blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
ef98c254494f521be7c9abced196323637b851d9
ea0829e544b87fe6b58ef84b96ba90e036eda438
/Quicksort.py
077cc0f3268c27a0066e60b7b7584b1526186ed3
[]
no_license
Najones19746/Quicksort
71bdf0fd0b770c6c1fef469c81a2dbbd3b19599c
0de906218d3ae1b0078b1abd2e4ea802b409a292
refs/heads/master
2020-04-24T16:02:23.828684
2015-05-15T04:57:56
2015-05-15T04:57:56
35,654,340
0
0
null
null
null
null
UTF-8
Python
false
false
556
py
__author__ = 'Nick Jones' def quick(x): less = [] pivotList = [] more = [] if len(x) <= 1: return x else: pivot = x[0] for number in x: number = int(number) if number < pivot: less.append(number) elif number > pivot: more.append(number) else: pivotList.append(number) less = quick(less) more = quick(more) return less + pivotList + more numbers = raw_input().split(' ') print quick(numbers)
[ "najones19746@pluto.dsu.edu" ]
najones19746@pluto.dsu.edu
a08c74244ee8e9ac57ff5813274dc481cce384cf
8cdb186042f7169053c663a197e5dc6540658b29
/forms.py
20e2ae1645465d44a560df4e6e9da8e0d0cd2769
[]
no_license
jmc1284/flask-app
5b95a55ace458b9c6b65929f852d29ae26f250cd
5507a810ee6e64084d548bff4b8902d80f54656d
refs/heads/master
2023-05-10T18:50:07.871494
2020-04-04T18:53:41
2020-04-04T18:53:41
252,254,726
0
0
null
2023-05-01T21:23:09
2020-04-01T18:24:37
HTML
UTF-8
Python
false
false
1,199
py
from flask_wtf import FlaskForm from wtforms import IntegerField, SubmitField from wtforms.validators import InputRequired, NumberRange class BMIForm(FlaskForm): height_ft = IntegerField('Height Feet', validators=[InputRequired(message='Please enter a valid integer'), NumberRange(min=1)]) height_in = IntegerField('Height Inches', validators=[InputRequired(message='Please enter a valid integer'), NumberRange(min=0, max=11)]) weight = IntegerField('Weight', validators=[InputRequired(message='Please enter a valid integer'), NumberRange(min=1)]) submit = SubmitField('Submit') class RetirementForm(FlaskForm): age = IntegerField('Age', validators=[InputRequired(message='Please enter a valid integer'), NumberRange(min=1)]) salary = IntegerField('Annual Salary', validators=[InputRequired(message='Please enter a valid integer'), NumberRange(min=1)]) percentage = IntegerField('Percentage Saved Annualy', validators=[InputRequired(message='Please enter a valid integer'), NumberRange(min=1, max=100)]) goal = IntegerField('Savings Goal', validators=[InputRequired(message='Please enter a valid integer'), NumberRange(min=1)]) submit = SubmitField('Submit')
[ "jmc1284@msstate.edu" ]
jmc1284@msstate.edu
2f377b00c1bfc78229f470886bc75aa3f8c9e3c5
6c13c12bc531992716aa4e291a9ddef4dcb65131
/motsfinder/metric/discrete/metric.py
2cfc05ad2505404e8638e29462a5df1d07c601d1
[ "MIT" ]
permissive
daniel-dpk/distorted-motsfinder-public
9846ed0eb7977b3d0c7ab8649b79eb64c9611e14
8c2eec174c755c55b26b568243e58c2956a35257
refs/heads/master
2021-06-11T07:13:21.288873
2021-04-14T14:28:53
2021-04-14T14:28:53
159,724,600
4
1
MIT
2021-04-01T08:41:18
2018-11-29T20:40:00
Python
UTF-8
Python
false
false
13,522
py
r"""@package motsfinder.metric.discrete.metric Base class for discrete metrics. The DiscreteMetric class is an abstract class implementing most of the functionality required for a ..base._ThreeMetric. The missing part is the definition of actual numerical data. There are currently two implementations of this abstract class, serving at the same time as examples: * .discretize.DiscretizedMetric * ..simulation.siometric.SioMetric """ from abc import ABCMeta, abstractmethod from contextlib import contextmanager from six import add_metaclass import numpy as np from ...utils import save_to_file, load_from_file from ..base import _ThreeMetric __all__ = [ "DiscreteMetric", ] @add_metaclass(ABCMeta) class DiscreteMetric(_ThreeMetric): r"""Base class for discrete axisymmetric metrics. This subclass of ..base._ThreeMetric implements the memory management of numerical data for a metric and other fields defining the geometry and embedding of the slice into spacetime. Subclasses should implement: * _get_metric() - constructing the metric as a .tensors.DiscreteSym2TensorField * all_field_objects() - return all fields as a list The reason to have the latter of the two is to allow metrics that don't supply a lapse and/or shift field but still have an easy way to keep track of all fields (for caching and memory management purposes). Optionally, subclasses may implement: * get_curv() - extrinsic curvature (.tensors.DiscreteSym2TensorField) * get_lapse() - lapse function (.tensors.DiscreteScalarField) * get_shift() - lapse function (.tensors.DiscreteVectorField) * get_dtlapse() - (.tensors.DiscreteScalarField) * get_dtshift() - (.tensors.DiscreteVectorField) If all of these are supplied, then the full 4-metric can be evaluated on the slice. """ def __init__(self): r"""This base constructor initializes the properties.""" super(DiscreteMetric, self).__init__() ## The metric discrete field object. self._metric_field = None ## Whether all matrices should be saved. self._save_full_data = False @abstractmethod def _get_metric(self): r"""Abstract method to create/load numerical metric data. This method should return a .tensors.DiscreteSym2TensorField built from the component matrices of the metric. It is called only once (lazily) and the object is *not* destroyed even when calling unload_data(). Instead, the field's unload_data() method is called. This method is the hook for subclasses to implement their method of generating/loading the numerical data. """ pass @abstractmethod def all_field_objects(self): r"""Abstract method supplying all defined field objects as a list. See .discretize.DiscretizedMetric for a simple example. """ pass @property def field(self): r"""Field attribute containing the actual field object. The object is lazily loaded (i.e. on first access) and kept as instance attribute. Note that this access does not imply that data is loaded or generated. This is handled by the field object itself. The result is a .tensors.DiscreteSym2TensorField. """ if self._metric_field is None: self._metric_field = self._get_metric() return self._metric_field def set_interpolation(self, interpolation): r"""Set the interpolation for all fields/components. Refer to .patch.DataPatch.set_interpolation() for details. """ for field in self.all_field_objects(): if field: field.set_interpolation(interpolation) def set_fd_order(self, fd_order): r"""Set the finite difference derivative order of accuracy.""" for field in self.all_field_objects(): if field: field.set_fd_order(fd_order) @contextmanager def temp_interpolation(self, interpolation, fd_order=None): prev_interp = self.field.components[0].get_interpolation() prev_fd_order = self.field.components[0].fd_order try: self.set_interpolation(interpolation) if fd_order is not None: self.set_fd_order(fd_order) yield finally: self.set_interpolation(prev_interp) if fd_order is not None: self.set_fd_order(prev_fd_order) @property def save_full_data(self): r"""Read/write property specifying whether the full grid data should be stored. This is `False` by default. If set to `True` instead, saving this object (or more generally "pickling" it) will include the numerical data on the full grid. For large slice data, this will basically store the full slice. """ return self._save_full_data @save_full_data.setter def save_full_data(self, value): self._save_full_data = value def save(self, filename, full_data=False, overwrite=False, verbose=True): r"""Save the metric to disk. @param filename The file to store the data in. The extension ``'.npy'`` will be added if not already there. @param full_data Whether to store all the matrix data (if `True`) or regenerate it on-demand after loading (if `False`). Default is `False`. @param overwrite Whether to overwrite an existing file with the same name. If `False` (default) and such a file exists, a `RuntimeError` is raised. @param verbose Whether to print a message upon success. Default is `True`. """ prev_value = self.save_full_data try: self.__dict__['_prev_save_full_data'] = prev_value self.save_full_data = full_data if full_data: self.load_data() save_to_file( filename, self, overwrite=overwrite, verbose=verbose, showname=self.__class__.__name__ ) finally: self.save_full_data = prev_value self.__dict__.pop('_prev_save_full_data') @staticmethod def load(filename): r"""Static function to load a metric from disk.""" metric = load_from_file(filename) metric.save_full_data = metric.__dict__.pop( '_prev_save_full_data', False ) return metric def constraints(self, point, norm=False): r"""Compute the Hamiltonian and momentum constraints. If the constraints are satisfied exactly, the returned values will be zero. However, for numerical simulation data this will rarely ever be the case. The returned values can then be used to determine the accuracy of the simulation, e.g. by comparing them at different spatial resolutions (grid densities). Note that this function is not optimized in any way and thus will perform poorly when evaluated on a large number of points. @return A 2-tuple ``(scal_constr, vec_constr)``, where `scal_constr` is a float representing the Hamiltonian constraint \f$K_{ab}K^{ab} - (K^c_{\ c})^2 - R\f$ and `vec_constr` the momentum constraint \f$D^a(K_{ab} - g_{ab} K^c_{\ c})\f$. The latter is a (3-D) covector (indices downstairs). Here, `D` is the Levi-Civita covariant derivative compatible with `g`, the slice's Riemannian 3-metric, `K` is the extrinsic curvature of the slice and `R` the scalar curvature of the slice. If ``norm=True``, the second element is a float, the `g`-norm of the momentum constraint. @param point The point at which to compute the constraints. @param norm If `True`, compute the `g`-norm of the momentum constraint instead of the covector. Default is `False`. """ g_inv = self.diff(point, inverse=True, diff=0) curv = self.get_curv() # pylint: disable=assignment-from-none K = curv(point) R = self.ricci_scalar(point) K_up = g_inv.dot(g_inv.dot(K).T).T KK = K_up.dot(K.T).trace() trK = g_inv.dot(K).trace() scal_constr = KK - trK**2 - R dg = self.diff(point, diff=1) dK = np.asarray(curv(point, diff=1)) G = self.christoffel(point) vec_constr = ( np.einsum('ac,cab', g_inv, dK) - np.einsum('ac,ica,ib', g_inv, G, K) - np.einsum('ac,icb,ai', g_inv, G, K) - np.einsum('ac,bac', g_inv, dK) + np.einsum('bac,ac', dg, K_up) ) if norm: vec_constr = np.sqrt(g_inv.dot(vec_constr).dot(vec_constr)) return scal_constr, vec_constr def load_data(self, *which): r"""Load/generate the full numerical data. Without arguments, all fields are loaded to memory. If one or more arguments are given, only those fields are loaded. Possible arguments are: ``metric, curv, lapse, shift, dtlapse, dtshift``. """ if len(which) > 1: for field_name in which: self.load_data(field_name) return field_name, = which if which else [None] def _load(field): if field: field.load_data() if field_name is None: for field in self.all_field_objects(): _load(field) elif field_name == "metric": _load(self.field) elif field_name == "curv": _load(self.get_curv()) elif field_name == "lapse": _load(self.get_lapse()) elif field_name == "shift": _load(self.get_shift()) elif field_name == "dtlapse": _load(self.get_dtlapse()) elif field_name == "dtshift": _load(self.get_dtshift()) else: raise ValueError("Unknown field: %s" % field_name) def unload_data(self): r"""Free memory from all numerical field matrix data.""" for field in self.all_field_objects(): if field: field.unload_data() self.reset_cache() def release_file_handle(self): r"""Convenience method to signal child classes they should release any file handles. This does nothing by default. Subclasses may implement this method to free access to any files currently opened by this class. It may be called by users of this class in case they deem file access to be finished (e.g. after loading all required data). """ pass def reset_cache(self): r"""Reset the cache of all fields.""" for field in self.all_field_objects(): if field: field.reset_cache() def grid(self, xz_plane=True, ghost=0, full_output=False): r"""Convenience method delegating to .patch.DataPatch.grid().""" return self.field.components[0].grid( xz_plane=xz_plane, ghost=ghost, full_output=full_output ) def snap_to_grid(self, point): r"""Convenience method delegating to .patch.DataPatch.snap_to_grid().""" return self.field.components[0].snap_to_grid(point) @property def shape(self): r"""Shape of the domain, \ie of individual component matrices.""" return self.field.components[0].shape @property def box(self): r"""Index bounding box of the full domain.""" return self.field.components[0].box @property def domain(self): return self.field.components[0].domain @property def safe_domain(self): return self.field.components[0].safe_domain def component_matrix(self, i, j): r"""Return the DataPatch of a component of the metric.""" gij = self.field.components if i == j == 0: return gij[0] if i == j == 1: return gij[3] if i == j == 2: return gij[5] if j < i: i, j = j, i if i == 0 and j == 1: return gij[1] if i == 0 and j == 2: return gij[2] if i == 1 and j == 2: return gij[4] raise ValueError("Unknown component: (%s, %s)" % (i, j)) def _mat_at(self, point): return self.diff(point, diff=0) def diff(self, point, inverse=False, diff=1): r"""Compute (derivatives of) the metric tensor at a given point. @return For ``diff=0``, returns the 3x3 matrix representing the metric interpolated at `point`, i.e. \f$g_{ij}\f$. If ``diff=1``, returns ``dg[i,j,k]``, where the indices mean \f$\partial_i g_{jk}\f$ and if ``diff=2``, returns ``ddg[i,j,k,l]`` with indices \f$\partial_i\partial_j g_{kl}\f$. In each case, if ``inverse=True`` the inverse metric is used with indices upstairs. @param point The point at which to compute. @param inverse Whether to compute (derivatives of) the inverse metric. Default is `False`. @param diff Derivative order to compute. Default is `1`. """ if inverse: return self._compute_inverse_diff(point, diff=diff) return self.field(point, diff=diff)
[ "daniel.dpk@gmail.com" ]
daniel.dpk@gmail.com
479f0b1077982bb0d93dca0a6bf8804036a0938c
f35d8c6617822bbde2769b268e9b7b0a533c0c53
/main.py
f2540a4d999560074280fe56436804c0a29f5d22
[]
no_license
DylanLaw03/CDDBot
decac51a936e921f9e95181bfdf5108cffd7f45f
f9ac8bf67c9374e65cbf5cd47783f814a28e44f5
refs/heads/master
2023-05-30T16:19:20.465471
2021-06-13T03:54:30
2021-06-13T03:54:30
375,544,789
0
0
null
null
null
null
UTF-8
Python
false
false
9,629
py
''' This program will scrape a page from the website cheap digital download, to find potentially profiatble games. Started on 6/9/21 ''' #import dependencies from selenium import webdriver import os from datetime import date row_xpath = '//*[@id="offer_offer"]' HOME_STORE = 'G2A' WORKING_DIRECTORY = 'c://Users//18022//Desktop//Python//CDD' MIN_PROFIT = 1.7 #the minimum value for profit_margin to put a report in the flagged folder BANNED_STORES = ['Microsoft', 'Epic Games', 'Steam', 'Gog.com', 'Kinguin', 'G2A'] def main (): os.chdir(WORKING_DIRECTORY) #open link_getter file, and append that to urls urls = [] link_getter_file_name = 'link_getter - ' + str(date.today()) + '.txt' with open(link_getter_file_name, 'r') as link_file: Lines = link_file.readlines() for line in Lines: urls.append(line) os.chdir('./reports') #create a folder for the date, and within that have two folders, one called flagged to hold listing_pages with a value >= MIN_PROFIT and one for all other reports os.mkdir(str(date.today())) #move to new directory os.chdir(str(date.today())) #make new folders os.mkdir("flagged") os.mkdir("all") #iterate through all urls for url in urls: url = url[:-2] dir_control = 0 #if set to 1, do not go back one directory at the end of the loop #use get content to get a list of lists comtaining links and web elements content = get_content(url, row_xpath) game_name = url[33:] #will be used for making folder text_doc_name = game_name + ".txt" #get price info price_info = get_price_info(content[0][1]) #first return item, second item in that list. #close web driver content[1].close() #verify that HOME_STORE in price_info[0] if HOME_STORE in price_info[0]: #create listing page listing_page = create_listing_page(price_info) #If profit margin > min profit, move to flagged, if not move to all. if listing_page.profit_margin > MIN_PROFIT: os.chdir('flagged') else: os.chdir('all') #now create a text document with game_name as the name else: print(f'{HOME_STORE} listing was not found for {game_name}') dir_control = 1 continue #open file and print info text_document = open(text_doc_name, 'w+') text_document.write(f'Report for {game_name}, created on {date.today()}\n\n\n') text_document.write(f'Profit Margin: {round(listing_page.get_profit_margin(), 2)}\n\n') #print info for home listing text_document.write('Home Store: \n') text_document.write('Store: ') text_document.write(listing_page.get_home_listing().get_store()) text_document.write('\nVersion: ') text_document.write(listing_page.get_home_listing().get_version()) text_document.write('\nRegion: ') text_document.write(listing_page.get_home_listing().get_region()) text_document.write('\nPrice: ') text_document.write(str(listing_page.get_home_listing().get_price())) #print info for cheapest listing text_document.write('\n\nCheapest Store: \n') text_document.write('Store: ') text_document.write(listing_page.get_cheapest_listing().get_store()) text_document.write('\nVersion: ') text_document.write(listing_page.get_cheapest_listing().get_version()) text_document.write('\nRegion: ') text_document.write(listing_page.get_cheapest_listing().get_region()) text_document.write('\nPrice: ') text_document.write(str(listing_page.get_cheapest_listing().get_price())) #Create header for all listings text_document.write('\n\n\nListings:\n\n') text_document.write(format('Store', '<20')) text_document.write(format('Version', '<20')) text_document.write(format('Region', '<20')) text_document.write(format('Price', '<20')) text_document.write(format('Profit Ratio', '<20')) text_document.write(format('\n')) for listing in listing_page.get_listings(): text_document.write(format(listing.get_store(), '<20')) text_document.write(format(listing.get_version(), '<20')) text_document.write(format(listing.get_region(), '<20')) text_document.write('$') text_document.write(format(listing.get_price(), '<19')) text_document.write(format(round(listing_page.get_home_listing().get_price() / listing.get_price(), 2), '<15')) text_document.write('\n') text_document.close() #go back to dir for the day if dir_control == 0: os.chdir('..') print(f'Process Completed for {game_name}! The profit ratio was {round(listing_page.get_profit_margin(), 2)}') def get_content(url, x_path): driver = webdriver.Firefox() url_info = [] #index 0 holds url, 1 holds the list of web elements driver.get(url) listings = driver.find_elements_by_xpath(x_path) url_info.append(url) url_info.append(listings) return url_info, driver ''' This function opens the given url with webdriver, and gets the class content for the specified id @param url to open, and class_id to look for @returns a list of WebElement object lists where index 0 is the link, and driver in index one, so that it can be closed ''' def get_price_info(web_element_list): return_list = [] store = [] region = [] version = [] price = [] for listing in web_element_list: loop_control = 0 #set to 1 when the price is found listing_text = listing.text listing_text = listing_text.split('\n') #append store, region, and version to their respective lists. located at index 0, 3, and 4. store.append(listing_text[0]) region.append(listing_text[3]) version.append(listing_text[4]) for item in listing_text[5:]: if item[0] == '$' and loop_control == 0: loop_control = 1 price.append(item[1:]) return_list.append(store) return_list.append(region) return_list.append(version) return_list.append(price) return return_list ''' This function takes a list of WebElements and parses their .text to find the store, region, version, and price @param a list of WebElements @return a list where index 0 is store, 1 is region, 2 is version, and 3 is price ''' def create_listing_page(listing_info_list): loop_control = 0 listings = [] for listing in listing_info_list[0]: store = listing_info_list[0][loop_control] region = listing_info_list[1][loop_control] version = listing_info_list[2][loop_control] price = listing_info_list[3][loop_control] listings.append(Listing(store, region, version, price)) loop_control += 1 return Listing_Page(listings) ''' This function creates a Listing_Page object @param it takes a list from get_price_info where index 0 is store, 1 is region, 2 is version, and 3 is price @return Listing_Page class ''' class Listing(): #The listing class will be used to make up the listing_page class. It contains price, store, region, and version for each listing. def __init__ (self, store, region, version, price): self.store = store self.region = region self.version = version self.price = float(price) def get_store(self): return self.store def get_region (self): return self.region def get_version (self): return self.version def get_price (self): return self.price def equals (self, object2): if object2.get_region() == self.region and object2.get_version() == self.version: return True return False class Listing_Page(): #This class takes a list of listings that make up a whole page, and will contain metrics for determining if it is a good deal def __init__(self, listings): self.home_listing = None self.listings = listings for listing in self.listings: if listing.get_store() == HOME_STORE and self.home_listing == None: self.home_listing = listing #Go through each listing to see find the lowest if self.home_listing != None: self.cheapest_listing = self.home_listing for listing in self.listings: #verify that price is lower than current cheapest, that store is not banned, and that the listing is equal to home store. if listing.get_price() < self.cheapest_listing.get_price() and listing.get_store() not in BANNED_STORES and listing.equals(self.home_listing): self.cheapest_listing = listing self.profit_margin = self.home_listing.get_price() / self.cheapest_listing.get_price() #Find the listing that matches the name for HOME_STORE. Set it equal to self.home_store def get_home_listing (self): return self.home_listing def get_home_price(self): return self.home_price def get_cheapest_listing(self): return self.cheapest_listing def get_profit_margin (self): return self.profit_margin def get_listings (self): return self.listings main()
[ "Dylan" ]
Dylan
934f1a319faf97d1f5baf73106ca6dc15b89d1e5
dceda528f50ecdb744cc4a83f0ed53aead10ec88
/Scraper.py
bc3dc680c3aaf755bf4585fbdb88653b9011ccea
[ "MIT" ]
permissive
alrightalrightalrightalrightalright/etsy-scraper
4a03819d0b6245706ecdd8dcf61b0e616447eb7b
e77acbda8cee210ca95f08eafee5203e8d445026
refs/heads/master
2023-04-05T11:25:02.637038
2021-04-07T22:18:39
2021-04-07T22:18:39
353,975,787
0
0
null
null
null
null
UTF-8
Python
false
false
3,231
py
import requests from bs4 import BeautifulSoup import re import db import psycopg2 import Product proxies = { 'http': 'http://178.62.95.218:8080', 'https': 'https://178.62.95.218:8080', } class Scraper: _session= requests.Session() _baseUrl="https://www.etsy.com" _partialUrl="/uk/listing/593579116/plant-enthusiast-bookmarks" _requestUrl="https://www.etsy.com/uk/listing/772695061/brass-or-silver-leaf-bookmark-set" _headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "en-GB,en;q=0.9,en-US;q=0.8,en;q=0.7", 'Host': 'www.etsy.com', 'Connection': 'keep-alive', "Upgrade-Insecure-Requests": "1", "Cache-Control":"max-age=0", "Sec-Fetch-Dest": "document", "Sec-Fetch-Mode": "navigate", "Sec-Fetch-Site": "cross-site", "Sec-Fetch-User": "?1", 'User-Agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.36 OPR/71.0.3770.441" } def __init__(self): self._session.headers=self._headers #use GB proxies in order to get price currency right # or run app in GB. #self._session.proxies= proxies r= self._session.get(self._baseUrl) print( 'initial get: ', r.status_code) def __scrapeProduct(self,soup): '''Internal method of the scraping method where pure scraping process happens. It returns the product object. :param soup: A bs4 object for scraping source :return: The product object that's data has been scraped. ''' #more pictures of the product can be scraped easily with using find_all. #there are also 2 versions of the image, one is normal the other is 2x zoomed link= soup.find_all("img",class_="wt-max-width-full"+ " wt-horizontal-center wt-vertical-center carousel-image wt-rounded")[0]["src"] title=soup.find("h1",{"data-listing-id":True}).text.replace("\n","").strip() price=soup.find("p",class_="wt-text-title-03 wt-mr-xs-2").text.replace("\n","").strip() raw_price= re.findall( "\\d*\\.\\d*",price)[0].replace(".",",") product= Product.Product(title, raw_price,link) return product def scrape(self,fullUrl): '''Scrapes a product with the partial url. Scrapes the image link, title, price of the product and stores in a "Product" object. The object is then in database with existing configuration. :param partialUrl: The partial url of the product's url to be scraped. ''' fullUrl = fullUrl if fullUrl.startswith('https') else ('https://' + fullUrl) r= self._session.get(fullUrl) print( 'get: ', r.status_code) soup = BeautifulSoup(r.text, 'html.parser') product= self.__scrapeProduct(soup) db.insertProduct(product) #expensive, slow and not thread-safe product.id=db.getNextIndex()#can use UUID for id and get rid of this return product
[ "33198855+alrightalrightalrightalrightalright@users.noreply.github.com" ]
33198855+alrightalrightalrightalrightalright@users.noreply.github.com
c61c6f504d865b4d6caa828ddb7ebb7b0697cb9e
15bb8feae971512613c27ea755068dcb78a4af74
/locations/migrations/0001_initial.py
2fbea7b973d5348933e04cd295c514dd73c494dd
[]
no_license
CalebNash/ccs-final-project
a20dfe4e95c5f60730c9255ecbe7965865b03cd1
83d94f58a14c07dc82f5e2aa47588b633b0b80bb
refs/heads/main
2023-01-15T07:30:01.935037
2020-11-20T15:45:20
2020-11-20T15:45:20
307,705,488
0
0
null
null
null
null
UTF-8
Python
false
false
873
py
# Generated by Django 3.1.2 on 2020-11-03 19:12 import django.contrib.postgres.fields from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Location', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('address', models.CharField(max_length=255)), ('lat', models.CharField(max_length=255)), ('lng', models.CharField(max_length=255)), ('categories', django.contrib.postgres.fields.ArrayField(base_field=models.CharField(blank=True, max_length=100), blank=True, null=True, size=None)), ], ), ]
[ "calebnash@Calebs-MacBook-Pro.local" ]
calebnash@Calebs-MacBook-Pro.local
aef17ef6d1fcf70551b5b6d5eb30f70313fabed8
9d497fa82d4fe570c5c637dde3b1d0f4c8956c35
/api/core/views.py
4781290ae61ec1bed9c4b49047117cfd7c307110
[ "MIT" ]
permissive
mmourafiq/polyaxon-api
1160b4e9cef3de8975b36c23971e67e1453dc3b9
97eeb99b173f60593bb2302efe2bbcb11a82dc38
refs/heads/master
2022-09-02T04:16:25.459919
2017-07-14T10:03:32
2017-07-14T10:03:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,664
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from rest_framework import status from rest_framework.generics import ListAPIView, RetrieveAPIView, GenericAPIView, CreateAPIView from rest_framework.response import Response from rest_framework.views import APIView from core.models import Experiment, PolyaxonModel, Estimator from core.serialiazers import ( ExperimentSerializer, ExperimentDetailSerializer, PolyaxonModelSerializer, PolyaxonModelDetailSerializer, EstimatorSerializer, EstimatorDetailSerializer, StatusSerializer) from core.tasks import start_experiment, get_experiment_run_status class ExperimentListView(ListAPIView): queryset = Experiment.objects.all() serializer_class = ExperimentSerializer class ExperimentDetailView(RetrieveAPIView): queryset = Experiment.objects.all() serializer_class = ExperimentDetailSerializer class ExperimentEstimatorDetailView(RetrieveAPIView): queryset = Experiment.objects.all() serializer_class = EstimatorDetailSerializer def get_object(self): obj = super(ExperimentEstimatorDetailView, self).get_object() return obj.estimator class ExperimentModelDetailView(RetrieveAPIView): queryset = Experiment.objects.all() serializer_class = PolyaxonModelDetailSerializer def get_object(self): obj = super(ExperimentModelDetailView, self).get_object() return obj.model class ExperimentStartView(CreateAPIView, RetrieveAPIView): queryset = Experiment.objects.all() serializer_class = StatusSerializer def retrieve(self, request, *args, **kwargs): obj = self.get_object() serializer = self.get_serializer(get_experiment_run_status(obj)) return Response(serializer.data, status=status.HTTP_200_OK) def post(self, request, *args, **kwargs): obj = self.get_object() job_info = start_experiment(obj) if job_info['status'] == 'PENDING': return Response(status=status.HTTP_201_CREATED, data=job_info) return Response(job_info, status=status.HTTP_200_OK) class EstimatorListView(ListAPIView): queryset = Estimator.objects.all() serializer_class = EstimatorSerializer class EstimatorDetailView(RetrieveAPIView): queryset = Estimator.objects.all() serializer_class = EstimatorDetailSerializer class PolyaxonModelListView(ListAPIView): queryset = PolyaxonModel.objects.all() serializer_class = PolyaxonModelSerializer class PolyaxonModelDetailView(RetrieveAPIView): queryset = PolyaxonModel.objects.all() serializer_class = PolyaxonModelDetailSerializer
[ "mouradmourafiq@gmail.com" ]
mouradmourafiq@gmail.com
9ed19b923204882ca4ac3b4e52c5170da91b35b8
7e07e6ab5144324dd3ff7e8be2c2085aa9c390d0
/titanic.py
18898580119555b6316532870675931082a2dfe3
[]
no_license
todavis/kaggle-titanic
65f66dbc3cd9c4191032a79b559d25d0044c0465
1d7ca537d46eb37363dc9bd043d6dd33e6cd379c
refs/heads/main
2023-05-09T04:15:39.684032
2021-05-26T17:46:25
2021-05-26T17:46:25
371,120,023
0
0
null
null
null
null
UTF-8
Python
false
false
6,310
py
# %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-05-26T17:39:55.046848Z","iopub.execute_input":"2021-05-26T17:39:55.047357Z","iopub.status.idle":"2021-05-26T17:39:55.058384Z","shell.execute_reply.started":"2021-05-26T17:39:55.047247Z","shell.execute_reply":"2021-05-26T17:39:55.057313Z"}} # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-05-26T17:40:09.531361Z","iopub.execute_input":"2021-05-26T17:40:09.533419Z","iopub.status.idle":"2021-05-26T17:40:09.563806Z","shell.execute_reply.started":"2021-05-26T17:40:09.533377Z","shell.execute_reply":"2021-05-26T17:40:09.563066Z"}} # data loader class dataLoader: """ Load data """ def __init__(self, train_filename, test_filename, normalize = ['Age', 'Fare']): self.train = pd.read_csv(train_filename) self.test = pd.read_csv(test_filename) for cts_variable in normalize: self.normalize(cts_variable) #self.remove_na() #self.train_label = self.train.pop('Survived') def remove_na(self): """ Remove empty or invalid elements""" self.train.fillna(0, inplace = True) self.test.fillna(0, inplace = True) def normalize(self, column_name): """ Normalize continuous data to zero mean and standard deviation of 1""" mu = self.train[column_name].mean() std = self.train[column_name].std() self.train[column_name] = (self.train[column_name] - mu) / std self.test[column_name] = (self.test[column_name] - mu) / std def summary(self): """ Output summary of data and first few rows""" print('Training set:') #print(self.train.head()) print(self.train.describe()) print('Testing set:') #print(self.test.head()) print(self.test.describe()) raw_data = dataLoader('/kaggle/input/titanic/train.csv', '/kaggle/input/titanic/test.csv') raw_data.train #raw_data.test test_ids = raw_data.test[['PassengerId']] #test_ids # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-05-20T00:59:37.97603Z","iopub.execute_input":"2021-05-20T00:59:37.976434Z","iopub.status.idle":"2021-05-20T00:59:38.010467Z","shell.execute_reply.started":"2021-05-20T00:59:37.976398Z","shell.execute_reply":"2021-05-20T00:59:38.009226Z"}} # remove features that are not useful for now raw_data.train.drop(columns = ['PassengerId', 'Ticket', 'Name'], inplace=True) raw_data.test.drop(columns = ['PassengerId', 'Ticket', 'Name'], inplace=True) # take the first element of the cabin feature raw_data.train['Cabin'] = raw_data.train['Cabin'].str[0] raw_data.test['Cabin'] = raw_data.test['Cabin'].str[0] # encode class features using one hot encoding - try combining test to get same number of splits raw_data.train = pd.get_dummies(raw_data.train, columns = ['Sex', 'Embarked', 'Cabin'], drop_first = True) raw_data.test = pd.get_dummies(raw_data.test, columns = ['Sex', 'Embarked', 'Cabin'], drop_first = True) # remove nan values from age, ... raw_data.remove_na() train_label = raw_data.train.pop('Survived') # ensure train and test sets have same number of columns missing_cols = set( raw_data.train.columns ) - set( raw_data.test.columns ) # Add a missing column in test set with default value equal to 0 for c in missing_cols: raw_data.test[c] = 0 # Ensure the order of column in the test set is in the same order than in train set raw_data.test = raw_data.test[raw_data.train.columns] # %% [code] {"jupyter":{"outputs_hidden":false},"execution":{"iopub.status.busy":"2021-05-20T00:59:41.228705Z","iopub.execute_input":"2021-05-20T00:59:41.229075Z","iopub.status.idle":"2021-05-20T00:59:41.323234Z","shell.execute_reply.started":"2021-05-20T00:59:41.229043Z","shell.execute_reply":"2021-05-20T00:59:41.322127Z"}} from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(raw_data.train, train_label, test_size=0.3, random_state=0) # create model LR from sklearn.linear_model import LogisticRegression model = LogisticRegression(random_state=0) model = model.fit(X_train, y_train) test_acc = model.score(X_test, y_test) test_acc # %% [code] {"execution":{"iopub.status.busy":"2021-05-20T00:59:43.904763Z","iopub.execute_input":"2021-05-20T00:59:43.905167Z","iopub.status.idle":"2021-05-20T00:59:43.941731Z","shell.execute_reply.started":"2021-05-20T00:59:43.905124Z","shell.execute_reply":"2021-05-20T00:59:43.940554Z"}} # create svm model from sklearn import svm model = svm.SVC(kernel = 'rbf', degree = 2, verbose = True) model = model.fit(X_train, y_train) test_acc = model.score(X_test, y_test) test_acc # %% [code] {"execution":{"iopub.status.busy":"2021-05-20T00:59:46.161654Z","iopub.execute_input":"2021-05-20T00:59:46.162058Z","iopub.status.idle":"2021-05-20T00:59:46.350023Z","shell.execute_reply.started":"2021-05-20T00:59:46.162021Z","shell.execute_reply":"2021-05-20T00:59:46.348974Z"}} # create RF model from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators =80, max_depth = 9, random_state = 0) model = model.fit(X_train, y_train) test_acc = model.score(X_test, y_test) test_acc # %% [code] {"execution":{"iopub.status.busy":"2021-05-20T01:13:46.645901Z","iopub.execute_input":"2021-05-20T01:13:46.646345Z","iopub.status.idle":"2021-05-20T01:13:46.677923Z","shell.execute_reply.started":"2021-05-20T01:13:46.646278Z","shell.execute_reply":"2021-05-20T01:13:46.67689Z"}} # save predictions from most recent model test_pred = model.predict(raw_data.test) #np.shape(test_pred) submission = test_ids submission["Survived"] = test_pred submission.to_csv('/kaggle/working/submission.csv', index = False) submission
[ "noreply@github.com" ]
todavis.noreply@github.com
2dbfce2b253fb4765bfa5b96f64df1e8997b18ff
a2c9edf20a9db52347e7aec7b6646bf110f4b922
/scripts/factorio-dump-blueprint
9404ba5b99cf503cd185ba8e7b84d4ff43bdbcf9
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
dmitmel/dotfiles
02e7289efacd4da21f01bb3fca27f93f06b51ab2
9a8c24ff76b4c1ca13549d9ff383ca189ef00f5f
refs/heads/master
2023-09-03T09:35:02.331334
2023-08-20T07:01:32
2023-08-20T07:01:32
117,337,066
88
17
MIT
2023-08-20T06:50:17
2018-01-13T11:10:25
Lua
UTF-8
Python
false
false
445
#!/usr/bin/env python3 # <https://wiki.factorio.com/Blueprint_string_format> import base64 import json import sys import zlib if __name__ == "__main__": data: bytes = sys.stdin.buffer.read() version, data = data[:1], data[1:] if version != b"0": raise Exception("unsupported blueprint string version") data = base64.b64decode(data) data = zlib.decompress(data) print(json.dumps(json.loads(data), ensure_ascii=False, indent=2))
[ "dmytro.meleshko@gmail.com" ]
dmytro.meleshko@gmail.com
8914fa8c2aa7f4228c98ce1c0dd7ea0ba06f6b6f
cf0b976c4a07e57c74174909fc6507a5701f5b67
/mkw_ghosts.py
5f6634f8d602ceb31331b9e7ba38de123749ce98
[]
no_license
william-texas/rksys-ghost-extractor
820b4b166567bcf10152b3bf8a6cf4bb06e33a01
bdf43c4560a3c0be7481e928c15226d9059e9a48
refs/heads/main
2023-05-01T00:05:27.643848
2021-05-11T13:52:03
2021-05-11T13:52:03
355,788,146
1
0
null
null
null
null
UTF-8
Python
false
false
8,207
py
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild import kaitaistruct from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO import binascii from enum import Enum class CTGPGhosts(KaitaiStruct): class Controllers(Enum): wii_wheel = 0 wii_remote = 1 classic_controller = 2 gamecube_controller = 3 class Ghost(Enum): players_best_time = 1 world_record_ghost = 2 continental_record_ghost = 3 flag_challenge_ghost = 4 ghost_race = 6 friend_ghost_01 = 7 friend_ghost_02 = 8 friend_ghost_03 = 9 friend_ghost_04 = 10 friend_ghost_05 = 11 friend_ghost_06 = 12 friend_ghost_07 = 13 friend_ghost_08 = 14 friend_ghost_09 = 15 friend_ghost_10 = 16 friend_ghost_11 = 17 friend_ghost_12 = 18 friend_ghost_13 = 19 friend_ghost_14 = 20 friend_ghost_15 = 21 friend_ghost_16 = 22 friend_ghost_17 = 23 friend_ghost_18 = 24 friend_ghost_19 = 25 friend_ghost_20 = 26 friend_ghost_21 = 27 friend_ghost_22 = 28 friend_ghost_23 = 29 friend_ghost_24 = 30 friend_ghost_25 = 31 friend_ghost_26 = 32 friend_ghost_27 = 33 friend_ghost_28 = 34 friend_ghost_29 = 35 friend_ghost_30 = 36 normal_staff_ghost = 37 expert_staff_ghost = 38 def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.magic = (self._io.read_bytes(4)).decode(u"utf-8") self.finishing_time_minutes = self._io.read_bits_int_be(7) self.finishing_time_seconds = self._io.read_bits_int_be(7) self.finishing_time_milliseconds = self._io.read_bits_int_be(10) self.track_id = self._io.read_bits_int_be(6) self.unknown_1 = self._io.read_bits_int_be(2) self.vehicle_id = self._io.read_bits_int_be(6) self.character_id = self._io.read_bits_int_be(6) self.ghost_sent_year = self._io.read_bits_int_be(7) self.ghost_sent_month = self._io.read_bits_int_be(4) self.ghost_sent_day = self._io.read_bits_int_be(5) self.controller_id = KaitaiStream.resolve_enum(MkwGhosts.Controllers, self._io.read_bits_int_be(4)) self.unknown_2 = self._io.read_bits_int_be(4) self.compressed_flag = self._io.read_bits_int_be(1) != 0 self.unknown_3 = self._io.read_bits_int_be(2) self.ghost_type = KaitaiStream.resolve_enum(MkwGhosts.Ghost, self._io.read_bits_int_be(7)) self.drift_type = self._io.read_bits_int_be(1) != 0 self.unknown_4 = self._io.read_bits_int_be(1) != 0 self._io.align_to_byte() self.input_data_length = self._io.read_u2be() self.lap_count = self._io.read_u1() self.lap_split_time = [None] * (5) for i in range(5): self.lap_split_time[i] = MkwGhosts.LapSplit(self._io, self, self._root) self.unknown_5 = self._io.read_bytes(20) self.country_code = self._io.read_u1() self.region_code = self._io.read_u1() self.location_code = self._io.read_u2be() self.unknown_6 = self._io.read_u4be() self.driver_mii_data = self._io.read_bytes(74) self.crc16_mii = self._io.read_u2be() self.data = self._io.read_bytes(((self._io.size() - self._io.pos()) - 216)) self.security_data = self._io.read_bytes(76) self.track_sha1 = str(binascii.hexlify(self._io.read_bytes(20)).upper())[2:-1] self.ctgp_pid = str(binascii.hexlify(self._io.read_bytes(8)).upper())[2:-1] self.truetime_float = self._io.read_bytes(4) self.ctgp_ver = self._io.read_bytes(4) class LapSplit(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.finishing_time_minutes = self._io.read_bits_int_be(7) self.finishing_time_seconds = self._io.read_bits_int_be(7) self.finishing_time_milliseconds = self._io.read_bits_int_be(10) class MkwGhosts(KaitaiStruct): class Controllers(Enum): wii_wheel = 0 wii_remote = 1 classic_controller = 2 gamecube_controller = 3 class Ghost(Enum): players_best_time = 1 world_record_ghost = 2 continental_record_ghost = 3 flag_challenge_ghost = 4 ghost_race = 6 friend_ghost_01 = 7 friend_ghost_02 = 8 friend_ghost_03 = 9 friend_ghost_04 = 10 friend_ghost_05 = 11 friend_ghost_06 = 12 friend_ghost_07 = 13 friend_ghost_08 = 14 friend_ghost_09 = 15 friend_ghost_10 = 16 friend_ghost_11 = 17 friend_ghost_12 = 18 friend_ghost_13 = 19 friend_ghost_14 = 20 friend_ghost_15 = 21 friend_ghost_16 = 22 friend_ghost_17 = 23 friend_ghost_18 = 24 friend_ghost_19 = 25 friend_ghost_20 = 26 friend_ghost_21 = 27 friend_ghost_22 = 28 friend_ghost_23 = 29 friend_ghost_24 = 30 friend_ghost_25 = 31 friend_ghost_26 = 32 friend_ghost_27 = 33 friend_ghost_28 = 34 friend_ghost_29 = 35 friend_ghost_30 = 36 normal_staff_ghost = 37 expert_staff_ghost = 38 def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.magic = (self._io.read_bytes(4)).decode(u"utf-8") self.finishing_time_minutes = self._io.read_bits_int_be(7) self.finishing_time_seconds = self._io.read_bits_int_be(7) self.finishing_time_milliseconds = self._io.read_bits_int_be(10) self.track_id = self._io.read_bits_int_be(6) self.unknown_1 = self._io.read_bits_int_be(2) self.vehicle_id = self._io.read_bits_int_be(6) self.character_id = self._io.read_bits_int_be(6) self.ghost_sent_year = self._io.read_bits_int_be(7) self.ghost_sent_month = self._io.read_bits_int_be(4) self.ghost_sent_day = self._io.read_bits_int_be(5) self.controller_id = KaitaiStream.resolve_enum(MkwGhosts.Controllers, self._io.read_bits_int_be(4)) self.unknown_2 = self._io.read_bits_int_be(4) self.compressed_flag = self._io.read_bits_int_be(1) != 0 self.unknown_3 = self._io.read_bits_int_be(2) self.ghost_type = KaitaiStream.resolve_enum(MkwGhosts.Ghost, self._io.read_bits_int_be(7)) self.drift_type = self._io.read_bits_int_be(1) != 0 self.unknown_4 = self._io.read_bits_int_be(1) != 0 self._io.align_to_byte() self.input_data_length = self._io.read_u2be() self.lap_count = self._io.read_u1() self.lap_split_time = [None] * (5) for i in range(5): self.lap_split_time[i] = MkwGhosts.LapSplit(self._io, self, self._root) self.unknown_5 = self._io.read_bytes(20) self.country_code = self._io.read_u1() self.region_code = self._io.read_u1() self.location_code = self._io.read_u2be() self.unknown_6 = self._io.read_u4be() self.driver_mii_data = self._io.read_bytes(74) self.crc16_mii = self._io.read_u2be() self.data = self._io.read_bytes(self._io.size() - self._io.pos()) class LapSplit(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.finishing_time_minutes = self._io.read_bits_int_be(7) self.finishing_time_seconds = self._io.read_bits_int_be(7) self.finishing_time_milliseconds = self._io.read_bits_int_be(10)
[ "noreply@github.com" ]
william-texas.noreply@github.com
82ca775d5001e2ba8db6afdbf60d535f7fe92d4e
ef8bd7e05d35e915b81338a7397447288a6fe703
/ClassicalMechanics/solvers/rk.py
740a1459a24fc1ce39fea7fdca8ea92a63d33a65
[ "MIT" ]
permissive
phy6boy/pyphy6
57bfd441a5461b115f7d9100d51e61ee1f6e7715
46818eb405c283c563231d1816eab1f60f39b898
refs/heads/master
2023-03-06T01:15:27.660429
2021-02-26T14:12:13
2021-02-26T14:12:13
165,656,231
0
0
null
null
null
null
UTF-8
Python
false
false
689
py
""" This script impliments Butcher tableu of different rk methods available at : https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods """ import numpy as np def rk4(): """ classical Runge Kutta 4th order Butcher tableau """ c = np.array([0, 1/2, 1/2, 1]) A = np.array([[0., 0., 0., 0.], [1/2, 0., 0., 0.], [0., 1/2, 0., 0.], [0., 0., 1., 0.]]) b = np.array([1/6, 1/3, 1/3, 1/6]) return (c, A, b) def euler(): """ The old fasioned euler method Only for testing purposes. """ c = np.array([0.]) A = np.array([[0.]]) b = np.array([1.]) return (c, A, b)
[ "muhsinibnalazeez@gmail.com" ]
muhsinibnalazeez@gmail.com
bb81afe9b8dcf40c77f92402b61ba4bdfe5f19cc
d62460a108115ff6b1be0a8972c3dfb284b54d3c
/Main.py
1efa0660b1a11ed6f5692332618b402d614acfa6
[]
no_license
JJhuk/PythonGame
66900d9881e4613089a75974a7b0c77d61fbd114
9cc338ec54f9b51182183fcd60b359e6473a2a74
refs/heads/master
2021-08-20T05:03:41.539823
2020-05-26T16:23:41
2020-05-26T16:23:41
185,246,673
0
0
null
null
null
null
UTF-8
Python
false
false
11,935
py
import pygame from pygame.color import Color import random from UFO_class import UFO from Boss_class import BOSS from time import sleep from UFO_Monster import UFO_MONSTER from Meteor import METEOR from Boss_class_Attak import BOSS_ATTACK FPS = 28 pad_width = 800 pad_height = 200 background_width = 800 WHITE = (255,255,255) RED = (255,0,0) BLACK = (0,0,0) meteor1_width = 34 meteor1_height = 36 meteor2_width = 86 meteor2_height = 60 def textObj(text,font) : textSurface = font.render(text,True,RED) return textSurface,textSurface.get_rect() def dispMessage(text) : global gamepad global crashed largeText = pygame.font.Font("D2coding.ttf",40) TextSurf,TextRect = textObj(text,largeText) TextRect.center = ((pad_width/2),(pad_height/2)) gamepad.blit(TextSurf,TextRect) pygame.display.update() sleep(10) crashed = True def crash(x): global gamepad global explosion_sound,bgm_sound pygame.mixer_music.stop() pygame.mixer.Sound.play(explosion_sound) if x == 0 : dispMessage('주혁이가 운석에 맞고 죽었습니다.') elif x == 1 : dispMessage('주혁이가 UFO와 충돌하여 죽었습니다.') elif x == 2 : dispMessage('주혁이가 고압전류때문에 죽었습니다.') def drawObject(obj,x,y): global gamepad gamepad.blit(obj,(x,y)) def endgame() : global gamepad gamepad.fill(BLACK) dispMessage('성공적으로 새로운 행성을 찾았습니다.') sleep(10) pygame.quit() quit() def runGame(): global background1,background2,UFO1,clock,boss,UFO_Monster global bullet,meteors,boss_bullet global crashed,shot_sound global Score font = pygame.font.Font("D2coding.ttf",20) bullet_xy = [] isShotBoss = False isShotUFO = False isShotMeteor = False crashed = False clock = pygame.time.Clock() # UFO1.rect.x = pad_width * 0.05 UFO1.rect.y = 120 UFO1.rect.x = 50 boss.rect.x = 550 boss.rect.y = 0 Score = 0 boss_bullet.rect.x = boss.rect.x boss_bullet.rect.y = random.randrange(0,boss.sprite_height-boss_bullet.sprite_height) meteor_x = pad_width meteor_y = random.randrange(0,pad_height-80) random.shuffle(meteors) meteor = meteors[0] UFO_Monster.rect.x = pad_width UFO_Monster.rect.y = random.randrange(0,pad_height-UFO_Monster.sprite_height) UFO1_y_change = 0 UFO1_x_change = 0 background1_x = 0 background2_x = background_width # 게임 루프 while not crashed: #시간에 따른 점수 + 폰트 출력 time = pygame.time.get_ticks() // 1000 time_textSurface = font.render("Time : "+str(time), True,(216,216,216)) time_textRect = time_textSurface.get_rect() time_textRect.center = (80,20) #Score 점수 Score_textSurface = font.render("Score : "+str(Score),True,(200,0,0)) Score_textRect = Score_textSurface.get_rect() Score_textRect.center = (200,20) plus_score = 0 # 1) 사용자 입력 처리 for event in pygame.event.get(): if event.type == pygame.QUIT: crashed = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_UP: UFO1_y_change = -UFO1.speed elif event.key == pygame.K_DOWN: UFO1_y_change = UFO1.speed elif event.key == pygame.K_RIGHT: UFO1_x_change = UFO1.speed elif event.key == pygame.K_LEFT: UFO1_x_change = -UFO1.speed elif event.key == pygame.K_SPACE: ##총알 발사 pygame.mixer.Sound.play(shot_sound) bullet_x = UFO1.rect.x+UFO1.sprite_width bullet_y = UFO1.rect.y+UFO1.sprite_height/2 bullet_xy.append([bullet_x,bullet_y]) if event.type == pygame.KEYUP: if event.key == pygame.K_UP or event.key == pygame.K_DOWN: UFO1_x_change = 0 UFO1_y_change = 0 gamepad.fill(WHITE) background1_x -= 5 background2_x -= 5 boss.rect.x = random.randrange(580,600) if background1_x <= -background_width: background1_x = background_width if background2_x <= -background_width: background2_x = background_width drawObject(background1,background1_x,0) drawObject(background2,background2_x,0) drawObject(time_textSurface,time_textRect.x,time_textRect.y) drawObject(Score_textSurface,Score_textRect.x,Score_textRect.y) #UFO_Monster Positon UFO_Monster.rect.x -= 7 if UFO_Monster.rect.x <= 0: UFO_Monster.rect.x = pad_width UFO_Monster.rect.y = random.randrange(0,pad_height) ##메테오가 if meteor == None: meteor_x -= 30 else : meteor_x -= 15 if meteor_x <= 0: meteor_x = pad_width meteor_y = random.randrange(0,pad_height) random.shuffle(meteors) meteor = meteors[0] if boss_bullet.rect.x >= 0 and boss.Attack == True : boss_bullet.rect.x -= 20 else : boss_bullet.rect.x = boss.rect.x boss_bullet.rect.y = random.randrange(0,boss.sprite_height) # UFO Postion UFO1.rect.y +=UFO1_y_change UFO1.rect.x +=UFO1_x_change if UFO1.rect.y<0: UFO1.rect.y=0 elif UFO1.rect.y> pad_height - UFO1.sprite_height: UFO1.rect.y = pad_height - UFO1.sprite_height if UFO1.rect.x<0: UFO1.rect.x=0 elif UFO1.rect.x > 500 : UFO1.rect.x = 500 #Bullet Postion if len(bullet_xy) != 0: for i,bxy in enumerate(bullet_xy) : bxy[0] += 15 bullet_xy[i][0] = bxy[0] if bxy[0] > boss.rect.x and boss.IsAlive and time>=10: if bxy[1] > boss.rect.y and bxy[1] <boss.rect.y + boss.sprite_height: bullet_xy.remove(bxy) Score += 1 isShotBoss = True if bxy[0] > meteor_x and meteor != None and isShotMeteor == False: if meteor!=None and bxy[1] > meteor_y and bxy[1] < meteor_y + meteor.sprite_height: try : #예외처리 오류가 나서 그냥 페스해버림... bullet_xy.remove(bxy) except : pass Score += 1 meteor_x = pad_width meteor_y = random.randrange(0,pad_height) random.shuffle(meteors) meteor = meteors[0] isShotMeteor = True if bxy[0] > UFO_Monster.rect.x and isShotUFO == False: ##여기서도 오류남 나오지않았는데 xy좌표나옴 if bxy[1] < UFO_Monster.rect.bottomleft[1] and bxy[1] > UFO_Monster.rect.topleft[1]: try : bullet_xy.remove(bxy) except : pass Score += 1 UFO_Monster.rect.x = pad_width UFO_Monster.rect.y = random.randrange(0,pad_height) isShotUFO =True if bxy[0] >= pad_width: try : bullet_xy.remove(bxy) except : pass #충돌 체크 if UFO1.rect.x + UFO1.sprite_width > meteor_x and meteor != None: if (UFO1.rect.y > meteor_y and UFO1.rect.y < meteor_y+meteor.sprite_height) or (UFO1.rect.y + UFO1.sprite_height > meteor_y and UFO1.rect.y + UFO1.sprite_height < meteor_y + meteor.sprite_height): crash(0) if UFO1.rect.x + UFO1.sprite_width > UFO_Monster.rect.x: if (UFO1.rect.y > UFO_Monster.rect.y and UFO1.rect.y < UFO_Monster.rect.y+UFO_Monster.sprite_height) or (UFO1.rect.y + UFO1.sprite_height > UFO_Monster.rect.y and UFO1.rect.y + UFO1.sprite_height < UFO_Monster.rect.y + UFO_Monster.sprite_height): crash(1) if UFO1.rect.x + UFO1.sprite_width > boss_bullet.rect.x: if (UFO1.rect.y > boss_bullet.rect.y and UFO1.rect.y < boss_bullet.rect.y+boss_bullet.sprite_height) or (UFO1.rect.y + UFO1.sprite_height > boss_bullet.rect.y and UFO1.rect.y + UFO1.sprite_height < boss_bullet.rect.y + boss_bullet.sprite_height): crash(2) # 2) 게임 상태 업데이트 UFO1.update() boss_bullet.update() if UFO_Monster.IsAlive and isShotUFO == False: #UFO 쐈을때 없어지는거 구현 UFO_Monster.update() if isShotUFO == True : isShotUFO = False if time>=10 and boss.IsAlive: boss.update() if meteor != None and isShotMeteor == False: meteor.update() if isShotMeteor == True : isShotMeteor = False # 3) 게임 상태 그리기 if boss.Attack : drawObject(boss_bullet.image, boss_bullet.rect.x ,boss_bullet.rect.y) drawObject(UFO_Monster.image,UFO_Monster.rect.x,UFO_Monster.rect.y) drawObject(UFO1.image,UFO1.rect.x,UFO1.rect.y) if meteor != None and not isShotMeteor : if not isShotMeteor : drawObject(meteor.image, meteor_x,meteor_y) else : drawObject(meteor.image, meteor_x,meteor_y) meteor.HP -= 1 isShotMeteor = False if len(bullet_xy) != 0: for bx,by in bullet_xy: drawObject(bullet,bx,by) if time>= 50 : #보스 출현 시간 time이 10이 나와야 출연을 함 if not boss.HP <= 0 : #보스체력이 0이 아닐때 drawObject(boss.image,boss.rect.x,boss.rect.y) #일단 출력하고 if not isShotBoss : #보스를 쏘지 않았으면 if boss.Attack == True and not boss.HP <= 0: drawObject(boss_bullet.image,boss_bullet.rect.x,boss_bullet.rect.y) else : boss.Attack = not boss.Attack else : #보스를 쐇으면 boss.HP -= 1 isShotBoss = False else : boss.IsAlive = False boss.Attack = False endgame() if meteor == None : isShotMeteor = False random.shuffle(meteors) meteor = meteors[0] pygame.display.update() clock.tick(FPS) pygame.quit() quit() def initGame(): global gamepad,clock,UFO1,background1,background2,bullet,boss,boom,UFO_Monster,meteors,boss_bullet global shot_sound,explosion_sound,bgm_sound pygame.init() gamepad = pygame.display.set_mode((pad_width,pad_height)) pygame.display.set_caption("UFO game") UFO1 = UFO() boss = BOSS() meteors = [] for i in range(3) : meteors.append(None) meteors.append(METEOR()) meteors.append(METEOR()) UFO_Monster = UFO_MONSTER() background1 = pygame.image.load("background_1.png") background2 = background1.copy() bullet = pygame.image.load("bullet.png") boom = pygame.image.load("boom.png") clock = pygame.time.Clock() boss_bullet = BOSS_ATTACK() shot_sound = pygame.mixer.Sound('shot.wav') explosion_sound = pygame.mixer.Sound('explosion.wav') bgm_sound = pygame.mixer_music.load('mybgm.wav') bgm_sound = pygame.mixer_music.play(-1) runGame() initGame()
[ "ly0738@naver.com" ]
ly0738@naver.com
6d45510b9974c91305c7cdc3f646051fb94cf87d
809467f757aa55165fc1337bb7c169cc4d6a852b
/day09/Tencent/Tencent/settings.py
2be96d567b9cc94c419cf1f29fef611307060651
[]
no_license
rhlp/Python_Spider
91e544593c598d1f6ce85f23131705bf034d8fd7
534161bf20b9d65434bebf3c1d851fce0c74bce5
refs/heads/master
2021-09-02T12:01:08.428834
2018-01-02T12:02:20
2018-01-02T12:02:20
115,380,328
0
0
null
null
null
null
UTF-8
Python
false
false
7,464
py
# -*- coding: utf-8 -*- # Scrapy settings for Tencent project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'Tencent' SPIDER_MODULES = ['Tencent.spiders'] NEWSPIDER_MODULE = 'Tencent.spiders' # 将所有的日志信息保存到本地文件里 LOG_FILE = "baidu.log" # 只显示当前等级及以上的信息 LOG_LEVEL = "INFO" # 最低是DEBUG # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'Tencent (+http://www.yourdomain.com)' USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko" # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) CONCURRENT_REQUESTS = 320 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'Tencent.middlewares.TencentSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html DOWNLOADER_MIDDLEWARES = { 'Tencent.middlewares.UserAgentMiddleware': 643, # 'Tencent.middlewares.ProxyMiddleware': 543, } # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'Tencent.pipelines.TencentPipeline': 300, # 'Tencent.pipelines.PositionPipeline': 400, } USER_AGENT_LIST = [ "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1", "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5", "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/531.21.8 (KHTML, like Gecko) Version/4.0.4 Safari/531.21.10", "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US) AppleWebKit/533.17.8 (KHTML, like Gecko) Version/5.0.1 Safari/533.17.8", "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/533.19.4 (KHTML, like Gecko) Version/5.0.2 Safari/533.18.5", "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-GB; rv:1.9.1.17) Gecko/20110123 (like Firefox/3.x) SeaMonkey/2.0.12", "Mozilla/5.0 (Windows NT 5.2; rv:10.0.1) Gecko/20100101 Firefox/10.0.1 SeaMonkey/2.7.1", "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_8; en-US) AppleWebKit/532.8 (KHTML, like Gecko) Chrome/4.0.302.2 Safari/532.8", "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_4; en-US) AppleWebKit/534.3 (KHTML, like Gecko) Chrome/6.0.464.0 Safari/534.3", "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_5; en-US) AppleWebKit/534.13 (KHTML, like Gecko) Chrome/9.0.597.15 Safari/534.13", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_2) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.186 Safari/535.1", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/535.2 (KHTML, like Gecko) Chrome/15.0.874.54 Safari/535.2", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.36 Safari/535.7", "Mozilla/5.0 (Macintosh; U; Mac OS X Mach-O; en-US; rv:2.0a) Gecko/20040614 Firefox/3.0.0 ", "Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.0.3) Gecko/2008092414 Firefox/3.0.3", "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US; rv:1.9.1) Gecko/20090624 Firefox/3.5", "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; rv:1.9.2.14) Gecko/20110218 AlexaToolbar/alxf-2.0 Firefox/3.6.14", "Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.2.15) Gecko/20110303 Firefox/3.6.15", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:2.0.1) Gecko/20100101 Firefox/4.0.1"] # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "renhl1991@163.com" ]
renhl1991@163.com
60d05e5f995152d5461a260c213345887637357c
329cc042bb5829ab26a51d0b3a0bd310f05e0671
/credentials.py
680276870d334e695779b99d754d01d7480a139d
[]
no_license
bkhoward/WLC-PSK-Change
53afe64e767889ce967679d8aeb798745166fa72
1b92fd1d5afae4bc64bfc61bc4935c635cca12f0
refs/heads/master
2023-03-25T01:33:53.765751
2021-03-11T18:59:03
2021-03-11T18:59:03
345,891,681
0
0
null
null
null
null
UTF-8
Python
false
false
70
py
credentials = { 'username': 'bhoward99', 'password': 'Sh0tei02' }
[ "bkhoward@live.com" ]
bkhoward@live.com
7ba089890ac03183b71de1929bde2b4e220606ac
84f873e80bbe741aede99d42b3fe8ed79a354086
/002_fun_coding_time/edunext_challenge_django_project/edunext_challenge_django_project/urls.py
7af8affc2dd2bbc99cdb9b81882992417499c450
[]
no_license
yeguacelestial/edunext-challenge
bd8f2e60ffbafcf6f48ac20695ea4cb503f50dbe
113c6a556e0658a23194ef03aea74dc082ee26fa
refs/heads/master
2022-12-05T14:29:28.963110
2020-08-06T04:13:03
2020-08-06T04:13:03
283,603,528
0
0
null
null
null
null
UTF-8
Python
false
false
922
py
"""edunext_challenge_django_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from edunext_paypal_service.router import router urlpatterns = [ path('admin/', admin.site.urls), # REST FRAMEWORK URLS path('payments/', include('edunext_paypal_service.urls')), ]
[ "yeguacelestial@gmail.com" ]
yeguacelestial@gmail.com
3012e9a0a6447b928a7cc74995256be4f5fe81df
8d0f964650cb0e6a738b62771d1a69b14f24aec3
/setup.py
29395977261da34d89db48c441c1911e4a6bcab6
[ "BSD-3-Clause" ]
permissive
InfinityMod/easyRedisCache
ed8aeec184fbea9dfbba2bcae35ce79c9afc702c
b79747e0134a3b1916a6b42bbdc1cd50aa8c8ff6
refs/heads/master
2021-01-11T15:11:45.263321
2017-01-30T11:11:13
2017-01-30T11:11:13
80,313,749
0
0
null
null
null
null
UTF-8
Python
false
false
645
py
# -*- coding: utf-8 -*- from setuptools import find_packages, setup setup( name='easyRedisCache', version='0.15', author=u'David Ziegler', author_email='webmaster@SpreadPost.de', packages=find_packages(), include_package_data=True, url='https://github.com/InfinityMod/easyRedisCache', license='BSD', description='Easy lock secured cache for redis', zip_safe=False, keywords=['cache', 'lock', 'redis', 'easy'], dependency_links=[ "git+ssh:git@github.com:InfinityMod/easyRedisCache.git#egg=redisSherlock-0.3.0" ], install_requires=[ 'redisSherlock', 'redis' ], )
[ "solino.webtech@gmail.com" ]
solino.webtech@gmail.com
69056781c3aa3764dffb60ad08403e8de4b6a3ee
f5b80ea1e60bae54985ade2c6a1d1d583e8d3040
/binary-trees/is_balanced_binary_tree.py
6c7ed26c31bdb4d7c36bd776ef75b678ba00f4d0
[]
no_license
FicciTong/elements-of-programming-interviews
4eda6b4568281a080ade9ddc5d10009bd250b86d
9f8d52c85f1bef0feb20213798019594ee219a7d
refs/heads/master
2021-07-05T00:35:37.505560
2017-09-27T19:42:57
2017-09-27T19:42:57
104,961,698
0
0
null
null
null
null
UTF-8
Python
false
false
1,107
py
class BinaryTreeNode: def __init__(self, data=0, left=None, right=None): self.data = data self.left = left self.right = right def is_balanced_binary_tree(tree): return True def main(): root = BinaryTreeNode('A') node_b = BinaryTreeNode('B') node_c = BinaryTreeNode('C') node_d = BinaryTreeNode('D') node_e = BinaryTreeNode('E') node_f = BinaryTreeNode('F') node_g = BinaryTreeNode('G') node_h = BinaryTreeNode('H') node_i = BinaryTreeNode('I') node_j = BinaryTreeNode('J') node_k = BinaryTreeNode('K') node_l = BinaryTreeNode('L') node_m = BinaryTreeNode('M') node_n = BinaryTreeNode('N') node_o = BinaryTreeNode('O') root.left = node_b root.right = node_c node_b.left = node_d node_b.right = node_e node_c.left = node_f node_c.right = node_g node_d.left = node_h node_d.right = node_i node_e.left = node_j node_e.right = node_k node_f.left = node_l node_f.right = node_m node_g.left = node_n node_g.right = node_o if __name__ == '__main__': main()
[ "FicciTong@me.com" ]
FicciTong@me.com
701dd8791ae9747f4bc55c4bbcd9a6abd8d28bd9
e77dcd2b991adbb204683fc76c655ffb90cebc6a
/archive/boj/21-30/9461.py
e9b9d8e3d3988fbf39fd6d9d4837e99e96fa5fa7
[]
no_license
circlezero/Algorithm
369d66e74fbab7e7c3dab065d4d602e2ee7e1f27
046ba418a612ee4f37ba1c6ff5a180f04b412deb
refs/heads/master
2022-03-08T03:26:44.105406
2022-02-28T23:02:41
2022-02-28T23:02:41
155,205,100
1
0
null
null
null
null
UTF-8
Python
false
false
194
py
import sys input = sys.stdin.readline t = int(input()) d = [0, 1, 1, 1] + [0] * 100 for i in range(4, 101): d[i] = d[i-2] + d[i-3] for i in range(t): n = int(input()) print(d[n])
[ "jwy0565@gmail.com" ]
jwy0565@gmail.com
1483e7f92fdb8100aee88c12fdd838099e982d37
07e36f2548040e53bdf7bb418ff3f94081f42cb5
/dataset-versioning/sim_modify_labels.py
ab3d734bebf9e95336cccdaebdcfd0fd8e3aa311
[]
no_license
wandb/artifacts-examples
99bd7e4c046d10a70c2861a7eb867617e1264cb9
9f38abfcd2b48af5c314f2346920abb99f1bb81f
refs/heads/master
2023-02-08T14:18:15.813319
2023-02-02T02:01:00
2023-02-02T02:01:00
254,713,385
12
2
null
2023-02-02T00:38:29
2020-04-10T18:59:40
Python
UTF-8
Python
false
false
768
py
import argparse from datetime import datetime import glob import json import os import sys import data_library parser = argparse.ArgumentParser(description='') parser.add_argument('label_file', type=str, help='') def main(argv): args = parser.parse_args() seg_labels = data_library.get_seg_labels() box_labels = data_library.get_box_labels() new_labels = json.load(open(args.label_file)) for label in new_labels: label_id = label['id'] if 'segmentation' in label: seg_labels[label_id] = label elif 'bbox' in label: box_labels[label_id] = label data_library.save_seg_labels(seg_labels) data_library.save_box_labels(box_labels) if __name__ == '__main__': main(sys.argv)
[ "shlewis@gmail.com" ]
shlewis@gmail.com
4aaf6014bb2c69d740bc278b1697defe93f9b565
a127ac15dc03271edfba3ee8a931718d70c452ad
/test/tests/decorators.py
1eda3bec351b28f7da64016ccaf723447f2f1556
[ "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
josephwinston/pyston
7e354580b3a011ebf768ef14d5b2d298a3a48427
7d703b0214ffc1c61598ba4e689abfc8c1658486
refs/heads/master
2021-01-11T10:05:19.995366
2014-07-23T12:08:57
2014-07-23T12:08:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
# expected: fail # - decorators def print_when_eval(x, msg): print msg return x # Test the order that decorators and function defaults get evaluated @print_when_eval(lambda f: print_when_eval(f, "calling decorator"), "evaluating decorator") def f(x=print_when_eval(1, "evaluating default")): pass # Result: looks like it's decorator first, then defaults, then the decorator is called.
