blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
31dcf667c0db74a850441f9c4885b9081b781d39
a2ad9d53c323fae1d47017772ce133db0918b0e6
/apps/organization/migrations/0003_auto_20180415_2005.py
865b476dd804b266eb512f569576a9059321e10d
[]
no_license
SmileForS/MxOnline_Django
27175e3195e1b2b98ec389ed380c1ba6d85f7dd3
61ef01909907c71857085819b49f0d658c7cd07b
refs/heads/master
2020-03-09T17:50:03.438976
2018-04-15T14:57:46
2018-04-15T14:57:46
128,917,414
2
0
null
null
null
null
UTF-8
Python
false
false
759
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.8 on 2018-04-15 20:05 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('organization', '0002_auto_20180414_0929'), ] operations = [ migrations.AddField( model_name='courseorg', name='catgory', field=models.CharField(choices=[('pxjg', '培训机构'), ('gr', '个人'), ('gx', '高校')], default='pxjg', max_length=20, verbose_name='机构类别'), ), migrations.AlterField( model_name='courseorg', name='image', field=models.ImageField(upload_to='org/%Y/%m', verbose_name='logo'), ), ]
[ "cpyfluoxiaohui@163.com" ]
cpyfluoxiaohui@163.com
28893aa30f2a72be36b0840421a09737b7faaa2f
68affb8e8597753057396b4a3714b7a2f534fbf7
/pj/pj/settings.py
5a853f1a17eb4d69eedd85276feb322b54d9fd76
[ "MIT" ]
permissive
TrongNghiaRyt/SE347-project-Django-Website
5c230a4cefff29a07dcc3b95f3aa1035271ceb5c
383632f6f3f51553c3664a9b61a0a72b81981420
refs/heads/master
2020-11-27T20:40:48.143030
2019-12-25T12:56:15
2019-12-25T12:56:15
229,594,184
0
0
null
null
null
null
UTF-8
Python
false
false
3,378
py
""" Django settings for pj project. Generated by 'django-admin startproject' using Django 2.2.6. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'cv1=#alxl6_e83fnk!1+l&f03n@s#=y^7_b6^ho^jmuy9lj1fx' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'study', 'a1test', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'pj.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'Template')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'pj.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'traffic_law', 'USER': 'postgres', 'PASSWORD': 'admin', 'HOST': 'localhost', } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static'), ] STATIC_ROOT = os.path.join(BASE_DIR, 'assets') MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/'
[ "34794845+TrongNghiaRyt@users.noreply.github.com" ]
34794845+TrongNghiaRyt@users.noreply.github.com
a6ebb2ef63e9034635a5a9a0794251d2cc8912fd
92fb4d62071cc02993c6af8eedced27741567d97
/tests/test_search.py
4366a847be256e774f6389b780dea8efbb1de31c
[ "MIT" ]
permissive
klorenz/python-elastico
f5efa26e814bf89e9affdfebed5b51f6f16f2aa8
9a39e6cfe33d3081cc52424284c19e9698343006
refs/heads/master
2020-03-25T20:19:30.108547
2019-01-22T08:40:24
2019-01-22T08:40:24
144,126,224
0
0
null
null
null
null
UTF-8
Python
false
false
807
py
from dateutil.parser import parse as parse_dt from elastico.search import search def test_search(): from datetime import datetime actions = [ { "_index": "foo", "_type": "doc", "_id": i, "any": "data-%s" % i, "@timestamp": parse_dt('2017-01-01') } for i in range(10) ] from elasticsearch.helpers import bulk from elastico.search import search from elastico.connection import elasticsearch es = elasticsearch() try: actions bulk(es, actions) es.indices.refresh('foo') r = search(es, 'any: "data-2"') assert r['hits']['total'] == 1 assert r['hits']['hits'][0]['_source']['@timestamp'] == '2017-01-01T00:00:00' finally: es.indices.delete('foo')
[ "kiwi@franka.dyndns.org" ]
kiwi@franka.dyndns.org
d6041c909ade93c15742fc9b51f6283385a54fc8
3a5d8cdc7ac14c389fd9426f3f39c3b1dc906dda
/nautobot/extras/tests/test_customfields.py
5d69afc8223b63ba5fd3bbf99c5f90c513061ee9
[ "Apache-2.0" ]
permissive
nammie-punshine/nautobot
f3cdb9d269c37a74706c105d237b883650f10465
d6227b211ad89f25233a8791937cd75092421c8a
refs/heads/main
2023-03-08T10:51:29.437859
2021-02-24T20:44:32
2021-02-24T20:44:32
342,080,836
0
0
Apache-2.0
2021-02-25T01:01:36
2021-02-25T01:01:36
null
UTF-8
Python
false
false
31,650
py
from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ValidationError from django.urls import reverse from rest_framework import status from nautobot.dcim.filters import SiteFilterSet from nautobot.dcim.forms import SiteCSVForm from nautobot.dcim.models import Site, Rack from nautobot.extras.choices import * from nautobot.extras.models import CustomField, Status from nautobot.utilities.testing import APITestCase, TestCase from nautobot.virtualization.models import VirtualMachine class CustomFieldTest(TestCase): def setUp(self): Site.objects.create(name="Site A", slug="site-a") Site.objects.create(name="Site B", slug="site-b") Site.objects.create(name="Site C", slug="site-c") def test_simple_fields(self): DATA = ( { "field_type": CustomFieldTypeChoices.TYPE_TEXT, "field_value": "Foobar!", "empty_value": "", }, { "field_type": CustomFieldTypeChoices.TYPE_INTEGER, "field_value": 0, "empty_value": None, }, { "field_type": CustomFieldTypeChoices.TYPE_INTEGER, "field_value": 42, "empty_value": None, }, { "field_type": CustomFieldTypeChoices.TYPE_BOOLEAN, "field_value": True, "empty_value": None, }, { "field_type": CustomFieldTypeChoices.TYPE_BOOLEAN, "field_value": False, "empty_value": None, }, { "field_type": CustomFieldTypeChoices.TYPE_DATE, "field_value": "2016-06-23", "empty_value": None, }, { "field_type": CustomFieldTypeChoices.TYPE_URL, "field_value": "http://example.com/", "empty_value": "", }, ) obj_type = ContentType.objects.get_for_model(Site) for data in DATA: # Create a custom field cf = CustomField(type=data["field_type"], name="my_field", required=False) cf.save() cf.content_types.set([obj_type]) # Assign a value to the first Site site = Site.objects.first() site.custom_field_data[cf.name] = data["field_value"] site.save() # Retrieve the stored value site.refresh_from_db() self.assertEqual(site.custom_field_data[cf.name], data["field_value"]) # Delete the stored value site.custom_field_data.pop(cf.name) site.save() site.refresh_from_db() self.assertIsNone(site.custom_field_data.get(cf.name)) # Delete the custom field cf.delete() def test_select_field(self): obj_type = ContentType.objects.get_for_model(Site) # Create a custom field cf = CustomField( type=CustomFieldTypeChoices.TYPE_SELECT, name="my_field", required=False, choices=["Option A", "Option B", "Option C"], ) cf.save() cf.content_types.set([obj_type]) # Assign a value to the first Site site = Site.objects.first() site.custom_field_data[cf.name] = "Option A" site.save() # Retrieve the stored value site.refresh_from_db() self.assertEqual(site.custom_field_data[cf.name], "Option A") # Delete the stored value site.custom_field_data.pop(cf.name) site.save() site.refresh_from_db() self.assertIsNone(site.custom_field_data.get(cf.name)) # Delete the custom field cf.delete() class CustomFieldManagerTest(TestCase): def setUp(self): content_type = ContentType.objects.get_for_model(Site) custom_field = CustomField(type=CustomFieldTypeChoices.TYPE_TEXT, name="text_field", default="foo") custom_field.save() custom_field.content_types.set([content_type]) def test_get_for_model(self): self.assertEqual(CustomField.objects.get_for_model(Site).count(), 1) self.assertEqual(CustomField.objects.get_for_model(VirtualMachine).count(), 0) class CustomFieldAPITest(APITestCase): @classmethod def setUpTestData(cls): content_type = ContentType.objects.get_for_model(Site) # Text custom field cls.cf_text = CustomField(type=CustomFieldTypeChoices.TYPE_TEXT, name="text_field", default="foo") cls.cf_text.save() cls.cf_text.content_types.set([content_type]) # Integer custom field cls.cf_integer = CustomField(type=CustomFieldTypeChoices.TYPE_INTEGER, name="number_field", default=123) cls.cf_integer.save() cls.cf_integer.content_types.set([content_type]) # Boolean custom field cls.cf_boolean = CustomField( type=CustomFieldTypeChoices.TYPE_BOOLEAN, name="boolean_field", default=False, ) cls.cf_boolean.save() cls.cf_boolean.content_types.set([content_type]) # Date custom field cls.cf_date = CustomField( type=CustomFieldTypeChoices.TYPE_DATE, name="date_field", default="2020-01-01", ) cls.cf_date.save() cls.cf_date.content_types.set([content_type]) # URL custom field cls.cf_url = CustomField( type=CustomFieldTypeChoices.TYPE_URL, name="url_field", default="http://example.com/1", ) cls.cf_url.save() cls.cf_url.content_types.set([content_type]) # Select custom field cls.cf_select = CustomField( type=CustomFieldTypeChoices.TYPE_SELECT, name="choice_field", choices=["Foo", "Bar", "Baz"], ) cls.cf_select.default = "Foo" cls.cf_select.save() cls.cf_select.content_types.set([content_type]) statuses = Status.objects.get_for_model(Site) # Create some sites cls.sites = ( Site.objects.create(name="Site 1", slug="site-1", status=statuses.get(slug="active")), Site.objects.create(name="Site 2", slug="site-2", status=statuses.get(slug="active")), ) # Assign custom field values for site 2 cls.sites[1].custom_field_data = { cls.cf_text.name: "bar", cls.cf_integer.name: 456, cls.cf_boolean.name: True, cls.cf_date.name: "2020-01-02", cls.cf_url.name: "http://example.com/2", cls.cf_select.name: "Bar", } cls.sites[1].save() def test_get_single_object_without_custom_field_data(self): """ Validate that custom fields are present on an object even if it has no values defined. """ url = reverse("dcim-api:site-detail", kwargs={"pk": self.sites[0].pk}) self.add_permissions("dcim.view_site") response = self.client.get(url, **self.header) self.assertEqual(response.data["name"], self.sites[0].name) self.assertEqual( response.data["custom_fields"], { "text_field": None, "number_field": None, "boolean_field": None, "date_field": None, "url_field": None, "choice_field": None, }, ) def test_get_single_object_with_custom_field_data(self): """ Validate that custom fields are present and correctly set for an object with values defined. """ site2_cfvs = self.sites[1].custom_field_data url = reverse("dcim-api:site-detail", kwargs={"pk": self.sites[1].pk}) self.add_permissions("dcim.view_site") response = self.client.get(url, **self.header) self.assertEqual(response.data["name"], self.sites[1].name) self.assertEqual(response.data["custom_fields"]["text_field"], site2_cfvs["text_field"]) self.assertEqual(response.data["custom_fields"]["number_field"], site2_cfvs["number_field"]) self.assertEqual(response.data["custom_fields"]["boolean_field"], site2_cfvs["boolean_field"]) self.assertEqual(response.data["custom_fields"]["date_field"], site2_cfvs["date_field"]) self.assertEqual(response.data["custom_fields"]["url_field"], site2_cfvs["url_field"]) self.assertEqual(response.data["custom_fields"]["choice_field"], site2_cfvs["choice_field"]) def test_create_single_object_with_defaults(self): """ Create a new site with no specified custom field values and check that it received the default values. """ data = { "name": "Site 3", "slug": "site-3", "status": "active", } url = reverse("dcim-api:site-list") self.add_permissions("dcim.add_site") response = self.client.post(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) # Validate response data response_cf = response.data["custom_fields"] self.assertEqual(response_cf["text_field"], self.cf_text.default) self.assertEqual(response_cf["number_field"], self.cf_integer.default) self.assertEqual(response_cf["boolean_field"], self.cf_boolean.default) self.assertEqual(response_cf["date_field"], self.cf_date.default) self.assertEqual(response_cf["url_field"], self.cf_url.default) self.assertEqual(response_cf["choice_field"], self.cf_select.default) # Validate database data site = Site.objects.get(pk=response.data["id"]) self.assertEqual(site.custom_field_data["text_field"], self.cf_text.default) self.assertEqual(site.custom_field_data["number_field"], self.cf_integer.default) self.assertEqual(site.custom_field_data["boolean_field"], self.cf_boolean.default) self.assertEqual(str(site.custom_field_data["date_field"]), self.cf_date.default) self.assertEqual(site.custom_field_data["url_field"], self.cf_url.default) self.assertEqual(site.custom_field_data["choice_field"], self.cf_select.default) def test_create_single_object_with_values(self): """ Create a single new site with a value for each type of custom field. """ data = { "name": "Site 3", "slug": "site-3", "status": "active", "custom_fields": { "text_field": "bar", "number_field": 456, "boolean_field": True, "date_field": "2020-01-02", "url_field": "http://example.com/2", "choice_field": "Bar", }, } url = reverse("dcim-api:site-list") self.add_permissions("dcim.add_site") response = self.client.post(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) # Validate response data response_cf = response.data["custom_fields"] data_cf = data["custom_fields"] self.assertEqual(response_cf["text_field"], data_cf["text_field"]) self.assertEqual(response_cf["number_field"], data_cf["number_field"]) self.assertEqual(response_cf["boolean_field"], data_cf["boolean_field"]) self.assertEqual(response_cf["date_field"], data_cf["date_field"]) self.assertEqual(response_cf["url_field"], data_cf["url_field"]) self.assertEqual(response_cf["choice_field"], data_cf["choice_field"]) # Validate database data site = Site.objects.get(pk=response.data["id"]) self.assertEqual(site.custom_field_data["text_field"], data_cf["text_field"]) self.assertEqual(site.custom_field_data["number_field"], data_cf["number_field"]) self.assertEqual(site.custom_field_data["boolean_field"], data_cf["boolean_field"]) self.assertEqual(str(site.custom_field_data["date_field"]), data_cf["date_field"]) self.assertEqual(site.custom_field_data["url_field"], data_cf["url_field"]) self.assertEqual(site.custom_field_data["choice_field"], data_cf["choice_field"]) def test_create_multiple_objects_with_defaults(self): """ Create three news sites with no specified custom field values and check that each received the default custom field values. """ data = ( { "name": "Site 3", "slug": "site-3", "status": "active", }, { "name": "Site 4", "slug": "site-4", "status": "active", }, { "name": "Site 5", "slug": "site-5", "status": "active", }, ) url = reverse("dcim-api:site-list") self.add_permissions("dcim.add_site") response = self.client.post(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(len(response.data), len(data)) for i, obj in enumerate(data): # Validate response data response_cf = response.data[i]["custom_fields"] self.assertEqual(response_cf["text_field"], self.cf_text.default) self.assertEqual(response_cf["number_field"], self.cf_integer.default) self.assertEqual(response_cf["boolean_field"], self.cf_boolean.default) self.assertEqual(response_cf["date_field"], self.cf_date.default) self.assertEqual(response_cf["url_field"], self.cf_url.default) self.assertEqual(response_cf["choice_field"], self.cf_select.default) # Validate database data site = Site.objects.get(pk=response.data[i]["id"]) self.assertEqual(site.custom_field_data["text_field"], self.cf_text.default) self.assertEqual(site.custom_field_data["number_field"], self.cf_integer.default) self.assertEqual(site.custom_field_data["boolean_field"], self.cf_boolean.default) self.assertEqual(str(site.custom_field_data["date_field"]), self.cf_date.default) self.assertEqual(site.custom_field_data["url_field"], self.cf_url.default) self.assertEqual(site.custom_field_data["choice_field"], self.cf_select.default) def test_create_multiple_objects_with_values(self): """ Create a three new sites, each with custom fields defined. """ custom_field_data = { "text_field": "bar", "number_field": 456, "boolean_field": True, "date_field": "2020-01-02", "url_field": "http://example.com/2", "choice_field": "Bar", } data = ( { "name": "Site 3", "slug": "site-3", "status": "active", "custom_fields": custom_field_data, }, { "name": "Site 4", "slug": "site-4", "status": "active", "custom_fields": custom_field_data, }, { "name": "Site 5", "slug": "site-5", "status": "active", "custom_fields": custom_field_data, }, ) url = reverse("dcim-api:site-list") self.add_permissions("dcim.add_site") response = self.client.post(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(len(response.data), len(data)) for i, obj in enumerate(data): # Validate response data response_cf = response.data[i]["custom_fields"] self.assertEqual(response_cf["text_field"], custom_field_data["text_field"]) self.assertEqual(response_cf["number_field"], custom_field_data["number_field"]) self.assertEqual(response_cf["boolean_field"], custom_field_data["boolean_field"]) self.assertEqual(response_cf["date_field"], custom_field_data["date_field"]) self.assertEqual(response_cf["url_field"], custom_field_data["url_field"]) self.assertEqual(response_cf["choice_field"], custom_field_data["choice_field"]) # Validate database data site = Site.objects.get(pk=response.data[i]["id"]) self.assertEqual(site.custom_field_data["text_field"], custom_field_data["text_field"]) self.assertEqual( site.custom_field_data["number_field"], custom_field_data["number_field"], ) self.assertEqual( site.custom_field_data["boolean_field"], custom_field_data["boolean_field"], ) self.assertEqual( str(site.custom_field_data["date_field"]), custom_field_data["date_field"], ) self.assertEqual(site.custom_field_data["url_field"], custom_field_data["url_field"]) self.assertEqual( site.custom_field_data["choice_field"], custom_field_data["choice_field"], ) def test_update_single_object_with_values(self): """ Update an object with existing custom field values. Ensure that only the updated custom field values are modified. """ site = self.sites[1] original_cfvs = {**site.custom_field_data} data = { "custom_fields": { "text_field": "ABCD", "number_field": 1234, }, } url = reverse("dcim-api:site-detail", kwargs={"pk": self.sites[1].pk}) self.add_permissions("dcim.change_site") response = self.client.patch(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) # Validate response data response_cf = response.data["custom_fields"] self.assertEqual(response_cf["text_field"], data["custom_fields"]["text_field"]) self.assertEqual(response_cf["number_field"], data["custom_fields"]["number_field"]) self.assertEqual(response_cf["boolean_field"], original_cfvs["boolean_field"]) self.assertEqual(response_cf["date_field"], original_cfvs["date_field"]) self.assertEqual(response_cf["url_field"], original_cfvs["url_field"]) self.assertEqual(response_cf["choice_field"], original_cfvs["choice_field"]) # Validate database data site.refresh_from_db() self.assertEqual(site.custom_field_data["text_field"], data["custom_fields"]["text_field"]) self.assertEqual( site.custom_field_data["number_field"], data["custom_fields"]["number_field"], ) self.assertEqual(site.custom_field_data["boolean_field"], original_cfvs["boolean_field"]) self.assertEqual(site.custom_field_data["date_field"], original_cfvs["date_field"]) self.assertEqual(site.custom_field_data["url_field"], original_cfvs["url_field"]) self.assertEqual(site.custom_field_data["choice_field"], original_cfvs["choice_field"]) def test_minimum_maximum_values_validation(self): url = reverse("dcim-api:site-detail", kwargs={"pk": self.sites[1].pk}) self.add_permissions("dcim.change_site") self.cf_integer.validation_minimum = 10 self.cf_integer.validation_maximum = 20 self.cf_integer.save() data = {"custom_fields": {"number_field": 9}} response = self.client.patch(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_400_BAD_REQUEST) data = {"custom_fields": {"number_field": 21}} response = self.client.patch(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_400_BAD_REQUEST) data = {"custom_fields": {"number_field": 15}} response = self.client.patch(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) def test_regex_validation(self): url = reverse("dcim-api:site-detail", kwargs={"pk": self.sites[1].pk}) self.add_permissions("dcim.change_site") self.cf_text.validation_regex = r"^[A-Z]{3}$" # Three uppercase letters self.cf_text.save() data = {"custom_fields": {"text_field": "ABC123"}} response = self.client.patch(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_400_BAD_REQUEST) data = {"custom_fields": {"text_field": "abc"}} response = self.client.patch(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_400_BAD_REQUEST) data = {"custom_fields": {"text_field": "ABC"}} response = self.client.patch(url, data, format="json", **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) class CustomFieldImportTest(TestCase): user_permissions = ( "dcim.view_site", "dcim.add_site", "extras.view_status", ) @classmethod def setUpTestData(cls): custom_fields = ( CustomField(name="text", type=CustomFieldTypeChoices.TYPE_TEXT), CustomField(name="integer", type=CustomFieldTypeChoices.TYPE_INTEGER), CustomField(name="boolean", type=CustomFieldTypeChoices.TYPE_BOOLEAN), CustomField(name="date", type=CustomFieldTypeChoices.TYPE_DATE), CustomField(name="url", type=CustomFieldTypeChoices.TYPE_URL), CustomField( name="select", type=CustomFieldTypeChoices.TYPE_SELECT, choices=["Choice A", "Choice B", "Choice C"], ), ) for cf in custom_fields: cf.save() cf.content_types.set([ContentType.objects.get_for_model(Site)]) def test_import(self): """ Import a Site in CSV format, including a value for each CustomField. """ data = ( ( "name", "slug", "status", "cf_text", "cf_integer", "cf_boolean", "cf_date", "cf_url", "cf_select", ), ( "Site 1", "site-1", "active", "ABC", "123", "True", "2020-01-01", "http://example.com/1", "Choice A", ), ( "Site 2", "site-2", "active", "DEF", "456", "False", "2020-01-02", "http://example.com/2", "Choice B", ), ("Site 3", "site-3", "active", "", "", "", "", "", ""), ) csv_data = "\n".join(",".join(row) for row in data) response = self.client.post(reverse("dcim:site_import"), {"csv": csv_data}) self.assertEqual(response.status_code, 200) # Validate data for site 1 site1 = Site.objects.get(name="Site 1") self.assertEqual(len(site1.custom_field_data), 6) self.assertEqual(site1.custom_field_data["text"], "ABC") self.assertEqual(site1.custom_field_data["integer"], 123) self.assertEqual(site1.custom_field_data["boolean"], True) self.assertEqual(site1.custom_field_data["date"], "2020-01-01") self.assertEqual(site1.custom_field_data["url"], "http://example.com/1") self.assertEqual(site1.custom_field_data["select"], "Choice A") # Validate data for site 2 site2 = Site.objects.get(name="Site 2") self.assertEqual(len(site2.custom_field_data), 6) self.assertEqual(site2.custom_field_data["text"], "DEF") self.assertEqual(site2.custom_field_data["integer"], 456) self.assertEqual(site2.custom_field_data["boolean"], False) self.assertEqual(site2.custom_field_data["date"], "2020-01-02") self.assertEqual(site2.custom_field_data["url"], "http://example.com/2") self.assertEqual(site2.custom_field_data["select"], "Choice B") # No custom field data should be set for site 3 site3 = Site.objects.get(name="Site 3") self.assertFalse(any(site3.custom_field_data.values())) def test_import_missing_required(self): """ Attempt to import an object missing a required custom field. """ # Set one of our CustomFields to required CustomField.objects.filter(name="text").update(required=True) form_data = { "name": "Site 1", "slug": "site-1", } form = SiteCSVForm(data=form_data) self.assertFalse(form.is_valid()) self.assertIn("cf_text", form.errors) def test_import_invalid_choice(self): """ Attempt to import an object with an invalid choice selection. """ form_data = {"name": "Site 1", "slug": "site-1", "cf_select": "Choice X"} form = SiteCSVForm(data=form_data) self.assertFalse(form.is_valid()) self.assertIn("cf_select", form.errors) class CustomFieldModelTest(TestCase): @classmethod def setUpTestData(cls): cf1 = CustomField(type=CustomFieldTypeChoices.TYPE_TEXT, name="foo") cf1.save() cf1.content_types.set([ContentType.objects.get_for_model(Site)]) cf2 = CustomField(type=CustomFieldTypeChoices.TYPE_TEXT, name="bar") cf2.save() cf2.content_types.set([ContentType.objects.get_for_model(Rack)]) def test_cf_data(self): """ Check that custom field data is present on the instance immediately after being set and after being fetched from the database. """ site = Site(name="Test Site", slug="test-site") # Check custom field data on new instance site.cf["foo"] = "abc" self.assertEqual(site.cf["foo"], "abc") # Check custom field data from database site.save() site = Site.objects.get(name="Test Site") self.assertEqual(site.cf["foo"], "abc") def test_invalid_data(self): """ Setting custom field data for a non-applicable (or non-existent) CustomField should raise a ValidationError. """ site = Site(name="Test Site", slug="test-site") # Set custom field data site.cf["foo"] = "abc" site.cf["bar"] = "def" with self.assertRaises(ValidationError): site.clean() del site.cf["bar"] site.clean() def test_missing_required_field(self): """ Check that a ValidationError is raised if any required custom fields are not present. """ cf3 = CustomField(type=CustomFieldTypeChoices.TYPE_TEXT, name="baz", required=True) cf3.save() cf3.content_types.set([ContentType.objects.get_for_model(Site)]) site = Site(name="Test Site", slug="test-site") # Set custom field data with a required field omitted site.cf["foo"] = "abc" with self.assertRaises(ValidationError): site.clean() site.cf["baz"] = "def" site.clean() class CustomFieldFilterTest(TestCase): queryset = Site.objects.all() filterset = SiteFilterSet @classmethod def setUpTestData(cls): obj_type = ContentType.objects.get_for_model(Site) # Integer filtering cf = CustomField(name="cf1", type=CustomFieldTypeChoices.TYPE_INTEGER) cf.save() cf.content_types.set([obj_type]) # Boolean filtering cf = CustomField(name="cf2", type=CustomFieldTypeChoices.TYPE_BOOLEAN) cf.save() cf.content_types.set([obj_type]) # Exact text filtering cf = CustomField( name="cf3", type=CustomFieldTypeChoices.TYPE_TEXT, filter_logic=CustomFieldFilterLogicChoices.FILTER_EXACT, ) cf.save() cf.content_types.set([obj_type]) # Loose text filtering cf = CustomField( name="cf4", type=CustomFieldTypeChoices.TYPE_TEXT, filter_logic=CustomFieldFilterLogicChoices.FILTER_LOOSE, ) cf.save() cf.content_types.set([obj_type]) # Date filtering cf = CustomField(name="cf5", type=CustomFieldTypeChoices.TYPE_DATE) cf.save() cf.content_types.set([obj_type]) # Exact URL filtering cf = CustomField( name="cf6", type=CustomFieldTypeChoices.TYPE_URL, filter_logic=CustomFieldFilterLogicChoices.FILTER_EXACT, ) cf.save() cf.content_types.set([obj_type]) # Loose URL filtering cf = CustomField( name="cf7", type=CustomFieldTypeChoices.TYPE_URL, filter_logic=CustomFieldFilterLogicChoices.FILTER_LOOSE, ) cf.save() cf.content_types.set([obj_type]) # Selection filtering cf = CustomField( name="cf8", type=CustomFieldTypeChoices.TYPE_URL, choices=["Foo", "Bar", "Baz"], ) cf.save() cf.content_types.set([obj_type]) Site.objects.create( name="Site 1", slug="site-1", custom_field_data={ "cf1": 100, "cf2": True, "cf3": "foo", "cf4": "foo", "cf5": "2016-06-26", "cf6": "http://foo.example.com/", "cf7": "http://foo.example.com/", "cf8": "Foo", }, ) Site.objects.create( name="Site 2", slug="site-2", custom_field_data={ "cf1": 200, "cf2": False, "cf3": "foobar", "cf4": "foobar", "cf5": "2016-06-27", "cf6": "http://bar.example.com/", "cf7": "http://bar.example.com/", "cf8": "Bar", }, ) Site.objects.create(name="Site 3", slug="site-3", custom_field_data={}) def test_filter_integer(self): self.assertEqual(self.filterset({"cf_cf1": 100}, self.queryset).qs.count(), 1) def test_filter_boolean(self): self.assertEqual(self.filterset({"cf_cf2": True}, self.queryset).qs.count(), 1) self.assertEqual(self.filterset({"cf_cf2": False}, self.queryset).qs.count(), 1) def test_filter_text(self): self.assertEqual(self.filterset({"cf_cf3": "foo"}, self.queryset).qs.count(), 1) self.assertEqual(self.filterset({"cf_cf4": "foo"}, self.queryset).qs.count(), 2) def test_filter_date(self): self.assertEqual(self.filterset({"cf_cf5": "2016-06-26"}, self.queryset).qs.count(), 1) def test_filter_url(self): self.assertEqual( self.filterset({"cf_cf6": "http://foo.example.com/"}, self.queryset).qs.count(), 1, ) self.assertEqual(self.filterset({"cf_cf7": "example.com"}, self.queryset).qs.count(), 2) def test_filter_select(self): self.assertEqual(self.filterset({"cf_cf8": "Foo"}, self.queryset).qs.count(), 1)
[ "lampwins@gmail.com" ]
lampwins@gmail.com
6085fa5fa51974ff53fe7e99f64baa10359cb313
5b51f0ccdfdc6f9d74a0259fc723c1557d115776
/ex39.py
8526dd6345ee6b626f7319aec36ceeb66aa2c2ed
[]
no_license
vacpy/learn_py
4943b65c7b462d0686d0a6dace9918c69d713cc2
cb2b37216ba8410cb621648acbf241b27315e301
refs/heads/master
2020-03-12T19:48:38.155583
2018-05-01T14:56:51
2018-05-01T14:56:51
130,792,092
0
0
null
null
null
null
UTF-8
Python
false
false
2,155
py
# /usr/bin/python # _*_coding:UTF-8_*_ #################### Dictionary lovely dictionary ##################### #Create a mapping of state to abbreviation(缩写词) states ={ 'Oregon':'OR', 'Florida':'FL', 'California':'CA', 'New York':'NY', 'Michigan':'MI' } #定义字典:州名的缩写。键:全拼;值:缩写 #Create a basic set of states and some cities in them cities = { 'CA':'San francisco', 'MI':'Detroit', 'FL':'Jacksonville' } #定义字典:缩写的城市名。键:缩写;值:全拼 # add some more cities #添加字典cities内容。添加2个键,2个城市全拼 cities['NY'] = 'New York' cities['OR'] = 'Portland' #print out some cities print('-' * 30) #打印30个"-",下同 print("NY State has:",cities['NY']) print("OR state has :",cities['OR']) #print some states print('-' * 30) print("Michigan's abbreviation is:",states['Michigan']) print("Florida's abbreviation is :",states['Florida']) #do it by using the state then cities dict print('-' * 30) print("Michigan has:",cities[states['Michigan']]) print("Florida has:",cities[states['Florida']]) #print every state abbreviation print('-' * 30) for state,abbrev in states.items(): print("%s is abbreviated %s" % (state,abbrev)) #print every city in state print('-' * 30) for abbrev,city in cities.items(): print("%s has the city %s" % (abbrev,city)) #now do both at the same time print('-' * 30) for state,abbrev in states.items(): print(" %s state is abbreviated %s and has city %s" % (state,abbrev,cities[abbrev])) print('-' * 30) #safely get a abbreviation by state that might not be there state = states.get('Texas',None) if not state: print("Sorry,no Texas.") #get a city with a default value city = cities.get('Tx','Does Not Exist') print("The city for the state 'TX' is : %s " % city)
[ "noreply@github.com" ]
vacpy.noreply@github.com
2a96aaa69a1a43083900fb4b48c371c79a72b6f6
20f5b61affc0bb74c97fd1239f3c3f2a06b47849
/net/loss.py
feb3332623b2c62e1f64aeab4e4ad27d57ebe44d
[]
no_license
n063h/ml_final
2f54fc9adc1a15a08d85bf2bb18fdd3218ec8e71
3d3adb9941cf798bb813757339ee7accadb234fd
refs/heads/main
2023-02-04T00:01:37.177865
2020-12-27T17:23:39
2020-12-27T17:23:39
322,206,279
1
0
null
null
null
null
UTF-8
Python
false
false
1,694
py
import torch import torch.nn as nn import torch.nn.functional as F device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') class featureMapLoss(nn.Module): def __init__(self,loss='yolo'): super(featureMapLoss, self).__init__() self.loss=loss def forward(self, pred_tensor, target_tensor): ''' pred_tensor: (tensor) size(batchsize,S,S,15) [x,y,w,h,c] target_tensor: (tensor) size(batchsize,S,S,15) ''' batch_size,s,_,cls_size= pred_tensor.shape #nonzero[i]=[j,j]表示第i个样本的j,k点是目标中心 nonzero=torch.nonzero(target_tensor)[:,1:3].to(device) class_pred=torch.zeros(batch_size,cls_size).to(device) class_target=torch.zeros(batch_size,cls_size).to(device) for i in range(batch_size): j,k=nonzero[i] class_target[i]=target_tensor[i][j][k] class_pred[i]=pred_tensor[i][j][k] if self.loss=='yolo': class_loss = F.mse_loss(class_pred, class_target, size_average=True) elif self.loss=='softmax_yolo': class_pred = class_pred.softmax(dim=1) class_loss = F.mse_loss(class_pred, class_target, size_average=True) else: # 每个样本只留一维值,交叉熵自带softmax class_target = class_target.argmax(axis=1) loss_func=nn.CrossEntropyLoss() class_loss = loss_func(class_pred, class_target) return class_loss if __name__ == '__main__': r1 = torch.randn(10, 6, 6, 3) r2 = torch.zeros(10, 6, 6, 3) for i in range(10): r2[i][2][3][1] = 1 l=featureMapLoss() s1=l.forward(r1,r2)
[ "20210240109@fudan.edu.cn" ]
20210240109@fudan.edu.cn
ec43c00394ec7bc8a8dccee4e12ea3ec428e49f6
2af4823ae83fbcc780ef538bd02fa5bf3a51208c
/ABC129/A.py
17ef028046926f60cdd3a1b8c937294515ab1d34
[]
no_license
jre233kei/procon-atcoder
102420cc246a5123ac9774f8b28440f1d8b70b0f
c463c9c92d45f19fba32d0c8a25f97d73db67bc5
refs/heads/master
2022-12-04T09:30:39.271433
2020-08-14T11:38:46
2020-08-14T11:38:46
276,779,835
0
0
null
null
null
null
UTF-8
Python
false
false
58
py
p,q,r = map(int, input().split()) print(min(p+q,q+r,p+r))
[ "jre233kei+github@gmail.com" ]
jre233kei+github@gmail.com
59c5b022f4fb9fa93415e6168bf273a82b3edd24
87e0a352cb1081b6d9ba414c32b672bed8ad70f4
/grid2D.py
51df9980ff006f03f260f4e5bf834fd55b6ce483
[]
no_license
ykzhou/lieb-thirring
5f0df15fff702122d4beb15404ccac5df16477b3
5341371b58374b673ac06ab8f42323ebec3e9bbe
refs/heads/master
2020-04-16T07:42:37.394694
2012-04-26T13:05:57
2012-04-26T13:05:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
676
py
from __future__ import division import functions import numpy as np import scipy import scipy.sparse class Grid2D: def __init__(self,N=100,L=10.0,d=1): self.N = N self.L = L self.d = d self.onedgrid = np.linspace(-L,L,N) self.x,self.y = np.meshgrid(self.onedgrid, self.onedgrid) self.r = np.sqrt(self.x**2 + self.y**2) self.theta = np.arctan2(self.x,self.y) self.delta = self.onedgrid[1] - self.onedgrid[0] Delta1D = functions.tridiag(N,-1,2,-1)/self.delta**2 eye = functions.tridiag(N,0,1,0) self.Delta = scipy.sparse.kron(Delta1D,eye,'csr') + scipy.sparse.kron(eye,Delta1D,'csr')
[ "antoine.levitt@gmail.com" ]
antoine.levitt@gmail.com
82a04ed80cb067a982cfd53c08ad02cbef9bec70
e24ea16a26386cabda970299f4cf6ab8905ec307
/tests/data/instance_test.py
7c8ef03f29f8e329d39976d5b3073ce1d127d206
[ "Apache-2.0" ]
permissive
eladsegal/allennlp
c3f7ee9c0586ba63f435442abfff15546524450b
f1f803e85aff1b67319c8cf51674095b9a5a6c18
refs/heads/master
2023-03-18T21:48:31.101172
2021-07-29T20:52:34
2021-07-29T20:52:34
221,441,294
3
1
Apache-2.0
2023-03-07T13:58:12
2019-11-13T11:15:12
Python
UTF-8
Python
false
false
1,643
py
from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Instance from allennlp.data.fields import TextField, LabelField from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import Token class TestInstance(AllenNlpTestCase): def test_instance_implements_mutable_mapping(self): words_field = TextField([Token("hello")], {}) label_field = LabelField(1, skip_indexing=True) instance = Instance({"words": words_field, "labels": label_field}) assert instance["words"] == words_field assert instance["labels"] == label_field assert len(instance) == 2 keys = {k for k, v in instance.items()} assert keys == {"words", "labels"} values = [v for k, v in instance.items()] assert words_field in values assert label_field in values def test_duplicate(self): # Verify the `duplicate()` method works with a `PretrainedTransformerIndexer` in # a `TextField`. See https://github.com/allenai/allennlp/issues/4270. instance = Instance( { "words": TextField( [Token("hello")], {"tokens": PretrainedTransformerIndexer("bert-base-uncased")} ) } ) other = instance.duplicate() assert other == instance # Adding new fields to the original instance should not effect the duplicate. instance.add_field("labels", LabelField("some_label")) assert "labels" not in other.fields assert other != instance # sanity check on the '__eq__' method.
