blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
72a4cb0ca3550ac8f90f2fb20f53c61176885330
0ef2e598854a39e19e523074c17c0ca72cbeccbc
/object_movement.py
b2b5020f4ebeb8c00ff7194da2e35bb4f687d704
[]
no_license
BryanBattershill/Hackathon2018
d2d0956aa15b4f6cbe3f935ce9c131141c1c46fc
d0b56f479dc651e6bf63e4f7b360ef7bb26fb4ac
refs/heads/master
2021-04-28T19:34:17.919981
2018-09-18T22:10:16
2018-09-18T22:10:16
121,900,211
0
1
null
null
null
null
UTF-8
Python
false
false
13,217
py
# USAGE # python object_movement.py --video object_tracking_example.mp4 # python object_movement.py # import the necessary packages from collections import deque import cv2 import numpy as np import argparse import imutils import math import time import random import sys class EnemyClass: speed = 0 radius = 0 trajectory = [] #[0,1] positionE = [] #[0,1] corners = 0 #[0,1,2,3] xrange = 0 yrange = 0 # boolean for spawn location destroyed = False outOfBounds = False absorbed = False # constructor def __init__(self, speed, radius): self.speed = speed self.radius = radius self.xrange = 600 self.yrange = 450 positionE = [0,0] trajectory = [0,0] # 0 is right side, 1 is top side, 2 is left side, 3 is bottom side randomSide = random.randint(0,3) # angle of movement based on position relative to center of side angleOfTrajectory = 0 # x.range = 600 --> screen x range # y.range = 400 --> screen y range # randomly spawning objects on sides of screen # corner = [0,1,2,3] # 0 = top right corner, 1 = top left corner, 2 = bottom left corner, 3 = bottom right corner # COORDINATES START AT TOP LEFT CORNER # right side # right side # right side if(randomSide == 0): self.positionE = [self.xrange, random.randint(0,self.yrange)] if(self.positionE[1] >= self.yrange/2): corner= 3# bottom right corner angleOfTrajectory = random.uniform(4*math.pi/6,5*math.pi/6) self.trajectory = [math.cos(angleOfTrajectory)*self.speed,-math.sin(angleOfTrajectory)*self.speed] else: corner=0 # top right corner angleOfTrajectory = random.uniform(7*math.pi/6,4*math.pi/3) self.trajectory = [math.cos(angleOfTrajectory)*self.speed,-math.sin(angleOfTrajectory)*self.speed] # top side elif(randomSide == 1): self.positionE = [random.randint(0,self.xrange),0] if(self.positionE[0] >= self.xrange/2): corner=0 # top right corner angleOfTrajectory = random.uniform(7*math.pi/6,4*math.pi/3) self.trajectory = [math.cos(angleOfTrajectory)*self.speed,-math.sin(angleOfTrajectory)*self.speed] else: corner=1# top left corner angleOfTrajectory = random.uniform(10*math.pi/6,11*math.pi/6) self.trajectory = [math.cos(angleOfTrajectory)*self.speed,-math.sin(angleOfTrajectory)*self.speed] # left side elif(randomSide == 2): self.positionE = [0, random.randint(0,self.yrange)] if(self.positionE[1] <= self.yrange/2): corner=1 # top left corner angleOfTrajectory = random.uniform(10*math.pi/6,11*math.pi/6) self.trajectory = [math.cos(angleOfTrajectory)*self.speed,-math.sin(angleOfTrajectory)*self.speed] else: corner=2# bottom left corner angleOfTrajectory = random.uniform(math.pi/6,math.pi/3) self.trajectory = [math.cos(angleOfTrajectory)*self.speed,-math.sin(angleOfTrajectory)*self.speed] # bottom side elif(randomSide == 3): self.positionE = [random.randint(0,self.xrange),self.yrange] if(self.positionE[0] <= self.xrange/2): corner =2 angleOfTrajectory = random.uniform(math.pi/6,math.pi/3) # bottom left corner self.trajectory = [math.cos(angleOfTrajectory)*self.speed,-math.sin(angleOfTrajectory)*self.speed] else: corner=3 # bottom right corner angleOfTrajectory = random.uniform(4*math.pi/6,5*math.pi/6) self.trajectory = [-math.cos(angleOfTrajectory)*self.speed,math.sin(angleOfTrajectory)*self.speed] # run as update def stateDetect(self): # if destroyed == true, increment score, if outOfBounds == true then increase speed # if absorbed == true, increase the radius of the boss return [self.destroyed, self.outOfBounds, self.absorbed] # [0, 1, 2] def move(self): self.positionE[0]=self.positionE[0]+self.trajectory[0] self.positionE[1]=self.positionE[1]+self.trajectory[1] pass # run as update, after stateDetect def collision(self,playerPosition, boss, tempFrame): try: if((((self.positionE[0]-playerPosition[0])**2 + (self.positionE[1] - playerPosition[1])**2)**(1/2)) <= 60): # player radius is 30 self.destroyed = True if(self.positionE[0] < 0 or self.positionE[0] > self.xrange or self.positionE[1] < 0 or self.positionE[1] > self.yrange): self.outOfBounds = True if(((self.positionE[0] - boss.position[0])**2 + (self.positionE[1] - boss.position[1])**2)**(1/2) <= boss.radius): self.absorbed = True except: pass class PlayerClass: pBuffer = 0 lives = 3 pColor = (29, 120, 6) def damage(self): if self.invuln()==False: self.lives = self.lives - 1 self.dead() self.pBuffer = time.time() self.pColor = (255,0,0) def invuln(self): return self.pBuffer !=0 def dead(self): if self.lives == 0: sys.exit() def updateBuffer(self): if (time.time()-self.pBuffer) > 2: self.pBuffer = 0 self.pColor = (29, 120, 6) class BossClass: speed = 2 Bdirection = 0 radius = 50 position = [200, 200] def incSize(self): self.radius += 3 def incSpeed(self): self.speed += 0.5 def move(self, pos, PRadius, playerRef): deltx = pos[0] - self.position[0] delty = self.position[1] - pos[1] if deltx != 0: Bdirection = math.atan(delty / deltx) if deltx>0: self.position[0] += self.speed * math.cos(Bdirection) self.position[1] += self.speed * -math.sin(Bdirection) else: self.position[0] += self.speed * -math.cos(Bdirection) self.position[1] += self.speed * math.sin(Bdirection) if math.sqrt(deltx ** 2 + delty ** 2) <= self.radius + PRadius: playerRef.damage() # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", help="path to the (optional) video file") ap.add_argument("-b", "--buffer", type=int, default=32, help="max buffer size") args = vars(ap.parse_args()) # define the lower and upper boundaries of the "green" # ball in the HSV color space greenLower = (20, 80, 0) greenUpper = (70, 255, 255) # initialize the list of tracked points, the frame counter, # and the coordinate deltas pts = deque(maxlen=args["buffer"]) counter = 0 (dX, dY) = (0, 0) damageBuffer = 0 direction = "" score = 0 timer = time.time() boss = BossClass() player = PlayerClass() allEnemies = [] enemySpawnTime = time.time() # if a video path was not supplied, grab the reference # to the webcam if not args.get("video", False): camera = cv2.VideoCapture(0) # otherwise, grab a reference to the video file else: camera = cv2.VideoCapture(args["video"]) # keep looping while True: # grab the current frame (grabbed, frame) = camera.read() frame = cv2.flip(frame, 1) if(time.time() - enemySpawnTime > 1): allEnemies.append(EnemyClass(2,30)) enemySpawnTime = time.time() # if we are viewing a video and we did not grab a frame, # then we have reached the end of the video if args.get("video") and not grabbed: break # resize the frame, blur it, and convert it to the HSV # color space frame = imutils.resize(frame, width=600) # blurred = cv2.GaussianBlur(frame, (11, 11), 0) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # construct a mask for the color "green", then perform # a series of dilations and erosions to remove any small # blobs left in the mask mask = cv2.inRange(hsv, greenLower, greenUpper) mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) # find contours in the mask and initialize the current # (x, y) center of the ball cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] center = None # only proceed if at least one contour was found if len(cnts) > 0: # find the largest contour in the mask, then use # it to compute the minimum enclosing circle and # centroid c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) M = cv2.moments(c) center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) # only proceed if the radius meets a minimum size if radius > 10: # draw the circle and centroid on the frame, # then update the list of tracked points #cv2.circle(frame, (int(x), int(y)), int(radius), # (0, 255, 255), 2) cv2.circle(frame, center, 5, (0, 0, 255), -1) pts.appendleft(center) for i in range(len(allEnemies)): cv2.circle(frame, (round(allEnemies[i].positionE[0]+15), round(allEnemies[i].positionE[1])), 25, (0, 255, 255), -1) allEnemies[i].move() if(allEnemies[i].stateDetect()[0] == True): allEnemies.pop(i) score+=1 break elif(allEnemies[i].stateDetect()[1] == True): allEnemies.pop(i) boss.incSpeed() break elif(allEnemies[i].stateDetect()[2] == True): allEnemies.pop(i) boss.incSize() break allEnemies[i].collision(center, boss, frame) try: boss.move([center[0], center[1]], 30, player) if (player.invuln()): player.updateBuffer() except: pass cv2.circle(frame, (round(boss.position[0]), round(boss.position[1])), boss.radius, (0, 255, 255),-1) # loop over the set of tracked points for i in np.arange(1, len(pts)): # if either of the tracked points are None, ignore # them if pts[i - 1] is None or pts[i] is None: continue # check to see if enough points have been accumulated in # the buffer try: if counter >= 10 and i == 1 and pts[-10] is not None: # compute the difference between the x and y # coordinates and re-initialize the direction # text variables dX = pts[-10][0] - pts[i][0] dY = pts[-10][1] - pts[i][1] (dirX, dirY) = ("", "") ## # ensure there is significant movement in the ## # x-direction ## if np.abs(dX) > 20: ## dirX = "East" if np.sign(dX) == 1 else "West" ## ## # ensure there is significant movement in the ## # y-direction ## if np.abs(dY) > 20: ## dirY = "North" if np.sign(dY) == 1 else "South" ## ## # handle when both directions are non-empty ## if dirX != "" and dirY != "": ## direction = "{}-{}".format(dirY, dirX) ## ## # otherwise, only one direction is non-empty ## else: ## direction = dirX if dirX != "" else dirY except: pass # otherwise, compute the thickness of the line and # draw the connecting lines thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5) cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness) try: if center == None: pass elif(center[0] > 10): cv2.circle(frame, (center[0], center[1]), 30, player.pColor, -1) except: pass # show the movement deltas and the direction of movement on # the frame ## cv2.putText(frame, direction, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, ## 0.65, (0, 0, 255), 3) if not (center == (None)): cv2.putText(frame, "Score: {}, Time: {}, Lives: {}".format(score, round(time.time()-timer,2),player.lives), (0, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1) # show the frame to our screen and increment the frame counter cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF counter += 1 # if the 'q' key is pressed, stop the loop if key == ord("q") or player.lives==0: break # cleanup the camera and close any open windows camera.release() #cv2.ims cv2.destroyAllWindows()
[ "noreply@github.com" ]
BryanBattershill.noreply@github.com
c35f0eea37740102e29dbec251418a94b8a24eef
e815fd9fbc703ce43d94fba6e53c86b898e32977
/llia/synths/comb/comb_data.py
d970ca8784031b0980adfd2f3759750a82743041
[]
no_license
kaos/Llia
0cdedc13d84ce86034287fba00ec0b169fbd87b1
b2aaa163c4ada3b446a7c3701e3f05c0f8406d6e
refs/heads/master
2020-12-28T19:23:48.480608
2017-03-27T05:51:14
2017-03-27T05:51:14
64,940,263
0
0
null
2016-08-04T14:13:13
2016-08-04T14:13:13
null
UTF-8
Python
false
false
1,347
py
# llia.synths.Comb.Comb_data from __future__ import print_function from llia.program import Program from llia.bank import ProgramBank from llia.performance_edit import performance prototype = { "delayScale" : 0.01, "delay" : 0.50, "phase" : -1, "wet" : 1.0} class Comb(Program): def __init__(self,name): super(Comb,self).__init__(name,Comb,prototype) self.performance = performance() program_bank = ProgramBank(Comb("Init")) program_bank.enable_undo = False def comb(slot, name, delayScale = 0.01, # 0.001|0.010|0.100 delay = 0.50, # 0.0 .. 1.0 phase = -1, # -1 .. +1 wet = 1.0): # 0.0 .. 2.0 def fval(x): return round(float(x),4) p = Comb(name) p["delayScale"] = fval(delayScale) p["delay"] = fval(delay) p["phase"] = int(phase) p["wet"] = fval(wet) program_bank[slot] = p return p comb(0,"Bypass", delayScale=0.001, delay=0.5, phase=-1, wet=0.0) slot = 1 for p in (-1, 1): if p == -1: sign = "-" else: sign = "+" for ds in (0.001, 0.01, 0.1): for d in (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0): delay = ds*d name = (sign+"%s ms") % delay comb(slot,name,ds,d,p,1.0) slot = slot + 1
[ "plewto@gmail.com" ]
plewto@gmail.com
fa55fb23e3d6bae9cb457a19aa839c87b4bcf142
3bbdcdfa6ee6631bea52dd651914cb898062b870
/numpy_pandas/__init__.py
132426c8ed006e4d81e02c92ae4a1325b00aa968
[]
no_license
xiaoyeren/python_high_performance
55ea5ee9f628e1c1155a6946274c862bda57ae2c
496a5e55e7f40033c80e9ee3b9190c184d4701d9
refs/heads/master
2020-05-24T15:20:00.576786
2019-05-13T06:01:35
2019-05-13T06:01:35
187,329,222
1
0
null
2019-05-18T07:43:11
2019-05-18T07:43:11
null
UTF-8
Python
false
false
70
py
# -*- coding: utf-8 -*- #使用numpy和pandas快速执行数组操作
[ "luozhukun@163.com" ]
luozhukun@163.com
f45f0f19ecdbd76d15d862f09d15896aed3c69c4
e8feb94c80b706cac8187aea3abdab5554d0585e
/portscan.py
29d00f1e8dd50a2928ff6da405406a08ae09c777
[]
no_license
fabiocabrini/python
63ee4d36261cdf309668d96f3d77a7f5456131a9
23f7ad379ece83841ad8c9270e629837c8055159
refs/heads/master
2023-03-31T22:27:35.404628
2023-03-24T10:39:57
2023-03-24T10:39:57
243,404,103
2
1
null
null
null
null
UTF-8
Python
false
false
868
py
import sys import socket def main(): args = sys.argv if len(args) < 2: print("[!]Falta argumentos para o programa! Saindo...") sys.exit(1) ip = args[1] portas = args[2] if len(args) >= 3 else "1:65536" portas = (x for x in range(int(portas.split(":")[0]), int(portas.split(":")[1])+1)) scan(ip, portas) def banner(sckt, ip, porta): try: sckt.settimeout(1) sckt.connect((ip, porta)) banner = sckt.recv(1024).decode().strip() assert banner return banner except: return "Unknown" def child(ip, port): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) s.settimeout(0.3) if s.connect_ex((ip, port)) == 0: print("{}/tcp open".format(port), end="|") print(banner(s, ip, port)) except: pass def scan(ip, portas): for c in portas: child(ip, c) if __name__ == '__main__': main()
[ "noreply@github.com" ]
fabiocabrini.noreply@github.com
881992550625165c17da1fcee6b64e92bb30f8da
88b1efabf9ba2532f37dc9eef5a8f60a63bb9181
/libs/networks/build_whole_network.py
fcfb02de3f726a2b12d0ef897d7b377776ef7fa0
[ "Apache-2.0" ]
permissive
arasharchor/DCL_RetinaNet_Tensorflow
e674b2b3a975020e7442584b47116456f8490c5b
1d14c9800c3eb1975e8832978f7a263783d171ec
refs/heads/main
2023-03-30T13:16:24.151129
2021-04-13T08:01:20
2021-04-13T08:01:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,753
py
# -*-coding: utf-8 -*- from __future__ import absolute_import, division, print_function import os import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np from libs.networks import resnet, resnet_gluoncv, mobilenet_v2, xception from libs.box_utils import anchor_utils, generate_anchors, generate_rotate_anchors from libs.configs import cfgs from libs.losses import losses from libs.box_utils import show_box_in_tensor from libs.detection_oprations.proposal_opr_ import postprocess_detctions from libs.detection_oprations.anchor_target_layer_without_boxweight import anchor_target_layer class DetectionNetwork(object): def __init__(self, base_network_name, is_training): self.base_network_name = base_network_name self.is_training = is_training if cfgs.METHOD == 'H': self.num_anchors_per_location = len(cfgs.ANCHOR_SCALES) * len(cfgs.ANCHOR_RATIOS) else: self.num_anchors_per_location = len(cfgs.ANCHOR_SCALES) * len(cfgs.ANCHOR_RATIOS) * len(cfgs.ANCHOR_ANGLES) self.method = cfgs.METHOD def build_base_network(self, input_img_batch): if self.base_network_name.startswith('resnet_v1'): return resnet.resnet_base(input_img_batch, scope_name=self.base_network_name, is_training=self.is_training) elif self.base_network_name in ['resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d']: return resnet_gluoncv.resnet_base(input_img_batch, scope_name=self.base_network_name, is_training=self.is_training) elif self.base_network_name.startswith('MobilenetV2'): return mobilenet_v2.mobilenetv2_base(input_img_batch, is_training=self.is_training) elif self.base_network_name.startswith('xception'): return xception.xception_base(input_img_batch, is_training=self.is_training) else: raise ValueError('Sry, we only support resnet, mobilenet_v2 and xception') def rpn_cls_net(self, inputs, scope_list, reuse_flag, level): rpn_conv2d_3x3 = inputs for i in range(4): rpn_conv2d_3x3 = slim.conv2d(inputs=rpn_conv2d_3x3, num_outputs=256, kernel_size=[3, 3], stride=1, activation_fn=tf.nn.relu, weights_initializer=cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=cfgs.SUBNETS_BIAS_INITIALIZER, scope='{}_{}'.format(scope_list[0], i), reuse=reuse_flag) rpn_box_scores = slim.conv2d(rpn_conv2d_3x3, num_outputs=cfgs.CLASS_NUM * self.num_anchors_per_location, kernel_size=[3, 3], stride=1, weights_initializer=cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=cfgs.FINAL_CONV_BIAS_INITIALIZER, scope=scope_list[2], activation_fn=None, reuse=reuse_flag) rpn_box_scores = tf.reshape(rpn_box_scores, [-1, cfgs.CLASS_NUM], name='rpn_{}_classification_reshape'.format(level)) rpn_box_probs = tf.sigmoid(rpn_box_scores, name='rpn_{}_classification_sigmoid'.format(level)) return rpn_box_scores, rpn_box_probs def rpn_reg_net(self, inputs, scope_list, reuse_flag, level): rpn_delta_boxes = inputs for i in range(4): rpn_delta_boxes = slim.conv2d(inputs=rpn_delta_boxes, num_outputs=256, kernel_size=[3, 3], weights_initializer=cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=cfgs.SUBNETS_BIAS_INITIALIZER, stride=1, activation_fn=tf.nn.relu, scope='{}_{}'.format(scope_list[1], i), reuse=reuse_flag) rpn_delta_boxes = slim.conv2d(rpn_delta_boxes, num_outputs=5 * self.num_anchors_per_location, kernel_size=[3, 3], stride=1, weights_initializer=cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=cfgs.SUBNETS_BIAS_INITIALIZER, scope=scope_list[3], activation_fn=None, reuse=reuse_flag) rpn_delta_boxes = tf.reshape(rpn_delta_boxes, [-1, 5], name='rpn_{}_regression_reshape'.format(level)) return rpn_delta_boxes def rpn_net(self, feature_pyramid): rpn_delta_boxes_list = [] rpn_scores_list = [] rpn_probs_list = [] with tf.variable_scope('rpn_net'): with slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(cfgs.WEIGHT_DECAY)): for level in cfgs.LEVEL: if cfgs.SHARE_NET: reuse_flag = None if level == 'P3' else True scope_list = ['conv2d_3x3_cls', 'conv2d_3x3_reg', 'rpn_classification', 'rpn_regression'] else: reuse_flag = None scope_list = ['conv2d_3x3_cls_' + level, 'conv2d_3x3_reg_' + level, 'rpn_classification_' + level, 'rpn_regression_' + level] rpn_box_scores, rpn_box_probs = self.rpn_cls_net(feature_pyramid[level], scope_list, reuse_flag, level) rpn_delta_boxes = self.rpn_reg_net(feature_pyramid[level], scope_list, reuse_flag, level) rpn_scores_list.append(rpn_box_scores) rpn_probs_list.append(rpn_box_probs) rpn_delta_boxes_list.append(rpn_delta_boxes) rpn_all_delta_boxes = tf.concat(rpn_delta_boxes_list, axis=0) rpn_all_boxes_scores = tf.concat(rpn_scores_list, axis=0) rpn_all_boxes_probs = tf.concat(rpn_probs_list, axis=0) return rpn_all_delta_boxes, rpn_all_boxes_scores, rpn_all_boxes_probs def make_anchors(self, feature_pyramid): with tf.variable_scope('make_anchors'): anchor_list = [] level_list = cfgs.LEVEL with tf.name_scope('make_anchors_all_level'): for level, base_anchor_size, stride in zip(level_list, cfgs.BASE_ANCHOR_SIZE_LIST, cfgs.ANCHOR_STRIDE): ''' (level, base_anchor_size) tuple: (P3, 32), (P4, 64), (P5, 128), (P6, 256), (P7, 512) ''' featuremap_height, featuremap_width = tf.shape(feature_pyramid[level])[1], \ tf.shape(feature_pyramid[level])[2] featuremap_height = tf.cast(featuremap_height, tf.float32) featuremap_width = tf.cast(featuremap_width, tf.float32) # tmp_anchors = anchor_utils.make_anchors(base_anchor_size=base_anchor_size, # anchor_scales=cfgs.ANCHOR_SCALES, # anchor_ratios=cfgs.ANCHOR_RATIOS, # featuremap_height=featuremap_height, # featuremap_width=featuremap_width, # stride=stride, # name='make_anchors_{}'.format(level)) if self.method == 'H': tmp_anchors = tf.py_func(generate_anchors.generate_anchors_pre, inp=[featuremap_height, featuremap_width, stride, np.array(cfgs.ANCHOR_SCALES) * stride, cfgs.ANCHOR_RATIOS, 4.0], Tout=[tf.float32]) tmp_anchors = tf.reshape(tmp_anchors, [-1, 4]) else: tmp_anchors = generate_rotate_anchors.make_anchors(base_anchor_size=base_anchor_size, anchor_scales=cfgs.ANCHOR_SCALES, anchor_ratios=cfgs.ANCHOR_RATIOS, anchor_angles=cfgs.ANCHOR_ANGLES, featuremap_height=featuremap_height, featuremap_width=featuremap_width, stride=stride) tmp_anchors = tf.reshape(tmp_anchors, [-1, 5]) anchor_list.append(tmp_anchors) all_level_anchors = tf.concat(anchor_list, axis=0) return all_level_anchors def add_anchor_img_smry(self, img, anchors, labels, method): positive_anchor_indices = tf.reshape(tf.where(tf.greater_equal(labels, 1)), [-1]) # negative_anchor_indices = tf.reshape(tf.where(tf.equal(labels, 0)), [-1]) positive_anchor = tf.gather(anchors, positive_anchor_indices) # negative_anchor = tf.gather(anchors, negative_anchor_indices) pos_in_img = show_box_in_tensor.only_draw_boxes(img_batch=img, boxes=positive_anchor, method=method) # neg_in_img = show_box_in_tensor.only_draw_boxes(img_batch=img, # boxes=negative_anchor) tf.summary.image('positive_anchor', pos_in_img) # tf.summary.image('negative_anchors', neg_in_img) def build_whole_detection_network(self, input_img_batch, gtboxes_batch_h, gtboxes_batch_r, gpu_id=0): if self.is_training: gtboxes_batch_h = tf.reshape(gtboxes_batch_h, [-1, 5]) gtboxes_batch_h = tf.cast(gtboxes_batch_h, tf.float32) gtboxes_batch_r = tf.reshape(gtboxes_batch_r, [-1, 6]) gtboxes_batch_r = tf.cast(gtboxes_batch_r, tf.float32) # 1. build base network feature_pyramid = self.build_base_network(input_img_batch) # 2. build rpn rpn_box_pred, rpn_cls_score, rpn_cls_prob = self.rpn_net(feature_pyramid) # 3. generate_anchors anchors = self.make_anchors(feature_pyramid) # 4. postprocess rpn proposals. such as: decode, clip, filter if not self.is_training: with tf.variable_scope('postprocess_detctions'): boxes, scores, category = postprocess_detctions(rpn_bbox_pred=rpn_box_pred, rpn_cls_prob=rpn_cls_prob, anchors=anchors, is_training=self.is_training) return boxes, scores, category # 5. build loss else: with tf.variable_scope('build_loss'): labels, target_delta, anchor_states, target_boxes = tf.py_func(func=anchor_target_layer, inp=[gtboxes_batch_h, gtboxes_batch_r, anchors, gpu_id], Tout=[tf.float32, tf.float32, tf.float32, tf.float32]) if self.method == 'H': self.add_anchor_img_smry(input_img_batch, anchors, anchor_states, 0) else: self.add_anchor_img_smry(input_img_batch, anchors, anchor_states, 1) cls_loss = losses.focal_loss(labels, rpn_cls_score, anchor_states) if cfgs.REG_LOSS_MODE == 0: reg_loss = losses.iou_smooth_l1_loss(target_delta, rpn_box_pred, anchor_states, target_boxes, anchors) elif cfgs.REG_LOSS_MODE == 1: reg_loss = losses.smooth_l1_loss_atan(target_delta, rpn_box_pred, anchor_states) elif cfgs.REG_LOSS_MODE == 2: reg_loss = losses.iou_smooth_l1_loss_(target_delta, rpn_box_pred, anchor_states, target_boxes, anchors, alpha=cfgs.ALPHA, beta=cfgs.BETA) elif cfgs.REG_LOSS_MODE == 3: reg_loss = losses.iou_smooth_l1_loss_1(rpn_box_pred, anchor_states, target_boxes, anchors, alpha=cfgs.ALPHA, beta=cfgs.BETA) else: reg_loss = losses.smooth_l1_loss(target_delta, rpn_box_pred, anchor_states) losses_dict = {'cls_loss': cls_loss * cfgs.CLS_WEIGHT, 'reg_loss': reg_loss * cfgs.REG_WEIGHT} with tf.variable_scope('postprocess_detctions'): boxes, scores, category = postprocess_detctions(rpn_bbox_pred=rpn_box_pred, rpn_cls_prob=rpn_cls_prob, anchors=anchors, is_training=self.is_training, gpu_id=gpu_id) boxes = tf.stop_gradient(boxes) scores = tf.stop_gradient(scores) category = tf.stop_gradient(category) return boxes, scores, category, losses_dict def get_restorer(self): checkpoint_path = tf.train.latest_checkpoint(os.path.join(cfgs.TRAINED_CKPT, cfgs.VERSION)) if checkpoint_path != None: if cfgs.RESTORE_FROM_RPN: print('___restore from rpn___') model_variables = slim.get_model_variables() restore_variables = [var for var in model_variables if not var.name.startswith('FastRCNN_Head')] + \ [slim.get_or_create_global_step()] for var in restore_variables: print(var.name) restorer = tf.train.Saver(restore_variables) else: restorer = tf.train.Saver() print("model restore from :", checkpoint_path) else: checkpoint_path = cfgs.PRETRAINED_CKPT print("model restore from pretrained mode, path is :", checkpoint_path) model_variables = slim.get_model_variables() # for var in model_variables: # print(var.name) # print(20*"__++__++__") def name_in_ckpt_rpn(var): return var.op.name def name_in_ckpt_fastrcnn_head(var): ''' Fast-RCNN/resnet_v1_50/block4 -->resnet_v1_50/block4 Fast-RCNN/MobilenetV2/** -- > MobilenetV2 ** :param var: :return: ''' return '/'.join(var.op.name.split('/')[1:]) nameInCkpt_Var_dict = {} for var in model_variables: if var.name.startswith('Fast-RCNN/'+self.base_network_name): # +'/block4' var_name_in_ckpt = name_in_ckpt_fastrcnn_head(var) nameInCkpt_Var_dict[var_name_in_ckpt] = var else: if var.name.startswith(self.base_network_name): var_name_in_ckpt = name_in_ckpt_rpn(var) nameInCkpt_Var_dict[var_name_in_ckpt] = var else: continue restore_variables = nameInCkpt_Var_dict for key, item in restore_variables.items(): print("var_in_graph: ", item.name) print("var_in_ckpt: ", key) print(20*"___") restorer = tf.train.Saver(restore_variables) print(20 * "****") print("restore from pretrained_weighs in IMAGE_NET") return restorer, checkpoint_path def get_gradients(self, optimizer, loss): ''' :param optimizer: :param loss: :return: return vars and grads that not be fixed ''' # if cfgs.FIXED_BLOCKS > 0: # trainable_vars = tf.trainable_variables() # # trained_vars = slim.get_trainable_variables() # start_names = [cfgs.NET_NAME + '/block%d'%i for i in range(1, cfgs.FIXED_BLOCKS+1)] + \ # [cfgs.NET_NAME + '/conv1'] # start_names = tuple(start_names) # trained_var_list = [] # for var in trainable_vars: # if not var.name.startswith(start_names): # trained_var_list.append(var) # # slim.learning.train() # grads = optimizer.compute_gradients(loss, var_list=trained_var_list) # return grads # else: # return optimizer.compute_gradients(loss) return optimizer.compute_gradients(loss) def enlarge_gradients_for_bias(self, gradients): final_gradients = [] with tf.variable_scope("Gradient_Mult") as scope: for grad, var in gradients: scale = 1.0 if cfgs.MUTILPY_BIAS_GRADIENT and './biases' in var.name: scale = scale * cfgs.MUTILPY_BIAS_GRADIENT if not np.allclose(scale, 1.0): grad = tf.multiply(grad, scale) final_gradients.append((grad, var)) return final_gradients
[ "yangxue0827@126.com" ]
yangxue0827@126.com
a5bf349f10d05cb162f75a7bfbede3c10a24f87b
c2321b327c0793b823c842d41a873b89ddf95b02
/MQMO_Workbook/danorand.py
3bb64b27d87280f8297f19595ccb2346a01307f9
[]
no_license
Danoishere/mqmo-workbook-python
4f84afcbca28b3b73e76f0c9f6495e5ec8b66240
be8bb886dcc1f949b84152fbd2ba7f1f5202b86c
refs/heads/master
2020-06-02T14:31:56.509312
2019-06-14T08:05:18
2019-06-14T08:05:18
191,188,855
0
0
null
null
null
null
UTF-8
Python
false
false
1,057
py
import pyximport pyximport.install() import simpyx as sp import danosim as ds import numpy as np def sorted_poisson_arrival(lambd, t_end): event_times = np.random.uniform(low=0,high=t_end,size=np.int(t_end*lambd)) event_times = np.sort(event_times) return event_times def possibility_for_num_of_events_in_time(event_times, how_many_events, t_end, t_observed): # Number of time-intervals to check for # 200'000 * 0.5h num_observed_intervals = np.int(t_end*(1/t_observed)) # Histogram with bins for each half hour # 1. 0.5h -> 3 Autos, 2. 0.5h -> 1 Auto, etc. .... hist, bins = np.histogram(event_times, bins=num_observed_intervals) # Number of histogram bins with the same count as our observed number of events num_events_in_observed = np.sum(hist == how_many_events) return num_events_in_observed/num_observed_intervals def exp_rnd_lambd(lambd, size=None): return np.random.exponential(scale=1/lambd,size=size) def exp_rnd_avg(avg, size=None): return np.random.exponential(scale=avg, size=size)
[ "dano.roost@gmail.com" ]
dano.roost@gmail.com
4510678e66dacc8d9a42810e6f5b901215a93fef
5f64fb1c9db645919029d03fcfb222732c16ae4c
/analysis/__init__.py
ccc6064de1896a78f9119daec7d5ccaff0620a34
[]
no_license
devYaoYH/cogPsychLab_toolkit
95b3c5a99288ef20d807ea2200d5c3128a2d0374
b926126bf67a30bc4ec192ae335ef650f2f2abe0
refs/heads/master
2020-07-29T19:08:58.667628
2019-12-18T18:50:13
2019-12-18T18:50:13
209,926,254
1
0
null
null
null
null
UTF-8
Python
false
false
89
py
from .normalize_rt_raw import parse_rt_path from .plot_rt_pathlengths import plot_rt_path
[ "yaoyiheng@gmail.com" ]
yaoyiheng@gmail.com
2ae541b40b7cd84b167c0fe96d85e532d439192a
3481bb48f454d0dd269fa67e9f8e845c4d2cf2fc
/2018/day5.py
102d982c2e041e0701528f522c18d32e1279a348
[]
no_license
mattr555/advent-of-code
0d84c6c77d0a0467791379de540a5f92a09ae2b4
bd2253b4eb560323d1ff7b1b55d1854009b24cde
refs/heads/master
2021-12-27T09:30:21.644035
2021-12-18T21:00:05
2021-12-18T21:00:05
164,048,265
3
1
null
null
null
null
UTF-8
Python
false
false
819
py
with open("day5.txt") as f: data = f.read() # data = 'dabAcCaCBAcCcaDA' def react(data): newdata = '' while True: i = 0 while i < len(data): if i < len(data) - 1 and data[i].lower() == data[i+1].lower() and data[i] != data[i+1]: i += 2 else: newdata += data[i] i += 1 if len(newdata) == len(data): break else: data = newdata newdata = '' return newdata # print(data) reacted = react(data) print(len(reacted)) best = len(reacted) for i in range(26): char_to_remove = chr(ord('a') + i) this_try = reacted.replace(char_to_remove, '').replace(char_to_remove.upper(), '') best = min(best, len(react(this_try))) print(char_to_remove) print(best)
[ "mattramina@gmail.com" ]
mattramina@gmail.com
60777dfa8618834846b5accb91c04b9f6e4e44a1
48faa86184e733fa4cb1d05f8d4b3b20aeb9f327
/you_get/__init__.py
5da7138ff2db95bcb8278be8d7f2541aafa25152
[ "MIT" ]
permissive
wgnms/webdecode
5a72bcb130f3e0d109bb4dc8c0375c766e7c6088
b4052e1a5e8e53fd75838e2e5d2bc47da6ad3b14
refs/heads/main
2023-07-06T01:33:44.769245
2021-08-17T02:24:48
2021-08-17T02:24:48
426,558,044
1
0
MIT
2021-11-10T09:20:31
2021-11-10T09:20:30
null
UTF-8
Python
false
false
371
py
#!/usr/bin/env python # This file is Python 2 compliant. import sys if sys.version_info[0] == 3: #from .extractor import Extractor, VideoExtractor #from .util import log from .__main__ import * #from .common import * #from .version import * #from .cli_wrapper import * #from .extractor import * else: # Don't import anything. pass
[ "yangxuan@ev-image.com" ]
yangxuan@ev-image.com
8899c83e97081de7941ab5e8f6f97b043735e116
f66a28aa2f466d3c5cf1b04eac2c8225c4034984
/util/ImageHelper.py
0e44f26fc6611d125b7179fb1abb924df3cf0ea7
[ "MIT" ]
permissive
abbottli/asciipy
7816821ab9a2964649cff47916452c281067c136
40fe58d64d0618041b71691b55a08888f76e4b54
refs/heads/master
2023-05-04T13:17:52.335134
2021-05-14T19:17:47
2021-05-14T19:17:47
367,268,065
1
0
MIT
2021-05-15T02:05:16
2021-05-14T06:18:51
Python
UTF-8
Python
false
false
3,358
py
