blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
f36d02da184f8af38501b9b4024f49f2818710a7
17104ec32410aa75638b6264f8ec7621d4722f13
/settings.py
4267c87782fb790f392d0efbf3a1c4da4f305697
[]
no_license
kdudkov/modbus_server
fd7ee367658f5974cf2366f73c4649fd51ad4719
28376345d71f095f482db5237f533f86f2aedfd8
refs/heads/master
2021-06-04T04:12:36.631039
2018-02-04T19:55:59
2018-02-04T19:55:59
56,672,185
0
0
null
null
null
null
UTF-8
Python
false
false
120
py
from translators import SimpleChiniseBoard modbus_serial_port = '/dev/rs485' translators = [SimpleChiniseBoard(1), ]
[ "kdudkov@ya.ru" ]
kdudkov@ya.ru
2e0178ccf2d9b0262a0c5b3da2ca9630a3ca4b9f
7cc44140110528c3eb3b0ef141d85500d506c390
/projets/CHALLET GITENAIT/projet5.py
5a4ca0c99ce249284cea501f2a5503d5a9682dab
[]
no_license
cedric-lemery/ISN2020
3d15568dfde4cafe03a5cd994957e42ac0018fef
a814dd91d0ecacfbcf5af16e4c0001d6e20b3e24
refs/heads/master
2021-03-29T04:23:42.424393
2020-06-14T17:42:55
2020-06-14T17:42:55
247,919,858
1
4
null
2020-06-14T17:31:23
2020-03-17T08:44:29
Python
UTF-8
Python
false
false
4,019
py
#tristan #audric #Flappy bird import pygame import traceback from random import randint import time from pygame.locals import * pygame.init() temps = pygame.time.Clock() largeur= 1200 hauteur= 600 fenetre= pygame.display.set_mode((largeur,hauteur)) pygame.display.set_caption("Flappy Bird") fond=pygame.image.load("fond.png").convert() fond=pygame.transform.scale(fond,(largeur,hauteur)) def msgfin(): chaine="Game over" font=pygame.font.SysFont("Lobster",250,bold=False,italic=False) text=font.render(chaine,1,(255,100,100)) fenetre.blit(text,(100,110)) def msgrejouer(): chaine="Pour rejouer appuyer sur 'r'" font=pygame.font.SysFont("Lobster",100,bold=False,italic=False) text=font.render(chaine,1,(255,180,100)) fenetre.blit(text,(100,400)) def gameover() : msgfin() msgrejouer() pygame.display.flip() while choix() == None: temps.tick jeux() def choix(): for event in pygame.event.get(): if event.type==QUIT: pygame.quit() exit() if event.type==KEYDOWN : if event.key==K_r : return event.key return None def jeux(): y=0 perso= pygame.image.load("perso.png").convert_alpha() perso.set_colorkey((255,255,255)) perso=pygame.transform.scale(perso,(80,80)) persorect= perso.get_rect() persorect= persorect.move(100,100) tuyau0= pygame.image.load("tuyau0.png").convert_alpha() tuyau0rect= tuyau0.get_rect() tuyau0rect= tuyau0rect.move(600,500) tuyau1= pygame.image.load("tuyau1.png").convert_alpha() tuyau1rect= tuyau1.get_rect() tuyau1rect= tuyau1rect.move(600,-170) tuyau3= pygame.image.load("tuyau0.png").convert_alpha() tuyau3rect= tuyau3.get_rect() tuyau3rect= tuyau3rect.move(1200,500) tuyau4= pygame.image.load("tuyau1.png").convert_alpha() tuyau4rect= tuyau4.get_rect() tuyau4rect= tuyau4rect.move(1200,-170) collisions= [tuyau0rect,tuyau1rect,tuyau3rect,tuyau4rect] fenetre.blit(fond,(0,0)) fenetre.blit(perso, persorect) fenetre.blit(tuyau0, tuyau0rect) fenetre.blit(tuyau1, tuyau1rect) fenetre.blit(tuyau3, tuyau3rect) fenetre.blit(tuyau4, tuyau4rect) pygame.display.flip() continuer=1 while continuer: for event in pygame.event.get(): if event.type==QUIT: continuer=0 if event.type==KEYDOWN : if event.key==K_SPACE : persorect= persorect.move(0,-150) persorect= persorect.move(0,1) tuyau0rect= tuyau0rect.move(-1,0) tuyau1rect= tuyau1rect.move(-1,0) tuyau3rect= tuyau3rect.move(-1,0) tuyau4rect= tuyau4rect.move(-1,0) collisions= [tuyau0rect,tuyau1rect,tuyau3rect,tuyau4rect] fenetre.blit(fond,(0,0)) fenetre.blit(perso,persorect) fenetre.blit(tuyau0, tuyau0rect) fenetre.blit(tuyau1, tuyau1rect) fenetre.blit(tuyau3, tuyau3rect) fenetre.blit(tuyau4, tuyau4rect) if persorect.collidelist(collisions)==0: gameover() if persorect.collidelist(collisions)==1: gameover() if persorect.collidelist(collisions)==2: gameover() if persorect.collidelist(collisions)==3: gameover() if persorect.bottom>600: gameover() if persorect.top<0: gameover() if persorect.right==1200: gameover() pygame.display.flip() if tuyau0rect.right ==0: tuyau0rect= tuyau0rect.move(1200,0) tuyau1rect= tuyau1rect.move(1200,0) if tuyau3rect.right ==0 : tuyau3rect= tuyau3rect.move(1200,0) tuyau4rect= tuyau4rect.move(1200,0) try : jeux() except : traceback.print_exc() finally: pygame.quit() exit()
[ "32592390+cedric-lemery@users.noreply.github.com" ]
32592390+cedric-lemery@users.noreply.github.com
0569a217747c9a5c1fadbd6e98e8480130bbee8d
bd5b3934969ebf4f693ceb4be17a68f9c3ebd414
/beginPython/fluentPython/ch08/copytest1.py
ba170cc4288d8b197b1b26738b0672ae5925b8f2
[]
no_license
lyk4411/untitled
bc46863d3bbb2b71edf13947f24b892c2cf43e1a
875b7dfa765ffa40d76582d2ae41813d2e15c8bd
refs/heads/master
2021-04-06T09:09:08.977227
2021-03-10T02:56:34
2021-03-10T02:56:34
124,990,530
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
a = [10, 20] b = [a, 30] a.append(b) print(a) from copy import deepcopy c = deepcopy(a) print(c) print(c[2]) print(c[2][0]) print(c[2][0][2]) d = c[2][0][2]
[ "moneyflying_2006@hotmail.com" ]
moneyflying_2006@hotmail.com
6e898979b150fb54a4595eb314dab1b451458b57
2f48a4adb131621c7ad4d772af67b2c40f2f41d7
/Dev/cfehome/src/cfehome/settings/local.py
5b2998780c13424b1ac9087a958d349feb9b9ee3
[]
no_license
akashbijwe/Python
ad0f6ae36e41e08a4ed24bfdcefde3287cefeb14
17948ece6835e240584d6835cce66eb75c4f1b22
refs/heads/master
2022-11-02T00:13:19.858003
2018-07-27T11:45:13
2018-07-27T11:45:13
141,707,337
2
1
null
2022-10-21T13:18:59
2018-07-20T12:05:30
Python
UTF-8
Python
false
false
3,116
py
""" Django settings for cfehome project. Generated by 'django-admin startproject' using Django 1.11.8. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'd3z%j57_y)5v*#2g314f(i0%&iy^*eo6)ls9_itfj4xi4kn@t_' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'cfehome.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'cfehome.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
[ "mr.akashbijwe@gmail.com" ]
mr.akashbijwe@gmail.com
afe4f7e00298821574b0f0210c6711e31cc6fca0
d0a358ca8fe4f2bf8743354bb8ab5ceab656bdc7
/alignment/wham/models.py
bdaae23a78d1d6563fb1a044370eb3ad3c3dbfbe
[]
no_license
winobes/lasn
910b8bcd940dddee143e50264c4491e3092b1edc
ebef896ea64aa30c3be9e6f445dd09a235e15696
refs/heads/master
2021-01-24T08:20:05.138210
2019-04-13T17:03:04
2019-04-13T17:03:04
69,143,253
4
1
null
2017-11-17T22:49:29
2016-09-25T04:15:49
Python
UTF-8
Python
false
false
1,577
py
import pandas as pd import pystan def fit_wham_nosubpops(reply_pairs, markers, sample=None): # merge the marker usage columns for the reply pair for m in markers: reply_pairs[m] = list(zip(reply_pairs[m+'_a'], reply_pairs[m+'_b'])) # reshape df = pd.melt(reply_pairs, id_vars = ['user_a', 'user_b', 'utterance_id_b'], value_vars=markers, var_name='marker') # change the marker labels to indices Stan will like marker_idx = {m:i+1 for i,m in enumerate(markers)} df['marker'] = df['marker'].apply(lambda x: marker_idx[x]) # reshape again df = df.pivot_table(index=['user_a', 'user_b', 'marker'], columns='value', aggfunc='size', fill_value=0) df = df.reset_index() if sample: df = df.sample(sample) print(len(df)) data = { "NumMarkers": len(markers), "NumObservations": len(df), "MarkerType": df.marker.values, "NumUtterancesAB": (df[(True, True)] + df[(True, False)]).values, "NumUtterancesNotAB": (df[(False, True)] + df[(False, False)]).values, "CountsAB": df[(True, True)].values, "CountsNotAB": df[(False, True)].values, "StdDev": .25 } ## Compile the Stan model sm = pystan.StanModel(file='alignment.cauchy.nosubpop.stan', verbose=True) ## Sample // fit the model to the data import time start = time.time() fit = sm.sampling(data=data, iter=200, pars=['eta_ab_pop'], chains=2) end = time.time() print(end - start) def fit_wham(reply_pairs, subpops_column, markers, sample=None): pass
[ "winobes@gmail.com" ]
winobes@gmail.com
970f789de95468e7ab88ed4a5cb7f0c5f50a547c
24a4bf21aa59350b016853349b0dfaa8c971516a
/YounJongSu/mid_hw/matrix_chain_multiplication.py
d18e61ef6538df4117430b1067f539e7ddd1981e
[]
no_license
oereo/Algorithm_thursday
3f73791c10496d577dec3a6e424fc0dfae5f42c0
6850d7a4385bd33166c06ed4228428f376327e4e
refs/heads/master
2022-09-11T16:37:03.108128
2020-05-30T12:12:35
2020-05-30T12:12:35
263,600,788
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
import sys def MatrixChainOrder(p, n): m = [[0 for x in range(n)] for x in range(n)] for L in range(2, n): for i in range(1, n-L+1): j = i + L - 1 m[i][j] = sys.maxsize for k in range(i, j): q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j] if q<m[i][j]: m[i][j] = q print(m) return m[1][n-1] arr = [1,2,3,4] size = len(arr) print(str(MatrixChainOrder(arr, size)))
[ "dbs106@gmail.com" ]
dbs106@gmail.com
b3d768c3ef0a4d459076b7697959c0d53bdb2fa1
17b1249a8d7868ce0f56e7b539308e571bcaf888
/conftest.py
a746df4229b24bbc82707f61853dcfce7b54425c
[]
no_license
UyliaGor/lesson_3.6_step9
4041b586de9e3b936ad132abdde7ebd193724c89
fbd16002cbf5527285aa98650ed0c3049c1c885f
refs/heads/main
2023-07-09T00:49:04.445614
2021-07-22T09:35:22
2021-07-22T09:35:22
388,182,214
0
0
null
null
null
null
UTF-8
Python
false
false
1,297
py
import pytest from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.common.exceptions import NoSuchElementException def pytest_addoption(parser): parser.addoption('--browser_name', action='store', default='chrome', help="Choose browser: chrome or firefox") parser.addoption('--language', action='store', default='es', help="Choose lang") @pytest.fixture(scope="function") def browser(request): browser_name = request.config.getoption("browser_name") user_language = request.config.getoption("language") if browser_name == "chrome": print("\nstart browser chrome for test...") options = Options() options.add_experimental_option('prefs', {'intl.accept_languages': user_language}) browser = webdriver.Chrome(options=options) elif browser_name == "firefox": print("\nstart browser firefox for test...") fp = webdriver.FirefoxProfile() fp.set_preference("intl.accept_languages", user_language) browser = webdriver.Firefox(firefox_profile=fp) else: print("Browser {} still is not implemented".format(browser_name)) yield browser print("\nquit browser...") browser.quit()
[ "jkireenko137@gmail.com" ]
jkireenko137@gmail.com
4b307fe96486875b343a028769a3cd2960ea4026
da459298c4bdbb745f4ed80ce1c9da15dd8fbb34
/demisto_sdk/commands/lint/resources/pylint_plugins/certified_partner_level_checker.py
981ddc9f3d5f604f670e1dfe61b03fc2be380a78
[ "MIT" ]
permissive
demisto/demisto-sdk
af998a87523d03097f725ed8f31f6a44f4605ef2
3169757a2f98c8457e46572bf656ec6b69cc3a2e
refs/heads/master
2023-08-22T03:44:31.654275
2023-08-21T14:45:22
2023-08-21T14:45:22
219,291,269
63
75
MIT
2023-09-14T14:41:12
2019-11-03T11:36:13
Python
UTF-8
Python
false
false
8,826
py
# You can find documentation about adding new checker here: # http://pylint.pycqa.org/en/latest/how_tos/custom_checkers.html#write-a-checker """ #### How to add a new check? 1. Chose the lowest support level that the checker should check. 2. Add a new checker in the `<support>_level_checker.py` file. 1. Add a new Error/ Warning message in the message list. 2. Add a new checker function which includes the actual logic of the check. 3. Add your checker function under the relevant visit/leave function so which will activate it on the node. * For more explanation regarding pylint plugins and how to add a new checker: http://pylint.pycqa.org/en/latest/how_tos/custom_checkers.html#write-a-checker 3. Add a new unit test for your checker inside the `test_pylint_plugin` folder under the relevant support level. 4. For error messages, add your new message number in the `test_build_xsoar_linter_py3_command` and `test_build_xsoar_linter_py2_command` of the `command_builder_test.py` file. 5. Add the check to the `xsoar_linter_integration_test.py` test suit. """ import astroid from pylint.checkers import BaseChecker from pylint.interfaces import IAstroidChecker # -------------------------------------------- Messages ------------------------------------------------ cert_partner_msg = { "E9001": ( "Sys.exit use is found, Please use return instead.", "sys-exit-exists", "Ensure to not use sys.exit in the code.", ), "W9005": ( "Main function wasnt found in the file, Please add main()", "main-func-doesnt-exist", "Please remove all prints from the code.", ), "W9008": ( "Do not use demisto.results function. Please return CommandResults object instead.", "demisto-results-exists", "Do not use demisto.results function.", ), "W9009": ( "Do not use return_outputs function. Please return CommandResults object instead.", "return-outputs-exists", "Do not use return_outputs function.", ), "W9016": ( "Initialize of params was found outside of main function. Please use demisto.params() only inside main " "func", "init-params-outside-main", "Initialize of params was found outside of main function. Please initialize params only inside main func", ), "W9017": ( "Initialize of args was found outside of main function. Please use demisto.args() only inside main func", "init-args-outside-main", "Initialize of args was found outside of main function. Please use demisto.args() only inside main func", ), } class CertifiedPartnerChecker(BaseChecker): __implements__ = IAstroidChecker name = "certified-partner-checker" priority = -1 msgs = cert_partner_msg def __init__(self, linter=None): super().__init__(linter) self.list_of_function_names = set() # ------------------------------------- visit functions ------------------------------------------------- """ `visit_<node_name>` is a function which will be activated while visiting the node_name in the ast of the python code. When adding a new check: 1. Add a new checker function to the validations section. 2. Add the function's activation under the relevant visit function. """ def visit_call(self, node): self._sys_exit_checker(node) self._return_outputs_checker(node) self._demisto_results_checker(node) self._init_params_checker(node) self._init_args_checker(node) def visit_functiondef(self, node): self.list_of_function_names.add(node.name) # ------------------------------------- leave functions ------------------------------------------------- """ `leave_<node_name>` is a function which will be activated while leaving the node_name in the ast of the python code. When adding a new check: 1. Add a new checker function to the validations section. 2. Add the function's activation under the relevant leave function. * leave_module will be activated at the end of the file. """ def leave_module(self, node): self._main_function(node) # ---------------------------------------------------- Checkers ------------------------------------------------------ """ Checker functions are the functions that have the logic of our check and should be activated in one or more visit/leave functions. """ # -------------------------------------------- Call Node --------------------------------------------- def _sys_exit_checker(self, node): """ Args: node which is a Call Node. Check: - if sys.exit() statement exists in the current node. Adds the relevant error message using `add_message` function if one of the above exists. """ try: if ( node.func.attrname == "exit" and node.func.expr.name == "sys" and node.args and node.args[0].value != 0 ): self.add_message("sys-exit-exists", node=node) except Exception: pass def _return_outputs_checker(self, node): """ Args: node which is a Call Node. Check: - if return_outputs() statement exists in the current node. Adds the relevant error message using `add_message` function if one of the above exists. """ try: if node.func.name == "return_outputs": self.add_message("return-outputs-exists", node=node) except Exception: pass def _demisto_results_checker(self, node): """ Args: node which is a Call Node. Check: - if demisto.results() statement exists in the current node. Adds the relevant error message using `add_message` function if one of the above exists. """ try: if node.func.attrname == "results" and node.func.expr.name == "demisto": self.add_message("demisto-results-exists", node=node) except Exception: pass def _init_params_checker(self, node): """ Args: node which is a Call Node. Check: - if demisto.params() statement exists and if its parent node is main(). Adds the relevant error message using `add_message` function if one of the above exists. """ try: if node.func.attrname == "params" and node.func.expr.name == "demisto": check_param = True parent = node.parent # check if main function is one of the parent nodes of the current node that contains demisto.params() while check_param and parent: if ( isinstance(parent, astroid.FunctionDef) and parent.name == "main" ): check_param = False parent = parent.parent if check_param: self.add_message("init-params-outside-main", node=node) except AttributeError: pass def _init_args_checker(self, node): """ Args: node which is a Call Node. Check: - if demisto.args() statement exists and if its parent node is main(). Adds the relevant error message using `add_message` function if one of the above exists. """ try: if node.func.attrname == "args" and node.func.expr.name == "demisto": check_param = True parent = node.parent # check if main function is one of the parent nodes of the current node that contains demisto.params() while check_param and parent: if ( isinstance(parent, astroid.FunctionDef) and parent.name == "main" ): check_param = False parent = parent.parent if check_param: self.add_message("init-args-outside-main", node=node) except AttributeError: pass # -------------------------------------------- Module Node --------------------------------------------- def _main_function(self, node): """ Args: node which is a Call Node. Check: - if main() function exists in the code. Adds the relevant error message using `add_message` function if one of the above exists. """ if "main" not in self.list_of_function_names: self.add_message("main-func-doesnt-exist", node=node) def register(linter): linter.register_checker(CertifiedPartnerChecker(linter))
[ "noreply@github.com" ]
demisto.noreply@github.com
5d047cf6f9557497961864d7edee842ef2bdf485
135d94d4d5c9f9d7cf242f9be17d8cdef2ec5c02
/02Python基本语法/10模块/random模块.py
9f6d4bd0443d35facb4a54c85dcfa68f8ee9b984
[]
no_license
CodingHaHa/PythonBase
ad0982f93cfd9ffa850424538af0072076bfc8b9
51da00cb81851b9301045796aa3e32eb52293443
refs/heads/master
2021-01-20T21:37:29.502478
2017-09-27T16:05:39
2017-09-27T16:05:39
101,774,891
1
1
null
null
null
null
UTF-8
Python
false
false
565
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Created by fengL on 2017/9/4 import random #1:返回0-1直接的随机数 print(random.random()) #2:返回一个范围内的随机整数 print(random.randint(1,8))#返回1-8包括8在内的随机整数 #3:返回一个随机字符 print(random.choice("hello")) print(random.choice([1,2,8,9,5,3])) print(random.choices(["hello",15,"abc",1010])) print(random.sample(["hello",15,"abc",1010],2))#指定从序列中选指定数量的元素。 print(random.randrange(1,3))#取1-2的随机数,即不包含右边界
[ "645528331@qq.com" ]
645528331@qq.com
cb8e0c1ccc59a707870cdfaf0dcc196eab7b9667
654f667027a96234c9243b588a9ceba22707f0ce
/image_gallery/urls.py
903aff6b64da102aca33317f476dd02f58824020
[]
no_license
sabsekr/ImageGallery
1e9c3820a5913a3e58a45ecec3055136bf3df500
cfa2982531bc345b6a8f052035906839347df9dc
refs/heads/master
2020-12-02T06:06:43.752484
2016-09-11T19:31:36
2016-09-11T19:31:36
67,949,059
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
from django.conf import settings from django.conf.urls import url from django.conf.urls.static import static from . import views """ ex: /imagegallery/5/ ex: /imagegallery/add/ """ urlpatterns = [ url(r'^$', views.IndexView.as_view(), name='index'), url(r'^(?P<pk>[0-9]+)/$', views.ShowPhotoView.as_view(), name='showphoto'), url(r'^add/$', views.upload_pic, name='upload_pic'), ]
[ "sabsekr@gmail.com" ]
sabsekr@gmail.com
ef9831a4ec3f53c650cd71d2f9e61f0cadb9b5ee
1c5d7d4156bf22832dac3eb80016f9e92eccce02
/Bens_code/sprint_1_code.py
837e07fd37d549aa666f27f49bf9b6d926b96a06
[]
no_license
kaissaradi/Checkers-Survival
dfafb7e6ba00060ff18d6b2492f0e429ed0f1bb1
31dbf00c98ca8c2aa5040abeb840092e8aef895d
refs/heads/master
2022-11-25T19:52:59.960851
2020-07-15T01:52:05
2020-07-15T01:52:05
279,734,570
0
0
null
2020-07-15T01:46:41
2020-07-15T01:46:40
null
UTF-8
Python
false
false
2,589
py
