blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
39d3c65e4d93784ae062ff36808bf9d14da2a29c
3133bae8bc6cd35e81cba6a7695ee9a3831035e3
/scenario_util.py
f282589c221ae71718a00b400aba36ffb55e0d07
[ "Apache-2.0" ]
permissive
chrisgarcia001/Jepson-2014-2015
79e93f18fd5de107e852119ebd24274ae77947c6
d257d5f66d82c31d884bf8be4513ff70420aa04b
refs/heads/master
2021-01-17T07:33:53.862615
2019-06-18T20:35:43
2019-06-18T20:35:43
42,882,795
0
0
null
null
null
null
UTF-8
Python
false
false
10,580
py
# -------------------------------------------------------------------------------------- # Author: cgarcia@umw.edu # About: This file contains utility functions and classes used specifically in # running scenarios and generating result reports # -------------------------------------------------------------------------------------- import util as ut from scipy import stats import math from knn import * #-------------------------- STATISTICAL FUNCTIONS ------------------------ # Performs 2-sample proportion test of form: # H0: p1 = p2, H1: p1 != p2 # Sample 1 and sample 2 are lists of 0's and 1'sample # Returns a p-value def proportion_test(sample_1, sample_2): n1 = float(len(sample_1)) n2 = float(len(sample_2)) p1 = float(sum(sample_1)) / n1 p2 = float(sum(sample_2)) / n2 z = (p1 - p2) / math.sqrt(((p1 * (1.0 - p1)) / n1) + ((p2 * (1.0 - p2)) / n2)) return stats.norm().cdf(1.0 - z) # Get simple mean of the values. def mean(vals): return float(sum(vals)) / float(len(vals)) #-------------------------- UTILITY CLASSES ------------------------------ # This is a basic logger which prints output to the command line and # writes the log file to the specified output file. class BasicLogger(object): def __init__(self): self.lines = [] def log(self, line, level='standard'): if level.lower() == 'report': self.lines.append(str(line)) print(line) def write(self, output_file): ut.write_file("\n".join(self.lines), output_file) # This is a simple class to record and accumulate artifacts # generated in a scenario class ScenarioRecorder(object): def __init__(self): self.records = {} # Add a new value to the specified key's value list def add(self, key, val): if not(self.records.has_key(key)): self.records[key] = [] self.records[key].append(val) # Set a key's value def set(self, key, val): self.records[key] = val # Get whatever is corresponding to the key def get(self, key): if self.records.has_key(key): return self.records[key] return 'NA' # If the key holds a list of lists, join them all together into # into one master list before returning. def get_flatten(self, key): try: return reduce(lambda x, y: x + y, self.records[key]) except: return get(key) # Get the keys for this recorder. If a prefix is specified, # Get keys which start with the prefix. def keys(self, prefix = None): if not(prefix == None): return filter(lambda x: x.startswith(prefix), self.records.keys()) return self.records.keys() #-------------------------- UTILITY FUNCTIONS ---------------------------- # A solver is a function f: user -> msg # Each element in solvers is a (solver, solver name) pair def execute_trial(train_data, test_users, data_gen, solvers, recorder, trial_name = None, measures_per_user = 1, logger = None): results = [] if trial_name == None: trial_name = '' else: trial_name = ': ' + trial_name logger_f = logger.log if logger != None else lambda x, y: None logger_f = logger.log logger_f('Executing comparison trial' + str(trial_name), 'standard') for (f, solver_name) in solvers: logger_f(" Starting solver: " + solver_name, 'standard') start_time = ut.curr_time() msgs = map(f, test_users) elapsed = ut.curr_time() - start_time resps = [] for i in range(measures_per_user): resps += data_gen.gen_responses(test_users, msgs) correct_frac = float(sum(resps)) / float(measures_per_user * len(resps)) results.append((solver_name, correct_frac, elapsed, resps)) add = lambda att, val: recorder.add(solver_name + '.' + str(att), val) add('correct_frac', correct_frac) add('responses', resps) recorder.add('elapsed_time', elapsed) logger_f(" Results (correct%, elapsed time): " + str((correct_frac, elapsed)), 'standard') # A trial_initializer_f is a function which takes a recorder and logger as input and returns a tuple: # (train_data, test_users, data_generator, [(solver_f, name)]) # An analyzer_f is a procedure which takes these args (in order): # 1) a recorder # 2) a logger, # 3) a list solver names with the following convention: # Control solvers start with control_ and treatment solvers start with solver_ def run_trials(trial_initializer_f, analyzer_f, num_trials, recorder, logger): recorder.set('num_trials', num_trials) main_start_time = ut.curr_time() for t in range(1, num_trials + 1): trial_start = ut.curr_time() logger.log('Starting new trial, initializing...', 'standard') train_data, test_users, data_generator, solvers = trial_initializer_f(recorder, logger) logger.log(' Time initializing: ' + str(ut.curr_time() - trial_start) + ' sec.', 'standard') execute_trial(train_data, test_users, data_generator, solvers, recorder, trial_name = 'Trial ' + str(t), logger = logger) main_elapsed = ut.curr_time() - main_start_time recorder.set('main.elapsed_time', main_elapsed) analyzer_f(recorder, logger, map(lambda (x, y): y, solvers)) # For a list of test users and test messages, return the n best-performing. # Used for a control case to compare other algorithms to. # **NOTE: param msgs can be either 1) an integer, or 2) a list of pre-made messages # If it is an integer, the specified number of random messages will be generated. def n_best_messages(users, data_gen, msgs, n): if type(msgs) == type(0): msgs = data_gen.gen_random_inters(msgs) rows = zip(*data_gen.gen_crossprod_rows(users, msgs)) mcount = lambda m: sum(map(lambda x: x[2], filter(lambda y: y[1] == m, rows))) pos_count = lambda y: sum(map(lambda x: x[2], filter(lambda z: y == z[1], tups))) results = map(lambda msg: (msg, mcount(msg)), msgs) return map(lambda (msg, _): msg, ut.top_n(results, n, lambda y: y[1])) # Build (solver, name) pairs for each of the 3 standard controls # which can go into execute_trial. # **NOTE: param msgs can be either 1) an integer, or 2) a list of pre-made messages # If it is an integer, the specified number of random messages will be generated. def build_std_control_solvers(calibration_users, data_gen, msgs = 100, top_n = 15): b = data_gen if(type(msgs)) == type(0): msgs = n_best_messages(calibration_users, b, msgs, msgs) best_msgs = n_best_messages(calibration_users, b, msgs, top_n) # Control 1: select a random message each time ctrl_1 = lambda u: rd.sample(msgs, 1)[0] # Control 2: Always give the best performing out of the 100 ctrl_2 = lambda u: best_msgs[0] # Control 3: randomly select one of the top 15 messages for each user ctrl_3 = lambda u: rd.sample(best_msgs, 1)[0] solvers = [(ctrl_1, 'control_1'), (ctrl_2, 'control_2'), (ctrl_3, 'control_3')] return solvers # Builds all KNN solvers in (solver, name) pairs, which can go # which can go into execute_trial. def build_all_knn_optims(train_data, calibration_users, data_gen, recorder, min_k = 1, max_k = 15): b = data_gen op = KNNOptimizer() op.set_data_rows(train_data) op.set_similarity_f(match_count) asf_1 = build_weighted_mode_selector(lambda x: 1) asf_2 = build_weighted_mode_selector(lambda x: 10**x) asf_3 = build_weighted_max_pos_proportion_selector(lambda x: 1) asf_4 = build_weighted_max_pos_proportion_selector(lambda x: 10**x) response_f = lambda u, m: b.gen_response(u, m) k1 = op.find_best_k(calibration_users, min_k, max_k, asf_1, response_f) k2 = op.find_best_k(calibration_users, min_k, max_k, asf_2, response_f) k3 = op.find_best_k(calibration_users, min_k, max_k, asf_3, response_f) k4 = op.find_best_k(calibration_users, min_k, max_k, asf_4, response_f) recorder.add('solver_1.k', k1) recorder.add('solver_2.k', k2) recorder.add('solver_3.k', k3) recorder.add('solver_4.k', k4) print('k1, k2: ' + str((k1, k2))) f_1 = lambda u: op.optimize(u, k1, asf_1) f_2 = lambda u: op.optimize(u, k2, asf_2) f_3 = lambda u: op.optimize(u, k3, asf_3) f_4 = lambda u: op.optimize(u, k4, asf_4) solvers = [(f_1, 'solver_1'), (f_2, 'solver_2'), (f_3, 'solver_3'), (f_4, 'solver_4') ] return solvers # Builds standard (mode-based) KNN solvers in (solver, name) pairs, which can go # which can go into execute_trial. def build_std_knn_optims(train_data, calibration_users, data_gen, recorder, min_k = 1, max_k = 15): b = data_gen op = KNNOptimizer() op.set_data_rows(train_data) op.set_similarity_f(match_count) asf_1 = build_weighted_mode_selector(lambda x: 1) asf_2 = build_weighted_mode_selector(lambda x: 10**x) response_f = lambda u, m: b.gen_response(u, m) k1 = op.find_best_k(calibration_users, min_k, max_k, asf_1, response_f) k2 = op.find_best_k(calibration_users, min_k, max_k, asf_2, response_f) recorder.add('solver_1.k', k1) recorder.add('solver_2.k', k2) print('k1, k2: ' + str((k1, k2))) f_1 = lambda u: op.optimize(u, k1, asf_1) f_2 = lambda u: op.optimize(u, k2, asf_2) solvers = [(f_1, 'solver_1'), (f_2, 'solver_2') ] return solvers def standard_analyzer_f(recdr, logr, solver_names): log = lambda *x: logr.log(' '.join(map(lambda y: str(y), x)), 'report') key = lambda x, y = None: str(x) + '.' + (y) if y != None else str(x) get = lambda prefix, att = None: recdr.get(key(prefix, att)) fget = lambda prefix, att = None: recdr.get_flatten(key(prefix, att)) pt = lambda s1, s2: proportion_test(fget(s1), fget(s2)) ctrls = filter(lambda x: x.startswith('control'), solver_names) tmts = filter(lambda x: x.startswith('solver'), solver_names) all = ctrls + tmts log('-------------------- RESULTS ------------------------') log('Number of trials: ', get('num_trials')) for s in tmts: log(s + ' avg. k: ', mean(get(s, 'k'))) for s in ctrls: log(s + ' avg. success %: ', mean(get(s, 'correct_frac')), ', (min, max) success %: ', (min(get(s, 'correct_frac')), max(get(s, 'correct_frac')))) for s in tmts: log(s + ' avg. success %: ', mean(get(s, 'correct_frac')), ', (min, max) success %: ', (min(get(s, 'correct_frac')), max(get(s, 'correct_frac')))) for c in ctrls: for s in tmts: log(s + ' vs. ' + c + ' (p-val): ', pt(s + '.responses', c + '.responses')) for i in range(len(tmts) - 1): for j in range(1, len(tmts)): log(tmts[i] + ' vs. ' + tmts[j] + ' (p-val): ', pt(tmts[i] + '.responses', tmts[j] + '.responses')) log(tmts[j] + ' vs. ' + tmts[i] + ' (p-val): ', pt(tmts[j] + '.responses', tmts[i] + '.responses')) for s in tmts: for c in ctrls: log('Avg ' + s + '/ ' + c + ' ratio: ', max(get(s, 'correct_frac')) / max(get(c, 'correct_frac'))) log('-------------------- TOTAL ELAPSED TIME: ', get('main', 'elapsed_time'), ' sec.')
[ "chrisgarcia001@gmail.com" ]
chrisgarcia001@gmail.com
15d7ea48d653c4315a963b1fbdfb91c15ea276e2
b41e47e8cfad55bb7af75bc603b96968058e0163
/logloader.py
55eb63f504ef1613d9737db5555f1e154e735fa6
[ "Apache-2.0" ]
permissive
xaviercallens/xLogReducer
bb4d2c59b648570741bd98a5107c83e3e748e5ba
40005419022c02454eca7b027d76b99b3dfad543
refs/heads/main
2023-08-30T15:09:46.591898
2021-11-11T02:22:57
2021-11-11T02:22:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,656
py
import sys import pandas as pd import re import multiprocessing as mp from itertools import groupby, count, chain import numpy as np import json import os import io import time class LogLoader(object): def __init__(self, headLength, isMulti, headRegex, maxLength): self.headLength = headLength self.isMulti = isMulti if (headRegex): self.headRegex = re.compile(headRegex) self.maxLength = maxLength self.splitregex = re.compile(r'(\s+|\|)') def formalize_message(self, lines): def get_content(line): count = 0 in_head = False for idx, i in enumerate(line): #print(i) if not self.splitregex.search(i): if not (in_head): count += 1 in_head = True else: in_head = False if (self.headLength + 1 == count): return line[idx:].strip() return line.strip() #print("{}: count -> {}".format(line, count)) def get_head(line_seg, headers, delimer): head_count = 0 for idx, se in enumerate(line_seg): if (head_count >= self.headLength): break if (idx % 2 == 0): headers[head_count].append(se) else: delimer[head_count].append(se) head_count += 1 def get_segment(line): temp_seg = [] spliter = "" for i in self.splitregex.split(line): if i == "": continue if (self.splitregex.search(i)): spliter += i else: temp_seg.append(spliter) spliter = "" return temp_seg log_messages = [] count = 0 fail_count = 0 headers = dict() header_delimer = dict() for i in range(0, self.headLength): headers[i] = [] header_delimer[i] = [] if (self.isMulti): start = True now_res = "" for line in lines: if not line.strip(): fail_count += 1 continue line_seg = self.splitregex.split(line.strip()) match = self.headRegex.search(line_seg[0]) content_line = get_content(line) if match: #New start get_head(line_seg, headers, header_delimer) if(start): start = False now_res = content_line else: if (len(now_res) > self.maxLength): fail_count += 1 continue log_messages.append(now_res) now_res = content_line count += 1 else: #Continue if(start): fail_count += 1 continue else: now_res += "\n" + line.strip() else: for line in lines: line_seg = self.splitregex.split(line.strip()) if not line.strip(): fail_count += 1 continue get_head(line_seg, headers, header_delimer) content_line = get_content(line) if (len(content_line) > self.maxLength): fail_count += 1 continue log_messages.append(content_line) count += 1 return log_messages, fail_count, headers, header_delimer def load_to_dataframe(self, log_filepath): """ Function to transform log file to dataframe """ print('Loading log messages to dataframe...') t1 = time.time() lines = [] with open(log_filepath, 'r', encoding="utf-8", errors="ignore") as fid: lines = fid.readlines() print("Total lines {}".format(len(lines))) log_messages = [] log_messages, failed_size, headers, head_delimer = self.formalize_message(lines) log_dataframe = pd.DataFrame(log_messages, columns=['Content']) print("Success load logs#: {}, Failed load lines#: {}".format(len(log_messages), failed_size)) t2 = time.time() print('Time taken {:.2f}s'.format(t2-t1)) return log_dataframe, headers, head_delimer
[ "theweijy@gmail.com" ]
theweijy@gmail.com
bb9d408626f63725098b97755d18a10ce482a59a
162ef444a06fa20293f177411b9c04359eda7c87
/azure_sensor.py
1169564cb761570d6283b6465332857a8af224cb
[]
no_license
tonggehuang/Wavetronix_raw_info_pull
ffccfda7555f9c2008dfa3aa0a27f0ac620ef628
2dbe77b2e11d9c5b7c52e080db0e728c5ae03f9b
refs/heads/master
2021-04-30T05:52:52.166997
2018-05-31T16:14:52
2018-05-31T16:14:52
121,428,011
0
0
null
null
null
null
UTF-8
Python
false
false
1,138
py
import os import sys import time import urllib.request from urllib.request import urlopen import xml.etree.ElementTree as ET import pandas as pd import numpy as np from numpy import nan import csv url = "http://reactorfeeds.org/feeds/stations" request = urllib.request.Request(url, headers={"Accept" : "text/xml"}) contents = urllib.request.urlopen(request).read() root = ET.fromstring(contents) try: os.remove("streamlist.csv") except OSError: pass stream=[] z = root.getchildren() length = len(z) for i in range (0,length): x = root.getchildren()[i] try: Station = x[0].text Detectorid = x[1].text detectorName = x[2].text Direction = x[6].text except IndexError: pass else: info = (Station+','+Detectorid+','+detectorName+','+Direction) stream.append(info) def streamlist(df): columns = ['stationName','detectorId', 'detectorName','direction'] df_stream = pd.DataFrame(stream) df = pd.DataFrame(df_stream[0].str.split(',').tolist(),columns = columns) return df df = streamlist(stream) df.to_csv('streamlist.csv', index = None)
[ "tongge@iastate.edu" ]
tongge@iastate.edu
1bc81292000ed7c0f0c42230c96b7d67c221d340
d66daf048f77c6c1e1afda219d7ae7535d1e304d
/regex.py
346d9e456c92b276b8b07f0acd1f6893e2b93641
[]
no_license
a373690629/aid2008new
3693ebf8add5194981a6a9a2589538f8398e5b41
362cc064def239a22e4b1f67f8f92d8dc554dc77
refs/heads/main
2023-01-23T15:57:20.369765
2020-11-27T12:15:14
2020-11-27T12:15:14
316,488,885
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
""" regex.py re模块 功能函数演示1 """ import re # 目标字符串 s = "Alex:1994,Sunny:1996" pattern = r"(\w+):(\d+)" # 正则表达式 # re 模块调用findall l = re.findall(pattern,s) print(l) # compile 对象调用findall regex = re.compile(pattern) l = regex.findall(s,0,12) print(l) # 按照正则表达式匹配内容切割字符串 # l = re.split(r'[:,]',s) l = re.split(r'[^\w]',s) print(l) # 替换目标字符串 s = re.subn(r':','-',s) print(s)
[ "pengpeng@tedu.cn" ]
pengpeng@tedu.cn
1b64fccb8e1ce49bc1d6132d58eb7f7fe9f2f8f4
a85350f29dc8606a2618aa4d25da0a5399b7b860
/app/app.py
8251bf117b5a48430660e1a11e9327bf3e6e73ff
[ "MIT" ]
permissive
cvkumar/flask-ml-app
0c57c8824712e912e72583891e97352d93e26203
8b00802b436b3429498fbbfdec9e4ed68d18f721
refs/heads/master
2020-03-27T00:11:38.799060
2018-08-23T19:55:11
2018-08-23T19:55:11
145,601,021
0
0
null
null
null
null
UTF-8
Python
false
false
3,020
py
import os from flask import Flask from flask import request from flask import jsonify from sklearn import svm from sklearn import datasets from sklearn.externals import joblib from sklearn.model_selection import train_test_split from uuid import uuid4 from datetime import datetime import pony.orm as pny import database import config from flask_cors import CORS app = Flask(__name__) CORS(app) @app.route('/train') @pny.db_session def train_model(): iris_dataset = datasets.load_iris() X, y = iris_dataset.data, iris_dataset.target x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.33, stratify=y) # print(iris_dataset['DESCR']) # Fit Model svm_model = svm.SVC( C=1.0, probability=True, random_state=1) svm_model.fit(x_train, y_train) joblib.dump(svm_model, 'model.pkl') pny.delete(prediction for prediction in database.Prediction) model_accuracy = svm_model.score(x_test, y_test) return jsonify({'success': True, 'model_accuracy': model_accuracy}) @app.route('/predict', methods=['POST']) @pny.db_session def predict(): # print(request.json) svm_model = joblib.load('model.pkl') sepal_length = float(request.json['sepal_length']) sepal_width = float(request.json['sepal_width']) petal_length = float(request.json['petal_length']) petal_width = float(request.json['petal_width']) flower = [[sepal_length, sepal_width, petal_length, petal_width]] prediction = __make_prediction(flower, svm_model) database.Prediction(id=unicode(str(uuid4())), date=datetime.now(), sepal_length=sepal_length, sepal_width=sepal_width, petal_length=petal_length, petal_width=petal_width, prediction=prediction) response = jsonify({"prediction": prediction}) return response @app.route('/predictions', methods=['GET']) @pny.db_session def get_predictions(): predictions = database.Prediction.select().order_by(pny.desc(database.Prediction.date))[:] response = jsonify({'predictions': [prediction.to_dict() for prediction in predictions]}) return response @app.route('/predictions', methods=['DELETE']) @pny.db_session def clear_predictions(): pny.delete(prediction for prediction in database.Prediction) return jsonify({'success': True}) def __make_prediction(flower, svm_model): predictions = svm_model.predict_proba(flower)[0] result = {'Setosa': predictions[0], 'Versicolour': predictions[1], 'Virginica': predictions[2]} if result['Setosa'] >= result['Versicolour'] and result['Setosa'] > result['Versicolour']: return 'Setosa' elif result['Versicolour'] >= result['Setosa'] and result['Versicolour'] > result['Virginica']: return 'Versicolour' else: return 'Virginica' if __name__ == "__main__": if os.environ["LOCAL"] == "True": config.set_private_environment_variables() database.connect_database() app.run(debug=True, host='0.0.0.0')
[ "kumarcal@grinnell.edu" ]
kumarcal@grinnell.edu
2ce28c9741f1e29848d62927caff39bfc99158dc
71a8a118b6389376805d290f2c3826f4802e40ef
/Macys/macys_main.py
4d2fab5623bab4679ed2cc997b52b3c9a49b4eb6
[]
no_license
nayanatharap/Forever21-Macy-s
515489b872a21e3c0a7b7846bd253e012914f78e
46b5dc426c445c7ce61cf83fcb052db922926db1
refs/heads/master
2020-03-19T14:44:13.239176
2018-07-06T02:26:31
2018-07-06T02:26:31
136,637,228
0
0
null
2018-06-16T19:47:07
2018-06-08T15:36:15
Python
UTF-8
Python
false
false
5,241
py
import bs4 as bs from urllib.request import Request, urlopen import macys_parse, json import pandas as pd import tqdm, time, os import logging import requests exp_name = 'Macys_' + time.time().__str__() logging.basicConfig(filename=exp_name + ".log", level=logging.INFO) output_path = "./" + exp_name + "_data" os.makedirs(output_path, exist_ok=False) url = "https://www.macys.com/" headers = {'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36'} data = requests.get(url, headers=headers) sauce=data.text soup = bs.BeautifulSoup(sauce, "lxml") woman_product_type_list=[] woman_product_type_list2=[] for item in soup.find_all("li"): for productPage in item.find_all("a"): if "women" in productPage.get("href"): woman_product_type_list.append(productPage.get("href")) for elem in woman_product_type_list: if elem[0] is "/": woman_product_type_list2.append("http://www.macys.com"+elem) else: woman_product_type_list2.append(elem) # Hard coded filtering for woman products # view_all_list = set(t[0] for t in filter(lambda x: x[1].lower() == "view all", woman_product_type_list2)) # woman_product_type_set = set([k[0] for k in woman_product_type_list2]) - view_all_list woman_product_type_set=set(woman_product_type_list2) woman_product_type_set_copy=set() for elem in woman_product_type_set: if elem.find("women")!=-1: if elem.find("shoes")==-1: if elem.find("accessories")==-1: if elem.find("spray")==-1: if elem.find("perfume")==-1: if elem.find("watch")==-1: if elem.find("ring")==-1: if elem.find("earrings")==-1: if elem.find("jewelery")==-1: woman_product_type_set_copy.add(elem) else: continue else: continue else: continue else: continue else: continue else: continue else: continue else: continue else: continue print(woman_product_type_set) # Variable initializations total_items_need, items_downloaded, num_multiple_category_items = 100, 0, 0 massive_json = {} color, price, title, description, attributes, categories, composition, url_list, brand = [], [], [], [], [], [], [], [], [] for product_type_link in tqdm.tqdm(woman_product_type_set_copy): soup_product_type_page = bs.BeautifulSoup(requests.get(product_type_link, headers=headers).text, "lxml") for item in soup_product_type_page.find_all("a", {'class':"productDescLink"}): product_link = item.get("href") product_link="https://macys.com"+product_link print (product_link) try: final_object, id, first_download_of_item = macys_parse.main(product_link, output_path, massive_json) if not first_download_of_item: num_multiple_category_items += 1 print("Item_clash_for", item) continue except Exception as e: print("Parse failed for ", item, e) continue massive_json[id] = final_object color.append(final_object["annotation"]["color"]) price.append(final_object["annotation"]["price"]) title.append(final_object["annotation"]["title"]) brand.append(final_object["annotation"]["brand"]) description.append(final_object["annotation"]["description"]) attributes.append(final_object["annotation"]["attributes"]) composition.append(final_object["annotation"]["composition"]) categories.append(final_object["annotation"]["categories"]) url_list.append(final_object['info']['product_url']) items_downloaded += 1 print("items_downloaded", items_downloaded) if items_downloaded > total_items_need: break json.dump(massive_json, open(exp_name + "_details.json", "w")) data_frame = pd.DataFrame() data_frame["color"] = color data_frame["price"] = price data_frame['title'] = title data_frame['brand'] = brand data_frame['description'] = description data_frame["attributes"] = attributes data_frame["composition"] = composition data_frame["categories"] = categories data_frame["url_list"] = url_list data_frame.to_excel(exp_name + "_statistics.xlsx") logging.info(product_type_link + " finished and total number till now - " + str(items_downloaded)) logging.info("Total items_in_multiple_categories till now - " + str(num_multiple_category_items)) if items_downloaded > total_items_need: break
[ "noreply@github.com" ]
nayanatharap.noreply@github.com
4f764adf3e826852a0a68cb380add6a7e7217da9
1b5184494d625dade6195eae0c46160077029108
/lab2/suffix_tree_fast.py
68a1abb696a7bd93a950427b601706bd1519d601
[]
no_license
MatiXOfficial/Text-Algorithms
c5e40dd30b07bdc087527da037b883a3b048dabb
ed12a797f2ace962c1a67f8e04fcece36cbf648d
refs/heads/master
2021-02-09T04:36:18.402412
2020-06-13T20:25:51
2020-06-13T20:25:51
244,047,935
1
0
null
null
null
null
UTF-8
Python
false
false
4,249
py
class Node: text = '' def __init__(self, start=None, end=None, parent=None, depth=0, children=None): self.start = start self.end = end self.link = None if children is None: self.children = [] else: self.children = children self.parent = parent self.depth = depth def __str__(self, indent=0): res = indent * ' ' + str(indent) + '-' + str(self.start) + ':' + str(self.end) for child in self.children: res += '\n' + child.__str__(indent + 1) return res def __repr__(self): return "<class Node>\n" + self.__str__() def __len__(self): return self.end - self.start def get_label(self, i=0): return self.text[self.start + i:self.end] def add_child(self, start, end): new_node = Node(start, end, self, self.depth + self.end - self.start) self.children.append(new_node) return new_node def find_child_by_first(self, val): for child in self.children: if self.text[child.start] == val: return child return None def break_path(self, length): new_node = Node(start=self.start + length, end=self.end, parent=self, depth=self.depth + length, children=self.children) self.end = new_node.start self.children = [new_node] def slow_find(self, suffix): child = self.find_child_by_first(suffix[0]) if child is None: return self for i in range(child.start + 1, child.end): if self.text[i] != suffix[i - child.start]: child.break_path(i - child.start) return child return child.slow_find(suffix[len(child):]) def fast_find(self, suffix): child = self.find_child_by_first(suffix[0]) if child is None: return self if len(suffix) > len(child): return child.fast_find(suffix[len(child):]) if len(suffix) == len(child): return child child.break_path(len(suffix)) return child class SuffixTree: def __init__(self, text=None, root=None): self.root = root if text is not None: self.mccreight(text) def __str__(self, indent=0): if self.root is None: return 'Empty tree' else: return self.root.__str__() def __repr__(self): return "<class SuffixTree>\n" + self.__str__() def mccreight(self, text): self.text = text Node.text = text n = len(text) self.root = Node(0, 0) self.root.add_child(0, n) last_head = self.root leaf = self.root.children[0] for i in range(1, n): suffix = text[i:] if last_head == self.root: head = self.root.slow_find(suffix) leaf = head.add_child(i + head.depth + len(head), n) last_head = head else: parent = last_head.parent if parent == self.root: if len(last_head) == 1: node = self.root else: node = self.root.fast_find(last_head.get_label(1)) else: node = parent.link.fast_find(last_head.get_label()) if len(node.children) == 1: head = node else: head = node.slow_find(leaf.get_label()) leaf = head.add_child(i + head.depth + len(head), n) last_head.link = node last_head = head def factor_in(self, word): node = self.root.find_child_by_first(word[0]) while node is not None: for i in range(node.start + 1, node.end): if node.depth + i - node.start == len(word): return True if self.text[i] != word[node.depth + i - node.start]: return False if node.depth + node.end - node.start == len(word): return True node = node.find_child_by_first(word[node.depth + node.end - node.start]) return False
[ "mateuszkocot99@gmail.com" ]
mateuszkocot99@gmail.com
7ce054927b3fc0f78d68e85c4844a342a9585343
c49e8d7a1c0c245fd0edc604f5d7f7b1ce6f2ca6
/Ciclo1/Unidad 1/Clases/Unidad 2/for.py
9c823093a90b63f62094d6f0c345c7f774f25da0
[]
no_license
mmedinar/FundamentosProgramacion
71e7706e0218cba461f9d1f9306b3ff9a1f9d11e
c8539678b943b55f00b7877e9e1cd04eaa0cd271
refs/heads/master
2023-05-31T05:25:47.845896
2021-07-02T00:03:40
2021-07-02T00:03:40
382,183,018
0
0
null
null
null
null
UTF-8
Python
false
false
2,044
py
# for " variable" in "elemento iterable" # pass # for numeros in range(0,11): # print(numeros, end= f'\n') # x = ["manzanas", "peras", "bananas", "melones", "fresas"] # for i in x: # print(i) # for pares in range(2,101,2): # print(pares, end=' ') # print() # for i in range(65,91): # print(f"{i}{i:c} ", end=' ') # #i:c ascci # #i:o hexadecimial # #i:b binario # print() # print(ord('Z')) # print(chr(90)) #*********************************************** # abcdario = [] # for letra in range(ord('a'), ord('z')+1): # #print(letra, sep=' ') # abcdario.append(chr(letra)) # print(abcdario) # vocales = [] # consonantes = [] # for letra in abcdario: # if letra in 'aeiou': # vocales.append(letra) # else: # consonantes.append(letra) # print(vocales) # print(consonantes) #*************************************************************************************** # nombres = ['alex','edwin','heynar','galaxy', 'juan'] # profesiones = ['soporte', 'administrador','tecnologo','electricista','ingeniero','ingeniero'] # print(nombres) # print(profesiones) # trabajos = {} #{profesion: persona} # for i in range(len(nombres)): # profesion = profesiones[i] # persona = nombres[i] # if profesion not in trabajos: # trabajos[profesion] = [persona] # else: # trabajos[profesion].append(persona) # print(trabajos) # input() # test fizz buzz ********************************************************************* """ Escribir un programa que muestre en pantalla los números del 1 al 100, sustituyendo los múltiplos de 3 por la palabra “fizz”, los múltiplos de 5 por “buzz” y los múltiplos de ambos, es decir, los múltiplos de 3 y 5 (o de 15), por la palabra “fizzbuzz”. """ numeros = [] for i in range(1,101): if i % 15 == 0: valor = "fizzbuzz" elif i % 5 == 0: valor = "buzz" elif i % 3 == 0: valor = "fizz" else: valor = i print(valor, end=' ') print()
[ "mmedinar@gmail.com" ]
mmedinar@gmail.com
b3078452785160519520e6a33bf24e1caf6d1245
b4cb46c13705dad47531a898adacd95da3c36df6
/polls/models.py
cf9f6631aa8e84711cc0cc6650914887ddfc93b3
[ "MIT" ]
permissive
zhaogp/oxygen
3912a8d8a6dc1494cfea60e117e8feff860c10ab
2e11cb7c7ea2d533afbed51f9bb2de7ba19cfd31
refs/heads/master
2021-01-03T13:21:43.632290
2018-06-03T15:36:13
2018-06-03T15:36:13
100,777,519
0
0
null
null
null
null
UTF-8
Python
false
false
635
py
from django.db import models import django.utils.timezone import datetime class Question(models.Model): question_text = models.CharField(max_length=120) pub_date = models.DateTimeField('date published') def __str__(self): return self.question_text def is_published_recently(self): return self.pub_date >= timezone.now() - datetime.timedelta(days=1) class Choice(models.Model): question = models.ForeignKey(Question, on_delete=models.CASCADE) choice_text = models.CharField(max_length=200) votes = models.IntegerField(default=0) def __str__(self): return self.choice_text
[ "zhaoguoping@jd.com" ]
zhaoguoping@jd.com
9e520d57b80b500c66ebe24c19c9c823c4b24120
e93fac3fdf589e7ba0ffa0a43b0b883ee4aa33b5
/code/test2.py
39048053d641464ba4c9f1ebe2bdf958f20a75d6
[]
no_license
Alexanderkorn/A3-project
6d1c2d66b5ab34f65781029d9e75c2eadd1927ff
e3a0c7c47a88cec3e3f21590ca46483199af05a5
refs/heads/master
2021-01-13T00:49:21.565076
2015-10-30T15:07:32
2015-10-30T15:07:32
44,971,434
1
1
null
2015-10-28T11:36:55
2015-10-26T13:52:05
Python
UTF-8
Python
false
false
2,789
py
__author__ = 'alexander' #import mmap #f = open('passwords.txt') username=input("gebruikers naam:") password=input("Wachtwoord:") #s = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) if username and password in open('passwords.txt').read(): print("true") else: print("false") """" while password == 'lol': if s.find(str(username)) != -1: print("True") if s.find(str(password)) != 1: print("True") import hashlib ,os resource_file = "passwords.txt" def encode(username,password): return username,hashlib.sha1(password).hexdigest() def add_user(username,password): if os.path.exists(resource_file): with open(resource_file) as f: if username in f.read(): raise Exception("user already exists") with open(resource_file,"a") as f: print(f, encode(username,password)) return username def check_login(username,password): with open(resource_file) as f: if encode(username,password) in f.read(): return username def create_username(): try: username = add_user(input("enter username:"),input("enter password:")) print("Added User! %s" + username) except Exception as e: print("Failed to add user "+username,"! ... user already exists??" + username) def login(): if check_login(input("enter username:"),input("enter password:")): print("Login Success!!") else: print("there was a problem logging in") while True: try: {'c':create_username,'l':login}.get(input("(c)reate user\n(l)login\n------------\n>").lower(),login)() except: break print("Login Script") import getpass import csv userbase="Usernames.csv" CorrectUsername = "Test" CorrectPassword = "TestPW" loop = 'true' while (loop == 'true'): username = input("Please enter your username: ") credentials = {} # with open('Usernames.csv', 'r') as f: # for line in f: # user, pwd = line.strip().split(';') # credentials[user] = pwd if (username == CorrectUsername): loop1 = 'true' while (loop1 == 'true'): password = getpass.getpass("Please enter your password: ") code = int(input("uw code alstublieft")) f=open(userbase,'r') reader=csv.reader(f, delimiter=';') for i in reader: if int(i[1]) == int(code): print(i[0]) print("Succes") f.close() if (password == CorrectPassword): print("Logged in successfully as " + username) loop = 'false' loop1 = 'false' else: print("Password incorrect!") else: print("Username incorrect!") """""
[ "alexanderkorn7@gmail.com" ]
alexanderkorn7@gmail.com
e90e6e54ec62d2abead5decf5e250852cfd2bbac
0496f51d9d67eaa54945c47f5078c313e6ee5506
/Unit Automation/YAML/test.py
dc747e2da1f05058ff8ae8d19b5265048b0305c9
[]
no_license
jhearn85/automation_wip
2d98ca5fb2de49fd29004d150710ba7c47a438a3
47c7e66427c74f00171045973af14fbbee37277c
refs/heads/master
2023-04-15T03:37:42.187091
2021-04-07T04:57:02
2021-04-07T04:57:02
331,192,556
0
0
null
null
null
null
UTF-8
Python
false
false
627
py
import sys import yaml from jinja2 import Environment, FileSystemLoader from netmiko import ConnectHandler from datetime import datetime import os.path def user_input(): description = input("Give a Description: ") IP_Address = input("Give your IP: ") user_input.desc = description user_input.ip = IP_Address user_input() Description = user_input.desc IP_Address = user_input.ip with open('data.yaml', 'w') as outfile: outfile.write(yaml.dump( {"Interfaces": { 'Description' : Description, 'ip' : IP_Address} }, default_flow_style=False))
[ "hearnjameson@gmail.com" ]
hearnjameson@gmail.com
77f57daeac7db77db887d0574452a3a1e5356270
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adverbs/_kindlier.py
8f1161ba660b3d1a9e7bc4e58b5918fb23e3990e
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
244
py
from xai.brain.wordbase.adverbs._kindly import _KINDLY #calss header class _KINDLIER(_KINDLY, ): def __init__(self,): _KINDLY.__init__(self) self.name = "KINDLIER" self.specie = 'adverbs' self.basic = "kindly" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
e85845f60ab0a44155867e1e7a3ef9de3a93c75f
2161b5699f4d6ea3d5c420b69aa01259ebb5cb82
/my_app.py
29e5a66e026b35b718cfc1ab45418090741785a8
[ "MIT" ]
permissive
evature/webhooks
e6683765b3b8a9b8e794c0bdde07ae0fb56f9726
28e473968ba1b3eb61b5e60f1ddf8e2c4bb31e6b
refs/heads/master
2021-01-20T20:48:26.870143
2016-09-29T11:22:42
2016-09-29T11:22:42
64,929,186
0
0
null
null
null
null
UTF-8
Python
false
false
25,815
py
# encoding: utf-8 ''' Created on Jul 12, 2016 @author: Tal Demo implementation of applicative webhooks for the Evature BotKit = http://www.evature.com/docs/botkit.html It is meant to be as simple as possible. To achieve max simplicity, it is based on Zappa + Flask, deployed to AWS Lambda. This is Zappa - https://github.com/Miserlou/Zappa Assuming you have an AWS account you can have these webhooks running, "serverless", in 5 minutes. ''' from __future__ import unicode_literals, division import string import random import json from random import sample from flask import Flask, request, redirect, render_template, jsonify, make_response import requests APP = Flask(__name__) BOTKIT_API_LATEST_VERSION = "0.4.0" class DataMessageSubType(object): """Sub Types of DataMessage JSON data""" airline_itinerary = "airline_itinerary" airline_checkin = "airline_checkin" airline_boardingpass = "airline_boardingpass" airline_update = "airline_update" class BotWebhookTypes(object): """The applicative webhooks""" search_flight = 'search_flight' search_car = 'search_car' search_hotel = 'search_hotel' # search_cruise = 'search_cruise' chat_greeting = 'chat_greeting' flight_gate_number = 'flight_gate_number' flight_departure_time = 'flight_departure_time' flight_arrival_time = 'flight_arrival_time' flight_boarding_time = 'flight_boarding_time' flight_boarding_pass = 'flight_boarding_pass' flight_itinerary = 'flight_itinerary' reservation_show = 'reservation_show' reservation_cancel = 'reservation_cancel' message_logger = 'message_logger' # is activated for every send message used for logging flight_status = 'flight_status' identify_user = 'identify_user' # activated when the login form is complete - given the form answers and returns the loginData identify_user_questions = 'identify_user_questions' # returns custom questions for login - result will be passed to identify_user webhook contact_support = 'contact_support' airport_navigation = 'airport_navigation' change_booking = 'change_booking' logout = 'logout' arrivals = 'arrivals' departures = 'departures' show_help = "show_help" show_reservation = 'show_reservation' ask_time = 'ask_time' ask_weather = 'ask_weather' FLIGHT_STATUS_MESSAGE_EXAMPLE = dict( _type='DataMessage', subType='airline_update', asAttachment=False, introMessage='Here is an example of a Flight Status', jsonData=dict( flight_number='UAL123', number=123, airline_name='United', departure_airport={ "airport_code": 'LHR', "city":'London Heathrow', "gate":'232', "terminal":'' }, arrival_airport={ "airport_code": 'IAD', "city": 'Washington Dulles Intl', "gate": 'C2', "terminal": 'B' }, flight_schedule={ "departure_time_actual": "2016-08-09T08:16:00", "arrival_time": "2016-08-09T10:51:00", "departure_time": "2016-08-09T07:30:00", "boarding_time": "", } ), ) BOARDING_PASS_MESSAGE_EXAMPLE = dict( _type='DataMessage', subType='airline_boardingpass', asAttachment=True, introMessage='Here is an example of a Boarding Pass', jsonData={'auxiliary_fields': [{'label': 'Terminal', 'value': 'T1'}, {'label': 'Departure', 'value': '30OCT 19:05'}], 'flight_info': {'arrival_airport': {'airport_code': 'AMS', 'city': 'Amsterdam'}, 'departure_airport': {'airport_code': 'JFK', 'city': 'New York', 'gate': 'D57', 'terminal': 'T1'}, 'flight_number': 'KL0642', 'flight_schedule': {'arrival_time': '2016-01-05T17:30', 'departure_time': '2016-01-02T19:05'}}, 'header_image_url': 'https://d1hz6cg1a1lrv6.cloudfront.net/media/images/evature/logo4-19b0ca62fbf2b08e3bbc9d25298523ea4600422e.jpg', 'logo_image_url': 'https://d2hbukybm05hyt.cloudfront.net/images/airline_logos/logo_JB.png', 'passenger_name': 'TAL WEISS', 'pnr_number': 'CG4X7U', 'qr_code': 'M1WEISS\\/TAL CG4X7U nawouehgawgnapwi3jfa0wfh', 'seat': '75A', 'secondary_fields': [{'label': 'Boarding', 'value': '18:30'}, {'label': 'Gate', 'value': 'D57'}, {'label': 'Seat', 'value': '75A'}, {'label': 'Sec.Nr.', 'value': '003'}], 'travel_class': 'business'}, ) @APP.route('/simple', methods=['POST']) def simple(): """Simple view function""" response = dict(messages=[ dict(_type="TextMessage", text="Here is a text message"), dict(_type="TextMessage", text="and a picture of a fish"), dict(_type="ImageMessage", imageUrl="http://pngimg.com/upload/fish_PNG10538.png") ], botkitVersion=BOTKIT_API_LATEST_VERSION) return jsonify(response) @APP.route('/human', methods=['POST']) def human(): """Transfer to Human function""" response = dict(messages=[ dict(_type="TextMessage", text="I will try to transfer you to an agent!"), dict(_type="HandoffToHumanEvent") ], botkitVersion=BOTKIT_API_LATEST_VERSION) return jsonify(response) @APP.route('/locked', methods=['POST']) def locked(): """Simple view function that needs login""" body = request.get_json(force=True) if body and isinstance(body, dict) and body.get('loginData'): response = dict(messages=[ dict(_type="TextMessage", text="I guess you logged in"), dict(_type="TextMessage", text="But you still get a picture of a lock"), dict(_type="ImageMessage", imageUrl="http://www.fortresslockandsecurity.com/wp-content/uploads/2014/04/Austin-Locksmith.png") ], botkitVersion=BOTKIT_API_LATEST_VERSION) else: response = dict(botkitVersion=BOTKIT_API_LATEST_VERSION, messages=[dict(_type='LoginOAuthEvent', loginSuccessHook={'webhook': 'flight_boarding_pass'}, text='Please Login in first', webLoginUrl='https://chat.evature.com/demo_login')]) return jsonify(response) @APP.route('/bp', methods=['POST']) def boarding_pass(): """Return a boarding pass""" response = dict(messages=[BOARDING_PASS_MESSAGE_EXAMPLE], botkitVersion=BOTKIT_API_LATEST_VERSION) return jsonify(response) def random_string(length_of_string): """Generate a random string""" return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(length_of_string)) @APP.route('/dl', methods=['GET', 'POST']) def demo_login(): """Implements a simple page for OAuth login # example of URL: # https://chat.evature.com/demo_login? # account_linking_token=ARREbGIbGD7PQhwWcUt2b5n6yomzPaL6yr_fGAVoFBEADGssklmardZMcnJv9fLsLmpnQ4QuzDhhxg65Ewzq3ObOoUe_aMoDCl5LUS4O_qEumg # &redirect_uri=https%3A%2F%2Ffacebook.com%2Fmessenger_platform%2Faccount_linking%2F%3Faccount_linking_token%3DARREbGIbGD7PQhwWcUt2b5n6yomzPaL6yr_fGAVoFBEADGssklmardZMcnJv9fLsLmpnQ4QuzDhhxg65Ewzq3ObOoUe_aMoDCl5LUS4O_qEumg """ messages = [] context = {} # context.update(csrf(request)) redirect_uri = request.args.get('redirect_uri', '') account_linking_token = request.args.get('account_linking_token', '') if not redirect_uri: messages.append("Expected to find 'redirect_uri' in the query parameters") if not account_linking_token: messages.append("Expected to find 'account_linking_token' in the query parameters") if request.method == 'POST': if 'canceled' in request.args: # canceled messages.append("Canceled!") if redirect_uri: return redirect(redirect_uri) else: username = request.form['username'] password = request.form['password'] if username.lower().strip() == 'username' and password.lower().strip() == 'password': # success messages.append("Success!") if redirect_uri: return redirect('{}&authorization_code={}'.format(redirect_uri, random_string(5))) else: # fail messages.append("Invalid Username/Password<br>Use &ldquo;username&rdquo; and &ldquo;password&rdquo;" " for succesful login, or click 'cancel'") context['message'] = "<br>".join(messages) return render_template('demo_login.html', **context) @APP.route('/bplogin', methods=['POST']) def flight_boarding_pass_webhook(): body = request.get_json(force=True) if body and isinstance(body, dict) and body.get('loginData'): response = dict(messages=[BOARDING_PASS_MESSAGE_EXAMPLE], botkitVersion=BOTKIT_API_LATEST_VERSION) else: response = dict(botkitVersion=BOTKIT_API_LATEST_VERSION, messages=[dict(_type='LoginOAuthEvent', loginSuccessHook={'webhook': 'flight_boarding_pass'}, text='Please Login in first', webLoginUrl='https://chat.evature.com/demo_login')]) return jsonify(response) @APP.route('/roadside', methods=['POST']) def roadside(): """Simple roadside assistance function""" response = dict(messages=[ dict(_type="TextMessage", text="If you need roadside assistance with your Avis vehicle, please call 877-485-5295"), dict(_type="ImageMessage", imageUrl="http://www.whatafuture.com/wp-content/uploads/2015/03/Google-roadside-assistance-1024x683.jpg") ], botkitVersion=BOTKIT_API_LATEST_VERSION) return jsonify(response) @APP.route('/flightstat', methods=['POST']) def flight_status(): """Simple flight status reply""" response = dict(messages=[FLIGHT_STATUS_MESSAGE_EXAMPLE], botkitVersion=BOTKIT_API_LATEST_VERSION) return jsonify(response) @APP.route('/taltesting', methods=['POST']) def tal_testing(): """Playground for testing stuff""" response = """{ "botkitVersion": "0.3.0", "messages": [ { "_type": "RichMessage", "imageUrl": "https://www.travelexinsurance.com/images/default-album/mainimg_flightinsurance.jpg", "title": "LHR /u21d2 SVO Option # 1: $1842.24", "subtitle": " : 2016-08-31,c: 2016-09-01,one stop at SVO", "buttons": [ {"_type": "ButtonMessage", "text": "Reserve Seat", "url": "https://www.google.com/search?q=flight%20LHR%20to%20SVO"} ] } ] }""" return jsonify(json.loads(response)) @APP.route('/roshan', methods=['POST']) def for_roshan(): """Trying to fix the response for Amadeus""" response = r""" {"botkitVersion":"0.3.0","messages":[{"_type":"TextMessage","text":"Here are the the top 3 results:"},{"_type":"MultiRichMessage","messages":[{"_type":"RichMessage","title":"BLR (2016-08-24 18:25) -> NCE (2016-08-24 09:40)","imageUrl":"http://tomcat.www.1aipp.com/sandboxrestservice_chatbot/flight.jpg","buttons":[{"_type":"ButtonMessage","text":"$ 1204.46","url":"https://www.amadeus.net/home/"},{"_type":"ButtonMessage","text":"More Details","url":"https://www.amadeus.net/home/"},{"_type":"ButtonMessage","text":"Book this flight","url":"https://www.amadeus.net/home/"},{"_type":"ButtonMessage","text":"Show similar flights","url":"https://www.amadeus.net/home/"}],"url":"https://www.amadeus.net/home/"},{"_type":"RichMessage","title":"BLR (2016-08-24 18:25) -> NCE (2016-08-24 09:40)","imageUrl":"http://tomcat.www.1aipp.com/sandboxrestservice_chatbot/flight.jpg","buttons":[{"_type":"ButtonMessage","text":"$ 1219.24","url":"https://www.amadeus.net/home/"},{"_type":"ButtonMessage","text":"More Details","url":"https://www.amadeus.net/home/"},{"_type":"ButtonMessage","text":"Book this flight","url":"https://www.amadeus.net/home/"},{"_type":"ButtonMessage","text":"Show similar flights","url":"https://www.amadeus.net/home/"}],"url":"https://www.amadeus.net/home/"},{"_type":"RichMessage","title":"BLR (2016-08-24 17:00) -> NCE (2016-08-24 06:40)","imageUrl":"http://tomcat.www.1aipp.com/sandboxrestservice_chatbot/flight.jpg","buttons":[{"_type":"ButtonMessage","text":"$ 1444.75","url":"https://www.amadeus.net/home/"},{"_type":"ButtonMessage","text":"More Details","url":"https://www.amadeus.net/home/"},{"_type":"ButtonMessage","text":"Book this flight","url":"https://www.amadeus.net/home/"},{"_type":"ButtonMessage","text":"Show similar flights","url":"https://www.amadeus.net/home/"}],"url":"https://www.amadeus.net/home/"}]}]} """ return jsonify(json.loads(response)) @APP.route('/sudhanwa', methods=['POST']) def for_sudhanwa(): """Trying to fix the response for Amadeus""" response = """ { "botkitVersion": "0.3.0", "messages": [ { "_type": "TextMessage", "text": "Here are the the top 3 results:" }, { "_type": "RichMessage", "title": "LHR /u21d2 SVO Option # 1: $1842.24", "imageUrl": "https://www.travelexinsurance.com/images/default-album/mainimg_flightinsurance.jpg", "subtitle": " : 2016-08-31,c: 2016-09-01,one stop at SVO", "buttons": [ { "_type": "ButtonMessage", "text": "Reserve Seat", "payload": null, "url": "https://www.google.com/search?q=flight%20LHR%20to%20SVO" } ] }, { "_type": "TextMessage", "text": "Outbound Flight" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-08-31T23:35<br><h3>Departs at</h3> :2016-08-31T18:40<br><h3>Fly with</h3> :BA<h3>Airways</h3><br><h3>Origin Airport</h3> :LHR<br><h3>Destination Airport</h3> :HEL<br><h3>Flight Number</h3> :5908<br>" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-09-01T11:05<br><h3>Departs at</h3> :2016-09-01T09:25<br><h3>Fly with</h3> :AY<h3>Airways</h3><br><h3>Origin Airport</h3> :HEL<br><h3>Destination Airport</h3> :SVO<br><h3>Flight Number</h3> :153<br>" }, { "_type": "TextMessage", "text": "Inbound Flight" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-09-03T20:05<br><h3>Departs at</h3> :2016-09-03T18:20<br><h3>Fly with</h3> :SU<h3>Airways</h3><br><h3>Origin Airport</h3> :SVO<br><h3>Destination Airport</h3> :HEL<br><h3>Flight Number</h3> :6844<br>" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-09-04T09:00<br><h3>Departs at</h3> :2016-09-04T07:45<br><h3>Fly with</h3> :BA<h3>Airways</h3><br><h3>Origin Airport</h3> :HEL<br><h3>Destination Airport</h3> :LHR<br><h3>Flight Number</h3> :5905<br>" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-08-31T23:35<br><h3>Departs at</h3> :2016-08-31T18:40<br><h3>Fly with</h3> :BA<h3>Airways</h3><br><h3>Origin Airport</h3> :LHR<br><h3>Destination Airport</h3> :HEL<br><h3>Flight Number</h3> :5908<br>" }, { "_type": "RichMessage", "title": "LHR /u21d2 SVO Option # 2: $2110.83", "imageUrl": "https://www.travelexinsurance.com/images/default-album/mainimg_flightinsurance.jpg", "subtitle": ": 2016-08-31,c: 2016-09-01,one stop at SVO", "buttons": [ { "_type": "ButtonMessage", "text": "Reserve Seat", "payload": null, "url": "https://www.google.com/search?q=flight%20LHR%20to%20SVO" } ] }, { "_type": "TextMessage", "text": "Outbound Flight" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-08-31T18:05<br><h3>Departs at</h3> :2016-08-31T15:50<br><h3>Fly with</h3> :AF<h3>Airways</h3><br><h3>Origin Airport</h3> :LHR<br><h3>Destination Airport</h3> :CDG<br><h3>Flight Number</h3> :1781<br>" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-09-01T00:10<br><h3>Departs at</h3> :2016-08-31T19:30<br><h3>Fly with</h3> :AF<h3>Airways</h3><br><h3>Origin Airport</h3> :CDG<br><h3>Destination Airport</h3> :SVO<br><h3>Flight Number</h3> :1144<br>" }, { "_type": "TextMessage", "text": "Inbound Flight" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-09-03T17:00<br><h3>Departs at</h3> :2016-09-03T14:05<br><h3>Fly with</h3> :SU<h3>Airways</h3><br><h3>Origin Airport</h3> :SVO<br><h3>Destination Airport</h3> :CDG<br><h3>Flight Number</h3> :4921<br>" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-09-03T19:20<br><h3>Departs at</h3> :2016-09-03T19:05<br><h3>Fly with</h3> :AF<h3>Airways</h3><br><h3>Origin Airport</h3> :CDG<br><h3>Destination Airport</h3> :LHR<br><h3>Flight Number</h3> :1180<br>" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-08-31T18:05<br><h3>Departs at</h3> :2016-08-31T15:50<br><h3>Fly with</h3> :AF<h3>Airways</h3><br><h3>Origin Airport</h3> :LHR<br><h3>Destination Airport</h3> :CDG<br><h3>Flight Number</h3> :1781<br>" }, { "_type": "RichMessage", "title": "LHR /u21d2 SVO Option # 3: $2699.13", "imageUrl": "https://www.travelexinsurance.com/images/default-album/mainimg_flightinsurance.jpg", "subtitle": " : 2016-08-31,c: 2016-09-01,non stop ", "buttons": [ { "_type": "ButtonMessage", "text": "Reserve Seat", "payload": null, "url": "https://www.google.com/search?q=flight%20LHR%20to%20SVO" } ] }, { "_type": "TextMessage", "text": "Outbound Flight" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-09-01T04:25<br><h3>Departs at</h3> :2016-08-31T22:45<br><h3>Fly with</h3> :SU<h3>Airways</h3><br><h3>Origin Airport</h3> :LHR<br><h3>Destination Airport</h3> :SVO<br><h3>Flight Number</h3> :2585<br>" }, { "_type": "TextMessage", "text": "Inbound Flight" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-09-03T08:00<br><h3>Departs at</h3> :2016-09-03T06:00<br><h3>Fly with</h3> :SU<h3>Airways</h3><br><h3>Origin Airport</h3> :SVO<br><h3>Destination Airport</h3> :LHR<br><h3>Flight Number</h3> :2570<br>" }, { "_type": "HtmlMessage", "height": "200", "width": "350", "html": "<h3>Arrives at</h3> :2016-09-01T04:25<br><h3>Departs at</h3> :2016-08-31T22:45<br><h3>Fly with</h3> :SU<h3>Airways</h3><br><h3>Origin Airport</h3> :LHR<br><h3>Destination Airport</h3> :SVO<br><h3>Flight Number</h3> :2585<br>" } ] } """ return jsonify(json.loads(response)) @APP.route('/questions', methods=['POST']) def questions(): """Playing with questions""" response = """ { "botkitVersion":"0.4.0", "messages":[ { "_type":"QuestionnaireEvent", "questionnaireAnsweredHook":{ "webhook":"roadside_assistance", "payload":{ "more_info_to_attach_to_answers":123 } }, "questionnaireAbortedHook":{ "webhook":"roadside_assistance", "payload":{ "validation error?":321 } }, "questions":[ { "_type":"EmailQuestion", "name":"email", "text":"I need to identify you, what is your email?" }, { "_type":"MultiChoiceQuestion", "text":"What happened?", "name":"what_happened", "choices":[ "Accident", "Mechanical problem", "Other" ] }, { "_type":"OpenQuestion", "name":"details", "text":"I need a string that starts with 'a' and is 3 or more letters", "validationRegex":"a.