[ "noreply@github.com" ]
eladsegal.noreply@github.com
7dd7314d9e9433d8012c255fa879d845639f1134
5516cf5a3aa871d78791ba5669a16368c179d645
/runtests.py
9c8f8b24a7a99e2bebe3b9e7cc1c454adafb661b
[]
no_license
lambdalisue/django-observer
1af577e4e02d710e8806312ad8d195142e9f68f4
052e0da55eefc8072cc78e0b9d72bc29c4e528c0
refs/heads/develop
2021-01-01T16:13:01.150667
2018-03-06T01:41:47
2018-03-06T01:41:47
3,034,956
27
4
null
2018-03-06T01:41:48
2011-12-22T16:19:58
Python
UTF-8
Python
false
false
2,045
py
#!/usr/bin/env python #============================================================================== # A generic django app test running script. # # Author: Alisue <lambdaliuse@hashnote.net> # License: MIT license #============================================================================== import os import sys import optparse # argparse is prefered but it require python 2.7 or higher # You can defined the default test apps here DEFAULT_TEST_APPS = ( 'observer', ) def console_main(args=None): parser = optparse.OptionParser(usage="python runtest.py [options] <apps>") parser.add_option('-v', '--verbosity', default='1', choices=('0', '1', '2', '3'), help=("Verbosity level; 0=minimal output, 1=normal " "output, 2=verbose output, 3=very verbose " "output")) parser.add_option('-i', '--interactive', action='store_true') parser.add_option('-b', '--base-dir', default=None, help=("The base directory of the code. Used for " "python 3 compiled codes.")) opts, apps = parser.parse_args(args) if len(apps) == 0: apps = DEFAULT_TEST_APPS run_tests(apps, verbosity=int(opts.verbosity), interactive=opts.interactive, base_dir=opts.base_dir) def run_tests(app_tests, verbosity=1, interactive=False, base_dir=None): base_dir = base_dir or os.path.dirname(__file__) sys.path.insert(0, os.path.join(base_dir, 'src')) sys.path.insert(0, os.path.join(base_dir, 'tests')) os.environ['DJANGO_SETTINGS_MODULE'] = 'settings' from django.conf import settings from django.test.utils import get_runner TestRunner = get_runner(settings) test_runner = TestRunner(verbosity=verbosity, interactive=interactive, failfast=False) failures = test_runner.run_tests(app_tests) sys.exit(bool(failures)) if __name__ == '__main__': console_main()
[ "lambdalisue@hashnote.net" ]
lambdalisue@hashnote.net
76481456f12c3d410caac04e2b3c59996e86c378
8e7b60de4dc314a4419d86067db4a65de847bff1
/Assignment3/gui.py
18e6634070dad5d7ac1825fc746ae872355b5c6e
[]
no_license
teofilp/Artificial-Intelligence
c3ee4a137298fb01770c91c59fc2dfe783e12c9f
0950099fd0a6fecbf44a96f6149de217a8829136
refs/heads/main
2023-05-12T04:45:29.496676
2021-06-03T11:10:30
2021-06-03T11:10:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,506
py
# -*- coding: utf-8 -*- from pygame.locals import * import pygame, time from utils import * from domain import * def initPyGame(dimension): # init the pygame pygame.init() logo = pygame.image.load("logo32x32.png") pygame.display.set_icon(logo) pygame.display.set_caption("drone exploration with AE") # create a surface on screen that has the size of 800 x 480 screen = pygame.display.set_mode(dimension) screen.fill(WHITE) return screen def closePyGame(): # closes the pygame running = True # loop for events while running: # event handling, gets all event from the event queue for event in pygame.event.get(): # only do something if the event is of type QUIT if event.type == pygame.QUIT: # change the value to False, to exit the main loop running = False pygame.quit() def movingDrone(currentMap, path, speed=1, markSeen = True): # animation of a drone on a path screen = initPyGame((currentMap.n * 20, currentMap.m * 20)) drona = pygame.image.load("drona.png") for i in range(len(path)): screen.blit(image(currentMap), (0,0)) if markSeen: brick = pygame.Surface((20,20)) brick.fill(GREEN) for j in range(i+1): for var in v: x = path[j][0] y = path[j][1] while ((0 <= x + var[0] < currentMap.n and 0 <= y + var[1] < currentMap.m) and currentMap.surface[x + var[0]][y + var[1]] != 1): x = x + var[0] y = y + var[1] screen.blit(brick, ( y * 20, x * 20)) screen.blit(drona, (path[i][1] * 20, path[i][0] * 20)) pygame.display.flip() time.sleep(0.5 * speed) closePyGame() def image(currentMap, colour = BLUE, background = WHITE): # creates the image of a map imagine = pygame.Surface((currentMap.n * 20, currentMap.m * 20)) brick = pygame.Surface((20,20)) brick.fill(colour) imagine.fill(background) for i in range(currentMap.n): for j in range(currentMap.m): if (currentMap.surface[i][j] == 1): imagine.blit(brick, (j * 20, i * 20)) return imagine
[ "noreply@github.com" ]
teofilp.noreply@github.com
e37c3f1033d9c67cfcf99289be5263a434d8c8ba
8ef8e6818c977c26d937d09b46be0d748022ea09
/cv/semantic_segmentation/unet++/pytorch/tools/convert_datasets/drive.py
4ede22c59d5268852092f96560f28285dc1da66d
[ "Apache-2.0" ]
permissive
Deep-Spark/DeepSparkHub
eb5996607e63ccd2c706789f64b3cc0070e7f8ef
9d643e88946fc4a24f2d4d073c08b05ea693f4c5
refs/heads/master
2023-09-01T11:26:49.648759
2023-08-25T01:50:18
2023-08-25T01:50:18
534,133,249
7
6
Apache-2.0
2023-03-28T02:54:59
2022-09-08T09:07:01
Python
UTF-8
Python
false
false
4,237
py
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import tempfile import zipfile import cv2 import mmcv def parse_args(): parser = argparse.ArgumentParser( description='Convert DRIVE dataset to mmsegmentation format') parser.add_argument( 'training_path', help='the training part of DRIVE dataset') parser.add_argument( 'testing_path', help='the testing part of DRIVE dataset') parser.add_argument('--tmp_dir', help='path of the temporary directory') parser.add_argument('-o', '--out_dir', help='output path') args = parser.parse_args() return args def main(): args = parse_args() training_path = args.training_path testing_path = args.testing_path if args.out_dir is None: out_dir = osp.join('data', 'DRIVE') else: out_dir = args.out_dir print('Making directories...') mmcv.mkdir_or_exist(out_dir) mmcv.mkdir_or_exist(osp.join(out_dir, 'images')) mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training')) mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation')) mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations')) mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training')) mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation')) with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir: print('Extracting training.zip...') zip_file = zipfile.ZipFile(training_path) zip_file.extractall(tmp_dir) print('Generating training dataset...') now_dir = osp.join(tmp_dir, 'training', 'images') for img_name in os.listdir(now_dir): img = mmcv.imread(osp.join(now_dir, img_name)) mmcv.imwrite( img, osp.join( out_dir, 'images', 'training', osp.splitext(img_name)[0].replace('_training', '') + '.png')) now_dir = osp.join(tmp_dir, 'training', '1st_manual') for img_name in os.listdir(now_dir): cap = cv2.VideoCapture(osp.join(now_dir, img_name)) ret, img = cap.read() mmcv.imwrite( img[:, :, 0] // 128, osp.join(out_dir, 'annotations', 'training', osp.splitext(img_name)[0] + '.png')) print('Extracting test.zip...') zip_file = zipfile.ZipFile(testing_path) zip_file.extractall(tmp_dir) print('Generating validation dataset...') now_dir = osp.join(tmp_dir, 'test', 'images') for img_name in os.listdir(now_dir): img = mmcv.imread(osp.join(now_dir, img_name)) mmcv.imwrite( img, osp.join( out_dir, 'images', 'validation', osp.splitext(img_name)[0].replace('_test', '') + '.png')) now_dir = osp.join(tmp_dir, 'test', '1st_manual') if osp.exists(now_dir): for img_name in os.listdir(now_dir): cap = cv2.VideoCapture(osp.join(now_dir, img_name)) ret, img = cap.read() # The annotation img should be divided by 128, because some of # the annotation imgs are not standard. We should set a # threshold to convert the nonstandard annotation imgs. The # value divided by 128 is equivalent to '1 if value >= 128 # else 0' mmcv.imwrite( img[:, :, 0] // 128, osp.join(out_dir, 'annotations', 'validation', osp.splitext(img_name)[0] + '.png')) now_dir = osp.join(tmp_dir, 'test', '2nd_manual') if osp.exists(now_dir): for img_name in os.listdir(now_dir): cap = cv2.VideoCapture(osp.join(now_dir, img_name)) ret, img = cap.read() mmcv.imwrite( img[:, :, 0] // 128, osp.join(out_dir, 'annotations', 'validation', osp.splitext(img_name)[0] + '.png')) print('Removing the temporary files...') print('Done!') if __name__ == '__main__': main()
[ "mingjiang.li@iluvatar.ai" ]
mingjiang.li@iluvatar.ai
8b4bb0160b2b5b09c9b5cd8ecf09b5b6879dafaf
6817457f2f7cb635e84d5ac23c76873628fb04cf
/src/dama/data/csv.py
238e7ff00d7b2d00f3f5813c3dd483769a1050b8
[ "Apache-2.0" ]
permissive
elaeon/dama_ml
5d9a63e0daabe332a08b13813de57d9ed2608015
8b56c62a28c69987fc5dbd8a47406a3a22214371
refs/heads/master
2021-10-26T05:24:10.166028
2019-04-11T00:55:44
2019-04-11T00:55:44
58,218,206
2
0
null
null
null
null
UTF-8
Python
false
false
4,797
py
# https://stackoverflow.com/questions/13044562/python-mechanism-to-identify-compressed-file-type-and-uncompress import csv import zipfile # import bz2 # import gzip import numpy as np from io import StringIO, TextIOWrapper from operator import itemgetter from tqdm import tqdm def get_compressed_file_manager_ext(filepath): ext = filepath.split(".").pop() for cls in (File, ZIPFile): if cls.proper_extension == ext: return cls(filepath) # class PandasEngine: # def read_csv(*args, **kwargs): # if "batch_size" in kwargs: # kwargs['chunksize'] = kwargs['batch_size'] # batch_size = kwargs['batch_size'] # del kwargs['batch_size'] # else: # batch_size = 0 # df = pd.read_csv(*args, **kwargs) # it = Iterator(df) # if batch_size == 0: # return it # else: # return BatchIterator(it, batch_size=batch_size) class File(object): magic = None file_type = 'csv' mime_type = 'text/plain' proper_extension = 'csv' def __init__(self, filepath): self.filepath = filepath self.engine = None # PandasEngine def read(self, columns=None, exclude: bool=False, df: bool=True, filename: str=None, **kwargs): if exclude is True: cols = lambda col: col not in columns elif exclude is False and columns: cols = lambda col: col in columns else: cols = None return self.engine.read_csv(self.filepath, usecols=cols, **kwargs) def write(self, iterator, header=None, delimiter: str=",") -> None: with open(self.filepath, 'w') as f: csv_writer = csv.writer(f, delimiter=delimiter) if header is not None: csv_writer.writerow(header) for row in tqdm(iterator): csv_writer.writerow(row) @property def dtypes(self): return self.engine.read_csv(self.filepath).dtypes @classmethod def is_magic(self, data): if self.magic is not None: return data.startswith(self.magic) return True class ZIPFile(File): magic = '\x50\x4b\x03\x04' file_type = 'zip' mime_type = 'compressed/zip' proper_extension = 'zip' def read(self, filename=None, columns=None, exclude=False, batch_type="df", **kwargs): if filename is None and batch_type == "df": return super(ZIPFile, self).read(columns=columns, exclude=exclude, **kwargs) else: iter_ = self._read_another_file(filename, columns, kwargs.get("delimiter")) dtype = [(col, np.dtype("object")) for col in next(iter_)] nrows = kwargs.get("nrows", None) # if nrows is None: # it = Iterator(iter_, dtypes=dtype).batchs(batch_size=kwargs.get("batch_size", 0), batch_type=batch_type) # else: # it = Iterator(iter_, dtypes=dtype)[:nrows].batchs(batch_size=kwargs.get("batch_size", 0), batch_type=batch_type) # return it def _read_another_file(self, filename, columns, delimiter): with zipfile.ZipFile(self.filepath, 'r') as zf: # files = zf.namelist() with zf.open(filename, 'r') as f: csv_reader = csv.reader(TextIOWrapper(f, encoding="utf8"), delimiter=delimiter) yield next(csv_reader) if columns is None: for row in csv_reader: yield row else: for row in csv_reader: yield itemgetter(*columns)(row) def write(self, iterator, header=None, filename=None, delimiter=",") -> None: with zipfile.ZipFile(self.filepath, "w", zipfile.ZIP_DEFLATED) as zf: output = StringIO() csv_writer = csv.writer(output, delimiter=delimiter) if header is not None: csv_writer.writerow(header) for row in tqdm(iterator): csv_writer.writerow(row) if filename is None: filename = self.filepath.split("/")[-1] filename = filename.split(".")[:-1] if len(filename) == 1: filename = "{}.csv".format(filename[0]) else: filename = ".".join(filename) zf.writestr(filename, output.getvalue()) output.close() #class BZ2File (CompressedFile): # magic = '\x42\x5a\x68' # file_type = 'bz2' # mime_type = 'compressed/bz2' # def open(self): # return bz2.BZ2File(self.f) #class GZFile (CompressedFile): # magic = '\x1f\x8b\x08' # file_type = 'gz' # mime_type = 'compressed/gz' # def open(self): # return gzip.GzipFile(self.f)
[ "mara80@gmail.com" ]
mara80@gmail.com
4faf6c7566c0ff3ad6f931736c833bc214d55dae
ec94aebf07c808e21f5083042f4e8220c957b0da
/speedUpdating.py
b703139a08b2fc79afbfc3a8936e38a7fede8f29
[]
no_license
Attler/speed-updating
ef50e0f969a06e6758b6552c6ec45cdf49146ea7
66103742c557bdca806d61529d46ebc6f8564f3a
refs/heads/master
2022-12-12T13:50:50.971079
2020-09-13T14:16:22
2020-09-13T14:16:22
294,152,026
1
0
null
null
null
null
UTF-8
Python
false
false
4,788
py
import csv import math from random import randrange, shuffle import copy input_file = 'Speed Updating Questions.csv' # Reads input of .csv file of list of persons and their answers to the form questions # def read_form(input): # with open(input, encoding="utf8") as csvfile: # people = [] # reader = csv.reader(csvfile) # for row in reader: # people.append(row) # q_text = people[1][1:] # people = people[1:] # for index, person in enumerate(people): # people[index] = person[1:] # return people # Returns squared difference in answer values for question q_index and persons p1 and p2 def chat_score(chat): p1, p2, q_index = chat p1_ans = p1[q_index] p2_ans = p2[q_index] if (p1_ans == None) or (p2_ans == None): return (-100) # large negative for questions people don't want to talk about return (abs(p1_ans - p2_ans)) ** 2 # Returns overall match score of full arrangment of persons def arrangement_score(arrangement): return sum(map(chat_score, arrangement)) def init_arrangement(people): n_people = len(people) n_ques = len(people[0]) - 2 arrangement = [] # shuffle(people) for i in range(0, n_people, 2): # assuming even number of people p1 = people[i] p2 = people[i + 1] q_index = randrange(n_ques) + 1 # random question index chat = (p1, p2, q_index) # print('pair:',people[i][0],'&',people[i+1][0]) if len(chat) == 3: arrangement.append(chat) return arrangement def random_step(arrangement): trial_arrangement = arrangement.copy() # create new list so original isn't modified n1 = randrange(len(trial_arrangement)) # swap random pair n2 = randrange(len(trial_arrangement)) s1 = trial_arrangement[n1][0] s2 = trial_arrangement[n2][0] trial_arrangement[n1] = (s2, trial_arrangement[n1][1], trial_arrangement[n1][2]) trial_arrangement[n2] = (s1, trial_arrangement[n2][1], trial_arrangement[n2][2]) # print('\nRandomstep') # for pair in arrangement: # print('pair:',pair[0][0],'&',pair[1][0]) # print('score',arrangement_score(arrangement)) return trial_arrangement def local_search(people, steps): init_arr = init_arrangement(people) current = init_arr for i in range(steps): new = random_step(current) if (arrangement_score(current) < arrangement_score(new)): # find better arrangement change = arrangement_score(new) - arrangement_score(current) print(' ' + str(arrangement_score(current))) current = new print(' +', change) return current ##---------------------------------------------## answer_translation = {'Strongly Agree': 3, 'Agree': 2, 'Somewhat Agree': 1, 'Unsure': 0, 'Somewhat Disagree': -1, 'Disagree': -2, 'Strongly Disagree': -3, '': None, 'I don\'t want to talk about this question': None} ##---------------------------------------------## i = 0 num_iterations = 100 overall_best_score = 0 overall_best_arrangement = [] while i < num_iterations: # load data from csv with open(input_file, encoding="utf8") as csvfile: people = [] reader = csv.reader(csvfile) for row in reader: people.append(row) q_text = people[0][1:] people = people[1:] for index, person in enumerate(people): people[index] = person[1:] print(people[0]) # store data in numerical form for person in people: for index, answer in enumerate(person): if index == 0: # ignore first column continue person[index] = answer_translation[answer] # get answer value print(people[0]) output = local_search(people, steps=50) output_score = arrangement_score(output) print(str(i) + ': final overall score: ' + str(output_score)) # for pair in output: # question_index = pair[2] # print('pair:',pair[0][0],'&',pair[1][0]) # print('question:',q_text[question_index]) # print(pair[0][question_index]) # print(pair[1][question_index]) if (output_score > overall_best_score): overall_best_score = output_score overall_best_arrangement = output i = i + 1 print('Finished!') print('best score:', overall_best_score) for pair in overall_best_arrangement: question_index = pair[2] print('pair:', pair[0][0], '&', pair[1][0]) print('question:', q_text[question_index]) print(pair[0][question_index], 'vs', pair[1][question_index])
[ "Jason.hepbun@students.mq.edu.au" ]
Jason.hepbun@students.mq.edu.au
ec7bb247496ec2cb345949a5669594ad7dbcdaa0
b44ee1ca67e5e1abf38535764ba51d392f9bc74c
/question_01_99/question_21.py
7627dba8f1ec1db0e9bfbec5abe55035352502a7
[]
no_license
song61069140/LeetCodePython
c9cec3735e7006c26b4f159543996160ae29382b
2a953428018d1656695dbfe58d0bc7c9888224da
refs/heads/master
2020-08-01T05:12:02.451158
2019-11-23T01:16:12
2019-11-23T01:16:12
210,875,593
0
0
null
null
null
null
UTF-8
Python
false
false
883
py
""" 将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。  示例: 输入:1->2->4, 1->3->4 输出:1->1->2->3->4->4 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/merge-two-sorted-lists 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 """ # Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def mergeTwoLists(self, l1, l2): """ :type l1: ListNode :type l2: ListNode :rtype: ListNode """ if l1 and l2: if l1.val > l2.val: l1, l2 = l2, l1 l1.next = self.mergeTwoLists(l1.next, l2) return l1 or l2
[ "song61069140@gmail.com" ]
song61069140@gmail.com
248015e3a03e3313933cea852de548f414c40a1c
737fadb5c9ce8baca27e052e052d516c93c14173
/lainxi.py
c6f6cbaf986d2413308dfe8d7ab689871138b6b0
[]
no_license
Winona1234/maoyan
afe6a639a6b8522c203adb4a984c0242b5ea5e33
18e94dc118c53bd478ff9b6e0c3e17ecf7776273
refs/heads/master
2023-01-04T16:24:25.753013
2020-10-28T07:54:11
2020-10-28T07:54:11
307,943,442
0
0
null
null
null
null
UTF-8
Python
false
false
211
py
# -*- coding=utf-8 -*- # @Time:2020/10/11 12:04 下午 # Author :王文娜 # @File:lainxi.py # @Software:PyCharm print('hello world'.strip()) print('hello world'.split(' ')) print('hello world'.replace(' ','#'))
[ "wangwena2018@163.com" ]
wangwena2018@163.com
4be2d42dd8b3ba052d22c1ec358b13481d058d20
6b899fe7bb952fe46ef6ae9cccdca4f2e0cfe89e
/conf.py
5c4d31ab9c7b8a2722fff897537f203cf379f997
[]
no_license
cknowledge/docs
8d1461c299f578207aeaf01916d05c299b97f49c
62983632ef5208dea8334db4cd78dc79eda23592
refs/heads/master
2022-12-27T04:20:13.076580
2020-10-11T14:32:06
2020-10-11T14:32:06
287,727,678
0
0
null
null
null
null
UTF-8
Python
false
false
6,663
py
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) sys.path.insert(0, os.path.abspath('_ext')) sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = u'Collective Knowledge platform' copyright = u'2015-2020 Grigori Fursin and the cTuning foundation' author = u'Grigori Fursin' version='1.3.1' release=version edit_on_github_url='https://github.com' edit_on_github_project = 'ctuning/ck' # The short X.Y version #version = u'0.7.18' # The full version, including alpha/beta/rc tags #release = u'' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', 'recommonmark' ] autosummary_generate = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md', '.html'] #source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [u'_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' html_show_sourcelink = False # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { 'style_nav_header_background': 'black', 'collapse_navigation': False, 'style_external_links': True, 'analytics_id': 'UA-5727962-14', # Provided by Google in your dashboard } html_context = { "display_github": True, "github_user": "ctuning", "github_repo": "ck", "github_version": "master/docs/", } html_logo = 'static/logo.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'CKDoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'ck.tex', u'Collective Knowledge', u'Grigori Fursin', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'ck.tex', u'Collective Knowledge', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'ck.tex', u'Collective Knowledge', author, 'CK', 'Collective Knowledge about complex computational systems', 'reproducibility'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True def setup(app): app.add_stylesheet('css/custom.css')
[ "Grigori.Fursin@cTuning.org" ]
Grigori.Fursin@cTuning.org
42ad8c9644b372819d2919e610498c96c2128557
64ff26ba380bf35aa161022a7dce2572acad95f9
/app/forms.py
1af1ce03a3c8833d0ed5ad4b93a933070cb9fb53
[]
no_license
naritotakizawa/django-monthly-formset-sample
9e517e1305fbf57a2677f069bfd9a82b312709cb
7e6667077a0e986695de230cdc5e616576896eef
refs/heads/master
2020-05-30T14:41:20.274643
2019-06-02T02:45:50
2019-06-02T02:45:50
189,797,447
0
0
null
null
null
null
UTF-8
Python
false
false
444
py
from django import forms from .models import Monthly, Daily DailyInlineFormset = forms.inlineformset_factory( Monthly, Daily, exclude=['day'], # 日にちは編集できないようにする extra=0, can_delete=False ) # 一般的にはclass MonthlyForm のように作りますが、ちょっとしたものなら関数で作ることもできます。 MonthlyForm = forms.modelform_factory(Monthly, fields=['comment'])
[ "toritoritorina@gmail.com" ]
toritoritorina@gmail.com
dc173b3cec82d48d340fb71841d9891121935bf7
89294b5cc300950b878cd7ed0def132081408da0
/attic_greek/test_modules/contracted_future.py
b0cc9cf0494ba78e253b5b6f643a69c59f396450
[]
no_license
matt-gardner/language-study
aa434d3cf40b6752baeee0ccc9a40b80e0497ba1
c0d7066851ce4e04a8a0cf3c33bc9f91ae34e304
refs/heads/master
2020-12-24T16:24:17.531025
2016-03-12T23:03:39
2016-03-12T23:03:39
27,920,403
0
0
null
null
null
null
UTF-8
Python
false
false
2,262
py
#!/usr/bin/env python # -*- encoding: utf-8 -*- from attic_greek.conjugation import GreekConjugation from attic_greek.test_modules import verbs, verb_cases, GreekTestCase import unicodedata class ContractedFutureTest(GreekTestCase): """We just test a few forms here, because we've tested most of this already. The main point here is just to be sure that contraction works in the future tenses. """ def test_elauno(self): args = {} args['tense'] = 'Future' args['mood'] = 'Indicative' args['voice'] = 'Active' answers = [u'ἐλῶ', u'ἐλᾷς', u'ἐλᾷ', u'ἐλῶμεν', u'ἐλᾶτε', u'ἐλῶσι'] answers = [unicodedata.normalize('NFKD', word) for word in answers] conj = GreekConjugation(verbs['elauno'].word.word) for case, answer in zip(verb_cases, answers): args.update(case) self.failUnlessEqual(conj.conjugate(**args), [answer]) def test_aggello(self): args = {} args['tense'] = 'Future' args['mood'] = 'Indicative' args['voice'] = 'Active' answers = [u'ἀγγελῶ', u'ἀγγελεῖς', u'ἀγγελεῖ', u'ἀγγελοῦμεν', u'ἀγγελεῖτε', u'ἀγγελοῦσι'] answers = [unicodedata.normalize('NFKD', word) for word in answers] conj = GreekConjugation(verbs['aggello'].word.word) for case, answer in zip(verb_cases, answers): args.update(case) self.failUnlessEqual(conj.conjugate(**args), [answer]) def test_maxomai(self): args = {} args['tense'] = 'Future' args['mood'] = 'Indicative' args['voice'] = 'Middle' # TODO: Should be deponent... answers = [u'μαχοῦμαι', u'μαχεῖ', u'μαχεῖται', u'μαχούμεθα', u'μαχεῖσθε', u'μαχοῦνται'] answers = [unicodedata.normalize('NFKD', word) for word in answers] conj = GreekConjugation(verbs['maxomai'].word.word) for case, answer in zip(verb_cases, answers): args.update(case) self.failUnlessEqual(conj.conjugate(**args), [answer]) all_tests = [ContractedFutureTest] # vim: et sw=4 sts=4
[ "mjg82@byu.edu" ]
mjg82@byu.edu
2db96682befc29600a69ec10146c79fa2573df68
b6ae8525b61f8302381efa3da1963c3d60d290f2
/starterapp/views.py
4ff3e035b06b511d0bb1d9ef4982b0ad51a85ccd
[]
no_license
vince06fr/django-buddy
b7d713ba90d832753619c9a9ae0913f16ce3eeff
180b8011d38e5e2fecbe542fccb49466833422a8
refs/heads/master
2020-12-25T10:37:53.525148
2012-10-25T03:03:20
2012-10-25T03:03:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,164
py
from django.contrib.auth import authenticate, login from django.contrib.auth import logout as auth_logout from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect from django.views.generic.base import View from django.shortcuts import render, render_to_response def logout(request): auth_logout(request) return HttpResponseRedirect('/') def home(request): template = 'home.html' context = {} return render_to_response(template, context) class LandingView(View): template = 'login.html' def get(self, request, *args, **kwargs): if request.user.is_authenticated(): return HttpResponseRedirect(reverse('home')) context = {} return render(request, self.template, context) def post(self, request, *args, **kwargs): username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None: login(request, user) return HttpResponseRedirect(reverse('home')) else: return HttpResponseRedirect(reverse('login'))
[ "suneel0101@gmail.com" ]
suneel0101@gmail.com
2def90018f3c113b4160350c30adc34418af87e3
70166e12579c44656720eec0c9e0e6cf8cf26e1f
/setup.py
5797f494056230aa30e7554341448c3b1ce4d60e
[ "MIT" ]
permissive
kasbah/scrapy-puppeteer
5b8556fa7d6e6a816a698d6f76bbb7f83e548021
512cfe99b2c3f9aad6c0d3d35299d3ccd6c91121
refs/heads/master
2020-12-26T12:30:38.378438
2019-12-18T10:46:59
2019-12-18T10:46:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
993
py
"""This module contains the packaging routine for the pybook package""" from setuptools import setup, find_packages try: from pip.download import PipSession from pip.req import parse_requirements except ImportError: # It is quick hack to support pip 10 that has changed its internal # structure of the modules. from pip._internal.download import PipSession from pip._internal.req.req_file import parse_requirements def get_requirements(source): """Get the requirements from the given ``source`` Parameters ---------- source: str The filename containing the requirements """ install_reqs = parse_requirements(filename=source, session=PipSession()) return [str(ir.req) for ir in install_reqs] setup( packages=find_packages(), install_requires=get_requirements('requirements/requirements.txt'), entry_points={ 'console_scripts': [ 'scrapyp = scrapy_puppeteer.cli:__main__', ], } )
[ "clement.denoix@algolia.com" ]
clement.denoix@algolia.com
6debb4e0601a04825071d7b4aa701b5beb720d03
b6c4650e0719d09c39dd3950a0e861414c2a6910
/funções01.py
735ddf21c8c58c6ac787c4fccf475331117ceeb6
[]
no_license
gabriel301297/Exerciciofun-es-
765f83b29985c3874f443d4b811f7b3ea9e4bcb7
c80ec28f01cb795efcfb07d3123f064b757ca77d
refs/heads/master
2022-11-03T01:46:13.188266
2020-06-18T23:54:04
2020-06-18T23:54:04
273,358,656
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
#Faça um programa para imprimir: def imprime(n): """Funcao que retorna P se o valor informado for > que 0 e N se for <.""" if n > 0: print('P') elif n <= 0: print('N') return imprime imprime(1)
[ "noreply@github.com" ]
gabriel301297.noreply@github.com
00ef5b03f237a3f2966a55200ada0d942f795447
211076d8dda4e6751ef0643e0201e9c18845b528
/pneumothorax/conf/model008.py
426cf286bbcf8744324d91d8ccd82d849f40b922
[]
no_license
jovenwayfarer/udacity-ml-nanodegree
c83d3778da0ccf58dbdd682cac44ec02107227cf
6d96de938a5d18550a50c8cadd28bde887b68222
refs/heads/master
2022-04-20T01:14:22.104892
2020-04-10T00:46:21
2020-04-10T00:46:21
290,711,786
1
0
null
2020-08-27T07:49:32
2020-08-27T07:49:32
null
UTF-8
Python
false
false
3,372
py
import albumentations as albu workdir = './model/model008' seed = 69 n_fold = 5 epochs = 20 sample_classes = True resume_from = None retrain_from = './model/model007/model_1024_0.pth' # <---- fold 0...4 train_rle_path = './input/stage_2_train.csv' train_imgdir = './input/1024-s2/train' train_folds = './cache/train_folds.pkl' batch_size = 4 n_grad_acc = 4 num_workers = 4 imgsize = 1024 model = dict( name='unet_resnet34', pretrained='imagenet', ) optim = dict( name='Adam', params=dict( lr=5e-4, ), ) # loss = dict( # name='MixedLoss', # params=dict( # alpha=10, # gamma=2, # ), # ) loss = dict( name='BCEDiceLoss', params=dict(), ) scheduler = dict( name='ReduceLROnPlateau', params=dict( mode="min", patience=3, verbose=True, ), ) prob_threshold = 0.5 min_object_size = 3500 # pixels normalize = {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]} hflip = dict(name='HorizontalFlip', args=[], params=dict()) oneof_contrast = dict(name='OneOf', args=[[ albu.RandomContrast(), albu.RandomGamma(), albu.RandomBrightness()]], params=dict(p=0.3)) oneof_transform = dict(name='OneOf', args=[[ albu.ElasticTransform(alpha=120, sigma=120*0.05, alpha_affine=120*0.03), albu.GridDistortion(), albu.OpticalDistortion(distort_limit=2, shift_limit=0.5)]], params=dict(p=0.3)) shiftscalerotate = dict(name='ShiftScaleRotate', args=[], params=dict()) resize = dict(name='Resize', args=[], params=dict(height=imgsize, width=imgsize)) totensor = dict(name='ToTensor', args=[], params=dict(normalize=normalize)) hflip1 = dict(name='HorizontalFlip', args=[], params=dict(p=1.)) data = dict( train=dict( phase='train', imgdir=train_imgdir, imgsize=imgsize, n_grad_acc=n_grad_acc, loader=dict( shuffle=True, batch_size=batch_size, drop_last=True, num_workers=num_workers, pin_memory=True, ), prob_threshold=prob_threshold, min_object_size=None, transforms=[hflip, oneof_contrast, oneof_transform, shiftscalerotate, resize, totensor] ), valid=dict( phase='valid', imgdir=train_imgdir, imgsize=imgsize, n_grad_acc=n_grad_acc, loader=dict( shuffle=False, batch_size=2, drop_last=False, num_workers=num_workers, pin_memory=True, ), prob_threshold=prob_threshold, min_object_size=None, # min_object_size, transforms=[resize, totensor], ), test=dict( imgdir='./input/1024-s2/test', sample_submission_file='./input/stage_2_sample_submission.csv', trained_models=workdir+'/'+'model_1024_*.pth', imgsize=imgsize, loader=dict( shuffle=False, batch_size=1, drop_last=False, num_workers=num_workers, pin_memory=True, ), transforms=[resize, totensor], transforms_and_hflip=[hflip1, resize, totensor], prob_threshold=0.5, min_object_size=3500, output_file_probabilty_name='pixel_probabilities_1024_0p5th.pkl', submission_file_name='submission_pytorch_5fold_ave_Wflip_0p5th_FineTunedM7withBCE.csv', ), )
[ "akuritsyn@gmail.com" ]
akuritsyn@gmail.com
db28575f2623496636938161f33ab45251ac66c2
f098fd2d7fb2aa5e739965d2f6b44d15f6516172
/mapmunchies_site/stories/models.py
01e3e66824087a39cdcf3bd60cc7c98592e35c6e
[]
no_license
xiaopies/MapMunchies
985654f66d1fa4165fb0e158eee3052f342aeef7
e97bb492d27460b412b4e389cc7900b1e9e2862d
refs/heads/main
2023-08-17T04:22:59.697462
2021-09-27T02:18:11
2021-09-27T02:18:11
398,145,210
1
0
null
null
null
null
UTF-8
Python
false
false
3,706
py
from django.db import models from django.utils import timezone from django.core.validators import MinLengthValidator, MinValueValidator from django.contrib.auth.models import User from django.db.models.expressions import RawSQL def get_borough_list(): list_of_bouroghs = { 1:'brooklyn', 2:'manhattan', 3:'queens', 4:'bronx', 5:'staten island', } return list_of_bouroghs class restaurants_Manager(models.Manager): def isFloatNum(self, targetString): print(targetString) try: float(targetString) return(True) except: print("Not a float") return(False) # request = { latitude:float, longitude:float, nelat:float, nelon:float, swlat:float, swlon:float } def search(self, request): print(request) x = True for value in request.values(): if not self.isFloatNum(value): x = False # x = self.isFloatNum(request.latitude) and self.isFloatNum(request.longitude) # x = x and self.isFloatNum(request.nelat) and self.isFloatNum(request.nelon) and self.isFloatNum(request.swlat) and self.isFloatNum(swlon) if (x): # Great circle distance formula => Returning value in kms gcd_formula = "6371 * acos(min(max(\ cos(radians(%s)) * cos(radians(lat)) \ * cos(radians(lon) - radians(%s)) + \ sin(radians(%s)) * sin(radians(lat)) \ , -1), 1))" distance_raw_sql = RawSQL( gcd_formula, (request["centerlat"], request["centerlng"], request["centerlat"]) ) qs = self.get_queryset() #get biz in the viewable space qs = qs.filter(lat__lt = request["nelat"], lat__gt = request["swlat"], lon__lt = request["nelon"], lon__gt = request["swlon"]) qs = qs.annotate(distance=distance_raw_sql) qs = qs.order_by('distance') # .values_list("placeID", flat=True) # qs = qs[:10] # take only the first 10 listOfPlaceIDs = [] for place in qs.iterator(): # get wait time average # listOfPlaceIDs.append([place, place.distance]) # testing listOfPlaceIDs.append([place.name, place.lat, place.lon]) # data = serialize("json", [ qs, ]) print('qs: ' + str(listOfPlaceIDs)) return listOfPlaceIDs return('bad inputs') #escape out # Create your models here. class restaurants(models.Model): time = models.TimeField(default=timezone.now) name = models.CharField(max_length = 20, validators = [MinLengthValidator(1)]) borough = models.IntegerField(validators=[MinValueValidator(0, message="must be a value from 1-5")]) lat = models.FloatField() lon = models.FloatField() REQUIRED_FIELDS = [time, name, borough,lat, lon] # has to be a nyc bourogh for now # futore could use coords with google geolocator api def get_borough(self): list_of_bouroghs = get_borough_list() return list_of_bouroghs[int(self.bourogh)] def __str__(self): return str(self.name) objects = restaurants_Manager() class story(models.Model): time = models.TimeField(default=timezone.now) restaurant = models.ForeignKey(restaurants, on_delete=models.CASCADE) storytext = models.TextField(null=False, validators=[MinLengthValidator(1)]) author = models.ForeignKey( User, on_delete=models.CASCADE, ) REQUIRED_FIELDS = [time, restaurant, storytext] def __str__(self): return str(self.time) + ' ' + str(self.restaurant)
[ "jasonjiangny@gmail.com" ]
jasonjiangny@gmail.com
a239599b70d3afef7e329805a9d8116e6a53cb82
231bd95d5e4a67a5aea60c81c2a46f672885f93d
/src/copy_files.py
c161ec8f3c0ec77d323a2c5035a5dc3a58358384
[]
no_license
CharmSpace/DTC-Logo-Recognition
f2d0d87fbff48d69e178506e81d9f8c8b029fe07
dd4f5c90af48caa3829a05febb7d01eeb716ec2c
refs/heads/master
2022-11-11T12:09:05.617918
2020-06-30T06:36:32
2020-06-30T06:36:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,296
py
import os import argparse #from multiprocessing import ThreadPool import shutil import time from itertools import zip_longest def copy_jpg_files(args): """Retrieve files in folder and write them to new folder""" in_parent_folder = args.in_dir out_parent_folder = args.out_dir # walk through each folder and retrieve valid jpeg images # and save in out_parent_folder folders = [folder for folder in os.listdir( in_parent_folder) if os.path.isdir(os.path.join(in_parent_folder, folder))] #new_path = os.path.join(out_parent_folder, folder) #if not os.path.exists(new_path): # os.makedirs(new_path) for folder in folders: start = time.time() print(f'>>> Copying files from {folder} folder ...', end='') if folder == '0samples': # copy entire 0samples cos it has no issues #new_path = os.path.join(out_parent_folder, folder) #os.makedirs(new_path) #shutil.copytree(os.path.join(in_parent_folder,folder),new_path) continue else: files = [file for file in os.listdir( os.path.join(in_parent_folder, folder)) if os.path.isfile(os.path.join(in_parent_folder, folder, file)) and file.endswith('.jpg')] #print(f'>>> Total files {sum(files)}') try: for file in files: shutil.copy2(os.path.join( in_parent_folder, folder, file), out_parent_folder) except Exception as error: print(f'>>> An error occurred: {error}') print(f'>>> Copying {folder} folder done in {time.time()-start:.2f}') if __name__ == '__main__': # get a list of the subdirs and process them using processes parser = argparse.ArgumentParser( description='a program to move jpg files to a new folder for annotation') parser.add_argument('--in_dir', type=str, default=os.path.abspath('data/LogosInTheWild-v2/clean_data/voc_format'), help='path to source folder to copy the JPG files') parser.add_argument('--out_dir', type=str, default=os.path.abspath('data/litw_annotations'), help='path to the destination folder for annotation') args = parser.parse_args() copy_jpg_files(args)
[ "mellitus4u@gmail.com" ]
mellitus4u@gmail.com
e495ada4039944f53250977ba85cb229b3f625cc
7947a9f764722686a2802e393a7e27008690a118
/StyleAnalyser/initdb.py
dd92356e82e5051ac31440eae59191c00c67c3bc
[]
no_license
NILGroup/TFG-1920-CarlosMoreno
e5766d11eee76a3f82e6af2872cc34acff7b16a4
de580fddae4387ac4db4cf9d1a7ad602c5cba584
refs/heads/master
2022-11-08T13:49:46.639450
2020-06-26T11:14:31
2020-06-26T11:14:31
196,052,196
0
0
null
null
null
null
UTF-8
Python
false
false
349
py
# -*- coding: utf-8 -*- """ Created on Wed Apr 22 17:50:25 2020 @author: Carlos Moreno Morera """ import mongoengine def init_db(): """ Inits the connection with the MongoDB. Returns ------- None. """ mongoengine.register_connection(alias='core', name='analysis') mongoengine.connect('analysis', alias='default')
[ "carmor06@ucm.es" ]
carmor06@ucm.es
e032f991668a174940ca3888d349666a1ad96a4e
af6af3615070b37d2b70634e4a2d1f4f4d4a5c29
/tcsdiscordbot.py
f504d79159d16edc334159f86a1d462ff6e6350b
[ "MIT" ]
permissive
Jurredr/TCSDiscordBot
1eccdc94b2d5aed16aa97fa9832b7887aa8b99ba
24fcef8c673eb29eff28b070b588f22c5c391605
refs/heads/main
2023-04-24T12:26:05.126093
2021-03-16T13:46:39
2021-03-16T13:46:39
347,976,445
1
0
null
null
null
null
UTF-8
Python
false
false
5,271
py
import discord from discord.ext import commands from docstring_parser import Style from docstring_parser import parse as parse_docstring from cogs.utils.smth import * from globalfuncs import * async def prefix(_, message): return commands.when_mentioned_or('?')(_, message) class HelpCommand(commands.DefaultHelpCommand): def __init__(self, **options): super().__init__( **options, show_hidden=False, command_attrs={ 'cooldown': commands.Cooldown(2, 5.0, commands.BucketType.user) } ) def construct_embed(self, title: str = None, description: str = None): return discord.Embed( title=title, description=description, colour=discord.Colour.teal() ) def get_docs(self, command): if docs := command.help: if docs := parse_docstring(docs, style=Style.numpydoc): return docs def get_prefixed_command(self, command, bold=True): return ('**%s%s**' if bold else '%s%s') % (self.clean_prefix, command.qualified_name) def get_command_signature(self, command): return ('**%s%s** %s' % (self.clean_prefix, command.qualified_name, '*' + command.signature + '*' if command.signature else '')).strip() def add_indented_commands(self, commands, *, heading=None, max_size=None): if not commands: return entries = list() for command in commands: entries.append( f'• {self.get_command_signature(command)}' + (f' — {command.short_doc}' if command.short_doc else '') ) return entries async def send_bot_help(self, mapping): embed = self.construct_embed(title="Help") for cog, commands in mapping.items(): filtered = await self.filter_commands(commands, sort=True) command_signatures = [self.get_command_signature(c) for c in filtered] if command_signatures: cog_name = getattr(cog, "qualified_name", "No category") embed.add_field(name=cog_name, value='\n'.join(self.add_indented_commands(filtered)), inline=False) await self.get_destination().send(embed=embed) async def send_group_help(self, group): filtered = await self.filter_commands(group.commands, sort=self.sort_commands) self.add_indented_commands(filtered, heading=self.commands_heading) embed = self.construct_embed( title='Group: ' + self.get_prefixed_command(group), description='\n'.join(self.add_indented_commands(filtered)) ) if help_text := group.help: embed.add_field(name="Description", value=help_text) if alias := group.aliases: embed.add_field(name="Aliases", value=backtick('`, `'.join(alias))) await self.get_destination().send(embed=embed) async def send_command_help(self, command): embed = self.construct_embed(title='Command ' + self.get_prefixed_command(command)) if docs := self.get_docs(command): embed.add_field( name='Description', value=docs.long_description if docs.long_description else docs.short_description ) if cooldown := command._buckets._cooldown: embed.add_field( name='Cooldown', value=f"{cooldown.rate} command per {int(cooldown.per)} seconds" ) embed.add_field( name='Usage', value=self.get_command_signature(command), inline=False ) if docs.params: embed.add_field( name='Arguments', value='\n'.join([f"• **{param.arg_name}** — {param.description}" for param in docs.params]), inline=False ) if docs.meta != docs.params: meta = docs.meta if meta[-1].args[0] == 'examples': examples = meta[-1] embed.add_field( name='Examples', value='\n'.join([ '%s %s' % (self.get_prefixed_command(command, bold=False), example) for example in examples.description.splitlines() ]) ) alias = command.aliases if alias: embed.add_field(name='Aliases', value=backtick("`, `".join(alias)), inline=False) channel = self.get_destination() await channel.send(embed=embed) async def send_cog_help(self, cog): return bot = commands.Bot( command_prefix=prefix, case_insensitive=True, activity=discord.Game(name='?help'), help_command=HelpCommand(), owner_ids=MY_ID ) @bot.event async def on_ready(): print(log_time() + 'Bot started') print('Connected as: ' + str(bot.user)) print('Connected servers:', *bot.guilds, sep='\n\t', end='\n') bot.load_extension('cogs.bgtasks') bot.load_extension('cogs.commands') bot.load_extension('cogs.quotes') bot.load_extension('cogs.fun') print(log_time() + 'Bot is starting') bot.run(BOT_TOKEN)
[ "noreply@github.com" ]
Jurredr.noreply@github.com
3a651703ee75f1c6ffe569daa5bc28b4a275eef6
e23a4f57ce5474d468258e5e63b9e23fb6011188
/120_design_patterns/009_decorator/examples/4-python-design-patterns-building-more-m4-exercise-files/Decorator/decorators/red.py
e0ed3028f3471e49fd42bc27d43d86d7acf6f24e
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
235
py
from .abs_decorator import AbsDecorator class Red(AbsDecorator): @property def description(self): return self.car.description + ', Ferarri red' @property def cost(self): return self.car.cost + 1200.00
[ "sergejyurskyj@yahoo.com" ]
sergejyurskyj@yahoo.com
e1794bb2df20a06d8c588241f48122e0f78e04b5
f6dd4a402e329f112ee14bd25544ec122e6c4173
/setup.py
8d84ea9ca14bfabf8fa202184bac336174e82224
[]
no_license
diegompin/code_complenet2020
68231cdfe18417c20dfac9cfde385aa3a0b84bf1
ab6070ad8a52c55371b9678735931ca5cb5eda52
refs/heads/master
2022-07-06T19:23:52.589159
2019-11-17T08:17:27
2019-11-17T08:17:27
222,216,280
2
0
null
2022-06-21T23:28:12
2019-11-17T08:05:33
Python
UTF-8
Python
false
false
716
py
from setuptools import setup import os def package_files(directory): paths = [] for (path, directories, filenames) in os.walk(directory): for filename in filenames: paths.append(os.path.join('..', path, filename)) return paths extra_files = package_files('mhs') setup( name='mhs', version='1.0.0', packages=['mhs'], package_data={'': extra_files}, url='', license='', author='Diego Pinheiro', author_email='', description='Mapping the Health System' ) # # setup( # name='mhs', # version='1.0.0', # packages=['mhs'], # url='', # license='', # author='Diego Pinheiro', # author_email='', # description='' # )
[ "2016bestworld" ]
2016bestworld
81d5c0a0c3768e21c0cce5ca5137131e974b601f
8e02857c8d7c862652007cbbe147c6c363b094ef
/iroha_files.py
8ddefd3f5a11a845e4ca20e9962ba45d316c1633
[]
permissive
nlsynth/iroha
fb1d503c05f50c09dc928167e2fb84f8ff03565d
7fc5da7408b7ffb449d28737ab01fe0feea885c1
refs/heads/master
2021-07-16T15:11:56.684866
2021-07-09T13:42:27
2021-07-09T13:42:27
47,931,688
37
5
BSD-3-Clause
2021-07-09T13:42:28
2015-12-13T18:46:24
C++
