the image. Otherwise treat coordinates as absolute. """ draw = ImageDraw.Draw(image) im_width, im_height = image.size if use_normalized_coordinates: (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) else: (left, right, top, bottom) = (xmin, xmax, ymin, ymax) draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color) try: font = ImageFont.truetype('arial.ttf', 24) except IOError: font = ImageFont.load_default() # If the total height of the display strings added to the top of the bounding # box exceeds the top of the image, stack the strings below the bounding box # instead of above. display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] # Each display_str has a top and bottom margin of 0.05x. total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) if top > total_display_str_height: text_bottom = top else: text_bottom = bottom + total_display_str_height # Reverse list and print from bottom to top. for display_str in display_str_list[::-1]: text_width, text_height = font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle( [(left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom)], fill=color) draw.text( (left + margin, text_bottom - text_height - margin), display_str, fill='black', font=font) text_bottom -= text_height - 2 * margin def draw_bounding_boxes_on_image_array(image, boxes, color='red', thickness=4, display_str_list_list=()): """Draws bounding boxes on image (numpy array). Args: image: a numpy array object. boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax). The coordinates are in normalized format between [0, 1]. color: color to draw bounding box. Default is red. thickness: line thickness. Default value is 4. display_str_list_list: list of list of strings. a list of strings for each bounding box. The reason to pass a list of strings for a bounding box is that it might contain multiple labels. Raises: ValueError: if boxes is not a [N, 4] array """ image_pil = Image.fromarray(image) draw_bounding_boxes_on_image(image_pil, boxes, color, thickness, display_str_list_list) np.copyto(image, np.array(image_pil)) def draw_bounding_boxes_on_image(image, boxes, color='red', thickness=4, display_str_list_list=()): """Draws bounding boxes on image. Args: image: a PIL.Image object. boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax). The coordinates are in normalized format between [0, 1]. color: color to draw bounding box. Default is red. thickness: line thickness. Default value is 4. display_str_list_list: list of list of strings. a list of strings for each bounding box. The reason to pass a list of strings for a bounding box is that it might contain multiple labels. Raises: ValueError: if boxes is not a [N, 4] array """ boxes_shape = boxes.shape if not boxes_shape: return if len(boxes_shape) != 2 or boxes_shape[1] != 4: raise ValueError('Input must be of size [N, 4]') for i in range(boxes_shape[0]): display_str_list = () if display_str_list_list: display_str_list = display_str_list_list[i] draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2], boxes[i, 3], color, thickness, display_str_list) def create_visualization_fn(category_index, include_masks=False, include_keypoints=False, include_track_ids=False, **kwargs): """Constructs a visualization function that can be wrapped in a py_func. py_funcs only accept positional arguments. This function returns a suitable function with the correct positional argument mapping. The positional arguments in order are: 0: image 1: boxes 2: classes 3: scores [4-6]: masks (optional) [4-6]: keypoints (optional) [4-6]: track_ids (optional) -- Example 1 -- vis_only_masks_fn = create_visualization_fn(category_index, include_masks=True, include_keypoints=False, include_track_ids=False, **kwargs) image = tf.py_func(vis_only_masks_fn, inp=[image, boxes, classes, scores, masks], Tout=tf.uint8) -- Example 2 -- vis_masks_and_track_ids_fn = create_visualization_fn(category_index, include_masks=True, include_keypoints=False, include_track_ids=True, **kwargs) image = tf.py_func(vis_masks_and_track_ids_fn, inp=[image, boxes, classes, scores, masks, track_ids], Tout=tf.uint8) Args: category_index: a dict that maps integer ids to category dicts. e.g. {1: {1: 'dog'}, 2: {2: 'cat'}, ...} include_masks: Whether masks should be expected as a positional argument in the returned function. include_keypoints: Whether keypoints should be expected as a positional argument in the returned function. include_track_ids: Whether track ids should be expected as a positional argument in the returned function. **kwargs: Additional kwargs that will be passed to visualize_boxes_and_labels_on_image_array. Returns: Returns a function that only takes tensors as positional arguments. """ def visualization_py_func_fn(*args): """Visualization function that can be wrapped in a tf.py_func. Args: *args: First 4 positional arguments must be: image - uint8 numpy array with shape (img_height, img_width, 3). boxes - a numpy array of shape [N, 4]. classes - a numpy array of shape [N]. scores - a numpy array of shape [N] or None. -- Optional positional arguments -- instance_masks - a numpy array of shape [N, image_height, image_width]. keypoints - a numpy array of shape [N, num_keypoints, 2]. track_ids - a numpy array of shape [N] with unique track ids. Returns: uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes. """ image = args[0] boxes = args[1] classes = args[2] scores = args[3] masks = keypoints = track_ids = None pos_arg_ptr = 4 # Positional argument for first optional tensor (masks). if include_masks: masks = args[pos_arg_ptr] pos_arg_ptr += 1 if include_keypoints: keypoints = args[pos_arg_ptr] pos_arg_ptr += 1 if include_track_ids: track_ids = args[pos_arg_ptr] return visualize_boxes_and_labels_on_image_array( image, boxes, classes, scores, category_index=category_index, instance_masks=masks, keypoints=keypoints, track_ids=track_ids, **kwargs) return visualization_py_func_fn def _resize_original_image(image, image_shape): image = tf.expand_dims(image, 0) image = tf.image.resize_images( image, image_shape, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR, align_corners=True) return tf.cast(tf.squeeze(image, 0), tf.uint8) def draw_bounding_boxes_on_image_tensors(images, boxes, classes, scores, category_index, original_image_spatial_shape=None, true_image_shape=None, instance_masks=None, keypoints=None, track_ids=None, max_boxes_to_draw=20, min_score_thresh=0.2, use_normalized_coordinates=True): """Draws bounding boxes, masks, and keypoints on batch of image tensors. Args: images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional channels will be ignored. If C = 1, then we convert the images to RGB images. boxes: [N, max_detections, 4] float32 tensor of detection boxes. classes: [N, max_detections] int tensor of detection classes. Note that classes are 1-indexed. scores: [N, max_detections] float32 tensor of detection scores. category_index: a dict that maps integer ids to category dicts. e.g. {1: {1: 'dog'}, 2: {2: 'cat'}, ...} original_image_spatial_shape: [N, 2] tensor containing the spatial size of the original image. true_image_shape: [N, 3] tensor containing the spatial size of unpadded original_image. instance_masks: A 4D uint8 tensor of shape [N, max_detection, H, W] with instance masks. keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2] with keypoints. track_ids: [N, max_detections] int32 tensor of unique tracks ids (i.e. instance ids for each object). If provided, the color-coding of boxes is dictated by these ids, and not classes. max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20. min_score_thresh: Minimum score threshold for visualization. Default 0.2. use_normalized_coordinates: Whether to assume boxes and kepoints are in normalized coordinates (as opposed to absolute coordiantes). Default is True. Returns: 4D image tensor of type uint8, with boxes drawn on top. """ # Additional channels are being ignored. if images.shape[3] > 3: images = images[:, :, :, 0:3] elif images.shape[3] == 1: images = tf.image.grayscale_to_rgb(images) visualization_keyword_args = { 'use_normalized_coordinates': use_normalized_coordinates, 'max_boxes_to_draw': max_boxes_to_draw, 'min_score_thresh': min_score_thresh, 'agnostic_mode': False, 'line_thickness': 4 } if true_image_shape is None: true_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 3]) else: true_shapes = true_image_shape if original_image_spatial_shape is None: original_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 2]) else: original_shapes = original_image_spatial_shape visualize_boxes_fn = create_visualization_fn( category_index, include_masks=instance_masks is not None, include_keypoints=keypoints is not None, include_track_ids=track_ids is not None, **visualization_keyword_args) elems = [true_shapes, original_shapes, images, boxes, classes, scores] if instance_masks is not None: elems.append(instance_masks) if keypoints is not None: elems.append(keypoints) if track_ids is not None: elems.append(track_ids) def draw_boxes(image_and_detections): """Draws boxes on image.""" true_shape = image_and_detections[0] original_shape = image_and_detections[1] if true_image_shape is not None: image = shape_utils.pad_or_clip_nd(image_and_detections[2], [true_shape[0], true_shape[1], 3]) if original_image_spatial_shape is not None: image_and_detections[2] = _resize_original_image(image, original_shape) image_with_boxes = tf.py_func(visualize_boxes_fn, image_and_detections[2:], tf.uint8) return image_with_boxes images = tf.map_fn(draw_boxes, elems, dtype=tf.uint8, back_prop=False) return images def draw_side_by_side_evaluation_image(eval_dict, category_index, max_boxes_to_draw=20, min_score_thresh=0.2, use_normalized_coordinates=True): """Creates a side-by-side image with detections and groundtruth. Bounding boxes (and instance masks, if available) are visualized on both subimages. Args: eval_dict: The evaluation dictionary returned by eval_util.result_dict_for_batched_example() or eval_util.result_dict_for_single_example(). category_index: A category index (dictionary) produced from a labelmap. max_boxes_to_draw: The maximum number of boxes to draw for detections. min_score_thresh: The minimum score threshold for showing detections. use_normalized_coordinates: Whether to assume boxes and kepoints are in normalized coordinates (as opposed to absolute coordiantes). Default is True. Returns: A list of [1, H, 2 * W, C] uint8 tensor. The subimage on the left corresponds to detections, while the subimage on the right corresponds to groundtruth. """ detection_fields = fields.DetectionResultFields() input_data_fields = fields.InputDataFields() images_with_detections_list = [] # Add the batch dimension if the eval_dict is for single example. if len(eval_dict[detection_fields.detection_classes].shape) == 1: for key in eval_dict: if key != input_data_fields.original_image: eval_dict[key] = tf.expand_dims(eval_dict[key], 0) for indx in range(eval_dict[input_data_fields.original_image].shape[0]): instance_masks = None if detection_fields.detection_masks in eval_dict: instance_masks = tf.cast( tf.expand_dims( eval_dict[detection_fields.detection_masks][indx], axis=0), tf.uint8) keypoints = None if detection_fields.detection_keypoints in eval_dict: keypoints = tf.expand_dims( eval_dict[detection_fields.detection_keypoints][indx], axis=0) groundtruth_instance_masks = None if input_data_fields.groundtruth_instance_masks in eval_dict: groundtruth_instance_masks = tf.cast( tf.expand_dims( eval_dict[input_data_fields.groundtruth_instance_masks][indx], axis=0), tf.uint8) images_with_detections = draw_bounding_boxes_on_image_tensors( tf.expand_dims( eval_dict[input_data_fields.original_image][indx], axis=0), tf.expand_dims( eval_dict[detection_fields.detection_boxes][indx], axis=0), tf.expand_dims( eval_dict[detection_fields.detection_classes][indx], axis=0), tf.expand_dims( eval_dict[detection_fields.detection_scores][indx], axis=0), category_index, original_image_spatial_shape=tf.expand_dims( eval_dict[input_data_fields.original_image_spatial_shape][indx], axis=0), true_image_shape=tf.expand_dims( eval_dict[input_data_fields.true_image_shape][indx], axis=0), instance_masks=instance_masks, keypoints=keypoints, max_boxes_to_draw=max_boxes_to_draw, min_score_thresh=min_score_thresh, use_normalized_coordinates=use_normalized_coordinates) images_with_groundtruth = draw_bounding_boxes_on_image_tensors( tf.expand_dims( eval_dict[input_data_fields.original_image][indx], axis=0), tf.expand_dims( eval_dict[input_data_fields.groundtruth_boxes][indx], axis=0), tf.expand_dims( eval_dict[input_data_fields.groundtruth_classes][indx], axis=0), tf.expand_dims( tf.ones_like( eval_dict[input_data_fields.groundtruth_classes][indx], dtype=tf.float32), axis=0), category_index, original_image_spatial_shape=tf.expand_dims( eval_dict[input_data_fields.original_image_spatial_shape][indx], axis=0), true_image_shape=tf.expand_dims( eval_dict[input_data_fields.true_image_shape][indx], axis=0), instance_masks=groundtruth_instance_masks, keypoints=None, max_boxes_to_draw=None, min_score_thresh=0.0, use_normalized_coordinates=use_normalized_coordinates) images_with_detections_list.append( tf.concat([images_with_detections, images_with_groundtruth], axis=2)) return images_with_detections_list def draw_keypoints_on_image_array(image, keypoints, color='red', radius=2, use_normalized_coordinates=True): """Draws keypoints on an image (numpy array). Args: image: a numpy array with shape [height, width, 3]. keypoints: a numpy array with shape [num_keypoints, 2]. color: color to draw the keypoints with. Default is red. radius: keypoint radius. Default value is 2. use_normalized_coordinates: if True (default), treat keypoint values as relative to the image. Otherwise treat them as absolute. """ image_pil = Image.fromarray(np.uint8(image)).convert('RGB') draw_keypoints_on_image(image_pil, keypoints, color, radius, use_normalized_coordinates) np.copyto(image, np.array(image_pil)) def draw_keypoints_on_image(image, keypoints, color='red', radius=2, use_normalized_coordinates=True): """Draws keypoints on an image. Args: image: a PIL.Image object. keypoints: a numpy array with shape [num_keypoints, 2]. color: color to draw the keypoints with. Default is red. radius: keypoint radius. Default value is 2. use_normalized_coordinates: if True (default), treat keypoint values as relative to the image. Otherwise treat them as absolute. """ draw = ImageDraw.Draw(image) im_width, im_height = image.size keypoints_x = [k[1] for k in keypoints] keypoints_y = [k[0] for k in keypoints] if use_normalized_coordinates: keypoints_x = tuple([im_width * x for x in keypoints_x]) keypoints_y = tuple([im_height * y for y in keypoints_y]) for keypoint_x, keypoint_y in zip(keypoints_x, keypoints_y): draw.ellipse([(keypoint_x - radius, keypoint_y - radius), (keypoint_x + radius, keypoint_y + radius)], outline=color, fill=color) def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB'))) def visualize_boxes_and_labels_on_image_array( image, boxes, classes, scores, category_index, instance_masks=None, instance_boundaries=None, keypoints=None, track_ids=None, use_normalized_coordinates=False, max_boxes_to_draw=20, min_score_thresh=.5, agnostic_mode=False, line_thickness=4, groundtruth_box_visualization_color='black', skip_scores=False, skip_labels=False, skip_track_ids=False): """Overlay labeled boxes on an image with formatted scores and label names. This function groups boxes that correspond to the same location and creates a display string for each detection and overlays these on the image. Note that this function modifies the image in place, and returns that same image. Args: image: uint8 numpy array with shape (img_height, img_width, 3) boxes: a numpy array of shape [N, 4] classes: a numpy array of shape [N]. Note that class indices are 1-based, and match the keys in the label map. scores: a numpy array of shape [N] or None. If scores=None, then this function assumes that the boxes to be plotted are groundtruth boxes and plot all boxes as black with no classes or scores. category_index: a dict containing category dictionaries (each holding category index `id` and category name `name`) keyed by category indices. instance_masks: a numpy array of shape [N, image_height, image_width] with values ranging between 0 and 1, can be None. instance_boundaries: a numpy array of shape [N, image_height, image_width] with values ranging between 0 and 1, can be None. keypoints: a numpy array of shape [N, num_keypoints, 2], can be None track_ids: a numpy array of shape [N] with unique track ids. If provided, color-coding of boxes will be determined by these ids, and not the class indices. use_normalized_coordinates: whether boxes is to be interpreted as normalized coordinates or not. max_boxes_to_draw: maximum number of boxes to visualize. If None, draw all boxes. min_score_thresh: minimum score threshold for a box to be visualized agnostic_mode: boolean (default: False) controlling whether to evaluate in class-agnostic mode or not. This mode will display scores but ignore classes. line_thickness: integer (default: 4) controlling line width of the boxes. groundtruth_box_visualization_color: box color for visualizing groundtruth boxes skip_scores: whether to skip score when drawing a single detection skip_labels: whether to skip label when drawing a single detection skip_track_ids: whether to skip track id when drawing a single detection Returns: uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes. """ # Create a display string (and color) for every box location, group any boxes # that correspond to the same location. box_to_display_str_map = collections.defaultdict(list) box_to_color_map = collections.defaultdict(str) box_to_instance_masks_map = {} box_to_instance_boundaries_map = {} box_to_keypoints_map = collections.defaultdict(list) box_to_track_ids_map = {} if not max_boxes_to_draw: max_boxes_to_draw = boxes.shape[0] for i in range(min(max_boxes_to_draw, boxes.shape[0])): if scores is None or scores[i] > min_score_thresh: box = tuple(boxes[i].tolist()) if instance_masks is not None: box_to_instance_masks_map[box] = instance_masks[i] if instance_boundaries is not None: box_to_instance_boundaries_map[box] = instance_boundaries[i] if keypoints is not None: box_to_keypoints_map[box].extend(keypoints[i]) if track_ids is not None: box_to_track_ids_map[box] = track_ids[i] if scores is None: box_to_color_map[box] = groundtruth_box_visualization_color else: display_str = '' if not skip_labels: if not agnostic_mode: if classes[i] in six.viewkeys(category_index): class_name = category_index[classes[i]]['name'] else: class_name = 'N/A' display_str = str(class_name) if not skip_scores: if not display_str: display_str = '{}%'.format(int(100*scores[i])) else: display_str = '{}: {}%'.format(display_str, int(100*scores[i])) if not skip_track_ids and track_ids is not None: if not display_str: display_str = 'ID {}'.format(track_ids[i]) else: display_str = '{}: ID {}'.format(display_str, track_ids[i]) box_to_display_str_map[box].append(display_str) if agnostic_mode: box_to_color_map[box] = 'DarkOrange' elif track_ids is not None: prime_multipler = _get_multiplier_for_color_randomness() box_to_color_map[box] = STANDARD_COLORS[ (prime_multipler * track_ids[i]) % len(STANDARD_COLORS)] else: box_to_color_map[box] = STANDARD_COLORS[ classes[i] % len(STANDARD_COLORS)] # Draw all boxes onto image. for box, color in box_to_color_map.items(): ymin, xmin, ymax, xmax = box if instance_masks is not None: draw_mask_on_image_array( image, box_to_instance_masks_map[box], color=color ) if instance_boundaries is not None: draw_mask_on_image_array( image, box_to_instance_boundaries_map[box], color='red', alpha=1.0 ) draw_bounding_box_on_image_array( image, ymin, xmin, ymax, xmax, color=color, thickness=line_thickness, display_str_list=box_to_display_str_map[box], use_normalized_coordinates=use_normalized_coordinates) if keypoints is not None: draw_keypoints_on_image_array( image, box_to_keypoints_map[box], color=color, radius=line_thickness / 2, use_normalized_coordinates=use_normalized_coordinates) return image def add_cdf_image_summary(values, name): """Adds a tf.summary.image for a CDF plot of the values. Normalizes `values` such that they sum to 1, plots the cumulative distribution function and creates a tf image summary. Args: values: a 1-D float32 tensor containing the values. name: name for the image summary. """ def cdf_plot(values): """Numpy function to plot CDF.""" normalized_values = values / np.sum(values) sorted_values = np.sort(normalized_values) cumulative_values = np.cumsum(sorted_values) fraction_of_examples = (np.arange(cumulative_values.size, dtype=np.float32) / cumulative_values.size) fig = plt.figure(frameon=False) ax = fig.add_subplot('111') ax.plot(fraction_of_examples, cumulative_values) ax.set_ylabel('cumulative normalized values') ax.set_xlabel('fraction of examples') fig.canvas.draw() width, height = fig.get_size_inches() * fig.get_dpi() image = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape( 1, int(height), int(width), 3) return image cdf_plot = tf.py_func(cdf_plot, [values], tf.uint8) tf.summary.image(name, cdf_plot) def add_hist_image_summary(values, bins, name): """Adds a tf.summary.image for a histogram plot of the values. Plots the histogram of values and creates a tf image summary. Args: values: a 1-D float32 tensor containing the values. bins: bin edges which will be directly passed to np.histogram. name: name for the image summary. """ def hist_plot(values, bins): """Numpy function to plot hist.""" fig = plt.figure(frameon=False) ax = fig.add_subplot('111') y, x = np.histogram(values, bins=bins) ax.plot(x[:-1], y) ax.set_ylabel('count') ax.set_xlabel('value') fig.canvas.draw() width, height = fig.get_size_inches() * fig.get_dpi() image = np.fromstring( fig.canvas.tostring_rgb(), dtype='uint8').reshape( 1, int(height), int(width), 3) return image hist_plot = tf.py_func(hist_plot, [values, bins], tf.uint8) tf.summary.image(name, hist_plot) class EvalMetricOpsVisualization(six.with_metaclass(abc.ABCMeta, object)): """Abstract base class responsible for visualizations during evaluation. Currently, summary images are not run during evaluation. One way to produce evaluation images in Tensorboard is to provide tf.summary.image strings as `value_ops` in tf.estimator.EstimatorSpec's `eval_metric_ops`. This class is responsible for accruing images (with overlaid detections and groundtruth) and returning a dictionary that can be passed to `eval_metric_ops`. """ def __init__(self, category_index, max_examples_to_draw=5, max_boxes_to_draw=20, min_score_thresh=0.2, use_normalized_coordinates=True, summary_name_prefix='evaluation_image'): """Creates an EvalMetricOpsVisualization. Args: category_index: A category index (dictionary) produced from a labelmap. max_examples_to_draw: The maximum number of example summaries to produce. max_boxes_to_draw: The maximum number of boxes to draw for detections. min_score_thresh: The minimum score threshold for showing detections. use_normalized_coordinates: Whether to assume boxes and kepoints are in normalized coordinates (as opposed to absolute coordiantes). Default is True. summary_name_prefix: A string prefix for each image summary. """ self._category_index = category_index self._max_examples_to_draw = max_examples_to_draw self._max_boxes_to_draw = max_boxes_to_draw self._min_score_thresh = min_score_thresh self._use_normalized_coordinates = use_normalized_coordinates self._summary_name_prefix = summary_name_prefix self._images = [] def clear(self): self._images = [] def add_images(self, images): """Store a list of images, each with shape [1, H, W, C].""" if len(self._images) >= self._max_examples_to_draw: return # Store images and clip list if necessary. self._images.extend(images) if len(self._images) > self._max_examples_to_draw: self._images[self._max_examples_to_draw:] = [] def get_estimator_eval_metric_ops(self, eval_dict): """Returns metric ops for use in tf.estimator.EstimatorSpec. Args: eval_dict: A dictionary that holds an image, groundtruth, and detections for a batched example. Note that, we use only the first example for visualization. See eval_util.result_dict_for_batched_example() for a convenient method for constructing such a dictionary. The dictionary contains fields.InputDataFields.original_image: [batch_size, H, W, 3] image. fields.InputDataFields.original_image_spatial_shape: [batch_size, 2] tensor containing the size of the original image. fields.InputDataFields.true_image_shape: [batch_size, 3] tensor containing the spatial size of the upadded original image. fields.InputDataFields.groundtruth_boxes - [batch_size, num_boxes, 4] float32 tensor with groundtruth boxes in range [0.0, 1.0]. fields.InputDataFields.groundtruth_classes - [batch_size, num_boxes] int64 tensor with 1-indexed groundtruth classes. fields.InputDataFields.groundtruth_instance_masks - (optional) [batch_size, num_boxes, H, W] int64 tensor with instance masks. fields.DetectionResultFields.detection_boxes - [batch_size, max_num_boxes, 4] float32 tensor with detection boxes in range [0.0, 1.0]. fields.DetectionResultFields.detection_classes - [batch_size, max_num_boxes] int64 tensor with 1-indexed detection classes. fields.DetectionResultFields.detection_scores - [batch_size, max_num_boxes] float32 tensor with detection scores. fields.DetectionResultFields.detection_masks - (optional) [batch_size, max_num_boxes, H, W] float32 tensor of binarized masks. fields.DetectionResultFields.detection_keypoints - (optional) [batch_size, max_num_boxes, num_keypoints, 2] float32 tensor with keypoints. Returns: A dictionary of image summary names to tuple of (value_op, update_op). The `update_op` is the same for all items in the dictionary, and is responsible for saving a single side-by-side image with detections and groundtruth. Each `value_op` holds the tf.summary.image string for a given image. """ if self._max_examples_to_draw == 0: return {} images = self.images_from_evaluation_dict(eval_dict) def get_images(): """Returns a list of images, padded to self._max_images_to_draw.""" images = self._images while len(images) < self._max_examples_to_draw: images.append(np.array(0, dtype=np.uint8)) self.clear() return images def image_summary_or_default_string(summary_name, image): """Returns image summaries for non-padded elements.""" return tf.cond( tf.equal(tf.size(tf.shape(image)), 4), lambda: tf.summary.image(summary_name, image), lambda: tf.constant('')) if tf.executing_eagerly(): update_op = self.add_images([[images[0]]]) image_tensors = get_images() else: update_op = tf.py_func(self.add_images, [[images[0]]], []) image_tensors = tf.py_func( get_images, [], [tf.uint8] * self._max_examples_to_draw) eval_metric_ops = {} for i, image in enumerate(image_tensors): summary_name = self._summary_name_prefix + '/' + str(i) value_op = image_summary_or_default_string(summary_name, image) eval_metric_ops[summary_name] = (value_op, update_op) return eval_metric_ops @abc.abstractmethod def images_from_evaluation_dict(self, eval_dict): """Converts evaluation dictionary into a list of image tensors. To be overridden by implementations. Args: eval_dict: A dictionary with all the necessary information for producing visualizations. Returns: A list of [1, H, W, C] uint8 tensors. """ raise NotImplementedError class VisualizeSingleFrameDetections(EvalMetricOpsVisualization): """Class responsible for single-frame object detection visualizations.""" def __init__(self, category_index, max_examples_to_draw=5, max_boxes_to_draw=20, min_score_thresh=0.2, use_normalized_coordinates=True, summary_name_prefix='Detections_Left_Groundtruth_Right'): super(VisualizeSingleFrameDetections, self).__init__( category_index=category_index, max_examples_to_draw=max_examples_to_draw, max_boxes_to_draw=max_boxes_to_draw, min_score_thresh=min_score_thresh, use_normalized_coordinates=use_normalized_coordinates, summary_name_prefix=summary_name_prefix) def images_from_evaluation_dict(self, eval_dict): return draw_side_by_side_evaluation_image( eval_dict, self._category_index, self._max_boxes_to_draw, self._min_score_thresh, self._use_normalized_coordinates)
[ "1155107977@link.cuhk.edu.hk" ]
1155107977@link.cuhk.edu.hk
ad2689bc3a1ef3272dfa263f7f741b1dd5782703
74289c7af7e014aeea6cc76c7fffc8675dca89ab
/dashboard/migrations/0002_auto_20201203_1929.py
fd7859e4673b73367ebb41f2bf9e026ef2e67d1c
[ "Apache-2.0" ]
permissive
Kgermando/e-s
f8f7f569205ad20b48fcc4ea27fd9de668a28ad9
249ada84c63ffe99a71c1fbb301c533b9f5a3869
refs/heads/main
2023-03-19T05:34:55.115746
2021-03-15T23:12:53
2021-03-15T23:12:53
310,040,022
1
0
null
null
null
null
UTF-8
Python
false
false
1,711
py
# Generated by Django 3.1.2 on 2020-12-03 18:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dashboard', '0001_initial'), ] operations = [ migrations.AlterField( model_name='forms_artisans', name='created', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='forms_artisans', name='date', field=models.CharField(max_length=300), ), migrations.AlterField( model_name='forms_consultant', name='created', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='forms_consultant', name='date', field=models.CharField(max_length=300), ), migrations.AlterField( model_name='forms_entreprise', name='created', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='forms_entreprise', name='date', field=models.CharField(max_length=300), ), migrations.AlterField( model_name='forms_investisseur', name='created', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='forms_partenaire', name='created', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='opportunite', name='created', field=models.DateTimeField(auto_now=True), ), ]
[ "katakugermain@gmail.com" ]
katakugermain@gmail.com
abec0b0ab2b3d432728609d79e7973892253d855
b7851ffc689990a5c394697b1d016ba34307630c
/venv/lib/python3.8/site-packages/django/contrib/postgres/constraints.py
1f4e2617ffcafa0c00abd00ab0dea4d74e29e34a
[]
no_license
denokenya/django-schooling-rest-api
f38fb5cc31a6f40462f9cb1dcc6c3fd36e1301c6
552b98d5494344049541df615f446713cb5da1fa
refs/heads/main
2023-06-14T12:53:11.897887
2021-07-10T18:02:11
2021-07-10T18:02:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,916
py
from django.db.backends.ddl_references import Statement, Table from django.db.models import Deferrable, F, Q from django.db.models.constraints import BaseConstraint from django.db.models.sql import Query __all__ = ["ExclusionConstraint"] class ExclusionConstraint(BaseConstraint): template = "CONSTRAINT %(name)s EXCLUDE USING %(index_type)s (%(expressions)s)%(where)s%(deferrable)s" def __init__( self, *, name, expressions, index_type=None, condition=None, deferrable=None ): if index_type and index_type.lower() not in {"gist", "spgist"}: raise ValueError( "Exclusion constraints only support GiST or SP-GiST indexes." ) if not expressions: raise ValueError( "At least one expression is required to define an exclusion " "constraint." ) if not all( isinstance(expr, (list, tuple)) and len(expr) == 2 for expr in expressions ): raise ValueError("The expressions must be a list of 2-tuples.") if not isinstance(condition, (type(None), Q)): raise ValueError("ExclusionConstraint.condition must be a Q instance.") if condition and deferrable: raise ValueError("ExclusionConstraint with conditions cannot be deferred.") if not isinstance(deferrable, (type(None), Deferrable)): raise ValueError( "ExclusionConstraint.deferrable must be a Deferrable instance." ) self.expressions = expressions self.index_type = index_type or "GIST" self.condition = condition self.deferrable = deferrable super().__init__(name=name) def _get_expression_sql(self, compiler, schema_editor, query): expressions = [] for expression, operator in self.expressions: if isinstance(expression, str): expression = F(expression) expression = expression.resolve_expression(query=query) sql, params = compiler.compile(expression) sql = sql % tuple(schema_editor.quote_value(p) for p in params) expressions.append("%s WITH %s" % (sql, operator)) return expressions def _get_condition_sql(self, compiler, schema_editor, query): if self.condition is None: return None where = query.build_where(self.condition) sql, params = where.as_sql(compiler, schema_editor.connection) return sql % tuple(schema_editor.quote_value(p) for p in params) def constraint_sql(self, model, schema_editor): query = Query(model, alias_cols=False) compiler = query.get_compiler(connection=schema_editor.connection) expressions = self._get_expression_sql(compiler, schema_editor, query) condition = self._get_condition_sql(compiler, schema_editor, query) return self.template % { "name": schema_editor.quote_name(self.name), "index_type": self.index_type, "expressions": ", ".join(expressions), "where": " WHERE (%s)" % condition if condition else "", "deferrable": schema_editor._deferrable_constraint_sql(self.deferrable), } def create_sql(self, model, schema_editor): return Statement( "ALTER TABLE %(table)s ADD %(constraint)s", table=Table(model._meta.db_table, schema_editor.quote_name), constraint=self.constraint_sql(model, schema_editor), ) def remove_sql(self, model, schema_editor): return schema_editor._delete_constraint_sql( schema_editor.sql_delete_check, model, schema_editor.quote_name(self.name) ) def deconstruct(self): path, args, kwargs = super().deconstruct() kwargs["expressions"] = self.expressions if self.condition is not None: kwargs["condition"] = self.condition if self.index_type.lower() != "gist": kwargs["index_type"] = self.index_type if self.deferrable: kwargs["deferrable"] = self.deferrable return path, args, kwargs def __eq__(self, other): if isinstance(other, self.__class__): return ( self.name == other.name and self.index_type == other.index_type and self.expressions == other.expressions and self.condition == other.condition and self.deferrable == other.deferrable ) return super().__eq__(other) def __repr__(self): return "<%s: index_type=%s, expressions=%s%s%s>" % ( self.__class__.__qualname__, self.index_type, self.expressions, "" if self.condition is None else ", condition=%s" % self.condition, "" if self.deferrable is None else ", deferrable=%s" % self.deferrable, )
[ "lucasciccomy@gmail.com" ]
lucasciccomy@gmail.com
6959baaf8e251598084436cb4e2e01b9d3cc408c
96431e6ac30ee6c584e88015a8a07c6b88672992
/bruteforce/1476.py
1e87c3429da20d85d02982e3da15caa58e152c31
[]
no_license
HeidiHyeji/ex-python
69d66f289ba15c184407a2b5f5248e1ad1fb6aef
bcdb87e4a7d7ac1efdc4f75fc3f3a58697c843e1
refs/heads/master
2023-04-09T13:48:43.983019
2021-04-22T14:17:38
2021-04-22T14:17:38
110,086,350
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
import sys E, S, M = map(int,sys.stdin.readline().split())#15,28,19 i = 0 while True: tmp = 15*i+E rs = tmp % 28 if tmp % 28 != 0 else 28 rm = tmp % 19 if tmp % 19 != 0 else 19 if rs == S and rm == M: break i = i+1 print(tmp)
[ "gogo6076@naver.com" ]
gogo6076@naver.com
53dd9e2c67a9c021b3cdc7fec38a7bd1609c45fd
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_surfaces.py
b3a610ca69920fd9bb90387cf7f0229b274b8b1b
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