{2}" } ] } ] } """ return jsonify(json.loads(response)) @APP.route('/greeting', methods=['POST']) def greeting(): """Greeting webhook demo implementation""" messages = [] body = request.get_json(force=True) first_name = None bot_or_agent_key = "bot_or_agent" bot_please_reply = "YatraBot Please!" if body and isinstance(body, dict): bot_or_agent = body.get(bot_or_agent_key) if bot_or_agent: if bot_or_agent == bot_please_reply: messages.append(dict(_type="TextMessage", text="bot requested - how may I help?")) else: messages.append(dict(_type="TextMessage", text="human requested")) messages.append(dict(_type="HandoffToHumanEvent")) else: user = body.get('user') if user and isinstance(user, dict): first_name = user.get('firstName') if first_name: messages.append(dict(_type="TextMessage", text="Hello there {}!".format(first_name))) if not first_name: messages.append(dict(_type="TextMessage", text="Hello there!")) messages.append(dict(_type="QuestionnaireEvent", questionnaireAnsweredHook=dict(webhook="chat_greeting", payload=dict()), questions=[dict(_type="MultiChoiceQuestion", text="Would you like to talk to YatraBot or wait for an agent?", name=bot_or_agent_key, choices=["YatraBot Please!", "Wait for an agent"])])) response = dict(messages=messages, botkitVersion=BOTKIT_API_LATEST_VERSION) return jsonify(response) @APP.route('/https_proxy', methods=['GET']) def https_proxy(): """Trying to fix the response for Amadeus""" url = request.args.get('url') if url: unquoted_url = requests.utils.unquote(url) try: res = requests.get(unquoted_url) except requests.exceptions.RequestException: pass else: response = make_response(res.content) for key, value in res.headers.iteritems(): response.headers[key] = value return response return "No URL" AIRPORT_SUGGESTIONS = [ ("Flight Status:", ["My flight status", "status of ua-123", "arrivals", "display arrivals", "departures", "list arriving flight", "departure list", "departures flights", ]), ("General questions:", ["Time in Rome", "the weather in paris", "Who are you?", "What are you?", "Who made you?", "What do you eat?", "What's new?", "Who am I?", "Where are you from?", "What is your name?", ]), ("Hotel searches:", ["hotel tonight", "cheap hotel nyc", "3-4 stars for Monday", ]), ("Reach out for some help:", ["customer service", "call support", "talk to a human?", "help", 'information', 'help me', 'can you help me?', "can u show me info?", "I need assistance", ]), ("Request personal information:", ["departure time?", "boarding pass", "When do I depart?", "Show arrival time", "When do I arrive?", "When are we boarding?", "Display my itinerary", "Trip details", "Number of my gate", # "12345678901234567890", ]), ] @APP.route('/capabilities_evature_airports', methods=['POST']) def capabilities_evature_airports(): """Capabilities view function""" messages = [dict(_type="TextMessage", text="I can do many things! Here are a few options:")] categories = sample(AIRPORT_SUGGESTIONS, 3) multi_rich_messages = [] for category in categories: buttons = [dict(_type="ButtonMessage", text=text, action=dict(_type="InputTextAction", inputText=text)) for text in sample(category[1], 3)] # pylint:disable=unsubscriptable-object message = dict(_type="RichMessage", title=category[0], buttons=buttons) # pylint:disable=unsubscriptable-object multi_rich_messages.append(message) messages.append(dict(_type="MultiRichMessage", messages=multi_rich_messages)) response = dict(botkitVersion=BOTKIT_API_LATEST_VERSION, messages=messages) return jsonify(response) # We only need this for local development. if __name__ == '__main__': APP.run()
[ "tal@evature.com" ]
tal@evature.com
061f704f78dd82afc0cfadd3da7489a155b9c579
2b21a7423f31163f0571161501477e6262a22b55
/jackdaw/nest/api/session.py
9fefb7c25d34ee248c3b282c7a2054f868cd55bd
[]
no_license
hartl3y94/jackdaw
e2ae9e98cb97a7f1b3c0545042b0985220316720
3876298e1568fe8d811e86668e428a5fd937cd5a
refs/heads/master
2023-04-03T06:36:04.850552
2021-03-30T20:26:43
2021-03-30T20:26:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,417
py
from jackdaw.dbmodel.netsession import NetSession from jackdaw.dbmodel.adcomp import Machine from jackdaw.dbmodel.aduser import ADUser from flask import current_app def session_list(domainid): db = current_app.db sessions = {} for mid, mname, session in db.session.query(Machine.id, Machine.sAMAccountName, NetSession).filter(Machine.ad_id == domainid).filter(NetSession.machine_id == Machine.id).distinct(NetSession.username): if mid not in sessions: sessions[mid] = {} sessions[mid]['sessions'] = [] sessions[mid]['machinename'] = mname sessions[mid]['sessions'].append(session.username) return sessions def session_add(domainid, session): db = current_app.db print(session) cname = session['hostname'] if cname[-1] != '$': cname = session['hostname'] + '$' comp = db.session.query(Machine.id, Machine.sAMAccountName).filter_by(ad_id = domainid).filter(Machine.sAMAccountName == cname).first() if comp is None: return 'Machine not found!', 404 uname = session['username'] user = db.session.query(ADUser.sAMAccountName).filter_by(ad_id = domainid).filter(ADUser.sAMAccountName == uname).first() if user is None: return 'User not found!', 404 sess = NetSession() sess.machine_id = comp.id sess.source = comp.sAMAccountName sess.username = user.sAMAccountName try: db.session.add(sess) db.session.commit() except: db.session.rollback() return 'Session created!', 200
[ "info@skelsec.com" ]
info@skelsec.com
01c96ced74400e481508f74bf645b0675e074697
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_stilettos.py
4433d008834892f1cf17787b6c5aa487efa15f64
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#calss header class _STILETTOS(): def __init__(self,): self.name = "STILETTOS" self.definitions = stiletto self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['stiletto']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
3bb1a6919eadc7c1ba52345e456c4e94b78f4016
1b3fc35ada474601a76de3c2908524336d6ca420
/design/design/spiders/artop.py
ee2aa5b7a63a36f995205766d85258cf1ae5f7c3
[]
no_license
dqsdatalabs/Internet-worm
db3677e65d11542887adcde7719b7652757a3e32
62f38f58b4fa7643c482077f5ae18fff6fd81915
refs/heads/master
2022-01-16T14:29:52.184528
2018-12-25T08:46:08
2018-12-25T08:46:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,089
py
import scrapy from design.items import DesignItem import json import re data = { 'channel': 'artop', 'evt': 3, 'company': '上海浪尖工业设计有限公司' } class DesignCaseSpider(scrapy.Spider): name = 'artop' allowed_domains = ['www.artop-sh.com'] category = {'2cf03': '智能科技', '01e9b': '家居家电', '65962': '交通出行', '7e2c0': '机器人', '147e1': '机械自动化', '27ff8': '健康医疗','55fe6':'设计研究','99efd':'其他'} category_list = ['2cf03', '01e9b', '65962', '7e2c0', '147e1', '27ff8','55fe6','99efd'] url = 'http://www.artop-sh.com/industrial#_case' start_urls = [url] def parse(self, response): for j in self.category_list: x = '//div[@class="row list-show"]/a[contains(@class,"%s")]' %j detail_list = response.xpath(x) for i in detail_list: item = DesignItem() url = 'http://www.artop-sh.com'+i.xpath('./@href').extract()[0] tags = self.category[j] title = i.xpath('./p/text()').extract()[0] img_url = i.xpath('./span/i/@data-src').extract()[0] if not img_url.startswith('http'): img_url = 'http://www.artop-sh.com' + img_url item['title'] = title item['img_url'] = img_url item['url'] = url item['tags'] = tags for key, value in data.items(): item[key] = value yield scrapy.Request(url=url,callback=self.parse_detail,meta={"item":item}) def parse_detail(self,response): item = response.meta['item'] url = response.url item['url'] = url remark = response.xpath('//div[@class="padding-md"]//text()').extract() remark = [''.join(i.split()) for i in remark] remark = ''.join(remark).strip() if len(remark) > 480: remark = remark[:480] item['remark'] = remark yield item
[ "noreply@github.com" ]
dqsdatalabs.noreply@github.com
1717915a7b2b26e15950547533e5f928c10aac90
a7e150089cc4d29da5247feccb6c8b7e578c5027
/fileconvert/word2txt.py
9d464cb9cbfe4f941ae551c3080194c624b44363
[]
no_license
ligangyuan/pyreggmail
8cf5d9000ca486a79a1b3de6e65fb5fe8ecfb4c6
b442a73bd21ee4d7a399d1559d13612db104e591
refs/heads/master
2022-12-28T07:08:00.422405
2020-10-10T06:10:38
2020-10-10T06:10:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,470
py
# coding=utf-8 """ Description: Word文件转化TXT文本 Author:伏草惟存 Prompt: code in Python3 env Install package: pip install pypiwin32 """ import fnmatch import os from win32com import client as wc ''' 功能描述:word文件转存txt文件,默认存储当前路径下;用户可以指定存储文件路径。 参数描述:1 filePath:文件路径 2 savePath: 指定保存路径 ''' def Word2Txt(filePath, savePath=''): # 1 切分文件上级目录和文件名 dirs, filename = os.path.split(filePath) # print(dirs,'\n',filename) # 2 修改转化后的文件名 new_name = '' if fnmatch.fnmatch(filename, '*.doc'): new_name = filename[:-4] + '.txt' elif fnmatch.fnmatch(filename, '*.docx'): new_name = filename[:-5] + '.txt' else: return print('->', new_name) # 3 文件转化后的保存路径 if savePath == '': savePath = dirs else: savePath = savePath word_to_txt = os.path.join(savePath, new_name) print('->', word_to_txt) # 4 加载处理应用,word转化txt wordapp = wc.Dispatch('Word.Application') mytxt = wordapp.Documents.Open(filePath) mytxt.SaveAs(word_to_txt, 4) mytxt.Close() if __name__ == '__main__': filepath = os.path.abspath(r'./dataSet/建行收单应用第三方应用调用接口v2.0.5.docx') # savepath = '' Word2Txt(filepath)
[ "xiongxiangquan@gmail.com" ]
xiongxiangquan@gmail.com
49865944dba7af70ad85c560b04fc695073ae8cf
a32c8f71664d55e397aac4c7e1dc2835994c5995
/workspace/algolrithm_1/12-loop_PLUS_MINUS.py
3bc979f84ff7cbd3f3f2b0f0a19de7bffa60f3f0
[]
no_license
slowlove729/test
3789385999da0ff1f2a2660b9fb6acc29a510d71
9d1ac9a5aab328f0ff547e22e3a06a5d687e8844
refs/heads/main
2023-06-19T01:47:01.485870
2021-07-17T08:35:16
2021-07-17T08:35:16
386,877,808
0
0
null
null
null
null
UTF-8
Python
false
false
210
py
print("+ - 기호를 반복 출력하는 프로그램") for i in range(int(input("몇개를 출력 할까요 : "))): if i % 2 == 0: print("+", end="") else: print("-", end="") print()
[ "slowlove729@naver.com" ]
slowlove729@naver.com
932020f19572143afa24a2dc21ee02a5656912fc
bb72621c10dd6a3cee04c8b75e60e4e88786f791
/chp15/color_dict.py
007d5af9ddb25a4b9d04c5402255b29fe07120da
[]
no_license
BenU/thinkPython
8fcb0ad63ab62dd3dbf54db8acf2124a3b2ee666
325bb9827b071d78494e06819db67e23428ff6e7
refs/heads/master
2021-01-01T06:05:08.684841
2012-04-22T14:05:53
2012-04-22T14:05:53
3,540,918
0
0
null
null
null
null
UTF-8
Python
false
false
18,523
py
""" Code example from Complexity and Computation, a book about exploring complexity science with Python. Available free from http://greenteapress.com/complexity Copyright 2011 Allen B. Downey. Distributed under the GNU General Public License at gnu.org/licenses/gpl.html. """ import re # the following is the contents of /etc/X11/rgb.txt COLORS = """ ! $Xorg: rgb.txt,v 1.3 2000/08/17 19:54:00 cpqbld Exp $ 255 250 250 snow 248 248 255 ghost white 248 248 255 GhostWhite 245 245 245 white smoke 245 245 245 WhiteSmoke 220 220 220 gainsboro 255 250 240 floral white 255 250 240 FloralWhite 253 245 230 old lace 253 245 230 OldLace 250 240 230 linen 250 235 215 antique white 250 235 215 AntiqueWhite 255 239 213 papaya whip 255 239 213 PapayaWhip 255 235 205 blanched almond 255 235 205 BlanchedAlmond 255 228 196 bisque 255 218 185 peach puff 255 218 185 PeachPuff 255 222 173 navajo white 255 222 173 NavajoWhite 255 228 181 moccasin 255 248 220 cornsilk 255 255 240 ivory 255 250 205 lemon chiffon 255 250 205 LemonChiffon 255 245 238 seashell 240 255 240 honeydew 245 255 250 mint cream 245 255 250 MintCream 240 255 255 azure 240 248 255 alice blue 240 248 255 AliceBlue 230 230 250 lavender 255 240 245 lavender blush 255 240 245 LavenderBlush 255 228 225 misty rose 255 228 225 MistyRose 255 255 255 white 0 0 0 black 47 79 79 dark slate gray 47 79 79 DarkSlateGray 47 79 79 dark slate grey 47 79 79 DarkSlateGrey 105 105 105 dim gray 105 105 105 DimGray 105 105 105 dim grey 105 105 105 DimGrey 112 128 144 slate gray 112 128 144 SlateGray 112 128 144 slate grey 112 128 144 SlateGrey 119 136 153 light slate gray 119 136 153 LightSlateGray 119 136 153 light slate grey 119 136 153 LightSlateGrey 190 190 190 gray 190 190 190 grey 211 211 211 light grey 211 211 211 LightGrey 211 211 211 light gray 211 211 211 LightGray 25 25 112 midnight blue 25 25 112 MidnightBlue 0 0 128 navy 0 0 128 navy blue 0 0 128 NavyBlue 100 149 237 cornflower blue 100 149 237 CornflowerBlue 72 61 139 dark slate blue 72 61 139 DarkSlateBlue 106 90 205 slate blue 106 90 205 SlateBlue 123 104 238 medium slate blue 123 104 238 MediumSlateBlue 132 112 255 light slate blue 132 112 255 LightSlateBlue 0 0 205 medium blue 0 0 205 MediumBlue 65 105 225 royal blue 65 105 225 RoyalBlue 0 0 255 blue 30 144 255 dodger blue 30 144 255 DodgerBlue 0 191 255 deep sky blue 0 191 255 DeepSkyBlue 135 206 235 sky blue 135 206 235 SkyBlue 135 206 250 light sky blue 135 206 250 LightSkyBlue 70 130 180 steel blue 70 130 180 SteelBlue 176 196 222 light steel blue 176 196 222 LightSteelBlue 173 216 230 light blue 173 216 230 LightBlue 176 224 230 powder blue 176 224 230 PowderBlue 175 238 238 pale turquoise 175 238 238 PaleTurquoise 0 206 209 dark turquoise 0 206 209 DarkTurquoise 72 209 204 medium turquoise 72 209 204 MediumTurquoise 64 224 208 turquoise 0 255 255 cyan 224 255 255 light cyan 224 255 255 LightCyan 95 158 160 cadet blue 95 158 160 CadetBlue 102 205 170 medium aquamarine 102 205 170 MediumAquamarine 127 255 212 aquamarine 0 100 0 dark green 0 100 0 DarkGreen 85 107 47 dark olive green 85 107 47 DarkOliveGreen 143 188 143 dark sea green 143 188 143 DarkSeaGreen 46 139 87 sea green 46 139 87 SeaGreen 60 179 113 medium sea green 60 179 113 MediumSeaGreen 32 178 170 light sea green 32 178 170 LightSeaGreen 152 251 152 pale green 152 251 152 PaleGreen 0 255 127 spring green 0 255 127 SpringGreen 124 252 0 lawn green 124 252 0 LawnGreen 0 255 0 green 127 255 0 chartreuse 0 250 154 medium spring green 0 250 154 MediumSpringGreen 173 255 47 green yellow 173 255 47 GreenYellow 50 205 50 lime green 50 205 50 LimeGreen 154 205 50 yellow green 154 205 50 YellowGreen 34 139 34 forest green 34 139 34 ForestGreen 107 142 35 olive drab 107 142 35 OliveDrab 189 183 107 dark khaki 189 183 107 DarkKhaki 240 230 140 khaki 238 232 170 pale goldenrod 238 232 170 PaleGoldenrod 250 250 210 light goldenrod yellow 250 250 210 LightGoldenrodYellow 255 255 224 light yellow 255 255 224 LightYellow 255 255 0 yellow 255 215 0 gold 238 221 130 light goldenrod 238 221 130 LightGoldenrod 218 165 32 goldenrod 184 134 11 dark goldenrod 184 134 11 DarkGoldenrod 188 143 143 rosy brown 188 143 143 RosyBrown 205 92 92 indian red 205 92 92 IndianRed 139 69 19 saddle brown 139 69 19 SaddleBrown 160 82 45 sienna 205 133 63 peru 222 184 135 burlywood 245 245 220 beige 245 222 179 wheat 244 164 96 sandy brown 244 164 96 SandyBrown 210 180 140 tan 210 105 30 chocolate 178 34 34 firebrick 165 42 42 brown 233 150 122 dark salmon 233 150 122 DarkSalmon 250 128 114 salmon 255 160 122 light salmon 255 160 122 LightSalmon 255 165 0 orange 255 140 0 dark orange 255 140 0 DarkOrange 255 127 80 coral 240 128 128 light coral 240 128 128 LightCoral 255 99 71 tomato 255 69 0 orange red 255 69 0 OrangeRed 255 0 0 red 255 105 180 hot pink 255 105 180 HotPink 255 20 147 deep pink 255 20 147 DeepPink 255 192 203 pink 255 182 193 light pink 255 182 193 LightPink 219 112 147 pale violet red 219 112 147 PaleVioletRed 176 48 96 maroon 199 21 133 medium violet red 199 21 133 MediumVioletRed 208 32 144 violet red 208 32 144 VioletRed 255 0 255 magenta 238 130 238 violet 221 160 221 plum 218 112 214 orchid 186 85 211 medium orchid 186 85 211 MediumOrchid 153 50 204 dark orchid 153 50 204 DarkOrchid 148 0 211 dark violet 148 0 211 DarkViolet 138 43 226 blue violet 138 43 226 BlueViolet 160 32 240 purple 147 112 219 medium purple 147 112 219 MediumPurple 216 191 216 thistle 255 250 250 snow1 238 233 233 snow2 205 201 201 snow3 139 137 137 snow4 255 245 238 seashell1 238 229 222 seashell2 205 197 191 seashell3 139 134 130 seashell4 255 239 219 AntiqueWhite1 238 223 204 AntiqueWhite2 205 192 176 AntiqueWhite3 139 131 120 AntiqueWhite4 255 228 196 bisque1 238 213 183 bisque2 205 183 158 bisque3 139 125 107 bisque4 255 218 185 PeachPuff1 238 203 173 PeachPuff2 205 175 149 PeachPuff3 139 119 101 PeachPuff4 255 222 173 NavajoWhite1 238 207 161 NavajoWhite2 205 179 139 NavajoWhite3 139 121 94 NavajoWhite4 255 250 205 LemonChiffon1 238 233 191 LemonChiffon2 205 201 165 LemonChiffon3 139 137 112 LemonChiffon4 255 248 220 cornsilk1 238 232 205 cornsilk2 205 200 177 cornsilk3 139 136 120 cornsilk4 255 255 240 ivory1 238 238 224 ivory2 205 205 193 ivory3 139 139 131 ivory4 240 255 240 honeydew1 224 238 224 honeydew2 193 205 193 honeydew3 131 139 131 honeydew4 255 240 245 LavenderBlush1 238 224 229 LavenderBlush2 205 193 197 LavenderBlush3 139 131 134 LavenderBlush4 255 228 225 MistyRose1 238 213 210 MistyRose2 205 183 181 MistyRose3 139 125 123 MistyRose4 240 255 255 azure1 224 238 238 azure2 193 205 205 azure3 131 139 139 azure4 131 111 255 SlateBlue1 122 103 238 SlateBlue2 105 89 205 SlateBlue3 71 60 139 SlateBlue4 72 118 255 RoyalBlue1 67 110 238 RoyalBlue2 58 95 205 RoyalBlue3 39 64 139 RoyalBlue4 0 0 255 blue1 0 0 238 blue2 0 0 205 blue3 0 0 139 blue4 30 144 255 DodgerBlue1 28 134 238 DodgerBlue2 24 116 205 DodgerBlue3 16 78 139 DodgerBlue4 99 184 255 SteelBlue1 92 172 238 SteelBlue2 79 148 205 SteelBlue3 54 100 139 SteelBlue4 0 191 255 DeepSkyBlue1 0 178 238 DeepSkyBlue2 0 154 205 DeepSkyBlue3 0 104 139 DeepSkyBlue4 135 206 255 SkyBlue1 126 192 238 SkyBlue2 108 166 205 SkyBlue3 74 112 139 SkyBlue4 176 226 255 LightSkyBlue1 164 211 238 LightSkyBlue2 141 182 205 LightSkyBlue3 96 123 139 LightSkyBlue4 198 226 255 SlateGray1 185 211 238 SlateGray2 159 182 205 SlateGray3 108 123 139 SlateGray4 202 225 255 LightSteelBlue1 188 210 238 LightSteelBlue2 162 181 205 LightSteelBlue3 110 123 139 LightSteelBlue4 191 239 255 LightBlue1 178 223 238 LightBlue2 154 192 205 LightBlue3 104 131 139 LightBlue4 224 255 255 LightCyan1 209 238 238 LightCyan2 180 205 205 LightCyan3 122 139 139 LightCyan4 187 255 255 PaleTurquoise1 174 238 238 PaleTurquoise2 150 205 205 PaleTurquoise3 102 139 139 PaleTurquoise4 152 245 255 CadetBlue1 142 229 238 CadetBlue2 122 197 205 CadetBlue3 83 134 139 CadetBlue4 0 245 255 turquoise1 0 229 238 turquoise2 0 197 205 turquoise3 0 134 139 turquoise4 0 255 255 cyan1 0 238 238 cyan2 0 205 205 cyan3 0 139 139 cyan4 151 255 255 DarkSlateGray1 141 238 238 DarkSlateGray2 121 205 205 DarkSlateGray3 82 139 139 DarkSlateGray4 127 255 212 aquamarine1 118 238 198 aquamarine2 102 205 170 aquamarine3 69 139 116 aquamarine4 193 255 193 DarkSeaGreen1 180 238 180 DarkSeaGreen2 155 205 155 DarkSeaGreen3 105 139 105 DarkSeaGreen4 84 255 159 SeaGreen1 78 238 148 SeaGreen2 67 205 128 SeaGreen3 46 139 87 SeaGreen4 154 255 154 PaleGreen1 144 238 144 PaleGreen2 124 205 124 PaleGreen3 84 139 84 PaleGreen4 0 255 127 SpringGreen1 0 238 118 SpringGreen2 0 205 102 SpringGreen3 0 139 69 SpringGreen4 0 255 0 green1 0 238 0 green2 0 205 0 green3 0 139 0 green4 127 255 0 chartreuse1 118 238 0 chartreuse2 102 205 0 chartreuse3 69 139 0 chartreuse4 192 255 62 OliveDrab1 179 238 58 OliveDrab2 154 205 50 OliveDrab3 105 139 34 OliveDrab4 202 255 112 DarkOliveGreen1 188 238 104 DarkOliveGreen2 162 205 90 DarkOliveGreen3 110 139 61 DarkOliveGreen4 255 246 143 khaki1 238 230 133 khaki2 205 198 115 khaki3 139 134 78 khaki4 255 236 139 LightGoldenrod1 238 220 130 LightGoldenrod2 205 190 112 LightGoldenrod3 139 129 76 LightGoldenrod4 255 255 224 LightYellow1 238 238 209 LightYellow2 205 205 180 LightYellow3 139 139 122 LightYellow4 255 255 0 yellow1 238 238 0 yellow2 205 205 0 yellow3 139 139 0 yellow4 255 215 0 gold1 238 201 0 gold2 205 173 0 gold3 139 117 0 gold4 255 193 37 goldenrod1 238 180 34 goldenrod2 205 155 29 goldenrod3 139 105 20 goldenrod4 255 185 15 DarkGoldenrod1 238 173 14 DarkGoldenrod2 205 149 12 DarkGoldenrod3 139 101 8 DarkGoldenrod4 255 193 193 RosyBrown1 238 180 180 RosyBrown2 205 155 155 RosyBrown3 139 105 105 RosyBrown4 255 106 106 IndianRed1 238 99 99 IndianRed2 205 85 85 IndianRed3 139 58 58 IndianRed4 255 130 71 sienna1 238 121 66 sienna2 205 104 57 sienna3 139 71 38 sienna4 255 211 155 burlywood1 238 197 145 burlywood2 205 170 125 burlywood3 139 115 85 burlywood4 255 231 186 wheat1 238 216 174 wheat2 205 186 150 wheat3 139 126 102 wheat4 255 165 79 tan1 238 154 73 tan2 205 133 63 tan3 139 90 43 tan4 255 127 36 chocolate1 238 118 33 chocolate2 205 102 29 chocolate3 139 69 19 chocolate4 255 48 48 firebrick1 238 44 44 firebrick2 205 38 38 firebrick3 139 26 26 firebrick4 255 64 64 brown1 238 59 59 brown2 205 51 51 brown3 139 35 35 brown4 255 140 105 salmon1 238 130 98 salmon2 205 112 84 salmon3 139 76 57 salmon4 255 160 122 LightSalmon1 238 149 114 LightSalmon2 205 129 98 LightSalmon3 139 87 66 LightSalmon4 255 165 0 orange1 238 154 0 orange2 205 133 0 orange3 139 90 0 orange4 255 127 0 DarkOrange1 238 118 0 DarkOrange2 205 102 0 DarkOrange3 139 69 0 DarkOrange4 255 114 86 coral1 238 106 80 coral2 205 91 69 coral3 139 62 47 coral4 255 99 71 tomato1 238 92 66 tomato2 205 79 57 tomato3 139 54 38 tomato4 255 69 0 OrangeRed1 238 64 0 OrangeRed2 205 55 0 OrangeRed3 139 37 0 OrangeRed4 255 0 0 red1 238 0 0 red2 205 0 0 red3 139 0 0 red4 215 7 81 DebianRed 255 20 147 DeepPink1 238 18 137 DeepPink2 205 16 118 DeepPink3 139 10 80 DeepPink4 255 110 180 HotPink1 238 106 167 HotPink2 205 96 144 HotPink3 139 58 98 HotPink4 255 181 197 pink1 238 169 184 pink2 205 145 158 pink3 139 99 108 pink4 255 174 185 LightPink1 238 162 173 LightPink2 205 140 149 LightPink3 139 95 101 LightPink4 255 130 171 PaleVioletRed1 238 121 159 PaleVioletRed2 205 104 137 PaleVioletRed3 139 71 93 PaleVioletRed4 255 52 179 maroon1 238 48 167 maroon2 205 41 144 maroon3 139 28 98 maroon4 255 62 150 VioletRed1 238 58 140 VioletRed2 205 50 120 VioletRed3 139 34 82 VioletRed4 255 0 255 magenta1 238 0 238 magenta2 205 0 205 magenta3 139 0 139 magenta4 255 131 250 orchid1 238 122 233 orchid2 205 105 201 orchid3 139 71 137 orchid4 255 187 255 plum1 238 174 238 plum2 205 150 205 plum3 139 102 139 plum4 224 102 255 MediumOrchid1 209 95 238 MediumOrchid2 180 82 205 MediumOrchid3 122 55 139 MediumOrchid4 191 62 255 DarkOrchid1 178 58 238 DarkOrchid2 154 50 205 DarkOrchid3 104 34 139 DarkOrchid4 155 48 255 purple1 145 44 238 purple2 125 38 205 purple3 85 26 139 purple4 171 130 255 MediumPurple1 159 121 238 MediumPurple2 137 104 205 MediumPurple3 93 71 139 MediumPurple4 255 225 255 thistle1 238 210 238 thistle2 205 181 205 thistle3 139 123 139 thistle4 0 0 0 gray0 0 0 0 grey0 3 3 3 gray1 3 3 3 grey1 5 5 5 gray2 5 5 5 grey2 8 8 8 gray3 8 8 8 grey3 10 10 10 gray4 10 10 10 grey4 13 13 13 gray5 13 13 13 grey5 15 15 15 gray6 15 15 15 grey6 18 18 18 gray7 18 18 18 grey7 20 20 20 gray8 20 20 20 grey8 23 23 23 gray9 23 23 23 grey9 26 26 26 gray10 26 26 26 grey10 28 28 28 gray11 28 28 28 grey11 31 31 31 gray12 31 31 31 grey12 33 33 33 gray13 33 33 33 grey13 36 36 36 gray14 36 36 36 grey14 38 38 38 gray15 38 38 38 grey15 41 41 41 gray16 41 41 41 grey16 43 43 43 gray17 43 43 43 grey17 46 46 46 gray18 46 46 46 grey18 48 48 48 gray19 48 48 48 grey19 51 51 51 gray20 51 51 51 grey20 54 54 54 gray21 54 54 54 grey21 56 56 56 gray22 56 56 56 grey22 59 59 59 gray23 59 59 59 grey23 61 61 61 gray24 61 61 61 grey24 64 64 64 gray25 64 64 64 grey25 66 66 66 gray26 66 66 66 grey26 69 69 69 gray27 69 69 69 grey27 71 71 71 gray28 71 71 71 grey28 74 74 74 gray29 74 74 74 grey29 77 77 77 gray30 77 77 77 grey30 79 79 79 gray31 79 79 79 grey31 82 82 82 gray32 82 82 82 grey32 84 84 84 gray33 84 84 84 grey33 87 87 87 gray34 87 87 87 grey34 89 89 89 gray35 89 89 89 grey35 92 92 92 gray36 92 92 92 grey36 94 94 94 gray37 94 94 94 grey37 97 97 97 gray38 97 97 97 grey38 99 99 99 gray39 99 99 99 grey39 102 102 102 gray40 102 102 102 grey40 105 105 105 gray41 105 105 105 grey41 107 107 107 gray42 107 107 107 grey42 110 110 110 gray43 110 110 110 grey43 112 112 112 gray44 112 112 112 grey44 115 115 115 gray45 115 115 115 grey45 117 117 117 gray46 117 117 117 grey46 120 120 120 gray47 120 120 120 grey47 122 122 122 gray48 122 122 122 grey48 125 125 125 gray49 125 125 125 grey49 127 127 127 gray50 127 127 127 grey50 130 130 130 gray51 130 130 130 grey51 133 133 133 gray52 133 133 133 grey52 135 135 135 gray53 135 135 135 grey53 138 138 138 gray54 138 138 138 grey54 140 140 140 gray55 140 140 140 grey55 143 143 143 gray56 143 143 143 grey56 145 145 145 gray57 145 145 145 grey57 148 148 148 gray58 148 148 148 grey58 150 150 150 gray59 150 150 150 grey59 153 153 153 gray60 153 153 153 grey60 156 156 156 gray61 156 156 156 grey61 158 158 158 gray62 158 158 158 grey62 161 161 161 gray63 161 161 161 grey63 163 163 163 gray64 163 163 163 grey64 166 166 166 gray65 166 166 166 grey65 168 168 168 gray66 168 168 168 grey66 171 171 171 gray67 171 171 171 grey67 173 173 173 gray68 173 173 173 grey68 176 176 176 gray69 176 176 176 grey69 179 179 179 gray70 179 179 179 grey70 181 181 181 gray71 181 181 181 grey71 184 184 184 gray72 184 184 184 grey72 186 186 186 gray73 186 186 186 grey73 189 189 189 gray74 189 189 189 grey74 191 191 191 gray75 191 191 191 grey75 194 194 194 gray76 194 194 194 grey76 196 196 196 gray77 196 196 196 grey77 199 199 199 gray78 199 199 199 grey78 201 201 201 gray79 201 201 201 grey79 204 204 204 gray80 204 204 204 grey80 207 207 207 gray81 207 207 207 grey81 209 209 209 gray82 209 209 209 grey82 212 212 212 gray83 212 212 212 grey83 214 214 214 gray84 214 214 214 grey84 217 217 217 gray85 217 217 217 grey85 219 219 219 gray86 219 219 219 grey86 222 222 222 gray87 222 222 222 grey87 224 224 224 gray88 224 224 224 grey88 227 227 227 gray89 227 227 227 grey89 229 229 229 gray90 229 229 229 grey90 232 232 232 gray91 232 232 232 grey91 235 235 235 gray92 235 235 235 grey92 237 237 237 gray93 237 237 237 grey93 240 240 240 gray94 240 240 240 grey94 242 242 242 gray95 242 242 242 grey95 245 245 245 gray96 245 245 245 grey96 247 247 247 gray97 247 247 247 grey97 250 250 250 gray98 250 250 250 grey98 252 252 252 gray99 252 252 252 grey99 255 255 255 gray100 255 255 255 grey100 169 169 169 dark grey 169 169 169 DarkGrey 169 169 169 dark gray 169 169 169 DarkGray 0 0 139 dark blue 0 0 139 DarkBlue 0 139 139 dark cyan 0 139 139 DarkCyan 139 0 139 dark magenta 139 0 139 DarkMagenta 139 0 0 dark red 139 0 0 DarkRed 144 238 144 light green 144 238 144 LightGreen """ def make_color_dict(colors=COLORS): """Returns a dictionary that maps color names to RGB strings. The format of RGB strings is '#RRGGBB'. """ # regular expressions to match numbers and color names number = r'(\d+)' space = r'[ \t]*' name = r'([ \w]+)' pattern = space + (number + space) * 3 + name prog = re.compile(pattern) # read the file d = dict() for line in colors.split('\n'): ro = prog.match(line) if ro: r, g, b, name = ro.groups() rgb = '#%02x%02x%02x' % (int(r), int(g), int(b)) d[name] = rgb return d if __name__ == '__main__': color_dict = make_color_dict() for name, rgb in color_dict.iteritems(): print rgb, name
[ "benjamin.d.unger@gmail.com" ]
benjamin.d.unger@gmail.com
e084aacacd2f025e8fc92c9a2090102d13937f36
2648f57ebd565a96e4e4f6272411b587bfac3394
/__init__.py
43c7086b5ee33312d8826b7287e001336ca7a6ae
[]
no_license
FuJianTech/TodayHot
e372380a4f6a8b4cf28b5dc9de051e76398deead
3e8909f01ffe41dde466a50a94fb2d995219b52c
refs/heads/master
2022-12-21T15:19:21.107741
2020-09-09T07:10:06
2020-09-09T07:12:01
292,454,922
0
0
null
null
null
null
UTF-8
Python
false
false
50
py
# 这个文件请勿删除,用来导入包使用
[ "dorians5689@gmail.com" ]
dorians5689@gmail.com
0671c253c33bf2f166a0cd75968a5cc47fe484cd
30bf8dcb27be8cea604b2578d13b836d4944650d
/linear.py
1d8bf872504b0a4cf8010780833620816bef1050
[]
no_license
yshu/221-project
39ca6ab520461caae74d75bbee6643716ad0b20a
9b8a6cc0b88b416333a7c5281e9a3fcc1730efbf
refs/heads/master
2020-05-15T19:44:16.397723
2019-06-06T23:49:29
2019-06-06T23:49:29
182,463,456
0
0
null
null
null
null
UTF-8
Python
false
false
11,044
py
import tensorflow as tf import tensorflow.contrib.layers as layers import gym from progressbar import Progbar from util import * import os import numpy as np import sys from gym import wrappers from collections import deque from replay_buffer import ReplayBuffer class config(): env_name = "Pong-v0" record = True output_path = "results/pong_linear_3/" model_output = output_path + "model.weights/" log_path = output_path + "log.txt" plot_output = output_path + "scores.png" record_path = output_path + "monitor/" saving_freq = 250000 log_freq = 50 eval_freq = 250000 record_freq = 250000 num_episodes_test = 100 nsteps_train = 5000000 batch_size = 32 buffer_size = 1000000 target_update_freq = 10000 gamma = 0.99 learning_freq = 4 state_history = 4 skip_frame = 4 lr_begin = 0.00025 lr_end = 0.00005 lr_nsteps = nsteps_train/2 eps_begin = 1 eps_end = 0.1 eps_nsteps = 1000000 learning_start = 50000 soft_epsilon = 0.05 class Linear(object): def __init__(self, env, config): self.env = env self.config = config self.build() def add_placeholders_op(self): h, w, c = list(self.env.observation_space.shape) self.s = tf.placeholder(tf.uint8, shape=[None, h, w, c*self.config.state_history]) self.a = tf.placeholder(tf.int32, shape=[None]) self.r = tf.placeholder(tf.float32, shape=[None]) self.sp = tf.placeholder(tf.uint8, shape=[None, h, w, c*self.config.state_history]) self.done_mask = tf.placeholder(tf.bool, shape=[None]) self.lr = tf.placeholder(tf.float32, shape=()) self.avg_reward_placeholder = tf.placeholder(tf.float32, shape=(), name="avg_reward") def q_network_op(self, state): num_actions = self.env.action_space.n flatten = layers.flatten(state) out = layers.fully_connected(flatten, num_actions, activation_fn=None) return out def add_loss_op(self, q, target_q): """ Q_samp(s) = r if done = r + gamma * max_a' Q_target(s', a') loss = (Q_samp(s) - Q(s, a))^2 """ num_actions = self.env.action_space.n gamma = self.config.gamma * tf.reduce_max(target_q, axis=1) q_samp = tf.where(self.done_mask, self.r, self.r+gamma) q_s = tf.reduce_sum(q*tf.one_hot(self.a, num_actions), axis=1) loss = tf.reduce_mean(tf.squared_difference(q_samp, q_s)) return loss def build(self): self.add_placeholders_op() with tf.variable_scope('q', reuse=False): s = tf.cast(self.s, tf.float32)/255. #[0,255] -> [0,1] self.q = self.q_network_op(s) with tf.variable_scope('target_q', reuse=False): sp = tf.cast(self.sp, tf.float32)/255. #[0,255] -> [0,1] self.target_q = self.q_network_op(sp) q_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='q') t_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='target_q') op = [tf.assign(t_vars[i], q_vars[i]) for i in range(len(q_vars))] self.update_target_op = tf.group(*op) self.loss = self.add_loss_op(self.q, self.target_q) optimizer = tf.train.AdamOptimizer(self.lr) q_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='q') grads_and_vars = optimizer.compute_gradients(self.loss, q_vars) self.train_op = optimizer.apply_gradients(grads_and_vars) tf.summary.scalar("loss", self.loss) tf.summary.scalar("Avg_Reward", self.avg_reward_placeholder) class train_Linear(Linear): def __init__(self, env, config): Linear.__init__(self, env, config) self.logger = get_logger(config.log_path) self.avg_reward = 0 self.progress = Progbar(target=self.config.nsteps_train) def get_log(self, exp_schedule, lr_schedule, t, loss_eval, max_q_values, rewards): if ((t > self.config.learning_start) and (t % self.config.log_freq == 0) and (t % self.config.learning_freq == 0)): self.avg_reward = np.mean(rewards) max_q = np.mean(max_q_values) exp_schedule.update(t) lr_schedule.update(t) if len(rewards) > 0: self.progress.update(t + 1, values=[("Loss", loss_eval), ("Avg_R", self.avg_reward), ("Max_R", np.max(rewards)), ("eps", exp_schedule.epsilon), ("Max_Q", max_q), ("lr", lr_schedule.epsilon)]) elif (t < self.config.learning_start) and (t % self.config.log_freq == 0): sys.stdout.write("\rLearning not start yet: {}/{}...".format(t, self.config.learning_start)) sys.stdout.flush() def train_step(self, t, replay_buffer, lr): loss_eval = 0 if (t > self.config.learning_start and t % self.config.learning_freq == 0): s_batch, a_batch, r_batch, sp_batch, done_mask_batch = replay_buffer.sample(self.config.batch_size) model_spec = {self.s: s_batch, self.a: a_batch, self.r: r_batch, self.sp: sp_batch, self.done_mask: done_mask_batch, self.lr: lr, self.avg_reward_placeholder: self.avg_reward, } loss_eval, summary, _ = self.sess.run([self.loss, self.all_summary, self.train_op], feed_dict=model_spec) self.file_writer.add_summary(summary, t) if t % self.config.target_update_freq == 0: self.sess.run(self.update_target_op) if (t % self.config.saving_freq == 0): self.saver.save(self.sess, self.config.model_output) return loss_eval def train(self, exp_schedule, lr_schedule): replay_buffer = ReplayBuffer(self.config.buffer_size, self.config.state_history) rewards = deque(maxlen=self.config.num_episodes_test) max_q_values = deque(maxlen=1000) q_values = deque(maxlen=1000) t = last_eval = last_record = 0 scores_eval = [] # scores for plot scores_eval += [self.evaluate()] while t < self.config.nsteps_train: sum_reward = 0 state = self.env.reset() while True: t += 1 last_eval += 1 last_record += 1 # replay memory stuff idx = replay_buffer.store_frame(state) q_input = replay_buffer.encode_recent_observation() action_values = self.sess.run(self.q, feed_dict={self.s: [q_input]})[0] best_action = np.argmax(action_values) q_values = action_values action = exp_schedule.get_action(best_action) max_q_values.append(max(q_values)) q_values += list(q_values) new_state, reward, done, info = self.env.step(action) # store the transition replay_buffer.store_effect(idx, action, reward, done) state = new_state loss_eval = self.train_step(t, replay_buffer, lr_schedule.epsilon) self.get_log(exp_schedule, lr_schedule, t, loss_eval, max_q_values, rewards) sum_reward += reward if done or t >= self.config.nsteps_train: break rewards.append(sum_reward) if t > self.config.learning_start: if last_eval > self.config.eval_freq: last_eval = 0 scores_eval += [self.evaluate()] elif self.config.record and (last_record > self.config.record_freq): self.logger.info("Recording...") last_record =0 self.record() self.logger.info("*** Training is done.") self.saver.save(self.sess, self.config.model_output) scores_eval += [self.evaluate()] export_plot(scores_eval, "Scores", self.config.plot_output) def evaluate(self, env=None, num_episodes=None): if env is None: env = self.env if num_episodes is None: self.logger.info("Evaluating...") num_episodes = self.config.num_episodes_test replay_buffer = ReplayBuffer(self.config.buffer_size, self.config.state_history) rewards = [] for i in range(num_episodes): sum_reward = 0 state = env.reset() while True: idx = replay_buffer.store_frame(state) q_input = replay_buffer.encode_recent_observation() action = self.env.action_space.sample() if self.config.soft_epsilon < np.random.random(): action = np.argmax(self.sess.run(self.q, feed_dict={self.s: [q_input]})[0]) new_state, reward, done, info = env.step(action) replay_buffer.store_effect(idx, action, reward, done) state = new_state sum_reward += reward if done: break rewards.append(sum_reward) avg_reward = np.mean(rewards) if num_episodes > 1: self.logger.info("Average reward: {:04.2f}".format(avg_reward)) return avg_reward def record(self): record_env = gym.wrappers.Monitor(self.env, self.config.record_path, video_callable=lambda x: True, resume=True) self.evaluate(record_env, 1) def run(self, exp_schedule, lr_schedule): self.sess = tf.Session() self.all_summary = tf.summary.merge_all() self.file_writer = tf.summary.FileWriter(config.output_path, self.sess.graph) init = tf.global_variables_initializer() self.sess.run(init) self.sess.run(model.update_target_op) self.saver = tf.train.Saver() # model self.train(exp_schedule, lr_schedule) if self.config.record: self.record() if __name__ == '__main__': if not os.path.exists(config.output_path): os.makedirs(config.output_path) if not os.path.exists(config.model_output): os.makedirs(config.model_output) env = gym.make(config.env_name) env = MaxAndSkipWrapper(env, skip=config.skip_frame) env = ResizeWrapper(env, preprocess=greyscale, shape=(80, 80, 1)) eps_schedule = LinearExploration(env, config.eps_begin, config.eps_end, config.eps_nsteps) lr_schedule = LinearSchedule(config.lr_begin, config.lr_end, config.lr_nsteps) model = train_Linear(env, config) model.run(eps_schedule, lr_schedule)
[ "sunnyyujie@gmail.com" ]
sunnyyujie@gmail.com
a1f2ab82603f9a36953e31f203b6f23bcd2bc7ea
1e65989631b28777ea9440d81851d8feacecd9c2
/ss.py
edb741935ca992f88c75ab2c022eb5758c41787c
[]
no_license
pcamateur/pyt
3e2f51c497c3cf57aabec986e6801388c5b36052
7b4912587a360a241fff5a340c815c2070ba299e
refs/heads/master
2023-08-25T13:19:49.411968
2023-08-03T14:46:18
2023-08-03T14:46:18
172,338,389
0
0
null
null
null
null
UTF-8
Python
false
false
299
py
from time import time as t s = t() li = list() # datas = [a for a in range(5, 50000) if a % 2 != 0] # for x in datas: for x in range(5, 50000): for y in range(2, x): if x % y == 0: break else: li.append(x) e = t() # print(li) print(len(li)) print(e - s)
[ "pcamateur@outlook.com" ]
pcamateur@outlook.com
60efcabdf54a0dee2f46e3e9330960626fa4990e
a616bb193e867342138c10c5f1dabe3fb724ff44
/build/baxter_common/baxter_maintenance_msgs/cmake/baxter_maintenance_msgs-genmsg-context.py
59d5c7721e1a43d008f667c7ab691b173995fcd5
[]
no_license
erueda/ros_ws
c2a5ee8627e5996c5d7dd438a38abdba1ae23a54
c88fcff1c8a0db790cc0237150349ed2f64622a3
refs/heads/master
2016-08-11T07:15:33.537558
2016-04-14T09:28:01
2016-04-14T09:28:01
55,764,856
0
0
null
null
null
null
UTF-8
Python
false
false
1,110
py
# generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/user/ros_ws/src/baxter_common/baxter_maintenance_msgs/msg/CalibrateArmData.msg;/home/user/ros_ws/src/baxter_common/baxter_maintenance_msgs/msg/CalibrateArmEnable.msg;/home/user/ros_ws/src/baxter_common/baxter_maintenance_msgs/msg/TareData.msg;/home/user/ros_ws/src/baxter_common/baxter_maintenance_msgs/msg/TareEnable.msg;/home/user/ros_ws/src/baxter_common/baxter_maintenance_msgs/msg/UpdateSource.msg;/home/user/ros_ws/src/baxter_common/baxter_maintenance_msgs/msg/UpdateSources.msg;/home/user/ros_ws/src/baxter_common/baxter_maintenance_msgs/msg/UpdateStatus.msg" services_str = "" pkg_name = "baxter_maintenance_msgs" dependencies_str = "std_msgs" langs = "gencpp;genlisp;genpy" dep_include_paths_str = "baxter_maintenance_msgs;/home/user/ros_ws/src/baxter_common/baxter_maintenance_msgs/msg;std_msgs;/opt/ros/indigo/share/std_msgs/cmake/../msg" PYTHON_EXECUTABLE = "/usr/bin/python" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/indigo/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
[ "ernestorueda@gmail.com" ]
ernestorueda@gmail.com
97a6a7782e055cddefadc02fbcb1c9f43a065e00
7f52724110a12d7721f3bbb7a0fce0c4b1c3dd97
/gameserver/fb_open_graph_to_sql.py
fe685d6683b82038f09530b599d2202d570d79c9
[ "MIT" ]
permissive
cssp1/assignment1
896cb69e8ff43e26658c65ea16b079f87eebef9a
0839fc589cb52e7384c446593db79e0c2ea737d5
refs/heads/master
2023-03-10T08:03:56.954064
2022-07-20T04:02:15
2022-07-20T04:02:15
29,496,198
0
2
null
2023-02-17T17:56:53
2015-01-19T20:52:53
JavaScript
UTF-8
Python
false
false
8,597
py
#!/usr/bin/env python # Copyright (c) 2015 Battlehouse Inc. All rights reserved. # Use of this source code is governed by an MIT-style license that can be # found in the LICENSE file. # dump "log_fb_open_graph" from MongoDB to a MySQL database for analytics import sys, time, getopt import SpinConfig import SpinNoSQL import SpinSQLUtil import SpinSingletonProcess import SpinMySQLdb time_now = int(time.time()) def fb_open_graph_schema(sql_util): return { 'fields': [('time', 'INT8 NOT NULL'), ('user_id', 'INT4 NOT NULL'), ('event_name', 'VARCHAR(128) NOT NULL')] + \ sql_util.summary_in_dimensions() + \ [ ('action', 'VARCHAR(128)'), ('object_type', 'VARCHAR(128)'), ('object_spec', 'VARCHAR(128)'), ('object_level', 'INT4'), ('posting_user_id', 'INT4') ], 'indices': {'by_time': {'keys': [('time','ASC')]}} } def fb_open_graph_summary_schema(sql_util): return { 'fields': [('day', 'INT8 NOT NULL')] + \ sql_util.summary_out_dimensions() + \ [('event_name', 'VARCHAR(128) NOT NULL'), ('action', 'VARCHAR(128)'), ('object_type', 'VARCHAR(128)'), ('object_spec', 'VARCHAR(128)'), ('object_level', 'INT4'), ('count', 'INT4'), ('unique_players', 'INT4')], 'indices': {'by_day': {'keys': [('day','ASC')]}} } def iterate_from_mongodb(game_id, table_name, start_time, end_time): nosql_client = SpinNoSQL.NoSQLClient(SpinConfig.get_mongodb_config(game_id)) qs = {'time': {'$gt': start_time, '$lt': end_time}} for row in nosql_client.log_buffer_table(table_name).find(qs): row['_id'] = nosql_client.decode_object_id(row['_id']) yield row if __name__ == '__main__': game_id = SpinConfig.game() commit_interval = 1000 verbose = True do_prune = False do_optimize = False opts, args = getopt.gnu_getopt(sys.argv[1:], 'g:c:q', ['prune','optimize']) for key, val in opts: if key == '-g': game_id = val elif key == '-c': commit_interval = int(val) elif key == '-q': verbose = False elif key == '--prune': do_prune = True elif key == '--optimize': do_optimize = True sql_util = SpinSQLUtil.MySQLUtil() if not verbose: sql_util.disable_warnings() cfg = SpinConfig.get_mysql_config(game_id+'_upcache') con = SpinMySQLdb.connect(*cfg['connect_args'], **cfg['connect_kwargs']) with SpinSingletonProcess.SingletonProcess('fb_open_graph_to_sql-%s' % game_id): fb_open_graph_table = cfg['table_prefix']+game_id+'_fb_open_graph' fb_open_graph_summary_table = cfg['table_prefix']+game_id+'_fb_open_graph_daily_summary' cur = con.cursor(SpinMySQLdb.cursors.DictCursor) sql_util.ensure_table(cur, fb_open_graph_table, fb_open_graph_schema(sql_util)) sql_util.ensure_table(cur, fb_open_graph_summary_table, fb_open_graph_summary_schema(sql_util)) con.commit() # find most recent already-converted action start_time = -1 end_time = time_now - 600 # skip entries too close to "now" to ensure all events for a given second have all arrived cur.execute("SELECT time FROM "+sql_util.sym(fb_open_graph_table)+" ORDER BY time DESC LIMIT 1") rows = cur.fetchall() if rows: start_time = max(start_time, rows[0]['time']) con.commit() if verbose: print 'start_time', start_time, 'end_time', end_time batch = 0 total = 0 affected_days = set() for source_table in ('log_fb_open_graph',): for row in iterate_from_mongodb(game_id, source_table, start_time, end_time): if ('sum' not in row) or ('user_id' not in row): continue # ignore bad legacy data if row['sum'].get('developer',False): continue # skip events by developers keyvals = [('time',row['time']), ('user_id',row['user_id']), ('event_name',row['event_name'])] + \ sql_util.parse_brief_summary(row['sum']) for FIELD in ('action', 'object_type', 'object_spec', 'object_level', 'posting_user_id'): if FIELD in row: keyvals.append((FIELD, row[FIELD])) sql_util.do_insert(cur, fb_open_graph_table, keyvals) batch += 1 total += 1 affected_days.add(86400*(row['time']//86400)) if commit_interval > 0 and batch >= commit_interval: batch = 0 con.commit() if verbose: print total, 'inserted' con.commit() if verbose: print 'total', total, 'inserted', 'affecting', len(affected_days), 'day(s)' # update summary cur.execute("SELECT MIN(time) AS min_time, MAX(time) AS max_time FROM "+sql_util.sym(fb_open_graph_table)) rows = cur.fetchall() if rows and rows[0] and rows[0]['min_time'] and rows[0]['max_time']: event_range = (rows[0]['min_time'], rows[0]['max_time']) else: event_range = None dt = 86400 # check how much summary data we already have cur.execute("SELECT MIN(day) AS begin, MAX(day) AS end FROM "+sql_util.sym(fb_open_graph_summary_table)) rows = cur.fetchall() if rows and rows[0] and rows[0]['begin'] and rows[0]['end']: # we already have summary data - update it incrementally if event_range: # fill in any missing trailing summary data source_days = sorted(affected_days.union(set(xrange(dt*(rows[0]['end']//dt + 1), dt*(event_range[1]//dt + 1), dt)))) else: source_days = sorted(list(affected_days)) else: # recreate entire summary if event_range: source_days = range(dt*(event_range[0]//dt), dt*(event_range[1]//dt + 1), dt) else: source_days = None if source_days: for day_start in source_days: if verbose: print 'updating', fb_open_graph_summary_table, 'at', time.strftime('%Y%m%d', time.gmtime(day_start)) # delete entries for the date range we're about to update cur.execute("DELETE FROM "+sql_util.sym(fb_open_graph_summary_table)+" WHERE day >= %s AND day < %s+86400", [day_start,]*2) cur.execute("INSERT INTO "+sql_util.sym(fb_open_graph_summary_table) + \ "SELECT 86400*FLOOR(time/86400.0) AS day ," + \ " frame_platform AS frame_platform, " + \ " country_tier AS country_tier ," + \ " townhall_level AS townhall_level, " + \ " "+sql_util.encode_spend_bracket("prev_receipts")+" AS spend_bracket, " + \ " event_name AS event_name, " + \ " action AS action, " + \ " object_type AS object_type, " + \ " object_spec AS object_spec, " + \ " object_level AS object_level, " + \ " COUNT(1) AS count, " + \ " COUNT(DISTINCT(user_id)) AS unique_players " + \ "FROM " + sql_util.sym(fb_open_graph_table) + " req " + \ "WHERE time >= %s AND time < %s+86400 " + \ "GROUP BY day, frame_platform, country_tier, townhall_level, spend_bracket, event_name, action, object_type, object_spec, object_level ORDER BY NULL", [day_start,]*2) con.commit() # one commit per day else: if verbose: print 'no change to', fb_open_graph_summary_table if do_prune: # drop old data KEEP_DAYS = 90 old_limit = time_now - KEEP_DAYS * 86400 if verbose: print 'pruning', fb_open_graph_table cur = con.cursor() cur.execute("DELETE FROM "+sql_util.sym(fb_open_graph_table)+" WHERE time < %s", [old_limit]) if do_optimize: if verbose: print 'optimizing', fb_open_graph_table cur.execute("OPTIMIZE TABLE "+sql_util.sym(fb_open_graph_table)) con.commit()
