blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
b58b3abc2ae55fc7d7048be2b222fbd402839e47
1891968ff5d4157668c64f7c9414984f80d01d68
/orders/migrations/0007_auto_20180129_1601.py
5c39435a9b66fca6634c20d508deb1666ad54454
[]
no_license
kaiforward/ecommerce
8bf06f22b4805ab73cc193b082f702741c752b5f
d2e791de9b731fe7599e1c2f2e9331790029bfb1
refs/heads/master
2022-12-13T12:25:53.474040
2018-02-01T01:54:35
2018-02-01T01:54:35
117,998,084
0
0
null
2022-12-08T01:00:41
2018-01-18T15:06:41
Python
UTF-8
Python
false
false
1,594
py
# Generated by Django 2.0 on 2018-01-29 16:01 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('orders', '0006_auto_20180125_1520'), ] operations = [ migrations.CreateModel( name='Shipping', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='ShippingChoice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', models.CharField(max_length=200)), ('price', models.DecimalField(decimal_places=2, default=0, max_digits=5)), ('shipping', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='shipping_items', to='orders.Shipping')), ], ), migrations.AddField( model_name='customerorder', name='shipping_type', field=models.CharField(default='', max_length=100), ), migrations.AddField( model_name='customerorder', name='stripe_id', field=models.CharField(default='', max_length=100), ), migrations.AlterField( model_name='customerorder', name='country', field=models.CharField(max_length=200), ), ]
[ "kaiforward123@gmail.com" ]
kaiforward123@gmail.com
356944b5eaa4a2018d0858ca1c35ac0c7787559f
c9b0dbd8055e914d1e3c7aba1bab81ab45282e3e
/onnxruntime/test/python/quantization/test_op_transpose.py
f1dd8a780e3b55511b2e0a28412ae63a2dbf3d28
[ "MIT" ]
permissive
mosdav/onnxruntime
bcabacbb7cfbecf9e2d504e1d3eecff515eb6880
03276527b3b77db97f8a73fbce449ca0e0bcee50
refs/heads/master
2023-09-05T21:06:20.652278
2021-10-09T21:39:11
2021-10-09T21:39:11
275,559,914
1
0
MIT
2020-06-28T10:21:41
2020-06-28T10:21:40
null
UTF-8
Python
false
false
4,197
py
#!/usr/bin/env python # coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import unittest import onnx import numpy as np from onnx import helper, TensorProto from onnxruntime.quantization import quantize_static, QuantFormat from op_test_utils import TestDataFeeds, check_model_correctness, check_op_type_count, check_op_nodes class TestOpTranspose(unittest.TestCase): def input_feeds(self, n, name2shape): input_data_list = [] for i in range(n): inputs = {} for name, shape in name2shape.items(): inputs.update({name: np.random.randint(-1, 2, shape).astype(np.float32)}) input_data_list.extend([inputs]) dr = TestDataFeeds(input_data_list) return dr def construct_model_matmul_transpose(self, output_model_path, input_shape, weight_shape, output_shape): # (input) # | # MatMul # | # Transpose # | # (output) input_name = 'input' output_name = 'output' initializers = [] # make MatMul node weight_name = 'matmul_weight' matmul_output_name = 'matmul_output' matmul_inputs = [input_name, weight_name] matmul_outputs = [matmul_output_name] matmul_name = 'matmul_node' matmul_weight_data = np.random.normal(0, 0.1, weight_shape).astype(np.float32) initializers.append(onnx.numpy_helper.from_array(matmul_weight_data, name=weight_name)) matmul_node = onnx.helper.make_node('MatMul', matmul_inputs, matmul_outputs, name=matmul_name) # make Transpose node kwargs = {'perm': (1, 0)} transpose_node = onnx.helper.make_node('Transpose', [matmul_output_name], [output_name], name="transpose_node", **kwargs) # make graph input_tensor = helper.make_tensor_value_info(input_name, TensorProto.FLOAT, input_shape) output_tensor = helper.make_tensor_value_info(output_name, TensorProto.FLOAT, output_shape) graph_name = 'Transpose_Quant_Test' graph = helper.make_graph([matmul_node, transpose_node], graph_name, [input_tensor], [output_tensor], initializer=initializers) model = helper.make_model(graph, opset_imports=[helper.make_opsetid("", 11)]) model.ir_version = 7 # use stable onnx ir version onnx.save(model, output_model_path) def test_quantize_transpose(self): np.random.seed(1) model_fp32_path = 'transpose_fp32.onnx' model_uint8_path = 'transpose_uint8.onnx' model_uint8_qdq_path = 'transpose_uint8_qdq.onnx' self.construct_model_matmul_transpose(model_fp32_path, [3, 7], [7, 5], [5, 3]) # Verify QOperator model data_reader = self.input_feeds(1, {'input': [3, 7]}) quantize_static(model_fp32_path, model_uint8_path, data_reader) # make sure transpose become xint8 operator, its input name could tell that check_op_nodes(self, model_uint8_path, lambda node: (node.name != "transpose_node" or node.input[0] != 'matmul_output')) qnode_counts = {'QLinearMatMul': 1, 'QuantizeLinear': 1, 'DequantizeLinear': 1, 'Transpose': 1} check_op_type_count(self, model_uint8_path, **qnode_counts) data_reader.rewind() check_model_correctness(self, model_fp32_path, model_uint8_path, data_reader.get_next()) # Verify QDQ model data_reader.rewind() quantize_static(model_fp32_path, model_uint8_qdq_path, data_reader, quant_format=QuantFormat.QDQ) qdqnode_counts = {'MatMul': 1, 'QuantizeLinear': 3, 'DequantizeLinear': 4, 'Transpose': 1} check_op_type_count(self, model_uint8_qdq_path, **qdqnode_counts) data_reader.rewind() check_model_correctness(self, model_fp32_path, model_uint8_qdq_path, data_reader.get_next()) if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
mosdav.noreply@github.com
3c8ae4cf2c045f3853a27ccc14d51a31e1c7f5b7
c03ce95669f17a648eb31cd2446e32357f339c94
/plotting/profiles/T_evolution/Tall_evolution/derived_field_functions.py
48b1c2d93116ecbc2d781f8d6883c531809bd320
[ "MIT" ]
permissive
cavestruz/L500analysis
1d29e3787ae81d6b2a2760dba15c59bc5dbcbb4c
9af195f2426f9260145e3d55edc952eb06eccb78
refs/heads/master
2020-04-17T01:17:49.906420
2017-06-15T19:30:44
2017-06-15T19:30:44
52,736,854
1
1
null
null
null
null
UTF-8
Python
false
false
400
py
from L500analysis.plotting.profiles.T_evolution.Tmw_evolution.derived_field_functions \ import * from L500analysis.plotting.profiles.T_evolution.Tnt_evolution.derived_field_functions \ import * from L500analysis.plotting.profiles.T_evolution.Ttot_evolution.derived_field_functions \ import * from L500analysis.derived_fields.collections.peak_height.derived_field_functions \ import *
[ "Camille Avestruz" ]
Camille Avestruz
4ef14a92c3f3e2a32d6da14d21387d800d7e2af7
12f47e6cfc8bd2314409d4e443d25d2573837c40
/fruitod/plot_scripts/dataset_plots.py
139ff32fe95fb3d1a495e80775b6bf0de2565a24
[]
no_license
nilskk/fruit_tf_od_api
3933ce848d45c2e478bfe0b4d7e99e0648733229
c89b331dda6dafa4ce851ae45515d07e9298ec5d
refs/heads/master
2023-08-04T18:11:33.509010
2021-09-22T05:33:58
2021-09-22T05:33:58
309,675,250
0
1
null
null
null
null
UTF-8
Python
false
false
5,665
py
from lxml import etree as ET from pathlib import Path import json import os import numpy as np import seaborn as sns import pandas as pd from lxml import etree import matplotlib.pyplot as plt import matplotlib.ticker as ticker from object_detection.utils import dataset_util if __name__ == '__main__': data_dir_string = '/home/nilskk/rewe_project/data/penny' # data_dir_string = '/data/voc_fruit_weights' data_directory = Path(data_dir_string) input_directory = Path(os.path.join(data_dir_string, 'dataset_information')) output_directory = Path(os.path.join(data_dir_string, 'dataset_plots')) output_directory.mkdir(exist_ok=True, parents=True) file_dataframe = pd.read_pickle(os.path.join(input_directory, 'file_dataframe.pkl')) object_dataframe = pd.read_pickle(os.path.join(input_directory, 'object_dataframe.pkl')) sns.set_theme() # Anzahl Objekte pro Klasse Train/Test plt.figure(figsize=(8,8)) ax = sns.boxenplot(data=file_dataframe, x='class', y='objects', hue='set') sns.move_legend(ax, loc='upper left', bbox_to_anchor=(1, 1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1.0)) ax.yaxis.set_major_formatter(ticker.ScalarFormatter()) plt.xticks(rotation=40, ha="right") # plt.legend(bbox_to_anchor=(1.01, 1), borderaxespad=0) plt.xlabel('Klasse') plt.ylabel('Anzahl der Objekte pro Bild') plt.savefig(os.path.join(output_directory, 'objects_per_class.png'), bbox_inches='tight') # Anzahl Bilder pro Klasse Train/Test plt.figure(figsize=(8,8)) ax = sns.countplot(data=file_dataframe, x='class', hue='set') sns.move_legend(ax, loc='upper left', bbox_to_anchor=(1, 1)) plt.xticks(rotation=40, ha="right") # plt.legend(bbox_to_anchor=(1.01, 1), borderaxespad=0) plt.xlabel('Klasse') plt.ylabel('Anzahl der Bilder') for p in ax.patches: ax.annotate(str(p.get_height()), (p.get_x() * 1.005, p.get_height() * 1.005)) plt.savefig(os.path.join(output_directory, 'images_per_class.png'), bbox_inches='tight') # Anzahl Größe der Boxen plt.figure(figsize=(8,8)) markers = {"medium": "s", "large": "X"} ax = sns.relplot(data=object_dataframe, x='width', y='height', col='class', col_wrap=3, hue='size') # sns.move_legend(ax, loc='upper left', bbox_to_anchor=(1, 1)) ax.set_xlabels('Boxweite in Pixel', fontsize=15) # not set_label ax.set_ylabels('Boxhöhe in Pixel', fontsize=15) plt.legend(bbox_to_anchor=(1.01, 1), borderaxespad=0) # plt.xlabel('Boxweite in Pixel') # plt.ylabel('Boxhöhe in Pixel') plt.savefig(os.path.join(output_directory, 'box_size.png'), bbox_inches='tight') # Fläche der Boxen plt.figure(figsize=(9,8)) ax = sns.boxenplot(data=object_dataframe, x='class', y='area') # sns.move_legend(ax, loc='upper left', bbox_to_anchor=(1, 1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(5000)) ax.yaxis.set_major_formatter(ticker.ScalarFormatter()) ax.axhline(96**2, ls='--', c='blue') ax.axhline(32**2, ls='--', c='orange') plt.xticks(rotation=40, ha="right") # plt.legend(bbox_to_anchor=(1.01, 1), borderaxespad=0) plt.xlabel('Klasse') plt.ylabel('Fläche in Pixelanzahl') plt.savefig(os.path.join(output_directory, 'box_area.png'), bbox_inches='tight') # Seitenverhältnisse der Boxen plt.figure(figsize=(9,8)) ax = sns.boxenplot(data=object_dataframe, x='class', y='ratio') ax.set_yscale('log') # sns.move_legend(ax, loc='upper left', bbox_to_anchor=(1, 1)) locs = [0.3, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5] ax.yaxis.set_major_locator(ticker.FixedLocator(locs)) ax.yaxis.set_major_formatter(ticker.ScalarFormatter()) plt.xticks(rotation=40, ha="right") # plt.legend(bbox_to_anchor=(1.01, 1), borderaxespad=0) plt.xlabel('Klasse') plt.ylabel('Seitenverhältnis Weite / Höhe') plt.savefig(os.path.join(output_directory, 'box_ratio.png'), bbox_inches='tight') # Gewicht in Abhängigkeit von Anzahl der Objekte plt.figure(figsize=(8,8)) g = sns.catplot(data=file_dataframe, y='weight', x='objects', hue='objects', col='class', col_wrap=4, jitter=0.4, alpha=0.8) for ax in g.axes.flat: ax.yaxis.set_major_locator(ticker.MultipleLocator(500)) ax.yaxis.set_major_formatter(ticker.ScalarFormatter()) # sns.move_legend(ax, loc='upper left', bbox_to_anchor=(1, 1)) g.set_ylabels('Gewicht in Gramm', fontsize=15) # not set_label g.set_xlabels('Anzahl der Objekte', fontsize=15) plt.ylabel('Gewicht in Gramm') plt.xlabel('Anzahl der Objekte') plt.savefig(os.path.join(output_directory, 'weight_number_of_objects.png'), bbox_inches='tight') # Gewicht pro Objekt plt.figure(figsize=(8,8)) ax = sns.boxenplot(data=object_dataframe, x='class', y='weight') ax.yaxis.set_major_locator(ticker.MultipleLocator(200)) ax.yaxis.set_major_formatter(ticker.ScalarFormatter()) plt.xlabel('Klasse') plt.ylabel('Gesamtgewicht / Anzahl der Objekte') plt.xticks(rotation=40, ha="right") plt.savefig(os.path.join(output_directory, 'weight_pro_object.png'), bbox_inches='tight') # Gewicht pro Objekt plt.figure(figsize=(16,8)) ax = sns.boxenplot(data=object_dataframe, x='class', y='weight', showfliers=False) ax.yaxis.set_major_locator(ticker.MultipleLocator(25)) ax.yaxis.set_major_formatter(ticker.ScalarFormatter()) plt.xlabel('Klasse') plt.ylabel('Gesamtgewicht / Anzahl der Objekte') plt.xticks(rotation=40, ha="right") plt.savefig(os.path.join(output_directory, 'weight_pro_object_wo_outlier.png'), bbox_inches='tight')
[ "nils.kleine.klausing@uni-duesseldorf.de" ]
nils.kleine.klausing@uni-duesseldorf.de
973563f47c93e5795c8f564be07c9269e4e24c26
f9062ccd797042b4df5bc75a60127c639067cb8c
/archived_old_solutions/solutions in python/p40.py
b42fee26a8c45251020e0b94dbb5eaa828f39d27
[]
no_license
azusa0127/ProjectEuler
c88aa1fde9be67fad20826364f5a2415cc34ab72
3c3b1d8b7e5a62aa624738976e3a00c39f959076
refs/heads/master
2021-01-18T23:40:41.974375
2016-05-12T12:32:53
2016-05-12T12:32:53
51,574,200
0
0
null
null
null
null
UTF-8
Python
false
false
745
py
#coding: utf-8 ''' Problem 40: Champernowne's constantAn irrational decimal fraction is created by concatenating the positive integers:0.123456789101112131415161718192021...It can be seen that the 12th digit of the fractional part is 1.If dn represents the nth digit of the fractional part, find the value of the followingexpression. d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000 ''' import time def doProblem(): soln = 1 df = 1 count = 0 currentIndex = 0 i = 0 while count < 7: while currentIndex < df: i += 1 currentIndex += len(str(i)) soln *= int(str(i)[-(currentIndex+1-df)]) df *= 10 count += 1 return soln print('start') start = time.time() print(doProblem()) print('end') print(time.time()-start)
[ "phoenixsong@outlook.com" ]
phoenixsong@outlook.com
11792d5ee8f35e482aeb9aa3dfe58b8d761598d7
139ef8139237792f85b0b91c152c0ec34386a723
/model/document.py
eeb6d84eb75af8270b19a80ef1e3397dfefecc60
[]
no_license
aj-fuentes/BrainApp
ab790451c80872e67acf54788da3698e1fa58770
753615f84b326b72010f8b9aab36650b6b939d1c
refs/heads/master
2020-04-25T21:57:09.862117
2019-02-28T11:05:59
2019-02-28T11:05:59
173,096,087
0
0
null
null
null
null
ISO-8859-1
Python
false
false
12,195
py
#! -*- coding: cp1252 -*- import itk from model.confidence_connected_pipe import ConfidenceConnectedPipe from model.voting_pipe import VotingPipe from model.cast_pipe import CastPipe from model.segment_pipe import SegmentPipe from model.smooth_pipe import SmoothPipe __author__ = 'Alvaro Javier' ##Esta clase modela la información necesaria para la segmentación de una imagen # # Esta clase existe para no guardar la información directamente en la clas Application y así # brindar la posibilidad de tener múltiples documentos en la misma aplicación cada una con # su propia imagen actual en un ambiente MDI. Por ahora la aplicación está restringida a SDI # con una sola instancia de esta clase como docmento activo. # En esta clase se almacenan las imágenes a procesar y la información del procesamiento (filtros # a utilizar, parámetros, etc.) # # @yo # class Document(object): ##Inicializador # @selfdoc def __init__(self): ##@var _images # Diccionario con las imágenes de este documento, la llave es el id de la imagen self._images = {} ##@var _current_image_id # Id de la imagen que se está usando en el procesamiento self._current_image_id = "" ##@var _processed_image # Imagen procesada self._processed_image = None ##@var _up_cast_pipe # referencia a la tubería para convertir a tipo de pixel a itk.F (float) self._up_cast_pipe = None ##@var _smooth_pipe # referencia a la tubería para suavizar la imagen self._smooth_pipe = None ##@var _segment_pipe # referencia a la tubería para segmentar la imagen self._segment_pipe = None ##@var _confidence_connected_pipe # referencia a la tubería para la segmentación estadística de la imagen self._confidence_connected_pipe = None ##@var _down_cast_pipe # referencia a la tubería para convertir a tipo de pixel itk.UC (unsigend char) self._down_cast_pipe = None ##@var _voting_pipe # referencia a la tubería para modificar la segmetación dada una votación basad en los píxeles self._voting_pipe = None ##Este diccionario indica cuáles tuberías de la aplicación se usarán o no en el procesamiento # de la imagen self._used_pipes = dict( _up_cast_pipe = True, #indica si la tubería para convertir la imagen se está usando _smooth_pipe = True, #indica si la tubería para quitar el ruido se está usando _segment_pipe = True, #indica si la tubería para segmentar la imagen se está usando _confidence_connected_pipe = True, #indica si la segmentación estadística de la imagen se está usando _down_cast_pipe = True, #indica si la tubería para convertir la imagen se está usando _voting_pipe = True #indica si la tubería para votar se está usando ) ##Tubería de procesamiento, con todos los filtros seleccionados ya interconectados self._pipeline = [] ## Devuelve si el filtro segmentación estadística se está usando # @selfdoc # @return True si se está usando la votación, si no False def usingConfidenceConnected(self): return self._used_pipes["_confidence_connected_pipe"] ##Cambia el uso del filtro segmentación estadística # @selfdoc # @param value True si se va a usar, False si no def useConfidenceConnected(self,value): update = value != self._used_pipes["_confidence_connected_pipe"] self._used_pipes["_confidence_connected_pipe"] = value if update: self._updatePipes() ## Devuelve si el filtro de votación se está usando # @selfdoc # @return True si se está usando la votación, si no False def usingVoter(self): return self._used_pipes["_voting_pipe"] ##Cambia el uso del filtro de votación # @selfdoc # @param value True si se va a usar, False si no def useVoter(self,value): update = value != self._used_pipes["_voting_pipe"] self._used_pipes["_voting_pipe"] = value if update: self._updatePipes() ## Devuelve si el filtro suavizador se está usando # @selfdoc # @return True si se está usando el suavizador, si no False def usingSmoother(self): return self._used_pipes["_smooth_pipe"] ##Cambia el uso del filtro suavizador # @selfdoc # @param value True si se va a usar, False si no def useSmoother(self,value): update = value != self._used_pipes["_smooth_pipe"] self._used_pipes["_smooth_pipe"] = value if update: self._updatePipes() ## Devuelve si el filtro segmentador se está usando # @selfdoc # @return True si se está usando el filtro segementador, si no False def usingSegmentor(self): return self._used_pipes["_segment_pipe"] ##Cambia el uso del filtro segmentador # @selfdoc # @param value True si se va a usar, False si no def useSegmentor(self,value): update = value != self._used_pipes["_segment_pipe"] self._used_pipes["_segment_pipe"] = value if update: self._updatePipes() ##Devuelve las imágenes en este documento (un diccionario indexado por los id de las imágenes) # @selfdoc # @return el diccionario con las imágenes en este docuemnto (e la aplicación en general, por ahora) @property def Images(self): return self._images ##Devuelve la tubería de procesamiento # @selfdoc # @return la tubería de procesamiento con los filtros que se van a usar interconectados @property def Pipes(self): return self._pipeline ##Devuelve la imagen actual # @selfdoc # @return la imagen actual que se usará en el procesamiento @property def CurrentImage(self): img = None if self._current_image_id in self._images.keys(): img = self._images[self._current_image_id] return img ##Devuelve el id de la imagen actual # @selfdoc # @return el id de la imagen actual que se usará en el procesamiento @property def CurrentId(self): return self._current_image_id ##Cambia el id de la imagen actual (y consecuentemente la imagen actual) # @selfdoc # @param id el id de la imagen que se usará en el procesamiento @CurrentId.setter def CurrentId(self,id): self._current_image_id = id self._updatePipes() #actualizar las tuberías que se van a usar #conectar la entrada de la tubería self._pipeline[0].setInput(self.CurrentImage) ##Devuelve la imagen ya procesada # @selfdoc # @return la imagen que se obtiene como resultado del procesameinto de la imagen actual, None en caso de que no se # haya procesado la imagen @property def ProcessedImage(self): return self._processed_image ##Actualiza la conexión de filtros en la tubería # # Actualiza las conexiones de los filtros en la tuberías de procesameinto para que cuando se # cambia el estado de uso de un filtro (si se usa en el procesamiento o no) # @selfdoc def _updateFixedPipes(self): self._processed_image = None #la imagen procesada anterior ya no es válida img = self.CurrentImage #imagen a procesar #verificar que haya una imagen seleccionada if img is None: return #verificar si ya está creado o si hace falta volver a crearlo porque cambió la dimensión de la imagen if self._smooth_pipe is None or self._smooth_pipe.Dimension != img.Dimension: self._smooth_pipe = SmoothPipe(itk.F,img.Dimension,itk.F) #conectar la tubería que quita el ruido if self._used_pipes["_smooth_pipe"]: self._smooth_pipe.connect(self._pipeline[-1]) self._pipeline.append(self._smooth_pipe) if self._segment_pipe is None or self._segment_pipe.Dimension != img.Dimension: self._segment_pipe = SegmentPipe(itk.F,img.Dimension,itk.F) #conectar la tubería que segmenta if self._used_pipes["_segment_pipe"]: #verificar si ya está creado o si hace falta volver a crearlo porque cambió la dimensión de la imagen self._segment_pipe.connect(self._pipeline[-1]) self._pipeline.append(self._segment_pipe) #verificar si ya está creado o si hace falta volver a crearlo porque cambió la dimensión de la imagen if self._confidence_connected_pipe is None or\ self._confidence_connected_pipe.Dimension != img.Dimension: self._confidence_connected_pipe = ConfidenceConnectedPipe(itk.F,img.Dimension,itk.F) #conectar la tubería de segmentación estadística if self._used_pipes["_confidence_connected_pipe"]: self._confidence_connected_pipe.connect(self._pipeline[-1]) self._pipeline.append(self._confidence_connected_pipe) #verificar si ya está creado o si hace falta volver a crearlo porque cambió la dimensión de la imagen if self._voting_pipe is None or self._voting_pipe.Dimension != img.Dimension: self._voting_pipe = VotingPipe(itk.F,img.Dimension,itk.F) #conectar la tubería encargada de la votación if self._used_pipes["_voting_pipe"]: self._voting_pipe.connect(self._pipeline[-1]) self._pipeline.append(self._voting_pipe) #conectar la tubería encargada de convertir la imagen para tipo de pixel unsigned char self._down_cast_pipe.connect(self._pipeline[-1]) self._pipeline.append(self._down_cast_pipe) ##Actualizar la tubería de entrada y de salida del procesamiento # @selfdoc def _updateInOutPipes(self): img = self.CurrentImage if img is None: return #si no hay imagen no hacer nada #verificar si el filtro de entrada no se ha creado todavía if self._up_cast_pipe is None: self._up_cast_pipe = CastPipe(img.PixelType,img.Dimension,itk.F) #verificar que el tipo de la imagen es compatible con la entrada de la tubería elif img.ImageType != self._up_cast_pipe.InputImageType: self._up_cast_pipe = CastPipe(img.PixelType,img.Dimension,itk.F) #verificar si el filtro de entrada no se ha creado todavía if self._down_cast_pipe is None: self._down_cast_pipe = CastPipe(itk.F,img.Dimension,itk.UC) #verificar que la dimansión de la imagen es compatible con la entrada de la tubería elif img.Dimension != self._down_cast_pipe.Dimension: self._down_cast_pipe = CastPipe(itk.F,img.Dimension,itk.UC) self._pipeline.append(self._up_cast_pipe) #agregar a la tubería (en el principio) ##Limpia la tubería eliminando todos los filtros en ella # @selfdoc def clean_pipes(self): self._confidence_connected_pipe = None self._down_cast_pipe = None self._up_cast_pipe = None self._voting_pipe = None self._segment_pipe = None self._smooth_pipe = None ##Actualiza las tuberías del procesamiento y las conexiones entre ellas # @param clean vuelve a crear la tuberías desde cero, destruye las anterires # @selfdoc def _updatePipes(self): self._pipeline = [] #la tubería se crea desde cero!!!! self._updateInOutPipes() #actualizar el filtro de entrada self._updateFixedPipes() #actualizar los filtros fijos de la tubería img = self.CurrentImage #imagen actual if img is not None: #si hay una imagen actual self._pipeline[0].setInput(img) #conectarla a la tubería de procesamiento ##Procesa la imagen actual con la tubería de filtros # @selfdoc def processImage(self): for pipe in self._pipeline: pipe.update() self._processed_image = self._pipeline[-1].getOutput()
[ "alvaro.fuentes-suarez@inria.fr" ]
alvaro.fuentes-suarez@inria.fr
0366444ae9eece2d51f67648df2afa3d8c684745
2b7c39b9a841d8fb67129c5dd62c0a7bba530224
/desktopRemoteControl/device/manager.py
c294d06e95d1379d0708b80da92f86213df73eb9
[ "ISC" ]
permissive
dpm76/eaglebone
6be44f39a6a528e716675a90dde252da1d49a87c
46403d03359a780f385ccb1f05b462869eddff89
refs/heads/master
2020-04-12T02:27:08.450212
2018-11-22T19:11:57
2018-11-22T19:11:57
52,774,836
0
2
null
null
null
null
UTF-8
Python
false
false
4,533
py
''' Created on 22 de may. de 2016 @author: david ''' from contextlib import contextmanager import os try: import pygame _pygameLoaded = True except: _pygameLoaded = False import sys from threading import Thread from time import sleep from device.event import EventHook from device.joystick import Joystick class JoystickManager(object): ''' Implements the device update loop. ''' _instance = None @staticmethod def getInstance(): if JoystickManager._instance == None: JoystickManager._instance = JoystickManager() return JoystickManager._instance @contextmanager def suppressStdout(self): old_stdout = sys.stdout with open(os.devnull, "w") as devnull: sys.stdout = devnull try: yield finally: sys.stdout = old_stdout def __init__(self): self._isRunning = False self._pollingThread = None self._joysticks = [] #Events self.onStart = EventHook() self.onStop = EventHook() def start(self): if _pygameLoaded and (self._pollingThread == None or not self._pollingThread.isAlive()): # Initialize the joysticks pygame.init() pygame.joystick.init() joystickCount = pygame.joystick.get_count() if joystickCount != 0: for joystickIndex in range(joystickCount): joystick = pygame.joystick.Joystick(joystickIndex) joystick.init() #Get device parameters name = joystick.get_name() axes = joystick.get_numaxes() buttons = joystick.get_numbuttons() hats = joystick.get_numhats() self._joysticks += [Joystick(name, joystickIndex, axes, buttons, hats)] #Init thread self._isRunning = True self._pollingThread = Thread(target=self._doPolling) self._pollingThread.start() self.onStart.fire(self) def stop(self): self._isRunning = False if self._pollingThread != None and self._pollingThread.isAlive(): self._pollingThread.join() self.onStop.fire(self) pygame.quit() def getJoysticks(self): return self._joysticks def _doPolling(self): while self._isRunning: for event in pygame.event.get(): # User did something if event.type == pygame.QUIT: # If user clicked close self._isRunning=False for joystick in self._joysticks: #Read core data with self.suppressStdout(): pygameJoystick = pygame.joystick.Joystick(joystick.getIndex()) #Axes for axisIndex in range(joystick.axesCount()): with self.suppressStdout(): axisValue = pygameJoystick.get_axis(axisIndex) if joystick._axes[axisIndex] != axisValue: joystick._setAxisValue(axisIndex, axisValue) #Buttons for buttonIndex in range(joystick.buttonsCount()): with self.suppressStdout(): buttonValue = pygameJoystick.get_button(buttonIndex) if joystick._buttons[buttonIndex] != buttonValue: joystick._setButtonValue(buttonIndex, buttonValue) #Hats for hatIndex in range(joystick.hatsCount()): with self.suppressStdout(): hatValue = pygameJoystick.get_hat(hatIndex) if joystick._hats[hatIndex] != hatValue: joystick._setHatValue(hatIndex, hatValue) sleep(0.1)
[ "davidpm.itengineer@gmail.com" ]
davidpm.itengineer@gmail.com
a05737228108409c7e76c33930a38d897451d19d
9f8fa729e0e5603bf7434839ab516b04151adb90
/MergeSort.py
5c73f5d59e6095cf85c836366fb85eb2eff5dbd9
[]
no_license
rossmmurray/Algorithm-Implementations
64b5e4a6ab8631ea98330c34cd6651e3cebfc516
832a72068276a6451ac9b95941241655de7a1c29
refs/heads/master
2020-04-02T06:40:17.854944
2018-10-31T17:37:21
2018-10-31T17:37:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,182
py
def main(): list_a = [1, 5, 3, 7, 2, 6, 4, 8] sorted_list = merge_sort(list_a) # print(list_a[:len(list_a)//2]) print(sorted_list) def merge_sort(unsorted_list=[]): if len(unsorted_list) == 1: print(f'returning one element: {unsorted_list}') return unsorted_list else: midpoint = len(unsorted_list)//2 print(f'Merge sorting Left: {unsorted_list[:midpoint]}') u = merge_sort(unsorted_list[:midpoint]) print(f'Merge sorting Right: {unsorted_list[midpoint:]}') v = merge_sort(unsorted_list[midpoint:]) # print(u, v) return merge(u, v) def merge(list_a, list_b): print(f'merging: {list_a} and {list_b}') sorted_sublist = [] while len(list_a) > 0 or len(list_b) > 0: if len(list_a) == 0: sorted_sublist.append(list_b.pop()) elif len(list_b) == 0: sorted_sublist.append(list_a.pop()) elif list_a[0] < list_b[0]: sorted_sublist.append(list_a.pop(0)) else: sorted_sublist.append(list_b.pop(0)) print(f'Merged {sorted_sublist}') return sorted_sublist if __name__ == '__main__': main()
[ "rossmichaelm@gmail.com" ]
rossmichaelm@gmail.com
59e44ba1af2617fe935446a0cabcd0aaf090e9a3
b210d58b724c7199f43ddde031eba40996c82257
/submissions/sm_107_hasmuddin/week_18/day_4/Blog_application/blueprintAuth.py
3393f731b0a6a6e9eeb6a28707293268034a9771
[]
no_license
Tanmay53/cohort_3
0447efd2dc8b3c1284b03da7326b35393fdf5f93
351fb6e1d0c29995fb5cb3b6af411dbcf0ced64c
refs/heads/master
2021-05-23T17:55:36.508185
2020-04-05T12:58:07
2020-04-05T12:58:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,463
py
from flask import request from flask import Blueprint import os import hashlib import json import csv import base64 import jwt auth = Blueprint("auth", __name__) fieldnames = ["id", "name", "email", "salt", "password_hash"] path = "Data/users.csv" def sha1_hash(string): hashing = hashlib.sha1() hashing.update(string.encode('utf-8')) return hashing.hexdigest() def salt_generate(): salt = os.urandom(16) return base64.b64encode(salt) def password_generator(password, salt): i = 0 pswd = "" while i < 30: ps = salt+password pswd = sha1_hash(ps) i += 1 return pswd def csv_reader(): data = [] with open(path) as user_data: reader = csv.DictReader(user_data, fieldnames=fieldnames) for line in reader: data.append(line) return data def get_user(email): data = csv_reader() for line in data: if line["email"] == email: return line def id_generate(): data = csv_reader() if len(data) <= 1: return 1 else: last_id = data[-1]["id"] return int(last_id)+1 def check_email(email): data = csv_reader() for file in data: if file["email"] == email: return True return False def user_find(email): data = csv_reader() for file in data: if file["email"]==email: return {"name":file["name"], "id": file["id"]} return "not found" def user_details_find(id): data = csv_reader() for file in data: if file["id"] == id: return file return "not found" def write_csv(**data): with open(path, "a") as users: writer = csv.DictWriter(users, fieldnames=fieldnames) writer.writerow(data) return json.dumps({"error": "false", "message": "Registration Success"}) @auth.route("/signup", methods=['POST']) def sign_up(): id = id_generate() name = request.json["name"] email = request.json["email"] password = request.json["password"] salt = str(salt_generate()) password_hash = password_generator(str(password), salt) if check_email(email): return json.dumps({"error": "true", "message": "Email Already Exist"}) else: message = write_csv(id=id, name=name, email=email, salt=salt, password_hash=password_hash) return message @auth.route("/login", methods=["POST"]) def login(): email = request.json["email"] password = request.json["password"] if check_email(email): user = get_user(email) password_hash = password_generator(str(password), user["salt"]) if password_hash == user["password_hash"]: user = user_find(email) encode_data = jwt.encode(user, 'ayaan', algorithm='HS256') return json.dumps({"error": "false", "message": "login Successfull", "token": str(encode_data, "utf-8")}) else: return json.dumps({"error":"true", "message":"Incorrect Password"}) else: return json.dumps({"error": "true", "message": "Invalid login Creadentials"}) @auth.route("/details", methods=['POST']) def get_data(): auth_header = request.headers.get('Authorization') token_encoded = auth_header.split(' ')[1] decode_data = jwt.decode(token_encoded, 'ayaan', algorithms=['HS256']) id = decode_data['id'] user_data = user_details_find(id) return json.dumps({"name": user_data["name"], 'email':user_data["email"]})
[ "mdaliansari33@gmail.com" ]
mdaliansari33@gmail.com
70cdf6817a27dd3b5244f57b32546ab0cb108d97
0cc30330fc06c2b23d322d0dedc3c558b648e380
/blog/migrations/0005_post_views.py
f642aadf8710b1dd396b3bb2b047ffab195be820
[]
no_license
jamu1570/iCoder
01f49ec316257e6dc28d3f707f36b109cc065650
9bb3c7d1f35465f6d9649deb75211922f149133e
refs/heads/master
2022-11-28T01:41:23.158484
2020-08-03T16:57:24
2020-08-03T16:57:24
284,758,150
1
0
null
null
null
null
UTF-8
Python
false
false
375
py
# Generated by Django 3.0 on 2020-05-05 19:03 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0004_auto_20200421_1625'), ] operations = [ migrations.AddField( model_name='post', name='views', field=models.IntegerField(default=0), ), ]
[ "jayminmakwana157@gmail.com" ]
jayminmakwana157@gmail.com
8b5d14b684dae7b7eac4615d179cbcb649f3b839
43108b48303f898e17740d57e61190238c876c56
/file_hosting/app.py
61ce52bc4fe327866ebd7a4103b6c3f2f302c94a
[]
no_license
ivdunin/sample_file_hosting
957c8e67f3e0f55383355c1ac0bbff900555388a
6b912f0695772c808a26c60a7e1d80f4ddf37f49
refs/heads/master
2021-06-17T09:25:32.969739
2020-09-04T06:13:18
2020-09-04T06:13:18
171,557,130
0
0
null
2021-03-20T00:36:27
2019-02-19T22:02:31
Python
UTF-8
Python
false
false
1,180
py
#!/usr/bin/env python # Copyright (c) 2018 Dunin Ilya. """ Main Service file """ from os import path, makedirs from flask import Flask from flask_restful import Api from file_hosting.resources.file_hosting import FileHosting app = Flask(__name__) app.config.from_object('file_hosting.settings.development') api = Api(app) api.add_resource(FileHosting, '/files', '/files/<fid>') if __name__ == '__main__': context = None # pylint: disable=invalid-name if not app.config.get('DEBUG'): context = (app.config.get('ROOT_CERT'), app.config.get('PRIVATE_KEY')) # pylint: disable=invalid-name if not path.exists(path.join(app.root_path, app.config.get('UPLOAD_FOLDER'))): makedirs(path.join(app.root_path, app.config.get('UPLOAD_FOLDER'))) try: app.run( host=app.config.get('HOST'), port=app.config.get('PORT'), debug=app.config.get('DEBUG'), ssl_context=context ) except FileNotFoundError as exc: app.logger.error('Cannot load certificate: {}' '\nCheck settings/production.json "ROOT_CERT" and "PRIVATE_KEY" values'.format(exc)) exit(1)
[ "ilya.mirea@gmail.com" ]
ilya.mirea@gmail.com
daf354cea52cc0b38c1452a5d1fd3ee9ff365979
13b803636ea92b634a9d6afc2b17bd7df2de8fc5
/f_codes/PingFS/ping_server.py
e7ad13b04d3584305c3843f5b4dc642e080ad2e0
[]
no_license
atupal/snippet
0e00d9fadf8ae50797ddddc4c6ee09941f25c695
bda9e154aa0acd9a5c23706bf740db6542479ed9
refs/heads/master
2022-06-22T09:39:15.729319
2022-06-06T07:06:57
2022-06-06T07:06:57
10,927,197
23
13
null
null
null
null
UTF-8
Python
false
false
14,172
py