[ "kmod@dropbox.com" ]
kmod@dropbox.com
4c6ae23fcdd718fc99eafebc9f28c35e27dbb990
d0391c4f00ff41503489a45dc4ad0a3b4d084258
/main.py
facf3565a096f08413e216bff31922fdfd782ac8
[]
no_license
Pandawastaken1/LowestOpenArray
5ea7532fb92dac6bfd7340d345f39130cf140de4
1642185c0868c17de0a0c43f9ed1a15003a37ba9
refs/heads/master
2022-12-06T09:17:13.148088
2020-08-28T23:26:57
2020-08-28T23:26:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
class bus: #Constructor def __init__(self,colorInput,numberOfSeats,engineHP,isbus): self.bodyColor=colorInput self.seats=numberOfSeats self.engineSize=engineHP self.bus=isbus def driveoffintothesunset(self): print("and this is just like a movie") mybus=bus("black",40,3050.1,True) print(mybus.bodyColor) print(mybus.seats) mybus #epicbus
[ "aaakashgamer45@outlook.com" ]
aaakashgamer45@outlook.com
6a1f5008c2673861e1856c147fa293aceea2108a
68486e67ac8fbf233d0c12f3b13412abe63d607d
/htmltest/views.py
f23ad9fe627fa2a15997dfe29b35e783d8875198
[]
no_license
khs0806/the_project
f1632da64ddc198bb136601ba6dc515ed401fe9f
41187c4ad81bb56f3efbdee22f49afddbe33ba07
refs/heads/master
2020-12-22T07:45:07.705328
2020-02-11T06:28:18
2020-02-11T06:28:18
236,713,141
0
0
null
null
null
null
UTF-8
Python
false
false
5,218
py
from django.shortcuts import render, get_object_or_404 import pandas as pd import folium import json from folium.features import DivIcon from folium.plugins import MarkerCluster from blog.models import Post from django.utils import timezone from django.shortcuts import redirect from .forms import PostForm # Create your views here. def post_list(request): crime_seoul = pd.read_csv("static/seoul_crime_data.csv") #c_list=[] #for i in range(len(crime_seoul.columns)) # if i[-2:]=='_p': # c_list.append(i) #sc_clist = [i for i in c_list] sc_clist = [i for i in crime_seoul.columns] clist=[] for i in sc_clist: if i[-2:] == '_p': clist.append(i.strip('_p')) sc_ylist = [int(i) for i in crime_seoul['year'].unique()] print(clist,sc_ylist) return render(request, 'htmltest/post_list.html', {'sc_ylist':sc_ylist,'sc_clist':clist,'l_year':sc_ylist[0],'l_rate':clist[0]}) def make_map(request,year_r,rate_r,poli_loc):#, year, columns,poli_loc #year=2018 year=int(year_r) rate=rate_r+'_p' poli_loc = int(poli_loc) crime_seoul = pd.read_csv("static/seoul_crime_data.csv") year_data=crime_seoul[crime_seoul.year==year] year_data=year_data.set_index('state') geo_path = 'static/seoul_state_map.json' geo_str = json.load(open(geo_path, encoding='utf-8')) f = folium.Figure (width = 600, height = 530) map = folium.Map(location=[37.5592, 126.982], zoom_start=11, tiles='Stamen Toner').add_to (f) map.choropleth(geo_data=geo_str, data=year_data[rate], columns=[year_data.index, year_data[rate]], fill_color='YlOrRd', #Reds,YlOrRd,PuRd,Oranges key_on='feature.id', legend_name=rate[:-2] ) gps_data = pd.read_csv('static/seoul_state_gps.csv',encoding = 'utf-8') for i in gps_data.index: x=gps_data.loc[i,'state_x'] y=gps_data.loc[i,'state_y']-0.015 kor_s=gps_data.loc[i,'state_kor'] folium.map.Marker( [x,y], icon=DivIcon( icon_size=(150,36), icon_anchor=(0,0), html='<div style="font-size: 12pt">'+gps_data.loc[i,'state_kor']+'</div>', ) ).add_to(map) data=pd.read_excel('static/seoul_marker.xlsx') if poli_loc == 1: icon_create_function = """\ function(cluster) { return L.divIcon({ html: '<b style="font-size:18px">&nbsp' + cluster.getChildCount() + '</b>', className: 'marker-cluster marker-cluster-large', iconSize: new L.Point(30, 30) }); }""" y = data.geo_y.values x = data.geo_x.values locations = list(zip(y,x)) popups = list(data.title.values) marker_cluster = MarkerCluster( locations=locations, popups=popups, name='seoul', overlay=True, control=True, icon_create_function=icon_create_function ) marker_cluster.add_to(map) # c_list=[] # for i in range(len(crime_seoul.columns)): # if i[-2:]=='_p': # c_list.append(i) #sc_clist = [i for i in c_list] sc_clist = [i for i in crime_seoul.columns] clist=[] for i in sc_clist: if i[-2:] == '_p': clist.append(i.strip('_p')) sc_ylist = [int(i) for i in crime_seoul['year'].unique()] #dic_m={'year':sc_ylist,'columns':sc_clist} map.save('htmltest/templates/htmltest/s_map.html') return render(request, 'htmltest/post_list.html', {'sc_ylist':sc_ylist,'sc_clist':clist,'l_year':year,'l_rate':rate.strip('_p')}) # def s_map(request): # return render(request, 'htmltest/s_map.html', {}) def post_detail(request, pk): post = get_object_or_404(Post, pk=pk) return render(request, 'htmltest/post_list.html',{'post':post}) def test_list(request): posts = Post.objects.filter(published_date__lte=timezone.now()).order_by('published_date') return render(request, 'htmltest/list.html', {'posts': posts}) def post_new(request): if request.method == "POST": form = PostForm(request.POST) if form.is_valid(): post = form.save(commit=False) post.author = request.user post.published_date = timezone.now() post.save() return redirect('post_list') else: form = PostForm() return render(request, 'htmltest/post_edit.html', {'form': form}) def index(request): return render(request, 'htmltest/index.html') def indextwo(request): return render(request, 'htmltest/indextwo.html') def tozi(request): return render(request, 'htmltest/200122.html') def gutozi(request): return render(request, 'htmltest/gutozi.html') def piechart(request): return render(request, 'htmltest/piechart.html') def satis(request): return render(request, 'htmltest/satis.html') def lat(request): return render(request, 'htmltest/lat.html') def marker(request): return render(request, 'htmltest/marker.html') def center(request): return render(request, 'htmltest/center.html')
[ "asdasqwex63hd65@naver.com" ]
asdasqwex63hd65@naver.com
02ca018a3e7a5f451cf9c339a3b1dfa6e4534e59
b95df751b39533cf4b194d47587210e226350087
/led.py
7d4247159609440387b8f8f2e2104c88f7f5f8ea
[]
no_license
gandipg/micropy_esp
dbbeaa214810f213a3ac05555515ae9c43bcab06
c570a10689747812bacb0fb5bd8c64feee593cf6
refs/heads/master
2021-09-01T13:49:35.395670
2017-12-27T09:09:26
2017-12-27T09:09:26
115,424,886
0
0
null
null
null
null
UTF-8
Python
false
false
1,580
py
import socket import machine #HTML to send to browsers html = """<!DOCTYPE html> <html> <head> <title>ESP8266 LED ON/OFF</title> </head> <center><h2>A simple webserver for turning LED's on and off with Micropython</h2></center> <center><h3>(for noobs to both the ESP8266 and Micropython)</h3></center> <form> LED0: <button name="LED" value="ON0" type="submit">LED ON</button> <button name="LED" value="OFF0" type="submit">LED OFF</button><br><br> LED2: <button name="LED" value="ON2" type="submit">LED ON</button> <button name="LED" value="OFF2" type="submit">LED OFF</button> </form> </html> """ #Setup PINS LED0 = machine.Pin(0, machine.Pin.OUT) LED2 = machine.Pin(2, machine.Pin.OUT) LED2.on() LED0.on() #Setup Socket WebServer s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('', 80)) s.listen(5) while True: conn, addr = s.accept() print("Got a connection from %s" % str(addr)) request = conn.recv(1024) print("Content = %s" % str(request)) request = str(request) LEDON0 = request.find('/?LED=ON0') LEDOFF0 = request.find('/?LED=OFF0') LEDON2 = request.find('/?LED=ON2') LEDOFF2 = request.find('/?LED=OFF2') #print("Data: " + str(LEDON0)) #print("Data2: " + str(LEDOFF0)) if LEDON0 == 6: print('TURN LED0 ON') LED0.off() if LEDOFF0 == 6: print('TURN LED0 OFF') LED0.on() if LEDON2 == 6: print('TURN LED2 ON') LED2.off() if LEDOFF2 == 6: print('TURN LED2 OFF') LED2.on() response = html conn.send(response) conn.close()
[ "g.tsankov93@gmail.com" ]
g.tsankov93@gmail.com
c03315fd9e075cf8664700e10adfaa229031f664
8110adff2bcb8ceb946682ad37fe3575ecdf3d01
/website/urls.py
c08a1d07378381fe7a48a6da83e862b31a4b4932
[]
no_license
captain-jbit/template_django_dentist
2791505ddcb5748a170c64457175e9df79497b08
3fff49a6f0cde0c32edba5305fc784ebddcc85e2
refs/heads/master
2022-12-07T11:12:24.064023
2020-08-29T22:54:06
2020-08-29T22:54:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
846
py
"""djangoProject4 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views #url paths urlpatterns = [ path('', views.home, name="home"), path('contact.html', views.contact, name="contact") ]
[ "jake.yanov@gmail.com" ]
jake.yanov@gmail.com
602406ee410725341876913303a2fb511aebf002
ac1f286fb73e3fa866de88bc8b08cb9be02357f2
/arena/tests/test_spatial_glimpse.py
8a93223090b60716e57ac816883210182b8b29d2
[]
no_license
flyers/Arena
8a717184f37cd36b07ec28dbe9d667bc8f9fa8c2
6ed303c10eaefd7e4ee52ab56b1ced6b773de244
refs/heads/master
2020-04-27T20:44:58.091106
2016-10-10T08:58:53
2016-10-10T08:58:53
174,668,982
0
0
null
2019-03-09T08:37:46
2019-03-09T08:37:46
null
UTF-8
Python
false
false
3,402
py
import mxnet as mx import mxnet.ndarray as nd import numpy from arena import Base import cv2 import time from arena.utils import * def load_roi(path, height=360, width=480, num=100): a = numpy.loadtxt(path, delimiter=',') cx = a[:, ::2].mean(axis=1) cy = a[:, 1::2].mean(axis=1) sx = a[:, ::2].max(axis=1) - a[:, ::2].min(axis=1) + 1 sy = a[:, 1::2].max(axis=1) - a[:, 1::2].min(axis=1) + 1 cx = cx / width * 2 -1 cy = cy / height * 2 - 1 sx = sx / width * 2 - 1 sy = sy / height * 2 - 1 rois = numpy.vstack((cx, cy, sx, sy)).T return rois[:num, :] def load_image(path, height=360, width=480, num=100): data_npy = numpy.zeros((num, 3, height, width), dtype=numpy.float32) for i in range(num): image_path = path + "\\%08d.jpg" % (i+1) print image_path bgr_img = cv2.imread(image_path) b, g, r = cv2.split(bgr_img) # get b,g,r data_npy[i, :, :, :] = numpy.rollaxis(cv2.merge([r, g, b]), 2, 0) return data_npy def pyramid_glimpse(data, roi, depth, scale, output_shape, name): l = [] curr_scale = 1.0 if type(roi) is tuple: roi = mx.symbol.Concat(*roi, num_args=depth) for i in range(depth): l.append(mx.symbol.SpatialGlimpse(data=data, roi=roi, output_shape=output_shape, scale=curr_scale, name="%s-%d" %(name, i))) curr_scale *= scale ret = mx.symbol.Concat(*l, num_args=depth, name="%s-concat" %name) return ret ctx = mx.cpu() data = mx.symbol.Variable('data') center = mx.symbol.Variable('center') size = mx.symbol.Variable('size') roi = mx.symbol.Variable('roi') print type(data) depth = 3 scale = 1.5 rows = 720 cols = 1280 path= "D:\\HKUST\\advanced\\vot-workshop\\sequences\\sequences\\ball1" net = pyramid_glimpse(data=data, roi=roi, depth=depth, scale=scale, output_shape=(107, 107), name='spatial_glimpse') batch_size = 50 data_arr = nd.array(load_image(path=path, num=batch_size, height=rows, width=cols), ctx=ctx) roi_arr = nd.array(load_roi(path=path + "\\groundtruth.txt", num=batch_size, height=rows, width=cols), ctx=ctx) print data_arr.shape print roi_arr.shape data_shapes = {'data': (batch_size, 3, rows, cols), 'roi': (batch_size, 4)} glimpse_test_net = Base(data_shapes=data_shapes, sym=net, name='GlimpseTest', ctx=ctx) start = time.time() out_imgs = glimpse_test_net.forward(batch_size=batch_size, data=data_arr, roi=roi_arr)[0].asnumpy() end = time.time() print 'Time:', end-start print out_imgs.shape for i in range(batch_size): for j in range(depth): r, g, b = cv2.split(numpy.rollaxis(out_imgs[i, j*3:(j+1)*3], 0, 3)) reshaped_img = cv2.merge([b,g,r]) cv2.imshow('image', reshaped_img/255.0) cv2.waitKey(0) # # shapes = [] # # arr = {'arg_%d' % i: mx.random.uniform(-10.0, 10.0, shape) for i, shape in # zip(range(len(shapes)), shapes)} # arr_grad = {'arg_%d' % i: mx.nd.zeros(shape) for i, shape in zip(range(len(shapes)), shapes)} # # up = mx.sym.UpSampling(*[mx.sym.Variable('arg_%d' % i) for i in range(len(shapes))], # sample_type='nearest', scale=root_scale) # exe = up.bind(mx.cpu(), args=arr, args_grad=arr_grad) # exe.forward(is_train=True) # exe.backward(exe.outputs)
[ "xshiab@ust.hk" ]
xshiab@ust.hk
fa3d11538f126d7e3f6428c997a19b45c6004eb3
a19778f85fe30cc50f125049d3ef8928e3bf9fde
/backend/elittech_20991/wsgi.py
ec7d72a67fd3b1d8aa1d88fdac4c76a94f36b9c3
[]
no_license
crowdbotics-apps/elittech-20991
6665ccb7c26cc7c10c82c7d3346abbd322212d2b
75b5644a3ad9b1dca526c2b58beccaa50f1fd9a7
refs/heads/master
2022-12-24T14:52:47.574719
2020-10-02T21:52:36
2020-10-02T21:52:36
300,742,965
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for elittech_20991 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "elittech_20991.settings") application = get_wsgi_application()
[ "team@crowdbotics.com" ]
team@crowdbotics.com
ee31da0617681fbaf31fb79f4d0c7cf013b9a1b5
2f82c81b5c6d1033d5d79a1f41a853c84669d4d4
/restaurant/restaurantApp/forms.py
968b983255c425b08e285a78393fbd7a0c0644ae
[]
no_license
DarshanN1/UTSTuesdayG52021Aut
ba241c88126574cfdd39451468e19a2d68043966
345025e675f638e2d1b0a7419996e32c58d6e81a
refs/heads/main
2023-06-16T08:05:48.230774
2021-07-15T02:49:39
2021-07-15T02:49:39
341,414,511
0
0
null
2021-07-08T12:11:00
2021-02-23T03:22:03
HTML
UTF-8
Python
false
false
1,228
py
from django.forms import ModelForm from django.contrib.auth.models import User from .models import StaffMember from .models import Booking from django.contrib.auth.forms import UserCreationForm from datetimepicker.widgets import DateTimePicker from django import forms class CreateUserForm(UserCreationForm): class Meta: model = User fields = ['username', 'email', 'password1','password2'] class StaffForm(ModelForm): phone = forms.CharField(max_length=10,min_length=10) class Meta: model = StaffMember fields = ['first_name','last_name','phone','email'] class DateInput(forms.DateInput): input_type = 'date' class TimeInput(forms.TimeInput): input_type = 'time' class BookingForm(ModelForm): phone = forms.CharField(max_length=10,min_length=10) name = forms.CharField(max_length=100) class Meta: model = Booking fields = ['booking_date','booking_time','number_of_guests','name','phone'] widgets = {'booking_date':DateInput(),'booking_time':TimeInput()} def __init__(self, *args, **kwargs): super(BookingForm,self).__init__(*args, **kwargs) self.fields['number_of_guests'].widget.attrs.update({'min': 1, 'max':20})
[ "dulyacsm15@gmail.com" ]
dulyacsm15@gmail.com
92ca1c3921ccec559cdcd2de490cee6594ab9e6b
431ff3094d36404793f9bbdec364e3f356fd259a
/env/bin/pip3
6c07383965d0228b315099e16950dcb07b37a0d3
[]
no_license
Deaconjoe/djoePython
cd875e864a9c6d2a7d4f3a290fda58b24d15c681
99f4978954fb2e352841aac77e0f0407c25b5ff0
refs/heads/master
2020-08-06T09:09:57.954451
2019-11-15T19:50:01
2019-11-15T19:50:01
212,918,646
0
0
null
2019-11-15T20:10:03
2019-10-04T23:37:29
Python
UTF-8
Python
false
false
234
#!/home/yaw/flask-by-example/env/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "clouddjoe@gmail.com" ]
clouddjoe@gmail.com
30868fa93642295347293682bd6a79606261a641
28383bd346f6e5f1c499796fc39f14ae83b119e7
/check_ckpt.py
c51cf30974934828e1423fcd2641c49872a87f90
[]
no_license
Interactive-Context-Lab/Deeply-Supervised-Part-Feature
25adfe201a4a7ff8f79a2730063eb25e84396a1d
83245faea23c5984c83687cac3ec5b27a0b17882
refs/heads/master
2022-12-23T19:25:35.743628
2019-10-30T07:05:01
2019-10-30T07:05:01
215,671,821
1
0
null
2022-12-08T06:43:58
2019-10-17T00:49:08
Python
UTF-8
Python
false
false
1,071
py
import tensorflow as tf # from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file # # print_tensors_in_checkpoint_file("senetmodel/Inception_resnet_v2.ckpt", all_tensors=False, # all_tensor_names=True, tensor_name="") # # # print_tensors_in_checkpoint_file("pretrain/all_baseline/model.ckpt-100", all_tensors=False, # all_tensor_names=True, tensor_name="") # print_tensors_in_checkpoint_file("pretrain/model.ckpt-60", all_tensors=True, # all_tensor_names=True, tensor_name="stem") from tensorflow.python import pywrap_tensorflow import os # # # checkpoint_path = os.path.join(model_dir, "model.ckpt") reader = pywrap_tensorflow.NewCheckpointReader('model/190608_164544/model.ckpt-77') var_to_shape_map = reader.get_variable_to_shape_map() for key in var_to_shape_map: # if "stem" in key and "Adam" not in key: print("tensor_name: ", key) # print(reader.get_tensor(key)) # Remove this is you want to print only variable names
[ "55469294+Interactive-Context-Lab@users.noreply.github.com" ]
55469294+Interactive-Context-Lab@users.noreply.github.com
02f13775b3c78236ce2ab80545def64ab6c36542
c214ad7a04e581d81b42fec19d68f999169bfc33
/EX_EstruturaDeDecisao/ex15.py
f542a34e11a1b9fdd6434f759cd998e323eb20ee
[]
no_license
leohck/python_exercises
34f06df60d0a40f50466f0b2da3e91ec7026a47b
85aafaa04ae395b3c722a7ad20aeb16de8c1eff4
refs/heads/master
2021-01-01T04:08:06.336740
2017-07-26T13:48:48
2017-07-26T13:48:48
97,128,099
0
0
null
null
null
null
UTF-8
Python
false
false
1,349
py
__author__ = 'leohck' print('>.....----- EX 15 ----.....< ') """ Faça um Programa que peça os 3 lados de um triângulo. O programa deverá informar se os valores podem ser um triângulo. Indique, caso os lados formem um triângulo, se o mesmo é: equilátero, isósceles ou escaleno. Dicas: Três lados formam um triângulo quando a soma de quaisquer dois lados for maior que o terceiro; Triângulo Equilátero: três lados iguais; Triângulo Isósceles: quaisquer dois lados iguais; Triângulo Escaleno: três lados diferentes; """ def Triangulo(l1,l2,l3): triangulo = '' if l1 == l2 and l2 == l3: triangulo = 'Equilátero' elif l1 == l2 or l2 == l3 or l1 == l3: triangulo = 'Isósceles' elif l1 != l2 and l2 != l3: triangulo = 'Escaleno' return triangulo is_triangulo = False while True: lt1 = int(input('digite o valor do primeiro lado do triangulo: ')) lt2 = int(input('digite o valor do segundo lado do triangulo: ')) lt3 = int(input('digite o valor do terceiro lado do triangulo: ')) if lt1 + lt2 > lt3 or lt1 + lt3 > lt2 or lt2 + lt3 > lt1: is_triangulo = True if is_triangulo == True: triangulo = Triangulo(lt1, lt2, lt3) break else: print('os lados nao criam um triangulo') print('Triangulo',triangulo)
[ "noreply@github.com" ]
leohck.noreply@github.com
ca4bf6c6f26579e696c768fafa5f991e395020a4
7fb469e93ff89b1c697d5a53a39188127e50d272
/handler_analysis_mem.py
d8350f51c122249c5e1ee4d64b224614e132e714
[]
no_license
seekplum/seekplum
fde98f93145a78fc030032a4499090583aba154a
9e66f5e62214e566528003d434ef2b74877419fd
refs/heads/master
2023-02-13T19:00:49.866130
2023-01-31T08:55:19
2023-02-02T04:33:45
182,075,292
2
1
null
null
null
null
UTF-8
Python
false
false
8,178
py
# -*- coding: utf-8 -*- import json import time import logging import gc import random import commands import traceback import objgraph from schema import SchemaError from tornado.options import options from tornado.web import Finish, HTTPError from tornado.web import RequestHandler logger = logging.getLogger(__name__) class BaseRequestHandler(RequestHandler): """Base RequestHandler""" def on_finish(self): self.do_finish() def do_finish(self, *args, **kwargs): pass def get_url_data(self): """ 返回get请求的数据 获取query_arguments,同一key有重复值时只取值列表最后一个 """ return {key: value[-1] for key, value in self.request.query_arguments.iteritems()} def get_body_data(self, name=None): """ 当post时,获取json数据 """ try: if name: data = json.loads(self.get_body_argument(name)) else: # `strict = False` 允许控制字符出现在value里 # reference: https://docs.python.org/2/library/json.html data = json.loads(self.request.body, strict=False) return data except ValueError as e: logger.exception(e) self.error_response(error_code=1, message="get json in body error: {}".format(e.message)) def get_data(self, schema=None): """ post, get, put, delete 类型handler 验证数据, schema 是 from schema import Schema中的Schema的一个实例 func_type: get, post, put, delete """ stack = traceback.extract_stack() func_type = stack[-2][2] if func_type in ["post", "put", "delete"]: data = self.get_body_data() elif func_type == "get": data = self.get_url_data() else: raise Exception("unsurported function type: {}".format(func_type)) try: if schema: data = schema.validate(data) return data except SchemaError as e: logger.exception(e) self.error_response(error_code=2, message=e.message) def write_json(self, data): real_ip = self.request.headers.get('X-Real-Ip', "unknown") logger.info( "method: {}, uri: {}, real ip: {}, remote ip: {}, start time: {}, finish_time: {}, error_code: {}".format( self.request.method, self.request.uri, real_ip, self.request.remote_ip, self.request._start_time, time.time(), data["error_code"])) self.set_header("Content-Type", "application/json") if options.debug: self.write(json.dumps(data, indent=2)) else: self.write(json.dumps(data)) def success_response(self, data=None, message="", finish=True): response = { "error_code": 0, "message": message, "data": data } self.write_json(response) if finish: raise Finish def error_response(self, error_code, message="", data=None, status_code=202, finish=True): self.set_status(status_code) response = { "error_code": error_code, "data": data, "message": message, } self.write_json(response) if finish: raise Finish def options(self, *args, **kwargs): """ 避免前端跨域options请求报错 """ self.set_header("Access-Control-Allow-Origin", "*") self.set_header("Access-Control-Allow-Methods", "POST, GET, PUT, DELETE, OPTIONS") self.set_header("Access-Control-Max-Age", 1000) self.set_header("Access-Control-Allow-Headers", "CONTENT-TYPE, Access-Control-Allow-Origin, cache-control, Cache-Control, x-access-token") self.set_header("Access-Control-Expose-Headers", "X-Resource-Count") def set_default_headers(self): self.set_header("Access-Control-Allow-Origin", "*") self.set_header("Access-Control-Allow-Methods", "POST, GET, PUT, DELETE, OPTIONS") self.set_header("Access-Control-Max-Age", 1000) self.set_header("Access-Control-Allow-Headers", "CONTENT-TYPE, Access-Control-Allow-Origin, cache-control, Cache-Control, x-access-token") self.set_header("Access-Control-Expose-Headers", "X-Resource-Count") def write_error(self, status_code, **kwargs): """Custrom error response """ http_status_code = status_code http_reason = self._reason if "exc_info" in kwargs: exception = kwargs["exc_info"][1] if isinstance(exception, Exception) and not isinstance(exception, HTTPError): code = hasattr(exception, "code") if code: http_status_code = exception.code else: http_status_code = 1 http_reason = exception.message if isinstance(exception, HTTPError): finish = False else: finish = True else: finish = True self.set_status(200) self.error_response(http_status_code, http_reason, finish=finish) class AnalysisHandler(BaseRequestHandler): def show_leak_increase(self): print objgraph.show_most_common_types() print "===" * 20 objgraph.show_growth() def show_chain(self, obj_type): # obj_type: Myobj_Type, type:string ref_chain = objgraph.find_backref_chain( random.choice(objgraph.by_type(obj_type)), objgraph.is_proper_module, max_depth=5) objgraph.show_chain(ref_chain, filename='chain.dot') cmd = "dot -Tpng chain.dot -o chain.png" commands.getstatusoutput(cmd) def show_leak_obj(self): root = objgraph.get_leaking_objects() logging.error("leak object: {}".format(len(root))) import pdb; pdb.set_trace() # objgraph.show_refs(root[:3], refcounts=True, filename='/tmp/leak.dot') # # yum install graphviz # cmd = "dot -Tpng /tmp/leak.dot -o /tmp/leak.png" # logging.error("result picture is: /tmp/leak.png") # commands.getstatusoutput(cmd) def gc(self): ### 强制进行垃圾回收 gc.set_debug(gc.DEBUG_UNCOLLECTABLE | gc.DEBUG_SAVEALL) # collect_garbage = gc.collect() # logging.error("unreachabel: {}".format(collect_garbage)) # gc.garbage是一个list对象,列表项是垃圾收集器发现的不可达(即垃圾对象) # 、但又不能释放(不可回收)的对象,通常gc.garbage中的对象是引用对象还中的对象。 # 因Python不知用什么顺序来调用对象的__del__函数,导致对象始终存活在gc.garbage中,造成内存泄露 garbage = gc.garbage logging.error("uncollectabel: {}".format(len(garbage))) mash = 0 sql = 0 with open("/tmp/garbage.txt", "w") as f: for g in garbage: line = "{}".format(garbage) # print linem if "marshmallow" in line: mash += 1 if "Column" in line: sql += 1 f.write("{}\n\n".format(line[0:150])) logging.error("total: {}".format(len(garbage))) logging.error("mash: {}".format(mash)) logging.error("sql: {}".format(sql)) import pdb pdb.set_trace() with open("/tmp/garbage.txt", "a") as f: f.write("total: {}, mash: {}, sql: {}".format(len(garbage), mash, sql)) del garbage # gc.set_threshold(700, 10, 5) logging.error("threshold: {}".format(gc.get_threshold())) def leak(self): self.gc() self.show_leak_increase() # self.show_leak_obj() def get(self): key = self.get_argument("key") if key == "leak": self.leak() self.success_response("OK")
[ "1131909224@qq.com" ]
1131909224@qq.com
3e991bfa498e16d0e475e2e791c91b0429f81aee
7b197a7202325764578c4b75d40620953619656f
/p4u/2_dz/seo_marks.py
d31ee2a4a5fee52f4be39683e16f777f82ccf4db
[]
no_license
alekswatts/python
c2988eada23a5d110ffffc2e5c0223c2a6ad01ce
4181d5261b22bb85a81a3c559bf506f3a56b37b7
refs/heads/master
2021-11-25T17:26:41.225469
2021-11-12T13:49:45
2021-11-12T13:49:45
220,013,399
0
0
null
null
null
null
UTF-8
Python
false
false
2,466
py
from pprint import pprint from requests_html import HTMLSession from collections import Counter import collections from django.core.validators import URLValidator from django.core.exceptions import ValidationError # # url = input("Enter url: ") # keyword = input("Enter keyword: ") def validate(url): govno = False while not govno: val = URLValidator() try: govno = val(url) return url except Exception as e: govno = False url = input("Re-Enter url: ") url = validate(input("Enter url: ")) keyword = input("Enter keyword: ") with HTMLSession() as session: resp = session.get(url) title = resp.html.xpath('//title')[0].text description = resp.html.xpath('//meta [@name="description"]/@content') h1 = resp.html.xpath('//h1/text()') h2 = resp.html.xpath('//h2/text()') print('*' * 20, 'title', '*' * 20) pprint(title) print('*' * 20, 'description', '*' * 20) pprint(description) print('*' * 20, 'H1', '*' * 20) pprint(h1) print('*' * 50) title_words = len(title.split()) title_symbols = len(title) desc_list = ''.join(description) desc_symbols = len(desc_list) h1_number = len(h1) h1_list = ''.join(h1) h1_symbols = len(h1_list) title_value = 60 title_mark = 30 key_title_mark = 5 title_grade = title_symbols * title_mark / title_value if keyword in title: final_title_grade = key_title_mark + title_grade print("Title grade: " + str(round(final_title_grade))) elif str(title_grade): print("Title grade: " + str(round(title_grade))) desc_value = 160 desc_mark = 30 key_desc_mark = 5 desc_grade = desc_symbols * desc_mark / desc_value if keyword in desc_list: final_desc_grade = key_desc_mark + desc_grade print("Description grade: " + str(round(final_desc_grade))) elif str(desc_grade): print("Description grade: " + str(round(desc_grade))) h1_value = 70 h1_mark = 30 key_h1_mark = 5 first_h1 = h1[0] first_len_h1 = len(first_h1) h1_grade = first_len_h1 * h1_mark / h1_value for i in range(h1_number): if i == 0: print("Too much headlines. Printed the first one! Total count: " + str(h1_number)) for i in range(h1_number): if i > 0: first_h1 = h1[0] continue elif keyword in h1_list: final_h1_grade = key_h1_mark + h1_grade print("H1 grade: " + str(round(final_h1_grade))) elif str(h1_grade): print("H1 grade: " + str(round(h1_grade))) # приколюха з h2 в процесі
[ "aleksmytiuk@gmail.com" ]
aleksmytiuk@gmail.com
3bf9eff42eb7c3295f1de0066362595cbdbf6457
971e0efcc68b8f7cfb1040c38008426f7bcf9d2e
/tests/model_control/detailed/transf_None/model_control_one_enabled_None_Lag1Trend_Seasonal_WeekOfYear_AR.py
8afbe3ca79cc51f9a7c11d22afe462e2971627a4
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
antoinecarme/pyaf
a105d172c2e7544f8d580d75f28b751351dd83b6
b12db77cb3fa9292e774b2b33db8ce732647c35e
refs/heads/master
2023-09-01T09:30:59.967219
2023-07-28T20:15:53
2023-07-28T20:15:53
70,790,978
457
77
BSD-3-Clause
2023-03-08T21:45:40
2016-10-13T09:30:30
Python
UTF-8
Python
false
false
156
py
import tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['None'] , ['Lag1Trend'] , ['Seasonal_WeekOfYear'] , ['AR'] );
[ "antoine.carme@laposte.net" ]
antoine.carme@laposte.net
da070c94835ae1212a8890d1c38aa48ab2b71766
1cf527dc684a3bd45d08bf51bba58741355ae08c
/SafeZone/forms.py
c750c90f77ee660c24d9d6d2d8dd7735f6a791f5
[]
no_license
AboveColin/SafeZone
e163dea4bea6af617d29d0fa837dc7b07cd2b86e
6691ae6bf1f690b5e9ff3d0a900a656568e37e88
refs/heads/main
2023-04-30T20:08:33.422760
2021-05-20T12:28:38
2021-05-20T12:28:38
346,729,744
0
0
null
null
null
null
UTF-8
Python
false
false
785
py
from flask_wtf import FlaskForm from wtforms.validators import data_required, Email, EqualTo from wtforms import ValidationError, StringField, PasswordField, SubmitField, SelectField class Loginform(FlaskForm): username = StringField("Gebruikersnaam", validators=[data_required()]) password = PasswordField("Wachtwoord", validators=[data_required()]) submit = SubmitField("Inloggen") class Registratie(FlaskForm): username = StringField("Gebruikersnaam", validators=[data_required()]) password = PasswordField("Wachtwoord", validators=[data_required(), EqualTo("pass_confirm", message="Wachtwoorden komen niet overeen")]) pass_confirm = PasswordField("Bevestig wachtwoord", validators=[data_required()]) submit = SubmitField("Registreer")
[ "noreply@github.com" ]
AboveColin.noreply@github.com
1366d05fccf6f662736817f516976c6e7e0a26a2
05cfbd1db4236507a2668d361b8027ae6d8f8f57
/363.矩形区域不超过K的最大数值和.py
4ff8c2f79bb35180aa5e14a0edccf6304e33a767
[]
no_license
ChaosNyaruko/leetcode_cn
f9f27da6a1e2b078c5cd23df8d46c7bc794d8487
1233137cfb1196019e8d95407c2b8f18b6d6d2f8
refs/heads/master
2023-08-15T14:17:41.697164
2021-09-23T16:21:44
2021-09-23T16:21:44
302,867,913
0
0
null
null
null
null
UTF-8
Python
false
false
698
py
from sortedcontainers import SortedList class Solution: def maxSumSubmatrix(self, matrix: List[List[int]], k: int) -> int: m, n = len(matrix), len(matrix[0]) ans = float("-inf") for i in range(m): sum_ = [0] * n for j in range(i, m): for c in range(n): sum_[c] += matrix[j][c] set_ = SortedList([0]) sr = 0 for v in sum_: sr += v min_sl = set_.bisect_left(sr - k) if min_sl != len(set_): ans = max(ans, sr - set_[min_sl]) set_.add(sr) return ans
[ "cabbageparadise@gmail.com" ]
cabbageparadise@gmail.com
0b627bf66430243c5f7c50a2c931b1e3052bcdf5
bda3d629a37df424d736af0a19f5b991364a5048
/Database Systems/project 2 - implementation of queries using python GUI/codefiles/3.3.py
79f1718dfdee95621de8784aea499ed4e26adaf1
[]
no_license
YashwanthThota/Academic-Projects
94dc194b3322e4c54175c7d8a7977128e96f420b
03acf561a1b59f2b1b2c781b89713d448fdf91fe
refs/heads/master
2018-12-20T19:13:15.995339
2018-09-18T03:59:51
2018-09-18T03:59:51
109,457,309
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
#Server Connection to MySQL: import mysql.connector cnx = mysql.connector.connect(user='root', password='yashwanth', host='127.0.0.1',port='8080',database='final') cursor = cnx.cursor() print("please enter the table details \n") print("\n") print("enter the ownerid number: ") ownerid= input() print("\n") print("enter the tablename: ") tablename= input() print("\n") try: cursor.execute("""INSERT INTO tables VALUES (%s,%s)""",(ownerid,tablename)) cnx.commit() print("successfully entered the values") except: cnx.rollback() print("error") cnx.close()
[ "noreply@github.com" ]
YashwanthThota.noreply@github.com
f9342a84ad9076d61d854bc3e87604340d36fb40
a01d7e10b70042140c401c5beb83663d958f1e69
/AutoRCCar-master/raspberryPi/stream_client.py
1cff6482c79e706109110ece4bdc8dc2c46b0e58
[ "BSD-2-Clause" ]
permissive
remeoj/Navigational-System-For-Self-Driving-Cars
ac88edf119ab01abb759f06ed58d6944f20743e0
5aeae3f325176b21734ae18e73294a4b275852ee
refs/heads/master
2022-01-18T22:12:49.496805
2019-04-25T23:53:31
2019-04-25T23:53:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,089
py
import io import socket import struct import time import picamera # create socket and bind host client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client_socket.connect(('192.168.1.105', 65432)) connection = client_socket.makefile('wb') try: with picamera.PiCamera() as camera: camera.resolution = (320, 240) # pi camera resolution camera.framerate = 15 # 15 frames/sec time.sleep(2) # give 2 secs for camera to initilize start = time.time() stream = io.BytesIO() # send jpeg format video stream for foo in camera.capture_continuous(stream, 'jpeg', use_video_port = True): connection.write(struct.pack('<L', stream.tell())) connection.flush() stream.seek(0) connection.write(stream.read()) if time.time() - start > 600: break stream.seek(0) stream.truncate() connection.write(struct.pack('<L', 0)) finally: connection.close() client_socket.close()
[ "34356209+JoemerRamos@users.noreply.github.com" ]
34356209+JoemerRamos@users.noreply.github.com
62883f2fe8ea1f9b035e6c12dadf2c9bb658310f
b505998fea8f748638da5af2ed928f0080e73b3a
/30_parseBLAST_biopython.py
16c2d856b9f0e98bc906741fb655a76095fbef01
[]
no_license
wjidea/pythonExercise
eced655f9da1c42e14c8894fc7f0ea54651b2715
4fbc5eb7520faf8521e51ce9cab7c3a4b05c5120
refs/heads/master
2020-07-06T07:38:41.777452
2016-09-09T18:24:59
2016-09-09T18:24:59
67,801,965
0
0
null
null
null
null
UTF-8
Python
false
false
3,385
py
#! /usr/bin/python # 30_parseBLAST_biopython.py # blast populus transcript against arabdopsis transcript and extract evalue # from blast resulsts (plain text) using biopython SearchIO. # requirements for this script # Write the output as Tab-delimited file, which includes: # 1) Name of the blast database qResult.target # 2) Name of the Query sequence qResult.id # 3) Length of the Query sequence qResult.seq_len # 4) name of the best hit sequence hit. # 5) length of the best hit sequence # 6) the number of hsps for the best hit # 7) the score of the alignment with the best hit # if two or more equally best hits, data from both should be written to the file # write a list of this title line and join them with tab import argparse import os.path import sys from Bio import SearchIO parser = argparse.ArgumentParser(description = 'parse BLAST output and write ' 'to tab-delimited file') parser.add_argument('-i', '--input', help='input BLAST file in default format', required = True) parser.add_argument('-o', '--output', help = 'output file in text format', required = True) parser.add_argument('-e', '--evalue', help = 'cutoff evalue threshold', type = float, default = 1e-10) parser.add_argument('-v', '--verbose', help = 'increase verbosity', action = 'store_true') args = parser.parse_args() # check if the input fild existed inputFile = args.input outputFile = args.output evalueThreshold = float(args.evalue) filesL = [inputFile] if args.verbose: # check file path one at a time and tell which one is missing for inputFile in filesL: if not os.path.isfile(inputFile): print('Input file {} does not exist!'.format(inputFile)) sys.exit() else: # check file path in a bulk, but may not be the optimum case if not all(map(os.path.isfile, filesL)): print('Missing input file(s)!') sys.exit() # check if output file is present if os.path.isfile(outputFile): print('output file {0} already exists'.format(outputFile)) sys.exit() blastParse = SearchIO.parse(inputFile, 'blast-text') dbInfo = next(blastParse) # hitInfo = dbInfo[1] # hspInfo = hitInfo[0] headerL = ['Target_database', 'Query_ID', 'Query_length', 'Best_hit_ID', 'Best_hit_length', 'Hsp_num', 'Hsp_score'] targetDB = dbInfo.target FILE_OUT = open(outputFile, 'w') # write header line FILE_OUT.write('\t'.join(headerL) + '\n') # write data for qResult in blastParse: highestScore = qResult[0][0].bitscore for hit in qResult: for hsp in hit: if hsp.bitscore >= highestScore: dataL = [] dataL.append(targetDB) # Target_database dataL.append(hsp.query_id) # Query_ID dataL.append(qResult.seq_len) # Query_length dataL.append(hsp.hit_id) # Best_hit_ID dataL.append(hit.seq_len) # Best_hit_length dataL.append(len(hit)) # Hsp_num dataL.append(hsp.bitscore) # Hsp_score # .join is not method for type int # FILE_OUT.write('\t'.join(str(x) for x in dataL) + '\n') FILE_OUT.write('\t'.join(map(str, dataL)) + '\n') else: break # print(counter) FILE_OUT.close()
[ "wangj@Admins-MacBook-Air-2.local" ]
wangj@Admins-MacBook-Air-2.local
e8df7529813c851e67d12faea01d688a29bda68e
a3fddbf8d953bce9b84173c1ba48780e849f86ef
/peaks_test.py
da212c465a697196c6fa1b6d15eca124ea6c4d5c
[]
no_license
rosswhitfield/wand
79f99bef519ed9c334fddcb5396ab66d56f2903e
562b1f89acb46749e220081117e2cbda2014df36
refs/heads/master
2021-06-02T05:38:00.741277
2021-04-14T13:19:18
2021-04-14T13:19:18
97,755,927
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
# import mantid algorithms, numpy and matplotlib from mantid.simpleapi import * import matplotlib.pyplot as plt import numpy as np ws=CreateSampleWorkspace() peaks=CreatePeaksWorkspace(ws, 0) SetUB(peaks, a=5, b=5, c=5) peaks2=CreatePeaksWorkspace() for vector in [[i,j,k] for i in (0,1) for j in (0,1) for k in (0,1) if not (i==j==k)]: p = peaks.createPeakHKL(vector) peaks2.addPeak(p)
[ "whitfieldre@ornl.gov" ]
whitfieldre@ornl.gov
0c88eaa0c9cf00e19e24b4dd48263ee4d5a04664
c83d51af8d8036084aa96f4d8d3963b592e7b0d3
/bayesian_config.py
dd43e5655353f3f63b4614531bcf627d98dd4401
[ "MIT" ]
permissive
SulemanKhurram/ThesisExperiments
4f40e52afba9eeabd02647273da41da45895cf65
4fdf7b6558c87a096dcdc374c35085ac946d3a58
refs/heads/master
2021-06-26T00:37:00.472747
2021-06-20T19:13:13
2021-06-20T19:13:13
160,214,643
1
0
null
null
null
null
UTF-8
Python
false
false
1,210
py
############### Configuration file ############### import math start_epoch = 1 num_epochs = 60 batch_size = 8 optim_type = 'Adam' lr = 0.00001 weight_decay = 0.0005 num_samples = 25 beta_type = "Blundell" mean = { 'cifar10': (0.4914, 0.4822, 0.4465), 'cifar100': (0.5071, 0.4867, 0.4408), 'mnist': (0.1307,), 'stl10': (0.485, 0.456, 0.406), 'origa': (0.5, 0.5, 0.5), } std = { 'cifar10': (0.2023, 0.1994, 0.2010), 'cifar100': (0.2675, 0.2565, 0.2761), 'mnist': (0.3081,), 'stl10': (0.229, 0.224, 0.225), 'origa': (0.5, 0.5, 0.5), } # Only for cifar-10 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def learning_rate(init, epoch): optim_factor = 0 if(epoch > 160): optim_factor = 3 elif(epoch > 120): optim_factor = 2 elif(epoch > 60): optim_factor = 1 def dynamic_lr(init, epoch): optim_factor = 1 if (epoch > 60): optim_factor = 500 elif (epoch > 30): optim_factor = 100 elif (epoch > 10): optim_factor = 10 return init/optim_factor def get_hms(seconds): m, s = divmod(seconds, 60) h, m = divmod(m, 60) return h, m, s
[ "khurram@glasgow.kl.dfki.de" ]
khurram@glasgow.kl.dfki.de
4b1a27172693270f1558822c59edcadc3229bbe7
45e46c8e850c98cd0ff7ec4cb7f040ead42355ae
/pilot/eventservice/droid.py
ca4f242ba68dcb7088691d2df485bfd6c1920fac
[ "Apache-2.0" ]
permissive
mlassnig/pilot2
c76a24f0974b187d0514789439f0f1273fe06146
029e013dec888eecadb34c485f8d7498fccd000f
refs/heads/master
2022-09-02T05:26:01.292402
2021-11-08T13:45:46
2021-11-08T13:45:46
79,211,086
0
2
Apache-2.0
2022-07-27T11:47:21
2017-01-17T09:29:02
Python
UTF-8
Python
false
false
431
py
#!/usr/bin/env python # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Authors: # - Paul Nilsson, paul.nilsson@cern.ch, 2018 import logging logger = logging.getLogger(__name__) def run(): """ Dummy run function. :return: """ pass
[ "paul.nilsson@cern.ch" ]
paul.nilsson@cern.ch
85c85da8a51b5e8013989fa9849dba4ffec1fb96
a90b05363448c303f4b8e47778eaa46388bc7592
/python/firstAndLastPositions.py
e31d4e84bda93ef64b69398318370237e039ecda
[]
no_license
mongoosePK/leetcode
4363dd5c6fe97f6105d2ea1b7b57349dcf069eaf
6a7bd5db56c9c4c323ba58990e84d0ed891a8523
refs/heads/main
2023-09-01T17:11:39.558196
2021-10-30T16:19:21
2021-10-30T16:19:21
361,819,833
0
0
null
null
null
null
UTF-8
Python
false
false
717
py
# firstAndLastPositions.py # william pulkownik # Given an array of integers nums sorted in ascending order, # find the starting and ending position of a given target value. # If target is not found in the array, return [-1, -1]. # Follow up: Could you write an algorithm with O(log n) runtime complexity? from bisect import bisect_left, bisect class Solution: def searchRange(self, nums: list[int], target: int) -> list[int]: #create a list variable to store the values locations = [-1,-1] leftTarget = bisect_left(nums, target) if leftTarget == len(nums) or nums[leftTarget] != target: return locations return [leftTarget, bisect(nums, target)-1]
[ "30559692+mongoosePK@users.noreply.github.com" ]
30559692+mongoosePK@users.noreply.github.com
2f0eac367ea2c16758bffafdcd0645073326ee05
25830ae6ebb4a9f0317fe4a15a0fc04ca284db95
/my_face_recognition/biometric_functions.py
b104fec7432a1a52ceb2177551e1171b849483a1
[]
no_license
IradNuriel/Final-Project
3252bf7b10ba6284e337f113f7952ac745fbe4f2
4bbc72e3bb580f232b52ef053ef59c2c790385c1
refs/heads/master
2023-07-30T18:01:28.556570
2021-09-16T07:24:07
2021-09-16T07:24:07
396,351,993
1
0
null
null
null
null
UTF-8
Python
false
false
3,321
py
import gc import os import pickle from numpy import expand_dims from keras.preprocessing import image from keras_vggface.utils import preprocess_input from homomorphic_encryption_stuff.EncryptionStuff import hamming_dist, save_encrypted_binary_vector_in_memory, load_encrypted_binary_vector_from_memory from homomorphic_encryption_stuff.getEncryptionInfo import * from dataset.yaleFaceBDataSet import YaleFaceBDataSet from my_face_recognition.model.vggModel import VggModel from util import constant from face_detection.FaceAlignment import * def initialize_model_params(weights_path): dataSet = YaleFaceBDataSet(constant.YALE_FACE_B_DATA_PATH, ['pgm'], 28) model = VggModel(dataSet, weights_path) features_model = model.get_feature_model() enrolled_users = get_all_enrolled_users() return features_model, enrolled_users def __process_img(img): img = image.smart_resize(img, size=(constant.IMG_WIDTH, constant.IMG_HEIGHT)) img = image.img_to_array(img) img = preprocess_input(expand_dims(img.astype(np.float64), axis=0), version=2) return img def predict(m, img): pixels = __process_img(img) preds = m.predict(pixels) return preds[0] def get_all_enrolled_users(): users_names = os.listdir(constant.CIPHERS_PATH) users_names = [user_name.replace("cipher_", "") for user_name in users_names] all_users = {} for username in users_names: users_features = load_encrypted_binary_vector_from_memory(context, username, constant.CIPHERS_PATH) all_users.update({username: users_features}) return all_users def who_is_this(features, encrypted): if not encrypted: features = np.where(features > 0, 1, 0) features = list(features) + [0] * (encoder.slot_count() - len(features)) features = encryptor.encrypt(encoder.encode(features)) closest = "non-enrolled user" closest_val = 5523 for (user, user_features) in users.items(): hd = hamming_dist(features, user_features, evaluator, relin_keys, galois_keys, context) hd = int(decryptor.decrypt(hd).to_string(), 16) if hd < closest_val: closest = user closest_val = hd return closest def enroll(img, name): features = predict(feature_model, img) features = np.where(features > 0, 1, 0) features = list(features) + [0] * (encoder.slot_count() - len(features)) encrypted_features = encryptor.encrypt(encoder.encode(features)) del features gc.collect() if name in users.keys(): this_is = who_is_this(encrypted_features, encrypted=True) if this_is == name: print("Already enrolled!\nNot enrolling this time.") return save_encrypted_binary_vector_in_memory(encrypted_features, name, constant.CIPHERS_PATH) users.update({name: encrypted_features}) return def who_is_this_face(img): features = predict(feature_model, img) features = np.where(features > 0, 1, 0) features = list(features) + [0] * (encoder.slot_count() - len(features)) encrypted_features = encryptor.encrypt(encoder.encode(features)) del features gc.collect() this_is = who_is_this(encrypted_features, encrypted=True) return this_is.replace("_", " ") feature_model, users = initialize_model_params(constant.WEIGHTS_PATH)
[ "irad9731@gmail.com" ]
irad9731@gmail.com
025459fc2c308414b00fd045d3cb2a9f3f304fac
609d5408f302c9188b723998762c2c1f7b883af9
/.closet/jython.configurator.efr32/1.0.0.201606231656-435/rail_scripts/pyrmsvd/Package/pyrmsvd/rm/__init__.py
6e14bc03c0cc968e005f33473d8dd8a50ada060e
[]
no_license
acvilla/Sundial-Beta
6ea4fd44cbf7c2df8100128aff5c39b6faf24a82
9f84e3b5a1397998dfea5287949fa5b1f4c209a6
refs/heads/master
2021-01-15T15:36:19.394640
2016-08-31T20:15:16
2016-08-31T20:15:16
63,294,451
1
0
null
null
null
null
UTF-8
Python
false
false
47
py
from regmap import * from regmap_io import *
[ "acvilla@bu.edu" ]
acvilla@bu.edu
eca09c73403d1c2de48e6499cd1a6553e7f8a47c
8adf4c0c58cca870dc9e2e3fe790fb29634d00e9
/source/main/settings.py
b3b7264698f8d3a438953a002691c551965b3290
[]
no_license
yuburov/react_python_testing_project
bcecc58f97dbcdb7938cd3cda845c2094cb3237e
e44fc9ad4d10d8763ab094a43e2f2ec85335d393
refs/heads/main
2023-04-01T16:05:57.489968
2021-04-27T05:15:59
2021-04-27T05:15:59
361,722,667
0
0
null
null
null
null
UTF-8
Python
false
false
3,690
py
""" Django settings for main project. Generated by 'django-admin startproject' using Django 3.2. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-zgnoar01)dl4n58c8ha-cf096g*@-d@h_p%l$x6p&*5u*@jea)' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'corsheaders', 'phonenumber_field', 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'webapp', ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'main.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'webapp-ui/build'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'main.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR /'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = BASE_DIR / 'static' STATICFILES_DIRS = ( (BASE_DIR /'webapp-ui/build/static'), ) REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.TokenAuthentication', ) } CORS_ORIGIN_ALLOW_ALL = True # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "yubur.aziz@gmail.com" ]