245
py
from xai.brain.wordbase.verbs._surface import _SURFACE #calss header class _SURFACES(_SURFACE, ): def __init__(self,): _SURFACE.__init__(self) self.name = "SURFACES" self.specie = 'verbs' self.basic = "surface" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
4a1093c19780bc68360d3038fe87837c29ad8616
abca9e32e4fb97c9433ce50720049e0a8f18d9d4
/qa/rpc-tests/getchaintips.py
6dcf5b4462eb551de671637e340e38f0cd974495
[ "MIT" ]
permissive
nikolake/minerium
b0829475f24033b81b184781308dbaef1db182d1
aa014119a70ba4997df1ab4ab05570a0b01f1590
refs/heads/master
2022-07-18T13:33:04.536700
2020-05-17T19:03:20
2020-05-17T19:03:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,191
py
#!/usr/bin/env python2 # Copyright (c) 2014-2020 The Bitcoin Core developers # Copyright (c) 2014-2020 The Minerium Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Exercise the getchaintips API. We introduce a network split, work # on chains of different lengths, and join the network together again. # This gives us two tips, verify that it works. from test_framework.test_framework import MineriumTestFramework from test_framework.util import assert_equal class GetChainTipsTest (MineriumTestFramework): def run_test (self): MineriumTestFramework.run_test (self) tips = self.nodes[0].getchaintips () assert_equal (len (tips), 1) assert_equal (tips[0]['branchlen'], 0) assert_equal (tips[0]['height'], 200) assert_equal (tips[0]['status'], 'active') # Split the network and build two chains of different lengths. self.split_network () self.nodes[0].generate(10) self.nodes[2].generate(20) self.sync_all () tips = self.nodes[1].getchaintips () assert_equal (len (tips), 1) shortTip = tips[0] assert_equal (shortTip['branchlen'], 0) assert_equal (shortTip['height'], 210) assert_equal (tips[0]['status'], 'active') tips = self.nodes[3].getchaintips () assert_equal (len (tips), 1) longTip = tips[0] assert_equal (longTip['branchlen'], 0) assert_equal (longTip['height'], 220) assert_equal (tips[0]['status'], 'active') # Join the network halves and check that we now have two tips # (at least at the nodes that previously had the short chain). self.join_network () tips = self.nodes[0].getchaintips () assert_equal (len (tips), 2) assert_equal (tips[0], longTip) assert_equal (tips[1]['branchlen'], 10) assert_equal (tips[1]['status'], 'valid-fork') tips[1]['branchlen'] = 0 tips[1]['status'] = 'active' assert_equal (tips[1], shortTip) if __name__ == '__main__': GetChainTipsTest ().main ()
[ "46746362+bunbunbunbunbunny@users.noreply.github.com" ]
46746362+bunbunbunbunbunny@users.noreply.github.com
a500b44ee0e69ac3157847f19501d44eec615d3b
569da3e77e1e3675b7b1fa041ddd413a9d6e5a81
/scripts/label_image.py
852f64daad730228c0b9122a788148900df8b0bf
[]
no_license
arun-kumark/Ionic-Android-Application
35b7e063beb7cf655f5ffd6a13acb25f2c028e69
1d462cbc96d6651b03b9751612f4f69f52a44fef
refs/heads/master
2021-09-05T05:32:01.021616
2018-01-24T12:30:23
2018-01-24T12:30:23
83,131,159
1
0
null
null
null
null
UTF-8
Python
false
false
5,648
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import tensorflow as tf #Global list for Negative Cases unknown = ['agata potato', 'cashew', 'honneydew melon', 'nectarine', 'spanish pear', 'asterix potato', \ 'fuji apple', 'kiwi', 'onion', 'plum', 'taiti lime', 'diamond peach', 'granny smith apple', \ 'orange', 'watermelon', 'broccoli'] rolls = ['rolls round', 'rolls square', 'rolls bag'] chicken_wings = ['chicken wings uncut','chicken wings cut'] chicken_legs = ['chicken legs uncut', 'chicken legs cut'] french_fries = ['french fries thick', 'french fries thin', 'french fries wavy'] chicken_nuggets = ['chicken nugget cut', 'chicken nugget uncut'] def load_graph(model_file): graph = tf.Graph() graph_def = tf.GraphDef() with open(model_file, "rb") as f: graph_def.ParseFromString(f.read()) with graph.as_default(): tf.import_graph_def(graph_def) return graph def read_tensor_from_image_file(file_name, input_height=299, input_width=299, input_mean=0, input_std=255): input_name = "file_reader" output_name = "normalized" file_reader = tf.read_file(file_name, input_name) if file_name.endswith(".png"): image_reader = tf.image.decode_png(file_reader, channels = 3, name='png_reader') elif file_name.endswith(".gif"): image_reader = tf.squeeze(tf.image.decode_gif(file_reader, name='gif_reader')) elif file_name.endswith(".bmp"): image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader') else: image_reader = tf.image.decode_jpeg(file_reader, channels = 3, name='jpeg_reader') float_caster = tf.cast(image_reader, tf.float32) dims_expander = tf.expand_dims(float_caster, 0); resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width]) normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std]) sess = tf.Session() result = sess.run(normalized) return result def load_labels(label_file): label = [] proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines() if __name__ == "__main__": file_name = "tf_files/flower_photos/daisy/3475870145_685a19116d.jpg" model_file = "tf_files/retrained_graph.pb" label_file = "tf_files/retrained_labels.txt" input_height = 224 input_width = 224 input_mean = 128 input_std = 128 input_layer = "input" output_layer = "final_result" parser = argparse.ArgumentParser() parser.add_argument("--image", help="image to be processed") parser.add_argument("--graph", help="graph/model to be executed") parser.add_argument("--labels", help="name of file containing labels") parser.add_argument("--input_height", type=int, help="input height") parser.add_argument("--input_width", type=int, help="input width") parser.add_argument("--input_mean", type=int, help="input mean") parser.add_argument("--input_std", type=int, help="input std") parser.add_argument("--input_layer", help="name of input layer") parser.add_argument("--output_layer", help="name of output layer") args = parser.parse_args() if args.graph: model_file = args.graph if args.image: file_name = args.image if args.labels: label_file = args.labels if args.input_height: input_height = args.input_height if args.input_width: input_width = args.input_width if args.input_mean: input_mean = args.input_mean if args.input_std: input_std = args.input_std if args.input_layer: input_layer = args.input_layer if args.output_layer: output_layer = args.output_layer graph = load_graph(model_file) t = read_tensor_from_image_file(file_name, input_height=input_height, input_width=input_width, input_mean=input_mean, input_std=input_std) input_name = "import/" + input_layer output_name = "import/" + output_layer input_operation = graph.get_operation_by_name(input_name); output_operation = graph.get_operation_by_name(output_name); with tf.Session(graph=graph) as sess: results = sess.run(output_operation.outputs[0], {input_operation.outputs[0]: t}) results = np.squeeze(results) top_k = results.argsort()[-5:][::-1] labels = load_labels(label_file) for i in top_k: if labels[i] in unknown: print ("Unknown") elif labels[i] in chicken_nuggets: print("chicken_nuggets") elif labels[i] in rolls: print("rolls") elif labels[i] in chicken_wings: print("chicken_wings") elif labels[i] in chicken_legs: print("chicken_legs") elif labels[i] in french_fries: print("french_fries") else: #print(labels[i], results[i]) print(labels[i])
[ "noreply@github.com" ]
arun-kumark.noreply@github.com
73215e472af2a62953128dacd6bc7599100f045e
290e4ab74219e8826044a954b9ab6ff44e3916e7
/src/controller/schema.py
a381e38c35abd67b88fb9920407eb4943352088e
[ "MIT" ]
permissive
mehsoy/jaws
1ff437778fc8d94be58cd9468eafed0396e55e62
b79723c1fc549741494ebf5d948e94a44e971f2a
refs/heads/master
2023-02-09T02:01:16.946703
2021-07-17T22:40:14
2021-07-17T22:40:14
192,337,939
2
0
MIT
2023-02-02T03:36:52
2019-06-17T11:56:18
Python
UTF-8
Python
false
false
1,649
py
""".. module:: schema """ import re from voluptuous import Schema, Invalid, Required, Any, All from application.system.user_role import UserRole """Contains all schemata used in controller package ``Schema`` objects are used validate incoming JSON formatted requests. """ #Validators for schemata def Role(value): if value in [color.name for color in UserRole]: return value else: raise Invalid('Role doesnt exist.') def Status(value): if value == 'ACTIVE' or value == 'DEACTIVATED': return value else: raise Invalid('Bad Request: Status has to be either ACTIVE or DEACTIVATED!') def Instruction(value): perm_pattern = re.compile('[+-=][rwx-]{0,3}') if perm_pattern.match(value): return value else: raise Invalid('Bad Request: invalid instruction syntax.') def Tag_Type(value): if value in ['user', 'group', 'other']: return value else: raise Invalid('Bad Request: invalid instruction syntax.') #Schemata are defined here job_schema = Schema({ Required('workspace'): str, Required('target'): str, Required('a', default=False): bool, Required('b', default=False): bool, Required('e', default=False): bool, Required('for_user', default=None): Any(None, str), }) job_status_schema = Schema({ 'priority': int, 'status': Status, }) binary_status_schema = Schema({ Required('status'): Status, }) role_schema = Schema({ Required('role'): Role, }) patch_access_schema = Schema({ Required('tag_type'): Tag_Type, Required('name', default=None): object, Required('instruction'): Instruction, })
[ "mehmet@soysal.eu" ]
mehmet@soysal.eu
3afd25af65dd48d3153fca7882ee2e10c9f20cbc
7054f04b8aa78792dcc96297eea4c1e5ac86a4fa
/inference.py
6b00a2497862d2224754a71777fcede4a291c055
[ "MIT" ]
permissive
T-C-J/shuiying
bba08e1a1ef16063f9613ef167069bae36eb513d
d47a6a3f0ae0c131117d105b58d60932e4be2538
refs/heads/master
2020-05-29T08:57:42.709669
2019-05-28T15:09:22
2019-05-28T15:09:22
189,045,023
0
0
null
null
null
null
UTF-8
Python
false
false
1,697
py
"""Translate an image to another image An example of command-line usage is: python export_graph.py --model pretrained/apple2orange.pb \ --input input_sample.jpg \ --output output_sample.jpg \ --image_size 256 """ import tensorflow as tf import os from model import CycleGAN import utils FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string('model', '', 'model path (.pb)') tf.flags.DEFINE_string('input', 'input_sample.jpg', 'input image path (.jpg)') tf.flags.DEFINE_string('output', 'output_sample.jpg', 'output image path (.jpg)') tf.flags.DEFINE_integer('image_size', '256', 'image size, default: 256') def inference(): graph = tf.Graph() with graph.as_default(): with tf.gfile.FastGFile(FLAGS.input, 'rb') as f: image_data = f.read() input_image = tf.image.decode_jpeg(image_data, channels=3) input_image = tf.image.resize_images(input_image, size=(FLAGS.image_size, FLAGS.image_size)) input_image = utils.convert2float(input_image) input_image.set_shape([FLAGS.image_size, FLAGS.image_size, 3]) with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file: graph_def = tf.GraphDef() graph_def.ParseFromString(model_file.read()) [output_image] = tf.import_graph_def(graph_def, input_map={'input_image': input_image}, return_elements=['output_image:0'], name='output') with tf.Session(graph=graph) as sess: generated = output_image.eval() with open(FLAGS.output, 'wb') as f: f.write(generated) def main(unused_argv): inference() if __name__ == '__main__': tf.app.run()
[ "995321524@qq.com" ]
995321524@qq.com
ec22a55cb8bd259d0c57c2ada4fd7ef763304579
68772267a2125c17ff4b4b1cf7dfb94a4c97ae56
/gcloudspeechtotext/models/recognition_config.py
205aac3ca75802ee3f1d6d5728a5caadcd748959
[]
no_license
r3versi/gcloud-speech-to-text
43dfa3f359bf5e207d1374d4177134b5b452b0ea
4c06a601f09edf58c63cd6696ade7c9034e8734a
refs/heads/master
2022-11-11T03:23:47.714652
2020-07-03T12:26:12
2020-07-03T12:26:12
276,894,519
0
0
null
null
null
null
UTF-8
Python
false
false
25,229
py
# coding: utf-8 """ Cloud Speech-to-Text API Converts audio to text by applying powerful neural network models. <br> **PLEASE NOTE**: This API is provided by Google, beside the documentation provide below, you can find Google API documentation [here](https://cloud.google.com/speech-to-text/docs/reference/rest). You can refer to the Google documentation as well except by the URLs needed to call the API and that are documented here below. # noqa: E501 OpenAPI spec version: v3.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class RecognitionConfig(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'encoding': 'str', 'speech_contexts': 'list[SpeechContext]', 'model': 'str', 'audio_channel_count': 'int', 'diarization_config': 'SpeakerDiarizationConfig', 'enable_word_time_offsets': 'bool', 'language_code': 'str', 'profanity_filter': 'bool', 'use_enhanced': 'bool', 'metadata': 'RecognitionMetadata', 'sample_rate_hertz': 'int', 'enable_separate_recognition_per_channel': 'bool', 'enable_automatic_punctuation': 'bool', 'max_alternatives': 'int' } attribute_map = { 'encoding': 'encoding', 'speech_contexts': 'speechContexts', 'model': 'model', 'audio_channel_count': 'audioChannelCount', 'diarization_config': 'diarizationConfig', 'enable_word_time_offsets': 'enableWordTimeOffsets', 'language_code': 'languageCode', 'profanity_filter': 'profanityFilter', 'use_enhanced': 'useEnhanced', 'metadata': 'metadata', 'sample_rate_hertz': 'sampleRateHertz', 'enable_separate_recognition_per_channel': 'enableSeparateRecognitionPerChannel', 'enable_automatic_punctuation': 'enableAutomaticPunctuation', 'max_alternatives': 'maxAlternatives' } def __init__(self, encoding=None, speech_contexts=None, model=None, audio_channel_count=None, diarization_config=None, enable_word_time_offsets=None, language_code=None, profanity_filter=None, use_enhanced=None, metadata=None, sample_rate_hertz=None, enable_separate_recognition_per_channel=None, enable_automatic_punctuation=None, max_alternatives=None): # noqa: E501 """RecognitionConfig - a model defined in Swagger""" # noqa: E501 self._encoding = None self._speech_contexts = None self._model = None self._audio_channel_count = None self._diarization_config = None self._enable_word_time_offsets = None self._language_code = None self._profanity_filter = None self._use_enhanced = None self._metadata = None self._sample_rate_hertz = None self._enable_separate_recognition_per_channel = None self._enable_automatic_punctuation = None self._max_alternatives = None self.discriminator = None if encoding is not None: self.encoding = encoding if speech_contexts is not None: self.speech_contexts = speech_contexts if model is not None: self.model = model if audio_channel_count is not None: self.audio_channel_count = audio_channel_count if diarization_config is not None: self.diarization_config = diarization_config if enable_word_time_offsets is not None: self.enable_word_time_offsets = enable_word_time_offsets if language_code is not None: self.language_code = language_code if profanity_filter is not None: self.profanity_filter = profanity_filter if use_enhanced is not None: self.use_enhanced = use_enhanced if metadata is not None: self.metadata = metadata if sample_rate_hertz is not None: self.sample_rate_hertz = sample_rate_hertz if enable_separate_recognition_per_channel is not None: self.enable_separate_recognition_per_channel = enable_separate_recognition_per_channel if enable_automatic_punctuation is not None: self.enable_automatic_punctuation = enable_automatic_punctuation if max_alternatives is not None: self.max_alternatives = max_alternatives @property def encoding(self): """Gets the encoding of this RecognitionConfig. # noqa: E501 Encoding of audio data sent in all `RecognitionAudio` messages. This field is optional for `FLAC` and `WAV` audio files and required for all other audio formats. For details, see AudioEncoding. # noqa: E501 :return: The encoding of this RecognitionConfig. # noqa: E501 :rtype: str """ return self._encoding @encoding.setter def encoding(self, encoding): """Sets the encoding of this RecognitionConfig. Encoding of audio data sent in all `RecognitionAudio` messages. This field is optional for `FLAC` and `WAV` audio files and required for all other audio formats. For details, see AudioEncoding. # noqa: E501 :param encoding: The encoding of this RecognitionConfig. # noqa: E501 :type: str """ allowed_values = ["ENCODING_UNSPECIFIED", "LINEAR16", "FLAC", "MULAW", "AMR", "AMR_WB", "OGG_OPUS", "SPEEX_WITH_HEADER_BYTE"] # noqa: E501 if encoding not in allowed_values: raise ValueError( "Invalid value for `encoding` ({0}), must be one of {1}" # noqa: E501 .format(encoding, allowed_values) ) self._encoding = encoding @property def speech_contexts(self): """Gets the speech_contexts of this RecognitionConfig. # noqa: E501 Array of SpeechContext. A means to provide context to assist the speech recognition. For more information, see [speech adaptation](https://cloud.google.com/speech-to-text/docs/context-strength). # noqa: E501 :return: The speech_contexts of this RecognitionConfig. # noqa: E501 :rtype: list[SpeechContext] """ return self._speech_contexts @speech_contexts.setter def speech_contexts(self, speech_contexts): """Sets the speech_contexts of this RecognitionConfig. Array of SpeechContext. A means to provide context to assist the speech recognition. For more information, see [speech adaptation](https://cloud.google.com/speech-to-text/docs/context-strength). # noqa: E501 :param speech_contexts: The speech_contexts of this RecognitionConfig. # noqa: E501 :type: list[SpeechContext] """ self._speech_contexts = speech_contexts @property def model(self): """Gets the model of this RecognitionConfig. # noqa: E501 Which model to select for the given request. Select the model best suited to your domain to get best results. If a model is not explicitly specified, then we auto-select a model based on the parameters in the RecognitionConfig. <table> <tr> <td><b>Model</b></td> <td><b>Description</b></td> </tr> <tr> <td><code>command_and_search</code></td> <td>Best for short queries such as voice commands or voice search.</td> </tr> <tr> <td><code>phone_call</code></td> <td>Best for audio that originated from a phone call (typically recorded at an 8khz sampling rate).</td> </tr> <tr> <td><code>video</code></td> <td>Best for audio that originated from from video or includes multiple speakers. Ideally the audio is recorded at a 16khz or greater sampling rate. This is a premium model that costs more than the standard rate.</td> </tr> <tr> <td><code>default</code></td> <td>Best for audio that is not one of the specific audio models. For example, long-form audio. Ideally the audio is high-fidelity, recorded at a 16khz or greater sampling rate.</td> </tr> </table> # noqa: E501 :return: The model of this RecognitionConfig. # noqa: E501 :rtype: str """ return self._model @model.setter def model(self, model): """Sets the model of this RecognitionConfig. Which model to select for the given request. Select the model best suited to your domain to get best results. If a model is not explicitly specified, then we auto-select a model based on the parameters in the RecognitionConfig. <table> <tr> <td><b>Model</b></td> <td><b>Description</b></td> </tr> <tr> <td><code>command_and_search</code></td> <td>Best for short queries such as voice commands or voice search.</td> </tr> <tr> <td><code>phone_call</code></td> <td>Best for audio that originated from a phone call (typically recorded at an 8khz sampling rate).</td> </tr> <tr> <td><code>video</code></td> <td>Best for audio that originated from from video or includes multiple speakers. Ideally the audio is recorded at a 16khz or greater sampling rate. This is a premium model that costs more than the standard rate.</td> </tr> <tr> <td><code>default</code></td> <td>Best for audio that is not one of the specific audio models. For example, long-form audio. Ideally the audio is high-fidelity, recorded at a 16khz or greater sampling rate.</td> </tr> </table> # noqa: E501 :param model: The model of this RecognitionConfig. # noqa: E501 :type: str """ self._model = model @property def audio_channel_count(self): """Gets the audio_channel_count of this RecognitionConfig. # noqa: E501 The number of channels in the input audio data. ONLY set this for MULTI-CHANNEL recognition. Valid values for LINEAR16 and FLAC are `1`-`8`. Valid values for OGG_OPUS are '1'-'254'. Valid value for MULAW, AMR, AMR_WB and SPEEX_WITH_HEADER_BYTE is only `1`. If `0` or omitted, defaults to one channel (mono). Note: We only recognize the first channel by default. To perform independent recognition on each channel set `enable_separate_recognition_per_channel` to 'true'. # noqa: E501 :return: The audio_channel_count of this RecognitionConfig. # noqa: E501 :rtype: int """ return self._audio_channel_count @audio_channel_count.setter def audio_channel_count(self, audio_channel_count): """Sets the audio_channel_count of this RecognitionConfig. The number of channels in the input audio data. ONLY set this for MULTI-CHANNEL recognition. Valid values for LINEAR16 and FLAC are `1`-`8`. Valid values for OGG_OPUS are '1'-'254'. Valid value for MULAW, AMR, AMR_WB and SPEEX_WITH_HEADER_BYTE is only `1`. If `0` or omitted, defaults to one channel (mono). Note: We only recognize the first channel by default. To perform independent recognition on each channel set `enable_separate_recognition_per_channel` to 'true'. # noqa: E501 :param audio_channel_count: The audio_channel_count of this RecognitionConfig. # noqa: E501 :type: int """ self._audio_channel_count = audio_channel_count @property def diarization_config(self): """Gets the diarization_config of this RecognitionConfig. # noqa: E501 :return: The diarization_config of this RecognitionConfig. # noqa: E501 :rtype: SpeakerDiarizationConfig """ return self._diarization_config @diarization_config.setter def diarization_config(self, diarization_config): """Sets the diarization_config of this RecognitionConfig. :param diarization_config: The diarization_config of this RecognitionConfig. # noqa: E501 :type: SpeakerDiarizationConfig """ self._diarization_config = diarization_config @property def enable_word_time_offsets(self): """Gets the enable_word_time_offsets of this RecognitionConfig. # noqa: E501 If `true`, the top result includes a list of words and the start and end time offsets (timestamps) for those words. If `false`, no word-level time offset information is returned. The default is `false`. # noqa: E501 :return: The enable_word_time_offsets of this RecognitionConfig. # noqa: E501 :rtype: bool """ return self._enable_word_time_offsets @enable_word_time_offsets.setter def enable_word_time_offsets(self, enable_word_time_offsets): """Sets the enable_word_time_offsets of this RecognitionConfig. If `true`, the top result includes a list of words and the start and end time offsets (timestamps) for those words. If `false`, no word-level time offset information is returned. The default is `false`. # noqa: E501 :param enable_word_time_offsets: The enable_word_time_offsets of this RecognitionConfig. # noqa: E501 :type: bool """ self._enable_word_time_offsets = enable_word_time_offsets @property def language_code(self): """Gets the language_code of this RecognitionConfig. # noqa: E501 Required. The language of the supplied audio as a [BCP-47](https://www.rfc-editor.org/rfc/bcp/bcp47.txt) language tag. Example: \"en-US\". See [Language Support](https://cloud.google.com/speech-to-text/docs/languages) for a list of the currently supported language codes. # noqa: E501 :return: The language_code of this RecognitionConfig. # noqa: E501 :rtype: str """ return self._language_code @language_code.setter def language_code(self, language_code): """Sets the language_code of this RecognitionConfig. Required. The language of the supplied audio as a [BCP-47](https://www.rfc-editor.org/rfc/bcp/bcp47.txt) language tag. Example: \"en-US\". See [Language Support](https://cloud.google.com/speech-to-text/docs/languages) for a list of the currently supported language codes. # noqa: E501 :param language_code: The language_code of this RecognitionConfig. # noqa: E501 :type: str """ self._language_code = language_code @property def profanity_filter(self): """Gets the profanity_filter of this RecognitionConfig. # noqa: E501 If set to `true`, the server will attempt to filter out profanities, replacing all but the initial character in each filtered word with asterisks, e.g. \"f***\". If set to `false` or omitted, profanities won't be filtered out. # noqa: E501 :return: The profanity_filter of this RecognitionConfig. # noqa: E501 :rtype: bool """ return self._profanity_filter @profanity_filter.setter def profanity_filter(self, profanity_filter): """Sets the profanity_filter of this RecognitionConfig. If set to `true`, the server will attempt to filter out profanities, replacing all but the initial character in each filtered word with asterisks, e.g. \"f***\". If set to `false` or omitted, profanities won't be filtered out. # noqa: E501 :param profanity_filter: The profanity_filter of this RecognitionConfig. # noqa: E501 :type: bool """ self._profanity_filter = profanity_filter @property def use_enhanced(self): """Gets the use_enhanced of this RecognitionConfig. # noqa: E501 Set to true to use an enhanced model for speech recognition. If `use_enhanced` is set to true and the `model` field is not set, then an appropriate enhanced model is chosen if an enhanced model exists for the audio. If `use_enhanced` is true and an enhanced version of the specified model does not exist, then the speech is recognized using the standard version of the specified model. # noqa: E501 :return: The use_enhanced of this RecognitionConfig. # noqa: E501 :rtype: bool """ return self._use_enhanced @use_enhanced.setter def use_enhanced(self, use_enhanced): """Sets the use_enhanced of this RecognitionConfig. Set to true to use an enhanced model for speech recognition. If `use_enhanced` is set to true and the `model` field is not set, then an appropriate enhanced model is chosen if an enhanced model exists for the audio. If `use_enhanced` is true and an enhanced version of the specified model does not exist, then the speech is recognized using the standard version of the specified model. # noqa: E501 :param use_enhanced: The use_enhanced of this RecognitionConfig. # noqa: E501 :type: bool """ self._use_enhanced = use_enhanced @property def metadata(self): """Gets the metadata of this RecognitionConfig. # noqa: E501 :return: The metadata of this RecognitionConfig. # noqa: E501 :rtype: RecognitionMetadata """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this RecognitionConfig. :param metadata: The metadata of this RecognitionConfig. # noqa: E501 :type: RecognitionMetadata """ self._metadata = metadata @property def sample_rate_hertz(self): """Gets the sample_rate_hertz of this RecognitionConfig. # noqa: E501 Sample rate in Hertz of the audio data sent in all `RecognitionAudio` messages. Valid values are: 8000-48000. 16000 is optimal. For best results, set the sampling rate of the audio source to 16000 Hz. If that's not possible, use the native sample rate of the audio source (instead of re-sampling). This field is optional for FLAC and WAV audio files, but is required for all other audio formats. For details, see AudioEncoding. # noqa: E501 :return: The sample_rate_hertz of this RecognitionConfig. # noqa: E501 :rtype: int """ return self._sample_rate_hertz @sample_rate_hertz.setter def sample_rate_hertz(self, sample_rate_hertz): """Sets the sample_rate_hertz of this RecognitionConfig. Sample rate in Hertz of the audio data sent in all `RecognitionAudio` messages. Valid values are: 8000-48000. 16000 is optimal. For best results, set the sampling rate of the audio source to 16000 Hz. If that's not possible, use the native sample rate of the audio source (instead of re-sampling). This field is optional for FLAC and WAV audio files, but is required for all other audio formats. For details, see AudioEncoding. # noqa: E501 :param sample_rate_hertz: The sample_rate_hertz of this RecognitionConfig. # noqa: E501 :type: int """ self._sample_rate_hertz = sample_rate_hertz @property def enable_separate_recognition_per_channel(self): """Gets the enable_separate_recognition_per_channel of this RecognitionConfig. # noqa: E501 This needs to be set to `true` explicitly and `audio_channel_count` > 1 to get each channel recognized separately. The recognition result will contain a `channel_tag` field to state which channel that result belongs to. If this is not true, we will only recognize the first channel. The request is billed cumulatively for all channels recognized: `audio_channel_count` multiplied by the length of the audio. # noqa: E501 :return: The enable_separate_recognition_per_channel of this RecognitionConfig. # noqa: E501 :rtype: bool """ return self._enable_separate_recognition_per_channel @enable_separate_recognition_per_channel.setter def enable_separate_recognition_per_channel(self, enable_separate_recognition_per_channel): """Sets the enable_separate_recognition_per_channel of this RecognitionConfig. This needs to be set to `true` explicitly and `audio_channel_count` > 1 to get each channel recognized separately. The recognition result will contain a `channel_tag` field to state which channel that result belongs to. If this is not true, we will only recognize the first channel. The request is billed cumulatively for all channels recognized: `audio_channel_count` multiplied by the length of the audio. # noqa: E501 :param enable_separate_recognition_per_channel: The enable_separate_recognition_per_channel of this RecognitionConfig. # noqa: E501 :type: bool """ self._enable_separate_recognition_per_channel = enable_separate_recognition_per_channel @property def enable_automatic_punctuation(self): """Gets the enable_automatic_punctuation of this RecognitionConfig. # noqa: E501 If 'true', adds punctuation to recognition result hypotheses. This feature is only available in select languages. Setting this for requests in other languages has no effect at all. The default 'false' value does not add punctuation to result hypotheses. Note: This is currently offered as an experimental service, complimentary to all users. In the future this may be exclusively available as a premium feature. # noqa: E501 :return: The enable_automatic_punctuation of this RecognitionConfig. # noqa: E501 :rtype: bool """ return self._enable_automatic_punctuation @enable_automatic_punctuation.setter def enable_automatic_punctuation(self, enable_automatic_punctuation): """Sets the enable_automatic_punctuation of this RecognitionConfig. If 'true', adds punctuation to recognition result hypotheses. This feature is only available in select languages. Setting this for requests in other languages has no effect at all. The default 'false' value does not add punctuation to result hypotheses. Note: This is currently offered as an experimental service, complimentary to all users. In the future this may be exclusively available as a premium feature. # noqa: E501 :param enable_automatic_punctuation: The enable_automatic_punctuation of this RecognitionConfig. # noqa: E501 :type: bool """ self._enable_automatic_punctuation = enable_automatic_punctuation @property def max_alternatives(self): """Gets the max_alternatives of this RecognitionConfig. # noqa: E501 Maximum number of recognition hypotheses to be returned. Specifically, the maximum number of `SpeechRecognitionAlternative` messages within each `SpeechRecognitionResult`. The server may return fewer than `max_alternatives`. Valid values are `0`-`30`. A value of `0` or `1` will return a maximum of one. If omitted, will return a maximum of one. # noqa: E501 :return: The max_alternatives of this RecognitionConfig. # noqa: E501 :rtype: int """ return self._max_alternatives @max_alternatives.setter def max_alternatives(self, max_alternatives): """Sets the max_alternatives of this RecognitionConfig. Maximum number of recognition hypotheses to be returned. Specifically, the maximum number of `SpeechRecognitionAlternative` messages within each `SpeechRecognitionResult`. The server may return fewer than `max_alternatives`. Valid values are `0`-`30`. A value of `0` or `1` will return a maximum of one. If omitted, will return a maximum of one. # noqa: E501 :param max_alternatives: The max_alternatives of this RecognitionConfig. # noqa: E501 :type: int """ self._max_alternatives = max_alternatives def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(RecognitionConfig, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RecognitionConfig): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "fluo392@gmail.com" ]
fluo392@gmail.com
5e8d50005ab897c655e31ce7412c5ebb10c4f5db
dcf29102afcf78cc37073daedd2b4044c235e1e1
/Bisection.py
8f24d36ca278fadf62958fd5bd5ba3d1e6f0ecac
[]
no_license
RonsonGallery/Numerical-analysis
88e9d4335645e5c2b3402cf4940715530dbed69f
91357e99f2bee4ee147158e2b54440bed4d709d7
refs/heads/master
2023-02-18T16:23:58.707028
2021-01-19T10:40:55
2021-01-19T10:40:55
306,577,480
0
0
null
null
null
null
UTF-8
Python
false
false
3,960
py
#Roni Gerkerov - 316583145 #Eden Mozes - 315997049 import math import sympy as sp from numpy import log x = sp.symbols('x') f = sp.Function('f') def func_calc(func,x,val): return func.subs(x,val).evalf() def f(x): #x = sp.symbols('x') #x**5 -5*x - +2 #(math.sin(x**2 + 5*x + 6))/(2*(2.718)**(-x)) return (0.5*2.2718**x)*(math.sin(x**2 + 5*x + 6)) def bisection (a,b,epsilon): #Recives a range and returns the root in that range if one exists xl = a xr = b #k = round(-log(epsilon/(b-a))/log(2)) + 1 iterator = 0 #print(k) while abs((xl-xr)) >= epsilon: c = (xl+xr)/2 prod = f(xl) * f(c) if prod > epsilon: xl = c elif prod < epsilon: xr = c #if iterator == int(k): #return None iterator += 1 return c def bisection_special (a,b,epsilon,f): #same as the previos one but for dervative xl = a xr = b while abs((xl-xr)) >= epsilon: c = (xl+xr)/2 prod = func_calc(f,x,xl) * func_calc(f,x,c) if prod > epsilon: xl = c elif prod < epsilon: xr = c return c iter = 0 def bigger_bisection(a,b,g): #recives a large range and uses bisection function to find all possible roots xl = a xr = b my_dict = {} while xr - 0.1 >= xl - 0.1: # print(xr) my_dict[xr] = g(xr) xr = round(xr - 0.100, 2) current = 0 last = f(b) current_key = 0 last_key = 0 roots = [] for key in my_dict: current_key = key current = my_dict[key] #print(my_dict[key]) if current * last < 0: #print(current, last) print("Potential root in this range: " + str( current_key), str(last_key)) if bisection(current_key, last_key, 1e-10) != None: roots.append(bisection(current_key, last_key, 1e-10)) last = current last_key = current_key return roots def bigger_bisection_diff(a,b,g): #same as previous only for the direvative version xl = a xr = b my_dict = {} while xr - 0.1 >= xl - 0.1: #print(xr) my_dict[xr] = func_calc(g,x,xr) xr = round(xr - 0.100, 2) current = 0 last = func_calc(g,x,b) current_key = 0 last_key = 0 roots = [] for key in my_dict: current_key = key current = my_dict[key] #print(my_dict[key]) if check_root(my_dict[key]): roots.append(my_dict[key]) if current * last < 0: #print(current, last) #print(current_key,last_key) roots.append(bisection_special(current_key, last_key, 1e-10,g)) last = current last_key = current_key return roots """ my_dict = {} while xr - 0.1 >= xl-0.1: # print(xr) my_dict[xr] = f(xr) xr = round(xr - 0.100,2) current = 0 last = f(b) current_key = 0 last_key = 0 roots = [] for key in my_dict: current_key = key current = my_dict[key] if current * last < 0: print(current,last) roots.append(bisection(current_key,last_key,1e-10)) last = current last_key = current_key """ def check_root(x): if f(x) == 0: return True return False def ftx(x): return 0.5 * (2.718 ** x) * (math.cos(x**2 + 6 + 5*x)*(5+2*x) + math.sin(x**2 + 6 + 5*x)) #print(key , current) #answer = bisection(-5,5,1e-10) a = -3 b = 1 x = sp.symbols('x') solutions = bigger_bisection(a,b,f) print(solutions) #ftx = (sp.diff(f(x),x)) #check_roots = bigger_bisection_diff(a,b,ftx) print("Potential roots for derivative:") check_roots = bigger_bisection(a,b,ftx) roots = list(filter(check_root,check_roots)) for i in roots: solutions.append(roots[i]) print("Answer with bisection method gives the root at X = ",solutions) #print(f(check_roots[0])) #print(f(check_roots[1]))