import ping, threading, time, socket, select, sys, struct, Queue import binascii, collections, math, random, logging import ping_reporter log = ping_reporter.setup_log('PingServer') class PingTimer(threading.Thread): # helper class for PingServer to manage timeouts def __init__(self, event): self.queue = Queue.PriorityQueue() threading.Thread.__init__(self) self.running = False self.event = event def stop(self): log.debug('PingTimeout terminating') self.running = False self.event.set() def run(self): self.running = True log.debug('PingTimeout starting') while self.running: timeout = None self.event.clear() timeout = self.process() self.event.wait(timeout) #time.sleep(0.1) def process(self): while self.queue.qsize() > 0: try: expire,event,callback,cb_args = item = self.queue.get_nowait() except Queue.Empty: break # our qsize check isn't guaranteed to prevent this if event.is_set(): continue # event was completed; ignore it if expire > time.time(): self.queue.put(item) return expire - time.time() callback(*cb_args) event.set() # make sure no one executes it return None def add_callback(self, timeout, handler, args): event = threading.Event() item = (time.time()+timeout,event,handler,args) self.queue.put(item) self.event.set() return event def mult_callback(self, count, timeout, handler, args): events = [] timeout += time.time() + 1 for i in range(0,count): events.append(threading.Event()) for i in range(0,count): self.queue.put((timeout,events[i],handler,args[i])) self.event.set() return events class PingServer(threading.Thread): def __init__(self, d_addr, block_size=1024, initial_timeout=2): self.block_size = block_size # default; use setup for exact self.server = d_addr,socket.gethostbyname(d_addr) self.running_timeout = initial_timeout threading.Thread.__init__(self) self.listeners = [] self.debug = 0 # timeout events are queued and executed in a seperate thread self.timer_event = threading.Event() self.timer = PingTimer(self.timer_event) self.blocks = 0 self.running = False self.socket = ping.build_socket() self.empty_block = self.null_block() self.queued_events = collections.defaultdict(collections.deque) def timeout(self): return 2.0/5.0 # self.running_timeout def safe_timeout(self): return 3 * self.timeout() def setup_timeout(self, ID=0): Time = time.time() Times = struct.pack('d',Time) if ID == 0: ID = random.getrandbits(32) # ID size in bits ping.data_ping(self.socket,self.server[1],ID,Times) msg = ping.read_ping(self.socket,self.timeout()) if not msg: raise Exception('PingServer::setup_timeout: no valid response from '+self.server[0]) addr,rID,data = msg['address'],msg['ID'],msg['payload'] log.debug("Addr=%s rID=%d Data=%d bytes"%(addr[0],rID,len(data))) if len(data) == 0: raise Exception('PingServer::setup_timeout: null response from '+self.server[0]) if rID != ID: raise Exception('PingServer::setup_timeout: invalid response id from '+self.server[0]) if data != Times: raise Exception('PingServer::setup_timeout: invalid response data from '+self.server[0]) if addr[0] != self.server[1]: raise Exception('PingServer::setup_timeout: invalid response server from '+self.server[0]) delay = time.time() - Time log.notice('echo delay: %.02fms'%(1000*delay)) def setup_block(self, ID = 0): if ID == 0: ID = random.getrandbits(32) # ID size in bits Fill = chr(random.getrandbits(8)) # repeated data Filler = self.block_size * Fill ping.data_ping(self.socket,self.server[1],ID,Filler) msg = ping.read_ping(self.socket,self.timeout()) if not msg: raise Exception('PingServer::setup_block: no valid response from '+self.server[0]) addr,rID,data = msg['address'],msg['ID'],msg['payload'] log.debug("Addr=%s rID=%d Data=%d bytes"%(addr[0],rID,len(data))) if len(data) == 0: raise Exception('PingServer::setup_block: null response from '+self.server[0]) if rID != ID: raise Exception('PingServer::setup_block: invalid response id from '+self.server[0]) if data != len(data)*Fill: raise Exception('PingServer::setup_block: invalid response data from '+self.server[0]) if addr[0] != self.server[1]: raise Exception('PingServer::setup_block: invalid response server from '+self.server[0]) self.block_size = len(data) self.empty_block = self.null_block() log.notice('echo length: %d bytes'%self.block_size) def setup(self): log.trace('PingServer::setup: testing server "%s"'%self.server[0]) ID = random.getrandbits(32) self.setup_timeout(ID) self.setup_block(ID) self.strip_counter = 0 self.strip_interval = 97 def stop(self): self.running = False log.info('PingServer terminating') self.timer.stop() def run(self): self.running = True log.notice('PingServer starting') self.timer.start() while self.running: start_blocks = self.blocks # updated asynchronously ready = select.select([self.socket], [], [], self.timeout()) if ready[0] == []: # timeout if start_blocks != 0 and self.blocks != 0: log.error('%s timed out'%self.server[0]) try: msg = ping.recv_ping(self.socket,self.timeout()) if not msg: continue except: continue addr,block_id,data = msg['address'],msg['ID'],msg['payload'] if block_id == 0: import binascii raise Exception('received packet w/ ID 0 packet: '+binascii.hexlify(msg['raw'])) self.process_block(addr[0],block_id,data) def process_block(self, addr, ID, data): if ID == 0: raise Exception('server responded with ID 0 packet') while len(self.queued_events[ID]): handler,event,args = self.queued_events[ID].popleft() if event.is_set(): continue if handler == self.write_block_timeout: if self.debug: log.trace('%s (block %d) updated'%(self.server[0],ID)) data = args[1] elif handler == self.read_block_timeout: if self.debug: log.trace('%s (block %d) read'%(self.server[0],ID)) callback,cb_args = args[1],args[2] if len(data) > 0: callback(ID,data,*cb_args) else: callback(ID,self.null_block(),*cb_args) elif handler == self.delete_block_timeout: if self.debug: log.trace('%s (block %d) deleted'%(self.server[0],ID)) data = '' event.set() self.strip_counter += 1 if len(data) and not self.strip_counter % self.strip_interval: data = data.rstrip('\0') if len(data) == 0: self.blocks = self.blocks - 1 return if len(self.listeners): self.process_listeners(addr, ID, data) #log.trace('%s: sending %d bytes from block %d'%(self.server[0],len(data),ID)) ping.send_ping(self.socket, addr, ID, data) def process_listeners(self, addr, ID, data): if not self.listeners: raise Exception('process_listeners invoked without valid listeners on ID=%d'%ID) self.listeners = [l for l in self.listeners if l[0] >= time.time()] # clean the listeners for x in self.listeners: expire,handler,cb_args = x handler(ID, addr, data, *cb_args) def add_listener(self, handler, timeout, args): log.debug('add_listener: timeout=%d handler=%s'%(timeout,handler)) expire = time.time() + timeout self.listeners.append((expire,handler,args)) def null_block(self, length=None): if length: return length * '\0' return self.block_size * '\0' def event_insert(self, ID, handler, args): event = self.timer.add_callback(self.timeout(), handler, args) self.queued_events[ID].append((handler,event,args)) return event # read / write / delete a single block def write_block(self, ID, data, blocking = False): # add a block to the queue (or delete if equivalent) #log.trace('PingServer::write_block: ID=%d bytes=%d blocking=%s'%(ID,len(data),blocking)) if ID == 0: raise Exception('write_block: invalid block ID (0)') if data == self.null_block()[:len(data)]: return self.delete_block(ID,blocking) event = self.event_insert(ID,self.write_block_timeout,[ID,data[:self.block_size]]) if blocking: event.wait() return event def write_blocks(self, IDs, datas, blocking = False): log.trace('PingServer::write_blocks: IDs=%d-%d blocking=%s'%(IDs[0],IDs[-1],blocking)) args = [] handler = self.write_block_timeout for i in range(0,len(IDs)): args.append([IDs[i],datas[i][:self.block_size]]) events = self.timer.mult_callback(len(args),self.timeout(), handler, args) for i in range(0,len(IDs)): self.queued_events[IDs[i]].append((handler,events[i],args[i])) if blocking: for e in events: e.wait() return events def delete_block(self, ID, blocking = False): log.trace('PingServer::delete_block: ID=%d blocking=%s'%(ID,blocking)) if ID == 0: raise Exception('delete_block: invalid block ID (0)') t = self.event_insert(ID,self.delete_block_timeout,[ID]) if blocking: t.wait() return t def read_block(self, ID, callback, cb_args = [], blocking = False): log.trace('PingServer::read_block: ID=%d blocking=%s'%(ID,blocking)) if ID == 0: raise Exception('read_block: invalid block ID (0)') t = self.event_insert(ID,self.read_block_timeout,[ID,callback,cb_args]) if blocking: t.wait() return t def read_blocks(self, IDs, callback, cb_args, blocking = False): log.trace('PingServer::read_blocks: IDs=%d-%d blocking=%s'%(IDs[0],IDs[-1],blocking)) args = [] handler = self.read_block_timeout for ID in IDs: args.append([ID,callback,cb_args]) events = self.timer.mult_callback(len(args),self.timeout(), handler, args) for i in range(0,len(IDs)): self.queued_events[IDs[i]].append((handler,events[i],args[i])) if blocking: for e in events: e.wait() return events def read_block_timeout(self, ID, callback, cb_args): log.debug('PingServer::read_block_timeout: ID=%d callback=%s'%(ID,callback.__name__)) callback(ID,self.null_block(),*cb_args) def delete_block_timeout(self, ID): log.debug('PingServer::delete_block_timeout: ID=%d'%ID) # do nothing; we're marked invalid anyhow pass def write_block_timeout(self, ID, data): log.trace('PingServer::write_block_timeout: ID=%d bytes=%d'%(ID,len(data))) self.blocks = self.blocks + 1 # force update queue (as if packet arrived) if ID == 0: raise Exception('write_block_timeout: ID == 0') self.process_block(self.server[1], ID, data) def print_block(ID, data): print '----- print block -----' print 'block',ID,'bytes',len(data) print data print '----- print block -----' def __live_blocks(ID, addr, data, datastore): datastore[ID] = 1 def live_blocks(PServer, timeout=None): store = {} if not timeout: timeout = PServer.safe_timeout() PServer.add_listener(__live_blocks,timeout,[store]) time.sleep(timeout) return store def used_blocks(blocks): result,lookup = {},{} for x in blocks: if x-1 in lookup: lookup[x] = lookup[x-1] result[lookup[x]] += 1 else: lookup[x] = x result[x] = 1 return result def free_blocks(blocks): result = {} if 1 not in blocks: if not blocks: result[1] = 0 elif len(blocks) == 0: result[1] = 0 else: result[1] = min(blocks.keys())-1 for x in blocks: if not x+1 in blocks: result[x+1] = 0 if not x-1 in blocks: if not len(result): continue block = max(result.keys()) result[block] = x-block return result if __name__ == "__main__": ping_reporter.start_log(log,logging.DEBUG) server = ping.select_server(log,1) from ping_reporter import humanize_bytes try: PS = PingServer(server,4) PS.debug = 1 PS.setup() PS.start() if 0: print 'traffic:',ping.ping_count,'pings ('+humanize_bytes(ping.ping_bandwidth)+')' PS.read_block(2,print_block) time.sleep(2) PS.write_block(2,'coconut') time.sleep(1) print 'traffic:',ping.ping_count,'pings ('+humanize_bytes(ping.ping_bandwidth)+')' PS.write_block(1,'apples') PS.read_block(1,print_block) PS.read_block(1,print_block) time.sleep(2) print 'traffic:',ping.ping_count,'pings ('+humanize_bytes(ping.ping_bandwidth)+')' log.info('testing block metrics') blocks = live_blocks(PS) log.debug('blocks: %s'%blocks) log.debug('--used: %s'%used_blocks(blocks)) log.debug('--free: %s'%free_blocks(blocks)) PS.delete_block(1) time.sleep(2) print 'traffic:',ping.ping_count,'pings ('+humanize_bytes(ping.ping_bandwidth)+')' PS.write_block(1,'apples') time.sleep(2) PS.read_block(1,print_block) time.sleep(4) PS.read_block(1,print_block) time.sleep(1) PS.write_block(1,'bananas') time.sleep(1) PS.read_block(1,print_block) time.sleep(1) PS.read_block(1,print_block) PS.read_block(1,print_block) time.sleep(1) PS.delete_block(1) print 'traffic:',ping.ping_count,'pings ('+humanize_bytes(ping.ping_bandwidth)+')' while True: time.sleep(1) if 1: a = 2500 time.sleep(2) log.debug('%s: writing %d blocks'%(time.time(),a)) events = PS.write_blocks(range(1,a+1),['AAAA']*a,False) log.debug('%s: inserted writes'%(time.time())) #import ping_reporter #PR = ping_reporter.PingReporter(log,PS,5) #PR.start() def __read_callback(ID, data, data_store): data_store[ID] = data def test_block_read(PS,rData,count): data = {} blob = '' log.debug('%s: reading %d blocks'%(time.time(),a)) PS.read_blocks(range(1,a+1), __read_callback, [data], True) log.debug('%s: completed read'%(time.time())) for i in range(1,a+1): blob = blob + data[i] missing = 0 for i in range(1,a+1): if data[i] == '\0'*len(data[i]): missing += 1 if blob == rData: log.trace('block read successfully') return True else: log.error('block read failed: data corrupted') log.error('%d of %d blocks missing'%(missing,count)) return False data = 'A'*4*a for i in range(12): time.sleep(5) if not test_block_read(PS,data,a): break print 'terminate' except KeyboardInterrupt: print "Keyboard Interrupt" except Exception: print 'General Exception' from traceback import print_exc print_exc() finally: PS.stop() print 'traffic:',ping.ping_count,'pings ('+humanize_bytes(ping.ping_bandwidth)+')' sys.exit(1)
[ "me@atupal.org" ]
me@atupal.org
2ca1ed615108497115477b80afd5d2fecac50e40
82cc99e8fdbfe91d67f6f491706d252e72e531c2
/manage.py
314cee692ce6893d679d86908af0c8969992e72a
[]
no_license
PeterLiao/FindTrain
cf418d10dc0503c57e8299238ff3b985b8a54065
4ee3f9683e8b7b7b3e6a6c474ec4b5cb4184c199
refs/heads/master
2021-01-10T19:58:03.561788
2014-07-22T08:32:44
2014-07-22T08:32:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "FindTrain.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "s9356016@gmail.com" ]
s9356016@gmail.com
40d1268160ff039fb4eb6c0e18a1719ad3baac13
769814957131fec3f519d4b8d7a6ed44201fabcf
/video_prediction/prediction_model4.py
58f8e1b915035e04cfbed16215b6ac28c96ad9c4
[ "Apache-2.0" ]
permissive
wangyang59/tf_models
79d8c8e4de449a124bbca358f75c4acf0301a520
852339e6ebeab7f7587a36d5a81ddea876c5800f
refs/heads/master
2022-10-18T09:34:26.539574
2017-09-12T18:37:45
2017-09-12T18:37:45
88,771,570
0
2
Apache-2.0
2022-10-11T19:00:49
2017-04-19T17:22:30
Python
UTF-8
Python
false
false
18,482
py
# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Model architecture for predictive model, including CDNA, DNA, and STP.""" """prediction_model3 + normalized total masks/bg_only""" import numpy as np import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.contrib.layers.python import layers as tf_layers from lstm_ops import basic_conv_lstm_cell from tensorflow.python.ops import init_ops # Amount to use when lower bounding tensors RELU_SHIFT = 1e-12 # kernel size for DNA and CDNA. DNA_KERN_SIZE = 5 def sample_gumbel(shape, eps=1e-20): """Sample from Gumbel(0, 1)""" U = tf.random_uniform(shape,minval=0,maxval=1) return -tf.log(-tf.log(U + eps) + eps) def gumbel_softmax_sample(logits, temperature): """ Draw a sample from the Gumbel-Softmax distribution""" y = logits + sample_gumbel(tf.shape(logits)) return tf.nn.softmax( y / temperature) def gumbel_softmax(logits, temperature, hard=False): """Sample from the Gumbel-Softmax distribution and optionally discretize. Args: logits: [batch_size, n_class] unnormalized log-probs temperature: non-negative scalar hard: if True, take argmax, but differentiate w.r.t. soft sample y Returns: [batch_size, n_class] sample from the Gumbel-Softmax distribution. If hard=True, then the returned sample will be one-hot, otherwise it will be a probabilitiy distribution that sums to 1 across classes """ y = gumbel_softmax_sample(logits, temperature) if hard: #k = tf.shape(logits)[-1] #y_hard = tf.cast(tf.one_hot(tf.argmax(y,1),k), y.dtype) y_hard = tf.cast(tf.equal(y,tf.reduce_max(y,1,keep_dims=True)),y.dtype) y = tf.stop_gradient(y_hard - y) + y return y def construct_model(images, actions=None, states=None, iter_num=-1.0, k=-1, use_state=True, num_masks=10, stp=False, cdna=True, dna=False, context_frames=2, global_shift=0): """Build convolutional lstm video predictor using STP, CDNA, or DNA. Args: images: tensor of ground truth image sequences actions: tensor of action sequences states: tensor of ground truth state sequences iter_num: tensor of the current training iteration (for sched. sampling) k: constant used for scheduled sampling. -1 to feed in own prediction. use_state: True to include state and action in prediction num_masks: the number of different pixel motion predictions (and the number of masks for each of those predictions) stp: True to use Spatial Transformer Predictor (STP) cdna: True to use Convoluational Dynamic Neural Advection (CDNA) dna: True to use Dynamic Neural Advection (DNA) context_frames: number of ground truth frames to pass in before feeding in own predictions Returns: gen_images: predicted future image frames gen_states: predicted future states Raises: ValueError: if more than one network option specified or more than 1 mask specified for DNA model. """ batch_size, img_height, img_width, color_channels = images[0].get_shape()[0:4] lstm_func = basic_conv_lstm_cell # Generated robot states and images. gen_states, gen_images = [], [] current_state = states[0] shifted_masks = [] mask_lists = [] entropy_losses = [] poss_move_masks = [] if k == -1: feedself = True else: # Scheduled sampling: # Calculate number of ground-truth frames to pass in. num_ground_truth = tf.to_int32( tf.round(tf.to_float(batch_size) * (k / (k + tf.exp(iter_num / k))))) feedself = False # LSTM state sizes and states. lstm_size = np.int32(np.array([32, 32, 64, 64, 128, 64, 32])) lstm_state1, lstm_state2, lstm_state3, lstm_state4 = None, None, None, None lstm_state5, lstm_state6, lstm_state7 = None, None, None for image, action in zip(images[:-1], actions[:-1]): # Reuse variables after the first timestep. reuse = bool(gen_images) done_warm_start = len(gen_images) > context_frames - 1 with slim.arg_scope( [lstm_func, slim.layers.conv2d, slim.layers.fully_connected, tf_layers.layer_norm, slim.layers.conv2d_transpose], reuse=reuse): if k == 0: prev_image = image else: if feedself and done_warm_start: # Feed in generated image. prev_image = gen_images[-1] elif done_warm_start: # Scheduled sampling prev_image = scheduled_sample(image, gen_images[-1], batch_size, num_ground_truth) else: # Always feed in ground_truth prev_image = image # Predicted state is always fed back in state_action = tf.concat(axis=1, values=[action, current_state]) enc0 = slim.layers.conv2d( prev_image, 32, [5, 5], stride=2, scope='scale1_conv1', normalizer_fn=tf_layers.layer_norm, normalizer_params={'scope': 'layer_norm1'}) hidden1, lstm_state1 = lstm_func( enc0, lstm_state1, lstm_size[0], scope='state1') hidden1 = tf_layers.layer_norm(hidden1, scope='layer_norm2') hidden2, lstm_state2 = lstm_func( hidden1, lstm_state2, lstm_size[1], scope='state2') hidden2 = tf_layers.layer_norm(hidden2, scope='layer_norm3') enc1 = slim.layers.conv2d( hidden2, hidden2.get_shape()[3], [3, 3], stride=2, scope='conv2') hidden3, lstm_state3 = lstm_func( enc1, lstm_state3, lstm_size[2], scope='state3') hidden3 = tf_layers.layer_norm(hidden3, scope='layer_norm4') hidden4, lstm_state4 = lstm_func( hidden3, lstm_state4, lstm_size[3], scope='state4') hidden4 = tf_layers.layer_norm(hidden4, scope='layer_norm5') enc2 = slim.layers.conv2d( hidden4, hidden4.get_shape()[3], [3, 3], stride=2, scope='conv3') # Pass in state and action. smear = tf.reshape( state_action, [int(batch_size), 1, 1, int(state_action.get_shape()[1])]) smear = tf.tile( smear, [1, int(enc2.get_shape()[1]), int(enc2.get_shape()[2]), 1]) if use_state: enc2 = tf.concat(axis=3, values=[enc2, smear]) enc3 = slim.layers.conv2d( enc2, hidden4.get_shape()[3], [1, 1], stride=1, scope='conv4') hidden5, lstm_state5 = lstm_func( enc3, lstm_state5, lstm_size[4], scope='state5') # last 8x8 hidden5 = tf_layers.layer_norm(hidden5, scope='layer_norm6') # enc4 = slim.layers.conv2d_transpose( # hidden5, hidden5.get_shape()[3], 4, stride=2, scope='convt1') # # hidden6, lstm_state6 = lstm_func( # enc4, lstm_state6, lstm_size[5], scope='state6') # 16x16 # hidden6 = tf_layers.layer_norm(hidden6, scope='layer_norm7') # # Skip connection. # hidden6 = tf.concat(axis=3, values=[hidden6, enc1]) # both 16x16 # # enc5 = slim.layers.conv2d_transpose( # hidden6, hidden6.get_shape()[3], 4, stride=2, scope='convt2') # hidden7, lstm_state7 = lstm_func( # enc5, lstm_state7, lstm_size[6], scope='state7') # 32x32 # hidden7 = tf_layers.layer_norm(hidden7, scope='layer_norm8') # Skip connection. # hidden7 = tf.concat(axis=3, values=[hidden7, enc0]) # both 32x32 # enc6 = slim.layers.conv2d_transpose( # hidden7, # hidden7.get_shape()[3], 4, stride=2, scope='convt3', # normalizer_fn=tf_layers.layer_norm, # normalizer_params={'scope': 'layer_norm9'}) # Using largest hidden state for predicting a new image layer. # enc7 = slim.layers.conv2d_transpose( # enc6, color_channels, 1, stride=1, scope='convt4') # # This allows the network to also generate one image from scratch, # # which is useful when regions of the image become unoccluded. # guessed = tf.nn.sigmoid(enc7) stp_input0 = tf.reshape(hidden5, [int(batch_size), -1]) stp_input1 = slim.layers.fully_connected(stp_input0, 100, scope='fc_stp') # masks = slim.layers.conv2d_transpose( # enc6, num_masks, 1, stride=1, scope='convt7') # masks_probs = tf.nn.softmax(tf.reshape(masks, [-1, num_masks])) # entropy_losses.append(tf.reduce_mean(-tf.reduce_sum(masks_probs * tf.log(masks_probs + 1e-10), [1]))) # masks = tf.reshape( # masks_probs, # #gumbel_softmax(tf.reshape(masks, [-1, num_masks]), TEMP, hard=False), # [int(batch_size), int(img_height), int(img_width), num_masks]) # mask_list = tf.split(axis=3, num_or_size_splits=num_masks, value=masks) ############################# enc0_s = slim.layers.conv2d( prev_image, 32, [5, 5], stride=2, scope='scale1_conv1_s', normalizer_fn=tf_layers.layer_norm, normalizer_params={'scope': 'layer_norm1_s'}) hidden1_s = slim.layers.conv2d( enc0_s, lstm_size[0], [5, 5], stride=1, scope='state1_s', normalizer_fn=tf_layers.layer_norm, normalizer_params={'scope': 'layer_norm2_s'}) hidden2_s = slim.layers.conv2d( hidden1_s, lstm_size[1], [5, 5], stride=1, scope='state2_s', normalizer_fn=tf_layers.layer_norm, normalizer_params={'scope': 'layer_norm3_s'}) enc1_s = slim.layers.conv2d( hidden2_s, hidden2_s.get_shape()[3], [3, 3], stride=2, scope='conv2_s') hidden3_s = slim.layers.conv2d( enc1_s, lstm_size[2], [5, 5], stride=1, scope='state3_s', normalizer_fn=tf_layers.layer_norm, normalizer_params={'scope': 'layer_norm4_s'}) hidden4_s = slim.layers.conv2d( hidden3_s, lstm_size[3], [5, 5], stride=1, scope='state4_s', normalizer_fn=tf_layers.layer_norm, normalizer_params={'scope': 'layer_norm5_s'}) enc2_s = slim.layers.conv2d( hidden4_s, hidden4_s.get_shape()[3], [3, 3], stride=2, scope='conv3_s') enc3_s = slim.layers.conv2d( enc2_s, hidden4_s.get_shape()[3], [1, 1], stride=1, scope='conv4_s') hidden5_s = slim.layers.conv2d( enc3_s, lstm_size[4], [5, 5], stride=1, scope='state5_s', normalizer_fn=tf_layers.layer_norm, normalizer_params={'scope': 'layer_norm6_s'}) enc4_s = slim.layers.conv2d_transpose( hidden5_s, hidden5_s.get_shape()[3], 4, stride=2, scope='convt1_s') hidden6_s = slim.layers.conv2d( enc4_s, lstm_size[5], [5, 5], stride=1, scope='state6_s', normalizer_fn=tf_layers.layer_norm, normalizer_params={'scope': 'layer_norm7_s'}) # Skip connection. hidden6_s = tf.concat(axis=3, values=[hidden6_s, enc1_s]) # both 16x16 enc5_s = slim.layers.conv2d_transpose( hidden6_s, hidden6_s.get_shape()[3], 4, stride=2, scope='convt2_s') hidden7_s = slim.layers.conv2d( enc5_s, lstm_size[6], [5, 5], stride=1, scope='state7_s', normalizer_fn=tf_layers.layer_norm, normalizer_params={'scope': 'layer_norm8_s'}) # Skip connection. hidden7_s= tf.concat(axis=3, values=[hidden7_s, enc0_s]) # both 32x32 enc6_s = slim.layers.conv2d_transpose( hidden7_s, hidden7_s.get_shape()[3], 4, stride=2, scope='convt3_s', normalizer_fn=tf_layers.layer_norm, normalizer_params={'scope': 'layer_norm9_s'}) masks_s = slim.layers.conv2d_transpose( enc6_s, 2, 1, stride=1, scope='convt7_s') masks_probs_s = tf.nn.softmax(tf.reshape(masks_s, [-1, 2])) #entropy_losses.append(tf.reduce_mean(-tf.reduce_sum(masks_probs * tf.log(masks_probs + 1e-10), [1]))) masks_s = tf.reshape( masks_probs_s, #gumbel_softmax(tf.reshape(masks, [-1, num_masks]), TEMP, hard=False), [int(batch_size), int(img_height), int(img_width), 2]) poss_move_mask, bg_mask = tf.split(axis=3, num_or_size_splits=2, value=masks_s) poss_move_masks.append(poss_move_mask) ############################# #mask_list = mask_list[0:2] + [mask * poss_move_mask for mask in mask_list[2:]] #mask_lists.append(mask_list) output, shifted_mask = my_transformation2(prev_image, int(color_channels), poss_move_mask, bg_mask, stp_input1) gen_images.append(output) shifted_masks.append(shifted_mask) current_state = slim.layers.fully_connected( state_action, int(current_state.get_shape()[1]), scope='state_pred', activation_fn=None) gen_states.append(current_state) return gen_images, gen_states, shifted_masks, mask_lists, entropy_losses, poss_move_masks ## Utility functions def stp_transformation(prev_image, bg_mask, stp_input): """Apply spatial transformer predictor (STP) to previous image. Args: prev_image: previous image to be transformed. stp_input: hidden layer to be used for computing STN parameters. num_masks: number of masks and hence the number of STP transformations. Returns: List of images transformed by the predicted STP parameters. """ # Only import spatial transformer if needed. from spatial_transformer import transformer img_height, img_width = prev_image.get_shape()[1:3] identity_params = tf.convert_to_tensor( np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0], np.float32)) params = slim.layers.fully_connected( stp_input, 6, scope='stp_params', activation_fn=None, weights_initializer=init_ops.zeros_initializer()) + identity_params return transformer(prev_image, params, (int(img_height), int(img_width))), transformer(bg_mask, params, (int(img_height), int(img_width))) # def do_global_shift(prev_image, cdna_input, color_channels): # batch_size = int(cdna_input.get_shape()[0]) # # # Predict kernels using linear function of last hidden layer. # cdna_kerns = slim.layers.fully_connected( # cdna_input, # DNA_KERN_SIZE * DNA_KERN_SIZE, # scope='global_shift_params', # activation_fn=None) # # # Reshape and normalize. # cdna_kerns = tf.reshape( # cdna_kerns, [batch_size, DNA_KERN_SIZE, DNA_KERN_SIZE, 1, 1]) # cdna_kerns = tf.nn.relu(cdna_kerns - RELU_SHIFT) + RELU_SHIFT # norm_factor = tf.reduce_sum(cdna_kerns, [1, 2, 3], keep_dims=True) # cdna_kerns /= norm_factor # cdna_kerns_output = cdna_kerns # # cdna_kerns = tf.tile(cdna_kerns, [1, 1, 1, color_channels, 1]) # cdna_kerns = tf.split(axis=0, num_or_size_splits=batch_size, value=cdna_kerns) # prev_images = tf.split(axis=0, num_or_size_splits=batch_size, value=prev_image) # # # Transform image. # transformed = [] # for kernel, preimg in zip(cdna_kerns, prev_images): # kernel = tf.squeeze(kernel) # if len(kernel.get_shape()) == 3: # kernel = tf.expand_dims(kernel, -1) # transformed.append( # tf.nn.depthwise_conv2d(preimg, kernel, [1, 1, 1, 1], 'SAME')) # transformed = tf.concat(axis=0, values=transformed) # return transformed, tf.squeeze(cdna_kerns_output) def my_transformation2(prev_image, color_channels, fg_mask, bg_mask, stp_input): # kernels = [] # for i in xrange(DNA_KERN_SIZE * DNA_KERN_SIZE): # if i != DNA_KERN_SIZE * DNA_KERN_SIZE / 2: # kernel = np.zeros((DNA_KERN_SIZE * DNA_KERN_SIZE), dtype=np.float32) # kernel[i] = 1.0 # kernel = kernel.reshape((DNA_KERN_SIZE, DNA_KERN_SIZE, 1, 1)) # kernel = tf.constant(kernel, shape=(DNA_KERN_SIZE, DNA_KERN_SIZE, 1, 1), # name='kernel'+str(i), verify_shape=True) # kernels.append(kernel) # # assert len(kernels) == len(mask_list) - 2 # mask[0] indicates stay, mask[1] indicates disappear # fg_image = prev_image * fg_mask bg_image = prev_image * bg_mask bg_image, bg_mask = stp_transformation(bg_image, bg_mask, stp_input) # output = bg_image + fg_image * mask_list[0] # shifted_mask = bg_mask + fg_mask*mask_list[0] + fg_mask*mask_list[1] # for kernel, mask in zip(kernels, mask_list[2:]): # tmp_mask = tf.nn.depthwise_conv2d(mask, kernel, [1, 1, 1, 1], 'SAME') # output += tmp_mask * tf.nn.depthwise_conv2d(fg_image, tf.tile(kernel, [1, 1, color_channels, 1]), # [1, 1, 1, 1], 'SAME') # shifted_mask += fg_mask*tmp_mask # # output += guessed * tf.nn.relu(1.0 - shifted_mask) # return output, shifted_mask return bg_image, bg_mask def scheduled_sample(ground_truth_x, generated_x, batch_size, num_ground_truth): """Sample batch with specified mix of ground truth and generated data points. Args: ground_truth_x: tensor of ground-truth data points. generated_x: tensor of generated data points. batch_size: batch size num_ground_truth: number of ground-truth examples to include in batch. Returns: New batch with num_ground_truth sampled from ground_truth_x and the rest from generated_x. """ idx = tf.random_shuffle(tf.range(int(batch_size))) ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth)) generated_idx = tf.gather(idx, tf.range(num_ground_truth, int(batch_size))) ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx) generated_examps = tf.gather(generated_x, generated_idx) return tf.dynamic_stitch([ground_truth_idx, generated_idx], [ground_truth_examps, generated_examps])
[ "wangyang59@baidu.com" ]
wangyang59@baidu.com
3424d90576cff18381aa8d2aa7290caf6fff993e
a19ab80e2aebe88da038d6900d0532a0ac030f58
/backend/chat/models.py
b91c1fa676e0d9c7ede651c840fe200c079b1759
[]
no_license
crowdbotics-apps/test-project-18237
1975ce9949626582c017baebe1ebd56a8bd0d99a
27101ee2a0a2cdfb60bf4437191d2dfb08475dac
refs/heads/master
2022-11-21T21:11:14.642037
2020-07-20T00:30:15
2020-07-20T00:30:15
273,353,527
0
0
null
null
null
null
UTF-8
Python
false
false
2,946
py
from django.conf import settings from django.db import models class ThreadAction(models.Model): "Generated Model" action = models.CharField(max_length=7,) thread = models.ForeignKey( "chat.Thread", on_delete=models.CASCADE, related_name="threadaction_thread", ) profile = models.ForeignKey( "chat_user_profile.Profile", on_delete=models.CASCADE, related_name="threadaction_profile", ) timestamp_action = models.DateTimeField(auto_now_add=True,) class Thread(models.Model): "Generated Model" name = models.CharField(max_length=255,) thread_photo = models.URLField() timestamp_created = models.DateTimeField(auto_now_add=True,) class ThreadMember(models.Model): "Generated Model" profile = models.ForeignKey( "chat_user_profile.Profile", on_delete=models.CASCADE, related_name="threadmember_profile", ) thread = models.ForeignKey( "chat.Thread", on_delete=models.CASCADE, related_name="threadmember_thread", ) is_admin = models.BooleanField() timestamp_joined = models.DateTimeField(auto_now_add=True,) timestamp_left = models.DateTimeField() last_rejoined = models.DateTimeField() class MessageAction(models.Model): "Generated Model" action = models.CharField(max_length=7,) message = models.ForeignKey( "chat.Message", on_delete=models.CASCADE, related_name="messageaction_message", ) profile = models.ForeignKey( "chat_user_profile.Profile", on_delete=models.CASCADE, related_name="messageaction_profile", ) timestamp_action = models.DateTimeField(auto_now_add=True,) class ForwardedMessage(models.Model): "Generated Model" message = models.ForeignKey( "chat.Message", on_delete=models.CASCADE, related_name="forwardedmessage_message", ) forwarded_by = models.ForeignKey( "chat_user_profile.Profile", on_delete=models.CASCADE, related_name="forwardedmessage_forwarded_by", ) forwarded_to = models.ForeignKey( "chat.Thread", on_delete=models.CASCADE, related_name="forwardedmessage_forwarded_to", ) timestamp_forwarded = models.DateTimeField(auto_now_add=True,) class Message(models.Model): "Generated Model" message = models.TextField() thread = models.ForeignKey( "chat.Thread", on_delete=models.CASCADE, related_name="message_thread", ) sent_by = models.ForeignKey( "chat.ThreadMember", on_delete=models.CASCADE, related_name="message_sent_by", ) attachment = models.URLField() is_draft = models.BooleanField() is_delivered = models.BooleanField() is_read = models.BooleanField() timestamp_created = models.DateTimeField(auto_now_add=True,) timestamp_delivered = models.DateTimeField() timestamp_read = models.DateTimeField() # Create your models here.
[ "team@crowdbotics.com" ]
team@crowdbotics.com
1a4fbbd353f863b050ded6155f139a22e17735b2
4384609f3b300375e0cfb82d2b04a6c675d6ac63
/analysisinHPC/v6.2_17.12.2018/CNN_test_mva_16.6_80.5_VGG16_truemva_except_456/pattern_0/ISS_anylsis/loadmodel_test.py
db7d2560181d54e7d0767676bc62ce9bf19a31ab
[]
no_license
season0112/antiproton_to_proton_ratio
b5fc178886adffec0c9ed3ba21447e4f553b8eed
c35c1834b7113946bbc45ca25131a80604834790
refs/heads/master
2020-03-25T11:50:40.347777
2019-01-11T12:17:26
2019-01-11T12:17:26
143,750,927
0
0
null
null
null
null
UTF-8
Python
false
false
6,775
py
#!/usr/bin/env python ######################################################################## # # # Toy Model for Pronton Charge Confusion with Dense Layer # # version 1.0 07.03.2018 # # # ######################################################################## ########################## packages #################################### from __future__ import division import numpy as np import math import json import collections import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import LogNorm from keras.layers import Activation, Dropout, Flatten, Dense from keras.layers import Dense, Conv2D, MaxPooling2D from keras.models import Sequential, Model, model_from_json from keras.optimizers import SGD, RMSprop, Adam from keras.preprocessing.image import ImageDataGenerator from keras.utils import np_utils from keras import initializers from PIL import ImageFont from PIL import Image from PIL import ImageDraw plt.switch_backend('agg') binnings = np.array([45.1, 48.5, 52.2, 56.1, 60.3, 64.8, 69.7, 74.9, 80.5]) binnings = np.array([24.7, 26.7, 28.8, 31.1, 33.5, 36.1,38.9, 41.9]) for binleft in range(binnings.shape[0]-1): ########################## Free Parameters ############################# binnumber=150 EcalBDTCut = True EcalBDTCutvalue_select_proton = 0.0 ## -1 denote proton, 1 denote electron EcalBDTCutvalue_select_electron = 0.0 ## -1 denote proton, 1 denote electron TrdProtonHeliumCut = False TrdProtonHeliumCutValue = 0.3 ########################## Properties Label ############################ MvAresult=16 TrdLogLikelihoodRatioProtonHeliumTracker=17 ######################### Test events ################################## testset1 = np.load('/hpcwork/jara0052/sichen/analysis_6.2/B1042_pr.pl1.flux.l1o9.2016000_7.6_all/16.6-147GeV/transferdata/positive/'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'GeV/pattern0/positive_'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'_pattern_0.npy') testset2 = np.load('/hpcwork/jara0052/sichen/analysis_6.2/B1042_pr.pl1.flux.l1a9.2016000_7.6_all/16.6-147GeV/transferdata/negative/'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'GeV/pattern0/negative_'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'_pattern_0.npy') testset3 = np.load('/hpcwork/jara0052/sichen/analysis_6.2/B1091_el.pl1.0_25200_7.6_all/16.6-147GeV/transferdata/negative/'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'GeV/pattern0/negative_'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'_pattern_0.npy') if (EcalBDTCut): testset1 = testset1[np.where((testset1[:,-5]>-2) & (testset1[:,-5] < EcalBDTCutvalue_select_proton))[0],:] testset2 = testset2[np.where((testset2[:,-5]>-2) & (testset2[:,-5] < EcalBDTCutvalue_select_proton))[0],:] testset3 = testset3[np.where((testset3[:,-5]>-2) & (testset3[:,-5] > EcalBDTCutvalue_select_electron))[0],:] if (TrdProtonHeliumCut): testset1 = testset1[np.where(testset1[:,TrdLogLikelihoodRatioProtonHeliumTracker] < TrdProtonHeliumCutValue)[0],:] testset2 = testset2[np.where(testset2[:,TrdLogLikelihoodRatioProtonHeliumTracker] < TrdProtonHeliumCutValue)[0],:] testset3 = testset3[np.where(testset3[:,TrdLogLikelihoodRatioProtonHeliumTracker] < TrdProtonHeliumCutValue)[0],:] ################################################################################## testset = np.r_[testset1,testset2,testset3] testsetMvA = testset[:,MvAresult] ## get the CCProton MvA results testset = np.expand_dims(testset, axis=2) inputlist = np.arange(0,16) testset = testset[:,inputlist,:] testset[:,4] = np.fabs(testset[:,4]) testset[:,5] = np.fabs(testset[:,5]) testset[:,6] = np.fabs(testset[:,6]) features = 16 ############## model prediction ################# import CNN_models model = CNN_models.VGG16(features) model.load_weights('VGG16.h5') y_pred = model.predict(testset) ######################## save template data ################################ fplot=file('data/plot_positive_rigidity'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'.npy','wb') np.save(fplot, np.transpose([ y_pred[0:testset1.shape[0],1], testset1[:,0]]) ) fplot.close() fplot=file('data/plot_negative_rigidity'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'.npy','wb') np.save(fplot, np.transpose([ y_pred[testset1.shape[0]:(testset1.shape[0]+testset2.shape[0]),1], testset2[:,0]]) ) fplot.close() fplot=file('data/electron_negative'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'.npy','wb') np.save(fplot, np.transpose([ y_pred[(testset1.shape[0]+testset2.shape[0]):,1], testset3[:,0]]) ) fplot.close() fplot=file('data/plot_positive_rigidity_CCMVA'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'.npy','wb') np.save(fplot, np.transpose([ testsetMvA[0:testset1.shape[0]], testset1[:,0] ])) fplot.close() fplot=file('data/plot_negative_rigidity_CCMVA'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'.npy','wb') np.save(fplot, np.transpose([ testsetMvA[testset1.shape[0]:(testset1.shape[0]+testset2.shape[0])], testset2[:,0]])) fplot.close() fplot=file('data/electron_negative_CCMVA'+str(binnings[binleft])+'_'+str(binnings[binleft+1])+'.npy','wb') np.save(fplot, np.transpose([ testsetMvA[(testset1.shape[0]+testset2.shape[0]):], testset3[:,0]])) fplot.close() ''' ########################## NN Prediction ################################## y_pred = model.predict(testset) plt.figure(figsize=(18,18)) plt.hist(y_pred[0:testset1.shape[0],1],bins=binnumber,range=(0,1),log=True,alpha=0.5,label='ChargeCorrect',facecolor='blue',edgecolor='black' ) plt.hist(y_pred[testset1.shape[0]:y_pred.shape[0],1],bins=binnumber,range=(0,1),log=True,alpha=0.5,label='ChargeConfused',facecolor='green',edgecolor='black' ) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.xlabel('Estimator $_{CC}$',fontsize=22) plt.ylabel('Count',fontsize=22) plt.legend(loc='upper center',fontsize=30) plt.savefig('plot/ML_test.png') ######################## MvA Prediction ############################## plt.figure(figsize=(18,18)) plt.hist(testsetMvA[0:testset1.shape[0]],binnumber,range=(0,1),log=True, alpha=0.5,label='ChargeCorrect',facecolor='blue',edgecolor='black' ) plt.hist(testsetMvA[testset1.shape[0]:y_pred.shape[0]],binnumber,range=(0,1),log=True, alpha=0.5,label='ChargeConfused',facecolor='green',edgecolor='black' ) plt.xlabel('Estimator $_{CC}$',fontsize=30) plt.ylabel('Count',fontsize=30) plt.xticks(fontsize=25) plt.yticks(fontsize=25) plt.legend(loc='upper center',fontsize=30) plt.savefig('plot/CCMVA_test.png') '''
[ "li8@j3l04.juropa3" ]
li8@j3l04.juropa3
ee3e78f5244773102201d16a3406150e4742e9ef
4e2a1197b47d0c861be98e1c574062c8b9988253
/gendiff/constants.py
2fc2aa753152c66da526fe12aa4b668431a3c75a
[]
no_license
gabady13/python-project-lvl2-1
a72a0e45c5e6dc97d4a23e4c034994fab63b12bd
77a62ecb0eea9a62d476a1bc93307dcc43d8566a
refs/heads/master
2023-08-11T02:20:20.943323
2021-10-10T19:59:34
2021-10-10T20:17:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
163
py
"""Common constants.""" INDENT = ' ' ADDED = '+' REMOVED = '-' NESTED = 'nested' CHANGED = 'changed' UNCHANGED = ' ' SIMPLE = 'simple' COMPLEX = 'complex value'
[ "me@sergeykalistratov.com" ]
me@sergeykalistratov.com
6769adc1d325b19d2cf6a7305fc677a6b55f1df4
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/amplify_read_3/job_get.py
7bf63412c69332288cc54d8318983d71ee50cc82
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
992
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import execute_two_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/amplify/get-job.html if __name__ == '__main__': """ delete-job : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/amplify/delete-job.html list-jobs : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/amplify/list-jobs.html start-job : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/amplify/start-job.html stop-job : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/amplify/stop-job.html """ parameter_display_string = """ # app-id : The unique ID for an Amplify app. # branch-name : The branch name for the job. """ execute_two_parameter("amplify", "get-job", "app-id", "branch-name", parameter_display_string)
[ "hcseo77@gmail.com" ]
hcseo77@gmail.com
15a0108c1ecf3548cee46e39c0c89ad95d9d0228
5f3f2377b7bd1865177c0c681df30bd06fa8e71d
/likes/serializers.py
1ce1590f8cd0daa3ca8ccf3bfce1e62c05827fc8
[]
no_license
mr-fibonacci/drf-sts-codealong
d1ffaaf8c26d92166d5877e6a90d25649a6f31fd
59bbd944d0695fbee18cd10671b75870931f9dd3
refs/heads/master
2023-05-10T11:04:33.023936
2021-06-09T11:26:30
2021-06-09T11:26:30
368,148,033
0
0
null
null
null
null
UTF-8
Python
false
false
652
py
from django.db import IntegrityError from rest_framework import serializers from likes.models import Like class LikeSerializer(serializers.ModelSerializer): """ Serializer for the Like model The create method handles the unique constraint on 'owner' and 'post' """ owner = serializers.ReadOnlyField(source='owner.username') class Meta: model = Like fields = ['id', 'created_at', 'owner', 'post'] def create(self, validated_data): try: return super().create(validated_data) except IntegrityError: raise serializers.ValidationError({'detail': 'possible duplicate'})
[ "adamlapinski1@gmail.com" ]
adamlapinski1@gmail.com
ae226e84b9e094aaaf017cb12423793840a31af4
c12d468c6bef229a58033a6a40ea3925a52adae6
/python/pns.py
46552cfbb60f07e6db7e251fedeff5efbe67b650
[]
no_license
aajarven/TM-harjoitustyo