import os from PIL import Image, ImageOps from util.ImageType import ImageType RESOURCE_FOLDER = 'resources' BLACK = 255 WHITE = 0 DEBUG = False def resource_folder(file): return os.path.join(RESOURCE_FOLDER, file) def convert_image(image, convert_type=ImageType.DITHER): if ImageType.DITHER == convert_type: return dither(image) elif ImageType.BLACK_WHITE == convert_type: return black_white(image) elif ImageType.HALFTONE == convert_type: return halftone(image) elif ImageType.GRAY == convert_type: return gray(image) elif ImageType.SILHOUETTE == convert_type: return silhouette(image) def gray(image): image = image.convert('L') if DEBUG: image.save(resource_folder('gray.png')) return image def black_white(image, thresh=128): image = image.convert('L').point(lambda x: BLACK if x > thresh else WHITE, mode='1') if DEBUG: image.save(resource_folder('bw.png')) return image def silhouette(image): image = image.convert('L').point(lambda x: BLACK if x == BLACK else WHITE, mode='1') if DEBUG: image.save(resource_folder('silhouette.png')) return image def dither(image): image = image.convert('1') if DEBUG: image.save(resource_folder('dither.png')) return image def halftone(image): image = image.convert('L') width, height = image.size pixels = image.load() for x in range(0, width, 2): for y in range(0, height, 2): here, right, down, diag = (x, y), (x + 1, y), (x, y + 1), (x + 1, y + 1) if x + 1 >= width: right = (0, 0) diag = (0, 0) if y + 1 >= height: down = (0, 0) diag = (0, 0) saturation = (pixels[here] + pixels[right] + pixels[down] + pixels[diag]) / 4 if saturation > 223: # all white pixels[here] = 255 pixels[right] = 255 pixels[down] = 255 pixels[diag] = 255 elif saturation > 159: pixels[here] = 255 pixels[right] = 255 pixels[down] = 0 pixels[diag] = 255 elif saturation > 95: pixels[here] = 255 pixels[right] = 0 pixels[down] = 0 pixels[diag] = 255 elif saturation > 23: pixels[here] = 0 pixels[right] = 0 pixels[down] = 0 pixels[diag] = 255 else: # all black pixels[here] = 0 pixels[right] = 0 pixels[down] = 0 pixels[diag] = 0 if DEBUG: image.save(resource_folder('halftone.png')) return image def resize_image(image, max_width, max_height, scale_type=Image.BICUBIC): if image.width > max_width or image.height > max_height: # resize image to console window bounds scale = min(max_width / image.width, max_height / image.height) scaled = tuple([int(x * scale) for x in image.size]) resized = image.resize(scaled, scale_type) if DEBUG: resized.save(resource_folder('resized.png')) return resized return image def invert(image): return ImageOps.invert(image)
[ "abbott.li49@gmail.com" ]
abbott.li49@gmail.com
c99a79681efd4708275a91f12d409ed732157dc1
737a8273a04f1ff545971061f9e82c94794d5fd1
/venv_py36/Scripts/pyi-bindepend-script.py
5a06e65c01dcc45c62967f443e35e7139bfd63fc
[ "MIT" ]
permissive
PeterMoresco/RefriCalcSoft
eb316574ec3826c5a42ad6b3d74c1121a397dac4
1ed728ef1937fdda248cee19d97b3d13bd98af03
refs/heads/master
2022-04-13T11:11:01.425094
2020-04-13T17:11:00
2020-04-13T17:11:00
255,360,256
0
0
null
null
null
null
UTF-8
Python
false
false
477
py
#!C:\Users\pedro.camargo\Documents\Programas\RefriCalc\venv_py36\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'PyInstaller==3.4','console_scripts','pyi-bindepend' __requires__ = 'PyInstaller==3.4' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('PyInstaller==3.4', 'console_scripts', 'pyi-bindepend')() )
[ "pedro.moresco93@gmail.com" ]
pedro.moresco93@gmail.com
2be70c160418e48ef9adbfa51bc4a11912cc9ff9
048a3362f0990cd6a53f9a47002b910445e76f65
/Python/Modules/Utilities.py
2ef9db6c045079306f42a29c47ab8bf0484f1d83
[]
no_license
alonyan/PythonFlowCytometryStartup
b26fa3cc3fa7c806fefee8edc522635d61510723
7631f64b9fd0572d1b5340aa84df65868b769f6f
refs/heads/master
2020-03-24T02:07:00.454866
2018-07-26T17:18:43
2018-07-26T17:18:43
142,363,185
0
0
null
null
null
null
UTF-8
Python
false
false
6,098
py
# -*- coding: utf-8 -*- """ Created on Thu Jul 21 15:46:30 2016 @author: Alonyan """ import numpy as np import scipy.io as sio def num2str(num, precision): return "%0.*f" % (precision, num) def colorcode(datax, datay): from scipy import interpolate import numpy as np H, xedges, yedges = np.histogram2d(datax,datay, bins=30) xedges = (xedges[:-1]+xedges[1:])/2 yedges = (yedges[:-1]+yedges[1:])/2 f = interpolate.RectBivariateSpline(xedges,yedges , H) z = np.array([]) for i in datax.index: z = np.append(z,f(datax[i],datay[i])) #z=(z-min(z))/(max(z)-min(z)) z[z<0] = 0 idx = z.argsort() return z, idx class kmeans: def __init__(self, X, K): # Initialize to K random centers oldmu = X.sample(K).values#np.random.sample(X, K) mu = X.sample(K).values#np.random.sample(X, K) while not _has_converged(mu, oldmu): oldmu = mu # Assign all points in X to clusters clusters = _cluster_points(X, mu) # Reevaluate centers mu = _reevaluate_centers(oldmu, clusters) self.mu = mu self.clusters = clusters #return(mu, clusters) def _cluster_points(X, mu): clusters = {} for x in X: bestmukey = min([(i[0], np.linalg.norm(x-mu[i[0]])) \ for i in enumerate(mu)], key=lambda t:t[1])[0] try: clusters[bestmukey].append(x) except KeyError: clusters[bestmukey] = [x] return clusters def _reevaluate_centers(mu, clusters): newmu = [] keys = sorted(clusters.keys()) for k in keys: newmu.append(np.mean(clusters[k], axis = 0)) return newmu def _has_converged(mu, oldmu): return (set(mu) == set(oldmu)) def makeTicks(): a = np.outer(np.arange(1,10),10**np.arange(1,2)).T.reshape((1,-1)).squeeze() ticks = np.append(-a[::-1],0) ticks = np.append(-100,ticks) a = np.outer(np.arange(1,10),10**np.arange(1,6)).T.reshape((1,-1)).squeeze() ticks = np.append(ticks,a[:]) emptvec = ['','','','','','','',''] ticklabels = ['-0.1']+emptvec+['']+['0']+emptvec+['']+['0.1']+emptvec+['1']+emptvec+['10']+emptvec+['100']+emptvec return ticks, ticklabels #Utils for opening MAT files def print_mat_nested(d, indent=0, nkeys=0): """Pretty print nested structures from .mat files Inspired by: `StackOverflow <http://stackoverflow.com/questions/3229419/pretty-printing-nested-dictionaries-in-python>`_ """ # Subset dictionary to limit keys to print. Only works on first level if nkeys>0: d = {k: d[k] for k in d.keys()[:nkeys]} # Dictionary comprehension: limit to first nkeys keys. if isinstance(d, dict): for key, value in d.iteritems(): # iteritems loops through key, value pairs print '\t' * indent + 'Key: ' + str(key) print_mat_nested(value, indent+1) if isinstance(d,np.ndarray) and d.dtype.names is not None: # Note: and short-circuits by default for n in d.dtype.names: # This means it's a struct, it's bit of a kludge test. print '\t' * indent + 'Field: ' + str(n) print_mat_nested(d[n], indent+1) def loadmat(filename): ''' this function should be called instead of direct spio.loadmat as it cures the problem of not properly recovering python dictionaries from mat files. It calls the function check keys to cure all entries which are still mat-objects from: `StackOverflow <http://stackoverflow.com/questions/7008608/scipy-io-loadmat-nested-structures-i-e-dictionaries>`_ ''' data = sio.loadmat(filename, struct_as_record=False, squeeze_me=True) return _check_keys(data) def _check_keys(dict): ''' checks if entries in dictionary are mat-objects. If yes todict is called to change them to nested dictionaries ''' dict1 = {} for key in dict: if isinstance(dict[key],np.ndarray): i=1 for inst in dict[key]: if isinstance(inst, sio.matlab.mio5_params.mat_struct): dict1[key+'_'+str(i)] = _todict(inst) i+=1 elif isinstance(dict[key], sio.matlab.mio5_params.mat_struct): dict1[key] = _todict(dict[key]) return dict1 def _todict(matobj): ''' A recursive function which constructs from matobjects nested dictionaries ''' dict = {} for strg in matobj._fieldnames: elem = matobj.__dict__[strg] if isinstance(elem, sio.matlab.mio5_params.mat_struct): dict[strg] = _todict(elem) elif isinstance(elem,np.ndarray): dict[strg] = _tolist(elem) else: dict[strg] = elem return dict def _tolist(ndarray): ''' A recursive function which constructs lists from cellarrays (which are loaded as numpy ndarrays), recursing into the elements if they contain matobjects. ''' elem_list = [] for sub_elem in ndarray: if isinstance(sub_elem, sio.matlab.mio5_params.mat_struct): elem_list.append(_todict(sub_elem)) elif isinstance(sub_elem,np.ndarray): elem_list.append(_tolist(sub_elem)) else: elem_list.append(sub_elem) return elem_list # #def _todict(matobj): # ''' # A recursive function which constructs from matobjects nested dictionaries # ''' # dict = {} # for strg in matobj._fieldnames: # elem = matobj.__dict__[strg] # if isinstance(elem, np.ndarray): # i=1 # for el in elem: # if isinstance(el, sio.matlab.mio5_params.mat_struct): # dict[strg+'_'+str(i)] = _todict(el) # i+=1 # else: # dict[strg] = elem # elif isinstance(elem, sio.matlab.mio5_params.mat_struct): # dict[strg] = _todict(elem) # else: # dict[strg] = elem # return dict # #
[ "Alonyan@Alons-MacBook-Pro.local" ]
Alonyan@Alons-MacBook-Pro.local
daf15159963c2c223164a14990ac1ad980c26f04
66f371cbb748c2e55bb26e35cdf23c7eddcf0e51
/py3hardway/ex17.py
3dd73772fd15f1543debdfc0ceeb17e82dd89e8b
[]
no_license
MichealGarcia/code
8bc807e432df0110db7c51620d6e358f52eddc4a
0f5003d1d9de32b0939d3c3f765e632b79985904
refs/heads/main
2023-09-02T19:56:53.541069
2021-11-15T17:41:57
2021-11-15T17:41:57
407,957,577
0
0
null
null
null
null
UTF-8
Python
false
false
522
py
from sys import argv from os.path import exists script, from_file, to_file = argv print(f"Copying from {from_file} to {to_file}") # We could do these two on one line, how? in_file = open(from_file); indata = in_file.read() print(f"The input file is {len(indata)} bytes long") print(f"Does the output file exist? {exists(to_file)}") print("Ready, hit RETURN to continue, CTRL-C to abort.") input() out_file = open(to_file, 'w'); out_file.write(indata) print("Alright, all done.") out_file.close() in_file.close()
[ "garciamicheal0@outlook.com" ]
garciamicheal0@outlook.com
840a49c0c67c499e3b30d896b164e0e70d6d9ca5
20a79a6bf4d5f077d5bc5d2d989d0bbedea92cc4
/venv/bin/python-config
f35d9f24086192b469f0392fa178284f61868af6
[]
no_license
denaverma007/Greendeck
d4f5dc662ebbe1d93696ac0d906c75d11d5f86b9
97afae0783ac35d5c1e18316b8d49ba33b430a3e
refs/heads/master
2022-12-08T17:09:00.759085
2020-02-07T16:26:16
2020-02-07T16:26:16
238,938,321
0
0
null
2022-12-08T03:34:17
2020-02-07T14:07:48
Python
UTF-8
Python
false
false
2,357
#!/home/yj/PycharmProjects/greendeck/venv/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
[ "jainyash031@gmail.com" ]
jainyash031@gmail.com
e0b4e0d09721d9b9da92a58b86f47afebac9cff4
330ba6024e2728ec2476ce2d9f8e6be20c60ed67
/resources/code/class11/scratch.py
05297afa2551f11d03483182dc63479edf6c9ce6
[]
no_license
foureyes/csci-ua.0479-spring2021-001
ec008e797b569476cce7b062f2469d6dea56d670
f7ee0f69c2e9150134f41f39676807e4f776f96e
refs/heads/main
2023-06-27T15:44:38.192216
2021-08-01T17:35:55
2021-08-01T17:35:55
330,051,703
1
1
null
null
null
null
UTF-8
Python
false
false
6,265
py
""" from matplotlib import pyplot as plt plt.figure(1) plt.subplot(211) plt.plot([1,0. 2,0. 3,0. 4],0. [4,0. 7,0. 8,0. 9]) #plt.figure(2) plt.subplot(212) plt.hist([1,0. 3,0. 7,0. 4,0. 2]) plt.show() """ """ import matplotlib.pyplot as plt scores = [0.82, 0.88, 0.96, 0.90, 0.87, 0.88, 0.81, 0.90, 0.90, 0.74, 0.82, 0.73, 0.92, 0.76, 0.87, 0.90, 0.90, 0.74, 0.72, 0.88, 0.62, 0.70, 0.82, 0.82, 0.90, 0.74, 0.65, 0.86, 0.89, 0.97, 0.46, 0.89, 0.82, 0.87, 0.90, 0.96, 0.92, 0.60, 0.91, 0.26, 0.92, 0.91, 0.60, 0.94, 0.87, 0.91, 0.92, 0.98, 0.96, 0.96, 0.96, 0.81, 0.67, 0.81, 0.91, 0.94, 0.94, 0.96, 0.95, 0.90] bins = [0.6, 0.7, 0.73, 0.77, 0.8, 0.83, 0.87, 0.9, 0.93, 1] plt.hist(scores, bins) plt.xticks(bins, ['F', 'D', 'C-', 'C', 'C+', 'B-', 'B', 'B+', 'A-', 'A']) plt.show() """ """ class Fraction: def __init__(self, num, den): self.num = num self.den = den def __str__(self): return "{}/{}".format(self.num, self.den) @staticmethod def gcf(a, b): if a > b: b, a = a, b gcf = 1 for factor in range(1, a + 1): if a % factor == 0 and b % factor == 0: gcf = factor return gcf def reduce(self): factor = Fraction.gcf(self.num, self.den) new_num = self.num // factor new_den = self.den // factor return Fraction(new_num, new_den) def add(self, other): new_num = (other.den * self.num) + (other.num * self.den) new_den = other.den * self.den result = Fraction(new_num, new_den) return result.reduce() def __add__(self, other): return self.add(other) def __gt__(self, other): self_num = self.num * other.den other_num = other.num * self.den return self_num > other_num def __lt__(self, other): self_num = self.num * other.den other_num = other.num * self.den return self_num < other_num def __eq__(self, other): return self.num == other.num and self.den == other.den def __repr__(self): return self.__str__() def silly(fn): def new_fn(*args): print('start') result = fn(*args) print('end') return result return new_fn @silly def foo(a, b): return a + b print(foo(2, 3)) a = Fraction(1, 2) print(a) print(Fraction.gcf(4, 8)) print(Fraction.gcf(9, 6)) print(Fraction.gcf(17, 5)) b = Fraction(2, 8) print(a.add(b)) print(a + b) a.foozy = 'barry' print(a.foozy) b.num = 6 print(b) #print(b.foozy) print(type(b)) print(a > b) print(b > a) c = Fraction(1,3) print('c < a', c < a) print('c < b', c < b) print('c == c', c == c) print('c != c', c != c) fractions = [a, b, c] fractions.sort() print(fractions) print([range(4), range(2)]) """ """ class Rectangle: def __init__(self, t, x, y, w, h, color): self.t = t self.x = x self.y = y self.w = w self.h = h self.color = color def area(self): return self.w * self.h def __lt__(self, other): return self.area() < other.area def __str__(self): return "{} x {} at ({}, {})".format(self.w, self.h, self.x, self.y) def __repr__(self): return self.__str__() def __eq__(self, other): return self.w == other.w and self.h == other.h def render(self): self.t.up() self.t.color = self.color self.t.begin_fill() self.t.goto(self.x, self.y) self.t.down() self.t.goto(self.x + self.w, self.y) self.t.goto(self.x + self.w, self.y - self.h) self.t.goto(self.x, self.y - self.h) self.t.goto(self.x, self.y) self.t.end_fill() import turtle t = turtle.Turtle() t.hideturtle() wn = turtle.Screen() wn.tracer(0) r1 = Rectangle(t, 50, 50, 100, 50, 'black') r2 = Rectangle(t, -50, -50, 100, 100, 'red') def draw(): t.clear() r1.x += 1 r1.render() r2.render() wn.ontimer(draw, 20) wn.ontimer(draw, 200) wn.update() wn.mainloop() """ """ class Sprite: def __init__(self, t, x, y): self.t = t self.x = x self.y = y def move_right(self, delta): self.x += delta def render(self): self.t.up() self.t.goto(self.x, self.y) self.t.down() class Circle(Sprite): def __init__(self, t, x, y, r): super().__init__(t, x, y) self.r = r def render(self): super().render() self.t.circle(self.r) class Rectangle(Sprite): def __init__(self, t, x, y, w, h, color): super().__init__(t, x, y) self.w = w self.h = h self.color = color def area(self): return self.w * self.h def __lt__(self, other): return self.area() < other.area def __str__(self): return "{} x {} at ({}, {})".format(self.w, self.h, self.x, self.y) def __repr__(self): return self.__str__() def __eq__(self, other): return self.w == other.w and self.h == other.h def render(self): super().render() self.t.color = self.color self.t.begin_fill() self.t.goto(self.x + self.w, self.y) self.t.goto(self.x + self.w, self.y - self.h) self.t.goto(self.x, self.y - self.h) self.t.goto(self.x, self.y) self.t.end_fill() import turtle t = turtle.Turtle() t.hideturtle() wn = turtle.Screen() wn.tracer(0) r1 = Rectangle(t, 50, 50, 100, 50, 'black') r2 = Rectangle(t, -50, -50, 100, 100, 'red') c = Circle(t, 0, 100, 100) def draw(): t.clear() r1.move_right(5) c.move_right(3) r1.render() r2.render() c.render() wn.update() wn.ontimer(draw, 20) wn.ontimer(draw, 200) wn.mainloop() """ #from matplotlib import pyplot as plt """ plt.plot([1, 2, 3, 4, 5], [2, 4, 1, 1, 5]) plt.xlim(0, 10) plt.ylim(0, 10) """ #plt.bar(['lemons', 'apples', 'oranges', 'limes'], [5, 12, 2, 3]) #plt.hist([1,0. 3,0. 7,0. 4,0. 2]) #plt.show() import matplotlib.pyplot as plt data = {'apples': 10, 'oranges': 15, 'lemons': 5, 'limes': 20} names = list(range(1, len(data.keys()) + 1)) values = list(data.values()) plt.bar(names, values) plt.xticks(names, list(data.keys())) #plt.xticklabels(list(data.keys())) plt.show()
[ "jversoza@cs.nyu.edu" ]
jversoza@cs.nyu.edu
ff9985458b628b7515d40abce1908071b3909f62
f9ff85c981942d15c65d37de107e0c5fa5e6a2ba
/pychron/experiment/utilities/identifier.py
93e069990688ddb7ca6694d6320df4bfe0882396
[ "Apache-2.0" ]
permissive
kenlchen/pychron
0c729f1b1973b9883734007b7a318fe21669e6c1
ffd988e27ae09fb3e8a8790d87ff611557911d07
refs/heads/master
2021-01-24T21:53:42.293554
2016-04-04T07:18:39
2016-04-04T07:18:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,439
py
# =============================================================================== # Copyright 2012 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= # ============= standard library imports ======================== import os import yaml # ============= local library imports ========================== from pychron.file_defaults import IDENTIFIERS_DEFAULT from pychron.pychron_constants import LINE_STR, ALPHAS from pychron.paths import paths ANALYSIS_MAPPING = dict() # ba: 'Blank Air' NON_EXTRACTABLE = dict() # ba: 'Blank Air' ANALYSIS_MAPPING_INTS = dict() # blank_air: 0 SPECIAL_MAPPING = dict() # blank_air: ba SPECIAL_NAMES = ['Special Labnumber', LINE_STR] # 'Blank Air' SPECIAL_KEYS = [] # ba # AGE_TESTABLE = [] p = os.path.join(paths.hidden_dir, 'identifiers.yaml') if os.path.isfile(p): with open(p, 'r') as rfile: yd = yaml.load(rfile) else: yd = yaml.load(IDENTIFIERS_DEFAULT) for i, idn_d in enumerate(yd): key = idn_d['shortname'] value = idn_d['name'] ANALYSIS_MAPPING[key] = value underscore_name = value.lower().replace(' ', '_') ANALYSIS_MAPPING_INTS[underscore_name] = i if not idn_d['extractable']: NON_EXTRACTABLE[key] = value # if idn_d['ageable']: # AGE_TESTABLE.append(value.lower()) if idn_d['special']: SPECIAL_MAPPING[underscore_name] = key SPECIAL_NAMES.append(value) SPECIAL_KEYS.append(key) # ANALYSIS_MAPPING = dict(ba='Blank Air', bc='Blank Cocktail', bu='Blank Unknown', # bg='Background', u='Unknown', c='Cocktail', a='Air', # pa='Pause', ic='Detector IC') # # ANALYSIS_MAPPING_INTS = dict(unknown=0, background=1, # air=2, cocktail=3, # blank_air=4, # blank_cocktail=5, # blank_unknown=6, # detector_ic=7) # # # # "labnumbers" where extract group is disabled # NON_EXTRACTABLE = dict(ba='Blank Air', bc='Blank Cocktail', bu='Blank Unknown', # bg='Background', c='Cocktail', a='Air', ic='Detector IC', be='Blank ExtractionLine') # # AGE_TESTABLE = ('unknown','cocktail') # SPECIAL_NAMES = ['Special Labnumber', LINE_STR, 'Air', 'Cocktail', 'Blank Unknown', # 'Blank Air', 'Blank Cocktail', 'Background', 'Pause', 'Degas', 'Detector IC'] # # SPECIAL_MAPPING = dict(background='bg', # blank_air='ba', # blank_cocktail='bc', # blank_unknown='bu', # pause='pa', # degas='dg', # detector_ic='ic', # air='a', # cocktail='c', # unknown='u') # # p = os.path.join(paths.setup_dir, 'identifiers.yaml') # differed = [] # if os.path.isfile(p): # with open(p, 'r') as rfile: # yd = yaml.load(rfile) # for i, (k, v) in enumerate(yd.items()): # ANALYSIS_MAPPING[k] = v # # #if : assume '01:Value' where 01 is used for preserving order # if ':' in v: # a, v = v.split(':') # c = int(a) # differed.append((c, v)) # ANALYSIS_MAPPING_INTS[v.lower()] = 7 + c # else: # SPECIAL_NAMES.append(v) # ANALYSIS_MAPPING_INTS[v.lower()] = 7 + i # SPECIAL_MAPPING[v.lower()] = k # # if differed: # ds = sorted(differed, key=lambda x: x[0]) # SPECIAL_NAMES.extend([di[1] for di in ds]) # # SPECIAL_KEYS = map(str.lower, SPECIAL_MAPPING.values()) def convert_identifier_to_int(ln): m = {'ba': 1, 'bc': 2, 'bu': 3, 'bg': 4, 'u': 5, 'c': 6, 'ic': 7} try: return int(ln) except ValueError: return m[ln] def convert_special_name(name, output='shortname'): """ input name output shortname name='Background' returns: if output=='shortname' return 'bg' else return 4 #identifier """ if isinstance(name, str): name = name.lower() name = name.replace(' ', '_') if name in SPECIAL_MAPPING: sn = SPECIAL_MAPPING[name] if output == 'labnumber': sn = convert_identifier(sn) return sn else: return name def convert_identifier(identifier): """ old: identifier=='bg, a, ...' return 1 identifier== bu-FD-J, 51234, 13212-01 return bu-FD-J, 51234, 13212 """ if '-' in identifier: ln = identifier.split('-')[0] try: ln = int(ln) identifier = str(ln) except ValueError: return identifier # identifier=identifier.split('-')[0] # if identifier in ANALYSIS_MAPPING: # sname = ANALYSIS_MAPPING[identifier] # identifier = next((k for k, v in SPECIAL_IDS.iteritems() if v == sname), identifier) return identifier def get_analysis_type(idn): """ idn: str like 'a-...' or '43513' """ idn = idn.lower() for atype, tag in SPECIAL_MAPPING.iteritems(): if idn.startswith(tag): return atype else: return 'unknown' # if idn.startswith('bg'): # return 'background' # elif idn.startswith('ba'): # return 'blank_air' # elif idn.startswith('bc'): # return 'blank_cocktail' # elif idn.startswith('b'): # return 'blank_unknown' # elif idn.startswith('a'): # return 'air' # elif idn.startswith('c'): # return 'cocktail' # elif idn.startswith('dg'): # return 'degas' # elif idn.startswith('pa'): # return 'pause' # else: # return 'unknown' def make_runid(ln, a, s=''): _as = make_aliquot_step(a, s) return '{}-{}'.format(ln, _as) def strip_runid(r): l, x = r.split('-') a = '' for i, xi in enumerate(x): a += xi try: int(a) except ValueError: a = x[:i] s = x[i:] break else: s = '' return l, int(a), s def make_step(s): if isinstance(s, (float, int, long)): s = ALPHAS[int(s)] return s or '' def make_aliquot_step(a, s): if not isinstance(a, str): a = '{:02d}'.format(int(a)) s = make_step(s) return '{}{}'.format(a, s) def make_identifier(ln, ed, ms): try: _ = int(ln) return ln except ValueError: return make_special_identifier(ln, ed, ms) def make_standard_identifier(ln, modifier, ms, aliquot=None): """ ln: str or int a: int modifier: str or int. if int zero pad ms: int or str """ if isinstance(ms, int): ms = '{:02d}'.format(ms) try: modifier = '{:02d}'.format(modifier) except ValueError: pass d = '{}-{}-{}'.format(ln, modifier, ms) if aliquot: d = '{}-{:02d}'.format(d, aliquot) return d def make_special_identifier(ln, ed, ms, aliquot=None): """ ln: str or int a: int aliquot ms: int mass spectrometer id ed: int extract device id """ if isinstance(ed, int): ed = '{:02d}'.format(ed) if isinstance(ms, int): ms = '{:02d}'.format(ms) d = '{}-{}-{}'.format(ln, ed, ms) if aliquot: if not isinstance(aliquot, str): aliquot = '{:02d}'.format(aliquot) d = '{}-{}'.format(d, aliquot) return d def make_rid(ln, a, step=''): """ if ln can be converted to integer return runid else return ln-a """ try: _ = int(ln) return make_runid(ln, a, step) except ValueError: if not isinstance(a, str): a = '{:02d}'.format(a) return '{}-{}'.format(ln, a) def is_special(ln): special = False if '-' in ln: special = ln.split('-')[0] in ANALYSIS_MAPPING return special # return make_special_identifier(ln, ed, ms, aliquot=a) # =============================================================================== # deprecated # =============================================================================== # SPECIAL_IDS = {1: 'Blank Air', 2: 'Blank Cocktail', 3: 'Blank Unknown', # 4: 'Background', 5: 'Air', 6: 'Cocktail' # } # # @deprecated # def convert_labnumber(ln): # """ # ln is a str but only special labnumbers cannot be converted to int # convert number to name # # """ # try: # ln = int(ln) # # if ln in SPECIAL_IDS: # ln = SPECIAL_IDS[ln] # except ValueError: # pass # # return ln # # # # @deprecated # def convert_shortname(ln): # """ # convert number to shortname (a for air, bg for background...) # """ # name = convert_labnumber(ln) # if name is not None: # ln = next((k for k, v in ANALYSIS_MAPPING.iteritems() # if v == name), ln) # return ln def convert_extract_device(name): """ change Fusions UV to FusionsUV, etc """ n = '' if name: n = name.replace(' ', '') return n def pretty_extract_device(ident): """ change fusions_uv to Fusions UV, etc """ n = '' if ident: args = ident.split('_') if args[-1] in ('uv, co2'): n = ' '.join(map(str.capitalize, args[:-1])) n = '{} {}'.format(n, args[-1].upper()) else: n = ' '.join(map(str.capitalize, args)) #n=ident.replace(' ', '_') return n # ============= EOF =============================================
[ "jirhiker@gmail.com" ]
jirhiker@gmail.com
24f1dcc1d1aa4ed13620403653e66f45ffdc5e4a
11fb66c21b1afe7ea96f5a1816662b225f2dc79c
/nextgen/bcbio/variation/genotype.py
22a9442f3a128efdeec2d7c608c21989707d43cd
[]
no_license
raonyguimaraes/bcbb
064f1c7d573b82478e6f787a2bd3932443c25864
c7485f8dbc63a93e73f0b0bb43630110ee7381df
refs/heads/master
2021-01-18T06:18:10.282876
2011-06-21T19:31:03
2011-06-21T19:31:03
1,986,676
1
0
null
null
null
null
UTF-8
Python
false
false
6,578
py
"""Provide SNP, indel calling and variation analysis using GATK genotyping tools. Genotyping: http://www.broadinstitute.org/gsa/wiki/index.php/Unified_genotyper http://www.broadinstitute.org/gsa/wiki/index.php/Local_realignment_around_indels http://www.broadinstitute.org/gsa/wiki/index.php/IndelGenotyper http://www.broadinstitute.org/gsa/wiki/index.php/VariantFiltrationWalker Variant Evaluation: http://www.broadinstitute.org/gsa/wiki/index.php/VariantEval """ import os import itertools from bcbio import broad # ## SNP Genotyping def gatk_genotyper(align_bam, ref_file, config, dbsnp=None): """Perform genotyping and filtration on a sorted aligned BAM file. """ picard = broad.runner_from_config(config) picard.run_fn("picard_index_ref", ref_file) picard.run_fn("picard_index", align_bam) snp_file = _unified_genotyper(picard, align_bam, ref_file, dbsnp) filter_snp = _variant_filtration(picard, snp_file, ref_file) return filter_snp def _unified_genotyper(picard, align_bam, ref_file, dbsnp=None): """Perform SNP genotyping on the given alignment file. """ out_file = "%s-snp.vcf" % os.path.splitext(align_bam)[0] params = ["-T", "UnifiedGenotyper", "-I", align_bam, "-R", ref_file, "-o", out_file, "-A", "DepthOfCoverage", "-A", "AlleleBalance", "-A", "HomopolymerRun", "-A", "QualByDepth", "--genotype_likelihoods_model", "SNP", "-baq", "CALCULATE_AS_NECESSARY", "--standard_min_confidence_threshold_for_calling", "10.0", "--standard_min_confidence_threshold_for_emitting", "10.0", #"--trigger_min_confidence_threshold_for_calling", "10.0", #"--trigger_min_confidence_threshold_for_emitting", "10.0", "--downsample_to_coverage", 10000, "--min_base_quality_score", 20, "-l", "INFO", ] if dbsnp: params += ["-B:dbsnp,VCF", dbsnp] if not (os.path.exists(out_file) and os.path.getsize(out_file) > 0): picard.run_gatk(params) return out_file def _variant_filtration(picard, snp_file, ref_file): """Filter out problematic SNP calls. Recommended Broad hard filtering for deep coverage exomes: QUAL < 30.0 || AB > 0.75 && DP > 40 || QD < 5.0 || HRun > 5 || SB > -0.10 """ out_file = "%s-filter%s" % os.path.splitext(snp_file) params = ["-T", "VariantFiltration", "-R", ref_file, "-o", out_file, "-B:variant,VCF", snp_file, "--filterName", "QUALFilter", "--filterExpression", "QUAL <= 50.0", "--filterName", "QDFilter", "--filterExpression", "QD < 5.0", "--filterName", "ABFilter", "--filterExpression", "AB > 0.75 && DP > 40", "--filterName", "HRunFilter", "--filterExpression", "HRun > 3.0", "--filterName", "SBFilter", "--filterExpression", "SB > -0.10", "-l", "INFO", ] if not (os.path.exists(out_file) and os.path.getsize(out_file) > 0): picard.run_gatk(params) return out_file # ## Variant evaluation def gatk_evaluate_variants(vcf_file, ref_file, config, dbsnp=None, intervals=None): """Evaluate variants, return SNP counts and Transition/Transversion ratios. """ runner = broad.runner_from_config(config) eval_file = variant_eval(vcf_file, ref_file, dbsnp, intervals, runner) stats = _extract_eval_stats(eval_file) return _format_stats(stats['called']) def _format_stats(stats): """Convert statistics into high level summary of major variables. """ total = sum(itertools.chain.from_iterable(s.itervalues() for s in stats.itervalues())) if total > 0: dbsnp = sum(stats['known'].itervalues()) / float(total) * 100.0 else: dbsnp = -1.0 tv_dbsnp = stats['known']['tv'] ti_dbsnp = stats['known']['ti'] tv_novel = stats['novel']['tv'] ti_novel = stats['novel']['ti'] if tv_novel > 0 and tv_dbsnp > 0: titv_all = float(ti_novel + ti_dbsnp) / float(tv_novel + tv_dbsnp) titv_dbsnp = float(ti_dbsnp) / float(tv_dbsnp) titv_novel = float(ti_novel) / float(tv_novel) else: titv_all, titv_dbsnp, titv_novel = (-1.0, -1.0, -1.0) return dict(total=total, dbsnp_pct = dbsnp, titv_all=titv_all, titv_dbsnp=titv_dbsnp, titv_novel=titv_novel) def _extract_eval_stats(eval_file): """Parse statistics of interest from GATK output file. """ stats = dict() for snp_type in ['called', 'filtered']: stats[snp_type] = dict() for dbsnp_type in ['known', 'novel']: stats[snp_type][dbsnp_type] = dict(ti=0, tv=0) for line in _eval_analysis_type(eval_file, "Ti/Tv Variant Evaluator"): if line[:2] == ['eval', 'dbsnp']: snp_type = line[3] dbsnp_type = line[4] try: cur = stats[snp_type][dbsnp_type] except KeyError: cur = None if cur: stats[snp_type][dbsnp_type]["ti"] = int(line[5]) stats[snp_type][dbsnp_type]["tv"] = int(line[6]) return stats def _eval_analysis_type(in_file, analysis_name): """Retrieve data lines associated with a particular analysis. """ with open(in_file) as in_handle: # read until we reach the analysis for line in in_handle: if (line.startswith("Analysis Name:") and line.find(analysis_name) > 0): break # read off header lines for _ in range(4): in_handle.next() # read the table until a blank line for line in in_handle: if not line.strip(): break parts = line.rstrip("\n\r").split() yield parts def variant_eval(vcf_in, ref_file, dbsnp, target_intervals, picard): """Evaluate variants in comparison with dbSNP reference. """ out_file = "%s.eval" % os.path.splitext(vcf_in)[0] params = ["-T", "VariantEval", "-R", ref_file, "-B:eval,VCF", vcf_in, "-B:dbsnp,VCF", dbsnp, "-o", out_file, "-l", "INFO" ] if target_intervals: params.extend(["-L", target_intervals]) if not (os.path.exists(out_file) and os.path.getsize(out_file) > 0): picard.run_gatk(params) return out_file
[ "chapmanb@50mail.com" ]
chapmanb@50mail.com
8c360a0f72d3907199f648b5f07ac60f7c71ae74
118c35587c050c2157d6043d7e8e9111f9d3a65f
/code/code_first_run_words/space_to_grid.py
e413ee2d478b0db505dd91bb9187ef991be8a7a7
[]
no_license
LydiaMennes/smrThesis
ef049b074a8bafeaa75a59c9866b995b97b5b18f
cb7d7a0efb94511017bdb0e8a451f03e47e9dae8
refs/heads/master
2021-05-28T02:58:02.084185
2014-11-12T17:12:27
2014-11-12T17:12:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,021
py