[ "ronson537@gmail.com" ]
ronson537@gmail.com
9c2185ac3b16e3c826891d95458499b40f42744f
d49faba12b010adf33ee0fa99f83741887f40c17
/machete/questions/models.py
a6e9cec751b61c37d4ca5f51c5286af5cbf845f6
[]
no_license
rustyrazorblade/machete
db0c7a07f8d8efba256196d1b676d331fe8f76b9
47dd8b9dfe8f74edb286a3b38b9a06be1e63bbfa
refs/heads/master
2020-05-17T22:05:27.499482
2013-05-02T04:53:53
2013-05-02T04:53:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
298
py
import thunderdome from machete.base.models import BaseVertex, BaseEdge class Question(BaseVertex): text = thunderdome.String() class Answer(BaseVertex): text = thunderdome.String() @property def question(self): self.inV() class HasAnswer(BaseEdge): pass
[ "jon@jonhaddad.com" ]
jon@jonhaddad.com
685c747e0f76ba7addacb084fdc786402ebe3ff4
6ccc87e32feadc811d8a77f119a766fc8b1dde6a
/tests/conftest.py
141427e988ad9a9f19fe4fa0189e179e2d2e4539
[ "MIT" ]
permissive
ddhira123/visualkeras
45ccdf54477f86dcb0dfd3cb3b76a0ae9a57d921
6adb60c695dc29fdaa373d7e7a5b0feeb06c0e6a
refs/heads/master
2023-06-30T23:46:06.041331
2021-08-05T03:50:48
2021-08-05T03:50:48
392,893,038
0
0
MIT
2021-08-05T03:52:52
2021-08-05T03:40:43
Python
UTF-8
Python
false
false
7,315
py
import pytest try: import tensorflow as tf HAS_TF = True except ModuleNotFoundError: HAS_TF = False try: import keras HAS_KERAS = True except ModuleNotFoundError: HAS_KERAS = False def get_functional_model(lib): shape_x = 48 shape_y = 48 input_img = lib.layers.Input(shape=(shape_x, shape_y, 1), name='input_1') # input layer_1 = lib.layers.Conv2D(1, (1, 1), padding='same', activation='relu', name='layer_1_1')(input_img) layer_1 = lib.layers.Conv2D(1, (3, 3), padding='same', activation='relu', name='layer_1_2')(layer_1) layer_2 = lib.layers.Conv2D(1, (1, 1), padding='same', activation='relu', name='layer_2_1')(input_img) layer_2 = lib.layers.Conv2D(1, (5, 5), padding='same', activation='relu', name='layer_2_2')(layer_2) layer_3 = lib.layers.MaxPooling2D((3, 3), strides=(1, 1), padding='same', name='layer_3_1')(input_img) layer_3 = lib.layers.Conv2D(1, (1, 1), padding='same', activation='relu', name='layer_3_2')(layer_3) input_img2 = lib.layers.Input(shape=(shape_x, shape_y, 1), name='input_2') # input mid_1 = lib.layers.concatenate([layer_1, layer_2, layer_3, input_img2], axis=3, name='concat') flat_1 = lib.layers.Flatten(name='flatten')(mid_1) dense_1 = lib.layers.Dense(1, activation='relu', name='dense_1')(flat_1) dense_2 = lib.layers.Dense(1, activation='relu', name='dense_2')(dense_1) dense_3 = lib.layers.Dense(1, activation='relu', name='dense_3')(dense_2) output = lib.layers.Dense(1, activation='softmax', name='dense_4')(dense_3) model = lib.Model([input_img, input_img2], [output, mid_1]) return model def get_functional_model_with_nested(lib): shape_x = 48 shape_y = 48 input_img = lib.layers.Input(shape=(shape_x, shape_y, 1), name='input_1') # input layer_1 = lib.layers.Conv2D(1, (1, 1), padding='same', activation='relu', name='layer_1_1')(input_img) layer_1 = lib.layers.Conv2D(1, (3, 3), padding='same', activation='relu', name='layer_1_2')(layer_1) layer_2 = lib.layers.Conv2D(1, (1, 1), padding='same', activation='relu', name='layer_2_1')(input_img) layer_2 = lib.layers.Conv2D(1, (5, 5), padding='same', activation='relu', name='layer_2_2')(layer_2) layer_3 = lib.layers.MaxPooling2D((3, 3), strides=(1, 1), padding='same', name='layer_3_1')(input_img) layer_3 = lib.layers.Conv2D(1, (1, 1), padding='same', activation='relu', name='layer_3_2')(layer_3) input_img2 = lib.layers.Input(shape=(shape_x, shape_y, 1), name='input_2') # input mid_1 = lib.layers.concatenate([layer_1, layer_2, layer_3, input_img2], axis=3, name='concat') flat_1 = lib.layers.Flatten(name='flatten')(mid_1) dense_1 = lib.layers.Dense(1, activation='relu', name='dense_1')(flat_1) dense_2 = lib.layers.Dense(1, activation='relu', name='dense_2')(dense_1) dense_3 = lib.layers.Dense(1, activation='relu', name='dense_3')(dense_2) subsubnet_in = lib.layers.Input(shape=(1,), name='sub_input') subsubnet_l1 = lib.layers.Dense(10, activation='relu', name='sub_dense_1')(subsubnet_in) subsubnet_l2 = lib.layers.Dense(10, activation='relu', name='sub_dense_2')(subsubnet_in) subsubnet_m1 = lib.layers.concatenate([subsubnet_l1, subsubnet_l2], axis=1, name='sub_concatenate') subsubnet_model = lib.Model([subsubnet_in], [subsubnet_m1], name='sub_model') sub_out = subsubnet_model(dense_3) output = lib.layers.Dense(1, activation='softmax', name='dense_4')(sub_out) model = lib.Model([input_img, input_img2], [output, mid_1]) return model def get_sequential_model(lib): image_size = 8 model = lib.models.Sequential() model.add(lib.layers.InputLayer(input_shape=(image_size, image_size, 3), name='input')) model.add(lib.layers.ZeroPadding2D((1, 1), name='zero_padding')) model.add(lib.layers.Conv2D(64, activation='relu', kernel_size=(3, 3), name='conv')) model.add(lib.layers.MaxPooling2D((2, 2), strides=(2, 2), name='max_pooling')) model.add(lib.layers.Flatten(name='flatten')) model.add(lib.layers.Dense(1, activation='relu', name='dense_1')) model.add(lib.layers.Dropout(0.5, name='dropout')) model.add(lib.layers.Dense(1, activation='softmax', name='dense_2')) return model def get_sequential_model_with_nested(lib): submodel = lib.models.Sequential() submodel.add(lib.layers.Dense(1, activation='relu', name='sub_dense_1')) submodel.add(lib.layers.Dropout(0.5, name='sub_dropout')) submodel.add(lib.layers.Dense(1, activation='relu', name='sub_dense_2')) image_size = 8 model = lib.models.Sequential() model.add(lib.layers.InputLayer(input_shape=(image_size, image_size, 3), name='input')) model.add(lib.layers.ZeroPadding2D((1, 1), name='zero_padding')) model.add(lib.layers.Conv2D(64, activation='relu', kernel_size=(3, 3), name='conv')) model.add(lib.layers.MaxPooling2D((2, 2), strides=(2, 2), name='max_pooling')) model.add(lib.layers.Flatten(name='flatten')) model.add(lib.layers.Dense(1, activation='relu', name='dense_1')) model.add(lib.layers.Dropout(0.5, name='dropout')) model.add(submodel) model.add(lib.layers.Dense(1, activation='softmax', name='dense_2')) return model def pytest_generate_tests(metafunc): if "functional_model" in metafunc.fixturenames: metafunc.parametrize("functional_model", ["functional_model_tf", "functional_model_keras"], indirect=True) if "sequential_model" in metafunc.fixturenames: metafunc.parametrize("sequential_model", ["sequential_model_tf", "sequential_model_keras"], indirect=True) if "model" in metafunc.fixturenames: metafunc.parametrize("model", ["sequential_model_tf", "sequential_model_keras", "functional_model_tf", "functional_model_keras", "sequential_model_tf_with_nested", "sequential_model_keras_with_nested", "functional_model_tf_with_nested", "functional_model_keras_with_nested" ], indirect=True) @pytest.fixture def model(request): return _get_models(request) @pytest.fixture def sequential_model(request): return _get_models(request) @pytest.fixture def functional_model(request): return _get_models(request) def _get_models(request): if request.param == "functional_model_tf": return get_functional_model(tf.keras) elif request.param == "functional_model_keras": return get_functional_model(keras) elif request.param == "sequential_model_tf": return get_sequential_model(tf.keras) elif request.param == "sequential_model_keras": return get_sequential_model(keras) elif request.param == "functional_model_tf_with_nested": return get_functional_model_with_nested(tf.keras) elif request.param == "functional_model_keras_with_nested": return get_functional_model_with_nested(keras) elif request.param == "sequential_model_tf_with_nested": return get_sequential_model_with_nested(tf.keras) elif request.param == "sequential_model_keras_with_nested": return get_sequential_model_with_nested(keras) else: raise ValueError("invalid internal test config")
[ "paulgavrikov@yahoo.de" ]
paulgavrikov@yahoo.de
8ecd9ec1df16e13cb9b076d15190233ee81d77f0
bef2676a1768d2b2f723a2325bb07d61b5c1da39
/mjengo/bin/zlogger.py
11544277a9cceb2483dad26b31cfed839ade1f4e
[ "MIT" ]
permissive
bilha-analytics/school
f7c15f6a6881a26b11371971d476c41162166ee0
d3491eb3f88386dcef35abe13ff8d494790a607d
refs/heads/master
2023-04-23T08:55:16.020982
2021-05-14T01:10:16
2021-05-14T01:10:16
294,672,089
0
1
null
null
null
null
UTF-8
Python
false
false
3,557
py
''' author: bg goal: proper and consistent logging type: util how: use std logging module, format to liking, learn: https://www.loggly.com/ultimate-guide/python-logging-basics/ , https://docs.python.org/3.5/howto/logging-cookbook.html , refactors: Do we want this as a class? What form; Singelton? ''' import os import sys, traceback from datetime import datetime import logging from termcolor import colored os.system('color') DEFAULT_LOGGING_LEVEL = logging.NOTSET LOGGER = None APP_NAME = None def startLogger(name, level=DEFAULT_LOGGING_LEVEL): ''' Input: name: Name of logger, say app name level: Logging level. Default is everything @ NOTSET Return: None TODO: review at module Vs app level usage @ LOGGER object instance + basicConfig ''' global LOGGER, APP_NAME APP_NAME = name #"UNNAMED" if name is None else name if LOGGER is None: LOGGER = logging.getLogger( APP_NAME ) LOGGER.addHandler( logging.StreamHandler() ) logging.basicConfig() setLogLevel( level ) print("Logger is started") def setLogLevel( level=DEFAULT_LOGGING_LEVEL): ''' Input: level: Logging level. Default is everything @ NOTSET Return: None ''' if LOGGER is not None: LOGGER.setLevel( level ) def log(src, msg, ltype=logging.INFO, appName='zmoi'): ''' For now using once instance for entire app and it's modules. Doing some name_formating hack The only call needed to get things working Input: src: App or module making the request msg: Message to log. Can be any object type type: level appName: overarching app name. Very first time used Return: None ''' if LOGGER is None: startLogger(appName) logit = { logging.DEBUG : LOGGER.debug, logging.WARNING : LOGGER.warning, logging.ERROR : LOGGER.error, logging.CRITICAL : LOGGER.critical , } #INFO @ default;all else colorit = { logging.WARNING : 'yellow', logging.ERROR : 'red', logging.CRITICAL : 'red' , }# default = blue nameit = { logging.WARNING : "WARNING ", logging.ERROR : "ERROR ", logging.CRITICAL : "CRITICAL" , } # default = INFOR nm = nameit.get( ltype, "INFOR ") if APP_NAME is None else "" msg_str = "{}: {} [{}] {}".format( nm, datetime.now(), colored(src, colorit.get(ltype, 'blue') ), msg ) log_ = logit.get(ltype, LOGGER.info) log_(msg_str) print(msg_str) def logError(src, msg): ''' Specific formatting for errors and provide stack trace on exceptions etc Input: src : source of log request msg : message to go with exception output Return: None ''' e = sys.exc_info()[0] log("{}".format(src), "{}: {}".format(msg, e), ltype=logging.ERROR ) print( traceback.format_exc() ) if __name__ == "__main__": log(__name__, "Trying out the logger") log("Main.MyModule", "The quick brown fox jumped over the lazy dogs!", logging.WARN) log( __name__, "Yet another message here with a very very very very ong long long string string", logging.ERROR) log( __name__, "Yet another message here", logging.CRITICAL)
[ "bilha.analytics@gmail.com" ]
bilha.analytics@gmail.com
9cb139e239abbaa3191055c86ee06cfdc79f561f
5865cc1b70db72b7a9a9a07547f05a1f47959bb1
/math/0x01-plotting/100-gradient.py
bf7651d269addbcd5a85b11d97dd23e4a4f3424a
[]
no_license
nildiert/holbertonschool-machine_learning
c8cefc3a784348f09128c0f4d82d65b9d56000c5
273f81feaa14fe24ac4db5d82be0d13299e857b8
refs/heads/master
2020-12-21T12:27:48.280880
2020-09-25T17:58:33
2020-09-25T17:58:33
236,429,499
1
0
null
null
null
null
UTF-8
Python
false
false
415
py
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt np.random.seed(5) x = np.random.randn(2000) * 10 y = np.random.randn(2000) * 10 z = np.random.rand(2000) + 40 - np.sqrt(np.square(x) + np.square(y)) plt.scatter(x, y, c=z) clrbar = plt.colorbar() clrbar.set_label("elevation (m)") plt.ylabel('y coordinate (m)') plt.xlabel('x coordinate (m)') plt.suptitle('Mountain Elevation') plt.show()
[ "niljordan23@gmail.com" ]
niljordan23@gmail.com
f026bccb96d874bc15ceeb09ae475077d68edd2f
dd364d0defd5164939be057f087576b5f076d610
/demo/rest_views.py
4dd1b2ffeef871363107fcf8b958e4d1afca2ec2
[]
no_license
srikanthpragada/PYTHON_07_SEP_2018_WEBDEMO
31cc45bd29fb16fbbf1d6e65dd25cee0cad04405
227f333fa90a8aafc25a5116799663b03b64de87
refs/heads/master
2020-04-01T19:23:21.337333
2018-11-01T02:30:47
2018-11-01T02:30:47
153,551,150
0
0
null
null
null
null
UTF-8
Python
false
false
853
py
from rest_framework import serializers from rest_framework.decorators import api_view from rest_framework.response import Response from .models import Book class BookSerializer(serializers.ModelSerializer): class Meta: model = Book fields = ('id', 'title', 'price', 'pubid') @api_view(['GET', 'POST']) def list_books(request): if request.method == "GET": books = Book.objects.all() serializer = BookSerializer(books, many=True) return Response(serializer.data) else: # POST print("Adding new books", request.data) serializer = BookSerializer(data=request.data) if serializer.is_valid(): serializer.save() # insert row into table return Response(serializer.data, status = 201) return Response(serializer.errors, status=400) # Bad request
[ "srikanthpragada@gmail.com" ]
srikanthpragada@gmail.com
d26c8b7c1f124ad63556a6d7f37ada8c9460daa2
7e86a9bd9ec1f82838d114bf71ad0f6d0f12152c
/venv/Lib/site-packages/stellar_sdk/memo.py
34dbdb18e8a5f30b598f845a00eb162cedea6e34
[ "MIT" ]
permissive
yunoUNo/fini
b39688e7203d61f031f2ae9686845b0beccd9b2a
a833bc64a3aaf94f7268ec6eac690aa68327dd96
refs/heads/master
2023-08-05T17:42:48.726825
2021-09-29T13:30:32
2021-09-29T13:30:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,226
py
import abc from typing import Union from . import xdr as stellar_xdr from .exceptions import MemoInvalidException from .utils import hex_to_bytes __all__ = ["Memo", "NoneMemo", "TextMemo", "IdMemo", "HashMemo", "ReturnHashMemo"] class Memo(object, metaclass=abc.ABCMeta): """The :class:`Memo` object, which represents the base class for memos for use with Stellar transactions. The memo for a transaction contains optional extra information about the transaction taking place. It is the responsibility of the client to interpret this value. See the following implementations that serve a more practical use with the library: * :class:`NoneMemo` - No memo. * :class:`TextMemo` - A string encoded using either ASCII or UTF-8, up to 28-bytes long. * :class:`IdMemo` - A 64 bit unsigned integer. * :class:`HashMemo` - A 32 byte hash. * :class:`RetHashMemo` - A 32 byte hash intended to be interpreted as the hash of the transaction the sender is refunding. See `Stellar's documentation on Transactions <https://www.stellar.org/developers/guides/concepts/transactions.html#memo>`__ for more information on how memos are used within transactions, as well as information on the available types of memos. """ @abc.abstractmethod def to_xdr_object(self) -> stellar_xdr.Memo: """Creates an XDR Memo object that represents this :class:`Memo`.""" @staticmethod def from_xdr_object(xdr_object: stellar_xdr.Memo) -> "Memo": """Returns an Memo object from XDR memo object.""" xdr_types = { stellar_xdr.MemoType.MEMO_TEXT: TextMemo, stellar_xdr.MemoType.MEMO_ID: IdMemo, stellar_xdr.MemoType.MEMO_HASH: HashMemo, stellar_xdr.MemoType.MEMO_RETURN: ReturnHashMemo, stellar_xdr.MemoType.MEMO_NONE: NoneMemo, } # TODO: Maybe we should raise Key Error here memo_cls = xdr_types.get(xdr_object.type, NoneMemo) return memo_cls.from_xdr_object(xdr_object) # type: ignore[attr-defined] @abc.abstractmethod def __eq__(self, other: object) -> bool: pass # pragma: no cover class NoneMemo(Memo): """The :class:`NoneMemo`, which represents no memo for a transaction.""" @classmethod def from_xdr_object(cls, xdr_object: stellar_xdr.Memo) -> "NoneMemo": """Returns an :class:`NoneMemo` object from XDR memo object.""" return cls() def to_xdr_object(self) -> stellar_xdr.Memo: """Creates an XDR Memo object that represents this :class:`NoneMemo`.""" return stellar_xdr.Memo(type=stellar_xdr.MemoType.MEMO_NONE) def __eq__(self, other: object) -> bool: if not isinstance(other, self.__class__): return NotImplemented # pragma: no cover return True def __str__(self): return "<NoneMemo>" class TextMemo(Memo): """The :class:`TextMemo`, which represents MEMO_TEXT in a transaction. :param text: A string encoded using either ASCII or UTF-8, up to 28-bytes long. :type text: str, bytes :raises: :exc:`MemoInvalidException <stellar_sdk.exceptions.MemoInvalidException>`: if ``text`` is not a valid text memo. """ def __init__(self, text: Union[str, bytes]) -> None: if not isinstance(text, (str, bytes)): raise MemoInvalidException( f"TextMemo expects string or bytes type got a {type(text)}" ) if not isinstance(text, bytes): text = bytes(text, encoding="utf-8") self.memo_text: bytes = text length = len(self.memo_text) if length > 28: raise MemoInvalidException( f"Text should be <= 28 bytes (ascii encoded), got {length} bytes." ) @classmethod def from_xdr_object(cls, xdr_object: stellar_xdr.Memo) -> "TextMemo": """Returns an :class:`TextMemo` object from XDR memo object.""" assert xdr_object.text is not None return cls(bytes(xdr_object.text)) def to_xdr_object(self) -> stellar_xdr.Memo: """Creates an XDR Memo object that represents this :class:`TextMemo`.""" return stellar_xdr.Memo( type=stellar_xdr.MemoType.MEMO_TEXT, text=self.memo_text ) def __eq__(self, other: object) -> bool: if not isinstance(other, self.__class__): return NotImplemented # pragma: no cover return self.memo_text == other.memo_text def __str__(self): return f"<TextMemo [memo={self.memo_text}]>" class IdMemo(Memo): """The :class:`IdMemo` which represents MEMO_ID in a transaction. :param int memo_id: A 64 bit unsigned integer. :raises: :exc:`MemoInvalidException <stellar_sdk.exceptions.MemoInvalidException>`: if ``id`` is not a valid id memo. """ def __init__(self, memo_id: int) -> None: if memo_id < 0 or memo_id > 2 ** 64 - 1: raise MemoInvalidException( "IdMemo is an unsigned 64-bit integer and the max valid value is 18446744073709551615." ) self.memo_id: int = memo_id @classmethod def from_xdr_object(cls, xdr_object: stellar_xdr.Memo) -> "IdMemo": """Returns an :class:`IdMemo` object from XDR memo object.""" assert xdr_object.id is not None return cls(xdr_object.id.uint64) def to_xdr_object(self) -> stellar_xdr.Memo: """Creates an XDR Memo object that represents this :class:`IdMemo`.""" return stellar_xdr.Memo( type=stellar_xdr.MemoType.MEMO_ID, id=stellar_xdr.Uint64(self.memo_id) ) def __eq__(self, other: object) -> bool: if not isinstance(other, self.__class__): return NotImplemented # pragma: no cover return self.memo_id == other.memo_id def __str__(self): return f"<IdMemo [memo={self.memo_id}]>" class HashMemo(Memo): """The :class:`HashMemo` which represents MEMO_HASH in a transaction. :param memo_hash: A 32 byte hash hex encoded string. :raises: :exc:`MemoInvalidException <stellar_sdk.exceptions.MemoInvalidException>`: if ``memo_hash`` is not a valid hash memo. """ def __init__(self, memo_hash: Union[bytes, str]) -> None: memo_hash = hex_to_bytes(memo_hash) length = len(memo_hash) if length != 32: raise MemoInvalidException( f"The length of HashMemo should be 32 bytes, got {length} bytes." ) self.memo_hash: bytes = memo_hash # type: ignore[assignment] @classmethod def from_xdr_object(cls, xdr_object: stellar_xdr.Memo) -> "HashMemo": """Returns an :class:`HashMemo` object from XDR memo object.""" assert xdr_object.hash is not None return cls(xdr_object.hash.hash) def to_xdr_object(self) -> stellar_xdr.Memo: """Creates an XDR Memo object that represents this :class:`HashMemo`.""" return stellar_xdr.Memo( type=stellar_xdr.MemoType.MEMO_HASH, hash=stellar_xdr.Hash(self.memo_hash) ) def __eq__(self, other: object) -> bool: if not isinstance(other, self.__class__): return NotImplemented # pragma: no cover return self.memo_hash == other.memo_hash def __str__(self): return f"<HashMemo [memo={self.memo_hash}]>" class ReturnHashMemo(Memo): """The :class:`ReturnHashMemo` which represents MEMO_RETURN in a transaction. MEMO_RETURN is typically used with refunds/returns over the network - it is a 32 byte hash intended to be interpreted as the hash of the transaction the sender is refunding. :param memo_return: A 32 byte hash or hex encoded string intended to be interpreted as the hash of the transaction the sender is refunding. :raises: :exc:`MemoInvalidException <stellar_sdk.exceptions.MemoInvalidException>`: if ``memo_return`` is not a valid return hash memo. """ def __init__(self, memo_return: Union[bytes, str]) -> None: memo_return = hex_to_bytes(memo_return) length = len(memo_return) if length != 32: raise MemoInvalidException( f"The length of ReturnHashMemo should be 32 bytes, got {length} bytes." ) self.memo_return: bytes = memo_return # type: ignore[assignment] @classmethod def from_xdr_object(cls, xdr_object: stellar_xdr.Memo) -> "ReturnHashMemo": """Returns an :class:`ReturnHashMemo` object from XDR memo object.""" assert xdr_object.ret_hash is not None return cls(xdr_object.ret_hash.hash) def to_xdr_object(self) -> stellar_xdr.Memo: """Creates an XDR Memo object that represents this :class:`ReturnHashMemo`.""" return stellar_xdr.Memo( type=stellar_xdr.MemoType.MEMO_RETURN, ret_hash=stellar_xdr.Hash(self.memo_return), ) def __eq__(self, other: object) -> bool: if not isinstance(other, self.__class__): return NotImplemented # pragma: no cover return self.memo_return == other.memo_return def __str__(self): return f"<ReturnHashMemo [memo={self.memo_return}]>"
[ "quit5123@gmail.com" ]
quit5123@gmail.com
7149333885f89e42070a2bb81b06de54af1b288f
da29f1f5b4459fbfec968bb694bedb9586f87b14
/new_algs/Number+theoretic+algorithms/Multiplication+algorithms/PrimeMultiplicationTable.py
563619a279e1a80bcdeddb9bef091618db4481e4
[]
no_license
coolsnake/JupyterNotebook
547806a45a663f090f313dc3e70f779ad9b213c0
20d8df6172906337f81583dabb841d66b8f31857
refs/heads/master
2023-01-13T18:55:38.615312
2020-11-17T22:55:12
2020-11-17T22:55:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,785
py
import math class PrimeMultiplicationTable(object): def get_primes_3(self, num): """ Time Complexity = O(N) Space = O(N) """ if num <= 0: return [] if num == 1: return [2] size = self.prime_bound(num) res = [] count = 0 is_prime = [True]*size is_prime[0] = False is_prime[1] = False for i in xrange(2, size): if is_prime[i]: res.append(i) count += 1 if count == num: break for j in xrange(0, count): if i*res[j] >= size: break is_prime[i*res[j]] = False if i%res[j] == 0: break return res def get_primes_2(self, num): """ Time Complexity = O(NloglogN) Space = O(N) """ if num <= 0: return [] if num == 1: return [2] size = self.prime_bound(num) is_prime = [True]*size is_prime[0] = False is_prime[1] = False sqrt_size = int(math.sqrt(size))+1 for i in range(2, sqrt_size): if is_prime[i]: for j in range(i*i, size, i): is_prime[j] = False res = [] count = 0 for j in xrange(0, size): if is_prime[j]: res.append(j) count += 1 if count == num: break return res def get_primes_1(self, num): """ Time Complexity < O(n^1.5) Space = O(1) """ if num <= 0: return [] if num == 1: return [2] res = [2] count = 1 target = 3 while count < num: is_prime = True for prime in res: if prime > int(math.sqrt(target)): break if target % prime == 0: is_prime = False break if is_prime: res.append(target) count += 1 target += 2 return res def prime_bound(self, num): """ Approximate upper bound of the value of the nth prime """ if num <= 10: size = 30 else: factor = 1.3 size = int(num*math.log(num, math.e)*factor) return size def get_primes(self, num): return self.get_primes_3(num) def print_row(self, nums, name, width): items = map(str, nums) row = '{0: >{width}} |'.format(name, width = width + 1) for item in items: row += '{0: >{width}}'.format(item, width = width + 1) print (row) def print_cutting_line(self, length, width): print ("-"*(length+2)*(width + 1)) def generate_prime_table(self, num): """ Generate the prime table with dynamic col widths """ if num <= 0 or num is None: print ("the table is empty") return primes = self.get_primes(num) # Dynamically calculate the maximum col width size = self.prime_bound(num) max_digits = len(str(size)) * 2 # Print the header row self.print_row(primes, " "*max_digits, max_digits) self.print_cutting_line(len(primes), max_digits) # Print the muplication table for x in primes: row = [] for y in primes: row.append(x*y) self.print_row(row, x, max_digits) if __name__ == "__main__": prime_muplication = PrimeMultiplicationTable() prime_muplication.generate_prime_table(10)
[ "chenqh@uci.edu" ]
chenqh@uci.edu
6547e8279bbd5efdc686705d8244aa68569c4fbd
87112170096f33d0bb4426ad07fb038caf0513ac
/node_modules/mongoose/node_modules/mongodb/node_modules/bson/build/config.gypi
ecd8b58fe4ad058b024d9c891b26e4769f797809
[ "Apache-2.0", "MIT" ]
permissive
nikithav/MusicLibrary
bd91d0f925c52e5b03072a080275dca0cc7ca6fb
472482d5001571d53a6a4b020b3704bee14e4f71
refs/heads/master
2020-03-27T22:35:33.864619
2016-07-19T20:16:13
2016-07-19T20:16:13
63,095,542
0
0
null
null
null
null
UTF-8
Python
false
false
3,175
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 0, "gcc_version": 49, "host_arch": "x64", "node_install_npm": "true", "node_prefix": "", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_unsafe_optimizations": 0, "node_use_dtrace": "false", "node_use_etw": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_systemtap": "false", "openssl_no_asm": 0, "python": "/usr/bin/python", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_no_strict_aliasing": 1, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "nodedir": "/home/srikar/.node-gyp/0.10.33", "copy_dev_lib": "true", "standalone_static_library": 1, "cache_lock_stale": "60000", "sign_git_tag": "", "user_agent": "npm/1.4.28 node/v0.10.33 linux x64", "always_auth": "", "bin_links": "true", "key": "", "description": "true", "fetch_retries": "2", "heading": "npm", "user": "", "force": "", "cache_min": "10", "init_license": "ISC", "editor": "vi", "rollback": "true", "cache_max": "Infinity", "userconfig": "/home/srikar/.npmrc", "engine_strict": "", "init_author_name": "", "init_author_url": "", "tmp": "/tmp", "depth": "Infinity", "save_dev": "", "usage": "", "cafile": "", "https_proxy": "", "onload_script": "", "rebuild_bundle": "true", "save_bundle": "", "shell": "/bin/bash", "prefix": "/usr/local", "registry": "https://registry.npmjs.org/", "browser": "", "cache_lock_wait": "10000", "save_optional": "", "searchopts": "", "versions": "", "cache": "/home/srikar/.npm", "ignore_scripts": "", "searchsort": "name", "version": "", "local_address": "", "viewer": "man", "color": "true", "fetch_retry_mintimeout": "10000", "umask": "2", "fetch_retry_maxtimeout": "60000", "message": "%s", "ca": "", "cert": "", "global": "", "link": "", "save": "", "unicode": "true", "long": "", "production": "", "unsafe_perm": "true", "node_version": "0.10.33", "tag": "latest", "git_tag_version": "true", "shrinkwrap": "true", "fetch_retry_factor": "10", "npat": "", "proprietary_attribs": "true", "save_exact": "", "strict_ssl": "true", "username": "", "dev": "", "globalconfig": "/usr/local/etc/npmrc", "init_module": "/home/srikar/.npm-init.js", "parseable": "", "globalignorefile": "/usr/local/etc/npmignore", "cache_lock_retries": "10", "save_prefix": "^", "group": "1000", "init_author_email": "", "searchexclude": "", "git": "git", "optional": "true", "email": "", "json": "", "spin": "true" } }
[ "nvenkann@kent.edu" ]
nvenkann@kent.edu
19859afd50d88112c2b7d43a86fdbd7d638132ed
3e7a0ee19fa6331e09c9c0bf3b1faffbc3ae45e1
/audioproc/hoa.py
2a184fd31336faf0abca78f5e2f158f8e59fd3cf
[ "MIT" ]
permissive
penrin/audioproc
105084105f9ba1c75ecf8b0f7821d0d411d679d1
ac3df5015d87f2a1e2a7a86ac7f5b75ae8314c03
refs/heads/master
2020-12-07T13:32:08.798438
2020-11-10T01:51:23
2020-11-10T01:51:23
95,565,116
2
0
null
null
null
null
UTF-8
Python
false
false
5,075
py
import sys import numpy as np import audioproc as ap from scipy.special import spherical_jn, spherical_yn, sph_harm def acn_index(N): ''' ACN ordering n: order, m: degree ''' L = (int(np.floor(N)) + 1) ** 2 n_list = np.empty(L, dtype=np.int16) m_list = np.empty(L, dtype=np.int16) i = 0 for n in range(N + 1): for m in range(-n, n + 1): #print(n, m) n_list[i] = n m_list[i] = m i += 1 return n_list, m_list def hv_index(H, V): ''' return n & m of #H#V Mixed-order Ambisonics Chris Travis, "A New Mixed-order Scheme for Ambisonics signals", Ambisonics Symposium 2009 ''' n_tmp, m_tmp = acn_index(H) v = n_tmp - np.abs(m_tmp) i = np.where(v <= V)[0] n_list = np.copy(n_tmp[i]) m_list = np.copy(m_tmp[i]) return n_list, m_list def sph_harm_realvalued(m, n, theta, phi): if m < 0: Y = np.sqrt(2) * (-1) * np.imag(sph_harm(m, n, theta, phi)) elif m == 0: Y = np.real(sph_harm(m, n, theta, phi)) elif m > 0: Y = np.sqrt(2) * (-1) ** int(m) * np.real(sph_harm(m, n, theta, phi)) return Y def spherical_hn1(n, z): return spherical_jn(n, z) + 1j * spherical_yn(n, z) def spherical_hn2(n, z): return spherical_jn(n, z) - 1j * spherical_yn(n, z) class EncodeMatrix: def setup_micarray(self, x, y, z, alpha=1): self.r = np.sqrt(x ** 2 + y ** 2 + z ** 2) self.theta = np.arctan2(y, x) self.phi = np.arctan2(np.sqrt(x ** 2 + y ** 2), z) self.alpha = alpha return def hoa_encodematrix(self, order, wavenum): n, m = acn_index(order) return self.encodematrix(n, m, wavenum) def hv_encodematrix(self, H, V, wavenum): n, m = hv_index(H, V) return self.encodematrix(n, m, wavenum) def encodematrix(self, n, m, wavenum): print('Calc. encode matrix') # reshape r_ = self.r.reshape(-1, 1, 1) theta_ = self.theta.reshape(-1, 1, 1) phi_ = self.phi.reshape(-1, 1, 1) n_ = n.reshape(1, -1, 1) m_ = m.reshape(1, -1, 1) k_ = np.array(wavenum).reshape(1, 1, -1) # spherical bessel function matrix if (self.alpha == np.array([1])).all(): J = spherical_jn(n_, k_ * r_) else: J = self.alpha * spherical_jn(n_, k_ * r_)\ - 1.j * (1 - self.alpha)\ * spherical_jn(n_, k_ * r_, derivative=True) # Spherical function matrix Y = np.empty([r_.shape[0], n_.shape[1]], dtype=np.float) for i in range(len(m)): Y[:, i] = sph_harm_realvalued(m[i], n[i], self.theta, self.phi) Y = Y.reshape(Y.shape[0], Y.shape[1], 1) # Encoding matrix JY = J * Y Enc = np.empty([JY.shape[1], JY.shape[0], JY.shape[2]], dtype=JY.dtype) for i in range(JY.shape[2]): ap.progressbar(i, JY.shape[2]) Enc[:, :, i] = np.linalg.pinv(JY[:, :, i]) ap.progressbar(1) return Enc class DecodeMatrix: def setup_loudspeakerarray(self, x, y, z): self.r = np.sqrt(x ** 2 + y ** 2 + z ** 2) self.theta = np.arctan2(y, x) self.phi = np.arctan2(np.sqrt(x ** 2 + y ** 2), z) return def decodematrix(self, n, m, wavenum, nearfieldmodel=False): if nearfieldmodel: Dec = self._decodematrix_nearfield(n, m, wavenum) else: Dec = self._decodematrix_planewave(n, m, wavenum) return Dec def hoa_decodematrix(self, order, wavenum, nearfieldmodel=False): n, m = acn_index(order) return self.decodematrix(n, m, wavenum, nearfieldmodel) def hv_decodematrix(self, H, V, wavenum, nearfieldmodel=False): n, m = hv_index(H, V) return self.decodematrix(n, m, wavenum, nearfieldmodel) def _decodematrix_planewave(self, n, m, wavenum): print('Calc. decode matrix (plane wave model)') print('Not yet support nearfieldmodel=False') return def _decodematrix_nearfield(self, n, m, wavenum): print('Calc. decode matrix (near field model)') # reshape r_ = self.r.reshape(1, -1, 1) theta_ = self.theta.reshape(1, -1, 1) phi_ = self.phi.reshape(1, -1, 1) n_ = n.reshape(-1, 1, 1) m_ = m.reshape(-1, 1, 1) k_ = np.array(wavenum).reshape(1, 1, -1) # Decoding matrix Y = np.empty([n_.shape[0], r_.shape[1]], dtype=np.float) for i in range(len(m)): Y[i, :] = sph_harm_realvalued(m[i], n[i], self.theta, self.phi) Y = Y.reshape(Y.shape[0], Y.shape[1], 1) H = spherical_hn2(n_, k_ * r_) C = 1j * k_ * H * Y Dec = np.empty([C.shape[1], C.shape[0], C.shape[2]], dtype=C.dtype) for i in range(C.shape[2]): ap.progressbar(i, C.shape[2]) Dec[:, :, i] = np.linalg.pinv(C[:, :, i]) ap.progressbar(1) return Dec
[ "hrs@penr.in" ]
hrs@penr.in
c1cfc0961e408dded2fd95b998843ccb855de9c9
dfb63403ca20927eda6c2215acd9039f7a3afcc8
/wsl_distro_build/build_distro.py
b9203504ffc8b61806cbaa764f1fbbd311833c83
[]
no_license
TUM-Core-Facility-Microbiome/ngstoolkit
d511d9e690ef2dc51691c678a73443dd4c285458
b333f9396266548b6af67be307f1eec388838ab8
refs/heads/main
2023-04-18T22:26:07.712478
2021-10-08T07:35:54
2021-10-08T07:35:54
380,019,157
1
1
null
2021-09-24T08:15:30
2021-06-24T18:35:41
Python
UTF-8
Python
false
false
1,929
py
import os import pathlib from wiesel.wsl_distributions import Dockerfile, DistributionTarFile def build_ngstoolkit_wsl_distro(distro_name: str, ngstoolkit_version: str): """ Build the ngstoolkit WSL distribution. This requires docker. :param distro_name: name for distro :param ngstoolkit_version: version number that will be saved in /usr/local/bin/wsl_distro_version.txt :return: """ distro_from_dockerfile = Dockerfile( dockerfile_path=os.path.join(pathlib.Path(__file__).parent.absolute(), "build-context", "Dockerfile"), docker_context_path=os.path.join(pathlib.Path(__file__).parent.absolute(), "build-context"), distribution_name=distro_name, install_location=".", version=2, build_args={'ngstoolkit_version': ngstoolkit_version} ) distro = distro_from_dockerfile.build(force=True) if distro: print(f"Successfully registered a WSL distribution named {distro.name!r}.") def export(distro_name: str, ngstoolkit_version: str, remove_image: bool = False): distro_from_dockerfile = Dockerfile( dockerfile_path=os.path.join(pathlib.Path(__file__).parent.absolute(), "build-context", "Dockerfile"), docker_context_path=os.path.join(pathlib.Path(__file__).parent.absolute(), "build-context"), distribution_name=distro_name, install_location=".", version=2, build_args={'ngstoolkit_version': ngstoolkit_version} ) distro_from_dockerfile.build_tar_file(f"{distro_name}.tar", remove_image) def import_from_tar(distro_name: str, tar_file_path: str): distro_from_tar = DistributionTarFile( distribution_name=distro_name, tar_file=tar_file_path, install_location=".", version=2 ) distro = distro_from_tar.build(force=True) if distro: print(f"Successfully imported a WSL distribution named {distro.name!r}.")