yubur.aziz@gmail.com
b4ae0449e6a250c2523aa5b98718aa43082d944d
e85d8e1fa15cc28fe799820ef69a962822a03b1d
/app/__init__.py
d9fddb6291ac1ed1dbe6a9ac6a5f2f0d672fdf34
[]
no_license
tolyandrov/funnyrecipes
5542ee89ff018e50e78001daf64799c1e2191fb9
81afa12b60838e9c4c9a4beb473e1965b8ca6602
refs/heads/master
2021-01-10T02:39:09.238179
2015-10-05T21:40:00
2015-10-05T21:40:00
43,608,220
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy from flask.ext.login import LoginManager app = Flask(__name__) app.config.from_object('config') db = SQLAlchemy(app) from app import models, views from app.models import User lm = LoginManager() lm.init_app(app) lm.login_view = 'login' @lm.user_loader def load_user(id): return User.query.get(int(id))
[ "seeknowells@gmail.com" ]
seeknowells@gmail.com
19b2867570f47add0d1c87112fd84c9703e937d8
590ff12865f0ce14594085ab7171da4d39a4a2ea
/polls/models.py
cf462f70c805fc6957e055b36cfdd609e3617a36
[]
no_license
evan-woodworth/django_practice
905b5cc136c0e347f75b16e19b0741b94366ddc0
38251de2f1a9fc2517ff167f51879746c7607925
refs/heads/main
2023-06-05T07:15:17.281380
2021-06-25T03:54:46
2021-06-25T03:54:46
379,729,469
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
import datetime from django.db import models from django.utils import timezone class Question(models.Model): question_text = models.CharField(max_length=200) pub_date = models.DateTimeField('date published') def __str__(self): return self.question_text def was_published_recently(self): now = timezone.now() return now - datetime.timedelta(days=1) <= self.pub_date <= now class Choice(models.Model): question = models.ForeignKey(Question, on_delete=models.CASCADE) choice_text = models.CharField(max_length=200) votes = models.IntegerField(default=0) def __str__(self): return self.choice_text
[ "evan.woodworth@gmail.com" ]
evan.woodworth@gmail.com
a77a3f6e0a767251186344b21dbefd10dbf2193c
b86555764a4cde22a6dbd8cf368bc57ed96efb6c
/helloword/venv/Scripts/easy_install-3.8-script.py
7d71f7db89bbc45b1abf4e12cd5ee43978ef818f
[]
no_license
mbebiano/exercicios-python
5c089e8821a672b1634554f9e1edca143d070675
a349d0f5c7c31f13e9fcc02a2cfdfa7b6742b54a
refs/heads/master
2021-05-24T14:56:45.922418
2020-06-02T01:49:26
2020-06-02T01:49:26
253,615,190
1
0
null
null
null
null
UTF-8
Python
false
false
460
py
#!C:\Users\matth\PycharmProjects\helloword\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.8' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.8')() )
[ "mattheus.bebiano@engenharia.ufjf.br" ]
mattheus.bebiano@engenharia.ufjf.br
b5f8d0670cd215a6de141c410567a75dad38f0bd
62faf5b8988430190c7579769427ced27db5df13
/handlers/input_handler.py
8a68a0572ae1e4e4b1a1c1969e843d3c8dc0b0b4
[ "MIT" ]
permissive
pyladieshamburg/games_in_python
06783b62962aad9c2991bc56c7e44e4a9289c0ed
49a84ceaa3b0a3f322b02a8fccd44560e321e821
refs/heads/master
2020-04-10T16:17:44.602465
2019-01-02T08:46:16
2019-01-02T08:46:16
161,140,616
1
1
null
null
null
null
UTF-8
Python
false
false
719
py
""" input handlers: movement and others """ from pygame.locals import * def keydown(event, game_obj1, game_obj2): """ Change the velocity of a game obj by pressing up or down arrows :param event: game event loop :param game_objX: gam object with velocity attribute :return: None """ if event.key == K_UP: game_obj1.velocity = -8 elif event.key == K_DOWN: game_obj1.velocity = 8 elif event.key == K_w: game_obj2.velocity = -8 elif event.key == K_s: game_obj2.velocity = 8 def keyup(event, game_obj1, game_obj2): if event.key in (K_w, K_s): game_obj2.velocity = 0 elif event.key in (K_UP, K_DOWN): game_obj1.velocity = 0
[ "alisa.dammer@gmail.com" ]
alisa.dammer@gmail.com
6825d2e0fce31fe005e6ecf9ee418bd77551d70a
a4e1093cd868cc16cf909b8f7b84832a823a97bf
/explore_vae.py
31e21694dd55f3ae5a68f22995167a4007d8e602
[]
no_license
hermanprawiro/gan-playground
8fb7eed54314661d9d1b908fe2cb1695eb1e3881
bf4c270ad4696d61df0dbe2afb8c9ebafb9c2ba3
refs/heads/master
2020-09-06T19:43:22.685332
2019-12-24T10:45:12
2019-12-24T10:45:12
220,529,636
0
0
null
null
null
null
UTF-8
Python
false
false
5,642
py
import argparse import os import matplotlib.pyplot as plt import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.utils import make_grid, save_image from models import vae from utils.criterion import VAELoss device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') parser = argparse.ArgumentParser() parser.add_argument("--n_epochs", type=int, default=20) parser.add_argument("--batch_size", type=int, default=64) parser.add_argument("--learning_rate", type=float, default=2e-4) parser.add_argument("--beta1", type=float, default=0.5, help="Momentum term for Adam (beta1)") parser.add_argument("--beta2", type=float, default=0.999, help="Momentum term for Adam (beta2)") parser.add_argument("--beta", type=float, default=1, help="KL Divergence weight beta (beta-VAE)") parser.add_argument("--ndf", type=int, default=16, help="Base features multiplier for discriminator") parser.add_argument("--ngf", type=int, default=16, help="Base features multiplier for generator") parser.add_argument("--n_workers", type=int, default=0) parser.add_argument("--latent_dim", type=int, default=10) parser.add_argument("--image_ch", type=int, default=3) parser.add_argument("--image_res", type=int, default=128) parser.add_argument("--checkpoint_path", type=str, default="checkpoints") parser.add_argument("--result_path", type=str, default="results") parser.add_argument("--save_name", type=str, default="vae") parser.add_argument("--data_root", type=str, default=R"E:\Datasets\CelebA") # parser.add_argument("--data_root", type=str, default=R"E:\Datasets\MNIST") args = parser.parse_args() args.save_name = 'vae_celeba_b256_z10' args.ndf = 16 args.ngf = 16 args.checkpoint_path = os.path.join(args.checkpoint_path, args.save_name) args.result_path = os.path.join(args.result_path, args.save_name) os.makedirs(args.checkpoint_path, exist_ok=True) os.makedirs(args.result_path, exist_ok=True) tfs = transforms.Compose([ transforms.Resize(args.image_res), transforms.CenterCrop(args.image_res), transforms.ToTensor(), transforms.Normalize([0.5]*args.image_ch, [0.5]*args.image_ch) ]) dataset = torchvision.datasets.CelebA(args.data_root, split="all", transform=tfs, download=True) # dataset = torchvision.datasets.MNIST(args.data_root, train=True, transform=tfs, download=True) dataloader = DataLoader(dataset, batch_size=args.batch_size, num_workers=args.n_workers, shuffle=False, pin_memory=True) netE = vae.Encoder(ndf=args.ndf, img_dim=args.image_ch, resolution=args.image_res, output_dim=args.latent_dim).to(device) netD = vae.Generator(ngf=args.ngf, img_dim=args.image_ch, resolution=args.image_res, z_dim=args.latent_dim).to(device) optimizer = torch.optim.Adam(list(netE.parameters()) + list(netD.parameters()), lr=args.learning_rate, betas=(args.beta1, args.beta2)) checkpoint = torch.load('%s/checkpoint_%03d.pth' % (args.checkpoint_path, 20), map_location=torch.device('cpu')) netE.load_state_dict(checkpoint['state_dict']['encoder']) netD.load_state_dict(checkpoint['state_dict']['decoder']) optimizer.load_state_dict(checkpoint['optimizer']) netE.eval() netD.eval() inputs, labels = next(iter(dataloader)) inputs = inputs.to(device) n_interp = 11 interp_grad = torch.linspace(0, 1, n_interp) idx = torch.arange(args.latent_dim) idx = torch.zeros((args.latent_dim, args.latent_dim)).scatter_(1, idx.view(-1, 1), 1).unsqueeze(-1).expand(-1, -1, n_interp) interp_weight = (idx * interp_grad).to(device) idx_start = 1 idx_end = 60 with torch.no_grad(): mu, logvar = netE.encode(inputs) z = netE.reparameterize(mu, logvar) # z = mu x_recon = netD(z) print(mu[idx_start], logvar[idx_start].exp()) print(mu[idx_end], logvar[idx_end].exp()) z_start = z[idx_start] z_end = z[idx_end] z_interp = torch.empty((args.latent_dim + 1, n_interp, args.latent_dim), dtype=torch.float, device=device) for i in range(args.latent_dim): for j in range(n_interp): z_interp[i, j] = torch.lerp(z_start, z_end, interp_weight[i, :, j]) for j, val in enumerate(interp_grad): z_interp[-1, j] = torch.lerp(z_start, z_end, val.item()) with torch.no_grad(): x_interp = netD(z_interp.view(-1, args.latent_dim)) print(z_interp.shape) inputs_row = torch.zeros((n_interp,) + x_interp.shape[1:]) inputs_row[0] = inputs[idx_start] inputs_row[-1] = inputs[idx_end] x_interp = torch.cat([x_interp.cpu(), inputs_row], dim=0) # plt.imshow(make_grid(inputs.cpu(), normalize=True).permute(1, 2, 0)) # plt.show() # plt.imshow(make_grid(x_recon.cpu(), normalize=True).permute(1, 2, 0)) # plt.show() plt.imshow(make_grid(x_interp.cpu(), normalize=True, nrow=n_interp).permute(1, 2, 0)) plt.show() # for epoch in range(args.n_epochs): # for i, (inputs, _) in enumerate(dataloader): # inputs = inputs.to(device) # optimizer.zero_grad() # mu, logvar = netE.encode(inputs) # z = netE.reparameterize(mu, logvar) # x_recon = netD(z) # loss = criterion(mu, logvar, x_recon, inputs) # loss.backward() # optimizer.step() # if i % 50 == 0: # print('[%d/%d][%d/%d] Loss: %.4f | Mu/Var: %.4f/%.4f' # % (epoch + 1, args.n_epochs, i, len(dataloader), loss.item(), mu.mean().item(), logvar.exp().mean().item())) # if i % 50 == 0: # outG = torch.cat([inputs[:32].cpu(), x_recon[:32].cpu()], dim=0) # save_image(outG, '%s/fake_epoch%03d_%04d.jpg' % (args.result_path, epoch + 1, i + 1), normalize=True) # save_model((netE, netD), optimizer, epoch, args.checkpoint_path)
[ "herman.prawiro@gmail.com" ]
herman.prawiro@gmail.com
ad05c42a7240dc72c2dcb38173fdee93f772ff82
7809d83384c286eae8fea42abbcd44471da0cf7a
/hello/big10.py
d586844cdd4a2071ef1af98acf62fc2e0d9517ab
[]
no_license
krohak/codeIT-suisse
dc04be7b86150d26726e2934f1b810ae72139780
785bb4e6d81153b053690bab1e65df897b694104
refs/heads/master
2021-05-16T10:29:18.343558
2017-09-24T20:11:57
2017-09-24T20:11:57
104,672,751
0
0
null
null
null
null
UTF-8
Python
false
false
2,330
py
from array import array from collections import deque import psyco data = [] nrows = 0 px = py = 0 sdata = "" ddata = "" def init(board): global data, nrows, sdata, ddata, px, py data = filter(None, board.splitlines()) nrows = max(len(r) for r in data) maps = {' ':' ', '*': '*', 'b':' ', '#':'#', 'o':' '} mapd = {' ':' ', '*': ' ', 'b':'b', '#':' ', 'o':'*'} for r, row in enumerate(data): for c, ch in enumerate(row): sdata += maps[ch] ddata += mapd[ch] if ch == '@': px = c py = r def push(x, y, dx, dy, data): if sdata[(y+2*dy) * nrows + x+2*dx] == '#' or \ data[(y+2*dy) * nrows + x+2*dx] != ' ': return None data2 = array("c", data) data2[y * nrows + x] = ' ' data2[(y+dy) * nrows + x+dx] = '@' data2[(y+2*dy) * nrows + x+2*dx] = '*' return data2.tostring() def is_solved(data): for i in xrange(len(data)): if (sdata[i] == '.') != (data[i] == '*'): return False return True def solve(): open = deque([(ddata, "", px, py)]) visited = set([ddata]) dirs = ((0, -1, 'u', 'U'), ( 1, 0, 'r', 'R'), (0, 1, 'd', 'D'), (-1, 0, 'l', 'L')) lnrows = nrows while open: cur, csol, x, y = open.popleft() for di in dirs: temp = cur dx, dy = di[0], di[1] if temp[(y+dy) * lnrows + x+dx] == '*': temp = push(x, y, dx, dy, temp) if temp and temp not in visited: if is_solved(temp): return csol + di[3] open.append((temp, csol + di[3], x+dx, y+dy)) visited.add(temp) else: if sdata[(y+dy) * lnrows + x+dx] == '#' or \ temp[(y+dy) * lnrows + x+dx] != ' ': continue data2 = array("c", temp) data2[y * lnrows + x] = ' ' data2[(y+dy) * lnrows + x+dx] = '@' temp = data2.tostring() if temp not in visited: if is_solved(temp): return csol + di[2] open.append((temp, csol + di[2], x+dx, y+dy)) visited.add(temp) return "No solution"
[ "rohaksinghal14@gmail.com" ]
rohaksinghal14@gmail.com
257aaddee8b51ae7ebf8f4e108a69c7203e246ec
811ccdd2ffe95c871842407cc44d1fa44b363e6e
/squad/prepro.py
452f53f3e5da03ca4abe71e06abd8845d14c70e6
[ "Apache-2.0" ]
permissive
Jh-SYSU/Bi-Directional-Attention-Flow-for-Taidi
69979a0c09f4f6befe49664703cd8097707f9f87
3eb5007af82f4fbacb486315c48bde06d8dd3d00
refs/heads/master
2020-03-10T21:59:11.181222
2018-04-15T12:33:27
2018-04-15T12:33:27
129,608,007
3
1
null
null
null
null
UTF-8
Python
false
false
9,260
py
import argparse import json import os # data: q, cq, (dq), (pq), y, *x, *cx # shared: x, cx, (dx), (px), word_counter, char_counter, word2vec # no metadata from collections import Counter from tqdm import tqdm from squad.utils import get_word_span, get_word_idx, process_tokens def main(): args = get_args() prepro(args) def get_args(): parser = argparse.ArgumentParser() home = os.path.expanduser("~") source_dir = os.path.join("data", "squad") target_dir = "data/squad" glove_dir = os.path.join("data", "glove") parser.add_argument('-s', "--source_dir", default=source_dir) parser.add_argument('-t', "--target_dir", default=target_dir) parser.add_argument('-d', "--debug", action='store_true') parser.add_argument("--train_ratio", default=0.9, type=int) parser.add_argument("--glove_corpus", default="6B") parser.add_argument("--glove_dir", default=glove_dir) parser.add_argument("--glove_vec_size", default=100, type=int) parser.add_argument("--mode", default="full", type=str) parser.add_argument("--single_path", default="", type=str) parser.add_argument("--tokenizer", default="PTB", type=str) parser.add_argument("--url", default="vision-server2.corp.ai2", type=str) parser.add_argument("--port", default=8000, type=int) parser.add_argument("--split", action='store_true') # TODO : put more args here return parser.parse_args() def create_all(args): out_path = os.path.join(args.source_dir, "all-v1.1.json") if os.path.exists(out_path): return train_path = os.path.join(args.source_dir, "train-v1.1.json") train_data = json.load(open(train_path, 'r')) dev_path = os.path.join(args.source_dir, "dev-v1.1.json") dev_data = json.load(open(dev_path, 'r')) train_data['data'].extend(dev_data['data']) print("dumping all data ...") json.dump(train_data, open(out_path, 'w')) def prepro(args): if not os.path.exists(args.target_dir): os.makedirs(args.target_dir) if args.mode == 'full': prepro_each(args, 'train', out_name='train') prepro_each(args, 'dev', out_name='dev') prepro_each(args, 'dev', out_name='test') elif args.mode == 'all': create_all(args) prepro_each(args, 'dev', 0.0, 0.0, out_name='dev') prepro_each(args, 'dev', 0.0, 0.0, out_name='test') prepro_each(args, 'all', out_name='train') elif args.mode == 'single': assert len(args.single_path) > 0 prepro_each(args, "NULL", out_name="single", in_path=args.single_path) else: prepro_each(args, 'train', 0.0, args.train_ratio, out_name='train') prepro_each(args, 'train', args.train_ratio, 1.0, out_name='dev') prepro_each(args, 'dev', out_name='test') def save(args, data, shared, data_type): data_path = os.path.join(args.target_dir, "data_{}.json".format(data_type)) shared_path = os.path.join(args.target_dir, "shared_{}.json".format(data_type)) json.dump(data, open(data_path, 'w')) json.dump(shared, open(shared_path, 'w')) def get_word2vec(args, word_counter): glove_path = os.path.join(args.glove_dir, "glove.{}.{}d.txt".format(args.glove_corpus, args.glove_vec_size)) sizes = {'6B': int(4e5), '42B': int(1.9e6), '840B': int(2.2e6), '2B': int(1.2e6)} total = sizes[args.glove_corpus] word2vec_dict = {} with open(glove_path, 'r', encoding='utf-8') as fh: for line in tqdm(fh, total=total): array = line.lstrip().rstrip().split(" ") word = array[0] vector = list(map(float, array[1:])) if word in word_counter: word2vec_dict[word] = vector elif word.capitalize() in word_counter: word2vec_dict[word.capitalize()] = vector elif word.lower() in word_counter: word2vec_dict[word.lower()] = vector elif word.upper() in word_counter: word2vec_dict[word.upper()] = vector print("{}/{} of word vocab have corresponding vectors in {}".format(len(word2vec_dict), len(word_counter), glove_path)) return word2vec_dict def prepro_each(args, data_type, start_ratio=0.0, stop_ratio=1.0, out_name="default", in_path=None): if args.tokenizer == "PTB": import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace("``", '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, "{}-v1.1.json".format(data_type)) source_data = json.load(open(source_path, 'r')) q, cq, y, rx, rcx, ids, idxs = [], [], [], [], [], [], [] cy = [] x, cx = [], [] answerss = [] p = [] word_counter, char_counter, lower_word_counter = Counter(), Counter(), Counter() start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for ai, article in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): xp, cxp = [], [] pp = [] x.append(xp) cx.append(cxp) p.append(pp) for pi, para in enumerate(article['paragraphs']): # wordss context = para['context'] context = context.replace("''", '" ') context = context.replace("``", '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] # process tokens # given xi, add chars cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: # get words qi = word_tokenize(qa['question']) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) # TODO : put some function that gives word_start, word_stop here yi0, yi1 = get_word_span(context, xi, answer_start, answer_stop) # yi0 = answer['answer_word_start'] or [0, 0] # yi1 = answer['answer_word_stop'] or [0, 1] assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1]-1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1]-1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 # print(answer_text, w0[cyi0:], w1[:cyi1+1]) assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) # add context here data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print("saving ...") save(args, data, shared, out_name) if __name__ == "__main__": main()
[ "raojh6@mail2.sysu.edu.cn" ]
raojh6@mail2.sysu.edu.cn
311a6aa2da76abe9146ab35a0e532833d59b34ae
ca506bf32d8c3380264a2fa9e9fc2950a5df5613
/python_arrays.py
68d0d98308df4d8790fd75d1347a53cdd97a5755
[ "MIT" ]
permissive
anspears/astr-119-hw-2
3a69b6023b803c9d6e7832763b73d5742cf3ec67
964a94ef7edcb0d2d707cbcfb83e398494e2585c
refs/heads/main
2022-12-26T01:32:45.791410
2020-10-08T19:45:33
2020-10-08T19:45:33
302,409,267
0
0
null
null
null
null
UTF-8
Python
false
false
531
py
x = [0.0, 3.0, 5.0, 2.5, 3.7] #define an array print("When we start, x = ",x) #remove the third element x.pop(2) print(x) #remove the element equal to 2.5 x.remove(2.5) print(x) #add an element at the end x.append(1.2) print(x) #get a copy y = x.copy() print(y) #how many elements are equal to 0.0 print(y.count(0.0)) #print the index with value 3.7 print(y.index(3.7)) #sort the list y.sort() print(y) #reverse sort y.reverse() print(y) #remove all elements y.clear() print(y) print(x)
[ "noreply@github.com" ]
anspears.noreply@github.com
0a15bed3e14b90cd6ce31c2d80cb043468eb77c7
46b7d39fac4f22b04bc74acc2db61056c49db853
/day3_puzzle2.py
27001f78650cf218503bb27fb1f2abded2d64d7c
[]
no_license
antonforsstrom/adventofcode
e46e630cf346d1cd7653751233cd7cc8b8f0d38e
e087a2143fd5f4b131b520db0ab0ca4e88ac2988
refs/heads/master
2020-11-25T09:07:32.290709
2019-12-18T16:04:38
2019-12-18T16:04:38
228,586,169
0
0
null
null
null
null
UTF-8
Python
false
false
1,025
py
import day3_puzzle1 def steps(wire1, wire2): """Calculates most time efficient intersection, i.e. the one reached with the least total steps from origin""" points1= day3_puzzle1.get_visited_points(wire1) points2 = day3_puzzle1.get_visited_points(wire2) intersections = day3_puzzle1.intersections(points1, points2) # Number of steps required to get to each intersection numbr_steps = [] for intersection in intersections: # Correct for 0-indexing steps_wire1 = points1.index(intersection) + 1 steps_wire2 = points2.index(intersection) + 1 total_steps = steps_wire1 + steps_wire2 numbr_steps.append(total_steps) return numbr_steps def min_steps(wire1: list, wire2: list): steps_list = steps(wire1, wire2) min_steps_list = min(steps_list) return min_steps_list if __name__ == "__main__": filename = 'inputs/day3_input.txt' wires = day3_puzzle1.read_input(filename) print("Min distance: ", min_steps(wires[0], wires[1]))
[ "antf@C02Z6367LVDL.local" ]
antf@C02Z6367LVDL.local
b9ab3134e2660cbd612f2de81377cf7567e58df6
cff539edac9e5b2492fcbaa87b7a0f5cb5e33497
/csv_test.py
efad46a4471bcb2e0e7056e044e92ae47301acb7
[]
no_license
Charlie-Robot/csv-card-catalog
1f70157764a34475ed3cca0368915ba31ac44187
b7427c2e0bca4fa87d3f7b0d9b7188a18de042c9
refs/heads/master
2020-05-26T17:23:36.424839
2017-02-19T19:32:13
2017-02-19T19:32:13
82,483,972
0
0
null
null
null
null
UTF-8
Python
false
false
36,040
py
import unittest, os, time from sheet import Spreadsheet class Unitest(unittest.TestCase): def setUp(self): self.FILE = 'test.csv' self.FILE_1 = 'test_2.csv' self.FILE_2 = 'test_3.csv' self.HEADERS = ['First', 'Middle', 'Last', 'Street', 'Apt#', 'City', 'Zip', 'Email', 'Occupation', 'Employer', 'Filed By', 'Rolodex', 'Member Signed', 'Cope Signed', 'Date Signed', 'Contribution',] self.FULL_VALS = {'500': {'First' : 'Madison', 'Middle' : 'Katy', 'Last' : 'Wyss', 'Street' : 'Marina Blvd', 'Apt#' : '305', 'City' : 'San Leandro', 'Zip' : '90210', 'Email' : 'madison@baby.com', 'Occupation' : 'baby', 'Employer' : 'Mom', 'Filed By' : 'Igor', 'Rolodex' : '500', 'Member Signed' : 'yes', 'Cope Signed': 'yes', 'Date Signed' : '01/01/2001', 'Contribution' : '10'}} self.MISSING_VALS = {'100': {'First' : 'Hobart', 'Middle' : 'The', 'Last' : 'Great', 'Street' : 'Awesome Ln', 'Apt#' : '', 'City' : 'Candy Land', 'Zip' : '12345', 'Email' : '', 'Occupation' : 'Magician', 'Employer' : '', 'Filed By' : 'Igor', 'Rolodex' : '100', 'Member Signed' : 'yes', 'Cope Signed': 'yes', 'Date Signed' : '02/11/2012', 'Contribution' : '0'}} self.MORE_VALS = {'501': {'First' : 'Sheman', 'Middle' : 'Tai', 'Last' : 'Wyss', 'Street' : 'Mallard Loop', 'Apt#' : '133', 'City' : 'Whitefish', 'Zip' : '59937', 'Email' : 'stumpy@lowdog.com', 'Occupation' : 'Guard Dog', 'Employer' : 'Mom', 'Filed By' : 'Igor', 'Rolodex' : '501', 'Member Signed' : 'yes', 'Cope Signed': 'yes', 'Date Signed' : '12/10/2011', 'Contribution' : '20'}} self.OVERLAP_VALS = {'500': {'First' : 'Franklin', 'Middle' : 'The', 'Last' : 'Lesser', 'Street' : 'Adequate Ln', 'Apt#' : '', 'City' : 'Kalamazoo', 'Zip' : '24681', 'Email' : 'not_so_great@humble.org', 'Occupation' : 'Ponsy', 'Employer' : 'Mom', 'Filed By' : 'Igor', 'Rolodex' : '500', 'Member Signed' : 'yes', 'Cope Signed': 'yes', 'Date Signed' : '12/2/2014', 'Contribution' : '0'}, '100': {'First' : 'Tech', 'Middle' : 'The', 'Last' : 'Tank', 'Street' : 'Podunk Blvd', 'Apt#' : '', 'City' : 'Haywire Gulch', 'Zip' : '11223', 'Email' : 'tractor_time@hotmail.com', 'Occupation' : 'Tractor', 'Employer' : 'Old McDonald', 'Filed By' : 'Igor', 'Rolodex' : '100', 'Member Signed' : 'yes', 'Cope Signed': 'yes', 'Date Signed' : '10/12/2004', 'Contribution' : '10'}} self.actual_dic = {} self.sheet_1 = Spreadsheet(self.HEADERS,self.FILE) self.sheet_2 = Spreadsheet(self.HEADERS,self.FILE_1) self.sheet_3 = Spreadsheet(self.HEADERS,self.FILE_2) self.sheet_4 = Spreadsheet(self.HEADERS) FN, ext = os.path.splitext(self.sheet_1.FN) self.MERGED_FN = '{}_merged{}'.format(FN, ext) def test_basic_class_properties(self): #Affirm seperate objects self.assertNotEqual(self.sheet_1, self.sheet_2) self.assertNotEqual(self.sheet_1, self.sheet_3) self.assertNotEqual(self.sheet_2, self.sheet_3) #Test object sheet_1 self.sheet_1.row_dict = {} self.assertEqual(self.sheet_1.FN, self.FILE) self.assertEqual(self.sheet_1.HEADER, self.HEADERS) #Test object sheet_2 self.sheet_2.row_dict = {} self.assertEqual(self.sheet_2.FN, self.FILE_1) self.assertEqual(self.sheet_2.HEADER, self.HEADERS) #Test object sheet_3 self.sheet_3.row_dict = {} self.assertEqual(self.sheet_3.FN, self.FILE_2) self.assertEqual(self.sheet_3.HEADER, self.HEADERS) #Test default file naming convention #Spreadsheet created with unspecified file name is auto name with current date 01.01.2016 self.sheet_4.write(self.FULL_VALS) DATE_FORMAT = '%m/%d/%Y' TODAY = time.strftime(DATE_FORMAT) EXPECTED_DEFAULT_FN = TODAY.replace('/', '.') + '.csv' self.assertTrue(os.path.isfile(EXPECTED_DEFAULT_FN)) self.assertEqual(EXPECTED_DEFAULT_FN, self.sheet_4.FN) #If sheet with current date as file name already exists, #append (n) to default file name, first duplicate is (1), every duplicate file name #that follows is n+1 ==> 01.01.2010.csv => 01.01.2010(1)/csv => 01.01.2010(2).csv ACTUAL_DUPLICATES = [] for n in range(1,21): EXPECTED_DUPLICATE_FN = TODAY.replace('/','.') + '({})'.format(n) + '.csv' #create 20 duplicate file names duplicate_sheet_name = Spreadsheet(self.HEADERS) duplicate_sheet_name.write(self.FULL_VALS) ACTUAL_DUPLICATES.append(duplicate_sheet_name.FN) self.assertTrue(os.path.isfile(EXPECTED_DUPLICATE_FN)) self.assertNotEqual(EXPECTED_DEFAULT_FN, duplicate_sheet_name.FN) self.assertEqual(EXPECTED_DUPLICATE_FN, duplicate_sheet_name.FN) for FN in ACTUAL_DUPLICATES: os.remove(FN) #Check csv RESTVAL self.assertEqual('-', self.sheet_1.RESTVAL) def test_write(self): ''' Test a single row of data ''' self.assertTrue(len(self.sheet_1.READ_DICT) == 0) self.assertTrue(len(self.sheet_1.WRITE_DICT) == 0) #Write a single line of data below Headers self.sheet_1.write(self.FULL_VALS) #Number of Values does not exceed number of headers self.assertTrue(len(self.FULL_VALS.values()) <= len(self.HEADERS)) #write() created a valid .csv file FN, ext = os.path.splitext(self.sheet_1.FN) self.assertTrue(os.path.isfile(self.FILE), '{} is not a file'.format(self.FILE)) self.assertTrue(ext == '.csv') with open(self.FILE, 'r') as content: for row in content: row = row.split(',') self.assertNotEqual(row, self.HEADERS) row_as_dict = {header:value for header, value in zip(self.HEADERS, row)} for key, row in self.FULL_VALS.items(): self.assertEqual(sorted(row), sorted(row_as_dict)) self.assertEqual(row_as_dict['Rolodex'], key) #write() should remove key, value pairs from entries if value == '' #these removed values will be replaced by csv.DictWriter's restval missing_vals = ['Apt#', 'Employer', 'Email'] for header in missing_vals: self.assertTrue(header in self.MISSING_VALS['100'].keys()) self.sheet_2.write(self.MISSING_VALS) for header in missing_vals: self.assertTrue(header not in self.MISSING_VALS['100'].keys()) def test_read(self): ''' Read in rows of data into a dict of lists, update Spreadsheet Rolodex to highest Rolodex. ''' EXPECTED = {'501': ['Sheman', 'Tai', 'Wyss', 'Mallard Loop', '133', 'Whitefish', '59937', 'stumpy@lowdog.com', 'Guard Dog', 'Mom', 'Igor', '501', 'yes', 'yes', '12/10/2011', '20'], '500' :['Madison', 'Katy', 'Wyss', 'Marina Blvd', '305', 'San Leandro', '90210', 'madison@baby.com', 'baby', 'Mom', 'Igor', '500', 'yes', 'yes', '01/01/2001', '10']} self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MORE_VALS) test_sheet = Spreadsheet(self.HEADERS, 'test_sheet.csv') self.assertTrue(os.path.isfile(self.sheet_1.FN)) default_rolodex = 100 self.assertEqual(default_rolodex, test_sheet.ROLODEX) test_sheet.read(self.sheet_1.FN) self.assertEqual(test_sheet.ROLODEX, 501) for key, row in EXPECTED.items(): self.assertTrue(key in test_sheet.READ_DICT.keys()) self.assertEqual(test_sheet.READ_DICT[key], row) self.assertEqual(EXPECTED, test_sheet.READ_DICT) def test_empty_cell(self): ''' Undefined headers values in input dic should be filled with a "N/A" if corresponding spread sheet cell ''' EXPECTED = ['Hobart', 'The', 'Great', 'Awesome Ln', '-', 'Candy Land', '12345', '-', 'Magician', '-', 'Igor', '100', 'yes', 'yes', '02/11/2012', '0'] #Write a single line of data below Headers self.sheet_1.write(self.MISSING_VALS) #Read Spreadsheet row self.sheet_1.read() for key, row in self.sheet_1.READ_DICT.items(): for indx, value in enumerate(row): self.assertEqual(EXPECTED[indx], value,"Index: {} not 'N/A'".format(indx)) def test_find(self): ''' spreadsheet.find(header, value), return a list of rows where header=value in current working file ''' #write two rows into spreadsheet self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) #simulate a loaded spreadsheet self.sheet_1.read() self.assertEqual(2, len(self.sheet_1.WRITE_DICT)) self.assertTrue("Last" in self.HEADERS) #No matching value does not alter sheet.WRITE_DICT self.sheet_1.find('Last', 'Smith') self.assertEqual(2, len(self.sheet_1.WRITE_DICT)) #Both rows have matching value self.assertTrue('Filed By' in self.HEADERS) self.sheet_1.find('Filed By', 'Igor') self.assertEqual(2, len(self.sheet_1.WRITE_DICT)) self.assertTrue('100' in self.sheet_1.WRITE_DICT.keys()) self.assertTrue('500' in self.sheet_1.WRITE_DICT.keys()) #Single row with matching value self.sheet_1.find('Last', 'Wyss') self.assertEqual(1, len(self.sheet_1.WRITE_DICT)) self.assertTrue(self.FULL_VALS == self.sheet_1.WRITE_DICT) def test_remove_single_row_by_rolodex_only(self): #Create Spreadsheet with3 rows of data self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_1.write(self.MORE_VALS) self.sheet_1.read() self.assertEqual(3, len(self.sheet_1.WRITE_DICT)) ORIGINAL_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertTrue('501' in ORIGINAL_KEYS) #Remove a single row of data according to a Rolodex number self.sheet_1.remove_row('501','','') ALTERED_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertEqual(ORIGINAL_KEYS, ALTERED_KEYS) self.assertTrue('100' in ALTERED_KEYS) self.assertTrue('500' in ALTERED_KEYS) self.assertTrue('501' not in ALTERED_KEYS) def test_remove_multiple_rows_by_rolodex_only(self): #Create Spreadsheet with3 rows of data self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_1.write(self.MORE_VALS) self.sheet_1.read() self.sheet_2.write(self.FULL_VALS) self.sheet_2.write(self.MISSING_VALS) self.sheet_2.write(self.MORE_VALS) self.sheet_2.read() self.sheet_3.write(self.FULL_VALS) self.sheet_3.write(self.MISSING_VALS) self.sheet_3.write(self.MORE_VALS) self.sheet_3.read() self.assertEqual(3, len(self.sheet_1.WRITE_DICT)) ORIGINAL_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertTrue('500' in ORIGINAL_KEYS) self.assertTrue('501' in ORIGINAL_KEYS) #Remove all rows in a given range of Rolodex numbers self.sheet_1.remove_row('101-600','','') ALTERED_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertEqual(ORIGINAL_KEYS, ALTERED_KEYS) self.assertTrue('100' in ALTERED_KEYS) self.assertTrue('500' not in ALTERED_KEYS) self.assertTrue('501' not in ALTERED_KEYS) #Remove all rows in a range of Rolodex numbers combined with indivudual #Rolodex numbers outside of range ORIGINAL_KEYS = self.sheet_2.WRITE_DICT.keys() self.assertTrue('100' in ORIGINAL_KEYS) self.assertTrue('500' in ORIGINAL_KEYS) self.sheet_2.remove_row('0-100, 500', '', '') ALTERED_KEYS = self.sheet_2.WRITE_DICT.keys() self.assertTrue('100' not in ALTERED_KEYS) self.assertTrue('500' not in ALTERED_KEYS) #Remove all rows in a comma seperated set of rolodex numbers ORIGINAL_KEYS = self.sheet_3.WRITE_DICT.keys() self.assertTrue('100' in ORIGINAL_KEYS) self.assertTrue('500' in ORIGINAL_KEYS) self.sheet_3.remove_row('100, 500', '', '') ALTERED_KEYS = self.sheet_3.WRITE_DICT.keys() self.assertTrue('100' not in ALTERED_KEYS) self.assertTrue('500' not in ALTERED_KEYS) def test_remove_single_row_by_rolodex_plus_header_value(self): #Create Spreadsheet with3 rows of data self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_1.write(self.MORE_VALS) self.sheet_1.read() self.assertEqual(3, len(self.sheet_1.WRITE_DICT)) ORIGINAL_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertTrue('100' in ORIGINAL_KEYS) self.assertTrue('500' in ORIGINAL_KEYS) self.assertTrue('501' in ORIGINAL_KEYS) #Remove all rows in a given range of Rolodex numbers where header == value self.sheet_1.remove_row('000-600','Last','Great') ALTERED_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertEqual(ORIGINAL_KEYS, ALTERED_KEYS) self.assertTrue('100' not in ALTERED_KEYS) self.assertTrue('500' in ALTERED_KEYS) self.assertTrue('501' in ALTERED_KEYS) def test_remove_multiple_rows_by_rolodex_plus_header_value(self): #Create Spreadsheet with3 rows of data self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_1.write(self.MORE_VALS) self.sheet_1.read() self.assertEqual(3, len(self.sheet_1.WRITE_DICT)) ORIGINAL_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertTrue('100' in ORIGINAL_KEYS) self.assertTrue('500' in ORIGINAL_KEYS) self.assertTrue('501' in ORIGINAL_KEYS) #Remove all rows in a given range of Rolodex numbers self.sheet_1.remove_row('000-600','Last','Wyss') ALTERED_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertEqual(ORIGINAL_KEYS, ALTERED_KEYS) self.assertTrue('100' in ALTERED_KEYS) self.assertTrue('500' not in ALTERED_KEYS) self.assertTrue('501' not in ALTERED_KEYS) def test_remove_multiple_rows_by_header_value_only(self): #Create Spreadsheet with3 rows of data self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_1.write(self.MORE_VALS) self.sheet_1.read() self.assertEqual(3, len(self.sheet_1.WRITE_DICT)) ORIGINAL_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertTrue('100' in ORIGINAL_KEYS) self.assertTrue('500' in ORIGINAL_KEYS) self.assertTrue('501' in ORIGINAL_KEYS) #Remove all rows in a given range of Rolodex numbers self.sheet_1.remove_row('','Last','Wyss') ALTERED_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertEqual(ORIGINAL_KEYS, ALTERED_KEYS) self.assertTrue('100' in ALTERED_KEYS) self.assertTrue('500' not in ALTERED_KEYS) self.assertTrue('501' not in ALTERED_KEYS) def test_remove_single_row_by_header_value_only(self): #Create Spreadsheet with3 rows of data self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_1.write(self.MORE_VALS) self.sheet_1.read() self.assertEqual(3, len(self.sheet_1.WRITE_DICT)) ORIGINAL_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertTrue('100' in ORIGINAL_KEYS) self.assertTrue('500' in ORIGINAL_KEYS) self.assertTrue('501' in ORIGINAL_KEYS) #Remove all rows in a given range of Rolodex numbers self.sheet_1.remove_row('','Contribution','10') ALTERED_KEYS = self.sheet_1.WRITE_DICT.keys() self.assertEqual(ORIGINAL_KEYS, ALTERED_KEYS) self.assertTrue('100' in ALTERED_KEYS) self.assertTrue('500' not in ALTERED_KEYS) self.assertTrue('501' in ALTERED_KEYS) def test_edit_cell(self): ''' edit_cell(rolodex, header, new_value, [over_ride = False]) Alter the value of a single cell in a row or rows of Data, spreadsheet.edit_cell('100', 'Header', 'New_Value'), -or- spreadsheet.edit_cell('100,101,103', 'Header', 'New_Value'), -or- spreadsheet.edit_cell('100, 200-600', 'Header', 'New_Value') Rolodex unalterable unless over_ride == True ''' self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_1.write(self.MORE_VALS) self.sheet_1.read() #Unaltered data row self.assertEqual(self.sheet_1.WRITE_DICT['100']['Contribution'], self.MISSING_VALS['100']['Contribution']) #Call spreadsheet.edit_cell() on single row self.sheet_1.edit_cell('100', 'Contribution', '30') #Spreadsheet altered value of given cell self.assertNotEqual(self.sheet_1.WRITE_DICT['100']['Contribution'], self.MISSING_VALS['100']['Contribution']) self.assertEqual(self.sheet_1.WRITE_DICT['100']['Contribution'], '30') #Call spreadsheet.edit_cell() on multiple rows #Test unaltered values self.assertEqual(self.MISSING_VALS['100']['Filed By'], self.sheet_1.WRITE_DICT['100']['Filed By']) self.assertEqual(self.sheet_1.WRITE_DICT['100']['Filed By'],'Igor') self.assertEqual(self.FULL_VALS['500']['Filed By'], self.sheet_1.WRITE_DICT['500']['Filed By']) self.assertEqual(self.sheet_1.WRITE_DICT['500']['Filed By'],'Igor') self.assertEqual(self.MORE_VALS['501']['Filed By'], self.sheet_1.WRITE_DICT['501']['Filed By']) self.assertEqual(self.sheet_1.WRITE_DICT['501']['Filed By'],'Igor') #Alter single cell in multiple Data rows #individual rolodex ID's self.sheet_1.edit_cell('100,500,501', 'Filed By', 'Jack') #All 3 rows in spreadsheet altered 'Filed By' value #Test altered values self.assertNotEqual(self.MISSING_VALS['100']['Filed By'], self.sheet_1.WRITE_DICT['100']['Filed By']) self.assertEqual(self.MISSING_VALS['100']['Filed By'], 'Igor') self.assertEqual(self.sheet_1.WRITE_DICT['100']['Filed By'],'Jack') self.assertNotEqual(self.FULL_VALS['500']['Filed By'], self.sheet_1.WRITE_DICT['500']['Filed By']) self.assertEqual(self.FULL_VALS['500']['Filed By'],'Igor') self.assertEqual(self.sheet_1.WRITE_DICT['500']['Filed By'],'Jack') self.assertNotEqual(self.MORE_VALS['501']['Filed By'], self.sheet_1.WRITE_DICT['501']['Filed By']) self.assertEqual(self.MORE_VALS['501']['Filed By'],'Igor') self.assertEqual(self.sheet_1.WRITE_DICT['501']['Filed By'],'Jack') #range of rolodex ID's self.sheet_1.edit_cell('0-100, 501', 'Employer', 'Dr. Frankenstein') #test altered range self.assertEqual(self.sheet_1.WRITE_DICT['100']['Employer'],'Dr. Frankenstein') self.assertNotEqual(self.MORE_VALS['501']['Employer'], self.sheet_1.WRITE_DICT['501']['Employer']) self.assertEqual(self.MORE_VALS['501']['Employer'],'Mom') self.assertEqual(self.sheet_1.WRITE_DICT['501']['Employer'],'Dr. Frankenstein') #Rolodex can only be changed if over_ride == True self.assertTrue('100' in self.sheet_1.WRITE_DICT.keys()) #edit_cell called without over_ride invoked, rolodex and WRITE_DICT[INDEX] should not change self.sheet_1.edit_cell('100', 'Rolodex', '222') self.assertTrue('100' in self.sheet_1.WRITE_DICT.keys()) self.assertEqual(self.sheet_1.WRITE_DICT['100']['Rolodex'], '100') #edit_cell called with over_ride invoked, rolodex and WRITE_DICT[INDEX] should change self.sheet_1.edit_cell('100', 'Rolodex', '222', over_ride = True) self.assertTrue('100' not in self.sheet_1.WRITE_DICT.keys()) self.assertEqual(self.sheet_1.WRITE_DICT['222']['Rolodex'], '222') def test_remove_column(self): ''' All values under under a given header are removed without removing the header itself ''' HEADER = "Apt#" self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_1.write(self.MORE_VALS) self.sheet_1.read() for indx, row in self.sheet_1.WRITE_DICT.items(): self.assertTrue(HEADER in row.keys()) #call spreadsheet.remove_col() self.sheet_1.remove_col(HEADER) for indx, row in self.sheet_1.WRITE_DICT.items(): self.assertTrue(HEADER in row.keys()) self.assertTrue(row[HEADER] == '') def test_basic_merge(self): ''' Combine current working spreadsheet with second existing sheet, results written to third .csv file, original files are unaltered ''' self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_2.write(self.OVERLAP_VALS) self.sheet_3.write(self.MORE_VALS) self.sheet_1.read() self.sheet_2.read() self.sheet_3.read() self.assertTrue(os.path.isfile(self.sheet_1.FN)) self.assertTrue(os.path.isfile(self.sheet_2.FN)) self.assertTrue(os.path.isfile(self.sheet_3.FN)) self.assertNotEqual(self.sheet_1.FN, self.sheet_2.FN) self.assertNotEqual(self.sheet_1.FN, self.sheet_3.FN) self.assertNotEqual(self.sheet_2.FN, self.sheet_3.FN) sheet_1_keys = self.sheet_1.WRITE_DICT.keys() sheet_2_keys = self.sheet_2.WRITE_DICT.keys() sheet_3_keys = self.sheet_3.WRITE_DICT.keys() #Merge two files without overlapping Roldex Numbers FN, ext = os.path.splitext(self.sheet_1.FN) for rolodex in self.sheet_1.WRITE_DICT.keys(): self.assertTrue(rolodex not in self.sheet_3.WRITE_DICT.keys()) self.assertFalse(os.path.isfile(self.MERGED_FN)) #the merge self.sheet_1.merge(self.sheet_3.FN) #merged file was created self.assertTrue(os.path.isfile(self.MERGED_FN)) self.sheet_4.read(self.MERGED_FN) #merged file contains rows of both sheet_1 and sheet_3 for rolodex, row in self.sheet_1.WRITE_DICT.items(): self.assertTrue(rolodex in self.sheet_4.WRITE_DICT.keys()) self.assertEqual(self.sheet_1.WRITE_DICT[rolodex], self.sheet_4.WRITE_DICT[rolodex]) for rolodex, row in self.sheet_3.WRITE_DICT.items(): self.assertTrue(rolodex in self.sheet_4.WRITE_DICT.keys()) self.assertEqual(self.sheet_3.WRITE_DICT[rolodex], self.sheet_4.WRITE_DICT[rolodex]) #Original files are unaltered for rolodex in self.sheet_1.WRITE_DICT.keys(): self.assertTrue(rolodex not in self.sheet_3.WRITE_DICT.keys()) self.assertEqual(self.sheet_1.WRITE_DICT.keys(), sheet_1_keys) for rolodex in self.sheet_3.WRITE_DICT.keys(): self.assertTrue(rolodex not in self.sheet_1.WRITE_DICT.keys()) self.assertEqual(self.sheet_3.WRITE_DICT.keys(), sheet_3_keys) def test_merge_overlapping_ID_change_all_duplicate_IDs(self): ''' Test onverlapping rolodex ID's If duplicate ID's found, GUI window prompts to change conflicting ID to 1 higher than current known ID (or not), with option to do same for all remaining conflicting ID's,IF NOT, Second GUI prompts to overwrite secondary ID and corrosponding row in new combined file (original file unaltered) with option to overwrite all remaining ID's, GUI's suppressed for testing ''' self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_2.write(self.OVERLAP_VALS) self.sheet_1.read() self.sheet_2.read() self.assertTrue(os.path.isfile(self.sheet_1.FN)) self.assertTrue(os.path.isfile(self.sheet_2.FN)) self.assertNotEqual(self.sheet_1.FN, self.sheet_2.FN) sheet_1_keys = self.sheet_1.WRITE_DICT.keys() sheet_2_keys = self.sheet_2.WRITE_DICT.keys() #Conditions to pass to Spreadsheet.merge() conditions = {'TESTING' : True, 'CHANGE_YES_ALL' : True, 'CHANGE_YES_ONE' : False, 'CHANGE_NO_ALL' : False, 'OVERWRITE_YES_ALL' : False, 'OVERWITE_NO_ALL' : False} #Merge sheet_1 & sheet_2, sheet_2 have duplicate Rolodex Values for key in self.sheet_2.WRITE_DICT.keys(): self.assertTrue(key in self.sheet_1.WRITE_DICT.keys()) #MAX rolodex of both sheets being pre_merge, MAX_ID = max(self.sheet_1.ROLODEX, self.sheet_2.ROLODEX) #Expected newly merged file does not exist yet self.assertFalse(os.path.isfile(self.MERGED_FN)) #The Merge ORIGINAL_ROLODEX = self.sheet_1.ROLODEX msg = self.sheet_1.merge(self.sheet_2.FN, **conditions) #Original sheets are unaltered self.assertEqual(self.sheet_1.WRITE_DICT.keys(), sheet_1_keys) self.assertEqual(self.sheet_2.WRITE_DICT.keys(), sheet_2_keys) #Expected merged file was created self.assertTrue(os.path.isfile(self.MERGED_FN)) self.sheet_1.load(self.MERGED_FN) #merged file should have 4 entries, Rolodex ID's from sheet_2 being += 1 #to highest known ID merged = Spreadsheet(self.HEADERS, fn = self.MERGED_FN) merged.read() #merged file should have 4 entries self.assertEqual(4, len(merged.WRITE_DICT.keys())) #Test all ID's from sheet_1 are in merged file unaltered for ID in self.sheet_1.WRITE_DICT.keys(): self.assertTrue(ID in merged.WRITE_DICT.keys()) #Test all ID's from sheet_2 are Altered and added to merged for ID in self.sheet_2.WRITE_DICT.keys(): MAX_ID += 1 self.assertTrue(str(MAX_ID) in merged.WRITE_DICT.keys()) #Rows with Altered ID's, merged.WRITE_DICT[ID]['Rolodex'] reflects changed value for ID in merged.WRITE_DICT.keys(): self.assertEqual(merged.WRITE_DICT[ID]['Rolodex'], ID) #Currently working sheet's Rolodex ID is updated to reflect new higher Rolodex self.assertNotEqual(ORIGINAL_ROLODEX, self.sheet_1.ROLODEX) self.assertEqual(self.sheet_1.ROLODEX, merged.ROLODEX) def test_merge_overlapping_ID_change_single_duplicate_IDs(self): ''' If duplicate ID is not changed, data row with duplicate ID is not added to newly formed file, Test is limited to only changing first duplicate ID, actual function should allow to skip first found duplicate but change following duplicates, GUI's suppressed for testing ''' self.sheet_1.write(self.FULL_VALS) self.sheet_1.write(self.MISSING_VALS) self.sheet_2.write(self.OVERLAP_VALS) self.sheet_1.read() self.sheet_2.read() self.assertTrue(os.path.isfile(self.sheet_1.FN)) self.assertTrue(os.path.isfile(self.sheet_2.FN)) self.assertNotEqual(self.sheet_1.FN, self.sheet_2.FN) sheet_1_keys = self.sheet_1.WRITE_DICT.keys() sheet_2_keys = self.sheet_2.WRITE_DICT.keys() #Conditions to pass to Spreadsheet.merge() conditions = {'TESTING' : True, 'CHANGE_YES_ALL' : False, 'CHANGE_YES_ONE' : True, 'CHANGE_NO_ALL' : False, 'OVERWRITE_YES_ALL' : False, 'OVERWRITE_YES_ONE' : False, 'OVERWRITE_NO_ALL' : False, 'OVERWRITE_NO_ONE' : False} #Merge sheet_1 & sheet_2, sheet_2 have duplicate Rolodex Values for key in self.sheet_2.WRITE_DICT.keys(): self.assertTrue(key in self.sheet_1.WRITE_DICT.keys()) #MAX rolodex of both sheets pre_merge, MAX_ID = max(self.sheet_1.ROLODEX, self.sheet_2.ROLODEX) #Expected newly merged file does not exist yet self.assertFalse(os.path.isfile(self.MERGED_FN)) #The Merge ORIGINAL_ROLODEX = self.sheet_1.ROLODEX self.sheet_1.merge(self.sheet_2.FN, **conditions) #Original sheets are unaltered self.assertEqual(self.sheet_1.WRITE_DICT.keys(), sheet_1_keys) self.assertEqual(self.sheet_2.WRITE_DICT.keys(), sheet_2_keys) #Expected merged file was created self.assertTrue(os.path.isfile(self.MERGED_FN)) self.sheet_1.load(self.MERGED_FN) #merged file should have 3 entries, Rolodex ID from sheet_2 being += 1 #to highest known ID merged = Spreadsheet(self.HEADERS, self.MERGED_FN) merged.read() self.assertEqual(max(merged.WRITE_DICT.keys()), str(MAX_ID + 1)) #merged file should have 3 entries self.assertEqual(3, len(merged.WRITE_DICT.keys())) #Test all ID's from sheet_1 are in merged file unaltered for ID in self.sheet_1.WRITE_DICT.keys(): self.assertTrue(ID in merged.WRITE_DICT.keys()) #Test sinlge (lowest ID) from sheet_2 are Altered and added to merged EXPECTED_ROW = self.sheet_2.WRITE_DICT['100'] EXPECTED_ROW['Rolodex'] = str(MAX_ID + 1) self.assertTrue(EXPECTED_ROW in merged.WRITE_DICT.values()) self.assertEqual(merged.WRITE_DICT[str(MAX_ID + 1)], EXPECTED_ROW) self.assertEqual(merged.WRITE_DICT['501']['Rolodex'], '501') #Rows with Altered ID's, merged.WRITE_DICT[ID]['Rolodex'] reflects changed value for ID in merged.WRITE_DICT.keys(): self.assertEqual(merged.WRITE_DICT[ID]['Rolodex'], ID) #Currently working sheet's Rolodex ID is updated to reflect new higher Rolodex self.assertNotEqual(ORIGINAL_ROLODEX, self.sheet_1.ROLODEX) self.assertEqual(self.sheet_1.ROLODEX, merged.ROLODEX) def tearDown(self): for FN in [self.FILE, self.FILE_1, self.FILE_2, self.sheet_4.FN, self.MERGED_FN]: if os.path.isfile(FN): os.remove(FN) if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