from __future__ import division import numpy as np import matplotlib.pyplot as plt import pylab import math import datetime from thesis_utilities import * import sys import copy import random import gc figure_size = 8 update_neighborhood = 300 grid_param = [] class TypeKeeper: def __init__(self, indexes): self.indexes = indexes def get_color(self, x): return self.indexes[x] class GridPoint: stepsize = 0.6 # before: 0.4 def __init__(self, x, y, grid): self.pos = np.array([float(x), float(y)]) self.assignments = [] self.lonely_points = [] self.steps = {} self.providers = [] self.prev_providers = [] self.grid = grid def reset(self): self.assignments=[] self.lonely_points=[] self.steps = {} self.prev_providers = self.providers self.providers = [] # assignment 0 = numpy array with position, 1 = index of point def add_assignment(self, assignment): self.assignments.append(assignment) def add_provider(self, prov): self.providers.append(prov) def get_prev_providers(self): return self.prev_providers def add_lonely_gridpoint(self, x, y): # implement processing of grid points g_pos = np.array([float(x), float(y)]) dist = np.sqrt(np.inner(g_pos-self.pos, g_pos-self.pos)) self.lonely_points.append([dist, g_pos]) def get_movement(self, i): if len(self.assignments) < 2: return np.array([0.0,0.0]) elif self.steps == {}: self.calc_assignments() if not i in self.steps.keys(): return np.array([0.0,0.0]) return self.steps[i] else: if not i in self.steps.keys(): return np.array([0.0,0.0]) return self.steps[i] ## p = point, p0 = first point of line, p1 = other point of line # def dist_to_line(p, p0, p1): # gamma_q = np.sum(np.multiply(p1-p0, p-p0)) / np.sum(np.power(p1-p0,2)) # return np.sqrt(np.sum(p-p0- gamma_q*np.power(p1-p0,2))) def get_step(self, gp, p, d): # Next part makes direction slightly more random # q = np.array([p[0]+(random.random()-0.5)/3, p[1]+(random.random()-0.5)/3]) # d1 = np.sqrt(np.dot(q-gp, q-gp)) alpha = math.asin( abs(gp[0]-p[0]) / d ) step = np.array([math.sin(alpha), math.cos(alpha)]) * self.stepsize if gp[0] < p[0]: step[0] *= -1.0 if gp[1] < p[1]: step[1]*=-1.0 return step def calc_assignments(self): self.lonely_points.sort(key=lambda x: x[0]) # make point move with smallest distance to 'movement line' from grid point to lonely gridpoint for i in range(len(self.assignments)-1): if i < len(self.lonely_points): min_dist_lgp = float("inf") min_dist_orig = float("inf") min_ind = -1 p = self.lonely_points[i] for index in range(len(self.assignments)): [pos, ind, orig_pos] = self.assignments[index] if not ind in self.steps.keys(): dist_orig = np.sqrt(np.dot(orig_pos-pos, orig_pos-pos)) if dist_orig < min_dist_orig: min_dist_lgp = np.sqrt(np.dot(p[1]-pos, p[1]-pos)) min_dist_orig = dist_orig min_ind = index if dist_orig == min_dist_orig: dist_lgp = np.sqrt(np.dot(p[1]-pos, p[1]-pos)) if dist_lgp < min_dist_lgp: min_dist_lgp=dist_lgp min_ind = index # to_pos = p[1] # self.grid[int(round(to_pos[0]))][int(round(to_pos[1]))].add_provider(self.pos) # if len(self.grid[int(round(to_pos[0]))][int(round(to_pos[1]))].assignments) != 0: # print("wrong provider added") # print("provider added") self.steps[self.assignments[min_ind][1] ] = self.get_step(p[1], self.assignments[min_ind][0], min_dist_lgp) def print_memory(): # w = WMI('.') # result = w.query("SELECT WorkingSet FROM Win32_PerfRawData_PerfProc_Process WHERE IDProcess=%d" % os.getpid()) # result2 = int(result[0]['WorkingSet']) # print type(result2) # print "memory:\n", result2 # return result2 # h = hpy() # print h.heap() # return None print("") def restart(data_folder, log_memory, last_iter_nr, last_fig_nr, grid_enlarge=0): blob_colors = {} colors = get_colors() f = open(data_folder+r"\color_file.txt") for line in f: line = line.replace("\n", "") line = line.split(";") color = line[1] color = color.replace("]","") color = color.replace("[","") color = color.split(", ") color = [float(color[0]), float(color[1]), float(color[2])] blob_colors[int(line[0])] = color f.close() blob_colors = TypeKeeper(blob_colors) data = space_from_file(data_folder+r"\intermediate_grids\data_"+str(last_fig_nr)+"_it"+str(last_iter_nr)+".txt") print("data shape",data.shape[0]) nr_items = data.shape[0] grid_size = int(math.ceil(math.sqrt(nr_items)))+grid_enlarge grid = [] for i in range(grid_size): grid.append([]) for j in range(grid_size): grid[i].append(GridPoint(i,j, grid)) orig_data = space_from_file(data_folder + r"\intermediate_grids\data_orig.txt") iter_nr, assignment = iterate(data, orig_data, grid, last_fig_nr+1, nr_items, grid_size, data_folder+r"\intermediate_grids", log_memory, last_iter_nr+1, blob_colors) f = open(data_folder+r"\init_grid_assignment.txt", "w") for elem in assignment: f.write(str(elem[0]) +";"+ str(elem[1]) +";"+ str(elem[2]) + "\n") f.close() def iterate(data, orig_data, grid, fig_nr, nr_items, grid_size, result_path, log_memory, iternr, blob_nr_keeper=None): #iteratively move to grid points assigned = set() assignment = [] sufficient_gradient =True neighborhood_size = 10 first = True print("start conversion to grid", datetime.datetime.now()) neighborhood_size_changed = True #find intial lonely gridpoints lonely_points = [] assigned = set() assignment = [] for i in range(nr_items): nearest = [min(max(int(round(data[i,0])),0),grid_size-1), min(max(int(round(data[i,1])),0),grid_size-1)] grid[nearest[0]][nearest[1]].add_assignment( (data[i,:], i, orig_data[i,:]) ) assigned.add((nearest[0], nearest[1])) assignment.append((nearest[0], nearest[1], i)) for i in range(grid_size): for j in range(grid_size): if len(grid[i][j].assignments) == 0: lonely_points.append(grid[i][j]) print("\n\nNr lonely points at start:", len(lonely_points), "with grid size", grid_size, "and", nr_items, "elems") while len(assigned)<nr_items: iternr+=1 if not first: assigned = set() assignment = [] # Assign each data point to the nearest grid point for i in range(nr_items): nearest = [min(max(int(round(data[i,0])),0),grid_size-1), min(max(int(round(data[i,1])),0),grid_size-1)] grid[nearest[0]][nearest[1]].add_assignment( (data[i,:], i, orig_data[i,:]) ) assigned.add((nearest[0], nearest[1])) assignment.append((nearest[0], nearest[1], i)) if first: first = False if len(assigned)<nr_items: # VERVANG DIT MET DOOR LONELY POINTS HEEN LOPEN if neighborhood_size_changed: print("check neighborhood") for lpi in reversed(range(len(lonely_points))) : lonely_p = lonely_points[lpi] if len(lonely_p.assignments)==0: i = int(lonely_p.pos[0]) j = int(lonely_p.pos[1]) if sufficient_gradient: no_providers = True if not neighborhood_size_changed: # DOOR VORIGE PUNTEN HEEN LOPEN prev_providers = lonely_p.get_prev_providers() no_providers = len(prev_providers)==0 nr_additions = 0 checked = set() for [px,py] in prev_providers: from_pi, to_pi = max(0, px-2), min(grid_size, px+2) from_pj, to_pj = max(0, py-2), min(grid_size, py+2) for ii in range(from_pi,to_pi): for jj in range(from_pj,to_pj): if (ii,jj) not in checked and len(grid[ii][jj].assignments) > 1: grid[ii][jj].add_lonely_gridpoint(i,j) lonely_p.add_provider([ii,jj]) nr_additions +=1 checked.add((ii,jj)) else: from_i, to_i = max(0, i-neighborhood_size), min(grid_size, i+neighborhood_size+1) from_j, to_j = max(0, j-neighborhood_size), min(grid_size, j+neighborhood_size+1) for ii in range(from_i,to_i): for jj in range(from_j,to_j): if len(grid[ii][jj].assignments) > 1: grid[ii][jj].add_lonely_gridpoint(i,j) lonely_p.add_provider([ii,jj]) else: for elem in assigned: if len(grid[elem[0]][elem[1]].assignments) > 0: grid[elem[0]][elem[1]].add_lonely_gridpoint(i,j) else: del lonely_points[lpi] nr_movements = 0 for i in range(nr_items): nearest = [min(max(int(round(data[i,0])),0),grid_size-1), min(max(int(round(data[i,1])),0),grid_size-1)] m = grid[nearest[0]][nearest[1]].get_movement(i) if m[0] != 0 or m[1] != 0: nr_movements+=1 data[i,:] = np.add(data[i,:] , m) for i in range(grid_size): for j in range(grid_size): grid[i][j].reset() neighborhood_size_changed = False if iternr%5 == 0: sufficient_gradient = True sufficient_gradient = nr_movements > 50 or len(assigned)+nr_movements==nr_items if not sufficient_gradient and iternr%20!=0: print("insuf grad") print("i:",iternr,"ass",len(assigned), "mo:", nr_movements, "nr lonely points:", len(lonely_points)) if nr_movements < update_neighborhood and len(assigned)+nr_movements!=nr_items: neighborhood_size_changed = True neighborhood_size += 5 print("neigh size upgraded", neighborhood_size) gc.collect() if iternr%10 == 0: neighborhood_size_changed = True if iternr%20 == 0 or len(assigned) == nr_items: print("\n\n") if blob_nr_keeper!=None: used_marker = "o" if nr_items > 1000: used_marker = "." print( "im" + str(fig_nr)) space_to_file(data, result_path + r"\data_"+str(fig_nr)+"_it"+str(iternr)+".txt") image_name = result_path + r"\intermediate_grid_formed_"+str(fig_nr)+".pdf" fig = plt.figure(figsize=(figure_size, figure_size)) for i in range(nr_items): prop_plot=plt.scatter( data[i,0], data[i,1], c=blob_nr_keeper.get_color(i), marker=used_marker) if nr_items > 1000: prop_plot.set_edgecolor("none") # for i in range(grid_size): # for j in range(grid_size): # if len(grid[i][j].assignments) == 0: # prop_plot = plt.scatter(j, grid_size-1-i, c = "k", marker = used_marker) # if nr_items > 1000: # prop_plot.set_edgecolor("none") plt.axis([-1, grid_size, -1, grid_size]) plt.title("Result at iteration " + str(iternr)) fig.savefig(image_name, bbox_inches='tight') fig.savefig(result_path + r"\intermediate_grid_"+four_digit_string(fig_nr)+".png") plt.close() fig_nr+=1 print( "iter", iternr, "nr assigned", len(assigned), "from", nr_items, "mo:", nr_movements, "at", datetime.datetime.now()) if log_memory: print("Memory log not available") # all_objects = muppy.get_objects() # sum1 = summary.summarize(all_objects) # summary.print_(sum1, limit=15, sort='size') # print("printed at", datetime.datetime.now()) return iternr, assignment def space_to_grid_iterative(data, result_path, log_memory, with_figures=True, blob_nr_keeper = None, grid_enlarge = 0, scale = True): nr_items = data.shape[0] print("nr items:", nr_items) grid_size = int(np.ceil(np.sqrt(nr_items)))+grid_enlarge space_to_file(data, result_path + r"\data_orig.txt") orig_data = np.copy(data) # Prepare grid grid = [] for i in range(grid_size): grid.append([]) for j in range(grid_size): grid[i].append(GridPoint(i,j, grid)) # Rescale and move data if scale: print("scale data") move_scale = np.array([0.9 , 0.9]) if data.min(axis=0)[0] < 0: move_scale[0] = 1.1 if data.min(axis=0)[1] < 0: move_scale[1] = 1.1 data = data - (data.min(axis=0) * move_scale) scaling = (float(grid_size)-1)/ (data.max(axis=0) * 1.2 ) data = np.multiply(data, np.tile(scaling, (nr_items, 1) ) ) colors = get_colors() # Show initial data if with_figures: x = list(data[:,0]) xi = np.tile(np.arange(grid_size), (grid_size, 1)) y = list(data[:,1]) yi = np.tile( np.array([np.arange(grid_size)]).T, (1,grid_size)) image_name = result_path + r"\space_to_grid_init_plot.pdf" fig = plt.figure() plt.plot(np.ndarray.flatten(xi), np.ndarray.flatten(yi), 'b.') plt.scatter( x, y, c=colors) fig.savefig(image_name, bbox_inches='tight') plt.close() image_name = result_path + r"\space_to_grid_init_plot2.pdf" fig = plt.figure() plt.scatter( x, y, c=colors) fig.savefig(image_name, bbox_inches='tight') plt.close() fig_nr = 1 iternr = 0 iternr, assignment = iterate(data, orig_data, grid, fig_nr, nr_items, grid_size, result_path, log_memory, iternr, blob_nr_keeper) print("needed ", iternr, "iterations for", len(assignment), "points") print("\n=============\nDONE\n=============\n") # plt.plot(np.ndarray.flatten(xi), np.ndarray.flatten(yi), 'b.') # plt.scatter( x, y, c=colors) # plt.show() if with_figures: for i in range(nr_items): data[assignment[i][2],:] = np.array([assignment[i][0], assignment[i][1]]) x = list(data[:,0]) y = list(data[:,1]) image_name = result_path + r"\grid_result_plot.pdf" fig = plt.figure(figsize=(figure_size, figure_size)) plt.scatter( x, y, c=colors) plt.title("Result of forming a grid from a space") plt.axis([-1, grid_size+1, -1, grid_size+1]) # fig.savefig(image_name, bbox_inches='tight') fig.savefig(image_name) plt.close() # return result return assignment, grid_size def get_minst_data(file): f = open(file, 'r') data = [] labels = [] for line in f: line = line.replace("\n", "") instance = line.split(" ") data.append([float(instance[0]), float(instance[1])]) labels.append(float(instance[2])) return data,labels if __name__ == "__main__": # random_data = (np.random.random((2500, 2)) * 6) -3 # random_data[0:100,:] = (np.random.random((500, 2)) * 3) + 0.5 # random_data[500:2500,:] = (np.random.random((2000, 2)) * 6) -3 # ass, grid_size = space_to_grid_iterative(random_data) # file = r"K:\Lydia\code\tsne_python\minst_data_reduced.txt" # (data, labels) = get_minst_data(file) # data = np.array(data) # plt.scatter(data[:,0], data[:,1], c=labels) # plt.show() # print("shape:", data.shape) # (assignment, grid_size) = space_to_grid_iterative(data ) # index = 0 # x=[] # y=[] # l=[] # for elem in assignment: # x.append(elem[0]) # y.append(elem[1]) # l.append(labels[elem[2]]) # plt.scatter(x, y, c=l); # plt.show() update_neighborhood = 500 data_case = "\cutoff_10_nolog" restart(r"D:\Users\Lydia\results puzzle" + data_case, False, 2160, 108)
[ "lyltje@gmail.com" ]
lyltje@gmail.com
4dd4f469bb006de018703e400da050fb576366f7
dabe0cafc1533e83b7748d0c851e9b0c5d11aedf
/lurkServer/svr.py
d15654f35981ed0d9b355b4d7d811a8708a91e2c
[]
no_license
Jesse-McDonald/LURK-Server
d805e17a863ba61ffd4a10e831fa835a1a9af973
26addc1e76ffe6543d6e6b4e2d71dcc2bfa10a1c
refs/heads/master
2021-07-08T15:02:48.707964
2017-10-06T04:56:51
2017-10-06T04:56:51
105,967,743
0
0
null
null
null
null
UTF-8
Python
false
false
87
py
from subprocess import call import sys while True: call(["./LurkServer", sys.argv[1]])
[ "noreply@github.com" ]
Jesse-McDonald.noreply@github.com
5596f3080418c4b15b4e17a3ab5dcca54c88f88b
54fc684e36f5326de8a1ac1d5c36467b61f84ec7
/flask-aws/bin/easy_install
d9fb9298420a69f7626b6363347206ebf5b3c9a8
[]
no_license
cgiglio/scraper
b3b4ee57fef787db94bc2f001e2fcf14724062b3
67fcf3bc13a02af1bba43451cdb6d9d646e9e391
refs/heads/master
2021-01-10T13:28:59.672939
2016-03-30T03:37:57
2016-03-30T03:37:57
55,030,019
0
1
null
2020-07-25T22:42:42
2016-03-30T03:37:13
Python
UTF-8
Python
false
false
377
#!/Users/cgiglio/Desktop/flask-aws-tutorial-master/flask-aws/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'distribute==0.6.24','console_scripts','easy_install' __requires__ = 'distribute==0.6.24' import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.exit( load_entry_point('distribute==0.6.24', 'console_scripts', 'easy_install')() )
[ "chris.giglio1@gmail.com" ]
chris.giglio1@gmail.com
1fe15d6c65cd4c39ca0921ffd6169470c7071826
d8626ce85cb10f6259afe8567b2eb227d897008b
/exemplo2.py
a0aeb0977c088e685ef474bcba4f74962ac499ae
[]
no_license
pd4ni3l/Deteccao
c40ece447c4d0509a86ab0464a651732248abb87
4aa3159f76fd8359ea853f257e6aac83811adfa2
refs/heads/master
2020-06-08T04:17:29.584171
2019-06-21T20:26:39
2019-06-21T20:26:39
193,156,137
0
0
null
null
null
null
UTF-8
Python
false
false
276
py
import cv2 classificadorFace - cv2.CascadeClassifier('cascades/haarcascade_frontalface_default.xml') classificadorOlhos = cv2.CascadeClassifier('cascades/haarcacade_eye.xml') imagem = cv2.imread('pessoas/faceolho.jpg') imagemCinza = cv2.cvtColor(imagem, cv2.COLOR_BGR2GRAY)
[ "pd.rg@outlook.com" ]
pd.rg@outlook.com
7f88a65ad57645d2e64297907867372f22c9743f
7ec3f117b80675b46e69adbd47622ce56e3d4879
/001.py
aa32a344b3f5687faf15376d68ca9a27d0ec7615
[ "MIT" ]
permissive
phibra/Project_Euler
feacd9f56da80edc67c5fe84df7ef1ccf195cba9
0de6d26825323453b583d8e1c99e3b4360e17e58
refs/heads/master
2021-05-05T23:58:07.903422
2018-08-17T23:32:30
2018-08-17T23:32:30
116,863,790
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
a, b = 0, 1 sum = 0 while (b < 1000): if (b % 3 == 0) or (b % 5 == 0): sum += a a, b = b, a + b print(sum)
[ "noreply@github.com" ]
phibra.noreply@github.com
0a55919f28900b1616e8bd049fd104b042b7297f
00a4b05f985d88329057585e7fd5e986e2a85d56
/functions_frontend.py
c4d1a93fc6d316ec87128b9d5d9eeb99f8cf4858
[]
no_license
jakobludewig/image_keyword_generator
7c8809912ed90f6e32bf66e79baaf982a51ff44a
23a0c502ff48b93b217b421bce3d4de91480df69
refs/heads/main
2023-07-06T05:47:39.243370
2021-07-25T15:58:09
2021-07-25T15:58:09
389,136,357
0
0
null
null
null
null
UTF-8
Python
false
false
6,810
py
import pandas as pd import ast from typing import List import matplotlib.pyplot as plt from PIL.Image import Image as PILImage from PIL import ImageOps, Image def read_imagenet_labels() -> pd.DataFrame: """ Read in imagenet labels, taken from https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a#file-imagenet1000_clsidx_to_labels-txt Returns: pd.DataFrame: DataFrame containing the labels assigned to each image file """ with open("imagenet1000_labels.txt", "r") as f: s = f.read() imagenet_labels = ast.literal_eval(s) imagenet_labels = pd.DataFrame( {"label": imagenet_labels.keys(), "label_text": imagenet_labels.values()} ) return imagenet_labels def query_image_labels(database: pd.DataFrame, filenames: List[str]) -> List[dict]: """Read in the tags associated with a given list of image files from the keyword database Args: database (pd.DataFrame): The keyword database generated by the build_keyword_database CLI program filenames (List[str]): List of image filenames for which to look up the keywords Returns: List[dict]: List of dictionaries which contain the image filename and the assigned keywords """ images_dict = [ { "filename": f, "labels": database[database.filename.isin([f])][["label_text", "prob"]] .set_index("label_text") .to_dict()["prob"], } for f in filenames ] return images_dict def transform_image(image: PILImage, target_width: int = 400) -> PILImage: """ Transforms a given PILImage to make it suitable for plotting. Args: image (PILImage): PILImage to transform target_width (int, optional): The target width of the transformed image, will preserve aspect ratio. Defaults to 400. Returns: PILImage: Transformed PILImage """ # filename attribute gets lost during transformations so we have to re-assign it afterwards filename = image.filename scaling_factor = target_width / image._size[0] image = image.resize( size=( round(image._size[0] * scaling_factor), round(image._size[1] * scaling_factor), ) ) image = ImageOps.exif_transpose(image) image.filename = filename return image def load_images_and_labels(database: pd.DataFrame, filenames: List[str]) -> List[dict]: """ Loads the specified images and the associated labels from the keyword database into a list of dictionaries Args: database (pd.DataFrame): The keyword database generated by the build_keyword_database CLI program filenames (List[str]): List of image filenames to load Returns: List[dict]: List of dictionaries containing the images and their associated labels from the keyword database """ images_dict = query_image_labels(database, filenames) images_dict = [ {**i, "image": transform_image(Image.open(i["filename"]))} for i in images_dict ] return images_dict def query_top_images_for_label( database: pd.DataFrame, label: str, n: int = 5 ) -> List[str]: """ Query the keyword database for the top n images for a given label. Args: database (pd.DataFrame): The keyword database generated by the build_keyword_database CLI program label (str): The label for which to query the database n (int, optional): The number of images to return for the given label. Defaults to 5. Returns: List[str]: List containing the filenames of the top n images for the specified label """ top_images_label = ( database[database["label_text"] == label] .sort_values("prob", ascending=False) .head(n) ) return top_images_label.filename.tolist() def load_top_n_images_for_label( database: pd.DataFrame, label: str, n: int = 5 ) -> List[dict]: """ Loads top n images and labels for a specified label Args: database (pd.DataFrame): The keyword database generated by the build_keyword_database CLI program label (str): The label for which to query the database n (int, optional): The number of images to return for the given label. Defaults to 5. Returns: List[dict]: List of dictionaries containing the images and their associated labels from the keyword database """ return load_images_and_labels( database, query_top_images_for_label(database, label, n), ) def plot_image_with_labels( image: PILImage, labels: dict, full_path: bool = True ) -> None: """ Plot an image alongside its associated labels Args: image (PILImage): The image to plot labels (dict): Dictionary containing the labels with their predicted probability full_path (bool): Flag indicating whether the full path or just the filename should be displayed. Defaults to True """ fig = plt.figure(figsize=(16, 12)) ax1 = fig.add_subplot(1, 6, (1, 4)) ax1.set_axis_off() ax1.imshow(image) ax2 = fig.add_subplot(1, 6, (5, 6)) if full_path: labels_text = "File: " + image.filename + "\n" else: labels_text = "File: " + "[...]/" + image.filename.split("/")[-1] + "\n" labels_text = labels_text + "\n".join( [k + ": " + str(round(100 * v, 1)) + " %" for k, v in labels.items()] ) ax2.set_axis_off() ax2.text(0, 0.5, labels_text, fontsize=16) def plot_all_images_in_dict(images_dict: dict, full_path: bool = True) -> None: """ Plot all images and their associated labels in the specified dictionary Args: images_dict (dict): Dictionary containing the images and their associated labels full_path (bool): Flag indicating whether the full path or just the filename should be displayed. Defaults to True """ for img in images_dict: plot_image_with_labels(img["image"], img["labels"], full_path) def plot_top_n_images_for_label(database: pd.DataFrame, label: str, n: int = 5) -> None: """ Plots top n images and labels for a specified label Args: database (pd.DataFrame): The keyword database generated by the build_keyword_database CLI program label (str): The label for which to query the database n (int, optional): The number of images to return for the given label. Defaults to 5. """ plot_all_images_in_dict( load_images_and_labels( database, query_top_images_for_label(database, label, n), ) ) def plot_all_images_by_filename(database: pd.DataFrame, filenames: List[str]) -> None: """[summary] Args: database (pd.DataFrame): [description] filenames (List[str]): [description] """ plot_all_images_in_dict(load_images_and_labels(database, filenames))
[ "jakobludewig@gmx.net" ]
jakobludewig@gmx.net
e4125f181e2989b349e722ba298c236ba8e32e14
9ebc9bba7577c958cc83bf52573303404ea3c7f1
/mycasa_scripts_active/scripts_ts09_phangs_r21/myim02a_regrid.py
3b7da75c7b6afa593266e5253efdae6c940837c4
[]
no_license
toshikisaito1005/mycasa_scripts
3c3d8942d492ea5b5d28bfe7348764caea857549
6367ce6c28e0fe6f98e3adae9823843ba7742da1
refs/heads/master
2021-08-10T23:02:38.690492
2020-10-01T20:10:00
2020-10-01T20:10:00
225,368,379
0
0
null
null
null
null
UTF-8
Python
false
false
2,425
py
import os import glob import numpy as np import scripts_phangs_r21 as r21 dir_data = "/Users/saito/data/myproj_active/proj_ts09_phangs_r21/data/" galnames = ["ngc0628","ngc4321","ngc3627"] image_lengths = [280.,230.,280.] # arcsec direction_ras = ["24.174deg","185.729deg","170.063deg"] direction_decs = ["15.783deg","15.8223deg","12.9914deg"] chanss = ["14~36","","25~74"] ##################### ### Main Procedure ##################### os.system("rm -rf " + dir_data.replace("r21/data/","r21/data_ready")) os.system("mkdir " + dir_data.replace("r21/data/","r21/data_ready")) for i in range(len(galnames)): imagenames = glob.glob(dir_data + galnames[i] + "*co*.image*") imagenames.sort() r21.gridtemplate(imagenames[0], image_lengths[i], direction_ras[i], direction_decs[i]) for j in range(len(imagenames)): output_tmp = imagenames[j].replace("r21/data","r21/data_ready") output = output_tmp.replace(".image",".regrid").replace("_pbcor","") os.system("rm -rf "+output) imregrid(imagename=imagenames[j], template="template.image", output=output, axes=[0,1]) outfile = output.replace(".regrid",".image") os.system("rm -rf "+outfile) immath(imagename = output, expr = "IM0", chans = chanss[i], outfile = outfile) os.system("rm -rf " + output) # pbmasking imagename = outfile pbmask = outfile.replace(".image",".pbmask") os.system("rm -rf " + pbmask + "_tmp") immath(imagename = imagename, expr = "iif( IM0 >=-100000000., 1.0, 0.0)", outfile = pbmask + "_tmp") # imsmooth(imagename = pbmask + "_tmp", major = "55.0arcsec", minor = "55.0arcsec", pa = "0deg", outfile = pbmask + "_tmp2") os.system("rm -rf " + pbmask + "_tmp") # os.system("rm -rf " + pbmask) maxval = imstat(pbmask + "_tmp2")["max"][0] immath(imagename = pbmask + "_tmp2", expr = "iif( IM0 >=" + str(maxval*0.6) + ", 1.0, 0.0)", outfile = pbmask) os.system("rm -rf " + pbmask + "_tmp2") os.system("rm -rf template.*") os.system("rm -rf *.last") #os.system("rm -rf " + dir_data)
[ "toshikisaito1005@gmail.com" ]
toshikisaito1005@gmail.com
6fee09609ee5fbcdc6b8a46948f4d158b0456f9f
efba6a09d46b95400716db5359c228e7fc844ac8
/Llamo/while1.py
84677a4e64ae4ad282471a4bed2685ed178c4acd
[]
no_license
llamo-unprg28/t07_Llamo.Catter
4384f4bf201d9f33e1b0ee8b1e4b2026aec69003
a7c760c27e7b2e97c12eb08423475308875b1fb8
refs/heads/master
2020-11-23T23:21:58.067804
2019-12-15T18:48:15
2019-12-15T18:48:15
227,862,171
0
0
null
null
null
null
UTF-8
Python
false
false
306
py
#SOLO LOS MAYORES DE 18 y menores de 60 AÑOS DEBERAN SUFRAGAR EN ESTAS ELECCIONES #MOSTRAR EN PANTALLA TIENES QUE SUFRAGAR EDAD=0 EDAD_INVALIDA=(EDAD<18 or EDAD>60) while(EDAD_INVALIDA): EDAD=int(input("ingresar edad:")) EDAD_INVALIDA=(EDAD<18 or EDAD>60) #fin_while print("tiene que sufragar")
[ "jllamo@unprg.edu.pe" ]
jllamo@unprg.edu.pe
c32f46eac1c711c70e73dc5bff0f43060bae6713
e19b1f6318a951501b31a23d2cea4bcbe9aaa872
/lists.py
c37baf1f44eb07e83987b4e3337e6043148301b1
[]
no_license
usmanwardag/Python-Tutorial
737a1e6f553e4f66d1b18eaf19c4213dc029db08
b4d941046c19e2e83d0d680f8a465fe19bdf090c
refs/heads/master
2021-01-10T02:04:13.322451
2016-02-06T16:16:15
2016-02-06T16:16:15
49,075,607
0
0
null
null
null
null
UTF-8
Python
false
false
1,394
py
import sys def listConcepts(): '''Illustrates basic list concepts''' a = ['Usman','Mahmood','Khan'] b = a #Does not create a copy c = a[:] #Creates a copy a.append('-') print b #Changes with 'a' print c #Does not change with 'a' if 'Khan' in a: #do something print 'Yay' print '--------------------------------------------------' ''' Implements various list methods such as append, insert and extend. ''' def listMethods(): a = ['Usman','Mahmood','Khan'] b = [1,2,3] a.append('-') print a a.insert(0,'Mr.') print a a.extend(b) #Adds elements of b towards the end print a a.remove('-') #Finds the element and removes it print a a.pop(0) #Removes the elemnt from index no. print a #Note that these methods do not return lists print '--------------------------------------------------' ''' Implements list comprehension which is faster method than simple looping. ''' def listComprehension(): nums = [1, 2, 3, 4] vals = [10,11,12,13] print [n*n for n in nums] print [n*n for n in nums if n>=3] print [n*j for n in nums for j in vals] print '--------------------------------------------------' ''' Main function to run test modules. Run any one of above listed function to test with commands. ''' def main(): listConcepts() #listMethods() #listComprehension() if __name__ == '__main__': main()
[ "usmanwardag@gmail.com" ]
usmanwardag@gmail.com
0ef785d7f477ae2850e5fbeb4b06a99bccf45cfc
dece3eb22be792aeac65ea12a1f183dd73498add
/Tkinter/5.py
b5138b09936d918a4817a1c13949e5e3b7c8c784
[]
no_license
santanu5670/Python
352515ad82f94157e7f74467c5e7dedd6c9069c8
48c2779ccf934588f2bfce7cd322088acec04080
refs/heads/master
2023-06-24T09:22:49.925654
2021-07-22T15:17:34
2021-07-22T15:17:34
387,683,810
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
#jpeg,jpg type of image are not supported in tkinter so first we have to install pillow #command:-pip install pillow #then the following code for jpeg,jpg type of image from tkinter import * from PIL import Image,ImageTk root=Tk() root.geometry("1200x600") image=Image.open("python_image.jpeg") photo=ImageTk.PhotoImage(image) a=Label(image=photo) a.pack() b=Label(text="This is a Image of Python") b.pack() root.mainloop()
[ "santanu2539@gmail.com" ]
santanu2539@gmail.com
b086c183edb2473fc1947cf98bd7f319be257ba0
2b4a809b6a78c920e4d2a27bae4eb2cf5c0233e7
/lesson-08/roll_dice_v5.0.py
b61e2c14bddd0211e9dc0a67a89d2785cda368c8
[ "MIT" ]
permissive
hemiaoio/learn-python
c748f906412657aa185348de4d3aa16bbf014928
4b3885ed7177db4e6e03da80dd9ed69719c8d866
refs/heads/master
2018-12-20T11:17:53.934263
2018-09-23T01:15:17
2018-09-23T01:15:17
117,075,237
1
0
null
null
null
null
UTF-8
Python
false
false
1,142
py
""" 功能:模拟掷骰子 版本:3.0 2.0新增功能:模拟连个骰子 3.0新增功能:可视化抛掷两个骰子的结果 4.0新增功能:使用直方图统计结果 5.0新增功能:使用科学计算库简化程序 """ import random import matplotlib import matplotlib.pyplot as plt import numpy as np # 解决中文显示问题 plt.rcParams["font.sans-serif"] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def main(): roll1_arr = np.random.randint(1, 7, size=1000) roll2_arr = np.random.randint(1, 7, size=1000) roll3_arr = np.random.randint(1, 7, size=1000) result_list = roll1_arr + roll2_arr+roll3_arr hist, bins = np.histogram(result_list, bins=range(3, 6*3+2)) print(hist) print(bins) # normed=1 以 比率显示 Y轴,1 为分母 # edgecolor 边线颜色 # linewidth 边线宽度 plt.hist(result_list, bins=bins, normed=10, edgecolor='#FFFFFF', linewidth=1) # 图表名称 plt.title('骰子点数统计') plt.xlabel('点数') plt.ylabel('频率') plt.show() if __name__ == '__main__': main()
[ "hemiao@woyouqiu.com" ]
hemiao@woyouqiu.com
78fdb205cc61f39b5896322fa4b0424416df751d
199f3f91ec71f7af34d379d285c1535c26dab976
/config/urls.py
6aeac6c1562b5b653b356439082310747eefc3ff
[]
no_license
umarhussain88/Akhbar
0a78d3303346d06ea020a82f259b83b5bb3a202b
0dba82cc4503b2192757c6702ee713c240bd65bc
refs/heads/master
2023-03-04T09:34:15.615795
2021-02-21T22:55:45
2021-02-21T22:55:45
341,019,660
0
0
null
null
null
null
UTF-8
Python
false
false
999
py
"""config URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.views.generic import TemplateView urlpatterns = [ path('admin/', admin.site.urls), path('accounts/', include('accounts.urls')), path('accounts/', include('django.contrib.auth.urls')), path('articles/', include('articles.urls')), path('', include('pages.urls')), ]
[ "umar.hussain.da@outlook.com" ]
umar.hussain.da@outlook.com
7aa10abc887ca1e890a309e7633a9c236026ef95
826b5fd4c31612a16bd60e5fc77188f8536e7f29
/Leap_UI_IOS/page/bases/base_login.py
707bcd868f9498a0c0fb3bb6e94e4f4fcc004d8b
[]
no_license
liminghui774373994/Leap_UI_IOS
bb9e33305d810c2e1faeb83ea8b9a3acce4bb583
660dd1573df8e417c20339c238a4d09765271eaa
refs/heads/master
2023-07-11T16:19:41.136610
2021-08-09T12:13:48
2021-08-09T12:13:48
394,159,593
0
0
null
null
null
null
UTF-8
Python
false
false
2,209
py
# -*- encoding=utf8 -*- __author__ = "liminghui-2021-05-08" from common.settings import * class Login: def __init__(self): # 元素定义 self.moudle = 'login' self.path = Common() self.parents_center = '家长中心' self.my_button = "我的" self.password_to_login = "密码登录" self.input_phone = "TextField" self.input_pass = "SecureTextField" self.login_icon_unselected = "login icon unselected" self.login_button = "登录" self.check_input = '定位账号输入框.png' self.clearbutton = '清除按钮.png' self.leap = '励步.png' self.photo = '头像.png' self.phone = '19600002021' self.passw = 'a1234567' def get_mytab(self): my_button = self.my_button return my_button def get_password_to_login(self): password_to_login = self.password_to_login return password_to_login def get_clear_phone(self): clearphone_path = self.path.get_path(self.moudle, self.check_input) return clearphone_path def get_clear_button(self): clear_button_path = self.path.get_path(self.moudle,self.clearbutton) return clear_button_path def get_input_phone(self): input_pass = self.input_phone return input_pass def get_phone(self): phone = self.phone return phone def get_input_pass(self): input_pass = self.input_pass return input_pass def get_password(self): password = self.passw return password def get_close_board(self): leap_path = self.path.get_path(self.moudle, self.leap) return leap_path def get_privacy_agreement(self): privacy_agreement = self.login_icon_unselected return privacy_agreement def get_login_button(self): login_button = self.login_button return login_button def get_student(self): photo_path = self.path.get_path(self.moudle, self.photo) return photo_path def get_parents_center(self): parents_center = self.parents_center return parents_center
[ "774373994@qq.com" ]
774373994@qq.com
358672c997418ff955972fdc53fedb2ef810efad
ec7194c4f037875c860d1b2f7578b29b71211e55
/code/ML/text-clfn/predict-correlations.py
b97ede6b81e80258e2f0ef66d6a8ce0da8d96ffd
[]
no_license
perdaug/iow
d8576d2f5350daca6026474c1b32a75dac01cb40
92de481379ded9d5d7902728940a6c91b96b2ae5
refs/heads/master
2021-03-30T18:13:08.227885
2018-09-10T06:12:04
2018-09-10T06:12:04
63,000,233
0
1
null
null
null
null
UTF-8
Python
false
false
4,604
py
