blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
f2dee36385c4a7f1048a4323ce74bddb78d1e287
eaf4e734f5238ede8867f86e298f7e13c5b063fc
/RequestLibrary/request/Sample03.py
6203e8264257b553f69010310be314202893d4ad
[]
no_license
asifurrouf/RestApiAutomation
20ca5c19d86996fdc838fb8432f6fab42b1a355e
57a1685b8197999d308025a4f719c0d341c74ea2
refs/heads/master
2020-06-28T21:42:50.653762
2017-05-19T06:09:56
2017-05-19T06:09:56
74,468,130
0
2
null
null
null
null
UTF-8
Python
false
false
499
py
import responses import requests @responses.activate def test_my_api(): responses.add(responses.GET, 'http://twitter.com/api/1/foobar', json={"error": "not found"}, status=404) resp = requests.get('http://twitter.com/api/1/foobar') assert resp.json() == {"error": "not found"} assert len(responses.calls) == 1 assert responses.calls[0].request.url == 'http://twitter.com/api/1/foobar' assert responses.calls[0].response.text == '{"error": "not found"}'
[ "rouf.asifur@gmail.com" ]
rouf.asifur@gmail.com
c98f9a9726047f4b9c13bbe9267c04b7238554f5
2e15dcd969888a4202a10df87912398b3491faa5
/eoc/graph_scene.py
4722aa694123bb86824fff262d42e6e0a237fca3
[]
no_license
moses1994/manim
4f1ebe228b90462db97bb517b6b17f87e3ed0b3b
982ddb4c14e454293c813bc4d1d5d9a0385ae5ad
refs/heads/master
2021-01-13T03:16:06.288277
2016-12-26T15:10:38
2016-12-26T15:10:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,804
py
from helpers import * from scene import Scene # from topics.geometry import from mobject.tex_mobject import TexMobject, TextMobject from mobject.vectorized_mobject import VGroup, VectorizedPoint from animation.simple_animations import Write, ShowCreation from topics.number_line import NumberLine from topics.functions import ParametricFunction from topics.geometry import Rectangle class GraphScene(Scene): CONFIG = { "x_min" : -1, "x_max" : 10, "x_axis_width" : 9, "x_tick_frequency" : 1, "x_leftmost_tick" : None, #Change if different from x_min "x_labeled_nums" : range(1, 10), "x_axis_label" : "x", "y_min" : -1, "y_max" : 10, "y_axis_height" : 6, "y_tick_frequency" : 1, "y_bottom_tick" : None, #Change if different from y_min "y_labeled_nums" : range(1, 10), "y_axis_label" : "y", "axes_color" : GREY, "graph_origin" : 2.5*DOWN + 4*LEFT, "y_axis_numbers_nudge" : 0.4*UP+0.5*LEFT, } def setup_axes(self, animate = True): x_num_range = float(self.x_max - self.x_min) x_axis = NumberLine( x_min = self.x_min, x_max = self.x_max, space_unit_to_num = self.x_axis_width/x_num_range, tick_frequency = self.x_tick_frequency, leftmost_tick = self.x_leftmost_tick or self.x_min, numbers_with_elongated_ticks = self.x_labeled_nums, color = self.axes_color ) x_axis.shift(self.graph_origin - x_axis.number_to_point(0)) if self.x_labeled_nums: x_axis.add_numbers(*self.x_labeled_nums) x_label = TextMobject(self.x_axis_label) x_label.next_to(x_axis, RIGHT+UP, buff = SMALL_BUFF) x_label.shift_onto_screen() x_axis.add(x_label) self.x_axis_label_mob = x_label y_num_range = float(self.y_max - self.y_min) y_axis = NumberLine( x_min = self.y_min, x_max = self.y_max, space_unit_to_num = self.y_axis_height/y_num_range, tick_frequency = self.y_tick_frequency, leftmost_tick = self.y_bottom_tick or self.y_min, numbers_with_elongated_ticks = self.y_labeled_nums, color = self.axes_color ) y_axis.shift(self.graph_origin-y_axis.number_to_point(0)) y_axis.rotate(np.pi/2, about_point = y_axis.number_to_point(0)) if self.y_labeled_nums: y_axis.add_numbers(*self.y_labeled_nums) y_axis.numbers.shift(self.y_axis_numbers_nudge) y_label = TextMobject(self.y_axis_label) y_label.next_to(y_axis.get_top(), RIGHT, buff = 2*MED_BUFF) y_label.shift_onto_screen() y_axis.add(y_label) self.y_axis_label_mob = y_label if animate: self.play(Write(VGroup(x_axis, y_axis))) else: selfe.add(x_axis, y_axis_label) self.x_axis, self.y_axis = x_axis, y_axis def coords_to_point(self, x, y): assert(hasattr(self, "x_axis") and hasattr(self, "y_axis")) result = self.x_axis.number_to_point(x)[0]*RIGHT result += self.y_axis.number_to_point(y)[1]*UP return result def graph_function(self, func, color = BLUE, animate = False, is_main_graph = True, ): def parameterized_graph(alpha): x = interpolate(self.x_min, self.x_max, alpha) return self.coords_to_point(x, func(x)) graph = ParametricFunction(parameterized_graph, color = color) if is_main_graph: self.graph = graph self.func = func if animate: self.play(ShowCreation(graph)) self.add(graph) return graph def input_to_graph_point(self, x): assert(hasattr(self, "graph")) alpha = (x - self.x_min)/(self.x_max - self.x_min) return self.graph.point_from_proportion(alpha) def angle_of_tangent(self, x, dx = 0.01): assert(hasattr(self, "graph")) vect = self.graph_point(x + dx) - self.graph_point(x) return angle_of_vector(vect) def label_graph(self, graph, label = "f(x)", proportion = 0.7, direction = LEFT, buff = 2*MED_BUFF, animate = True ): label = TexMobject(label) label.highlight(graph.get_color()) label.next_to( graph.point_from_proportion(proportion), direction, buff = buff ) if animate: self.play(Write(label)) self.add(label) return label def get_riemann_rectangles(self, x_min = None, x_max = None, dx = 0.1, stroke_width = 1, start_color = BLUE, end_color = GREEN): assert(hasattr(self, "func")) x_min = x_min if x_min is not None else self.x_min x_max = x_max if x_max is not None else self.x_max rectangles = VGroup() for x in np.arange(x_min, x_max, dx): points = VGroup(*map(VectorizedPoint, [ self.coords_to_point(x, 0), self.coords_to_point(x+dx, self.func(x+dx)), ])) rect = Rectangle() rect.replace(points, stretch = True) rect.set_fill(opacity = 1) rectangles.add(rect) rectangles.gradient_highlight(start_color, end_color) rectangles.set_stroke(BLACK, width = stroke_width) return rectangles
[ "grantsanderson7@gmail.com" ]
grantsanderson7@gmail.com
baf0ea5868c97078b0ac00e5849c440553700302
b9a131dd85fe5f2d2f5b16c97b1f859ede5a4914
/Curso_em_Vídeo/utilizando while/Desafio02.py
e910749cf987c6cb33cc710b0347cbf2a360b4e0
[]
no_license
juancassioo/python-sistemas
131f218bf8fa1bebf1bc6e5fbe3222571ca7a42f
378596d1c630357b1b1958a3b4e3e7f6f96dd5d1
refs/heads/main
2023-07-04T20:27:22.859839
2021-08-09T01:10:37
2021-08-09T01:10:37
394,105,230
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
from random import randint computador = randint(1,10) print('Tente adivinhar meu número') acertou = False palpites = 0 while not acertou: jogador = int(input('Digite um numero: ')) palpites += 1 if jogador == computador: acertou = True elif jogador < computador: print('Mais...') else: print('Menos...') print('O número era {}' .format(computador)) print('Acertasse com {} tentativas' .format(palpites))
[ "noreply@github.com" ]
juancassioo.noreply@github.com
0b3ff650e9dfb71ebdf0317b59d8e2385c2daa4b
795b0d3fa770b9e136bf5b0790cf45740025a2ed
/AI/transformerTester.py
031b469bee275bacd7f638fc85b5739de480c2d5
[]
no_license
Baes20/AIstuff
8ff812c537d94d0793b33c21d6ec6adbe1d09008
307032ac4c147cab951b579a2eabd82a5acf8abe
refs/heads/master
2020-04-19T01:39:19.814505
2019-09-19T01:12:26
2019-09-19T01:12:26
167,877,868
0
0
null
null
null
null
UTF-8
Python
false
false
2,239
py
from FXTMdataset import MarketDataGenerator from Attention3 import DeepPredictor import tensorflow as tf import random import matplotlib.pyplot as plt import numpy as np import sys from NASDAQ100dataset import NasdaqGenerator from Luong import Luong from Transformer import Transformer sys.setrecursionlimit(1500) def show_rand_sample(validY, validPredict, num_samples): for i in range(num_samples): rand = random.randrange(validY.shape[0]) rand2 = random.randrange(validY.shape[2]) validY_slice = validY[rand, :, rand2, 0] validPredict_slice = validPredict[rand, :, rand2, 0] validY_delta = [] validPredict_delta = [] for j in range(len(validY_slice) - 1): validY_delta.append(validY_slice[j + 1] - validY_slice[j]) validPredict_delta.append(validPredict_slice[j + 1] - validPredict_slice[j]) plt.subplot(211) plt.plot(validY_slice) plt.plot(validPredict_slice) plt.subplot(212) plt.plot(validY_delta) plt.plot(validPredict_delta) plt.show() def trend_accuracy(Y, Predict): count = 0 total = 0 def get_delta(Y): Y_shiftright = np.concatenate(([Y[0]], Y), axis=0) Y_shiftright = np.delete(Y_shiftright, len(Y) - 1, axis=0) print(Y.shape) print(Y_shiftright.shape) return np.subtract(Y_shiftright, Y) Y_delta = get_delta(Y) Predict_delta = get_delta(Predict) Y_delta = np.reshape(Y_delta, [-1]) Predict_delta = np.reshape(Predict_delta, [-1]) for i in range(len(Y_delta)): if Y_delta[i] * Predict_delta[i] > 0: # if they are the same count += 1 total += 1 return count / total # tensorboard --host 127.0.0.1 --logdir=D:/Projects/tensor2/summary/Transformer train_ratio = 0.8 seq_length = 32 output_count = 8 batch_size = 8 N = 6 filter_num = 12 kernel_size = 64 ffn_size = kernel_size * 4 epoch = 3000 learning_rate = 0.00001 mfile = './models/en2de.model.h5' mfile_arch = './models/Transformer/en2de.model_arch.json' with open(mfile_arch, 'r') as f: model = tf.keras.models.model_from_json(f.read())
[ "noreply@github.com" ]
Baes20.noreply@github.com
7d686f1717b013e5a16bfd46d17ede520136c2e1
1a90e935bf8bae9f352775cd5e4d7cb89e2c1827
/venv/Scripts/rst2html4.py
9d13b068a0a2df48b32120082b1d92c9fc6f6b72
[]
no_license
KyleIrving01/KylePracticals
a3d3fd1c673c0a16050b530034caa9ec582e7261
7af28f1903f5d5d97f1a60d88e4b43c7c4bc6500
refs/heads/master
2022-10-22T05:28:22.330462
2018-04-11T08:08:32
2018-04-11T08:08:32
127,836,146
0
1
null
2022-10-01T16:15:00
2018-04-03T01:57:23
Python
UTF-8
Python
false
false
761
py
#!C:\Users\Kyle\PycharmProjects\KylePracs\venv\Scripts\python.exe # $Id: rst2html4.py 7994 2016-12-10 17:41:45Z milde $ # Author: David Goodger <goodger@python.org> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing (X)HTML. The output conforms to XHTML 1.0 transitional and almost to HTML 4.01 transitional (except for closing empty tags). """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates (X)HTML documents from standalone reStructuredText ' 'sources. ' + default_description) publish_cmdline(writer_name='html4', description=description)
[ "kyle.irving@my.jcu.edu.au" ]
kyle.irving@my.jcu.edu.au
02a5bbc62239aa59ffed254631814c7b2f0e9001
b70e3c8d4b512212708eda8bba4e33a102c9edfd
/photo/tests.py
570f0a6d20fb4a2e8ed816e4a196c4ddab5d0706
[ "MIT" ]
permissive
markmumba/Thee-Gallery
b8d378700a9696f57d3d2e0af184b4f635537c1b
fcdbeb35f26db6ecb68dd9c786e842fe2aea7772
refs/heads/master
2021-09-09T09:34:47.412904
2019-08-27T08:34:23
2019-08-27T08:34:23
203,953,586
0
0
null
2021-06-10T21:53:51
2019-08-23T08:06:47
Python
UTF-8
Python
false
false
565
py
from django.test import TestCase from .models import Location, Image, Category # Create your tests here. class ImageTestClass(TestCase): def setUp(self): self.location = Location(name='nairobi') self.location.save() self.category = Category(name ='food') self.category.save() self.image = Image( id = 1,name ='bg.jpg',description = 'good', category=self.category, location=self.location) def test_save(self): self.image self.image.image_save() self.assertTrue(len(Image.objects,all())>0)
[ "markmumba01@gmail.com" ]
markmumba01@gmail.com
a2a59919f86d0379d999ad9f21ac54fd2050ef58
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/dms_write_f/endpoint_delete.py
931dd6bbc2ae6f7170ea30b200a1a599d99271d0
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
724
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html if __name__ == '__main__': """ create-endpoint : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dms/create-endpoint.html describe-endpoints : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dms/describe-endpoints.html modify-endpoint : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dms/modify-endpoint.html """ write_parameter("dms", "delete-endpoint")
[ "hcseo77@gmail.com" ]
hcseo77@gmail.com
43b7ee085e4556264bd72e224d461a3231d7227a
051175a2e83077b1c55a9b927fa944f7d578954b
/class&object-python/untitled2.py
3c5f567b8dcc973c6da864961b20e587081da145
[]
no_license
ajkashik/Class-object-python-Introduction
79cfec4db6310b796ef91bd4f80ca2fc1dfb970b
1e9549d59edcd48cad9d3596e242f224c4562b49
refs/heads/master
2022-11-06T09:10:19.210570
2020-06-28T19:17:44
2020-06-28T19:17:44
275,652,336
1
0
null
null
null
null
UTF-8
Python
false
false
459
py
class bird: def __init__(self): print("This is a bird") def name(self): print("bird") def swim(self): print("Can swim") class penguin(bird): def __init__(self): super().__init__() print("This is penguin") def name(self): super().name() print("Penguin") def run(self): super().swim() print("Can run") pop=penguin() pop.name() pop.run()
[ "noreply@github.com" ]
ajkashik.noreply@github.com
b519651abbfcf68850825535a106d0edbcc9b006
baaefd1bbc39142294fef46f5cd4b1128a1b8e74
/data/getData.py
3772cba7a30c54d6c47390cc3df6d694a9959645
[]
no_license
gutobenn/inf-visdados
f8853ca21057bded091a578339da1164fe69694e
eb6823b4d1815672c3102b7e60f45c5e79e0e3cb
refs/heads/master
2020-03-25T05:47:13.090246
2018-07-16T22:22:45
2018-07-16T22:22:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
295
py
import csv, sys from collections import Counter input_stream = open(sys.argv[1]) reader = csv.reader(input_stream, delimiter=';') print(reader.next()) #skip header data = [row[int(sys.argv[2])] for row in reader] print data for (k,v) in Counter(data).iteritems(): print "%s %d" % (k, v)
[ "fabriciommazzola@gmail.com" ]
fabriciommazzola@gmail.com
92d0ea6cb275b2656032b22fc0bced5e32c93bac
535fcd46a4708f35406ac93def63728d3296ff70
/sign-websocket/lambda_function.py
39d6b17fb633f574b83477c9627c6065d160793e
[]
no_license
maxzega/sondehub-infra
bd12087d633ec28a7bcc1d1358961635d47e211c
00fddada463f7f0a4a190026dd311c6b595c8c08
refs/heads/main
2023-04-15T21:31:43.310299
2021-04-23T10:33:54
2021-04-23T10:33:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,522
py
import boto3 import time import uuid import urllib.parse import hmac, datetime, hashlib import os #todo this will need an iam role that has iot connection privs def aws_sign(key, msg): return hmac.new(key, msg.encode("utf-8"), hashlib.sha256).digest() def aws_getSignatureKey(key, dateStamp, regionName, serviceName): kDate = aws_sign(("AWS4" + key).encode("utf-8"), dateStamp) kRegion = aws_sign(kDate, regionName) kService = aws_sign(kRegion, serviceName) kSigning = aws_sign(kService, "aws4_request") return kSigning def aws_presign( access_key=None, secret_key=None, session_token=None, host=None, region=None, method=None, protocol=None, uri=None, service=None, expires=3600, payload_hash=None, ): # method=GET, protocol=wss, uri=/mqtt service=iotdevicegateway assert 604800 >= expires >= 1, "Invalid expire time 604800 >= %s >= 1" % expires # Date stuff, first is datetime, second is just date. t = datetime.datetime.utcnow() date_time = t.strftime("%Y%m%dT%H%M%SZ") date = t.strftime("%Y%m%d") # Signing algorithm used algorithm = "AWS4-HMAC-SHA256" # Scope of credentials, date + region (eu-west-1) + service (iot gateway hostname) + signature version credential_scope = date + "/" + region + "/" + service + "/" + "aws4_request" # Start building the query-string canonical_querystring = "X-Amz-Algorithm=" + algorithm canonical_querystring += "&X-Amz-Credential=" + urllib.parse.quote_plus( access_key + "/" + credential_scope ) canonical_querystring += "&X-Amz-Date=" + date_time canonical_querystring += "&X-Amz-Expires=" + str(expires) canonical_querystring += "&X-Amz-SignedHeaders=host" if payload_hash is None: if service == "iotdevicegateway": payload_hash = hashlib.sha256(b"").hexdigest() else: payload_hash = "UNSIGNED-PAYLOAD" canonical_headers = "host:" + host + "\n" canonical_request = ( method + "\n" + uri + "\n" + canonical_querystring + "\n" + canonical_headers + "\nhost\n" + payload_hash ) string_to_sign = ( algorithm + "\n" + date_time + "\n" + credential_scope + "\n" + hashlib.sha256(canonical_request.encode()).hexdigest() ) signing_key = aws_getSignatureKey(secret_key, date, region, service) signature = hmac.new( signing_key, string_to_sign.encode("utf-8"), hashlib.sha256 ).hexdigest() canonical_querystring += "&X-Amz-Signature=" + signature if session_token: canonical_querystring += "&X-Amz-Security-Token=" + urllib.parse.quote( session_token ) return protocol + "://" + host + uri + "?" + canonical_querystring def lambda_handler(event, context): #get aws creds session = boto3.Session() credentials = session.get_credentials() current_credentials = credentials.get_frozen_credentials() url = aws_presign( access_key=current_credentials.access_key, secret_key=current_credentials.secret_key, session_token=current_credentials.token, method="GET", protocol="wss", uri="/mqtt", service="iotdevicegateway", host=os.getenv("IOT_ENDPOINT"), region=session.region_name, ) return {"statusCode": 200, "body": url} if __name__ == "__main__": print(lambda_handler({}, {}))
[ "git@michaela.lgbt" ]
git@michaela.lgbt
89e1240e6d4e1e68240d8ff9adcd8c6e1613b0e9
e3f3def1b627eb1ba58395b23c732b124bc76b05
/PMCHealthCare/HealthRecord/models.py
a2c6535ae6de0f685a718ccb751229e8b6514528
[]
no_license
ShraddhaVarat/HealthRecordApp
d59e3c582e4d66a4a0d8cbb88002cf5e7d685e3d
029f41885ef29440899f720bcf3377991a773008
refs/heads/master
2020-03-27T22:32:15.291007
2018-10-11T19:26:31
2018-10-11T19:26:31
147,239,811
0
1
null
null
null
null
UTF-8
Python
false
false
4,071
py
from mongoengine import * from django.utils import timezone import datetime from datetime import datetime from django.db.models import ( DateField, DateTimeField, IntegerField, TimeField, Transform, ) from PMCHealthCare.settings import DBNAME connect(DBNAME) class Doctor(Document): doctor_id = StringField(max_length=50) password = StringField(max_length=50) name = StringField(max_length=100) phone1 = StringField(max_length=15) phone2 = StringField(max_length=15) address = StringField(max_length=50) email = StringField(max_length=254,required=False) registration_no = StringField(max_length=50) qualification = ListField(StringField(max_length=50)) hospitals_associated = SortedListField(StringField(max_length=50)) class Hospital(Document): hospital_id = StringField(max_length=50) password = StringField(max_length=50) name = StringField(max_length=100) phone_no = StringField(max_length=15) helpline = StringField(max_length=15) email = StringField(max_length=254,required=False) address = StringField(max_length=100) pincode = StringField(max_length=6) registration_no = StringField(max_length=50) hospital_type = StringField(max_length=50) doctors_associated = SortedListField(ReferenceField(Doctor)) latitude = DecimalField(max_digits=10, decimal_places=7) longitude = DecimalField(max_digits=10, decimal_places=7) Location_Coordinates = StringField(max_length=50, blank=True, null=True) Subtown = StringField(max_length=50, blank=True, null=True) Total_Num_Beds = IntField(blank=True, null=True) Facilities = StringField(max_length=50, blank=True, null=True) District_ID = StringField(max_length=50, blank=True, null=True) Specialties = ListField(StringField(max_length=50, blank=True, null=True)) Town = StringField(max_length=50, blank=True, null=True) Website = StringField(max_length=50, blank=True, null=True) Number_DoctorVillage = IntField(blank=True, null=True) State_ID = StringField(max_length=50 , blank=True, null=True) class Checkup_Details(EmbeddedDocument): date = DateTimeField(blank=True, null=True) hospital_id = StringField(max_length=50) doctor = StringField(max_length=50) symptoms = ListField(StringField(max_length=50)) provisional_diagnosis = ListField(StringField(max_length=50)) severity = IntField() class Prescription(EmbeddedDocument): prescription_id = StringField(max_length=50) medicines = ListField(EmbeddedDocumentField('Medicine')) class Medicine(EmbeddedDocument): medicine_name = StringField(max_length=50) morning = FloatField(required=False) afternoon = FloatField(required=False) evening = FloatField(required=False) no_of_days = IntField() class Patient(Document): patient_id = StringField(max_length=50) password = StringField(max_length=50) name = StringField(max_length=100) phone1 = StringField(max_length=15) phone2 = StringField(max_length=15) email_id = EmailField(max_length=254,required=False) aadhar_no = DecimalField( max_digits=12, decimal_places=0) permanent_addr = StringField(max_length=250) local_addr = StringField(max_length=250) dob = StringField(null=True, blank=True) gender = StringField(max_length=1) profession = StringField(max_length=50) marital_status = StringField(max_length=1) blood_grp = StringField(max_length=10) spouse_name = StringField(max_length=50,required=False) checkup = ListField(EmbeddedDocumentField('Checkup_Details')) prescription = ListField(EmbeddedDocumentField('Prescription'),blank=True,null=True) class Pharmacist(Document): pharmacist_id = StringField(max_length=50) password = StringField(max_length=50) name = StringField(max_length=100) phone1 = StringField(max_length=15) phone2 = StringField(max_length=15) email = EmailField(max_length=254,required=False) address = StringField(max_length=100) registration_no = StringField(max_length=50) #Sahyadri = Hospital(hospital_id="PMCH001",name="Sahyadri", phone_no="12345",email_id="abc@gmai.com",facilties=["MRI","X-ray"]) #Sahyadri.save() #for e in Hospital.objects.all(): # print(e["registration_no"],e["hospital_id"])
[ "shraddhavarat77@gmail.com" ]
shraddhavarat77@gmail.com
33034e06cf155cf17a64e4d985bd5693ace235fb
00affc541697bb828548f227d6b07d6bdba78eeb
/Report/grafik/amplitude-plot-snorken.py
ce353dcce2dbccf208122d2e8d593ff0fd39d374
[]
no_license
lgrave11/P8-Report
c0872f5d11814974a8b31a90f4112142635bfc5c
67bcafddc7ba670560cf018d14ebd5f3d88b11f7
refs/heads/master
2016-09-05T19:12:52.511855
2015-06-23T08:35:52
2015-06-23T08:35:52
30,405,276
0
0
null
null
null
null
UTF-8
Python
false
false
1,215
py
import datetime import matplotlib import matplotlib.dates from matplotlib.dates import YearLocator, MonthLocator, DateFormatter def main(): f = open(r"snorken_amplitudes.txt", "r").readlines() lst = [(datetime.datetime.strptime(x.split("\t")[0].strip(), "%Y-%m-%d %H:%M:%S.%f"), x.split("\t")[1]) for x in f] lst = [x for x in lst if x[0] >= datetime.datetime(2015, 4, 24, 19, 6, 14) and x[0] <= datetime.datetime(2015, 4, 25, 9, 0, 0)] lst2 = zip(*lst) format = matplotlib.dates.DateFormatter('%H:%M') dates = matplotlib.dates.date2num(lst2[0]) matplotlib.use('PDF') import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot_date(dates, lst2[1], 'o-', color="red", markerfacecolor='red', markeredgecolor='red', markersize=2, label="Amplitude", rasterized=True) plt.legend(["Amplitude"]) ax.set_ylabel('Maks amplitude') ax.set_xlabel('Tidspunkt') plt.ylabel('Maks amplitude', rotation="vertical") plt.xlabel('Tidspunkt', rotation="horizontal") ax.xaxis.set_major_formatter(format) ax.autoscale_view() ax.grid(True) fig.autofmt_xdate() plt.savefig(r"amplitude-plot-snorken.pdf", dpi=400) if __name__ == '__main__': main()
[ "gravesenlasse@gmail.com" ]
gravesenlasse@gmail.com
8a5e5ac52df2299bd07b8855ea97880603375668
48fcd5b9203c5f34dcad9483259c0f3d46f5d48b
/coursera-python/strings_evaluation.py
ab068659dcdc5aa7585549a1d1bec40e7c103fbf
[]
no_license
ssaulrj/codes-python
438dd691815d0a688d264928eb07187ba30c2138
04b75b001de60a5e202ad373f3379864753ce203
refs/heads/master
2022-11-17T11:40:18.883096
2020-07-06T00:57:58
2020-07-06T00:57:58
234,440,220
0
0
null
null
null
null
UTF-8
Python
false
false
3,206
py
#The is_palindrome function checks if a string is a palindrome. A palindrome is a string that can be equally read from left to right or right to left, omitting blank spaces, and ignoring capitalization. Examples of palindromes are words like kayak and radar, and phrases like "Never Odd or Even". def is_palindrome(input_string): reverse_string = "" new_string = "" # Traverse through each letter of the input string for letter in input_string.lower(): if letter != ' ': new_string += letter reverse_string = letter + reverse_string[0:] #print(reverse_string) # Compare the strings if new_string == reverse_string: return True return False print(is_palindrome("Never Odd or Even")) # Should be True print(is_palindrome("abc")) # Should be False print(is_palindrome("kayak")) # Should be True #Using the format method, fill in the gaps in the convert_distance function so that it returns the phrase "X miles equals Y km", with Y having only 1 decimal place. For example, convert_distance(12) should return "12 miles equals 19.2 km". def convert_distance(miles): km = miles * 1.6 result = "{} miles equals {:.1f} km".format(miles, km) return result print(convert_distance(12)) # Should be: 12 miles equals 19.2 km print(convert_distance(5.5)) # Should be: 5.5 miles equals 8.8 km print(convert_distance(11)) # Should be: 11 miles equals 17.6 km #In the nametag function so that it uses the format method to return first_name and the first initial of last_name followed by a period. def nametag(first_name, last_name): return("{} {}.".format(first_name, last_name[0])) print(nametag("Jane", "Smith")) # Should display "Jane S." print(nametag("Francesco", "Rinaldi")) # Should display "Francesco R." print(nametag("Jean-Luc", "Grand-Pierre")) # Should display "Jean-Luc G." #The replace_ending function replaces the old string in a sentence with the new string, but only if the sentence ends with the old string. If there is more than one occurrence of the old string in the sentence, only the one at the end is replaced, not all of them. For example, replace_ending("abcabc", "abc", "xyz") should return abcxyz, not xyzxyz or xyzabc. The string comparison is case-sensitive, so replace_ending("abcabc", "ABC", "xyz") should return abcabc (no changes made). def replace_ending(sentence, old, new): # Check if the old string is at the end of the sentence if sentence.endswith(old): # Using i as the slicing index, combine the part # of the sentence up to the matched string at the # end with the new string i = sentence.rindex(old) print(i) new_sentence = sentence[:i] + new return new_sentence # Return the original sentence if there is no match return sentence print(replace_ending("It's raining cats and cats", "cats", "dogs")) # Should display "It's raining cats and dogs" print(replace_ending("She sells seashells by the seashore", "seashells", "donuts")) # Should display "She sells seashells by the seashore" print(replace_ending("The weather is nice in May", "may", "april")) # Should display "The weather is nice in May" print(replace_ending("The weather is nice in May", "May", "April")) # Should display "The weather is nice in April"
[ "noreply@github.com" ]
ssaulrj.noreply@github.com
2d4f81484db9931750caf5780609c291d546af57
7828deb2e1c37adafaac9a527887e67e0d2f98ca
/venv/Scripts/easy_install-script.py
b5a08e4f01dc3ed7c0549c7e42567214091492c7
[]
no_license
arunindia95/automation-first
78bd565feaad77b86759afff1a12ab71f00ce5e1
9b403105ada7e62c020f6752ca619befadbdeb73
refs/heads/main
2023-03-29T11:16:27.456232
2021-03-21T10:40:21
2021-03-21T10:40:21
349,966,403
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
#!C:\Users\Admin\PycharmProjects\saleprac\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
[ "arun.konagutti06@gmail.com" ]
arun.konagutti06@gmail.com
06e38ae0557bd579e0f1e8e62c7e68ce5eee8d42
6d4c0a2e0997fc2dd850c0ceb2584d65c17a5fb3
/crud/apps/sr_users/models.py
c3af94bb101e3ba397fdeee81a54e108980bc44b
[]
no_license
cd-chicago-june-cohort/django_orm_Alyssa
77eb155c46ff79a4c27a36f4154d4f2e0f65161e
17df629ba00edac1d1cd23dfc93729ff4818f468
refs/heads/master
2021-01-01T06:46:28.394999
2017-07-19T21:39:40
2017-07-19T21:39:40
97,506,652
0
1
null
null
null
null
UTF-8
Python
false
false
885
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models import re EMAIL_REGEX = re.compile(r'^[a-zA-Z0-9.+_-]+@[a-zA-Z0-9._-]+\.[a-zA-Z]+$') class UserManager(models.Manager): def user_validator(self, post_data): errors = {} if len(post_data['first_name']) == 0 or len(post_data['last_name']) == 0 or len(post_data['email']) == 0: errors['required']='All fields are required' if not EMAIL_REGEX.match(post_data['email']): errors['email']='Invalid Email Address!' return errors class User(models.Model): first_name = models.CharField(max_length=128) last_name = models.CharField(max_length=128) email = models.CharField(max_length=128) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) objects = UserManager()
[ "alyssa@nickow.com" ]
alyssa@nickow.com
eee5575235971f6b7417c1981655c6d18d4f5064
15cebfba74a77de9d633addb278e57917ade3a14
/models/articulation_estimator.py
9d9d48ff314f0d84ab97e9de202fbe2838559b06
[]
no_license
liuliu66/articulation_estimator_slim
75cc04502a24872a0e07dd249c849df825645478
561fa07a9901692c4543648349b555711c9b18d0
refs/heads/main
2023-06-12T17:08:30.176028
2021-07-08T07:35:56
2021-07-08T07:35:56
370,897,114
3
0
null
null
null
null
UTF-8
Python
false
false
1,661
py
import os, sys import torch import torch.nn as nn from .pointnet2 import PointNet2 from .estimation_head import EstimationHead class ArticulationEstimator(nn.Module): def __init__(self, in_channels=3, n_max_parts=7): super(ArticulationEstimator, self).__init__() self.n_max_parts = n_max_parts self.backbone = PointNet2(in_channels) self.nocs_head = EstimationHead(n_max_parts, mixed_pred=True) def forward(self, return_loss=True, **input): if return_loss: return self.forward_train(**input) else: return self.forward_test(**input) def forward_train(self, **input): P = input['parts_pts'] if 'parts_pts_feature' in input.keys(): P_feature = input['parts_pts_feature'] else: P_feature = None feat, feat_encode = self.backbone(P, P_feature) pred_dict = self.nocs_head(feat, feat_encode) loss_result = self.nocs_head.loss(pred_dict, mode='train', **input) return loss_result def forward_test(self, **input): P = input['pts'] if 'pts_feature' in input.keys(): P_feature = input['pts_feature'] else: P_feature = None if P.dim() == 2: P = P.unsqueeze(0) if P_feature.dim() == 2: P_feature = P_feature.unsqueeze(0) feat, feat_encode = self.backbone(P, P_feature) pred_dict = self.nocs_head(feat, feat_encode) return pred_dict @property def with_nocs(self): return hasattr(self, 'nocs_head') and self.nocs_head is not None
[ "312989161@qq.com" ]
312989161@qq.com
91abdc4a15ab120bb5b7538c6841258ddc4d1d8e
89e430e5e47642132b272ab454c0bd40344c40a7
/LeetcodePython/LeetCode/0.base.py
ec95524357a6fac2d831c3c93deac528204ec2b9
[]
no_license
selonsy/leetcode
bebde23e0e13ba236adb3d905a701a34602f98df
b8f705a77cfcdb7d498d3422f9c4ee88fd61a3b3
refs/heads/master
2021-06-28T06:23:36.422766
2021-02-23T12:34:40
2021-02-23T12:34:40
220,758,861
0
0
null
null
null
null
UTF-8
Python
false
false
1,996
py
import time import copy class Solution: def func1(self, x): pass def getVarLen(self): co = self.func1.__code__ return co.co_argcount ori_data = [1] expect_data = [None] assert len(ori_data) == len(expect_data),'输入输出数据数量不一致' s = Solution() funcs = [] var_len = s.getVarLen() - 1 # exclude self for key in Solution.__dict__.keys(): if "func" in key: funcs.append(getattr(s, key)) # 反射获取实例化的func for f in range(len(funcs)): func = funcs[f] assert func!=None,'func不能为空!' begin = time.time() # ToDo:这里的计时有问题,需要改进 data_length = len(expect_data) input_data = copy.deepcopy(ori_data) # 前面的func可能修改测试数据,故深拷贝 for i in range(data_length): if var_len == 1: res = func(input_data[i]) assert res == expect_data[i], "func{0}({3}): expected = {1}, but actually = {2}".format(f+1,expect_data[i], res,input_data[i]) elif var_len == 2: res = func(input_data[i][0],input_data[i][1]) assert res == expect_data[i], "func{0}({3},{4}): expected = {1}, but actually = {2}".format(f+1,expect_data[i], res,input_data[i][0],input_data[i][1]) elif var_len == 3: res = func(input_data[i][0],input_data[i][1],input_data[i][2]) assert res == expect_data[i], "func{0}({3},{4},{5}): expected = {1}, but actually = {2}".format(f+1,expect_data[i], res,input_data[i][0],input_data[i][1],input_data[i][2]) elif var_len == 4: res = func(input_data[i][0],input_data[i][1],input_data[i][2],input_data[i][3]) assert res == expect_data[i], "func{0}({3},{4},{5},{6}): expected = {1}, but actually = {2}".format(f+1,expect_data[i], res,input_data[i][0],input_data[i][1],input_data[i][2],input_data[i][3]) end = time.time() print("func{0} : {1:.4f} ms".format(f+1, (end-begin)*1000/data_length)) print("done")
[ "selonsy@gmail.com" ]
selonsy@gmail.com
34a936681fc993105ca2d6ae90223c3fbde5699e
9a17439a485041a0c17fe2b1be2106e8345a686b
/music_controller/polls/apiviews.py
85345cfc6c89b4abeef87f904d196aea98ba44f7
[]
no_license
dom-inic/music_controller
15cc79310919116db310b55d3d6c7df2314fee06
73f6b225fd95719dc7244e278b80d6f587a2e921
refs/heads/master
2023-02-22T19:26:41.918556
2021-01-26T08:57:19
2021-01-26T08:57:19
326,018,333
2
0
null
null
null
null
UTF-8
Python
false
false
1,128
py
from rest_framework.views import APIView from rest_framework.response import Response from django.shortcuts import get_object_or_404 from rest_framework import generics from . models import Question, Choice from .serializers import PollSerializer, ChoiceSerializer, VoteSerializer # class PollList(APIView): # def get(self, request): # polls = Question.objects.all()[:20] # data = PollSerializer(polls, many=True).data # return Response(data) # class PollDetail(APIView): # def get (self, request, pk): # poll = get_object_or_404(Question, pk=pk) # data = PollSerializer(poll).data # return Response(data) class PollList(generics.ListCreateAPIView): queryset = Question.objects.all() serializer_class = PollSerializer class PollDetail(generics.RetrieveDestroyAPIView): queryset = Question.objects.all() serializer_class = PollSerializer class ChoiceList(generics.ListCreateAPIView): queryset = Choice.objects.all() serializer_class = ChoiceSerializer class CreateVote(generics.CreateAPIView): serializer_class = VoteSerializer
[ "dominicnyambane22@gmail.com" ]
dominicnyambane22@gmail.com
32a6be3181eaf73bfdbe1274daba814817ea932b
6624f41d6a58b91f080b482727b9b7fbd70c3480
/kannada_brat/coreference_ui.py
6c440557e1189ac83799a204bec575f7a3ed73a0
[]
no_license
swarooplr/fp
ac423d4d3c8a7aa9972e95e6bc191e1495eda5d1
ad5559689f141149f91d410fbe7cd05fe0fd53b7
refs/heads/master
2020-05-07T10:25:18.657882
2019-07-14T14:08:23
2019-07-14T14:08:23
180,417,247
0
1
null
2019-05-03T17:12:22
2019-04-09T17:28:11
Python
UTF-8
Python
false
false
2,537
py
import json from english_brat import final_builder_ui import os import random def buid_brat(text,annotated): docData = {} docData['text'] = text docData['entities'] = [] docData['relations'] = [] start_index = 0 end_index = 0 counter = 0 search_string = text id_map = {} finished_map = {} counter = 0 for token in annotated: if not id_map.has_key(token[0]): id_map[token[0]] = counter counter += 1 finished_map[token[0]] = True if not id_map.has_key(token[2]): id_map[token[2]] = counter counter += 1 finished_map[token[2]] = True for token in annotated: entity = [] entity.append('T' + str(id_map[token[0]])) entity.append('Entity') entity.append([[token[0],token[1]]]) docData['entities'].append(entity) counter += 1 entity = [] entity.append('T' + str(id_map[token[2]])) entity.append('Anaphor') entity.append([[token[2], token[3]]]) docData['entities'].append(entity) counter += 1 docData['relations'].append( ['R'+str(counter-1), 'Co-Reference', [['Anaphor', 'T' + str(id_map[token[2]])], ['Entity','T' + str(id_map[token[0]])]]] ) collData = {} collData['entity_types'] = [] tags = set() tags.add("Anaphor") tags.add("Entity") colours = open(os.path.join(os.path.dirname(__file__), '../misc/colours.txt')).read().splitlines() collData['relation_types'] = [{ "type": 'Co-Reference', "labels": ['Co-Reference'], "dashArray": '3,3', "color": 'purple', "args": [ {"role": 'Anaphor', "targets": ['Anaphor']}, {"role": 'Entity', "targets": ['Entity']} ] }] for tag in tags: entity = {} entity['type'] = tag entity['labels'] = [tag] entity['borderColor'] = 'darken' entity['bgColor'] = colours[random.randint(0,len(colours)-1)] collData['entity_types'].append(entity) docData = json.dumps(docData,sort_keys=True,indent=4) collData = json.dumps(collData,sort_keys=True,indent=4) final_builder_ui.build(docData,collData)
[ "swarooplr13@gmail.com" ]
swarooplr13@gmail.com
8ad3174e81f9c26f2ddd4b70d68fe27555f25a45
957c9b285d508d56d865d60889e1485b34239e92
/firecares/firestation/migrations/0040_auto_20170126_1640.py
4a6f93a469ea12d7ef2956004348627b1842f7bc
[ "MIT" ]
permissive
FireCARES/firecares
677fd4a3c6c554b735fa276fc1cd6a4b67ce42f6
aa708d441790263206dd3a0a480eb6ca9031439d
refs/heads/develop
2022-12-11T22:45:11.378689
2021-04-22T22:00:12
2021-04-22T22:00:12
39,472,578
12
14
MIT
2022-12-08T00:02:40
2015-07-21T22:16:21
JavaScript
UTF-8
Python
false
false
2,522