import random print("test file") #testing if file works class item: """Item class of the game.""" def __init__(self, name, str_desc): """Creates an item object.\n parameters: name, str_desc""" self._name = name self._str_desc = str_desc def get_name(self): return self._name def set_name(self, name): self._name = name def description(self): """Returns a string description of the item.""" return self._str_desc def set_description(self, desc): """Sets description of the item.""" self._str_desc = desc def __str__(self): return self._name + ": " + self._str_desc class weapon(item): """Weapon class of the game.""" def __init__(self, name, str_desc, dmg_low, dmg_high): """Creates a weapon object.\n parameters: name, str_desc, dmg_low, dmg_high""" self._name = name self._str_desc = str_desc self._dmg_low = dmg_low self._dmg_high = dmg_high def __str__(self): return self._name + ": " + self._str_desc + " low: " + str(self._dmg_low) + ", high:" + str(self._dmg_high) def rand_dmg(self): """Returns randomized dmg value between dmg low and dmg_high (inclusive).""" return random.randrange(self._dmg_low, self._dmg_high + 1) def get_low(self): """Returns low range of damage.""" return self._dmg_low def get_high(self): """Returns high range of damage.""" return self._dmg_high class consumable(item): """Consumable class in game.""" def __init__(self, name, str_desc, value, use_count): """Creates a consumable object.\n parameters: name, str_desc, value, use_count""" self._name = name self._str_desc = str_desc self._value = value self._use_count = use_count def __str__(self): return self._name + ": " + self._str_desc + " value: " + str(self._value) + ", use count:" + str(self._use_count) def get_value(self): """get the value of the cosumable.""" return self._value def get_use_count(self): """get the remaining use count""" return self._use_count #EDIT: this method should probably pass in a unit argument to change it # def use_item(self, unit): def use_item(self): """uses the item, decrementing the use count""" self._use_count -= 1 def usable(self): """checks if item is usable""" return self._use_count > 0
[ "benjamin.condrea@gmail.com" ]
benjamin.condrea@gmail.com
645ffb55785736ab413eafd83055b6a5cf76c0ad
d177a5a49fcfb2fbaabb8254029f32708115e404
/scorch/WikiList.py
c78ad2fb958dba6e8df5d8fc885f52114bfeb66f
[ "LicenseRef-scancode-public-domain" ]
permissive
pmachapman/singrcnz
b985175de4322723c09898c0ef2b193845c8bf6b
bd099df66f4d40ecb1c201c969acba526bba8b53
refs/heads/master
2022-12-23T02:23:03.129270
2021-02-11T10:43:44
2021-02-11T10:43:44
194,562,171
0
0
null
null
null
null
UTF-8
Python
false
false
1,132
py
#! /usr/local/bin/python import sys, os from glob import glob import fnmatch def link(song): link = song.replace(' ', '_').replace(';', '%3b') return 'http://hymnal.ws/public/Songs/%s.htm' % link def listPsalms(dest, filename): print >>sys.stderr, 'Working on "%s"' % filename song = os.path.basename(filename).replace('.htm', '') song = song.replace('_', ' ') if song.lower().startswith('psalm'): num = song[5:].split()[0] num = str(int(num[0:3])) + num[3:] name = ' '.join(song.split()[1:]) print >>dest, '%s: %s' % (num, name), else: print >>dest, song, print >>dest, '- [%s view]' % link(song) print >>dest, ' * -' print >>dest def main(): argv = sys.argv if not sys.stdin.isatty(): argv += sys.stdin.read().split() if not argv[1:]: print 'Usage: WikiList.py <list-htm-files>' print 'Wildcards are allowed' sys.exit(1) dest = sys.stdout for arg in argv[1:]: for filename in glob(arg): listPsalms(dest, filename) dest.close() if __name__ == '__main__': main()
[ "berwynhoyt@users.noreply.github.com" ]
berwynhoyt@users.noreply.github.com
8ca06a4fb7458b5fab1dd5ea0ab800643ed04f7d
3cda9193890d149833ae022539d91cdb6fab9cbf
/api/news/models.py
eb1146a15ef8540de24b3e4e6b3d36b5267d40ca
[]
no_license
ITT13021/share-your-story-backend
1f49d79c4326c423801618ab095f05ca2de4cd28
e29f592eb7b363a17d2891e4d041aff484d5b4a6
refs/heads/master
2020-03-07T21:16:47.948076
2018-05-08T09:04:02
2018-05-08T09:04:02
127,722,235
0
1
null
null
null
null
UTF-8
Python
false
false
1,211
py
# -*- coding: utf-8 -*- from django.db import models from django.utils.translation import ugettext_lazy as _ from api.user.models import User class AbstractAuditCreate(models.Model): create_user = models.ForeignKey(User, models.DO_NOTHING, related_name='%(app_label)s_%(class)s_create_user_set', blank=True, null=True, help_text=_(u'创建人')) create_date = models.DateTimeField(auto_now_add=True, blank=True, null=True, help_text=_(u'创建时间')) class Meta: abstract = True class News(AbstractAuditCreate): title = models.CharField(blank=True, null=True, max_length=12, help_text=_(u'消息标题')) content = models.TextField(blank=True, null=True, help_text=_(u'消息内容')) class Meta: app_label = 'news' db_table = 'news' class UserNews(models.Model): TYPE_CHOICES = ((0, "全体用户"), (1, "部分用户")) news = models.ForeignKey(News) user = models.ForeignKey(User, blank=True, null=True) type = models.SmallIntegerField(choices=TYPE_CHOICES, blank=True, null=True, help_text=_(u'消息范围')) read = models.BooleanField(default=False) class Meta: app_label = 'news' db_table = 'user_news'
[ "473457683@qq.com" ]
473457683@qq.com
f141eec00b50fc9b1d9c129ec4d8dc3f8b6e3292
f56a22bd81264edf0b18ba9fa2d9aa504f7579cb
/main.py
7eaacf94041457e17b229528b285399e6511898b
[]
no_license
omega-photonics/dragon-pyBOTDR
7dfa99441e0e9c44e9cd2e21e561207b4be9f67f
8996b474028a8404affc87f0e1ff6aa413100451
refs/heads/master
2016-09-06T11:35:46.932293
2012-08-07T20:28:20
2012-08-07T20:28:20
5,084,196
3
0
null
null
null
null
UTF-8
Python
false
false
228
py
import sys from PyQt4 import QtGui from mainwindow import MainWindow def main(): app = QtGui.QApplication(sys.argv) wnd = MainWindow() wnd.show() sys.exit(app.exec_()) if __name__ == "__main__": main()
[ "gleb.budylin@gmail.com" ]
gleb.budylin@gmail.com
2241964cc9bed0e9b197a44c20608f0c0f5af726
d3fab385fadb66b9d86e7c7d7094319b85a225a0
/pyCalculator.py
281ad662d4ad314b12f1c35e61b80d9c021aa036
[]
no_license
karenmcewen/pyCalculator
03b8a4d628220c94607b0444fa6a95853ffb5142
a9a5f763dec29fe35cdeea2afd7a00b62f838c51
refs/heads/master
2020-03-19T07:15:19.948674
2018-06-12T00:43:42
2018-06-12T00:43:42
136,099,301
0
0
null
null
null
null
UTF-8
Python
false
false
2,373
py
# this is a simple python calculator that does not use NumPy def menu(): print('MENU') print('1: Add +') print('2: Subtract -') print('3: Multiply x') print('4: Division /') print('5: Square x^2') print('6: Exponent x^y') print('7: Square Root x^0.5') print('Press any other number to exit') print() def addnums(x, y): return x + y def subtractnums(x, y): return x - y def multiplynums(x, y): return x * y def dividenums(x, y): if y == 0: return "Error: Cannot divide by zero" else: return x/y def squarenums(x): return x * x def exponentnums(x, y): return x ** y def squarerootnums(x): return x ** 0.5 # main program starts here choice = 0 while choice >= 0: print('Welcome to my simple pyCalculator!') print() # catch ValueError if num1 or num2 is not a number while True: try: num1 = float(input('Please enter a number: ')) num2 = float(input('Enter a second number: ')) break except ValueError: print("Please enter numbers only. Try again.") menu() # catch ValueError if choice is not an integer while True: try: choice: int = int(input('What operation would you like to perform? ')) break except ValueError: print('You must enter an integer. Please try again.') menu() if choice == 1: print(str(num1) + " + " + str(num2) + " = " + str(addnums(num1, num2))) print() elif choice == 2: print(str(num1) + " - " + str(num2) + " = " + str(subtractnums(num1, num2))) print() elif choice == 3: print(str(num1) + " * " + str(num2) + " = " + str(multiplynums(num1, num2))) print() elif choice == 4: print(str(num1) + " / " + str(num2) + " = " + str(dividenums(num1, num2))) print() elif choice == 5: print(str(num1) + " ^ 2 = " + str(squarenums(num1))) print() elif choice == 6: print(str(num1) + " ^ " + str(num2) + " = " + str(exponentnums(num1, num2))) print() elif choice == 7: print("The square root of " + str(num1) + " = " + str(squarerootnums(num1))) print() else: choice = -1 # exit program print() print('Thank you for using my pyCalculator!') print()
[ "karenmcewen.engineer@gmail.com" ]
karenmcewen.engineer@gmail.com
2678eae76cccda14c085c8bec4b17a3fd445b084
cb8c110b66eb53b1d9b8a057c3f5ea2875282e76
/greatkart/urls.py
3b48a686d0e9311868f9744896b8133338a02afb
[]
no_license
sampanar/greatkart
02611ee4520db85ca403b03e7daec0bf5a5bae3f
e3826c9adfe8b2d4838e24f1bb4000cdd6816dd6
refs/heads/main
2023-06-17T23:16:25.873164
2021-07-16T12:28:47
2021-07-16T12:28:47
378,828,981
0
0
null
null
null
null
UTF-8
Python
false
false
1,038
py
"""greatkart URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from . import views from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('',views.home,name="home"), path('store/',include('store.urls')), path('cart/',include('carts.urls')), ] + static(settings.MEDIA_URL,document_root=settings.MEDIA_ROOT)
[ "sampan.arora22@gmail.com" ]
sampan.arora22@gmail.com
d2df054bc8bcfdd22a460700a2a251b842cf4b38
1997039813917d5723e0db44f0271e3c08f401a6
/Python/capitlize.py
7f1771c5fc6cfe8cbcca7226bbcf3f1f2056bc02
[]
no_license
7Aishwarya/HakerRank-Solutions
6fe0f331d1c8e9a0b4c6da662658fc3c3ab83098
a33740d0fbdb5a3b2984e87ea904a5e359bb8fa9
refs/heads/master
2021-07-23T18:57:09.324414
2020-07-07T13:33:05
2020-07-07T13:33:05
194,402,004
8
2
null
null
null
null
UTF-8
Python
false
false
752
py
'''You are asked to ensure that the first and last names of people begin with a capital letter in their passports. For example, alison heck should be capitalised correctly as Alison Heck. Given a full name, your task is to capitalize the name appropriately.''' #!/bin/python3 import math import os import random import re import sys # Complete the solve function below. def solve(s): l=list(s) n = "" for i in range(len(l)): if l[i]==" ": l[i+1] = l[i+1].upper() if i == 0: l[i] = l[i].upper() n+=l[i] return n if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') s = input() result = solve(s) fptr.write(result + '\n') fptr.close()
[ "7aishwaryasharma@gmail.com" ]
7aishwaryasharma@gmail.com
eea76d555f147fc3a42c95e7b875e4c2f188b39b
ea41c6aecd5613551e4d689441227927726c5956
/twitter_client/twitter_full.py
cfb2842668eaf6cb75f1ab7478899d9f2cd54877
[]
no_license
filipcima/spja-course
e9efcaec5e419e89743e197b86e6d7a04172e494
da1297850eddd2ed3ab853d50794e61bb4cdbb69
refs/heads/master
2021-05-07T07:51:35.305801
2017-11-06T10:34:53
2017-11-06T10:34:53
109,270,716
0
0
null
2017-11-02T13:48:53
2017-11-02T13:48:53
null
UTF-8
Python
false
false
1,907
py
import json import re import urllib.request, urllib.error, urllib.parse import tc_auth PINK = '\033[95m' RESET = '\033[0m' BLUE = '\033[94m' GREEN = '\033[92m' WARNING = '\033[93m' RED = '\033[91m' class Tweet(object): def __init__(self, from_user, text, geo): self.from_user = from_user self.text = text self.geo = geo def __repr__(self): tags = re.findall(r"\#\w+", self.text) text = self.text for tag in tags: text = text.replace(tag, GREEN+tag+RESET) out = "{0}, Text: {1}, Geo: {2}".format(self.from_user, text, self.geo) return PINK + "From: " + RESET + out class Twitter(object): base_search_url = 'https://api.twitter.com/1.1/search/tweets.json?q={}&count=5&tresult_type=popular' def __init__(self, *search): self.client = tc_auth.twitter_auth() self.search = search self.decoded_json = None def create_search_url(self): escaped_search = [] for word in self.search: escaped_search.append(word.replace('#', '%23')) search_str = '%20'.join(escaped_search) return Twitter.base_search_url.format(search_str) def download(self): url = self.create_search_url() self.response, self.data = self.client.request(url) def decode_json(self): self.decoded_json = json.loads(self.data.decode('utf-8')) def get_tweets(self): self.download() self.decode_json() statuses = self.decoded_json['statuses'] tweets = [] for status in statuses: from_user = status['user']['name'] text = status['text'] geo = status['geo'] tweet = Tweet(from_user, text, geo) tweets.append(tweet) return tweets t = Twitter('#django', '#python') tweets = t.get_tweets() for tweet in tweets: print(tweet)
[ "jan.gaura@gmail.com" ]
jan.gaura@gmail.com
2f89a47fc5df0e949f3b465976d52f2158fbeed9
0c80a8a8cc8cb2b8ed552b1f2cde7bd8fe14c4f4
/SmallLedgerSite/migrations/0004_auto_20190810_1052.py
66313fccae993881b79a60f19137d8508a144c59
[]
no_license
Tenchrio/smallledger
489498dce7f4b93f48790ae29453a8ad773cb044
15296a8f7351e1dc94ae04bf9c2ebb94e001d1fb
refs/heads/master
2022-05-16T03:04:57.871955
2019-09-10T19:12:25
2019-09-10T19:12:25
203,612,051
0
0
null
2022-04-22T22:12:28
2019-08-21T15:22:52
Python
UTF-8
Python
false
false
445
py
# Generated by Django 2.2.4 on 2019-08-10 10:52 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('SmallLedgerSite', '0003_auto_20190810_0326'), ] operations = [ migrations.AlterField( model_name='item', name='boughtDate', field=models.DateField(default=django.utils.timezone.now), ), ]
[ "chrisvannooten@hotmail.com" ]
chrisvannooten@hotmail.com
1e044eaac95ce45cb6c996e9cae893b570490893
428f788e24387b8d0c71a04d221bf40dc85840e1
/Methods/kernels.py
6c53720a27fb039fea83258eca442183bdd38727
[]
no_license
wendixuan/Thesis_Project
08f382f5ba922b377148d50a60beaeb340dec1cd
efd00f349a2dff1909f17ee9455379bf6ebeb1d2
refs/heads/master
2020-06-30T19:04:19.500412
2016-09-05T20:07:16
2016-09-05T20:07:16
67,286,957
0
0
null
null
null
null
UTF-8
Python
false
false
28,271
py
###################### # #This code was modified basedon the code of 'Kernels for sequentially ordered data' written by F. J Kiraly and H. Oberhauser. # ############################################################# ###################### # #This code can be use to do SVC with bag of features kernel, sequential kernel and a simple version of s-sequential kernel # ###################### #Addition: #(1) small_rev():modified funtion of cumsum_rev(), which only consider the diagonal of matrix #(2) SquizeKernel_D(): the funtion for computing s-sequential kernel values between path 1 and path 2. #(3) BagSeqKernel(): the funtion for computing bag of feature kernel values between path 1 and path 2. #(4) BagKernelizer(): a class for computing kernel matrix with the bag of feature #(5) BagSVCpipeline():pipeline for Bag of feature kernel with SVC #(6) BagKernelXY() is a function for computing the values of bag of features kernel for two sample pf time series in consistent or inconsistent lengths. #Modifications are in: #(1)SeqKernelXY() is modified to be able to work on time series in inconsistent lengths # and be able to compute s-sequential kernel as well (when Dia=True). #(2)SeqKernelizer() is modified to be able to compute sequential kernel (Dia=False ) and s-sequential kernel(Dia=True) and be able to work with time series in inconsistent lengths (V=True) # Notice that when V=True, the dataset should include the vector of original length in the last column of the 2D array. ##################### import numpy as np from scipy.sparse.linalg import svds # In[] # sqdist def sqdist(X,Y): M = np.shape(X)[0] N = np.shape(Y)[0] return np.tile((X*X).sum(-1),[N,1]).T + np.tile((Y*Y).sum(-1),[M,1]) - 2*np.inner(X,Y) # In[] # cumsum varia def cumsum_rev_first(array): out = np.zeros_like(array) out[:-1] = np.cumsum(array[:0:-1],0)[::-1] return out def cumsum_rev(array): out = np.zeros_like(array) out[:-1, :-1] = np.cumsum(np.cumsum(array[:0:-1, :0:-1], 0), 1)[::-1, ::-1] return out #Modified funtion of cumsum_rev(), which only consider the diagonal of matrix def small_rev(array): out = np.zeros_like(array) a=array[:0:-1, :0:-1] if a.size>0: np.fill_diagonal(a,a.diagonal().cumsum()) out[:-1, :-1] = a[::-1, ::-1] return out def cumsum_mult(array, dims): for dimind in dims: array = np.cumsum(array, axis = dimind) return array def roll_mult(array, shift, dims): for dimind in dims: array = np.roll(array, shift, axis = dimind) return array def makeinds(indlist): return np.ix_(*indlist) def cumsum_shift_mult(array, dims): array = cumsum_mult(array,dims) array = roll_mult(array,1,dims) arrayshape = array.shape indarr = [] for ind in range(len(arrayshape)): indarr = indarr + [range(arrayshape[ind])] for dimind in dims: slicearr = indarr[:] slicearr[dimind] = [0] array[makeinds(slicearr)] = 0 return array def rankreduce(array,rankbound): arraysvd = svds(array.astype('f'), k = rankbound) return np.dot(arraysvd[0],np.diag(arraysvd[1])) def rankreduce_batch(arrays,rankbound): resultarrays = np.zeros([arrays.shape[0],arrays.shape[1],rankbound]) for i in range(arrays.shape[0]): resultarrays[i,:,:] = rankreduce(arrays[i,:,:], rankbound) return resultarrays # In[] # x ((obs1,dim)) and y ((obs2,dim)) numpy arrays #return ((obs1,obs2)) array with kernel as entries kPolynom = lambda x,y,scale,deg : (1+scale*np.inner(x,y))**deg kGauss = lambda x,y,scale: np.exp(-(scale**2)*sqdist(x,y)/2) kEuclid = lambda x,y,scale: scale*np.inner(x,y) kLaplace = lambda x,y,scale: np.exp(-scale*np.sqrt(np.inner(x-y,x-y))) kTanH = lambda x,y,off,scale: np.tanh(off+scale*np.inner(x,y)) # In[] # FUNCTION mirror # mirrors an upper triangular kernel matrix, helper for SqizeKernel mirror = lambda K: K-np.diag(np.diag(K))+np.transpose(K) # FUNCTION SquizeKernel # computes the sequential kernel from a sequential kernel matrix # # Inputs: # K the kernel matrix of increments, i.e., # K[i,j] is the kernel between the i-th increment of path 1, # and the j-th increment of path 2 # L an integer \geq 1, representing the level of truncation # optional: # theta a positive scaling factor for the levels, i-th level by theta^i # normalize whether the output kernel matrix is normalized # defaults: theta = 1.0, normalize = False # # Output: # a real number, the sequential kernel between path 1 and path 2 # def SqizeKernel(K, L, theta = 1.0, normalize = False): #L-1 runs through loop; #returns R_ij=(1+\sum_i2>i,j2>j A_i2,j2(1+\sum A_iLjL)...) if normalize: normfac = np.prod(K.shape) I = np.ones(K.shape) R = np.ones(K.shape) for l in range(L-1): R = (I + theta*cumsum_rev(K*R)/normfac)/(1+theta) return (1 + theta*np.sum(K*R)/normfac)/(1+theta) else: I = np.ones(K.shape) R = np.ones(K.shape) for l in range(L-1): R = I + cumsum_rev(K*R) #A*R is componentwise return 1 + np.sum(K*R) #outermost bracket: since i1>=1 and not i1>1 we do it outside of loop # FUNCTION SquizeKernel_D # computes the values of s-sequential kernel matrix # # Inputs: # K the kernel matrix of increments, i.e., # K[i,j] is the kernel between the i-th increment of path 1, # and the j-th increment of path 2 # L an integer \geq 1, representing the level of truncation # optional: # theta a positive scaling factor for the levels, i-th level by theta^i # normalize whether the output kernel matrix is normalized # defaults: theta = 1.0, normalize = False # # Output: # a real number, the s-sequential kernel between path 1 and path 2 # def SqizeKernel_D(K, L, theta = 1.0, normalize = False): #L-1 runs through loop; #returns R_ij=(1+\sum_i2>i,j2>j A_i2,j2(1+\sum A_iLjL)...) if normalize: normfac = np.prod(K.shape) I = np.ones(K.shape) R = np.ones(K.shape) for l in range(L-1): R = (I + theta*small_rev(K*R)/normfac)/(1+theta) return (1 + theta*np.sum(K*R)/normfac)/(1+theta) else: I = np.ones(K.shape) R = np.ones(K.shape) for l in range(L-1): R = I + small_rev(K*R) #A*R is componentwise return 1 + np.sum(K*R) #outermost bracket: since i1>=1 and not i1>1 we do it outside of loop # FUNCTION BagKernel # computes the bag of features kernel from a sequential kernel matrix # # Inputs: # K the kernel matrix of increments, i.e., # K[i,j] is the kernel between the i-th increment of path 1, # and the j-th increment of path 2 # # Output: # a real number, the sequential kernel between path 1 and path 2 # def BagSeqKernel(K): normfac = np.prod(K.shape)#the total number of elements in two paths return np.sum(K)/normfac # In[] # FUNCTION SquizeKernelHO # computes the higher order sequential kernel from a sequential kernel matrix # # Inputs: # K the kernel matrix of increments, i.e., # K[i,j] is the kernel between the i-th increment of path 1, # and the j-th increment of path 2 # L an integer \geq 1, representing the level of truncation # D an integer \geq 1, representing the order of approximation # optional: # theta a positive scaling factor for the levels, i-th level by theta^i # normalize whether the output kernel matrix is normalized # defaults: theta = 1.0, normalize = False # # Output: # a real number, the sequential kernel between path 1 and path 2 # def SqizeKernelHO(K, L, D = 1, theta = 1.0, normalize = False): A = np.zeros(np.concatenate(([L,D,D],K.shape))) I = np.ones(K.shape) for l in range(1,L): Dprime = min(D, l) A[l,0,0,:,:] = K*(I + cumsum_shift_mult(np.sum(A[l-1,:,:,:,:],(0,1)),(0,1) ) ) for d1 in range(1,Dprime): A[l,d1,0,:,:] = A[l,d1,0,:,:] + (1/d1)*K*cumsum_shift_mult(np.sum(A[l-1,d1-1,:,:,:],0),(1)) A[l,:,d1,:,:] = A[l,0,d1,:,:] + (1/d1)*K*cumsum_shift_mult(np.sum(A[l-1,:,d1-1,:,:],0),(0)) for d2 in range(1,Dprime): A[l,d1,d2,:,:] = A[l,d1,d2,:,:] + (1/(d1*d2))*K*cumsum_shift_mult(np.sum(A[l-1,d1-1,d2-1,:,:],0),(0)) return 1 + np.sum(A[L-1,:,:,:,:]) # In[] import collections # low-rank decomposition # models matrix A = U x V.T # U and V should be *arrays*, not *matrices* LRdec = collections.namedtuple('LRdec', ['U','V']) # FUNCTION GetLowRankMatrix # produce the matrix from the LRdec object # # Inputs: # K a LRdec type object # # Output: # the matrix K.U x K.V.T modelled by the LRdec object def GetLowRankMatrix(K): return np.inner(K.U, K.V) # FUNCTION AddLowRank # efficient computation of sum of low-rank representations # using this and then GetLowRankMatrix is more efficient than an # explicit computation if the rank of the final matrix is not full # # Inputs: # K, R LRdec type objects to add # # Output: # LRdec type object for sum of K and R def AddLowRank(K, R): return LRdec(np.concatenate((K.U,R.U), axis=1),np.concatenate((K.V,R.V), axis=1)) def AddLowRankOne(U, P): return np.concatenate((U,P), axis=1) def MultLowRank(K, theta): return LRdec(theta*K.U, theta*K.V) # FUNCTION HadamardLowRank # efficient computation of Hadamard product of low-rank representations # using this and then GetLowRankMatrix is more efficient than an # explicit computation if the rank of the final matrix is not full # # Inputs: # K, R LRdec type objects to multiply # # Output: # LRdec type object for Hadamard product of K and R def HadamardLowRank(K, R): rankK = K.U.shape[1] rankR = R.U.shape[1] U = (np.tile(K.U,rankR)*np.repeat(R.U,rankK,1)) V = (np.tile(K.V,rankR)*np.repeat(R.V,rankK,1)) return LRdec(U,V) # multiplies U with every component (1st index) of P #def HadamardLowRankBatch(U, P): # rankU = U.shape[1] # N = P.shape[0] # rankP = P.shape[2] # return (np.repeat(np.repeat(np.array(U,ndmin = 3), rankP, 2),N,0)*np.repeat(P,rankU,2)) # multiplies U and P component-wise (1st) def HadamardLowRankBatch(U, P): rankU = U.shape[2] rankP = P.shape[2] return (np.tile(U,rankP)*np.repeat(P,rankU,2)) # with Nystroem type subsampling def HadamardLowRankSubS(U, P, rho): rankU = U.shape[2] rankP = P.shape[2] permut = np.sort(np.random.permutation(range(rankU*rankP))[range(rho)]) return (np.tile(U,rankP)*np.repeat(P,rankU,2))[:,:,permut] # FUNCTION cumsum_LowRank # cumsum for LRdec type collections # equivalent of cumsum_rev for LRdec type objects # # Inputs: # K LRdec type object to cumsum # # Output: # LRdec type object for cumsum_rev of K def cumsum_LowRank(K): return LRdec(cumsum_rev_first(K.U),cumsum_rev_first(K.V)) # FUNCTION sum_LowRank # sum for LRdec type collections # equivalent of sum_rev for LRdec type objects # # Inputs: # K LRdec type object to sum # # Output: # LRdec type object for sum of K def sum_LowRank(K): return np.inner(sum(K.U),sum(K.V)) # FUNCTION SquizeKernelLowRank # computes the sequential kernel from a sequential kernel matrix # faster by using a low-rank approximation # # Inputs: # K LRdec type object, models low-rank factors # of the increment kernel matrix K such that K = K.U x K.V.T # where K[i,j] is the kernel between the i-th increment of path 1, # and the j-th increment of path 2 # L an integer \geq 1, representing the level of truncation # optional: # theta a positive scaling factor for the levels, i-th level by theta^i # normalize whether the output kernel matrix is normalized # rankbound a hard threshold for the rank of the level matrices # defaults: theta = 1.0, normalize = False, rankbound = infinity # # Output: # a real number, the sequential kernel between path 1 and path 2 # def SqizeKernelLowRank(K, L, theta = 1.0, normalize = False, rankbound = float("inf")): #L-1 runs through loop; #returns R_ij=(1+\sum_i2>i,j2>j A_i2,j2(1+\sum A_iLjL)...) if normalize: K = GetLowRankMatrix(K) normfac = np.prod(K.shape) I = np.ones(K.shape) R = np.ones(K.shape) for l in range(L-1): R = (I + theta*cumsum_rev(K*R)/normfac)/(1+theta) return (1 + theta*np.sum(K*R)/normfac)/(1+theta) else: I = LRdec(np.ones([K.U.shape[0],1]),np.ones([K.V.shape[0],1])) # I = np.ones(K.shape) R = I for l in range(L-1): #todo: execute only if rank is lower than rankbound # reduce to rank R = AddLowRank(I,MultLowRank(cumsum_LowRank(HadamardLowRank(K,R)),theta)) #R=I + cumsum_rev(K*R) return 1 + theta*sum_LowRank(HadamardLowRank(K,R)) # return 1 + np.sum(K*R) #outermost bracket: since i1>=1 and not i1>1 we do it outside of loop # FUNCTION SquizeKernelLowRankFast # computes the sequential kernel from a sequential kernel matrix # faster by using a low-rank approximation # # Inputs: # K Array of dimension 3, containing joint low-rank factors # 1st index counts sequences # 2nd index counts time # 3rd index counts features # so K[m,:,:] is the mth factor, # and K[m,:,:] x K[m,:,:]^t is the kernel matrix of the mth factor # L an integer \geq 1, representing the level of truncation # optional: # theta a positive scaling factor for the levels, i-th level by theta^i # normalize whether the output kernel matrix is normalized # rankbound a hard threshold for the rank of the level matrices # defaults: theta = 1.0, normalize = False, rankbound = infinity # # Output: # a matrix R such that R*R^t is the sequential kernel matrix # def SqizeKernelLowRankFast(K, L, theta = 1.0, normalize = False, rankbound = float("inf")): if normalize: Ksize = K.shape[0] B = np.ones([Ksize,1,1]) R = np.ones([Ksize,1]) for l in range(L): P = np.sqrt(theta)*HadamardLowRankBatch(K,B)/Ksize B = cumsum_shift_mult(P,[1]) if rankbound < B.shape[2]: #B = rankreduce_batch(B,rankbound) permut = np.sort(np.random.permutation(range(B.shape[2]))[range(rankbound)]) B = B[:,:,permut] R = np.concatenate((R,np.sum(B,axis = 1)), axis=1)/(np.sqrt(1+theta)) return R else: Ksize = K.shape[0] B = np.ones([Ksize,1,1]) R = np.ones([Ksize,1]) for l in range(L): #todo: execute only if rank is lower than rankbound # reduce to rank P = np.sqrt(theta)*HadamardLowRankBatch(K,B) B = cumsum_shift_mult(P,[1]) if rankbound < B.shape[2]: #B = rankreduce_batch(B,rankbound) permut = np.sort(np.random.permutation(range(B.shape[2]))[range(rankbound)]) B = B[:,:,permut] R = np.concatenate((R,np.sum(B,axis = 1)), axis=1) return R # In[] # FUNCTION SeqKernel # computes the sequential kernel matrix for a dataset of time series def SeqKernel(X,kernelfun,L=2,D=1,theta=1.0,normalize = False,lowrank = False,rankbound = float("inf")): N = np.shape(X)[0] KSeq = np.zeros((N,N)) if not(lowrank): if D == 1: for row1ind in range(N): for row2ind in range(row1ind+1): K=kernelfun(X[row1ind].T,Y[row2ind].T) KSeq[row1ind,row2ind] = SqizeKernel(K,L,theta,normalize) else: for row1ind in range(N): for row2ind in range(row1ind+1): KSeq[row1ind,row2ind] = SqizeKernelHO(kernelfun(X[row1ind].T,X[row2ind].T),L,D,theta,normalize) else: R = SqizeKernelLowRankFast(X.transpose([0,2,1]), L, theta, normalize) KSeq = np.inner(R,R) # todo: kernelfun gives back a LRdec object # for now, linear low-rank approximation is done # KSeq[row1ind,row2ind] = SqizeKernelLowRank(kernelfun(X[row1ind].T,X[row2ind].T),L,theta,normalize = True) return mirror(KSeq) def BagKernel(X,kernelfun,xint=[]): N = np.shape(X)[0]#the number of sample KSeq = np.zeros((N,N))#Initial kernel matrix #Using Bag of feature kernel for row1ind in range(N): for row2ind in range(row1ind+1): K=kernelfun(X[row1ind].T,Y[row2ind].T) KSeq[row1ind,row2ind] = BagSeqKernel(K[:xint[row1ind],:xint[row1ind]]) return mirror(KSeq) # FUNCTION SeqKernel # computes sequential cross-kernel matrices def SeqKernelXY(X,Y,kernelfun,L=2,D=1,theta=1.0,normalize = False,lowrank = False,rankbound = float("inf"),xint=[],yint=[],Dia=False): N = np.shape(X)[0] M = np.shape(Y)[0] KSeq = np.zeros((N,M)) if not(lowrank): if D == 1: if Dia: for row1ind in range(N): for row2ind in range(row1ind+1): K=kernelfun(X[row1ind].T,Y[row2ind].T) KSeq[row1ind,row2ind] = SqizeKernel(K[:xint[row1ind],:yint[row2ind]],L,theta,normalize) else: for row1ind in range(N): for row2ind in range(M): K=kernelfun(X[row1ind].T,Y[row2ind].T) KSeq[row1ind,row2ind] = SqizeKernel(K[:xint[row1ind],:yint[row2ind]],L,theta,normalize) else: for row1ind in range(N): for row2ind in range(M): KSeq[row1ind,row2ind] = SqizeKernelHO(kernelfun(X[row1ind].T,Y[row2ind].T),L,D,theta,normalize) else: KSeq = np.inner(SqizeKernelLowRankFast(X.transpose([0,2,1]), L, theta, normalize, rankbound),SqizeKernelLowRankFast(Y.transpose([0,2,1]), L, theta, normalize, rankbound)) #KSeq = np.inner(SqizeKernelLowRankFast(X, L, theta, normalize),SqizeKernelLowRankFast(Y, L, theta, normalize)) return KSeq # FUNCTION BagKernelXY # computes sequential cross-kernel matrices def BagKernelXY(X,Y,kernelfun,xint,yint): N = np.shape(X)[0] M = np.shape(Y)[0] KSeq = np.zeros((N,M)) for row1ind in range(N): for row2ind in range(M): K=kernelfun(X[row1ind].T,Y[row2ind].T) KSeq[row1ind,row2ind] = BagSeqKernel(K[:xint[row1ind],:yint[row2ind]]) return KSeq # FUNCTION SeqKernelXY_D # computes sequential cross-kernel matrices # In[] # FUNCTION DataTabulator(X) def DataTabulator(X): Xshape = np.shape(X) return np.reshape(X,(Xshape[0],np.prod(Xshape[1:]))) # In[] # FUNCTION TimeSeriesReshaper # makes a 3D time series array out of a 2D data array def TimeSeriesReshaper(Xflat, numfeatures, subsample = 1, differences = True): flatXshape = np.shape(Xflat) Xshape = (flatXshape[0], numfeatures, flatXshape[1]/numfeatures) X = np.reshape(Xflat,Xshape)[:,:,::subsample] if differences: return np.diff(X) else: return X # In[3] # CLASS SeqKernelizer # pipelines pre-processing of a time series datset with support vector classifier # # parameters: # Level, theta: parameters in of the sequentialization # Level = cut-off degree # theta = scaling factor # kernel, scale, deg: parameter for the primary kernel # kernel = name of the kernel used: linear, Gauss, Laplace, poly, GA(one type of Gaussian kernel) # scale = scaling constant, multiplicative to scalar product # deg = degree, for polynomial kernel # subsample, numfeatures, differences: # pre-processing parameters for time series. # numfeatures = number of features per time point, for internal reshaping # subsample = time series is subsampled to every subsample-th time point # differences = whether first differences are taken or not # lowrank = whether low-rank approximations are used or not # New addition: ## V: True=time series in inconsistent length # Dia: True=a simple version of s-sequential kernel False=Sequential kernel # from sklearn.base import BaseEstimator, TransformerMixin class SeqKernelizer(BaseEstimator, TransformerMixin): def __init__(self, Level = 2, Degree = 1, theta = 1, kernel = 'linear', scale = 1, deg = 2, X = np.zeros((1,2)), V=False, numfeatures = 2, subsample = 100, differences = True, Dia = False, normalize = False, lowrank = False, rankbound = float("inf")): self.Level = Level self.Degree = Degree self.theta = theta self.subsample = subsample self.kernel = kernel self.scale = scale self.deg = deg self.numfeatures = numfeatures self.differences = differences self.normalize = normalize self.lowrank = lowrank self.rankbound = rankbound self.X = X self.V=V self.Dia=Dia def fit(self, X, y=None): if self.V: t=TimeSeriesReshaper(X[:,:-1],self.numfeatures,self.subsample,self.differences) v=(X[:,-1]-X[:,-1]%self.subsample)/self.subsample self.X=(t,v) else: t=TimeSeriesReshaper(X,self.numfeatures,self.subsample,self.differences) n=int(t.shape[2]/self.subsample) v=n*np.ones(t.shape[0]) self.X=(t,v) return self def transform(self, Y): if self.V: y=TimeSeriesReshaper(Y[:,:-1],self.numfeatures,self.subsample,self.differences) yt=(Y[:,-1]-Y[:,-1]%self.subsample)/self.subsample Y=(y,yt) else: y= TimeSeriesReshaper(Y,self.numfeatures,self.subsample,self.differences) n=int(y.shape[2]/self.subsample) yt=n*np.ones(y.shape[0]) Y=(y,yt) kPolynom = lambda x,y,scale,deg : (1+scale*np.inner(x,y))**deg kGauss = lambda x,y,scale: np.exp(-(scale**2)*sqdist(x,y)/2) kGA= lambda x,y,scale: np.exp(-(sqdist(x,y)/(2*(scale**2))+np.log(2-np.exp(-sqdist(x,y)/(2*(scale**2)))))) kEuclid = lambda x,y,scale: scale*np.inner(x,y) kLaplace = lambda x,y,scale: np.exp(-scale*np.sqrt(np.inner(x-y,x-y))) def kernselect(kername): switcher = { 'linear': lambda x,y: kEuclid(x,y,self.scale), 'Gauss': lambda x,y: kGauss(x,y,self.scale), 'GA': lambda x,y: kGA(x,y,self.scale), 'Laplace': lambda x,y: kLaplace(x,y,self.scale), 'poly': lambda x,y: kPolynom(x,y,self.scale,self.deg), } return switcher.get(kername, "nothing") KSeq = SeqKernelXY(Y[0],self.X[0],kernselect(self.kernel),self.Level,self.Degree,self.theta,self.normalize,self.lowrank,self.rankbound,Y[1]-1,self.X[1]-1,self.Dia) return KSeq # In[] # CLASS TimeSeriesPreprocesser # for pre-processing of time series type features # # parameters: # numfeatures = number of features per time point, for internal reshaping # subsample = time series is subsampled to every subsample-th time point # differences = whether first differences are taken or not # class TimeSeriesPreprocesser(BaseEstimator, TransformerMixin): def __init__(self, numfeatures = 2, subsample = 100, scale = 1, differences = True): self.subsample = subsample self.numfeatures = numfeatures self.scale = scale self.differences = differences def fit(self, X, y=None): return self def transform(self, Y): Y = self.scale*TimeSeriesReshaper(Y,self.numfeatures,self.subsample,self.differences) return DataTabulator(Y) #Class Bagkernelizer # parameters: # kernel = name of the kernel used: linear, Gauss, Laplace, poly,GA(one type of Gaussian kernel) # scale = scaling constant, multiplicative to scalar product # deg = degree, for polynomial kernel # numfeatures = number of features per time point, for internal reshaping # subsample = time series is subsampled to every subsample-th time point # differences = whether first differences are taken or not # V: True=time series in inconsistent length class BagKernelizer(BaseEstimator, TransformerMixin): def __init__(self,kernel = 'linear', scale = 1, deg = 2, X=0,V=False, numfeatures = 2, subsample = 100, differences = True ): self.subsample = subsample self.kernel = kernel self.scale = scale self.deg = deg self.numfeatures = numfeatures self.differences = differences self.X = X self.V=V def fit(self, X, y=None): if self.V: t=TimeSeriesReshaper(X[:,:-1],self.numfeatures,self.subsample,self.differences) v=(X[:,-1]-X[:,-1]%self.subsample)/self.subsample self.X=(t,v) else: t=TimeSeriesReshaper(X,self.numfeatures,self.subsample,self.differences) n=int(t.shape[2]/self.subsample) v=n*np.ones(t.shape[0]) self.X=(t,v) return self def transform(self,Y): if self.V: y=TimeSeriesReshaper(Y[:,:-1],self.numfeatures,self.subsample,self.differences) yt=(Y[:,-1]-Y[:,-1]%self.subsample)/self.subsample Y=(y,yt) else: y= TimeSeriesReshaper(Y,self.numfeatures,self.subsample,self.differences) n=int(y.shape[2]/self.subsample) yt=n*np.ones(y.shape[0]) Y=(y,yt) kPolynom = lambda x,y,scale,deg : (1+scale*np.inner(x,y))**deg kGauss = lambda x,y,scale: np.exp(-(scale**2)*sqdist(x,y)/2) kGA= lambda x,y,scale: np.exp(-(sqdist(x,y)/(2*(scale**2))+np.log(2-np.exp(-sqdist(x,y)/(2*(scale**2)))))) kEuclid = lambda x,y,scale: scale*np.inner(x,y) kLaplace = lambda x,y,scale: np.exp(-scale*np.sqrt(np.inner(x-y,x-y))) def kernselect(kername): switcher = { 'linear': lambda x,y: kEuclid(x,y,self.scale), 'Gauss': lambda x,y: kGauss(x,y,self.scale), 'GA': lambda x,y: kGA(x,y,self.scale), 'Laplace': lambda x,y: kLaplace(x,y,self.scale), 'poly': lambda x,y: kPolynom(x,y,self.scale,self.deg), } return switcher.get(kername, "nothing") KSeq = BagKernelXY(Y[0],self.X[0],kernselect(self.kernel),Y[1]-1,self.X[1]-1) return KSeq # In[] from sklearn import svm from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler # In[] # pipeline: sequential kernel with SVC SeqSVCpipeline = Pipeline([ ('SeqKernelizer', SeqKernelizer()), ('svc', svm.SVC(kernel = 'precomputed')) ]) #pipeline:Bag of feature kernel with SVC BagSVCpipeline=Pipeline([ ('BagKernelizer', BagKernelizer()), ('svc', svm.SVC(kernel = 'precomputed')) ]) # pipeline: pre-processing and SVC, no sequential kernel - baseline TimeSVCpipeline = Pipeline([ ('TimeSeriesPP', TimeSeriesPreprocesser()), ('svc', svm.SVC()) ]) # pipeline: pre-processing, standardization, and SVC, no sequential kernel - baseline TimeStdSVCpipeline = Pipeline([ ('TimeSeriesPP', TimeSeriesPreprocesser()), ('standardize', StandardScaler()), ('svc', svm.SVC()) ])
[ "noreply@github.com" ]
wendixuan.noreply@github.com
e8ce66cb451166e57756c3b243911ae9d5f057c7
3948f21c00c4eb31d1a31f702f2ab44b4b5d53b5
/fabfile/aws_ssh.py
d8e5edc409f3a53433592c8ae5263215adb68e63
[]
no_license
cwurld/Django-Fabric-AWS
f85b24fffd8e3b7e85e26a99f36080aa9bf547a3
621851ccc3d48569f97005ab7050989f5c77aed7
refs/heads/master
2021-01-20T23:45:12.363771
2014-09-03T23:16:00
2014-09-03T23:16:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
371
py
#!/usr/bin/env python import subprocess from project_conf import fabconf if len(fabconf['EC2_INSTANCES']) == 0: print "Error: you need to add the instance domain name to project_conf.py" else: cmd = 'ssh -i ~/.ssh/%s %s@%s' % (fabconf['EC2_KEY_NAME'], fabconf['SERVER_USERNAME'], fabconf['EC2_INSTANCES'][0]) print cmd subprocess.call(cmd,shell=True)
[ "cwurld@yahoo.com" ]
cwurld@yahoo.com
4a932772a4f8979c35efa0e079839b3304fb886b
7fd955ef5e793bde3d16a73b16df1d8a9063175a
/Function_201704013_박현주/function.py
32686c10c7031c8120ced64245fd39422918367a
[]
no_license
hjpark1397/Python_practice
7decb1a31c6cda03deca52c2ca3ad8bb4e3e5c3f
5edce56eb9d50bb62668b7ebc24c8ba9e31e6bc6
refs/heads/master
2020-05-04T20:08:59.556420
2019-12-24T04:46:52
2019-12-24T04:46:52
179,424,081
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
def f(x): return 2*x+7 def g(x): return x**2 x=2 print(f(x)+g(x)+f(g(x))+g(f(x)))
[ "hjpark1397@naver.com" ]
hjpark1397@naver.com
d4a2c585f89207cf0f85b769520fcfeeed9e915f
283bbebacdbc028d05949d6b65cb69046f59061a
/Project_3-Basic Algorithms/problem_1.py
6a5534b8bcb587185988666e42fbe0f7ceaf8684
[]
no_license
mohitgureja/DSA_Nanodegree-Python
f324e02fe9f7a4711383066d38223720ea5b7a23
4267183df499e05efd3d528114d0c2c42aec1029
refs/heads/master
2021-05-23T09:34:25.233681
2020-07-25T11:13:23
2020-07-25T11:13:23
253,223,318
1
0
null
null
null
null
UTF-8
Python
false
false
2,059
py
def sqrt(number): # if number is 1 return 1 as the number 1 is square of itself if (number == 1): return 1 # set globally max perfect square value and max Floor value to 0 global maxSquareValue maxSquareValue = 0 global maxFloorValue maxFloorValue = 0 def findSqrt(number,start,end): # if only one number remains return the maxFloorValue if start == end: return global maxSquareValue global maxFloorValue # find average of two boundary numbers mid = (end + start)//2 midSquare = mid*mid """ Case 1: if square of average number itself is square root set maxFloorValue and return Case 2: if average number is greater than the number recurse to the first half of the numbers Case 3: if average number is less than the number set maxFloor value with average number and maxPerfectSquare with average square. Here we have to recurse to the second half whether any number exist whose square is greater than earlier set average square. """ # Case 1 if midSquare == number: maxFloorValue = mid return # Case 2 elif midSquare > number: findSqrt(number,start,mid) # Case 3 else: if midSquare > maxSquareValue: maxSquareValue = midSquare maxFloorValue = mid findSqrt(number,mid+1,end) findSqrt(number,0,number) return maxFloorValue # Tese Cases print ("Pass" if (3 == sqrt(9)) else "Fail") # Perfect square of 3 print ("Pass" if (0 == sqrt(0)) else "Fail") # Prints 0 print ("Pass" if (4 == sqrt(16)) else "Fail") # Perfect square of 4 print ("Pass" if (1 == sqrt(1)) else "Fail") # Square of 1 is 1 print ("Pass" if (26 == sqrt(676)) else "Fail") # Perfect square of 26 print ("Pass" if (26 == sqrt(700)) else "Fail" ) # Floored square root of 700 is also 26 print ("Pass" if (100000 == sqrt(10000000008)) else "Fail" ) # Floored square root of 10000000008 will be 100000
[ "gurejamohit.32@gmail.com" ]
gurejamohit.32@gmail.com
deb5f2b72979cfd127edf7c11a14da041eea92b6
11e383e9dd72548a9333f2270a2f707e2e221e64
/famOasis_Web/dh.py
c144cd719d50f0f22b675b21a308073cf538446c
[]
no_license
ajaykumar1018/famOasis
6edba8c5c7d720e79973960d38855f4288ae78ee
1f6dfb60d13d2239f5be4bcdceba1608a9606196
refs/heads/master
2022-10-14T10:19:10.221257
2020-06-13T08:02:03
2020-06-13T08:02:03
255,266,160
0
0
null
null
null
null
UTF-8
Python
false
false
693
py
import pickle from Depression_detection_tweets import TweetClassifier from tes import answers,session from textblob import TextBlob f = open('my_classifier.pickle', 'rb') ff = open('my_classifier2.pickle','rb') sc_tf_idf = pickle.load(f) sc_bow = pickle.load(ff) an = answers.query.all() # text1 = answers.query.fiter_by(username="cv").order_by(id.desc()).first() # print(text1) #blob = TextBlob(text1) # for sentence in blob.sentences: # pol = sentence.sentiment.polarity # bo = sc_bow.classify(sentence) # st = sc_tf_idf.classify(sentence) # print(pol,",",bo,",",st) # if pol <0.5 or bo == True or st == True: # print('Depressed') f.close() ff.close()
[ "42745121+ajaykumar1018@users.noreply.github.com" ]
42745121+ajaykumar1018@users.noreply.github.com
787ee0eb14a92213c08a371b3ade200df4900c40
e4e4512859cc7b84236ec8ae9d90df614f6087b2
/anagrams.py
e49126cda7a8a0f9c78300872fe01a0bef76b2c3
[]
no_license
csepdo/codecool
5bceaeb9dccbc7dbfbd547a0546308aa057c7f2a
a7219f73f4104763e54f4b438e8a9d47a2a26fbe
refs/heads/master
2020-03-27T15:28:57.304461
2018-09-07T21:37:14