Charlie-Robot.noreply@github.com
a67b58537018827a34978cad18fde383dd6c68c8
050c53f4930674674a8cb22790f39b0e87bdc580
/lending/admin.py
c57f8967f6a12229031ba7aef247d250cb529ec8
[ "BSD-3-Clause" ]
permissive
destos/toolhub.co
44ca3391b4a40720370985c55d54ee48fb5eb4b9
b51cf2cc2e0eb7c09c59684f985052c966943c0b
refs/heads/master
2021-05-28T01:02:14.426904
2014-08-05T05:21:08
2014-08-05T05:21:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
from django.contrib import admin from .models import Transaction, LendingAction class TransactionAdmin(admin.ModelAdmin): raw_id_fields = ('hub', 'tool', 'lendee', 'last_action') class LendingActionAdmin(admin.ModelAdmin): raw_id_fields = ('transaction',) admin.site.register(Transaction, TransactionAdmin) admin.site.register(LendingAction, LendingActionAdmin)
[ "patrick@forringer.com" ]
patrick@forringer.com
579abdc1f2ddc32420aa68c54bebe2a82fde7f5f
1adcabfb3bea9769e44306105a0ac403cca0836c
/smtp.py
a1c5548055567a8752b57dee2842ea5298db0e92
[]
no_license
cab22/Computer-Networks
20f1cf6f7a8269949cfea0d8e683695cbd7707c7
265243b423b27f4ccfba9ac95b85280bb085ca62
refs/heads/master
2021-01-21T01:43:30.380387
2016-07-25T16:31:34
2016-07-25T16:31:34
64,150,220
0
0
null
null
null
null
UTF-8
Python
false
false
1,662
py
from socket import * import ssl import base64 #Dados necessarios para enviar o email msg = b'\r\nI love computer networks!' endmsg = '\r\n.\r\n' mailserver = 'smtp.gmail.com' login=b'************' senha=b'**************' destinatario=b'**************' clientSocket = socket(AF_INET, SOCK_STREAM) # Número de porta pode mudar conforme servidor de e-mail clientSocket.connect((mailserver, 587)) recv = clientSocket.recv(1024) print(recv) clientSocket.sendall(b'EHLO 192.168.25.6\r\n') recv = clientSocket.recv(1024) print(recv) command = b'STARTTLS\r\n' clientSocket.send(command) recvdiscard = clientSocket.recv(1024) print (recvdiscard) clientSocketSSL = ssl.wrap_socket(clientSocket) # clientSocket.sendall(b'HELO 192.168.25.6\r\n') # recv = clientSocket.recv(1024) # print(recv) clientSocketSSL.sendall(b'EHLO 192.168.25.6\r\n') recv = clientSocketSSL.recv(1024) print(recv) encoded = base64.b64encode(b'\000'+login+b'\000'+senha) clientSocketSSL.send(b'AUTH PLAIN ' +encoded + b'\r\n') recv = clientSocketSSL.recv(1024) print(recv) clientSocketSSL.send(b'MAIL FROM: <'+login+b'>\r\n') recv = clientSocketSSL.recv(1024) print(recv) clientSocketSSL.send(b'RCPT TO: <'+destinatario+b'>\r\n') recv = clientSocketSSL.recv(1024) print(recv) clientSocketSSL.send(b'DATA\r\n') recv = clientSocketSSL.recv(1024) print(recv) clientSocketSSL.send(b'From: login\r\nTO: '+destinatario+b'\r\nSubject: Teste\r\n') clientSocketSSL.send(msg+b'\r\n') clientSocketSSL.send(b'.\r\n') recv = clientSocketSSL.recv(1024) print(recv) # clientSocket.sendall(b'MAIL FROM: <dossantosjorgehenrique@gmail.com>\r\n') # recv = clientSocket.recv(1024) # print(recv)
[ "noreply@github.com" ]
cab22.noreply@github.com
e6f308f3e67e773bcecbfee624beff58d586a4c9
6409d2492f9bef0d0b7219fb067d278611be31ea
/setup.py
4781b4f3c5c0e41a1636ac1ade5e616c64e22860
[ "MIT" ]
permissive
Eugenio-Alcalde/CodonAdaptationIndex
d7b4fef98836f14c8bfa6483c2400e2278621fc2
568ee01d438d45a4527ddb6eda5fee429be40c2a
refs/heads/master
2021-09-02T04:58:21.601563
2017-12-30T15:06:01
2017-12-30T15:06:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
611
py
from setuptools import setup setup( name = 'CAI', packages = ["CAI"], version = '0.1.8', description = 'Python implementation of codon adaptation index', author = 'Benjamin Lee', author_email = 'benjamin_lee@college.harvard.edu', url = 'https://github.com/Benjamin-Lee/CodonAdaptationIndex', # use the URL to the github repo classifiers = ["Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Bio-Informatics", "Programming Language :: Python"], install_requires=['scipy'], license="MIT", use_2to3=True )
[ "benjamindlee@me.com" ]
benjamindlee@me.com
43c5ac8e72eff42df3abd6890e31bd12da42a1c6
51981cdf4b36ac6bd5d2e9312c19fdd19c333c84
/oddnuminter.py
5bda0926057b5b9d686ea857216f0ee4f7e52df0
[]
no_license
jasirknm/guvi
ac07b436294533dc758542a9ee4e5f6737ba63ee
84c77d6dbeae6642ef81d6f2bba6d7b5060f45fb
refs/heads/master
2020-04-21T16:08:23.085051
2019-02-08T05:35:30
2019-02-08T05:35:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
#srini a=input().split() n=int(a[0]) q=int(a[1]) for i in range(n+1,q): if(i%2!=0): print(i,end=" ")
[ "noreply@github.com" ]
jasirknm.noreply@github.com
8e032812208772cafa364fc657e132f45704b3c0
bde5dbf63ce34f61b0e4dbe36c4ab49e7e1d7e9c
/old/resnet18_ex3.py
3ba3595b4b4fefd44900e5eca214f59a24f7e446
[ "Apache-2.0" ]
permissive
killf/pytorch-cifar10
13dda528bb8e7a3aba4107eecd9c20acc47ba304
2bf864eeed72fd6b2dcbc5513d83eb611d7d86ef
refs/heads/master
2021-05-27T07:50:02.847634
2020-04-16T23:48:21
2020-04-16T23:48:21
254,237,788
0
0
null
null
null
null
UTF-8
Python
false
false
3,067
py
import os import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import LambdaLR, MultiStepLR from torch.utils.data import DataLoader from torchvision.datasets.cifar import CIFAR10 import torchvision.transforms as transforms from torchvision.models.resnet import resnet18 from torchmirror import model, dataset import torch.backends.cudnn as cudnn LR = 0.1 EPOCHS = 5 BATCH_SIZE = 128 NUM_WORKERS = 2 DATA_DIR = "../data" MODEL_FILE = "models/resnet18_ex2.pkl" def main(): transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = CIFAR10( root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader( trainset, batch_size=128, shuffle=True, num_workers=2) testset = CIFAR10( root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader( testset, batch_size=100, shuffle=False, num_workers=2) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net = resnet18(num_classes=10).to(device) if torch.cuda.is_available(): net = torch.nn.DataParallel(net) cudnn.benchmark = True criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4) for epoch in range(EPOCHS): net.train() correct, total = 0., 0. for step, (x, y_true) in enumerate(trainloader, 1): x = x.to(device) y_true = y_true.to(device) optimizer.zero_grad() y_pred = net(x) loss = criterion(y_pred, y_true) loss.backward() optimizer.step() _, predicted = y_pred.max(1) total += y_true.size(0) correct += predicted.eq(y_true).sum().item() if step % 100 == 0: print(f"Epoch:{epoch} Step:{step}, Loss:{loss.item():05f}, Acc:{correct / total:05f}") del correct del total del x del y_true del loss del predicted net.eval() with torch.no_grad(): correct, total = 0., 0. for x, y_true in testloader: x = x.to(device) y_true = y_true.to(device) y_pred = net(x) _, predicted = y_pred.max(1) total += y_true.size(0) correct += predicted.eq(y_true).sum().item() print(f"[VAL]Epoch:{epoch}, Acc:{correct / total:05f}") print() del correct del total del x del y_true del predicted if __name__ == '__main__': main()
[ "killf@foxmail.com" ]
killf@foxmail.com
a16c93879e70cb13937180f7c8eb02f8bc56a853
9ee26754de512df4ce7c8e4c48c66a8ac6916f18
/DataLoader.py
707c3158683d1fa6eb24444e8c402919038084a4
[]
no_license
ryumaggs/ComplexNN
4d0b0aa40aed3a59cbac473e4acd0c6d5daedbf0
2da891e2b2b57d860931ecdbe89c3498e5a2a095
refs/heads/master
2023-04-01T22:50:07.382224
2021-04-08T13:16:06
2021-04-08T13:16:06
281,153,356
0
0
null
null
null
null
UTF-8
Python
false
false
504
py
import tensorflow as tf def Load(path): ''' ''' f_in = open(path, 'r') line = f_in.readline() x_real = [] x_imag = [] y_real = [] y_imag = [] while(line != ''): line = line[:-1] line = line.split(',') x_real.append(float(line[0])) x_imag.append(float(line[1])) y_real.append(float(line[2])) y_imag.append(float(line[3])) line = f_in.readline() #print('a', line != '') tensor_x = tf.complex(x_real, x_imag) tensor_y = tf.complex(y_real, y_imag) return tensor_x, tensor_y
[ "ryu@colgate.edu" ]
ryu@colgate.edu
f3179f6636a833a4370ae01a7632477aa089ac9b
934678d8886d9ca2472a7a6af5cdf7654fb2487f
/infer.py
d633534b24ac3ba2d30236c4f4040dbdc5956ee9
[]
no_license
suchuhong/paddleYOLOv3
560be68f07c266695f65bcd18b7bc647656b3abf
80942589324a23b23b9cd85a04f9ec99d770d3cb
refs/heads/master
2020-05-27T19:58:12.894050
2019-05-27T04:24:35
2019-05-27T04:24:35
188,770,256
0
0
null
null
null
null
UTF-8
Python
false
false
1,918
py
import os import numpy as np import paddle.fluid as fluid import box_utils import reader from models.yolov3 import YOLOv3 import xml.etree.ElementTree as ET def infer(): use_gpu = False input_size = 608 model = YOLOv3(is_train=False) model.build_model() outputs = model.get_pred() place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) if "./weights/model_iter53999": def if_exist(var): return os.path.exists(os.path.join("./weights/model_iter53999", var.name)) fluid.io.load_vars(exe, "./weights/model_iter53999", predicate=if_exist) feeder = fluid.DataFeeder(place=place, feed_list=model.feeds()) fetch_list = [outputs] image_names = [] for image_name in os.listdir("./img/"): if image_name.split('.')[-1] in ['jpg', 'png']: image_names.append(image_name) for image_name in image_names: infer_reader = reader.infer(input_size, os.path.join("./img/", image_name)) label_names, _ = reader.get_label_infos() data = next(infer_reader()) outputs = exe.run( fetch_list=[v.name for v in fetch_list], feed=feeder.feed(data), return_numpy=False) bboxes = np.array(outputs[0]) if bboxes.shape[1] != 6: print("No object found in {}".format(image_name)) continue labels = bboxes[:, 0].astype('int32') scores = bboxes[:, 1].astype('float32') boxes = bboxes[:, 2:].astype('float32') draw_thresh = 0.40 path = os.path.join("./img/", image_name) box_utils.draw_boxes_on_image(path, boxes, scores, labels, label_names, draw_thresh) if __name__ == '__main__': # 创建根节点 root = ET.Element("coordinate") # 创建elementtree对象,写文件 tree = ET.ElementTree(root) tree.write("coordinate.xml") infer()
[ "noreply@github.com" ]
suchuhong.noreply@github.com
1a6e80b9bb2bbbf88d2ca308404b79804e540972
a46cd09c2b1a984fc8733beba630b32a0e7a04df
/pythonteste/desafio55.py
b1a7536dcb9a466f55e3aa434a8823880e381b9c
[ "MIT" ]
permissive
dangiotto/Python
36c7a4af706fdf6e0b6f56f879b50a1f9a55506c
29a9d18d7595a5c21e65dafc39f7fd4c55d8971c
refs/heads/main
2022-12-29T11:50:07.470877
2020-09-29T22:43:06
2020-09-29T22:43:06
299,753,324
1
0
null
null
null
null
UTF-8
Python
false
false
370
py
mais = 0 menos = 0 for c in range (1,6): peso = float(input('Informe o peso da {}ª pessoa : '.format(c))) if c == 1: mais = peso menos = peso else: if peso > mais: mais = peso else: menos = peso print('A pessoa mais pesada tem {} KG.'.format(mais)) print('A pessoa mais leve tem {} KG'.format(menos))
[ "danilogiotto100@hotmail.com" ]
danilogiotto100@hotmail.com
51ef258d29175cb7831bfaf2b78003466bcbc2ea
e27e9c484b90e74c5b292ac938a82d49121d683f
/tests/test_address.py
dfdb8146ff8853bcc9099e107127e294350dce5b
[]
no_license
mickeystone/cryptotools
ce99ba69b29a29f64792408d63b104290150b0b0
d7e5e4f312776ede5f71b0ed1105e338974a5ac4
refs/heads/master
2020-03-24T12:51:55.182415
2018-07-06T10:55:34
2018-07-06T10:55:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,055
py
import unittest import secrets import urllib.request import urllib.parse from lxml import etree from btctools.address import pubkey_to_address, script_to_address, hash160, address_to_script, address_type, ADDRESS from btctools.script import push, OP from ECDSA.secp256k1 import generate_keypair, PrivateKey, PublicKey from transformations import bytes_to_hex, int_to_str from btctools import bech32 class TestLegacyAddress(unittest.TestCase): url = 'http://gobittest.appspot.com/Address' def test_p2pkh(self): """https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses#See_Also""" payload = {'Random': 'Random'} data = urllib.parse.urlencode(payload).encode('ascii') req = urllib.request.Request(self.url, data) with urllib.request.urlopen(req) as response: html = response.read() tree = etree.HTML(html) private = tree.find('.//input[@name="private"]').attrib['value'] public = tree.find('.//input[@name="public"]').attrib['value'] address = tree.find('.//input[@name="Base58"]').attrib['value'] my_pubkey = PrivateKey.from_hex(private).to_public() self.assertEqual(public.lower(), my_pubkey.hex()) self.assertEqual(pubkey_to_address(my_pubkey), address) self.assertEqual(address_type(address), ADDRESS.P2PKH) def test_p2sh(self): script = secrets.token_bytes(32) scripthash = hash160(script) payload = {'RIPEMDWithHash': '05' + bytes_to_hex(scripthash)} data = urllib.parse.urlencode(payload).encode('ascii') req = urllib.request.Request(self.url, data) with urllib.request.urlopen(req) as response: html = response.read() tree = etree.HTML(html) address = tree.find('.//input[@name="Base58"]').attrib['value'] self.assertEqual(script_to_address(script, 'P2SH'), address) self.assertEqual(address_type(address), ADDRESS.P2SH) # def test_balance(self): # # if satoshi moves his coins this test will fail # addr = Address('1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa') # self.assertEqual(addr.balance(), 66.65271233) def test_address_type(self): self.assertEqual(address_type('1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa'), ADDRESS.P2PKH) self.assertEqual(address_type('34eBzenHJEdk5PK9ojuuBZvCRtNhvvysYZ'), ADDRESS.P2SH) class TestBech32(unittest.TestCase): hrp = 'bc' witver = 0x00 def test_bech32_decode(self): private, public = generate_keypair() witprog = hash160(public.encode(compressed=True)) address = bech32.encode(self.hrp, self.witver, witprog) wv, decoded = bech32.decode(self.hrp, address) self.assertEqual(wv, self.witver) self.assertEqual(bytes(decoded), bytes(witprog)) def test_p2wpkh(self): """https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki#examples""" pubkey = PublicKey.from_hex('0279BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798') self.assertEqual(bech32.encode(self.hrp, self.witver, hash160(pubkey.encode(compressed=True))), 'bc1qw508d6qejxtdg4y5r3zarvary0c5xw7kv8f3t4') address = pubkey_to_address(pubkey, version='P2WPKH') self.assertEqual(address, 'bc1qw508d6qejxtdg4y5r3zarvary0c5xw7kv8f3t4') self.assertEqual(address_type(address), ADDRESS.P2WPKH) def test_p2wsh(self): """https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki#examples""" pubkey = PublicKey.from_hex('0279BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798') script = push(pubkey.encode(compressed=True)) + OP.CHECKSIG.byte # <key> <OP_CHECKSIG> address = script_to_address(script, 'P2WSH') self.assertEqual(address, 'bc1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3qccfmv3') self.assertEqual(address_type(address), ADDRESS.P2WSH) def test_valid_bech32(self): """https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki#test-vectors""" valid_strings = [ 'A12UEL5L', 'a12uel5l', 'an83characterlonghumanreadablepartthatcontainsthenumber1andtheexcludedcharactersbio1tt5tgs', 'abcdef1qpzry9x8gf2tvdw0s3jn54khce6mua7lmqqqxw', '11qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqc8247j', 'split1checkupstagehandshakeupstreamerranterredcaperred2y9e3w', '?1ezyfcl' ] invalid_strings = [ int_to_str(0x20) + '1nwldj5', int_to_str(0x7F) + '1axkwrx', b'\x80'.decode('ascii', 'replace') + '1eym55h', 'an84characterslonghumanreadablepartthatcontainsthenumber1andtheexcludedcharactersbio1569pvx', 'pzry9x0s0muk', '1pzry9x0s0muk', 'x1b4n0q5v', 'li1dgmt3', 'de1lg7wt' + b'\xff'.decode('ascii', 'replace'), 'A1G7SGD8', '10a06t8', '1qzzfhee' ] # Should raise no exceptions for string in valid_strings: bech32.bech32_decode(string) # Should raise Bech32DecodeError for string in invalid_strings: with self.assertRaises(bech32.Bech32DecodeError): bech32.bech32_decode(string) def test_address_to_script(self): """https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki#test-vectors""" valid = { 'BC1QW508D6QEJXTDG4Y5R3ZARVARY0C5XW7KV8F3T4': '0014751e76e8199196d454941c45d1b3a323f1433bd6', 'tb1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3q0sl5k7': '00201863143c14c5166804bd19203356da136c985678cd4d27a1b8c6329604903262', 'bc1pw508d6qejxtdg4y5r3zarvary0c5xw7kw508d6qejxtdg4y5r3zarvary0c5xw7k7grplx': '5128751e76e8199196d454941c45d1b3a323f1433bd6751e76e8199196d454941c45d1b3a323f1433bd6', 'BC1SW50QA3JX3S': '6002751e', 'bc1zw508d6qejxtdg4y5r3zarvaryvg6kdaj': '5210751e76e8199196d454941c45d1b3a323', 'tb1qqqqqp399et2xygdj5xreqhjjvcmzhxw4aywxecjdzew6hylgvsesrxh6hy': '0020000000c4a5cad46221b2a187905e5266362b99d5e91c6ce24d165dab93e86433' } invalid = [ 'tc1qw508d6qejxtdg4y5r3zarvary0c5xw7kg3g4ty', 'bc1qw508d6qejxtdg4y5r3zarvary0c5xw7kv8f3t5', 'BC13W508D6QEJXTDG4Y5R3ZARVARY0C5XW7KN40WF2', 'bc1rw5uspcuh', 'bc10w508d6qejxtdg4y5r3zarvary0c5xw7kw508d6qejxtdg4y5r3zarvary0c5xw7kw5rljs90', 'BC1QR508D6QEJXTDG4Y5R3ZARVARYV98GJ9P', 'tb1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3q0sL5k7', 'bc1zw508d6qejxtdg4y5r3zarvaryvqyzf3du', 'tb1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3pjxtptv', 'bc1gmk9yu' ] for addr, script in valid.items(): self.assertEqual(bytes_to_hex(address_to_script(addr)), script) for addr in invalid: with self.assertRaises(bech32.Bech32DecodeError): address_to_script(addr) def test_address_type(self): self.assertEqual(address_type('bc1qh2egksgfejqpktc3kkdtuqqrukrpzzp9lr0phn'), ADDRESS.P2WPKH) self.assertEqual(address_type('bc1q8yh8l8ft3220q328hlapqhflpzy6xvkq6u36mctk8gq5pyxm3rwqv5h5dg'), ADDRESS.P2WSH) class TestNet(unittest.TestCase): def setUp(self): import btctools.network btctools.network.current_network = btctools.network.NETWORK.TEST def tearDown(self): import btctools.network btctools.network.current_network = btctools.network.NETWORK.MAIN def test_address_type(self): self.assertEqual(address_type('mgxVT9fzHwYDsgEGJSZekKgYbAyrBkqdpi'), ADDRESS.P2PKH) self.assertEqual(address_type('2MzAQDXGpmJyS6ybm2q57dbe8j2oxmvRDkc'), ADDRESS.P2SH) self.assertEqual(address_type('n2NGrooSecJaiD6ssp4YqFoj9eZ7GrCJ66'), ADDRESS.P2PKH) self.assertEqual(address_type('tb1q7w5dhw4hl5yvxvl3yvv2xxvh7jwm28p9kpelcp'), ADDRESS.P2WPKH)
[ "mc-dallas@hotmail.com" ]
mc-dallas@hotmail.com
5e1002e62f5ddda4dd97a0fba653878027f285ab
d1c53def818f9c7e1bd660e3303a754f297aff43
/code/ch7/6_9_a.py
87ff65160d0731629c3f3095c98607c6d2920708
[]
no_license
khimacademy/c104
dcdcae13499e5b68905f09ea009e1a2b9f552e1c
83443858d5b85c23c107fa09cd672d17549776ee
refs/heads/master
2020-03-26T10:57:52.536935
2018-08-25T06:17:04
2018-08-25T06:17:04
144,822,712
0
0
null
null
null
null
UTF-8
Python
false
false
645
py
''' 6-9. 좋아하는 장소 favorite_places 딕셔너리를 만드세요. 딕셔너리 키로 쓸 이름을 세 개 생각하고 각 사람마다 좋아하는 장소를 1~3개 저장하세요. 이 연습문제를 조금 더 흥미롭게 만들려면 친구에게 좋아하는 장소 이름을 물어보세요. 딕셔너리에 루프를 실행하고 각 사람 이름과 좋아하는 장소를 출력하세요. Output: ever likes the following places: - mt. verstovia - the playground - south carolina erin likes the following places: - hawaii - iceland eric likes the following places: - bear mountain - death valley - tierra del Fuego '''
[ "sarang.khim@gmail.com" ]
sarang.khim@gmail.com
414ea8595217197e54c34419406b88bdadf5f87d
6b29dbfe527d9e1950d53fde913e05e2a58758ab
/server/tasks/dast.py
dcbc7b141dcf21d665840953ca8301bc3884d601
[ "Apache-2.0" ]
permissive
parijatsahai/camcops
d7b2843b77bedee87b8298138bc8a33fe66c5178
09c7000060b546ad22b908e4245b1ff02940dd63
refs/heads/master
2021-01-21T09:20:43.670032
2015-07-02T15:42:59
2015-07-02T15:42:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,241
py
#!/usr/bin/python2.7 # -*- encoding: utf8 -*- """ Copyright (C) 2012-2015 Rudolf Cardinal (rudolf@pobox.com). Department of Psychiatry, University of Cambridge. Funded by the Wellcome Trust. This file is part of CamCOPS. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from cc_modules.cc_db import repeat_fieldspec from cc_modules.cc_html import ( answer, get_yes_no, tr, tr_qa, ) from cc_modules.cc_string import WSTRING from cc_modules.cc_task import ( CTV_DICTLIST_INCOMPLETE, get_from_dict, STANDARD_TASK_FIELDSPECS, Task, ) # ============================================================================= # DAST # ============================================================================= class Dast(Task): NQUESTIONS = 28 TASK_FIELDSPECS = repeat_fieldspec( "q", 1, NQUESTIONS, "CHAR", pv=['Y', 'N'], comment_fmt='Q{n}. {s} ("+" = Y scores 1, "-" = N scores 1)', comment_strings=[ "non-medical drug use (+)", "abused prescription drugs (+)", "abused >1 drug at a time (+)", "get through week without drugs (-)", "stop when want to (-)", "abuse drugs continuously (+)", "try to limit to certain situations (-)", "blackouts/flashbacks (+)", "feel bad about drug abuse (-)", "spouse/parents complain (+)", "friends/relative know/suspect (+)", "caused problems with spouse (+)", "family sought help (+)", "lost friends (+)", "neglected family/missed work (+)", "trouble at work (+)", "lost job (+)", "fights under influence (+)", "arrested for unusual behaviour under influence (+)", "arrested for driving under influence (+)", "illegal activities to obtain (+)", "arrested for possession (+)", "withdrawal symptoms (+)", "medical problems (+)", "sought help (+)", "hospital for medical problems (+)", "drug treatment program (+)", "outpatient treatment for drug abuse (+)", ]) TASK_FIELDS = [x["name"] for x in TASK_FIELDSPECS] @classmethod def get_tablename(cls): return "dast" @classmethod def get_taskshortname(cls): return "DAST" @classmethod def get_tasklongname(cls): return "Drug Abuse Screening Test" @classmethod def get_fieldspecs(cls): return STANDARD_TASK_FIELDSPECS + Dast.TASK_FIELDSPECS @classmethod def provides_trackers(cls): return True def get_trackers(self): return [ { "value": self.total_score(), "plot_label": "DAST total score", "axis_label": "Total score (out of 28)", "axis_min": -0.5, "axis_max": 28.5, "horizontal_lines": [ 10.5, 5.5, ], } ] def get_clinical_text(self): if not self.is_complete(): return CTV_DICTLIST_INCOMPLETE return [{ "content": "DAST total score {}/28".format(self.total_score()) }] def get_summaries(self): return [ self.is_complete_summary_field(), dict(name="total", cctype="INT", value=self.total_score()), ] def is_complete(self): return ( self.are_all_fields_complete(Dast.TASK_FIELDS) and self.field_contents_valid() ) def get_score(self, q): yes = "Y" value = getattr(self, "q" + str(q)) if value is None: return 0 if q == 4 or q == 5 or q == 7: return 0 if value == yes else 1 else: return 1 if value == yes else 0 def total_score(self): total = 0 for q in range(1, Dast.NQUESTIONS + 1): total += self.get_score(q) return total def get_task_html(self): score = self.total_score() exceeds_cutoff_1 = score >= 6 exceeds_cutoff_2 = score >= 11 MAIN_DICT = { None: None, "Y": WSTRING("Yes"), "N": WSTRING("No") } h = u""" <div class="summary"> <table class="summary"> """ + self.get_is_complete_tr() h += tr(WSTRING("total_score"), answer(score) + " / 28") h += tr_qa(WSTRING("dast_exceeds_standard_cutoff_1"), get_yes_no(exceeds_cutoff_1)) h += tr_qa(WSTRING("dast_exceeds_standard_cutoff_2"), get_yes_no(exceeds_cutoff_2)) h += u""" </table> </div> <table class="taskdetail"> <tr> <th width="80%">Question</th> <th width="20%">Answer</th> </tr> """ for q in range(1, Dast.NQUESTIONS + 1): h += tr( WSTRING("dast_q" + str(q)), answer(get_from_dict(MAIN_DICT, getattr(self, "q" + str(q)))) + u" — " + answer(str(self.get_score(q))) ) h += u""" </table> <div class="copyright"> DAST: Copyright © Harvey A. Skinner and the Centre for Addiction and Mental Health, Toronto, Canada. Reproduced here under the permissions granted for NON-COMMERCIAL use only. You must obtain permission from the copyright holder for any other use. </div> """ return h
[ "rudolf@pobox.com" ]
rudolf@pobox.com
a4c252bad6d3b3e3972ec02f656853437fe2997e
b1599f517e62c6651c930c28c430ac3ff7d52bb9
/src/apps/api/tests/test_profiles.py
1c95fc5d70cd665d96d44fe058618e9d3fd7b8ce
[ "Apache-2.0" ]
permissive
HunDeMingMingBaiBai/competitions-v2
4d9ef93f14a3bc43c582c67b62904c6bcf0c19fb
745b56274ada40b78cda6e91dd762f2d547cd841
refs/heads/develop
2023-08-11T06:02:49.780503
2021-09-09T04:39:42
2021-09-09T04:39:42
377,348,778
0
0
Apache-2.0
2021-06-16T02:32:30
2021-06-16T02:32:29
null
UTF-8
Python
false
false
9,799
py
from django.urls import reverse from rest_framework.test import APITestCase from json import dumps from api.serializers.profiles import OrganizationSerializer from factories import UserFactory, OrganizationFactory from profiles.models import Membership class OrganizationPermissionTests(APITestCase): def setUp(self): self.random_user = UserFactory() # Organizations Setup self.owner = UserFactory(username='owner') self.manager = UserFactory(username='manager') self.participant = UserFactory(username='participant') self.member = UserFactory(username='member') self.member2 = UserFactory(username='member2') self.invited = UserFactory(username='invited') self.organization = OrganizationFactory() self.organization.users.add(*[ self.owner, self.manager, self.participant, self.member, self.member2, self.invited, ]) self.organization.membership_set.filter(user=self.owner).update(group=Membership.OWNER) self.organization.membership_set.filter(user=self.manager).update(group=Membership.MANAGER) self.organization.membership_set.filter(user=self.participant).update(group=Membership.PARTICIPANT) self.organization.membership_set.filter(user=self.member).update(group=Membership.MEMBER) self.organization.membership_set.filter(user=self.member2).update(group=Membership.MEMBER) self.organization.membership_set.filter(user=self.invited).update(group=Membership.INVITED) # Urls self.update_member_group = reverse('organizations-update-member-group', args=[self.organization.id]) self.delete_member = reverse('organizations-delete-member', args=[self.organization.id]) self.validate_invite = reverse('organizations-validate-invite') self.invite_response = reverse('organizations-invite-response') self.invite_user = reverse('organizations-invite-users', args=[self.organization.id]) self.url_organizations = reverse('organizations-detail', args=[self.organization.id]) def get_membership_id_for_user(self, user_id): return self.organization.membership_set.get(user=user_id).id def get_token_for_user(self, user_id): return self.organization.membership_set.get(user=user_id).token def test_non_admin_org_members_cannot_raise_permission_group_of_themselves(self): self.client.force_login(user=self.member) data = { 'membership': self.get_membership_id_for_user(self.member.id), 'group': Membership.MANAGER, } resp = self.client.post(self.update_member_group, data=data) assert resp.status_code == 403 def test_non_admin_org_members_cannot_raise_permission_group_of_others(self): self.client.force_login(user=self.member) data = { 'membership': self.get_membership_id_for_user(self.member2.id), 'group': Membership.MANAGER, } resp = self.client.post(self.update_member_group, data=data) assert resp.status_code == 403 def test_non_org_member_cannot_find_object_when_changing_permission_group_of_others(self): self.client.force_login(user=self.random_user) data = { 'membership': self.get_membership_id_for_user(self.member2.id), 'group': Membership.MANAGER, } resp = self.client.post(self.update_member_group, data=data) assert resp.status_code == 404 def test_admin_org_members_can_raise_permission_group_of_others(self): self.client.force_login(user=self.manager) data = { 'membership': self.get_membership_id_for_user(self.member2.id), 'group': Membership.MANAGER, } resp = self.client.post(self.update_member_group, data=data) assert resp.status_code == 200 def test_admin_org_members_can_lower_permission_group_of_others(self): self.client.force_login(user=self.manager) data = { 'membership': self.get_membership_id_for_user(self.member2.id), 'group': Membership.MEMBER, } resp = self.client.post(self.update_member_group, data=data) assert resp.status_code == 200 def test_admin_org_members_cannot_lower_permission_group_of_owner(self): self.client.force_login(user=self.manager) data = { 'membership': self.get_membership_id_for_user(self.owner.id), 'group': Membership.MEMBER, } resp = self.client.post(self.update_member_group, data=data) assert resp.status_code == 403 def test_admin_org_members_cannot_raise_permission_group_of_invited(self): self.client.force_login(user=self.manager) data = { 'membership': self.get_membership_id_for_user(self.invited.id), 'group': Membership.MEMBER, } resp = self.client.post(self.update_member_group, data=data) assert resp.status_code == 403 def test_admin_org_members_cannot_delete_org_owner(self): self.client.force_login(user=self.manager) data = { 'membership': self.get_membership_id_for_user(self.owner.id) } resp = self.client.delete(self.delete_member, data=data) assert resp.status_code == 403 def test_non_admin_org_members_cannot_delete_org_member(self): self.client.force_login(user=self.participant) data = { 'membership': self.get_membership_id_for_user(self.member.id) } resp = self.client.delete(self.delete_member, data=data) assert resp.status_code == 403 def test_admin_org_members_can_delete_org_member(self): self.client.force_login(user=self.manager) data = { 'membership': self.get_membership_id_for_user(self.member2.id) } resp = self.client.delete(self.delete_member, data=data) assert resp.status_code == 200 self.organization.users.add(self.member2) self.organization.membership_set.filter(user=self.member2).update(group=Membership.MEMBER) def test_admin_org_members_can_delete_org_invited(self): self.client.force_login(user=self.manager) data = { 'membership': self.get_membership_id_for_user(self.invited.id) } resp = self.client.delete(self.delete_member, data=data) assert resp.status_code == 200 self.organization.users.add(self.invited) self.organization.membership_set.filter(user=self.invited).update(group=Membership.INVITED) def test_invited_org_member_invite_token_validates(self): self.client.force_login(user=self.invited) data = { 'token': self.get_token_for_user(self.invited) } resp = self.client.post(self.validate_invite, data=data) assert resp.status_code == 200 def test_invited_org_member_can_accept_invite(self): self.client.force_login(user=self.invited) data = { 'token': self.get_token_for_user(self.invited) } resp = self.client.post(self.invite_response, data=data) assert resp.status_code == 200 self.organization.membership_set.filter(user=self.invited).update(group=Membership.INVITED) def test_invited_org_member_can_reject_invite(self): self.client.force_login(user=self.invited) data = { 'token': self.get_token_for_user(self.invited) } resp = self.client.delete(self.invite_response, data=data) assert resp.status_code == 200 self.organization.membership_set.filter(user=self.invited).update(group=Membership.INVITED) def test_org_member_cannot_accept_invite_for_other(self): self.client.force_login(user=self.member) data = { 'token': self.get_token_for_user(self.invited) } resp = self.client.post(self.invite_response, data=data) assert resp.status_code == 403 def test_org_member_cannot_reject_invite_for_other(self): self.client.force_login(user=self.member) data = { 'token': self.get_token_for_user(self.invited) } resp = self.client.delete(self.invite_response, data=data) assert resp.status_code == 403 def test_org_member_cannot_invite_user(self): self.client.force_login(user=self.member) data = {'users': [self.random_user.id]} resp = self.client.post(self.invite_user, data=dumps(data), content_type='application/json') assert resp.status_code == 403 def test_admin_org_member_can_invite_user(self): self.client.force_login(user=self.manager) data = { 'users': [self.random_user.id], } resp = self.client.post(self.invite_user, data=dumps(data), content_type='application/json') assert resp.status_code == 200 def test_admin_org_member_can_edit_organization(self): self.client.force_login(user=self.manager) data = OrganizationSerializer(instance=self.organization).data data['name'] = "Changed_Name" data = {k: v for k, v in data.items() if v} resp = self.client.put(self.url_organizations, data=dumps(data), content_type='application/json') assert resp.status_code == 200 def test_org_member_cannot_edit_organization(self): self.client.force_login(user=self.member) data = OrganizationSerializer(instance=self.organization).data data['name'] = "Changed_Name2" data = {k: v for k, v in data.items() if v} resp = self.client.put(self.url_organizations, data=dumps(data), content_type='application/json') assert resp.status_code == 403
[ "noreply@github.com" ]
HunDeMingMingBaiBai.noreply@github.com
682ee65e3b3619ab3edb8cc875be5f533710d491
88be8d0532c4190f386409cbdb957682537826bb
/a2.py
c9aaeb503178383fa7b784d3c64e73553aa8c601
[]
no_license
taoxlei/pythone-chanllenge-code
c9e84c39a6c786082b2dbe89de285d45ec23ff4f
b7d837c4a2a13bbdb61c8587394d8fb8c4d16eb4
refs/heads/master
2022-04-27T00:58:12.652800
2013-11-28T13:43:05
2013-11-28T13:43:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
98,921
py
orginStr=''' %%$@_$^__#)^)&!_+]!*@&^}@[@%]()%+$&[(_@%+%$*^@$^!+]!&_#)_*}{}}!}_]$[%}@[{_@#_^{* @##&{#&{&)*%(]{{([*}@[@&]+!!*{)!}{%+{))])[!^})+)$]#{*+^((@^@}$[**$&^{$!@#$%)!@(& +^!{%_$&@^!}$_${)$_#)!({@!)(^}!*^&!$%_&&}&_#&@{)]{+)%*{&*%*&@%$+]!*__(#!*){%&@++ !_)^$&&%#+)}!@!)&^}**#!_$([$!$}#*^}$+&#[{*{}{((#$]{[$[$$()_#}!@}^@_&%^*!){*^^_$^ ]@}#%[%!^[^_})+@&}{@*!(@$%$^)}[_!}(*}#}#___}!](@_{{(*#%!%%+*)^+#%}$+_]#}%!**#!^_ )@)$%%^{_%!@(&{!}$_$[)*!^&{}*#{!)@})!*{^&[&$#@)*@#@_@^_#*!@_#})+[^&!@*}^){%%{&#@ @{%(&{+(#^{@{)%_$[+}]$]^{^#(*}%)@$@}(#{_&]#%#]{_*({(])$%[!}#@@&_)([*]}$}&${^}@(% (%[@%!}%*$}(*@)}){+@(%@*$&]*^*}*]&$[}*]%]+*}^!}*$^^_()#$^]++@__){&&+((#%+(&+){)$ %&&#($[[+##*%${)_!+{_[})%++)$#))]]]$]@]@($+{&%&%+!!!@]_]+])^*@$(@#${}}#}{%}#+{(@ #__+{{]${]!{(%${%%^)(_*_@+)$]$#_@$)]](}{}$(}*%+!}#+)$%$}+#@*&^{##}+@(%[*@_}{(^]^ +_*{@+[$!!@%$+{_&(#^(([&[][[&@#+}_]&&]}^*&$&)#_^$@$((%)}+{}$#+{+^}&[#[#_+${#[#]{ (@@[%}[}$%+*#$+[%(**!$+@$@&+$_$#!_&&&&{***+)}][}#^!%#&$*)$!%}*&#}}##(^_%^]{+]&&] }^]#^(}@]&$]*_][])$]{_+})^_}]))()^&)(!*![!&}{][(]})[(*^}$&$_@^$)#${%[$_]!^]}}}*+ *^_(+}^)(%(}{&)[}!$$&&+}&[{%}^+#$]@)^&*%{@}]&!%*%$*&][}&{$&*@{@#]$*_[]%%[#]#*%)@ $_^#%$!{#]^$}%^@^+{($!^($%)]+&}+$@[$*)*&)*%!_!!+@&^*{}%#&{}$!(*^*@]@@})[($!)]]}) })(&+##]##%&##$}@{#_])*%(*(@$)}[+(+_)!{{#^{_@)!&)$}@^^^[$#__+$^!*#%%]_!#$]$&+^}% @])])%}]#$((^+{{@++^])$^*#[$}*]}}{)@+)[_}*@^%#]]#+()+)(]_[!!!)+)$+&@@])!}+*%]$[] &&[@+$_&#[$!$${}{%[]#+@)*!#)*!{$#*$%}[(&@$&_@($$]]]_[+(#@}&_}+]@$#_+](}^})!@@}@) }^]^]*}]+&(@@!!](*@#(++*)]!(^$})&_^@+]{#_@*%^[$[%&_%@%_![&&]&_@*#_}[{{])^$[_$_&_ @%%[@#[@_[&+]}[+)!_#_+++%)[@%$(&$[{#@(}$*![#^#{}_)[$^_$${_@&}*![#*#_+%[@{*^$){)# #%}]{+((*^]+{})&#$!#(*%({_!^*[{%@_&#){![&]@$#[#(!{*#^*%)]!%(#]%${*_^{+}(@}{_^(]( _+!_)^&}!#([(+&[@])[_(]@]@&@{#@(%[@+[^@%@+]*_[{]$[_(_@[!]]^%+@#(@$}]@(^**+]%^)^( @}^[]@@[@[@}^(^!]%*_]&$!!^^#*[#*[*_}+[$#(_#%@](+[^+}%{_*#]+*(]}!$(%@%#^)}]_&]{${ }$[*{+&+&}[#_#}_(}){^#{[_%*!$+[#)%]@&&_{)#[+*&+#!&)%)%++$_}){%%*@!*&%__(_!]#$*(_ $^!@@}_())%(&$%]]{{{@+!&%@(^!+*{%[*[!]){(#$@)(^{]%[&*(&!{&}!%*$)*]]$%(__[}_+&)!( ^_&*]*+#@{@[_({$*&}][(*!+$+#%&![%^)^#(#}+*+(@)&&!({^^_*($^+)&{)%$@%)&!$$&&^+#[)$ +!$^]*!%^_$}$+!!&%_&){$%{((&^{{(&_&_]{^}@[$^+]}]^{@!^@_%_{^@*)+^*#$#!+*}#)}@(}!] _*)}$**@}[^_&*^)*+#()]&{{]*+#${@&}#)$[]_+(^_@^][]_)*^*+_!{&$##]((](}}{[!$#_{&{){ *_{^}$#!+]{[^&++*#!]*)]%$!{#^&%(%^*}@^+__])_$@_^#[{{})}$*]#%]{}{][@^!@)_[}{())%) ())&#@*[#}+#^}#%!![#&*}^{^(({+#*[!{!}){(!*@!+@[_(*^+*]$]+@+*_##)&)^(@$^]e@][#&)( %%{})+^$))[{))}&$(^+{&(#%*@&*(^&{}+!}_!^($}!(}_@@++$)(%}{!{_]%}$!){%^%%@^%&#([+[ _+%){{}(#_}&{&++!@_)(_+}%_#+]&^)+]_[@]+$!+{@}$^!&)#%#^&+$@[+&+{^{*[@]#!{_*[)(#[[ ]*!*}}*_(+&%{&#$&+*_]#+#]!&*@}$%)!})@&)*}#(@}!^(]^@}]#&%)![^!$*)&_]^%{{}(!)_&{_{ +[_*+}]$_[#@_^]*^*#@{&%})*{&**}}}!_!+{&^)__)@_#$#%{+)^!{}^@[$+^}&(%%)&!+^_^#}^({ *%]&@{]++}@$$)}#]{)!+@[^)!#[%@^!!+{(@&+++_{!$}{]_%_#^#%&{!_(#$%%&@[})]+_@!(*[_@[ *_&+][^][}^@}])!(&^*[_%+(}!!{!!^*@!({%]#[_&()$]!$]@}*][)#()})[*^[^}]#(((_^#%%]@} ^###%!{(@+]$%*^}(![$@*]_{#*!$*@%*(^+#!)$&]*%$&*@$[)_$!&+_[$)%_*((%+##*]@+#*[$$)^ @)]}!)$^%+%&_#+]&&_!(}+^*#)$%%^+&%^_]@*%^^_#]%{%[&(*_(%(*{^@[@&+!@&[+[++$})$!*}+ (_^%%*}^{+}(+]]_][_(@}^#_{_}*){*)}+*)%#%++}{}__%$$$[%%*})_#*!_!%&*$!]!}{*+{^()$} *$%*$]][{@+*]_*&!^]_*!_{_@(}+%#$+@}_]#@$#^%((#$%+++]])#*@)&([^#]_$%$)[#)){({%@_^ @#}@*!!()[]%$*+*{*$%@**!}&#[*#[[{(@&_){{!}!)++@*{{({_!#^]}+{{#]{$^)&]%}})^@&$%@$ $!_+!{]*^_+@&@){#*!_#+{[@$^(__}*[^$&{&]!(&+++_@+)&}))$%]${+*!(#@(}&&&!)!_!$&@&{[ [@!#!]]#%)(_^!{*[{^{]})$)^&(*)%}#]#()^#+}!{_}*+{@&_^)+%@!%%${$&%}(%*_!)%$((+$&^^ }#[@%+)&^!](]%+_{{]}@]+^]{(!_*&@][]@_%}%(%&)})&!#)[_]^+$)[(%*%({]$[(#+&+[@[*([$# ^*!@{]]#![[{_]#^@])_[[+%]#[%[+_{)^+([^}[]_[}])*^!_+$}^+_)+*@$$^}(&[)_^[+})^]&))) }*+}%){@_)]_)&)!@)*#^_%{}(]]$)+^@+}+$_*&)]%^@&)![!@$[@)@}%!)@$((^![{(%([+#&{$+#[ #&)!+{)__]+%)![*%^&*^)*#[&(_%*)^_%*^{&_[@%%@^%_}&*@($[@$$#](}&$*&$$((!!}{%!^^$}! {]][(!_(+}$%*_]*&$!_[@$})#@)]*%#]*{)$@*!^#[]**+]&])$@*@]{$_+]]^_*+*+)%!_!}#}^@*[ $[##&_^+&)((_$#!]}[_*]_$^_*{[^$#[{@$[()+*@_$((+}*^!]){][_}!)%{}{&#@[&#$(}#}%%{!_ @)[($}&+&$}}%[)@[{^_+%+[)[^[*{{^#]*__$^%^}#]}*{^+{!@#(+*]$)^(*!^^]^)[}@{%(($(+_# *){@}]+}&)[(^^(*$&_$@#[#_$)^_()}{[]]{^@*)_!{@)(!))^_+_]{+_}$%(@#+{*+%@!${*&&@${] (}&($(^*{^$])*}$(#}%}#)_@^*}#!)$)&$*__+!!+[&}])*_{+$}!@)*^{{({@}{@}+@#${$^*@^^}( [)!^){!+@%(^_)[]@(]+&^_@[*(_@^*##*&*$!{^{!&#@(%&(@!]^[]({!+(]+^}&&${{]^!+#^*#&%{ $[}@&(]^&^@*#[&&}^[!%+#(+(%+&){_@_&%&!$}&)[$]%_^]*@^]&_}&^^^(&(${%#^(#[}}{%))&}{ %&___*&*((!#&(^)}%**$+_[!#{&_{$_))[${$*([&*%^!$%%&}$&_))}{(_]!+{}@+%{^*_[[@@)%}% @)%*(}($$)^!#}+}#$]@})+]&@^!*{@_**{_^{@(^(@++&)!#](&#*[)+!!%{]_*$*(]%+&_^%)$$$*$ &]@}!&{@[{(+**#)}${[*@$(+%__{{}#!}@(%^+*)$+&){^(_*&}&__]^*)}]^!!%&$#[)$)+_{!$%@) _##)#^*%#}{$}$[!!__$)}(%+[^(^$(%_)#!$[$@+]${$({)[^$+&$($]*!+$^{_(_%}(^)(!_))![*^ ^%^&})[@#}#_%$*}&#!_)!)){*}!@&]*(@^_&[)]!*$&_[@&]($}!]!{)[)[{{_{#(+_!_#{]_(_(${} %*+[}#{)@]&@($+&!^[}![}&$}*^[!)#^_#**${+(!+!#)!^%_#%[][(@(!!}&)_*{%@_^!)_!_@!^!( {^](#%%&@#))$&#_&[[#&^&^}))([]&^+^@($!}{+^+*{%[}_*+_*^+$)+%^(}&[_%)$+{}{[*]+$]}& @}_]_[%&)[@+}{+&^!#@_{!__!^%[(]@!+*%[!+)!{+_]*&+@*[_(*%+}*@+@&$!+_@+*&[#@%###}^^ %_@)$[&){&#&$!&}{@&&*[&!!!({)&{)+]^*&)]+[+^%^[_&+^$!$!+!+_(}+^}+&#*_&*(+_+[[)$!} ^$]}%](]]#_}[(&${{+((][_*%!)(##[@*&(^!_]**}[}{[%]*!$])[_))&(^$)%))&(+^@$&${_@![! #(}_{$(&_&[_]%*&*@]}]}[{!&*}{{&+*$@%%}$+^[}{&$^%%^]#%{#](_){[()@@)[@]!#!%)&*+]_} }[([#}[}&&}+{@!@+}]){_)%_+({{!]*}}^(!])#*^)(#&!)_#$[%_#{!##%%+)@{**)%+&*[*#[+*$) @(!%)*)^]![_^%#)}*#!_@_@)(#)(_(]!%@)!_+_)]!*@{&!^%_+*(%%$!!_^}@^^{[@#*&+[(%#[{({ +)&+_$!${]+}^$[!]_#{{#]!{[&[$@*^]}@]}+{)_#}@_^%%$^{+($*[###@))]}@!@]]{^[_@)!@{@} *+^(_]*$!_^_+[#))$$]*+%}{[&([&)@#{#)*%)])!_^+%%*#(+!}+{[#+#%%]@((]!_#@*%&(@[(@@# ^#}@}[*@})&$)@#+*!}^^()[^#^])+$$*%^*@^^!^$^#_!@^^(_&&][)@(%([[]&]]{[^}!@^[+${*%# {[!({&_(_!+$]@}@!))$[[+#+{(@&@^{]]*][]}_$$$)##&&^#_{}}#[*%(+&]@%{@)!&{+{*^_#_$*^ []}+^+*{[)}![}@[#$)}_^}#$!#%{([*_^+!#}$@{{&)!#*$#*@&)@&]^}!+{!}{)%}^[}]}[$&)^$)$ +){@)%$*[$_#))[({)&()[_^&^+#}%#((+@@[$+!^[%*_{]*+)}#$${+!@_)@@)@%**]_]))$$^&**!_ {!]^*+#]$!@+!$)^%)!&[$*[@!(_)[![)(}$}*)$(&%%&+^}+^%%&^_}]!(&]#+$*__*))#*{_&*]{*@ }_{%]]$)(#@![!(_]!)+&$&^(){$%_(_%+}%*%&%!!^^)(_*@{^#())[{^&@}#{{^_$[*()*$&%^_{)% #@#{%]_{%#^)@(]#]}})#)*%)[{_^%[}][]^]^**]]}]@+%_}(])#+*^&]$^[$$%]$&+({!^{^@+]{(} &^$@[$#(&+_%{*+%%(][%*+*{[)*$#%{({#@]_(#[{*(*$}{$^}[]{%]&{@#@^]{[)({%[)%!*$$}@&& _+&_}@!^$}!$@_+^^]}@}%}%#+&($)]*+[%^#*@+_[((#!}%[+])[}[^)!(&*^}*+]){$#&}&*{)%^&! ]@][(&@)#{#_*^[@]$[(]{()*}$[}*{^]&]$!%)*!}}()^^(]+*!]^*[^&+$({]%!@)]^#$(^{@^!(}] &*^_(+_&++_]])&]#%@^#%$^^_[+[&*[*^^}_**!}*}_%&([%^$%_$]]](_@$*%!)({&##([&%((}$*% ]*_${+(#^+^*!@@@![&&!}$)]%^@)#%_]&(])_@+{*#(}*_(!(}$[(_^_^]_}!&_&()(@+&_*^+)}#}[ +[[%){#[#()#_$(]!(^]{@(_%}$[))}*)(]@@#+@[+$[))[%*#%@}*_$)*@@@}{&^#@!}{+{^&))+}#] %{%{&#(*]$}}{}&]$*%(}]{#*(+#%(@]&[^!{&}(^*[@)$^!^+$*]&])@##@*+![&+%_{+_)[[)+)(#_ &{^#}!!]_]}}}][@{^[%{*+!!!(&*$@^!_)^*$^@][+[{&#%!!_^$&{(_(^!}*@%([@^{%^%(+()(+%^ ])*_)^$}_}}*{[[*{+[+*@%}!%#%%$!]]}}(^@@^!*)%^+(+!}!#$_&}_}_*#^&^)[(&^&}#$*}*#}*^ &{%{[}!{_$_[]^&%}})!}]%$+@!@(%)@[}%_@]]%!+$*_)%}#$[&_])}][@%[^_$#$((%]+})%#$)]@# ]@(!@#)[{$@^!]{#^&+)[**[}%#)+(%]#*$*&}}_%%]]&!&$[)]@{+@*#_!{@{#{_$%[!+&$[}+((_]} ^}[[+![})&+^&@_){(&_^&&]#&&))@@%[{%$+%})!_&[[$}&_@[+%}&*]$)}$]&^@{^})))_#@*@{([+ +%}^{]{]]]+}${$!^)]#()}#{_^+__&#*^&+{!{&}&&@{#&(_%#^*#+_${}!]##]*[(%])[{(+!((}&] )!(}##{+%#_[%([}*}]!_(!^[{[}^{@*(}{@+&$)$){!^@]{](@{)#[_!*_*[#!$@)!}@}]_}[*#(}@# %@^}&[^]$^(%(&&+!{^!)!#%{[^&+@[+*!])}^])+[&[)}!}{$)}!)^#)^+}+${][!%_%$%&%$)){*_& *+@!}+${()}{(&$^_)&+#{)[^$*[!$]_$%)]^]@[$!#%((_&&[%]!}$%$$[$*}$(*(+&!#^^#][*{(^$ ]{!(}#])#%{&!)+(({#{#*_+{[%[!#&%*])_&*)_}+@{&}#*&#[(!&]]*)#%](#^^&%]@(*]+^{@{#!* ](%$()%!]+}_([](@[^&@{][%])*]{^@@{#$*{!^#)$&!)!%_}&[(*#[[&^_&!_&!@#_$*__@{_#%&#} @@+[+&%&$[%[@@(@!_&&%#__!@{$#&@[*($]*](&&{}#!^^$[%&{+%}]_}!#([}^{{**@*($[[#[%}*# *^^[%)%@[&%}!+&!}*&*!)_$[^^#]$$}@(*)&)}@}^+@@!!}&%[]*#$}+}+#!&+}]&&#^))(*_][@!*{ !}*#^()_^*+((&+($]!!$){@$#$}*][]]&}(^{{]_]+^$+)[^##)})@^+$[[%[(_+@$$*#&%%_]+}[!$ @])(]){)#_$_)[$!({@#$#^#_&^(_%(*}^%$]+$%&%{{!{]}]$*@_&%(&&{)*]^}&}^&[@)++]!(#[([ @^#^$&}#)}#*@)*#&[^]{)#*@(%(%[$}!{$}_}#(_}#^^+[(#]_}#}__&^{{@$+^!#}}[#{!+#&_^!_$ +)]#%*{+((*_+_]+{]*)#*]*_!+_*$(!^%%#%*%^$%{*@@[+[((*(!([}_]}@^^+(_)@{[({_^]^)@&! !+]^]#%]^!{(!#){_!![({)+@{&^}*[}%}(}%_%*&]+*)_!#+{^)$##_]*}@$^#()]*)@%}[^_)!%++! _(#(&}#@%!)]$#^@&]%[[#!)(}){}}([)+%}@[![^%_**@[]@%]*)])$+_[%]#@!$^]&}*!(}(^}+)(% })!{^^)#+%%#[^!{{&#_}^*^@@}#}$(!&#((_*_]_)$[(%}[+^(@}{+{}][#^_{]]^)!##$#&!@@%@%} }_!@[##$@%)}&+!!@#&}$[]+%+({()@+}]#+%_#_{$_^}^}!&[^*^[&@@@^*[@}{+[[%^+]{@@}&+]]( *$**&+{%$@[%^]+#@]}@[*%*]]@*!*%[^+(&_!{[%)}}]&$^[[+_[%@!!}_@!])*@^+*&+&!#(*]!}%( ^![%$&[+*#]}&$}&_%^&}*!*^&_[@&#{^%]$^[*#]^@{#%)%{)@{)*]]!]@((![[(($$[%{(!#^^%!__ {^*!*%^[}&]_}#]{_(_&((([(]!}@(]^!+]#+!&}_@}@_)$$)}()]{_(&}(%%^}_^+[+[$}[__{(*$+^ !%${[&{@#%}^#_*$^+%&+{%)]^%##+{^@$[&_{++)_@_}#[[(_+!{&@[!%@*{_*][$$$###[!}%%&@(! @+}{{$#%^(#@&(!!_]*$[#(&)^&$$%#{{#_*^{}@&{*@$!_(+*@]@$(+}+@%}*+]()_&_(]%)@]{(_#_ $*@]%($}}*}$}[$(!+(&@+]!#+{@@%%[[)#(+]{}+%@%+_+*+{#&(]$}})^!*%_][@{{!@)&%{@$^}!( }&]&&[*^@#}&++#{]%*^@%)}@)]+(_^!}*^]_@#__#^#[&]&%]{_(_{)}&}}(_{}+(]&{^))}${}%]_] %)[*+_[)^]+(+{#&_([^)^}!_*}#}^]}^]}^@&($@[!&#]{$%$}_#(^^[%@]%_}]+%&&%$}]){@}}]{@ ]!%_$}&#]&+_](*_(*)*][]%%$#+!!^((})+{}%]@@_+}&_&[{]}**^$^)[&}]^%$_#{}%)]+!%@!*)} !!{[{*!+_^+[&(_&@{]@+]{%_+%%+][*]*}{^](%*)_]!$#]#@%}!+&][!@%[$((}@[[#&{!^)%#&+*+ *#*{@)^[{_][{]!*$[#@^+#{)#%_^&*{){+[^(!^%$(&$&[{(^!%)]^{]%}}%}#)(#}#{_}!$$**{%#) +}***@+[!)@{[+^[+[##}*%$[!!%_!!@[#@#@&#![%]@())_}!##%+#{}#(+_&{}!%_@)^}++^*!%)!_ {($#[#+_%}^)_^!#%*&#[_#_)_[#+&%_!*{[!**@}($!+(!__(^}%#{)^%}[)[){^!*{@}]!+{]){]*_ _[{!_%[!#^*[{#[!}{!($%+^$]]{]*)&@&#&+(}!*&])[%()*]}^_+@[^+%*]%^!${@*[{])}){}^$(_ !(+]{%(((&+!*%@[#*}^)_(@+*@*&(){{@}+]]+^*)({{%#})&(*$]{&$#_{{{[@](*$[!%!@%!*&!+& ^@[_&$&[_*&^}+__&%[#+#+})[+#!$*#^}[#&*}(+(]+!*]*(+(^_#_+^%]]@!][@%!+{{_%_*$!@{!^ $^%**@$[$^]@%+%__*}+$)*(*]{[$](]#)!)#@}_]+**)@!%##*^#(!*!+}^{!){}$^@_^!_%$}*&[#} *^**{%*#@!}#+%@[&##]]%+$*@[+&%@){$%{}}$^]}&**%$(^%%@[$&)_}*)*(#_#%_+@%)]*{{!{{*} $^(_*$_$&&%](_@}]&(&}@$+]_%+@!++_*@*@%&[*%]@{)#%_]@_@&{#!%]+^^$*{]#@[+[)^)&%{@$& #++$+!#{([%%+)}+}_+$){{#++&%((^^@%!}^&^$($#%}+$}([]][@^_@}##&_)$##[{{@)%{+*}]{&^ )$%!#}@!*_[_%!^+[)}!#{}{)*]!@#)%{&*#(&_[$)&)@[_+][(${%%((}#+[)!+[*@+$$[^$[!]_!#& &)^^@@[*^^_%_@*#$!}_&**}@_@__%_$*}^][(($$[(*%)}+*$((}${@^$_)$#@]!(}{^}]!%%!}}^#( }!_($(^%^]}][{(^]@+{+%}+]!{%}%!@}&[}[&&^+!#$)]_{#$[]_@}_$${^%^^($%*]}$*_]^{%+$$_ [!+@@)^]_&&[{)+@!%[)+^![_))&_^!(^$((!_}@$+)!@]!]+${#_@^@@+_*$([##)@^^*#[]@$}^@){ *})($_()()[*!!@#(&&}]{]+{[*+}%_$(@(}&{]*$!$]_]+&!%+{}$}+_**!@]_+(&[$}__@&[!}{#&_ )(}(+(&#$($$@$)){&*#($]&(@{+*+@)}+(_]()^)}@$^&]+}#**+(%+]_*]+}_}$%]%)]}{[$*&{$_^ ()(]]#^*)#(*_^}}_(*!&{@%($+[](*$+}_!))*$#@@^!#*$**%!!)+@+%!^)_[}{*@{(_^#}}+_}))[ ]&[]{{](}*#^%(!@%$@)&})+#[@[(}%+&)_*}#!)+]*&}+%](++**]!(([#[$*])}{{!+_*])$${!]&% [%]@@++#$@^_^[(+)@%_^_%+^^^*![@{+%_{[(([]@][)&^^*#&[@*^+}&$+@*_!!^}{)&_!!$]@^))] +^]+^}&@@$!${*([}}{&{}_&]#&)!{*#}_*]_{@%}_]%#%@**}$[#%*%([$#+)^(*^^#)%}[)!+[}])[ [{)_[)*@_#*($(%${[)$[%^@+%&!}]_&(^()#()_{_&_&*&[}+!$^$!]++*}])$$]!}[+@%{!]*^}(%] &+!]]!&^{(*+[!&]$%%_#&]+}*$_%!#&^]*!*($_@+#(#&&)#)&+![%[^{^%&}@{(&#^^^&&#@]{!!@^ {@(*_{*[}+${(!$]%![*}!#*%&)^&&@#{#&^{)#@_(%&}^[!@_^+__{_{){$_)&#(}(*+)%[)@+)}[}# [%[!*@$${[&^[&@%&]%#+_}%##%${$)]}@&&)_)*#%#${_+}+{*^{{{$&$^[@%[[]$@]%}#$)_[^!__] $*]&[[+([&{!}}}%[{}#@}!!}^_(}@{{$_##%}{]][!!@^[&)#*(%^_!!%^*_][_%}^%}[}]}()]}_%) !@_}^{*!$)@){#)_*{}@&]&(@()!&!#%_(]^[@$*{{{[#)*@%!@}^}+%^$!]+}$*(_&}}{(+)%(&{!!_ (%$#!^%{[)##^]**@+]*+]_&#{{&%^&#%)^#}^)*$*&)[]**!