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('firestation', '0039_auto_20170126_0857'), ] sql = """ CREATE OR REPLACE FUNCTION department_fts_document(integer) RETURNS tsvector AS $$ DECLARE department_document TEXT; name varchar; city varchar; state varchar(2); state_name varchar(40); postal_code varchar(10); BEGIN RAISE NOTICE 'WRONG FUUNCTIONS'; SELECT fd.name, add.city, fd.state, states.state_name, add.postal_code INTO name, city, state, state_name, postal_code FROM firestation_firedepartment fd LEFT JOIN firecares_core_address add ON fd.headquarters_address_id=add.id LEFT JOIN usgs_stateorterritoryhigh states ON ST_CoveredBy(ST_Centroid(fd.geom), states.geom) WHERE fd.id=$1; SELECT concat_ws(' ', name, city, state, state_name, postal_code) INTO department_document; RETURN to_tsvector('pg_catalog.simple', department_document); END; $$ LANGUAGE plpgsql; -- Overload the department_fts_document by calling this version the same name but accepting a different argument type. -- This one takes a Fire Department object. CREATE OR REPLACE FUNCTION department_fts_document(department firestation_firedepartment) RETURNS tsvector AS $$ DECLARE department_document TEXT; name varchar; city varchar; state varchar(2); state_name varchar(40); postal_code varchar(10); BEGIN SELECT add.city, states.state_name, add.postal_code INTO city, state_name, postal_code FROM firestation_firedepartment fd LEFT JOIN firecares_core_address add ON fd.headquarters_address_id=add.id LEFT JOIN usgs_stateorterritoryhigh states ON ST_CoveredBy(ST_Centroid(fd.geom), states.geom) WHERE fd.id=department.id; SELECT concat_ws(' ', department.name, city, department.state, state_name, postal_code) INTO department_document; RETURN to_tsvector('pg_catalog.simple', department_document); END; $$ LANGUAGE plpgsql; CREATE OR REPLACE FUNCTION department_fts_document_trigger() RETURNS TRIGGER AS $$ BEGIN raise warning 'before set %', NEW; NEW.fts_document=department_fts_document(NEW); raise warning 'after set'; RETURN NEW; END; $$ LANGUAGE plpgsql; """ operations = [ migrations.RunSQL(sql) ]
[ "garnertb@gmail.com" ]
garnertb@gmail.com
816ce6df5e1915ef71909f8e745acf6d747e9179
ab621c65fc91f5194c4032d68e750efaa5f85682
/purchase_invoice_line_percentage/wizards/purchase_make_invoice_advance.py
66c903b489b5ea00b42dfe67281d9b5bf22f137a
[]
no_license
pabi2/pb2_addons
a1ca010002849b125dd89bd3d60a54cd9b9cdeef
e8c21082c187f4639373b29a7a0905d069d770f2
refs/heads/master
2021-06-04T19:38:53.048882
2020-11-25T03:18:24
2020-11-25T03:18:24
95,765,121
6
15
null
2022-10-06T04:28:27
2017-06-29T10:08:49
Python
UTF-8
Python
false
false
2,974
py
# -*- coding: utf-8 -*- from openerp.osv import fields, osv from openerp.tools.translate import _ import openerp.addons.decimal_precision as dp class purchase_advance_payment_inv(osv.osv_memory): _name = "purchase.advance.payment.inv" _description = "Purchase Advance Payment Invoice" _columns = { 'line_percent': fields.float( 'Installment', digits_compute=dp.get_precision('Account'), help="The % of installment to be used to " "calculate the quantity to invoice"), } _defaults = { 'amount': 0.0, } def create_invoices(self, cr, uid, ids, context=None): wizard = self.browse(cr, uid, ids[0], context) # Additional case, Line Percentage if wizard.line_percent: # Getting PO Line IDs of this PO purchase_obj = self.pool.get('purchase.order') purchase_ids = context.get('active_ids', []) order = purchase_obj.browse(cr, uid, purchase_ids[0]) if order.invoiced_rate + wizard.line_percent > 100: raise osv.except_osv( _('Warning!'), _('This percentage is too high, ' 'it make overall invoiced rate exceed 100%!')) order_line_ids = [] for order_line in order.order_line: order_line_ids.append(order_line.id) # Assign them into active_ids context.update({'active_ids': order_line_ids}) context.update({'line_percent': wizard.line_percent}) purchase_order_line_make_invoice_obj = self.pool.get( 'purchase.order.line_invoice') res = purchase_order_line_make_invoice_obj.makeInvoices( cr, uid, ids, context=context) if not context.get('open_invoices', False): return {'type': 'ir.actions.act_window_close'} return res return super(purchase_advance_payment_inv, self).create_invoices( cr, uid, ids, context=context) def open_invoices(self, cr, uid, ids, invoice_ids, context=None): """ open a view on one of the given invoice_ids """ ir_model_data = self.pool.get('ir.model.data') form_res = ir_model_data.get_object_reference( cr, uid, 'account', 'invoice_supplier_form') form_id = form_res and form_res[1] or False tree_res = ir_model_data.get_object_reference( cr, uid, 'account', 'invoice_tree') tree_id = tree_res and tree_res[1] or False return { 'name': _('Advance Invoice'), 'view_type': 'form', 'view_mode': 'form,tree', 'res_model': 'account.invoice', 'res_id': invoice_ids[0], 'view_id': False, 'views': [(form_id, 'form'), (tree_id, 'tree')], 'context': "{'type': 'in_invoice'}", 'type': 'ir.actions.act_window', }
[ "kittiu@gmail.com" ]
kittiu@gmail.com
09b1804b7637a7d48d1db6c42af093f42603907e
fcbe21026e7ae483c535f6eb38ffbfaaa2aa06c2
/.history/main_20210320181238.py
c4c23e154eacb243057172f4c0f7578559179576
[]
no_license
robertstrauss/discordAIchatbot
8e4c85920f73d49daeb1394afbd1ce8baffbb97b
8347e6a591d352ace1b8fe4c4629e831763eb0ba
refs/heads/master
2023-04-03T12:55:07.641825
2021-04-13T17:54:57
2021-04-13T17:54:57
357,641,172
0
0
null
null
null
null
UTF-8
Python
false
false
1,406
py
import discord import re import requests import random import time import threading import asyncio client = discord.Client() pingchannel = client.get_channel("763821567695126588") pinginterval = 2 # seconds @client.event async def on_ready(): print('We have logged in as {0.user}'.format(client)) @client.event async def on_message(message): global pinging, pinginterval, pingchannel if message.author == "Eon#8669": stopPinging() if message.author == client.user: return if "Eon#8669" in [str(mention) for mention in message.mentions]: pingean() if message.content.startswith("hey bot, ping ean!"): # pingchannel = message.channel pinging = True while pinging: await pingchannel.send('<@549394254695235594>') time.sleep(pinginterval) if message.content.startswith("hey bot, stop!"): pinging = False # await message.channel.send(makepenis(random.randint(0,10))) with open('apikey.txt', 'r') as apikeytxt: api_key = apikeytxt.read() api_url = 'https://www.alphavantage.co/query' def getQuote(symbol): data = { 'function': 'GLOBAL_QUOTE', 'symbol': symbol, 'apikey': api_key } return requests.get(api_url, params=data).json()['Global Quote'] with open('token.txt', 'r') as tokentxt: client.run(tokentxt.read())
[ "robert.strauss@protonmail.com" ]
robert.strauss@protonmail.com
082ae6ae67757ef03811610dd0fd91fdaf230ab3
b9a4864e7952918f79761f9c2df9b0e3fc93f45c
/ml-agents/mlagents/trainers/torch/action_log_probs.py
eee4cab8c2701dbe834f549f0d37750123a68f6f
[ "Apache-2.0" ]
permissive
418sec/ml-agents
bc9e2c4544f4adacacf0b960001316b0c0e6ee9b
26a7040c9780fc093c6a84653f33627d207bf117
refs/heads/master
2023-02-26T04:47:03.195404
2021-01-29T19:12:11
2021-01-29T19:12:11
334,611,921
0
1
Apache-2.0
2021-02-08T15:38:37
2021-01-31T08:53:42
null
UTF-8
Python
false
false
4,426
py
from typing import List, Optional, NamedTuple, Dict from mlagents.torch_utils import torch import numpy as np from mlagents.trainers.torch.utils import ModelUtils from mlagents_envs.base_env import _ActionTupleBase class LogProbsTuple(_ActionTupleBase): """ An object whose fields correspond to the log probs of actions of different types. Continuous and discrete are numpy arrays Dimensions are of (n_agents, continuous_size) and (n_agents, discrete_size), respectively. Note, this also holds when continuous or discrete size is zero. """ @property def discrete_dtype(self) -> np.dtype: """ The dtype of a discrete log probability. """ return np.float32 class ActionLogProbs(NamedTuple): """ A NamedTuple containing the tensor for continuous log probs and list of tensors for discrete log probs of individual actions as well as all the log probs for an entire branch. Utility functions provide numpy <=> tensor conversions to be used by the optimizers. :param continuous_tensor: Torch tensor corresponding to log probs of continuous actions :param discrete_list: List of Torch tensors each corresponding to log probs of the discrete actions that were sampled. :param all_discrete_list: List of Torch tensors each corresponding to all log probs of a discrete action branch, even the discrete actions that were not sampled. all_discrete_list is a list of Tensors, each Tensor corresponds to one discrete branch log probabilities. """ continuous_tensor: torch.Tensor discrete_list: Optional[List[torch.Tensor]] all_discrete_list: Optional[List[torch.Tensor]] @property def discrete_tensor(self): """ Returns the discrete log probs list as a stacked tensor """ return torch.stack(self.discrete_list, dim=-1) @property def all_discrete_tensor(self): """ Returns the discrete log probs of each branch as a tensor """ return torch.cat(self.all_discrete_list, dim=1) def to_log_probs_tuple(self) -> LogProbsTuple: """ Returns a LogProbsTuple. Only adds if tensor is not None. Otherwise, LogProbsTuple uses a default. """ log_probs_tuple = LogProbsTuple() if self.continuous_tensor is not None: continuous = ModelUtils.to_numpy(self.continuous_tensor) log_probs_tuple.add_continuous(continuous) if self.discrete_list is not None: discrete = ModelUtils.to_numpy(self.discrete_tensor) log_probs_tuple.add_discrete(discrete) return log_probs_tuple def _to_tensor_list(self) -> List[torch.Tensor]: """ Returns the tensors in the ActionLogProbs as a flat List of torch Tensors. This is private and serves as a utility for self.flatten() """ tensor_list: List[torch.Tensor] = [] if self.continuous_tensor is not None: tensor_list.append(self.continuous_tensor) if self.discrete_list is not None: tensor_list.append(self.discrete_tensor) return tensor_list def flatten(self) -> torch.Tensor: """ A utility method that returns all log probs in ActionLogProbs as a flattened tensor. This is useful for algorithms like PPO which can treat all log probs in the same way. """ return torch.cat(self._to_tensor_list(), dim=1) @staticmethod def from_dict(buff: Dict[str, np.ndarray]) -> "ActionLogProbs": """ A static method that accesses continuous and discrete log probs fields in an AgentBuffer and constructs the corresponding ActionLogProbs from the retrieved np arrays. """ continuous: torch.Tensor = None discrete: List[torch.Tensor] = None # type: ignore if "continuous_log_probs" in buff: continuous = ModelUtils.list_to_tensor(buff["continuous_log_probs"]) if "discrete_log_probs" in buff: discrete_tensor = ModelUtils.list_to_tensor(buff["discrete_log_probs"]) # This will keep discrete_list = None which enables flatten() if discrete_tensor.shape[1] > 0: discrete = [ discrete_tensor[..., i] for i in range(discrete_tensor.shape[-1]) ] return ActionLogProbs(continuous, discrete, None)
[ "noreply@github.com" ]
418sec.noreply@github.com
b0bc231c424535e2de8e165f77a9dec6fc51a064
8bff98c58d7d5894b9b9095fb4dac049c7b4a77c
/NERYS-product-monitor-master/supreme.py
ba15a427444c4e21539d6e4c03373e59d518e6db
[ "MIT" ]
permissive
mascher/supreme-nikemonitor
cf401e4fadbeb8ff812f514525530e5b85f1f3d4
52e5f1e3f333802a2ef2a4fe9495b2f06e1f9e9f
refs/heads/master
2020-03-27T20:01:18.383492
2018-08-21T02:22:25
2018-08-21T02:22:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,840
py
''' NERYS supreme module left to do: save products to sql db load products from sql db on startup ''' import requests from bs4 import BeautifulSoup as soup import random from log import log as log from threading import Thread from discord_hooks import Webhook import time class Product: def __init__(self, link, image, title = "", stock = False): self.link = link self.image = image self.title = title self.stock = stock def read_from_txt(path): ''' (None) -> list of str Loads up all sites from the sitelist.txt file in the root directory. Returns the sites as a list ''' # Initialize variables raw_lines = [] lines = [] # Load data from the txt file try: f = open(path, "r") raw_lines = f.readlines() f.close() # Raise an error if the file couldn't be found except: log('e', "Couldn't locate <" + path + ">.") raise FileNotFound() if(len(raw_lines) == 0): raise NoDataLoaded() # Parse the data for line in raw_lines: lines.append(line.strip("\n")) # Return the data return lines def get_proxy(proxy_list): ''' (list) -> dict Given a proxy list <proxy_list>, a proxy is selected and returned. ''' # Choose a random proxy proxy = random.choice(proxy_list) # Set up the proxy to be used proxies = { "http": str(proxy), "https": str(proxy) } # Return the proxy return proxies def send_embed(alert_type, product): ''' (str, str, list, str, str, str) -> None Sends a discord alert based on info provided. ''' # Set webhook url = discord_webhook # Create embed to send to webhook embed = Webhook(url, color=123123) # Set author info embed.set_author(name='Premier Cooks', icon='https://pbs.twimg.com/profile_images/1031725580075585536/s0GlPWIB_400x400.jpg') # Set product details if(alert_type == "RESTOCK"): embed.set_desc("RESTOCK: " + product.title) elif(alert_type == "NEW"): embed.set_desc("NEW: " + product.title) embed.add_field(name="Product", value=product.title) embed.add_field(name="Link", value=product.link) embed.add_field(name="Stock", value=str(product.stock)) # Set product image embed.set_thumbnail(product.image) embed.set_image(product.image) # Set footer embed.set_footer(text='Supreme Monitor by @premiercooks', icon='https://pbs.twimg.com/profile_images/1031725580075585536/s0GlPWIB_400x400.jpg', ts=True) # Send Discord alert embed.post() def monitor(): # GET "view all" page link = "http://www.supremenewyork.com/shop/all" headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36" } proxies = get_proxy(proxy_list) try: r = requests.get(link, timeout=5, verify=False) except: log('e', "Connection to URL <" + link + "> failed. Retrying...") try: if(use_proxies): proxies = get_proxy(proxy_list) r = requests.get(link, proxies=proxies, timeout=8, verify=False) else: r = requests.get(link, timeout=8, verify=False) except: log('e', "Connection to URL <" + link + "> failed.") return page = soup(r.text, "html.parser") products = page.findAll("div", {"class": "inner-article"}) log('i', "Checking stock of Supreme products...") for product in products: link = "https://www.supremenewyork.com" + product.a["href"] monitor_supreme_product(link, product) def monitor_supreme_product(link, product): # Product info image = "https:" + product.a.img["src"] if(product.text == "sold out"): stock = False else: stock = True # Product already in database try: if(stock is True and products_list[link].stock is False): log('s', products_list[link].title + " is back in stock!") products_list[link].stock = True send_embed("RESTOCK", products_list[link]) elif(stock is False and products_list[link].stock is True): log('s', products_list[link].title + " is now out of stock.") products_list[link].stock = False # Add new product to database except: # GET product name try: if(use_proxies): proxies = get_proxy(proxy_list) r = requests.get(link, proxies=proxies, timeout=8, verify=False) else: r = requests.get(link, timeout=8, verify=False) except: log('e', "Connection to URL <" + link + "> failed. Retrying...") try: if(use_proxies): proxies = get_proxy(proxy_list) r = requests.get(link, proxies=proxies, timeout=8, verify=False) else: r = requests.get(link, timeout=8, verify=False) except: log('e', "Connection to URL <" + link + "> failed.") return title = soup(r.text, "html.parser").find("title").text # Add product to database products_list[link] = Product(link, image, title, stock) log('s', "Added " + title + " to the database.") send_embed("NEW", products_list[link]) def build_db(): # GET "view all" page link = "http://www.supremenewyork.com/shop/all" headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36" } proxies = get_proxy(proxy_list) try: r = requests.get(link, timeout=5, verify=False) except: log('e', "Connection to URL <" + link + "> failed. Retrying...") try: if(use_proxies): proxies = get_proxy(proxy_list) r = requests.get(link, proxies=proxies, timeout=8, verify=False) else: r = requests.get(link, timeout=8, verify=False) except: log('e', "Connection to URL <" + link + "> failed.") return page = soup(r.text, "html.parser") products = page.findAll("div", {"class": "inner-article"}) log('i', "Checking stock of Supreme products...") for product in products: link = "https://www.supremenewyork.com" + product.a["href"] # Product info image = "https:" + product.a.img["src"] if(product.text == "sold out"): stock = False else: stock = True # GET product name try: if(use_proxies): proxies = get_proxy(proxy_list) r = requests.get(link, proxies=proxies, timeout=8, verify=False) else: r = requests.get(link, timeout=8, verify=False) except: log('e', "Connection to URL <" + link + "> failed. Retrying...") proxies = get_proxy(proxy_list) r = requests.get(link, proxies=proxies, timeout=8, verify=False) try: if(use_proxies): proxies = get_proxy(proxy_list) r = requests.get(link, proxies=proxies, timeout=8, verify=False) else: r = requests.get(link, timeout=8, verify=False) except: proxies = get_proxy(proxy_list) log('e', "Connection to URL <" + link + "> failed.") return title = soup(r.text, "html.parser").find("title").text # Add product to database products_list[link] = Product(link, image, title, stock) log('s', "Added " + title + " to the database.") if(__name__ == "__main__"): # Ignore insecure messages requests.packages.urllib3.disable_warnings() # Load proxies (if available) proxy_list = read_from_txt("proxies.txt") log('i', "Loaded " + str(len(proxy_list)) + " proxies.") if(len(proxy_list) == 0): use_proxies = False else: use_proxies = True # Initialize variables products_list = {} proxies = get_proxy(proxy_list) discord_webhook = "https://discordapp.com/api/webhooks/466338049207435297/Qlm-eq1c2_oil7AJGRU1U2j93TGD4IvCJuo8PYfWXY0ghuTdk-lCiYkq5KbboeTvC4ds" # Put your webhook here # Build database build_db() # Monitor products while(True): monitor() time.sleep(8)
[ "noreply@github.com" ]
mascher.noreply@github.com
2603a62d3d40aa583bfcf5eff0ea7b99e1bfbdfd
c3ff4d4d945867d6019438a7ed0ca4cd59e31dfa
/tests/platform_tests/api/test_component.py
9257e4ad20379554e2be12ed6a6f4b0c7fb71e3f
[ "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
monipko/sonic-mgmt
9b80386039b98470e093e8e23c3b98bf71a5eb70
9927942d83f749579fb99ed92e26a2963b20a0d9
refs/heads/master
2021-08-07T04:06:04.760399
2020-12-11T07:28:44
2020-12-11T07:28:44
230,930,317
1
1
NOASSERTION
2020-09-25T12:42:00
2019-12-30T14:33:16
Python
UTF-8
Python
false
false
10,169
py
import logging import re import pytest import yaml from tests.common.helpers.assertions import pytest_assert from tests.common.helpers.platform_api import chassis, component from platform_api_test_base import PlatformApiTestBase ################################################### # TODO: Remove this after we transition to Python 3 import sys if sys.version_info.major == 3: STRING_TYPE = str else: STRING_TYPE = basestring # END Remove this after we transition to Python 3 ################################################### logger = logging.getLogger(__name__) pytestmark = [ pytest.mark.disable_loganalyzer, # disable automatic loganalyzer pytest.mark.topology('any') ] image_list = [ "current", "next" ] @pytest.fixture(scope="class") def gather_facts(request, duthost): # Get platform facts from platform.json file request.cls.chassis_facts = duthost.facts.get("chassis") @pytest.mark.usefixtures("gather_facts") class TestComponentApi(PlatformApiTestBase): """Platform API test cases for the Component class""" num_components = None chassis_facts = None # This fixture would probably be better scoped at the class level, but # it relies on the platform_api_conn fixture, which is scoped at the function # level, so we must do the same here to prevent a scope mismatch. @pytest.fixture(scope="function", autouse=True) def setup(self, platform_api_conn): if self.num_components is None: try: self.num_components = int(chassis.get_num_components(platform_api_conn)) except: pytest.fail("num_components is not an integer") # # Helper functions # def compare_value_with_platform_facts(self, key, value, component_idx): expected_value = None if self.chassis_facts: expected_components = self.chassis_facts.get("components") if expected_components: expected_value = expected_components[component_idx].get(key) if self.expect(expected_value is not None, "Unable to get expected value for '{}' from platform.json file for component {}".format(key, component_idx)): self.expect(value == expected_value, "'{}' value is incorrect. Got '{}', expected '{}' for component {}".format(key, value, expected_value, component_idx)) # # Functions to test methods inherited from DeviceBase class # def test_get_name(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): name = component.get_name(platform_api_conn, i) if self.expect(name is not None, "Component {}: Unable to retrieve name".format(i)): self.expect(isinstance(name, STRING_TYPE), "Component {}: Name appears incorrect".format(i)) self.compare_value_with_platform_facts('name', name, i) self.assert_expectations() def test_get_presence(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): presence = component.get_presence(platform_api_conn, i) if self.expect(presence is not None, "Component {}: Unable to retrieve presence".format(i)): self.expect(isinstance(presence, bool), "Component {}: Presence appears incorrect".format(i)) # All components are expected to be present on DuT self.expect(presence is True, "Component {} not present".format(i)) self.assert_expectations() def test_get_model(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): model = component.get_model(platform_api_conn, i) if self.expect(model is not None, "Component {}: Unable to retrieve model".format(i)): self.expect(isinstance(model, STRING_TYPE), "Component {}: Model appears incorrect".format(i)) self.assert_expectations() def test_get_serial(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): serial = component.get_serial(platform_api_conn, i) if self.expect(serial is not None, "Component {}: Unable to retrieve serial number".format(i)): self.expect(isinstance(serial, STRING_TYPE), "Component {}: Serial number appears incorrect".format(i)) self.assert_expectations() def test_get_status(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): status = component.get_status(platform_api_conn, i) if self.expect(status is not None, "Component {}: Unable to retrieve status".format(i)): self.expect(isinstance(status, bool), "Component {}: Status appears incorrect".format(i)) self.assert_expectations() def test_get_position_in_parent(self, platform_api_conn): for i in range(self.num_components): position = component.get_position_in_parent(platform_api_conn, i) if self.expect(position is not None, "Failed to perform get_position_in_parent for component {}".format(i)): self.expect(isinstance(position, int), "Position value must be an integer value for component {}".format(i)) self.assert_expectations() def test_is_replaceable(self, platform_api_conn): for i in range(self.num_components): replaceable = component.is_replaceable(platform_api_conn, i) if self.expect(replaceable is not None, "Failed to perform is_replaceable for component {}".format(i)): self.expect(isinstance(replaceable, bool), "Replaceable value must be a bool value for component {}".format(i)) self.assert_expectations() # # Functions to test methods defined in ComponentBase class # def test_get_description(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): description = component.get_description(platform_api_conn, i) if self.expect(description is not None, "Component {}: Failed to retrieve description".format(i)): self.expect(isinstance(description, STRING_TYPE), "Component {}: Description appears to be incorrect".format(i)) self.assert_expectations() def test_get_firmware_version(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): fw_version = component.get_firmware_version(platform_api_conn, i) if self.expect(fw_version is not None, "Component {}: Failed to retrieve firmware version".format(i)): self.expect(isinstance(fw_version, STRING_TYPE), "Component {}: Firmware version appears to be incorrect".format(i)) self.assert_expectations() def test_get_available_firmware_version(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): for image in range(image_list): avail_fw_version = component.get_available_firmware_version(platform_api_conn, i, image) if self.expect(avail_fw_version is not None, "Component {}: Failed to retrieve available firmware version from image {}".format(i, image)): self.expect(isinstance(avail_fw_version, STRING_TYPE), "Component {}: Available Firmware version appears to be incorrect from image {}".format(i, image)) self.assert_expectations() def test_get_firmware_update_notification(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): for image in range(image_list): notif = component.get_firmware_update_notification(platform_api_conn, i, image) # Can return "None" if no update required. pytest_assert(isinstance(notif, STRING_TYPE), "Component {}: Firmware update notification appears to be incorrect from image {}".format(i, image)) def test_install_firmware(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): for image in range(image_list): install_status = component.install_firmware(platform_api_conn, i, image) if self.expect(install_status is not None, "Component {}: Failed to install firmware from image {}".format(i, image)): self.expect(isinstance(avail_fw_version, bool), "Component {}: Return of Firmware installation appears to be incorrect from image {}".format(i, image)) self.assert_expectations() def test_update_firmware(self, duthost, localhost, platform_api_conn): if self.num_components == 0: pytest.skip("No components found on device") for i in range(self.num_components): for image in range(image_list): update_status = component.update_firmware(platform_api_conn, i, image) if self.expect(update_status is not None, "Component {}: Failed to update firmware from image {}".format(i, image)): self.expect(isinstance(update_status, bool), "Component {}: Return of Firmware update appears to be incorrect from image {}".format(i, image)) self.assert_expectations()
[ "noreply@github.com" ]
monipko.noreply@github.com
6976cdd0d4b19e359e9b77f84aa77a7431923896
fb4e9ddb628ae19634eb1d51f02fa33d093ca5d1
/tensorflow-master/tensorflow/contrib/memory_stats/__init__.py
e310f9fd5861cf93c02d83f38c706173a96e5ffe
[ "Apache-2.0" ]
permissive
zhentaowang/machine-learning
68189bbc9bd052cecf068fb5fc7e88c04ec24e34
1dbba7bbe7f5c8c1449c312fb7e0c008581b90be
refs/heads/master
2021-06-14T14:08:51.889455
2017-03-20T02:10:43
2017-03-20T02:10:43
63,773,867
4
0
null
null
null
null
UTF-8
Python
false
false
922
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops for memory statistics. @@MaxBytesInUse """ from tensorflow.contrib.memory_stats.python.ops.memory_stats_ops import MaxBytesInUse from tensorflow.python.util.all_util import remove_undocumented remove_undocumented(__name__)
[ "wangzhentao@zhiweicloud.com" ]
wangzhentao@zhiweicloud.com
4743280e06c6a802965a5557e13204fe16802350
873a5c8e5191c41d914d6572163487f7d7112ad0
/ex012.py
acc51f137666e8014e68e282ddca74d5e39feffc
[]
no_license
VitrSantos/cursoemvideo
425d999ec260605fa07efa11253bb145fea0483b
addb10f1db260106edf953655cac9850f158c2b0
refs/heads/master
2022-11-21T01:18:20.241974
2020-07-20T15:41:31
2020-07-20T15:41:31
265,569,108
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
#Exercício Python 12: Faça um algoritmo que leia o preço de um produto e mostre seu novo preço, com 5% de desconto. preço = (float(input('Qual o preço do produto? R$ '))) print(f'Com 5% de desconto seu produto custará R$ \033[032m{preço * 0.95:.2f}')
[ "63022943+VitrSantos@users.noreply.github.com" ]
63022943+VitrSantos@users.noreply.github.com
d4bc95e2ad34b3a267b55bb7ddd18f6dfd28ef93
6ff23c7157fce6ede541db849cdd7f71a6f07d34
/ls.py
2795433b60edc38ca06942909db4fe26b9b19dea
[]
no_license
czachariah/Load_Balancing_DNS_Servers
f425f797dad4ea45042f4ada626318ed791e6cd0
1cf68fefbc371830880b394e7ba82327e81b60cf
refs/heads/master
2022-04-12T08:36:59.800541
2020-04-06T17:39:07
2020-04-06T17:39:07
247,522,951
0
0
null
null
null
null
UTF-8
Python
false
false
5,122
py
import socket import sys import select import threading # main if __name__ == "__main__": LS = threading.Thread(name='LSserver') LS.start() # need to make sure that the port number is given as an argument if len(sys.argv) != 6: print("[LS]: ERROR: Need to include the correct number of arugments: " + "python ls.py lsListenPort ts1Hostname ts1ListenPort ts2Hostname ts2ListenPort") exit() # check to make sure that the port numbers given are integer numbers try: lsPortNum = int(sys.argv[1]) ts1PortNum = int(sys.argv[3]) ts2PortNum = int(sys.argv[5]) except Exception as err: print("[LS]: Please make sure to enter positive Integers greater than 1023 for the port numbers.\n") exit() # make sure the port numbers given are greater than 1023 if lsPortNum <= 1023 or ts1PortNum <= 1023 or ts2PortNum <= 1023: print("[LS]: Please make sure the port numbers are all greater than 1023.\n") exit() # this function is used to connect to the TS servers and receive any messages def connectToTSServers(URL, TS1HostName, TS1PortNum , TS2HostName, TS2PortNum): # make the sockets try: ts1 = socket.socket(socket.AF_INET, socket.SOCK_STREAM) ts2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print("[LS]: Sockets created to connect to TS1 and TS2 server.") except socket.error as err: print('[LS]: Error in creating sockets: {} \n'.format(err)) exit() try: # get the host name and the port number ready to be ready to connect to the TS1 and TS2 servers ts1_addr = socket.gethostbyname(TS1HostName) ts2_addr = socket.gethostbyname(TS2HostName) # now connect to the TS1 and TS2 servers ts1_server_binding = (ts1_addr, TS1PortNum) ts2_server_binding = (ts2_addr, TS2PortNum) ts1.settimeout(5) ts2.settimeout(5) ts1.connect(ts1_server_binding) ts2.connect(ts2_server_binding) print("[LS]; Connected to the TS1 and TS2 servers.\n") # send URL to look up message = URL ts1.send(message.encode('utf-8')) ts2.send(message.encode('utf-8')) print("[LS]: Sending host name " + message + " to both the servers for IP lookup ...\n") except Exception as error: print("[LS]: There was an error in connecting to the TS servers. Closing all sockets. Please try again.") ts1.close() ts2.close() raise Exception() # these are the connections to the TS servers that select() can use to read info from inputs = [ts1, ts2] while inputs: # select will return 3 types of lists (respectively) : read_from , write_to , exceptions readable, writable, exceptional = select.select(inputs, [], [], 5) # we only care about reading from the TS sockets, so look into both sockets to get an IP for s in readable: # trying to get info from TS1 if s is ts1: data = s.recv(1024) if data: print("[LS]: TS1 has returned an IP for " + URL + " : " + data) ts1.close() ts2.close() return data # TS1 did not have the IP, so check TS2 if s is ts2: data = s.recv(1024) if data: print("[LS]: TS2 has returned an IP for " + URL + " : " + data) ts1.close() ts2.close() return data # both TS1 and TS2 did not have the IP, so after 8 seconds (timeout), these statements send back LS a "NOTHING" if not (readable or writable or exceptional): print("[LS]: The connections have timed out. Both TS1 and TS2 do not have the IP for: " + URL) return "NOTHING" # create the socket for the ls server try: ls = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print("[LS]: Server socket created") except socket.error as err: print('[LS]: socket open error: {}\n'.format(err)) exit() # bind the socket to the port to listen for clients server_binding = ('', lsPortNum) ls.bind(server_binding) ls.listen(10) host = socket.gethostname() print("[LS]: Server host name is {}".format(host)) localhost_ip = (socket.gethostbyname(host)) print("[LS]: Server IP address is {}".format(localhost_ip)) print("\n") # wait for client connections while True: csockid, addr = ls.accept() print ("[LS]: Got a connection request from a client at {}".format(addr)) data_from_client = csockid.recv(500) print("[LS]: Connection received. Looking up : {}".format(data_from_client.decode('utf-8')) + " ...") try: msg = connectToTSServers(data_from_client, sys.argv[2], ts1PortNum, sys.argv[4], ts2PortNum) except: ls.close() exit() if msg == "NOTHING": msg = "" + data_from_client + " - " + "Error:HOST NOT FOUND" print("[LS]: Message from TS server: " + str(msg) + " , now sending to client ...") # send message back to the client csockid.send(str(msg)) print("\n")
[ "zachariahchris@yahoo.com" ]
zachariahchris@yahoo.com
0c874e87c7dd0378e2cec7afc6bd82c8f21b69a7
738fd4e3ed9966269657ceb2ecbca4b72b5d5526
/common/binary_search.py
4304d3ffa361cdc1c29ac93916b8cca4d820a685
[]
no_license
abelishi/leetcode
128aa02b5caf509bf130f58eee3243ef52571230
1787c4c00a57210c8d47764791cef5f056c7e115
refs/heads/master
2023-06-14T01:13:29.113271
2021-07-17T07:03:24
2021-07-17T07:03:24
182,582,846
0
0
null
null
null
null
UTF-8
Python
false
false
909
py
import typing from typing import List class BinarySearch(object): @staticmethod def upper_bound(sorted_list: List, target) -> int: left = 0 right = len(sorted_list) - 1 while left < right: middle = left + (right - left) // 2 if sorted_list[middle] <= target: left = middle + 1 else: right = middle - 1 if right == len(sorted_list) - 1 and target >= sorted_list[-1]: return len(sorted_list) return right @staticmethod def lower_bound(sorted_list: List, target) -> int: left = 0 right = len(sorted_list) - 1 while left <= right: middle = left + (right - left) // 2 if sorted_list[middle] >= target: right = middle - 1 else: left = middle + 1 return left
[ "abelishi@163.com" ]
abelishi@163.com
06405e42c32db838d8491f73ed075fbf28e05614
f8602a239b61ff0386be9c3c1230e1f5035952bd
/week_8/codingBat/string2/string2_count_hi.py
d2a62fb5529e35097a63d851e1dcf8e339a3f86b
[]
no_license
MaratNurzhan/WD
4a7dcf05855b1965de5074503f609b4bee0ea45f
bb629660b8045568934693360f2a8793b158ce6e
refs/heads/master
2023-01-22T13:48:00.828829
2020-04-26T10:33:57
2020-04-26T10:33:57
237,237,374
0
0
null
2023-01-07T17:10:36
2020-01-30T15:01:14
Python
UTF-8
Python
false
false
162
py
def count_hi(str): count = 0 for i in range(len(str)-1): count =count+str[i]=='h' and str[i+1]=='i' return count count_hi('abc hi ho')
[ "nurzhan.marat.2000@mail.ru" ]
nurzhan.marat.2000@mail.ru
4ac24e02ed56a766960633f19c1674b3162a837f
88556921c3b76cf1b4d72e0654ad9b53b7ef1546
/ex9.py
7e982d5c9c9adfa4277eb76566ef2f1d1e2c57d5
[]
no_license
jonasrosland/lpthw
74c5131eb6df467a37591edb21b0960105aada8d
423dda6623f018e7090ee3a21b0147c173604ba1
refs/heads/master
2021-01-10T21:21:26.121628
2014-02-03T19:31:19
2014-02-03T19:31:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
# Here's some new strange stuff, remember to type it exactly. days = "Mon Tue Wed Thu Fri Sat Sun" months = "\nJan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug" print "Here are the days: ", days print "Here are the months: ", months print """ There's something going on here. With the three double quotes. We'll be able to type as much as we like. Even 4 lines if we want, or 5, or 6. """
[ "jonas.rosland@gmail.com" ]
jonas.rosland@gmail.com
cb42cfea10a03acaae91cbaec8b87a6af184ffd3
e79888cd68177e7ec5125270cdc52f888e211e78
/Naoto/chapter05/knock45.py
8720639a538757187bdeb96acf3bcfdd6516618a
[]
no_license
cafenoctua/100knock2019
ec259bee27936bdacfe0097d42f23cc7500f0a07
88717a78c4290101a021fbe8b4f054f76c9d3fa6
refs/heads/master
2022-06-22T04:42:03.939373
2019-09-03T11:05:19
2019-09-03T11:05:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,537
py
''' 45. 動詞の格パターンの抽出 今回用いている文章をコーパスと見なし,日本語の述語が取りうる格を調査したい. 動詞を述語,動詞に係っている文節の助詞を格と考え,述語と格をタブ区切り形式で出力せよ. ただし,出力は以下の仕様を満たすようにせよ. 動詞を含む文節において,最左の動詞の基本形を述語とする 述語に係る助詞を格とする 述語に係る助詞(文節)が複数あるときは,すべての助詞をスペース区切りで辞書順に並べる 「吾輩はここで始めて人間というものを見た」という例文(neko.txt.cabochaの8文目)を考える. この文は「始める」と「見る」の2つの動詞を含み,「始める」に係る文節は「ここで」,「見る」に係る文節は「吾輩は」と「ものを」と解析された場合は,次のような出力になるはずである. 始める で 見る は を このプログラムの出力をファイルに保存し,以下の事項をUNIXコマンドを用いて確認せよ. コーパス中で頻出する述語と格パターンの組み合わせ 「する」「見る」「与える」という動詞の格パターン(コーパス中で出現頻度の高い順に並べよ) ''' from knock41 import load_cabocha_iter def main(): path = "case_pattern.txt" with open(path, "w") as f: for chunks in load_cabocha_iter(): case_patterns = {} # {id: [動詞の基本形, [助詞, 助詞,...]]} for chunk in chunks: if chunk.dst == -1: continue particles = [chunk.morphs[-1].surface] # particles = [morph.surface for morph in chunk.morphs if morph.pos == '助詞'] verbs = [morph.base for morph in chunks[chunk.dst].morphs if morph.pos == '動詞'] if not particles or not verbs: continue if chunk.dst not in case_patterns: case_patterns[chunk.dst] = [verbs[0], particles] else: case_patterns[chunk.dst][1].extend(particles) for value in case_patterns.values(): f.write(f'{value[0]}\t{" ".join(sorted(value[1]))}\n') if __name__ == "__main__": main() ''' sort case_pattern.txt | uniq -c | sort -n -r | head grep "^する\s" case_pattern.txt | sort | uniq -c | sort -n -r | head '''
[ "naoto_nakazawa@NaotonoMacBook-Pro.local" ]
naoto_nakazawa@NaotonoMacBook-Pro.local
0394f0ff941f7f6c1eab4c4933df6023fe6baf0a
e4e523ebc00eec4b6126f8884944c8d20156af48
/server.py
4223313e8bd9e958c973f39b5c1e382f2ebcd08d
[]
no_license
emish/B.A.R.D.