""" VERSION - Python 3 FUNCTION - Classifying the images based on textual features. """ import os from sklearn.datasets import load_files from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn import metrics import numpy as np from optparse import OptionParser import pickle as pkl op = OptionParser() op.add_option('--source', action='store', type=str, help='The source of the corpora.') op.add_option('--lexicon', action='store', type=str, help='The source of the lexicon.') op.add_option('--claim', action='store', type=str, help='The choice of lexicon.') op.add_option('--experiment', action='store', type=str, help='The choice of an experiment.') (opts, args) = op.parse_args() PATH_HOME = os.path.expanduser('~') + '/Projects/iow' PATH_LEXICON = PATH_HOME + '/data/FE/textual/' + opts.lexicon \ + '/features-separate_' + opts.claim + '/' PATH_SOURCE = PATH_HOME + '/data/FE/textual/' + opts.source PATH_OUT = PATH_HOME + '/data/ML/text-clfn/' + opts.claim + '/' \ + opts.source + '/' + opts.lexicon + '/' PATH_EXPERIMENT = '{}/data/settings/dirs_{}-{}.txt'.format( PATH_HOME, opts.claim, opts.experiment) if not os.path.exists(PATH_OUT): os.makedirs(PATH_OUT) # ___________________________________________________________________________ def main(): vectoriser_count = CountVectorizer(stop_words='english') transformer_tfidf = TfidfTransformer() ''' Initialising the lexicon. ''' file_text = open(PATH_EXPERIMENT, 'r') categories = file_text.read().split('\n') lexicon_sk = load_files(PATH_LEXICON, categories=categories) # print(lexicon_sk.data[0]) lexicon_vectorised = vectoriser_count.fit_transform(lexicon_sk.data) X_lexicon = transformer_tfidf.fit_transform(lexicon_vectorised) y_lexicon = lexicon_sk.target # print(len(y_lexicon)) # return # print(lexicon_sk.target_names) # print(lexicon_sk.target) # names_target = np.array(lexicon_sk.target_names)[lexicon_sk.target] names_target = np.array(lexicon_sk.target_names) print(lexicon_sk.target_names) # print(names_target ) pkl.dump(names_target, open(PATH_OUT + 'target.pkl', 'wb')) # return ''' Initialising the corpora. ''' corpora_sk = load_files(PATH_SOURCE, categories=categories) corpora_vectorised = vectoriser_count.transform(corpora_sk.data) X_corpora = transformer_tfidf.transform(corpora_vectorised) y_true_corpus = corpora_sk.target ''' Running the parameter tuning ''' from sklearn.naive_bayes import MultinomialNB from sklearn import svm from sklearn import linear_model # from sklearn.grid_search import GridSearchCV # from sklearn.model_selection import StratifiedShuffleSplit # cv = StratifiedShuffleSplit(n_splits=5, test_size=0.3) # range_C = np.logspace(-6, 6, 3) # tuned_parameters = [{'C': range_C}] # clf = GridSearchCV(linear_model.LogisticRegression(), tuned_parameters, cv=2, scoring='precision_macro') # for (idxs_train, idxs_test) in cv.split(X_corpora, y_true_corpus): # X_train = X_corpora[idxs_train] # X_test = X_corpora[idxs_test] # y_train = y_true_corpus[idxs_train] # y_test = y_true_corpus[idxs_test] # clf.fit(X_train, y_train.ravel()) # y_pred = clf.predict(X_test) # print(clf.best_params_) # report_clf = metrics.classification_report(y_test, y_pred) # print(report_clf) # return ''' Running the classification ''' # clfs = [MultinomialNB(), svm.SVC(decision_function_shape='ovo'), # linear_model.LogisticRegression(C=1e5)] # names_clf = ['nb', 'svm', 'log-reg'] clfs = [MultinomialNB(), linear_model.LogisticRegression(C=1)] names_clf = ['nb', 'log-reg'] for clf, name_clf in zip(clfs, names_clf): print('Running model: %s' % name_clf) clf.fit(X_lexicon, y_lexicon) y_pred_corpus = clf.predict(X_corpora) report_clf = metrics.classification_report(y_true_corpus, y_pred_corpus) matrix_conf = metrics.confusion_matrix(y_true_corpus, y_pred_corpus) path_model = PATH_OUT + name_clf + '/' if not os.path.exists(path_model): os.makedirs(path_model) pkl.dump(matrix_conf, open(path_model + 'matrix-conf.pkl', 'wb')) print(report_clf) print(matrix_conf) print(dir(clf)) if __name__ == '__main__': main()
[ "arijus.pleska@inria.fr" ]
arijus.pleska@inria.fr
8c8ea78c0a1faf00c55e03395b8ea646bcb1b392
c6d6f62b89e063759f69e179bf7983a13c8180b5
/src/customers/management/commands/add_kml_folder_user.py
38eaa74a1e0aef611fa637a29a50a106c51c6b62
[]
no_license
gtsarik/GSI
170bba1b21b98a44f0fc0f7b9e25bc4b3ae31e9f
e625a189ebb79ebb772f752fbe6230a3e9f68acb
refs/heads/master
2021-01-21T17:06:34.026805
2018-01-25T13:13:59
2018-01-25T13:13:59
47,333,208
0
1
null
null
null
null
UTF-8
Python
false
false
1,228
py
# -*- coding: utf-8 -*- import os import shutil from django.core.management.base import BaseCommand from django.conf import settings from gsi.settings import KML_PATH, KML_DIRECTORY from customers.models import CustomerPolygons class Command(BaseCommand): def handle(self, *args, **options): for cp in CustomerPolygons.objects.all(): old_path_kml = cp.kml_path path_kml_user = os.path.join(KML_PATH, cp.user.username, cp.kml_name) new_path_dir_kml_user = os.path.join(KML_PATH, cp.user.username) dir_kml_user = os.path.join(KML_DIRECTORY, cp.user.username, cp.kml_name) if not os.path.exists(new_path_dir_kml_user): os.makedirs(new_path_dir_kml_user) try: if not os.path.exists(old_path_kml): old_path_kml = os.path.join(KML_PATH, cp.kml_name) shutil.move(old_path_kml, new_path_dir_kml_user) except Exception, e: pass cp.kml_path = path_kml_user kml_http = cp.kml_url.split('media')[0] cp.kml_url = os.path.join(kml_http, dir_kml_user) cp.save() print '******** DONE ********'
[ "artgrem@gmail.com" ]
artgrem@gmail.com
1ca8a96e0b71e9a58189e2862eea29a54f47696b
4e39710ae6f45efa126c7b13405a3828569328d6
/androidtv/adb_manager.py
7a653ea0c0113b612ae3efb0c5f229b48ce88608
[ "MIT" ]
permissive
achupryn/python-androidtv
8fadca02e7ea1c6626ee1380668fd54ac32ca409
f07cef9d2a23ecc74159f2aff214f48d3ae6134e
refs/heads/master
2020-08-14T02:07:36.472217
2019-10-14T16:19:14
2019-10-14T16:19:14
215,078,002
0
0
null
2019-10-14T15:23:43
2019-10-14T15:23:42
null
UTF-8
Python
false
false
10,457
py
"""Classes to manage ADB connections. * :py:class:`ADBPython` utilizes a Python implementation of the ADB protocol. * :py:class:`ADBServer` utilizes an ADB server to communicate with the device. """ import logging from socket import error as socket_error import sys import threading from adb_shell.adb_device import AdbDevice from adb_shell.auth.sign_pythonrsa import PythonRSASigner from adb_messenger.client import Client from .constants import DEFAULT_AUTH_TIMEOUT_S _LOGGER = logging.getLogger(__name__) #: Use a timeout for the ADB threading lock if it is supported LOCK_KWARGS = {'timeout': 3} if sys.version_info[0] > 2 and sys.version_info[1] > 1 else {} if sys.version_info[0] == 2: # pragma: no cover FileNotFoundError = IOError # pylint: disable=redefined-builtin class ADBPython(object): """A manager for ADB connections that uses a Python implementation of the ADB protocol. Parameters ---------- host : str The address of the device in the format ``<ip address>:<host>`` adbkey : str The path to the ``adbkey`` file for ADB authentication """ def __init__(self, host, adbkey=''): self.host = host self.adbkey = adbkey self._adb = AdbDevice(serial=self.host, default_timeout_s=9.) # keep track of whether the ADB connection is intact self._available = False # use a lock to make sure that ADB commands don't overlap self._adb_lock = threading.Lock() @property def available(self): """Check whether the ADB connection is intact. Returns ------- bool Whether or not the ADB connection is intact """ return self._adb.available def close(self): """Close the ADB socket connection. """ self._adb.close() def connect(self, always_log_errors=True, auth_timeout_s=DEFAULT_AUTH_TIMEOUT_S): """Connect to an Android TV / Fire TV device. Parameters ---------- always_log_errors : bool If True, errors will always be logged; otherwise, errors will only be logged on the first failed reconnect attempt auth_timeout_s : float Authentication timeout (in seconds) Returns ------- bool Whether or not the connection was successfully established and the device is available """ self._adb_lock.acquire(**LOCK_KWARGS) # pylint: disable=unexpected-keyword-arg # Make sure that we release the lock try: # Catch errors try: if self.adbkey: # private key with open(self.adbkey) as f: priv = f.read() # public key try: with open(self.adbkey + '.pub') as f: pub = f.read() except FileNotFoundError: pub = '' signer = PythonRSASigner(pub, priv) # Connect to the device self._adb.connect(rsa_keys=[signer], auth_timeout_s=auth_timeout_s) else: self._adb.connect(auth_timeout_s=auth_timeout_s) # ADB connection successfully established self._available = True _LOGGER.debug("ADB connection to %s successfully established", self.host) except socket_error as serr: if self._available or always_log_errors: if serr.strerror is None: serr.strerror = "Timed out trying to connect to ADB device." _LOGGER.warning("Couldn't connect to host %s, error: %s", self.host, serr.strerror) # ADB connection attempt failed self._adb.close() self._available = False finally: return self._available finally: self._adb_lock.release() def shell(self, cmd): """Send an ADB command using the Python ADB implementation. Parameters ---------- cmd : str The ADB command to be sent Returns ------- str, None The response from the device, if there is a response """ if not self.available: _LOGGER.debug("ADB command not sent to %s because python-adb connection is not established: %s", self.host, cmd) return None if self._adb_lock.acquire(**LOCK_KWARGS): # pylint: disable=unexpected-keyword-arg _LOGGER.debug("Sending command to %s via python-adb: %s", self.host, cmd) try: return self._adb.shell(cmd) finally: self._adb_lock.release() else: _LOGGER.debug("ADB command not sent to %s because python-adb lock not acquired: %s", self.host, cmd) return None class ADBServer(object): """A manager for ADB connections that uses an ADB server. Parameters ---------- host : str The address of the device in the format ``<ip address>:<host>`` adbkey : str The path to the ``adbkey`` file for ADB authentication adb_server_ip : str The IP address of the ADB server adb_server_port : int The port for the ADB server """ def __init__(self, host, adb_server_ip='', adb_server_port=5037): self.host = host self.adb_server_ip = adb_server_ip self.adb_server_port = adb_server_port self._adb_client = None self._adb_device = None # keep track of whether the ADB connection is intact self._available = False # use a lock to make sure that ADB commands don't overlap self._adb_lock = threading.Lock() @property def available(self): """Check whether the ADB connection is intact. Returns ------- bool Whether or not the ADB connection is intact """ if not self._adb_client: return False try: # make sure the server is available adb_devices = self._adb_client.devices() # make sure the device is available try: # case 1: the device is currently available if any([self.host in dev.get_serial_no() for dev in adb_devices]): if not self._available: self._available = True return True # case 2: the device is not currently available if self._available: _LOGGER.error('ADB server is not connected to the device.') self._available = False return False except RuntimeError: if self._available: _LOGGER.error('ADB device is unavailable; encountered an error when searching for device.') self._available = False return False except RuntimeError: if self._available: _LOGGER.error('ADB server is unavailable.') self._available = False return False def close(self): """Close the ADB server socket connection. Currently, this doesn't do anything. """ def connect(self, always_log_errors=True): """Connect to an Android TV / Fire TV device. Parameters ---------- always_log_errors : bool If True, errors will always be logged; otherwise, errors will only be logged on the first failed reconnect attempt Returns ------- bool Whether or not the connection was successfully established and the device is available """ self._adb_lock.acquire(**LOCK_KWARGS) # pylint: disable=unexpected-keyword-arg # Make sure that we release the lock try: try: self._adb_client = Client(host=self.adb_server_ip, port=self.adb_server_port) self._adb_device = self._adb_client.device(self.host) # ADB connection successfully established if self._adb_device: _LOGGER.debug("ADB connection to %s via ADB server %s:%s successfully established", self.host, self.adb_server_ip, self.adb_server_port) self._available = True # ADB connection attempt failed (without an exception) else: if self._available or always_log_errors: _LOGGER.warning("Couldn't connect to host %s via ADB server %s:%s", self.host, self.adb_server_ip, self.adb_server_port) self._available = False except Exception as exc: # noqa pylint: disable=broad-except if self._available or always_log_errors: _LOGGER.warning("Couldn't connect to host %s via ADB server %s:%s, error: %s", self.host, self.adb_server_ip, self.adb_server_port, exc) # ADB connection attempt failed self._available = False finally: return self._available finally: self._adb_lock.release() def shell(self, cmd): """Send an ADB command using an ADB server. Parameters ---------- cmd : str The ADB command to be sent Returns ------- str, None The response from the device, if there is a response """ if not self._available: _LOGGER.debug("ADB command not sent to %s via ADB server %s:%s because pure-python-adb connection is not established: %s", self.host, self.adb_server_ip, self.adb_server_port, cmd) return None if self._adb_lock.acquire(**LOCK_KWARGS): # pylint: disable=unexpected-keyword-arg _LOGGER.debug("Sending command to %s via ADB server %s:%s: %s", self.host, self.adb_server_ip, self.adb_server_port, cmd) try: return self._adb_device.shell(cmd) finally: self._adb_lock.release() else: _LOGGER.debug("ADB command not sent to %s via ADB server %s:%s because pure-python-adb lock not acquired: %s", self.host, self.adb_server_ip, self.adb_server_port, cmd) return None
[ "noreply@github.com" ]
achupryn.noreply@github.com
b26faaee57005647e91ee5eed1db8e45e42168e5
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/appflow_read_1/flow_list.py
699f8baee02a7393c0403dd0ed480108f71902a9
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
1,831
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import execute_one_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appflow/describe-flow.html if __name__ == '__main__': """ create-flow : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appflow/create-flow.html delete-flow : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appflow/delete-flow.html list-flows : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appflow/list-flows.html start-flow : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appflow/start-flow.html stop-flow : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appflow/stop-flow.html update-flow : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appflow/update-flow.html """ parameter_display_string = """ # flow-name : The specified name of the flow. Spaces are not allowed. Use underscores (_) or hyphens (-) only. """ add_option_dict = {} ####################################################################### # setting option use # ex: add_option_dict["setting_matching_parameter"] = "--owners" # ex: add_option_dict["setting_key"] = "owner_id" ####################################################################### # single parameter # ex: add_option_dict["no_value_parameter_list"] = "--single-parameter" ####################################################################### # parameter display string add_option_dict["parameter_display_string"] = parameter_display_string execute_one_parameter("appflow", "describe-flow", "flow-name", add_option_dict)
[ "hcseo77@gmail.com" ]
hcseo77@gmail.com
5a196eef9655b0d0716fc8ab981d696c18e4abc4
3f11036a0a637125a6e7773b822b8aa8a78790eb
/PrNdOwN/colors.py
232c0c0d4dfe4dc031b869d76697f9731e4fd6f2
[ "MIT" ]
permissive
asdlei99/PrNdOwN
08a4d20b67e140cc1464305b9955f5a7be4fc4eb
5f524e5f4c0bf73b8657bcd6017e4465a12e5965
refs/heads/master
2023-08-28T12:32:17.419494
2021-10-18T14:30:40
2021-10-18T14:30:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,273
py
#!/usr/bin/python3 # Created By ybenel from random import randint list = ["\033[1;33m","\033[1;34m","\033[1;30m","\033[1;36m","\033[1;31m","\033[35m","\033[95m","\033[96m","\033[39m","\033[38;5;82m","\033[38;5;198m","\033[38;5;208m","\033[38;5;167m","\033[38;5;91m","\033[38;5;210m","\033[38;5;165m","\033[38;5;49m","\033[38;5;160m","\033[38;5;51m","\033[38;5;13m","\033[38;5;162m","\033[38;5;203m","\033[38;5;113m","\033[38;5;14m"] class get_colors(): def randomize(): return list[randint(0,23)] def randomize1(): return list[randint(0,23)] def randomize2(): return list[randint(0,23)] def randomize3(): return list[randint(0,23)] def yellow(): return list[0] def cyan(): return list[3] def red(): return list[4] def white(): return list[8] def green(): return list[9] def magento(): return list[6] def sharp_green(): return list[22] def bright_megento(): return list[14] def pink(): return list[10] def sharp_megento(): return list[12] def orange(): return list[11] def sharp_orange(): return list[21]
[ "r2dr0dn@pm.me" ]
r2dr0dn@pm.me
a128bd48e8decf7d7b6a257ef954180c2cc1bd69
83e58395b163c17dd807eb1a6fe7fc89a572ae6a
/knn_sepal_class.py
c27fdc0d6a17afee60d23524234ca59ce4ef036c
[]
no_license
tsbawa61/Basic-Python
3de77bc6c440cc80f287c998398769bc9fdd4950
db525798bf769bdb9aa9bd26ab7c8572d5800590
refs/heads/master
2020-06-12T14:21:33.520112
2019-07-09T08:02:51
2019-07-09T08:02:51
194,327,896
0
1
null
null
null
null
UTF-8
Python
false
false
903
py
import pandas as pd # loading training data df = pd.read_csv(r'f:\PythonProgs\iris.csv') df.head() # define column names names = ['sepal length', 'sepal width', 'petal length', 'petal width', 'spieces'] # loading libraries import numpy as np from sklearn.model_selection import train_test_split # create design matrix X and target vector y X=df.iloc[:,0:-1].values y=df.iloc[:,-1].values # split into train and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) # loading library from sklearn.neighbors import KNeighborsClassifier # instantiate learning model (k = 3) knn = KNeighborsClassifier(n_neighbors=3) # fitting the model knn.fit(X_train, y_train) # predict the response pred = knn.predict(X_test) # evaluate accuracy from sklearn.metrics import accuracy_score print (accuracy_score(y_test, pred))
[ "noreply@github.com" ]
tsbawa61.noreply@github.com
b7e85d1268bde6c041074923388775ae00941141
b4e3f94e238419477e8e7a5cd19da4fed54a804c
/django_rest/settings.py
284253522ea464dd1217b5c3a70dabe1e4262ca4
[]
no_license
mvillafuertem/django-rest
529058b9b59c911db16295597996864ad7636ffb
7a7b7372bf93464e17ca67839e1df7e2e246e4a3
refs/heads/master
2020-03-27T02:05:09.545088
2018-08-22T21:25:27
2018-08-22T21:30:45
145,765,095
0
0
null
null
null
null
UTF-8
Python
false
false
3,163
py
""" Django settings for django_rest project. Generated by 'django-admin startproject' using Django 2.0.8. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'caknv#57*#jz8+8rbbty3-q)ey2ac^teh*)tr5e@7bb&@gsq#s' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['0.0.0.0'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'users.apps.UsersConfig' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'django_rest.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'django_rest.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
[ "mvillafuerte@fintonic.com" ]
mvillafuerte@fintonic.com
3666c1888a87781170d032e3bf6e304c40a08f4d
21dc9ae50715f126a28d7670dfceeedbec60d1f3
/knowlarity.py
505ca794c4b4eca16abc9a299782d3d4a5723458
[]
no_license
bhishan/knowlaritysignupscript
be39da4d3857b63503be6361c7540020f4546fdc
e503736c8ddba181bd2969648234989184d4ca83
refs/heads/master
2016-08-11T21:14:20.424562
2015-12-01T08:39:04
2015-12-01T08:39:04
47,176,384
0
0
null
null
null
null
UTF-8
Python
false
false
557
py
from selenium import webdriver from selenium.webdriver.common.keys import Keys browser = webdriver.Firefox() browser.get("http://knowlarity.com") sign_up_submit = browser.find_elements_by_xpath("//*[contains(text(),'Try Free-for-Life')]") sign_up_submit[4].click() name = browser.find_element_by_name("contact-name") name.send_keys("Bhishan Bhandari") email = browser.find_element_by_name("contact-email") email.send_keys("bbhishan@gmail.com") phone = browser.find_element_by_name("contact-phone") phone.send_keys("9849060230") phone.send_keys(Keys.RETURN)
[ "bhishan_0306@deerwalk.edu.np" ]
bhishan_0306@deerwalk.edu.np
ceaf8b6be3564067ae5486c614255e73564c1f27
f54b6e5a4b3282ef24bb2c7a7687a97b3d663c06
/get_tweets/allt.py
40bf15421a8edd0c1291459ec0cc9255031d7d87
[]
no_license
DristiAI/twitterSNA
5a56065fa3721a54465c95373a6e1dd57bc1f8dd
e5ea345ab9e8507ebfb96d8d5ced5b399feb06ca
refs/heads/master
2020-03-18T19:19:12.110668
2018-05-28T10:56:07
2018-05-28T10:56:07
135,147,396
0
0
null
null
null
null
UTF-8
Python
false
false
1,346
py
import tweepy import csv CONSUMER_KEY = '' CONSUMER_SECRET = '' ACCESS_TOKEN = '' ACCESS_SECRET = '' def get_all_tweets(username,count): auth=tweepy.OAuthHandler(CONSUMER_KEY,CONSUMER_SECRET) auth.set_access_token(ACCESS_TOKEN,ACCESS_SECRET) api=tweepy.API(auth) tweets=[] new_tweets=api.user_timeline(screen_name=username,count=200) tweets.extend(new_tweets) leastrecent=tweets[-1].id -1 while(len(new_tweets)>0): new_tweets=api.user_timeline(screen_name=username,count=200,max_id=leastrecent) tweets.extend(new_tweets) leastrecent=tweets[-1].id-1 totaltweets=len(tweets) if totaltweets>count: break return [[tweet.id_str, tweet.created_at, tweet.text.encode("utf-8"),tweet.retweet_count] for tweet in tweets] def convert_totxt(tweets): with open('newtweet.txt','w') as f: f.write('tweets\n') for i in tweets: f.write(str(i[2],'utf-8')) f.write('\n') f.close() with open('newtweetslabels.txt','w') as f: f.write('retweets\n') for i in tweets: f.write(str(i[3])) f.write('\n') f.close() if __name__ =='__main__': t=get_all_tweets("realDonaldTrump",1500) convert_totxt(t)
[ "aidris@localhost.localdomain" ]
aidris@localhost.localdomain
01e32ca4177f55e36ea16c44fe160745cb49c5d6
8e291f094a1072a5ec470bdf1498d646afb315a3
/PlotNeuralNet/pyexamples/test_simple.py
e3155e2edd86e5957d65998677248e8cb8eb922f
[]
no_license
qihangwang/PlotNeuralNet
9712426608df3bb0239ddf3ec015fdeb2904002a
34bf5df88bbba78017ebe8f9957445e81cb54a86
refs/heads/master
2022-01-23T09:17:46.055332
2019-06-21T14:30:32
2019-06-21T14:30:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,237
py
import sys sys.path.append('../') # 添加自定义库的目录 from pycore.tikzeng import * # 导入自定义库 # defined your arch arch = [ # 添加头 to_head( '..' ), to_cor(), to_begin(), # 添加卷积层conv1 to_Conv("conv1", 512, 64, offset="(0,0,0)", to="(0,0,0)", height=64, depth=64, width=2, caption="conv1"), # 卷积层conv1东侧添加池化层pool1 to_Pool("pool1", offset="(0,0,0)", to="(conv1-east)", caption="pool1"), # 池化层pool1东侧添加卷积层conv2 to_Conv("conv2", 128, 64, offset="(1,0,0)", to="(pool1-east)", height=32, depth=32, width=2, caption="conv2"), # 建立pool1到conv2的连接箭头 to_connection( "pool1", "conv2"), # conv2东侧添加pool2 to_Pool("pool2", offset="(0,0,0)", to="(conv2-east)", height=28, depth=28, width=1, caption="pool2"), # pool1东侧添加softmax层但是偏移3单位 to_SoftMax("soft1", 10 ,"(3,0,0)", "(pool1-east)", caption="softmax"), # 建立pool2到soft1的连接箭头 to_connection("pool2", "soft1"), # 结束 to_end() ] def main(): namefile = str(sys.argv[0]).split('.')[0] to_generate(arch, namefile + '.tex' ) if __name__ == '__main__': main()
[ "1695735420@qq.com" ]
1695735420@qq.com
567bdd3484ea87d2fef778157ecdc6551466457f
ad1c7e72779a34ea3d99cd392b3875acf84fc15f
/gae/main.py
6cebce846d34ee0d5c0f8cb92bdb750424478b37
[ "LicenseRef-scancode-free-unknown", "Apache-2.0" ]
permissive
nelsondaza/sndlatr
68871ca8e0398238eff840b1156118d726facac8
eeaa9f7d4afb88ff813f0acf6ea47b24b78d2d65
refs/heads/master
2021-01-16T19:19:49.649219
2016-06-29T12:21:20
2016-06-29T12:21:20
62,527,053
0
0
Apache-2.0
2020-09-12T03:22:37
2016-07-04T02:53:42
Python
UTF-8
Python
false
false
1,134
py
import os import json import webapp2 from webapp2 import Route import oauth2client.appengine from sndlatr import api, auth def get_client_id(): path = os.path.join(os.path.dirname(__file__), 'client_secrets.json') with open(path) as fd: data = json.load(fd) return data.values()[0]['client_id'] config = {'idtoken_audience': get_client_id()} app = webapp2.WSGIApplication( [Route('/api/init', api.InitializeHanlder), Route('/api/schedule/<id>', api.ScheduleSendHandler), Route('/api/schedule', api.ScheduleSendHandler), Route('/api/snippet/<id>', api.SnippetHandler), Route('/api/snippet', api.SnippetHandler), Route('/api/remind/<id>', api.ScheduleRemindHandler), Route('/api/remind', api.ScheduleRemindHandler), Route('/api/remind/<id>/check_reply', api.ScheduleCheckReplyHandler), ('/api/tasks/enqueue_scheduled', api.QueueJobHandler), ('/api/tasks/send', api.SendHandler), ('/api/tasks/remind', api.RemindHandler), ('/api/tasks/check_reply', api.CheckReplyHandler), # ('/api/signout', LogoutHandler), ], debug=False, config=config)
[ "thembrown@gmail.com" ]
thembrown@gmail.com
3a97bc46d4e8a7af8ac36a679c16db88cac1dd88
cdafb14fe1f4e334960c91b2f53bc7e48b40a93c
/calculator/cal02.py
e0ae21931d7c72cbeaa669bc3388da8106a68ae2
[]
no_license
alireza-E/alireza-
b15801d8c194fd82990f602d2759d2b67f1d5ec6
b577ff8a6d81672ce9126e1bdd4ee603458f3207
refs/heads/master
2022-12-24T05:41:12.098687
2020-10-04T13:40:30
2020-10-04T13:40:30
301,139,516
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
from term4.calculator.cal01 import cal calcute = cal(10, 20) print(calcute.mul()) print(calcute.div()) print(calcute.plus()) print(calcute.neg())
[ "Rominash@gmail.com" ]
Rominash@gmail.com
15096b8ea2606442330ff23af507e35d1d7adc1f
dc9642c9b73b8f29f7f322f48ce81973a52d7f08
/Simple Chatty Bot/task/bot/bot.py
92e022e539261379217cc31f1bd5699dd58a0f7e
[]
no_license
merlin2181/Chatty-Bot
4f61be462f57ff8ba006c9c4c76c249ba6f1a839
63fa28c787034fed29a981cae5c7426228d6a042
refs/heads/master
2022-11-10T17:00:01.940505
2020-06-28T05:29:32
2020-06-28T05:29:32
275,513,393
0
0
null
null
null
null
UTF-8
Python
false
false
1,415
py
def greet(bot_name, birth_year): print('Hello! My name is ' + bot_name + '.') print('I was created in ' + birth_year + '.') def remind_name(): print('Please, remind me your name.') name = input() print('What a great name you have, ' + name + '!') def guess_age(): print('Let me guess your age.') print('Enter remainders of dividing your age by 3, 5 and 7.') rem3 = int(input()) rem5 = int(input()) rem7 = int(input()) age = (rem3 * 70 + rem5 * 21 + rem7 * 15) % 105 print("Your age is " + str(age) + "; that's a good time to start programming!") def count(): print('Now I will prove to you that I can count to any number you want.') num = int(input()) curr = 0 while curr <= num: print(curr, '!') curr = curr + 1 def test(): print("Let's test your programming knowledge.") # write your code here print("""When does the body of a function end? 1. It ends after the keyword 'def' 2. It ends when the function is called 3. It ends with the lack of indentation 4. It ends with 'return' statement""") ans = input() while ans != '3': print("Please, try again.") ans = input() print('Completed, have a nice day!') def end(): print('Congratulations, have a nice day!') greet('Aid', '2020') # change it as you need remind_name() guess_age() count() # ... test() end()
[ "merlin2181@gmail.com" ]
merlin2181@gmail.com
cef3363d820485112bac11a7906824633122136f
36130e4eb6c343a66906ef6930d30a0ba23ebf71
/cgmaptools
2e4ad8ac281b92b92795bbc21579cb150f64550a
[]
no_license
guoweilong/cgmaptools
d05b32694d0d0b98173a00058766a52933227fea
9e6617ddd9029f66d63bbf41695534271d460d91
refs/heads/master
2022-08-21T22:30:29.166941
2022-07-25T03:55:57
2022-07-25T03:55:57
79,823,059
59
29
null
2019-06-19T13:58:09
2017-01-23T16:29:17
C
UTF-8
Python
false
false
12,433
#!/usr/bin/env python """ cgmaptools Copyright (C) Weilong Guo & Ping Zhu Contact: Weilong Guo <guoweilong@126.com> Ping Zhu <pingzhu.work@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import sys, os #os.system(sys.argv[0]) #print sys.argv[0] #print sys.argv[1] #print sys.argv[-1] DIR=os.path.dirname(sys.argv[0]) #print DIR import subprocess #subprocess.call(["ls", "-l", "/etc/resolv.conf"]) argv_len = len(sys.argv) def PrintVersion() : print("Version: 0.1.2") print("Updated on: Dec. 14th, 2018") # if (argv_len) == 1 or sys.argv[1] in ["-h", "-H", "--help"]: print("Program : cgmaptools (Tools for analysis in CGmap/ATCGmap format)") PrintVersion() print("Usage: cgmaptools <command> [options]") print("Commands:") print(" -- File manipulation") print(" convert + data format conversion tools") print(" fetch + fetch a region by random accessing") print(" refill refill the missing columns") print(" intersect intersect two files") print(" merge2 + merge two files into one") print(" mergelist + merge a list of files") print(" sort sort lines by chromosome and position") print(" split + split file by chromosomes") print(" select + select lines by region/site") print(" -- SNV analysis") print(" snv snv analysis") print(" -- Methylation analysis") print(" dms differentially methylated site analysis") print(" dmr differentially methylated region analysis") print(" asm allele-specific methylation analysis") print(" mbed average methylation level in regions") print(" mbin * single sample, mC levels in bins") print(" mmbin multiple samples, mC levels in bins") print(" mfg methlation levels across fragmented region") print(" mstat * methyaltion statistic") print(" mtr methylation level to each region") print(" -- Coverage analysis") print(" oac +* overall coverage (for ATCGmap)") print(" mec +* methylation effective coverage (for CGmap)") print(" -- Graph related functions") print(" lollipop * show local mC levels as lollipop bars") print(" heatmap * global mC distribution for multiple samples") print(" fragreg * show mC profile across fragmented regions") print(" tanghulu * show local mapped reads in Tanghulu shape") print(" -- Other Utils") print(" findCCGG get MspI cutting sites for RRBS") print(" bed2fragreg get fragmented region based on region") print("Note: ") print(" Commands support figures generation are marked with \"*\" ") print(" Commands contain sub-commands are marked with \"+\" ") print("Authors:") print(" GUO, Weilong; guoweilong@126.com; http://guoweilong.github.io") print(" ZHU, Ping; pingzhu.work@gmail.com; http://perry-zhu.github.io") print("") else : code1 = sys.argv[1] # -- File manipulation if code1 == "convert" : if (argv_len) == 2 or sys.argv[2] in ["-h", "-H", "--help"]: print("Usage: cgmaptools convert <command> [options]") PrintVersion() print("Commands:") print(" bam2cgmap BAM => CGmap & ATCGmap") print(" atcgmap2atcgbz ATCGmap => ATCGbz") print(" atcgbz2atcgmap ATCGbz => ATCGmap") print(" atcgmap2cgmap ATCGmap => CGmap") print(" cgmap2cgbz CGamp => CGbz") print(" cgbz2cgmap CGbz => CGmap") print(" cgmap2wig CGmap => WIG") print(" bismark2cgmap Bismark => CGmap") else : code2 = sys.argv[2] if code2 == "bam2cgmap" : subprocess.call([DIR + "/bin/CGmapFromBAM"]+ sys.argv[3:]) elif code2 == "cgmap2wig" : subprocess.call([DIR + "/bin/CGmapToWig"]+ sys.argv[3:]) elif code2 == "atcgbz2atcgmap" : subprocess.call([DIR + "/bin/ATCGbzToATCGmap"]+ sys.argv[3:]) elif code2 == "atcgmap2atcgbz" : subprocess.call([DIR + "/bin/ATCGmapToATCGbz"]+ sys.argv[3:]) elif code2 == "cgbz2cgmap" : subprocess.call([DIR + "/bin/CGbzToCGmap"]+ sys.argv[3:]) elif code2 == "cgmap2cgbz" : subprocess.call([DIR + "/bin/CGmapToCGbz"]+ sys.argv[3:]) elif code2 == "atcgmap2cgmap" : subprocess.call([DIR + "/bin/ATCGmapToCGmapWig"]+ sys.argv[3:]) elif code2 == "bismark2cgmap" : subprocess.call([DIR + "/bin/BismarkToCGmap"]+ sys.argv[3:]) else : print("Wrong parameter. Enter \"cgmaptools convert -h\" for more information.") # # elif code1 == "fetch" : if (argv_len) == 2 or sys.argv[2] in ["-h", "-H", "--help"]: print("Usage: cgmaptools fetch <command> [options]") PrintVersion() print("Commands:") print(" atcgbz fetch lines from ATCGbz") print(" cgbz fetch lines from CGbz") else : code2 = sys.argv[2] if code2 == "atcgbz" : subprocess.call([DIR + "/bin/ATCGbzFetchRegion"]+ sys.argv[3:]) elif code2 == "cgbz" : subprocess.call([DIR + "/bin/CGbzFetchRegion"]+ sys.argv[3:]) else : print("Wrong parameter. Enter \"cgmaptools fetch -h\" for more information.") # # elif code1 == "refill" : subprocess.call([DIR + "/bin/CGmapFillContext"]+ sys.argv[2:]) elif code1 == "intersect" : subprocess.call([DIR + "/bin/CGmapIntersect"]+ sys.argv[2:]) elif code1 == "merge2" : if (argv_len) == 2 or sys.argv[2] in ["-h", "-H", "--help"]: print("Usage: cgmaptools merge2 <command> [options]") PrintVersion() print("Commands:") print(" atcgmap merge two ATCGmap files into one") print(" cgmap merge two CGmap files into one") else : code2 = sys.argv[2] if code2 == "atcgmap" : subprocess.call([DIR + "/bin/ATCGmapMerge"]+ sys.argv[3:]) elif code2 == "cgmap" : subprocess.call([DIR + "/bin/CGmapMerge"]+ sys.argv[3:]) else : print("Wrong parameter. Enter \"cgmaptools merge2 -h\" for more information.") # # elif code1 == "mergelist" : if (argv_len) == 2 or sys.argv[2] in ["-h", "-H", "--help"]: print("Usage: cgmaptools mergelist <command> [options]") PrintVersion() print("Commands:") print(" tomatrix mC levels matrix from multiple files") print(" tosingle merge list of input files into one") else : code2 = sys.argv[2] if code2 == "tomatrix" : subprocess.call([DIR + "/bin/CGmapFillIndex"]+ sys.argv[3:]) elif code2 == "tosingle" : subprocess.call([DIR + "/bin/MergeListOfCGmap"]+ sys.argv[3:]) else : print("Wrong parameter. Enter \"cgmaptools mergelist -h\" for more information.") # # elif code1 == "sort" : subprocess.call([DIR + "/bin/Sort_chr_pos"]+ sys.argv[2:]) elif code1 == "split" : subprocess.call([DIR + "/bin/CGmapSplitByChr"]+ sys.argv[2:]) elif code1 == "select" : if (argv_len) == 2 or sys.argv[2] in ["-h", "-H", "--help"]: print("Usage: cgmaptools select <command> [options]") PrintVersion() print("Commands:") print(" region select or exclude liens by region lists") print(" site select or exclude lines by site list") else : code2 = sys.argv[2] if code2 == "region" : subprocess.call([DIR + "/bin/CGmapSelectByRegion"]+ sys.argv[3:]) elif code2 == "site" : subprocess.call([DIR + "/bin/CGmapSelectBySite"]+ sys.argv[3:]) else : print("Wrong parameter. Enter \"cgmaptools select -h\" for more information.") # # # -- SNV analysis elif code1 == "snv" : subprocess.call([DIR + "/bin/SNVFromATCGmap"]+ sys.argv[2:]) # -- Methylation analysis elif code1 == "dms" : subprocess.call([DIR + "/bin/CGmapInterDiffSite"]+ sys.argv[2:]) elif code1 == "dmr" : subprocess.call([DIR + "/bin/CGmapInterDiffReg"]+ sys.argv[2:]) elif code1 == "asm" : subprocess.call([DIR + "/bin/ASM"]+ sys.argv[2:]) elif code1 == "mbed" : subprocess.call([DIR + "/bin/CGmapMethInBed"]+ sys.argv[2:]) elif code1 == "mbin" : subprocess.call([DIR + "/bin/CGmapMethInBins"]+ sys.argv[2:]) elif code1 == "mmbin" : subprocess.call([DIR + "/bin/CGmapsMethInBins"]+ sys.argv[2:]) elif code1 == "mfg" : subprocess.call([DIR + "/bin/CGmapMethInFragReg"]+ sys.argv[2:]) elif code1 == "mstat" : subprocess.call([DIR + "/bin/CGmapStatMeth"]+ sys.argv[2:]) elif code1 == "mtr" : subprocess.call([DIR + "/bin/CGmapToRegion"]+ sys.argv[2:]) # -- Coverage analysis elif code1 == "oac" : if (argv_len) == 2 or sys.argv[2] in ["-h", "-H", "--help"]: print("Usage: cgmaptools oac <command> [options]") PrintVersion() print("Commands:") print(" bin * overall coverage in bins") print(" stat * overall coverage statistics globally") else : code2 = sys.argv[2] if code2 == "bin" : subprocess.call([DIR + "/bin/ATCGmapCovInBins"]+ sys.argv[3:]) elif code2 == "stat" : subprocess.call([DIR + "/bin/ATCGmapStatCov"]+ sys.argv[3:]) else : print("Wrong parameter. Enter \"cgmaptools oac -h\" for more information.") # # elif code1 == "mec" : if (argv_len) == 2 or sys.argv[2] in ["-h", "-H", "--help"]: print("Usage: cgmaptools mec <command> [options]") PrintVersion() print("Commands:") print(" bin * methylation effective coverage in bins") print(" stat * methylation effective coverage statistics globally") else : code2 = sys.argv[2] if code2 == "bin" : subprocess.call([DIR + "/bin/CGmapCovInBins"]+ sys.argv[3:]) elif code2 == "stat" : subprocess.call([DIR + "/bin/CGmapStatCov"]+ sys.argv[3:]) else : print("Wrong parameter. Enter \"cgmaptools mec -h\" for more information.") # # # -- Graph related funtion elif code1 == "lollipop" : subprocess.call([DIR + "/bin/mCLollipop"]+ sys.argv[2:]) elif code1 == "heatmap" : subprocess.call([DIR + "/bin/mCBinHeatmap"]+ sys.argv[2:]) elif code1 == "fragreg" : subprocess.call([DIR + "/bin/mCFragRegView"]+ sys.argv[2:]) elif code1 == "tanghulu" : subprocess.call([DIR + "/bin/mCTanghulu"]+ sys.argv[2:]) # -- other utilities elif code1 == "findCCGG" : subprocess.call([DIR + "/bin/FindCCGG"]+ sys.argv[2:]) elif code1 == "combinestrands" : subprocess.call([DIR + "/bin/CGmapCombineStrands"]+ sys.argv[2:]) elif code1 == "bed2fragreg" : subprocess.call([DIR + "/bin/FragRegFromBED"]+ sys.argv[2:]) else : print("Wrong parameter. Enter \"cgmaptools -h\" for more information.") # #