UTF-8
Python
false
false
1,429
py
# Script to create tar.gz package. This will replace automake based "make dist". import os PACKAGE="iroha" VERSION="0.1.0" ARCHIVE=PACKAGE + "-" + VERSION EXTRA = ["NEWS", "configure", "lib/gen_instantiation.py", "Makefile", "iroha_files.py", "src/iroha.gyp", "config.mk"] DOCS = ["docs/glossary.md", "docs/iroha.md", "docs/resource_class.md", "docs/structure.md"] EXTRA += DOCS def GetGypFileList(gyp): gypdir = os.path.dirname(gyp) + "/" d = eval(open(gyp).read()) targets = d['targets'] files = [] for t in targets: for s in t['sources']: files.append(gypdir + s) return files def GetExtraFileList(base): b = os.path.dirname(base) + "/" files = [] for e in EXTRA: files.append(b + e) return files def CopyFiles(archive, files): os.system("mkdir " + archive) pdir = archive + "/" dirs = {} for fn in files: d = pdir + os.path.dirname(fn) if not d in dirs: dirs[d] = True os.system("mkdir -p " + d) os.system("cp -p " + fn + " " + pdir + fn) def MakeTarBall(archive, files): os.system("rm -rf " + archive) CopyFiles(archive, files) os.system("tar cvzf " + archive + ".tar.gz " + archive) os.system("rm -rf " + archive) if __name__ == '__main__': files = GetGypFileList("src/iroha.gyp") + GetExtraFileList("./") MakeTarBall(ARCHIVE, files)
[ "tabata.yusuke@gmail.com" ]
tabata.yusuke@gmail.com
935397969bf0ea3e29fd10298ceb1172ffcceb61
9b722ca41671eb2cea19bac5126d0920639261bd
/.history/app_20201124111415.py
2b976e9cf211bde93d3e1eb0e991fcec45a0bc6d
[]
no_license
thawalk/db_flask_server
7928fd481f99d30bdccc60d97f02db78324cfdbe
cd55f1c9bf84c734457ee02d9f64a6833e295fad
refs/heads/master
2023-01-25T02:40:19.097457
2020-12-06T07:45:50
2020-12-06T07:45:50
314,229,480
0
0
null
null
null
null
UTF-8
Python
false
false
4,373
py
import json from flask import Flask, jsonify, url_for, request, redirect,Response,Request # from flask_pymongo import PyMongo import pymongo from bson.json_util import dumps import mysql.connector from werkzeug.serving import run_simple import os from dotenv import load_dotenv import datetime import time app = Flask(__name__) test_collection='test_collection' # sample='user_collection' mongo = pymongo.MongoClient('mongodb://54.83.130.150:27017/?readPreference=primary&appname=MongoDB%20Compass&ssl=false') db = pymongo.database.Database(mongo, 'test') metadata_col = pymongo.collection.Collection(db, 'test_collection') db = mysql.connector.connect( host ='3.84.158.241', user = 'root', password = '', database = 'reviews' ) cur = db.cursor() # cur.execute("SELECT asin from kindle_reviews group by asin order by avg(overall) desc limit 9 ") # print(cur.fetchall()) # print("above fetch all") @app.route('/',methods=["GET"]) def api_root(): data = { 'message': 'Welcome to our website. Where reviews are our number one priority' } js = json.dumps(data) response = Response(js, status=200, mimetype='application/json') return response #returns list of categories @app.route('/categories', methods = ['GET']) def get_categories(): categories = [] js = json.dumps(data) response = Response(js, status=200, mimetype='application/json') return response @app.route('/search', methods=['GET']) #now it only searches for TITLE. the mongo metadata does not have author def search_book(): data = request.json try: title = data["title"] result = metadata_col.find({"title":title}) result_array = dumps(list(result)) print(result_array) js = json.dumps(result_array) response = Response(js, status=200, mimetype='application/json') return response except: errMsg = "Please include title." js = json.dumps(errMsg) response = Response(js, status=400, mimetype='application/json') return response # @app.route('/review', methods=['POST']) # def add_review(): # if not request.json or not request.json['asin'] or type(request.json['asin']) != str or not request.json['overall'] or not request.json['reviewText'] or type(request.json['reviewText']) != str or not request.json['reviewTime'] or type(request.json['reviewTime']) != str or not request.json['reviewerID'] or type(request.json['reviewerID']) != str or not request.json['reviewerName'] or type(request.json['reviewerName']) != str or not request.json['summary'] or type(request.json['summary']) != str or not request.json['unixReviewTime'] or type(request.json['unixReviewTime']) != int : # return 'invalid request msg', 404 # txt = "INSERT INTO 'kindle_reviews' ('id', 'asin', 'overall', 'reviewText', 'reviewTime', 'reviewerID', 'reviewerName', 'summary', 'unixReviewTime') VALUES (%s)" # values = (None, request.json['asin'], request.json['overall'], request.json['reviewText'], request.json['reviewTime'], request.json['reviewerID'], request.json['reviewerName'], request.json['summary'], request.json['unixReviewTime']) # cur.execute(txt, values) # return 'successfully uploaded new review', 200 @app.route('/addBook',methods= ['POST']) def add_book(): try: data = request.json title = data['title'] asin = data['asin'] description = data['description'] price = data['price'] categories = data['categories'] message = "Book added successfully" metadata_col.insert({"title":title,"asin":asin,"description":description,"price":price,"categories":categories}) js = json.dumps(message) response = Response(js, status=201, mimetype='application/json') return response except: errMsg = "Please include title, asin, description, price and categories." js = json.dumps(errMsg) response = Response(js, status=400, mimetype='application/json') return response @app.route('/addReview',methods = ['POST']) #TODO: add review INTO sql part def add_review(): @app.route('/sortByGenres', methods= ['GET']) #TODO: sort by genres from mongo metadata categories def sort_by_genres(): pass if __name__ == '__main__': # app.run(host="0.0.0.0", port=80) app.run(debug=True)
[ "akmal_hakim_teo@hotmail.com" ]
akmal_hakim_teo@hotmail.com
0573cfcea8c49ecfb5e2c912d40802836435360d
6b74f4f5b2c28bea4ba003fc198dc3f109372869
/human_detector.py
4a55e416b909f859264158deea7c5f929bbc84ef
[ "MIT" ]
permissive
kei1107/human_detection_with_aterm_usb_camera
30b42097802a81e6e8e2e6777f16900924e0c39c
95bb8e67c8be428b562b190d789c7d49985b3cd3
refs/heads/master
2020-12-07T09:01:28.586693
2020-07-17T02:17:40
2020-07-17T02:17:40
232,690,098
0
0
null
null
null
null
UTF-8
Python
false
false
4,025
py
import base64 import os import shutil import requests from selenium import webdriver from selenium.webdriver.chrome.options import Options import src import sys import time from datetime import datetime import pytz from io import BytesIO from PIL import Image from keras.applications.imagenet_utils import preprocess_input from keras.backend.tensorflow_backend import set_session from keras.preprocessing import image import numpy as np import tensorflow as tf from ssd import SSD300 from ssd_utils import BBoxUtility def save_image(src, file_save_path): # Base64エンコードされた画像をデコードして保存する。 if "base64," in src: with open(file_save_path, "wb") as f: f.write(base64.b64decode(src.split(",")[1])) # 画像のURLから画像を保存する。 else: res = requests.get(src, stream=True) with open(file_save_path, "wb") as f: shutil.copyfileobj(res.raw, f) # Main # logger setting logger = src.Setup_Logger.Setup_Logger() np.set_printoptions(suppress=True) # SSD setting config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.45 set_session(tf.Session(config=config)) voc_classes = ['Aeroplane', 'Bicycle', 'Bird', 'Boat', 'Bottle', 'Bus', 'Car', 'Cat', 'Chair', 'Cow', 'Diningtable', 'Dog', 'Horse', 'Motorbike', 'Person', 'Pottedplant', 'Sheep', 'Sofa', 'Train', 'Tvmonitor'] NUM_CLASSES = len(voc_classes) + 1 input_shape = (300, 300, 3) model = SSD300(input_shape, num_classes=NUM_CLASSES) model.load_weights('weights/weights_SSD300.hdf5', by_name=True) bbox_util = BBoxUtility(NUM_CLASSES) # Chronium setting user, pw, ip = src.Setup_Config.Setup_Config(logger=logger) main_url = 'http://' + user + ':' + pw + '@' + ip + ':15790' options = Options() options.binary_location = None if os.name == 'posix': options.binary_location = '/Applications/Google Chrome.app/Contents/MacOS/Google Chrome' elif os.name == 'nt': options.binary_location = 'C:\\Program Files (x86)\\Google\\Chrome\\Application\\chrome.exe' if options.binary_location is None: logger.info('Support : Windows , OSX') sys.exit() try: options.add_argument('--headless') driver = webdriver.Chrome(options=options) driver.get(main_url) logger.info('Accessing') start_button = driver.find_element_by_id('VMG_PRE_START_BTN') start_button.click() print("Start Detector") while True: try: BUF_UVCCAM2 = driver.find_element_by_id('BUF_UVCCAM2') img_url = BUF_UVCCAM2.get_attribute('src') img_response = requests.get(img_url) output_img = Image.open(BytesIO(img_response.content)) img = output_img.copy() img = img.resize((300, 300)) img = image.img_to_array(img) inputs = [] inputs.append(img.copy()) except Exception as e: continue inputs = preprocess_input(np.array(inputs)) preds = model.predict(inputs, batch_size=1) results = bbox_util.detection_out(preds) # Parse the outputs. det_label = results[0][:, 0] det_conf = results[0][:, 1] cand_size = len(det_label) isPerson = False for i in range(cand_size): if det_conf[i] < 0.9: continue else: # Person is 15 if int(det_label[i]) == 15: isPerson = True break if isPerson: # time de hozon now_time_str = datetime.now(pytz.timezone('Asia/Tokyo')).strftime('%Y%m%d_%H%M%S%f')[:-3] # print("Person detect :",now_time_str) try: image.save_img("./output/" + now_time_str + '.jpg', output_img) except Exception as e: continue time.sleep(0.5) except Exception as e: logger.info('Web driver Error occured!') logger.exception(e) sys.exit()
[ "clavis1107@gmail.com" ]
clavis1107@gmail.com
793ddda057a87a3282347556bd109bb246a5a62b
e6eaff0a201f1a297cbd008ef4634768b9e7bcb2
/portfolio/views.py
de3914653ddf7591910819919c4bbcec40afddee
[]
no_license
rishik-verma/django3-personal-portfolio
de019827a1aeb6e65e8f129bff052e432b6b625e
698b58a17a417d614128e82cc6d94ea763084f76
refs/heads/master
2022-08-19T13:58:52.315905
2020-05-27T17:27:06
2020-05-27T17:27:06
267,383,618
0
0
null
null
null
null
UTF-8
Python
false
false
249
py
from django.shortcuts import render from .models import Project # Create your views here. def home(request): projects=Project.objects.all() #fetch all objects from database return render(request,'portfolio/home.html',{'projects':projects})
[ "rishikvb81@gmail.com" ]
rishikvb81@gmail.com
2bdb5fdf674de49ac64042e627006dc6a4d961db
076bfcf8377df4453c281483309d0f933345c737
/sadf.py
e9b55d0cc95eca1a71b6b925b383f4e0ba9fe18f
[]
no_license
yaping03/CourseMall
a6776d7ac36d2e3f94c6b65c375f06953d164a83
ca730d53275c1ea073e4a3394f122ba8d43f67a6
refs/heads/master
2020-05-07T17:04:33.539287
2019-04-11T11:59:21
2019-04-11T11:59:21
180,712,705
1
0
null
null
null
null
UTF-8
Python
false
false
5,748
py
#!/usr/bin/env python # -*- coding:utf-8 -*- import datetime v = [' File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/threading.py", line 882, in _bootstrap\n self._bootstrap_inner()\n', ' File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/threading.py", line 914, in _bootstrap_inner\n self.run()\n', ' File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/threading.py", line 862, in run\n self._target(*self._args, **self._kwargs)\n', ' File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/socketserver.py", line 628, in process_request_thread\n self.finish_request(request, client_address)\n', ' File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/socketserver.py", line 357, in finish_request\n self.RequestHandlerClass(request, client_address, self)\n', ' File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/socketserver.py", line 684, in __init__\n self.handle()\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/servers/basehttp.py", line 155, in handle\n handler.run(self.server.get_app())\n', ' File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/wsgiref/handlers.py", line 137, in run\n self.result = application(self.environ, self.start_response)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/contrib/staticfiles/handlers.py", line 63, in __call__\n return self.application(environ, start_response)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/wsgi.py", line 157, in __call__\n response = self.get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/base.py", line 124, in get_response\n response = self._middleware_chain(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/exception.py", line 41, in inner\n response = get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/utils/deprecation.py", line 140, in __call__\n response = self.get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/exception.py", line 41, in inner\n response = get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/utils/deprecation.py", line 140, in __call__\n response = self.get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/exception.py", line 41, in inner\n response = get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/utils/deprecation.py", line 140, in __call__\n response = self.get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/exception.py", line 41, in inner\n response = get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/utils/deprecation.py", line 140, in __call__\n response = self.get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/exception.py", line 41, in inner\n response = get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/utils/deprecation.py", line 140, in __call__\n response = self.get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/exception.py", line 41, in inner\n response = get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/utils/deprecation.py", line 140, in __call__\n response = self.get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/exception.py", line 41, in inner\n response = get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/utils/deprecation.py", line 140, in __call__\n response = self.get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/exception.py", line 41, in inner\n response = get_response(request)\n', ' File "/Users/wupeiqi/PycharmProjects/luffycity/api/middlewares/base.py", line 14, in __call__\n response = self.get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/exception.py", line 41, in inner\n response = get_response(request)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/core/handlers/base.py", line 185, in _get_response\n response = wrapped_callback(request, *callback_args, **callback_kwargs)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/views/decorators/csrf.py", line 58, in wrapped_view\n return view_func(*args, **kwargs)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/django/views/generic/base.py", line 68, in view\n return self.dispatch(request, *args, **kwargs)\n', ' File "/Users/wupeiqi/py_virtual_env/luffyenv/lib/python3.5/site-packages/rest_framework/views.py", line 488, in dispatch\n response = handler(request, *args, **kwargs)\n', ' File "/Users/wupeiqi/PycharmProjects/luffycity/api/views/order.py", line 296, in post\n print(traceback.format_stack())\n'] for item in v: print(item)
[ "820974538@qq.com" ]
820974538@qq.com
9af51cdf56cdd30fe398278a39e82cb6c3e5b41d
49f0dab00cb3c47d1d7836391d2a6d95ea6f346b
/src/agentdlg.py
204b00581f87ad577009544ca050ee5aed97a53a
[]
no_license
alonso9v9/AI_Maze_Solver
46b55451d3a152f61665c0099f523bb2ccd3795a
aa96ecc9ef5ffcafd33dfe2d7dd358bde2186a3f
refs/heads/master
2023-02-04T11:17:35.922832
2020-12-25T19:33:15
2020-12-25T19:33:15
324,421,190
0
0
null
null
null
null
UTF-8
Python
false
false
12,865
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'agent.ui' # # Created by: PyQt5 UI code generator 5.15.0 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. import math from PyQt5 import QtCore, QtWidgets import agent class AgentDialog(QtCore.QObject): """ Agent Configuration Dialog """ applySignal = QtCore.pyqtSignal() def __init__(self, parent=None): super(QtCore.QObject, self).__init__(parent) self.maze = None def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(380, 185) self.gridLayout = QtWidgets.QGridLayout(Dialog) self.gridLayout.setObjectName("gridLayout") self.buttonBox = QtWidgets.QDialogButtonBox(Dialog) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Apply | QtWidgets.QDialogButtonBox.Cancel | QtWidgets.QDialogButtonBox.Ok) self.buttonBox.setObjectName("buttonBox") self.gridLayout.addWidget(self.buttonBox, 3, 0, 1, 1) self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.line_2 = QtWidgets.QFrame(Dialog) self.line_2.setFrameShape(QtWidgets.QFrame.HLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.verticalLayout.addWidget(self.line_2) self.sensorsCheck = QtWidgets.QCheckBox(Dialog) self.sensorsCheck.setObjectName("sensorsCheck") self.verticalLayout.addWidget(self.sensorsCheck) self.sensorsLayout = QtWidgets.QHBoxLayout() self.sensorsLayout.setObjectName("sensorsLayout") self.apertureLabel = QtWidgets.QLabel(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.apertureLabel.sizePolicy() .hasHeightForWidth()) self.apertureLabel.setSizePolicy(sizePolicy) self.apertureLabel.setMaximumSize(QtCore.QSize(91, 16777215)) self.apertureLabel.setObjectName("apertureLabel") self.sensorsLayout.addWidget(self.apertureLabel) self.apertureSpin = QtWidgets.QSpinBox(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.apertureSpin.sizePolicy() .hasHeightForWidth()) self.apertureSpin.setSizePolicy(sizePolicy) self.apertureSpin.setMaximum(360) self.apertureSpin.setSingleStep(15) self.apertureSpin.setProperty("value", 180) self.apertureSpin.setObjectName("apertureSpin") self.sensorsLayout.addWidget(self.apertureSpin) self.nsensorsLabel = QtWidgets.QLabel(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.nsensorsLabel.sizePolicy(). hasHeightForWidth()) self.nsensorsLabel.setSizePolicy(sizePolicy) self.nsensorsLabel.setObjectName("nsensorsLabel") self.sensorsLayout.addWidget(self.nsensorsLabel) self.numSensorsSpin = QtWidgets.QSpinBox(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.numSensorsSpin.sizePolicy() .hasHeightForWidth()) self.numSensorsSpin.setSizePolicy(sizePolicy) self.numSensorsSpin.setMaximum(24) self.numSensorsSpin.setProperty("value", 3) self.numSensorsSpin.setObjectName("numSensorsSpin") self.sensorsLayout.addWidget(self.numSensorsSpin) self.verticalLayout.addLayout(self.sensorsLayout) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.label_2 = QtWidgets.QLabel(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_2.sizePolicy() .hasHeightForWidth()) self.label_2.setSizePolicy(sizePolicy) self.label_2.setObjectName("label_2") self.horizontalLayout.addWidget(self.label_2) self.maxDistSpin = QtWidgets.QDoubleSpinBox(Dialog) self.maxDistSpin.setDecimals(0) self.maxDistSpin.setMaximum(5000.0) self.maxDistSpin.setProperty("value", 20.0) self.maxDistSpin.setObjectName("maxDistSpin") self.horizontalLayout.addWidget(self.maxDistSpin) self.verticalLayout.addLayout(self.horizontalLayout) self.line = QtWidgets.QFrame(Dialog) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.verticalLayout.addWidget(self.line) self.noiseLayout = QtWidgets.QHBoxLayout() self.noiseLayout.setObjectName("noiseLayout") self.tnoiseLabel = QtWidgets.QLabel(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tnoiseLabel.sizePolicy() .hasHeightForWidth()) self.tnoiseLabel.setSizePolicy(sizePolicy) self.tnoiseLabel.setObjectName("tnoiseLabel") self.noiseLayout.addWidget(self.tnoiseLabel) self.tnoiseSpin = QtWidgets.QDoubleSpinBox(Dialog) self.tnoiseSpin.setDecimals(1) self.tnoiseSpin.setMaximum(100.0) self.tnoiseSpin.setSingleStep(0.1) self.tnoiseSpin.setStepType(QtWidgets.QAbstractSpinBox .AdaptiveDecimalStepType) self.tnoiseSpin.setProperty("value", 1.0) self.tnoiseSpin.setObjectName("tnoiseSpin") self.noiseLayout.addWidget(self.tnoiseSpin) self.rnoiseLabel = QtWidgets.QLabel(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.rnoiseLabel.sizePolicy() .hasHeightForWidth()) self.rnoiseLabel.setSizePolicy(sizePolicy) self.rnoiseLabel.setObjectName("rnoiseLabel") self.noiseLayout.addWidget(self.rnoiseLabel) self.rnoiseSpin = QtWidgets.QDoubleSpinBox(Dialog) self.rnoiseSpin.setMaximum(30.0) self.rnoiseSpin.setSingleStep(0.1) self.rnoiseSpin.setStepType(QtWidgets.QAbstractSpinBox .AdaptiveDecimalStepType) self.rnoiseSpin.setProperty("value", 1.0) self.rnoiseSpin.setObjectName("rnoiseSpin") self.noiseLayout.addWidget(self.rnoiseSpin) self.verticalLayout.addLayout(self.noiseLayout) self.geometryLayout = QtWidgets.QHBoxLayout() self.geometryLayout.setObjectName("geometryLayout") self.label = QtWidgets.QLabel(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label.sizePolicy() .hasHeightForWidth()) self.label.setSizePolicy(sizePolicy) self.label.setObjectName("label") self.geometryLayout.addWidget(self.label) self.radiusSpin = QtWidgets.QDoubleSpinBox(Dialog) self.radiusSpin.setDecimals(1) self.radiusSpin.setMinimum(1.0) self.radiusSpin.setMaximum(45.0) self.radiusSpin.setSingleStep(0.5) self.radiusSpin.setProperty("value", 2.5) self.radiusSpin.setObjectName("radiusSpin") self.geometryLayout.addWidget(self.radiusSpin) self.verticalLayout.addLayout(self.geometryLayout) self.line_3 = QtWidgets.QFrame(Dialog) self.line_3.setFrameShape(QtWidgets.QFrame.HLine) self.line_3.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_3.setObjectName("line_3") self.verticalLayout.addWidget(self.line_3) self.gridLayout.addLayout(self.verticalLayout, 2, 0, 1, 1) self.retranslateUi(Dialog) self.buttonBox.accepted.connect(Dialog.accept) self.buttonBox.rejected.connect(Dialog.reject) self.buttonBox.button(QtWidgets.QDialogButtonBox.Apply).clicked.\ connect(self.applyChanges) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Agent Properties")) self.sensorsCheck.setText(_translate("Dialog", "Activate agent\'s sensor array")) self.apertureLabel.setText(_translate("Dialog", "Aperture")) self.apertureSpin.setSuffix(_translate("Dialog", "°")) self.nsensorsLabel.setText(_translate("Dialog", "Num Sensors")) self.label_2.setText(_translate("Dialog", "Max distance")) self.tnoiseLabel.setText(_translate("Dialog", "Translation noise")) self.tnoiseSpin.setSuffix(_translate("Dialog", "%")) self.rnoiseLabel.setText(_translate("Dialog", "Rotation noise")) self.rnoiseSpin.setSuffix(_translate("Dialog", "°")) self.label.setText(_translate("Dialog", "Agent\'s radius")) def exportValues(self): """ Extract the values from the GUI elements and store them into the agent """ self.agent.radius = self.radiusSpin.value() self.agent.sensors = self.sensorsCheck.isChecked() a = self.apertureSpin.value() if a > 0: s = max(1,self.numSensorsSpin.value()) if s > 1: m = a/(s-1) b = -a/2 sens = [float(i)*m+b for i in range(s)] else: sens = [0] self.agent.sensorArray = sens else: self.agent.sensorArray = [0] self.agent.maxDistance = self.maxDistSpin.value() self.agent.translationNoiseFactor = self.tnoiseSpin.value()/100 self.agent.rotationNoise = self.rnoiseSpin.value() def accept(self): print("[DBG] Accepting new values") self.exportValues() self.parentAccept() def applyChanges(self): print("[DBG] Applying new values") self.exportValues() self.applySignal.emit() def setValues(self, theAgent): """ Copy the data from the agent into the dialog settings""" print("[DBG] Setting current values into the dialog") self.agent = theAgent self.radiusSpin.setValue(self.agent.radius) if self.agent.sensorArray: numSensors = len(self.agent.sensorArray) if numSensors > 0: self.sensorsCheck.setChecked(self.agent.sensors) aperture = self.agent.sensorArray[-1]-self.agent.sensorArray[0] self.apertureSpin.setValue(aperture) self.numSensorsSpin.setValue(numSensors) else: self.sensorsCheck.setChecked(False) else: self.sensorsCheck.setChecked(False) self.apertureSpin.setValue(180) # Default values self.numSensorsSpin(3) # Default values self.maxDistSpin.setValue(self.agent.maxDistance) self.rnoiseSpin.setValue(self.agent.rotationNoise) self.tnoiseSpin.setValue(self.agent.translationNoiseFactor*100)
[ "alonso9v9@gmail.com" ]
alonso9v9@gmail.com
67a52b02acbbe45b3421fa32b3b7742da78b68db
a6d934791aa9069718a7a3090dc332b21a44870e
/validater/exceptions.py
6ec6d0476bb1d30414d13a2384c133e7c5b4c034
[ "MIT" ]
permissive
ppproxy/validater
ce993b35f7ee26f4e29f038133e3036f599c2536
05923875c99ec85ce95e7ac3faa53d64f7b94436
refs/heads/master
2020-12-26T11:20:46.358456
2016-09-17T21:38:28
2016-09-17T21:38:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,824
py
class ValidaterError(ValueError): """Mark invalid position""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # marks' item: (is_key, index_or_key) self.marks = [] def mark_index(self, index): self.marks.insert(0, (False, index)) return self def mark_key(self, key): self.marks.insert(0, (True, key)) return self @property def position(self): """A string which represent the position of invalid. For example: { "tags": ["ok", "invalid"], # tags[1] "user": { "name": "invalid", # user.name "age": 500 # user.age } } """ text = "" for is_key, index_or_key in self.marks: if is_key: text = "%s.%s" % (text, index_or_key) else: if index_or_key is None: text = "%s[]" % text else: text = "%s[%d]" % (text, index_or_key) if text and text[0] == '.': text = text[1:] return text @property def message(self): """Error message""" if self.args: return self.args[0] else: return None def __str__(self): position = self.position if self.args: if position: return "%s in %s" % (self.args[0], position) else: return self.args[0] else: if position: return "in %s" % position else: return super().__str__() class Invalid(ValidaterError): """Data invalid""" class SchemaError(ValidaterError): """Schema error"""
[ "guyskk@qq.com" ]
guyskk@qq.com
92d8e815e14f4c9b30c1e936f4f134092378124f
fc1ed3d37b61c7fde55e667aca558062f052d208
/models/uncertainty_module.py
bc7cf2e8d7206b8ad7d178931e0b635bf8b9ccc9
[ "MIT" ]
permissive
renjiechao88/ProbFace
2305e1fd68c3b566e1e0dd2c20b4c66cd4276e71
cd7ef37e6fe6f62f98af7d0cebfb05674dda6739
refs/heads/main
2023-06-04T08:38:08.695445
2021-06-21T07:04:59
2021-06-21T07:04:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,808
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import tensorflow as tf import tensorflow.contrib.slim as slim batch_norm_params = { 'decay': 0.995, 'epsilon': 0.001, 'center': True, 'scale': True, 'updates_collections': None, 'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ], } batch_norm_params_sigma = { 'decay': 0.995, 'epsilon': 0.001, 'center': False, 'scale': False, 'updates_collections': None, 'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],} def scale_and_shift(x, gamma_init=1.0, beta_init=0.0): num_channels = x.shape[-1].value with tf.variable_scope('scale_and_shift'): gamma = tf.get_variable('alpha', (), initializer=tf.constant_initializer(gamma_init), regularizer=slim.l2_regularizer(0.0), dtype=tf.float32) beta = tf.get_variable('gamma', (), initializer=tf.constant_initializer(beta_init), dtype=tf.float32) x = gamma * x + beta return x def inference(inputs, embedding_size, phase_train, weight_decay=5e-4, reuse=None, scope='UncertaintyModule'): with slim.arg_scope([slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay), activation_fn=tf.nn.relu): with tf.variable_scope(scope, [inputs], reuse=reuse): with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=phase_train): print('UncertaintyModule input shape:', [dim.value for dim in inputs.shape]) net = slim.flatten(inputs) fc1_size = 256 net = slim.fully_connected(net, fc1_size, scope='fc1', normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params, activation_fn=tf.nn.relu) log_sigma_sq = slim.fully_connected(net, embedding_size, scope='fc_log_sigma_sq', normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params_sigma, activation_fn=None) # Share the gamma and beta for all dimensions if embedding_size == 1: log_sigma_sq = scale_and_shift(log_sigma_sq, 1e-1, -1.0) else: log_sigma_sq = scale_and_shift(log_sigma_sq, 1e-1, -7.0) # Add epsilon for sigma_sq for numerical stableness log_sigma_sq = tf.log(1e-6 + tf.exp(log_sigma_sq)) # log_sigma_sq = tf.log(0.001 + tf.exp(log_sigma_sq)) return log_sigma_sq
[ "kaenchan@163.com" ]
kaenchan@163.com
8108d0914dda3fab0d0cb371dddf18eef4c7b557
c5d838598ee22b8c6125bd46f3f6078f4e28376e
/mixpanel_cli/auth.py
1148c1f1fd7a4bdcf2a63688636a77775a286d91
[ "MIT" ]
permissive
atomic-labs/mixpanel-cli
a989578bd2dc259a17214bd442237091ca43ea4f
d271e512a35124d663f60e6742b500c99fcac1fb
refs/heads/master
2021-01-10T19:12:49.765428
2014-01-22T01:11:02
2014-01-22T01:11:02
15,955,794
1
0
null
null
null
null
UTF-8
Python
false
false
502
py
import time import hashlib def authenticate_parameters(api_key, api_secret, parameters, expire=60): params = {} params.update(parameters) params["expire"] = int(time.time()) + expire params["api_key"] = api_key sig_base_string = "" for k in sorted(params.keys()): sig_base_string += "%s=%s" % (k, params[k]) sig_base_string += api_secret md5 = hashlib.md5() md5.update(sig_base_string.encode("utf-8")) params["sig"] = md5.hexdigest() return params
[ "ben.pedrick@gmail.com" ]
ben.pedrick@gmail.com
c469fe2dcb449ee3400c521f8eb1549e7ba6e21d
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/stupiding_kaggle_EEG/kaggle_EEG-master/models/len2048p4_resize3_bs_c1r4p5_f9n256r35p1_v67.py
1d5cadde7ff34bcec4455bb9ed7040d4500b3aad
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
15,902
py
import numpy as np import theano import theano.tensor as T import lasagne as nn from lasagne.layers import dnn from batch_norm import BatchNormLayer import metrics import time rs = T.shared_randomstreams.RandomStreams() rs.seed(int(time.time())) data_path = 'eeg_train.npy' train_series = [0, 1, 2, 3, 4, 5] valid_series = [6, 7] test_series = [0, 1, 2, 3, 4, 5] events = [0, 1, 2, 3, 4, 5] num_events = len(events) train_data_params = {'section': 'train', 'chunk_gen_fun': 'random_chunk_gen_fun', 'channels': 32, 'length': 2048, 'preprocess': 'per_sample_mean', 'chunk_size': 4096, 'num_chunks': 400, 'pos_ratio': 0.35, 'bootstrap': True, 'neg_pool_size': 81920, 'hard_ratio': 1, 'easy_mode': 'all', 'resize': [0.7, 1.3], } valid_data_params = {'section': 'valid', 'chunk_gen_fun': 'fixed_chunk_gen_fun', 'channels': 32, 'length': 2048, 'preprocess': 'per_sample_mean', 'chunk_size': 4096, 'pos_interval': 100, 'neg_interval': 100, } bs_data_params = {'section': 'bootstrap', 'chunk_gen_fun': 'fixed_chunk_gen_fun', 'channels': 32, 'length': 2048, 'preprocess': 'per_sample_mean', 'chunk_size': 4096, 'pos_interval': 100, 'neg_interval': 100, } test_valid_params = {'section': 'valid', 'chunk_gen_fun': 'test_valid_chunk_gen_fun', 'channels': 32, 'length': 2048, 'preprocess': 'per_sample_mean', 'chunk_size': 4096, 'test_lens': [2048], 'interval': 10, } test_data_params = {'section': 'test', 'chunk_gen_fun': 'sequence_chunk_gen_fun', 'channels': 32, 'length': 2048, 'preprocess': 'per_sample_mean', 'chunk_size': 4096, 'test_lens': [2048], 'test_valid': True, } batch_size = 64 momentum = 0.9 wc = 0.001 display_freq = 10 valid_freq = 20 bs_freq = 20 save_freq = 20 def lr_schedule(chunk_idx): base = 0.1 if chunk_idx < 200: return base elif chunk_idx < 320: return 0.1 * base elif chunk_idx < 390: return 0.01 * base else: return 0.001 * base std = 0.02 p1 = 0 p2 = 0.1 p3 = 0.1 p4 = 0.1 metrics = [metrics.meanAccuracy, metrics.meanAUC] metric_names = ['mean accuracy', 'areas under the ROC curve'] Conv2DLayer = dnn.Conv2DDNNLayer Pool2DLayer = dnn.Pool2DDNNLayer SumLayer = nn.layers.ElemwiseSumLayer input_dims = (batch_size, train_data_params['channels'], 1, train_data_params['length']) def build_model(): l_in = nn.layers.InputLayer(input_dims) conv1 = Conv2DLayer(incoming = l_in, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = nn.init.Normal(std = std), nonlinearity = None) print 'conv1', nn.layers.get_output_shape(conv1) bn1 = BatchNormLayer(incoming = conv1, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.very_leaky_rectify) print 'bn1', nn.layers.get_output_shape(bn1) pool1 = Pool2DLayer(incoming = bn1, pool_size = (1, 4), stride = (1, 4)) print 'pool1', nn.layers.get_output_shape(pool1) drop1 = nn.layers.DropoutLayer(incoming = pool1, p = p1) print 'drop1', nn.layers.get_output_shape(drop1) conv2 = Conv2DLayer(incoming = drop1, num_filters = 256, filter_size = (1, 1), stride = 1, border_mode = 'same', W = nn.init.Normal(std = std), nonlinearity = None) print 'conv2', nn.layers.get_output_shape(conv2) bn2 = BatchNormLayer(incoming = conv2, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.very_leaky_rectify) print 'bn2', nn.layers.get_output_shape(bn2) conv2a = Conv2DLayer(incoming = bn2, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = nn.init.Normal(std = std), b = None, nonlinearity = None) print 'conv2a', nn.layers.get_output_shape(conv2a) sum2a = SumLayer(incomings = [conv2, conv2a], coeffs = 1) print 'sum2a', nn.layers.get_output_shape(sum2a) bn2a = BatchNormLayer(incoming = sum2a, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn2a', nn.layers.get_output_shape(bn2a) conv2b = Conv2DLayer(incoming = bn2a, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = conv2a.W, b = None, nonlinearity = None) print 'conv2b', nn.layers.get_output_shape(conv2b) sum2b = SumLayer(incomings = [conv2, conv2b], coeffs = 1) print 'sum2b', nn.layers.get_output_shape(sum2b) bn2b = BatchNormLayer(incoming = sum2b, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn2b', nn.layers.get_output_shape(bn2b) conv2c = Conv2DLayer(incoming = bn2b, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = conv2a.W, b = None, nonlinearity = None) print 'conv2c', nn.layers.get_output_shape(conv2c) sum2c = SumLayer(incomings = [conv2, conv2c], coeffs = 1) print 'sum2c', nn.layers.get_output_shape(sum2c) bn2c = BatchNormLayer(incoming = sum2c, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn2c', nn.layers.get_output_shape(bn2c) pool2 = Pool2DLayer(incoming = bn2c, pool_size = (1, 4), stride = (1, 4)) print 'pool2', nn.layers.get_output_shape(pool2) drop2 = nn.layers.DropoutLayer(incoming = pool2, p = p2) print 'drop2', nn.layers.get_output_shape(drop2) conv3 = Conv2DLayer(incoming = drop2, num_filters = 256, filter_size = (1, 1), stride = 1, border_mode = 'same', W = nn.init.Normal(std = std), nonlinearity = None) print 'conv3', nn.layers.get_output_shape(conv3) bn3 = BatchNormLayer(incoming = conv3, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.very_leaky_rectify) print 'bn3', nn.layers.get_output_shape(bn3) conv3a = Conv2DLayer(incoming = bn3, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = nn.init.Normal(std = std), b = None, nonlinearity = None) print 'conv3a', nn.layers.get_output_shape(conv3a) sum3a = SumLayer(incomings = [conv3, conv3a], coeffs = 1) print 'sum3a', nn.layers.get_output_shape(sum3a) bn3a = BatchNormLayer(incoming = sum3a, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn3a', nn.layers.get_output_shape(bn3a) conv3b = Conv2DLayer(incoming = bn3a, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = conv3a.W, b = None, nonlinearity = None) print 'conv3b', nn.layers.get_output_shape(conv3b) sum3b = SumLayer(incomings = [conv3, conv3b], coeffs = 1) print 'sum3b', nn.layers.get_output_shape(sum3b) bn3b = BatchNormLayer(incoming = sum3b, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn3b', nn.layers.get_output_shape(bn3b) conv3c = Conv2DLayer(incoming = bn3b, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = conv3a.W, b = None, nonlinearity = None) print 'conv3c', nn.layers.get_output_shape(conv3c) sum3c = SumLayer(incomings = [conv3, conv3c], coeffs = 1) print 'sum3c', nn.layers.get_output_shape(sum3c) bn3c = BatchNormLayer(incoming = sum3c, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn3c', nn.layers.get_output_shape(bn3c) pool3 = Pool2DLayer(incoming = bn3c, pool_size = (1, 4), stride = (1, 4)) print 'pool3', nn.layers.get_output_shape(pool3) drop3 = nn.layers.DropoutLayer(incoming = pool3, p = p3) print 'drop3', nn.layers.get_output_shape(drop3) conv4 = Conv2DLayer(incoming = drop3, num_filters = 256, filter_size = (1, 1), stride = 1, border_mode = 'same', W = nn.init.Normal(std = std), nonlinearity = None) print 'conv4', nn.layers.get_output_shape(conv4) bn4 = BatchNormLayer(incoming = conv4, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.very_leaky_rectify) print 'bn4', nn.layers.get_output_shape(bn4) conv4a = Conv2DLayer(incoming = bn4, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = nn.init.Normal(std = std), b = None, nonlinearity = None) print 'conv4a', nn.layers.get_output_shape(conv4a) sum4a = SumLayer(incomings = [conv4, conv4a], coeffs = 1) print 'sum4a', nn.layers.get_output_shape(sum4a) bn4a = BatchNormLayer(incoming = sum4a, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn4a', nn.layers.get_output_shape(bn4a) conv4b = Conv2DLayer(incoming = bn4a, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = conv4a.W, b = None, nonlinearity = None) print 'conv4b', nn.layers.get_output_shape(conv4b) sum4b = SumLayer(incomings = [conv4, conv4b], coeffs = 1) print 'sum4b', nn.layers.get_output_shape(sum4b) bn4b = BatchNormLayer(incoming = sum4b, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn4b', nn.layers.get_output_shape(bn4b) conv4c = Conv2DLayer(incoming = bn4b, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = conv4a.W, b = None, nonlinearity = None) print 'conv4c', nn.layers.get_output_shape(conv4c) sum4c = SumLayer(incomings = [conv4, conv4c], coeffs = 1) print 'sum4c', nn.layers.get_output_shape(sum4c) bn4c = BatchNormLayer(incoming = sum4c, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn4c', nn.layers.get_output_shape(bn4c) pool4 = Pool2DLayer(incoming = bn4c, pool_size = (1, 2), stride = (1, 2)) print 'pool4', nn.layers.get_output_shape(pool4) drop4 = nn.layers.DropoutLayer(incoming = pool4, p = p4) print 'drop4', nn.layers.get_output_shape(drop4) conv5 = Conv2DLayer(incoming = drop4, num_filters = 256, filter_size = (1, 1), stride = 1, border_mode = 'same', W = nn.init.Normal(std = std), nonlinearity = None) print 'conv5', nn.layers.get_output_shape(conv5) bn5 = BatchNormLayer(incoming = conv5, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.very_leaky_rectify) print 'bn5', nn.layers.get_output_shape(bn5) conv5a = Conv2DLayer(incoming = bn5, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = nn.init.Normal(std = std), b = None, nonlinearity = None) print 'conv5a', nn.layers.get_output_shape(conv5a) sum5a = SumLayer(incomings = [conv5, conv5a], coeffs = 1) print 'sum5a', nn.layers.get_output_shape(sum5a) bn5a = BatchNormLayer(incoming = sum5a, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn5a', nn.layers.get_output_shape(bn5a) conv5b = Conv2DLayer(incoming = bn5a, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = conv5a.W, b = None, nonlinearity = None) print 'conv5b', nn.layers.get_output_shape(conv5b) sum5b = SumLayer(incomings = [conv5, conv5b], coeffs = 1) print 'sum5b', nn.layers.get_output_shape(sum5b) bn5b = BatchNormLayer(incoming = sum5b, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn5b', nn.layers.get_output_shape(bn5b) conv5c = Conv2DLayer(incoming = bn5b, num_filters = 256, filter_size = (1, 9), stride = 1, border_mode = 'same', W = conv5a.W, b = None, nonlinearity = None) print 'conv5c', nn.layers.get_output_shape(conv5c) sum5c = SumLayer(incomings = [conv5, conv5c], coeffs = 1) print 'sum5c', nn.layers.get_output_shape(sum5c) bn5c = BatchNormLayer(incoming = sum5c, epsilon = 0.0000000001, nonlinearity = nn.nonlinearities.rectify) print 'bn5c', nn.layers.get_output_shape(bn5c) pool5 = Pool2DLayer(incoming = bn5c, pool_size = (1, 4), stride = (1, 4)) print 'pool5', nn.layers.get_output_shape(pool5) l_out = nn.layers.DenseLayer(incoming = pool5, num_units = num_events, W = nn.init.Normal(std = std), nonlinearity = nn.nonlinearities.sigmoid) print 'l_out', nn.layers.get_output_shape(l_out) return l_out def build_train_valid(l_out): params = nn.layers.get_all_params(l_out, regularizable = True) wc_term = 0.5 * sum(T.sum(param ** 2) for param in params) x_batch = T.tensor4('x', theano.config.floatX) y_batch = T.matrix('y', 'int32') train_output = nn.layers.get_output(l_out, x_batch) train_loss = nn.objectives.binary_crossentropy(train_output, y_batch) train_loss = nn.objectives.aggregate(train_loss, mode = 'mean') train_loss += wc * wc_term params = nn.layers.get_all_params(l_out, trainable = True) valid_output = nn.layers.get_output(l_out, x_batch, deterministic = True) lr = theano.shared(np.float32(lr_schedule(0))) updates = nn.updates.nesterov_momentum(train_loss, params, lr, momentum) x_shared = nn.utils.shared_empty(dim = len(input_dims)) y_shared = nn.utils.shared_empty(dim = 2, dtype = 'int32') idx = T.scalar('idx', 'int32') givens = {x_batch: x_shared[idx * batch_size:(idx + 1) * batch_size], y_batch: y_shared[idx * batch_size:(idx + 1) * batch_size]} iter_train = theano.function([idx], [train_loss, train_output], givens = givens, updates = updates) givens = {x_batch: x_shared[idx * batch_size:(idx + 1) * batch_size]} iter_valid = theano.function([idx], valid_output, givens = givens) return x_shared, y_shared, idx, lr, iter_train, iter_valid
[ "659338505@qq.com" ]
659338505@qq.com
da97e1667044cb0a40ecdee0bd59859fdebfe826
0a7d49300a547eecc823b78a891057f1017db1b2
/rabbitmq/topic_send.py
888d59edb662dad9fd96ea9cd0090a8f9c8e439b
[]
no_license
PeterZhangxing/codewars
f315b2ce610207e84a2f0927bc47b4b1dd89bee4
8e4dfaaeae782a37f6baca4c024b1c2a1dc83cba
refs/heads/master
2020-09-22T12:09:59.419919
2020-03-02T12:52:55
2020-03-02T12:52:55
224,330,565
0
0
null
null
null
null
UTF-8
Python
false
false
775
py
import pika,sys credentials = pika.PlainCredentials('zx2005', 'redhat') # 使用上面定义的用户名密码,连接远程的队列服务器 connection = pika.BlockingConnection(pika.ConnectionParameters( "10.1.11.128", credentials=credentials )) # 在tcp连接基础上,建立rabbit协议连接 channel = connection.channel() # 申明通过字符串匹配,来确定发送数据到哪个队列的交换器 channel.exchange_declare(exchange='topic_logs',type='topic') routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info' message = ' '.join(sys.argv[2:]) or 'Hello World!' channel.basic_publish( exchange='topic_logs', routing_key=routing_key, body=message) print(" [x] Sent %r:%r" % (routing_key, message)) connection.close()
[ "964725349@qq.com" ]
964725349@qq.com
e65847855532814dff90be0f26da0a9d74bd64ad
449d5f4bdc83fc3a30c730e443c66b99ee0beaa8
/explore.py
cd9f6908f274e1d017fc4b746a76b97ed486c950
[]
no_license
LinhQuach13/regression-exercises
32309b136afeba78ed334fa9911e7237d84e17ea
fb9a4cb007c6b6d5ad045ce6d3ada1560ecd5f02
refs/heads/master
2023-05-30T13:36:12.488143
2021-06-10T21:43:39
2021-06-10T21:43:39
373,301,170
0
0
null
null
null
null
UTF-8
Python
false
false
3,913
py