[ "zsewa@outlook.de" ]
zsewa@outlook.de
63d9898c8d7855db94d9afdddf237c38f1cc1a3b
264a1b67473cf734224fd3aefa6893ce2ff3fffc
/driver/art_driver/src/art.py
d3f64ac624e8d830f317c44bb773539540ad42b3
[]
no_license
ChenZhiqiang12138/rrooss
b7b1e4d5658006afa4ebb861cbdfaeea73467df8
fa02a11328e7608e47b1c65bcd10b7f786b8ed12
refs/heads/master
2020-05-21T06:31:00.292237
2019-05-10T08:37:01
2019-05-10T08:37:01
185,946,925
1
0
null
null
null
null
UTF-8
Python
false
false
829
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import time import threading from ctypes import * def fun_timer(): global timer timer = threading.Timer(0.05, fun_timer) timer.start() lib.send_cmd(vel,angle) if __name__=="__main__": vel = 1500 angle = 1500 lib_path = os.path.abspath(os.path.join(os.getcwd(), "..")) + "/lib"+ "/libart_driver.so" so = cdll.LoadLibrary lib = so(lib_path) #print lib try: car = "/dev/ttyUSB0" if(lib.art_racecar_init(38400,car) < 0): raise pass timer = threading.Timer(0.05, fun_timer) timer.start() while(1): pass except: print "error" finally: print "finally"
[ "noreply@github.com" ]
ChenZhiqiang12138.noreply@github.com
b0ee4ba7b95a7524a13ef8e3a388ffa639062ad5
2cffe2b1ccef3909f88445a2b1f408e57d051721
/apis/urls.py
ec3271511bab43218a13119ef34a9e5ea6fa93f9
[]
no_license
jfarriagada/estacionamiento
80da7a298b9ef4fc837fff4c367ee68905cee16b
e518ad4917f2212318d8fa3905807b15d1b7f015
refs/heads/master
2021-01-11T19:45:30.715323
2017-01-18T22:27:23
2017-01-18T22:27:23
79,386,297
0
0
null
null
null
null
UTF-8
Python
false
false
343
py
from django.conf.urls import url, include from rest_framework import routers from apis import views router = routers.DefaultRouter() router.register(r'parking', views.ParkingViewSet, base_name='parking') router.register(r'parking', views.ParkingViewSet, base_name='parking-detail') urlpatterns = [ url(r'^api-', include(router.urls)), ]
[ "farriagada@MacBook-Pro-de-francisco.local" ]
farriagada@MacBook-Pro-de-francisco.local
e79a3615b117d1d9c4adf31d8dfddca43c51eb47
6a15ca69993b6db29f8c8f0213ff17e8a4d8b65f
/finances/tools/create_credit_cards.py
7108af50c1950e93eab38cc84ef3d2f31bf8f102
[]
no_license
julieqiu/python-finances
aa84de5bcf3dd48fce2b99bd4a63fbe0c4b2acfe
9e3223ba7e7927f9cceff8b4b331a8781decd78d
refs/heads/master
2020-03-23T05:49:58.904674
2019-01-11T01:25:52
2019-01-11T01:25:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,679
py
from recipes.database import db_session from recipes.models import Blog CHASE_RESERVE_CC = 'https://www.domesticate-me.com' HOST_FOOD_FAITH_FITNESS = 'https://www.foodfaithfitness.com' HOST_ORGANIZE_YOURSELLF_SKINNY = 'https://www.organizeyourselfskinny.com' HOST_ANDIE_MITCHELL = 'https://www.andiemitchell.com' BLOGS = [ Blog( id=1, host=HOST_DOMESTICATE_ME, seed='{}/recipes-2'.format(HOST_DOMESTICATE_ME), categories_root='{}/recipes-2'.format(HOST_DOMESTICATE_ME), recipes_root=HOST_DOMESTICATE_ME, ), Blog( id=2, host=HOST_FOOD_FAITH_FITNESS, seed=HOST_FOOD_FAITH_FITNESS, categories_root='{}/category'.format(HOST_FOOD_FAITH_FITNESS), recipes_root=HOST_FOOD_FAITH_FITNESS, ), Blog( id=3, host=HOST_ORGANIZE_YOURSELLF_SKINNY, seed='{}/category/recipes'.format(HOST_ORGANIZE_YOURSELLF_SKINNY), categories_root='{}/category'.format(HOST_ORGANIZE_YOURSELLF_SKINNY), recipes_root='{}/201'.format(HOST_ORGANIZE_YOURSELLF_SKINNY), ), Blog( id=4, host=HOST_ANDIE_MITCHELL, seed='{}/category/recipes'.format(HOST_ANDIE_MITCHELL), categories_root='{}/category/recipes'.format(HOST_ANDIE_MITCHELL), recipes_root=HOST_ANDIE_MITCHELL, ), ] def main(): with db_session() as session: hosts = {blog.host for blog in session.query(Blog).all()} for blog in BLOGS: if blog.host not in hosts: print('Creating blog for {}'.format(blog.host)) session.add(blog) session.commit() if __name__ == '__main__': main()
[ "julieyeqiu@gmail.com" ]
julieyeqiu@gmail.com
f52e79a4c2596ca8c98360f6b9ea1cb4eb97f092
110907fd9804a46992123cf1a88326c87f136a1d
/pc/z64porter/z64lib.py
1ac2817556310acc7295f1470facd1d6fbce24be
[]
no_license
Mooliecool/z64
7835ea813cc44ae2b8b23d0c99e5873bccf081dc
9c1216a2450c1aae263199e047782f4d3268cc03
refs/heads/master
2020-05-20T16:46:23.879011
2015-04-02T23:51:05
2015-04-02T23:51:05
33,337,193
2
0
null
null
null
null
UTF-8
Python
false
false
17,947
py
from struct import unpack #When editing scene maximums, the two are located below: MAX_MM_SCENE = 105 MAX_OOT_SCENE = 109 # Scene max values ^---HERE MM_SCENE_FMT = ">LLLL" OOT_SCENE_FMT = ">LLLLL" MM_SCENE_TABLE = 0xC5A250 OOT_SCENE_TABLE = 0xBA0BB0 BAD_MM_SCENES = [ 2, 7, 8, 51, 42 ] oot_to_mm_acts = { # OoT : MM 0x0000 : 0x0000, #Link 0x0008 : 0x0004, #Flame 0x0009 : 0x0005, #Door 0x0007 : 0x000F, #Dissipating flames 0x000A : 0x0006, #Chest 0x0010 : 0x0009, #Bomb 0x0011 : 0x000A, #Wallmaster 0x0012 : 0x000B, #Dodongo 0x0013 : 0x000C, #Keese 0x0014 : 0x0054, #Epona 0x0015 : 0x000E, #Collectables 0x0018 : 0x0010, #Fairies 0x0019 : 0x0011, #Cucco 0x001B : 0x0012, #Tektite 0x001C : 0x0013, #??? 0x001D : 0x0014, #Peahat 0x001E : 0x0015, #Butterfly 0x0020 : 0x0016, #Bugs 0x0021 : 0x0017, #Fish 0x0023 : 0x0018, #Room changing plane 0x0025 : 0x0019, #Dinolfos/Lizafos 0x0026 : 0x001A, #Wooden post with red cloth 0x0029 : 0x0152, #Zelda 0x002D : 0x001D, #Bubble 0x002E : 0x001E, #Studded lifting door 0x0032 : 0x0020, #Boomerang 0x0032 : 0x0022, #??? 0x0037 : 0x0024, #Skulltula 0x0039 : 0x0027, #gameplay_keep stuffs 0x003B : 0x0028, #sounds 0x0049 : 0x0162, #Flame circle 0x004C : 0x002F, #Bombflowers 0x0055 : 0x0033, #Deku baba 0x005D : 0x0038, #Warp portals 0x005E : 0x0039, #Torch stand 0x005F : 0x003A, #Heart container 0x0060 : 0x003B, #Deku scrub 0x0065 : 0x003F, #Water 0x0068 : 0x0061, #Twisted hallway #NOTE: oot one requires objects 0x71, 0x72 and 0x73 to be loaded 0x0069 : 0x003E, #Bubble (bouncing skull) 0x0077 : 0x0041, #Tree 0x008A : 0x0047, #Beamos 0x008D : 0x0172, #Flame Wall 0x008E : 0x004A, #Floormaster 0x0090 : 0x004C, #ReDead 0x0094 : 0x004F, #Butterflies (again) 0x0095 : 0x0050, #Skullwalltula 0x009D : 0x01E3, #Gravestone 0x00A1 : 0x0069, #Ruto 0x00B0 : 0x00A7, #I'M ON A BOAT 0x00B5 : 0x018E, #Flying rubble #Zeth's: 0x00DD : 0x006C, #Like Like 0x0167 : 0x00bd, #Kakariko Roof Guy 0x0153 : 0x0248, #Music Box Grinder man 0x0162 : 0x017d, #Runningman/postman 0x019B : 0x00e2, #Doggie 0x01B9 : 0x00ef, #Gossip Stones 0x0178 : 0x01C7, #Hyrule/Town guard oot var 0000 0x0142 : 0x01C7, #Hyrule/Town guard oot var 0001 0x00B3 : 0x01C7, #Hyrule/Town guard 0x01CE : 0x0228, #Zora MM:normal oot var 0000 0x0186 : 0x00FA, #Walking Gerudo Guards oot Var < 3 0x01AE : 0x0242, #Gorons oot var < 0xD 0x01AF : 0x00EC, #Wolfos 0x01C0 : 0x00F1 #Guay } mm_to_oot_acts = { # MM : OoT 0x0000 : 0x0000, #Link 0x0004 : 0x0008, #Flame 0x0005 : 0x0009, #Door 0x000F : 0x0007, #Dissipating flames 0x0006 : 0x000A, #Chest 0x0009 : 0x0010, #Bomb 0x000A : 0x0011, #Wallmaster 0x000B : 0x0012, #Dodongo 0x000C : 0x0013, #Keese 0x0054 : 0x0014, #Epona 0x000E : 0x0015, #Collectables 0x0010 : 0x0018, #Fairies 0x0011 : 0x0019, #Cucco 0x0012 : 0x001B, #Tektite 0x0013 : 0x001C, #??? 0x0014 : 0x001D, #Peahat 0x0015 : 0x001E, #Butterfly 0x0016 : 0x0020, #Bugs 0x0017 : 0x0021, #Fish 0x0018 : 0x0023, #Room changing plane 0x0019 : 0x0025, #Dinolfos/Lizafos 0x001A : 0x0026, #Wooden post with red cloth 0x0152 : 0x0029, #Zelda 0x001D : 0x002D, #Bubble # 0x000E : 0x002E, #Studded lifting door 0x001E : 0x002E, #Studded lifting door 0x0020 : 0x0032, #Boomerang 0x0022 : 0x0032, #??? 0x0024 : 0x0037, #Skulltula 0x0027 : 0x0039, #gameplay_keep stuffs 0x0028 : 0x003B, #sounds 0x0162 : 0x0049, #Flame circle 0x002F : 0x004C, #Bombflowers 0x0033 : 0x0055, #Deku baba 0x0038 : 0x005D, #Warp portals 0x0039 : 0x005E, #Torch stand 0x003A : 0x005F, #Heart container 0x003B : 0x0060, #Deku scrub 0x003F : 0x0065, #Water 0x0061 : 0x0068, #Twisted hallway 0x003E : 0x0069, #Bubble (bouncing skull) 0x0041 : 0x0077, #Tree 0x0047 : 0x008A, #Beamos 0x0172 : 0x008D, #Flame Wall 0x004A : 0x008E, #Floormaster 0x004C : 0x0090, #ReDead 0x004F : 0x0094, #Butterflies (again) 0x0050 : 0x0095, #Skullwalltula 0x01E3 : 0x009D, #Gravestone 0x0069 : 0x00A1, #Ruto 0x00A7 : 0x00B0, #I'M ON A BOAT 0x018E : 0x00B5, #Flying rubble 0x01DA : 0x0090, #Gibodo (Use oot var -2 ) 0x0235 : 0x0090, #Gibodos (Use oot var -2) 0x00ED : 0x01B0, #Stalchild 0x02A5 : 0x01B0, #Stalchild 0x0191 : 0x0115, #Skullkid 0x00E4 : 0x019E, #Beehive 0x00E5 : 0x01A0, #Crate 0x00E9 : 0x01AC, #Honey and darling 0x0105 : 0x0054, #Armos 0x0110 : 0x008D, #Firewall 0x028D : 0x01A8, #Cracked wall 0x0298 : 0x01A9, #cracked wall 0x0255 : 0x00CF, #cracked wall 0x0258 : 0x015B, #cracked wall 0x00F3 : 0x01C6, #Cow 0x0220 : 0x00E7, #Cremia/Child malon 0x01A4 : 0x01C5, #Malon/Romani oot var FFFF 0x021F : 0x01C5, #Malon/Romani(guess) oot var FFFF 0x02AF : 0x0112, #invisible collectibles 0x0066 : 0x00C7, #Withered Deku Baba 0x011F : 0x01C7, #Iceicles 0x012D : 0x0055, #Bio deku baba 0x01BD : 0x011A, #Deku salesman 0x0274 : 0x011A, #Deku salesman 0x026E : 0x0142, #Gaurd 0x01EE : 0x019B, #racing dog 0x01F1 : 0x0021, #Labratory fish 0x01F3 : 0x000D, #Poe 0x0208 : 0x006D, #Big poe 0x01CA : 0x0085, #Dampe 0x008F : 0x0121, #Freezard 0x0216 : 0x001C, #leever #Zeth's: 0x006C : 0x00DD, #Like Like 0x00bd : 0x0167, #Kakariko Roof Guy 0x0248 : 0x0153, #Music Box Grinder man 0x017d : 0x0162, #Runningman/postman 0x00e2 : 0x019B, #Doggie 0x00ef : 0x01B9, #Gossip Stones 0x01C7 : 0x0142, #Hyrule/Town guard oot var 0001 0x00F8 : 0x01CE, #Zora MM:Swimming oot var 0000 0x0228 : 0x01CE, #Zora MM:normal oot var 0000 0x0231 : 0x01CE, #Zora MM:Guitarist oot var 0000 0x0238 : 0x01CE, #Zora MM:Drummer oot var 0000 0x0241 : 0x01CE, #Zora MM:Pianist oot var 0000 0x0252 : 0x01CE, #Zora MM:Singer oot var 0000 0x0260 : 0x01CE, #Zora MM:Swimming oot var 0000 0x00FA : 0x0186, #Walking Gerudo Guards oot Var < 3 0x0242 : 0x01AE, #Gorons oot var < 0xD 0x00EC : 0x01AF, #Wolfos 0x00F1 : 0x01C0 #Guay } oot_to_mm_objs = { # OoT : MM 0x000E : 0x000C, #Chests 0x000B : 0x0009, #Wallmaster 0x000C : 0x000A, #Dodongo 0x000D : 0x000B, #Keese 0x001A : 0x007D, #Epona 0x0013 : 0x000F, #Cucco 0x0016 : 0x0012, #Tektie 0x0017 : 0x0013, #??? 0x0018 : 0x0014, #Peahat 0x001B : 0x0017, #Dinolfos/Lizafos 0x0076 : 0x005F, #Wooden post with red cloth 0x001D : 0x014B, #Zelda 0x0012 : 0x000E, #Bubble 0x0022 : 0x00BC, #??? 0x0024 : 0x0020, #Skulltula 0x0031 : 0x002A, #bombflowers 0x0039 : 0x0031, #deku baba 0x0048 : 0x003E, #Warp portals 0x00A4 : 0x0080, #Torch stand 0x00BD : 0x0096, #Heart container 0x004A : 0x0040, #Deku scrub 0x0059 : 0x017E, #Water 0x0070 : 0x0088, #Twisted hallway 0x005D : 0x0051, #Bubble (bouncing skull) 0x007C : 0x0061, #Tree 0x008B : 0x006A, #Beamos 0x002C : 0x0153, #Flame Wall 0x000B : 0x0009, #Floormaster 0x0098 : 0x0075, #ReDead 0x0024 : 0x0020, #Skullwalltula 0x00A2 : 0x01C2, #Gravestone 0x00A3 : 0x00A2, #Ruto 0x0069 : 0x017F, #I'M ON A BOAT 0x0092 : 0x018D, #Flying rubble 0x00D4 : 0x00AB, #Like like 0x00EC : 0x00C2, #Kakariko roof guy 0x0133 : 0x00FF, #windmill man 0x013C : 0x0107, #Runningman/postman 0x016B : 0x0132, #Dog 0x0188 : 0x0143, #Gossip stones 0x0097 : 0x01B5, #Gaurds 0x00FE : 0x00D0, #Zora (Swimming and normal) 0x0167 : 0x0130, #Gerudo walkers 0x00C9 : 0x00A1, #Gorons 0x0183 : 0x0141, #Wolfos 0x0008 : 0x0006 #Guay } mm_to_oot_objs = { # MM : OoT 0x000C : 0x000E, #Chests 0x0009 : 0x000B, #Wallmaster 0x000A : 0x000C, #Dodongo 0x000B : 0x000D, #Keese 0x007D : 0x001A, #Epona 0x000F : 0x0013, #Cucco 0x0012 : 0x0016, #Tektie 0x0013 : 0x0017, #??? 0x0014 : 0x0018, #Peahat 0x0017 : 0x001B, #Dinolfos/Lizafos 0x005F : 0x0076, #Wooden post with red cloth 0x014B : 0x001D, #Zelda 0x000E : 0x0012, #Bubble 0x00BC : 0x0022, #??? 0x0020 : 0x0024, #Skulltula 0x002A : 0x0031, #bombflowers 0x0031 : 0x0039, #deku baba 0x003E : 0x0048, #Warp portals 0x0080 : 0x00A4, #Torch stand 0x0096 : 0x00BD, #Heart container 0x0040 : 0x004A, #Deku scrub 0x017E : 0x0059, #Water 0x0088 : 0x0070, #Twisted hallway 0x0051 : 0x005D, #Bubble (bouncing skull) 0x0061 : 0x007C, #Tree 0x006A : 0x008B, #Beamos 0x0153 : 0x002C, #Flame Wall 0x0009 : 0x000B, #Floormaster 0x0075 : 0x0098, #ReDead 0x0020 : 0x0024, #Skullwalltula 0x01C2 : 0x00A2, #Gravestone 0x00A2 : 0x00A3, #Ruto 0x017F : 0x0069, #I'M ON A BOAT 0x018D : 0x0092, #Flying rubble 0x00AB : 0x00D4, #Like like 0x00C2 : 0x00EC, #Kakariko roof guy 0x00FF : 0x0133, #windmill man 0x0107 : 0x013C, #Runningman/postman 0x0132 : 0x016B, #Dog 0x0143 : 0x0188, #Gossip stones 0x01B5 : 0x0097, #Gaurds 0x00D0 : 0x00FE, #Zora (Swimming and normal) 0x0211 : 0x00FE, #Zora (guitarist) 0x0216 : 0x00FE, #Zora (drummer) 0x0220 : 0x00FE, #Zora (Pianist) 0x022B : 0x00FE, #Zora (Singer) 0x0130 : 0x0167, #Gerudo walkers 0x00A1 : 0x00C9, #Gorons 0x0141 : 0x0183, #Wolfos 0x0006 : 0x0008, #Guay 0x0142 : 0x0184, #Stalchildren 0x0192 : 0x010A, #Skullkid 0x01B9 : 0x0002, #beehive 0x0133 : 0x0170, #Crate 0x0140 : 0x0182, #Honey and darling 0x0030 : 0x0038, #Armos 0x0153 : 0x002C, #Firewall 0x0267 : 0x0074, #Cracked wall 0x0234 : 0x00B1, #Cracked wall 0x0203 : 0x002C, #cracked wall 0x01E0 : 0x00F1, #cracked wall 0x0146 : 0x018B, #Cow 0x00A7 : 0x00E0, #Cremia 0x00B7 : 0x00D0, #Malon/Romani 0x0031 : 0x0039, #Withered Deku Baba 0x0157 : 0x006B, #Icicles 0x015E : 0x0039, #Bio deku baba 0x01E5 : 0x0168, #Deku salesman 0x01B6 : 0x0097, #Gaurd 0x01C3 : 0x0009, #Poe 0x01F1 : 0x006D, #Big poe 0x01AF : 0x0089, #Dampe 0x00E4 : 0x0114, #Freezard 0x0201 : 0x0017 #leever } ActorTypes = { 0 : "type 0", 1 : "1 (Prop)", 2 : "2 (Link?)", 3 : "3 (Bomb)", 4 : "4 (NPC)", 5 : "5 (Enemy)", 6 : "6 (Prop)", 7 : "7 (Item/Action)", 8 : "8 (Miscellaneous)", 9 : "9 (Boss)", 10 : "type 10", 11 : "11 (Door?)", 12 : "type 12", 13 : "type 13", 14 : "type 14", 15 : "type 15" } def mkMapActor(endianess, num = 0, x = 0, y = 0, z = 0, xr = 0, yr = 0, zr = 0, var = 0): return pack("%sHhhhhhhH"% (endianess, num, x, y, x, xr, yr, zr, v)) def GenActorEntryFmt(endianess): """Returns FMT strings to be used with struct to unpack actor file pointers""" return "%sLLLLxxxxLLxxxx" % endianess def GenSceneEntryFmt(endianess): """Returns FMT strings to be used with struct to unpack scene file pointers""" return "%sLLLLL" % endianess def GenObjectEntryFmt(endianess): """Returns FMT strings to be used with struct to unpack object file pointers""" return "%sLL" % endianess def GenFileEntryFmt(endianess): """Returns FMT strings to be used with struct to unpack file pointers""" return "%sLLLL" % endianess def GenActorHeaderFmt(endianess): """Returns FMT strings to be used with struct to unpack actor headers""" return "%sLLLLL" % endianess def GenActorInfoFmt(endianess): """Returns FMT strings to be used with struct to unpack actor info (actor number, type, object)""" return "%sHBxxxxxH" % endianess def GenActorFileFmt(endianess,textlen,datalen,rodatalen,bsslen, no_rels): """Returns a FMT string to be used with struct to unpack a actor's parts""" return "%s%is%is%is%is%is" % (endianess, textlen, datalen, rodatalen, bsslen, no_rels*4) def FindFileTable(RomFile,endianess): """Returns filetable offset if found, else None""" FileTableOffset = None CurrentOffset = 0 BuildInfo = None RomFile.seek(0) for i in range(0,0x20000,16): DD=RomFile.read(16) if len(DD.split("@srd")) == 2: CurrentOffset = RomFile.tell() RomFile.seek(RomFile.tell() - 16) BuildInfo = CleanBuildInfo(RomFile.read(0x30)) break for i in range(0,0x80,16): CurrentOffset+=16 RomFile.seek(CurrentOffset) DoubleWord = unpack( "%sQ" % endianess, RomFile.read(8) )[0] if DoubleWord == 0x0000000000001060: FileTableOffset = CurrentOffset break return FileTableOffset, BuildInfo def CleanBuildInfo(RawBuildInfo): """Cleans raw build info (including the 0s)""" CleanedBuildInfo = '' for char in RawBuildInfo: if char == '\x00': CleanedBuildInfo += ' ' else: CleanedBuildInfo += char del RawBuildInfo while CleanedBuildInfo[-1] == ' ': CleanedBuildInfo = CleanedBuildInfo[:-1] return CleanedBuildInfo def FindNameTable(RomFile,endianess): """Returns nametable offset if found, else None""" ret=None for i in range(0x1060,0x10000,16): RomFile.seek(i) if unpack("%sQQ"%endianess,RomFile.read(16))== (0x6D616B65726F6D00, 0x626F6F7400000000): ret=i break return ret def FindCode(RomFile,endianess): """Returns code's offsets if found, else None""" ret=None FileTableOff=FindFileTable(RomFile,endianess)[0] for i in range(0, 0x300, 16): RomFile.seek(FileTableOff+i) vst,ve,pst,pe=unpack(">LLLL",RomFile.read(16)) if pe==0: RomFile.seek(ve-16) if unpack("%sQQ"%endianess,RomFile.read(16))==(0x6A6E8276E707B8E3,0x7D8A471D6A6E18F9): ret=(vst,ve) break return ret def ScanForHierarchies(File, endianess, FileBank): """Finds hierarchies within a zelda 64 resource file""" hierarchies = [] OldPos = File.tell() File.seek(0,2) FileEnd = File.tell() j = -1 for i in range(0, FileEnd, 4): File.seek(i) CurrentWord = unpack("%sL" % endianess, File.read(4))[0] if (CurrentWord >> 24 == FileBank and CurrentWord&3 == 0 and CurrentWord&0xFFFFFF < FileEnd): NoPts = unpack("%sB" % endianess, File.read(1))[0] if NoPts < 255: for j in range((CurrentWord&0xFFFFFF), (CurrentWord&0xFFFFFF)+ NoPts * 4, 4): File.seek(j) _CurrentWord = unpack("%sL" % endianess, File.read(4))[0] if (_CurrentWord >> 24 != FileBank): break if (_CurrentWord&3 != 0): break if (_CurrentWord&0xFFFFFF > FileEnd): break if j == (CurrentWord&0xFFFFFF)+ NoPts * 4 - 4: hierarchies.append(i) File.seek(OldPos) return hierarchies def ScanForAnimations(File, endianess, FileBank): """Finds animations within a zelda 64 resource file""" return [] def FindEndOfFiles(File,SkipScene=0): """Finds the end offset within a ROM that is safe to write to""" End = 0 FPos = FindFileTable( File ,">" )[0]+4 Entry = -1 while (Entry != 0): File.seek(FPos) Entry = unpack( ">L", File.read(4) )[0] if (Entry > End): End = Entry FPos+=16 codeOff = FindCode( File,">" )[0] for i in range( codeOff + 0xF9440, codeOff + 0xFB5E0, 0x20 ): File.seek(i+4) Entry = unpack( ">L", File.read(4) )[0] if (Entry > End): End = Entry for i in range( codeOff + 0x10A6D0, codeOff + 0x10B360, 0x8 ): File.seek(i+4) Entry = unpack( ">L", File.read(4) )[0] if (Entry > End): End = Entry c=0 for i in range( codeOff + 0x10CBB0, codeOff + 0x10CBB0 + (MAX_OOT_SCENE+1) * 0x14, 0x14 ): File.seek(i) Entry = unpack( ">LL", File.read(8) ) if(c==SkipScene and End <= Entry[0]): End = Entry[0] else: if (Entry[1] > End): End = Entry[1] File.seek(Entry[0]) command = -1 while (command != 4): command,ent,off = unpack(">BBxxL",File.read(8)) if ( command == 0x14 ): break off=(off & 0xFFFFFF) + Entry[0] File.seek(off) for i in range(ent): st,en = unpack(">LL", File.read(8) ) if (en > End): End = en c+=1 return End
[ "spinout_182@yahoo.com@0b3f8760-7c76-11de-98bd-fdc22f85cdda" ]
spinout_182@yahoo.com@0b3f8760-7c76-11de-98bd-fdc22f85cdda
1d38ca9420318d94c10d2d91f562ff836a49acf4
35d3c1ba1d3130414355917b6bb35009121075de
/scripts/test.py
2c169fc31cbd96e03b0bf819c7a449aa4136671a
[]
no_license
raymondnuaa/oxfordreadingtree
191b852d331dca3e6fd5f3722958b7b433b1f7da
15acb5d221f870500166d7c0c669717c7ccec968
refs/heads/master
2021-07-10T18:24:02.959923
2016-11-13T15:28:49
2016-11-13T15:28:49
58,813,191
0
0
null
null
null
null
UTF-8
Python
false
false
1,028
py
#!/usr/bin/python # -*- coding: utf-8 -*- ''' import PythonMagick img = PythonMagick.Image("1900.png") img.sample('128x128') img.write('ax.png') ''' import PythonMagick pdf = "aa.pdf" p = PythonMagick.Image() p.density('300') p.read(pdf) p.write('timg3.jpg') ''' import PythonMagick img = PythonMagick.Image() img.density("300") img.read("G:/oxfordtree/b.pdf") # read in at 300 dpi img.write("G:/oxfordtree/bq.png") ''' ''' import os from pyPdf import PdfFileReader, PdfFileWriter from tempfile import NamedTemporaryFile from PythonMagick import Image reader = PdfFileReader(open("G:/oxfordtree/test/b.pdf", "rb")) for page_num in xrange(reader.getNumPages()): writer = PdfFileWriter() writer.addPage(reader.getPage(page_num)) temp = NamedTemporaryFile(prefix=str(page_num), suffix=".pdf", delete=False) writer.write(temp) temp.close() im = Image() im.density("300") # DPI, for better quality im.read(temp.name) im.write("bbsome_%d.jpg" % (page_num)) os.remove(temp.name) '''
[ "raymondnuaa@gmail.com" ]
raymondnuaa@gmail.com
1bf99a77ebb7106b4099ecd2911a72cea32ea595
35e4efcbb9163101c72ebe02585e8ec7c39c104a
/apps/educacion/ed_ladera/models.py
1568808709ec8a8990306d539cbf938398064bff
[]
no_license
Ivan252512/resiliencia
ff89a30844812fd3916a1d8c31b734745540b9af
e5f9f9cc76f222438476b6c21022fea1d49f41c3
refs/heads/master
2020-04-27T15:12:12.266210
2019-04-03T08:56:12
2019-04-03T08:56:12
174,436,765
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
from django.db import models # Create your models here. class LaderaDefEd(models.Model): termino = models.CharField(max_length=30) definicion = models.CharField(max_length=300) # Create your models here. class PostEdLadera(models.Model): subtitulo = models.CharField(max_length=80, null=True, blank=True) parrafo = models.CharField(max_length=800, null=True, blank=True) descripcion = models.CharField(max_length=200, null=True, blank=True) imagen = models.ImageField(upload_to = 'image/', null=True, blank=True) youtube = models.BooleanField(default=False) video = models.FileField(upload_to = 'video/', null=True, blank=True)
[ "ivanpineda@ciencias.unam.mx" ]
ivanpineda@ciencias.unam.mx
4855150320dadf34f922d6a3f9a994c403185fd4
b94079ef7f5c5748897cb12635b96de545068c0b
/implementations/WGAN/model.py
f2cd9e598cad31a9ae308692c42fc42337e1c07b
[ "MIT" ]
permissive
WN1695173791/animeface
80e33de33ce7ba29e9df4270389f12f025220f22
8836223dcbbdcbeec98bbc0d31c394cf7ea0f70b
refs/heads/master
2023-08-27T03:30:21.603566
2021-11-13T04:27:01
2021-11-13T04:27:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,289
py
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np def weights_init_normal(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm2d") != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) class Generator(nn.Module): def __init__(self, latent_dim): super(Generator, self).__init__() self.conv = nn.Sequential( nn.ConvTranspose2d(latent_dim, 1024, 4, 1, 0, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), nn.ConvTranspose2d(1024, 512, 4, 2, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, x): x = x.view(x.size(0), x.size(1), 1, 1) return self.conv(x) class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.conv = nn.Sequential( nn.Conv2d(3, 64, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, 4, 2, 1, bias=False), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, 4, 2, 1, bias=False), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 512, 4, 2, 1, bias=False), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 1024, 4, 2, 1, bias=False), nn.BatchNorm2d(1024), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(1024, 1, 4, 1, 0, bias=False) ) def forward(self, img): return self.conv(img)
[ "blackie0110@gmail.com" ]
blackie0110@gmail.com
6863c84f1e08fd765a78585b8b11b43528e1a653
8137e2d4c8a780243d705494f433f1ffa3936045
/sensor_portal/sensors/admin.py
6d167554f02de6567981ed31e17466232b4daea2
[]
no_license
Cyberbyte-Studios/Sensor-Portal
ce8629d339950fa5b3842c7ca6d4ebc43c41aaf1
91ec0c148edfd9c12f3845b50f609bbf9907cdb3
refs/heads/master
2021-06-21T11:12:14.641949
2016-10-09T00:11:38
2016-10-09T00:11:38
70,187,962
0
0
null
null
null
null
UTF-8
Python
false
false
838
py
from django.contrib import admin from ordered_model.admin import OrderedModelAdmin from .models import Sensor, Metric, Reading class SensorAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'position', 'active', 'site') search_fields = ('id', 'name', 'position', 'site__name') list_filter = ('active', 'site') class MetricAdmin(OrderedModelAdmin): list_display = ('name', 'unit', 'move_up_down_links') class ReadingAdmin(admin.ModelAdmin): date_hierarchy = 'recorded' search_fields = ('id', 'site__name', 'metric__name') list_filter = ('sensor', 'metric') list_display = ('id', 'metric', 'value', 'recorded') class ReadingInline(admin.TabularInline): model = Reading admin.site.register(Sensor, SensorAdmin) admin.site.register(Metric, MetricAdmin) admin.site.register(Reading, ReadingAdmin)
[ "theatrepro11@gmail.com" ]
theatrepro11@gmail.com
d8a5907bf59cb7c9a2c036734da17d6e6b78feb7
3df995fa02a43932ab2ea5fea26c06403f139f1f
/abc/abc159b.py
bb2f7da1ad146338f6f88aef886947811fafb18a
[]
no_license
jojonki/atcoder
75fb7016dd90b3b7495f1ff558eedcdc755eac11
ec487b4e11835f25c6770f0115b98b7e93b16466
refs/heads/master
2021-06-23T09:56:05.636055
2021-03-13T03:38:50
2021-03-13T03:38:50
201,834,404
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
def main(): S = input() def helper(s): l, r = 0, len(s) -1 while l < r: if s[l] != s[r]: return False l += 1 r -= 1 return True N = len(S) if helper(S) and helper(S[:(N-1)//2]) and helper(S[(N+3)//2-1:]): print('Yes') else: print('No') main()
[ "junki.ohmura@gmail.com" ]
junki.ohmura@gmail.com
5613fef55e30f9a87c537f2b7e7e61555d1f36eb
033b29b6b1538d10e060e5734a1d7488a3fa03b4
/attic/strings-bytes/identifier_norm_writer.py
2dfb9b62829436add0cd1d70f288129e0a247d2c
[ "MIT" ]
permissive
yuechuanx/fluent-python-code-and-notes
f99967416abc9c46be50d95f822b2ef3609f2d2d
2ae19fff8e1d292c6e8d163c99ca63e07259499c
refs/heads/master
2023-08-09T22:14:22.985987
2022-08-28T09:06:32
2022-08-28T09:06:32
229,009,764
2
0
MIT
2023-07-20T15:11:59
2019-12-19T08:30:28
Jupyter Notebook
UTF-8
Python
false
false
256
py
src = """ café = 1 cafe\u0301 = 2 names = {(name, tuple(name)):value for name, value in globals().items() if not name.startswith('__')} print(names) """ with open('identifier_norm.py', 'tw', encoding='utf8') as out: out.write(src)
[ "xiaoyuechuanz@163.com" ]
xiaoyuechuanz@163.com
7d090276a374a3c55ab482e6d47a825b198232fc
09c6f66759f3a96c2665c77b5f1e8ae128e79513
/ML_ColoringBook/20191018_cartoonlization_1.py
114483c6316a0ea3674270276939cdea1b4a99be
[]
no_license
waylen94/Machine-Learning-Case-Study
8ab4979e1284fcc5fd7a5e119c39efe5bf96387e
f2f7618cec5c20d51edd771b3f3e67be9128fcc9
refs/heads/master
2020-07-26T13:00:45.267002
2019-10-18T10:00:25
2019-10-18T10:00:25
208,652,265
4
0
null
null
null
null
UTF-8
Python
false
false
1,270
py
# -*- coding: utf-8 -*- import cv2 import os def cartoonise(picture_name): #capturing image effectively imgInput_FileName = picture_name edge_filename = 'edge_' + picture_name saved_filename = 'cartoon_' + picture_name num_bilateral = 7 print("Cartoonnizing" + imgInput_FileName) #read image img_rgb = cv2.imread(imgInput_FileName) img_color = img_rgb for _ in range(num_bilateral): img_color = cv2.bilateralFilter(img_color,d=9,sigmaColor=9,sigmaSpace=7) #gray and blur img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY) img_blur = cv2.medianBlur(img_gray, 7) #edge detection img_edge = cv2.adaptiveThreshold(img_blur,255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, blockSize=9, C=2) #transfer to color image img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB) img_cartoon = cv2.bitwise_and(img_color, img_edge) cv2.imwrite(edge_filename , img_edge) cv2.imwrite(saved_filename , img_cartoon) cartoonise('image_001.jpg') cartoonise('image_002.jpg') cartoonise('testing001.jpg')
[ "763027562@qq.com" ]
763027562@qq.com
74b909d448937f1a9f601e91163932784bb35eb9
40a18752fe454bbf029f3f39b7e84cf4403d4977
/Class Files/duplicates.py
f98140df95034eb29dccb47b04032c0bb60804c8
[]
no_license
jcanning/Class_craftingQualityCode
51e63b3c08371c1816db48ee3af0ce6813d10712
745b9cc4fa0a5b49dd6d64bf9f6243c24c76ea2e
refs/heads/master
2021-01-01T05:35:45.441972
2013-05-01T21:53:09
2013-05-01T21:53:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
def removed_shared(L1, L2): """(List list) >>> list_1 = [1, 2, 3, 4, 5, 6] >>> list_2 = [2, 4, 5, 7] >>> remove_shared(list_1, list_2) >>> list_1 [1, 3, 6] >>> list_2 [2, 4, 5, 7] """ for v in L2: if v in L1: L1.remove(v) if __name__ == '__main__': import doctest doctest.testmod()
[ "JohnAllan@.(none)" ]
JohnAllan@.(none)
ed689b5e193dc7ed24846cd0dfc9299fd29309fe
d51f222779a4289f074b821fa4c882a7dd144c33
/app/main/errors.py
537f163505e4a4da06f3589aa47e05762c87654d
[]
no_license
Nanrou/blog_site
f4657250af26db6f25b24abf979cb1b4d1e56ae4
33fd0690b473987186a7b38c5d40ecc1d115e40d
refs/heads/master
2021-01-19T14:27:27.109925
2018-01-15T02:16:48
2018-01-15T02:16:48
100,903,152
0
1
null
null
null
null
UTF-8
Python
false
false
393
py
from flask import render_template, request, jsonify from . import main @main.app_errorhandler(404) def page_not_found(e): if request.accept_mimetypes.accept_json and \ not request.accept_mimetypes.accept_html: response = jsonify({'error': 'page not found'}) response.status_code = 404 return response return render_template('main/404.html'), 404
[ "kkkcomkkk@qq.com" ]
kkkcomkkk@qq.com
954066244665d6ff6cafb2c5db58cff8997d5b2c
3d7d0b0abb93e9799161880339571877d753086d
/menuApp/migrations/0005_auto_20170130_1626.py
a3e87f2cf183db030a0f4a3c91bf018d7477b523
[ "Apache-2.0" ]
permissive
che4web/canteen
efe26b1d5f46f3815929fd9b34dc5100b01ab9c7
5bba3bb391795c2d00ce18dad316fe3da57e37ee
refs/heads/master
2020-05-23T09:09:12.160405
2017-02-25T20:50:03
2017-02-25T20:50:03
80,439,068
0
0
null
null
null
null
UTF-8
Python
false
false
701
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2017-01-30 11:26 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('menuApp', '0004_categorymenu_order'), ] operations = [ migrations.AlterModelOptions( name='categorymenu', options={'ordering': ['order'], 'verbose_name': 'категория', 'verbose_name_plural': 'категории'}, ), migrations.AddField( model_name='dish', name='img', field=models.ImageField(blank=True, upload_to='', verbose_name='фото блюда'), ), ]
[ "kochergina@prognoz.ru" ]
kochergina@prognoz.ru
bd32ec23fe4da9f7a873c505755008fde5a3955e
054b3171aec06fb64dd4dd4f50156621024aa59f
/login_register/migrations/0003_auto_20180405_1314.py
7a9ce60f7feaad0eb31645d9ff741d95b0f29b3b
[]
no_license
TtTRz/ALG_x
4d21368a525d6a60ec9465a941260d059df542bd
6db7cd0b7893288ea7d232a40925ce2b975a1407
refs/heads/master
2020-03-08T13:30:36.919513
2018-05-14T04:09:49
2018-05-14T04:09:49
128,159,726
3
0
null
2018-04-14T14:48:02
2018-04-05T04:39:37
HTML
UTF-8
Python
false
false
457
py
# Generated by Django 2.0.2 on 2018-04-05 13:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('login_register', '0002_auto_20180405_1312'), ] operations = [ migrations.AlterField( model_name='user_role', name='rolename', field=models.CharField(default='访客', max_length=30, verbose_name='名称'), ), ]
[ "thelns@vip.qq.com" ]
thelns@vip.qq.com
3ebc23f9675e254ad92cd1d6c65f6c23ef92026b
2b167e29ba07e9f577c20c54cb943861d0ccfa69
/numerical_analysis_backup/small-scale-multiobj/resource_usage2/arch4_new/ru_arch4_7.py
2c16791d14e838246ae3e2a686b864b63185fe48
[]
no_license
LiYan1988/kthOld_OFC
17aeeed21e195d1a9a3262ec2e67d6b1d3f9ff0f
b1237577ea68ad735a65981bf29584ebd889132b
refs/heads/master
2021-01-11T17:27:25.574431
2017-01-23T05:32:35
2017-01-23T05:32:35
79,773,237
0
0
null
null
null
null
UTF-8
Python
false
false
1,390
py
# -*- coding: utf-8 -*- """ Created on Thu Aug 4 15:15:10 2016 @author: li optimize both throughput and connections """ import csv from gurobipy import * import numpy as np from arch4_decomposition_new import Arch4_decompose np.random.seed(2010) num_cores=3 num_slots=80 filename = 'traffic_matrix.csv' tm = [] with open(filename) as f: reader = csv.reader(f) for idx, row in enumerate(reader): row = [float(u) for u in row] tm.append(row) tm = np.array(tm) #%% arch4 beta = 0.01 m = Arch4_decompose(tm, num_slots=num_slots, num_cores=num_cores,alpha=1,beta=beta) m.create_model_routing(mipfocus=1,timelimit=3000,mipgap=0.01, method=2) m.create_model_sa(mipfocus=1,timelimit=25000,submipnodes=2000,heuristics=0.8) m.sa_heuristic(ascending1=False,ascending2=False) m.save_tensor(m.tensor_milp, 'tensor_milp_%.2e.csv'%beta) m.save_tensor(m.tensor_heuristic, 'tensor_heuristic_%.2e.csv'%beta) filename = 'milp_cnk_%.2e.csv'%beta suclist = m.suclist_sa m.write_result_csv(filename, suclist) filename = 'heuristic_cnk_%.2e.csv'%beta m.write_heuristic_result_csv(filename) efficiency_milp = m.efficiency_milp efficiency_heuristic = m.efficiency_heuristic with open('efficiency_%.2e.csv'%beta, 'w') as f: writer = csv.writer(f, delimiter=',') writer.writerow(['beta', 'milp', 'heuristic']) writer.writerow([beta, efficiency_milp, efficiency_heuristic])
[ "li.yan.ly414@gmail.com" ]
li.yan.ly414@gmail.com
3304b1318fafc5c6e1b040e75f24f5bd5f4f19cb
97806f36a304b3526fab64f03f92f2e0d6bf3663
/content/tutorials/hsl-color-wheel/axonometry.py
78da1f96c4902a0286ede1553b15750eb28b7c9a
[]
no_license
joanmas/PythonForDesigners
41762ce577a5abc687381c17aaaf8156991a8916
9e676f0cf0632dc404359bda3fd614fafc48a5bd
refs/heads/master
2023-03-03T06:25:48.087996
2021-02-16T15:02:25
2021-02-16T15:02:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,342
py
#!/usr/bin/env python3 # coding: utf-8 # ---------- # # Axonometry # # ---------- # ### Modules # dependencies from drawBot import newPage, width, height, translate from drawBot import save, restore, scale, saveImage from drawBot import newDrawing, endDrawing, savedState # from the project folder from HSLdonut import hslDonut ### Variables discs = 16 rings = 22 ringThickness = 5 holeRadius = 45 ### Instructions if __name__ == '__main__': newDrawing() newPage(952, 488) translate(width()*.27, height()*.25) save() for eachDisc in range(discs): with savedState(): scale(1, .65) hslDonut(rings, ringThickness, holeRadius, fixedValue=eachDisc/(discs-1), isLuminosityConst=True, captions=False) translate(0, 16) restore() translate(width()*.44, 0) save() for eachDisc in range(discs): with savedState(): scale(1, .65) hslDonut(rings, ringThickness, holeRadius, fixedValue=eachDisc/(discs-1), isLuminosityConst=True, captions=False) translate(0, 16) restore() saveImage('cd-roms.pdf') endDrawing()