4b65558ee5216f7919d1a9436635148be26cc2e4
09a2cf73f7420c8041c5b4d77feef3f3dd8487ac
refs/heads/master
2021-01-10T14:46:07.753756
2015-10-25T18:40:05
2015-10-25T18:40:05
44,267,286
0
0
null
null
null
null
UTF-8
Python
false
false
1,054
py
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import sys from utils import * if len(sys.argv) !=5 : print "Anna komentoriviargumentteina sovitettavan käyrän aste sekä tiedostot, joissa käytettävät matriisit X, Y ja W ovat" sys.exit(1) aste = int(sys.argv[1]) xHavainto = lueMatriisi(sys.argv[2]) Y = lueMatriisi(sys.argv[3]) W = lueMatriisi(sys.argv[4]) if len(np.transpose(xHavainto)) == 1 : # jos annetussa X-matriisissa on vain yksi sarake, oletetaan n. asteen käyrä y=f(x) ja luodaan X-matriisi sen mukaan X = np.ones((len(xHavainto), aste+1)) for i in range(0,len(xHavainto)): for j in range(1, aste+1): X[i][j] = xHavainto[i]**j else : # muuten käytetään annettua sellaisenaan X = xHavainto if len(X) != len(Y) or len(Y) != len(W): print "Annettujen matriisien dimensiot eivät täsmää" sys.exit(1) beta = np.dot( np.dot( np.dot( np.linalg.inv( np.dot( np.dot( np.transpose(X), W), X)), np.transpose(X)), W), Y) print "kerroinmatriisi beta:" print beta
[ "anni.jarvenpaa@gmail.com" ]
anni.jarvenpaa@gmail.com
b9154c9c4115909fbb3e5991ec61067d7f7aae77
2a32ba95aa3b5da7b7376f7a7a4df5bc932c6b90
/Stack and Queue/BSTSortedOrder.py
dd0a8e0aba651a94dd5281f6889844f37468abc3
[]
no_license
maruichen2004/EPI
33cb4f1860ca294c9aba460ac7f22e25c2c9b210
2379e83536bdbeaa7f21ceeb8f1e369a90f434a0
refs/heads/master
2016-09-06T03:32:04.412640
2014-11-23T05:29:59
2014-11-23T05:29:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
543
py
from Util.BST import TreeNode from Util.BST import BST class Solution: # Time: O(n) # Space: O(h) def bstSortedOrder(self, node): stack, cur, res = [], node, [] if node is None: return [] while cur or stack: if cur: stack.append(cur) cur = cur.left else: parent = stack.pop() res.append(parent.val) cur = parent.right return res if __name__ == "__main__": bst = BST() t = Solution() print t.bstSortedOrder(bst.getRoot())
[ "ruichenma@RUICHENs-MacBook-Pro.local" ]
ruichenma@RUICHENs-MacBook-Pro.local
ffc0fbbe473bc936a32f0d705a41d7ef23a20216
8ac5fa643e54f6aac8af600eddbeb4c074095b2b
/tspdb/src/algorithms/pymf/bnmf.py
c70343667fa65184f5fee1099128dc41cf369245
[ "Apache-2.0" ]
permissive
AbdullahO/tspdb
00acca3b29a054f02ac07a0243c04ba575af0a19
6ba75833a128d4036caad488d144fb6b0ba682e6
refs/heads/master
2023-05-25T09:44:19.856796
2023-05-18T17:25:48
2023-05-18T17:25:48
210,507,080
179
60
Apache-2.0
2023-02-10T23:10:00
2019-09-24T03:51:25
Jupyter Notebook
UTF-8
Python
false
false
4,665
py
# Authors: Christian Thurau # License: BSD 3 Clause """ PyMF Binary Matrix Factorization [1] BNMF(NMF) : Class for binary matrix factorization [1]Z. Zhang, T. Li, C. H. Q. Ding, X. Zhang: Binary Matrix Factorization with Applications. ICDM 2007 """ import numpy as np from base import PyMFBase __all__ = ["BNMF"] class BNMF(PyMFBase): """ BNMF(data, data, num_bases=4) Binary Matrix Factorization. Factorize a data matrix into two matrices s.t. F = | data - W*H | is minimal. H and W are restricted to binary values. Parameters ---------- data : array_like, shape (_data_dimension, _num_samples) the input data num_bases: int, optional Number of bases to compute (column rank of W and row rank of H). 4 (default) Attributes ---------- W : "data_dimension x num_bases" matrix of basis vectors H : "num bases x num_samples" matrix of coefficients ferr : frobenius norm (after calling .factorize()) Example ------- Applying BNMF to some rather stupid data set: >>> import numpy as np >>> from bnmf import BNMF >>> data = np.array([[1.0, 0.0, 1.0], [0.0, 1.0, 1.0]]) Use 2 basis vectors -> W shape(data_dimension, 2). >>> bnmf_mdl = BNMF(data, num_bases=2) Set number of iterations to 5 and start computing the factorization. >>> bnmf_mdl.factorize(niter=5) The basis vectors are now stored in bnmf_mdl.W, the coefficients in bnmf_mdl.H. To compute coefficients for an existing set of basis vectors simply copy W to bnmf_mdl.W, and set compute_w to False: >>> data = np.array([[0.0], [1.0]]) >>> W = np.array([[1.0, 0.0], [0.0, 1.0]]) >>> bnmf_mdl = BNMF(data, num_bases=2) >>> bnmf_mdl.W = W >>> bnmf_mdl.factorize(niter=10, compute_w=False) The result is a set of coefficients bnmf_mdl.H, s.t. data = W * bnmf_mdl.H. """ # controls how fast lambda should increase: # this influence convergence to binary values during the update. A value # <1 will result in non-binary decompositions as the update rule effectively # is a conventional nmf update rule. Values >1 give more weight to making the # factorization binary with increasing iterations. # setting either W or H to 0 results make the resulting matrix non binary. _LAMB_INCREASE_W = 1.1 _LAMB_INCREASE_H = 1.1 def _update_h(self): """ """ H1 = np.dot(self.W.T, self.data[:,:]) + 3.0*self._lamb_H*(self.H**2) H2 = np.dot(np.dot(self.W.T,self.W), self.H) + 2*self._lamb_H*(self.H**3) + self._lamb_H*self.H + 10**-9 self.H *= H1/H2 self._lamb_W = self._LAMB_INCREASE_W * self._lamb_W self._lamb_H = self._LAMB_INCREASE_H * self._lamb_H def _update_w(self): W1 = np.dot(self.data[:,:], self.H.T) + 3.0*self._lamb_W*(self.W**2) W2 = np.dot(self.W, np.dot(self.H, self.H.T)) + 2.0*self._lamb_W*(self.W**3) + self._lamb_W*self.W + 10**-9 self.W *= W1/W2 def factorize(self, niter=10, compute_w=True, compute_h=True, show_progress=False, compute_err=True): """ Factorize s.t. WH = data Parameters ---------- niter : int number of iterations. show_progress : bool print some extra information to stdout. compute_h : bool iteratively update values for H. compute_w : bool iteratively update values for W. compute_err : bool compute Frobenius norm |data-WH| after each update and store it to .ferr[k]. Updated Values -------------- .W : updated values for W. .H : updated values for H. .ferr : Frobenius norm |data-WH| for each iteration. """ # init some learning parameters self._lamb_W = 1.0/niter self._lamb_H = 1.0/niter PyMFBase.factorize(self, niter=niter, compute_w=compute_w, compute_h=compute_h, show_progress=show_progress, compute_err=compute_err) def _test(): import doctest doctest.testmod() if __name__ == "__main__": _test()
[ "aalomar@mit.edu" ]
aalomar@mit.edu
c219ee966f58b6da567f9e09dd8d46c6f2c96b6a
04e8267f3f7137c4f41fc9c8c72e1a9ab27ee2ff
/NLP_Assignment-3/dxp170020_memm.py
502e9583ca6dfd0d6de582f684a22075d2345e67
[]
no_license
ashutoshsenapati/NLP-Projects
a6dab578b9dfcfe807bba52e8464ad1f16c2eb9a
76941d6ca297c290c3534feb37138e461bede2bc
refs/heads/master
2022-03-06T02:47:43.528851
2019-10-28T19:48:33
2019-10-28T19:48:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,929
py
import nltk nltk.download('brown') nltk.download('universal_tagset') import numpy as np from nltk.corpus import brown import collections import re import sys from scipy.sparse import csr_matrix from sklearn.linear_model import LogisticRegression import csv import itertools from itertools import groupby ############ creating the set rare words that occur less than 5 times ############################ rare_words = set() ### tag dictionary global variable ### tag_dict = {} ## feature dictionary global variable ### feature_dict = {} def word_ngram_features(i, words): ''' The argument i (int) is the index of the current word to generate features for, and words is a list containing all the words in the sentence (ie. words[i] is the current word wi). The function should return a list containing the following features: • ‘prevbigram-[x]’, where [x] is the previous word wi−1 • ‘nextbigram-[x]’, where [x] is the next word wi+1 • ‘prevskip-[x]’, where [x] is the next previous word wi−2 • ‘nextskip-[x]’, where [x] is the next next word wi+2 • ‘prevtrigram-[x]-[y]’, where [x] is wi−1 and [y] is wi−2 • ‘nexttrigram-[x]-[y]’, where [x] is wi+1 and [y] is wi+2 • ‘centertrigram-[x]-[y]’, where [x] is wi−1 and [y] is wi+1 You will need to check for corner cases where i ± 1 and/or i ± 2 are n ''' list_ngram_features = list() list_len = len(words) #### checking for prevbigram ####### prevbigram = "" if i == 0: prevbigram = "<s>" else : prevbigram = words[i-1] list_ngram_features.append("prevbigram" + "-" + prevbigram) ### checking the next bigram ######## nextbigram = "" if i+1 == list_len: nextbigram = "</s>" else: nextbigram = words[i+1] list_ngram_features.append("nextbigram" + "-" + nextbigram) ### checking for the prev skip ###### prevskip = "" if i < 2: prevskip = "<s>" else: prevskip = words[i-2] list_ngram_features.append("prevskip" + "-" + prevskip) ### checking fro the next skip ###### nextskip = "" if i+2 >= len(words): nextskip = "</s>" else: nextskip = words[i+2] list_ngram_features.append("nextskip" + "-" + nextskip) ### checking for prevtrigram ####### prevtrigram1 = "" prevtrigram2 = "" if i == 0: prevtrigram1 = "<s>" prevtrigram2 = "<s>" elif i == 1: prevtrigram1 = words[i-1] prevtrigram2 = "<s>" else: prevtrigram1 = words[i-1] prevtrigram2 = words[i-2] list_ngram_features.append("prevtrigram" + "-" + prevtrigram1 + "-" + prevtrigram2) ### checking for nexttrigram ###### nexttrigram1 = "" nexttrigram2 = "" if (i + 1) >= len(words): nexttrigram1 = "</s>" nexttrigram2 = "</s>" elif (i+1) >= len(words) - 1: nexttrigram1 = words[i+1] nexttrigram2 = "</s>" else: nexttrigram1 = words[i+1] nexttrigram2 = words[i+2] list_ngram_features.append("nexttrigram" + "-" + nexttrigram1 + "-" + nexttrigram2) ### checking for center trigram ### centertrigram1 = "" centertrigram2 = "" if len(words) == 1: centertrigram1 = "<s>" centertrigram2 = "</s>" elif i == 0: centertrigram1 = "<s>" centertrigram2 = words[i+1] elif (i+1) >= len(words): centertrigram1 = words[i-1] centertrigram2 = "</s>" else: centertrigram1 = words[i-1] centertrigram2 = words[i+1] list_ngram_features.append("centertrigram" + "-" + centertrigram1 + "-" + centertrigram2) return list_ngram_features def word_features(word, rare_words): ''' The argument word is the current word wi , and rare words is the set of rare words we made in the previous section. The function should return a list containing the following features: • ‘word-[word]’, only if word is not in rare words • ‘capital’, only if word is capitalized • ‘number’, only if word contains a digit • ‘hyphen’, only if word contains a hyphen • ‘prefix[j]-[x]’, where [j] ranges from 1 to 4 and [x] is the substring containing the first [j] letters of word ‘suffix[j]-[x]’, where [j] ranges from 1 to 4 and [x] is the substring containing the last [j] letters of word ''' word_features_list = list() ### check if word not in rare word ### if word not in rare_words: word_features_list.append(word + "-" + word) ### check if word is capitalized ### if word[0].isupper(): word_features_list.append("capital") ### check if word contains digit #### if re.search("\d", word): word_features_list.append("number") ### check if word contains hyphen ### if '-' in word: word_features_list.append("hyphen") ### prefix[j]-[x] where j ranges from 1 to 4 and [x] is the substring containing the first [j] letters of word ### j = 1 while(j <= 4) and j <= len(word): word_features_list.append("prefix" + str(j) + "-" + word[0:j]) j = j + 1 ### suffix[j] - [x] where j ranges from 1 to 4 and [x] is the substring containing the last [j] letters of word ### j = 1 while(j <= 4 and j <= len(word)): word_features_list.append("suffix" + str(j) + "-" + word[-1*j:]) j = j + 1 return word_features_list def get_features(i, words, prevtag, rare_words): ''' training features[0][0] should be the list of features for the first word in the first sentence of the corpus. You will need to check for corner cases where i = 0 and there is no prevtag; in these cases, use the meta-tag ‘<S>’ .''' list_word_ngram_features = word_ngram_features(i,words) list_word_features = word_features(words[i],rare_words) features = list_word_ngram_features + list_word_features ### adding the tagbigram-[prevtag] to the final feature list ###### features.append("tagbigram" + "-" + prevtag) ########## extra credit part for the HW3. Question 6 ############## features.append("word-" + words[i] + "-prevtag-" + prevtag) #### converting the features to lower case ######### lower_features = list(map(lambda x:x.lower(),features)) ### the below features do not need to be converted to lowercase ########### #### check all caps ###### if words[i].isupper(): lower_features.append("allcaps") ####### wordshape feature ######### abstract_version = "" for character in words[i]: if character.islower(): abstract_version = abstract_version + "x" elif character.isupper(): abstract_version = abstract_version + "X" elif character.isdigit(): abstract_version = abstract_version + "d" if len(abstract_version) > 0: lower_features.append("wordshape" + "-" + abstract_version) ### short wordshape feature ####### short_word_shape = ''.join(ch for ch, _ in itertools.groupby(abstract_version)) if len(short_word_shape) > 0: lower_features.append("short-wordshape-" + short_word_shape) #### all caps , atleast 1 hyphen, atleast 1 digit ##### if words[i].isupper() and '-' in words[i] and any(ch.isdigit() for ch in words[i]): lower_features.append("allcaps-digit-hyphen") ######## capital-followed by co feature ######### if words[i][0].isupper(): for indice in range(i+1,i+3): if indice < len(words): if words[indice] == "Co." or words[indice] == "Inc.": lower_features.append("capital-followedby-co") break else: break return lower_features def remove_rare_features(features, n): ''' The argument features is a list of lists of feature lists (ie. training features), and n is the number of times a feature must occur in order for us to keep it in the feature set ''' ### creating a vocabulary that will store the feature and its count #### feature_vocabulary = {} for sentence_feature in features: for word_features in sentence_feature: for feature in word_features: feature_vocabulary[feature] = feature_vocabulary.get(feature,0) + 1 ###### creating two sets for rare and non rare feature vocab ############# rare_features = set() non_rare_features = set() for feature,feature_count in feature_vocabulary.items(): if feature_count < n: rare_features.add(feature) else: non_rare_features.add(feature) ########## removing the rare features from the training features set ############ updated_training_features = list() for sentence_feature in features: word_features_list = list() for word_features in sentence_feature: word_list = list() for word_feature in word_features: if word_feature not in rare_features: word_list.append(word_feature) word_features_list.append(word_list) updated_training_features.append(word_features_list) return (updated_training_features,non_rare_features) def build_Y(tags): ''' build train_Y for training data and return numpy array ''' Y = list() for sentence_tag in tags: for word_tag in sentence_tag: Y.append(tag_dict[word_tag]) return np.array(Y) def build_X(features): ''' construct a sparse matrix using three lists, row, col, and value, to indicate which positions are not 0: X[row[i][col[i]] = value[i], and all other positions in X are assumed to be 0. Of course, all non-0 positions have value 1 for us, so value would just be a list of 1s ''' examples = [] feature_index = [] i=0 #### some theory here ##### #### here , feature refers to the individual features for each word. So , for every word , we have a feature list #### we append the number of times index i to the examples list for each word feature in word feature list. since we #### want to keep track of count of features in each word. so if a word has features like [A,B,C] , we will append, index i ### to the example list , 3 times. for sentence_features in features: for word_features in sentence_features: for feature in word_features: if feature in feature_dict: examples.append(i) feature_index.append(feature_dict[feature]) i += 1 values = [1] * len(examples) examples = np.asarray(examples) feature_index = np.asarray(feature_index) values = np.asarray(values) sparse_matrix = csr_matrix((values, (examples, feature_index)), shape = (i, len(feature_dict)), dtype = np.int8) return sparse_matrix def viterbi(Y_start, Y_pred): N = np.shape(Y_pred)[0] + 1 T = len(tag_dict) V = np.empty((N, T)) BP = np.empty((N, T)) for j in range(T): V[0][j] = Y_start[0][j] BP[0][j] = -1 for i, row in enumerate(Y_pred): for k in range(T): sum = V[i, :] + Y_pred[i, :, k] V[i + 1, k] = max(sum) BP[i + 1, k] = int(np.argmax(sum)) backward_indices = [] index = np.argmax(V[N-1]) backward_indices.append(index) for n in range(N - 1, 0, -1): index = BP[n, int(index)] backward_indices.append(index) for key,value in tag_dict.items(): i = 0 for bindex in backward_indices: if bindex == value: backward_indices[i] = key i = i + 1 return list(reversed(backward_indices)) def load_test(filename): ''' The function should return a list of lists, where each sublist is a sentence (a line in the test file), and each item in the sentence is a word. ''' final_list = list() with open(filename, encoding='utf-8', errors='ignore') as file: file_reader = csv.reader(file, delimiter='\t') for row in file_reader: updated_list = list() for word in row[0].split(): updated_list.append(word.strip()) final_list.append(updated_list) return final_list def get_predictions(test_sentence, model): ''' The argument test sentence is a list containing a single list of words (we continue to use a nested list because the functions we wrote for generating features for the training data expect a list of list(s)), and model is a trained LogisticRegression model''' n = len(test_sentence) T = len(tag_dict) Y_pred = np.empty((n-1,T,T)) Y_start = np.empty((1, T)) index = 0 for word in test_sentence: if index == 0: X = build_X([[get_features(index, test_sentence, "<S>", rare_words)]]) Y_start = model.predict_log_proba(X) else: for prev_tag in tag_dict.keys(): j = tag_dict[prev_tag] X = build_X([[get_features(index, test_sentence, prev_tag, rare_words)]]) Y_pred[index-1][j] = model.predict_log_proba(X) index += 1 return (Y_pred, Y_start) def main(): brown_sentences = brown.tagged_sents(tagset='universal') train_sentences = list() train_tags = list() count = 0 vocabulary_count = {} for sentence in brown_sentences: sentence_list = list() label_list = list() for tags in sentence: tags = list(tags) ### adding new key to vocabulary counts dictionary, if the key exists add the count to it ###### vocabulary_count[tags[0]] = vocabulary_count.get(tags[0],0) + 1 sentence_list.append(tags[0]) label_list.append(tags[1]) train_sentences.append(sentence_list) train_tags.append(label_list) for word,count in vocabulary_count.items(): if count < 5: rare_words.add(word) ######## training part 3 #################### training_features = list() for train_sentence in train_sentences: indx = train_sentences.index(train_sentence) word_feature_list = list() i = 0 for word in train_sentence: if i == 0: prev_tag = '<S>' else: prev_tag = train_tags[indx][i-1] word_feature = get_features(i,train_sentence,prev_tag,rare_words) word_feature_list.append(word_feature) i = i + 1 training_features.append(word_feature_list) ### calling the remove rare features ##### n = 5 remove_rare_output = remove_rare_features(training_features,n) training_features_updated = remove_rare_output[0] non_rare_set = remove_rare_output[1] ################ printing the feature dictionary for the non rare words ############## index = 0 for feature_word in non_rare_set: feature_dict[feature_word] = index index = index + 1 tag_vocabulary = set(x for l in train_tags for x in l) #### creating tag dictionary where the keys are the 17 tags and the values are the indices assigned to the tag ### tag_idx = 0 for tag in tag_vocabulary: tag_dict[tag] = tag_idx tag_idx = tag_idx + 1 ### calling the build_Y function using the tag_dict ##### Y_train = build_Y(train_tags) ##### calling build_X features using the training features ##### X_train = build_X(training_features_updated) model = LogisticRegression(class_weight='balanced',solver='saga',multi_class='multinomial').fit(X_train, Y_train) ########## starting part 4 ################ ### calling the load_test function to read the test file ######### test_data = load_test('test.txt') #### iterating through the test sentences and calling get_predictions for each test_sentence ########### ## iterate through each test sentence, using get predictions() and viterbi() to decode the highest-probability sequence of tags for test_sentence in test_data: y_output = get_predictions(test_sentence,model) y_start = y_output[1] y_pred = y_output[0] predicted_tag_sequence = viterbi(y_start, y_pred) print(predicted_tag_sequence) if __name__ == '__main__': main()
[ "noreply@github.com" ]
ashutoshsenapati.noreply@github.com
381258816ff5fe8a9eeb8adbf2c8f7912bb17f52
103b8a33ba4d39443ae43e25132797ee2b2a7658
/sign/views.py
ab3d8098105296bc4539af9deeee67084f13eed0
[]
no_license
qj1106/qj_test
2c624861c1c04b9d11e213c22481fa56a5aac3f6
a6ac2660345989ffb43141fbd5261274f8ea36a9
refs/heads/master
2021-01-23T22:31:25.834968
2017-09-09T09:29:24
2017-09-09T09:29:24
102,941,715
0
0
null
null
null
null
UTF-8
Python
false
false
6,533
py
from django.contrib.auth.decorators import login_required from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render, get_object_or_404 from django.contrib import auth from django.views.decorators.csrf import csrf_exempt from sign.models import Event, Guest # Create your views here. def index(request): # return HttpResponse("Hello Django!") return render (request, "index.html") def qj(request): return render (request, "qj.html") def login_action(request): # if request.method == 'get': # username = request.get.get ('username', '') # password = request.get.get ('password', '') # if username == 'admin' and password == '123': # # return HttpResponse ('login success') # return render (request, 'index.html', {'error': 'login success'}) # else: # return render (request, 'index.html', {'error': '用户名或密码 error!'}) if request.method == 'GET': username = request.GET.get ('username', '') password = request.GET.get ('password', '') user = auth.authenticate (username=username, password=password) if user is not None: auth.login (request, user) # 登陆 # if username == 'admin' and password == '123': # return HttpResponse ('login success') # return HttpResponseRedirect ('/event_manage/') response = HttpResponseRedirect ('/event_manage/') # response.set_cookie ('user', username, 3600) #添加浏览器cookie request.session['user'] = username # 将 session 信息记录到浏览器 return response else: return render (request, 'index.html', {'error': 'username or password error!'}) else: return HttpResponse ('login error') # 登陆成功页管理 # @login_required # 限制页面访问 def event_manage(request): # 用于查询所有发布会对象(数据) event_list = Event.objects.all () # username = request.COOKIES.get ('user', '') # 读取cookie username = request.session.get ('user', '') # 读取session return render (request, 'event_manage.html', {'user': username, 'events': event_list}) # return render (request, 'event_manage.html') # 发布会名称搜索 # @login_required def search_name(request): username = request.session.get ('user', '') search_name = request.GET.get ('name', '') # 若搜索条件为空的话,返回所有数据 if search_name == '': event_lists = Event.objects.all() return render (request, 'event_manage.html',{'events':event_lists}) else: # 模糊匹配 event_list = Event.objects.filter (name__contains=search_name) return render (request, 'event_manage.html', {'user': username, 'events': event_list}) # 嘉宾管理 # @login_required def guest_manage(request): username = request.session.get ('user', '') guest_list = Guest.objects.all () # 分页,每页3条,把查询出来的所有嘉宾列表 guest_list 放到 Paginator 类中 paginator = Paginator (guest_list, 5) # 通过 GET 请求得到当前要显示第几页的数据 page = request.GET.get ('page') # 获取第 page 页的数据。如果当前没有页数,抛 PageNotAnInteger 异常,返回第一页的数据。如果超出最大页数的范围,抛EmptyPage异常,返回最后一页面的数据 try: contacts = paginator.page (page) except PageNotAnInteger: contacts = paginator.page (1) except EmptyPage: contacts = paginator.page (paginator.num_pages) return render (request, 'guest_manage.html', {'user': username, 'guests': contacts}) # 嘉宾页面搜索 # @login_required def guest_search(request): username = request.session.get ('user', '') guest_search = request.GET.get ('phone', '') # if guest_search is None: # return render (request, 'guest_manage.html', {'hint': '请输入手机号'}) guest_list = Guest.objects.filter (phone=guest_search) paginator = Paginator (guest_list, 2) page = request.GET.get ('page') try: contacts = paginator.page (page) except PageNotAnInteger: contacts = paginator.page (1) except EmptyPage: contacts = paginator.page (paginator.num_pages) # contacts = paginator.page (page) return render (request, 'guest_manage.html', {'user': username, 'guests': contacts}) # 签到页面 # @login_required def sign_index(request, event_id): event = get_object_or_404 (Event, id=event_id) num = Guest.objects.filter (event_id=event_id).count () sign_num = Guest.objects.filter (event_id=event_id, sign=1).count () return render (request, 'sign_index.html', {'event': event, 'num': num, 'sign_num': sign_num}) # 签到动作 @csrf_exempt # @login_required def sign_index_action(request, event_id): event = get_object_or_404 (Event, id=event_id) phone = request.POST.get ('phone', '') # 初始查询 num = Guest.objects.filter (event_id=event_id).count () sign_num = Guest.objects.filter (event_id=event_id, sign=1).count () # 查询手机号是否存在 result = Guest.objects.filter (phone=phone) if not result: return render (request, 'sign_index.html', {'event': event, 'hint': '手机号有误!请重新输入', 'num': num, 'sign_num': sign_num}) # 查询该event和phone是否匹配 result = Guest.objects.filter (phone=phone, event_id=event_id) if not result: return render (request, 'sign_index.html', {'event': event, 'hint': '该用户未产于此次发布会!请核实', 'num': num, 'sign_num': sign_num}) # 查询签到状态 result = Guest.objects.get (phone=phone, event_id=event_id) if result.sign: return render (request, 'sign_index.html', {'event': event, 'hint': "用户已签到!", 'num': num, 'sign_num': sign_num}) else: Guest.objects.filter (phone=phone, event_id=event_id).update (sign='1') # 更新后查询 num = Guest.objects.filter (event_id=event_id).count () sign_num = Guest.objects.filter (event_id=event_id, sign=1).count () return render (request, 'sign_index.html', {'event': event, 'hint': '签到成功!', 'guest': result, 'num': num, 'sign_num': sign_num}) # 退出 @login_required def logout(request): auth.logout (request) # 退出登陆 response = HttpResponseRedirect ('/index/') return response
[ "familyqj@163.com" ]
familyqj@163.com
f54e21805de615c80002759056ee8b84f8513514
a8e9b9915ee14caf88097b77a9f4b36e9ea34995
/continuousMedian.py
bbce229b723c567c4a5e460fd90ca3c182fb3db8
[]
no_license
pratyushgarg15/CodingPractice
b69f37c94dfd5033ea33c80bc1943a0c90717258
cd70ec50c52bbefdfed972fd230ff6a563bc4704
refs/heads/master
2020-09-07T14:48:51.033534
2019-11-10T16:34:09
2019-11-10T16:34:09
220,815,261
0
0
null
null
null
null
UTF-8
Python
false
false
5,287
py
import math class MinHeap: def __init__(self, array): # Do not edit the line below. self.heap = self.buildHeap(array) def buildHeap(self, array): # Write your code here. self.heap = array for i in range(len(self.heap)//2,-1,-1): self.minHeapify(i) return array def minHeapify(self,i): minimum = i if(self.left(i) < len(self.heap) and self.heap[self.left(i)] < self.heap[i] ): minimum = self.left(i) else: minimum = i if(self.right(i) < len(self.heap) and self.heap[self.right(i)] < self.heap[minimum] ): minimum = self.right(i) if(minimum != i): self.heap[i], self.heap[minimum] = self.heap[minimum], self.heap[i] self.minHeapify(minimum) def siftDown(self): self.minHeapify(0) def siftUp(self): i= len(self.heap)-1 while(self.parent(i)>=0 and self.heap[i] < self.heap[self.parent(i)]): self.heap[i], self.heap[self.parent(i)] = self.heap[self.parent(i)], self.heap[i] i = self.parent(i) def peek(self): return self.heap[0] def remove(self): self.heap[0], self.heap[-1] = self.heap[-1], self.heap[0] val = self.heap.pop() self.siftDown() return val def insert(self, value): self.heap.append(value) self.siftUp() def heapSort(self): arr = [] while(len(self.heap) != 0): arr.append(self.remove()) print(arr) def parent(self, i): return math.floor((i-1)/2) def left(self, i): return 2*i + 1 def right(self, i): return 2*i + 2 def size(self): return len(self.heap) class MaxHeap: def __init__(self, array): # Do not edit the line below. self.heap = self.buildHeap(array) def buildHeap(self, array): # Write your code here. self.heap = array for i in range(len(self.heap)//2,-1,-1): self.maxHeapify(i) return array def maxHeapify(self,i): maximum = i if(self.left(i) < len(self.heap) and self.heap[self.left(i)] > self.heap[i] ): maximum = self.left(i) else: maximum = i if(self.right(i) < len(self.heap) and self.heap[self.right(i)] > self.heap[maximum] ): maximum = self.right(i) if(maximum != i): self.heap[i], self.heap[maximum] = self.heap[maximum], self.heap[i] self.maxHeapify(maximum) def siftDown(self): self.maxHeapify(0) def siftUp(self): i= len(self.heap)-1 while(self.parent(i)>=0 and self.heap[i] > self.heap[self.parent(i)]): self.heap[i], self.heap[self.parent(i)] = self.heap[self.parent(i)], self.heap[i] i = self.parent(i) def peek(self): return self.heap[0] def remove(self): self.heap[0], self.heap[-1] = self.heap[-1], self.heap[0] val = self.heap.pop() self.siftDown() return val def insert(self, value): self.heap.append(value) self.siftUp() def heapSort(self): arr = [] while(len(self.heap) != 0): arr.append(self.remove()) print(arr) def parent(self, i): return math.floor((i-1)/2) def left(self, i): return 2*i + 1 def right(self, i): return 2*i + 2 def size(self): return len(self.heap) class continuousMedianHandler: def __init__(self): self.median = None self.lowerHalf = MaxHeap([]) self.upperHalf = MinHeap([]) def insertVal(self, val): if(self.lowerHalf.size() == 0): self.lowerHalf.insert(val) elif(val > self.lowerHalf.peek()): self.upperHalf.insert(val) else: self.lowerHalf.insert(val) #Balacing both the halves if(self.lowerHalf.size() - self.upperHalf.size() >= 2): self.upperHalf.insert(self.lowerHalf.remove()) if(self.upperHalf.size() - self.lowerHalf.size() >= 2): self.lowerHalf.insert(self.upperHalf.remove()) # Calculating Median if(self.lowerHalf.size() < self.upperHalf.size()): self.median = self.upperHalf.peek() elif(self.lowerHalf.size() > self.upperHalf.size()): self.median = self.lowerHalf.peek() else: #self.median = (self.lowerHalf.peek() + self.upperHalf.peek())/2 self.median = self.lowerHalf.peek() def getMedian(self): return self.median if __name__ == '__main__': with open('Median.txt') as file: arr = [int(line) for line in file] med = continuousMedianHandler() res = 0 for i in range(len(arr)): med.insertVal(arr[i]) res += med.getMedian() #print(med.getMedian(),end =',') print(res%10000)
[ "pratyushgarg2017@gmail.com" ]
pratyushgarg2017@gmail.com
b5a7140d7dc130dcdf39d4584f59b48f6e8762d8
df901b7165323f1b03bc690d639c603bbeac9d5c
/airflow/providers/papermill/operators/papermill.py
8e5cfe6beb326cd1ba26c3823497e9dcfd3121ff
[ "Apache-2.0", "BSD-3-Clause", "MIT", "BSD-2-Clause", "Python-2.0" ]
permissive
nikspatel03/airflow
04d81ccbe0a53a95e058afb3f6fc98427a65ff4b
39375c01ced008a715bb2a540df31fe2cf908bbb
refs/heads/master
2020-12-27T01:20:18.614360
2020-02-01T17:11:35
2020-02-01T17:11:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,574
py
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Dict, Optional import attr import papermill as pm from airflow.lineage.entities import File from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults @attr.s(auto_attribs=True) class NoteBook(File): type_hint: Optional[str] = "jupyter_notebook" parameters: Optional[Dict] = {} meta_schema: str = __name__ + '.NoteBook' class PapermillOperator(BaseOperator): """ Executes a jupyter notebook through papermill that is annotated with parameters :param input_nb: input notebook (can also be a NoteBook or a File inlet) :type input_nb: str :param output_nb: output notebook (can also be a NoteBook or File outlet) :type output_nb: str :param parameters: the notebook parameters to set :type parameters: dict """ supports_lineage = True @apply_defaults def __init__(self, input_nb: Optional[str] = None, output_nb: Optional[str] = None, parameters: Optional[Dict] = None, *args, **kwargs) -> None: super().__init__(*args, **kwargs) if input_nb: self.inlets.append(NoteBook(url=input_nb, parameters=parameters)) if output_nb: self.outlets.append(NoteBook(url=output_nb)) def execute(self, context): if not self.inlets or not self.outlets: raise ValueError("Input notebook or output notebook is not specified") for i in range(len(self.inlets)): pm.execute_notebook(self.inlets[i].url, self.outlets[i].url, parameters=self.inlets[i].parameters, progress_bar=False, report_mode=True)
[ "noreply@github.com" ]
nikspatel03.noreply@github.com
f6b9d1c4d566ee024922349938ea97c3771a96fc
c8fcb8561ca9037969329b8aa7c5650a3405ff4a
/mhb-py/mhb_createjson_09-ratio_registr.py
e3391b79ab232a21c674acaafb522ee815264aa3
[]
no_license
dbrechet/moocheartbeat
b0d15ad89f5c301abad302b0cea88651a1b34dd8
af2f8652c27d37a26ee72a3e9930d32e1931e2c6
refs/heads/master
2021-01-02T09:43:29.673584
2015-01-12T10:12:35
2015-01-12T10:12:35
24,980,137
0
0
null
null
null
null
UTF-8
Python
false
false
9,021
py
#!/usr/bin/env python #title :mhb_createjson_ratio_registr.py #description :This will make a query to the database and create a json file to store the data. The data is lecture_view_total. #author :dbrechet #date :20141014 #version :0.1 #usage :python mhb_createjson_ratio_registr.py #notes : #python_version :2.7.6 #============================================================================== # Import the modules needed to run the script. import sys import os import MySQLdb import io import json from datetime import datetime from datetime import timedelta from time import mktime from array import * # Create dict structure of the json file. data_dict_name =[] data_dict_value = [] # genneral info data_dict_name.append("type") data_dict_value.append("serial") data_dict_name.append("theme") data_dict_value.append("none") data_dict_name.append("pathToImages") data_dict_value.append("http://www.amcharts.com/lib/3/images/") #legend item_name = [] item_value = [] item_name.append("equalWidths") item_value.append("true") item_name.append("periodValueText") item_value.append("total: [[value.sum]]") item_name.append("position") item_value.append("top") item_name.append("valueAlign") item_value.append("left") item_name.append("valueWidth") item_value.append(100) legend_dict = dict(zip(item_name, item_value)) data_dict_name.append("legend") data_dict_value.append(legend_dict) # Open database connection db = MySQLdb.connect(host='localhost', user='mhbuser', passwd='mhb23!', db='moocheartbeat') # prepare a cursor object using cursor() method cursor = db.cursor() #"graphs" dict_graphs =[] sql_sessions = "SELECT distinct(session) FROM mhb_coursera WHERE 1" cursor.execute(sql_sessions) rows_sessions = cursor.fetchall() for row_ses in rows_sessions: item_graph_name = [] item_graph_value = [] item_graph_name.append("balloonText") item_graph_value.append("<span style='font-size:10px; color:#000000;'><b>[[title]]: [[value]]</b></span>") item_graph_name.append("fillAlphas") item_graph_value.append(0.6) item_graph_name.append("lineAlpha") item_graph_value.append(0.4) item_graph_name.append("title") item_graph_value.append(row_ses[0]) item_graph_name.append("type") item_graph_value.append("column") item_graph_name.append("valueField") item_graph_value.append(row_ses[0]) dict_graph = dict(zip(item_graph_name,item_graph_value)) dict_graphs.append(dict_graph) data_dict_name.append("graphs") data_dict_value.append(dict_graphs) data_dict_name.append("plotAreaBorderAlpha") data_dict_value.append(0) data_dict_name.append("marginTop") data_dict_value.append(10) data_dict_name.append("marginLeft") data_dict_value.append(0) data_dict_name.append("marginBottom") data_dict_value.append(0) # dataProvider datadict = [] sql_item_min_max = """SELECT min(item) as min_item, max(item) as max_item FROM mhb_coursera WHERE 1""" cursor.execute(sql_item_min_max) rows_minmax = cursor.fetchall() for r in rows_minmax: min_i = r[0] max_i = r[1] d = min_i while d <= max_i: #sql_item = """SELECT item # FROM mhb_coursera # WHERE 1 # GROUP BY item ORDER BY item ASC""" #cursor.execute(sql_item) #rows = cursor.fetchall() #for row in rows: data_item = d.isoformat() dw = d + timedelta(days=7) data_item_week = dw.isoformat() sql_session = """SELECT session, registrations, assignment_total/assignment_unique as assignment_ratio_registr, forum_comment_total/forum_comment_unique as forum_comment_ratio_registr, forum_post_total/forum_post_unique as forum_post_ratio_registr, lecture_download_total/lecture_download_unique as lecture_download_ratio_registr, lecture_view_total/lecture_view_unique as lecture_view_ratio_registr, quiz_exam_total/quiz_exam_unique as quiz_exam_ratio_registr, quiz_homework_total/quiz_homework_unique as quiz_homework_ratio_registr, quiz_quiz_total/quiz_quiz_unique as quiz_quiz_ratio_registr, quiz_survey_total/quiz_survey_unique as quiz_survey_ratio_registr, quiz_video_total/quiz_video_unique as quiz_video_ratio_registr FROM mhb_coursera WHERE item between '""" + data_item + "' AND '" + data_item_week + "' ORDER BY session ASC" cursor.execute(sql_session) rows_session = cursor.fetchall() sessions = [] regs = [] sessions.append ('item') regs.append (mktime(d.timetuple())) for row_s in rows_session: nvrow = 0 for row_c in row_s: if row_c != row_s[0]: if row_c is None: row_c = 0 row_c= float(row_c) nvrow = nvrow + row_c if nvrow != 0: sessions.append(row_s[0]) regs.append (round(nvrow,2)) sess_dict = dict(zip(sessions, regs)) datadict.append(sess_dict) d = dw data_dict_name.append("dataProvider") data_dict_value.append(datadict) #valueAxes list_va = [] item_va_name = [] item_va_value = [] item_va_name.append("stackType") item_va_value.append("regular") item_va_name.append("gridAlpha") item_va_value.append(0.07) item_va_name.append("position") item_va_value.append("left") item_va_name.append("title") item_va_value.append("Ratio + Registration") va_dict = dict(zip(item_va_name, item_va_value)) list_va.append(va_dict) data_dict_name.append("valueAxes") data_dict_value.append(list_va) #"chartScrollbar" item_chartScrollbar_name = [] item_chartScrollbar_value = [] dict_chartScrollbar = dict(zip(item_chartScrollbar_name, item_chartScrollbar_value)) data_dict_name.append("chartScrollbar") data_dict_value.append(dict_chartScrollbar) #"chartCursor" item_chartCursor_name = ["cursorAlpha"] item_chartCursor_value = [0] dict_chartCursor = dict(zip(item_chartCursor_name, item_chartCursor_value)) data_dict_name.append("chartCursor") data_dict_value.append(dict_chartCursor) data_dict_name.append("categoryField") data_dict_value.append("item") #"categoryAxis" item_categoryAxis_name = [] item_categoryAxis_value = [] item_categoryAxis_name.append("startOnAxis") item_categoryAxis_value.append("true") item_categoryAxis_name.append("axisColor") item_categoryAxis_value.append("#DADADA") item_categoryAxis_name.append("gridAlpha") item_categoryAxis_value.append(0.07) item_categoryAxis_name.append("equalSpacing") item_categoryAxis_value.append("true") item_categoryAxis_name.append("parseDates") item_categoryAxis_value.append("true") item_categoryAxis_name.append("minPeriod") item_categoryAxis_value.append("7DD") item_categoryAxis_name.append("twoLineMode") item_categoryAxis_value.append("true") dict_categoryAxis = dict(zip(item_categoryAxis_name, item_categoryAxis_value)) data_dict_name.append("categoryAxis") data_dict_value.append(dict_categoryAxis) data_dict = dict(zip(data_dict_name, data_dict_value)) #print json.dumps(data_dict, sort_keys=True, indent=4, separators=(',', ': ')) with io.open('mhb-data/09_courses-ratio-registr.json', 'w', encoding='utf-8') as f: f.write(unicode(json.dumps(data_dict, sort_keys=True, indent=4, separators=(',', ': '), ensure_ascii=False))) jsfilename ='mhb-js/09_courses-ratio-registr.js' jsmessage = """ var data = d3.json("mhb-data/09_courses-ratio-registr.json", function(error, data){ var chart = AmCharts.makeChart("chartdiv", data); });""" with io.open(jsfilename, 'w', encoding='utf-8') as fj: fj.write(unicode(jsmessage)) htmlfilename = '09_test-courses-ratio-registr.html' htmlmessage = """ <!DOCTYPE html> <html> <head> <title>Iter 03: 09, Courses Ratio | amCharts</title> <meta name="description" content="chart created using amCharts live editor" /> <!-- amCharts javascript sources --> <script type="text/javascript" src="mhb-libscripts/amcharts.js"></script> <script type="text/javascript" src="mhb-libscripts/serial.js"></script> <script type="text/javascript" src="mhb-libscripts/none.js"></script> <script type="text/javascript" src="mhb-libscripts/d3.min.js"></script> <!-- amCharts javascript code --> <script type="text/javascript" src="mhb-js/09_courses-ratio-registr.js"></script> <link rel="stylesheet" type="text/css" href="mhb-css/AMChart.css" media="screen" /> </head> <body> <a href="index.html">Back</a> <div id="chartdiv"></div> </body> </html> """ with io.open(htmlfilename, 'w', encoding='utf-8') as fh: fh.write(unicode(htmlmessage)) #data_dict_name.append() #data_dict_value.append() # disconnect from server db.close()