[ "dmaas@spinpunch.com" ]
dmaas@spinpunch.com
ce6f4a8467d898e56fdbda95b48575d8483b051d
a6b4b072f47aa6b8fa86eee636b1bf7d6666f010
/uplink/types.py
4c32f5a22c1a29270e09735cc3d5d63af6044fe7
[ "MIT" ]
permissive
plucena24/uplink
ea796f2198f4c907e9d2268159e100174e63f285
b80c790d45da4b3bdd8ec3909ba99025c51a0b7c
refs/heads/master
2023-08-21T14:22:13.528707
2017-11-08T19:18:34
2017-11-08T19:18:34
110,165,549
0
0
MIT
2023-08-08T19:45:02
2017-11-09T20:58:10
Python
UTF-8
Python
false
false
12,331
py
""" This module implements the built-in argument annotations and their handling classes. """ # Standard library imports import collections import inspect # Local imports from uplink import converter, exceptions, interfaces, utils __all__ = [ "Path", "Query", "QueryMap", "Header", "HeaderMap", "Field", "FieldMap", "Part", "PartMap", "Body", "Url" ] class ExhaustedArguments(exceptions.AnnotationError): message = ( "Failed to add `%s` to method `%s`, as all arguments have " "been annotated." ) def __init__(self, annotation, func): self.message = self.message % (annotation, func.__name__) class ArgumentNotFound(exceptions.AnnotationError): message = "`%s` does not match any argument name of method `%s`." def __init__(self, name, func): self.message = self.message % (name, func.__name__) class MissingArgumentAnnotations(exceptions.InvalidRequestDefinition): message = "Missing annotation for argument(s): '%s'." implicit_message = " (Implicit path variables: '%s')" def __init__(self, missing, path_variables): missing, path_variables = list(missing), list(path_variables) self.message = self.message % "', '".join(missing) if path_variables: self.message += self.implicit_message % "', '".join(path_variables) class ArgumentAnnotationHandlerBuilder( interfaces.AnnotationHandlerBuilder ): def __init__(self, func, arguments, func_is_method=True): self._arguments = arguments[func_is_method:] self._argument_types = collections.OrderedDict.fromkeys(self._arguments) self._defined = 0 self._func = func @property def missing_arguments(self): return (a for a in self._arguments if self._argument_types[a] is None) @property def remaining_args_count(self): return len(self._arguments) - self._defined def set_annotations(self, annotations=None, **more_annotations): if annotations is not None: if not isinstance(annotations, collections.Mapping): missing = tuple( a for a in self.missing_arguments if a not in more_annotations ) annotations = dict(zip(missing, annotations)) more_annotations.update(annotations) for name in more_annotations: self.add_annotation(more_annotations[name], name) def add_annotation(self, annotation, name=None, *args, **kwargs): try: name = next(self.missing_arguments) if name is None else name except StopIteration: raise ExhaustedArguments(annotation, self._func) if name not in self._argument_types: raise ArgumentNotFound(name, self._func) if inspect.isclass(annotation): annotation = annotation() if isinstance(annotation, NamedArgument) and annotation.name is None: annotation.name = name super(ArgumentAnnotationHandlerBuilder, self).add_annotation(annotation) self._defined += self._argument_types[name] is None self._argument_types[name] = annotation return annotation def is_done(self): return self.remaining_args_count == 0 def _auto_fill_remaining_arguments(self): uri_vars = set(self.request_definition_builder.uri.remaining_variables) missing = list(self.missing_arguments) still_missing = set(missing) - uri_vars # Preserve order of function parameters. matching = [p for p in missing if p in uri_vars] if still_missing: raise MissingArgumentAnnotations(still_missing, matching) self.set_annotations(dict.fromkeys(matching, Path)) def build(self): if not self.is_done(): self._auto_fill_remaining_arguments() return ArgumentAnnotationHandler( self._func, self._argument_types, ) class ArgumentAnnotationHandler(interfaces.AnnotationHandler): def __init__(self, func, arguments): self._func = func self._arguments = arguments @property def annotations(self): return iter(self._arguments.values()) def get_relevant_arguments(self, call_args): return filter(call_args.__contains__, self._arguments) def handle_call(self, request_builder, func_args, func_kwargs): call_args = utils.get_call_args(self._func, *func_args, **func_kwargs) for name in self.get_relevant_arguments(call_args): self.handle_argument( request_builder, self._arguments[name], call_args[name] ) @staticmethod def handle_argument(request_builder, argument, value): argument_type, converter_key = argument.type, argument.converter_type converter_ = request_builder.get_converter(converter_key, argument_type) value = converter_.convert(value) # TODO: Catch Annotation errors and chain them here + provide context. argument.modify_request(request_builder, value) class ArgumentAnnotation(interfaces.Annotation): can_be_static = True def __call__(self, request_definition_builder): request_definition_builder.argument_handler_builder.add_annotation(self) return request_definition_builder def modify_request_definition(self, request_definition_builder): pass def modify_request(self, request_builder, value): raise NotImplementedError @property def type(self): return None @property def converter_type(self): raise NotImplementedError class TypedArgument(ArgumentAnnotation): def __init__(self, type=None): self._type = type @property def type(self): return self._type @property def converter_type(self): raise NotImplementedError def modify_request(self, request_builder, value): raise NotImplementedError class NamedArgument(TypedArgument): can_be_static = True def __init__(self, name=None, type=None): self._arg_name = name super(NamedArgument, self).__init__(type) @property def name(self): return self._arg_name @name.setter def name(self, name): if self._arg_name is None: self._arg_name = name else: raise AttributeError("Name is already set.") @property def converter_type(self): raise NotImplementedError def modify_request(self, request_builder, value): raise NotImplementedError class Path(NamedArgument): """ Substitution of a path variable in a `URI template <https://tools.ietf.org/html/rfc6570>`__. URI template parameters are enclosed in braces (e.g., :code:`{name}`). To map an argument to a declared URI parameter, use the :py:class:`Path` annotation: .. code-block:: python class TodoService(object): @get("todos{/id}") def get_todo(self, todo_id: Path("id")): pass Then, invoking :code:`get_todo` with a consumer instance: .. code-block:: python todo_service.get_todo(100) creates an HTTP request with a URL ending in :code:`todos/100`. Note: When building the consumer instance, :py:func:`uplink.build` will try match unannotated function arguments with URL path parameters. See :ref:`implicit_path_annotations` for details. For example, we could rewrite the method from the previous example as: .. code-block:: python @get("todos{/id}") def get_todo(self, id): pass """ @property def converter_type(self): return converter.CONVERT_TO_STRING def modify_request_definition(self, request_definition_builder): request_definition_builder.uri.add_variable(self.name) def modify_request(self, request_builder, value): request_builder.uri.set_variable({self.name: value}) class Query(NamedArgument): @staticmethod def convert_to_string(value): # TODO: Move this responsibility to the `converter` # Convert to string or list of strings. if isinstance(value, (list, tuple)): return list(map(str, value)) else: return str(value) @property def converter_type(self): return converter.CONVERT_TO_REQUEST_BODY def modify_request(self, request_builder, value): value = self.convert_to_string(value) request_builder.info["params"][self.name] = value class QueryMap(TypedArgument): @property def converter_type(self): return converter.Map(converter.CONVERT_TO_REQUEST_BODY) @classmethod def modify_request(cls, request_builder, value): value = dict((k, Query.convert_to_string(value[k])) for k in value) request_builder.info["params"].update(value) class Header(NamedArgument): @property def converter_type(self): return converter.CONVERT_TO_STRING def modify_request(self, request_builder, value): request_builder.info["headers"][self.name] = value class HeaderMap(TypedArgument): @property def converter_type(self): return converter.Map(converter.CONVERT_TO_STRING) @classmethod def modify_request(cls, request_builder, value): request_builder.info["headers"].update(value) class Field(NamedArgument): class FieldAssignmentFailed(exceptions.AnnotationError): message = ( "Failed to define field '%s' to request body. Another argument " "annotation might have overwritten the body entirely." ) def __init__(self, field): self.message = self.message % field.name @property def converter_type(self): return converter.CONVERT_TO_STRING def modify_request(self, request_builder, value): try: request_builder.info["data"][self.name] = value except TypeError: # TODO: re-raise with TypeError # `data` does not support item assignment raise self.FieldAssignmentFailed(self) class FieldMap(TypedArgument): class FieldMapUpdateFailed(exceptions.AnnotationError): message = ( "Failed to update request body with field map. Another argument " "annotation might have overwritten the body entirely." ) @property def converter_type(self): return converter.Map(converter.CONVERT_TO_STRING) def modify_request(self, request_builder, value): try: request_builder.info["data"].update(value) except AttributeError: # TODO: re-raise with AttributeError raise self.FieldMapUpdateFailed() class Part(NamedArgument): @property def converter_type(self): return converter.CONVERT_TO_REQUEST_BODY def modify_request(self, request_builder, value): request_builder.info["files"][self.name] = value class PartMap(TypedArgument): @property def converter_type(self): return converter.Map(converter.CONVERT_TO_REQUEST_BODY) def modify_request(self, request_builder, value): request_builder.info["files"].update(value) class Body(TypedArgument): @property def converter_type(self): return converter.CONVERT_TO_REQUEST_BODY def modify_request(self, request_builder, value): request_builder.info["data"] = value class Url(ArgumentAnnotation): class DynamicUrlAssignmentFailed(exceptions.AnnotationError): message = "Failed to set dynamic url annotation on `%s`. " def __init__(self, request_definition_builder): self.message = self.message % request_definition_builder.__name__ @property def converter_type(self): return converter.CONVERT_TO_STRING def modify_request_definition(self, request_definition_builder): try: request_definition_builder.uri.is_dynamic = True except ValueError: # TODO: re-raise with ValueError raise self.DynamicUrlAssignmentFailed(request_definition_builder) @classmethod def modify_request(cls, request_builder, value): request_builder.uri = value
[ "raj.pritvi.kumar@gmail.com" ]
raj.pritvi.kumar@gmail.com
e32cfd7255003e19bdc7b19d7ab4593542306db2
1dad81adfb52bc22f554243142d78e6ffa42c570
/app/migrations/0010_auto_20210918_0900.py
8a0a71a3d0375ef0d8d29f3ede3e31999c663d7b
[]
no_license
Mowzak/django-shop
9f54fab1bd227c997d01eb0854e36084f8c351f4
0910bc691edb31177f3a7aed297bbd5881145ba3
refs/heads/master
2023-08-01T23:57:43.021327
2021-10-03T07:14:28
2021-10-03T07:14:28
388,475,908
0
0
null
2021-07-25T10:49:40
2021-07-22T13:41:01
CSS
UTF-8
Python
false
false
706
py
# Generated by Django 3.0.4 on 2021-09-18 04:30 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0009_auto_20210918_0854'), ] operations = [ migrations.AddField( model_name='checkout', name='price', field=models.CharField(default='', max_length=100), ), migrations.AlterField( model_name='checkout', name='phone_number', field=models.CharField(default='', max_length=15, validators=[django.core.validators.RegexValidator('[0-9]{11}', 'شماره ی تلفن صحیح نیست')]), ), ]
[ "mahdiyadi044@gmail.com" ]
mahdiyadi044@gmail.com
2158adf2dc099b6e5433af8821dd81f1164c63f5
06debb37acfdc5038514a9b86c086186d04b04b7
/APIR80/migrations/0014_auto_20190111_2214.py
0436b0b769e016f44f05f2e3ba4f4d3094f9971d
[]
no_license
cadgo/django-chkp
f772062a8d1ca589862f95c3116d318984dd3593
516328a9919f34b14f93dc63e023fd3428f8d344
refs/heads/master
2023-08-31T14:04:01.039238
2019-09-29T23:07:36
2019-09-29T23:07:36
149,029,791
2
3
null
2019-01-30T18:59:34
2018-09-16T19:43:33
Python
UTF-8
Python
false
false
1,313
py
# Generated by Django 2.1.5 on 2019-01-11 22:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('APIR80', '0013_mgmtserverobjects_mgmtserverfilepathnetworksobjects'), ] operations = [ migrations.AlterField( model_name='mgmtserverobjects', name='MGMTServerFilePathNetObjects', field=models.CharField(default='/home/carlos/gitdjango/django-chkp/APIR80/tmp/chkpobjects.txt', max_length=250), ), migrations.AlterField( model_name='mgmtserverobjects', name='MGMTServerFilePathNetworksObjects', field=models.CharField(default='/home/carlos/gitdjango/django-chkp/APIR80/tmp/chkpobjectsnetworks.txt', max_length=250), ), migrations.AlterField( model_name='mgmtserverobjects', name='MGMTServerFilePathTCPPorts', field=models.CharField(default='/home/carlos/gitdjango/django-chkp/APIR80/tmp/chkpports.txt', max_length=250), ), migrations.AlterField( model_name='mgmtserverobjects', name='MGMTServerFilePathUDPPorts', field=models.CharField(default='/home/carlos/gitdjango/django-chkp/APIR80/tmp/chkpudpports.txt', max_length=250), ), ]
[ "carlos@UbuntuAnsible.4ghqaf2pfwlupave34ssco3ame.bx.internal.cloudapp.net" ]
carlos@UbuntuAnsible.4ghqaf2pfwlupave34ssco3ame.bx.internal.cloudapp.net
2bac0ce50e8e7a4861d21295d30dddce01e3dada
d059e76c71d7b639308fc67c70d2e51ff70705e5
/tests/module_test.py
31c44357ff87ec92d1e5eaf000aa78c24c655e1a
[ "BSD-2-Clause" ]
permissive
alexxroche/redis-dump-load
e12cdd10aabd5a55589c19a4a769d8dc3d278073
696015ae35097bf7d4ed9aff557f432dd1bb7f88
refs/heads/master
2021-01-17T01:03:17.601107
2015-04-26T02:15:20
2015-04-26T02:15:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,356
py
import redisdl import unittest import json import os.path from . import util try: from io import StringIO, BytesIO except ImportError: from StringIO import StringIO class ModuleTest(unittest.TestCase): def setUp(self): import redis self.r = redis.Redis() for key in self.r.keys('*'): self.r.delete(key) def test_roundtrip(self): path = os.path.join(os.path.dirname(__file__), 'fixtures', 'dump.json') with open(path) as f: dump = f.read() redisdl.loads(dump) redump = redisdl.dumps() expected = json.loads(dump) actual = json.loads(redump) self.assertEqual(expected, actual) def test_dump_string_value(self): self.r.set('key', 'value') dump = redisdl.dumps() actual = json.loads(dump) expected = {'key': {'type': 'string', 'value': 'value'}} self.assertEqual(expected, actual) def test_dump_unicode_value(self): self.r.set('key', util.u("\u041c\u043e\u0441\u043a\u0432\u0430")) dump = redisdl.dumps() actual = json.loads(dump) expected = {'key': {'type': 'string', 'value': util.u("\u041c\u043e\u0441\u043a\u0432\u0430")}} self.assertEqual(expected, actual) def test_load_string_value(self): dump = '{"key":{"type":"string","value":"hello, world"}}' redisdl.loads(dump) value = self.r.get('key') self.assertEqual('hello, world', value.decode('ascii')) def test_load_unicode_value(self): dump = '{"key":{"type":"string","value":"\\u041c\\u043e\\u0441\\u043a\\u0432\\u0430"}}' redisdl.loads(dump) value = self.r.get('key') self.assertEqual(util.b('\xd0\x9c\xd0\xbe\xd1\x81\xd0\xba\xd0\xb2\xd0\xb0'), value) def test_load_stringio_python_backend_global(self): self.assertTrue(redisdl.have_streaming_load) redisdl.streaming_backend = 'python' dump = '{"key":{"type":"string","value":"hello, world"}}' io = StringIO(dump) redisdl.load(io) value = self.r.get('key') self.assertEqual('hello, world', value.decode('ascii')) def test_load_stringio_python_backend_local(self): self.assertTrue(redisdl.have_streaming_load) dump = '{"key":{"type":"string","value":"hello, world"}}' io = StringIO(dump) redisdl.load(io, streaming_backend='python') value = self.r.get('key') self.assertEqual('hello, world', value.decode('ascii')) def test_load_stringio_no_backend(self): self.assertTrue(redisdl.have_streaming_load) redisdl.streaming_backend = None dump = '{"key":{"type":"string","value":"hello, world"}}' io = StringIO(dump) redisdl.load(io) value = self.r.get('key') self.assertEqual('hello, world', value.decode('ascii')) def test_load_stringio_lump(self): dump = '{"key":{"type":"string","value":"hello, world"}}' io = StringIO(dump) redisdl.load_lump(io) value = self.r.get('key') self.assertEqual('hello, world', value.decode('ascii')) if redisdl.py3: def test_load_bytesio(self): self.assertTrue(redisdl.have_streaming_load) dump = '{"key":{"type":"string","value":"hello, world"}}' io = BytesIO(dump.encode('utf-8')) redisdl.load(io) value = self.r.get('key') self.assertEqual('hello, world', value.decode('ascii')) def test_load_bytesio_lump(self): dump = '{"key":{"type":"string","value":"hello, world"}}' io = BytesIO(dump.encode('utf-8')) redisdl.load_lump(io) value = self.r.get('key') self.assertEqual('hello, world', value.decode('ascii')) # yajl2 backend does not appear to be capable of loading stringios def test_load_bytesio_yajl2_backend(self): self.assertTrue(redisdl.have_streaming_load) redisdl.streaming_backend = 'yajl2' dump = '{"key":{"type":"string","value":"hello, world"}}' io = BytesIO(dump.encode('utf-8')) redisdl.load(io) value = self.r.get('key') self.assertEqual('hello, world', value.decode('ascii'))
[ "oleg@bsdpower.com" ]
oleg@bsdpower.com
829c62427a21d1b27b4d0a5d13c03a1f4eb76862
e9ac78d1c5f83dea452e330b0efec087aeb33743
/assignment-2/12.py
d5d96089340890495858a17982c5f0e464a3d1fe
[]
no_license
bytesagar/iw-assignments
9af4e8e40b19b32f17377df7c97fc43db1065e99
c5cb8540affe8452a0b00e6382d74fad9f50039a
refs/heads/main
2023-03-05T05:38:59.787071
2021-02-14T03:43:00
2021-02-14T03:43:00
338,722,714
1
0
null
null
null
null
UTF-8
Python
false
false
97
py
string = input("enter a string") print("Lower" + string.lower()) print("Upper" + string.upper())
[ "sagarkarki076@gmail.com" ]
sagarkarki076@gmail.com
3ffcccb9c24c45d88a2bb9f2dbcf065d7916a192
60965c77f553371e0055be8c9a0f28e2babf19c7
/charts.py
bbb76f952ec86e9489f289339b38bfed08df8b56
[]
no_license
Sravya2007/Project-135-Interpreting-Results
18509e70f2b0c5dffa0db63b2cff65c42445461d
f7f739b2d2e4edec87e13ee81221e54c0b85b6fa
refs/heads/master
2023-05-18T11:28:06.940337
2021-06-09T11:50:25
2021-06-09T11:50:25
375,332,154
0
0
null
null
null
null
UTF-8
Python
false
false
966
py
import pandas as pd import matplotlib.pyplot as plt star_data = pd.read_csv("habitable_star_data.csv") star_name = star_data["Star Name"] distance = star_data["Distance (ly)"] mass = star_data["Mass (M☉)"] radius = star_data["Radius (R☉)"] gravity = star_data["Surface Gravity (m/s²)"] plt.figure() plt.bar(star_name, mass) plt.xlabel("Star Names") plt.ylabel("Mass of Stars") plt.title("Star Name vs Mass") plt.xticks(rotation = 90) plt.figure() plt.bar(star_name, radius) plt.xlabel("Star Names") plt.ylabel("Radius of Stars") plt.title("Star Name vs Radius") plt.xticks(rotation = 90) plt.figure() plt.bar(star_name, distance) plt.xlabel("Star Names") plt.ylabel("Distance of Stars") plt.title("Star Name vs Distance") plt.xticks(rotation = 90) plt.figure() plt.bar(star_name, gravity) plt.xlabel("Star Names") plt.ylabel("Gravity of Stars") plt.title("Star Name vs Gravity") plt.xticks(rotation = 90) plt.show()
[ "noreply@github.com" ]
Sravya2007.noreply@github.com
8478ffa64a2427dc93d0e03c6c70b86448cab486
7e93826a8305f8b7977bf511fc2eaafbc782809b
/dtshare/option/option_commodity.py
feb9dcdb9cb99c6d034994008dfd59ce1d32b253
[]
no_license
SuperPcBull/dtshare
71defe13ad12c56f6ea1f548e0ee42d166e4aff8
996b249078f3295c019e592d5ae5c135033d1c6d
refs/heads/master
2021-03-15T22:12:25.937314
2020-03-11T01:58:30
2020-03-11T01:58:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,862
py
# -*- coding:utf-8 -*- # /usr/bin/env python """ Author: Tong Du date: 2019/9/30 13:58 Email: dtshare@126.com desc: 获取商品期权数据 说明: (1) 价格:自2019年12月02日起,纤维板报价单位由元/张改为元/立方米 (2) 价格:元/吨,鸡蛋为元/500千克,纤维板为元/立方米,胶合板为元/张 (3) 成交量、持仓量:手(按双边计算) (4) 成交额:万元(按双边计算) (5) 涨跌=收盘价-前结算价 (6) 涨跌1=今结算价-前结算价 (7) 合约系列:具有相同月份标的期货合约的所有期权合约的统称 (8) 隐含波动率:根据期权市场价格,利用期权定价模型计算的标的期货合约价格波动率 """ import datetime import warnings from io import StringIO import requests import pandas as pd from dtshare.option.cons import (get_calendar, convert_date, DCE_DAILY_OPTION_URL, SHFE_OPTION_URL, CZCE_DAILY_OPTION_URL_3, SHFE_HEADERS) def get_dce_option_daily(trade_date="20191017", symbol="玉米期权"): """ 获取大连商品交易所-期权-日频行情数据 :param trade_date: str format:"20191017" :param symbol: str "玉米期权" or "豆粕期权" :return: pandas.DataFrame part-1: 商品名称 合约名称 开盘价 最高价 最低价 收盘价 前结算价 结算价 涨跌 涨跌1 \ 0 玉米 c2001-C-1680 168.5 168.5 168.5 168.5 168.0 167.5 0.5 -0.5 1 玉米 c2001-C-1700 0 0.0 0.0 148.0 148.0 148.0 0.0 0.0 2 玉米 c2001-C-1720 0 0.0 0.0 129.0 128.0 129.0 1.0 1.0 3 玉米 c2001-C-1740 115 115.0 115.0 115.0 108.0 111.0 7.0 3.0 4 玉米 c2001-C-1760 89 95.5 89.0 95.5 89.0 93.5 6.5 4.5 .. ... ... ... ... ... ... ... ... ... ... 239 玉米 c2009-P-2040 0 0.0 0.0 91.0 88.5 91.0 2.5 2.5 240 玉米 c2009-P-2060 0 0.0 0.0 106.0 104.0 106.0 2.0 2.0 241 玉米 c2009-P-2080 0 0.0 0.0 121.5 120.5 121.5 1.0 1.0 242 玉米 c2009-P-2100 0 0.0 0.0 138.5 137.5 138.5 1.0 1.0 243 玉米 c2009-P-2120 0 0.0 0.0 155.5 155.5 155.5 0.0 0.0 Delta 成交量 持仓量 持仓量变化 成交额 行权量 0 0.98 2 236 0 0.34 0.0 1 0.96 0 236 0 0 0.0 2 0.94 0 210 0 0 0.0 3 0.90 20 1,040 0 2.3 0.0 4 0.85 12 680 0 1.11 0.0 .. ... .. ... ... ... ... 239 -0.70 0 30 0 0 0.0 240 -0.75 0 50 0 0 0.0 241 -0.80 0 20 0 0 0.0 242 -0.84 0 10 0 0 0.0 243 -0.88 0 0 0 0 0.0 part-2: 0 合约系列 隐含波动率(%) 1 c2001 12.95 2 c2003 8.74 3 c2005 8.75 4 c2007 7.7 5 c2009 6.85 """ calendar = get_calendar() day = convert_date(trade_date) if trade_date is not None else datetime.date.today() if day.strftime('%Y%m%d') not in calendar: warnings.warn('%s非交易日' % day.strftime('%Y%m%d')) return None url = DCE_DAILY_OPTION_URL payload = { "dayQuotes.variety": "all", "dayQuotes.trade_type": "1", "year": str(day.year), "month": str(day.month - 1), "day": str(day.day), "exportFlag": "txt" } res = requests.post(url, data=payload) f = StringIO(res.text) table_df = pd.read_table(f, encoding="gbk", skiprows=2, header=None, sep=r"\t\t", engine="python") another_df = table_df.iloc[table_df[table_df.iloc[:, 0].str.contains("合约")].iloc[-1].name:, [0, 1]] another_df.reset_index(inplace=True, drop=True) another_df.iloc[0] = another_df.iat[0, 0].split("\t") another_df.columns = another_df.iloc[0] another_df = another_df.iloc[1:, :] table_df = table_df.join(table_df.iloc[:, 1].str.split(r"\t", expand=True), lsuffix="l") table_df.columns = ["商品名称", "_", "最高价", "最低价", "收盘价", "前结算价", "结算价", "涨跌", "涨跌1", "Delta", "成交量", "持仓量", "持仓量变化", "成交额", "行权量", "合约名称", "开盘价"] table_df = table_df[ ["商品名称", "合约名称", "开盘价", "最高价", "最低价", "收盘价", "前结算价", "结算价", "涨跌", "涨跌1", "Delta", "成交量", "持仓量", "持仓量变化", "成交额", "行权量"]] table_df.dropna(axis=1, how="all", inplace=True) product_one_df = table_df.iloc[:table_df[table_df.iloc[:, 0].str.contains("小计")].iloc[0].name, :] product_two_df = table_df.iloc[table_df[table_df.iloc[:, 0].str.contains("小计")].iloc[0].name + 1: table_df[table_df.iloc[:, 0].str.contains("小计")].iloc[1].name, :] product_three_df = table_df.iloc[table_df[table_df.iloc[:, 0].str.contains("小计")].iloc[1].name + 1: table_df[table_df.iloc[:, 0].str.contains("小计")].iloc[2].name, :] if symbol == "玉米期权": return product_one_df, another_df[another_df.iloc[:, 0].str.contains("c")] elif symbol == "铁矿石期权": return product_two_df, another_df[another_df.iloc[:, 0].str.contains("i")] else: return product_three_df, another_df[another_df.iloc[:, 0].str.contains("m")] def get_czce_option_daily(trade_date="20191017", symbol="白糖期权"): """ 郑州商品交易所-期权-日频行情数据 说明: (1) 价格:元/吨 (2) 成交量、空盘量:手 (3) 成交额:万元 (4) 涨跌一:今收盘-昨结算 (5) 涨跌二:今结算-昨结算 (6) 隐含波动率:将当日期权合约的结算价代入期权定价模型,反推出来的波动率数值 :param trade_date: str "20191017" :param symbol: str "白糖期权", "棉花期权", "甲醇期权", "PTA期权", "菜籽粕期权" :return: pandas.DataFrame 郑商所每日期权交易数据 品种代码 昨结算 今开盘 最高价 最低价 今收盘 \ 0 CF001C10800 1,579.00 0.00 0.00 0.00 0.00 1 CF001C11000 1,392.00 0.00 0.00 0.00 0.00 2 CF001C11200 1,211.00 0.00 0.00 0.00 0.00 3 CF001C11400 1,038.00 1,396.00 1,396.00 1,396.00 1,396.00 4 CF001C11600 874.00 0.00 0.00 0.00 0.00 .. ... ... ... ... ... ... 398 SR009P5900 576.00 0.00 0.00 0.00 0.00 399 SR009P6000 653.00 0.00 0.00 0.00 0.00 400 小计 401 SR合计 402 总计 今结算 涨跌1 涨跌2 成交量(手) 空盘量 增减量 \ 0 1,866.00 287.00 287.00 0 0 0 1 1,672.00 280.00 280.00 0 0 0 2 1,481.00 270.00 270.00 0 4 0 3 1,295.00 358.00 257.00 2 68 0 4 1,114.00 240.00 240.00 0 224 0 .. ... ... ... ... ... ... 398 580.00 4.00 4.00 0 0 0 399 658.00 5.00 5.00 0 0 0 400 656 860 400 401 32,098 276,900 2252 402 110,664 474,154 14770 成交额(万元) DELTA 隐含波动率 行权量 0 0.00 0.9765 22.29 0 1 0.00 0.9621 21.84 0 2 0.00 0.9423 21.38 0 3 1.40 0.9155 20.91 0 4 0.00 0.8800 20.45 0 .. ... ... ... ... 398 0.00 -0.6639 16.24 0 399 0.00 -0.7007 16.58 0 400 97.28 0 401 2138.41 0 402 8769.52 2 """ calendar = get_calendar() day = convert_date(trade_date) if trade_date is not None else datetime.date.today() if day.strftime('%Y%m%d') not in calendar: warnings.warn('{}非交易日'.format(day.strftime('%Y%m%d'))) return None if day > datetime.date(2010, 8, 24): url = CZCE_DAILY_OPTION_URL_3.format(day.strftime('%Y'), day.strftime('%Y%m%d')) try: r = requests.get(url) f = StringIO(r.text) table_df = pd.read_table(f, encoding="utf-8", skiprows=1, sep="|") if symbol == "白糖期权": temp_df = table_df[table_df.iloc[:, 0].str.contains("SR")] temp_df.reset_index(inplace=True, drop=True) return temp_df.iloc[:-1, :] elif symbol == "PTA期权": temp_df = table_df[table_df.iloc[:, 0].str.contains("TA")] temp_df.reset_index(inplace=True, drop=True) return temp_df.iloc[:-1, :] elif symbol == "甲醇期权": temp_df = table_df[table_df.iloc[:, 0].str.contains("MA")] temp_df.reset_index(inplace=True, drop=True) return temp_df.iloc[:-1, :] elif symbol == "菜籽粕期权": temp_df = table_df[table_df.iloc[:, 0].str.contains("RM")] temp_df.reset_index(inplace=True, drop=True) return temp_df.iloc[:-1, :] else: temp_df = table_df[table_df.iloc[:, 0].str.contains("CF")] temp_df.reset_index(inplace=True, drop=True) return temp_df.iloc[:-1, :] except: return None def get_shfe_option_daily(trade_date="20191220", symbol="黄金期权"): """ 上海期货交易所-期权-日频行情数据 :param trade_date: str "20191017" :param symbol: str "铜期权" or "天胶期权" or "黄金期权" :return: pandas.DataFrame part-1: PRODUCTID PRODUCTSORTNO PRODUCTNAME \ 288 ru_o 100 天胶期权 289 ru_o 100 天胶期权 290 ru_o 100 天胶期权 291 ru_o 100 天胶期权 292 ru_o 100 天胶期权 .. ... ... ... 789 ru_o 100 天胶期权 790 ru_o 100 天胶期权 791 ru_o 100 天胶期权 792 ru_o 100 天胶期权 793 ru_o 100 天胶期权 INSTRUMENTID PRESETTLEMENTPRICE OPENPRICE \ 288 ru1911C10000 729 289 ru1911C10250 495 290 ru1911C10500 293 291 ru1911C10750 146 292 ru1911C11000 58 .. ... ... ... 789 ru2010P9500 155 790 ru2010P9600 172 791 ru2010P9700 189 792 ru2010P9800 209 793 ru2010P9900 229 HIGHESTPRICE LOWESTPRICE CLOSEPRICE SETTLEMENTPRICE ZD1_CHG ZD2_CHG \ 288 778 778 49 49 289 542 542 47 47 290 334 334 41 41 291 176 176 30 30 292 76 76 18 18 .. ... ... ... ... ... ... 789 151 151 -4 -4 790 167 167 -5 -5 791 184 184 -5 -5 792 204 204 -5 -5 793 224 224 -5 -5 VOLUME OPENINTEREST OPENINTERESTCHG ORDERNO EXECVOLUME TURNOVER \ 288 0 0 0 0 0 0.0 289 0 0 0 0 0 0.0 290 0 0 0 0 0 0.0 291 0 0 0 0 0 0.0 292 0 4 0 0 0 0.0 .. ... ... ... ... ... ... 789 0 0 0 0 0 0.0 790 0 0 0 0 0 0.0 791 0 0 0 0 0 0.0 792 0 0 0 0 0 0.0 793 0 0 0 0 0 0.0 DELTA 288 0.976387 289 0.908465 290 0.757436 291 0.531736 292 0.299911 .. ... 789 -0.112120 790 -0.122028 791 -0.131944 792 -0.142837 793 -0.154073 part-2: PRODUCTID PRODUCTSORTNO PRODUCTNAME HIGHESTPRICE LOWESTPRICE \ 1 ru_o 100 天胶期权 2774 2 AVGPRICE VOLUME TURNOVER YEARVOLUME YEARTURNOVER EXECVOLUME \ 1 148.573 8290 0.125033 112.5122 34.062215 0 YEAREXECVOLUME 1 1.0624 part-3: PRODUCTID PRODUCTSORTNO PRODUCTNAME INSTRUMENTID \ 12 ru_o 100 天胶期权 ru1911 13 ru_o 100 天胶期权 ru2001 14 ru_o 100 天胶期权 ru2003 15 ru_o 100 天胶期权 ru2004 16 ru_o 100 天胶期权 ru2005 17 ru_o 100 天胶期权 ru2006 18 ru_o 100 天胶期权 ru2007 19 ru_o 100 天胶期权 ru2008 20 ru_o 100 天胶期权 ru2009 21 ru_o 100 天胶期权 ru2010 SIGMA 12 0.242419 13 0.234428 14 0.218916 15 0.208057 16 0.205821 17 0.205821 18 0.240689 19 0.240689 20 0.216861 21 0.216861 """ calendar = get_calendar() day = convert_date(trade_date) if trade_date is not None else datetime.date.today() if day.strftime('%Y%m%d') not in calendar: warnings.warn('%s非交易日' % day.strftime('%Y%m%d')) return None if day > datetime.date(2010, 8, 24): url = SHFE_OPTION_URL.format(day.strftime('%Y%m%d')) try: r = requests.get(url, headers=SHFE_HEADERS) json_data = r.json() table_df = pd.DataFrame([row for row in json_data['o_curinstrument'] if row['INSTRUMENTID'] not in ['小计', '合计'] and row['INSTRUMENTID'] != '']) contract_df = table_df[table_df["PRODUCTNAME"].str.strip() == symbol] product_df = pd.DataFrame(json_data['o_curproduct']) product_df = product_df[product_df["PRODUCTNAME"].str.strip() == symbol] volatility_df = pd.DataFrame(json_data['o_cursigma']) volatility_df = volatility_df[volatility_df["PRODUCTNAME"].str.strip() == symbol] return contract_df, product_df, volatility_df except: return None if __name__ == "__main__": df_test = get_czce_option_daily(trade_date="20200117", symbol="菜籽粕期权") print(df_test) one, two = get_dce_option_daily(trade_date="20191209", symbol="铁矿石期权") print(one) print(two) one, two, three = get_shfe_option_daily(trade_date="20191220", symbol="黄金期权") print(one) print(two) print(three)
[ "dtshare@126.com" ]
dtshare@126.com
d91cb988e6267df64db44f867a1eeccff5e773b8
87ad372898e793faf1ad89f4bb3b6e84a8002131
/tests/unit/UnagiiToken/test_approve.py
c37a007c87b27f55f23e9b564580ea5328e8a0ab
[]
no_license
atsignhandle/unagii-vault-v2
6a9a96c11d34257bc3fdae57455ec3b2f9c0029a
548f715f34329eb5abebffe40acbeb56a31cb6f3
refs/heads/main
2023-08-27T00:59:48.080152
2021-09-28T02:47:36
2021-09-28T02:47:36
413,448,825
0
0
null
2021-10-04T14:07:37
2021-10-04T14:07:36
null
UTF-8
Python
false
false
1,250
py
import brownie from brownie.test import given, strategy import pytest @pytest.fixture(scope="function", autouse=True) def setup(fn_isolation): pass @given( owner=strategy("address"), spender=strategy("address"), amount=strategy("uint256"), ) def test_apprpve(uToken, owner, spender, amount): tx = uToken.approve(spender, amount, {"from": owner}) assert uToken.allowance(owner, spender) == amount assert len(tx.events) == 1 assert tx.events["Approval"].values() == [owner, spender, amount] def test_increase_allowance(uToken, accounts): owner = accounts[0] spender = accounts[1] uToken.approve(spender, 100, {"from": owner}) tx = uToken.increaseAllowance(spender, 403, {"from": owner}) assert uToken.allowance(owner, spender) == 503 assert len(tx.events) == 1 assert tx.events["Approval"].values() == [owner, spender, 503] def test_decrease_allowance(uToken, accounts): owner = accounts[0] spender = accounts[1] uToken.approve(spender, 100, {"from": owner}) tx = uToken.decreaseAllowance(spender, 34, {"from": owner}) assert uToken.allowance(owner, spender) == 66 assert len(tx.events) == 1 assert tx.events["Approval"].values() == [owner, spender, 66]
[ "tsk.nakamura@gmail.com" ]
tsk.nakamura@gmail.com
20deb90846ad288a2d94d9b45fbff6c904bc0e54
c105e5cf2a1eec2e04398d7b50030b6c97d6a04b
/poker/poker/urls.py
984103b63bef0c8ccbdaa477f76d9779a5545822
[ "MIT" ]
permissive
chitty/poker_base
845e464fa68de93de6ff79eaba77b91e45be1788
913c13b89a0c4e4c0ec7e3b01495a96309a02f26
refs/heads/master
2021-01-20T19:21:43.628307
2016-07-20T16:33:47
2016-07-20T16:33:47
61,395,187
0
0
null
null
null
null
UTF-8
Python
false
false
187
py
from django.conf.urls import include, url from django.contrib import admin urlpatterns = [ url(r'^holdem/', include('holdem.urls')), url(r'^admin/', include(admin.site.urls)), ]
[ "chitty.carlosj@gmail.com" ]
chitty.carlosj@gmail.com
d2fa208268124115fb8707888efbde6813276ac2
75e1a56916469d9fc9695cc9d5b8d216578f9e53
/aaweb/views/investors.py
8ac1d0e61f8bcfbfa55ca7d5fa6af1b81c04cb75
[ "LicenseRef-scancode-public-domain", "CC0-1.0" ]
permissive
cpelite/astorian-airways
f1cc496688bf52df763cb3d952b6623c27172e67
55498f308de7a4b8159519e191b492675ec5612a
refs/heads/master
2021-09-14T12:20:14.632632
2018-05-13T18:01:54
2018-05-13T18:01:54
255,722,246
0
0
null
2020-04-14T20:46:50
2020-04-14T20:46:49
null
UTF-8
Python
false
false
274
py
# -*- coding: utf-8 -*- from flask import render_template from aaweb import app from aaweb.models import Company @app.route('/investor/relations.html') def view_investor(): companies = Company.select() return render_template('investor.html', companies=companies)
[ "christian.koepp@cs.tum.edu" ]
christian.koepp@cs.tum.edu
0142110cb2437b1407ba2fed98e5650f4fcd115c
de16cd6a0302278e4e5c30a97902b974ee4cc70c
/app.py
9c48c8869ff2430a4effec0761da6cfa37db7ce6
[]
no_license
GaryG484/Mission-to-Mars
4798caf02326fcd666aa550cdf6dcf3ee47a120b
9a06c92a4e69320c1a8cd6e51fae899586fdb280
refs/heads/main
2023-08-23T08:34:54.040300
2021-09-22T00:13:15
2021-09-22T00:13:15
398,110,055
0
0
null
null
null
null
UTF-8
Python
false
false
4,335
py
# This is where we'll use Flask and Mongo to begin creating our web app # begin by importing our tools from flask import Flask, render_template, redirect, url_for from flask_pymongo import PyMongo import scraping # Let's break down what this code is doing. # The first line says that we'll use Flask to render a template, redirecting to another url, # and creating a URL. # The second line says we'll use PyMongo to interact with our Mongo database. # The third line says that to use the scraping code, we will convert from Jupyter notebook to Python. # set up Flask: app = Flask(__name__) # tell Python how to connect to Mongo using PyMongo # Use flask_pymongo to set up mongo connection app.config["MONGO_URI"] = "mongodb://localhost:27017/mars_app" mongo = PyMongo(app) # app.config["MONGO_URI"] tells Python that our app will connect to Mongo using a URI, a uniform resource # identifier similar to a URL. # "mongodb://localhost:27017/mars_app" is the URI we'll be using to connect our app to Mongo. # This URI is saying that the app can reach Mongo through our localhost server, using port 27017, using # a database named "mars_app". # Set Up App Routes # one for the main HTML page everyone will view when visiting the web app, # and one to actually scrape new data using the code we've written. # First, let's define the route for the HTML page @app.route("/") def index(): mars = mongo.db.mars.find_one() return render_template("index.html", mars=mars) # This route, @app.route("/"), tells Flask what to display when we're looking at the home page, # index.html (index.html is the default HTML file that we'll use to display the content we've scraped). # This means that when we visit our web app's HTML page, we will see the home page. # Within the def index(): function the following is accomplished: # mars = mongo.db.mars.find_one() uses PyMongo to find the "mars" collection in our database, which we # will create when we convert our Jupyter scraping code to Python Script. We will also assign that path to # themars variable for use later. # return render_template("index.html" tells Flask to return an HTML template using an index.html file. # We'll create this file after we build the Flask routes. # , mars=mars) tells Python to use the "mars" collection in MongoDB. # This function is what links our visual representation of our work, our web app, to the code that powers it. # Our next function will set up our scraping route. This route will be the "button" of the web application, # the one that will scrape updated data when we tell it to from the homepage of our web app. It'll be # tied to a button that will run the code when it's clicked. @app.route("/scrape") def scrape(): mars = mongo.db.mars mars_data = scraping.scrape_all() # The first line, @app.route(“/scrape”) defines the route that Flask will be using. This route, “/scrape”, # will run the function that we create just beneath it. # The next lines allow us to access the database, scrape new data using our scraping.py script, update # the database, and return a message when successful. Let's break it down. # First, we define it with def scrape():. # Then, we assign a new variable that points to our Mongo database: mars = mongo.db.mars. # Next, we created a new variable to hold the newly scraped data: mars_data = scraping.scrape_all(). # In this line, we're referencing the scrape_all function in the scraping.py file exported from # Jupyter Notebook. # Now that we've gathered new data, we need to update the database using .update() # .update(query_parameter, data, options) # We're inserting data, so first we'll need to add an empty JSON object with {} in place of the # query_parameter. Next, we'll use the data we have stored in mars_data. Finally, the option we'll # include is upsert=True. This indicates to Mongo to create a new document if one doesn't already # exist, and new data will always be saved (even if we haven't already created a document for it). mars.update({}, mars_data, upsert=True) # Finally, we will add a redirect after successfully scraping the data: return redirect('/', code=302) # This will navigate our page back to / where we can see the updated content. # Tell Flask to run if __name__ == "__main__": app.run(debug=True)
[ "85652494+GaryG484@users.noreply.github.com" ]
85652494+GaryG484@users.noreply.github.com
6afbde266297ea50d91e24346d4e03987b62c63f
37c677551f6b11fb6ec93c35d45c8f52d9b483a0
/calc_factories.py
f06b2fb6370f2479602701dca121c32154d57e60
[]
no_license
70akaline/nested_scripts
735e1ee5868596a80633d5b1d1c36ce5bb95c9d1
c69306bd51fda90fd04b33e6f72f2b6d6edfcef1
refs/heads/master
2021-09-05T23:23:16.165209
2018-01-31T16:09:16
2018-01-31T16:09:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,305
py
from data_containers import nested_data from data_containers import cumul_nested_data from data_containers import cellular_data from data_containers import dca_data from data_containers import dca_plus_data from data_containers import nested_edmft_data from action_cautionaries import impose_real_valued_in_imtime_numpy from action_cautionaries import impose_real_valued_in_imtime from getters import * from impurity_solvers import solvers def set_n(n, data): for key in data.ns.keys(): data.ns[key] = n return n def set_mu(mu, data): for key in data.mus.keys(): data.mus[key] = mu def is_zero(bg): return sum([ numpy.count_nonzero(g.data) for name, g in bg ]) == 0 #----------------------------- nested -----------------------------------------------------------------------# def prepare_nested( data, nested_scheme, solver_class = solvers.ctint, flexible_Gweiss=False, sign=-1, sign_up_to=2, use_G_proj = False ): assert (data.__class__ == nested_data) or (data.__class__ == nested_edmft_data) , "wrong data type" assert data.fermionic_struct == {'up': [0]}, "wrong fermionic struct for this calcalation" assert data.impurity_struct == nested_scheme.get_impurity_struct(), "wrong impurity struct for this nested scheme" data.get_Sigmaijw = lambda: full_fill_Sigmaijw_from_Sigma_imp_iw(data.Sigmaijw, data.Sigma_imp_iw, nested_scheme.get_latt_to_imp_mapping()) data.get_Sigmakw = lambda: full_fill_Sigmakw_from_Sigmaijw(data.Sigmakw, data.Sigmaijw) data.get_Sigma_loc = lambda: full_fill_local_from_latt(data.Sigma_loc_iw, data.Sigmakw) data.get_Gkw = lambda: full_fill_Gkw_from_iws_mus_epsiolonk_and_Sigmakw(data.Gkw, data.iws, data.mus, data.epsilonk, data.Sigmakw) data.get_G_loc = lambda: full_fill_local_from_latt(data.G_loc_iw, data.Gkw) data.get_n_from_G_loc = lambda: blockwise_get_n_from_G_loc_iw(data.G_loc_iw['up'], fit_tail_starting_iw = 14.0, ntau = None, site_index = 0) if use_G_proj: data.get_Gijw = lambda: [full_fill_Gijw_from_Gkw(data.Gijw, data.Gkw, N_cores=1), full_fill_G_proj_iw(data.G_proj_iw, data.Gijw, nested_scheme) ] else: data.get_Gijw = lambda: full_fill_Gijw_from_Gkw(data.Gijw, data.Gkw, N_cores=1) data.set_mu = lambda mu: set_mu(mu, data) data.get_mu = lambda: data.mus['up'] data.get_n = lambda: [data.get_Gkw(), data.get_G_loc(), set_n(data.get_n_from_G_loc(),data)][-1] if flexible_Gweiss: data.get_Gweiss = lambda: ( flexible_Gweiss_iw_from_Gweiss_iw_Gijw_and_G_imp_iw(data.Gweiss_iw, data.Gijw, data.G_imp_iw, nested_scheme.get_imp_to_latt_mapping(), sign, sign_up_to) if not is_zero(data.Gweiss_iw) else full_fill_Gweiss_iw_from_Gijw_and_Sigma_imp_iw(data.Gweiss_iw,data.Gijw,data.Sigma_imp_iw, mapping = nested_scheme.get_imp_to_latt_mapping()) ) elif use_G_proj: data.get_Gweiss = lambda: full_full_Gweiss_iw_from_G_proj_iw_and_Sigma_imp_iw(data.Gweiss_iw,data.G_proj_iw,data.Sigma_imp_iw) else: data.get_Gweiss = lambda: full_fill_Gweiss_iw_from_Gijw_and_Sigma_imp_iw(data.Gweiss_iw,data.Gijw,data.Sigma_imp_iw, mapping = nested_scheme.get_imp_to_latt_mapping()) data.dump_solvers = lambda suffix: [solver_class.dump( data.solvers[C], data.archive_name, suffix='-%s%s'%(C,suffix) ) for C in data.solvers.keys()] #----------------------------- nested edmft -----------------------------------------------------------------------# def prepare_nested_edmft( data, nested_scheme, solver_class = solvers.ctint): assert data.__class__ == nested_edmft_data, "wrong data type" prepare_nested( data, nested_scheme, solver_class ) data.get_P_imp = lambda: fill_P_imp_from_chi_imp_W_imp_and_Uweiss(data.P_imp_iw, data.chi_imp_iw, data.W_imp_iw, data.Uweiss_iw) data.get_Pijnu = lambda: full_fill_Pijnu_from_P_imp_iw(data.Pijnu, data.P_imp_iw, nested_scheme.get_latt_to_imp_mapping()) data.get_Pqnu = lambda: full_fill_Sigmakw_from_Sigmaijw(data.Pqnu, data.Pijnu) data.get_P_loc = lambda: full_fill_local_from_latt(data.P_loc_iw, data.Pqnu) data.get_W_imp = lambda: fill_W_imp_from_chi_imp_and_Uweiss( data.W_imp_iw, data.chi_imp_iw, data.Uweiss_iw) data.get_Wqnu = lambda: full_fill_Wqnu_from_Jq_and_Pqnu(data.Wqnu,data.Jq,data.Pqnu) data.get_W_loc = lambda: full_fill_local_from_latt(data.W_loc_iw, data.Wqnu) data.get_Wijnu = lambda: full_fill_Gijw_from_Gkw(data.Wijnu, data.Wqnu, N_cores=1) data.get_Uweiss = lambda: [ full_fill_Uweiss_iw_from_Wijnu_and_P_imp_iw(data.Uweiss_iw,data.Wijnu,data.P_imp_iw, mapping = nested_scheme.get_imp_to_latt_mapping()), fill_Uweiss_dyn_from_Uweiss(data.Uweiss_dyn_iw,data.Uweiss_iw) ] #no lattice calc, for reversed etc. mp = nested_scheme.get_imp_to_latt_mapping() print "nested_scheme.maxLx: ",nested_scheme.maxLx print "max nsites:", nested_scheme.maxLx**2 def ij_iterator(): nsites = nested_scheme.maxLx**2 for i in range(nsites): for j in range(nsites): yield i,j def ijA_iterator(): for i,j in ij_iterator(): for A in data.bosonic_struct.keys(): yield i,j,A data.copy_imp_to_latt = lambda C: [ [ numpy.copyto(data.Gijw['up'][:,mp(C,i,j)[0], mp(C,i,j)[1]],data.G_imp_iw[C].data[:,i,j]) for i,j in ij_iterator()], [ numpy.copyto(data.Wijnu[A][:,mp(C,i,j)[0], mp(C,i,j)[1]],data.W_imp_iw[C+'|'+A].data[:,i,j]) for i,j,A in ijA_iterator() ] ] #----------------------------- cumul_nested -----------------------------------------------------------------------# def prepare_cumul_nested( data, nested_scheme, solver_class = solvers.ctint ): assert data.__class__ == cumul_nested_data, "wrong data type" assert data.fermionic_struct == {'up': [0]}, "wrong fermionic struct for this calcalation" assert data.impurity_struct == nested_scheme.get_impurity_struct(), "wrong impurity struct for this nested scheme" data.get_g_imp = lambda: full_fill_g_imp_iw_from_Sigma_imp_iw(data.g_imp_iw, data.mus['up'], data.Sigma_imp_iw) data.get_gijw = lambda: full_fill_Sigmaijw_from_Sigma_imp_iw(data.gijw, data.g_imp_iw, nested_scheme.get_latt_to_imp_mapping()) data.get_gkw = lambda: full_fill_Sigmakw_from_Sigmaijw(data.gkw, data.gijw) data.get_Sigmakw = lambda: full_fill_Sigmakw_from_gkw(data.Sigmakw, data.ws, data.mus['up'], data.gkw) data.get_Sigma_loc = lambda: full_fill_local_from_latt(data.Sigma_loc_iw, data.Sigmakw) data.get_Gkw = lambda: full_fill_Gkw_from_epsiolonk_and_gkw(data.Gkw, data.epsilonk, data.gkw) data.get_G_loc = lambda: full_fill_local_from_latt(data.G_loc_iw, data.Gkw) data.get_n_from_G_loc = lambda: blockwise_get_n_from_G_loc_iw(data.G_loc_iw['up'], fit_tail_starting_iw = 14.0, ntau = None, site_index = 0) data.get_Gijw = lambda: full_fill_Gijw_from_Gkw(data.Gijw, data.Gkw, N_cores=1) data.set_mu = lambda mu: set_mu(mu, data) data.get_mu = lambda: data.mus['up'] data.get_n = lambda: [data.get_g_imp(), data.get_gijw(), data.get_gkw(), data.get_Gkw(), data.get_G_loc(), set_n(data.get_n_from_G_loc(),data)][-1] data.get_Gweiss = lambda: full_fill_Gweiss_iw_from_Gijw_and_Sigma_imp_iw(data.Gweiss_iw,data.Gijw,data.Sigma_imp_iw, mapping = nested_scheme.get_imp_to_latt_mapping()) data.dump_solvers = lambda suffix: [solver_class.dump( data.solvers[C], data.archive_name, suffix='-%s%s'%(C,suffix) ) for C in data.impurity_struct.keys()] #----------------------------- dca -----------------------------------------------------------------------# def prepare_dca( data, dca_scheme, solver_class = solvers.ctint ): assert len(data.impurity_struct.keys()) == 1, "in dca only one impurity problem!!" key = data.impurity_struct.keys()[0] assert len(data.impurity_struct[key]) == dca_scheme.dim, "wrong impurity struct for the dca calculation!" assert len(data.fermionic_struct.keys()) == len(data.impurity_struct[key]), "fermionic and impurity struct not consistent" assert data.__class__ == dca_data, "wrong data type" r0 = dca_scheme.get_r0() r0_key = '%02d'%r0 data.get_SigmaR = lambda: dca_scheme.get_QR_from_Q_imp(data.SigmaR_iw, data.Sigma_imp_iw) data.get_SigmaK = lambda: dca_scheme.get_QK_from_QR(data.SigmaK_iw, data.SigmaR_iw) data.get_GK = lambda: [ full_fill_GK_iw(data.GK_iw, data.SigmaK_iw, data.mus[r0_key], dca_scheme.dca_patches), [impose_real_valued_in_imtime(g) for name,g in data.GK_iw] ] data.get_GR0 = lambda: [ dca_scheme.get_QR_from_QK(data.GR_iw, data.GK_iw, l_list = [r0]), impose_real_valued_in_imtime(data.GR_iw[r0_key]) ] data.get_n_from_GR0 = lambda: blockwise_get_n_from_G_loc_iw(data.GR_iw[r0_key], fit_tail_starting_iw = 14.0, ntau = None, site_index = 0) data.get_GR = lambda: [ dca_scheme.get_QR_from_QK(data.GR_iw, data.GK_iw), [impose_real_valued_in_imtime(g) for name,g in data.GR_iw] ] data.get_Gijw = data.get_GR data.set_mu = lambda mu: set_mu(mu, data) data.get_mu = lambda: data.mus['00'] data.get_n = lambda: [data.get_GK(), data.get_GR0(), set_n(data.get_n_from_GR0(),data)][-1] data.get_GweissK = lambda: full_fill_GweissK_iw_from_Dyson(data.GweissK_iw, data.GK_iw, data.SigmaK_iw) data.get_GweissR = lambda: dca_scheme.get_QR_from_QK(data.GweissR_iw, data.GweissK_iw) data.get_Gweiss_iw = lambda: dca_scheme.get_Q_imp_from_QR(data.Gweiss_iw, data.GweissR_iw) data.get_Gweiss = lambda: [data.get_GweissK(), data.get_GweissR(), data.get_Gweiss_iw(), [impose_real_valued_in_imtime(g) for name,g in data.Gweiss_iw] ] data.dump_solvers = lambda suffix: [solver_class.dump( data.solvers[C], data.archive_name, suffix='-%s%s'%(C,suffix) ) for C in data.impurity_struct.keys()] #----------------------------- dca_plus -----------------------------------------------------------------------# def prepare_dca_plus( data, dca_scheme, solver_class = solvers.ctint, alpha = 1, n_RL_iterations = 10, embedded = False, real_space_sc = False, no_convolution = False, impose_ph_symmetry = False ): assert len(data.impurity_struct.keys()) == 1, "in dca only one impurity problem!!" key = data.impurity_struct.keys()[0] assert len(data.impurity_struct[key]) == dca_scheme.dim, "wrong impurity struct for the dca calculation!" assert len(data.fermionic_struct.keys()) == len(data.impurity_struct[key]), "fermionic and impurity struct not consistent" assert data.__class__ == dca_plus_data, "wrong data type" nK = int(round(numpy.sqrt(dca_scheme.dim))) print 'nK: ', nK assert dca_scheme.n1 == dca_scheme.n1 and dca_scheme.m1==0 and dca_scheme.n2==0, "not general for now..." assert nK**2 == dca_scheme.dim, "must be n1==m2, n2==m1==0" #data.get_SigmaR = lambda: [ full_fill_SigmaR_iw_from_Sigma_imp_iw(data.SigmaR_iw, data.Sigma_imp_iw, lambda i: dca_scheme.i_to_ij(i)), dca_scheme.symmetrize_QR(data.SigmaR_iw) ] data.get_SigmaR = lambda: [ dca_scheme.get_QR_from_Q_imp(data.SigmaR_iw, data.Sigma_imp_iw) ] data.get_SigmaK = lambda: dca_scheme.get_QK_from_QR(data.SigmaK_iw, data.SigmaR_iw) r0 = dca_scheme.get_r0() r0_key = '%02d'%r0 data.get_XiK = lambda: fill_XiK_from_SigmaK(data.XiK_iw, data.SigmaK_iw, alpha) data.get_XiR = lambda: dca_scheme.get_QR_from_QK(data.XiR_iw, data.XiK_iw) if not embedded: data.get_Xik = lambda: dca_scheme.get_Qk_from_QR(data.Xikw['up'], data.XiR_iw, data.ks) data.get_Sigmaimpk = lambda: blockwise_Sigmak_from_Xik(data.Sigmaimpkw['up'], data.Xikw['up'], alpha) if not no_convolution: data.get_Sigmakw = lambda: [ numpy.copyto(data.Sigmakw['up'], data.Sigmaimpkw['up']), Richardson_Lucy(data.Sigmaimpkw['up'], data.Sigmakw['up'], nK, n_iterations = n_RL_iterations, desired_loc=data.SigmaR_iw[r0_key].data[:,0,0], impose_ph_symmetry=impose_ph_symmetry) ] else: data.get_Sigmakw = lambda: numpy.copyto(data.Sigmakw['up'], data.Sigmaimpkw['up']) else: data.get_Xik = lambda: dca_scheme.get_Qk_from_QR_embedded(data.Xikw['up'], data.XiR_iw, data.ks) data.get_Sigmaimpk = lambda: None data.get_Sigmakw = lambda: blockwise_Sigmak_from_Xik(data.Sigmakw['up'], data.Xikw['up'], alpha) data.get_Gkw = lambda: full_fill_Gkw_from_iws_mus_epsiolonk_and_Sigmakw(data.Gkw, data.iws, data.mus, data.epsilonk, data.Sigmakw) data.get_G_loc = lambda: full_fill_local_from_latt(data.G_loc_iw, data.Gkw) data.get_n_from_G_loc = lambda: blockwise_get_n_from_G_loc_iw(data.G_loc_iw['up'], fit_tail_starting_iw = 14.0, ntau = None, site_index = 0) data.get_GR = lambda: [ dca_scheme.get_QR_from_QK(data.GR_iw, data.GK_iw), dca_scheme.symmetrize_QR(data.GR_iw) ] data.set_mu = lambda mu: set_mu(mu, data) data.get_mu = lambda: data.mus['up'] data.get_n = lambda: [data.get_Gkw(), data.get_G_loc(), set_n(data.get_n_from_G_loc(),data)][-1] if not real_space_sc: data.get_GK = lambda: dca_scheme.Qkw_to_QK_iw(data.GK_iw, IBZ_convolution(data.Gkw['up'].real, nK)+1j*IBZ_convolution(data.Gkw['up'].imag, nK)) data.get_Gijw = lambda: [data.get_GK(), [fit_fermionic_gf_tail(g) for name,g in data.GK_iw], data.get_GR()] else: data.get_Gijw = lambda: full_fill_Gijw_from_Gkw(data.Gijw, data.Gkw, N_cores=1) data.get_GR = lambda: dca_scheme.Qrw_to_QR_iw(data.GR_iw, data.Gijw) data.get_GK = lambda: dca_scheme.get_QK_from_QR(data.GK_iw, data.GR_iw) data.get_GweissK = lambda: full_fill_GweissK_iw_from_Dyson(data.GweissK_iw, data.GK_iw, data.SigmaK_iw) data.get_GweissR = lambda: dca_scheme.get_QR_from_QK(data.GweissR_iw, data.GweissK_iw) data.get_Gweiss_iw = lambda: dca_scheme.get_Q_imp_from_QR(data.Gweiss_iw, data.GweissR_iw) data.get_Gweiss = lambda: [data.get_GweissK(), data.get_GweissR(), dca_scheme.symmetrize_QR(data.GweissR_iw), data.get_Gweiss_iw()] data.dump_solvers = lambda suffix: [solver_class.dump( data.solvers[C], data.archive_name, suffix='-%s%s'%(C,suffix) ) for C in data.impurity_struct.keys()] #----------------------------- celullar -----------------------------------------------------------------------# def prepare_cellular( data, Lx, Ly, solver_class = solvers.ctint, periodized = False ): print "prepare_cellular" assert data.__class__ == cellular_data, "wrong data type" assert data.fermionic_struct == {'up': [0]}, "wrong fermionic struct for this calcalation" assert len(data.impurity_struct.keys()) == 1, "in celullar we solve only one cluster" if periodized: data.get_Sigmaijkw = lambda: full_fill_Sigmaijkw_periodized(data.Sigmaijkw, data.Sigma_imp_iw, data.ks) else: data.get_Sigmaijkw = lambda: full_fill_Sigmaijkw(data.Sigmaijkw, data.Sigma_imp_iw) data.get_Gijkw = lambda: full_fill_Gijkw(data.Gijkw, data.iws, data.mus, data.epsilonijk, data.Sigmaijkw) data.get_G_ij_loc = lambda: full_fill_G_ij_iw(data.G_ij_iw, data.Gijkw) data.get_Gijw = data.get_G_ij_loc #this is needed for the nested_mains.lattice print 'imp_key: ', data.imp_key data.get_n_from_G_ij_loc = lambda: blockwise_get_n_from_G_loc_iw(data.G_ij_iw[data.imp_key], fit_tail_starting_iw = 14.0, ntau = None, site_index = 0) #full_fill_ns_from_G_loc_iw(data.ns, data.G_ij_iw, fit_tail_starting_iw = 14.0, ntau = None) data.set_mu = lambda mu: set_mu(mu, data) data.get_mu = lambda: data.mus['up'] data.get_n = lambda: [data.get_Gijkw(), data.get_G_ij_loc(), set_n(data.get_n_from_G_ij_loc(),data)][-1] data.get_Gweiss = lambda: full_fill_Gweiss_iw(data.Gweiss_iw, data.G_ij_iw, data.Sigma_imp_iw) data.dump_solvers = lambda suffix: [solver_class.dump( data.solvers[C], data.archive_name, suffix='-%s%s'%(C,suffix) ) for C in data.impurity_struct.keys()] data.periodize_cumul = lambda: periodize_cumul(data.Gkw, data.Sigmakw, data.gkw, data.gijw, data.g_imp_iw, data.iws, data.mus, data.epsilonk, data.Sigma_imp_iw, Lx, Ly) data.periodize_selfenergy = lambda: periodize_selfenergy(data.Gkw, data.Sigmakw, data.Sigmaijw, data.iws, data.mus, data.epsilonk, data.Sigma_imp_iw, Lx, Ly) data.dump_solvers = lambda suffix: [solver_class.dump( data.solvers[C], data.archive_name, suffix='-%s%s'%(C,suffix) ) for C in data.impurity_struct.keys()] #----------------------------- triangular celullar -----------------------------------------------------------------------# def prepare_cellular_triangular( data, Lx, Ly, solver_class = solvers.ctint, periodized = False ): print "prepare_cellular_triangular" prepare_cellular( data, Lx, Ly, solver_class, periodized ) if periodized: data.get_Sigmaijkw = lambda: triangular_full_fill_Sigmaijkw_periodized(data.Sigmaijkw, data.Sigma_imp_iw, data.ks) data.periodize_cumul = lambda: None data.periodize_selfenergy = lambda: periodize_selfenergy(data.Gkw, data.Sigmakw, data.Sigmaijw, data.iws, data.mus, data.epsilonk, data.Sigma_imp_iw, Lx, Ly, mapping=triangular_cellular_latt_to_imp_mapping)