[ "hello@robertoarista.it" ]
hello@robertoarista.it
41f182f5c51ff7dae4a0d1aa3db79e6e5f1d63b1
8b868defe347284513bbdc3d486d2542acdd4eea
/python/TBUtils.py
61b447febcacc33d928691abfe489ce44c9caaa6
[]
no_license
ShashlikTB/H4TestBeam
bdcbe9e13e0c17851cba59556289e6a318fe7397
f1bbabfc0e64bf86bd3fe2616a32bc22777d28be
refs/heads/master
2021-01-21T04:54:19.602615
2016-06-09T22:34:34
2016-06-09T22:34:34
25,589,648
1
4
null
2016-06-09T22:26:49
2014-10-22T15:40:04
C++
UTF-8
Python
false
false
12,956
py
# Created 4/12/2014 B.Hirosky: Initial release import sys, os, bz2, inspect, re, time, collections, StringIO, pickle from commands import getoutput,getstatusoutput from ROOT import * def hit_continue(msg='Hit any key to continue'): print print msg sys.stdout.flush() raw_input('') # a simple command string builder def ccat(*arg): cc="" for i in range(len(arg)): cc=cc+" "+str(arg[i]) return cc def checkDep(file,msg=""): if not os.path.isfile(file): print file, "not found" if msg!="": print msg sys.exit() def checkEnv(var,msg=""): if os.getenv(var)==None: print var, "not found" if msg!="": print msg sys.exit() def LoadLibs(tblib,*libs): checkEnv(tblib,"Source the setup script") tblib=str(os.getenv("TBLIB")) for i in range(len(libs)): lib=tblib+"/"+str(libs[i]) gSystem.Load(lib) # A simple error logger class # Instantiate as logger=Logger(num=1) # Print information messages and up to num (default=1) occurances of each warning # The Summary method provides statistics on all warnings class Logger(): def __init__(self,max=1): self.warnings={} self.RED='\033[91m' self.COL_OFF='\033[0m' self.max=max self.logfile="" self.stdout=sys.stdout print "Init logger, max print count =",max def SetLogFile(self,logfile): self.logfile=logfile self.stdout = open(self.logfile, 'w') # output socket def Info(self,*arg): msg="Info: "+ccat(*arg)+"\n" sys.stdout.write(msg) if (self.logfile !=""): self.stdout.write("Info: "+msg+"\n") def Warn(self,*arg): msg="Warning: "+ccat(*arg)+"\n" if msg in self.warnings: self.warnings[msg]=self.warnings[msg]+1 else: self.warnings[msg]=1 if self.warnings[msg]<=self.max: sys.stdout.write(self.RED+msg+self.COL_OFF) if (self.logfile !=""): self.stdout.write(msg) return True # message printed return False # message just logged def Fatal(self,*arg): msg="**FATAL**: "+ccat(*arg)+"\n" sys.stdout.write(self.RED+msg+self.COL_OFF) if (self.logfile !=""): self.stdout.write(msg) sys.exit(1) def Summary(self): output = StringIO.StringIO() print >>output print >>output,"="*40 print >>output," WARNING Summary" print >>output,"="*40 print >>output if len(self.warnings)==0: print >>output,"No Warnings reported" else: owarn = collections.OrderedDict(sorted(self.warnings.items())) for a in owarn: print >>output,"(%5d) %s" % (owarn[a],a) print >>output,"="*40 print >>output," WARNING Summary (end)" print >>output,"="*40 print output.getvalue() if (self.logfile !=""): self.stdout.write(output.getvalue()) output.close() # hack to pass immutable data types "by reference" (under consideration) class pyref(): def __init__(self,data): self.data=[data] def ref(self): return self.data[0] def TBOpen(fin): if fin.endswith("bz2"): return bz2.BZ2File(fin,"r") else: return open(fin,"r") ############################## # data file parsers ############################## def ParsePadeData(padeline): try: padeline=padeline.split() pade_ts=long(padeline[0]) pade_transfer_size=int(padeline[1],16)<<8+int(padeline[2],16) pade_board_id=int(padeline[3],16) pade_hw_counter=int(padeline[4]+padeline[5]+padeline[6],16) pade_ch_number=int(padeline[7],16) eventNumber = int(padeline[8]+padeline[9],16) waveform=(padeline[10:]) return (pade_ts,pade_transfer_size,pade_board_id, pade_hw_counter,pade_ch_number,eventNumber,waveform) except IOError as e: print "Failed to parse PADEline" % (padeline, e) sys.exit() # version for H4, ignore FNAL WC info def ParsePadeSpillHeader(padeline): spill = { 'number':0, 'pctime':0, 'nTrigWC':0, 'wcTime':0, 'status':0 } padeline=padeline.split() spill['number']=int(padeline[4]) pcTime=padeline[7]+" "+padeline[8]+" "+padeline[9] spill['pcTime']=long(time.mktime(time.strptime(pcTime, "%m/%d/%Y %H:%M:%S %p"))) return spill def ParsePadeBoardHeader(padeline): if "error" in padeline: log=Logger() log.Fatal("Error in board header",padeline) master = "Master" in padeline padeline=re.sub('=', ' ', padeline).split() boardID=int(padeline[5]) status=int(padeline[7],16) trgStatus=int(padeline[9],16) events=int(padeline[13],16) memReg=int(padeline[16],16) trigPtr=int(padeline[19],16) pTemp=int(padeline[21],16) sTemp=int(padeline[23],16) return (master,boardID,status,trgStatus,events,memReg,trigPtr,pTemp,sTemp) def readWCevent(fWC): endOfEvent=0 nhits=0 while 1: wcline=fWC.readline() if not wcline: break if "SPILL" in wcline: continue wcline=wcline.split() if not foundWC and "EVENT" in wcline[0]: # found new event trigWCrun=wcline[1] trigWCspill=wcline[2] foundWC=true continue elif "EVENT" in wcline[0]: fWC.seek(endOfEvent) break if "Module" in wcline[0]: tdcNum=int(wcline[1]) endOfEvent=fWC.tell() if "Channel" in wcline[0]: wire=int(wcline[1]) tdcCount=int(wcline[2]) eventDict[eventNumber].AddWCHit(tdcNum,wire,tdcCount) #! endOfEvent=fWC.tell() if DEBUG_LEVEL>1: event.GetWCChan(nhits).Dump() nhits=nhits+1 def getWCspills(fWC): endOfEvent=0 fWC.seek(loc) while 1: wcline=fWC.readline() if not wcline: return -1 if "SPILL" in wcline: continue wcline=wcline.split() if not foundWC and "EVENT" in wcline[0]: # found new event trigWCrun=wcline[1] trigWCspill=wcline[2] foundWC=true continue elif "EVENT" in wcline[0]: fWC.seek(endOfEvent) break if "Module" in wcline[0]: tdcNum=int(wcline[1]) endOfEvent=fWC.tell() if "Channel" in wcline[0]: wire=int(wcline[1]) tdcCount=int(wcline[2]) eventDict[eventNumber].AddWCHit(tdcNum,wire,tdcCount) #! endOfEvent=fWC.tell() if DEBUG_LEVEL>1: event.GetWCChan(nhits).Dump() nhits=nhits+1 # WC Database lookup # match WC spills w/in PAST 45 seconds of WC timestamp read by PADE def wcLookup(tgttime, bound=45, filename="wcdb.txt"): print "tgttime",tgttime lookval=int(tgttime)/100 # seek matches w/in 100 second time range try: stat,spills=getstatusoutput("look "+str(lookval)+" "+filename) # binary search of file if (int(stat)!=0) or len(spills)==0: return (-1, None) # no lines match spills=spills.split("\n") for spill in spills: # search spills <100 seconds from time in PADE spill header print spill split = re.split(' +', spill.strip()) sTime = float(split[0]) # spill time from WC controller diff = tgttime-sTime # PADE read time - WC DAQ read time print "diff",diff if diff<0: # Moved past the spill in the db file print "miss!" return (-1, None) if diff <= bound: # fuzzy time match return( int(split[4]),split[3] ) # byte offset and filename except IOError as e: print "Failed to open file %s due to %s" % (filename, e) return (-1,None) # WC Database lookup [old version] # match WC spills w/in 15 seconds of timestamp given by PADE def wcLookup_(tgttime, bound=15, filename="wcdb.txt"): lookval=long(tgttime)/1000 # seek matches w/in 1000 second time range try: stat,spills=getstatusoutput("look "+str(lookval)+" "+filename) # binary search of file if (int(stat)!=0) or len(spills)==0: return (-1, None) # no lines match spills=spills.split("\n") for spill in spills: # search spills <100 seconds from time in PADE spill header split = re.split(' +', spill.strip()) sTime = float(split[0]) diff = sTime-tgttime if abs(diff) <= bound: # fuzzy time match return( int(split[4]),split[3] ) # byte offset and filename elif (diff>bound): # Moved past the spill in the db file return (-1, None) except IOError as e: print "Failed to open file %s due to %s" % (filename, e) return (-1,None) # WC Database lookup [older version] # match WC spills w/in 15 seconds of timestamp given by PADE def wcLookup__(tgttime, bound=15, filename="wcdb.txt"): tgttime=float(tgttime) try: handle = open(filename, 'r') withinBound = [] for line in handle: # todo: replace with binary search! split = re.split(' +', line.strip()) sTime = float(split[0]) diff = sTime-tgttime if abs(diff) <= bound: # fuzzy time match return( int(split[4]),split[3] ) # byte offset and filename elif (diff>bound): # Moved past the spill in the db file return (-1, None) except IOError as e: print "Failed to open file %s due to %s" % (filename, e) return (-1,None) # find matching WC event number def findWCEvent(fd,tgtevent): wcline=fd.readline() # remove 1st line constaining SPILL number while(1): wcline=fd.readline() if not wcline or "SPILL" in wcline: return -1 if "EVENT" in wcline: thisevent=int(wcline.split()[2]) if thisevent-1==tgtevent: return fd.tell() # WC/PADE events start at 1/0 elif thisevent-1>tgtevent: return -1 # past the event number def getTableXY(timeStamp): checkEnv("TBHOME","Source the setup script") tbhome=str(os.getenv("TBHOME")) posFile=tbhome+"/doc/TablePositions.txt" x=-999.0 y=-999.0 try: inFile=open(posFile, "r") for line in inFile: if line.find(timeStamp)>-1: line=line.split() nf=len(line) x=float(line[nf-2]) y=float(line[nf-1]) except IOError as e: print "Failed to open file %s due to %s" % (posFile, e) return (x,y) def getRunData(timeStamp): with open('runlist.dat', 'r') as f: runlist = pickle.load(f) print "search for",timeStamp for run in runlist: # could move to a binary search if run[0]==timeStamp: print run particle=run[3] try: vga=int(run[4],16) except: vga=0 momentum=run[5].replace("GeV","") try: momentum=float(momentum) except: momentum=0 # table location try: tableX=float(run[18]) except: tableX=-999. try: tableY=float(run[19]) except: tableY=-999. # beam type pid=0 if "elec" in particle: pid=11 elif "posi" in particle: pid=-11 elif "muo" in particle: pid=12 elif "pion" in particle: pid=211 elif "prot" in particle: pid=2212 elif "las" in particle: pid=-22 # gain setting pga_lna=run[6] gain=6 # default is Mid_High = 0110 binary if "Low_" in pga_lna: gain=gain-4 #elif "Mid_" in pga_lna: gain=gain elif "High_" in pga_lna: gain=gain+4 elif "VHigh_" in pga_lna: gain=gain+8 if "_Low" in pga_lna: gain=gain-2 elif "_Mid" in pga_lna: gain=gain-1 #elif "_High" in pga_lna: gain=gain gain=gain+vga<<4 try: angle=float(run[20]) except: angle=0 return (pid,momentum,gain,tableX,tableY,angle) return [] def lastRunDat(): if not os.path.isfile('runlist.dat') : return "00000000_000000" with open('runlist.dat', 'r') as f: runlist = pickle.load(f) runs=len(runlist) last=runlist[runs-1][2].replace(".txt","").replace("rec_capture_","") return last def dumpRunDat(): with open('runlist.dat', 'r') as f: runlist = pickle.load(f) runs=len(runlist) for a in range(len(runlist)): print runlist[a]
[ "bob.hirosky@gmail.com" ]
bob.hirosky@gmail.com
f36722fa138b892831049e06bd6d310de8047724
912324171c1181eb1ea033dd57414c3ef28b6b74
/LR/lr/util/decorators.py
147bcc600068122ff0dba2a51bb169ece26d09a1
[ "Apache-2.0" ]
permissive
aworkman/LearningRegistry
0161c41978ee3376e51008003fb43f2703d3a261
cf9e9071cba50953f1231cd92fca1c64d9864eb3
refs/heads/master
2021-01-15T23:06:54.083832
2012-02-01T17:06:49
2012-02-01T17:06:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,136
py
''' Created on Oct 11, 2011 @author: jklo ''' from uuid import uuid1 import json import logging from contextlib import closing from pylons import config import time import urllib2 import ijson from ijson.parse import items import os import urllib log = logging.getLogger(__name__) def ForceCouchDBIndexing(): json_headers = {"Content-Type": "application/json"} couch = { "url": config["couchdb.url"], "resource_data": config["couchdb.db.resourcedata"] } def indexTestData(obj): opts = { "startkey":"_design/", "endkey": "_design0", "include_docs": True } design_docs = obj.db.view('_all_docs', **opts) for row in design_docs: if "views" in row.doc and len(row.doc["views"].keys()) > 0: for view in row.doc["views"].keys(): # view = row.doc["views"].keys()[0] view_name = "{0}/_view/{1}".format( row.key, view) index_opts = { "limit": 1, "descending": 'true'} if "reduce" in row.doc["views"][view]: index_opts["reduce"] = 'false' log.error("Indexing: {0}".format( view_name)) req = urllib2.Request("{url}/{resource_data}/{view}?{opts}".format(view=view_name, opts=urllib.urlencode(index_opts), **couch), headers=json_headers) res = urllib2.urlopen(req) # view_result = obj.db.view(view_name, **index_opts) log.error("Indexed: {0}, got back: {1}".format(view_name, json.dumps(res.read()))) else: log.error("Not Indexing: {0}".format( row.key)) def test_decorator(fn): def test_decorated(self, *args, **kw): try: #print "Wrapper Before...." indexTestData(self) fn(self, *args, **kw) except : raise finally: indexTestData(self) #print "Wrapper After...." return test_decorated return test_decorator def PublishTestDocs(sourceData, prefix, sleep=0, force_index=True): json_headers = {"Content-Type": "application/json"} test_data_log = "test-data-%s.log" % prefix couch = { "url": config["couchdb.url"], "resource_data": config["couchdb.db.resourcedata"] } def writeTestData(obj): if not hasattr(obj, "test_data_ids"): obj.test_data_ids = {} obj.test_data_ids[prefix] = [] with open(test_data_log, "w") as plog: for doc in sourceData: doc["doc_ID"] = prefix+str(uuid1()) obj.app.post('/publish', params=json.dumps({"documents": [ doc ]}), headers=json_headers) plog.write(doc["doc_ID"] + os.linesep) obj.test_data_ids[prefix].append(doc["doc_ID"]) if sleep > 0: time.sleep(sleep) def indexTestData(obj): if force_index == False: return opts = { "startkey":"_design/", "endkey": "_design0", "include_docs": True } design_docs = obj.db.view('_all_docs', **opts) for row in design_docs: if "views" in row.doc and len(row.doc["views"].keys()) > 0: for view in row.doc["views"].keys(): # view = row.doc["views"].keys()[0] view_name = "{0}/_view/{1}".format( row.key, view) index_opts = { "limit": 1, "descending": 'true'} if "reduce" in row.doc["views"][view]: index_opts["reduce"] = 'false' log.error("Indexing: {0}".format( view_name)) req = urllib2.Request("{url}/{resource_data}/{view}?{opts}".format(view=view_name, opts=urllib.urlencode(index_opts), **couch), headers=json_headers) res = urllib2.urlopen(req) # view_result = obj.db.view(view_name, **index_opts) log.error("Indexed: {0}, got back: {1}".format(view_name, json.dumps(res.read()))) else: log.error("Not Indexing: {0}".format( row.key)) def cacheTestData(obj): req = urllib2.Request("{url}/{resource_data}/_all_docs?include_docs=true".format(**couch), data=json.dumps({"keys":obj.test_data_ids[prefix]}), headers=json_headers) res = urllib2.urlopen(req) docs = list(items(res, 'rows.item.doc')) if not hasattr(obj, "test_data_sorted"): obj.test_data_sorted = {} obj.test_data_sorted[prefix] = sorted(docs, key=lambda k: k['node_timestamp']) def removeTestData(obj): for doc_id in obj.test_data_ids[prefix]: try: del obj.db[doc_id] except Exception as e: print e.message try: del obj.db[doc_id+"-distributable"] except Exception as e: print e.message try: del obj.test_data_ids[prefix] except Exception as e: print e.message try: del obj.test_data_ids[prefix] except Exception as e: print e.message def test_decorator(fn): def test_decorated(self, *args, **kw): try: #print "Wrapper Before...." writeTestData(self) indexTestData(self) cacheTestData(self) fn(self, *args, **kw) except : raise finally: removeTestData(self) indexTestData(self) #print "Wrapper After...." return test_decorated return test_decorator
[ "jim.klo@sri.com" ]
jim.klo@sri.com
27339df49ba8e212dfde10d2caa99ea5666d1985
d6cc63e9c21cf3d806397aa8dc18c3927b53ebc8
/DjangoDemoProject/wsgi.py
04d0b0444588ba1532a063e4b9616e14be225f53
[]
no_license
Yogesh-Shaligram/Ecommerces
03614c396abaef14d9edb1a52dc77e884265c6cd
408da57fb35c5550f8dd1ff2bd9336f953609714
refs/heads/master
2023-06-24T22:24:04.282410
2021-07-28T16:59:09
2021-07-28T16:59:09
390,432,346
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
""" WSGI config for DjangoDemoProject project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'DjangoDemoProject.settings') application = get_wsgi_application()
[ "yogesh.shaligram98@gmail.com" ]
yogesh.shaligram98@gmail.com
041066009b160414b3a5f7a2b9dd2e8ceba37856
e22a696ab7c2a0ecd14136acbcd0c999b905ec8d
/DAS/codes/trail.py
5153b052415b12eb0b849863c03deb77c0525656
[]
no_license
99002646/Genesis
5faaf9ce2165556a52c57bfa468a081aeaefd2af
edfd755aa6e42153b1217ad1620b1040c4bdd2d3
refs/heads/main
2023-02-03T22:29:07.970692
2020-12-24T09:25:55
2020-12-24T09:25:55
309,572,454
0
0
null
null
null
null
UTF-8
Python
false
false
1,606
py
import numpy as np from matplotlib.lines import Line2D import matplotlib.pyplot as plt import matplotlib.animation as animation # Your Parameters amp = 1 # 1V (Amplitude) f = 1000 # 1kHz (Frequency) fs = 200000 # 200kHz (Sample Rate) T = 1/f Ts = 1/fs # Select if you want to display the sine as a continous wave # True = Continous (not able to zoom in x-direction) # False = Non-Continous (able to zoom) continous = True x = np.arange(fs) y = [ amp*np.sin(2*np.pi*f * (i/fs)) for i in x] class Scope(object): def __init__(self, ax, maxt=2*T, dt=Ts): self.ax = ax self.dt = dt self.maxt = maxt self.tdata = [0] self.ydata = [0] self.line = Line2D(self.tdata, self.ydata) self.ax.add_line(self.line) self.ax.set_ylim(-amp, amp) self.ax.set_xlim(0, self.maxt) def update(self, y): lastt = self.tdata[-1] if continous : if lastt > self.tdata[0] + self.maxt: self.ax.set_xlim(lastt-self.maxt, lastt) t = self.tdata[-1] + self.dt self.tdata.append(t) self.ydata.append(y) self.line.set_data(self.tdata, self.ydata) return self.line, def sineEmitter(): for i in x: yield y[i] fig, ax = plt.subplots() scope = Scope(ax) # pass a generator in "sineEmitter" to produce data for the update func ani = animation.FuncAnimation(fig, scope.update, sineEmitter, interval=10, blit=True) plt.show()
[ "noreply@github.com" ]
99002646.noreply@github.com
323800e9c6b4f20af345fb68cbaced088e6fb955
9a0858d1fdccdc0114cd1a33ab2364cf504d18e8
/Семинар1. Задача 5.py
693554e9e2614351b9e2e7bfe3c22d051ccc38ea
[]
no_license
DenisGlebov96/-
6d458d92f879dd04a7c18c4fdecc0332680f396d
a9175aff572d6ab589d3735a596d0c19fe6fc57b
refs/heads/master
2022-12-30T22:38:03.459551
2020-10-14T18:29:16
2020-10-14T18:29:16
300,227,131
0
0
null
null
null
null
UTF-8
Python
false
false
55
py
a = input() for i in reversed(a): print(i,end='')
[ "noreply@github.com" ]
DenisGlebov96.noreply@github.com
aac12304f8e7507d5574691b3321be28f30fc98f
8a89ba166e6740c0082d56c6af4021c7e8c93686
/FindTheUnknownDigit.py
74b48172f60de57ceea26e4f3095d3107bce201d
[]
no_license
xylonlin/codewars
db26b198efa15919dbfa501d47fde9b60146c999
e23a6dabbdb9cdeb1dabbc3d3a57e46451fa092a
refs/heads/master
2020-03-28T10:22:38.785845
2018-09-22T12:18:55
2018-09-22T12:18:55
148,103,510
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
#codewars link #https://www.codewars.com/kata/546d15cebed2e10334000ed9/train/python def solve_runes(runes): temp = runes print(temp) for i in "0123456789": if i in temp or i == '0' and (temp[0] in '0?' and \ temp[1] in '?1234567890' or \ any([ True for i,s in enumerate(temp) \ if s in '=+-*' and temp[i+1] == '?'and i+2 < len(temp) and temp[i+2] in '?0123456789'])): continue temp = temp.replace('?',i) temp = temp.replace('=','==') print(temp) if eval(temp): return int(i) temp = runes return -1 test = "?38???+595???=833444" print(solve_runes(test))
[ "xylonlin@tencent.com" ]
xylonlin@tencent.com
4dd9b94c80c34f8e6191e417b3ac9124d3613601
1c33942c013776c6b4a2e1d26be0a3ac28f36c91
/chainer/layer_function.py
190944e8fd3e6a0144e3ce4bdc7589af3060c663
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
asrlabncku/RAP
d9845868204bd5b687b77bb3e39836eded5b1da7
11fab37c8d98257ec0aed1b306aa9709a3a51328
refs/heads/master
2023-02-02T01:53:02.576516
2020-12-23T07:49:10
2020-12-23T07:49:10
280,380,067
0
0
null
null
null
null
UTF-8
Python
false
false
9,026
py
import math import chainer from chainer import cuda from chainer.variable import Variable # from chainer.functions import clipped_relu as f_clipped_relu # from chainer.functions import crelu as f_crelu # from chainer.functions import elu as f_elu # from chainer.functions import hard_sigmoid as f_hard_sigmoid # from chainer.functions import leaky_relu as f_leaky_relu # from chainer.functions import log_softmax as f_log_softmax # from chainer.functions import maxout as f_maxout # from chainer.functions import relu as f_relu # from chainer.functions import sigmoid as f_sigmoid # from chainer.functions import softmax as f_softmax # from chainer.functions import softplus as f_softplus # from chainer.functions import tanh as f_tanh # from chainer.functions import dropout as f_dropout # from chainer.functions import gaussian as f_gaussian # from chainer.functions import average_pooling_2d as f_average_pooling_2d # from chainer.functions import max_pooling_2d as f_max_pooling_2d # from chainer.functions import spatial_pyramid_pooling_2d as f_spatial_pyramid_pooling_2d # from chainer.functions import unpooling_2d as f_unpooling_2d # from chainer.functions import reshape as f_reshape # from chainer.functions import softmax_cross_entropy as f_softmax_cross_entropy class Function(object): def __call__(self, x): raise NotImplementedError() def from_dict(self, dict): for attr, value in dict.iteritems(): setattr(self, attr, value) def to_dict(self): dict = {} for attr, value in self.__dict__.iteritems(): dict[attr] = value return dict class Activation(object): def __init__(self, nonlinearity="relu"): self.nonlinearity = nonlinearity def to_function(self): if self.nonlinearity.lower() == "clipped_relu": return clipped_relu() if self.nonlinearity.lower() == "crelu": return crelu() if self.nonlinearity.lower() == "elu": return elu() if self.nonlinearity.lower() == "hard_sigmoid": return hard_sigmoid() if self.nonlinearity.lower() == "leaky_relu": return leaky_relu() if self.nonlinearity.lower() == "relu": return relu() if self.nonlinearity.lower() == "sigmoid": return sigmoid() if self.nonlinearity.lower() == "softmax": return softmax() if self.nonlinearity.lower() == "softplus": return softplus() if self.nonlinearity.lower() == "tanh": return tanh() if self.nonlinearity.lower() == "bst": return bst() raise NotImplementedError() from chainer.functions.eBNN import function_bst class bst(Function): def __init__(self): self._function = "bst" def __call__(self, x): return function_bst.bst(x) class clipped_relu(Function): def __init__(self, z=20.0): self._function = "clipped_relu" self.z = z def __call__(self, x): return chainer.functions.clipped_relu(x, self.z) class crelu(Function): def __init__(self, axis=1): self._function = "crelu" self.axis = axis def __call__(self, x): return chainer.functions.crelu(x, self.axis) class elu(Function): def __init__(self, alpha=1.0): self._function = "elu" self.alpha = alpha def __call__(self, x): return chainer.functions.elu(x, self.alpha) class hard_sigmoid(Function): def __init__(self): self._function = "hard_sigmoid" pass def __call__(self, x): return chainer.functions.hard_sigmoid(x) class leaky_relu(Function): def __init__(self, slope=0.2): self._function = "leaky_relu" self.slope = slope def __call__(self, x): return chainer.functions.leaky_relu(x, self.slope) class log_softmax(Function): def __init__(self, use_cudnn=True): self._function = "log_softmax" self.use_cudnn = use_cudnn def __call__(self, x): return chainer.functions.log_softmax(x, self.use_cudnn) class maxout(Function): def __init__(self, pool_size, axis=1): self._function = "maxout" self.pool_size = pool_size self.axis = axis def __call__(self, x): return chainer.functions.maxout(x, self.pool_size, self.axis) class relu(Function): def __init__(self, use_cudnn=True): self._function = "relu" self.use_cudnn = use_cudnn def __call__(self, x): return chainer.functions.relu(x, self.use_cudnn) class sigmoid(Function): def __init__(self, use_cudnn=True): self._function = "sigmoid" self.use_cudnn = use_cudnn def __call__(self, x): return chainer.functions.sigmoid(x, self.use_cudnn) class softmax(Function): def __init__(self, use_cudnn=True): self._function = "softmax" self.use_cudnn = use_cudnn pass def __call__(self, x): return chainer.functions.softmax(x, self.use_cudnn) class softplus(Function): def __init__(self, use_cudnn=True): self._function = "softplus" self.use_cudnn = use_cudnn def __call__(self, x): return chainer.functions.softplus(x, self.use_cudnn) class tanh(Function): def __init__(self, use_cudnn=True): self._function = "tanh" self.use_cudnn = use_cudnn def __call__(self, x): return chainer.functions.tanh(x, self.use_cudnn) class dropout_comm_test(Function): def __init__(self, ratio=0.5): self._function = "dropout_comm_test" self.ratio = ratio def __call__(self, x, train=True): if not train: return chainer.functions.dropout(x, self.ratio, True) return x class dropout_comm_train(Function): def __init__(self, ratio=0.5): self._function = "dropout_comm_train" self.ratio = ratio def __call__(self, x, train=True): if train: return chainer.functions.dropout(x, self.ratio, True) return x class dropout(Function): def __init__(self, ratio=0.5): self._function = "dropout" self.ratio = ratio def __call__(self, x, train=True): return chainer.functions.dropout(x, self.ratio, train) class gaussian_noise(Function): def __init__(self, std=0.3): self._function = "gaussian_noise" self.std = std def __call__(self, x): xp = cuda.get_array_module(x.data) ln_var = math.log(self.std ** 2) noise = chainer.functions.gaussian(Variable(xp.zeros_like(x.data)), Variable(xp.full_like(x.data, ln_var))) return x + noise class average_pooling_2d(Function): def __init__(self, ksize, stride=None, pad=0, use_cudnn=True): self._function = "average_pooling_2d" self.ksize = ksize self.stride = stride self.pad = pad self.use_cudnn = use_cudnn def __call__(self, x): return chainer.functions.average_pooling_2d(x, self.ksize, self.stride, self.pad, self.use_cudnn) class max_pooling_2d(Function): def __init__(self, ksize, stride=None, pad=0, cover_all=True, use_cudnn=True): self._function = "max_pooling_2d" self.ksize = ksize self.stride = stride self.pad = pad self.cover_all = cover_all self.use_cudnn = use_cudnn def __call__(self, x): return chainer.functions.max_pooling_2d(x, self.ksize, self.stride, self.pad, self.cover_all, self.use_cudnn) class spatial_pyramid_pooling_2d(Function): def __init__(self, pyramid_height, pooling_class, use_cudnn=True): self._function = "spatial_pyramid_pooling_2d" self.pyramid_height = pyramid_height self.pooling_class = pooling_class self.use_cudnn = use_cudnn def __call__(self, x): return chainer.functions.spatial_pyramid_pooling_2d(x, self.pyramid_height, self.pooling_class, self.use_cudnn) class unpooling_2d(Function): def __init__(self, ksize, stride=None, pad=0, outsize=None, cover_all=True): self._function = "unpooling_2d" self.ksize = ksize self.stride = stride self.pad = pad self.outsize = outsize self.cover_all = cover_all def __call__(self, x): return chainer.functions.unpooling_2d(x, self.ksize, self.stride, self.pad, self.outsize, self.cover_all) class reshape(Function): def __init__(self, shape): self._function = "reshape" self.shape = shape def __call__(self, x): return chainer.functions.reshape(x, self.shape) class reshape_1d(Function): def __init__(self): self._function = "reshape_1d" def __call__(self, x): batchsize = x.data.shape[0] return chainer.functions.reshape(x, (batchsize, -1)) class softmax_cross_entropy(Function): def __init__(self): self._function = "softmax_cross_entropy" def __call__(self, x, t): return chainer.functions.softmax_cross_entropy(x,t)
[ "monica43a@gmail.com" ]
monica43a@gmail.com
2ba61dfc1f4009952ba24d1ad2f07b48321ea0be
d8004ee845f8d9b883f4ff9ebc28e262700cfba5
/Anagram solver.py
974b6ff67060b912b8534a332f4ef008bc609d61
[]
no_license
Bhavan24/Anagram_solver
8b1dc1b5c3ca9102f3eba558c8c9a3d02261c755
160a28cbc0b95b7d27e9bc19d701f31035a21809
refs/heads/main
2023-02-14T21:25:27.313678
2021-01-09T13:22:41
2021-01-09T13:22:41
326,018,285
0
0
null
null
null
null
UTF-8
Python
false
false
318
py
user_input = input('Enter your anagram: ') from itertools import permutations spel = [''.join(data) for data in permutations(user_input)] for i in spel: with open("WordList.txt", "r") as a_file: for line in a_file: stripped_line = line.strip() if i == stripped_line: print(stripped_line)
[ "noreply@github.com" ]
Bhavan24.noreply@github.com
020c7f5f4602d40cbdfc38168fc2605b321b5420
65532d899ee8dde699d176677397d41605822bd3
/componentspython/configure_env.py
53e0893473a899e554197a7dd07002de0fce8b68
[ "Apache-2.0" ]
permissive
Mirantis/mos-components-ci
2d07c5460ea9b2f689119f15814fc464c8075441
9fbf056ba47a5d278869f8a9c90f4091bd2fc19a
refs/heads/master
2021-01-10T16:23:54.267826
2016-04-18T14:31:30
2016-04-18T14:31:30
52,099,218
1
4
Apache-2.0
2020-02-26T11:57:42
2016-02-19T16:04:42
Shell
UTF-8
Python
false
false
7,247
py
# Copyright 2014 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import getpass import hashlib import logging import os import settings from sys import argv import urllib from glanceclient.client import Client as Glance from keystoneclient.v2_0 import Client as Keystone from novaclient.client import Client as Nova def logger_func(): log_file = os.environ.get("CONFIGURE_ENV_LOG", "configure_env_log.txt") if log_file.startswith('/'): logfile = log_file else: logfile = os.path.join(os.path.join(os.getcwd()), log_file) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s %(filename)s:' '%(lineno)d -- %(message)s', filename=logfile, filemode='w') console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(levelname)s %(filename)s:' '%(lineno)d -- %(message)s') console.setFormatter(formatter) logger = logging.getLogger(__name__) logger.addHandler(console) return logger LOGGER = logger_func() class Common(): # This script adds Images to glance and configures security groups. def __init__(self, controller_ip, keystone_proto='http'): self.controller_ip = controller_ip self.keystone_proto = keystone_proto def _get_auth_url(self): LOGGER.debug('Slave-01 is {0}'.format(self.controller_ip)) return '{0}://{1}:5000/v2.0/'.format(self.keystone_proto, self.controller_ip) def goodbye_security(self, pkey_path): auth_url = self._get_auth_url() nova = Nova("2", settings.SERVTEST_USERNAME, settings.SERVTEST_PASSWORD, settings.SERVTEST_TENANT, auth_url, service_type='compute', no_cache=True, insecure=True) LOGGER.info('Permit all TCP and ICMP in security group default') secgroup = nova.security_groups.find(name='default') for rule in secgroup.rules: nova.security_group_rules.delete(rule['id']) nova.security_group_rules.create(secgroup.id, ip_protocol='tcp', from_port=1, to_port=65535) nova.security_group_rules.create(secgroup.id, ip_protocol='udp', from_port=1, to_port=65535) nova.security_group_rules.create(secgroup.id, ip_protocol='icmp', from_port=-1, to_port=-1) key_name = getpass.getuser() if not nova.keypairs.findall(name=key_name): LOGGER.info("Adding keys") with open(os.path.expanduser(pkey_path)) as fpubkey: nova.keypairs.create(name=key_name, public_key=fpubkey.read()) try: nova.flavors.find(name='sahara') except Exception: LOGGER.info("Adding sahara flavor") nova.flavors.create('sahara', 2048, 1, 40) def check_image(self, url, image, md5, path=settings.SERVTEST_LOCAL_PATH): download_url = "{0}/{1}".format(url, image) local_path = os.path.expanduser("{0}/{1}".format(path, image)) LOGGER.debug('Check md5 {0} of image {1}/{2}'.format(md5, path, image)) if not os.path.isfile(local_path): urllib.urlretrieve(download_url, local_path) if md5: with open(local_path, mode='rb') as fimage: digits = hashlib.md5() while True: buf = fimage.read(4096) if not buf: break digits.update(buf) md5_local = digits.hexdigest() if md5_local != md5: LOGGER.debug('MD5 is not correct, download {0} to {1}'.format( download_url, local_path)) urllib.urlretrieve(download_url, local_path) def image_import(self, properties, local_path, image, image_name): LOGGER.info('Import image {0}/{1} to glance'.format(local_path, image)) auth_url = self._get_auth_url() LOGGER.debug('Auth URL is {0}'.format(auth_url)) keystone = Keystone(username=settings.SERVTEST_USERNAME, password=settings.SERVTEST_PASSWORD, tenant_name=settings.SERVTEST_TENANT, auth_url=auth_url, verify=False) token = keystone.auth_token LOGGER.debug('Token is {0}'.format(token)) glance_endpoint = keystone.service_catalog.url_for( service_type='image', endpoint_type='publicURL') LOGGER.debug('Glance endpoind is {0}'.format(glance_endpoint)) glance = Glance("2", endpoint=glance_endpoint, token=token, insecure=True) LOGGER.debug('Importing {0}'.format(image)) with open(os.path.expanduser('{0}/{1}'.format(local_path, image))) as fimage: image = glance.images.create(name=image_name, disk_format='qcow2', container_format='bare', visibility='public', properties=str(properties)) glance.images.upload(image.id, fimage) for tag_name, value in properties.iteritems(): glance.image_tags.update(image.id, tag_name) tag = {tag_name: value} glance.images.update(image.id, **tag) def main(): controller = argv[1] public_key_path = argv[2] mos_version = argv[3] keystone_proto = argv[4] common_func = Common(controller, keystone_proto) for image_info in settings.images: if mos_version in image_info['mos_versions']: LOGGER.debug(image_info) common_func.check_image( image_info['url'], image_info['image'], image_info['md5sum']) common_func.image_import( image_info['meta'], settings.SERVTEST_LOCAL_PATH, image_info['image'], image_info['name']) common_func.goodbye_security(public_key_path) LOGGER.info('All done !')