[ "791116341@qq.com" ]
791116341@qq.com
823a712c59c662ec4f9992f7f89e7f4223da9a66
75080b5a153c7493a04a05b5713aad629799a389
/optimizor.py
0cbf7ae6fa4a3539df75252665a894ac6bce95cc
[]
no_license
chenjiaxiang/statlearn
e26a2bbd478d8ff39cd9f6f2a6efe761e70c45fe
7c262e0f267d4226067e1428a383deab58ffcfaf
refs/heads/master
2021-07-02T09:04:47.113672
2017-09-23T12:56:59
2017-09-23T12:56:59
103,604,320
1
0
null
null
null
null
UTF-8
Python
false
false
589
py
import numpy as np import scipy from scipy.optimize import minimize def func(x,sign=1.0): return sign*(10-x[0]**2-x[1]**2) def func_deriv(x,sign=1.0): deriv_1 = sign * (-2*x[0]) deriv_2 = sign * (-2*x[1]) return np.array([deriv_1,deriv_2]) cons = ({'type':'eq', 'fun':lambda x:np.array([x[0]+x[1]]), 'jac':lambda x:np.array([1.0,1.0])}, {'type':'ineq', 'fun':lambda x:np.array([-(x[0]**2)+x[1]]), 'jac':lambda x:np.array([-2.0*x[0],1.0])}) res = minimize(func,[-1.0,1.0],args=(1.0,),jac=func_deriv,constraints=cons,method='SLSQP',options={'disp':True}) print(res.x)
[ "noreply@github.com" ]
chenjiaxiang.noreply@github.com
a4a793650c2b248fc1011d9998c9c2335c39e36a
f03e695b5fd6d8e4f38a54bd38751120d9b6c6d0
/datatype.py
e9ae26b8bf2d9b9fa1073ea5cf43bd82a10eb619
[]
no_license
littlegogo/doccrawler
b118f04bf9f81763bb01a0fd40d4db92b4ca7a8b
e27f121b35fa392e067b931476addf48c96c1c62
refs/heads/master
2022-04-19T18:33:37.130635
2020-04-15T13:16:25
2020-04-15T13:16:25
255,919,881
1
0
null
null
null
null
UTF-8
Python
false
false
1,973
py
class DataType: """ 用于表示类或结构体类型的成员信息 """ def __init__(self, name, desc, varinfo, funinfo, typedefs, enums): """ 构造数据类型描述信息 :param name: 数据类型的名称,类名或结构体名称 :param desc: 数据类型的描述信息,类或结构体的描述信息 :param varinfo: 描述类型成员变量信息的列表,列表元素依次为描述public,protected, private 成员的列表 :param funinfo: 描述类型成员函数信息的列表,列表元素依次为描述public,protected, private 方法的列表 :param typedefs: typedef 重定义类型列表 :param enums: 类型内的枚举变量列表 """ self.name = name self.desc = desc self.public_var_list = varinfo[0] self.protected_var_list = varinfo[1] self.private_var_list = varinfo[2] self.public_fun_list = funinfo[0] self.protected_fun_list = funinfo[1] self.private_fun_list = funinfo[2] self.typedef_list = typedefs self.enum_list = enums def __str__(self): """ 输出自身表示的数据类型的信息 :return: 无 """ print('类型名称:', self.name) print('类型描述:', self.desc) print('公有属性:') print(' ', self.public_var_list) print('保护属性:') print(' ', self.protected_var_list) print('私有属性:') print(' ', self.private_var_list) print('public 方法:') print(' ', self.public_fun_list) print('protected 方法:') print(' ', self.protected_fun_list) print('private 方法:') print(' ', self.private_fun_list) print('类型重定义:') print(' ', self.typedef_list) print('枚举类型定义:') print(' ', self.enum_list) return ''
[ "1605436974@qq.com" ]
1605436974@qq.com
f4ef95888f019546f1c9effa5878a6f1438da8c3
4937e6e53384ad779cf9d73a0db7f2875e8afef2
/Network Service/Processing Logic/queue_operation/python_queue.py
895f61b2c941cb56e0c6557c065bc03406c73fa5
[]
no_license
panxie0906/prepare615
7b64547ed724d71ca0bc179e1effbfa5ffe85160
9d1a7283fee9b42d6144281d8e723576002b0a3c
refs/heads/master
2020-12-02T07:47:04.167303
2017-08-31T14:20:32
2017-08-31T14:20:32
96,726,108
0
0
null
null
null
null
UTF-8
Python
false
false
653
py
#-*- coding:utf-8 -*- import queue ''' python queue有三种构造函数 class Queue.Queue(maxsize) class Queue.LifoQueue(maxsize) class Queue.PriorityQueue(maxsize) 分别对应 FIFO先进先出队列 LIFO先进后出队列 优先级队列,优先级越低越先出来 ''' def queue_op(): # 如果超出队列长度就会发生很诡异的反应 # maxsize<1代表无限 # 想要实现环状的队列可以自己自定义实现 myqueue = queue.Queue(3) myqueue.put(10) myqueue.put('hhhhhh') myqueue.put(3) while not myqueue.empty(): print(myqueue.get()) if __name__ == '__main__': queue_op()
[ "406551408@qq.com" ]
406551408@qq.com
1121f6d1df4336faf95572947631d438cb815965
8921e3e95c354ffb58989692a2c460b9133da09f
/blog/migrations/0001_initial.py
71a438646c87d7ef85369d72bbd60fcd2d5bf97e
[]
no_license
zhangliutian/simpleblog
f8fbf0be1174b60cdcc63291c94dbb7b695abead
c1ecb05edff4fde15dd636f8dbac51c6d881f3f9
refs/heads/master
2021-09-02T19:24:58.989845
2018-01-03T19:28:55
2018-01-03T19:28:55
115,597,990
0
0
null
null
null
null
UTF-8
Python
false
false
1,046
py
# Generated by Django 2.0 on 2017-12-28 07:10 import datetime from django.conf import settings from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=datetime.datetime(2017, 12, 28, 7, 10, 23, 923975, tzinfo=utc))), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "521348888@qq.com" ]
521348888@qq.com
8fdf88c808741fc5ec9b1b3e6f8a3e2a28698f9a
a25acab883494fa90cccc7255cac67251b40a21d
/models/base/backbone/pvt.py
0f83ce20a3df9c84f6eaba65ae4b21c0f1b8dda5
[]
no_license
csliuchang/PupaDetector
cd8d85ca0cdb236dae28b82cdac144e17ce8f76f
b88dfdfd3f52e1df7cd44b5e1d7086acbe1ec046
refs/heads/master
2023-08-12T13:05:19.796420
2021-09-17T08:54:28
2021-09-17T08:54:28
397,140,426
3
0
null
null
null
null
UTF-8
Python
false
false
18,713
py
import torch import torch.nn as nn import math from functools import partial from models.builder import BACKBONES import warnings import collections.abc from itertools import repeat def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) return parse to_2tuple = _ntuple(2) class PyramidVisionTransformerImpr(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]): super().__init__() self.num_classes = num_classes self.depths = depths # patch_embed self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans, embed_dim=embed_dims[0]) self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0], embed_dim=embed_dims[1]) self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1], embed_dim=embed_dims[2]) self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2], embed_dim=embed_dims[3]) # transformer encoder dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule cur = 0 self.block1 = nn.ModuleList([Block( dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[0]) for i in range(depths[0])]) self.norm1 = norm_layer(embed_dims[0]) cur += depths[0] self.block2 = nn.ModuleList([Block( dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[1]) for i in range(depths[1])]) self.norm2 = norm_layer(embed_dims[1]) cur += depths[1] self.block3 = nn.ModuleList([Block( dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[2]) for i in range(depths[2])]) self.norm3 = norm_layer(embed_dims[2]) cur += depths[2] self.block4 = nn.ModuleList([Block( dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[3]) for i in range(depths[3])]) self.norm4 = norm_layer(embed_dims[3]) # classification head # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = 1 #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) def reset_drop_path(self, drop_path_rate): dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] cur = 0 for i in range(self.depths[0]): self.block1[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[0] for i in range(self.depths[1]): self.block2[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[1] for i in range(self.depths[2]): self.block3[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[2] for i in range(self.depths[3]): self.block4[i].drop_path.drop_prob = dpr[cur + i] def freeze_patch_emb(self): self.patch_embed1.requires_grad = False @torch.jit.ignore def no_weight_decay(self): return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): B = x.shape[0] outs = [] # stage 1 x, H, W = self.patch_embed1(x) for i, blk in enumerate(self.block1): x = blk(x, H, W) x = self.norm1(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() outs.append(x) # stage 2 x, H, W = self.patch_embed2(x) for i, blk in enumerate(self.block2): x = blk(x, H, W) x = self.norm2(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() outs.append(x) # stage 3 x, H, W = self.patch_embed3(x) for i, blk in enumerate(self.block3): x = blk(x, H, W) x = self.norm3(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() outs.append(x) # stage 4 x, H, W = self.patch_embed4(x) for i, blk in enumerate(self.block4): x = blk(x, H, W) x = self.norm4(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() outs.append(x) return outs # return x.mean(dim=1) def forward(self, x): x = self.forward_features(x) # x = self.head(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.sr_ratio = sr_ratio if sr_ratio > 1: self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = nn.LayerNorm(dim) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): B, N, C = x.shape q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) if self.sr_ratio > 1: x_ = x.permute(0, 2, 1).reshape(B, C, H, W) x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) x_ = self.norm(x_) kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) else: kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class OverlapPatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] self.num_patches = self.H * self.W self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=(patch_size[0] // 2, patch_size[1] // 2)) self.norm = nn.LayerNorm(embed_dim) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x): x = self.proj(x) _, _, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) return x, H, W class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.dwconv = DWConv(hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): x = self.fc1(x) x = self.dwconv(x, H, W) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor class DWConv(nn.Module): def __init__(self, dim=768): super(DWConv, self).__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) def forward(self, x, H, W): B, N, C = x.shape x = x.transpose(1, 2).view(B, C, H, W) x = self.dwconv(x) x = x.flatten(2).transpose(1, 2) return x @BACKBONES.register_module() class pvt_v2_b2(PyramidVisionTransformerImpr): def __init__(self, **kwargs): super(pvt_v2_b2, self).__init__( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1) @BACKBONES.register_module() class pvt_v2_b0(PyramidVisionTransformerImpr): def __init__(self, **kwargs): super(pvt_v2_b0, self).__init__( patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1) if __name__ == "__main__": a = torch.randn(1, 3, 512, 512)
[ "598306303@qq.com" ]
598306303@qq.com
50142bec6afbefb2d5673718f52fc2336d4a3425
e99b36eab69d98f0ed2ca0e1d2ec705778e8a2fd
/api.py
796a6745f9b1b2412e390c79655ba7c8e6c744bc
[]
no_license
RV05/thermal-Image-processing
de863c2c88b704e2bfe1426f655ca149bc134c70
5f97ab1a5a088cbf7e0992756b98f8c309cdbee3
refs/heads/master
2022-11-17T19:18:01.696743
2020-07-25T14:09:11
2020-07-25T14:09:11
282,456,508
0
0
null
null
null
null
UTF-8
Python
false
false
371
py
import pyrebase config={ "apiKey": " "authDomain": "databaseURL": "projectId": " "storageBucket": ", "messagingSenderId": , "appId": " "measurementId": " } firebase=pyrebase.initialize_app(config) storage = firebase.storage() path_on_cloud="files/demo1.xlsx" path_local = "demo1.xlsx" storage.child(path_on_cloud).put(path_local)
[ "noreply@github.com" ]
RV05.noreply@github.com
ad5591a734bd2d1525760f15420f88ba941c85bd
d8d79878598e75d7a21c6cdd244b3702732756ab
/lesson13/top_k.py
2ed8a6c720641e908e7b6e277d3d6f816708b806
[]
no_license
MyFate-0517/AdminTempalte
dbebb0613b9182549f788a2dfb8dec1c8fcbbc71
f7a8c44e39698ff82a01afc8a744cbb4d92e71ad
refs/heads/master
2020-12-07T10:59:25.413726
2020-01-09T03:17:25
2020-01-09T03:17:25
232,708,062
0
0
null
null
null
null
UTF-8
Python
false
false
1,068
py
import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 返回预则结果的准确率 def accuracy(output, target, topk=(1,)): """ :param output: [10,6] :param target: [10] :param topk: top_k acc :return: """ maxk = max(topk) batch_size = target.shape[0] idx = tf.math.top_k(output, maxk).indices idx = tf.transpose(idx, [1, 0]) target = tf.broadcast_to(target, idx.shape) correct = tf.equal(idx, target) result = [] for k in topk: val_cor = tf.cast(tf.reshape(correct[:k], [-1]), dtype=tf.float32) res = tf.reduce_sum(val_cor) acc = float(res * (100.0 / batch_size)) result.append(acc) return result output = tf.random.normal([10, 6]) output = tf.math.softmax(output, axis=1) target = tf.random.uniform([10], maxval=6, dtype=tf.int32) print('prob:', output.numpy()) preb = tf.argmax(output, axis=1) print('preb:', preb.numpy()) print('label:', target.numpy()) acc = accuracy(output, target, topk=(1, 2, 3, 4, 5, 6)) print('top_1-6_acc:', acc)
[ "68612123@qq.com" ]
68612123@qq.com
c0343df09abcbc85ef321b86520d2a3a3a598787
c00dcd05a6cba10dc94ddb4b92c32efc4da17cb8
/mystie/mystie/urls.py
eed1de4ded21fb246009835c0c7adcb0bd6e1b1d
[]
no_license
mickberber/djangoProto
3434331fd8db0267872f50efa916beecfee1058f
f4f3105e8121651ae541efb194933483997925cd
refs/heads/master
2021-01-01T05:18:18.039901
2016-05-11T01:43:36
2016-05-11T01:43:36
58,497,267
0
0
null
null
null
null
UTF-8
Python
false
false
806
py
"""mystie URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^polls/', include('polls.urls')), url(r'^admin/', admin.site.urls), ]
[ "mickberber@icloud.com" ]
mickberber@icloud.com
842500ee3b4b3366bab6f1f5bc1c4c75d8750ab8
0f427e0edf7837f8213592580dca7edbc99997f3
/main.py
3ac2df6f7cc966b094ab1f7e9e675d03bb681209
[]
no_license
davidmace/qa-research
a07b343ad7cf45b0569b7e0fea9da5a854adfafe
0a282d00a4f0c2889ff1d2eec54e72c579777ea5
refs/heads/master
2020-06-12T15:35:58.709583
2016-12-07T04:19:54
2016-12-07T04:19:54
75,798,804
0
0
null
null
null
null
UTF-8
Python
false
false
17,152
py
# Notes: # Lose 2.4% of questions because the entids are not in feebase-ents.txt from pyspark import SparkContext, SparkConf import operator import re, string from nltk import ngrams from collections import defaultdict import operator as op import math import numpy as np import sys from googleapiclient import discovery import httplib2 from oauth2client.client import GoogleCredentials import cPickle import os from nltk.stem.porter import * ######################################################################## ### List and Dict Helpers ######################################################################## # +, {'a':1,'b':2}, {'a':1,'c':3} -> {'a':2,,'b':2,c':3} def outer_join_dicts(f,d1,d2) : d3 = {} for k in set.union(set(d1.keys()),set(d2.keys())) : d3[k] = f( d1[k] if k in d1 else 0 , d2[k] if k in d2 else 0 ) return d3 # x^2, {'a':2} -> {'a':4} def map_values(f,d) : return dict(map(lambda (k,v): (k, f(v)), d.iteritems())) # [('a',1),('a',2),('b',1),('b',1)] -> {'a':[1,2],'b':[1,1]} def group_pairs_by_first(pairs) : d = defaultdict(list) for pair in pairs : d[pair[0]].append(pair[1]) return d # [[[1,2],[3,4]],[[5,6]]] -> [[1,2],[3,4],[5,6]] def flatten_one_layer(l) : return [item for sublist in l for item in sublist] # {'a':1,'b':2,'c':2} -> {'a':0.2,'b':0.4,'c':0.4} def normalize_dict(d) : sm = reduce(op.add,d.values()) d = map_values(lambda x: x/sm, d) return d # {'dog':0.2,'cat':0.1} + {'dog':0.3,'giraffe':0.1} -> {'dog':0.6} def dict_dotproduct(bag1,bag2) : score = 0.0 for key in set.intersection(set(bag1.keys()),set(bag2.keys())) : score += bag1[key]*bag2[key] return score ######################################################################## ### String Helpers ######################################################################## # 'I go there' -> 'I go there' def remove_double_spaces(s) : return ' '.join(filter(lambda x: x!='', s.split(' '))) # 'I do have a dog' + 'do' + 'did' -> 'I did have a dog' def replace_complete_word(s,word,replacement) : return (' '+s+' ').replace(' '+word+' ',' '+replacement+' ')[1:-1] ######################################################################## ### Vector Helpers ######################################################################## # ['dog','cat'],{'dog':2,'cat':4},6 -> [0,0,1,0,1,0] def sparse_vector_to_dense_vector(l,key2id,length) : vec = np.zeros(length) for key in l : if key not in key2id : continue vec[key2id[key]] = 1 return vec # {'dog':0.2,'cat':0.3},{'dog':2,'cat':4},6 -> [0,0,0.2,0,0.3,0] def bag_to_dense_vector(bag,key2id,length) : vec = np.zeros(length) for key in bag : if key not in key2id : continue vec[key2id[key]] = bag[key] return vec def write_vector_as_csv(filename,vector) : with open(filename,'w') as f : for pt in vector : f.write(str(pt)+'\n') def write_2d_matrix_as_csv(filename, matrix) : with open(filename,'w') as f : for row in matrix : s = '' for val in row : s += str(val)+',' f.write(s[:-1]+'\n') # {'a':0.2,'b':0.3}, 0.25 -> {'b':0.3} def threshold_bag(d,thresh) : d2 = {} for key in d : if d[key] > thresh : d2[key] = d[key] return d2 # {'a':1,'b':2} + ['a','c'] -> {'a':2,'b':2,'c':1} def add_list_to_count_dict(d,l) : for x in l : if x not in d : d[x] = 0 d[x] += 1 # ['a','b','c'] + 1 -> {'a':1,'b':2,'c':3} def list_to_id_map(l,start_id) : d = {} i = start_id for x in l : d[x] = i i += 1 return d ######################################################################## ### Load Word Resources (ie. word frequencies and filter words) ######################################################################## # global_word_log_cts: {'the':24.12,'cat':2.33,...} # filter_words: set('the','a',...) def load_word_resources() : with open('global_word_cts.txt','r') as f : lines = f.read().split('\n') global_word_log_cts = defaultdict(float) for line in lines : parts = line.split() global_word_log_cts[parts[0]] = math.log(int(parts[1])) with open('filter-words-100.txt','r') as f : filter_words = set(f.read().split('\n')) stemmer = PorterStemmer() return (global_word_log_cts, filter_words, stemmer) ######################################################################## ### Store entity id to name mapping ######################################################################## # 'David freebase-entity <http://rdf.freebase.com/ns/m/067sbmt> .' -> ('/067sbmt','david') def make_uid_name_pair(line) : name = line[:line.find('\t')] # get rid of (...) in line because not part of entity name if '(' in name : name = name[:name.find('(')] name = re.sub('[^a-zA-Z0-9\' \-]+', '', name).lower().strip() uid = line[line.rfind('/'):line.rfind('>')] # if uid was parsed incorrectly then throw it out if ' ' in uid or len(uid)>10 : uid = '' name = '' return (uid,name) # Write id->name mappings from raw freebase ents file def process_entity_file(sc) : uid_name_pairs = sc.textFile("freebase-ents.txt").map(make_uid_name_pair) # [('1':'a'),('2','b'),...] unique_uid_name_pairs = uid_name_pairs.reduceByKey(lambda a,b: a) # get rid of duplicate ids unique_uid_name_pairs.coalesce(1).saveAsSequenceFile("entid2name") # condense to single file ########################################################################### ### Make list of all entity ids that we need to exact match ########################################################################### # line: www.freebase.com/m/03_7vl www.freebase.com/people/person/profession www.freebase.com/m/09jwl # returns ['/067sbmt','/027vb3h',...] def get_all_ids(line) : parts = line.split('\t') uid1 = parts[0] uid1 = uid1[uid1.rfind('/'):] l = [] l.append(uid1) # can be multiple objects in relationship description so get all of them for i in range(2,len(parts)) : uid2 = parts[i] uid2 = uid2[uid2.rfind('/'):] l.append(uid2) return l # Get list of entity ids that appear in the rulebase def process_entid_list(sc) : ent_ids = sc.textFile("freebase-rules.txt").map(get_all_ids).flatMap(lambda x: x) # ['/067sbmt','/027vb3h',...] ent_ids.distinct().coalesce(1).saveAsTextFile("present-entids2") # get distinct ids and condense to single file ########################################################################### ### Make reduced ent_id to name map that only has entities present in the ruleset ########################################################################### # make mapping of entid->name but only for entities in ruleset def process_entname_list(sc) : present_entids = sc.textFile('present-entids/part-00000') # ['/067sbmt','/027vb3h',...] entid2name = sc.sequenceFile('entid2name/part-00000') # {'/067sbmt':'david','/027vb3h':'john',...] present_id_map = present_entids.map(lambda x: (x,1)) # convert from list to pairs so can join entid2name.join(present_id_map).coalesce(1).saveAsTextFile("entid2name-important") # write id2name map # load entid->name mapping #( {'/0a2':'david','/g5h':'steven',...}, {'david':['/0a2'],'steven':['/g5h'],...}, set('david','steven',...) ) def load_ent2name() : with open('entid2name-important/part-00000','r') as f : lines = f.read().split('\n') # (u'/012fh', (u'afrikaner', 1)) -> ('/012fh','afrikaner') pair_list = [(line[3:line.find('\',')],remove_double_spaces(line[line.find(' (u')+4:-6])) for line in lines] entid2name_important = dict( pair_list ) entname2id_important = defaultdict(list) # can be multiple ids per name # make reversed map for id in entid2name_important : entname2id_important[ entid2name_important[id] ].append(id) entname_set = set( [tuple(s.split()) for s in entid2name_important.values()] ) return (entid2name_important, entname2id_important, entname_set) ########################################################################### ### Load rules into memory ########################################################################### # line: www.freebase.com/m/03_7vl www.freebase.com/people/person/profession www.freebase.com/m/09jwl # return (/03_7vl,/people/person/profession) def process_rule_line(line) : parts = line.split('\t') uid1 = parts[0] uid1 = uid1[uid1.rfind('/'):] reltype = parts[1] reltype = reltype.replace('www.freebase.com','') return (uid1,reltype) # Extract all distinct (uid1,relationship_type) pairs and write to a single file def process_rules(sc) : sc.textFile("freebase-rules.txt").map(process_rule_line).distinct().coalesce(1).saveAsTextFile("rules") # rules: {'/a2df':['profession,born_here'],...} def load_rules() : rules = defaultdict(list) with open('rules/part-00000','r') as f : lines = f.read().split('\n') for line in lines : # line: "('/a2df','profession')" parts = line.split(',') id = parts[0][3:-1] rel = parts[1][3:-2] rules[id].append(rel) return rules ########################################################################### ### Quickly find possible mispellings by method from http://emnlp2014.org/papers/pdf/EMNLP2014171.pdf ### 1. make a distinct letter -> prime number mapping ### 2. multiply primes for letters in word ### 3. find all entities with scores that are off by one or two prime factors (off by one or two letters) ### 4. run edit distance on this vastly reduced set of candidates to find if the incorrect letters are properly positioned ########################################################################### # entname_set: ['star wars','star trek'] # returns ( {'a':2,'b':3,...}, {'star wars':1.232424e46,...}, [2,3,0.5,0.33,1.5,...] ) def make_mispelling_resources(entname_set) : # map letters to prime numbers primes_letters = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101] primes_numbers = [103,109,113,127,131,137,139,149,151,157] primes_all = primes_letters + primes_numbers + [163,167,173] primes_map = {' ':163,'-':167,'\'':173} for i in range(26) : primes_map[chr(ord('a')+i)] = primes_letters[i] for i in range(10) : primes_map[chr(ord('0')+i)] = primes_numbers[i] # list of factors that entity letter score can be off by for one or two errors possible_spelling_ratios = set( flatten_one_layer([[1.0*x*y,1.0*x/y,1.0*y/x,1.0/x/y] for x in primes_all for y in primes_all]) + flatten_one_layer([[1.0*x,1.0/x] for x in primes_all]) ) # map of spelling score to entity ent_spell_scores = {} for ent in entname_set : num_list = [primes_map[c] for c in ' '.join(ent)] if len(num_list)==0 or len(num_list)>40 : continue ent_spell_scores[float(reduce(op.mul,num_list))] = ent return (primes_map, ent_spell_scores, possible_spelling_ratios) # source: http://stackoverflow.com/questions/2460177/edit-distance-in-python def edit_distance(s1, s2): if len(s1) > len(s2): s1, s2 = s2, s1 distances = range(len(s1) + 1) for i2, c2 in enumerate(s2): distances_ = [i2+1] for i1, c1 in enumerate(s1): if c1 == c2: distances_.append(distances[i1]) else: distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1]))) distances = distances_ return distances[-1] # return list of entities off by 1 or 2 letters from ent def find_mispellings(ent, primes_map, ent_spell_scores, possible_spelling_ratios) : # check each of ~1000 values that this spelling can be off by # add to possibilities any value that is present in ent_spell_scores so corresponds to a known entity find_val = reduce(op.mul,[primes_map[c] for c in ' '.join(ent)]) possibilities = [] for ratio in possible_spelling_ratios : if find_val*ratio in ent_spell_scores : possibilities.append(ent_spell_scores[long(find_val*ratio)]) # use expensive edit distance method on reduced list to account for letter order found_ents = [] for poss in possibilities : if edit_distance(' '.join(poss),' '.join(ent))<=2 : found_ents.append((poss,ent)) return found_ents ########################################################################### ### Dependency Parse ########################################################################### # the dog runs # pos: {'the':'det','dog':'nn','runs':'vb'} # deps: [[nsubj,dog,1,runs,2],[det,dog,1,the,0]] # root: runs class Parse: def __init__(self,pos,deps,root) : self.pos = pos self.deps = deps self.root = root def __str__(self) : s='[' s+=self.pos.__str__()+',\n' s+=self.deps.__str__()+',\n' s+=self.root.__str__()+'\n' return s def __repr__(self) : return self.__str__() # ie. [nsubj,dog,1,runs,2] class Dep: def __init__(self,rel,w1,w1id,w2,w2id) : self.rel = rel self.w1 = w1 self.w1id = w1id self.w2 = w2 self.w2id = w2id def __str__(self) : return '[%s,%s,%i,%s,%i]' % (self.rel, self.w1, self.w1id, self.w2, self.w2id) def __repr__(self) : return self.__str__() # Returns the encoding type that matches Python's native strings (source: stack overflow) def get_native_encoding_type(): if sys.maxunicode == 65535: return 'UTF16' else: return 'UTF32' # Call analyze_text for Google NLP API then formats response to Parse object def format_parse(extracted_info) : tokens = extracted_info.get('tokens', []) # extract word ids and part of speech tags words = {} pos = {} for i in range(len(tokens)) : token = tokens[i] word = token['text']['content'] words[i] = word tag = token['partOfSpeech']['tag'] pos[word] = tag.lower() # extract dependencies deps = [] for i in range(len(tokens)) : token = tokens[i] dep = token['dependencyEdge'] other_word = words[ dep['headTokenIndex'] ] other_word_index = dep['headTokenIndex'] deps.append( Dep(dep['label'].lower(), words[i], i, other_word, other_word_index) ) # find root for i in range(len(deps)) : if deps[i].w1id==deps[i].w2id : root = deps[i].w1 return Parse(pos, deps, root) # Call Google Natural Language syntax API, raises HTTPError is connection problem. def parse_text(text): credentials = GoogleCredentials.get_application_default() scoped_credentials = credentials.create_scoped(['https://www.googleapis.com/auth/cloud-platform']) http = httplib2.Http() scoped_credentials.authorize(http) service = discovery.build( 'language', 'v1beta1', http=http) body = { 'document': { 'type': 'PLAIN_TEXT', 'content': text, }, 'features': { 'extract_syntax': True, #'extract_entities': True, }, 'encodingType': get_native_encoding_type(), } request = service.documents().annotateText(body=body) extracted_info = request.execute() parse_info = format_parse(extracted_info) parse_string = cPickle.dumps(parse_info).replace('\n','\t') return parse_string ########################################################################### ### Training Flow Helpers ########################################################################### # extract information from dataset line def process_dataset_line(line,entid2name) : id1 = line[0].replace('www.freebase.com/m','') rel_type = line[1].replace('www.freebase.com','') id2 = line[2].replace('www.freebase.com/m','') # preprocess input text text = filter(lambda c: c in [' ','-','\''] or (c>='a' and c<='z') or (c>='0' and c<='9'), line[3].lower()) text = re.sub(r"'(?=[a-z])", r" '", text) if id1 not in entid2name : ent1 = None else : ent1 = entid2name[id1] return (text,id1,ent1,rel_type) # generate list of all possible entities def generate_grams(text, filter_words) : words = text.split() # get rid of unigrams that are really common unigrams = filter(lambda tup: tup[0] not in filter_words, list(ngrams(words,1))) grams_list = unigrams for i in range(2,len(words)+1) : grams_list += list(ngrams(words,i)) grams = set(grams_list) return grams # make a list of possible mispelled entities from the text input def generate_mispelled_ents(grams, exact_match_ents, global_word_log_cts, primes_map, ent_spell_scores, possible_spelling_ratios) : mispelled_ents = [] # check all ngrams that we have not already exact matched for ent in grams-set([x[0] for x in exact_match_ents]) : # throw out candidate if very short length or only has very common words if len(' '.join(ent))<=4 or all([global_word_log_cts[w]>12 for w in ent]) : continue poss_ents = find_mispellings(ent, primes_map, ent_spell_scores, possible_spelling_ratios) mispelled_ents += poss_ents return mispelled_ents # get the log probability of the phrase appearing randomly def get_ent_score(ent_words, global_word_log_cts) : return reduce(op.add,[math.log(360000000)-global_word_log_cts[w] for w in ent_words]) # ['a','b','c','d'] -> {'a':0.25,'b':0.25,'c':0.25,'d':0.25} def uniform_normalized_bag(l) : return dict( zip(l,[1.0/len(l) for x in l]) ) # get tf dotproduct score for all bags relative to the word weights def get_rel_scores(word_weights, relationship_bags) : scores = [] for rel in relationship_bags : scores.append( ( rel, dict_dotproduct(word_weights,relationship_bags[rel]) ) ) return dict(scores) # get all possible rules for entity def get_present_rels(ent_words, entname2id, rules) : ids = entname2id[' '.join(ent_words)] # get ids for entity name rules_list = [] for id in ids : rules_list += rules[id] return set(rules_list)
[ "dmace@caltech.edu" ]