e3d7811ca40606c7dafef61f3a78e78a77d997b6
f1ec9ee39c2a1334f2c0301fbe7d4763b57c9176
refs/heads/master
2021-01-20T10:41:36.641614
2012-01-19T22:57:20
2012-01-19T22:57:20
3,222,012
0
0
null
null
null
null
UTF-8
Python
false
false
5,783
py
import threading, socket, sys, re, httplib, os #default server host and port number host,port_num = "localhost", 9999 #two files: whitelist, blacklist ## shared whitelist, need lock white_lock = threading.Lock() ## shared history, need lock black_lock = threading.Lock() whitelist = 'whitelist' blacklist = 'blacklist' class slave_thread(threading.Thread): ## Initializes the thread class # @param conn Connection # @ param addr Address def __init__(self, conn,addr): threading.Thread.__init__(self) self.conn,self.addr = conn,addr self.name = ""; ## Gets data from connection. # 1 = white, 2 = black def get_data(self): """server_thread.get_data() -> data If the connection goes down, returns 0 length string. Otherwise, buffers the data and returns it as a string.""" data = [] while 1: d = self.conn.recv(1024) data.extend(d) if len(d)<1024: break return "".join(data) def add_blacklist(self, atom): black_lock.acquire() try: blacklist_f = open(blacklist, 'a') blacklist_f.write(atom) blacklist_f.close() except: print "Error. Invalid file location." black_lock.release() sys.exit() black_lock.release() def add_whitelist(self, atom): print "We are def in the mehtod now!" white_lock.acquire() try: print "mohohohohoho" whitelist_f = open(whitelist, 'a') whitelist_f.write(atom) whitelist_f.close() print "add_whitelist method" except: print "Error. Invalid file location." white_lock.release() sys.exit() white_lock.release() ## The main thread loop. Receives message from the client, echoes them back and logs them in the history lists. Once a socket error or a 0 length string is received, the loop breaks, the socket is closed and the thread returns. def run(self): """run() -> None""" #helper to keep track of which mode you are in message = False while 1: try: #first get information from the socket data = self.get_data() #report it print "Got:",data #send it back if data == "1": #user has chosen to update whitelist self.conn.send("whitelist") atom = self.get_data() print atom self.add_whitelist(atom) print "added to the whitelist" self.conn.send("ok") elif data == "2": #user has chosen to update blacklist self.conn.send("blacklist") atom = self.get_data() self.add_blacklist(atom) self.conn.send("ok") elif data == "3": #send user whitelist white_lock.acquire() whitelist_f = open(whitelist, 'r') strTosend = "" for line in whitelist_f: strTosend += line self.conn.send(strTosend) whitelist_f.close() white_lock.release() elif data == "4": #send user blacklist black_lock.acquire() blacklist_f = open(blacklist, 'r') strTosend = "" for line in blacklist_f: strTosend += line self.conn.send(strTosend) blacklist_f.close() black_lock.release() elif data == "exit" or not data: #check 0 data here break #break loop else: self.conn.send("error") break except (KeyboardInterrupt,EOFError): #capture Ctrl-C and Ctrl-D, exit smoothly break #we're out of here except socket.error,e: print >>sys.stderr, "Got a socket error in server thread:",str(e) break self.conn.close() #close up, we're done print "Thread from,",self.addr,"is closing" ## Main method allows user to specify port number for server using -p flag def main(argv): global port_num #allow user to specify port number for server if len(argv) == 2 and argv[0] == '-p': try: port_num = int(argv[1]) except: print "Error. Invalid port number input." sys.exit() else: print "Invalid command line arguments." sys.exit() sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) try: sock.bind((host, port_num)) except: print "Error. Cannot connect to port." sys.exit() sock.listen(5) print "Server Started on:", (host,port_num) #listen for a new client connections and spawn a thread to deal with it while 1: try: conn,addr = sock.accept() print "New connection from:", addr th = slave_thread(conn,addr) th.start() except socket.error,e: print >>sys.stderr, "Got an error in accept:",str(e) break except KeyboardInterrupt: #Ctrl-C capture #no guarantee that this thread will recieve the signal, #but at some point, it should after multiple attempts print "Exiting ..." break sock.close() #close the server socket if __name__ == "__main__": main(sys.argv[1:])
[ "a.mamish@gmail.com" ]
a.mamish@gmail.com
894fd3899b8ea36c619c66d7f18fe72bdefa2997
dfb2250e8815783a97f1797b171793d903103f4b
/pom/pages/homepage.py
27f7994d17169f907c67204fa37b6a06b0c0034e
[]
no_license
aniljadesh/Python_automation_Selenium_POM
e17118bcd8628c52e9c29e81191d1c6edaf25bd5
1e743057b4536a2abcd420b33ee4870561fb6e03
refs/heads/main
2023-03-06T19:24:46.888693
2021-02-23T16:49:07
2021-02-23T16:49:07
341,621,639
0
0
null
null
null
null
UTF-8
Python
false
false
478
py
from pom.locator.locator import Locator class HomePage(): def __init__(self, driver): self.driver = driver self.welcome_link_id = Locator.welcome_link_id self.logout_link_linkText = Locator.logout_link_linkText def click_welcome_link(self): self.driver.find_element_by_id("self.welcome_link_id").click() def click_logout_link(self): self.driver.find_element_by_link_text("self.logout_link_linkText").click()
[ "noreply@github.com" ]
aniljadesh.noreply@github.com
53ce1d81f3614d58a433ad4a62f454b8288a211a
a5711713e8e2a931aa1e931951128be3a2ddf914
/pta_sim/scripts/ng12p5_fl_sinusoid.py
7bdb2ce4ba6e48b8d64ff658c96e853aada439ca
[ "MIT" ]
permissive
Hazboun6/pta_sim
b35021352202625817d707105956c77f1754207b
8023ec2d795abaca426e88ed146c15f4e57cfaa1
refs/heads/master
2023-05-25T19:15:20.973598
2023-05-17T21:32:56
2023-05-17T21:32:56
182,192,948
1
3
MIT
2022-12-26T20:47:20
2019-04-19T03:07:29
Python
UTF-8
Python
false
false
3,478
py
#!/usr/bin/env python # coding: utf-8 import numpy as np import sys, os, glob, json, pickle, copy import cloudpickle import logging from enterprise_extensions import models, model_utils, hypermodel, sampler from enterprise.signals.signal_base import PTA from enterprise.signals import gp_signals, signal_base, deterministic_signals, parameter, selections, white_signals, utils from enterprise.signals import gp_bases as gpb from enterprise.signals import gp_priors as gpp from enterprise import constants as const from enterprise_extensions.models import model_singlepsr_noise from enterprise_extensions import blocks from enterprise_extensions import gp_kernels as gpk from enterprise_extensions import chromatic as chrom import la_forge.core as co import pta_sim import pta_sim.parse_sim as parse_sim from pta_sim.bayes import chain_length_bool, save_core, get_freqs, filter_psr_path args = parse_sim.arguments() logging.basicConfig(format="%(levelname)s: %(name)s: %(message)s", level=logging.INFO) #Is chain longer than niter? # longer = chain_length_bool(args.outdir, int(args.niter//10)) # if longer: # sys.exit() #Hmmmm what to do here? # else: # pass with open(args.noisepath, 'r') as fin: noise =json.load(fin) with open('{0}'.format(args.pickle), "rb") as f: psrs = pickle.load(f) psr = psrs[args.process] #### Nihan's Sine wave dataset_tmin = 4597873783.54894 #np.min([psr.toas.min() for psr in psrs]) @parameter.function def sine_wave(toas, flags, A = -9, f = -9, phase = 0.0): return 10 ** A * np.sin(2 * np.pi * (10 ** f) * (toas - dataset_tmin) + phase) def sine_signal(A, f, phase, name = ""): return deterministic_signals.Deterministic(sine_wave(A = A, f = f, phase = phase), name = name) day_seconds = 86400 sin = sine_signal(A = parameter.Uniform(-9, -4)('common_sin_A'), f = parameter.Uniform(-9, -7)('common_sin_f'), phase = parameter.Uniform(0, 2 * np.pi)('common_sin_phase')) ### Turn SW model off. Add in stand alone SW model and common process. Return model. kwargs={'white_vary':args.vary_wn, 'extra_sigs':sin, 'red_var': True, 'tm_marg':True, 'tnequad':True} if args.gfl: kwargs.update({'red_var':False, 'factorized_like':True, 'psd':'spectrum', 'Tspan':args.tspan, 'gw_components':30, 'fact_like_logmin':-14.2, 'fact_like_logmax':-1.2,}) if args.gwb_on: kwargs.update({'factorized_like':True, 'Tspan':args.tspan, 'gw_components':args.n_gwbfreqs, 'fact_like_gamma':args.gamma_gw,}) pta = model_singlepsr_noise(psr, **kwargs) pta.set_default_params(noise) groups = sampler.get_parameter_groups(pta) groups.extend(sampler.get_psr_groups(pta)) Sampler = sampler.setup_sampler(pta, outdir=args.outdir+f'{psr.name}/', resume=True, empirical_distr = args.emp_distr, groups=groups) Sampler.addProposalToCycle(Sampler.jp.draw_from_empirical_distr, 120) try: achrom_freqs = get_freqs(pta, signal_id='gw') np.savetxt(args.outdir + f'{psr.name}/achrom_rn_freqs.txt', achrom_freqs, fmt='%.18e') except: pass x0 = np.hstack([p.sample() for p in pta.params]) Sampler.sample(x0, args.niter, SCAMweight=200, AMweight=100, DEweight=200, burn=3000, writeHotChains=args.writeHotChains, hotChain=args.hot_chain, Tskip=100, Tmax=args.tempmax)
[ "jeffrey.hazboun@gmail.com" ]
jeffrey.hazboun@gmail.com
e6bfeca1286f905ae510abf5bb85d71353232e7b
1bc2a635a93b5bc84606edf9ac2226851cac9e6d
/rolling/gui/map/widget.py
b94f40ca6be86257b40af7209cb820c7bc71038c
[ "MIT" ]
permissive
coolkat64/rolling
819149cbb1e11a455b93a030477f9da91e2f93e4
4c3ee2401128e993a52ac9b52cdbd32e17728129
refs/heads/master
2022-11-29T00:35:14.058665
2020-07-31T20:37:15
2020-07-31T20:37:15
285,312,272
0
0
MIT
2020-08-05T14:25:48
2020-08-05T14:25:47
null
UTF-8
Python
false
false
6,183
py
# coding: utf-8 import typing import urwid from urwid import BOX from rolling.exception import CantMoveBecauseSurcharge from rolling.exception import MoveToOtherZoneError from rolling.gui.connector import ZoneMapConnector from rolling.gui.dialog import SimpleDialog from rolling.gui.map.render import MapRenderEngine from rolling.gui.play.zone import ChangeZoneDialog from rolling.map.source import ZoneMapSource from rolling.model.zone import MoveZoneInfos from rolling.util import CornerEnum if typing.TYPE_CHECKING: from rolling.gui.controller import Controller class MapWidget(urwid.Widget): _sizing = frozenset([BOX]) def __init__(self, controller: "Controller", render_engine: MapRenderEngine) -> None: self._controller = controller self._render_engine = render_engine self._horizontal_offset = 0 self._vertical_offset = 0 self._current_row_size = 0 self._current_col_size = 0 self._first_display = True @property def render_engine(self) -> MapRenderEngine: return self._render_engine def render(self, size, focus=False): self._current_col_size, self._current_row_size = size return self._render(size, focus) def _render(self, size, focus=False): self._render_engine.render( self._current_col_size, self._current_row_size, offset_horizontal=self._horizontal_offset, offset_vertical=self._vertical_offset, ) self._controller.loop.set_alarm_in(0.25, lambda *_, **__: self._invalidate()) return urwid.TextCanvas( text=self._render_engine.rows, attr=self._render_engine.attributes, maxcol=self._current_col_size, ) def selectable(self): return True def keypress(self, size, key): pass def _offset_change(self, new_offset: typing.Tuple[int, int]) -> None: pass class WorldMapWidget(MapWidget): pass # TODO BS 2019-01-22: Rename into ZoneMapWidget class TileMapWidget(MapWidget): def __init__( self, controller: "Controller", render_engine: MapRenderEngine, zone_map_source: ZoneMapSource, ) -> None: super().__init__(controller, render_engine) self._connector = ZoneMapConnector(self, self._controller, zone_map_source=zone_map_source) def _offset_change(self, new_offset: typing.Tuple[int, int]) -> None: try: if not self._connector.move_is_possible(new_offset): return except MoveToOtherZoneError as exc: # FIXME BS 2019-03-06: Manage (try) change zone case self._change_zone_dialog(exc.corner) return except CantMoveBecauseSurcharge: if not self._first_display: self._controller.display_cant_move_because_surcharge() return # move player self._connector.player_move(new_offset) character_col_i = self._controller.display_objects_manager.current_player.col_i character_row_i = self._controller.display_objects_manager.current_player.row_i # center on player self._horizontal_offset = self._current_col_size // 2 - character_col_i self._vertical_offset = self._current_row_size // 2 - character_row_i def _render(self, size, focus=False): if self._first_display: self._offset_change((0, 0)) # to compute offset with player position self._first_display = False return super()._render(size, focus) def _change_zone_dialog(self, corner: CornerEnum) -> None: zone_map_widget = self._controller._view.main_content_container.original_widget world_row_i, world_col_i = self._connector.get_zone_coordinates(corner) move_zone_infos: MoveZoneInfos = self._controller.client.get_move_zone_infos( character_id=self._controller.player_character.id, world_row_i=world_row_i, world_col_i=world_col_i, ) if not move_zone_infos.can_move: self._controller._view.main_content_container.original_widget = SimpleDialog( kernel=self._controller.kernel, controller=self._controller, original_widget=self._controller.view.main_content_container.original_widget, title=f"Vous ne pouvez pas marcher vers là-bas, " f"cela nécessiterait {move_zone_infos.cost} points d'actions", go_back=True, ) return zones = self._controller.kernel.world_map_source.geography.rows try: zones[world_row_i][world_col_i] # test if zone exist self._controller._view.main_content_container.original_widget = ChangeZoneDialog( kernel=self._controller.kernel, controller=self._controller, original_widget=zone_map_widget, title="Marchez vers là bas ?", text=f"Marchez pour arrivez à votre destination " f"vous coutera {move_zone_infos.cost} points d'actions", world_row_i=world_row_i, world_col_i=world_col_i, ) except IndexError: self._controller._view.main_content_container.original_widget = SimpleDialog( kernel=self._controller.kernel, controller=self._controller, original_widget=self._controller.view.main_content_container.original_widget, title="Vous êtes au bord du monde ! Vous ne pouvez pas aller au delà.", go_back=True, ) def keypress(self, size, key): new_offset = None if key == "up": new_offset = (1, 0) if key == "down": new_offset = (-1, 0) if key == "left": new_offset = (0, 1) if key == "right": new_offset = (0, -1) if key == "enter": self._controller.display_zone_actions_on_place() if new_offset is not None: self._offset_change(new_offset) self._invalidate()
[ "sevajol.bastien@gmail.com" ]
sevajol.bastien@gmail.com
ddeb4292f997109b6ee0fbcc98d0a359bdbea648
20fedfd55a0cddff39769278544aea7a0d235c08
/qutebrowser/themes/base16-qutebrowser/themes/base16-spacemacs.config.py
111e8f65036fcee09fdffbd274e58ebb9f625135
[ "CC0-1.0", "MIT" ]
permissive
ebzzry/dotfiles
1d2942c6ea0fe847f8fb6c5aacb229b392444c82
9ba2d1a3b5aff2f2c65d2c0dd17257e8f9e1f51a
refs/heads/main
2023-06-09T07:20:35.676866
2023-05-26T03:45:26
2023-05-26T03:45:26
64,131,018
30
3
null
null
null
null
UTF-8
Python
false
false
7,387
py
# base16-qutebrowser (https://github.com/theova/base16-qutebrowser) # Base16 qutebrowser template by theova # Spacemacs scheme by Nasser Alshammari (https://github.com/nashamri/spacemacs-theme) base00 = "#1f2022" base01 = "#282828" base02 = "#444155" base03 = "#585858" base04 = "#b8b8b8" base05 = "#a3a3a3" base06 = "#e8e8e8" base07 = "#f8f8f8" base08 = "#f2241f" base09 = "#ffa500" base0A = "#b1951d" base0B = "#67b11d" base0C = "#2d9574" base0D = "#4f97d7" base0E = "#a31db1" base0F = "#b03060" # set qutebrowser colors # Text color of the completion widget. May be a single color to use for # all columns or a list of three colors, one for each column. c.colors.completion.fg = base05 # Background color of the completion widget for odd rows. c.colors.completion.odd.bg = base03 # Background color of the completion widget for even rows. c.colors.completion.even.bg = base00 # Foreground color of completion widget category headers. c.colors.completion.category.fg = base0A # Background color of the completion widget category headers. c.colors.completion.category.bg = base00 # Top border color of the completion widget category headers. c.colors.completion.category.border.top = base00 # Bottom border color of the completion widget category headers. c.colors.completion.category.border.bottom = base00 # Foreground color of the selected completion item. c.colors.completion.item.selected.fg = base01 # Background color of the selected completion item. c.colors.completion.item.selected.bg = base0A # Top border color of the completion widget category headers. c.colors.completion.item.selected.border.top = base0A # Bottom border color of the selected completion item. c.colors.completion.item.selected.border.bottom = base0A # Foreground color of the matched text in the completion. c.colors.completion.match.fg = base0B # Color of the scrollbar handle in the completion view. c.colors.completion.scrollbar.fg = base05 # Color of the scrollbar in the completion view. c.colors.completion.scrollbar.bg = base00 # Background color for the download bar. c.colors.downloads.bar.bg = base00 # Color gradient start for download text. c.colors.downloads.start.fg = base00 # Color gradient start for download backgrounds. c.colors.downloads.start.bg = base0D # Color gradient end for download text. c.colors.downloads.stop.fg = base00 # Color gradient stop for download backgrounds. c.colors.downloads.stop.bg = base0C # Foreground color for downloads with errors. c.colors.downloads.error.fg = base08 # Font color for hints. c.colors.hints.fg = base00 # Background color for hints. Note that you can use a `rgba(...)` value # for transparency. c.colors.hints.bg = base0A # Font color for the matched part of hints. c.colors.hints.match.fg = base05 # Text color for the keyhint widget. c.colors.keyhint.fg = base05 # Highlight color for keys to complete the current keychain. c.colors.keyhint.suffix.fg = base05 # Background color of the keyhint widget. c.colors.keyhint.bg = base00 # Foreground color of an error message. c.colors.messages.error.fg = base00 # Background color of an error message. c.colors.messages.error.bg = base08 # Border color of an error message. c.colors.messages.error.border = base08 # Foreground color of a warning message. c.colors.messages.warning.fg = base00 # Background color of a warning message. c.colors.messages.warning.bg = base0E # Border color of a warning message. c.colors.messages.warning.border = base0E # Foreground color of an info message. c.colors.messages.info.fg = base05 # Background color of an info message. c.colors.messages.info.bg = base00 # Border color of an info message. c.colors.messages.info.border = base00 # Foreground color for prompts. c.colors.prompts.fg = base05 # Border used around UI elements in prompts. c.colors.prompts.border = base00 # Background color for prompts. c.colors.prompts.bg = base00 # Background color for the selected item in filename prompts. c.colors.prompts.selected.bg = base0A # Foreground color of the statusbar. c.colors.statusbar.normal.fg = base0B # Background color of the statusbar. c.colors.statusbar.normal.bg = base00 # Foreground color of the statusbar in insert mode. c.colors.statusbar.insert.fg = base00 # Background color of the statusbar in insert mode. c.colors.statusbar.insert.bg = base0D # Foreground color of the statusbar in passthrough mode. c.colors.statusbar.passthrough.fg = base00 # Background color of the statusbar in passthrough mode. c.colors.statusbar.passthrough.bg = base0C # Foreground color of the statusbar in private browsing mode. c.colors.statusbar.private.fg = base00 # Background color of the statusbar in private browsing mode. c.colors.statusbar.private.bg = base03 # Foreground color of the statusbar in command mode. c.colors.statusbar.command.fg = base05 # Background color of the statusbar in command mode. c.colors.statusbar.command.bg = base00 # Foreground color of the statusbar in private browsing + command mode. c.colors.statusbar.command.private.fg = base05 # Background color of the statusbar in private browsing + command mode. c.colors.statusbar.command.private.bg = base00 # Foreground color of the statusbar in caret mode. c.colors.statusbar.caret.fg = base00 # Background color of the statusbar in caret mode. c.colors.statusbar.caret.bg = base0E # Foreground color of the statusbar in caret mode with a selection. c.colors.statusbar.caret.selection.fg = base00 # Background color of the statusbar in caret mode with a selection. c.colors.statusbar.caret.selection.bg = base0D # Background color of the progress bar. c.colors.statusbar.progress.bg = base0D # Default foreground color of the URL in the statusbar. c.colors.statusbar.url.fg = base05 # Foreground color of the URL in the statusbar on error. c.colors.statusbar.url.error.fg = base08 # Foreground color of the URL in the statusbar for hovered links. c.colors.statusbar.url.hover.fg = base05 # Foreground color of the URL in the statusbar on successful load # (http). c.colors.statusbar.url.success.http.fg = base0C # Foreground color of the URL in the statusbar on successful load # (https). c.colors.statusbar.url.success.https.fg = base0B # Foreground color of the URL in the statusbar when there's a warning. c.colors.statusbar.url.warn.fg = base0E # Background color of the tab bar. c.colors.tabs.bar.bg = base00 # Color gradient start for the tab indicator. c.colors.tabs.indicator.start = base0D # Color gradient end for the tab indicator. c.colors.tabs.indicator.stop = base0C # Color for the tab indicator on errors. c.colors.tabs.indicator.error = base08 # Foreground color of unselected odd tabs. c.colors.tabs.odd.fg = base05 # Background color of unselected odd tabs. c.colors.tabs.odd.bg = base03 # Foreground color of unselected even tabs. c.colors.tabs.even.fg = base05 # Background color of unselected even tabs. c.colors.tabs.even.bg = base00 # Foreground color of selected odd tabs. c.colors.tabs.selected.odd.fg = base00 # Background color of selected odd tabs. c.colors.tabs.selected.odd.bg = base05 # Foreground color of selected even tabs. c.colors.tabs.selected.even.fg = base00 # Background color of selected even tabs. c.colors.tabs.selected.even.bg = base05 # Background color for webpages if unset (or empty to use the theme's # color). # c.colors.webpage.bg = base00
[ "rommel.martinez@valmiz.com" ]
rommel.martinez@valmiz.com
72c751c8c83b4c95a2bbf363e97a5089829c4045
e75f36c9fbe70fec4a20b14765670730532f8ebc
/hand_object_detector/demo_original.py
20244f3b6d1692b691432516470921b2d7673d58
[ "MIT" ]
permissive
luigman/CSCI5561ProjectFall2020
1f48332753896b78ae0584e48e4bf8fb5f0ce5a7
f1c8fc7c0d2c7a78dca7fe4046979d8b4d2b1ec6
refs/heads/main
2023-08-07T18:02:20.400537
2021-09-17T17:59:17
2021-09-17T17:59:17
302,421,349
0
0
null
null
null
null
UTF-8
Python
false
false
15,558
py
# -------------------------------------------------------- # Tensorflow Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import os import sys import numpy as np import argparse import pprint import pdb import time import cv2 import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from PIL import Image import torchvision.transforms as transforms import torchvision.datasets as dset from scipy.misc import imread from roi_data_layer.roidb import combined_roidb from roi_data_layer.roibatchLoader import roibatchLoader from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from model.rpn.bbox_transform import clip_boxes # from model.nms.nms_wrapper import nms from model.roi_layers import nms from model.rpn.bbox_transform import bbox_transform_inv from model.utils.net_utils import save_net, load_net, vis_detections, vis_detections_PIL, vis_detections_filtered_objects_PIL, vis_detections_filtered_objects # (1) here add a function to viz from model.utils.blob import im_list_to_blob from model.faster_rcnn.vgg16 import vgg16 from model.faster_rcnn.resnet import resnet import pdb try: xrange # Python 2 except NameError: xrange = range # Python 3 def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--dataset', dest='dataset', help='training dataset', default='pascal_voc', type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='cfgs/res101.yml', type=str) parser.add_argument('--net', dest='net', help='vgg16, res50, res101, res152', default='res101', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) parser.add_argument('--load_dir', dest='load_dir', help='directory to load models', default="models") parser.add_argument('--image_dir', dest='image_dir', help='directory to load images for demo', default="images") parser.add_argument('--save_dir', dest='save_dir', help='directory to save results', default="images_det") parser.add_argument('--cuda', dest='cuda', help='whether use CUDA', action='store_true') parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', action='store_true') parser.add_argument('--cag', dest='class_agnostic', help='whether perform class_agnostic bbox regression', action='store_true') parser.add_argument('--parallel_type', dest='parallel_type', help='which part of model to parallel, 0: all, 1: model before roi pooling', default=0, type=int) parser.add_argument('--checksession', dest='checksession', help='checksession to load model', default=1, type=int) parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load network', default=8, type=int) parser.add_argument('--checkpoint', dest='checkpoint', help='checkpoint to load network', default=89999, type=int, required=True) parser.add_argument('--bs', dest='batch_size', help='batch_size', default=1, type=int) parser.add_argument('--vis', dest='vis', help='visualization mode', default=True) parser.add_argument('--webcam_num', dest='webcam_num', help='webcam ID number', default=-1, type=int) parser.add_argument('--thresh_hand', type=float, default=0.5, required=False) parser.add_argument('--thresh_obj', default=0.5, type=float, required=False) args = parser.parse_args() return args lr = cfg.TRAIN.LEARNING_RATE momentum = cfg.TRAIN.MOMENTUM weight_decay = cfg.TRAIN.WEIGHT_DECAY def _get_image_blob(im): """Converts an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale_factors (list): list of image scales (relative to im) used in the image pyramid """ im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS im_shape = im_orig.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) processed_ims = [] im_scale_factors = [] for target_size in cfg.TEST.SCALES: im_scale = float(target_size) / float(im_size_min) # Prevent the biggest axis from being more than MAX_SIZE if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE: im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max) im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) im_scale_factors.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, np.array(im_scale_factors) if __name__ == '__main__': args = parse_args() # print('Called with args:') # print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) cfg.USE_GPU_NMS = args.cuda np.random.seed(cfg.RNG_SEED) # load model model_dir = args.load_dir + "/" + args.net + "_handobj_100K" + "/" + args.dataset if not os.path.exists(model_dir): raise Exception('There is no input directory for loading network from ' + model_dir) load_name = os.path.join(model_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) pascal_classes = np.asarray(['__background__', 'targetobject', 'hand']) args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32, 64]', 'ANCHOR_RATIOS', '[0.5, 1, 2]'] # initilize the network here. if args.net == 'vgg16': fasterRCNN = vgg16(pascal_classes, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res101': fasterRCNN = resnet(pascal_classes, 101, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res50': fasterRCNN = resnet(pascal_classes, 50, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res152': fasterRCNN = resnet(pascal_classes, 152, pretrained=False, class_agnostic=args.class_agnostic) else: print("network is not defined") pdb.set_trace() fasterRCNN.create_architecture() print("load checkpoint %s" % (load_name)) if args.cuda > 0: checkpoint = torch.load(load_name) else: checkpoint = torch.load(load_name, map_location=(lambda storage, loc: storage)) fasterRCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print('load model successfully!') # initilize the tensor holder here. im_data = torch.FloatTensor(1) im_info = torch.FloatTensor(1) num_boxes = torch.LongTensor(1) gt_boxes = torch.FloatTensor(1) box_info = torch.FloatTensor(1) # ship to cuda if args.cuda > 0: im_data = im_data.cuda() im_info = im_info.cuda() num_boxes = num_boxes.cuda() gt_boxes = gt_boxes.cuda() with torch.no_grad(): if args.cuda > 0: cfg.CUDA = True if args.cuda > 0: fasterRCNN.cuda() fasterRCNN.eval() start = time.time() max_per_image = 100 thresh_hand = args.thresh_hand thresh_obj = args.thresh_obj vis = args.vis # print(f'thresh_hand = {thresh_hand}') # print(f'thnres_obj = {thresh_obj}') webcam_num = args.webcam_num # Set up webcam or get image directories if webcam_num >= 0 : cap = cv2.VideoCapture(webcam_num) num_images = 0 else: print(f'image dir = {args.image_dir}') print(f'save dir = {args.save_dir}') imglist = os.listdir(args.image_dir) num_images = len(imglist) print('Loaded Photo: {} images.'.format(num_images)) while (num_images >= 0): total_tic = time.time() if webcam_num == -1: num_images -= 1 # Get image from the webcam if webcam_num >= 0: if not cap.isOpened(): raise RuntimeError("Webcam could not open. Please check connection.") ret, frame = cap.read() im_in = np.array(frame) # Load the demo image else: im_file = os.path.join(args.image_dir, imglist[num_images]) im_in = np.array(imread(im_file)) # resize # im_in = np.array(Image.fromarray(im_in).resize((640, 360))) if len(im_in.shape) == 2: im_in = im_in[:,:,np.newaxis] im_in = np.concatenate((im_in,im_in,im_in), axis=2) # rgb -> bgr im = im_in[:,:,::-1] blobs, im_scales = _get_image_blob(im) assert len(im_scales) == 1, "Only single-image batch implemented" im_blob = blobs im_info_np = np.array([[im_blob.shape[1], im_blob.shape[2], im_scales[0]]], dtype=np.float32) im_data_pt = torch.from_numpy(im_blob) im_data_pt = im_data_pt.permute(0, 3, 1, 2) im_info_pt = torch.from_numpy(im_info_np) with torch.no_grad(): im_data.resize_(im_data_pt.size()).copy_(im_data_pt) im_info.resize_(im_info_pt.size()).copy_(im_info_pt) gt_boxes.resize_(1, 1, 5).zero_() num_boxes.resize_(1).zero_() box_info.resize_(1, 1, 5).zero_() # pdb.set_trace() det_tic = time.time() rois, cls_prob, bbox_pred, \ rpn_loss_cls, rpn_loss_box, \ RCNN_loss_cls, RCNN_loss_bbox, \ rois_label, loss_list = fasterRCNN(im_data, im_info, gt_boxes, num_boxes, box_info) scores = cls_prob.data boxes = rois.data[:, :, 1:5] # extact predicted params contact_vector = loss_list[0][0] # hand contact state info offset_vector = loss_list[1][0].detach() # offset vector (factored into a unit vector and a magnitude) lr_vector = loss_list[2][0].detach() # hand side info (left/right) # get hand contact _, contact_indices = torch.max(contact_vector, 2) contact_indices = contact_indices.squeeze(0).unsqueeze(-1).float() # get hand side lr = torch.sigmoid(lr_vector) > 0.5 lr = lr.squeeze(0).float() if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred.data if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev if args.class_agnostic: if args.cuda > 0: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() else: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS) \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS) box_deltas = box_deltas.view(1, -1, 4) else: if args.cuda > 0: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() else: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS) \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS) box_deltas = box_deltas.view(1, -1, 4 * len(pascal_classes)) pred_boxes = bbox_transform_inv(boxes, box_deltas, 1) pred_boxes = clip_boxes(pred_boxes, im_info.data, 1) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) pred_boxes /= im_scales[0] scores = scores.squeeze() pred_boxes = pred_boxes.squeeze() det_toc = time.time() detect_time = det_toc - det_tic misc_tic = time.time() if vis: im2show = np.copy(im) obj_dets, hand_dets = None, None for j in xrange(1, len(pascal_classes)): # inds = torch.nonzero(scores[:,j] > thresh).view(-1) if pascal_classes[j] == 'hand': inds = torch.nonzero(scores[:,j]>thresh_hand).view(-1) elif pascal_classes[j] == 'targetobject': inds = torch.nonzero(scores[:,j]>thresh_obj).view(-1) # if there is det if inds.numel() > 0: cls_scores = scores[:,j][inds] _, order = torch.sort(cls_scores, 0, True) if args.class_agnostic: cls_boxes = pred_boxes[inds, :] else: cls_boxes = pred_boxes[inds][:, j * 4:(j + 1) * 4] cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1), contact_indices[inds], offset_vector.squeeze(0)[inds], lr[inds]), 1) cls_dets = cls_dets[order] keep = nms(cls_boxes[order, :], cls_scores[order], cfg.TEST.NMS) cls_dets = cls_dets[keep.view(-1).long()] if pascal_classes[j] == 'targetobject': obj_dets = cls_dets.cpu().numpy() if pascal_classes[j] == 'hand': hand_dets = cls_dets.cpu().numpy() if vis: # visualization im2show,bbox_array = vis_detections_filtered_objects_PIL(im2show, obj_dets, hand_dets, thresh_hand, thresh_obj) misc_toc = time.time() nms_time = misc_toc - misc_tic if webcam_num == -1: sys.stdout.write('im_detect: {:d}/{:d} {:.3f}s {:.3f}s \r' \ .format(num_images + 1, len(imglist), detect_time, nms_time)) sys.stdout.flush() if vis and webcam_num == -1: folder_name = args.save_dir os.makedirs(folder_name, exist_ok=True) result_path = os.path.join(folder_name, imglist[num_images][:-4] + "_det.png") im2show.save(result_path) else: im2showRGB = cv2.cvtColor(im2show, cv2.COLOR_BGR2RGB) cv2.imshow("frame", im2showRGB) total_toc = time.time() total_time = total_toc - total_tic frame_rate = 1 / total_time print('Frame rate:', frame_rate) if cv2.waitKey(1) & 0xFF == ord('q'): break if webcam_num >= 0: cap.release() cv2.destroyAllWindows()
[ "luigman@gmail.com" ]
luigman@gmail.com
4c4685634fd2453e75bf3df224abee0b2d34f03d
fe92ae3d85ce07480c19539a805e2693ddc3f581
/hashes_dict/cat_builder.py
2f67ca8ec40c5c0a832f9b8a6b6aa98f5f8eb0f5
[]
no_license
pooja1506/Beginner_python_code
62301ba83cddcdb371fa7b30e8177555056c7ee9
d0b4f48dbf9dbdb1f4c08a9dd49f8e2b6a25b6c6
refs/heads/master
2022-07-03T15:40:24.537769
2020-05-09T14:04:20
2020-05-09T14:04:20
254,545,532
0
0
null
null
null
null
UTF-8
Python
false
false
542
py
""" Write a method cat_builder that takes in a name, color, and age. The method should return a dictionary representing a cat with those values. """ def cat_builder(name_str, color_str, age_num): final_dict = {} final_dict["name"] = name_str final_dict["color"] = color_str final_dict["age"] = age_num return final_dict # => {"name": "Whiskers", "color": "orange", "age": 3} print(cat_builder("Whiskers", "orange", 3)) # => {"name": "Salem", "color": "black", "age": 100} print(cat_builder("Salem", "black", 100))
[ "pooja.dmehta15@gmail.com" ]
pooja.dmehta15@gmail.com
c5f72b1d3bc2f54985570ff75ab86552c9579723
9cbd523cdedc727f62c887612e8ae2c25c909964
/tests/lib/stubs/server/list_line_up/get_table_by_name.py
01d77c5fd135c7e8f808ce224fb485ba4a0a7239
[]
no_license
louiscklaw/QA_test_scripts
8a71d0bed99fae3b0dac4cd9414b3e34dcf5beed
58b73594332053272d8dce2c812c93297259c782
refs/heads/master
2023-01-27T15:48:29.477848
2020-12-06T10:05:19
2020-12-06T10:05:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
#!/usr/bin/env python3 import os,sys from pprint import pprint import json import requests from list_all_table import listAllTable def getTableByName(queue_user_name): all_table_json = listAllTable() all_table_by_name={} for table_json in all_table_json: all_table_by_name[table_json['name']]={ 'lid': table_json['lid'] } return all_table_by_name[queue_user_name] if __name__ == '__main__': print(getTableByName('louis_finger_print_1'))
[ "louiscklaw@gmail.com" ]
louiscklaw@gmail.com
62b3b12dc948f701cc4134cc368fa080c63f2f1b
25ad3f52dc8e34250dfbb67a747ac52909386bb7
/gdance/apps/users/migrations/0002_schedule_modalidad.py
6f37d4e8ace5f0c28a26adf4917a7aa3ad94c677
[]
no_license
gdanceapp/gdance
0f59bc4bee2f7e3c411e31912c12047089f58147
0ac66345302a0a9a99ed1f13d99c8b4fb213c866
refs/heads/master
2021-05-08T04:43:01.435021
2017-11-17T15:58:49
2017-11-17T15:58:49
108,346,931
0
0
null
null
null
null
UTF-8
Python
false
false
606
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2017-11-17 15:26 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('base', '0001_initial'), ('users', '0001_initial'), ] operations = [ migrations.AddField( model_name='schedule', name='modalidad', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='base.Modalidad'), preserve_default=False, ), ]
[ "alka65@hotmail.com" ]
alka65@hotmail.com
8bd9f00361920d3fe8bcb3dc45a3c37724ba9a24
42ad563bbebe83a17f9a75f7dd5d7db66d476f9b
/迁移bert tf2/migrate_to_tf2_bert/第一步命令行/bert-master-tf1/run_tokenTypeEmb_class_yr.py
b415f1fddd23097f1163acee830aa29923e0c312
[]
no_license
2877992943/information_extracion
131517ffbe5a8d65536749ac9041a5fb8cbe7a16
8c5036777cd47c3d031491c35bb0c1bb89f75fc5
refs/heads/master
2021-01-03T23:06:34.058021
2020-02-13T14:28:35
2020-02-13T14:28:35
240,275,240
0
0
null
null
null
null
UTF-8
Python
false
false
54,792