[ "david.brechet@epfl.ch" ]
david.brechet@epfl.ch
f3a14d75cb6f74deff6199083aa4c00c43f44e3c
52084ad3ce08eed62fb8286964624eec4f775fb3
/gig_finder/musicians/apps.py
460a778a3f1c8289055aecfd4d1aee0b10494ebf
[]
no_license
armoredpigeon1111/gig_finder_backend
efd954cb384b3fad0099a5f2094b7785b3179e41
97aa8f6ce19e700b2e6a906e43fbd33d4cae364c
refs/heads/main
2023-09-01T14:24:29.862928
2021-10-12T23:19:39
2021-10-12T23:19:39
414,647,177
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
from django.apps import AppConfig class MusiciansConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'musicians'
[ "armoredpigeon1111@outlook.com" ]
armoredpigeon1111@outlook.com
dfb8e76f0fccedb60e1e39eeb3046d19447bd0fb
dad17e34a71a097ccf9b6237b34ee733699a8f83
/exercise_16.py
2bd473f80df200368fd1ccf1bcc2ffd30d394c57
[]
no_license
artazm/practice-python-sol
0cba85c31f9f45f0c935729f24299ae06ef8523c
299971cc07811dcf07d9b8f7c9683a1054c3f45d
refs/heads/master
2021-01-16T06:51:24.129086
2020-02-25T14:13:36
2020-02-25T14:13:36
243,014,947
0
0
null
null
null
null
UTF-8
Python
false
false
573
py
# Password Generator # weak (1-3) medium (4-6) strong () import random passw = ['write', 'a', 'password', 'generator', 'python', 'creative', 'mix'] num = list(str(range(0, 10))) symbols = ['!', '@', '#', '$', '%', '&', '*'] pass_gen = passw + symbols + num i = 0 strength = input('How strong you want your password: ') if strength == 'weak': i = random.randint(1, 3) elif strength == 'medium': i = random.randint(4, 6) elif strength == 'strong': i = random.randint(7, 9) gen_pass = random.sample(pass_gen, i) print(''.join(gen_pass))
[ "noreply@github.com" ]
artazm.noreply@github.com
c7a690e0922c0f2a1823e095494aaedf862b75aa
1e297bf3ed06537471d5d3f7109c6a9c8caf0827
/HelloWorld/oop_init.py
bf168233ee1be972f9188c360481b5c930df3396
[]
no_license
holyhan/Python-practice
0ac0e1c44982c2e241e964024416439e5b27d863
82423550445b1f3d61594fb2afd99cbef57795e4
refs/heads/master
2020-03-19T08:00:41.405680
2018-09-12T08:46:50
2018-09-12T08:46:50
136,168,066
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
class Person: def __init__(self, name): self.name = name def say_hi(self): print('Hello, my name is', self.name) p = Person('Swaroop') p.say_hi() # 前面两行同时也能写作 # Person('Swaroop').say_hi()
[ "hanyang08@meituan.com" ]
hanyang08@meituan.com
97c119f4d923746ea4284cbf0f78cfa18e90c6e2
dcd6eb3161a4fd906f15c36b92bb562edc330f33
/PycharmProjects/Matplotlib/test/test_1.py
51c9b7921856c8a53f16bf9d0442a4d237020e95
[]
no_license
ZHANGDINGREN123/numpy-pandas
50c0ed8a0b6e496a6f9ca365078370a5324eb47a
61c2b312f6a43c15996f6189dcfc4083a7be501c
refs/heads/master
2021-09-14T04:13:09.570371
2018-05-08T09:22:53
2018-05-08T09:22:53
106,893,745
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
a = [1, 2, 3, 4, 3, 2, 1, 1] a.append(0)#追加0 a.insert(2,100) a.remove(1) print(a[len(a) - 2]) print ("数组a的长度:",len(a)) print(a) print(a[-1]) print("返回4的下标",a.index(4)) print("出现一的次数",a.count(1)) a.sort()#从小到大排序 print("从小到大排序",a)
[ "877905831@qq.com" ]
877905831@qq.com
fd98185f7e9703dffba7abb5f1031c7a0ea7b835
da96d29b457eb123c01274efea562448df105fc6
/chapter4/st8.py
8eaec17aec53c648c569598be9a899ae03e3fa6e
[]
no_license
Alonsovau/sketches
a1336f1a7909ad059744c4613ab992c8361264f5
dfb072086cc813d7409fa11393ebaad6e26db180
refs/heads/master
2021-01-19T22:29:15.827896
2017-10-19T15:37:28
2017-10-19T15:37:28
88,761,672
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
# 跳过可迭代对象的开始部分 with open('somefile.txt') as f: for line in f: print(line, end='') print() from itertools import dropwhile with open('somefile.txt') as f: for line in dropwhile(lambda l: l.startswith('#'), f): print(line, end='') print() from itertools import islice items = ['a', 'b', 'c', 1, 2, 4] for x in islice(items, 3, None): print(x)
[ "alonsovau@outlook.com" ]
alonsovau@outlook.com
1cfac28232ffbf3f5da95399128712f4d11ba2de
7ed748584247a743c30de0c790ccbcb60ffef574
/Crawler/study/class8.py
b7d0248be2c0072ec458ea7acd938c98e06ee272
[]
no_license
quqiao/eshare
18f28640c9814d21ec44a69a3acb6c0968243daa
fe221e4187a26da9b5f93d5f68bf6ff64d581d73
refs/heads/master
2020-04-01T19:31:09.484384
2019-04-25T01:52:37
2019-04-25T01:52:37
153,551,784
0
0
null
null
null
null
UTF-8
Python
false
false
1,462
py
# coding=utf-8 ''' Created on 2019年04月12日 @author: quqiao 第八课:进程,线程的初步了解 ''' # 进程:程序并不能单独运行,只有将程序装载到内存中,系统为他分配资源才能运行,而这种执行的程序称为进程 # 程序和进程区别:程序是指令的集合,它是进程的静态描述文本。进程是程序的一次执行活动,属于动态概念 # 进程的概念:进程是操作系统对一个正在运行的程序的一种抽象。即进程是处理器,主存,IO设备的抽象,操作系统可以同时运行多个 # 进程,而每个进程都好像在毒战的使用硬件 # 并发运行:一个进程的指令和另外一个进程的指令是交错执行的 # 上下文切换:CPU看上去像是在并发的执行多个进程,这是通过处理器在进程之间切换来实现的,操作系统实现这种交错执行的机制称 # 为上下文切换 # 线程:操作系统能够进行运算跳读的最小单位,被包含在进程中,是进程中的实际运作单位 # 一个进程实际上可以由多个线程的执行单元组成,每个线程都运行在进程的上下文中,并共享同样的代码和全局数据 # 并发和并行的概念 # 并发:指的是同时具有多个活动的系统 # 并行:指的是用并发来使一个系统运行的更快,并行可以在操作系统的多个抽象层次进行运用
[ "trnwk8r@dingtalk.com" ]
trnwk8r@dingtalk.com
ba34b1efd290267f29bc5f2d582adaa0c9e66d9f
f5a351cb77d5c8e1e1f4d53fd24e9654d26e55f7
/examples/bokeh/bokeh_plot_violin.py
98b569b926785c40ad79922fb4b5fb2357318d3e
[ "Apache-2.0" ]
permissive
JulianPedro/arviz
f8e37e03eb07247dbdd77908d8bb5d8321319249
92f9e5bcda03468c228735fe16a52c2f7e616762
refs/heads/main
2023-08-11T17:45:17.427084
2021-10-03T10:43:26
2021-10-03T10:43:26
413,251,708
1
0
Apache-2.0
2021-10-04T02:33:59
2021-10-04T02:33:58
null
UTF-8
Python
false
false
182
py
""" Violinplot ========== _thumb: .2, .8 """ import arviz as az data = az.load_arviz_data("non_centered_eight") ax = az.plot_violin(data, var_names=["mu", "tau"], backend="bokeh")
[ "noreply@github.com" ]
JulianPedro.noreply@github.com
d7d72f77c945542c4ce6e6ffd6dd52fc758c5f4a
1bcb966740f47c0edc23e9b05afec55f2bcae36a
/app/share/dbopear/dbItems.py
91bb279962de43eaf9ac657f7002bf23c5741bd5
[]
no_license
East196/diabloworld
0d2e9dbf650aa86fcc7b9fc1ef49912e79adb954
d7a83a21287ed66aea690ecb6b73588569478be6
refs/heads/master
2021-05-09T12:15:31.640065
2018-02-04T15:16:54
2018-02-04T15:16:54
119,007,609
3
2
null
null
null
null
UTF-8
Python
false
false
993
py
#coding:utf8 ''' Created on 2011-7-14 对物品表(tb_item)的操作 @author: lan (www.9miao.com) ''' from gfirefly.dbentrust.dbpool import dbpool from pymysql.cursors import DictCursor all_ItemTemplate = {} #所有的物品模板信息 ALL_SETINFO = {} def getAll_ItemTemplate(): """获取所有的物品信息 """ global all_ItemTemplate sql="select * from `tb_item_template`" conn = dbpool.connection() cursor = conn.cursor(DictCursor) cursor.execute(sql) result=cursor.fetchall() cursor.close() conn.close() for _item in result: all_ItemTemplate[_item['id']] = _item def getAllsetInfo(): '''获取所有的套装信息 ''' global ALL_SETINFO sql = "SELECT * from tb_equipmentset;" conn = dbpool.connection() cursor = conn.cursor(DictCursor) cursor.execute(sql) result = cursor.fetchall() cursor.close() conn.close() for setinfo in result: ALL_SETINFO[setinfo['id']] = setinfo
[ "2901180515@qq.com" ]
2901180515@qq.com
0b3934663c0b429b89e7064ed4f2eb1e29285a06
ea85259d8dff0fd8257e9132bdd4bf9d7b506a64
/conf.py
78e9dcbf9f97f8a410e92af41fd9f1ccdc48807a
[]
no_license
KartavyaKothari/DOCSFOR-
bd15fc6ea7a92ac5e7f0310693d2dc204f89c88c
59ebbdf4dc5d181de00722e82460279bf5a6e730
refs/heads/master
2022-11-24T06:48:49.859648
2019-11-27T02:58:53
2019-11-27T02:58:53
224,326,527
0
0
null
2022-11-21T22:41:22
2019-11-27T02:23:55
TeX
UTF-8
Python
false
false
1,942
py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'Automated Essay Grader' copyright = '2019, Kartavya, Aditya, Shreyansh' author = 'Kartavya, Aditya, Shreyansh' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.napoleon' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ['_static']
[ "kartavya@cse.iitb.ac.in" ]
kartavya@cse.iitb.ac.in
5405576a4d430f4961545624fd7cb1ee1c920862
2e816dc7654fc8e124fd9adfe26a6c9adcf92542
/parsetext.py
07f96d6eb31f43e8cfba36707bafa788ea1b2aaa
[]
no_license
carlosmcastro/PlanetAPP-BACKEND-
9db8d458a5d388dcd3e7b66737ed98675ebbe57d
583511fe3d5f7295f2120a22c3d208b84b21bd0a
refs/heads/master
2021-02-11T09:02:11.033396
2020-03-11T17:45:57
2020-03-11T17:45:57
244,475,414
0
0
null
null
null
null
UTF-8
Python
false
false
1,625
py
#encoding: utf-8 from container_constantes import ASTRO_DATA, EQUIVALENCIAS from exoplanets import concor import pandas as pd data=pd.read_csv(ASTRO_DATA) #Data from binary stellar systems have been cleaned. data=data.drop(data.loc[data['pl_cbflag']==1].index) #Busquedador principal. def whopl(who_type, elec, elec_filt): filt_data=data.copy() #copia elec = [concor(i, EQUIVALENCIAS) for i in elec] #si se a cometido un error se corrige. elecciones = {EQUIVALENCIAS[i] : i for i in elec} if who_type=='equal': for i in elec_filt: filt_data=filt_data[filt_data[EQUIVALENCIAS[concor(i, EQUIVALENCIAS)]]==elec_filt[i]] else: for i in elec_filt: filt_data=filt_data[(filt_data[EQUIVALENCIAS[concor(i, EQUIVALENCIAS)]]>elec_filt[i][0]) & (filt_data[EQUIVALENCIAS[concor(i, EQUIVALENCIAS)]]<elec_filt[i][1])] return filt_data[elecciones.keys()].drop_duplicates().rename(columns=elecciones).to_dict('list') #Busca los planetas que cumplen la condición exacta. #Ejemplo: whopl_equal('nombre_planeta', 'edad_estrella', edad_estrella=1.60) def whopl_equal(*args ,**kargs): return whopl('equal', args, kargs) #Busca los planetas que cumplen la condición dentro de un intervalo. #Ejemplo 1: whopl_inequal('nombre_planeta', 'distancia_estrella', edad_estrella=(1,2), distancia_estrella=(2, 25)) #Ejemplo 2: whopl_inequal('nombre_planeta', 'distancia_estrella', distancia_estrella=(7000, float('inf'))) #Se debe usar float('-inf') ó float('inf') para establecer una cota superior o inferior. def whopl_inequal(*args, **kargs): return whopl('inequal', args, kargs)
[ "noreply@github.com" ]
carlosmcastro.noreply@github.com
a268bbdbc9b761a6f089807becb2a5f481bbd7be
ecfd331cfc18ca5cdddabea142ba1be8cc933e05
/battle/classes/magic.py
8766bea58303a38b5478fc7203a2b0b7c34f6381
[]
no_license
jaybane-git/phython-source
c232a65c007256f0676ba61119186fcb04738516
45697595a91778cf830c1f4c89c3aac679b8e9ee
refs/heads/main
2023-01-21T03:17:34.712333
2020-12-01T17:37:29
2020-12-01T17:37:29
317,559,187
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
class Spell: def __init__(self, name, cost, dmg, type): self.name = name self.cost = cost self.dmg = dmg self.type = type
[ "jaybane@hotmail.com" ]
jaybane@hotmail.com
1b91fdde98fe3757f8f4dd5d71b99236dbfdcc6c
1cc37210c56ad03dfa2d8364fa448797b69d68e6
/Wettbewerbe/migrations/0002_auto_20170311_1954.py
c5ca12147dc0ecc5d4314cbe1be8dc94163825a9
[ "MIT" ]
permissive
wmles/olymp
f536ad8a2054930995301e9110add74fcb824259
97b1a256982c2a75c39ba3a855b63a147d4409c5
refs/heads/master
2020-05-18T14:40:26.216562
2017-08-27T13:46:44
2017-08-27T13:48:35
84,254,085
0
0
null
null
null
null
UTF-8
Python
false
false
4,612
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-11 19:54 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('Wettbewerbe', '0001_initial'), ] operations = [ migrations.RenameField( model_name='artkategorie', old_name='datum_erstellt', new_name='zeit_erstellt', ), migrations.RenameField( model_name='artteilnahme', old_name='datum_erstellt', new_name='zeit_erstellt', ), migrations.RenameField( model_name='artveranstaltung', old_name='datum_erstellt', new_name='zeit_erstellt', ), migrations.RenameField( model_name='person', old_name='datum_erstellt', new_name='zeit_erstellt', ), migrations.RenameField( model_name='teilnahme', old_name='datum_erstellt', new_name='zeit_erstellt', ), migrations.RenameField( model_name='unterseite', old_name='datum_erstellt', new_name='zeit_erstellt', ), migrations.RenameField( model_name='veranstaltung', old_name='datum_erstellt', new_name='zeit_erstellt', ), migrations.RenameField( model_name='wettbewerbskategorie', old_name='datum_erstellt', new_name='zeit_erstellt', ), migrations.AddField( model_name='artkategorie', name='slug', field=models.SlugField(blank=True, max_length=30), ), migrations.AddField( model_name='artkategorie', name='zeit_geaendert', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='artteilnahme', name='slug', field=models.SlugField(blank=True, max_length=30), ), migrations.AddField( model_name='artteilnahme', name='zeit_geaendert', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='artveranstaltung', name='slug', field=models.SlugField(blank=True, max_length=30), ), migrations.AddField( model_name='artveranstaltung', name='zeit_geaendert', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='person', name='nutzer', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='person', name='slug', field=models.SlugField(blank=True, max_length=30), ), migrations.AddField( model_name='person', name='zeit_geaendert', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='teilnahme', name='slug', field=models.SlugField(blank=True, max_length=30), ), migrations.AddField( model_name='teilnahme', name='zeit_geaendert', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='unterseite', name='slug', field=models.SlugField(blank=True, max_length=30), ), migrations.AddField( model_name='unterseite', name='zeit_geaendert', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='veranstaltung', name='slug', field=models.SlugField(blank=True, max_length=30), ), migrations.AddField( model_name='veranstaltung', name='zeit_geaendert', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='wettbewerbskategorie', name='slug', field=models.SlugField(blank=True, max_length=30), ), migrations.AddField( model_name='wettbewerbskategorie', name='zeit_geaendert', field=models.DateTimeField(auto_now=True), ), ]
[ "ilja.goethel@arcor.de" ]
ilja.goethel@arcor.de
dad300ee7448615a5b4d43887b4c87e13ffb1cc0
80d9d8263a62fbbd730a7d44cc926a0cb791f2c8
/Solver.py
19bc4e2617a362442332c010f32fd225d451c5c2
[]
no_license
fazzadr/Skyline_in_Crowdsourcing_with_Imprecise_Comparisons
8fc02d5607b6a2770ac21385540d127447b2b42c
90aa96acb3dd97e1f26d451affa45f2cebc32b55
refs/heads/main
2023-07-12T04:22:08.918828
2021-08-17T17:12:17
2021-08-17T17:12:17
397,330,235
0
0
null
null
null
null
UTF-8
Python
false
false
41,076
py
import math import numpy as np import random import itertools as it import pprint as pp from setuptools.command.install_egg_info import install_egg_info class Solver: # crowdsourcing comparisons made by one sky algorithm ###### sky_comparisons = set() # set_comparisons__point_1__point_2__dim = set() # first sorted dim # first_sorted_dimension = [] # #comparisons needed to sort the first dimension # set_comparisons__first_dim = set() def __init__(self): # self.set_comparisons__point_1__point_2__dim = set() # self.num_crowd_phases = 0 # self.first_sorted_dimension = [] self.set_comparisons__first_dim = set() self.num_crowd_phases__first_dim = 0 # # return # ## ### def get_num_comparisons_performed_by_the_last_method(self): return len(self.set_comparisons__point_1__point_2__dim) # ## ### def round_robin_tournament_scores(self, list__point, d, worker): """ RR-Turnament :param list__point: :param d: :return: """ scores = 0 map__point__num_wins = dict(zip(list__point, [0 for x in range(len(list__point))])) for i in range(len(list__point)): for j in range(i + 1, len(list__point)): if worker.is_point_1_smaller_than_point_2(list__point[i], list__point[j], d, self.set_comparisons__point_1__point_2__dim): map__point__num_wins[list__point[j]] += 1 else: map__point__num_wins[list__point[i]] += 1 return map__point__num_wins # def get_theoretical_num_comps_in_a_single_round_in_WC_scenario(self, n): # theoretical_best_value_for_s_in_WC_scenario = 64 if n <= 64 else math.floor(math.sqrt(2 * n)) # theoretical_num_comps_in_this_round_in_WC_scenario = theoretical_best_value_for_s_in_WC_scenario * ( theoretical_best_value_for_s_in_WC_scenario - 1) / 2 theoretical_num_comps_in_this_round_in_WC_scenario += (n - theoretical_best_value_for_s_in_WC_scenario) # return theoretical_num_comps_in_this_round_in_WC_scenario # ## def twoSort(self, list__point, worker, d, map__num_points__best_s=None, try_random_quicksort=False, total_amount_of_allowed_comparisons=float("+inf"), tare_of_num_comparisons=0): """ The 2Sort Algorithm by Ajtai at al. :param points: :param d: :param map__num_points__best_s: :return: Sorted list of points in DESCENDING order. """ # s = math.floor(math.sqrt(2 * len(list__point))) if map__num_points__best_s is not None and len(list__point) in map__num_points__best_s: s = map__num_points__best_s[len(list__point)] # # if try_random_quicksort and total_amount_of_allowed_comparisons > 0: s = 1 # # c_num_crowd_phases = 0 # # if (len(list__point) > s): # # predicted_num_comparisons_current_round = ((s * (s - 1)) / 2) + (len(list__point) - s) # ############################################################## num_comparisons_performed_so_far = len( self.set_comparisons__point_1__point_2__dim) - tare_of_num_comparisons # if try_random_quicksort and total_amount_of_allowed_comparisons < num_comparisons_performed_so_far + predicted_num_comparisons_current_round: if (map__num_points__best_s is not None) and (len(list__point) in map__num_points__best_s): s = map__num_points__best_s[len(list__point)] else: s = math.floor(math.sqrt(2 * len(list__point))) ############################################################## # num_comps_t0 = len(self.set_comparisons__point_1__point_2__dim) # random_subset_of_points = np.random.choice(a=list__point, size=s, replace=False) sorted_list_points_desc_num_wins = [x[0] for x in sorted(self.round_robin_tournament_scores(random_subset_of_points, d, worker).items(), key=lambda kv: -kv[1])] pivot = sorted_list_points_desc_num_wins[round(s / 2.)] # num_comps_t1 = len(self.set_comparisons__point_1__point_2__dim) if num_comps_t1 > num_comps_t0: c_num_crowd_phases += 1 # # num_comps_t0 = len(self.set_comparisons__point_1__point_2__dim) # (list__point_1, list__point_2) = self.pivot_splitting(list__point, worker, pivot, d) # num_comps_t1 = len(self.set_comparisons__point_1__point_2__dim) if num_comps_t1 > num_comps_t0: c_num_crowd_phases += 1 # # list__point_1, num_crowd_phases_1 = self.twoSort(list__point_1, worker, d, map__num_points__best_s, try_random_quicksort, total_amount_of_allowed_comparisons=total_amount_of_allowed_comparisons, tare_of_num_comparisons=tare_of_num_comparisons) list__point_2, num_crowd_phases_2 = self.twoSort(list__point_2, worker, d, map__num_points__best_s, try_random_quicksort, total_amount_of_allowed_comparisons=total_amount_of_allowed_comparisons, tare_of_num_comparisons=tare_of_num_comparisons) # c_num_crowd_phases += max(num_crowd_phases_1, num_crowd_phases_2) # # return list__point_2 + [pivot] + list__point_1, c_num_crowd_phases # # # # num_comps_t0 = len(self.set_comparisons__point_1__point_2__dim) # final_result = [x[0] for x in sorted(self.round_robin_tournament_scores(list__point, d, worker).items(), key=lambda kv: (-kv[1], kv[0].at(d)))] # num_comps_t1 = len(self.set_comparisons__point_1__point_2__dim) if num_comps_t1 > num_comps_t0: c_num_crowd_phases += 1 # # return final_result, c_num_crowd_phases # def pivot_splitting(self, list__point, worker, pivot, d): """ return two lists S1 and S2 such that S1 <_d pivot and S2 >_d pivot :param points: :param pivot: :param d: :return: """ list__point_1 = [] list__point_2 = [] for point in list__point: # if point == pivot: continue # if worker.is_point_1_smaller_than_point_2(pivot, point, d, self.set_comparisons__point_1__point_2__dim): list__point_1.append(point) else: list__point_2.append(point) return (list__point_2, list__point_1) # ## def twoMaxFind(self, list__point, worker, d, map__num_points__best_s=None, try_random_max=False, total_amount_of_allowed_comparisons=float("+inf"), tare_of_num_comparisons=0): """ :param list__point: :param worker: :param d: :param map__num_points__best_s: :param try_random_max: :param total_amount_of_allowed_comparisons: :param tare_of_num_comparisons: :return: """ # set__max = set() # # initial_s = math.ceil(math.sqrt(len(list__point))) s = initial_s if map__num_points__best_s is not None and len(list__point) in map__num_points__best_s: s = map__num_points__best_s[len(list__point)] # # if try_random_max and total_amount_of_allowed_comparisons > 0: s = 1 # # c_num_crowd_phases = 0 # # set_candidates_as_list_to_max__point = list(list__point) while len(set_candidates_as_list_to_max__point) > s: # # predicted_num_comparisons_current_round = ((s * (s - 1)) / 2) + ( len(set_candidates_as_list_to_max__point) - s) # ############################################################## num_comparisons_performed_so_far = len( self.set_comparisons__point_1__point_2__dim) - tare_of_num_comparisons # if try_random_max and total_amount_of_allowed_comparisons < num_comparisons_performed_so_far + predicted_num_comparisons_current_round: if (map__num_points__best_s is not None) and ( len(set_candidates_as_list_to_max__point) in map__num_points__best_s): s = map__num_points__best_s[len(set_candidates_as_list_to_max__point)] else: s = initial_s ############################################################## # num_comps_t0 = len(self.set_comparisons__point_1__point_2__dim) # # extract a random subset of candidates to be the max of size 's' random_subset_candidates_as_list_to_max__point = np.random.choice(a=set_candidates_as_list_to_max__point, size=s, replace=False) # # perform RR on the extracted random subset of candidates to be the max of size 's' map__point__RR_num_wins = self.round_robin_tournament_scores(random_subset_candidates_as_list_to_max__point, d, worker) # num_comps_t1 = len(self.set_comparisons__point_1__point_2__dim) if num_comps_t1 > num_comps_t0: c_num_crowd_phases += 1 # # # selct the point with maximum number of wins in the extracted random subset of candidates to be the max of size 's' local_max_point = max([(point, num_wins) for point, num_wins in map__point__RR_num_wins.items()], key=lambda x: x[1])[0] # # num_comps_t0 = len(self.set_comparisons__point_1__point_2__dim) # # compare the local max to all candidates and eliminate all elements that lose to him. set_candidates_as_list_to_max__point = self.update_set_of_candidates_for_the_max(local_max_point, set_candidates_as_list_to_max__point, d, worker) num_comps_t1 = len(self.set_comparisons__point_1__point_2__dim) if num_comps_t1 > num_comps_t0: c_num_crowd_phases += 1 # # # # # num_comps_t0 = len(self.set_comparisons__point_1__point_2__dim) # # perform RR on the final set of candidates to be the max of size <='s' map__point__RR_num_wins = self.round_robin_tournament_scores(set_candidates_as_list_to_max__point, d, worker) num_comps_t1 = len(self.set_comparisons__point_1__point_2__dim) if num_comps_t1 > num_comps_t0: c_num_crowd_phases += 1 # # selct the point with maximum number of wins in the extracted random subset of candidates to be the max of size 's' num_wins_of_max_point = max([(point, num_wins) for point, num_wins in map__point__RR_num_wins.items()], key=lambda x: x[1])[1] set__max = set( [point for point, num_wins in map__point__RR_num_wins.items() if num_wins == num_wins_of_max_point]) # return set__max, c_num_crowd_phases # def update_set_of_candidates_for_the_max(self, point, set_candidates_as_list_to_max__point, d, worker): # new_set_candidates_as_list_to_max__point = [point] # for index in range(len(set_candidates_as_list_to_max__point)): # c_point = set_candidates_as_list_to_max__point[index] # if point == c_point: continue # if not ( worker.is_point_1_smaller_than_point_2(c_point, point, d, self.set_comparisons__point_1__point_2__dim)): new_set_candidates_as_list_to_max__point.append(c_point) # return new_set_candidates_as_list_to_max__point # ## ### OLD def all_play_all(self, list__point, worker, use_complete_comparisons=False, reset_set_comparisons=True): """ APA algorithm for skln computation. :param list__point: :param use_complete_comparisons: :return: """ # if reset_set_comparisons: self.set_comparisons__point_1__point_2__dim = set() # set_of_dominated_indexes = set() self.num_crowd_phases = 1 # for i in range(len(list__point)): # point_i = list__point[i] # for j in range(len(list__point)): if j == i: continue # point_j = list__point[j] # # if worker.does_point_1_dominate_point_2(point_j, point_i, self.set_comparisons__point_1__point_2__dim, perform_all_comparisons=use_complete_comparisons): set_of_dominated_indexes.add(i) # skln = [] for i in range(len(list__point)): if i not in set_of_dominated_indexes: skln.append(list__point[i]) # return skln # ## ### OLD def all_play_all_2(self, list__point, worker, use_complete_comparisons=False, reset_set_comparisons=True): """ APA algorithm for skln computation. :param list__point: :param use_complete_comparisons: :return: """ # if reset_set_comparisons: self.set_comparisons__point_1__point_2__dim = set() # set_of_dominated_indexes = set() self.num_crowd_phases = 1 # list_of_i_indexes = list(range(len(list__point))) list_of_j_indexes = list(list_of_i_indexes) # random.shuffle(list_of_i_indexes) for i in list_of_i_indexes: # point_i = list__point[i] # # random.shuffle(list_of_j_indexes) for j in list_of_j_indexes: if j == i: continue # point_j = list__point[j] # # if worker.does_point_1_dominate_point_2(point_j, point_i, self.set_comparisons__point_1__point_2__dim, perform_all_comparisons=use_complete_comparisons): set_of_dominated_indexes.add(i) break # BrEaK!!! # # skln = [] for i in range(len(list__point)): if i not in set_of_dominated_indexes: skln.append(list__point[i]) # return skln # ## ### def repeated_twoMaxFind_for_skln(self, list__point, worker, reset_set_comparisons=True): """ Computes skln by repeating the 2MaxFind algorithm. :param list__point: :param worker: :param map__num_points__best_s: :return: """ skln = [] # skln_as_set = set() # if reset_set_comparisons: self.set_comparisons__point_1__point_2__dim = set() # # mapping point_id to the number of dimensions # the point has been selected as maximum ;) map__point_id__num_dimensions_in_which_it_has_been_selected_as_max = {} temp_list__point = None set__dimensions_out_of_the_skln = set() num_dimensions = list__point[0].n_dimensions map__dimension__inner_list__point = {c_dim: list(list__point) for c_dim in range(num_dimensions)} # while len(set__dimensions_out_of_the_skln) < num_dimensions: must_continue = True while must_continue: for d in range(num_dimensions): # # if d in set__dimensions_out_of_the_skln: # continue # # 2MF set__max, c_num_crowd_phases = self.twoMaxFind(map__dimension__inner_list__point[d], worker, d) # # print("----") # print(" repeated_twoMaxFind_for_skln ", " dim ", d, " |set__max|", len(set__max)) # for pppp in set__max: # print(" repeated_twoMaxFind_for_skln ", " dim ", pppp) # pp.pprint(map__point_id__num_dimensions_in_which_it_has_been_selected_as_max) # # there_is_at_least_one_max_out_of_skln = False for c_max in set__max: # # check if c_max is dominated by at least one point in the current skln c_max_out_of_the_skln = worker.does_exist_a_point_in_collection_that_dominates_the_input_point( skln, c_max, self.set_comparisons__point_1__point_2__dim) # # # is the c_max part of the skln? if not c_max_out_of_the_skln: # # add c_max to the current skln if c_max not in skln_as_set: skln.append(c_max) skln_as_set.add(c_max) # else: # must_continue = False # # if c_max.ID not in map__point_id__num_dimensions_in_which_it_has_been_selected_as_max: map__point_id__num_dimensions_in_which_it_has_been_selected_as_max[c_max.ID] = 0 map__point_id__num_dimensions_in_which_it_has_been_selected_as_max[c_max.ID] += 1 if num_dimensions == map__point_id__num_dimensions_in_which_it_has_been_selected_as_max[ c_max.ID]: must_continue = False # pp.pprint(map__point_id__num_dimensions_in_which_it_has_been_selected_as_max) # remove all c_maxS from the input collection of points temp_list__point = [point for point in map__dimension__inner_list__point[d] if point not in set__max] map__dimension__inner_list__point[d] = temp_list__point # # # return skln # ## def compute_skln_using_all_sorted_components(self, sorted_components): skln = [] # dimensions = len(sorted_components) while len(sorted_components[0]) > 0: new_skln_element = sorted_components[0][0] skln.append(new_skln_element) set_dominated__point = set(sorted_components[0]) for d in range(1, dimensions): index = sorted_components[d].index(new_skln_element) set_dominated__point = set_dominated__point.intersection(set(sorted_components[d][index:])) for d in range(0, dimensions): sorted_components[d] = [x for x in sorted_components[d] if x not in set_dominated__point] # return skln # ## ### def compute_deterministic_skln(self, list__point): skln = [] # sorted_components = [] # # Sort each component independtly. dimensions = list__point[0].n_dimensions for d in range(dimensions): # sorted_dimension = sorted(list__point, key=lambda x: (x.at(d)), reverse=True) sorted_components.append(sorted_dimension) # # # Compute skln using all sorted components. skln = self.compute_skln_using_all_sorted_components(sorted_components) # return skln # ## ### def compute_deterministic_sklnS_of_all_ORDERS(self, list__point): map__order__collection_of_points = {} map__point_id__order = {} list__point_id__order = [] # inner_set__point = set(list__point) # c_order = 0 while len(inner_set__point) > 0: # c_order += 1 inner_list__point = list(inner_set__point) # c_skln = self.compute_deterministic_skln(inner_list__point) # map__order__collection_of_points[c_order] = c_skln # for c_point in c_skln: inner_set__point.remove(c_point) # for c_order, c_collection_of_points in map__order__collection_of_points.items(): for c_point in c_collection_of_points: map__point_id__order[c_point.ID] = c_order list__point_id__order.append((c_point.ID, c_order)) # list__point_id__order.sort(key=lambda x: (x[1], x[0])) return list__point_id__order, map__order__collection_of_points, map__point_id__order # ## ### def OLD__random_skln(self, list__point, worker, reset_set_comparisons=True): """ No guarantees on ErRor! :param list__point: :param worker: :param reset_set_comparisons: :return: """ skln = [] # if reset_set_comparisons: self.set_comparisons__point_1__point_2__dim = set() # list_candidates__point = list__point.copy() while len(list_candidates__point) > 0: # s = random.choice(list_candidates__point) # s_eliminated = False list_candidates__point.remove(s) # deleted_points = [] for c_candidate in list_candidates__point: if worker.does_point_1_dominate_point_2(s, c_candidate, self.set_comparisons__point_1__point_2__dim): deleted_points.append(c_candidate) elif worker.does_point_1_dominate_point_2(c_candidate, s, self.set_comparisons__point_1__point_2__dim): s_eliminated = True # for deleted_point in deleted_points: list_candidates__point.remove(deleted_point) if not (s_eliminated): skln.append(s) # return skln # ## ### #### def divede_et_impera_skln(self, list__point, worker, num_partitions=10, sub_method="2sort_skln", super_method="2sort_skln", map__parameter__value={}, reset_set_comparisons=True): skln = [] # if reset_set_comparisons: self.set_comparisons__point_1__point_2__dim = set() # random.shuffle(list__point) # sigle_partition_size_float = len(list__point) / num_partitions sigle_partition_size = math.floor(len(list__point) / num_partitions) if sigle_partition_size_float > sigle_partition_size: sigle_partition_size += 1 # second_order_list__point = [] for index in range(0, len(list__point), sigle_partition_size): # c_chunk_list__point = list__point[index:index + sigle_partition_size] # c_chunk_skln = [] if sub_method == "_random_skln": c_chunk_skln = self.OLD__random_skln(c_chunk_list__point, worker, reset_set_comparisons=False) if sub_method == "2sort_skln": # map__num_points__best_s = None if "sub_method__map__num_points__best_s" in map__parameter__value: map__num_points__best_s = map__parameter__value["sub_method__map__num_points__best_s"] # c_chunk_skln = self.twoSort_skln(c_chunk_list__point, worker, map__num_points__best_s=map__num_points__best_s, reset_set_comparisons=False) if sub_method == "2lex_skln": # map__num_points__best_s = None if "sub_method__map__num_points__best_s" in map__parameter__value: map__num_points__best_s = map__parameter__value["sub_method__map__num_points__best_s"] # c_chunk_skln = self.lexicographic_skln(c_chunk_list__point, worker, inital_set_comparisons__point_1__point_2__dim=set(), map__num_points__best_s=map__num_points__best_s, reset_first_sorted_dimension=True, reset_set_comparisons=False) # second_order_list__point.extend(c_chunk_skln) # # print() # print(" |c_chunk_list__point|", str(len(c_chunk_list__point))) # print(" |c_chunk_skln|", str(len(c_chunk_skln))) # print(" |self.set_comparisons__point_1__point_2__dim|=", # len(self.set_comparisons__point_1__point_2__dim)) # print() # # # # print() # print("|second_order_list__point|", str(len(second_order_list__point))) # if len(second_order_list__point) != len(set(second_order_list__point)): # print() # print("len(second_order_list__point) != len(set(second_order_list__point)) !!!!!!") # print("len(second_order_list__point)", len(second_order_list__point)) # print("len(set(second_order_list__point))", len(set(second_order_list__point))) # exit(-1) # print() # print() if super_method == "_random_skln": skln = self.OLD__random_skln(second_order_list__point, worker, reset_set_comparisons=False) if super_method == "2sort_skln": # map__num_points__best_s = None if "super_method__map__num_points__best_s" in map__parameter__value: map__num_points__best_s = map__parameter__value["super_method__map__num_points__best_s"] # skln = self.twoSort_skln(second_order_list__point, worker, map__num_points__best_s=map__num_points__best_s, reset_set_comparisons=False) if super_method == "2lex_skln": # map__num_points__best_s = None if "super_method__map__num_points__best_s" in map__parameter__value: map__num_points__best_s = map__parameter__value["super_method__map__num_points__best_s"] # skln = self.lexicographic_skln(second_order_list__point, worker, inital_set_comparisons__point_1__point_2__dim=set(), map__num_points__best_s=map__num_points__best_s, reset_first_sorted_dimension=True, reset_set_comparisons=False) # return skln ##################################################################################### ##################################################################################### ##################################################################################### ##################################################################################### ##################################################################################### # ## ### def all_play_all_method_for_skln(self, list__point, worker, use_complete_comparisons=False, reset_set_comparisons=True): """ Compare each element to any other to isolate the ones that are not dominated. Any ErRoR guarantee??? No. :param list__point: :param worker: :param use_complete_comparisons: :param reset_set_comparisons: :return: """ # if reset_set_comparisons: self.set_comparisons__point_1__point_2__dim = set() # set_of_dominated_indexes = set() self.num_crowd_phases = 0 # list_of_indexes = list(range(len(list__point))) # random.shuffle(list_of_indexes) for i, j in it.combinations(list_of_indexes, 2): # point_i = list__point[i] point_j = list__point[j] # if worker.does_point_1_dominate_point_2(point_j, point_i, self.set_comparisons__point_1__point_2__dim, perform_all_comparisons=use_complete_comparisons): set_of_dominated_indexes.add(i) elif worker.does_point_1_dominate_point_2(point_i, point_j, self.set_comparisons__point_1__point_2__dim, perform_all_comparisons=use_complete_comparisons): set_of_dominated_indexes.add(j) # # # skln = [] for i in range(len(list__point)): if i not in set_of_dominated_indexes: skln.append(list__point[i]) # self.num_crowd_phases = 1 # return skln # ## ### def naive_method_for_skln(self, list__point, worker, use_complete_comparisons=False, reset_set_comparisons=True): """ Scan the set of points to isolate the ones that are dominated by other points. Any ErRoR guarantee??? No. :param list__point: :param worker: :param use_complete_comparisons: :param reset_set_comparisons: :return: """ # if reset_set_comparisons: self.set_comparisons__point_1__point_2__dim = set() # set_of_dominated_indexes = set() self.num_crowd_phases = 0 # list_of_i_indexes = list(range(len(list__point))) list_of_j_indexes = list(list_of_i_indexes) # random.shuffle(list_of_i_indexes) for i in list_of_i_indexes: # if i in set_of_dominated_indexes: continue # point_i = list__point[i] # # random.shuffle(list_of_j_indexes) num_comps_t0 = len(self.set_comparisons__point_1__point_2__dim) for j in list_of_j_indexes: if j == i: continue # if j in set_of_dominated_indexes: continue # # point_j = list__point[j] # # if worker.does_point_1_dominate_point_2(point_j, point_i, self.set_comparisons__point_1__point_2__dim, perform_all_comparisons=use_complete_comparisons): set_of_dominated_indexes.add(i) elif worker.does_point_1_dominate_point_2(point_i, point_j, self.set_comparisons__point_1__point_2__dim, perform_all_comparisons=use_complete_comparisons): set_of_dominated_indexes.add(j) # num_comps_t1 = len(self.set_comparisons__point_1__point_2__dim) if num_comps_t1 > num_comps_t0: self.num_crowd_phases += 1 # # # skln = [] for i in range(len(list__point)): if i not in set_of_dominated_indexes: skln.append(list__point[i]) # return skln # ## ### def lexicographic_skln(self, list__point, worker, inital_set_comparisons__point_1__point_2__dim=set(), map__num_points__best_s=None, reset_first_sorted_dimension=False, reset_set_comparisons=True, try_random_quicksort=False): """ Sove skln problem under the treshold-error model using a lexicographic-sort like method. :param list__point: :param worker: :param inital_set_comparisons__point_1__point_2__dim: :param map__num_points__best_s: :param reset_first_sorted_dimension: :return: """ # skln = [] # self.num_crowd_phases = 0 # if reset_set_comparisons: self.set_comparisons__point_1__point_2__dim = inital_set_comparisons__point_1__point_2__dim # list_candidates__point = list__point.copy() # if reset_first_sorted_dimension: self.first_sorted_dimension = [] self.num_crowd_phases__first_dim = 0 # # if (len(self.first_sorted_dimension) > 0): # # print("self.num_crowd_phases__first_dim", self.num_crowd_phases__first_dim) self.num_crowd_phases = self.num_crowd_phases__first_dim # if (len(self.set_comparisons__point_1__point_2__dim) == 0): list_candidates__point = self.first_sorted_dimension.copy() self.set_comparisons__point_1__point_2__dim = self.set_comparisons__first_dim.copy() else: # We already have the points sorted according to the first dimension. # We already have some performed comparison. # We must initialize the list of candidates according to # the order in the first dimension. set_of_input_points = set(list__point) list_candidates__point = [] for point in self.first_sorted_dimension: if point in set_of_input_points: list_candidates__point.append(point) # else: # total_amount_of_allowed_comparisons = float("+inf") if try_random_quicksort: total_amount_of_allowed_comparisons = int(4 * len(list_candidates__point) ** 1.5) + 1 # tare_of_num_comparisons = len(self.set_comparisons__point_1__point_2__dim) list_candidates__point, num_crowd_phases, = self.twoSort( list_candidates__point, worker, 0, map__num_points__best_s, try_random_quicksort, total_amount_of_allowed_comparisons=total_amount_of_allowed_comparisons, tare_of_num_comparisons=0) # num_comparisons_performed_by_2Sort = len( self.set_comparisons__point_1__point_2__dim) - tare_of_num_comparisons # print("zxcvbnm ", "num_comparisons_performed_by_2Sort=", num_comparisons_performed_by_2Sort, "4n**1.5=", int(4 * len(list_candidates__point) ** 1.5)) if (num_comparisons_performed_by_2Sort >= int(4 * len(list_candidates__point) ** 1.5)): print("asdfghjkl", "(num_comparisons_performed_by_2Sort >= int(4 * len(list_candidates__point) ** 1.5))") self.num_crowd_phases__first_dim = num_crowd_phases self.num_crowd_phases = num_crowd_phases # # print("lexicographic_skln", "dim", 0, self.num_crowd_phases) # while (len(list_candidates__point) > 0): # num_comps_t0 = len(self.set_comparisons__point_1__point_2__dim) # m = list_candidates__point[0] skln.append(m) deleted_pp = [m] for i in range(1, len(list_candidates__point)): if worker.does_point_1_dominate_point_2(m, list_candidates__point[i], self.set_comparisons__point_1__point_2__dim): deleted_pp.append(list_candidates__point[i]) for p in deleted_pp: list_candidates__point.remove(p) # num_comps_t1 = len(self.set_comparisons__point_1__point_2__dim) if num_comps_t1 > num_comps_t0: self.num_crowd_phases += 1 # print("lexicographic_skln", "phase_2", self.num_crowd_phases) # # return skln # ## ### def twoSort_skln(self, list__point, worker, map__num_points__best_s=None, reset_set_comparisons=True, try_random_quicksort=False): """ Compute the skln performing 'd' distinct 2Sort algorithms. :param list__point: :param map__num_points__best_s: :return: skln """ # if reset_set_comparisons: self.set_comparisons__point_1__point_2__dim = set() # self.set_comparisons__first_dim = set() skln = [] sorted_components = [] # self.num_crowd_phases = 0 max__num_crowd_phases = 0 # # total_amount_of_allowed_comparisons = float("+inf") if try_random_quicksort: total_amount_of_allowed_comparisons = int(4 * len(list__point) ** 1.5) + 1 # # apply 2Sort to each component independtly. dimensions = list__point[0].n_dimensions for d in range(dimensions): # tare_of_num_comparisons = len(self.set_comparisons__point_1__point_2__dim) sorted_dimension, c_dim__num_crowd_phases = self.twoSort(list__point, worker, d, map__num_points__best_s, try_random_quicksort, total_amount_of_allowed_comparisons=total_amount_of_allowed_comparisons, tare_of_num_comparisons=tare_of_num_comparisons) max__num_crowd_phases = c_dim__num_crowd_phases if c_dim__num_crowd_phases > max__num_crowd_phases else max__num_crowd_phases sorted_components.append(sorted_dimension) if d == 0: self.set_comparisons__first_dim = self.set_comparisons__point_1__point_2__dim.copy() self.num_crowd_phases__first_dim = c_dim__num_crowd_phases # # num_comparisons_performed_by_2Sort = len( self.set_comparisons__point_1__point_2__dim) - tare_of_num_comparisons # print("zxcvbnm ", "num_comparisons_performed_by_2Sort=", num_comparisons_performed_by_2Sort, "4n**1.5=", int(4 * len(list__point) ** 1.5)) if (num_comparisons_performed_by_2Sort >= int(4 * len(list__point) ** 1.5)): print("asdfghjkl", "(num_comparisons_performed_by_2Sort >= int(4 * len(list_candidates__point) ** 1.5))") # # print("twoSort_skln", "dim", d, self.num_crowd_phases) # print("twoSort_skln", "self.num_crowd_phases__first_dim", self.num_crowd_phases__first_dim) # self.first_sorted_dimension = sorted_components[0].copy() self.num_crowd_phases = max__num_crowd_phases # # Compute skln using all sorted components. skln = self.compute_skln_using_all_sorted_components(sorted_components) # return skln
[ "noreply@github.com" ]
fazzadr.noreply@github.com
ba95e11df98a4b488b08b1f488845db12aa99289
9ca2f63f855906695b4b587f137257a7793a75bb
/DBASE/AppConfig/options/Gauss/Pythia8_Pt0Ref2.6_CT09MCS.py
8d11b32e024d1f48e86b8da772ab0bbb161b9bee
[]
no_license
kidaak/lhcbsoft
a59ffb6c884e5b6e2d28740551d3c49f8338ec3d
b22a1dfea5d4d572e318d1e5d05dfb7484da5f3d
refs/heads/master
2021-01-22T16:53:18.266147
2015-12-10T14:40:48
2015-12-10T14:40:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,645
py
from Configurables import Generation, MinimumBias, Pythia8Production from Configurables import Inclusive, SignalPlain, SignalRepeatedHadronization from Configurables import Special Pythia8TurnOffFragmentation = [ "HadronLevel:all = off" ] gen = Generation() gen.addTool( MinimumBias , name = "MinimumBias" ) gen.MinimumBias.ProductionTool = "Pythia8Production" gen.MinimumBias.addTool( Pythia8Production , name = "Pythia8Production" ) gen.MinimumBias.Pythia8Production.Tuning = "LHCbPt0Ref2.6_CT09MCS.cmd" gen.addTool( Inclusive , name = "Inclusive" ) gen.Inclusive.ProductionTool = "Pythia8Production" gen.Inclusive.addTool( Pythia8Production , name = "Pythia8Production" ) gen.Inclusive.Pythia8Production.Tuning = "LHCbpT0Ref2.6_CT09MCS.cmd" gen.addTool( SignalPlain , name = "SignalPlain" ) gen.SignalPlain.ProductionTool = "Pythia8Production" gen.SignalPlain.addTool( Pythia8Production , name = "Pythia8Production" ) gen.SignalPlain.Pythia8Production.Tuning = "LHCbPt0Ref2.6_CT09MCS.cmd" gen.addTool( SignalRepeatedHadronization , name = "SignalRepeatedHadronization" ) gen.SignalRepeatedHadronization.ProductionTool = "Pythia8Production" gen.SignalRepeatedHadronization.addTool( Pythia8Production , name = "Pythia8Production" ) gen.SignalRepeatedHadronization.Pythia8Production.Tuning = "LHCbPt0Ref2.6_CT09MCS.cmd" gen.SignalRepeatedHadronization.Pythia8Production.Commands += Pythia8TurnOffFragmentation gen.addTool( Special , name = "Special" ) gen.Special.ProductionTool = "Pythia8Production" gen.Special.addTool( Pythia8Production , name = "Pythia8Production" ) gen.Special.Pythia8Production.Tuning = "LHCbPt0Ref2.6_CT09MCS.cmd"
[ "gcorti@4525493e-7705-40b1-a816-d608a930855b" ]
gcorti@4525493e-7705-40b1-a816-d608a930855b
aafcd623cb57d0e5dc03351f6215fe2f34b4b783
26b93ed4b18392f5f577e85c1d06ad6252eff477
/2021. 3./5543.py
1bad76ca356dd5fdea7f1fd7411bd12e634edbd3
[]
no_license
chengxxi/dailyBOJ
9d245da99cae1972255701cbcb16209f454cd3a3
06c1e35d1873d3e39de956cacc88d9e92869cb5b
refs/heads/master
2023-04-13T18:12:51.677637
2021-04-19T12:19:07
2021-04-19T12:19:07
335,271,521
2
0
null
null
null
null
UTF-8
Python
false
false
696
py
# 5543: 상근날드 burgers = [int(input()) for _ in range(3)] beverages = [int(input()) for _ in range(2)] bur = min(burgers) bev = min(beverages) print(bur+bev-50) """ 상근날드에서 가장 잘 팔리는 메뉴는 세트 메뉴이다. 주문할 때, 자신이 원하는 햄버거와 음료를 하나씩 골라, 세트로 구매하면, 가격의 합계에서 50원을 뺀 가격이 세트 메뉴의 가격이 된다. 햄버거는 총 3종류 상덕버거, 중덕버거, 하덕버거가 있고, 음료는 콜라와 사이다 두 종류가 있다. 햄버거와 음료의 가격이 주어졌을 때, 가장 싼 세트 메뉴의 가격을 출력하는 프로그램을 작성하시오. """
[ "noreply@github.com" ]
chengxxi.noreply@github.com
a4904e6b0e4a67294faf226389fbd709ba1892d5
9613845558fa43a9302fb9821e333375966aa7b8
/decorator.py
cb9a50e28f0570ca8d10984ed5b14991c5575185
[]
no_license
Hex-s/python
56d892048ec97ca519ae76bb72f57364cb5c256c
499fc3e487807d320c3140767901703aa6a7d1c4
refs/heads/master
2021-01-10T17:49:24.436894
2016-03-07T07:01:15
2016-03-07T07:01:15
49,856,311
0
0
null
null
null
null
UTF-8
Python
false
false
1,085
py
#!/usr/bin/python #-*-coding:utf-8-*- import time def log(func): def wrapper(*args,**kw): print('call: %s' % func.__name__) return func(*args,**kw) return wrapper @log def now(): print('now:%s' % time.time()) #now() #print(now.__name__) #wrapper ''' 如果decorator本身需要传入参数, 那就需要编写一个返回decorator的高阶函数,写出来会更复杂。 ''' def log2(text): def decorate(func): def wrapper(*args,**kw): print('text:%s,call:%s' % (text,func.__name__)) return func(*args,**kw) return wrapper return decorate @log2('haha') def nows(): print('now:%s' % (time.time())) #nows() #print(nows.__name__) #wrapper ''' 不改变函数的__name__ functools ''' import functools def log3(func): @functools.wraps(func) def wraper(*args,**kw): print('logs') return wraper @log3 def now3(): print('now:%s' % (time.time())) #now3() #print(now3.__name__) def log4(func): @functools.wraps(func) def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper
[ "syztobenum1@163.com" ]
syztobenum1@163.com
3a795c578b70dbbb9d542086dbca989104d9bee0
e17ffff5120e6746672080750298e9384ecc2434
/app.py
df78519ebca275ae18efb1c8850b9605558fa3bf
[ "MIT" ]
permissive
Maker-Mark/Flask-SQLAlchemy-REST
71274bca05f3159ddd0ae16b9bdb33fa8ccfd499
12d956c3ec2ec711fc118fd8a1891245b401065a
refs/heads/master
2023-03-23T11:16:37.884643
2019-07-22T14:46:11
2019-07-22T14:46:11
197,855,881
0
0
MIT
2021-03-20T01:20:04
2019-07-19T23:43:31
Python
UTF-8
Python
false
false
4,497
py
## Use this as our entry-point from flask import Flask, request,render_template_string, jsonify #Jsonify allows us to take python dicts into json from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow import os #init our app app = Flask(__name__) #Get our DB file/URI basedir= os.path.abspath(os.path.dirname(__file__)) #This is our base/current directory from this file #Configs the app to have the DB attached that will be looked for in the base dir and named 'db.sqlite' app.config['SQLALCHEMY_DATABASE_URI'] ='sqlite:///'+os.path.join(basedir, 'db.sqlite') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False #Stop the console yelling about modifications #Initialize the DB db = SQLAlchemy(app) #Init Marsh ma = Marshmallow(app) #Make a Model/Class #db is our SQLAlchemy and Model that gives us some predefined methods class Product(db.Model): id = db.Column(db.Integer, primary_key=True) #Making a id field using db.Column(dataType, PrimaryKey?, Autoincrement?, Limit?...) name = db.Column(db.String(100), unique=True) description = db.Column(db.String(200)) price = db.Column(db.Float) qty = db.Column(db.Integer) #Our initializer/constructor #When the params are passed in, ass it to the instance def __init__(self, name, description, price,qty): self.name=name self.description=description self.price=price self.qty=qty # Product Schema:Blueprint specifying what fields will be present class ProductSchema(ma.Schema): class Meta: fields = ('id','name','description','price','qty') # Init our schema #Avoid warning product_schema = ProductSchema(strict=True) #Single product products_schema = ProductSchema(many=True, strict=True) # Create a Product @app.route('/product',methods=['POST']) #Grab the data that is being sent int (ie react or postman etc) def add_product(): name = request.json['name'] description = request.json['description'] price = request.json['price'] qty = request.json['qty'] new_product = Product(name, description, price, qty) #Instantiate the product db.session.add(new_product) #Add the product to this session db.session.commit() #Commit this session to our db to store the new record print(product_schema) print(new_product) # result = product_schema.dump(new_product) return jsonify(result.data) #Send back a json representation of our new product! # Get all products @app.route('/product', methods=["GET"]) def get_products(): all_products= Product.query.all() #This gives us back all the Products (thank you SQLAlchemy) result = products_schema.dump(all_products) #Dump all the products, raw parsing return jsonify(result.data) #Json representation of the result's data # Get single product, angle bracket gives us a var @app.route('/product/<id>', methods=["GET"]) def get_product(id): product= Product.query.get(id) #This gives us back the product that matches the id given (thank you SQLAlchemy) return product_schema.jsonify(product) #Json representation of the result's data # Update a product #We need to know what product, so we need the ID # Use the PUT verb for updating @app.route('/product/<id>',methods=['PUT']) def update_product(id): product = Product.query.get(id) #Get the product by id #Grab the request's data name = request.json['name'] description = request.json['description'] price = request.json['price'] qty = request.json['qty'] #Build out the product with updated info product.name=name product.description=description product.price=price product.qty=qty db.session.commit() #Commit this session to our db to store the new record return product_schema.jsonify(product) #Send back a json representation of our new product! # Delete a product/record @app.route('/product/<id>', methods=["DELETE"]) def delete_product(id): product= Product.query.get(id) #This gives us back the product that matches the id given (thank you SQLAlchemy) db.session.delete(product) #delete the product db.session.commit() #Save the actions taken return product_schema.jsonify(product) #Json representation of the result's data @app.route('/', methods=['GET']) def get(): return jsonify({'msg':'hello, world'}) #Run the server --> Uncomment if you want to run the module directly via a `python app.py` command # if __name__ =='__main__': # app.run(debug=True)
[ "markgoldstein12@gmail.com" ]
markgoldstein12@gmail.com
89fd0f1a7fee51b6e6d58cf67f040186f6cf26bb
80867cdd8f7ea11cef96ebe0c894b87f9fc7afbb
/112_reverse_of_a_list.py
a52c82f565689f706a368ab893114e96c93bada3
[]
no_license
srekan/pyLearn
fa1f56104adca625be196bc3ac975ea415b5c630
bf7c2350fc7ca57777b84addc35cd10b404eaf86
refs/heads/master
2022-10-05T05:20:23.262597
2020-06-08T10:31:30
2020-06-08T10:31:30
265,237,788
0
1
null
null
null
null
UTF-8
Python
false
false
230
py
# 112_reverse_of_a_list.py my_list = [ 34, 5, 77, 87, 556, 99, 98, 347, 33, 232 ] rev_list = [] last_index = len(my_list) - 1 for i in range(last_index, -1, -1): rev_list.append(my_list[i]) print("Reverse: ", rev_list)
[ "sravan.rekandar@drishya.ai" ]
sravan.rekandar@drishya.ai
5998a3b039fda2f1608a7d35025afa24e81ee8f7
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_4/tama.eguchi/solve.py
cd6330c9e4e87932964281aeb28f5552d708afab
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
1,364
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # # Problem D. Fractiles # https://code.google.com/codejam/contest/6254486/dashboard#s=p3 # import sys import random def solve(K, C, S): # 1回cleanするとCヶ所のGの有無がわかる # S回cleanできるので最大C*Sヶ所のGの有無がわかる # Kがそれより多いと判別できない if K > C * S: return 'IMPOSSIBLE' checkpos = range(K) clean = [] while checkpos: cleanpos = 0 for c in range(C): cleanpos += (K ** c) * checkpos.pop(0) if not checkpos: break clean.append(min(cleanpos + 1, K ** C)) # 1 origin return ' '.join(map(str, sorted(clean))) def main(IN, OUT): T = int(IN.readline()) for index in range(T): K, C, S = map(int, IN.readline().strip().split()) OUT.write('Case #{}: {}\n'.format(index + 1, solve(K, C, S))) def makesample(T=100, Kmax=100, Cmax=100): print T for index in range(T): K = random.randint(1, Kmax) C = random.randint(1, Cmax) S = random.randint(1, K) while K ** C > 10 ** 18: C = random.randint(1, Cmax) print '{} {} {}'.format(K, C, S) if __name__ == '__main__': if '-makesample' in sys.argv[1:]: makesample() else: main(sys.stdin, sys.stdout)
[ "[dhuo@tcd.ie]" ]
[dhuo@tcd.ie]
b63e1759752e61c1e109cfd8b7f4a57b4b9b6145
c75f82516c4c54c6dca82acf15210a5fcc952b0b
/server/bufsm_location.py
353d0bbff245e1a08501684b2eb891287158de75
[ "MIT" ]
permissive
IotGod/bufsm
e4c7988fe43636d1fef257fc4c6e367c7cab8b3d
d4b54b8872488de91a9caa769cd6aea60c246a37
refs/heads/master
2020-12-18T22:54:20.777760
2019-08-10T14:22:49
2019-08-10T14:22:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,138
py
from datetime import datetime from pytz import timezone import paho.mqtt.client as mqtt # The callback for when the client receives a CONNACK response from the server. def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe("bufsm/p") # The callback for when a PUBLISH message is received from the server. def on_message(client, userdata, msg): #print(msg.topic, ":", msg.payload.decode()) payload = msg.payload.decode() with open('bufsm_locations.csv', 'a') as f: line = str(datetime.now(timezone('America/Sao_Paulo'))) + ',' + str(payload)+ '\n' f.write(line) client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect("mqtt.solveiot.com.br", 1883, 60) # Blocking call that processes network traffic, dispatches callbacks and # handles reconnecting. # Other loop*() functions are available that give a threaded interface and a # manual interface. client.loop_forever()
[ "matheusdalmago10@hotmail.com" ]
matheusdalmago10@hotmail.com
0e145319ab43967d522e00aa463c3ecd9b256441
2afdbbd7c09f376a93ef3c730a627e7efe14e7d5
/cortex-alertmanager.dashboard.py
cf978c1b28f1aca09de973c3f2b537804af1a8da
[ "Apache-2.0" ]
permissive
oprietop/cortex-dashboards
4a8efe857113375786c707a393276fa70b2192b1
edde28bd6950557fdfe45cdd3df0de7f213f7a18
refs/heads/master
2022-12-09T21:30:32.669595
2020-09-03T09:48:05
2020-09-03T09:48:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,268
py
# -*- mode: python; python-indent-offset: 2 -*- import grafanalib.core as G import common dashboard = common.Dashboard( uid='am', title="Cortex > Alertmanager", rows=[ G.Row( title='Operations', panels=[ common.PromGraph( title="Alerts", expressions=[ ( "{{instance}} {{status}}", 'sum by (instance, status)(rate(alertmanager_alerts_received_total{job="cortex/alertmanager"}[2m]))' ), ( "{{instance}} invalid", 'sum by (instance, status)(rate(alertmanager_alerts_invalid_total{job="cortex/alertmanager"}[2m]))' ), ], yAxes=common.OPS_AXIS, ), common.PromGraph( title="Notifications", expressions=[ ( "{{integration}}", 'sum by (integration)(rate(alertmanager_notifications_total{job="cortex/alertmanager"}[2m]))' ), ], yAxes=common.OPS_AXIS, ), ] ), G.Row( title='Alertmanager fetching configs', collapse=True, panels=[ common.QPSGraph('cortex_configs', 'Configs', 'cortex/alertmanager'), common.PromGraph( title="Configs Latency", expressions=[ ( "99th centile", 'histogram_quantile(0.99, sum(rate(cortex_configs_request_duration_seconds_bucket{job="cortex/alertmanager"}[2m])) by (le)) * 1e3' ), ( "50th centile", 'histogram_quantile(0.50, sum(rate(cortex_configs_request_duration_seconds_bucket{job="cortex/alertmanager"}[2m])) by (le)) * 1e3' ), ( "Mean", 'sum(rate(cortex_configs_request_duration_seconds_sum{job="cortex/alertmanager"}[2m])) / sum(rate(cortex_configs_request_duration_seconds_count{job="cortex/alertmanager"}[2m])) * 1e3' ), ], yAxes=common.LATENCY_AXES, ), ] ), common.REDRow('cortex', 'Alertmanager', 'cortex/alertmanager'), G.Row( [ common.PromGraph( title="Known Configurations", expressions=[ ("{{instance}}", 'cortex_alertmanager_configs_total{job="cortex/alertmanager"}'), ], ), common.PromGraph( title="Cluster Members", expressions=[ ("{{instance}}", 'sum(alertmanager_cluster_members{job="cortex/alertmanager"}) by (instance)'), ], ), ] ), ], )
[ "bjboreham@gmail.com" ]
bjboreham@gmail.com
06120a3ffdc7b3e67b51502bdd604159274fa0fa
11a246743073e9d2cb550f9144f59b95afebf195
/acmsgu/193.py
768cb75ea9152b431d5c7a3f66250a9afdbd9dea
[]
no_license
ankitpriyarup/online-judge
b5b779c26439369cedc05c045af5511cbc3c980f
8a00ec141142c129bfa13a68dbf704091eae9588
refs/heads/master
2020-09-05T02:46:56.377213
2019-10-27T20:12:25
2019-10-27T20:12:25
219,959,932
0
1
null
2019-11-06T09:30:58
2019-11-06T09:30:57
null
UTF-8
Python
false
false
90
py
from math import gcd n = int(input()) k = n // 2 while gcd(n, k) > 1: k -= 1 print(k)
[ "arnavsastry@gmail.com" ]
arnavsastry@gmail.com
8a1554d203e48a6a1c62cac70266748ea0e9521b
e770376d6538ad11891defb2200b3a9bd56416ee
/comments/forms.py
539ad3e4a8ed00a9ad422e53b1fda90f8853efa0
[]
no_license
konradkrasno/travelblog
812e7da34db97891784b572446dc37ed6ce35936
eae532bc144eb9150defddb3cbe64bb32a1dba14
refs/heads/master
2023-04-15T20:23:15.354088
2021-04-24T15:49:44
2021-04-24T15:49:44
349,385,938
0
0
null
2021-04-24T15:49:45
2021-03-19T10:35:17
Python
UTF-8
Python
false
false
350
py
from django import forms from .models import Comment, SubComment class CommentForm(forms.ModelForm): class Meta: model = Comment fields = ["body"] class SubCommentForm(forms.ModelForm): class Meta: model = SubComment fields = ["body", "main_comment"] widgets = {"main_comment": forms.HiddenInput}
[ "konradkrasno@gmail.com" ]
konradkrasno@gmail.com
86109bf27331bf14ac7ddb352964c41a784eb8c7
03380a2cf46385b0d971e150078d992cd7840980
/Python/pywarpx/PSATD.py
0cd3038336a6bea77a29ae91a1787be2315e3a46
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause-LBNL" ]
permissive
ECP-WarpX/WarpX
0cfc85ce306cc5d5caa3108e8e9aefe4fda44cd3
e052c6d1994e4edb66fc27763d72fcf08c3a112a
refs/heads/development
2023-08-19T07:50:12.539926
2023-08-17T20:01:41
2023-08-17T20:01:41
150,626,842
210
147
NOASSERTION
2023-09-13T23:38:13
2018-09-27T17:53:35
C++
UTF-8
Python
false
false
145
py
# Copyright 2016 David Grote # # This file is part of WarpX. # # License: BSD-3-Clause-LBNL from .Bucket import Bucket psatd = Bucket('psatd')
[ "noreply@github.com" ]
ECP-WarpX.noreply@github.com
4c6d69cd4dd555e87bd94a6e5ae50b59b3b33462
1306c798b27f17972165daf51dae54ae71da0ddb
/tests/unit/utils/test_throttle.py
f25175c7ca5bb6dad0cf4ccbec95c8511187de6b
[]
no_license
Delaunay/track
0dc8dbbc438011a26d06c06edadaa2daad1ce1a7
c92247e28ef554f125ed7c8e6cd334327ec6600e
refs/heads/master
2020-05-26T03:22:20.756722
2020-01-10T02:36:40
2020-01-10T02:36:40
188,088,865
0
1
null
2019-10-16T14:49:39
2019-05-22T17:59:00
Python
UTF-8
Python
false
false
602
py
from track.utils.throttle import throttled import time class Inc: sum = 0 def add(self): self.sum += 1 def test_throttle_time(): inc = Inc() inc_throttled = throttled(inc.add, every=0.05) for i in range(0, 100): inc_throttled() time.sleep(0.01) assert inc.sum == int(0.01 * 100 / 0.05) def test_throttle_count(): inc = Inc() inc_throttled = throttled(inc.add, throttle=5) for i in range(0, 100): inc_throttled() assert inc.sum == 100 // 5 if __name__ == '__main__': test_throttle_time() test_throttle_count()
[ "noreply@github.com" ]
Delaunay.noreply@github.com
929a68a4552f9a5a766212acbc4403159e965110
b0748a6302d19cf6cf67e9258345d64506f28e12
/dlltest.py
470018ba4250b11becf35d4c8155c849c9de0bcb
[]
no_license
whitexiong/ymjh
44077aec1671224ae016e0555e35b0d2fbcaa0c7
1a5f854c319a9661b3e7dbdc727b8c634787567d
refs/heads/master
2022-04-14T08:59:26.859384
2020-04-14T12:27:35
2020-04-14T12:27:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
137
py
import ctypes if __name__ == "__main__": tmp_cv = ctypes.CDLL('./libopencv_imgproc420.dll') tmp_cv.matchTemplate() print(123)
[ "talkand@sina.com" ]
talkand@sina.com
b62ad75b919cf48d96d7ab9b9ea96cddc8c3c163
066ea30676154a8eddadbf72488d35cb19e4f508
/cars2.py
61f64750e505a90b1c95b419f276ab5b7e8f98a3
[]
no_license
Xiecf/Exercises
1d5bf54f031958436dba9841b4e8569297aa7e6e
2d9db3d14e6ca0f079da8c22e5e8403cde904786
refs/heads/master
2021-09-02T08:25:23.427122
2017-12-31T23:35:18
2017-12-31T23:35:18
108,338,273
0
0
null
null
null
null
UTF-8
Python
false
false
760
py
cars = ['bmw','audi','toyota','subaru'] for car in cars: if car == 'bmw': print(car.upper()) else: print(car.title()) car = 'bwm' print(car == 'bwm') print(car == 'BWM') print(car.upper() == 'BWM') print(car == 'audi') a = 'xiechaofan' b = 'Xiechaofan' c = 'gaojinlei' d = ['xiechaofan','Xiechaofan','gaojinlei'] for i in d: if i == b: print('相同') else: print('不同') for i in d: if i == b.lower(): print('相同') else: print('不同') numbers = [1,2,3,4,5] for number in numbers: if number == 3: print(str(number) + '=' + '3') if number < 3: print(str(number) + '<' + '3') if number > 3: print(str(number) + '>' + '3')
[ "x405139708@gmail.com" ]
x405139708@gmail.com
2e81b9016cec6a4b5615e50c923ca887fdc1e699
42d12cbc8ab91caa84eb2bf279fb9bb8898ea8e3
/chatbot.py
29e85ddcfee8c0013f9fa8796998d7165faf5377
[]
no_license
gjason98/hi1
8d561404f8f4d4012284a2a2c3d1618139e7046b
7becb9cc167d16e6d6098606cae35c97e5e78b06
refs/heads/master
2020-05-03T12:04:24.371429
2019-03-30T21:55:30
2019-03-30T21:55:30
178,615,365
0
0
null
null
null
null
UTF-8
Python
false
false
4,820
py
import sqlite3 import json from datetime import datetime timeframe = '2010-01' sql_transaction = [] connection = sqlite3.connect('{}.db'.format(timeframe)) c = connection.cursor() def create_table(): c.execute( "CREATE TABLE IF NOT EXISTS parent_reply(parent_id TEXT PRIMARY KEY, comment_id TEXT UNIQUE, parent TEXT, comment TEXT, subreddit TEXT, unix INT, score INT)") def format_data(data): data = data.replace('\n', ' newlinechar ').replace('\r', ' newlinechar ').replace('"', "'") return data def transaction_bldr(sql): global sql_transaction sql_transaction.append(sql) if len(sql_transaction) > 1000: c.execute('BEGIN TRANSACTION') for s in sql_transaction: try: c.execute(s) except: pass connection.commit() sql_transaction = [] def sql_insert_replace_comment(commentid, parentid, parent, comment, subreddit, time, score): try: sql = """UPDATE parent_reply SET parent_id = ?, comment_id = ?, parent = ?, comment = ?, subreddit = ?, unix = ?, score = ? WHERE parent_id =?;""".format( parentid, commentid, parent, comment, subreddit, int(time), score, parentid) transaction_bldr(sql) except Exception as e: print('s0 insertion', str(e)) def sql_insert_has_parent(commentid, parentid, parent, comment, subreddit, time, score): try: sql = """INSERT INTO parent_reply (parent_id, comment_id, parent, comment, subreddit, unix, score) VALUES ("{}","{}","{}","{}","{}",{},{});""".format( parentid, commentid, parent, comment, subreddit, int(time), score) transaction_bldr(sql) except Exception as e: print('s0 insertion', str(e)) def sql_insert_no_parent(commentid, parentid, comment, subreddit, time, score): try: sql = """INSERT INTO parent_reply (parent_id, comment_id, comment, subreddit, unix, score) VALUES ("{}","{}","{}","{}",{},{});""".format( parentid, commentid, comment, subreddit, int(time), score) transaction_bldr(sql) except Exception as e: print('s0 insertion', str(e)) def acceptable(data): if len(data.split(' ')) > 50 or len(data) < 1: return False elif len(data) > 1000: return False elif data == '[deleted]': return False elif data == '[removed]': return False else: return True def find_parent(pid): try: sql = "SELECT comment FROM parent_reply WHERE comment_id = '{}' LIMIT 1".format(pid) c.execute(sql) result = c.fetchone() if result != None: return result[0] else: return False except Exception as e: # print(str(e)) return False def find_existing_score(pid): try: sql = "SELECT score FROM parent_reply WHERE parent_id = '{}' LIMIT 1".format(pid) c.execute(sql) result = c.fetchone() if result != None: return result[0] else: return False except Exception as e: # print(str(e)) return False if __name__ == '__main__': create_table() row_counter = 0 paired_rows = 0 with open('d:/Data/{}/RC_{}'.format(timeframe.split('-')[0], timeframe), buffering=1000) as f: for row in f: row_counter += 1 row = json.loads(row) parent_id = row['parent_id'] body = format_data(row['body']) created_utc = row['created_utc'] score = row['score'] comment_id = row['name'] subreddit = row['subreddit'] parent_data = find_parent(parent_id) if score >= 2: existing_comment_score = find_existing_score(parent_id) if existing_comment_score: if score > existing_comment_score: if acceptable(body): sql_insert_replace_comment(comment_id, parent_id, parent_data, body, subreddit, created_utc, score) else: if acceptable(body): if parent_data: sql_insert_has_parent(comment_id, parent_id, parent_data, body, subreddit, created_utc, score) paired_rows += 1 else: sql_insert_no_parent(comment_id, parent_id, body, subreddit, created_utc, score) if row_counter % 100000 == 0: print('Total Rows Read: {}, Paired Rows: {}, Time: {}'.format(row_counter, paired_rows, str(datetime.now())))
[ "gouthamjason@gmail.com" ]
gouthamjason@gmail.com
83604841e247e2351977a2bf84d6d4fba795a011
6ba9e90cfd2a3d03806f730fbbca574c2f8de9f8
/extensions/.stubs/clrclasses/__clrclasses__/Autodesk/AutoCAD/ApplicationServices/Core/__init__.py
16b83275e04a59474443da8ef2844a1a0301b5d0
[]
no_license
anshe80/Pycad
696932a2e1eb720fec83790966b64cc4ff821426
8c238b23269fe70279a88626e9776a9b1ae9b9a2
refs/heads/master
2023-01-29T11:17:33.286871
2020-12-12T05:33:34
2020-12-12T05:33:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,289
py
from __clrclasses__.Autodesk.AutoCAD.ApplicationServices import BeginDoubleClickEventHandler as _n_0_t_0 from __clrclasses__.Autodesk.AutoCAD.ApplicationServices import PreTranslateMessageEventHandler as _n_0_t_1 from __clrclasses__.Autodesk.AutoCAD.ApplicationServices import SystemVariableChangedEventHandler as _n_0_t_2 from __clrclasses__.Autodesk.AutoCAD.ApplicationServices import SystemVariableChangingEventHandler as _n_0_t_3 from __clrclasses__.Autodesk.AutoCAD.ApplicationServices import DocumentCollection as _n_0_t_4 from __clrclasses__.Autodesk.AutoCAD.ApplicationServices import LongTransactionManager as _n_0_t_5 from __clrclasses__.Autodesk.AutoCAD.ApplicationServices import RecentDocumentCollection as _n_0_t_6 from __clrclasses__.Autodesk.AutoCAD.ApplicationServices import UnmanagedResources as _n_0_t_7 from __clrclasses__.Autodesk.AutoCAD.ApplicationServices import UserConfigurationManager as _n_0_t_8 from __clrclasses__.Autodesk.AutoCAD.ApplicationServices import WhoHasInfo as _n_0_t_9 from __clrclasses__.Autodesk.AutoCAD.DatabaseServices import ResultBuffer as _n_1_t_0 from __clrclasses__.Autodesk.AutoCAD.Publishing import Publisher as _n_2_t_0 from __clrclasses__.Autodesk.AutoCAD.Windows import Window as _n_3_t_0 from __clrclasses__.System import EventHandler as _n_4_t_0 from __clrclasses__.System import Version as _n_4_t_1 from __clrclasses__.System import Uri as _n_4_t_2 from __clrclasses__.System import Nullable as _n_4_t_3 from __clrclasses__.System import IntPtr as _n_4_t_4 from __clrclasses__.System import MulticastDelegate as _n_4_t_5 from __clrclasses__.System import ICloneable as _n_4_t_6 from __clrclasses__.System import IAsyncResult as _n_4_t_7 from __clrclasses__.System import Type as _n_4_t_8 from __clrclasses__.System import AsyncCallback as _n_4_t_9 from __clrclasses__.System.Runtime.Serialization import ISerializable as _n_5_t_0 from __clrclasses__.System.Windows import Window as _n_6_t_0 import typing class Application(object): @property def DocumentManager(self) -> _n_0_t_4:"""DocumentManager { get; } -> DocumentCollection""" @property def HasPickFirst(self) -> bool:"""HasPickFirst { get; } -> bool""" @property def IsInBackgroundMode(self) -> bool:"""IsInBackgroundMode { get; } -> bool""" @property def IsInPlaceServer(self) -> bool:"""IsInPlaceServer { get; } -> bool""" @property def IsQuiescent(self) -> bool:"""IsQuiescent { get; } -> bool""" @property def LongTransactionManager(self) -> _n_0_t_5:"""LongTransactionManager { get; } -> LongTransactionManager""" @property def MainWindow(self) -> _n_3_t_0:"""MainWindow { get; } -> Window""" @property def Publisher(self) -> _n_2_t_0:"""Publisher { get; } -> Publisher""" @property def RecentDocuments(self) -> _n_0_t_6:"""RecentDocuments { get; } -> RecentDocumentCollection""" @property def UnmanagedResources(self) -> _n_0_t_7:"""UnmanagedResources { get; } -> UnmanagedResources""" @property def UserConfigurationManager(self) -> _n_0_t_8:"""UserConfigurationManager { get; } -> UserConfigurationManager""" @property def Version(self) -> _n_4_t_1:"""Version { get; } -> Version""" @property def BeginDoubleClick(self) -> _n_0_t_0: """BeginDoubleClick Event: BeginDoubleClickEventHandler""" @property def BeginQuit(self) -> _n_4_t_0: """BeginQuit Event: EventHandler""" @property def EnterModal(self) -> _n_4_t_0: """EnterModal Event: EventHandler""" @property def Idle(self) -> _n_4_t_0: """Idle Event: EventHandler""" @property def LeaveModal(self) -> _n_4_t_0: """LeaveModal Event: EventHandler""" @property def PreTranslateMessage(self) -> _n_0_t_1: """PreTranslateMessage Event: PreTranslateMessageEventHandler""" @property def QuitAborted(self) -> _n_4_t_0: """QuitAborted Event: EventHandler""" @property def QuitWillStart(self) -> _n_4_t_0: """QuitWillStart Event: EventHandler""" @property def SystemVariableChanged(self) -> _n_0_t_2: """SystemVariableChanged Event: SystemVariableChangedEventHandler""" @property def SystemVariableChanging(self) -> _n_0_t_3: """SystemVariableChanging Event: SystemVariableChangingEventHandler""" @staticmethod def EvaluateDiesel(dieselCmd: str) -> str:... @staticmethod def GetSystemVariable(name: str) -> object:... @staticmethod def GetWhoHasInfo(pathname: str) -> _n_0_t_9:... @staticmethod def Invoke(args: _n_1_t_0) -> _n_1_t_0:... @staticmethod def IsFileLocked(pathname: str) -> bool:... @staticmethod def LoadJSScript(urlJSFile: _n_4_t_2):... @staticmethod def Quit():... @staticmethod def SetSystemVariable(name: str, value: object):... @staticmethod def ShowAlertDialog(message: str):... @staticmethod def ShowModalWindow(owner: _n_4_t_4, formToShow: _n_6_t_0, persistSizeAndPosition: bool) -> _n_4_t_3[bool]:... @staticmethod def ShowModalWindow(owner: _n_6_t_0, formToShow: _n_6_t_0, persistSizeAndPosition: bool) -> _n_4_t_3[bool]:... @staticmethod def ShowModalWindow(owner: _n_4_t_4, formToShow: _n_6_t_0) -> _n_4_t_3[bool]:... @staticmethod def ShowModalWindow(owner: _n_6_t_0, formToShow: _n_6_t_0) -> _n_4_t_3[bool]:... @staticmethod def ShowModalWindow(formToShow: _n_6_t_0) -> _n_4_t_3[bool]:... @staticmethod def ShowModelessWindow(owner: _n_4_t_4, formToShow: _n_6_t_0, persistSizeAndPosition: bool):... @staticmethod def ShowModelessWindow(owner: _n_6_t_0, formToShow: _n_6_t_0, persistSizeAndPosition: bool):... @staticmethod def ShowModelessWindow(owner: _n_4_t_4, formToShow: _n_6_t_0):... @staticmethod def ShowModelessWindow(owner: _n_6_t_0, formToShow: _n_6_t_0):... @staticmethod def ShowModelessWindow(formToShow: _n_6_t_0):... @staticmethod def TryGetSystemVariable(name: str) -> object:... @staticmethod def UpdateScreen():... class CreateContextMenuHandler(_n_4_t_5, _n_4_t_6, _n_5_t_0): def __init__(self, A_0: object, A_1: _n_4_t_4) -> CreateContextMenuHandler:... def BeginInvoke(self, type: _n_4_t_8, callback: _n_4_t_9, obj: object) -> _n_4_t_7:... def EndInvoke(self, result: _n_4_t_7) -> object:... def Invoke(self, type: _n_4_t_8) -> object:... class EnableWinFormHandler(_n_4_t_5, _n_4_t_6, _n_5_t_0): def __init__(self, A_0: object, A_1: _n_4_t_4) -> EnableWinFormHandler:... def BeginInvoke(self, o: object, enable: bool, callback: _n_4_t_9, obj: object) -> _n_4_t_7:... def EndInvoke(self, result: _n_4_t_7) -> bool:... def Invoke(self, o: object, enable: bool) -> bool:... class FilterMessageWinFormsHandler(_n_4_t_5, _n_4_t_6, _n_5_t_0): def __init__(self, A_0: object, A_1: _n_4_t_4) -> FilterMessageWinFormsHandler:... def BeginInvoke(self, msg: object, callback: _n_4_t_9, obj: object) -> _n_4_t_7:... def EndInvoke(self, result: _n_4_t_7) -> bool:... def Invoke(self, msg: object) -> bool:... class OnIdleWinFormsHandler(_n_4_t_5, _n_4_t_6, _n_5_t_0): def __init__(self, A_0: object, A_1: _n_4_t_4) -> OnIdleWinFormsHandler:... def BeginInvoke(self, callback: _n_4_t_9, obj: object) -> _n_4_t_7:... def EndInvoke(self, result: _n_4_t_7):... def Invoke(self):... class OnWinFormsLoadedHandler(_n_4_t_5, _n_4_t_6, _n_5_t_0): def __init__(self, A_0: object, A_1: _n_4_t_4) -> OnWinFormsLoadedHandler:... def BeginInvoke(self, callback: _n_4_t_9, obj: object) -> _n_4_t_7:... def EndInvoke(self, result: _n_4_t_7):... def Invoke(self):... class OnWpfLoadedHandler(_n_4_t_5, _n_4_t_6, _n_5_t_0): def __init__(self, A_0: object, A_1: _n_4_t_4) -> OnWpfLoadedHandler:... def BeginInvoke(self, callback: _n_4_t_9, obj: object) -> _n_4_t_7:... def EndInvoke(self, result: _n_4_t_7):... def Invoke(self):... class PreProcessMessageWinFormsHandler(_n_4_t_5, _n_4_t_6, _n_5_t_0): def __init__(self, A_0: object, A_1: _n_4_t_4) -> PreProcessMessageWinFormsHandler:... def BeginInvoke(self, msg: object, callback: _n_4_t_9, obj: object) -> _n_4_t_7:... def EndInvoke(self, result: _n_4_t_7) -> bool:... def Invoke(self, msg: object) -> bool:...