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from env import host, user, password # visualize import seaborn as sns import matplotlib.pyplot as plt plt.rc('figure', figsize=(11, 9)) plt.rc('font', size=13) # turn off pink warning boxes import warnings warnings.filterwarnings("ignore") import os os.path.isfile('telco_df.csv') from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer from sklearn.preprocessing import MinMaxScaler, RobustScaler, StandardScaler import sklearn.preprocessing from sklearn.preprocessing import QuantileTransformer ################################ Telco Data ########################################################################################### def plot_variable_pairs(ds): ''' This function takes in the telco train dataset and returns 2 lmplots (scatterplots with a regression line). The first plot shows the relationship between tenure and total_charges. The second plot shows the relationship between monthly_charges and total_charges. ''' #lmplot of tenure with total_charges with tenure sns.lmplot(x="tenure", y="total_charges", data=ds, line_kws={'color': 'purple'}) plt.show() #lmplot of tenure with total_charges with monthly_charges sns.lmplot(x="monthly_charges", y="total_charges", data=ds, line_kws={'color': 'purple'}) plt.show(); def plot_variable_pairs2(ds): ''' This function takes in the telco train dataset and returns 2 lmplots (scatterplots with a regression line). The first plot shows the pairwise relationship between tenure, monthly_charges, and total_charges. - arguments: - ds: dataset or dataframe ''' sns.pairplot(train[['tenure', 'monthly_charges', 'total_charges']], corner=True, kind= 'reg', plot_kws={'line_kws':{'color':'purple'}}) plt.show(); def plot_quant(ds, cont_vars): ''' This function takes in the train dataset, and continuous variable column list and ouputs the list as a plot. arguments: - ds= dataset you want to input (typically the train dataset) - cont_vars= continuous variable list of columns ''' #list of continuous variables cont_vars = ['monthly_charges', 'total_charges', 'tenure', 'tenure_years'] for col in list(ds.columns): if col in cont_vars: sns.barplot(data = ds, y = col) plt.show() def plot_cat(ds, cat_vars): ''' This function takes in the train dataset, and categorical variable column list and ouputs the list as a plot. arguments: - ds= dataset you want to input (typically the train dataset) - cat_vars= categorical variable list of columns ''' #list of categorical variables cat_vars = ['payment_type_id', 'internet_service_type_id', 'contract_type_id', 'gender', 'senior_citizen', 'partner', 'dependents', 'phone_service', 'multiple_lines', 'online_security', 'online_backup','device_protection', 'tech_support', 'streaming_tv', 'streaming_movies', 'paperless_billing', 'churn', 'contract_type', 'internet_service_type', 'payment_type'] for col in list(ds.columns): if col in cat_vars: sns.countplot(ds[col]) plt.show() def plot_categorical_and_continuous_vars(ds, cat_vars, cont_vars): ''' This function takes in the train dataset, categorical variable column list, and continuous variable column list and ouputs the lists as plots. arguments: - ds= dataset you want to input (typically the train dataset) - cat_vars= categorical variable list of columns - cont_vars= continuous variable list of columns ''' plot_cat(ds, cat_vars) plot_quant(ds, cont_vars); def months_to_years(ds): ds['tenure_years'] = ds.tenure / 12;
[ "Linh.M.Quach1@gmail.com" ]
Linh.M.Quach1@gmail.com
29eb3d63fc6b0b5a8feec92dd42aaccb8c3f3c16
d855e8ce6e43bdefb75df6c382f78a336e2f6559
/LeCeption.py
f40e425902d1e5d390a0a44e8781bb4985094408
[]
no_license
TheInventorMan/Traffic-Sign-Classifier
ff0df1bbe35b543e2e2c6813291539522df4623c
c2cfb0d2a005be98dacbbc7f63767611642ebc12
refs/heads/master
2020-06-17T11:37:27.448105
2019-07-09T03:05:50
2019-07-09T03:05:50
195,912,794
0
0
null
null
null
null
UTF-8
Python
false
false
3,383
py
import tensorflow as tf from tensorflow.contrib.layers import flatten def LeCeption(x): mu = 0 sigma = 0.1 # Layer 1: Convolutional. Input = 32x32x1. Output = 28x28x6. conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 1, 6), mean = mu, stddev = sigma)) conv1_b = tf.Variable(tf.zeros(6)) conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b # Activation. conv1 = tf.nn.leaky_relu(conv1) # Pooling. Input = 28x28x6. Output = 14x14x6. conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # Layer 2_1: Convolutional (Inception 1). Input = 14x14x6. Output = 10x10x16. conv21_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = mu, stddev = sigma)) conv21_b = tf.Variable(tf.zeros(16)) conv21 = tf.nn.conv2d(conv1, conv21_W, strides=[1, 1, 1, 1], padding='VALID') + conv21_b # Layer 2_2: Convolutional (Inception 2). Input = 14x14x6. Output = 12x12x16. conv22_W = tf.Variable(tf.truncated_normal(shape=(3, 3, 6, 16), mean = mu, stddev = sigma)) conv22_b = tf.Variable(tf.zeros(16)) conv22 = tf.nn.conv2d(conv1, conv22_W, strides=[1, 1, 1, 1], padding='VALID') + conv22_b # Layer 2_2: Double Max Pool. Input = 12x12x16. Output = 10x10x16 conv22 = tf.nn.max_pool(conv22, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='VALID') conv22 = tf.nn.max_pool(conv22, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='VALID') # Inception Stack. Output = 10x10x32 conv2 = tf.concat((conv21, conv22), 3) # Activation. conv2 = tf.nn.leaky_relu(conv2) # Pooling. Input = 10x10x32. Output = 5x5x32. conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # Branch off bypass. Input = 5x5x32. Output = 800. bypBranch = flatten(conv2) # Main feedforward path # Layer 3: Convolutional. Input = 5x5x32. Output = 1x1x800. conv3_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 32, 800), mean = mu, stddev = sigma)) conv3_b = tf.Variable(tf.zeros(800)) conv3 = tf.nn.conv2d(conv2, conv3_W, strides=[1, 1, 1, 1], padding='VALID') + conv3_b # Activation conv3 = tf.nn.leaky_relu(conv3) # Merge branches. Output = 1600. mainBranch = flatten(conv3) fc0 = tf.concat([mainBranch, bypBranch], 1) fc0 = tf.nn.dropout(fc0, keep_prob) # Layer 4: Fully Connected. Input = 1600. Output = 400. fc1_W = tf.Variable(tf.truncated_normal(shape=(1600, 400), mean = mu, stddev = sigma)) fc1_b = tf.Variable(tf.zeros(400)) fc1 = tf.matmul(fc0, fc1_W) + fc1_b # Activation. fc1 = tf.nn.leaky_relu(fc1) fc1 = tf.nn.dropout(fc1, keep_prob) # Layer 5: Fully Connected. Input = 400. Output = 84. fc2_W = tf.Variable(tf.truncated_normal(shape=(400, 84), mean = mu, stddev = sigma)) fc2_b = tf.Variable(tf.zeros(84)) fc2 = tf.matmul(fc1, fc2_W) + fc2_b # Activation. fc2 = tf.nn.leaky_relu(fc2) fc2 = tf.nn.dropout(fc2, keep_prob) # Layer 6: Fully Connected. Input = 84. Output = 43. fc3_W = tf.Variable(tf.truncated_normal(shape=(84, n_classes), mean = mu, stddev = sigma)) fc3_b = tf.Variable(tf.zeros(n_classes)) logits = tf.matmul(fc2, fc3_W) + fc3_b return logits
[ "mnasir@mit.edu" ]
mnasir@mit.edu
b1b1056e1f4c10ad5a9611023811b6a1e72a169d
6d57e245add80e6c77bd3032913f98eaee130c98
/code/orbit_pv.py
a0a2a93e7d437f1a43c1cc5b0926ff8bd1ce3fb9
[]
no_license
keflavich/atca_gc_h2co
a306de6205a3f1d2bae0c5d80e355dc2fbe33672
4ec085d1f0aa6d63d4f0c769d57f5803cfc3a24a
refs/heads/master
2023-01-23T21:22:49.527921
2015-09-27T08:02:16
2015-09-27T08:02:16
42,525,227
0
0
null
null
null
null
UTF-8
Python
false
false
10,408
py
import os import numpy as np import pvextractor from pvextractor.geometry.poly_slices import extract_poly_slice import spectral_cube from spectral_cube import SpectralCube, BooleanArrayMask, Projection import aplpy import pylab as pl import matplotlib import copy from astropy import units as u from astropy import coordinates from astropy.io import ascii, fits from astropy import log from astropy.wcs import WCS from astropy import wcs import matplotlib matplotlib.rc_file('pubfiguresrc') table = ascii.read(('orbit_K14_2.dat'), format='basic', comment="#", guess=False) coords = coordinates.SkyCoord(table['l']*u.deg, table['b']*u.deg, frame='galactic') P = pvextractor.Path(coords, width=300*u.arcsec) dl = (table['l'][1:]-table['l'][:-1]) db = (table['b'][1:]-table['b'][:-1]) dist = (dl**2+db**2)**0.5 cdist = np.zeros(dist.size+1) cdist[1:] = dist.cumsum() reftime = -2 bricktime = 0.3 time = table['t'] # how much time per pixel? dtdx = (table['t'].max() - table['t'].min()) / cdist.max() figsize=(20,10) def offset_to_point(glon, glat): """ Determine the offset along the orbit to the nearest point on an orbit to the specified point """ import shapely.geometry as geom line = geom.LineString(table['l','b']) point = geom.Point(glon, glat) return line.project(point) cmap = copy.copy(pl.cm.RdYlBu_r) cmap.set_under((0.9,0.9,0.9,0.5)) molecules = ('H2CO11', ) filenames = ('../data/h2comosaic_contsub_clean_min.fits',) for molecule,fn in zip(molecules,filenames): log.info(molecule) cube = spectral_cube.SpectralCube.read(fn) if 'smooth' in fn: cmap.set_bad((1.0,)*3) else: cmap.set_bad((0.9,0.9,0.9,0.5)) pvfilename = ('orbits/KDL2014_orbit_on_{0}.fits'.format(molecule)) if os.path.exists(pvfilename): pv = fits.open(pvfilename)[0] else: # respect_nan = False so that the background is zeros where there is data # and nan where there is not data # But not respecting nan results in data getting averaged with nan, so we # need to respect it and then manually flag (in a rather unreliable # fashion!) #pv = pvextractor.extract_pv_slice(cube, P, respect_nan=False) pv = pvextractor.extract_pv_slice(cube, P, respect_nan=True) if not os.path.isdir(os.path.dirname(pvfilename)): os.mkdir(os.path.dirname(pvfilename)) pv.writeto(pvfilename) bad_cols = np.isnan(np.nanmax(pv.data, axis=0)) nandata = np.isnan(pv.data) pv.data[nandata & ~bad_cols] = 0 ok = ~nandata & ~bad_cols fig1 = pl.figure(1, figsize=figsize) fig1.clf() ax = fig1.gca() mywcs = WCS(pv.header) xext, = mywcs.sub([1]).wcs_pix2world((0,pv.shape[1]), 0) print "xext: ",xext yext, = mywcs.sub([2]).wcs_pix2world((0,pv.shape[0]), 0) yext /= 1e3 dy = yext[1]-yext[0] dx = xext[1]-xext[0] #F = aplpy.FITSFigure(pv, figure=fig1) #actual_aspect = pv.shape[0]/float(pv.shape[1]) #F.show_grayscale(aspect=0.5/actual_aspect) im = ax.imshow(pv.data, extent=[xext[0], xext[1], yext[0], yext[1]], aspect=0.6*dx/dy, cmap=cmap, vmin=-0.1, vmax=0.01) ax2 = ax.twiny() ax2.xaxis.set_label_position('top') ax2.xaxis.set_ticklabels(["{0:0.2f}".format(x) for x in np.interp(ax2.xaxis.get_ticklocs(), np.linspace(0,1,time.size), time-reftime)]) ax2.set_xlabel("Time since 1$^\\mathrm{st}$ pericenter passage [Myr]", size=24, labelpad=10) ax.set_xlabel("Offset (degrees)") ax.set_ylabel("$V_{LSR}$ $(\mathrm{km\ s}^{-1})$") for color, segment in zip(('red','green','blue','black','purple'), ('abcde')): selection = table['segment'] == segment # Connect the previous to the next segment - force continuity if np.argmax(selection) > 0: selection[np.argmax(selection)-1] = True ax.plot(np.array(cdist[selection]), table["v'los"][selection], zorder=1000, color=color, linewidth=3, alpha=0.25) #F.show_lines(np.array([[cdist[selection], # table["v'los"][selection]*1e3]]), zorder=1000, # color=color, linewidth=3, alpha=0.25) #F.show_markers(cdist[selection], table["v'los"][selection]*1e3, zorder=1000, # color=color, marker='+') #F.recenter(x=4.5/2., y=20., width=4.5, height=240000) #F.show_markers([offset_to_point(0.47,-0.01)], [30.404e3], color=['r']) #F.show_markers([offset_to_point(0.38,+0.04)], [39.195e3], color=['b']) #F.show_markers([offset_to_point(0.47, -0.01)],[30.404e3], edgecolor='r', marker='x') #F.show_markers([offset_to_point(0.38, 0.04)], [39.195e3], edgecolor='b', marker='x') #F.show_markers([offset_to_point(0.253, 0.016)], [36.5e3], edgecolor='purple', marker='x') ax.plot(offset_to_point(0.47, -0.01),30.404, color='r', marker='x', markersize=25) ax.plot(offset_to_point(0.38, 0.04), 39.195, color='b', marker='x', markersize=25) ax.plot(offset_to_point(0.253, 0.016), 36.5, color='purple', marker='x', markersize=25) #F.refresh() #F._ax1.set_ylabel("$V_{LSR} (\mathrm{km\ s}^{-1})$") #F._ax1.set_yticklabels([(str(int(x.get_text())/1000)) for x in F._ax1.get_yticklabels()]) #F.refresh() ax.axis([xext[0], xext[1], yext[0], yext[1]]) fig1.savefig(('orbits/KDL2014_orbit_on_{0}.pdf'.format(molecule)), bbox_inches='tight') fig2 = pl.figure(2, figsize=figsize) pl.clf() img = cube.mean(axis=0).hdu ok = ~np.isnan(img.data) img.data[np.isnan(img.data)] = 0 F2 = aplpy.FITSFigure(img, convention='calabretta', figure=fig2) F2.show_grayscale() patches = P.to_patches(1, ec='gray', fc='none', #transform=ax.transData, clip_on=True, #clip_box=ax.bbox, wcs=cube.wcs) for patch in patches: patch.set_linewidth(0.5) patch.set_alpha(0.2) patch.zorder = 50 patches[0].set_edgecolor('green') patches[0].set_alpha(1) patches[0].set_linewidth(1) patches[0].zorder += 1 patchcoll = matplotlib.collections.PatchCollection(patches, match_original=True) patchcoll.zorder=10 c = F2._ax1.add_collection(patchcoll) F2._rectangle_counter += 1 rectangle_set_name = 'rectangle_set_' + str(F2._rectangle_counter) for color, segment in zip(('red','green','blue','black','purple'), ('abcde')): selection = table['segment'] == segment # Connect the previous to the next segment - force continuity if np.argmax(selection) > 0: selection[np.argmax(selection)-1] = True F2.show_lines(np.array([[table['l'][selection], table["b"][selection]]]), zorder=1000, color=color, linewidth=3, alpha=0.5) #F2.show_markers(table['l'][selection], table["b"][selection], zorder=1000, # color=color, marker='+', alpha=0.5) F2._layers[rectangle_set_name] = c F2.recenter(0, -0.03, width=1.8, height=0.3) F2.set_tick_labels_format('d.dd','d.dd') F2.show_markers([0.47], [-0.01], edgecolor='r', marker='x', s=100, zorder=1500) F2.show_markers([0.38], [0.04], edgecolor='b', marker='x', s=100, zorder=1500) F2.show_markers([0.253], [0.016], edgecolor='purple', marker='x', s=100, zorder=1500) F2.save(('orbits/KDL2014_orbitpath_on_{0}.pdf'.format(molecule))) # Compute the temperature as a function of time in a ppv tube offset = np.linspace(0, cdist.max(), pv.shape[1]) time = np.interp(offset, cdist, table['t']) vel = np.interp(time, table['t'], table["v'los"]) y,x = np.indices(pv.data.shape) p,v = WCS(pv.header).wcs_pix2world(x,y, 0) vdiff = 15 velsel = (v > (vel-vdiff)*1e3) & (v < (vel+vdiff)*1e3) pv.data[nandata] = np.nan pv.data[pv.data==0] = np.nan pv.data[~velsel] = np.nan mean_tem = np.nanmean(pv.data, axis=0) min_tem = np.nanmin(pv.data, axis=0) max_tem = np.nanmax(pv.data, axis=0) std_tem = np.nanstd(pv.data, axis=0) # errorbar version: ugly #eb = ax3.errorbar(time, mean_tem, yerr=[min_tem, max_tem], # linestyle='none', capsize=0, color='r', errorevery=20) #eb[-1][0].set_linestyle('--') #ax3.fill_between(time, mean_tem-std_tem, mean_tem+std_tem, # color='b', alpha=0.2) #ax3.plot(time, mean_tem, color='b', alpha=0.2) fig3 = pl.figure(3, figsize=figsize) fig3.clf() ax3 = fig3.gca() ax3.plot(time-reftime, pv.data.T, 'k.', alpha=0.5, markersize=3) ax3.set_xlabel("Time since 1$^\\mathrm{st}$ pericenter passage [Myr]", size=24, labelpad=10) if 'Temperature' in molecule: ax3.set_ylim(0,vmax) ax3.set_ylabel("Temperature [K]", size=24, labelpad=10) ytext = 180 elif 'Ratio' in fn: ax3.set_ylim(0,0.5) ax3.set_ylabel("Ratio $R_1$", size=24, labelpad=10) ytext = 0.5*14./15. else: ax3.set_ylabel("$T_A^*$ [K]", size=24, labelpad=10) ytext = ax3.get_ylim()[1]*(14./15.) ax3.text(bricktime, ytext, "Brick", verticalalignment='center', horizontalalignment='center', rotation='vertical', color='k', weight='bold') ax3.text(bricktime+0.43, ytext, "Sgr B2", verticalalignment='center', horizontalalignment='center', rotation='vertical', color='k', weight='bold') ax3.text(bricktime+3.58, ytext*135./140., "20 km s$^{-1}$", verticalalignment='center', horizontalalignment='center', rotation='vertical', color='k', weight='bold') ax3.text(bricktime+3.66, ytext*135./140., "50 km s$^{-1}$", verticalalignment='center', horizontalalignment='center', rotation='vertical', color='k', weight='bold') ax3.text(bricktime+3.28, ytext, "Sgr C", verticalalignment='center', horizontalalignment='center', rotation='vertical', color='k', weight='bold') pl.setp(ax3.get_xticklabels(), fontsize=20) pl.setp(ax3.get_yticklabels(), fontsize=20) ax3.set_xlim(-0.1,4.6) fig3.savefig(('orbits/KDL2014_{0}_vs_time.pdf'.format(molecule)), bbox_inches='tight')
[ "keflavich@gmail.com" ]
keflavich@gmail.com
ea6a89ee9ef07d139f1b15d21613f28a0e4a44a6
ffbe68f6b32cb47fa24d88cdf12f489ea03b58aa
/identityoperator.py
99f72258ae220ec04375a95a2afe7aec867c6443
[]
no_license
Vipretha/Vipretha
3fe27f986cdb7f6d675753adf7d79d5eacb52b02
ccded940e59115602399cdfe89a304eb75c951bd
refs/heads/main
2023-08-17T00:36:29.719078
2021-10-04T05:18:53
2021-10-04T05:18:53
402,299,101
0
0
null
null
null
null
UTF-8
Python
false
false
180
py
a=70 b=38 if(a is b): print ("a and b are same") else: print("a and b are not same") b=70 if(b is a): print("b and a are same") else: print("b and a are not same")
[ "noreply@github.com" ]
Vipretha.noreply@github.com
afd569127414d4de2f6c0cf86dbb1fa6c09b1535
56fc8fe58ec8d576ec857f19a8adc43b49e19125
/DjangoDrf/DjangoDrf/settings.py
b6ac5e68c4de3e0f5473a6352e333c8f3d869f45
[]
no_license
Qpigzhu/Drf
53ae3dfd7d2715ea49bbfca02ada1a9239cb25a2
e4faa165a81abe8e641b992b6f86cc46cb01ac16
refs/heads/master
2022-12-13T16:30:33.868771
2018-12-12T02:34:11
2018-12-12T02:34:11
161,421,986
0
0
null
2022-12-08T01:20:24
2018-12-12T02:32:20
JavaScript
UTF-8
Python
false
false
5,141
py
""" Django settings for DjangoDrf project. Generated by 'django-admin startproject' using Django 2.0.2. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os import sys # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0,BASE_DIR) sys.path.insert(0,os.path.join(BASE_DIR,'apps')) sys.path.insert(0,os.path.join(BASE_DIR, 'extra_apps')) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'm6aywf_!9n)3j&&##x#_&-_=d=hfq&4yo9!@-f)3pc82&5_=3s' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] AUTH_USER_MODEL = "users.UserProfile" #重置User模型使得生效 # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'users.apps.UsersConfig', 'goods.apps.GoodsConfig', 'trade.apps.TradeConfig', 'user_operation.apps.UserOperationConfig', 'DjangoUeditor', 'xadmin', 'crispy_forms', 'rest_framework', 'django_filters', 'corsheaders', 'rest_framework.authtoken', ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] CORS_ORIGIN_ALLOW_ALL = True ROOT_URLCONF = 'DjangoDrf.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'DjangoDrf.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'vue_shop', 'USER':'root', 'PASSWORD':'root', 'HOST':'127.0.0.1', 'PORT':'3307', #端口 #mysql的数据库引擎有InnoDB 和 myisam #第三方登录的库要求使用innodb 否则会migration出错。 "OPTIONS":{"init_command":"SET default_storage_engine=INNODB;"}, } } # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'zh-hans' #中文支持,django1.8以后支持;1.8以前是zh-cn TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = False #重载用户登录逻辑,使得用户能用手机登录 AUTHENTICATION_BACKENDS = ( 'users.views.CustomBackend', ) # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' # 设置上传文件,图片访问路径 MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') #REST_FRAMEWORK的分页设置 # REST_FRAMEWORK = { # 'PAGE_SIZE': 10, # } #登录验证设置拦截器 REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.BasicAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework_jwt.authentication.JSONWebTokenAuthentication', ), } #JWT的设置 import datetime JWT_AUTH = { 'JWT_EXPIRATION_DELTA': datetime.timedelta(days=7), #JWT保存时间 'JWT_AUTH_HEADER_PREFIX': 'JWT', #解析的格式 } #手机正则表达式 REGEX_MOBILE = "^1[358]\d{9}$|^147\d{8}$|^176\d{8}$" #云片网KEY APIKEY = 'c3f3f6e838aebdcd4cbbf02575104989'
[ "331103418@qq.com" ]
331103418@qq.com
70639d45671e5396a8a8c8e6ca9b2f500e141e72
575f91e81238eeba0a114d2360a7a727440649ba
/cifar_models/densenet.py
47ac6ec0233f40a9a9d1e6f4029535f3508a3b27
[]
no_license
Lappuccino/SimulatorAttack
34075c2f5c6f424062a2e06ff32379c17e31f619
94d91639c55d594f1b9ee4212c3b99b1f0941a9c
refs/heads/master
2023-06-09T09:35:51.018553
2021-06-18T03:45:00
2021-06-18T03:45:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,688
py
import torch import torch.nn as nn import torch.nn.functional as F import math __all__ = ['densenet'] class Bottleneck(nn.Module): def __init__(self, inplanes, expansion=4, growthRate=12, dropRate=0): super(Bottleneck, self).__init__() planes = expansion * growthRate self.bn1 = nn.BatchNorm2d(inplanes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, growthRate, kernel_size=3, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) self.dropRate = dropRate def forward(self, x): out = self.bn1(x) out = self.relu(out) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) if self.dropRate > 0: out = F.dropout(out, p=self.dropRate, training=self.training) out = torch.cat((x, out), 1) return out class BasicBlock(nn.Module): def __init__(self, inplanes, expansion=1, growthRate=12, dropRate=0): super(BasicBlock, self).__init__() planes = expansion * growthRate self.bn1 = nn.BatchNorm2d(inplanes) self.conv1 = nn.Conv2d(inplanes, growthRate, kernel_size=3, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) self.dropRate = dropRate def forward(self, x): out = self.bn1(x) out = self.relu(out) out = self.conv1(out) if self.dropRate > 0: out = F.dropout(out, p=self.dropRate, training=self.training) out = torch.cat((x, out), 1) return out class Transition(nn.Module): def __init__(self, inplanes, outplanes): super(Transition, self).__init__() self.bn1 = nn.BatchNorm2d(inplanes) self.conv1 = nn.Conv2d(inplanes, outplanes, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) def forward(self, x): out = self.bn1(x) out = self.relu(out) out = self.conv1(out) out = F.avg_pool2d(out, 2) return out class DenseNet(nn.Module): def __init__(self, depth=22, block=Bottleneck, dropRate=0, num_classes=10, growthRate=12, compressionRate=2): super(DenseNet, self).__init__() assert (depth - 4) % 3 == 0, 'depth should be 3n+4' n = (depth - 4) / 3 if block == BasicBlock else (depth - 4) // 6 self.growthRate = growthRate self.dropRate = dropRate # self.inplanes is a global variable used across multiple # helper functions self.inplanes = growthRate * 2 self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, padding=1, bias=False) self.dense1 = self._make_denseblock(block, n) self.trans1 = self._make_transition(compressionRate) self.dense2 = self._make_denseblock(block, n) self.trans2 = self._make_transition(compressionRate) self.dense3 = self._make_denseblock(block, n) self.bn = nn.BatchNorm2d(self.inplanes) self.relu = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(self.inplanes, num_classes) # Weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_denseblock(self, block, blocks): layers = [] for i in range(blocks): # Currently we fix the expansion ratio as the default value layers.append(block(self.inplanes, growthRate=self.growthRate, dropRate=self.dropRate)) self.inplanes += self.growthRate return nn.Sequential(*layers) def _make_transition(self, compressionRate): inplanes = self.inplanes outplanes = int(math.floor(self.inplanes // compressionRate)) self.inplanes = outplanes return Transition(inplanes, outplanes) def forward(self, x): x = self.conv1(x) x = self.trans1(self.dense1(x)) x = self.trans2(self.dense2(x)) x = self.dense3(x) x = self.bn(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def densenet(**kwargs): """ Constructs a ResNet model. """ return DenseNet(**kwargs)
[ "sharpstill@163.com" ]
sharpstill@163.com
822c99d79857911dcf6e2c367f13cab24f178bd6
971f88cd52eb97407ce7c65e66e48b641c0f5973
/Linear Equations Calculator.py
c7c8d1bca7041edcedd364e9dca88b6e218df0eb
[]
no_license
IanBotashev/Python-Programs
127a2b6098c7a8c728b9eb04568525ed4a90649a
5e4ac7892d5bfab90cbd1bfc704493e91943262d
refs/heads/master
2020-09-06T09:26:47.863046
2019-11-08T05:34:45
2019-11-08T05:34:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
33,506
py
#Some code from Python.org #Some code from StackOverflow.com #This is a work-in-progress #First variables: mainvar = 1 tasdfasfdhjasdhfkjashdfk = 2 while tasdfasfdhjasdhfkjashdfk == 2: #Variables called in this loop: typee = 0 x = 1 n = 2.1 rwethereyet = 1 wait = 1 tingytwo = 1 mrb = 1 choice = 0 #Imports modules from fractions import Fraction from decimal import Decimal, ROUND_UP import random import sys #Intro: print("Welcome to Linear Equation Calculator! Made by MSGUY in Python 3.") input("(Enter)") print("Formula Finder: Instead of doing all the math to turn a line into an equation, just choose an equation and know two points on the line.") input("(Enter)") print("Or, you can choose converter, and convert one equation type to another type of equation. Information inputs very depending on the type of equation.") input("(Enter)") print("Fullscreen mode works best.") input("(Enter)") print("In some cases, the program will print things that should've been simplified, like 4/2 to 2. I am working on fixing this, but for now you will have to simplify on your own.") input("(Enter)") #Type of calculator choice while mainvar == 1: wait = 1 typee = 0 x = 1 n = 2.1 rwethereyet = 1 wait = 1 tingytwo = 1 mrb = 1 tingytwo = 1 while wait == 1: choice = input("Please choose a type of calculator. c for converter and f for formula finder. ") if choice == "c" or choice == "f": wait = 2 #Formula finder start if choice == "f": print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") print("Welcome to Python Linear Equation Formula Finder!") input("(Enter)") print("Note: If you do not answer in numbers for certain questions, the program will not work.") input("(Enter)") print("Let M represent the slope of the equation, and let B represent the y-intercept.") input("(Enter)") #Equation choice while x == 1: y =input("Which kind of equation? 1 for slope intercept (y = mx + b), 2 for point slope (y - y1 = m(x - x1)), or 3 for standard (Ax + By = C). ") if y == "1": typee = 1 x = 2 print("y = mx + b") if y == "2": typee = 2 x = 2 print("y - y1 = m(x - x1)") if y == "3": typee = 3 x = 2 ("Ax + By = C") #Integer choice- are numbers not decimals? while rwethereyet == 1: integer = input("Are all your coordinate points integers (no decimal places)? Please answer 1(yes) or 2(no). ") if integer == "1": print((str(integer))) rwethereyet = 2 integer = 1 elif integer == "2": print((str(integer))) integer = 2 rwethereyet = 2 else: rwethereyet = 1 #Enter line coordinates if integer == 1: xone = int(input("What is the first X value? ")) yone = int(input("What is the first Y value? ")) xtwo = int(input("What is the second X value? ")) ytwo = int(input("What is the second Y value? ")) finalmy = int(ytwo) - int(yone) finalmx = int(xtwo) - int(xone) elif integer == 2: xone = float(input("What is the first X value? ")) yone = float(input("What is the first Y value? ")) xtwo = float(input("What is the second X value? ")) ytwo = float(input("What is the second Y value? ")) finalmy = float(ytwo) - float(yone) finalmx = float(xtwo) - float(xone) if finalmx < 0: finalmx = abs(finalmx) finalmy = -abs(finalmy) if finalmy < 0 and finalmx < 0: finalmx = abs(finalmx) finalmy = abs(finalmy) if not finalmy == 0 and not finalmx == 0: m = finalmy / finalmx if not isinstance(m, int): mtwo = ((str(finalmy)) + "/" + (str(finalmx))) elif isinstance(m, int): mtwo = m #Prints slope print("Slope: " + (str(mtwo))) #Determines Y intercept (B) if m > 0: b = yone - xone if m < 0: b = yone - xone if m == 0: b = yone #Determines X intercept xi = b / m #Prints Y and X intercept print("the y intercept is (0," + str(b) + ")") if integer == 1: print("the x intercept is (" + str(int(xi)) + ",0)") if integer == 2: print("the x intercept is (" + str(float(xi)) + ",0") print("Equation: ") #Determines equation for slope intercept if typee == 1: if b > 0: if m > 1: print("y = " + (str(mtwo)) + "x + " + (str(b))) if m < 1: print("y = " + (str(mtwo)) + "x + " + (str(b))) if m == 1: print("y = x + " + (str(b))) if b < 0: if m > 1: print("y = " + (str(mtwo)) + "x " + (str(b))) if m < 1: print("y = " + (str(mtwo)) + "x " + (str(b))) if m == 1: print("y = x " + (str(b))) if b == 0: if m > 1: print("y = " + (str(mtwo)) + "x") if m < 1: print("y = " + (str(mtwo)) + "x") if m == 1: print("y = x") #Determines equation for point slope if typee == 2: if yone > 0: if xone > 0: print("y - " + (str(yone)) + " = " + (str(mtwo)) + "(x - " + (str(xone)) + ")") if xone < 0: print("y - " + (str(yone)) + " = " + (str(mtwo)) + "(x + " + (str(abs(xone))) + ")") if xone == 0: print("y - " + (str(yone)) + " = " + (str(mtwo)) + "(x)") if yone < 0: if xone > 0: print("y + " + (str(abs(yone))) + " = " + (str(mtwo)) + "(x - " + (str(xone)) + ")") if xone < 0: print("y + " + (str(abs(yone))) + " = " + (str(mtwo)) + "(x + " + (str(abs(xone))) + ")") if xone == 0: print("y + " + (str(abs(yone))) + " = " + (str(mtwo)) + "(x)") if yone == 0: if xone > 0: print("y = " + (str(mtwo)) + "(x - " + (str(xone)) + ")") if xone < 0: print("y = " + (str(mtwo)) + "(x + " + (str(abs(xone))) + ")") if xone == 0: print("y = " + (str(mtwo)) + "(x)") #Determines equation for point slope if typee == 3: if b > 0: if m > 1: print((str(mtwo)) + "x + y = " + (str(b))) if m < 1: print((str(mtwo)) + "x + y = " + (str(b))) if m == 1: print("x + y = " + (str(b))) if b < 0: if m > 1: print((str(mtwo)) + "x + y = " + (str(b))) if m < 1: print((str(mtwo)) + "x + y = " + (str(b))) if m == 1: print("x + y = " + (str(b))) if b == 0: if m > 1: print((str(mtwo)) + "x + y = 0") if m < 1: print((str(mtwo)) + "x + y = 0") if m == 1: print("x + y = 0") #Ends program or starts it over. while mrb == 1: end = input("Type 'yes' for another conversion/calculation, and type 'no' to end the program. ") if end == "no": tasdfasfdhjasdhfkjashdfk = 1 mainvar = 2 mrb = 2 print("Successfully ended.") sys.exit() elif end == "yes": choice = 0 mainvar = 1 mrb = 0 input("(Enter to continue)") mrb = 0 mrb = 0 else: mrb = 1 if choice == "c": #SI: Slope Intercept #PS: Point Slope #S: Standard #Conversion list: #SI->PS->DONE! #SI->S #PS->S->DONE! #PS->SI->DONE! #S->SI #S->PS print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") #Slope intercept -> point slope def converter_sips(): tingy = 1 tingytwo = 1 print("Step one: Enter information. An easy way to answer the X and Y value questions is to use the Y intercept (y = mx + (B)).") xthing = float(input("Enter an X value ")) ything = float(input("Enter a Y value ")) mslope = float(input("Enter the slope's numerator. ")) mslopeythingy = float(input("Enter the slope's denominator. If the slope is an integer, just enter 1. ")) print("Step two: Are all the numbers integers (no decimal places)?") while tingy == 1: thingchoice = input("y for yes, n for no ") if thingchoice == "y": tingy = 2 xthing = int(xthing) ything = int(ything) mslope = int(mslope) mslopeythingy = int(mslopeythingy) elif thingchoice == "n": tingy = 2 xthing = float(xthing) ything = float(ything) mslope = float(mslope) mslopeythingy = float(mslopeythingy) else: tingy = 1 if mslopeythingy != 1: mslopeactual = ((str(mslope)) + "/" + (str(mslopeythingy))) mslope = mslopeactual else: mslope = mslope if xthing == 0 and ything != 0: if ything > 0: print("y - " + (str(ything)) + " = " + (str(mslope)) + "(x)") if ything < 0: print("y + " + (str(abs(ything))) + " = " + (str(mslope)) + "(x)") if ything == 0 and xthing != 0: if xthing > 0: print("y = " + (str(mslope)) + "(x + )" + (str(xthing)) + ")") if xthing < 0: print("y = " + (str(mslope)) + "(x + )" + (str(abs(xthing))) + ")") if ything == 0 and ything == 0: print("y = " + (str(mslope)) + "(x)") if xthing != 0 and ything !=0: if xthing > 0 and ything > 0: print("y - " + (str(ything)) + " = " + (str(mslope)) + "(x - " + (str(xthing)) + ")") if xthing > 0 and ything < 0: print("y + " + (str(abs(ything))) + " = " + (str(mslope)) + "(x - " + (str(xthing)) + ")") if xthing < 0 and ything > 0: print("y - " + (str(ything)) + " = " + (str(mslope)) + "(x + " + (str(abs(xthing))) + ")") if xthing < 0 and ything < 0: print("y + " + (str(abs(ything))) + " = " + (str(mslope)) + "(x + " + (str(abs(xthing))) + ")") #Slope intercept -> standard def converter_sis(): tingy = 1 tingytwo = 1 print("Step one: Enter information.") xthing = float(input("Enter an X value ")) ything = float(input("Enter a Y value ")) mslope = float(input("Enter the slope's numerator. ")) mslopeythingy = float(input("Enter the slope's denominator. If the slope is an integer, just enter 1. ")) mslopeactuall = mslope / mslopeythingy bbb = float(input("What is the y-intercept of the equation? ")) print("Step two: Are all the numbers integers (no decimal places)?") while tingy == 1: thingchoice = input("y for yes, n for no ") if thingchoice == "y": tingy = 2 xthing = int(xthing) ything = int(ything) mslope = int(mslope) mslopeythingy = int(mslopeythingy) bbb = int(bbb) elif thingchoice == "n": tingy = 2 xthing = float(xthing) ything = float(ything) mslope = float(mslope) mslopeythingy = float(mslopeythingy) bbb = float(bbb) else: tingy = 1 if mslopeythingy != 1: mslopeactual = ((str(mslope)) + "/" + (str(mslopeythingy))) mslope = mslopeactual else: mslope = mslope if bbb >= 0: typeOfBB = "+ " slopeIntercept = "y = " + str(mslope) + "x " + typeOfBB + str(bbb) else: typeOfBB = "- " slopeIntercept = "y = " + str(mslope) + "x " + typeOfBB + (str(abs(bbb))) if mslopeactuall >= 0: finalFINAL = ("y - " + str(mslope) + "x = " + str(bbb)) if mslopeactuall < 0: finalFINAL = ("y + " + (str(abs(mslope))) + "x = " + str(bbb)) print("Conversion: " + finalFINAL) #Point slope -> standard def converter_pss(): #Information entry: tingythree = 1 print("Step one: Enter information") xthing1 = float(input("Enter variable X1 ")) ything1 = float(input("Enter variable Y1 ")) mslopeynum = float(input("Enter slope numerator ")) mslopeyden = float(input("Enter slope denominator. If the slope is a whole number, enter 1. ")) print("Step two: Are all these numbers integers (No decimal points)? ") #y - y1 = m(x - x1) #y = mx + b while tingythree == 1: #integer choice: thingchoice1 = input("y for yes, n for no ") if thingchoice1 == "y": xthing1 = int(xthing1) ything1 = int(ything1) mslopeynum = int(mslopeynum) mslopeyden = int(mslopeyden) tingythree = 2 elif thingchoice1 == "n": tingythree = 2 else: tingythree = 1 #Finds Y intercept: xthing22 = xthing1 if xthing22 == 0: ything2 = ything1 while xthing22 != 0: if mslopeynum >= 0 and mslopeyden >= 0: ything2 = ything1 - mslopeynum xthing22 = xthing22 - mslopeyden if mslopeynum < 0 and mslopeyden < 0: mslopeynum123 = abs(mslopeynum) mslopeyden123 = abs(mslopeyden) ything2 = ything1 + mslopeynum123 xthing22 = xthing22 + mslopeyden123 if mslopeynum < 0 and mslopeyden >= 0: mslopeynum123 = abs(mslopeynum) ything2 = ything1 + mslopeynum123 xthing22 = xthing22 - mslopeyden if mslopeynum >= 0 and mslopeyden < 0: mslopeyden123 = abs(mslopeyden) ything2 = ything1 - mslopeynum xthing22 = xthing22 + mslopeyden123 bb = ything2 print(bb) if mslopeynum >= 0 and mslopeyden >= 0: mslopeyy = mslopeynum / mslopeyden if isinstance(mslopeyy, int): mslopeyFinal4 = mslopeyy else: mslopeyFinal4 = str(mslopeynum) + "/" + str(mslopeyden) if mslopeynum < 0 and mslopeyden < 0: mslopeyy = mslopeynum / mslopeyden if isinstance(mslopeyy, int): mslopeyFinal4 = mslopeyy else: mslopeyFinal4 = mslopeynum + "/" + mslopeyden if mslopeynum < 0 and mslopeyden >= 0: mslopeyy = mslopeynum / mslopeyden if isinstance(mslopeyy, int): mslopeyFinal4 = mslopeyy else: mslopeyFinal4 = mslopeynum + "/" + mslopeyden if mslopeynum >= 0 and mslopeyden < 0: mslopeyy = mslopeynum / mslopeyden if isinstance(mslopeyy, int): mslopeyFinal4 = mslopeyy else: mslopeyFinal4 = mslopeynum + "/" + mslopeyden if mslopeyden == 1: mslopeyFinal4 = mslopeynum finalThreeOne = "y = " + str(mslopeyFinal4) + "x + " + str(bb) if mslopeyFinal4 >= 0: finalThreeTwo = ("y - " + str(mslopeyFinal4) + "x = " + str(bb)) if mslopeyFinal4 < 0: finalThreeTwo = ("y + " + (str(abs(mslopeyFinal4))) + "x = " + str(bb)) print("Conversion: " + finalThreeTwo) #Point slope -> slope intercept def converter_pssi(): #Information entry: tingythree = 1 print("Step one: Enter information") xthing1 = float(input("Enter variable X1 ")) ything1 = float(input("Enter variable Y1 ")) mslopeynum = float(input("Enter slope numerator ")) mslopeyden = float(input("Enter slope denominator. If the slope is a whole number, enter 1. ")) print("Step two: Are all these numbers integers (No decimal points)? ") #y - y1 = m(x - x1) #y = mx + b while tingythree == 1: #integer choice: thingchoice1 = input("y for yes, n for no ") if thingchoice1 == "y": xthing1 = int(xthing1) ything1 = int(ything1) mslopeynum = int(mslopeynum) mslopeyden = int(mslopeyden) tingythree = 2 elif thingchoice1 == "n": tingythree = 2 else: tingythree = 1 #Finds Y intercept: xthing22 = xthing1 if xthing22 == 0: ything2 = ything1 while xthing22 != 0: if mslopeynum >= 0 and mslopeyden >= 0: ything2 = ything1 - mslopeynum xthing22 = xthing22 - mslopeyden if mslopeynum < 0 and mslopeyden < 0: mslopeynum123 = abs(mslopeynum) mslopeyden123 = abs(mslopeyden) ything2 = ything1 + mslopeynum123 xthing22 = xthing22 + mslopeyden123 if mslopeynum < 0 and mslopeyden >= 0: mslopeynum123 = abs(mslopeynum) ything2 = ything1 + mslopeynum123 xthing22 = xthing22 - mslopeyden if mslopeynum >= 0 and mslopeyden < 0: mslopeyden123 = abs(mslopeyden) ything2 = ything1 - mslopeynum xthing22 = xthing22 + mslopeyden123 bb = ything2 print(bb) if mslopeynum >= 0 and mslopeyden >= 0: mslopeyy = mslopeynum / mslopeyden if isinstance(mslopeyy, int): mslopeyFinal4 = mslopeyy else: mslopeyFinal4 = str(mslopeynum) + "/" + str(mslopeyden) if mslopeynum < 0 and mslopeyden < 0: mslopeyy = mslopeynum / mslopeyden if isinstance(mslopeyy, int): mslopeyFinal4 = mslopeyy else: mslopeyFinal4 = mslopeynum + "/" + mslopeyden if mslopeynum < 0 and mslopeyden >= 0: mslopeyy = mslopeynum / mslopeyden if isinstance(mslopeyy, int): mslopeyFinal4 = mslopeyy else: mslopeyFinal4 = mslopeynum + "/" + mslopeyden if mslopeynum >= 0 and mslopeyden < 0: mslopeyy = mslopeynum / mslopeyden if isinstance(mslopeyy, int): mslopeyFinal4 = mslopeyy else: mslopeyFinal4 = mslopeynum + "/" + mslopeyden if mslopeyden == 1: mslopeyFinal4 = mslopeynum finalFour = "y = " + str(mslopeyFinal4) + "x + " + str(bb) print("Conversion: " + finalFour) #Standard -> slope intercept def converter_ssi(): i = 0 A = float(input("Enter value x is multiplied by (example: (2)x + By = C) ")) B = float(input("Enter value y is multiplied by (example: Ax + (2)y = C) ")) C = float(input("Enter the constraint at the end of the equation ")) while i == 0: integer = input("Are these numbers integers? (y/n) ") if integer == "y": i = 1 A = int(A) B = int(B) C = int(C) elif integer == "n": i = 1 A = float(A) B = float(B) C = float(C) else: i = 0 if B >= 0: abcONE = str(A) + "x + " + str(B) + "y = " + str(C) elif B < 0: abcONE = str(A) + "x - " + (str(abs(B))) + "y = " + str(C) if C >= 0: if B != 1: afinal = A / B if isinstance(afinal, int): afinal = A / B else: afinal = str(A) + "/" + str(B) print(afinal) if A != 1: abcTWO = "y = " + str(afinal) + "x + " + str(C) else: abcTWO = str(B) + "y = x + " + str(C) else: afinal = A if A != 1: abcTWO = "y = " + str(afinal) + "x + " + str(C) else: abcTWO = "y = x + " + str(C) if C < 0: if B != 1: afinal = A / B if isinstance(afinal, int): afinal = A / B else: afinal = str(A) + "/" + str(B) if A != 1: abcTWO = "y = " + str(afinal) + "x - " + (str(abs(C))) else: abcTWO = str(B) + "y = " + str(afinal) + "x - " + (str(abs(C))) else: afinal = A if A != 1: abcTWO = "y = " + str(afinal) + "x - " + (str(abs(C))) else: abcTWO = "y = x + " + (str(abs(C))) print("Conversion: " + abcTWO) #Standard -> point slope def converter_sps(): i = 0 A = float(input("Enter value x is multiplied by (example: (2)x + By = C) ")) B = float(input("Enter value y is multiplied by (example: Ax + (2)y = C) ")) C = float(input("Enter the constraint at the end of the equation ")) while i == 0: integer = input("Are these numbers integers? (y/n) ") if integer == "y": i = 1 A = int(A) B = int(B) C = int(C) elif integer == "n": i = 1 A = float(A) B = float(B) C = float(C) else: i = 0 if B >= 0: abcONE = str(A) + "x + " + str(B) + "y = " + str(C) elif B < 0: abcONE = str(A) + "x - " + (str(abs(B))) + "y = " + str(C) if C >= 0: if B != 1: afinal = A / B if isinstance(afinal, int): afinal = A / B else: afinal = str(A) + "/" + str(B) print(afinal) if A != 1: abcTWO = "y = " + str(afinal) + "x + " + str(C) else: abcTWO = str(B) + "y = x + " + str(C) else: afinal = A if A != 1: abcTWO = "y = " + str(afinal) + "x + " + str(C) else: abcTWO = "y = x + " + str(C) if C < 0: if B != 1: afinal = A / B if isinstance(afinal, int): afinal = A / B else: afinal = str(A) + "/" + str(B) if A != 1: abcTWO = "y = " + str(afinal) + "x - " + (str(abs(C))) else: abcTWO = str(B) + "y = " + str(afinal) + "x - " + (str(abs(C))) else: afinal = A if A != 1: abcTWO = "y = " + str(afinal) + "x - " + (str(abs(C))) else: abcTWO = "y = x + " + (str(abs(C))) print("Conversion: " + abcTWO) tingy = 1 tingytwo = 1 xthing = 0 ything = C mslope = A while tingy == 1: if integer == "y": tingy = 2 xthing = int(xthing) ything = int(ything) mslope = int(mslope) elif integer == "n": tingy = 2 xthing = float(xthing) ything = float(ything) mslope = float(mslope) else: tingy = 1 if xthing == 0 and ything != 0: if ything > 0: print("y - " + (str(ything)) + " = " + (str(mslope)) + "(x)") if ything < 0: print("y + " + (str(abs(ything))) + " = " + (str(mslope)) + "(x)") if ything == 0 and xthing != 0: if xthing > 0: print("y = " + (str(mslope)) + "(x + )" + (str(xthing)) + ")") if xthing < 0: print("y = " + (str(mslope)) + "(x + )" + (str(abs(xthing))) + ")") if ything == 0 and ything == 0: print("y = " + (str(mslope)) + "(x)") if xthing != 0 and ything !=0: if xthing > 0 and ything > 0: print("y - " + (str(ything)) + " = " + (str(mslope)) + "(x - " + (str(xthing)) + ")") if xthing > 0 and ything < 0: print("y + " + (str(abs(ything))) + " = " + (str(mslope)) + "(x - " + (str(xthing)) + ")") if xthing < 0 and ything > 0: print("y - " + (str(ything)) + " = " + (str(mslope)) + "(x + " + (str(abs(xthing))) + ")") if xthing < 0 and ything < 0: print("y + " + (str(abs(ything))) + " = " + (str(mslope)) + "(x + " + (str(abs(xthing))) + ")") #Asks for decision and executes function print("What would you like to convert?") print("1: slope intercept to point slope") print("2: slope intercept to standard") print("3: point slope to standard") print("4: point slope to slope intercept") print("5: standard to slope intercept") print("6: standard to point slope") while tingytwo == 1: choicee = input("Type the number of your conversion here. ") if choicee == "1": tingytwo = 2 converter_sips() elif choicee == "2": tingytwo = 2 converter_sis() elif choicee == "3": tingytwo = 2 converter_pss() elif choicee == "4": tingytwo = 2 converter_pssi() elif choicee == "5": tingytwo = 2 converter_ssi() elif choicee == "6": tingytwo = 2 converter_sps() else: tingytwo = 1 #Ends program, or starts program over. while mrb == 1: end = input("Type 'yes' for another conversion/calculation, and type 'no' to end the program. ") if end == "no": tasdfasfdhjasdhfkjashdfk = 1 mainvar = 2 mrb = 2 print("Successfully ended.") sys.exit() elif end == "yes": choice = 0 mainvar = 1 mrb = 0 input("(Enter to continue)") mrb = 0 mrb = 0 else: mrb = 1
[ "noreply@github.com" ]
IanBotashev.noreply@github.com
53b118fb80ab4e424b51bac2cc1c9c19ec9a21c5
07aaf101828a3662c6ca4c5eed90619a676aa56e
/demos/021_linked_lists/ll_answers.py
0e5bd1084f17164b488c7aaec4400c6f74e463ab
[]
no_license
hillarysim/YeetingOurWayInto61a
c7c8836ab660dd6844cc87fdd1d448d4a5742af4
c05a539c8c3f8bd9d146cb3067a9ef9011358d36
refs/heads/master
2022-11-21T14:38:15.791580
2020-07-20T00:05:49
2020-07-20T00:05:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
x = Foolz("dino") # prints dino print(x) # Division Error? x # 1/0.1 str(x) # "Division Error?" def nonMutativeLink(l, func): if l is Link.empty: return Link.empty else: return Link(func(link.first), nonMutativeLink(l.rest, func)) def mutativeLink(l, func): if l is Link.empty: return l else: l.first = func(l.first) mutativeLink(l.rest, func) return l
[ "ctwong958@berkeley.edu" ]
ctwong958@berkeley.edu
4e9111ec60477725635a3a1c5dc41784e9dd1e57
0c5a631622648b3cdf8534c2daf7569a1e17ff9a
/tests/benchmarks/constructs/InplaceOperationIntegerMul.py
f67fc5a5c13c35d2a1fdc02eda16ef077d8fa56b
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
wweiradio/Nuitka
9c5b7cf8dcde41dc43e3b17e8427ed5af77a4930
1914597d47585f3c899d76490fa6d173eca966d0
refs/heads/master
2021-01-11T22:39:25.276905
2016-12-10T11:27:30
2016-12-10T11:27:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,305
py
# Copyright 2016, Kay Hayen, mailto:kay.hayen@gmail.com # # Python test originally created or extracted from other peoples work. The # parts from me are licensed as below. It is at least Free Software where # it's copied from other people. In these cases, that will normally be # indicated. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # module_value1 = 5 module_value2 = 3 def calledRepeatedly(): # Force frame and eliminate forward propagation (currently). module_value1 # Make sure we have a local variable x anyway s = 2 local_value = module_value1 s *= module_value1 # construct_begin s *= 1000 # construct_end s *= module_value2 return s for x in xrange(50000): calledRepeatedly() print("OK.")