#^*@(^*^{[$$$+$+}+[%&*%[_]^#@$( @)*}*}(+#%{^(+@&!@%^#$&^}&}&}%{#}+!)!^}#{^_}_(%&(#_$+!%+$*@#)%#{}(($!&^%&}+&@%]! %&*&)*$!##)%[&)(_)&}*{%{]@[#[$@^]&*&@{+{){*^^)@}$%#&)%^)@+##_]$@_{{}({+$#{[@_}() ^+@])!%}%^[)^)[(_$^@{**{(^%_[^{$)&*$^{^#%@)](}!^_#_[)!_%{[%]{#&*(^^[[{(+}^%+##]@ +^_$@{^+_{[+^#@)&+%_+)[^}}*{$)![#][!^@{}&[^]&@}@{%+@}{+([{(](}&%}%+&^]+(}{][_[&@ #_#^$$[!%}#@[@+&%&*(&&[}@)^!@[@&{*&{[{@+%)$!#!!]{@(@@&+)++&_+)[_(@{&[_@&&#})%[+@ ^[${+![}[&][)(@+[+*+#{*!(^&()&#_^(%@]]&(+^)](&^]@@)%[@#*[_}$$]*][@(())#)@%*{&{!+ _[(^$@!+**!!*!#*]$*]@{%{$*$]*{#%)*^})*$[{$&^(^@)%!_!}({@#)%&$(+(^{+[%}++#]{[((^@ &])(^+$%@+$&)](](^]@^^]}%[%[**#^_$+$!_[{}#_{)]!$@]@$}+(]_}^#{%#$(!%+&*!_&%!@]*^^ ($&*#*&){+@{$#@[()[*!{}_)!&$%%^@!%!&@$!&^$_}!]&!]+[_*(^)_^]}**}&%)}[&#&[[)$]!&({ }#@]_#@}@$#__%#}*}{++![#[}[+@($()){#^)(#$!^!&@}@*@{{+#(}@+^$[&&%!{_${$#@])&_[]#) ]@)+##@]^@}@[&#%_!*@]#]$+&+[%+!*}*+}_}]*^#+^#}!)#!}&#%({@[{#@$!)@!)!+%$&{[{(_$$! (})$]{}^+_%(*]*&&))[])+(+]}@*%!%{]%@*%$_#)%(&(&%!#(&^_*&*&#]{]^][!(%&}(@&{[[]+$) &%(*@@#+!_[}&^$)}%[$%([$)!##{@))^_}_{*@+^)[&}]*@^{*^(#!(&^@{)*$&{(]**$*+)%$($!@! [*]!]_*%[]#__+_}}__)[{$!&&({)[#{#_&()$@{)+)#+}#&{^^{#^##_*&#}*+*%&}%@]_!}}!#**&% $&@{$*]%[!@*&%+%&&)#_+!_&^^%+${!+++)+$#@[$)+%%!{#(&{]&){!&@$*#%&}[+^{!#+$}++$#(} #%$(%$&#@$!))*#!_]#^@%%&!*}!)%+&@+*$#_[__^[%+(*!*)^&))(_(%&{}#%&[)+_]{#+&!#]](%! ($@&^}_@^+%$($_${$[+@]#*#[}]&#!!{&@!&@(!&#{[+]#*)@)[&[}))^[[@#!*}+(&)(*_*%%#!(]_ !_&!&_{[)%@{_){_{**!@[[$]__^([)^++_+{+^_&!&$}![#}$$]]@[(_)^}_(&+_]{&}}}{_[][##+# {@^{+)_*%}@%*(_{^+&)[]&{*(}]]$}}^@$!&[^@@^__]}[^[((@*+%_%%@])&{^_&$]#)!+!_}{[(&( #}{&^){{!#(+#!}[)+}]$+^{)#!_%_[@}(]}%}#&&!][[%@}^]@))+!))]#!+]*[)]_]*{][$!+*@{#{ &)&&^+_*!}!%({)}^)))$[&_%@#]]!]@)&$(^{@&@[^_#)@@+#%(]&)+!){$]}]){_{}@#%%*%#!)[]_ _[#@@$}}{^&&$^_{}%]{]&#(@_!]%_)^$$!#*@##^!($+*&$+&__@***][!@$]$)*$^[}$^&{}([+{}& _[$[&&*#@[[@&{_$%!{)[)&[^[+^^^{#$&$_*{*^&)(+(&$}^)%+(#[%*#[*[([+[]${&({%@!](&]*[ +_^[^[#&)^[@$*+@@[!}&){}{^+@[)^&*$]]%^_!^$+%&)_}}([{$$_][(*]$&]]{^)&(^#[]%*%&}}# +*[[@)_{}&%}_+#)!^{(}*^[@)}@(+[#+#*{$)&_!}[#[*+)!#%{%*)#@++&^]$[$&#$@}}_)*&]))#^ ({^(](}+#&[][%+]}^(#^*+&[{{$_$$@^(!%#^*{()%&$))#]{(@%*}}))@+^&)+%$^)&[(]{}^]}}*+ ^%&@)!_[${!)&%#)^*)#{)})@*_]){{{[$@$#{!@}_^{{!_$&$]+[[[))_]@)[{#)$_*(}*]#$#%@+]@ $(^_[[^}^&%+)([#_!*})%%)![_#%&%!@_^+*$*#]($(!^&)%)^!#%)]&!@^}#_!)[*@*[{!(_}{{^^} ]@*{*)!!(@+]__*@$[}&($[)#{*[}(@@%!}%[{$]&^%)@&(@][+{}*{%++}$&+!&[^^%]+%_(_!#)++( ]+)($[#]@(#$+%]+$!^_&}+[!$)][)(}((+!@{^^^*{[#$_@}$!@%{(]{+^(!$*!@@*}^+*!]])$!)*[ ^%[(&[{#@}*!*$_#@@+{_&&$@(#*_]#@$}[_)*][$][_!_(_++$+)$_}^++_]$+(*+!%[}}*_^}({&[_ $[]]@@+!(_$$([#_%_$#(%!#[+)[_&!_*]+!&%}&*[{]*+[!!]+_})[)]))(}_$+{{){[#}^+[{@$[![ +*!)@](%[%)!_^]&@](^!&**^@[^($_{%{++[@[@%^[#(*[+([{}+[{%#+}{_+(%#*[&^&!)*_*+[#&) _}_^$%#(&+_!#$($*^)@(#%}+^($**][}){+(#{}*&^!(@#&][&*$#!{_!*%$)*(&@]^_*+^^#$}^{}( +)%&!)^{^$*{!$$[+{])%_^^%!*&@[%#*+##{#^+^(_])$(]_!{*+_)#]}%]^&*{)(+$!_#[*^)[@&@+ ^&[(__+_#})_*))#%#!)(]@%{^{#^&][_[+!^&++$++_#$*(&$]))@_#+&#{!)[%!^+{%#{+(&$^_)&] #^+%&&#(#!$}#((*_+&$_![+}+)[!!+*]@^!_#%^)}%+({![]_%@*[+(}@!$%$(@)+(#)%]}}@]#_%$@ _]^*+}!$+]{{*[{{]%$^)[]_@}#+@*[+@]^%)##[{^^(}_^(@}{*!(+}]#{+(@@@@@{+@(}*(*(%%*!@ )@^$%#+]!&^$*$#%*!+%]#$}^)[@_#%*_!&]&!{$#)$**[[*]+%#!{]^@&]#}^^%(%!*%#{@(*)![*(+ [@(++&]#!{_({%+@)}](&*^*!{$^_{)]}}[^+)&{##*!++_([}^})[]__@!]]&^{^]#}@++{&&{)][[[ }[}}*{)%&]}}+*!$%$[}[@[}%*^{%(^])&&_[*)+%*!%^[*()[)#%_!{]}%@)_&@#$%&(*+)#(]$&!_* [#){*%+}(+#@*[[_!)^%*%&_#_(%^^$}*(_)(@+(#+*!+*+_^$&($+$&{@[@]{%*!*_{}^%$%^@%%&+} ((^+@{$}(^$$}%()({{^#{]]{{#){&%[!+*[)#%$}*]+}+%{))[((##__$^*%{#_$#(^)){%}*@#(%** {!]^!@[$)++%@}+]]{]+@#!*]{)+!}!+_@{*@__##]&$)#%{[#![{%+_)&_#**]#$]_#!*@]*&(@})(] ^_+#+$({}@%{^%*#()(^@%$^%%]#}&^)_{%(!$)]{@(#)*@}$&(){*%+](_+}#)(_!@*$@$]$)@%{*%$ $*!{&$$@$@+&)#}}}[{){}([+__+_+](_)@++^%[!*)(+(%}}+%@%!)#$*[$@)$+){_!@*}!]]{{++[} &@&&(%*#$!^)*_({))]*(^)_^_%_@%(@)]]!_!)&%{[(]*+^+#*#^%)*[]#[[}@$%#{{^#_+[[@+)@+) +!+__#[]{*)^#%}()]}**$!%[$!*(+[}!)}+(_($@)[#(}*(]#{}{[!{)^@*%*[!!&$$&({%)+{#@]}} %[)[&(*%[)!)}$&$%@{*#${{%&[#}%@#}@!!*@*)(%(!_*(+]^&{_{_(@}#)[}#%%^*%](_)+*@^{&{@ !{!_*#*[*^(*%_@&_^]^^#!((!*#{#]#(%!{)]#++@@_&}&@+_}+&!#$${^^_(^%_+&)!@*[(])])&+_ [({*%&[%!@&&&_*#_@{_*]@&$+)}(&)+(#]^}{#%&([^^%{^}){$#](^##^%*%&#%#$#}*@#!$#}+]!! &*+!^%@]^&&++[[$}+@_%)]$_}*@*[%&*$}%&$)*#*%[^@!#@%!)}_![_%(}!$(*_$!*]+)@]}@(@{#^ [}+{[]#@)@^{!(@_]][#}+@&$$#)$*_!_[@**{^(+$$)!!$!](}!)+)^!}](+_{({!{[{}+%)$)@$%$[ $(@^*)@!^^!}#*@]%!^(@{}_!@]&^#({}{](*){+}[_}_($+@}+]@[^*!@]++_%*{^*&+[%*{})%_+&& @{@!+%*#)@^%#$&}^){[){]}]%*{+)&+)#}*#![())@&#+!*))]%@[$$^+%#}+_!}{#((}@+]]%$)%#% $]&]{&%^}^(&[}%]#!][}_]+$)${^%[#{)#&$+!^%@%%_]%_*&*!_!]{%+@]&%(*[_^(_[!$]!){!*[+ #$!(}$)#&}^](%!(^_$]*_@!^{]+)_(*^{^{&@(_#(!+!}+%${+_){%!@%++_&)}@}^_)+___*&](!}[ !}(%%@_+}{(]$+@[+%_+$%){#[{[++&)&&^&@&*%&&}@@{^!*^((@]^^{}($}_$_]@[&]%++$[^#]{]^ ^{_@%#__%{&%]%_{}++!_]}_][$+@**$^^{_@]){@)}[)!__@_$}%_$}^&!}^@%%+{&^][})@*%(]+([ [!!){[{]]@^_)*!!%@(}}^^}!@$^_${#*_@]]}@}&[*&@%[#*$]_(*%++&$+))}_}+{_!^@&)${%*}{) @)]+#(}(*_!*]%$@)_][)]_%#{$[!%$_@)]#@]*$$}[#$&+&%$[{*@^$_%$@([$}[%%_(_&!^$#((!(^ {!!+!^+{@$(^^@#(]$($#]_]!%[*#%&_[%]]]*@^(})){!_@_#(*![@}}}$[$]^@_%%}{(&[})!!#}!) ]*%!]!&{%+%@{_}*#_@$)^{{]&&^]{+)@(&+!&@_*@}^@}%(]@$}${_}{#*)!@!*)@%(%$*}(]#&&{&+ }!(*+[)!}}_*_$*@($+]+#+{)%_!{%^!{]^]_{([*))!^&))@&}*!_#^++{)]$#)}(#)%))+)+$})#(+ ^{+))%$_%]$&{#+(+!+_&!{^(@]}(@)^$$@@+_$#@^_){%)#*]+][$&(&&&*$_*{*$#(*^&*(_%%^*++ $(&#[{@*#{]_@!(}#${)(!#@+#{^@_^${[+]*(![$(_{$%+(!+(!}[&)((((*^)^@%+![!_{][#%++*_ &[&%)$![(]#$+@@*#_}@]&^@@%+{%(+(+![@))#{$*]{}+{[*!(^_^}]%#]%+[@*_&&+#}^[@[&$_]@} ^[})![*(&{#{&+}(^[)&_%[@*_)(@()!(^)^((({})^}_&]*#[*^[@^+{$&#[{[^%&_&)*{[+!^(&{*@ !)%&}{^&[{{!%{}([+](!*$]#&+++%+($*[({_$}!*^_[%{*(+###^^{(_$}(&}@}}(@)]*%)!&_%^[) #^+%]#*%{#[%@*@]{$*_$*!}^)}%!{)[))+@[%}$_#@+!_+^!}{{#^!)[+!&($![!@#!^}}{^@*$[]#! %+{+*)+#@@&([[((@)##%@)!^[$^}(##[}))%%([^*+${)(@[}$[&)%@[$])](!]]{@+)(&*#*@&]+[^ )]{$%$$}^^}&&^]&(%@*!)%[!})&(!_^]%*[&)#&!^+@(#%+@+{*%}^]$!)]{}]{&@]]$]#$_[${*@%{ (^$][(@))(!{(#))%+{{{+#{]{^}&#&+%_@#$%]_&($[!!}]++{%%(#%^(%+*_#^#[*!+&$!]_(@%^_] $!^#){]%}*_%&@$$[*[&{*@[^}+&)_{+])}][]))%%([[[}[_%}!}[^(}^{{%![@+]][*+{^[}+++![( )$&]_+#[+}({#+}*{)[+[[([@})+^{^{*%[#{^$@#@]][}{{%&]#_{(%#@${)]]*(}(]$}&&@*&+@](# _^({%+&^&}((_#${+](+]}@!]}#($${{!}[}}$[}{$}#*((}%[){*%+^}]%+](}&&%][!#$]#[+@&&{_ *}&!)%)%%*{#%%@__[_+%^@&$#@(%*+^$_[)%({*$()(]@*[^_*%}*%]%[%+#_))^@(+$#_+&(_@]$&@ *{}_^@){)*((](@${}[%!)_+!!%^*&${([^+$**^_{*](&({^%![&_$%!]&%%[@]}}%!^^$%@}]@%(!* +%(*$[&@]*(&@[#{_%!^{)!*!@_]^[(}*]}(!]__{)!**}(!}++[$+([!]*()${){+%_(!&[{*]])#]& ++(_$%_!])$))((_^+[_&++@_$}%*!&}&[%@@_})@%)[{})^{*%@]$]!#%*#%%*%+*&{^*&](^}#*!*_ #_%@([]^*][%!{@)#}[])($[]*()_*[@)^&!%+]%%]&{(^{{%[!!!!_#+!@$]&#(({!_*]]+{#**^*&) $!$(#[*}+}*__$]!])#$!}]&{]_&#*_[^&}(@*[##^*!{)[+[(}_&@+&+&_(#@[{^*[]}${^*{!@+$^$ #^]$}((&){#@^*}_#]##&@@![@$[#^@{{#@](+^+^[)}^@%)@}{*_{&+[&}}{@+(#+{#]@#^!(%}))}^ {__&(]&#$@&!@((${))_^!][$)%@&%(&_]]^)$@$(]}&$)}}$)(([&{){%{%{^#!%+)*}#@_%{%*#@[@ (%{^}(@$$(^_]($)]_*}&+{^$%!%@$)!#$+(!*^}&(*!(+!$_^#}!*&@_%%{#!$+)]@{}((__$}{[!(@ #[](]$!_#%}&][!!&***(#(@(!@!+)&!&(*$+@#$&]@^_}{((^!@!_[^)##@([&]()[}()+!(+!]#@[& }[}*(+)[*$*@_}[+&&}**_+]+]+#*$(%)%}[+{)*[{)^#%$]}}(^[{%]%#+[$%&*#][++}&)@^^]&([( *}]#!_@(!$)@)]&^[_@{+%@($&#{$%@{#!(}(@[^[#__[!]}$+#__*&#^+[#]&%({@_(%}^[]!)$&}]$ &&*&(){[+#%($]^&[($(@$^*[^%](*#[$_*{&{!_#*}$&]&}^}_[}{@*(!@**^!()]#%$[^}&]%}}^%} ^^$*[$+*![%++({&^^_@{[)_([@*#)&_+$&{[{(+[}^_!_^#}++*$$+^)}%]@*#(}%^!)^&)_{)&&@][ @@&}}![+!%{+*#}(#[%*#@)&$(@(_$(]}]{%&]^)&}]_#$@(_})$$^]**&$_%!!##)+(%($([!&$[@$} (^][&}$]##({[)^$[*}@*)(^]$+($$+]+[]&!&*(}$]&[}{_^}#]*+!!}{__^+${%%!*{*}})&](+^{^ _(*#*^}*}{]++_([##$%&[$%]**#$!}%[)&(](!((*_(&_]][(_!{_@]!%@+_){+)]@&[{[(_$()&)[# [_(*@*_)([_&![+}&&&)!($@*&[&#$}$&(&!{(^&*[^+!+&${}*!(*+*^&({+%*({+@_[*+$![^!!^[+ })$(*@{](%***+@&!_}*]#!}(^%!$%$()&{$)@@[}*&+!(##^+#*$#*)(}{(_]@%!@!)!%%[%%$*$$#( }!_+*!(^!@[$)_{[@{@}%%@^##$*[#++_(]#}!)!^_%%][[}#{}*[[$#!{*(+)$$}@^{^$$$+]^]$}$% ))@[}@][_((_%@+#_{@)#_*)_*]@%$)!!&!_)&%(}{[#++*}!]{)_$[&([!^[){{{+]%@%[)&@](^}(% [(@(**__*{$$%}}!#@+@&$!_#!@]@)]{+]&))(^_}[%}#@^&{&_({+_[_()()}__+##+_^+!)%!#[!![ @$*]^]!^}[)#%!]+$@%[^**{*+!*@{}$!]%[(*(]+)+!)}[^{+&{[{%{+$))(]^%(@%]}&_(%@$)_$+) {($#%_!%!&%!@^$@)}}%[_%@}$@!^*!%$^%+%)!]_[)}*{&%^$$)}+^!_][^}@##%#$}*!&*@%}*{{%# $**!_$!#&+%@^@@#@%!#__(#[})^(}@{(]$%!@&&@*++)((@#[@]]+@@{*++$$(%}&_[*%#(](_!*}[# $]#%{%${!!#^!#{}@)]$[%$(&[!&#![&+([@*&@]!}[[*+)%][*}@&!$*]_*+++{!!*!_+%{*++#*^#} (&!@!+!#($@%+[))*&]*&%)$+_**%^]&%})+]{{{(#{$$[$[[*}$%!]!+(*%*$[[+_(}[}+}*{$)^]&* !#%^%^(@*&$(!$#$^(}+[&##(})$+#!(*]!]#!^{+%$(&**#^{!+_#}&%^{]$+[!&}^@@+*#_+#)@]$$ ]{%]{%&^#!@@)}*)(]_{{@^&)&(@%{@{++}_^{)]#+*)_}@)[&[(^&!}_^&)&@}*((%]][$$#$[&!}$@ !#&^^^}_^&!#%#$![)(]_)^}@[{[)*}[#@(*&#^*%*[_{)([{[(](+{^)@#&_%_&+}@^]$_@(&(_@![) #_!&_)^[[#$(^#+}@#&[!##_{!^![}@#+))&**$((*^[#]^!%^]_(_#$+^[]{)*+]!%@+@&+$++}((]] ]+)%]){($)$]&*$*]_)({#}))!]{[*+&%[$!#^^%#[($^*$_#^(+)^#{!#}%&*#^]{$)%!](*$$*%+]% ##*_{)^+@(]{_#))+*[+$#^@]+)@!*#%&)[{{{&&*_%}%]*(+]}[#$$)*$$$}!}*{@%!+)^]%(({+}&& [__$#)(%##*^&{($#+!{})#^&#!%^$*#]+*]*[{[*$*!^{&+#(@@##($!#_^*_+($$_%@[^%^[)$_$&{ %!&#*{*[&}](*&)*)!(%%#$%)[&_&]@{*%+@%@%**}&+]+!*][&^)%_^@@}#%%&]#$${%}_[@(%!+})) (+[#_&[$#%%__+{+[[([)@[}(&^(_$)#[&!)_##*{__@&!^@+[!_{(*%]!+^](&@&!{]{^^$)(#]%+@@ !{_]#@]&%((+&+*@^@$&&$*{+##_}&_(!%(^}%)#&_^$][]#(^@@(@+&(%![({}[$}_$%*]!)$#{$@[# (%%]@{$(^{$(*$(*#[^]}%%(@%@)}@[^+)$+![%[(!&+&(_*@^@_$(]_@]_[]#{^@%_!%{+][]$}__!# *[(!]{*{[^)*(%[%*!(]}%*^_}&[)+(*_+(#((]]}$![@%})[+__!{(#+{%!}#&&^%+*%(*$%}+_#&&* ^@_)}+$(^}(([^$&^((*+*!{%_[{))$$+]%_&%!]#{&!#^^%(^$_#&!^@]&*#]&))$])+$^](^^]))+@ &[($&}#]__%(}&_&()*(&#*&)))(%+]&_(*#^_{%}$@[$#*&]+&%}+^)^{}]*]_@]_&&%@!{%$^}$##$ )*^))+(}#^!(&([$$](*_%)$&(#!__%+)^@)$**%(%_]{)^)+@^!))+$@#&^!&@!^{{)##%}_{%}%[^$ &!]}(}]{#^##}#@[!){*!%^()!{_@{*+%_$+#*{@}]_]^}[]*[#%_!%{*(*({!)+]{})!{[!{[!#}@)} !*#)[)%(]_&)#%}(_&(*&$}%*$}%))}(%]]@*_}@+%]{@##(!@_+(^%&^]]#_(!#&+@(+^)^*[[!&+&* ^&&+[!_$*)}{]{!}_@_]*__*)]}(]_(]#_!_)#^!!$#**#^](!++*[)(]+(&*(!_^@*#]{!!}^$(_#(_ ]!__!^%}}+%)+$]_*#&++]##*&!$]}+^_*!]%])(++})!#&$()##!%^&}][)[_{&]]]@%(}][(]%&*%] !)@]{##&}#!][%!(^)#)]!#^!%!#_(#%]{_}%({)}%+}]()$$)$(((}*{]!_])$!)%[#{%)!}{%!@#)& }${}$[@$]&)^@**($][&[{{!)+@#}+[$$(+*[_}&@*^%]}{_[$(#{$[_!)##${[(*(^($@(^_##{#}[] %(+%{!$}(&$!)])}!]]))]!^)*&^@[%)*%}*(^{{)+_&%_%$$(!$$&({[&&)^_}#!)%$$]*))_!+]]{{ ]&@}^&[)&)!}!+_[$)%!!)%($)*!^[^+]&*[))+)^(#&%^+{@][(@%$!^#$^]_[(((}(})*@])@)%&[[ +@]{%%!&}%#[_^_#+)[&%${)[_^@{}]^&&&^@({#$+]]]*#[%)[_{!)%)]![[##*!]_+_(+${[@^}!#( ^^*(}&$]{*()!#]([%$^$[)+)!%{(__!{$$&%}+!*(}%#[[+}]+$$%[]*_{(^@}&@%@+((*!@[%+[+)# !!_$@@+%@*%]&#+@%%}[*&+!]{+&{}_[#_%^&)]{^[}^&+[}}^&}+*[[{&}[^&{[}!+[(_%)!){(^__( ^%&@%@#!%@$*(*([([&}$_{+**%&%%&^![#]^[_}#[]%@]+[]&[}@{!^}%#%{]^#@}#})@$_}}{{}#]{ *^^[^+}(*&&^{*{[_&[]+^[(**}$^)+**(}]^@^{$*(]%])##+[!(_}+{($[+*@}}*[$*_@){_{_%!#) $}{@[#!(@+@^}#}(^($#{[()%&*%_#@&$[^[(@}%*$^*_%{)[](@+$*{(+![]{$%%&[(]__+)]^$*_^] {@[]$*({${#(%&+!)$^(#!}_}}%%@}^]((%{)*${([_+@^+]${)&+%(@)!{[(+*{[__*}*%)$&^$%[$) _[[%]!(&{({])*][{!%_)@%!%_&)_+(@!*)(]^{)$)^*)*{[+$#(}_]_%_*+^[_)*}(]{)}^+[&[@$&{ #^)%(+@@+#(]**[#^[!($_]^@}+]_$[!(%![$$^!#+&$&#[*{]{$!@{{]!![&^%}[{(_)[@**_]&())^ *+^_)(#!$%#{)^$%(_[^%%*(}&!{@#^@#)](]++%%]$^*)@+]&_^(^@!{%%({[([$]{}%]^*+%^*$(%^ $]_!&++!)*+%*)@#}!)@)_*]&{)[**)*[@[%{(%#)%$!*}&%[^]*_+{(!+&%(_]{#(!#)#!]]}*^+[}+ [{(%!{(*_)_[@^&_+&}@{#+^$^*$[+!+(!@+*[@!+%]_^{[][#^)([}&!_@_#_&_)!+*{$[{#^_$&&+& #(*+##$%$+}$]%&]&(+!+})$]![]%_]]+}@}^*^[!])@(!_[]+$*}@][!&)%@^_!#%^[@&$(^_(&})%} (@%@[]+%{)+([!(!@){!^_$]&*(+@#]#]{#)#+][#*#![[_)&@(&+$#*!_*[{&)](}!%+$&{#${}]^{+ )!{^&@[@$%^[!^@#*#@!%!]}$^{&$$*][(%$]^]&]@_&$!$[&&[^*&![$^}$+{_&!@%[%(_)]&^!!*_} *[^]}{{_@^^!{##%&]$(*_)#+{{[$++]%%+(&^$#!#$^&){!_+!@[_$@_+](%#*#!}[&$&#[{)$+#@+) %[)[+$$*}#[*${$)[%$!$)*(]([%@%#)!(^#!)[]@]{)}*(#(){^%)@${$#}])@^(@#!}^(&]%_]^@@$ _%+[%&{_(($+[_!#)]+*)[^&*%$*^]!^+{&*%{^(%))[(]}$&})($&@((%#[)_%^]_#{**}+&[**_&[[ ](+]&}&#[!#[)^^}@^)+&(&@[&!!)$]*{{$**)^(*[)$#}*)_{@(}&^$#([((*_]&^[!+()(&)(^]#*% ]{(&!!%+#^^!#}@@&+[{@@$^{+%%{{!}**%!*+_#!_([(!*%!@)(!@)[+*!!*_+_[%_}]&)$^{!)+!*] )_)&*]!{]($&[&*(*##{^%*_#!&}}{)%#}^@#@%$&]($(_@[{##})^(%+%)$(_[#@_)[){@[@)+)#]+^ %{[!])]^]_[%%]{&%#{!*_$[%@}@^]@)!#(&#{(#(_{([+@)%!@(@[$$_$_!@_$&[))*}){+(]}(*^[) %!@!!!%{[(}{$$@%$}+#)*[^$}({)*{(@*(%]&%#%)&+[+$[]*{%)$$##)+}}!+@!%_$#+#!)[&%{*!@ #&&{{^+[}@$$)]*{!_]#}+^{}*%*$[$)@@^_!*^#*(+}_()$@%$#){_!{_%!${_^!}}!^$#_]$)^]*)] ]{++}(!}}%@*[!{**_+^#^!(+%[^){_&&($!(!!@*){_)[]$($}@[&$!![_#+}[}%#@&+%%}*{[@#&)( ]#!_][+{[^![_([&{})$*({**@+#]+%#(}(^!+@&}]$[{*#++{&^@}&@!)_^{%[})))%%&((#}{#]@*% @+$%_[(((!&{@^#[$#$@@)_}^){}%_**){^$+)*$+[%!)^%#}&)(@^_}}[+_[}&@#!*$+!&}[_})*[_) +*({}{*&($(})@]+#_{!!@*%^_$+#($(}%}&[!*}[$^{(*#[#%+}%${}^*[#&{!&@(%^^{+_}@{*[%!! ]_]{}{*&%([){$@*$_$+^&!_()}}[!${^{}@&+}#(*!}@+[*[*(*[%!^*+$]^[)${*@#]_@(+%[)$#!] }#%}+))(}+$)]@$^*$^$+^[#${*#%]{)@$@(_@%(@#+$]+(({@!#$__&*[[*}[!!+#%%%*(*%}%*}(*+ @^+(}{)#_}^)[$%}+]^}$()@#%#{!*{!(%%[!(&_![_#)_]{((!]%+^(#@[!]%}]%+@[)^@^]#}[{$(_ #_{+[)^}))%%#!*{+[+}&%_$@!_)@$)*{]*[&^!{&}$%([$]+)}#$@#]}&*@$+_($])#_(#+[+@*${*^ !%!!^&*^+{*(*@$((]_$_*+]!{%^$)#__]*+@(__$%&#]@#]%(}$*)#*!(^#_]&&))(+]@%(_{__+%)! +}&(%*!]][!&)$}([)$@{*{{##+&&@_]%(*+(&@_@)*$}^#[+!@%_$@{&!]+&){{(&{]#&*!@}*[%[@+ }[+]](]_(#*{#*&%_*@$!_)^!*%#^+$*](*{$!{#)]^!}{+)^}][^%(%@({)}&_}+]!}%)}{}&$%$&{^ {+[@#@$)@[])__$^&++]+(%*[#]%#@([#]({#%&%%^+&+(](@}@{@*([$)%%}&$%[+[[(@![#@!)(!*_ [](&#^!(@$]**_&*#!_[$]#__+$_$!$}[](!({{}%[^@&&{+{}}%+(%%%#)#]*!][_][}$+[)#)$&**) )[*#&#(***+@{}^@$$!]&+%&&$]##!@)%@#!}}%%_*%[^)]%{%)%^[}}[+}#+*({_*%*!]({#}+!*_)# *]([*$@+!_#&@#)}&!(%)}{(+!)]{_^#{+%}{[!^(+@!++$)}{[_@[)$]_)%#*+{)})($**{{]&^*_^% [)@#!}%!+$&@]@_&+*$[$_(&(}@)()_^([%!^^*_+*}^))#))$!!]$}^(#&#$$[}^_!]){^%[]^&_(** ^!{_!!%])[__^)^%}_^))_($@&$*#&+#)!}[@%+%(&&$$%#++%^%}+$_%%!_(@(+!@$[}^]]!*^}#_{{ *{*&$}$+@[!@&)])[{%]^($]%&#^+&{[[(&^]#{}{}*!{_!*+_&)(]%_&__$@{]_)^#_+{*[+[^($^[@ )(+%_&($]$){!#_%$!)$(^$%)^[_*$$*#{([^$_]%{%%+@]^{)}]+%$^%[)@^+(+}_+)$#)##][&{^$^ #}@}%]+*}{^)*$)^!#)%()#)]$*@*(&}$#%&%]#*%{##^_(*(][$[_$@${#&%)#%%&}]^_%*_@!)&%}_ (%*@!}{%@@)^}#&}&{%__{@^*}#)([+![]&_%@#$%^![}](_%]$_}*&^}$)*)}}{$[@+{^%*(@#[&[!^ (*+%}(^(%!%^!+)!!)[#+_^+{+)]+^$%}{_]^@*@%#*#*%[^){([*[__##$)&{&+_)%$^}_@{^__)%[) +^_[)!$]^#(+^)%(}!]&__[]^!@}}@{*+!*!_*+%($^$}}[()]_!)(*)[&(+!(([#)+[%^(&}$&_}[{} (%*!+[+[^[#][}@+!^*^%[}$]@!%%(%[[(#_+{#({@{&[$_%)+$%}@{_+[{}+]![}@]+[#{{]))}+#[* #]**@$@@+_@)[&[#$+]&]&*$()[#^})()$$#^*+^+%]}^]]&%(#}&(+!%]%]](!#+}$%^_^^@{}+*&}_ _%{#*!{!@]@${%!_$}#_@_#(!(^!#_*#_$&@(@^]_@%)!^&^&{%)({+}}_{%%]%^{&&^@_@&&^[](}(] _&&^(#_])*)+_]!+&)$%+[](){)+_#*_#[[[%$!^#!!$(_^}(#%({%$!_}$}(()$]!&]}^^)+&+!@%$@ #[_$%!(&[!]@[#]{{*]*(@{+&#_^*[!&)#$_)%[!&!))%@&{[)@![[^[+}&#*$*}+!*&{@(%&}[$^&%_ !!!$+]&@})%%[@[&%!($_)@[}({_[$#}^}@)(%%^^*&&+]%]&$_#^!$!(_$%}*_$_!#!_@^^)${*)%+! $})&}*}#&([[+^[)*#&%}+[*_+!!&_@%!^##&&{#%@{{*%_+%_{(&#+{[[[*$(%&}(()#)[!%)%@&{[# +_%(()!!$&(+{{@*(!*!&^#^!(}+{[@^}*%)]#%(!^!]@]!{!{_%!!)#@!_*_#$$})}%&[)[!&*{@]_! +{%_+]+(+}%#_[)+#%%$+@{([]#^_$#@(}%$]#&^#%%&$%(+()+_}!&}^&*)}]*+]]]*_{%(!][}[_{} {{(^[!&{!]$&(]]+%^%%{@}_{%@+%+[(^}&@#+^^@^])&!@}])$+$}[)![^%$@_[}(%@$![!+}#@+{&) ^*&_^%+{^{$+$[^_*)*++%^++#%#%*^$*@+${!+%@!}^q(%!({@]%@]]@&#^$[&![(**${)]*^))[$}# _*^}[}+]{_([#_*)@}{#)@$__!_(^_!{]++$(&)*(}{}_!^*!!++}(_+}$()@%&#{]]+_!$&+#&[{$^$ )^]()@$!(#_!((@&**)*_[@^)#}$%(}&)()+))&[[!%&}{&{[+](#&+_#(({*#]^(#]))#}}@_*{^%+^ %!!%&((&&)@*!*!!^+^#*}#!&!*!+$)$!_%^+&[_+%{})(@[*{$$_)})[!*((_(++_@(${*#](#_]!{{ ]]])(^)*%[_*{!@##}[%#(&%%$[#+#{]+}@*+}}!($_}$}^[%_{][%{]@]_[$(_{#&)_![@)^*%{*#&$ }_+#{)@^$]_*$@+@][%^*%+&&[*^[[(*)(#!+]()$#$_@*+__)!&!+*@(&_^*[)${$+^$&]))_({@+[* _!_&}*$#%_&[@^^%{&&&${}!}{}{]{]}{]]_&%+![+!]_}[$[%[&*(_[_!@(+%_@({*_]+^*(_@##_&{ *&}@&^#}%%!^)!{}))!%[$^_^{@%*#!_[_&&!!^)[]@!{[+!^+([+%+*@[]}*^$$^#$]&$%$}@_[[[}! $(+$*@!*&^[!{+@[}$#&{}[+&^)}&*[]}*^#]$*]%^}&@)]${)$@@%[*$((_)[*@[%%&^&^}*{#^}&@} )*)_*^}%+_!{(_!#@@__&]*&_}_+*)(%_@]_@)&]{@(]*+&+@})@(__#}%$($[@)@$@}*}*#)%(((${! }{[(+#}^{}@((^]%@}({)%&(&[}(!&!!$^+_%^}_{&}!__){+$(}*)[![#%&%^&^__]&[!+{_!)${))* ]]]^_}#%!]_!*^}}!(%{)}($_&@^}]&]^#@)[^@(@)%_($!)[}*!^@#_^]^(^}(_(+%*)}&^][@^]}(} }{)}][[*]{#(+(@)[_]$$_&[]_&#$)_(&}][&}&%#)@%!)+!]{%*)^%{([!&^%)}+*)%&&(@*$$[{@$& ]^_!_@&@(*$)[*^)*()$({!!_)[((!*]{+[_{*+(#{%]%!(%!(^[{@}(]&$(%^%#^$$*[^#!_(&]$}!{ !^&&^*$!@*{}[*{{{_&(+#&+$%!^_^[($&+#_&@&]}[%}^{{$&!)}_[}(){[)%)$$_#_$}+$^()[%_]_ ]])![(]_(*@!)_!&{@__%{$[)]&!*$@()+_][@}&#_*)+%_%^&#${^]$$@+$&]&(%][&[@[^{*%@#+${ }^!_}{)_{$]_@{%*_&^_+{$[__]^&*[&*${{#[$%*&#&{_^$_[)!)%]^+(%}[$_@[$^_*_!{_{#&{()] }*_)@(&*[@%$$&))()}]!^+[{##@%+**)$)]&_]{^([&*&#$*&(]{([+&&^}*^$!_&%}&}!(}!__$[{& @*#(*&!_)%&__%#+%^[}!^![}@{}())%]!]!@*+)){!{&*+_}]{}{!^^$)@_)#_(!@^+^%@+(%]!{*+} *$]$*%}&__!{%)+)@)%&!]}!#&[*&#&+@(^{[$**$^#+)&}#)[][}$}*@_@!%&{{@!_#%]&]_]^%][({ _]*!]}@@+{{]%_($(^^^&#@[[%*]_@[#]{*+{_}!{&)+^@@$#)(){[!])$#[$&@)#+@][]{^](}%)+#% &[$%*#!}+_@$)_}[+^[^{})!}]_#(&}+[!)!}}*}}[_^((![#*_+[$$[*)(_{+&{@^*}()@@&$]^#+^& #&@{[^@)(}#[@@&$)]!%@)+*})[{%#{%^*}}{{}]&_$&&$()&#_{!}@(+$%@!*@]*$+&_()&!#}@@{+! (^&!^*@){%)@@)+*]!@$!#](%&}$_+}+@)}}[+&_+#!*[$$+[(&{!^{)[@_%[])@+)@&&(!!#$&+_+)* ]#&*^}&*}%+#()%()[+}([!$]#{%%+@@@{^^_#*]()^*^%]{+{$(][$])@}]{%]+]+*!!}^![#@*[@)+ +($&}]#^]%%(})${&&!&@@]$_+$[&@%})!*$]{_!_(^+%&_(*(+**%(_})[]$))%+([!{]#**)()([*) ]%+({^)(+#(&*#%#]^^**+^}}+[$_(+&!_{%&{(@&*^[%[_]*]@#@&)$#+!${!_$[#@!)@}}+_^#%{}# #({@)[&[})[+({_!+^+)]#[#[$_^((^@%}{[^_*$^!]*!*(^{@^}}*{{&*@+}![_#%^%[$&+&{@_%@#} ^^!([)]]^((@!_[#[^#+^+&)#[$#{}$+$]()!__$$#(#!#+[*#)@#_}_]@%#&$!@)]$&]##{*(&}}}[@ $&&]#@($%{(![$((^&*#(^@$}+[%_[}[]!!*%&]![%!*)[[%)[$({%[@[%]_!){!*]$}(@((#}[$^{@( %{#@!)++)&}$%)_^}[@$_}&)*#^$_)&@}[![+%+{@!$]*}[!!!([[^{}!{&$*)*@**^]_@&_%](*_[*( ^!@(*&_)$[$]@]!^*]*!^)@(*]{@[)]}&+!%[][(#$_[$}!!+{*](((([#@!($(_$@*&^#)&+*%{_&%$ }}&&[(%*]*[_]])$%}^)!#!*&_@(%$@_[_]$*)+)}+*+]#!^)_@#%(&(#}&([[${(+_{{!}#]+$@^]{} (@_{^%*]##*^!!)(}#{@*&#_}[[$)}[#&[)@}!_*}]#@+&!}{^@!*}{+$#}$]}([{&@+]+++*+[+@+&( [+${^!)}($[!#$&(^!{^])({%%@{+$)!)[#$@!]({(}&$$&{]](@+@)*$&$[&(!!(^**[*#!){+!!)$$ _{%{}!&+]*&[$}_!@_&{+%{+({(!]}}&_^_!@![)]}##)+!]^_#@%@[#^*+!*^${*)($_#___[*_)+)$ *!}^^+^$++&++*%]#$$$#^*^$!]]^%$%&*%@{#+)&)_](__#^]^&%!+(!#[}@[*_+^+_^)&%!&}#{*#( {}+${&@{}]]$%[^%%!(![}]}[)@(_%+&[}^#(@[^#&[[(+){+$[)(}*+{&}%{+_#_]#+}([^*}!$)&^! +!&}^%)%})#&*{]{%}^)^$+})*[&#$*&!]_]{$#)+&[(]$)@(+)&))^_{[_&&@%#{%}}_!++#!@{)}$} {)(*(]+##$[&({{_][$[*)#[[#!]{&)${&(*[*}%++&**&&%#}^}^]*(#!]*@{)#[_{}$[[#&{#@!%]+ {^{]{@*(%##[#$[$&^][_}]}!&{_!&[^&)[%&+*[+#_*)*+$]**%$]{_%**#+{]+}^_)@{{}]}{[+&@& #@^@@[*(^)[_#}{]](])!$&{}&*{}&)(**}*[@+}$]][)@}[&[#%$@){[^@%&{+}{{#*]_&[%#&]+$&_ ]^{(}+#^][(__#]}(}${)@(*)$(^*^!_!!{(!#{)#_]}[*_{_]](*@&&_]_{{]}]%{$_${!]]+$@][@$ $^&*(+$(*{$$%)%+]#_&#}*+@%[(__$}$(@_]{)&%&$_^%])(]$()(^#]_(!^@{{))&^$_({^)@()#%+ {%&((#)}}[#&$(}]+{^@{+}@]}+#}{(}+]!{*!![)}}+$&_%%*]*(!)$+#^$]}+*#*!(^^*_{)+]%)!* }^{)[)%])$$&&(]{&{@&#$*{@)%@+!%*#%%((@@[#*_@%($##!&!#$!#{$&^()]]($%]}#(_]!(!_%!_ ]$^%^&$#%%())_)!_{}]{@#{&})]$_!]%%]]}}[{[_)}}^((^^[!&*)&+)#&}%*($%+[@$[+}&#@[$(! @}{[!&_%]{_{*+$#&#*$%!@]}[$]!!^#^&)#}#__[@$#(})(_!((*#){)$#+%_%[{+#_+&@}[}^*%$&# @{[}^#{@}!@%}(*&@(!)]@)_@}%+!%}]%$&%][#$$)[#{)[^%]+{{*^&^}}^@%^]^{)[[)][])_+##*@ ($!^(#[+$#@[]{*([!@]]}%$^+@#(%[^}@_&@(!&{_)^%&$@^$[&!+^(%+]}@_]%!&(&{^${%*({_}%$ _%})%@__@$_@+)#+(^@^{^@_!](*]%_^^**@_#(*]_)$^]&}_**(+!}@}}}+@*]])&^_[$!!_*&)$)^[ {@@*!!}*_&)#[&{)]**$!_!_*&)+![&+)&^[$#&&!%])@]$_+&+)))!&@}[$+!&**%&*!+(^&[%!*}@$ &[@}]_[)[())^&%#+$#(}^]*}}_[#*_$#{(_+#}&&+%%}{+)[}))*^#^_+!+))&_]#({)@+*%_$_)}!& {&&%!$)&@%!}(&(]]]%!))#{@*@$&{_[%})!(@]@)${}{[_*^({&!_#&&^#!*{_{&!^+!%{}+{{&%@&[ !(%*(@[^+$@_&}#}#[}{^#({^}!)}*$$}(_(+)*!+)[]#+@(%&}}!)}!]$$^(%_)_&[&_%*#(^%)@[#) +$(_}^}}{]@_&+}_{}&#[**)#(!#!%_&&_!^!(+_@}%)#[&^)])_#_)#]{#!([$%%{+{&%$^!+_@%(]{ })]#]({][*%)_&^+}]!@&]&_{($^($*!%&#&[!(^@+@!}%]{@_@}[_$_@@^_&![@$+^+^^$!*#*{$[]! ^(!+[}&&@##_*!$%_{+)^%+_)@*][{!]$]#%{[%#(*(+$@{^*{+@#+#&#&+})*+%}[^+_$@@&@$+&}@* #}@%*}^&_@%)[&@]^{(!^}#_^(}(+{_}$&#!]{%@_^{}^#_#!]*@%)){*[$@&%]_)%}${+_(!*[^{})$ ]!*])&}[%&)*&#}}(][]&{+@)(+&^[(#}^*]#+&}]#![@*}()($#{}+_(#[{&}*{$_&[$^%%[$*[{%^) !#%**!^!&^@}!*@)[&[!__]]^(#&$%#&(@&#+{${%(+##$$[%%%^}@%+]!^)+#%{%%!+{[#}}+!)+#%[ !$${](]}_!&_(^^(_!{#*^{*#}{^[!#)&)!$_!@*^@^^)]@!{{{^[!!)])]@%+({*![@%#%^}))!${)] #))_&*]@^!!+@){[)][}$%!^+)%#$&]%_}(]$#}*&^_&){+%[)]}}[$*^_+})(%+&]^*$@[&!#}%}}(# }&]#)&]^$&[^%[*)^&(]}&+$@%^]@)+!+)&_})*%(_+]*_)#+#&_^{#+!!)(_#]*[%}]*!!@)%()![%+ {{%$^)#^+[+^}#+^&}}{%%+*(+}(&%}%}){_&$]+)+)^#^*+@[@^[!^&)^!@(}{$*{*&_{@$&@!@#{!{ $)#![*]%+#*@$_^^!+&!]#)(#*$*%*@*+(*#_^!@&*]+{](*[+#_@]%{#[}^^%}[_}$+({!%+@@]]+&^ (*^(_@]_%(]+%_)@]&!{]@$[__)@[+$)%$!^{%^!)}]{[[(+*[&*(_^*{*^}]){[_))!(%!}$![#^$+& **${*+{$!^$$]*_%+@}{{(+_&$+*)]*@&!$#)*]}@@%!(#+){[!!+&)$$){#_@&%](^#]#}$)^*}!]&+ ]!%![_)]}){}&_$]%!_[_{%])#!#}%^{{@*$_@@%_&)%{)*}+$#{!($!{{[!@_+(@_+!$]#][]}{{%_( (!_*$%^{@@^#{[[!_[&!)}!&%#$[+#]{](&^*%^@&})_)*[([%($^$^#*&%_*&%+$)}@^@+^#@%^&+^* +&#@%&](*@}&}#[{@@]+))&^#%!#*}#[+{!^]*+&{^)&}{#+}@+!]$@(&(##)_]$%#_+![}_}}}(($*[ )^#^*)_]%&%)^]_)!(+{^}{#^^]{@^_&#[^^&!#+_#]#&]((]]}@!#()$*!){*((%+^]+]_&&}}{(]{@ }$^##]+^$(*_{@%{({($&!_])*#(_]&(^!!)@{[^%$_{]^_^_[)%_]#&{{_#$&}{]#%){_&{_%!&[@)] !_${]*[+]}&$}@[[_}{#_^*#&}!+^{}#+)^%]{*+($({}^*^]#$+%+]#}({]{{*}{]&#_@&+[+]${)}) )&@*+@])](_%^#!))@#%)+!(!^@%[}{{(^}{}%&[$[+&$+}]!$%_[$!*]!{]^#@)+))$)#)@^^&]+#[^ @%_%*%)(}&%!%]%]$)&!]!}+)*(^&+&}@}}+]{^@^]^!$)+{!{(@]}]$@}])}}{%^@]#*&!!!%^&_&@@ &)}$*(!_*&!!(})(+)([]!]*^&+^^#{@*++}*+&+@!##}[$^_&_%(%&}*!]@}$]}]+))(!@@+^+{]!)% ^$^}@!!_$@{_{(}($%%{&@}_][#@${}&}*_)}@%)!}&{}*}@@(*&{+)%**&%]^}&(!_&]#$(}[#^[)#^ {@@#$&]][(@&]{_&[}&*$+[(^][&^][%*}+!]#%{!##$*{}++}+{!(#![@^()}!+)&**{{[**&&$!@%% )_#$&()$+[((_}]*!!_[*{*%[%+&$!}@({#%@%[%!%[!*](]%^}##@(*)]{@%@^@^#(]^[{_&&**)^+! *@($&!+@$]@_]&!(##@]&#]+*%[}(_@_@+!+^+$&(_!({++[#@!#(+_^)($&^*%(^&#_^!^^(+}$+_{) )_{^%%$]_!]$+@^[*}^*]+_$$&]^^+{&&&(}[{*^^@%%+)[^+$&@&)^%&($}*!&%#!*&$[%(]_{$])*[ *@}@*(!_[]{)@*]][(^%(##]{+&+$&($&^@{@^[%*+((%]$])(#$[%)#(*_#&^*$*+_[#{{{%{}&({+$ #$)&$!]!^**[)^!!@(][^$$$(*@*(*{(&##%_%}]%^)*^%#$_($_@(&+#@{){{{_^!#!!*#$#$_]}*^# !{&++#^({{@$$@#)&*%[!]$&{^!%$+)}]_@+{*_]@)]{*]@+^]$}}]&)]#!_)}]@$@_[&_*)+(_}%#u( )^(())(){+@]&+_){(_%!{^^*^!)$+{+^#!}}]_[}^**(}*%($(+_%]))${)_*%&&]$!%^))&#({]$^$ _&**[_&[(%@%**)[*$[]#_&+^{@_&!{^]%#_)![]![@#&[}]_]!+{}{$+_((}]_{!)})%[*$^(+^)+}* _{@@@@)()#)@&[]*(}@%%@[*][(!%$@#%($#*]_[(*!{]+)*#({*{[{%[#{$^)]%!+#&](__}(]%+$&( {#${$&*$]#](}[[[)($%@!(@@^_#^&})_(![+_)}_%*}@%{!{+%@_(%&{#])()]#!(]%!$$#_*%@%_*[ }@$$)%}*@^}}{)%({_&[$)_}^(&!#)!@*%{%#^_@$)((()^)$@*@%_$%)*$(!$]*#*#+++_$&}{^]$@] !**$*{[}#@#{+}@$]]_[)@&](]*{]#(**^_!^(@^!#**}#}+{!$@]_]@!&}}*[#$}!!]{[{]!_{&!](^ [()[)#$*&!^[+%}(@{*%*{!}!$(%(#]^]&^#@!$)!{}#+&{)@)[*]($)@!{)*^*([{*}}+]}$++[%+^_ }#^+@[%$%$(*]_(*&]!+)[#}((([+{]##&%!)%{*({@^*#!]++[!^!#+@)$%*!_@[{^[${$}#{(}#)_[ )^}(+{(++(]}#@{&^@^_}!]!]%+[[(!_]${(*+[}*_@_@*_^@^_]+!)$)!)]*&*$}&[+[)%}#%^))]%^ +($@!]^[_%$__&@+[]^%@)[((]#&$&+}!+(}$^^+&{!)&@$$]}!![$&)&][+}+)#]#}(_@@^*!)_)[^$ @^&$^@*}_[!+^!#{^}!{[$[{{++^[+*##%+$(}{[^%@[&#!!*+[@(!#+){[)^!+_[[***+#[+&))*#@{ @{}#^^^*]{_%]+@*)$*[$@]#]{%_$_^}$&$]@]))#((*(&_@$[)]!%_$#]({&&[)])@_}*@]^!@}}%[{ )!%}_%!{^]_{&@%@%(+#^+}]*#)*%$%{%*#(#{}@)}([%_{^}_]#^[!_)&$*+{))_^+%!+}[@{]^+__# ^[_@{[%*@+$[*!$)$$&#(_[^+!)(^%_[{&}$]^}{&[!$[^{*[^)#@)(_(]#[&)]%[+@)]_+$_{}[@{)+ _+&]]!@^}#^&+@[&[%{{[)_]%[_^%**@}))]^*_}@@[}@{)&}#[{$!)}]%]]$_!!%!$@#@^()#]+%(&& +%@)($@)@^^^]+@_)})#)!^_#!@{*^!@*%^(_^@!!$%!&_+}((%(#&$$#}@#]^$+]$@&)^%}+)!$)&&^ !#[(}$}((&*$&+][++#]^_%!]]&+#%}&$*%*#_(#}+!^{[#!$)!@%_!!()(%!(_]{[$*!^+#]^{{}+{# _{*{+(#)#!@+${+$@]&*%}_+_@](%(*_}}+^(}$${}^!%}*#&*__(${(]}%^[^(!}##@@&)}*]%)[%$+ }][#{@$)!}*_{&+_{!]**($_[@^}&+&!(@%&%$)$_(!$_{^*]}+_](&^{!%_${@]^}&]%%@#!+%(%&_@ $@]&&_)^((}{}&^(_}@[]_^%&^)^)_@#%_*]&&[!}()*!_(@@+}@($!%^)$!]$%{[^[#({[*^^#{@_^} ]+!${)[^+!$*#%#{!#)__@$_^}&#{%)++)_!*{){_*]^&}{$[{(^{__+[[)@)@#%_%$^{@_}{}+$^)+@ ]((!*}^])@!^{+#%%{}+]{[}[![(^#{_}[(#_]%+)}*&}**]@*}]}[(}[{{#*+@#$#^)$++({[^#+**& ]}++(@!&^!#_{[&*!(![(&@{(]!+{(![$^&&}{}&{^*])#&)^#{!]&+)}@_]^$}@{+(#@[([@[++_#_[ ##(]{^^%{)*)!$#_*@$({[!))!@^*&@&(]+([^(*!+#@[^^^+!$]!}@+&{_*&{{!)}(!@]%_(&+[__%) $]]%++!!^^[$@(&@(%^!@!$)[{[%@))&^#}*&+((]([_^&}%!&+^*@($}}$&[$(}__{)+][%!@{({$]& $^+$#&*+*)!!+_*}&$&^#^*+*_}{%$*][#!$!{#*%%(}*%*@[](}][+)]@{#]($)[_#@^[!]%}%#[+[{ [%{*]&{${#_)(+%^}$}$}#)^^#($##%@{&}@){+*!+!%^{}@]%!}#*_^#+_&&&##^^[{})*((*{!_+)] $[@@}#[*%%_@}({##)[]%&]_]_[#(](}#)_]*#_)}%$[&}!^!)@#&*)&@%^{@#{@@)}{$)+&%%%](^${ +@##$*({+#_]!_{(]{!}%$&_})#($(_]*%+]_^%)$_)%^^!+{]}}{@%$@$+!]_!([[$(%)!$&}[%]]@} !(@}]{^^*{#*&(^}${!(]]^^%}&_%(*#]%!_$@}($%@(_#{!*@[&+#!{{[^]!#{${{*{![(_*^(_]%$[ @(^$_)@(!^@@#{{]})]*]^^*@][!@&)@^]%(]_$%${$^)@)_))][*^#))@*&%_{)}^_&&__#!*^&)^*_ +*!}^^{}{([&#{}]}$}@!%[$@]!#!+!^({))$}]#{&)!^)@}${@%^]%}#$%+^*)[&^+)+)@@#_^+)^&* &[^(({{*)_*)++#${[&+)]$&)]_%_&%&{!(}_}_}^[)]_@@&(![@}{{$}+#+^@%))@$*^)+^+]++&&*# @)###%^)&][%*_^&()%*[@^+%$@+@{*@([_+]}{){(^&}$(#[*&{)]&{$_^@&&}(+$@!++%*!+%^)!#[ #]^}{$}*@#@$$[]_!+]&+^@@){#&**}{{[%$[^!&@])&)_]%(!{*#@]#())+^_#{^](&](##[&[}^&%@ ({[!+@(]$&]&$[}+(&%%[!!&(@(*$*[}$@($%*}_]!_@!^_((${[}^%}+^**@%{%_!&$}$_)&*^^@&]! }*!@!&^{^}*@#[){%)%+]_$$+%$[(@){%*{++}$&[^&{]&#&@{#[]}]%$__$@^+$}*%))&!%!**#%+** $}&@*&*}^+^[&]}[_}__][]![&(!![]!(@#@&**}*([}*_}&!{})*_&$_][]@[@[)__}@]*]+]}^[$%! !{_^++}}))$*%!&}#[@{[^&&[_{!)}_]%@&+}}+[[&+}[[+&&!)!_{{^&]%*+!@^%$)+(%^+*^[+[]}* ]$#{_&_){*_@[@{@}{(^]%^%&(@&)(&&@[*&*%@{]!)$^^[[^}$#!$&_(@}%^()_+!)}[*!){}!(}*)& @+([!@{+{$^*##{(^@$#+![*}#$[&&^^#_^#%$*}#*+^@[]%#$@^+*)*#^$${)][#)&)(]^!@)!%@$]& %]&}!_%@*#}#}^&#[[!*)(#}]}])])+]#($)%]_@$(&(%][&)}_[@%^!{&!+&]$&#@+[&!^@^%%$[#%) #^%&{+(+^$+]}^(!}^#*}}&)*)$(}*&&}$@@#&!&[]_]+*)!)+_%))}%_&!%_$_+##^(@^&)%_@*_(&( }$]^@(%(*)((_^!%}%[}__]##+(_@{%%+*}*(^}(%)$}@+@_*[$+%*+)$}&![)}+#($#{@^##%!}!@)_ _)}}%+}&[+%%#_}]!%_$%#([#*](({(_$[!!}^{$_@^+(*_[#)]!$_^)*)!_}*$*$&(]!_[+*+&_*)*( &](]&&@+!@$$%{]+(($@&)}%}$]_{{)&*}%+[}($$&%_#]%#^^_}[+#!+(!#@%}_${(!])!]}{%$%%*] [)]}(_%]]!+*{+]_+#@)!{#()*__{+^^@#!((}#()*[${#(}^**[^+$&&*]_%&{$]!%{+$+)*}[&(}(# ++]}#[*%$}[$_$([$$}[**!!%{*&[$@^_&$$*#{![&^($([%$@{{{@))]#_]{$([[+[%#[^*{+(_%$+( ^$(!$}[(_^^}(&#*[[@]*[[_#]+__+*{_*)_&()@!@}#[++^!#^!!&^*((@%%(^^{{*[&+#(+&][{*){ #++!]%#_!+}@^](_]*^!+$]*$[^_[*&&@]*$![%%{}{&%{}][+(&}{)(&%]^))&}^*#_+$+@_@*#%%[$ !#}*!(_]+$@_[@%^(#_[*{!!($!)%+#%)%*%@@%{(!##*{&@#*{!!!)^(___*]_[#!%^[!*+!}%{#]($ }^+$]}$)}^__$)())@](@]]_&!*[&(*^_##$_)&)_!${$(($$$+$($)^#$(*}&$$)%]*{%@%(!*]&^[_ ]&*)](}{%$]}}%%]!_*{(_[]([^[@!}[[$^!}#)**%#$}#{#&%!%![_&(]^_#!!{+@+*@$^#+#@[}%*% $*%%{^^(*#*+^}{]]^&^{!@$*&%{%^)]$[_${[{^!(+{_*]@]}{%^}^$%(([}[+&[]^&^&#^)^$}[!@[ #[&[_##!&]*_$%$&^++^!]{%*&$%%)+%+!+({+)#$&@$@@*}__[@&{++$[$_](*_&{{_^*)%^_$@^{#_ @**]^)])*{^)*@%^)+**!%#)%!(_#!)(+#!+&{$*]^}%]{!_$^&!_@_)$%&#{^@^&!#&+&${#]*_)]^] #%_%@{}!+&#}}$*(){}]_))%)}}_![}@}(#}#[}{[#^%#_*){_$&]!{#(]^]&[!)&&}(]^$%_(^{)}!+ )##]]}_@]}__{#}++!{![*^%]{]]^}%!{{&@}!#&[^$[}]{%$)({#(%@$%[(()#^]%^$!}$$$&_%#&{+ _(@%{}(%#]*^!@$[&^]}&*&}%%%^()]!((_%^{$[_[}_$$+&^%@@+%[(]+{$+$_^+#*%[#_!%)!#%_@% $)_!]&*[)[{{]&{!*[*}#{*}}!&_+$!#*)[})]%+{#$+}@$&+_{$%{)&$!{*}}]${#[^{#{%{{+)@+_$ [{{[(^[[!}*$!+})+^$*_!+_{*(*#%)]@${*(#&#{{[!%*_(@([$(+$#(^*${[$%}}&&@#)^*!(^&[^$ ]&#@^][*(^@%]&#%@((]{)(@@}[^@[*@(}@{%$%{}&+{+^}^)^^&!%!@_!*$![^__(+[(_$}}}*#^})* )%$%@_#*#}^!}}^*$+}%}#]_[]&+{$]%(_&{&[_{^^##!$^*_+@#&@{_)!)*#(%[%$_(]{@_(#(]&#_[ [(#%]$+{#_{){&[$%%{+&&$)_@*%(%(^^!$)__%*&$$@@])&{%[_&!}]%]_[(}#}{_^!(){&+(]+{#__ *@_])_&&%+([!(}&+(#)(&)+$(]*(^_&^}{^][_&^#(_@[!%[#]}]$^+(_&!&[)_^#^!}[{]&}^#{%^$ [)${]$$*^}+(#%+^&{%*[&&%*_)@{)](](+)(#$_^[^_]@*!&[(%]^}%{*)_+**@(%*{^[&[$[@*#}+] ]@$*+%)(^$$)#}!}[@)%{+#$%##@)%$))_)#{!@#)_*@}[[(#)#)*+]{[(_]$}_@{*$$[%$]!^+&(!([ })}%((}*()##)%(({}!)[_[*}*#!}*{]!#]}^][))_{%[&{!(@&@%(]{*&*)()}+!)@}%}+!)$&!_]]* +&*%)@#!##@&*(_^]${{]!$!)*$!+][[[@^]%^#{&%!+@**&}]%$$[]!!![+)}%)]](![[[![!}*^### [^*@}@})[%{_{_^_((&%^{@#%}()$}[&*{]*])%)@{]#((&#+)&+&_}#+&]{_@#%[*)&+!@!^)+$[@![ ^_}%@#!)&$#!%)%)***+_$+(!@{#$)&!$&_^(%!*(^]^]^^(&(]@^&*(&%_(!@*({%)&!$_]$$((**@+ ])_^_([{{()}+}&$($#&$*+#&$%*^}[@*@@*[^+)&(]^)()$+!(^@!!*@]*{@^]){_(}%*$]$#@&!$(^ @*)*%*_&!##*![_$_^#+!}{!&]+%*@^#^[+({!#*%@+^*@!+})^$+[@@_](]$}($^}^$&*}}$%@#!%[* )[*)(%(!}*%$_+&(^$[_$%_]]+$#{)}_##[*&#@[@!(&&$@{!^^%%_@*($(!%#[}[!$[__{+]*$$]*@) *)(!^)&($)*!+^^#)}[&^!%&#]({]&[%!$!++^))&_%}+]#{%)}%[[+[^]+#+})[]*){_{[]#)_&^[{* [^+$)_&%(^+_&*(]]]^^#{)%^{@@&*{#+_)^}^]}_#]%_[##@)}[*[+_(]{*&#$$#*(*)(_}}}@[%*() ^@)[$#[($_]{$%[&!(&+!]*(&@!{%(][*[]${#{)}+]]&@)!$#}(&])#^^!)%!^_{}[]_[@{[@#[&{(] @{)%_]#*{%^&@%$[@((*)_%!#+*^]]!}$]+}^]&$#[}{$*#^$$_{{}}@[@+@+&}}^^@[[@@})()(@&)[ $&[}#%&%[!!$_!(}!___!#^%)^[${#_&&{&])}*]^}&_$@{[@$@&}[%)!@{*%&*}%%&^$^)}^{}{&_+! __^}[}+_]$*}[^$#@%_^&{}!}&*(@)+^{@+[_*(!@(}{#][+&]}&_)*]&*$*^]@}+$!#$(@{{%([@+@} *{]_@{*[[($@]&)#_!}%)($@@)$+{)(*(#{&#{!&[&+](@*!#)}%+{(%$#]&[))@{(&*@(!&[$#*$*!( ^+#%*}*($[%@{_#@!&[&&{[+&&%&!_@%#%$#_)&%@($+#@!{+[(]{^*^(^[)}_&_[}(#[^*%!+)@+%^# &#$#@^}*$##@$+#]^%}[[(]{+{[#!}$)(##@(_)#^&%]_%_%(&@)!((+!(]%#@#)!&][$[)]]*(+({@_ )}%)+*]%#${(!&*&!$^){^})$#}}^%+@$*_])}%@(&!#&%@@+]]^^]_**)^]&+[$_%]*__*@}@)([[@^ ^#%!^}!&%%&!$+&%%$#$#$^**]!]+#((#_^$&#()(_#_{}}&_#^+++#_)@_)+@%[+(+![^&#][%**$+# #}([]{{]}_]#$]}$$&}_%$([%$&#[#]+[_)@([!+${)$}%*{%!)##}*{&]&!#^$*}+]_&#}{]&#]#&(_ ^+@@+##_]]*#^_^&%_&@!$[}*&$+!_@*)$[&$[*$(!^#@#+%_*[^{@}]}#+]}&!@_+)(++&&(#{[#*@{ ]$]}(]^*!%@]&&!%&})(])+@^&@$@@[(%*@*^++^$##{[$^{*$&{@$!%^@$_#]$_^#@@**+^$%)*%%{] (&[[)*](*}%*%@+$${&)_#+^^]@$}%$]@[]$[_@]^!]&&+[[$!%{_((%&{@[)_^#)%!](__[)+_**$(] $##&(*[#)}[^&%[@@)*(()_#@)[*#%!&}[)%^+@+{)[++}_+[+])&#^!)+#%(@*]$*]$_^^#$$%!_*&& %$){^[])&$@{^@+_]([(])**)](*+$*{@%]+)^*+[]&+%%[(%&#!{_^%#*[^})*$]*%^&*)+{(%}#]_# {($#&!^!{[}(}@}}{%&(@!+_)]!*%)!(^!**!{!({}}}&{%&@#({_](+}##@$)!]^!]#!^^_[)%}@})) [#^#}(%{#*%**{]]((__)![]^+]+@__*_{)$*#)&][!)_{&$}}#_$#([++{[$*()_**#_#%_$)#]*%_( *+^*(}*$_%[${)+[%[%^#_]&*+{&)^*{**$[(!}*&@![&({}*#&@_&$)@$]!*@}}&{%{*[}+]_%$])_% %#+&$}#&_%&[%{+[{@_$!$])!*#*_$($))#!+)))&_[^!&)*}+)_){@{+(&&_^&{]$&!%_{*&&!#[+*@ ]{[]]}]%$!$_]]%%$@^](!}]!^[!^(%$%*$]&)@%!#+@@**$^%!*$$(_^[%*!)^$]^@_#}@(*}){({+( $}^%_]#$!#@[@])[_]*[]_+!(}([]$&}{([[&&}@$@*+]]{&{#[_{^)@&@[$(#{&{$]!$#_#(}^]{+_[ @{&_@[#&^!#!%%@]^]]@{[[@](]][)+)^%![#%@%]%&@)[@@]^[!*]&!^+^!]{+&#%()+{@$)*{#([^( _*[*#^@[&#@^}!@%!)*^%!]]#&%@$&^+{${^(]!{[%[+_}$!(]}!+&*}#}@@#}[*$*}^^)#)&_!![(@_ __&([^$)+@##{**%&!%}$)@(+*])&!&_![^@)}{!_}}*@[!^^)]{$%{+^({@$*!((*%%}_@)_{!*%{)) (*&)$*)#_#&%%!$}_^}+%]${}&($}!]!*()@!{*)%%*%}}_^_*}@@_}%&^[])*(_}_#_$@(!$*+#*)+$ !+[*[%*+([&[*@&_]^$]&_+^^+_@]_+}^*@{_})@!%@_!*&^!((}!__$#*)!})[))[{^($]@$@$($&%) @#@%!!&*^*&@#*}&[(@#&@(*!^@{%]^{%&!}#[%}%()%!*@+&!)]!]^%{(^!$!(^@+&$%)@%!@_{[#[% )#]**+*]@}!&($*])$}![%%%^+#{]*[$@@){@_}]@([}{](!&#[%_%}{&#^%@^_!}@[${&$&*$)]#(&_ {{*#[]+$%*_])))^+#*[++#*#}$]@$#(+[_]#]^(_^#)_%__![(%(&((^$*%%&])+)]&(&$&#)]()${& _#$@)$@$@@})[$_([(_^[+##)@]*(#^%(%(${[&+#)@^))[^#$^_(]**&%+%&(+$^#[+}))^^]_%$@#[ $*$%}*{!^[#@}&{&[(+@$)&!$&#}{]]++#]@!)[&@[_#)!!%){$]&)})*@)[{()@!)@^(#@]+@_$&#*@ +^{}^*_&^$*(#^!%)@()@{!%%}^#@_)#%%_%!++{&(}{}}%{++}+&$]]@)@(+{()][%*&_*!!#!@[!]@ ]+*_^$@&!)+!{+{}&_&))@&{{++{{}@#[*)%%$]{%#!+#%@@_*}!!)&%!{{($$&%[*{[!^**&[_[_+}^ _$]^[]+__${$@%&@[^}}#}+]_#(@_}+^+%^##]^$_{@+!_$}##_@#&{@_++@)*${*%^))%{}_@@&[)*$ _^]}#&(%^@^+[*{^}{_*)%@)$$#[(+(&^]#![{^_{([+&(!*^#&{$}@#(&!!(!{({^%%@!{+{)])^^({ (+{_%#(%)%(**(@&%$*#_+$^^!$)!$$%*&&%&[^[+(@$${!@)$#_[^}{)_%!@&%{{$*]@&%){[}!!^}+ %+[!*$]}(+#@*#&&[_)!*}&*#&#*^@&[%(_)!&+#^{#%#((+#+]]#@]$!!$@@!@[{))#()}(}[^@*)}# _#[!^${]$)]_!@@+$@(@+^$()*{!{{(@#+$&*@_$&@*++[][%]$[(@{]+}}$*{%[%#&%)]!}(+__$]_* +][}!&^*}_@!*}*#()$^&*%%#{_*@_+[({!_%_]!^#@(&@$&]]%%+)!]_{&[}^^)!#]_{$^({(^**_[$ ]}@)%_(!##]#![{]%*((}$)]{}&(%{{$#+&)_!#)_%&@^()%*@#%&!%+^_+(+$@($&^!$_$%()!!_!(* %(]^_}^#$])$]#{%@*#%)+}([^+*](!_^%[]%{}!_&+[$@*%{[@*!{}+^(@@&)+!_[^}*${@)^){@_&$ !*_@&+!]^(*#^[%&^%^+%}{[$^@]!$^{}{(()#!%@]{]}(!)[#(*$)$()@*{@_!$*#)$*+)])^{!}{#^ ]]${!@&![@&+&](#}@(@{&@@!!#_(_)&^!_}@^$$+_(@%_[{##%@*]}[##@${$*(${(#${)}{}%#!%#$ (#}&_#%!+](!$@)}##[^!#{^}&&!)&+@$^$%!$^$}(*&_&[(_(*]{$+#@_($@_}!+#({*(^@(_([_#++ }[&&*!%)#!@&(_[{{+}@)[_^!&($)_%*%){{!^$_*^]@%%+@&!#}(%}#])&(^%$$+@%_#^^%+[!^}!)! %*!*]^!!](@!([[]@_(#}*%&}*{}%&^($+!*%^!*[!_$_%@($^$[!#[^]^}}]!{##^^!(#++!()$$([[ ][__{}(&{!{_[{+!{*(&)[^}!@%{]()_^$+&_)!&$[#_)(&%!]$^+}%]([_@{)*!^#^*%[!^*!*#}!*] ]{&[+&$@[+%@^$%(#!+$*^]^{#!&{^@]]@@*[@^%#%(_+{}&@(_)+)(+++^#})}!+@)^_#}_[{^&]#%( %(^]^]$(#_*_)@)@!^}(&_$#]})^(}+#(_}$]@$&#{^}*!*]{}}{^}[#^(^]}[)+@^{@)^@{&**__]}] ]_}!%$+_$}#&_%)%[*&%_@}+&+&$]]#(([+([{*[{$+!@[%{#^#$_]#){+$%*_&%(+##$_}%[}!%!&{[ &@^%&(%%%#[^*@[*{&*![[+$){!)%#_*(]^#!}#+%)&!^)*)({$[^%})^}}@)}!)+^_[_^$)+)*+&@*^ %!!#!&}!%+[#!@[#@__*](_*+&^$]*#}!&*@*[*{)%)$*][}^!][_@*]*}&*}{%*((^^@+]&_%#[&}{^ [[!+}&[&}$)@{!)&*{*[$)$)!{&!]#*[((!(]{}]#![)@&}]{_!&{]({$_^*%]#{_]{#]!&*#*(_&)@} }+^)(}*^(+)+)($)#])^{%#&()!+%$}(+$+#*[%)*@!([$_+[}&&!^&$[_]][{%)[#%$*^%#$!*}+!$( _[^}{$%@$))_$]+[[##%$]&+]^]!)+^![(%+{&$%&)_$[#%_%_{*{)({{&+^@_(&!$&!![[!{%_**%%] &*^}!{)]^^[(@+[{!&%%$[@]&+$&[)({{#)[([({{#!(](]$!$+#_[@(({&+@}^}!!{@@**#_*_]$]]( *&]]{#)%%@{@$##[*][@#$[(@+()%%!@^]{$#!([+#@}&_)#_@{&{[#_}+__*_%+__+&&*!]&#%*%**& ###$@{#!+[){$_}[{#%$@+[{#)!#^}[$%}}[@_@%+!!}*}]$)#)@%^*]!}_*@&)@!]*#*_}##^[#@^%] $)!_%&*^*#!{%&+%#^![%$)*@%*+}+%_#[&_&+}(#$+#@!#!!#!%$@&+[@[#+@@+[_^#}$&)}$#]]&*# +*!@!#(+$!][!}@![$[_)$$&)^)[[*{@])}+^(!&*#%![(*+@+&_[)+)]$(++($+)#]}][]{*@%&@$$_ *+})+*&^_*!$)#@_%&]}+%#(&${$+(@}()](^}&!&+[]^[#()+!#^_@]{*#{{[_]_[*)[+#+^]+&%&!! *%($)_@]%)_!$_*!*@(_$_^^^$)}{&!@)%({(+(&[+%&+%}_)(#]$!!)%[!&+)*@%+}])$}#&)*[!++} *)](+{^!&$)_#[*&^)))[#}$({(}!+{]#[_{[}*+]!@[*^%]&{^&{)]#{#)&${(]+{$])&@]{{)}&_$} ($^$+}[{#%]@_(]@@)(&!_$}[&!!@{!%%_&[{[@&)&$_${%_*%%&@+#+%*!$]}])^!](+_)[%{^%{+@* &%+[%!{_{![+&[&!!_^_#^[%&[[}*++#!#**}{+}[+&+_$^^]}^^_{$)${!_)@_^_[}*#}&{!*@$#}}# *!^+&)%**}*{@#^^$^*)**!@&]]#[@@##%}@@[(!)!}*)%@+#+**)_%^&#}(+]][(%#*]_(}&){#%*#_ {^}_%*{^**@&)[&!#_#){@+@}&$()!][*_**#(&*{&]@&@#^${&!]}%^*@)!**&&(@^()@*!_$@]@($+ }]{!}#]$[!&&[*(!]!$))%+$%{!{^[^[$@[((]#!%@)!]__+{}%{_^_!{@{)^)+&%&!^*{_&$][!]@_% %&!#a}#+#^#{_&)({%!_]!_][}^_%*+}$)&!@[)#@{@[%*!*#_[$$(_[+!^[[[[+*{[*+{!#&*^@&+%) %#}&)#%*]!@#_&@!^{@]#)_&@){*#]@{@}%@]!(}$*)%#[)^{)}&#[]@}%+)@@}#^#_[]*(%@)!)#+@{ $}*@@[})+(})}}{@{%{%*{{%*+^*%]@]{[^[_&+#(&_]!([#&_[%]![[_#)&@%&]!$_&#&^#@^*+@%)) {{)!%[$#!_[@!(([)++}*)%]@^#![!{+$+((#)+$_^]__]+_^@+_}[%+[{()_%!*}$+[$#%%%}$%]}{& ^+&)^@)$%}]!(%^%(]+!^&_}_*%@]((%%&!)[*_([#{&!)@$!!!$){(&$}&!%*$]%&{})^+}@]@(*(*! [)}%+^_[^%(_%**{%({{$]}[*_)&(*(+{@!&$%{!{#*{!%{)![_}%}{[!(]@*@#([(*${*[[*($+!])# @}({%&@}#_^#+_^(*+$)$@+(^[$*#!{_!_]}!(#)_)*(!{^(@(*!#$){[#]&$^[+]!%_}+*]}}}%^_@# +@&][&^[[&!]*!)$%[#*]!*[*^^(_[*]^]!+#$[*##!!__&}^&^(^*%!&%{[**@%$%]}+^!]_#&+@+[{ $$^@)(#(}@{&*}^$!![%^$*$##^$#+)&[%+}}#[@!}!{#}+@$*$+{}^[)[]^}!)!])]^@}+{^_%(@*() @]$]!#$$%)())+)}_#*)(_}*@](^@!*&_^!$(!(_!$+@*[)$$*($)+%!{@_}!@_+}+]@(#}[^%@(][(} (_@^&^*)[*$*)+&$@){]$#^(#_({}**+!#${()_)#^+)&)*[%$%@^]})#{+^&*]_#^!]!)][#*#%!_%$ ]$&@@&[!$(!+_^#*($(_]]{&+!]*_)!$_%)*}&][[+(^]_[{[^^$*^{*!#*))!{@+{#$[+(^+*%(+*++ !+)&_)*}{!!#$_&%%*]&}+*&&}%}))&#($##!$!#**@^%]{##$!)*#+@(%))}]__[^$^})_@)]@*{&[$ )]^_!#]%&#[}}(][+}^^_}{@+%^[)$@%+_(&{*%*)]_@+]($!@*[)%#$]}#[_$!%_}*)(*_+}_&%&{}) &+(]({$]{+%*}]@&(([&(&^&!@{][^+^^)!@#[[%_!@^}_[(+@!!^+@${[]%]]@&[{}^)+()@%&}#!(@ [!)*%)^!}&(}+[(#$^@*}%_$+)[)}!+^](+__@@{%}(#_#)[%[([$)*#)@&&*&#_$}{!_+_!$_*_)&@) !}}(_[@)!_[[[&^$#+$)[)%##_[%{+*@}($&)!}}{%%#[#!#*&*@@_%@@#!#{!%][}+_](*+*{@}}@%@ )+_#_^!#(#+}]!]()@$%&!{^&*!^&##]^_+})}+]*%%*@_[(!%]}^([%{]%#][$@!@{&+]**^{%}^&([ (][@+^$^$[#{@#)][}_@!]][)$_({%#)%&)!}(@])!{_#$((*[@[}##^($&]+{^]!$}^]&[&]}*{[{_^ %!)%]&]^#!+$_*+)$$(@]+]*#+@%]&$_]#*}%$[#_%^+{+}$$[&&*^_]@^*@!@^+*]%^!(){#^^(){{^ [^]]$$^{&*{)%@^$%}!%](@&!^&]!@{%}[]_![#]!]#[}]{!)+@+#!_&]^_@+$}_[_%([$(&)$)!&+){ __@!&$@!]}^&}[%[[&&_#$({}(#{%_*[#!{!{@+_{*$_%_]^^*#_@}[+${$)!%_!#+#^*](%{}_@^)(@ &$__@@)$!**_[*%!]#$%]@!@]()]%!!%_+%}[]$+%)^)#_[[}+)*{%(^%#}*%&[{{%%%[)%*%_(%%&)* %(]#%!*(!]($!!&}%()+)*%$!}]+}!%{&+$}(#]]&()&%!&(}!&^{@]!__$_@_[)]]@&)}@$[)+{^)*% }%%@@)]^)_](&!#[@+^$)$#}{@^{***{[^*@](}%}(#&*!}+}%][]]@#^$[*!+!@{](*]*&&@$%&[}^+ ]{[#[&+&_[]^(})!#!}]{}&{_$]&&@($[[[+_{!@$_+]}](![@}$[^!)_%]^*$#)*&)#[{%@!)[_({&_ !&!@!#+&^(!%^)#_^$)@*]{_#(*{%$${}_&&$+@+[@&&!!%][##&(+]+_[}[&}_((}%[]![^$(!&_$$# !{_}&[&+^*)]!($]@*#^&**]_($(_^])^_^^$!_!@{}]+{]^&!)}%)^{]&*}!%%!%[(_%}{}$#+!])!! }[&}!([!)%%(}&((}]+!!)&#(&}}{+&)%^[%_%(}+*!(_[*!_[#)^&&+}_$!_$!&+_[+%*(^!&*@^{@[ ]$&]}#[&[#]]]^#%])](!+]]%!+$(*@^_#^*_&)@[${{$]]#&]!+&_!{!)!%*+%_%_)$]#!]{+_[){$^ _#[^$_#%^]^&[)$@)]]{@@^(&[([!}@}%]!+_((_^[{$&^(^)*((![*{_+#(]#^[]_^#([[^[!!%]$!( [&(_@!*^{&{+(_%{!$%#[&}&@&)}[^){^}!$){{%$&)_@))+(%#@+{(^+)}%$_{*@{#]@([!)@&+*!%{ ^}%{+&#]^{[%%]+((*@+@{+#_(({{$[[@#%!+{+]%^@+#^][}#+$*&@+@&]$%^}*@_)}}*[]+}_*@*@) [$!&_[^@){[_{#{%{#$+!}{#!@&&#(_#@&}(!@+#*#@%[@%%[%[$&@!]@_]!{@#))@]]&]{$}}%$[}*] )^(^(&}[$#}^$_@@{&^}}[%[*{)$![&*&$![#)*@_$]^$)%&&!_%%][+$()#_&)_^+(%+)_&^]!+*){# )_]!_&{[^_}+@%#}#[*%]%+!!(()!*_(^{#^!*}#^}$_^}$}_}{_#^@}@%!_{^[!]&%_](}]$#()#{}# )*+*}*{&$+}[{${[#_#{}_!@}&)_@[!)_))}))#($[_}^^${)@^(&[_+!_^[(&#}@_}{]%#%)[]}]*{) &@!]}]%_{+)!@%]#$_*#{]+!%!}[^{[)#[@(+!*&_{*]]&]$[*&%^{^!$!@*)*(_!+[{*^]@}+#($$&) !$(^)]!#*[@][^]@}(&*{}())@{%^#))*+_+#_})(^($$%{{![^+@!+&}_((*#[*++}*^^[*@&!{+%+] _&%}*++_(*![%^{$_!!&_$}{+%{!!}+!@&+}(}}[}]){!{{&_]_]&)%!!*^#__(^%([#%+&{{)*}&}$( #^!^#@{%${^*$^(^{(}#)%!&#})(}#}_(&#%^${#}#]{*@^!+}!$$${&#{{[[*^]]%^+#[+%$@]@#]}& )%&)}[^+^&@$^)]&[$*{^%^@**]^*!^!&_#%@+(@][)([&^(@@^@&!&#&_}&[^!^@]**{__}_!+}%!_^ _^])^@^}&(&#})[(@&*}_{{$[&^][+*&{!+#%@#_]$[{$@+[{[@}]}{*(+$#^[%[@&}]^^)_(]{@{##[ [_&!$]_$%$*]#!^}(%!*+_^}&@++_!%$(!!_#]{{$()))&*+}#[@@!_%%%*!_+)(@*@%)_{^!%![#_+! {_*)!(@[%@{*{)]$*_&%*$+!%$&&!(%}^]^!)*@+@!){_(&#%[_)_]*[$++&!}@])#%)}@)!+!%]@*+# +%&*])!{()@}*$$+){_)%@[%[*+$]#$}[#{#$)]{*!}!&##_^+&]])%!^((+}](*!&&&!^^&!!)^!)[# +(${^&^%+}@!#[#%_&]({$&)##^%+#@*]{_%#^{%_%+}@@]+%}@}]_)*^@*}+#*##+]+^))*#^^}&]&[ $[}%@{)&#_}#$&[&(]})&__!_@&]$]&(_{}^&_*$!@)[+%)+#()(+$_$!)*+((_)*@##{+#++}[^@{@+ _(}+}%[@&{%((*{{]+^}*]@%}@)%#![&)])^}]^&[@]!#(&}^!][{}$)]!)^^&^_&^[#)+[%#@+}@+!+ &$%)$&{]@%)%%))+%*{^#[@$+}(%@[})#$*@}+(}[&_%^&$&}}]%({^@*$&^@{]}!@(})!)[!}@!_+&^ &}_&%+!#(%#{[#&[![%&)$#+@[!)_!@_}})!#^((^#!+[}+&)(%!!&#[_]##!+%][]]+[_@_(}_^!&@{ +$^_]$()$({])##+(+%)+[%&+[_{%[##(#(!&_$*@#+{#}*&!&{(^#))$^%%@${}!{@%^^((#&)$!%!{ ^_^_&!%}#()@+(^%%)_]@%^[]%%!*)}!}}]!#{$^+*&[!@@)!&$^]{+((*]]_*_#{(*!#)$#$&+^)#_$ +!*+#_)!(&%[+}(+(_*&$]$%+&&[])!#*!{(}_[{_%]^(%[)*+(#(^+%__{[@+)@]#%(($^+@@+%(_)} ]+!%*_!++[[+]]@+]@}$)$^)_#^@}%}#+[+%^*!!{+${$]*$!#@](@@$*#*^+@{^_+%#!^()*&(}+$_} {&&&{]%$^_%_!+#%@$%_}#{_*!%@+^+{%&&![*%(]#]$![)#)***${*)#!()+{}+*($($*)%*)%([(!^ {[#)*^&(_^^$]{][%))[+!^[&[%@[*!]%_+@@}$^$^}**%%_&__{&&)_]+^(@%)+!}!]]^%}!++(&)(@ ]@{^^^]$]%}%_%($*&^*(%#&#)&*&[$@&+_}_!+!{^])_!}}*![!({&$)%(%^(})})[@&]*(}]@$@{[* ))$&%(#&_^@(&$]&@*%]+_{@^)+({&&}[*%}[{#$${@*}@]*!(]&)+&!!^}+*%[])[)_!{$+^&#%+@(_ #$]+#{#!$+%(*)#]}[%]**{![(}++$!#)&}%#(*@)$]+!@++*&_]}!![#}&[[)@%(&{_[^{{[}$[}^{* [##_]]!}(}^^@!(*#&[%!!]_^(@^((_#%$+@{^$%{)#]{^&&!@#]_!}{#*!!{]@{)(@&^*^]!&^@](+# _^!_^*]@_%$(]^$!}{*]&!+*+#!+(+^[%}*(}](%%{]##)_}*(]++]#*}]$^%({*{$+&@@#^!()&)%_{ [*!(($$)^%+_]]{^{%{&^!*}[{]+]%(*^]{@)[#{_@_&^%%+${}{]{%*_%#$)_*]#$_@$%#^{%*%)@%] ^{]()$%^_($]{^*]+!*!_])!_)%}{%^&]$)^[)^@^#_{![!&&}{[_](({&%@%$+(#]*]{@$]{+(){)!* %{)[[^(!]*$$#^({)[)%[&!![__@}(*){]%)]@#*%}_^}#_$(&*^+%%+^}!#]*[!}!&@#{+$}*#@#*(( }@+%]_@+!!_!%@_}_{[$*_(}%)#{}]_^!+#*@])+$+**[]#^_}{+}*&{)#%{!_$$**}&(@]_+)[#}}]^ %^[[{%@)%%+$}((*(_^_${*[$&+}@%&^$%&[+!@#]*%+$_@*!}#)#*((*&[$!+_]%[^$[]+$[({$}}!$ [^&^([!*])_@+@%!^!%}[(!#***)&)@{{@]_#^_+{*)^^_+&#@{]{@#&]@+*$$_#{!^#&&^{]*#)__]+ &)&)*]##)%#&){%!+*[$}{#]]$_(@(%])$^](*%#])[*({!^{&{%__!(%[*__)+#*_(*]_[%{(!_}^*{ $[%$}{^@_+*(]##&(+{(}[!_[}}$%[{$&[@!!@[%{[]&%[&}^^!]{]#@$)%(@)+_)}{_](&[(^[{$+%% *!}}(}*&[!)*!&!%}}*}]%]{^@{**@[@{]*{#@}+([@}}[[&_%*)_){&[)(]]^}^@#]%#_!(^_[$$+!! #&&+{#+!^+++*!![^]@)#][&(_}$&_(!_[$&%{%@]%]}&$#{!^@%}%{$$^]_!((**!{%)*&^]}#)%%$] {$^^{#[!+*]{}(&{{{{}(]#[#_+@[#+[}@)@#_!{_[&&*)@#[*@@[$(*)@^[[]^%][&@@_$+_%&_*@&! @*{*&_&({{[@{]*&![]*_}&#!+@#+&&_(+#*[+{^%@_+*+}}^@*(]#{*$++)_@@]%_}!$%+]+$&^!$@$ [}^_#[({^+_%{*@}@_[]{+][_*!#{])_^_@$(@%!@!(]%))){%](#]]#}@&}+%[@&[[)%#%{{+@[(^@+ {)}{%(&+]^}^+!$!^*_*+^@*}+]#}_#^(%#$]({+{#(+@$][%$#(_[$@]@+@[@]@%]@}[[@(*^@($#_( *)[&_{{(!*+%(_&*}@#[%[()@}]}[#&{)*}&(}]&{%][_%$@&_%*)&_^]{##]${_(*%*{!_+)^]][_&+ ]{_{()%(_&@}@}[%+#^@}#**!}+$@]@+*($*}#_{)!+])#$[@%]&])*%___!*${++&%^$^#@&_{)#[$+ $+]@#@_^^_#@}!)$_#$*&{+^{+@*{#!#$!%*^!}[[{]+{[@(%_&}^$%^()[&#%@_+{(*[$#!}[+_{*%( _+&}__!_#^&(%!&^%)(@)^!^)$([_[_{_$!){*[!*&#+((%(@#)!%!_[!#[_]%[#]}}%[$)+#@%%*[%+ ^!*[([#&${}^%@{[&!!$}!&#![_&[^&_{@#))+&%$!!{([@[}*({$]&}}@&**[++!_*^^[{^(!*^^%][ _[^])_{}!*^^]@@%*(@_])[&&$[}%@$$##]&#)+!#_%@}#(%&++&){#!+!&]!{&$&})[]}$*(&&)@#[$ %^^(}^#&@!_#*%)^}{&&*]+(^{({+$^]()@[)&&[&[##[][%]*&!_}&[}{{[$@}+!{[$[^++}]}[#[^# ^!%!+}(^*^%#@}{@_[#^@)(+)#%^)+@!{}_}{(!$[[+_[%@}!){{]]$]!^[@)(}&#([((%$#&%*]#!&^ !%$+}+&[[{[![!{(_@_(^^#]+!&%([_[*}^}}%!^&^&#)&#[)*@$+$%(@+*][}}(#@%!++^_!*[+#%&_ (@@)]#)#{}@&#{{&@_^&$+$@**{(][&]#{@+{#*$_)#_!&{#]%#(%!*()+)%#&{!+*^[[[{*))$!*__} )[%%]&_[{]{^[#)*)+#*}}(($)*(*{${}{}#[&}[![%!]%}^{&}&$[(%}^*_[)]+{!&+)[@*&&{@&%#[ !*___^_&]]#&[](*+}(^]%+^^)*}]{$!({%+_*]#&{+&)]&}}]}^+[)#_&_+&!&{[{_)]%{+&{*}*%[+ ]#%{_[){!)}_#]}!#%{#][_+]}^$}))#{@{+#(!_]$[!!&{{&+}!!)@)&)}]^^@^((]&^!+!]$}${#$* }]*_&%_]{^(_&$@&_({#!(_]@#%+{##_+*+^]!#]_]#](]${]][_]]%_{$*}[&^{!_)##%%)+)*&*__! }&*_*]&*#(]]@[%{%]#{]+_(}^(}*!#&]^[!*]&^$+!_^_++%+##(*@+(^#}#&*[{*])#)]$*%*+](+[ [{+&${}%!){!_%&&]*!!({$#)&}+[)(!}@&!^][)[#)}@_$*)^%${]][^]$!_$$#*&&#!{!!*+_##^#! [#&##(}+[@!{_+}%]&$((@$*(#{]@&(]&^)%#^^^[)()+*^{]%#%][[*{%@_))}@])%#*!)#_(}(&&}$ _&&@%)%#(^}&]_(_%@]}^$]_#@^]+{^#^*&&@!^$]$*#}$(!])#)_@]@[@^+}#&_*#^(_%${%(}]+&}! {&_}}{*){)_*^_[!)$]^%%]&]_*]&*_@}]_{+@!!$@(]$))!+#)*!](@[@*&!+%}@$+@*@_(_!)_[]}! )[^!^^^!$^$^_*#}#&{{}*}}[$#!$#(&_(_}^+]@#{]}_^]^}{&_[)[&_##_#*$[_]&}$_&]()+&$_{] +$_{#_]%}[+)$++$}[(*!+[$]*}!$${@#@{^{{#}[!%!#$&^^[+[+^(%}(^]#+!)(@{$&}#{*)#$(&{$ ($^*%*#+$%{*&]@(*_+&{*_]}%(!{)*([+()(@[}&!+{$!+%{^{{}]!(]}!)**__*]$^()@$&*+})_!+ %@_)%@([#{@$({[^*(${(}#*@[))+[^!([#]{$*^[)_^}*{$#&$$%+!%}($$!{+[$}&#^$&!^@^@{!** &*}]@#)#&*&%&{#^((({%}$*^*!__*$_!%^{_!^$*]#*_{!(*){$}^${%@$$$_}%!)*(^}+)@}$)&+(_ #([]_)&_*^_^*($$+&[$!}&[[@{])[%*_$+%])[(!+)#@(()!+^{)})%@&&^@]}#^@]$]+)])&^_]_]# $&_*))[*[{%_##^#(*[$$&!$^#^*++$**}){[*+%))!!+%(#}@)[$$$&$+{+%&+&[{]^{!_)%(*)}#[( $@[_)([@}_%&%)@{*)]^%*^!!!%]{}!([#!^^[+!^$+}^&{}*(+]{![!)$$&{!{{[^#$){+)(&^{)_{! {{!%}&&%#}!]!_&%@@_])((}}(@^]*+})}{*{@[$[&%(]%!_[(}%+)((*(}]&#*_$[^#[![_)%_+((@} !&(_&^+[(!#+{@#[[%[_)_*]%+)!@[(%#&^+{#$)$]]![(@+@(]*%#{@#$&#&*&!#_)*[@*+++{+}@]( #]#()_)#^}&%#(^$&(}^#]!$]^+*$*]*%])&@}$!{^_&+$]&{}{*^$_(]]%##%)!#^(@&)](](]}]_@# %+]^+%&%([^)!#_+^]%++#+!({*)^@#)(_&^$*(_$](@[{@_++_%@_#][(&$&#}%@##}*!_[[+@@!&}* $@^*)(*^!$%$[)}${))&^*+&_#*[{))(*_##&*_$+^&^!#![@@$[@#!&&)_+#%)&@(!!^$$!^!(_{%!( {^$[[#[@@(]}{!+)[($%({@#%[}}+#^]#{%#^#*]#{)&__&@%+)@@}_!*_#&]{])&_#)){%!&]%##++[ ({+{_#[}}#%!&&*#{[##][]*@_&#*+!)]__#^+_!^*_}#+}}((!+]]++]%_]*){]%_}]]&%{_%]^)!}) [@*!*!@_[]__{**[}*{{+]@&[@*!&]^_{[($]}^[}%!!(@+[]$)#!}${*#&}}#*^%&!{*#$}){+!{!@# ]*$]@(*$}[!@{($*&+[_[_*+*@@%_]*$[*%#{%![]!_@}!_{#)]!*@+[*%&[{^_]!%#+!}]%*#%[@{}$ ^[[})(&&_%#[}+%]{{*%](*^[%])(_$]+[[&^$+{&]*$}]%$#(_$!&##}$%&@[[{)@#&+&(&@!+)@@+[ @}$][([]*]&&%__*{*++!($#@$*+]^&!%)!)*@]$#]*@#*!^%+#(!^#{{#*(][)([&!@!*%^*(#{&{{[ {}*_#+*%(}*(%$^^&$[_)[*)%)_(^&&!&&%$(([**+)_)$[!]%{$[({[$$!}_(]^_%{^[%$*@^_!!&)) ]_(_#!}]&&{]{*]]%{@{+$&!@&!_{!&!#]_(!%@[{)(&&[#)#$#{[!^{_*]%[^+%{^*+#[!%*#[(@^#( #{*#&+_{]@^#[[^_!+*}]!^$#$#)#[$!})%}#^#%%%@_+$((]^*#^&^)[]$[]!{^$%&*%&!^^!(+$#$& $(+({[({@&{^)+@]]$_(%_&^%_&%!^(]_!{*@*+[#}}[}{@&&#(}@#^[^{(@_})_*!+{*]_(&+]#)*[@ {![%[*$[$(](([#*#_$_*#$){$@)&&{&%%*@&_++)$[_}^&@$%@_[^]_}^&#^]#&^[%#*[!}!&}@##!@ [@+[_#[({*%)&{*^%]+[_+%(&[(%!@&$_*}_+^)+(}))+%]))[#($^!]+^$%}([}!%#%&!&}^)@(_{[@ +@)^#)]$#&!+_]_@]${^^)[+$[[)*%{!({&#@+@!*!&*&_&!*!*@}#&%]%!]&%^@&#_$%}++[%(*$&%( $(()%}]#!])+#[]({{*!$&(@&#}[}#[]#[(![#{*})@^]*!})#*+}@}^}^%]^!}}#({[&!^(%}]}{$*} *@^{*@^[&}])(!%&(_%*&}{*$}^@#]*^%&^$__$)(![@$)@]+*!+__{#*_^}%@)_$]]#@{$__%*#!_*+ ])[%][!]({#+&@{}}{)()[#{_{_%_+&^{[!#$$]&_(]+@{)#&^+${]!@&][}%(]&!*(*@!)@]__![*+# }+%&((]+&#^!$+__@*+(&#])!^!%]$^#_)[+]+*&@+@{%{[{_@]([!_@_&{{$[*%]}#[!&@%}(%#{_}& *}&{)_[*[_*%[$_(@]!@#}${^#+)^$]@^{#]^_%&@%(})@!{{!_%@#(@(_@{^#[!^**)!*&](![[![&_ {#%!#$}#*!$+&)}$%*_&&#}+]{__@!!^%@[+]%[#!*!]@{_%+#{))&#@+}}[%&(@@(]((*@@!}]}{#!^ +_}][^[^#}]+][+%]$__*&&+]!+$[+(@$__&#+)}@[*{+(%*)&@#)+*+!}&&_$+[#$[*_#%@{((&[$%$ }+$#&+}!^([^!](!%&)#!_^!#$*)[[{}#[_(@@^#+$)(}_$]^&[+#+})[#]%)(}!}+!}##_$$&#@^*]] $%^))}#($]$_*%%+*${!_(){@_^(*[_^{]{()]){^&#@_&@{!)!&)}]%{$*^(&#]}*])&{&[+[^_*+@[ ]%^[^_%%{]!!$([^!*##^)^%%&@[{#+%)[)!#&[]@[{]+!##@_)%&[#@(+)#&&)_[%[#[*(}&#_@[[$) %^%{[{{}+&{*]*_[*$[%[)_{!*&*+@)_@@_!+*(#!}_[(!]@@*{#&#(_{]@&$[[&&(#^{)++}#(#&{+( ()#](()]]_&)!}(][@_%{)*+^$[((){(#)(_#%+%!%}))}%@)#*}_)#$&}(*@][@}+##%+}}_[[%(!&@ &)&@#[$^*^^#*&)#!#{_][@#*^}$&!#!][$+@{)}^^^(*^}$%[&(@^#$*!}*$&^)!_[]]}@[+#)**@&] @[}{_[@$}**_%+]${[&*#[^!#]*[(*$)@]*[*}*&_{%(@)]%%$]({]@&%]&_)%_#%)#**{&*(%&!*+_} [^]^_*#[!^+#$!_{[}&&])#$_@!#]&_{{[[+*()#{*}&#(+}}_@@(@&^+$@&}*!^!_*[%](%[$)_[]&_ +(&$@})+{{_}[&*_!*^^!!+!{((({[[$^^%!_&[][!%]}^&{&&]_}$@$}[(_{_&{#$@$@!#[)}_{($}& &@#+(((&%+$&$!!*^}{+}%&^{&&!_]+}}][!%[$){)_[+(&+{)$(+(+*#%{%&+(+}+*%%}_]&+&[^_[# )_+#}!#@$){+}##+}+*%}@}[#!!@_)@&%*{_!{{#!!##]{}{#+_}]+({]^}@{]$_@*^+{_{^]@**+)[^ [%&[[&+{}%@}}*]##]}%#[_+{)!*_)[[^#!(+$+(_!})]()#)}*!)_{^#[@!#]]^()_@]^]$@!+_$!(^ &{[([}&!]{_%%$+}+!%!({_]&+@]@[@^*)_+_(%#}*#_#%[#*+(!)}]^$)%**}]@&]%++#})[_((@[}( $(]!]$@&!+]{#]*_{)(@(^]*[+[]@*#{&#+%%&(@!@{)(#[]]%[!+(&!&@)&{^++&}*_*_#{(_&[(}{! }&#(({#%$^(()^}^^{$][)+![}%}[!()@%_^][)@+]+@!!%+^#@++$%(@*$]^*{]!+###)^#&@[^[(#} )+{!}(_@#@)([$^{$@*$)^{#!]_)_&]{}+(^]}*[(**]))@)$+]*+[_]@&&({#(}[_*+%){$&^}}(*[_ *^!