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run BERT on SQuAD 1.1 and SQuAD 2.0.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import json import math import os import random import modeling import optimization import tokenization import six import tensorflow as tf import json import sys eps=0.0000001 # #####使用 decoder # path_to_be_add='../models_src_part' # sys.path.insert(0, path_to_be_add) # print (sys.path) # from official.transformer.model import model_params # from official.transformer.model import transformer_decoder # from official.transformer.utils import metrics # from official.transformer import transformer_main flags = tf.flags FLAGS = flags.FLAGS ## Required parameters flags.DEFINE_string( "bert_config_file", None, "The config json file corresponding to the pre-trained BERT model. " "This specifies the model architecture.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string( "output_dir", None, "The output directory where the model checkpoints will be written.") ## Other parameters flags.DEFINE_string("train_file", None, "SQuAD json for training. E.g., train-v1.1.json") flags.DEFINE_string( "predict_file", None, "SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") flags.DEFINE_string( "init_checkpoint", None, "Initial checkpoint (usually from a pre-trained BERT model).") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer( "max_seq_length", 384, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_integer( "doc_stride", 128, "When splitting up a long document into chunks, how much stride to " "take between chunks.") flags.DEFINE_integer( "max_query_length", 64, "The maximum number of tokens for the question. Questions longer than " "this will be truncated to this length.") flags.DEFINE_bool("do_train", False, "Whether to run training.") flags.DEFINE_bool("do_predict", False, "Whether to run eval on the dev set.") flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predictions.") flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.") flags.DEFINE_float("num_train_epochs", 3.0, "Total number of training epochs to perform.") flags.DEFINE_float( "warmup_proportion", 0.1, "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.") flags.DEFINE_integer("save_checkpoints_steps", 1000, "How often to save the model checkpoint.") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_integer( "n_best_size", 20, "The total number of n-best predictions to generate in the " "nbest_predictions.json output file.") flags.DEFINE_integer( "max_answer_length", 30, "The maximum length of an answer that can be generated. This is needed " "because the start and end predictions are not conditioned on one another.") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") tf.flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") tf.flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") flags.DEFINE_bool( "verbose_logging", False, "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") flags.DEFINE_bool( "version_2_with_negative", False, "If true, the SQuAD examples contain some that do not have an answer.") flags.DEFINE_float( "null_score_diff_threshold", 0.0, "If null_score - best_non_null is greater than the threshold predict null.") flags.DEFINE_string("target_vocab", None, "The vocabulary file that the BERT model was fine-tuned.") flags.DEFINE_string("target_vocab_size", None, "The vocabulary sz that the BERT model was fine-tuned.") flags.DEFINE_string("data_dir", None, "The vocabulary file that the BERT model was fine-tuned.") flags.DEFINE_string("pos_vocab", None, "The vocabulary file that the BERT model was fine-tuned.") flags.DEFINE_string("pos_vocab_size", None, "The vocabulary sz that the BERT model was fine-tuned.") flags.DEFINE_string("max_seq_length_y", None, "The vocabulary sz that the BERT model was fine-tuned.") flags.DEFINE_float( "label_smoothing", 0.1,'label smooth' ) class SquadExample(object): """A single training/test example for simple sequence classification. For examples without an answer, the start and end position are -1. """ def __init__(self, qas_id, question_text, doc_tokens, orig_answer_text=None, start_position=None, end_position=None, is_impossible=False): self.qas_id = qas_id self.question_text = question_text self.doc_tokens = doc_tokens self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def __str__(self): return self.__repr__() def __repr__(self): s = "" s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) s += ", question_text: %s" % ( tokenization.printable_text(self.question_text)) s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) if self.start_position: s += ", start_position: %d" % (self.start_position) if self.start_position: s += ", end_position: %d" % (self.end_position) if self.start_position: s += ", is_impossible: %r" % (self.is_impossible) return s # class knowledgeExample(object): # """A single training/test example for simple sequence classification. # # For examples without an answer, the start and end position are -1. # """ # # def __init__(self, # text, # doc_tokens, # tokentype, # ytoken # ): # self.text=text # self.doc_tokens=doc_tokens # self.tokentype=tokentype # self.ytoken=ytoken # # def __str__(self): # return self.__repr__() # # def __repr__(self): # s = "" # # s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) # if self.text: # s += ", start_position: %d" % (self.text) # if self.ytoken: # s += ", end_position: %d" % (self.ytoken) # # return s class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, #example_index, #doc_span_index, #tokens, #token_to_orig_map, #token_is_max_context, input_ids, input_mask, segment_ids, # token type target_ids, num_of_target #start_position=None, #end_position=None, #is_impossible=None ): self.unique_id = unique_id #self.example_index = example_index #self.doc_span_index = doc_span_index #self.tokens = tokens #self.token_to_orig_map = token_to_orig_map #self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.target_ids=target_ids self.num_of_target=num_of_target #self.start_position = start_position #self.end_position = end_position #self.is_impossible = is_impossible def read_squad_examples(input_file, is_training): """Read a SQuAD json file into a list of SquadExample.""" with tf.gfile.Open(input_file, "r") as reader: input_data = json.load(reader)["data"] def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False examples = [] for entry in input_data[:2]: for paragraph in entry["paragraphs"][:2]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if is_training: if FLAGS.version_2_with_negative: is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join( doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join( tokenization.whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: tf.logging.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue else: start_position = -1 end_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) return examples def read_knowledge_example(inputfile,is_training): examples=[] reader=open(inputfile) for line in reader.readlines(): line=line.strip() if len(line)==0:continue # d=json.loads(line) spo_list=d['spo_list'] posseq=d['posseq'] text=[cell['char'] for cell in posseq];#print (''.join(text)) postag=[cell['tag'] for cell in posseq];#print (' '.join(postag)) predicate=[cell['predicate'] for cell in spo_list];#print (' '.join(predicate)) examples.append({'text':text,'tag':postag,'predicate':predicate}) return examples def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training, output_fn, tokenizer_y, max_seq_length_y ): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 for (example_index, example) in enumerate(examples): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length start_position = None end_position = None if is_training and not example.is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if is_training and example.is_impossible: start_position = 0 end_position = 0 if example_index < 20: tf.logging.info("*** Example ***") tf.logging.info("unique_id: %s" % (unique_id)) tf.logging.info("example_index: %s" % (example_index)) tf.logging.info("doc_span_index: %s" % (doc_span_index)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("token_to_orig_map: %s" % " ".join( ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) tf.logging.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) ])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if is_training and example.is_impossible: tf.logging.info("impossible example") if is_training and not example.is_impossible: answer_text = " ".join(tokens[start_position:(end_position + 1)]) tf.logging.info("start_position: %d" % (start_position)) tf.logging.info("end_position: %d" % (end_position)) tf.logging.info( "answer: %s" % (tokenization.printable_text(answer_text))) feature = InputFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, start_position=start_position, end_position=end_position, is_impossible=example.is_impossible) # Run callback output_fn(feature) unique_id += 1 def convert_examples_to_features1(examples, tokenizer, tokenizer_pos, max_seq_length, is_training, output_fn, tokenizer_y, max_seq_length_y ): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1 for (example_index, example) in enumerate(examples): #query_tokens = tokenizer.tokenize(example.question_text) charll,posll,predicatell=example['text'],example['tag'],example['predicate'] # text_token=tokenizer.tokenize(' '.join(charll)) # pos_token=tokenizer_pos.tokenize(' '.join(posll)) # predicate_token=tokenizer_y.tokenize(' '.join(predicatell)) text_token=[w.lower() for w in charll] pos_token=[w.lower() for w in posll] predicate_token=[w.lower() for w in predicatell] if len(text_token) > max_seq_length-1: # 限制长度 text_token = text_token[0:max_seq_length] if len(pos_token) > max_seq_length-1: # 限制长度 pos_token = pos_token[0:max_seq_length] if len(predicate_token) > max_seq_length_y: # 限制长度 predicate_token = predicate_token[0:max_seq_length_y] text_token=['[CLS]']+text_token pos_token=['PAD']+pos_token #predicate_token=predicate_token+['EOS'] predicate_token = predicate_token input_ids = tokenizer.convert_tokens_to_ids(text_token) segment_ids=tokenizer_pos.convert_tokens_to_ids(pos_token) predicate_ids=tokenizer_y.convert_tokens_to_ids(predicate_token) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length # zero pad y seq while len(predicate_ids) < max_seq_length_y: predicate_ids.append(0) assert len(predicate_ids) == max_seq_length_y ### num of target num_y=len([yi for yi in predicate_ids if yi!=0]) #tf.logging.info("char: %s" % (' '.join([str(w) for w in input_ids]))) #tf.logging.info("char mask: %s" % (' '.join([str(w) for w in input_mask]))) #tf.logging.info("pos: %s" % (' '.join([str(w) for w in segment_ids]))) #tf.logging.info("predicate: %s" % (' '.join([str(w) for w in predicate_ids]))) #tf.logging.info("predicate number: %d" % (num_y)) feature = InputFeatures( unique_id=unique_id, #example_index=example_index, #doc_span_index=doc_span_index, #tokens=tokens, #token_to_orig_map=token_to_orig_map, #token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, target_ids=predicate_ids, num_of_target=num_y #start_position=start_position, #end_position=end_position, #is_impossible=example.is_impossible ) # Run callback output_fn(feature) unique_id += 1 #if unique_id>10:break #yr def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, use_one_hot_embeddings, targets, #GLOBAL_PARAMS_target ): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) #final_hidden = model.get_sequence_output() # [8 384 768] first_token=model.get_pooled_output() #[batch step] # final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3) # batch_size = final_hidden_shape[0] # seq_length = final_hidden_shape[1] # hidden_size = final_hidden_shape[2] ### decode part # my_decoder = transformer_decoder.TransformerDecoder(GLOBAL_PARAMS_target,train=is_training)###?? # if is_training : # logits = my_decoder(input_ids,final_hidden,targets) # else: # logits = my_decoder(input_ids,final_hidden) # return logits logits_multic=tf.layers.dense(inputs=first_token,name='multi', units=FLAGS.target_vocab_size) logits_num = tf.layers.dense(inputs=first_token,name='num_of_class', units=FLAGS.target_vocab_size) return logits_multic,logits_num # #[batch vocabsz] # output_weights = tf.get_variable( # "cls/squad/output_weights", [2, hidden_size], # initializer=tf.truncated_normal_initializer(stddev=0.02)) # # output_bias = tf.get_variable( # "cls/squad/output_bias", [2], initializer=tf.zeros_initializer()) # # final_hidden_matrix = tf.reshape(final_hidden, # [batch_size * seq_length, hidden_size]) # logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True) # logits = tf.nn.bias_add(logits, output_bias) # # logits = tf.reshape(logits, [batch_size, seq_length, 2]) # logits = tf.transpose(logits, [2, 0, 1]) # # unstacked_logits = tf.unstack(logits, axis=0) # [2, 8batch, 384step] # # (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1]) # # return (start_logits, end_logits) def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings, #GLOBAL_PARAMS_target ): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] target_ids=features['target_ids'] #[batch step] num_target=features['num_of_target'] #[batchsz,] is_training = (mode == tf.estimator.ModeKeys.TRAIN) logits_multic,logits_num = create_model( targets=target_ids, #GLOBAL_PARAMS_target=GLOBAL_PARAMS_target, bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) # [batch vocabsz] tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: # xentropy, weights = metrics.padded_cross_entropy_loss( # logits, targets, FLAGS.label_smoothing, FLAGS.vocab_size_symptom) # loss = tf.reduce_sum(xentropy) / tf.reduce_sum(weights) ##### loss 1 number of target y=tf.one_hot(num_target,depth=FLAGS.target_vocab_size)#[batch vocabsz] prob_num_target=tf.nn.softmax(logits_num,axis=-1) loss1=-tf.reduce_mean(tf.reduce_sum(y*tf.log(prob_num_target+eps),axis=-1)) ##### loss2 multi label y=tf.reduce_sum(tf.one_hot(target_ids,depth=FLAGS.target_vocab_size),axis=1)[:,1:] # [batch numClass25 vocabsz]->[batch vocabsz] -> remove padding prob_y=tf.nn.sigmoid(logits_multic)[:,1:] #[batch vocabsz] loss2=y*tf.log(eps+prob_y) + (1-y)*tf.log(1.-prob_y+eps) loss2=tf.reduce_mean(-loss2) loss=loss1+loss2 train_op = optimization.create_optimizer(loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.PREDICT: predictions = { #"unique_ids": unique_ids, #"start_logits": start_logits, #"end_logits": end_logits, "logits_multic": logits_multic, 'logits_num':logits_num } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) else: raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn def input_fn_builder(input_file, seq_length, seq_length_y, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "unique_ids": tf.FixedLenFeature([], tf.int64), "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), } if is_training: name_to_features['target_ids']=tf.FixedLenFeature([seq_length_y], tf.int64) name_to_features["num_of_target"]= tf.FixedLenFeature([], tf.int64) # name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64) # name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64) def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply( tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file): """Write final predictions to the json file and log-odds of null if needed.""" tf.logging.info("Writing predictions to: %s" % (output_prediction_file)) tf.logging.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min mull score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if FLAGS.version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) if FLAGS.version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't inlude the empty option in the n-best, inlcude it if FLAGS.version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not FLAGS.version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - ( best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > FLAGS.null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with tf.gfile.GFile(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with tf.gfile.GFile(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if FLAGS.version_2_with_negative: with tf.gfile.GFile(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") def get_final_text(pred_text, orig_text, do_lower_case): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heruistic between # `pred_text` and `orig_text` to get a character-to-charcter alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if FLAGS.verbose_logging: tf.logging.info( "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if FLAGS.verbose_logging: tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if FLAGS.verbose_logging: tf.logging.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if FLAGS.verbose_logging: tf.logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs class FeatureWriter(object): """Writes InputFeature to TF example file.""" def __init__(self, filename, is_training): self.filename = filename self.is_training = is_training self.num_features = 0 self._writer = tf.python_io.TFRecordWriter(filename) def process_feature(self, feature): """Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" self.num_features += 1 def create_int_feature(values): feature = tf.train.Feature( int64_list=tf.train.Int64List(value=list(values))) return feature features = collections.OrderedDict() features["unique_ids"] = create_int_feature([feature.unique_id]) features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) if self.is_training: features["target_ids"] = create_int_feature(feature.target_ids) features["num_of_target"] = create_int_feature([feature.num_of_target]) # features["start_positions"] = create_int_feature([feature.start_position]) # features["end_positions"] = create_int_feature([feature.end_position]) # impossible = 0 # if feature.is_impossible: # impossible = 1 # features["is_impossible"] = create_int_feature([impossible]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) self._writer.write(tf_example.SerializeToString()) def close(self): self._writer.close() def validate_flags_or_throw(bert_config): """Validate the input FLAGS or throw an exception.""" tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_predict: raise ValueError("At least one of `do_train` or `do_predict` must be True.") if FLAGS.do_train: if not FLAGS.train_file: raise ValueError( "If `do_train` is True, then `train_file` must be specified.") if FLAGS.do_predict: if not FLAGS.predict_file: raise ValueError( "If `do_predict` is True, then `predict_file` must be specified.") if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) if FLAGS.max_seq_length <= FLAGS.max_query_length + 3: raise ValueError( "The max_seq_length (%d) must be greater than max_query_length " "(%d) + 3" % (FLAGS.max_seq_length, FLAGS.max_query_length)) def main(_): tf.logging.set_verbosity(tf.logging.INFO) bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) validate_flags_or_throw(bert_config) tf.gfile.MakeDirs(FLAGS.output_dir) tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) tokenizer_y = tokenization.FullTokenizer_word( vocab_file=FLAGS.target_vocab, do_lower_case=FLAGS.do_lower_case)###??? tokenizer_pos = tokenization.FullTokenizer( vocab_file=FLAGS.pos_vocab, do_lower_case=FLAGS.do_lower_case) ###??? tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) ############### # generate data train_examples = None num_train_steps = None num_warmup_steps = None if FLAGS.do_train: train_examples = read_knowledge_example( inputfile=FLAGS.train_file, is_training=True) num_train_steps = int( len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) # Pre-shuffle the input to avoid having to make a very large shuffle # buffer in in the `input_fn`. rng = random.Random(12345) #rng.shuffle(train_examples) if FLAGS.do_train: tf_filename=os.path.join(FLAGS.output_dir, "train.tf_record") if not os.path.exists(tf_filename): # not exist tf.record # We write to a temporary file to avoid storing very large constant tensors # in memory. train_writer = FeatureWriter( filename=os.path.join(FLAGS.output_dir, "train.tf_record"), is_training=True) convert_examples_to_features1( examples=train_examples, tokenizer=tokenizer, tokenizer_y=tokenizer_y, tokenizer_pos=tokenizer_pos, max_seq_length_y=FLAGS.max_seq_length_y, max_seq_length=FLAGS.max_seq_length, is_training=True, output_fn=train_writer.process_feature) train_writer.close() tf.logging.info("***** Running training *****") tf.logging.info(" Num orig examples = %d", len(train_examples)) tf.logging.info(" Num split examples = %d", train_writer.num_features) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) del train_examples ########### # build model model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu, # GLOBAL_PARAMS_target=GLOBAL_PARAMS_target ) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, predict_batch_size=FLAGS.predict_batch_size) ########## train_input_fn = input_fn_builder( #input_file=train_writer.filename, input_file=tf_filename, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True, seq_length_y=FLAGS.max_seq_length_y) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if __name__ == "__main__": flags.mark_flag_as_required("vocab_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") local_flag = False ## import os if local_flag == True: OLD_BERT_MODEL_DIR = '/Users/admin/Desktop/previous/bert2019/download_model_cn/chinese_L-12_H-768_A-12' XIAOBAI_DATA_DIR = '../bert_demo_data/knowlege/' FLAGS.data_dir = '../tmp/' FLAGS.output_dir = '../model_specifiedTask/' elif local_flag == False: OLD_BERT_MODEL_DIR = '/code/bert_download/download_model_cn/chinese_L-12_H-768_A-12' XIAOBAI_DATA_DIR = '/code/bert_train_yr_squad_v0101/bert_demo_data/knowlege' FLAGS.data_dir = '/code/bert_train_yr_squad_v0101/tmp/' #FLAGS.output_dir = '/code/bert_train_yr_squad_v0101/model_specifiedTask/' FLAGS.output_dir='/models/bert_train_yr_squad_v0101/' FLAGS.bert_config_file = os.path.join(OLD_BERT_MODEL_DIR, 'bert_config.json') FLAGS.do_train = True FLAGS.init_checkpoint = os.path.join(OLD_BERT_MODEL_DIR, 'bert_model.ckpt') FLAGS.num_train_epochs = 10000 FLAGS.learning_rate = 3e-5 FLAGS.train_batch_size = 8 FLAGS.label_smoothing = 0.1 #### f1=['dev1.json','train1.json'] FLAGS.train_file=os.path.join(XIAOBAI_DATA_DIR,'tmp',f1[1]) FLAGS.vocab_file=os.path.join(OLD_BERT_MODEL_DIR,'vocab.txt') ### target seq FLAGS.target_vocab=os.path.join(XIAOBAI_DATA_DIR,'dict_v1231','spo.txt') FLAGS.target_vocab_size = 52 ### pos vocab FLAGS.pos_vocab=os.path.join(XIAOBAI_DATA_DIR,'dict_v1231','pos.txt') FLAGS.pos_vocab_size=26 FLAGS.save_checkpoints_steps = 3000 # GLOBAL_PARAMS_target = model_params.BASE_PARAMS.copy() # GLOBAL_PARAMS_target["vocab_size"] = FLAGS.target_vocab_size # GLOBAL_PARAMS_target['num_hidden_layers']=3 # GLOBAL_PARAMS_target['hidden_size']=128 FLAGS.max_seq_length_y=25 FLAGS.max_seq_length=301 tf.app.run()
[ "2877992943@qq.com" ]
2877992943@qq.com
f2dbbcafddf9f354bf5167496f494892e861f0b5
27be66085e7f72316a01f31aa2946932b64ef05b
/models.py
aa602d50edccd9ca0676a68f175ef7b4bbdbacfd
[]
no_license
c404err/ml
b2a223a00107b67000f8027addb6b1af6c8a93f4
0769abde162204bf7ef82891def50641cba4b1a6
refs/heads/main
2023-06-18T15:46:22.915532
2021-07-19T20:53:52
2021-07-19T20:53:52
383,961,050
0
0
null
null
null
null
UTF-8
Python
false
false
10,631
py
import nn import numpy class PerceptronModel(object): def __init__(self, dimensions): """ Initialize a new Perceptron instance. A perceptron classifies data points as either belonging to a particular class (+1) or not (-1). `dimensions` is the dimensionality of the data. For example, dimensions=2 would mean that the perceptron must classify 2D points. """ self.w = nn.Parameter(1, dimensions) def get_weights(self): """ Return a Parameter instance with the current weights of the perceptron. """ return self.w def run(self, x): """ Calculates the score assigned by the perceptron to a data point x. Inputs: x: a node with shape (1 x dimensions) Returns: a node containing a single number (the score) """ "*** YOUR CODE HERE ***" return nn.DotProduct(self.w, x) def get_prediction(self, x): """ Calculates the predicted class for a single data point `x`. Returns: 1 or -1 """ "*** YOUR CODE HERE ***" if (nn.as_scalar(self.run(x)) >= 0): return 1 return -1 def train(self, dataset): """ Train the perceptron until convergence. """ "*** YOUR CODE HERE ***" flag = True while (flag): for x, y in dataset.iterate_once(1): if nn.as_scalar(y) != self.get_prediction(x): flag = False nn.Parameter.update(self.w, x, nn.as_scalar(y)) if (flag): break flag = True class RegressionModel(object): """ A neural network model for approximating a function that maps from real numbers to real numbers. The network should be sufficiently large to be able to approximate sin(x) on the interval [-2pi, 2pi] to reasonable precision. """ def __init__(self): # Initialize your model parameters here "*** YOUR CODE HERE ***" self.w0 = nn.Parameter(1, 100) self.b0 = nn.Parameter(1, 100) self.w1 = nn.Parameter(100, 1) self.b1 = nn.Parameter(1, 1) def run(self, x): """ Runs the model for a batch of examples. Inputs: x: a node with shape (batch_size x 1) Returns: A node with shape (batch_size x 1) containing predicted y-values """ "*** YOUR CODE HERE ***" xm0 = nn.Linear(x, self.w0) r = nn.ReLU(nn.AddBias(xm0, self.b0)) xm1 = nn.Linear(r, self.w1) return nn.AddBias(xm1, self.b1) def get_loss(self, x, y): """ Computes the loss for a batch of examples. Inputs: x: a node with shape (batch_size x 1) y: a node with shape (batch_size x 1), containing the true y-values to be used for training Returns: a loss node """ "*** YOUR CODE HERE ***" return nn.SquareLoss(self.run(x), y) def train(self, dataset): """ Trains the model. """ "*** YOUR CODE HERE ***" while (True): for x, y in dataset.iterate_once(1): g = nn.gradients(self.get_loss(x, y), [self.w0, self.w1, self.b0, self.b1]) self.w0.update(g[0], -0.005) self.w1.update(g[1], -0.005) self.b0.update(g[2], -0.005) self.b1.update(g[3], -0.005) if (nn.as_scalar(self.get_loss(nn.Constant(dataset.x), nn.Constant(dataset.y))) < 0.02): return class DigitClassificationModel(object): """ A model for handwritten digit classification using the MNIST dataset. Each handwritten digit is a 28x28 pixel grayscale image, which is flattened into a 784-dimensional vector for the purposes of this model. Each entry in the vector is a floating point number between 0 and 1. The goal is to sort each digit into one of 10 classes (number 0 through 9). (See RegressionModel for more information about the APIs of different methods here. We recommend that you implement the RegressionModel before working on this part of the project.) """ def __init__(self): # Initialize your model parameters here "*** YOUR CODE HERE ***" self.b0 = nn.Parameter(1, 100) self.w0 = nn.Parameter(784, 100) self.b1 = nn.Parameter(1, 10) self.w1 = nn.Parameter(100, 10) def run(self, x): """ Runs the model for a batch of examples. Your model should predict a node with shape (batch_size x 10), containing scores. Higher scores correspond to greater probability of the image belonging to a particular class. Inputs: x: a node with shape (batch_size x 784) Output: A node with shape (batch_size x 10) containing predicted scores (also called logits) """ "*** YOUR CODE HERE ***" xm0 = nn.Linear(x, self.w0) r0 = nn.ReLU(nn.AddBias(xm0, self.b0)) xm1 = nn.Linear(r0, self.w1) return nn.AddBias(xm1, self.b1) def get_loss(self, x, y): """ Computes the loss for a batch of examples. The correct labels `y` are represented as a node with shape (batch_size x 10). Each row is a one-hot vector encoding the correct digit class (0-9). Inputs: x: a node with shape (batch_size x 784) y: a node with shape (batch_size x 10) Returns: a loss node """ "*** YOUR CODE HERE ***" return nn.SoftmaxLoss(self.run(x), y) def train(self, dataset): """ Trains the model. """ "*** YOUR CODE HERE ***" while (True): for x, y in dataset.iterate_once(1): g = nn.gradients(self.get_loss(x, y), [self.w0, self.w1, self.b0, self.b1]) self.w0.update(g[0], -0.005) self.w1.update(g[1], -0.005) self.b0.update(g[2], -0.005) self.b1.update(g[3], -0.005) if (dataset.get_validation_accuracy() > 1): return class LanguageIDModel(object): """ A model for language identification at a single-word granularity. (See RegressionModel for more information about the APIs of different methods here. We recommend that you implement the RegressionModel before working on this part of the project.) """ def __init__(self): # Our dataset contains words from five different languages, and the # combined alphabets of the five languages contain a total of 47 unique # characters. # You can refer to self.num_chars or len(self.languages) in your code self.num_chars = 47 self.languages = ["English", "Spanish", "Finnish", "Dutch", "Polish"] # Initialize your model parameters here "*** YOUR CODE HERE ***" self.w = nn.Parameter(47, 400) self.b0 = nn.Parameter(1, 400) self.wHidden = nn.Parameter(400, 400) self.b1 = nn.Parameter(1, 400) self.wFinal = nn.Parameter(400, 5) self.b2 = nn.Parameter(1, 5) def run(self, xs): """ Runs the model for a batch of examples. Although words have different lengths, our data processing guarantees that within a single batch, all words will be of the same length (L). Here `xs` will be a list of length L. Each element of `xs` will be a node with shape (batch_size x self.num_chars), where every row in the array is a one-hot vector encoding of a character. For example, if we have a batch of 8 three-letter words where the last word is "cat", then xs[1] will be a node that contains a 1 at position (7, 0). Here the index 7 reflects the fact that "cat" is the last word in the batch, and the index 0 reflects the fact that the letter "a" is the inital (0th) letter of our combined alphabet for this task. Your model should use a Recurrent Neural Network to summarize the list `xs` into a single node of shape (batch_size x hidden_size), for your choice of hidden_size. It should then calculate a node of shape (batch_size x 5) containing scores, where higher scores correspond to greater probability of the word originating from a particular language. Inputs: xs: a list with L elements (one per character), where each element is a node with shape (batch_size x self.num_chars) Returns: A node with shape (batch_size x 5) containing predicted scores (also called logits) """ "*** YOUR CODE HERE ***" flag = True for x in xs: xm0 = nn.Linear(x, self.w) r0 = nn.ReLU(nn.AddBias(xm0, self.b0)) xm1 = nn.Linear(r0, self.wHidden) r1 = nn.ReLU(nn.AddBias(xm1, self.b1)) if flag: ans = r1 flag = False else: ans = nn.Add(nn.AddBias(xm1, self.b1), nn.Linear(nn.ReLU(ans), self.wHidden)) return nn.AddBias(nn.Linear(nn.ReLU(ans), self.wFinal), self.b2) def get_loss(self, xs, y): """ Computes the loss for a batch of examples. The correct labels `y` are represented as a node with shape (batch_size x 5). Each row is a one-hot vector encoding the correct language. Inputs: xs: a list with L elements (one per character), where each element is a node with shape (batch_size x self.num_chars) y: a node with shape (batch_size x 5) Returns: a loss node """ "*** YOUR CODE HERE ***" return nn.SoftmaxLoss(self.run(xs), y) def train(self, dataset): """ Trains the model. """ "*** YOUR CODE HERE ***" while (True): for x, y in dataset.iterate_once(2): g = nn.gradients(self.get_loss(x, y), [self.w, self.wHidden, self.wFinal, self.b0, self.b1, self.b2]) self.w.update(g[0], -0.005) self.wHidden.update(g[1], -0.005) self.wFinal.update(g[2], -0.005) self.b0.update(g[3], -0.005) self.b1.update(g[4], -0.005) self.b2.update(g[5], -0.005) if (dataset.get_validation_accuracy() >= 0.86): return
[ "noreply@github.com" ]
c404err.noreply@github.com
11a26793bdcb54e200cccb110f50fcb7e3a865ef
5a89613dffb83ae99946c5529ff30d62918e0401
/code/training_data/district_training_data.py
a45f971fc627be598134b6d6a4ac7298a356c3f5
[ "MIT" ]
permissive
sanja7s/JJ
59a400deb431072fd525dffac368578d08cd68d0
6facc5fe4aa19ca5927d3929f73fc8017f35d522
refs/heads/master
2021-04-21T21:36:39.114032
2020-05-26T10:38:57
2020-05-26T10:38:57
249,817,535
1
1
null
null
null
null
UTF-8
Python
false
false
1,771
py
import pandas as pd # network_type = "vgg16_4096" # PCA_components = 64 # LABELING_METHOD = "maximum" # AVERAGING_METHOD = "kaist" # normalize = False norm_dict = { True:"normalized_", False: "", "Total": "normalized_across_all_" } data_dir = "preprocessed/" def get_training_data(network_type, PCA_components,\ LABELING_METHOD, AVERAGING_METHOD,\ pred_type, normalize, data_dir=data_dir): f = get_features(network_type, PCA_components,\ LABELING_METHOD, AVERAGING_METHOD, data_dir) l = get_labels(pred_type, normalize, data_dir) df = f.merge(l, on=["city_district"]) # print (df.head()) return df def get_features(network_type, PCA_components,\ LABELING_METHOD, AVERAGING_METHOD, data_dir): features_dir = data_dir + "training_data/features/districts/" if network_type == "vgg19": features_file = "Italy_6_cities_vgg19_pca"+str(PCA_components)+"_linear_fc_thirdlast_layer.csv" elif network_type == "resnet50": features_file = "Italy_6_cities_resnet_pca"+str(PCA_components)+"_second_last_layer.csv" elif network_type == "vgg16_4096": features_file = "Italy_6_cities_resnet_pca" + str(PCA_components) + "_vgg16_4096.csv" ff = features_file.replace(".csv", "_" + \ LABELING_METHOD + "_" + AVERAGING_METHOD +"_features.csv") features = pd.read_csv(features_dir + ff) # print (features.head()) return features def get_labels(pred_type, normalize, data_dir): label_dir = data_dir + "training_data/labels/districts/" ll = norm_dict[normalize] + "district_" \ + pred_type + "_labels.csv" labels = pd.read_csv(label_dir + ll) labels.rename(columns={l:"label_" + l for l in \ labels.columns if l != "city_district"},\ inplace=True) # print (labels.head()) return labels # get_training_data()
[ "sanja.scepanovic@nokia-bell-labs.com" ]
sanja.scepanovic@nokia-bell-labs.com
9db06d452195f3e4a3b11e54e8ddb1f4fad30f3b
15445418c3df26032a5b715b77aa9073d8ff76c5
/Data_Structures_and_Algorithms_in_Python/06_12_Quiz_Grapth_Traversal_Practice.py
39684fe33c092aa41af2188a586eaac6893409c6
[]
no_license
DenisWilsonDev/Courses
441d9cc14f05065eb41e47167ea28b77a4b76227
fd668d1122dd1eef5834e6510004279b385ff4df
refs/heads/master
2020-08-24T11:29:46.199368
2019-11-05T13:07:38
2019-11-05T13:07:38
216,817,744
0
0
null
null
null
null
UTF-8
Python
false
false
9,995
py
class Node(object): def __init__(self, value): self.value = value self.edges = [] self.visited = False class Edge(object): def __init__(self, value, node_from, node_to): self.value = value self.node_from = node_from self.node_to = node_to # You only need to change code with docs strings that have TODO. # Specifically: Graph.dfs_helper and Graph.bfs # New methods have been added to associate node numbers with names # Specifically: Graph.set_node_names # and the methods ending in "_names" which will print names instead # of node numbers class Graph(object): def __init__(self, nodes=None, edges=None): self.nodes = nodes or [] self.edges = edges or [] self.node_names = [] self._node_map = {} def set_node_names(self, names): """The Nth name in names should correspond to node number N. Node numbers are 0 based (starting at 0). """ self.node_names = list(names) def insert_node(self, new_node_val): "Insert a new node with value new_node_val" new_node = Node(new_node_val) self.nodes.append(new_node) self._node_map[new_node_val] = new_node return new_node def insert_edge(self, new_edge_val, node_from_val, node_to_val): "Insert a new edge, creating new nodes if necessary" nodes = {node_from_val: None, node_to_val: None} for node in self.nodes: if node.value in nodes: nodes[node.value] = node if all(nodes.values()): break for node_val in nodes: nodes[node_val] = nodes[node_val] or self.insert_node(node_val) node_from = nodes[node_from_val] node_to = nodes[node_to_val] new_edge = Edge(new_edge_val, node_from, node_to) node_from.edges.append(new_edge) node_to.edges.append(new_edge) self.edges.append(new_edge) def get_edge_list(self): """Return a list of triples that looks like this: (Edge Value, From Node, To Node)""" return [(e.value, e.node_from.value, e.node_to.value) for e in self.edges] def get_edge_list_names(self): """Return a list of triples that looks like this: (Edge Value, From Node Name, To Node Name)""" return [(edge.value, self.node_names[edge.node_from.value], self.node_names[edge.node_to.value]) for edge in self.edges] def get_adjacency_list(self): """Return a list of lists. The indecies of the outer list represent "from" nodes. Each section in the list will store a list of tuples that looks like this: (To Node, Edge Value)""" max_index = self.find_max_index() adjacency_list = [[] for _ in range(max_index)] for edg in self.edges: from_value, to_value = edg.node_from.value, edg.node_to.value adjacency_list[from_value].append((to_value, edg.value)) return [a or None for a in adjacency_list] # replace []'s with None def get_adjacency_list_names(self): """Each section in the list will store a list of tuples that looks like this: (To Node Name, Edge Value). Node names should come from the names set with set_node_names.""" adjacency_list = self.get_adjacency_list() def convert_to_names(pair, graph=self): node_number, value = pair return (graph.node_names[node_number], value) def map_conversion(adjacency_list_for_node): if adjacency_list_for_node is None: return None return map(convert_to_names, adjacency_list_for_node) return [map_conversion(adjacency_list_for_node) for adjacency_list_for_node in adjacency_list] def get_adjacency_matrix(self): """Return a matrix, or 2D list. Row numbers represent from nodes, column numbers represent to nodes. Store the edge values in each spot, and a 0 if no edge exists.""" max_index = self.find_max_index() adjacency_matrix = [[0] * (max_index) for _ in range(max_index)] for edg in self.edges: from_index, to_index = edg.node_from.value, edg.node_to.value adjacency_matrix[from_index][to_index] = edg.value return adjacency_matrix def find_max_index(self): """Return the highest found node number Or the length of the node names if set with set_node_names().""" if len(self.node_names) > 0: return len(self.node_names) max_index = -1 if len(self.nodes): for node in self.nodes: if node.value > max_index: max_index = node.value return max_index def find_node(self, node_number): "Return the node with value node_number or None" return self._node_map.get(node_number) def _clear_visited(self): for node in self.nodes: node.visited = False def dfs_helper(self, start_node): """TODO: Write the helper function for a recursive implementation of Depth First Search iterating through a node's edges. The output should be a list of numbers corresponding to the values of the traversed nodes. ARGUMENTS: start_node is the starting Node MODIFIES: the value of the visited property of nodes in self.nodes RETURN: a list of the traversed node values (integers). """ ret_list = [start_node.value] # Your code here start_node.visited = True for edge in start_node.edges: if edge.node_from == start_node: if not edge.node_to.visited: ret_list += self.dfs_helper(edge.node_to) return ret_list def dfs(self, start_node_num): """Outputs a list of numbers corresponding to the traversed nodes in a Depth First Search. ARGUMENTS: start_node_num is the starting node number (integer) MODIFIES: the value of the visited property of nodes in self.nodes RETURN: a list of the node values (integers).""" self._clear_visited() start_node = self.find_node(start_node_num) return self.dfs_helper(start_node) def dfs_names(self, start_node_num): """Return the results of dfs with numbers converted to names.""" return [self.node_names[num] for num in self.dfs(start_node_num)] def bfs(self, start_node_num): """TODO: Create an iterative implementation of Breadth First Search iterating through a node's edges. The output should be a list of numbers corresponding to the traversed nodes. ARGUMENTS: start_node_num is the node number (integer) MODIFIES: the value of the visited property of nodes in self.nodes RETURN: a list of the node values (integers).""" node = self.find_node(start_node_num) self._clear_visited() ret_list = [node.value] # Your code here node.visited = True queue = [] while True: for edge in node.edges: if edge.node_from == node: if not edge.node_to.visited: queue.append(edge.node_to) edge.node_to.visited = True if len(queue) > 0: node = queue.pop(0) ret_list.append(node.value) if len(queue) == 0: break return ret_list def bfs_names(self, start_node_num): """Return the results of bfs with numbers converted to names.""" return [self.node_names[num] for num in self.bfs(start_node_num)] graph = Graph() # You do not need to change anything below this line. # You only need to implement Graph.dfs_helper and Graph.bfs graph.set_node_names(('Mountain View', # 0 'San Francisco', # 1 'London', # 2 'Shanghai', # 3 'Berlin', # 4 'Sao Paolo', # 5 'Bangalore')) # 6 graph.insert_edge(51, 0, 1) # MV <-> SF graph.insert_edge(51, 1, 0) # SF <-> MV graph.insert_edge(9950, 0, 3) # MV <-> Shanghai graph.insert_edge(9950, 3, 0) # Shanghai <-> MV graph.insert_edge(10375, 0, 5) # MV <-> Sao Paolo graph.insert_edge(10375, 5, 0) # Sao Paolo <-> MV graph.insert_edge(9900, 1, 3) # SF <-> Shanghai graph.insert_edge(9900, 3, 1) # Shanghai <-> SF graph.insert_edge(9130, 1, 4) # SF <-> Berlin graph.insert_edge(9130, 4, 1) # Berlin <-> SF graph.insert_edge(9217, 2, 3) # London <-> Shanghai graph.insert_edge(9217, 3, 2) # Shanghai <-> London graph.insert_edge(932, 2, 4) # London <-> Berlin graph.insert_edge(932, 4, 2) # Berlin <-> London graph.insert_edge(9471, 2, 5) # London <-> Sao Paolo graph.insert_edge(9471, 5, 2) # Sao Paolo <-> London # (6) 'Bangalore' is intentionally disconnected (no edges) # for this problem and should produce None in the # Adjacency List, etc. import pprint pp = pprint.PrettyPrinter(indent=2) print "Edge List" pp.pprint(graph.get_edge_list_names()) print "\nAdjacency List" pp.pprint(graph.get_adjacency_list_names()) print "\nAdjacency Matrix" pp.pprint(graph.get_adjacency_matrix()) print "\nDepth First Search" pp.pprint(graph.dfs_names(2)) # Should print: # Depth First Search # ['London', 'Shanghai', 'Mountain View', 'San Francisco', 'Berlin', 'Sao Paolo'] print "\nBreadth First Search" pp.pprint(graph.bfs_names(2)) # test error reporting # pp.pprint(['Sao Paolo', 'Mountain View', 'San Francisco', 'London', 'Shanghai', 'Berlin']) # Should print: # Breadth First Search # ['London', 'Shanghai', 'Berlin', 'Sao Paolo', 'Mountain View', 'San Francisco']
[ "dev@deniswilson.ru" ]
dev@deniswilson.ru
6b80c599f791e236d4a4c9241f42382c94f932bd
77be118e15e523834b1095ab8dfb45e4a66afa52
/blog/migrations/0001_initial.py
8a7d7efac15670e7d57609e0aa9f0dee33a1b487
[]
no_license
rs07/my-first-blog
0c7fbbc6d9b389a350c5d2af71f7f18fe9525ff0
dd3babfcbce70035e7aecdfbf37728086160c1cb
refs/heads/master
2021-09-02T07:35:34.067644
2017-12-31T14:40:53
2017-12-31T14:40:53
115,858,378
0
0
null
null
null
null
UTF-8
Python
false
false
1,051
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2017-12-31 10:36 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "superrishabh0@gmail.com" ]
superrishabh0@gmail.com
d04b346b78f0c5154d23427b65333dae9753261a
01d2db8a3c5d0ed96c3da3af71e928b1276f7f43
/src/main/python/generate_tweet.py
5a01f81f5f4e7396f3cd314f2a8aeba22d8348a3
[]
no_license
tobakk/twitter-ai
6c78413e904f973378c634a476adb499251dab08
a8a20f7aed8c75a37eddc68aed44a4a7b3cc05f9
refs/heads/master
2022-06-05T02:24:00.756355
2020-05-04T11:19:25
2020-05-04T11:19:25
261,021,447
0
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
import random import sys import numpy as np import tensorflow as tf from lib import build_dataset, read_training_data, to_string data_path = 'data/' training_file = data_path + 'data.txt' model_file = data_path + 'model.h5' n_input = 10 model = tf.keras.models.load_model( data_path + 'model.h5', custom_objects=None, compile=True ) training_data = read_training_data(training_file) dictionary, reverse_dictionary = build_dataset(training_data) def generate_tweet(model, word_id_arr, number_of_words=20): out = [] words = list(word_id_arr.copy()) for i in range(number_of_words): keys = np.reshape(np.array(words), [-1, n_input]) onehot_pred = model(keys).numpy()[0] pred_index = onehot_pred.argmax(axis=1) pred = pred_index[-1] out.append(pred) words = words[1:] words.append(pred) sentence = to_string(out, reverse_dictionary) return sentence words = random.choices(training_data, k=n_input) symbols_in_keys = [dictionary[str(words[i])] for i in range(len(words))] print(generate_tweet(model, symbols_in_keys)) sys.exit(0)
[ "17847628+tobakk@users.noreply.github.com" ]
17847628+tobakk@users.noreply.github.com
6d845d03bb3bfd7ccce2e4fe0ca367421bebae5c
1378bb34a1c6e2f686eac54f62d6adba37acd5e4
/config.py
ce61fbe9f4f9577fdaa81f0f13ccc25e06ff9603
[]
no_license
colabearwd/final_demo
2ae5c36608b576181b544d7897acf651f82db361
abf656bf772480d33882aeebabd79c0585c21188
refs/heads/master
2020-03-27T19:34:40.380456
2018-09-19T11:46:08
2018-09-19T11:46:08
146,998,265
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
# encoding: utf-8 import os DEBUG =True SECRET_KEY = os.urandom(24) DIALECT = 'mysql' DRIVER = 'mysqldb' USERNAME = 'root' PASSWORD = 'root' HOST = 'localhost' PORT = '3306' DATABASE = 'final_demo' SQLALCHEMY_DATABASE_URI = "{}+{}://{}:{}@{}:{}/{}?charset=utf8".format(DIALECT,DRIVER,USERNAME, PASSWORD,HOST,PORT,DATABASE) SQLALCHEMY_TRACK_MODIFICATIONS = False
[ "wz_jxnu@163.com" ]
wz_jxnu@163.com
cc722694f4d5c2b3b5cb507e5fabb0250dacb484
0b933ccc03c117cfe599fe064a34714fa56ee16b
/reachable.py
2805c0ce91cc534a34bb2bb5297dd60670385a2f
[]
no_license
fanbbs/ori_coop_server
c2e15a2b77d494ca5a95582bcf1903b2d5d19354
ab0f92e03b3d3430168f41af85a934bbd1aa0f66
refs/heads/master
2020-03-08T21:45:59.384983
2018-04-05T22:55:53
2018-04-05T22:55:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,443
py