[ "kay.hayen@gmail.com" ]
kay.hayen@gmail.com
88ff6e12447e7c702d0ed437b186edb4560eebfe
9c2e0c84f9beac4c942cf05ac65a15253058f8ea
/tests/test_cffi.py
eddf079fd50532c9f0e80111a79a1aa5ba07c311
[ "BSD-3-Clause" ]
permissive
smile-luobin/python-zstandard
881af6eda22254dbaa22eef9b9f930ddfb97c6e0
ca0199a2e29145111cee8af60385e24d776413cc
refs/heads/master
2021-01-11T09:08:41.664687
2016-12-19T17:10:25
2016-12-19T17:10:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
838
py
import io try: import unittest2 as unittest except ImportError: import unittest import zstd try: import zstd_cffi except ImportError: raise unittest.SkipTest('cffi version of zstd not available') class TestCFFIWriteToToCDecompressor(unittest.TestCase): def test_simple(self): orig = io.BytesIO() orig.write(b'foo') orig.write(b'bar') orig.write(b'foobar' * 16384) dest = io.BytesIO() cctx = zstd_cffi.ZstdCompressor() with cctx.write_to(dest) as compressor: compressor.write(orig.getvalue()) uncompressed = io.BytesIO() dctx = zstd.ZstdDecompressor() with dctx.write_to(uncompressed) as decompressor: decompressor.write(dest.getvalue()) self.assertEqual(uncompressed.getvalue(), orig.getvalue())
[ "gregory.szorc@gmail.com" ]
gregory.szorc@gmail.com
54be96328bf4d1ff35e0f3ba31e9309c38bc8a35
839a2babf0f74f5ab45aedfedb527613935ae19a
/content/blog/2022-09-15-data-structures-and-algorithms-cheatsheet/py/heap_mine_test.py
cbd63f828addc063872a438e35f686d86a64d0a3
[ "MIT" ]
permissive
9oelM/9oelM.github.io
84eb41e7c748620a943a742ed7d7d192b006a75e
f001ace931d2963a39045c980d192fd7b8f7dd91
refs/heads/dev
2023-08-30T20:02:11.473984
2023-08-22T02:35:41
2023-08-22T02:35:41
105,492,752
4
1
MIT
2023-02-09T00:45:01
2017-10-02T02:56:12
JavaScript
UTF-8
Python
false
false
1,154
py
import copy import heapq from heap_mine import MinHeap my_heap = MinHeap() def compare_and_check(a, b): if a != b: raise Exception(f"not same: {a} and {b}") def test(): for arr in [ [9,8,7,6,5,4,3,214,124,51,516,7,48,8,345869,8,16,6176,16,78,71], [1], [2,1], [1,1], [1,2], [1,2,3], [3,2,1,2,3,4], [3,2,1,2,3,4,-1,-100,15,161,16666,1,-555,-1], [1], [-1], [5,3,4,2,3,6], [-1,-2,-3,-4,-5,-10,-15,1,2,4,7,9,1,3,2,1,2,3,4,-1,-100,15,161,16666,1,-555,-1] ]: test_arr = copy.deepcopy(arr) my_heap.heapify(test_arr) heapq.heapify(arr) compare_and_check(arr, test_arr) for num in [0, 100, 500, -5, -100,15,16,734,1651,617,89,9,1612738,3789]: my_heap.push(test_arr, num) heapq.heappush(arr, num) compare_and_check(arr, test_arr) compare_and_check(heapq.nsmallest(1, arr)[0], my_heap.peek(test_arr)) for _ in range(10): a = heapq.heappop(arr) b = my_heap.pop(test_arr) compare_and_check(a, b) compare_and_check(arr, test_arr) compare_and_check(heapq.nsmallest(1, arr)[0], my_heap.peek(test_arr)) print("Pass") test()
[ "hj923@hotmail.com" ]
hj923@hotmail.com
2b17d9d8ff94ed08700f722f676a4dba21eb7587
15afc6a3270d9b42cc84a788853ce46456be01f2
/section_ii/project_a/chapter_12/example_5/game_functions.py
b4fef3ea991ce9d343994785e415a8b4da160af9
[]
no_license
xieqing0428/python_helloworld
161c90564638dc49e3a82a00607a762b36a39212
e08f63616aabe609ff1ac53b8e0ab32eaf2a472b
refs/heads/master
2020-04-16T11:01:37.918248
2019-02-14T07:19:09
2019-02-14T07:19:09
165,521,440
0
0
null
null
null
null
UTF-8
Python
false
false
1,787
py
# -*- coding:utf-8 -*- """ @author: Alessa0 @file: game_functions.py @time: 2019-01-19 17:29 """ import sys import pygame from python_helloworld.section_ii.project_a.chapter_12.example_5.bullet \ import Bullet def check_events(ufo_settings, screen, ufo, bullets): """检查按键事件""" for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.KEYDOWN: check_keydown_events(event, ufo_settings, screen, ufo, bullets) elif event.type == pygame.KEYUP: check_keyup_events(event, ufo) def fire_bullet(ufo_settings, screen, ufo, bullets): """开火""" if len(bullets) < ufo_settings.bullet_allowed: new_bullet = Bullet(ufo_settings, screen, ufo) bullets.add(new_bullet) def check_keydown_events(event, ufo_settings, screen, ufo, bullets): """按键""" if event.key == pygame.K_UP: ufo.moving_up = True if event.key == pygame.K_DOWN: ufo.moving_down = True if event.key == pygame.K_SPACE: fire_bullet(ufo_settings, screen, ufo, bullets) def check_keyup_events(event, ufo): """起键""" if event.key == pygame.K_UP: ufo.moving_up = False if event.key == pygame.K_DOWN: ufo.moving_down = False def update_screen(ufo_settings, screen, ufo, bullets): """更新屏幕""" screen.fill(ufo_settings.bg_color) # 更新子弹位置 for bullet in bullets.sprites(): bullet.draw_bullet() ufo.blitme() # 绘制屏幕 pygame.display.flip() def update_bullet(ufo, bullets): """过界子弹消失""" bullets.update() for bullet in bullets.copy(): if bullet.rect.left >= ufo.screen_rect.right: bullets.remove(bullet)
[ "849565690@qq.com" ]
849565690@qq.com
a81d92c2056b58b1664cc2b35d3227bbf00f6719
d64b15f01374254c6628abaa0535186738dca6d3
/SSVI/SSVI_TF_d.py
2f08fc4b902b68f0fe0d012754c5086f82776c80
[]
no_license
dnguyen1196/SSVI-tensor-factorization
b3fa82c8967eb5a415c9d29dc2e290535ee8f41f
e371094de77bfa866d411bd84a7e65463e5a96f9
refs/heads/master
2020-03-15T14:37:25.008000
2018-05-17T16:02:06
2018-05-17T16:02:06
132,193,314
0
0
null
null
null
null
UTF-8
Python
false
false
11,751
py
import Probability.ProbFun as probs import numpy as np from numpy.linalg import inv from numpy.linalg import norm import time """ SSVI_TF.py SSVI algorithm to learn the hidden matrix factors behind tensor factorization """ class H_SSVI_TF_2d(): def __init__(self, model, tensor, rank, rho_cov, k1=1, k2=10, scheme="adagrad", batch_size=5): """ :param model: :param tensor: :param rank: :param rho_cov: :param k1: :param k2: :param scheme: """ self.model = model self.tensor = tensor self.D = rank self.report = 1 self.size_per_dim = tensor.dims # dimension of the tensors self.order = len(tensor.dims) # number of dimensions self.rho_cov = rho_cov # Get prior mean and covariance # self.pmu, self.pSigma = self.model.p_prior.find(0, 0) # self.pmu = [np.ones((self.D, )) for _ in len(self.size_per_dim)] self.pmu = np.ones((self.D,)) self.pSigma = [1 for _ in self.size_per_dim] self.likelihood_type = model.p_likelihood.type if self.likelihood_type == "normal": self.link_fun = lambda m : m elif self.likelihood_type == "bernoulli": self.link_fun = lambda m : 1. /(1 + np.exp(-m)) elif self.likelihood_type == "poisson": self.link_fun = lambda m : np.log(1 + np.exp(-m)) # optimization scheme self.opt_scheme = scheme # Stochastic optimization parameters self.batch_size = batch_size self.iterations = 5000 self.k1 = k1 self.k2 = k2 # Optimization scheme if scheme == "adagrad": # adagrad parameters self.offset = 0.0001 self.ada_acc_grad = [np.zeros((self.D, s)) for s in self.size_per_dim] self.eta = 1 elif scheme == "schaul": # schaul-like update window width self.window_size = 5 self.eta = 1 self.recent_gradients\ = [[np.zeros((self.D, self.window_size)) for _ in range(s)] for s in self.size_per_dim] self.recent_gradients_sum \ = [[np.zeros((self.D, self.window_size)) for _ in range(s)] for s in self.size_per_dim] self.cur_gradient_pos = [[0 for _ in range(s)] for s in self.size_per_dim] elif scheme == "adadelta": # adadelta parameters self.gamma = 0.1 self.offset = 0.0001 self.alpha = 1 self.g_t = [[np.zeros((self.D,)) for _ in range(s)] for s in self.size_per_dim] self.s_t = [[np.zeros((self.D,)) for _ in range(s)] for s in self.size_per_dim] # nesterov accelerated gradient self.momentum = 0.9 self.delta_theta_t = [[np.zeros((self.D,)) for _ in range(s)] for s in self.size_per_dim] def factorize(self): """ factorize :return: None Doing round robin updates for each column of the hidden matrices """ update_column_pointer = [0] * self.order start = time.time() # while self.check_stop_cond(): for iteration in range(self.iterations): current = time.time() if iteration != 0 and iteration % self.report == 0: print ("iteration: ", iteration, " - test error: ", \ self.evaluate_test_error(), " - train error: ", self.evaluate_train_error(), " - time: ", current - start) for dim in range(self.order): col = update_column_pointer[dim] # Update the natural params of the col-th factor # in the dim-th dimension self.update_natural_params(dim, col) self.update_hyper_parameter(dim) # Move on to the next column of the hidden matrices for dim in range(self.order): update_column_pointer[dim] = (update_column_pointer[dim] + 1) \ % self.size_per_dim[dim] def update_natural_params(self, dim, i): """ :param i: :param dim: :return: """ observed_i = self.tensor.find_observed_ui(dim, i) # print(observed_i) if len(observed_i) > self.batch_size: observed_idx = np.random.choice(len(observed_i), self.batch_size, replace=False) observed_i = np.take(observed_i, observed_idx, axis=0) M = len(observed_i) (m, S) = self.model.q_posterior.find(dim, i) Di_acc = np.zeros((self.D, self.D)) di_acc = np.zeros((self.D, )) for entry in observed_i: coord = entry[0] y = entry[1] (di_acc_update, Di_acc_update) = self.estimate_di_Di(dim, i, coord, y, m, S) Di_acc += Di_acc_update di_acc += di_acc_update # Update covariance parameter rhoS = self.rho_cov covGrad = (1./self.pSigma[dim] * np.eye(self.D) - 2 * Di_acc) S = inv((1-rhoS) * inv(S) + rhoS * covGrad) # Update mean parameter meanGrad = (np.inner(1./self.pSigma[dim] * np.eye(self.D), self.pmu - m) + di_acc) update = self.compute_update_mean_param(dim, i, m, meanGrad) m = np.add(update, m) self.model.q_posterior.update(dim, i, (m, S)) def compute_update_mean_param(self, dim, i, m, mGrad): if self.opt_scheme == "adagrad": self.ada_acc_grad[dim][:, i] += np.multiply(mGrad, mGrad) return self.eta / np.sqrt(self.ada_acc_grad[dim][:, i]) * mGrad elif self.opt_scheme == "schaul": current_grad_pos = self.cur_gradient_pos[dim][i] self.recent_gradients[dim][i][: , current_grad_pos] = mGrad self.cur_gradient_pos[dim][i] = (self.cur_gradient_pos[dim][i] + 1) % self.window_size recent_gradients = self.recent_gradients[dim][i] recent_gradients_squared = np.square(recent_gradients) recent_gradients_sum = np.sum(recent_gradients, 1) expected_squares_gradient = np.sum(recent_gradients_squared, 1) return self.eta / np.sqrt(expected_squares_gradient) * mGrad elif self.opt_scheme == "adadelta": g_0 = self.g_t[dim][i] s_0 = self.s_t[dim][i] # Update g_t g_t = (1. - self.gamma) * np.square(mGrad) + self.gamma * g_0 self.g_t[dim][i] = g_t # Compute gradient update delta_theta_t = self.alpha * \ np.divide(np.sqrt(np.add(s_0, self.offset)), \ np.sqrt(np.add(g_t, self.offset))) * mGrad # Update s_t self.s_t[dim][i] = (1 - self.gamma) * np.square(delta_theta_t) + self.gamma * s_0 # Update deltaTheta_t self.delta_theta_t[dim][i] = delta_theta_t return delta_theta_t def estimate_di_Di(self, dim, i, coord, y, m, S): """ :param dim: :param i: :param coord: :param y: :return: """ othercols = coord[: dim] othercols.extend(coord[dim + 1 :]) alldims = list(range(self.order)) otherdims = alldims[:dim] otherdims.extend(alldims[dim + 1 : ]) di = np.zeros((self.D, )) Di = np.zeros((self.D, self.D)) for k1 in range(self.k1): ui = self.sample_uis(othercols, otherdims) meanf = np.dot(ui, m) covS = np.dot(ui, np.inner(S, ui)) Expected_fst_derivative, Expected_snd_derivative = \ self.compute_expected_first_snd_derivative(y, meanf, covS) di += ui * Expected_fst_derivative/self.k1 # Update di Di += np.outer(ui, ui) * Expected_snd_derivative/(2*self.k1) # Update Di return di, Di def update_hyper_parameter(self, dim): """ :param dim: :return: """ sigma = 0.0 M = self.size_per_dim[dim] for j in range(M): m, S = self.model.q_posterior.find(dim, j) sigma += np.trace(S) + np.dot(m, m) self.pSigma[dim] = sigma/(M*self.D) def compute_expected_first_snd_derivative(self, y, meanf, covS): first_derivative = 0.0 snd_derivative = 0.0 s = self.model.p_likelihood.params for k2 in range(self.k2): f = probs.sample(self.likelihood_type, (meanf, covS)) snd_derivative += probs.snd_derivative(self.likelihood_type, (y, f, s)) first_derivative += probs.fst_derivative(self.likelihood_type, (y, f, s)) return first_derivative/self.k2, snd_derivative/self.k2 def compute_expected_uis(self, othercols, otherdims): uis = np.ones((self.D,)) for dim, col in enumerate(othercols): # Sample from the approximate posterior (mi, Si) = self.model.q_posterior.find(otherdims[dim], col) uis = np.multiply(uis, mi) return uis def sample_uis(self, othercols, otherdims): uis = np.ones((self.D,)) for dim, col in enumerate(othercols): # Sample from the approximate posterior (mi, Si) = self.model.q_posterior.find(otherdims[dim], col) uj_sample = probs.sample("multivariate_normal", (mi, Si)) uis = np.multiply(uis, uj_sample) return uis def check_stop_cond(self): """ :return: boolean Check for stopping condition """ return def evaluate_train_error(self): """ :return: """ error = 0.0 for i, entry in enumerate(self.tensor.train_entries): predict = self.predict_entry(entry) correct = self.tensor.train_vals[i] if self.likelihood_type == "normal": error += np.abs(predict - correct)/abs(correct) elif self.likelihood_type == "bernoulli": error += 1 if predict != correct else 0 else: return 0 return error/len(self.tensor.train_vals) def evaluate_test_error(self): """ :return: """ error = 0.0 for i, entry in enumerate(self.tensor.test_entries): predict = self.predict_entry(entry) correct = self.tensor.test_vals[i] if self.likelihood_type == "normal": error += np.abs(predict - correct)/abs(correct) elif self.likelihood_type == "bernoulli": error += 1 if predict != correct else 0 else: return 0 return error/len(self.tensor.test_vals) def predict_y_given_m(self, m): if self.likelihood_type == "normal": return m elif self.likelihood_type == "poisson": f = self.link_fun(m) #TODO: implement return 1 elif self.likelihood_type == "bernoulli": # print(m) f = self.link_fun(m) return 1 if m >= 0.5 else -1 else: raise Exception("Unidentified likelihood type") def compute_expected_count(self, hermite_weights): return def compute_gauss_hermite(self, f, n): return def predict_entry(self, entry): u = np.ones((self.D,)) for dim, col in enumerate(entry): m, S = self.model.q_posterior.find(dim, col) u = np.multiply(u, m) m = np.sum(u) return self.predict_y_given_m(m)
[ "ducnguyenmanh96@gmail.com" ]
ducnguyenmanh96@gmail.com
3f45d74e68ce58dcac1bcf428cac778127060fec
886005f0847c094dec01b41769475e1e966b8b7f
/leetcode/1051. Height Checker.py
117394356b153ba84d8dd3c2e53166a902caf255
[]
no_license
alex-radchenko-github/codewars-and-leetcode
e4d55c5e6c5279a2cada5eb9e04ad1183ed36087
20a56eb4753a9ead190a7c529f2c06c99d64f325
refs/heads/main
2023-01-02T22:45:38.878716
2020-11-03T04:49:59
2020-11-03T04:49:59
307,790,531
1
1
null
null
null
null
UTF-8
Python
false
false
234
py
def heightChecker(heights): return len(list(filter(lambda x: x[0]!=x[1], list(zip(heights, sorted(heights)))))) # return list(zip(heights, sorted(heights))) print(heightChecker([1,1,4,2,1,3])) print(heightChecker([5,1,2,3,4]))
[ "48209253+radchenko511@users.noreply.github.com" ]
48209253+radchenko511@users.noreply.github.com
97b29febcb2be2ac2dafb2215f884fec355564c1
747b5ad3163d745d2ebe72b473e1346554a94045
/utilities/Augmentation.py
4414fa70e3b7795dc2f922074e1d4dd7af8efad4
[]
no_license
bibliotecadebabel/EvAI
d5227db96341cf8bdf44d2c23ae6b2987aab6a5f
2beeaf68e28c86aedb9fb6d3cb80753676d85933
refs/heads/master
2023-04-09T17:14:55.039442
2021-04-15T20:44:32
2021-04-15T20:44:32
208,825,808
0
0
null
null
null
null
UTF-8
Python
false
false
1,733
py
import numpy as np import torch ENABLE_EXTRA = False class Ricap(): def __init__(self, beta): self.__beta = beta self.__w = {} self.__c = {} # Autor = 4ui_iurz1 (2019) # Repositorio de Github = https://github.com/4uiiurz1/pytorch-ricap def doRicap(self, inputs, target, cuda=True): I_x, I_y = inputs.size()[2:] w = int(np.round(I_x * np.random.beta(self.__beta, self.__beta))) h = int(np.round(I_y * np.random.beta(self.__beta, self.__beta))) w_ = [w, I_x - w, w, I_x - w] h_ = [h, h, I_y - h, I_y - h] cropped_images = {} c_ = {} W_ = {} for k in range(4): idx = torch.randperm(inputs.size(0)) x_k = np.random.randint(0, I_x - w_[k] + 1) y_k = np.random.randint(0, I_y - h_[k] + 1) cropped_images[k] = inputs[idx][:, :, x_k:x_k + w_[k], y_k:y_k + h_[k]] if cuda == True: c_[k] = target[idx].cuda() else: c_[k] = target[idx] W_[k] = w_[k] * h_[k] / (I_x * I_y) self.__c = c_ self.__w = W_ patched_images = torch.cat( (torch.cat((cropped_images[0], cropped_images[1]), 2), torch.cat((cropped_images[2], cropped_images[3]), 2)), 3) return patched_images # Autor = 4ui_iurz1 (2019) # Repositorio de Github = https://github.com/4uiiurz1/pytorch-ricap def generateLoss(self, layer): parent_layer = layer.node.parents[0].objects[0] output = parent_layer.value loss = sum([self.__w[k] * layer.object(output, self.__c[k]) for k in range(4)]) return loss
[ "felixmorales@github.com" ]
felixmorales@github.com
c0c172189cdab047727594e3f9156a35dd596250
1d825df911d2b0a4cc36b26da9a8883eed9de8ec
/lib/utilities.py
2605f7d86b54724839568903680e797c0ca2b32c
[]
no_license
sinofeng/wpi-svm
74793e91ac5330a3665caa71d44b36931fc59f0e
5ad078a9a3475eb6a3fe3efd12e8fca39e4857ef
refs/heads/master
2021-03-17T22:02:54.675868
2012-10-27T13:44:37
2012-10-27T13:44:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,315
py
# -*- coding: utf-8 -*- import re class Logger(object): def __init__(self, file_path): self.log_h = open(file_path, 'wb') def log(self, line): print line self.log_h.write(line+'\n') def close(self): self.log_h.close() def parse_field(dict, key): """ Simple dict wrapper dict: name of dict object key: name of key Return: dict[key] or None """ try: value = dict[key] except KeyError: value = None return value def remove_url_prefix(url): """ Remove the prefix of url url: input url string """ url_regex = re.compile(r"^(\w+:?//)?(.*)$", re.IGNORECASE) url_match = url_regex.match(url) if url_match: url = url_match.group(2) return url def search_url(turl, url_list): trul2 = remove_url_prefix(turl) for url in url_list: if trul2 == remove_url_prefix(url): return True return False def cmp_url(u1, u2, mode = 'strict'): if mode == 'strict': if remove_url_prefix(u1) == remove_url_prefix(u2): return True return False elif mode == 'loose': urlre = re.compile(r'^(\w+://)?([^#\?]+)#?\??') match_u1 = urlre.match(u1) match_u2 = urlre.match(u2) if match_u1 and match_u2: if match_u1.group(2) == match_u2.group(2): return True return False else: return cmp_url(u1, u2, 'strict') def main(): pass if __name__ == '__main__': main()
[ "chen_xm@sjtu.edu.cn" ]
chen_xm@sjtu.edu.cn
73b427dd65269dfe448cdf4dd9b71647982cd4cd
14289b4de03edaf950fdae17536c1b04f9d0874d
/python-course/day-05/code/10.读取文件的位置.py
8889ca90e85e764c1d4fa23ac436405328940e45
[]
no_license
piggy1024/python-learn
cc03c1302a707c48d616c9a837d9b3d49e07bf15
2d54e56dfe7b5c2ca90ae1dc846d8ea4774a7629
refs/heads/main
2023-01-02T00:27:09.822020
2020-10-24T01:50:38
2020-10-24T01:50:38
306,784,755
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
# 10.读取文件的位置.py # seek(参数1,参数2) 参数1是要切换到哪里 # 参数2: # 0 从头计算 ,默认值 # 1 从当前位置计算 # 2 从最后位置开始计算 # 一个中文三个字节 with open(r'../demo.txt','rb') as file_obj: print(file_obj.seek(-10,2)) print(file_obj.read()) print('当前读取到哪儿:',file_obj.tell())
[ "1293266846@qq.com" ]
1293266846@qq.com
1b5b8f50a106043c4e3d113b9d076523c1060bb4
356bdbebb47c1acc7122a8275ebb3f01771de785
/mcb.pyw
9f04d67abea79c6c8e4bc94bace3f6825816da08
[]
no_license
rawbsrn/Automating-Python
e178b6a33f29e0332aa25605134b439da1089748
e4635aa0609d1fd07154e9cfad6ed574c2bdb9df
refs/heads/main
2023-07-30T07:39:38.641260
2021-09-17T00:55:24
2021-09-17T00:55:24
399,982,027
0
0
null
null
null
null
UTF-8
Python
false
false
944
pyw
#! python3 #mcb.pyw - Save & load pieces of text to the clipboard # Usage: py.exe mcb.pyw save <keyword> - Saves clipboard to keyword. # py.exe mcb.pyw <keyword> - Loads keyword to clipboard. # py.exe mcb.pyw list - Loads all keywords to clipboard. # py.exe mcb.pyw delete <keyword> - delete specific keyword from list import shelve, pyperclip, sys mcbShelf = shelve.open('mcb') #Save clipboard content if len(sys.argv) == 3 and sys.argv[1].lower() == 'save': mcbShelf[sys.argv[2]] = pyperclip.paste() elif len(sys.argv) == 3 and sys.argv[1].lower() == 'delete': del mcbShelf[sys.argv[2]] elif len(sys.argv) == 2: if sys.argv[1].lower() == 'list': pyperclip.copy(str(list(mcbShelf.keys()))) elif sys.argv[1].lower() == 'delete': for key in mcbShelf.keys(): del mcbShelf[key] elif sys.argv[1] in mcbShelf: pyperclip.copy(mcbShelf[sys.argv[1]]) mcbShelf.close()
[ "89554888+rawbsrn@users.noreply.github.com" ]
89554888+rawbsrn@users.noreply.github.com
412e62dd7a5a5818adb3d0a2a10997b21864d00a
40efb62bc628ad3de7534051feccb97b6427e53a
/Homework/Python/ILPLarge/Q1.py
7247d04b51c3fa9c1d57729f3255704a51ff1488
[]
no_license
nguyntyler/DigitalCrafts-Class
f1de5865fcc7dd0ed26429bd87f84ebc07797a97
ec275667c6a4f8823951fa1f69b596dea0981bd6
refs/heads/master
2023-02-14T18:48:11.607893
2021-01-10T00:16:44
2021-01-10T00:16:44
303,833,226
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
x = range(1, 101) for i in x: print(i * (i + 1) // 2) # This is true or should be
[ "nguyn.tyler@gmail.com" ]
nguyn.tyler@gmail.com
5fd75c72f34d71f069aca48047fd059fac481dc1
ab3abc31e6c4c292088d390355844f04f46b9141
/src/detection_video.py
be5b6268ab6d577327b2a557b693c76953954ff1
[]
no_license
zhikiat62/face-mask-detect
98a860147f6af9e7165ac7c732cb842e054cdf89
1ae132b38c4e24c2ed2033fdf341ea96dab7d89c
refs/heads/main
2023-06-02T13:59:23.174843
2021-06-18T10:02:58
2021-06-18T10:02:58
373,211,429
0
0
null
null
null
null
UTF-8
Python
false
false
6,179
py
# import the necessary packages from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model from imutils.video import VideoStream import numpy as np import argparse import imutils import time import cv2 import os def detect_and_predict_mask(frame, faceNet, maskNet, args): # grab the dimensions of the frame and then construct a blob # from it (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0)) # pass the blob through the network and obtain the face detections faceNet.setInput(blob) detections = faceNet.forward() # initialize our list of faces, their corresponding locations, # and the list of predictions from our face mask network faces = [] locs = [] preds = [] # loop over the detections for i in range(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with # the detection confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the confidence is # greater than the minimum confidence if confidence > args["confidence"]: # compute the (x, y)-coordinates of the bounding box for # the object box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # ensure the bounding boxes fall within the dimensions of # the frame (startX, startY) = (max(0, startX), max(0, startY)) (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) # extract the face ROI, convert it from BGR to RGB channel # ordering, resize it to 224x224, and preprocess it face = frame[startY:endY, startX:endX] face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) face = cv2.resize(face, (224, 224)) face = img_to_array(face) face = preprocess_input(face) # add the face and bounding boxes to their respective # lists faces.append(face) locs.append((startX, startY, endX, endY)) # only make a predictions if at least one face was detected if len(faces) > 0: # for faster inference we'll make batch predictions on *all* # faces at the same time rather than one-by-one predictions # in the above `for` loop faces = np.array(faces, dtype="float32") preds = maskNet.predict(faces, batch_size=35) # return a 2-tuple of the face locations and their corresponding # locations return (locs, preds) def main(): # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-f", "--face", type=str, default="face_detect_model", help="path to face detector model directory") ap.add_argument("-m", "--model", type=str, default="mask_detect_model", help="path to trained face mask detector model") ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) #change current working directory to the previous one os.chdir("..") # load our serialized face detector model from disk print("[INFO] loading face detector model...") prototxtPath = os.path.join(os.getcwd(), args["face"] , "deploy.prototxt") weightsPath = os.path.join(os.getcwd(), args["face"] ,"res10_300x300_ssd_iter_140000.caffemodel") faceNet = cv2.dnn.readNet(prototxtPath, weightsPath) # load the face mask detector model from disk print("[INFO] loading face mask detector model...") maskModelPath = os.path.join(os.getcwd(), args["model"] , "mask-detector-model.model") maskNet = load_model(maskModelPath) # initialize the video stream and allow the camera sensor to warm up print("[INFO] starting video stream...") vs = VideoStream(src=0).start() time.sleep(2.0) # loop over the frames from the video stream while True: # grab the frame from the threaded video stream and resize it # to have a maximum width of 400 pixels frame = vs.read() frame = imutils.resize(frame, width=400) # detect faces in the frame and determine if they are wearing a # face mask or not (locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet, args) # loop over the detected face locations and their corresponding # locations for (box, pred) in zip(locs, preds): # unpack the bounding box and predictions (startX, startY, endX, endY) = box (withMask, withMaskIncorrect, withoutMask) = pred # determine the class label and color we'll use to draw # the bounding box and text label = "Mask" if withMask > withoutMask and withMask > withMaskIncorrect else "Incorrect Mask" if withMaskIncorrect > withMask and withMaskIncorrect > withoutMask else "No Mask" color = (0, 255, 0) if label == "Mask" else (0, 255, 255) if label == "Incorrect Mask" else (0,0,255) # include the probability in the label label = "{}: {:.2f}%".format(label, max(withMask, withoutMask, withMaskIncorrect) * 100) # display the label and bounding box rectangle on the output # frame cv2.putText(frame, label, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2) # show the output frame cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break # do a bit of cleanup cv2.destroyAllWindows() vs.stop() if __name__ == '__main__': main()
[ "noreply@github.com" ]
zhikiat62.noreply@github.com
469da1f8198f033b07ed962c63dd9cb8ed6ffa3d
3c73527b7553869700e43877ff4c16260d4a0b69
/algorithm/binary_tree.py
0ab38b84ed516097aab123b2ee4cd61a6ce23138
[]
no_license
jeklen/programmingExercise
09dd5b4ff0733b1994fc6d3a79ca6ea2902c2629
50d9472d8b817653c7af94cd74dec25e99ae4de0
refs/heads/master
2021-06-05T12:18:26.758662
2016-10-24T08:00:54
2016-10-24T08:00:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,506
py
class Node: """ Tree node: left and right child + data which can be any object """ def __init__(self, data): """ Node constructor @param data node data object """ self.left = None self.right = None self.data = data def insert(self, data): """ Insert new node with data @param data node data object to insert """ if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data def lookup(self, data, parent=None): """ Lookup node containing data @param data node data object to look up @param parent node's parent @returns node and node's parent if found or None, None """ if data < self.data: if self.left is None: return None, None return self.left.lookup(data, self) elif data > self.data: if self.right is None: return None, None return self.right.lookup(data, self) else: return self, parent def delete(self, data): """Delete node containing data @param data node's content to delete """ # get node containing data node, parent = self.lookup(data) if node is not None: children_count = node.children_count() if children_count == 0: if parent: if parent.left is node: parent.left = None else: parent.right = None del node else: self.data = None elif children_count == 1: # if children has 1 child # replace node with its child if node.left: n = node.left else: n = node.right if parent: if parent.left is node: parent.left = n if parent.right is node: parent.left = n del node else: self.left = n.left self.right = n.right self.data = n.data else: # if node has 2 children # find its successor parent = node successor = node.right while successor.left: parent = successor successor = successor.left # replace node data by its successor data node.data = successor.data # fix successor's parent's child if parent.left == successor: parent.left = successor.right else: parent.right = successor.right def children_count(self): """ Returns the number of children @returns number of children: 0, 1, 2 """ cnt = 0 if self.left: cnt += 1 if self.right: cnt += 1 return cnt def print_tree(self): """ Print tree content inorder """ if self.left: self.left.print_tree() print self.data, if seft.right: self.right.print_tree() def compare_trees(self, node): """ Compare 2 trees @param node tree's root node to compare to @returns True if the tree passed is identical to this tree """ if node is None: return False if self.data != node.data: return False res = True if self.left is None: if node.left: return False else: res = self.left.compare_trees(node.left) if res is False: return False if self.right is None: if node.right: return False else: res = self.right.compare_trees(node.right) return res def tree_data(self): """ Generator to get tree nodes data """ # we use a stack to traverse the tree in a non-recursive way stack = [] node = self while stack or node
[ "zhql0907@outlook.com" ]
zhql0907@outlook.com
af52d3bbef2942a8ee05414948f62f44ad230416
a9c29d5e0eb3593d4d02ee92317721bf0f8416c4
/keyboards/inline/__init__.py
f158e699b1f87b2790dad87e24d7d4a72cf81e25
[]
no_license
Basilo142/aiobot
25c11b7a16fbea644dce1b3c1aff384dd91d0673
2506d83eab308afb03eaa7f133871fa1f90b3969
refs/heads/master
2023-08-24T07:12:01.579463
2021-11-05T16:34:41
2021-11-05T16:34:41
407,207,578
0
0
null
null
null
null
UTF-8
Python
false
false
52
py
from .key_inline import inline_buttons, drugaya_key
[ "diadiun@bitbucket.org" ]
diadiun@bitbucket.org
827f9e02239c8b99b08743da6e5b2535b09bcdf9
0c5abd937d2e9bce0a5cd5b437b1e0bfc244ceb6
/common/utils.py
a82588d7c61fe3e3080dfa3962ec3d044270c734
[]
no_license
pda-gb/Client-server_applications_2.BD_and_PyQT
2787000094b027978cd359cbc59acdf2a9f3d4c6
681c7bdaf83fa4905a6167d10d2aace774088a3b
refs/heads/master
2023-02-22T21:47:21.265299
2021-01-22T01:39:42
2021-01-22T01:39:42
331,393,105
0
0
null
null
null
null
UTF-8
Python
false
false
1,155
py
"""Утилиты""" import json from common.variables import MAX_PACKAGE_LENGTH, ENCODING def get_message(_sock): """ Приём сообщения, декодирование из байт, если ошибка, выдать текст ошибки """ response_as_byte = _sock.recv(MAX_PACKAGE_LENGTH) if response_as_byte != b'': if isinstance(response_as_byte, bytes): response_as_json = response_as_byte.decode(ENCODING) response = json.loads(response_as_json) if isinstance(response, dict): return response raise ValueError raise ValueError else: # Клиент в режиме listen, после приёма сообщения юзера, будет # получать - '', в результате вывалится ошибка JSONDecodeError pass def send_message(_sock, _message_dict): """Кодирует в байты и отправляет сообщение""" message_as_json = json.dumps(_message_dict) message_as_byte = message_as_json.encode(ENCODING) _sock.send(message_as_byte)
[ "pda.prostor@gmail.com" ]
pda.prostor@gmail.com
3f3c6507befaaa43634a91d4c7e360ccb848abf3
0166fe426b2dc36e974a26f8b406094c67550f46
/Broswer-Interaction/Executables/login_enabled_CT.command
796bf1000a7cfe5ea6f6393ac135c307d5ef47cb
[]
no_license
DreadArceus/Automation
693ff18c2f47c85741ed1bc2b1337a93bdde150e
98736cc933de0c9e498c32b0e4ff320affaf70cc
refs/heads/master
2023-03-31T00:22:41.400544
2021-04-09T03:21:01
2021-04-09T03:21:01
291,393,165
0
0
null
null
null
null
UTF-8
Python
false
false
903
command
#!/usr/bin/env python3 import time import webbrowser from selenium import webdriver from bs4 import BeautifulSoup driver = webdriver.Safari() driver.get('https://erp.lnmiit.ac.in/ugadm/Dashboard.aspx') soupI = BeautifulSoup() while True: if driver.current_url != 'https://erp.lnmiit.ac.in/ugadm/Dashboard.aspx': login = driver.find_elements_by_class_name('form-control') login[0].send_keys('LNMLZVLC') login[1].send_keys('MPPYLBR7UA') button = driver.find_element_by_name('Button1') button.click() print('login successful') soupN = BeautifulSoup(driver.page_source, 'lxml') if soupI == BeautifulSoup(): soupI = soupN if str(soupI).find('Second') != str(soupN).find('Second'): print('IT\'S CHANGED') webbrowser.open(driver.current_url) soupI = soupN time.sleep(30) driver.refresh() driver.quit()
[ "dcmtalwar@gmail.com" ]
dcmtalwar@gmail.com
66153ba19dfeb3194214bb436dfa73f2c1b4926d
84197b3cb75d2c2ea8ba40252e146375941b077a
/flask_app/__init__.py
8259943fd7d955ba3c6b6a07d549483f6c19bb66
[]
no_license
bkhurley/beat_the_crowd
aa5451cb5fddffc904ad211b5fe7168656a42664
f291038e77dbd158dcfb156e01655f2ddfecd436
refs/heads/master
2021-05-11T21:43:04.294702
2018-05-17T17:36:46
2018-05-17T17:36:46
117,475,860
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
from flask import Flask app = Flask(__name__) from flask_app import views2
[ "hurley.brian@gmail.com" ]
hurley.brian@gmail.com
c14f7e2a3991057490ce8edbd390f6aea7335c0d
a1c6b5467a9c1dddeffd66ab3f415b9dbdcb56e9
/COVIDIC/manage.py
ceec6756d6103201d803e41c219c41dcc03f79dd
[]
no_license
hanpikeu/Covidic-Frontends
9569267d09866db106d38f6121c75d00e5157df3
a565a1713bcbafa9542851ea9b622bd29acc98fc
refs/heads/master
2021-04-01T07:57:44.627392
2020-03-18T16:58:01
2020-03-18T16:58:01
248,170,555
0
0
null
2020-03-18T07:57:01
2020-03-18T07:57:00
null
UTF-8
Python
false
false
627
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'COVIDIC.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "viasta20311@gmail.com" ]
viasta20311@gmail.com
c5a8b2ac1773693bce5629c33839801ad745a20c
4888923eb948d61b54d87750c9e4810e5b6dc7df
/backend/venv/bin/isort
eb426718aef2de9b32464aea804666524a5eb79c
[]
no_license
EricRobertCampbell/auth0-poc
5305f8bee8408d84e174c9b593053581f555901c
0d5718760d47777ccabca2fdc67e689cd37ba81b
refs/heads/master
2022-12-30T02:52:03.962759
2020-10-16T23:04:05
2020-10-16T23:04:05
304,756,203
0
0
null
null
null
null
UTF-8
Python
false
false
248
#!/home/eric/documents/auth0-poc/backend/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from isort.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "eric.robert.campbell@gmail.com" ]
eric.robert.campbell@gmail.com
1652435f5d485a9de09c979c03c31ba7d17307fc
ab4f0df599159b2c3929c24b12e2766718efdacb
/cubepy/index.py
3787946118858decc7656993b76f715643b3cacf
[ "MIT" ]
permissive
jorgedouglas71/pyplan-ide
f01ec438f727ee0dea01b0d265155b49a26ccdb8
5ad0e4a2592b5f2716ff680018f717c65de140f5
refs/heads/master
2020-09-25T03:10:01.201707
2019-12-04T15:39:55
2019-12-04T15:39:55
225,904,173
0
0
MIT
2019-12-04T15:57:06
2019-12-04T15:57:05
null
UTF-8
Python
false
false
2,793
py
import numpy as np from cubepy.axis import Axis class Index(Axis): """A named sequence of unique indexed values. Can be used as indexable axis in Cube. Name is a string. Values are stored in one-dimensional numpy array. """ def __init__(self, name, values): """Initialize a new Index object. The values must be unique, otherwise ValueError is raised. :param name: str :param values: sequence of values (must be unique), sequence of cubepy.Index :raise: ValueError if there are duplicate values """ if isinstance(values,list) and len(values)>0 and isinstance(values[0],self.__class__): nn=0 for idx in values: if nn==0: fullValues = np.copy(idx.values) else: fullValues = np.concatenate( (fullValues ,idx.values), axis=0) nn+=1 values = np.unique(fullValues) super(Index, self).__init__(name, values) # create dictionary self._indices = {x: i for i, x in enumerate(self._values)} # values must not be change once the index has been created self._values.flags.writeable = False if len(self._indices) != len(self._values): raise ValueError('Index cannot have duplicate values') self._vectorized_index = np.vectorize(self._indices.__getitem__, otypes=[np.int]) self._vectorized_contains = np.vectorize(self._indices.__contains__, otypes=[np.bool]) def __contains__(self, item): """Implementation of 'in' operator. :param item: a value to be looked up whether exists :return: bool """ return item in self._indices def contains(self, item): """Tests whether item or items exist among values. If item is single value, then return a single boolean value. If item is a sequence, then return numpy array of booleans. :param item: a single value or a sequence of values :return: bool or numpy array of bools """ v = self._vectorized_contains(item) if v.ndim > 0: return v return v.item() def indexof(self, item): """If item is single value, then return a single integer value. If item is a sequence, then return numpy array of integers. :param item: a single value or a sequence of values :return: int or numpy array of ints :raise: KeyError if value does not exist """ v = self._vectorized_index(item) if v.ndim > 0: return v return v.item() @property def pos(self): from cubepy.cube import Cube return Cube([self],range(len(self)))
[ "fbrussa@novix.com" ]
fbrussa@novix.com
175fb277a49966e29ff8712330bb24e13e1ad305
fa7c420ef42b33f9488e5e6b75462ebe7c7a3e54
/DataProcessingPipeline/pycharm/datamaking_real_time_data_pipeline/real_time_data_pipeline.py
18b84f209f2da83a820e82a864227b772dae1165
[]
no_license
sravyapagadala1/DataProcessingPipelineGCP
0ca2d4b16f60afea4b5b9f07a24ce999d248f389
21cee99f51306583ac57be693a286216fc7750c4
refs/heads/master
2022-09-13T18:33:40.675803
2020-05-28T11:51:56
2020-05-28T11:51:56
267,575,666
1
0
null
null
null
null
UTF-8
Python
false
false
2,443
py
from pyspark.sql import SparkSession from pyspark.sql.functions import * from pyspark.sql.types import * KAFKA_TOPIC_NAME_CONS = "transmsg" KAFKA_BOOTSTRAP_SERVERS_CONS = '35.238.42.190:9092' if __name__ == "__main__": print("Real-Time Data Pipeline Started ...") spark = SparkSession \ .builder \ .appName("Real-Time Data Pipeline Demo") \ .master("local[*]") \ .config("spark.jars", "file:///C://Users//sravy//Documents//Projects//DataProcessingPipeline//jar_files//spark-sql-kafka-0-10_2.11-2.4.0.jar,file:///C://Users//sravy//Documents//Projects//DataProcessingPipeline//jar_files//kafka-clients-2.0.0.jar") \ .config("spark.executor.extraClassPath", "file:///C://Users//sravy//Documents//Projects//DataProcessingPipeline//jar_files//spark-sql-kafka-0-10_2.11-2.4.0.jar:file:///C://Users//sravy//Documents//Projects//DataProcessingPipeline//jar_files//kafka-clients-2.0.0.jar") \ .config("spark.executor.extraLibrary", "file:///C://Users//sravy//Documents//Projects//DataProcessingPipeline//jar_files//spark-sql-kafka-0-10_2.11-2.4.0.jar:file:///C://Users//sravy//Documents//Projects//DataProcessingPipeline//jar_files//kafka-clients-2.0.0.jar") \ .config("spark.driver.extraClassPath", "file:///C://Users//sravy//Documents//Projects//DataProcessingPipeline//jar_files//spark-sql-kafka-0-10_2.11-2.4.0.jar:file:///C://Users//sravy//Documents//Projects//DataProcessingPipeline//jar_files//kafka-clients-2.0.0.jar") \ .getOrCreate() spark.sparkContext.setLogLevel("ERROR") # Construct a streaming DataFrame that reads from transmsg transaction_detail_df = spark \ .readStream \ .format("kafka") \ .option("kafka.bootstrap.servers", KAFKA_BOOTSTRAP_SERVERS_CONS) \ .option("subscribe", KAFKA_TOPIC_NAME_CONS) \ .option("startingOffsets", "latest") \ .load() print("Printing Schema of transaction_detail_df: ") transaction_detail_df.printSchema() # Write result dataframe into console for debugging purpose trans_detail_write_stream = transaction_detail_df \ .writeStream \ .trigger(processingTime='5 seconds') \ .outputMode("update") \ .option("truncate", "false")\ .format("console") \ .start() trans_detail_write_stream.awaitTermination() print("Real-Time Data Pipeline Completed.")