[ "vrovachev@mirantis.com" ]
vrovachev@mirantis.com
41ef6c08789a5dc38f99ad6c193e5ba387c28397
a984fa1a01a6b5153483b5abef634c926ffd3065
/scripts/Test scripts/test3.py
d6050fe765d0f8d8ac23f6f211a5467256dcd662
[]
no_license
jkapilivsky/IG---Valeria
585ceaa2ea7198ffc128836ed9a07f77b1af0cf5
db465f51771ef008c6d96abada388b59729ea557
refs/heads/master
2022-06-27T12:07:17.863574
2018-08-27T03:25:35
2018-08-27T03:25:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
133
py
def subtract(): num = 150 for x in range(150): num -= 1 print(num) if num == 140: quit()
[ "jamie.kapilivsky@gmail.com" ]
jamie.kapilivsky@gmail.com
54bb06e4261361caee62ccf3d67c664134ce721a
94889e022b2ffd80d17a626b68df597f14a028f7
/auto_python4/common/handledata.py
79597a5b02ef5313e1cec84a8490ade28946b289
[]
no_license
wushengling/AutoTest
2059b799374aa7794435d28642246d77580ca018
6698f2f275ed4ce47e197d87e9e5a0cda2a8d6a0
refs/heads/master
2022-07-02T17:58:45.651811
2020-04-19T11:15:02
2020-04-19T11:15:02
188,354,973
4
0
null
2022-06-21T03:15:04
2019-05-24T04:59:46
HTML
UTF-8
Python
false
false
714
py
#coding:utf-8 # vscode读取不到了包路径解决方案 import sys import os curPath = os.path.abspath(os.path.dirname(__file__)) rootPath = os.path.split(curPath)[0] sys.path.append(rootPath) import re from common.myconfig import conf class CaseData(): ''''这个类专门用来保存,用例执行过程中提取出来,给其他用例用的数据''' pass def replace_data(s): r1= r"#(.+?)#" while re.search(r1,s): res = re.search(r1,s) data = res.group() key = res.group(1) try: value = conf.get("test_data",key) except Exception: value = getattr(CaseData,key) finally: s = re.sub(data,value,s,1) return s
[ "740776409@qq.com" ]
740776409@qq.com
12edd86424b96b1e5788cbd1593107b8c86e375a
e6640746bc6fd5cbe272b764e7744239545b8a94
/check.py
35e33b7abb58fb7989401b95ed1302b2baea12cb
[]
no_license
avoredo/weather-vk-bot
014acbe9d5a9175f79bcc8f3f799d2ea9caf4f05
373efde40ae2b1e9fea2a81a8b0a1a9ec59ed065
refs/heads/master
2020-06-05T10:34:08.387628
2020-01-08T14:46:35
2020-01-08T14:46:35
192,410,737
1
1
null
null
null
null
UTF-8
Python
false
false
4,958
py
# -*- coding: utf-8 -*- import time import requests import os import locale import pytz try: locale.setlocale(locale.LC_TIME, 'ru_RU') except: locale.setlocale(locale.LC_ALL, '') def check(place): url = 'https://meteoinfo.ru/hmc-output/meteoalert/map_fed_data.php' html = requests.get(url).text data = eval(html) places = { 'орел': '51', 'орёл': '51', 'воронеж': '77', 'курск': '33', 'калуга': '27', 'брянск': '7', 'ярославль': '81', 'смоленск': '60', 'тамбов': '65', 'кострома': '36', 'тверь': '70', 'владимир': '75', 'тула': '68', 'мо': '43', 'московская область': '43', 'белгород': '6', 'рязань': '57', 'липецк': '38', 'иваново': '19', 'москва': '102' } area = data[places[place]] intsn = { '0': 'Зеленый', '1': 'Зеленый', '2': 'Желтый', '3': 'Оранжевый', '4': 'Красный' } areas = { 'белгород': 'Белгородская область', 'брянск': 'Брянская область', 'владимир': 'Владимирская область', 'воронеж': 'Воронежская область', 'иваново': 'Ивановская область', 'калуга': 'Калужская область', 'кострома': 'Костромская область', 'курск': 'Курская область', 'липецк': 'Липецкая область', 'мо': 'Московская область', 'московская область': 'Московская область', 'орел': 'Орловская область', 'орёл': 'Орловская область', 'рязань': 'Рязанская область', 'смоленск': 'Смоленская область', 'тамбов': 'Тамбовская область', 'тверь': 'Тверская область', 'тула': 'Тульская область', 'ярославль': 'Ярославская область', 'москва': 'Москва' } alert = { 'Гроза': '⛈️', 'Дождь': '☔', 'Ветер': '💨', 'Заморозки': '➖', 'Туман': '🌫️', 'Очень низкая температура': '🌡️🔻', 'Очень высокая температура': '🌡️🔺', 'Высокая температура': '🌡️🔺', 'сильная жара': '🌡️🔺', 'Высокая пожароопасность': '🔥', 'Пожарная опасность': '🔥', 'Паводок': '💧', 'Пыльная (песчаная) буря': '🌪️', 'Прочие опасности': '❗', 'Снег/Обледенение': '❄️', 'Прибрежные события': '🏖️', 'Лавины': '⛰️', 'Сель': '⛰️', 'Наводнение': '🌊', 'Гололедно - изморозевое отложение': '⛸️', 'Оповещения о погоде не требуется': '' } length = (len(area)) text = [] for k in range(0, length): weather = area[str(k)]["3"] intensity = str(area[str(k)]['2'])[0] start_time = time.strftime('%H:%M %d %B', time.localtime(int(area[str(k)]['0']))) end_time = time.strftime('%H:%M %d %B', time.localtime(int(area[str(k)]['1']))) if int(time.strftime('%H', time.localtime(int(area[str(k)]['0'])))) == int(time.strftime('%H', time.localtime())): start_from = '' else: start_from = ' c ' + str(start_time) r = area[str(k)]['4'] if r == '': remark = 'Уточнений нет' else: remark = r text.append('🗺️ Регион: ' + areas[str(place)] + '\n' + '⚠️ Оповещение: ' + weather + alert[weather] + '\n' + '🕑 Период предупреждения — ' + start_from + ' до ' + end_time + '\n' + '📝 Уточнения: ' + remark + '\n' + '❗️ Уровень: ' + intsn[intensity] + '\n') return '\n\n'.join(text)
[ "georgybombelo@gmail.com" ]
georgybombelo@gmail.com
d409d9b0d081d9962a79d6d88693067405aab5b0
b5ee0c8f0dfc58b2065b361dbc5d530ec9ae9981
/joblog/__init__.py
e44fe10ebef26bed2486e358fa706c2bd35bc0e5
[]
no_license
Esmaeili/joblog
523152eaacbed446231f332b947652447b402bde
45614d05872f28166ef6618b7cc4610d38e60b23
refs/heads/master
2020-12-27T10:13:37.990310
2013-01-31T18:18:17
2013-01-31T18:18:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
36
py
from .joblog import Job, JobFactory
[ "beaumont@hawaii.edu" ]
beaumont@hawaii.edu
d6d6f8eda2c0111a45ed400d96dc7173bcd437cc
37508e5ea95f5404e7afc073a64a8007367254f0
/apps/organization/migrations/0001_initial.py
27b0c7185a6ba4b08f6ae75923e837d314ae7970
[]
no_license
Snow670/EDonline
5ea6e96f05c5f406856cc791cff3ebcccf8b504a
1da1c546f4a880621d9ec1a3c6139f3d76f030f6
refs/heads/master
2022-11-06T04:15:39.345033
2020-06-18T13:01:40
2020-06-18T13:01:40
271,508,240
0
0
null
null
null
null
UTF-8
Python
false
false
3,191
py
# Generated by Django 3.0.7 on 2020-06-10 01:51 import datetime from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='CityDict', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, verbose_name='城市')), ('desc', models.CharField(max_length=200, verbose_name='描述')), ('add_time', models.DateTimeField(default=datetime.datetime.now)), ], options={ 'verbose_name': '城市', 'verbose_name_plural': '城市', }, ), migrations.CreateModel( name='CourseOrg', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50, verbose_name='机构名称')), ('desc', models.TextField(verbose_name='机构描述')), ('click_nums', models.IntegerField(default=0, verbose_name='点击数')), ('fav_nums', models.IntegerField(default=0, verbose_name='收藏数')), ('image', models.ImageField(upload_to='org/%Y%m', verbose_name='封面图')), ('address', models.CharField(max_length=150, verbose_name='机构地址')), ('add_time', models.DateTimeField(default=datetime.datetime.now)), ('city', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='organization.CityDict', verbose_name='所在城市')), ], options={ 'verbose_name': '课程机构', 'verbose_name_plural': '课程机构', }, ), migrations.CreateModel( name='Teacher', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50, verbose_name='教师名')), ('work_years', models.IntegerField(default=0, verbose_name='工作年限')), ('work_company', models.CharField(max_length=50, verbose_name='就职公司')), ('work_position', models.CharField(max_length=50, verbose_name='公司职位')), ('points', models.CharField(max_length=50, verbose_name='教学特点')), ('click_nums', models.IntegerField(default=0, verbose_name='点击数')), ('fav_nums', models.IntegerField(default=0, verbose_name='收藏数')), ('add_time', models.DateTimeField(default=datetime.datetime.now)), ('org', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='organization.CourseOrg', verbose_name='所属机构')), ], options={ 'verbose_name': '教师', 'verbose_name_plural': '教师', }, ), ]
[ "1419517126@qq.com" ]
1419517126@qq.com
10ded9deb1efd0dc17c9e96152f66b7aec0396c1
eaceab983a69a3394b41c8de538ea224651d83cc
/UMOD_PAPER/src/PED2HTML.py
2fa40a949a0c1d5435f42a27e7389ee5598f541b
[]
no_license
wavefancy/CircularPedigreeTree
01e70bf6a74a457e22dee330384da119a2a0d1b4
783283b49467aff156227e02e4aab5f5906783a6
refs/heads/master
2020-06-01T13:05:32.740511
2020-04-07T07:36:06
2020-04-07T07:36:06
190,789,249
0
0
null
null
null
null
UTF-8
Python
false
false
5,234
py
#!/usr/bin/env python3 """ Convert ped file to newick format. @Author: wavefancy@gmail.com Usage: PED2HTML.py [--html base_file] [-d int] [--notext] [-c color] [--sweep txt] [--degree int] PED2HTML.py -h | --help | -v | --version | -f | --format Notes: 1. Read sigle family ped file from stdin, and output results to stdout. 2. See example by -f. Options: --html base_file html template file, default base.html -d int distance between mating partner, default 2000. -c color Set the line color, default #05668D. --sweep txt Target node name for sweep arc, e.g. 115,117. --notext Do not show text on the figure, default show. --degree int Set the layout circular degree, default 360. -h --help Show this screen. -v --version Show version. -f --format Show input/output file format example. """ import sys from docopt import docopt from signal import signal, SIGPIPE, SIG_DFL signal(SIGPIPE, SIG_DFL) def ShowFormat(): '''Input File format example:''' print(''' #input example ------------------------ c1 1 c2 2 c3 5 '''); if __name__ == '__main__': args = docopt(__doc__, version='1.0') # print(args) if(args['--format']): ShowFormat() sys.exit(-1) basehtml = args['--html'] if args['--html'] else 'base.html' from ete3 import Tree,TreeNode #read ped file from stdin. ped_data = {} #map for name -> raw data. node_data = {} #map for name -> TreeNode for line in sys.stdin: line = line.strip() if line and line[0] != '#': #skip comment line. ss = line.split() ped_data[ss[1]] = ss n = TreeNode(name=ss[1]) n.add_feature('raw',ss) node_data[ss[1]] = n # for k,v in node_data.items(): # print(v.write(format=2,features=['raw'])) #find the root node, and convert results to josn. #Check data integrity. m_error = False for _, data in ped_data.items(): if data[2] != '0' and data[2] not in ped_data.keys(): m_error = True sys.stderr.write('ERROR: missing declearation for father: %s\n'%(data[2]) ) if data[3] != '0' and data[3] not in ped_data.keys(): m_error = True sys.stderr.write('ERROR: missing declearation for mother: %s\n'%(data[3]) ) if m_error: sys.exit(-1) T = Tree() # def checkAddNode(name): # if name != '0' and name not in NodeMap: # NodeMap[name] = Node(name) for name,data in ped_data.items(): #set node children. [node_data[x].add_child(child=node_data[data[1]]) for x in data[2:4] if x != '0'] #set mating info. if data[2] != '0' and data[3] != '0': node_data[data[2]].add_feature('mate',node_data[data[3]].raw) node_data[data[3]].add_feature('mate',node_data[data[2]].raw) elif data[2] == '0' and data[3] == '0': pass else: sys.stderr.write('ERROR: Please set full parent info. Error at: %s\n'%('\t'.join(data))) sys.exit(-1) # T.add_child(child=node_data['f1']) # print(T.write(format=1)) # for k,v in node_data.items(): # print(v.name) # print(v.write(format=2,features=['name','mate'])) root = '' for name,data in ped_data.items(): if data[2] == '0' and data[3] == '0': # mateName = node_data[name] if 'mate' in node_data[name].features: mdata = node_data[name].mate # print(mdata) if mdata[2] == '0' and mdata[3] == '0': # print("ROOT NAME:" + name) # Indeed we have two roots, but we chose abitrary one as root. root = node_data[name] break # print(root) # update node name for output. for k,v in node_data.items(): n = '_'.join(v.raw) if 'mate' in v.features: n = n + '||' + '_'.join(v.mate) v.name = n T.add_child(root) treeData = T.write(format=1)[:-1] + 'root||root:1;' # print(out) ss = '' if args['--sweep']: temp = args['--sweep'].split(',') ss = 'SWEEP_ARC_NODE=new Set([' + str(temp)[1:-1] +'])' with open(basehtml,'r') as bf: for line in bf: line = line.replace('__treeData__',treeData) if args['-d']: line = line.replace('DISTANCE_PARTNER=2000','DISTANCE_PARTNER='+args['-d']) if args['--notext']: line = line.replace('SHOW_TEXT=true','SHOW_TEXT=false') if args['-c']: line = line.replace('#05668D',args['-c']) if args['--sweep']: # ss = 'SWEEP_ARC_NODE=new Set([' + args['--sweep']+'])' line = line.replace('SWEEP_ARC_NODE=new Set()',ss) if args['--degree']: line = line.replace('LAYOUT_DEGREE=360','LAYOUT_DEGREE='+args['--degree']) sys.stdout.write('%s'%(line)) sys.stdout.flush() sys.stdout.close() sys.stderr.flush() sys.stderr.close()
[ "wavefancy@gmail.com" ]
wavefancy@gmail.com
5afeb293e7de68b98386f7002a1bca0ce280583c
028e1f1544573e9dc85a7f267257085a076305c1
/models/base_res101/model.py
27b6230ad4ab7066b5be01a62118213a385c21f4
[ "MIT" ]
permissive
cadkins052/tab-vcr
e5333b05c7a1afbdf81a9f482b2980f535f5b332
ea713a6ef7ca54eb3123d8729dfc26dc604644c5
refs/heads/master
2020-11-26T19:27:21.267397
2019-12-24T03:11:39
2019-12-24T03:11:39
229,185,220
0
0
MIT
2019-12-20T03:46:05
2019-12-20T03:46:04
null
UTF-8
Python
false
false
10,110
py
from typing import Dict, List, Any import torch import torch.nn as nn from torchvision.models import resnet from torch.nn.modules import BatchNorm2d,BatchNorm1d from utils.pytorch_misc import Flattener import torch.nn.functional as F import torch.nn.parallel from allennlp.data.vocabulary import Vocabulary from allennlp.models.model import Model from allennlp.modules import TextFieldEmbedder, Seq2SeqEncoder, FeedForward, InputVariationalDropout, TimeDistributed from allennlp.training.metrics import CategoricalAccuracy from allennlp.modules.matrix_attention import BilinearMatrixAttention from utils.detector_101 import SimpleDetector from allennlp.nn.util import masked_softmax, weighted_sum, replace_masked_values from allennlp.nn import InitializerApplicator @Model.register("LSTMBatchNormFreezeDetGlobalFullRes101NoFinalImage") class LSTMBatchNormFreezeDetGlobalFullRes101NoFinalImage(Model): def __init__(self, vocab: Vocabulary, option_encoder: Seq2SeqEncoder, input_dropout: float = 0.3, initializer: InitializerApplicator = InitializerApplicator(), ): super(LSTMBatchNormFreezeDetGlobalFullRes101NoFinalImage, self).__init__(vocab) self.rnn_input_dropout = TimeDistributed(InputVariationalDropout(input_dropout)) if input_dropout > 0 else None self.detector = SimpleDetector(pretrained=True, average_pool=True, semantic=False, final_dim=512) # freeze everything related to conv net for submodule in self.detector.backbone.modules(): # if isinstance(submodule, BatchNorm2d): # submodule.track_running_stats = False for p in submodule.parameters(): p.requires_grad = False for submodule in self.detector.after_roi_align.modules(): # if isinstance(submodule, BatchNorm2d): # submodule.track_running_stats = False for p in submodule.parameters(): p.requires_grad = False self.image_BN = BatchNorm1d(512) self.option_encoder = TimeDistributed(option_encoder) self.option_BN = torch.nn.Sequential( BatchNorm1d(512) ) self.query_BN = torch.nn.Sequential( BatchNorm1d(512) ) self.final_mlp = torch.nn.Sequential( torch.nn.Linear(1024, 512), torch.nn.ReLU(inplace=True), ) self.final_BN = torch.nn.Sequential( BatchNorm1d(512) ) self.final_mlp_linear = torch.nn.Sequential( torch.nn.Linear(512,1) ) self._accuracy = CategoricalAccuracy() self._loss = torch.nn.CrossEntropyLoss() initializer(self) # recevie redundent parameters for convinence def _collect_obj_reps(self, span_tags, object_reps): """ Collect span-level object representations :param span_tags: [batch_size, ..leading_dims.., L] :param object_reps: [batch_size, max_num_objs_per_batch, obj_dim] :return: """ span_tags_fixed = torch.clamp(span_tags, min=0) # In case there were masked values here row_id = span_tags_fixed.new_zeros(span_tags_fixed.shape) row_id_broadcaster = torch.arange(0, row_id.shape[0], step=1, device=row_id.device)[:, None] # Add extra diminsions to the row broadcaster so it matches row_id leading_dims = len(span_tags.shape) - 2 for i in range(leading_dims): row_id_broadcaster = row_id_broadcaster[..., None] row_id += row_id_broadcaster return object_reps[row_id.view(-1), span_tags_fixed.view(-1)].view(*span_tags_fixed.shape, -1) def embed_span(self, span, span_tags, span_mask, object_reps): """ :param span: Thing that will get embed and turned into [batch_size, ..leading_dims.., L, word_dim] :param span_tags: [batch_size, ..leading_dims.., L] :param object_reps: [batch_size, max_num_objs_per_batch, obj_dim] :param span_mask: [batch_size, ..leading_dims.., span_mask :return: """ retrieved_feats = self._collect_obj_reps(span_tags, object_reps) span_rep = torch.cat((span['bert'], retrieved_feats), -1) # add recurrent dropout here if self.rnn_input_dropout: span_rep = self.rnn_input_dropout(span_rep) return span_rep, retrieved_feats def forward(self, images: torch.Tensor, objects: torch.LongTensor, segms: torch.Tensor, boxes: torch.Tensor, box_mask: torch.LongTensor, question: Dict[str, torch.Tensor], question_tags: torch.LongTensor, question_mask: torch.LongTensor, answers: Dict[str, torch.Tensor], answer_tags: torch.LongTensor, answer_mask: torch.LongTensor, metadata: List[Dict[str, Any]] = None, label: torch.LongTensor = None) -> Dict[str, torch.Tensor]: """ :param images: [batch_size, 3, im_height, im_width] :param objects: [batch_size, max_num_objects] Padded objects :param boxes: [batch_size, max_num_objects, 4] Padded boxes :param box_mask: [batch_size, max_num_objects] Mask for whether or not each box is OK :param question: AllenNLP representation of the question. [batch_size, num_answers, seq_length] :param question_tags: A detection label for each item in the Q [batch_size, num_answers, seq_length] :param question_mask: Mask for the Q [batch_size, num_answers, seq_length] :param answers: AllenNLP representation of the answer. [batch_size, num_answers, seq_length] :param answer_tags: A detection label for each item in the A [batch_size, num_answers, seq_length] :param answer_mask: Mask for the As [batch_size, num_answers, seq_length] :param metadata: Ignore, this is about which dataset item we're on :param label: Optional, which item is valid :return: shit """ # Trim off boxes that are too long. this is an issue b/c dataparallel, it'll pad more zeros that are # not needed max_len = int(box_mask.sum(1).max().item()) objects = objects[:, :max_len] box_mask = box_mask[:, :max_len] boxes = boxes[:, :max_len] segms = segms[:, :max_len] obj_reps = self.detector(images=images, boxes=boxes, box_mask=box_mask, classes=objects, segms=segms) # option part batch_size, num_options, padded_seq_len, _ = answers['bert'].shape options, option_obj_reps = self.embed_span(answers, answer_tags, answer_mask, obj_reps['obj_reps']) assert (options.shape == (batch_size, num_options, padded_seq_len, 1280)) option_rep = self.option_encoder(options, answer_mask) # (batch_size, 4, seq_len, emb_len(512)) option_rep = replace_masked_values(option_rep, answer_mask[...,None], 0) seq_real_length = torch.sum(answer_mask, dim=-1, dtype=torch.float) # (batch_size, 4) seq_real_length = seq_real_length.view(-1,1) # (batch_size * 4,1) option_rep = option_rep.sum(dim=2) # (batch_size, 4, emb_len(512)) option_rep = option_rep.view(batch_size * num_options,512) # (batch_size * 4, emb_len(512)) option_rep = option_rep.div(seq_real_length) # (batch_size * 4, emb_len(512)) option_rep = self.option_BN(option_rep) option_rep = option_rep.view(batch_size, num_options, 512) # (batch_size, 4, emb_len(512)) # query part batch_size, num_options, padded_seq_len, _ = question['bert'].shape query, query_obj_reps = self.embed_span(question, question_tags, question_mask, obj_reps['obj_reps']) assert (query.shape == (batch_size, num_options, padded_seq_len, 1280)) query_rep = self.option_encoder(query, question_mask) # (batch_size, 4, seq_len, emb_len(512)) query_rep = replace_masked_values(query_rep, question_mask[...,None], 0) seq_real_length = torch.sum(question_mask, dim=-1, dtype=torch.float) # (batch_size, 4) seq_real_length = seq_real_length.view(-1,1) # (batch_size * 4,1) query_rep = query_rep.sum(dim=2) # (batch_size, 4, emb_len(512)) query_rep = query_rep.view(batch_size * num_options,512) # (batch_size * 4, emb_len(512)) query_rep = query_rep.div(seq_real_length) # (batch_size * 4, emb_len(512)) query_rep = self.query_BN(query_rep) query_rep = query_rep.view(batch_size, num_options, 512) # (batch_size, 4, emb_len(512)) # image part # assert (obj_reps['obj_reps'][:,0,:].shape == (batch_size, 512)) # images = obj_reps['obj_reps'][:,0,:] # the background i.e. whole image # images = self.image_BN(images) # images = images[:,None,:] # images = images.repeat(1,4,1) # (batch_size, 4, 512) # assert (images.shape == (batch_size, num_options,512)) query_option_image_cat = torch.cat((option_rep,query_rep),-1) assert (query_option_image_cat.shape == (batch_size,num_options, 512*2)) query_option_image_cat = self.final_mlp(query_option_image_cat) query_option_image_cat = query_option_image_cat.view(batch_size*num_options,512) query_option_image_cat = self.final_BN(query_option_image_cat) query_option_image_cat = query_option_image_cat.view(batch_size,num_options,512) logits = self.final_mlp_linear(query_option_image_cat) logits = logits.squeeze(2) class_probabilities = F.softmax(logits, dim=-1) output_dict = {"label_logits": logits, "label_probs": class_probabilities} if label is not None: loss = self._loss(logits, label.long().view(-1)) self._accuracy(logits, label) output_dict["loss"] = loss[None] # print ('one pass') return output_dict def get_metrics(self,reset=False): return {'accuracy': self._accuracy.get_metric(reset)}
[ "deanplayerljx@gmail.com" ]
deanplayerljx@gmail.com
7651f52a6e70bf69a76a880ee086f1b872405b0a
8a8c9517e0107802c5abfea72f8fe78d73569879
/Books/forms.py
2b1698a52ae85f2c0b3cbd744a5e8b185c2ecfa7
[]
no_license
SrivastavaRishabh/Projects
b4d2b841cf6051e9def55bbf123b70f677e06938
e768e43a3f9c31d48370629f0c97c8249f9619ce
refs/heads/master
2020-03-24T21:44:24.220022
2018-08-13T13:43:39
2018-08-13T13:43:39
143,047,422
0
1
null
null
null
null
UTF-8
Python
false
false
256
py
from django import forms from .models import Books class EntryForm(forms.ModelForm): class Meta: model = Books fields = ('name', 'isbn', 'pages', 'image', 'description', 'genre', 'publisher', 'authors', 'pubdate')
[ "rishabh@testpress.in" ]
rishabh@testpress.in
5f2721ffbb6a6b15822f2107e3fc1814431d1975
a969f4d87360010bb0ae7fff1373bb0b92e2b21a
/badger/models.py
b6487c6f80ff849f8e103af68ab27c0771bd2b24
[]
no_license
philratcliffe/django_badger
b059e52025930696352020a318dc1a7100a47193
1f136741f391c918ed75862373e4a858e63d2f40
refs/heads/master
2020-04-05T04:09:23.694598
2019-01-23T13:14:14
2019-01-23T13:14:14
156,539,879
0
0
null
2018-11-23T10:18:57
2018-11-07T11:59:09
Python
UTF-8
Python
false
false
2,245
py
import itertools from django.template.defaultfilters import slugify from django.conf import settings from django.db import models from django.urls import reverse from model_utils.models import TimeStampedModel from .validators import validate_employee_name class Badge(TimeStampedModel): name = models.CharField(max_length=50) slug = models.SlugField(unique=True) def save(self, *args, **kwargs): slug = slugify(self.name) for x in itertools.count(1): if not Employee.objects.filter(slug=slug).exists(): break slug = '%s-%d' % (slug, x) self.slug = slug super(Badge, self).save(*args, **kwargs) def __str__(self): return self.name def get_absolute_url(self): return reverse('badger:badge_detail', args=[self.slug]) class Meta: ordering = ["name"] class BadgeAwarded(TimeStampedModel): badge = models.ForeignKey(Badge, on_delete=models.CASCADE) user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='badges_awarded', ) def __str__(self): return self.badge.name class Meta: verbose_name_plural = "BadgesAwarded" # A Badge can only be awarded once to a user unique_together = ('user', 'badge') class Employee(TimeStampedModel): first_name = models.CharField( max_length=30, validators=[validate_employee_name]) last_name = models.CharField( max_length=30, validators=[validate_employee_name]) badges = models.ManyToManyField(Badge, blank=True) slug = models.SlugField(unique=True) def save(self, *args, **kwargs): slug = slugify("{} {}".format(self.first_name, self.last_name)) for x in itertools.count(1): if not Employee.objects.filter(slug=slug).exists(): break slug = '%s-%d' % (slug, x) self.slug = slug super(Employee, self).save(*args, **kwargs) def __str__(self): return "{} {}".format(self.first_name, self.last_name) def get_absolute_url(self): return reverse('badger:employee_detail', args=[self.slug]) class Meta: ordering = ["last_name"]
[ "phil@philratcliffe.co.uk" ]
phil@philratcliffe.co.uk
4019e75fe7c301209c534516e97c8758f8c51c65
efad856f87ce545e640633112c094363e03d98a1
/venv/bin/easy_install-3.7
dffc980f922be2122df9a0f4404b113c74031daf
[]
no_license
Gabriel-Tales/PayBot_Whatts_App
1e18f83b7726a9824d2b5aa22a1bb30784a78f05
23a052f41c94a2ec578090547d79a5e1eceecb65
refs/heads/master
2022-12-01T16:23:08.766578
2019-05-30T15:32:20
2019-05-30T15:32:20
189,235,859
0
0
null
2022-11-22T03:50:43
2019-05-29T13:55:35
Python
UTF-8
Python
false
false
262
7
#!/root/Projetos/python/zipzop/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "gabrieltales.pinho@gmail.com" ]
gabrieltales.pinho@gmail.com
9f1d0915a82bbebeff6a08afaad893423aae0abf
84d1d0e86f85ff945f65c9ce83c6f75477c52022
/sample.py
baa1010924b1e3d717a7e3a544700b18c5585e11
[]
no_license
kodamitsuyoshi/tradingbot
d761128f9a7cb87e4e920eab72fb18733b91799e
8933560f50f1592a4db36756f2cb9cdf82cbc2b7
refs/heads/master
2020-03-10T17:40:22.444458
2018-05-08T17:47:00
2018-05-08T17:47:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,722
py
from bitmexwebsocket import BitmexWebsocket import time import numpy as np import pandas as pd from notify import Line_Notify def date_from_timestamp(s=None): if s==None: s = round(time.time()) return str(datetime.fromtimestamp(s + 60 * 60 * 9)) if __name__ == '__main__': LINE_TOKEN=sys.argv[1] start=time.time() bs =BitmexWebsocket() #bs=BitMEXWebsocket(endpoint="https://testnet.bitmex.com/api/v1", symbol="XBTUSD", api_key=None, api_secret=None) #bs=BitMEXWebsocket(endpoint="https://www.bitmex.com/api/v1", symbol="XBTUSD", api_key=None, api_secret=None) #bs._get_url() same_count_index = {"Sell":0,"Buy":0} b_buy =(0,0) b_sell=(0,0) position = 0 # -1 0 1 target=5 sleep_num=1 print("loop") for i in bs.ws.sock.connected: #print("test") md=bs.market_depth() bsres = md[md.side=='Sell' ].sort_values(by=["price","size"]) bbres = md[md.side=='Buy'].sort_values(by=["price","size"]) sell_min = bsres.price.min() sell_size = bsres[bsres.price==sell_min]["size"].values[0] buy_max = bbres.price.max() buy_size = bbres[bbres.price==buy_max]["size"].values[0] ticker = bs.get_ticker() c_sell=(sell_min,sell_size) c_buy =(buy_max,buy_size) #print( c_sell,c_buy ,ticker["last"] ) print ("CURRENT:",ticker["last"] ,"POSSTION:",position) time.sleep(sleep_num) if (b_buy == c_buy): same_count_index["Buy"] += 1 else: same_count_index["Buy"] = 0 if(b_sell == c_sell ): same_count_index["Sell"] += 1 else: same_count_index["Sell"] = 0 if (position !=-1 and same_count_index["Buy"]>target and same_count_index["Sell"]<target): position = -1 print("SELL") #bs.reset_market_depth() if (position !=1 and same_count_index["Sell"]>target and same_count_index["Buy"]<target): position = 1 print("BUY") #bs.reset_market_depth() if (same_count_index["Sell"]>target and same_count_index["Buy"]>target): if (position==1): print("BUY CLOSE") position =0 elif(position==-1): print("SELL CLOSE") position =0 same_count_index = {"Sell":0,"Buy":0} bs.reset_market_depth() print("RESET!!") b_sell = c_sell b_buy = c_buy print(same_count_index) bs.exit() print(time.time()-start)
[ "3nan.mkoda@gmail.com" ]
3nan.mkoda@gmail.com
a38915a88964170726d29431be29c2924d72c2cd
4f8b0cb6779752f3c0b61c0e403f011f20e16a5e
/venv/Scripts/easy_install-3.7-script.py
4e766e84754e05f97bc5c469c4542cee44f68c02
[]
no_license
FredoCeroAnon/TallerGitHub
c8086d45f425ffd73a3cb3c0e658b4abe3435824
d5e3c2439ee306b4d140134ace9b60174750c01b
refs/heads/master
2020-05-14T11:32:46.442694
2019-04-16T23:12:09
2019-04-16T23:12:09
181,779,609
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
#!C:\Users\LUISALFREDO\PycharmProjects\TallerGitHub\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.7')() )
[ "luisalfredo9905@gmail.com" ]
luisalfredo9905@gmail.com
bb93cb7b1fe4a984fbc93ec52a9b316230cc8390
cb9bc5926279b2396c8b5489171fd0f43b5eaa50
/scripts/py-callgraph
0f2334b72285c514fcddb5f4c21c597db73321df
[ "MIT" ]
permissive
roy2220/systemtap-python-tools
008e1e615de325091896fa301fe196f25f7007f5
2bb850f4ce70cb9175c2dbeb0752755b0faa9bb7
refs/heads/master
2021-05-04T08:49:48.730066
2016-09-29T22:15:11
2016-09-29T22:15:11
70,374,292
0
0
null
2016-10-09T03:31:26
2016-10-09T03:31:25
null
UTF-8
Python
false
false
1,677
#!/usr/bin/env python from __future__ import print_function import argparse import subprocess import sys from common import abspath, build_stap_args, gen_tapset_macros def main(): argparser = argparse.ArgumentParser() argparser.add_argument('-x', '--pid', help='PID to profile', required=True) argparser.add_argument('-n', '--ncalls', help='Number of times to record function execution', default='20') argparser.add_argument('-t', '--trigger', help='Trigger function', required=True) argparser.add_argument('--py3', action='store_true', help='Pass when profiling Python 3 programs') argparser.add_argument('-v', '--verbose', action='store_true') args, extra_args = argparser.parse_known_args() main_pid = str(args.pid) if args.py3: tapset_dir = abspath('../tapset/python3') else: tapset_dir = abspath('../tapset/python2') gen_tapset_macros(main_pid, tapset_dir) stap_cmd = ['stap', abspath('py-callgraph.stp'), args.trigger, args.ncalls, '-I', tapset_dir] stap_cmd.extend(build_stap_args(main_pid)) limits=['-D', 'MAXSTRINGLEN=4096', '-D', 'MAXBACKTRACE=200', '-D', 'MAXMAPENTRIES=10240'] stap_cmd.extend(limits) stap_cmd.extend(extra_args) if args.verbose: print(" ".join(stap_cmd)) p = subprocess.Popen(stap_cmd) p.wait() if p.returncode != 0: print("Error running stap script (exit code {}). " "You may need to pass --py3.".format(p.returncode), file=sys.stderr) if __name__ == '__main__': main()
[ "freemaneben@gmail.com" ]
freemaneben@gmail.com
e73a9385df2d135e22c411c5d7930ecc8f37b31d
50ac1b24ecab60da963f143dad2018c0f82301d1
/urls.py
5553a1c61fcd500f1933b856105d20a50446b7f3
[]
no_license
odero/django_oauth
bc70dfb5c3e157cd46a77755ee640acd41a20b05
d2455f6f67b9ed96d91c8db76e44704cf7e7429c
refs/heads/master
2020-06-04T16:51:03.866400
2011-06-09T19:08:53
2011-06-09T19:08:53
1,870,461
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
from django.conf.urls.defaults import * # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = patterns( '', (r'^admin/', include(admin.site.urls)), (r'^login/$', 'django.contrib.auth.views.login', {'template_name':'admin/login.html'}), # (r'^admin/doc/', include('django.contrib.admindocs.urls')), ) urlpatterns += patterns( 'django_oauth.server.views', # Example: # (r'^oa_server/', include('oa_server.foo.urls')), (r'^oauth/request_token/$', 'request_token'), (r'^oauth/authorize/$', 'authorize'), (r'^oauth/access_token/$', 'access_token'), (r'^oauth/resource/$', 'get_resource'), (r'^api/register/$', 'register'), (r'^api/applications/$', 'applications'), (r'^api/logout/$', 'logout'), )
[ "billyx5@gmail.com" ]
billyx5@gmail.com
1258569d923b14536a0ab54b19113ff8c54e5152
2555654319106963d7d833dacf2c870f073f2950
/serwer/rest_srv/serializers.py
0f1247b94d26fbfac4acc744fdc8f5872d4fa13e
[]
no_license
LuzikArbuzik/Server-Python
0462c40b68bb5955f5ec750934f88261abbcc860
594650c3c525278837567ae01d7bfdcdb7e85c91
refs/heads/master
2021-01-21T20:19:11.638397
2017-05-23T21:37:13
2017-05-23T21:37:13
92,220,051
0
0
null
null
null
null
UTF-8
Python
false
false
4,118
py
from django.contrib.auth.models import User from rest_framework import serializers from rest_srv.models import * class UserSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = User fields = ('url', 'username', 'email') class OrderSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Order fields = ('url', 'restaurant_name') class AddressSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Address fields = ('url', 'id', 'city', 'street', 'address_num', 'door_num') class ClientSerializer(serializers.HyperlinkedModelSerializer): address = AddressSerializer(many=False, read_only=False) class Meta: model = Client fields = ('url', 'id', 'first_name', 'last_name', 'phone_number', 'address') def create(self, validated_data): address_data = validated_data.pop('address') address = None if Address.objects.filter(**address_data).exists(): address = Address.objects.get(**address_data) else: address = Address.objects.create(**address_data) address.save() client = Client.objects.create(address=address, **validated_data) return client class DishSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Dish fields = ('url', 'name', 'quantity') class RestaurantSerializer(serializers.HyperlinkedModelSerializer): address = AddressSerializer(many=False, read_only=False) class Meta: model = Restaurant fields = ('url', 'address', 'name') def create(self, validated_data): address_data = validated_data.pop('address') address, acreated = Address.objects.get_or_create(**address_data) if acreated: address.save() restaurant = Restaurant.objects.create(address=address, **validated_data) return restaurant class OrderSerializer(serializers.ModelSerializer): dishes = DishSerializer(many=True) client = ClientSerializer(many=False, read_only=False) restaurant = RestaurantSerializer(many=False, read_only=False) class Meta: model = Order fields = ('url', 'dishes', 'client', 'restaurant') def create(self, validated_data): dishes = [] restaurant_data = {} restaurant_addr_data = {} client_data = {} client_addr_data = {} if 'dishes' in validated_data: dishes = validated_data.pop('dishes') if 'restaurant' in validated_data: restaurant_data = validated_data.pop('restaurant') if 'address' in restaurant_data: restaurant_addr_data = restaurant_data.pop('address') if 'client' in validated_data: client_data = validated_data.pop('client') if 'address' in client_data: client_addr_data = client_data.pop('address') restaurant_addr = Address.objects.create(**restaurant_addr_data) restaurant_addr.save() restaurant = Restaurant.objects.create(**restaurant_data, address=restaurant_addr) restaurant.save() client_addr = Address.objects.create(**client_addr_data) client_addr.save() client = Client.objects.create(**client_data, address=client_addr) client.save() order = Order.objects.create(**validated_data, client=client, restaurant=restaurant) order.save() # restaurant = Restaurant.objects.create(**) # client = Client() for dish in dishes: d, created = Dish.objects.get_or_create(order=order, **dish) if created is True: d.save() return order # Tworzenie restauracji -> przykład # metodą POST wysyłamy na address 127.0.0.1:8000/restaurants/ to coś: {"menu": {"dishes": [{"name": "burak"}]}, "address": {"city": "warsaw"}} # w bazie utworzy się restauracja z menu które będzie posiadało lisę dań oraz obiekt adresu, # innymi słowy w bazie utworzą się rekordy w 4 tabelach: restaurant, dishes, menu, address