[ "jaksa.vucicevic@gmail.com" ]
jaksa.vucicevic@gmail.com
b4704758b099b19c9b67d81b6b07934ef05ee775
b3bbda776072fdf8829e7a94bff9817d3d0a346f
/project_fraud/lib.py
68052e346f90de05871d0dd8c23bd36b918bc55b
[]
no_license
ayo-byte/project_fraud
34684913f027c5bcd61d7e20c28ec3efd79cf954
9e68a0b42ec9344ae37daa157484a8776f1bf931
refs/heads/master
2023-01-14T16:06:19.168399
2020-11-24T16:01:44
2020-11-24T16:01:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,191
py
# -*- coding: UTF-8 -*- # Copyright (C) 2018 Jean Bizot <jean@styckr.io> """ Main lib for project_fraud Project """ from os.path import split import pandas as pd import datetime pd.set_option('display.width', 200) def clean_data(data): """ clean data """ # Remove columns starts with vote cols = [x for x in data.columns if x.find('vote') >= 0] data.drop(cols, axis=1, inplace=True) # Remove special characteres from columns data.loc[:, 'civility'] = data['civility'].replace('\.', '', regex=True) # Calculate Age from day of birth actual_year = datetime.datetime.now().year data.loc[:, 'Year_Month'] = pd.to_datetime(data.birthdate) data.loc[:, 'Age'] = actual_year - data['Year_Month'].dt.year # Uppercase variable to avoid duplicates data.loc[:, 'city'] = data['city'].str.upper() # Take 2 first digits, 2700 -> 02700 so first two are region data.loc[:, 'postal_code'] = data.postal_code.str.zfill(5).str[0:2] # Remove columns with more than 50% of nans cnans = data.shape[0] / 2 data = data.dropna(thresh=cnans, axis=1) # Remove rows with more than 50% of nans rnans = data.shape[1] / 2 data = data.dropna(thresh=rnans, axis=0) # Discretize based on quantiles data.loc[:, 'duration'] = pd.qcut(data['surveyduration'], 10) # Discretize based on values data.loc[:, 'Age'] = pd.cut(data['Age'], 10) # Rename columns data.rename(columns={'q1': 'Frequency'}, inplace=True) # Transform type of columns data.loc[:, 'Frequency'] = data['Frequency'].astype(int) # Rename values in rows drows = {1: 'Manytimes', 2: 'Onetimebyday', 3: '5/6timesforweek', 4: '4timesforweek', 5: '1/3timesforweek', 6: '1timeformonth', 7: '1/trimestre', 8: 'Less', 9: 'Never'} data.loc[:, 'Frequency'] = data['Frequency'].map(drows) return data if __name__ == '__main__': # For introspections purpose to quickly get this functions on ipython import project_fraud folder_source, _ = split(project_fraud.__file__) df = pd.read_csv('{}/data/data.csv.gz'.format(folder_source)) clean_data = clean_data(df) print(' dataframe cleaned')
[ "mrum98@gmail.com" ]
mrum98@gmail.com
2fdd63775b26a6bfdc169b203a9f78c1f457ac39
6e6bea7799ba68eeb956b6f6b88c784f90871f27
/src/app/dbManager/DBTool.py
45d1ee154c33ca3ac514f18ac5bfdacba9e70be2
[]
no_license
jeanhao/hackday2017
6f5488057f82541b4a53f580f923c431498ed61e
6dcfb99c0de24d02fac6898aa807cac9cf33dafe
refs/heads/master
2021-01-23T16:13:19.502319
2017-06-04T03:32:33
2017-06-04T03:32:33
93,287,132
0
0
null
null
null
null
UTF-8
Python
false
false
2,461
py
# -*- coding: utf-8 -*- from mosql import query, mysql, util # @UnusedImport # 将data数据插入字典中,若不指定key,则插入data中所有数据 def insert(table, data , keys=None): if keys: if type(data) == list: vals = [] for obj in data: vals.append([v for k, v in obj if k in keys]) else: vals = [v for k, v in data if k in keys] return query.insert(table, columns=keys, values=vals) else: return query.insert(table, data) def multi_insert(table, datas , keys=None): if not keys: keys = datas[0].keys() pair = dict(zip(keys, ["%s"] * len(keys))) params = [[data[key] for key in keys] for data in datas] return query.insert(table, pair), params def update(table, data, where=None, keys=None): if keys: data = {key:data[key] for key in keys} return query.update(table, where=where, set=data) def multiUpdate(table, datas, where=None, keys=None): if not keys: keys = datas[0].keys() pair = dict(zip(keys, ["%s"] * len(keys))) params = [[data[key] for key in keys] for data in datas] return query.update(table, pair), params def join(table, on=None, using=None, _type='left'): return query.join(table, on=on, using=using, type=_type) def select(table, columns=None, where=None, joins=None, order=None, group=None, limit=None, offset=None): return query.select(table, columns=columns, where=where, joins=joins, order_by=order, group_by=group, limit=limit, offset=offset) def delete(table, where): return query.delete(table, where) def sqlAnd(where, conmap={}, keys=None): new_dict = {} if not keys: keys = where.keys() for key in keys: if key in conmap: new_dict[(key, conmap[key])] = where[key] else: new_dict[key] = where[key] return util.build_where(new_dict) def sqlOr(where, conmap={}, keys=None, andpart=None): new_list = [] if not keys: keys = where.keys() for key in keys: if key in conmap: new_list.append({(key, conmap[key]):where[key]}) else: new_list.append({key:where[key]}) if andpart: new_list.append(andpart) return util.or_(new_list) def raw(string): return util.value(util.raw(string)) def value(value): return util.value(value)
[ "jeanheo@foxmail.com" ]
jeanheo@foxmail.com
e0e18357155d553b59b57f813ce1be268b44de94
386f597647a09ed0a65ff56af746a2f8f70ff6c5
/bus_card.py
fb87c268f73808d98e1eca0ce733541e038d3f4f
[]
no_license
baixiao9/self-python-practice
3332caa6c809d3463a5e58faf09f191fa33919e3
df7bbeafecb24738924e51ec3c8873e790ef725f
refs/heads/master
2020-03-21T07:11:32.069032
2018-06-26T09:01:01
2018-06-26T09:01:01
138,261,427
0
0
null
null
null
null
UTF-8
Python
false
false
295
py
#-*- coding: utf-8 -*- # 2018-06-22 # 公交卡计算 sum = 0 for _ in range(30): for i in [2.5,5]: if sum < 100: sum = i + sum elif 100<=sum<150: sum = 0.8*i + sum elif sum>= 150: sum = 0.5*i +sum print('Totally cost:%s' %(sum))
[ "40483495+baixiao9@users.noreply.github.com" ]
40483495+baixiao9@users.noreply.github.com
5be45d425ef04a70bea62b97cbcccc6dacd9675b
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/135/usersdata/179/46636/submittedfiles/OBI.py
6f6a0899cabeb0aa77f1ee146c9a5cc9b55abaca
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
# -*- coding: utf-8 -*- n=int(input('digite n :')) p=int(input('digite p :')) cont=0 i=1 while i>=n: x=int(input('digite x :')) y=int(input('digite y :')) if (x+y)>=p: cont=cont+1 i=i-1 print(cont)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
f2852592f4337fabff8b02e1967870e5387ff334
159c9d6d8132b06b0e9cdbfd2412c98755f9242e
/loginUi.py
e128bc646a7ccdf554e754daf28a959653fa0b80
[]
no_license
leodpj/loginAPP
4de1c6f60515b02eeffc6af08ad9e05fa716cbc7
47387d66697e60d3f33c25a017ef2e2981510f6d
refs/heads/master
2023-07-17T15:49:20.489406
2021-08-13T23:00:16
2021-08-13T23:00:16
395,821,064
0
0
null
null
null
null
UTF-8
Python
false
false
6,019
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'login2.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets import sys class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(729, 549) Form.setWindowFlag(QtCore.Qt.FramelessWindowHint) Form.setAttribute(QtCore.Qt.WA_TranslucentBackground) self.widget = QtWidgets.QWidget(Form) self.widget.setGeometry(QtCore.QRect(20, 20, 590, 420)) self.widget.setStyleSheet("QPushButton#pushButton{\n" " background-color:rgba(85, 98, 112, 255);\n" " color:rgba(255, 255, 255, 200);\n" " border-radius:5px;\n" "}\n" "QPushButton#pushButton:pressed{\n" " padding-left:5px;\n" " padding-top:5px;\n" " backgroud-color:rgba(255, 107, 107, 255);\n" " background-position:calc(100% - 10px)center;\n" "}\n" "QPushButton#pushButton:hover{\n" " background-color:rgba(255, 107, 107, 255);\n" "}") self.widget.setObjectName("widget") self.label = QtWidgets.QLabel(self.widget) self.label.setGeometry(QtCore.QRect(290, 40, 260, 330)) self.label.setStyleSheet("background-color:rgba(255, 255, 255, 255);\n" "border-radius:10px;") self.label.setText("") self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.widget) self.label_2.setGeometry(QtCore.QRect(40, 25, 270, 360)) self.label_2.setStyleSheet("background-color: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0 rgba(85, 98, 112, 255), stop:1 rgba(255, 107, 107, 255)); \n" "border-radius:10px;") self.label_2.setText("") self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.widget) self.label_3.setGeometry(QtCore.QRect(330, 80, 101, 31)) font = QtGui.QFont() font.setPointSize(15) font.setBold(True) font.setWeight(75) self.label_3.setFont(font) self.label_3.setStyleSheet("color:rgba(0, 0, 0, 200); ") self.label_3.setObjectName("label_3") self.lineEdit = QtWidgets.QLineEdit(self.widget) self.lineEdit.setGeometry(QtCore.QRect(330, 140, 190, 40)) font = QtGui.QFont() font.setPointSize(9) self.lineEdit.setFont(font) self.lineEdit.setStyleSheet("background-color:rgba(0, 0, 0, 0);\n" "border:2px solid rgba(0, 0, 0, 0);\n" "border-bottom-color:rgba(46, 82, 101, 200);\n" "color:rgb(0, 0, 0);\n" "padding-bottom:7px;") self.lineEdit.setObjectName("lineEdit") self.lineEdit_2 = QtWidgets.QLineEdit(self.widget) self.lineEdit_2.setGeometry(QtCore.QRect(330, 200, 190, 40)) font = QtGui.QFont() font.setPointSize(9) self.lineEdit_2.setFont(font) self.lineEdit_2.setStyleSheet("background-color:rgba(0, 0, 0, 0);\n" "border:2px solid rgba(0, 0, 0, 0);\n" "border-bottom-color:rgba(46, 82, 101, 200);\n" "color:rgb(0, 0, 0);\n" "padding-bottom:7px;") self.lineEdit_2.setEchoMode(QtWidgets.QLineEdit.Password) self.lineEdit_2.setObjectName("lineEdit_2") self.pushButton = QtWidgets.QPushButton(self.widget) self.pushButton.setGeometry(QtCore.QRect(330, 280, 190, 40)) font = QtGui.QFont() font.setPointSize(11) font.setBold(True) font.setWeight(75) self.pushButton.setFont(font) self.pushButton.setStyleSheet("") self.pushButton.setObjectName("pushButton") self.label_4 = QtWidgets.QLabel(self.widget) self.label_4.setGeometry(QtCore.QRect(340, 330, 191, 16)) self.label_4.setStyleSheet("color:rgba(0, 0, 0, 200);") self.label_4.setObjectName("label_4") self.label_5 = QtWidgets.QLabel(self.widget) self.label_5.setGeometry(QtCore.QRect(60, 50, 141, 41)) font = QtGui.QFont() font.setPointSize(22) font.setBold(True) font.setWeight(75) self.label_5.setFont(font) self.label_5.setStyleSheet("color:rgba(255, 255, 255, 200);") self.label_5.setObjectName("label_5") self.label_6 = QtWidgets.QLabel(self.widget) self.label_6.setGeometry(QtCore.QRect(60, 110, 231, 51)) font = QtGui.QFont() font.setPointSize(10) self.label_6.setFont(font) self.label_6.setStyleSheet("color:rgba(255, 255, 255, 220);") self.label_6.setObjectName("label_6") self.label_7 = QtWidgets.QLabel(self.widget) self.label_7.setGeometry(QtCore.QRect(50, 170, 251, 201)) font = QtGui.QFont() font.setFamily("Mountain") font.setPointSize(150) self.label_7.setFont(font) self.label_7.setStyleSheet("color:rgba(255, 107, 107, 255);") self.label_7.setObjectName("label_7") self.label.setGraphicsEffect(QtWidgets.QGraphicsDropShadowEffect(blurRadius=25, xOffset=0, yOffset=0)) self.label_2.setGraphicsEffect(QtWidgets.QGraphicsDropShadowEffect(blurRadius=25, xOffset=0, yOffset=0)) self.pushButton.setGraphicsEffect(QtWidgets.QGraphicsDropShadowEffect(blurRadius=25, xOffset=3, yOffset=3)) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Form")) self.label_3.setText(_translate("Form", "Log In")) self.lineEdit.setPlaceholderText(_translate("Form", " User Name")) self.lineEdit_2.setPlaceholderText(_translate("Form", " Password")) self.pushButton.setText(_translate("Form", "L o g I n")) self.label_4.setText(_translate("Form", "Forgot Your User Name or Password?")) self.label_5.setText(_translate("Form", "LDPJ Dev")) self.label_6.setText(_translate("Form", "Ola, \n" "Bem Vindo ao mundo Dev")) self.label_7.setText(_translate("Form", "-"))
[ "leodpj@gmail.com" ]
leodpj@gmail.com
6f1ef249d90f148ff63557d7c2fb9305368862ab
6fb24d8425ece3b02683031fa445ae4041ae8150
/templates/clasificacion-de-bosque/clasificacion-de-bosque_1.1.py
ec58d2f8cd7d804c49ebb0ecc038c458b87b1bcb
[]
no_license
OpenDatacubeIDEAM/cdcol-workflows
60c0fad713e09659cf36de238288e5956b655971
dac26a5bd22e0796d6bb9b015dc8841532c7d409
refs/heads/master
2021-06-25T19:04:55.196501
2021-02-27T15:14:29
2021-02-27T15:14:29
204,059,820
0
0
null
null
null
null
UTF-8
Python
false
false
3,218
py
import airflow from airflow.models import DAG from airflow.operators import CDColQueryOperator, CDColFromFileOperator, CDColReduceOperator from airflow.operators.python_operator import PythonOperator from cdcol_utils import dag_utils, queue_utils, other_utils from airflow.utils.trigger_rule import TriggerRule from datetime import timedelta from pprint import pprint _params = {{params}} _steps = { 'ndvi': { 'algorithm': "ndvi-wf", 'version': '1.0', 'queue': queue_utils.assign_queue(), 'params': {}, 'del_prev_result': _params['elimina_resultados_anteriores'], }, 'bosque': { 'algorithm': "bosque-no-bosque-wf", 'version': '1.0', 'queue': queue_utils.assign_queue(), 'params': { 'ndvi_threshold': _params['ndvi_threshold'], 'vegetation_rate': _params['vegetation_rate'], 'slice_size': _params['slice_size'] }, 'del_prev_result': _params['elimina_resultados_anteriores'], }, 'mosaico': { 'algorithm': "joiner", 'version': '1.0', 'queue': queue_utils.assign_queue( input_type='multi_area', lat=_params['lat'], lon=_params['lon'] ), 'params': {}, 'del_prev_result': _params['elimina_resultados_anteriores'], } } args = { 'owner': _params['owner'], 'start_date': airflow.utils.dates.days_ago(2), 'execID': _params['execID'], 'product':_params['products'][0] } dag = DAG( dag_id=args["execID"], default_args=args, schedule_interval=None, dagrun_timeout=timedelta(minutes=20) ) ndvi = dag_utils.queryMapByTile( lat=_params['lat'], lon=_params['lon'], product=_params['products'][0], time_ranges=_params['time_ranges'][0], algorithm=_steps['ndvi']['algorithm'], version=_steps['ndvi']['version'], params=_steps['ndvi']['params'], queue=_steps['ndvi']['queue'], delete_partial_results=_steps['ndvi']['del_prev_result'], dag=dag, task_id="ndvi", to_tiff= not (_params['genera_mosaico'] and queue_utils.get_tiles(_params['lat'],_params['lon'])>1) ) bosque = dag_utils.IdentityMap( ndvi, algorithm=_steps['bosque']['algorithm'], product=_params['products'][0], version=_steps['bosque']['version'], params=_steps['bosque']['params'], queue=_steps['bosque']['queue'], delete_partial_results=_steps['ndvi']['del_prev_result'], dag=dag, task_id="bosque", to_tiff= not( _params['genera_mosaico'] and queue_utils.get_tiles(_params['lat'],_params['lon'])>1) ) workflow = bosque if _params['genera_mosaico'] and queue_utils.get_tiles(_params['lat'],_params['lon'])>1: mosaico = dag_utils.OneReduce( workflow, task_id="mosaic", algorithm=_steps['mosaico']['algorithm'], version=_steps['mosaico']['version'], queue=_steps['mosaico']['queue'], delete_partial_results=_steps['mosaico']['del_prev_result'], trigger_rule=TriggerRule.NONE_FAILED, dag=dag, to_tiff=True ) workflow = mosaico workflow
[ "aa.vivas@uniandes.edu.co" ]
aa.vivas@uniandes.edu.co
c97056cd28f7aa533c943b339d3e36084c0704e9
9d29ca19feddfb774e990ccef6903206ecdb4ea1
/src/binarize_coco_data.py
437c8d664a54138e3b9ffa2c22fcb71e1e8c92ef
[]
no_license
rasoolims/ImageTranslate
180f5d6c310f7eb028bc3246e12ff7a5ab7b4fa8
51593a845a95fa3d05fc722a7c6a33077ee267be
refs/heads/master
2023-06-23T14:21:13.985028
2022-09-29T18:57:06
2022-09-29T18:57:06
250,050,377
5
1
null
2023-06-12T21:28:44
2020-03-25T17:49:40
Python
UTF-8
Python
false
false
3,163
py
import json import marshal from optparse import OptionParser from textprocessor import TextProcessor id2path = lambda path: "".join(["".join((12 - len(path)) * ["0"]), path, ".jpg"]) caption_format = lambda caption: " ".join(["<en>", caption, "</s>"]) caption_data = lambda annotation: (id2path(str(annotation["image_id"])), caption_format(annotation["caption"])) def write(text_processor: TextProcessor, output_file: str, input_file: str, max_len: int, sample_size: int): with open(input_file, "r") as r: obj = json.load(r) annotations = obj["annotations"] captions = list(map(lambda annotation: caption_data(annotation), annotations)) print(len(captions)) skipped_long_sens = 0 image_path_dict, unique_images = dict(), dict() tok_captions = {} image_ids = {} for ci, c in enumerate(captions): if ci % 1000 == 0: print(ci, "/", len(captions), "->", len(tok_captions), len(unique_images), end="\r") tok_sen = text_processor.tokenize_one_sentence(c[1]) if len(tok_sen) > max_len: skipped_long_sens += 1 continue path = c[0] if path not in image_path_dict: image_id = len(unique_images) unique_images[image_id] = path image_path_dict[path] = image_id elif path in image_path_dict: image_id = image_path_dict[path] unique_images[image_id] = path caption_id = len(tok_captions) tok_captions[caption_id] = tok_sen image_ids[caption_id] = image_id if (ci + 1) >= sample_size and sample_size > 0: break print("Skipped long sentences:", skipped_long_sens, "from", len(captions)) tok_captions_sorted = sorted(tok_captions.items(), key=lambda item: len(item[1])) caption_sorted = list(map(lambda e: (image_ids[e[0]], e[1]), tok_captions_sorted)) print("Longest sentence", len(tok_captions_sorted[-1][1])) with open(output_file, "wb") as wfp: marshal.dump((unique_images, caption_sorted), wfp) print("Dumped", len(caption_sorted), "captions from", len(unique_images), "unique images") def get_options(): global options parser = OptionParser() parser.add_option("--file", dest="file", help="Which files to use", metavar="FILE", default=None) parser.add_option("--output", dest="output_file", help="Output pickle file.", metavar="FILE", default=None) parser.add_option("--tok", dest="tokenizer_path", help="Path to the tokenizer folder", metavar="FILE", default=None) parser.add_option("--max-len", dest="max_len", help="Maximum tokenized caption length", type="int", default=256) parser.add_option("--sample", dest="sample_size", type="int", default=-1) (options, args) = parser.parse_args() return options if __name__ == "__main__": options = get_options() tokenizer = TextProcessor(options.tokenizer_path) print("Writing batches") write(text_processor=tokenizer, output_file=options.output_file, input_file=options.file, max_len=options.max_len, sample_size=options.sample_size) print("Finished")
[ "rasooli.ms@gmail.com" ]
rasooli.ms@gmail.com
941bed558f06a3184463dd125586129fc4b7b9ee
67117705720a3e3d81253ba48c1826d36737b126
/Wk8_STRANDS/error_ks_2samples.py
f805256dfd4811d66b28e65afcfa106bdf8499ee
[]
no_license
pyliut/Rokos2021
41f0f96bc396b6e8a5e268e31a38a4a4b288c370
70753ab29afc45766eb502f91b65cc455e6055e1
refs/heads/main
2023-08-13T17:29:30.013829
2021-09-26T19:01:35
2021-09-26T19:01:35
382,092,802
0
0
null
null
null
null
UTF-8
Python
false
false
1,811
py
# -*- coding: utf-8 -*- """ Created on Wed Jul 7 16:27:34 2021 @author: pyliu """ import numpy as np from integrate_pdf import * import matplotlib.pyplot as plt def error_ks_2samples(t_obs1, t_obs2, plot_graph = True): """ Calculate Kolmogorov-Smirnov Distance of between 2 samples Parameters ---------- t_obs1 : FLOAT, vector Set 1 of observed durations t_obs1 : FLOAT, vector Set 2 of observed durations Returns ------- D : FLOAT K-S statistic supremum (Greatest Lower Bound) of distances between the empirical CDF of the observations and CDF of the predicted distribution """ #1) create histogram of observed values n_bins = max(len(t_obs1), len(t_obs2)) range_min = 0 range_max = np.max( [np.max(t_obs1), np.max(t_obs2)] ) range_max = 2*(range_max//5)*5 + 5 p_hist1, t_hist1 = np.histogram(t_obs1, density = True, bins = n_bins, range = (range_min, range_max) ); p_hist2, t_hist2 = np.histogram(t_obs2, density = True, bins = n_bins, range = (range_min, range_max) ); #2) turn both observed & predicted pdfs in to cdfs cdf_hist1 = integrate_pdf(p_hist1) cdf_hist1 /= cdf_hist1[-1] #normalise cdf cdf_hist2 = integrate_pdf(p_hist2) cdf_hist2 /= cdf_hist2[-1] #normalise cdf #3) Calculate max distance D = np.max( np.abs(cdf_hist1 - cdf_hist2) ) #4) Plot for visualisation if plot_graph == True: plt.plot(t_hist1[:-1], cdf_hist1) plt.plot(t_hist2[:-1], cdf_hist2) plt.legend(["edge1", "edge2"]) plt.xlabel("Duration (s)") plt.ylabel("probability") plt.title( "K-S test: D = " + str( np.round(D,5) ) ) return D
[ "noreply@github.com" ]
pyliut.noreply@github.com
7c0b6cc4bb467321b0cce421dfdd1146c1f3941f
a499fbdd93f85a286505433a08afc25d84c8ff04
/tests/python/unittest/test_tvmscript_roundtrip.py
7c123afdc4d0611bfeeb1358ef530686ba4a217b
[ "Apache-2.0", "Zlib", "MIT", "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference", "Unlicense" ]
permissive
elphinkuo/tvm
a81e0ccc5950a1473efdcdbb8263de9adbe36787
9df2ae8eaa8b394013182a7ad09ac57fe401f80e
refs/heads/main
2023-08-05T07:41:18.652097
2021-09-28T00:38:26
2021-09-28T00:38:26
411,311,927
2
0
Apache-2.0
2021-09-28T14:51:56
2021-09-28T14:17:46
null
UTF-8
Python
false
false
131,414
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import pytest import tvm from tvm import tir from tvm.script import ty @tvm.script.tir class Module1: def mmult(A: ty.handle, B: ty.handle, C: ty.handle) -> None: # function attr dict tir.func_attr({"global_symbol": "mmult", "tir.noalias": True}) # buffer definition C_global = tir.buffer_decl([1024, 1024], elem_offset=0, align=128, offset_factor=1) packedB = tir.buffer_decl([32, 1024, 32], elem_offset=0, align=128, offset_factor=1) A_1 = tir.match_buffer(A, [1024, 1024], elem_offset=0, align=128, offset_factor=1) B_1 = tir.match_buffer(B, [1024, 1024], elem_offset=0, align=128, offset_factor=1) C_1 = tir.match_buffer(C, [1024, 1024], elem_offset=0, align=128, offset_factor=1) # body tir.realize(packedB[0:32, 0:1024, 0:32], "") for x in tir.parallel(0, 32): for y in tir.serial(0, 1024): for z in tir.vectorized(0, 32): packedB[x, y, z] = B_1[y, ((x * 32) + z)] tir.realize(C_1[0:1024, 0:1024], "") for x_outer in tir.parallel(0, 32): for y_outer in tir.serial(0, 32): tir.realize( C_global[ (x_outer * 32) : ((x_outer * 32) + 32), (y_outer * 32) : ((y_outer * 32) + 32), ], "global", ) for x_c_init in tir.serial(0, 32): for y_c_init in tir.vectorized(0, 32): C_global[ (x_c_init + (x_outer * 32)), (y_c_init + (y_outer * 32)) ] = tir.float32(0) for k_outer in tir.serial(0, 256): for x_c in tir.serial(0, 32): for k_inner in tir.unroll(0, 4): for y_c in tir.vectorized(0, 32): C_global[(x_c + (x_outer * 32)), (y_c + (y_outer * 32))] = C_global[ (x_c + (x_outer * 32)), (y_c + (y_outer * 32)) ] + ( A_1[(x_c + (x_outer * 32)), (k_inner + (k_outer * 4))] * packedB[ tir.floordiv((y_c + (y_outer * 32)), 32), (k_inner + (k_outer * 4)), tir.floormod((y_c + (y_outer * 32)), 32), ] ) for x_inner in tir.serial(0, 32): for y_inner in tir.serial(0, 32): C_1[(x_inner + (x_outer * 32)), (y_inner + (y_outer * 32))] = C_global[ (x_inner + (x_outer * 32)), (y_inner + (y_outer * 32)) ] def test_opt_gemm_normalize(): mod = Module1() rt_mod = tvm.script.from_source(tvm.script.asscript(mod, True)) tvm.ir.assert_structural_equal(mod, rt_mod, True) @tvm.script.tir class Module2: def mmult(A: ty.handle, B: ty.handle, C: ty.handle) -> None: # function attr dict tir.func_attr({"global_symbol": "mmult", "tir.noalias": True}) A_1 = tir.match_buffer(A, [1024, 1024], elem_offset=0, align=128, offset_factor=1) B_1 = tir.match_buffer(B, [1024, 1024], elem_offset=0, align=128, offset_factor=1) C_1 = tir.match_buffer(C, [1024, 1024], elem_offset=0, align=128, offset_factor=1) # body packedB = tir.allocate([32768], "float32x32", "global") for x in tir.parallel(0, 32): for y in tir.serial(0, 1024): tir.store( packedB, tir.ramp(((x * 32768) + (y * 32)), 1, 32), tir.load( "float32x32", B_1.data, tir.ramp(((y * 1024) + (x * 32)), 1, 32), tir.broadcast(True, 32), ), tir.broadcast(True, 32), ) for x_outer in tir.parallel(0, 32): C_global = tir.allocate([1024], "float32", "global") for y_outer in tir.serial(0, 32): for x_c_init in tir.serial(0, 32): tir.store( C_global, tir.ramp((x_c_init * 32), 1, 32), tir.broadcast(tir.float32(0), 32), tir.broadcast(True, 32), ) for k_outer in tir.serial(0, 256): for x_c in tir.serial(0, 32): tir.store( C_global, tir.ramp((x_c * 32), 1, 32), ( tir.load( "float32x32", C_global, tir.ramp((x_c * 32), 1, 32), tir.broadcast(True, 32), ) + ( tir.broadcast( tir.load( "float32", A_1.data, (((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4)), ), 32, ) * tir.load( "float32x32", packedB, tir.ramp(((y_outer * 32768) + (k_outer * 128)), 1, 32), tir.broadcast(True, 32), ) ) ), tir.broadcast(True, 32), ) tir.store( C_global, tir.ramp((x_c * 32), 1, 32), ( tir.load( "float32x32", C_global, tir.ramp((x_c * 32), 1, 32), tir.broadcast(True, 32), ) + ( tir.broadcast( tir.load( "float32", A_1.data, ( (((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4)) + 1 ), ), 32, ) * tir.load( "float32x32", packedB, tir.ramp( (((y_outer * 32768) + (k_outer * 128)) + 32), 1, 32 ), tir.broadcast(True, 32), ) ) ), tir.broadcast(True, 32), ) tir.store( C_global, tir.ramp((x_c * 32), 1, 32), ( tir.load( "float32x32", C_global, tir.ramp((x_c * 32), 1, 32), tir.broadcast(True, 32), ) + ( tir.broadcast( tir.load( "float32", A_1.data, ( (((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4)) + 2 ), ), 32, ) * tir.load( "float32x32", packedB, tir.ramp( (((y_outer * 32768) + (k_outer * 128)) + 64), 1, 32 ), tir.broadcast(True, 32), ) ) ), tir.broadcast(True, 32), ) tir.store( C_global, tir.ramp((x_c * 32), 1, 32), ( tir.load( "float32x32", C_global, tir.ramp((x_c * 32), 1, 32), tir.broadcast(True, 32), ) + ( tir.broadcast( tir.load( "float32", A_1.data, ( (((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4)) + 3 ), ), 32, ) * tir.load( "float32x32", packedB, tir.ramp( (((y_outer * 32768) + (k_outer * 128)) + 96), 1, 32 ), tir.broadcast(True, 32), ) ) ), tir.broadcast(True, 32), ) for x_inner in tir.serial(0, 32): for y_inner in tir.serial(0, 32): C_1.data[ ((((x_outer * 32768) + (x_inner * 1024)) + (y_outer * 32)) + y_inner) ] = tir.load("float32", C_global, ((x_inner * 32) + y_inner)) def test_opt_gemm_lower(): mod = Module2() rt_mod = tvm.script.from_source(tvm.script.asscript(mod, True)) tvm.ir.assert_structural_equal(mod, rt_mod, True) @tvm.script.tir class Module3: def mmult( args: ty.handle, arg_type_ids: ty.handle, num_args: ty.int32, out_ret_value: ty.handle, out_ret_tcode: ty.handle, ) -> ty.int32: # function attr dict tir.func_attr( { "tir.noalias": True, "global_symbol": "mmult", "tir.is_entry_func": True, "calling_conv": 1, } ) # var definition C_global = tir.buffer_var("float32", "global") packedB = tir.buffer_var("float32", "global") # body assert num_args == 3, "mmult: num_args should be 3" arg0: ty.handle = tir.tvm_struct_get(args, 0, 12, dtype="handle") arg0_code: ty.int32 = tir.load("int32", arg_type_ids, 0) arg1: ty.handle = tir.tvm_struct_get(args, 1, 12, dtype="handle") arg1_code: ty.int32 = tir.load("int32", arg_type_ids, 1) arg2: ty.handle = tir.tvm_struct_get(args, 2, 12, dtype="handle") arg2_code: ty.int32 = tir.load("int32", arg_type_ids, 2) A: ty.handle = tir.tvm_struct_get(arg0, 0, 1, dtype="handle") tir.attr(A, "storage_alignment", 128) arg0_shape: ty.handle = tir.tvm_struct_get(arg0, 0, 2, dtype="handle") arg0_strides: ty.handle = tir.tvm_struct_get(arg0, 0, 3, dtype="handle") dev_id: ty.int32 = tir.tvm_struct_get(arg0, 0, 9, dtype="int32") B: ty.handle = tir.tvm_struct_get(arg1, 0, 1, dtype="handle") tir.attr(B, "storage_alignment", 128) arg1_shape: ty.handle = tir.tvm_struct_get(arg1, 0, 2, dtype="handle") arg1_strides: ty.handle = tir.tvm_struct_get(arg1, 0, 3, dtype="handle") C: ty.handle = tir.tvm_struct_get(arg2, 0, 1, dtype="handle") tir.attr(C, "storage_alignment", 128) arg2_shape: ty.handle = tir.tvm_struct_get(arg2, 0, 2, dtype="handle") arg2_strides: ty.handle = tir.tvm_struct_get(arg2, 0, 3, dtype="handle") assert (((arg0_code == 3) or (arg0_code == 13)) or (arg0_code == 7)) or ( arg0_code == 4 ), "mmult: Expect arg[0] to be pointer" assert (((arg1_code == 3) or (arg1_code == 13)) or (arg1_code == 7)) or ( arg1_code == 4 ), "mmult: Expect arg[1] to be pointer" assert (((arg2_code == 3) or (arg2_code == 13)) or (arg2_code == 7)) or ( arg2_code == 4 ), "mmult: Expect arg[2] to be pointer" assert 2 == tir.tvm_struct_get( arg0, 0, 4, dtype="int32" ), "arg0.ndim is expected to equal 2" assert 2 == tir.tvm_struct_get( arg0, 0, 4, dtype="int32" ), "arg0.ndim is expected to equal 2" assert ( (tir.tvm_struct_get(arg0, 0, 5, dtype="uint8") == tir.uint8(2)) and (tir.tvm_struct_get(arg0, 0, 6, dtype="uint8") == tir.uint8(32)) ) and ( tir.tvm_struct_get(arg0, 0, 7, dtype="uint16") == tir.uint16(1) ), "arg0.dtype is expected to be float32" assert 1024 == tir.cast( tir.load("int64", arg0_shape, 0), "int32" ), "Argument arg0.shape[0] has an unsatisfied constraint" assert 1024 == tir.cast( tir.load("int64", arg0_shape, 1), "int32" ), "Argument arg0.shape[1] has an unsatisfied constraint" if not (tir.isnullptr(arg0_strides, dtype="bool")): assert (1 == tir.cast(tir.load("int64", arg0_strides, 1), "int32")) and ( 1024 == tir.cast(tir.load("int64", arg0_strides, 0), "int32") ), "arg0.strides: expected to be compact array" tir.evaluate(0) assert tir.uint64(0) == tir.tvm_struct_get( arg0, 0, 8, dtype="uint64" ), "Argument arg0.byte_offset has an unsatisfied constraint" assert 1 == tir.tvm_struct_get( arg0, 0, 10, dtype="int32" ), "Argument arg0.device_type has an unsatisfied constraint" assert 2 == tir.tvm_struct_get( arg1, 0, 4, dtype="int32" ), "arg1.ndim is expected to equal 2" assert 2 == tir.tvm_struct_get( arg1, 0, 4, dtype="int32" ), "arg1.ndim is expected to equal 2" assert ( (tir.tvm_struct_get(arg1, 0, 5, dtype="uint8") == tir.uint8(2)) and (tir.tvm_struct_get(arg1, 0, 6, dtype="uint8") == tir.uint8(32)) ) and ( tir.tvm_struct_get(arg1, 0, 7, dtype="uint16") == tir.uint16(1) ), "arg1.dtype is expected to be float32" assert 1024 == tir.cast( tir.load("int64", arg1_shape, 0), "int32" ), "Argument arg1.shape[0] has an unsatisfied constraint" assert 1024 == tir.cast( tir.load("int64", arg1_shape, 1), "int32" ), "Argument arg1.shape[1] has an unsatisfied constraint" if not (tir.isnullptr(arg1_strides, dtype="bool")): assert (1 == tir.cast(tir.load("int64", arg1_strides, 1), "int32")) and ( 1024 == tir.cast(tir.load("int64", arg1_strides, 0), "int32") ), "arg1.strides: expected to be compact array" tir.evaluate(0) assert tir.uint64(0) == tir.tvm_struct_get( arg1, 0, 8, dtype="uint64" ), "Argument arg1.byte_offset has an unsatisfied constraint" assert 1 == tir.tvm_struct_get( arg1, 0, 10, dtype="int32" ), "Argument arg1.device_type has an unsatisfied constraint" assert dev_id == tir.tvm_struct_get( arg1, 0, 9, dtype="int32" ), "Argument arg1.device_id has an unsatisfied constraint" assert 2 == tir.tvm_struct_get( arg2, 0, 4, dtype="int32" ), "arg2.ndim is expected to equal 2" assert 2 == tir.tvm_struct_get( arg2, 0, 4, dtype="int32" ), "arg2.ndim is expected to equal 2" assert ( (tir.tvm_struct_get(arg2, 0, 5, dtype="uint8") == tir.uint8(2)) and (tir.tvm_struct_get(arg2, 0, 6, dtype="uint8") == tir.uint8(32)) ) and ( tir.tvm_struct_get(arg2, 0, 7, dtype="uint16") == tir.uint16(1) ), "arg2.dtype is expected to be float32" assert 1024 == tir.cast( tir.load("int64", arg2_shape, 0), "int32" ), "Argument arg2.shape[0] has an unsatisfied constraint" assert 1024 == tir.cast( tir.load("int64", arg2_shape, 1), "int32" ), "Argument arg2.shape[1] has an unsatisfied constraint" if not (tir.isnullptr(arg2_strides, dtype="bool")): assert (1 == tir.cast(tir.load("int64", arg2_strides, 1), "int32")) and ( 1024 == tir.cast(tir.load("int64", arg2_strides, 0), "int32") ), "arg2.strides: expected to be compact array" tir.evaluate(0) assert tir.uint64(0) == tir.tvm_struct_get( arg2, 0, 8, dtype="uint64" ), "Argument arg2.byte_offset has an unsatisfied constraint" assert 1 == tir.tvm_struct_get( arg2, 0, 10, dtype="int32" ), "Argument arg2.device_type has an unsatisfied constraint" assert dev_id == tir.tvm_struct_get( arg2, 0, 9, dtype="int32" ), "Argument arg2.device_id has an unsatisfied constraint" tir.attr(0, "compute_scope", "mmult_compute_") tir.attr(packedB, "storage_scope", "global") tir.attr(packedB, "storage_alignment", 128) with tir.let( packedB, tir.TVMBackendAllocWorkspace(1, dev_id, tir.uint64(4194304), 2, 32, dtype="handle"), ): if tir.isnullptr(packedB, dtype="bool"): tir.evaluate(tir.tvm_throw_last_error(dtype="int32")) for x in tir.parallel(0, 32): for y in tir.serial(0, 1024): tir.store( packedB, tir.ramp(((x * 32768) + (y * 32)), 1, 32), tir.load( "float32x32", B, tir.ramp(((y * 1024) + (x * 32)), 1, 32), tir.broadcast(True, 32), ), tir.broadcast(True, 32), ) for x_outer in tir.parallel(0, 32): tir.attr(C_global, "storage_scope", "global") tir.attr(C_global, "storage_alignment", 128) with tir.let( C_global, tir.TVMBackendAllocWorkspace( 1, dev_id, tir.uint64(4096), 2, 32, dtype="handle" ), ): if tir.isnullptr(C_global, dtype="bool"): tir.evaluate(tir.tvm_throw_last_error(dtype="int32")) for y_outer in tir.serial(0, 32): for x_c_init in tir.serial(0, 32): tir.store( C_global, tir.ramp((x_c_init * 32), 1, 32), tir.broadcast(tir.float32(0), 32), tir.broadcast(True, 32), ) for k_outer in tir.serial(0, 256): for x_c in tir.serial(0, 32): tir.store( C_global, tir.ramp((x_c * 32), 1, 32), tir.call_llvm_pure_intrin( tir.uint32(97), tir.uint32(3), tir.broadcast( tir.load( "float32", A, ( ((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4) ), ), 32, ), tir.load( "float32x32", packedB, tir.ramp(((y_outer * 32768) + (k_outer * 128)), 1, 32), tir.broadcast(True, 32), ), tir.load( "float32x32", C_global, tir.ramp((x_c * 32), 1, 32), tir.broadcast(True, 32), ), dtype="float32x32", ), tir.broadcast(True, 32), ) tir.store( C_global, tir.ramp((x_c * 32), 1, 32), tir.call_llvm_pure_intrin( tir.uint32(97), tir.uint32(3), tir.broadcast( tir.load( "float32", A, ( ( ((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4) ) + 1 ), ), 32, ), tir.load( "float32x32", packedB, tir.ramp( (((y_outer * 32768) + (k_outer * 128)) + 32), 1, 32 ), tir.broadcast(True, 32), ), tir.load( "float32x32", C_global, tir.ramp((x_c * 32), 1, 32), tir.broadcast(True, 32), ), dtype="float32x32", ), tir.broadcast(True, 32), ) tir.store( C_global, tir.ramp((x_c * 32), 1, 32), tir.call_llvm_pure_intrin( tir.uint32(97), tir.uint32(3), tir.broadcast( tir.load( "float32", A, ( ( ((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4) ) + 2 ), ), 32, ), tir.load( "float32x32", packedB, tir.ramp( (((y_outer * 32768) + (k_outer * 128)) + 64), 1, 32 ), tir.broadcast(True, 32), ), tir.load( "float32x32", C_global, tir.ramp((x_c * 32), 1, 32), tir.broadcast(True, 32), ), dtype="float32x32", ), tir.broadcast(True, 32), ) tir.store( C_global, tir.ramp((x_c * 32), 1, 32), tir.call_llvm_pure_intrin( tir.uint32(97), tir.uint32(3), tir.broadcast( tir.load( "float32", A, ( ( ((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4) ) + 3 ), ), 32, ), tir.load( "float32x32", packedB, tir.ramp( (((y_outer * 32768) + (k_outer * 128)) + 96), 1, 32 ), tir.broadcast(True, 32), ), tir.load( "float32x32", C_global, tir.ramp((x_c * 32), 1, 32), tir.broadcast(True, 32), ), dtype="float32x32", ), tir.broadcast(True, 32), ) for x_inner in tir.serial(0, 32): for y_inner in tir.serial(0, 32): C[ ( (((x_outer * 32768) + (x_inner * 1024)) + (y_outer * 32)) + y_inner ) ] = tir.load("float32", C_global, ((x_inner * 32) + y_inner)) if tir.TVMBackendFreeWorkspace(1, dev_id, C_global, dtype="int32") != 0: tir.evaluate(tir.tvm_throw_last_error(dtype="int32")) if tir.TVMBackendFreeWorkspace(1, dev_id, packedB, dtype="int32") != 0: tir.evaluate(tir.tvm_throw_last_error(dtype="int32")) def test_opt_gemm_mod_host(): mod = Module3() rt_mod = tvm.script.from_source(tvm.script.asscript(mod, True)) tvm.ir.assert_structural_equal(mod, rt_mod, True) @tvm.script.tir def opt_conv_tensorcore_normalize(A: ty.handle, W: ty.handle, Conv: ty.handle) -> None: # function attr dict tir.func_attr({"global_symbol": "default_function", "tir.noalias": True}) # var definition bx = tir.env_thread("blockIdx.x") by = tir.env_thread("blockIdx.y") bz = tir.env_thread("blockIdx.z") tx = tir.env_thread("threadIdx.x") ty = tir.env_thread("threadIdx.y") tz = tir.env_thread("threadIdx.z") # buffer definition Apad_shared = tir.buffer_decl( [16, 16, 16, 16, 16, 16], dtype="float16", elem_offset=0, align=128, offset_factor=1 ) Apad_shared_wmma_matrix_a = tir.buffer_decl( [16, 16, 16, 16, 16, 16], dtype="float16", elem_offset=0, align=128, offset_factor=1 ) BA = tir.buffer_decl( [16, 16], dtype="float16", scope="wmma.matrix_a", align=32, offset_factor=256 ) BB = tir.buffer_decl( [16, 16], dtype="float16", scope="wmma.matrix_b", align=32, offset_factor=256 ) BC = tir.buffer_decl([16, 16], scope="wmma.accumulator", align=32, offset_factor=256) Conv_wmma_accumulator = tir.buffer_decl( [16, 14, 14, 32, 16, 16], elem_offset=0, align=128, offset_factor=1 ) W_shared = tir.buffer_decl( [3, 3, 16, 32, 16, 16], dtype="float16", elem_offset=0, align=128, offset_factor=1 ) W_shared_wmma_matrix_b = tir.buffer_decl( [3, 3, 16, 32, 16, 16], dtype="float16", elem_offset=0, align=128, offset_factor=1 ) buffer = tir.buffer_decl([16, 16], dtype="float16", scope="shared", align=32, offset_factor=256) buffer_1 = tir.buffer_decl( [16, 16], dtype="float16", scope="wmma.matrix_a", align=32, offset_factor=256 ) buffer_2 = tir.buffer_decl( [16, 16], dtype="float16", scope="shared", align=32, offset_factor=256 ) buffer_3 = tir.buffer_decl( [16, 16], dtype="float16", scope="wmma.matrix_b", align=32, offset_factor=256 ) buffer_4 = tir.buffer_decl([16, 16], scope="wmma.accumulator", align=32, offset_factor=256) buffer_5 = tir.buffer_decl([16, 16], align=32, offset_factor=256) A_1 = tir.match_buffer( A, [16, 14, 14, 16, 16, 16], dtype="float16", elem_offset=0, align=128, offset_factor=1 ) W_1 = tir.match_buffer( W, [3, 3, 16, 32, 16, 16], dtype="float16", elem_offset=0, align=128, offset_factor=1 ) Conv_1 = tir.match_buffer( Conv, [16, 14, 14, 32, 16, 16], elem_offset=0, align=128, offset_factor=1 ) # body tir.realize(Conv_1[0:16, 0:14, 0:14, 0:32, 0:16, 0:16], "") tir.launch_thread(bz, 196) tir.launch_thread(bx, 2) tir.launch_thread(by, 4) tir.launch_thread(ty, 4) tir.launch_thread(tz, 2) tir.realize( Conv_wmma_accumulator[ ((bx * 8) + (ty * 2)) : (((bx * 8) + (ty * 2)) + 2), tir.floordiv(bz, 14) : (tir.floordiv(bz, 14) + 1), tir.floormod(bz, 14) : (tir.floormod(bz, 14) + 1), ((by * 8) + (tz * 4)) : (((by * 8) + (tz * 4)) + 4), 0:16, 0:16, ], "wmma.accumulator", ) for n_c_init in tir.serial(0, 2): for o_c_init in tir.serial(0, 4): tir.attr( [BC, Conv_wmma_accumulator], "buffer_bind_scope", tir.tvm_tuple( (n_c_init + ((bx * 8) + (ty * 2))), 1, tir.floordiv(bz, 14), 1, tir.floormod(bz, 14), 1, (o_c_init + ((by * 8) + (tz * 4))), 1, 0, 16, 0, 16, dtype="handle", ), ) tir.evaluate( tir.tvm_fill_fragment( BC.data, 16, 16, 16, tir.floordiv(BC.elem_offset, 256), tir.float32(0), dtype="handle", ) ) for ic_outer in tir.serial(0, 8): for kh in tir.serial(0, 3): tir.realize( Apad_shared[ (bx * 8) : ((bx * 8) + 8), (tir.floordiv(bz, 14) + kh) : ((tir.floordiv(bz, 14) + kh) + 1), tir.floormod(bz, 14) : (tir.floormod(bz, 14) + 3), (ic_outer * 2) : ((ic_outer * 2) + 2), 0:16, 0:16, ], "shared", ) for ax2 in tir.serial(0, 3): for ax3 in tir.serial(0, 2): for ax4_ax5_fused_outer in tir.serial(0, 8): tir.launch_thread(tx, 32) Apad_shared[ ((tz + (ty * 2)) + (bx * 8)), (tir.floordiv(bz, 14) + kh), (ax2 + tir.floormod(bz, 14)), (ax3 + (ic_outer * 2)), tir.floordiv((tx + (ax4_ax5_fused_outer * 32)), 16), tir.floormod((tx + (ax4_ax5_fused_outer * 32)), 16), ] = tir.if_then_else( ( ( ( ((tir.floordiv(bz, 14) + kh) >= 1) and (((tir.floordiv(bz, 14) + kh) - 1) < 14) ) and ((ax2 + tir.floormod(bz, 14)) >= 1) ) and (((ax2 + tir.floormod(bz, 14)) - 1) < 14) ), A_1[ ((tz + (ty * 2)) + (bx * 8)), ((tir.floordiv(bz, 14) + kh) - 1), ((ax2 + tir.floormod(bz, 14)) - 1), (ax3 + (ic_outer * 2)), tir.floordiv((tx + (ax4_ax5_fused_outer * 32)), 16), tir.floormod((tx + (ax4_ax5_fused_outer * 32)), 16), ], tir.float16(0), dtype="float16", ) tir.realize( W_shared[ kh : (kh + 1), 0:3, (ic_outer * 2) : ((ic_outer * 2) + 2), (by * 8) : ((by * 8) + 8), 0:16, 0:16, ], "shared", ) for ax1 in tir.serial(0, 3): for ax2_1 in tir.serial(0, 2): tir.launch_thread(tx, 32) for ax4_ax5_fused_inner in tir.vectorized(0, 8): W_shared[ kh, ax1, (ax2_1 + (ic_outer * 2)), ((tz + (ty * 2)) + (by * 8)), tir.floordiv((ax4_ax5_fused_inner + (tx * 8)), 16), tir.floormod((ax4_ax5_fused_inner + (tx * 8)), 16), ] = W_1[ kh, ax1, (ax2_1 + (ic_outer * 2)), ((tz + (ty * 2)) + (by * 8)), tir.floordiv((ax4_ax5_fused_inner + (tx * 8)), 16), tir.floormod((ax4_ax5_fused_inner + (tx * 8)), 16), ] for ic_inner in tir.serial(0, 2): for kw in tir.serial(0, 3): tir.realize( Apad_shared_wmma_matrix_a[ ((bx * 8) + (ty * 2)) : (((bx * 8) + (ty * 2)) + 2), (tir.floordiv(bz, 14) + kh) : ((tir.floordiv(bz, 14) + kh) + 1), (kw + tir.floormod(bz, 14)) : ((kw + tir.floormod(bz, 14)) + 1), ((ic_outer * 2) + ic_inner) : (((ic_outer * 2) + ic_inner) + 1), 0:16, 0:16, ], "wmma.matrix_a", ) for ax0 in tir.serial(0, 2): tir.attr( [buffer, Apad_shared], "buffer_bind_scope", tir.tvm_tuple( (ax0 + ((bx * 8) + (ty * 2))), 1, (tir.floordiv(bz, 14) + kh), 1, (kw + tir.floormod(bz, 14)), 1, ((ic_outer * 2) + ic_inner), 1, 0, 16, 0, 16, dtype="handle", ), ) tir.attr( [buffer_1, Apad_shared_wmma_matrix_a], "buffer_bind_scope", tir.tvm_tuple( (ax0 + ((bx * 8) + (ty * 2))), 1, (tir.floordiv(bz, 14) + kh), 1, (kw + tir.floormod(bz, 14)), 1, ((ic_outer * 2) + ic_inner), 1, 0, 16, 0, 16, dtype="handle", ), ) tir.evaluate( tir.tvm_load_matrix_sync( buffer_1.data, 16, 16, 16, tir.floordiv(buffer_1.elem_offset, 256), tir.tvm_access_ptr( tir.type_annotation(dtype="float16"), buffer.data, buffer.elem_offset, 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.realize( W_shared_wmma_matrix_b[ kh : (kh + 1), kw : (kw + 1), ((ic_outer * 2) + ic_inner) : (((ic_outer * 2) + ic_inner) + 1), ((by * 8) + (tz * 4)) : (((by * 8) + (tz * 4)) + 4), 0:16, 0:16, ], "wmma.matrix_b", ) for ax3_1 in tir.serial(0, 4): tir.attr( [buffer_2, W_shared], "buffer_bind_scope", tir.tvm_tuple( kh, 1, kw, 1, ((ic_outer * 2) + ic_inner), 1, (ax3_1 + ((by * 8) + (tz * 4))), 1, 0, 16, 0, 16, dtype="handle", ), ) tir.attr( [buffer_3, W_shared_wmma_matrix_b], "buffer_bind_scope", tir.tvm_tuple( kh, 1, kw, 1, ((ic_outer * 2) + ic_inner), 1, (ax3_1 + ((by * 8) + (tz * 4))), 1, 0, 16, 0, 16, dtype="handle", ), ) tir.evaluate( tir.tvm_load_matrix_sync( buffer_3.data, 16, 16, 16, tir.floordiv(buffer_3.elem_offset, 256), tir.tvm_access_ptr( tir.type_annotation(dtype="float16"), buffer_2.data, buffer_2.elem_offset, 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) for n_c in tir.serial(0, 2): for o_c in tir.serial(0, 4): tir.attr( [BA, Apad_shared_wmma_matrix_a], "buffer_bind_scope", tir.tvm_tuple( (n_c + ((bx * 8) + (ty * 2))), 1, (tir.floordiv(bz, 14) + kh), 1, (tir.floormod(bz, 14) + kw), 1, ((ic_outer * 2) + ic_inner), 1, 0, 16, 0, 16, dtype="handle", ), ) tir.attr( [BB, W_shared_wmma_matrix_b], "buffer_bind_scope", tir.tvm_tuple( kh, 1, kw, 1, ((ic_outer * 2) + ic_inner), 1, (o_c + ((by * 8) + (tz * 4))), 1, 0, 16, 0, 16, dtype="handle", ), ) tir.attr( [BC, Conv_wmma_accumulator], "buffer_bind_scope", tir.tvm_tuple( (n_c + ((bx * 8) + (ty * 2))), 1, tir.floordiv(bz, 14), 1, tir.floormod(bz, 14), 1, (o_c + ((by * 8) + (tz * 4))), 1, 0, 16, 0, 16, dtype="handle", ), ) tir.evaluate( tir.tvm_mma_sync( BC.data, tir.floordiv(BC.elem_offset, 256), BA.data, tir.floordiv(BA.elem_offset, 256), BB.data, tir.floordiv(BB.elem_offset, 256), BC.data, tir.floordiv(BC.elem_offset, 256), dtype="handle", ) ) for n_inner in tir.serial(0, 2): for o_inner in tir.serial(0, 4): tir.attr( [buffer_4, Conv_wmma_accumulator], "buffer_bind_scope", tir.tvm_tuple( ((((bx * 4) + ty) * 2) + n_inner), 1, tir.floordiv(bz, 14), 1, tir.floormod(bz, 14), 1, ((((by * 2) + tz) * 4) + o_inner), 1, 0, 16, 0, 16, dtype="handle", ), ) tir.attr( [buffer_5, Conv_1], "buffer_bind_scope", tir.tvm_tuple( ((((bx * 4) + ty) * 2) + n_inner), 1, tir.floordiv(bz, 14), 1, tir.floormod(bz, 14), 1, ((((by * 2) + tz) * 4) + o_inner), 1, 0, 16, 0, 16, dtype="handle", ), ) tir.evaluate( tir.tvm_store_matrix_sync( buffer_4.data, 16, 16, 16, tir.floordiv(buffer_4.elem_offset, 256), tir.tvm_access_ptr( tir.type_annotation(dtype="float32"), buffer_5.data, buffer_5.elem_offset, 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) def test_opt_conv_tensorcore_normalize(): mod = opt_conv_tensorcore_normalize rt_mod = tvm.script.from_source(tvm.script.asscript(mod, True)) tvm.ir.assert_structural_equal(mod, rt_mod, True) @tvm.script.tir def opt_conv_tensorcore_lower(A: ty.handle, W: ty.handle, Conv: ty.handle) -> None: # function attr dict tir.func_attr({"global_symbol": "default_function", "tir.noalias": True}) # body A_1 = tir.match_buffer( A, [16, 14, 14, 16, 16, 16], dtype="float16", elem_offset=0, align=128, offset_factor=1 ) W_1 = tir.match_buffer( W, [3, 3, 16, 32, 16, 16], dtype="float16", elem_offset=0, align=128, offset_factor=1 ) Conv_1 = tir.match_buffer( Conv, [16, 14, 14, 32, 16, 16], elem_offset=0, align=128, offset_factor=1 ) bx = tir.env_thread("blockIdx.x") by = tir.env_thread("blockIdx.y") bz = tir.env_thread("blockIdx.z") tx = tir.env_thread("threadIdx.x") ty = tir.env_thread("threadIdx.y") tz = tir.env_thread("threadIdx.z") tir.launch_thread(bz, 196) Conv_wmma_accumulator = tir.allocate([2048], "float32", "wmma.accumulator") Apad_shared = tir.allocate([12288], "float16", "shared") W_shared = tir.allocate([12288], "float16", "shared") Apad_shared_wmma_matrix_a = tir.allocate([512], "float16", "wmma.matrix_a") W_shared_wmma_matrix_b = tir.allocate([1024], "float16", "wmma.matrix_b") tir.launch_thread(bx, 2) tir.launch_thread(by, 4) tir.launch_thread(ty, 4) tir.launch_thread(tz, 2) tir.evaluate( tir.tvm_fill_fragment(Conv_wmma_accumulator, 16, 16, 16, 0, tir.float32(0), dtype="handle") ) tir.evaluate( tir.tvm_fill_fragment(Conv_wmma_accumulator, 16, 16, 16, 1, tir.float32(0), dtype="handle") ) tir.evaluate( tir.tvm_fill_fragment(Conv_wmma_accumulator, 16, 16, 16, 2, tir.float32(0), dtype="handle") ) tir.evaluate( tir.tvm_fill_fragment(Conv_wmma_accumulator, 16, 16, 16, 3, tir.float32(0), dtype="handle") ) tir.evaluate( tir.tvm_fill_fragment(Conv_wmma_accumulator, 16, 16, 16, 4, tir.float32(0), dtype="handle") ) tir.evaluate( tir.tvm_fill_fragment(Conv_wmma_accumulator, 16, 16, 16, 5, tir.float32(0), dtype="handle") ) tir.evaluate( tir.tvm_fill_fragment(Conv_wmma_accumulator, 16, 16, 16, 6, tir.float32(0), dtype="handle") ) tir.evaluate( tir.tvm_fill_fragment(Conv_wmma_accumulator, 16, 16, 16, 7, tir.float32(0), dtype="handle") ) for ic_outer in tir.serial(0, 8): for kh in tir.serial(0, 3): for ax2 in tir.serial(0, 3): with tir.launch_thread(tx, 32): Apad_shared[ ((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61440 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 32) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61408 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 64) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61376 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 96) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61344 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 128) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61312 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 160) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61280 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 192) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61248 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 224) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61216 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 256) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61184 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 288) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61152 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 320) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61120 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 352) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61088 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 384) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61056 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 416) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61024 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 448) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 60992 ), ), tir.float16(0), dtype="float16", ) tir.launch_thread(tx, 32) Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 480) ] = tir.if_then_else( ( ( ( (1 <= (tir.floordiv(bz, 14) + kh)) and ((tir.