2018-09-07T21:37:14
146,720,997
0
0
null
null
null
null
UTF-8
Python
false
false
298
py
import sys from itertools import groupby file = sys.argv[1] with open (file, 'r') as f: anagrams = f.read().splitlines() anagram_groups = [list(group) for key, group in groupby(sorted(anagrams,key=sorted),sorted)] print('\n'.join('{}. {}'.format(*k) for k in enumerate(anagram_groups)))
[ "arodzeta@gmail.com" ]
arodzeta@gmail.com
4423dbbd57cd1e8af4efb574b2b4bd76ccb3b0bd
097bbe7b57927d90d47345e2f8f2d4b259975c98
/tests/genmake.py
3e63e59dce1f38902da937055be3df075a2366fe
[ "BSD-2-Clause" ]
permissive
sudokuhk/libfresample
e4fda01d4f92851f523a4987bd4d4ea8c9a891b8
884c39a71a3af579c40eb2798854b82bf54a4b37
refs/heads/master
2021-01-24T04:13:09.611311
2012-10-17T16:28:08
2012-10-17T16:36:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,990
py
#!/usr/bin/env python try: from cStringIO import StringIO except ImportError: from io import StringIO class Makefile(object): def __init__(self): self._fp = StringIO() self._all = set() self._targets = set() self._phony = set() def add_default(self, x): self._all.add(x) def _write_dep(self, target, deps): fp = self._fp fp.write(target + ':') for dep in deps: fp.write(' ' + dep) fp.write('\n') def build(self, target, deps, *cmds): if target in self._targets: return self._targets.add(target) self._write_dep(target, deps) for cmd in cmds: self._fp.write('\t' + cmd + '\n') def write(self, *line): for line in line: self._fp.write(line + '\n') def save(self): f = open('Makefile', 'w') self._write_dep('all', sorted(self._all)) self._write_dep('.PHONY', sorted(self._phony)) f.write('all:\n') f.write(self._fp.getvalue()) def phony(self, target, deps): self._phony.add(target) self._write_dep(target, deps) make = Makefile() make.build('Makefile', ['genmake.py'], 'python genmake.py') make.write( 'FR := ../build/product/fresample', 'SOX := sox') def test_sweep(depth, nchan, rate1, rate2): name = 'sweep_r%ds%dn%d' % (rate1 // 1000, depth, nchan) if nchan == 1: cmd = 'synth 8 sine 0+%d' % (rate1 // 2) else: cmd = 'synth 8 sine 0+%d sine %d+0' % (rate1 // 2, rate1 // 2) cmd = '$(SOX) -b %d -r %d -n $@ %s vol 0.999' % (depth, rate1, cmd) make.build(name + '.wav', ['Makefile'], cmd) sweeps = [] for q in range(11): name2 = '%s_r%dq%02d' % (name, rate2 // 1000, q); make.build( name2 + '.wav', [name + '.wav', '$(FR)', 'Makefile'], '$(FR) $(FRFLAGS) -q %d -r %d $< $@' % (q, rate2)) make.build( name2 + '.png', [name2 + '.wav', 'Makefile'], 'sox $< -n spectrogram -w kaiser -o $@') sweeps.append(name2 + '.png') make.phony('sweep-q%d' % q, [name2 + '.png']) make.phony('sweep-mono' if nchan == 1 else 'sweep-stereo', sweeps); test_sweep(16, 1, 96000, 44100) test_sweep(16, 1, 96000, 48000) test_sweep(16, 1, 48000, 44100) test_sweep(16, 2, 96000, 44100) test_sweep(16, 2, 96000, 48000) test_sweep(16, 2, 48000, 44100) make.phony('sweep', ['sweep-mono', 'sweep-stereo']) def test_correct(depth, nchan, rate1, rate2): name = 'correct_r%ds%dn%d' % (rate1 // 1000, depth, nchan) inpath = name + '.wav' cmd = '$(SOX) -b %d -r %d -n $@ synth 16 whitenoise' % (depth, rate1) if nchan == 2: cmd += ' whitenoise' make.build(inpath, ['Makefile'], cmd) outputs = [] for q in range(6): # q6 and higher is floating point outpath = '%s_r%dq%02d' % (name, rate2 // 1000, q) out1 = outpath + '_1.wav' out2 = outpath + '_2.wav' make.build( out1, [inpath, '$(FR)', 'Makefile'], '$(FR) $(FRFLAGS) --cpu-features none -q %d -r %d $< $@' % (q, rate2)) make.build( out2, [inpath, '$(FR)', 'Makefile'], '$(FR) $(FRFLAGS) --cpu-features all -q %d -r %d $< $@' % (q, rate2)) outputs.append((out1, out2)) make.build( name, [x for y in outputs for x in y], *(['$(FR) --test-bufsize --cpu-features %s -q %d -r %d %s /dev/null' % (f, q, rate2, inpath) for q in range(11) for f in ['none', 'all']] + ['cmp %s %s' % x for x in outputs] + ['@echo === OUTPUT MATCHES ==='])) name2 = 'test-' + { 1: 'mono', 2: 'stereo' }.get(nchan, 'n%d' % nchan) make.phony(name2, [name]) make.phony('test', [name2]) make.add_default('test') test_correct(16, 1, 48000, 44100) test_correct(16, 2, 48000, 44100) make.write( 'clean:', '\trm -f *.wav *.png') make.save()
[ "depp@zdome.net" ]
depp@zdome.net
7125798784ef01fa24733603fcc0ad6664d8c0ec
9cc7254a81b606e139db8ca39ea3f67039e7ceda
/src/application/commands/populate_db.py
f4e712b8ac50742a000d615068ec7bb19b97e93a
[]
no_license
zxy-zxy/quiz_bot
58523e006a5c4ef88d2def67683efdad9d161d09
66e8b2de69b7a45de7f8de08d62b7f897a803605
refs/heads/master
2023-04-12T18:19:05.123427
2019-06-15T19:27:41
2019-06-15T19:27:41
190,882,831
0
0
null
null
null
null
UTF-8
Python
false
false
3,709
py
import os import sys import itertools import logging from redis import exceptions as redis_exceptions from application.models import QuizQuestion from application.parser import QuizQuestionsFileParser logger = logging.getLogger(__name__) def run_command(quiz_questions_directory, default_encoding, files_limit=None): """ Populate redis database with quiz questions from provided files. """ logger.debug( 'Attempt to read files from directory {}.'.format(quiz_questions_directory) ) try: data_directory = quiz_questions_directory files_list = [ os.path.join(data_directory, filepath) for filepath in os.listdir(data_directory) ] except FileNotFoundError as e: logger.error( 'An error has occurred during reading exploring directory.' 'Directory: {}, error: {}'.format(quiz_questions_directory, str(e)) ) sys.exit(1) logger.debug('DB population started.') logger.debug(files_list) populate_db_from_files(files_list, default_encoding, files_limit) def populate_db_from_files(quiz_questions_filepaths, default_encoding, files_limit): """ :param quiz_questions_filepaths: list of filepaths to files with questions :param default_encoding: target files encoding :param files_limit if we want to limit how many files we want to parse: Main function of this module, save questions into database. """ quiz_questions_lists_generator = parse_quiz_questions_files( quiz_questions_filepaths, default_encoding ) for quiz_questions_list in itertools.islice( quiz_questions_lists_generator, files_limit ): try: QuizQuestion.bulk_save_to_db(quiz_questions_list) except redis_exceptions.RedisError as e: logger.error(str(e)) def parse_quiz_questions_files(quiz_questions_filepaths, encoding): """ yields list of QuizQuestion objects. """ for filepath in quiz_questions_filepaths: try: yield parse_quiz_question_file(filepath, encoding) except (IOError, FileNotFoundError) as e: logger.error( 'An error has occurred during parsing file.' 'File: {}, error: {}'.format(filepath, str(e)) ) continue def parse_quiz_question_file(quiz_question_filepath, encoding): """ :param quiz_question_filepath: filepath to concrete file with questions :param encoding: default encoding of concrete file :return: list of QuizQuestion objects. """ with open(quiz_question_filepath, 'r', encoding=encoding) as f: quiz_question_file_parser = QuizQuestionsFileParser(f) question_list = [ question for question in convert_question_dict_to_object(quiz_question_file_parser) ] return question_list def convert_question_dict_to_object(quiz_question_file_parser): """ Iterate over content of the file, convert dict into QuizQuestion object, yield it. """ for question_dict in quiz_question_file_parser: try: quiz_question = QuizQuestion(**question_dict) logger.debug( 'Question {} from file {} converted into ' 'model object successfully.'.format( quiz_question, quiz_question_file_parser.open_file.name ) ) yield quiz_question except ValueError as e: logger.error( 'An error {} has occurred during parsing file: {}'.format( str(e), quiz_question_file_parser.open_file.name ) )
[ "sinitsinvanya@gmail.com" ]
sinitsinvanya@gmail.com
d4847cc2ffa88846557e44295022e54e8e899956
164457b943d0b426e9a5e2eb57779e4e37f2d1bb
/the_tale/game/heroes/storage.py
34abfcf90eaa1db6bd9823c436cf520f42c1ceed
[ "BSD-2-Clause-Views" ]
permissive
lshestov/the-tale
64334fd99a442ad736d9e8a38e8f0fb52d0ebab6
6229edfec6420307975269be9926c68ecdefb930
refs/heads/master
2021-01-18T08:38:44.147294
2015-10-27T18:43:10
2015-10-27T18:43:10
50,228,827
0
0
null
2016-01-23T07:38:54
2016-01-23T07:38:54
null
UTF-8
Python
false
false
1,984
py
# coding: utf-8 from utg import words as utg_words from utg import relations as utg_relations from the_tale.game.map.places import storage as places_storage class PositionDescriptionsStorage(object): def __init__(self): self.clear() def clear(self): self._actual_places_version = places_storage.places_storage._version self._position_in_place_cache = {} self._position_near_place_cache = {} self._position_on_road_cache = {} def sync(self): if places_storage.places_storage.version != self._actual_places_version: self.clear() def text_in_place(self, place_id): self.sync() if place_id not in self._position_in_place_cache: self._position_in_place_cache[place_id] = places_storage.places_storage[place_id].name return self._position_in_place_cache[place_id] def text_near_place(self, place_id): self.sync() if place_id not in self._position_near_place_cache: self._position_near_place_cache[place_id] = u'окрестности %s' % places_storage.places_storage[place_id].utg_name.form(utg_words.Properties(utg_relations.CASE.GENITIVE)) return self._position_near_place_cache[place_id] def text_on_road(self, place_from_id, place_to_id): self.sync() key = (place_from_id, place_to_id) if key not in self._position_on_road_cache: self._position_on_road_cache[key] = u'дорога из %s в %s' % (places_storage.places_storage[place_from_id].utg_name.form(utg_words.Properties(utg_relations.CASE.GENITIVE)), places_storage.places_storage[place_to_id].utg_name.form(utg_words.Properties(utg_relations.CASE.ACCUSATIVE))) return self._position_on_road_cache[key] def text_in_wild_lands(self): return u'дикие земли' position_descriptions = PositionDescriptionsStorage()
[ "a.eletsky@gmail.com" ]
a.eletsky@gmail.com
17f97e77fbada90c673d10c240538123e9aa8a1c
ca2675e967d488e58386714c582c3d937e4cc2c7
/simsms.py
62a9fcba6139e7fc28af4e68e5291d8e52f042c2
[]
no_license
renatick321/bot
b500e0159ae7952dce439a0d8d3d132748bbc5a0
21d302132f95282e2f138df9d8e0b8afed99b77c
refs/heads/master
2022-12-05T13:18:02.771551
2020-08-03T10:31:02
2020-08-03T10:31:02
284,669,851
0
0
null
null
null
null
UTF-8
Python
false
false
3,944
py
import requests import random from time import sleep APIKEY = 'JFOlfs3vSFy7YcCFzBVVKoKI7kQxJ4' SERVICE = 'qw' OPERATOR = None BAD = 8 GOOD = 6 BALANCE_URL = f"https://smshub.org/stubs/handler_api.php?api_key={APIKEY}&action=getBalance" NUMBER_URL = f"https://smshub.org/stubs/handler_api.php?api_key={APIKEY}&action=getNumber&service={SERVICE}" smshub = { "Telegram": "tg", "Вконтакте": "vk", "Whatsapp": "wa", "Avito": "av", "Qiwi": "qw", "Пятерочка": "bd", "McDonalds": "ry", "PayPal": "ts", "Burger King": "ip", "Яндекс": "ya", "BlaBlaCar": "ua", "Instagram": "ig", "Google": "go", "Steam": "mt", } COUNTRY = { "Россия": 0, "Украина": 1, "Казахстан": 2 } # Сразу после получения номера доступны следующие действия: # 8 - Отменить активацию # 1 - Сообщить, что SMS отправлена (необязательно) # Для активации со статусом 1: # 8 - Отменить активацию # ========================================================== # Сразу после получения кода: # 3 - Запросить еще одну смс # 6 - Подтвердить SMS-код и завершить активацию # Для активации со статусом 3: # 6 - Подтвердить SMS-код и завершить активацию def info(): l = [ ' Сразу после получения номера доступны следующие действия:', ' 8 - Отменить активацию', ' 1 - Сообщить, что SMS отправлена (необязательно)', ' Для активации со статусом 1:', ' 8 - Отменить активацию', '==========================================================', ' Сразу после получения кода:', ' 3 - Запросить еще одну смс', ' 6 - Подтвердить SMS-код и завершить активацию', ' Для активации со статусом 3:', ' 6 - Подтвердить SMS-код и завершить активацию' ] print("\n".join(l)) def price_boost(price): price = float(price) if price < 1.5: price = 3 elif price <= 5: price = 7 elif price < 7: price = 8 else: price *= 1.7 price = float(int(price * 100)) / 100 return price def get_price(service, country, apikey=APIKEY): r = requests.get(f"http://simsms.org/priemnik.php?metod=get_service_price&country={country}&service={service}&apikey={apikey}") d = r.json() key = list(dict(d).keys())[0] try: a = d[key][service] price = str(price_boost(str(list(a.keys())[0]))) + ' ₽' except: price = 'Нет в наличии' return price class Number: def __init__(self, service, country, apikey=APIKEY): self.country = COUNTRY[country] self.service = service self.apikey = apikey try: url = f"http://simsms.org/priemnik.php?metod=get_number&country={country}&service={service}&apikey={apikey}" r = requests.get(url).json() self.id, self.number = r["id"], r["number"] except: self.number = "" def __str__(self): return str(self.number) def get_sms(self): for i in range(240): sleep(1) r = requests.get(f"http://simsms.org/priemnik.php?metod=get_sms&country={self.country}&service={self.service}&id={self.id}&apikey={self.apikey}").json() print(r) if r["sms"]: return r["sms"] return "Аренда номера была отменена" def edit_status(self, status): r = requests.get(f"http://simsms.org/stubs/handler_api.php?api_key={self.apikey}&action=setStatus&status={status}&id={self.id}") return r.text def get_balance(self): r = requests.get(f"http://simsms.org/priemnik.php?metod=get_balance&service=opt4&apikey={self.apikey}") return r.text
[ "afarut5@ya.ru" ]
afarut5@ya.ru
6aa4e0fe0055f74b1565433911d407bbeb89fe42
f02b21d5072cb66af643a7070cf0df4401229d6e
/leetcode/depth_first_search/737-are_sentences_similar_2.py
dd14083e5fc358f23aafd1704a573f4e43389df1
[]
no_license
dbconfession78/interview_prep
af75699f191d47be1239d7f842456c68c92b95db
7f9572fc6e72bcd3ef1a22b08db099e1d21a1943
refs/heads/master
2018-10-09T22:03:55.283172
2018-06-23T01:18:00
2018-06-23T01:18:00
110,733,251
2
1
null
null
null
null
UTF-8
Python
false
false
2,438
py
class Solution: def areSentencesSimilarTwo(self, words1, words2, pairs): """ :type words1: List[str] :type words2: List[str] :type pairs: List[List[str]] :rtype: bool """ if len(words1) != len(words2): return False graph = {} for w1, w2 in pairs: graph[w1] = w2 graph[w2] = w1 i = 0 while i < len(words1): if self.check_path(graph, words1[i], words2[i]): print('yes') else: print('no') def check_path(self, graph, w1, w2): q = [graph.get(w1)] while q: row_len = len(q) for i in range(row_len): top = q[i] q.append(graph.get(top)) q = q[row_len:] print(root) print() def main(): words1 = ["great", "acting", "skills"] words2 = ["fine", "drama", "talent"] pairs = [["great", "good"], ["fine", "good"], ["drama", "acting"], ["skills", "talent"]] print(Solution().areSentencesSimilarTwo(words1, words2, pairs)) if __name__ == '__main__': main() # Instructions """ Given two sentences words1, words2 (each represented as an array of strings), and a list of similar word pairs pairs, determine if two sentences are similar. For example, words1 = ["great", "acting", "skills"] and words2 = ["fine", "drama", "talent"] are similar, if the similar word pairs are pairs = [["great", "good"], ["fine", "good"], ["acting","drama"], ["skills","talent"]]. Note that the similarity relation is transitive. For example, if "great" and "good" are similar, and "fine" and "good" are similar, then "great" and "fine" are similar. Similarity is also symmetric. For example, "great" and "fine" being similar is the same as "fine" and "great" being similar. Also, a word is always similar with itself. For example, the sentences words1 = ["great"], words2 = ["great"], pairs = [] are similar, even though there are no specified similar word pairs. Finally, sentences can only be similar if they have the same number of words. So a sentence like words1 = ["great"] can never be similar to words2 = ["doubleplus","good"]. Note: The length of words1 and words2 will not exceed 1000. The length of pairs will not exceed 2000. The length of each pairs[i] will be 2. The length of each words[i] and pairs[i][j] will be in the range [1, 20]. """
[ "Hyrenkosa1" ]
Hyrenkosa1
6ac74eecc49751a4e763521bcc7080c337b70b26
638e55b080837f1ee7615a67cbd878062d469121
/NesneTabanli.py
1e3ad58d1b28457dd703d28164a2e12770eaebe2
[]
no_license
burakkuru5534/pythonprojects
40e3a21c4795712a20f6c398567f44aa7f9286cd
42eaf79b04a267a31c00272734b43f4e2c069747
refs/heads/master
2020-03-29T23:09:56.270840
2018-09-28T13:46:48
2018-09-28T13:46:48
150,459,388
0
0
null
null
null
null
UTF-8
Python
false
false
263
py
# class tanımlaması ve class ın nesnesini tanımlamak # class Sinifim(): #classın değişken ve fonksiyonları sinif_degiskeni="değişken" def sinif_fonk(): pass Nesnem = Sinifim() print(Nesnem.sinif_degiskeni) # damn it
[ "noreply@github.com" ]
burakkuru5534.noreply@github.com
ac61e4c05327592079b4fceaf56f8993dfe156fc
0b22832a6f1babb063ea38774a4437702d83bf81
/pygame_geometry/materialline.py
5a731246f4d2885a4d79669a82a6289a73e7240e
[ "MIT" ]
permissive
MarcPartensky/Pygame-Geometry
c3d7c68bcec19092aecd3faf89b838b36f192a49
61abbbeac0fd351253e06b19736d9939fd5b316e
refs/heads/master
2022-12-08T15:23:24.467015
2020-09-06T00:29:56
2020-09-06T00:29:56
293,174,314
7
0
null
null
null
null
UTF-8
Python
false
false
550
py
from .abstract import Line class MaterialLine(Line,Material): """Base class of the ground class.""" def __init__(self,point,angle,mass,**kwargs): """Create a material line.""" super().__init__(point,angle,**kwargs) self.mass=mass class Ground(MaterialLine): """Subclass of the material line .""" def __init__(self,*args,**kwargs): super().__init__(*args,**kwargs) if __name__=="__main__": from .surface import Surface surface=Surface() line=MaterialLine() print(MaterialLine.null)
[ "marc.partensky@gmail.com" ]
marc.partensky@gmail.com
c961fed5839570f6d3167e4e2845df645059d079
2ce950f21909f6c9ed8d58b1dea4a524f90a173d
/allmessages/apps.py
d209ceccab4ab30591c4792e9ea5b5d9de12062a
[]
no_license
denyslipin/chatroom-app
2d845c76b4557c14a272e04b699e4de02fd3e70e
505fad9eca45000b704f16f197caf03df208bfa8
refs/heads/master
2023-04-03T00:41:30.589696
2021-03-29T19:45:55
2021-03-29T19:45:55
352,712,227
0
0
null
null
null
null
UTF-8
Python
false
false
97
py
from django.apps import AppConfig class AllmessagesConfig(AppConfig): name = 'allmessages'
[ "den@Macs-MacBook-Pro.local" ]
den@Macs-MacBook-Pro.local
bf7cfe2eeca247650a3cbad4ee46a6f05258f6e0
f3a9b9c553a68c63f144129cb16bffbeb842e1db
/core/constants.py
71a2d123c7ed97be8b08f5e4bff254c87541519c
[]
no_license
adwojak/MapGenerator
5604742bab40b7a5f7527ab71884df3777d3a484
d2ffb0ed1400eae3787a3dabf18241aed1ffd353
refs/heads/main
2023-06-11T14:12:14.910380
2021-07-10T20:43:26
2021-07-10T20:43:26
371,958,898
0
0
null
null
null
null
UTF-8
Python
false
false
294
py
EMPTY_SPACE = "." STARTING = "STARTING" EXIT = "EXIT" EASY_PATH = "EASY_PATH" UP = "UP" DOWN = "DOWN" LEFT = "LEFT" RIGHT = "RIGHT" MIDDLE = "MIDDLE" OPPOSITE_FACES = {UP: DOWN, DOWN: UP, LEFT: RIGHT, RIGHT: LEFT} ROOM_KINDS = {STARTING: "S", EXIT: "E", EASY_PATH: "P", "EASY_PATH2": "H"}
[ "dwojaka207@gmail.com" ]
dwojaka207@gmail.com
0d8b25837532ae72462d9dab6bfd5dac50b518f6
026c1b047604bf572a489c916fc2423e007de84e
/pfapp/migrations/0004_user_details.py
077de4a51d8966ca4de55421517fc4f83ccdb34d
[]
no_license
akbarali97/FarmersHub
0015e0e107617da359fd6afc0aad36ef8cae0f35
2fbff85306964921a9af22ff9d78553d807eba52
refs/heads/master
2023-08-02T00:33:33.586064
2020-06-10T18:34:23
2020-06-10T18:34:23
249,766,365
1
1
null
2021-09-22T18:58:42
2020-03-24T16:57:21
JavaScript
UTF-8
Python
false
false
635
py
# Generated by Django 3.0.3 on 2020-04-23 18:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pfapp', '0003_auto_20200418_2036'), ] operations = [ migrations.CreateModel( name='user_details', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ('gender', models.CharField(max_length=30)), ('dob', models.DateField(max_length=8)), ], ), ]
[ "31400505+akbarali97@users.noreply.github.com" ]
31400505+akbarali97@users.noreply.github.com
cd156b436a035984a81714acebc4b8032ed39fee
bfc01b4240baadf0531c5dd7f1b4757a4651782e
/complex_data_structures/pythonhashmap.py
c60738b12557ec14d62bcb489ceba06ede37437b
[]
no_license
jmmander/codeacademy
f3bf9ba005fc3577dd9d42e21aafaa831facd816
85ea3086117117cfa124caa2838772ad02d5f08d
refs/heads/master
2022-12-29T13:19:53.736360
2020-10-16T18:18:35
2020-10-16T18:18:35
259,692,170
0
0
null
null
null
null
UTF-8
Python
false
false
2,139
py