[ "noreply@github.com" ]
sravyapagadala1.noreply@github.com
daa036edc8eb665395f09338474ee089044a4872
59731d4fe8ba2778a25c4345dedcb4ad4e759fe0
/deepService/eventHandlers/UpdateJobHandler.py
9b14ccdac0dc3ba661c09b15d14e694bf55bae93
[]
no_license
goodshark/kube-deep
cbf7d4ac2af001d7c504937b9fee0cf64b8b1e97
0c07366fa998fbf82df5a2a91f91be32031eb703
refs/heads/master
2020-03-27T08:30:05.556710
2018-12-14T08:56:19
2018-12-14T08:56:19
146,261,122
0
0
null
null
null
null
UTF-8
Python
false
false
4,126
py
# coding: utf-8 from EventHandler import EventHandler from util.ApiConfiger import ApiConfig from util.RedisHelper import RedisHelper import kubernetes from kubernetes import client, config, watch from kubernetes.client.rest import ApiException import json import re import traceback class UpdateJobHandler(EventHandler): def removePs(self, psList): print 'deleting ps list: ' + str(psList) config.load_kube_config() configuration = kubernetes.client.Configuration() delJobInstance = kubernetes.client.BatchV1Api(kubernetes.client.ApiClient(configuration)) delSvcInstance = kubernetes.client.CoreV1Api(kubernetes.client.ApiClient(configuration)) body = kubernetes.client.V1DeleteOptions() body.propagation_policy = 'Foreground' namespace = ApiConfig().get("namespace", "tensorflow") for ps in psList: try: delJobInstance.delete_namespaced_job(ps, namespace, body) delSvcInstance.delete_namespaced_service(ps, namespace, body) except: traceback.print_exc() ''' tf-3e8f3702-d10b-11e8-abe4-fa163ef8da8a-ps-0-1 {3e8f3702-d10b-11e8-abe4-fa163ef8da8a-1: 0} tf-3e8f3702-d10b-11e8-abe4-fa163ef8da8a-worker-0-3 {3e8f3702-d10b-11e8-abe4-fa163ef8da8a-3: 0} ''' def modifEvent(self, objName, eStatus): print '*************** UpdateJobHandler modify event: ' + str(objName) rc = RedisHelper().getRedis() psPt = "tf-([0-9a-z]{8}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{12})-ps-([0-9].*)-([0-9].*)" res = re.match(psPt, objName) if res: # ps may be shutdown itself through singal from worker print 'ps modified' #psKey = res.group(1) #rc.hincrby(ApiConfig().get("event", "ps_key"), psKey, -1) else: workerPt = "tf-([0-9a-z]{8}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{12})-worker-([0-9].*)-([0-9].*)" res = re.match(workerPt, objName) if not res: return if eStatus.succeeded and eStatus.succeeded == 1: workerKey = res.group(1) curCount = rc.hincrby(ApiConfig().get("event", "worker_key"), workerKey, -1) if (int(curCount) == 0): print 'prepare delete ps ++++++++++++++++++++++++++++++' psCnt = rc.hget(ApiConfig().get("event", "ps_key"), res.group(1)) allPs = ['tf-'+res.group(1)+'-ps-'+str(i)+'-'+psCnt for i in xrange(int(psCnt))] allWorker = ['tf-'+res.group(1)+'-worker-'+str(i)+'-'+res.group(3) for i in xrange(int(res.group(3)))] print 'all ps: ' + str(allPs) print 'all worker: ' + str(allWorker) tfInfo = {'ps': allPs, 'worker': allWorker} rc.rpush(ApiConfig().get("event", "delete_queue"), json.dumps(tfInfo)) else: print 'one tf worker done successfully ......' else: # TODO mark failed pass def delEvent(self, objName, eStatus): print '************* UpdateJobHandler delete event: ' + str(objName) rc = RedisHelper().getRedis() psPt = "tf-([0-9a-z]{8}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{12})-ps-([0-9].*)-([0-9].*)" res = re.match(psPt, objName) if res: print 'delete event matched' psKey = res.group(1) print 'delete event ps_key: ' + psKey try: psCurCount = rc.hincrby(ApiConfig().get("event", "ps_key"), psKey, -1) except: print 'got error' traceback.print_exc() print 'after hincrby ......' print 'delete event ps cur count: ' + str(psCurCount) if (int(psCurCount) == 0): print '' rc.hdel(ApiConfig().get("event", "ps_key"), psKey) rc.hdel(ApiConfig().get("event", "worker_key"), psKey) else: print 'del event not matched'
[ "root@tf-1.novalocal" ]
root@tf-1.novalocal
6926911d576e910dfcf6812e7dd08b64e45c509e
ed0a4b5ebe0a93054766b1d6948fe31d006a19d8
/GradeCalculator.py
61890e98deb52972643ef4ca341176b5c8a04bee
[]
no_license
max-conroy/Python
5c19ce989d2f0bd942f2c23917b31c69ca81b4b6
d058de635005d05d1dc7fc45de98e7f571877de1
refs/heads/master
2021-11-24T19:59:04.068020
2016-01-29T01:24:46
2016-01-29T01:24:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,036
py
# Group #2 - Program 2 - Grade Averaging Program # Andrew Weaver, Jordan Westfall, Max Conroy # CSC 485 - Special Topics in Computer Science - Python #Basic grade calculator program # Command handler def main(): printTitle() promptInput() # This function is used to dipslay the title for the program def printTitle(): print("-----------------------------------------------------------------------------------") print(" Welcome to the Grade Calculator Program ") print("-----------------------------------------------------------------------------------") print(" - Enter a valid grade between 0 and 100 ") print(" - Entering a grade outside of the range will terminate input") print(" - After entering an invalid grade the program will calculate all of the grades") print(" - If no valid grades are entered the program will terminate") print("-----------------------------------------------------------------------------------") # promptInput() is a loop that prompts the user for input as long as the grades are in a valid range def promptInput(): programCounter = 0 # Program counter for the input gradeInput = 0 # Variable used to store grade input gradeList = [] # List that stores all of the grades input by the user while gradeInput >= 0 and gradeInput <= 100: #Loop executes while the users input is within the valid range gradeInput = raw_input("Enter a grade: ") #Prompt for grade input if isNumber(gradeInput) == True: #Handle if the user entered a valid number and not a letter/word gradeInput = float(gradeInput) #Converts the local variable to a float if gradeInput < 0 or gradeInput > 100: #Checks to see if the grade is valid promptCalculation(gradeList) #Calls the invalid Grade function to terminate input and calculate totals else: gradeList.append(gradeInput) #Inserts the valid grade into the list at the address of the program counter programCounter += 1 #Increment the program counter else: print("You did not enter a valid number, please enter valid number.") #Warning message to the user gradeInput = 0 #Reset the input to meet loop conditions # promptCalculation() is accepts the program counter and the list of grades to call the calculation functions def promptCalculation(gradesList): numberElements = len(gradesList) # Retrieves the number of elements in a list if numberElements > 0: # Handle if the user didn't enter any values gradeSum = sum(gradesList) # Sums the elements in the list averageGrades = gradeSum/numberElements # Divides the sum of the grades by the number of grades to get the average letterGrade = calculateLetterGrade(averageGrades) # Determines the letter grade printTotal(numberElements, gradeSum, averageGrades, letterGrade) else: print("Sorry, you did not enter any valid grades for calculation!") print("Program Terminated, restart the program to enter valid grades.") # This functions prints out the information to the user def printTotal(numberOfElements, sumOfGrades, averageOfGrades, letterOfGrades): print("Grade out of valid range totals now being calculated...") print("-----------------------------------------------------------------------------------") print("There were a total of "+ str(numberOfElements) +" grades entered that totaled up to "+ str(sumOfGrades)) print("The average of the grades entered was " + str("{:.2f}".format(averageOfGrades)) + " which is an average letter grade of: " + str(letterOfGrades)) # This function handles the letter grade using simple if based logic def calculateLetterGrade(gradeAverage): if gradeAverage <= 60: letterGrade = "F" elif gradeAverage > 60 and gradeAverage < 70: letterGrade = "D" elif gradeAverage > 70 and gradeAverage < 80: letterGrade = "C" elif gradeAverage > 80 and gradeAverage < 90: letterGrade = "B" elif gradeAverage >= 90: letterGrade = "A" return letterGrade # Checks to see if the number is a number or not def isNumber(x): try: #Try statement to handle exception if the string cannot be cast x = float(x) #Casting statement return True #If the cast is successful return true except ValueError: #Catch the ValueError exception if the string cannot be converted to a float return False #Return False back to the function main()
[ "conroy316@yahoo.com" ]
conroy316@yahoo.com
4b6de09716039e8e42ef1b4f23ea314d2d2a8e8e
4e28a9fe973d7f6dc318aa191e25c44032b89f54
/PycharmProjects/demo0/描述符.py
677f10e086ca595b607deb7904fdd469e9da3656
[]
no_license
octolittlefish/python
0f159cc85c92a4a5328fe31c988f1999480cbe11
ef7b08d658566baf81578d594d6d6c256c17017e
refs/heads/master
2021-01-22T20:55:13.867795
2017-05-14T05:14:39
2017-05-14T05:14:39
85,378,925
0
0
null
null
null
null
UTF-8
Python
false
false
1,046
py
# class MyDecriptor: # def __get__(self, instance, owner): # print("getting...",self,instance,owner) # def __set__(self, instance, value): # print("setting...",self,instance,value) # def __delete__(self, instance): # print("deleting...",self,instance) # # class Test: # x = MyDecriptor() # # test = Test() # test.x # test.x="X-man" # del test.x # print(123) class Celsius: def __init__(self,value = 26.0): self.value = float(value) def __get__(self, instance, owner): return self.value def __set__(self, instance, value): self.value=float(value) class Fahrenheit: def __get__(self, instance, owner): return instance.cel * 1.8 +32 def __set__(self, instance, value): instance.cel=(float(value)-32)/1.8 class Temperature: cel = Celsius() fah = Fahrenheit() temp =Temperature() print("初始摄氏温度是: ") print(temp.cel) temp.cel = 30 print("摄氏温度设置为") print(temp.cel) print("对应华氏温度是: ") print(temp.fah)
[ "278715853@qq.com" ]
278715853@qq.com
6d5fe15c4c31ed1dfb107a67ad6c71c152d2c48b
d9272149dbf3b1157324291cefa55cacedad1082
/testing.py
501a3f585a6af61014c131fe59829f4af42d5deb
[]
no_license
mymindcastadrift/gen-eigh
680147e625e9dcc5b0d9aecc5b58fec8f3693871
c33326655b05d24fef287fe2b449483181243139
refs/heads/master
2016-09-16T13:09:09.965067
2015-08-23T22:00:18
2015-08-23T22:00:18
39,964,020
0
0
null
null
null
null
UTF-8
Python
false
false
5,934
py
import numpy as np from scipy import linalg import matrixgenerator as matgen from choleskywilkinson import cholesky_wilkinson from fixheiberger import fix_heiberger # Error functions ===================================== def column_vect_norms(X): norm =[] for i in range(X.shape[1]): x = linalg.norm(X[:,i]) norm.append(x) return norm def average_error(A, M, eigenval, eigenvect, n): err_matrix = A.dot(eigenvect) - np.multiply(eigenval, M.dot(eigenvect)) norm = column_vect_norms(err_matrix) return sum(norm[0:n])/n def normalize(n, eigenvect): for i in range(n): eigenvect[:,i] = eigenvect[:,i]/linalg.norm(eigenvect[:,i]) # Basic Correctness Tests ============================================== def run_test(A,M, r): [fh_val, fh_vect] = fix_heiberger(A,M,r) [cw_val, cw_vect] = cholesky_wilkinson(A,M) [def_val, def_vect] = linalg.eigh(A,M) normalize(len(def_val), def_vect) # Excessive tolerance limits error if fh_val == None: return print "Fix-Heiberger: with error: ", average_error(A,M, fh_val, fh_vect, len(fh_val)), " on ", len(fh_val), fh_val#, fh_vect print "Cholesky-Wilkinson: with error: ", average_error(A,M, cw_val, cw_vect, len(fh_val)), len(cw_val), cw_val#, cw_vect print "Scipy: with error: ", average_error(A,M, def_val, def_vect, len(fh_val)), len(def_val), "\n", def_val, "\n" def test_correct_1(n): print "Testing with dimensions:", n z = range(1,n+1) A = matgen.rand_by_eigenval(n, z[::-1]) M = matgen.diag([1]*n) run_test(A,M,0.01) def test_correct_1a(n): print "Testing with dimensions:", n z = range(1,n+1) Q = matgen.rand_unitary(n) A = Q*matgen.diag(z[::-1])*Q.getH() r = [1]*n r[n-1:] = [10**-10]*1 M = Q*matgen.diag(r)*Q.getH() run_test(A,M,0.01) def test_correct_2(n): print "Testing with dimensions:", n A = matgen.rand_symm(n) M = matgen.rand_by_eigenval(n, [1]*n) run_test(A,M,0.01) def test_correct_3(a,d,e): print "Testing with alpha, delta, epsilon:", a, d, e A = np.matrix([[1, a, 0, d],[a, 2, 0, 0], [0,0,3,0],[d,0,0,e]]) M = matgen.diag([1,1,e,e]) run_test(A,M,0.001) def test_correct_3c(a,d,e): print "[PATHOLOGICAL] Testing with alpha, delta, epsilon:", a, d, e A = np.matrix([[1,a,0,0,0,d],[a,2,0,0,0,0],[0,0,3,0,0,0],[0,0,0,e,0,0],[0,0,0,0,e,0],[d,0,0,0,0,e]]) M = matgen.diag([1,1,e,e,e,e]) run_test(A,M,0.001) def test_correct_4(d): print "Testing with delta ", d A = matgen.diag([6,5,4,3,2,1,0,0]) A[0,6] = A[1,7] = A[6,0] = A[7,1] = 1 M = matgen.diag([1,1,1,1,d,d,d,d]) run_test(A,M,0.000011) def test_correct_5(n,w): print "Testing with negative eigenvalues in A_22" A_11 = matgen.rand_symm(n) A_22 = matgen.rand_by_eigenval(w, matgen.rand_eigenval(w,-1000,100)) A_13 = matgen.rand_mat(n,w) A = linalg.block_diag(A_11, A_22) A[0:n, n:n+w] = A_13 A[n:n+w, 0:n] = A_13.getH() M =linalg.block_diag( matgen.diag(matgen.rand_eigenval(n,100,1000)), matgen.diag([10**-10]*w)) run_test(A,M,0.01) def test_correct_6(n,w, e, v=3): print "[PATHOLOGICAL] Testing with near singular A with w = ", w Q = matgen.rand_unitary(n+2*w) A_11 = matgen.rand_symm(n) A_22 = matgen.rand_by_eigenval(2*w, np.concatenate((matgen.rand_eigenval(w, 1000,10000), matgen.rand_eigenval(w, e, 10*e)), axis=1)) A = linalg.block_diag(A_11, A_22) A_13 = np.matrix(np.diag(matgen.rand_eigenval(w, e, 10*e))) A[0:w, n+w:n+2*w] = A_13 A[n+w:n+2*w, 0:w] = A_13.getH() M = matgen.diag(np.concatenate((matgen.rand_eigenval(n,10000,100000), matgen.rand_eigenval(2*w, 0.0001, 0.001)), axis = 1)) A = Q * A * Q.getH() M = Q * M * Q.getH() run_test(A,M,0.01) # Unit testing module ===================================================== if __name__ == "__main__": '''print "\nTest 1: Identity M" for i in [5,100]: test_correct_1(i) print "\nTest 1a: Near singular A,M" for i in range(2,10): test_correct_1a(i) print "\nTest 2: Non-singular M" for i in [5,100]: test_correct_2(i)''' '''print "\nTest 3a: Pg 86 test - Limiting values of epsilon" for i in range(20,50): test_correct_3(0.00001, 0.00005, 10**(-i))''' '''print "\nTest 3b: Pg 86 test - Limiting values of delta" for i in range(10,100): test_correct_3(0.00001, 10**(-i), 0.00001) # Note how the latter claims to be a pathological input for Fix-Heiberger due to the lack of condition (2.14) # BUT THE RANK CONDITION STILL HOLDS!!! n_1 = 2, n_4 = 1 # The problem is in trying to solve for a A_13 with near zero singular values. print "\nTest 3c: Pg 86 test - Limiting values of delta with modified matrix" for i in range(50,60): test_correct_3c(0.01, 10**(-i), 0.000001) print "\nTest 4: Pg 87 test - Limiting values of delta" for i in range(5, 10): test_correct_4(10**(-i))''' '''print "\nTest 5: A_22 with negative values" for i in range(5, 10): test_correct_5(20*i,10)''' # Note that higher error for "less singular matrices" is expected since F-H assumes singularity for low eigenvalues. '''print "\nTest 7: Near singular A" for i in range(1,5): test_correct_6(500-40*i,20*i, 10**-50) #print "\nTest 8: Perturbation Test"''' print "\nTest: Higher Dimensional Performance" [A, M] = matgen.rand_pair(10) run_test(A,M, 0.0001) fp = open("testresult.csv", 'w') print "Beginning Testing ... " a = 0.00001 d = 0.00005 fh_output = [0]*3 num_output =[0]*3 for i in range(1,101): print i fp.write("{}".format(i*10)) #for j in range (10): [A,M] = matgen.rand_pair(i*10) [test_val, test_vect] = cholesky_wilkinson(A,M) err_2 = average_error(A, M, test_val, test_vect, len(test_val)) fp.write(",{},".format(err_2)) for k in range(1,4): [eigenval, eigenvect] = fix_heiberger(A,M, 10**(-k*2)) fh_output[k-1] = average_error(A, M , eigenval, eigenvect, len(eigenval)) num_output[k-1] = len(eigenval) for k in range(1,4): fp.write(",{}".format(fh_output[k-1])) for k in range(1,4): fp.write(",{}".format(num_output[k-1])) fp.write("\n") fp.close()
[ "=" ]
=
1df1b029fa86fd9b6464ffa2209d9062ebf5005d
e82e417d06b41f3ff28bfd69b251595ed3865e5e
/BattleFire.py
54675e125de6457e02ed97b431ece5f3de65f56a
[]
no_license
ameyabhamare/pokemon-xyz
540c0d0f94d7e5f91e514bb2b320057edbd110fe
eab61a58f4d5375e7997c3e5c71b99e28e9be893
refs/heads/master
2022-11-15T07:37:10.425054
2020-07-14T05:02:23
2020-07-14T05:02:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,684
py
import pygame import random WIDTH = 950 HEIGHT = 700 FPS = 15 pygame.font.init() smallText=pygame.font.Font('freesansbold.ttf',15) smallText1=pygame.font.Font('freesansbold.ttf',22) def text_objects(text, font): textSurface=font.render(text,True,BLACK) return textSurface, textSurface.get_rect() #colour definitions so that we need not look at internet WHITE = (255, 255, 255) BLACK = (0, 0, 0) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) phealth=136 ehealth=252 # initialize pygame and create window(do not copy this part) #make sure you have the same data names as i have used pygame.init() pygame.mixer.init() screen = pygame.display.set_mode((WIDTH, HEIGHT)) photo1 = pygame.image.load('Xerneas.png') photo2= pygame.image.load('Delphox.png') pygame.display.set_caption("Pokemon X,Y and Z") background_img = pygame.image.load('battle_ground.png').convert() clock = pygame.time.Clock() #now the actual sprites begin #i have created a list of sprtes so that we can update everything at once class Wall(pygame.sprite.Sprite): """ Wall the player can run into. """ def __init__(self, x, y, width, height): """ Constructor for the wall that the player can run into. """ # Call the parent's constructor super(Wall,self).__init__() # Make a blue wall, of the size specified in the parameters self.image = pygame.Surface([width, height]) self.image.fill(BLUE) self.image.set_colorkey(BLUE) # Make our top-left corner the passed-in location. self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x def Attack1(): global ehealth global phealth ehealth-=20 phealth-=random.randint(0,40) def Attack2(): global ehealth global phealth ehealth-=50 phealth-=random.randint(0,40) def Attack3(): global ehealth global phealth ehealth-=60 phealth-=random.randint(0,40) def Attack4(): global ehealth global phealth ehealth-=30 phealth-=random.randint(0,40) class Player(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) self.image=pygame.transform.scale(photo2,(200,236)) self.rect=self.image.get_rect() self.rect.centerx=WIDTH/2 self.rect.bottom=HEIGHT-2 self.speedx=0 self.speedy=0 self.walls=None def update(self): self.speedx=0 self.speedy=0 keystate=pygame.key.get_pressed() if keystate[pygame.K_LEFT]: self.speedx=-5 if keystate[pygame.K_RIGHT]: self.speedx=5 if keystate[pygame.K_DOWN]: self.speedy=5 if keystate[pygame.K_UP]: self.speedy=-5 self.rect.x+=self.speedx self.rect.y+=self.speedy if self.rect.right>WIDTH: self.rect.right=WIDTH if self.rect.left<0: self.rect.left=0 if self.rect.top>HEIGHT: self.rect.top=HEIGHT if self.rect.bottom<0: self.rect.bottom=0 block_hit_list = pygame.sprite.spritecollide(self, self.walls, False) for block in block_hit_list: # If we are moving right, set our right side to the left side of # the item we hit if self.speedx > 0: self.rect.right = block.rect.left else: # Otherwise if we are moving left, do the opposite. self.rect.left = block.rect.right # Move up/down self.rect.y += self.speedy # Check and see if we hit anything block_hit_list = pygame.sprite.spritecollide(self, self.walls, False) for block in block_hit_list: # Reset our position based on the top/bottom of the object. if self.change_y > 0: self.rect.bottom = block.rect.top else: self.rect.top = block.rect.bottom class Mob(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) self.image=pygame.transform.scale(photo1,(200,236)) self.rect=self.image.get_rect() self.rect.x=659 self.rect.y=254 #self.speedx=random.randrange(1,8) #self.speedy=random.randrange(1,3) mobs=pygame.sprite.Group() player=Player() all_sprites = pygame.sprite.Group() all_sprites.add(player) m=Mob() all_sprites.add(m) mobs.add(m) wall_list=pygame.sprite.Group() wall = Wall(20, 40, 10, 600) wall1 = Wall(745,7, 203, 333) wall2 = Wall(20, 40, 10, 600) wall3 = Wall(20, 40, 10, 600) wall4 = Wall(20, 40, 10, 600) wall5 = Wall(20, 40, 10, 600) wall6 = Wall(20, 40, 10, 600) wall7 = Wall(20, 40, 10, 600) all_sprites.add(wall) wall_list.add(wall) all_sprites.add(wall1) wall_list.add(wall1) all_sprites.add(wall2) wall_list.add(wall2) all_sprites.add(wall3) wall_list.add(wall3) all_sprites.add(wall4) wall_list.add(wall4) player.walls=wall_list health=142 # Game loop running = True while running: # keep loop running at the right speed clock.tick(FPS) # Process input (events) for event in pygame.event.get(): # check for closing window if event.type == pygame.QUIT: running = False # Update all_sprites.update() #collision collide= pygame.sprite.spritecollide(player,mobs,False) block_hit_list = pygame.sprite.spritecollide(player,wall_list, False) '''for block in block_hit_list: # Reset our position based on the top/bottom of the object. if player.speedy > 0: player.rect.bottom = player.rect.bottom else: player.rect.top = block.rect.bottom''' if collide: health-=10 if health<0: collide= pygame.sprite.spritecollide(player,mobs,True) # Draw / render screen.blit(background_img,[0,0]) mouse=pygame.mouse.get_pos() click=pygame.mouse.get_pressed() pygame.draw.rect(screen,RED,(0,565,180,105)) pygame.draw.rect(screen,RED,(190,565,180,105)) pygame.draw.rect(screen,RED,(380,565,180,105)) pygame.draw.rect(screen,RED,(570,565,180,105)) textSurf1, textRect1=text_objects('Fire Spin',smallText) textSurf2, textRect2=text_objects('Flame Charge',smallText) textSurf3, textRect3=text_objects('Fire Pledge',smallText) textSurf4, textRect4=text_objects('Fire Spin',smallText) textSurf5, textRect5=text_objects("Player:"+str(phealth)+"/136",smallText1) textSurf6, textRect6=text_objects("Enemy:"+str(ehealth)+"/252",smallText1) textRect1.center=((0+(180/2)),(565+(105/2))) textRect2.center=((190+(180/2)),(565+(105/2))) textRect3.center=((380+(180/2)),(565+(105/2))) textRect4.center=((570+(180/2)),(565+(105/2))) textRect5.center=((760+(180/2)),(565+(105/2))) textRect6.center=((760+(180/2)),(600+(105/2))) if 180>mouse[0]>0 and 670>mouse[1]>565: if click[0]==1: Attack1() if 370>mouse[0]>190 and 670>mouse[1]>565: if click[0]==1: Attack2() if 560>mouse[0]>380 and 670>mouse[1]>565: if click[0]==1: Attack3() if 750>mouse[0]>570 and 670>mouse[1]>565: if click[0]==1: Attack4() screen.blit(textSurf1, textRect1) screen.blit(textSurf2, textRect2) screen.blit(textSurf3, textRect3) screen.blit(textSurf4, textRect4) screen.blit(textSurf5, textRect5) screen.blit(textSurf6, textRect6) if phealth<0: import tt1 pygame.quit() if ehealth<0: import Win pygame.display.update() all_sprites.draw(screen) # *after* drawing everything, flip the display pygame.display.flip() pygame.quit()
[ "aditeya.baral@gmail.com" ]
aditeya.baral@gmail.com
388935c6fb29e2aa10a63eb2d25d24fa7bcf8547
e653913c3e1a294d3294790cbf96da4d0d45b9de
/lib/fast_rcnn/softmax_loss.py
a2fcd289773978cef3c292732404cdd87dd27363
[ "MIT", "LicenseRef-scancode-generic-cla", "BSD-2-Clause" ]
permissive
dereyly/faster-rcnn-my
895919325a0e24bf822e4a914fe91691647fbf44
8f30c996102ab59ece8bf683cdbe4bbab4e8a29b
refs/heads/master
2021-04-15T13:33:07.377526
2018-04-27T18:05:47
2018-04-27T18:05:47
126,897,428
1
0
null
null
null
null
UTF-8
Python
false
false
2,222
py
__author__ = 'dereyly' import sys #sys.path.append('/home/dereyly/progs/caffe_cudnn33/python_33') #sys.path.append('/home/dereyly/progs/caffe-master-triplet/python') import caffe import numpy as np ''' layer { name: 'rcls_lost_my' type: 'Python' bottom: 'feats' bottom: 'labels' top: 'cls_lost_my' python_param { module: 'fast_rcnn.softmax_loss' layer: 'SoftmaxLossLayer' #param_str: "{'ratios': [0.5, 1, 2], 'scales': [2, 4, 8, 16, 32]}" } } ''' def softmax(x): """Compute softmax values for each sets of scores in x.""" sf = np.exp(x) sum_sf=np.sum(sf, axis=1) for i in range(x.shape[0]): sf[i]/=sum_sf[i] return sf class SoftmaxLossLayer(caffe.Layer): def setup(self, bottom, top): # check input pair if len(bottom) != 2: raise Exception("Need two inputs to compute distance.") def reshape(self, bottom, top): # check input dimensions match # difference is shape of inputs sz=bottom[0].data.shape self.batch_sz=sz[0] self.diff = np.zeros((sz[0],sz[1]),dtype=np.float32) self.lbl_gt=np.zeros((sz[0],sz[1]),dtype=np.float32) # loss output is scalar top[0].reshape(1) #top[1].reshape(self.batch_sz) def forward(self, bottom, top): sz=bottom[0].data.shape self.lbl_gt=np.zeros((sz[0],sz[1]),dtype=np.float32) lbl_idx=bottom[1].data lbl_idx=lbl_idx.astype(dtype= int) for i in range(self.batch_sz): self.lbl_gt[i,lbl_idx[i]]=1 soft_max=softmax(bottom[0].data) #loss = -self.lbl_gt*np.log(np.maximum(soft_max,np.finfo(np.float32).eps)) loss=0 for i in range(self.batch_sz): loss -= np.log(np.maximum(soft_max[i][lbl_idx[i]],np.finfo(np.float32).eps)) #loss2=-np.log(soft_max) #for i in range(self.batch_sz): # loss[i,lbl_idx[i]]=0 #print bottom[1].data.shape self.diff[...] = soft_max-self.lbl_gt top[0].data[...] = np.sum(loss) / bottom[0].num #top[1].data[...] = loss def backward(self, top, propagate_down, bottom): #pass bottom[0].diff[...] = self.diff / bottom[0].num
[ "dereyly@gmail.com" ]
dereyly@gmail.com
ee4f68abfd11e4e51c357513e5d469d5820fcd77
4b6d8d8f7f9fb2a73c634b1915741a2fabd25f26
/main.py
a509b0f8d19546d423e5acff5f1bf577f1c748c6
[]
no_license
gustavusd/TicTacToe
249366d5f5fc8f1ca36702b09789bf7c8e596873
d457ab1fc36eb60c9b2a19fc9e45f7d2bde67a93
refs/heads/master
2022-11-19T20:12:10.745007
2020-07-20T18:39:02
2020-07-20T18:39:02
281,197,876
0
0
null
null
null
null
UTF-8
Python
false
false
981
py
from Board import Board from Player import Player from AI import AI # As a precondition you must enter valid moves def main(): board = Board([[]]) board.new_game() player = Player(board.game_state) ai = AI(board.game_state) board.who_start = input("Enter x: ") board.display_board() while board.check_winner() == '-' or board.movesLeft(): if board.who_start == 'x': player.move(int(input("Enter the desired row location: ")), int(input("Enter the desired column location:" " "))) ai.move() board.display_board() else: ai.move() player.move(int(input("Enter the desired row location: ")), int(input("Enter the desired column location:" " "))) board.display_board() board.display_board() main()
[ "gustavus7@gmail.com" ]
gustavus7@gmail.com
ae4f8568a71b51624bc620ef95973987e0088220
6df36df3f0280f49b97b64db51089e63c3333eba
/Tor/registration_client.py
4e2199733d392206db688dbe425e2f3dbfb6dbe3
[]
no_license
ErichL/Projects
efe38cdde6207c222e1705463ed34bee68a8e0b4
055c053603f3740ccd09888140d75925628e8de5
refs/heads/master
2021-01-18T18:16:27.542330
2017-09-30T06:52:08
2017-09-30T06:52:08
33,706,586
0
0
null
null
null
null
UTF-8
Python
false
false
5,814
py
import socket import struct import select import signal import pyuv import subprocess import sys import os #----------------------------------------------- # Usage: python registration_client.py servicePort serviceName serviceData # Registers a service whose IP is that the host it's running # on and whose port, name, and data are given on the command line. # Renews the registration as necessary. Tries to unregister before # terminating. # It's intended that this app be launched by # the process that wants to be registered. #----------------------------------------------- #print "parent pid = ", os.getppid() #print "my pid = ", os.getpid() REGISTRATION_SERVER_HOST = "war.cs.washington.edu" REGISTRATION_SERVER_IP = socket.gethostbyname(REGISTRATION_SERVER_HOST); REGISTRATION_SERVER_PORT = 46101 if ( len(sys.argv) != 4 ): print "Usage: python ", sys.argv[0], " port name data" sys.exit(1) SERVICE_PORT = int(sys.argv[1]) SERVICE_NAME = sys.argv[2] SERVICE_DATA = int(sys.argv[3]) SERVER_RESPONSE_TIMEOUT = 4 # DO NOT CHANGE THIS. The registration service # will send us packets on SENDING_PORT + 1 LOCAL_IP = struct.unpack('!I', socket.inet_aton(socket.gethostbyname(socket.getfqdn())))[0] #print "[registration client] Local IP:", socket.gethostbyname(socket.getfqdn()) # Do not change anything else below here unless # you know what you're doing ACTION_REGISTER = int(0x01) ACTION_REGISTERED = int(0x02) ACTION_UNREGISTER = int(0x05) ACTION_PROBE = int(0x06) ACTION_ACK = int(0x07) seq_num = 0 outstanding_packets = {} reregistration_timer = None # An abstraction around turning packets into bytes and back class Packet461: PACKET_HEADER_FORMAT = '!HBB' # magic word, sequence number, action HEADER_LENGTH = 4 MAGIC_WORD = int(0xC461) def __init__(self, seq_num, action, payload): self.magic = Packet461.MAGIC_WORD self.seq_num = seq_num self.action = action self.payload = payload @classmethod def fromdata(cls, data): (magic_word, seq_num, action) = struct.unpack(Packet461.PACKET_HEADER_FORMAT, data[:Packet461.HEADER_LENGTH]) if magic_word != Packet461.MAGIC_WORD: # silently drop packet return None return cls(seq_num, action, data[Packet461.HEADER_LENGTH:]) def __str__(self): return "Magic: " + str(self.magic) + "\nSeqno: " + str(self.seq_num) + "\nType: " + str(self.action) def pack(self): return struct.pack( Packet461.PACKET_HEADER_FORMAT + str(len(self.payload)) + 's', self.magic, self.seq_num, self.action, self.payload) def next_seq_num(): global seq_num result = seq_num seq_num += 1 return result def bytes_to_string(string): return str(':'.join('{:02x}'.format(ord(c)) for c in string)) def shutdown(handle, signum): #print "[registration cient] Shutting down" signal_h.close() payload = struct.pack('!IH', LOCAL_IP, SERVICE_PORT) send(Packet461(next_seq_num(), ACTION_UNREGISTER, payload)) global sending_socket sending_socket.close() global loop loop.stop() def remove_packet(seq_num): global outstanding_packets if outstanding_packets[seq_num] == None: sys.stderr.write( "[registration client] Unexpected packet seq_num: " + str(seq_num) + "\n") else: del outstanding_packets[seq_num] # retransmits everything for which we haven't received a response def rexmit(timer): for k,v in outstanding_packets.iteritems(): send(v); # convenient way of updating outstanding_packets, seq_num, and actually sending def send(packet): global outstanding_packets outstanding_packets[packet.seq_num] = packet #print "[registration client] sending", bytes_to_string(packet.pack()), (REGISTRATION_SERVER_HOST, REGISTRATION_SERVER_PORT) global sending_socket return sending_socket.send((REGISTRATION_SERVER_IP, REGISTRATION_SERVER_PORT), packet.pack()) def on_read(handle, ip_port, flags, data, error): if data is None: return # Check that this is from the server if ip_port != (REGISTRATION_SERVER_IP, REGISTRATION_SERVER_PORT): return packet = Packet461.fromdata(data) remove_packet(packet.seq_num) if packet != None and packet.action == ACTION_REGISTERED: reregistration_timer.stop() (interval,) = struct.unpack("!H", packet.payload) reregistration_timer.start(lambda x: send_registration(), 0.8*interval, 0.8*interval) # isolate lease time # set timer for registration def send_registration(): register_payload = struct.pack('!IHIB' + str(len(SERVICE_NAME)) + 's', LOCAL_IP, SERVICE_PORT, SERVICE_DATA, len(SERVICE_NAME), SERVICE_NAME) send(Packet461(next_seq_num(),ACTION_REGISTER, register_payload)) #--------------------------------------------------------------------- # mainline #--------------------------------------------------------------------- loop = pyuv.Loop.default_loop() reregistration_timer = pyuv.Timer(loop) rexmit_timer = pyuv.Timer(loop) rexmit_timer.start(rexmit, SERVER_RESPONSE_TIMEOUT, SERVER_RESPONSE_TIMEOUT) # Make sure we clean up and exit on Ctrl-C signal_h = pyuv.Signal(loop) signal_h.start(shutdown, signal.SIGINT) #sending_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sending_socket = pyuv.UDP(loop) sending_socket.start_recv(on_read) # Kick things off by registering with the server send_registration() #print "[registration client] Sent registration!" loop.run();
[ "erichlee96@gmail.com" ]
erichlee96@gmail.com
3f88725fdeac52cf836f310d51cfec6c8abd73d7
a7e5d600a938d2746ab40f90c42b539f93d076cb
/population_script.py
9d39fc8232fd3bfa97811cfe03f37855ab59a251
[]
no_license
TheWerewolves/IT_Team_Project
2fee7dd8f9b9774eb11327b81de3d4055a184a2b
215fa77174980a54de2b9c5353f873721c257950
refs/heads/master
2022-12-09T21:49:21.930089
2020-03-31T20:20:34
2020-03-31T20:20:34
246,424,879
0
0
null
2022-12-08T03:56:12
2020-03-10T22:51:52
Python
UTF-8
Python
false
false
14,557
py
import os os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'IT_Team_Project.settings') import django django.setup() from django.contrib.auth.models import User from gamers_havn.models import Account, Game, Article def populate(): accounts = [ { 'user': { 'username': 'yuuto', 'password': 'pw000000', 'email': 'yuuto@mymail.com', }, 'age': 15 }, { 'user': { 'username': 'Benny', 'password': 'pw000000', 'email': 'benny@mymail.com', }, 'age': 16 }, { 'user': { 'username': 'baobao', 'password': 'pw000000', 'email': 'baobao@mymail.com', }, 'age': 10 }, { 'user': { 'username': 'BBLover', 'password': 'pw000000', 'email': 'blackopiumlover@mymail.com', }, 'age': 1 }, ] games = [ {'title': 'League of Legends', 'url': 'https://euw.leagueoflegends.com/en-gb/'}, {'title': 'Overwatch', 'url': 'https://playoverwatch.com/en-us/'}, {'title': "Playerunknown's Battleground", 'url': 'https://www.pubg.com/'}, {'title': 'Dark Souls', 'url': 'https://store.steampowered.com/app/570940/DARK_SOULS_REMASTERED/'}, {'title': 'Minecraft', 'url': 'https://minecraft.net/'}, {'title': 'Teamfight Tactic', 'url': 'https://teamfighttactics.leagueoflegends.com/en-gb/'}, {'title': 'Call of Duty: Modern Warfare', 'url': 'https://www.callofduty.com/modernwarfare'}, {'title': 'Hearthstone', 'url': 'https://playhearthstone.com/en-gb/'}, {'title': 'World of Warcraft', 'url': 'https://worldofwarcraft.com/'}, {'title': 'Grand Theft Auto V', 'url': 'https://www.rockstargames.com/V/'}, {'title': 'Battlefield 4', 'url': 'https://www.ea.com/games/battlefield/battlefield-4'}, ] articles = [ {'title': "League Of Legends One For All Mode Returns", 'content': ''' ##After two years in limbo, One For All returns to League of Legends for a limited time. One For All is making a surprise comeback to Riot's League of Legends in patch 10.6. Previously, One For All was an arcade game mode wherein both opposing teams only have one champion each, with players needing to work together to take on the other team's single champion. As you can imagine, having to work together in League of Legends is an ambitious notion, much less putting five players in control of the same champion at once and expecting a competent level of cooperation. Nevertheless, Riot is set on bringing the arcade mode back after a two-year absence, although only for a limited time. The last time we saw One For All was April Fools Day in 2018. Since then, League of Legends has added eight new champions and been through a number of patches and balance changes. How this will affect One For All is yet to be seen, but some interesting strategies are sure to emerge from the game mode. Original One For All strategies aren¡¯t completely unusable, but older strategies are sure to resurface with the reemergence of the game mode. Ultimately it may even come down to old vs new in the first week of release. Riot has promised to keep a close eye on the game mode, checking that no one champion becomes too over or underpowered in the mode. The whole point of One For All is cooperation, not just picking a strong champion every round. Balancing will be similar to the already existing changes on ARAM and URF. One For All is currently available to play on the Public Beta Environment (PBE) and will go live alongside Patch 10.6 on March 18. League of Legends' Arcade games generally stick around for at least two patches, so check it out before the mode disappears again. *Notice: This article is originally From https://www.gamespot.com/articles/league-of-legends-one-for-all-mode-returns/1100-6474417// The poster in our website do not own the articles* ''', 'author': 'yuuto', 'game': 'League of Legends'}, {'title': "DARK SOULS 3 GUIDE", 'content': ''' Dark Souls 3 is here, and From Software's notoriously difficult action role-playing game series is bigger than it's ever been. We've scoured every inch of the Kingdom of Lothric to help you uncover its mysteries and overcome odds stacked to beat you down. We've organized our guide into a few different sections, based on what you might need at any given moment. If you're just starting out, be sure to read through our Beginner's Guide, which will teach new and experienced players what you should know in your first hours. Lothric is brutal, and this will help you overcome seemingly insurmountable odds. And we'll teach you how to build the best character we've ever built in a Souls game. Our full walkthrough of the game begins with the enemies, items and secrets in the Cemetery of Ash and Firelink Shrine. Then it guides you through all of the the areas you'll visit in Dark Souls 3, from the required to the optional and secret ¡ª and there's more than a few of the latter. Stuck on a boss? Just visit the section it appears in, and you'll find strategies and videos. From its earliest days, the Dark Souls series asked players to prepare to die. We've done that plenty. We suspect you will, too. But with Polygon's Dark Souls 3 guide by your side, you can prepare to die a lot less than you otherwise would have. ![](https://cdn2.vox-cdn.com/uploads/chorus_asset/file/6322727/Fire_Keeper.0.jpg) ![](https://cdn0.vox-cdn.com/uploads/chorus_asset/file/7783887/2016-04-10_Firelink_Shrine_Interior_TOC.0.png) Dark Souls 3's maps are a confusing, intriguing mass of overlapping spaghetti. But with this guide, you'll be able to find your place ¡ª as well as every enemy and item ¡ª on every map. You'll also find links to every part of Polygon's full walkthrough, so you can find your way to where you need to be. ![](https://cdn0.vox-cdn.com/uploads/chorus_image/image/49740339/Firelink_Tower_header_image.0.0.jpg) ![](https://cdn2.vox-cdn.com/uploads/chorus_asset/file/6323259/Iudex_Gundyr.0.jpg) What class should you choose? What starting item? Our guide will make your first dozen hours in Lothric much easier. Think of this as a way to learn the language of Dark Souls 3 without cheating ¡ª or a way to even the odds in a game where you're always outnumbered, always outgunned. ![](https://cdn0.vox-cdn.com/uploads/chorus_image/image/49740339/Firelink_Tower_header_image.0.0.jpg) You'll see most of Dark Souls 3 as you progress through its bonfires, but there are a few hidden, optional areas reserved for the most daring players. Most have challenging foes. Some end with optional boss fights. All of them balance out the difficulty with great rewards. ![](https://cdn0.vox-cdn.com/uploads/chorus_asset/file/6363563/Online_header_image.0.jpg) *Notice: This article is originally From https://www.polygon.com/2016/4/12/11412098/dark-souls-3-guide The poster in our website do not own the articles* ''', 'author': 'yuuto', 'game': 'Dark Souls'}, {'title': "Overwatch Adds A New Doomfist Legendary Skin For A Limited Time", 'content': ''' ## Overwatch has a new Doomfist skin on PC, PS4, Xbox One, and Switch in honor of Overwatch League Season 2 MVP Jay "Sinatraa" Won The Overwatch League has revealed a new legendary skin for Blizzard's hero shooter. The skin is for Doomfist and is called Thunder, and it's in celebration of one of its most important players. You can see it in the tweet embedded below. ![](https://pbs.twimg.com/media/ET46HncUMAAwJxf?format=jpg&name=small) Thunder will only be available for purchase in-game for a limited-time, becoming available from March 26 through April 9. The skin is in celebration of the professional esports player Jay "Sinatraa" Won, a member of esports team Shock, who won the Overwatch League Season 2 MVP award. Sinatraa is Shock's resident DPS player and has regularly used Doomfist during the Overwatch League. Overwatch is set to get one more new hero before the release of Overwatch 2. First teased in animated shorts, Echo will be joining the hero shooter as another DPS fighter (Blizzard has followed up to tell fans to not worry, more support and tank heroes are in development). Originally conceived for Blizzard's cancelled Titan project, Echo is a versatile hero--able to mimic the forms and abilities of any other character. In describing Echo, GameSpot editor Phil Hornshaw writes, "Key to Echo is her adaptability, and from what Goodman and Fonville described, players who try out the new hero should have a lot of chances to find creative ways to use her abilities. The character's versatility means she can be used to control territory with sticky bombs, as a straight damage-dealer using sticky bombs and Focusing Beam, or to shore up a team in an emergency by duplicating other characters. We'll have to wait to see what other creative ways players find to use Echo--and to counter her." If you're looking to have a go at Echo early, the hero is live on Overwatch's Public Test Realm right now. *Notice: This article is originally From https://www.gamespot.com/articles/overwatch-adds-a-new-doomfist-legendary-skin-for-a/1100-6475184/ The poster in our website do not own the articles* ''', 'author': 'Benny', 'game': 'Overwatch'}, {'title': "How to Play Nasus in League of Legends", 'content': ''' Nasus is a melee Fighter, Tank and Mage who excels in Solo Top and in the Jungle. His skins are Galactic Nasus, Pharaoh Nasus, Dreadknight Nasus, Riot K9 Nasus and Infernal Nasus. ##1 Leveling and Abilities ![](https://www.wikihow.com/images/thumb/a/a2/Play-Nasus-in-League-of-Legends-Step-1.jpg/aid5674065-v4-728px-Play-Nasus-in-League-of-Legends-Step-1.jpg.webp) ###1 Learn the abilities. Passive (Soul Eater) Nasus has life steal for his attacks Q (Siphoning Strike) Nasus' axe is empowered and his next basic attack will deal bonus damage. If Siphoning Strike kills a unit, it will gain stacks of Siphoning Strike which will permanently deal more damage on usage of Siphoning Strike. W (Wither) Nasus slows an enemy champion for 5 seconds. The slow percentage increases over time. E (Spirit Fire) Nasus puts a spirit flame in a circular area. This deals magic damage and reduces foes' armor every second. This has a high mana cost so make sure you don't use it too often. R (Fury of the Sands) Nasus transforms into a big version and increases damage, life steal and attack range. This also gives a massive health boost. Enemies near Nasus are damaged by a percentage of their maximum health. Siphoning Strike deals extra damage in this duration too. Nasus turns back into his normal form after a few seconds. ![](https://www.wikihow.com/images/thumb/b/b1/Play-Nasus-in-League-of-Legends-Step-2.jpg/aid5674065-v4-728px-Play-Nasus-in-League-of-Legends-Step-2.jpg.webp) ###2 Level up as follows: Take Siphoning Strike at Level one and max it immediately. Take Wither at Level two and max it second. Take Spirit Fire at Level four and max it last. Take Fury of the Sands at level six, eleven and sixteen. ##2 Build Guide ![](https://www.wikihow.com/images/thumb/3/32/Play-Nasus-in-League-of-Legends-Step-3.jpg/aid5674065-v4-728px-Play-Nasus-in-League-of-Legends-Step-3.jpg.webp) ###1 Use the following recommendations for starts: Doran's Shield, Amplifying Tone, Cloth Armor, Ancient Coin or Boots of Speed. ![](https://www.wikihow.com/images/thumb/5/54/Play-Nasus-in-League-of-Legends-Step-4.jpg/aid5674065-v4-728px-Play-Nasus-in-League-of-Legends-Step-4.jpg.webp) ###2 Use the following recommendations for mid game: Iceborn Gauntlet, Frozen Heart, Rylai's Crystal Scepter, Seeker's Armguard, and Ninja Tabi. As long as you focus ability power, mana and armor, you are fine. ![](https://www.wikihow.com/images/thumb/1/14/Play-Nasus-in-League-of-Legends-Step-5.jpg/aid5674065-v4-728px-Play-Nasus-in-League-of-Legends-Step-5.jpg.webp) ###3 Get masteries. Take all armor and magic resist masteries as well as ability power masteries. ![](https://www.wikihow.com/images/thumb/e/e8/Play-Nasus-in-League-of-Legends-Step-6.jpg/aid5674065-v4-728px-Play-Nasus-in-League-of-Legends-Step-6.jpg.webp) ###4 Get runes. Focus on ability power and mana. ![](https://www.wikihow.com/images/thumb/6/69/Play-Nasus-in-League-of-Legends-Step-7.jpg/aid5674065-v4-728px-Play-Nasus-in-League-of-Legends-Step-7.jpg.webp) ###5 Get flash. It is a must take for summoner spells. Teleport and Ignite are also good choices. Take smite for jungling. *Notice: This article is originally From https://https://www.wikihow.com/Play-Nasus-in-League-of-Legends/ The poster in our website do not own the articles* ''', 'author': 'baobao', 'game': 'League of Legends'}, ] for account in accounts: add_account(account['user']['username'], account['user']['email'], account['user']['password'], account['age']) for game in games: add_game(game['title'], game['url']) for article in articles: account = Account.objects.get(user__username=article['author']) game = Game.objects.get(title=article['game']) content = article['content'] add_article(article['title'], content, account, game) def add_account(name, email, password, age, portrait=None): user = User.objects.get_or_create(username=name, email=email, password=password)[0] account = Account.objects.get_or_create(user=user)[0] account.age = age account.portrait = portrait account.save() print(f"Added user {user}") def add_game(title, url): g = Game.objects.get_or_create(title=title)[0] g.url = url g.save() print(f"Added game '{g}'") def add_article(title, content, author, game): try: a = Article.objects.get(title=title) a.content = content a.author = author a.game = game a.save() except: a = Article.objects.create(title=title, content=content, author=author, game=game) print(f"Added article '{a}'") if __name__ == '__main__': print("Starting Gamer's Havn population script...") populate()