[ "34087817+xsfhlzh@users.noreply.github.com" ]
34087817+xsfhlzh@users.noreply.github.com
dd7ac29d40bea1f4506785804167ad263dad33c7
46ccf20b5e9e03ece36c260ee910e0838796fa6b
/technology/computerBasis/algorithms/others/简单递归.py
6110623678eeaebe3e964dfe695c11149385f1db
[]
no_license
alexwufeihao/Learn
2d34f24695e7152d29d120821394b00d628355b5
f8e0d7e05df7be3800aaca8ee53c726899bcdad1
refs/heads/master
2020-09-15T18:17:03.945239
2019-11-15T10:22:51
2019-11-15T10:22:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
843
py
#!/usr/bin/env python # -*- coding:utf-8 -*- def sumList(numList) : if len(numList) == 1 : return numList[0] else : return numList[0] + sumList(numList[1:]) def systemConversion(n, base) : convertStr = "0123456789ABCDEF" if n < base : return convertStr[n] else : return systemConversion(n/base, base) + convertStr[n%base] # 汉诺塔 def moveTower( height, fromPole, withPole, toPole ) : if height >= 1 : moveTower( height-1, fromPole, toPole, withPole ) moveDisk( fromPole, toPole ) moveTower( height-1, withPole, fromPole, toPole ) def moveDisk( fromPole, toPole ) : print ( fromPole + " -> " + toPole ) if __name__ == "__main__" : print ( sumList([1,2,3,4,5]) ) print ( systemConversion(1453,16) ) print ( moveTower( 3, "A", "B", "C" ) )
[ "alex@Alexs-MacBook-Pro.local" ]
alex@Alexs-MacBook-Pro.local
c7ac74822eca60f7e35c153feddfccd92762e0d1
7ef302e0d3a9579740c822d4e4fd806ed43e21a7
/web/app/controllers/indicators_handler.py
ae4f0cf78f4246076db60501defb8a811e1ef694
[]
no_license
gcinnovate/mtracpro
d9b7327f4a02894621978fc65cf12b13e495e358
7220211e0af0c31991e4d456fd94a2b4e843859a
refs/heads/master
2023-05-25T07:01:41.074148
2023-05-11T13:07:40
2023-05-11T13:07:40
157,218,976
0
0
null
2018-11-12T13:37:21
2018-11-12T13:37:21
null
UTF-8
Python
false
false
5,874
py
import web from . import csrf_protected, db, require_login, render, get_session from app.tools.utils import audit_log, default, lit from app.tools.pagination2 import doquery, countquery, getPaginationString from settings import PAGE_LIMIT class Indicators: @require_login def GET(self): params = web.input(page=1, ed="", d_id="") allow_edit = False try: edit_val = int(params.ed) allow_edit = True except ValueError: pass try: page = int(params.page) except: page = 1 limit = PAGE_LIMIT start = (page - 1) * limit if page > 0 else 0 if params.ed and allow_edit: res = db.query( "SELECT id, description, shortname, slug, cmd, form, form_order, dataset, dataelement, " "category_combo, threshold FROM dhis2_mtrack_indicators_mapping WHERE id = $id", {'id': edit_val}) if res: r = res[0] name = r.description shortname = r.shortname slug = r.slug cmd = r.cmd form = r.form form_order = r.form_order dataset = r.dataset dataelement = r.dataelement category_combo = r.category_combo threshold = r.threshold dic = lit( relations="dhis2_mtrack_indicators_mapping", fields=( "id, description, shortname, slug, form, form_order, cmd, dataset, " "dataelement, category_combo "), criteria="", order="dataset, form, form_order", limit=limit, offset=start ) mappings = doquery(db, dic) count = countquery(db, dic) pagination_str = getPaginationString(default(page, 0), count, limit, 2, "indicators", "?page=") l = locals() del l['self'] return render.indicators(**l) @csrf_protected @require_login def POST(self): params = web.input( name="", shortname="", form="", form_order="", slug="", cmd="", dataset="", dataelement="", category_combo="", threshold="", page="1", ed="", d_id="") session = get_session() allow_edit = False try: edit_val = int(params.ed) allow_edit = True except: pass with db.transaction(): if params.ed and allow_edit: r = db.query( "UPDATE dhis2_mtrack_indicators_mapping SET " "(description, shortname, form, form_order, slug, cmd, dataset, dataelement, category_combo, threshold) " "= ($descr, $shortname, $form, $form_order, $slug, $cmd, $dataset, $dataelement, $category_combo, $threshold) " "WHERE id = $id", { 'descr': params.name, 'shortname': params.shortname, 'form': params.form, 'form_order': params.form_order, 'slug': params.slug, 'cmd': params.cmd, 'dataset': params.dataset, 'threshold': None if not params.threshold else params.threshold, 'dataelement': params.dataelement, 'category_combo': params.category_combo, 'id': params.ed} ) log_dict = { 'logtype': 'Web', 'action': 'Update', 'actor': session.username, 'ip': web.ctx['ip'], 'descr': 'Updated Indicator Mapping. id:%s => Dataset %s: Form:%s Cmd:%s)' % ( params.ed, params.dataset, params.form, params.cmd), 'user': session.sesid } audit_log(db, log_dict) return web.seeother("/indicators") else: has_indicator = db.query( "SELECT id FROM dhis2_mtrack_indicators_mapping " "WHERE form=$form AND cmd=$cmd AND dataset=$dataset", {'form': params.form, 'cmd': params.cmd, 'dataset': params.dataset}) if has_indicator: session.idata_err = ( "Indicator with Dataset:%s, From:%s, Command:%s " "already registered" % (params.dataset, params.form, params.cmd) ) session.idata_err = "" r = db.query( "INSERT INTO dhis2_mtrack_indicators_mapping (description, shortname, form, form_order, " "slug, cmd, dataset, dataelement, category_combo, threshold) VALUES " "($descr, $shortname, $form, $form_order, $slug, $cmd, $dataset, $dataelement, " "$category_combo, $threshold) RETURNING id", { 'descr': params.name, 'shortname': params.shortname, 'form': params.form, 'form_order': params.form_order, 'slug': params.slug, 'cmd': params.cmd, 'dataset': params.dataset, 'threshold': None if not params.threshold else params.threshold, 'dataelement': params.dataelement, 'category_combo': params.category_combo} ) log_dict = { 'logtype': 'Web', 'action': 'Create', 'actor': session.username, 'ip': web.ctx['ip'], 'descr': 'Created Indicator Mapping. Dataset %s: Form:%s Cmd:%s)' % ( params.dataset, params.form, params.cmd), 'user': session.sesid } audit_log(db, log_dict) return web.seeother("/indicators") l = locals() del l['self'] return render.indicators(**l)
[ "sekiskylink@gmail.com" ]
sekiskylink@gmail.com
663d22f51d1e0e55f0fe03f62605da3846c2db14
44f52bd8972633f4c4904352e3e1fbbc86f0dff4
/series_2/Invincible/invincible.py
0dc92fdeaf6a13c3dab980d60d2e0ba97a2ff0a0
[]
no_license
MmahdiM79/Algorithms_Design_Sprig2021
ca364fc59870960c755e334b48d080cf26237405
52ef00e2e3b882b698aadd5b1cfd8d1d767d3eb0
refs/heads/main
2023-06-29T04:11:59.860984
2021-07-27T12:48:21
2021-07-27T12:48:21
362,185,150
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
if __name__ == "__main__": n, m, k = [int(num) for num in input().split(' ')] buckets = {} for i in range(m//k): buckets[i] = [] for num in input().split(): buckets[int(num)//k].append(int(num)) largest_bucket = (-1, []) for bucket in buckets.items(): if len(bucket[1]) > len(largest_bucket[1]): largest_bucket = bucket print(largest_bucket[1][0])
[ "MmahdiM79@users.noreply.github.com" ]
MmahdiM79@users.noreply.github.com
17958f36120e426c6d30503b1e0896488c0ec86c
4dbfe46fc45348845f059bf3191c409e4a3a31ef
/codeforces/158A.py
5b2e8aa9f3525fe95f07fdcd6122d109992be901
[]
no_license
chinatip/problem-solving
b5b1ac40d354322599bbc39daed00a9b1e6280f8
7cff855a4bfd1a02815e15c98cf5ba2378bb1f9c
refs/heads/master
2021-07-04T02:20:19.956352
2021-06-07T16:57:15
2021-06-07T16:57:15
83,819,776
0
0
null
null
null
null
UTF-8
Python
false
false
237
py
from sys import stdin, stdout n, k = map(int, stdin.readline().rstrip().split()) count = 0 list_a = map(int, stdin.readline().rstrip().split()) max = list_a[k-1] for x in list_a: if x >= max and x > 0: count += 1 print count
[ "chinatip.v@ku.th" ]
chinatip.v@ku.th
3e1d0e7d3a78fc1ec942c840368eb6532468301d
d80dd843b3d4ed1fff6e192695837a14d322c831
/utils/crawl_rq.py
4a58a3270465a9a4ef27eb975f76137279828ce0
[]
no_license
scottliyq/convertible_bond
9faea4e1949b56e0efce6aec3c81d3b01a83f222
d01a5dad4a6edb34adc066d7a239e9dccd7ea1c0
refs/heads/main
2023-08-25T23:10:58.114982
2021-11-02T00:12:03
2021-11-02T00:12:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,375
py
#!/usr/bin/env python3 import json import pathlib from absl import app, flags, logging from datetime import date, timedelta from conbond import ricequant import pandas as pd from tqdm import tqdm import logging FLAGS = flags.FLAGS flags.DEFINE_string('cache_dir', None, 'Cache directory') flags.mark_flag_as_required('cache_dir') flags.DEFINE_string('start_date', date.today().strftime('%Y-%m-%d'), 'Date to start') flags.DEFINE_string('end_date', date.today().strftime('%Y-%m-%d'), 'Date to end') def main(argv): username = None password = None auth_file = pathlib.Path('.auth.json') auth = json.loads(auth_file.open('r').read()) username = auth['rqdata']['username'] password = auth['rqdata']['password'] df_trading_dates = pd.read_excel('trading_dates.xlsx') df_trading_dates = df_trading_dates[ df_trading_dates.trading_date.dt.date >= date.fromisoformat( FLAGS.start_date)] df_trading_dates = df_trading_dates[df_trading_dates.trading_date.dt.date <= date.fromisoformat(FLAGS.end_date)] ricequant.auth(username, password) dates = df_trading_dates.trading_date.to_list() for i in tqdm(range(0, len(dates))): ricequant.fetch(dates[i], FLAGS.cache_dir, logging) if __name__ == '__main__': app.run(main)
[ "paulhybryant@gmail.com" ]
paulhybryant@gmail.com
5e5b7725a3819c8115be977c155635c73eee8e85
7316b60dcb8de197f075863c5014ff5b9c1ef3ce
/manage.py
2bf2aff58f8266d586673c52452e4f99c969f314
[ "MIT" ]
permissive
jirah/django-metrics-dashboard
944c154222968c6f9d45dfd96ce1062f446bbd4d
f4275398960b286a087af94b3929397d1d8e173f
refs/heads/master
2020-12-25T12:18:08.151073
2013-03-06T15:07:14
2013-03-06T15:07:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault( 'DJANGO_SETTINGS_MODULE', 'metrics_dashboard.tests.south_settings') from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "mbrochh@gmail.com" ]
mbrochh@gmail.com
229ce162d2cfd193e01b36085ab0dc6132abacd2
b8e6e35123911bb57027b751272f566ca2811a2f
/OpenCV-Ex4-Haar-ROI.py
498e16670197891fa7c69e5e7e71a6f6af804eb8
[]
no_license
amaxwong/mbs-3523
113ca7df3224b3ebd5e0722d9ca777ea6f3041b2
a62f91c7f5b676a3cbe665789379829cd345ca42
refs/heads/main
2023-06-17T09:07:16.362774
2021-07-20T06:18:31
2021-07-20T06:18:31
335,199,173
0
0
null
null
null
null
UTF-8
Python
false
false
977
py
# Save this file to your Github as OpenCV-Ex4-Haar-ROI.py import cv2 import numpy as np print(cv2.__version__) faceCascade = cv2.CascadeClassifier('Resources/haarcascade_frontalface_default.xml') capture = cv2.VideoCapture('Resources/IU-edited.mp4') # capture = cv2.VideoCapture(0) capture.set(3,640) capture.set(4,480) font = cv2.FONT_HERSHEY_PLAIN while True: success, img = capture.read() imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # print(np.shape(imgGray)) imgGray = cv2.cvtColor(imgGray, cv2.COLOR_GRAY2BGR) # print(np.shape(imgGray)) faces = faceCascade.detectMultiScale(imgGray, 1.2, 10) for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) roiImg = img[y:y + h, x:x + w].copy() imgGray[y:y + h, x:x + w]=roiImg cv2.imshow('Frame', imgGray) #cv2.moveWindow('Frame', 100,20) if cv2.waitKey(1) == ord('q'): break capture.release() cv2.destroyAllWindows()
[ "noreply@github.com" ]
amaxwong.noreply@github.com
07a65541dd334256a2a5e69f6d0ad3c139b8da01
ab1dd7005b4a4273da3771665250c0b3fcf9d0c1
/scripts/RoutVsTime.py
3ddaa9962fb4d9f26f7bc34980e3e75af476b258
[]
no_license
jordan-stone/Disks
5388eb29e1bc38382ddb2cd25b921e31decba9bc
8083c5e1c17e22356a396dfd7c08ed3df5fae605
refs/heads/master
2021-01-17T04:43:33.635093
2016-07-01T21:55:33
2016-07-01T21:55:33
61,930,695
0
0
null
null
null
null
UTF-8
Python
false
false
2,208
py
import numpy as np import matplotlib.pyplot as mpl from Disks import * from Disks.evolve import j_mdot_new_rout, Offner_McKee_dotm_2CTC, J0, J_of_m from Disks import Q mf=0.05 j0=J0(1.5,mf,100)#units of specific angular momentum mstar =[0.001] mdisks=[0.0001] routs=[0.5] t=[0] deltat=[0] minfs=[0] Js=[] Ltots=[] oneMore=False while True: minfs.append(Offner_McKee_dotm_2CTC(mstar[-1]+mdisks[-1],mf,50))#m_current should be total star+disk mass mdot_star=minfs[-1]*0.9 deltat.append(0.01*(mdisks[-1]+mstar[-1])/(minfs[-1]-mdot_star)) Js.append(J_of_m((mstar[-1]+mdisks[-1]),mf,j0,1.5))#specific rout0,mstar0,mdisk0,Ltot0=j_mdot_new_rout(mstar[-1],mdisks[-1], mdot_star,Js[-1],minfs[-1],deltat[-1], rout_0=routs[-1],returnMstarMdisk=True) routs.append(rout0) mdisks.append(mdisk0) mstar.append(mstar0) Ltots.append(Ltot0) t.append(t[-1]+deltat[-1]) #deltat.append((1/Q.Omega(mstar[-1],routs[-1]))/year2second) if oneMore: break if (mstar[-1]+mdisks[-1]) > mf: oneMore=True from plottingTools.fixplotsImproved import compModern, tickFont from matplotlib.ticker import ScalarFormatter, FormatStrFormatter, MaxNLocator f=mpl.figure(figsize=(16,8)) a=f.add_subplot(121) a2=f.add_subplot(122) #formatter=ScalarFormatter() #formatter.set_powerlimits((-3,3)) #formatter.set_scientific(True) a.loglog(t,routs,linewidth=3) a.set_xlabel('Time [years]',fontproperties=compModern(25)) a.set_ylabel('R$_{\mathrm{out}}$ [AU]',fontproperties=compModern(25)) #formatter=FormatStrFormatter('%6.1e') #locator=MaxNLocator(nbins=3,prune='both') #a.xaxis.set_major_formatter(formatter) #a.xaxis.set_major_locator(locator) tickFont(a,'x',compModern(18)) tickFont(a,'y',compModern(18)) a2.loglog(t[1:],Ltots,linewidth=3) a2.loglog(t[1:],np.cumsum(np.array(Js)*np.array(minfs[1:])*Msolar2g*np.array(deltat[1:])),linewidth=3) a2.set_xlabel('Time [years]',fontproperties=compModern(25)) a2.set_ylabel('L',fontproperties=compModern(25)) tickFont(a2,'x',compModern(18)) tickFont(a2,'y',compModern(18)) mpl.tight_layout() mpl.tight_layout() mpl.tight_layout() mpl.show() mpl.show()
[ "jstone@as.arizona.edu" ]
jstone@as.arizona.edu
cb4922bf9a019bc69e5ac01be3bd96a2cc2222da
3a94c9aab15768da927c1f4a8edfb94b41f8c9bf
/api/views.py
816d65a7c8c763ed0ff43b2d308ec9693938734c
[]
no_license
humanbeing-dev/wb_todo-ex3
6ed7c8b2d9b9a1b2d033bfe1449e8971749aacde
ec4c6bcecf88492c22401158a15ff6659a240608
refs/heads/master
2022-12-03T16:55:03.466409
2020-08-22T09:05:59
2020-08-22T09:05:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,452
py
from django.shortcuts import render from django.http import JsonResponse from rest_framework.decorators import api_view from rest_framework.response import Response from .serializers import TaskSerializer from .models import Task @api_view(['GET']) def api_overview(request): api_urls = { 'List': '/task-list/', 'Detail View': '/task-detail/<str:pk>', 'Create': '/task-create/', 'Update': '/task-update/<str:pk>', 'Delete': '/task-delete/<str:pk>' } return Response(api_urls) @api_view(['GET']) def task_list(request): tasks = Task.objects.all() serializers = TaskSerializer(tasks, many=True) return Response(serializers.data) @api_view(['GET']) def task_detail(request, pk): tasks = Task.objects.get(id=pk) serializers = TaskSerializer(tasks, many=False) return Response(serializers.data) @api_view(['POST']) def task_create(request): serializer = TaskSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) @api_view(['POST']) def task_update(request, pk): task = Task.objects.get(id=pk) serializer = TaskSerializer(instance=task, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) @api_view(['DELETE']) def task_delete(request, pk): task = Task.objects.get(id=pk) task.delete() return Response("DELETED")
[ "maciej.sitowski@gmail.com" ]
maciej.sitowski@gmail.com
f746a4ebd5b0ac7fc775267895f58a74ed2423be
f736d31cfaceb87e123b41ffdc2d02a344a18854
/PM_Interview/16_2.py
c300ca8c00d982f592d3d8f2dfee83176b5cb838
[]
no_license
jackiezeng01/Coding_Practice
4aeddb38f986c31330851b4fc2f38ddcd3b6d863
670904585c3c9538832c6042e46e0bfb298b1cfd
refs/heads/master
2023-07-08T21:45:14.447494
2021-08-02T02:27:30
2021-08-02T02:27:30
306,463,463
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
''' Reverse the order of elements in an array (without creating a new array) ''' def reverse_array(arr): p1 = 0 p2 = len(arr)-1 while p1 < p2: arr[p1], arr[p2] = arr[p2], arr[p1] p1+=1 p2-=1 return arr if __name__ == "__main__": arr = [1,2,3,4] print(arr) print("reversed: ", reverse_array(arr))
[ "dolphin.pool01@gmail.com" ]
dolphin.pool01@gmail.com
d347704bb2848e440833e1b735926887eb7f9704
4af6edfc1d581ff8f2aaaafbb7628461e4d3a7e6
/pictomood/conf/oea_less_cross_val_all.py
530429237facacd029c9e58b5815d5c6c0451048
[ "MIT" ]
permissive
pic2mood/pictomood
ec6a91f3e9e0c8ce0ef3b4a50e7c760df1d2ef66
3878e12002b008991571d63820f60154f500ce24
refs/heads/master
2021-05-09T12:32:55.441895
2018-03-03T17:02:01
2018-03-03T17:02:01
119,013,693
0
1
MIT
2018-03-03T08:06:17
2018-01-26T06:16:35
Python
UTF-8
Python
false
false
1,035
py
from pictomood.config import * model = { 'name': 'oea_less', 'validator': 'cross_val', 'emotions': 'all', 'ext': '.pkl' } trainer = { 'dataset': path_as([ 'data', model['name'], name_generator(model, suffix='dataset') ]), 'model': path_as([ 'data', model['name'], name_generator(model, suffix='model') ]), 'raw_images_dataset': os.path.join( os.getcwd(), 'training_p2m', 'data', dir_generator(model) ), 'raw_images_testset': os.path.join( os.getcwd(), 'training_p2m', 'data', dir_generator(model) ), 'features': { 'top_colors': Palette.dominant_colors, 'colorfulness': Color.scaled_colorfulness, 'texture': Texture.texture }, 'columns': [ 'Image Path', 'Top Color 1st', 'Top Color 2nd', 'Top Color 3rd', 'Colorfulness', 'Texture', 'Emotion Tag', 'Emotion Value' ] }
[ "franciscoraymel@gmail.com" ]
franciscoraymel@gmail.com
dca7fb7cb747b50c4973e0758058bca3cef0d6a0
eef17f98a29cec4e432df8b45e148117c75363a2
/apps/apartments/admin.py
a39b26434d68bbeee3e0d2091f6bba10586a69df
[]
no_license
patriciohc1234/season_booking2
e59e4b6cf63343ba0c157f3427e8aa41ab4da148
a9a9032df5f3c47fcccbdf0b8799bd4e6ead8cd5
refs/heads/main
2023-09-04T21:38:27.099649
2021-11-25T16:02:38
2021-11-25T16:02:38
431,904,536
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
from django.contrib import admin from .models import Apartment admin.site.register(Apartment)
[ "p.huentemil@alumnos.duoc.cl" ]
p.huentemil@alumnos.duoc.cl
fce32e3a6c06c5cdd01be9d8fd1b7129fe988b18
a6c07cba0aa8f35e169291ceb0f6ff1a71087016
/TareaTony.py
61cec593205fce9d2353710feb52d00d09bef570
[]
no_license
parra320/Python
fea52b46fb469f76cec2b3d451075c99b2bb1f93
a691423fbbbbc0e4a00852d7074e8a4a6e1e93e4
refs/heads/main
2023-05-05T06:41:36.064912
2021-05-28T07:58:20
2021-05-28T07:58:20
371,624,329
0
0
null
null
null
null
UTF-8
Python
false
false
4,797
py
#Programa que permita calcular la presencia en las redes AbrirArchivo= open("presenciaderedes.csv", "r") Contenido= AbrirArchivo.readlines() AbrirArchivo.close() valor=[] valor.append(Contenido[3]) print(type(valor)) print("\n\t¿Que operación quiere realizar?: ") print("1)Calcular diferencia de cierto aspecto comparando 2 meses \n2)Calcular tasa de crecimiento de una red social") Operacion= input("Elija una opcion: ") Meses= ["Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio", "Julio", "Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre"] if Operacion=="1": print("\n\tElija el primer mes para comparar: ") print("1)Enero \t2)Febrero \t3)Marzo \n4)Abril \t5)Mayo \t\t6)Junio \n7)Julio \t8)Agosto \t9)Septiembre \n10)Octubre \t11)Noviembre \t12)Diciembre") PrimerMes= input("Elija una Opcion: ") print("\n\tElija el segundo mes para comparar: ") SegundoMes= input("Elija una Opcion: ") if (0<int(PrimerMes) and int(PrimerMes)<=12): if (0<int(SegundoMes) and int(SegundoMes)<=12): print("\n\t¿De que red social desea conocer la información?") print("1)Facebook \t2)Twitter \t3)Youtube") RedSocial= input("Elija una opcion: ") if RedSocial=="1": print("\n\t\tContenedores: \n1)Seguidores \t\t\t2)Porcentaje de Crecimiento \n3)Publicaciones \t\t4)Me gusta en publicaciones \n5)Publicaciones compartidas \t6)Comentarios\n") Contenedor= input("Elija una opcion: ") elif RedSocial=="2": print("\n\t\tContenedores: \n1)Seguidores \t\t2)Porcentaje de Crecimiento \n3)Publicaciones \t4)Retuits \n5)Me Gusta \t\t6)Impactos \n7)Videos \t\t8)Visualizaciones \n9)Comentarios \t\t10)Me Gusta\n") elif RedSocial=="3": print("\n\t\tContenedores: \n1)Videos \t2)Visualizaciones \n3)Comentarios \t4)Me Gusta") else: print("Opcion no valida") else: print("Opcion no valida") elif Operacion=="2": print("\n\tElija el primer mes para comparar: ") print("1)Enero \t2)Febrero \t3)Marzo \n4)Abril \t5)Mayo \t\t6)Junio \n7)Julio \t8)Agosto \t9)Septiembre \n10)Octubre \t11)Noviembre \t12)Diciembre") PrimerMes= input("Elija una Opcion: ") print("\n\tElija el segundo mes para comparar: ") SegundoMes= input("Elija una Opcion: ") if (0<int(PrimerMes) and int(PrimerMes)<=12): if (0<int(SegundoMes) and int(SegundoMes)<=12): print("\n\t¿De que red social desea conocer la información?") print("1)Facebook \t2)Twitter") RedSocial= input("Elija una opcion: ") if RedSocial=="1": MesInicial= Meses[int(PrimerMes)-1] MesFinal= Meses[int(SegundoMes)-1] ValorDeMesInicial= int(Contenido[1][int(PrimerMes+2)]) ValorDeMesFinal= int(Contenido[1][int(SegundoMes+2)]) print(ValorDeMesFinal) TasaDeIncremento= float(((ValorDeMesFinal-ValorDeMesInicial)/ValorDeMesInicial)*100) print("La Tasa de Incremento entre el mes de",MesInicial,"y el mes de",MesFinal,"es ",TasaDeIncremento) elif RedSocial=="2": print("cuack2") else: print("Opcion no valida") else: print("Opcion no valida") else: print("Opcion no valida") else: print("Opcion no valida") """print("\n\tElija el primer mes para comparar: ") print("1)Enero \t2)Febrero \t3)Marzo \n4)Abril \t5)Mayo \t\t6)Junio \n7)Julio \t8)Agosto \t9)Septiembre \n10)Octubre \t11)Noviembre \t12)Diciembre") PrimerMes= input("Elija una Opcion: ") print("\n\tElija el segundo mes para comparar: ") SegundoMes= input("Elija una Opcion: ") if (0<int(PrimerMes) and int(PrimerMes)<=12): if (0<int(SegundoMes) and int(SegundoMes)<=12): print("\n\t¿De que red social desea conocer información?") print("1)Facebook \t2)Twitter \t3)Youtube") RedSocial= input("Elija una opcion: ") if RedSocial=="1": print("\n\t\tContenedores: \n1)Seguidores \t\t\t2)Porcentaje de Crecimiento \n3)Publicaciones \t\t4)Me gusta en publicaciones \n5)Publicaciones compartidas \t6)Comentarios\n") Contenedor= input("Elija una opcion: ") elif RedSocial=="2": print("\n\t\tContenedores: \n1)Seguidores \t\t2)Porcentaje de Crecimiento \n3)Publicaciones \t4)Retuits \n5)Me Gusta \t\t6)Impactos \n7)Videos \t\t8)Visualizaciones \n9)Comentarios \t\t10)Me Gusta\n") elif RedSocial=="3": print("\n\t\tContenedores: \n1)Videos \t2)Visualizaciones \n3)Comentarios \t4)Me Gusta") else: print("Opcion no valida") else: print("Opcion no valida") else: print("Opcion no valida")"""
[ "luis.deathofnote@gmail.com" ]
luis.deathofnote@gmail.com
f707c226507a04668fafe52bd8750d1ee2f28d0e
a4c9bbc5f46973111a52cb9cfe952fafe962ba9e
/src/board.py
2740c4db1d99a2593b222914ef4733fe1d1e88ae
[]
no_license
aksalcido/connect-four-ai
a29654bc8cefef79099f44c4daf680e2c14ebf7a
f6698dbd7f139089106eb1f40b98d61635e90003
refs/heads/main
2023-05-04T11:31:40.037358
2021-05-22T01:00:17
2021-05-22T01:00:17
369,395,643
0
0
null
2021-05-22T01:00:18
2021-05-21T02:49:04
Python
UTF-8
Python
false
false
8,616
py
from python_settings import settings class Board: def __init__(self): ''' Initializes a board object. This object contains the contents for the current game state of the board. It essentially does the moving and winner checks but does not contain any of the game attributes (e.g: players, current_turn, etc). ''' self.board = self.initialize_new_board() self.winning_color = None def move(self, player_move: int, player_color: int): ''' Makes a move based off player_move and player_color. Error checking is done before this function is called, so row is guaranteed to be available and the board[row][player_move - 1] is updated to reflect the move. ''' row = self.column_available(player_move) self.board[row][player_move - 1] = player_color def all_moves(self) -> list: ''' Gets all of the moves that are possible on the current board. Meaning an index of each column that is not full and can receieve a piece. Returns a list of these indexes starting at 0 ''' moves = [] for i in range(settings.COLS): if self.board[0][i] == settings.EMPTY: moves.append(i + 1) return moves # ===== Move Validation Checking ===== # def valid_move(self, player_move) -> bool: ''' Returns a bool: True if the player_move is a valid move that can be made. The requirements for validity is to be a column integer that ranges from [1-7] and the column has to be available, meaning the column can not be full. False otherwise. ''' return player_move and player_move.isnumeric() and \ self.in_bounds(int(player_move)) and self.column_available(int(player_move)) != settings.INVALID_COLUMN def in_bounds(self, player_move) -> bool: ''' Returns a bool: True if the player_move integer is within the range of [1-7], meaning it is a valid column argument. False otherwise. ''' return player_move > 0 and player_move <= settings.COLS def column_available(self, column: int) -> int: ''' Returns an int representing either a valid row that the player_move can be made in or INVALID_COLUMN to represent that the move can not be made in this column. ''' for i in range(1, settings.ROWS + 1): if self.board[settings.ROWS - i][column - 1] == settings.EMPTY: return settings.ROWS - i return settings.INVALID_COLUMN # ===== Winner/Tie Checks ===== # def winner(self) -> bool: ''' Returns a bool: True if any of the four in a row checks pass, meaning there is a winner on the board. ''' return self.check_vertical() or self.check_horizontal() or self.check_diagonal_left() or self.check_diagonal_right() def tie(self) -> bool: ''' Returns a bool: True if there is a tie on the board, meaning there is no winner which is checked by self.winner() before this function is checked. A tie in Connect Four means every slot is full and there is no four in a row anywhere on the board. This function does that by checking if every piece on the top row is not empty, if it is not then we know there is no more available columns for moves. False otherwise. ''' for j in range(settings.COLS): if self.board[0][j] == settings.EMPTY: return False return True def gameover(self) -> bool: ''' Returns a bool: True if there is a winner or tie on the board. False otherwise. This function is utility to check various board states for the AI to base its next move off of. A board resulting in gameover can net the biggest gain/loss depending on who wins/loses. ''' return self.winner() or self.tie() def get_winner(self) -> int: ''' Returns the winning color of the board or None. Used to check if winner is found when looking for best move for AI. ''' return self.winning_color # ===== Four in a Row Checks ===== # def check_vertical(self) -> bool: ''' Returns a bool: True if there is four in a row -- in a vertical line in the board that is not an empty slot but a piece color. False otherwise. ''' for i in range(settings.ROWS - 3): for j in range(settings.COLS): if self.board[i][j] != settings.EMPTY and self.board[i][j] == self.board[i + 1][j] == self.board[i + 2][j] == self.board[i + 3][j]: self.winning_color = self.board[i][j] return True return False def check_horizontal(self) -> bool: ''' Returns a bool: True if there is four in a row -- in a horizontal line in the board that is not an empty slot but a piece color. False otherwise. ''' for i in range(settings.ROWS): for j in range(settings.COLS - 3): if self.board[i][j] != settings.EMPTY and self.board[i][j] == self.board[i][j + 1] == self.board[i][j + 2] == self.board[i][j + 3]: self.winning_color = self.board[i][j] return True return False def check_diagonal_right(self) -> bool: ''' Returns a bool: True if there is four in a row -- in a diagonal right line towards the bottom right of the board; that is not an empty slot but a piece color. False otherwise. ''' for i in range(settings.ROWS - 3): for j in range(settings.COLS - 3): if self.board[i][j] != settings.EMPTY and self.board[i][j] == self.board[i + 1][j + 1] == self.board[i + 2][j + 2] == self.board[i + 3][j + 3]: self.winning_color = self.board[i][j] return True return False def check_diagonal_left(self) -> bool: ''' Returns a bool: True if there is four in a row -- in a diagonal left line towards the bottom left of the board; that is not an empty slot but a piece color. False otherwise. ''' for i in range(3, settings.ROWS): for j in range(settings.COLS - 3): if self.board[i][j] != settings.EMPTY and self.board[i][j] == self.board[i - 1][j + 1] == self.board[i - 2][j + 2] == self.board[i - 3][j + 3]: self.winning_color = self.board[i][j] return True return False # ===== Display Methods ===== # def display(self) -> None: ''' Prints the current board and displays to the user. ''' print(self) # Initialization Method # def initialize_new_board(self) -> list: ''' Initializes a new board and assigns to self.board. This function is called at initialization and when the player wishes to play again. ''' new_board = [] for i in range(settings.ROWS): new_row = [] for j in range(settings.COLS): new_row.append(settings.EMPTY) new_board.append(new_row) self.board = new_board self.winning_color = None return self.board # ===== Override Methods ===== # def __getitem__(self, coords: tuple) -> int: ''' Overrides the __getitem__ method so that we do not have to access the self.board attribute from outside of this class. Instead we can directly index this board object with coords (tuple). ''' x, y = coords return self.board[x][y] def __repr__(self) -> str: ''' Override the __repr__ method so that we are able to print a displayable board for the user. ''' board_str = "" for i in range(settings.ROWS): row_str = "|" for j in range(settings.COLS): if self.board[i][j] == settings.RED: row_str += 'R' elif self.board[i][j] == settings.YELLOW: row_str += 'Y' else: row_str += ' ' row_str += '|' board_str += f'{row_str}\n' board_str += '---------------' return board_str
[ "aksalcid@uci.edu" ]
aksalcid@uci.edu
f4e55afb4d540776177b889d78b3b62e4ea7ed2e
d99f3d21700b56d0b9f2fd30cccf23d3bebda3fa
/rdfdatabank/tools/broadcastDatasets.py
18d32cd594872fbe1b5a6736dc80047f507b9336
[ "MIT" ]
permissive
dataflow/RDFDatabank
6e713044d8fd06644667b6346f63f57dee124a89
8a3abd28fefc62cbbfb9f77e7ddc920e23794f34
refs/heads/master
2021-01-18T07:44:31.110786
2015-01-28T15:48:56
2015-01-28T15:48:56
1,910,458
7
0
MIT
2018-12-05T16:20:21
2011-06-17T10:12:30
Python
UTF-8
Python
false
false
2,229
py
#-*- coding: utf-8 -*- """ Copyright (c) 2012 University of Oxford Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, --INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os from rdfdatabank.lib.broadcast import BroadcastToRedis from pylons import config def get_objs_in_dir(items_list, dirname, fnames): for fname in fnames: a = os.path.join(dirname,fname) if fname == 'obj': item = a.split('pairtree_root')[1].strip('/').split('obj')[0].replace('/', '') silo = a.split('pairtree_root')[0].strip('/').split('/')[-1] if not (silo, item) in items_list: items_list.append((silo, item)) return def broadcast_links(src_dir): links_list = [] os.path.walk(src_dir,get_objs_in_dir,links_list) b = BroadcastToRedis(config['redis.host'], config['broadcast.queue']) for silo, item in links_list: b.creation(silo, item) return src_dirs = [ '/silos', ] for src_dir in src_dirs: print "starting", src_dir links_list = [] os.path.walk(src_dir,get_objs_in_dir,links_list) b = BroadcastToRedis(config['redis.host'], config['broadcast.queue']) for silo, item in links_list: b.creation(silo, item)
[ "anusha.ranganathan@bodleian.ox.ac.uk" ]
anusha.ranganathan@bodleian.ox.ac.uk
5b8aee1b33555ac5e21ed6566244155d7a42529c
33424e1a3cc65ac7d4d5f88c5897ae59a32ae91e
/train.py
b1bb0c57c8f3b5279b7e19fb55abc6d03e23db7b
[]
no_license
file-campuran/Auto-Attendance-System-using-Deep-Learning
08d5888d2ac046a35554c86cd4a4c15a485500bb
495003e2dfe1a5ced097223dfaa1d328a44198a8
refs/heads/master
2023-03-22T23:11:28.366108
2020-09-25T20:39:29
2020-09-25T20:39:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
import cognitive_face as CF from global_variables import personGroupId Base_url = 'https://westcentralus.api.cognitive.microsoft.com/face/v1.0' # default endpoint when use free CF.BaseUrl.set(Base_url) Key= '20c5c11712244ba4b340ac8bf949b8ef' # subscription key needed CF.Key.set(Key) res = CF.person_group.train(personGroupId) print(res)
[ "nasirh831@gmail.com" ]
nasirh831@gmail.com
d0d2b7a48aac0d51708a4b7cb8b413fae2d39bc3
bc1c3b7386b80c8aa1ee9660606084aacf499e93
/Bronze III/1267.py
ce2135f42a9bee7c2580012ad118b4898d82c210
[]
no_license
Thesine/BOJ_Sine
ad93bcd47f622cb68ae794fbd70c3b73044c76aa
4bde63726c0f14e9dea30eeb5d262039509b9e8b
refs/heads/master
2022-11-05T01:22:55.674606
2020-07-15T07:14:49
2020-07-15T07:14:49
265,505,315
0
0
null
null
null
null
UTF-8
Python
false
false
349
py
import math N = int(input()) a = [] a = input().split() Mres = 0 Yres = 0 if len(a)==N: for i in range(N): M = (math.trunc(int(a[i])/30)+1) * 10 Y = (math.trunc(int(a[i])/60)+1) * 15 Mres = Mres + M Yres = Yres + Y if Mres < Yres: print('Y', Mres) elif Yres < Mres: print('M', Yres) elif Mres==Yres: print('Y', 'M', Mres)
[ "noreply@github.com" ]
Thesine.noreply@github.com
0fc4dd5e9ee64a6900a149cc32b70bc8fced8207
43ff465e2f2818f859596a22d9987b9aa984c54e
/emojix.py
bbca135b93d5cb5894c28d6418fdd6862ad174b6
[]
no_license
ANSH3LL/Chatz-UI
df99329eb693cd85dad059cfd7473a34e2ad5f5b
bea54ba4c8b8445f3d4fbd944488dcbb528825da
refs/heads/master
2020-12-04T14:43:02.170118
2020-01-27T07:07:31
2020-01-27T07:07:31
231,804,569
2
0
null
null
null
null
UTF-8
Python
false
false
3,375
py
import os, sys from PyQt4 import QtCore, QtGui class EmojiLabel(QtGui.QLabel): def __init__(self, parent): QtGui.QLabel.__init__(self, parent) def mouseReleaseEvent(self, event): self.emit(QtCore.SIGNAL('clicked()')) class EmojiFragment(QtGui.QScrollArea): def __init__(self, emoji_hook): QtGui.QScrollArea.__init__(self) self.widget = QtGui.QWidget() self.setWidget(self.widget) self.setWidgetResizable(True) self.setStyleSheet('''QScrollArea{border: none;}''') self.widget.setStyleSheet('''QWidget{background: #fff;}''') self.emoji = {'people':[], 'food':[], 'nature':[], 'things':[]} self.populate() self.emoji_hook = emoji_hook def populate(self): for item in self.emoji: path = os.path.join('resources', 'emoji', 'lists', '{}.txt'.format(item)) with open(path, 'r') as handle: self.emoji[item] = [line.strip() for line in handle] def get_rows(self, columns, length): rows = length/columns if length % columns > 0: rows += 1 return rows def ret_code(self, layout, pointer): which = self.sender() index = layout.indexOf(which) fname = self.emoji[pointer][index] self.emoji_hook(fname, pointer) def load_emoji(self, pointer, cols): counter = 0 length = len(self.emoji[pointer]) pith = os.path.join('resources', 'emoji', pointer) layout = QtGui.QGridLayout(self.widget) rows = self.get_rows(cols, length) for row in range(rows): for column in range(cols): path = os.path.join(pith, self.emoji[pointer][counter]) pixmap = QtGui.QPixmap(path) label = EmojiLabel(self) label.setPixmap(pixmap) label.setStyleSheet('''QLabel::hover{background: #dcdcdc;}''') self.connect(label, QtCore.SIGNAL('clicked()'), lambda: self.ret_code(layout, pointer)) layout.addWidget(label, row, column) if counter == length - 1: break else: counter += 1 class EmojiWindow(QtGui.QTabWidget): def __init__(self, receiver): QtGui.QTabWidget.__init__(self) self.setIconSize(QtCore.QSize(32, 32)) self.setStyleSheet('''QTabWidget::tab-bar{alignment: center;}QTabWidget::pane{border: none;}''') self.load_emoji(receiver) self.setup_tabs() def load_emoji(self, receiver): self.pfrag = EmojiFragment(receiver) self.pfrag.load_emoji('people', 10) self.ffrag = EmojiFragment(receiver) self.ffrag.load_emoji('food', 10) self.nfrag = EmojiFragment(receiver) self.nfrag.load_emoji('nature', 10) self.tfrag = EmojiFragment(receiver) self.tfrag.load_emoji('things', 10) def setup_tabs(self): path = os.path.join('resources', 'emoji', 'icons') self.addTab(self.pfrag, QtGui.QIcon(os.path.join(path, 'people.svg')), '') self.addTab(self.ffrag, QtGui.QIcon(os.path.join(path, 'food.svg')), '') self.addTab(self.nfrag, QtGui.QIcon(os.path.join(path, 'nature.svg')), '') self.addTab(self.tfrag, QtGui.QIcon(os.path.join(path, 'things.svg')), '')
[ "noreply@github.com" ]
ANSH3LL.noreply@github.com
8c5d004e1a7e6632d8a036443c0040386507fabf
f2d189d9321f88d3f6104c81109dcebb2087578d
/wombot_teleop/src/joy_teleop.py
09372c54cb03b7acbf12c44402ccc046d59e358d
[]
no_license
merlinwu/wombot
c7ec39a28cf745d1b9dd2edbe7982b2a27bd81ff
215a8b57e2b3483c89f625dbe8f7b64f7508ad11
refs/heads/master
2021-01-01T04:01:16.058403
2012-02-18T08:30:46
2012-02-18T08:30:46
56,123,381
0
0
null
null
null
null
UTF-8
Python
false
false
5,653
py
#!/usr/bin/env python import roslib; roslib.load_manifest('wombot_teleop') import rospy from art_msgs.msg import SteeringCommand from art_msgs.msg import ThrottleCommand from art_msgs.msg import BrakeCommand from sensor_msgs.msg import Joy from wombot_msgs.msg import WombotVehicle from wombot_msgs.msg import DrivetrainCommand class JoyTeleop(object): def __init__(self): rospy.init_node('joy_teleop') rospy.Subscriber("joy",Joy, self._JoyCallback) self.steering_publisher = rospy.Publisher("steering/cmd",SteeringCommand) self.throttle_publisher = rospy.Publisher("throttle/cmd",ThrottleCommand) self.drivetrain_publisher = rospy.Publisher("drivetrain/cmd",DrivetrainCommand) self.brake_publisher = rospy.Publisher("brake/cmd",BrakeCommand) rospy.loginfo("Starting") self.steering_axis = 0 self.throttle_axis = 1 self.brake_axis = 2 self.rear_diff_lock_button = 2 self.front_diff_lock_button = 3 self.gear_shift_button = 0 self._deadman_button = 5 self.last_angle = 0.0; self.last_throttle_position = 1.0; self.last_brake_position = 1.0; self._current_gear = DrivetrainCommand.LowRange self._fdiff_state = DrivetrainCommand.Unlock self._rdiff_state = DrivetrainCommand.Unlock self._last_gear_button_state = 0; self._last_fdiff_button_state = 0; self._last_rdiff_button_state = 0; # clamp value to within given values def _Clamp(self,value,minimum,maximum): return min(maximum,max(minimum,value)) def _JoyCallback(self,joyMessage): # Implement a dead-man button. (right shoulder button, if not pressed, cancel if joyMessage.buttons[self._deadman_button] == 0: return # Steering angle = WombotVehicle.max_steer_degrees * joyMessage.axes[self.steering_axis] if angle != self.last_angle: rospy.loginfo("Publishing angle: "+str(angle)) cmd = SteeringCommand() cmd.request = SteeringCommand.Degrees cmd.angle = -angle self.steering_publisher.publish(cmd) self.last_angle = angle #Throttle # The signal from the Xbox goes from 1 being released to -1 being fully depressed # We need to adjust the range to 0.0-1.0 and invert to get the throttle position # of 0 = Off and 1 = Full #position = 1-((joyMessage.axes[self.throttle_axis] + 1.0)/2.0) # for a trigger position = joyMessage.axes[self.throttle_axis] if position >= -0.1 and position <= 0.1: position = 0.0 if position != self.last_throttle_position: rospy.loginfo("Publishing throttle position: "+str(position)) cmd = ThrottleCommand() cmd.request = ThrottleCommand.Absolute cmd.position = position self.throttle_publisher.publish(cmd) self.last_throttle_position = position # Brake # because the brake is simply running the motor in reverse (tick values lower than # 1340, to treat this like a 'normal' brake will require active mixing with the current # throttle point, which will be done in the future. position = 1-((joyMessage.axes[self.brake_axis] + 1.0)/2.0) if position != self.last_brake_position: rospy.loginfo("Publishing brake position: "+str(position)) cmd = BrakeCommand() cmd.request = BrakeCommand.Absolute cmd.position = position self.brake_publisher.publish(cmd) self.last_brake_position = position drivetrain_cmd = DrivetrainCommand() drivetrain_cmd.gear = DrivetrainCommand.NoChange drivetrain_cmd.front_diff = DrivetrainCommand.NoChange drivetrain_cmd.rear_diff = DrivetrainCommand.NoChange # Gear if (joyMessage.buttons[self.gear_shift_button] == 1) and (self._last_gear_button_state == 0): drivetrain_cmd.gear = (DrivetrainCommand.LowRange,DrivetrainCommand.HighRange)[self._current_gear == DrivetrainCommand.LowRange] self._current_gear = drivetrain_cmd.gear self._last_gear_button_state = joyMessage.buttons[self.gear_shift_button] # Rear Diff if (joyMessage.buttons[self.rear_diff_lock_button] == 1) and (self._last_rdiff_button_state == 0): drivetrain_cmd.rear_diff = (DrivetrainCommand.Unlock,DrivetrainCommand.Lock)[self._rdiff_state == DrivetrainCommand.Unlock] self._rdiff_state = drivetrain_cmd.rear_diff self._last_rdiff_button_state = joyMessage.buttons[self.rear_diff_lock_button] # Front Diff if (joyMessage.buttons[self.front_diff_lock_button] == 1) and (self._last_fdiff_button_state == 0): drivetrain_cmd.front_diff = (DrivetrainCommand.Unlock,DrivetrainCommand.Lock)[self._fdiff_state == DrivetrainCommand.Unlock] self._fdiff_state = drivetrain_cmd.front_diff self._last_fdiff_button_state = joyMessage.buttons[self.front_diff_lock_button] if drivetrain_cmd.gear + drivetrain_cmd.rear_diff + drivetrain_cmd.front_diff > 0: rospy.loginfo("Drivetrain Command:- gear: "+str(drivetrain_cmd.gear)+", rdiff: "+str(drivetrain_cmd.rear_diff)+", fdiff: "+str(drivetrain_cmd.front_diff)) self.drivetrain_publisher.publish(drivetrain_cmd) #Init and run if __name__ == '__main__': joy_teleop = JoyTeleop() rospy.spin()
[ "tim@scott.id.au" ]
tim@scott.id.au
93f85d2a622e280d631d659e7b62ab562683d6e3
99297ea97c84625d5cbe28ea2c862c2944f3f781
/abstract_dump.py
0ce6245b2930f9192f46462a74f2347bb2ad378a
[ "Apache-2.0" ]
permissive
subho007/apk_api_key_extractor
f7ad4fe8780586661f65526d871b1653651e1425
cbc2a8b02a5758886ac6aa08ed4b1b193e2b02aa
refs/heads/master
2020-12-22T20:23:46.901996
2019-09-02T09:19:04
2019-09-02T09:19:04
236,922,364
1
0
Apache-2.0
2020-01-29T06:57:54
2020-01-29T06:57:53
null
UTF-8
Python
false
false
254
py
from abc import ABC, abstractmethod class AbstractDump(ABC): @abstractmethod def dump_apikeys(self, entries, package, version_code, version_name): pass @abstractmethod def dump_strings(self, entries): pass
[ "didiego.alessandro@gmail.com" ]
didiego.alessandro@gmail.com
1ed9797eae96b6c837f11417f40e151d6b5c53e6
e717d3bc0d6c70f27f81d83d1adf43e71fd2b8bb
/molecule/default/tests/test_default.py
3ec76a5d8cb681195e7076edc03ece52da653cb3
[ "MIT" ]
permissive
gabops/ansible-role-packages-os
85b178c645a6a497bf875ec1f21963335f99a599
72220dd4c9810f3971cdc23b0008a9df529a5478
refs/heads/master
2023-02-26T15:08:28.368881
2020-01-24T19:33:02
2020-01-24T19:33:02
205,724,504
4
0
MIT