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + tir.floormod(bz, 14))) ) and ((ax2 + tir.floormod(bz, 14)) < 15) ), tir.load( "float16", A_1.data, ( ( ( ( ( ( (((bx * 6422528) + (ty * 1605632)) + (tz * 802816)) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 60960 ), ), tir.float16(0), dtype="float16", ) with tir.launch_thread(tx, 32): tir.store( W_shared, tir.ramp((((ty * 512) + (tz * 256)) + (tx * 8)), 1, 8), tir.load( "float16x8", W_1.data, tir.ramp( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ), 1, 8, ), tir.broadcast(True, 8), ), tir.broadcast(True, 8), ) with tir.launch_thread(tx, 32): tir.store( W_shared, tir.ramp(((((ty * 512) + (tz * 256)) + (tx * 8)) + 2048), 1, 8), tir.load( "float16x8", W_1.data, tir.ramp( ( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ) + 8192 ), 1, 8, ), tir.broadcast(True, 8), ), tir.broadcast(True, 8), ) with tir.launch_thread(tx, 32): tir.store( W_shared, tir.ramp(((((ty * 512) + (tz * 256)) + (tx * 8)) + 4096), 1, 8), tir.load( "float16x8", W_1.data, tir.ramp( ( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ) + 131072 ), 1, 8, ), tir.broadcast(True, 8), ), tir.broadcast(True, 8), ) with tir.launch_thread(tx, 32): tir.store( W_shared, tir.ramp(((((ty * 512) + (tz * 256)) + (tx * 8)) + 6144), 1, 8), tir.load( "float16x8", W_1.data, tir.ramp( ( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ) + 139264 ), 1, 8, ), tir.broadcast(True, 8), ), tir.broadcast(True, 8), ) with tir.launch_thread(tx, 32): tir.store( W_shared, tir.ramp(((((ty * 512) + (tz * 256)) + (tx * 8)) + 8192), 1, 8), tir.load( "float16x8", W_1.data, tir.ramp( ( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ) + 262144 ), 1, 8, ), tir.broadcast(True, 8), ), tir.broadcast(True, 8), ) with tir.launch_thread(tx, 32): tir.store( W_shared, tir.ramp(((((ty * 512) + (tz * 256)) + (tx * 8)) + 10240), 1, 8), tir.load( "float16x8", W_1.data, tir.ramp( ( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ) + 270336 ), 1, 8, ), tir.broadcast(True, 8), ), tir.broadcast(True, 8), ) for ic_inner in tir.serial(0, 2): for kw in tir.serial(0, 3): tir.evaluate( tir.tvm_load_matrix_sync( Apad_shared_wmma_matrix_a, 16, 16, 16, 0, tir.tvm_access_ptr( tir.type_annotation(dtype="float16"), Apad_shared, (((ty * 3072) + (kw * 512)) + (ic_inner * 256)), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_load_matrix_sync( Apad_shared_wmma_matrix_a, 16, 16, 16, 1, tir.tvm_access_ptr( tir.type_annotation(dtype="float16"), Apad_shared, ((((ty * 3072) + (kw * 512)) + (ic_inner * 256)) + 1536), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_load_matrix_sync( W_shared_wmma_matrix_b, 16, 16, 16, 0, tir.tvm_access_ptr( tir.type_annotation(dtype="float16"), W_shared, (((kw * 4096) + (ic_inner * 2048)) + (tz * 1024)), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_load_matrix_sync( W_shared_wmma_matrix_b, 16, 16, 16, 1, tir.tvm_access_ptr( tir.type_annotation(dtype="float16"), W_shared, ((((kw * 4096) + (ic_inner * 2048)) + (tz * 1024)) + 256), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_load_matrix_sync( W_shared_wmma_matrix_b, 16, 16, 16, 2, tir.tvm_access_ptr( tir.type_annotation(dtype="float16"), W_shared, ((((kw * 4096) + (ic_inner * 2048)) + (tz * 1024)) + 512), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_load_matrix_sync( W_shared_wmma_matrix_b, 16, 16, 16, 3, tir.tvm_access_ptr( tir.type_annotation(dtype="float16"), W_shared, ((((kw * 4096) + (ic_inner * 2048)) + (tz * 1024)) + 768), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_mma_sync( Conv_wmma_accumulator, 0, Apad_shared_wmma_matrix_a, 0, W_shared_wmma_matrix_b, 0, Conv_wmma_accumulator, 0, dtype="handle", ) ) tir.evaluate( tir.tvm_mma_sync( Conv_wmma_accumulator, 1, Apad_shared_wmma_matrix_a, 0, W_shared_wmma_matrix_b, 1, Conv_wmma_accumulator, 1, dtype="handle", ) ) tir.evaluate( tir.tvm_mma_sync( Conv_wmma_accumulator, 2, Apad_shared_wmma_matrix_a, 0, W_shared_wmma_matrix_b, 2, Conv_wmma_accumulator, 2, dtype="handle", ) ) tir.evaluate( tir.tvm_mma_sync( Conv_wmma_accumulator, 3, Apad_shared_wmma_matrix_a, 0, W_shared_wmma_matrix_b, 3, Conv_wmma_accumulator, 3, dtype="handle", ) ) tir.evaluate( tir.tvm_mma_sync( Conv_wmma_accumulator, 4, Apad_shared_wmma_matrix_a, 1, W_shared_wmma_matrix_b, 0, Conv_wmma_accumulator, 4, dtype="handle", ) ) tir.evaluate( tir.tvm_mma_sync( Conv_wmma_accumulator, 5, Apad_shared_wmma_matrix_a, 1, W_shared_wmma_matrix_b, 1, Conv_wmma_accumulator, 5, dtype="handle", ) ) tir.evaluate( tir.tvm_mma_sync( Conv_wmma_accumulator, 6, Apad_shared_wmma_matrix_a, 1, W_shared_wmma_matrix_b, 2, Conv_wmma_accumulator, 6, dtype="handle", ) ) tir.evaluate( tir.tvm_mma_sync( Conv_wmma_accumulator, 7, Apad_shared_wmma_matrix_a, 1, W_shared_wmma_matrix_b, 3, Conv_wmma_accumulator, 7, dtype="handle", ) ) tir.evaluate( tir.tvm_store_matrix_sync( Conv_wmma_accumulator, 16, 16, 16, 0, tir.tvm_access_ptr( tir.type_annotation(dtype="float32"), Conv_1.data, (((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024)), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_store_matrix_sync( Conv_wmma_accumulator, 16, 16, 16, 1, tir.tvm_access_ptr( tir.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 256 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_store_matrix_sync( Conv_wmma_accumulator, 16, 16, 16, 2, tir.tvm_access_ptr( tir.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 512 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_store_matrix_sync( Conv_wmma_accumulator, 16, 16, 16, 3, tir.tvm_access_ptr( tir.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 768 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_store_matrix_sync( Conv_wmma_accumulator, 16, 16, 16, 4, tir.tvm_access_ptr( tir.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 1605632 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_store_matrix_sync( Conv_wmma_accumulator, 16, 16, 16, 5, tir.tvm_access_ptr( tir.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 1605888 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_store_matrix_sync( Conv_wmma_accumulator, 16, 16, 16, 6, tir.tvm_access_ptr( tir.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 1606144 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) tir.evaluate( tir.tvm_store_matrix_sync( Conv_wmma_accumulator, 16, 16, 16, 7, tir.tvm_access_ptr( tir.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 1606400 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) def test_opt_conv_tensorcore_lower(): mod = opt_conv_tensorcore_lower rt_mod = tvm.script.from_source(tvm.script.asscript(mod, True)) tvm.ir.assert_structural_equal(mod, rt_mod, True) @tvm.script.tir def opt_conv_tensorcore_mod_host( args: ty.handle, arg_type_ids: ty.handle, num_args: ty.int32, out_ret_value: ty.handle, out_ret_tcode: ty.handle, resource_handle: ty.handle, ) -> ty.int32: # function attr dict tir.func_attr( { "tir.noalias": True, "global_symbol": "default_function", "tir.is_entry_func": True, "calling_conv": 1, } ) # body stack_tcode: ty.handle = tir.tvm_stack_alloca("arg_tcode", 10, dtype="handle") stack_value: ty.handle = tir.tvm_stack_alloca("arg_value", 10, dtype="handle") assert num_args == 3, "default_function: num_args should be 3" arg0: ty.handle = tir.tvm_struct_get(args, 0, 12, dtype="handle") arg0_code: ty.int32 = tir.load("int32", arg_type_ids, 0) arg1: ty.handle = tir.tvm_struct_get(args, 1, 12, dtype="handle") arg1_code: ty.int32 = tir.load("int32", arg_type_ids, 1) arg2: ty.handle = tir.tvm_struct_get(args, 2, 12, dtype="handle") arg2_code: ty.int32 = tir.load("int32", arg_type_ids, 2) A: ty.handle = tir.tvm_struct_get(arg0, 0, 1, dtype="handle") tir.attr(A, "storage_alignment", 128) arg0_shape: ty.handle = tir.tvm_struct_get(arg0, 0, 2, dtype="handle") arg0_strides: ty.handle = tir.tvm_struct_get(arg0, 0, 3, dtype="handle") dev_id: ty.int32 = tir.tvm_struct_get(arg0, 0, 9, dtype="int32") W: ty.handle = tir.tvm_struct_get(arg1, 0, 1, dtype="handle") tir.attr(W, "storage_alignment", 128) arg1_shape: ty.handle = tir.tvm_struct_get(arg1, 0, 2, dtype="handle") arg1_strides: ty.handle = tir.tvm_struct_get(arg1, 0, 3, dtype="handle") Conv: ty.handle = tir.tvm_struct_get(arg2, 0, 1, dtype="handle") tir.attr(Conv, "storage_alignment", 128) arg2_shape: ty.handle = tir.tvm_struct_get(arg2, 0, 2, dtype="handle") arg2_strides: ty.handle = tir.tvm_struct_get(arg2, 0, 3, dtype="handle") assert (((arg0_code == 3) or (arg0_code == 13)) or (arg0_code == 7)) or ( arg0_code == 4 ), "default_function: Expect arg[0] to be pointer" assert (((arg1_code == 3) or (arg1_code == 13)) or (arg1_code == 7)) or ( arg1_code == 4 ), "default_function: Expect arg[1] to be pointer" assert (((arg2_code == 3) or (arg2_code == 13)) or (arg2_code == 7)) or ( arg2_code == 4 ), "default_function: Expect arg[2] to be pointer" assert 6 == tir.tvm_struct_get(arg0, 0, 4, dtype="int32"), "arg0.ndim is expected to equal 6" assert 6 == tir.tvm_struct_get(arg0, 0, 4, dtype="int32"), "arg0.ndim is expected to equal 6" assert ( (tir.tvm_struct_get(arg0, 0, 5, dtype="uint8") == tir.uint8(2)) and (tir.tvm_struct_get(arg0, 0, 6, dtype="uint8") == tir.uint8(16)) ) and ( tir.tvm_struct_get(arg0, 0, 7, dtype="uint16") == tir.uint16(1) ), "arg0.dtype is expected to be float16" assert 16 == tir.cast( tir.load("int64", arg0_shape, 0), "int32" ), "Argument arg0.shape[0] has an unsatisfied constraint" assert 14 == tir.cast( tir.load("int64", arg0_shape, 1), "int32" ), "Argument arg0.shape[1] has an unsatisfied constraint" assert 14 == tir.cast( tir.load("int64", arg0_shape, 2), "int32" ), "Argument arg0.shape[2] has an unsatisfied constraint" assert 16 == tir.cast( tir.load("int64", arg0_shape, 3), "int32" ), "Argument arg0.shape[3] has an unsatisfied constraint" assert 16 == tir.cast( tir.load("int64", arg0_shape, 4), "int32" ), "Argument arg0.shape[4] has an unsatisfied constraint" assert 16 == tir.cast( tir.load("int64", arg0_shape, 5), "int32" ), "Argument arg0.shape[5] has an unsatisfied constraint" if not (tir.isnullptr(arg0_strides, dtype="bool")): assert ( ( ( ( (1 == tir.cast(tir.load("int64", arg0_strides, 5), "int32")) and (16 == tir.cast(tir.load("int64", arg0_strides, 4), "int32")) ) and (256 == tir.cast(tir.load("int64", arg0_strides, 3), "int32")) ) and (4096 == tir.cast(tir.load("int64", arg0_strides, 2), "int32")) ) and (57344 == tir.cast(tir.load("int64", arg0_strides, 1), "int32")) ) and ( 802816 == tir.cast(tir.load("int64", arg0_strides, 0), "int32") ), "arg0.strides: expected to be compact array" tir.evaluate(0) assert tir.uint64(0) == tir.tvm_struct_get( arg0, 0, 8, dtype="uint64" ), "Argument arg0.byte_offset has an unsatisfied constraint" assert 2 == tir.tvm_struct_get( arg0, 0, 10, dtype="int32" ), "Argument arg0.device_type has an unsatisfied constraint" assert 6 == tir.tvm_struct_get(arg1, 0, 4, dtype="int32"), "arg1.ndim is expected to equal 6" assert 6 == tir.tvm_struct_get(arg1, 0, 4, dtype="int32"), "arg1.ndim is expected to equal 6" assert ( (tir.tvm_struct_get(arg1, 0, 5, dtype="uint8") == tir.uint8(2)) and (tir.tvm_struct_get(arg1, 0, 6, dtype="uint8") == tir.uint8(16)) ) and ( tir.tvm_struct_get(arg1, 0, 7, dtype="uint16") == tir.uint16(1) ), "arg1.dtype is expected to be float16" assert 3 == tir.cast( tir.load("int64", arg1_shape, 0), "int32" ), "Argument arg1.shape[0] has an unsatisfied constraint" assert 3 == tir.cast( tir.load("int64", arg1_shape, 1), "int32" ), "Argument arg1.shape[1] has an unsatisfied constraint" assert 16 == tir.cast( tir.load("int64", arg1_shape, 2), "int32" ), "Argument arg1.shape[2] has an unsatisfied constraint" assert 32 == tir.cast( tir.load("int64", arg1_shape, 3), "int32" ), "Argument arg1.shape[3] has an unsatisfied constraint" assert 16 == tir.cast( tir.load("int64", arg1_shape, 4), "int32" ), "Argument arg1.shape[4] has an unsatisfied constraint" assert 16 == tir.cast( tir.load("int64", arg1_shape, 5), "int32" ), "Argument arg1.shape[5] has an unsatisfied constraint" if not (tir.isnullptr(arg1_strides, dtype="bool")): assert ( ( ( ( (1 == tir.cast(tir.load("int64", arg1_strides, 5), "int32")) and (16 == tir.cast(tir.load("int64", arg1_strides, 4), "int32")) ) and (256 == tir.cast(tir.load("int64", arg1_strides, 3), "int32")) ) and (8192 == tir.cast(tir.load("int64", arg1_strides, 2), "int32")) ) and (131072 == tir.cast(tir.load("int64", arg1_strides, 1), "int32")) ) and ( 393216 == tir.cast(tir.load("int64", arg1_strides, 0), "int32") ), "arg1.strides: expected to be compact array" tir.evaluate(0) assert tir.uint64(0) == tir.tvm_struct_get( arg1, 0, 8, dtype="uint64" ), "Argument arg1.byte_offset has an unsatisfied constraint" assert 2 == tir.tvm_struct_get( arg1, 0, 10, dtype="int32" ), "Argument arg1.device_type has an unsatisfied constraint" assert dev_id == tir.tvm_struct_get( arg1, 0, 9, dtype="int32" ), "Argument arg1.device_id has an unsatisfied constraint" assert 6 == tir.tvm_struct_get(arg2, 0, 4, dtype="int32"), "arg2.ndim is expected to equal 6" assert 6 == tir.tvm_struct_get(arg2, 0, 4, dtype="int32"), "arg2.ndim is expected to equal 6" assert ( (tir.tvm_struct_get(arg2, 0, 5, dtype="uint8") == tir.uint8(2)) and (tir.tvm_struct_get(arg2, 0, 6, dtype="uint8") == tir.uint8(32)) ) and ( tir.tvm_struct_get(arg2, 0, 7, dtype="uint16") == tir.uint16(1) ), "arg2.dtype is expected to be float32" assert 16 == tir.cast( tir.load("int64", arg2_shape, 0), "int32" ), "Argument arg2.shape[0] has an unsatisfied constraint" assert 14 == tir.cast( tir.load("int64", arg2_shape, 1), "int32" ), "Argument arg2.shape[1] has an unsatisfied constraint" assert 14 == tir.cast( tir.load("int64", arg2_shape, 2), "int32" ), "Argument arg2.shape[2] has an unsatisfied constraint" assert 32 == tir.cast( tir.load("int64", arg2_shape, 3), "int32" ), "Argument arg2.shape[3] has an unsatisfied constraint" assert 16 == tir.cast( tir.load("int64", arg2_shape, 4), "int32" ), "Argument arg2.shape[4] has an unsatisfied constraint" assert 16 == tir.cast( tir.load("int64", arg2_shape, 5), "int32" ), "Argument arg2.shape[5] has an unsatisfied constraint" if not (tir.isnullptr(arg2_strides, dtype="bool")): assert ( ( ( ( (1 == tir.cast(tir.load("int64", arg2_strides, 5), "int32")) and (16 == tir.cast(tir.load("int64", arg2_strides, 4), "int32")) ) and (256 == tir.cast(tir.load("int64", arg2_strides, 3), "int32")) ) and (8192 == tir.cast(tir.load("int64", arg2_strides, 2), "int32")) ) and (114688 == tir.cast(tir.load("int64", arg2_strides, 1), "int32")) ) and ( 1605632 == tir.cast(tir.load("int64", arg2_strides, 0), "int32") ), "arg2.strides: expected to be compact array" tir.evaluate(0) assert tir.uint64(0) == tir.tvm_struct_get( arg2, 0, 8, dtype="uint64" ), "Argument arg2.byte_offset has an unsatisfied constraint" assert 2 == tir.tvm_struct_get( arg2, 0, 10, dtype="int32" ), "Argument arg2.device_type has an unsatisfied constraint" assert dev_id == tir.tvm_struct_get( arg2, 0, 9, dtype="int32" ), "Argument arg2.device_id has an unsatisfied constraint" tir.evaluate(tir.tvm_struct_set(stack_value, 0, 12, tir.cast(2, "int64"), dtype="int32")) stack_tcode[0] = 0 tir.evaluate(tir.tvm_struct_set(stack_value, 1, 12, tir.cast(dev_id, "int64"), dtype="int32")) stack_tcode[1] = 0 tir.evaluate( tir.tvm_call_packed_lowered( "__tvm_set_device", stack_value, stack_tcode, 0, 2, dtype="int32" ) ) tir.attr(0, "compute_scope", "default_function_compute_") tir.evaluate(tir.tvm_struct_set(stack_value, 0, 12, A, dtype="int32")) stack_tcode[0] = 3 tir.evaluate(tir.tvm_struct_set(stack_value, 1, 12, W, dtype="int32")) stack_tcode[1] = 3 tir.evaluate(tir.tvm_struct_set(stack_value, 2, 12, Conv, dtype="int32")) stack_tcode[2] = 3 tir.evaluate(tir.tvm_struct_set(stack_value, 3, 12, tir.cast(196, "int64"), dtype="int32")) stack_tcode[3] = 0 tir.evaluate(tir.tvm_struct_set(stack_value, 4, 12, tir.cast(2, "int64"), dtype="int32")) stack_tcode[4] = 0 tir.evaluate(tir.tvm_struct_set(stack_value, 5, 12, tir.cast(4, "int64"), dtype="int32")) stack_tcode[5] = 0 tir.evaluate(tir.tvm_struct_set(stack_value, 6, 12, tir.cast(4, "int64"), dtype="int32")) stack_tcode[6] = 0 tir.evaluate(tir.tvm_struct_set(stack_value, 7, 12, tir.cast(2, "int64"), dtype="int32")) stack_tcode[7] = 0 tir.evaluate(tir.tvm_struct_set(stack_value, 8, 12, tir.cast(32, "int64"), dtype="int32")) stack_tcode[8] = 0 tir.evaluate( tir.tvm_call_packed_lowered( "default_function_kernel0", stack_value, stack_tcode, 0, 9, dtype="int32" ) ) def test_opt_conv_tensorcore_mod_host(): mod = opt_conv_tensorcore_mod_host rt_mod = tvm.script.from_source(tvm.script.asscript(mod, True)) tvm.ir.assert_structural_equal(mod, rt_mod, True) @tvm.script.tir def vthread_func(a: ty.handle, c: ty.handle) -> None: A = tir.match_buffer(a, (16, 16), "float32") C = tir.match_buffer(c, (16, 16), "float32") i0 = tir.env_thread("blockIdx.x") i1 = tir.env_thread("threadIdx.x") i2 = tir.env_thread("vthread") tir.launch_thread(i0, 4) tir.launch_thread(i1, 2) tir.launch_thread(i2, 2) B = tir.allocate([16], "float32", "local") for j in range(16): B[j] = tir.load("float32", A.data, i0 * 64 + i1 * 32 + i2 * 16 + j) + tir.float32(1) for j in range(16): C.data[i0 * 64 + i1 * 32 + i2 * 16 + j] = tir.load("float32", B, j) * tir.float32(2) def test_vthread(): func = vthread_func rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func, True) @tvm.script.tir def matmul(a: ty.handle, b: ty.handle, c: ty.handle) -> None: A = tir.match_buffer(a, [128, 128]) B = tir.match_buffer(b, [128, 128]) C = tir.match_buffer(c, [128, 128]) with tir.block([128, 128, tir.reduce_axis(0, 128)], "update") as [vi, vj, vk]: with tir.init(): C[vi, vj] = tir.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @tvm.script.tir def matmul_original(a: ty.handle, b: ty.handle, c: ty.handle) -> None: A = tir.match_buffer(a, [128, 128]) B = tir.match_buffer(b, [128, 128]) C = tir.match_buffer(c, [128, 128]) for i, j in tir.grid(128, 128): with tir.block([128, 128], "init") as [vi, vj]: C[vi, vj] = tir.float32(0) for k in range(128): with tir.block([128, 128, tir.reduce_axis(0, 128)], "update") as [vi, vj, vk]: C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @tvm.script.tir def element_wise(a: ty.handle, c: ty.handle) -> None: A = tir.match_buffer(a, (128, 128), "float32") C = tir.match_buffer(c, (128, 128), "float32") B = tir.alloc_buffer((128, 128), "float32") with tir.block([128, 128], "B") as [vi, vj]: B[vi, vj] = A[vi, vj] * tir.float32(2) with tir.block([128, 128], "C") as [vi, vj]: C[vi, vj] = B[vi, vj] + tir.float32(1) @tvm.script.tir def predicate(b: ty.handle, c: ty.handle) -> None: B = tir.match_buffer(b, (16, 16), "float32") C = tir.match_buffer(c, (16, 16), "float32") for i, jo, ji in tir.grid(16, 4, 5): with tir.block([16, 16], "update") as [vi, vj]: tir.bind(vi, i) tir.bind(vj, jo * 4 + ji) tir.where(jo * 4 + ji < 16) C[vi, vj] = B[vi, vj] + tir.float32(1) def test_module_define(): func1 = tvm.script.create_module({"matmul": matmul})["matmul"] func2 = tvm.script.create_module({"element_wise": element_wise})["element_wise"] func3 = tvm.script.create_module({"predicate": predicate})["predicate"] mod1 = tvm.script.create_module({"func1": func1, "func2": func2, "func3": func3}) mod2 = tvm.script.create_module({"func1": matmul, "func2": element_wise, "func3": predicate}) tvm.ir.assert_structural_equal(mod1, mod2) def test_matmul(): func = matmul rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) def test_matmul_original(): func = matmul_original rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body.block, tir.stmt.Block) assert isinstance(rt_func.body.block.body, tir.stmt.For) assert isinstance(rt_func.body.block.body.body, tir.stmt.For) assert isinstance(rt_func.body.block.body.body.body, tir.stmt.SeqStmt) assert isinstance(rt_func.body.block.body.body.body[0].block, tir.stmt.Block) assert isinstance(rt_func.body.block.body.body.body[1], tir.stmt.For) assert isinstance(rt_func.body.block.body.body.body[1].body.block, tir.stmt.Block) def test_element_wise(): func = element_wise rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body.block, tir.stmt.Block) assert isinstance(rt_func.body.block.body, tir.stmt.SeqStmt) assert isinstance(rt_func.body.block.body[0], tir.stmt.For) assert isinstance(rt_func.body.block.body[0].body, tir.stmt.For) assert isinstance(rt_func.body.block.body[0].body.body.block, tir.stmt.Block) assert isinstance(rt_func.body.block.body[1], tir.stmt.For) assert isinstance(rt_func.body.block.body[1].body, tir.stmt.For) assert isinstance(rt_func.body.block.body[1].body.body.block, tir.stmt.Block) def test_predicate(): func = predicate rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body.block, tir.stmt.Block) assert isinstance(rt_func.body.block.body, tir.stmt.For) assert isinstance(rt_func.body.block.body.body, tir.stmt.For) assert isinstance(rt_func.body.block.body.body.body, tir.stmt.For) assert isinstance(rt_func.body.block.body.body.body.body.block, tir.stmt.Block) @tvm.script.tir def for_thread_binding(a: ty.handle, b: ty.handle) -> None: A = tir.match_buffer(a, (16, 16), "float32") B = tir.match_buffer(b, (16, 16), "float32") for i in tir.thread_binding(0, 16, thread="threadIdx.x"): for j in tir.thread_binding( 0, 16, thread="threadIdx.y", annotations={"attr_key": "attr_value"} ): A[i, j] = B[i, j] + tir.float32(1) def test_for_thread_binding(): func = for_thread_binding rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body, tir.stmt.For) assert rt_func.body.kind == 4 assert rt_func.body.thread_binding.thread_tag == "threadIdx.x" assert isinstance(rt_func.body.body, tir.stmt.For) assert rt_func.body.body.kind == 4 assert rt_func.body.body.thread_binding.thread_tag == "threadIdx.y" assert rt_func.body.body.annotations["attr_key"] == "attr_value" @tvm.script.tir def match_buffer_region(a: ty.handle, b: ty.handle) -> None: A = tir.match_buffer(a, (16, 16, 16), "float32") B = tir.match_buffer(b, (1), "float32") with tir.block([16, 4]) as [vi, vj]: C = tir.match_buffer(A[0:16, vi, vj * 4 : vj * 4 + 4], (16, 1, 4)) with tir.block([4]) as [vii]: D = tir.match_buffer(C[vii * 4 : vii * 4 + 4, 0, 0:4], (4, 1, 4)) for i, j in tir.grid(4, 4): B[0] += D[i, 0, j] def test_match_buffer_region(): func = match_buffer_region rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body, tir.stmt.BlockRealize) root = rt_func.body.block assert isinstance(root.body, tir.stmt.For) assert isinstance(root.body.body, tir.stmt.For) assert isinstance(root.body.body.body, tir.stmt.BlockRealize) outer_block = root.body.body.body.block assert len(outer_block.match_buffers) == 1 buffer_C = outer_block.match_buffers[0].buffer tvm.ir.assert_structural_equal(buffer_C.shape, [16, 1, 4]) assert isinstance(outer_block.body, tir.stmt.For) assert isinstance(outer_block.body.body, tir.stmt.BlockRealize) inner_block = outer_block.body.body.block assert len(inner_block.match_buffers) == 1 buffer_D = inner_block.match_buffers[0].buffer tvm.ir.assert_structural_equal(buffer_D.shape, [4, 1, 4]) @tvm.script.tir def block_elements(a: ty.handle, b: ty.handle) -> None: A = tir.match_buffer(a, (16, 16), "float32") B = tir.match_buffer(b, (1, 1), "float32") with tir.block([1], "update") as [vi]: tir.bind(vi, 0) tir.where(True) tir.reads(A[0:16, 0:16]) tir.writes(B[0, 0]) tir.block_attr({"attr_key": "attr_value"}) C = tir.alloc_buffer((4, 4), dtype="float32") D = tir.match_buffer(A[0:4, 0], (4, 1)) with tir.init(): B[0, 0] = tir.float32(0) B[0, 0] = A[0, 0] + B[0, 0] + C[1, 1] + D[2] def test_block_elements(): func = block_elements rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body.block, tir.stmt.Block) assert isinstance(rt_func.body.block.body, tir.stmt.BlockRealize) assert isinstance(rt_func.body.block.body.block, tir.stmt.Block) block = rt_func.body.block.body.block assert isinstance(block.body, tir.stmt.BufferStore) assert isinstance(block.init, tir.stmt.BufferStore) assert len(block.annotations) == 1 assert block.annotations["attr_key"] == "attr_value" @tvm.script.tir def opaque_block(a: ty.handle, b: ty.handle) -> None: A = tir.match_buffer(a, (16, 16), "float32") B = tir.match_buffer(b, (16, 16), "float32") for i in range(16): for j in range(16): with tir.block([]): tir.reads([]) tir.writes(A[i, j]) A[i, j] = tir.float32(0) with tir.block([]): tir.reads([A[i, 0:16]]) tir.writes([B[i, 0:16]]) for j in range(16): B[i, j] = A[i, j] def test_opaque_block(): func = opaque_block rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) root_block = rt_func.body.block assert isinstance(root_block, tir.stmt.Block) assert isinstance(root_block.body, tir.stmt.For) assert isinstance(root_block.body.body[0], tir.stmt.For) assert isinstance(root_block.body.body[0].body, tir.stmt.BlockRealize) assert isinstance(root_block.body.body[0].body.block, tir.stmt.Block) assert len(root_block.body.body[0].body.block.iter_vars) == 0 assert isinstance(root_block.body.body[1], tir.stmt.BlockRealize) assert isinstance(root_block.body.body[1].block, tir.stmt.Block) assert len(root_block.body.body[1].block.iter_vars) == 0 @tvm.script.tir def rank0(a: ty.handle) -> None: A = tir.match_buffer(a, (), "float32") B = tir.alloc_buffer((), "float32") A[()] = 2 B[()] = A[()] def test_rank0_buffers(): func = rank0 rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) @tvm.script.tir def rank0_block(a: ty.handle) -> None: A = tir.match_buffer(a, (), "float32") B = tir.alloc_buffer((), "float32") tir.store(B.data, 0, tir.load("float32", A.data, 0)) with tir.block([], "update") as []: tir.reads([A[()]]) tir.writes([B[()]]) for i in range(1): B[()] = A[()] def test_rank0_blocks(): func = rank0_block rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) @tvm.script.tir def select(a: ty.handle) -> None: A = tir.match_buffer(a, (), "float32") A[()] = tir.Select(True, 1, 2) def test_select(): func = select rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) @tvm.script.tir def minmax(a: ty.handle) -> None: A = tir.match_buffer(a, (), "float32") A[()] = tir.min(1, 2) A[()] = tir.max(1, 2) def test_minmax(): func = minmax rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) @tvm.script.tir def abs(a: ty.handle) -> None: A = tir.match_buffer(a, (128, 128), "float32") with tir.block([128, 128], "A") as [vi, vj]: A[vi, vj] = tir.abs(A[vi, vj]) def test_abs(): func = abs rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) @tvm.script.tir def constant_folding(a: ty.handle) -> None: A = tir.match_buffer(a, (), "float32") A[()] = tir.min(2.2, 5.2) A[()] = tir.max(tir.float32(2.2), tir.float32(tir.float32(5.2))) A[()] = tir.min(2.2, 5.0) def test_constant_folding(): func = constant_folding rt_func = tvm.script.from_source(tvm.script.asscript(func, True)) tvm.ir.assert_structural_equal(func, rt_func) @tvm.script.tir def simplify_bracket() -> None: a = tir.var("int32") b = tir.var("int32") c = tir.var("int32") d = tir.var("int32") tir.evaluate(a + b * (c + d)) def test_simplify_bracket(): func = simplify_bracket out_str = tvm.script.asscript(func, True) assert out_str.count("a + b*(c + d)") == 1 @tvm.script.tir def var_with_same_name(a: ty.handle) -> None: A = tir.match_buffer(a, (16, 16), "float32") with tir.block([16, 16]) as [vi, vj]: A[vi, vj] = 0 with tir.block([16, 16]) as [vi, vj]: A[vi, vj] = 0 for i, j in tir.grid(16, 16): with tir.block([16, 16]) as [vi, vj]: A[vi, vj] = 0 for i, j in tir.grid(16, 16): with tir.block([16, 16]) as [vi, vj]: A[vi, vj] = 0 def test_same_name_var(): func = var_with_same_name out_str = tvm.script.asscript(func, True) rt_func = tvm.script.from_source(out_str) tvm.ir.assert_structural_equal(func, rt_func) assert out_str.count("with tir.block([16, 16]) as [vi, vj]") == 4 assert out_str.find("vi_") == -1 assert out_str.find("vj_") == -1 assert out_str.count("for i0, i1 in tir.grid(16, 16)") == 2 assert out_str.find("i0_") == -1 assert out_str.find("i1_") == -1 assert out_str.count("for i, j in tir.grid(16, 16)") == 2 assert out_str.find("i_") == -1 assert out_str.find("i_") == -1 @tvm.script.tir def while_loop(a: ty.handle, b: ty.handle) -> None: A = tir.match_buffer(a, (16,), "float32") B = tir.match_buffer(b, (16,), "float32") i = tir.alloc_buffer((), "int32", scope="local") with tir.block([16]) as [vi]: B[vi] = 0 while i[()] < 10: for j in range(16): B[j] += A[j] def test_while_loop(): rt_func = tvm.script.from_source(tvm.script.asscript(while_loop, True)) tvm.ir.assert_structural_equal(while_loop, rt_func) if __name__ == "__main__": sys.exit(pytest.main([__file__] + sys.argv[1:]))
[ "noreply@github.com" ]
elphinkuo.noreply@github.com
854fa51141498bed3aae4d718f526074f037de86
a3bb788789181c7fa7b7dec1f997425334437087
/tests/test_logo_into_svg.py
469645e5aa632fb590b7cc0f997b540c508acd8b
[ "MIT" ]
permissive
tekiela/loev3go
b7153ff01bf02a2a03ef489a8bbae1b1a24d4301
497f6bd0f9c13d19b3b638e356a143699019513b
refs/heads/master
2020-08-06T16:53:24.320837
2019-04-01T07:51:35
2019-04-01T07:51:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
484
py
#!/usr/bin/python3 # Run two hardcoded LOGO programs using and save the canvas afterwards. import src.LogoIntoSVG lis=src.LogoIntoSVG.LogoIntoSVG() lis.run_logo_emit_svg( """to square repeat 4 [ fd 10 rt 90 ] end square """, "test-square.svg") lis.run_logo_emit_svg( """to gen :lo :hi :step make "x [] while [ :lo < (:hi+1) ] [ make "x lput :lo :x make "lo :lo + :step ] output :x end for "l (gen 10 30 5) [repeat 5 [repeat 8 [fd :l rt 45] rt 72]] """, "test-shape.svg")
[ "bojar@ufal.mff.cuni.cz" ]
bojar@ufal.mff.cuni.cz
aef77fdb620292e37981149a8dd9a65be37cb592
9f56b67705bfcafef541773a4334815abbc53eb2
/methOverload.py
7af87df161663dc178ac293a2508f311c551c5f9
[]
no_license
sukanyabag/Object-Oriented-Programming--Python
5527543cc89b2d8bf60173d5042bc52f9d5a98b2
e40cbc9ec099ca8194a79e6f5c3b784c982ba931
refs/heads/main
2023-07-18T20:10:42.981001
2021-09-12T14:27:01
2021-09-12T14:27:01
370,100,780
2
2
null
null
null
null
UTF-8
Python
false
false
1,214
py
class OverloadDemo: def multiply(self,a,b): print(a*b) def multiply(self,a,b,c): print(a*b*c) m=OverloadDemo() m.multiply(5,10) ''' op- --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-6-623185909d04> in <module> 5 print(a*b*c) 6 m=OverloadDemo() ----> 7 m.multiply(5,10) TypeError: multiply() missing 1 required positional argument: 'c' ''' ''' However, Python does not allow method overloading based on type, number or sequence of method parameters. In Python, method overloading is a technique to define a method in such a way that there are more than one way to call it. This is different from other programming languages. ''' class methodOverloading : def greeting(self, name=None): if name is not None: print(“Welcome “ + name) else: print(“Welcome”) # Create an object referencing by variable ob ob = methodOverloading() # call the method greeting without parameter ob.greeting() # call the method with parameter ob.greeting(‘Donald Trump’) ''' Output: Welcome Welcome Donald Trump '''
[ "noreply@github.com" ]
sukanyabag.noreply@github.com
1affd7776d599b99f55b334bed89947f4fe0514d
320dab5b2295ed25f02f041b0901cd7451f45662
/cosmoslib/utils/mpi.py
3fd80b093b2759ca6c73c6ab76f9c94e148e1b39
[ "MIT" ]
permissive
guanyilun/cosmoslib
fdf920ef580f58ada85ba2b3283c02a4924c48d5
fc035ac15b93ec6aaac08221be3ff32488476e1e
refs/heads/master
2023-03-03T14:17:34.735739
2023-02-28T20:29:41
2023-02-28T20:29:41
159,537,157
1
1
MIT
2021-12-14T13:30:49
2018-11-28T17:07:38
Python
UTF-8
Python
false
false
599
py
"""mpi wrapper imported from pixell to reduce dependency on pixell for simple things. Notes from original script: Utilities for making mpi use safer and easier. """ from __future__ import print_function import sys, os, traceback class FakeCommunicator: def __init__(self): self.size = 1 self.rank = 0 FAKE_WORLD = FakeCommunicator() COMM_WORLD = FAKE_WORLD COMM_SELF = FAKE_WORLD disabled = True try: if not("DISABLE_MPI" in os.environ and os.environ["DISABLE_MPI"].lower() in ["true","1"]): from mpi4py.MPI import * disabled = False except: pass
[ "zoom.aaron@gmail.com" ]
zoom.aaron@gmail.com
84a710c4d394127df391e8fe17826da9b9740378
22af2e48c0720878568e356c766dfb5cabc67a10
/mlrecobooks/plotter.py
6cd6125eaf958c95546972d9d18ae74ee06bb60a
[]
no_license
samyBadjoudj/ml-reco-books-python
fd3d407b91772bce1e367a8644dcebdb17e7b64f
e3c3cbb3e134a96cb50d0b1762bd0073554f1a84
refs/heads/master
2022-09-15T02:31:31.555063
2020-06-03T13:25:02
2020-06-03T13:25:02
263,127,199
0
1
null
2020-06-03T13:25:03
2020-05-11T18:40:42
Python
UTF-8
Python
false
false
1,655
py
import matplotlib.pyplot as plt import numpy as np import mlrecobooks.data_extractor as ml def plot_distances(data): distances_ = data["distances"] # sorted(data["distances"], key=lambda d: d["value"]) plt.yticks(np.arange(0, distances_[-1]["value"] + 2, step=0.5)) plt.bar(ml.get_book_distance_titles(distances_), ml.get_book_distance_values(distances_), align="center") plt.show() def plot_all_books_scatter(data): print(data) data_to_plot = ml.get_high_variance_categories_3d(data) x_label = data_to_plot["x"]["name"] y_label = data_to_plot["y"]["name"] z_label = data_to_plot["z"]["name"] centroid_to_plot = ml.get_centroid_feature_coordinates(data, x_label, y_label, z_label) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_xlabel(x_label) ax.set_ylabel(y_label) ax.set_zlabel(z_label) for i, (x, y, z) in enumerate( zip(data_to_plot["x"]["values"], data_to_plot["y"]["values"], data_to_plot["z"]["values"])): ax.text(x, y, z, data_to_plot["books"][i]) scat_books = ax.scatter(data_to_plot["x"]["values"], data_to_plot["y"]["values"], data_to_plot["z"]["values"], c='r', marker='o') ax.text(centroid_to_plot["x"], centroid_to_plot["y"], centroid_to_plot["z"], "CENTROID") centroid = ax.scatter(centroid_to_plot["x"], centroid_to_plot["y"], centroid_to_plot["z"], color="blue", marker="^") ax.legend((scat_books, centroid), ("books", "centroid")) plt.gcf().text(0.02, 0.5, "Centroid composition:\n-" + "\n-".join(data["favoritesBooks"]), fontsize=8) plt.show()
[ "samy.badjoudj@gmail.com" ]
samy.badjoudj@gmail.com
fab2f1755281a273c3b1b0d6f33ff645418908b6
38fa210fb605e7cfdc039aa2168e1224b6261884
/eve_prVoting/wsgi.py
4fd01c341a1458764a5d3a505c3ffb6278c47765
[]
no_license
NCHUSG/eve_prVoting
c4ac639a1c36bc41465fc23069d7a1d1d0a7616e
d1cca39816804898021ff2cf397f67368bafa06f
refs/heads/master
2021-01-10T20:01:13.001055
2015-04-13T10:51:04
2015-04-13T10:51:04
33,862,992
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for eve_prVoting project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "eve_prVoting.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
[ "qas612820704@gmail.com" ]
qas612820704@gmail.com
1dcec55534fb5df9bee784f3b8d9245a58335b79
f1d3dbcb8a1f979ddbe02dd24967e3c32a83f997
/33.py
45e0e9d08ee0f99b147123407eeafa3e5ec8ae8b
[]
no_license
shenbufan/runoob-Python-100
212d8007f45317f4f9841abfa0fd9eec2ee0c31a
bd83a642052c64dc9eb95ca16e9a6c6df295619a
refs/heads/master
2020-03-14T05:40:34.779879
2018-04-29T05:50:34
2018-04-29T05:50:34
131,469,253
1
0
null
null
null
null
UTF-8
Python
false
false
34
py
s='efbtbteb' x=','.join(s) print x
[ "chenleiy@foxmail.com" ]
chenleiy@foxmail.com
b79e17aca4a083d90c9be00c429eebd71d5bfdfd
2031771d8c226806a0b35c3579af990dd0747e64
/pyobjc-framework-Cocoa/Examples/Foundation/Scripts/rendezvous.py
b9650105a6e032f47a25075b050bc659b61b2e6e
[ "MIT" ]
permissive
GreatFruitOmsk/pyobjc-mirror
a146b5363a5e39181f09761087fd854127c07c86
4f4cf0e4416ea67240633077e5665f5ed9724140
refs/heads/master
2018-12-22T12:38:52.382389
2018-11-12T09:54:18
2018-11-12T09:54:18
109,211,701
2
0
null
null
null
null
UTF-8
Python
false
false
2,399
py
#!/usr/bin/env python """ This script using NSNetServiceBrowser to look for local HTTP servers. """ from __future__ import print_function import objc from Foundation import NSObject, NSRunLoop, NSNetServiceBrowser, NSDate objc.setVerbose(1) class PrintingResolverDelegate(NSObject): def netServiceDidResolveAddress_(self, service): addresses = service.addresses() if len(addresses) == 0: return print("%s.%s" % (service.name(), service.domain())) for address in service.addresses(): print(" %s"%(address,)) print("") service.setDelegate_(None) def netService_didNotResolve_(self, service, didNotResolve): print("didNotResolve",didNotResolve) service.setDelegate_(None) class PrintingBrowserDelegate(NSObject): def startLookup(self): self.delegates = [] for aNetService in self.services: prd = PrintingResolverDelegate.new() aNetService.setDelegate_(prd) aNetService.resolve() self.delegates.append(prd) def netServiceBrowserWillSearch_(self, browser): print("Browsing for advertised services...") self.services = [] def netServiceBrowserDidStopSearch_(self, browser): print("Browse complete") self.startLookup() def netServiceBrowser_didNotSearch_(self, browser, errorDict): print("Could not search.") def netServiceBrowser_didFindService_moreComing_(self, browser, aNetService, moreComing): print("Found a service: %s %s"%(aNetService.name(), aNetService.domain())) self.services.append(aNetService) if not moreComing: browser.stop() def netServiceBrowser_didRemoveService_moreComing_(self, browser, aNetService, moreComing): print("Service removed: %s"%(aNetService.name(),)) if not moreComing: browser.stop() def findDomains(serviceName, seconds=5.0): runloop = NSRunLoop.currentRunLoop() browser = NSNetServiceBrowser.new() pbd = PrintingBrowserDelegate.new() browser.setDelegate_(pbd) browser.searchForServicesOfType_inDomain_(serviceName, "") untilWhen = NSDate.dateWithTimeIntervalSinceNow_(seconds) runloop.runUntilDate_(untilWhen) if __name__ == '__main__': # Use '_afpovertcp' instead of '_http' to look for fileservers. findDomains("_afpovertcp._tcp")
[ "ronaldoussoren@mac.com" ]
ronaldoussoren@mac.com
ddb87afed26972677d497c7d11989d7ff15aa9a2
4b3a4c65e7a4d7cd4bb7f99e1391d06e290cbc67
/main.py
ddc112797b49deca1c522450aa94e9847cf5029a
[]
no_license
muliarska/Vigenere_Cipher
313c2967f5f180a6e4ace181daf964aa27bcc24d
5650fdb09b37f0bc24ed46ddfc98316db9e17d03
refs/heads/master
2022-09-12T16:23:05.153252
2020-06-01T11:31:50
2020-06-01T11:31:50
268,071,720
0
0
null
null
null
null
UTF-8
Python
false
false
839
py
"""Representing an APP""" from flask import Flask, render_template, request from vigenere_cipher import VigenereCipher APP = Flask(__name__) @APP.route('/', methods=['GET']) def main(): """Returns home page""" return render_template('index.html') @APP.route('/result', methods=['POST', 'GET']) def result_page(): """Returns result page with encoded or decoded message""" keyword = request.form['keyword'] choice = request.form['choice'] message = request.form['message'] cipher = VigenereCipher(keyword) if choice == 'encode': result = cipher.encode(message) else: result = cipher.decode(message) if result is None: return render_template('exception.html') return render_template('result.html', result=result) if __name__ == '__main__': APP.run(port=8000)
[ "yana.muliarska@gmail.com" ]
yana.muliarska@gmail.com
1e5d170703bb9e35e4cab163bb473ec204f9ff87
ccc1026b5156949d8a41a73ebe4ea648057a782c
/Answer_06.py
cd3804caf614d42b1ada3edadfe71b821165247a
[]
no_license
joeljo2104/hacktoberfest_21_CP
c6e9da0200a969bbf1a3d2f5a74b34bb5b85a809
396e9fdc6fe565add161468729f9ea14a3025053
refs/heads/main
2023-09-01T12:20:19.730924
2021-10-21T09:19:14
2021-10-21T09:19:14
419,602,262
0
0
null
null
null
null
UTF-8
Python
false
false
331
py
for t in range(int(input())): n = int(input()) L = [int(s) for s in input().split()] R = [int(s) for s in input().split()] Index = [] for i in range(n): Index.append( (L[i] * R[i] , R[i], i) ) Result = sorted(Index, key = lambda e: (e[0], e[1], n-e[2]), reverse = True) print(Result[0][-1]+1)
[ "42415617+joeljo2104@users.noreply.github.com" ]
42415617+joeljo2104@users.noreply.github.com
48db549a284d5650092a3311dfe71b784812afe2
52b5773617a1b972a905de4d692540d26ff74926
/.history/foodDistribution_20200629175740.py
3fc43f7ad7607fb8e59d6e03cc628ae97433ce9f
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
975
py
def food(arr): # removes the item at index 0 sandwiches = arr.pop(0) while sandwiches > 0: highest = -1 maxred = -1 for i in range(len(arr)): if arr[i] > 0: currDiff = 0 if i > 0: currDiff = currDiff + abs(arr[i]-arr[i-1]) if i < len(arr)-1: currDiff = currDiff + abs(arr[i] - arr[i+1]) newDiff = 0 if i > 0: newDiff += abs(arr[i]-1 - arr[i-1]) if i < len(arr)-1: newDiff = abs(arr[i]-1 - arr[i+1]) red = currDiff - newDiff if red > maxred : highest = i maxred = red if highest == -1: return 0 else: arr[highest] = arr[highest] - 1 sand -=1 diff = 0 for i in range(len(arr)) print(arr) food([5, 3, 1, 2, 1])
[ "mary.jereh@gmail.com" ]
mary.jereh@gmail.com
7003566794da2f9b7dced58889d7079aee2c4e80
506a5dbf6818ba64efa3b411a7297d8cfee3695c
/Capstone2/parallax.py
d84934cd1c7902016549663314f11ef637b0850b
[]
no_license
Its-a-me-Ashwin/2Dto3D
5af0c57aebb89cf7c1aacddacfba94706728422b
664a456b14b5e8528305c0145ff0e8bdfaf8ad46
refs/heads/master
2023-03-21T16:10:33.524352
2021-03-09T11:56:56
2021-03-09T11:56:56
289,682,081
0
1
null
null
null
null
UTF-8
Python
false
false
3,544
py
from detect import getCameraPosition,getDistanceToMarker import cv2 import numpy as np from math import sqrt,sin,cos,tan convert = 3.1415/180.0 # measured in (cm) # angles in radians camDict = { "f" : 20, "view":(57,43), "res" : (640,480) } def rotatePoint(x,y,z): rotations = np.array([ [cos(x)*cos(y),cos(x)*sin(y)*sin(z)-sin(x)*cos(z),cos(x)*sin(y)*cos(z)+sin(x)*sin(z)], [sin(x)*cos(y),sin(x)*sin(y)*sin(z)+cos(x)*cos(z),sin(x)*sin(y)*cos(z)-cos(x)*sin(z)], [-sin(y),cos(y)*sin(z),cos(y)*cos(z)] ]) return rotations def rotate(x,y,z,points): out = list() rotationalMatrix = rotatePoint(x,y,z) for i in range(points.shape[0]): out.append(np.matmul(rotationalMatrix,points[i])) out = np.array(out) return out def translatePoint(x,y,z): ''' Makes the translation matrix ''' translationMatrix = np.array([ [1,0,0,0], [0,1,0,0], [0,0,1,0], [x,y,z,1], ]) return translationMatrix def translate(x,y,z,points): ''' translate a given set of points about x,y,z axis ''' translationMatrix = translatePoint(x,y,z) out = list(map(lambda point:np.matmul(np.append(point,[1.0]),translationMatrix)[:-1],points)) out = np.array(out) return out def makeRTMatrices(data1,data2): data = np.array(data2)-np.array(data1) T = np.array([data[0],data[1],data[2]]).reshape((1,3))[0] T = np.array( [ [0.0,-T[2],T[1]], [T[2],0.0,-T[0]], [-T[1],T[0],0.0] ]) R = rotatePoint(data[3],data[4],data[5]) return T,R def makeEsentialMatrix(data1,data2): data = np.array(data2)-np.array(data1) T = np.array([data[0],data[1],data[2]]).reshape((1,3))[0] T = np.array( [ [0.0,-T[2],T[1]], [T[2],0.0,-T[0]], [-T[1],T[0],0.0] ]) R = rotatePoint(data[3],data[4],data[5]) if not (np.all(abs(np.matmul(R,np.transpose(R))-np.identity(3,dtype=R.dtype))<1e-6)): print("Error") return return np.matmul(R,T) def camera2canvas(camStuff): xAngleRange = np.arange(-camStuff["view"][0]/2,camStuff["view"][0]/2, camStuff["view"][0]/camStuff["res"][0]) yAngleRange = np.arange(-camStuff["view"][1]/2,camStuff["view"][1]/2, camStuff["view"][1]/camStuff["res"][1]) xAngleRange = xAngleRange * (3.1415/180) yAngleRange = yAngleRange * (3.1415/180) coordWRTC = np.zeros((camStuff["res"][0]*camStuff["res"][1],3)) for i in range(camStuff["res"][0]): for j in range(camStuff["res"][1]): coordWRTC[i*camStuff["res"][1]+j] = np.array([ camStuff["f"]*tan(xAngleRange[i]), camStuff["f"]*tan(xAngleRange[j]), camStuff["f"] ]) return coordWRTC p1 = '1.jpg' p2 = '2.jpg' img1 = cv2.imread(p1,0) img2 = cv2.imread(p2,0) # get canvas coordinates coordWRTC = camera2canvas(camDict) # get camera position ret1 = getCameraPosition(img1,6,13.5) ret2 = getCameraPosition(img2,6,13.5) # get Essential Matrix #E = makeEsentialMatrix(ret1,ret2) # get projected coordinates coordWRTC1 = rotate(ret1[3],ret1[4],ret1[5],coordWRTC) coordWRTC1 = translate(ret1[0],ret1[1],ret1[2],coordWRTC) coordWRTC2 = rotate(ret2[3],ret2[4],ret2[5],coordWRTC) coordWRTC2 = translate(ret2[0],ret2[1],ret2[2],coordWRTC) #for i in range(img1.shape[0]): # for j in range(img1.shape[1]):