[ "jablonski.bartosz93@gmail.com" ]
jablonski.bartosz93@gmail.com
16f30bf6fd6afc00cb0ded311baf89c145a1e50c
bc67fe1a95800fc008e168cf72b67830dd0d8ad4
/scripts/train_gold.py
13e64adff9a28b9f0a0ede53fefa8dd6eb7ef268
[ "MIT" ]
permissive
Ekeany/Dawid-Skene
635a3e347239371b55202720f849627a106360e9
288b64bffd6e2796b3b34ffaa47286afadd4d23e
refs/heads/master
2020-05-24T11:19:25.238701
2019-05-17T16:57:52
2019-05-17T16:57:52
187,246,097
0
0
null
null
null
null
UTF-8
Python
false
false
3,071
py
from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score,f1_score from gold_sample import m_sample from io import StringIO import pandas as pd import numpy as np def generate_prediction_file(y_test, y_pred, sen_id,file_name,approach_name): #Decllared function to generate the F-score, Accuracy and Prediction probabilites table f = open(file_name+'.txt', 'w') #Open a file as writing score = accuracy_score(y_test, y_pred) * 100 #Get the accuracy generate_confusionMatrix(y_test,y_pred,file_name) #Generate the confusion matrix f_score = f1_score(y_test, y_pred, average='binary', pos_label='pos') #Calculate the F-score probability_tb = c.predict_proba(x_test) #Calculate the probabilites for pos and neg classes label_tb = c.predict(x_test) #c is the decision tree model declared in bottom result = approach_name+": The accuracy is :" + str(round(score, 1)) + "%\n\n" result += "\n\nThe F-Score is:" + str(f_score)+"\n" print(result) f.write(result) pos_prob = list(probability_tb[:, 1]) neg_prob = list(probability_tb[:, 0]) Data = { 'Neg_Prob': neg_prob, 'Pos_Prob': pos_prob, 'Pre_Label': label_tb, 'Sentence ID': sen_id } mdf = pd.DataFrame(Data, columns=['Sentence ID', 'Neg_Prob', 'Pos_Prob', 'Pre_Label']) f.write(mdf.to_string()) #Ouput to file f.close(); def generate_confusionMatrix(y_test,y_pred,file_name): #generate the confustion matrix funciton TP=0 TN=0 FP=0 FN=0 for m in range(len(y_test)): if (y_test[m]=='pos')& (y_pred[m]=='pos'): TP=TP+1 if (y_test[m]=='pos')&(y_pred[m]=='neg'): FN=FN+1 if (y_test[m]=='neg')&(y_pred[m]=='pos'): FP=FP+1 if (y_test[m]=='neg')&(y_pred[m]=='neg'): TN=TN+1 print("TP: ",TP,"TN: ",TN,"FP: ",FP,"FN: ",FN) #---------------------------------------------------------------------------------------- training_set=m_sample c=DecisionTreeClassifier(min_samples_split=100,random_state=0) #Building decision tree model features=list(training_set.columns[1:-1]) x_train=training_set.loc[:,features] y_train=training_set.loc[:,"class"] model=c.fit(x_train,y_train) test=open('../data/test.csv',encoding='UTF-8') #Import testing set to predict testing_set=pd.read_csv(test) x_test=testing_set.loc[:,features] #split the features in testing set y_test=testing_set.loc[:,"class"] y_pred=c.predict(x_test)#IShowing result and export result into file sen_id=testing_set.loc[:,'id'] generate_prediction_file(y_test,y_pred,sen_id,'../results/train_gold',"Gold Sample")
[ "noreply@github.com" ]
Ekeany.noreply@github.com
bf7039aa3899de3043bc3db68c5610d1ac4283fb
4bc6028ed8ba403b69adfd6f5cbd139baece0f4d
/basic_python/multi_thread/produce_consume_demo2.py
c18acdfccda9eb4b6e2336e247e9fd341d63cff3
[]
no_license
xrw560/learn-pyspark
0ef9ed427ff887ceed1c5e5773bf97ed25ecae04
618d16dafd73165e714111670119d9cdecc0bf1f
refs/heads/master
2020-03-07T00:12:36.885000
2019-01-04T09:51:32
2019-01-04T09:51:32
127,152,051
0
0
null
null
null
null
UTF-8
Python
false
false
1,573
py
#!/usr/bin/python # -*- encoding:utf-8 -*- """ @author: zhouning @file:produce_consume_demo2.py @time:2018/7/30 18:51 @desc:生产者消费者 """ import threading import time condition = threading.Condition() products = 0 class Producer(threading.Thread): def run(self): global products while True: if condition.acquire(): if products < 10: products += 1 print("Producer(%s): deliver one, now produces:%s" % (self.name, products)) condition.notify() # 不释放锁定,因此需要下面一句 condition.release() else: print("Producer(%s): already 10, stop deliver, now products: %s " % (self.name, products)) condition.wait() # 自动释放锁定 time.sleep(2) class Consumer(threading.Thread): def run(self): global products while True: if condition.acquire(): if products > 1: products -= 1 print("Consumer(%s): consume one, now produces:%s" % (self.name, products)) condition.notify() condition.release() else: print("Consumer(%s): only 1, stop consume, products: %s" % (self.name, products)) condition.wait() if __name__ == "__main__": for p in range(0, 2): p = Producer() p.start() for c in range(0, 3): c = Consumer() c.start()
[ "ncutits@163.com" ]
ncutits@163.com
c3c6c6d1d9393e69ac648a65ecc9a297ae9e8921
cdbc1e37586bd6b08bed4ee3c97831250b585699
/pre_process/extract_bboxes.py
9b515f7efd5ad8ddaeabb89e6d4b293b6ccd56c0
[]
no_license
PeterZhouSZ/hf2vad
efdf66e3191e0b9597cfeec07cbc16c691bd5afd
f909f427001e7bbabf8994e8992bd3e72334f547
refs/heads/master
2023-08-06T16:11:57.432201
2021-10-09T04:35:22
2021-10-09T04:35:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,329
py
import numpy as np import os import argparse import cv2 import torch from tqdm import tqdm from datasets.dataset import get_dataset, img_tensor2numpy, img_batch_tensor2numpy from pre_process.mmdet_utils import init_detector, inference_detector torch.backends.cudnn.benchmark = True torch.backends.cudnn.enabled = True DATASET_CFGS = { "ped2": {"conf_thr": 0.5, "min_area": 10 * 10, "cover_thr": 0.6, "binary_thr": 18, "gauss_mask_size": 3}, "avenue": {"conf_thr": 0.25, "min_area": 40 * 40, "cover_thr": 0.6, "binary_thr": 18, "gauss_mask_size": 5}, "shanghaitech": {"conf_thr": 0.5, "min_area": 40 * 40, "cover_thr": 0.65, "binary_thr": 15, "gauss_mask_size": 5} } def getObjBboxes(img, model, dataset_name): result = inference_detector(model, img) CONF_THR = DATASET_CFGS[dataset_name]["conf_thr"] MIN_AREA = DATASET_CFGS[dataset_name]["min_area"] # bboxes = show_result(img, result, model.CLASSES, score_thr) bbox_result = result bboxes = np.vstack(bbox_result) scores = bboxes[:, -1] # x1,y1,x2,y2,class_score bboxes = bboxes[scores > CONF_THR, :] x1 = bboxes[:, 0] y1 = bboxes[:, 1] x2 = bboxes[:, 2] y2 = bboxes[:, 3] bbox_areas = (y2 - y1 + 1) * (x2 - x1 + 1) return bboxes[bbox_areas >= MIN_AREA, :4] def delCoverBboxes(bboxes, dataset_name): assert bboxes.ndim == 2 assert bboxes.shape[1] == 4 COVER_THR = DATASET_CFGS[dataset_name]["cover_thr"] x1 = bboxes[:, 0] y1 = bboxes[:, 1] x2 = bboxes[:, 2] y2 = bboxes[:, 3] bbox_areas = (y2 - y1 + 1) * (x2 - x1 + 1) sort_idx = bbox_areas.argsort() # Index of bboxes sorted in ascending order by area size keep_idx = [] for i in range(sort_idx.size): # calculate overlap with i-th bbox # Calculate the point coordinates of the intersection x11 = np.maximum(x1[sort_idx[i]], x1[sort_idx[i + 1:]]) y11 = np.maximum(y1[sort_idx[i]], y1[sort_idx[i + 1:]]) x22 = np.minimum(x2[sort_idx[i]], x2[sort_idx[i + 1:]]) y22 = np.minimum(y2[sort_idx[i]], y2[sort_idx[i + 1:]]) # Calculate the intersection area w = np.maximum(0, x22 - x11 + 1) h = np.maximum(0, y22 - y11 + 1) overlaps = w * h ratios = overlaps / bbox_areas[sort_idx[i]] num = ratios[ratios > COVER_THR] if num.size == 0: keep_idx.append(sort_idx[i]) return bboxes[keep_idx] def getFgBboxes(cur_img, img_batch, bboxes, dataset_name): area_thr = DATASET_CFGS[dataset_name]["min_area"] binary_thr = DATASET_CFGS[dataset_name]["binary_thr"] gauss_mask_size = DATASET_CFGS[dataset_name]["gauss_mask_size"] extend = 2 sum_grad = 0 for i in range(img_batch.shape[0] - 1): img1 = img_batch[i, :, :, :] img2 = img_batch[i + 1, :, :, :] img1 = cv2.GaussianBlur(img1, (gauss_mask_size, gauss_mask_size), 0) img2 = cv2.GaussianBlur(img2, (gauss_mask_size, gauss_mask_size), 0) grad = cv2.absdiff(img1, img2) sum_grad = grad + sum_grad sum_grad = cv2.threshold(sum_grad, binary_thr, 255, cv2.THRESH_BINARY)[1] # temporal gradient for bbox in bboxes: bbox_int = bbox.astype(np.int32) extend_y1 = np.maximum(0, bbox_int[1] - extend) extend_y2 = np.minimum(bbox_int[3] + extend, sum_grad.shape[0]) extend_x1 = np.maximum(0, bbox_int[0] - extend) extend_x2 = np.minimum(bbox_int[2] + extend, sum_grad.shape[1]) sum_grad[extend_y1:extend_y2 + 1, extend_x1:extend_x2 + 1] = 0 sum_grad = cv2.cvtColor(sum_grad, cv2.COLOR_BGR2GRAY) contours, hierarchy = cv2.findContours(sum_grad, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) fg_bboxes = [] for c in contours: x, y, w, h = cv2.boundingRect(c) sum_grad = cv2.rectangle(sum_grad, (x, y), (x + w, y + h), color=255, thickness=1) area = (w + 1) * (h + 1) if area > area_thr and w / h < 10 and h / w < 10: extend_x1 = np.maximum(0, x - extend) extend_y1 = np.maximum(0, y - extend) extend_x2 = np.minimum(x + w + extend, sum_grad.shape[1]) extend_y2 = np.minimum(y + h + extend, sum_grad.shape[0]) fg_bboxes.append([extend_x1, extend_y1, extend_x2, extend_y2]) return np.array(fg_bboxes) def obj_bboxes_extraction(dataset_root, dataset_name, mode): # mmdet config file and pre-trained model weights mm_det_config_file = 'assets/latest_version_cascade_rcnn_r101_fpn_1x.py' mm_det_ckpt_file = 'assets/cascade_rcnn_r101_fpn_1x_coco_20200317-0b6a2fbf.pth' dataset = get_dataset(dataset_name=dataset_name, dir=os.path.join(dataset_root, dataset_name), context_frame_num=1, mode=mode) mm_det_model = init_detector(mm_det_config_file, mm_det_ckpt_file, device="cuda:0") all_bboxes = list() for idx in tqdm(range(len(dataset)), total=len(dataset)): batch, _ = dataset.__getitem__(idx) # centric frame cur_img = img_tensor2numpy(batch[1]) h, w = cur_img.shape[0], cur_img.shape[1] obj_bboxes = getObjBboxes(cur_img, mm_det_model, dataset_name) # filter some overlapped bbox obj_bboxes = delCoverBboxes(obj_bboxes, dataset_name) fg_bboxes = getFgBboxes(cur_img, img_batch_tensor2numpy(batch), obj_bboxes, dataset_name) if fg_bboxes.shape[0] > 0: cur_bboxes = np.concatenate((obj_bboxes, fg_bboxes), axis=0) else: cur_bboxes = obj_bboxes all_bboxes.append(cur_bboxes) np.save(os.path.join(os.path.join(dataset_root, dataset_name), '%s_bboxes_%s.npy' % (dataset_name, mode)), all_bboxes) print('bboxes saved!') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--proj_root", type=str, default="/home/liuzhian/hdd4T/code/hf2vad", help='project root path') parser.add_argument("--dataset_name", type=str, default="ped2", help='dataset name') parser.add_argument("--mode", type=str, default="train", help='train or test data') args = parser.parse_args() obj_bboxes_extraction(dataset_root=os.path.join(args.proj_root, "data"), dataset_name=args.dataset_name, mode=args.mode)
[ "csliuzhian@mail.scut.edu.cn" ]
csliuzhian@mail.scut.edu.cn
1797cc28eea736cc574b2a6da4546b8189e379b5
9923e30eb99716bfc179ba2bb789dcddc28f45e6
/apimatic/python_generic_lib/Samsara+API-Python/samsaraapi/models/address.py
2b975d18c5a4bcc100d752ae06f73c387069e96d
[ "MIT" ]
permissive
silverspace/samsara-sdks
cefcd61458ed3c3753ac5e6bf767229dd8df9485
c054b91e488ab4266f3b3874e9b8e1c9e2d4d5fa
refs/heads/master
2020-04-25T13:16:59.137551
2019-03-01T05:49:05
2019-03-01T05:49:05
172,804,041
2
0
null
null
null
null
UTF-8
Python
false
false
3,681
py
# -*- coding: utf-8 -*- """ samsaraapi This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ import samsaraapi.models.contact import samsaraapi.models.address_geofence import samsaraapi.models.tag_metadata class Address(object): """Implementation of the 'Address' model. Information about an address/geofence. Geofences are either a circle or a polygon. Attributes: contacts (list of Contact): TODO: type description here. formatted_address (string): The full address associated with this address/geofence, as it might be recognized by maps.google.com geofence (AddressGeofence): The geofence that defines this address and its bounds. This can either be a circle, or a polygon - only one key should be provided, depending on the geofence type. id (long|int): ID of the address name (string): Name of the address or geofence notes (string): Notes associated with an address. tags (list of TagMetadata): TODO: type description here. """ # Create a mapping from Model property names to API property names _names = { "contacts":'contacts', "formatted_address":'formattedAddress', "geofence":'geofence', "id":'id', "name":'name', "notes":'notes', "tags":'tags' } def __init__(self, contacts=None, formatted_address=None, geofence=None, id=None, name=None, notes=None, tags=None): """Constructor for the Address class""" # Initialize members of the class self.contacts = contacts self.formatted_address = formatted_address self.geofence = geofence self.id = id self.name = name self.notes = notes self.tags = tags @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary contacts = None if dictionary.get('contacts') != None: contacts = list() for structure in dictionary.get('contacts'): contacts.append(samsaraapi.models.contact.Contact.from_dictionary(structure)) formatted_address = dictionary.get('formattedAddress') geofence = samsaraapi.models.address_geofence.AddressGeofence.from_dictionary(dictionary.get('geofence')) if dictionary.get('geofence') else None id = dictionary.get('id') name = dictionary.get('name') notes = dictionary.get('notes') tags = None if dictionary.get('tags') != None: tags = list() for structure in dictionary.get('tags'): tags.append(samsaraapi.models.tag_metadata.TagMetadata.from_dictionary(structure)) # Return an object of this model return cls(contacts, formatted_address, geofence, id, name, notes, tags)
[ "greg@samsara.com" ]
greg@samsara.com
fabb5d55230bd7f608c260d329d753b3fc9ad165
dd16094e1128c7b5708df537b3dd9189db53511d
/wellen/wellen/urls.py
67d0faf994e00af1ea3d5a4cec4bebd35bbfbc51
[]
no_license
jpcvandam/acaciadata
30937ec770762ea78dfa2f21a98ca5e4c09ee699
d2c6a1f13d8eb9944000e00f9a4ff19979969989
refs/heads/master
2021-01-21T08:58:06.598229
2015-10-19T13:27:36
2015-10-19T13:27:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,818
py
from django.conf.urls import patterns, include, url from django.conf.urls.static import static from django.conf import settings from django.contrib import admin from .views import HomeView, DashGroupView admin.autodiscover() urlpatterns = patterns('wellen.views', url(r'^$', HomeView.as_view(), name='home'), url(r'^grappelli/', include('grappelli.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^data/', include('acacia.data.urls',namespace='acacia')), url(r'^(?P<name>[\w\s]+)$', DashGroupView.as_view(), name='wellen-dashboard'), ) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.IMG_URL, document_root=settings.IMG_ROOT) from django.contrib.auth import views as auth_views urlpatterns += patterns('', url(r'^password/change/$', auth_views.password_change, name='password_change'), url(r'^password/change/done/$', auth_views.password_change_done, name='password_change_done'), url(r'^password/reset/$', auth_views.password_reset, name='password_reset'), url(r'^accounts/password/reset/done/$', auth_views.password_reset_done, name='password_reset_done'), url(r'^password/reset/complete/$', auth_views.password_reset_complete, name='password_reset_complete'), url(r'^password/reset/confirm/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>.+)/$', auth_views.password_reset_confirm, name='password_reset_confirm'), url(r'^accounts/', include('registration.backends.default.urls')) )
[ "tkleinen@gmail.com" ]
tkleinen@gmail.com
143e7bdddeb47fa9368a9a91853b3f277b78725a
e3cfd7e0b30b9605f0f9d83876b79d9511b02b58
/vrtManager/create.py
3a755014a55ad8a2b565da2448cce757df447cba
[ "Apache-2.0" ]
permissive
AliasRK/WebVirtCloud-B7
56dd8539375a3e0c06b77582e0a1c707ff15d7da
3694f5615bae9fd071d4400bc129918d277775af
refs/heads/master
2020-03-24T17:58:04.601169
2018-07-27T19:14:20
2018-07-27T19:14:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,939
py
import string from vrtManager import util from vrtManager.connection import wvmConnect from webvirtcloud.settings import QEMU_CONSOLE_DEFAULT_TYPE from webvirtcloud.settings import INSTANCE_VOLUME_DEFAULT_FILE_EXTENSION from webvirtcloud.settings import INSTANCE_VOLUME_DEFAULT_FORMAT def get_rbd_storage_data(stg): xml = stg.XMLDesc(0) ceph_user = util.get_xml_path(xml, "/pool/source/auth/@username") def get_ceph_hosts(doc): hosts = [] for host in doc.xpath("/pool/source/host"): name = host.prop("name") if name: hosts.append({'name': name, 'port': host.prop("port")}) return hosts ceph_hosts = util.get_xml_path(xml, func=get_ceph_hosts) secret_uuid = util.get_xml_path(xml, "/pool/source/auth/secret/@uuid") return ceph_user, secret_uuid, ceph_hosts class wvmCreate(wvmConnect): image_extension = INSTANCE_VOLUME_DEFAULT_FILE_EXTENSION image_format = INSTANCE_VOLUME_DEFAULT_FORMAT def get_storages_images(self): """ Function return all images on all storages """ images = [] storages = self.get_storages(only_actives=True) for storage in storages: stg = self.get_storage(storage) try: stg.refresh(0) except: pass for img in stg.listVolumes(): if img.endswith('.iso'): pass else: images.append(img) return images def get_os_type(self): """Get guest capabilities""" return util.get_xml_path(self.get_cap_xml(), "/capabilities/guest/os_type") def get_host_arch(self): """Get guest capabilities""" return util.get_xml_path(self.get_cap_xml(), "/capabilities/host/cpu/arch") def create_volume(self, storage, name, size, image_format=image_format, metadata=False, image_extension=image_extension): size = int(size) * 1073741824 stg = self.get_storage(storage) storage_type = util.get_xml_path(stg.XMLDesc(0), "/pool/@type") if storage_type == 'dir': name += '.' + image_extension alloc = 0 else: alloc = size metadata = False xml = """ <volume> <name>%s</name> <capacity>%s</capacity> <allocation>%s</allocation> <target> <format type='%s'/> </target> </volume>""" % (name, size, alloc, image_format) stg.createXML(xml, metadata) try: stg.refresh(0) except: pass vol = stg.storageVolLookupByName(name) return vol.path() def get_volume_type(self, path): vol = self.get_volume_by_path(path) vol_type = util.get_xml_path(vol.XMLDesc(0), "/volume/target/format/@type") if vol_type == 'unknown': return 'raw' if vol_type: return vol_type else: return 'raw' def get_volume_path(self, volume): storages = self.get_storages(only_actives=True) for storage in storages: stg = self.get_storage(storage) if stg.info()[0] != 0: stg.refresh(0) for img in stg.listVolumes(): if img == volume: vol = stg.storageVolLookupByName(img) return vol.path() def get_storage_by_vol_path(self, vol_path): vol = self.get_volume_by_path(vol_path) return vol.storagePoolLookupByVolume() def clone_from_template(self, clone, template, metadata=False): vol = self.get_volume_by_path(template) stg = vol.storagePoolLookupByVolume() storage_type = util.get_xml_path(stg.XMLDesc(0), "/pool/@type") format = util.get_xml_path(vol.XMLDesc(0), "/volume/target/format/@type") if storage_type == 'dir': clone += '.img' else: metadata = False xml = """ <volume> <name>%s</name> <capacity>0</capacity> <allocation>0</allocation> <target> <format type='%s'/> </target> </volume>""" % (clone, format) stg.createXMLFrom(xml, vol, metadata) clone_vol = stg.storageVolLookupByName(clone) return clone_vol.path() def _defineXML(self, xml): self.wvm.defineXML(xml) def delete_volume(self, path): vol = self.get_volume_by_path(path) vol.delete() def create_instance(self, name, memory, vcpu, host_model, uuid, images, cache_mode, networks, virtio, mac=None): """ Create VM function """ memory = int(memory) * 1024 if self.is_kvm_supported(): hypervisor_type = 'kvm' else: hypervisor_type = 'qemu' xml = """ <domain type='%s'> <name>%s</name> <description>None</description> <uuid>%s</uuid> <memory unit='KiB'>%s</memory> <vcpu>%s</vcpu>""" % (hypervisor_type, name, uuid, memory, vcpu) if host_model: xml += """<cpu mode='host-model'/>""" xml += """<os> <type arch='%s'>%s</type> <boot dev='hd'/> <boot dev='cdrom'/> <bootmenu enable='yes'/> </os>""" % (self.get_host_arch(), self.get_os_type()) xml += """<features> <acpi/><apic/><pae/> </features> <clock offset="utc"/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices>""" disk_letters = list(string.lowercase) for image, img_type in images.items(): stg = self.get_storage_by_vol_path(image) stg_type = util.get_xml_path(stg.XMLDesc(0), "/pool/@type") if stg_type == 'rbd': ceph_user, secret_uuid, ceph_hosts = get_rbd_storage_data(stg) xml += """<disk type='network' device='disk'> <driver name='qemu' type='%s' cache='%s'/> <auth username='%s'> <secret type='ceph' uuid='%s'/> </auth> <source protocol='rbd' name='%s'>""" % (img_type, cache_mode, ceph_user, secret_uuid, image) if isinstance(ceph_hosts, list): for host in ceph_hosts: if host.get('port'): xml += """ <host name='%s' port='%s'/>""" % (host.get('name'), host.get('port')) else: xml += """ <host name='%s'/>""" % host.get('name') xml += """ </source>""" else: xml += """<disk type='file' device='disk'> <driver name='qemu' type='%s' cache='%s'/> <source file='%s'/>""" % (img_type, cache_mode, image) if virtio: xml += """<target dev='vd%s' bus='virtio'/>""" % (disk_letters.pop(0),) else: xml += """<target dev='sd%s' bus='ide'/>""" % (disk_letters.pop(0),) xml += """</disk>""" xml += """ <disk type='file' device='cdrom'> <driver name='qemu' type='raw'/> <source file=''/> <target dev='hda' bus='ide'/> <readonly/> <address type='drive' controller='0' bus='1' target='0' unit='1'/> </disk>""" for net in networks.split(','): xml += """<interface type='network'>""" if mac: xml += """<mac address='%s'/>""" % mac xml += """<source network='%s'/> <filterref filter='clean-traffic'/>""" % net if virtio: xml += """<model type='virtio'/>""" xml += """</interface>""" xml += """ <input type='mouse' bus='ps2'/> <input type='tablet' bus='usb'/> <graphics type='%s' port='-1' autoport='yes' passwd='%s' listen='127.0.0.1'/> <console type='pty'/> <video> <model type='cirrus'/> </video> <memballoon model='virtio'/> </devices> </domain>""" % (QEMU_CONSOLE_DEFAULT_TYPE, util.randomPasswd()) self._defineXML(xml)
[ "r.v.mirchev@gmail.com" ]
r.v.mirchev@gmail.com
558f941e1f5daf39d0d1e2e9416df55369a27e83
f5070c669f20f89dc23de19db94d662fd245eebb
/s3recovery/ut/s3recovery_recover_tests.py
0e10d0ded6e0888ff61e0200ab470865a3153e38
[ "Apache-2.0" ]
permissive
kaustubh-d/cortx-s3server
8471e9581d6843e260e048a911ddb8beb0af4316
43cffc0e3e9e261e9956dfcf90b1e75e97cd367d
refs/heads/main
2022-12-18T18:03:03.438484
2020-09-24T15:33:39
2020-09-24T15:33:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,153
py
# # Copyright (c) 2020 Seagate Technology LLC and/or its Affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # For any questions about this software or licensing, # please email opensource@seagate.com or cortx-questions@seagate.com. # #!/usr/bin/python3.6 import mock import unittest from s3backgrounddelete.cortx_s3_kv_api import CORTXS3KVApi from s3backgrounddelete.cortx_s3_success_response import CORTXS3SuccessResponse from s3recovery.s3recovercorruption import S3RecoverCorruption from s3recovery.s3recoverybase import S3RecoveryBase from s3recovery.config import Config class S3RecoverCorruptionTestCase(unittest.TestCase): @mock.patch.object(S3RecoveryBase, 'initiate') @mock.patch.object(S3RecoveryBase, 'dry_run') @mock.patch.object(S3RecoverCorruption, 'check_consistency') def test_check_consistency_check_for_recover(self,mock_initiate, mock_dry_run, mock_check_consistency): # Tests to check consistency check is used during recover option mockS3RecoverCorruption = S3RecoverCorruption() mock_initiate.return_value = None mock_dry_run.return_value = {} mock_check_consistency.return_value = None mockS3RecoverCorruption.recover_corruption("Global bucket index", Config.global_bucket_index_id, Config.global_bucket_index_id_replica, "Bucket metadata index", Config.bucket_metadata_index_id, Config.bucket_metadata_index_id_replica) self.assertTrue(mock_initiate.called) self.assertTrue(mock_dry_run.called) self.assertTrue(mock_check_consistency.called) # Assert Consistency and other mock calls self.assertEqual(S3RecoveryBase.initiate.call_count, 2) self.assertEqual(S3RecoveryBase.dry_run.call_count, 2) self.assertEqual(S3RecoverCorruption.check_consistency.call_count, 1) @mock.patch.object(S3RecoveryBase, 'initiate') @mock.patch.object(S3RecoveryBase, 'dry_run') @mock.patch.object(S3RecoverCorruption, 'restore_data') def test_check_restore_for_recover(self,mock_initiate, mock_dry_run, mock_restore_data): # Tests to check restore (PutKV) is used during recover option mockS3RecoverCorruption = S3RecoverCorruption() mock_initiate.return_value = None mock_dry_run.return_value = {} mock_restore_data.return_value = None mockS3RecoverCorruption.recover_corruption("Global bucket index", Config.global_bucket_index_id, Config.global_bucket_index_id_replica, "Bucket metadata index", Config.bucket_metadata_index_id, Config.bucket_metadata_index_id_replica) self.assertTrue(mock_initiate.called) self.assertTrue(mock_dry_run.called) self.assertTrue(mock_restore_data.called) # Assert PutKV and other mock calls self.assertEqual(S3RecoveryBase.initiate.call_count, 2) self.assertEqual(S3RecoveryBase.dry_run.call_count, 2) self.assertEqual(S3RecoverCorruption.restore_data.call_count, 1) def test_inconsistent_data_entries(self): # Tests to check consistency check works for empty indexes mockS3RecoverCorruption = S3RecoverCorruption() mockS3RecoverCorruption.list_result = { "key1": "value1", } mockS3RecoverCorruption.metadata_result = { "617326/key2": "value2", } mockS3RecoverCorruption.check_consistency() # Assert inconsistent data should not be recovered self.assertEqual(len(mockS3RecoverCorruption.common_keys), 0) self.assertEqual(mockS3RecoverCorruption.common_keys, []) def test_consistent_data_entries(self): # Tests to check consistent data is recovered during recovery mockS3RecoverCorruption = S3RecoverCorruption() mockS3RecoverCorruption.list_result = { "key1": "value1", "key2": "value2" } mockS3RecoverCorruption.metadata_result = { "617326/key1": "value1", "617326/key2": "value2" } mockS3RecoverCorruption.check_consistency() # Assert for data to be recovered self.assertEqual(len(mockS3RecoverCorruption.common_keys), 2) self.assertEqual(mockS3RecoverCorruption.common_keys, ["key1","key2"]) def test_partial_inconsistent_data_entries(self): # Tests to check isconsistent data is not recovered during recovery mockS3RecoverCorruption = S3RecoverCorruption() mockS3RecoverCorruption.list_result = { "key1": "value1", "key2": "value2", "key3": "value3" } mockS3RecoverCorruption.metadata_result = { "617326/key3": "value3", "617326/key4": "value4", "617326/key5": "value5" } mockS3RecoverCorruption.check_consistency() # Assert inconsistent data should not be recovered self.assertEqual(len(mockS3RecoverCorruption.common_keys), 1) self.assertEqual(mockS3RecoverCorruption.common_keys, ["key3"]) @mock.patch.object(CORTXS3KVApi, 'put') def test_restore_data_none_index_list(self, mock_put): # Test 'restore_data' when list: 'list_result' is None mockS3RecoverCorruption = S3RecoverCorruption() mockS3RecoverCorruption.list_result = None mockS3RecoverCorruption.restore_data('global_list_index_id', 'replica_list_index_id', 'global_metadata_index_id', 'replica_metadata_index_id' ) self.assertEqual(mock_put.call_count, 0) @mock.patch.object(CORTXS3KVApi, 'put') def test_restore_data_none_metadata_list(self, mock_put): # Test 'restore_data' when dict: 'metadata_result' is None mockS3RecoverCorruption = S3RecoverCorruption() mockS3RecoverCorruption.list_result = dict() mockS3RecoverCorruption.metadata_result = None mockS3RecoverCorruption.restore_data('global_list_index_id', 'replica_list_index_id', 'global_metadata_index_id', 'replica_metadata_index_id' ) self.assertEqual(mock_put.call_count, 0) @mock.patch.object(CORTXS3KVApi, 'put') def test_restore_data_empty_index_list(self, mock_put): # Test 'restore_data' when dict: 'list_result' is empty mockS3RecoverCorruption = S3RecoverCorruption() mockS3RecoverCorruption.list_result = dict() mockS3RecoverCorruption.metadata_result = dict() mockS3RecoverCorruption.restore_data('global_list_index_id', 'replica_list_index_id', 'global_metadata_index_id', 'replica_metadata_index_id' ) self.assertEqual(mock_put.call_count, 0) @mock.patch.object(CORTXS3KVApi, 'put') def test_restore_data_non_empty_index_list(self, mock_put): # Test 'restore_data' when dict: 'list_result' & 'metadata_result' is not empty mockS3RecoverCorruption = S3RecoverCorruption() mockS3RecoverCorruption.metadata_result = { r'123/key3': 'value3' } mockS3RecoverCorruption.list_result = { 'key1': 'value1', 'key2': 'value2' } mockS3RecoverCorruption.common_keys = ['key1', 'key3'] mock_put.return_value = True, CORTXS3SuccessResponse("body".encode('utf-8')) mockS3RecoverCorruption.restore_data('global_list_index_id', 'replica_list_index_id', 'global_metadata_index_id', 'replica_metadata_index_id') self.assertEqual(mock_put.call_count, 4) # 2 calls each to CORTXS3KVApi::put, for key1 and key3
[ "noreply@github.com" ]
kaustubh-d.noreply@github.com
65a182d71eda63a105602f86927d6443abe837d3
222a67d44ea67372f61c090d467bf43f874ee769
/prac_08/silver_service_taxi.py
2c7365032ce11dd7b40fe12179abc3fa425cac62
[]
no_license
JarrodPW/cp1404practicals
1504f7cd44fff202b2b020c90fbff508d663e16b
7e508fe6dcce8f0e5879a27a5c777352a66537b1
refs/heads/master
2023-08-24T05:35:37.214840
2021-10-11T22:27:29
2021-10-11T22:27:29
397,093,991
0
0
null
2021-10-05T03:01:17
2021-08-17T04:17:03
Python
UTF-8
Python
false
false
563
py
""" prac 08 SilverServiceTaxi Class """ from prac_08.taxi import Taxi class SilverServiceTaxi(Taxi): price_per_km = 1.23 flagfall = 4.5 def __init__(self, name, fuel, fanciness=0): super().__init__(name, fuel) self.fanciness = float(fanciness) self.price_per_km *= fanciness def get_fare(self): return super().get_fare() + self.flagfall def __str__(self): """Return a string like a Car but with current fare distance.""" return f"{super().__str__()} plus flagfall of {self.flagfall:.2f}"
[ "jarrod.paynewatson@my.jcu.edu.au" ]
jarrod.paynewatson@my.jcu.edu.au
ee29f93552f28f3f2169f28fead98430500fabf2
154d42c739793fbf61df002f9d8c659b07a0fcac
/19_friend_date/friend_date.py
8a95efc01a96105034214e3b1588a8fc5e752352
[]
no_license
mcodemax/PythonDSPrac
048aced3d4e58e9091dc25404160c7702bd6c597
e62dc6efb4bedb0fb9f7e94448f22330581fb571
refs/heads/master
2023-05-06T19:44:30.122344
2021-05-25T00:37:21
2021-05-25T00:37:21
369,969,628
0
0
null
null
null
null
UTF-8
Python
false
false
686
py
def friend_date(a, b): """Given two friends, do they have any hobbies in common? - a: friend #1, a tuple of (name, age, list-of-hobbies) - b: same, for friend #2 Returns True if they have any hobbies in common, False is not. >>> elmo = ('Elmo', 5, ['hugging', 'being nice']) >>> sauron = ('Sauron', 5000, ['killing hobbits', 'chess']) >>> gandalf = ('Gandalf', 10000, ['waving wands', 'chess']) >>> friend_date(elmo, sauron) False >>> friend_date(sauron, gandalf) True """ a_hobbies = set(a[2]) b_hobbies = set(b[2]) if a_hobbies & b_hobbies: return True else: return False
[ "mwalterjohnson7@gmail.com" ]
mwalterjohnson7@gmail.com
217f34413d63eb6f3d1186e468fd660c6e515573
303f5990985aba9a1884053baf08ff0d47c3a5de
/build/ork/tod/catkin_generated/pkg.installspace.context.pc.py
c9c7b014ef7ddc0718c98663eb475ce45d5460a1
[]
no_license
Brendon2016/Tsing-Siemens-Competiton
d1339e162c8582a59aa153f29bec0180c4e261d7
8ffc7ee931a877898342fdd3593e92b633e22bce
refs/heads/master
2020-03-28T23:30:48.267738
2018-09-18T13:53:33
2018-09-18T13:53:33
149,294,923
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "object_recognition_tod" PROJECT_SPACE_DIR = "/home/h/catkin_ws/install" PROJECT_VERSION = "0.5.6"
[ "251311876@qq.com" ]
251311876@qq.com
561b48e0f9faad2ba29366f95238236a3b524eb6
05b0bcbef59def8743ae56e4110153837ff24ec1
/Scripts/get_model_weights.py
23d806b38b1582bb4e772757722662ce44fa20a4
[]
no_license
AkselAllas/Bachelor_thesis
fdb468d142d209e593729ff205fe12a3ae4a244e
50aebb8a3ad60f9604c1bb525f6c5949fc4c0f0b
refs/heads/master
2020-04-30T15:38:40.391119
2020-01-15T07:03:54
2020-01-15T07:03:54
176,925,588
0
0
null
null
null
null
MacCentralEurope
Python
false
false
4,808
py
#!/usr/bin/env python # coding: utf-8 #Import all the dependencies #This disables python on GPU #import os #os.environ["CUDA_VISIBLE_DEVICES"]="-1" from sklearn.utils import class_weight from keras.callbacks import EarlyStopping, CSVLogger, ModelCheckpoint from keras.optimizers import SGD, RMSprop, adam from keras.utils import np_utils from keras import backend as K import numpy as np from sklearn.model_selection import train_test_split from scipy import ndarray import time import sys import matplotlib import matplotlib.pyplot as plt from s2_preprocessor import * from s2_model import * from plotter import * version_start = str(sys.argv[1]) #Because fit_generator needs different data preprocessing functions, then we define functions for windowing in this script def input_windows_preprocessing(preprocessor_X_output, preprocessor_Y_output, s2_preprocessor): nb_tile_pixels = s2_preprocessor.tile_dimension*s2_preprocessor.tile_dimension dim = (s2_preprocessor.window_dimension,s2_preprocessor.window_dimension,s2_preprocessor.nb_images) input_data = preprocessor_X_output.astype('float32') input_labels = np.reshape(preprocessor_Y_output,(nb_tile_pixels,s2_preprocessor.nb_classes)) #Get Region of Interest mask from loaded array ROI_mask = input_data[:,:,0,5] X_2D_nowindows = input_data[:,:,:,0:5] reshaped_ROI_mask = np.reshape(ROI_mask,(nb_tile_pixels)) valid_pixels_count = np.count_nonzero(reshaped_ROI_mask) X = np.zeros((0,s2_preprocessor.nb_bands,*dim)) Y = np.zeros((0,s2_preprocessor.nb_classes)) X = np.concatenate((X,np.zeros((valid_pixels_count, s2_preprocessor.nb_bands, *dim))),axis=0) Y = np.concatenate((Y,np.zeros((valid_pixels_count, s2_preprocessor.nb_classes)))) for j in range(s2_preprocessor.nb_images): for i in range(s2_preprocessor.nb_bands): padded_overpad = skimage.util.pad(X_2D_nowindows[:s2_preprocessor.tile_dimension,:,i,j],4,'reflect') padded = padded_overpad[:-1,:-1].copy() #Copy is made so that next view_as_windows wouldn't throw warning about being unable to provide views. Without copy() interestingly enough, it doesn't take extra RAM, just throws warnings. windows = skimage.util.view_as_windows(padded,(s2_preprocessor.window_dimension,s2_preprocessor.window_dimension)) reshaped_windows = np.reshape(windows,(nb_tile_pixels,s2_preprocessor.window_dimension,s2_preprocessor.window_dimension)) k=0 l=0 for mask_element in reshaped_ROI_mask: if(mask_element==True): X[k,i,:,:,j] = reshaped_windows[l] Y[k] = input_labels[l] k+=1 l+=1 return X,Y s2_preprocessor_params = {'input_dimension':5120, #5120 'label_dir':'./Label_tifs/', 'data_dir':'./Data/', 'input_data_dir':'./Big_tile_data/', 'region_of_interest_shapefile':'./ROI/ROI.shp', 'window_dimension':8, 'tile_dimension':512, 'nb_images':5, 'nb_bands':22, 'nb_steps':8, #This is unused!! #nb_steps defines how many parts the tile will be split into for training 'rotation_augmentation':0, 'flipping_augmentation':0 } s2_preprocessor = s2_preprocessor(**s2_preprocessor_params) class_weights = np.load("class_weights.npy") optimizer_params = { 'lr':0.001, }#'clipvalue':0.5, #Callback for CTRL+Z to stop training stop_cb = SignalStopping() filepath="best_model.h5" checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min') early_stopping_params = { 'monitor':'val_loss', 'min_delta':0., 'patience':5, 'verbose':1, #'mode':'auto' } s2_model_params = { 's2_preprocessor' : s2_preprocessor, 'batch_size' : 512, 'nb_epochs' : 1000, 'nb_filters' : [32, 32, 64], 'max_pool_size' : [2,2,1], 'conv_kernel_size' : [3,3,3], 'optimizer' : SGD(**optimizer_params), 'loss_function' : 'categorical_crossentropy', 'metrics' : ['mse', 'accuracy'], 'version' : '0', 'cb_list' : [EarlyStopping(**early_stopping_params),stop_cb,checkpoint] } s2_model = s2_model(**s2_model_params) #for layer in s2_model.model.layers: # print(layer.get_config()) # print(np.array(layer.get_weights()).shape) conv_layer_one_weights = np.array(s2_model.model.layers[0].get_weights()[0]) print(np.array(conv_layer_one_weights[:,:,0,13,0]).shape) #conv_layer_two_weights = np.array(s2_model.model.layers[4].get_weights()[0]) #conv_layer_three_weights = np.array(s2_model.model.layers[8].get_weights()[0]) #print(s2_model.model.layers[0].get_config()) for i in range(22): print("Indeksi "+i+" filtri kaalude abosluutv√√rtuse summa on: "+str(np.sum(np.absolute(conv_layer_one_weights[:,:,:,i,:]))))