dmace@caltech.edu
3d59cf2ba21b419c661f3c613e8d078d6d06fa2f
ac699d1e433b95187975a718eef7c85d059ca70e
/bin/timeoutlib.py
de717c7a5e6bfee4a6e8c413a522edafef0c7aea
[]
no_license
marcelouva/pewa
1d253bfea61becaba14f1d7921e04ba5fcb5cc11
eea8f530f43738717867d82d8436e117d08fe01e
refs/heads/master
2021-01-19T10:36:36.631698
2017-04-13T01:28:43
2017-04-13T01:28:43
75,091,335
0
0
null
null
null
null
UTF-8
Python
false
false
1,397
py
from functools import wraps import errno import os,ap1 import signal from datetime import datetime, date, time, timedelta class TimeoutError(Exception): pass def timeout(error_message=os.strerror(errno.ETIME)): seconds=int(ap1.read_config_case("../config.ini","options")['timeout']) def decorator(func): def _handle_timeout(signum, frame): raise TimeoutError(error_message) def wrapper(*args, **kwargs): signal.signal(signal.SIGALRM, _handle_timeout) signal.alarm(seconds) try: result = func(*args, **kwargs) finally: signal.alarm(0) return result return wraps(func)(wrapper) return decorator @timeout() def call_with_timeout(funcion, parametro1, parametro2,parametro3,parametro4,parametro5,filename): t=datetime.now() try: funcion(parametro1,parametro2,parametro3,parametro4,parametro5,filename) return [datetime.now()-t,False] except Exception as inst: print(type(inst)) # la instancia de excepcin print(inst.args) # argumentos guardados en .args print(inst) return [datetime.now()-t,True] @timeout() def call_with_timeout_permament(funcion, parametro1): #t=datetime.now() try: funcion(parametro1) return [0,False] except: return [0,True]
[ "uva@dc.exa.unrc.edu.ar" ]
uva@dc.exa.unrc.edu.ar
902093c9e3bc1c6b3fbe804605244b8c8cfaee54
d8508a5471ab2db65a96419bef412f9e123ce988
/week_01/lab_01/chop_011.py
0c5e1b29196529ed18d78e76032f0ece14a62d6a
[]
no_license
Dunnel45/ca117
75bc8f7518c16fe21d7033f54fe4462e982e6c7d
11d522e58e364b14cb67f718cef554bef0691810
refs/heads/master
2020-11-27T20:34:06.845509
2019-12-29T12:15:58
2019-12-29T12:15:58
229,592,165
0
0
null
null
null
null
UTF-8
Python
false
false
211
py
#!/usr/bin/env python import sys def main(): for lines in sys.stdin: words = lines.strip() chop = words[1:-1] if chop: print(chop) if __name__ == '__main__': main()
[ "noreply@github.com" ]
Dunnel45.noreply@github.com
89519fbd675ddebfbfb5b2e93b4c7e10f44b81fc
71fbfb197e2756160680de9f4c303f20b63afa26
/dpkt socket学习过程/learning dpkt/dpkt_out.py
f4c9753ff6b2b06b224b05079ac9bb9fad73e7bc
[]
no_license
RabitW/PacketCaptureOnPy
b1839bfa7ac12187056383443e1cbc4587283803
207bcd6038497bf36c55ba4089931b8ba6cb897b
refs/heads/master
2021-01-21T11:34:02.281168
2016-10-22T04:47:36
2016-10-22T04:47:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,457
py
# -*- coding:utf-8 -*- #!/usr/bin/env python """ TESTED ! [Print Packets Example] Use DPKT to read in a pcap file and print out the contents of the packets This example is focused on the fields in the Ethernet Frame and IP packet URL:http://dpkt.readthedocs.io/en/latest/_modules/examples/print_packets.html#test """ import dpkt import pcap import datetime import socket AF_INET = socket.AF_INET def inet_ntop(address_family, packed_ip): if address_family != AF_INET: raise socket.error, (97, 'Address family not supported by protocol') lIP = [] for ch in packed_ip: lIP.append(str(ord(ch))) strIP = string.join(lIP,'.') return strIP def inet_pton(address_family, ip_string): if address_family != AF_INET: raise socket.error, (97, 'Address family not supported by protocol') lIP = ip_string.split('.') strHexIP = "" for i in lIP: if i == '': continue strHex = "%x" % int(i) strHex = strHex.zfill(2) strHexIP += "\\x"+strHex return strHexIP def mac_addr(address): """Convert a MAC address to a readable/printable string Args: address (str): a MAC address in hex form (e.g. '\x01\x02\x03\x04\x05\x06') Returns: str: Printable/readable MAC address """ return ':'.join('%02x' % ord(b) for b in address) def inet_to_str(inet): """Convert inet object to a string Args: inet (inet struct): inet network address Returns: str: Printable/readable IP address """ # First try ipv4 and then ipv6 try: return socket.inet_ntoa(inet) # change here socket.AF_INET, except ValueError: return socket.inet_ntoa(inet) # socket.AF_INET6, def print_packets(pcap): """Print out information about each packet in a pcap Args: pcap: dpkt pcap reader object (dpkt.pcap.Reader) """ # For each packet in the pcap process the contents for timestamp, buf in pcap: # Print out the timestamp in UTC print 'Timestamp: ', str(datetime.datetime.utcfromtimestamp(timestamp)) # Unpack the Ethernet frame (mac src/dst, ethertype) eth = dpkt.ethernet.Ethernet(buf) print 'Ethernet Frame: ', mac_addr(eth.src), mac_addr(eth.dst), eth.type # Make sure the Ethernet data contains an IP packet if not isinstance(eth.data, dpkt.ip.IP): print 'Non IP Packet type not supported %s\n' % eth.data.__class__.__name__ continue # Now unpack the data within the Ethernet frame (the IP packet) # Pulling out src, dst, length, fragment info, TTL, and Protocol ip = eth.data # Pull out fragment information (flags and offset all packed into off field, so use bitmasks) do_not_fragment = bool(ip.off & dpkt.ip.IP_DF) more_fragments = bool(ip.off & dpkt.ip.IP_MF) fragment_offset = ip.off & dpkt.ip.IP_OFFMASK # Print out the info print 'IP: %s -> %s (len=%d ttl=%d DF=%d MF=%d offset=%d)\n' % \ (inet_to_str(ip.src), inet_to_str(ip.dst), ip.len, ip.ttl, do_not_fragment, more_fragments, fragment_offset) def test(): """Open up a test pcap file and print out the packets""" # with open('data/http.pcap', 'rb') as f: # pcap = dpkt.pcap.Reader(f) pc = pcap.pcap("D:\pcap.pcap") print_packets(pc) if __name__ == '__main__': test()
[ "uulink@outlook.com" ]
uulink@outlook.com
5c1ac19434bd1f7eca275e5ddf72cd8965c8e62e
f4ea1f3236f9980e82cc52bb1f9beaa87d17fd85
/workflow/NumberNode.py
1008f3d206e57dbb07e38f00e8ebb5dc18ad7827
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
YOCKOW/PythonGitHubActionsWorkflowRepresentation
44eb1b332eb2e36f38bed0ba3f7b966f835f7394
1e8cb9fd4ade42b01f0c521f659c16b12d7957de
refs/heads/master
2020-09-07T20:11:38.132302
2019-11-22T06:00:16
2019-11-22T06:00:16
220,901,242
0
0
MIT
2019-11-22T06:00:17
2019-11-11T04:31:27
Python
UTF-8
Python
false
false
444
py
from .string import Lines from .Node import Node from .util import yaml_from_number from numbers import Real, Integral class NumberNode(Node): def __init__(self, info: Real): assert isinstance(info, Real) self.__number = info def yaml(self) -> Lines: return yaml_from_number(self.__number) class IntegerNode(NumberNode): def __init__(self, info: Integral): assert isinstance(info, Integral) super().__init__(info)
[ "YOCKOW@users.noreply.github.com" ]
YOCKOW@users.noreply.github.com
7fed78fc07f768255aefaa2a257bc0634ba38294
9afd82a16b97600ccdec764945cea31b77248e69
/Teaching/entry.py
13990c02b02a182c4fc7ab309272fa97bfd4f347
[]
no_license
sinameshkini/python_samples
c722e0acb448b50d29fea6d005c483e373b77b81
b4ba993df327e47d97fd16e634ea44f749ed13ac
refs/heads/master
2020-05-27T21:52:35.104764
2019-05-27T03:44:16
2019-05-27T03:44:16
188,800,504
0
0
null
null
null
null
UTF-8
Python
false
false
515
py
from tkinter import * root = Tk() root.geometry("300x200") root.title('Code Core') root.configure(background='light gray') def chang_txt(): l1.config(text=e1.get()) l1=Label(root, text = " Hello World!",fg = "light green",bg = "darkgreen",font = "tahoma 16") l1.grid(row=0,column=0) #l1.place(x=10,y=10) Label(root,text="Enter your name: ").grid(row=1,column=0) e1=Entry(root) e1.grid(row=1,column=1) button = Button(root,text='Change text',command=chang_txt) button.grid(row=2,column=0) root.mainloop()
[ "sinameshkini7@gmail.com" ]
sinameshkini7@gmail.com
427ba04826a00292ca7fafef75d3d013173842a5
38ec5642460306d48d5f973dce3e10c80f3f9650
/social_login/models.py
2e9dfbe34e0867954c2b258949d64e2a6fe13917
[ "BSD-4-Clause" ]
permissive
lomatus/django-social-login
113be279b120f56a3547275bebad0429f26258c8
c84f8d8ea82cb7cb58ede1230c69ae5f19de1f77
refs/heads/master
2020-12-03T10:29:51.946410
2014-03-27T05:05:22
2014-03-27T05:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,138
py
# -*- coding: utf-8 -*- from django.db import models from django.conf import settings from .app_settings import SOCIAL_LOGIN_UID_LENGTH from .manager import SocialUserManager def _abstract_siteuser(): custom_siteuser = getattr(settings, 'SOCIAL_LOGIN_ABSTRACT_SITEUSER', None) if not custom_siteuser: from .abstract_models import AbstractBaseSiteUser return AbstractBaseSiteUser _app, _model = custom_siteuser.split('.') _module = __import__('%s.models' % _app, fromlist=[_model]) _model = getattr(_module, _model) if not _model._meta.abstract: raise AttributeError("%s must be abstract model" % custom_siteuser) return _model class SiteUser(_abstract_siteuser()): def __unicode__(self): return '<SiteUser %d>' % self.id class SocialUser(models.Model): user = models.OneToOneField(SiteUser, related_name='social_user') site_uid = models.CharField(max_length=SOCIAL_LOGIN_UID_LENGTH) site_id = models.SmallIntegerField() objects = SocialUserManager() class Meta: unique_together = (('site_uid', 'site_id'),)
[ "yueyoum@gmail.com" ]
yueyoum@gmail.com
3f06a5b160b479d9a68ec56bf4db9b3841dcbb8f
8f3ac7f795f4c57c895514331743c86721147a9e
/demo2/booktest2/urls.py
25668b20b92879c7af1a95c76c7ff4974f2753d6
[]
no_license
shuimao/wuchunfeng
e1341f06451101d870bd460038db7be6c4e593e1
7efed1fd27df0b22c87f76017123fd3081029788
refs/heads/master
2022-11-24T11:46:31.573281
2019-07-19T02:28:36
2019-07-19T02:28:36
194,625,310
0
0
null
2022-11-22T04:07:44
2019-07-01T07:50:56
JavaScript
UTF-8
Python
false
false
632
py
from django.conf.urls import url from . import views app_name = 'booktest2' urlpatterns = [ url(r'^index/$', views.index, name='index'), url(r'^list/$', views.list, name='list'), url(r'^detail/(\d+)/$', views.detail, name='detail'), url(r'^roledel/(\d+)/$', views.roledel, name='roledel'), url(r'^roleadd/(\d+)/$', views.roleadd, name='roleadd'), url(r'^login/$', views.login, name='login'), url(r'^logout/$', views.logout, name='logout'), url(r'^regist/$', views.regist, name='regist'), url(r'^verity/$', views.verity, name='verity'), url(r'^active/(\d+)/$', views.active, name='active') ]
[ "411468873@qq.com" ]
411468873@qq.com
7f637b614c55bd7c37e6d684ad5808118acfe36c
5be53821af680c32d9d8b097e6f38cabad0068f7
/Week02/242.有效的字母异位词.py
7c2a4a279e51e1bd52248c818bf1255ae122945d
[]
no_license
DonnyChen/algorithm010
bb1f91e3d23d7fed862d3bf7097a64a5deef4675
f065fdad276318db179bc60d58438890b8e1fbe0
refs/heads/master
2022-11-12T08:51:36.620166
2020-06-28T15:58:48
2020-06-28T15:58:48
271,441,519
0
0
null
2020-06-11T03:21:37
2020-06-11T03:21:37
null
UTF-8
Python
false
false
623
py
# # @lc app=leetcode.cn id=242 lang=python3 # # [242] 有效的字母异位词 # # @lc code=start class Solution: # 1 排序 # def isAnagram(self, s: str, t: str) -> bool: # return sorted(s) == sorted(t) # 2 哈希映射 def isAnagram(self, s: str, t: str) -> bool: dict26 = [0]*26 if len(t) != len(s): return False for i in range(len(t)): dict26[ord(s[i]) - ord('a')] += 1 dict26[ord(t[i]) - ord('a')] -= 1 for j in range(26): if dict26[j] != 0: return False return True # @lc code=end
[ "“donny_df_mse@outlook.com" ]
“donny_df_mse@outlook.com
80687ef66fb00b8c3322399150fd54d32cdc51bb
f5b54e3d1d00f6d58b5eb8a3ceaf0cee9735c53f
/Veacon/vehicle/migrations/0001_initial.py
613bc19f5e839235e031e46da10a9ec8a483ae36
[]
no_license
feerposser/veacon_sys
c5ba824aadb806dea1746ee708ad98df550721fa
2f85e4999c1c43fa968ed1ea599c6a23b4f7e395
refs/heads/master
2022-04-02T15:14:01.509692
2020-02-16T22:31:09
2020-02-16T22:31:09
234,101,869
0
0
null
null
null
null
UTF-8
Python
false
false
932
py
# Generated by Django 2.2.7 on 2020-01-08 19:03 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('user_veacon', '0001_initial'), ] operations = [ migrations.CreateModel( name='VehicleModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('plaque', models.CharField(max_length=10)), ('color', models.CharField(max_length=20)), ('model', models.CharField(max_length=50)), ('brand', models.CharField(max_length=50)), ('users', models.ManyToManyField(to='user_veacon.UserVeaconModel')), ], options={ 'verbose_name': 'Veículo', 'verbose_name_plural': 'Veículos', }, ), ]
[ "fernando.posser@hotmail.com" ]
fernando.posser@hotmail.com
2d7fabb3c3d73402cce2a0930012fd2cbb7212de
1498148e5d0af365cd7fd16197174174a7fa9800
/leetcode/t000557_3.py
b6eeb948f9726f5896a9f6da569093d8e6d99862
[]
no_license
feiyanshiren/myAcm
59a2b80fe7e02787defcb152eee3eae26135322a
00c7082d5143ddf87aeeafbdb6ce29da46dc8a12
refs/heads/master
2023-09-01T12:12:19.866447
2023-09-01T09:09:56
2023-09-01T09:09:56
148,560,672
0
0
null
null
null
null
UTF-8
Python
false
false
319
py
class Solution: def reverseWords(self, s: str) -> str: return " ".join(s[::-1].split(" ")[::-1]) s = Solution() print(s.reverseWords("Let's take LeetCode contest")) import time t1 = time.time() for i in range(100000): s.reverseWords("Let's take LeetCode contest") print(time.time() - t1)
[ "feiyanshiren@163.com" ]
feiyanshiren@163.com
da6a0298a940ce8965d0f00bd8a5ef8e830004b5
e819eff29a5002a20adbf68ecc5e0295dfdea5bb
/ch5/readline2.py
016e0a9c14f907d5ebaad69bab28acc4eee1c1d0
[]
no_license
Scott-S-Lin/Python_Programming_ChineseBook
91f25e01ca123e32d121468055a5749045557351
06ad28da15065d49790eefa6d6cd92702bfa55e8
refs/heads/master
2020-04-17T21:26:41.523865
2019-01-22T07:41:24
2019-01-22T07:41:24
166,949,930
1
0
null
null
null
null
UTF-8
Python
false
false
355
py
#function: using readline() to read data file_in = open("employee1.txt",'r') while True: linedata = file_in.readline() if not linedata: break print(linedata, end='') file_in.close() file_in = open("employee1.txt",'r') print("\n using readlines()\n") for linedata in file_in.readlines(): print(linedata, end='') file_in.close()
[ "wenyuan.s.lin@gmail.com" ]
wenyuan.s.lin@gmail.com
18758a9998673d576be354f2729c612fca8dca2a
9c3708c7cfc0a16fcb09e459dd66a53c67d25e6f
/djClassSchedule/urls.py
7c44195767f9bf086e5438deee6d1943e7eb1ba2
[]
no_license
EckerdCollege/djClassSchedule
a1f668338a56c16d449cb2880f4a8f3cf11153f4
37d55d5369e067e5ac884fc0e4a0d9a075ae2e2b
refs/heads/master
2021-01-19T21:32:46.558498
2017-06-09T15:45:19
2017-06-09T15:45:19
88,663,985
0
2
null
2017-06-09T15:45:20
2017-04-18T19:43:55
JavaScript
UTF-8
Python
false
false
832
py
"""djClassSchedule URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include, url from django.contrib import admin urlpatterns = [ url(r'^', include('apps.classSchedule.urls')), url(r'^admin/', admin.site.urls), ]
[ "ChristopherDavenport@outlook.com" ]
ChristopherDavenport@outlook.com
d7619a72a5b64244d23fd88c90aa7bc8d693aea5
7604051222cd0779f8f5ea5c40477665862c9c25
/first_task/script.py
3a510b4181a2584f793eca16e8cecd98ac04f764
[]
no_license
Khitretsov/examples
9cb0d8ffa2b160cc595f68365485066704b11261
651f1daeb712b6c753dbb8809587187d6717426a
refs/heads/master
2023-01-05T21:04:14.675535
2020-11-04T22:42:36
2020-11-04T22:42:36
310,134,379
0
0
null
null
null
null
UTF-8
Python
false
false
618
py
obj = { 'a': 1, 'b': 3, 'c': { 'd': 2, 'a': 3, 'f': { 'f': 2, 'd':3 }, 'v': 4 } } def flatten(d): answer = {} def search_path(dd, letter=''): paths = [] keys = dd.keys() for key in keys: field = key if letter == '' else letter + '.' + key try: hash(dd[key]) answer[field] = dd[key] except: search_path(dd[key], field) search_path(d) print(answer) return answer flatten(obj)
[ "NekitHitr@yandex.ru" ]
NekitHitr@yandex.ru
ef66d5d1c123eba265ed18adb9743adf1dbfd930
2aa3a50982ab45136787f55a0dfc4d4be86831c4
/rbtree.py
7370c2b5f1532117c07ce765fd3630ee70ec5911
[]
no_license
Miautawn/Red-Black-Tree
6a5026eaa568ce6c1899531be072d3e447944d88
a6edca687a87d59736c444214e323fe576261131
refs/heads/main
2023-04-25T22:43:41.605664
2021-06-06T08:35:10
2021-06-06T08:35:10
374,307,344
0
0
null
null
null
null
UTF-8
Python
false
false
11,025
py
#RED-BLACK Tree, Martynas Jašinskas VU ISI 1k. from os import system class Node(): def __init__(self, key): self.colour = "RED" self.key = key self.left = None self.right = None self.parent = None class RBTree(): def __init__(self): self.NILL = Node("NILL") self.NILL.colour = "BLACK" self.root = self.NILL def __transmutate(self, deletable_node, changeable_node): if deletable_node.parent == None: self.root = changeable_node elif deletable_node == deletable_node.parent.left: deletable_node.parent.left = changeable_node else: deletable_node.parent.right = changeable_node changeable_node.parent = deletable_node.parent def delete(self, item): """ ištrina elementą iš medžio """ x = self.root z = self.NILL #find the lowest possible node with this number while x != self.NILL: if x.key == item: z = x if x.key <= item: x = x.right else: x = x.left #if there is no such node if z == self.NILL: print("Tokio elemento nėra") return y = z y_orginal = y.colour #Simple BST delete ################## # Šie atvejai jei tas node turi tik viena vaiką # arba išvis neturi if(z.right == self.NILL): x = z.left self.__transmutate(z, z.left) elif(z.left == self.NILL): x = z.right self.__transmutate(z, z.right) #Jeigu turi abu vaikus else: #reikia surasti pakaitalą y = self.get_minimum(z.right) y_orginal = y.colour x = y.right if y.parent == z: x.parent = y else: self.__transmutate(y, y.right) y.right = z.right y.right.parent = y self.__transmutate(z, y) y.left = z.left y.left.parent = y y.colour = z.colour # Jeigu istrintas yra juodas if y_orginal == "BLACK": self.fix_delete(x) def fix_delete(self, x): while x != self.root and x.colour == "BLACK": if x == x.parent.left: sibling = x.parent.right #Case 1 - Sibling is red if(sibling.colour == "RED"): sibling.colour = "BLACK" x.parent.colour = "RED" self.left_rotate(x.parent) sibling = x.parent.right #Case 2 - both of siblings children are black if(sibling.left.colour == "BLACK" and sibling.right.colour == "BLACK"): sibling.colour = "RED" x = x.parent #Case 3 - left sibling child is red, right is black else: if(sibling.right.colour == "BLACK"): sibling.left.colour = "BLACK" sibling.colour = "RED" self.right_rotate(sibling) sibling = x.parent.right #Case 4 - left sibling child is black, right is red sibling.colour = x.parent.colour sibling.right.colour = "BLACK" x.parent.colour = "BLACK" self.left_rotate(x.parent) x = self.root else: sibling = x.parent.left #Case 1 - Sibling is red (inverted) if(sibling.colour == "RED"): sibling.colour = "BLACK" x.parent.colour = "RED" sefl.right_rotate(x.parent) sibling = x.parent.left #Case 2 - both of siblings children are black if(sibling.left.colour == "BLACK" and sibling.right.colour == "BLACK"): sibling.colour = "RED" x = x.parent else: #Case 3 - left sibling child is red, right is black (inverted) if(sibling.left.colour == "BLACK"): sibling.right.colour = "BLACK" sibling.colour = "RED" self.left_rotate(sibling) sibling = x.parent.left #Case 4 - left sibling child is black, right is red (inverted) sibling.colour = x.parent.colour x.parent.colour = "BLACK" sibling.left.colour = "BLACK" self.right_rotate(x.parent) x = self.root x.colour = "BLACK" def insert(self, item): """ įdeda elementą į medį """ new_node = Node(item) new_node.left, new_node.right = self.NILL, self.NILL #get the parent of the to be inserted node y = None x = self.root while x != self.NILL: y = x if(item > x.key): x = x.right else: x = x.left new_node.parent = y #if parent is non egzisatnt, aka new_node is the root if y == None: self.root = new_node self.root.colour = "BLACK" return if(item > y.key): y.right = new_node else: y.left = new_node #if the inserted node is in the second level if new_node.parent.parent == None: return #if nothing else, let's do the fixing self.fix_insert(new_node) def fix_insert(self, new_node): while new_node.parent.colour == "RED": #if the parent is the left child of GrandParent uncle = None if(new_node.parent == new_node.parent.parent.left): uncle = new_node.parent.parent.right else: uncle = new_node.parent.parent.left # Case 1 - tėvas Raudonas, o Dėdė Raudonas if uncle.colour == "RED": new_node.parent.colour = "BLACK" uncle.colour = "BLACK" new_node.parent.parent.colour = "RED" new_node = new_node.parent.parent else: if(new_node.parent == new_node.parent.parent.left): # Case 2 - tėvas Raudonas, o Dėdė Juodas, O x dešinys if new_node == new_node.parent.right: new_node = new_node.parent self.left_rotate(new_node) # Case 3 - tėvas Raudonas, o Dėdė Juodas, o X kairys new_node.parent.colour = "BLACK" new_node.parent.parent.colour = "RED" self.right_rotate(new_node.parent.parent) else: #Case 2 - tėvas Raudonas, o Dėdė Juodas, o x dešinys (apkeista vietom) if new_node == new_node.parent.left: new_node = new_node.parent self.right_rotate(new_node) # Case 3 - tėvas Raudonas, o Dėdė Juodas, o X kairys (apkeista vietom) new_node.parent.colour = "BLACK" new_node.parent.parent.colour = "RED" self.left_rotate(new_node.parent.parent) #if after changes the pointing node is a root - exit if new_node == self.root: break self.root.colour = "BLACK" def get_minimum(self, node): """ gauti tam tikro pomedžio mažiausią elementą """ while node.left != self.NILL: node = node.left return node def print_tree(self): """ atspausdinti medį aukščio metodu """ def print_level(root, level): if root == None: return elif level == 1: if root != self.NILL: print('(', root.key,root.colour,')', end=" ") else: print('(', root.key, ')', end=" ") elif level > 1: print_level(root.left, level - 1) print_level(root.right, level - 1) h = self.get_height(self.root) for i in range(1, h+1): print_level(self.root, i) print("\n") def get_height(self, node): """ Grąžina medžio ilgį """ if(node == self.NILL): return 0 else: return max(self.get_height(node.left), self.get_height(node.right)) + 1 def find(self, value): """ suranda ir gražina medžio ieškomą elementą """ x = self.root y = self.NILL level = 0 while x != self.NILL: level += 1 if x.key == value: y = x break if(value >= x.key): x = x.right else: x = x.left if(y == self.NILL): print("Tokio elemento nėra!") else: print("Rastas toks elementas: {}, {} lygyje".format(y.key, level)) def left_rotate(self, x): """ padaryti pasukimą kairėn """ y = x.right x.right = y.left if y.left != self.NILL: y.left.parent = x y.parent = x.parent if(x.parent == None): self.root = y elif(x == x.parent.left): x.parent.left = y else: x.parent.right = y y.left = x x.parent = y def right_rotate(self, x): """ padaryti pasukimą dešinėn """ y = x.left x.left = y.right if y.right != self.NILL: y.right.parent = x y.parent = x.parent if(x.parent == None): self.root = y elif(x == x.parent.right): x.parent.right = y else: x.parent.left = y y.right = x x.parent = y tree = RBTree() while True: print("Įvesti - 1, Ištrinti - 2, Spausdinti - 3, Surasti - 4") selection = int(input("Jūsų pasirinkimas: ")) if(selection == 1): number = int(input("Kokį skaičių įvesti: ")) tree.insert(number) _ = system('clear') elif(selection == 2): number = int(input("Kokį elementą ištrinti: ")) tree.delete(number) _ = system('clear') elif(selection == 3): _ = system('clear') print("***********************") tree.print_tree() print("***********************") else: _ = system('clear') number = int(input("Kokios reikšmės ieškote: ")) tree.find(number)
[ "miautawn@gmail.com" ]
miautawn@gmail.com
0283fb33f229cbc5a9db922f72ecb19545e2d7c7
58fd749471c9de26a7ad9a357385aeb9606f8d97
/plug_and_play/master/forms.py
ef09dc679d8805eda66898594fbbea4030865c1c
[]
no_license
kSinghParth/Plug-and-Play
2810336a26f0a6847678352d0e37ec55ba2b9db4
13f1e9afb9d194968282ddc9e8a30202e23b3b77
refs/heads/master
2022-06-09T08:06:27.028198
2022-05-27T00:22:53
2022-05-27T00:22:53
177,397,385
0
0
null
null
null
null
UTF-8
Python
false
false
149
py
from django import forms class UploadJobForm(forms.Form): file = forms.FileField() process = forms.FileField() aggregate = forms.FileField()
[ "parthsingh287@gmail.com" ]
parthsingh287@gmail.com
c8aa9a7652ebbd1dbeb6a42dbd17fe1780634663
91e2408eeaecda5e3bc6f08099024a2f7dba7929
/util/latent_space.py
be8996455ad1d51ed3082cf3c9f31ab34a8d34e8
[]
no_license
ArashVahabpour/SOG
90041e16dcd7da9b2c61be0a277a7846c5d046c1
3e8abdaae72941b6316e8849026b11846b77db94
refs/heads/master
2023-04-22T16:24:12.830567
2021-05-17T05:53:11
2021-05-17T05:53:11
236,617,903
2
0
null
null
null
null
UTF-8
Python
false
false
3,684
py
import numpy as np from scipy import stats, linalg from math import ceil, log2 import torch import torchvision import cv2 as cv import os # Converts the tensor of a batch of images to a grid visualisation def make_grid(image_tensor): # TODO add normalization option batch_size = image_tensor.shape[0] grid_width = 2 ** ceil(log2(batch_size) // 2) # print('WARNING only>>>>tanh'); image_tensor = image_tensor/2+.5 # todo img = torchvision.utils.make_grid(image_tensor, nrow=grid_width, padding=2, normalize=False, range=None, scale_each=False, pad_value=0) img = (img.cpu().numpy().transpose(1, 2, 0) * 255).astype(np.uint8) # changing float mode to uint8 return img def generate_full_grid(sog_model, opt): # TODO add this to training grid_width = opt.grid_width cdf_begin = 0.01 cdf_end = 1 - cdf_begin z1 = np.linspace(cdf_begin, cdf_end, grid_width) z1 = stats.norm.ppf(z1) z1 = torch.tensor(z1, device=opt.device, dtype=torch.float32) # x_test[i1, i2, ..., ik, :] = x1[i], x1[j], ..., x1[k] z_test = torch.cat([xv.unsqueeze(-1) for xv in torch.meshgrid([z1] * opt.n_latent)], dim=-1) z_test = z_test.reshape(-1, opt.n_latent) y_pred = torch.cat([sog_model.decode(z_test[i:i + 1], requires_grad=False).reshape(-1, opt.nc, opt.img_size, opt.img_size).cpu() for i in range(len(z_test))]) # obtain grid's test results with a batch size of 1 nrow = grid_width ** ceil(opt.n_latent // 2) img = torchvision.utils.make_grid(y_pred, nrow=nrow, padding=2, normalize=False, pad_value=0) img = np.ndarray.astype(img[0].numpy() * 255, np.uint8) return img class RandomMotion: def __init__(self, dim, tau=10, v_mag=0.02): self.dim = dim self.tau = tau self.v_mag = v_mag self.loc = np.random.rand(dim) self._renew_v() def _renew_v(self): rand_dir = np.random.randn(self.dim) self.v = rand_dir / linalg.norm(rand_dir) * self.v_mag def _update_loc(self): self.loc += self.v bounds = np.clip(self.loc, 0, 1) bounce_mask = bounds != self.loc self.loc[bounce_mask] = 2 * bounds[bounce_mask] - self.loc[bounce_mask] self.v[bounce_mask] *= -1 def tick(self): if np.random.rand() < 1. / self.tau: self._renew_v() self._update_loc() def generate_seq(self, count=1000): locs = [] for _ in range(count): locs.append(self.loc.copy()) self.tick() return np.vstack(locs) def generate_video(sog_model, opt, web_dir): seq = RandomMotion(dim=opt.n_latent, tau=100, v_mag=.02).generate_seq(10000) seq = stats.norm.ppf(seq) # map to normal distribution seq = np.clip(seq, -3, 3) # avoid off-3-sigma values z_test = torch.tensor(seq, device=opt.device, dtype=torch.float32) y_pred = sog_model.decode(z_test, requires_grad=False).reshape(-1, opt.nc, opt.img_size, opt.img_size).cpu().numpy() y_pred = y_pred.transpose(0, 2, 3, 1) # channels last format for opencv if opt.nc == 1: y_pred = y_pred.repeat(3, axis=3) # fake RGB channels y_pred = (y_pred * 255).astype(np.uint8) video_dir = os.path.join(web_dir, 'morph.avi') fourcc = cv.VideoWriter_fourcc(*'DIVX') video_writer = cv.VideoWriter(video_dir, fourcc, 30., (opt.img_size, opt.img_size)) for frame in y_pred: video_writer.write(frame) video_writer.release() # TODO refractor web_dir as results_dir # TODO organize all this as a class in a reasonable way, ask Yipeng about it
[ "vahaabpour@gmail.com" ]
vahaabpour@gmail.com
7bae208221ada732f93c04006eea3676ed23eef1
639a7b975ebfba7cb7d522dbfa99c57188c3e388
/setup.py
963e4d5ae1361b2b7764a7f337e1e670cf170071
[ "MIT" ]
permissive
Suresh-Singamsetty/oneNeuron_Pypi
a6998ea7dbf567e15083afa1ebf400edabd70106
4d0634dc5bf550def5f42621a82bf8706513085c
refs/heads/main
2023-09-06T04:47:09.267756
2021-10-02T23:12:56
2021-10-02T23:12:56
412,920,287
0
0
null
null
null
null
UTF-8
Python
false
false
965
py
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() PROJECT_NAME = "oneNeuron_Pypi" USER_NAME = "Suresh-Singamsetty" setuptools.setup( name=f"{PROJECT_NAME}-{USER_NAME}", version="0.0.1", author="USER_NAME", author_email="author@example.com", description="its an implementation of perceptron", long_description=long_description, long_description_content_type="text/markdown", url=f"https://github.com/{USER_NAME}/{PROJECT_NAME}", project_urls={ "Bug Tracker": f"https://github.com/{USER_NAME}/{PROJECT_NAME}/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), python_requires=">=3.7", install_requires=[ "numpy", "tqdm" ] )
[ "sureshsmart96@gmail.com" ]
sureshsmart96@gmail.com
80da79e2bdd7822bb7d3551aa39ae8f34bd61f93
ea9c8cf17b1a82d070e5ee96aa40c3fee4938a96
/test2.py
deec61f7fbaa02f973853de85c8ad2c11ff539e5
[]
no_license
z00m1k/Python
c311cbb1f74a1203497e32adf84b8fe9c2685b92
5ead0f5a759f9ec42fad6b8ce161e6ab2e49b316
refs/heads/master
2020-09-30T18:01:11.262437
2019-12-11T10:53:12
2019-12-11T10:53:12
227,343,016
0
0
null
null
null
null
UTF-8
Python
false
false
1,280
py
#Дан массив размера N. Найти два соседних элемента, сумма которых #максимальна, и вывести эти элементы в порядке возрастания их #индексов. import random from colorama import init, Fore, Back init() print(Fore.BLACK)#Черный цвет print(Back.GREEN)#Зеленый фон spam = int(input("Введите размер массива N: ")) array = [random.randint(-500, 500) for i in range(spam)] #Заполнение массива рандомными числами print(Back.YELLOW) def search(array): #Функция для нахождения максимального числа. max1 = 0 for i in range(spam): if i >= spam - 1: #Прерывание цикла break summa = array[i] + array[i + 1] #Сложение соседних элементов if max1 < summa: #Сравнение прошлой суммы элементов с нынешней max1 = summa print(Back.CYAN) print("Сумма максимальных соседних элементов массива N: " + str(max1)) print("Массив N: " + str(array) + "\n") search(array) #Вызов функции
[ "noreply@github.com" ]
z00m1k.noreply@github.com
2a4d717f63b2aadc4aa1f79e5ce3f4b0573d5839
d0aa87b4d5ec9eac9646cba850deb4883ba72625
/app/recipes/views.py
4f030938fa561806af0e25d5c9f6b828bf4c2cc3
[ "MIT" ]
permissive
alisoliman/recipe-app-api
c33c8ca73866d44a7e07acd13506618edf2bbd4d
5a8269d4e25c11cd57a9d25d8fb69955192fc2a6
refs/heads/master
2020-07-27T16:19:13.943206
2019-10-21T21:23:43
2019-10-21T21:23:43
209,155,072
0
1
null
null
null
null
UTF-8
Python
false
false
3,558
py