class HashMap: def __init__(self, array_size): self.array_size = array_size self.array = [None for item in range(array_size)] def hash(self, key, count_collisions=0): key_bytes = key.encode() hash_code = sum(key_bytes) return hash_code + count_collisions def compressor(self, hash_code): return hash_code % self.array_size def assign(self, key, value): array_index = self.compressor(self.hash(key)) current_array_value = self.array[array_index] if current_array_value is None: self.array[array_index] = [key, value] return if current_array_value[0] == key: self.array[array_index] = [key, value] return # Collision! number_collisions = 1 while(current_array_value[0] != key): new_hash_code = self.hash(key, number_collisions) new_array_index = self.compressor(new_hash_code) current_array_value = self.array[new_array_index] if current_array_value is None: self.array[new_array_index] = [key, value] return if current_array_value[0] == key: self.array[new_array_index] = [key, value] return number_collisions += 1 def retrieve(self, key): array_index = self.compressor(self.hash(key)) possible_return_value = self.array[array_index] if possible_return_value is None: return None if possible_return_value[0] == key: return possible_return_value[1] retrieval_collisions = 1 while (possible_return_value != key): new_hash_code = self.hash(key, retrieval_collisions) retrieving_array_index = self.compressor(new_hash_code) possible_return_value = self.array[retrieving_array_index] if possible_return_value is None: return None if possible_return_value[0] == key: return possible_return_value[1] retrieval_collisions += 1 hash_map = HashMap(15) hash_map.assign('gabbro', 'igneous') hash_map.assign('sandstone', 'sedimentary') hash_map.assign('gneiss', 'metamorphic') print(hash_map.retrieve('gabbro')) print(hash_map.retrieve('sandstone')) print(hash_map.retrieve('gneiss'))
[ "noreply@github.com" ]
jmmander.noreply@github.com
db8653c53cd6692d5ae90a913a5b37d457020761
a82c25a49527f48fa16f2a5303d68458ff10bdf6
/wagtail/mywebsite/mywebsite/blog/migrations/0002_blogpage.py
45b40dac6c51fcf081ffcec20a8bb1d13140d9e8
[]
no_license
vdiquez/python_practice
c5159c4ea1f8b1e667e09191198dbea3d3fbb11a
ee137e6ff1775340ec3fa6e80fb26bb68564883a
refs/heads/main
2023-03-14T06:17:22.694692
2021-03-01T12:09:11
2021-03-01T12:09:11
337,362,935
0
0
null
null
null
null
UTF-8
Python
false
false
955
py
# Generated by Django 3.1.5 on 2021-02-09 19:36 from django.db import migrations, models import django.db.models.deletion import wagtail.core.fields class Migration(migrations.Migration): dependencies = [ ('wagtailcore', '0059_apply_collection_ordering'), ('blog', '0001_initial'), ] operations = [ migrations.CreateModel( name='BlogPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.page')), ('date', models.DateField(verbose_name='Post date')), ('intro', models.CharField(max_length=250)), ('body', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), ]
[ "victor.ocanto@grupodiusframi.com.co" ]
victor.ocanto@grupodiusframi.com.co
5272bf043cf544758d30293e9dba82ea6b67d7d7
521c1beeb2776161ae6d550be35cd0c180887129
/elvis/Web_selenium/test_selenium/test_gps_cloud.py
73ba994f28f98f184e079b285b9e2ff4a64f1768
[]
no_license
elvis2workspace/CustomLibrary
601b552792ac2c33beeb709474f857c82793ac7e
6449eea8aa99ca1172f54b669d97703d36132ce3
refs/heads/master
2021-01-23T21:33:05.617871
2017-09-26T01:57:48
2017-09-26T01:57:48
58,983,388
0
1
null
2016-12-06T09:56:14
2016-05-17T02:22:14
Python
UTF-8
Python
false
false
5,906
py
# -*- coding: utf-8 -*- import time import unittest from selenium import webdriver from selenium.webdriver.common.keys import Keys from elvis.utils.os_opt.file_action import * class Gps_Cloud(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome() self.driver.implicitly_wait(30) self.login_url = "http://gps.dev-ag.56qq.com/login.html" self.verificationErrors = [] self.accept_next_alert = True # def test_gpscloud_login(self): # u"""gps cloud login""" # # driver = self.driver # driver.get(self.base_url) # try: # driver.find_element_by_name("userName").send_keys("gpstest") # pwd_elem = driver.find_element_by_id("JS_password") # pwd_elem.send_keys("123123") # pwd_elem.send_keys(Keys.ENTER) # time.sleep(5) # except: # driver.get_screenshot_as_file("D:\\selenium_use_case\\error_png\\kw.png") # 如未找到元素就截取当前页 # # finally: # driver.close() # def test_gps_car(self): # driver = self.driver # driver.get(self.login_url) # driver.maximize_window() # try: # # LOGIN GPS CLOUD PLATFORM # driver.find_element_by_name("userName").send_keys("gpstest") # pwd_elem = driver.find_element_by_id("JS_password") # pwd_elem.send_keys("123123") # pwd_elem.send_keys(Keys.ENTER) # time.sleep(5) # # nav_carManage = driver.find_element_by_xpath("//*[@id=\"nav_carManage\"]") # # # rtn = driver.execute_script('arguments[0].click()', more) # chain = ActionChains(driver) # chain.move_to_element(nav_carManage).perform() # driver.find_element_by_xpath("//*[@id=\"subnav_carManage\"]/li[1]").click() # # except: # driver.get_screenshot_as_file("D:\\kw.png") # 如未找到元素就截取当前页 # # finally: # # # driver.close() # # pass def test_gps_car_hide(self): driver = self.driver driver.get(self.login_url) driver.maximize_window() try: # LOGIN GPS CLOUD PLATFORM driver.find_element_by_name("userName").send_keys("gpstest") pwd_elem = driver.find_element_by_id("JS_password") pwd_elem.send_keys("123123") pwd_elem.send_keys(Keys.ENTER) time.sleep(5) nav_carManage = driver.find_element_by_xpath("//*[@id=\"nav_carManage\"]") # rtn = driver.execute_script('arguments[0].click()', more) js = "var q=document.getElementById('subnav_carManage');q.style.display='block';" # setAttribute(\"style\",\"display:block\ driver.execute_script(js) driver.find_element_by_css_selector("#subnav_carManage > li:nth-child(1)").click() time.sleep(5) # 将页面滚动条拖到底部 # js = "var q=document.documentElement.scrollTop|| window.pageYOffset || document.body.scrollTop; q=10000;" js = "window.scrollTo(0, document.body.scrollHeight)" driver.execute_script(js) time.sleep(3) print "page bottom" # # 移动到元素element对象的“顶端”与当前窗口的“顶部”对齐 # # driver.execute_script("arguments[0].scrollIntoView();", element) # # driver.execute_script("arguments[0].scrollIntoView(true);", element) # # # 移动到元素element对象的“底端”与当前窗口的“底部”对齐 # # driver.execute_script("arguments[0].scrollIntoView(false);", element) # # # 移动到页面最底部 # # driver.execute_script("window.scrollTo(0, document.body.scrollHeight)") # # # 移动到指定的坐标(相对当前的坐标移动) # # driver.execute_script("window.scrollBy(0, 700)") # # Thread.sleep(3000) # # 结合上面的scrollBy语句,相当于移动到700 + 800 = 1600像素位置 # # driver.execute_script("window.scrollBy(0, 800)") # # # 移动到窗口绝对位置坐标,如下移动到纵坐标1600像素位置 # # driver.execute_script("window.scrollTo(0, 1600)") # # Thread.sleep(3000); # # 结合上面的scrollTo语句,仍然移动到纵坐标1200像素位置 # # driver.execute_script("window.scrollTo(0, 1200)") # # # 将滚动条移动到页面的顶部 # js = "var q=document.documentElement.scrollTop=0" # driver.execute_script(js) # time.sleep(3) # print "page top" # chains = ActionChains(driver) # chains.send_keys(Keys.PAGE_DOWN).perform() # print "bottom." driver.find_element_by_id("carList_export").click() # driver.find_element_by_xpath("//*[@id=\"subnav_carManage\"]/li[1]").click() check_file(download_path, u"车辆基础信息-20161027101240.xls") except: driver.get_screenshot_as_file("D:\\kw.png") # 如未找到元素就截取当前页 # finally: # # driver.close() # pass def tearDown(self): # self.driver.quit self.assertEqual([], self.verificationErrors) if __name__ == "__main__": suite = unittest.TestSuite() # suite.addTest(Gps_Cloud("test_gps_car")) suite.addTest(Gps_Cloud("test_gps_car_hide")) # 这里可以添加更多的用例,如: # suite.addTest(Youdao("aaaa")) unittest.TextTestRunner().run(suite)
[ "xiuhai5052@hotmail.com" ]
xiuhai5052@hotmail.com
60def32aa20ef5dc414bd621bb9d1b9d5c1d1bc5
be8e3c729972b429e5e2ccfd050393d70a3b26b3
/Combine/dom-analysis.py
777bacbc1652ab043e4806c567af84fa999b4612
[]
no_license
sofwerx/safehouse-data-transformations
30358f0423d5b542ce514d1ce532c5778ada822c
602faf8788df6f8e4f9b8f9eae5d069570be22eb
refs/heads/master
2021-04-12T08:13:31.420624
2018-04-23T17:12:16
2018-04-23T17:12:16
126,072,300
0
1
null
null
null
null
UTF-8
Python
false
false
1,699
py
# coding: utf-8 # In[24]: # Initialize Variables # Datafile Name datafile = "domoticz.csv" # Data Preperation # Notes # Assuming Dateime is not unique # Assuming not many nonzero variance columns # If datarows are larger than 100,000 will only sample 100,000 # Import Libraries import pandas as pd from summarizeDataFrame import summarizeDataset from sklearn.decomposition import PCA import matplotlib.pyplot as plt from pandas.plotting import scatter_matrix import sys # Need to inlcude for Pots get_ipython().magic(u'matplotlib inline') # import Data df = pd.read_csv(datafile) # Add Datetime format df['datetime'] = pd.to_datetime(df['datetime']) #df1 = df[(df['datetime'] > '2018-03-01') & (df['datetime'] < '2013-03-30')] df1 = df[(df['datetime'] > '2018-03-26')] # #Remove attributes with zero variance. Assumming Datetime is not Unique # df2 = df1.loc[:,df1.apply(pd.Series.nunique) != 1] # del df1 # # Seperate Numerical and Categorical Variable to View data # numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] # numerical = df2.select_dtypes(numerics) # categorical = df2.drop(list(df2.select_dtypes(numerics)), axis=1) # #df_num = df.apply(lambda x: x.cat.codes) # print("Categorical Variables" + "\n") # print(categorical.head()) # print("\n"+ "Numerical Variables" + "\n") # print(numerical.head()) # Data Understanding # View Summary of dataset print("\n" + "Categorical Data Summary") summarizeDataset(categorical) print("Numerical Data Summary") summarizeDataset(numerical) display(df2) #df2.to_csv("test.csv" , index=False) # print(df1.dtypes) # print(df1.head()) # print("Total Rows:",len(df1) ,'\n') # In[ ]:
[ "david.salvador@sofwerx.org" ]
david.salvador@sofwerx.org
f16efb496479cb9615556bdaf695e3a72fd48ec9
fd2b8a1e64f9d61ef4312ef6416c0ad257b13a32
/Scripts/tkinter_tutorial.py
ee59f1908d87f621e00f59c8dbcd93580f68a15f
[]
no_license
David-Fde/Commander
09414fa7120ec5e9bcff4e242784937a77e30973
079c8f3bc0f4f9d16cd0282af4a6f478d2f97685
refs/heads/main
2023-06-15T18:31:13.145142
2021-04-14T09:05:37
2021-04-14T09:05:37
322,359,350
0
0
null
2021-04-14T09:05:37
2020-12-17T17:00:39
Jupyter Notebook
UTF-8
Python
false
false
499
py
import tkinter window = tkinter.Tk() # to rename the title of the window window.title("GUI") # pack is used to show the object in the window label = tkinter.Label(window, text = "Hello World!", font=("Arial Bold",20)) txt = tkinter.Entry(window,width=10) txt.grid(column=1,row=0) def clicked(): res = "Welcome to " + txt.get() tkinter.Label.configure(text=res) bt = tkinter.Button(window, text="Enter", command=clicked) bt.grid(column=2,row=0) window.geometry("350x200") window.mainloop()
[ "fernandezvazquezd@gmail.com" ]
fernandezvazquezd@gmail.com
b40a54eaab98089552b8f3ec7360ea33a89a29f5
d80ab47432a3b852b9426c5d03a549a7462e40aa
/pytorch3d/renderer/mesh/clip.py
d35e1a9a60e501cd5cf073e04bbdd403de39992c
[ "BSD-3-Clause" ]
permissive
filsv/pytorch3d
3b37ca30f1c901f0286fea1056a2caa4d0c7e612
b8790474f16994d75e6cf64447080f1b52bcc292
refs/heads/master
2023-06-13T07:26:34.317775
2021-06-28T13:30:27
2021-06-28T13:31:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
34,814
py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any, List, Optional, Tuple import torch """ Mesh clipping is done before rasterization and is implemented using 4 cases (these will be referred to throughout the functions below) Case 1: the triangle is completely in front of the clipping plane (it is left unchanged) Case 2: the triangle is completely behind the clipping plane (it is culled) Case 3: the triangle has exactly two vertices behind the clipping plane (it is clipped into a smaller triangle) Case 4: the triangle has exactly one vertex behind the clipping plane (it is clipped into a smaller quadrilateral and divided into two triangular faces) After rasterization, the Fragments from the clipped/modified triangles are mapped back to the triangles in the original mesh. The indices, barycentric coordinates and distances are all relative to original mesh triangles. NOTE: It is assumed that all z-coordinates are in world coordinates (not NDC coordinates), while x and y coordinates may be in NDC/screen coordinates (i.e after applying a projective transform e.g. cameras.transform_points(points)). """ class ClippedFaces: """ Helper class to store the data for the clipped version of a Meshes object (face_verts, mesh_to_face_first_idx, num_faces_per_mesh) along with conversion information (faces_clipped_to_unclipped_idx, barycentric_conversion, faces_clipped_to_conversion_idx, clipped_faces_neighbor_idx) required to convert barycentric coordinates from rasterization of the clipped Meshes to barycentric coordinates in terms of the unclipped Meshes. Args: face_verts: FloatTensor of shape (F_clipped, 3, 3) giving the verts of each of the clipped faces mesh_to_face_first_idx: an tensor of shape (N,), where N is the number of meshes in the batch. The ith element stores the index into face_verts of the first face of the ith mesh. num_faces_per_mesh: a tensor of shape (N,) storing the number of faces in each mesh. faces_clipped_to_unclipped_idx: (F_clipped,) shaped LongTensor mapping each clipped face back to the face in faces_unclipped (i.e. the faces in the original meshes obtained using meshes.faces_packed()) barycentric_conversion: (T, 3, 3) FloatTensor, where barycentric_conversion[i, :, k] stores the barycentric weights in terms of the world coordinates of the original (big) unclipped triangle for the kth vertex in the clipped (small) triangle. If the rasterizer then expresses some NDC coordinate in terms of barycentric world coordinates for the clipped (small) triangle as alpha_clipped[i,:], alpha_unclipped[i, :] = barycentric_conversion[i, :, :]*alpha_clipped[i, :] faces_clipped_to_conversion_idx: (F_clipped,) shaped LongTensor mapping each clipped face to the applicable row of barycentric_conversion (or set to -1 if conversion is not needed). clipped_faces_neighbor_idx: LongTensor of shape (F_clipped,) giving the index of the neighboring face for each case 4 triangle. e.g. for a case 4 face with f split into two triangles (t1, t2): clipped_faces_neighbor_idx[t1_idx] = t2_idx. Faces which are not clipped and subdivided are set to -1 (i.e cases 1/2/3). """ __slots__ = [ "face_verts", "mesh_to_face_first_idx", "num_faces_per_mesh", "faces_clipped_to_unclipped_idx", "barycentric_conversion", "faces_clipped_to_conversion_idx", "clipped_faces_neighbor_idx", ] def __init__( self, face_verts: torch.Tensor, mesh_to_face_first_idx: torch.Tensor, num_faces_per_mesh: torch.Tensor, faces_clipped_to_unclipped_idx: Optional[torch.Tensor] = None, barycentric_conversion: Optional[torch.Tensor] = None, faces_clipped_to_conversion_idx: Optional[torch.Tensor] = None, clipped_faces_neighbor_idx: Optional[torch.Tensor] = None, ) -> None: self.face_verts = face_verts self.mesh_to_face_first_idx = mesh_to_face_first_idx self.num_faces_per_mesh = num_faces_per_mesh self.faces_clipped_to_unclipped_idx = faces_clipped_to_unclipped_idx self.barycentric_conversion = barycentric_conversion self.faces_clipped_to_conversion_idx = faces_clipped_to_conversion_idx self.clipped_faces_neighbor_idx = clipped_faces_neighbor_idx class ClipFrustum: """ Helper class to store the information needed to represent a view frustum (left, right, top, bottom, znear, zfar), which is used to clip or cull triangles. Values left as None mean that culling should not be performed for that axis. The parameters perspective_correct, cull, and z_clip_value are used to define behavior for clipping triangles to the frustum. Args: left: NDC coordinate of the left clipping plane (along x axis) right: NDC coordinate of the right clipping plane (along x axis) top: NDC coordinate of the top clipping plane (along y axis) bottom: NDC coordinate of the bottom clipping plane (along y axis) znear: world space z coordinate of the near clipping plane zfar: world space z coordinate of the far clipping plane perspective_correct: should be set to True for a perspective camera cull: if True, triangles outside the frustum should be culled z_clip_value: if not None, then triangles should be clipped (possibly into smaller triangles) such that z >= z_clip_value. This avoids projections that go to infinity as z->0 """ __slots__ = [ "left", "right", "top", "bottom", "znear", "zfar", "perspective_correct", "cull", "z_clip_value", ] def __init__( self, left: Optional[float] = None, right: Optional[float] = None, top: Optional[float] = None, bottom: Optional[float] = None, znear: Optional[float] = None, zfar: Optional[float] = None, perspective_correct: bool = False, cull: bool = True, z_clip_value: Optional[float] = None, ) -> None: self.left = left self.right = right self.top = top self.bottom = bottom self.znear = znear self.zfar = zfar self.perspective_correct = perspective_correct self.cull = cull self.z_clip_value = z_clip_value def _get_culled_faces(face_verts: torch.Tensor, frustum: ClipFrustum) -> torch.Tensor: """ Helper function used to find all the faces in Meshes which are fully outside the view frustum. A face is culled if all 3 vertices are outside the same axis of the view frustum. Args: face_verts: An (F,3,3) tensor, where F is the number of faces in the packed representation of Meshes. The 2nd dimension represents the 3 vertices of a triangle, and the 3rd dimension stores the xyz locations of each vertex. frustum: An instance of the ClipFrustum class with the information on the position of the clipping planes. Returns: faces_culled: An boolean tensor of size F specifying whether or not each face should be culled. """ clipping_planes = ( (frustum.left, 0, "<"), (frustum.right, 0, ">"), (frustum.top, 1, "<"), (frustum.bottom, 1, ">"), (frustum.znear, 2, "<"), (frustum.zfar, 2, ">"), ) faces_culled = torch.zeros( [face_verts.shape[0]], dtype=torch.bool, device=face_verts.device ) for plane in clipping_planes: clip_value, axis, op = plane # If clip_value is None then don't clip along that plane if frustum.cull and clip_value is not None: if op == "<": verts_clipped = face_verts[:, axis] < clip_value else: verts_clipped = face_verts[:, axis] > clip_value # If all verts are clipped then face is outside the frustum faces_culled |= verts_clipped.sum(1) == 3 return faces_culled def _find_verts_intersecting_clipping_plane( face_verts: torch.Tensor, p1_face_ind: torch.Tensor, clip_value: float, perspective_correct: bool, ) -> Tuple[Tuple[Any, Any, Any, Any, Any], List[Any]]: r""" Helper function to find the vertices used to form a new triangle for case 3/case 4 faces. Given a list of triangles that are already known to intersect the clipping plane, solve for the two vertices p4 and p5 where the edges of the triangle intersects the clipping plane. p1 /\ / \ / t \ _____________p4/______\p5__________ clip_value / \ /____ \ p2 ---____\p3 Args: face_verts: An (F,3,3) tensor, where F is the number of faces in the packed representation of the Meshes, the 2nd dimension represents the 3 vertices of the face, and the 3rd dimension stores the xyz locations of each vertex. The z-coordinates must be represented in world coordinates, while the xy-coordinates may be in NDC/screen coordinates (i.e. after projection). p1_face_ind: A tensor of shape (N,) with values in the range of 0 to 2. In each case 3/case 4 triangle, two vertices are on the same side of the clipping plane and the 3rd is on the other side. p1_face_ind stores the index of the vertex that is not on the same side as any other vertex in the triangle. clip_value: Float, the z-value defining where to clip the triangle. perspective_correct: Bool, Should be set to true if a perspective camera was used and xy-coordinates of face_verts_unclipped are in NDC/screen coordinates. Returns: A 2-tuple p: (p1, p2, p3, p4, p5)) p_barycentric (p1_bary, p2_bary, p3_bary, p4_bary, p5_bary) Each of p1...p5 is an (F,3) tensor of the xyz locations of the 5 points in the diagram above for case 3/case 4 faces. Each p1_bary...p5_bary is an (F, 3) tensor storing the barycentric weights used to encode p1...p5 in terms of the the original unclipped triangle. """ # Let T be number of triangles in face_verts (note that these correspond to the subset # of case 1 or case 2 triangles). p1_face_ind, p2_face_ind, and p3_face_ind are (T) # tensors with values in the range of 0 to 2. p1_face_ind stores the index of the # vertex that is not on the same side as any other vertex in the triangle, and # p2_face_ind and p3_face_ind are the indices of the other two vertices preserving # the same counterclockwise or clockwise ordering T = face_verts.shape[0] p2_face_ind = torch.remainder(p1_face_ind + 1, 3) p3_face_ind = torch.remainder(p1_face_ind + 2, 3) # p1, p2, p3 are (T, 3) tensors storing the corresponding (x, y, z) coordinates # of p1_face_ind, p2_face_ind, p3_face_ind # pyre-ignore[16] p1 = face_verts.gather(1, p1_face_ind[:, None, None].expand(-1, -1, 3)).squeeze(1) p2 = face_verts.gather(1, p2_face_ind[:, None, None].expand(-1, -1, 3)).squeeze(1) p3 = face_verts.gather(1, p3_face_ind[:, None, None].expand(-1, -1, 3)).squeeze(1) ################################## # Solve for intersection point p4 ################################## # p4 is a (T, 3) tensor is the point on the segment between p1 and p2 that # intersects the clipping plane. # Solve for the weight w2 such that p1.z*(1-w2) + p2.z*w2 = clip_value. # Then interpolate p4 = p1*(1-w2) + p2*w2 where it is assumed that z-coordinates # are expressed in world coordinates (since we want to clip z in world coordinates). w2 = (p1[:, 2] - clip_value) / (p1[:, 2] - p2[:, 2]) p4 = p1 * (1 - w2[:, None]) + p2 * w2[:, None] if perspective_correct: # It is assumed that all z-coordinates are in world coordinates (not NDC # coordinates), while x and y coordinates may be in NDC/screen coordinates. # If x and y are in NDC/screen coordinates and a projective transform was used # in a perspective camera, then we effectively want to: # 1. Convert back to world coordinates (by multiplying by z) # 2. Interpolate using w2 # 3. Convert back to NDC/screen coordinates (by dividing by the new z=clip_value) p1_world = p1[:, :2] * p1[:, 2:3] p2_world = p2[:, :2] * p2[:, 2:3] p4[:, :2] = (p1_world * (1 - w2[:, None]) + p2_world * w2[:, None]) / clip_value ################################## # Solve for intersection point p5 ################################## # p5 is a (T, 3) tensor representing the point on the segment between p1 and p3 that # intersects the clipping plane. # Solve for the weight w3 such that p1.z * (1-w3) + p2.z * w3 = clip_value, # and then interpolate p5 = p1 * (1-w3) + p3 * w3 w3 = (p1[:, 2] - clip_value) / (p1[:, 2] - p3[:, 2]) w3 = w3.detach() p5 = p1 * (1 - w3[:, None]) + p3 * w3[:, None] if perspective_correct: # Again if using a perspective camera, convert back to world coordinates # interpolate and convert back p1_world = p1[:, :2] * p1[:, 2:3] p3_world = p3[:, :2] * p3[:, 2:3] p5[:, :2] = (p1_world * (1 - w3[:, None]) + p3_world * w3[:, None]) / clip_value # Set the barycentric coordinates of p1,p2,p3,p4,p5 in terms of the original # unclipped triangle in face_verts. T_idx = torch.arange(T, device=face_verts.device) p_barycentric = [torch.zeros((T, 3), device=face_verts.device) for i in range(5)] p_barycentric[0][(T_idx, p1_face_ind)] = 1 p_barycentric[1][(T_idx, p2_face_ind)] = 1 p_barycentric[2][(T_idx, p3_face_ind)] = 1 p_barycentric[3][(T_idx, p1_face_ind)] = 1 - w2 p_barycentric[3][(T_idx, p2_face_ind)] = w2 p_barycentric[4][(T_idx, p1_face_ind)] = 1 - w3 p_barycentric[4][(T_idx, p3_face_ind)] = w3 p = (p1, p2, p3, p4, p5) return p, p_barycentric ################### # Main Entry point ################### def clip_faces( face_verts_unclipped: torch.Tensor, mesh_to_face_first_idx: torch.Tensor, num_faces_per_mesh: torch.Tensor, frustum: ClipFrustum, ) -> ClippedFaces: """ Clip a mesh to the portion contained within a view frustum and with z > z_clip_value. There are two types of clipping: 1) Cull triangles that are completely outside the view frustum. This is purely to save computation by reducing the number of triangles that need to be rasterized. 