_+^_#(_*}))#{#$)[^$*(_+}[#+_@^#{+){${]*)[]]}((_*%_^+&(&]}!!!)@(++{)%&#}*[^+$^ ]^&]}&&@}#*#@%**[]${%!}*](([![@^}^![^+@%[^$*&#)}*}^_%_]%{[_*_#}!_!$({^&[(@#)$$$@ $@_$*@_{(_{$$$%_%}(}]+(}){}]]&$+*][)%]^@&#]]&}+%}**!+%*${^)^{%)&%%&#]}&%+^_@_^#] {@*&!$&]%{[_(^$}(({]^!#[)@@[[{*]{)_}]#*}$#_((#*+^]&]}]@^#^%^^[*@$}&{{&#*[_{]%#** }[%(^{_&!++[_)+@&^])&)+!(@%+([![$*$+&_)&_*#%!#]${[}_)+)&$#^*##_&}$]]++!#+(@#!#[} )[+)]+{@*)&(^{^!+^^]!^)[$_!{&{+]{@&#!_)#%_[@@_[#%*%)*])$}%{++%[)&^[+!#))#(+_+$${ #})(%&!!!${($[$&[]+)^}_$$[%}^[^%!)$#%!}[@}%%*_^[+!{!_!!@^{{_]%}#+{}{{$+#}]%[{*}_ +#@[(+!%]*#]{#$%[]+[*[#_+(^]{}#(!!{]&!}}#{#&{)!(]%*#*$(@}!^]+{!(&+%**#@@$](%#[!+ !!)&!]!+^$(}(@{#@${]{^&$^)[!*[@#]*{%)+^}@)(%$$*{{+@!!@{@{}@+@!*&{%]_@^)*$+&&@+)* ^}{&*{*}_$%&((#&}%($*%]#+!*)@{$@#^+}([[*%)+%$@]}@]%({(]$$__+!}}+@@!${%(])+{}![@{ {_]+[&&@%%(#{(^%)++%)!&!)+&)&]&}[&[^*!${&!#&&*^)[&$]!]%@{%%!&@@+}{#*]+%&!#^_]!_@ @}_%^^[+{_*[]%!@(#]*%}{+@_}*{[%^@_#{@}}[%[@+]@_()$)[[*!)(#)$%$%(^[^++_++@})$[&+( %^^%#{!)#*{[+!(!_}[!}_)&$#&]$%##))#&%!+^#}()+@{^^@)^)}]^{]+[]+[[_(]+}*+_*+]$%)&( [)%&$}&!{+&}]{@%]@#_[]({+]@%@&]@}))!@({$]*!)])[!@(&%++(}[[$%!![$*&^+}]][)!)_^*&# %[+#}(&!&^_*]$^${[^_)_%!}%*{@$]^}}!_$%*%_$#_({+${_]*_$[)[^{%^@@[##&{)]%]%*%)&_#^ &@(^}(){)&$[#[##%]*^@*{&(]$$](+%(^}@!&)]@##!&@!^)![#@%[&+@%^&@^{_&%&[(^(}+&[(&%} (%+{*{)]^+[{*+&+_)^)$)[]{}]&}%((_%%[_#}[}*%[^_@!$%)*^@]@%+[#$}##&!_}[%[![*^}_)+# _*+@[!(^)&++[+&_^%(_@]_@!^&{]+*+&@(&{@@&{##@)_*#{)^[%+%]@^$%@([#)[+@[_]+#}!#+!&] @[(&+_{@#^&{$$[#]&@!$#$%$%(((_)!)]]*}(@*^$)!!+%_!!^__@@}[*^)%@**@!@}&!{&%+!#!(^@ @{^#*)+$!@$&([++@$@_##+%}_[{}_#{@!@@#$(@&]^]*%!+$)(+{[+^%^{+!}!&$[&#@}_&{%![^#*+ #]@(&}]!@[}+_]!{]%+&)^{[@[__}}$$&!]#)_!(**@(+*!^}+#)}!)@$^![^){!#$[*{%&![!^^^_{[ *[*#_*&%)&)}@%!@!&#]+%^#))#_#(#]*#*!@^{()&}[{%(&[^)@$^%(}&#@(%+@%{%%]*{$(@%$]*$] }(}@$(!!^]+)%($)_[!@%#{[@#((%+]*!*)%([]{(}*$]%#^*#_@@}+_*{$+(%]}$@{!#*%*[[^!{)&# #*!#^*+[_!$^%&)%$_@%}[%}#{{}%!$)[%+[[&%)^(@(_^)!*@#^#@@+@[(@)$(^&_}%%)@{$%+){(+[ })#[)!!@))^@_!}(+{{(%#&[_}+_)_{#%%[%^(]]([(_!@$#$%*)$+(!_##}]_@+*!]&}@}$&@!#)%_# #@+&(@[*_*})&&#@^]{(()!#^)]{+$&(}!%{!}([^^*}(])[@(($@^!^___)!}[{}*#%_${_&}{+[}{% ^$!%@{_]@%%+$]%[)]#_#**_(_*@!_(({(&&^$#]@+{&]]{$)]$)*}^+_($#$_*][@^%&$(_+}&]${(% +_$!$^]#@}{+#@[]_%#^${]$(@$#[!^+&)%)+&#)&{}}@([&{+{_@}[++&!&}#$}^({])^&[)&)]_{%+ @+]_*^&+}^@%*+))}@!@#@{%$_&$%(@([!)))@(+]&$*^}$_+()*[(^(((+[@@#%)&$]{}{]*(@(@+^_ ){*#@)))#)}#^)%&](%(_}[{&$#]#$@*[_[]_%+&%}+%#)!^[}[%$!_](^}]){)#^[#]_(%(!+[{^^%{ ^[+))[]#@}$_)((+*_]_[^(_*$)&$($!#%&_#]_^))+%+]#{[{{@*}[#(#($&@}%@%#(*}}]#+^{{&%& {}+_}}{%*]_#$@}({%)}%_!]@$[${+]@+&@!]&$$!%}]^!%_#%#)$#^+{+%&#+^()_%@%!&[!$&[###] +[_++$%]&_#()&#{]&]_($$)$%]+^*$[]%{*^!(}%#([!%[@{**_)@##)_$({[#()@{]}%#*@$(!^%}& $#[()}}%)@)*([(!$+*^__]!!+}&+$*^+}{^@]!)!*{[^&_^)%{!^##}[#$!+&}$[]&_]#_%$(@^{^)} {]#%]_%#]@*[}&[$@_*_$@]{[_#)&!@@}+]}@{*%({({((!@{{*#&#+!)$}_!!^#{^^{&}[_!*}(_}(@ @@_@@%[)$)!&^^]{$@&{]+(#}+#{^#&*&__@*&&_&!{]+%+^!)*%!$}_()$#%^{)+@@^_]_$&_)(_*&) }]!${+_[*)+#[#^^&))@^$%&^_!(^{}[])%$][&_!)])@%}+({}+]%#{$]@^{@_]%*#!_#!((+_(#_]+ [@**!)^[#^^%#*(!_{((&!*%!!+&+%)_{$}+^@[)[@]$_$*+&(&{)^%]}(()*){[{]@}[]]*%!#](*%@ ))((])]*%%%$+(%}$+%#[#^%]^@)@^_^)#%#([*%*@+(+)&+++(^%]*!$_$$$%$+&]_+[@_}%&@@%){) _^{^+!+%^)]!_&+}@+^$_]*#]((^&$#!_)}][&#$+&)]_*#{%%]}}[%*${&)]}((^(_}(](]})*]_&)) +}^_}$)@@+{([@%!@[_]]+%(%%%{(@[_#+@&^__+!^!_^@]@^#]]##%*^]!$$!+[#)^![@%++%$[&[)[ $$!^&!({]{)(@(%]%}{]]{%#{&!{*@&)%%&)#$+($[[[$+_#@!]%#)&&&+*^%*]#_@)[]]+++[]^}]%$ +&^^%({}}{])]!!}]**&!{[}+*$@*{$$_}(^+(^(!%@^+*+%$!}{((%$%}^{%@[^@]^{{%_(#$(&+]$* _^[$$+!(_(!](!+^{}$]@[]$}*)]})_[#+%]@%&@*&{@&+)+({[^%^++)*#+*(+!}*%^})+++@}_&#&] ][*}^+[!@*+$[%%(*[_$+}$]*}]%$%@&]@)!@+]$(&]^_$!)@+%!+&(%]&[(#[#}_@%&_{{]^@#}&_(+ #$^#$&$_(@(()$(@+*)^{(})[#%}%$(@@[*&!]_+&%%^###]%[+)$[_+$%$$_]#&#*#$+@#)%&^#_}_} _%[@{(*)${##{*@{[]&^[&%^[)%*[]*)$*@)[$%{{^#^(}!!_$!+*^&!)([!!]_%)([(#])+$*%[@{&^ ^++{&{@%{({^&}@!^)@]%&@&_+#]]%%[]+%[^)@#+{+)&{*@+&&}_!_!!$$${#({{{#+))]*(&&@{{%& @+}{%*%[$}(#)$]][)!_%{(!){@%_##%{$)&))_!^(!#([+)]#_*)_$#}!$$})%^[%(_+!&{+^*^()![ *@$}^)}{$^+%@@^)!){@*{#*[#*#)^{@!(&@#+_#^[&^$+&$!*!@&[}&&#&@^})&(%[*%!)@[@])*{%] @!]@([@&%${{%*@^[*$#])__&+{@@@{$+[(@!%!^_{$*^*$)%$!%_]&$($!#&)@!}#&*#(#_*#]*#%{) *@}(]+@#@&}}_}$+&^&[#%^*%*&(!!@{^^%$_{+[!@^](@*&%#!}**^$@{$#&!!!^)]%$_)%!&{^^}!% (*$**!(@&*+)[+(!_(]![%!^[)[!@]_$*))+(+}[+%($%!+%!&^[(^^@(_]&#@[[^]]*@_{}(}[#_{*_ !+(_^]_%&&#$*}^*+!*^}][&_[}[@]$#{]%{)*[$!^_@(&$^!%$+]{#&@%{!)@&#^}%%^+@}}%%&^^}@ *##+)__()+]!]])#!%(&+{))&)@(][++_*[@@)%{[%[+{}^*(_&(&@#&^$@^_}%^{![](^__((&#$}$( _]+^}@(]}^%#%@([${%@@+#[{)!!][+)$%&[&]@$*@^#^#%&}*@_))!^#})$!@%)(}&_^]!![+#()}%) %@}}%^(#(})*}){+$_[+]%%]#(*[#_(![&{#*$){_%^}+*))&+)$#_*}[][@}_#%@{+(+[#}(]^%}^}+ _$#*(^]{&$#}{@_^^!(!++]@}${]{_)%#&{@^%$+{)]+_$&@[)#[!%^((@(}$([#$%!]&[&*&!#![^@+ {#@+}@^@([++{^%$^@@}}*{!$*&^&)$)$$$}[#[%!_]+]]*_)!!&[]}+$!}%+{!(&^!#{##}!}&@(])+ ^(+{+_%%])}(*!*+@+^$*#})+&{}%)(@%[{#^+&@)_[(+[@@&{@){#({++_@(((*&&{@$&[[%($}^{(+ &*%}%((!&#!$[)_(}*@^%[@)]#%*}}]#!&*$&+[^{#+##(_%_^)]@^}*^]{[^^]!!+^+^$%#))^%}*^# %#(*}&)[{_$+@}}&_]$&_{]$)]&[{**$^(#$][__{@_%#%&^)^%!#[]@$@$([!$+%@{(@)@*^}(+{)+( _@$)^&@+})_^^]%*$^^}_]@(*&)+){(^)_#${%{$+#@))#)[)&$][(*&}}^]^_%!*#*]$@%}+$#^$[&( %!*_*(%))^[*+__*{+[_)++))(#_%(+!@#+@^^&[)*_^_+_%([&)@#}!#%(!#!!}$[@]_@{)^[{%]*$% @&*!$_#{!$_*_!{*()@]+_&%{#!$%^()$](^]&#@!$%))#]@*{@($#&(*&&@^%@{_({{*))+#)){$^+_ *^{+)+{]^+%{^^&+@)#+@@}*^(^)^)_!%!&())^!+]&*@[*^@{+]$[_@%%%&)(&$$#[@&$%*{[_@)[{[ _[!^}(#$({#%[&[{]@*^^+&&((*{((!&%}$$(##[+_#]&!{$}@*]((!%_]&@]![!]{$#%^%+#{#+#[*$ (]@!%&}(]@_)!{*))+^}#&*}@##@}](&)!#${_)&]&[^%_^^{{+&&%+@&@!+@__+@#]$]*!(_^+!$^{_ *}$[%^$(%{(&])[*[@^+_[]#%#*!}{(!}#](])@++{&}%!%+*#&^&!_$(#_%([#[_^[[{$(@#]}@+[@% @(&&@}]]!@]$}@*}#(^[%^!_(&+(!)[**(&_!*_*!*))+&@)%&{#*[%[{@+$^&@]__][#_)^+)#^&)}[ _&$)](!^{&@(&[&}$#%$%!%[#)}*_(!]%[}%__^%(@}}(^@_(&]^^#]!%@{}{&*+@)&(#$#+%*&@{_]! }&&[(_*_%&($%(@#){@_+}$!])}%$_[+$(@)_}![_&*%_[!$}*#}&]{[^+&![}%_#{#$[{)({$$[}{%$ ^!!{{})))!{#^]*@&}]_)}[%()[](*%@[__%#*}&_(+!{#[)!@(]+]}$+%_{##[(+#$^*@&@{*}%)({! *#^$(]))^^}{&})@**}!@[{{[*@^}!}}#))@*][[[##@)([_$#*+)]%#{]![$^[@!^@[([(){+$)(]]} ($)[!+#!)*($!}%!%)]{!@}][_{]({)*^[{%[#]$]![#^(!{_(@$@{]_^%!%]%[#%)_%%{@&)@{&}@*% )}@&+[)!]__*(#*@)_[@}+}$!^&_^]*@!)_@!)$*()}[@*&}){%@}_@$[@]$*{_^}+[{}_}#+[&(^]]# ^^^@%#((}!_*[(}({}@{{)+*}$@!^)[_%(%}#!!)+&+#&%}$*${)](^+!!])#]@}[$^!}[}}[]#_@@]} )+#&{${%+(*_$$^]}&#+^%())^_^@(_]*^]{))]+_)$@_%*([}{${^(]{[[#(#]&}+l}%#@}{{)%@{+} {$})($)({%@]!]]_(#_$[@_][+_)(!^!&+*{@*$#$@$$)(@$*]]{{}])}+[}!^^]}@(*%^%![+)&$}]$ ^%)[*%%@(@[#_+#{*#$%{_%*{_%{{#&[_@&!}#__)$+*+*$_[+*]+#*(}&}!*!_@#%%!^[+(}[}!*{!+ #(!^_#@^{$__!_*&+}@[%+&${}()@$&^(^{[%&]_}}%^}$&+&{]*+%][@%@@#*^(^*@+*#*^](_+!$)+ *{[]{@*]$%}{&#${_!%_(@(}_)){^(#_#@*}_]+))$_$[@+])^]{$]]__%*%(%}_@@^[[)^_[@(@&**+ @(_#_&[!%$@&)![]((}!]]$&+}{{[_[+[@({+@^#((@_&[%($)&![*(^$+!^$#&@!+_}_[_]&$!]^]#{ }([{]%@^+)[_[^*}[_[}$^(&)#*&&^)}!%{[{#_#(^%^_&_&_)!+}}*]@*($^$&*{[+&}*^&%])^%]*( @[)+)%}]){)[##&+#_)(*(#&)}_&(()){*_!}*^[$^*+$@{++@_#%_^($*}_+([]*&^$()$+])&)!]}} {(%$#(+))^{!]@()]]$%*]%&+&)_*_{_(()^$!!_[#+^@(%%([*#{)&+)))@*$@]#_)#}!__(_!%#*{] (!%(^@)@_&%@)(_[(#@&^[+([)+%}^*{!)!{+(+&!)+%^{*_]+&*%&_*$])&^${%+#+^+!(}+&@]$+{* ]!@$})^+*$^!$$!}_&#})+{)}[_#^[(*!)@%{!!(&^#${++*#@&^&!]%}]{!$+*[*#]}{_{_!&){%[^_ {#_(_$(^)#*@(##^*@}}(+&{}_#{*^]&)+]!++)%[^%+!+%!++%+*&$]*$!**&$$$+(_!{[++(@#[+{_ +)^$]#]*#+#_&@$#&&]*]{_**##%#{}^!]{])&($@(+**[_!+_}&#!]^&@{*_@[&*${[+}@_{}}[]+#_ ^+*#!**[_@#@))@@$!!)#%$%${[(&#(&_#[{*{%@##!^@*)_!{^{%[]+%]}}()[$%(_{$[[^{(]]@%{_ [^_(@[!*%*$][+@)^]+#$!_)@}!*_&$&%^@{*%)!(*[*)(}^&{{}_[$%)*()@%)#}_)#}{}##&]{$](# ]]_$[[@!))^*&^@!#_}{_)@$&[%#[]*!${%!#[{(%$*_*+$)]%#&$!){&&_%##_]*%$@^%@&&)*$_&(] @}!^+[]&}{&{&%]*{_*#^++#+_&(%]+_&}}^^+@+]@])}[${%$*^@]{^^{+#(#*%*[&_*(+#(*[$[*]$ !}#_(#![^%%+(^&*(({%[]@^]$([@@@@*@@)&}@)^^{*^_@*{){*((%!($+^_!_!^$$_!(@+%&[!_$#$ [*%!@+*^{}&^&]}$#{*]!}{+#%@]$!+^$_*(@]@%})%$!{[&!({[##$))(@#+(%}@)$)*@++}%*&(#^{ @^[&[%*_%#$_}${#{@@^^![[_$(!$&}[&^}_*}@@_}*+^$%[*_(+}$)%{@)&^*&(*]&$!_[{)&{[[_@! +_!]%^[)}}){!+{%}@##&@@([%&]+]+)!@}^}&@@_[[!(!+[&!)@*%@_#*(!({^}$++!#*^!]+^%*$$) ]^(]#}]+)[@__@]#$]{^)&@[{*+%%$(&}^!_++}&&@+]}*{!}^+#(@(@$[*%)*$((&*{*@#$)]*+_%@) @^^]^^)()*+){!+&{$}+&{!{!+@}_*&*$}$){]}&{({_]%+{_)%(#@()]}@]]#+$*{*$$@{])${*($#} @)+}!{*_}__)(@%*&}!*@#+!_#@!&^$&})&*]!}{]]$#]&$_@[*!)%_[}}_@+%{&_+_$^&^)]]&&}(*% ((@#$$(#[(@!({{}#&$*]$[{+!@@[@*#+_#)(*_^_(%#%&[%!(+}$&&)%)[{^$(]*{++})@_[%*%]*^+ %(@#)])+^_*+*#%+_+}^{{*[+%*]$)]&^*}+#}^!(^(^)^_*[&@[}_*+$!{(@+}]{_}[^$[+_][{*]]+ !#+$$_}!%^%$]}^!*)]+*(+{#{[%^&!!^_$*+@}_$($#)&!)$_))*+##$&$$(]]^@_@_(!^%{_&@&+^{ *]!^&+%_}#@&&]%}@#^#!##*#[])*#}*](){+*}@)]+)](_(+&%{#}}})_!+*_}%%}%}(#!&*+{!!]]( +_%_([_&$*{^$*)_)#*@^_+#({$][)%@$^@$[&!+}*^$(^!)()){&&^{)]&)]{@)$_]*^@]&)@$#%#]( )+}[@({%[$!(](!)_)#[&[]}^]@*#([}^]@%%%@}[)($($]&^+$][*(%%+*$}%_]]$!@+(_%+&+{))@} *_$#^{%_^_{$}$]^&)_!_#$[}#$}}%(*&)%+++&$[{]!#{^_{(*$[({(&(_$)])%]#(&)%$@]{${}@#& ]$&&]%^}^*#$@{#_&&(#%{)]+_[*{@^{@^%}_$[]$[((#@(+^}}!})!)$@})$%}*@]${+}%+_!!@@^*{ @^)[{#%&$*}$[*}#_^}%+}#^_+)^+$!_*#+)^_((^^+(*+[]][^(^^^&^}}}^*!(^]]*&+}[(#%)+(#! &[&&_))#@+*^]_#[#{{$+!!%]]!!!$]^*!^^_+(%)%&@$}{&]$}#[[^($(*)]]%_(#}^((_@{)]}*#}) %$)$_%$]%!{)})!^@)[())#&#}@+_$##&$[#!}^^&_)%][]&$^#+@}_{@({[++&(_!@%@#&}^#[&[^%+ )[{^)#++[__(*+&*%(@]#](+(]]}%(^!(+@]({_[][)(%(&}}&[[_{#@#)@[#_[$#$[%[}{]{[)$)%{& +&(@&%&^)(){)_[_]#^$)^)[!_]]&!)}+{_%(&+{(+%*}][^%)#{{+#@!$_*_[+[&}{*%+*!!%$))$(_ *@($]}^{[_&$@%^%#@([#_[_#_%]@(+^))]_@%%}%({_*^^@#_{$#_[&%{@$$^{%]}#!$^)+#)[%*^{$ $_[#^!+^[_&*%!^(%^![@^!_+{_(&*!!!$)]**^!%*$%{&*([+_!^]}&@^$)(_(%(%[}%#_^$#]@*^]! %%][^]!%^%[@[{#!}[!}$@)@{^^[![[*$&$[#+{+(*)!^!)*+%*{{##[)%*!&#*[{%@!+((@##_}&+$* ({#!+*]+)$@+[[&#*!%(]&@^&#_^*@&@_((}_!!_^+#}%@_{%}$]&{{+{]+^]#*[^@]&}*_*}#!*_$#% ${!_{]{)$)#{*@+@@{$_]]+&+)^+!()[_*]{^^]*([(@!{&{}@()%_{+_[+&&@}{}(}$*%@$_^){*![{ (^@^&^@&!+#&(@%!)[]%((##@(}]_*#_*@%(_{$_#](#_]*]#_+_[_])(#&%#]_(!)]*$&*##){}]+*@ $+%([}$))^^!{}&%_%+$%&#[}^*_^^_#$$&^{@#}%[$&&({&^]}(}(@#*&#^)&{$(+^++$!*[{})]}^$ $#!&#[%{)(%&}^}[]()]$@])$])^#!]!%)_)!(])(}&*($%@%]#&(+^+]+%@[([@^]$_)&&%^*${[!_* $)$__$+&@!@+#{]]@##(*]&+^}[!{(}%_}[]_^{(}@)}[$^{*_+@+[[$&#}^]^(})()())@*)!}[#^@{ (+_$$+]&#]+*^]))@}}**&[]}$]&!)^{)[]+#%$(}##!)_@$_)$_})[#%[!{*)_*(*)*$}#(^&){+]_] ()))_)+]{)*&)@!@&*__%{@*]&${]${@_&+)@&)*+*!][#_][(&])@}@!#^!+*@]!#)[+__&&%}_+$&$ ]#({*#]_#]&*}_((+#!}]_}+&_+](!#%+@$}+@#&{}(&_}^*!#$_@}^*}${)_}%)_!@&#])%{#&)*!(# ##%*@!]##(_*{}@$!][]&+*#){(_!$$_]_^^]#{#))}_())[[)}@$+_}_*!{%%*![$*^#){([&&[}#%[ &]@_[@@_*)}!}#_})]_@)^[^&#&^!&{](&_[!&#}%!{)$[$()}*^#*{@&{]*$%$$*}@^+*)@(&(+%$_[ )*^{{![!&&[*]#)$}){^]%)@*]&^@@#}#*%#([]^&%}]&_)%!@@!*$%+*+#+_%%+$%#!%]+]![@#)$${ &(!@(^{^$_&^^}))&}[+&[$*^_%_[@^([**&#&[@{+&^](^}}]#_%###[){^{+[$%!$![^)[&#*@{+]# _)*^@})]{])*@&]@#+$&(#$)!^$$][(*&(]))^[*^})!!#))(})]&@{}({_&)*$@{+!!]{($!{+@!({$ #*![]@@{%_^)+_#_][^$!)#*!^&]___}%%&_[}#(@+}^*)%[&!&}$^!!&]#!}(@!)%&^__@@{[+)[}#( +@#}_*+$})@&_{_@@)(@#$!){}@${][#[#([)%[@&@@%[{%!&^#[!_{_@(&@}!^^*$(^*!%}+$)$]__% _$%@%}*)!@[$+$[_[]^!][]{+!#]]*+&{){+)__$)_*%!{^&$&$!)*#_{{$!$!+[%[&$+!@!}@*_[$&_ )*$*}%(*^{}!$^$%*(!([##@&^*!+!%@[+[+)@({{_&**&#_@}$$[)%]@[}]}{*[++&)#)&!$!)_)}$+ #]!_^#^*%()^#&(]&}!}[[[{_&)#}#@^#[{__^]^#((^%%[}!)((%(@](#(())#{@)[!*](%}}))+!)( })(*}]#$[_($^_)@+]@)_)*[&@]#+(_))]#}#@+#@@!_+#[_+_]*)[!$&@**_+!]@_]&[@%]+@[}%$}) _#)&&]&@}!&[&^*#!^&{*$[{+*)]&*##%!{@)@*!^_&@*#^%_]%(}]{_!)_%}_&&$$+^(_*())%#&&** )(#!@+^!+(^+#^}[#($}*&*!@&[)+[@][[]])#&!%[++@!}]$%]*_{@%{@_!{#%([$@[^[}^!({!}^(* [*&#$_*{$^!_!(}{*}]@($)%^)[}#&&_&@]__[$#*$*$^%]#!}[*&_@](#$_[#@]}!_[&+}[%]{)@#&) ]+(_@_{#]^^!&}%^(*^*[)#]({+@+@}#(*##{)&[#}]{!#!@+++^_](%+(()_^]*}!}!$(+}&{*_!@#] )*@#}[}([%{[#^${[&)*[}#+(%^$@+]&@{$[^_^[*)@$]]+}{{^%&({](!&(%#^[!}&]$)+*@%%)_&{( )%*@_]+][&{@$$]]+*}&+*{+$)$}^)!{+**!@[(])@)^*%@^@]}%^^!!$&!}^{&^@_+]_]$)*#({%]#* [+%]@[^$%_}))_({_]%${)}_[}^+(%_+}*}*!_+^^@#]@{)}&[*#((#!$![](*^(!@%*}_(}$*{!&^$( {$}&%(^}+{[{+@)[@}$)!!]&[{)_#%]}*^@[@$$]&#[@[()${*#){)$(&*#(}@_%]})&[][*])+%#{{^ #}%)!))({*^@^_%@!)(@_+$&){[[(_+&^_@+%[&_*&#%#)[)^_[*+]+)[!^}]%&([}%@[+@&^^((^+^] &(^[%[$!!]#]^_!!!&&{]}]]&)@#}@_]]]]${&#)@{}{!{@%*)^@{$^!^+@]$$$&)**_{[[(%)]@{*^( _++]]}[%{(!!(*]_!^]{]$#{&$#$})+*}$^}&!]{}^_{#!}{(!%[%%{$%(}]@&$]#+]**!_#&[&$$!{^ #+*&!_^@@^_#$[&@(@$+&!)_^+{{__}#_)^+(@@{[){))@[+#*}_#]])^]^%^*_$#}]%)@@%*!!{^&+$ $_+($!%{_]$^+^@_()#^[[^)$+@))&}+_$[_&+{!$]}]%$_!}[@)}[_($^+#}_%*%@*+(^!+)()[#*_# ({}[*$@]#*[#&%#!^){@__[]#]@}^$*]$%%(^@^]+!}$#$#@$[@}{#+!)!#%%!#[(^*(*_+*{#%#)%(* _@([()+#_){${^[__}+#%{[&{_@![{}+[#][)!&!&^$(_*_^^}[)&)}$%%)(#[)&)+!+{@^@%#__]$+] {}+[(^{!(&)%*(@^#+#)*&{)[^+@#{{}&$]{{@_}@{&${#%]}*!@)}^{}!)(!(_$%((#%%%!{(_(_$@@ [@(!%!@_]!%*(+(^[_!_#!)[+@{(#%!%*]$&#@_@!*&){__(@@_}&*+){_^#^_}*+@*()[}){]!#!&^# @!_%&))_^@!$)%^!*%@{+)@%$$]&{!*_!}@{&**(}&^+[@%(%*^$(^+{{($&]!_{})!*)_!}!%++[%)@ $){^@]#^{(!&][%]+[^**^$&*@&[)%%#$)%[^_[@^*+)@)}#&&#(_^+(%{)}}!@^+$&&$]{(^*(@]@%& #+{$]$_[^{[*#}%@+}[@}+@**$})^@]#&[+(@^&%_%!$_}*@{]}}_(#@[*]}+!_#}))+]]&]]@$^^{+[ (!_}&&}&}!_@$#)]{!#^{%(#]#^&]#}^%{&&*}&(+@^+_%]#)#)_()[(_&!$+^#[%@+$]]]!!&^%[]!^ %%@%)]**%+_^${$(}]}^{]])@!%+@!$#!})!($%$@)+*[![}]&__[$%!&$^})%]^&%(+^+#@&^$]{{!) [(%%!{![]#[^$%_!#]^)!]![])!$@+!^@{%}$@[_#_+{#](!^*(%#@_^}^__[(@&]}]@&!)_!$^%*(}[ +*}[%]*#@{_![]$+@_)]#@+]#_^(!*{#]!()@}}%!_&@]()()]*+(%*_{@)]#{[*^${_+$)@[{[$*!!{ %)+$^^[!!#^]^+*}#{_(^*!_!@]}[}%]}#]!(_+[[_)%!+($*@&$#*_{^@[()&+)$_[%}(^*^+}[^&^# @$}]%(%&_&&*))&%$![}[$%}@!]^*}*)_{^$_!(%]^}!_#_$$^__)}[#^(]+@&^!&*($_[_$%])]*%%! #!%+_{]$}($_+{^*}]&[@$^($^]()]+)+]+_]!*_^*^!@{]_){#+_#%(*#&#%(]*$[%%]$[}!&*!^^() !}[}{!+^{@}!$)%+)}{*#}%}@]#}+_#+&(*)_]}#(!{(*&#&)$_{^%$*)]!##*}$}[_&(#^{&)%+{(_% &[#$!&+}!*#%_!%+&&[@(![+*@}^%@)@+(_@(%{$[]_[%)}_))}$*#+$(]@%{#!)&_#@!!]{!}){&@@( )(_)[&{!]%*{^{{]$_&]^![{_##($%)%}#})(]$&^^}&!#@@#]*^^$[)@}!!)@)_*$$[{@%)_^!}_^]] })]]{!_@)[%!$#{&@!_+_$[_*@!@@@_(}$!$!%*($[%)[(]{[]#%*(**{#%$)_@_*]({^@!$))[$*$#+ [+!&#$$!})[{#(@{}&&@)&}^$!%_*@%#*)++{+]@}{@}*@^!}+])+{[^*#%(*(+$_!{])}+$](!*{{[{ ^[#++^*[_^&![@&^^])&%#_*}^$(#^&[&(#(@{)%$(%]*%!)^*+[!_%@^+&(+([(^)#[{***![{*$@[[ ]}_&]{[})+[^+%!^^@&[+[)$%)}(%}&[_}}(&#^]#!@(+*)){([)**({{^]@_}+@$%{)_&{[{_}{_[_# !&@@$][{)_{$_)[&+]^!$*]}]+[$$#+@*_}$*!#]()*[[&{*!#)(@%+%[{)@@@}}[}&[+)[}{_^}*{+[ $}([#)%(!(#[([@^)%+[#&[#%)}+&*{(^*(])^{_]%{^+^^}{#&#[*$^*{#!&](}_#$++#]$[^%+}*&@ ]+]@]&[{*!)[{(((^&$%}[^#[+][@_%!#[}][}^{%{^*(!!*+)^]][+{_%^*^&+{#{$}#$%_!*!&*#^! %*)_@)+_$+[&@*{@(+^@&({##}#{*([^_+@]*{+@})!)&))]@@[(({!!)*(}($__(]+*}[}&+@}]$$]* %%%@$+$]$!%@(&]]}{([_$*_)(}$]&*[%_#**^(!$#(+}$}))$]]!#^&[}]#!&$){@({$%(&@*}](+@] _@[(%)])^!#(}_}!)$%@*+]@{&(^}!([!%$!!]@$$!}*%!_#{($*]+(!@@)_(+^]*#*)]){}!_^&&&]& )[^@$+%]@%){!]]}}$!&}###)&[[@$)_*@}^[**)+#{{}_{#]!+(}%]$###{(!]*+[&+^(_(&$)_%]![ })+$)#]](#!{+)(${$*)[)$_&)[_%)+@*_]]{[{&_!}%%*$+]@%#^}^+*_}$!}@$]@&[{%(&%](}!)&* %![[!$$^]}*!$[&_{_@](+(_}@_@^{$+%&(+[((@}[&${@%@[@%]})$)&&#*(%}_)]%%&@]&&{[*#@@@ !^__!&+^_@_){}[)*[#__[[+&{(!*&[!_@*&}*)%{*+{(^++^!][&#))*]*^_&^+({)[)$#+(+%{&[^( *}*&*#[*!+^^#}!($[!&@!&_*$}+%&(%$!!^$#]&*[#)[}!^^@+^+#)^$])$^[%#[_+}]_)$}+[!]%*$ @_%]^@}))}*&){!%^{_(!]&+*%!*)@)@%$%{[@**!)#!%@+&!)@{[})*@)*[+}((])*)[{!@#[[}}*!+ (!%$^({*[^#&_](^]*%_}*}@+(}!}*}%$)[$}_{###@*&})_+%!*)[#__*]){_^&$%+$*@{%!}!!(![! $(){)%!+{!_]+][}(($!_+^&_+_#&{%)$_#)!#_+@[{#*{]^+)@%&{@$$$@+_+^[%&(&#^^%}}%!)&&* !([+{#(+})+${@*!{]}_^&_^}(@(](%^)%+[$!^^@_}[&][}@*]{@[]$#$@)++#&)#@[#)^(@{[!)}!& ###*#()&#*}%$#@^(*[!+#}*(}*!&{*$%%@@%[)_{))(+)[#_}$(^#$%}!$(#+(*{]![(]]^)@##@{#% ]*{+#%@^_%[+${+]{{]@@#%!+}#_{_(^!^}%[{$(@]&[#^_^}$!}%}@$(&[&**]++[*!(!@$[@&+]+(] ]^!]})@%_([{)(+$^{{_+_&_^&!+}*(}%&)+(^}{)@*^#(%[{]_+^!%!_++_[{}(_[}@$@]!^*_+{&{] @}]}*!#@%{{)**)&!#@#{}(_*^))[{](@!(#!)}]}$]++]_$!+(!)[&}^])+(]#$[%&]#@%^](&&#+]{ [(*}*[{(%&_{#^}#*([&)*$+__#^@%]#^@])^*)$_^}@(_%+*}%%^_+###_{+*_$]%$%*[@%_((_#[+& ![%({@]#{]+*{@{!+]$+&^)_$[([([!!%&&+]^{_)*[#[)[*&}){%%]@$([@{%!(#+]^@(%*}([!^[_( (]](}^]#}_!@!#)!+_}&!+_()]{&+]_+*[([))$_)$!#(+@@*_[$)$[!^&%@{^%{@%+!+{$&[#!&!$!^ +]@#[&&*[^$(@&&{((^)%[%%@[])&}%]]^[)]&@{*@([($_]_{[[@}^(%#]@^]^$%_!%_$+*@&+[+)(& @)[$#+[}#[}^!)$+!_[}@&}**{+&%$](_&](&[]){($_^}}*!_*!]@$+($%]){[_^^_%([)_$@(*###@ }^*&%}{%[^]$&*]_%@&&]))$_@%[@@}!^@%[!_#@(#[[$_&!_+)@+!*#*({)**(]&])#^][[%_%[}${] ]_(!%@$++])^+_!#___(^#{!(}^${%[##+]+[!%%*&{*#^$]#[$}(^@_%*$[@][%{#*$[^*]&}[+#*+! ]#)}]&#}&%^$]%!#$!{)[*%))!!%_%*%%#@@*}&[&@([[})$&($*}+*&((%$}+$})(^^_%!+%+(@#]#) }${@&$![)#)$$(#][(%{$+(({[)$$@%}+#*]%{&[#_}@_%%@!]+){{@}&}%*][}+*]*%@@{{}**+{%^) %]![]!$_)@(@#+)[$(^![&@})%]}{%*%%+!]]}+&@^*^__%&*$]]}$^$)$}*@}+}{}_)[{_+_+%^[)}! $*^%$%$+}_)#%+[}*)!](!^*&[*[%+[&+$^$@]!(!]+[!}+(&*^&#}@}([]*@$]]%_{]$*!_{)(!+_+@ ((!&}!({^(#*(*#@%__(_)])*])($}[]&@_{(#*_&$&++&@(}@)+^&#+})@{]({]&})&_^*]_#^}$$)[ *$}(@^{[[#_{*^)+(_@&@)*^]@{$]+}*+@}!^[!!$^@*_*_!$!_{][{#*!%{^[&[}*%!(_@+*^*(+_}[ &#&]#_$}@_]$@_+_)%*@^${)$(^&**$!{)+[%]%!!@%^&$[)%&*&]^+$}#}{^_*}%&)!*%[[!!#_*@+[ ^@^$!{_^&%%]@&_)}&_@#%*{!*[(($#[[}{#&_+%&+{*_*$%[{{[[$@@^_%(*#)#@%{*)#&)]{[_{(]+ ^*&#%!%){+#)!%@]]{#&^)_{%&+[*](%@+]]}}&+@&]#}{{*@+]_!^@@)_[@_)@)&]%{_#]$_!({_!!_ $&{(@*{_$$*)(^*[)+_{!+%}+)}!}$^#++@@^$@[${%+([+_[&]}_$]!^%_+$%*[!%(()%$%{!@{^*@# _&$)]^!(!*%&#+)^)^$&}(((!^%*[+({(&!*_#[@)!_}%!_{_)%_)$%$^%^!+)*&_*)*@})&&@#@*]}@ _@+#+&[^$#[&)%+@]!*(}@+#*[^@]%#^!*#+#$()+))[!)]]}@)!]*@#&#*!$&@!{]{^$*{{$$]%&++[ ^(_}{%%}+%](#+}^&@*){+]@]}{)!@[#{!(%{!&@({_}{_#&(^()[}[[%##*{}$}$$()}&@++[!%}@$_ _[!(_^@{#[$))(#$^]*_%[$!&]$!@_+[#%@+()^[(]&!)[{$+*$)#)@)_@_)([%[&{&^[}*+!_]_}]## )*!@&[+$}#!&@{&@+#[]*)}!_+}){{+)@!}!!#(#)_#!{][}@{^#}}_$]&*%*[^(@]]*@($]$$]$_+^[ $$%][[_^[*$*)(+_]{]}$%&}}(^{+#&]$&^&!!{[[@)_%!][_]@![[$_%}_[[{]!_*}[&{$+![_%(#!} $)#^)#*&*+(#)#*$+)#]_%]%!+(()+_^({$**[}%@*!_)}%!@[_+$_))&(**}][$([)%{}#}&(]}[&+( $&+!*]!{+_&@@}}@!&}@#%*{}%_^]%(_%)^!#(]^^@@}}(}_&#+_+*$!}[)*^_#!)+@(%]&#[_)[({*+ #!}^#^]]@$[(%&}#!#$+)^#$++*+^_]_)[$_]((+(}+*_#&*{}_&+%#+@&!}#%]#)@&__}@})}))*]*_ #)$&%%)%$+#&[(&*&^$*%@[)_)^(%^()!]!{$$*}(]}#_)}+*&&$}^(@)$^+*+%*(]+}_!$%@&%@_}*[ *[*$$@}@_![^]+_}!&_&{^+!@{{^@}}_*))%)]]}#*[*@+@#^+[+(#)]{_&&%@$&$$@}*}!%_!^*((%[ ^*!_(${)(_+)!))$&!*%^#@!${($*)^)@+@+*}%(}@(+@#^%![([%*)@@)++*!@&(+[$_*^$}%)})^)^ _+[{__[@(&%!)^!^^@}![{{^]$!(]!{}!*^)@)_^$][#+}$[(])]&+@^_[]@^@&^$]$&!@_)[$$[(_#) +^})*$%&!#)!)}*[#&@!_{&)[&@*@^#_(%!*]%#!#)(^[^@[%)&!+]#${%{&#{+^^___@+[{]%&!#((# @@^})&)$@[@*&#$&+*!)]*+%#]$%$(}&!#}*[))(]@#+_%_#]}}+(^[_)&##&^&){[#{*+#)}#!!&#!} +*#(}@^(+^+[^(]]^{*}}_^{@&+(}(+)%+}[!*@)#{{#{#&_&$*+&%[_!)($([+%$^$!)%]%&^[^@@%+ (*(*#_*_](@!$$#{&#*!)_@#})_]^$$^)[^*!*@!#})]){}{^{@)#&}[^^])!$^${^$$#{]^}#_*+!%{ ^!+@#@[)@{^){{])#((!(@!%&$%#+}#&!^}+(#()^){}]{)!(%)^#}#)!*+}))+(+(&&[+%[##*$[)}] _(@}(^[&@)^&}#+}{#(!@$@&*@+}%(@)]!#_#){^%^%_[&+[(&{^[**@^(&]+!#(}&%]_^_{(&**$@*_ }{{$&)^##]()_}_}])@$[$]}%}(^[^{(!%[)$[]^[{+(!}%]^#&#!*^%)^(&])%!#($[+^[($%$&$[(] (+}%$*@+{)&]@+_[_]!!^^&#_&(^$[*}])%+{(@$$+_}%)}^)(&#)_(()!@[]&*++^]#$)!*]*+)^$[( {}@*^[@)@![+#^$!%$!_!+_^*@$@@@$$+[$+}*)}#{))&)]^@($[__+%&+__}$_&#}[#&[)}^^]}}]]} !*&^%]+_@#+[[@_%+$!@$%!^)*^}(+}$&&!!*_[}+@*@)^_%]]$%!&%*+_[&![}(*!}!+(*+[#}{_)}* &&!]+++^^#{#__$@&([)*}]%$+@##}[&[*]_{*@]%&!)$}@&}!^)&@$+@#&!%#+*%[*[]$)##)##_+{{ $@^)[($^}@%}(&&)_}$%}&{$)@[+!}+^]+{$+$({_[)@*)&!{}+[$*}#!}@_{{(]]@*%*)]%_}%[{&$) *_![&()!%]@[{[@%_)$$^#+$)_$]+_*_{%&{*__#_*+^_)$[%&@}}##+(}{%#+!%]!({$+_(}^@^#_@+ !($(#@)*%{]*+$++)]{){{@#}%)^]#{&){^+]+]++{_)&$*+&][}&#^^{__{))^^{&@{%+][[{*!_!+$ (&*}]{%{#!^!**+}[(}^}!%){(!&#^[+![*$&${]^(])#&[#](}[%%*${[)(*@_@_(((+@(({]%#})%) #&^#*&+$)&($]!+]&^$@)#*^_^]{#%)*_@^!_+*+*{](*&[}*[[]#*%!*(&!(@)[))!%%)&@_{{!@({# !_}![($%)}__*&%(^_&+){_#]{_!]&(@^{[#)%)(++&{{^}!^}&%$#%_}_!($%]$}_()&&#{))$(%*&{ ([^@+^![{@%_@@@!(%}#@})#_){@__^@_[_!^$(#!^^(@}]+${)]*_^%@$%$(_^]@_$+^_!#}(]%+%[@ @)][!!*((]}^(*([__#*#}%$!]+&_[}*@(@^()_*]%&%)&[){((@*%%+)@$+_+{]^$+{%^%}@[*_${]! [!^%%$+%*%&&!!&+^])}&^$$!*&(#){&^&[$}#*&}%#(}@@_*}*(}]_*}%*]+&){*{_&^%+]$)&($!!_ #(&$*!@^*[&#@(#[{]{%@!@[#@@[+%_{^[]%(]#&^$&+{{$+*@+_(&^{^!)}+^$$(*)${(%@_{!{}(#( }{#$_!*^)@}&%*^_&^)])[#!}##^%@]([[{@_*}$^(}%&+&{[@#)){$[+){@}$]{)@_){{^($*_[($+@ @@@$]&@{_#[{!&$!%##+&(%@)^_}+^%#@{^{%[*%{&#[}(^}%((@#&_)}^][#})[%%}(_)_+*%{^*{}_ {%(#+(@%($*&%*##^+){([%[_&#(]*@+_!^_{%{@%_&%&[[$%+)@{[&(_@%+*{#_*!%+&[*(+{+*$})+ #%[^{#(_}!+!$)%@{}&^#+_](]+)}_([*@[^#$@&}]}*!@{@[++$++(&]_}@{+}#%)}+&_$[}%[%{+@) #@%{&_@})$}*&!$}@^&[}%*!$(]![&@+[!()}}^}*$](+*++}*)(#[#$+}@#%&(+($*}$]%]$$]$*%%% $(+((!)){*&!@_%((^${&($@+[!!])&!#%)_$[{$]&[)@[$[^)$^#^)@^]%[&{*[_{}&$)_)+}$#}{$( #_)}}@^${#%)@@[]]}]%$_#&}[@%{{(+{@%)_^%}*^}$#]$!{)#])&#^(]]#}^^*])*#$#@()^!)$$!@ +_[)*^_*^+(_]){*!^&][&!])$_@@]!@*!*$^+&@__##^##[%_^[@)_$%^^_&+@^{(}#]+#}$[^!*(_^ [[^#(%%([#)${*]}#$+))%}&#_](}$+*@]#]**$+@{}&{*[{%*[@^)+]([]{![_&&!_}#${%@]!(+%!} %*#}![%&$]^!+({}+])()[]_$(^#)*^$}$^)%]{&#^)!^$}!_&++#&_[&!!_#$!_%#}[+)+@}^_)&&__ *}&+*{^[!#!}&+_(+]_#*+^@*({%((])}%%!%+#^_&^}[*#{])()]@#%@^$[$^!_)!@_@({@#&@%$+)] _^{+#$@^*^{%]]^&)&}!_}[@[({[+){+%%+&_@}@^&#$#_[*_[%{){_[]*!$]^__{)!%[#^_*+!)&&%@ ]{{{%[@_%)^&]{#($]&&$}#%++)*+&#__}&$*{]@}@}{{+*}!&{&#{[++*)}&{%*)!)_@@}%#@@+{)[! $+**(@!{%!@^^]^#(@}[]@]#^[*+*[^!*_&))*_&((]#}&^$^!#+[)(#+(}[^(%}[${*)[@(&^^*{{%$ ^^_)&([^()^!@)!}&$@([&%@${[$%#@}+@_*!}&]%]#_[]([%]+}}&[&![_}*+)}{&*)@*)@@$_^]@^% )^%({{%_^_+@%%+#[#$$@#_&%##{+)+$%*((!{{}{]+%%+^_!+{@]{^^+^}{[_([_^)!%_[+%@!%!@(+ @&$^$(+^^]$$**{^&*&!_[_{_)*[{@![@%+@){*{&}%_%(%(@+{!&)![$$+(}^)[]##$^($+[#]}!_#& _^]!$_)[]+@)_*@![_($+!@[#)&]!+&(_*]]%%_@*@!&&_!{^*#{+[%$$##[]@&[#{$^%@&$([{+_#{( })_{&{}#_+&@$)}#&]$(&}+&+!&_[]%@}[@^]{)!_*+$!$(}+*%{!*)]}@%!*&!}([*+]*%*)_%}(@^] %&[^!%!%]$!((+&%%@)!%_!+#^&}&$*^%%)#%#_%+[_$^#)%#@})]%^![^]*$&%^@)$+##}]#*]&$*() &)))+&^[_}()^@@!)&]&&!$*!#+#()^{]__@!+%(({[__&**]&!*(@+!{^@^*[!)@#))$!]^[%}]#(![ *)$_($)){@%}}*+*#{]}}@)!){$+$^&$!]*)$_**(_+@)+{)![!&+&_#[_$%^+&^}&**&_*)]+)]]%{! ]*$[$^$^+%&*!&[(%(^+&{+&]+*&$_!+{)#]#}{+***)+}&@%!^{{@+#^&*$)&^_&!@!#%^%!@]){{+] @)$%{&+{@)+)&^&*(!(%^_&+]%_)]_+!)@!)$$@}(@@$#^[%$(&@[(($}!&^#]()[%){]@]$*[{)&%}) !+!{%[)[(%$#[*)]@!^{#^@}&]&([^*{$#$&%#@][)^+!%@]]]$$(!$@[&]{%%!^&(+{!&#*_]$@_$^] $*&}_&$!]%+[){+{@[(&!%@&$*@()&!@}@^!#]!)#^*{)^}}+@[[!_}@![$]!((&+]}}@%^]@[]])%_& _@*!^_%}@[$)#%($+!]!)(!}]+%!+*{%]$^*][%({]@][}!%_*)^]}+)[[)(!&{]$(^%#_$!#!#!}&#( *!]((**^))({^]{#@}$_$^*)$+)!]}()^+^!_&{][%%^#}{#}_)&}*&@(@%[##@*(}+@$_#$%)_{(!$[ ^!!+)*^^])[+{&++{[[##$**]]%^]_+*%*@%!{)@%(}*!#]@$]^@)(%$$+$#$[^_${)&_)!}{[+&[@}& (]!@^](!![@#}%@][{*}$*!]{(!#})(&^^@${&)]$^(#}{***%{!&[%)!#%(%+(_@}^}*{^!${[)#}_# %[_!#]_+(!%[&]+^%^&![^+##*&{_*[($#[@$%&${}_[_%)_*_&{#*#[!)&_#^}&&@#))]+{(&$##**+ ^_*($_^)]#!%{]_[!@(&$}($!_#&!_&^%&((&#*{}[$}&@{&(]#&_+*}&)#^}([{$&(]^@@}]%))(&@[ )$)@+[(}(*%^%$](_)#*_+*%#+{{&^@*!@&([#}{+_#{(@&_%}(]]}^_}+^+@*)_(&}]$($&+@]&[!@{ {)*]%({&%^@))_)&(}*((_]&$+&(}_)]{$^+]$+}{[#[#$%]#(%+_(@*&!]@)&*${@#+&_#^_}+&@*&# }&[)}${@([!+]$}@%(%$_)&#{[]@_*@$}$+!$)@]%@*}%^}{**#{]!$]{$%%))!{((^)[}+]}{{&*$)_ _[+%{{@)@(!*_]#]((^+!!{_&]^%[^!^)%]$]#_^%$^#{}^}+[]}@$)}*@$)*{![})}([_{_*&[[{{+# {&@[@+(*@(&&^%*[_${%{^}[[_]*)[!%%)$)])]^#+&}#[^(}]{[$%^^)$$&_(_#)@_)!#}*)+]}{!!% &@&!##}_]#[*^^&&^$!#^%{%{#$%]%}{%^_+&%_]#__*&*{%!(]#)^*+&@#[$)}}{%^}!#%)[{@!{&[^ $]$++##!$*((#[(+[&)&^&&{{{)+##)_${{(!^*{)^!)}%}@]#*^%_@@*#[*(_#((_}*}]&+}$+)[$)@ @{!%#&{+$]#%]!*[{$![%(^!$$$$+{!@!#+&]%%^_(@}^*@%+&[!%$[})($(([{@#]*{_[@#&(![{$_) ${([*!{!)(%&]*%@{^_%[__#%[^%({[][^{{$%!$[_$@${]!(+*@}$((_%{$$(]](}##[!{@[@_+))*[ ^}%${(@^]#%*^#+}^]&#$&{}[[_!)[$[&)}#[$&%])_^)[)!_}{@^^###_#(#!*##[*_+@(!$%@%$)#_ @%%}@$*}(!(+_[&^([]%}(%@@]%_}#(@&$!]$_@^!@}$_{]@#($)$)!{*_%$)]#%]$)_^&@($*}^&_[^ )%}%]}&]$]*#^{]%^$}&$(#&+[[][!@&}$]_]({)(#!@_((^@@%%_]___%]][&}})]{%%}[#@__+%)(% }_]*$$*_@+])&{$(+*+]!_[#&_)}{#)!^^}[%^+*})!(@}*@}$]))((@$(@[$_{@$^^@^*_%@%]_++(# $$)*@&[%@((#**]*][{(@+#%_+_++!&[$%&#_#!#{_(^^@[}@&#$[[*!]+^{$]!}+[}$!$!&#$__$%]! @]_$}*}____$%[)$]#++#!+*&{$$!@%^$*)}{]}}*)^(^%!]+$%_@%}$]++($#&&[](&^%&}!(]@@!)_ }%%*%(#+{@@_&[$+*{]&&$!*}#$$[]%+}@_&)[@+!%{@%()[*{@*[}&%@]#@*$${_^{}^{]]$_+[+)({ )@$)}^+#[$@!+&(@*^}}@{!#[][#[&)%%^#]_$}})_@{$&*&)+^#%}{__)}#%[[%_$[[)}()()^_#$%! *+$}&_)_@!{(}*{[&!)$[&@^#(@(!#(#!*_}!++#{#(]}!))]!}(#**({]&{)$+)+&$[^!&&[&!^[*(^ #()#![_$)^@+@)[!_({(])+{)@$[$_&+*$%)+[[][+]@^}**((!%!$+&#][_#}$)_@!}[*%)$%@#&(@( ^[&[}#]_}{)#}_[#]+}@$[(%+&${[[+%&%]!&*(^(#)%%[+]@[+]#}#@#]}+_+}__[^$#+^)$$!^!)!+ $}##]]*&#[@()!)#([]@#+)^+{*&$_@_([[]^@_)+$#+)]*@!!]})}__!@##{[(&%![[)[*){@^[@(]+ &]{#%]__@_^$@&+$$@![@_#@[!%_!*{}}^%_]&$$!&&$#^^*[&!#%!&}%&}[^$$*([&(_*{{%{#&{{){ !^$(()[*&{]&&_}]+]#[[^]#}+#+($^&$[^!+$^!}+*[]%+]@]*^)}(%$}(+)^#[@}}[*!@]*[}[]^&_ #)]*%_}[{%[%!^][^^)^(_@$!_*)$$&&#]^##[)[#$$$_&$((_)[{+%[**^#{)%#^^_[]_&(**_(}(&} )**$}#})*@$@*$^(]+)#^$]!^&]$#!#$+](!%(*^$@*!_]@_@){+(%*^^&*@]%+_([^^%}&%!#@_({+[ )[^[*+${{_)*@)){(}[{{{(@{$_}+@&}^^%)*@*!{(!%#_}!&++%&+_({!{!][)]!}!%[}_{{+@[*([[ [++#[^%_[*+(%)^@@+_+}(#*@!))!%@(!#_*_}$@!$)^($#]([@*)$#*%*_&_!%%[}_}](#$&+)_^[[$ _][[#@%!_})!]@$[}&&#)#_%[!%]*&)###}*#!^{+@[!%^)[%{}__]+%%{&)}!$!}}*&{{#++{_@{(}) )@%}{&]%!*#_#]+[][!+)[{$!{+*+($&@%&+)&#_&(@}}}}(*$+_((!!$[+{]@])_($($}]]+&)#][@_ @#]&{]$(%}$@^{$@]*%]_*}#}}!]^*&{+{_*$(##{{_^%#!}+^!$_}^)^{]+*@_{{&+)^$[_[[!+)^)^ !#]]({_*[%((+(+%&+&$[]++{!{)})_*^{[$^+(+%({!(@{#(^[(%}*$_**[)+#*&*[_%{*@)_{%(@}# _+@+_!]#]([[*]}]}#]$)[^+%}+]#@%@&%^%@$(%(^+@$^_$_((*{[&%{}^$[_&_}!%(^$[+%[[}!@@# *}+^@){^#%}]{!#^]]!#}{{$][}%[*)#^}@![$@%!&)^]^({![#{$*@*%@+_@%@%*)@]+%[[++$(#{@_ )]$%]*[*$(}&}%)}{&(_^}{_*[^}$(+*}(!_{[_!@*[+}*&+^^]]@@{^+]^%}!^{)_}!%%&@)$]_(*@@ !^]}()*+{{}$@[{)+%}[{)$&@[{*%%@(%(@[+%@_^%$+#@[^{*%[++&%*({_]])(@!%!#*$%$}{+{+}[ {})$+)](^}{_&+%!}^&[)_%{(_#[{[[!$*&*&!%*%+)&+++!^#&$%@})$^{(+{)(@{(@]!^!%_)}*#$$ {{}}^)@[$]^%*#])#(]%&)]+}_*{_}{*!]+]%$!!)&%#](*^[)]&_&[}[}$}*&^{@}*(#*{+!%)++*@_ %]{#@+_&$^&}_{(#)*!{%+#+()+]{&[+#]([{%^_)+{!)+()!%*#__##^*!_+((%@_@!+[&![_*[$*}# }]_)^&{]#@({}+_&!+#_([+)!#[%#{[}+&+(!%*{}^#)%)&^()^{((^^((%{#^&!%_%*+%{)$)^_}$][ #@^%+(!{$}+_+]!#^[]_&!{]_]]]&($}^)}&*}}(#(%&$%*__{)!])[(%)#})$*$_]^($*[^{+(^}}&[ ](}}^](^{%!*[[[[_#&)_(#&$[#&&+&^]$])^}((#%_)+%]}@]*{*({[{${!+@[@_%]!(}!$%]*%[}_% }&_]*_@$!}{}(]#)_#)%[)!+!${}(}_(}^@{_@!#*_()#$!_]%#@}[#{@)!{+{!&(]}][_#%*^#%!{!! *%&[$$]+@){!{($$*!}]{$!{+^+*%%%!{%^$(!$)%^{(&)!{!^^]#$]%#^@!^(]$$^!^]@&*{)_())!( +)]!(*@#%$&)]]*))%$!#$@{]$#^@]__!*]^}#(#+$_#+@$+]{)]{(]]*__%&%$_^+)${$$&^{%^%){% ][(%_[])+!(&][#@_%+{##@($($#@}#}!(}*+}_(_[]+{^@@}@@^(&@[(+({+$^^_%*!##]%]#}$({)[ [@%**}){@}}[*!@@)^]*+%{!}&+^*]}&#{*[{}]]^#!%_@!}*+(#*$@@{&}_$^^[_[@[%}]@}{])!+*@ @)(}&*@+*$$*@&&^](+#%+)+@*]_%}*^@*_!#@%)$![*&#&[]&%@}_}$]{}&^{%+{})#%%$[+*#!@{*[ %{#)&_%^(@&)#$#*@+*)$)+]_+#[$((@%[%&!%#!{_^^]{]@%^){(+!)#_^!_[+!*{*)&&*&]#{[[^!{ _*]#*_{$(!(&#@%&+_$&}@^+]+[(@{[))**![&)*&#]]]![*+[_($!(*^}%@%^)^]([_%!)*)_&+!^#] {!!!]_}#&+^&)&[^@#)[[}}]@+$#_^@}*%#++_)_&*)#*}][&@*_%_!#*^!}[[}]*}}+*_{!#%(&&)+$ *#+}+^)&)^+&{)^$*}}%@^+@%^)}!!%#+_@*(*]+)+_@#*}&%&*}[#!{@@%&_$)[]$#!}${_+!({]$}[ {!!@(+})(%!{+#+${{})(@*+@@&{@&+&$&&[&&&^###![)&#))@@_*!([^$$%$#[&[&+%}$*)[+$%!*% @*})[_+@!]#$^^@@$&$)!#[!#[_@@@]_*$}^^[]@_{(%#*[^[#[[}@{__+@!#{[&)@&)^#()$^+*[@!+ }%{^*)@[{#)%)]{_*__^%!@)#[![_}[{(}]@[)]%(&^$+)%_#&_)])[(}(!&[(&(]@@$!&@&!&*!_}&! #+{@$^$%#]$([**&_{)}#!(((@$#%})+#++(__{%#}+}!)%#^**+!}%+}})#}[@^**!*_+_++&}_^_** &^+_(}@{((][#&)*__!$#(@_^{{)}_^$[+)!}@&*$$^{&&()%[+!&#&^]}{%{!@{[}$_#[#$[(_)&%&# {}[_(}*$$)@!{@]{+&!+#@*}_]^[}&%&_^^({}{]!![^}+^(!{+[%})@][}]}[#)}]%{{%&!#^#_^[+^ @&{!+%{&$_#}(*!@]^+!@+!&$)++@[)^^##@+@*(}))%))%{}%((!%_*]!^)(!$^[}](!+){@++]]^%@ #+(][{!##}^{)$##{*^+#}$)+(*%)&&*[!]]^(**@{+[^%^*){{&$&[{}!]_$@]!#$@[(]^%&%$]!%$+ ^*_%#}%+[$^#!#*+}_)!%+[)$%}(@+**)(}{$%!{}!!{^!@__{+#+)*]+[@_}+*^(&^}]]@)($(]&_*! **#$_##%([*#%(*+^(@&_((*)*$%%+_@])}&$%+*$$+{#^&}[#$^*_][}]@](]+#&*[#+*%(&*&(%*[] ^])^%]*+_&{)}^!!@%$#*]*^&{[$^}[$}@%[%%@$+^]#)}^&})#)@]^&+}#!{**+(@+}}&^()$)#%)]_ $()#}$%}@^_()+[!(!*($##%!)$])$+@*[{)&+)&%+}[[}^_#}#*&(^)@[_*^[%$}%)#)#!](+([%*+) $&$!_]+&)}[_%[%(!!#*}&(][_@}+@*+&&_{_(#%(!!+{&}_@$#^!#&}}@[%_$&]*$_^}%)^_({][}$} #]{%($@%%]&)))$*^%+]^^&{*&#[))]*(+]*{[!_#[}]{_^%!_{[{%#]}{_#]&^^^)+!^{*_{+[}*#+) [_)^_}_]&![!+&+_#@*%_#]#!&^!*[#{+%]{{]*%$}!*}$#$_[%})##}}_#}%]_}@*^]*@^(_)}+^^!+ *^]*([&{{#%{[{&@%)%+&!^&]^**}+_!!_(#&}{@@*}({^&!^*)^]%_**((@++#&)@&*%[]]+!$_[*^] +$!)(%[{]{((_{*}%+_$+&_)^}@@^*+!(_@($&@()]]]&!{_++(^^_{_[!$[*!%@(][(]_{!(}%[*!]) !]%+@*+@#$^)^[^^)&#}#($*#&)}!#[*]%[}#*}_@(]}+*]]^)_(%&}*^+%#*%&{^}%(}]{$+)!*(&&& +]$^@#_@[{!+^)}}[)_([!%[{(%)@)&^*{!)%&)&!$@]}@([*(^#%@^&))%*[[}_((@&)]+]}}_))(}* !_}}]@#&({_#@{&))$^@@*@}]*+[*%)+[[{&!!^$($+]#$@)*%*_^{_^%)__!&$+#]#**)+*@+@%#]]{ *_[)+)*((]!{@^!@]%(%@[]^%[&$+^}$$@&{_(!*}$]%_#_!%*++}_])]}$@+&#(]$*[+[)&)([@+])_ [+!%^#%)!#_}]#]]_)]^**_^)^%&$$)%!*!+@#*[^&@^}^[{(@{%(![]#{&%[$]))(}[)^(({_&*#}*} [+(]+@){$(@!{%$%)$+{$!$$&*^+&@)%}![)*]{^%#(+{}![_&[@]+!@*^}}{})++_${_&%!@((@]{$# {+@&[}^&%%$&())#!_##$!(&@@*}^[%@$^#*&!@@&_[(!}+{}*&+{**$)}])%()!_&_)!*((^+%)_#[( _^&!&(%{_%*[($])}%[{@{{^_[$}@&&_)^()({%![#][(}+&^(]&}!*@#{)]{i]%_]%^(&]^{+_([)$% {&*[$@^{(]@}]%)(@&}&)}_@$}&]{#$^}@@&[]#+!%^]@!]]$+$]#^_]{](^*&!%_!!&}$^&#!}++)_! ^@]]*$*_#+$!^{$&[$_+#^@@}#)(#*&)$#&+#}+{{&@$^%+{++[&}#}[*#]^^()+(#![]^$)^#*])%(( *[)]#!]$]{+([^)%@{^_$!(*@}#@{{^%@}#&##*!_&^{%$_{_+%)#{{!$[&&]#^)+!]*&]{[!^)%}}*% _{{$%_+*^{+!*!$)}*)_&%@[$*!&*#][!!&#{]$}}]^_$*!*&]&(@%_$*@+!{}^^+()+_$(!]*@)&#[# (#[@!$[+{_{^%+&}($[^^}${^_[#)({)++&_%*{@+(^+_%!_)%)^+@#(${)*]&!)^{[#%+[*))(${&{# &$+#])%@_*}{[}$!{#}!^%*)++$]&]!_{_+_]%#&@&$&)*!(]+_+}}]_+#){[^]#^+)$#!)&)[+#[)}} )*(!%&]*{$+(_()_%$#_{}[]_%#{![}}{(!@{#$[*&(^((*+^(^(_]%{!]}+^)%^{{$**]@$$$_!]((% (&[${_&)}[$$_{$[]{#{%%!&@(#+%@%)+_}&*##]!&^_[^[*]([*!]]!]{#*!^&$!*)!}_#{_#*[%[^) [!*@]%*[_^!#{{)@![$+^__[]{($+}}{}[$[]^{+(*(^)&*&#^][@{&@)+^*{%@^)+++&!&[{(@{!]{] )%$]{()*{)[)}@&@&@%^#{*]@@]&_]!))$^(%@+@+]&}]+{*[]+(!_{]@_[(]_][}}_}@[_}##+@]]]* +@*_*[&%%(_++!{]*+&(*%%@{!!*%!*^}]}$&}#[+*&+@((#](@(&*{+](#%!%[%]@#+[_+(^[*&[}${ ($@]^)!&_*]#{#&}({@](*_{!{*})%}#&#_][%)]$_*&(]_*%]%$(&+$(#+[][*{]&+^+!&^@}$}(}]$ ]*%@_+!}&+}_}[%^]#&{{+*%$&_#}#*]&%%})$+]@)+^})[&(+@$)^#)${@_(%!($]}^!{@}){+@!__) $]&{*%#]_!$&@$(}#^{]!!%^%_#&!$+$&%^_#((#)$@($[+}^[_+$@}_)]*!^$!{^)@&*[[%!_&*$_$# ^+][](^[]^^($_#[+})__}@{{%_%*&_[)!}+[!@&*}}$#%**#}%})_^$^}}&+*}({(]_!*)#[%(!+_%* )+@%[+#$(+%@%%%_{+&_&_]()$][)(${{@(+}+_$_!+##@@&}[#+!(#+!){))@*+((}@#![!)&(@@)(] ^#!+{_(_$+!!%##{[{]($+@)#&$%)))&[&*!^%+]!#]^#{)][()**$^_!@)^}%$}+_]+{[]*_}[[*)*{ {+]@[!%)@&^^@$%!!({##_#[}[+@_*@]&@[]}${((^[{][]+#%![(_{[*)#}]@{]#(^])_&!%{^!#%{@ _]}]!^_[!)&&&]_(#]+_!_}&&)#$*+^###[**@{}{%^[&#+&__@@@[+t]+&)^{*((@$!$)%]$[{}$}&$ %!+$[(*%](@*!*})!#+*#+(}$(*@*[#]#)[^*#@}*_#%@@+@[!!{*^})_!^&^({(%(%%@(#_(&{__[!+ (#})___!{^@*}#(%#)_]_%{{]+@%${+![^{(*$+)$[&[${)&#%+$![{}(@^+}]#(}@#]}($($[$[+{}( &}+%*$[(_+{#!+]@)%#)}_+{%&*)#^[$@_@}[^*+_*(!%&#*^@)@%^[@%*$_{}{{%[@^+%[$])])@[!^ +#@$%^@^#%}+)*!+!$%(}](&)##$+&[[#&^*!^$]*!#}{%#{*+&[]$)]%}*[*_)*#@^{%)}{+$^)_{$( %){!}(#]^_(!^]({%@_@$%*{*@)*#!%$(*_(]!#*#%[*[&*)^[%&$_)!$[_&($]]%{!%&)[(]&{[[[{+ {{@]+](@&@$_^^(*@})$!}{@$_^+{*)[({^}_!#[@$[*%!%^_*@@}#_{[{_@**++)!]!@{_#]&&*{+&$ **^[)[%$_^)*)_%+]&_[)&$}}_]%+%)}^_]#}]__]*!}&#[[##![$[)%+_))_&)$_(@&@}&&{)+#_%![ ]}(^#*@^)$$%[%*(({(^]}_$+^%{$#*#^+({)[*}@]+![&%_%&_$#@[$^+@$(##[[$}+*$!@*!{_@})& }![+_#}%{{_$}}+]+#{]#+$![@(!%_&$$}+^*{^#^^[&&(^^##**$_{+*!]}][}&&%]]*&(}{+@+!]({ !$@+[&@)]_!__})]+]+&{_($!$)#$)&$]&&}{!^$)$}(!@%$%(!+*!*#)+$&_&[[]})^#]{$}&@$^{## ]#%@+!^)$^+&^_{({+[}#()_(!*_@$}}!}*+_[@^{{{#+)%&&&}*{*))+}&[#++{}%@(]_@$![$$$&^* __}$)$+%$%(*^@)++@!*%]^){]]_}]++$!()&[{*^$%+]+*_{[{$[#*[[%^}]&_[^@^+@@^)#)${$^&+ (}$)][$&}#*_&+%#)(%^){](*]}}]}!+[)##&!^!+{_!@&^[[(#{[&#%$!(#{__}#&@$*}#^*#]@!}^_ !^$!@y{$][%@+^##](_*(##^_{#)$+$*&}[#%&_!+)*@{][_($#_$*{(}_[{+)$[)+{#)+($_]{}!]+# (#_$!@*+#%+(#@_}}@^!$_[&_&@})}}$(]^]^(_^**@%**#&^+@[!]^+}+&+&[^()+$*$(}$!%@!({^[ )]*{(%#[_%{}(+!##[)%&!((^[}&(!#^!([)[&!_)(%&#@)&*$+]&!]^#!!^$*^$!(_+![]*{!${@%+) ^#)$#{}]%%$(*}(]#&&$)@_&+)%}}*(([]![$!!^&[%!{&^(&@&%$)@{!@}!}$_*$%+#]{])@!@)@_)] }]{_}!%{^$))&_(+}+#&+*&+!{_*^)[}(((}_@(]^)_}!]}&}{&[((}@{+(([{])_}^(@^+^+^}(!)&] _%*}_!^#[*$_+]@&#+{*@*+{)]^^!](]_@^}#^^%(*+]@^@]$*%_$#^*@[$]]_)]$+$+@*{$[}[%*{+) (&{@%^+*}^(^&_+$#(@$[#@@(){!($)^)!])(_&%#*&[@{]{]#@(]%@}{${[})($+++@*${+&}(^%)+* {#]!#)]*&@)+#[+_)@&}+]+_*}}]*{{%^!+$+#$(%!^**!])%*_}$]!)({$^_^+]*#{(_*[&!(*))#@& @^%@@}]]}%#%]{{#(#**[#(_#(#$]]*)_*#+[_#+}{&!]@&[]+{*^]!%^*_@)]^%#++$&@[)([+}!*]( &%+(&])^[)@$](**}]&}$]&%^]@)[&(*[(#^{$+^]@[%![_{[#_[){_$)!%![]^_%*$!@+{[&%)!_#(( $)[__^{%_!]_#[&_$(!)!_&}&$$}](]%{^(&{%$!]+[+_^+{*[@+*+%[$@&#+#$*}&{@%##*@(({)_(] }_)[^$}^{[$@^$@$&##)@[#$&$&_@]@{_][{}!(+[!+@%&^&[%&${()@@_[&+^^+{)#^#)&%_]@{$&(* {()}$]!%*+{[[}!+][_*!&]{%+)!^)!*{{})_&[*[})+[(@!__!{!]&{^@%!@]&[&^}+#[{_}@!+_*{& ^[%#!^]+(*#&))([%[%$_[#_+{{_%!#&)^&#)#!](+(@!(}}*#(&&+%!}@]%@#$*_[$](#[@#[_^+(%{ @#(*!__{)_#^!{!&%_*@+*(&[^_(*$#!@_*}#+$_*${@!}*]!}@)$^@_@{^(++(%({[#$)!}!##%]&[{ !(+}(*!(&_[}}{}+#{!#)_[!)&))%%#}_!]${*}@})_)}%+&#$]&(^*[^+&{)}+@((&]])%$@((_(^$[ _@$)[[+(!@]_()}*]*+[{&@&[##}[&]%$](+*{]!%)]_&%^$+%_@!#&+@[(&{){)(]+[]{)!^}+!}{[$ {)@_&{_[^++^{[%*!(]]@_]}_})(%+_#!+]$$_&!+*[(])$(!^($)}^+{&!&__+_{@+}[((&%)$][^{& *{_%#&${{!@$)$(@%{{*%[+[*@#$[@_{}{[#($}}_)%)&+*]((}*)+_%#{%]_$]%][!+[+[%[@&&){!@ (&(+*[($}**}$^_!@]_{%#{](]@{!#&&&)[$!_(#(#$!*![##!$_!*{{$@@*_!#[%)}%^%(%#$@(}+}$ _#@&({+)+}^*]^!^})[(^@)*+#@]%_(**_+}###[_}]*$${]&_[&{[*}+@#}&^{]_!&#{%())](^@}%* $[%@##)(@__+{#@^_$}}$)}]#^^@#&_^++!$^^%%#($+]&%&+]}^+_@%$})*$^*&*+[##@_{(&}@^*]_ _$_[@%#[+***&@%![]($[{[!$&^(]%(&#_!(#%*^&#+^*!)!^{}!$#}](_({@]]{)^$]^*[*]+}}!({) [%%(@_${[(#@%*_+^]{}+^{}!)&#}*#%(##))%(+[+@!}$^}](!_$%}$&([#%}[##*[#*]{$^#*(^+[^ }!&]!%!+@){](^(*}^_!$%]^[&*)_^}!@]*+((!^+_$+]_%[@&+(*@}}+}!]#})!*}!)+@}^}_+*#+^! )#$_#{&)!$@]@@[#(!]^&^+!_+@^!&[*!)(*)*&[{_@%$!__!%%[#$(%#(]$$![[@!^#%(_)#!{%]]*[ +^$@$&!^%+!^[_}&*$__@}{])%)((}_^)(%^)$@}#)]_)[)#{!}*^&&__}!{&)]#_)[$$%@{@$&*@)#{ ^#{}%^&]+}(%$@+{*^})]@^#^#]@$%([[#^(%[)]%#$}}*_$]}^]*$@#%$#[^[[%__*#@)(_![{${{{$ ^*{##%*!!&]{_[$#_]!&{(!@*(+%*[%_($]*#)($)%][^]#+}[+_{})@)}*&(]{(&(}%%@(++$}@(#[_ }(#[(@])[+(^$}}+!){_&*)&&$((+[+)+#&]!@^+]}[#}$!*$_}_$__@^))$*){%!@}_){(@^($)_&^% ]))^)^][&$+)[!(#!()(&[%(&[@$*!{]+{{$(#^&_!!%@)%[@_(+^]#@$]#*!$%#()@++&}+%[[_#(*] #!&&([_}[+]]*%_$+(^[^)$*#{+{!$%}_*!%_([{*^{*(#}&[$@[[_^$&!()*(({]##$@@&@$}&#{#@! &_@+){!($$(_}++&+*%@[%+([)(}!%%{$_{@$[*}_!^)#+)+{*&)^]+[$^))+{(++%*^!]({!&^}&_(_ [&^#)(&)[)}[}}+$]*)+)&_{%}(!}(+%(]+*#([+*##{()_(}}[%[]*]{${+(&)}]){)_^}[]()}#$@% ]_}(_]&}[&#%!{+@(##({^[+#_)]@!$]_@+[[%*_)}]([$}}*+#$+{$+_{}^][]{!^!#^{{_$}$(%)+[ [^%]]+@}_%){$%&[@!*{){)%##(_{!#(![#*(^@{$$))#}@_]{#_@{)]#!]!#&^]!@^_++(^($)^#^%} *($%[*(++@_([!@)%&%^])&&]_%*_+)$[+)){_[)+*+**)][_@@!]&[%@$(!#__@]+_{$@+*+)_[%^}[ (++$%*@_](}_(+!}!(%!*([&#[$@]#}+@@%^[]&^[%]+[{!_#+{(*)!*+@*}+(+!*+#@[@#!)#*[]#%& [_%^!#%_]$}#+[+&[@)_#]+$%{]*_%#}}&[}#*(!))@_+@$}$#[]}*@%!}^^&$%&]_@}!!}}{_{&#_&} $@$+(*!{{{_}!+[}$+_)_++$+}$({$^!*_@]$&^${%$}_!%_{*_[$+)@%+{%&_^%%!+_([$_]+&&%_%[ *]+[!%[^_*+&*$(&@@(+)$!(!#)}!}{+*)_^_*^(}^}+}][&*_@#%{^!&{)%_](**_%&%!!{${#+@$#^ %)^!^$!$#*^]$*}&{]#{*]!{%%+_({%)%+}&$%+_(}_^(%{*++!@^}*_{([[_#_++@+(*&$(%+)+$}[) [!}&#{$+_@&_!}){{$(}[{*@%[(!@]!{&&%$!#[[(){%#%_^#_{_!}$!{)$$#&_^){[(#&$_^{%$!^}! ((*&@}}&$)!*@$}*^!]+]))!!*%^[%(+[{!(_%]&^$[#!#]{+$+]*}[[*@&&!+^#%!})&$]{*(&+@&+^ {$!#&$[$}$!][@{%@$$$}([{)(]*+$!}$*$&+@%[$*)#]}_&_#@{^#@!@@%+@([)]}{!_[@^+^%]{){& $@(%@)^]*]&%%_%*#[@(&]])#$#!$%$}@{}!}[[@}#@#](@)$%{&)}[&][[_%%(!!(}%([[){^$@[@[} %#**%{@_)%{@{*[@#(+&+%[]{+&{}_*[%#!!**+{{_^+@[[@^}[$@(}@[${@@}!*@!(%{}!#*_[&^@[% )]!)(*(@]#@{%_*+@_&(&*$+&$$$$)+}+@$&)@}}+_*}!(){@@@]%]$}@%@())$^]!]*{!^!$&!([*%* {]){#}@!+*%(#((($+(_++)*$%#!)$*[]_%)]&}@_{#]]&!##&$$)&^@&{*!{{[))(*{([^*&$})@$*{ }]]}%}!!*_%_(^%{%&*)@^&]]_!*[*{[^%[(]%]*!+])[*(!}&^)]#{&&%*)$[(]#(*@^}[(!](+_[%[ %@&!&*_]^#*_$]^$}^]##+_}*@)%{@[$$#)$*_&)+()@*@&^_${[@%&&$[!+_)#^_${+!&{[#^^(*)&! #%(^&!+$@!)_*##{[&]^+}(](+%#*%#&##!(]%)!($#!^^)!(_$*!_]&%@#}**+@&+])[%$%@$!]$[!@ %*}_@^$%^]$&#{+]!({[@}&{+@]!{&!&)#((&&(!]!_$}_!!(#}#&&[@_]+%%[_]!}%###*&}&]^^[[_ }[}^*{+]@_)]@)_#*+]+$}+]{]!+&}}}@@)&{*+&#*}#*)__*@@!]!]}}#{!$}*@@@}#^{{!}##^!&@! )##!]#$[@!{*%+)*#+__)_(%}^*#&[*}{_@&+[]_*[[}[@{]][@)#[%(*$[*{%@]]#${)!%_!*}+]$_) })_%())]{(]^+)[+)#^{*_^([%]&*+_)][%^&*)++^&{]+]$&_+[@!%$_([&%%!@!%*)+(}]+)()!#}{ (^*&^{[!#$](%_!_**!}$$!&[^{(!#{#@_&^]{)[*+^](!&!(@^(@!@]%+]$(#%_}+)$@}&!#&&{^*{] +%[!{!$((^_+&]_!@^%#_+}({^^}*{{%]^@&+${%%^[*!#}_(_&&)!$}!_^{[(&$][(%_+$^&}#&((#^ !&]{[+)@}%![(#*)$+$#){)[^+@^_)]%$#}!&}&]$&{*&[$!}%$]&_}[*$^)%&{]}]![[^_}(#{^*!!& *&[(_{{+}($[}$*()&}$&#%!%#)]{@&$)[}&{&_%_[(((%@{]_*^(!+*[[(*}@]%_}])^%+%&([]}{*& +![}{([&]$^[+{*]()&!&@}^#+][(!^*^+^&&$#]_{@$+@[({]&)!&)))&#*(%+*&}$^_*+_&@[}{}%^ {_$^+%+@(&@[[)}*@{!_$)@((_*^_$${*#{_#{%@()[@(+$#[)!#*^!(}{!@[+%[&_%()+#%%{)}^)$* &(@%[{^&%^({(@$*(**$}+)%}&)!+$[((&)@]@@+{{]])]]^$#(@%)!(&&]+#+[&[&}$__$$@$+]@{*# {]@]@*)!])})!}!%[+$)@)]](}*&!}]+![##]])]_[](+${+]_*@)_^{}&^)_*{*]#[]*{+{)(*&^_#_ &[#_)$){$*!)!){$*$(]{]_&%%}$@&[**+![#{$}]@$$[@@]@{[#])^$***+_#%@$%]{_+}&*!&_%&() $]*&[)#(%^{]%^)])@#{!^@(@)#+}{$}@_${_(_}[^[+#*&^{%!%+$)){_]*%+(@^{_*#$*(!)[*[&)) ^&+^@!!!+])*@__%__@${%#_(^@@*}!&])[#%_!%}!%{@}#!)(_*^@*_)$&_+!#$)&}#_&$}%!{^!#&^ )_)$}%^+_!*$(@%}}@)})}_&{!@^^!&_]**!*[[()]*%(]}!#))+*@($%)+){!#@^+}@((*@[}&%#{_+ {@^+!([!)_!+@+}_+^!%_([(+)($@&@##($_&!@##$%+$@#[_[$!^&*])!&(_]*]}&)[(((]}%[@&[^@ ]{*+&_)#!(@&#+((&!%!%}^*&[]#$*^}}$]&(&_{}+_}$%#&%[&}*)*]]&+!_)#[^+%_*}]])+$)%!]{ ]##]^($^_)}[}[[)}{++}+(^%^!}}%)&[}${{*+&+@%}&(})@)+%!%_*(*[!+$_)[!#!@[%)@^}(#*%+ #]$]%^)$!{]&_[%%*}_#_)__^[^^#(})}&^%%%_&}&$_$!&{![*^}#+@!*){%)+!]_&*[$)%[)!{]!#^ [{*__(+#_)+^%(%]_%@[++[((^*($_*(_!*+$+[&!(*_[{{&}&%*%@#&%[#*_[_&@&]__+{@$)^%_#$^ @@%!+%+]_{{}*{[]+^*$!]&[$+_}{])]$]*##__##{#!!&)%!@^!!*+#}_{^)%{^*(}])]@$_!__)!#+ @%({&[^${{_{}#([{+{]!@((&*@!)*[}$}(]%+#@$%%&!%&]@$(_][#)))@$+}@%*#^^@%&]}{()%%^! #&&)++!(}{]}*}}!}(@*@!]^%*!$_[($)!_^^$_[#!(%[!}#&$)@$}#$))&)[##**@](]]$)}}[^@@^# }&&){[$${&}+[+%_}!#^#%{]_%#%*&_}}+]&_$*!&&][_%!]_*+#^!]{}_!@(}(*(^^*__+$#@#^]*%% %]^}!_{}!)%!{)%+[___]]$](*^)))*^${)^^$_&[)&}*}($#{#^^#_@[[+[^{{[*__{%$^$}*{{+#{{ $%&+])(^^*$(}#*[$_#%$}!!^%&($}!!(]*{!}(!_&{##[{!+]&#(((%@]!($#%$^@(%))@_)@}*})+[ ^]^(}${[(^!*{}!(_[{^*&{&})]]&}![}$!}*+])}[@(_&)[}*@_$_{%[+&#(*_#+)^)!&@!%($!}#[% [@&[+^@$}&{]{)+^&^#{{}@!}{^{%}#)@!%([$(_!([+({)@^(#@!)$[_&](!}@$*$@!(#[$+!@][}_* _^#&{)][@*!])^))+@+$%[%&}(^(!@}([#+***_*[^)$((^*(}([!]@##@$%^[{+^**{&[&@@##)#(@# {+_**$%(#$&^$^]__*)%$*+{#+()[%[(}#]}*&$^%]{}%&(_([]&_}&}*@}#{((&!@!{#+__#*#))&[( &[[*+]&{[$_}*#@!{]}__!+!!@$@#}+@!%^(^_^{}]+^({)*[**%!@[^)#$%{&[[_!(^(}}{!}!)@### (#*+!#@&+{_{&%&$}+}]!@*$#&&({(^(_#{+$*+_)}^&$##&+$]$(&$}!}!](%#+^]*$%]%)}^}])#_! @)*%_$^]$@*&(()&+)_[*#@&{+&}^#*+*{[)[^$+#**^^(^]}][$_+]*&&)@}{&]](_]_]^&&}%@+}[$ (+[%*^!#)#+(}!)[!^{&[*[($%{+([#[[@&})$]@{^^#!$]_}!{*{*{![@$_@]+*{}[!#%@}]&#{*%{} !!(}&+%%{%{%({!_(%_]@}+^%@_!*[&{)$%&)@]{+&_+%&^_}([_@@)$^!^}{#[$@{(_]{))*$(#!(+% &!+]}]__^&@)^[}]!*#@)%!(%#)_*#}%*__}_+(**{[+)]%${+@^(]$()@([[{(]}$)}#!&+{%@$+{{^ &}_!$_+$_($*{!*#&$]%_)[({}+^}[@#+**%*}#[([@$][)[&+_%!!}@@}*!@%(#[}&$#]&{+^{#_*^] @_%(]${&*&#^#_@^{%*^%$^+*(%}[!!)(!%_}!@@#&+)^^{##%&}$+*+!#}+%{%#)^@%[{}^%#+(+$[@ #%}+%%#_&}++)}{]%#]*)]+)]+^(*({}+}@_&&!![)^_$[][@*]!%@(@*+*_]{&}%*^)+[{!_%$+%[*+ &&&!#[_]])$}%[_*!)@}[{*]%!@!_))]*%#^{{+]%]]*@%{%@+^[@}(^#%&**+)*^*[)[)%$[^#@^&+# +++}%_@@[(}[*%$#}^#+&}+%%)$+_{^(#%*{&*%(*)+([!@)*#[&!@(&_$@%$%]^^&{]@$}[({$((^}! &%+{#_]{{{^[*_^#^!*@}_}*}+*&(@!^#%)@%[#(&$!&%)][#{*$${(+}($*(*(*&*$^{{@^]{]&*@!) %&)**+]][!+@]*})(@)_]@{($!%+%%]_)(@{+!*__@[(%&&^]@([@[&%$+(}{{&]]+*}($+&}%(!%*@! (^)${)%)]]$*!++[_(_($}(@++[^{]%{{!%#!%+*$)_&@&__#([__$[&^!}%$)(]}@+]+_@*]%%{&(@@ $_[(![!)+@[]][]($@%*(}$_(!^^)]^%){{(_#)*#][}$([)[]!_![![@}}}!%^^!}!*#%&{$&!#_!}# [^{%{$^+@}&_}*_]%(}@*^}]^@*_^&&)^^}[}@]+^*%({*$^{+])_^%*#!${!#+$](+&]{@_+&[!()@{ @)[[){&(#[#{&@&(_]@##])}#&%*)_&!(}_^^$_)))}}}+&&$%&]}}$)![&{#_!(!![[![&(+{{++!}} %}^%%#)))!}^)}%{*@*_{}*^{&(^+$}!@$_^}{$*^#)(@^]_@@%)@_[}&[)++)$&]+!}![#]@$%@]]!@ ^()&++$(_[!^#[&@*@@(){#%@((!(%@(#[&+*%+(^%{{*$%#!(#^{(&*_}!^#%({*_#)%+#{$##{!$]* {+_!{+^$!_&}%(]+}_}@**(&}(+@^%#+!#{#*@@{+!)}^{^+#(!&}[+*%+@}_+&+&]&+(+)_)((!{%*) ([)_+_[]&}}[{{+[)]!%{&&__&$+${_+#]_$}!&#%[@^^]!)#)_+#$]((*@+#$#)@[)*{[}(()$(@{*[ ]}#*_+{)%[+!^{+{(&#_[_}_!{!*{[[)]][$[}*@[$*&))+$[&]@)[*}+^___%!]()^)&!@&[*@_+{}& [{]$#{!^]^$#+*$}#*)(]!@^&#){][$)}!+%^)@#&!%(+^^($(%}^+[*)#+{%!))}(*&]__})][_))}# ())#&##{]$#$](&$%&&$)^{(@%)$%()#)&&*{]&^^+%$##%{!(_$(**&(_]+{%[%$!_){$*@@++]&^$( @+{+&%]$)+@({$(+{!*#(%)]+[}){]]#)*[]%&{+)$){!&$]+^++_@]#%)[&&^%]#@#@)]@}%$[_*@%) [&*^*})@(!{&^#!([%@_![{)+)$}_+)%&^#@#$$}))^&)}({+*&_()&@]$^#(&&{){)_[}{@(}#)!)%& ({+$[!#()[]%{$_*]*^%&]@{^@{)}}_^}@!^*)_[([{}]{*#{]&}}[$_[}!%%&_{{!$[}&[[@#[&_$() *_$+)&}*){${}!]+%[{{!+)+{!&]$!}{_]&)!!^+){&*#{@!##_(^%^$([!+&+($&)##[&[^_{##{(** {{)#*%@*[(^(}!%}@*}@+]^_}&&&}&{[$(@[#*+%[&%{$$**]]%(!$+$!]^+[^_(&*{#_^%[[#+{]#_[ *}]#)!%!_[})^%*@{!{$)*_+$$*}%(&]%^+$@!&{[]}**})}#}[#{%{$#@##(])&)((${^]^[%^&(!_& {@((&@&)]!&{}@#])$($}#}@)#[+$^{%%&*]&_!+{$+[*{()_&&(}%[})}!}(}[!%@$#!*(^^![+(^@{ (+]]@{++#)@@%(!&_#@^$*%^)*](^}#]@]}]@++*^+$_+]^_][]@^#$^&!_+!(^+((&@^@_^@)$[#!)* $)_#]*^{@_*[}@}*@@^+**+[[)**{!)!{##[(*}{)+@{}}{]+!*+&*&)_^&{*+@[*_#{)#(}_*]%{+!% (}_%$#)^*&+[([@*!!{@*[{%@[__)&*&@{__+_}[_#{]!@*%(^&^_$_+[([(($@)])]))%_{(^@!{!#@ #*%%[#&#[+)%__]{++*)]}![[_%+__{${}%!}+!!)}*)_+!#%^}[!)[@[]@@_(@&&*]^_{+[)}@#{#*{ *%!%@{$%!_^+&]+@{$)!&_}_}&!}#)#[$&_&&_)*({({$[$)]]%#^{^%}}^%#]&+^}[!&_[[[(&{@+&^ _()%@#@{%_({${*!)(*+$*!!+$&&]{^^!(#}@[&@&[}^#)]+{)__@_[+]%$)]}$[([^{)%&)@[+]!_!+ _#$))}!+&&#(^[^(}%(%%$%+}{$^^)&^[@}#$]{!}+*}]{_}}*(*@]}#+{}@@!$(}])%+^!#@(_^(@[( _#}$[^[@^+_&}*#$}%^)(#*}%_+]@_%]%&&()[^(}[*[}#@(%%$}]_)^(!#%]#@(#+!#{#$]^!}))_]* ]+%^+%))]+%$]+!%@[#@[@@[*#!+$#}}*#()$_*$[^}+)@#^^$(^+)^@%](!+)^[#!#_*{^^]&[_[_+} $]%@^+!##}*(*)&([]+]##%$)+$_^%^@&((+@&)%}${#&$!!($#&^](^^{{(&+]_]@&*#_^+#!(}]$*& _+@#[})]])[((#@&]!&]*&{*&#_[#(]{(}!]_+@[{^+{{!)*{!}]@@^#*{*({(%#(@@(]{%]!@@+%!!* %(!{&^%%&$(!#@{+*#+*{]![}!!(${@*+$}+__}_}{)@)^*[$!@[+)+](#!!{]#*^&)!%&)%*]*#$]() ]!{][@$}@)$__*_]}^(#*!#!_!**@{(&![]$_+_%^#_!%!$&@](!%%((%[#]&&}_{]+[+*##])(]%^(+ #(_}((]@}#$^_})%#&&((!^![^}+!}{$(%*{*$@%][)[[%&^[{](&+^*!!!([__[{^}&%+&^(*&])*$& $#_}*!(+([_&%{^&[([%]}*^{{([@+@]@*&@_!]_+([(#&!]]#$$#]@#{_]][_{@]{*))$({%}_![@$] #)+[])%]$+^^(}^!([&{)!#}#}}#!}[]]{[++&!)]#]]%^%_&_}!&&$@#&!#}&+]$)^_^*$]!$)}&{#) +[+!_${^](+([&_%&$)#{$%#[%%][($()+!*_(*&!}%@}@%_#+%{%&*$]*{$(}}{)}]%))$}*^$]$(^^ !&*[^]]&#%&%!_+#&}_#}_]&^+@]%(!+!_*](@]}__+@%+^!&[@[)@(!*[%}^$!$(]!^_])!&_!!_[{* (+*]_}%+(%[{)]({#[+$&&[^@{&#!@%)!+&}$@+@[+&_*!$(+#*%!+$@{{^**{)(]*$(}+(#+^}%@%^^ !$%}$$}+@^$$%{}{#!(%[]$!*}+(]!%{(^{&^{$[$)]&&^+{+%!#[([%^!{]]#^@!{#(&]@_$*_&!%(! +_+}%@#{_}^#*)%*(*}*![}[%_[[^@$&%)([*{_${)$^^_!+}{)!)@_[*$_}*}$#[+}{]*+!^])}&{+# +!@!^*@}!}&{]*#^@}_[)}#@%!_*#!$}!)[(${+^&!{[&&&*[{}+*+(#+_[}{$$)#([*!)%@^%_]#%$$ (++^+&)}*_&%@#[^^+^&@_%]+$%$#$*)@!(]*+@]}%$$}$(#$&^(%[*([&]*^&}(!#{&_}^(*{(+$#}} (&_+][&_@)$&$&^[_$(++$^}]&^^*(+*!&#_$]*+@!]+{%^_*+!&}@$!#^{+_#([+@(((*+)[()__}(^ @)](+[$*_(]*$[[&@^(_*#(*&!^{+]_%)_)^[}@]#]%#@+^+[%{_*{!)}#$@#)_$!_(!*+#}%%}+$&$[ %&]!{{%*_!*}&)}$**_{*!#%[[#]!](^^$![#[[*}%(_#^^!%))!_^@)@**@}}(%%{#*%@(((]^%^![& }!)$]&($)@](+(#{$)_%^%_^^#][{*[)%}+[##(##^{$}^]#&(&*{)%)&][&{]&#]}[[^^&[!#}${@_( #@}&$[[%]_&$+)$!%{(}$^$}* ''' import collections dic = collections.OrderedDict() for c in orginStr: dic[c] = dic.get(c, 0) + 1 print(''.join([c for c in dic]))
[ "lingyunyumo@gmail.com" ]
lingyunyumo@gmail.com
ac334cf5eb6b2d7571fd321354c1331013b2da2f
453c2179ebd6bfe86e30fca3924671248cbff4f8
/polls/views.py
b7473eb6320791798adf4fc14fe7e7693a0d7d5a
[]
no_license
oyty/mysite
b0875c721933fdcf3630d53d50aba1148df80db5
486cfb044566cde710edabd1d52190e92b62b601
refs/heads/master
2023-02-23T17:46:28.567404
2021-01-30T10:27:11
2021-01-30T10:27:11
333,329,283
0
0
null
null
null
null
UTF-8
Python
false
false
2,909
py
from django.shortcuts import render # Create your views here. from django.http import HttpResponse from django.db.models import Q, Sum, Count from polls.models import Product def index(request): # # 数据插入的两种方式 # Product.objects.create(name='oyty', weight='111g', size='120*75*77', type_id=1) # # p = Product(name='oyty', weight='111g', size='120*75*77', type_id=1) # p.save() # # # 数据更新 # p = Product.objects.get(id=9) # p.name = 'haha' # p.save() # # # 更新单条数据 # Product.objects.get(id=9).update(name='haha') # # 更新多条数据 # Product.objects.filter(name='oyty').update(name='haha') # # 无过滤条件,全表更新 # Product.objects.update(name='haha') # # # 删除数据 # # 删除全部 # Product.objects.all().delete() # Product.objects.get(id=9).delete() # # 删除多条 # Product.objects.first(name='oyty').delete() # # # 查询数据 # # 查询全部, 返回数组 # p = Product.objects.all() # 'select * from product' # # # 查询前5条 # p = Product.objects.all()[:5] # 'select * from product limit 5' # # # 查询某个字段 # p = Product.objects.values('name') # 'select name from product' # # # values_list 方法,以列表表示返回数据,列表元素以元组格式表示 # p = Product.objects.values_list('name')[:3] # # # get方法查询数据 # p = Product.objects.get(id=2) # 'select * from product where id=2' # # # filter方法查询数据, 返回数组 # p = Product.objects.filter(id=2) # # # 多条件查询 # p = Product.objects.filter(name='oyty', id=9) # # # or查询,需要引入Q,格式为:Q(field=value) | Q(field=value) # p = Product.objects.filter(Q(name='oyty') | Q(id=9)) # 'select * from product where name="oyty" or id=9' # # # count方法统计查询数据的数据量 # p = Product.objects.filter(name='oyty').count() # p = 2 # # # 去重查询,distinct # p = Product.objects.values('name').filter(name='oyty').distinct() # 'select DISTINCT name from product where name="oyty"' # # # 根据id降序排列, 降序只要在order_by里面的字段前面加上"-"即可 # p = Product.objects.order_by('-id') # # # 聚合查询, 实现对数据值求和,求平均值等,Django提供annotate和aggregate方法实现 # p = Product.objects.values('name').annotate(Sum('id')) # 'select name, sum(id) as "id_sum" from product group by name order by null' # # # aggregate将某个字段的值进行计算并返回计算结果 # p = Product.objects.aggregate(id_count=Count('id')) # {'id_count': 11} # 'select COUNT(id) as "id_count" from product' return HttpResponse("Hello, world, You're at the polls index.")