[ "allasaksel@gmail.com" ]
allasaksel@gmail.com
b1814ccda60066a724e595cb3887d46398bfb2bf
3fc8150fe6cd3dd7f800341a1c193a628f6c60ad
/App/settings.py
ddce24681fc319deb2a1d5bf6260bdd204221d4b
[ "MIT" ]
permissive
passed-by/WeatherTornado
9fbe8b179115dac866745b4aa50c71bc06164e94
05f1ccc56b93c3267d65fbee312de4b99fb1a5e4
refs/heads/master
2020-08-02T09:39:54.257203
2019-09-27T11:43:30
2019-09-27T11:43:30
211,306,017
0
0
null
null
null
null
UTF-8
Python
false
false
396
py
# settings.py: 项目配置 import os from tornado.options import define, options BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) define('port', default=8082, type=int) define('debug', default=True, type=bool) app_settings = { "debug": options.debug, "template_path": os.path.join(BASE_DIR, 'templates'), "static_path": os.path.join(BASE_DIR, 'static'), }
[ "2809196989@qq.com" ]
2809196989@qq.com
aa07d79b5463041171e9c12a10d01361b10412d2
f653f96c26501523d36f67330186e546b9067749
/20/00/9.py
8a4e8ca785dcdfa995155a8d1c1d57d37d7b58ce
[ "CC0-1.0" ]
permissive
pylangstudy/201711
6d5fb40d3bf0b1be5310e6c85ac23c76a7f9db56
be6222dde61373f67d25a2c926868b602463c5cc
refs/heads/master
2022-11-13T22:11:52.127874
2017-11-29T23:32:17
2017-11-29T23:32:17
109,062,692
0
1
null
2022-10-20T07:22:56
2017-10-31T23:22:16
Python
UTF-8
Python
false
false
420
py
import argparse parser = argparse.ArgumentParser() parser.add_argument('bar') parser.parse_args(['XXX']) parser = argparse.ArgumentParser() parser.add_argument('-f', '--foo-bar', '--foo') parser.add_argument('-x', '-y') parser.parse_args('-f 1 -x 2'.split()) parser.parse_args('--foo 1 -y 2'.split()) parser = argparse.ArgumentParser() parser.add_argument('--foo', dest='bar') parser.parse_args('--foo XXX'.split())
[ "pylangstudy@yahoo.co.jp" ]
pylangstudy@yahoo.co.jp
8c222de0453c329c322e024d9cbbc2e7f7988275
37448df3b6375f69471d2c8723ada56505d3dbbc
/apps/entity/apps.py
bc2f2558cf2082ba8093a0670a171d0e5e475865
[]
no_license
williamsko/payhouse
4df63ac32069b2803d53451089ff572de054eea9
bcee45b09f0a889e35accd652c02522b15edbf7a
refs/heads/master
2022-12-08T23:52:22.206285
2020-02-09T20:23:36
2020-02-09T20:23:36
209,165,370
0
0
null
null
null
null
UTF-8
Python
false
false
147
py
from django.apps import AppConfig class EntityConfig(AppConfig): name = 'entity' def ready(self): import entity.signals # noqa
[ "wdesouza-prestataire@ina.fr" ]
wdesouza-prestataire@ina.fr
8183baa66dbb0e983f4690fd1ca40a8bc1f5d061
14c1ae3c47863babc40e473c8d55383459612e2b
/mysignal/mysignal.py
933287a23881a705566351a28ea31de5a129bb91
[ "WTFPL" ]
permissive
hz-b/MSc_FOFB-Simulation
009852321dad92dd88912c1cc818d544e8f50f78
dc9a43f54bf7e570915d0360d102ad04f3cb761d
refs/heads/master
2021-01-12T01:42:45.320526
2016-08-22T09:43:37
2016-08-22T09:43:37
78,421,032
1
0
null
2017-01-09T11:01:37
2017-01-09T11:01:37
null
UTF-8
Python
false
false
7,858
py
# -*- coding: utf-8 -*- from __future__ import division, print_function import matplotlib.pyplot as plt import numpy as np from scipy import signal import sympy as sy def poly_to_sympy(num, den, symbol='s', simplify=True): """ Convert Scipy's LTI instance to Sympy expression """ s = sy.Symbol(symbol) G = sy.Poly(num, s) / sy.Poly(den, s) return sy.simplify(G) if simplify else G def poly_from_sympy(xpr, symbol='s'): """ Convert Sympy transfer function polynomial to Scipy LTI """ s = sy.Symbol(symbol) num, den = sy.simplify(xpr).as_numer_denom() # expressions p_num_den = sy.poly(num, s), sy.poly(den, s) # polynomials c_num_den = [sy.expand(p).all_coeffs() for p in p_num_den] # coefficients # convert to floats l_num, l_den = [sy.lambdify((), c)() for c in c_num_den] return l_num, l_den def TF_from_signal(y, u, fs, method='correlation', plot=False, plottitle=''): if len(y.shape) == 1: y = y.reshape((1, y.size)) M, N = y.shape H_all = np.zeros((M, int(N/2)), dtype=complex) fr = np.fft.fftfreq(N, 1/fs)[:int(N/2)] if method == "correlation": a = signal.correlate(u, u, "same") else: a = u if plot: plt.figure() for k in range(M): if method == "correlation": c = signal.correlate(y[k, :], u, "same") else: c = y[k, :] A = np.fft.fft(a) idx = np.where(A == 0)[0] C = np.fft.fft(c) C[idx] = 0 A[idx] = 1 H = C / A H = H[:int(N/2)] H_all[k, :] = H if plot: ax1 = plt.subplot(211) ax1.plot(fr, abs(H)) ax2 = plt.subplot(212) ax2.plot(fr, np.unwrap(np.angle(H))) if plot: ax1.set_xscale('log') ax1.set_yscale('log') ax1.grid(which="both") ax2.set_xscale('log') ax2.grid(which="both") ax1.set_title(plottitle) return H_all, fr class TF(signal.TransferFunction): """ Transfer function """ def __init__(self, *args): if len(args) not in [2, 4]: raise ValueError("2 (num, den) or 4 (A, B, C, D) arguments " "expected, not {}.".format((len(args)))) if len(args) == 2: super().__init__(args[0], args[1]) else: A, B, C, D = args n, d = signal.ss2tf(A, B, C, D) super().__init__(n, d) def __neg__(self): return TF(-self.num, self.den) def __mul__(self, other): self_s = self.to_sympy() other_s = self._check_other(other) return TF.from_sympy(self_s * other_s) def __truediv__(self, other): self_s = self.to_sympy() other_s = self._check_other(other) return TF.from_sympy(self_s / other_s) def __rtruediv__(self, other): self_s = self.to_sympy() other_s = self._check_other(other) return TF.from_sympy(other_s / self_s) def __add__(self, other): self_s = self.to_sympy() other_s = self._check_other(other) return TF.from_sympy(self_s + other_s) def __sub__(self, other): self_s = self.to_sympy() other_s = self._check_other(other) return TF.from_sympy(self_s - other_s) def __rsub__(self, other): self_s = self.to_sympy() other_s = self._check_other(other) return TF.from_sympy(other_s - self_s) def _check_other(self, other): if type(other) in [int, float, complex]: return other else: return other.to_sympy() # symmetric behaviour for commutative operators __rmul__ = __mul__ __radd__ = __add__ def to_sympy(self, symbol='s', simplify=True): """ Convert Scipy's LTI instance to Sympy expression """ return poly_to_sympy(self.num, self.den, 's', simplify) def from_sympy(xpr, symbol='s'): """ Convert Sympy transfer function polynomial to Scipy LTI """ num, den = poly_from_sympy(xpr, symbol) return TF(num, den) def as_poly_s(self): return self.to_sympy() def as_poly_z(self, Ts): [numz], denz, _ = signal.cont2discrete((self.num, self.den), Ts, method='bilinear') return poly_to_sympy(numz, denz, 'z') def apply_f(self, u, x, Ts): if self.den.size == 1 and self.num.size == 1: return u*self.num[0]/self.den[0], x if type(u) is not np.ndarray: u = np.array([[u]]).T else: if u.ndim == 1: u = u.reshape((u.size, 1)) elif u.shape[1] != 1: u = u.T A_t, B_t, C_t, D_t = signal.tf2ss(self.num, self.den) (A, B, C, D, _) = signal.cont2discrete((A_t, B_t, C_t, D_t), Ts, method='bilinear') A = np.kron(np.eye(u.size), A) B = np.kron(np.eye(u.size), B) C = np.kron(np.eye(u.size), C) D = np.kron(np.eye(u.size), D) x_vec = x.reshape((x.size, 1)) x1_vec = A.dot(x_vec) + B.dot(u) y = C.dot(x_vec) + D.dot(u) # put back in same order if type(u) is not np.ndarray: y = y[0, 0] else: if u.ndim == 1: y = y.reshape(y.size) elif u.shape[1] != 1: y = y.T if np.any(abs(y.imag) > 0): print('y has complex part {}'.format(y)) print((A, B, C, D)) return y.reshape(y.size).real, x1_vec.reshape(x.shape) def plot_hw(self, w=None, ylabel=None, bode=False, xscale='log', yscale='log', figsize=None): w, H = signal.freqresp((self.num,self.den), w) if bode: y = 20*np.log10(abs(H)) x = w yscale = 'linear' xlabel = r"Angular frequency $\omega$ [in rad/s]" else: if yscale == 'db': y = 20*np.log10(abs(H)) yscale = 'linear' else: y = abs(H) yscale = 'log' x = w/2/np.pi xlabel = r"Frequency f [in Hz]" plt.figure(figsize=figsize) plt.subplot(2, 1, 1) plt.plot(x, y) plt.yscale(yscale) plt.xlabel(xlabel) plt.xscale(xscale) #plt.yticks(np.arange(-120,20,30)) plt.grid(which="both") plt.ylabel(ylabel if ylabel is not None else "Amplitude") plt.subplot(2, 1, 2) plt.plot(x, np.unwrap(np.angle(H))*180/np.pi) plt.xscale(xscale) plt.grid(which="both") plt.yticks(np.arange(-110,30,40)) plt.xlabel(xlabel) plt.ylabel("Phase [in deg]") plt.tight_layout(True) def plot_step(self, ylabel=None, figsize=None): t, y = signal.step((self.num, self.den)) n_zeros = int(t.size * 0.1) T = t[1] r = np.concatenate((np.zeros(n_zeros), np.ones(t.size))) t = np.concatenate(((np.arange(n_zeros)-n_zeros)*T, t)) y = np.concatenate((np.zeros(n_zeros), y)) plt.figure(figsize=figsize) plt.plot(t, r) plt.plot(t, y) plt.xlabel('Time [in s]') plt.ylabel(ylabel if ylabel is not None else "Amplitude") plt.tight_layout() class PID(TF): def __init__(self, P, I, D): tf = TF([P], [1]) if I != 0: tf += TF([I], [1, 0]) if D != 0: tf += TF([D, 0], [D/8, 1]) super().__init__(tf.num, tf.den) self.kP = P self.kI = I self.kD = D def apply_fd(self, e, Ts): return (self.kP*e[:, -1] + self.kI*np.sum(e, axis=1)*Ts + self.kD*(e[:, -1]-e[:, -2])/Ts) def apply_f(self, e, x, Ts): return TF.apply_f(self, e, x, Ts)
[ "olivier@churlaud.com" ]
olivier@churlaud.com
71c57adceb32539990a21ff9eaf0cd83f2419dbf
2a608e9830157ba2842d3ce2f9eb5acac0d304eb
/day_6_part_2.py
bfb0d36c7d8eaa9901a76d4f4a98045c56d88d0e
[ "MIT" ]
permissive
Korred/advent_of_code_2016
71709773176dee4cb736b88ce459d4bfe1ae8133
8b6e9b51569bf75da9b0fc56cc9e7c1c4dddeb5e
refs/heads/master
2021-01-11T10:37:15.441378
2016-12-22T11:38:35
2016-12-22T11:38:35
76,345,860
0
0
null
null
null
null
UTF-8
Python
false
false
5,783
py
recording = '''jtfxgqec zxoeuddn anlfufma dxuuyxkg ttnewhlw sjoyeiry rgfwwdhw qymxsllk forftdvy rzmnmewh hogawihi mtsyexba mrjzqqfk ypmkexpg pjuyopgv rtqquvaj evubmlrq bqlrtuce ndidnbps vqukosam mzdyfkcd rrbwdimb uhnvxgly aaimxpcv acxvinqj muaeikzy lhzbosjd fflqqiit unfhzfrs gmwoyvob cculubmy zqbugcwa ijouicwt bildjjww ugksmnps ivawibvu igzteede foehssxo pkeevvlt xumuixyw okhhtycj xhblffye iqapgjqe lkhpntum wuzxgwow bkkpfguu bnqctsdi cwncjrwn eivhabsi bwdicgfm kowiourk dhbzuztx gibitfxo wmrlhenb wfzmjvwh zddjirfg fafhmiwf ddhvufhg qdwnlzqp nhsnngut uacmfgop morcixux sfdxrgqy tezzvctv dnnmtkfp dygdzcib efurreri npvpklix svpbdgyw mcntltzd inwkhxlx sajfgeoi nwkqrspt qtzqsksv mtncajjk etarsvxr eyaeeauy gqnctylg uerywmma hjrxhtjb zdsdyfzp zhgrrhvd yvxqyalf rlgwftff xczvgpzq yydydclu rzltbrro jforpzau zskadlfz dqbqdsgv bcwjltvc byfoamgd cpefdmso ocuetyke vlqrfnpp ggikwydh eakpyuov osaguhlz ylmrfvee nvdvqpzm pudbbuhh bwmqdpyv proscvgy cetkcpjw sbhcqeya fgnyltmf qcspgopp bdhnemmy tczkhihl yduxunvr dtxerncl xnxeaayt rvlcbgts vpavzjqs oueloufw mubbhyna nptmeppg ojjfbuzz lusboycs gurmmorr kefddaka cpvpszit bfvthzpm owgcvdjo simxphmv rxedvjyw hmeieuxr vgqhcapz vwtvbain aobnhdsx hkpshsjs jxgegczu xbsfxesk pqhifeaj triurorr rnkufaxl hmrqfoaw veghzoxa zbvgbpcm rqrnbylj txaawlta uuksnfel jqvycrvw cdttmdpc wojvbrzp qvnuinon gnpguyvh cgbkpzbu pdaqhlan muiykslt prvzlunm whhcrchz cahjhrkl zifdgfpq wanlienf sfrnozvi mwmykvyh fbdfzgut wfrviilb ucaopfgo fjhuikma hdmizjdj xngpfwvn rueojtjg xvtssxtx vvcgzidf xtehcxki xksbfbso osnzpqmy isrnjkxh utleakmz dthmtbdt plregxuh amoeprsy tmyhzhqd csxqavbe jmojlysw slebxnbl ldzryqmj ajejyudk ynhgnjhw mdibxxxw rvtcmesd jmnwqddq hppfoplc nrcbjynz kcqnjzue mthvgjxm ykztdbcv etqqnhuz tezkopgq fwhwkqmz fozpkzfy hbbtlcog hdvjqwyh xuljsrvz abskreoo aedeydgc dcyigvqf ntpcvvgk iiwgzkhl zofhlqlx veumtlae qibdapwq xpgpwirt wvnnautq wfhlgmdg yqcrvdgx srdufrbu vycrvkpx flwxzkim enxayqxm dgpntiaj qedfutmp vfdovine dgrvjfjt dqxxjahk hnxpblyp nnadwbsc krmqqgwf efykkzeb lkrmrwqw vfzayrwt chopbnyf vbydrtln azmlestl sqcyddvi zdcubjok afshwptc sjgpuoch bnfylydl rsyxsbzi psyuvyzx npngqypd xejayhdk aqfmvjfi tpffksph uekwkjnj ljsjimwm hbgzjlig ngssshxx icitlosb unxryqyt nzpujfti lupxnzhe kxglfnic ecewosbs htlqxpiq clqgnyfd yyiozvar mbvjgmyc srhwhlin casmlryr ebuzskkp iewhdqtr oyidcobe avptvltf mfheqaxl shqnezrq xrpkzuvb soxdjwba aitmzlds rpmpozpd ccgxauky gsstsjyx bzeolqal vfhddmuc wfbbmqfv pumxmnhj qumdxkns xymraott uthlccig ezpalags giftxymr ujjacleo cgwgmktp istetgdl azedmaao bnlfwyoq orcwhbek amswhkum yxupesxu mlzvqsrg solkxzby tbaxnjdu xwbsiquk hsftntsn ajraaorz mwmycrff ymnbrbpj uyfscatq kzkgmbeh libgpgnr kxlgthxc vzjbobyx isqessab ehursvof guwrjnbi xivkphwn rurrmdmi nqijeuzq jambocej qrtidktb sbzvehmq aikgzrsq lgydnujf twafyzry nxhtklba xhyaqyqe xgvdfcrf wdieppsd iabrfmdm doijaavc oxydttkg qsqiofwv titrvjym mwojqcku tewiyhjx jlqbksqd knycvoks tmcbnvhv ekksoxmz mgvommal hrosnzeu fzeymbek evqxcukn ilkpvdvl rclpjbkb tdpitlei zvvzuucc pzdgwnfz mralxxlz wywkawzh hmazaakd llltvbex ihsmefpz rzzgkjyz srjqpeoq jrczcdna uuyskwop yeuiaepa vzppcwnn oqhxixdo xkwpfsij cmsoiogl ngbmaeue lmqttyrj yhgjxfmx lwfgjnyp ibbkjgra gaxsotzr paugisvs pcqqauqi pweuwnqs jcbrscrj ovtsgcnh oscsgtqn hkpwmhwk pmdgwclk owmskdhh qutyussr atdkvmzl oqslriwe wafjwfxp ipcqlsxv kzurbnoh lfhfzwqo ucybqwrj tgnblzgm lhwlniea tlxymfbu bcyvlkvt glpacpjk rjagzpnu fyjpvhaq cjtzwtdu dkaqawts pjoovtlv xsnwqixw swcftfed cadigksp fnsmxccx cbxmdxvb hpyqnpjq jzpvphmo kdkpubul kiajwwta uyeuctbe yetyzqxw fgeemnbl brprbvgj xszwwlea ygunyguo jwplrcbq fejndxnx oxsmkcqm ldwkbpsk cmzuxrst jaoadiiu oxcpkgbc nyulhuci bdwfqtkv ehxvnzyd cizuemsb lbqyqduk kqweswcd tqnicuzh utyaiaeu osjdgvtj qmrxcaoa qiltxgvv qklfgyss lpjebmuo bvebkous yifrmeoa jzgntlep wadcknde kaikclag tucuhehr bvwhuwzn uvlecxgy rzyxjhmo dyyfwjgv vocjkohi ylyflktq raltxpqg eitypruw pfbmopgm qerushjt xykophcv amjhrlhi uqkjhdhn kkohprfw hvsmtnfd uxgiqmqc npxwplcj ltchgces exiyyief ysmvbqso zpyvuhqz lkvwronk vxilskkl cxfypwcd jhrczkmf rdedtejq gmxcrlzi jumwfmnn gkynzdtd dfdkxggc yldclxhz fsxvbwyj ioiupzio lxyqvncv rsgsviny osgcimej tecqrgkq tozohtwt kmlowfrf hhpiukqe xlxlkjwf ntvtoexx zzvsvdow yluidajg vumkynvp vaxipwwg pqymmoif sgjzogut jppwszzn gvvaibqu lwjotuil srflotab ibnblmjm kvcsdivb wqrpzmvr gcmqdezs vrizdyfo vtqnsjbf jwocjmvb fjkiiowl ctjhmmrq pcckqfki wqolxgfg gbsdyrbc giqmfqwb fodfpvyl nxdzwvzz hpnatltw adjjyhjd aoguhvmv yyeanoir baojaygs ovkebbjb pmykvfex zeooykoa uuozuxjb kxxvbhbr jxbchjlr qhiwdonk dnvfwwfh kjfrlslh wionbrdf qgkjarob kwplsxso txgelygh vlmziqwf wbetqqkp qfkocear wrvonhyr sbiqrcri lnwzitce bctyrwph kallfwzc zfqwanet bevnljjr kwqsktan gjviqwlu zflsnpig wzaufqvr uvxhutav diejbica ojciaexn zyjoxrwi djkodeiz gsinkcqk jkonssuq eychyabp fkcogwnr kkioyrnn inqxlztu cqnbxxks ipwmpdmm moozfajm irjaimrw ojihmanb hzoszxzc ajjvxqqi ohkfkijd nlsahrpv zizxtmxa gjtnrurd pyqghfuj fltnnyfe goxagvfp nplhpkiy dlwgyvby fzrfhcgh zaiuostp jdjojfkw thksqbjh qopcwnht ewkljwho qguaeaac wxzzxgcc nlnuuhdu ihtzrqay nmtdbkhp yasxhulm drzjobfy qpgcjdxn aegbxmjb bbuxsffr zevjcgzn pgbqezxk qdlepjko zbtzvicm ssjdcggg ugrtxalo tsbvnppt rboleppu gywfqiwz skgzeqhu hzuggbcf dkegaxap zijcjrkm jtfkeoog fyvtrvig gophbeoj ieatnihe vlaauxgz mxnheqkz mftwybny ebawojuj dyrvecbs lrrcwang qswijdeu wkuszdax ecaokzfc pmbznspx tjqrztdv mwdxruge whutfdqy zpfwqvox fkqapoid bodleqbn kpxiuodk johmsncc enhamlol yhtydoss'''.split("\n") from collections import Counter # get length of message m_len = len(recording[0]) occurence_list = [[] for i in range(m_len)] code = "" for line in recording: for e, i in enumerate(line): occurence_list[e].append(i) for entry in occurence_list: mc = Counter(entry).most_common()[-1][0] # <--- only this was changed code += mc print("Code: ", code)
[ "noreply@github.com" ]
Korred.noreply@github.com
ebe40c80ffb741da326f2574f07345b6dafe1bc5
0bd284f7cc7fab96c76998cc8043a5474fe83671
/full_program/part15B_merge_diff_chunks.py
35c2b601abf4dc5d7d28d85367532a69648fe137
[]
no_license
bgallag6/SolarProject
46fd40c66a1a33b19ed0b96271abda1f0a367d83
53f844604a2e819b24815f5b13f35fc154539d28
refs/heads/master
2021-01-11T23:35:57.410978
2019-04-03T18:53:39
2019-04-03T18:53:39
78,604,230
0
0
null
null
null
null
UTF-8
Python
false
false
2,143
py
# -*- coding: utf-8 -*- """ Created on Fri Apr 6 16:04:57 2018 @author: Brendan """ import numpy as np import sys import yaml import os size = int(sys.argv[1]) stream = open('specFit_config.yaml', 'r') cfg = yaml.load(stream) directory = cfg['fits_dir'] date = cfg['date'] wavelength = cfg['wavelength'] mmap_derotate = cfg['mmap_derotate'] save_temp = cfg['save_temp'] #directory = 'S:' #date = '20130626' #wavelength = 171 #size = 16 cube_temp = [] # load derotated cube chunks for i in range(size): temp = np.load('%s/DATA/Temp/%s/%i/chunk_%i_of_%i.npy' % (directory, date, wavelength, i+1, size)) cube_temp.append(temp) cube_final = np.vstack(cube_temp) # stack chunks into final derotated array del cube_temp if mmap_derotate == "y": orig_shape = np.array([cube_final.shape[0], cube_final.shape[1], cube_final.shape[2]]) # create memory-mapped array with similar datatype and shape to original array mmap_arr = np.memmap('%s/DATA/Temp/%s/%i/derotated_mmap.npy' % (directory, date, wavelength), dtype='%s' % cube_final.dtype, mode='w+', shape=tuple(orig_shape)) # write data to memory-mapped array mmap_arr[:] = cube_final[:] # save memory-mapped array dimensions to use when loading np.save('%s/DATA/Temp/%s/%i/derotated_mmap_shape.npy' % (directory, date, wavelength), orig_shape) # save original array if specified if save_temp == "y": np.save('%s/DATA/Temp/%s/%i/derotated.npy' % (directory, date, wavelength), cube_final) if save_temp == "n": for j in range(size): fn = '%s/DATA/Temp/%s/%i/chunk_%i_of_%i.npy' % (directory, date, wavelength, j+1, size) ## if file exists, delete it ## if os.path.isfile(fn): os.remove(fn) else: ## Show an error ## print("Error: %s file not found" % fn) # flush memory changes to disk, then remove memory-mapped object and original array del mmap_arr del cube_final else: np.save('%s/DATA/Temp/%s/%i/derotated.npy' % (directory, date, wavelength), cube_final)
[ "bgallag6@gmu.edu" ]
bgallag6@gmu.edu
a35de49d058abb362dd85af4f6b2e58e2d3d16a1
24fef9c1cdd1829bd8160feeafa9982530b9e17f
/examples/simple.py
a1ac45f869972b350fb71c2107fe190175e8645f
[ "BSD-3-Clause" ]
permissive
sprockets/sprockets.logging
e011e6ba151ad8d20f5e15c1aa8b8bc65865fc46
37ff1180f91696547a25fed2228c829c1a8fcb17
refs/heads/master
2021-01-16T19:00:22.419596
2015-12-11T17:59:01
2015-12-11T17:59:01
37,081,330
1
2
BSD-3-Clause
2021-11-01T12:04:27
2015-06-08T17:18:46
Python
UTF-8
Python
false
false
663
py
import logging import sys import sprockets.logging formatter = logging.Formatter('%(levelname)s %(message)s {%(context)s}') handler = logging.StreamHandler(sys.stdout) handler.setFormatter(formatter) handler.addFilter(sprockets.logging.ContextFilter(properties=['context'])) logging.Logger.root.addHandler(handler) logging.Logger.root.setLevel(logging.DEBUG) # Outputs: INFO Hi there {None} logging.info('Hi there') # Outputs: INFO No KeyError {bah} logging.info('No KeyError', extra={'context': 'bah'}) # Outputs: INFO Now with context! {foo} adapted = logging.LoggerAdapter(logging.Logger.root, extra={'context': 'foo'}) adapted.info('Now with context!')
[ "daves@aweber.com" ]
daves@aweber.com
5afb442366deb72a4ed57ace517a81b771406e4c
283ce303a34e3632568ffc5fb3502fc6cb8e0525
/python_file/blog.py
a778224f7aef4571e9014298d95bbedf52fb25a3
[]
no_license
billkunghappy/The_main_page
d245bed6cd6e8ce3724f8944ca9a26ae7f3da2d7
ba08670e214527da3d3c11cd8c4c9a80be5f8987
refs/heads/master
2021-01-22T07:13:43.468146
2014-12-18T15:04:05
2014-12-18T15:04:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,642
py
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import basehandler from basehandler import BaseHandler from google.appengine.ext import db import signup from signup import User_data from signup import hash_salt import hashlib # deliete parent in db # def blog_key(name='default'): # return db.Key.from_path('blogs', name) def hash_str(s): return hashlib.md5(s).hexdigest() def make_secure_val(s,salt): return "%s|%s" % (s, hash_str(s+salt)) def check_secure_val(h,salt): val=h.split('|')[0] if h==make_secure_val(val,salt): return val class Post(db.Model): subject=db.StringProperty(required=True) content=db.TextProperty(required=True) created=db.DateTimeProperty(auto_now_add=True) username=db.StringProperty(required=True) def as_dict(self): time_fmt = '%c' d = {'subject': self.subject, 'content': self.content, 'created': self.created.strftime(time_fmt), 'username': self.username} return d # Last_time=db.DateTimeProperty(auto_now=True) # def render(self): # self._render_text =self.content.replace('\n','<br>') # return self.render_str('post.html',p=self) class Newpost(BaseHandler): def get(self): cookie=self.request.cookies.get('user_key') user=None if cookie: user=check_secure_val(cookie,hash_salt) if user: userkey=db.get(user) if userkey: userhash=make_secure_val(str(userkey.username),hash_salt) self.response.headers.add_header('Set-Cookie','user=%s'%userhash) self.render('blog_input.html') else: self.redirect("/Blog") def post(self): subject=self.request.get("subject") content=self.request.get("content") name=self.request.cookies.get('user') username=check_secure_val(name,hash_salt) terror="" werror="" if username: if subject!="" and content!="": w=Post(subject=subject,content=content,username=username) w.put() self.redirect('/Blog') else: if subject=="": terror="You didn't enter the title!" if content=="": werror="You didn't enter any word!" self.render('blog_input.html',subject=subject,content=content,terror=terror,werror=werror) else: self.redirect('/Blog') # class Blog_new(BaseHandler): # def get(self): # key.db.from_path('post',int(post_id),parent=blog_key) # post=db.get(key) # if not post: # self.error(404) # return # self.render("blog_new",post=post) class Blog(BaseHandler): def get(self): posts=db.GqlQuery('select * from Post order by created desc limit 10') if self.format == 'html': self.render('blog.html',posts=posts) else: return self.render_json([p.as_dict() for p in posts])
[ "billkung.happy@gmail.com" ]
billkung.happy@gmail.com
c48e0acd0b93aaa16ad29b6b933ddccd5bbcaa1e
18b053edfbc8b58a2a9c25f65508d251440fb419
/ap2final.py
d9d0c3d40b032a71b4d866a4ab4933c394417131
[]
no_license
pedromsilva99/labi_weather_tcp
3bd46fac4dc53cf6af6762ef8da184a84bccd102
f112b682a591b28ffb70201a446f7226a4cfe32b
refs/heads/main
2023-03-26T02:16:16.328684
2021-03-25T22:14:04
2021-03-25T22:14:04
351,587,246
0
0
null
null
null
null
UTF-8
Python
false
false
3,557
py
import sys, socket, csv, json, hashlib, binascii from random import randint from Crypto.Cipher import AES import base64 def main(): tcp_s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcp_s.connect(("193.136.92.147", 8080)) #res = input("Quer usar mensagens encriptadas? Y/n ") #if res in ['Y', 'y']: # encrypt(tcp_s) #else: #f_connect(tcp_s) f_connect(tcp_s) dict_data = tcp_s.recv(4096).decode("utf-8") print(dict_data) fich = open('Dados.csv','w') writer = csv.DictWriter(fich, fieldnames=['WIND','HUMIDITY','TEMPERATURE'], delimiter=",") writer.writeheader() temps = 0 cont = 0 while 1: j_data = tcp_s.recv(4096).decode("utf-8") try: data_s = json.loads(j_data) print_csv(data_s, fich, writer) weather_info(data_s, cont, temps) if cont == 3: cont = 0 temps = 0 cont = cont + 1 temps = temps + data_s['TEMPERATURE'] except: continue print(j_data) fich.close() tcp_s.close() def weather_info(data_s, cont, temps): #função para fazer print no terminal da informação do tempo if cont == 3: media = temps/3 if media < 20: print("A média da temperatura é %f. Leve um casaco!" % (media)) else: print("A média da temperatura é %f. Está um tempo agradável." % (media)) def print_csv(data_s, fich, writer): #função para escrever no documento CSV a informação writer.writerow({'WIND': data_s["WIND"], 'HUMIDITY': data_s["HUMIDITY"], 'TEMPERATURE': data_s["TEMPERATURE"]}) fich.flush() def f_connect(tcp_s): #função para receber e enviar o TOKEN con_data = "CONNECT\n" tcp_s.send(con_data.encode("utf-8")) data = tcp_s.recv(4096).decode("utf-8") print(data) try: dict_token = json.loads(data) read_data = ("READ "+str(dict_token["TOKEN"])+"\n") tcp_s.send(read_data.encode("utf-8")) except: main() # Não conseguimos pôr a parte da encriptação devido a um erro na função recv_data #~ def encrypt(tcp_s): #~ p = 2**33 #~ g = 49985642365 #~ a = randint(0,9) #~ A = pow(g,a,p) #~ con_data = "CONNECT "+str(A)+","+str(p)+","+str(g)+"\n" #~ tcp_s.send(con_data.encode("utf-8")) #~ data = tcp_s.recv(4096).decode("utf-8") #~ print(data) #~ try: #~ raw_B = json.loads(data) #~ B = raw_B['B'] #~ read_data = "READ "+str(raw_B['TOKEN'])+"\n" #~ except: #~ encrypt(tcp_s) #~ X = pow(B,a,p) #~ key = hashlib.md5() #~ key.update(str(X).encode("utf-8")) #~ X = key.hexdigest() #~ X = X[0:16] #~ cipher = AES.new(X) #~ lst_block = len(read_data) % cipher.block_size #~ if lst_block != cipher.block_size : #~ p = cipher.block_size - len(read_data) #~ read_data = read_data + chr(p) * p #~ data = cipher.encrypt(read_data) #~ data = base64.b64encode(data)+"\n".encode("utf-8") #~ tcp_s.send(data) #~ data = recv_data(tcp_s, X).decode("utf-8") #~ fich = open('Dados.csv','w') #~ writer = csv.DictWriter(fich, fieldnames=['WIND','HUMIDITY','TEMPERATURE'], delimiter=",") #~ writer.writeheader() #~ temps = 0 #~ cont = 0 #~ while 1: #~ try: #~ data = json.loads(recv_data(tcp_s, X).decode("utf-8")) #~ print_csv(data, fich, writer) #~ weather_info(data, cont, temps) #~ if cont == 3: #~ cont = 0 #~ temps = 0 #~ cont = cont + 1 #~ temps = temps + data_s['TEMPERATURE'] #~ print(data) #~ except: #~ continue #~ fich.close() #~ tcp_s.close() #~ def recv_data(tcp_s, X): #~ cipher = AES.new(X) #~ data = tcp_s.recv(4096) #~ data = base64.b64decode(data) #~ data = cipher.decrypt(data) #~ p = data[len(data)-1] #~ data = data[0:len(data)-p] #~ return data main()
[ "pedromsilva99@ua.pt" ]
pedromsilva99@ua.pt
fb48dd21d053b996a5c472cecc4e2896db4f5c60
2729328611dcacaeeae2d9e6f0937f32d7b6d33e
/scripts/1d-mol.py
8626d83dc45643a181c4a472402969ad66c1f160
[]
no_license
BourgValentin/B2-Python
3563994b2890bf56600f9a0a7ecb08f261db9a76
aedb6246492243b1454ab6e861d689838410b262
refs/heads/master
2020-04-02T09:14:27.023888
2018-11-11T21:27:13
2018-11-11T21:27:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,240
py
#!/usr/bin/python3.6 #################### #Le jeu consiste a trouver un nombre entre 1 et 1OO # #Il est possible d'appuyer sur 'q' pour quitter # #Appuyer sur CTRL+C affichera un message puis eteindra le programme #################### import re import random import signal import sys pattern = re.compile("^[1-9][0-9]?$|^100$|^[q]$") def kill(sig, frame): print('Tu as entré CTRL+C, le programme va s\'arréter') sys.exit(0) signal.signal(signal.SIGINT, kill) print("Trouvez un nombre entre 1 et 100 : ") random_nbr = random.randint(1,100) user_input = input("Saisie :") while not pattern.match(user_input): print("Erreur : Veuillez entrer un nombre ou q pour quitter : ") user_input = input("Saisie :") else: pass while pattern.match(user_input) and user_input != 'q': if int(user_input) > random_nbr: print("Plus petit : ") user_input = input("Saisie :") elif int(user_input) < random_nbr: print("Plus grand : ") user_input = input("Saisie :") elif int(user_input) == random_nbr: print("Vous avez gagné !") break if user_input == 'q': print("La réponse était : ", random_nbr)
[ "root@localhost.localdomain" ]
root@localhost.localdomain
e6038327cf20250247c84a651dcc30768538ba60
9402b2b379d633959431711ea2151ebdb58e30db
/trackme/bin/getlistdef.py
dff23efcc86e7afc8ddb8bd66d65dad83ff20d6e
[ "Apache-2.0" ]
permissive
densetax2/trackme
2ffdcfc78cb40f1a240e9325fec008d8f934604d
7143d807f67529f2f2faa1fb8d5fbfd388dc45d1
refs/heads/master
2022-11-17T21:14:42.342309
2020-07-05T12:41:21
2020-07-05T12:41:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,413
py
#!/usr/bin/env python # coding=utf-8 # # Copyright © 2011-2015 Splunk, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"): you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function, unicode_literals import app import os,sys splunkhome = os.environ['SPLUNK_HOME'] sys.path.append(os.path.join(splunkhome, 'etc', 'apps', 'trackme', 'lib')) from splunklib.searchcommands import dispatch, StreamingCommand, Configuration, Option, validators from splunklib import six @Configuration() class CountMatchesCommand(StreamingCommand): """ Counts the number of non-overlapping matches to a regular expression in a set of fields. ##Syntax .. code-block:: countmatches fieldname=<field> pattern=<regular_expression> <field-list> ##Description A count of the number of non-overlapping matches to the regular expression specified by `pattern` is computed for each record processed. The result is stored in the field specified by `fieldname`. If `fieldname` exists, its value is replaced. If `fieldname` does not exist, it is created. Event records are otherwise passed through to the next pipeline processor unmodified. ##Example Count the number of words in the `text` of each tweet in tweets.csv and store the result in `word_count`. .. code-block:: | inputlookup tweets | countmatches fieldname=word_count pattern="\\w+" text """ fieldname = Option( doc=''' **Syntax:** **fieldname=***<fieldname>* **Description:** Name of the field that will hold the match count''', require=True, validate=validators.Fieldname()) outname = Option( doc=''' **Syntax:** **outname=***<outname>* **Description:** Name of the outpuf field that will hold the index name''', require=True, validate=validators.Fieldname()) pattern = Option( doc=''' **Syntax:** **pattern=***<regular-expression>* **Description:** Regular expression pattern to match''', require=True, validate=validators.RegularExpression()) def stream(self, records): self.logger.debug('CountMatchesCommand: %s', self) # logs command line pattern = self.pattern outname = self.outname count = 0 whitelist = "" for record in records: for fieldname in self.fieldnames: matches = pattern.findall(six.text_type(record[fieldname].decode("utf-8"))) count += len(matches) record[self.fieldname] = count if whitelist != "": whitelist = str(whitelist) + "|" + str(record) else: whitelist = str(record) # whitelist is empty if count == 0: whitelist = "[('" + str(outname) + "', '*')]" yield {'_raw': str(whitelist)} dispatch(CountMatchesCommand, sys.argv, sys.stdin, sys.stdout, __name__)
[ "guilhem.marchand@gmail.com" ]
guilhem.marchand@gmail.com
aaa5ad87911a42ebbb247e8b73f56da709fefbcd
7bd0954e956993df19d833810f9d71b60e2ebb9a
/phasor/matrix/linalg.py
3a6788b4d1a7ce9f510a4e048f3678bca9bf17d9
[ "Apache-2.0" ]
permissive
aa158/phasor
5ee0cec4f816b88b0a8ac298c330ed48458ec3f2
fe86dc6dec3740d4b6be6b88d8eef8566e2aa78d
refs/heads/master
2021-10-22T09:48:18.556091
2019-03-09T18:56:05
2019-03-09T18:56:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,805
py
# -*- coding: utf-8 -*- """ """ from __future__ import division, print_function, unicode_literals #from builtins import zip, range import numpy as np def stackrange(rangetup): rangestack = [] for v in rangetup: try: iter(v) except TypeError: rangestack.append(list(range(v))) else: rangestack.append(v) iterstack = [iter(rangestack[0])] tupstack = [()] while True: while len(iterstack) < len(rangestack): if not iterstack: break try: nval = next(iterstack[-1]) tupstack.append(tupstack[-1] + (nval,)) iterstack.append(iter(rangestack[len(iterstack)])) except StopIteration: iterstack.pop() tupstack.pop() continue if not iterstack: break ptup = tupstack.pop() for v in iterstack.pop(): yield ptup + (v,) def linalg_solve_bcast(M, V): #print(M.shape, V.shape) #assert(M.shape[2:] == V.shape[1:]) if M.shape[:-2] == () and V.shape[:-1] == (): return np.linalg.solve(M, V) else: b = np.broadcast(M[..., 0, 0], V[..., 0]) rtype = np.find_common_type([], [M.dtype, V.dtype]) rvec = np.empty(b.shape + M.shape[-1:], dtype = rtype) idx = 0 for idx in stackrange(b.shape): idxM = tuple((0 if iM == 1 else iB) for iM, iB in zip(M.shape[:-2], idx)) idxV = tuple((0 if iV == 1 else iB) for iV, iB in zip(V.shape[:-1], idx)) Mred = M[idxM + (slice(None), slice(None))] Vred = V[idxV + (slice(None),)] Vsol = np.linalg.solve(Mred, Vred) rvec[idx + (slice(None),)] = Vsol return rvec
[ "Lee.McCuller@gmail.com" ]
Lee.McCuller@gmail.com
8e639334544826247ad7d472b44bb501b4a7028c
bf9b262fb305e2ed815e079323115fbc4c7f6bfb
/leetcode_198.py
d7bf652f5f62f6767a0e58a1d52dab2e3e6c9255
[]
no_license
Rockrs/Algorithm_DS
5c3a7a2dc0214b32f664f14194a09957e384b747
b3e462a6cba7a164818e71e480ca9f8cb91e2bca
refs/heads/master
2023-02-10T13:42:52.605408
2021-01-05T02:16:32
2021-01-05T02:16:32
288,692,827
0
0
null
null
null
null
UTF-8
Python
false
false
310
py
class Solution: def rob(self, nums: List[int]) -> int: if len(nums)==0: return 0 for i in range(len(nums)-3,-1,-1): if i==len(nums)-3: nums[i]+= nums[i+2] else: nums[i]+= max(nums[i+2],nums[i+3]) return max(nums)
[ "shrmabhishek2012@gmail.com" ]
shrmabhishek2012@gmail.com