2) Clip triangles into the portion of the triangle where z > z_clip_value. The clipped region may be a quadrilateral, which results in splitting a triangle into two triangles. This does not save computation, but is necessary to correctly rasterize using perspective cameras for triangles that pass through z <= 0, because NDC/screen coordinates go to infinity at z=0. Args: face_verts_unclipped: An (F, 3, 3) tensor, where F is the number of faces in the packed representation of Meshes, the 2nd dimension represents the 3 vertices of the triangle, and the 3rd dimension stores the xyz locations of each vertex. The z-coordinates must be represented in world coordinates, while the xy-coordinates may be in NDC/screen coordinates mesh_to_face_first_idx: an tensor of shape (N,), where N is the number of meshes in the batch. The ith element stores the index into face_verts_unclipped of the first face of the ith mesh. num_faces_per_mesh: a tensor of shape (N,) storing the number of faces in each mesh. frustum: a ClipFrustum object defining the frustum used to cull faces. Returns: clipped_faces: ClippedFaces object storing a clipped version of the Meshes along with tensors that can be used to convert barycentric coordinates returned by rasterization of the clipped meshes into a barycentric coordinates for the unclipped meshes. """ F = face_verts_unclipped.shape[0] device = face_verts_unclipped.device # Triangles completely outside the view frustum will be culled # faces_culled is of shape (F, ) faces_culled = _get_culled_faces(face_verts_unclipped, frustum) # Triangles that are partially behind the z clipping plane will be clipped to # smaller triangles z_clip_value = frustum.z_clip_value perspective_correct = frustum.perspective_correct if z_clip_value is not None: # (F, 3) tensor (where F is the number of triangles) marking whether each vertex # in a triangle is behind the clipping plane faces_clipped_verts = face_verts_unclipped[:, :, 2] < z_clip_value # (F) dim tensor containing the number of clipped vertices in each triangle faces_num_clipped_verts = faces_clipped_verts.sum(1) else: faces_num_clipped_verts = torch.zeros([F], device=device) # If no triangles need to be clipped or culled, avoid unnecessary computation # and return early if faces_num_clipped_verts.sum().item() == 0 and faces_culled.sum().item() == 0: return ClippedFaces( face_verts=face_verts_unclipped, mesh_to_face_first_idx=mesh_to_face_first_idx, num_faces_per_mesh=num_faces_per_mesh, ) ##################################################################################### # Classify faces into the 4 relevant cases: # 1) The triangle is completely in front of the clipping plane (it is left # unchanged) # 2) The triangle is completely behind the clipping plane (it is culled) # 3) The triangle has exactly two vertices behind the clipping plane (it is # clipped into a smaller triangle) # 4) The triangle has exactly one vertex behind the clipping plane (it is clipped # into a smaller quadrilateral and split into two triangles) ##################################################################################### # pyre-ignore[16]: faces_unculled = ~faces_culled # Case 1: no clipped verts or culled faces cases1_unclipped = (faces_num_clipped_verts == 0) & faces_unculled case1_unclipped_idx = cases1_unclipped.nonzero(as_tuple=True)[0] # Case 2: all verts clipped case2_unclipped = (faces_num_clipped_verts == 3) | faces_culled # Case 3: two verts clipped case3_unclipped = (faces_num_clipped_verts == 2) & faces_unculled case3_unclipped_idx = case3_unclipped.nonzero(as_tuple=True)[0] # Case 4: one vert clipped case4_unclipped = (faces_num_clipped_verts == 1) & faces_unculled case4_unclipped_idx = case4_unclipped.nonzero(as_tuple=True)[0] # faces_unclipped_to_clipped_idx is an (F) dim tensor storing the index of each # face to the corresponding face in face_verts_clipped. # Each case 2 triangle will be culled (deleted from face_verts_clipped), # while each case 4 triangle will be split into two smaller triangles # (replaced by two consecutive triangles in face_verts_clipped) # case2_unclipped is an (F,) dim 0/1 tensor of all the case2 faces # case4_unclipped is an (F,) dim 0/1 tensor of all the case4 faces faces_delta = case4_unclipped.int() - case2_unclipped.int() # faces_delta_cum gives the per face change in index. Faces which are # clipped in the original mesh are mapped to the closest non clipped face # in face_verts_clipped (this doesn't matter as they are not used # during rasterization anyway). faces_delta_cum = faces_delta.cumsum(0) - faces_delta delta = 1 + case4_unclipped.int() - case2_unclipped.int() # pyre-ignore[16] faces_unclipped_to_clipped_idx = delta.cumsum(0) - delta ########################################### # Allocate tensors for the output Meshes. # These will then be filled in for each case. ########################################### F_clipped = ( F + faces_delta_cum[-1].item() + faces_delta[-1].item() ) # Total number of faces in the new Meshes face_verts_clipped = torch.zeros( (F_clipped, 3, 3), dtype=face_verts_unclipped.dtype, device=device ) faces_clipped_to_unclipped_idx = torch.zeros( [F_clipped], dtype=torch.int64, device=device ) # Update version of mesh_to_face_first_idx and num_faces_per_mesh applicable to # face_verts_clipped mesh_to_face_first_idx_clipped = faces_unclipped_to_clipped_idx[ mesh_to_face_first_idx ] F_clipped_t = torch.full([1], F_clipped, dtype=torch.int64, device=device) num_faces_next = torch.cat((mesh_to_face_first_idx_clipped[1:], F_clipped_t)) num_faces_per_mesh_clipped = num_faces_next - mesh_to_face_first_idx_clipped ################# Start Case 1 ######################################## # Case 1: Triangles are fully visible, copy unchanged triangles into the # appropriate position in the new list of faces case1_clipped_idx = faces_unclipped_to_clipped_idx[case1_unclipped_idx] face_verts_clipped[case1_clipped_idx] = face_verts_unclipped[case1_unclipped_idx] faces_clipped_to_unclipped_idx[case1_clipped_idx] = case1_unclipped_idx # If no triangles need to be clipped but some triangles were culled, avoid # unnecessary clipping computation if case3_unclipped_idx.shape[0] + case4_unclipped_idx.shape[0] == 0: return ClippedFaces( face_verts=face_verts_clipped, mesh_to_face_first_idx=mesh_to_face_first_idx_clipped, num_faces_per_mesh=num_faces_per_mesh_clipped, faces_clipped_to_unclipped_idx=faces_clipped_to_unclipped_idx, ) ################# End Case 1 ########################################## ################# Start Case 3 ######################################## # Case 3: exactly two vertices are behind the camera, clipping the triangle into a # triangle. In the diagram below, we clip the bottom part of the triangle, and add # new vertices p4 and p5 by intersecting with the clipping plane. The updated # triangle is the triangle between p4, p1, p5 # # p1 (unclipped vertex) # /\ # / \ # / t \ # _____________p4/______\p5__________ clip_value # xxxxxxxxxxxxxx/ \xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxx/____ \xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx p2 xxxx---____\p3 xxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx faces_case3 = face_verts_unclipped[case3_unclipped_idx] # index (0, 1, or 2) of the vertex in front of the clipping plane p1_face_ind = torch.where(~faces_clipped_verts[case3_unclipped_idx])[1] # Solve for the points p4, p5 that intersect the clipping plane p, p_barycentric = _find_verts_intersecting_clipping_plane( faces_case3, p1_face_ind, z_clip_value, perspective_correct ) p1, _, _, p4, p5 = p p1_barycentric, _, _, p4_barycentric, p5_barycentric = p_barycentric # Store clipped triangle case3_clipped_idx = faces_unclipped_to_clipped_idx[case3_unclipped_idx] t_barycentric = torch.stack((p4_barycentric, p5_barycentric, p1_barycentric), 2) face_verts_clipped[case3_clipped_idx] = torch.stack((p4, p5, p1), 1) faces_clipped_to_unclipped_idx[case3_clipped_idx] = case3_unclipped_idx ################# End Case 3 ########################################## ################# Start Case 4 ######################################## # Case 4: exactly one vertex is behind the camera, clip the triangle into a # quadrilateral. In the diagram below, we clip the bottom part of the triangle, # and add new vertices p4 and p5 by intersecting with the cliiping plane. The # unclipped region is a quadrilateral, which is split into two triangles: # t1: p4, p2, p5 # t2: p5, p2, p3 # # p3_____________________p2 # \ __--/ # \ t2 __-- / # \ __-- t1 / # ______________p5\__--_________/p4_________clip_value # xxxxxxxxxxxxxxxxx\ /xxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxx\ /xxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxx\ /xxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxx\ /xxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxx\ /xxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxx\ /xxxxxxxxxxxxxxxxxxxxx # p1 (clipped vertex) faces_case4 = face_verts_unclipped[case4_unclipped_idx] # index (0, 1, or 2) of the vertex behind the clipping plane p1_face_ind = torch.where(faces_clipped_verts[case4_unclipped_idx])[1] # Solve for the points p4, p5 that intersect the clipping plane p, p_barycentric = _find_verts_intersecting_clipping_plane( faces_case4, p1_face_ind, z_clip_value, perspective_correct ) _, p2, p3, p4, p5 = p _, p2_barycentric, p3_barycentric, p4_barycentric, p5_barycentric = p_barycentric # Store clipped triangles case4_clipped_idx = faces_unclipped_to_clipped_idx[case4_unclipped_idx] face_verts_clipped[case4_clipped_idx] = torch.stack((p4, p2, p5), 1) face_verts_clipped[case4_clipped_idx + 1] = torch.stack((p5, p2, p3), 1) t1_barycentric = torch.stack((p4_barycentric, p2_barycentric, p5_barycentric), 2) t2_barycentric = torch.stack((p5_barycentric, p2_barycentric, p3_barycentric), 2) faces_clipped_to_unclipped_idx[case4_clipped_idx] = case4_unclipped_idx faces_clipped_to_unclipped_idx[case4_clipped_idx + 1] = case4_unclipped_idx ##################### End Case 4 ######################### # Triangles that were clipped (case 3 & case 4) will require conversion of # barycentric coordinates from being in terms of the smaller clipped triangle to in terms # of the original big triangle. If there are T clipped triangles, # barycentric_conversion is a (T, 3, 3) tensor, where barycentric_conversion[i, :, k] # stores the barycentric weights in terms of the world coordinates of the original # (big) triangle for the kth vertex in the clipped (small) triangle. If our # rasterizer then expresses some NDC coordinate in terms of barycentric # world coordinates for the clipped (small) triangle as alpha_clipped[i,:], # alpha_unclipped[i, :] = barycentric_conversion[i, :, :]*alpha_clipped[i, :] barycentric_conversion = torch.cat((t_barycentric, t1_barycentric, t2_barycentric)) # faces_clipped_to_conversion_idx is an (F_clipped,) shape tensor mapping each output # face to the applicable row of barycentric_conversion (or set to -1 if conversion is # not needed) faces_to_convert_idx = torch.cat( (case3_clipped_idx, case4_clipped_idx, case4_clipped_idx + 1), 0 ) barycentric_idx = torch.arange( barycentric_conversion.shape[0], dtype=torch.int64, device=device ) faces_clipped_to_conversion_idx = torch.full( [F_clipped], -1, dtype=torch.int64, device=device ) faces_clipped_to_conversion_idx[faces_to_convert_idx] = barycentric_idx # clipped_faces_quadrilateral_ind is an (F_clipped) dim tensor # For case 4 clipped triangles (where a big triangle is split in two smaller triangles), # store the index of the neighboring clipped triangle. # This will be needed because if the soft rasterizer includes both # triangles in the list of top K nearest triangles, we # should only use the one with the smaller distance. clipped_faces_neighbor_idx = torch.full( [F_clipped], -1, dtype=torch.int64, device=device ) clipped_faces_neighbor_idx[case4_clipped_idx] = case4_clipped_idx + 1 clipped_faces_neighbor_idx[case4_clipped_idx + 1] = case4_clipped_idx clipped_faces = ClippedFaces( face_verts=face_verts_clipped, mesh_to_face_first_idx=mesh_to_face_first_idx_clipped, num_faces_per_mesh=num_faces_per_mesh_clipped, faces_clipped_to_unclipped_idx=faces_clipped_to_unclipped_idx, barycentric_conversion=barycentric_conversion, faces_clipped_to_conversion_idx=faces_clipped_to_conversion_idx, clipped_faces_neighbor_idx=clipped_faces_neighbor_idx, ) return clipped_faces def convert_clipped_rasterization_to_original_faces( pix_to_face_clipped, bary_coords_clipped, clipped_faces: ClippedFaces ) -> Tuple[torch.Tensor, torch.Tensor]: """ Convert rasterization Fragments (expressed as pix_to_face_clipped, bary_coords_clipped, dists_clipped) of clipped Meshes computed using clip_faces() to the corresponding rasterization Fragments where barycentric coordinates and face indices are in terms of the original unclipped Meshes. The distances are handled in the rasterizer C++/CUDA kernels (i.e. for Cases 1/3 the distance can be used directly and for Case 4 triangles the distance of the pixel to the closest of the two subdivided triangles is used). Args: pix_to_face_clipped: LongTensor of shape (N, image_size, image_size, faces_per_pixel) giving the indices of the nearest faces at each pixel, sorted in ascending z-order. Concretely ``pix_to_face_clipped[n, y, x, k] = f`` means that ``faces_verts_clipped[f]`` is the kth closest face (in the z-direction) to pixel (y, x). Pixels that are hit by fewer than faces_per_pixel are padded with -1. bary_coords_clipped: FloatTensor of shape (N, image_size, image_size, faces_per_pixel, 3) giving the barycentric coordinates in world coordinates of the nearest faces at each pixel, sorted in ascending z-order. Concretely, if ``pix_to_face_clipped[n, y, x, k] = f`` then ``[w0, w1, w2] = bary_coords_clipped[n, y, x, k]`` gives the barycentric coords for pixel (y, x) relative to the face defined by ``unproject(face_verts_clipped[f])``. Pixels hit by fewer than faces_per_pixel are padded with -1. clipped_faces: an instance of ClippedFaces class giving the auxillary variables for converting rasterization outputs from clipped to unclipped Meshes. Returns: 3-tuple: (pix_to_face_unclipped, bary_coords_unclipped, dists_unclipped) that have the same definition as (pix_to_face_clipped, bary_coords_clipped, dists_clipped) except that they pertain to faces_verts_unclipped instead of faces_verts_clipped (i.e the original meshes as opposed to the modified meshes) """ faces_clipped_to_unclipped_idx = clipped_faces.faces_clipped_to_unclipped_idx # If no clipping then return inputs if ( faces_clipped_to_unclipped_idx is None or faces_clipped_to_unclipped_idx.numel() == 0 ): return pix_to_face_clipped, bary_coords_clipped device = pix_to_face_clipped.device # Convert pix_to_face indices to now refer to the faces in the unclipped Meshes. # Init empty tensor to fill in all the background values which have pix_to_face=-1. empty = torch.full(pix_to_face_clipped.shape, -1, device=device, dtype=torch.int64) pix_to_face_unclipped = torch.where( pix_to_face_clipped != -1, faces_clipped_to_unclipped_idx[pix_to_face_clipped], empty, ) # For triangles that were clipped into smaller triangle(s), convert barycentric # coordinates from being in terms of the clipped triangle to being in terms of the # original unclipped triangle. # barycentric_conversion is a (T, 3, 3) tensor such that # alpha_unclipped[i, :] = barycentric_conversion[i, :, :]*alpha_clipped[i, :] barycentric_conversion = clipped_faces.barycentric_conversion # faces_clipped_to_conversion_idx is an (F_clipped,) shape tensor mapping each output # face to the applicable row of barycentric_conversion (or set to -1 if conversion is # not needed) faces_clipped_to_conversion_idx = clipped_faces.faces_clipped_to_conversion_idx if barycentric_conversion is not None: bary_coords_unclipped = bary_coords_clipped.clone() # Select the subset of faces that require conversion, where N is the sum # number of case3/case4 triangles that are in the closest k triangles to some # rasterized pixel. pix_to_conversion_idx = torch.where( pix_to_face_clipped != -1, faces_clipped_to_conversion_idx[pix_to_face_clipped], empty, ) faces_to_convert_mask = pix_to_conversion_idx != -1 N = faces_to_convert_mask.sum().item() # Expand to (N, H, W, K, 3) to be the same shape as barycentric coordinates faces_to_convert_mask_expanded = faces_to_convert_mask[:, :, :, :, None].expand( -1, -1, -1, -1, 3 ) # An (N,) dim tensor of indices into barycentric_conversion conversion_idx_subset = pix_to_conversion_idx[faces_to_convert_mask] # An (N, 3, 1) tensor of barycentric coordinates in terms of the clipped triangles bary_coords_clipped_subset = bary_coords_clipped[faces_to_convert_mask_expanded] bary_coords_clipped_subset = bary_coords_clipped_subset.reshape((N, 3, 1)) # An (N, 3, 3) tensor storing matrices to convert from clipped to unclipped # barycentric coordinates bary_conversion_subset = barycentric_conversion[conversion_idx_subset] # An (N, 3, 1) tensor of barycentric coordinates in terms of the unclipped triangle bary_coords_unclipped_subset = bary_conversion_subset.bmm( bary_coords_clipped_subset ) bary_coords_unclipped_subset = bary_coords_unclipped_subset.reshape([N * 3]) bary_coords_unclipped[ faces_to_convert_mask_expanded ] = bary_coords_unclipped_subset # dists for case 4 faces will be handled in the rasterizer # so no need to modify them here. else: bary_coords_unclipped = bary_coords_clipped return pix_to_face_unclipped, bary_coords_unclipped
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
29743da945b32bb253a1d188218d8518c97ca081
b3e385806fd08ecdf4e4f9e57a03593f76986f6d
/main.py
70dea63c8f25c9d75b85204fc6b0889f453e98db
[ "MIT" ]
permissive
AnweshCR7/MelanomaDetection
d70f762883a9f35aad4ed4467fc7d50be4dc5caa
186707833f9dc88b799c3aa8613e53ef762e3ad1
refs/heads/main
2023-02-09T05:57:55.652883
2021-01-01T16:10:33
2021-01-01T16:10:33
322,903,614
2
0
null
null
null
null
UTF-8
Python
false
false
4,676
py