[ "cooloyty@gmail.com" ]
cooloyty@gmail.com
db0dfd08395653a664dbd60963525a118e951acf
c7882a23ea89c05cd9d670ca713108da2e786f3b
/src/utilities/models/wrnet.py
2ee496be038bdd7b0b5a88363418b979ceec8e8e
[]
no_license
c-w-m/ldpc-decoders
7513871f28eb34113edf129b3072ce8a60dc43ca
4f541efbc8dd20b59ccc0ae4284ddfc6e339f6e4
refs/heads/master
2023-04-18T05:17:23.351576
2021-04-16T16:50:24
2021-04-16T16:50:24
358,638,672
1
0
null
null
null
null
UTF-8
Python
false
false
10,204
py
''' code taken from: https://github.com/arberzela/ImageNet32-tensorflow/blob/master/WRN_main.py TF implementation of results in: https://arxiv.org/pdf/1707.08819.pdf Number of parameters in following model: imagenet32 - 1,595,320 ''' import tensorflow as tf _BATCH_NORM_DECAY = 0.9 _BATCH_NORM_EPSILON = 1e-4 def create_plh(with_data=True): is_training = tf.placeholder(tf.bool, name='is_training') feed_dicts = {is_training:True}, {is_training:False} kwargs = {'is_training': is_training} return kwargs, feed_dicts def batch_norm_relu(inputs, is_training, data_format): """Performs a batch normalization followed by a ReLU.""" # We set fused=True for a significant performance boost. See # https://www.tensorflow.org/performance/performance_guide#common_fused_ops inputs = tf.layers.batch_normalization( inputs=inputs, axis=1 if data_format == 'channels_first' else 3, momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True, scale=True, training=is_training, fused=True) inputs = tf.nn.relu(inputs) return inputs def fixed_padding(inputs, kernel_size, data_format): """Pads the input along the spatial dimensions independently of input size. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. kernel_size: The kernel to be used in the conv2d or max_pool2d operation. Should be a positive integer. data_format: The input format ('channels_last' or 'channels_first'). Returns: A tensor with the same format as the input with the data either intact (if kernel_size == 1) or padded (if kernel_size > 1). """ pad_total = kernel_size - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg if data_format == 'channels_first': padded_inputs = tf.pad(inputs, [[0, 0], [0, 0], [pad_beg, pad_end], [pad_beg, pad_end]]) else: padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]) return padded_inputs def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format): return tf.layers.conv2d( inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding='SAME', use_bias=False, kernel_initializer=tf.variance_scaling_initializer(scale=2.0, distribution='normal'), data_format=data_format) def building_block(inputs, filters, is_training, projection_shortcut, strides, dropoutrate, data_format): """Standard building block for residual networks with BN before convolutions. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the convolutions. is_training: A Boolean for whether the model is in training or inference mode. Needed for batch normalization. projection_shortcut: The function to use for projection shortcuts (typically a 1x1 convolution when downsampling the input). strides: The block's stride. If greater than 1, this block will ultimately downsample the input. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block. """ shortcut = inputs inputs = batch_norm_relu(inputs, is_training, data_format) # The projection shortcut should come after the first batch norm and ReLU # since it performs a 1x1 convolution. if projection_shortcut is not None: shortcut = projection_shortcut(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=3, strides=strides, data_format=data_format) inputs = batch_norm_relu(inputs, is_training, data_format) inputs = tf.layers.dropout(inputs=inputs, rate=dropoutrate, training=is_training) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=3, strides=1, data_format=data_format) return inputs + shortcut def bottleneck_block(inputs, filters, is_training, projection_shortcut, strides, data_format): """Bottleneck block variant for residual networks with BN before convolutions. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the first two convolutions. Note that the third and final convolution will use 4 times as many filters. is_training: A Boolean for whether the model is in training or inference mode. Needed for batch normalization. projection_shortcut: The function to use for projection shortcuts (typically a 1x1 convolution when downsampling the input). strides: The block's stride. If greater than 1, this block will ultimately downsample the input. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block. """ shortcut = inputs inputs = batch_norm_relu(inputs, is_training, data_format) # The projection shortcut should come after the first batch norm and ReLU # since it performs a 1x1 convolution. if projection_shortcut is not None: shortcut = projection_shortcut(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=1, strides=1, data_format=data_format) inputs = batch_norm_relu(inputs, is_training, data_format) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=3, strides=strides, data_format=data_format) inputs = batch_norm_relu(inputs, is_training, data_format) inputs = conv2d_fixed_padding( inputs=inputs, filters=4 * filters, kernel_size=1, strides=1, data_format=data_format) return inputs + shortcut def block_group(inputs, filters, block_fn, blocks, strides, dropoutrate, is_training, name, data_format): """Creates one layer of blocks for the ResNet model. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the first convolution of the layer. block_fn: The block to use within the model, either `building_block` or `bottleneck_block`. blocks: The number of blocks contained in the layer. strides: The stride to use for the first convolution of the layer. If greater than 1, this layer will ultimately downsample the input. is_training: Either True or False, whether we are currently training the model. Needed for batch norm. name: A string name for the tensor output of the block layer. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block layer. """ # Bottleneck blocks end with 4x the number of filters as they start with filters_out = 4 * filters if block_fn is bottleneck_block else filters def projection_shortcut(inputs): return tf.layers.conv2d( inputs=inputs, filters=filters_out, kernel_size=1, strides=strides, padding='SAME', use_bias=False, kernel_initializer=tf.contrib.layers.xavier_initializer(uniform=True), data_format=data_format) # Only the first block per block_layer uses projection_shortcut and strides inputs = block_fn(inputs, filters, is_training, projection_shortcut, strides, dropoutrate, data_format) for _ in range(1, blocks): inputs = block_fn(inputs, filters, is_training, None, 1, dropoutrate, data_format) return tf.identity(inputs, name) # ##################### Build the neural network model ####################### def create_model(inputs, is_training, depth=28, k=2, num_classes=1000, dropoutrate=0): """Constructs the ResNet model given the inputs.""" img_size = inputs.shape[1] num_blocks = (depth - 4) // 6 if depth % 6 != 4: raise ValueError('depth must be 6n + 4:', depth) # https://stackoverflow.com/questions/41651628/negative-dimension-size-caused-by-subtracting-3-from-1-for-conv2d data_format = 'channels_last' #('channels_first' if tf.test.is_built_with_cuda() else 'channels_last') inputs = conv2d_fixed_padding( inputs=inputs, filters=16, kernel_size=3, strides=1, data_format=data_format) inputs = tf.identity(inputs, 'initial_conv') num_filters = int(16*k) inputs = block_group( inputs=inputs, filters=num_filters, block_fn=building_block, blocks=num_blocks, strides=1, dropoutrate=dropoutrate, is_training=is_training, name='block_layer1', data_format=data_format) if img_size >= 16: num_filters = int(32*k) inputs = block_group( inputs=inputs, filters=num_filters, block_fn=building_block, blocks=num_blocks, strides=2, dropoutrate=dropoutrate, is_training=is_training, name='block_layer2', data_format=data_format) if img_size >= 32: num_filters = int(64*k) inputs = block_group( inputs=inputs, filters=num_filters, block_fn=building_block, blocks=num_blocks, strides=2, dropoutrate=dropoutrate, is_training=is_training, name='block_layer3', data_format=data_format) if img_size >= 64: num_filters = int(128*k) inputs = block_group( inputs=inputs, filters=num_filters, block_fn=building_block, blocks=num_blocks, strides=2, dropoutrate=dropoutrate, is_training=is_training, name='block_layer4', data_format=data_format) inputs = batch_norm_relu(inputs, is_training, data_format) inputs = tf.layers.average_pooling2d( inputs=inputs, pool_size=8, strides=1, padding='VALID', data_format=data_format) inputs = tf.identity(inputs, 'final_avg_pool') inputs = tf.reshape(inputs, [-1, num_filters]) inputs = tf.layers.dense(inputs=inputs, units=num_classes) inputs = tf.identity(inputs, 'final_dense') logits = inputs return logits #, [v for v in tf.trainable_variables()]
[ "craig.william.miller@gmail.com" ]
craig.william.miller@gmail.com
b7a3c7491ece3a1f29a9bd9a42c46b6fc1f0e7ee
03b704c6daec8113b7845ac3f11a3d56df930000
/1. Básico/27- PassEEllipsis.py
6214ecca0a43b9d282cc8e4a8df4099dd0c373aa
[]
no_license
AmandaRH07/PythonUdemy
fc31eed99a42a97500462bc1507ee4215a271019
143fb382f55e4be7ede9bd994f442b24f8762c4e
refs/heads/master
2023-02-08T14:15:41.382018
2021-01-05T15:04:07
2021-01-05T15:04:07
291,131,929
1
0
null
null
null
null
UTF-8
Python
false
false
105
py
valor = True if valor: # pass voltar depois e escrever o código ou ... else: print("tchau")
[ "amandarafahass13@gmail.com" ]
amandarafahass13@gmail.com
95a78e0697cb46280fd58d9e07fb637d9f1a6c0b
8234a8657664f12831daa71cf265f6d6732010f2
/ilc_tools/filters.py
b3bc729745cf78b52bc65a46c4b2db0879ad193b
[]
no_license
LBJ-Wade/SZ-Filtering
fb778fc164a981c164cf7a13bb66a5f1cca2736f
4bcb8a2600bec7b363c07cf6ed077b05ed73040b
refs/heads/main
2023-04-04T04:46:59.968331
2021-01-04T22:15:51
2021-01-04T22:15:51
356,129,565
0
0
null
null
null
null
UTF-8
Python
false
false
12,915
py
import matplotlib.pyplot as plt import numpy as np from astropy.io import fits from ilc_tools import misc from scipy import interpolate from scipy import ndimage from scipy import signal from pymf import make_filter_map from ilc_tools import data_tools import nifty5 as ift def radialprofile_cmb(data, rmax=100, nbins=20): ''' Compute the radial profile of nc, number of clusters centered on a map Parameters: ----------- data: fits file 3D array, with first dim belonging to number of files rmax: int maximum radius of pixels. Default is 100 nbins: int number of bins to consider for profile. Default is 20 Returns: -------- rad_profile: float 2D array with radial profile of cluster for nc number of clusters error: float 1D array with the standard deviation ''' npix = data.shape[1] center = (npix/2,npix/2) y, x = np.indices((data.shape[1], data.shape[1])) # first determine radii of all pixels r = np.sqrt((x - center[0])**2 + (y - center[1])**2) #compute distance bins = np.linspace(0, rmax, nbins) nc = data.shape[0] rad_profile = np.zeros((nc,2, nbins-1)) error = np.zeros((nbins-1)) for f in np.arange(nc): for i in np.arange(len(bins)-1): index = (r>bins[i]) & (r <bins[i+1]) rad_profile[f,0,i] = (bins[i] + bins[i+1])/2 rad_profile[f,1,i] = np.mean(data[f,index]) for i in np.arange(len(bins)-1): error[i] = np.std(rad_profile[:,1,i]) return rad_profile, error def radialprofile_ksz(data, rmax=100, nbins=20): ''' Compute the radial profile of a given of cluster centered on a map Parameters: ----------- data: fits file 2D array with dimensions corrresponding to number of pixels in the map rmax: int maximum radius of pixels. Default is 100 nbins: int number of bins to consider for profile. Default is 20 Returns: -------- rad_profile: float 2D array with radial profile of cluster ''' npix = data.shape[1] center = (npix/2,npix/2) y, x = np.indices((data.shape[1], data.shape[1])) r = np.sqrt((x - center[0])**2 + (y - center[1])**2) bins = np.linspace(0, rmax, nbins) rad_profile = np.zeros((2, nbins-1)) error = np.zeros((nbins-1)) for i in np.arange(len(bins)-1): index = (r>bins[i]) & (r <bins[i+1]) rad_profile[0,i] = (bins[i] + bins[i+1])/2 rad_profile[1,i] = np.mean(data[index]) return rad_profile def WienerFilter(data, signal_template, pixel_size, smooth = True, FWHM = 9.68, pxsize = 0.2, npix = 400): hdulist = fits.open(signal_template) ksz = hdulist[0].data header = hdulist[0].header hdulist.close() if smooth is True: sigma_beam = FWHM / (2*np.sqrt(2*np.log(2))) / pxsize ksz = ndimage.gaussian_filter(ksz, sigma=sigma_beam, order=0, mode='wrap', truncate=20.0) signal_fft = misc.power_spec(ksz, pxsize, True) signal_fft_nok = misc.power_spec(ksz, pxsize, False) hdulist = fits.open(data) data_map = hdulist[0].data header = hdulist[0].header hdulist.close() pixisize = data_tools.ascii.read(pixel_size) pixsize = np.array(pixisize[:]['pixel_size']).tolist() nclusters = data_map.shape[0] filtered_maps = [] filters = [] for i in np.arange(nclusters): noise_fft = misc.power_spec(data_map[i], pxsize = pixsize[i], return_k = True) #create power spec noise_fft_nok = misc.power_spec(data_map[i], pxsize = pixsize[i], return_k = False) signal_ps = np.interp(noise_fft[0], signal_fft[0], signal_fft[1]) #interpolate noise_ps_map = make_filter_map(data_map[i], noise_fft_nok[0], noise_fft_nok[1]) #make filter maps signal_ps_map = make_filter_map(data_map[i], noise_fft_nok[0], signal_ps) filter_window = signal_ps_map / (signal_ps_map + noise_ps_map) #plt.semilogy(np.real(filter_window[200,200:])) data_fft = np.fft.fftshift(np.fft.fft2(data_map[i], norm = None)/ npix**2) filtered_image = np.real(np.fft.ifft2(np.fft.ifftshift(filter_window*data_fft))) * npix**2 filtered_maps.append(filtered_image) filters.append(filter_window) return (filtered_maps, filters) def nifty_wf(signal, noise, y_map, npix = 400, pxsize = 1.5, kernel = 9.68, n = 10, smooth = False): cmb_mocks = noise.shape[0] A = (2*np.sqrt(2*np.log(2))) if smooth is True: signal_smooth = np.zeros((cmb_mocks, npix, npix)) noise_smooth = np.zeros((cmb_mocks, npix, npix)) for i in np.arange(cmb_mocks): noise_data = ndimage.gaussian_filter(noise[i], sigma= kernel/A/pxsize, order=0, mode = "reflect", truncate = 10) #signal_data = ndimage.gaussian_filter(signal[i], sigma= kernel/A/pxsize, order=0, mode = "reflect", truncate = 10) signal_data = signal[i] #uncomment here if smoothing signal and noise noise_smooth[i,:,:] = noise_data signal_smooth[i,:,:] = signal_data else: noise_smooth = noise signal_smooth = signal pixel_space = ift.RGSpace([npix, npix]) fourier_space = pixel_space.get_default_codomain() s_data = np.zeros((cmb_mocks, npix, npix)) m_data = np.zeros((cmb_mocks, npix, npix)) d_data = np.zeros((cmb_mocks, npix, npix)) for i in np.arange(cmb_mocks): signal_field = ift.Field.from_global_data(pixel_space, signal_smooth.astype(float)) #[i] for mock_data HT = ift.HartleyOperator(fourier_space, target=pixel_space) power_field = ift.power_analyze(HT.inverse(signal_field), binbounds=ift.PowerSpace.useful_binbounds(fourier_space, True)) Sh = ift.create_power_operator(fourier_space, power_spectrum=power_field) R = HT noise_field = ift.Field.from_global_data(pixel_space, noise_smooth[i].astype(float)) noise_power_field = ift.power_analyze(HT.inverse(noise_field), binbounds=ift.PowerSpace.useful_binbounds(fourier_space, True)) N = ift.create_power_operator(HT.domain, noise_power_field) N_inverse = HT@N@HT.inverse data = signal_field + noise_field # --->when using mock_data # Wiener filtering the data j = (R.adjoint @N_inverse.inverse)(data) D_inv = R.adjoint @ N_inverse.inverse @ R + Sh.inverse IC = ift.GradientNormController(iteration_limit=500, tol_abs_gradnorm=1e-3) D = ift.InversionEnabler(D_inv, IC, approximation=Sh.inverse).inverse m = D(j) #s_data[i,:,:] = (signal_field).to_global_data() m_data[i,:,:] = HT(m).to_global_data() #d_data[i,:,:] = data.to_global_data() #Squaring the filtered map and also taking the absoute val of filtered map # uncomment here for no cross correlation squared_m_data = np.zeros((cmb_mocks, npix, npix)) abs_m_data = np.zeros((cmb_mocks, npix, npix)) for i in np.arange(m_data.shape[0]): squared_m_data[i,:,:] = m_data[i,:,:] * m_data[i,:,:] abs_m_data[i,:,:] = np.abs(m_data[i,:,:]) #Stacking all filtered maps stack1 = np.sum(squared_m_data, axis = 0)/m_data.shape[0] stack2 = np.sum(abs_m_data, axis = 0)/m_data.shape[0] return (m_data, squared_m_data, abs_m_data, stack1, stack2) #change here to return the right values ---->, stack_square, stack_abs ''' #Stacking progressively stack_maps = np.zeros((npix,npix)) stack_square = np.zeros((int(m_data.shape[0]/n), npix, npix)) k = 0 for i in np.arange(m_data.shape[0]): stack = stack_maps + squared_m_data[i] stack_maps[:,:] = stack if np.mod(i,n) == 0: stack_square[k,:,:] = stack_maps[:,:] k = k+1 stack_abs_maps = np.zeros((npix,npix)) stack_abs = np.zeros((int(m_data.shape[0]/n), npix, npix)) l = 0 for i in np.arange(m_data.shape[0]): stack = stack_abs_maps + abs_m_data[i] stack_abs_maps[:,:] = stack if np.mod(i,n) == 0: stack_abs[l,:,:] = stack_abs_maps[:,:] l = l+1 # cross correlating filtered_map(m_data) with y_map squared_corr_data = np.zeros((cmb_mocks, npix, npix)) abs_corr_data = np.zeros((cmb_mocks, npix, npix)) for i in np.arange(m_data.shape[0]): from scipy import signal corr_data = signal.correlate(y_map, m_data[i], mode = 'same', method = 'fft') squared_corr_data[i,:,:] = corr_data * corr_data abs_corr_data[i,:,:] = np.abs(corr_data) stack1_corr = np.sum(squared_corr_data, axis = 0)/m_data.shape[0] stack2_corr = np.sum(abs_corr_data, axis = 0)/m_data.shape[0] stack_maps = np.zeros((npix,npix)) stack_square_corr = np.zeros((int(m_data.shape[0]/n), npix, npix)) k = 0 for i in np.arange(m_data.shape[0]): stack = stack_maps + squared_corr_data[i] stack_maps[:,:] = stack if np.mod(i,n) == 0: stack_square_corr[k,:,:] = stack_maps[:,:] k = k+1 stack_abs_maps = np.zeros((npix,npix)) stack_abs_corr = np.zeros((int(m_data.shape[0]/n), npix, npix)) l = 0 for i in np.arange(m_data.shape[0]): stack = stack_abs_maps + abs_corr_data[i] stack_abs_maps[:,:] = stack if np.mod(i,n) == 0: stack_abs_corr[l,:,:] = stack_abs_maps[:,:] l = l+1 ''' #Simple Wiener Filter def wf(signal, noise, signal_boost, npix = 400): pixel_space = ift.RGSpace([npix, npix]) fourier_space = pixel_space.get_default_codomain() signal_field = ift.Field.from_global_data(pixel_space, signal.astype(float)) HT = ift.HartleyOperator(fourier_space, target=pixel_space) power_field = ift.power_analyze(HT.inverse(signal_field), binbounds=ift.PowerSpace.useful_binbounds(fourier_space, True)) Sh = ift.create_power_operator(fourier_space, power_spectrum=power_field) R = HT noise_field = ift.Field.from_global_data(pixel_space, noise.astype(float)) noise_power_field = ift.power_analyze(HT.inverse(noise_field), binbounds=ift.PowerSpace.useful_binbounds(fourier_space, True)) N = ift.create_power_operator(HT.domain, noise_power_field) N_inverse = HT@N@HT.inverse amplify = len(signal_boost) s_data = np.zeros((amplify, npix, npix)) m_data = np.zeros((amplify, npix, npix)) d_data = np.zeros((amplify, npix, npix)) for i in np.arange(amplify): data = signal_field * signal_boost[i] + noise_field # # Wiener filtering the data j = (R.adjoint @N_inverse.inverse)(data) D_inv = R.adjoint @ N_inverse.inverse @ R + Sh.inverse IC = ift.GradientNormController(iteration_limit=500, tol_abs_gradnorm=1e-3) D = ift.InversionEnabler(D_inv, IC, approximation=Sh.inverse).inverse m = D(j) s_data[i,:,:] = (signal_field * signal_boost[i]).to_global_data() m_data[i,:,:] = HT(m).to_global_data() d_data[i,:,:] = data.to_global_data() return (s_data, m_data, d_data) def wf_test(signal, noise, signal_boost, npix = 400): pixel_space = ift.RGSpace([npix, npix]) fourier_space = pixel_space.get_default_codomain() signal_field = ift.Field.from_global_data(pixel_space, signal.astype(float)) HT = ift.HartleyOperator(fourier_space, target=pixel_space) power_field = ift.power_analyze(HT.inverse(signal_field), binbounds=ift.PowerSpace.useful_binbounds(fourier_space, True)) Sh = ift.create_power_operator(fourier_space, power_spectrum=power_field) R = HT noise_field = ift.Field.from_global_data(pixel_space, noise.astype(float)) noise_power_field = ift.power_analyze(HT.inverse(noise_field), binbounds=ift.PowerSpace.useful_binbounds(fourier_space, True)) N = ift.create_power_operator(HT.domain, noise_power_field) N_inverse = HT@N@HT.inverse amplify = len(signal_boost) s_data = np.zeros((amplify, npix, npix)) m_data = np.zeros((amplify, npix, npix)) d_data = np.zeros((amplify, npix, npix)) for i in np.arange(amplify): data = noise_field # Wiener filtering the data j = (R.adjoint @N_inverse.inverse)(data) D_inv = R.adjoint @ N_inverse.inverse @ R + Sh.inverse IC = ift.GradientNormController(iteration_limit=500, tol_abs_gradnorm=1e-3) D = ift.InversionEnabler(D_inv, IC, approximation=Sh.inverse).inverse m = D(j) s_data[i,:,:] = (signal_field * signal_boost[i]).to_global_data() m_data[i,:,:] = HT(m).to_global_data() d_data[i,:,:] = data.to_global_data() return (s_data, m_data, d_data)
[ "rpinto@smail.uni-koeln.de" ]
rpinto@smail.uni-koeln.de
b655d4f9b4db58e142ef260d81f513e74d101882
ded2c619df771c28203fd855a337c4ccdff816a7
/stapled/lib/__init__.py
a48b95256c330b00767c57e41c1e6dca5a0d940f
[ "Apache-2.0" ]
permissive
Surfndez/stapled
b65c2f02152e34a9045a1f48f84eb06641ed1ccc
86b9272adaf07549b7f2ecbd7950d9d327a8d06f
refs/heads/master
2023-05-10T06:28:44.374940
2019-10-01T08:49:54
2019-10-01T08:49:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,881
py
""" Various functions to deal with locally installed libraries.__doc__ Contains functions that finds libraries in ``stapled/libs`` and return Various listing forms and functions to add libs to the python path. This is meant for libraries that have a free license and that are not available as debian packages. We package them along with stapled, so we don't have to install them using PIP. """ import os import sys def _libs(): """ Make a dict containing the name and path of each of the libs. :return dict: name of the lib as key, path of the lib as value """ exclude = ('__init__.py', '__init__.pyc', '__pycache__') lib_dir = os.path.relpath(os.path.dirname(__file__)) # Filter out self libs = filter(lambda p: p not in exclude, os.listdir(lib_dir)) return dict((lib, os.path.join(lib_dir, lib)) for lib in libs) def find_lib_paths(): """ Find libs in the paths of ``_libs`` and return only the paths. This is meant to be used in a setup.py file. :return list: list of lib directories to search for packages """ return _libs().values() def find_lib_path_dict(): """ Use ``_libs`` and add the name of the package to the end of the paths. This is done because the paths are ``lib/[project]/[project]`` not ``lib/[project]``. This is meant to be used in a setup.py file. :return list: list of lib paths where the __init__.py of the lib lives. """ paths = _libs().items() return dict( (lib, os.path.join(path, lib)) for lib, path in paths ) def add_paths(): """ Add the found libs to the python path so they can be imported. :returns list|NoneType: A list of paths added to sys.path or None. """ libs = _libs().values() if libs: for lib in libs: sys.path.append(lib) return libs else: return None
[ "chris@greenhost.nl" ]
chris@greenhost.nl
1970d0316668952d2087e13cade39010d449d122
44dc61f79ed697b1f9207aecb72e129afc80bd64
/kvt/losses/focal_loss.py
9f95b993901de03738edfde7ca1a71277ef3d1bf
[ "BSD-2-Clause" ]
permissive
samlinxyz/kaggle-understanding-clouds
37711ec0a07f29a3273a050b4ad7c96b863390de
22213077ebe027a1cca73efd148e241f81181986
refs/heads/master
2022-11-30T09:03:25.865023
2020-08-14T01:23:59
2020-08-14T01:23:59
285,413,159
0
0
BSD-2-Clause
2020-08-05T21:57:38
2020-08-05T21:57:37
null
UTF-8
Python
false
false
2,408
py
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class FocalLoss(nn.Module): def __init__(self, gamma=0, alpha=None, size_average=True): super(FocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha self.size_average = size_average def forward(self, input, target): if input.dim()>2: input = input.view(input.size(0),input.size(1),-1) # N,C,H,W => N,C,H*W input = input.transpose(1,2) # N,C,H*W => N,H*W,C input = input.contiguous().view(-1,input.size(2)) # N,H*W,C => N*H*W,C target = target.view(-1,1) logpt = F.log_softmax(input) logpt = logpt.gather(1,target) logpt = logpt.view(-1) pt = Variable(logpt.data.exp()) if self.alpha is not None: if self.alpha.type()!=input.data.type(): self.alpha = self.alpha.type_as(input.data) at = self.alpha.gather(0,target.data.view(-1)) logpt = logpt * Variable(at) loss = -1 * (1-pt)**self.gamma * logpt if self.size_average: return loss.mean() else: return loss.sum() class BinaryFocalLoss(nn.Module): def __init__(self, gamma=2, alpha=0.25, pos_weight=None, **_): super().__init__() self.gamma = gamma self.alpha = alpha self.pos_weight = pos_weight def forward(self, input, target, reduction=True, weight=None): target = target.float() input = input.view(-1, 1) target = target.view(-1, 1) assert target.size() == input.size(), f'{target.size()} vs {input.size()}' if weight is not None: assert target.size() == weight.size() # For test if isinstance(self.pos_weight, float) or isinstance(self.pos_weight, int): weight = target * (self.pos_weight - 1.0) + 1.0 else: if weight is None: weight = target + 2.0 max_val = (-input).clamp(min=0) loss = input - input * target + max_val + ((-max_val).exp() + (-input - max_val).exp()).log() invprobs = F.logsigmoid(-input * (target * 2 - 1)) loss = (invprobs * self.gamma).exp() * loss if weight is not None: loss = loss * weight if reduction: return loss.mean() else: return loss
[ "pudae81@gmail.com" ]
pudae81@gmail.com
47c7662f968130690ed6765123e2e6505261ef44
9f79a52d647ae0727b9df967bf9779acfcb9d0a5
/Random Drafts/prime factor.py
864f13a80904bf006f6b6a66352eaa3906157a67
[ "MIT" ]
permissive
Kevinskwk/ILP
2c82e495a6877d4de08c80a1ecd38b8ebb3d792e
7a3925a22232d486a5a8f5df8255f9297fd73fec
refs/heads/master
2020-07-06T08:35:44.081946
2019-08-18T04:09:25
2019-08-18T04:09:25
202,956,903
1
0
null
null
null
null
UTF-8
Python
false
false
283
py
n=int(input(':')) listf=[] listpf=[] for x in range(1,n+1): if n%x==0: listf.append(x) print listf for y in listf: l=[] for z in range(1,y+1): if y%z==0: l.append(z) if len(l)==2: listpf.append(y) print listpf
[ "noreply@github.com" ]
Kevinskwk.noreply@github.com
b4cf72a707ccebd5377a2a20a4a4ce2e728c7ff6
e9543720e53de3e387133497e66af3b039129dd8
/extra_apps/DjangoUeditor/test_try.py
f6ca687e0165e7dc854378e96768e445628342b0
[]
no_license
weicunheng/BookStore
d0e5782e45578bf84a36c98c2e029dfc10582959
d2fd226e130627ae3b39470260ef0961796900a4
refs/heads/master
2020-03-25T08:35:07.862245
2018-08-17T13:42:33
2018-08-17T13:42:33
143,620,057
0
0
null
null
null
null
UTF-8
Python
false
false
84
py
# coding:utf-8 from trade.utils import FileSize MF = FileSize("36723678") print(MF)
[ "1261360292@qq.com" ]
1261360292@qq.com
c6237d72e9716dbbb5e79d81d46c0273ac31e4bd
7b38f0efcc222e28ddfacec16239ac57c6915cf8
/PythonSelenium/locators.py
5b1a266e113d624eabf82d57758fa856b7412914
[]
no_license
ChaithanyaRepo/PythonTesting
e6bb728137013e3ecbdac69a88bd8a2453137ee4
00ed637e96572dc6fa9a8fd826dd3f14809f66e6
refs/heads/master
2022-04-18T13:54:08.847939
2020-04-17T02:30:43
2020-04-17T02:30:43
256,381,108
0
0
null
null
null
null
UTF-8
Python
false
false
1,934
py
from selenium import webdriver from time import sleep driver = webdriver.Chrome(executable_path='/home/chaitanya/Documents/software/drivers/chromedriver_linux64/chromedriver') # driver = webdriver.Firefox(executable_path='/home/chaitanya/Documents/software/drivers/geckodriver-v0.26.0-linux64/geckodriver') driver.get("https://www.flipkart.com/") sleep(1) # driver.find_element_by_css_selector("input[class='_2zrpKA _1dBPDZ']").send_keys("chaitanyab94@gmail.com") driver.find_element_by_xpath("//input[@class='_2zrpKA _1dBPDZ']").send_keys("chaitanyab94@gmail.com") # driver.find_element_by_name("identifier").send_keys("chaitanyab94@gmail.com") # driver.find_element_by_css_selector("span[class='CwaK9']").click() sleep(1) driver.find_element_by_css_selector("input[class='_2zrpKA _3v41xv _1dBPDZ']").send_keys("December13!") # driver.find_element_by_name("password").send_keys("December13!") # driver.find_element_by_css_selector("button[class='_2AkmmA _1LctnI _7UHT_c']").click() driver.find_element_by_css_selector("[class*='_1LctnI _7UHT_c']").click() # driver.find_element_by_name("identifier").send_keys("chaitanyab94@gmail.com") # driver.find_element_by_class_name("CwaK9").click() # sleep(1) # driver.find_element_by_name("password").send_keys("Nayak@123") # driver.find_element_by_class_name("CwaK9").click() # Copying the text from web page # print(driver.find_element_by_class_name("oZoRPi").text) # print(driver.find_element_by_css_selector("a[class='oZoRPi']").text) # print(driver.find_element_by_xpath("//a[@class='oZoRPi']").text) sleep(1) # XPath with regular expression # print(driver.find_element_by_xpath("//*[contains(@class,'oZoRPi')]").text) sleep(1) # CSS Selector with regular expression # print(driver.find_element_by_css_selector("[class='oZoRPi']").text) driver.get("https://www.amazon.in/") sleep(1) # Generating CSS using ID driver.find_element_by_css_selector("input#twotabsearchtextbox").click()
[ "nayakchanakya88@gmail.com" ]
nayakchanakya88@gmail.com
55b72c60ab6537917927db1260ce8688c7d61b4b
fa94acebd82a527654a228186ddc6e8aff067d14
/flaskbb/themes/drpalms/blueprints/calendar/views.py
1c99fb3e48d94d4a1fc3d5905c43ac329af487b4
[ "BSD-3-Clause", "MIT" ]
permissive
jtom343/flaskbb
fa3645402ed3d3796e5389683b288160a8ceae61
5294587f2afc49c228b2b66ddd32c8632ef33ed7
refs/heads/master
2022-12-13T00:48:14.412261
2019-10-01T03:58:25
2019-10-01T03:58:25
211,943,806
0
0
NOASSERTION
2022-11-22T03:58:38
2019-09-30T19:54:05
C++
UTF-8
Python
false
false
1,593
py
from flask import ( Blueprint, current_app, render_template, url_for, request, redirect, flash, ) from flask_login import login_required, current_user from flask_babel import gettext as _ from config import settings from lib.util_json import render_json from snakeeyes.blueprints.billing.forms import SubscriptionForm, \ UpdateSubscriptionForm, CancelSubscriptionForm, PaymentForm from snakeeyes.blueprints.billing.models.coupon import Coupon from snakeeyes.blueprints.billing.models.subscription import Subscription from snakeeyes.blueprints.billing.models.invoice import Invoice from snakeeyes.blueprints.billing.decorators import subscription_required, \ handle_stripe_exceptions billing = Blueprint('billing', __name__, template_folder='../templates', url_prefix='/subscription') @billing.route('/pricing') def pricing(): if current_user.is_authenticated and current_user.subscription: return redirect(url_for('billing.update')) form = UpdateSubscriptionForm() return render_template('billing/pricing.html', form=form, plans=settings.STRIPE_PLANS) @billing.route('/coupon_code', methods=['POST']) @login_required def coupon_code(): code = request.form.get('coupon_code') if code is None: return render_json(422, {'error': 'Coupon code cannot be processed.'}) coupon = Coupon.find_by_code(code) if coupon is None: return render_json(404, {'error': 'Coupon code not found.'}) return render_json(200, {'data': coupon.to_json()})
[ "jtom343@gmail.com" ]
jtom343@gmail.com
0fb9eee149e8e1314707960d82b1858bab694364
ccb54253ade49adce593c9d944e080d34a779e59
/uploader.py
b838fc5b8c17ae477c0df7d4a4cab2aa6f4dd3c4
[]
no_license
kirillkuzin/prekol-backend
16de1162970386169f74c08b95ceb76b50649911
4e9696e151f32b2c68696355fadb07cd1855fe5a
refs/heads/master
2023-04-13T19:43:37.113090
2021-03-28T08:01:27
2021-03-28T08:01:27
352,021,673
0
0
null
null
null
null
UTF-8
Python
false
false
1,455
py
import csv import asyncio from tqdm import tqdm from data import db, get_cities, save_place async def main(): await db.connect() cities = {} cities_data = await get_cities() for city_data in cities_data: cities.update({city_data['title']: city_data['id']}) print(cities) with open('data.csv') as file: data = csv.DictReader(file) data = list(data) with tqdm(total=len(data)) as pbar: for row in data: try: title = row['name'] description = row['wikipedia_extracts'] place_type = row['category'] lon = float(row['longitude']) lat = float(row['latitude']) image_url = row['clear_link'] city_id = cities[row['capital']] await save_place(title=title, description=description, place_type=place_type, lon=lon, lat=lat, image_url=image_url, city_id=city_id) pbar.update(1) except Exception as e: print(e) await db.disconnect() if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
[ "offkirillkuzin@gmail.com" ]
offkirillkuzin@gmail.com
a36015f5613612fa2f21854f55e993893eecaad2
553c0d835da8807a9abf9ead626f490c017a182b
/0x0F-python-object_relational_mapping/model_city.py
0aeb8491ca999d10cd138f091bc83450521631ce
[]
no_license
robertrowe1013/holbertonschool-higher_level_programming
49c7d47b533b579da5582dcf4afb009d8319355b
0669d897f8dd156f11e8a26f0850bc78187b07a1
refs/heads/master
2022-12-19T13:00:07.040357
2020-09-25T03:35:39
2020-09-25T03:35:39
259,423,441
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
#!/usr/bin/python3 """ city model """ from sqlalchemy import Column, Integer, String, ForeignKey from sqlalchemy.ext.declarative import declarative_base from model_state import Base class City(Base): """ city class """ __tablename__ = 'cities' id = Column(Integer, primary_key=True, nullable=False) name = Column(String(128), nullable=False) state_id = Column(Integer, ForeignKey('states.id'), nullable=False)
[ "robertrowe1013@gmail.com" ]
robertrowe1013@gmail.com
d5070d491cc56d77d14d2e53c3b438857d146d2b
b3101e2551ca152229619dea05272334a438f7ee
/dbcalculatorv2.py
f78bc113b761b802bef7ca526745d47a2aaefdb4
[]
no_license
db1985/Python-Test-Scripts
bc499b8c7b472f3c24b990a4640fbb0492698bfa
730c765ad6aeabfaaddc107f4d698b63bbbdb91b
refs/heads/master
2022-09-22T15:50:22.688566
2020-06-05T09:49:00
2020-06-05T09:49:00
268,920,250
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
#create a basic calculator num1 = int(input("Enter 1st number:")) num2 = int(input("Enter 2nd number:")) choice = input("Enter +, -, *, /:") if choice == "+": result = num1 + num2 elif choice == "-": result = num1 - num2 elif choice == "*": result = num1 * num2 elif choice == "/": result = num1 / num2 else: print("Wrong option!") print(num1,choice,num2,"=",result)
[ "noreply@github.com" ]
db1985.noreply@github.com
a1f6800ccccb1a4261c386a81ed7d202ada35784
d6b031991b9755d52e982a6db3fed8a6569988fa
/dio.py
f583874173e9328566f3f1a3e54055298523e4e3
[ "Python-2.0" ]
permissive
shun60s/Python-WORLD-Win10
bf7f940b6ac20106ae8992581ca23848f7b51f6f
45630d486512b7ab8c1a92c91ce87b464796192a
refs/heads/master
2020-04-03T01:31:38.406619
2019-02-13T12:55:31
2019-02-13T12:55:31
154,933,399
2
0
null
null
null
null
UTF-8
Python
false
false
20,945
py
#coding: utf-8 #--------------------------------------------------------------------------------------------- # Description: A method of F0 estimation # Input # x : input signal # fs : sampling frequency # option : user setting (f0_floor (Hz), f0_ceil (Hz), target_fs (Hz) # channels_in_octave (ch), allowed_range, and frame_period (ms)) # Caution: minimum frame_period is 1. # Output # f0_paramter : f0 infromation # # Change: comment out numba # Date: 2018.10 #--------------------------------------------------------------------------------------------- # This is based on # dio.py # of Python-WORLD <https://github.com/tuanad121/Python-WORLD> # Copyright (c) 2017 # Tuan Dinh Anh <dintu@ohsu.edu> # Alexander Kain <kaina@ohsu.edu> # Pls see LICENSE_Python-WORLD-master.txt in the docs folder # # This WORLD, a high-quality speech analysis/synthesis system on the basis of Vocoder, # origins of <http://www.kki.yamanashi.ac.jp/~mmorise/world/> work. # Pls see LICENSE-WORLD.txt in the docs folder # #---------------------------------------------------------------------------------------------- # built-in imports import math # 3rd-party imports from scipy.interpolate import interp1d from scipy import signal # import numba import numpy as np def dio(x, fs, f0_floor=71, f0_ceil=800, channels_in_octave=2, target_fs=4000, frame_period=5, allowed_range=0.1): ''' F0 estimation by DIO consisting 3 steps + Low-pass filtering + Calculate F0 candidates and their reliabilities from filtered signal + Select highest reliable candidates f0_parameter = Dio(x, fs, f0_ceil, channels_in_octave, target_fs, frame_period, allowed_range); Inputs x : input signal fs : sampling frequency other settings : f0_floor (Hz), f0_ceil (Hz), target_fs (Hz) channels_in_octave (ch), allowed_range, and frame_period (ms) Output f0 infromation Caution: minimum frame_period is 1. ''' num_samples = int(1000 * len(x) / fs / frame_period + 1) temporal_positions = np.arange(0, num_samples) * frame_period / 1000 #temporal_positions = np.arange(0, np.size(x) / fs, frame_period / 1000) #careful!! check later # log2(f0_ceil / f0_floor) = number of octaves boundary_f0_list = np.arange(math.ceil(np.log2(f0_ceil / f0_floor) * channels_in_octave)) + 1 boundary_f0_list = boundary_f0_list / channels_in_octave boundary_f0_list = f0_floor * (2.0 ** boundary_f0_list) #down sample to target Hz #y, actual_fs = get_downsampled_signal(x, fs, target_fs) y = decimate(x, int(fs / target_fs)) actual_fs = target_fs y_spectrum = get_spectrum(y, actual_fs, f0_floor) raw_f0_candidate, raw_stability = get_candidate_and_stability(np.size(temporal_positions), boundary_f0_list, np.size(y), temporal_positions, actual_fs, y_spectrum, f0_floor, f0_ceil) f0_candidates, _ = sort_candidates(raw_f0_candidate, raw_stability) f0_candidates_tmp = np.copy(f0_candidates)#just want to keep original values of f0_candidates, maybe we don't need this line f0, vuv = fix_f0_contour(f0_candidates, frame_period, f0_floor, allowed_range) return {'f0':f0, 'f0_candidates':f0_candidates_tmp, 'raw_f0_candidates':raw_f0_candidate, 'temporal_positions':temporal_positions, 'vuv':vuv } ########################################################################################################## def get_downsampled_signal(x, fs, target_fs): decimation_ratio = int(fs / target_fs + 0.5) if fs < target_fs: y = np.empty_like(x) y[:] = x actual_fs = fs else: # decimate can be troublesome y = decimate_matlab(x, decimation_ratio, n = 3) actual_fs = fs / decimation_ratio y -= np.mean(y) return y, actual_fs ########################################################################################################## def get_spectrum(x, fs, lowest_f0): ''' First step: Low-pass filtering with different cut-off frequencies ''' fft_size = 2 ** math.ceil(math.log(np.size(x) + int(fs / lowest_f0 / 2 + 0.5) * 4,2)) #low-cut filtering cutoff_in_sample = int(fs / 50 + 0.5) low_cut_filter = signal.hanning(2 * cutoff_in_sample + 3)[1:-1] # remove zeros at starting and ending low_cut_filter = -low_cut_filter / np.sum(low_cut_filter) low_cut_filter[cutoff_in_sample] = low_cut_filter[cutoff_in_sample] + 1 low_cut_filter = np.r_[low_cut_filter, np.zeros(fft_size - len(low_cut_filter))] low_cut_filter = np.r_[low_cut_filter[cutoff_in_sample:], low_cut_filter[:cutoff_in_sample]] x_spectrum = np.fft.fft(x, fft_size) * np.fft.fft(low_cut_filter, fft_size) return x_spectrum ########################################################################################################## def get_candidate_and_stability(number_of_frames, boundary_f0_list, y_length, temporal_positions, actual_fs, y_spectrum, f0_floor, f0_ceil): ''' Second step: Caculate F0 candidates and F0 stability ''' raw_f0_candidate = np.zeros((np.size(boundary_f0_list), number_of_frames)) raw_f0_stability = np.zeros((np.size(boundary_f0_list), number_of_frames)) for i in range(np.size(boundary_f0_list)): interpolated_f0, f0_deviations = get_raw_event(boundary_f0_list[i], actual_fs, y_spectrum, y_length, temporal_positions, f0_floor, f0_ceil) raw_f0_stability[i, :] = np.exp(-(f0_deviations / np.maximum(interpolated_f0, 0.0000001))) raw_f0_candidate[i, :] = interpolated_f0 return raw_f0_candidate, raw_f0_stability ########################################################################################################## def sort_candidates(f0_candidate_map, stability_map): ''' Third step: Select the most reliable F0 candidates ''' number_of_candidates, number_of_frames = f0_candidate_map.shape sorted_index = np.argsort(-stability_map, axis=0, kind='quicksort') f0_candidates = np.zeros((number_of_candidates, number_of_frames)) f0_candidates_score = np.zeros((number_of_candidates, number_of_frames)) for i in range(number_of_frames): f0_candidates[:, i] = f0_candidate_map[sorted_index[:number_of_candidates,i], i] f0_candidates_score[:,i] = stability_map[sorted_index[:number_of_candidates,i], i] return f0_candidates, f0_candidates_score ########################################################################################################## def get_raw_event(boundary_f0, fs, y_spectrum, y_length, temporal_positions, f0_floor, f0_ceil): half_filter_length = int(fs / boundary_f0 / 2 + 0.5) low_pass_filter = nuttall(half_filter_length * 4) index_bias = low_pass_filter.argmax() spectrum_low_pass_filter = np.fft.fft(low_pass_filter, len(y_spectrum)) filtered_signal = np.real(np.fft.ifft(spectrum_low_pass_filter * y_spectrum)) filtered_signal = filtered_signal[index_bias + np.arange(1, y_length + 1)] # calculate 4 kinds of event neg_loc, neg_f0 = ZeroCrossingEngine(filtered_signal, fs) pos_loc, pos_f0 = ZeroCrossingEngine(-filtered_signal, fs) peak_loc, peak_f0 = ZeroCrossingEngine(np.diff(filtered_signal), fs) dip_loc, dip_f0 = ZeroCrossingEngine(-np.diff(filtered_signal), fs) f0_candidate, f0_deviations = get_f0_candidates(neg_loc, neg_f0, pos_loc, pos_f0, peak_loc, peak_f0, dip_loc, dip_f0, temporal_positions) # remove untrustful candidates f0_candidate[f0_candidate > boundary_f0] = 0 f0_candidate[f0_candidate < (boundary_f0 / 2)] = 0 f0_candidate[f0_candidate > f0_ceil] = 0 f0_candidate[f0_candidate < f0_floor] = 0 f0_deviations[f0_candidate == 0] = 100000 #rough safe guard return f0_candidate, f0_deviations ########################################################################################################## def get_f0_candidates(neg_loc, neg_f0, pos_loc, pos_f0, peak_loc, peak_f0, dip_loc, dip_f0, temporal_positions): #test this one usable_channel = max(0, np.size(neg_loc) - 2) * \ max(0, np.size(pos_loc) - 2) * \ max(0, np.size(peak_loc) - 2) * \ max(0, np.size(dip_f0) - 2) interpolated_f0_list = np.zeros((4, np.size(temporal_positions))) if usable_channel > 0: interpolated_f0_list[0, :] = interp1d(neg_loc, neg_f0, fill_value='extrapolate')(temporal_positions) interpolated_f0_list[1, :] = interp1d(pos_loc, pos_f0, fill_value='extrapolate')(temporal_positions) interpolated_f0_list[2, :] = interp1d(peak_loc, peak_f0, fill_value='extrapolate')(temporal_positions) interpolated_f0_list[3, :] = interp1d(dip_loc, dip_f0, fill_value='extrapolate')(temporal_positions) interpolated_f0 = np.mean(interpolated_f0_list, axis=0) f0_deviations = np.std(interpolated_f0_list, axis=0, ddof=1) else: interpolated_f0 = temporal_positions * 0 f0_deviations = temporal_positions * 0 + 1000 return interpolated_f0, f0_deviations ########################################################################################################## # negative zero crossing: going from positive to negative # @numba.jit((numba.float64[:], numba.float64), nopython=True, cache=True) def ZeroCrossingEngine(x, fs): y = np.empty_like(x) y[:-1] = x[1:] y[-1] = x[-1] negative_going_points = np.arange(1, len(x) + 1) * \ ((y * x < 0) * (y < x)) edge_list = negative_going_points[negative_going_points > 0] fine_edge_list = (edge_list) - x[edge_list - 1] / (x[edge_list] - x[edge_list - 1]) interval_locations = (fine_edge_list[:len(fine_edge_list) - 1] + fine_edge_list[1:]) / 2 / fs interval_based_f0 = fs / np.diff(fine_edge_list) return interval_locations, interval_based_f0 ########################################################################################################## def nuttall(N): t = np.asmatrix(np.arange(N) * 2 * math.pi / (N-1)) coefs = np.array([0.355768, -0.487396, 0.144232, -0.012604]) window = coefs @ np.cos(np.matrix([0,1,2,3]).T @ t) return np.squeeze(np.asarray(window)) ########################################################################################################## def fix_f0_contour(f0_candidates, frame_period, f0_floor, allowed_range): # if abs((f0(n) - f0(n+1)) / f0(n)) exceeds this value, # f0(n) is not reliable. # F0 is continuous at least voice_range_minimum (sample) voice_range_minimum =int(1 / (frame_period / 1000) / f0_floor + 0.5) * 2 + 1 f0_step1 = fix_step1(f0_candidates, voice_range_minimum, allowed_range) f0_step2 = fix_step2(f0_step1, voice_range_minimum) section_list = count_voiced_sections(f0_step2) f0_step3 = fix_step3(f0_step2, f0_candidates, section_list, allowed_range) f0_step4 = fix_step4(f0_step3, f0_candidates, section_list, allowed_range) f0 = np.copy(f0_step4) vuv = np.copy(f0) vuv[vuv != 0] = 1 return f0, vuv ########################################################################################################## #Step 1: Rapid change of F0 is replaced by zeros def fix_step1(f0_candidates, voice_range_minimum, allowed_range): f0_base = f0_candidates[0] f0_base[ : voice_range_minimum] = 0 f0_base[-voice_range_minimum : ] = 0 f0_step1 = np.copy(f0_base) rounding_f0_base = np.array([float("{0:.6f}".format(elm)) for elm in f0_base]) for i in np.arange(voice_range_minimum - 1, len(f0_base)): if abs((rounding_f0_base[i] - rounding_f0_base[i-1]) / (0.000001 + rounding_f0_base[i])) > allowed_range: f0_step1[i] = 0 return f0_step1 ########################################################################################################## #Step2: short-time voiced period (under voice_range_minimum) is replaced by 0 def fix_step2(f0_step1, voice_range_minimum): f0_step2 = np.copy(f0_step1) for i in np.arange((voice_range_minimum - 1) / 2 , len(f0_step1) - (voice_range_minimum - 1) / 2).astype(int): for j in np.arange( -(voice_range_minimum - 1) / 2 , (voice_range_minimum - 1) / 2 + 1).astype(int): if f0_step1[i + j] == 0: f0_step2[i] = 0 break return f0_step2 ########################################################################################################## # Step3: short-time voiced period (under voice_range_minimum) is replaced by 0 def fix_step3(f0_step2, f0_candidates, section_list, allowed_range): f0_step3 = np.empty_like(f0_step2) f0_step3[:] = f0_step2 for i in np.arange(section_list.shape[0]): if i == section_list.shape[0] - 1: limit = len(f0_step3) - 1 else: limit = section_list[i + 1, 0] + 1 for j in np.arange(section_list[i, 1], limit).astype(int): f0_step3[j + 1] = select_best_f0(f0_step3[j], f0_step3[j - 1], f0_candidates[:, j + 1], allowed_range) if f0_step3[j + 1] == 0: break return f0_step3 ########################################################################################################## def fix_step4(f0_step3, f0_candidates, section_list, allowed_range): f0_step4 = np.copy(f0_step3) for i in range(section_list.shape[0] - 1, -1 , -1): if i == 0: limit = 1 else: limit = section_list[i - 1, 1] for j in np.arange(section_list[i, 0], limit - 1, -1).astype(int): f0_step4[j - 1] = select_best_f0(f0_step4[j], f0_step4[j + 1], f0_candidates[:, j - 1], allowed_range) if f0_step4[j - 1] == 0: break return f0_step4 ########################################################################################################## def select_best_f0(current_f0, past_f0, candidates, allowed_range): from sys import float_info reference_f0 = (current_f0 * 3 - past_f0) / 2 minimum_error = abs(reference_f0 - candidates[0]) best_f0 = candidates[0] for i in range(1, len(candidates)): current_error = abs(reference_f0 - candidates[i]) if current_error < minimum_error: minimum_error = current_error best_f0 = candidates[i] if abs(1 - best_f0 / (reference_f0 + float_info.epsilon)) > allowed_range: best_f0 = 0 return best_f0 ########################################################################################################## def count_voiced_sections(f0): vuv = np.copy(f0) vuv[vuv != 0] = 1 diff_vuv = np.diff(vuv) boundary_list = np.append(np.append([0], np.where(diff_vuv != 0)[0]), [len(vuv) - 2])# take care of len(vuv) - 2 or len(vuv) - 1 first_section = np.ceil(-0.5 * diff_vuv[boundary_list[1]]) number_of_voiced_sections = np.floor((len(boundary_list) - (1 - first_section)) / 2).astype(int) voiced_section_list = np.zeros((number_of_voiced_sections, 2)) for i in range(number_of_voiced_sections): voiced_section_list[i, :] = np.array([1 + boundary_list[int((i - 1) * 2 + 1 + (1 - first_section)) + 1], boundary_list[int((i * 2) + (1 - first_section)) + 1]]) return voiced_section_list ############################################################################################################# def decimate_matlab(x, q, n=None, axis=-1): """ :param x: signal :param q: decimation ration :param n: order of filter :param axis: :return: resampled signal """ if not isinstance(q, int): raise TypeError("q must be an integer") if n is not None and not isinstance(n, int): raise TypeError("n must be an integer") system = signal.dlti(*signal.cheby1(n, 0.05, 0.8 / q)) zero_phase = True y = signal.filtfilt(system.num, system.den, x, axis=axis, padlen=3 * (max(len(system.den), len(system.num)) - 1)) # make it the same as matlab nd = len(y) n_out = np.ceil(nd / q) n_beg = int(q - (q * n_out - nd)) return y[n_beg - 1::q] ######################################## def FilterForDecimate(x,r): ''' Lowpass filter coefficients ''' a = np.zeros(3) b = np.zeros(2) if r==11: a[0] = 2.450743295230728 a[1] = -2.06794904601978 a[2] = 0.59574774438332101 b[0] = 0.0026822508007163792 b[1] = 0.0080467524021491377 elif r==12: a[0] = 2.4981398605924205 a[1] = -2.1368928194784025 a[2] = 0.62187513816221485 b[0] = 0.0021097275904709001 b[1] = 0.0063291827714127002 elif r==10: a[0] = 2.3936475118069387 a[1] = -1.9873904075111861 a[2] = 0.5658879979027055 b[0] = 0.0034818622251927556 b[1] = 0.010445586675578267 elif r==9: a[0] = 2.3236003491759578 a[1] = -1.8921545617463598 a[2] = 0.53148928133729068 b[0] = 0.0046331164041389372 b[1] = 0.013899349212416812 elif r==8: a[0] = 2.2357462340187593 a[1] = -1.7780899984041358 a[2] = 0.49152555365968692 b[0] = 0.0063522763407111993 b[1] = 0.019056829022133598 elif r==7: a[0] = 2.1225239019534703 a[1] = -1.6395144861046302 a[2] = 0.44469707800587366 b[0] = 0.0090366882681608418 b[1] = 0.027110064804482525 elif r==6: a[0] = 1.9715352749512141 a[1] = -1.4686795689225347 a[2] = 0.3893908434965701 b[0] = 0.013469181309343825 b[1] = 0.040407543928031475 elif r==5: a[0] = 1.7610939654280557 a[1] = -1.2554914843859768 a[2] = 0.3237186507788215 b[0] = 0.021334858522387423 b[1] = 0.06400457556716227 elif r==4: a[0] = 1.4499664446880227 a[1] = -0.98943497080950582 a[2] = 0.24578252340690215 b[0] = 0.036710750339322612 b[1] = 0.11013225101796784 elif r==3: a[0] = 0.95039378983237421 a[1] = -0.67429146741526791 a[2] = 0.15412211621346475 b[0] = 0.071221945171178636 b[1] = 0.21366583551353591 elif r==2: a[0] = 0.041156734567757189 a[1] = -0.42599112459189636 a[2] = 0.041037215479961225 b[0] = 0.16797464681802227 b[1] = 0.50392394045406674 else: a[0] = 0.0 a[1] = 0.0 a[2] = 0.0 b[0] = 0.0 b[1] = 0.0 # Filtering on time domain w = np.zeros(3) y_prime = np.zeros_like(x) for i in range(len(x)): wt = x[i] + a[0] * w[0] + a[1] * w[1] + a[2] * w[2] y_prime[i] = b[0] * wt + b[1] * w[0] + b[1] * w[1] + b[0] * w[2] w[2] = w[1] w[1] = w[0] w[0] = wt return y_prime ################### def decimate(x,r): kNFact = 9 x_length = len(x) y = [] tmp1 = np.zeros(x_length + kNFact * 2) tmp2 = np.zeros(x_length + kNFact * 2) for i in range(kNFact): tmp1[i] = 2 * x[0] - x[kNFact - i] for i in range(kNFact, kNFact + x_length): tmp1[i] = x[i - kNFact] for i in range(kNFact + x_length, 2 * kNFact + x_length): tmp1[i] = 2 * x[-1] - x[x_length - 2 - (i - (kNFact + x_length))] tmp2 = FilterForDecimate(tmp1, r) for i in range(2 * kNFact + x_length): tmp1[i] = tmp2[2 * kNFact + x_length - i - 1] tmp2 = FilterForDecimate(tmp1, r) for i in range(2 * kNFact + x_length): tmp1[i] = tmp2[2 * kNFact + x_length - i - 1] nout = np.ceil(x_length / r + 1) nbeg = int(r - r * nout + x_length) count = 0 for i in range(nbeg, x_length + kNFact, r): y.append(tmp1[i + kNFact - 1]) count += 1 return np.array(y)
[ "shun@example.com" ]
shun@example.com
2e57111a6646a9d8c29ab97a7c98307d19b2d161
b5b7f63d33aa445516d77302857550cf8d335427
/obstacle.py
92ece1d802adf909030c46240bade5acc3c13f0b
[]
no_license
swastik24/JetpackJoyride
92a714002bc7c4b1d5dcc87c0a840ba4be4e185b
c49085c64fd415582eaec36359c9f26a1da1cd8e
refs/heads/master
2022-04-12T07:09:26.761701
2020-01-21T20:00:37
2020-01-21T20:00:37
235,408,201
0
0
null
null
null
null
UTF-8
Python
false
false
11,726
py
from background import * from character import * from coin import * import random class obstacle: _shape=["|","-","/"] _powerup_structure=["2","x"] def removeobstacle(self): for i in range(board.y): for j in range(board.pointertomygame(),board.pointertomygame()+board.size): if board.matrix[i][j] in self._shape or self._powerup_structure: board.matrix[i][j]=" " class firebeam(obstacle): def __init__(self): self.__size=20 for i in range(int((board.lengthofmygame()-2*board.size)/self.__size)): x=board.size+i*self.__size length=random.randint(5,15) y=random.randint(board.roofhight+16,board.y-board.groundheight-1) t=random.randint(0,2) if t is 0: for j in range(length): board.matrix[y][x]=self._shape[t] y-=1 elif t is 1: for j in range(length): board.matrix[y][x]=self._shape[t] x+=1 else: for j in range(length): board.matrix[y][x]=self._shape[t] x+=1 y-=1 def get_shape(self): return self._shape def set_shape(self,shape): self._shape=shape shape=property(get_shape,set_shape) def get_powerup_structure(self): return self._powerup_structure def set_powerup_structure(self,powerup_structure): self._powerup_structure=powerup_structure powerup_structure=property(get_powerup_structure,set_powerup_structure) def get_size(self): return self.__size def set_size(self,size): self.__size=size size=property(get_size,set_size) def beamcollison(self): if din.shield is False: din.x+=board.pointertomygame() positions={board.matrix[din.y][din.x],board.matrix[din.y][din.x+1],board.matrix[din.y-1][din.x],board.matrix[din.y-1][din.x+1],board.matrix[din.y-2][din.x],board.matrix[din.y-2][din.x+1]} collison=False for z in positions: if z in self._shape: collison=True break if collison is True: self.removeobstacle() din.HP-=1 din.x-=board.pointertomygame() else: din.x+=board.pointertomygame() positions=[[din.y,din.x],[din.y,din.x+1],[din.y-1,din.x],[din.y-1,din.x+1],[din.y-2,din.x],[din.y-2,din.x+1]] for i in positions: if board.matrix[i[0]][i[1]] in self._shape: if board.matrix[i[0]][i[1]]=="|": j=i[0] while True: if board.matrix[j][i[1]]=="|": board.matrix[j][i[1]]=" " j-=1 else: break j=i[0]+1 while True: if board.matrix[j][i[1]]=="|": board.matrix[j][i[1]]=" " j+=1 else: break elif board.matrix[i[0]][i[1]]=="-": j=i[1] while True: if board.matrix[i[0]][j]=="-": board.matrix[i[0]][j]=" " j-=1 else: break j=i[1]+1 while True: if board.matrix[i[0]][j]=="-": board.matrix[i[0]][j]=" " j+=1 else: break else: x=i[1] y=i[0] while True: if board.matrix[y][x]=="/": board.matrix[y][x]=" " x+=1 y-=1 else: break x=i[1]-1 y=i[0]+1 while True: if board.matrix[y][x]=="/": board.matrix[y][x]=" " x-=1 y+=1 else: break din.x-=board.pointertomygame() def bulletcollison(self,bullet): positions=bullet.bulletarray for i in positions: if board.matrix[i[0]][i[1]] in self._shape: if board.matrix[i[0]][i[1]]=="|": j=i[0] while True: if board.matrix[j][i[1]]=="|": board.matrix[j][i[1]]=" " j-=1 else: break j=i[0]+1 while True: if board.matrix[j][i[1]]=="|": board.matrix[j][i[1]]=" " j+=1 else: break elif board.matrix[i[0]][i[1]]=="-": j=i[1] while True: if board.matrix[i[0]][j]=="-": board.matrix[i[0]][j]=" " j-=1 else: break j=i[1]+1 while True: if board.matrix[i[0]][j]=="-": board.matrix[i[0]][j]=" " j+=1 else: break elif board.matrix[i[0]][i[1]]=="/": x=i[1] y=i[0] while True: if board.matrix[y][x]=="/": board.matrix[y][x]=" " x+=1 y-=1 else: break x=i[1]-1 y=i[0]+1 while True: if board.matrix[y][x]=="/": board.matrix[y][x]=" " x-=1 y+=1 else: break def removeobstacle(self): for i in range(board.y): for j in range(board.pointertomygame(),board.pointertomygame()+board.size): if board.matrix[i][j] in self._shape: board.matrix[i][j]=" " class Magnet: __shape=[["*","*"],["*","*"]] def __init__(self): self.__x=105 #random.randint(board.size,board.lengthofmygame()-board.size-1-len(self.shape[0])) self.__y=random.randint(board.roofhight,board.y-board.groundheight-1-len(self.__shape)) board.matrix[self.__y:self.__y+len(self.__shape),self.__x:self.__x+len(self.__shape[0])]=self.__shape def get_shape(self): return self.__shape def set_shape(self,shape): self.__shape=shape shape=property(get_shape,set_shape) def get_x(self): return self.__x def set_x(self,x): self.__x=x x=property(get_x,set_x) def get_y(self): return self.__y def set_y(self,y): self.__y=y y=property(get_y,set_y) def draw(self): board.matrix[self.__y:self.__y+len(self.__shape),self.__x:self.__x+len(self.__shape[0])]=self.__shape def magneteffect(self): if self.__x>board.pointertomygame() and self.__x<board.pointertomygame()+board.size: din.reset() din.x+=board.pointertomygame() if din.x<self.__x: din.x-=board.pointertomygame() for i in range(2): din.move_right() coins.checkcollison() beam.beamcollison() speedup.powerup_collison() din.x+=board.pointertomygame() elif din.x>self.__x: din.x-=board.pointertomygame() for i in range(2): din.move_left() coins.checkcollison() beam.beamcollison() speedup.powerup_collison() din.x+=board.pointertomygame() din.x-=board.pointertomygame() if din.y<self.__y: din.y+=1 coins.checkcollison() beam.beamcollison() speedup.powerup_collison() if din.y>board.y-board.groundheight-1: din.y=board.y-board.groundheight-1 elif din.y>self.__y: din.y-=1 coins.checkcollison() beam.beamcollison() speedup.powerup_collison() if din.y<din.maxheight: din.y= din.maxheight din.jumpcount=0 din.reset() class powerup(obstacle): def __init__(self): self.__maxno=3 for i in range(self.__maxno): y=random.randint(board.roofhight,board.y-board.groundheight-1) x=random.randint(board.size,board.lengthofmygame()-2-2*board.size) board.matrix[y][x]=self._powerup_structure[0] board.matrix[y][x+1]=self._powerup_structure[1] def get_maxno(self): return self.__maxno def set_maxno(self,maxno): self.__maxno=maxno maxno=property(get_maxno,set_maxno) def get_powerup_structure(self): return self._powerup_structure def set_powerup_structure(self,powerup_structure): self._powerup_structure=powerup_structure powerup_structure=property(get_powerup_structure,set_powerup_structure) def powerup_collison(self): din.x+=board.pointertomygame() positions=[[din.y,din.x],[din.y,din.x+1],[din.y-1,din.x],[din.y-1,din.x+1],[din.y-2,din.x],[din.y-2,din.x+1]] for i in positions: if board.matrix[i[0]][i[1]] in self._powerup_structure: if board.matrix[i[0]][i[1]]=="2": # board.matrix[i[0]][i[1]]=" " # board.matrix[i[0]][i[1]+1]=" " self.removeobstacle(i[0],i[1]) else: # board.matrix[i[0]][i[1]]=" " # board.matrix[i[0]][i[1]-1]=" " self.removeobstacle(i[0],i[1]-1) board.gamefaster() din.x-=board.pointertomygame() def removeobstacle(self,y,x): board.matrix[y][x]=" " board.matrix[y][x+1]=" " magnet=Magnet() beam=firebeam() speedup=powerup()
[ "mswastik764@gmail.com" ]
mswastik764@gmail.com
8c2ed71f3f6628ddcb19c8e8a467e02d3839d336
34e64e8fc12f0768fe3b48677e6941c2577aec0d
/index.py
f703098fdd0195af0267e64c455c3a442a992cd8
[]
no_license
spettinichi/openlayers-test
2c0090b36319e918e1ce5cd7408da88d45c5a951
24cef36c1b1d6610ec7d3e17ebfd99341a18af82
refs/heads/master
2021-06-13T05:44:17.166748
2017-03-07T23:30:41
2017-03-07T23:30:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
import random import json from sys import stdout from time import sleep coords = { 'latitude' : 0, 'longitude' : 0 } while (1): coords['latitude'] = random.randint(-90,90) coords['longitude'] = random.randint(-180,180) json_string = json.dumps(coords) print(json_string) stdout.flush() sleep(1)
[ "root@vps80361.vps.ovh.ca" ]
root@vps80361.vps.ovh.ca
be4635db09dd2d056c1526e212b767694daff46f
f7fc260a5c894d80b4c3d4e22d1ffe5f504ed480
/groups/migrations/0002_initial.py
f22f02b73b74e834b240c16d47bf6fcbaedc2760
[]
no_license
CodifyLaboratory/bishmeet_backend
dc689daec21a98de8239337895cecbd437660650
c3033b02b7f1d128e1b822986f2bfa594bf0836a
refs/heads/main
2023-07-08T19:07:36.538465
2021-08-21T07:39:14
2021-08-21T07:39:14
398,242,617
0
0
null
null
null
null
UTF-8
Python
false
false
863
py
# Generated by Django 3.2.6 on 2021-08-20 10:05 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('groups', '0001_initial'), ] operations = [ migrations.AddField( model_name='rating', name='user', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='user_ratings', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='group', name='category', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='group', to='groups.category'), ), ]
[ "desm606@gmail.com" ]
desm606@gmail.com
6f181ca8fbe6e15c253a3aa487f9fe774d3f0a0a
49c2daf810d71e05ed5433f9e1171e1cc1f9d52e
/dowser/__init__.py
4b935f0658446276f40d0dc2369c48c47e1dd0ab
[ "MIT" ]
permissive
appknox/dowser-py3
4cb6bec94cc23e34f037b3006cd52f286f5d3c18
d570fcac5c228d629ace7affdd14401e0d657769
refs/heads/develop
2021-07-21T14:13:48.182610
2015-11-24T09:48:25
2015-11-24T09:48:25
46,715,372
6
8
NOASSERTION
2021-01-28T12:59:50
2015-11-23T11:16:36
Python
UTF-8
Python
false
false
53
py
from dowser.dowser import Root, ReferrerTree # NOQA
[ "dhilipsiva@gmail.com" ]
dhilipsiva@gmail.com
e2a19d39fceb295a71113b961358b852d6fb51ec
b03f6ffa2077780bdf5b7a0090d0a57d443c02ba
/웹스크레이핑_실습.py
12360b857a4860ca9bc24df0fedb2b861482ad05
[]
no_license
SUDON-NOH/Python_data
69f02df13ee6f7521405c203f2f5561aadaa1755
6e2bfb10ce0199fe17d6fa6b24068479441e91cc
refs/heads/master
2021-07-16T21:27:57.521899
2020-08-06T07:17:19
2020-08-06T07:17:19
198,587,775
2
1
null
null
null
null
UTF-8
Python
false
false
2,728
py
# 웹스크레이핑실습문제.py from bs4 import BeautifulSoup import pandas as pd import numpy as np import urllib.request as REQ import urllib # import json # import folium # 1.1 print('1.1', '-' * 50) baseurl = 'http://www.menupan.com' murl = '/restaurant/bestrest/bestrest.asp?pt=rt&areacode=dj201' response = REQ.urlopen(baseurl + murl) soup = BeautifulSoup(response, 'html.parser') listData = [] href = [] ulList = soup.select_one('.rankingList .list') for li in ulList.select('li'): rank = li.select_one('.numTop,.rankNum').string href.append(li.select_one('.listName a')['href']) listName = li.select_one('.listName').string listType = li.select_one('.listType').string listArea = li.select_one('.listArea').string listData.append({'랭킹': rank, "상호명": listName, "업종": listType, "지역": listArea}) df = pd.DataFrame(listData) print(df) # 1.2 print('1.2', '-' * 50) tel = [] addr = [] for h in href: response = REQ.urlopen(baseurl + h) sMenu = BeautifulSoup(response, 'html.parser') stel = sMenu.select_one('.tel1').string saddr = sMenu.select_one('.add1').string tel.append(stel) addr.append(saddr) # print(stel, saddr) df['전화번호'] = tel df['주소'] = addr print(df) # 1.3 print('1.3', '-' * 50) df.set_index('랭킹', inplace=True) # inplace : bool, default False # Modify the DataFrame in place (do not create a new object). print(df) df.to_excel("menu.xlsx") # 1.4 print('1.4', '-' * 50) m = df[df['업종'].str.contains('한식')] print(m) # 1.5 print('1.5', '-' * 50) area = df[df['지역'].str.contains('대흥')] print(area) # 1.6 print('1.6', '-' * 50) import googlemaps gmaps_key = "AIzaSyCcw89SLkOaJ5r8xoL3aFkUx0kpu7baLRg" # 자신의 key를 사용합니다. gmaps = googlemaps.Client(key=gmaps_key) def get_lat_lng(addr): area = gmaps.geocode(addr, language='ko') latlng = area[0].get("geometry") lat = latlng['location']['lat'] lng = latlng['location']['lng'] # print(lat,lng) return lat, lng import folium lat, lng = get_lat_lng(df['주소'].values[0]) map = folium.Map(location=[lat, lng], zoom_start=12) for addr in range(len(df['주소'].values)): lat, lng = get_lat_lng(df['주소'].values[addr]) # print(lat,lng) # print(df['주소'].values[addr]) # print(df['상호명'].values[addr]) m = folium.Marker([lat, lng], popup=str(addr) + df['상호명'].values[addr], icon=folium.Icon(icon='cloud')).add_to(map) m.add_to(map) map.save('Daejoen_맛집.html')
[ "noreply@github.com" ]
SUDON-NOH.noreply@github.com
9711b1491693de81959da0049fe79087eb1ddf0a
35645f8111faa8b4d87c1572a125aac36d24499d
/linshan_luoty/merge_zip_crime_earnings.py
4be0682e47aef94aec66168e553c9cf86e8d88c4
[]
no_license
nlouie/course-2016-spr-proj-two
af8d268eba417fe15981de0a015be1fe06210b16
098d9cfb75bc9d783cf768eb733abbf55901e334
refs/heads/master
2020-12-26T01:12:06.236993
2016-05-16T00:42:52
2016-05-16T00:42:52
55,449,019
0
0
null
2016-04-04T22:10:08
2016-04-04T22:10:07
null
UTF-8
Python
false
false
4,411
py