2023-02-07T22:59:04
2019-09-01T19:45:22
Python
UTF-8
Python
false
false
216
py
import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') def test_pkg_installed(host): pass
[ "gabriel.suarez@solarwinds.com" ]
gabriel.suarez@solarwinds.com
0088c054c40c1b257edbf5330063ca493ed72165
2eb86b328bfa24a826a1ced7b6e58db234b0f044
/algoritm_w2/p2.py
f8fc28d572a92370072cd95491dde7255b938c76
[]
no_license
stkang9409/algorithm
ec965864f6226d5d82d0ef4d5d2e9264171ba5ca
2660f015ea3f9bfb61fa43238696f767a7d1a909
refs/heads/main
2023-02-28T18:08:02.797369
2021-02-08T02:08:24
2021-02-08T02:08:24
324,918,439
0
0
null
null
null
null
UTF-8
Python
false
false
609
py
import sys input = sys.stdin.readline tree_num, need = map(int, input().split()) trees = list(map(int, input().split())) def get_tree_amount(h): amount = 0 for tree in trees: amount += tree - h if tree - h > 0 else 0 return amount def bin_search(need): low = 0 high = max(trees) result = 0 while low <= high: middle = (low + high)//2 if get_tree_amount(middle) >= need: result = middle low = middle + 1 else: high = middle - 1 return result print(bin_search(need))
[ "stkang9409@gmail.com" ]
stkang9409@gmail.com
44ec1bf6c464c84cdeb3ebabf286821591ab9118
c0f3714db335601d94172362b872142ab4cf14ed
/pos_receipt_invoice_number/__openerp__.py
18ebd32d45d9738a505a09f7a0dcb4504d4ebc2d
[]
no_license
osmincano/number_invoice
6f0843fbd90332a4ce6d421b492cadcb879d04f3
28010945d57e0eb900beb9f6b089bd4467da252e
refs/heads/master
2020-05-09T14:55:15.457867
2019-04-16T06:41:32
2019-04-16T06:41:32
181,214,051
0
0
null
null
null
null
UTF-8
Python
false
false
555
py
# -*- coding: utf-8 -*- { 'name': "POS Receipt Show Invoice Number", 'version': '8.0.1.0.1', 'category': 'Point of Sale', 'author': ['TL Technology'], 'sequence': 0, 'depends': [ 'point_of_sale' ], 'data': [ 'template/import_library.xml', 'views/pos_config.xml', ], 'qweb': [ 'static/src/xml/*.xml' ], "external_dependencies": { "python": [], "bin": [] }, 'images': ['static/description/icon.png'], 'installable': True, 'application': True, }
[ "root@ubuntu.(none)" ]
root@ubuntu.(none)
5c0be6abcd37ca54a235856fd740d48fbdaf07e5
d6e2a4c5a45762abe4cda59695d4c50da557dd32
/haming_fast.py
7cf2b5cefc4d477502065ece9db32a69111d70da
[]
no_license
miskiewiczm/primers
388f9f9967c168b8673dc89ec57c785a74683c82
5985ff0eef9515fb1752e25acc2d82eaeda4d5de
refs/heads/main
2023-02-24T19:40:57.068003
2020-11-06T16:19:49
2020-11-06T16:19:49
307,627,960
0
0
null
null
null
null
UTF-8
Python
false
false
331
py
primer1 = "AACCTTAAGGCCTTGGAA" primer2 = "CCTTGGTTGGAAAATTGG" dna_to_bin = {"A": "00", "C": "01", "T": "11", "G": "10"} dna_B1 = ''.join(dna_to_bin[i] for i in primer1) dna_B2 = ''.join(dna_to_bin[i] for i in primer2) print(dna_B1) print(dna_B2) a = "".join(str(int(i == j)) for i, j in zip(dna_B1, dna_B2)) print(a.count("1"))
[ "noreply@github.com" ]
miskiewiczm.noreply@github.com
ebf4d433e4477a4936756e073428420c5428f87c
3e50ed55208122b2f8b34e7f26f33c9ef70efce5
/python/requests_test/m1.py
d6f7f6b65b1ce61cd5e423cbf4700572f2ed54ae
[]
no_license
brady-wang/mac_home
b8343da428a4e6696b89d0e6a53ff0dfc87ffd21
c56a739c31d3c0f62d26d8512fe1a90c036a1f96
refs/heads/master
2023-01-14T11:42:02.544322
2019-10-02T11:47:27
2019-10-02T11:47:27
193,177,718
0
0
null
2023-01-04T13:55:31
2019-06-22T01:27:10
PHP
UTF-8
Python
false
false
1,145
py
# *_*coding:utf-8 *_* # 网易云音乐批量下载 import requests import urllib # 榜单歌曲批量下载 # r = requests.get('http://music.163.com/api/playlist/detail?id=2884035') # 网易原创歌曲榜 # r = requests.get('http://music.163.com/api/playlist/detail?id=19723756') # 云音乐飙升榜 # r = requests.get('http://music.163.com/api/playlist/detail?id=3778678') # 云音乐热歌榜 r = requests.get('http://music.163.com/api/playlist/detail?id=3779629') # 云音乐新歌榜 # 歌单歌曲批量下载 # r = requests.get('http://music.163.com/api/playlist/detail?id=123415635') # 云音乐歌单——【华语】中国风的韵律,中国人的印记 # r = requests.get('http://music.163.com/api/playlist/detail?id=122732380') # 云音乐歌单——那不是爱,只是寂寞说的谎 arr = r.json()['result']['tracks'] # 共有100首歌 for i in range(10): # 输入要下载音乐的数量,1到100。 name = str(i+1) + ' ' + arr[i]['name'] + '.mp3' link = arr[i]['mp3Url'] urllib.request.urlretrieve(link, '网易云音乐\\' + name) # 提前要创建文件夹 print(name + ' 下载完成')
[ "brady.wang@qq.com" ]
brady.wang@qq.com
df9c3f26577d821ab512476e94dfcb5d9f813e80
6af5bfa49a4fa2a4a1cdc094fa55a5ac38f4baff
/homework/mp2-code/instances.py
542a47ee9beeeb06e504808bb6eeb3b4cd5cee01
[]
no_license
milkshakeiii/simple_python_projects
8d89493df14884c739b77d1ca1d39bc5b1f0f8da
aeffff25d3d0e9210a2ca93149cceded9eec796d
refs/heads/master
2023-04-14T02:25:03.897211
2023-04-05T17:23:03
2023-04-05T17:23:03
69,521,694
0
0
null
null
null
null
UTF-8
Python
false
false
1,691
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np uninos = [np.array([[i]]) for i in range(1,61)] dominos = [np.array([[i],[i]]) for i in range(1,31)] triominos = [np.array([[i,0],[i,i]]) for i in range(1,21)] petnominos = [np.array([[0,1,1], [1,1,0], [0,1,0]]), np.array([[2], [2], [2], [2], [2]]), np.array([[3,0], [3,0], [3,0], [3,3]]), np.array([[0,4], [0,4], [4,4], [4,0]]), np.array([[5,5], [5,5], [5,0]]), np.array([[6,6,6], [0,6,0], [0,6,0]]), np.array([[7,0,7], [7,7,7]]), np.array([[8,0,0], [8,0,0], [8,8,8]]), np.array([[9,0,0], [9,9,0], [0,9,9]]), np.array([[0,10,0], [10,10,10], [0,10,0]]), np.array([[0,11], [11,11], [0,11], [0,11]]), np.array([[12,12,0], [0,12,0], [0,12,12]])] board_6x10 = np.ones((6,10)) board_5x12 = np.ones((5,12)) board_3x20 = np.ones((3,20)) empty_chessboard = np.ones((8,8)) empty_chessboard[3][3] = empty_chessboard[3][4] = empty_chessboard[4][3] = empty_chessboard[4][4] = 0 empty_chessboard2 = np.ones((8,8)) empty_chessboard2[0][0] = empty_chessboard2[7][7] = empty_chessboard2[7][6] = empty_chessboard2[1][0] = 0
[ "milkshakeiii@gmail.com" ]
milkshakeiii@gmail.com
30b6d0f6844219533ac55b79bf10342cfab2d660
921bc873efb33d32df249732ba77e32995b707a1
/poems.py
d2c4bf3ef36e785e2b7ae6989e10cfff43f76517
[]
no_license
AtharvaTawde/larvabot
0df52bad4ae58390bf3701feff691fa8706ea3aa
ccf164f1fe42626ea491d691df14d66f7dfc5b69
refs/heads/master
2023-04-22T15:44:46.917354
2021-05-08T19:13:26
2021-05-08T19:13:26
363,477,062
0
0
null
null
null
null
UTF-8
Python
false
false
1,880
py
import random poems = { "Moon and Sun": "Oh, those days when the sun and moon were alike\nBut now the moon envies the sun for it is so bright\nThe sun envies the cool dark night", "Lava": "I was in lava\nMy body was roasting fast\nIn the orange lake", "Ain": "I am Ain\nI am pain\nI like plane\nI have no brain\nI am a big stain\nI have no brain\nI like plane\nI am pain\nI am Ain", "What is that German building?????": "Storm ze Reichstag\nPut Soviet phlag\nDrink some Molotov too!", "Lavender": "The purple flower\nSmells of just like morning dew\nOnly to wilt soon", "Pizza": "I love pizza\nwhen the crust is just\nbrown and crisp\nand the cheese is\na melty gold\nand the mushrooms are charred well\nI would not miss out\non the creamy, rich\ntomato sauce\nand the toppings make\nthe pizza a pizza", "Autumn": "It is autumn\nThe leaves have turned\nto a beautiful gold\nwhile some\nstubbornly stay green,\nor some change to red\norange and then brown\nclinging to their tree\nsoon the trees will bear\nno fruit or leaves\nbut I enjoy\nthe sunset view\nby the lake.", "Zombies": "I was\nRunning\nAway\nFrom\nThe rotting green\nZombies\nChasing me\nBegging for my\nBrain", "Formula 1": "The cars sped\nDown\nThe track\nFlashes of bright\nOrange, green, and blue\nWith\nEngine roars\nPast the\nFinish line.", "Village": "The people dressed in simple clothes\nWalked to the house\nMade of simple straw\nWith pitchforks in hand\n\nThey charged at the door\nAnd broke the measly\nwooden structure\nThey walked inside\nAnd searched the house of its goods\n\nAnd when the owner arrived\nHe stood there in shock\nSeeing the house intact\nAll but the door" } def output(message): title, poem = random.choice(list(poems.items())) return f'''```\nPresenting "{title}" by Aaryan Tawde\n{poem}```'''
[ "atharvatawde894@gmail.com" ]
atharvatawde894@gmail.com
41c6c69e9b8b7c35436dc0fb748fd21273bc0b83
9d388f338ccb52a818c345a6ccdc87775eb38c52
/src/cobwebs/cobwebs/exceptions.py
33797591c70f8b397e19e43ee8180df55a26355e
[ "Apache-2.0" ]
permissive
asteroide/immo_spider
3750887d62f876ce35a70b9172caf4fd935a1487
864828c389173f6d6417392983bc8d39b5fd4ea2
refs/heads/master
2023-01-11T02:13:47.460448
2016-09-21T12:55:47
2016-09-21T12:55:47
56,408,229
0
0
Apache-2.0
2022-12-24T02:34:04
2016-04-16T22:22:37
Python
UTF-8
Python
false
false
622
py
class NotImplementedException(BaseException): message_format = "This function is not implemented." code = 500 title = 'Not implemented' class UnknownCommandError(BaseException): message_format = "This command is not authorized." code = 500 title = 'Unknown Command' class ConfigFileException(BaseException): message_format = "Cannot find a usable configuration file." code = 500 title = 'Config File Error' class AuthException(BaseException): message_format = "There is an error with the username or the password supplied..." code = 401 title = 'Authentication Error'
[ "dt_github@domtombox.net" ]
dt_github@domtombox.net
8dadd4adfb54d496723bb512cdb47c1749c4242a
99eba20f2b0a547acb106ab4bdd94a7df330ff6b
/Utils.py
7015c4b1152c05bb235ee4a8ddbd7ddadc1a8b5f
[]
no_license
apitsaer/Deep-Artwork-Analysis
7e7d7836a4069dea674e99a6968717b8a3046bc4
b8a6056e43e3de8100eaefaeea72f87bb6fec5ae
refs/heads/master
2020-05-02T08:21:08.944920
2019-05-25T23:54:35
2019-05-25T23:54:35
177,840,557
0
0
null
null
null
null
UTF-8
Python
false
false
8,409
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 3 16:11:22 2019 @author: admin """ import re import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels def getAllTypeMat(AWTableTOP): all_type = set() all_mat = set() for row in AWTableTOP.itertuples(): text_mat = re.split(";", row.Material_all) for mat in text_mat: if not mat == '': all_mat.add(mat) text_type = re.split(";", row.Type_all) for typ in text_type: if not typ == '': all_type.add(typ) return (all_type, all_mat) def smooth_curve(points, factor=0.8): smoothed_points = [] for point in points: if smoothed_points: previous = smoothed_points[-1] smoothed_points.append(previous * factor + point * (1 - factor)) else: smoothed_points.append(point) return smoothed_points def makePlots(DIR, MODEL): INPUT_FILE = DIR + MODEL + '.log' OUTPUT_FILE = DIR + MODEL + '_train_valid_metrics.png' OUTPUT_FILE_L1 = DIR + MODEL + '_train_valid_loss.png' OUTPUT_FILE_LS = DIR + MODEL + '_train_valid_losses_split.png' train_logs = pd.read_csv(INPUT_FILE, keep_default_na=False) plt.figure(0) fig, axs = plt.subplots(2, 2, constrained_layout=True) axs[0, 0].plot(train_logs.epoch, smooth_curve(train_logs.artist_weighted_categorical_accuracy), 'b', label='Train') axs[0, 0].plot(train_logs.epoch, smooth_curve(train_logs.val_artist_weighted_categorical_accuracy), 'r', label='Val') axs[0, 0].set_title('Artist') axs[0, 0].set_ylabel('Avg Class Acc') axs[0, 0].legend() axs[0, 1].plot(train_logs.epoch, smooth_curve(train_logs.year_mean_absolute_error), 'b', label='Train') axs[0, 1].plot(train_logs.epoch, smooth_curve(train_logs.val_year_mean_absolute_error), 'r', label='Val') axs[0, 1].set_title('Year') axs[0, 1].set_ylabel('MAE') axs[0, 1].legend() axs[1, 0].plot(train_logs.epoch, smooth_curve(train_logs.type_precision), 'b', label='Train') axs[1, 0].plot(train_logs.epoch, smooth_curve(train_logs.val_type_precision), 'r', label='Val') axs[1, 0].set_title('Type') axs[1, 0].set_ylabel('Precision') axs[1, 0].legend() axs[1, 1].plot(train_logs.epoch, smooth_curve(train_logs.mat_precision), 'b', label='Train') axs[1, 1].plot(train_logs.epoch, smooth_curve(train_logs.val_mat_precision), 'r', label='Val') axs[1, 1].set_title('Material') axs[1, 1].set_ylabel('Precision') axs[1, 1].legend() #fig.tight_layout() for ax in axs.flat: ax.set(xlabel='Epoch') ## Hide x labels and tick labels for top plots #for ax in axs.flat: # ax.label_outer() fig.suptitle('Train & Val Metrics') #plt.subplots_adjust(top=1.2, bottom=0.2, left=0.10, right=0.95, hspace=0.45, wspace=0.35) plt.savefig(OUTPUT_FILE) plt.show() plt.figure(1) fig, axs = plt.subplots(2, 2, constrained_layout=True) axs[0, 0].plot(train_logs.epoch, smooth_curve(train_logs.artist_loss), 'b', label='Train') axs[0, 0].plot(train_logs.epoch, smooth_curve(train_logs.val_artist_loss), 'r', label='Val') axs[0, 0].set_title('Artist') axs[0, 0].set_ylabel('Cat x entropy') axs[0, 0].legend() axs[0, 1].plot(train_logs.epoch, smooth_curve(train_logs.year_loss), 'b', label='Train') axs[0, 1].plot(train_logs.epoch, smooth_curve(train_logs.val_year_loss), 'r', label='Val') axs[0, 1].set_title('Year') axs[0, 1].set_ylabel('MAE') axs[0, 1].legend() axs[1, 0].plot(train_logs.epoch, smooth_curve(train_logs.type_loss), 'b', label='Train') axs[1, 0].plot(train_logs.epoch, smooth_curve(train_logs.val_type_loss), 'r', label='Val') axs[1, 0].set_title('Type') axs[1, 0].set_ylabel('Bin x entropy') axs[1, 0].legend() axs[1, 1].plot(train_logs.epoch, smooth_curve(train_logs.mat_loss), 'b', label='Train') axs[1, 1].plot(train_logs.epoch, smooth_curve(train_logs.val_mat_loss), 'r', label='Val') axs[1, 1].set_title('Material') axs[1, 1].set_ylabel('Bin x entropy') axs[1, 1].legend() #fig.tight_layout() for ax in axs.flat: ax.set(xlabel='Epoch') ## Hide x labels and tick labels for top plots #for ax in axs.flat: # ax.label_outer() #plt.subplots_adjust(top=1.2, bottom=0.2, left=0.10, right=0.95, hspace=0.65, wspace=0.55) fig.suptitle('Train & Val Losses') plt.savefig(OUTPUT_FILE_LS) plt.show() plt.figure(2) plt.plot(train_logs.epoch, smooth_curve(train_logs.loss), 'b', label='Train') plt.plot(train_logs.epoch, smooth_curve(train_logs.val_loss), 'r', label='Val') plt.title('Total Loss') plt.ylabel('Multi-task sum weighted loss') plt.xlabel('Epoch') plt.legend() plt.savefig(OUTPUT_FILE_L1) # get some statistics on the original image size in order to determine acceptable resizing def get_IMG_size_statistics(DIR): heights = [] widths = [] directory = DIR + 'original' for img in os.listdir(directory): if(img.endswith('jpg')): path = os.path.join(directory, img) data = image.load_img(path) data = image.img_to_array(data) heights.append(data.shape[0]) widths.append(data.shape[1]) print(img) avg_height = sum(heights) / len(heights) avg_width = sum(widths) / len(widths) print("Average Height: " + str(avg_height)) print("Max Height: " + str(max(heights))) print("Min Height: " + str(min(heights))) print('\n') print("Average Width: " + str(avg_width)) print("Max Width: " + str(max(widths))) print("Min Width: " + str(min(widths))) def plot_confusion_matrix(y_true, y_pred, classes, normalize=False, title=None, cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py """ if not title: if normalize: title = 'Normalized confusion matrix' else: title = 'Confusion matrix, without normalization' # Compute confusion matrix cm = confusion_matrix(y_true, y_pred) # Only use the labels that appear in the data classes = classes[unique_labels(y_true, y_pred)] if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) fig, ax = plt.subplots() im = ax.imshow(cm, interpolation='nearest', cmap=cmap) ax.figure.colorbar(im, ax=ax) # We want to show all ticks... ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), # ... and label them with the respective list entries xticklabels=classes, yticklabels=classes, title=title, ylabel='True label', xlabel='Predicted label') # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") fig.tight_layout() return ax np.set_printoptions(precision=2) # Plot non-normalized confusion matrix plot_confusion_matrix(y_test, y_pred, classes=class_names, title='Confusion matrix, without normalization') # Plot normalized confusion matrix plot_confusion_matrix(y_test, y_pred, classes=class_names, normalize=True, title='Normalized confusion matrix') plt.show() #makePlots('/Users/admin/Documents/AWImpl/logs/', 'RESNET')
[ "apitsaer@gmail.com" ]
apitsaer@gmail.com
9ddc24cc3be2b389b945332eb5b4ae28a086dae6
3374acf28d40e502b00680aacbcab00e111fa437
/cspp1-practice/m7/Functions - Square Exercise/square.py
55828979709d62de40a4c16a757b689d589473f7
[]
no_license
saisrinivasreddypatlolla/6019_CSPP1
db2bd0ddb63b6a332b029340bf73f31017616d93
e4092709128bcae778a4ee2e6c765b919762a2e5
refs/heads/master
2020-03-24T20:36:55.394170
2018-08-25T07:27:08
2018-08-25T07:27:08
142,987,677
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
# Exercise: square # Write a Python function, square, that takes in one number and returns the square of that number. # This function takes in one number and returns one number. def square(x): ''' x: int or float. ''' return x*x # Correct def main(): data = input() data = float(data) temp = str(data).split('.') if(temp[1] == '0'): print(square(int(float(str(data))))) else: print(square(data)) if __name__== "__main__": main()
[ "nivasreddy08@msitprogram.net" ]
nivasreddy08@msitprogram.net
839a175c960224f1cd6c4f26e5f954b2b481bc55
337562baac02e9ef39acf48c0cb0d0e612f42372
/scripts/go.py
0ca910891f0ec0683de6ec4964c50e36e84c55a1
[]
no_license
y-shiigi/task_editor
9d7a1ae3acd27faf0c00bf3ca582ae1d47874bd9
95f9e6f0e2d4812fe88bd38216d686499fa98392
refs/heads/master
2021-07-12T18:09:25.106358
2020-07-06T07:18:20
2020-07-06T07:18:20
174,313,759
0
0
null
2020-07-06T07:18:21
2019-03-07T09:30:14
Python
UTF-8
Python
false
false
5,154
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import time import rospy ##-- for navigation import tf import actionlib from actionlib_msgs.msg import * from geometry_msgs.msg import * from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal import yaml import tf import math ##-- for find pkg import rospkg ########################################### ## @brief ナビゲーション関連のクラス class NaviAction: ## @brief コンストラクタ。waypointsの読込とmove_baseのアクションクライアントの定義 def __init__(self): rospack = rospkg.RosPack() rospack.list() path = rospack.get_path('task_editor') ## @brief 読み込まれたwaypointsのデータ self.config = yaml.load(file(path + "/config/waypoints.yaml")) rospy.on_shutdown(self.shutdown) ## @brief /move_baseアクションクライアント self.ac = actionlib.SimpleActionClient('move_base', MoveBaseAction) while not self.ac.wait_for_server(rospy.Duration(5)): rospy.loginfo("Waiting for the move_base action server to come up") rospy.loginfo("The server comes up"); ## @brief MoveBaseGoal型のゴール self.goal = MoveBaseGoal() self.vel_pub_ = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self.vel_ = Twist() ## @brief ゴールポジションの設定と移動の開始 # @param _number waypointsの番号(0以上の数値) # @return ゴールに到着したか否か(succeeded or aborted) def set_goal(self,_number): rospy.on_shutdown(self.shutdown) rev = dict(self.config[_number]) #List to Dictionary self.goal.target_pose.header.frame_id = 'map' self.goal.target_pose.header.stamp = rospy.Time.now() self.goal.target_pose.pose.position.x = rev['pose']['position']['x'] self.goal.target_pose.pose.position.y = rev['pose']['position']['y'] self.goal.target_pose.pose.position.z = rev['pose']['position']['z'] self.goal.target_pose.pose.orientation.x = rev['pose']['orientation']['x'] self.goal.target_pose.pose.orientation.y = rev['pose']['orientation']['y'] self.goal.target_pose.pose.orientation.z = rev['pose']['orientation']['z'] self.goal.target_pose.pose.orientation.w = rev['pose']['orientation']['w'] rospy.loginfo('Sending goal') self.ac.send_goal(self.goal) succeeded = self.ac.wait_for_result(rospy.Duration(60)); state = self.ac.get_state(); if succeeded: rospy.loginfo("Succeed") return 'succeeded' else: rospy.loginfo("Failed") return 'aborted' ## @brief 経由地点の設定と移動の開始 # @param _number waypointsの番号(0以上の数値) # @return ゴール付近に到着したか否か(succeeded or aborted) def set_via_point(self,_number): rospy.on_shutdown(self.shutdown) rev = dict(self.config[_number]) #List to Dictionary self.goal.target_pose.header.frame_id = 'map' self.goal.target_pose.header.stamp = rospy.Time.now() self.goal.target_pose.pose.position.x = rev['pose']['position']['x'] self.goal.target_pose.pose.position.y = rev['pose']['position']['y'] self.goal.target_pose.pose.position.z = rev['pose']['position']['z'] self.goal.target_pose.pose.orientation.x = rev['pose']['orientation']['x'] self.goal.target_pose.pose.orientation.y = rev['pose']['orientation']['y'] self.goal.target_pose.pose.orientation.z = rev['pose']['orientation']['z'] self.goal.target_pose.pose.orientation.w = rev['pose']['orientation']['w'] rospy.loginfo('Sending goal') self.ac.send_goal(self.goal) listener = tf.TransformListener() timeout = time.time() + 10 #[sec] while True: try: (position, quaternion) = listener.lookupTransform('map', 'base_link', rospy.Time(0) ) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): continue #ゴールから0.5[m]以内なら、succeededを返す if(math.sqrt((position[0]-self.goal.target_pose.pose.position.x)**2 + (position[1]-self.goal.target_pose.pose.position.y)**2 ) <= 0.5): rospy.loginfo("Succeed") return 'succeeded' elif (time.time() > timeout): rospy.loginfo("Timeout") return 'aborted' if(len(sys.argv) != 2): waypoint = 0 else: rospy.sleep(0.5) def set_velocity(self,_x,_y,_theta,_time): self.vel_.linear.x = _x self.vel_.linear.y = _y self.vel_.angular.z = _theta end_time = time.time() + _time #[sec] while(time.time() < end_time): self.vel_pub_.publish(self.vel_) self.vel_.linear.x = 0 self.vel_.linear.y = 0 self.vel_.angular.z = 0 self.vel_pub_.publish(self.vel_) return 'succeeded' def cancel(self): self.ac.cancel_all_goals() ## @brief move_baseの終了 def shutdown(self): self.ac.cancel_goal() #================================== #================================== if __name__ == '__main__': rospy.init_node('got_to_waypoint_server') na = NaviAction() if(len(sys.argv) != 2): na.cancel() else: waypoint = int(sys.argv[1]) na.set_goal(int(waypoint))
[ "y.shiigi@thk.co.jp" ]
y.shiigi@thk.co.jp
c09a11b8e00247f2e94a1ba4ec0526088e30eb49
1f99ddccebb5edfd133d5579c1889425dc966a49
/grpc_interceptor_headers/header_manipulator_client_interceptor.py
39404a92a44d7e0d2cb677a64132a3fec9fdd178
[ "MIT" ]
permissive
sempr/grpc-interceptor-headers
6452185e543e8bc6c499462c8017c372aed1e441
5ff36ccab2fc6f776db5c1fbbeb78538933bff9a
refs/heads/master
2022-10-18T19:07:08.366404
2022-09-24T06:41:44
2022-09-24T06:41:44
155,700,022
0
0
MIT
2022-09-24T06:41:45
2018-11-01T10:41:56
Python
UTF-8
Python
false
false
1,584
py
# Copyright 2017 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Interceptor that adds headers to outgoing requests.""" import collections import grpc from . import generic_client_interceptor class _ClientCallDetails( collections.namedtuple( '_ClientCallDetails', ('method', 'timeout', 'metadata', 'credentials')), grpc.ClientCallDetails): pass def header_adder_interceptor(header, value): def intercept_call(client_call_details, request_iterator, request_streaming, response_streaming): metadata = [] if client_call_details.metadata is not None: metadata = list(client_call_details.metadata) metadata.append(( header, value, )) client_call_details = _ClientCallDetails( client_call_details.method, client_call_details.timeout, metadata, client_call_details.credentials) return client_call_details, request_iterator, None return generic_client_interceptor.create(intercept_call)
[ "iamsempr@gmail.com" ]
iamsempr@gmail.com
4299b17a8916546238e85ee8fc1d9d23471f5891
921b0e79421e58c09c2331365c48b7fe991c8c88
/feeder1.py
f632f9afcd73e331d5e106049b6f53ea5d0a9a67
[]
no_license
ssaisanthosh/FishFeeder
0fdcd035a211afcb2a7c85eb398cef86f852c197
0ec6598f9391a7a06344ed0908c8b04c00dc105c
refs/heads/main
2023-01-21T10:31:38.526355
2020-12-06T20:51:14
2020-12-06T20:51:14
319,128,357
0
0
null
null
null
null
UTF-8
Python
false
false
1,638
py
#!/usr/local/bin/python import RPi.GPIO as GPIO import time #control = [5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10] control = [5,15] servo = 17 #GPIO.setmode(GPIO.BOARD) GPIO.setmode(GPIO.BCM) GPIO.setup(servo,GPIO.OUT) # in servo motor, # 1ms pulse for 0 degree (LEFT) # 1.5ms pulse for 90 degree (MIDDLE) # 2ms pulse for 180 degree (RIGHT) # so for 50hz, one frequency is 20ms # duty cycle for 0 degree = (1/20)*100 = 5% # duty cycle for 90 degree = (1.5/20)*100 = 7.5% # duty cycle for 180 degree = (2/20)*100 = 10% p=GPIO.PWM(servo,50)# 50hz frequency p.start(0)# starting duty cycle ( it set the servo to 0 degree ) #try: # while True: # for x in range(11): time.sleep(0.3); p.ChangeDutyCycle(15); time.sleep(0.3); # p.stop(); #p.start(7.5); p.ChangeDutyCycle(4); time.sleep(0.3); # p.stop(); # GPIO.cleanup(); # duty = float(5) / 10.0 + 2.5 # p.ChangeDutyCycle(5); # print duty; # time.sleep(1); # p.stop(); # print x # # for x in range(9,0,-1): # for x in range(2): # p.ChangeDutyCycle(control[x]) # time.sleep(0.03) # print x # p.stop() # p.ChangeDutyCycle(control[0]) # time.sleep(0.05) # print x # p.ChangeDutyCycle(control[1]) # time.sleep(0.05) # print x # p.ChangeDutyCycle(control[0]) # time.sleep(0.05) # print x # p.ChangeDutyCycle(control[1]) # time.sleep(0.1) # p.stop() #except KeyboardInterrupt: GPIO.cleanup()
[ "me@ssaisanthosh.com" ]
me@ssaisanthosh.com
6be45dd06c5be6fafefaef95a61ae6f1c20a4184
2f41d9b78a88a6ed4c5724eae4da2d6c58b70d55
/recipes/cairo/all/conanfile.py
1ee19505ae145d6335d0796747ff6e91a51b07e1
[ "MIT" ]
permissive
hrantzsch/conan-center-index
378e951aab108d801be6f3c59a5481f443b31bab
057f0a81e4ab01944220478a3227c58445b184db
refs/heads/master
2023-07-06T02:22:46.043174
2023-07-04T13:53:53
2023-07-04T13:53:53
226,821,993
0
1
MIT
2022-01-29T16:05:40
2019-12-09T08:29:30
Python
UTF-8
Python
false
false
15,841
py
import os from conan import ConanFile from conan.errors import ConanInvalidConfiguration from conan.tools.apple import fix_apple_shared_install_name, is_apple_os from conan.tools.build import cross_building from conan.tools.env import VirtualBuildEnv, VirtualRunEnv from conan.tools.files import ( apply_conandata_patches, copy, export_conandata_patches, get, replace_in_file, rename, rm, rmdir ) from conan.tools.gnu import PkgConfigDeps, Autotools, AutotoolsDeps, AutotoolsToolchain from conan.tools.layout import basic_layout from conan.tools.microsoft import is_msvc, unix_path from conan.tools.scm import Version required_conan_version = ">=1.54.0" class CairoConan(ConanFile): name = "cairo" description = "Cairo is a 2D graphics library with support for multiple output devices" topics = ("cairo", "graphics") url = "https://github.com/conan-io/conan-center-index" homepage = "https://cairographics.org/" license = ("LGPL-2.1-only", "MPL-1.1") settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "with_freetype": [True, False], "with_fontconfig": [True, False], "with_xlib": [True, False], "with_xlib_xrender": [True, False], "with_xcb": [True, False], "with_glib": [True, False], } default_options = { "shared": False, "fPIC": True, "with_freetype": True, "with_fontconfig": True, "with_xlib": True, "with_xlib_xrender": False, "with_xcb": True, "with_glib": True, } short_paths = True @property def _settings_build(self): return getattr(self, "settings_build", self.settings) def export_sources(self): export_conandata_patches(self) def config_options(self): if self.settings.os == "Windows": del self.options.fPIC del self.options.with_fontconfig if is_msvc(self): del self.options.with_freetype del self.options.with_glib if self.settings.os != "Linux": del self.options.with_xlib del self.options.with_xlib_xrender del self.options.with_xcb def configure(self): if self.options.shared: self.options.rm_safe("fPIC") self.settings.rm_safe("compiler.cppstd") self.settings.rm_safe("compiler.libcxx") def layout(self): basic_layout(self, src_folder="src") def requirements(self): if self.options.get_safe("with_freetype", True): self.requires("freetype/2.13.0") if self.options.get_safe("with_fontconfig", False): self.requires("fontconfig/2.13.93") if self.settings.os == "Linux": if self.options.with_xlib or self.options.with_xlib_xrender or self.options.with_xcb: self.requires("xorg/system") if self.options.get_safe("with_glib", True): self.requires("glib/2.76.1") self.requires("zlib/1.2.13") self.requires("pixman/0.40.0") self.requires("libpng/1.6.39") def package_id(self): if self.options.get_safe("with_glib") and not self.dependencies["glib"].options.shared: self.info.requires["glib"].full_package_mode() def validate(self): if is_msvc(self): # TODO autotools build results in LNK1127 error from a library in the WindowsSDK on CCI # should be retested in case this is just a CCI environment issue raise ConanInvalidConfiguration("MSVC autotools build is not supported. Use the Meson build instead.") def build_requirements(self): self.tool_requires("libtool/2.4.7") if not self.conf.get("tools.gnu:pkg_config", default=False, check_type=str): self.tool_requires("pkgconf/1.9.3") if self._settings_build.os == "Windows": self.win_bash = True if not self.conf.get("tools.microsoft.bash:path", default=False, check_type=str): self.tool_requires("msys2/cci.latest") if is_msvc(self): self.tool_requires("automake/1.16.5") else: self.tool_requires("gtk-doc-stub/cci.20181216") def source(self): get(self, **self.conan_data["sources"][self.version], strip_root=True) def _create_toolchain(self, namespace, directory): def is_enabled(value): return "yes" if value else "no" def dep_path(dependency): return unix_path(self, self.deps_cpp_info[dependency].rootpath) tc = AutotoolsToolchain(self, namespace=namespace) tc.configure_args += [ f"--datarootdir={unix_path(self, os.path.join(self.package_folder, 'res'))}", f"--enable-ft={is_enabled(self.options.get_safe('with_freetype', True))}", f"--enable-gobject={is_enabled(self.options.get_safe('with_glib', True))}", f"--enable-fc={is_enabled(self.options.get_safe('with_fontconfig'))}", f"--enable-xlib={is_enabled(self.options.get_safe('with_xlib'))}", f"--enable-xlib_xrender={is_enabled(self.options.get_safe('with_xlib_xrender'))}", f"--enable-xcb={is_enabled(self.options.get_safe('xcb'))}", "--disable-gtk-doc" ] if is_msvc(self): tc.make_args += [ "--directory", directory, "-f", "Makefile.win32", f"CFG={str(self.settings.build_type).lower()}", "CAIRO_HAS_FC_FONT=0", f"ZLIB_PATH={dep_path('zlib')}", f"LIBPNG_PATH={dep_path('libpng')}", f"PIXMAN_PATH={dep_path('pixman')}", f"FREETYPE_PATH={dep_path('freetype')}", f"GOBJECT_PATH={dep_path('glib')}" ] tc.extra_cflags += ["-FS"] if self.settings.compiler in ["gcc", "clang", "apple-clang"]: tc.extra_cflags.append("-Wno-enum-conversion") return tc def generate(self): VirtualBuildEnv(self).generate() if not cross_building(self): VirtualRunEnv(self).generate(scope="build") tc_main = self._create_toolchain("main", unix_path(self, self.source_folder)) tc_main.generate() if is_msvc(self): tc_gobject = self._create_toolchain("gobject", unix_path(self, os.path.join(self.source_folder, "util", "cairo-gobject"))) tc_gobject.generate() PkgConfigDeps(self).generate() deps = AutotoolsDeps(self) if is_msvc(self): cppflags = deps.vars().get("CPPFLAGS") deps.environment.append('CFLAGS', cppflags.replace("/I", "-I")) ldflags = deps.vars().get("LDFLAGS") deps.environment.define('LDFLAGS', ldflags.replace("/LIBPATH:", "-LIBPATH:")) deps.environment.append('LDFLAGS', deps.vars().get("LIBS")) deps.generate() def _patch_sources(self): apply_conandata_patches(self) def fix_freetype_version(): replace_in_file( self, os.path.join(self.source_folder, "configure.ac"), "FREETYPE_MIN_VERSION=9.7.3", f"FREETYPE_MIN_VERSION={Version(self.dependencies['freetype'].ref.version)}" ) def exclude_tests_and_docs_from_build(): makefile_am = os.path.join(self.source_folder, "Makefile.am") replace_in_file(self, makefile_am, "SUBDIRS += boilerplate test perf", "") replace_in_file(self, makefile_am, "SUBDIRS = src doc util", "SUBDIRS = src util") fix_freetype_version() exclude_tests_and_docs_from_build() if self.options.get_safe("with_freetype"): replace_in_file(self, os.path.join(self.source_folder, "src", "cairo-ft-font.c"), "#if HAVE_UNISTD_H", "#ifdef HAVE_UNISTD_H") if is_msvc(self): # https://cairographics.org/end_to_end_build_for_win32/ win32_common = os.path.join(self.source_folder, "build", "Makefile.win32.common") replace_in_file(self, win32_common, "-MD ", f"-{self.settings.compiler.runtime} ") replace_in_file(self, win32_common, "-MDd ", f"-{self.settings.compiler.runtime} ") replace_in_file(self, win32_common, "$(PIXMAN_PATH)/lib/pixman-1.lib", self.deps_cpp_info["pixman"].libs[0] + ".lib") replace_in_file(self, win32_common, "$(FREETYPE_PATH)/lib/freetype.lib", self.deps_cpp_info["freetype"].libs[0] + ".lib") replace_in_file(self, win32_common, "$(ZLIB_PATH)/lib/zlib1.lib", self.deps_cpp_info["zlib"].libs[0] + ".lib") replace_in_file(self, win32_common, "$(LIBPNG_PATH)/lib/libpng16.lib", self.deps_cpp_info["libpng"].libs[0] + ".lib") def build(self): self._patch_sources() autotools = Autotools(self, namespace="main") if is_msvc(self): autotools.make() autotools_gobject = Autotools(self, namespace="gobject") autotools_gobject.make() else: autotools.autoreconf() autotools.configure() autotools.make() def package(self): copy(self, pattern="LICENSE", dst=os.path.join(self.package_folder, "licenses"), src=self.source_folder) if is_msvc(self): src = os.path.join(self.source_folder, "src") inc = os.path.join(self.package_folder, "include", "cairo") copy(self, "cairo-version.h", (src if Version(self.version) >= "1.17.4" else self.source_folder), inc) copy(self, "cairo-features.h", src, inc) copy(self, "cairo.h", src, inc) copy(self, "cairo-deprecated.h", src, inc) copy(self, "cairo-win32.h", src, inc) copy(self, "cairo-script.h", src, inc) copy(self, "cairo-ft.h", src, inc) copy(self, "cairo-ps.h", src, inc) copy(self, "cairo-pdf.h", src, inc) copy(self, "cairo-svg.h", src, inc) copy(self, "cairo-gobject.h", inc, os.path.join(self.source_folder, "util", "cairo-gobject")) config = str(self.settings.build_type).lower() lib_src_path = os.path.join(self.source_folder, "src", config) cairo_gobject_src_path = os.path.join(self.source_folder, "util", "cairo-gobject", config) lib_dest_path = os.path.join(self.package_folder, "lib") runtime_dest_path = os.path.join(self.package_folder, "bin") if self.options.shared: copy(self, "*cairo.lib", lib_src_path, lib_dest_path) copy(self, "*cairo.dll", lib_src_path, runtime_dest_path) copy(self, "*cairo-gobject.lib", cairo_gobject_src_path, lib_dest_path) copy(self, "*cairo-gobject.dll", cairo_gobject_src_path, runtime_dest_path) else: copy(self, "cairo-static.lib", lib_src_path, lib_dest_path) copy(self, "cairo-gobject.lib", cairo_gobject_src_path, lib_dest_path) rename(self, os.path.join(lib_dest_path, "cairo-static.lib"), os.path.join(lib_dest_path, "cairo.lib")) else: autotools = Autotools(self, namespace="main") autotools.install() copy(self, "COPYING*", self.source_folder, os.path.join(self.package_folder, "licenses")) rm(self, "*.la", self.package_folder, recursive=True) rmdir(self, os.path.join(self.package_folder, "lib", "pkgconfig")) fix_apple_shared_install_name(self) def package_info(self): self.cpp_info.set_property("pkg_config_name", "cairo-all-do-no-use") self.cpp_info.components["cairo_"].set_property("pkg_config_name", "cairo") self.cpp_info.components["cairo_"].libs = ["cairo"] self.cpp_info.components["cairo_"].includedirs.insert(0, os.path.join("include", "cairo")) self.cpp_info.components["cairo_"].requires = ["pixman::pixman", "libpng::libpng", "zlib::zlib"] if self.options.get_safe("with_freetype", True): self.cpp_info.components["cairo_"].requires.append("freetype::freetype") if self.settings.os == "Windows": self.cpp_info.components["cairo_"].system_libs.extend(["gdi32", "msimg32", "user32"]) if not self.options.shared: self.cpp_info.components["cairo_"].defines.append("CAIRO_WIN32_STATIC_BUILD=1") else: if self.options.with_glib: self.cpp_info.components["cairo_"].requires.extend(["glib::gobject-2.0", "glib::glib-2.0"]) if self.options.with_fontconfig: self.cpp_info.components["cairo_"].requires.append("fontconfig::fontconfig") if self.settings.os == "Linux": self.cpp_info.components["cairo_"].system_libs = ["pthread", "rt"] self.cpp_info.components["cairo_"].cflags = ["-pthread"] self.cpp_info.components["cairo_"].cxxflags = ["-pthread"] if self.options.with_xcb: self.cpp_info.components["cairo_"].requires.extend(["xorg::xcb-shm", "xorg::xcb"]) if self.options.with_xlib_xrender: self.cpp_info.components["cairo_"].requires.extend(["xorg::xcb-render"]) if self.options.with_xlib: self.cpp_info.components["cairo_"].requires.extend(["xorg::x11", "xorg::xext"]) if is_apple_os(self): self.cpp_info.components["cairo_"].frameworks.append("CoreGraphics") if self.settings.os == "Windows": self.cpp_info.components["cairo-win32"].set_property("pkg_config_name", "cairo-win32") self.cpp_info.components["cairo-win32"].requires = ["cairo_", "pixman::pixman", "libpng::libpng"] if self.options.get_safe("with_glib", True): self.cpp_info.components["cairo-gobject"].set_property("pkg_config_name", "cairo-gobject") self.cpp_info.components["cairo-gobject"].libs = ["cairo-gobject"] self.cpp_info.components["cairo-gobject"].requires = ["cairo_", "glib::gobject-2.0", "glib::glib-2.0"] if self.settings.os != "Windows": if self.options.with_fontconfig: self.cpp_info.components["cairo-fc"].set_property("pkg_config_name", "cairo-fc") self.cpp_info.components["cairo-fc"].requires = ["cairo_", "fontconfig::fontconfig"] if self.options.get_safe("with_freetype", True): self.cpp_info.components["cairo-ft"].set_property("pkg_config_name", "cairo-ft") self.cpp_info.components["cairo-ft"].requires = ["cairo_", "freetype::freetype"] self.cpp_info.components["cairo-pdf"].set_property("pkg_config_name", "cairo-pdf") self.cpp_info.components["cairo-pdf"].requires = ["cairo_", "zlib::zlib"] if self.settings.os == "Linux": if self.options.with_xlib: self.cpp_info.components["cairo-xlib"].set_property("pkg_config_name", "cairo-xlib") self.cpp_info.components["cairo-xlib"].requires = ["cairo_", "xorg::x11", "xorg::xext"] if is_apple_os(self): self.cpp_info.components["cairo-quartz"].set_property("pkg_config_name", "cairo-quartz") self.cpp_info.components["cairo-quartz"].requires = ["cairo_"] self.cpp_info.components["cairo-quartz"].frameworks.extend(["CoreFoundation", "CoreGraphics", "ApplicationServices"]) self.cpp_info.components["cairo-quartz-font"].set_property("pkg_config_name", "cairo-quartz-font") self.cpp_info.components["cairo-quartz-font"].requires = ["cairo_"]
[ "noreply@github.com" ]
hrantzsch.noreply@github.com
7db08649355d77be0d93b6eb24505fb3b1fcf3d6
1d2876eca2103bd67d8eb695b0096db4acaec1fe
/generate_face/utils.py
19b7696d79c586d5cf7da1333fd4166f93492e8e
[]
no_license
liuaishan/FaceAdv
7a02e245593ac0d643a08da7e9d176f0fc5650c3
5e953d6c861991e715f3078c7c9426fca0551164
refs/heads/master
2020-05-15T05:12:06.661716
2019-04-28T15:31:03
2019-04-28T15:31:03
182,101,738
2
0
null
null
null
null
UTF-8
Python
false
false
4,845
py
import random import time import datetime import sys import cv2 from torch.autograd import Variable import torch import numpy as np from torchvision.utils import save_image def tensor2image(tensor): image = 127.5*(tensor[0].cpu().float().numpy() + 1.0) if image.shape[0] == 1: image = np.tile(image, (3,1,1)) return image.astype(np.uint8) class Logger(): def __init__(self, n_epochs, batches_epoch, sample_interval, n_samples=5): self.n_epochs = n_epochs self.batches_epoch = batches_epoch self.sample_interval = sample_interval self.batches_done = 1 self.prev_time = time.time() self.mean_period = 0 self.losses = {} self.n_samples = n_samples self.past_images = [] self.past_cifar = [] def log(self, losses=None, images=None, epoch=0, batch=0): self.mean_period += (time.time() - self.prev_time) self.prev_time = time.time() epoch += 1 batch += 1 sys.stdout.write('\rEpoch %03d/%03d [%04d/%04d] -- ' % (epoch, self.n_epochs, batch, self.batches_epoch)) for i, loss_name in enumerate(losses.keys()): if loss_name not in self.losses: self.losses[loss_name] = 0 self.losses[loss_name] += losses[loss_name].item() sys.stdout.write('%s: %.4f | ' % (loss_name, self.losses[loss_name]/self.batches_done)) batches_left = self.batches_epoch*(self.n_epochs - epoch) + self.batches_epoch - batch sys.stdout.write('ETA: %s' % (datetime.timedelta(seconds=batches_left*self.mean_period/self.batches_done))) # Save image sample image_sample = torch.cat((images['real'].data, images['fake'].data), -2) image_cifar = images['cifar'].data self.past_images.append(image_sample) self.past_cifar.append(image_cifar) if len(self.past_images) > self.n_samples: self.past_images.pop(0) if len(self.past_cifar) > self.n_samples: self.past_cifar.pop(0) # If at sample interval save past samples if self.batches_done % self.sample_interval == 0 and images is not None: save_image(torch.cat(self.past_images, -1), './images/%d_gener.png' % self.batches_done, normalize=True) save_image(torch.cat(self.past_cifar, -1), './images/%d_cifar.png' % self.batches_done, normalize=True) self.batches_done += 1 class ReplayBuffer(): def __init__(self, max_size=50): assert (max_size > 0), 'Empty buffer or trying to create a black hole. Be careful.' self.max_size = max_size self.data = [] def push_and_pop(self, data): to_return = [] for element in data.data: element = torch.unsqueeze(element, 0) if len(self.data) < self.max_size: self.data.append(element) to_return.append(element) else: if random.uniform(0,1) > 0.5: i = random.randint(0, self.max_size-1) to_return.append(self.data[i].clone()) self.data[i] = element else: to_return.append(element) return Variable(torch.cat(to_return)) class LambdaLR(): def __init__(self, n_epochs, offset, decay_start_epoch): assert ((n_epochs - decay_start_epoch) > 0), "Decay must start before the training session ends!" self.n_epochs = n_epochs self.offset = offset self.decay_start_epoch = decay_start_epoch def step(self, epoch): return 1.0 - max(0, epoch + self.offset - self.decay_start_epoch)/(self.n_epochs - self.decay_start_epoch) def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm2d') != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) def possion(src, dst, center, mode = cv2.NORMAL_CLONE): """ @src: the pic which will be embed shape = N W H C, requires element range form 0 to 255 @dst: the pic the src will be embed in @center: where to embed the picture @mode: how to embed @return: composite picture """ src = src.astype(np.uint8) dst = dst.astype(np.uint8) shape = src[0].shape out = [] mask = 255 * np.ones(shape, src.dtype) mask = mask.astype(np.uint8) for i in range(src.shape[0]): out.append(cv2.seamlessClone(src[i], dst[i], mask, center[i], mode)) out = np.array(out).swapaxes(2,3).swapaxes(1,2) return out