from rest_framework.decorators import action from rest_framework.response import Response from rest_framework import viewsets, mixins, status from rest_framework.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated from core.models import Tag, Ingredient, Recipe from recipes.serializers import IngredientSerializer, \ TagSerializer, RecipeSerializer, \ RecipeDetailSerializer, RecipeImageSerializer class BaseRecipeAttrViewSet(viewsets.GenericViewSet, mixins.ListModelMixin, mixins.CreateModelMixin): """Base View Set for user owned recipe attributes""" authentication_classes = (TokenAuthentication,) permission_classes = (IsAuthenticated,) def get_queryset(self): """Return objects for the current authenticated user only""" assigned_only = bool(self.request.query_params.get('assigned_only')) queryset = self.queryset if assigned_only: queryset = queryset.filter(recipe__isnull=False) return queryset.filter(user=self.request.user).order_by('-name') def perform_create(self, serializer): """Create a new object""" serializer.save(user=self.request.user) class TagViewSet(BaseRecipeAttrViewSet): """Manage Tags in the database""" queryset = Tag.objects.all() serializer_class = TagSerializer class IngredientViewSet(BaseRecipeAttrViewSet): """Manage Ingredients in the database""" queryset = Ingredient.objects.all() serializer_class = IngredientSerializer class RecipeViewSet(viewsets.ModelViewSet): """Manage Recipes in the Database""" serializer_class = RecipeSerializer queryset = Recipe.objects.all() authentication_classes = (TokenAuthentication,) permission_classes = (IsAuthenticated,) def _params_to_ints(self, qs): """Convert a list of string ids to a list of integers""" return [int(str_id) for str_id in qs.split(',')] def get_queryset(self): """Limit objects to authenticated user""" tags = self.request.query_params.get('tags') ingredients = self.request.query_params.get('ingredients') queryset = self.queryset if tags: tag_ids = self._params_to_ints(tags) queryset = queryset.filter(tags__id__in=tag_ids) if ingredients: ingredients_ids = self._params_to_ints(ingredients) queryset = queryset.filter(ingredients__id__in=ingredients_ids) return queryset.filter(user=self.request.user) def get_serializer_class(self): """:return appropriate serializer class""" if self.action == 'retrieve': return RecipeDetailSerializer elif self.action == 'upload_image': return RecipeImageSerializer return self.serializer_class def perform_create(self, serializer): """Create a new recipe""" serializer.save(user=self.request.user) @action(methods=['POST'], detail=True, url_path='upload-image') def upload_image(self, request, pk=None): """Upload an image to a recipe""" recipe = self.get_object() serializer = self.get_serializer( recipe, data=request.data ) if serializer.is_valid(): serializer.save() return Response( serializer.data, status=status.HTTP_200_OK ) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
[ "ali.soliman95@gmail.com" ]
ali.soliman95@gmail.com
37e641caa37f4e7f18e93aaf0e5e626765ec31c3
1260ce7869ce32d6b434afbf273273b7b1ebea2d
/euclidean_equivariant_networks/experiments/nbody/nbody_run.py
4a138819ba680fd99e4be0f945f93bf14e4c68ef
[]
no_license
savvy379/Lorentz-Equivariant-GNN
b3b30e964cfa9af39adcb4e8b73bc78b4f8b7b5e
3d1c74081bdd43387a7c530bce73580db379d22d
refs/heads/master
2023-08-01T06:43:13.229014
2021-09-22T18:35:15
2021-09-22T18:35:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,826
py
from euclidean_equivariant_networks.utils.utils_profiling import * # load before other local modules import argparse import os import sys import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import dgl import numpy as np import torch import wandb import time import datetime from torch import optim import torch.nn as nn from torch.utils.data import DataLoader from euclidean_equivariant_networks.experiments.nbody.nbody_dataloader import RIDataset from euclidean_equivariant_networks.utils import utils_logging from euclidean_equivariant_networks.experiments.nbody import nbody_models as models from euclidean_equivariant_networks.equivariant_attention.from_se3cnn.SO3 import rot from euclidean_equivariant_networks.experiments.nbody.nbody_flags import get_flags def to_np(x): return x.cpu().detach().numpy() def get_acc(pred, x_T, v_T, y=None, verbose=True): acc_dict = {} pred = to_np(pred) x_T = to_np(x_T) v_T = to_np(v_T) assert len(pred) == len(x_T) if verbose: y = np.asarray(y.cpu()) _sq = (pred - y) ** 2 acc_dict['mse'] = np.mean(_sq) _sq = (pred[:, 0, :] - x_T) ** 2 acc_dict['pos_mse'] = np.mean(_sq) _sq = (pred[:, 1, :] - v_T) ** 2 acc_dict['vel_mse'] = np.mean(_sq) return acc_dict def train_epoch(epoch, model, loss_fnc, dataloader, optimizer, schedul, FLAGS): model.train() loss_epoch = 0 num_iters = len(dataloader) #wandb.log({"lr": optimizer.param_groups[0]['lr']}, commit=False) for i, (g, y1, y2) in enumerate(dataloader): g = g.to(FLAGS.device) x_T = y1.to(FLAGS.device).view(-1, 3) v_T = y2.to(FLAGS.device).view(-1, 3) y = torch.stack([x_T, v_T], dim=1) optimizer.zero_grad() # run model forward and compute loss pred = model(g) loss = loss_fnc(pred, y) loss_epoch += to_np(loss) if torch.isnan(loss): import pdb pdb.set_trace() # backprop loss.backward() optimizer.step() # print to console if i % FLAGS.print_interval == 0: print( f"[{epoch}|{i}] loss: {loss:.5f}") # log to wandb if i % FLAGS.log_interval == 0: # 'commit' is only set to True here, meaning that this is where # wandb counts the steps wandb.log({"Train Batch Loss": to_np(loss)}, commit=True) # exit early if only do profiling if FLAGS.profile and i == 10: sys.exit() schedul.step(epoch + i / num_iters) # log train accuracy for entire epoch to wandb loss_epoch /= len(dataloader) wandb.log({"Train Epoch Loss": loss_epoch}, commit=False) def test_epoch(epoch, model, loss_fnc, dataloader, FLAGS, dT): model.eval() keys = ['pos_mse', 'vel_mse'] acc_epoch = {k: 0.0 for k in keys} acc_epoch_blc = {k: 0.0 for k in keys} # for constant baseline acc_epoch_bll = {k: 0.0 for k in keys} # for linear baseline loss_epoch = 0.0 for i, (g, y1, y2) in enumerate(dataloader): g = g.to(FLAGS.device) x_T = y1.view(-1, 3) v_T = y2.view(-1, 3) y = torch.stack([x_T, v_T], dim=1).to(FLAGS.device) # run model forward and compute loss pred = model(g).detach() loss_epoch += to_np(loss_fnc(pred, y)/len(dataloader)) acc = get_acc(pred, x_T, v_T, y=y) for k in keys: acc_epoch[k] += acc[k]/len(dataloader) # eval constant baseline bl_pred = torch.zeros_like(pred) acc = get_acc(bl_pred, x_T, v_T, verbose=False) for k in keys: acc_epoch_blc[k] += acc[k]/len(dataloader) # eval linear baseline # Apply linear update to locations. bl_pred[:, 0, :] = dT * g.ndata['v'][:, 0, :] acc = get_acc(bl_pred, x_T, v_T, verbose=False) for k in keys: acc_epoch_bll[k] += acc[k] / len(dataloader) print(f"...[{epoch}|test] loss: {loss_epoch:.5f}") wandb.log({"Test loss": loss_epoch}, commit=False) for k in keys: wandb.log({"Test " + k: acc_epoch[k]}, commit=False) wandb.log({'Const. BL pos_mse': acc_epoch_blc['pos_mse']}, commit=False) wandb.log({'Linear BL pos_mse': acc_epoch_bll['pos_mse']}, commit=False) wandb.log({'Linear BL vel_mse': acc_epoch_bll['vel_mse']}, commit=False) class RandomRotation(object): def __init__(self): pass def __call__(self, x): M = np.random.randn(3, 3) Q, __ = np.linalg.qr(M) return x @ Q def collate(samples): graphs, y1, y2 = map(list, zip(*samples)) batched_graph = dgl.batch(graphs) return batched_graph, torch.stack(y1), torch.stack(y2) def main(FLAGS, UNPARSED_ARGV): # Prepare data train_dataset = RIDataset(FLAGS, split='train') train_loader = DataLoader(train_dataset, batch_size=FLAGS.batch_size, shuffle=True, collate_fn=collate, num_workers=FLAGS.num_workers, drop_last=True) test_dataset = RIDataset(FLAGS, split='test') # drop_last is only here so that we can count accuracy correctly; test_loader = DataLoader(test_dataset, batch_size=FLAGS.batch_size, shuffle=False, collate_fn=collate, num_workers=FLAGS.num_workers, drop_last=True) # time steps assert train_dataset.data['delta_T'] == test_dataset.data['delta_T'] assert train_dataset.data['sample_freq'] == test_dataset.data['sample_freq'] print(f'deltaT: {train_dataset.data["delta_T"]}, ' f'freq: {train_dataset.data["sample_freq"]}, ' f'FLAGS.ri_delta_t: {FLAGS.ri_delta_t}') dT = train_dataset.data['delta_T'] * train_dataset.data[ 'sample_freq'] * FLAGS.ri_delta_t FLAGS.train_size = len(train_dataset) FLAGS.test_size = len(test_dataset) assert len(test_dataset) < len(train_dataset) model = models.__dict__.get(FLAGS.model)(FLAGS.num_layers, FLAGS.num_channels, num_degrees=FLAGS.num_degrees, div=FLAGS.div, n_heads=FLAGS.head, si_m=FLAGS.simid, si_e=FLAGS.siend, x_ij=FLAGS.xij) #utils_logging.write_info_file(model, FLAGS=FLAGS, UNPARSED_ARGV=UNPARSED_ARGV, wandb_log_dir=wandb.run.dir) if FLAGS.restore is not None: model.load_state_dict(torch.load(FLAGS.restore)) model.to(FLAGS.device) # Optimizer settings optimizer = optim.Adam(model.parameters(), lr=FLAGS.lr) scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, FLAGS.num_epochs, eta_min=1e-4) criterion = nn.MSELoss() criterion = criterion.to(FLAGS.device) task_loss = criterion # Save path save_path = os.path.join(FLAGS.save_dir, FLAGS.name + '.pt') # Run training print('Begin training') for epoch in range(FLAGS.num_epochs): torch.save(model.state_dict(), save_path) print(f"Saved: {save_path}") train_epoch(epoch, model, task_loss, train_loader, optimizer, scheduler, FLAGS) test_epoch(epoch, model, task_loss, test_loader, FLAGS, dT) if __name__ == '__main__': FLAGS, UNPARSED_ARGV = get_flags() os.makedirs(FLAGS.save_dir, exist_ok=True) # Log all args to wandb #wandb.init(project='equivariant-attention', name=FLAGS.name, config=FLAGS) #wandb.save('*.txt') # Where the magic is try: main(FLAGS, UNPARSED_ARGV) except Exception: import pdb, traceback traceback.print_exc() pdb.post_mortem()
[ "jtwong71@gmail.com" ]
jtwong71@gmail.com
440db375b41af7127785a5a26f60663d0f298e07
8a9b13128e8358afc69364be5ad08c537e278da0
/backend/pyserver/pyauth/getUsers.py
083693f43f1390eaef6951211ebb4ee519d0fe13
[]
no_license
jai2033shankar/smartPi-app
e97b9322e1a506a8f977c46f0d7b6d0d411e3c7e
9f2f4095dd4b396a4927591af023ef3082480c0a
refs/heads/master
2022-06-02T02:20:53.744877
2020-05-01T19:36:46
2020-05-01T19:36:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
234
py
import sqlite3 if __name__ == '__main__': conn = sqlite3.connect('pyauth/pyauthentication.db') c = conn.cursor() c.execute("SELECT * FROM User;") rows = c.fetchall() for row in rows: print(row) conn.commit() conn.close()
[ "stefano.milani96@gmail.com" ]
stefano.milani96@gmail.com
e83d86c7576db3f7eee3604f9de83c1697463f4f
7da3c9a7a4f6470b077d03f660341522c8906f5d
/2/3Lista.py
c6f5d5b4297e6cc29f6049c9696cf84c574354d3
[]
no_license
KFranciszek/Python
4cda7060936ea9644052a75dfd8aa63eacc17b0a
19caa6b4c80745fda2bca6b68ee58c260437b40b
refs/heads/master
2021-01-20T03:36:51.416134
2017-02-17T12:05:35
2017-02-17T12:05:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
#[] lista pusta lista1 = ['Aurelia', 'Amelia' ,'Monika','Asia'] print(lista1) # wstawianie do listy lista.append() lista1.append('Arielka') print(lista1) lista1[-1] = 'Rafal' print(lista1) #usuwanie z listy lista.pop() lista.pop(pozycja) # lista.remove(sth) lista1.pop(0) print(lista1) lista1.remove('Asia') lista2 = ['Aurelia', 'Amelia' ,'Monika','Asia'] raw_input()
[ "e.kaczmarek01@gmail.com" ]
e.kaczmarek01@gmail.com
15b977a009a4628376a2913a58323c68ac6574dd
172befeabd113a71c6a7adc80b9ec005a29d12d3
/UDP_Server.py
e0120d83aa639b8999e0adf09b2eb88401d34c35
[]
no_license
RyanSandford/Reliable-Data-Transfer-Protocol
87efd088cdbeede151abfaca87a0cdbc019cb174
c5e2d08fc9e46998fc7bca24488a36af01094056
refs/heads/master
2022-12-16T05:36:24.261485
2020-09-07T16:25:24
2020-09-07T16:25:24
256,092,277
0
0
null
null
null
null
UTF-8
Python
false
false
5,359
py
""" Ryan Sandford, November 10, 2019 This Program implements the server side of the reliable data transfer 3.0 protocol described in section 3.4.1 of Computer Networking: A Top-Down Approach """ import binascii import socket import struct import sys import hashlib import random import time #The servers address and port number UDP_IP = "127.0.0.1" UDP_PORT = 5000 unpacker = struct.Struct('I I 8s 32s') sendingPort = 6000 # a port to send acks to #takes in a 3-tuple and returns the checksum for the tuple def mk_chksum(values): UDP_Data = struct.Struct('I I 8s') packed_data = UDP_Data.pack(*values) return bytes(hashlib.md5(packed_data).hexdigest(), encoding="UTF-8") #takes in a four tuple with the fourth value being the check sum for the first # 3 entries in the tuple and returns a pseudo UDP Packet def mk_packet(values_with_chksum): UDP_Packet_Data = struct.Struct('I I 8s 32s') return UDP_Packet_Data.pack(*values_with_chksum) #Sends a pseudo UDP Packet to the target port, prints a message to the console def send_pkt(UDP_Packet, port): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # UDP sock.sendto(UDP_Packet, (UDP_IP, port)) print("Sent packet: ", unpacker.unpack(UDP_Packet)) #Checks if a given pseudo UDP Packet is corrupt by calculating the check sum of the first 3 entries #and comparing it to the checksum provided in the fourth entry of the tuple def notcorrupt(UDP_Packet): chksum = mk_chksum((UDP_Packet[0], UDP_Packet[1], UDP_Packet[2])) if UDP_Packet[3] == chksum: print('CheckSums Match, Packet OK') return True else: print('Checksums Do Not Match, Packet Corrupt') return False #Switch the expected sequence number from one state to another def switch_seq(expected_seq): if expected_seq == 0 : return 1 else: return 0 #Given a pseudo UDP Packet and a sequence number, this function returns true if the given packet # has the given sequence number and false otherwise, prints a message to the console with the results def has_seq(UDP_Packet,num): if UDP_Packet[1] == num: print('Packet has correct sequence number: seq =', num) return True else: print('Packet has incorrect sequence number: seq =', switch_seq(num)) return False #Simply implements the extract data function reffered to in rdt 3.0 def extract(UDP_Packet): return UDP_Packet[2] #Implements the deliver data function in rdt 3.0 #printing the recieved data to a string def deliver(data): string = data.decode("utf-8") print("Recieved data:", string + ", succesfully delivered upwards") #Network Delay, 1/3 chance of delaying an ack def Network_Delay(): if True and random.choice([0,1,0]) == 1: time.sleep(.01) print("Packet Delayed ") else: print("Packet Sent ") #Network Loss, 2/5 chance of loosing an ack def Network_Loss(): if True and random.choice([0,1,0,1,0]) == 1: print("Packet Lost ") return(1) else: return(0) #Packet corrupter, 2/5 chance of corrupting an ack def Packet_Checksum_Corrupter(packetdata): if True and random.choice([0,1,0,1,0]) == 1: return(b'Corrupt!') else: return(packetdata) #Create the socket and listen sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP sock.bind((UDP_IP, UDP_PORT)) expected_seq = 0 #starting sequence number ack_msg = b'ACK__ACK' #Standard Ack message that the server will send with each ack #Listen for client requests while True: #Receive Data data, addr = sock.recvfrom(1024) # buffer size is 1024 bytes UDP_Packet = unpacker.unpack(data) print("received from:", addr) print("received message:", UDP_Packet) #Check if the recieved packet has been corrupted and has the correct sequence number if notcorrupt(UDP_Packet) and has_seq(UDP_Packet, expected_seq): #recieve and deliver data upwards data = extract(UDP_Packet) deliver(data) #when network loss occurs the ack does not get sent #other wise send the correct ack if not Network_Loss(): chksum = mk_chksum((1, expected_seq, ack_msg)) #2/5 chance of an incorrect checksum being sent packet = mk_packet((1, expected_seq, ack_msg, Packet_Checksum_Corrupter(chksum))) #1/3 chance the ack is sent late Network_Delay() send_pkt(packet, sendingPort) expected_seq = switch_seq(expected_seq) #switch states #packet is corrupt or has wrong seq, send ack with previous states sequence number else: if not Network_Loss(): chksum = mk_chksum((1, switch_seq(expected_seq), ack_msg)) # 2/5 chance of an incorrect checksum being sent packet = mk_packet((1, switch_seq(expected_seq), ack_msg, Packet_Checksum_Corrupter(chksum))) # 1/3 chance the ack is sent late Network_Delay() send_pkt(packet, sendingPort) print("\n") #Note Please make sure server is running before client sends requests; #otherwise you will be met with an infinite timeout loop
[ "noreply@github.com" ]
RyanSandford.noreply@github.com
c4d5e4a9d08432307712aa7554bd1f7c8294b134
55b4fe0a6616b30c128b51a9918605050ce49f6d
/long_migrate_reverb
2fda0ad0a588dd11dce3bebc40fc085247a8f0ca
[]
no_license
samhaug/ScS_reverb_setup
783a4fb7c942a598f18dc6c9e3544aa5e2bbcafe
05e96b9f871d25a1e7b5e9284083167993f56cec
refs/heads/master
2021-01-12T03:35:45.657459
2017-06-24T17:24:07
2017-06-24T17:24:07
78,234,557
0
0
null
null
null
null
UTF-8
Python
false
false
3,952
#!/home/samhaug/anaconda2/bin/python ''' ============================================================================== File Name : migrate_reverb.py Purpose : Perform a migration to detect reflection coefficients of mid mantle discontinuities. Must have access to a lookup table, waveform glossary, data stripped of zeroth-order discontinuities. See eq (14) of 'A Study of mid-mantle layering beneath the Western Pacific' 1989, Revenaugh & Jordan. This is similar to migrate_reverb, but should be more efficient and easier to execute. Creation Date : 14-03-2017 Last Modified : Tue 14 Mar 2017 11:54:11 AM EDT Created By : Samuel M. Haugland ============================================================================== ''' import numpy as np import obspy import seispy import h5py from matplotlib import pyplot as plt from scipy.signal import correlate from scipy.signal import tukey def main(): wvlt_glossary = h5py.File('/home/samhaug/work1/ScS_reverb_sims/wave_glossary/prem_568_FJ_20160130.h5','r') lkup = h5py.File('/home/samhaug/work1/ScS_reverb_sims/lookup_tables/NA_prem_568_20160130.h5','r') st = obspy.read('/home/samhaug/work1/ScS_reverb_sims/mineos/prem_568_FJ/st_T.pk') st.integrate().detrend().integrate().detrend() st.interpolate(1) st.filter('bandpass',freqmax=1/15.,freqmin=1/75.,zerophase=True) st = seispy.data.align_on_phase(st,phase=['ScSScS'],a_min=False) #st.differentiate() st.normalize() for idx,tr in enumerate(st): st[idx] = seispy.data.phase_window(tr,phase=['ScSScS'],window=(-400,2400)) idx=3 ones = np.ones(len(st[idx].data)) ones[387:425] = 1+(-1*tukey(425-387,0.3)) ones[632:669] = 1+(-1*tukey(669-632,0.3)) ones[1299:1343] = 1+(-1*tukey(1343-1299,0.3)) ones[1561:1600] = 1+(-1*tukey(1600-1561,0.3)) ones[2221:2278] = 1+(-1*tukey(2278-2221,0.3)) ones[2466:2524] = 1+(-1*tukey(2524-2466,0.3)) #plt.plot(st[idx].data) #plt.plot(ones) #plt.show() #st[idx].data *= ones #depth = np.arange(10,2800,2) #depth = np.arange(900,1000,10) depth = np.array([670]) stat = st[idx].stats.station corr_dict,wave_e,wvlt_len = correlate_sig(st[idx],wvlt_glossary) R_list = [] for h in depth: h_R = 0 for keys in corr_dict: ScS2 = lkup[stat+'/ScS2'][:] lkup_t = lkup[stat+'/'+keys][:] shift = int(wvlt_len/2.)-58 h_R += find_R(corr_dict[keys],h,lkup_t,ScS2,shift=shift,data=st[idx].data)/wave_e[keys] R_list.append(h_R) plt.plot(np.array(R_list),depth,lw=2) plt.ylim(depth.max(),depth.min()) plt.axhline(220,color='k') plt.axhline(400,color='k') plt.axhline(670,color='k') plt.xlim(-10,10) plt.grid() plt.show() def correlate_sig(tr,wvlt_glos): corr_dict = {} wave_e = {} for keys in wvlt_glos: wvlt = wvlt_glos[keys] corr_sig = correlate(tr.data,wvlt,mode='same') wave_e[keys] = np.dot(wvlt,wvlt) corr_dict[keys] = corr_sig return corr_dict,wave_e,len(wvlt) def find_R(corr_sig,h,lkup,ScS2,**kwargs): shift = kwargs.get('shift',0) data = kwargs.get('data',np.zeros(5)) t = lkup[np.argmin(np.abs(lkup[:,0]-h)),1] ScS2_time = ScS2[np.argmin(np.abs(lkup[:,0]-h)),1] plot_corr(t,corr_sig,data,ScS2_time,shift) try: r = corr_sig[int(t-ScS2_time+400+shift)] return r except IndexError: return 0 corr *= 1./denominator(wvlt_glos) def plot_corr(t,corr_sig,data,ScS2_time,shift): fig,ax = plt.subplots(figsize=(25,6)) ax.plot(corr_sig,lw=2) ax.plot(data,alpha=0.5,color='k') ax.axvline(t-ScS2_time+400+shift) plt.tight_layout() plt.show() def denominator(wvlt_glos): energy = 0 for keys in wvlt_glos: energy += np.dot(wvlt_glos[keys][...],wvlt_glos[keys][...]) return energy main()
[ "samhaug@umich.edu" ]
samhaug@umich.edu
a7c4eea0ecde8bbaacf7d180023f3c10d8fa1093
9facfc32e57d6ada78f985d733fe743776eace6c
/py1.py
f4e6b3aaa385ca91f7c9de3bc90ea4afff415a7b
[]
no_license
hadiuzzaman83/Python_Basic
2241737a644e945f0ed26a4d01ed6e0e5d75896b
6b7b649f7c16bfdf0c939a0b1d56cea0b4d8938a
refs/heads/main
2023-05-25T08:19:27.452142
2021-06-05T17:17:42
2021-06-05T17:17:42
370,715,429
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
name="Sajib" age=23 print("My name is "+ name) print(name + " lives in Dhaka") print("I am ",age,"years old")
[ "noreply@github.com" ]
hadiuzzaman83.noreply@github.com
f93504628b64047d8caf1a1e51b1e51ec623fdb6
4c7edea64557713f578589bcb37194aa11298037
/blog/admin.py
e75b53032d8869e7a52bc553a2da987d57401507
[]
no_license
andmichalski/simple_blog
f9eaed52bdf5d6d0def7fd6d06d64a5a1e3b5574
70a4bce58fb37a26001c7f7408b960627011418f
refs/heads/master
2020-03-17T09:58:31.561788
2018-05-15T09:50:44
2018-05-15T09:50:44
133,495,385
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from .models import Post, Comment # Register your models here. admin.site.register(Post) admin.site.register(Comment)
[ "amich@PGI.LOCAL" ]
amich@PGI.LOCAL
f75a8d1e069137fda3e6800c5dad62c04b1af9f1
9abe6ee7a6f2abe977ff56ef7a1146cede60d130
/tools/viewer/watcher.py
d8f990759a0b959c46147bb4ece25654ac041c6b
[]
no_license
nitk-pm/Procon
cd806eb6256c7da5ee3d2e6e206b1ca0f8f14df2
aca6c9a783b81349df5d04b289debc75ae1f0315
refs/heads/develop
2022-04-05T15:30:52.868403
2020-01-15T09:20:10
2020-01-15T09:20:10
41,779,698
0
3
null
2020-01-15T09:20:12
2015-09-02T04:24:33
Python
UTF-8
Python
false
false
2,610
py
from watchdog.events import FileSystemEventHandler from watchdog.observers import Observer import subprocess class Handler(FileSystemEventHandler): callback_list = [] def handler(self, func, *args): return func(*args) def run_command(self, event): if event.is_directory: return if event.src_path.rsplit('.', 1)[-1] != 'png': return data = subprocess.run( ['zbarimg', event.src_path], stdout=subprocess.PIPE ) for callback_list in self.callback_list: self.handler( callback_list, event.src_path, self.shaping_data(data.stdout.decode('utf-8')) ) def on_created(self, event): self.run_command(event) def on_moved(self, event): self.run_command(event) def on_modified(self, event): self.run_command(event) def shaping_data(self, data): data_list = [d.replace('QR-Code:', '') for d in data.splitlines()] head = [] tail = None total = 0 for d in data_list: num_str, shapes = d.split(':', 1) num = int(num_str) shapes_num = len(shapes.split(':')) total += num if num != shapes_num: tail = shapes else: head.append(shapes) head.append(tail) return '{}:{}'.format(total, ':'.join(head)) class Watcher(object): def __init__(self, callback=None): self.observer = Observer() self.handler = Handler() self.watch = None if callback is not None: self.register_callback(callback) def register_callback(self, func): self.handler.callback_list.append(func) def start(self, path): if self.watch is None: self.watch = self.observer.schedule( self.handler, path, recursive=True ) self.observer.start() def stop(self): if self.watch is not None: self.observer.stop() self.observer.join() self.watch = None class Test(object): def callback(self, data): print(data) if __name__ == '__main__': test = Test() watcher = Watcher() watcher.register_callback(test.callback) watcher.start('./') try: import time while True: time.sleep(1) except: watcher.stop()
[ "st16423@kagawa.kosen-ac.jp" ]
st16423@kagawa.kosen-ac.jp
c01ec44f472ccf75f5c30d40679c61081519651b
d8ab8493671362787a6adc7de6994dff733db086
/venv/bin/wheel
934f24afaf55548ebae12bc0c72e08b230381114
[]
no_license
sean7218/NFL-ELO-Backend
da5846864b3dfe7ddc6a063f83c3bec138641ab5
d5db1e16553df3211b51dd19d285ef905a325399
refs/heads/master
2021-05-16T05:01:26.105453
2017-11-03T01:52:17
2017-11-03T01:52:17
106,234,956
2
0
null
null
null
null
UTF-8
Python
false
false
243
#!/Users/mpb15sz/apps/nfl-elo/venv/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "sean7218@gmail.com" ]
sean7218@gmail.com
8987b5c868a3bdb413b4653d0418dcb4533fe615
d110546d747d7e3865ce5742d5fca09f404623c0
/tests/unit/utils/test_proxy.py
1c9a34ede319499d1b3092e79566219d1481ff35
[ "Apache-2.0", "MIT", "BSD-2-Clause" ]
permissive
saltstack/salt
354fc86a7be1f69514b3dd3b2edb9e6f66844c1d
1ef90cbdc7203f97775edb7666db86a41eb9fc15
refs/heads/master
2023-07-19T20:56:20.210556
2023-06-29T23:12:28
2023-07-19T11:47:47
1,390,248
11,026
6,296
Apache-2.0
2023-09-14T20:45:37
2011-02-20T20:16:56
Python
UTF-8
Python
false
false
1,403
py
""" Unit tests for salt.utils.proxy :codeauthor: :email:`Gareth J. Greenaway <gareth@saltstack.com>` """ import salt.utils.proxy from tests.support.mock import patch from tests.support.unit import TestCase class ProxyUtilsTestCase(TestCase): def test_is_proxytype_true(self): opts = { "proxy": { "proxytype": "esxi", "host": "esxi.domain.com", "username": "username", "passwords": ["password1"], } } with patch("salt.utils.platform.is_proxy", return_value=True, autospec=True): ret = salt.utils.proxy.is_proxytype(opts, "esxi") self.assertTrue(ret) def test_is_proxytype_false(self): opts = { "proxy": { "proxytype": "esxi", "host": "esxi.domain.com", "username": "username", "passwords": ["password1"], } } with patch("salt.utils.platform.is_proxy", return_value=True, autospec=True): ret = salt.utils.proxy.is_proxytype(opts, "docker") self.assertFalse(ret) def test_is_proxytype_not_proxy(self): opts = {} with patch("salt.utils.platform.is_proxy", return_value=False, autospec=True): ret = salt.utils.proxy.is_proxytype(opts, "docker") self.assertFalse(ret)
[ "dan.woz@gmail.com" ]
dan.woz@gmail.com
069d3d012ad1d98276a8559e2436bc06aed458f7
0e7243d4d77e6c36ee9905bbbd4de92c322f49b7
/app/views.py
3892f0cf2a805986ae234ed6673732f21c533ed1
[]
no_license
meru86/django-book-search
c64ba1cdee504db17cff3b924681cb4369dac16a
d909db122b4527f2e760545a8205c25eb6343edc
refs/heads/main
2023-03-31T20:35:43.069501
2021-03-31T04:12:12
2021-03-31T04:12:12
352,857,023
0
0
null
null
null
null
UTF-8
Python
false
false
3,919
py
from django.shortcuts import render, redirect # redirectを追加 from django.views.generic import View from .forms import SearchForm import json import requests from django.http.response import HttpResponse SEARCH_URL = 'https://app.rakuten.co.jp/services/api/BooksBook/Search/20170404?format=json&applicationId=1004224127963110171' # 楽天(https://webservice.rakuten.co.jp/api/booksbooksearch/)のurlをコピーして貼り付け # urlの最後に'format=json'を記入しフォーマットをjson形式にする # urlの最後に'&'を点けることで商品をフィルタリングをすることができる # '&'の後にアプリケーションidを記入 def get_api_data(params): api = requests.get(SEARCH_URL, params=params).text result = json.loads(api) items = result['Items'] return items class CallbackView(View): def get(self, request, *args, **kwargs): return HttpResponse('OK') class IndexView(View): def get(self, request, *args, **kwargs): form = SearchForm(request.POST or None) return render(request, 'app/index.html', { # 指定したテンプレートにデータを渡す 'form': form, }) def post(self, request, *args, **kwargs): form = SearchForm(request.POST or None) if form.is_valid(): keyword = form.cleaned_data['title'] params = { 'title' : keyword, 'hits' : 28, } items = get_api_data(params) book_data = [] for i in items: item = i['Item'] title = item['title'] image = item['largeImageUrl'] isbn = item['isbn'] query = { 'title' : title, 'image' : image, 'isbn' : isbn, } book_data.append(query) return render(request, 'app/book.html', { # 指定したテンプレートにbook_data,keywordを渡す 'book_data': book_data, 'keyword': keyword, }) return render(request, 'app/index.html', { # 指定したテンプレートにデータを渡す 'form': form, }) class DetailView(View): def get(self, request, *args, **kwargs): isbn = self.kwargs['isbn'] # 引数からisbnを取り出す params = { 'isbn': isbn } items = get_api_data(params) # api_data関数の引数にisbnを渡すことで特定の書籍情報を取得することができる items = items[0] item = items['Item'] # アイテムデータを取得 # 取得するデータの名前はapiのマニュアルに記載されているので参考にする title = item['title'] image = item['largeImageUrl'] author = item['author'] itemPrice = item['itemPrice'] salesDate = item['salesDate'] publisherName = item['publisherName'] size = item['size'] isbn = item['isbn'] itemCaption = item['itemCaption'] itemUrl = item['itemUrl'] reviewAverage = item['reviewAverage'] reviewCount = item['reviewCount'] # 取得したデータをbook_dataに辞書形式で格納する book_data = { 'title': title, 'image': image, 'author': author, 'itemPrice': itemPrice, 'salesDate': salesDate, 'publisherName': publisherName, 'size': size, 'isbn': isbn, 'itemCaption': itemCaption, 'itemUrl': itemUrl, 'reviewAverage': reviewAverage, 'reviewCount': reviewCount, 'average': float(reviewAverage) * 20 } return render(request, 'app/detail.html' , { 'book_data': book_data })
[ "haru@kawanoharuyanoMacBook-Air.local" ]
haru@kawanoharuyanoMacBook-Air.local
570bdc2ff7f7f54f3c4cca452f7c71c566753459
2009e5cdc3851290aefb751feaa93a6f5336f563
/the-data-science-process/AllTogether.py
d5b558fcb8fbad82698f0f5f264ff6499266c1e2
[]
no_license
huli/dsnd
50c4b1af7d13b80845831cc1e7ecc03ae959a79c
466e16c3dca5f17dd5fce256238a1fa3b41b88f3
refs/heads/master
2020-04-07T18:18:47.014802
2019-03-03T11:42:19
2019-03-03T11:42:19
158,605,569
0
0
null
null
null
null
UTF-8
Python
false
false
10,431
py