import json import datetime import pymongo import prov.model import provenance import uuid # Until a library is created, we just use the script directly. exec(open('../pymongo_dm.py').read()) exec(open('get_repo.py').read()) zip_location_crimes_db = repo[auth['admin']['name']+'.'+'zip_location_crimes'] zip_avg_earnings_db = repo[auth['admin']['name']+'.'+'zip_avg_earnings'] startTime = datetime.datetime.now() zip_location_crimes = zip_location_crimes_db.find({},{ '_id': False, 'zip': True, 'crimes': True, 'longitude': True, 'latitude': True, 'region': True, }) zip_location_crimes_earnings = [] for document in zip_location_crimes: avg_earning = zip_avg_earnings_db.find_one({'zip': document['zip']}, {'_id': False, 'avg_earning': True}) if avg_earning is None: document['avg_earning'] = 0 else: document['avg_earning'] = avg_earning['avg_earning'] zip_location_crimes_earnings.append(document) # export zip_location_crimes_earnings to JSON f = open('zip_location_crimes_earnings.json','w') f.write(json.dumps(zip_location_crimes_earnings, indent=4)) f.close() # save it to a permanent folder repo.dropPermanent("zip_location_crimes_earnings") repo.createPermanent("zip_location_crimes_earnings") repo[auth['admin']['name']+'.'+'zip_location_crimes_earnings'].insert_many(zip_location_crimes_earnings) zip_location_crimes_earnings_sorted = repo[auth['admin']['name']+'.'+'zip_location_crimes_earnings'].find({},{ '_id': False, 'zip': True, 'crimes': True, 'longitude': True, 'latitude': True, 'region': True, 'avg_earning': True, }).sort([('avg_earning', pymongo.ASCENDING)]) f = open('zip_location_crimes_earnings_sorted.json','w') f.write(json.dumps(list(zip_location_crimes_earnings_sorted), indent=4)) f.close() endTime = datetime.datetime.now() startTime = None endTime = None # Create the provenance document describing everything happening # in this script. Each run of the script will generate a new # document describing that invocation event. This information # can then be used on subsequent runs to determine dependencies # and "replay" everything. The old documents will also act as a # log. doc = provenance.init() doc.add_namespace('alg', 'https://data-mechanics.s3.amazonaws.com/linshan_luoty/algorithm/') # The scripts in <folder>/<filename> format. doc.add_namespace('dat', 'https://data-mechanics.s3.amazonaws.com/linshan_luoty/data/') # The data sets in <user>/<collection> format. doc.add_namespace('ont', 'https://data-mechanics.s3.amazonaws.com/ontology#') # 'Extension', 'DataResource', 'DataSet', 'Retrieval', 'Query', or 'Computation'. doc.add_namespace('log', 'https://data-mechanics.s3.amazonaws.com/log#') # The event log. doc.add_namespace('bdp', 'https://data.cityofboston.gov/resource/') this_script = doc.agent('alg:merge_zip_crime_earnings', {prov.model.PROV_TYPE:prov.model.PROV['SoftwareAgent'], 'ont:Extension':'py'}) zip_location_crimes = doc.entity('dat:zip_location_crimes', {prov.model.PROV_LABEL:'Zip Location Crimes', prov.model.PROV_TYPE:'ont:DataSet'}) zip_avg_earning = doc.entity('dat:zip_avg_earnings', {prov.model.PROV_LABEL:'Zips Average Earnings', prov.model.PROV_TYPE:'ont:DataSet'}) merge_zip_crime_earnings = doc.activity('log:a'+str(uuid.uuid4()), startTime, endTime, {prov.model.PROV_LABEL: "Merge zips, crimes, locations, and earnings."}) doc.wasAssociatedWith(merge_zip_crime_earnings, this_script) doc.usage(merge_zip_crime_earnings, zip_location_crimes, startTime, None, {prov.model.PROV_TYPE:'ont:Computation' } ) doc.usage(merge_zip_crime_earnings, zip_avg_earning, startTime, None, {prov.model.PROV_TYPE:'ont:Computation' } ) zip_location_crimes_earnings = doc.entity('dat:zip_location_crimes_earnings', {prov.model.PROV_LABEL:'Zips with Crime and Earnings', prov.model.PROV_TYPE:'ont:DataSet'}) doc.wasAttributedTo(zip_location_crimes_earnings, this_script) doc.wasGeneratedBy(zip_location_crimes_earnings, merge_zip_crime_earnings, endTime) doc.wasDerivedFrom(zip_location_crimes_earnings, zip_location_crimes, merge_zip_crime_earnings, merge_zip_crime_earnings, merge_zip_crime_earnings) doc.wasDerivedFrom(zip_location_crimes_earnings, zip_avg_earning, merge_zip_crime_earnings, merge_zip_crime_earnings, merge_zip_crime_earnings) repo.record(doc.serialize()) # Record the provenance document. provenance.update(doc) print(doc.get_provn()) repo.logout()
[ "programmer.lty@gmail.com" ]
programmer.lty@gmail.com
fd237d95c58094e30fc70370ad5e53d529408be5
57fc5d54f5df359c7a53020fb903f36479d3a322
/controllers/.history/supervisor/supervisor_20201127165503.py
870391013e28d07767d47598a75b41d93fd5df4f
[]
no_license
shenwuyue-xie/webots_testrobots
929369b127258d85e66c5275c9366ce1a0eb17c7
56e476356f3cf666edad6449e2da874bb4fb4da3
refs/heads/master
2023-02-02T11:17:36.017289
2020-12-20T08:22:59
2020-12-20T08:22:59
323,032,362
0
0
null
null
null
null
UTF-8
Python
false
false
24,392
py
import math import numpy as np from numpy import random from numpy.core.fromnumeric import size from numpy.lib.function_base import meshgrid import utilities as utils from deepbots.supervisor.controllers.supervisor_emitter_receiver import \ SupervisorCSV # # from deepbots.supervisor.wrappers.tensorboard_wrapper import TensorboardLogger from tensorboardX import SummaryWriter from models.networks import TD3 from controller import Keyboard import os Max_robotnum = 6 OBSERVATION_SPACE = (Max_robotnum-1) * 4 + 7 + 9 * Max_robotnum ACTION_SPACE = Max_robotnum * 2 + 3 MAX_DSNUM = (Max_robotnum-1) * 4 + 7 DIST_SENSORS_MM = {'min': 0, 'max': 1000} XPOSITION = {'min':-2, 'max':2} YPOSITION = {'min':-1.5 , 'max':1.5} ZPOSITION = {'min': -1, 'max' : 8} MAX_DISTANCE = {'min':0, 'max':10} MAX_ANGLE = {'min':-math.pi, 'max':math.pi} # import ptvsd # print("waiting for debugger attach") # ptvsd.enable_attach(address=("127.0.0.1",7788)) # ptvsd.wait_for_attach() class TaskDecisionSupervisor(SupervisorCSV): def __init__(self,robot,observation_space,log_dir,v_action,v_observation,v_reward,windows=[10,100,200]): super(TaskDecisionSupervisor,self).__init__() self.timestep = int(self.supervisor.getBasicTimeStep()) self.keyboard = Keyboard() self.keyboard.enable(self.timestep) self.emitter = self.supervisor.getEmitter('emitter') self.receiver = self.supervisor.getReceiver('receiver') self.robot_list = robot self.robot_handles = [] self.observation = [0 for i in range(observation_space)] self.findThreshold = 0.2 self.steps = 0 self.steps_threshold = 6000 self.endbattery = [50000 for i in range(Max_robotnum)] self.final_distance = [50 for i in range(Max_robotnum)] self.final_target = self.supervisor.getFromDef('final_target') self.should_done = False self.startbattery = 50000 self.setuprobots() self.step_cntr = 0 self.step_global = 0 self.step_reset = 0 self.score = 0 self.score_history = [] self.v_action = v_action self.v_observation = v_observation self.v_reward = v_reward self.windows = windows self.file_writer = SummaryWriter(log_dir, flush_secs=30) def setuprobots(self): for defname in self.robot_list: self.robot_handles.append(self.supervisor.getFromDef(defname)) def handle_receiver(self): message = [] for i in range(self.robot_num): if self.receiver.getQueueLength() > 0: string_message = self.receiver.getData().decode("utf-8") string_message = string_message.split(",") for ms in string_message: message.append(ms) self.receiver.nextPacket() return message def get_observations(self): self.ds_values = [] self.final_distance = [50 for i in range(Max_robotnum)] self.message = [1000 for i in range(MAX_DSNUM)] self.angles = [] observation = [] message = self.handle_receiver() self.angles = [0 for i in range(Max_robotnum)] if len(message) != 0: for i in range(len(message)): self.message[i] = float(message[i]) self.ds_values.append(float(message[i])) for j in range(MAX_DSNUM): observation.append(utils.normalize_to_range(float(self.message[j]),DIST_SENSORS_MM['min'],DIST_SENSORS_MM['max'], 0, 1)) for k in range(0,self.robot_num): robot_position = [] robot_position = self.robot_handles[k].getPosition() robot_rotation = [] robot_rotation = self.robot_handles[k].getOrientation() observation.append(utils.normalize_to_range(float(robot_position[0]),XPOSITION['min'],XPOSITION['max'],0,1)) observation.append(utils.normalize_to_range(float(robot_position[1]),YPOSITION['min'],YPOSITION['max'],0,1)) observation.append(utils.normalize_to_range(float(robot_position[2]),ZPOSITION['min'],ZPOSITION['max'],0,1)) observation.append(utils.normalize_to_range(float(robot_rotation[0]),-1,1,0,1)) observation.append(utils.normalize_to_range(float(robot_rotation[1]),-1,1,0,1)) observation.append(utils.normalize_to_range(float(robot_rotation[2]),-1,1,0,1)) observation.append(utils.normalize_to_range(float(robot_rotation[3]),-math.pi,math.pi,0,1)) self.final_distance[k] = utils.get_distance_from_target(self.robot_handles[k],self.final_target) observation.append(utils.normalize_to_range(float(self.final_distance[k]),MAX_DISTANCE['min'],MAX_DISTANCE['max'],0,1)) self.angles[k] = utils.get_angle_from_target(self.robot_handles[k],self.final_target) observation.append(utils.normalize_to_range(float(self.angles[k]),MAX_ANGLE['min'],MAX_ANGLE['max'],0,1)) for m in range(self.robot_num,Max_robotnum): for n in range(9): observation.append(0.5) else : observation = [0 for i in range(OBSERVATION_SPACE)] self.observation = observation return self.observation # robot_children = self.robot_handles[k].getField('children') # frontjoint_node = robot_children.getMFNode(3) # frontjoint = frontjoint_node.getField('jointParameters') # frontjoint = frontjoint.getSFNode() # para = frontjoint.getField('position') # front_hingeposition = para.getSFFloat() # observation.append(utils.normalize_to_range(float(front_hingeposition),-math.pi/2,math.pi/2,0,1)) # front_ep = frontjoint_node.getField('endPoint') # front_ep = front_ep.getSFNode() # frontrotation_field = front_ep.getField('rotation') # front_rotation = frontrotation_field.getSFRotation() # for f in range(3): # observation.append(utils.normalize_to_range(float(front_rotation[f]),-1,1,0,1)) # observation.append(utils.normalize_to_range(float(front_rotation[3]),-math.pi/2,math.pi/2,0,1)) # robot_children = self.robot_handles[k].getField('children') # rearjoint_node = robot_children.getMFNode(4) # rearjoint = rearjoint_node.getField('jointParameters') # rearjoint = rearjoint.getSFNode() # para = rearjoint.getField('position') # rear_hingeposition = para.getSFFloat() # observation.append(utils.normalize_to_range(float(rear_hingeposition),-math.pi/2,math.pi/2,0,1)) # rear_ep = rearjoint_node.getField('endPoint') # rear_ep = rear_ep.getSFNode() # rearrotation_field = rear_ep.getField('rotation') # rear_rotation = rearrotation_field.getSFRotation() # for r in range(3): # observation.append(utils.normalize_to_range(float(rear_rotation[r]),-1,1,0,1)) # observation.append(utils.normalize_to_range(float(rear_rotation[3]),-math.pi/2,math.pi/2,0,1)) # final_position = [] # final_position = self.final_target.getPosition() # observation.append(utils.normalize_to_range(float(final_position[0]),XPOSITION['min'],XPOSITION['max'],0,1)) # observation.append(utils.normalize_to_range(float(final_position[1]),YPOSITION['min'],YPOSITION['max'],0,1)) # observation.append(utils.normalize_to_range(float(final_position[2]),ZPOSITION['min'],ZPOSITION['max'],0,1)) # final_distance = [] # for d in range(self.robot_num): # final_distance.append(utils.get_distance_from_target(self.robot_handles[d],self.final_target)) # self.final_distance[d] = final_distance[d] def get_default_observation(self): self.observation = [0 for i in range(OBSERVATION_SPACE)] return self.observation def empty_queue(self): self.observation = [0 for i in range(OBSERVATION_SPACE)] # self.shockcount = 0 self.overrangecount = 0 # self.flagadd = False # self.flagreduce = False self.dscount = 0 while self.supervisor.step(self.timestep) != -1: if self.receiver.getQueueLength() > 0: self.receiver.nextPacket() else: break def get_reward(self,action): if (self.observation == [0 for i in range(OBSERVATION_SPACE)] or len(self.observation) == 0 ) : return 0 reward = 0 translations = [] for i in range(len(self.robot_handles)): translation = self.robot_handles[i].getField('translation').getSFVec3f() translations.append(translation) if self.steps >= self.steps_threshold: return -20 if np.min(self.ds_values) <= 50: reward = reward -2 self.dscount = self.dscount + 1 if self.dscount > 60: reward = reward -20 self.should_done = True if self.dscount > 30: reward = reward - 5 if np.min(self.ds_values) <= 150: reward = reward -1 for j in range(len(self.robot_handles)): if translations[j][2] <= ZPOSITION['min'] or translations[j][2] >= ZPOSITION['max']: reward = reward - 2 self.overrangecount = self.overrangecount + 1 if translations[j][0] <= XPOSITION['min'] or translations[j][0] >= ZPOSITION['max']: reward = reward - 2 self.overrangecount = self.overrangecount + 1 if self.overrangecount >40: reward = reward -20 self.should_done = True if min(self.final_distance) < self.findThreshold: reward = reward + 100 for m in range(Max_robotnum): consumption = self.startbattery - self.endbattery[m] reward = reward - float(consumption/self.startbattery) * 6 return reward else : reward = reward - float(min(self.final_distance)) return reward # """惩罚不停+-+-的行为 """ # if action[-1] > 0.9 : # if self.flagreduce == True: # self.shockcount = self.shockcount + 1 # self.flagadd = True # self.flagreduce = False # if action[-1] < 0.1: # if self.flagadd == True: # self.shockcount = self.shockcount + 1 # self.flagadd = False # self.flagreduce =True # if action[-1] >=0.1 and action[-1] <=0.9: # self.shockcount = self.shockcount - 1 # self.flagadd = False # self.flagreduce = False # if self.shockcount >= 8: # reward = reward - 4 # if self.shockcount >= 12: # reward = reward - 8 # self.should_done = True # """如果ban的动作值有十个值出现在动作区域,不稳定给负的reward,训练到100代左右时,模块几乎不再动自己的前后motor""" # count = 0 # for k in range(12,24): # action[k] = utils.normalize_to_range(float(action[k]),-0.2,1.2,0,1) # if action[k] > 0.95 or action[k] < 0.05: # count = count + 1 # if count > 9 : # reward = reward - 2 """something worse need to be modified""" """加机器人时还需要考虑rearmotor的位置,测试后发现是hingejoint的jointParameters域的position参数,需要找到这个参数""" """可以只改变相对应的hingejoint参数使两者结合,也可以改变模块位置和角度,但是改变模块位置和角度比较复杂""" # position = abs(get...) # 改变hingejoint,只需要改变front hingejoint的position参数 # 改变模块位置和角度 # deltax和deltaz可以根据position来计算,主要是rotation要更改,绕x轴旋转(1,0,0,rad) # 但是之前寻找模块的位置时已经修改过自己的rotation,所以不好更改,并且更改了rotation,translation也要更改,用这套体姿表征体系更改起来特别复杂 # 另外,因为是往后加模块,所以除非尾巴上翘,否则都不能这样加(陷到地底下了) # 况且,即便尾巴上翘,可以直接加到后ban上,可能也会因为重力原因把整个构型掀翻 # 综上所述,无论是可行性,还是稳定性原因,都建议只修改front_hingejoint的position值 def robot_step(self,action): # x = np.random.rand() # e = 0.8 + ep * 0.2/10000 # if x > e : # action[-1] = np.random.rand() if action[-1] > 0 and action[-1] <= 0.05 and self.robot_num < Max_robotnum: last_translation = self.robot_handles[-1].getField('translation').getSFVec3f() last_angle = self.robot_handles[-1].getField('rotation').getSFRotation()[3] last_rotation = self.robot_handles[-1].getField('rotation').getSFRotation() delta_z = 0.23 * math.cos(last_angle) delta_x = 0.23 * math.sin(last_angle) new_translation = [] new_translation.append(last_translation[0] - delta_x) new_translation.append(last_translation[1]) new_translation.append(last_translation[2] - delta_z) robot_children = self.robot_handles[-1].getField('children') rearjoint_node = robot_children.getMFNode(4) joint = rearjoint_node.getField('jointParameters') joint = joint.getSFNode() para = joint.getField('position') hingeposition = para.getSFFloat() if hingeposition > 0.8 or hingeposition < -0.8: delta = 0.03 - 0.03 * math.cos(hingeposition) delta_z = delta * math.cos(last_angle) delta_x = delta * math.sin(last_angle) new_translation[0] = new_translation[0] + delta_x new_translation[2] = new_translation[2] + delta_z new_rotation = [] for i in range(4): new_rotation.append(last_rotation[i]) flag_translation = False flag_rotation = False flag_battery = False battery_remain = float(self.endbattery[self.robot_num]) importname = "robot_" + str(self.robot_num) + '.wbo' new_file =[] with open(importname,'r') as f: lines = f.readlines() for line in lines: if "translation" in line: if flag_translation == False: replace = "translation " + str(new_translation[0]) + " " + str(new_translation[1]) + " " + str(new_translation[2]) line = "\t" + replace +'\n' flag_translation = True if "rotation" in line: if flag_rotation == False: replace = "rotation " + str() + " " + str(0) + " " + str(0) + " " \ +str(0) line = "\t" + replace +'\n' flag_rotation = True if "50000" in line : line = "\t" + "\t" + str(battery_remain) + "," + " " + '\n' new_file.append(line) rootNode = self.supervisor.getRoot() childrenField = rootNode.getField('children') importname = "robot_" + str(self.robot_num) + '.wbo' childrenField.importMFNode(-1,importname) defname = 'robot_' + str(self.robot_num) self.robot_handles.append(self.supervisor.getFromDef(defname)) self.robot_num = self.robot_num + 1 # new_translation_field = self.robot_handles[-1].getField('translation') # new_translation_field.setSFVec3f(new_translation) # new_rotation_field = self.robot_handles[-1].getField('rotation') # new_rotation_field.setSFRotation(new_rotation) # robot_children = self.robot_handles[-1].getField('children') # frontjoint_node = robot_children.getMFNode(3) # joint = frontjoint_node.getField('jointParameters') # joint = joint.getSFNode() # para = joint.getField('position') # para.setSFFloat(-hingeposition) battery_remain = float(self.endbattery[self.robot_num - 1]) battery_field = self.robot_handles[-1].getField('battery') battery_field.setMFFloat(0,battery_remain) battery_field.setMFFloat(1,self.startbattery) elif action[-1] >= 0.95 and action[-1] < 1 and self.robot_num >1: battery_field = self.robot_handles[-1].getField('battery') battery_remain = battery_field.getMFFloat(0) self.endbattery[self.robot_num - 1] = battery_remain removerobot = self.robot_handles[-1] removerobot.remove() self.robot_num = self.robot_num - 1 del(self.robot_handles[-1]) def step(self,action): if self.supervisor.step(self.timestep) == -1: exit() self.handle_emitter(action) key = self.keyboard.getKey() observation = self.get_observations() reward = self.get_reward(action) isdone = self.is_done() info = self.get_info() if key == Keyboard.CONTROL + ord("A"): print() print("Actions: ", action) if key == ord("R"): print() print("Rewards: ", reward) if key == Keyboard.CONTROL + ord("Y"): print() print("Observations: ", observation) if key == Keyboard.CONTROL + ord("M"): print() print("message", self.message) if (self.v_action > 1): self.file_writer.add_histogram( "Actions/Per Global Step", action, global_step=self.step_global) if (self.v_observation > 1): self.file_writer.add_histogram( "Observations/Per Global Step", observation, global_step=self.step_global) if (self.v_reward > 1): self.file_writer.add_scalar("Rewards/Per Global Step", reward, self.step_global) if (isdone): self.file_writer.add_scalar( "Is Done/Per Reset step", self.step_cntr, global_step=self.step_reset) self.file_writer.flush() self.score += reward self.step_cntr += 1 self.step_global += 1 return observation,reward,isdone,info def is_done(self): self.steps = self.steps + 1 self.file_writer.flush() if min(self.final_distance) <= self.findThreshold: print("======== + Solved + ========") return True if self.steps >= self.steps_threshold or self.should_done: return True # rotation_field = self.robot_handles[0].getField('rotation').getSFRotation() # """需要计算出模块完全侧边倒的rotation是多少,遇到这种情况直接进行下一次迭代""" # # if rotation_field[0] < -0.4 and rotation_field[1] > 0.4 and rotation_field[2] > 0.4 and rotation_field[3] < -1.5708: # # return True return False def reset(self): print("Reset simulation") self.respawnRobot() self.steps = 0 self.should_done = False self.robot_num = 2 """observation 源代码wrapper有问题""" self.score_history.append(self.score) if (self.v_reward > 0): self.file_writer.add_scalar( "Score/Per Reset", self.score, global_step=self.step_reset) for window in self.windows: if self.step_reset > window: self.file_writer.add_scalar( "Score/With Window {}".format(window), np.average(self.score_history[-window:]), global_step=self.step_reset - window) self.file_writer.flush() self.step_reset += 1 self.step_cntr = 0 self.score = 0 return self.get_default_observation() def flush(self): if self._file_writer is not None: self._file_writer.flush() def close(self): if self._file_writer is not None: self._file_writer.close() def get_info(self): pass def respawnRobot(self): for robot in self.robot_handles: if robot is not None: robot.remove() rootNode = self.supervisor.getRoot() childrenField = rootNode.getField('children') childrenField.importMFNode(-1,"robot_0.wbo") childrenField.importMFNode(-1,"robot_1.wbo") # childrenField.importMFNode(-1,"robot_2.wbo") # childrenField.importMFNode(-1,"robot_3.wbo") # childrenField.importMFNode(-1,"robot_4.wbo") # childrenField.importMFNode(-1,"robot_5.wbo") self.robot_handles = [] for defrobotname in self.robot_list: self.robot_handles.append(self.supervisor.getFromDef(defrobotname)) self.final_target = self.supervisor.getFromDef('final_target') self.supervisor.simulationResetPhysics() self._last_message = None print(os.getcwd()) # robot_defnames = ['robot_0','robot_1'] # supervisor_env = TaskDecisionSupervisor(robot_defnames, observation_space=OBSERVATION_SPACE,log_dir="logs/results/ddpg", v_action=1,v_observation=1,v_reward=1,windows=[10,\ # 10000, 2000]) # agent = TD3(lr_actor=0.00025, # lr_critic=0.0025, # input_dims= OBSERVATION_SPACE, # gamma=0.99, # tau=0.001, # env=supervisor_env, # batch_size=512, # layer1_size=400, # layer2_size=300, # layer3_size=200, # layer4_size=400, # layer5_size=300, # layer6_size=200, # n_actions=ACTION_SPACE, # load_models=True, # save_dir='./models/saved/ddpg/') # score_history = [] # np.random.seed(0) # for i in range(1, 20000): # done = False # score = 0 # obs = list(map(float, supervisor_env.reset())) # supervisor_env.empty_queue() # first_iter = True # if i % 10000 == 0: # print("================= TESTING =================") # while not done: # act = agent.choose_action_test(obs).tolist() # supervisor_env.robot_step(act) # new_state, _, done, _ = supervisor_env.step(act) # obs = list(map(float, new_state)) # else: # print("================= TRAINING =================") # while not done: # if (not first_iter): # act = agent.choose_action_train(obs).tolist() # else: # first_iter = False # act = [0,0] # for k in range(0,13): # act.append(0.5) # supervisor_env.robot_step(act) # new_state, reward, done, info = supervisor_env.step(act) # agent.remember(obs, act, reward, new_state, int(done)) # agent.learn() # score += reward # obs = list(map(float, new_state)) # score_history.append(score) # print("===== Episode", i, "score %.2f" % score, # "100 game average %.2f" % np.mean(score_history[-100:])) # if i % 100 == 0: # agent.save_models()
[ "1092673859@qq.com" ]
1092673859@qq.com
6b453f03561951c446a8b40db6f1d6e5df813429
0a9d1aca6ceb6982e05440e29d8dbd6c3015b858
/zogglio/main3.py
babcedd227c84f57828b9b72ef8e914684624430
[ "MIT" ]
permissive
zogglio/Pil_RotateImages
2062b5976b8d3d3f0d681b5c6d9a78c36fddd163
04c8d2fec8628d79cdd6abebe8288d3500d3efb8
refs/heads/main
2023-01-28T03:19:54.143215
2020-12-11T23:00:50
2020-12-11T23:00:50
320,702,249
1
0
MIT
2020-12-11T22:57:11
2020-12-11T22:57:11
null
UTF-8
Python
false
false
343
py
from PIL import Image # Abrir a imagem existente imageOriginal = Image.open('panda.jpg') # fazer a rotação.FLIP_LEFT_RIGHT imageEspelhada = imageOriginal.transpose(Image.FLIP_LEFT_RIFHT) # Mostrar a imagem original imageOriginal.show # mostrar a imagem rotacionada imageEsoelhada.show() # Salvar a imagem img.save('pandaespelhada.jpg')
[ "noreply@github.com" ]
zogglio.noreply@github.com
5437a37ac12a9facdf23c097ec5be008cfcce7b9
62f893ecff745802f53835520e871e671c4eb111
/plugins/operators/stage_redshift.py
6e766e48b70c4353d87ffd4447e88fef864a30df
[]
no_license
friendkak/etl_pipeline_with_airflow
a40dd7fbcc067a26ab03d73433775a9bac31c901
1fc8e7f402d31871dbf055461948a0977e92345e
refs/heads/master
2022-05-07T21:39:27.000176
2019-12-10T16:20:15
2019-12-10T16:20:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,480
py
from airflow.hooks.postgres_hook import PostgresHook from airflow.contrib.hooks.aws_hook import AwsHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults class StageToRedshiftOperator(BaseOperator): ui_color = '#358140' copy_sql_date = """ COPY {} FROM '{}/{}/{}/' ACCESS_KEY_ID '{}' SECRET_ACCESS_KEY '{}' REGION '{}' {} 'auto'; """ copy_sql = """ COPY {} FROM '{}' ACCESS_KEY_ID '{}' SECRET_ACCESS_KEY '{}' REGION '{}' {} 'auto'; """ @apply_defaults def __init__(self, redshift_conn_id = "", aws_conn_id="", table = "", s3_path = "", region= "us-west-2", data_format = "", *args, **kwargs): super(StageToRedshiftOperator, self).__init__(*args, **kwargs) self.redshift_conn_id = redshift_conn_id self.aws_conn_id = aws_conn_id self.table = table self.s3_path = s3_path self.region = region self.data_format = data_format self.execution_date = kwargs.get('execution_date') def execute(self, context): aws_hook = AwsHook(self.aws_conn_id) credentials = aws_hook.get_credentials() postgres_hook = PostgresHook(postgres_conn_id=self.redshift_conn_id) self.log.info("Deleting data from Redshift table") postgres_hook.run(f"DELETE FROM {self.table}") self.log.info("Copying data from S3 to Redshift") # Backfill a specific date if self.execution_date: sql_statement = StageToRedshiftOperator.copy_sql_time.format( self.table, self.s3_path, self.execution_date.strftime("%Y"), self.execution_date.strftime("%d"), credentials.access_key, credentials.secret_key, self.region, self.data_format, self.execution_date ) else: sql_statement = StageToRedshiftOperator.copy_sql.format( self.table, self.s3_path, credentials.access_key, credentials.secret_key, self.region, self.data_format, self.execution_date ) postgres_hook.run(sql_statement)
[ "aabid0193@gmail.com" ]
aabid0193@gmail.com
3f826143961dc6846f3be08a916d426280fe3b9f
ac216a2cc36f91625e440247986ead2cd8cce350
/appengine/monorail/search/test/backendsearch_test.py
dd5ed18ba10efc6e7ee3e923957dd55faaa32484
[ "BSD-3-Clause" ]
permissive
xinghun61/infra
b77cdc566d9a63c5d97f9e30e8d589982b1678ab
b5d4783f99461438ca9e6a477535617fadab6ba3
refs/heads/master
2023-01-12T21:36:49.360274
2019-10-01T18:09:22
2019-10-01T18:09:22
212,168,656
2
1
BSD-3-Clause
2023-01-07T10:18:03
2019-10-01T18:22:44
Python
UTF-8
Python
false
false
4,815
py
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """Unittests for monorail.search.backendsearch.""" from __future__ import print_function from __future__ import division from __future__ import absolute_import import unittest import mox import settings from search import backendsearch from search import backendsearchpipeline from services import service_manager from testing import fake from testing import testing_helpers class BackendSearchTest(unittest.TestCase): def setUp(self): self.services = service_manager.Services( issue=fake.IssueService(), ) self.mr = testing_helpers.MakeMonorailRequest( path='/_backend/besearch?q=Priority:High&shard=2') self.mr.query_project_names = ['proj'] self.mr.specified_logged_in_user_id = 111 self.mr.specified_me_user_ids = [222] self.mr.shard_id = 2 self.servlet = backendsearch.BackendSearch( 'req', 'res', services=self.services) self.mox = mox.Mox() def tearDown(self): self.mox.UnsetStubs() self.mox.ResetAll() def testHandleRequest_NoResults(self): """Handle the case where the search has no results.""" pipeline = testing_helpers.Blank( SearchForIIDs=lambda: None, result_iids=[], search_limit_reached=False, error=None) self.mox.StubOutWithMock(backendsearchpipeline, 'BackendSearchPipeline') backendsearchpipeline.BackendSearchPipeline( self.mr, self.services, 100, ['proj'], 111, [222] ).AndReturn(pipeline) self.mox.ReplayAll() json_data = self.servlet.HandleRequest(self.mr) self.mox.VerifyAll() self.assertEqual([], json_data['unfiltered_iids']) self.assertFalse(json_data['search_limit_reached']) self.assertEqual(None, json_data['error']) def testHandleRequest_ResultsInOnePagainationPage(self): """Prefetch all result issues and return them.""" allowed_iids = [1, 2, 3, 4, 5, 6, 7, 8] pipeline = testing_helpers.Blank( SearchForIIDs=lambda: None, result_iids=allowed_iids, search_limit_reached=False, error=None) self.mox.StubOutWithMock(backendsearchpipeline, 'BackendSearchPipeline') backendsearchpipeline.BackendSearchPipeline( self.mr, self.services, 100, ['proj'], 111, [222] ).AndReturn(pipeline) self.mox.StubOutWithMock(self.services.issue, 'GetIssues') # All issues are prefetched because they fit on the first pagination page. self.services.issue.GetIssues(self.mr.cnxn, allowed_iids, shard_id=2) self.mox.ReplayAll() json_data = self.servlet.HandleRequest(self.mr) self.mox.VerifyAll() self.assertEqual([1, 2, 3, 4, 5, 6, 7, 8], json_data['unfiltered_iids']) self.assertFalse(json_data['search_limit_reached']) self.assertEqual(None, json_data['error']) def testHandleRequest_ResultsExceedPagainationPage(self): """Return all result issue IDs, but only prefetch the first page.""" self.mr.num = 5 pipeline = testing_helpers.Blank( SearchForIIDs=lambda: None, result_iids=[1, 2, 3, 4, 5, 6, 7, 8], search_limit_reached=False, error=None) self.mox.StubOutWithMock(backendsearchpipeline, 'BackendSearchPipeline') backendsearchpipeline.BackendSearchPipeline( self.mr, self.services, 100, ['proj'], 111, [222] ).AndReturn(pipeline) self.mox.StubOutWithMock(self.services.issue, 'GetIssues') # First 5 issues are prefetched because num=5 self.services.issue.GetIssues(self.mr.cnxn, [1, 2, 3, 4, 5], shard_id=2) self.mox.ReplayAll() json_data = self.servlet.HandleRequest(self.mr) self.mox.VerifyAll() # All are IDs are returned to the frontend. self.assertEqual([1, 2, 3, 4, 5, 6, 7, 8], json_data['unfiltered_iids']) self.assertFalse(json_data['search_limit_reached']) self.assertEqual(None, json_data['error']) def testHandleRequest_QueryError(self): """Handle the case where the search has no results.""" error = ValueError('Malformed query') pipeline = testing_helpers.Blank( SearchForIIDs=lambda: None, result_iids=[], search_limit_reached=False, error=error) self.mox.StubOutWithMock(backendsearchpipeline, 'BackendSearchPipeline') backendsearchpipeline.BackendSearchPipeline( self.mr, self.services, 100, ['proj'], 111, [222] ).AndReturn(pipeline) self.mox.ReplayAll() json_data = self.servlet.HandleRequest(self.mr) self.mox.VerifyAll() self.assertEqual([], json_data['unfiltered_iids']) self.assertFalse(json_data['search_limit_reached']) self.assertEqual(error.message, json_data['error'])
[ "commit-bot@chromium.org" ]
commit-bot@chromium.org
b8106e5924340ad358a10d584a8ca0cdb6474b72
3204246c32efaa8341f552c13bf7135b322cb270
/scripts/tentabot_drl/tentabot_drl_config.py
627ad9de62679ccda11b7f31b2ff16de30ad33b6
[]
no_license
RIVeR-Lab/tentabot
9f74f480d0fb8a0460c4bee98ac396328229d121
9ce2ba857d56f73a1097b449202f670e1074af61
refs/heads/master
2023-06-09T10:58:08.891666
2023-06-02T16:08:04
2023-06-02T16:08:04
234,122,206
38
15
null
2022-05-17T23:33:43
2020-01-15T16:22:03
C++
UTF-8
Python
false
false
17,822
py
#!/usr/bin/env python3 ''' LAST UPDATE: 2022.04.03 AUTHOR: Neset Unver Akmandor (NUA) Eric Dusel (ED) E-MAIL: akmandor.n@northeastern.edu dusel.e@northeastern.edu DESCRIPTION: TODO... NUA TODO: ''' import rospy import rospkg import csv import numpy as np ''' DESCRIPTION: TODO... ''' def write_data(file, data): file_status = open(file, 'a') with file_status: write = csv.writer(file_status) write.writerows(data) print("tentabot_drl_config::write_data -> Data is written in " + str(file)) ''' DESCRIPTION: TODO... ''' def read_data(file): with open(file, newline='') as csvfile: reader = csv.reader(csvfile, delimiter=',') data = np.array(next(reader)) for row in reader: data_row = np.array(row) data = np.vstack((data, data_row)) return data ''' DESCRIPTION: TODO... ''' def get_training_param(initial_training_path, param_name) -> str: log_file = initial_training_path + 'training_log.csv' with open(log_file, newline='') as csvfile: reader = csv.reader(csvfile) for row in reader: if row[0] == param_name: return row[1] ''' NUA TODO: This config class seems unnecessary. Include all parameters into the main config file called by the launch file. DESCRIPTION: TODO... ''' class Config(): def __init__(self, data_folder_path="", odom={}, goal={}): rospack = rospkg.RosPack() tentabot_path = rospack.get_path('tentabot') + "/" ## General self.mode = rospy.get_param('mode', "") if self.mode == "training": self.world_frame_name = rospy.get_param('world_frame_name', "") self.max_episode_steps = rospy.get_param('max_episode_steps', 0) self.training_timesteps = rospy.get_param('training_timesteps', 0) ## Sensors self.laser_size_downsampled = rospy.get_param('laser_size_downsampled', 0) self.laser_normalize_flag = rospy.get_param('laser_normalize_flag', False) self.laser_error_threshold = rospy.get_param('laser_error_threshold', 0.0) ## Robots self.velocity_control_msg = rospy.get_param('robot_velo_control_msg', "") self.velocity_control_data_path = rospy.get_param('trajectory_data_path', "") velocity_control_data_str = read_data(tentabot_path + self.velocity_control_data_path + "velocity_control_data.csv") self.velocity_control_data = np.zeros(velocity_control_data_str.shape) for i, row in enumerate(velocity_control_data_str): for j, val in enumerate(row): self.velocity_control_data[i][j] = float(val) self.min_lateral_speed = min(self.velocity_control_data[:,0]) # [m/s] self.max_lateral_speed = max(self.velocity_control_data[:,0]) # [m/s] self.init_lateral_speed = self.velocity_control_data[0,0] # [m/s] self.min_angular_speed = min(self.velocity_control_data[:,1]) # [rad/s] self.max_angular_speed = max(self.velocity_control_data[:,1]) # [rad/s] self.init_angular_speed = self.velocity_control_data[0,1] # [rad/s] ## Algorithm self.observation_space_type = rospy.get_param('observation_space_type', "") self.goal_close_threshold = rospy.get_param("goal_close_threshold", 0.0) self.obs_min_range = rospy.get_param('obs_min_range', 0.0) self.n_actions = len(self.velocity_control_data) self.n_observations = self.n_actions self.n_obs_stack = rospy.get_param("n_obs_stack", 0.0) self.n_skip_obs_stack = rospy.get_param("n_skip_obs_stack", 0.0) self.cnn_obs_shape = (1,-1) self.fc_obs_shape = (-1, ) self.cit_flag = rospy.get_param("cit_flag", True) if self.cit_flag == False: self.cnn_obs_shape = (-1,1) if self.observation_space_type == "Tentabot_WP_FC" or \ self.observation_space_type == "laser_WP_1DCNN_FC": self.n_wp = rospy.get_param('n_wp',8) self.look_ahead = rospy.get_param('look_ahead',1.5) self.wp_reached_dist = rospy.get_param('wp_reached_dist',0.2) self.wp_global_dist = rospy.get_param('wp_global_dist',0.025) self.wp_dynamic = rospy.get_param('wp_dynamic',1) if self.observation_space_type == "laser_image_2DCNN_FC" or \ self.observation_space_type == "laser_rings_2DCNN_FC": self.laser_image_width = rospy.get_param('laser_image_width',0) self.laser_image_height = rospy.get_param('laser_image_height',0) # Rewards self.reward_terminal_success = rospy.get_param('reward_terminal_success', 0.0) self.reward_step_scale = rospy.get_param('reward_step_scale', 0.0) self.penalty_terminal_fail = rospy.get_param('penalty_terminal_fail', 0.0) self.penalty_cumulative_step = rospy.get_param('penalty_cumulative_step', 0.0) #self.reward_terminal_mintime = rospy.get_param('reward_terminal_mintime', 0.0) if data_folder_path: ## Write all parameters training_log_file = data_folder_path + "training_log.csv" training_log_data = [] training_log_data.append(["mode", self.mode]) training_log_data.append(["world_frame_name", self.world_frame_name]) training_log_data.append(["max_episode_steps", self.max_episode_steps]) training_log_data.append(["training_timesteps", self.training_timesteps]) training_log_data.append(["laser_size_downsampled", self.laser_size_downsampled]) training_log_data.append(["laser_normalize_flag", self.laser_normalize_flag]) training_log_data.append(["laser_error_threshold", self.laser_error_threshold]) training_log_data.append(["velocity_control_msg", self.velocity_control_msg]) training_log_data.append(["velocity_control_data_path", self.velocity_control_data_path]) training_log_data.append(["min_lateral_speed", self.min_lateral_speed]) training_log_data.append(["max_lateral_speed", self.max_lateral_speed]) training_log_data.append(["init_lateral_speed", self.init_lateral_speed]) training_log_data.append(["min_angular_speed", self.min_angular_speed]) training_log_data.append(["max_angular_speed", self.min_angular_speed]) training_log_data.append(["init_angular_speed", self.init_angular_speed]) training_log_data.append(["observation_space_type", self.observation_space_type]) training_log_data.append(["goal_close_threshold", self.goal_close_threshold]) training_log_data.append(["obs_min_range", self.obs_min_range]) training_log_data.append(["n_actions", self.n_actions]) training_log_data.append(["n_observations", self.n_observations]) training_log_data.append(["n_obs_stack", self.n_obs_stack]) training_log_data.append(["n_skip_obs_stack", self.n_skip_obs_stack]) training_log_data.append(["cit_flag", self.cit_flag]) training_log_data.append(["cnn_obs_shape", self.cnn_obs_shape]) training_log_data.append(["fc_obs_shape", self.fc_obs_shape]) training_log_data.append(["reward_terminal_success", self.reward_terminal_success]) training_log_data.append(["reward_step_scale", self.reward_step_scale]) training_log_data.append(["penalty_terminal_fail", self.penalty_terminal_fail]) training_log_data.append(["penalty_cumulative_step", self.penalty_cumulative_step]) #training_log_data.append(["reward_terminal_mintime", self.reward_terminal_mintime]) if self.observation_space_type == "Tentabot_WP_FC" or \ self.observation_space_type == "laser_WP_1DCNN_FC": training_log_data.append(["n_wp", self.n_wp]) training_log_data.append(["look_ahead", self.look_ahead]) training_log_data.append(["wp_reached_dist", self.wp_reached_dist]) training_log_data.append(["wp_global_dist", self.wp_global_dist]) training_log_data.append(["wp_dynamic", self.wp_dynamic]) write_data(training_log_file, training_log_data) elif self.mode == "testing": self.initial_training_path = tentabot_path + rospy.get_param('initial_training_path', "") self.max_testing_episodes = rospy.get_param('max_testing_episodes', "") self.world_frame_name = get_training_param(self.initial_training_path, "world_frame_name") self.max_episode_steps = int(get_training_param(self.initial_training_path, "max_episode_steps")) self.training_timesteps = int(get_training_param(self.initial_training_path, "training_timesteps")) ## Sensors self.laser_size_downsampled = int(get_training_param(self.initial_training_path, "laser_size_downsampled")) self.laser_error_threshold = float(get_training_param(self.initial_training_path, "laser_error_threshold")) if get_training_param(self.initial_training_path, "laser_normalize_flag") == "False": self.laser_normalize_flag = False else: self.laser_normalize_flag = True ## Robots self.velocity_control_msg = rospy.get_param('robot_velo_control_msg', "") self.velocity_control_data_path = get_training_param(self.initial_training_path, "velocity_control_data_path") velocity_control_data_str = read_data(tentabot_path + self.velocity_control_data_path + "velocity_control_data.csv") self.velocity_control_data = np.zeros(velocity_control_data_str.shape) for i, row in enumerate(velocity_control_data_str): for j, val in enumerate(row): self.velocity_control_data[i][j] = float(val) self.min_lateral_speed = min(self.velocity_control_data[:,0]) # [m/s] self.max_lateral_speed = max(self.velocity_control_data[:,0]) # [m/s] self.init_lateral_speed = self.velocity_control_data[0,0] # [m/s] self.min_angular_speed = min(self.velocity_control_data[:,1]) # [rad/s] self.max_angular_speed = max(self.velocity_control_data[:,1]) # [rad/s] self.init_angular_speed = self.velocity_control_data[0,1] # [rad/s] ## Algorithm self.observation_space_type = get_training_param(self.initial_training_path, "observation_space_type") self.goal_close_threshold = float(get_training_param(self.initial_training_path, "goal_close_threshold")) self.obs_min_range = float(get_training_param(self.initial_training_path, "obs_min_range")) self.n_actions = len(self.velocity_control_data) self.n_observations = self.n_actions self.n_obs_stack = int(get_training_param(self.initial_training_path, "n_obs_stack")) self.n_skip_obs_stack = int(get_training_param(self.initial_training_path, "n_skip_obs_stack")) self.cnn_obs_shape = (1,-1) self.fc_obs_shape = (-1, ) if get_training_param(self.initial_training_path, "cit_flag") == "False": self.cit_flag = False else: self.cit_flag = True if self.cit_flag == False: self.cnn_obs_shape = (-1,1) # Waypoints if self.observation_space_type == "Tentabot_WP_FC" or \ self.observation_space_type == "laser_WP_1DCNN_FC": self.n_wp = int(get_training_param(self.initial_training_path, "n_wp")) self.look_ahead = float(get_training_param(self.initial_training_path, "look_ahead")) self.wp_reached_dist = float(get_training_param(self.initial_training_path, "wp_reached_dist")) self.wp_global_dist = float(get_training_param(self.initial_training_path, "wp_global_dist")) self.wp_dynamic = int(get_training_param(self.initial_training_path, "wp_dynamic")) # Rewards self.reward_terminal_success = float(get_training_param(self.initial_training_path, "reward_terminal_success")) self.reward_step_scale = float(get_training_param(self.initial_training_path, "reward_step_scale")) self.penalty_terminal_fail = float(get_training_param(self.initial_training_path, "penalty_terminal_fail")) self.penalty_cumulative_step = float(get_training_param(self.initial_training_path, "penalty_cumulative_step")) #self.reward_terminal_mintime = float(get_training_param(self.initial_training_path, "reward_terminal_mintime")) ''' if data_folder_path: ## Write all parameters testing_log_file = data_folder_path + "testing_input_log.csv" testing_log_data = [] testing_log_data.append(["mode", self.mode]) testing_log_data.append(["initial_training_path", self.initial_training_path]) write_data(testing_log_file, testing_log_data) ''' ''' print("tentabot_drl_config::__init__ -> world_frame_name: " + str(self.world_frame_name)) print("tentabot_drl_config::__init__ -> max_episode_steps: " + str(self.max_episode_steps)) print("tentabot_drl_config::__init__ -> training_timesteps: " + str(self.training_timesteps)) print("tentabot_drl_config::__init__ -> laser_size_downsampled: " + str(self.laser_size_downsampled)) print("tentabot_drl_config::__init__ -> laser_normalize_flag: " + str(self.laser_normalize_flag)) print("tentabot_drl_config::__init__ -> laser_error_threshold: " + str(self.laser_error_threshold)) print("tentabot_drl_config::__init__ -> velocity_control_data_path: " + str(self.velocity_control_data_path)) print("tentabot_drl_config::__init__ -> observation_space_type: " + str(self.observation_space_type)) print("tentabot_drl_config::__init__ -> goal_close_threshold: " + str(self.goal_close_threshold)) print("tentabot_drl_config::__init__ -> obs_min_range: " + str(self.obs_min_range)) print("tentabot_drl_config::__init__ -> n_actions: " + str(self.n_actions)) print("tentabot_drl_config::__init__ -> n_observations: " + str(self.n_observations)) print("tentabot_drl_config::__init__ -> n_obs_stack: " + str(self.n_obs_stack)) print("tentabot_drl_config::__init__ -> n_skip_obs_stack: " + str(self.n_skip_obs_stack)) print("tentabot_drl_config::__init__ -> reward_terminal_success: " + str(self.reward_terminal_success)) print("tentabot_drl_config::__init__ -> reward_step_scale: " + str(self.reward_step_scale)) print("tentabot_drl_config::__init__ -> penalty_terminal_fail: " + str(self.penalty_terminal_fail)) print("tentabot_drl_config::__init__ -> penalty_cumulative_step: " + str(self.penalty_cumulative_step)) ''' if odom: self.x = odom["x"] self.y = odom["y"] self.th = odom["theta"] self.v = odom["u"] self.omega = odom["omega"] if goal: self.goalX = goal["x"] self.goalY = goal["y"] ''' print("--------------") print("Config::__init__ -> x: " + str(odom["x"])) print("Config::__init__ -> y: " + str(odom["y"])) print("Config::__init__ -> theta: " + str(odom["theta"])) print("Config::__init__ -> u: " + str(odom["u"])) print("Config::__init__ -> omega: " + str(odom["omega"])) print("--------------") ''' ''' NUA TODO: ''' def set_odom(self, odom): self.x = odom["x"] self.y = odom["y"] self.theta = odom["theta"] self.v = odom["u"] self.omega = odom["omega"] ''' NUA TODO: ''' def set_goal(self, goal): self.goalX = goal["x"] self.goalY = goal["y"] ''' NUA TODO: ''' def set_laser_data(self, laser_scan): self.laser_frame_id = laser_scan.header.frame_id self.laser_angle_min = laser_scan.angle_min # [rad] self.laser_angle_max = laser_scan.angle_max # [rad] self.laser_angle_increment = laser_scan.angle_increment # [rad] self.laser_range_min = laser_scan.range_min # [m] self.laser_range_max = laser_scan.range_max # [m] self.laser_time_increment = laser_scan.time_increment self.laser_scan_time = laser_scan.scan_time self.laser_n_range = len(laser_scan.ranges) self.laser_downsample_scale = 1 if 0 < self.laser_size_downsampled < len(laser_scan.ranges): self.laser_downsample_scale = int(len(laser_scan.ranges) / self.laser_size_downsampled) self.laser_n_range = self.laser_size_downsampled self.laser_angle_increment = (self.laser_angle_max - self.laser_angle_min) / self.laser_size_downsampled
[ "akmandor.n@northeastern.edu" ]
akmandor.n@northeastern.edu
a10de8be7a530cb8a968b65af316c038668a877b
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/470/usersdata/282/112149/submittedfiles/Av2_Parte3.py
00981b0e1e62d56207807f1fb8f1f85ec3f1759a
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
73
py
# -*- coding: utf-8 -*- m=(int(input('Digite a quantidade de listas: ))
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
3655ae88d7540d09282c06da474ddd9c6b0e7dad
1e92a800a70698eeeaaf7c9c6a990e23707865dc
/pwned/__init__.py
0c91a6872bc2d8084a6cbb6b9d3ae3de54f6a75a
[]
no_license
yuriifreire/pywned
21ad85719428ed9d3946d8090720686bc9738533
8a6aa21d79131cc779a58c19a65155b340d34ff3
refs/heads/master
2020-03-18T07:37:16.344041
2018-05-22T19:27:43
2018-05-22T19:27:43
134,460,685
0
0
null
null
null
null
UTF-8
Python
false
false
31
py
from .pwned import check, main
[ "yuriifreire@gmail.com" ]
yuriifreire@gmail.com
2918ca9901abd71a46c9c87ccb1de609a18f0b0c
e7a2f8cdcb6bd6fe4cc80e446ddb0d5a7b497bed
/run_async/utils.py
d69454d10fa80231f3d02c2e9e80b660f2181eff
[ "MIT" ]
permissive
leriomaggio/async-ipython-magic
eebbd3a2fd866b70314715647f89a2b7f2c7fd4e
595d4aec8ea027eb23da0f0ae765e20adc987dc4
refs/heads/master
2022-08-27T00:53:14.787536
2020-12-04T14:18:29
2020-12-04T14:18:29
66,557,604
21
3
MIT
2022-08-23T17:10:28
2016-08-25T12:53:33
Python
UTF-8
Python
false
false
2,673
py
""" """ # Author: Valerio Maggio <valeriomaggio@gmail.com> # Copyright (c) 2015 Valerio Maggio <valeriomaggio@gmail.com> # License: BSD 3 clause from IPython.utils.coloransi import TermColors, color_templates from .settings import SERVER_ADDR, SERVER_PORT, CONNECTION_ID_SEP COLORS = [color[1] for color in color_templates] def strip_ansi_color(text): """ Removes ANSI colors from the text Parameters ---------- text : str The input text string to process Returns ------- str : the plain text with all ANSI colors stripped. """ text = text.replace(TermColors.Normal, TermColors.NoColor) for color in COLORS: text = text.replace(TermColors._base % (color), TermColors.NoColor) return text def connection_string(web_socket=True, extra=''): if web_socket: protocol = 'ws' else: protocol = 'http' return '{proto}://{server}:{port}/{extra}'.format(proto=protocol, server=SERVER_ADDR, port= SERVER_PORT, extra=extra) def format_ws_connection_id(role_name, session_id): """ Format and return a (likely) unique string to be fed to the Websocket server in the url. This string will be used to uniquely identify the open connection. See `run_server.WebSocketConnectionHandler` for further details. Parameters ---------- role_name : str The name of the role of the client trying to connect to the WebSocket session_id : str The uniquely defined `uuid` generated for the connecting client. Returns ------- ws_conn_id : str String representing the connection ID to be fed to the WebSocket server (url) """ return "{0}{1}{2}".format(role_name, CONNECTION_ID_SEP, session_id) def parse_ws_connection_id(connection_id): """ Get and return the role name and the session id associated to the input connection id. Parameters ---------- connection_id : str The connection ID formatted according to the `format_ws_connection_id` function. Returns ------- _connection_id : str The name of the role of the connected client associated to the connection ID (namely, "JS" or "PY") session_id : str The session id associated to the client at connection time. Note ---- This function is the counterpart of the `format_ws_connection_id` function. This function decompose a connection id, while the former composes it. """ role_name, session_id = connection_id.split(CONNECTION_ID_SEP) return role_name, session_id
[ "valerio.maggio@gmail.com" ]
valerio.maggio@gmail.com
4cdce4ddb73b2165948e69cc8a58f22ae467e772
0add7953d3e3ce2df9e8265102be39b758579753
/built-in/TensorFlow/Official/cv/image_classification/ResnetVariant_for_TensorFlow/automl/vega/algorithms/nas/sm_nas/mmdet_meta_cfgs/dataset.py
24541f70042b7db556335340b2d21c2c1bf9c144
[ "Apache-2.0", "MIT" ]
permissive
Huawei-Ascend/modelzoo
ae161c0b4e581f8b62c77251e9204d958c4cf6c4
df51ed9c1d6dbde1deef63f2a037a369f8554406
refs/heads/master
2023-04-08T08:17:40.058206
2020-12-07T08:04:57
2020-12-07T08:04:57
319,219,518
1
1
Apache-2.0
2023-03-24T22:22:00
2020-12-07T06:01:32
Python
UTF-8
Python
false
false
6,221
py
"""Modules for Dataset.""" import random from ..utils import dict2str, str_warp from .module import Module class Dataset(Module): """Class of dataset.""" attr_space = { 'img_scale': [ {'train': (512, 512), 'val': (512, 512), 'test': (512, 512)}, {'train': (800, 600), 'val': (800, 600), 'test': (800, 600)}, {'train': (1000, 600), 'val': (1000, 600), 'test': (1000, 600)}]} id_attrs = ['dataset', 'img_scale', 'multiscale_mode'] def __init__(self, dataset='CocoDataset', batch_size=2, num_workers=2, multiscale_mode='range', num_classes=81, **kwargs): super(Dataset, self).__init__(**kwargs) data_root_default = '/cache/data/COCO2017' img_scale_default = dict( train=[(512, 512), (512, 300)], val=(512, 512), test=(512, 512)) img_norm_cfg_default = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) self.dataset_type = dataset self.batch_size = batch_size self.workers = num_workers self.multiscale_mode = multiscale_mode self.num_classes = num_classes self.data_root = kwargs['data_root'] if 'data_root' in kwargs else data_root_default img_scale = kwargs['img_scale'] if 'img_scale' in kwargs else img_scale_default self.img_scale = dict() for k, v in img_scale.items(): self.img_scale.update({k: tuple(v)}) self.img_norm = kwargs['img_norm_cfg'] if 'img_norm_cfg' in kwargs else img_norm_cfg_default self.flip_ratio = kwargs['flip_ratio'] if 'flip_ratio' in kwargs else 0.5 self.size_divisor = kwargs['size_divisor'] if 'size_divisor' in kwargs else 32 self.data_setting = [] for task in ['train', 'val', 'test']: img_scale_ = self.img_scale[task] setting = [img_scale_] if task == 'train': setting.append(str_warp(self.multiscale_mode)) self.data_setting.extend(setting) def __str__(self): """Get image size(test) str.""" return '{}({}x{})'.format(self.dataset_type.upper(), self.test_img_size[0], self.test_img_size[1]) @property def test_img_size(self): """Get test image size.""" return self.img_scale['test'] @property def config(self): """Return dataset config for mmdet.""" return dict(dataset_type=str_warp(self.dataset_type), img_norm=self.img_norm_cfg, train_pipeline=self.train_pipeline_cfg, test_pipeline=self.test_pipeline_cfg, data_setting=self.data_setting_cfg) @property def train_pipeline_cfg(self): """Generate train pipeline config.""" img_scale = self.img_scale['train'] data = ( "[\n" " dict(type='LoadImageFromFile'),\n" " dict(type='LoadAnnotations', with_bbox=True),\n" f" dict(type='Resize', img_scale=({img_scale[0]}, {img_scale[1]}), keep_ratio=True),\n" f" dict(type='RandomFlip', flip_ratio={self.flip_ratio}),\n" " dict(type='Normalize', **img_norm_cfg),\n" f" dict(type='Pad', size_divisor={self.size_divisor}),\n" " dict(type='DefaultFormatBundle'),\n" " dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),\n" "]") return data @property def test_pipeline_cfg(self): """Generate test pipeline config.""" img_scale = self.img_scale['test'] data = ( "[\n" " dict(type='LoadImageFromFile'),\n" " dict(\n" " type='MultiScaleFlipAug',\n" f" img_scale=({img_scale[0]}, {img_scale[1]}),\n" " flip=False,\n" " transforms=[\n" " dict(type='Resize', keep_ratio=True),\n" " dict(type='RandomFlip'),\n" " dict(type='Normalize', **img_norm_cfg),\n" f" dict(type='Pad', size_divisor={self.size_divisor}),\n" " dict(type='ImageToTensor', keys=['img']),\n" " dict(type='Collect', keys=['img']),\n" " ])\n" "]") return data @property def data_setting_cfg(self): """Return data setting.""" data = ( "dict(\n" f" imgs_per_gpu={self.batch_size},\n" f" workers_per_gpu={self.workers},\n" " type=dataset_type,\n" " train=dict(\n" " type=dataset_type,\n" " ann_file=data_root + 'annotations/instances_train2017.json',\n" " img_prefix=data_root + 'train2017/',\n" " pipeline=train_pipeline),\n" " val=dict(\n" " type=dataset_type,\n" " ann_file=data_root + 'annotations/instances_val2017.json',\n" " img_prefix=data_root + 'val2017/',\n" " pipeline=test_pipeline),\n" " test=dict(\n" " type=dataset_type,\n" " ann_file=data_root + 'annotations/instances_val2017.json',\n" " img_prefix=data_root + 'val2017/',\n" " pipeline=test_pipeline))") return data @property def img_norm_cfg(self): """Return image normalization config.""" return dict2str(self.img_norm, in_one_line=True) @classmethod def sample(cls, data_setting, fore_part=None): """Return sampled_params.""" sampled_params = dict() for key, value in cls.attr_space.items(): attr = random.choice(value) sampled_params.update({key: attr}) sampled_params.update(data_setting) sampled_params.update(cls.quest_param(fore_part=fore_part)) return cls(**sampled_params, fore_part=fore_part)
[ "1571856591@qq.com" ]
1571856591@qq.com
6ced258c763dc4524d1b9b2e0f77056a5adccb17
ffb87018f36ee5f8d0025febd10156ab9d6a0459
/05_Countries_Capitals_GUI_v2.py
ca1e2b029157f40ec2346cb83f9a4116979e3cba
[]
no_license
NathanM3/Quiz-Program
9b8ba2058ae071c7edf34cc56841101a2a8a6e4f
0dcc288cc34b66320eeb9370215f60e4a0c41a49
refs/heads/main
2023-07-26T02:31:22.665012
2021-09-09T23:09:29
2021-09-09T23:09:29
389,466,051
0
0
null
null
null
null
UTF-8
Python
false
false
11,844
py
"""Based on 05_Countries_Capitals_GUI_v1.py This version adds to the main menu GUI by dealing with duplicate windows. Taking code from the 'Help' class as it already deals with duplicates Lines 198-201 and lines 181-184. Added padding to label (line 227) """ # importing modules to use within program # tkinter module used to create GUIs from tkinter import * from tkinter.ttk import Separator # using re to control what characters are allowed within a string import re # random will be used later on in the quiz component to randomise the questions import random from functools import partial # to eliminate duplicate windows # Creating my own Errors that apply to my functions conditions class Error(Exception): """Bass Class for other exceptions""" pass # Is a custom Error to be raised when conditions are not met in try except class NamingError(Error): """Raised when there is more than one sequential space or a string with less than 3 characters""" pass class Menu: def __init__(self): # Formatting variables of the GUI background_color = "#89B4E5" # Main Menu GUI self.main_menu_frame = Frame(width=375, height=300, bg=background_color) self.main_menu_frame.grid() # Main Menu heading (row 0) self.main_menu_label = Label(self.main_menu_frame, text="Main Menu", font="Arial 18 bold", bg=background_color, padx=10, pady=10) self.main_menu_label.grid(row=0) # Get name label (row 1) self.get_name_label = Label(self.main_menu_frame, text="Enter your name and press one of " "the buttons below", font="Arial 10 italic", wrap=250, pady=10, bg=background_color) self.get_name_label.grid(row=1) # Name entry box (row 2) self.get_name_entry = Entry(self.main_menu_frame, width=17, font="Arial 12") self.get_name_entry.grid(row=2) # Buttons Frame self.buttons_frame = Frame(self.main_menu_frame, pady=10, padx=10, width=200, bg=background_color) self.buttons_frame.grid(row=3) # Countries button (column 0) shows a button to open countries mode self.countries_button = Button(self.buttons_frame, text="Countries", font="Arial 14 bold", width=10, bg="blue", fg="snow", command=self.countries) self.countries_button.grid(row=0, column=0, padx=5, pady=10) # Capitals button (column 1) shows a button to open capitals mode self.capitals_button = Button(self.buttons_frame, text="Capitals", font="Arial 14 bold", width=10, bg="forest green", fg="snow", command=self.capitals) self.capitals_button.grid(row=0, column=1, padx=5, pady=10) # Separator (row 1) should produce a line inside the buttons frame # that separates the top 2 buttons from the bottom 2 self.frame_separator = Separator(self.buttons_frame, orient="horizontal") self.frame_separator.grid(row=1, sticky="ew", columnspan=2) # History button (row 2, column 0) shows a button on the # GUI to go to history self.history_button = Button(self.buttons_frame, text="Answer Record History", wrap=150, font="Arial 12 bold", bg="light grey", width=12) self.history_button.grid(row=2, column=0, padx=5, pady=10) # Help Button (row 2, column 1) shows a button to open help window self.help_button = Button(self.buttons_frame, text="Help", width=12, font="Arial 12 bold", bg="light grey", height=2, command=self.help) self.help_button.grid(row=2, column=1, padx=5, pady=10) def name_check(self): valid_char = "[A-Za-z ]" while True: # Loop does not end name = str(self.get_name_entry.get()) try: for letter in name: if not re.match(valid_char, letter): self.get_name_label.configure( text="no {}'s allowed".format(letter), fg="red") raise NamingError if len(name) < 3 or " " in name: raise NamingError # If conditions are met, name will be returned self.get_name_label.configure( text="Enjoy the quiz {}".format(name), fg="black") return name except NamingError: self.get_name_label.configure( text="Please enter a name that contains at least 3 " "letters and only 1 space between names: ", fg="red") break # functions that open pop up windows and also start using corresponding # classes def capitals(self): user_name = self.name_check() if user_name: get_capitals = Capitals(self) # Opens Capitals GUI def countries(self): user_name = self.name_check() if user_name: get_countries = Countries(self) # Opens Countries GUI def help(self): get_help = Help(self) # Opens Help GUI class Help: def __init__(self, partner): background = "dark orange" # to disable help button partner.help_button.config(state=DISABLED) # sets up child window (ie: help box) self.help_box = Toplevel() # If a user presses the red cross at the top, it will use close_help # This enables the help button. self.help_box.protocol('WM_DELETE_WINDOW', partial(self.close_help, partner)) # set up GUI Frame self.help_frame = Frame(self.help_box, width=450, bg=background) self.help_frame.grid() # set up Help heading (row 0) self.how_heading = Label(self.help_frame, text="Help / Information", font="Arial 10 bold", bg=background, pady=10) self.how_heading.grid(row=0) # Help text (label, row 1) self.help_text = Label(self.help_frame, text="This is a Geographical Quiz that will " "show you the name of a country or " "capital and ask you to enter the " "corresponding capital or country.\nAfter " "you have completed the quiz or decided " "to stop playing, a record of answers can " "be exported by pressing the 'Answer " "Record History' button and following the " "instructions given.\nEnjoy", justify=LEFT, width=40, bg=background, wrap=250) self.help_text.grid(row=1) # Dismiss button (row 2) self.dismiss_btn = Button(self.help_frame, text="Dismiss", width=10, bg="slate gray", font="arial 10 bold", command=partial(self.close_help, partner), fg="white") self.dismiss_btn.grid(row=2, pady=5) def close_help(self, partner): # Enabling the help button again in the close help function partner.help_button.config(state=NORMAL) self.help_box.destroy() class Capitals: def __init__(self, partner): background_color = "chartreuse4" # to disable countries and capitals buttons when quiz is open. partner.countries_button.config(state=DISABLED) partner.capitals_button.config(state=DISABLED) # Sets up a child window for capitals self.capitals_box = Toplevel() # If a user presses the red cross at the top, it will use close_quiz # This closes the quiz window and enables the capitals and countries # buttons in the main menu. self.capitals_box.protocol('WM_DELETE_WINDOW', partial(self.close_quiz, partner)) # Capitals GUI self.capitals_frame = Frame(self.capitals_box, width=375, height=300, bg=background_color) self.capitals_frame.grid() # Capitals heading (row 0) self.capitals_label = Label(self.capitals_frame, text="Capitals", font="Arial 18 bold", bg=background_color, padx=10, pady=10) self.capitals_label.grid(row=0) # Question label (row 1) self.question_label = Label(self.capitals_frame, text="<ask question here>", font="Arial 12", wrap=250, pady=10, bg=background_color) self.question_label.grid(row=1) # Answer entry box label (row 2) self.answer_label = Label(self.capitals_frame, text="Type your Answer and press 'Check' " "to enter", font="Arial 10 italic", bg=background_color) self.answer_label.grid(row=2, padx=30) # Answer entry box (row 3) self.get_answer_entry = Entry(self.capitals_frame, width=17, font="Arial 12") self.get_answer_entry.grid(row=3) # Buttons Frame (row 4) self.buttons_frame = Frame(self.capitals_frame, pady=10, padx=10, width=200, bg=background_color) self.buttons_frame.grid(row=4) # Check button will inform the user if they were correct or incorrect # (row 0, column 0 of button frame) self.check_button = Button(self.buttons_frame, text="Check", font="Arial 14 bold", width=8, bg="sandy brown", fg="black") self.check_button.grid(row=0, column=0, padx=5, pady=10) # 'Next' button will change the GUI to the next question of the quiz # (row 0, column 1) on the same horizontal line as check button. self.next_button = Button(self.buttons_frame, text="Next", font="Arial 14 bold", width=8, bg="firebrick2", fg="snow") self.next_button.grid(row=0, column=1, padx=5, pady=10) def close_quiz(self, partner): # Enabling the help button again in the close help function partner.capitals_button.config(state=NORMAL) partner.countries_button.config(state=NORMAL) self.capitals_box.destroy() class Countries: def __init__(self, partner): background = "Green" # to disable countries and capitals buttons when quiz is open. partner.countries_button.config(state=DISABLED) partner.capitals_button.config(state=DISABLED) # main routine if __name__ == "__main__": root = Tk() root.title("Geographical Quiz Game") something = Menu() root.mainloop()
[ "morrisonn2@middleton.school.nz" ]
morrisonn2@middleton.school.nz
8efa3223acd3a9a6487c682356b2e6cb3f33484a
ae08fbd406a3523107176471df149bbb1006637f
/qa/rpc-tests/bipdersig.py
6c1849312cdc9e36997a2acbb41a84d51d8c8676
[ "MIT" ]
permissive
mirzaei-ce/core-popbit
9e7676c95f4d7cb9ad73be456fc98c9aaea4aba3
e4230fcbfdf8a5bca54fb636e3019c42d40f0a14
refs/heads/master
2021-07-25T23:25:24.765814
2017-11-02T16:00:48
2017-11-02T16:00:48
109,287,469
0
0
null
null
null
null
UTF-8
Python
false
false
3,128
py
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test the BIP66 changeover logic # from test_framework.test_framework import PopbitTestFramework from test_framework.util import * class BIP66Test(PopbitTestFramework): def setup_network(self): self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, [])) self.nodes.append(start_node(1, self.options.tmpdir, ["-blockversion=2"])) self.nodes.append(start_node(2, self.options.tmpdir, ["-blockversion=3"])) connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 0) self.is_network_split = False self.sync_all() def run_test(self): cnt = self.nodes[0].getblockcount() # Mine some old-version blocks self.nodes[1].generate(100) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 100): raise AssertionError("Failed to mine 100 version=2 blocks") # Mine 750 new-version blocks for i in xrange(15): self.nodes[2].generate(50) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 850): raise AssertionError("Failed to mine 750 version=3 blocks") # TODO: check that new DERSIG rules are not enforced # Mine 1 new-version block self.nodes[2].generate(1) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 851): raise AssertionError("Failed to mine a version=3 blocks") # TODO: check that new DERSIG rules are enforced # Mine 198 new-version blocks for i in xrange(2): self.nodes[2].generate(99) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 1049): raise AssertionError("Failed to mine 198 version=3 blocks") # Mine 1 old-version block self.nodes[1].generate(1) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 1050): raise AssertionError("Failed to mine a version=2 block after 949 version=3 blocks") # Mine 1 new-version blocks self.nodes[2].generate(1) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 1051): raise AssertionError("Failed to mine a version=3 block") # Mine 1 old-version blocks try: self.nodes[1].generate(1) raise AssertionError("Succeeded to mine a version=2 block after 950 version=3 blocks") except JSONRPCException: pass self.sync_all() if (self.nodes[0].getblockcount() != cnt + 1051): raise AssertionError("Accepted a version=2 block after 950 version=3 blocks") # Mine 1 new-version blocks self.nodes[2].generate(1) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 1052): raise AssertionError("Failed to mine a version=3 block") if __name__ == '__main__': BIP66Test().main()
[ "mirzaei@ce.sharif.edu" ]
mirzaei@ce.sharif.edu
c3f2cf99a8af7fe6d4ea17d7e13306e113ac0c83
ad4ec1f4f670de4ec801008f61399d47f5381174
/05_Django/05_model_relation/manytomany/migrations/0001_initial.py
d5c72dca15c1c46e920eacb5f5a38b6a8021ad2d
[]
no_license
minseunghwang/TIL
b6c0ce67ac86465b331b7430f22c66795c0eb246
12d829e51a611e3c2d1118a0e82becbdc6d0d89b
refs/heads/master
2022-12-27T06:59:46.853273
2019-11-27T07:34:47
2019-11-27T07:34:47
216,502,881
0
0
null
2022-04-22T22:38:55
2019-10-21T07:21:24
Python
UTF-8
Python
false
false
841
py
# Generated by Django 2.2.6 on 2019-11-12 07:25 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Doctor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.TextField()), ], ), migrations.CreateModel( name='Patient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.TextField()), ('doctor', models.ManyToManyField(related_name='patients', to='manytomany.Doctor')), ], ), ]
[ "49888816+minseunghwang@users.noreply.github.com" ]
49888816+minseunghwang@users.noreply.github.com