[ "yuutojurgen@gmail.com" ]
yuutojurgen@gmail.com
9d31cb6fbc29af9594d709b85b0aae24e8c96cd9
373035950bdc8956cc0b74675aea2d1857263129
/spar_python/report_generation/ta2/ta2_report_generator.py
60f4d6ca6486e898b11b055d04aadb3851bd8bee
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
limkokholefork/SPARTA
5d122cd2e920775d61a5404688aabbafa164f22e
6eeb28b2dd147088b6e851876b36eeba3e700f16
refs/heads/master
2021-11-11T21:09:38.366985
2017-06-02T16:21:48
2017-06-02T16:21:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,345
py
# ***************************************************************** # Copyright 2013 MIT Lincoln Laboratory # Project: SPAR # Authors: SY # Description: TA2 report generator # # # Modifications: # Date Name Modification # ---- ---- ------------ # 21 Oct 2013 SY Original version # ***************************************************************** # general imports: import logging import os import functools # SPAR imports: import spar_python.report_generation.common.report_generator as report_generator import spar_python.report_generation.ta2.ta2_schema as t2s import spar_python.report_generation.common.section as section import spar_python.report_generation.ta2.ta2_section_correctness as t2sc import spar_python.report_generation.ta2.ta2_section_performance_totalelapsedtime as t2sptet import spar_python.report_generation.ta2.ta2_section_performance_keygen as t2spkg import spar_python.report_generation.ta2.ta2_section_performance_ingestion as t2spi import spar_python.report_generation.ta2.ta2_section_performance_encryption as t2spenc import spar_python.report_generation.ta2.ta2_section_performance_evaluation as t2speval import spar_python.report_generation.ta2.ta2_section_performance_decryption as t2spd import spar_python.report_generation.ta2.ta2_section_performance_singlegatetype as t2spsgt import spar_python.report_generation.ta2.ta2_section_system_utilization as t2su # LOGGER: LOGGER = logging.getLogger(__name__) class Ta2ReportGenerator(report_generator.ReportGenerator): """A TA2 report generator. This class creates all the necessary section objects, and combines their outputs to create the full report. Attributes: config: a configuration object jinja_env: a jinja environment """ def __init__(self, config, jinja_env): """Initializes the report generator with a configuration object and a jinja environment.""" super(Ta2ReportGenerator, self).__init__(config, jinja_env) # the following dictionary maps each section name to the name of the # corresponding template and the class which is responsible for # populating it: self._section_name_to_template_name_and_class = { "ta2_other_sections": ("ta2_other_sections.txt", section.Section), "ta2_correctness": ("ta2_correctness.txt", t2sc.Ta2CorrectnessSection), "ta2_performance": ("ta2_performance.txt", section.Section), "ta2_performance_totalelapsedtime": ( "ta2_performance_totalelapsedtime.txt", t2sptet.Ta2TotalElapsedTimeSection), "ta2_performance_keygen": ("ta2_performance_keygen.txt", t2spkg.Ta2KeygenSection), "ta2_performance_ingestion": ("ta2_performance_ingestion.txt", t2spi.Ta2IngestionSection), "ta2_performance_encryption": ("ta2_performance_encryption.txt", t2spenc.Ta2EncryptionSection), "ta2_performance_evaluation": ("ta2_performance_evaluation.txt", t2speval.Ta2EvaluationSection), "ta2_performance_decryption": ("ta2_performance_decryption.txt", t2spd.Ta2DecryptionSection), "ta2_performance_singlegatetype": ( "ta2_performance_singlegatetype.txt", t2spsgt.Ta2SingleGateTypeSection), "ta2_system_utilization": ("ta2_system_utilization.txt", t2su.Ta2SystemUtilizationSection)} # the following is the name of the report template: self._report_template_name = "report.txt" # the following is to be populated in create_sections: self._sections = [] # perform all of the pre-processing: self._populate_ground_truth() def _populate_ground_truth(self): """Populates the ground truth with the baseline outputs.""" fields = [(t2s.INPUT_TABLENAME, t2s.INPUT_IID), (t2s.INPUT_TABLENAME, t2s.INPUT_CORRECTOUTPUT), (t2s.PEREVALUATION_TABLENAME, t2s.PEREVALUATION_OUTPUT), (t2s.PEREVALUATION_TABLENAME, t2s.PEREVALUATION_CORRECTNESS), (t2s.PEREVALUATION_TABLENAME, "ROWID")] baseline_constraint_list = self.config.get_constraint_list( fields=fields, require_correct=False, usebaseline=True) baseline_values = self.config.results_db.get_values( fields=fields, constraint_list=baseline_constraint_list) for (inputid, correctoutput, baselineoutput, stored_correctness, evaluationid) in zip(*baseline_values): # all baseline evaluations are assumed to be correct: if correctoutput != baselineoutput: self.config.results_db.update( t2s.INPUT_TABLENAME, t2s.INPUT_CORRECTOUTPUT, baselineoutput, constraint_list=[(t2s.INPUT_TABLENAME, t2s.INPUT_IID, inputid)]) if not stored_correctness: self.config.results_db.update( t2s.PEREVALUATION_TABLENAME, t2s.PEREVALUATION_CORRECTNESS, True, constraint_list=[ (t2s.PEREVALUATION_TABLENAME, "ROWID", evaluationid)]) performer_constraint_list = self.config.get_constraint_list( fields=fields, require_correct=False, usebaseline=False) performer_values = self.config.results_db.get_values( fields=fields, constraint_list=performer_constraint_list) for (inputid, correctoutput, output, stored_correctness, evaluationid) in zip(*performer_values): correctness = correctoutput == output if stored_correctness != correctness: self.config.results_db.update( t2s.PEREVALUATION_TABLENAME, t2s.PEREVALUATION_CORRECTNESS, correctness, constraint_list=[(t2s.PEREVALUATION_TABLENAME, "ROWID", evaluationid)])
[ "mitchelljd@ll.mit.edu" ]
mitchelljd@ll.mit.edu
72620f4f255b14b91a7e4a7879e1322dd751f2e5
5e4d1d78fa3a7bf292e8f61b6f71cfac7b9afae5
/Approx.py
e0baca63c22ff280d1dc4467705a0795a9d6d7b1
[ "MIT" ]
permissive
MUYANGGUO/MVC-6140-Project
205bca63982c5b01018c8da236d081168fcf9505
64ddac497802fd27b8895e264db44c552968d642
refs/heads/main
2023-01-29T10:54:03.528061
2020-12-05T04:02:00
2020-12-05T04:02:00
310,880,048
1
1
MIT
2020-11-22T22:42:51
2020-11-07T15:58:04
Python
UTF-8
Python
false
false
893
py
import time import sys sys.setrecursionlimit(100000) def Approx(graph, cutoff_time, seed): start = time.time() print('Approximation method\n') visited = set() num_vertex = len(graph.nodes) non_leaf = set() for i in range(1, num_vertex + 1): if i not in visited: dfs(i, visited, num_vertex, graph, non_leaf) runtime = time.time() - start trace = [str(runtime) + ',' + str(len(non_leaf))] if cutoff_time < runtime: return set(), [] else: return non_leaf, trace def dfs(i, visited: set, number_vertex: int, graph, non_leaf): visited.add(i) if not graph.has_node(i): non_leaf.add(i) return for neighbor in list(graph[i]): if neighbor not in visited: visited.add(neighbor) non_leaf.add(i) dfs(neighbor, visited, number_vertex, graph, non_leaf)
[ "yjiao47@gatech.edu" ]
yjiao47@gatech.edu
164c0db846e167a5197716060bd51aa999e4c08c
5f18c3201b7f411ea300ee96e302b8cbda2c44a6
/braille/BrailleFile.py
c1336e19d6a4d1c614f4425e0f6db1ab008b3cbd
[ "MIT" ]
permissive
sulealothman/arbraille
2204fac70e30bdc58f721e84b0748519754ad55b
80cf33bfc0368814778c76e3fd82da27042235f1
refs/heads/master
2023-01-19T18:07:15.859978
2020-11-29T16:36:08
2020-11-29T16:36:08
316,991,437
1
1
null
null
null
null
UTF-8
Python
false
false
577
py
class BrailleFile: def read(self, filePath=""): path = filePath if(filePath.strip() != "") else input("Enter file path for translate : ") path = path if(path.find('\\')) else path.replace('\\', '\\\\') with open(path, "r", encoding='utf-8') as f: content = f.read() return content def write(self, content, filePath=""): path = filePath if(filePath.strip() != "") else input("Enter output file path for translate : ") path = path if(path.find('\\')) else path.replace('\\', '\\\\') with open(path, 'w', encoding='utf-8') as w: w.write(content) return content
[ "sothman@mte.sa" ]
sothman@mte.sa
830e866737f1edd33ffd9bb50f6062cbdd7a64d7
d626c65a4d4990c733b72f9d93a8365c789cd000
/RFID.py
6ee8bc3e1abbc092168240877398383f814c1d2a
[]
no_license
Alex5200/Raspi-rfid-temp
486b6c77ed285a2d990d6b47710400dba27f9440
d4a072b9395d7ae9599855c06ee1b23b7ab5ec4e
refs/heads/main
2023-02-28T21:56:31.546140
2021-02-13T17:13:10
2021-02-13T17:13:10
333,729,369
0
0
null
null
null
null
UTF-8
Python
false
false
1,152
py
#!/usr/bin/env python3.5 #-- coding: utf-8 -- import RPi.GPIO as GPIO #Importe la bibliothèque pour contrôler les GPIOs from pirc522 import RFID import time GPIO.setmode(GPIO.BOARD) #Définit le mode de numérotation (Board) GPIO.setwarnings(False) #On désactive les messages d'alerte rc522 = RFID() #On instancie la lib print('En attente dun badge (pour quitter, Ctrl + c): ') #On affiche un message demandant à l'utilisateur de passer son badge #On va faire une boucle infinie pour lire en boucle while True : rc522.wait_for_tag() #On attnd qu'une puce RFID passe à portée (error, tag_type) = rc522.request() #Quand une puce a été lue, on récupère ses infos if not error : #Si on a pas d'erreur (error, uid) = rc522.anticoll() #On nettoie les possibles collisions, ça arrive si plusieurs cartes passent en même temps if not error : #Si on a réussi à nettoyer print('Vous avez passé le badge avec l id : {}.format(uid)') #On affiche l'identifiant unique du badge RFID time.sleep(1) #On attend 1 seconde pour ne pas lire le tag des centaines de fois en quelques milli-secondes
[ "noreply@github.com" ]
Alex5200.noreply@github.com
c6e04bd7d9ecc645f515936cf297d14781787c56
d748e95c78bd3d259fd977a6496591abb70c9bf8
/main.py
053a9502d6c2c60c97b5766c339164d831d95f0f
[]
no_license
Martikos/spiderman
ff36ea0c25490c2f620dc72a3588c8244d592317
6be33cb0762c2891fd7e90e201c3720b5fdfffa2
refs/heads/master
2020-04-22T00:14:07.050561
2013-12-02T15:38:08
2013-12-02T15:38:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,686
py
from datetime import datetime import json import operator import requests import sys from collections import deque from tornado.httpclient import AsyncHTTPClient from tornado.web import asynchronous import tornado.ioloop import tornado.web # globals network = {} n_videos = 100 video_requests = [] video_queue = deque(video_requests) # parameters max_results = 25 pages = 10 start_date = 0 end_date = 0 completed = False new_request = False n_requests = 0 new_search_key = str(datetime.now()) """ Available functions: all posted objects should have the properties: - 'function': specifies the function to be performed. - 'input': input object - 'videos': number of videos to return expand: given a seed set of videos, expand to related videos 'search' object example: { 'function': 'search', 'input': { 'seed': ['adidas', 'basketball', 'shoes'] } 'count': 1000 } expand object example: { 'function': 'expand', 'input': { 'seed': ['1928398123', '1289371923', '8912739172'] } 'count': 1000 } """ def videos_to_string(net): videos = sorted(net.iteritems(), key=operator.itemgetter(1)) import json ll = [] for video, count in videos: ll.append({ 'id': video, 'relevancy': count }) return str(json.dumps(ll)) def related_search(response, client, search_key): global n_requests n_requests -= 1 global new_search_key if len(network) < n_videos: related_result = json.loads(response.body) video_ids = [r['id'] for r in related_result['data']['items']] for index, r in enumerate(related_result['data']['items']): sys.stdout.write('\b') sys.stdout.flush() sys.stdout.write(' %d videos found\r' % len(network)) if r['id'] in network: network[r['id']] += 1 elif len(network) < n_videos: network[r['id']] = 1 http_client = AsyncHTTPClient() cb = lambda x: related_search(x, client, search_key) http_client.fetch("http://gdata.youtube.com/feeds/api/videos/{}/related?alt=jsonc&v=2".format(r['id']), callback=cb) n_requests += 1 elif search_key == new_search_key: global completed if completed == False: completed = True try: client.write(videos_to_string(network)) client.finish() except: client.finish() pass sys.stdout.write('\b') sys.stdout.flush() sys.stdout.write(' %d videos found\r' % len(network)) return else: pass def search_related(video_id, client): network = {} global n_requests global new_search_key new_search_key = str(datetime.now()) http_client = AsyncHTTPClient() cb = lambda x: related_search(x, client, new_search_key) http_client.fetch("http://gdata.youtube.com/feeds/api/videos/{}/related?alt=jsonc&v=2".format(video_id), callback=cb) n_requests += 1 def search_related(video_ids, client): network = {} global n_requests global new_search_key new_search_key = str(datetime.now()) print "Launching The Spiderman on {0}.".format(search_query) done = False for video_id in video_ids: sys.stdout.write('\b') sys.stdout.flush() sys.stdout.write(' %d\r' % len(network)) http_client.fetch("http://gdata.youtube.com/feeds/api/videos/{}/related?alt=jsonc&v=2".format(video_id), callback=cb) http_client = AsyncHTTPClient() cb = lambda x: related_search(x, client, new_search_key) http_client.fetch(request_url, callback=cb) n_requests += 1 def search(keywords, client): network = {} global n_requests global new_search_key new_search_key = str(datetime.now()) search_query = "+".join(keywords) search_query = search_query.replace(' ', '+') print "Launching The Spiderman on {0}.".format(search_query) done = False for start_index in range(1, pages): sys.stdout.write('\b') sys.stdout.flush() sys.stdout.write(' %d\r' % len(network)) request_url = "http://gdata.youtube.com/feeds/api/videos?q={0}&orderby=relevance&alt=jsonc&v=2&max-results={1}&start-index={2}".format( search_query, max_results, start_index*25) http_client = AsyncHTTPClient() cb = lambda x: related_search(x, client, new_search_key) http_client.fetch(request_url, callback=cb) n_requests += 1 def on_fetch(response): if len(network) < n_videos: related_result = json.loads(response.body) video_ids = [r['id'] for r in related_result['data']['items']] spider(video_ids) else: return def spider(feed): if len(network) < n_videos: videos = feed related = [0] * 25 * (len(videos)-1) for (i, video_id) in enumerate(videos): try: network[video_id] += 1 except: network[video_id] = 0 http_client = AsyncHTTPClient() try: http_client.fetch("http://gdata.youtube.com/feeds/api/videos/{}/related?alt=jsonc&v=2".format(video_id), callback=on_fetch) except: pass else: return class ResultsHandler(tornado.web.RequestHandler): def get(self): done = False import operator videos = sorted(network.iteritems(), key=operator.itemgetter(1)) print "first 50 elements:" print videos[:50] print "------------------" print "last 50 elements:" print videos[len(videos)-50:] new_file = open('videos.dict', 'w+') for entry in videos: new_file.write(entry[0] + ':' + str(entry[1]) + '\n') new_file.close( ) import json # return json.dumps(videos) return_str = '' for v, count in videos: new_str = "http://www.youtube.com/video/{}".format(v) return_str += new_str + '\n' self.write(return_str) class MainHandler(tornado.web.RequestHandler): @asynchronous def post(self): from spiderman import * import json post_request = json.loads(self.request.body) print "POST request" # parse POST request new_post_request = { 'function': 'search', 'input': { 'seed': ['beats', 'dr dre', 'headphones', 'noise cancelling'] }, 'count': 100 } function_name = post_request['function'] print function_name handler = Spiderman.get_handler(function_name) global tornado_loop spiderman = handler(self, post_request, tornado_loop).search() return def get(self): self.render('index.html', some_var="Hey Marc!") application = tornado.web.Application([ (r"/", MainHandler), (r"/results", ResultsHandler) ]) def handle_request(response): if response.error: print "Error:", response.error else: print response.body tornado_loop = [] if __name__ == "__main__": import os application.listen(os.environ.get("PORT", 5000)) tornado_loop = tornado.ioloop.IOLoop.instance().start()
[ "marc.m.adam@gmail.com" ]
marc.m.adam@gmail.com
610eee5ef0c52adcdcf9e1dd3953f8605cce1f25
f043fee89c0e2030386adcebb74d08164b7b974f
/reagent/ope/estimators/estimator.py
f53db8aecd9b5a794e2b422655c7546d20379046
[ "BSD-3-Clause" ]
permissive
IronOnet/ReAgent
c2d22e7dc63eaf61e0a50e9343110c6df79a9b40
67434f458cde1f2c946237e866a73392279a7ede
refs/heads/master
2023-04-06T17:31:59.751700
2021-04-12T21:56:19
2021-04-12T21:57:05
357,700,053
2
0
BSD-3-Clause
2021-04-13T22:04:09
2021-04-13T22:04:09
null
UTF-8
Python
false
false
9,051
py
#!/usr/bin/env python3 import logging import math import pickle import tempfile from abc import ABC, abstractmethod from dataclasses import dataclass, field from multiprocessing import Pool from typing import Iterable, List, Mapping, Optional, Tuple, Union import torch from reagent.evaluation.cpe import bootstrapped_std_error_of_mean from torch import Tensor logger = logging.getLogger(__name__) SCORE_THRESHOLD = 1e-6 class ResultDiffs: """ Statistics for differences, e.g., estimates vs ground truth """ def __init__(self, diffs: Tensor): self._diffs = diffs self._rmse = None self._bias = None self._variance = None @property def rmse(self) -> Tensor: if self._rmse is None: self._rmse = (self._diffs ** 2.0).mean().sqrt() return self._rmse @property def bias(self) -> Tensor: if self._bias is None: self._bias = self._diffs.mean() return self._bias @property def variance(self) -> Tensor: if self._variance is None: # pyre-fixme[16]: `Tensor` has no attribute `var`. self._variance = self._diffs.var() return self._variance def __repr__(self): return ( f"samples={self._diffs.shape[0]}, rmse={self.rmse.item()}" f", bias={self.bias}, variance={self.variance}" ) @dataclass(frozen=True) class EstimatorResult: log_reward: float estimated_reward: float ground_truth_reward: Optional[float] = 0.0 estimated_weight: float = 1.0 estimated_reward_normalized: Optional[float] = None estimated_reward_std_error: Optional[float] = None estimated_reward_normalized_std_error: Optional[float] = None @dataclass class EstimatorResults: """ Estimator results """ results: List[EstimatorResult] = field(default_factory=list) device = None def append(self, result: EstimatorResult): """Append a data point Args: result: result from an experimental run """ er = result.estimated_reward if math.isnan(er) or math.isinf(er): logging.warning(f" Invalid estimate: {er}") return lr = result.log_reward gr = ( result.ground_truth_reward if result.ground_truth_reward is not None else 0.0 ) logging.info( f" Append estimate [{len(self.results) + 1}]: " f"log={lr}, estimated={er}, ground_truth={gr}" ) self.results.append( EstimatorResult( log_reward=result.log_reward, estimated_reward=result.estimated_reward, ground_truth_reward=gr, estimated_weight=result.estimated_weight, ) ) def report(self): ert = torch.tensor( [res.estimated_reward for res in self.results], dtype=torch.double, device=self.device, ) lrt = torch.tensor( [res.log_reward for res in self.results], dtype=torch.double, device=self.device, ) grt = torch.tensor( [ res.ground_truth_reward if res.ground_truth_reward is not None else 0.0 for res in self.results ], dtype=torch.double, device=self.device, ) self._estimated_log_diff = ResultDiffs(ert - lrt) self._estimated_ground_truth_diff = ResultDiffs(ert - grt) return ( lrt.mean().item(), ert.mean().item(), grt.mean().item(), ResultDiffs(ert - grt), ResultDiffs(ert - lrt), torch.tensor([float(res.estimated_weight) for res in self.results]) .mean() .item(), ) @dataclass(frozen=True) class EstimatorSampleResult: log_reward: float target_reward: float ground_truth_reward: float weight: float def __repr__(self): return ( f"EstimatorSampleResult(log={self.log_reward}" f",tgt={self.target_reward},gt={self.ground_truth_reward}" f",wgt={self.weight}" ) class Estimator(ABC): """ Estimator interface """ def __init__(self, device=None): self._device = device def _compute_metric_data( self, tgt_rewards: Tensor, logged_score: float ) -> Tuple[float, float, float]: """ Given a sequence of scores, normalizes the target score by the average logged score and computes the standard error of the target score. Normalizing by the logged score can provide a better metric to compare models against. """ if len(tgt_rewards.shape) > 1: assert tgt_rewards.shape[1] == 1 tgt_rewards = tgt_rewards.reshape((tgt_rewards.shape[0],)) if logged_score < SCORE_THRESHOLD: normalizer = 0.0 else: normalizer = 1.0 / logged_score std_err = bootstrapped_std_error_of_mean(tgt_rewards) return ( torch.mean(tgt_rewards).item() * normalizer, std_err, std_err * normalizer, ) @abstractmethod def evaluate( self, input, **kwargs ) -> Optional[Union[EstimatorResult, EstimatorResults]]: pass def __repr__(self): return f"{self.__class__.__name__}(device({self._device}))" def run_evaluation( file_name: str, ) -> Optional[Mapping[str, Iterable[EstimatorResults]]]: logger.info(f"received filename {file_name}") try: with open(file_name, "rb") as fp: estimators, inputs = pickle.load(fp) except Exception as err: return None results = {} for estimator in estimators: estimator_name = repr(estimator) estimator_results = [] for input in inputs: try: estimator_results.append(estimator.evaluate(input)) except Exception as err: logger.error(f"{estimator_name} error {err}") results[repr(estimator)] = estimator_results return results class Evaluator: """ Multiprocessing evaluator """ def __init__( self, experiments: Iterable[Tuple[Iterable[Estimator], object]], max_num_workers: int, ): """ Args: estimators: estimators to be evaluated experiments: max_num_workers: <= 0 no multiprocessing otherwise create max_num_workers processes """ self._experiments = experiments self._tasks = None if max_num_workers > 0: self._tasks = [[] for _ in range(max_num_workers)] for i, experiment in enumerate(experiments): self._tasks[i % max_num_workers].append(experiment) def evaluate(self) -> Mapping[str, EstimatorResults]: results = {} if self._tasks is None: for estimators, input in self._experiments: for estimator in estimators: estimator_name = repr(estimator) if estimator_name in results: result = results[estimator_name] else: result = EstimatorResults() results[estimator_name] = result result.append(estimator.evaluate(input)) else: tmp_files = [] tmp_file_names = [] for task in self._tasks: fp = tempfile.NamedTemporaryFile() pickle.dump(task, fp, protocol=pickle.HIGHEST_PROTOCOL) fp.flush() tmp_files.append(fp) tmp_file_names.append(fp.name) with Pool(len(tmp_file_names)) as pool: evaluation_results = pool.map(run_evaluation, tmp_file_names) for tmp_file in tmp_files: tmp_file.close() for evaluation_result in evaluation_results: if evaluation_result is None: continue for estimator_name, estimator_results in evaluation_result.items(): if estimator_name in results: result = results[estimator_name] else: result = EstimatorResults() results[estimator_name] = result for estimator_result in estimator_results: result.append(estimator_result) return results @staticmethod def report_results(results: Mapping[str, EstimatorResults]): for name, result in results.items(): log_r, tgt_r, gt_r, tgt_gt, tgt_log, weight = result.report() print( f"{name} rewards: log_reward{log_r} tgt_reward[{tgt_r}] gt_reward[{gt_r}]" f", diffs: tgt-gt[{tgt_gt}] tgt-log[{tgt_log}]", flush=True, )
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
5ef3284f1486ca9ee29e8dec423629dcea7fd80f
8b40cbc0b0f61d79f02e91ae77e495ba3b261f41
/docs/src/main/sphinx/conf.py
25dec8253fa455ff834174bf74d22741ab87e212
[ "Apache-2.0" ]
permissive
wutao0914/Addax
bbf94bf41747dd6c2a6e23cb00bd073d2e4a0873
2a07616997a8196450ccb06aec8470bfc55aef0b
refs/heads/master
2023-06-29T17:45:38.094235
2021-08-03T07:43:56
2021-08-03T07:43:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,549
py
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # Presto documentation build configuration file # # This file is execfile()d with the current directory set to its containing dir. # import os import sys import xml.dom.minidom try: sys.dont_write_bytecode = True except: pass sys.path.insert(0, os.path.abspath('ext')) def child_node(node, name): for i in node.childNodes: if (i.nodeType == i.ELEMENT_NODE) and (i.tagName == name): return i return None def node_text(node): return node.childNodes[0].data def maven_version(pom): dom = xml.dom.minidom.parse(pom) project = dom.childNodes[0] version = child_node(project, 'version') if version: return node_text(version) parent = child_node(project, 'parent') version = child_node(parent, 'version') return node_text(version) def get_version(): version = os.environ.get('ADDAX_VERSION', '').strip() return version or maven_version('../../../pom.xml') # -- General configuration ----------------------------------------------------- needs_sphinx = '2.0' extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'recommonmark', 'sphinx_markdown_tables', ] # templates_path = ['templates'] source_suffix = ['.rst','.md'] # source_parsers = { # '.md': CommonMarkParser, # } master_doc = 'index' project = u'Addax' version = get_version() release = version exclude_patterns = ['_build'] highlight_language = 'sql' # default_role = 'backquote' # -- Options for HTML output --------------------------------------------------- # html_theme_path = ['themes'] html_theme = 'sphinx_rtd_theme' html_title = '%s %s Documentation' % (project, release) html_logo = 'images/addax-logo.png' html_add_permalinks = '#' html_show_copyright = False html_show_sphinx = False # html_sidebars = { # "**": ['logo-text.html', 'globaltoc.html', 'localtoc.html', 'searchbox.html'] # }
[ "wgzhao@gmail.com" ]
wgzhao@gmail.com
eea391d7180a0c41cb83d97792b66fc90728bfd0
6cceeeea6fb4f103ef01b31881aab56982290af1
/supervised_learning/0x03-optimization/11-learning_rate_decay.py
f5a6728c6040a52b8f936b824da447b117ba7c24
[]
no_license
KatyaKalache/holbertonschool-machine_learning
7be17a2abf5873f2eb0e82804074ef388eb8cda6
7a23ec62d7deee6260067c8125f0e32ac9ef9f0e
refs/heads/master
2020-04-11T10:46:14.714349
2020-04-10T08:35:21
2020-04-10T08:35:21
161,725,673
3
2
null
null
null
null
UTF-8
Python
false
false
313
py
#!/usr/bin/env python3 """ Updates the learning rate using inverse time decay in numpy """ import tensorflow as tf def learning_rate_decay(alpha, decay_rate, global_step, decay_step): """ Returns: the updated value for alpha """ alpha = 1 / (1+decay_rate * global_step) * alpha return alpha
[ "katya@kalache.fr" ]
katya@kalache.fr
e14fa0f754db6caa0b959315e215e069d526c9a5
1470e5ae228a9e6758dfa2f9b658e09004f70b26
/order/models.py
88c68b18f760d1815ff8b2f40345b714a1f0884c
[]
no_license
stephenmom/supermarket
927c0d14c4a4715f6711d81405c47b5dbe1a3417
b35e999872d4cadbc9a013ede5aaadb47513e755
refs/heads/master
2020-04-07T04:35:22.338232
2018-12-01T08:24:26
2018-12-01T08:24:26
158,059,689
0
0
null
null
null
null
UTF-8
Python
false
false
4,422
py
from django.db import models # Create your models here. class Payment(models.Model): """ 支付方式 """ pay_name = models.CharField(verbose_name='支付方式', max_length=20 ) payment_add_time = models.DateTimeField(auto_now_add=True, verbose_name="支付方式添加时间") payment_edit_time = models.DateTimeField(auto_now=True, verbose_name="支付方式修改时间") payment_status = models.BooleanField(default=False, verbose_name="支付方式删除状态") class Meta: verbose_name = "支付方式" verbose_name_plural = verbose_name def __str__(self): return self.pay_name class Transport(models.Model): """ 名称 价格 """ name = models.CharField(verbose_name='配送方式', max_length=20 ) money = models.DecimalField(verbose_name='金额', max_digits=9, decimal_places=2, default=0 ) transport_add_time = models.DateTimeField(auto_now_add=True, verbose_name="配送方式添加时间") transport_edit_time = models.DateTimeField(auto_now=True, verbose_name="配送方式修改时间") transport_status = models.BooleanField(default=False, verbose_name="配送方式删除状态") class Meta: verbose_name = "配送方式" verbose_name_plural = verbose_name def __str__(self): return self.name class OderInfo(models.Model): """ 订单信息表 ID 订单编号 订单金额 用户ID 收货人姓名 收货人电话 订单地址 订单状态 运输方式 付款方式 实付金额 添加时间 修改时间 是否删除 """ ORDER_STATUS = ( (0, "待付款"), (1, "待发货"), (2, "已发货"), (3, "完成"), (4, "已评价"), (5, "申请退款"), (6, "已退款"), (7, "取消订单") ) order_number = models.CharField(max_length=64, verbose_name="订单编号", unique=True) order_money = models.DecimalField(max_digits=9, decimal_places=2, verbose_name="订单总价格", default=0) user_id = models.ForeignKey(to="user_info.Users", verbose_name="用户id") order_user_name = models.CharField(max_length=32, verbose_name="收货人") order_user_phone = models.CharField(max_length=16, verbose_name="收货人电话") order_address = models.CharField(max_length=50, verbose_name="订单地址") order_status_now = models.IntegerField(choices=ORDER_STATUS, verbose_name='订单状态', default=0) order_transport = models.CharField(max_length=50, verbose_name="运输方式", null=True, blank=True) order_transport_price = models.DecimalField(max_digits=9, decimal_places=2, verbose_name="运输价格") order_payment = models.ForeignKey(to="Payment", verbose_name="付款方式", null=True, blank=True) really_pay_money = models.DecimalField(max_digits=9, decimal_places=2, verbose_name="实付金额", default=0) ORDER_add_time = models.DateTimeField(auto_now_add=True, verbose_name="订单信息添加时间") ORDER_edit_time = models.DateTimeField(auto_now=True, verbose_name="订单信息修改时间") ORDER_status = models.BooleanField(default=False, verbose_name="订单信息删除状态") class Meta: verbose_name = "订单信息管理" verbose_name_plural = verbose_name def __str__(self): return self.order_number class OrderGoods(models.Model): """ 订单商品表 订单ID 商品SKU ID 商品数量 商品价格 """ order = models.ForeignKey(to="OderInfo", verbose_name="订单ID") goods_sku = models.ForeignKey(to="product.ProSKU", verbose_name="订单商品的SKUID") count = models.IntegerField(verbose_name="订单商品的数量") price = models.DecimalField(verbose_name="订单商品的价格", max_digits=9, decimal_places=2) def __str__(self): return self.order.order_number class Meta: db_table = "order_goods" verbose_name = "订单商品管理" verbose_name_plural = verbose_name
[ "378399539@qq.com" ]
378399539@qq.com
6067bbd37e8a224f7631ed115119aaf1aadcdd13
b578620339b4ec1512aa7b5600b2743979eb6277
/order/admin.py
f624eef469c78013ec2bdee4d187a9fb8a9fbb02
[]
no_license
yurabysaha/de_market
4c8e62e075d8105b74192b413a38fad05a3d91df
7f62245d9016f793ba22444273ea30304d279f88
refs/heads/master
2022-12-14T14:48:24.784171
2019-07-05T11:40:29
2019-07-05T11:40:29
131,822,227
0
1
null
2022-12-08T02:04:12
2018-05-02T08:36:41
HTML
UTF-8
Python
false
false
572
py
from django.contrib import admin from django.utils.translation import gettext_lazy as _ from order.models import Order class ItemInline(admin.TabularInline): model = Order.items.through extra = 0 model._meta.verbose_name_plural = _("Order Items") class OrderAdmin(admin.ModelAdmin): """Add items to Order in Admin""" inlines = [ItemInline] list_filter = ('status',) search_fields = ('pk',) list_display = ('__str__', 'total', 'status', 'payment_method') exclude = ('items', 'user_session') admin.site.register(Order, OrderAdmin)
[ "yurabysaha@gmail.com" ]
yurabysaha@gmail.com
1a769f9ffd96e7be46b22935ea0efd109b45e026
508100dd49629021d4dcc7c761ee64fac5e0210b
/watson/framework/debug/panels/__init__.py
485157ccb8a8baa9d6aa19a22f085fda0392b9d2
[ "BSD-2-Clause" ]
permissive
watsonpy/watson-framework
e3f4c92ea9c35e789365a8a007bb883ad5dee928
ffe157cb3fe24366ee55869d4260cce778012b4a
refs/heads/master
2021-05-24T02:48:19.753723
2019-10-03T04:28:39
2019-10-03T04:28:39
16,093,806
69
8
BSD-3-Clause
2021-03-29T20:36:27
2014-01-21T05:39:46
Python
UTF-8
Python
false
false
411
py
# -*- coding: utf-8 -*- from watson.framework.debug.panels.application import Panel as Application # noqa from watson.framework.debug.panels.framework import Panel as Framework # noqa from watson.framework.debug.panels.profile import Panel as Profile # noqa from watson.framework.debug.panels.request import Panel as Request # noqa from watson.framework.debug.panels.logging import Panel as Logging # noqa
[ "simon.coulton@gmail.com" ]
simon.coulton@gmail.com
05df224ac370a076e23826a50a19a9f620729ab2
cfb6883e85b799756440411c13c6c8044490dc52
/kaggle/safe_driver/safe_driver_lgb_FM.py
fa661e57f050fd41aedd9a1602a14cc32c0ae8b8
[]
no_license
WonderAndMaps/CodeStorage
28d1b4ff7cbcd814402dcc60b6982d59a17c8d88
9a21cbe586c2c91dc6ccde788bf32e78f22e86a0
refs/heads/master
2020-03-22T10:29:51.864519
2019-04-22T19:31:12
2019-04-22T19:31:12
139,907,351
0
0
null
null
null
null
UTF-8
Python
false
false
2,226
py
# -*- coding: utf-8 -*- """ Created on Thu Oct 19 18:03:00 2017 @author: dell """ import lightgbm as lgb from lightgbm.sklearn import LGBMClassifier import os import pandas as pd from sklearn import metrics import datetime os.chdir('C:\\Users\\dell\\Desktop\\Safe driver') train = pd.read_csv("train.csv") cat_cols = [col for col in train.columns if '_cat' in col] #one-hot train = pd.get_dummies(train, columns=cat_cols) predictors = [x for x in train.columns if x not in ['target', 'id']] def lgbfit(alg, dtrain, predictors, useTrainCV=True, cv_folds=5, early_stopping_rounds=50, dtest=None): starttime = datetime.datetime.now() if useTrainCV: lgb_param = alg.get_params() ltrain = lgb.Dataset(dtrain[predictors].values, label=dtrain['target'].values) # ltest = lgb.Dataset(dtest[predictors].values) cvresult = lgb.cv(lgb_param, ltrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds, early_stopping_rounds=early_stopping_rounds, verbose_eval=False, metrics='auc') alg.set_params(n_estimators=len(cvresult['auc-mean'])) print("cv score:", cvresult['auc-mean'][-1]) #fit alg.fit(dtrain[predictors], dtrain['target'], eval_metric='auc') #prediction on train set dtrain_predictions = alg.predict(dtrain[predictors]) dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1] endtime = datetime.datetime.now() #output print("accuracy: ", metrics.accuracy_score(dtrain['target'].values, dtrain_predictions)) print("AUC score:", metrics.roc_auc_score(dtrain['target'], dtrain_predprob)) print("time spent: ", (endtime - starttime).seconds, "s") lgb1 = LGBMClassifier( boosting_type = 'gbdt', learning_rate = 0.1, n_estimators = 1000, max_depth = 5, min_child_weight = 1, subsample = 0.8, colsample_bytree = 0.8, objective = 'binary', n_jobs = 4, random_state = 66) lgbfit(lgb1, train, predictors, useTrainCV=True) #predicted leaves as new features predLeaf = pd.DataFrame(lgb1.apply(train[predictors])) predLeaf = pd.get_dummies(predLeaf, columns=predLeaf.columns) predLeaf.shape #FM
[ "yfu@bazean.com" ]
yfu@bazean.com
fc7948279f7238a48bcf8b27b3e480e488b08328
c4dfd3aacb7449b574bc8a337d4b449b84a10250
/4_kafka_connect_rest_proxy/exercise4.3.py
1a4bcd0ff4de0d38bc10ce176dd955239cebb6a0
[ "MIT" ]
permissive
seoruosa/streaming-data-nanodegree
1a4c7549857e9dfcac09cf10e381c6e7ff5ed7fd
14961bc42c626e74ac23cc94f69e25eab39a2da1
refs/heads/master
2023-05-28T11:16:47.174927
2020-03-26T04:19:21
2020-03-26T04:19:21
231,152,564
0
0
MIT
2023-08-14T22:07:44
2019-12-31T22:27:32
Python
UTF-8
Python
false
false
2,662
py
# Please complete the TODO items in this code import asyncio import json import requests KAFKA_CONNECT_URL = "http://localhost:8083/connectors" CONNECTOR_NAME = "jdbc-connector" def configure_connector(): """Calls Kafka Connect to create the Connector""" print("creating or updating kafka connect connector...") rest_method = requests.post resp = requests.get(f"{KAFKA_CONNECT_URL}/{CONNECTOR_NAME}") if resp.status_code == 200: return # # TODO: Complete the Kafka Connect Config below for a JDBC source connector. # You should whitelist the `clicks` table, use incrementing mode and the # incrementing column name should be id. # # See: https://docs.confluent.io/current/connect/references/restapi.html # See: https://docs.confluent.io/current/connect/kafka-connect-jdbc/source-connector/source_config_options.html # resp = rest_method( KAFKA_CONNECT_URL, headers={"Content-Type": "application/json"}, data=json.dumps( { "name": "clicks-jdbc", # TODO "config": { "connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector", # TODO "topic.prefix": "exercise3-", # TODO "mode": "incrementing", # TODO "incrementing.column.name": "id", # TODO "table.whitelist": "clicks", # TODO "tasks.max": 1, "connection.url": "jdbc:postgresql://localhost:5432/classroom", "connection.user": "root", "key.converter": "org.apache.kafka.connect.json.JsonConverter", "key.converter.schemas.enable": "false", "value.converter": "org.apache.kafka.connect.json.JsonConverter", "value.converter.schemas.enable": "false", }, } ), ) # psql classroom # kafka-topics --list --zookeeper localhost:2181 # kafka-console-consumer --topic exercise3-clicks --bootstrap-server localhost:9092 --from-beginning # tail -f -n 10 /var/log/journal/confluent-kafka-connect.service.log # https://www.postgresqltutorial.com/postgresql-administration/psql-commands/ # Ensure a healthy response was given try: resp.raise_for_status() except: print(f"failed creating connector: {json.dumps(resp.json(), indent=2)}") exit(1) print("connector created successfully.") print("Use kafka-console-consumer and kafka-topics to see data!") if __name__ == "__main__": configure_connector()
[ "thiago.giachetto@gmail.com" ]
thiago.giachetto@gmail.com
e340f100361951a498bb07f1744c08dc926eb9c5
9929ba720faf432a5bf3f5cc51dc9f429c24cb84
/QUANTTOOLS/Market/MarketTools/TradingTools/trading.py
6a435ccfa9a49189aa85ab900c650755f61fb1e8
[]
no_license
chaopaoo12/QuantTools
45fb344fc085bd7a40d94f646d0982d6b93db1a8
2bb1c5ad6aab3d454cfe32b6e6c86107992bed0c
refs/heads/master
2023-08-18T04:03:11.944128
2023-08-13T10:58:49
2023-08-13T10:58:49
174,860,433
9
11
null
null
null
null
UTF-8
Python
false
false
25,224
py