import xml.etree.ElementTree as XML from collections import defaultdict, Counter class PlayerState(object): name_from_id = { ("SK",0): 'Bash', ("SK",2): 'ChargeFlame', ("SK",3): 'WallJump', ("SK",4): 'Stomp', ("SK",5): 'DoubleJump', ("SK",8): 'ChargeJump', ("SK",12): 'Climb', ("SK",14): 'Glide', ("SK",50): 'Dash', ("SK",51): 'Grenade', ("EV", 0): 'GinsoKey', ("EV", 1): 'Water', ("EV", 2): 'ForlornKey', ("EV", 3): 'Wind', ("EV", 4): 'HoruKey', ("TP","Swamp"): 'TPSwamp', ("TP","Grove"): 'TPGrove', ("TP","Valley"): 'TPValley', ("TP","Grotto"): 'TPGrotto', ("TP","Forlorn"): 'TPForlorn', ("TP","Sorrow"): 'TPSorrow' } def __init__(self): self.has = Counter() @staticmethod def from_player(player): inst = PlayerState() inst.build_from_codes([(h.pickup_code, h.pickup_id, h.removed) for h in player.history]) return inst @staticmethod def from_codes(codes): inst = PlayerState() inst.build_from_codes(codes) return inst def build_from_codes(self, pickinfos): wv = ss = gs = 0 for code,id,removed in pickinfos: if code in ["EX", "AC"]: continue id = id if code=="TP" else int(id) if (code,id) in PlayerState.name_from_id: self.has[PlayerState.name_from_id[(code,id)]] = (0 if removed else 1) elif code == "RB": if id == 17: wv += (-1 if removed else 1) elif id == 19: gs += (-1 if removed else 1) if id == 21: ss += (-1 if removed else 1) elif code in ["HC","EC","KS", "MS"]: self.has[code] += (-id if removed else id) if wv >= 3: self.has['GinsoKey'] = 1 if gs >= 3: self.has['ForlornKey'] = 1 if ss >= 3: self.has['HoruKey'] = 1 print self.has["MS"] class Area(object): def __init__(self, name): self.name = name self.conns = [] def get_reachable(self, state, modes): return [conn.target for conn in self.conns if conn.is_active(state, modes)] class Connection(object): def __init__(self, target): self.target = target self.reqs = defaultdict(list) def is_active(self, state, modes): for mode in modes: for reqs in self.reqs[mode]: if not reqs.cnt - state.has: return True return False class Requirement(object): def __init__(self, raw): self.cnt = Counter([r for r in raw.split('+') if r != "Free"]) class Map(object): areas = {} @staticmethod def build(): tree = XML.parse("seedbuilder/areas.xml") root = tree.getroot() for child in root: area = Area(child.attrib["name"]) for c in child.find("Connections"): conn = Connection(c.find("Target").attrib["name"]) for req in c.find("Requirements"): conn.reqs[req.attrib["mode"]].append(Requirement(req.text)) area.conns.append(conn) Map.areas[area.name] = area @staticmethod def get_reachable_areas(state, modes): if not Map.areas: Map.build() unchecked_areas = set(["SunkenGladesRunaway"]) checked_areas = set() while(len(unchecked_areas) > 0): curr = unchecked_areas.pop() checked_areas.add(curr) unchecked_areas |= set([r for r in Map.areas[curr].get_reachable(state, modes) if r not in checked_areas]) mapstone_cnt = min(len([a for a in checked_areas if "MapStone" in a]), state.has["MS"]) if mapstone_cnt == 9 and state.has["MS"] < 11: mapstone_cnt -= 1 if mapstone_cnt == 8 and state.has["MS"] < 9: mapstone_cnt -= 1 ms_areas = ["MS%s"%i for i in range(1,mapstone_cnt +1) ] print ms_areas return list(checked_areas) + ms_areas
[ "worst.mirari@gmail.com" ]
worst.mirari@gmail.com
ab3ac1779fcfb178dd41e6ab57196771e8196e5d
0f6eaef1598e32193fd553a00f1c53e9aa367614
/exercicios_capitulo4/cube.py
7c4611b35eadd778664bb4230852ce46f8ee1d7c
[]
no_license
IfDougelseSa/cursoIntensivoPython
72be288cfd3314e084374abed02d2c9075e7bf3b
c3da310488bec268fb6db416c6c8d54164a180a9
refs/heads/main
2023-06-11T19:46:20.066751
2021-07-06T13:07:58
2021-07-06T13:07:58
365,917,050
1
0
null
null
null
null
UTF-8
Python
false
false
58
py
cubes = [cube**3 for cube in range(1, 10)] print(cubes)
[ "doug_ccortez@outlook.com" ]
doug_ccortez@outlook.com
77b7bc3323f62d7bb1fc73cbf1d52dcb5d3e932c
4bf050eea24a8144af61438db12845432d2f73a5
/strings/split_join.py
93528c565c294617c0e950d656f97c366f450678
[]
no_license
Yzdesarrollo/FundamentosPython
43228eae6fe37770ff500b67203703bb2804c636
16ca8c36bb688e0ec29cf638ae6f64fa79e2f3f6
refs/heads/master
2022-10-10T16:41:28.373987
2020-06-11T16:33:24
2020-06-11T16:33:24
271,595,780
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
lenguajes = "Python; Java; Ruby; PHP; Swift; Javascript; C#; C; C++" # resultado = lenguajes.split() # Podemos generar una lista apartir de un string # print(resultado) separador = "; " resultado = lenguajes.split(separador) # Podemos generar una lista apartir de un string # print(resultado) nuevo_string = "_".join(resultado) # Podemos generar una string apartir de una lista print(resultado) print(nuevo_string) # texto = """Este es un texto # con # saltos # de # linea""" # resultado = texto.splitlines() # Podemos generar una lista apartir de un texto # print(resultado)
[ "yeison.ariel@accenture.com" ]
yeison.ariel@accenture.com
08bad906274b22b88b6b3513859e43028c45c6da
20953bded8c44d09fea22dab32d269e50ea1d35e
/pset4/ps4a.py
53ea171fb2c8371f9df2d94e7a5a3898b0e61c37
[]
no_license
utamhank1/MIT_6.0001x
e417ebfd9fecbcad9f9223b2f48be97809e44bcf
927aab8c51dd8c4a7019ab6943aab6b4cb226c48
refs/heads/master
2020-12-29T21:24:23.465373
2020-02-06T16:54:43
2020-02-06T16:54:43
238,736,789
1
0
null
null
null
null
UTF-8
Python
false
false
2,868
py
# Problem Set 4A # Name: Ujjwal Tamhankar # Collaborators: none # Time Spent: ~ 5hrs def get_permutations(sequence): ''' Enumerate all permutations of a given string sequence (string): an arbitrary string to permute. Assume that it is a non-empty string. You MUST use recursion for this part. Non-recursive solutions will not be accepted. Returns: a list of all permutations of sequence Example: >>> get_permutations('abc') ['abc', 'acb', 'bac', 'bca', 'cab', 'cba'] Note: depending on your implementation, you may return the permutations in a different order than what is listed here. ''' # Base case, if the sequence length = 1, return that value. if len(sequence) == 1: return[sequence] # If the sequence length is greater than 1, enumerate the sequence and iterate over each piece. # call the get_permutations() on each piece and iteratively compose the 'permutations' list. # return the final permuations list. else: permutations = [] for i, counter in enumerate(sequence): for j in get_permutations(sequence[:i] + sequence[i + 1:]): permutations = permutations + [counter + j] return permutations if __name__ == '__main__': # #EXAMPLE # example_input = 'abc' # print('Input:', example_input) # print('Expected Output:', ['abc', 'acb', 'bac', 'bca', 'cab', 'cba']) # print('Actual Output:', get_permutations(example_input)) # # Put three example test cases here (for your sanity, limit your inputs # to be three characters or fewer as you will have n! permutations for a # sequence of length n) # Test case 1: sequence = 'a' output = get_permutations(sequence) expected_output = ['a'] print(f'Input = {sequence}, Output = {output} ') print(f'Expected Output: {expected_output}') if output == expected_output: print('\nSingle Letter Permutation Test Passed!\n') else: print('\nSingle Letter Permutation Test Failed!') # Test case 2: sequence = 'ab' output = get_permutations(sequence) expected_output = ['ab', 'ba'] print(f'Input = {sequence}, Output = {output} ') print(f'Expected Output: {expected_output}') if output == expected_output: print('\nDouble Letter Permutation Test Passed!\n') else: print('\nDouble Letter Permutation Test Failed!\n') # Test case 3: sequence = '123' output = get_permutations(sequence) expected_output = ['123', '132', '213', '231', '312', '321'] print(f'Input = {sequence}, Output = {output} ') print(f'Expected Output: {expected_output}') if output == expected_output: print('\nTriple Number Permutation Test Passed!\n') else: print('\nTriple Number Permutation Test Failed!\n')
[ "utamhank1@gmail.com" ]
utamhank1@gmail.com
7bdf0ae10d88057b630ada47ec7a4bbc25e4837a
1fe03131ad139e2415fd0c0c73697b4541e5b862
/.history/src/_fighter_20190422144508.py
b8423e2a178b0c458e0f63ee9a1a09d7fe1b40f4
[ "MIT" ]
permissive
vidalmatheus/pyKombat
d83175a7a952663e278a8247d43349f87192fde3
6646020c59367ba0424d73a5861e13bbc0daac1f
refs/heads/master
2021-06-20T09:35:07.950596
2020-08-06T14:08:13
2020-08-06T14:08:13
172,716,161
1
1
MIT
2019-12-25T10:54:10
2019-02-26T13:24:31
Python
UTF-8
Python
false
false
38,909
py
from pygame_functions import * import fightScene import engine import menu class Fighter: fighterNames = ["Sub-Zero", "Scorpion"] fightMoves = [["w", "s", "a", "d"], ["up", "down", "left", "right"]] combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] danceLimit = 7 walkLimit = 9 jumpLimit = 3 crouchLimit = 3 punchLimit = [3, 11, 3, 5, 3] kickLimit = [7, 9, 7, 6, 3] hitLimit = [3, 3, 6, 2, 3, 14, 11, 10] blockLimit = 3 specialLimit = [4,7] victoryLimit = 3 fatalityLimit = 20 dizzyLimit = 7 # indexação # moves dance = 0 walk = 1 jump = 2 crouch = 3 # punches Apunch = 4 # soco fraco Bpunch = 5 # soco forte Cpunch = 6 # soco agachado fraco Dpunch = 7 # soco agachado forte: gancho # kicks Akick = 8 # chute fraco Bkick = 9 # chute forte Ckick = 10 # chute agachado fraco Dkick = 11 # chute agachado forte: banda # hits Ahit = 12 # soco fraco Bhit = 13 # chute fraco Chit = 14 # soco forte Dhit = 15 # chute agrachado fraco Ehit = 16 # soco agachado fraco Fhit = 17 # chute forte e soco forte agachado (gancho) Ghit = 18 # chute agachado forte: banda #Hhit = 19 # specialMove #fatalityHit = 20 # fatality hit # block Ablock = 19 Bblock = 20 # special move special = 21 # fatality fatality = 24 def __init__(self, id, scenario): self.fighterId = id self.name = self.fighterNames[id] self.move = self.fightMoves[id] self.combat = self.combatMoves[id] # Position self.x = 150+id*500 if scenario == 1: self.y = 350 elif scenario == 2: self.y = 370 elif scenario == 3: self.y = 400 elif scenario == 4: self.y = 370 elif scenario == 5: self.y = 380 elif scenario == 6: self.y = 380 elif scenario == 7: self.y = 360 elif scenario == 8: self.y = 395 # Loading sprites self.spriteList = [] # moves self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/dance.png', self.danceLimit)) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/walk.png', self.walkLimit)) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/jump.png', self.jumpLimit)) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/crouch.png', self.crouchLimit)) # Punch sprites self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Apunch.png', self.punchLimit[0])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Bpunch.png', self.punchLimit[1])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Cpunch.png', self.punchLimit[2])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Dpunch.png', self.punchLimit[3])) # Kick sprites self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Akick.png', self.kickLimit[0])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Bkick.png', self.kickLimit[1])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Ckick.png', self.kickLimit[2])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Dkick.png', self.kickLimit[3])) # Hit sprites self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Ahit.png', self.hitLimit[0])) # soco fraco self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Bhit.png', self.hitLimit[1])) # chute fraco self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Chit.png', self.hitLimit[2])) # soco forte self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Dhit.png', self.hitLimit[3])) # chute agrachado fraco self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Ehit.png', self.hitLimit[4])) # soco agachado fraco self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Fhit.png', self.hitLimit[5])) # chute forte e soco forte agachado (gancho) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Ghit.png', self.hitLimit[6])) # chute agachado forte: banda #self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Hhit.png', self.hitLimit[7])) # specialMove # blocking sprites self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Ablock.png', self.blockLimit)) # defesa em pé self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Bblock.png', self.blockLimit)) # defesa agachado # special sprite ---------------------------------- self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Special.png', self.specialLimit[self.fighterId])) # Especial self.act() def act(self): # Combat control combat = False block = False alive = False fatality = False dizzyCounter = 1 dizzyCounterAux = 1 fatalityCounter = 8 fatalityCounterAux = 1 # Control reflection var reflection = False # Dance vars self.dancing = True self.frame_dance = 0 self.dance_step = 1 # Walk vars self.frame_walk = 0 self.walking = False # Variável de status # Jump vars self.jumpHeight = 10 # Altura do pulo self.jumpCounter = 1 # Contador correspodente à subida e descida do pulo self.jumping = False # Variável de status self.frame_jumping = 0 self.jump_step = 1 self.end_jump = True # Crouch vars self.crouching = False # Variável de status self.frame_crouching = 0 self.crouch_step = 1 # Punch vars self.Apunching = False self.frame_Apunching = 0 self.Apunch_step = 1 self.end_Apunch = True self.Bpunching = False self.frame_Bpunching = 0 self.Bpunch_step = 1 self.end_Bpunch = True self.Cpunching = False self.frame_Cpunching = 0 self.Cpunch_step = 1 self.end_Cpunch = True self.Dpunching = False self.frame_Dpunching = 0 self.Dpunch_step = 1 self.end_Dpunch = True # Kick vars self.Akicking = False self.frame_Akicking = 0 self.Akick_step = 1 self.end_Akick = True self.Bkicking = False self.frame_Bkicking = 0 self.Bkick_step = 1 self.end_Bkick = True self.Ckicking = False self.frame_Ckicking = 0 self.Ckick_step = 1 self.end_Ckick = True self.Dkicking = False self.frame_Dkicking = 0 self.Dkick_step = 1 self.end_Dkick = True # Blocking vars self.Ablocking = False self.frame_Ablocking = 0 self.Ablock_step = 1 self.Bblocking = False self.frame_Bblocking = 0 self.Bblock_step = 1 # Special vars self.specialMove = False self.end_special = True self.frame_special = 0 self.special_step = 1 # Hit vars self.hit = False self.downHit = False self.hitName = "" self.Ahitting = False self.Bhitting = False self.Chitting = False self.Dhitting = False self.Ehitting = False self.Fhitting = False self.Ghitting = False self.Hhitting = False self.frame_Ahit = 0 self.frame_Bhit = 0 self.frame_Chit = 0 self.frame_Dhit = 0 self.frame_Ehit = 0 self.frame_Fhit = 0 self.frame_Ghit = 0 self.frame_Hhit = 0 self.hit_step = 1 # Life Vars X_inicio = 37 X_atual = X_inicio X_fim = X_inicio + 327 self.posFighter() def fight(self, time, nextFrame): frame_step = 60 if not self.jumping: # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> jump if keyPressed(self.move[0]) and not self.hit: self.jumping = True self.end_jump = False self.curr_sprite = self.spriteList[self.jump] # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> right elif keyPressed(self.move[3]) and not self.hit: self.curr_sprite = self.spriteList[self.walk] self.walking = self.setState() self.setEndState() self.x += 6 moveSprite(self.spriteList[self.walk], self.x, self.y, True) self.setSprite(self.spriteList[self.walk]) changeSpriteImage(self.spriteList[self.walk], self.frame_walk) if time > nextFrame: # There are 9 frames of animation in each direction self.frame_walk = (self.frame_walk+1) % self.walkLimit # so the modulus 9 allows it to loop nextFrame += frame_step # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> left elif keyPressed(self.move[2]) and not self.hit:# SEGUNDA MUDANÇA and not self.jumping: self.curr_sprite = self.spriteList[self.walk] self.walking = self.setState() self.setEndState() self.x -= 6 moveSprite(self.spriteList[self.walk], self.x, self.y, True) self.setSprite(self.spriteList[self.walk]) changeSpriteImage(self.spriteList[self.walk], self.walkLimit-1-self.frame_walk) if time > nextFrame: # There are 9 frames of animation in each direction self.frame_walk = (self.frame_walk+1) % self.walkLimit nextFrame += frame_step # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> crouch elif (keyPressed(self.move[1]) and not self.hit) or self.downHit: if self.end_Cpunch and self.end_Dpunch and self.end_Ckick and self.end_Dkick and not self.hit and not self.downHit: self.curr_sprite = self.spriteList[self.crouch] self.crouching = self.setState() self.setEndState() if time > nextFrame: if self.end_Cpunch and self.end_Dpunch and self.end_Ckick and self.end_Dkick and not self.hit and not self.downHit: moveSprite(self.spriteList[self.crouch], self.x, self.y, True) self.setSprite(self.spriteList[self.crouch]) changeSpriteImage(self.spriteList[self.crouch], self.frame_crouching) self.frame_crouching = (self.frame_crouching+self.crouch_step) % self.crouchLimit if self.frame_crouching == self.crouchLimit - 2: self.crouch_step = 0 # reset block (hold type) self.frame_bblocking = 0 self.bblock_step = 1 # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> crouch and jab if ( (keyPressed(self.combat[0]) and self.end_Cpunch) or (not self.end_Cpunch) ) and (not self.hit) and not self.downHit: self.curr_sprite = self.spriteList[self.Cpunch] self.Cpunching = self.setState() self.setEndState() self.end_Cpunch = False if time > nextFrame: moveSprite(self.spriteList[self.Cpunch], self.x, self.y, True) self.setSprite(self.spriteList[self.Cpunch]) changeSpriteImage(self.spriteList[self.Cpunch], self.frame_Cpunching) self.frame_Cpunching = (self.frame_Cpunching+self.Cpunch_step) % (self.punchLimit[2]+1) if (self.frame_Cpunching == self.punchLimit[2]-1): self.Cpunch_step = -1 if (self.frame_Cpunching == self.punchLimit[2]): self.frame_Cpunching = 0 self.Cpunch_step = 1 self.end_Cpunch = True # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> crouch and strong punch elif ( (keyPressed(self.combat[1]) and self.end_Dpunch) or ( not self.end_Dpunch) ) and (not self.hit) and not self.downHit: self.curr_sprite = self.spriteList[self.Dpunch] self.Dpunching = self.setState() self.setEndState() self.end_Dpunch = False if time > nextFrame: moveSprite(self.spriteList[self.Dpunch], self.x, self.y, True) self.setSprite(self.spriteList[self.Dpunch]) changeSpriteImage(self.spriteList[self.Dpunch], self.frame_Dpunching) self.frame_Dpunching = (self.frame_Dpunching+self.Dpunch_step) % (self.punchLimit[3]+1) if (self.frame_Dpunching == self.punchLimit[3]-1): self.Dpunch_step = -1 if (self.frame_Dpunching == self.punchLimit[3]): self.frame_Dpunching = 0 self.Dpunch_step = 1 self.end_Dpunch = True # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> crouch and kick elif ( (keyPressed(self.combat[2]) and self.end_Ckick) or ( not self.end_Ckick) ) and (not self.hit) and not self.downHit: self.curr_sprite = self.spriteList[self.Ckick] self.Ckicking = self.setState() self.end_Ckick = self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Ckick], self.x, self.y, True) self.setSprite(self.spriteList[self.Ckick]) changeSpriteImage(self.spriteList[self.Ckick], self.frame_Ckicking) self.frame_Ckicking = (self.frame_Ckicking+self.Ckick_step) % (self.kickLimit[2]+1) if (self.frame_Ckicking == self.kickLimit[2]-1): self.Ckick_step = -1 if (self.frame_Ckicking == self.kickLimit[2]): self.frame_Ckicking = 0 self.Ckick_step = 1 self.end_Ckick = True # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> Crouch and strong kick elif ( (keyPressed(self.combat[3]) and self.end_Dkick) or ( not self.end_Dkick) ) and (not self.hit) and not self.downHit: self.curr_sprite = self.spriteList[self.Dkick] self.Dkicking = self.setState() self.end_Dkick = self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Dkick], self.x, self.y, True) self.setSprite(self.spriteList[self.Dkick]) changeSpriteImage(self.spriteList[self.Dkick], self.frame_Dkicking) self.frame_Dkicking = (self.frame_Dkicking+self.Dkick_step) % self.kickLimit[3] if (self.frame_Dkicking == 0): self.end_Dkick = True #--------------Hit em agachado-------------------- #Hhit = 19 # specialMove #BblockHit = 21 hit agachado #Ehit = 16 # chute ou soco agachado fraco elif self.downHit and self.hitName == "Ehit": self.curr_sprite = self.spriteList[self.Ehit] self.Ehitting = self.setState() self.crouching = True moveSprite(self.spriteList[self.Ehit], self.x, self.y, True) self.setSprite(self.spriteList[self.Ehit]) changeSpriteImage(self.spriteList[self.Ehit], self.frame_Ehit) if time > nextFrame: self.frame_Ehit = (self.frame_Ehit+self.hit_step) % self.hitLimit[4] if (self.frame_Ehit == self.hitLimit[4] - 1): self.hit_step = -1 if (self.frame_Ehit == 0): self.hit_step = 1 self.downHit = False # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> defesa em pé elif keyPressed(self.combat[5]) and not self.hit and not self.downHit: self.curr_sprite = self.spriteList[self.Bblock] self.Bblocking = self.setState() self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Bblock], self.x, self.y, True) self.setSprite(self.spriteList[self.Bblock]) changeSpriteImage(self.spriteList[self.Bblock], self.frame_Bblocking) self.frame_Bblocking = (self.frame_Bblocking+self.Bblock_step) % self.blockLimit if self.frame_Ablocking == self.blockLimit - 2: self.Bblock_step = 0 #BblockHit = 21 hit agachado elif (self.downHit or self.hit) and self.hitName == "Bblocking": self.curr_sprite = self.spriteList[self.Bblock] self.Bblocking = self.setState() if time > nextFrame: moveSprite(self.spriteList[self.Bblock], self.x, self.y, True) self.setSprite(self.spriteList[self.Bblock]) changeSpriteImage(self.spriteList[self.Bblock], self.frame_Bblocking) self.frame_Bblocking = (self.frame_Bblocking+self.hit_step) % self.blockLimit if self.frame_Bblocking == self.blockLimit - 1: self.hit_step = -1 if self.frame_Bblocking == 1: self.hit_step = 1 self.hit = False nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> jab elif ((keyPressed(self.combat[0]) and self.end_Apunch) or ( not self.end_Apunch) ) and (not self.hit) : print("flag!") self.curr_sprite = self.spriteList[self.Apunch] self.Apunching = self.setState() self.setEndState() self.end_Apunch = False if time > nextFrame: moveSprite(self.spriteList[self.Apunch], self.x, self.y, True) self.setSprite(self.spriteList[self.Apunch]) changeSpriteImage(self.spriteList[self.Apunch], self.frame_Apunching) self.frame_Apunching = (self.frame_Apunching+self.Apunch_step) % (self.punchLimit[0]+1) if (self.frame_Apunching == self.punchLimit[0]-1): self.Apunch_step = -1 if (self.frame_Apunching == self.punchLimit[0]): self.frame_Apunching = 0 self.Apunch_step = 1 self.end_Apunch = True nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> strong punch elif ( (keyPressed(self.combat[1]) and self.end_Bpunch) or ( not self.end_Bpunch) ) and (not self.hit) : self.curr_sprite = self.spriteList[self.Bpunch] self.Bpunching = self.setState() self.end_Bpunch = self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Bpunch], self.x, self.y, True) self.setSprite(self.spriteList[self.Bpunch]) changeSpriteImage(self.spriteList[self.Bpunch], self.frame_Bpunching) self.frame_Bpunching = (self.frame_Bpunching+self.Bpunch_step) % self.punchLimit[1] if (self.frame_Bpunching == 0): self.end_Bpunch = True nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> kick elif ( (keyPressed(self.combat[2]) and self.end_Akick) or ( not self.end_Akick) ) and (not self.hit): self.curr_sprite = self.spriteList[self.Akick] self.Akicking = self.setState() self.end_Akick = self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Akick], self.x, self.y, True) self.setSprite(self.spriteList[self.Akick]) changeSpriteImage(self.spriteList[self.Akick], self.frame_Akicking) self.frame_Akicking = (self.frame_Akicking+self.Akick_step) % (self.kickLimit[0]+1) if (self.frame_Akicking == self.kickLimit[0]-1): self.Akick_step = -1 if (self.frame_Akicking == self.kickLimit[0]): self.frame_Akicking = 0 self.Akick_step = 1 self.end_Akick = True nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> strong kick elif ( (keyPressed(self.combat[3]) and self.end_Bkick) or ( not self.end_Bkick) ) and (not self.hit): self.curr_sprite = self.spriteList[self.Bkick] self.Bkicking = self.setState() self.end_Bkick = self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Bkick], self.x, self.y, True) self.setSprite(self.spriteList[self.Bkick]) changeSpriteImage(self.spriteList[self.Bkick], self.frame_Bkicking) self.frame_Bkicking = (self.frame_Bkicking+self.Bkick_step) % self.kickLimit[1] if (self.frame_Bkicking == 0): self.end_Bkick = True nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> defesa em pé elif keyPressed(self.combat[5]) and not self.hit: self.curr_sprite = self.spriteList[self.Ablock] self.Ablocking = self.setState() self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Ablock], self.x, self.y, True) self.setSprite(self.spriteList[self.Ablock]) changeSpriteImage(self.spriteList[self.Ablock], self.frame_Ablocking) self.frame_Ablocking = (self.frame_Ablocking+self.Ablock_step) % self.blockLimit if self.frame_Ablocking == self.blockLimit - 2: self.Ablock_step = 0 nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> special move elif ((keyPressed(self.combat[4]) and self.end_special) or ( not self.end_special) ) and (not self.hit): print("SpecialMove") self.curr_sprite = self.spriteList[self.special] self.specialMove = self.setState() self.setEndState() self.end_special = False if time > nextFrame: moveSprite(self.spriteList[self.special], self.x, self.y, True) self.setSprite(self.spriteList[self.special]) changeSpriteImage(self.spriteList[self.special], self.frame_special) self.frame_special = (self.frame_special+self.special_step) % (self.specialLimit[self.fighterId]+1) if (self.frame_special == self.specialLimit[self.fighterId]-1): self.special_step = -1 if (self.frame_special == self.specialLimit[self.fighterId]): self.frame_special = 0 self.special_step = 1 self.end_special = True nextFrame += 1*frame_step # just dance :) elif not self.hit: # reset block (hold type) self.frame_Ablocking = 0 self.Ablock_step = 1 # reset down (hold type) self.frame_crouching = 0 self.crouch_step = 1 # reset other movement self.frame_walk = self.frame_jumping = 0 # reset combat frames self.frame_Apunching = self.frame_Bpunching = self.frame_Cpunching = self.frame_Dpunching = self.frame_Akicking = self.frame_Bkicking = self.frame_Ckicking = self.frame_Dkicking = 0 self.setEndState() # start to dance self.curr_sprite = self.spriteList[self.dance] self.dancing = self.setState() if time > nextFrame: moveSprite(self.spriteList[self.dance], self.x, self.y, True) self.setSprite(self.spriteList[self.dance]) changeSpriteImage(self.spriteList[self.dance], self.frame_dance) self.frame_dance = (self.frame_dance+self.dance_step) % self.danceLimit if (self.frame_dance == self.danceLimit-1): self.dance_step = -1 if (self.frame_dance == 0): self.dance_step = 1 nextFrame += frame_step #--------------Hit em pé-------------------- #Hhit = 19 # specialMove #BblockHit = 21 hit agachado # Ouch! Punch on a face (Ahit = 12 # soco fraco) elif self.hit and self.hitName == "Apunching": self.curr_sprite = self.spriteList[self.Ahit] self.Ahitting = self.setState() moveSprite(self.spriteList[self.Ahit], self.x, self.y, True) self.setSprite(self.spriteList[self.Ahit]) changeSpriteImage(self.spriteList[self.Ahit], self.frame_Ahit) if time > nextFrame: self.frame_Ahit = (self.frame_Ahit+self.hit_step) % self.hitLimit[0] if (self.frame_Ahit == self.hitLimit[0] - 1): self.hit_step = -1 if (self.frame_Ahit == 0): self.hit_step = 1 self.hit = False nextFrame += 1.2*frame_step # Ouch! kick on a face (Bhit = 13 # chute fraco) elif self.hit and self.hitName == "Akicking": self.curr_sprite = self.spriteList[self.Bhit] self.Bhitting = self.setState() if self.fighterId == 0: self.x -=0.8 else: self.x +=0.8 moveSprite(self.spriteList[self.Bhit], self.x, self.y, True) self.setSprite(self.spriteList[self.Bhit]) changeSpriteImage(self.spriteList[self.Bhit], self.frame_Bhit) if time > nextFrame: # There are 8 frames of animation in each direction self.frame_Bhit = (self.frame_Bhit+self.hit_step) % self.hitLimit[1] if (self.frame_Bhit == self.hitLimit[1] - 1): self.hit_step = -1 if (self.frame_Bhit == 0): self.hit_step = 1 self.hit = False nextFrame += 1.2*frame_step # Ouch! combo punch (Chit = 14 # soco forte) elif self.hit and self.hitName == "Bpunching": self.curr_sprite = self.spriteList[self.Chit] self.Chitting = self.setState() if self.fighterId == 0: self.x -=2 else: self.x +=2 moveSprite(self.spriteList[self.Chit], self.x, self.y, True) self.setSprite(self.spriteList[self.Chit]) changeSpriteImage(self.spriteList[self.Chit], self.frame_Chit) if time > nextFrame: self.frame_Chit = (self.frame_Chit+self.hit_step) % self.hitLimit[2] if (self.frame_Chit == self.hitLimit[2] - 1): self.hit_step = -1 if (self.frame_Chit == 0): self.hit_step = 1 self.hit = False nextFrame += 1.2*frame_step #Dhit = 15 # soco agrachado fraco elif self.hit and self.hitName == "Cpunching": self.curr_sprite = self.spriteList[self.Dhit] self.Dhitting = self.setState() moveSprite(self.spriteList[self.Dhit], self.x, self.y, True) self.setSprite(self.spriteList[self.Dhit]) changeSpriteImage(self.spriteList[self.Dhit], self.frame_Dhit) if time > nextFrame: self.frame_Dhit = (self.frame_Dhit+self.hit_step) % self.hitLimit[3] if (self.frame_Dhit == self.hitLimit[3] - 1): self.hit_step = -1 if (self.frame_Dhit == 0): self.hit_step = 1 self.hit = False nextFrame += 1.2*frame_step #Fhit = 17 # chute forte e soco forte agachado (gancho) elif self.hit and self.hitName == "Bkicking": self.curr_sprite = self.spriteList[self.Fhit] self.Fhitting = self.setState() if self.frame_Fhit <= 6: if self.fighterId == 0: self.x -=5 else: self.x +=5 moveSprite(self.spriteList[self.Fhit], self.x, self.y, True) self.setSprite(self.spriteList[self.Fhit]) changeSpriteImage(self.spriteList[self.Fhit], self.frame_Fhit) if time > nextFrame: self.frame_Fhit = (self.frame_Fhit+self.hit_step) % self.hitLimit[5] if (self.frame_Fhit == self.hitLimit[5] - 1): self.hit = False nextFrame += 1.2*frame_step #Ghit = 18 # chute agachado forte: banda elif self.hit and self.hitName == "Dkicking": self.curr_sprite = self.spriteList[self.Ghit] self.Ghitting = self.setState() moveSprite(self.spriteList[self.Ghit], self.x, self.y, True) self.setSprite(self.spriteList[self.Ghit]) changeSpriteImage(self.spriteList[self.Ghit], self.frame_Ghit) if time > nextFrame: self.frame_Ghit = (self.frame_Ghit+self.hit_step) % self.hitLimit[6] if (self.frame_Ghit == self.hitLimit[6] - 1): self.hit = False nextFrame += 1.2*frame_step #blockHit! Defesa em pé. elif self.hit and self.hitName == "Ablocking": self.curr_sprite = self.spriteList[self.Ablock] self.Ablocking = self.setState() if time > nextFrame: moveSprite(self.spriteList[self.Ablock], self.x, self.y, True) self.setSprite(self.spriteList[self.Ablock]) changeSpriteImage(self.spriteList[self.Ablock], self.frame_Ablocking) self.frame_Ablocking = (self.frame_Ablocking+self.hit_step) % self.blockLimit if self.frame_Ablocking == self.blockLimit - 1: self.hit_step = -1 if self.frame_Ablocking == 1: self.hit_step = 1 self.hit = False nextFrame += 1*frame_step else: # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> jump if time > nextFrame: if keyPressed(self.move[2]): self.x -= 15 if keyPressed(self.move[3]): self.x += 15 moveSprite(self.spriteList[self.jump], self.x, self.y, True) self.setSprite(self.spriteList[self.jump]) self.y -= (self.jumpHeight-self.jumpCounter)*7 changeSpriteImage(self.spriteList[self.jump], self.frame_jumping) if (self.jumpCounter < self.jumpHeight -1 or self.jumpCounter > self.jumpHeight +1): # subindo ou descendo self.frame_jumping = 1 if (self.jumpHeight - 1 <= self.jumpCounter <= self.jumpHeight + 1): # quase parado self.frame_jumping = 2 if (self.jumpCounter == 2*self.jumpHeight-1): self.frame_jumping = 0 self.jumpCounter = -1 if clock() > nextFrame: self.setSprite(self.spriteList[self.jump]) changeSpriteImage(self.spriteList[self.jump], self.frame_jumping) moveSprite(self.spriteList[self.jump], self.x, self.y, True) self.end_jump = self.setState()# MUDANÇA self.jumping = self.setEndState() #MUDANÇA self.jumpCounter += 2 nextFrame += 1*frame_step for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() tick(120) return nextFrame def getX(self): return self.x def getY(self): return self.y def setX(self,X): self.x = X moveSprite(self.curr_sprite,self.x,self.y,True) def setY(self,Y): self.y = Y moveSprite(self.curr_sprite,self.x,self.y,True) def isWalking(self): return self.walking def isCrouching(self): return self.crouching def isDancing(self): return self.dancing def isApunching(self): return self.Apunching def isBpunching(self): return self.Bpunching def isCpunching(self): return self.Cpunching def isDpunching(self): return self.Dpunching def isAkicking(self): return self.Akicking def isBkicking(self): return self.Bkicking def isCkicking(self): return self.Ckicking def isDkicking(self): return self.Dkicking def isAblocking(self): return self.Ablocking def isHit(self): return self.hit def killPlayer(self): for i in range(0,len(self.spriteList)): killSprite(self.spriteList[i]) def currentSprite(self): return self.curr_sprite def takeHit(self,by): self.hit = True self.hitName = by def takeDownHit(self,by): self.downHit = True print("flag") self.hitName = by def stopHit(self): self.hit = False self.hitName = "" def setState(self): # moves self.walking = False self.dancing = False self.jumping = False self.crouching = False # punches self.Apunching = False self.Bpunching = False self.Cpunching = False self.Dpunching = False # kicks self.Akicking = False self.Bkicking = False self.Ckicking = False self.Dkicking = False # punch hits self.Ahitting = False self.Bhitting = False self.Chitting = False self.Dhitting = False self.Ehitting = False self.Fhitting = False self.Ghitting = False self.Hhitting = False # blocks self.Ablocking = False self.Bblocking = False # special move self.specialMove = False # fatality self.fatality = False # actual states return True def setEndState(self): self.end_jump = True self.end_Apunch = True self.end_Bpunch = True self.end_Cpunch = True self.end_Dpunch = True self.end_Akick = True self.end_Bkick = True self.end_Ckick = True self.end_Dkick = True self.end_special = True return False def setSprite(self,sprite): for i in range(0,len(self.spriteList)): if (not sprite == self.spriteList[i]): hideSprite(self.spriteList[i]) showSprite(sprite) def posFighter(self): for i in range(0,len(self.spriteList)): moveSprite(self.spriteList[i], self.x, self.y, True)
[ "matheusvidaldemenezes@gmail.com" ]
matheusvidaldemenezes@gmail.com
47433678731e79969ebc60e04c75a9ed7ad837c7
6e362245c5933cb89b636c7a7c853dd8bb1f52cc
/hardware/raspio_pro_hat/pulse_rgbled.py
2ed9dbd2c202d90acf7bd8fb0d255679a829b3a9
[ "MIT" ]
permissive
iidylsnicc/raspi_code
4133ab5ba6093ae40c19284259792cc9e6019ac3
ee089b8eae29dd4ddf8d45e101affa1e8c5efca4
refs/heads/master
2023-08-17T04:31:39.413107
2021-09-20T18:00:32
2021-09-20T18:00:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
570
py
from gpiozero import RGBLED from time import sleep led = RGBLED(red=17, green=18, blue=19) delay = 0.02 while True: for x in range(100): led.red = x/100 sleep(delay) for x in range(100, -1, -1): led.red = x/100 sleep(delay) for x in range(100): led.green = x/100 sleep(delay) for x in range(100, -1, -1): led.green = x/100 sleep(delay) for x in range(100): led.blue = x/100 sleep(delay) for x in range(100, -1, -1): led.blue = x/100 sleep(delay)
[ "github@cfmacrae.fastmail.co.uk" ]
github@cfmacrae.fastmail.co.uk
309dcb9d3ae4eb56482f54d31c6b2d71bef2c8dc
d279d30912212aea1b0f9b6d71032748f91b8f17
/src/message_tests/message_edit_test.py
8014fe7b3a8eadee0ee545410f51dfa1414e9903
[]
no_license
HeadYak/comp1531-flock
3c51300d5957ff8299902204a566b9f0728bcbca
7e4082a21e3ab68b46376e18481eff3bad00bb3a
refs/heads/master
2023-04-14T19:41:15.693088
2020-11-15T06:10:51
2020-11-15T06:10:51
365,741,010
1
0
null
null
null
null
UTF-8
Python
false
false
2,222
py
''' Nessacary imports ''' import pytest from channel import channel_join from message import message_send, message_edit from channels import channels_create from auth import auth_register from error import AccessError from other import clear from global_data import channels def test_message_edit(): ''' Testing message_send function ''' clear() #Creating users to create channels user1 = auth_register("user1@gmail.com", "user1pass", "user1", "last1", None) user2 = auth_register("user2@gmail.com", "user2pass", "user2", "last2", None) token1 = user1['token'] token2 = user2['token'] #creating channels ch_id1 = channels_create(token1, "aGreatChannel", True)['channel_id'] ch_id2 = channels_create(token2, "yetAnotherChannel", True)['channel_id'] #creating channel messages m_id1 = message_send(token1, ch_id1, 'hello')['message_id'] message_send(token1, ch_id1, 'hey') m_id3 = message_send(token2, ch_id2, "hello")['message_id'] message_send(token2, ch_id2, "hello") message_send(token2, ch_id2, "hello") channel_join(token1, ch_id2) m_id4 = message_send(token1, ch_id2, "hello")['message_id'] with pytest.raises(AccessError): #user did not created message and isnt an owner message_edit(token2, m_id1, "message") #user editing thier own message message_edit(token1, m_id1, "newMessage") #owner of channel editing another users message/ empty string test message_edit(token2, m_id4, "") #owner of flcok editing a antoher users message message_edit(token1, m_id3, "yoooo") #checking old message is replaves by new message found = False for channel in channels: if channel['channel_id'] == ch_id1: for msg in channel['messages']: if msg['message_id'] == m_id1: assert msg['message'] == "newMessage" if msg['message_id'] == m_id4: assert msg['message'] == "" found = True if msg['message_id'] == m_id3: assert msg['message'] == "yoooo" #checking if string given is empty the message is removed assert found == False
[ "z5257072@cse.unsw.edu.au" ]
z5257072@cse.unsw.edu.au
527af3a4e7634240faba6c5b05c3ee119377049a
f20e531a213f6892991653e7c6f2288f07c15f9c
/test/test_districtadmins_deleted.py
63bb48496a9567e2c7f865ef52ab99501a91d8d2
[ "Apache-2.0", "MIT" ]
permissive
Clever/clever-python
54ec744ef997d2c739ea056ae223aa35ef487876
c123d339f9af16aa32405cdf4051ad4afbdc5bd2
refs/heads/master
2022-07-09T11:33:03.804757
2022-06-24T01:38:24
2022-06-24T01:38:24
7,064,597
18
21
Apache-2.0
2022-06-24T01:38:35
2012-12-08T06:12:45
Python
UTF-8
Python
false
false
867
py
# coding: utf-8 """ Clever API The Clever API OpenAPI spec version: 2.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import clever from clever.rest import ApiException from clever.models.districtadmins_deleted import DistrictadminsDeleted class TestDistrictadminsDeleted(unittest.TestCase): """ DistrictadminsDeleted unit test stubs """ def setUp(self): pass def tearDown(self): pass def testDistrictadminsDeleted(self): """ Test DistrictadminsDeleted """ # FIXME: construct object with mandatory attributes with example values #model = clever.models.districtadmins_deleted.DistrictadminsDeleted() pass if __name__ == '__main__': unittest.main()
[ "amelia.jones@clever.com" ]
amelia.jones@clever.com
cb78f9c09bc5a9f6ff2a1f449e9edcce8749ea83
ce469cd389c8bbcd80a167bbc03da4d68e1988f5
/views/api.py
08e51b99b00d1ec92d596c473c637d5a735118cc
[]
no_license
dhydrated/kan-banana-web
7189ecab6092ab105d79bb0817b7921e49280e78
87418d2f5fcdd62e63b0f1284cc078945f404ef6
refs/heads/master
2021-01-10T22:01:28.497874
2012-11-15T11:11:01
2012-11-15T11:11:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
999
py
import webapp2 import logging from google.appengine.api import urlfetch from template_engine import TemplateEngine class API(webapp2.RequestHandler): def put(self): logging.debug('request: %s', self.request) response = urlfetch.fetch('http://kan-banana.appspot.com/project', payload=self.request.body, method='PUT', headers={'Content-Type':'application/json'}, allow_truncated=False, follow_redirects=True, deadline=60, validate_certificate=None) logging.debug('response: %s', response.content) self.response.out.write(response.content) def get(self): template_engine = TemplateEngine() self.response.out.write(template_engine.render('main.html', []))
[ "dhydrated@gmail.com" ]
dhydrated@gmail.com
12c3b876d4a666adb377f0019f3af6e7e7c3f34f
c0e279a689a29bd69a22463c6e32d56069005c8c
/2016-10-21/workshop_02.py
d60f87b6e78f45315bba5f34c60cd0059e9784ba
[]
no_license
RinaldoBuratti/ggpl
f1f41d9afc219f35d57c45d7dc0443ec9ff94a6a
fb603002215a4af866e8bf1f0065662c38de4104
refs/heads/master
2020-05-23T06:23:37.399426
2017-01-31T17:55:28
2017-01-31T17:55:28
70,234,002
0
0
null
null
null
null
UTF-8
Python
false
false
7,938
py