[ "noreply@github.com" ]
Its-a-me-Ashwin.noreply@github.com
cd4159d17f93ad7f0881371ae0c2741aa2ba0c65
d26c51a13125e038194bd296cdefbdc6189e718e
/pip_services_runtime/clients/__init__.py
e50653cced8b6b22de66112b5d09d1a28a824c02
[ "MIT" ]
permissive
pip-services-archive/pip-services-runtime-python
0ec2f61ca800d67ed2221a9b18362346c4ae97c5
70eca1ffc44bfdc45c9c65b0ee347fa578368849
refs/heads/master
2020-05-20T18:32:44.087193
2017-03-10T01:22:18
2017-03-10T01:22:18
84,504,584
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
# -*- coding: utf-8 -*- """ pip_services_runtime.clients.__init__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dependency clients module initialization :copyright: Digital Living Software Corp. 2015-2016, see AUTHORS for more details. :license: MIT, see LICENSE for more details. """ __all__ = ['AbstractClient', 'DirectClient', 'RestClient'] from .AbstractClient import AbstractClient from .DirectClient import DirectClient from .RestClient import RestClient
[ "seroukhov@gmail.com" ]
seroukhov@gmail.com
6e2bdc1aaa30cf640a7dcc0ed90c80e6d4711d72
851bf93c8a3970f16f335a33cb713132024904ef
/Day00-14/code/Day10/ex4.py
06f1f654bb152f32adf73322d5fab1163c9f8d14
[]
no_license
zujl123/Python-100Days
dbfb3c9bca4cee08147bb92b0efe2b050c04d2e9
3d77b6c7fb8e730ecd82e3327978309474a3fa33
refs/heads/master
2023-05-30T13:41:24.898106
2020-09-26T01:15:11
2020-09-26T01:15:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
154
py
""" 引发异常和异常栈 Date: 2018-03-13 """ def f1(): raise AssertionError('发生异常') def f2(): f1() def f3(): f2() f3()
[ "skygit@126.com" ]
skygit@126.com
3280d35e4105c391611078f28c6b528dd7482b2a
f7110aaab742fc92179302c5874691078ed05158
/the_wall/the_wall_app/migrations/0001_initial.py
d1132291b5efbbd216af46aa6b7d31072de7f3b7
[]
no_license
Moha327/python_extra
0f9252a46a652ffe83d97cd0d6906a1835c2abbf
a3e1b31831578484c651d76bfd01173fe9d6eb10
refs/heads/master
2023-05-23T14:03:21.962212
2021-06-16T13:50:06
2021-06-16T13:50:06
377,511,352
0
0
null
null
null
null
UTF-8
Python
false
false
2,102
py
# Generated by Django 2.2.4 on 2021-05-28 16:19 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=255)), ('last_name', models.CharField(max_length=255)), ('email', models.CharField(max_length=255)), ('password', models.CharField(max_length=255)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='Message', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('messages', models.TextField()), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='message', to='the_wall_app.User')), ], ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comment', models.TextField()), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('message', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comment', to='the_wall_app.Message')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comment', to='the_wall_app.User')), ], ), ]
[ "m7amad9595@outlook.com" ]
m7amad9595@outlook.com
38fbdd5bfe0da831b87a2a757f0547cacfffc892
954973c1ddaff15347e27ce45a72559bbef1db1f
/api_wrapper/libpixyusb_swig/get_blocks.py
bfa49d18b1becd7498288b167ef72fc82d28a4d9
[]
no_license
Zaki-/api_wrapper
aa4ae37c26c67efebb9d8d64a17b9392c89a03e0
c9d67606839fc6b2c298d46f1a605eb40287fda7
refs/heads/master
2021-01-10T14:46:10.805674
2015-12-10T06:35:34
2015-12-10T06:35:34
47,715,131
0
0
null
null
null
null
UTF-8
Python
false
false
948
py
from pixy import * from ctypes import * import ctypes import api import os import time import sys import struct # Pixy Python SWIG get blocks example # print ("Pixy Python SWIG Example -- Get Blocks") # Initialize Pixy Interpreter thread # pixy_init() class Blocks (Structure): _fields_ = [ ("type", c_uint), ("signature", c_uint), ("x", c_uint), ("y", c_uint), ("width", c_uint), ("height", c_uint), ("angle", c_uint) ] blocks = BlockArray(100) frame = 0 # Wait for blocks # while 1: count = pixy_get_blocks(100, blocks) if count > 0: # Blocks found # print 'frame %3d:' % (frame) frame = frame + 1 for index in range (0, count): print '[BLOCK_TYPE=%d SIG=%d X=%3d Y=%3d WIDTH=%3d HEIGHT=%3d]' % (blocks[index].type, blocks[index].signature, blocks[index].x, blocks[index].y, blocks[index].width, blocks[index].height)
[ "pi@MIN.(none)" ]
pi@MIN.(none)
a2ae5772aab2ba8ec97cdaaf08f66b953a566ba6
90e986d37d83ceabddd8d6300f09a0acea3772f8
/prepare_ligand4.py
91dd62f26fa319d7260ee7fd0fce2baa8b2032cd
[]
no_license
AmauryOvalleMaqueo/Project_week3
a8b2daf2a584d0b160bfa8671fda90d495aaf828
af9fb41af4d3ef09c87137bb618bb7a39de52d5d
refs/heads/master
2021-05-05T01:02:28.071956
2018-01-30T11:03:19
2018-01-30T11:03:19
119,523,084
0
0
null
2018-01-30T10:52:18
2018-01-30T10:52:18
null
UTF-8
Python
false
false
9,228
py
#!/usr/bin/env /home/test/MGLTools-1.5.6/bin/pythonsh # # # # $Header: /opt/cvs/python/packages/share1.5/AutoDockTools/Utilities24/prepare_ligand4.py,v 1.10 2010/07/31 00:14:13 rhuey Exp $ # import os from MolKit import Read from AutoDockTools.MoleculePreparation import AD4LigandPreparation if __name__ == '__main__': import sys import getopt def usage(): "Print helpful, accurate usage statement to stdout." print "Usage: prepare_ligand4.py -l filename" print print " Description of command..." print " -l ligand_filename (.pdb or .mol2 or .pdbq format)" print " Optional parameters:" print " [-v] verbose output" print " [-o pdbqt_filename] (default output filename is ligand_filename_stem + .pdbqt)" print " [-d] dictionary to write types list and number of active torsions " print " [-A] type(s) of repairs to make:\n\t\t bonds_hydrogens, bonds, hydrogens (default is to do no repairs)" print " [-C] do not add charges (default is to add gasteiger charges)" print " [-p] preserve input charges on atom type, eg -p Zn" print " (default is not to preserve charges on any specific atom type)" print " [-U] cleanup type:\n\t\t nphs_lps, nphs, lps, '' (default is 'nphs_lps') " print " [-B] type(s) of bonds to allow to rotate " print " (default sets 'backbone' rotatable and 'amide' + 'guanidinium' non-rotatable)" print " [-R] index for root" print " [-F] check for and use largest non-bonded fragment (default is not to do this)" print " [-M] interactive (default is automatic output)" print " [-I] string of bonds to inactivate composed of " print " of zero-based atom indices eg 5_13_2_10 " print " will inactivate atoms[5]-atoms[13] bond " print " and atoms[2]-atoms[10] bond " print " (default is not to inactivate any specific bonds)" print " [-Z] inactivate all active torsions " print " (default is leave all rotatable active except amide and guanidinium)" print " [-g] attach all nonbonded fragments " print " [-s] attach all nonbonded singletons: " print " NB: sets attach all nonbonded fragments too" print " (default is not to do this)" # process command arguments try: opt_list, args = getopt.getopt(sys.argv[1:], 'l:vo:d:A:Cp:U:B:R:MFI:Zgsh') except getopt.GetoptError, msg: print 'prepare_ligand4.py: %s' %msg usage() sys.exit(2) # initialize required parameters #-l: ligand ligand_filename = None # optional parameters verbose = None add_bonds = False #-A: repairs to make: add bonds and/or hydrogens repairs = "" #-C default: add gasteiger charges charges_to_add = 'gasteiger' #-p preserve charges on specific atom types preserve_charge_types='' #-U: cleanup by merging nphs_lps, nphs, lps cleanup = "nphs_lps" #-B named rotatable bond type(s) to allow to rotate #allowed_bonds = "" allowed_bonds = "backbone" #-r root root = 'auto' #-o outputfilename outputfilename = None #-F check_for_fragments check_for_fragments = False #-I bonds_to_inactivate bonds_to_inactivate = "" #-Z inactivate_all_torsions inactivate_all_torsions = False #-g attach_nonbonded_fragments attach_nonbonded_fragments = False #-s attach_nonbonded_singletons attach_singletons = False #-m mode mode = 'automatic' #-d dictionary dict = None #'l:vo:d:A:CKU:B:R:MFI:Zgs' for o, a in opt_list: #print "o=", o, " a=", a if o in ('-l', '--l'): ligand_filename = a if verbose: print 'set ligand_filename to ', a if o in ('-v', '--v'): verbose = True if verbose: print 'set verbose to ', True if o in ('-o', '--o'): outputfilename = a if verbose: print 'set outputfilename to ', a if o in ('-d', '--d'): dict = a if verbose: print 'set dict to ', a if o in ('-A', '--A'): repairs = a if verbose: print 'set repairs to ', a if o in ('-C', '--C'): charges_to_add = None if verbose: print 'do not add charges' if o in ('-p', '--p'): preserve_charge_types+=a preserve_charge_types+=',' if verbose: print 'preserve initial charges on ', preserve_charge_types if o in ('-U', '--U'): cleanup = a if verbose: print 'set cleanup to merge ', a if o in ('-B', '--B'): allowed_bonds = a if verbose: print 'allow ', a, 'bonds set to rotate' if o in ('-R', '--R'): root = a if verbose: print 'set root to ', root if o in ('-F', '--F'): check_for_fragments = True if verbose: print 'set check_for_fragments to True' if o in ('-M', '--M'): mode = a if verbose: print 'set mode to ', a if o in ('-I', '--I'): bonds_to_inactivate = a if verbose: print 'set bonds_to_inactivate to ', a if o in ('-Z', '--Z'): inactivate_all_torsions = True if verbose: print 'set inactivate_all_torsions to ', inactivate_all_torsions if o in ('-g', '--g'): attach_nonbonded_fragments = True if verbose: print 'set attach_nonbonded_fragments to ', attach_nonbonded_fragments if o in ('-s', '--s'): attach_singletons = True if verbose: print 'set attach_singletons to ', attach_singletons if o in ('-h', '--'): usage() sys.exit() if not ligand_filename: print 'prepare_ligand4: ligand filename must be specified.' usage() sys.exit() if attach_singletons: attach_nonbonded_fragments = True if verbose: print "using attach_singletons so attach_nonbonded_fragments also" mols = Read(ligand_filename) if verbose: print 'read ', ligand_filename mol = mols[0] if len(mols)>1: if verbose: print "more than one molecule in file" #use the one molecule with the most atoms ctr = 1 for m in mols[1:]: ctr += 1 if len(m.allAtoms)>len(mol.allAtoms): mol = m if verbose: print "mol set to ", ctr, "th molecule with", len(mol.allAtoms), "atoms" coord_dict = {} for a in mol.allAtoms: coord_dict[a] = a.coords mol.buildBondsByDistance() if charges_to_add is not None: preserved = {} preserved_types = preserve_charge_types.split(',') for t in preserved_types: if not len(t): continue ats = mol.allAtoms.get(lambda x: x.autodock_element==t) for a in ats: if a.chargeSet is not None: preserved[a] = [a.chargeSet, a.charge] if verbose: print "setting up LPO with mode=", mode, print "and outputfilename= ", outputfilename print "and check_for_fragments=", check_for_fragments print "and bonds_to_inactivate=", bonds_to_inactivate LPO = AD4LigandPreparation(mol, mode, repairs, charges_to_add, cleanup, allowed_bonds, root, outputfilename=outputfilename, dict=dict, check_for_fragments=check_for_fragments, bonds_to_inactivate=bonds_to_inactivate, inactivate_all_torsions=inactivate_all_torsions, attach_nonbonded_fragments=attach_nonbonded_fragments, attach_singletons=attach_singletons) #do something about atoms with too many bonds (?) #FIX THIS: could be peptide ligand (???) # ??use isPeptide to decide chargeSet?? if charges_to_add is not None: #restore any previous charges for atom, chargeList in preserved.items(): atom._charges[chargeList[0]] = chargeList[1] atom.chargeSet = chargeList[0] if verbose: print "returning ", mol.returnCode bad_list = [] for a in mol.allAtoms: if a in coord_dict.keys() and a.coords!=coord_dict[a]: bad_list.append(a) if len(bad_list): print len(bad_list), ' atom coordinates changed!' for a in bad_list: print a.name, ":", coord_dict[a], ' -> ', a.coords else: if verbose: print "No change in atomic coordinates" if mol.returnCode!=0: sys.stderr.write(mol.returnMsg+"\n") sys.exit(mol.returnCode) # To execute this command type: # prepare_ligand4.py -l pdb_file -v
[ "a.ovalle.maqueo@student.rug.nl" ]
a.ovalle.maqueo@student.rug.nl
7fd6b79f34e457b9696acf97e858fbd5b3c61b9a
6c5963f7943faa1662f89a48da16d132664bf704
/test1.py
27039db9885167ec5f14341f3c669eeea2875e0f
[]
no_license
ArmGono/exepermental
292f0ff622f6f3c67a3960ac733260289967813e
51a4956ac7e5c8e0d01db21ff657dc05a939e248
refs/heads/master
2021-05-06T00:23:58.071778
2018-01-12T14:57:21
2018-01-12T14:57:21
117,253,464
0
0
null
null
null
null
UTF-8
Python
false
false
1,307
py
from Tkinter import * def donothing(): filewin = Toplevel(root) button = Button(filewin, text="Do nothing button") button.pack() root = Tk() menubar = Menu(root) filemenu = Menu(menubar, tearoff=0) filemenu.add_command(label="New", command=donothing) filemenu.add_command(label="Open", command=donothing) filemenu.add_command(label="Save", command=donothing) filemenu.add_command(label="Save as...", command=donothing) filemenu.add_command(label="Close", command=donothing) filemenu.add_separator() filemenu.add_command(label="Exit", command=root.quit) menubar.add_cascade(label="File", menu=filemenu) editmenu = Menu(menubar, tearoff=0) editmenu.add_command(label="Undo", command=donothing) editmenu.add_separator() editmenu.add_command(label="Cut", command=donothing) editmenu.add_command(label="Copy", command=donothing) editmenu.add_command(label="Paste", command=donothing) editmenu.add_command(label="Delete", command=donothing) editmenu.add_command(label="Select All", command=donothing) menubar.add_cascade(label="Edit", menu=editmenu) helpmenu = Menu(menubar, tearoff=0) helpmenu.add_command(label="Help Index", command=donothing) helpmenu.add_command(label="About...", command=donothing) menubar.add_cascade(label="Help", menu=helpmenu) root.config(menu=menubar) root.mainloop()
[ "admin@armrus.net" ]
admin@armrus.net
407083d7eb61e9434b8c2bba66744abbcb075fc0
bf0b9cf4eeff63cf69c527d6428ed09dbd27a97c
/signaldemo/signal_demo_app/models.py
5a3eb57ab847c2453cc3e7c3cf45a737591f32f7
[]
no_license
sammaurya/django_signal_demo
2d01156b03dbed222c12e81aea92cdd243f2b72d
d91e99d36ef8c0989dbbe692af35542791da9f77
refs/heads/master
2022-10-27T10:00:14.180115
2020-06-01T11:27:24
2020-06-01T11:27:24
268,501,323
0
0
null
null
null
null
UTF-8
Python
false
false
600
py
from django.db import models # Create your models here. class UserProfile(models.Model): first_name = models.CharField(max_length=150) last_name = models.CharField(max_length=150) username = models.CharField(max_length=150, primary_key=True) email = models.EmailField() created_by = models.DateTimeField(auto_now=True) updated_by = models.DateTimeField(auto_now_add=True) def full_name(self): return self.first_name + " " + self.last_name; class Book(models.Model): author = models.ManyToManyField(UserProfile) title = models.CharField(max_length=250)
[ "sammaurya196@gmail.com" ]
sammaurya196@gmail.com
1495e55cfb32899ec170afb7f2b156c62356f21c
09376d059b8898ff637c4e4190619bf0ca8f536a
/python_scripts/standard_star.py
84f2fdee2080818d2fc2c5619a7e311c4bccc44d
[]
no_license
samvaughan/KMOS_reduction
d954917db2242641d8c2f3447e3d09399245f3c8
7c4358c84e326a2829b01364ce3bc3826acaf9b7
refs/heads/master
2021-01-18T15:54:13.349330
2017-08-15T15:22:49
2017-08-15T15:22:49
100,390,833
0
0
null
null
null
null
UTF-8
Python
false
false
3,595
py
""" Take a folder containing observations of a telluric star. Make a .sof file of those observations, as well as the required calibrations. Make the requried output directories. Run the esorex recipe kmos_std_star with that .sof file """ import sys import os import argparse from astropy.io import fits import glob import logging from optparse import OptionParser from KMOS_tools import kmos_functions as KF if __name__=='__main__': parser = argparse.ArgumentParser(description="KMOS Standard Star Reduction Script") parser.add_argument('reduced_file_destination', type=str, help='Location for reduced standard star cubes') parser.add_argument('input_files', type=str, help='Location of standard star files') parser.add_argument('calibration_data_location', type=str, help='Location of (dynamic) calibration files: XCAL, YCAL, LCAL, MASTER_FLAT') parser.add_argument('--static_calib_location', type=str, help='Optional: Location of static calibration files (WAVE_BAND). Otherwise assume /Data/KCLASH/Data/Static_Cals/cal/') args=parser.parse_args() reduced_file_destination=os.path.abspath(args.reduced_file_destination) file_location=os.path.abspath(args.input_files) calibration_data_location=os.path.abspath(args.calibration_data_location) static_calib_location=args.static_calib_location if static_calib_location is not None: kmos_static_calib_directory=os.path.abspath(static_calib_location) else: kmos_static_calib_directory='/Data/KCLASH/Data/Static_Cals/cal' #Optional arguments. Code left over from original script and isn't used any more usage = "usage: %prog [options] data_dir" parser = OptionParser(usage=usage, description="KMOS Calibration Data Generation Script") parser.add_option("-p", "--parallel", action="store_true", dest="parallel", default=False, help="Parallel execution of esorex") parser.add_option("-d", "--description", action="store_true", dest="description", default=False, help="Detailed Description") parser.add_option("-b", "--band", default="All", help="Band that needs to be reduced (H, K, HK, YJ, IZ) [default: %default]") (options, args) = parser.parse_args() logging.info("Parallel Mode: {0}".format(options.parallel)) logging.info("Description required: {0}".format(options.description)) logging.info("Desired Band: {0}".format(options.band)) # Loop on all files in the input directory star_list = [] for file in glob.glob(file_location+"/KMOS*star*.fits"): # Read the Primary header fname=os.path.abspath(file) hdu = fits.getheader(fname, 0) tpl_id = hdu['HIERARCH ESO TPL ID'] # Only keep the proper TPL.ID if tpl_id in ["KMOS_spec_cal_stdstar"]: star_list.append({ 'name': fname, 'tpl_id': tpl_id, 'tpl_start': hdu['HIERARCH ESO TPL START'], 'tpl_nexp': hdu['HIERARCH ESO TPL NEXP'], 'tpl_expno': hdu['HIERARCH ESO TPL EXPNO'], 'dpr_type': hdu['HIERARCH ESO DPR TYPE'], 'obs_start': hdu['HIERARCH ESO OBS START'], 'band': hdu['HIERARCH ESO INS GRAT1 ID']}) #if not os.path.exists("{}/*STAR_SPEC*.fits") KF.multiple_log("Standard Star Reduction") KF.reduce_std_star(reduced_file_destination, calibration_data_location, star_list, 'kmos_std_star', options, reduced_dark_folder=None, reduced_flat_folder=None, kmos_static_calib_directory=kmos_static_calib_directory)
[ "sam.vaughan@physics.ox.ac.uk" ]
sam.vaughan@physics.ox.ac.uk
bb8ce9acbb13856c54c27b49ea8749c8003a528e
0a181da79fbd1354d5cad0e3c6abafff7011006b
/week9/day04.py
3f32dd3dad9f088eaf3133087bbe637f9e081b8a
[]
no_license
vibhor-vibhav-au6/APJKalam
14b08520f3fd9b08cc700d130e4c278ffce90c50
bf747787d5585df4e48b7cc9bf4ca8a353a81aa3
refs/heads/master
2023-06-05T06:07:49.523004
2021-06-22T04:37:24
2021-06-22T04:37:24
365,747,187
7
5
null
null
null
null
UTF-8
Python
false
false
901
py
'''Find whether an array is subset of another array:''' def subsetHelper(arr1,arr2): # arr1 = [1,2,3] # arr2 = [2,2,2,3] for i in arr1: if arr2.count(i) < arr1.count(i): return False return True def subset(arr1, arr2): if len(arr1) >= len(arr2): return subsetHelper(arr2,arr1) else: return subsetHelper(arr1,arr2) a = [11, 1, 13, 21, 3, 7] b = [11, 3, 7, 1, 13, 21] # print (subset(a,b)) '''Sort an array of 0s, 1s and 2s''' def sort012(arr): return [0 for i in range(arr.count(0))]+[1 for i in range(arr.count(1))]+[2 for i in range(arr.count(2))] # print(sort012([0, 1, 2, 0, 1, 2])) '''Sort an array in wave form ''' def waveSort(arr, n): for i in range(0, n, 2): if (i> 0 and arr[i] < arr[i-1]): arr[i],arr[i-1] = arr[i-1],arr[i] if (i < n-1 and arr[i] < arr[i+1]): arr[i],arr[i+1] = arr[i+1],arr[i]
[ "53352793+vibhor-vibhav-au6@users.noreply.github.com" ]
53352793+vibhor-vibhav-au6@users.noreply.github.com
f5baa97cee2609c7e575f7e42302d4e1c8060fe1
c214cf3758518d58aa420ba287888ffecf5cf981
/scripts/twosides/twosides.py
fb05ae121a0dd257c0a7eb7820d369f431f73814
[]
no_license
Fimwu7/gnn-ddi-ibm-umass
df2542b14a96288e1dc237ea6bb8f4fc51cf1a3d
d325e10fa4cb47d86ec77ce759170163d76115f3
refs/heads/main
2023-05-23T15:13:13.621106
2021-06-21T00:37:11
2021-06-21T00:37:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,609
py
r""" Replace drug ids in twosides database with corresponding drugbank ids. """ import pandas as pd import numpy as np TWOSIDES = '../../data/twosides/TWOSIDES.csv' TWOSIDES_TO_DB = '../../data/twosides/rxnorm-drugbank-omop-mapping-CLEANED.tsv' NEW_TWOSIDES = '../../data/twosides/TWOSIDES_DB.csv' def main(): with open(TWOSIDES, 'r') as twosides: with open(TWOSIDES_TO_DB, 'r') as twosides_to_db: twosides_lines = twosides.readlines()[1:] two_db_map_lines = twosides_to_db.readlines()[1:] # get only the needed columns from twosides twosides_split = [a.strip().split(',') for a in twosides_lines] twosides_clean = [(a[0], a[2], a[4]) for a in twosides_split] for i in range(5): print(twosides_clean[5]) # make a mapping from rx to db two_db_map_split = [ a.strip().split('\t') for a in two_db_map_lines ] for i in range(5): print(two_db_map_split[i]) two_db_map = dict([(a[0], a[2]) for a in two_db_map_split]) new_twosides = open(NEW_TWOSIDES, 'w+') new_twosides.write('d1,d2,rel\n') for d1, d2, rel in twosides_clean: new_d1, new_d2 = d1, d2 if d1 in two_db_map: new_d1 = two_db_map[d1] if d2 in two_db_map: new_d2 = two_db_map[d2] new_twosides.write(','.join([new_d1, new_d2, rel]) + '\n') new_twosides.close() if __name__ == '__main__': main()
[ "rishabhgupta@umass.edu" ]
rishabhgupta@umass.edu
eca6db22f7240cc2fe93f3c8294c9566e37070a4
33a6519cf8dd7e7a1c54e2ecc7335a31055dd1ca
/src/test_arm/arm/listener.py
a490e14b80f2991832012c4d338e8173b5e5c208
[]
no_license
joehjhuang/team4_arm_ws
c014cee5d16a8cc6057b90474ade391f169bb8f9
0f67d0b0dc3891d85fc5a8fb2321fe2ea064a8ca
refs/heads/master
2021-08-23T15:45:24.026335
2017-12-05T13:42:12
2017-12-05T13:42:12
112,145,278
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
#!/usr/bin/env python import rospy from std_msgs.msg import String def callback(data): rospy.loginfo(rospy.get_caller_id() + "I heard %s", data.data) def listener(): rospy.init_node('listener',anonymous=True) rospy.Subscriber("chatter",String,callback) rospy.spin() if __name__ == '__main__': listener()
[ "joehuang@mit.edu" ]
joehuang@mit.edu
57242d8a647160217b314b3932dcfd3d2e9e382e
1ef8931c3daec617cf06799246e346146d500135
/diypedia/api/views.py
8cacc18306b5a41cdc32283e1130d70b7d792299
[]
no_license
allmy3/DIYpedia-clone-Django
b17ad383be5662685a0a4ed34b0ce03fdef992fb
238e4bdf72bfd9ab342b731d244318bf1232a21f
refs/heads/main
2023-07-13T22:06:00.322249
2021-08-12T14:07:15
2021-08-12T14:07:15
395,338,953
0
1
null
null
null
null
UTF-8
Python
false
false
1,257
py
from rest_framework.response import Response from rest_framework.views import APIView from posts.models import * from users.models import * from .serializers import PostListSerializer, PostDetailSerializer, CategoryCreateSerializer, CategorySerializer class PostListAPIview(APIView): def get(self, request): queryset = Post.objects.all() serializer_for_qs = PostListSerializer( instance=queryset, many=True ) return Response(serializer_for_qs.data) class PostDetailAPIview(APIView): def get(self, request, pk): queryset = Post.objects.get(id=pk) serializer_for_qs = PostDetailSerializer( instance=queryset, ) return Response(serializer_for_qs.data) class CategoryListAPIview(APIView): def get(self, request): queryset = Category.objects.all() serializer_for_qs = CategorySerializer( instance=queryset, many=True ) return Response(serializer_for_qs.data) class CategoryCreateAPIview(APIView): def post(self, request): category = CategoryCreateSerializer(data=request.data) if category.is_valid(): category.save() return Response(status=201)
[ "79646356+allmy3@users.noreply.github.com" ]
79646356+allmy3@users.noreply.github.com
426da1a0244539ea8cc8154d7640df96e5aef3fc
b23a2f17713479e4116f4a32a7e961900e8cc5f6
/getfile.py
3351489704aaabfe2576e20de72ba4e39793a724
[]
no_license
nkoster/gpgchat
065b47aaa3203d95541b60015b2e93be84b323ec
aaf9b68334b731da7be2488c7dfb4249ad869f60
refs/heads/master
2020-03-23T12:31:23.167382
2018-07-24T00:12:12
2018-07-24T00:12:12
141,564,215
3
0
null
null
null
null
UTF-8
Python
false
false
2,509
py
import gi import os gi.require_version('Gtk', '3.0') from gi.repository import Gtk, GObject class GetFile(Gtk.Window): def __init__(self): Gtk.Window.__init__(self, title="Choose a File") origin = os.path.dirname(os.path.realpath(__file__)) vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=6) self.add(vbox) self.progressbar = Gtk.ProgressBar() vbox.pack_start(self.progressbar, True, True, 0) image = Gtk.Image.new_from_file(origin + '/upload.png') vbox.add(image) self.timeout_id = GObject.timeout_add(5, self.on_timeout, None) self.activity_mode = False self.label1 = Gtk.Label('<No file selected>') vbox.add(self.label1) button1 = Gtk.Button("Choose File") button1.connect("clicked", self.on_file_clicked) vbox.add(button1) self.t = 0.0005 self.forward = True def on_timeout(self, user_data): if self.activity_mode: self.progressbar.pulse() else: new_value = self.progressbar.get_fraction() + self.t if new_value > 1: self.t = -0.0005 if self.forward: self.progressbar.set_inverted(True) self.forward = False else: self.progressbar.set_inverted(False) self.forward = True if new_value < 0: self.t = 0.0005 #self.progressbar.pulse() self.progressbar.set_fraction(new_value) return True def on_file_clicked(self, data): dialog = Gtk.FileChooserDialog("Please choose a file", self, Gtk.FileChooserAction.OPEN, (Gtk.STOCK_CANCEL, Gtk.ResponseType.CANCEL, Gtk.STOCK_OPEN, Gtk.ResponseType.OK)) self.add_filters(dialog) response = dialog.run() if response == Gtk.ResponseType.OK: #print("Open clicked") print(dialog.get_filename()) self.label1.set_text(dialog.get_filename()) Gtk.main_quit() elif response == Gtk.ResponseType.CANCEL: print("Cancel clicked") dialog.destroy() def add_filters(self, dialog): filter_any = Gtk.FileFilter() filter_any.set_name("Any files") filter_any.add_pattern("*") dialog.add_filter(filter_any) win = GetFile() win.connect("destroy", Gtk.main_quit) win.show_all() Gtk.main()
[ "n.koster@portavita.eu" ]
n.koster@portavita.eu
4279c2961966ea407c9bb4122a1b4d94c4ef2d81
bb1fa823f9e99814343ac567279ac0c61b733f4c
/random.py
794d48d9668f2fb7ee4b8bf914c9eb9ec8ac2d65
[]
no_license
knockcat/Python
430679ae88c0b6b2eba52c4ae40fc91c6ced7814
1441b2e0c662fa00b30e829a2b219b6f2d7942dc
refs/heads/main
2023-08-17T10:08:51.553700
2021-10-11T14:06:01
2021-10-11T14:06:01
410,287,798
1
0
null
null
null
null
UTF-8
Python
false
false
298
py
''' Create a program using random.random() which generates numbers in a range a to b def generateRandoms(a,b): rerurn N ''' import random print(random.random()) def generateRandoms(a,b): N = random.randrange(a,b) return N print(generateRandoms(10,489)
[ "noreply@github.com" ]
knockcat.noreply@github.com
3f290a195113dd6a7d88952146a0350d3c4005df
fb426133a4d2af01ae95bb16b57ac167ee809e4b
/envs/data_utils.py
a559e07314912457c6a0da963a54714d62c513d1
[ "MIT" ]
permissive
hpi-sam/RL_4_Feedback_Control
83a7cac4c66f96365135a769ae3e9cc3ba4df63c
7e30e660f426f7f62a740e9fd4dafb32e3222690
refs/heads/main
2023-06-07T06:28:55.321712
2021-06-22T09:57:26
2021-06-22T09:57:26
378,118,279
0
0
null
null
null
null
UTF-8
Python
false
false
8,945
py
import sys from scipy import stats from tqdm import tqdm import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams["font.family"] = "Times New Roman" import warnings warnings.filterwarnings("ignore") ROUNDED_ACCURACY = 4 def transform_data(data: pd.DataFrame) -> pd.DataFrame: transformed = data for index, row in transformed.iterrows(): raw = row['raw'] transformed.loc[index, 'sqt'] = np.sqrt(raw) # is the same as np.power(raw, (1 / 2)) transformed.loc[index, 'cube'] = np.power(raw, (1 / 3)) np.seterr(divide='ignore') transformed.loc[index, 'log10'] = np.where(raw > 0, np.log10(raw), 0) transformed.loc[index, 'ln'] = np.where(raw > 0, np.log(raw), 0) transformed.loc[index, 'log2'] = np.where(raw > 0, np.log2(raw), 0) return transformed.round(ROUNDED_ACCURACY) def get_ordering(data: pd.DataFrame) -> pd.DataFrame: ''' The ordering determines the sequence of the shifting of the <component,failure> groups. :param data: the dataset :return: A data frame with the mean values for each <component,failure> group sorted by the mean value, component name. ''' mean_values_of_the_groups = data.groupby([data.columns[0], data.columns[1]])[data.columns[2]].mean().reset_index() return mean_values_of_the_groups.sort_values(by=[data.columns[2], data.columns[0]], ascending=True) def shift_data(data: pd.DataFrame, spread_multiplication_factor: int = 1, min_std=0.001): ordering = get_ordering(data) # set all standard deviation with zero to one stdev_values = data.groupby([data.columns[0], data.columns[1]])[data.columns[2]].std().reset_index().fillna(min_std) stdev_values.loc[stdev_values[stdev_values.columns[2]] == 0, stdev_values.columns[2]] = min_std data_new = data.copy() previous = None tie_count = 0 for _, values in ordering.iterrows(): if previous is not None: # standard deviation std_pre = stdev_values[(stdev_values[data.columns[0]] == previous[0]) & (stdev_values[data.columns[1]] == previous[1])][data.columns[2]].tolist()[0] std_cur = stdev_values[(stdev_values[data.columns[0]] == values[0]) & (stdev_values[data.columns[1]] == values[1])][data.columns[2]].tolist()[0] # mean value mean_pre = previous[2] mean_cur = values[2] # check for ties if mean_cur == mean_pre: tie_count += std_pre # shift the data spread = (std_pre + std_cur) * spread_multiplication_factor + tie_count data_new.loc[(data_new[data.columns[0]] == values[0]) & (data_new[data.columns[1]] == values[1]), data.columns[2]] += spread previous = values return data_new.round(ROUNDED_ACCURACY) def ARol(start, mu, N, theta=0.1, sigma=1): ''' An auto-regressive model combined with an Ornstein–Uhlenbeck procedure. :param start: the starting value of the series -> max of a <componenten, failure> :param mu: value to end with -> mean of a <componenten, failure> :param theta: how fast to converge -> fixed to 0.1 :param N: number of series points to create :return: generated series ''' series = [start] for t in range(N): series.append(series[-1] + theta * (mu - series[-1]) + sigma * np.random.normal(0., 1)) return series def GARCH(mean, N, epsilon=0.1, alpha=0.0001, beta=0.1): ''' :param mean: the starting value of the series and central point of the time series :param N: number of series points to create :param epsilon: a factor :param alpha: how much the previous series point has an inluence on the new value -> high parameter = high variance :param beta: how much the noise has in influence :return: generated series ''' n1 = 50 # data points to drop n2 = N + n1 # sum of two numbers noise = np.random.normal(0., 1, n2) # the variance of the series, a random sample from a distribution series = [mean] for t in range(n2): variance = np.sqrt(epsilon + alpha * series[t-1]**2 + beta * noise[t-1]**2) series.append(noise[t] * variance + mean) return series[n1-1:-1] def create_non_stationary_data(model: str, data: pd.DataFrame, N=100, distinguishable=False): ''' :param model: choose between AR_ol, GARCH :param data: data to work on :param ARCH_theta: :param N: number of series points to create :return: a pandas dataframe with non-stationary series for each <component,failure> combination ''' evaluated_data = data.groupby([data.columns[0], data.columns[1]])[data.columns[2]].agg([max, 'mean']).reset_index() # empty dataframe for saving the new series non stationary series points non_stationary_series = pd.DataFrame(columns=[data.columns[0], data.columns[1], data.columns[2]]) # iterate through all <component_failure> groups for index, group in tqdm(evaluated_data.iterrows(), total=evaluated_data.shape[0]): # create the series points using a model series = [] if model == 'ARol': series = ARol(group['max'], group['mean'], N) elif model == 'GARCH': series = GARCH(group['mean'], N) else: print('Model is not provided.') sys.exit(0) # saving series points in dataframe for s in series: new_row = pd.DataFrame({data.columns[0]: group[0], data.columns[1]: group[1], data.columns[2]: s}, index=[0]) non_stationary_series = non_stationary_series.append(new_row, ignore_index=True) # plot series plt.plot(series) dist = '_dist' if distinguishable else '' plt.xlabel('Time') plt.ylabel('Time Series Value') plt.savefig('data_analysis/04_plots/nonstationary_' + data.columns[2] + '_' + model + '_' + data.columns[2] + dist + '.pdf') plt.show() return non_stationary_series.round(ROUNDED_ACCURACY) def execute_ttest(shifted_data: pd.DataFrame) -> pd.DataFrame: ttest_results = pd.DataFrame(columns=['component_1', 'failure_1', 'component_2', 'failure_2', 'statistic', 'pvalue']) ordering = get_ordering(shifted_data) data_grouped = shifted_data.groupby([shifted_data.columns[0], shifted_data.columns[1]])[shifted_data.columns[2]].apply(list).reset_index() # evaluation starts here previous = None for index, name in ordering.iterrows(): if previous is not None: # get the values for the previous and current <component, failure> group values_pre = data_grouped.loc[(data_grouped[data_grouped.columns[0]] == previous[0]) & (data_grouped[data_grouped.columns[1]] == previous[1])][data_grouped.columns[2]].tolist()[0] values_cur = data_grouped.loc[(data_grouped[data_grouped.columns[0]] == name[0]) & (data_grouped[data_grouped.columns[1]] == name[1])][data_grouped.columns[2]].tolist()[0] # execute ttest result = stats.ttest_ind(values_pre, values_cur) new_row = {'component_1': previous[0], 'failure_1': previous[1], 'component_2': name[0], 'failure_2': name[1], 'statistic': result[0], 'pvalue': result[1] if result[1] != np.NaN else 1} ttest_results = ttest_results.append(new_row, ignore_index=True) previous = name return ttest_results def get_distinguishable_groups(ttest_results: pd.DataFrame, significance_level: float = 0.05) -> [()]: ''' Returns a list of tuples of <component,failure> groups which are considered to be distinguishable. :param ttest_results: A dataframe with the ttest results for a gorup pair. :param significance level: by default 0.05 :return: A list of tuples with distinguishable group pairs. ''' distinguisable_pairs = ttest_results.loc[(ttest_results['pvalue'] < significance_level), ['component_1', 'failure_1', 'component_2', 'failure_2']] first_list = list(zip(distinguisable_pairs.component_1, distinguisable_pairs.failure_1)) second_list = list(zip(distinguisable_pairs.component_2, distinguisable_pairs.failure_2)) return list(set(first_list + second_list)) def filter_dataset(data: pd.DataFrame, component_failure_list: list) -> pd.DataFrame: ''' Returns a dataframe with only these <component,failure> groups which are in the component_failure_list. :param data: dataframe to be filtered :param component_failure_list: a list of tuples, which indicates all <component,failure> groups to be maintained in the dataset. :return: a filtered dataset ''' filtered_data = pd.DataFrame(columns=data.columns) for cf in component_failure_list: selection = data[((data[data.columns[0]] == cf[0]) & (data[data.columns[1]] == cf[1]))] filtered_data = pd.concat([filtered_data, selection], sort=False, ignore_index=True) return filtered_data
[ "rachel.brabender@student.hpi.de" ]
rachel.brabender@student.hpi.de
27eab4cbe98168742d3f6ccf3d5325268d87fdc4
ebf2024bd355f66f7ccb7d96345250522c4aa298
/yoti_python_sdk/version.py
70e0898b716e1ce7c38fc51d5c14ae402d9c61f4
[ "MIT" ]
permissive
blockchain-Bobby/yoti-python-sdk
1af4d5f971343133f81699827ecb8b8b48720c7c
14e89e159a23176f1b1c84ff49d845e7e54b421f
refs/heads/master
2020-05-27T23:49:27.004758
2019-04-23T10:13:03
2019-04-23T13:41:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
46
py
# -*- coding: utf-8 -*- __version__ = "2.7.1"
[ "echarrod@users.noreply.github.com" ]
echarrod@users.noreply.github.com
d210b2cc0dd16f39a0b573034a3ead4fbef0ae4b
54e7532c89d8c88c86b50d8b4966b21df4732416
/maml_examples/cluster_maml_trpo_cheetah.py
795a9001970a5ea4321f9a07be5d5977684a56e8
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
chi6/Model-based-meta-learning-rl
e6facccc139c1f7d8afb17e7d9ff92a64d7ac65f
fda134dcbd87ef3e91f339ea2f836f28ec5f7784
refs/heads/master
2020-03-25T04:33:49.083196
2018-08-03T08:52:56
2018-08-03T08:52:56
143,401,489
2
0
null
null
null
null
UTF-8
Python
false
false
3,136
py
from sandbox.rocky.tf.algos.maml_trpo import MAMLTRPO from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline from rllab.baselines.gaussian_mlp_baseline import GaussianMLPBaseline from rllab.envs.mujoco.half_cheetah_env_rand import HalfCheetahEnvRand from rllab.envs.mujoco.half_cheetah_env_rand_direc import HalfCheetahEnvRandDirec from rllab.envs.normalized_env import normalize from rllab.misc.instrument import stub, run_experiment_lite #from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy from sandbox.rocky.tf.policies.maml_minimal_gauss_mlp_policy import MAMLGaussianMLPPolicy from sandbox.rocky.tf.envs.base import TfEnv import tensorflow as tf stub(globals()) from rllab.misc.instrument import VariantGenerator, variant class VG(VariantGenerator): @variant def fast_lr(self): return [0.1] @variant def meta_step_size(self): return [0.01] @variant def fast_batch_size(self): return [20] # #10, 20, 40 @variant def meta_batch_size(self): return [40] # at least a total batch size of 400. (meta batch size*fast batch size) @variant def seed(self): return [1] @variant def direc(self): # directionenv vs. goal velocity return [False] # should also code up alternative KL thing variants = VG().variants() max_path_length = 200 num_grad_updates = 1 use_maml=True for v in variants: direc = v['direc'] learning_rate = v['meta_step_size'] if direc: env = TfEnv(normalize(HalfCheetahEnvRandDirec())) else: env = TfEnv(normalize(HalfCheetahEnvRand())) policy = MAMLGaussianMLPPolicy( name="policy", env_spec=env.spec, grad_step_size=v['fast_lr'], hidden_nonlinearity=tf.nn.relu, hidden_sizes=(100,100), ) baseline = LinearFeatureBaseline(env_spec=env.spec) algo = MAMLTRPO( env=env, policy=policy, baseline=baseline, batch_size=v['fast_batch_size'], # number of trajs for grad update max_path_length=max_path_length, meta_batch_size=v['meta_batch_size'], num_grad_updates=num_grad_updates, n_itr=800, use_maml=use_maml, step_size=v['meta_step_size'], plot=False, ) direc = 'direc' if direc else '' run_experiment_lite( algo.train(), exp_prefix='trpo_maml_cheetah' + direc + str(max_path_length), exp_name='maml'+str(int(use_maml))+'_fbs'+str(v['fast_batch_size'])+'_mbs'+str(v['meta_batch_size'])+'_flr_' + str(v['fast_lr']) + '_mlr' + str(v['meta_step_size']), # Number of parallel workers for sampling n_parallel=8, # Only keep the snapshot parameters for the last iteration snapshot_mode="gap", snapshot_gap=25, sync_s3_pkl=True, python_command='python3', # Specifies the seed for the experiment. If this is not provided, a random seed # will be used seed=v["seed"], mode="local", #mode="ec2", variant=v, # plot=True, # terminate_machine=False, )
[ "chi.zhang@horizon.ai" ]
chi.zhang@horizon.ai
f56b768381f0da04743a6976acf4ff2dafa9ea41
09c689c2d7db4fd80d0809048585919a2772ce2a
/proiect.py
2d7365754502d30713e7040f03231ed5767bdc4b
[]
no_license
RotaruGeorge/Proiect.LP.image_color_space
d2ed1c0fcbd5c8f4937abff1906b5b14d75f750b
34a2fd2e63027144f1f88a44124aa654e8b9e1a5
refs/heads/main
2023-05-09T00:06:14.173241
2021-05-24T05:55:27
2021-05-24T05:55:27
365,841,324
1
1
null
2021-05-20T05:53:53
2021-05-09T20:24:22
Python
UTF-8
Python
false
false
3,245
py
import cv2 import numpy as np from tkinter import * from tkinter import filedialog import os import tkinter as tk from PIL import Image, ImageTk from PIL import Image, ImageFont, ImageDraw def stackImages(scale,imgArray): rows = len(imgArray) cols = len(imgArray[0]) rowsAvailable = isinstance(imgArray[0], list) width = imgArray[0][0].shape[1] height = imgArray[0][0].shape[0] if rowsAvailable: for x in range ( 0, rows): for y in range ( 0, cols): if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]: imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale) else: imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale) if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR) imageBlank = np.zeros((height, width, 3), np.uint8) hor = [imageBlank]*rows hor_con = [imageBlank]*rows for x in range(0, rows): hor[x] = np.hstack(imgArray[x]) ver = np.vstack(hor) else: for x in range(0, rows): if imgArray[x].shape[:2] == imgArray[0].shape[:2]: imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale) else: imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale) if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR) hor = np.hstack(imgArray) ver = hor return ver def showimage(): fln = filedialog.askopenfilename(initialdir=os.getcwd(), title="Select image file", filetypes=(("JPG File", "*.jpg"), ("PNG file", "*.png"), ("All File", "*.*"))) img = Image.open(fln) img.thumbnail((350,350)) img = ImageTk.PhotoImage(img) lbl.configure(image=img) lbl.image = img img=cv2.imread(fln) img = cv2.resize(img, (500, 500), None, None, None) kernel = np.ones((5,5),np.uint8) print(kernel) image_Gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) image_XYZ = cv2.cvtColor(img, cv2.COLOR_RGB2XYZ) image_LAB = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) image_BGR = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) image_HSV = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) image_HLS = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) image_YUL = cv2.cvtColor(img, cv2.COLOR_RGB2YUV) StackedImages = stackImages(0.6,([img,image_Gray,image_XYZ,image_LAB],[image_YUL,image_BGR,image_HLS,image_HSV])) cv2.imshow("Tipuri de spatiu de culoare", StackedImages) img = Image.open("",image_Gray) title_font = ImageFont.truetype('arial', 24) cv2.waitKey(0) cv2.destroyAllWindows() root = Tk() frm = Frame(root) frm.pack(side=BOTTOM, padx=15, pady=15) lbl= Label(root) lbl.pack() btn = Button(frm, text="Cauta imagine",command=showimage) btn.pack(side=tk.LEFT) btn = Button(frm, text="Exit",command=lambda: exit()) btn.pack(side=tk.LEFT, padx=10) root.title("Imagine RGB") root.geometry("300x500") root.mainloop()
[ "noreply@github.com" ]
RotaruGeorge.noreply@github.com
5cd800c170ee03a8adb3ac3339e617e5d8a29474
094f8021f4afa10edb83d0e613890624f9268e3e
/vision_test.py
b087c9105554668bd9e95b97c7d99aa89e098e91
[]
no_license
mdose/Xibbit
3fe3ce1b46fcd646ef04a46a5f1199c664856852
23be84cbadbe22d506da03453db16db765ed5157
refs/heads/master
2022-12-17T04:17:28.382647
2018-01-30T05:50:27
2018-01-30T05:50:27
99,608,797
0
0
null
2022-12-08T00:37:19
2017-08-07T18:43:43
Python
UTF-8
Python
false
false
710
py
import io import os # Imports the Google Cloud client library from google.cloud import vision from google.cloud.vision import types # Instantiates a client client = vision.ImageAnnotatorClient() # for each artwork run everything below # The name of the image file to annotate file_name = os.path.join( os.path.dirname(__file__), 'static/img/Mona_Lisa.jpg') # Loads the image into memory with io.open(file_name, 'rb') as image_file: content = image_file.read() image = types.Image(content=content) # Performs label detection on the image file response = client.label_detection(image=image) labels = response.label_annotations print 'Labels:' for label in labels: print label.description
[ "megan.e.dose@gmail.com" ]
megan.e.dose@gmail.com
9e54a89ace4cb633ba4d375d05e8a5ed12718b7f
b08d42933ac06045905d7c005ca9c114ed3aecc0
/src/coefSubset/evaluate/ranks/fifth/rank_2aq1_C.py
803fc6f7cced548af7722d0cfac6e9f911e4ec98
[]
no_license
TanemuraKiyoto/PPI-native-detection-via-LR
d148d53f5eb60a4dda5318b371a3048e3f662725
897e7188b0da94e87126a4acc0c9a6ff44a64574
refs/heads/master
2022-12-05T11:59:01.014309
2020-08-10T00:41:17
2020-08-10T00:41:17
225,272,083
1
0
null
null
null
null
UTF-8
Python
false
false
3,204
py
# 9 July 2019 # Kiyoto Aramis Tanemura # Several metrics are used to assess the performance of the trained RF model, notably native ranking. This script returns a ranking of the native protein-protein complex among a decoy set. For convenience, I will define as a function and will call in a general performance assessment script. # Modified 11 July 2019 by Kiyoto Aramis Tanemura. To parallelize the process, I will replace the for loop for the testFileList to a multiprocessing pool. # Modified 9 September 2019 by Kiyoto Aramis Tanemura. I will use the function to perform the calculation on one CSV file only. Thus instead of a function to import in other scripts, they will be individual jobs parallelized as individual jobs in the queue. import os import pandas as pd import numpy as np import pickle os.chdir('/mnt/scratch/tanemur1/') # Read the model and trainFile testFile = '2aq1.csv' identifier = 'C' thresholdCoef = 0.2 testFilePath = '/mnt/scratch/tanemur1/CASF-PPI/nonb_descriptors/complete/' modelPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/fifth/' outputPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/evaluate/fifth/ranks/' pdbID = testFile[:4] with open(modelPath + 'model' + identifier + '.pkl', 'rb') as f: clf = pickle.load(f) result = pd.DataFrame() scoreList = [] df1 = pd.read_csv(testFilePath + testFile) dropList = ['Unnamed: 0', 'Unnamed: 0.1', 'ref'] df1 = df1.drop(dropList, axis = 1) df1 = df1.set_index('Pair_name') df1 = pd.DataFrame(df1.values.T, columns = df1.index, index = df1.columns) df1.fillna(0.0, inplace = True) df1 = df1.reindex(sorted(df1.columns), axis = 1) # Drop features with coefficients below threshold coefs = pd.read_csv('/mnt/home/tanemur1/6May2019/2019-11-11/results/medianCoefs.csv', index_col = 0, header = None, names = ['coefficients']) coefs = coefs[np.abs(coefs['coefficients']) < thresholdCoef] dropList = list(coefs.index) del coefs df1.drop(dropList, axis = 1, inplace = True) with open(modelPath + 'standardScaler' + identifier + '.pkl', 'rb') as g: scaler = pickle.load(g) for i in range(len(df1)): # subtract from one row each row of the dataframe, then remove the trivial row[[i]] - row[[i]]. Also some input files have 'class' column. This is erroneous and is removed. df2 = pd.DataFrame(df1.iloc[[i]].values - df1.values, index = df1.index, columns = df1.columns) df2 = df2.drop(df1.iloc[[i]].index[0], axis = 0) # Standardize inut DF using the standard scaler used for training data. df2 = scaler.transform(df2) # Predict class of each comparison descriptor and sum the classes to obtain score. Higher score corresponds to more native-like complex predictions = clf.predict(df2) score = sum(predictions) scoreList.append(score) # Make a new DataFrame to store the score and corresponding descriptorID. Add rank as column. Note: lower rank corresponds to more native-like complex result = pd.DataFrame(data = {'score': scoreList}, index = df1.index.tolist()).sort_values(by = 'score', ascending = False) result['rank'] = range(1, len(result) + 1) with open(outputPath + pdbID + identifier + '.csv', 'w') as h: result.to_csv(h)
[ "tanemur1@msu.edu" ]
tanemur1@msu.edu
741a2eade9a96c9ce55757c4ca24892457cdad15
41ca5def1befabece018da6102bb79b3baba6370
/Options_V2.py
b13a28047534709972f7d216cab470c74a43eaa4
[]
no_license
CesarKagohara/options
498ec122df64a1d3ad8354c78a8118f0c344a991
dc9ce040baa3f8abc53b7154bf0733f8ae42abfa
refs/heads/master
2023-07-02T08:53:43.919404
2021-08-12T17:38:28
2021-08-12T17:38:28
275,586,098
0
1
null
null
null
null
UTF-8
Python
false
false
3,622
py