[ "157908876@qq.com" ]
157908876@qq.com
89bd3418dcef3de5223cd4e346518cdd303334a8
6f0e0cb3b408f803bd31577959a8a05b90d37e42
/utils/serialization.py
f647db170958fbc2eeb22b535100ec04ee0ceadd
[]
no_license
aralhekimoglu/ThesisImagePR
8860189bc2869aa03b19f36eaca283b41f7ef39f
3842e12312fa699cc0dc49e3a112aca453e2aae5
refs/heads/master
2022-12-10T10:06:59.324211
2020-01-05T15:49:12
2020-01-05T15:49:12
231,939,688
0
0
null
2022-12-07T23:54:12
2020-01-05T15:47:22
Python
UTF-8
Python
false
false
1,246
py
from __future__ import print_function, absolute_import import json import os.path as osp import shutil import torch from torch.nn import Parameter def read_json(fpath): with open(fpath, 'r') as f: obj = json.load(f) return obj def load_checkpoint(fpath): if osp.isfile(fpath): checkpoint = torch.load(fpath) print("=> Loaded checkpoint '{}'".format(fpath)) return checkpoint else: raise ValueError("=> No checkpoint found at '{}'".format(fpath)) def copy_state_dict(state_dict, model, strip=None): tgt_state = model.state_dict() copied_names = set() for name, param in state_dict.items(): if strip is not None and name.startswith(strip): name = name[len(strip):] if name not in tgt_state: continue if isinstance(param, Parameter): param = param.data if param.size() != tgt_state[name].size(): print('mismatch:', name, param.size(), tgt_state[name].size()) continue tgt_state[name].copy_(param) copied_names.add(name) missing = set(tgt_state.keys()) - copied_names if len(missing) > 0: print("missing keys in state_dict:", missing) return model
[ "aral.hekimoglu@gmail.com" ]
aral.hekimoglu@gmail.com
6edcf5b03150c8e943e7fa762917b36ca3391087
0fa00ecf2dd671515dc001d4b14049ec6a0c1f1c
/custom_components/icloud3/support/service_handler.py
ca716f98124a0c0f3ddcc8d976d93751544e5677
[ "Unlicense" ]
permissive
bacco007/HomeAssistantConfig
d91a5368344f50abbea881bd1e6dfc57a0e456ca
8548d9999ddd54f13d6a307e013abcb8c897a74e
refs/heads/master
2023-08-30T07:07:33.571959
2023-08-29T20:00:00
2023-08-29T20:00:00
230,585,631
98
16
Unlicense
2023-09-09T08:28:39
2019-12-28T09:05:02
Python
UTF-8
Python
false
false
22,333
py
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # # ICLOUD SERVICE HANDLER MODULE # #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> import homeassistant.helpers.config_validation as cv from homeassistant import data_entry_flow import voluptuous as vol import asyncio from ..global_variables import GlobalVariables as Gb from ..const import (DOMAIN, HHMMSS_ZERO, HIGH_INTEGER, EVLOG_ALERT, EVLOG_ERROR, WAZE, CMD_RESET_PYICLOUD_SESSION, LOCATION, NEXT_UPDATE_TIME, NEXT_UPDATE, INTERVAL, CONF_DEVICENAME, CONF_ZONE, CONF_COMMAND, CONF_LOG_LEVEL, ICLOUD_LOST_MODE_CAPABLE, ) from ..support import config_file from ..support import iosapp_interface from ..support import start_ic3 from ..support import determine_interval as det_interval from ..helpers.common import (instr, ) from ..helpers.messaging import (post_event, post_error_msg, post_monitor_msg, write_ic3_log_recd, post_alert, clear_alert, log_info_msg, log_debug_msg, log_exception, open_ic3_log_file, close_ic3_log_file, close_reopen_ic3_log_file, delete_open_log_file, _trace, _traceha, ) from ..helpers.time_util import (secs_to_time, time_str_to_secs, datetime_now, secs_since, time_now_secs, time_now, ) # from ..config_flow import ActionSettingsFlowManager # from .. import config_flow # EvLog Action Commands CMD_ERROR = 'error' CMD_PAUSE = 'pause' CMD_RESUME = 'resume' CMD_WAZE = 'waze' CMD_REQUEST_LOCATION = 'location' CMD_EXPORT_EVENT_LOG = 'export_event_log' CMD_WAZEHIST_MAINTENANCE = 'wazehist_maint' CMD_WAZEHIST_TRACK = 'wazehist_track' CMD_DISPLAY_STARTUP_EVENTS = 'startuplog' CMD_RESET_PYICLOUD_SESSION = 'reset_session' CMD_LOG_LEVEL = 'log_level' CMD_REFRESH_EVENT_LOG = 'refresh_event_log' CMD_RESTART = 'restart' CMD_CONFIG_FLOW = 'config_flow' CMD_FIND_DEVICE_ALERT = 'find_alert' CMD_LOCATE = 'locate' REFRESH_EVLOG_FNAME = 'Refresh Event Log' HIDE_TRACKING_MONITORS_FNAME = 'Hide Tracking Monitors' SHOW_TRACKING_MONITORS_FNAME = 'Show Tracking Monitors' GLOBAL_ACTIONS = [CMD_EXPORT_EVENT_LOG, CMD_DISPLAY_STARTUP_EVENTS, CMD_RESET_PYICLOUD_SESSION, CMD_WAZE, CMD_REFRESH_EVENT_LOG, CMD_RESTART, CMD_CONFIG_FLOW, CMD_LOG_LEVEL, CMD_WAZEHIST_MAINTENANCE, CMD_WAZEHIST_TRACK, 'event_log_version', ] DEVICE_ACTIONS = [CMD_REQUEST_LOCATION, CMD_PAUSE, CMD_RESUME, CMD_FIND_DEVICE_ALERT, CMD_LOCATE, ] NO_EVLOG_ACTION_POST_EVENT = [ 'Show Startup Log, Errors & Alerts', REFRESH_EVLOG_FNAME, HIDE_TRACKING_MONITORS_FNAME, SHOW_TRACKING_MONITORS_FNAME, CMD_DISPLAY_STARTUP_EVENTS, 'event_log_version', 'Event Log Version'] ACTION_FNAME_TO_ACTION = { 'Restart iCloud3': 'restart', 'Pause Tracking': 'pause', 'Resume Tracking': 'resume', 'Locate Device(s) using iCloud FamShr': 'locate', 'Send Locate Request to iOS App': 'locate iosapp' } SERVICE_SCHEMA = vol.Schema({ vol.Optional('command'): cv.string, vol.Optional('action'): cv.string, vol.Optional(CONF_DEVICENAME): cv.slugify, vol.Optional('action_fname'): cv.string, vol.Optional('number'): cv.string, vol.Optional('message'): cv.string, }) from homeassistant.util.location import distance #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # # DEFINE THE PROCESS INVOKED BY THE HASS.SERVICES.REGISTER FOR EACH SERVICE # #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> def process_update_service_request(call): """ icloud3.update service call request """ action = call.data.get('command').lower() or call.data.get('action').lower() action_fname = call.data.get('action_fname') devicename = call.data.get(CONF_DEVICENAME) action, devicename = resolve_action_devicename_values(action, devicename) if action is not None: update_service_handler(action, action_fname, devicename) #-------------------------------------------------------------------- def process_restart_icloud3_service_request(call): """ icloud3.restart service call request """ Gb.restart_icloud3_request_flag = True #-------------------------------------------------------------------- def process_find_iphone_alert_service_request(call): """Call the find_iphone_alert to play a sound on the phone""" devicename = call.data.get(CONF_DEVICENAME) action, devicename = resolve_action_devicename_values("", devicename) find_iphone_alert_service_handler(devicename) #-------------------------------------------------------------------- def process_lost_device_alert_service_request(call): """Call the find_iphone_alert to play a sound on the phone""" devicename = call.data.get(CONF_DEVICENAME) number = call.data.get('number') message = call.data.get('message') action, devicename = resolve_action_devicename_values("", devicename) try: Device = Gb.Devices_by_devicename.get(devicename) devicename = devicename or '?' number = number or '?' message = message or ('This Phone has been lost. \ Please call this number to report it found.') if Device is None: result_msg = f"Failed, Unknown device_name-{devicename}" elif devicename == '?' or number == '?' or message == '?' : result_msg = ( f"Required field missing, device_name-{devicename}, " f"number-{number}, message-{message}") elif (Device.PyiCloud_RawData_famshr and Device.PyiCloud_RawData_famshr.device_data and Device.PyiCloud_RawData_famshr.device_data.get(ICLOUD_LOST_MODE_CAPABLE, False)): lost_device_alert_service_handler(devicename, number, message) result_msg = ( f"Alert Notification sent, Device-{Device.fname_devicename}, " f"Number-{number}, Message-{message}") else: result_msg = f"Device {Device.fname_devicename} can not receive Lost Device Alerts" except Exception as err: log_exception(err) result_msg = "Internal Error" post_event(f"{EVLOG_ERROR}Lost Mode Alert > {result_msg}") #-------------------------------------------------------------------- def resolve_action_devicename_values(action, devicename): ''' Convert the action and devicenames to their actual intervalues when they are being executed from the Developer Tools/Services screen. - action text dexcription --> action parameter - ha_device_id --> devicename parameter Return the action and devicename values ''' # Convert action and devicename to the real values if the service call # is coming in from the Developer Tools/Services screen if action in ACTION_FNAME_TO_ACTION: action = ACTION_FNAME_TO_ACTION[action] if devicename in Gb.Devices_by_ha_device_id: devicename = Gb.Devices_by_ha_device_id[devicename].devicename if devicename not in Gb.Devices_by_devicename: devicename = None return action, devicename #-------------------------------------------------------------------- def _post_device_event_msg(devicename, msg): if devicename: post_event(devicename, msg) else: post_event(msg) def _post_device_monitor_msg(devicename, msg): if devicename: post_monitor_msg(devicename, msg) else: post_monitor_msg(msg) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # # DEFINE THE PROCESS INVOKED BY THE HASS.SERVICES.REGISTER FOR EACH SERVICE # #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> def register_icloud3_services(): ''' Register iCloud3 Service Call Handlers ''' try: Gb.hass.services.register(DOMAIN, 'action', process_update_service_request, schema=SERVICE_SCHEMA) Gb.hass.services.register(DOMAIN, 'update', process_update_service_request, schema=SERVICE_SCHEMA) Gb.hass.services.register(DOMAIN, 'restart', process_restart_icloud3_service_request, schema=SERVICE_SCHEMA) Gb.hass.services.register(DOMAIN, 'find_iphone_alert', process_find_iphone_alert_service_request, schema=SERVICE_SCHEMA) Gb.hass.services.register(DOMAIN, 'lost_device_alert', process_lost_device_alert_service_request, schema=SERVICE_SCHEMA) return True except Exception as err: log_exception(err) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # # ROUTINES THAT HANDLE THE INDIVIDUAL SERVICE REQUESTS # #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> def update_service_handler(action_entry=None, action_fname=None, devicename=None): """ Authenticate against iCloud and scan for devices. Actions: - pause - stop polling for the devicename or all devices - resume - resume polling devicename or all devices, reset the interval override to normal interval calculations - pause-resume - same as above but toggles between pause and resume - reset - reset everything and rescans all of the devices - location - request location update from ios app - locate x mins - locate in x minutes from FamShr or FmF - locate iosapp - request location update from ios app - config_flow - Display the Configure screens handled by the config_flow module """ # Ignore Action requests during startup. They are caused by the devicename changes # to the EvLog attributes indicating the startup stage. if (Gb.start_icloud3_inprocess_flag or action_entry is None): return action = action_entry if action == f"{CMD_REFRESH_EVENT_LOG}+clear_alerts": action = CMD_REFRESH_EVENT_LOG clear_alert() clear_alert() if (action == CMD_REFRESH_EVENT_LOG and Gb.EvLog.secs_since_refresh <= 2 and Gb.EvLog.last_refresh_devicename == devicename): _post_device_monitor_msg(devicename, f"Service Action Ignored > {action_fname}, Action-{action_entry}") return if action_fname not in NO_EVLOG_ACTION_POST_EVENT: _post_device_monitor_msg(devicename, f"Service Action Received > Action-{action_entry}") action_entry = action_entry.replace('eventlog', 'monitor') action_entry = action_entry.replace(':', '') action = action_entry.split(' ')[0] action_option = action_entry.replace(action, '').strip() # EvLog version sent from the EvLog program already set, ignore the svc call if action == 'event_log_version' and Gb.evlog_version == action_option: return devicename_msg = devicename if devicename in Gb.Devices_by_devicename else None action_msg = action_fname if action_fname else f"{action.title()}" event_msg = f"Service Action > Action-{action_msg}" if action_option: event_msg += f", Options-{action_option}" if devicename: event_msg += f", Device-{devicename}" if action_fname not in NO_EVLOG_ACTION_POST_EVENT: _post_device_event_msg(devicename_msg, event_msg) if action in GLOBAL_ACTIONS: _handle_global_action(action, action_option) elif devicename == 'startup_log': pass elif action in DEVICE_ACTIONS: if devicename: Devices = [Gb.Devices_by_devicename[devicename]] else: Devices = [Device for Device in Gb.Devices_by_devicename.values()] if action == CMD_PAUSE: if devicename is None: Gb.all_tracking_paused_flag = True Gb.EvLog.display_user_message('Tracking is Paused', alert=True) for Device in Devices: Device.pause_tracking() elif action == CMD_RESUME: Gb.all_tracking_paused_flag = False Gb.EvLog.display_user_message('', clear_alert=True) for Device in Devices: Device.resume_tracking() elif action == CMD_LOCATE: for Device in Devices: _handle_action_device_locate(Device, action_option) elif action == CMD_REQUEST_LOCATION: for Device in Devices: _handle_action_device_location_iosapp(Device) elif action == 'delete_log': delete_open_log_file() else: return if devicename == 'startup_log': pass elif (Gb.EvLog.evlog_attrs['fname'] == 'Startup Events' and action == 'log_level' and action_option == 'monitor'): devicename = 'startup_log' Gb.EvLog.update_event_log_display(devicename) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # # HANDLER THE VARIOUS ACTION ACTION REQUESTS # #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> def _handle_global_action(global_action, action_option): if global_action == CMD_RESTART: Gb.log_debug_flag_restart = Gb.log_debug_flag Gb.log_rawdata_flag_restart = Gb.log_rawdata_flag Gb.restart_icloud3_request_flag = True Gb.EvLog.display_user_message('iCloud3 is Restarting', clear_alert=True) close_ic3_log_file() open_ic3_log_file() write_ic3_log_recd(f"\n{'-'*25} Opened by Event Log > Actions > Restart {'-'*25}") return elif global_action == CMD_EXPORT_EVENT_LOG: Gb.EvLog.export_event_log() return elif global_action == CMD_REFRESH_EVENT_LOG: return elif global_action == CMD_CONFIG_FLOW: _handle_action_config_flow_settings() return elif global_action == CMD_DISPLAY_STARTUP_EVENTS: return elif global_action == CMD_RESET_PYICLOUD_SESSION: # This will be handled in the 5-second ic3 loop Gb.evlog_action_request = CMD_RESET_PYICLOUD_SESSION return elif global_action == CMD_LOG_LEVEL: handle_action_log_level(action_option) return elif global_action == CMD_WAZEHIST_MAINTENANCE: event_msg = "Waze History > Recalculate Route Time/Distance " if Gb.wazehist_recalculate_time_dist_flag: event_msg += "Starting Immediately" post_event(event_msg) Gb.WazeHist.wazehist_recalculate_time_dist_all_zones() else: Gb.wazehist_recalculate_time_dist_flag = True event_msg += "Scheduled to run tonight at Midnight" post_event(event_msg) elif global_action == CMD_WAZEHIST_TRACK: event_msg = ("Waze History > Update Location Map Display Points " "Scheduled for Midnight") post_event(event_msg) Gb.WazeHist.wazehist_update_track_sensor() return elif global_action == 'event_log_version': # Gb.evlog_version = action_option # Gb.EvLog.evlog_attrs["version_evlog"] = action_option Gb.conf_profile['event_log_version'] = action_option config_file.write_storage_icloud3_configuration_file() #-------------------------------------------------------------------- def handle_action_log_level(action_option, change_conf_log_level=True): if instr(action_option, 'monitor'): Gb.evlog_trk_monitors_flag = (not Gb.evlog_trk_monitors_flag) return new_log_debug_flag = Gb.log_debug_flag new_log_rawdata_flag = Gb.log_rawdata_flag if instr(action_option, 'debug'): new_log_debug_flag = (not Gb.log_debug_flag) new_log_rawdata_flag = False if instr(action_option, 'rawdata'): new_log_rawdata_flag = (not Gb.log_rawdata_flag) new_log_debug_flag = new_log_rawdata_flag if new_log_rawdata_flag is False: Gb.log_rawdata_flag_unfiltered = False new_log_level = 'rawdata-auto-reset' if new_log_rawdata_flag \ else 'debug-auto-reset' if new_log_debug_flag \ else 'info' start_ic3.set_log_level(new_log_level) start_ic3.update_conf_file_log_level(new_log_level) log_level_fname = new_log_level.replace('-', ' ').title() event_msg = f"Debug Log Level > {log_level_fname}" post_event(event_msg) open_ic3_log_file() write_ic3_log_recd(f"\n{'-'*25} Change Log Level to: {log_level_fname} {'-'*25}") def _on_off_text(condition): return 'On' if condition else 'Off' #-------------------------------------------------------------------- def _handle_action_config_flow_settings(): ''' Handle displaying and updating the parameters using the config_flow screens ''' try: if Gb.SettingsFlowManager is not None: Gb.hass.loop.create_task(Gb.SettingsFlowManager.async_show_menu_handler()) except Exception as err: log_exception(err) #-------------------------------------------------------------------- def _handle_action_device_location_iosapp(Device): ''' Request ios app location from the EvLog > Actions ''' Device.display_info_msg('Updating Location') if Device.iosapp_monitor_flag: Device.iosapp_data_change_reason = f"Location Requested@{time_now()}" iosapp_interface.request_location(Device, force_request=True) # Device.resume_tracking() # Device.write_ha_sensor_state(NEXT_UPDATE, 'Locating') #-------------------------------------------------------------------- def _handle_action_device_locate(Device, action_option): ''' Set the next update time & interval from the Action > locate service call ''' if action_option == 'iosapp': _handle_action_device_location_iosapp(Device) return if Gb.primary_data_source_ICLOUD is False or Device.is_data_source_ICLOUD is False: post_event(Device.devicename, "iCloud Location Tracking is not available") return try: interval_secs = time_str_to_secs(action_option) if interval_secs == 0: interval_secs = 5 except: interval_secs = 5 Gb.force_icloud_update_flag = True det_interval.update_all_device_fm_zone_sensors_interval(Device, interval_secs) Device.icloud_update_reason = f"Location Requested@{time_now()}" post_event(Device.devicename, f"Location will be updated at {Device.sensors[NEXT_UPDATE_TIME]}") Device.write_ha_sensors_state([NEXT_UPDATE, INTERVAL]) #-------------------------------------------------------------------- def set_ha_notification(title, message, issue=True): ''' Format an HA Notification ''' Gb.ha_notification = { 'title': title, 'message': f'{message}<br><br>*iCloud3 Notification {datetime_now()}*', 'notification_id': DOMAIN} if issue: issue_ha_notification() #-------------------------------------------------------------------- def issue_ha_notification(): if Gb.ha_notification == {}: return Gb.hass.services.call("persistent_notification", "create", Gb.ha_notification) Gb.ha_notification = {} #-------------------------------------------------------------------- def find_iphone_alert_service_handler(devicename): """ Call the lost iPhone function if using th e FamShr tracking method. Otherwise, send a notification to the iOS App """ Device = Gb.Devices_by_devicename[devicename] if Device.is_data_source_FAMSHR: device_id = Device.device_id_famshr if device_id and Gb.PyiCloud and Gb.PyiCloud.FamilySharing: Gb.PyiCloud.FamilySharing.play_sound(device_id, subject="Find My iPhone Alert") post_event(devicename, "iCloud Find My iPhone Alert sent") return event_msg =("iCloud Device not available, the alert will be sent to the iOS App") post_event(devicename, event_msg) message = {"message": "Find My iPhone Alert", "data": { "push": { "sound": { "name": "alarm.caf", "critical": 1, "volume": 1 } } } } iosapp_interface.send_message_to_device(Device, message) #-------------------------------------------------------------------- def lost_device_alert_service_handler(devicename, number, message=None): """ Call the lost iPhone function if using th e FamShr tracking method. Otherwise, send a notification to the iOS App """ if message is None: message = 'This Phone has been lost. Please call this number to report it found.' Device = Gb.Devices_by_devicename[devicename] if Device.is_data_source_FAMSHR: device_id = Device.device_id_famshr if device_id and Gb.PyiCloud and Gb.PyiCloud.FamilySharing: Gb.PyiCloud.FamilySharing.lost_device(device_id, number=number, message=message) post_event(devicename, "iCloud Lost Device Alert sent") return
[ "thomas@thomasbaxter.info" ]
thomas@thomasbaxter.info
48cc0d40c135bbab7009debb0fa2b4ef391485d5
d74afbb1cfd00786fda380eb44f9524dc3182fd5
/application/factory.py
416a557c3985b2803c0a90eeaa43000bb0ea8bf9
[ "MIT" ]
permissive
kdknive/flask-api-template
95b9ea35ec9b0742e55459aa6b4934f2ffbea33f
f816d8af8633f5eabb9c8b611841a77cf6cd7c9b
refs/heads/main
2023-08-10T17:56:08.853642
2021-10-03T21:19:17
2021-10-03T21:19:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
from flask import Flask from application.api.moon import moon from application.api.sun import sun def create_app(): app = Flask(__name__) app.register_blueprint(moon, url_prefix=moon.url_prefix) app.register_blueprint(sun, url_prefix=sun.url_prefix) return app
[ "david.salter@outlook.com" ]
david.salter@outlook.com
4492af906e447a4ad38c8eb08ed07bee989de5d3
cf646fadb13f645753b0a9d2353d5679929d22e8
/cricket_tournament/models/score_board.py
f9c93cc74ff0dbd2ec878a5d0ecf486282528809
[]
no_license
vivektiwari-007/cricket_score_board
f84faefc152353f15a1612009c24e1d519311d0c
ab5b5231cae97198aabd2a93eaefa40fcf764a42
refs/heads/master
2022-04-08T07:46:38.602261
2020-02-18T13:18:53
2020-02-18T13:18:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,279
py
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models class ScoreBoard(models.Model): _name = "score.board" _description = "Score Board" company_id = fields.Many2one('res.company', required=True, default=lambda self: self.env.company) over = fields.Float(string="Over", digits=(12, 1)) run = fields.Selection([('0', '0'), ('1', '1'), ('2', '2'), ('3', '3'), ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7')]) ballresult = fields.Selection([('batted', 'Batted'), ('extra', 'Extra'), ('out', 'Out')], string="Ball Result") selectruninextra = fields.Selection([('wide', 'Wide'), ('noball', 'Noball'), ('bye', 'Bye')], string="Select Run Extra") selectbatsmanisout = fields.Selection([('bowled', 'Bowled'), ('catch', 'Catch')], string="Select Batsman Out") stricker_id = fields.Many2one("user.detail", string="Stricker", domain="[('user_id', 'in', tosswinnername)]") nonstricker_id = fields.Many2one("user.detail", string="Non-Stricker", domain="[('user_id', 'in', tosswinnername)]") bowler_id = fields.Many2one("user.detail", string="Bowler", domain="[('user_id','not in',tosswinnername)]") description = fields.Text(string="Commentry") toss = fields.Many2one("toss.detail", string="toss") tosswinnername = fields.Char(string="Batting Team") totalrun = fields.Integer(compute="_compute_totalrun", store=True) def button_run_0(self): self.write({'run': "0"}) return True def button_run_1(self): self.write({'run': "1"}) return True def button_run_2(self): self.write({'run': "2"}) return True def button_run_3(self): self.write({'run': "3"}) return True def button_run_4(self): self.write({'run': "4"}) return True def button_run_5(self): self.write({'run': "5"}) return True def button_run_6(self): self.write({'run': "6"}) return True def button_run_7(self): self.write({'run': "7"}) return True def button_run_out(self): self.write({'ballresult': "out"}) return True def button_run_wd(self): self.write({'selectruninextra': "wide"}) return True def button_run_nb(self): self.write({'selectruninextra': "noball"}) return True def button_run_bye(self): self.write({'selectruninextra': "bye"}) return True @api.onchange('run', 'totalrun') def _compute_totalrun(self): total = self.env['score.board'].search([]) score = 0 if total: for t in total: score = score + int(t.run) for r in self: r.totalrun = score @api.onchange('toss') def onchange_getData(self): toss_data = self.env.context.get('current_id') rec = self.env['toss.detail'].browse([toss_data]) if rec.decide == 'batting': self.tosswinnername = rec.tosswinnername.name else: if rec.tosswinnername.name == rec.name.team2name_id.name: self.tosswinnername = rec.name.team1name_id.name else: self.tosswinnername = rec.name.team2name_id.name
[ "tiwarivivek389.com" ]
tiwarivivek389.com
bb4ad2746d26da85b8fdacf01f3f4797e6f2fe89
86f5d75d1bbbfa2d1f12c574d65415c9216a522f
/nairalirayoga/core/migrations/0013_auto_20160316_0242.py
1ee13901775281baa6621492c04d707d2618fe9c
[]
no_license
joaosr/nairalirayoga
e5f260cc87348724ef8a8852655fc6ebd68172a4
4d222b14add9e832f217a8b9d14d6676eb560e03
refs/heads/master
2020-04-05T23:09:19.710486
2016-09-30T00:22:51
2016-09-30T00:22:51
58,102,530
0
0
null
null
null
null
UTF-8
Python
false
false
652
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-03-16 02:42 from __future__ import unicode_literals from django.db import migrations, models import nairalirayoga.core.models class Migration(migrations.Migration): dependencies = [ ('core', '0012_auto_20160316_0137'), ] operations = [ migrations.AlterField( model_name='professor', name='foto', field=models.ImageField(blank=True, default='no-img-professor.png', height_field='height_field', null=True, upload_to=nairalirayoga.core.models.upload_location, verbose_name='Foto', width_field='width_field'), ), ]
[ "eng.jmsoares@gmail.com" ]
eng.jmsoares@gmail.com
7be7b33049864554e896f01363cd6ae90d48f9d6
d755c825cacbb60e9a23234fbaaf93de48c6a058
/June-CookOff-2019/multipleChoiceInput.py
dadd7cf19e50ae0fea6efb6676ab209a88a4c457
[]
no_license
Subhash3/CodeChef
d82e4df751e6dd1e07205871b9e2c0b1202d0506
5301b0e4555aac55a72f175dfba8f786b4ea7bbd
refs/heads/master
2020-08-04T20:17:18.339602
2020-01-21T16:10:12
2020-01-21T16:10:12
212,267,130
2
3
null
2019-10-15T12:07:44
2019-10-02T06:07:41
Python
UTF-8
Python
false
false
559
py
#!/usr/bin/python3 import random correct = "" N = int(input()) for i in range(N) : a = random.randint(1, 5) if a == 1 : correct += 'A' elif a == 2 : correct += 'B' elif a == 3 : correct += 'C' else : correct += 'D' chef = "" for i in range(N) : a = random.randint(1, 6) if a == 1 : chef += 'A' elif a == 2 : chef+= 'B' elif a == 3 : chef += 'C' elif a == 4 : chef += 'D' else : chef += 'N' print(int(1)) print(N) print(correct) print(chef)
[ "subhashsarangi123@gmail.com" ]
subhashsarangi123@gmail.com
e1441f3392629cded5e0890daa2c8b20e8cb5e4c
dd405b65af6793d9df52b26a0d6d8ba2d07985f4
/trade/rl_train.py
b95cd1566cefc65877a340862b70ef908538a50e
[]
no_license
bendavidsteel/trade-democratization
1965b16b38d77dcb860270c0f7dde3ba05ec056f
ea321f45b996f905db32535dd4d79902b350ce4a
refs/heads/master
2023-01-24T19:59:36.892975
2020-11-24T23:49:16
2020-11-24T23:49:16
265,402,341
0
0
null
null
null
null
UTF-8
Python
false
false
2,306
py
import math import torch import tqdm import nation_agent import nation_env import utils GAMMA = 0.999 EPS_START = 0.9 EPS_END = 0.05 EPS_DECAY = 50 NUM_EPISODES = 100 REPLAY_CAPACITY = 20 NUM_COUNTRIES = 20 NUM_YEARS_PER_ROUND = 100 # if gpu is to be used device = torch.device("cuda" if torch.cuda.is_available() else "cpu") env = nation_env.NationEnvironment(NUM_COUNTRIES, device) agents = nation_agent.InternationalAgentCollection(NUM_COUNTRIES, REPLAY_CAPACITY, env.num_foreign_actions, env.num_domestic_actions, GAMMA, device) for i_episode in range(NUM_EPISODES): # Initialize the environment and state env.reset() agents.reset(env.clusters, env.norm_initial_demo) # reward stats reward_mean = 0 reward_var = 0 with tqdm.tqdm(range(NUM_YEARS_PER_ROUND)) as years: for year in years: years.set_postfix(str="Reward Mean: %i, Reward Var: %i" % (reward_mean, reward_var)) # get state at start of round state = env.norm_state eps_threshold = EPS_END + (EPS_START - EPS_END) * \ math.exp(-1. * i_episode / EPS_DECAY) # Select and perform an action actions = agents.select_actions(env.norm_state, eps_threshold) utils.apply_actions(actions, env) # let environment take step env.step() # Observe new state next_state = env.norm_state # get the reward rewards = env.get_rewards() # Store the transition in memory for agent_id in range(NUM_COUNTRIES): reward = rewards[agent_id] action = utils.Action(foreign = actions[agent_id][0], domestic = actions[agent_id][1]) transition = utils.Transition(state = state, action = action, next_state = next_state, reward = reward) agents[agent_id].add_transition(transition) reward_mean = torch.mean(rewards) reward_var = torch.var(rewards) # Perform one step of the optimization (on the target network) agents.optimize()
[ "bendavidsteel@gmail.com" ]
bendavidsteel@gmail.com
3fa553721e7d58259f8b91d2d8c2dda5cb91b569
27d92b640d3814fa5dc8040b79a99d077cba3aae
/cpython/Lib/wsgiref/validate.py
49eaa514cc5d0873f0bdcb9a4543cce71881803e
[ "GPL-1.0-or-later", "Python-2.0", "LicenseRef-scancode-free-unknown", "LicenseRef-scancode-other-copyleft", "LicenseRef-scancode-python-cwi" ]
permissive
ms-iot/python
99a0f4d3dd3926703d49b75910c78c69cdb7aed7
a8f8fba1214289572713520f83409762a4446fea
refs/heads/develop
2022-12-07T23:26:31.339811
2017-11-17T02:24:32
2017-11-17T02:24:32
31,045,533
73
39
BSD-3-Clause
2022-11-16T20:24:24
2015-02-20T01:01:09
Python
UTF-8
Python
false
false
15,151
py
# (c) 2005 Ian Bicking and contributors; written for Paste (http://pythonpaste.org) # Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php # Also licenced under the Apache License, 2.0: http://opensource.org/licenses/apache2.0.php # Licensed to PSF under a Contributor Agreement """ Middleware to check for obedience to the WSGI specification. Some of the things this checks: * Signature of the application and start_response (including that keyword arguments are not used). * Environment checks: - Environment is a dictionary (and not a subclass). - That all the required keys are in the environment: REQUEST_METHOD, SERVER_NAME, SERVER_PORT, wsgi.version, wsgi.input, wsgi.errors, wsgi.multithread, wsgi.multiprocess, wsgi.run_once - That HTTP_CONTENT_TYPE and HTTP_CONTENT_LENGTH are not in the environment (these headers should appear as CONTENT_LENGTH and CONTENT_TYPE). - Warns if QUERY_STRING is missing, as the cgi module acts unpredictably in that case. - That CGI-style variables (that don't contain a .) have (non-unicode) string values - That wsgi.version is a tuple - That wsgi.url_scheme is 'http' or 'https' (@@: is this too restrictive?) - Warns if the REQUEST_METHOD is not known (@@: probably too restrictive). - That SCRIPT_NAME and PATH_INFO are empty or start with / - That at least one of SCRIPT_NAME or PATH_INFO are set. - That CONTENT_LENGTH is a positive integer. - That SCRIPT_NAME is not '/' (it should be '', and PATH_INFO should be '/'). - That wsgi.input has the methods read, readline, readlines, and __iter__ - That wsgi.errors has the methods flush, write, writelines * The status is a string, contains a space, starts with an integer, and that integer is in range (> 100). * That the headers is a list (not a subclass, not another kind of sequence). * That the items of the headers are tuples of strings. * That there is no 'status' header (that is used in CGI, but not in WSGI). * That the headers don't contain newlines or colons, end in _ or -, or contain characters codes below 037. * That Content-Type is given if there is content (CGI often has a default content type, but WSGI does not). * That no Content-Type is given when there is no content (@@: is this too restrictive?) * That the exc_info argument to start_response is a tuple or None. * That all calls to the writer are with strings, and no other methods on the writer are accessed. * That wsgi.input is used properly: - .read() is called with zero or one argument - That it returns a string - That readline, readlines, and __iter__ return strings - That .close() is not called - No other methods are provided * That wsgi.errors is used properly: - .write() and .writelines() is called with a string - That .close() is not called, and no other methods are provided. * The response iterator: - That it is not a string (it should be a list of a single string; a string will work, but perform horribly). - That .__next__() returns a string - That the iterator is not iterated over until start_response has been called (that can signal either a server or application error). - That .close() is called (doesn't raise exception, only prints to sys.stderr, because we only know it isn't called when the object is garbage collected). """ __all__ = ['validator'] import re import sys import warnings header_re = re.compile(r'^[a-zA-Z][a-zA-Z0-9\-_]*$') bad_header_value_re = re.compile(r'[\000-\037]') class WSGIWarning(Warning): """ Raised in response to WSGI-spec-related warnings """ def assert_(cond, *args): if not cond: raise AssertionError(*args) def check_string_type(value, title): if type (value) is str: return value raise AssertionError( "{0} must be of type str (got {1})".format(title, repr(value))) def validator(application): """ When applied between a WSGI server and a WSGI application, this middleware will check for WSGI compliancy on a number of levels. This middleware does not modify the request or response in any way, but will raise an AssertionError if anything seems off (except for a failure to close the application iterator, which will be printed to stderr -- there's no way to raise an exception at that point). """ def lint_app(*args, **kw): assert_(len(args) == 2, "Two arguments required") assert_(not kw, "No keyword arguments allowed") environ, start_response = args check_environ(environ) # We use this to check if the application returns without # calling start_response: start_response_started = [] def start_response_wrapper(*args, **kw): assert_(len(args) == 2 or len(args) == 3, ( "Invalid number of arguments: %s" % (args,))) assert_(not kw, "No keyword arguments allowed") status = args[0] headers = args[1] if len(args) == 3: exc_info = args[2] else: exc_info = None check_status(status) check_headers(headers) check_content_type(status, headers) check_exc_info(exc_info) start_response_started.append(None) return WriteWrapper(start_response(*args)) environ['wsgi.input'] = InputWrapper(environ['wsgi.input']) environ['wsgi.errors'] = ErrorWrapper(environ['wsgi.errors']) iterator = application(environ, start_response_wrapper) assert_(iterator is not None and iterator != False, "The application must return an iterator, if only an empty list") check_iterator(iterator) return IteratorWrapper(iterator, start_response_started) return lint_app class InputWrapper: def __init__(self, wsgi_input): self.input = wsgi_input def read(self, *args): assert_(len(args) == 1) v = self.input.read(*args) assert_(type(v) is bytes) return v def readline(self, *args): assert_(len(args) <= 1) v = self.input.readline(*args) assert_(type(v) is bytes) return v def readlines(self, *args): assert_(len(args) <= 1) lines = self.input.readlines(*args) assert_(type(lines) is list) for line in lines: assert_(type(line) is bytes) return lines def __iter__(self): while 1: line = self.readline() if not line: return yield line def close(self): assert_(0, "input.close() must not be called") class ErrorWrapper: def __init__(self, wsgi_errors): self.errors = wsgi_errors def write(self, s): assert_(type(s) is str) self.errors.write(s) def flush(self): self.errors.flush() def writelines(self, seq): for line in seq: self.write(line) def close(self): assert_(0, "errors.close() must not be called") class WriteWrapper: def __init__(self, wsgi_writer): self.writer = wsgi_writer def __call__(self, s): assert_(type(s) is bytes) self.writer(s) class PartialIteratorWrapper: def __init__(self, wsgi_iterator): self.iterator = wsgi_iterator def __iter__(self): # We want to make sure __iter__ is called return IteratorWrapper(self.iterator, None) class IteratorWrapper: def __init__(self, wsgi_iterator, check_start_response): self.original_iterator = wsgi_iterator self.iterator = iter(wsgi_iterator) self.closed = False self.check_start_response = check_start_response def __iter__(self): return self def __next__(self): assert_(not self.closed, "Iterator read after closed") v = next(self.iterator) if type(v) is not bytes: assert_(False, "Iterator yielded non-bytestring (%r)" % (v,)) if self.check_start_response is not None: assert_(self.check_start_response, "The application returns and we started iterating over its body, but start_response has not yet been called") self.check_start_response = None return v def close(self): self.closed = True if hasattr(self.original_iterator, 'close'): self.original_iterator.close() def __del__(self): if not self.closed: sys.stderr.write( "Iterator garbage collected without being closed") assert_(self.closed, "Iterator garbage collected without being closed") def check_environ(environ): assert_(type(environ) is dict, "Environment is not of the right type: %r (environment: %r)" % (type(environ), environ)) for key in ['REQUEST_METHOD', 'SERVER_NAME', 'SERVER_PORT', 'wsgi.version', 'wsgi.input', 'wsgi.errors', 'wsgi.multithread', 'wsgi.multiprocess', 'wsgi.run_once']: assert_(key in environ, "Environment missing required key: %r" % (key,)) for key in ['HTTP_CONTENT_TYPE', 'HTTP_CONTENT_LENGTH']: assert_(key not in environ, "Environment should not have the key: %s " "(use %s instead)" % (key, key[5:])) if 'QUERY_STRING' not in environ: warnings.warn( 'QUERY_STRING is not in the WSGI environment; the cgi ' 'module will use sys.argv when this variable is missing, ' 'so application errors are more likely', WSGIWarning) for key in environ.keys(): if '.' in key: # Extension, we don't care about its type continue assert_(type(environ[key]) is str, "Environmental variable %s is not a string: %r (value: %r)" % (key, type(environ[key]), environ[key])) assert_(type(environ['wsgi.version']) is tuple, "wsgi.version should be a tuple (%r)" % (environ['wsgi.version'],)) assert_(environ['wsgi.url_scheme'] in ('http', 'https'), "wsgi.url_scheme unknown: %r" % environ['wsgi.url_scheme']) check_input(environ['wsgi.input']) check_errors(environ['wsgi.errors']) # @@: these need filling out: if environ['REQUEST_METHOD'] not in ( 'GET', 'HEAD', 'POST', 'OPTIONS','PUT','DELETE','TRACE'): warnings.warn( "Unknown REQUEST_METHOD: %r" % environ['REQUEST_METHOD'], WSGIWarning) assert_(not environ.get('SCRIPT_NAME') or environ['SCRIPT_NAME'].startswith('/'), "SCRIPT_NAME doesn't start with /: %r" % environ['SCRIPT_NAME']) assert_(not environ.get('PATH_INFO') or environ['PATH_INFO'].startswith('/'), "PATH_INFO doesn't start with /: %r" % environ['PATH_INFO']) if environ.get('CONTENT_LENGTH'): assert_(int(environ['CONTENT_LENGTH']) >= 0, "Invalid CONTENT_LENGTH: %r" % environ['CONTENT_LENGTH']) if not environ.get('SCRIPT_NAME'): assert_('PATH_INFO' in environ, "One of SCRIPT_NAME or PATH_INFO are required (PATH_INFO " "should at least be '/' if SCRIPT_NAME is empty)") assert_(environ.get('SCRIPT_NAME') != '/', "SCRIPT_NAME cannot be '/'; it should instead be '', and " "PATH_INFO should be '/'") def check_input(wsgi_input): for attr in ['read', 'readline', 'readlines', '__iter__']: assert_(hasattr(wsgi_input, attr), "wsgi.input (%r) doesn't have the attribute %s" % (wsgi_input, attr)) def check_errors(wsgi_errors): for attr in ['flush', 'write', 'writelines']: assert_(hasattr(wsgi_errors, attr), "wsgi.errors (%r) doesn't have the attribute %s" % (wsgi_errors, attr)) def check_status(status): status = check_string_type(status, "Status") # Implicitly check that we can turn it into an integer: status_code = status.split(None, 1)[0] assert_(len(status_code) == 3, "Status codes must be three characters: %r" % status_code) status_int = int(status_code) assert_(status_int >= 100, "Status code is invalid: %r" % status_int) if len(status) < 4 or status[3] != ' ': warnings.warn( "The status string (%r) should be a three-digit integer " "followed by a single space and a status explanation" % status, WSGIWarning) def check_headers(headers): assert_(type(headers) is list, "Headers (%r) must be of type list: %r" % (headers, type(headers))) header_names = {} for item in headers: assert_(type(item) is tuple, "Individual headers (%r) must be of type tuple: %r" % (item, type(item))) assert_(len(item) == 2) name, value = item name = check_string_type(name, "Header name") value = check_string_type(value, "Header value") assert_(name.lower() != 'status', "The Status header cannot be used; it conflicts with CGI " "script, and HTTP status is not given through headers " "(value: %r)." % value) header_names[name.lower()] = None assert_('\n' not in name and ':' not in name, "Header names may not contain ':' or '\\n': %r" % name) assert_(header_re.search(name), "Bad header name: %r" % name) assert_(not name.endswith('-') and not name.endswith('_'), "Names may not end in '-' or '_': %r" % name) if bad_header_value_re.search(value): assert_(0, "Bad header value: %r (bad char: %r)" % (value, bad_header_value_re.search(value).group(0))) def check_content_type(status, headers): status = check_string_type(status, "Status") code = int(status.split(None, 1)[0]) # @@: need one more person to verify this interpretation of RFC 2616 # http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html NO_MESSAGE_BODY = (204, 304) for name, value in headers: name = check_string_type(name, "Header name") if name.lower() == 'content-type': if code not in NO_MESSAGE_BODY: return assert_(0, ("Content-Type header found in a %s response, " "which must not return content.") % code) if code not in NO_MESSAGE_BODY: assert_(0, "No Content-Type header found in headers (%s)" % headers) def check_exc_info(exc_info): assert_(exc_info is None or type(exc_info) is tuple, "exc_info (%r) is not a tuple: %r" % (exc_info, type(exc_info))) # More exc_info checks? def check_iterator(iterator): # Technically a bytestring is legal, which is why it's a really bad # idea, because it may cause the response to be returned # character-by-character assert_(not isinstance(iterator, (str, bytes)), "You should not return a string as your application iterator, " "instead return a single-item list containing a bytestring.")
[ "juanyaw@exchange.microsoft.com" ]
juanyaw@exchange.microsoft.com
985f2188c354d18e1eb3ea17b51af94488cee80a
5d4249cc7a738eacbd274bfb30c0088176e17eca
/client/config/__init__.py
cccefba868023df91107cac61a52f57473da872d
[]
no_license
pstankiewicz/pihome
d194d14c376d28861bbf64da1ba9b3f6f80b1386
a930cd18767127c349cdcf1560e04619b3b02024
refs/heads/master
2023-01-02T06:12:28.839516
2020-10-26T06:28:52
2020-10-26T06:28:52
297,110,159
0
0
null
null
null
null
UTF-8
Python
false
false
92
py
try: from .local import * except ImportError as e: print(e) from .base import *
[ "piotr.stankiewicz@gmail.com" ]
piotr.stankiewicz@gmail.com