from QUANTAXIS.QAUtil import QA_util_log_info, QA_util_get_pre_trade_date from QUANTTOOLS.Message.message_func.wechat import send_actionnotice from QUANTTOOLS.Trader.account_manage.base_func.Client import get_Client,check_Client from QUANTTOOLS.Trader.account_manage.TradAction.BUY import BUY from QUANTTOOLS.Trader.account_manage.TradAction.SELL import SELL from QUANTTOOLS.Trader.account_manage.TradAction.HOLD import HOLD from QUANTTOOLS.Market.MarketTools.TradingTools.BuildTradingFrame import build from QUANTTOOLS.QAStockETL.QAFetch.QATdx import QA_fetch_get_stock_realtm_bid from QUANTTOOLS.QAStockETL.QAFetch.QAQuery import QA_fetch_stock_name from QUANTTOOLS.Model.FactorTools.QuantMk import get_quant_data_hour, get_index_quant_hour from QUANTTOOLS.Trader.account_manage.base_func.Client import get_UseCapital, get_StockPos, get_hold import time import datetime def open_control(trading_date): time_contrl_bf("09:30:00") QA_util_log_info('##JOB Now Start Trading ==== {}'.format(str(trading_date)), ui_log = None) def close_control(strategy_id, trading_date): time_contrl_af("15:00:00") QA_util_log_info('##JOB Trading Finished ==================== {}'.format(trading_date), ui_log=None) send_actionnotice(strategy_id,'Trading Report:{}'.format(trading_date),'Trading Finished',direction = 'Trading',offset='Finished',volume=None) def time_contrl_bf(tm_mark): tm = int(datetime.datetime.now().strftime("%H%M%S")) while tm <= int(time.strftime("%H%M%S",time.strptime(tm_mark, "%H:%M:%S"))): time.sleep(15) tm = int(datetime.datetime.now().strftime("%H%M%S")) return(tm_mark) def time_contrl_af(tm_mark): tm = int(datetime.datetime.now().strftime("%H%M%S")) while tm >= int(time.strftime("%H%M%S",time.strptime(tm_mark, "%H:%M:%S"))): time.sleep(15) tm = int(datetime.datetime.now().strftime("%H%M%S")) return(tm_mark) def trade_roboot(target_tar, account, trading_date, percent, strategy_id, type='end', exceptions = None, test = False): QA_util_log_info('##JOB Now Get Account info ==== {}'.format(str(trading_date)), ui_log = None) client = get_Client() QA_util_log_info('##JOB Now Cancel Orders ===== {}'.format(str(trading_date)), ui_log = None) client.cancel_all(account) QA_util_log_info(target_tar, ui_log = None) sub_accounts, frozen, positions, frozen_positions = check_Client(client, account, strategy_id, trading_date, exceptions=exceptions) account_info = client.get_account(account) if target_tar is None: QA_util_log_info('触发清仓 ==================== {}'.format(trading_date), ui_log=None) send_actionnotice(strategy_id,'触发清仓:{}'.format(trading_date),'触发清仓',direction = 'SELL',offset='SELL',volume=None) #e = send_trading_message(account, strategy_id, account_info, None, "触发清仓", None, 0, direction = 'SELL', type='MARKET', priceType=4,price=None, client=client) QA_util_log_info('##JOB Now Build Trading Frame ===== {}'.format(str(trading_date)), ui_log = None) res = build(target_tar, positions, sub_accounts, percent) res1 = res QA_util_log_info(res[['NAME','INDUSTRY','deal','close','目标持股数','股票余额','可用余额','冻结数量']]) send_actionnotice(strategy_id,'交易报告:{}'.format(trading_date),'开始交易',direction = 'HOLD',offset='HOLD',volume=None) while res.deal.apply(abs).sum() > 0: QA_util_log_info('##JOB Now Start Trading ===== {}'.format(str(trading_date)), ui_log = None) QA_util_log_info('##JOB Now Check Timing ===== {}'.format(str(trading_date)), ui_log = None) tm = int(datetime.datetime.now().strftime("%H%M%S")) target_ea = int(time.strftime("%H%M%S", time.strptime("09:25:00", "%H:%M:%S"))) target_af = int(time.strftime("%H%M%S", time.strptime("15:00:00", "%H:%M:%S"))) if tm >= target_af: QA_util_log_info('已过交易时段 {hour} ==================== {date}'.format(hour = tm, date = trading_date), ui_log=None) send_actionnotice(strategy_id,'交易报告:{}'.format(trading_date),'已过交易时段',direction = 'HOLD',offset='HOLD',volume=None) if test == False: break #if tm >= target_af: # break QA_util_log_info('##JOB Now Start Selling ===== {}'.format(str(trading_date)), ui_log = None) if res[res['deal']<0].shape[0] == 0: QA_util_log_info('无卖出动作 ==================== {}'.format(trading_date), ui_log=None) else: for code in res[res['deal'] < 0].index: QA_util_log_info('##JOB Now Prepare Selling {code} Info ==== {date}'.format(code = code, date = str(trading_date)), ui_log = None) target_pos = float(res.loc[code]['目标持股数']) target = float(res.loc[code]['股票余额']) name = res.loc[code]['NAME'] industry = res.loc[code]['INDUSTRY'] deal_pos = abs(float(res.loc[code]['deal'])) close = float(res.loc[code]['close']) QA_util_log_info('##JOB Now Start Selling {code} ==== {date}'.format(code = code, date = str(trading_date)), ui_log = None) SELL(client, account, strategy_id, account_info,trading_date, code, name, industry, deal_pos, target_pos, target, close, type = type, test = test) time.sleep(3) time.sleep(15) QA_util_log_info('##JOB Now Start Holding ===== {}'.format(str(trading_date)), ui_log = None) if res[res['deal'] == 0].shape[0] == 0: QA_util_log_info('无持续持仓动作 ==================== {}'.format(trading_date), ui_log=None) else: for code in res[res['deal'] == 0].index: QA_util_log_info('##JOB Now Prepare Holding {code} Info ===== {date}'.format(code = code, date = str(trading_date)), ui_log = None) target_pos = float(res.loc[code]['目标持股数']) target = float(res.loc[code]['股票余额']) name = res.loc[code]['NAME'] industry = res.loc[code]['INDUSTRY'] deal_pos = abs(float(res.loc[code]['deal'])) close = float(res.loc[code]['close']) QA_util_log_info('##JOB Now Start Holding {code} ===== {date}'.format(code = code, date = str(trading_date)), ui_log = None) HOLD(strategy_id, account_info,trading_date, code, name, industry, target_pos, target) time.sleep(1) QA_util_log_info('##JOB Now Start Buying ===== {}'.format(str(trading_date)), ui_log = None) if res[res['deal'] > 0].shape[0] == 0: QA_util_log_info('无买入动作 ==================== {}'.format(trading_date), ui_log=None) else: for code in res[res['deal'] > 0].index: QA_util_log_info('##JOB Now Prepare Buying {code} Info ===== {date}'.format(code = code, date = str(trading_date)), ui_log = None) target_pos = float(res.loc[code]['目标持股数']) target = float(res.loc[code]['股票余额']) name = res.loc[code]['NAME'] industry = res.loc[code]['INDUSTRY'] deal_pos = abs(float(res.loc[code]['deal'])) close = float(res.loc[code]['close']) QA_util_log_info('##JOB Now Start Buying {code} ===== {date}'.format(code = code, date = str(trading_date)), ui_log = None) BUY(client, account, strategy_id, account_info,trading_date, code, name, industry, deal_pos, target_pos, target, close, type, test = test) time.sleep(3) time.sleep(30) if type == 'end': QA_util_log_info('##JOB Now Cancel Orders ===== {}'.format(str(trading_date)), ui_log = None) client.cancel_all(account) QA_util_log_info('##JOB Now Refresh Account Info ==== {}'.format(str(trading_date)), ui_log = None) sub_accounts, frozen, positions, frozen_positions = check_Client(client, account, strategy_id, trading_date, exceptions=exceptions) sub_accounts = sub_accounts - frozen QA_util_log_info('##JOB Now ReBuild Trading Frame ==== {}'.format(str(trading_date)), ui_log = None) res = build(target_tar, positions, sub_accounts, percent) elif type == 'morning': QA_util_log_info('##JOB Now Morning Trading Success ==== {}'.format(str(trading_date)), ui_log = None) break else: QA_util_log_info('##Trading type must in [end, morning] ==== {}'.format(str(trading_date)), ui_log = None) break QA_util_log_info('交易完成 ==================== {}'.format(trading_date), ui_log=None) send_actionnotice(strategy_id,'交易报告:{}'.format(trading_date),'交易完成',direction = 'HOLD',offset='HOLD',volume=None) return(res1) def trade_roboot2(target_tar, account, trading_date, percent, strategy_id, type='end', exceptions = None, test = False): QA_util_log_info('##JOB Now Check Timing ==== {}'.format(str(trading_date)), ui_log = None) if target_tar is None: t_list = [] else: t_list = list(target_tar.index) tm = datetime.datetime.now().strftime("%H:%M:%S") morning_begin = "09:30:00" morning_end = "11:30:00" afternoon_begin = "13:00:00" afternoon_end = "15:00:00" ontm_list = ["10:30:00","11:30:00","14:00:00", "15:00:00"] marktm_list = ['10:00:00',"10:30:00",'11:00:00',"11:30:00",'13:30:00',"14:00:00",'14:30:00',"15:00:00"] action_list = ["09:30:00",'10:00:00',"10:30:00",'11:00:00','13:00:00','13:30:00',"14:00:00",'14:30:00'] ##init+确定时间 a = marktm_list + [tm] a.sort() if a.index(tm) == 0: mark_tm = '09:30:00' elif a.index(tm) == len(a)-1: mark_tm = '15:00:00' else: mark_tm = a[a.index(tm)-1] if mark_tm == '11:30:00': action_tm='13:00:00' else: action_tm=mark_tm QA_util_log_info('##JOB Now Init Time Mark mark_tm:{}, action_tm:{}'.format(mark_tm, action_tm), ui_log = None) source_data = None tm = int(time.strftime("%H%M%S",time.strptime(tm, "%H:%M:%S"))) QA_util_log_info('##JOB Now Start Trading ==== {}'.format(str(trading_date)), ui_log = None) while tm <= int(time.strftime("%H%M%S",time.strptime(afternoon_end, "%H:%M:%S"))): QA_util_log_info('##JOB Now Get Account info ==== {}'.format(str(trading_date)), ui_log = None) client = get_Client() try: client.cancel_all(account) time.sleep(2) except: QA_util_log_info('##JOB Cancel Orders Failed==== {}'.format(str(trading_date)), ui_log = None) sub_accounts, frozen, positions, frozen_positions = check_Client(client, account, strategy_id, trading_date, exceptions=exceptions) positions = positions[positions['股票余额'] > 0] account_info = client.get_account(account) QA_util_log_info('##JOB Now Build Trading Frame ==== {}'.format(str(trading_date)), ui_log = None) if mark_tm == "09:30:00": stm = QA_util_get_pre_trade_date(trading_date) + ' ' + '15:00:00' else: stm = trading_date + ' ' + mark_tm QA_util_log_info('##JOB Now Time {} ==== {}'.format(str(mark_tm),str(stm)), ui_log = None) ##分析数据 while tm < int(time.strftime("%H%M%S",time.strptime(mark_tm, "%H:%M:%S"))): time.sleep(60) tm = int(datetime.datetime.now().strftime("%H%M%S")) if tm >= int(time.strftime("%H%M%S",time.strptime(mark_tm, "%H:%M:%S"))): index = get_index_quant_hour(QA_util_get_pre_trade_date(trading_date,10),trading_date,code=['000001','399001','399005','399006'],type='real').reset_index() index = index[index.datetime == stm].set_index('code') if index.loc['000001'].SKDJ_K_30M >= 75 and index.loc['000001'].SKDJ_TR_30M > 0 and index.loc['000001'].SKDJ_K_HR > 75: QA_util_log_info('##JOB 暂停追高 ==== {}'.format(str(stm)), ui_log = None) #sell and no buy 高位盘整 buy = True pass elif index.loc['000001'].SKDJ_K_30M < 75 or index.loc['000001'].SKDJ_TR_30M > 0: QA_util_log_info('##JOB 追涨 ==== {}'.format(str(stm)), ui_log = None) buy=True pass elif index.loc['000001'].SKDJ_K_30M >= 75 and index.loc['000001'].SKDJ_TR_30M < 0: QA_util_log_info('##JOB 高位下跌 ==== {}'.format(str(stm)), ui_log = None) #hold 下跌中继 buy = True pass elif index.loc['000001'].SKDJ_K_30M <= 25 and index.loc['000001'].SKDJ_TR_30M < 0: QA_util_log_info('##JOB 进入低位 ==== {}'.format(str(stm)), ui_log = None) buy=True pass else: buy=True pass if mark_tm in ontm_list or source_data is None: #整点 QA_util_log_info('##Now Mark Time {},Stm {}, Stock {}'.format(mark_tm,str(stm),len(list(set(positions.code.tolist()+t_list))))) data = get_quant_data_hour(QA_util_get_pre_trade_date(trading_date,10),trading_date,list(set(positions.code.tolist()+t_list)), type= 'real') hour_data = data[['SKDJ_K_15M','SKDJ_TR_15M','SKDJ_K_30M','SKDJ_TR_30M','SKDJ_K_HR','SKDJ_TR_HR','SKDJ_CROSS2_30M','SKDJ_CROSS1_30M','CROSS_JC_30M','SKDJ_CROSS2_HR','SKDJ_CROSS1_HR','CROSS_JC_HR','CROSS_SC_HR','MA5_HR','MA5_30M','MA10_HR','MA60_HR','CCI_HR','CCI_CROSS1_HR','CCI_CROSS2_HR']] source_data = hour_data.reset_index() source_data = source_data[source_data.datetime == stm].set_index('code') else: QA_util_log_info('##Now Mark Time {},Stm {}, Stock {}'.format(mark_tm,str(stm),len(list(set(positions.code.tolist()+t_list))))) hour_data = get_quant_data_hour(QA_util_get_pre_trade_date(trading_date,10),trading_date,list(set(positions.code.tolist()+t_list)), type= 'real') source_data = hour_data.reset_index() source_data = source_data[source_data.datetime == stm].set_index('code')[['SKDJ_K_15M','SKDJ_TR_15M','SKDJ_K_30M','SKDJ_TR_30M','SKDJ_K_HR','SKDJ_TR_HR','SKDJ_CROSS2_30M','SKDJ_CROSS1_30M','CROSS_JC_30M','SKDJ_CROSS2_HR','SKDJ_CROSS1_HR','CROSS_JC_HR','CROSS_SC_HR','MA5_HR','MA5_30M','MA10_HR','MA60_HR','CCI_HR','CCI_CROSS1_HR','CCI_CROSS2_HR']] ####job1 小时级报告 指数小时级跟踪 target_list = list(source_data.sort_values('SKDJ_K_HR').index) #QA_util_log_info('##JOB Now cross1 ==== {}: {}'.format(str(stm), str(source_data[source_data.SKDJ_CROSS1_30M == 1][['SKDJ_K_30M','SKDJ_TR_30M','SKDJ_TR_HR','SKDJ_CROSS2_30M','SKDJ_CROSS1_30M','SKDJ_CROSS1_HR','SKDJ_CROSS2_HR','MA5_30M','SKDJ_K_HR','MA5_HR']])), ui_log = None) #QA_util_log_info('##JOB Now cross2 ==== {}: {}'.format(str(stm), str(source_data[source_data.SKDJ_CROSS2_30M == 1][['SKDJ_K_30M','SKDJ_TR_30M','SKDJ_TR_HR'','SKDJ_CROSS1_30M','SKDJ_CROSS1_HR','SKDJ_CROSS2_HR','MA5_30M','SKDJ_K_HR','MA5_HR']])), ui_log = None) while tm <= int(time.strftime("%H%M%S",time.strptime(morning_begin, "%H:%M:%S"))): QA_util_log_info('##JOB Not Start Time ==== {}'.format(str(trading_date)), ui_log = None) time.sleep(15) tm = int(datetime.datetime.now().strftime("%H%M%S")) while tm >= int(time.strftime("%H%M%S",time.strptime(morning_end, "%H:%M:%S"))) and tm <= int(time.strftime("%H%M%S",time.strptime(afternoon_begin, "%H:%M:%S"))): QA_util_log_info('##JOB Not Trading Time ==== {}'.format(str(trading_date)), ui_log = None) time.sleep(60) tm = int(datetime.datetime.now().strftime("%H%M%S")) QA_util_log_info(tm) ##action while tm <= int(time.strftime("%H%M%S",time.strptime(action_tm, "%H:%M:%S"))) and action_tm is not None: time.sleep(60) tm = int(datetime.datetime.now().strftime("%H%M%S")) if tm > int(time.strftime("%H%M%S",time.strptime(action_tm, "%H:%M:%S"))) and action_tm is not None: for code in positions[positions['股票余额'] > 0].code.tolist() + target_list: name = QA_fetch_stock_name(code).values[0] QA_util_log_info('##JOB Now Code {stm} ==== {code}({name})'.format(stm=str(stm),code=str(code),name=str(name)), ui_log = None) try: res2 = source_data.loc[code] QA_util_log_info(res2) QA_util_log_info('{code}{name}-{stm}:hourly: {hourly}'.format(code=code,name=name,stm=stm,hourly=res2.SKDJ_TR_HR)) except: res2 = None QA_util_log_info('error') #try: if res2 is not None and 'DR' not in name: QA_util_log_info('##JOB not DR Day ==== {}'.format(code), ui_log = None) if code in positions[positions['可用余额'] > 0].code.tolist(): QA_util_log_info('##JOB Now Selling Check ==== {}'.format(code), ui_log = None) if res2.SKDJ_CROSS1_HR == 1 and res2.SKDJ_TR_30M < 0 and round(res2.MA5_HR,2) < 0: msg = 'SKDJ死叉' elif res2.SKDJ_TR_30M < 0 and round(res2.MA5_HR,2) < 0: msg = 'SKDJ止损:30M跌破MA5' # msg = None elif res2.SKDJ_TR_HR < 0 and res2.SKDJ_TR_30M < 0 and round(res2.MA5_HR,2) < 0: msg = 'SKDJ止损:HR跌破MA5' else: msg = None ###卖出信号1 if msg is not None: QA_util_log_info('##JOB Now Selling ==== {}'.format(code), ui_log = None) deal_pos = get_StockPos(code, client, account) target_pos = 0 industry = str(positions.set_index('code').loc[code].INDUSTRY) try_times = 0 while deal_pos > 0 and try_times <= 5: client.cancel_all(account) send_actionnotice(strategy_id,'{code}{name}:{stm}{msg}'.format(code=code,name=name,stm=stm, msg=msg),'卖出信号',direction = 'SELL',offset=mark_tm,volume=None) deal_pos = get_StockPos(code, client, account) QA_util_log_info('##JOB Now Start Selling {code} ==== {stm}{msg}'.format(code = code, stm = str(stm), msg=msg), ui_log = None) SELL(client, account, strategy_id, account_info, trading_date, code, name, industry, deal_pos, target_pos, target=None, close=0, type = 'end', test = test) time.sleep(3) deal_pos = get_StockPos(code, client, account) try_times += 1 else: QA_util_log_info('##JOB Not On Selling ==== {}'.format(code)) if code in [i for i in t_list if i not in positions[positions['股票余额'] > 0].code.tolist()]: QA_util_log_info('##JOB Now Buying Ckeck==== {}'.format(code), ui_log = None) QA_util_log_info('##JOB Not On Buying ==== {} SKDJ_CROSS2_HR:{} CROSS_JC_HR:{} SKDJ_K_30M:{} SKDJ_TR_30M:{}'.format(code, res2.SKDJ_CROSS2_HR, res2.CROSS_JC_HR, res2.SKDJ_K_30M, res2.SKDJ_TR_30M)) if res2.SKDJ_CROSS2_HR == 1 and res2.SKDJ_K_30M < 60 and res2.SKDJ_TR_30M > 0 and round(res2.MA5_30M,2) >= 0: msg = 'SKDJ:60MIN金叉追涨 小时线K:{}'.format(res2.SKDJ_K_HR) #elif res2.SKDJ_CROSS2_30M == 1 and res2.SKDJ_K_15M <= 50 and res2.SKDJ_K_15M > 0 and round(res2.MA5_30M,2) >= 0: # msg = 'SKDJ:30MIN金叉抄底 30M线K:{}'.format(res2.SKDJ_K_15M) elif res2.SKDJ_CROSS2_30M == 1 and res2.SKDJ_K_30M <= 40 and res2.SKDJ_TR_HR < 0 and res2.SKDJ_K_HR < 40 and round(res2.MA5_30M,2) >= 0: msg = 'SKDJ:30MIN金叉追涨 小时线K:{}'.format(res2.SKDJ_K_HR) #elif res2.CROSS_JC_HR == 1 and res2.SKDJ_K_30M < 70 and res2.SKDJ_TR_30M > 0 and round(res2.MA5_30M,2) >= 0: # msg = 'MACD金叉' #elif res2.SKDJ_CROSS2_30M == 1 and res2.SKDJ_K_HR <= 40 and res2.SKDJ_TR_HR < 0 and round(res2.MA5_30M,2) >= 0: # msg = 'SKDJ:30MIN金叉抄底 小时线K:{}'.format(res2.SKDJ_K_HR) #elif res2.SKDJ_CROSS2_30M == 1 and res2.SKDJ_TR_HR == 1: # msg = 'SKDJ金叉' else: msg = None if msg is not None: if get_UseCapital(client, account) >= 10000: QA_util_log_info('##JOB Now Buying==== {}'.format(code), ui_log = None) ###买入信号 send_actionnotice(strategy_id,'{code}{name}:{stm}{msg}'.format(code=code,name=name,stm=stm, msg=msg),'买入信号',direction = 'BUY',offset=mark_tm,volume=None) price = round(QA_fetch_get_stock_realtm_bid(code)+0.01,2) deal_pos = round(80000 / price,0) target_pos = deal_pos industry = str(target_tar.loc[code].INDUSTRY) try_times = 0 QA_util_log_info('##JOB Now Start Buying {code} ===== {stm}{msg}'.format(code = code, stm = str(stm), msg=msg), ui_log = None) while get_hold(client, account) <= percent and deal_pos > 0 and buy is True and try_times <= 5: BUY(client, account, strategy_id, account_info,trading_date, code, name, industry, deal_pos, target_pos, target=None, close=0, type = 'end', test = test) try_times += 1 time.sleep(3) hold_pos = get_StockPos(code, client, account) deal_pos = target_pos - hold_pos if get_hold(client, account) > percent: QA_util_log_info('##JOB Now Full {code} {percent}/{hold} ===== {stm}'.format(code = code,percent=percent,hold=get_hold(client, account), stm = str(stm)), ui_log = None) elif buy is False: QA_util_log_info('##JOB Now Index Under Control {code} {percent}/{hold} ===== {stm}'.format(code = code,percent=percent,hold=get_hold(client, account), stm = str(stm)), ui_log = None) elif try_times > 5: QA_util_log_info('##JOB Now NO More Times {code} {percent}/{hold} ===== {stm}'.format(code = code,percent=percent,hold=get_hold(client, account), stm = str(stm)), ui_log = None) else: pass else: QA_util_log_info('##JOB Now Not Enough Money==== {}'.format(code), ui_log = None) else: QA_util_log_info('##JOB Now Not On Buying==== {}'.format(code), ui_log = None) ###update time tm = int(datetime.datetime.now().strftime("%H%M%S")) QA_util_log_info('##JOB Now Update Time'.format(str(tm)), ui_log = None) ##收市 if tm >= int(time.strftime("%H%M%S", time.strptime(afternoon_end, "%H:%M:%S"))) or action_tm == '15:00:00': ###time out QA_util_log_info('##JOB Trading Finished ==================== {}'.format(trading_date), ui_log=None) send_actionnotice(strategy_id,'Trading Report:{}'.format(trading_date),'Trading Finished',direction = 'Trading',offset='Finished',volume=None) else: QA_util_log_info('##JOB Now Update Next MarkTM&ActionTM==== mark_tm: {} action_tm {}'.format(str(mark_tm),str(action_tm)), ui_log = None) if mark_tm == '09:30:00': mark_tm = marktm_list[0] else: mark_tm = marktm_list[marktm_list.index(mark_tm) + 1] if marktm_list.index(mark_tm) == len(marktm_list) -1: action_tm = '15:00:00' else: action_tm = action_list[action_list.index(action_tm) + 1] QA_util_log_info('##JOB Now Update Next MarkTM&ActionTM==== mark_tm: {} action_tm {}'.format(str(mark_tm),str(action_tm)), ui_log = None) if __name__ == '__main__': pass
[ "chaopaoo12@hotmail.com" ]
chaopaoo12@hotmail.com
2467bdec3fd716f87345d0e6f34cb4d81bdc4fc5
fe7d80aa667ea7f34b60fc927e54d279f7bf81cb
/cnn_simple_v3/tools/use_isl_tfrecord.py
b3060f33736a9a7769b8c6705c72fe2260d59235
[]
no_license
qq191513/myRecognize
3b20b8ca7f1935d6b177b368eb72f0282db8799e
8a183ca1e8ababd4f52b87a86f92c78eda5f4dc5
refs/heads/master
2020-03-21T18:26:24.286107
2019-06-26T08:21:40
2019-06-26T08:21:40
138,891,701
0
0
null
null
null
null
UTF-8
Python
false
false
7,762
py
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import cv2 import time import os import tools.config_isl as cfg preprocess_paraments={} example_name = {} ##########################要改的东西####################################### #tfrecords文件的路径 tfrecord_path = '/home/mo/work/data_set/italy_tf/' #根据关键字搜索tfrecord_path目录下的所有相关文件 train_keywords = 'train' test_keywords = 'validation' labels_txt_keywords = 'labels.txt' # 解码部分:填入解码键值和原图大小以便恢复 example_name['image'] = 'image/encoded' #主要是这个(原图)p example_name['label'] = 'image/class/label' #主要是这个(标签) origenal_size =[32,32,1] #要还原原先图片尺寸 #预处理方式 to_random_brightness = True to_random_contrast = True to_resize_images = False resize_size =[20,20] to_random_crop = True crop_size= [28, 28, 1] #多队列、多线程、batch读图部分 num_threads = 8 batch_size = cfg.batch_size shuffle_batch =True #训练多少轮,string_input_producer的num_epochs就写多少, # 否则会爆出OutOfRangeError的错误(意思是消费量高于产出量) num_epochs = cfg.epoch #显示方式 cv2_show = False # 用opencv显示或plt显示 ####################### end ############################################ def ReadTFRecord(tfrecords,example_name): if len(tfrecords) == 1: record_queue = tf.train.string_input_producer(tfrecords,num_epochs=num_epochs+1)#只有一个文件,谈不上打乱顺序 else: # shuffle=False,num_epochs为3,即每个文件复制成3份,再打乱顺序,否则按原顺序 record_queue = tf.train.string_input_producer(tfrecords,shuffle=True, num_epochs=num_epochs+1) reader = tf.TFRecordReader() key, value = reader.read(record_queue) features = tf.parse_single_example(value, features={ # 取出key为img_raw和label的数据,尤其是int位数一定不能错!!! example_name['image']: tf.FixedLenFeature([],tf.string), example_name['label']: tf.FixedLenFeature([], tf.int64) }) img = tf.decode_raw(features[example_name['image']], tf.uint8) # 注意定义的为int多少位就转换成多少位,否则容易出错!! if len(origenal_size) == 2: w, h = origenal_size[0],origenal_size[1] else: w, h, c = origenal_size[0],origenal_size[1],origenal_size[2] img = tf.reshape(img, [w, h, c]) # 不清楚为何加了这个tf.cast会让cv2.imshow显示不正常,图片变成黑白二值图,模糊不清 img = tf.cast(img, tf.float32) label = tf.cast(features[example_name['label']], tf.int64) label = tf.cast(label, tf.int32) return img, label def preprocess_data(is_train,image, label): if is_train: if to_random_brightness: image = tf.image.random_brightness(image, max_delta=32. / 255.) if to_random_contrast: image = tf.image.random_contrast(image, lower=0.5, upper=1.5) if to_resize_images: # 只有method = 1没有被破坏最严重 image = tf.image.resize_images(image, resize_size,method=1) if to_random_crop: image = tf.random_crop(image, crop_size) else: if to_resize_images: image = tf.image.resize_images(image, [28, 28]) if to_random_crop: image = tf.random_crop(image, crop_size) return image, label def feed_data_method(image,label): if shuffle_batch: images, labels = tf.train.shuffle_batch( [image, label], batch_size=batch_size, num_threads=num_threads, capacity=batch_size*64, min_after_dequeue=batch_size*32, allow_smaller_final_batch=False) else: images, labels = tf.train.batch( [image, label], batch_size=batch_size, num_threads=num_threads, capacity=batch_size*64, allow_smaller_final_batch=False) return images, labels def plt_imshow_data(data): #调成标准格式和标准维度,免得爆BUG data = np.asarray(data) if data.ndim == 3: if data.shape[2] == 1: data = data[:, :, 0] plt.imshow(data) plt.show() time.sleep(2) def get_files_list(path): # work:获取所有文件的完整路径 files_list = [] for parent,dirnames,filenames in os.walk(path): for filename in filenames: files_list.append(os.path.join(parent,filename)) return files_list #根据关键字筛选父目录下需求的文件,按列表返回全部完整路径 def search_keyword_files(path,keyword): keyword_files_list = [] files_list = get_files_list(path) for file in files_list: if keyword in file: keyword_files_list.append(file) return keyword_files_list def read_label_txt_to_dict(labels_txt =None): if os.path.exists(labels_txt): labels_maps = {} with open(labels_txt) as f: while True: line = f.readline() if not line: break line = line[:-1] # 去掉换行符 line_split = line.split(':') labels_maps[line_split[0]] = line_split[1] return labels_maps return None def show_loaded(data_tfrecord=None): print('load tfrecord:') for each in data_tfrecord: print(each) def create_inputs_isl(is_train): if is_train: data_tfrecord = search_keyword_files(tfrecord_path,train_keywords) else: data_tfrecord = search_keyword_files(tfrecord_path,test_keywords) show_loaded(data_tfrecord) image, label = ReadTFRecord(data_tfrecord,example_name) #恢复原始数据 image, label = preprocess_data(is_train,image, label) #预处理方式 images,labels = feed_data_method(image, label) #喂图方式 return images,labels if __name__== '__main__': images, labels = create_inputs_isl(is_train = True) labels_txt = search_keyword_files(tfrecord_path, labels_txt_keywords) labels_maps = read_label_txt_to_dict(labels_txt=labels_txt[0]) #标签映射 #观察自己设置的参数是否符合心意,合适的话在别的项目中直接调用 create_inputs_xxx() 函数即可喂数据 with tf.Session() as sess: tf.global_variables_initializer().run() tf.local_variables_initializer().run() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # 输出100个batch观察 batch_size_n = 5 #观察batch_size的第n张图片 if cv2_show: for i in range(100): x, y = sess.run([images, labels]) label = y[batch_size_n] label = str(label) label_name = labels_maps[label] title = 'label:{}'.format(label_name) print('image_shape:',x.shape, 'label_shape:', y.shape,title) cv2.namedWindow(title, 0) cv2.startWindowThread() cv2.imshow(title, x[batch_size_n]) cv2.waitKey(2000) cv2.destroyAllWindows() else: for i in range(100): x, y = sess.run([images, labels]) label = y[batch_size_n] label = str(label) label_name =labels_maps[label] title = 'label:{}'.format(label_name) print('image_shape:',x.shape, 'label_shape:', y.shape,title) plt_imshow_data(x[batch_size_n]) coord.request_stop() coord.join(threads)
[ "1915138054@qq.com" ]
1915138054@qq.com
7b7fe151ae6868ef06c88f81d3b03699cae95014
f334b883a00a55703fb023f3e0027970687d23e4
/Desafios/des058.py
bddb48534b5f9514624d0daebf72c6007375b3f0
[]
no_license
RodrigoMorosky/CursoPythonCV
7f99ed049e2b33c161f408206de053bc77c636b6
ff68d0a9bd399837048ae12309963086820e49ab
refs/heads/main
2023-08-02T13:52:21.412302
2021-09-16T12:11:01
2021-09-16T12:11:01
407,150,410
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
import random n = random.randint(0, 10) print('Estou pensando em um número... tente adivinhar!') a = 0 b = 0 while a != n: a = int(input('Digite o número: ')) b = b + 1 print("Você tentou {} até acertar!".format(b))
[ "80373831+RodrigoMorosky@users.noreply.github.com" ]
80373831+RodrigoMorosky@users.noreply.github.com
84d9b06cb86e28aea0e8281e0b9a358f030fa30a
a15d770809eb3ca8b780ec7a20ee0d95275a5c1d
/scraper/create_html.py
daeacc5f3f175709330a6cc27da567b521921b70
[]
no_license
altcoins-code/altcoins
924b7d2b7e151820254461466d27797d991677c7
e048d42da91f584cd4650a18103a3724b4393631
refs/heads/master
2021-01-01T17:45:52.642810
2017-10-12T06:08:34
2017-10-12T06:08:34
98,150,336
1
0
null
2017-07-24T04:57:34
2017-07-24T04:57:34
null
UTF-8
Python
false
false
1,545
py
import pandas as pd import pytz from base64 import b64decode as use ''' Hacky code for generating web assets and stuff ''' def create_plots(data): # iterate of array of raw data and make svg plot plots = [] for i, row in enumerate(data): id = 'plot%d' % i fcn = "plot('%s', %s)" % (id, str(row)) svg_str = '<svg id="%s" onload="%s"/>' % (id, fcn) plots.append(svg_str) return plots def url_from_coin(name): coin_key = 'aHR0cHM6Ly9jb2lubWFya2V0Y2FwLmNvbS9jdXJyZW5jaWVzLw==\n' coin_url = use(coin_key).decode() + name.lower() return '<a href="%s" target="_blank">%s</a>' % (coin_url, name) def df_to_html(df, ORDER): pd.set_option('display.max_colwidth', -1) df = df[ORDER].sort_values('overall score', ascending=False) df['week data'] = create_plots(df['week data'].values) df['name'] = df['name'].apply(url_from_coin) # df = df.drop(['week data'], axis=1) cols = list(df) # reorder cols.insert(0, cols.pop(cols.index('img'))) cols.insert(9, cols.pop(cols.index('week data'))) df = df[cols] return df.to_html(escape=False).replace('class="dataframe"', 'class="sortable"') def get_df_from_db(db): entry = db.pop() date = entry['date'].replace(tzinfo=pytz.UTC) timestamp = date.astimezone(pytz.timezone('US/Pacific')).strftime('%m-%d-%Y %H:%M') return pd.DataFrame(entry['data']).T, timestamp def save_html(html, path): with open(path, 'w') as f: f.write(html)
[ "jk@jk.com" ]
jk@jk.com
eab7b2f16184650f664061fcc7cb8ee4042760bd
eaf4287cf189cf0f87a60aafe4b6935f20a30d22
/code/old_stubs/stub_from_start_thresh.py
4c5eb277fbc5f0b023ce8cc4c2857a5aac1e6d0e
[]
no_license
zatsiorsky/p4
bdd3a945cacfb64522e8305bf87eecd3257cf3ab
ad88d1203989d6344d336b8014e84541bcc94209
refs/heads/master
2021-01-20T04:08:05.441804
2017-04-30T02:23:11
2017-04-30T02:23:11
89,639,311
0
0
null
null
null
null
UTF-8
Python
false
false
6,206
py
# Imports. import numpy as np import numpy.random as npr import pandas as pd import os.path import datetime from itertools import product from SwingyMonkey import SwingyMonkey from collections import Counter class Learner(object): ''' This agent jumps randomly. ''' def __init__(self, eta = 0.2, gamma = 1, epsilon = 0.2, mx = 50, my = 25, ms = 1, thresh = .08): self.n_iters = 0 self.last_state = None self.last_action = None self.last_reward = None # Store the last velocity independent of the state self.last_vel = None # Multipliers for horizontal and vertical distance + gravity self.mx = mx self.my = my self.ms = ms # This is the cutoff for high/low gravity self.high_g_thresh = 2 # Initialize Q # It has keys of the form (state, action) self.Q = Counter() # Learning rate self.eta = eta # Discount factor self.gamma = gamma # Exploration rate self.epsilon = epsilon def reset(self): self.last_state = None self.last_action = None self.last_reward = None self.last_vel = None def action_callback(self, state): ''' Implement this function to learn things and take actions. Return 0 if you don't want to jump and 1 if you do. ''' # You might do some learning here based on the current state and the last state. # You'll need to select and action and return it. # Return 0 to swing and 1 to jump. new_state = self.transform_state(state) new_action = self.choose_action(new_state) self.last_action = new_action self.last_state = new_state return self.last_action def reward_callback(self, reward): '''This gets called so you can see what reward you get.''' ### Update Q # Get current state and transform it try: current_state = self.transform_state(self.swing.get_state(), update_vel=False) except: current_state = self.last_state # Maximize Q from current state Qmax = max(self.Q[(current_state, 0)], self.Q[(current_state, 1)]) # Last Qsa value Qsa = self.Q[(self.last_state, self.last_action)] self.Q[(self.last_state, self.last_action)] = Qsa - self.eta * (Qsa - (reward + self.gamma * Qmax)) self.last_reward = reward def choose_action(self, state): if state[1] > 0: return 0 epsilon = 0.5 * np.exp(-self.n_iters / float(500)) self.n_iters += 1 # With probability epsilon, explore if npr.uniform() < epsilon: # We don't want to explore the space randomly, # since we should not jump much more frequently than # we do jump return 1 if npr.uniform() < thresh else 0 # Otherwise, follow the optimal policy based on Q else: Qs1 = self.Q[(state, 1)] Qs0 = self.Q[(state, 0)] if Qs0 == Qs1: return 1 if npr.uniform() < thresh else 0 else: return 1 if Qs1 > Qs0 else 0 def transform_state(self, state, update_vel = True): # Rescaled horizontal distance to next tree dx = state["tree"]["dist"] / self.mx # Vertical distance from bottom of monkey to bottom of tree dy = (state["monkey"]["top"] - state["tree"]["top"]) / self.my # Velocity of the monkey vel = state["monkey"]["vel"] / self.ms # Determine if there is high or low gravity # For the first time step, randomly choose high or low if self.last_vel is None: gravity = npr.choice([0, 1]) elif np.abs(state["monkey"]["vel"] - self.last_vel) > self.high_g_thresh: gravity = 1 else: gravity = 0 if update_vel: self.last_vel = state["monkey"]["vel"] return (dx, dy, vel, gravity) def run_games(learner, iters = 100, t_len = 100): ''' Driver function to simulate learning by having the agent play a sequence of games. ''' # intialize df df = pd.DataFrame(columns = ["gravity", "score", "death"]) # run iters games for ii in range(iters): # Make a new monkey object. swing = SwingyMonkey(sound=False, # Don't play sounds. text="Epoch %d" % (ii), # Display the epoch on screen. tick_length = t_len, # Make game ticks super fast. action_callback=learner.action_callback, reward_callback=learner.reward_callback) learner.swing = swing # Loop until you hit something. while swing.game_loop(): pass # Save score history. df.loc[len(df)] = [swing.gravity, swing.score, swing.death] # Reset the state of the learner. learner.reset() return df def stats(df): """Helper function to get stats from df""" vals = [df.score.mean(), df.score.quantile(0.5), df.score.quantile(0.8), df.score.max(), df.death.mode()[0]] return vals if __name__ == '__main__': etas = [0.8, 0.5, 0.1] gammas = [1] epsilons = [0.8, 0.5, 0.25, 0.1] mds = [120, 80, 50, 30] mys = [60, 35, 20] mss = [60,58,56,54] threshs = [0.8,0.4,0.2,0.05] param_list = [etas, gammas, epsilons, mds, mys, mss, threshs] params = product(*param_list) now = datetime.datetime.now() print "Starting time: {}".format(str(now)) i = 0 for eta, gamma, epsilon, md, my, ms, thresh in params: ### check that test hasn't been run # initialize name params = [eta, gamma, epsilon, md, my, ms, thresh] name = "_".join(map(str, params)) # initialize logfile number if os.path.isfile('csvs_from_start_thresh/' + name + ".csv"): continue ### run games # Select agent. agent = Learner(eta, gamma, epsilon, md, my, ms, thresh) # Run games, account for bug in distro code while True: try: df = run_games(agent, 100, 0) except UnboundLocalError: continue break ### log results # log all individual scores in csv in folder df.to_csv('csvs_from_start_thresh/' + name + ".csv", index=0) # get all summary stats full_stats = stats(df) _30_above = stats(df[30:]) _30_above_high = stats(df[30:][df[30:].gravity == 1]) _30_above_low = stats(df[30:][df[30:].gravity == 4]) combined = params + full_stats + _30_above + _30_above_high + _30_above_low # append summary stats to grid_csv with open("grid_results_from_start_thresh.csv", "a") as myfile: myfile.write(','.join(map(str,combined)) + "\n") # shout at command line i += 1 if i % 25 == 0: elapsed = datetime.datetime.now() - now print "Combos : {}, Elapsed time: {}".format(i, str(elapsed))
[ "RRADOVANOVIC@COLLEGE.HARVARD.EDU" ]
RRADOVANOVIC@COLLEGE.HARVARD.EDU
f87e741810819e9f190a8b3bb658ed080e3c400b
5659621ec26b13d0b07b4ceb5055db296c575ac0
/task_bubble_sort.py
2764839607c73d2e71dd1760863d7058a51376d8
[]
no_license
tungyr/itmo-home-work
2ce56d9d5932ff97c0898a09ced4f756d7e668ab
97e16d3ceec4be86b6ba05e3da93c7605ad6833f
refs/heads/master
2020-03-11T13:33:18.778798
2018-06-17T11:40:53
2018-06-17T11:40:53
130,028,287
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
def bubble_sort(lst): #объявление функции for i in range(len(lst)): #перебор диапазона с длиной lst for j in range(len(lst) - 1, i, -1): #перебор диапазона lst c обменом значений if lst[j] < lst[j-1]: lst[j], lst[j-1] = lst[j-1], lst[j] return lst bubble_sort([14, 8, 3, 1, 89, 2, 45])
[ "rotkivem@gmail.com" ]
rotkivem@gmail.com
57d3eb4ff5547a801d23688a7a2426b29909ed15
a08aad7b213584198c4e82a10427443b09ff43ee
/Problem2.py
2e2294281753809b878aa5ef67147ec8f41a0774
[]
no_license
shantanu609/DP-1
1a1365d741f71d0b8fd4c8f636405e7a60632cf0
a27aac431988a22b22fbef5a5908cc98a56a1716
refs/heads/master
2022-09-20T16:49:37.615034
2020-06-04T21:32:04
2020-06-04T21:32:04
269,257,060
0
0
null
2020-06-04T04:04:54
2020-06-04T04:04:54
null
UTF-8
Python
false
false
701
py
# Time Complexity : O(n) # Space Complexity : O(1) # Did this code successfully run on Leetcode : Yes # Any problem you faced while coding this : No # Your code here along with comments explaining your approach class Solution: def rob(self, nums): if not nums or len(nums) ==0: return 0 if len(nums) == 1 : return nums[0] small = nums[0] large = max(nums[0],nums[1]) for i in range(2,len(nums)): current = max(large, small + nums[i]) small = large large = current return large if __name__ == "__main__": s = Solution() nums = [2,7,9,3,1] res = s.rob(nums) print(res)
[ "shantanu_shinde_@mail.fresnostate.edu" ]
shantanu_shinde_@mail.fresnostate.edu
c7c7a0d7d7981c861e381a3f4550b2c9e6a8748b
200b52c1fe17cd47e20522b989adb05bd9cc3cfa
/airflow/providers/dbt/cloud/sensors/dbt.py
5838f6d6247d2550a94b43600f4f72f056937a4f
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
fritzwijaya/airflow
cbb70fd8832b23e31e4426e72652c76e0df9fba8
5a4106d96e670b82004dd6fa221cf3c29b2496a9
refs/heads/master
2023-07-07T18:46:09.854983
2023-06-22T00:52:20
2023-06-22T00:52:20
206,764,905
1
0
Apache-2.0
2019-09-06T09:53:33
2019-09-06T09:53:33
null
UTF-8
Python
false
false
5,614
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import annotations import time import warnings from typing import TYPE_CHECKING, Any from airflow.exceptions import AirflowException, AirflowProviderDeprecationWarning from airflow.providers.dbt.cloud.hooks.dbt import DbtCloudHook, DbtCloudJobRunException, DbtCloudJobRunStatus from airflow.providers.dbt.cloud.triggers.dbt import DbtCloudRunJobTrigger from airflow.sensors.base import BaseSensorOperator if TYPE_CHECKING: from airflow.utils.context import Context class DbtCloudJobRunSensor(BaseSensorOperator): """Checks the status of a dbt Cloud job run. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/operator:DbtCloudJobRunSensor` :param dbt_cloud_conn_id: The connection identifier for connecting to dbt Cloud. :param run_id: The job run identifier. :param account_id: The dbt Cloud account identifier. :param deferrable: Run sensor in the deferrable mode. """ template_fields = ("dbt_cloud_conn_id", "run_id", "account_id") def __init__( self, *, dbt_cloud_conn_id: str = DbtCloudHook.default_conn_name, run_id: int, account_id: int | None = None, deferrable: bool = False, **kwargs, ) -> None: if deferrable: if "poke_interval" not in kwargs: # TODO: Remove once deprecated if "polling_interval" in kwargs: kwargs["poke_interval"] = kwargs["polling_interval"] warnings.warn( "Argument `poll_interval` is deprecated and will be removed " "in a future release. Please use `poke_interval` instead.", AirflowProviderDeprecationWarning, stacklevel=2, ) else: kwargs["poke_interval"] = 5 if "timeout" not in kwargs: kwargs["timeout"] = 60 * 60 * 24 * 7 super().__init__(**kwargs) self.dbt_cloud_conn_id = dbt_cloud_conn_id self.run_id = run_id self.account_id = account_id self.deferrable = deferrable def poke(self, context: Context) -> bool: hook = DbtCloudHook(self.dbt_cloud_conn_id) job_run_status = hook.get_job_run_status(run_id=self.run_id, account_id=self.account_id) if job_run_status == DbtCloudJobRunStatus.ERROR.value: raise DbtCloudJobRunException(f"Job run {self.run_id} has failed.") if job_run_status == DbtCloudJobRunStatus.CANCELLED.value: raise DbtCloudJobRunException(f"Job run {self.run_id} has been cancelled.") return job_run_status == DbtCloudJobRunStatus.SUCCESS.value def execute(self, context: Context) -> None: """Run the sensor. Depending on whether ``deferrable`` is set, this would either defer to the triggerer or poll for states of the job run, until the job reaches a failure state or success state. """ if not self.deferrable: super().execute(context) else: end_time = time.time() + self.timeout if not self.poke(context=context): self.defer( timeout=self.execution_timeout, trigger=DbtCloudRunJobTrigger( run_id=self.run_id, conn_id=self.dbt_cloud_conn_id, account_id=self.account_id, poll_interval=self.poke_interval, end_time=end_time, ), method_name="execute_complete", ) def execute_complete(self, context: Context, event: dict[str, Any]) -> int: """Callback for when the trigger fires - returns immediately. This relies on trigger to throw an exception, otherwise it assumes execution was successful. """ if event["status"] in ["error", "cancelled"]: raise AirflowException("Error in dbt: " + event["message"]) self.log.info(event["message"]) return int(event["run_id"]) class DbtCloudJobRunAsyncSensor(DbtCloudJobRunSensor): """This class is deprecated. Please use :class:`airflow.providers.dbt.cloud.sensor.dbt.DbtCloudJobRunSensor` with ``deferrable=True``. """ def __init__(self, **kwargs: Any) -> None: warnings.warn( "Class `DbtCloudJobRunAsyncSensor` is deprecated and will be removed in a future release. " "Please use `DbtCloudJobRunSensor` and set `deferrable` attribute to `True` instead", AirflowProviderDeprecationWarning, stacklevel=2, ) super().__init__(deferrable=True, **kwargs)
[ "noreply@github.com" ]
fritzwijaya.noreply@github.com
c4f5a91d526049e1800127af99d730c61ea08b2b
b06d8c770ba343f5c21780f5a47898bc12871d21
/source/api/urls.py
66fb1f2b1e8077b83ae3a40a68e14440fe637763
[]
no_license
neroznik/home_work70
e6c897145fcffea08b2e204bdc449afcb6ef8100
fe2d3560415addf50304a10d09bac9f93de9fee7
refs/heads/main
2022-12-27T14:34:22.073983
2020-10-15T11:48:41
2020-10-15T11:48:41
304,308,686
0
0
null
null
null
null
UTF-8
Python
false
false
933
py
"""main URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from api.views import add_view, multiply_view, subtract_view, divide_view app_name = 'api' urlpatterns = [ path('add/',add_view), path('multiply/',multiply_view), path('subtract/',subtract_view), path('divide/',divide_view) ]
[ "neroznik@yandex.ru" ]
neroznik@yandex.ru