#!/usr/bin/env python # coding: utf-8 # In[44]: import pandas as pd import requests import json import numpy as np from datetime import date from pandas.tseries.offsets import BDay def b3sa_Options(token): r = requests.get(token) vJson = json.loads(r.content) vJson['token'] optionList = 'https://arquivos.b3.com.br/api/download/?token={}'.format(vJson['token']) r1 = requests.get(optionList) data = r1.content.decode("ISO-8859-1").splitlines() df = pd.DataFrame(data) df.dropna(inplace = True) df = pd.DataFrame(df.applymap(str)) df = df[0].str.split(";", n = 100, expand = True) df.columns = df.iloc[0] df = df[1:] df = df.reset_index() df.drop("index", axis = 1, inplace=True) return df token = 'https://arquivos.b3.com.br/api/download/requestname?fileName=InstrumentsConsolidated&date={}&recaptchaToken='.format(date.today().strftime("%Y-%m-%d")) df=b3sa_Options(token) df2 = df[["TckrSymb", "Asst", "SgmtNm", "SctyCtgyNm", "XprtnDt", "TradgEndDt", "OptnTp", "ExrcPric", "OptnStyle"]] df2 = df2[df2['SctyCtgyNm']=='OPTION ON EQUITIES'] df2['ExrcPric'] = [x.replace(',', '.') for x in df2['ExrcPric']] df2['ExrcPric'] = df2['ExrcPric'].astype(float) lastBD = pd.datetime.today() - BDay(1) lastBD = lastBD.strftime("%Y-%m-%d") token = 'https://arquivos.b3.com.br/api/download/requestname?fileName=TradeInformationConsolidated&date={}'.format(lastBD) df_trade=b3sa_Options(token) df_trade = df_trade[(df_trade['SgmtNm']=='EQUITY PUT') | (df_trade['SgmtNm']=='EQUITY CALL')] df_trade=df_trade[(df_trade['TradQty']!='')] df_trade["Strike"]=0.0 df_trade["Ticker"]="" df_trade["Validade"]="" df_trade["Tipo"]="" df_trade["Price"] = 0.0 for i in df_trade.TckrSymb: try: df_trade.ix[df_trade.loc[df_trade['TckrSymb']==i].index.values[0],'Strike'] = df2.loc[df2["TckrSymb"]==i].ExrcPric.values[0] df_trade.ix[df_trade.loc[df_trade['TckrSymb']==i].index.values[0],'Ticker'] = df2.loc[df2["TckrSymb"]==i].Asst.values[0] df_trade.ix[df_trade.loc[df_trade['TckrSymb']==i].index.values[0],'Validade'] = df2.loc[df2["TckrSymb"]==i].XprtnDt.values[0] df_trade.ix[df_trade.loc[df_trade['TckrSymb']==i].index.values[0],'Tipo'] = df2.loc[df2["TckrSymb"]==i].OptnStyle.values[0] except: pass vTopacoes = pd.read_excel(r"C:\Users\kiyo_\Desktop\projects\options\Cotacao.xlsx") for i in df_trade.Ticker: try: df_trade.ix[df_trade.loc[df_trade['Ticker']==i].index.values,'Price'] = vTopacoes.loc[vTopacoes[0]==i].Atual.values[0] except: pass df_trade = df_trade[df_trade["Price"]!=0.0] df_trade = df_trade[(df_trade["Price"]/df_trade["Strike"]>0.99) & (df_trade["Price"]/df_trade["Strike"]<1.01)] new_df1=df_trade[["Ticker","TckrSymb","SgmtNm","Tipo","Validade","LastPric","TradQty","FinInstrmQty","Strike","Price"]] new_df1=new_df1.reset_index() new_df1=new_df1.drop(['index'], axis=1) new_df1["LastPric"]=new_df1["LastPric"].apply(lambda x: x.replace(',','.')) new_df1["LastPric"]=new_df1["LastPric"].astype(float) new_df1["Validade"] = pd.to_datetime(new_df1["Validade"]) new_df1["Days"] = new_df1["Validade"].apply(lambda x: x - pd.datetime.today()) new_df1["Days"] = new_df1["Days"].apply(lambda x: x.days) new_df1["TradQty"]=new_df1["TradQty"].astype(int) new_df1 = new_df1[new_df1["TradQty"]>5] new_df1 = new_df1[["Ticker","TckrSymb","SgmtNm","Validade","Tipo","Days","Strike"]] new_df1["Ticker1"] = new_df1["Ticker"].apply(lambda x: "=@BULLDDE|MOFV!"+x) new_df1["TckrSymb1"] = new_df1["TckrSymb"].apply(lambda x: "=@BULLDDE|MOFC!"+x) new_df1.to_csv("Options_V2.csv") # In[ ]:
[ "53622177+boxveil@users.noreply.github.com" ]
53622177+boxveil@users.noreply.github.com
94589aa547fcc98cedf05d1daaeb74814cf76e32
2f5972af16cd8264b775d53a21d08d145f554b1e
/api/api.py
5130a2b4676942d39f73ba4dd5ef6f8e63ca0a8d
[]
no_license
Bill4869/reclycloth
6d874ad8734dbcf9583ec0ac6762f91152edbbcf
2ab0e71a314cdfbcd3d42a388b1ca33ed8642188
refs/heads/main
2023-08-29T20:44:21.679071
2021-10-10T06:29:22
2021-10-10T06:29:22
414,591,134
0
0
null
null
null
null
UTF-8
Python
false
false
7,312
py
from pydantic.main import BaseModel from fastapi import FastAPI from PIL import Image from fastapi import FastAPI, Request, File, UploadFile from typing import List import io import cv2 import base64 import numpy as np from skgtoimg import skech2img from skgtoimg_shoes import skech2img_shoes from gen_mask import gen_mask from PIL import Image import cv2 from change_color import color2gray from mask2img import mask2img from txt_syn_trans import texture_synth from txt_syn_trans import texture_synth from segment import segment from blend import blend from fastapi.middleware.cors import CORSMiddleware from make_mask import get_mask from skgtoimg import pil_loader from fastapi.middleware.cors import CORSMiddleware use_txt_syn=False app = FastAPI() test_dir="test/" origins = [ "http://127.0.0.1:8887", "*", ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class imgs(BaseModel): skg: str txt: str def base642img(code): img=code.split(',',1)[1] img = base64.b64decode(img) # base64に変換された画像データを元のバイナリデータに変換 # bytes img = io.BytesIO(img) # _io.BytesIO pillowで扱えるように変換 img = Image.open(img).convert("RGB") return img def resize(img, long_side_px=512): org_h, org_w, c = img.shape scale = max(org_h, org_w) h = int(org_h / scale * long_side_px) w = int(org_w / scale * long_side_px) resized = cv2.resize(img, (w, h)) return resized @app.post('/api/imgtoimg') # methodとendpointの指定 async def skechtoimg(Images:imgs): skg=base642img(Images.skg) txt=base642img(Images.txt) txt = np.array(txt, dtype=np.uint8) img = np.array(skg, dtype=np.uint8) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) #txt = cv2.cvtColor(txt, cv2.COLOR_RGB2BGR) img = resize(img, long_side_px=512) img_txt = resize(img, long_side_px=512) h,w,c=txt.shape s=70 print("sss",txt.shape) #txt=txt[h//2-s:h//2+s,w//2-s:w//2+s,:] s=min(h,w) txt=txt[s//4:s*3//4,s//4:s*3//4,:] h,w,c=txt.shape txt = cv2.resize(txt, dsize=(100, 100)) h,w,c=txt.shape seg = segment(img) mask=gen_mask(seg) cv2.imwrite("mask.png",mask) img=img.astype(np.float32) img_txt=img_txt.astype(np.float32) trans = texture_synth(txt, img_txt, patch_length= int(80)) trans_resize = resize(trans,long_side_px=512) img = blend(img, mask, trans_resize) ret, dst_data = cv2.imencode('.jpg', img) dst_str = base64.b64encode(dst_data) return {"response": dst_str} @app.post('/api/skechtoimg_cloth') # methodとendpointの指定 async def skechtoimg(Images:imgs): #skg= Image.open(io.BytesIO(file[0].file.read())).convert('RGB') #txt= Image.open(io.BytesIO(files[1].file.read())).convert('RGB') skg=base642img(Images.skg) txt=base642img(Images.txt) txt = np.array(txt, dtype=np.uint8) img = np.array(skg, dtype=np.uint8) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) txt = cv2.cvtColor(txt, cv2.COLOR_RGB2BGR) cv2.imwrite("input.png",img) img,part_mask=color2gray(img) img=mask2img(img) #background,body,hair,face,Upper clothes, Down clothes , shoes up_cloth_mask=part_mask[4] up_cloth_mask=cv2.resize(up_cloth_mask, dsize=(256, 256)) up_cloth_mask[up_cloth_mask!=0]=255 print("cloth",up_cloth_mask.shape) cv2.imwrite("output.png",img) cv2.imwrite("output2.png",up_cloth_mask) cv2.imwrite("txt.png",txt) h,w,c=txt.shape s=70 print("sss",txt.shape) #txt=txt[h//2-s:h//2+s,w//2-s:w//2+s,:] s=min(h,w) txt=txt[s//4:s*3//4,s//4:s*3//4,:] h,w,c=txt.shape txt = cv2.resize(txt, dsize=(100, 100)) h,w,c=txt.shape cv2.imwrite("txt.png",txt) print(type(img[12,1,1])) trans = texture_synth(txt, img,patch_length = min(h,w)//2) trans = cv2.cvtColor(trans, cv2.COLOR_BGR2RGB) img = blend(img, up_cloth_mask, trans) img = resize(img,long_side_px=512) cv2.imwrite("output3.png",img) ret, dst_data = cv2.imencode('.jpg', img) dst_str = base64.b64encode(dst_data) return {"response": dst_str} @app.post('/api/skechtoimg_bag') # methodとendpointの指定 async def skechtoimg(Images:imgs): skg=base642img(Images.skg) txt=base642img(Images.txt) img = np.array(skg, dtype=np.uint8) img=get_mask(img) seg=Image.fromarray(img) img=skech2img(skg,seg,txt) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = resize(img,long_side_px=512) if use_txt_syn: img = cv2.resize(img, dsize=(256,256)) mask=1*((img[:,:,0]>=240)*(img[:,:,1]>=240)*(img[:,:,2]>=240)).astype(np.float32) mask=255*(1-mask) img=img.astype(np.float32) txt = np.array(txt, dtype=np.uint8) txt = cv2.cvtColor(txt, cv2.COLOR_RGB2BGR) h,w,c=txt.shape s=min(h,w) txt=txt[s//4:s*3//4,s//4:s*3//4,:] cv2.imwrite("txt.png",txt) cv2.imwrite("msk.png",mask) cv2.imwrite("img.png",img) h,w,c=txt.shape txt = cv2.resize(txt, dsize=(100, 100)) h,w,c=txt.shape trans = texture_synth(txt, img,patch_length = min(h,w)//2) trans = cv2.cvtColor(trans, cv2.COLOR_BGR2RGB) img = blend(img, mask, trans) ret, dst_data = cv2.imencode('.jpg', img) dst_str = base64.b64encode(dst_data) return {"response": dst_str} @app.post('/api/skechtoimg_shoes') # methodとendpointの指定 async def skechtoimg(Images:imgs): skg=base642img(Images.skg) txt=base642img(Images.txt) img = np.array(skg, dtype=np.uint8) img=get_mask(img) seg=Image.fromarray(img) img=skech2img_shoes(skg,seg,txt) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = resize(img,long_side_px=512) if use_txt_syn: img = cv2.resize(img, dsize=(256,256)) mask=1*((img[:,:,0]>=240)*(img[:,:,1]>=240)*(img[:,:,2]>=240)).astype(np.float32) mask=255*(1-mask) img=img.astype(np.float32) txt = np.array(txt, dtype=np.uint8) txt = cv2.cvtColor(txt, cv2.COLOR_RGB2BGR) h,w,c=txt.shape s=min(h,w) txt=txt[s//4:s*3//4,s//4:s*3//4,:] cv2.imwrite("txt.png",txt) cv2.imwrite("msk.png",mask) cv2.imwrite("img.png",img) h,w,c=txt.shape txt = cv2.resize(txt, dsize=(100, 100)) h,w,c=txt.shape trans = texture_synth(txt, img,patch_length = min(h,w)//2) trans = cv2.cvtColor(trans, cv2.COLOR_BGR2RGB) img = blend(img, mask, trans) ret, dst_data = cv2.imencode('.jpg', img) dst_str = base64.b64encode(dst_data) return {"response": dst_str} @app.post('/api/debug') # methodとendpointの指定 async def skechtoimg(files: List[UploadFile] = File(...)): img1= Image.open(io.BytesIO(files[0].file.read())).convert('RGB') img2= Image.open(io.BytesIO(files[1].file.read())).convert('RGB') img1 = np.array(img1, dtype=np.uint8) img2 = np.array(img2, dtype=np.uint8) w,h,c=img1.shape img2.resize(w,h,c) alpha=0.5 img=img1*alpha+img2*(1-alpha) ret, dst_data = cv2.imencode('.jpg', img) dst_str = base64.b64encode(dst_data) return {"response": dst_str}
[ "chanvongnaraz.khampasith.vl@tut.jp" ]
chanvongnaraz.khampasith.vl@tut.jp
c55deeff8c7eb2de39cdc09670d1bb9f2cdd8518
a3c264f6d04ee21fab3240de20655efccd231b40
/password_manager_app/models.py
754f72022a77fa3a1914ff07b47e7d5039b3bc92
[]
no_license
JacekEjsmont/PasswordManager
19a3c824685ca275e3ee5b07ea9eba4dd838278f
c84115172d4e929f22709d3fe77a8e427ad5299f
refs/heads/master
2022-12-09T13:25:36.347987
2018-11-14T09:58:29
2018-11-14T09:58:29
156,843,737
0
0
null
2022-12-08T01:17:33
2018-11-09T10:02:02
Python
UTF-8
Python
false
false
427
py
from django.db import models from django.contrib.auth.models import User # Create your models here. class Entry(models.Model): site_name = models.CharField(max_length=20) site_url = models.URLField() login_name = models.CharField(max_length=20) login_password = models.CharField(max_length=30) user = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.site_name
[ "jacek.ejsmont@gmail.com" ]
jacek.ejsmont@gmail.com
924e7157f296dca05fe05d28ec7c1ab78be05493
65d730c548eb08650d7d279b2382b25e6d89518d
/entity/nonce.py
77307045e478d9fea473466109a8f85735655ff5
[]
no_license
zooeZuo/MI_eSE
c33da76226a8d06ed17793e030afdc7b7cf0dbd0
c532fcaa5a3b73a80f51d01b1312d76d8aed67fb
refs/heads/master
2020-03-09T16:26:57.853369
2018-04-10T06:33:23
2018-04-10T06:33:23
128,885,017
1
0
null
null
null
null
UTF-8
Python
false
false
2,197
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # date :2018/1/ # discription : # vision : # copyright :All copyright reserved by FMSH company __author__ = 'zuodengbo' import random base = [str(x) for x in range(10)] + [chr(x) for x in range(ord('A'), ord('A') + 6)] # 二进制to十进制 def bin2dec(str_num): return str(int(str_num, 2)) # 十六进制to十进制 def hex2dec(str_num): return str(int(str_num.upper(), 16)) # 十进制to二进制 def dec2bin(str_num): num = int(str_num) mid = [] while True: if num == 0: break num, rem = divmod(num, 2) mid.append(base[rem]) return ''.join([str(y) for y in min[:: -1]]) # 十进制to八进制 oct() # 十进制to十六进制 hex() def dec2hex(str_num): num = int(str_num) if num == 0: return '0' mid = [] while True: if num == 0: break num, rem = divmod(num, 16) mid.append(base[rem]) return ''.join([str(y) for y in min[:: -1]]) # 十六进制to二进制 def hex2bin(str_num): return dec2bin(hex2dec(str_num.upper())) # 二进制to十六进制 def bin2hex(str_num): return dec2hex(bin2dec(str_num)) # 十六进制to字符串 def hex2str(data, l=16): data = data[2:] if data[len(data) - 1] == 'L': data = data[:len(data) - 1] while len(data) < l: data = '0' + data return data.upper() def rand_hex(length): num = '' for i in range(0, length): num += hex2str(hex(random.randint(0, 15)), 1) return num.upper() # 产生32随机数 def Task_Id_Generator(): taskid = rand_hex(32) return taskid # 10字节随机数 def Terminal_Generator_10(): term = rand_hex(20) return term # 产生8字节终端随机数 def Terminal_Generator_8(): terminal = rand_hex(16) return terminal # 产生6字节终端随机数 def Terminal_Generator_6(): term = rand_hex(12) return term # 产生4字节流水 def Serial_4(): serial = rand_hex(8) return serial if __name__ == '__main__': p = Terminal_Generator_8() q = Terminal_Generator_6() d = Serial_4() print(p) print(q) print(d)
[ "zooe.zuo@foxmail.com" ]
zooe.zuo@foxmail.com
099dd6bad485d4212982d773b3a35f5e21d0d0ec
85f87d9475639047f1f85b29b608386fbe968e3d
/py/day_04/solve.py
c07e55d3f9b9fa13124d4556861594b0e985a91b
[ "MIT" ]
permissive
Thundzz/advent-of-code-2020
0a7154a54e258ae078e8c9b6c00bc7164df4a945
17a66c20340357e44d61d8a6fd92bbf860f51195
refs/heads/main
2023-02-06T12:27:37.629049
2020-12-25T18:42:47
2020-12-25T18:42:47
317,969,902
0
0
null
null
null
null
UTF-8
Python
false
false
3,260
py
from collections import namedtuple, Counter from operator import add, mul from functools import reduce def parse_field(raw_field): return raw_field.split(":") def parse_input(filename): with open(filename) as file: lines = [l.strip() for l in file.readlines()] passports = [] passport = {} for line in lines: if not line: passports.append(passport) passport = {} else: fields = dict([parse_field(rf) for rf in line.split()]) passport = { **passport, **fields } passports.append(passport) return passports def has_mandatory_fields(passport, mandatory_fields): return all([ field in passport for field in mandatory_fields ]) ValidationRule = namedtuple("ValidationRule", ["parsing_fn", "validation_fn"]) Height = namedtuple("Height", ["value", "unit"]) def validate_rule(value, validation_rule): parsed = None try: parsed = validation_rule.parsing_fn(value) except Exception as e: print("parsing error", value, validation_rule) return False if parsed: return validation_rule.validation_fn(parsed) def validates_rules(passport, rules): return all([ fieldName in passport and validate_rule(passport[fieldName], rule) for fieldName, rule in rules ]) def parse_year(data): digits = set(map(str, range(10))) assert(len(data) == 4) assert(all([d in digits for d in data])) return int(data) def parse_height(data): digits = set(map(str, range(10))) unit = data[-2:] value = data[:-2] assert(unit in {"cm", "in"}) assert(all([(d in digits) for d in value])) return Height(int(value), unit) def validate_height(height): if height.unit == "cm": return 150 <= height.value <= 193 elif height.unit == "in": return 59 <= height.value <= 76 else: raise Exception("This should not happen") def validate_eye_color(data): valid_clrs = { "amb","blu","brn","gry","grn","hzl","oth" } return data in valid_clrs def validate_hair_color(haircolor): valid_chars = set(list(range(10)) + ["a", "b", "c", "d", "e", "f"]) chars_are_valid = all([c in valid_chars for c in list(haircolor[1:])]) return haircolor[0] == "#" def validate_cid(cid): digits = set(map(str, range(10))) return len(cid) == 9 and all([d in digits for d in cid]) def main(): passports = parse_input("input.txt") mandatory_fields = [ "byr","iyr","eyr","hgt","hcl","ecl","pid" ] identity = lambda x: x rules = { "byr" : ValidationRule(parse_year, lambda x: 1920 <= x <= 2002), "iyr" : ValidationRule(parse_year, lambda x: 2010 <= x <= 2020), "eyr" : ValidationRule(parse_year, lambda x: 2020 <= x <= 2030), "hgt" : ValidationRule(parse_height, validate_height), "hcl" : ValidationRule(identity, validate_hair_color), "ecl" : ValidationRule(identity, validate_eye_color), "pid" : ValidationRule(identity, validate_cid) } valid_passports_simple = [ passport for passport in passports if has_mandatory_fields(passport, mandatory_fields) ] valid_passports_complex = [ passport for passport in passports if validates_rules(passport, rules.items()) ] # print(passports[0]) # for x, rule in rules.items(): # res = validate_rule(passports[0][x], rule) # print(x, rule, res) print(len(valid_passports_simple)) print(len(valid_passports_complex)) if __name__ == '__main__': main()
[ "yacinenew@gmail.com" ]
yacinenew@gmail.com
70988926cd823593d4fc66c9e0c48b210f99b7ac
13a32b92b1ba8ffb07e810dcc8ccdf1b8b1671ab
/home--tommy--mypy/mypy/lib/python2.7/site-packages/statsmodels/stats/gof.py
1ae102ea9d91e9c46090866a204b6ab8d7d3d984
[ "Unlicense" ]
permissive
tommybutler/mlearnpy2
8ec52bcd03208c9771d8d02ede8eaa91a95bda30
9e5d377d0242ac5eb1e82a357e6701095a8ca1ff
refs/heads/master
2022-10-24T23:30:18.705329
2022-10-17T15:41:37
2022-10-17T15:41:37
118,529,175
0
2
Unlicense
2022-10-15T23:32:18
2018-01-22T23:27:10
Python
UTF-8
Python
false
false
16,592
py
'''extra statistical function and helper functions contains: * goodness-of-fit tests - powerdiscrepancy - gof_chisquare_discrete - gof_binning_discrete Author: Josef Perktold License : BSD-3 changes ------- 2013-02-25 : add chisquare_power, effectsize and "value" ''' from statsmodels.compat.python import range, lrange, string_types import numpy as np from scipy import stats # copied from regression/stats.utils def powerdiscrepancy(observed, expected, lambd=0.0, axis=0, ddof=0): """Calculates power discrepancy, a class of goodness-of-fit tests as a measure of discrepancy between observed and expected data. This contains several goodness-of-fit tests as special cases, see the describtion of lambd, the exponent of the power discrepancy. The pvalue is based on the asymptotic chi-square distribution of the test statistic. freeman_tukey: D(x|\theta) = \sum_j (\sqrt{x_j} - \sqrt{e_j})^2 Parameters ---------- o : Iterable Observed values e : Iterable Expected values lambd : float or string * float : exponent `a` for power discrepancy * 'loglikeratio': a = 0 * 'freeman_tukey': a = -0.5 * 'pearson': a = 1 (standard chisquare test statistic) * 'modified_loglikeratio': a = -1 * 'cressie_read': a = 2/3 * 'neyman' : a = -2 (Neyman-modified chisquare, reference from a book?) axis : int axis for observations of one series ddof : int degrees of freedom correction, Returns ------- D_obs : Discrepancy of observed values pvalue : pvalue References ---------- Cressie, Noel and Timothy R. C. Read, Multinomial Goodness-of-Fit Tests, Journal of the Royal Statistical Society. Series B (Methodological), Vol. 46, No. 3 (1984), pp. 440-464 Campbell B. Read: Freeman-Tukey chi-squared goodness-of-fit statistics, Statistics & Probability Letters 18 (1993) 271-278 Nobuhiro Taneichi, Yuri Sekiya, Akio Suzukawa, Asymptotic Approximations for the Distributions of the Multinomial Goodness-of-Fit Statistics under Local Alternatives, Journal of Multivariate Analysis 81, 335?359 (2002) Steele, M. 1,2, C. Hurst 3 and J. Chaseling, Simulated Power of Discrete Goodness-of-Fit Tests for Likert Type Data Examples -------- >>> observed = np.array([ 2., 4., 2., 1., 1.]) >>> expected = np.array([ 0.2, 0.2, 0.2, 0.2, 0.2]) for checking correct dimension with multiple series >>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd='freeman_tukey',axis=1) (array([[ 2.745166, 2.745166]]), array([[ 0.6013346, 0.6013346]])) >>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected,axis=1) (array([[ 2.77258872, 2.77258872]]), array([[ 0.59657359, 0.59657359]])) >>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd=0,axis=1) (array([[ 2.77258872, 2.77258872]]), array([[ 0.59657359, 0.59657359]])) >>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd=1,axis=1) (array([[ 3., 3.]]), array([[ 0.5578254, 0.5578254]])) >>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd=2/3.0,axis=1) (array([[ 2.89714546, 2.89714546]]), array([[ 0.57518277, 0.57518277]])) >>> powerdiscrepancy(np.column_stack((observed,observed)).T, expected, lambd=2/3.0,axis=1) (array([[ 2.89714546, 2.89714546]]), array([[ 0.57518277, 0.57518277]])) >>> powerdiscrepancy(np.column_stack((observed,observed)), expected, lambd=2/3.0, axis=0) (array([[ 2.89714546, 2.89714546]]), array([[ 0.57518277, 0.57518277]])) each random variable can have different total count/sum >>> powerdiscrepancy(np.column_stack((observed,2*observed)), expected, lambd=2/3.0, axis=0) (array([[ 2.89714546, 5.79429093]]), array([[ 0.57518277, 0.21504648]])) >>> powerdiscrepancy(np.column_stack((observed,2*observed)), expected, lambd=2/3.0, axis=0) (array([[ 2.89714546, 5.79429093]]), array([[ 0.57518277, 0.21504648]])) >>> powerdiscrepancy(np.column_stack((2*observed,2*observed)), expected, lambd=2/3.0, axis=0) (array([[ 5.79429093, 5.79429093]]), array([[ 0.21504648, 0.21504648]])) >>> powerdiscrepancy(np.column_stack((2*observed,2*observed)), 20*expected, lambd=2/3.0, axis=0) (array([[ 5.79429093, 5.79429093]]), array([[ 0.21504648, 0.21504648]])) >>> powerdiscrepancy(np.column_stack((observed,2*observed)), np.column_stack((10*expected,20*expected)), lambd=2/3.0, axis=0) (array([[ 2.89714546, 5.79429093]]), array([[ 0.57518277, 0.21504648]])) >>> powerdiscrepancy(np.column_stack((observed,2*observed)), np.column_stack((10*expected,20*expected)), lambd=-1, axis=0) (array([[ 2.77258872, 5.54517744]]), array([[ 0.59657359, 0.2357868 ]])) """ o = np.array(observed) e = np.array(expected) if not isinstance(lambd, string_types): a = lambd else: if lambd == 'loglikeratio': a = 0 elif lambd == 'freeman_tukey': a = -0.5 elif lambd == 'pearson': a = 1 elif lambd == 'modified_loglikeratio': a = -1 elif lambd == 'cressie_read': a = 2/3.0 else: raise ValueError('lambd has to be a number or one of ' + \ 'loglikeratio, freeman_tukey, pearson, ' +\ 'modified_loglikeratio or cressie_read') n = np.sum(o, axis=axis) nt = n if n.size>1: n = np.atleast_2d(n) if axis == 1: nt = n.T # need both for 2d, n and nt for broadcasting if e.ndim == 1: e = np.atleast_2d(e) if axis == 0: e = e.T if np.all(np.sum(e, axis=axis) == n): p = e/(1.0*nt) elif np.all(np.sum(e, axis=axis) == 1): p = e e = nt * e else: raise ValueError('observed and expected need to have the same ' +\ 'number of observations, or e needs to add to 1') k = o.shape[axis] if e.shape[axis] != k: raise ValueError('observed and expected need to have the same ' +\ 'number of bins') # Note: taken from formulas, to simplify cancel n if a == 0: # log likelihood ratio D_obs = 2*n * np.sum(o/(1.0*nt) * np.log(o/e), axis=axis) elif a == -1: # modified log likelihood ratio D_obs = 2*n * np.sum(e/(1.0*nt) * np.log(e/o), axis=axis) else: D_obs = 2*n/a/(a+1) * np.sum(o/(1.0*nt) * ((o/e)**a - 1), axis=axis) return D_obs, stats.chi2.sf(D_obs,k-1-ddof) #todo: need also binning for continuous distribution # and separated binning function to be used for powerdiscrepancy def gof_chisquare_discrete(distfn, arg, rvs, alpha, msg): '''perform chisquare test for random sample of a discrete distribution Parameters ---------- distname : string name of distribution function arg : sequence parameters of distribution alpha : float significance level, threshold for p-value Returns ------- result : bool 0 if test passes, 1 if test fails Notes ----- originally written for scipy.stats test suite, still needs to be checked for standalone usage, insufficient input checking may not run yet (after copy/paste) refactor: maybe a class, check returns, or separate binning from test results ''' # define parameters for test ## n=2000 n = len(rvs) nsupp = 20 wsupp = 1.0/nsupp ## distfn = getattr(stats, distname) ## np.random.seed(9765456) ## rvs = distfn.rvs(size=n,*arg) # construct intervals with minimum mass 1/nsupp # intervalls are left-half-open as in a cdf difference distsupport = lrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1) last = 0 distsupp = [max(distfn.a, -1000)] distmass = [] for ii in distsupport: current = distfn.cdf(ii,*arg) if current - last >= wsupp-1e-14: distsupp.append(ii) distmass.append(current - last) last = current if current > (1-wsupp): break if distsupp[-1] < distfn.b: distsupp.append(distfn.b) distmass.append(1-last) distsupp = np.array(distsupp) distmass = np.array(distmass) # convert intervals to right-half-open as required by histogram histsupp = distsupp+1e-8 histsupp[0] = distfn.a # find sample frequencies and perform chisquare test #TODO: move to compatibility.py freq, hsupp = np.histogram(rvs,histsupp) cdfs = distfn.cdf(distsupp,*arg) (chis,pval) = stats.chisquare(np.array(freq),n*distmass) return chis, pval, (pval > alpha), 'chisquare - test for %s' \ 'at arg = %s with pval = %s' % (msg,str(arg),str(pval)) # copy/paste, remove code duplication when it works def gof_binning_discrete(rvs, distfn, arg, nsupp=20): '''get bins for chisquare type gof tests for a discrete distribution Parameters ---------- rvs : array sample data distname : string name of distribution function arg : sequence parameters of distribution nsupp : integer number of bins. The algorithm tries to find bins with equal weights. depending on the distribution, the actual number of bins can be smaller. Returns ------- freq : array empirical frequencies for sample; not normalized, adds up to sample size expfreq : array theoretical frequencies according to distribution histsupp : array bin boundaries for histogram, (added 1e-8 for numerical robustness) Notes ----- The results can be used for a chisquare test :: (chis,pval) = stats.chisquare(freq, expfreq) originally written for scipy.stats test suite, still needs to be checked for standalone usage, insufficient input checking may not run yet (after copy/paste) refactor: maybe a class, check returns, or separate binning from test results todo : optimal number of bins ? (check easyfit), recommendation in literature at least 5 expected observations in each bin ''' # define parameters for test ## n=2000 n = len(rvs) wsupp = 1.0/nsupp ## distfn = getattr(stats, distname) ## np.random.seed(9765456) ## rvs = distfn.rvs(size=n,*arg) # construct intervals with minimum mass 1/nsupp # intervalls are left-half-open as in a cdf difference distsupport = lrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1) last = 0 distsupp = [max(distfn.a, -1000)] distmass = [] for ii in distsupport: current = distfn.cdf(ii,*arg) if current - last >= wsupp-1e-14: distsupp.append(ii) distmass.append(current - last) last = current if current > (1-wsupp): break if distsupp[-1] < distfn.b: distsupp.append(distfn.b) distmass.append(1-last) distsupp = np.array(distsupp) distmass = np.array(distmass) # convert intervals to right-half-open as required by histogram histsupp = distsupp+1e-8 histsupp[0] = distfn.a # find sample frequencies and perform chisquare test freq,hsupp = np.histogram(rvs,histsupp) #freq,hsupp = np.histogram(rvs,histsupp,new=True) cdfs = distfn.cdf(distsupp,*arg) return np.array(freq), n*distmass, histsupp # -*- coding: utf-8 -*- """Extension to chisquare goodness-of-fit test Created on Mon Feb 25 13:46:53 2013 Author: Josef Perktold License: BSD-3 """ def chisquare(f_obs, f_exp=None, value=0, ddof=0, return_basic=True): '''chisquare goodness-of-fit test The null hypothesis is that the distance between the expected distribution and the observed frequencies is ``value``. The alternative hypothesis is that the distance is larger than ``value``. ``value`` is normalized in terms of effect size. The standard chisquare test has the null hypothesis that ``value=0``, that is the distributions are the same. Notes ----- The case with value greater than zero is similar to an equivalence test, that the exact null hypothesis is replaced by an approximate hypothesis. However, TOST "reverses" null and alternative hypothesis, while here the alternative hypothesis is that the distance (divergence) is larger than a threshold. References ---------- McLaren, ... Drost,... See Also -------- powerdiscrepancy scipy.stats.chisquare ''' f_obs = np.asarray(f_obs) n_bins = len(f_obs) nobs = f_obs.sum(0) if f_exp is None: # uniform distribution f_exp = np.empty(n_bins, float) f_exp.fill(nobs / float(n_bins)) f_exp = np.asarray(f_exp, float) chisq = ((f_obs - f_exp)**2 / f_exp).sum(0) if value == 0: pvalue = stats.chi2.sf(chisq, n_bins - 1 - ddof) else: pvalue = stats.ncx2.sf(chisq, n_bins - 1 - ddof, value**2 * nobs) if return_basic: return chisq, pvalue else: return chisq, pvalue #TODO: replace with TestResults def chisquare_power(effect_size, nobs, n_bins, alpha=0.05, ddof=0): '''power of chisquare goodness of fit test effect size is sqrt of chisquare statistic divided by nobs Parameters ---------- effect_size : float This is the deviation from the Null of the normalized chi_square statistic. This follows Cohen's definition (sqrt). nobs : int or float number of observations n_bins : int (or float) number of bins, or points in the discrete distribution alpha : float in (0,1) significance level of the test, default alpha=0.05 Returns ------- power : float power of the test at given significance level at effect size Notes ----- This function also works vectorized if all arguments broadcast. This can also be used to calculate the power for power divergence test. However, for the range of more extreme values of the power divergence parameter, this power is not a very good approximation for samples of small to medium size (Drost et al. 1989) References ---------- Drost, ... See Also -------- chisquare_effectsize statsmodels.stats.GofChisquarePower ''' crit = stats.chi2.isf(alpha, n_bins - 1 - ddof) power = stats.ncx2.sf(crit, n_bins - 1 - ddof, effect_size**2 * nobs) return power def chisquare_effectsize(probs0, probs1, correction=None, cohen=True, axis=0): '''effect size for a chisquare goodness-of-fit test Parameters ---------- probs0 : array_like probabilities or cell frequencies under the Null hypothesis probs1 : array_like probabilities or cell frequencies under the Alternative hypothesis probs0 and probs1 need to have the same length in the ``axis`` dimension. and broadcast in the other dimensions Both probs0 and probs1 are normalized to add to one (in the ``axis`` dimension). correction : None or tuple (nobs, df) If None, then the effect size is the chisquare statistic divide by the number of observations. If the correction is a tuple (nobs, df), then the effectsize is corrected to have less bias and a smaller variance. However, the correction can make the effectsize negative. In that case, the effectsize is set to zero. Pederson and Johnson (1990) as referenced in McLaren et all. (1994) cohen : bool If True, then the square root is returned as in the definition of the effect size by Cohen (1977), If False, then the original effect size is returned. axis : int If the probability arrays broadcast to more than 1 dimension, then this is the axis over which the sums are taken. Returns ------- effectsize : float effect size of chisquare test ''' probs0 = np.asarray(probs0, float) probs1 = np.asarray(probs1, float) probs0 = probs0 / probs0.sum(axis) probs1 = probs1 / probs1.sum(axis) d2 = ((probs1 - probs0)**2 / probs0).sum(axis) if correction is not None: nobs, df = correction diff = ((probs1 - probs0) / probs0).sum(axis) d2 = np.maximum((d2 * nobs - diff - df) / (nobs - 1.), 0) if cohen: return np.sqrt(d2) else: return d2
[ "tbutler.github@internetalias.net" ]
tbutler.github@internetalias.net
035e0656aea599dd700ee14ad8f6ce0b6188591d
ef76dd094c83343af4e5f305320b500f13fe635f
/user/decorator.py
6b19467ec47254acb68c392342ab45edc2148343
[]
no_license
keywookkim/11-WeWantedExplorers-backend
aaa8c0a4756fb84d556caca83049156acd3ccd3e
588e67388153e34699011eb1cfba10aaf6266ebf
refs/heads/master
2023-08-13T17:03:58.692981
2021-07-02T00:33:32
2021-07-02T00:33:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,086
py
import bcrypt import jwt from django.http import JsonResponse from wwe.settings import SECRET_KEY, ALGORITHM from .models import UserAccount def signin_decorator(func): def wrapper(self, request, *args, **kwargs): if not request.headers.get('Authorization', None) : return JsonResponse({"message" : "INVALID_SIGNIN"}, status=401) try: access_token = request.headers.get('Authorization', None) if access_token : payload = jwt.decode(access_token, SECRET_KEY, algorithm = ALGORITHM) user = UserAccount.objects.get(id = payload['user_id']) request.user = user return func(self, request, *args, **kwargs) except jwt.exceptions.DecodeError: return JsonResponse({'message':'INVALID_TOKEN'}, status = 401) except UserAccount.DoesNotExist: return JsonResponse({'message':'INVALID_USER'}, status = 401) return wrapper
[ "42701133+soheon-lee@users.noreply.github.com" ]
42701133+soheon-lee@users.noreply.github.com
e0445908419c92743dbb47292ef27376cbbdcffb
d49eff68460d328627d59d651fafb48810d76f8e
/test.py
25ed9a1967e97158546fe84768cfff4320a6d89c
[]
no_license
Ronaldo009/genPlanByGA
2661fa4f657edf07762dd3149568d13943f38067
0ac0b1aeec8d3b83607f88437229ecc7d62e9de0
refs/heads/master
2021-01-21T22:10:21.658824
2017-06-23T03:25:40
2017-06-23T03:25:40
95,179,317
0
0
null
null
null
null
UTF-8
Python
false
false
1,429
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/6/13 上午11:50 # @Author : Huang HUi # @Site : # @File : test.py # @Software: PyCharm import random GIVEN_QUERY = {'days': [4,14], 'countries': [{'country_id': 28, 'day': None}], 'regions': [{'region_id': 2, 'day': None}, {'region_id': 27, 'day': 1}, {'region_id': 69, 'day': None}], 'pois': [], 'regionNotGo': [], 'poiNotGo': [], 'regionSorted': [135, 131], 'availableMonths': [1,2,3,4,5,6,7,8,9,10], 'price': [0, 80000], 'hotelRating': None, 'arrivalRegionId': None, 'departRegionId': None} aa=[{'region_id': 2, 'days': 2}, {'region_id': 27, 'days': 1}, {'region_id': 69, 'days': 1}, {'region_id': 3, 'days': 1}] regionsMapInGenPlan = {x['region_id']: x['days'] for x in aa} countryIds = list(map(lambda x: x['country_id'], GIVEN_QUERY['countries'])) days=GIVEN_QUERY['days'] regions=GIVEN_QUERY['regions'] regionDic=list(map(lambda x:{x['region_id']:x['day']},regions)) bb=[2,3,4,5] regionsMapInQuery = {x['region_id']: x['day'] for x in regions} aa=dict(a=3) if (set(regionsMapInQuery.keys()) - set(regionsMapInGenPlan.keys())): print("ssssss") print(regionsMapInQuery.items()) print(regionsMapInGenPlan.items()) a=[1,2,0,4,5] b=[11,22,33,44] c=99 f=[] g=[] flag=True while flag: try: flag=False f.append(c/a[1]) except: print("ass") flag=True print(f) cc=7 if cc<10: k=1 elif cc<8:
[ "693012166@qq.com" ]
693012166@qq.com
1a9fdad84082ad62c188334c8445b608a7a5a019
e36c5a91306f8d8cf487368d3a1dfae4c03da3c0
/build/kobuki/kobuki_rapps/catkin_generated/pkg.installspace.context.pc.py
372c7404214955533195ccc02886f75fca384f77
[]
no_license
DocDouze/RobMob
84ae5b96a16028586c9da2008f7c7772bdaa1334
6a2e7505eb2207d61b1c354cfd255075b1efbc73
refs/heads/master
2020-04-11T07:24:28.958201
2018-12-17T11:56:54
2018-12-17T11:56:54
161,607,677
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "kobuki_rapps" PROJECT_SPACE_DIR = "/home/aubailly/Bureau/RobMob/install" PROJECT_VERSION = "0.7.6"
[ "quentin.aubailly@gmail.com" ]
quentin.aubailly@gmail.com
d90fd35bf40e7a1f2b6daeb33e81655229a263b7
bf2055e49649d849874bd997d84b80eb9ae5cfaf
/app/config/settings/production.py
10d395de3a4fe62e5ccd0275b974071c2e19802f
[]
no_license
jmichalicek/bash-shell.net
99b2fb7b99c7838065703329cf01707b3a4c0737
225f21c05289362c91d23561f3d32123e642ca94
refs/heads/main
2023-08-31T10:25:01.152443
2023-08-25T13:26:38
2023-08-25T13:26:38
12,030,543
3
1
null
2023-08-25T13:26:40
2013-08-11T03:17:14
Python
UTF-8
Python
false
false
455
py
import os import sentry_sdk from sentry_sdk.integrations.django import DjangoIntegration from .base import * sentry_sdk.init( dsn=os.environ.get('SENTRY_DSN', ''), integrations=[DjangoIntegration()], # Since I have no traffic, this might be really low traces_sample_rate=0.2, # If you wish to associate users to errors (assuming you are using # django.contrib.auth) you may enable sending PII data. send_default_pii=True, )
[ "jmichalicek@gmail.com" ]
jmichalicek@gmail.com
a13a7592a7f4d8f2714173051ff6dfe2495563d5
7134a4b998b6c353fdb113c49d80965753661b42
/marltoolbox/experiments/rllib_api/amtft_various_env.py
f6900c8bcfbed26d0c4e1219d03eea149f0418aa
[ "MIT" ]
permissive
xingxiaoyu1109/marltoolbox
806b8ad720055a01c663ef15880b7808b460c5a2
cae1ba94ccb44700b66a32e0734a0f11c9c6c7fe
refs/heads/master
2023-05-07T14:56:37.367845
2021-06-02T15:54:27
2021-06-02T15:54:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,420
py
import copy import logging import os import ray from ray import tune from ray.rllib.agents import dqn from ray.rllib.agents.dqn.dqn_torch_policy import postprocess_nstep_and_prio from ray.rllib.utils import merge_dicts from ray.rllib.utils.schedules import PiecewiseSchedule from ray.tune.integration.wandb import WandbLogger from ray.tune.logger import DEFAULT_LOGGERS from marltoolbox.algos import amTFT from marltoolbox.envs import ( matrix_sequential_social_dilemma, vectorized_coin_game, vectorized_mixed_motive_coin_game, ssd_mixed_motive_coin_game, ) from marltoolbox.envs.utils.wrappers import ( add_RewardUncertaintyEnvClassWrapper, ) from marltoolbox.scripts import aggregate_and_plot_tensorboard_data from marltoolbox.utils import ( exploration, log, postprocessing, miscellaneous, plot, self_and_cross_perf, callbacks, ) logger = logging.getLogger(__name__) def main(debug, train_n_replicates=None, filter_utilitarian=None, env=None): hparams = get_hyperparameters( debug, train_n_replicates, filter_utilitarian, env ) if hparams["load_plot_data"] is None: ray.init( num_cpus=os.cpu_count(), num_gpus=0, local_mode=hparams["debug"] ) # Train if hparams["load_policy_data"] is None: tune_analysis_per_welfare = train_for_each_welfare_function( hparams ) else: tune_analysis_per_welfare = load_tune_analysis( hparams["load_policy_data"] ) # Eval & Plot analysis_metrics_per_mode = config_and_evaluate_cross_play( tune_analysis_per_welfare, hparams ) ray.shutdown() else: tune_analysis_per_welfare = None # Plot analysis_metrics_per_mode = config_and_evaluate_cross_play( tune_analysis_per_welfare, hparams ) return tune_analysis_per_welfare, analysis_metrics_per_mode def get_hyperparameters( debug, train_n_replicates=None, filter_utilitarian=None, env=None, reward_uncertainty=0.0, ): if debug: train_n_replicates = 2 n_times_more_utilitarians_seeds = 1 elif train_n_replicates is None: n_times_more_utilitarians_seeds = 4 train_n_replicates = 4 else: n_times_more_utilitarians_seeds = 4 n_seeds_to_prepare = train_n_replicates * ( 1 + n_times_more_utilitarians_seeds ) pool_of_seeds = miscellaneous.get_random_seeds(n_seeds_to_prepare) exp_name, _ = log.log_in_current_day_dir("amTFT") hparams = { "debug": debug, "filter_utilitarian": filter_utilitarian if filter_utilitarian is not None else not debug, "seeds": pool_of_seeds, "train_n_replicates": train_n_replicates, "n_times_more_utilitarians_seeds": n_times_more_utilitarians_seeds, "exp_name": exp_name, "log_n_points": 250, "load_plot_data": None, # Example: "load_plot_data": ".../SelfAndCrossPlay_save.p", "load_policy_data": None, # "load_policy_data": { # "Util": [ # ".../IBP/amTFT/trials/" # "DQN_AsymCoinGame_...", # ".../IBP/amTFT/trials/" # "DQN_AsymCoinGame_..."], # 'IA':[ # ".../temp/IBP/amTFT/trials/" # "DQN_AsymCoinGame_...", # ".../IBP/amTFT/trials/" # "DQN_AsymCoinGame_..."], # }, # "load_policy_data": { # "Util": [ # "~/dev-maxime/CLR/vm-data/instance-60-cpu-1-preemtible/amTFT" # "/2021_03_28/19_38_55/utilitarian_welfare/coop" # "/DQN_VectMixedMotiveCG_06231_00000_0_seed=1616960338_2021-03-29_00-52-23/checkpoint_250/checkpoint-250", # # "~/dev-maxime/CLR/vm-data/instance-60-cpu-1-preemtible/amTFT" # # "/2021_03_24/18_22_47/utilitarian_welfare/coop" # # "/DQN_VectMixedMotiveCG_e1de7_00001_1_seed=1616610171_2021-03-25_00-27-29/checkpoint_250/checkpoint-250", # # "~/dev-maxime/CLR/vm-data/instance-60-cpu-1-preemtible/amTFT" # # "/2021_03_24/18_22_47/utilitarian_welfare/coop" # # "/DQN_VectMixedMotiveCG_e1de7_00002_2_seed=1616610172_2021-03-25_00-27-29/checkpoint_250/checkpoint-250", # ], # 'IA':[ # "~/dev-maxime/CLR/vm-data/instance-60-cpu-1-preemtible" # "/amTFT/2021_03_28/19_38_55/inequity_aversion_welfare/coop" # "/DQN_VectMixedMotiveCG_d5a2a_00000_0_seed=1616960335_2021-03-28_21-23-26/checkpoint_250/checkpoint-250", # # "~/dev-maxime/CLR/vm-data/instance-60-cpu-1-preemtible" # # "/amTFT/2021_03_24/18_22_47/inequity_aversion_welfare/coop" # # "/DQN_VectMixedMotiveCG_9cfe6_00001_1_seed=1616610168_2021-03-24_20-22-11/checkpoint_250/checkpoint-250", # # "~/dev-maxime/CLR/vm-data/instance-60-cpu-1-preemtible" # # "/amTFT/2021_03_24/18_22_47/inequity_aversion_welfare/coop" # # "/DQN_VectMixedMotiveCG_9cfe6_00002_2_seed=1616610169_2021-03-24_20-22-11/checkpoint_250/checkpoint-250", # ], # }, # "load_policy_data": { # "Util": [ # "~/ray_results/amTFT" # "/2021_03_24/18_22_47/utilitarian_welfare/coop" # "/DQN_VectMixedMotiveCG_e1de7_00000_0_seed=1616610170_2021-03-25_00-27-29/checkpoint_250/checkpoint-250", # "~/ray_results/amTFT" # "/2021_03_24/18_22_47/utilitarian_welfare/coop" # "/DQN_VectMixedMotiveCG_e1de7_00001_1_seed=1616610171_2021-03-25_00-27-29/checkpoint_250/checkpoint-250", # "~/ray_results/amTFT" # "/2021_03_24/18_22_47/utilitarian_welfare/coop" # "/DQN_VectMixedMotiveCG_e1de7_00002_2_seed=1616610172_2021-03-25_00-27-29/checkpoint_250/checkpoint-250", # ], # 'IA': [ # "~/ray_results" # "/amTFT/2021_03_24/18_22_47/inequity_aversion_welfare/coop" # "/DQN_VectMixedMotiveCG_9cfe6_00000_0_seed=1616610167_2021-03-24_20-22-10/checkpoint_250/checkpoint-250", # "~/ray_results" # "/amTFT/2021_03_24/18_22_47/inequity_aversion_welfare/coop" # "/DQN_VectMixedMotiveCG_9cfe6_00001_1_seed=1616610168_2021-03-24_20-22-11/checkpoint_250/checkpoint-250", # "~/ray_results" # "/amTFT/2021_03_24/18_22_47/inequity_aversion_welfare/coop" # "/DQN_VectMixedMotiveCG_9cfe6_00002_2_seed=1616610169_2021-03-24_20-22-11/checkpoint_250/checkpoint-250", # ], # }, "amTFTPolicy": amTFT.AmTFTRolloutsTorchPolicy, "welfare_functions": [ (postprocessing.WELFARE_INEQUITY_AVERSION, "inequity_aversion"), (postprocessing.WELFARE_UTILITARIAN, "utilitarian"), ], "jitter": 0.05, "hiddens": [64], "gamma": 0.96, # If not in self play then amTFT # will be evaluated against a naive selfish policy or an exploiter "self_play": True, # "self_play": False, # Not tested "env_name": "IteratedPrisonersDilemma" if env is None else env, # "env_name": "IteratedAsymBoS" if env is None else env, # "env_name": "CoinGame" if env is None else env, # "env_name": "AsymCoinGame" if env is None else env, # "env_name": "MixedMotiveCoinGame" if env is None else env, # "env_name": "SSDMixedMotiveCoinGame" if env is None else env, "overwrite_reward": True, "explore_during_evaluation": True, "reward_uncertainty": reward_uncertainty, } hparams = modify_hyperparams_for_the_selected_env(hparams) hparams["plot_keys"] = amTFT.PLOT_KEYS + hparams["plot_keys"] hparams["plot_assemblage_tags"] = ( amTFT.PLOT_ASSEMBLAGE_TAGS + hparams["plot_assemblage_tags"] ) return hparams def load_tune_analysis(grouped_checkpoints_paths: dict): tune_analysis = {} msg = "start load_tune_analysis" print(msg) logger.info(msg) for group_name, checkpoints_paths in grouped_checkpoints_paths.items(): one_tune_analysis = miscellaneous.load_one_tune_analysis( checkpoints_paths, n_dir_level_between_ckpt_and_exp_state=3 ) tune_analysis[group_name] = one_tune_analysis msg = "end load_tune_analysis" print(msg) logger.info(msg) return tune_analysis def modify_hyperparams_for_the_selected_env(hp): hp["plot_keys"] = ( amTFT.PLOT_KEYS + aggregate_and_plot_tensorboard_data.PLOT_KEYS ) hp["plot_assemblage_tags"] = ( amTFT.PLOT_ASSEMBLAGE_TAGS + aggregate_and_plot_tensorboard_data.PLOT_ASSEMBLAGE_TAGS ) mul_temp = 1.0 hp["punishment_multiplier"] = 3.0 hp["buf_frac"] = 0.125 hp["training_intensity"] = 10 # hp["rollout_length"] = 40 # hp["n_rollout_replicas"] = 20 hp["rollout_length"] = 4 hp["n_rollout_replicas"] = 5 if "CoinGame" in hp["env_name"]: hp["plot_keys"] += vectorized_coin_game.PLOT_KEYS hp["plot_assemblage_tags"] += vectorized_coin_game.PLOT_ASSEMBLAGE_TAGS hp["n_steps_per_epi"] = 20 if hp["debug"] else 100 hp["n_epi"] = 10 if hp["debug"] else 4000 hp["base_lr"] = 0.1 hp["bs_epi_mul"] = 1 hp["both_players_can_pick_the_same_coin"] = False hp["sgd_momentum"] = 0.9 hp["lambda"] = 0.96 hp["alpha"] = 0.0 hp["beta"] = 0.5 hp["debit_threshold"] = 30.0 hp["jitter"] = 0.02 hp["filter_utilitarian"] = False hp["target_network_update_freq"] = 100 * hp["n_steps_per_epi"] hp["last_exploration_temp_value"] = 0.03 * mul_temp hp["temperature_schedule"] = PiecewiseSchedule( endpoints=[ (0, 2.0 * mul_temp), ( int(hp["n_steps_per_epi"] * hp["n_epi"] * 0.20), 0.5 * mul_temp, ), ( int(hp["n_steps_per_epi"] * hp["n_epi"] * 0.60), hp["last_exploration_temp_value"], ), ], outside_value=hp["last_exploration_temp_value"], framework="torch", ) if "AsymCoinGame" in hp["env_name"]: hp["x_limits"] = (-0.5, 3.0) hp["y_limits"] = (-1.1, 0.6) hp["env_class"] = vectorized_coin_game.AsymVectorizedCoinGame elif "MixedMotiveCoinGame" in hp["env_name"]: if "SSDMixedMotiveCoinGame" in hp["env_name"]: hp["debit_threshold"] = 3.0 hp["x_limits"] = (-0.25, 1.0) hp["y_limits"] = (-0.25, 1.5) hp[ "env_class" ] = ssd_mixed_motive_coin_game.SSDMixedMotiveCoinGame else: hp["x_limits"] = (-2.0, 2.0) hp["y_limits"] = (-0.5, 3.0) hp[ "env_class" ] = vectorized_mixed_motive_coin_game.VectMixedMotiveCG hp["both_players_can_pick_the_same_coin"] = True else: hp["x_limits"] = (-0.5, 0.6) hp["y_limits"] = (-0.5, 0.6) hp["env_class"] = vectorized_coin_game.VectorizedCoinGame else: hp["plot_keys"] += matrix_sequential_social_dilemma.PLOT_KEYS hp[ "plot_assemblage_tags" ] += matrix_sequential_social_dilemma.PLOT_ASSEMBLAGE_TAGS hp["base_lr"] = 0.03 hp["bs_epi_mul"] = 1 hp["n_steps_per_epi"] = 20 hp["n_epi"] = 10 if hp["debug"] else 800 hp["lambda"] = 0.96 hp["alpha"] = 0.0 hp["beta"] = 1.0 hp["sgd_momentum"] = 0.0 hp["debit_threshold"] = 10.0 hp["target_network_update_freq"] = 30 * hp["n_steps_per_epi"] hp["last_exploration_temp_value"] = 0.1 * mul_temp hp["temperature_schedule"] = PiecewiseSchedule( endpoints=[ (0, 2.0 * mul_temp), ( int(hp["n_steps_per_epi"] * hp["n_epi"] * 0.33), 0.5 * mul_temp, ), ( int(hp["n_steps_per_epi"] * hp["n_epi"] * 0.66), hp["last_exploration_temp_value"], ), ], outside_value=hp["last_exploration_temp_value"], framework="torch", ) if "IteratedPrisonersDilemma" in hp["env_name"]: hp["filter_utilitarian"] = False hp["x_limits"] = (-3.5, 0.5) hp["y_limits"] = (-3.5, 0.5) hp["utilitarian_filtering_threshold"] = -2.5 hp[ "env_class" ] = matrix_sequential_social_dilemma.IteratedPrisonersDilemma elif "IteratedAsymBoS" in hp["env_name"]: hp["x_limits"] = (-0.1, 4.1) hp["y_limits"] = (-0.1, 4.1) hp["utilitarian_filtering_threshold"] = 3.2 hp["env_class"] = matrix_sequential_social_dilemma.IteratedAsymBoS else: raise NotImplementedError(f'hp["env_name"]: {hp["env_name"]}') hp["lr_schedule"] = [ (0, 0.0), (int(hp["n_steps_per_epi"] * hp["n_epi"] * 0.05), hp["base_lr"]), (int(hp["n_steps_per_epi"] * hp["n_epi"]), hp["base_lr"] / 1e9), ] hp["plot_axis_scale_multipliers"] = ( (1 / hp["n_steps_per_epi"]), # for x axis (1 / hp["n_steps_per_epi"]), ) # for y axis hp["env_class"] = add_RewardUncertaintyEnvClassWrapper( env_class=hp["env_class"], reward_uncertainty_std=hp["reward_uncertainty"], ) return hp def train_for_each_welfare_function(hp): tune_analysis_per_welfare = {} for welfare_fn, welfare_group_name in hp["welfare_functions"]: print("==============================================") print( "Going to start two_steps_training with welfare function", welfare_fn, ) if welfare_fn == postprocessing.WELFARE_UTILITARIAN: hp = preprocess_utilitarian_config(hp) stop, env_config, rllib_config = get_rllib_config(hp, welfare_fn) exp_name = os.path.join(hp["exp_name"], welfare_fn) results = amTFT.train_amtft( stop_config=stop, rllib_config=rllib_config, name=exp_name, TrainerClass=dqn.DQNTrainer, plot_keys=hp["plot_keys"], plot_assemblage_tags=hp["plot_assemblage_tags"], debug=hp["debug"], log_to_file=not hp["debug"], loggers=None if hp["debug"] else DEFAULT_LOGGERS + (WandbLogger,), ) if welfare_fn == postprocessing.WELFARE_UTILITARIAN: results, hp = postprocess_utilitarian_results( results, env_config, hp ) tune_analysis_per_welfare[welfare_group_name] = results return tune_analysis_per_welfare def preprocess_utilitarian_config(hp): hp_copy = copy.deepcopy(hp) if hp_copy["filter_utilitarian"]: hp_copy["train_n_replicates"] = ( hp_copy["train_n_replicates"] * hp_copy["n_times_more_utilitarians_seeds"] ) return hp_copy def get_rllib_config(hp, welfare_fn, eval=False): stop = { "episodes_total": hp["n_epi"], } env_config = get_env_config(hp) policies = get_policies(hp, env_config, welfare_fn, eval) selected_seeds = hp["seeds"][: hp["train_n_replicates"]] hp["seeds"] = hp["seeds"][hp["train_n_replicates"] :] rllib_config = { "env": hp["env_class"], "env_config": env_config, "multiagent": { "policies": policies, "policy_mapping_fn": lambda agent_id: agent_id, # When replay_mode=lockstep, RLlib will replay all the agent # transitions at a particular timestep together in a batch. # This allows the policy to implement differentiable shared # computations between agents it controls at that timestep. # When replay_mode=independent, # transitions are replayed independently per policy. # "replay_mode": "lockstep", "observation_fn": amTFT.observation_fn, }, "gamma": hp["gamma"], "seed": tune.grid_search(selected_seeds), # === Optimization === # Learning rate for adam optimizer "lr": hp["base_lr"], # Learning rate schedule "lr_schedule": hp["lr_schedule"], # If not None, clip gradients during optimization at this value "grad_clip": 1, # Update the replay buffer with this many samples at once. Note that # this setting applies per-worker if num_workers > 1. "rollout_fragment_length": hp["n_steps_per_epi"], # Size of a batch sampled from replay buffer for training. Note that # if async_updates is set, then each worker returns gradients for a # batch of this size. "train_batch_size": int(hp["n_steps_per_epi"] * hp["bs_epi_mul"]), "training_intensity": hp["training_intensity"], # Minimum env steps to optimize for per train call. This value does # not affect learning, only the length of iterations. "timesteps_per_iteration": hp["n_steps_per_epi"] if hp["debug"] else int(hp["n_steps_per_epi"] * hp["n_epi"] / hp["log_n_points"]), "min_iter_time_s": 0.0, # General config "framework": "torch", # LE supports only 1 worker only otherwise # it would be mixing several opponents trajectories "num_workers": 0, # LE supports only 1 env per worker only otherwise # several episodes would be played at the same time "num_envs_per_worker": 1, # Callbacks that will be run during various phases of training. See the # `DefaultCallbacks` class and # `examples/custom_metrics_and_callbacks.py` for more usage # information. "callbacks": callbacks.merge_callbacks( amTFT.AmTFTCallbacks, log.get_logging_callbacks_class( log_full_epi=True, log_full_epi_interval=100 ), ), "logger_config": { "wandb": { "project": "amTFT", "group": hp["exp_name"], "api_key_file": os.path.join( os.path.dirname(__file__), "../../../api_key_wandb" ), "log_config": True, }, }, # === DQN Models === # Update the target network every `target_network_update_freq` steps. "target_network_update_freq": hp["target_network_update_freq"], # === Replay buffer === # Size of the replay buffer. Note that if async_updates is set, then # each worker will have a replay buffer of this size. "buffer_size": max( int(hp["n_steps_per_epi"] * hp["n_epi"] * hp["buf_frac"]), 5 ), # Whether to use dueling dqn "dueling": True, # Dense-layer setup for each the advantage branch and the value branch # in a dueling architecture. "hiddens": hp["hiddens"], # Whether to use double dqn "double_q": True, # If True prioritized replay buffer will be used. "prioritized_replay": False, "model": { # Number of hidden layers for fully connected net "fcnet_hiddens": hp["hiddens"], # Nonlinearity for fully connected net (tanh, relu) "fcnet_activation": "relu", }, # How many steps of the model to sample before learning starts. "learning_starts": int(hp["n_steps_per_epi"] * hp["bs_epi_mul"]), # === Exploration Settings === # Default exploration behavior, iff `explore`=None is passed into # compute_action(s). # Set to False for no exploration behavior (e.g., for evaluation). "explore": True, # Provide a dict specifying the Exploration object's config. "exploration_config": { # The Exploration class to use. In the simplest case, # this is the name (str) of any class present in the # `rllib.utils.exploration` package. # You can also provide the python class directly or # the full location of your class (e.g. # "ray.rllib.utils.exploration.epsilon_greedy. # EpsilonGreedy"). "type": exploration.SoftQSchedule, # Add constructor kwargs here (if any). "temperature_schedule": hp["temperature_schedule"], }, } if "CoinGame" in hp["env_name"]: rllib_config["model"] = { "dim": env_config["grid_size"], "conv_filters": [[16, [3, 3], 1], [32, [3, 3], 1]], # [Channel, [Kernel, Kernel], Stride]] } return stop, env_config, rllib_config def get_env_config(hp): if "CoinGame" in hp["env_name"]: env_config = { "players_ids": ["player_red", "player_blue"], "max_steps": hp["n_steps_per_epi"], "grid_size": 3, "both_players_can_pick_the_same_coin": hp[ "both_players_can_pick_the_same_coin" ], } else: env_config = { "players_ids": ["player_row", "player_col"], "max_steps": hp["n_steps_per_epi"], } return env_config def get_policies(hp, env_config, welfare_fn, eval=False): PolicyClass = hp["amTFTPolicy"] NestedPolicyClass, CoopNestedPolicyClass = get_nested_policy_class( hp, welfare_fn ) if eval: NestedPolicyClass = CoopNestedPolicyClass amTFT_config_update = merge_dicts( amTFT.DEFAULT_CONFIG, { # Set to True to train the nested policies and to False to use them "working_state": "train_coop", "welfare_key": welfare_fn, "verbose": 1 if hp["debug"] else 0, # "verbose": 1 if hp["debug"] else 2, "punishment_multiplier": hp["punishment_multiplier"], "debit_threshold": hp["debit_threshold"], "rollout_length": min(hp["n_steps_per_epi"], hp["rollout_length"]), "n_rollout_replicas": hp["n_rollout_replicas"], "optimizer": { "sgd_momentum": hp["sgd_momentum"], }, "nested_policies": [ {"Policy_class": CoopNestedPolicyClass, "config_update": {}}, {"Policy_class": NestedPolicyClass, "config_update": {}}, {"Policy_class": CoopNestedPolicyClass, "config_update": {}}, {"Policy_class": NestedPolicyClass, "config_update": {}}, ], }, ) policy_1_config = copy.deepcopy(amTFT_config_update) policy_1_config["own_policy_id"] = env_config["players_ids"][0] policy_1_config["opp_policy_id"] = env_config["players_ids"][1] policy_2_config = copy.deepcopy(amTFT_config_update) policy_2_config["own_policy_id"] = env_config["players_ids"][1] policy_2_config["opp_policy_id"] = env_config["players_ids"][0] policies = { env_config["players_ids"][0]: ( # The default policy is DQN defined in DQNTrainer but # we overwrite it to use the LE policy PolicyClass, hp["env_class"](env_config).OBSERVATION_SPACE, hp["env_class"].ACTION_SPACE, policy_1_config, ), env_config["players_ids"][1]: ( PolicyClass, hp["env_class"](env_config).OBSERVATION_SPACE, hp["env_class"].ACTION_SPACE, policy_2_config, ), } return policies def get_nested_policy_class(hp, welfare_fn): NestedPolicyClass = amTFT.DEFAULT_NESTED_POLICY_SELFISH CoopNestedPolicyClass = NestedPolicyClass.with_updates( # TODO problem: this prevent to use HP searches on gamma etc. postprocess_fn=miscellaneous.merge_policy_postprocessing_fn( postprocessing.welfares_postprocessing_fn( add_utilitarian_welfare=( welfare_fn == postprocessing.WELFARE_UTILITARIAN ), add_inequity_aversion_welfare=( welfare_fn == postprocessing.WELFARE_INEQUITY_AVERSION ), inequity_aversion_alpha=hp["alpha"], inequity_aversion_beta=hp["beta"], inequity_aversion_gamma=hp["gamma"], inequity_aversion_lambda=hp["lambda"], ), postprocess_nstep_and_prio, ) ) return NestedPolicyClass, CoopNestedPolicyClass def postprocess_utilitarian_results(results, env_config, hp): hp_cp = copy.deepcopy(hp) if hp["filter_utilitarian"]: hp_cp["train_n_replicates"] = ( hp_cp["train_n_replicates"] // hp_cp["n_times_more_utilitarians_seeds"] ) results = miscellaneous.filter_tune_results( results, metric=f"policy_reward_mean/{env_config['players_ids'][0]}", metric_threshold=hp_cp["utilitarian_filtering_threshold"] * hp_cp["n_steps_per_epi"], metric_mode="last-5-avg", threshold_mode="above", ) if len(results.trials) > hp_cp["train_n_replicates"]: results.trials = results.trials[: hp_cp["train_n_replicates"]] elif len(results.trials) < hp_cp["train_n_replicates"]: print("WARNING: not enough Utilitarian trials above threshold!!!") return results, hp_cp def config_and_evaluate_cross_play(tune_analysis_per_welfare, hp): config_eval, env_config, stop, hp_eval = generate_eval_config(hp) return evaluate_self_play_cross_play( tune_analysis_per_welfare, config_eval, env_config, stop, hp_eval ) def evaluate_self_play_cross_play( tune_analysis_per_welfare, config_eval, env_config, stop, hp_eval ): exp_name = os.path.join(hp_eval["exp_name"], "eval") evaluator = self_and_cross_perf.SelfAndCrossPlayEvaluator( exp_name=exp_name, local_mode=hp_eval["debug"], ) analysis_metrics_per_mode = evaluator.perform_evaluation_or_load_data( evaluation_config=config_eval, stop_config=stop, policies_to_load_from_checkpoint=copy.deepcopy( env_config["players_ids"] ), tune_analysis_per_exp=tune_analysis_per_welfare, TrainerClass=dqn.DQNTrainer, n_self_play_per_checkpoint=hp_eval["n_self_play_per_checkpoint"], n_cross_play_per_checkpoint=hp_eval["n_cross_play_per_checkpoint"], to_load_path=hp_eval["load_plot_data"], ) if "CoinGame" in hp_eval["env_name"]: background_area_coord = None else: background_area_coord = hp_eval["env_class"].PAYOUT_MATRIX plot_config = plot.PlotConfig( xlim=hp_eval["x_limits"], ylim=hp_eval["y_limits"], markersize=5, alpha=1.0, jitter=hp_eval["jitter"], xlabel="player 1 payoffs", ylabel="player 2 payoffs", plot_max_n_points=hp_eval["train_n_replicates"], x_scale_multiplier=hp_eval["plot_axis_scale_multipliers"][0], y_scale_multiplier=hp_eval["plot_axis_scale_multipliers"][1], background_area_coord=background_area_coord, ) evaluator.plot_results( analysis_metrics_per_mode, plot_config=plot_config, x_axis_metric=f"policy_reward_mean/{env_config['players_ids'][0]}", y_axis_metric=f"policy_reward_mean/{env_config['players_ids'][1]}", ) print_inequity_aversion_welfare(env_config, analysis_metrics_per_mode) return analysis_metrics_per_mode def generate_eval_config(hp): hp_eval = modify_hp_for_evaluation(hp) fake_welfare_function = postprocessing.WELFARE_INEQUITY_AVERSION stop, env_config, rllib_config = get_rllib_config( hp_eval, fake_welfare_function, eval=True ) config_eval = modify_config_for_evaluation( rllib_config, hp_eval, env_config ) return config_eval, env_config, stop, hp_eval def modify_hp_for_evaluation(hp: dict, eval_over_n_epi: int = 1): hp_eval = copy.deepcopy(hp) # TODO is the overwrite_reward hp useless? hp_eval["overwrite_reward"] = False hp_eval["n_epi"] = eval_over_n_epi hp_eval["n_steps_per_epi"] = 5 if hp_eval["debug"] else 100 hp_eval["bs_epi_mul"] = 1 hp_eval["plot_axis_scale_multipliers"] = ( # for x axis (1 / hp_eval["n_steps_per_epi"]), # for y axis (1 / hp_eval["n_steps_per_epi"]), ) hp_eval["n_self_play_per_checkpoint"] = 1 hp_eval["n_cross_play_per_checkpoint"] = min( 5, ( (hp_eval["train_n_replicates"] * len(hp_eval["welfare_functions"])) - 1 ), ) return hp_eval def modify_config_for_evaluation(config_eval, hp, env_config): config_eval["explore"] = False config_eval["seed"] = None policies = config_eval["multiagent"]["policies"] for policy_id in policies.keys(): policy_config = policies[policy_id][3] policy_config["working_state"] = "eval_amtft" if not hp["self_play"]: naive_player_id = env_config["players_ids"][-1] naive_player_policy_config = policies[naive_player_id][3] naive_player_policy_config["working_state"] = "eval_naive_selfish" if hp["explore_during_evaluation"]: tmp_mul = 1.0 config_eval["explore"] = (miscellaneous.OVERWRITE_KEY, True) config_eval["exploration_config"] = { "type": config_eval["exploration_config"]["type"], "temperature_schedule": PiecewiseSchedule( endpoints=[ (0, tmp_mul * hp["last_exploration_temp_value"]), (0, tmp_mul * hp["last_exploration_temp_value"]), ], outside_value=tmp_mul * hp["last_exploration_temp_value"], framework="torch", ), } if hp["debug"] and hp.get("debit_threshold_debug_override", True): for policy_id in policies.keys(): policies[policy_id][3]["debit_threshold"] = 0.5 policies[policy_id][3]["last_k"] = hp["n_steps_per_epi"] - 1 return config_eval def print_inequity_aversion_welfare(env_config, analysis_metrics_per_mode): plotter = self_and_cross_perf.SelfAndCrossPlayPlotter() plotter._reset( x_axis_metric=f"nested_policy/{env_config['players_ids'][0]}/worker_0/" f"policy_0/sum_over_epi_inequity_aversion_welfare", y_axis_metric=f"nested_policy/{env_config['players_ids'][1]}/worker_0/" f"policy_0/sum_over_epi_inequity_aversion_welfare", metric_mode="avg", ) for mode_metric in analysis_metrics_per_mode: print("mode_metric", mode_metric[0], mode_metric[3]) x, y = plotter._extract_x_y_points(mode_metric[1]) print("x", x) print("y", y) if __name__ == "__main__": debug_mode = True main(debug_mode)
[ "maxime.riche@geoapi-airbusds.com" ]
maxime.riche@geoapi-airbusds.com
84cc6b5087235720d2d70cc3a974c5b7ffb22590
41b8504bc0a7f2aaedd2f4986c3e66fcae7d9b2b
/pyoembed/data_types/rich.py
8ec6615f222fd87f7d50c6e76bde486707bb55ed
[ "BSD-3-Clause" ]
permissive
conversence/pyoembed
b15124dc092c8863e01ab1128f888bfc21a889b7
f3d819418877565cd88839054bd826ad79d4f9cf
refs/heads/master
2020-05-25T14:55:30.936629
2020-05-01T18:25:10
2020-05-01T18:25:10
187,857,180
0
0
BSD-3-Clause
2019-05-21T14:44:37
2019-05-21T14:44:36
null
UTF-8
Python
false
false
167
py
from pyoembed.data_types import BaseDataType class RichDataType(BaseDataType): priority = 3 name = 'rich' required_fields = ['html', 'width', 'height']
[ "rafael@rafaelmartins.eng.br" ]
rafael@rafaelmartins.eng.br
68f6a28d48852a7385fe6d0e1fde46a273192a95
741d9469b5dce73f1a91525ee0495402f3e3db53
/posts/views.py
62c2916c80dede5b914a0833c23c6b1367cd2546
[]
no_license
adcabrod/Pr-ctica3djangopython
241fa168c25b88eacaa246106d8550eed9155c82
c09d52926cb6816fec6a04b8f64a46e8e8b0277b
refs/heads/master
2021-01-09T06:01:28.843336
2017-02-03T23:30:27
2017-02-03T23:30:27
80,878,430
0
0
null
null
null
null
UTF-8
Python
false
false
5,502
py
from django.shortcuts import render from posts.models import Post from django.contrib.auth.models import User from django.http import HttpResponseNotFound, HttpResponse from django.views import View from django.utils import timezone from django.shortcuts import render from posts.models import Post from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator from practica3.forms import PostForm from django.urls import reverse class home(View): def get(self, request): """ Renderiza el home con un listado de posts :param request: objeto HttpRequest con los datos de la petición :return: objeto HttpResponse con los datos de la respuesta """ # recupera todos los posts de la base de datos y los ordeno por fecha de publicación posts = Post.objects.filter(publication_date__lte=timezone.now()).order_by('-publication_date') context ={'posts_list': posts[:7]} return render(request, 'posts/home.html', context) class blogsView(View): def get(self, request): """ Renderiza el /blogs con un listado de los blogs, un blog por usuario :param request: objeto HttpRequest con los datos de la petición :return: objeto HttpRequest con los datos de la respuesta """ blog = User.objects.order_by('username') context = {'blogs_list': blog[:7]} return render(request, 'posts/blogs.html', context) class PostView(View): def get (self, request, username, pk): """ Renderiza un post en detalle :param request:objeto HttpRequest con los datos de la petición :param pk: clave primaria del post a recuperar :return: objeto httpResponse con los datos de la respuesta """ post = PostQueryset.get_posts_by_user(request.user, username).filter(pk=pk) context = {'post': post[0], 'username': username} return render(request, 'posts/postView.html', context) class blogDetailView(View): def get(self, request, username): """ Renderiza los artículos de un usuario :param request: objeto HttpRequest con los datos de la petición :param username: username del autor del artículo a recuperar :return: objeto HttpResponse con los datos de la respuesta """ # Muestro los post de un usuario en concreto posts = PostQueryset.get_posts_by_user(request.user, username).order_by('-publication_date') context = {'posts_list': posts, 'username': username} return render(request, 'posts/userBlog.html', context) class PostCreationView(View): @method_decorator(login_required()) def get(self, request): """ Presenta el formulario para crear un post :param request: objeto HttpRequest con los datos de la petición :return: objeto HttpResponse con los datos de la respuesta """ message = None post_form = PostForm() context = {'form': post_form, 'message': message} return render(request, 'posts/post_creation.html', context) @method_decorator(login_required()) def post(self, request): """ Presenta el formulario para crear un post y, en caso de que la petición sea POST la valida y la crea en caso de que sea válida :param request: objeto HttpRequest con los datos de la petición :return: objeto HttpResponse con los datos de la respuesta """ message = None post_with_user = Post(owner=request.user) post_form = PostForm(request.POST, instance=post_with_user) if post_form.is_valid(): new_post = post_form.save() post_form = PostForm() message = 'Post creado satisfactoriamente. <a href="{0}">Ver post</a>'.format( reverse('post_view', args=[new_post.owner.username, new_post.pk]) ) # reverse - django hace la revision de la url post_view con los argumentos username y pk context = {'form': post_form, 'message': message} return render(request, 'posts/post_creation.html', context) class PostQueryset(object): @staticmethod def get_posts_by_user(user, username): posts = Post.objects.all().select_related("owner") if not user.is_authenticated(): posts = posts.filter(publication_date__lte=timezone.now(), owner__username=username) elif not user.is_superuser: if user.username == username: posts = posts.filter(owner=user) else: posts = posts.filter(publication_date__tle=timezone.now(), owner__username=username) else: posts = posts.filter(owner__username=username) return posts class PostListApiQueryset(object): @staticmethod def get_post_by_user(user, username): posts = Post.object.all().select_related("owner") if not user.is_authenticated(): posts = posts.filter(publication_date_lte=timezone.now(), owner__username=username) elif not user.is_superuser: if user.username == username: posts = posts.filter(owner=user) else: posts = posts.filter(publication_date__lte=timezone.now(), owner__username=username) else: posts = posts.filter(owner__username=username) return posts
[ "adriancabrod@gmail.com" ]
adriancabrod@gmail.com
1336583395efc34384b1a523b1411becf3b1882a
a19ebd3f326c4f2a8dad58bda6de946ac8366e02
/catkin_ws/build/tf2_ros/catkin_generated/pkg.develspace.context.pc.py
168e25456249981067feddeffee6e2f74274a093
[]
no_license
pynpyn/ballbotRepo
c9a1ba431c071ea8298cb42b01fcc03438acbdda
84e8740f7c945fd6e8b70584d46a8402fa9aa973
refs/heads/master
2020-04-01T22:14:21.101449
2018-11-14T17:58:11
2018-11-14T17:58:11
153,697,917
1
0
null
null
null
null
UTF-8
Python
false
false
631
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/yinan/ballbotRepo/catkin_ws/src/geometry2/tf2_ros/include".split(';') if "/home/yinan/ballbotRepo/catkin_ws/src/geometry2/tf2_ros/include" != "" else [] PROJECT_CATKIN_DEPENDS = "actionlib;actionlib_msgs;geometry_msgs;message_filters;roscpp;rosgraph;tf2;tf2_msgs;tf2_py".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-ltf2_ros".split(';') if "-ltf2_ros" != "" else [] PROJECT_NAME = "tf2_ros" PROJECT_SPACE_DIR = "/home/yinan/ballbotRepo/catkin_ws/devel/.private/tf2_ros" PROJECT_VERSION = "0.6.3"
[ "pynpyn1016@gmail.com" ]
pynpyn1016@gmail.com
09a2b490113541fcea24bf983ccd3be258fb29d0
71536013ef36dfca22f43f822d5c8f5c42d763da
/testfile.py
871798321c4f73a51f07240d4f2e079f71a266eb
[]
no_license
jerryneal/TradeChart
9b179c541778fd3417c80f9e9d89aaf1c068ca42
51dbc269bd4697751ad1ad68c3e700b89439e159
refs/heads/master
2021-01-12T11:27:29.305368
2016-12-03T15:47:05
2016-12-03T15:47:05
72,930,614
0
0
null
2016-11-22T16:12:38
2016-11-05T14:17:50
Python
UTF-8
Python
false
false
976
py
from time import time from math import exp, sqrt, log from random import gauss, seed if __name__ == '__main__': seed(20000) t0 = time() # Parameters S0 = 100. #Initial Value K = 105. # strike price T = 1.0 # Maturity r = 0.05 # riskless short rate sigma = 0.2 # volatility M = 50 dt = T / M I = 250000 # Simulating I paths with M time stamps S = [] for i in range(I): path = [] for t in range(M + 1): if t == 0: path.append(S0) else: z = gauss(0.0,1.0) St = path[t - 1] * exp((r - 0.5 * sigma ** 2) * dt + sigma * sqrt(dt) * z) path.append(St) S.append(path) # Calculating the Actual Simulation C0 = exp(-r * T) * sum([max(path[-1] - K,0) for path in S]) / I # Results output tpy = time() - t0 print "European Option value %7.3f" % C0 print "Duration in Seconds %7.3f" % tpy
[ "mckenzo12@live.com" ]
mckenzo12@live.com
a13b7f305965e6ed44d45a697ccf6e784f56af46
77e7e25a625504774a10ec3aac196370e135640e
/youtubeclone_api/comments/serializers.py
e26532d3c4593fa2814a65d6cdc482ed501af6a7
[]
no_license
DaveyCrockett/YouTube_Clone_API
e9817810caede21b0b495463341dd22bace95bc7
45b74108b8a10ee8e63be3b2972199126adacb79
refs/heads/main
2023-05-18T23:54:21.611857
2021-06-02T13:53:58
2021-06-02T13:53:58
370,783,368
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
from rest_framework import serializers from .models import Comment class CommentSerializer(serializers.ModelSerializer): class Meta: model = Comment fields = ['comment', 'commentId', 'videoId']
[ "augustspies22@gmail.com" ]
augustspies22@gmail.com
f42db6bb9776d4f80162c4e50b2a19955c741082
625ccb2daedc094862cda12eb8805884912462c2
/FigforResponse/R_3_3/code/runvConv.py
78cf227d00aa337e83c63795ad0ddf29ffb559d3
[]
no_license
shunsunsun/vConv-Figures_and_Tables
4a5bf20f18aa6f44e6ec2fcc9f265aa510e71928
e1813d43352eb763fd0c8b5b90b4c92e83792fe4
refs/heads/main
2023-04-13T11:56:11.641674
2021-04-30T02:53:44
2021-04-30T02:53:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
762
py
import os from datetime import datetime def tictoc(): return datetime.now().minute + datetime.now().second + datetime.now().microsecond * (10 ** -6) def vConv(filename): """ use memechip :param InputFile: fasta file :return: """ DataRoot = "../../../data/chip-seqFa/" tmp_cmd = "python vConv-basedmotifdiscovery.py "+DataRoot+filename print(tmp_cmd) os.system(tmp_cmd) def mkdir(path): isExists = os.path.exists(path) if not isExists: os.makedirs(path) return (True) else: return False if __name__ == '__main__': import glob files = open("./fastause.txt").readlines() for filename in files: filename = filename.replace("\n","") vConv(filename)
[ "lijy@mail.cbi.pku.edu.cn" ]
lijy@mail.cbi.pku.edu.cn
6f93a99b11370bb5c25429eb3103be6ed4897061
df7807bb90d2bc3ad6dab75e50bba34a7f497c17
/Rollar-Coaster.py
a676d4c3c39f655d2597876658408c5ecaa988f2
[]
no_license
DhruvUpadhyaya/Python
68b7f09252c9d6ad0c48f08ebb67d275557ad71e
d80891ac1bd8b7f7f61d62aebb2f9f7253cbc946
refs/heads/main
2023-03-30T13:58:00.133932
2021-04-11T12:28:38
2021-04-11T12:28:38
354,930,137
0
0
null
null
null
null
UTF-8
Python
false
false
603
py
#Rollar Coaster Ticket project print('Welcome to Rollar Coaster ride') height = float(input('Enter your height in m ')) age = int(input('Enter your age ')) total=0 if height > 120: print('You can ride') if age<12: print('You need to pay $5') total=5 elif age<=18: print('You need to pay $7') total=7 else: print('You need to pay $12') total=12 else: print('Grow up baby') pic = input('Do you want photos? YES or NO ') if(pic == 'YES'): print("You need to pay additional $3") total+=3 print(f"Your Total amount is:${total} ")
[ "2793dhruv@gmail.com" ]
2793dhruv@gmail.com
4bc673e6bf00bef90ef3ddde63aedb247acdb117
032a59902e47f6843ac9c76f6e27eb1d4a78c27d
/scripts/python/blend_sat/grid_convert.py
851b413692424e4d6da518c70edca3055d81b5bc
[ "Apache-2.0" ]
permissive
OSADP/Pikalert-Vehicle-Data-Translator-
17411c602879eb4fb080201973b4a966f9405a4b
295da604408f6f13af0301b55476a81311459386
refs/heads/master
2021-03-27T12:02:18.535636
2017-04-03T16:09:38
2017-04-03T16:09:38
25,056,408
2
2
null
null
null
null
UTF-8
Python
false
false
1,964
py
#! /usr/bin/env python import os,sys import time import name_schema import index_file import log import tim convert_command = "grid_convert" def grid_convert(pres_time, infile_path, var_names_file, cdl_file, output_dir, out_index_file, logfile, input_base, output_base, testing): success = 0 logfile_path = logfile.get_log_path() # Construct output path names. ifo = name_schema.Fcst_fname(input_base, "nc") infile = os.path.basename(infile_path) file_date_str = ifo.get_date(infile) file_date_tup = tim.datetotuple(file_date_str) file_date = tim.mkgmtime(file_date_tup) output_path = os.path.join(output_dir, file_date_str) if (not os.path.exists(output_path)): logfile.write_time("Info: Executing mkdir -p %s\n" % output_path) if not testing: ret = os.system("mkdir -p %s 2> /dev/null" % output_path) if (ret != 0): logfile.write_time("Error: Unable to make directory.\n") return (0) ofo = name_schema.Fcst_fname(output_base, "nc") outfile = ofo.make_name(file_date_str, ifo.get_it(infile), ifo.get_ft(infile)) outfile_path = os.path.join(output_path, outfile) if (out_index_file.file_processed(outfile, file_date)): logfile.write_time("Info: File %s already exists.\n" % outfile) return (1) logfile_arg = "" if (logfile_path != ""): logfile_arg = "-l %s" % logfile_path command = "%s %s %s %s %s %s" % (convert_command, infile_path, var_names_file, cdl_file, outfile_path, logfile_arg) logfile.write_time("Info: Executing %s\n" % command) if not testing: ret = os.system(command) if (ret == 0): write_str = "%s %d" % (outfile, int(pres_time)) out_index_file.write(write_str, file_date) success = 1 else: logfile.write_time("Error: Unable to convert to file %s. \n" % outfile) return (success)
[ "bpetzke@ucar.edu" ]
bpetzke@ucar.edu
9a37239d6928f07f2fd778ce45b6b806d19ff203
617f1b605be66e00d6a8c006db96e8131ad9d4ff
/xtreme_vision/Segmentation/__init__.py
f9b4fe2d2eecfd5dd1d074699964034ab891f202
[ "MIT" ]
permissive
AsadRasheed-AR/Xtreme-Vision
8d7b5966c0c2c267538c27c0858ec0f4cf2807c3
2e09e6972c6b2752bc37f8356fafda151acacd0d
refs/heads/master
2023-03-26T11:34:04.459514
2021-03-27T03:08:40
2021-03-27T03:08:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,031
py
""" MIT License Copyright (c) 2020 Adeel <kingadeel2017@outlook.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from xtreme_vision.Segmentation.deeplab.semantic import semantic_segmentation from xtreme_vision.Segmentation.maskrcnn.instance import instance_segmentation from xtreme_vision.Segmentation.cdcl.inference_15parts import run_image, run_video import cv2 import os import sys import tensorflow as tf class Segmentation: """ This is Segmentation Class in Xtreme-Vision Library, it provides the support of State-Of-The-Art Models like Mask-RCNN and DeepLabv3+. After Instantiating this Class, you can set its properties and use pre-defined functions for performing segmentation Tasks out of the box. Note: Custom Segmenation only Supports Mask-RCNN Use_MaskRCNN() or Use_DeepLabv3() # To Specify which Model to Use Detect_From_Image() # To Segment from Images Detect_From_Video() # To Segment from Videos Custom_Objects() # To set the desired objects to True e.g. Custom_Objects(car=True) Detect_Custom_Objects_From_Image() # To Segment Custom Objects from Images Detect_Custom_Objects_From_Video() # To Segment Custom Objects from Videos """ def __init__(self): self.model = None self.weights_path = "" self.modelLoaded = False self.modelType = "" def Use_MaskRCNN(self, weights_path: str = None): """[This Function is used to set the Model Type to Mask-RCNN, Automatically downloads the weights if set to None and Loads the Model] Args: weights_path (str, optional): [path to the trained weights file]. Defaults to None. Raises: FileNotFoundError: [If weights file doesn't exist at specified path] """ if weights_path is None: path = 'xtreme_vision/weights/maskrcnn_weights.h5' if os.path.isfile(path): print('Found Existing Weights File...\nLoading Existing File...') self.weights_path = path else: print('Downloading Weights File...\nPlease Wait...') self.weights_path = tf.keras.utils.get_file('maskrcnn_weights.h5', 'https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5', cache_subdir='weights/', cache_dir='xtreme_vision') else: if os.path.isfile(weights_path): self.weights_path = weights_path else: raise FileNotFoundError( "Weights File Doesn't Exist at Provided Path. Please Provide Valid Path.") self.model = instance_segmentation() self.model.load_model(self.weights_path) self.modelLoaded = True self.modelType = 'maskrcnn' def Use_DeepLabv3(self, weights_path: str = None): """[This function is used to set the Model Type to DeepLabv3, Automatically downloads the weights if set to None and Loads the Model] Args: weights_path (str, optional): [path to the trained weights file]. Defaults to None. Raises: FileNotFoundError: [If weights file doesn't exist at specified path] """ if weights_path is None: path = 'xtreme_vision/weights/deeplab_weights.h5' if os.path.isfile(path): print('Found Existing Weights File...\nLoading Existing File...') self.weights_path = path else: print('Downloading Weights File...\nPlease Wait...') self.weights_path = tf.keras.utils.get_file('deeplab_weights.h5', 'https://github.com/ayoolaolafenwa/PixelLib/releases/download/1.3/deeplabv3_xception65_ade20k.h5', cache_subdir='weights/', cache_dir='xtreme_vision') else: if os.path.isfile(weights_path): self.weights_path = weights_path else: raise FileNotFoundError( "Weights File Doesn't Exist at Provided Path. Please Provide Valid Path.") self.model = semantic_segmentation() self.model.load_ade20k_model(self.weights_path) self.modelLoaded = True self.modelType = 'deeplab' def Use_PersonPart(self, weights_path:str=None): if weights_path is not None: if os.path.isfile(weights_path): self.weights_path = weights_path else: raise FileNotFoundError("Weights File Doesn't Exist at provided path.") else: pass self.modelLoaded = True self.modelType = 'cdcl' def Detect_From_Image(self, input_path:str, output_path:str, show_boxes:bool = False): """[This function is used to segment objects from Images] Args: input_path (str): [path to the input image with jpg/jpeg/png extension] output_path (str): [path to save the output image with jpg/jpeg/png extension] show_boxes (bool, optional): [wether to show the boxes of detected objects, Only Mask-RCNN supports it]. Defaults to False. Raises: RuntimeError: [If Model is not Loaded before Using this Function] RuntimeError: [If any other Model type is specified other than Mask-RCNN or DeepLabv3] """ if self.modelLoaded != True: raise RuntimeError('Before calling this function, you have to specify which Model you want to Use.') else: if self.modelType == 'maskrcnn': _, img = self.model.segmentImage(image_path=input_path, show_bboxes=show_boxes, output_image_name=output_path) elif self.modelType == 'deeplab': _, img = self.model.segmentAsAde20k(input_path, output_path, overlay=True) elif self.modelType == 'cdcl': _ = run_image(input_path, output_path) else: raise RuntimeError( 'Invalid ModelType: Valid Types are "MaskRCNN"\t"DeepLabv3".') def Detect_From_Video(self, input_path:str, output_path:str, show_boxes:bool = False, fps:int = 25): """[This function is used to segment objects from Videos] Args: input_path (str): [path to the input video with mp4/avi extension] output_path (str): [path to save the output video with mp4/avi extension] show_boxes (bool, optional): [wether to show the boxes of detected objects, Only Mask-RCNN supports it]. Defaults to False. fps (int, optional): [frames per second for video processing] Raises: RuntimeError: [If Model is not Loaded before Using this Function] RuntimeError: [If any other Model type is specified other than Mask-RCNN or DeepLabv3] """ if self.modelLoaded != True: raise RuntimeError( 'Before calling this function, you have to specify which Model you want to Use.') if self.modelType == 'cdcl': vid = run_video(input_path, output_path, fps) sys.exit() out = None cap = cv2.VideoCapture(input_path) length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) print(f'\nThere are {length} Frames in this video') print('-' * 20) print('Detecting Objects in the Video... Please Wait...') print('-' * 20) while(cap.isOpened()): retreive, frame = cap.read() if not retreive: break if self.modelType == 'maskrcnn': _, im = self.model.segmentFrame(frame, show_boxes) elif self.modelType == 'deeplab': _, im = self.model.segmentFrameAsAde20k(frame, overlay=True) else: raise RuntimeError( 'Invalid ModelType: Valid Types are "MaskRCNN"\t"DeepLabv3".') if out is None: fourcc = cv2.VideoWriter_fourcc(*'DIVX') out = cv2.VideoWriter(output_path, fourcc, fps, (frame.shape[1], frame.shape[0])) out.write(im) print('Done. Processing has been Finished... Please Check Output Video.') out.release() cap.release() def Custom_Objects(self, person=False, bicycle=False, car=False, motorcycle=False, airplane=False, bus=False, train=False, truck=False, boat=False, traffic_light=False, fire_hydrant=False, stop_sign=False, parking_meter=False, bench=False, bird=False, cat=False, dog=False, horse=False, sheep=False, cow=False, elephant=False, bear=False, zebra=False, giraffe=False, backpack=False, umbrella=False, handbag=False, tie=False, suitcase=False, frisbee=False, skis=False, snowboard=False, sports_ball=False, kite=False, baseball_bat=False, baseball_glove=False, skateboard=False, surfboard=False, tennis_racket=False, bottle=False, wine_glass=False, cup=False, fork=False, knife=False, spoon=False, bowl=False, banana=False, apple=False, sandwich=False, orange=False, broccoli=False, carrot=False, hot_dog=False, pizza=False, donut=False, cake=False, chair=False, couch=False, potted_plant=False, bed=False, dining_table=False, toilet=False, tv=False, laptop=False, mouse=False, remote=False, keyboard=False, cell_phone=False, microwave=False, oven=False, toaster=False, sink=False, refrigerator=False, book=False, clock=False, vase=False, scissors=False, teddy_bear=False, hair_dryer=False, toothbrush=False): """ The 'CustomObjects()' function allows you to handpick the type of objects you want to detect from an image. The objects are pre-initiated in the function variables and predefined as 'False', which you can easily set to true for any number of objects available. This function returns a dictionary which must be parsed into the 'Detect_Custom_Objects_From_Image()' and 'Detect_Custom_Objects_From_Video()'. Detecting custom objects only happens when you call the function 'Detect_Custom_Objects_From_Image()' or 'Detect_Custom_Objects_From_Video()' * true_values_of_objects (array); Acceptable values are 'True' and False for all object values present :param boolean_values: :return: custom_objects_dict """ custom_objects_dict = {} input_values = [person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic_light, fire_hydrant, stop_sign, parking_meter, bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports_ball, kite, baseball_bat, baseball_glove, skateboard, surfboard, tennis_racket, bottle, wine_glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot, hot_dog, pizza, donut, cake, chair, couch, potted_plant, bed, dining_table, toilet, tv, laptop, mouse, remote, keyboard, cell_phone, microwave, oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy_bear, hair_dryer, toothbrush] actual_labels = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair dryer", "toothbrush"] for input_value, actual_label in zip(input_values, actual_labels): if (input_value == True): custom_objects_dict[actual_label] = "valid" else: custom_objects_dict[actual_label] = "invalid" return custom_objects_dict def Detect_Custom_Objects_From_Image(self, custom_objects=None, input_path:str = None, output_path:str = None, show_boxes:bool = False): """[This function is used to detect custom objects from Images, it will only detect those objects which are set to True in dictionary returned from Custom_Objects() function.] Args: custom_objects: (dict) [dictionary returned from Custom_Objects() function] input_path: (str) [path to the input Image with jpg/jpeg/png extension] output_path: (str) [path to save the output image with jpg/jpeg/png extension] show_boxes: (bool) [wether to show the boxes of detected objects] Raises: RuntimeError: [If custom_objects/input_path/output_path is not specified] RuntimeError: [If Model is not Loaded before calling this function] RuntimeError: [If any other Model Type is Specified other than Mask-RCNN] """ if (custom_objects is None) or (input_path is None) or (output_path is None): raise RuntimeError( 'Custom_Objects, Input_Path and Output_path should not be None.') else: if self.modelLoaded: if (self.modelType == 'maskrcnn'): _, img = self.model.segmentImage(input_path, show_boxes, output_path, custom=custom_objects) else: raise RuntimeError( 'Invalid ModelType: Valid Type is "MaskRCNN".') else: raise RuntimeError( 'Before calling this function, you have to call Use_MaskRCNN().') def Detect_Custom_Objects_From_Video(self, custom_objects = None, input_path:str = None, output_path:str = None, show_boxes:bool = False, fps:int = 25): """[This function is used to detect custom objects from Videos, it will only detect those objects which are set to True in dictionary returned from Custom_Objects() function.] Args: custom_objects: (dict) [dictionary returned from Custom_Objects() function] input_path: (str) [path to the input Video with mp4/avi extension] output_path: (str) [path to save the output Video with mp4/avi extension] show_boxes: (bool) [wether to show the boxes of detected objects] fps: (int) [frames per second for video processing] Raises: RuntimeError: [If custom_objects/input_path/output_path is not specified] RuntimeError: [If Model is not Loaded before calling this function] RuntimeError: [If any other Model Type is Specified other than Mask-RCNN] """ if (custom_objects is None) or (input_path is None) or (output_path is None): raise RuntimeError( 'Custom_Objects, Input_Path and Output_path should not be None.') if self.modelLoaded != True: raise RuntimeError('Before calling this function, you have to specify which Model you want to Use.') out = None cap = cv2.VideoCapture(input_path) length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) print(f'\nThere are {length} Frames in this video') print('-' * 20) print('Detecting Objects in the Video... Please Wait...') print('-' * 20) while(cap.isOpened()): retreive, frame = cap.read() if not retreive: break if self.modelType == 'maskrcnn': _, im = self.model.segmentFrame(frame, show_boxes, custom=custom_objects) else: raise RuntimeError( 'Invalid ModelType: Valid Type is "MaskRCNN".') if out is None: fourcc = cv2.VideoWriter_fourcc(*'DIVX') out = cv2.VideoWriter(output_path, fourcc, fps, (frame.shape[1], frame.shape[0])) out.write(im) print('Done. Processing has been Finished... Please Check Output Video.') out.release() cap.release()
[ "kingadeel2017@outlook.com" ]
kingadeel2017@outlook.com
8f6fa2943fb0344752b6d9c6e9e3ab31b645f8ed
0b67d0a09cd97c51af1b81833996e1ae1faa82a6
/python/extract_line.py
db5782d7b667d3c03a7217a60e8f2893e3ae2ebb
[]
no_license
draemonash2/codes
6bf56ca92d0ef06df41817721be3772ee5d77b79
47fe44714c072c4b48a9e56dba086053a5930706
refs/heads/master
2023-08-27T20:44:14.455438
2023-08-27T06:25:06
2023-08-27T06:25:06
7,755,209
0
0
null
null
null
null
UTF-8
Python
false
false
924
py
#!/usr/bin/env python3 # usage : python3 extract_line.py <infile> <outfile> import re import sys def main(): args = sys.argv if len(args) == 3: pass else: print('Arguments are too short') return 0 in_file_name = args[1] out_file_name = args[2] pattern = r'(\[\[)(\d+)(\]\])' try: out_file = open(out_file_name, 'w') in_file = open(in_file_name) lines = in_file.readlines() for line in lines: #print(line, end="") matchlist = re.findall(pattern, line) if matchlist: #print(matchlist[0][0] + matchlist[0][1] + matchlist[0][2], end="") out_file.write(matchlist[0][0] + matchlist[0][1] + matchlist[0][2] + "\n") except Exception as e: print(e) finally: out_file.close() in_file.close() if __name__ == "__main__": main()
[ "draemon_ash3@yahoo.co.jp" ]
draemon_ash3@yahoo.co.jp
d07f0b06b191ac9fd9da7bb745f538817f7787ec
ff50e1efc0e6272f64efc0e25465915b08c805c1
/Course_1_Python_Programming/Notebook_2.py
f04b90ee6af88aa29e3deac2d8d940ebaba51d86
[]
no_license
DemetriusStorm/study_stepic
b97c8c88ae64d5c5dee217b42543cd5096b32802
341832a3bf45e63dcbedad2f1f50e55fccc13965
refs/heads/master
2021-06-12T12:03:37.992559
2021-04-30T10:05:40
2021-04-30T10:05:40
184,598,332
0
0
null
null
null
null
UTF-8
Python
false
false
2,215
py
import turtle ''' forward(X) Пройти вперёд X пикселей backward(X) Пройти назад X пикселей left(X) Повернуться налево на X градусов right(X) Повернуться направо на X градусов penup() Не оставлять след при движении pendown() Оставлять след при движении shape(X) Изменить значок черепахи (“arrow”, “turtle”, “circle”, “square”, “triangle”, “classic”) stamp() Нарисовать копию черепахи в текущем месте color() Установить цвет begin_fill() Необходимо вызвать перед рисованием фигуры, которую надо закрасить end_fill() Вызвать после окончания рисования фигуры width() Установить толщину линии goto(x, y) Переместить черепашку в точку (x, y) ''' turtle.penup() # Не оставлять след при движении turtle.goto(-100, 5) # Переместить черепашку в точку (x, y) turtle.pendown() # Не оставлять след при движении # Рисуем окружность с положительным значением радиуса turtle.circle(150) turtle.penup() turtle.goto(-100, -5) turtle.pendown() # Рисуем окружность с отрицательным значением радиуса turtle.circle(-50) turtle.penup() turtle.goto(5, 5) turtle.pendown() # Рисуем дугу в 180 градусов с положительным значением turtle.circle(50, 180) turtle.penup() turtle.goto(5, -105) turtle.pendown() turtle.seth(0) # Рисуем дугу в 270 градусов с отрицательным значением turtle.circle(50, -270) turtle.penup() turtle.goto(120, 5) turtle.pendown() turtle.seth(0) # Рисуем пятиугольник turtle.circle(50, 360, 5) turtle.penup() turtle.goto(120, -105) turtle.pendown() # Рисуем восьмиугольник turtle.circle(50, 360, 12) turtle.mainloop()
[ "demetrius.storm@gmail.com" ]
demetrius.storm@gmail.com
4a8034df0f5f993a502e6fa757a5ff67607e4b9a
f9eccb11c3962d4c9193f232d8e3d6ffc3110b12
/1st/load_vgg.py
fb89396f1f3910f525aac8b867ee8c4727549a9a
[]
no_license
ninopira/study_pytorch
57c17b3af1110b32621624c80ac5276783ef738e
1dbb356d68d9ceeab1aeb0f33aa3648d73e59ac2
refs/heads/master
2022-04-09T15:08:47.228955
2020-03-23T04:37:46
2020-03-23T04:37:46
243,179,191
0
0
null
null
null
null
UTF-8
Python
false
false
3,479
py
# パッケージのimport import numpy as np import json from PIL import Image import matplotlib.pyplot as plt import torch import torchvision from torchvision import models, transforms # PyTorchのバージョン確認 print("PyTorch Version: ", torch.__version__) print("Torchvision Version: ", torchvision.__version__) use_pretrained = True net = models.vgg16(pretrained=use_pretrained) print(net) # 前処理クラスの作成 class BaseTransform(): """ 画像のサイズをリサイズし、色を標準化する。 Attributes ---------- resize : int リサイズ先の画像の大きさ。 mean : (R, G, B) 各色チャネルの平均値。 std : (R, G, B) 各色チャネルの標準偏差。 """ def __init__(self, resize, mean, std): self.base_transform = transforms.Compose([ transforms.Resize(resize), # 短い辺の長さがresizeの大きさになる transforms.CenterCrop(resize), # 画像中央をresize × resizeで切り取り transforms.ToTensor(), # Torchテンソルに変換 transforms.Normalize(mean, std) # 色情報の標準化 ]) def __call__(self, img): return self.base_transform(img) image_file_path = './data/goldenretriever-3724972_640.jpg' img = Image.open(image_file_path) # [高さ][幅][色RGB] resize = 224 mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) transform = BaseTransform(resize, mean, std) img_transformed = transform(img) # torch.Size([3, 224, 224]) mg_transformed = img_transformed.numpy().transpose((1, 2, 0)) img_transformed = np.clip(img_transformed, 0, 1) # ILSVRCのラベル情報をロードし辞意書型変数を生成します ILSVRC_class_index = json.load(open('./data/imagenet_class_index.json', 'r')) print(ILSVRC_class_index) # 後処理 class ILSVRCPredictor(): """ ILSVRCデータに対するモデルの出力からラベルを求める。 Attributes ---------- class_index : dictionary クラスindexとラベル名を対応させた辞書型変数。 """ def __init__(self, class_index): self.class_index = class_index def predict_max(self, out): """ 確率最大のILSVRCのラベル名を取得する。 Parameters ---------- out : torch.Size([1, 1000]) Netからの出力。 Returns ------- predicted_label_name : str 最も予測確率が高いラベルの名前 """ maxid = np.argmax(out.detach().numpy()) predicted_label_name = self.class_index[str(maxid)][1] return predicted_label_name # ILSVRCPredictorのインスタンスを生成します predictor = ILSVRCPredictor(ILSVRC_class_index) # 入力画像を読み込む image_file_path = './data/goldenretriever-3724972_640.jpg' img = Image.open(image_file_path) # [高さ][幅][色RGB] # 前処理の後、バッチサイズの次元を追加する transform = BaseTransform(resize, mean, std) # 前処理クラス作成 img_transformed = transform(img) # torch.Size([3, 224, 224]) inputs = img_transformed.unsqueeze_(0) # torch.Size([1, 3, 224, 224]) # モデルに入力し、モデル出力をラベルに変換する out = net(inputs) # torch.Size([1, 1000]) print(out) result = predictor.predict_max(out) # 予測結果を出力する print("入力画像の予測結果:", result)
[ "nino0114hira@gmail.com" ]
nino0114hira@gmail.com
4e6b20554863b6c56ab9512114ee081741cb2a08
8be39fd741cbbb08439433188ca1bc59ee5cf11f
/data_handler/data_parser.py
126a9f7a129ef094c81285efdd97d74724bc3838
[ "MIT" ]
permissive
tpimentelms/fast-conversational-banking
ca1e699261f989f3b535a50782062c000985ba1e
b9d3ddfe3adb78522fafab91c2d20495db063dda
refs/heads/master
2021-03-16T21:30:51.253223
2018-02-28T20:30:15
2018-02-28T20:30:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,739
py
import re import torch from torch.autograd import Variable from .language_dict import LanguageDict, EOS_token, PAD_token class DataParser(object): def __init__(self, max_len, cuda=True, quiet=True): self.max_len = max_len self.input_max_len = 0 self.output_max_len = 0 self.quiet = quiet self._cuda = cuda # Lowercase, trim, and remove non-letter characters def normalize_string(self, s): raise NotImplementedError( 'DataParser class should not be used directly, and ' + 'class which inherits it should implement normalize_string') def read_input(self, src_file, tgt_file): self._print("Reading lines...") # Read the file and split into lines lines1 = open(src_file).read().strip().split('\n') lines2 = open(tgt_file).read().strip().split('\n') # Split every line into pairs and normalize pairs = [[x for x in l] for l in zip(lines1, lines2)] return pairs def split_sentence(self, p): return p.split(' ') def parse_pair(self, p, max_len=None): sentences = (self.split_sentence(x) for x in p) sentences = tuple([self.normalize_string(x) for x in sentences]) if max_len is not None: sentences = [x[:max_len - 1] for x in sentences] return sentences def parse_pairs(self, pairs, max_len=None): return [self.parse_pair(pair, max_len=max_len) for pair in pairs] def read_data(self, src_file, tgt_file, max_len=None): pairs = self.read_input(src_file, tgt_file) self._print("Read %s sentence pairs" % len(pairs)) pairs = self.parse_pairs(pairs, max_len) # import ipdb; ipdb.set_trace() return pairs def setup_parser(self, pairs): # Make dicts instances self.input_dict = LanguageDict('src') self.output_dict = LanguageDict('tgt') self.pairs = pairs self._print("Counting words...") for pair in self.pairs: self.add_src_sentence(pair[0]) self.add_tgt_sentence(pair[1]) self.max_len = min(self.max_len, self.output_max_len) self._print("Counted words:") self._print('\t', self.input_dict.name, self.input_dict.n_words) self._print('\t', self.output_dict.name, self.output_dict.n_words) return self.input_dict, self.output_dict def add_src_sentence(self, sentence): self.input_dict.addSentence(sentence) self.input_max_len = max(self.input_max_len, len(sentence) + 1) def add_tgt_sentence(self, sentence): self.output_dict.addSentence(sentence) self.output_max_len = max(self.output_max_len, len(sentence) + 1) def remove_rare_words(self, min_count): self.input_dict.removeRareWords(min_count) self._print("\t after reduce", self.input_dict.name, len(self.input_dict.index2word)) def indexes_from_sentence(lang_dict, sentence): return [lang_dict.getWordIndex(word) for word in sentence] def variable_from_sentence(self, lang_dict, sentence): indexes = DataParser.indexes_from_sentence(lang_dict, sentence) indexes.append(EOS_token) if self._cuda: return Variable(torch.cuda.LongTensor(indexes).view(-1, 1)) else: return Variable(torch.LongTensor(indexes).view(-1, 1)) # def variables_from_pair(self, pair=None): # pair = self.pair if pair is None else pair # input_variable = self.variable_from_sentence(self.input_dict, pair[0]) # target_variable = self.variable_from_sentence(self.output_dict, pair[1]) # return input_variable, target_variable def variables_from_pairs(self, pairs): input_variables = [] target_variables = [] for pair in pairs: input_variables += [self.variable_from_sentence(self.input_dict, pair[0]).transpose(0, 1)] target_variables += [self.variable_from_sentence(self.output_dict, pair[1]).transpose(0, 1)] target_avg_len = sum([x.size(1) for x in target_variables]) / len(target_variables) input_variable = self.pad_and_cat(input_variables) target_variable = self.pad_and_cat(target_variables) return input_variable, target_variable, target_avg_len def pad_and_cat(self, tensor_list): max_len = max([x.size(1) for x in tensor_list]) pad_list = Variable(tensor_list[0].data.new(len(tensor_list), max_len)) pad_list[:] = PAD_token for i, tensor in enumerate(tensor_list): pad_list[i, :tensor.size(1)] = tensor return pad_list def _print(self, *args): if not self.quiet: print(*args)
[ "tiagopms@gmail.com" ]
tiagopms@gmail.com