from pyplasm import * from larlib import * import csv def search(string, char): """ Function to search a character in a string Args: string: a string in which we have to find the character char char: a character Returns: An index corresponding to the position of the character within the string """ index = 0 while index < len(string): if string[index] == char: return index index = index + 1 return -1 def loadDataFromCsv(string): """ Function to load the contenct of a csv file Returns: A set of element's list """ with open(string,'r') as f: dati=csv.reader(f, delimiter=':', quotechar=' ') #my_list = map(tuple, dati) frameDistances = [] #per la traslazione sull'asse x yDistances = [] #per la traslazione sull'asse y zDistances = [] #per la traslazione sull'asse z beamsSections = [] beamsDistances = [] pillarsSections = [] pillarsDistances = [] for line in dati: if(len(line) == 1): s = line[0] frameDistances.extend([float(s[0:search(s,",")])]) s = s[search(s,",")+1:len(s)] yDistances.extend([float(s[0:search(s,",")])]) zDistances.extend([float(s[search(s,",")+1:len(s)])]) else: pillarsDistances.append(line[0]) beamsDistances.append(line[1]) pillarsSections.append(line[2]) beamsSections.append(line[3]) tmp = [] for i in range (0, len(pillarsDistances)): el2 = [] for j in range (0, len(pillarsDistances[i])): if(j%2 == 0): el2.extend([float(pillarsDistances[i][j])]) tmp.append(el2) pillarsDistances = tmp tmp = [] for i in range (0, len(beamsDistances)): el2 = [] for j in range (0, len(beamsDistances[i])): if(j%2 == 0): el2.extend([float(beamsDistances[i][j])]) tmp.append(el2) beamsDistances = tmp ps= [] val = search(pillarsSections[0], ",") for i in range(0,len(pillarsSections)): tmp = pillarsSections[i] px = float(tmp[0:val]) py = float(tmp[val+1:len(tmp)]) p = (px,py) ps.append(p) pillarsSections = ps bs= [] val = search(beamsSections[0], ",") for i in range(0,len(beamsSections)): tmp = beamsSections[i] bx = float(tmp[0:val]) by = float(tmp[val+1:len(tmp)]) b = (bx,by) bs.append(b) beamsSections = bs return (pillarsDistances, beamsDistances, pillarsSections, beamsSections, frameDistances) def buildFrame(beamSection, pillarSection, pillarDistances, beamDistances) : """ Creates a parametric frame in reinforced concrete Args: :param beamSize: given dimensions of beam section :param pillarSize: given dimensions of pillar section :param beamDistances: distances between axes of the pillars :param pillarDistances: interstory heights Returns: 3D value of type HPC representing a single frame of the building """ (bx, bz) = beamSection (px, py) = pillarSection #pillar creation pillarX = [] for i in range(0, len(pillarDistances)): pillarX.extend([py, -pillarDistances[i]]) pillarX.extend([py]) pillarY = [] for i in range(0, len(beamDistances)): pillarY.extend([beamDistances[i], -bz]) pillarSimple = PROD([QUOTE(pillarX), QUOTE(pillarY)]) pillarComplete = PROD([pillarSimple, Q(px)]) #beam creations beamX = [] for i in range(0, len(pillarDistances)): if i == 0 or i == len(pillarDistances) - 1 : beamSize = pillarDistances[i] + py + py/2.0 else: beamSize = pillarDistances[i] + py beamX.extend([beamSize]) beamY = [] for i in range(0, len(beamDistances)): beamY.extend([-beamDistances[i], bz]) beamSimple = PROD([QUOTE(beamX), QUOTE(beamY)]) beamComplete = PROD([beamSimple, Q(bx)]) structure = STRUCT([pillarComplete, beamComplete]) structure = R([1,2])(PI/2.0)(structure) return R([1,3])(-PI/2.0)(structure) def buildAllFrames(beamSection, pillarSection, pillarDistances, beamDistances, frameDistances) : """ Build multiple frames Args: :param beamSize: given dimensions of beam section :param pillarSize: given dimensions of pillar section :param beamDistances: distances between axes of the pillars :param pillarDistances: interstory heights :param frameDistances: distances between frames Returns: 3D value of type HPC representing the frames of the building """ allFrames = [] framesHeight = [] framesWidth = [] for i in range(0, len(frameDistances)): temp = 0 currentPillarDistances = pillarDistances[i] currentBeamDistances = beamDistances[i] for j in range(0, len(currentBeamDistances)): temp = temp + currentBeamDistances[j] framesHeight.extend([temp]) temp = 0 for j in range(0, len(currentPillarDistances)): temp = temp + currentPillarDistances[j] framesWidth.extend([temp]) currentPillarSection = pillarSection[i] currentBeamSection = beamSection[i] frame = buildFrame(currentBeamSection, currentPillarSection, currentPillarDistances, currentBeamDistances) allFrames.extend([T(1) (frameDistances[i]), frame]) return (STRUCT(allFrames), framesHeight, framesWidth) def buildBeamsBetweenFrames(beamSection, pillarSection, pillarDistances, beamDistances, frameDistances, heights, widths): """ Build beams between frames Args: :param beamSize: given dimensions of beam section :param pillarSize: given dimensions of pillar section :param beamDistances: distances between axes of the pillars :param pillarDistances: interstory heights :param frameDistances: distances between frames Returns: 3D value of type HPC representing the internal beams of the building """ planes = [] dist = 0 for j in range(0, len(frameDistances)-1): minHeight = 0 if(heights[j] <= heights[j+1]): minHeight = j else: minHeight = j+1 minWidth = 0 if(widths[j] <= widths[j+1]): minWidth = j else: minWidth = j+1 (by, bz) = beamSection[minHeight] (px, py) = pillarSection[minWidth] bx = frameDistances[j+1] yDistances = pillarDistances[minWidth] zDistances = beamDistances[minHeight] if(j == 0): dist = px el = PROD([Q(bx), Q(by)]) el = PROD([el, Q(bz)]) el = STRUCT([el]) tmp = [] for i in range(0, len(yDistances)): tmp.extend([el, T(2)(yDistances[i]+py)]) tmp.extend([el]) tmp = STRUCT(tmp) floors = [] pred = 0 for i in range(0, len(zDistances)): floors.extend([T(3)(zDistances[i] + pred), tmp]) pred = bz floors = STRUCT(floors) planes.extend([T(1)(dist), floors]) dist = bx planes = STRUCT(planes) return planes def ggpl_bone_structure(filename): """ creates a bone structure of a building Args: :param filename: the name of a .csv file that contais input values Returns: 3D value of type HPC representing the bone structure of a building """ values = loadDataFromCsv(filename) beamSection = values[3] pillarSection = values[2] pillarDistances = values[0] beamDistances = values[1] frameDistances = values[4] (allFrames, heights, widths) = buildAllFrames(beamSection, pillarSection, pillarDistances, beamDistances, frameDistances) allBeams = buildBeamsBetweenFrames(beamSection, pillarSection, pillarDistances, beamDistances, frameDistances, heights, widths) structure = buildStructure(allFrames, allBeams) return structure def buildStructure(frames, floorsBeams): structure = STRUCT([frames, floorsBeams]) return structure if __name__ == "__main__": structure = ggpl_bone_structure('frame_data_438537.csv') VIEW(structure)
[ "rinaldoburatti@gmail.com" ]
rinaldoburatti@gmail.com
333121f2cc279a1bf0888d6748253b0b79d00f6d
9f826b53122cba44a30bf41c3c610f40a2100457
/employee.py
a0d4db1d26b005a1258fa72f911f3aeec534b11b
[]
no_license
sai444/nkcbackup
2f76adea23023b61a74f1c6aaca323d360946fcd
4d691f8e221c1aa2dfe655cd30269dcab9de0150
refs/heads/main
2023-06-28T11:01:56.380565
2021-07-21T07:08:37
2021-07-21T07:08:37
388,026,412
0
0
null
null
null
null
UTF-8
Python
false
false
199
py
from flask import jsonify, Blueprint employee_api = Blueprint('employee_api', __name__) @employee_api.route("/employee") def employee(): return jsonify({"msg": "Im in employee file"})
[ "31222470+sai444@users.noreply.github.com" ]
31222470+sai444@users.noreply.github.com
a26b75d618b32140ec9d1bc5934a9358f20d796b
932ca541a9c0ec65522777a3b4d14ae50ec6f668
/Desktop/Deep-learning/project_1/train2.py
71a77b138eb2d8e234fd83553e2b326eabb68cc8
[]
no_license
Khuongb1609777/text-recognition
e5e9c733052b86f57371b5dd25481c2ab9538b95
67b51d9f9fa074f1589c5e61f6d47e7bd7e92779
refs/heads/master
2022-12-16T06:23:20.632386
2020-09-16T02:36:54
2020-09-16T02:36:54
295,902,883
0
0
null
null
null
null
UTF-8
Python
false
false
16,166
py
import cv2 as cv2 import os import numpy as np import glob from skimage.feature import hog from sklearn.svm import LinearSVC from keras.datasets import mnist from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt from tkinter import * # loading Python Imaging Library from PIL import ImageTk, Image # To get the dialog box to open when required from tkinter import filedialog def get_digit_data(path):#:, digit_list, label_list): digit_list = [] label_list = [] for number in range(12): for img_org_path in glob.iglob(path + str(number) + '/*.jpg'): img = cv2.imread(img_org_path, 0) img = np.array(img) digit_list.append(img) label_list.append(int(number)) return digit_list,label_list #lấy dữ liệu train digit_path_train = "Desktop/data_svm_train/" digit_list, label_list = get_digit_data(digit_path_train) X_train = np.array(digit_list, dtype=np.float32) y_train = np.array(label_list) #lấy dữ liệu test digit_path_test = "Desktop/data_svm_test/" digit_list, label_list = get_digit_data(digit_path_test) X_test = np.array(digit_list, dtype=np.float32) y_test = np.array(label_list) # Rút trích đặc trưng cho tập train # Giai thích tham số: # pixels_per_cell là kích thước của 1 cell (đơn vị pixel) # pixels_per_cell = 5,5 trên ảnh 60,30 vậy là có 6 * 12 = 72 cell #-------------------------------------------------------------------------- # # Rút trích đặt trưng chp tập train # X_train_feature = [] # for i in range(len(X_train)): # feature = hog(X_train[i],orientations=9,pixels_per_cell=(5,5),cells_per_block=(1,1),block_norm="L2") # X_train_feature.append(feature) # X_train_feature = np.array(X_train_feature,dtype = np.float32) # # Rút trích đặc trưng cho tập test # X_test_feature = [] # for i in range(len(X_test)): # feature = hog(X_test[i],orientations=9,pixels_per_cell=(5,5),cells_per_block=(1,1),block_norm="L2") # X_test_feature.append(feature) # X_test_feature = np.array(X_test_feature,dtype=np.float32) #-------------------------------------------------------------------------- # Hàm rút trích đặc trưng import cv2 as cv2 import os import numpy as np import glob from skimage.feature import hog from sklearn.svm import LinearSVC from keras.datasets import mnist from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt def get_digit_data(path):#:, digit_list, label_list): digit_list = [] label_list = [] for number in range(12): for img_org_path in glob.iglob(path + str(number) + '/*.jpg'): img = cv2.imread(img_org_path, 0) img = np.array(img) digit_list.append(img) label_list.append(int(number)) return digit_list,label_list #lấy dữ liệu train digit_path_train = "./data_svm_train/" digit_list, label_list = get_digit_data(digit_path_train) X_train = np.array(digit_list, dtype=np.float32) y_train = np.array(label_list) #lấy dữ liệu test digit_path_test = "./data_svm_test/" digit_list, label_list = get_digit_data(digit_path_test) X_test = np.array(digit_list, dtype=np.float32) y_test = np.array(label_list) #-------------------------------------------------------------------------- # # Rút trích đặt trưng chp tập train # X_train_feature = [] # for i in range(len(X_train)): # feature = hog(X_train[i],orientations=9,pixels_per_cell=(5,5),cells_per_block=(1,1),block_norm="L2") # X_train_feature.append(feature) # X_train_feature = np.array(X_train_feature,dtype = np.float32) # # Rút trích đặc trưng cho tập test # X_test_feature = [] # for i in range(len(X_test)): # feature = hog(X_test[i],orientations=9,pixels_per_cell=(5,5),cells_per_block=(1,1),block_norm="L2") # X_test_feature.append(feature) # X_test_feature = np.array(X_test_feature,dtype=np.float32) #-------------------------------------------------------------------------- # Hàm rút trích đặc trưng def feature(x): X_feature = [] if len(x.shape) == 2: feature = hog(x,orientations=9,pixels_per_cell=(5,5),cells_per_block=(1,1),block_norm="L2") X_feature.append(feature) else: for i in range(len(x)): feature = hog(x[i],orientations=9,pixels_per_cell=(5,5),cells_per_block=(1,1),block_norm="L2") X_feature.append(feature) X_feature = np.array(X_feature) return (X_feature) # Hàm dự đoán nhãn def predict(x): X_feature = feature(x) y_pred = model.predict(X_feature) return (y_pred) # Lấy ra các đặc trưng của tập X_train và X_test X_train_feature = feature(X_train) X_test_feature = feature(X_test) # Import model model = LinearSVC(C=10) # Xây dựng mô hình model.fit(X_train_feature,y_train) # Dự đoán nhãn cho tập X_test y_predict = model.predict(X_test_feature) # In ra độ chính xác print(accuracy_score(y_test,y_predict)) def get_digit_predicted(image): im_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) im,thre = cv2.threshold(im_gray,90,255,cv2.THRESH_BINARY_INV) # Tìm các contours contours,hierachy = cv2.findContours(thre,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) # Tìm 3 contours có diện tích lớn nhất area_cnt = [cv2.contourArea(cnt) for cnt in contours] area_sort = np.argsort(area_cnt)[::-1] area_sort_3 = area_sort[:3] contours_3 = [] for i in area_sort_3: contours_3.append(contours[i]) # Tìm tọa độ boudingRect của các contours rects = [cv2.boundingRect(cnt) for cnt in contours_3] # Sắp xếp contours từ trái sang phải dựa vào tọa độ X contours_LTR = [] rects_sort = sorted(rects) for i in range(len(rects_sort)): for j in range(len(rects)): if rects_sort[i] == rects[j]: contours_LTR.append(contours_3[j]) # react_LTR là x,y,w,h tương ứng tọa độ, rộng và cao của các bounding box rects_LTR = [cv2.boundingRect(cnt) for cnt in contours_LTR] contours = contours_LTR # Tạo danh sách lưu số và dấu list_digit = [] # Duyệt qua các contours xác định nhãn for i in range(len(contours)): # Hàm vẽ boundingbox hình chữ nhật bao quanh contours # X,Y là tọa độ góc trên bên trái của hcn (x,y,w,h) = cv2.boundingRect(contours[i]) h = h + 6 w = w + 6 x = x - 3 y = y - 3 # Tại đây em tăng y giảm x để góc trên tách lên 1 ít, tránh khi vẽ bị cho hình # Tăng h và w để có boundingbox rộng hơn cv2.rectangle(image,(x,y),(x+w,y+h),(255,0,0),2) # Hàm vẽ bounding box roi = thre[y:y+h,x:x+w] # thre tạo ra 1 matran roi = np.pad(roi,(20,20),'constant',constant_values=(0,0)) roi = cv2.resize(roi, (60, 30), interpolation=cv2.INTER_AREA) roi = cv2.dilate(roi, (3, 3)) # rút trích đặc trưng cho contour roi_hog_fd = hog(roi, orientations=9, pixels_per_cell=(5, 5), cells_per_block=(1, 1),block_norm="L2") nbr = model.predict(np.array([roi_hog_fd], np.float32)) list_digit.append(int(nbr[0])) kytu = "" if list_digit[i] == 10: kytu = '+' elif list_digit[i] == 11: kytu = '-' else: kytu = str(int(list_digit[i])) cv2.putText(image, kytu, (x, y),cv2.FONT_HERSHEY_DUPLEX, 2, (0, 0, 255), 3) return list_digit # Lấy toán hạng và dấu def get_operation(image): list_digit = get_digit_predicted(image) toanhang = [] pheptoan = [] for digit in list_digit: if digit == 10: pheptoan.append('+') elif digit == 11: pheptoan.append('-') else: toanhang.append(digit) return toanhang,pheptoan # Hàm tính kết quả def kq(image): toanhang,pheptoan = get_operation(image) error = [] ketqua = 0 # Xác định xem có nhận được phép toán và toán hạng hay không if len(pheptoan) < 1 : error.append("Không nhận được dấu") elif len(pheptoan) > 1 : error.append("Nhận nhiều hơn 1 dấu") elif len(toanhang) > 2: error.append("Nhận nhiều hơn 2 toán tử") elif len(toanhang) < 2: error.append("Nhận ít hơn 2 toán tử") else: if pheptoan[0] == "+": ketqua = ketqua + ( toanhang[0] + toanhang[1]) elif pheptoan[0] == "-": ketqua = ketqua + ( toanhang[0] - toanhang[1]) return error,ketqua # Hàm lấy ra vị trí để vẽ # Hàm này lấy ra tọa độ, sau đó lấy toạn độ x + 200 để vẽ kết quả def get_location(image): im_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) im,thre = cv2.threshold(im_gray,90,255,cv2.THRESH_BINARY_INV) # Tìm các contours contours,hierachy = cv2.findContours(thre,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) # Tìm 3 contours có diện tích lớn nhất area_cnt = [cv2.contourArea(cnt) for cnt in contours] area_sort = np.argsort(area_cnt)[::-1] area_sort[:3] contours_3 = [] for i in area_sort: contours_3.append(contours[i]) # Tìm tọa độ boudingRect của các contours rects = [cv2.boundingRect(cnt) for cnt in contours_3] # Sắp xếp contours từ trái sang phải dựa vào tọa độ X contours_LTR = [] rects_sort = sorted(rects) for i in range(len(rects_sort)): for j in range(len(rects)): if rects_sort[i] == rects[j]: contours_LTR.append(contours_3[j]) # Lấy toạn độ x,y chiều rộng w và chiều cao h của các boundingbox rects_LTR = [cv2.boundingRect(cnt) for cnt in contours_LTR] return rects_LTR # Hàm hiển thị ảnh có kết quả def show(image): error,ketqua = kq(image) rects_LTR = get_location(image) if len(error) != 0: x = rects_LTR[2][0] + 160 y = rects_LTR[1][1] kytu = "error" cv2.putText(image, kytu, (x, y),cv2.FONT_HERSHEY_DUPLEX, 2, (0, 0, 255), 3) else: x1 = rects_LTR[2][0] + 300 y1 = rects_LTR[1][1] x2 = x1 + 60 y2 = y1 cv2.putText(image, "=", (x1, y1),cv2.FONT_HERSHEY_DUPLEX, 2, (0, 0, 255), 3) cv2.putText(image, str(int(ketqua)), (x2, y2),cv2.FONT_HERSHEY_DUPLEX, 2, (0, 0, 255), 3) return image def main(image): img = show(image) cv2.imshow("im",img) cv2.waitKey() # Lấy toán hạng và dấu def get_operation(image): list_digit = get_digit_predicted(image) toanhang = [] pheptoan = [] for digit in list_digit: if digit == 10: pheptoan.append('+') elif digit == 11: pheptoan.append('-') else: toanhang.append(digit) return toanhang,pheptoan # Hàm tính kết quả def kq(image): toanhang,pheptoan = get_operation(image) error = [] ketqua = 0 # Xác định xem có nhận được phép toán và toán hạng hay không if len(pheptoan) < 1 : error.append("Không nhận được dấu") elif len(pheptoan) > 1 : error.append("Nhận nhiều hơn 1 dấu") elif len(toanhang) > 2: error.append("Nhận nhiều hơn 2 toán tử") elif len(toanhang) < 2: error.append("Nhận ít hơn 2 toán tử") else: if pheptoan[0] == "+": ketqua = ketqua + ( toanhang[0] + toanhang[1]) elif pheptoan[0] == "-": ketqua = ketqua + ( toanhang[0] - toanhang[1]) return error,ketqua # Hàm lấy ra vị trí để vẽ # Hàm này lấy ra tọa độ, sau đó lấy toạn độ x + 200 để vẽ kết quả def get_location(image): im_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) im,thre = cv2.threshold(im_gray,90,255,cv2.THRESH_BINARY_INV) # Tìm các contours contours,hierachy = cv2.findContours(thre,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) # Tìm 3 contours có diện tích lớn nhất area_cnt = [cv2.contourArea(cnt) for cnt in contours] area_sort = np.argsort(area_cnt)[::-1] area_sort[:3] contours_3 = [] for i in area_sort: contours_3.append(contours[i]) # Tìm tọa độ boudingRect của các contours rects = [cv2.boundingRect(cnt) for cnt in contours_3] # Sắp xếp contours từ trái sang phải dựa vào tọa độ X contours_LTR = [] rects_sort = sorted(rects) for i in range(len(rects_sort)): for j in range(len(rects)): if rects_sort[i] == rects[j]: contours_LTR.append(contours_3[j]) # Lấy toạn độ x,y chiều rộng w và chiều cao h của các boundingbox rects_LTR = [cv2.boundingRect(cnt) for cnt in contours_LTR] return rects_LTR # Hàm hiển thị ảnh có kết quả def show(image): error,ketqua = kq(image) rects_LTR = get_location(image) if len(error) != 0: x = rects_LTR[2][0] + 160 y = rects_LTR[1][1] kytu = "error" cv2.putText(image, kytu, (x, y),cv2.FONT_HERSHEY_DUPLEX, 2, (0, 0, 255), 3) else: x1 = rects_LTR[2][0] + 300 y1 = rects_LTR[1][1] x2 = x1 + 60 y2 = y1 cv2.putText(image, "=", (x1, y1),cv2.FONT_HERSHEY_DUPLEX, 2, (0, 0, 255), 3) cv2.putText(image, str(int(ketqua)), (x2, y2),cv2.FONT_HERSHEY_DUPLEX, 2, (0, 0, 255), 3) return image,ketqua def main(image): img,ketqua = show(image) # error,result = kq(img) # if len(error) == 0: # print("Kết quả của phép toán: ",result) # else: # print("error: ",error) # cv2.imshow("im",img) # cv2.waitKey() return (img,ketqua) # Giao diện # ---------------------------------------------------------------------------------------- # Tạo cửa sổ upload root = Tk() # Đặt tiêu đề chp hình tải lên root.title("Image Loader") # Thiết lập độ phân giải root.geometry("1024x512") # Cho phép thay đổi kích thước, giống như root.resizable(width = True, height = True) def open_img_predict(): # Select the Imagename from a folder x = openfilename() img = cv2.imread(x) img,ketqua = main(img) img = Image.fromarray(img) #CHuyen image np array to PIL image # # opens the image # img = Image.open(x) # # # resize the image and apply a high-quality down sampling filter img = img.resize((512, 256), Image.ANTIALIAS) # # PhotoImage class is used to add image to widgets, icons etc img = ImageTk.PhotoImage(img) # print(img) # create a label panel = Label(root, image = img) # # set the image as img panel.image = img panel.grid(row = 4) def open_img(): # Select the Imagename from a folder x = openfilename() img = cv2.imread(x) # opens the image img = Image.open(x) # # resize the image and apply a high-quality down sampling filter img = img.resize((512, 256), Image.ANTIALIAS) # print(img) # # PhotoImage class is used to add image to widgets, icons etc img = ImageTk.PhotoImage(img) # print(img) # create a label panel = Label(root, image = img) # # set the image as img panel.image = img panel.grid(row = 4) def openfilename(): # open file dialog box to select image # The dialogue box has a title "Open" filename = filedialog.askopenfilename(title ='"pen') # print(filename) return filename # Create a button and place it into the window using grid layout btn = Button(root, text ='open image', command = open_img).grid(row = 1, columnspan = 4) btn_2 = Button(root, text = 'predict', command = open_img_predict).grid(row = 3, columnspan = 4) root.mainloop() # img = cv2.imread("./data_svm_new/3cong8.jpg") # # cv2.imshow("im",img) # # cv2.waitKey() # main(img)
[ "khuong3493455@gmail.com" ]
khuong3493455@gmail.com
5d22b9accad63d48c5d37b3da688b2eb233b0256
580ed1224a2635893324cc8bb292b73ea8e833c7
/udp_server.py
3ac0237e90a651e67a4ff9d7c0daa2f6273886e6
[ "MIT" ]
permissive
mytianya/python-scripts
661a48c4114f34be418da3ee4cb3e41a025bb938
8f94c5549486494de43c41fda24a039fd4b7b7e5
refs/heads/master
2023-07-21T05:45:22.194397
2021-08-27T09:28:44
2021-08-27T09:28:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
343
py
''' 创建一个udp服务器 ''' from socketserver import BaseRequestHandler,UDPServer class TimeHandler(BaseRequestHandler): def handle(self): print('客户端地址:',self.client_address) msg,sock=self.request print(msg) if __name__=='__main__': serv=UDPServer(('',9111),TimeHandler) serv.serve_forever()
[ "dsyslove@163.com" ]
dsyslove@163.com
71868391ab4ff3d83072fcfbfc7ab3faab8917e7
6a16b796c788d2ee9b54684b0ee30ea146a29aa3
/columnApplet/columnApplet.pyde
2206a454ca0c6263580661e48efd8d5ccddc4906
[]
no_license
dbt-ethz/MASdfab1819
8b7d574afdd35f21e88de379f0824321e86223df
bc84112187b65f9ae692f27ffe6e503aa7078d53
refs/heads/master
2020-03-27T10:50:58.491849
2019-03-28T23:01:47
2019-03-28T23:01:47
146,448,900
1
0
null
null
null
null
UTF-8
Python
false
false
4,153
pyde
add_library('peasycam') add_library('controlP5') import math, datetime import engineSineSubdiv as engine import gui as gui import mola.io as io import mola.slicer as slicer import mola.renderP5 as renderer import mola.color as coloriser def setup(): global sliceZ,pshapeSlice,guiDimX guiDimX=400 pshapeSlice=None sliceZ=0 size(1600, 900, P3D) #fullScreen(P3D) gui.cam = PeasyCam(this,350) gui.cp5 = ControlP5(this) gui.cp5.setAutoDraw(False) gui.initialize() engine.initialize() update() def draw(): if gui.bExport.getValue(): io.exportOBJ(engine.column,sketchPath()+'/data/mesh_exp1.obj') println("exported") gui.bExport.setValue(False) engine.guiEvents() if engine.doUpdate: update() if mouseX < guiDimX or mouseX>width-guiDimX: gui.cam.setActive(False) else: gui.cam.setActive(True) background(255) hint(DISABLE_DEPTH_TEST) gui.cam.beginHUD() image(gui.backgroundImage, 0, 0) gui.cam.endHUD() hint(ENABLE_DEPTH_TEST) display3D() display2D() def update(): global pshapeColumn fill(200) if gui.displayMode=="White": for f in engine.column.faces: f.color=(1,1,1,1) if gui.displayMode=="Curvature": coloriser.colorFacesByCurvature(engine.column.faces) if gui.displayMode=="Area": coloriser.colorFacesByArea(engine.column.faces) if gui.displayMode=="Perimeter": coloriser.colorFacesByPerimeter(engine.column.faces) if gui.displayMode=="Compactness": coloriser.colorFacesByCompactness(engine.column.faces) if gui.displayMode=="Vertical Angle": coloriser.colorFacesByVerticalAngle(engine.column.faces) if gui.displayMode=="Horizontal Angle": coloriser.colorFacesByHorizontalAngle(engine.column.faces) if gui.displayMode=="Group": faceGroups={} randomSeed(1) for f in engine.column.faces: faceGroups[f.group]=(random(0,1),random(0,1),random(0,1),1) for f in engine.column.faces: f.color= faceGroups[f.group] noStroke() pshapeColumn=renderer.createMeshShape(engine.column) def display2D(): global screen gui.cam.beginHUD() gui.cp5.draw() image(gui.logo1, width-100, height-100) #image(gui.logo2, width-170, height-100) pushMatrix() translate(guiDimX/2-20,height-guiDimX/2-100) scale(2.5) fill(70, 100) rect(-60,-60,120,120) fill(0) ellipse(0,0,12.5,12.5) if pshapeSlice!=None: strokeWeight(2) stroke(255, 0, 155) shape(pshapeSlice) popMatrix() gui.cam.endHUD() def display3D(): global sliceZ,pshapeSlice, rotZ if sliceZ!=gui.sliderSlice.getValue(): sliceZ=gui.sliderSlice.getValue() stroke(255,0,155) pshapeSlice=renderer.createLinesShape(slicer.slice(engine.column,sliceZ)) selectedIndex = gui.listDisplay.getValue() selectedDisplayMode = gui.listDisplay.getItem(int(selectedIndex)).get("text") if selectedDisplayMode!=gui.displayMode: gui.displayMode=selectedDisplayMode update() # mesh rendering directionalLight(255, 255, 255, 1, 1, 1) directionalLight(255, 255, 255, -1, -1, -1) noStroke() pushMatrix() if gui.bDance.getBooleanValue(): fill(255,50) shape(gui.dancer) rotateX(math.pi*0.5) translate(0,0,-150) if gui.bRot.getBooleanValue(): rotZ+=0.01 else: rotZ=0 rotateZ(rotZ) if gui.bBase.getBooleanValue(): pushMatrix() translate(0, 0, -10) fill(150) #rect(-60,-60,120,120) box(120, 120, 20) popMatrix() if pshapeColumn!=None: shape(pshapeColumn) if gui.bDisplaySlice.getValue(): pushMatrix() translate(0,0,sliceZ) fill(200,100) rect(-60,-60,120,120) popMatrix() if pshapeSlice!=None: shape(pshapeSlice) popMatrix()
[ "noreply@github.com" ]
dbt-ethz.noreply@github.com
850589bb644ae4eab56ab52c3b5cf0289278f50a
0ba98a960871dba4b81337161c65c4db505ced45
/attikmoney/core/migrations/0031_auto_20191222_0759.py
abd8707f82d3d15f55f57624ac5890bd6f313a26
[]
no_license
felipetsi/attikmoney
7323e9e5f7eb5e96a39c2d5495d6dc6cc5208659
5fac3341acee35a1d3f9b61537848a65609aa6f7
refs/heads/master
2022-01-18T19:13:28.814336
2022-01-02T01:25:24
2022-01-02T01:25:24
84,989,215
0
0
null
null
null
null
UTF-8
Python
false
false
425
py
# Generated by Django 2.2.7 on 2019-12-22 10:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0030_auto_20191222_0759'), ] operations = [ migrations.AlterField( model_name='yieldtype', name='created_at', field=models.DateTimeField(auto_now_add=True, verbose_name='Created at'), ), ]
[ "felipe.pereira@attik.com.br" ]
felipe.pereira@attik.com.br
c29eef2004e1aa97dff132a0c0327f2c1991e18a
ea6cf1c8df3955bb168454d437e23180c94d2c47
/Run01/Trans/1.importdata.py
938c4371d697f983f5628ab906427857903561db
[]
no_license
MohanSha/Employee-attendance-manager
ba0b94b3639d66e6294e1d5390c05fd346f1cd62
792a54f3b8ae03904bbe005059ba68674073344c
refs/heads/master
2021-07-19T13:18:34.450484
2017-10-28T11:24:38
2017-10-28T11:24:38
108,643,473
0
0
null
null
null
null
UTF-8
Python
false
false
2,346
py
import xlrd import MySQLdb from array import * #def Left def left(s, amount = 1, substring = ""): if (substring == ""): return s[:amount] else: if (len(substring) > amount): substring = substring[:amount] return substring + s[:-amount] # Open the workbook and define the worksheet filename = raw_input('Enter Table Excel Filename : ') book = xlrd.open_workbook(filename) sheet = book.sheet_by_name("Sheet1") tbl_filename = left(filename,(len(filename)-4)) book_tbl = xlrd.open_workbook(tbl_filename+"_tbl.xls") sheet_tbl = book_tbl.sheet_by_name("Sheet1") # Establish a MySQL connection database = MySQLdb.connect (host="localhost", user = "root", passwd = "", db = "hr") # Get the cursor, which is used to traverse the database, line by line cursor = database.cursor() # Create the INSERT INTO sql query queryBOL = """INSERT INTO `"""+tbl_filename+"""`(""" column_list = "" value_list = "" print "sheet_tbl.nrows = "+str(sheet_tbl.nrows) for cname in range(1, sheet_tbl.nrows): if cname==sheet_tbl.nrows-1 : column_list = column_list + "`"+sheet_tbl.cell(cname,0).value+"`" value_list = value_list +"%s" else : column_list = column_list + "`"+sheet_tbl.cell(cname,0).value+"`, " value_list = value_list +"%s," #print column_list #print value_list query2 = column_list+""") VALUES ("""+value_list queryEOL = """);""" query = queryBOL+query2+queryEOL print query select_qry = """select * from """+tbl_filename+""" ;""" # Create a For loop to iterate through each row in the XLS file, starting at row 2 to skip the headers inputrow = [] for r in range(1, sheet.nrows): # if r > 50 : # break #print str(r)+" Out of "+str(sheet.nrows) for c in range(0, sheet.ncols): inputrow.append(str(sheet.cell(r,c).value)) print inputrow # Execute sql Query cursor.execute(query, inputrow) inputrow = [] #Run select_qry to check the data uploaded #cursor.execute(select_qry) #result = cursor.fetchall() #print result # Close the cursor cursor.close() # Commit the transaction database.commit() # Close the database connection database.close() # Print results print "" print "All Done!" print "" columns = str(sheet.ncols) rows = str(sheet.nrows) print "I just imported " + columns + " columns and " + rows + " rows to MySQL!"
[ "mohansha.don@gmail.com" ]
mohansha.don@gmail.com
e88456d798261f16179505051514fc0b8381e1ed
df04d39a56d35b63e51c14bca4dab30bcab7ad8f
/models.py
12113781ab4d6574ab4ab76405db969676a41fb0
[]
no_license
javaDer/Crm_Android
810898273fe090dd36d34481334fe1e6e4e3cb09
7b61d1da7347f9e3f4f9e4ca196a30869dc0e339
refs/heads/master
2021-05-09T18:00:25.568825
2018-01-29T09:36:49
2018-01-29T09:36:49
119,151,097
0
0
null
null
null
null
UTF-8
Python
false
false
557
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import pymongo def get_coll(): client = pymongo.MongoClient("127.0.0.1", 27017) db = client.test user = db.user_collection return user class User(object): def __init__(self, name, email): self.name = name self.email = email def save(self): user = {"name": self.name, "email": self.email} coll = get_coll() id = coll.insert(user) print id @staticmethod def query_user(): users = get_coll().find() return users
[ "fa20091001@163.com" ]
fa20091001@163.com
2097ef464f73ecb7859b6ffa930ed474e10f8c30
df11b3a4129d660a1eb588334a4f38a73620b9e0
/api/urls.py
7d95a920eed945cf47ae06ab44274238b3c96ab3
[]
no_license
lebaoworks/Django-Example
65a581222027b6c9c873db9dcc7813dcc2f0783a
58540b310a00f0981d685819d7ff5b134ed4e985
refs/heads/main
2023-01-10T05:36:45.078991
2020-10-24T21:54:08
2020-10-24T21:54:08
306,936,111
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
from django.urls import include, path from api import views urlpatterns = [ path('api', views.ListAPIs.as_view()), ]
[ "noreply@github.com" ]
lebaoworks.noreply@github.com
4e8cf4ed512607410548a93332fffac910539696
b1917395e5d0ae5e3a9d379b1eefaf976d4e6b5d
/utils/plot_error.py
284427ce6a992cb0a9317675445bce8fa674234e
[]
no_license
gupta-nikita/Actions
056ec046c2cfa03e6733408f0aad8a1cfea712c5
3534f3fc442cff6d8f06525262c1eee674e6aaa3
refs/heads/master
2021-01-18T22:10:20.182809
2017-03-29T15:09:44
2017-03-29T15:09:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
848
py
rnn_type = 'rnn' # rnn | lstm | gru filepath = '/media/HDD1/Models/Actions/abhi/Models/rnn/' import matplotlib.pyplot as plt def read_file(file_to_read, image_name, fig_xlabel, fig_title): file = open(file_to_read, 'r') file.readline() error_value = list() for line in file: error_value.append(int(line)) plt.xlabel(fig_xlabel) plt.ylabel('Error') plt.title(fig_title) plt.grid(True) plt.savefig(image_name) filename = ['error', 'error_bw'] fig_xlabel_list = ['epochs', 'frames'] fig_title_list = ['Error every epoch using ' + rnn_type.upper(), 'Error every frame using ' + rnn_type().upper()] for i in range(2): file_to_read = filepath + filename[i] + '.txt' image_name = filepath + filename[i] + '.png' read_file(file_to_read, image_name, fig_xlabel_list[i], fig_title_list[i])
[ "abhishek.chaurasia29@hotmail.com" ]
abhishek.chaurasia29@hotmail.com
fe537df3daf1b7d3a23e18aa6a6536c6f46e31db
9e984c2a5455efc193983a6ea18ff7b6e13ba500
/Image procesing-calculate dimentional/old Sourse files/contour-extreme-points/ww.py
0caaf6689929300da58c7c163017b37b9dc2074c
[]
no_license
Isharathilina/Human_Dimensional_Calculator
6f028f2f0934ed6ca4f33e026ab6a7d218685c36
722129c28773415d8f96825654624c7615ce1770
refs/heads/master
2023-01-25T03:49:48.820622
2020-11-27T17:52:11
2020-11-27T17:52:11
155,625,237
0
0
null
null
null
null
UTF-8
Python
false
false
1,648
py
# USAGE # python extreme_points.py # import the necessary packages import imutils import cv2 # load the image, convert it to grayscale, and blur it slightly image = cv2.imread("sdf.jpg") #image = cv2.IMREAD_GRAYSCALE("qq.jpg") gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) # threshold the image, then perform a series of erosions + # dilations to remove any small regions of noise thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1] thresh = cv2.erode(thresh, None, iterations=2) thresh = cv2.dilate(thresh, None, iterations=2) # find contours in thresholded image, then grab the largest # one cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if imutils.is_cv2() else cnts[1] c = max(cnts, key=cv2.contourArea) # determine the most extreme points along the contour extLeft = tuple(c[c[:, :, 0].argmin()][0]) extRight = tuple(c[c[:, :, 0].argmax()][0]) extTop = tuple(c[c[:, :, 1].argmin()][0]) extBot = tuple(c[c[:, :, 1].argmax()][0]) # draw the outline of the object, then draw each of the # extreme points, where the left-most is red, right-most # is green, top-most is blue, and bottom-most is teal cv2.drawContours(image, [c], -1, (0, 255, 255), 2) #cv2.circle(image, extLeft, 6, (0, 0, 255), -1) #cv2.circle(image, extRight, 6, (0, 255, 0), -1) cv2.circle(image, extTop, 6, (255, 0, 0), -1) cv2.circle(image, extBot, 6, (255, 255, 0), -1) # show the output image cv2.imshow("Image", image) point1 = min(extTop) point2 = max(extBot) print(point1) print("and") print(point2) h1 = point2 - point1 h2 = h1/6 print(c) cv2.waitKey(0)
[ "isharawap@.com" ]
isharawap@.com
fa81e752ab4f58210563f97e6a552c0b346a39bc
dc17b7519e595c57eb1efb4673e1e4171724ba15
/models/state.py
5051d86fc57fd181d16c903d4dfca9cf7869a831
[]
no_license
FeliPrado31/AirBnB_clone
87cff5c3542903dc0400ae9d81fb5050c2e2d705
a3543de35bfd5df0ef5800539867f576e6ab76f5
refs/heads/master
2021-02-07T08:13:41.874436
2020-03-02T04:13:20
2020-03-02T04:13:20
244,001,793
0
1
null
null
null
null
UTF-8
Python
false
false
142
py
#!/usr/bin/python3 """ class user """ from models.base_model import BaseModel class State(BaseModel): """ State class """ name = ""
[ "srgatoiscool@gmail.com" ]
srgatoiscool@gmail.com
769e8e8412b7cff1cc93539541ca1f040e150fa4
470b64850fcd9f14ebe7920f773b24d0499e8ec4
/trailer/index.py
04141c1d166e8559f6db3b2a637f2a5ca6dd2ea1
[]
no_license
rishiosaur/pragmathic
c8ebcae1cf9a8a3efb6cd64123c523c752b6d3c8
63538a2e7cc1804186b0d51bbede0f8a1ec4d691
refs/heads/master
2020-08-18T17:20:56.572440
2020-01-11T22:13:00
2020-01-11T22:13:00
215,814,625
0
0
null
null
null
null
UTF-8
Python
false
false
1,137
py
from manimlib.imports import * class Intro(Scene): def construct(self): boring = TextMobject("School", "math is boring.").set_color_by_tex_to_color_map({"School": RED}) math = TextMobject("Math", "math is hella fun.").set_color_by_tex_to_color_map({"Math": BLUE}) welcome = TextMobject("Welcome to ", "Pragmathic.").set_color_by_tex_to_color_map({"Pragmathic": BLUE}) # pragmathic = TextMobject("Pragmathic.").next_to(welcome, RIGHT).set_color_by_gradient(BLUE, GREEN) eq1 = TexMobject(r"y(x_{0})=y_{0},y'(x_{0})=y'_{0},y''(x_{0})=y''_{0},\cdots ").next_to(welcome, UP, buff=2) eq2 = TexMobject(r"f_{n}(x){\frac {\mathrm {d} ^{n}y}{\mathrm {d} x^{n}}}+\cdots +f_{1}(x){\frac {\mathrm {d} y}{\mathrm {d} x}}+f_{0}(x)y=g(x)").shift(DOWN*1.5) eq3 = TexMobject(r"\operatorname {li}(x)=\int _{0}^{x}{\frac {dt}{\log(t)}}.").shift(RIGHT*2) self.play(Write(boring)) self.wait() self.play(Transform(boring, math)) self.wait() self.play(FadeOut(boring)) self.play(Write(welcome)) # self.play(Write(eq1),Write(eq2),Write(eq3))
[ "itsrishikothari@gmail.com" ]
itsrishikothari@gmail.com
4a0330f3d35565a1fd716d6052f8a5199813fd3f
6915d2d83086cf1200340a59248cf4f2a556248d
/appfacturacion/app/migrations/0001_initial.py
13f3fb55508f3eaa239838c4ad7282df13d38708
[]
no_license
jcuadradoh2/appfacturacion
5278de851ffbae191c848e16c68c2cbb8784749c
4151b8ed4f0168bdd2453410efd76129a75d5366
refs/heads/master
2022-12-04T05:33:47.437006
2020-08-09T05:01:26
2020-08-09T05:01:26
286,120,128
0
0
null
null
null
null
UTF-8
Python
false
false
3,403
py
# Generated by Django 2.2.14 on 2020-08-08 06:47 import datetime from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Cliente', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ruc', models.CharField(max_length=13)), ('nombre', models.CharField(max_length=300)), ('direccion', models.TextField(blank=True, null=True)), ('creacion', models.DateTimeField(default=datetime.datetime(2020, 8, 8, 1, 47, 18, 575020))), ], options={ 'verbose_name': 'Cliente', 'verbose_name_plural': 'Clientes', 'ordering': ['-creacion'], }, ), migrations.CreateModel( name='Producto', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('descripcion', models.CharField(max_length=100)), ('precio', models.FloatField(default=0)), ('stock', models.FloatField(default=0)), ('iva', models.BooleanField(default=True)), ('creacion', models.DateTimeField(default=datetime.datetime(2020, 8, 8, 1, 47, 18, 572018))), ], options={ 'verbose_name': 'Producto', 'verbose_name_plural': 'Productos', 'ordering': ['-creacion'], }, ), migrations.CreateModel( name='Factura', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('fecha', models.DateField()), ('total', models.FloatField(default=0)), ('cliente', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.Cliente')), ], options={ 'verbose_name': 'Factura', 'verbose_name_plural': 'Factura', 'ordering': ['-fecha'], }, ), migrations.CreateModel( name='DetalleFactura', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('cantidad', models.FloatField(default=0)), ('precio', models.FloatField(default=0)), ('subtotal', models.FloatField(default=0)), ('creacion', models.DateTimeField(default=datetime.datetime(2020, 8, 8, 1, 47, 18, 584015))), ('factura', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.Factura')), ('producto', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.Producto')), ], options={ 'verbose_name': 'DetalleFactura', 'verbose_name_plural': 'DetalleFactura', 'ordering': ['-creacion'], }, ), migrations.AddField( model_name='cliente', name='producto', field=models.ManyToManyField(to='app.Producto'), ), ]
[ "jcuadradoh2@unemi.edu.ec" ]
jcuadradoh2@unemi.edu.ec
4de0862f8cd2eb71a885c5f1753c6f087dbe5fcf
d8bf91fc51b4fd05246097e5c7e5aa07771b1068
/photo_gallery/settings.py
064b96358e315a7162f2260c2c31ffcc17e32e11
[]
no_license
falcon1996/Gallery
9d51bfba32fe06600a9b49991c99c106003a945f
e1c37d1e7cd02d1d878d5ea0107292248e4fdce9
refs/heads/master
2021-06-17T04:16:14.233354
2017-04-23T00:29:57
2017-04-23T00:29:57
82,963,158
1
0
null
null
null
null
UTF-8
Python
false
false
3,452
py
""" Django settings for photo_gallery project. Generated by 'django-admin startproject' using Django 1.9.12. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'i)+&*2&x3ra#e6biaj^3t%siho7b!swv@l*@em%cx)hb3+ge1s' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', '.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'photos', ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'photo_gallery.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'photo_gallery.wsgi.application' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Calcutta' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') MEDIA_URL = '/media/' #this is url MEDIA_ROOT = os.path.join(os.path.dirname(BASE_DIR), "mediafiles") # creating path
[ "dhruvparashar6@gmail.com" ]
dhruvparashar6@gmail.com
1311ce208ad1940ea37daa9f4b2901497e5572a2
758c5566f4598dbfd7d12d1e8e678458912f5ba0
/draw_image_copy.py
07497c27e6386a8005a65ceafcda5ec60228d335
[]
no_license
isamrx72/PyGames
989734674b868a5ae781bb6fa74221095c2ddf63
eb9126072078e01329549b5e2be335457145605a
refs/heads/master
2021-09-01T03:24:26.111401
2017-12-24T14:05:18
2017-12-24T14:05:18
115,063,817
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
# """ draw_image4.py """ import sys import pygame from pygame.locals import QUIT pygame.init() SURFACE = pygame.display.set_mode((400, 300)) FPSCLOCK = pygame.time.Clock() def main(): """ main routine """ logo = pygame.image.load("pythonlogo.jpg") theta = 0 while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() theta += 1 SURFACE.fill((225, 225, 225)) # ロゴを回転し、中心が(200, 150)の位置にロゴを描画 new_logo = pygame.transform.rotate(logo, theta) rect = new_logo.get_rect() rect.center = (200, 150) SURFACE.blit(new_logo, rect) pygame.display.update() FPSCLOCK.tick(30) if __name__ == '__main__': main()
[ "isamrx73@gmail.com" ]
isamrx73@gmail.com
830d31a9a9c3b434f9a5e3d0c62520978bfd12b7
b911744e6b7e464e7f7bc4151b5cc170e33701b2
/dashborad/zabbix/zb.py
d55530abbc715d2ffdd205b9e86aebc548b1b974
[]
no_license
Wstc2013/reboot_lianxi
199bc9cf2ce6ef9a017ca3e1589b2596fcd283e6
5de1a5c818e7e764a8cd5ed9950ce646c7daf458
refs/heads/master
2021-01-21T12:21:16.824326
2017-06-26T02:58:25
2017-06-26T02:58:25
91,792,156
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
#!/usr/bin/env python #-*- coding:utf8 -*- from zabbix_client import ZabbixServerProxy from django.conf import settings class Zabbix(object): def __init__(self): self.s = ZabbixServerProxy(settings.ZABBIX_URL) self.s.user.login(user=settings.ZABBIX_USER, password=settings.ZABBIX_PASS) def get_zabbix_group_info(self): ret = self.s.hostgroup.get(output=['groupid', 'name']) return ret def create_hosts(self, params): return self.s.host.create(**params) def get_host(self,hostid): ret = self.s.host.getobjects(hostid=hostid) return ret def get_template(self, ids=None): kwargs = {"output": ['templateid', 'name']} if ids: kwargs['hostids'] = ids ret = self.s.template.get(**kwargs) return ret
[ "xiaoyong.feng@cnsha-61418-mac.local" ]
xiaoyong.feng@cnsha-61418-mac.local
0cb7c21367baf5f8c424541c5fd87bf0e6c9605f
8d67c77c4572a20d4a66ad0b55befe559a1d4ee9
/dface/prepare_data/gen_Rnet_train_data.py
4f8888f201b292b638047df0f9c208571cd5cbec
[ "Apache-2.0" ]
permissive
ratmcu/DFace
459c2243b5b56af137682ccc8505fa165ff3c2a6
e99604a85f9c7d732d9f1749350e8b3f01aae9a2
refs/heads/master
2020-06-03T15:13:13.223357
2019-06-12T23:04:35
2019-06-12T23:04:35
191,622,342
0
0
Apache-2.0
2019-06-12T18:12:14
2019-06-12T18:12:14
null
UTF-8
Python
false
false
7,659
py