import os import torch import numpy as np import pandas as pd import albumentations import config from model import SEResnext50_32x4d from sklearn import metrics from dataset import ClassificationDataset from engine import Engine from early_stopping import EarlyStopping import ssl; ssl._create_default_https_context = ssl._create_stdlib_context def train(fold): training_data_path = config.DATA_DIR + "train" df = pd.read_csv(config.CSV_PATH + "train_folds.csv") device = config.DEVICE epochs = config.EPOCHS train_bs = config.TRAIN_BATCH_SIZE valid_bs = config.EVAL_BATCH_SIZE # Train images -> images except the one in current fold # Test images -> images in current fold df_train = df[df.kfold != fold].reset_index(drop=True) df_valid = df[df.kfold == fold].reset_index(drop=True) model = SEResnext50_32x4d(pretrained="imagenet") model.to(device) # Known std and mean for image norm mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) # Define Image Augmentations train_aug = albumentations.Compose( [ albumentations.Normalize(mean, std, max_pixel_value=255.0, always_apply=True) # albumentations.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.1, rotate_limit=15), # albumentations.Flip(p=0.5) ] ) valid_aug = albumentations.Compose( [ albumentations.Normalize(mean, std, max_pixel_value=255.0, always_apply=True) ] ) train_images = df_train.image_name.values.tolist() train_images = [os.path.join(training_data_path, i + ".png") for i in train_images] train_targets = df_train.target.values valid_images = df_valid.image_name.values.tolist() valid_images = [os.path.join(training_data_path, i + ".png") for i in valid_images] valid_targets = df_valid.target.values train_dataset = ClassificationDataset( image_paths=train_images, targets=train_targets, resize=None, augmentations=train_aug, ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=train_bs, shuffle=True, num_workers=config.NUM_WORKERS ) valid_dataset = ClassificationDataset( image_paths=valid_images, targets=valid_targets, resize=None, augmentations=valid_aug, ) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=valid_bs, shuffle=False, num_workers=config.NUM_WORKERS ) optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, patience=3, threshold=0.001, mode="max" ) # Initialize the Engine engine = Engine(model=model, optimizer=optimizer, device=device, scheduler=scheduler) es = EarlyStopping(patience=5, mode="max") for epoch in range(epochs): train_loss = engine.train(train_loader) predictions, valid_loss = engine.evaluate(valid_loader) predictions = np.vstack((predictions)).ravel() auc = metrics.roc_auc_score(valid_targets, predictions) print(f"Epoch = {epoch}, AUC = {auc}") scheduler.step(auc) es(auc, model, model_path=f"model_fold_{fold}.bin") if es.early_stop: print("Early stopping") break def predict(fold): test_data_path = config.DATA_DIR + "test" df = pd.read_csv(config.CSV_PATH + "test.csv") device = "cuda" model_path=f"model_fold_{fold}.bin" mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) aug = albumentations.Compose( [ albumentations.Normalize(mean, std, max_pixel_value=255.0, always_apply=True) ] ) images = df.image_name.values.tolist() images = [os.path.join(test_data_path, i + ".png") for i in images] targets = np.zeros(len(images)) test_dataset = ClassificationDataset( image_paths=images, targets=targets, resize=None, augmentations=aug, ) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=16, shuffle=False, num_workers=config.NUM_WORKERS ) model = SEResnext50_32x4d(pretrained=None) model.load_state_dict(torch.load(model_path)) model.to(device) # Okay to pass None to optimizer for prediction step engine = Engine(model=model, optimizer=None, device=device) predictions = engine.predict(test_loader) predictions = np.vstack(predictions).ravel() return predictions if __name__ == '__main__': # num_folds = 10 # for fold in range(num_folds): # train(fold) train(0)
[ "anwesh.marwade@beyondsports.nl" ]
anwesh.marwade@beyondsports.nl
1da97c6af4872548bebbafaac8f989b1d0ff3de2
4d6431b09b5db7c3cb93c047a8dc275d94e63bdb
/miscellaneous/tiny-curve.py
c6c3e6e2dd7e87809d5df233d4af05fd8c4d4aff
[]
no_license
phm87/bitp0wn
8e0c8b3f0601fbaaa228a78f87546341989d7419
cb8d863ad0e4ae3a239593dcb9eecfbfe159127c
refs/heads/master
2021-10-27T19:40:50.666876
2019-04-19T06:43:00
2019-04-19T06:43:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,891
py
#!/usr/bin/env python import random """ modular inverse """ def inv(a, n): if a == 0: return 0 lm, hm = 1, 0 low, high = a % n, n while low > 1: r = high//low nm, new = hm-lm*r, high-low*r lm, low, hm, high = nm, new, lm, low return lm % n """ Jacobian """ def to_jacobian(p): o = (p[0], p[1], 1) return o def from_jacobian(p, P): z = inv(p[2], P) return ((p[0] * z**2) % P, (p[1] * z**3) % P) def jacobian_double(p, P): if not p[1]: return (0, 0, 0) ysq = (p[1] ** 2) % P S = (4 * p[0] * ysq) % P M = (3 * p[0] ** 2 + A * p[2] ** 4) % P nx = (M**2 - 2 * S) % P ny = (M * (S - nx) - 8 * ysq ** 2) % P nz = (2 * p[1] * p[2]) % P return (nx, ny, nz) def jacobian_add(p, q, P): if not p[1]: return q if not q[1]: return p U1 = (p[0] * q[2] ** 2) % P U2 = (q[0] * p[2] ** 2) % P S1 = (p[1] * q[2] ** 3) % P S2 = (q[1] * p[2] ** 3) % P if U1 == U2: if S1 != S2: return (0, 0, 1) return jacobian_double(p, P) H = U2 - U1 R = S2 - S1 H2 = (H * H) % P H3 = (H * H2) % P U1H2 = (U1 * H2) % P nx = (R ** 2 - H3 - 2 * U1H2) % P ny = (R * (U1H2 - nx) - S1 * H3) % P nz = (H * p[2] * q[2]) % P return (nx, ny, nz) def jacobian_multiply(a, n, P): if a[1] == 0 or n == 0: return (0, 0, 1) if n == 1: return a if (n % 2) == 0: return jacobian_double(jacobian_multiply(a, n//2, P), P) if (n % 2) == 1: return jacobian_add(jacobian_double(jacobian_multiply(a, n//2, P), P), a, P) """ Elliptic curve functions """ def fast_add(a, b, P): return from_jacobian(jacobian_add(to_jacobian(a), to_jacobian(b), P), P) def fast_substract((x1, y1), (x2, y2), P): return fast_add((x1, y1), (x2, -y2), P) def fast_multiply(a, n, P): return from_jacobian(jacobian_multiply(to_jacobian(a), n, P), P) """ Legendre symbol Compute Legendre symbol (a|p) using Euler's criterion. p is a prime, a is relatively prime to p (if p divides a, then a|p = 0) Returns 1 if a has a square root modulo p, -1 otherwise. """ def legendre_symbol(a, p): ls = pow(a, (p - 1) / 2, p) return -1 if ls == p - 1 else ls """ Tonelli-Shanks algorithm Find a square root of n modulo p. Solve for r in a congruence of the form r^2 = n (mod p), where p is a prime """ def tonnelli_shanks(a, p): # Partition p-1 to s * 2^e for an odd s (i.e. reduce all the powers of 2 from p-1) s = p - 1 e = 0 while s % 2 == 0: s /= 2 e += 1 # Find some 'n' with a legendre symbol n|p = -1. n = 2 while legendre_symbol(n, p) != -1: n += 1 # x is a guess of the square root that gets better with each iteration. # b is the "fudge factor" - by how much we're off with the guess. # The invariant x^2 = ab (mod p) is maintained throughout the loop. # g is used for successive powers of n to update both a and b # r is the exponent - decreases with each update x = pow(a, (s + 1) / 2, p) b = pow(a, s, p) g = pow(n, s, p) r = e while True: t = b m = 0 for m in xrange(r): if t == 1: break t = pow(t, 2, p) if m == 0: return x gs = pow(g, 2 ** (r - m - 1), p) g = (gs * gs) % p x = (x * gs) % p b = (b * g) % p r = m """ Newton's method to compute sqrt """ def isqrt(n): x = n y = (x + 1) // 2 while y < x: x = y y = (x + n // x) // 2 return x """ Deterministic variant of the Miller-Rabin primality test See http://miller-rabin.appspot.com/ for more informations """ def _try_composite(a, d, n, s): if pow(a, d, n) == 1: return False for i in range(s): if pow(a, 2**i * d, n) == n-1: return False return True # n is definitely composite def is_prime(n, _precision_for_huge_n=40): if n in _known_primes: return True if any((n % p) == 0 for p in _known_primes) or n in (0, 1): return False d, s = n - 1, 0 while not d % 2: d, s = d >> 1, s + 1 # Returns exact according to http://primes.utm.edu/prove/prove2_3.html if n < 1373653: return not any(_try_composite(a, d, n, s) for a in (2, 3)) if n < 25326001: return not any(_try_composite(a, d, n, s) for a in (2, 3, 5)) if n < 118670087467: if n == 3215031751: return False return not any(_try_composite(a, d, n, s) for a in (2, 3, 5, 7)) if n < 2152302898747: return not any(_try_composite(a, d, n, s) for a in (2, 3, 5, 7, 11)) if n < 3474749660383: return not any(_try_composite(a, d, n, s) for a in (2, 3, 5, 7, 11, 13)) if n < 341550071728321: return not any(_try_composite(a, d, n, s) for a in (2, 3, 5, 7, 11, 13, 17)) # otherwise return not any(_try_composite(a, d, n, s) for a in _known_primes[:_precision_for_huge_n]) _known_primes = [2, 3] _known_primes += [x for x in range(5, 1000, 2) if is_prime(x)] """ Prime generation """ def generate_prime(nbits=1024): p = random.getrandbits(nbits) while p < 2**(nbits-1) or not is_prime(p, 20): p = random.getrandbits(nbits) return p """ Curve generation Generate a curve defined over a Weierstrass function """ # Generate P P = generate_prime(32) print("P = {0}".format(P)) # Generate A & B while True: A = random.randint(0, P) B = random.randint(0, P) if (4*A*A*A + 27*B*B) % P != 0: break; print("A = {0}".format(A)) print("B = {0}".format(B)) while True: # Generate G, a random point on the curve while True: x = random.randint(0, P) xcubedaxb = (x*x*x+A*x+B) % P if legendre_symbol(xcubedaxb, P) == 1: if P % 4 == 3: y = int(pow(xcubedaxb, (P+1)//4, P)) else: y = int(tonnelli_shanks(xcubedaxb, P)) assert (y**2 - xcubedaxb) % P == 0 G = (x, y) break; # Calculate order N from Hasse theorem and bsgs algorithm sqrt_p = isqrt(P) min_m, max_m = P + 1 - 2 * sqrt_p, P + 1 + 2 * sqrt_p steps = isqrt(max_m - min_m) m_candidates = [] O = (0, 0) baby_steps = {} for x in range(steps): baby_steps[O] = x O = fast_add(O, G, P) O = fast_multiply(G, min_m, P) O_ADDER = fast_multiply(G, steps, P) for factor_giant in range(steps): substract_res = fast_substract((0,0), O, P) if substract_res in baby_steps: factor_baby = baby_steps[substract_res] m_candidates.append((factor_giant * steps) + factor_baby + min_m) O = fast_add(O, O_ADDER, P) if len(m_candidates) == 1: print("G = {0}".format(G)) print("N = {0}".format(m_candidates[0])) break;
[ "mvincenti@umi.us" ]
mvincenti@umi.us
d0d587e1b4b9469f3ac1c1243ce87a1f15209c52
a63f1df096b93689ef96344ae75d6c2bb940bd78
/case/data_test.py
e3659eb0dd23c71882dc1f5f949fb3a80a76da2c
[]
no_license
Remoterwls/-Selenium3-Python3-Web-
9c292f881da30b672785bc7161a2abde42233b40
52681b5a7b9d0cb62248f7885d003c125b3c9f02
refs/heads/master
2021-09-25T21:49:46.538240
2018-10-26T01:29:57
2018-10-26T01:29:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
#coding=utf-8 import ddt import unittest @ddt.ddt class DataTest(unittest.TestCase): def setUp(self): print("这是个setUp") def tearDown(self): print("这是个tearDown") @ddt.data( [1,2], [3,4], [5,6] ) @ddt.unpack def test_add(self,a,b): print(a+b) if __name__ == '__main__': unittest.main()
[ "lirui2721@126.com" ]
lirui2721@126.com
ea4ee0db551dfcfbf277aae55fb16ea53fd98a8d
b183c98f7749a015ca420940be85f8af6c004bb3
/easy/724.py
169275e02d0543c1aba327ee320b67f1951cae11
[ "Apache-2.0" ]
permissive
oneTaken/leetcode
b8cfa7e0ff42de2eaef8b64cceef4f183006612e
f9357d839ac8fa6333b0d7eeb2028ba28a63764c
refs/heads/master
2020-03-12T10:08:12.200753
2018-05-05T05:12:24
2018-05-05T05:12:24
130,566,847
0
0
null
null
null
null
UTF-8
Python
false
false
1,427
py
# solution1 # exceed time 732/741 class Solution: def pivotIndex(self, nums): """ :type nums: List[int] :rtype: int """ for i in range(len(nums)): if sum(nums[:i]) == sum(nums[i+1:]): return i return -1 # solution2 # exceed time 734/741 class Solution2: def pivotIndex(self, nums): """ :type nums: List[int] :rtype: int """ flag = bool(sum(nums) % 2) for i in range(len(nums)): if bool(nums[i] % 2) ^ flag: continue if sum(nums[:i]) == sum(nums[i+1:]): return i return -1 # solution3 # exceed time 740/741 class Solution3: def pivotIndex(self, nums): """ :type nums: List[int] :rtype: int """ total = sum(nums) flag = bool(total % 2) for i in range(len(nums)): if bool(nums[i] % 2) ^ flag: continue if sum(nums[:i]) * 2 == total - nums[i]: return i return -1 # solution4 class Solution4: def pivotIndex(self, nums): """ :type nums: List[int] :rtype: int """ left = 0 right = sum(nums) for i in range(len(nums)): right -= nums[i] if left == right: return i left += nums[i] return -1
[ "pengxiaoping1993@gmail.com" ]
pengxiaoping1993@gmail.com
ab6c6b2f9bf5e3b2a925d98eb855913d4591f5d8
d200be757bb662cce3bb29a2302cf3356e9452c7
/BOJ/BOJ_1260.py
32f30c7b3d224a831be93216a59f33e32777a2ec
[]
no_license
Jun0414/Algorithm
1140ce754a24e6116c40956f7a988fa30f618746
ff1782914c5a270a78c90a4a12e65daa22f8ea53
refs/heads/master
2023-07-08T23:37:41.002949
2021-08-14T14:33:58
2021-08-14T14:33:58
289,309,429
0
0
null
null
null
null
UTF-8
Python
false
false
1,121
py
# 기초 그래프 기본 탐색 # 문제 1260번 DFS와 BFS # Graph Searching(그래프 탐색), DFS(깊이 우선 탐색), BFS(너비 우선 탐색) import sys from collections import deque r = sys.stdin.readline def dfs(start): print(start, end=' ') visited[start] = 1 for i in graph[start]: if visited[i] == 0: dfs(i) def bfs(start): bfs_heap = deque() bfs_heap.append(start) while bfs_heap: node = bfs_heap.popleft() if visited[node] == 0: visited[node] = 1 print(node, end=' ') for i in graph[node]: if visited[i] == 0: bfs_heap.append(i) n, m, v = map(int, r().split()) graph = [[] for _ in range(n + 1)] for _ in range(m): node1, node2 = map(int, r().split()) graph[node1].append(node2) graph[node2].append(node1) for e in graph: e.sort() visited = [0] * (n + 1) dfs(v) print() visited = [0] * (n + 1) bfs(v) # 입력 예시 # 4 5 1 # 1 2 # 1 3 # 1 4 # 2 4 # 3 4 # 5 5 3 # 5 4 # 5 2 # 1 2 # 3 4 # 3 1 # 1000 1 1000 # 999 1000 # 출력 예시 # 1 2 4 3 # 1 2 3 4 # 3 1 2 5 4 # 3 1 4 2 5 # 1000 999 # 1000 999
[ "gbwj123@naver.com" ]
gbwj123@naver.com
a6d7cefff0cfa6857c2094941486b2270c910df7
14a5f9a8c95fea365f4af0a9f6e414c3347978d4
/python/fib_tail_rec.py
ba5619bf5c7b61cd796fa2d820ebf7252392b88a
[]
no_license
carlosbazilio/lp
a61db3a37c408e9278b202d42bb1ed955aea5067
18720b45f581fdb13d4fb51c9f75f1bba4346217
refs/heads/master
2022-02-18T12:42:32.883848
2022-02-09T22:22:25
2022-02-09T22:22:25
24,647,667
6
10
null
2021-11-01T22:15:01
2014-09-30T17:18:25
C
UTF-8
Python
false
false
192
py
def fib (x): def fib_aux (x, ant, curr): if (x == 1): return ant return fib_aux (x-1, curr, ant+curr) return fib_aux (x, 0, 1) import sys print (fib(int(sys.argv[1])))
[ "carlosbazilio@gmail.com" ]
carlosbazilio@gmail.com
4feb01172bd737cfe58dbdd3b12b4c3d4d9ef263
f167dffa2f767a0419aa82bf434852069a8baeb8
/lib/youtube_dl/extractor/peertube.py
3af533925c6ad9af98b31a911048ba86fa9ca140
[ "MIT" ]
permissive
firsttris/plugin.video.sendtokodi
d634490b55149adfdcb62c1af1eb77568b8da3f5
1095c58e2bc21de4ab6fcb67a70e4f0f04febbc3
refs/heads/master
2023-08-18T10:10:39.544848
2023-08-15T17:06:44
2023-08-15T17:06:44
84,665,460
111
31
MIT
2022-11-11T08:05:21
2017-03-11T16:53:06
Python
UTF-8
Python
false
false
28,591
py
# coding: utf-8 from __future__ import unicode_literals import re from .common import InfoExtractor from ..compat import compat_str from ..utils import ( int_or_none, parse_resolution, str_or_none, try_get, unified_timestamp, url_or_none, urljoin, ) class PeerTubeIE(InfoExtractor): _INSTANCES_RE = r'''(?: # Taken from https://instances.joinpeertube.org/instances peertube\.rainbowswingers\.net| tube\.stanisic\.nl| peer\.suiri\.us| medias\.libox\.fr| videomensoif\.ynh\.fr| peertube\.travelpandas\.eu| peertube\.rachetjay\.fr| peertube\.montecsys\.fr| tube\.eskuero\.me| peer\.tube| peertube\.umeahackerspace\.se| tube\.nx-pod\.de| video\.monsieurbidouille\.fr| tube\.openalgeria\.org| vid\.lelux\.fi| video\.anormallostpod\.ovh| tube\.crapaud-fou\.org| peertube\.stemy\.me| lostpod\.space| exode\.me| peertube\.snargol\.com| vis\.ion\.ovh| videosdulib\.re| v\.mbius\.io| videos\.judrey\.eu| peertube\.osureplayviewer\.xyz| peertube\.mathieufamily\.ovh| www\.videos-libr\.es| fightforinfo\.com| peertube\.fediverse\.ru| peertube\.oiseauroch\.fr| video\.nesven\.eu| v\.bearvideo\.win| video\.qoto\.org| justporn\.cc| video\.vny\.fr| peervideo\.club| tube\.taker\.fr| peertube\.chantierlibre\.org| tube\.ipfixe\.info| tube\.kicou\.info| tube\.dodsorf\.as| videobit\.cc| video\.yukari\.moe| videos\.elbinario\.net| hkvideo\.live| pt\.tux\.tf| www\.hkvideo\.live| FIGHTFORINFO\.com| pt\.765racing\.com| peertube\.gnumeria\.eu\.org| nordenmedia\.com| peertube\.co\.uk| tube\.darfweb\.eu| tube\.kalah-france\.org| 0ch\.in| vod\.mochi\.academy| film\.node9\.org| peertube\.hatthieves\.es| video\.fitchfamily\.org| peertube\.ddns\.net| video\.ifuncle\.kr| video\.fdlibre\.eu| tube\.22decembre\.eu| peertube\.harmoniescreatives\.com| tube\.fabrigli\.fr| video\.thedwyers\.co| video\.bruitbruit\.com| peertube\.foxfam\.club| peer\.philoxweb\.be| videos\.bugs\.social| peertube\.malbert\.xyz| peertube\.bilange\.ca| libretube\.net| diytelevision\.com| peertube\.fedilab\.app| libre\.video| video\.mstddntfdn\.online| us\.tv| peertube\.sl-network\.fr| peertube\.dynlinux\.io| peertube\.david\.durieux\.family| peertube\.linuxrocks\.online| peerwatch\.xyz| v\.kretschmann\.social| tube\.otter\.sh| yt\.is\.nota\.live| tube\.dragonpsi\.xyz| peertube\.boneheadmedia\.com| videos\.funkwhale\.audio| watch\.44con\.com| peertube\.gcaillaut\.fr| peertube\.icu| pony\.tube| spacepub\.space| tube\.stbr\.io| v\.mom-gay\.faith| tube\.port0\.xyz| peertube\.simounet\.net| play\.jergefelt\.se| peertube\.zeteo\.me| tube\.danq\.me| peertube\.kerenon\.com| tube\.fab-l3\.org| tube\.calculate\.social| peertube\.mckillop\.org| tube\.netzspielplatz\.de| vod\.ksite\.de| peertube\.laas\.fr| tube\.govital\.net| peertube\.stephenson\.cc| bistule\.nohost\.me| peertube\.kajalinifi\.de| video\.ploud\.jp| video\.omniatv\.com| peertube\.ffs2play\.fr| peertube\.leboulaire\.ovh| peertube\.tronic-studio\.com| peertube\.public\.cat| peertube\.metalbanana\.net| video\.1000i100\.fr| peertube\.alter-nativ-voll\.de| tube\.pasa\.tf| tube\.worldofhauru\.xyz| pt\.kamp\.site| peertube\.teleassist\.fr| videos\.mleduc\.xyz| conf\.tube| media\.privacyinternational\.org| pt\.forty-two\.nl| video\.halle-leaks\.de| video\.grosskopfgames\.de| peertube\.schaeferit\.de| peertube\.jackbot\.fr| tube\.extinctionrebellion\.fr| peertube\.f-si\.org| video\.subak\.ovh| videos\.koweb\.fr| peertube\.zergy\.net| peertube\.roflcopter\.fr| peertube\.floss-marketing-school\.com| vloggers\.social| peertube\.iriseden\.eu| videos\.ubuntu-paris\.org| peertube\.mastodon\.host| armstube\.com| peertube\.s2s\.video| peertube\.lol| tube\.open-plug\.eu| open\.tube| peertube\.ch| peertube\.normandie-libre\.fr| peertube\.slat\.org| video\.lacaveatonton\.ovh| peertube\.uno| peertube\.servebeer\.com| peertube\.fedi\.quebec| tube\.h3z\.jp| tube\.plus200\.com| peertube\.eric\.ovh| tube\.metadocs\.cc| tube\.unmondemeilleur\.eu| gouttedeau\.space| video\.antirep\.net| nrop\.cant\.at| tube\.ksl-bmx\.de| tube\.plaf\.fr| tube\.tchncs\.de| video\.devinberg\.com| hitchtube\.fr| peertube\.kosebamse\.com| yunopeertube\.myddns\.me| peertube\.varney\.fr| peertube\.anon-kenkai\.com| tube\.maiti\.info| tubee\.fr| videos\.dinofly\.com| toobnix\.org| videotape\.me| voca\.tube| video\.heromuster\.com| video\.lemediatv\.fr| video\.up\.edu\.ph| balafon\.video| video\.ivel\.fr| thickrips\.cloud| pt\.laurentkruger\.fr| video\.monarch-pass\.net| peertube\.artica\.center| video\.alternanet\.fr| indymotion\.fr| fanvid\.stopthatimp\.net| video\.farci\.org| v\.lesterpig\.com| video\.okaris\.de| tube\.pawelko\.net| peertube\.mablr\.org| tube\.fede\.re| pytu\.be| evertron\.tv| devtube\.dev-wiki\.de| raptube\.antipub\.org| video\.selea\.se| peertube\.mygaia\.org| video\.oh14\.de| peertube\.livingutopia\.org| peertube\.the-penguin\.de| tube\.thechangebook\.org| tube\.anjara\.eu| pt\.pube\.tk| video\.samedi\.pm| mplayer\.demouliere\.eu| widemus\.de| peertube\.me| peertube\.zapashcanon\.fr| video\.latavernedejohnjohn\.fr| peertube\.pcservice46\.fr| peertube\.mazzonetto\.eu| video\.irem\.univ-paris-diderot\.fr| video\.livecchi\.cloud| alttube\.fr| video\.coop\.tools| video\.cabane-libre\.org| peertube\.openstreetmap\.fr| videos\.alolise\.org| irrsinn\.video| video\.antopie\.org| scitech\.video| tube2\.nemsia\.org| video\.amic37\.fr| peertube\.freeforge\.eu| video\.arbitrarion\.com| video\.datsemultimedia\.com| stoptrackingus\.tv| peertube\.ricostrongxxx\.com| docker\.videos\.lecygnenoir\.info| peertube\.togart\.de| tube\.postblue\.info| videos\.domainepublic\.net| peertube\.cyber-tribal\.com| video\.gresille\.org| peertube\.dsmouse\.net| cinema\.yunohost\.support| tube\.theocevaer\.fr| repro\.video| tube\.4aem\.com| quaziinc\.com| peertube\.metawurst\.space| videos\.wakapo\.com| video\.ploud\.fr| video\.freeradical\.zone| tube\.valinor\.fr| refuznik\.video| pt\.kircheneuenburg\.de| peertube\.asrun\.eu| peertube\.lagob\.fr| videos\.side-ways\.net| 