import pandas as pd import numpy as np from collections import defaultdict import AllTogetherSolns as s from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score, mean_squared_error import matplotlib.pyplot as plt ## Putting It All Together #Helper functions def clean_fit_linear_mod(df, response_col, test_size=.3, rand_state=42): ''' INPUT: df - a dataframe holding all the variables of interest response_col - a string holding the name of the column test_size - a float between [0,1] about what proportion of data should be in the test dataset rand_state - an int that is provided as the random state for splitting the data into training and test OUTPUT: X - cleaned X matrix (dummy and mean imputation) y - cleaned response (just dropped na) test_score - float - r2 score on the test data train_score - float - r2 score on the test data lm_model - model object from sklearn X_train, X_test, y_train, y_test - output from sklearn train test split used for optimal model This function cleans the data and provides the necessary output for the rest of this notebook. ''' #Dropping where the salary has missing values df = df.dropna(subset=['Salary'], axis=0) #Drop columns with all NaN values df = df.dropna(how='all', axis=1) #Pull a list of the column names of the categorical variables cat_df = df.select_dtypes(include=['object']) cat_cols = cat_df.columns #dummy all the cat_cols for col in cat_cols: df = pd.concat([df.drop(col, axis=1), pd.get_dummies(df[col], prefix=col, prefix_sep='_', drop_first=True, dummy_na=True)], axis=1) # Mean function fill_mean = lambda col: col.fillna(col.mean()) # Fill the mean df = df.apply(fill_mean, axis=0) #Split into explanatory and response variables X = df.drop(response_col, axis=1) y = df[response_col] #Split into train and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=rand_state) lm_model = LinearRegression(normalize=True) # Instantiate lm_model.fit(X_train, y_train) #Fit #Predict using your model y_test_preds = lm_model.predict(X_test) y_train_preds = lm_model.predict(X_train) #Score using your model test_score = r2_score(y_test, y_test_preds) train_score = r2_score(y_train, y_train_preds) return X, y, test_score, train_score, lm_model, X_train, X_test, y_train, y_test def find_optimal_lm_mod(X, y, cutoffs, test_size = .30, random_state=42, plot=True): ''' INPUT X - pandas dataframe, X matrix y - pandas dataframe, response variable cutoffs - list of ints, cutoff for number of non-zero values in dummy categorical vars test_size - float between 0 and 1, default 0.3, determines the proportion of data as test data random_state - int, default 42, controls random state for train_test_split plot - boolean, default 0.3, True to plot result OUTPUT r2_scores_test - list of floats of r2 scores on the test data r2_scores_train - list of floats of r2 scores on the train data lm_model - model object from sklearn X_train, X_test, y_train, y_test - output from sklearn train test split used for optimal model ''' r2_scores_test, r2_scores_train, num_feats, results = [], [], [], dict() for cutoff in cutoffs: #reduce X matrix reduce_X = X.iloc[:, np.where((X.sum() > cutoff) == True)[0]] num_feats.append(reduce_X.shape[1]) #split the data into train and test X_train, X_test, y_train, y_test = train_test_split(reduce_X, y, test_size = test_size, random_state=random_state) #fit the model and obtain pred response lm_model = LinearRegression(normalize=True) lm_model.fit(X_train, y_train) y_test_preds = lm_model.predict(X_test) y_train_preds = lm_model.predict(X_train) # append the r2 value from the test set test_score = r2_score(y_test, y_test_preds) r2_scores_test.append(test_score) train_score = r2_score(y_train, y_train_preds) r2_scores_train.append(train_score) print('Validating with %s features (Train/Test): %.4f, %.4f (R2-score)' % (reduce_X.shape[1], train_score, test_score)) results[str(cutoff)] = r2_score(y_test, y_test_preds) if plot: plt.plot(num_feats, r2_scores_test, label="Test", alpha=.5) plt.plot(num_feats, r2_scores_train, label="Train", alpha=.5) plt.ylim((-1,1)) plt.xlabel('Number of Features') plt.ylabel('Rsquared') plt.title('Rsquared by Number of Features') plt.legend(loc=1) plt.show() best_cutoff = max(results, key=results.get) #reduce X matrix reduce_X = X.iloc[:, np.where((X.sum() > int(best_cutoff)) == True)[0]] num_feats.append(reduce_X.shape[1]) #split the data into train and test X_train, X_test, y_train, y_test = train_test_split(reduce_X, y, test_size = test_size, random_state=random_state) #fit the model lm_model = LinearRegression(normalize=True) lm_model.fit(X_train, y_train) return r2_scores_test, r2_scores_train, lm_model, X_train, X_test, y_train, y_test #Question 1 def q1_piat_answer(): ''' Prints the correct order of the letters in the format portion of the string ''' print("This one is tricky - here is the order of the letters for the solution we had in mind:\n c, g, c, d, c, e, f, b, a, h") #Question 2 def q2_piat_check(q2_piat): ''' INPUT q2_piat - a dictionary Prints statement related to the correctness of q2_piat ''' if q2_piat == s.q2_piat: print("Nice job! That looks right! These two techniques are really common in Machine Learning algorithms to combat overfitting. Though the first technique could be useful, it is not likely to help us right away with our current model. These additional features would likely continue to worsen the nature of overfitting we are seeing here.") elif q2_piat['add interactions, quadratics, cubics, and other higher order terms'] != s.q2_piat['add interactions, quadratics, cubics, and other higher order terms']: print("In this case, it is not likely that having more complex features will help us. The model is already forming too complex of a relationship to generalize to new data.") elif q2_piat['fit the model many times with different rows, then average the responses'] != s.q2_piat['fit the model many times with different rows, then average the responses']: print("Fitting the model on different rows and ctually a common technique for combatting overfitting. It relates to an idea known as bootstrapping.") elif q2_piat['subset the features used for fitting the model each time'] != s.q2_piat['subset the features used for fitting the model each time']: print("Subsetting the features is actually a common way to combat overfitting. This type of feature reduction is done in stochastic gradient methods related to gradient boosting and random forest methods.") elif q2_piat['this model is hopeless, we should start over'] != s.q2_piat['this model is hopeless, we should start over']: print("Don't give up hope! We are just getting started!") #Question 4 def q4_piat_check(q4_piat): ''' INPUT q4_piat - a dictionary Prints statement related to the correctness of q4_piat ''' if q4_piat == s.q4_piat: print("Nice job! That looks right! We can see that the model we should impement was the 6th model using 1088 features. It is the model that has the best test rsquared value.") elif q4_piat['The optimal number of features based on the results is'] != s.q4_piat['The optimal number of features based on the results is']: print("Oops! That isn't right for the optimal number of features. You can get this as the number of columns in either the training or testing datasets. Note, this is different than the inputs, as they are checking the threshold for the number of missing values in a column, not a threshold for the number of features.") elif q4_piat['The model we should implement in practice has a train rsquared of'] != s.q4_piat['The model we should implement in practice has a train rsquared of'] or q4_piat['The model we should implement in practice has a test rsquared of'] != s.q4_piat['The model we should implement in practice has a test rsquared of']: print("The rsquared values don't look right. The optimal model should be the model that performed the best on the test data. The rsquared values should be the rsquared for the training and test sets of data using the same, best model based on the test data.") elif q4_piat['If we were to allow the number of features to continue to increase'] != s.q4_piat['If we were to allow the number of features to continue to increase']: print("If you were to allow the number of features to increase, you likely would see the same trend you can see in the visual. That is the test data will continue to provide worse and worse rsquared values, while the training data would go towards 1.") #Question 5 def q5_piat_check(q5_piat): ''' INPUT q5_piat - a dictionary Prints statement related to the correctness of q5_piat ''' if q5_piat == s.q5_piat: print("Nice job! That looks right! The country and years of experience both seem to have a significant impact on the salary of individuals.") else: print("Oops! It appears that country and years of experience are indicators of salary values. However, gender columns did not appear in the top 20 features. Additionally, the years of programming didn't follow an always increasing order. Therefore, it wasn't necessarily the case that longer you have programmed leads to higher salary based on the data.") if __name__ == '__main__': df = pd.read_csv('../stackoverflow/survey_results_public.csv') schema = pd.read_csv('../stackoverflow/survey_results_schema.csv') num_rows = df.shape[0] num_cols = df.shape[1] check_rows_cols(num_rows, num_cols) df_all = mean_amt(df, 'CousinEducation', 'Salary', possible_vals) # To get a simple answer to our questions - see these two tables. df_all.sort_values('mean_col', ascending=False)
[ "christoph.hilty@garaio.com" ]
christoph.hilty@garaio.com
aa25a83f11b72a1e811b73960ddfc04ac5868160
a14548b6d2f9f7c7ada05987108f4b9c250d2f5e
/mjuzik/mjuzik/genres/admin.py
de61401aa0d0a2f1dbbc42c2139783ac964b6b1d
[]
no_license
DylanGuedes/mjuzik
c935d73c899c5a81ed51e31a6501f98f7612bf79
f0734143a75ac1f2ace9506fc84804de42deb6a8
refs/heads/master
2021-01-09T20:13:03.381099
2016-07-07T14:25:31
2016-07-07T14:25:31
60,437,026
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
from django.contrib import admin from mjuzik.recommendations.models import Recommendation class RecommendationAdmin(admin.ModelAdmin): pass admin.site.register(Recommendation, RecommendationAdmin)
[ "djmgguedes@gmail.com" ]
djmgguedes@gmail.com
77199abd59ed03cca2c93f1fe1e8a4bbdc5b13f2
fe38698a14e50253cccf69231a6319e399af1b5e
/week1/check_brackets_in_code/run_test.py
de45539adb77b0877fc30a6c158bcde15dbdccd9
[]
no_license
Light0617/data_structure_coding
59d2eeeba9c01a9c24b2ace606b439c473ce22de
a3d4a2775c6af47bf03763cdd8a973ad74efe8ea
refs/heads/master
2020-06-15T11:34:19.124511
2019-07-06T08:43:00
2019-07-06T08:43:00
195,288,187
0
0
null
null
null
null
UTF-8
Python
false
false
163
py
for i in {1..54} do if [ "$i" -lt 10 ]; then i='0'$i fi echo "Welcome $i times" python check_brackets.py < tests/$i > out diff -w out tests/$i.a done
[ "light11470617@gmail.com" ]
light11470617@gmail.com
f2e6aecedabf15bedeef900e7009d3ced8914615
ebd8f1d72b5871f1537e357825872530d2c4d0ca
/Example.py
023b3df843fa985df7ddb0c03639c237853a167f
[]
no_license
jcvdev/Sim6502
e642bb6b8a849bc728cdfdf2d6122fb1172d56ab
7eee1b127e3db7dbd6a492331501b585a8c4414b
refs/heads/master
2023-06-07T19:56:22.060923
2023-05-27T04:49:26
2023-05-27T05:09:59
465,558,162
0
0
null
null
null
null
UTF-8
Python
false
false
1,165
py
import CPU.MMU as MMU import CPU.Registers as Registers import CPU.AddressDispatcher as AddressDispatcher import CPU.Writeback as Writeback import CPU.ExecutionUnit as ExecutionUnit import CPU.Dispatch as Dispatch import CPU.InstructionDecoder as Decoder import Devices.GenericRAM as GenericRAM import Devices.GenericROM as GenericROM if __name__ == "__main__": RAM = GenericRAM.GenericRAM(0x0000, 0x8000) ROM = GenericROM.GenericROM(0xc000, 0x4000) BRK = SimulatorBRK.SimulatorBRK() ROM.loadFromFile("firmware.bin") mmu = MMU.MMU() mmu.addDevice(BRK) # Must be added first to handle 0xfffe address before any other device mmu.addDevice(RAM) mmu.addDevice(ROM) registers = Registers.RegisterBank() addrDispatch = AddressDispatcher.AddressDispatcher(mmu, registers) execDispatch = ExecutionUnit.ExecutionDispatcher(mmu, registers) writebackDispatch = Writeback.Dispatcher(mmu, registers) decoder = Decoder.Decoder() cpu = Dispatch.Dispatcher(decoder, addrDispatch, execDispatch, writebackDispatch, mmu, registers) cpu.reset() while True: cpu.dispatch(flagTrace=True, throttleSecs=0.1)
[ "devlink+github@gmail.com" ]
devlink+github@gmail.com
731c0a69dd82a9a4ce9c3ed2a0170d6d06ec5b48
339901caa0cbb3bd2762ad83bb9f847c01b0df39
/rice_3k_mPing_scripts/Assembly_and_classification_of_mPing_sequences/Get_List_Fastq.py
e8fa1034ad4f0a5579ecc1ac896d46fc4f380ab4
[]
no_license
stajichlab/Dynamic_rice_publications
e592e83a4842eff7354e06e5368e6f7590b472ee
93ac8732d64b7ab4831a0b0b9b1593efc5814805
refs/heads/master
2020-03-24T05:10:56.815367
2020-02-11T07:26:17
2020-02-11T07:26:17
142,477,743
1
1
null
null
null
null
UTF-8
Python
false
false
2,998
py
#!/opt/Python/2.7.3/bin/python import sys from collections import defaultdict import numpy as np import re import os import argparse import glob from Bio import SeqIO sys.path.append('/rhome/cjinfeng/BigData/software/ProgramPython/lib') from utility import gff_parser, createdir def usage(): test="name" message=''' python Split_Fastq2PE.py --input rufipogon_W0180_RelocaTE2.te_reads.fq Input fastq is a mix of read1 and read2 of PE sequence. We split the fatsq file into read1.fq, read2.fq and unpaired.fq using read name. ''' print message def runjob(script, lines): cmd = 'perl /rhome/cjinfeng/BigData/software/bin/qsub-slurm.pl --maxjob 60 --lines 2 --interval 120 --task 1 --mem 15G --time 100:00:00 --convert no %s' %(lines, script) #print cmd os.system(cmd) #repeat Chr1:38668855..38668857 Left_supporting_reads ERR068809.5052702,ERR068809.7020963,ERR068809.10628656 def locus_reads_list(infile): data = defaultdict(lambda : list()) with open (infile, 'r') as filehd: for line in filehd: line = line.rstrip() if len(line) > 2: unit = re.split(r'\t',line) unit[1] = re.sub(r'\.\.', r'_', unit[1]) unit[1] = re.sub(r':', r'_', unit[1]) locus = '%s_%s' %(unit[0], unit[1]) print line, locus if len(unit) < 4: continue reads = re.split(r',', unit[3]) for read in reads: data[locus].append(re.split(r':', read)[0]) prefix = re.sub(r'.list', r'', infile) for locus in data.keys(): ofile = open('%s.%s.list' %(prefix, locus), 'w') print >> ofile, '\n'.join(list(set(data[locus]))) ofile.close() def get_fastq_seq_by_list(fastqfile, id_list, prefix): ofile = open('%s.fq' %(prefix), 'w') for record in SeqIO.parse(fastqfile, "fastq"): #print 'id:', record.id #print 'seq:', record.seq unit = re.split(r':', str(record.id)) record.id = unit[0] if id_list.has_key(re.sub(r'read1.', r'', unit[0])) or id_list.has_key(re.sub(r'read2.', r'', unit[0])): SeqIO.write(record, ofile, 'fastq') ofile.close() def read_list(infile): data = defaultdict(lambda : str()) with open (infile, 'r') as filehd: for line in filehd: line = line.rstrip() if len(line) > 2: unit = re.split(r'\t',line) data[unit[0]] = 1 return data def main(): parser = argparse.ArgumentParser() parser.add_argument('-l', '--list') parser.add_argument('-f', '--fastq') parser.add_argument('-v', dest='verbose', action='store_true') args = parser.parse_args() try: len(args.list) > 0 except: usage() sys.exit(2) id_list = read_list(args.list) get_fastq_seq_by_list(args.fastq, id_list, re.sub(r'.list', r'', args.list)) if __name__ == '__main__': main()
[ "jinfeng7chen@gmail.com" ]
jinfeng7chen@gmail.com
0e3633f1452ca7bf144981a26b3e2ec8af8f32ce
0262964c4fba7b7664e2702bbb9c19cf3b19c607
/dashboard/views.py
f147118b55dbbae9e6c8632afa44c43c7011185a
[ "MIT" ]
permissive
OmkarPathak/Garbage-Level-Monitoring-System
13892ddd6c72c8e372659e29af65f626c94185a5
302294a22739f88ed6af5f44ac6e7fe3da61267d
refs/heads/master
2021-01-22T02:57:42.619983
2018-10-05T03:14:11
2018-10-05T03:14:11
102,256,002
6
8
null
null
null
null
UTF-8
Python
false
false
2,732
py
from django.contrib.auth import authenticate, login, logout from django.shortcuts import render, redirect from .forms import UserLoginForm from django.contrib.auth.decorators import login_required from api.models import Readings, Dustbins # Create your views here. # for logging in a user def login_view(request): form = UserLoginForm(request.POST or None) if form.is_valid(): username = form.cleaned_data.get('username') password = form.cleaned_data.get('password') user = authenticate(username=username, password=password) login(request, user) # print(request.user.is_authenticated()) return redirect('/dashboard') if request.user.is_authenticated(): return redirect('/dashboard') return render(request, 'login_form.html', {'form': form}) @login_required(login_url='/login/') def dashboard_view(request): # latest_record = Readings.objects.order_by('-recorded_on') latest_record = Readings.objects.raw('SELECT * FROM api_readings WHERE (`recorded_on`) IN (SELECT MAX(`recorded_on`) FROM api_readings GROUP BY `dustbin_id`) ORDER BY dustbin_id ASC, recorded_on DESC') filled = [] empty = [] for rows in latest_record: filled.append(int(rows)) empty.append(100 - int(rows)) return render(request, 'dashboard/index.html', {'latest_record': latest_record , 'filled': filled, 'empty': empty }) @login_required(login_url='/login/') def details_view(request, dustbin_id): location = Dustbins.objects.get(id=dustbin_id) # print(get_record.dustbin_id) get_record = Readings.objects.filter(dustbin_id=dustbin_id).order_by('-recorded_on')[0] level = get_record.level dustbin_id = get_record.dustbin_id empty = 100 - int(level) recorded_on = get_record.recorded_on location = location.location_name context = {} context['level'] = level context['dustbin_id'] = dustbin_id context['empty'] = empty context['recorded_on'] = recorded_on context['location'] = location return render(request, 'dashboard/details.html', context) # for registering a user # def register_view(request): # form = UserRegisterForm(request.POST or None) # if form.is_valid(): # user = form.save(commit=False) # username = form.cleaned_data.get('username') # password = form.cleaned_data.get('password') # user.set_password(password) # user.save() # # this is required step before login # user = authenticate(username=username, password=password) # login(request, user) # return render(request, 'register_form.html', {'form': form}) def logout_view(request): logout(request) return redirect('/login/')
[ "omkarpathak27@gmail.com" ]
omkarpathak27@gmail.com
308235a801eb4ad22f412b3d518b7cf66cb12145
cd62043772fe4ea91d6d5fd53698c1945206db99
/tests/test_examples/check_examples_2.py
0d453313d4ad62d13da775159cc78ffb52818ea0
[ "MIT" ]
permissive
akapkotel/arcade
0808a75640d93aa24c884cc56b200f78c3487d5e
6e43ec53e7bfa3dee1aa574404794e3695aad381
refs/heads/development
2022-06-01T01:01:09.906590
2022-05-18T19:10:33
2022-05-18T19:10:33
246,819,723
0
0
NOASSERTION
2020-08-30T11:40:42
2020-03-12T11:42:46
null
UTF-8
Python
false
false
1,144
py
import re import os from pathlib import Path def get_references_in_index(): txt = Path('../../doc/examples/index.rst').read_text() references_in_index = re.findall(":ref:`(.*)`", txt) return references_in_index def get_references_in_rsts(): mypath = Path("../../doc/examples/") # Get list of python files python_example_filename_list = [] references = [] filenames = os.listdir(mypath) for filename in filenames: if filename.endswith(".rst") and filename != "index.rst": python_example_filename_list.append(filename) txt = Path(mypath / filename).read_text() reference = re.findall("\.\. _(.*):", txt) references.extend(reference) return references def main(): references_in_index = get_references_in_index() files_to_reference = get_references_in_rsts() for reference in files_to_reference: if not reference in references_in_index: print(f"index.rst is missing any mention of '{reference}'") print("Done with checking to make sure references in doc/examples/*.rst are in doc/examples/index.rst") main()
[ "paul@cravenfamily.com" ]
paul@cravenfamily.com
e21c5e8c9538a19c1caf978135ce398754df0c7f
bd70f8d2dc1f7eee0974b3e280fb61773e6700db
/scrape/utils.py
8f3002684d767508adca661e0b9b0b979e942550
[]
no_license
MullerAC/ln-calendar-scraper
1c62eb14946b4d48b790072e8a4b416a70f12ba8
26736633c9758e32d0f760a9c47de91b606f72d7
refs/heads/main
2023-04-21T11:59:17.044472
2021-05-07T21:13:19
2021-05-07T21:13:19
359,983,628
1
0
null
2021-05-07T21:13:20
2021-04-21T00:09:21
Python
UTF-8
Python
false
false
1,138
py
""" TODO add methods useful for scraping and posting data: - run all scrapers and compile into pandas dataframe - add MAL links from archive - check for broken links (any) or missing store links - print out pandas dataframe into reddit markup - pull existing table from Reddit wiki and run a compare - post to staging wiki """ def get_format(format_input): physical_words = ['hardcover', 'hc', 'paperback', 'physical', 'tpb'] digital_words = ['digital', 'ebook', 'epub', 'mobi', 'pdf'] audio_words = ['audio', 'audiobook'] physical = any(word.casefold() in format_input.casefold() for word in physical_words) digital = any(word.casefold() in format_input.casefold() for word in digital_words) audio = any(word.casefold() in format_input.casefold() for word in audio_words) format_output = [] if physical: format_output += 'Physical' if digital: format_output += 'Digital' if audio: format_output += 'Audio' if not format_output: print('Could not find format for: ', format_input) return 'Other' else: return ' & '.join(format_output)
[ "andrew.muller@utexas.edu" ]
andrew.muller@utexas.edu
da36a5a68d39e2e71b2ce3fcab2337b3b03dc780
12c0f3ab05b45cc8a184708f1cc1142921b627fe
/gmail_feed_atom.py
833f5d07bb2d640e5f8fc1e8c338587680b05edc
[]
no_license
qingzh/learnPy
b245c0b51fadbae7c9276af98f2ccca7644a0ded
b1ae7472f33153febf701ce6a6d12e57a8d4a7b1
refs/heads/master
2016-09-15T14:34:34.012966
2016-03-12T04:59:13
2016-03-12T04:59:13
31,577,370
0
0
null
null
null
null
UTF-8
Python
false
false
4,759
py
# -*- coding: utf-8 -*- ''' https://g33k.wordpress.com/category/google/ Swaroop posted a nifty Perl script to check GMail. The script basically parses an Atom feed of the latest 20 mails provided by Google. Since a Python hacker like Swaroop is dabbling in Perl, I thought it was my duty as a Python evangelist (or is it Pythangelist?) to show the people that the same thing can be achieved using Python with equal ease :) The main code is around 50% of the total code. A large portion of the code is used for the pretty printing. Here it is — ''' # check-gmail.py -- A command line util to check GMail -*- Python -*- # ====================================================================== # Copyright (C) 2006 Baishampayan Ghose <b.ghose@ubuntu.com> # Time-stamp: Mon Jul 31, 2006 20:45+0530 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation. # ====================================================================== ''' sample output — ghoseb@trinka:~$ python check-gmail.py Enter username for New mail feed at mail.google.com: foo.bar Enter password for foo.bar in New mail feed at mail.google.com: Gmail - Inbox for foo.bar@gmail.com You have 20 new mails +------------------------------------------------------------------------------------+ | Sl.| Subject | Author | +------------------------------------------------------------------------------------+ | 0 | Strip Whitespace Middleware[...] | Will McCutchen ([...]| | 1 | [FOSS Nepal] list of free alternatives to windows[...] | Manish Regmi (r[...] | | 2 | json serialization[...] | Gábor Farkas (g[...] | | 3 | editable=False and "Could not find Formfield or[...] | Corey (coordt@e[...] | | 4 | IronPython 1.0 release candidate[...] | Jeremy Dunck (j[...] | | 5 | django server tree organization[...] | Kenneth[...] | | 6 | Project when using multiple sites[...] | Jay Parlar (par[...] | | 7 | [FOSS Nepal] Neprog (nepali version pogrammer for[...] | ujwal (ujwal2@g[...] | | 8 | Bug#379789: wrong keymap on Intel MacBook Pro[...] | Frans Pop (elen[...] | | 9 | debconf is Level 1?[...] | Clytie Siddall ([...]| | 10 | Weird slowdown with dev server behind nat[...] | Akatemik (tpiev[...] | | 11 | Database API question: I am not able to return a[...] | DavidA (david.a[...] | | 12 | Bug#379120: lspci present on i386, verify on[...] | Eddy Petrişor ([...] | | 13 | New levels of D-I[...] | Eddy Petrişor ([...] | | 14 | Installed Apps in settings.py[...] | limodou (limodo[...] | | 15 | where u at man ... where can i call you ??????[...] | Sanjeev[...] | | 16 | unable to runser ?[...] | Geert[...] | | 17 | Bug#380585: debian 3.1 install FD[...] | as_hojoe (as_ho[...] | | 18 | Re: Translated packages descriptions progress[...] | Michael Bramer ([...]| | 19 | Loading an url takes 60 sec.[...] | and_ltsk (andre[...] | +------------------------------------------------------------------------------------+ ghoseb@trinka:~$ ''' import urllib # For BasicHTTPAuthentication import feedparser # For parsing the feed from textwrap import wrap # For pretty printing assistance _URL = "https://mail.google.com/gmail/feed/atom" def auth(): '''The method to do HTTPBasicAuthentication''' opener = urllib.FancyURLopener() f = opener.open(_URL) feed = f.read() return feed def fill(text, width): '''A custom method to assist in pretty printing''' if len(text) < width: return text + ' ' * (width - len(text)) else: return text def readmail(feed): '''Parse the Atom feed and print a summary''' atom = feedparser.parse(feed) print "" print atom.feed.title print "You have %s new mails" % len(atom.entries) # Mostly pretty printing magic print "+" + ("-" * 84) + "+" print "| Sl.|" + " Subject" + ' ' * 48 + "|" + " Author" + ' ' * 15 + "|" print "+" + ("-" * 84) + "+" for i in xrange(len(atom.entries)): print "| %s| %s| %s|" % ( fill(str(i), 3), fill(wrap(atom.entries[i].title, 50)[0] + "[...]", 55), fill(wrap(atom.entries[i].author, 15)[0] + "[...]", 21)) print "+" + ("-" * 84) + "+" if __name__ == "__main__": f = auth() # Do auth and then get the feed readmail(f) # Let the feed be chewed by feedparser
[ "sjtuzhq@gmail.com" ]
sjtuzhq@gmail.com
3f505c9990eeb9b824d8b9cf8806f8a254ce2398
1bfd6a615b6aa1aa069be2a797fdd35bb428fb2d
/build/mission/cmake/mission-genmsg-context.py
c34633ee64530c77c3fd1f95fc7b5bda288d2d91
[]
no_license
gogochiou/eudemo
961a8ee4b6f9d7c2b6d4e9793ec0488e04b18f9f
fe730b3c2b618ee3a1c4f257c4da816db961d599
refs/heads/main
2023-04-18T18:18:09.881614
2021-05-07T13:57:03
2021-05-07T13:57:03
365,246,447
0
0
null
null
null
null
UTF-8
Python
false
false
624
py
# generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/gogochiou/eudemo_ws/src/mission/msg/maintomission.msg" services_str = "/home/gogochiou/eudemo_ws/src/mission/srv/mission_camera.srv" pkg_name = "mission" dependencies_str = "std_msgs" langs = "gencpp;geneus;genlisp;gennodejs;genpy" dep_include_paths_str = "mission;/home/gogochiou/eudemo_ws/src/mission/msg;std_msgs;/opt/ros/melodic/share/std_msgs/cmake/../msg" PYTHON_EXECUTABLE = "/usr/bin/python2" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/melodic/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
[ "aaaa8552369@gmail.com" ]
aaaa8552369@gmail.com
17162a8e159958d4d544278acdbb7043ebb8d3d3
87438a1eec8d7a40dd2b91515bd93e4581889523
/test/test.py
166d2029fe1ef5d295b4020e045474af64f0c5b9
[]
no_license
MobileCloudNetworking/imsaas
285ceb19eca59347e4930ccc4d59358982b897ea
30c1e7bd512a8478297413f53ca8141fc820734a
refs/heads/master
2021-01-10T16:26:27.065835
2016-01-28T12:16:34
2016-01-28T12:16:34
46,068,227
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
__author__ = 'gca' import os from so.util import util def main(): print os.getcwd() stream = open("../../data/ims.yaml",'r') t = util.stack_parser(stream) print t if __name__ == "__main__": main()
[ "giuseppe.a.carella@tu-berlin.de" ]
giuseppe.a.carella@tu-berlin.de
f20f877381e716ec21757f7eed902dce9fb7cf8d
aa8fa3c1df75ba2d94cc82dfdd12507ac8954b13
/config.py
7d63ffdd8be467ea678664712f3c918941cddd51
[ "MIT" ]
permissive
manuCR/pygram
13d85621fc0a47aeeaad1d6220fbc442abc1953a
dbbdc9e195af527c661525c655fc4ceaba829ac2
refs/heads/master
2020-06-15T06:00:56.237274
2014-12-12T18:20:33
2014-12-12T18:20:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
config = { 'DEBUG' : True, 'TESTING' : True, 'SECRET_KEY' : 'dkaghyt4se-5b5f-45j3-95rb-32342343252' }
[ "pygram.team@gmail.com" ]
pygram.team@gmail.com
e0174d86d625525d4bf7f881f1049b40227eafbf
71e2c980ffc30659f4c45e229860245df61105ad
/generate_inputs.py
318588f016e5c328e9a2e3f8b189e55c95c74741
[]
no_license
Squalexy/AED-AVL-tree
5f5ffbefe87d7e7ff8f9bc5c48a5148d957bc29a
be92b1cac35fcef37b166338d823fe41baa998ed
refs/heads/master
2023-03-20T19:20:13.477427
2021-03-17T23:35:43
2021-03-17T23:35:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,888
py
import random doencas = ["doenca1", "doenca2", "doenca3", "doenca4", "doenca5", "doenca6", "doenca7", "doenca8", "doenca9", "doenca10"] utentes = [] datas = [] for i in range(20): utentes.append(random.randint(0, 1000)) for i in range(30): dia = str(random.randint(0, 31)).zfill(2) mes = str(random.randint(0, 12)).zfill(2) ano = str(random.randint(2020, 2030)) datas.append(dia + mes + ano) def generate_10ins_90con(num): ficheiro = "input_10ins_90con" with open(ficheiro + str(num) + ".in", 'w') as escrever: for k in range(num): doenca_random = random.randint(0, 9) utente_random = random.randint(0, 19) data_random = random.randint(0, 29) escrever.write( "ACRESCENTA" + " " + str(utentes[utente_random]) + " " + doencas[doenca_random] + " " + datas[ data_random] + "\n") for j in range(9): utente_random = random.randint(0, 19) escrever.write("CONSULTA" + " " + str(utentes[utente_random]) + "\n") def generate_90ins_10con(num): ficheiro = "input_90ins_10cons" with open(ficheiro + str(num) + ".in", 'w') as escrever: for k in range(num): utente_random = random.randint(0, 19) escrever.write("CONSULTA" + " " + str(utentes[utente_random]) + "\n") for j in range(9): doenca_random = random.randint(0, 9) utente_random = random.randint(0, 19) data_random = random.randint(0, 29) escrever.write( "ACRESCENTA" + " " + str(utentes[utente_random]) + " " + doencas[doenca_random] + " " + datas[ data_random] + "\n") n = 1 for i in range(15): generate_10ins_90con(n) n += 1 n = 1 for i in range(15): generate_90ins_10con(n) n += 1
[ "alexx.da95@gmail.com" ]
alexx.da95@gmail.com
e56e94d9b5b6c4173877e6c231db7969e49b4b4e
5c0cc5228b5fb63092e18c459d186c396275ff02
/Example/if.py
adb7b4b17085eba8a3c15f7b708b2168b1ddba6d
[]
no_license
BAEKJungHo/python-basic
994b99feb25fb132e47281650f5b458d9ff17725
2fe0fd469a36bf6f6be917b9915e4cb9146264aa
refs/heads/main
2023-02-03T15:16:57.447601
2020-12-22T12:56:54
2020-12-22T12:56:54
319,327,531
0
0
null
null
null
null
UTF-8
Python
false
false
2,648
py
# 파이썬 제어문 # IF 실습 # 파이썬은 들여쓰기(indent)를 하지 않으면 에러가 발생한다. import sys import io sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding= 'utf-8') sys.stderr = io.TextIOWrapper(sys.stderr.detach(), encoding= 'utf-8') print(type(True)) print(type(False)) # 0, "", [], (), {} if True: print("TRUE") else : print("FALSE") # 관계연산자 종류 # >, >=, <, <=, ==, != x = 15 y = 10 # == 양 변이 같을 때 참. print(x == y) # != 양 변이 다를 때 참. print(x != y) # > 왼쪽이 클때 참. print(x > y) # >= 왼쪽이 크거나 같을 때 참. print(x >= y) # < 오른쪽이 클 때 참. print(x < y) # <= 오른쪽이 크거나 같을 때 참. print(x <= y) # 참 거짓 판별 종류 # 참 : "values", [values], (values), {values}, 1 # 거짓 : "", [], (), {}, 0, None city = "" if city: print("You are in:", city) else: # 출력 print("Please enter your city") city = "Seoul" if city: print("You are in:", city) else: # 출력 print("Please enter your city") # 논리연산자(중요) # and, or, not # 참고 : https://www.tutorialspoint.com/python/python_basic_operators.htm a = 75 b = 40 c = 10 print('and : ', a > b and b > c) # a > b > c print('or : ', a > b or b > c) print('not : ', not a > b) print('not : ', not b > c) print(not True) print(not False) # 산술, 관계, 논리 우선순위 # 산술 > 관계 > 논리 순서로 적용 print('e1 : ', 3 + 12 > 7 + 3) print('e2 : ', 5 + 10 * 3 > 7 + 3 * 20) print('e3 : ', 5 + 10 > 3 and 7 + 3 == 10) print('e4 : ', 5 + 10 > 0 and not 7 + 3 == 10) score1 = 90 score2 = 'A' # 복수의 조건이 모두 참일 경우에 실행. if score1 >= 90 and score2 == 'A': print("Pass.") else: print("Fail.") # 예제 id1 = "vip" id2 = "admin" grade = 'platinum' if id1 == "vip" or id2 == "admin": print("관리자 인증") if id2 == "admin" and grade == "platinum": print("최상위 관리자") # 다중 조건문 num = 90 if num >= 90: print('Grade : A') elif num >= 80: print('Grade : B') elif num >= 70: print('Grade : C') else: print('과락') # 중첩 조건문 grade = 'A' total = 95 if grade == 'A': if total >= 90: print("장학금 100%") elif total >= 80: print("장학금 80%") else: print("장학금 70%") else: print("장학금 50%") # in, not in q = [10, 20, 30] w = {70, 80, 90, 90} e = {"name": 'Lee', "city": "Seoul", "grade": "A"} r = (10, 12, 14) print(15 in q) print(90 in w) print(12 not in r) print("name" in e) # key 검색 print("seoul" in e.values()) # value 검색
[ "designjava@naver.com" ]
designjava@naver.com
4ba9caf8edf5c826547328f0d0e509db56fc1fe4
b22a0cdf85a9ece7ee0d182a629a7dc5330f33eb
/backend/user/urls.py
003638c30f5e3f4d1e4ca3f90154464b480de425
[]
no_license
codedbychavez/LazyChat
09a663f0f9a98eb70965cf474c9391931de1c0b6
db591448596f5cf2182b2c042ab3dca9d6299a00
refs/heads/main
2023-08-23T01:05:04.073357
2021-10-20T10:00:32
2021-10-20T10:00:32
408,805,747
1
0
null
null
null
null
UTF-8
Python
false
false
170
py
from django.urls import path from .views import * urlpatterns = [ # Project paths path('create', create.as_view()), path('get_user', getUser.as_view()), ]
[ "74829200+softiosolutions@users.noreply.github.com" ]
74829200+softiosolutions@users.noreply.github.com
0ec375bb5cac8621e4eb214cf9b0de24427000c9
9c37ad937822e964cc78164bfa6b6f8a39048230
/backend/src/handler/auth_user.py
d2f906dc07e921858e29b7d734f6a3ae95c5d646
[]
no_license
ntchung195/S.E.P
b1ce5f25d678c60f602ff0516158b5456933935e
66e46090bb5195ba43994e5d04740e3d950863bd
refs/heads/dev
2023-07-27T01:02:15.240566
2020-07-29T10:45:29
2020-07-29T10:45:29
254,452,183
0
0
null
2023-07-06T21:59:54
2020-04-09T18:45:57
Dart
UTF-8
Python
false
false
991
py
import pyaudio import wave # import cv2 import os import pickle import time from scipy.io.wavfile import read # from IPython.display import Audio, display, clear_output # from main_functions import * from src.util.voice import * from src.service.sql import get_user_id from src.service.config_api import DetectResult import src.const as const def voice_recognite(user_name,user_id,logging,tag = 'recognize'): user_directory = const.USER_DIR +'/' + user_name logging.info(" User directory is : {}".format(user_directory)) register_gmm = user_directory + '/{0}.gmm'.format(user_id) regconize_wav = user_directory + '/{0}_{1}.wav'.format(user_id,tag) res,score = verify_model(register_gmm,regconize_wav,logging) if not res: return DetectResult(code=const.CODE_FAIL,score_auth = 1 + score,data = res, message="cannot recognize user, recognize again!") return DetectResult(code=const.CODE_DONE,score_auth = 1 + score,data = res, message="recognize success")
[ "hung123hung456@gmail.com" ]
hung123hung456@gmail.com
b1feaf9d0a91804367d71f9c9b15e3093b91e126
cbbdce3ff0d1f3d2f715eca06dcee5e1255587cf
/main/src/apps/launchpad/migrations/0006_auto_20160929_2211.py
4c9d7966e4f1090dc02302713a575228038f0b92
[]
no_license
treylitefm/hermes
68e6c7590ffb8539fa9e54ea53d95ee3dca6ad42
e5963ab1c45b3e96861b34c605d098ce42a820fb
refs/heads/master
2021-06-08T02:37:42.622020
2016-11-15T07:06:02
2016-11-15T07:06:02
69,292,012
0
0
null
null
null
null
UTF-8
Python
false
false
571
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2016-09-29 22:11 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('launchpad', '0005_auto_20160928_0324'), ] operations = [ migrations.RemoveField( model_name='testrun', name='page', ), migrations.RemoveField( model_name='page', name='ping_health', ), migrations.DeleteModel( name='TestRun', ), ]
[ "griffin.omar@gmail.com" ]
griffin.omar@gmail.com