import argparse import cv2 import numpy as np from dface.core.detect import MtcnnDetector,create_mtcnn_net from dface.core.imagedb import ImageDB from dface.core.image_reader import TestImageLoader import time import os import cPickle from dface.core.utils import convert_to_square,IoU import dface.config as config import dface.core.vision as vision def gen_rnet_data(data_dir, anno_file, pnet_model_file, prefix_path='', use_cuda=True, vis=False): pnet, _, _ = create_mtcnn_net(p_model_path=pnet_model_file, use_cuda=use_cuda) mtcnn_detector = MtcnnDetector(pnet=pnet,min_face_size=12) imagedb = ImageDB(anno_file,mode="test",prefix_path=prefix_path) imdb = imagedb.load_imdb() image_reader = TestImageLoader(imdb,1,False) all_boxes = list() batch_idx = 0 for databatch in image_reader: if batch_idx % 100 == 0: print ("%d images done" % batch_idx) im = databatch t = time.time() boxes, boxes_align = mtcnn_detector.detect_pnet(im=im) if boxes_align is None: all_boxes.append(np.array([])) batch_idx += 1 continue if vis: rgb_im = cv2.cvtColor(np.asarray(im), cv2.COLOR_BGR2RGB) vision.vis_two(rgb_im, boxes, boxes_align) t1 = time.time() - t t = time.time() all_boxes.append(boxes_align) batch_idx += 1 # save_path = model_store_path() save_path = config.MODEL_STORE_DIR if not os.path.exists(save_path): os.mkdir(save_path) save_file = os.path.join(save_path, "detections_%d.pkl" % int(time.time())) with open(save_file, 'wb') as f: cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL) gen_rnet_sample_data(data_dir,anno_file,save_file,prefix_path) def gen_rnet_sample_data(data_dir,anno_file,det_boxs_file,prefix_path): neg_save_dir = os.path.join(data_dir, "24/negative") pos_save_dir = os.path.join(data_dir, "24/positive") part_save_dir = os.path.join(data_dir, "24/part") for dir_path in [neg_save_dir, pos_save_dir, part_save_dir]: if not os.path.exists(dir_path): os.makedirs(dir_path) # load ground truth from annotation file # format of each line: image/path [x1,y1,x2,y2] for each gt_box in this image with open(anno_file, 'r') as f: annotations = f.readlines() image_size = 24 net = "rnet" im_idx_list = list() gt_boxes_list = list() num_of_images = len(annotations) print ("processing %d images in total" % num_of_images) for annotation in annotations: annotation = annotation.strip().split(' ') im_idx = os.path.join(prefix_path,annotation[0]) boxes = map(float, annotation[1:]) boxes = np.array(boxes, dtype=np.float32).reshape(-1, 4) im_idx_list.append(im_idx) gt_boxes_list.append(boxes) save_path = config.ANNO_STORE_DIR if not os.path.exists(save_path): os.makedirs(save_path) f1 = open(os.path.join(save_path, 'pos_%d.txt' % image_size), 'w') f2 = open(os.path.join(save_path, 'neg_%d.txt' % image_size), 'w') f3 = open(os.path.join(save_path, 'part_%d.txt' % image_size), 'w') det_handle = open(det_boxs_file, 'r') det_boxes = cPickle.load(det_handle) print(len(det_boxes), num_of_images) assert len(det_boxes) == num_of_images, "incorrect detections or ground truths" # index of neg, pos and part face, used as their image names n_idx = 0 p_idx = 0 d_idx = 0 image_done = 0 for im_idx, dets, gts in zip(im_idx_list, det_boxes, gt_boxes_list): if image_done % 100 == 0: print("%d images done" % image_done) image_done += 1 if dets.shape[0] == 0: continue img = cv2.imread(im_idx) dets = convert_to_square(dets) dets[:, 0:4] = np.round(dets[:, 0:4]) for box in dets: x_left, y_top, x_right, y_bottom = box[0:4].astype(int) width = x_right - x_left + 1 height = y_bottom - y_top + 1 # ignore box that is too small or beyond image border if width < 20 or x_left < 0 or y_top < 0 or x_right > img.shape[1] - 1 or y_bottom > img.shape[0] - 1: continue # compute intersection over union(IoU) between current box and all gt boxes Iou = IoU(box, gts) cropped_im = img[y_top:y_bottom + 1, x_left:x_right + 1, :] resized_im = cv2.resize(cropped_im, (image_size, image_size), interpolation=cv2.INTER_LINEAR) # save negative images and write label if np.max(Iou) < 0.3: # Iou with all gts must below 0.3 save_file = os.path.join(neg_save_dir, "%s.jpg" % n_idx) f2.write(save_file + ' 0\n') cv2.imwrite(save_file, resized_im) n_idx += 1 else: # find gt_box with the highest iou idx = np.argmax(Iou) assigned_gt = gts[idx] x1, y1, x2, y2 = assigned_gt # compute bbox reg label offset_x1 = (x1 - x_left) / float(width) offset_y1 = (y1 - y_top) / float(height) offset_x2 = (x2 - x_right) / float(width) offset_y2 = (y2 - y_bottom) / float(height) # save positive and part-face images and write labels if np.max(Iou) >= 0.65: save_file = os.path.join(pos_save_dir, "%s.jpg" % p_idx) f1.write(save_file + ' 1 %.2f %.2f %.2f %.2f\n' % ( offset_x1, offset_y1, offset_x2, offset_y2)) cv2.imwrite(save_file, resized_im) p_idx += 1 elif np.max(Iou) >= 0.4: save_file = os.path.join(part_save_dir, "%s.jpg" % d_idx) f3.write(save_file + ' -1 %.2f %.2f %.2f %.2f\n' % ( offset_x1, offset_y1, offset_x2, offset_y2)) cv2.imwrite(save_file, resized_im) d_idx += 1 f1.close() f2.close() f3.close() def model_store_path(): return os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))+"/model_store" def parse_args(): parser = argparse.ArgumentParser(description='Test mtcnn', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--dface_traindata_store', dest='traindata_store', help='dface train data temporary folder,include 12,24,48/postive,negative,part,landmark', default='../data/wider/', type=str) parser.add_argument('--anno_file', dest='annotation_file', help='wider face original annotation file', default=os.path.join(config.ANNO_STORE_DIR,"wider_origin_anno.txt"), type=str) parser.add_argument('--pmodel_file', dest='pnet_model_file', help='PNet model file path', default='/idata/workspace/dface/model_store/pnet_epoch.pt', type=str) parser.add_argument('--gpu', dest='use_cuda', help='with gpu', default=config.USE_CUDA, type=bool) parser.add_argument('--prefix_path', dest='prefix_path', help='annotation file image prefix root path', default='', type=str) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() gen_rnet_data(args.traindata_store, args.annotation_file, args.pnet_model_file, args.prefix_path, args.use_cuda)
[ "314127900@qq.com" ]
314127900@qq.com
0ec647632384f519175799e633398d1817864915
f5487faeed295a97a71b28447e2c4d6c4e115651
/Sudoku solver/backtrack_solve.py
f73a44e8538455abcb3e868ede8cdb66a2b3903b
[]
no_license
Razeem-r/Personal-projects
ffbca37bd4474df1421932388477a69730ac5b5d
08fb6ab61035b72234e73765338e77227b788317
refs/heads/master
2023-01-25T00:48:22.729453
2020-11-28T09:23:28
2020-11-28T09:23:28
291,892,318
0
0
null
null
null
null
UTF-8
Python
false
false
5,521
py
from array import * import numpy as np # Sample sudoku form # board =[[0, 0, 6, 0, 0, 5, 0, 0, 0], # [0, 0, 8, 0, 9, 0, 0, 0, 0], # [0, 0, 2, 0, 0, 0, 8, 1, 7], # [4, 0, 0, 3, 0, 8, 0, 0, 0], # [0, 3, 0, 0, 5, 0, 0, 4, 0], # [0, 0, 0, 2, 0, 6, 0, 0, 9], # [8, 1, 5, 0, 0, 0, 4, 0, 0], # [0, 0, 0, 0, 7, 0, 9, 0, 0], # [0, 0, 0, 1, 0, 0, 6, 0, 0]] #COnvert all numbers to string type and all empty spaces(zeroes) to '.' for i in range(9): for j in range(9): board[i][j]= str(board[i][j]) if board[i][j]=='0': board[i][j]='.' def check(test,i,j,board,f): for x in range(9): if(board[i][x]!='.'): if int(board[i][x])==test and x!=j: f = 0 for x in range(9): if(board[x][j]!='.'): if int(board[x][j])==test and x!=i: f = 0 if i>=0 and i<3: if j>=0 and j<3: for x in range(3): for y in range(3): #print(board[x][y],test) if(board[x][y]!='.'): if int(board[x][y])==test and x!=i and y!=j: f = 0 #print(" ",i,j,x,y) elif j>=3 and j<6: for x in range(3): for y in range(3,6): if(board[x][y]!='.'): if int(board[x][y])==test and x!=i and y!=j: f = 0 elif j>=6 and j<9: for x in range(3): for y in range(6,9): if(board[x][y]!='.'): if int(board[x][y])==test and x!=i and y!=j: f = 0 if i>=3 and i<6: if j>=0 and j<3: for x in range(3,6): for y in range(3): if(board[x][y]!='.'): if int(board[x][y])==test and x!=i and y!=j: f = 0 elif j>=3 and j<6: for x in range(3,6): for y in range(3,6): if(board[x][y]!='.'): if int(board[x][y])==test and x!=i and y!=j: f = 0 elif j>=6 and j<9: for x in range(3,6): for y in range(6,9): if(board[x][y]!='.'): if int(board[x][y])==test and x!=i and y!=j: f = 0 if i>=6 and i<9: if j>=0 and j<3: for x in range(6,9): for y in range(3): if(board[x][y]!='.'): if int(board[x][y])==test and x!=i and y!=j: f = 0 elif j>=3 and j<6: for x in range(6,9): for y in range(3,6): if(board[x][y]!='.'): if int(board[x][y])==test and x!=i and y!=j: f = 0 elif j>=6 and j<9: for x in range(6,9): for y in range(6,9): if(board[x][y]!='.'): if int(board[x][y])==test and x!=i and y!=j: f = 0 return f def checkcriteria(test,i,j,board,flag): global c if flag!=-1: c=flag while True: f = 1 f = check(test,i,j,board,f) if f==1 and test<10: board[i][j]=int(test) break if f==0 and test<10: test=test+1 if test>9: break # print("board show ",i,j,f,type(board[i][j])) # print(c) # print(np.asarray(board)) if i<9: if board[i][j]==0 or board[i][j]==c: board[i][j]=0; c=0 if not (i<=0 and j<=0): return -1 else: c=0 return 1 return 0 def checkdot(test,i,j,board,nav): # print("in checkdot") if i<9: if nav==1 : i,j = front(i,j,board) if i<9: if type(board[i][j])==int: board[i][j]=0 if board[i][j]=='.' or board[i][j]==0 : board[i][j]=int('0') test=1 nav = checkcriteria(test,i,j,board,-1) if nav==-1 : i,j=back(i,j,board) g=board[i][j] #print(' g ',g) if board[i][j]!=9: k=board[i][j]+1 else: k=9 nav = checkcriteria(k,i,j,board,g) if nav==1 or nav ==-1: checkdot(test,i,j,board,nav) def back(i,j,board): if i<9: while True: j-=1 if j<0: i-=1 j=8 if type(board[i][j])==int: break return i,j def front(i,j,board): if i<9: while True: j+=1 if j>=9: i+=1 j=0 if i<9: if type(board[i][j])!=str or board[i][j]=='.': break if i==9: break return i,j c=0 n=1 f=1 i=0 j=-1 test=1 checkdot(test,i,j,board,n) print(np.asarray(board))
[ "noreply@github.com" ]
Razeem-r.noreply@github.com
25c685a5ff1dcef0d1c62a2ea534caa466549562
832e0b42c321db1f70e7d826111f0b796cac6247
/ljspeech.py
467eb8f7ad1441c71738600224dd4340340d1fe0
[ "MIT" ]
permissive
mitsu-h/deepvoice3
2615b61b92216ac11063792e29ef2f72d3a71fa9
fb652a9274dd1b94d374a424726e34287cd94186
refs/heads/master
2022-12-10T00:44:42.899129
2020-08-24T11:00:08
2020-08-24T11:00:08
230,847,732
0
4
null
null
null
null
UTF-8
Python
false
false
3,976
py
from concurrent.futures import ProcessPoolExecutor from functools import partial import numpy as np import os import audio from hparams import hparams import time def build_from_path(in_dir, out_dir, num_workers=1, tqdm=lambda x: x): '''Preprocesses the LJ Speech dataset from a given input path into a given output directory. Args: in_dir: The directory where you have downloaded the LJ Speech dataset out_dir: The directory to write the output into num_workers: Optional number of worker processes to parallelize across tqdm: You can optionally pass tqdm to get a nice progress bar Returns: A list of tuples describing the training examples. This should be written to train.txt ''' # We use ProcessPoolExecutor to parallize across processes. This is just an optimization and you # can omit it and just call _process_utterance on each input if you want. executor = ProcessPoolExecutor(max_workers=num_workers) futures = [] index = 1 with open(os.path.join(in_dir, 'metadata.csv'), encoding='utf-8') as f: for line in f: parts = line.strip().split('|') wav_path = os.path.join(in_dir, 'wavs', '%s.wav' % parts[0]) text = parts[2] if len(text) < hparams.min_text: continue futures.append(executor.submit( partial(_process_utterance, out_dir, index, wav_path, text))) index += 1 return [future.result() for future in tqdm(futures)] def _process_utterance(out_dir, index, wav_path, text): '''Preprocesses a single utterance audio/text pair. This writes the mel and linear scale spectrograms to disk and returns a tuple to write to the train.txt file. Args: out_dir: The directory to write the spectrograms into index: The numeric index to use in the spectrogram filenames. wav_path: Path to the audio file containing the speech input text: The text spoken in the input audio file Returns: A (spectrogram_filename, mel_filename, n_frames, text) tuple to write to train.txt ''' # Load the audio to a numpy array: wav = audio.load_wav(wav_path) if hparams.rescaling: wav = wav / np.abs(wav).max() * hparams.rescaling_max # Compute the linear-scale spectrogram from the wav: spectrogram = audio.spectrogram(wav).astype(np.float32) n_frames = spectrogram.shape[1] # Compute a mel-scale spectrogram from the wav: mel_spectrogram = audio.melspectrogram(wav).astype(np.float32) #world parameters f0,sp,ap = audio.world(wav,hparams.sample_rate) f0 = (f0 / hparams.f0_norm).astype(np.float32) #normalize sp = audio._normalize(sp).astype(np.float32) ap = ap.astype(np.float32) #apは0~1の範囲しか値を取らないので正規化不要 world_frames = f0.shape[0] # Write the spectrograms to disk: spectrogram_filename = 'ljspeech-spec-%05d.npy' % index mel_filename = 'ljspeech-mel-%05d.npy' % index f0_filename = 'ljspeech-f0-%05d.npy' % index sp_filename = 'ljspeech-sp-%05d.npy' % index ap_filename = 'ljspeech-ap-%05d.npy' % index np.save(os.path.join(out_dir, spectrogram_filename), spectrogram.T, allow_pickle=False) np.save(os.path.join(out_dir, mel_filename), mel_spectrogram.T, allow_pickle=False) np.save(os.path.join(out_dir, f0_filename), f0, allow_pickle=False) np.save(os.path.join(out_dir, sp_filename), sp, allow_pickle=False) np.save(os.path.join(out_dir, ap_filename), ap, allow_pickle=False) # Return a tuple describing this training example: return (spectrogram_filename, mel_filename, n_frames, f0_filename, sp_filename, ap_filename, world_frames, text) ''' audio_filename = 'ljspeech-spec-%05d.npy' % index np.save(os.path.join(out_dir, audio_filename), wav, allow_pickle=False) return (audio_filename, wav.shape[0], text) '''
[ "u.world96@gmail.com" ]
u.world96@gmail.com
ffc98858f61ec1894a60bd58273d0805e9f8f653
4a86874d3e740b4cd22a8bc6d439f7aba9bd52c0
/434.字符串中的单词数.py
4c7c3a0afdac2b8ef53d7ce0a09a274c3f756c5c
[]
no_license
Jassy930/leetcode_main
4563f9634692d0b09a638114f59f6836edaa73f6
a2e4e05f2b220702dc874718e34150d1066f6ac1
refs/heads/master
2020-04-28T15:35:49.448682
2019-09-16T03:49:23
2019-09-16T03:49:23
175,380,591
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
# # @lc app=leetcode.cn id=434 lang=python3 # # [434] 字符串中的单词数 # class Solution: def countSegments(self, s: str) -> int: ss = s.split(' ') return len(ss)-ss.count('')
[ "wafe93039@163.com" ]
wafe93039@163.com
5b9d10a94bd28fb08b016b9daded4640791af4b1
489384e8ebf66db4169980f70408742c0cb083f4
/apps/organization/migrations/0010_courseorg_tag.py
ad5fc1ceb2074092a6cd616d97daee521ebe929c
[]
no_license
carryaimp/OnlineSchool
2188b24ddf23a6ef71b24bf5ef7df3e2c2617691
992b3bc53e66c649acec5c44b71dc621885709e7
refs/heads/master
2023-07-07T12:19:54.786264
2021-04-02T10:16:29
2021-04-02T10:16:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
434
py
# Generated by Django 2.0.2 on 2018-02-20 22:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('organization', '0009_teacher_age'), ] operations = [ migrations.AddField( model_name='courseorg', name='tag', field=models.CharField(default='全国知名', max_length=4, verbose_name='机构标签'), ), ]
[ "jia2jiayuan@163.com" ]
jia2jiayuan@163.com
4231a87f3283ae55b93184de8966fa632a908023
adf7952e7b92e29e3d66a98fc88cb0b1ab2af215
/dsnoti_.py
35d47416537e3b3d3310bc4298bd57d5654ed9ef
[]
no_license
KimHyoRim/hellparty
a7c3c57f4d24f516d9cf98ac55f327d85db4e4d4
3c5416346734cd75bf2f727a1c9a6a6e64f6a659
refs/heads/master
2020-05-23T16:16:14.218500
2019-06-19T17:27:32
2019-06-19T17:27:32
186,844,325
0
0
null
null
null
null
UTF-8
Python
false
false
3,689
py
#!/usr/bin/python # coding=utf-8 import sys from urllib.request import urlopen from urllib.parse import quote import time from xml.etree import ElementTree import urllib.request from xml.dom.minidom import parse, parseString from urllib.request import urlopen from urllib.parse import quote import sqlite3 import telepot from pprint import pprint from urllib.request import urlopen from bs4 import BeautifulSoup import re from datetime import date, datetime, timedelta import traceback key = "475bf83ac2911d034998c841c40225c7" TOKEN = '856816592:AAHDHTv27olsdjqmTv96DdXP2YBH49iYAxc' MAX_MSG_LENGTH = 300 baseurl = "http://www.kobis.or.kr/kobisopenapi/webservice/rest/boxoffice/searchDailyBoxOfficeList" \ ".xml?key="+key bot = telepot.Bot(TOKEN) def getData( date_param): res_list = [] url = baseurl+'&targetDt='+date_param print(url) req = urllib.request.Request(url) data = urllib.request.urlopen(req).read() tree = ElementTree.fromstring(data) itemElements = tree.getiterator("dailyBoxOffice") MmovieNm = [] Mrank = [] MshowRange = [] MopenDt = [] MaudiAcc = [] MrankInten = [] MsalesAcc = [] Mimage = [] for item in itemElements: movieNm = item.find("movieNm") rank = item.find("rank") openDt = item.find("openDt") audiAcc = item.find("audiAcc") # 누적관객수 salesAcc = item.find("salesAcc") # 누적 매출 MmovieNm.append(movieNm.text) Mrank.append(rank.text) MopenDt.append(openDt.text) MaudiAcc.append(audiAcc.text) MsalesAcc.append(salesAcc.text) try: for i in range(10): row = Mrank[i] + "등\n\n" \ + "영화 제목 : " + MmovieNm[i] + "\n\n" \ + "영화 개봉일 : " + MopenDt[i] + "\n\n" \ + "누적 매출액 : " + MsalesAcc[i] + "원\n\n" \ + "누적 관객수 : " + MaudiAcc[i] + "명\n\n" except IndexError: pass print(row) res_list.append(row) return res_list def sendMessage(user, msg): try: bot.sendMessage(user, msg) except: traceback.print_exc(file=sys.stdout) def run(date_param, param='11710'): conn = sqlite3.connect('logs.db') cursor = conn.cursor() cursor.execute('CREATE TABLE IF NOT EXISTS logs( user TEXT, log TEXT, PRIMARY KEY(user, log) )') conn.commit() user_cursor = sqlite3.connect('users.db').cursor() user_cursor.execute('CREATE TABLE IF NOT EXISTS users( user TEXT, location TEXT, PRIMARY KEY(user, location) )') user_cursor.execute('SELECT * from users') for data in user_cursor.fetchall(): user = data[0] print(user, date_param) res_list = getData(date_param) msg = '' for r in res_list: try: cursor.execute('INSERT INTO logs (user,log) VALUES ("%s", "%s")'%(user,r)) except sqlite3.IntegrityError: pass else: print( str(datetime.now()).split('.')[0], r ) if len(r+msg)+1>MAX_MSG_LENGTH: sendMessage( user, msg ) msg = r+'\n' else: msg += r+'\n' if msg: sendMessage( user, msg ) conn.commit() if __name__=='__main__': today = date.today() current_month = today.strftime('%Y%m') print( '[',today,']received token :', TOKEN ) pprint( bot.getMe() ) run(current_month)
[ "noreply@github.com" ]
KimHyoRim.noreply@github.com
ca76788dd821eb07d06500f9c0ec39b6a0165448
977f5aa46679d1da33a28177c6e22d7fdfc24c66
/TehFolio/apps/homepage/admin.py
88540eb6bd308d07dae991ae23f2f600f5425e5a
[]
no_license
Tehtehteh/Tehportfolio
06c2d905b86da147ae2c4cd974d365330b5ce9d2
25e70a15c1e03e190e129a46bd61fd712f6a8ea1
refs/heads/master
2021-01-21T18:34:00.647887
2016-10-08T21:08:41
2016-10-08T21:08:41
68,407,372
1
0
null
null
null
null
UTF-8
Python
false
false
122
py
from django.contrib import admin from .models import BlogPost # Register your models here. admin.site.register(BlogPost)
[ "tehfvpr@gmail.com" ]
tehfvpr@gmail.com
c39173555469868d74d4277658f382eee8e338d3
87e4d69d4a6bdc73a30c0c537e2b13bc27c62a91
/store_management_system/Accounts/admin.py
5eea4e48bf56d1705606d6665d65c141cc37d763
[]
no_license
YashGoyal28/store_management_system
7409ec79bc17a4464edcc2c75265e191836f0b46
92238bb1f9144b12807ab82c175d22266825a1ac
refs/heads/main
2023-01-19T08:42:20.790691
2020-11-24T10:53:27
2020-11-24T10:53:27
307,624,622
1
0
null
2020-11-23T08:16:16
2020-10-27T07:51:49
Python
UTF-8
Python
false
false
137
py
from django.contrib import admin from .models import ListOfProducts, Bill admin.site.register(Bill) admin.site.register(ListOfProducts)
[ "y.g.2001yashgoyal@gmail.com" ]
y.g.2001yashgoyal@gmail.com
5e0dbf237d23e97db1acb499c7473f995063c95c
5492b2501f3aeebbf6e228f9bbf608bd682e6787
/converter.py
4997dab5aff68c23cfdb919fd13737d7a8b3c2d7
[]
no_license
chainchomp440/chainchomp
b74bfea213f04113f5de9eaa154f76d76b112563
cd3c015e0b03f2b1008dc9db7282a1edd6546406
refs/heads/master
2020-08-29T04:46:21.384362
2019-10-28T01:21:09
2019-10-28T01:21:09
217,932,505
0
0
null
null
null
null
UTF-8
Python
false
false
190
py
## This is a test code rmb_str_value=input('please insert cny amount') rmb_value = eval(rmb_str_value) usd_vs_rmb= 6.77 usd_value=rmb_value / usd_vs_rmb print ('usd value =',usd_value)
[ "tonyshi@TonyShis-MacBook-Air.local" ]
tonyshi@TonyShis-MacBook-Air.local
29a519f17e93e1f2edbd1437486e383d9684ced6
0d8486c1d55c40bebea7c5428930f18165d2d0e9
/tests/sat/Models/c775.180.SAT.dimacs.test.py
8987ff256e8dbfaada30f05c291ec2c34515e155
[ "Apache-2.0" ]
permissive
bernardocuteri/wasp
6f81bf6aa8fb273c91bbf68ecce4ecb195a55953
05c8f961776dbdbf7afbf905ee00fc262eba51ad
refs/heads/master
2021-06-08T11:58:25.080818
2020-10-05T16:57:37
2020-10-05T16:57:37
124,245,808
0
0
Apache-2.0
2018-03-07T14:13:16
2018-03-07T14:13:16
null
UTF-8
Python
false
false
10,721
py
input = """ c num blocks = 1 c num vars = 180 c minblockids[0] = 1 c maxblockids[0] = 180 p cnf 180 775 71 -116 -138 0 23 147 13 0 114 -167 -50 0 -6 64 34 0 -129 175 -92 0 172 -58 19 0 -40 164 122 0 -146 -145 -18 0 39 82 -45 0 77 130 47 0 -27 125 -165 0 90 56 41 0 162 -132 63 0 -139 143 -30 0 108 -133 -143 0 -49 -156 145 0 -111 -89 139 0 -99 -61 9 0 102 -177 -16 0 109 -7 -179 0 -146 143 -40 0 -65 36 -122 0 30 67 102 0 12 -159 176 0 -47 141 -30 0 -123 -124 41 0 -175 -26 -107 0 -160 -141 112 0 -20 32 51 0 -15 -155 106 0 83 110 -87 0 -107 -112 7 0 -99 -30 -35 0 47 169 108 0 -33 -68 -53 0 -154 107 79 0 -26 174 -108 0 119 81 -1 0 -36 -101 47 0 -47 7 113 0 -102 -84 -106 0 -24 169 68 0 -141 145 103 0 139 -26 95 0 -4 35 -145 0 -65 -28 6 0 -81 150 164 0 -153 -110 -138 0 80 138 -39 0 97 172 7 0 168 -165 139 0 -39 138 20 0 -28 117 -50 0 -58 19 -33 0 -42 141 98 0 106 -76 60 0 -31 -144 -158 0 173 -180 -62 0 131 -39 150 0 -109 7 -14 0 -163 -29 7 0 -150 140 -136 0 -86 84 58 0 -55 -156 -179 0 -142 121 -19 0 -122 -133 -13 0 -99 143 122 0 -144 160 -134 0 -157 -97 166 0 89 80 -68 0 174 88 -32 0 -137 105 -13 0 23 -134 -102 0 8 115 -50 0 43 -75 -140 0 130 137 26 0 -82 -26 38 0 -42 64 174 0 44 43 154 0 59 45 -159 0 -152 31 -51 0 -57 134 -6 0 36 3 25 0 37 166 -88 0 13 25 110 0 -91 126 175 0 -149 138 163 0 154 2 30 0 10 -22 -155 0 -99 -21 165 0 -26 -69 23 0 33 -111 -20 0 156 71 -164 0 38 -17 -163 0 -22 77 14 0 60 -39 21 0 150 -73 40 0 166 -66 -160 0 -20 -41 107 0 -146 18 168 0 -13 71 39 0 -145 1 13 0 -132 155 -45 0 -122 -115 45 0 31 -96 -60 0 -20 -50 178 0 176 91 -15 0 112 139 67 0 60 94 -173 0 119 79 174 0 126 177 55 0 124 128 151 0 123 -5 67 0 -42 78 55 0 118 157 152 0 27 -28 -137 0 -9 -37 -172 0 -77 -42 9 0 -178 -30 70 0 -105 109 -45 0 118 8 -17 0 -87 35 -77 0 31 121 113 0 -87 71 -180 0 -91 26 82 0 -70 126 -125 0 109 -46 55 0 92 -174 153 0 171 86 -92 0 -2 -78 -162 0 -19 -71 -81 0 -66 77 -145 0 68 -58 157 0 52 -37 -88 0 64 -73 16 0 158 -98 55 0 -155 2 -106 0 -8 -72 119 0 -126 -68 140 0 64 90 -115 0 142 44 -160 0 54 -134 -175 0 132 12 37 0 7 26 -78 0 -127 75 -73 0 114 -151 -68 0 155 167 -128 0 143 -61 -131 0 19 -4 66 0 -75 -130 -49 0 -53 -38 -97 0 6 170 -59 0 169 116 99 0 153 -98 127 0 -151 -101 -178 0 110 9 -179 0 48 -16 55 0 -81 -152 -103 0 -10 118 -26 0 78 -172 79 0 85 -31 -77 0 30 -129 -102 0 46 165 -119 0 -30 -9 27 0 109 58 -167 0 107 67 94 0 63 -125 -27 0 -87 173 174 0 -80 -116 155 0 -140 -49 -58 0 138 61 51 0 44 -130 73 0 -157 -71 84 0 -22 -50 28 0 -48 -145 177 0 146 -158 8 0 -113 129 27 0 78 76 -27 0 74 123 76 0 -18 173 124 0 -13 -69 -80 0 101 81 -144 0 154 52 35 0 178 120 -37 0 -113 3 83 0 103 155 -81 0 -15 24 163 0 -178 162 -165 0 -98 -180 -9 0 101 156 44 0 -167 31 76 0 -122 37 -110 0 79 -58 -126 0 -168 175 -30 0 -137 78 -148 0 66 -57 23 0 -131 103 74 0 -22 122 105 0 84 -32 -4 0 15 22 -62 0 -42 40 109 0 -111 -12 -20 0 -3 -113 87 0 29 52 -112 0 141 91 -108 0 141 69 -62 0 63 72 -34 0 -144 -82 -173 0 71 160 45 0 -148 -29 24 0 -148 84 53 0 22 109 179 0 -152 76 -130 0 21 53 146 0 -142 6 -167 0 -66 90 89 0 167 118 -117 0 155 -24 39 0 -119 -69 -8 0 -95 92 118 0 -110 111 180 0 -55 25 30 0 29 119 109 0 23 86 -107 0 104 -65 38 0 -89 102 -68 0 -28 -42 75 0 36 44 -148 0 89 101 82 0 117 122 -93 0 28 111 -55 0 66 139 -81 0 35 36 83 0 52 65 -101 0 71 68 -64 0 177 -131 136 0 86 -97 180 0 20 176 50 0 -12 -53 115 0 79 -24 -162 0 -98 96 79 0 119 -128 -11 0 -17 52 -47 0 64 -99 17 0 -101 -152 77 0 -131 -113 119 0 54 149 152 0 138 -68 -149 0 144 -62 89 0 103 -1 119 0 -74 76 137 0 60 -115 110 0 -158 100 57 0 10 36 -109 0 -13 -55 99 0 -116 -119 -53 0 -109 -73 125 0 -74 -125 -22 0 103 -124 -44 0 -160 116 16 0 -24 -143 138 0 124 -31 149 0 -145 -10 171 0 21 -94 121 0 26 13 111 0 128 58 -107 0 -180 -9 165 0 92 141 -95 0 -70 147 77 0 -178 -124 -42 0 116 178 112 0 -117 -41 -75 0 -20 -35 28 0 -141 -160 50 0 26 -46 180 0 -39 -166 -88 0 76 53 -13 0 127 -94 -119 0 -76 152 -134 0 -13 125 170 0 -16 -71 6 0 131 114 -73 0 167 101 -19 0 -18 -139 -152 0 -125 -162 -89 0 -2 147 -99 0 -96 155 138 0 -108 -130 148 0 -21 -73 -20 0 2 40 -176 0 117 -85 -65 0 -158 107 -20 0 -67 -171 128 0 -50 28 -13 0 128 -6 -60 0 49 -46 95 0 -84 101 -109 0 -108 90 75 0 54 132 69 0 -162 68 -86 0 -93 69 177 0 -38 153 124 0 23 -21 -29 0 169 50 116 0 77 51 -153 0 40 101 -123 0 169 143 -27 0 -47 158 -35 0 -179 75 -113 0 -50 83 -7 0 141 52 -161 0 -126 -176 131 0 36 -126 1 0 174 84 43 0 70 -179 26 0 41 67 -164 0 138 153 -23 0 56 -146 -59 0 -29 23 -40 0 174 49 -125 0 71 -166 167 0 31 -170 -70 0 -29 58 -61 0 -45 130 53 0 1 -75 14 0 128 -6 -68 0 -68 31 -135 0 -49 -131 35 0 83 -119 102 0 175 -149 172 0 -166 116 -46 0 -69 -170 83 0 -175 22 -156 0 20 127 50 0 62 49 -135 0 13 129 -43 0 175 -64 -9 0 -41 178 40 0 71 145 -118 0 91 -33 129 0 -153 -161 132 0 94 -43 -15 0 -168 -98 48 0 76 101 -25 0 105 -3 -127 0 12 -159 44 0 6 -172 -27 0 -134 -37 -7 0 -61 138 35 0 177 -42 -179 0 19 9 -90 0 50 -133 20 0 -131 56 -77 0 47 35 36 0 110 -98 9 0 110 1 41 0 -26 -171 138 0 79 -110 15 0 -135 146 60 0 -51 13 109 0 129 -69 -83 0 168 109 -95 0 180 -165 116 0 143 90 97 0 60 -113 76 0 -79 177 107 0 13 135 -38 0 -149 98 -62 0 -123 -58 -4 0 65 108 13 0 121 -10 -126 0 -89 -39 -77 0 -119 36 95 0 19 38 -78 0 156 108 -78 0 66 -75 -8 0 160 79 101 0 161 -100 -167 0 144 -49 28 0 150 -71 -15 0 163 46 85 0 132 89 -165 0 84 -172 88 0 121 -148 127 0 -96 81 -46 0 -90 8 45 0 -125 -17 60 0 177 -93 -36 0 -46 123 -47 0 12 -27 -59 0 100 -22 -128 0 -71 -104 82 0 -176 -71 -47 0 -36 -43 143 0 140 -55 -128 0 -165 -60 108 0 -69 28 175 0 -79 -143 -156 0 -12 -48 170 0 -52 154 133 0 11 -78 -159 0 -131 -93 170 0 -5 12 -23 0 45 -11 140 0 -29 93 -106 0 116 -156 -72 0 61 -168 -144 0 -58 146 22 0 -42 -156 178 0 -154 -42 -22 0 -79 -12 91 0 -121 164 103 0 96 114 -147 0 27 32 127 0 171 -15 -67 0 -33 4 -147 0 -83 133 -114 0 23 15 42 0 76 -63 110 0 113 -126 45 0 16 -41 98 0 -123 -73 119 0 55 -123 33 0 -56 153 -144 0 -136 137 178 0 53 108 121 0 -35 -10 -153 0 -70 -37 53 0 -160 40 176 0 -89 -69 23 0 -21 34 -71 0 -3 147 -49 0 -97 -138 117 0 -79 -19 54 0 -74 119 -2 0 -73 -140 -75 0 -146 -109 83 0 124 -87 -147 0 -127 152 -129 0 -25 88 142 0 107 164 -52 0 -72 -51 101 0 -151 127 58 0 151 -152 75 0 54 111 74 0 126 -99 169 0 -97 4 102 0 106 -94 -81 0 -171 -50 136 0 -20 66 81 0 75 89 115 0 -66 -81 -34 0 75 112 -94 0 -162 -175 -16 0 -67 -80 -26 0 -69 -55 -138 0 -25 71 -85 0 57 -167 99 0 49 -161 -178 0 -56 148 67 0 -152 168 59 0 -49 -134 60 0 71 -115 30 0 85 -3 -65 0 -41 127 7 0 75 -156 119 0 -125 73 -150 0 -30 18 121 0 -106 5 -151 0 174 -45 -146 0 117 102 -5 0 26 -163 -99 0 -172 105 155 0 -168 172 -1 0 -174 -7 -90 0 17 140 -11 0 -119 120 -180 0 -158 -72 -13 0 -142 55 61 0 -109 5 136 0 57 35 -173 0 -82 33 117 0 79 155 60 0 12 -56 -76 0 167 154 -130 0 -179 175 -157 0 55 -13 47 0 -20 -137 78 0 14 62 74 0 -86 -106 -51 0 -161 63 24 0 84 -89 145 0 -130 -135 65 0 -42 -130 23 0 -20 76 101 0 46 31 125 0 -68 160 128 0 -10 -167 34 0 165 16 -38 0 93 -111 -112 0 61 138 63 0 55 -83 -17 0 169 -147 49 0 60 146 83 0 -157 112 135 0 -102 -174 -94 0 -122 -20 156 0 3 78 -138 0 -139 -107 175 0 -10 138 -156 0 34 8 -72 0 157 -90 106 0 -148 -22 -98 0 -121 99 81 0 59 -177 110 0 -150 93 -26 0 19 157 -132 0 -106 149 86 0 127 6 -108 0 169 -38 163 0 17 -37 -45 0 115 -38 54 0 -10 155 117 0 49 170 34 0 -45 -149 31 0 116 140 -171 0 -119 -171 -117 0 -98 -38 133 0 97 -8 -11 0 -15 -39 121 0 -116 -107 144 0 -72 -85 -92 0 113 112 51 0 101 -65 93 0 -111 101 73 0 -111 143 145 0 23 -143 111 0 -86 130 179 0 -50 -10 -80 0 60 17 -30 0 167 -19 -149 0 -145 73 82 0 45 20 172 0 -56 -17 149 0 87 -156 106 0 -177 -135 -50 0 37 -26 84 0 -19 -52 132 0 21 -76 88 0 -136 -156 129 0 -11 -92 -74 0 42 -177 9 0 37 123 10 0 25 30 169 0 58 -100 27 0 122 -119 90 0 -98 -143 -1 0 -116 94 -19 0 -106 74 152 0 92 135 -134 0 -88 58 -154 0 3 58 123 0 141 40 38 0 -12 142 75 0 -40 122 -173 0 57 -14 114 0 151 -88 69 0 157 -111 162 0 151 20 -78 0 -77 105 -48 0 -145 -104 -52 0 -39 69 79 0 -4 86 -153 0 -168 -127 180 0 -42 -106 -130 0 109 -107 114 0 -2 -67 -120 0 53 96 1 0 177 -141 147 0 130 80 -124 0 -47 -180 -31 0 31 81 19 0 -107 56 114 0 162 92 52 0 82 169 79 0 -120 -79 139 0 54 -73 -23 0 146 -73 29 0 110 139 -124 0 -63 109 -102 0 167 -3 144 0 -72 57 66 0 88 81 -15 0 130 -140 -32 0 83 45 -48 0 -147 162 -91 0 -40 -45 62 0 -90 -105 -148 0 -140 17 133 0 -50 -167 21 0 -61 -45 165 0 -68 14 140 0 145 41 -150 0 -86 110 -9 0 -160 -21 -134 0 -75 30 -135 0 135 -106 -51 0 -165 91 -51 0 -179 10 177 0 167 -19 -67 0 -65 14 -20 0 -163 -170 21 0 -43 -136 -67 0 -50 -63 -68 0 81 13 61 0 24 96 -57 0 -46 -91 -52 0 62 -20 86 0 44 -97 167 0 -51 15 62 0 -116 106 -9 0 -151 -155 128 0 155 -60 -95 0 74 -10 -108 0 -43 146 -85 0 134 117 36 0 148 -8 20 0 18 -180 28 0 -73 -132 150 0 109 -1 169 0 134 -133 -126 0 -152 117 37 0 -80 -64 -135 0 164 -180 54 0 142 50 -175 0 -180 102 -8 0 63 -141 -15 0 -161 64 -179 0 12 -88 -25 0 -40 46 38 0 99 -140 36 0 150 86 66 0 -133 89 -69 0 -104 65 -106 0 69 80 -70 0 123 49 129 0 63 7 172 0 129 -51 63 0 -173 -122 -93 0 -47 145 141 0 72 25 -94 0 -70 -110 -39 0 115 116 43 0 -99 178 -157 0 -5 -139 -119 0 79 179 -171 0 91 41 -59 0 -65 -55 86 0 141 82 -130 0 161 54 -39 0 88 70 150 0 30 -16 24 0 56 -51 68 0 -131 -169 73 0 -137 -139 -8 0 -33 136 170 0 -114 29 14 0 124 -149 48 0 64 138 -120 0 54 92 134 0 114 164 -106 0 -68 -75 -32 0 104 -159 -144 0 -99 116 -139 0 -158 -112 -170 0 -134 112 -142 0 72 -175 -73 0 55 4 147 0 126 4 -56 0 -65 119 -72 0 -178 46 78 0 31 -172 150 0 -76 -97 121 0 -120 -81 36 0 180 52 -159 0 -108 -70 101 0 -94 135 -2 0 90 85 -150 0 140 2 120 0 -158 -104 103 0 81 -162 -118 0 -150 -178 15 0 -168 -176 37 0 -22 -26 -164 0 126 161 170 0 -115 -140 25 0 -42 -2 19 0 -98 152 28 0 124 -28 80 0 150 73 25 0 52 154 -144 0 -102 148 -76 0 164 112 -123 0 -154 110 -71 0 -124 84 172 0 -29 38 31 0 -114 -16 -36 0 -91 -125 -19 0 -107 -74 -174 0 -92 -97 173 0 -75 3 179 0 110 -149 155 0 140 74 176 0 -57 50 -100 0 106 -16 103 0 85 -39 -51 0 -10 -20 -94 0 -105 170 -149 0 149 -152 129 0 -176 164 85 0 -178 46 -173 0 -120 -90 72 0 58 112 -97 0 128 168 -33 0 -61 -103 -86 0 -89 -31 -81 0 -144 -110 175 0 46 -53 -100 0 -73 -109 -137 0 32 -120 -108 0 83 -173 -179 0 11 29 -25 0 178 56 55 0 -127 -90 -46 0 -175 -83 -124 0 -103 -79 -105 0 -167 168 -14 0 -72 180 -71 0 -174 -52 147 0 171 56 153 0 -149 87 -31 0 -1 -81 69 0 118 49 -31 0 -46 -6 -103 0 -28 -80 -162 0 19 85 91 0 69 -110 -37 0 -58 -106 -64 0 -135 74 -98 0 136 143 63 0 9 4 -83 0 -103 -5 128 0 6 92 128 0 -90 34 -136 0 108 72 -7 0 74 -91 154 0 -155 -23 -90 0 73 -10 -60 0 158 -66 4 0 -172 -116 14 0 -1 15 40 0 -53 119 40 0 160 14 107 0 46 -108 57 0 81 -62 122 0 -19 42 -174 0 70 -13 159 0 -120 109 -16 0 4 102 147 0 75 96 -150 0 -33 9 31 0 161 24 -117 0 -130 36 -108 0 58 172 52 0 12 -173 -127 0 """ output = "SAT"
[ "mario@alviano.net" ]
mario@alviano.net
d0be3c0cb82a1c5bd0a09ef09decb96875981c29
e1e5ffef1eeadd886651c7eaa814f7da1d2ade0a
/Systest/tests/cdr/CDR_FUN_003.py
8f2ed09b839658b011aae872c85d3bfe7bdbe5c0
[]
no_license
muttu2244/MyPython
1ddf1958e5a3514f9605d1f83c0930b24b856391
984ca763feae49a44c271342dbc15fde935174cf
refs/heads/master
2021-06-09T02:21:09.801103
2017-10-10T07:30:04
2017-10-10T07:30:04
13,803,605
0
0
null
null
null
null
UTF-8
Python
false
false
6,439
py
#!/usr/bin/env python2.5 """ ############################################################################## # # Copyright (c) Stoke, Inc. # All Rights Reserved. # # This code is confidential and proprietary to Stoke, Inc. and may only # be used under a license from Stoke. # ############################################################################## DESCRIPTION:To Verify CDR data getting generated for a given session even after reloading the SSX. TEST PLAN: CDR Test plans TEST CASES: CDR_FUN_003 TOPOLOGY DIAGRAM: |---------------| |----------------| | | | | | LINUX | ------ | SSX | | 17.1.1.1/24 |e1 2/3| 17.1.1.2/16 | |---------------| |----------------| AUTHOR: suhasini@primesoftsolutionsinc.com REVIEWER: alok@primesoftsolutionsinc.com """ import sys, os mydir = os.path.dirname(__file__) qa_lib_dir = os.path.join(mydir, "../../lib/py") if qa_lib_dir not in sys.path: sys.path.insert(1,qa_lib_dir) # Frame-work libraries from SSX import * from Linux import * from log import * from StokeTest import test_case, test_suite, test_runner from log import buildLogger from logging import getLogger from cdr import * from helpers import is_healthy import re #import configs file from config import * from topo import * #import private libraries from ike import * from misc import * class test_CDR_FUN_003(test_case): myLog = getLogger() def setUp(self): #Establish a telnet session to the SSX box. self.ssx = SSX(ssx["ip_addr"]) self.linux=Linux(xpress_vpn1['ip_addr'],xpress_vpn1['user_name'],xpress_vpn1['password']) self.ssx.telnet() self.linux.telnet() # Clear the SSX config self.ssx.clear_config() # wait for card to come up self.ssx.wait4cards() self.ssx.clear_health_stats() def tearDown(self): # Close the telnet session of SSX self.ssx.close() self.linux.close() def test_CDR_FUN_003(self): # Enable debug logs for iked self.ssx.cmd("debug module iked all") self.ssx.cmd("debug module aaad all") #changing context and clearing ip counters self.ssx.cmd("context %s" %(script_var['context_name'])) #clearing sessions on ssx self.ssx.cmd("clear session all") #Clearing already existing files on the linux machine self.linux.cmd("su root") time.sleep(5) self.linux.cmd("su krao") time.sleep(5) self.linux.cmd("cd") time.sleep(5) self.linux.cmd("rm -rf *.asn1") self.linux.cmd("rm -rf *.xml") self.linux.cmd("rm -rf *.ttlv") self.linux.cmd("exit") self.linux.cmd("exit") self.linux.cmd("cd /tftpboot/") #self.linux.cmd("sudo rm *.*") self.linux.cmd("sudo rm -rf *.asn1") self.linux.cmd("sudo rm -rf *.xml") self.linux.cmd("sudo rm -rf *.ttlv") #configuring interface on linux machine self.linux.configure_ip_interface(p1_ssx_xpressvpn1[1], script_var['xpress_phy_iface1_ip_mask']) # Push xpress vpn config on linux self.linux.write_to_file(script_var['autoexec_config'],"autoexec.cfg","/xpm/") self.linux.write_to_file(script_var['add_iptakama'],"add_ip_takama","/xpm/") # Push SSX config self.ssx.config_from_string(script_var['CDR_FUN_002']) #Vgrouping the Topology #vgroup_new(vlan_cfg_str) # Initiate IKE Session from Xpress VPN Client (takama) self.linux.cmd("cd") self.linux.cmd("cd /xpm") self.linux.cmd("sudo chmod 777 add_ip_takama") self.linux.cmd("sudo ./add_ip_takama") time.sleep(5) self.linux.cmd("sudo ./start_ike") time.sleep(10) op1 = self.ssx.configcmd("show session") self.ssx.configcmd("exit") self.failUnless("IPSECv4" in op1,"Failed because there is no session of IPSEC") self.linux.cmd("!ping %s -I %s -w 2 -c 2" %(script_var['ses_loopip'],script_var['pool_ip'])) self.linux.cmd("quit") #Changing the running configuration self.ssx.config_from_string(script_var['CDR_FUN_002A']) #Saving the configuration. self.ssx.cmd("save configuration") time.sleep(2) #Displaying the saved configuration saved_conf = self.ssx.cmd("show configuration cdr") self.myLog.output(saved_conf) #Reloading the SSX. self.myLog.info("Reloading the SSX") #self.ssx.cmd("reload") self.ssx.reload_device(timeout=500) #time.sleep(500) self.myLog.info("\n\n") self.myLog.info("*" *50) self.myLog.info("Waiting for 60 seconds to get the files generated on the linux machine-%s ...... " % linux['ip_addr']) self.myLog.info("*" *50) self.myLog.info("\n\n") time.sleep(30) self.linux.cmd("ls -rth /tftpboot/ | grep \".xml\" ") #self.linux.cmd("ls -rth ~krao | grep \".xml\" ") #self.linux.cmd("ls -rth / | grep \".xml\" ") linuxip = self.linux.cmd("ls -rth /tftpboot/ | grep \".xml\" | tail -n 1") linuxip1 = linuxip.strip() self.myLog.output(linuxip1) self.failUnless(linuxip1,"Failed to generate XML files after changing the configuration") self.myLog.output("CDR data generation passed for a given session even after changing and saving of running configuration") self.myLog.info("*" *50) self.myLog.output("XML files were generated instead of TTLV files") self.myLog.info("*" *50) time.sleep(2) # Checking SSX Health hs = self.ssx.get_health_stats() self.failUnless(is_healthy( hs), "Platform is not healthy") if __name__ == '__main__': if os.environ.has_key('TEST_LOG_DIR'): os.mkdir(os.environ['TEST_LOG_DIR']) os.chdir(os.environ['TEST_LOG_DIR']) filename = os.path.split(__file__)[1].replace('.py','.log') log = buildLogger(filename, debug=True, console=True) suite = test_suite() suite.addTest(test_CDR_FUN_003) test_runner(stream=sys.stdout).run(suite)
[ "muttu2244@yahoo.com" ]
muttu2244@yahoo.com
5836d969a34cd9162fc29c0eaf3f3c12370e941f
0fa2cb199a567f1ed81faa9a592c9d8a959f69b9
/adventofcode/2015/13.py
b6a6324619c1979229c2981430dbd6f2bd2e2591
[ "MIT" ]
permissive
hacktoolkit/code_challenges
ee5d407b3cfd8e27e1ec1254e3db129ce7a8db7d
fa35a3cf8afd18b4c32170f64d5364e90dedd5a6
refs/heads/master
2023-06-21T17:09:42.342328
2022-12-25T06:18:26
2022-12-25T06:18:26
30,107,170
12
6
null
2022-12-29T13:58:31
2015-01-31T08:37:24
CSS
UTF-8
Python
false
false
2,903
py
# Python Standard Library Imports import re from collections import defaultdict from itertools import permutations from utils import ( Re, ingest, ) INPUT_FILE = '13.in' EXPECTED_ANSWERS = (618, 601, ) # INPUT_FILE = '13.test.in' # EXPECTED_ANSWERS = (330, 286, ) def main(): solution = Solution() answers = (solution.solve1(), solution.solve2(), ) print(answers) assert(answers == EXPECTED_ANSWERS) class Solution: def __init__(self): self.data = ingest(INPUT_FILE) self.seating_chart = SeatingChart(self.data) def solve1(self): best_arrangment, best_score = self.seating_chart.find_optimal_seating() answer = best_score return answer def solve2(self): self.seating_chart.add_player('undefined_player') best_arrangment, best_score = self.seating_chart.find_optimal_seating() answer = best_score return answer class SeatingChart: SEATING_REGEX = re.compile(r'^(?P<name>[A-Z][a-z]+) would (?P<change>(gain)|(lose)) (?P<amount>\d+) happiness units by sitting next to (?P<partner>[A-Z][a-z]+)\.$') def __init__(self, rules): self.rules = rules chart = defaultdict(lambda: defaultdict(int)) for rule in rules: regex = Re() if regex.match(self.SEATING_REGEX, rule): m = regex.last_match name, change, amount, partner = ( m.group('name'), m.group('change'), int(m.group('amount')), m.group('partner'), ) multiplier = 1 if change == 'gain' else -1 score = multiplier * amount chart[name][partner] = score else: raise Exception('Bad seating rule: %s' % rule) self.chart = chart self.players = sorted(list(chart.keys())) def add_player(self, name): self.players.append(name) def find_optimal_seating(self): """Variant of stable marriage problem https://en.wikipedia.org/wiki/Stable_marriage_problem https://en.wikipedia.org/wiki/Gale%E2%80%93Shapley_algorithm """ best_arrangement = None best_score = None num_players = len(self.players) for p in permutations(self.players): score = 0 for i in range(num_players): player = p[i] neighbors = ( p[(i+1) % num_players], p[(i-1) % num_players], ) for neighbor in neighbors: score += self.chart[player][neighbor] if best_arrangement is None or score > best_score: best_arrangement = p best_score = score return best_arrangement, best_score if __name__ == '__main__': main()
[ "hello@jontsai.com" ]
hello@jontsai.com
7d2a692bfc7fae15da0ae6156a3b1e35a188a34a
8e8ffec676b76653555605b0e370803a3c4e3598
/scripts/tags.py
908d71c5a12d9192bddd78203180a4b659b02954
[]
no_license
fbzekiyalniz/hub
04b56165d965ccf67d8ae77a0d8d2659b226b8d6
c72cc328a01abea0bfd3e1b8413a455b97300ee6
refs/heads/master
2020-08-03T11:51:32.008748
2019-10-16T17:47:41
2019-10-16T17:47:41
211,742,619
1
0
null
2019-09-30T00:05:57
2019-09-30T00:05:57
null
UTF-8
Python
false
false
112
py
valid_tags = ['vision', 'nlp', 'generative', 'audio', ]
[ "ailzhang@fb.com" ]
ailzhang@fb.com
76645e99a3ab8dda3a18c6fcd5ef21efa0165d58
cb43eaec0f296e3b216845c33417446038e7149f
/studnit/studnit_app/views.py
a03e204de73bab1bfefe81666fa9e5b1d84c3f9d
[ "MIT" ]
permissive
sonali0901/hackathon-studnit
fc6d4aef4f0c5350ba5f427e0b31ce8876538c9c
41979fb59a33f2a95d9cd651940a6a8c8d0b7fc4
refs/heads/master
2021-01-01T04:44:30.380252
2016-04-17T16:45:26
2016-04-17T16:45:26
56,426,433
0
1
null
null
null
null
UTF-8
Python
false
false
1,386
py
from django.shortcuts import render from django.contrib.auth import authenticate, logout from django.contrib.auth import login as login_1 from django.http import HttpResponse, HttpResponseRedirect, JsonResponse from studnit import settings def login(request): next = request.GET.get('next', '/home/') if request.method == "POST": username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None: if user.is_active: login_1(request, user) print('test') return HttpResponseRedirect('/home/') else: return HttpResponse("Account is not active at the moment.") else: return HttpResponseRedirect(settings.LOGIN_URL) return render(request, "studnit_app/index.html", {'next': next}) def home(request): return render(request, 'studnit_app/home.html', {}) def y12(request): return render(request, 'studnit_app/y12.html',{}) def Post(request): if request.method == "POST": msg = request.POST.get('msgbox', None) c = Chat(user=request.user, message=msg) if msg != '': c.save() return JsonResponse({ 'msg': msg, 'user': c.user.username }) else: return HttpResponse('Request must be POST.')
[ "sonaligpt0@gmail.com" ]
sonaligpt0@gmail.com
a57090615a00f422ac7cb45b2f7d11e389791935
df82bc832254751da5b02d6ab780f79722fb292f
/definitions.py
f6f50fb3d8c820f80401b68e4fe2f0637246f105
[ "MIT" ]
permissive
skilkis/GENX
9e84026f53cad5f035dce899e989bf140eacf557
049267ba7751013517d49939e4ce387484959500
refs/heads/master
2020-03-29T00:28:36.759126
2019-01-18T21:07:10
2019-01-18T21:07:10
149,341,276
3
0
null
null
null
null
UTF-8
Python
false
false
5,077
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division from constants import * from utils import Undefined import numpy as np __author__ = 'San Kilkis' class Component(property): """ Renames the :py:class:`property` to be able to organize all engine components and retrieve them easily """ def __repr__(self): return "<'{}' {} object at {}>".format(self.fget.__name__, self.__class__.__name__, hex(id(self))) class FlowCondition(Constants): __kwargs__ = None # Providing dummy attributes for the debugger, these are partially overwritten at run-time by the constructor mass_flow = Undefined('mass_flow') corrected_mass_flow = Undefined('corrected_mass_flow') mach = Undefined('mach') velocity = Undefined('velocity') t_static = Undefined('t_static') t_total = Undefined('t_total') p_static = Undefined('p_static') p_total = Undefined('p_total') medium = Undefined('medium') rho = Undefined('rho') station_number = Undefined('station_number') # TODO Finish documentaiton def __init__(self, **kwargs): """ :param float mass_flow: :param float mach: :param float velocity: :param float t_static: :param float p_static: :param str medium: :param float t_total: :param float p_total: :param float rho: Density of the substance in SI kilogram per meter cubed [kg/m^3] :param str station_number: """ self.__kwargs__ = kwargs for key, value in zip(kwargs.keys(), kwargs.values()): setattr(self, key, value) # TODO add a nice representation for visualization in debugger and print statements # def __repr__(self): # return '<Undefined = {}>.format' @Attribute def velocity(self): """ Computes flow velocity from the mach number if available in SI meter per second [m/s] """ return self.mach * np.sqrt(self.kappa * self.gas_constant * self.t_static) @Attribute def rho(self): """ Computes the density from the static pressure and temperature in SI kilogram per meter cubed [kg/m^3] """ return self.p_static / (self.gas_constant * self.t_static) @Attribute def kappa(self): """ Ratio of Specific Heat Selected Medium """ if self.medium == 'air': return self.kappa_air elif self.medium == 'gas': return self.kappa_gas else: raise AttributeError("Data for the provided medium '{}' does not exist".format(self.medium)) @Attribute def specific_heat(self): """ Specific Heat of the Selected Medium at Constant Pressure c_p in SI Joule per kilogram Kelvin [J/kg K] """ if self.medium == 'air': return self.specific_heat_air elif self.medium == 'gas': return self.specific_heat_gas else: raise AttributeError("Data for the provided medium '{}' does not exist".format(self.medium)) # TODO Add Attributes: Corrected Mass Flow if necessary otherwise mass flow @Attribute def corrected_mass_flow(self): """ Returns the mass flow corrected for pressure and temperature effects in SI kilogram per second [kg s^-1] """ return self.mass_flow * self.c_ratio @Attribute def mass_flow(self): """ Actual mass flow in SI kilogram per second [kg s^-1] """ return self.corrected_mass_flow / self.c_ratio @Attribute def t_total(self): return self.t_static * self.t_ratio @Attribute def p_total(self): return self.p_static * self.p_ratio @Attribute def t_static(self): return self.t_total / self.t_ratio @Attribute def p_static(self): return self.p_total / self.p_ratio @Attribute def t_ratio(self): """ Total Temperature to Static Temperature Ratio """ return 1 + (((self.kappa - 1) / 2.) * self.mach**2) @Attribute def p_ratio(self): """ Total Pressure to Static Pressure Ratio """ return (1 + (((self.kappa - 1) / 2.) * self.mach**2))**(self.kappa / (self.kappa - 1)) @Attribute def c_ratio(self): """ Correction Ratio for obtaining the Corrected Mass Flow """ numerator = np.sqrt(self.t_total / self.temperature_sl) denominator = self.p_total / self.pressure_sl return numerator / denominator @staticmethod def ensure_float(entry): return float(entry) if entry is not None or str else entry class Stage(Constants): @Attribute def inflow(self): return NotImplementedError('Implement an __init__ method to obtain the FlowCondition at the start of the stage') @Attribute def outflow(self): return NotImplementedError('Implement methods to compute this parameter in sublcasses') if __name__ == '__main__': obj = FlowCondition(mach=0.8, p_total=101325, medium='air') print(obj.p_static)
[ "sankilkis@msn.com" ]
sankilkis@msn.com
87afd56421d221bac59235bfc29654fa42999ffd
2b485c67c723151f73ec96da9f6337a0c9857dae
/easy/q125 validPalindrome.py
1845ff93d7ae6e5ea92ed9210954fc747d35d733
[]
no_license
Anupya/leetcode
c7792e6ac61b655491a1c734f9167281356471d3
cb45e66a41e0c6a8583bb9c4bf846b470ef4bc0f
refs/heads/master
2022-10-10T14:01:22.189414
2022-09-07T21:36:24
2022-09-07T21:36:24
151,865,310
0
1
null
null
null
null
UTF-8
Python
false
false
268
py
# Given a string s, determine if it is a palindrome, considering only alphanumeric characters and ignoring cases. class Solution: def isPalindrome(self, s: str) -> bool: s = ''.join(x for x in s if x.isalnum()).lower() return s == s[::-1]
[ "anupya@hotmail.ca" ]
anupya@hotmail.ca
cd066667c03cf7f004e710743a04ccb25008bd1f
5d91c8dc65df96816994b5e8cce10d2261294349
/natural-selection-sim 30-10-2020/organisms.py
6978731a0b29d6a3a8bc1ecd0ba2cd0a60ebf756
[]
no_license
phletic/pythonEcosystemSimulation
9d8f90b53a6c37d0f7236404bd9997cb45daa8ce
9e20afacb1c5a44bca920a9f549962f46d437d5c
refs/heads/main
2023-01-06T15:27:14.272785
2020-10-31T04:14:44
2020-10-31T04:14:44
302,033,557
0
0
null
null
null
null
UTF-8
Python
false
false
9,492
py
import math import random import string import sys from abc import ABC, abstractmethod # noinspection PyUnresolvedReferences,PyUnresolvedReferences,PyUnresolvedReferences from vectorMath import Vector ''' This program will store all the animal classes. I hope I will be able to allow the user to create his own organisms with custom behaviors AKA edit the program through a UI ''' # This Node is for the a* algorithm. THe Repr method is pretty useless as I wouldn't print it but still I guess no harm keeping... class Node: """ """ def __init__(self, v, f): self.v = v self.f = f def __repr__(self): return f"{self.v},{self.f}" class organisms(ABC): """ """ def __init__(self, pos, energy, growthRate, vision, name, type): letters = string.ascii_letters result_str = ''.join(random.choice(letters) for i in range(10)) self.id = result_str self.pos = pos self.energy = energy self.growthRate = growthRate self.vision = vision self.species = name self.age = 0 self.type = type def __repr__(self): return self.species + "\t" + str(self.pos) + "\t" + str(self.energy) + "\t" + str(self.age) + "\t" + self.id def getRandomLocation(self, distance, objs): location = [i.pos for i in objs] r = random.randint(1, distance) theta = math.radians(random.randint(0, 359)) x = round(r * math.cos(theta) + self.pos.x) y = round(r * math.sin(theta) + self.pos.y) path = Vector(x, y) while path in location: path.x += random.randint(-1, 1) path.y += random.randint(-1, 1) return path def die(self, _map): """ :param map: list :return: map """ _map.remove(self) return _map @abstractmethod def move(self, _map): pass # animal class. the parent class animal(organisms): """ animals: Rules: When it run the move() function, it picks out all organisms in the area within its vision. If there is another organism of differing gender, it will check if its expectations > other species attractiveness and vice versa. When both conditions pass, it will mate """ # noinspection PyCompatibility def __init__(self, pos: Vector, energy: int, growthRate: int, attractiveness: int, expectations: int, vision: int, species: str, foodEat: list, gender: str, notMate: list = None): if notMate is None: notMate = [] self.wait = False self.gender = gender self.expectations = expectations self.foodEat = foodEat self.attractiveness = attractiveness self.notMate = notMate super().__init__(pos, energy, growthRate, vision, species, "animal") # That one annoying a star program -- which in the end I had to redo def alteredPathFindingAlgo(self, end, obstacle): locations = [i.pos for i in obstacle] possibleLocations = [Vector(0, 1), Vector(1, 0), Vector(0, -1), Vector(-1, 0)] possibleLocations = [Node(v=(i + self.pos), f=( Vector.Distance(i + self.pos, end) + Vector.Distance(self.pos, i + self.pos))) for i in possibleLocations if i not in locations] lowestF, index = sys.maxsize, 0 for e, i in enumerate(possibleLocations): if i.f < lowestF: lowestF = i.f index = e return possibleLocations[index].v def reproduce(self, _map, partner): # since B < A, I will do sth horrendous so that the random function will not have a A < B scenario # This code determine the stats of the baby # the creature will not mate with the immediate parents newEnergy = random.randint(self.energy, partner.energy) if partner.energy > self.energy else random.randint( partner.energy, self.energy) newGrowthRate = random.randint(self.growthRate, partner.growthRate) if partner.growthRate > self.growthRate else random.randint( partner.growthRate, self.growthRate) newAttractiveness = random.randint(self.attractiveness, partner.attractiveness) if partner.attractiveness > self.attractiveness else random.randint( partner.attractiveness, self.attractiveness) newExpectations = random.randint(self.expectations, partner.expectations) if partner.expectations > self.expectations else random.randint( partner.expectations, self.expectations) newVision = random.randint(self.vision, partner.vision) if partner.vision > self.vision else random.randint( partner.vision, self.vision) newGender = random.choice(["M", "F"]) newPos = self.getRandomLocation(2, _map) Baby = animal(newPos, newEnergy, newGrowthRate, newAttractiveness, newExpectations, newVision, self.species, self.foodEat, newGender, notMate=[self, partner]) self.notMate.append(partner) self.notMate.append(Baby) partner.notMate.append(self) partner.notMate.append(Baby) partner.wait = False _map.append(Baby) return _map def move(self, _map): # todo eat # todo mate # todo die locations = [i for i in _map if Vector.Distance(i.pos, self.pos) < self.vision and i.pos is not self.pos] lowestDistance, index = sys.maxsize, 0 possibleLocations = [] for e, i in enumerate(locations): distance = Vector.Distance(self.pos, i.pos) if i.type == "animal": if self.species in i.foodEat: # Im prey I should run possibleLocations.append(self.pos - i.pos + self.pos) if i.species is self.species and i not in self.notMate and self not in i.notMate: if self.check(i) and i.check(self): # Im mate if distance <= 1: print("reproduce") _map = self.reproduce(_map,i) return _map possibleLocations.append(i.pos) if i.species in self.foodEat: # Im predator I should chase if distance <= 1: print("eat") possibleLocations.append(i.pos) if distance < lowestDistance: lowestDistance = distance index = e if not possibleLocations: possibleLocations.append(self.getRandomLocation(self.vision, _map)) index = 0 global path try: path = self.alteredPathFindingAlgo(possibleLocations[index], _map) except Exception as e: print(possibleLocations,index,self,e) exit() self.pos = path return _map def check(self, other): if self.expectations <= other.attractiveness: return True else: return False class plant(organisms): """ """ def __init__(self, pos, energy, spread, growthRate, species, reproduceRate): # vision = spread of plant - how far it can produce new of itself """ :param pos: :param energy: :param vision: :param growthRate: :param species: """ self.reproduceRate = reproduceRate # noinspection PyCompatibility super().__init__(pos, energy, growthRate, spread, species, "plant") def spread(self, _map): for i in range(self.reproduceRate): location = self.getRandomLocation(self.vision, _map) newEnergy = self.energy + random.randint(-2, 2) if self.energy - 2 > 0 else self.energy + random.randint(0, 2) newSpread = self.vision + random.randint(-2, 2) if self.vision - 2 > 0 else self.vision + random.randint(0, 2) newGrowthRate = self.growthRate + random.randint(-2, 2) if self.growthRate - 2 > 0 else self.growthRate + random.randint( 0, 2) _map.append(plant(location, newEnergy, newSpread, newGrowthRate, self.species, self.reproduceRate)) return _map def move(self, _map): self.age += self.growthRate if self.age >= 100: _map = self.spread(_map) _map = self.die(_map) return _map # for testing puposes only if __name__ == '__main__': rabbit = animal(pos=Vector(2, 2), energy=10, growthRate=10, attractiveness=10, expectations=10, vision=10, species="rabbit", foodEat=["grass"], gender="M") rabbitF = animal(pos=Vector(2, 10), energy=10, growthRate=10, attractiveness=10, expectations=10, vision=10, species="rabbit", foodEat=["grass"], gender="F") _map = [rabbit, rabbitF] while True: input("") for i in _map: _map = i.move(_map) print(i)
[ "chavezchendy@gmail.com" ]
chavezchendy@gmail.com
e159944e0eb7ef079d843bc84419372a591efabe
6ac0aeea8229c4e2c7a041e85c3afeeb106c6b01
/KAPL_UTIL.py
0dfbd1eb5ca51bf24f664c098d8017ceaca2ed1d
[]
no_license
waiteb15/py3intro
325dafaaa642052280d6c050eacf8b406b40e01d
68b30f147e7408220490a46d3e595acd60513e9e
refs/heads/master
2020-03-27T10:50:25.928836
2019-02-28T21:47:11
2019-02-28T21:47:11
146,448,412
1
0
null
null
null
null
UTF-8
Python
false
false
117
py
#!/usr/bin/env python def spam(): print("hello") def ham(): print("ham") def _eggs(): print("EGGS")\
[ "waiteb15@gmail.com" ]
waiteb15@gmail.com
0a077646db3b2a032b608e4bfe75a1bc68314fae
24ea68723c92526ea2718df3e44bdff6868eae1d
/demo_app.py
44171bfdb3ce443a2f5cc15771de2e26a3ea3235
[]
no_license
r3ap3rpy/gitlab-flask
87c5b677d4c8caf02063611b8c0bf816741017af
5ca851cf91bde5f1bfdb3d7ffcd74f1a1ae796f5
refs/heads/master
2022-12-29T22:57:46.420142
2020-10-18T07:58:18
2020-10-18T07:58:18
305,051,417
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
from flask import Flask app = Flask(__name__) @app.route("/") def index(): return "Hello World!" @app.route("/cicd") def cicd(): return "GitLab is awesome!" if __name__ == '__main__': app.run(host="localhost", port = 8080, debug = True)
[ "r3ap3rpy@gmail.com" ]
r3ap3rpy@gmail.com
4d5982f1088caa14f4770ab5d8df791193fb9f76
c60522de559312f47bcf576a774e5410de35eb35
/wm-test.py
a546dbae20b4f2a72674efd86b1af13cb40d5392
[]
no_license
benoit-pierre/config-progs
e147af5b478c70fea5761aad1f8823aeab9709a7
5b84aff8c5e51c331ace2ba6a609e4a95484a93b
refs/heads/master
2021-01-18T23:07:59.497783
2018-12-18T12:44:54
2018-12-18T12:44:54
14,686,882
0
0
null
null
null
null
UTF-8
Python
false
false
6,235
py
#!/usr/bin/env python2 import subprocess import optparse import struct import signal import copy import time import sys import re import os def check_display(option, opt, value): m = re.match('^\d+$', value) if not m: raise optparse.OptionValueError('invalid display ID: %s' % value) return int(m.group(0)) def check_geometry(option, opt, value): m = re.match('^(\d+)x(\d+)(:(\d+)x(\d+))?$', value) if not m: raise optparse.OptionValueError('invalid display geometry: %s' % value) width, height = int(m.group(1)), int(m.group(2)) if m.group(3): horizontal_screens, vertical_screens = int(m.group(4)), int(m.group(5)) else: horizontal_screens, vertical_screens = 1, 1 return (width, height, horizontal_screens, vertical_screens) class Option(optparse.Option): TYPES = optparse.Option.TYPES + ('display', 'geometry',) TYPE_CHECKER = copy.copy(optparse.Option.TYPE_CHECKER) TYPE_CHECKER['display'] = check_display TYPE_CHECKER['geometry'] = check_geometry parser = optparse.OptionParser(option_class=Option) parser.add_option('-D', '--display', dest='display', metavar='DISPLAY', default=2, type='display', help='X11 display ID to use') parser.add_option('-g', '--geometry', dest='geometry', metavar='WxH[:WxH]', default='1024x768', type='geometry', help='display geometry: total width/height (pixels), width/height (screens, optional, default to 1x1)') parser.add_option('-d', '--debug', action='store_true', dest='debug', default=False, help='enable debug traces') (options, args) = parser.parse_args() xsession_debug = options.debug class SigException(): def __init__(self, signum): self.signum = signum def xsession_sighandler(signum, frame): if xsession_debug: if signal.SIGUSR1 == signum: signame = 'SIGUSR1' elif signal.SIGUSR2 == signum: signame = 'SIGUSR2' else: signame = str(signum) print 'xsession_sighandler(' + signame + ')' raise SigException(signum) signal.signal(signal.SIGUSR1, xsession_sighandler) signal.signal(signal.SIGUSR2, xsession_sighandler) def dim_split(dim, num): step = dim / num values = [] for d in range(num - 1): values.append(step) dim -= step values.append(dim) return values def display_geometry_to_screens(display_width, display_height, horizontal_screens, vertical_screens): screens_widths = dim_split(display_width, horizontal_screens) screens_heights = dim_split(display_height, vertical_screens) screens = [] x, y = 0, 0 for w in screens_widths: for h in screens_heights: screens.append((x, y, w, h)) y = (y + h) % display_height x = (x + w) % display_width return screens xephyr_display = ':%u' % options.display xephyr_pid = os.fork() if 0 == xephyr_pid: # This will make the xserver send us a SIGUSR1 when ready. signal.signal(signal.SIGUSR1, signal.SIG_IGN) xephyr_cmd = [ 'Xephyr', 'Xephyr', xephyr_display, '+xinerama', '-ac', '-noreset', '-resizeable', '-extension', 'GLX', ] screens = display_geometry_to_screens(*options.geometry) for x, y, w, h in screens: xephyr_cmd.extend([ '-origin', '%u,%u' % (x, y), '-screen', '%ux%u' % (w, h), ]) if xsession_debug: print 'starting xephyr:', ' '.join(xephyr_cmd) os.execlp(*xephyr_cmd) xsession_signum = None try: # Wait for xserver to be ready. if xsession_debug: print 'waiting for xserver to be ready' try: signal.pause() except KeyboardInterrupt: sys.exit(0) except SigException, e: assert signal.SIGUSR1 == e.signum if xsession_debug: print 'xserver ready' os.system('xrdb -query | xrdb -load -display %s -' % xephyr_display) # Ugly hack... using xkbcomp only work after a least one keypress... os.system('xdotool key space') os.system('xkbcomp %s %s' % (os.environ['DISPLAY'], xephyr_display)) os.environ['DISPLAY'] = xephyr_display if xsession_debug: print 'starting dbus' dbus_cmd = ['dbus-launch', '--binary-syntax'] dbus = subprocess.Popen(dbus_cmd, stdout=subprocess.PIPE) dbus_env = dbus.communicate()[0] ulong_size = struct.calcsize('L') uint_size = struct.calcsize('I') dbus_pid, = struct.unpack('I', dbus_env[-(ulong_size+uint_size):-ulong_size]) dbus_xid, = struct.unpack('L', dbus_env[-ulong_size:]) dbus_address = dbus_env[:-(ulong_size+ulong_size+1)] if xsession_debug: print 'dbus_pid:', dbus_pid print 'dbus_xid:', dbus_xid print 'dbus_address:', dbus_address try: xsession_pid = os.getpid() os.environ['XSESSION_PID'] = str(xsession_pid) os.environ['DBUS_SESSION_BUS_ADDRESS'] = dbus_address if xsession_debug: print 'xsession_pid:', xsession_pid wm_args = args[:] if 0 == len(wm_args): wm_args = [ 'xterm' ] if xsession_debug: print 'starting wm:', ' '.join(wm_args) wm_pid = os.fork() if 0 == wm_pid: os.execvp(wm_args[0], wm_args) if xsession_debug: print 'wm_pid:', wm_pid while True: try: os.waitpid(wm_pid, 0) break except KeyboardInterrupt: sys.exit(0) except SigException, e: xsession_signum = e.signum if xsession_debug: print 'wm terminated' finally: if xsession_debug: print 'killing dbus' os.kill(dbus_pid, signal.SIGTERM) finally: if xsession_debug: print 'killing xserver' os.kill(xephyr_pid, signal.SIGTERM) os.waitpid(xephyr_pid, 0) if xsession_debug: if signal.SIGUSR1 == xsession_signum: print 'wm asked for reboot' elif signal.SIGUSR2 == xsession_signum: print 'wm asked for halt'
[ "benoit.pierre@gmail.com" ]
benoit.pierre@gmail.com
c30aced17416596217d29686342924973fc2af5e
3b98d784a48191ec490c331c359c71c3416c7aaa
/core/filters.py
b42bda8b2e02e79e071e56a34c7c1b5bc1e044b4
[]
no_license
brian-lai/django-docker
303718507500a844474c60e67b7aec790274b045
bf22ee921ffd98e3aecd530d5b6b5af80f693e8b
refs/heads/master
2022-12-28T05:13:36.197124
2020-10-13T23:08:10
2020-10-13T23:08:10
297,494,350
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
def filter_in(self, queryset, value): '''Takes a list as an argument and parses the JSON. ''' value = eval(value) if isinstance(value, list): return queryset.filter(id__in=value) return queryset
[ "arijsilver@gmail.com" ]
arijsilver@gmail.com
9853fc5a04732414092946eb9dc0fb337d7d3bba
589ac0a71099f4ee6857a31986305f0df2c16ede
/Doc/examples/local_blast.py
dbb1e5ee7f191d61d258bf9de3d1f192a4101aeb
[ "LicenseRef-scancode-biopython" ]
permissive
barendt/biopython
802aad89005b302b6523a934071796edbd8ac464
391bcdbee7f821bff3e12b75c635a06bc1b2dcea
refs/heads/rna
2021-11-09T19:11:56.345314
2010-05-01T02:44:42
2010-05-01T02:44:42
636,700
0
0
NOASSERTION
2021-11-05T13:10:14
2010-04-29T02:35:46
Python
UTF-8
Python
false
false
1,503
py
#!/usr/bin/env python """Script demonstrating the ability to interact with local BLAST. The contents of this script are described more fully in the available documentation. """ # standard library import os import sys # biopython from Bio.Blast import NCBIStandalone my_blast_db = os.path.join(os.getcwd(), 'at-est', 'a_cds-10-7.fasta') my_blast_file = os.path.join(os.getcwd(), 'at-est', 'test_blast', 'sorghum_est-test.fasta') my_blast_exe = os.path.join(os.getcwd(), 'blast', 'blastall') print 'Running blastall...' blast_out, error_info = NCBIStandalone.blastall(my_blast_exe, 'blastn', my_blast_db, my_blast_file) b_parser = NCBIStandalone.BlastParser() b_iterator = NCBIStandalone.Iterator(blast_out, b_parser) while 1: b_record = b_iterator.next() if b_record is None: break E_VALUE_THRESH = 0.04 for alignment in b_record.alignments: for hsp in alignment.hsps: if hsp.expect < E_VALUE_THRESH: print '****Alignment****' print 'sequence:', alignment.title print 'length:', alignment.length print 'e value:', hsp.expect if len(hsp.query) > 75: dots = '...' else: dots = '' print hsp.query[0:75] + dots print hsp.match[0:75] + dots print hsp.sbjct[0:75] + dots
[ "chapmanb" ]
chapmanb
4b97325e71d846b3fefb8136d5b0df52f77ba248
2364b31ccc8843477295befb09bacbf3a723f1a9
/ContentFilter.py
cc186f93497f9c9637e0a02dde3189d3cc543a41
[]
no_license
yenkuanlee/FindGoodIphone7s
c0bd95cdf9b3d67b2e0e302ef5e8b80cda208363
4f76a43e9afa768e216b6fbaa9bc57f359636cf6
refs/heads/master
2021-01-15T12:02:31.440716
2017-09-20T03:28:17
2017-09-20T03:28:17
99,645,147
0
0
null
null
null
null
UTF-8
Python
false
false
2,740
py
# -*- coding: UTF-8 -*- # Kevin Yen-Kuan Lee import urllib2 import requests import re import sys reload(sys) sys.setdefaultencoding('utf-8') def send_email(recipient, subject, body): import smtplib user = "" pwd = "" gmail_user = user gmail_pwd = pwd FROM = user TO = recipient if type(recipient) is list else [recipient] SUBJECT = subject TEXT = body # Prepare actual message message = """From: %s\nTo: %s\nSubject: %s\n\n%s """ % (FROM, ", ".join(TO), SUBJECT, TEXT) try: server_ssl = smtplib.SMTP_SSL("smtp.gmail.com", 465) server_ssl.ehlo() # optional, called by login() server_ssl.login(gmail_user, gmail_pwd) # ssl server doesn't support or need tls, so don't call server_ssl.starttls() server_ssl.sendmail(FROM, TO, message) #server_ssl.quit() server_ssl.close() print 'successfully sent the mail' except Exception,e: print "failed to send mail" def getPrice(Kurl): content = requests.get( url = Kurl #url= 'https://www.ptt.cc/bbs/' + board + '/index.html', #cookies={'over18': '1'} ).content.decode('utf-8') Time = "NO TIME" try: Time = content.split("時間</span><span class=\"article-meta-value\">")[1].split("<")[0] except: pass try: price = content.split("[交易價格]:")[1].split("\n")[0] price = price.replace(",","") price = price.replace(",","") return int(re.search(r'\d+', price).group()),Time #return price except: return -1,Time UrlSet = set() Mlist = list() fr = open('output.txt','r') while True: line = fr.readline() if not line: break line = line.replace("\n","") Mlist.append(line) try: UrlSet.add(line.split("\t")[1]) except: pass fr.close() f = open(sys.argv[1],'r') fw = open('output.txt','w') while True: line = f.readline() if not line: break tmp = line.split("\t") price,Time = getPrice(tmp[0]) if tmp[0] in UrlSet: continue if price < 30000: try: title = line.split("\t")[1].split("\n")[0] Iurl = line.split("\t")[0] send_email("yenkuanlee@gmail.com",title,Time+"\n\n"+title+"\n\n"+Iurl+"\n\n"+str(price)+" 元"+"\n\n") send_email("mnbm03409@gmail.com",title,Time+"\n\n"+title+"\n\n"+Iurl+"\n\n"+str(price)+" 元"+"\n\n") except: pass print Time+"\t"+line+str(price)+"\n" fw.write(Time+"\t"+line+str(price)+"\n\n") f.close() for x in Mlist: fw.write(x+"\n") fw.close()
[ "yenkuanlee@gmail.com" ]
yenkuanlee@gmail.com
f32ec776b07d6d6cb688e572fb3e6331462f5c8c
503d552818dd192e163c3cb5bd61a189865c1759
/demo/demo/urls.py
c96ca30cafd0495da058e4e66474476d32476c14
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
dyve/django-perm
63c1c5f13a0510404eff7f53435ae2caf96d97a5
16a8f5991600aba68a16240b4dd319ce345d8197
refs/heads/develop
2023-03-26T14:57:22.909652
2017-10-29T09:33:20
2017-10-29T09:33:20
9,869,046
2
3
null
2014-08-10T06:05:08
2013-05-05T13:44:36
Python
UTF-8
Python
false
false
1,065
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.conf.urls import patterns, url from .views import HomeView, ServerErrorView, ObjectDoesNotExistView, PermissionDeniedView # Uncomment the next two lines to enable the admin: # from django.contrib import admin # admin.autodiscover() # urlpatterns = patterns('', # # Examples: # # url(r'^$', 'demo.views.home', name='home'), # # url(r'^demo/', include('demo.foo.urls')), # # # Uncomment the admin/doc line below to enable admin documentation: # # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # # # Uncomment the next line to enable the admin: # # url(r'^admin/', include(admin.site.urls)), # ) urlpatterns = patterns('', url(r'^$', HomeView.as_view(), name='home'), url(r'^permission_denied$', PermissionDeniedView.as_view(), name='permission_denied'), url(r'^object_does_not_exist$', ObjectDoesNotExistView.as_view(), name='object_does_not_exist'), url(r'^server_error$', ServerErrorView.as_view(), name='server_error'), )
[ "dylan@zostera.nl" ]
dylan@zostera.nl
33981ef3da670d488abacf13f279b5fa2b9779c1
fdbb74a95924e2677466614f6ab6e2bb13b2a95a
/third_party/python/Lib/xml/sax/__init__.py
f18dd425ad438770ce42e9cce873ce05d468670f
[ "Python-2.0", "GPL-1.0-or-later", "LicenseRef-scancode-python-cwi", "LicenseRef-scancode-free-unknown", "LicenseRef-scancode-other-copyleft", "ISC" ]
permissive
jart/cosmopolitan
fb11b5658939023977060a7c6c71a74093d9cb44
0d748ad58e1063dd1f8560f18a0c75293b9415b7
refs/heads/master
2023-09-06T09:17:29.303607
2023-09-02T03:49:13
2023-09-02T03:50:18
272,457,606
11,887
435
ISC
2023-09-14T17:47:58
2020-06-15T14:16:13
C
UTF-8
Python
false
false
3,679
py
"""Simple API for XML (SAX) implementation for Python. This module provides an implementation of the SAX 2 interface; information about the Java version of the interface can be found at http://www.megginson.com/SAX/. The Python version of the interface is documented at <...>. This package contains the following modules: handler -- Base classes and constants which define the SAX 2 API for the 'client-side' of SAX for Python. saxutils -- Implementation of the convenience classes commonly used to work with SAX. xmlreader -- Base classes and constants which define the SAX 2 API for the parsers used with SAX for Python. expatreader -- Driver that allows use of the Expat parser with SAX. """ from .xmlreader import InputSource from .handler import ContentHandler, ErrorHandler from ._exceptions import SAXException, SAXNotRecognizedException, \ SAXParseException, SAXNotSupportedException, \ SAXReaderNotAvailable if __name__ == 'PYOBJ.COM': import xml.sax def parse(source, handler, errorHandler=ErrorHandler()): parser = make_parser() parser.setContentHandler(handler) parser.setErrorHandler(errorHandler) parser.parse(source) def parseString(string, handler, errorHandler=ErrorHandler()): import io if errorHandler is None: errorHandler = ErrorHandler() parser = make_parser() parser.setContentHandler(handler) parser.setErrorHandler(errorHandler) inpsrc = InputSource() if isinstance(string, str): inpsrc.setCharacterStream(io.StringIO(string)) else: inpsrc.setByteStream(io.BytesIO(string)) parser.parse(inpsrc) # this is the parser list used by the make_parser function if no # alternatives are given as parameters to the function default_parser_list = ["xml.sax.expatreader"] # tell modulefinder that importing sax potentially imports expatreader _false = 0 if _false: import xml.sax.expatreader import os, sys if not sys.flags.ignore_environment and "PY_SAX_PARSER" in os.environ: default_parser_list = os.environ["PY_SAX_PARSER"].split(",") del os _key = "python.xml.sax.parser" if sys.platform[:4] == "java" and sys.registry.containsKey(_key): default_parser_list = sys.registry.getProperty(_key).split(",") def make_parser(parser_list = []): """Creates and returns a SAX parser. Creates the first parser it is able to instantiate of the ones given in the list created by doing parser_list + default_parser_list. The lists must contain the names of Python modules containing both a SAX parser and a create_parser function.""" for parser_name in parser_list + default_parser_list: try: return _create_parser(parser_name) except ImportError as e: import sys if parser_name in sys.modules: # The parser module was found, but importing it # failed unexpectedly, pass this exception through raise except SAXReaderNotAvailable: # The parser module detected that it won't work properly, # so try the next one pass raise SAXReaderNotAvailable("No parsers found", None) # --- Internal utility methods used by make_parser if sys.platform[ : 4] == "java": def _create_parser(parser_name): # from org.python.core import imp drv_module = imp.importName(parser_name, 0, globals()) return drv_module.create_parser() else: def _create_parser(parser_name): drv_module = __import__(parser_name,{},{},['create_parser']) return drv_module.create_parser() del sys
[ "jtunney@gmail.com" ]
jtunney@gmail.com
78ff37a966cfd4e8f0a4606de9a2ec9638393962
641c9eaa5c1df74e6edfb79628c9f18b6d5d2b91
/test/test_validate_country_response.py
3a669f45b6948c4f8613fe7cccf9466ccc8d5461
[ "Apache-2.0" ]
permissive
Cloudmersive/Cloudmersive.APIClient.Python.Validate
d2d9d0ceb3fce350fd0d86466bc8b5e153a5d478
274d38d4a849650402f3bb931799ab82502b4306
refs/heads/master
2023-06-10T04:01:35.332273
2023-06-03T22:34:47
2023-06-03T22:34:47
138,435,277
3
2
null
null
null
null
UTF-8
Python
false
false
1,197
py
# coding: utf-8 """ validateapi The validation APIs help you validate data. Check if an E-mail address is real. Check if a domain is real. Check up on an IP address, and even where it is located. All this and much more is available in the validation API. # noqa: E501 OpenAPI spec version: v1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import cloudmersive_validate_api_client from cloudmersive_validate_api_client.models.validate_country_response import ValidateCountryResponse # noqa: E501 from cloudmersive_validate_api_client.rest import ApiException class TestValidateCountryResponse(unittest.TestCase): """ValidateCountryResponse unit test stubs""" def setUp(self): pass def tearDown(self): pass def testValidateCountryResponse(self): """Test ValidateCountryResponse""" # FIXME: construct object with mandatory attributes with example values # model = cloudmersive_validate_api_client.models.validate_country_response.ValidateCountryResponse() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "35204726+Cloudmersive@users.noreply.github.com" ]
35204726+Cloudmersive@users.noreply.github.com