91video\.online| video\.valme\.io| video\.taboulisme\.com| videos-libr\.es| tv\.mooh\.fr| nuage\.acostey\.fr| video\.monsieur-a\.fr| peertube\.librelois\.fr| videos\.pair2jeux\.tube| videos\.pueseso\.club| peer\.mathdacloud\.ovh| media\.assassinate-you\.net| vidcommons\.org| ptube\.rousset\.nom\.fr| tube\.cyano\.at| videos\.squat\.net| video\.iphodase\.fr| peertube\.makotoworkshop\.org| peertube\.serveur\.slv-valbonne\.fr| vault\.mle\.party| hostyour\.tv| videos\.hack2g2\.fr| libre\.tube| pire\.artisanlogiciel\.net| videos\.numerique-en-commun\.fr| video\.netsyms\.com| video\.die-partei\.social| video\.writeas\.org| peertube\.swarm\.solvingmaz\.es| tube\.pericoloso\.ovh| watching\.cypherpunk\.observer| videos\.adhocmusic\.com| tube\.rfc1149\.net| peertube\.librelabucm\.org| videos\.numericoop\.fr| peertube\.koehn\.com| peertube\.anarchmusicall\.net| tube\.kampftoast\.de| vid\.y-y\.li| peertube\.xtenz\.xyz| diode\.zone| tube\.egf\.mn| peertube\.nomagic\.uk| visionon\.tv| videos\.koumoul\.com| video\.rastapuls\.com| video\.mantlepro\.com| video\.deadsuperhero\.com| peertube\.musicstudio\.pro| peertube\.we-keys\.fr| artitube\.artifaille\.fr| peertube\.ethernia\.net| tube\.midov\.pl| peertube\.fr| watch\.snoot\.tube| peertube\.donnadieu\.fr| argos\.aquilenet\.fr| tube\.nemsia\.org| tube\.bruniau\.net| videos\.darckoune\.moe| tube\.traydent\.info| dev\.videos\.lecygnenoir\.info| peertube\.nayya\.org| peertube\.live| peertube\.mofgao\.space| video\.lequerrec\.eu| peertube\.amicale\.net| aperi\.tube| tube\.ac-lyon\.fr| video\.lw1\.at| www\.yiny\.org| videos\.pofilo\.fr| tube\.lou\.lt| choob\.h\.etbus\.ch| tube\.hoga\.fr| peertube\.heberge\.fr| video\.obermui\.de| videos\.cloudfrancois\.fr| betamax\.video| video\.typica\.us| tube\.piweb\.be| video\.blender\.org| peertube\.cat| tube\.kdy\.ch| pe\.ertu\.be| peertube\.social| videos\.lescommuns\.org| tv\.datamol\.org| videonaute\.fr| dialup\.express| peertube\.nogafa\.org| megatube\.lilomoino\.fr| peertube\.tamanoir\.foucry\.net| peertube\.devosi\.org| peertube\.1312\.media| tube\.bootlicker\.party| skeptikon\.fr| video\.blueline\.mg| tube\.homecomputing\.fr| tube\.ouahpiti\.info| video\.tedomum\.net| video\.g3l\.org| fontube\.fr| peertube\.gaialabs\.ch| tube\.kher\.nl| peertube\.qtg\.fr| video\.migennes\.net| tube\.p2p\.legal| troll\.tv| videos\.iut-orsay\.fr| peertube\.solidev\.net| videos\.cemea\.org| video\.passageenseine\.fr| videos\.festivalparminous\.org| peertube\.touhoppai\.moe| sikke\.fi| peer\.hostux\.social| share\.tube| peertube\.walkingmountains\.fr| videos\.benpro\.fr| peertube\.parleur\.net| peertube\.heraut\.eu| tube\.aquilenet\.fr| peertube\.gegeweb\.eu| framatube\.org| thinkerview\.video| tube\.conferences-gesticulees\.net| peertube\.datagueule\.tv| video\.lqdn\.fr| tube\.mochi\.academy| media\.zat\.im| video\.colibris-outilslibres\.org| tube\.svnet\.fr| peertube\.video| peertube3\.cpy\.re| peertube2\.cpy\.re| videos\.tcit\.fr| peertube\.cpy\.re| canard\.tube )''' _UUID_RE = r'[\da-fA-F]{8}-[\da-fA-F]{4}-[\da-fA-F]{4}-[\da-fA-F]{4}-[\da-fA-F]{12}' _API_BASE = 'https://%s/api/v1/videos/%s/%s' _VALID_URL = r'''(?x) (?: peertube:(?P<host>[^:]+):| https?://(?P<host_2>%s)/(?:videos/(?:watch|embed)|api/v\d/videos)/ ) (?P<id>%s) ''' % (_INSTANCES_RE, _UUID_RE) _TESTS = [{ 'url': 'https://framatube.org/videos/watch/9c9de5e8-0a1e-484a-b099-e80766180a6d', 'md5': '9bed8c0137913e17b86334e5885aacff', 'info_dict': { 'id': '9c9de5e8-0a1e-484a-b099-e80766180a6d', 'ext': 'mp4', 'title': 'What is PeerTube?', 'description': 'md5:3fefb8dde2b189186ce0719fda6f7b10', 'thumbnail': r're:https?://.*\.(?:jpg|png)', 'timestamp': 1538391166, 'upload_date': '20181001', 'uploader': 'Framasoft', 'uploader_id': '3', 'uploader_url': 'https://framatube.org/accounts/framasoft', 'channel': 'Les vidéos de Framasoft', 'channel_id': '2', 'channel_url': 'https://framatube.org/video-channels/bf54d359-cfad-4935-9d45-9d6be93f63e8', 'language': 'en', 'license': 'Attribution - Share Alike', 'duration': 113, 'view_count': int, 'like_count': int, 'dislike_count': int, 'tags': ['framasoft', 'peertube'], 'categories': ['Science & Technology'], } }, { # Issue #26002 'url': 'peertube:spacepub.space:d8943b2d-8280-497b-85ec-bc282ec2afdc', 'info_dict': { 'id': 'd8943b2d-8280-497b-85ec-bc282ec2afdc', 'ext': 'mp4', 'title': 'Dot matrix printer shell demo', 'uploader_id': '3', 'timestamp': 1587401293, 'upload_date': '20200420', 'uploader': 'Drew DeVault', } }, { 'url': 'https://peertube.tamanoir.foucry.net/videos/watch/0b04f13d-1e18-4f1d-814e-4979aa7c9c44', 'only_matching': True, }, { # nsfw 'url': 'https://tube.22decembre.eu/videos/watch/9bb88cd3-9959-46d9-9ab9-33d2bb704c39', 'only_matching': True, }, { 'url': 'https://tube.22decembre.eu/videos/embed/fed67262-6edb-4d1c-833b-daa9085c71d7', 'only_matching': True, }, { 'url': 'https://tube.openalgeria.org/api/v1/videos/c1875674-97d0-4c94-a058-3f7e64c962e8', 'only_matching': True, }, { 'url': 'peertube:video.blender.org:b37a5b9f-e6b5-415c-b700-04a5cd6ec205', 'only_matching': True, }] @staticmethod def _extract_peertube_url(webpage, source_url): mobj = re.match( r'https?://(?P<host>[^/]+)/videos/(?:watch|embed)/(?P<id>%s)' % PeerTubeIE._UUID_RE, source_url) if mobj and any(p in webpage for p in ( '<title>PeerTube<', 'There will be other non JS-based clients to access PeerTube', '>We are sorry but it seems that PeerTube is not compatible with your web browser.<')): return 'peertube:%s:%s' % mobj.group('host', 'id') @staticmethod def _extract_urls(webpage, source_url): entries = re.findall( r'''(?x)<iframe[^>]+\bsrc=["\'](?P<url>(?:https?:)?//%s/videos/embed/%s)''' % (PeerTubeIE._INSTANCES_RE, PeerTubeIE._UUID_RE), webpage) if not entries: peertube_url = PeerTubeIE._extract_peertube_url(webpage, source_url) if peertube_url: entries = [peertube_url] return entries def _call_api(self, host, video_id, path, note=None, errnote=None, fatal=True): return self._download_json( self._API_BASE % (host, video_id, path), video_id, note=note, errnote=errnote, fatal=fatal) def _get_subtitles(self, host, video_id): captions = self._call_api( host, video_id, 'captions', note='Downloading captions JSON', fatal=False) if not isinstance(captions, dict): return data = captions.get('data') if not isinstance(data, list): return subtitles = {} for e in data: language_id = try_get(e, lambda x: x['language']['id'], compat_str) caption_url = urljoin('https://%s' % host, e.get('captionPath')) if not caption_url: continue subtitles.setdefault(language_id or 'en', []).append({ 'url': caption_url, }) return subtitles def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) host = mobj.group('host') or mobj.group('host_2') video_id = mobj.group('id') video = self._call_api( host, video_id, '', note='Downloading video JSON') title = video['name'] formats = [] files = video.get('files') or [] for playlist in (video.get('streamingPlaylists') or []): if not isinstance(playlist, dict): continue playlist_files = playlist.get('files') if not (playlist_files and isinstance(playlist_files, list)): continue files.extend(playlist_files) for file_ in files: if not isinstance(file_, dict): continue file_url = url_or_none(file_.get('fileUrl')) if not file_url: continue file_size = int_or_none(file_.get('size')) format_id = try_get( file_, lambda x: x['resolution']['label'], compat_str) f = parse_resolution(format_id) f.update({ 'url': file_url, 'format_id': format_id, 'filesize': file_size, }) if format_id == '0p': f['vcodec'] = 'none' else: f['fps'] = int_or_none(file_.get('fps')) formats.append(f) self._sort_formats(formats) description = video.get('description') if len(description) >= 250: # description is shortened full_description = self._call_api( host, video_id, 'description', note='Downloading description JSON', fatal=False) if isinstance(full_description, dict): description = str_or_none(full_description.get('description')) or description subtitles = self.extract_subtitles(host, video_id) def data(section, field, type_): return try_get(video, lambda x: x[section][field], type_) def account_data(field, type_): return data('account', field, type_) def channel_data(field, type_): return data('channel', field, type_) category = data('category', 'label', compat_str) categories = [category] if category else None nsfw = video.get('nsfw') if nsfw is bool: age_limit = 18 if nsfw else 0 else: age_limit = None webpage_url = 'https://%s/videos/watch/%s' % (host, video_id) return { 'id': video_id, 'title': title, 'description': description, 'thumbnail': urljoin(webpage_url, video.get('thumbnailPath')), 'timestamp': unified_timestamp(video.get('publishedAt')), 'uploader': account_data('displayName', compat_str), 'uploader_id': str_or_none(account_data('id', int)), 'uploader_url': url_or_none(account_data('url', compat_str)), 'channel': channel_data('displayName', compat_str), 'channel_id': str_or_none(channel_data('id', int)), 'channel_url': url_or_none(channel_data('url', compat_str)), 'language': data('language', 'id', compat_str), 'license': data('licence', 'label', compat_str), 'duration': int_or_none(video.get('duration')), 'view_count': int_or_none(video.get('views')), 'like_count': int_or_none(video.get('likes')), 'dislike_count': int_or_none(video.get('dislikes')), 'age_limit': age_limit, 'tags': try_get(video, lambda x: x['tags'], list), 'categories': categories, 'formats': formats, 'subtitles': subtitles, 'webpage_url': webpage_url, }
[ "noreply@github.com" ]
firsttris.noreply@github.com
da569cc273c2ae1901e1ae047d0991987d2a84aa
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/coverage-big-3752.py
4a0c5e323805e1b8e94e96f57436f92568c87018
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
13,343
py
count:int = 0 count2:int = 0 count3:int = 0 count4:int = 0 count5:int = 0 def foo(s: str) -> int: return len(s) def foo2(s: str, s2: str) -> int: return len(s) def foo3(s: str, s2: str, s3: str) -> int: return len(s) def foo4(s: str, s2: str, s3: str, s4: str) -> int: return len(s) def foo5(s: str, s2: str, s3: str, s4: str, s5: str) -> int: return len(s) class bar(object): p: bool = True def baz(self:"bar", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar2(object): p: bool = True p2: bool = True def baz(self:"bar2", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar2", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar3(object): p: bool = True p2: bool = True p3: bool = True def baz(self:"bar3", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar3", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar3", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar4(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True def baz(self:"bar4", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar4", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar4", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar4", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar5(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True p5: bool = True def baz(self:"bar5", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar5", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo($Exp) == 1: self.p = self is None return "Nope" def baz3(self:"bar5", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz5(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int], xx5: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 x5:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 y5:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 def qux5(y: int, y2: int, y3: int, y4: int, y5: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 nonlocal x5 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" print(bar().baz([1,2]))
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
94652b2790c9e1bf47b28be0a5263c23b1653f41
4a2073876a2ea3cf6d12232f31d23ffbd4bbcd1d
/Animais/animais.py
746b187ea6a96d81bef57f8fd263c0ca48ea7b6f
[]
no_license
programadorpython/PPAulasAoVivo3
d493d466b74263f394437236afcc0c7fdc5c97c6
b5c48590442078cba60cefa44e38a5b05d7bb648
refs/heads/master
2022-11-19T06:30:54.284587
2020-07-22T00:53:07
2020-07-22T00:53:07
281,537,631
0
0
null
null
null
null
UTF-8
Python
false
false
1,135
py
class Animal: """ Modelando um animal """ def __init__(self, nome, idade, sexo, cor, tipo, classe): """ Inicializa um animal :param nome: string :param idade: int :param sexo: string :param cor: string :param tipo: string :param classe: sring """ self.nome = nome.title() self.idade = idade self.sexo = sexo self.cor = cor self.tipo = tipo.title() self.classe = classe.title() def animal_detalhes(self): """ Mostra detalhes do animal :return: """ mensagem = f"O animal do tipo {self.tipo} é da classe {self.classe}: " \ f"\n\tnome: {self.nome} " \ f"\n\tidade: {self.idade} " \ f"\n\tsexo: {self.sexo} " \ f"\n\tcor: {self.cor}" print(f"\n{mensagem}") def mensagem(self): """ Mostra mensagem com o nome do animal :return: """ saudacao = f"Olá {self.nome}, seja bem vindo ao nosso Pet Shop!" print(f"\n{saudacao}")
[ "jefferson2004@gmail.com" ]
jefferson2004@gmail.com
c62b581e8e42c66c37405503791022fec73e8e93
7fe56d3a94bcd1f44b9a949030982f6eeae5b029
/tests/__init__.py
1cb9b7e077b002feb8d39e3ca7b977d48303dacf
[ "MIT" ]
permissive
rcourivaud/MagicLogger
d128e78efea21243e18b96759c4b3a09022e68ff
135f9b314428717909f4cda17298db7100b1e7d3
refs/heads/master
2021-07-05T16:53:06.522476
2018-11-19T16:32:51
2018-11-19T16:32:51
111,118,407
0
2
MIT
2018-06-18T09:09:20
2017-11-17T15:23:06
Python
UTF-8
Python
false
false
70
py
# -*- coding: utf-8 -*- """Unit test package for logstash_logger."""
[ "r.courivaud@gmail.com" ]
r.courivaud@gmail.com
bf76b1dfcf4b11203e9950456b21b7a94dcb8d0d
17058fc47997f47f19337a2244aa69207b86273d
/misc/create_labels.py
272f515a01f2d2191ef4ce529bc7c19da47ab053
[ "MIT" ]
permissive
MISTLab/of-obstacledetection
da90cbb42527011d662925f5289ec5adbed2a9b3
a2281a37b4cc6482eb87546fa414fdaa38ec04e5
refs/heads/master
2023-02-22T15:23:12.587480
2020-06-06T13:28:25
2020-06-06T13:28:25
223,396,484
13
2
MIT
2023-02-02T06:00:26
2019-11-22T12:15:52
Python
UTF-8
Python
false
false
2,352
py
#!/usr/bin/env python3 """ create_labels.py Script for creating labels for a new collision dataset. Written by Moritz Sperling Licensed under the MIT License (see LICENSE for details) """ import cv2 import glob import os, sys import absl.flags as gflags localpath = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, localpath + '/../workflow/util/') from common_flags import FLAGS from misc_utils import get_experiment_folders def _main(): # init variables filename = "labels.txt" folder = FLAGS.test_dir # iterate subdirectories dirs = get_experiment_folders(folder) for subdir in dirs: # ignore hidden folders if subdir[0] != '.': # get filenames path = os.path.join(folder, subdir, 'images/*.jpg') imgs = sorted(glob.glob(path)) labels = [] collision = False # iterate through imgs for i, fname in enumerate(imgs): # load image and prep for dronet img = cv2.imread(fname, cv2.IMREAD_COLOR) cv2.putText(img, "[#{:03d}]".format(i), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2, lineType=30) # show img and label as collision when space is pressed cv2.imshow('frame',img) if cv2.waitKey(100) & 0xFF == ord(' '): # de/activate collision collision = not collision # append current label if collision: labels.append(1) print('collision') else: labels.append(0) print('path clear') cv2.destroyAllWindows() # produce labels file if len(labels) > 2: outfile = os.path.join(folder, subdir, filename) with open(outfile, 'w') as f: for item in labels: f.write("%s\n" % str(item)) f.close() def main(argv): # Utility main to load flags try: FLAGS(argv) # parse flags except gflags.Error: print ('Usage: %s ARGS\\n%s' % (sys.argv[0], FLAGS)) sys.exit(1) _main() if __name__ == "__main__": main(sys.argv)
[ "mail@nfinitedesign.de" ]
mail@nfinitedesign.de
9f936947d909992c5e8fdc0c4e7a0cee5501ae5a
7551f4644e2145637e9549caa2dd7dd9eaf2bc87
/mCRPCcode/AlternativeModel_Sto_forced_LongRun/ADTplusAbi_Adaptive0_forced.py
bc6ed1d509bfac536445c5ac8d7686a68c9ad9c4
[]
no_license
mariandm/FoundationsQBios
f3af94724b7b2c7e37aebd6454fde7632c29549c
734d16157cafe28e795c2012b9275b881d60af92
refs/heads/master
2020-07-21T05:08:47.066509
2019-12-11T11:30:16
2019-12-11T11:30:16
206,760,121
0
0
null
null
null
null
UTF-8
Python
false
false
16,447
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 27 16:15:13 2019 @author: mariandm """ import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import time import copy start_time = time.time() ESS = 1e4*np.array([[1.1111,0.5555,0.0000,3.3333],[1.1111,0.5556,0.0000,3.3333],[1.1157,0.4545,0.1240,3.3884],[1.1842,0.5263,0.0000,3.4211],[1.1842,0.5263,0.0000,3.4211],[1.1111,0.5556,0.0000,3.3333],[1.1111,0.5556,0.0000,3.3333],[1.1842,0.5263,0.0000,3.4211],[1.1842,0.5263,0.0000,3.4211],[1.1842,0.5263,0.0000,3.4211],[1.2500,0.5000,0.0000,3.5000],[1.2500,0.5000,0.0000,3.5000],[1.2500,0.5000,0.0000,3.5000],[1.2500,0.5000,0.0000,3.5000],[1.2500,0.5000,0.0000,3.5000],[1.2500,0.5000,0.0000,3.5000],[1.3750,0.3125,0.0000,3.3750],[1.3750,0.3125,0.0000,3.3750],[1.3750,0.3125,0.0000,3.3750],[1.3750,0.3125,0.0000,3.3750],[1.3750,0.3125,0.0000,3.3750],[1.3750,0.3125,0.0000,3.3750]]) matrixCoefficients = np.array([[0.7,0.9,0.4,0.6,0.5,0.8],[0.7,0.8,0.4,0.6,0.5,0.9],[0.6,0.9,0.4,0.8,0.5,0.7],[0.6,0.9,0.4,0.7,0.5,0.8],[0.6,0.8,0.4,0.7,0.5,0.9],[0.7,0.9,0.4,0.5,0.6,0.8],[0.7,0.8,0.4,0.5,0.6,0.9],[0.6,0.9,0.4,0.5,0.7,0.8],[0.6,0.8,0.4,0.5,0.7,0.9],[0.6,0.7,0.4,0.5,0.8,0.9],[0.5,0.9,0.4,0.8,0.6,0.7],[0.5,0.9,0.4,0.7,0.6,0.8],[0.5,0.8,0.4,0.7,0.6,0.9],[0.5,0.9,0.4,0.6,0.7,0.8],[0.5,0.8,0.4,0.6,0.7,0.9],[0.5,0.7,0.4,0.6,0.8,0.9],[0.4,0.9,0.5,0.8,0.6,0.7],[0.4,0.9,0.5,0.7,0.6,0.8],[0.4,0.8,0.5,0.7,0.6,0.9],[0.4,0.9,0.5,0.6,0.7,0.8],[0.4,0.8,0.5,0.6,0.7,0.9],[0.4,0.7,0.5,0.6,0.8,0.9]]) # Set matrixIndex = 7 for Representative patient #1 # Set matrixInded = 5 for Representative patient #2 TreatmentsVector=["Adaptive"] subtreatmentsVector=[[0]] #Why is there a "scale factor" scale = .01 r = np.array([0.27726, 0.34657, 0.66542]) r = r*scale # PSA dynamics sigmaPSA = 0.5; # Set simulation time. maxSimulationTime = 10000 replicateNumber = 50 dicti=dict.fromkeys(TreatmentsVector) for i in range(len(TreatmentsVector)): dicti[TreatmentsVector[i]]=dict.fromkeys(subtreatmentsVector[i]) for j in range(len(subtreatmentsVector[i])): dicti[TreatmentsVector[i]][subtreatmentsVector[i][j]]=dict.fromkeys(range(22)) for k in range(22): dicti[TreatmentsVector[i]][subtreatmentsVector[i][j]][k]=dict.fromkeys(range(3)) for l in range(3): dicti[TreatmentsVector[i]][subtreatmentsVector[i][j]][k][l]=dict.fromkeys(["count","Time","PSA"],0) dicti[TreatmentsVector[i]][subtreatmentsVector[i][j]][k][l]["densities"]=np.array([0.0,0.0,0.0]) #############################we start all the fors here######################## for curr_treatmentType in range(len(TreatmentsVector)): treatmentType = TreatmentsVector[curr_treatmentType] for curr_subtreatmentType in subtreatmentsVector[curr_treatmentType]: subtreatmentType = curr_subtreatmentType for curr_matrixIndex in range(len(ESS)): matrixIndex = curr_matrixIndex alphas = matrixCoefficients[matrixIndex,:] #Initial tumor densities set at 40% of ESS values y0 = ESS[matrixIndex, :]* 0.4 y0 = np.ceil(y0) if (y0[2]<1):y0[2]=1 #Give abiraterone at what % of ESS PSA? maxPSAPercent = 0.8 PSA_zenith = ESS[matrixIndex,3] * maxPSAPercent PSA_nadir = PSA_zenith * maxPSAPercent/2 for curr_replicate in range(1,replicateNumber+1): AbiOnOffFlag = [0] ADTOnOffFlag = [0] # Set initial state. y = copy.deepcopy(y0) # Create and initialize matrix for ODE solution allSolution = [] allSolution.append(list(y)) time=[0] firstTreatment=1 count=True warning=False while time[-1] < maxSimulationTime: if treatmentType=="MTD": if firstTreatment==1: if y[3]<PSA_zenith: AbiOnOffFlag.append(0) ADTOnOffFlag.append(0) else: firstTreatment=0 else: if subtreatmentType==0: AbiOnOffFlag.append(0) ADTOnOffFlag.append(1) elif subtreatmentType==1: AbiOnOffFlag.append(1) ADTOnOffFlag.append(1) elif subtreatmentType==2: if y[3] < PSA_zenith: warning=True if(y[3]>PSA_zenith and warning): count=False if(count): AbiOnOffFlag.append(0) ADTOnOffFlag.append(1) else: AbiOnOffFlag.append(1) ADTOnOffFlag.append(1) if treatmentType=="NoTreatment": AbiOnOffFlag.append(0) ADTOnOffFlag.append(0) # Adaptive Abi is built during the simulation. Turns Abi on once the # PSA zenith value is reached and turns it off once the nadir is reached. if treatmentType=="Metronomic": if firstTreatment==1: if y[3]<PSA_zenith: AbiOnOffFlag.append(0) ADTOnOffFlag.append(0) else: firstTreatment=0 firstTreatmentTime=time[-1] tot=firstTreatmentTime+2000 abo=[] adto=[] cutTimes=[] if subtreatmentType==0:#ADT+Abi, none while tot < maxSimulationTime: #ADT+abi tot+=200 abo.append(1) adto.append(1) cutTimes.append(tot) #none tot+=1000 cutTimes.append(tot) abo.append(0) adto.append(0) cutTimes=[firstTreatmentTime, firstTreatmentTime+800, firstTreatmentTime+2000]+cutTimes abo=[0,0,0]+abo adto=[0,1,0]+adto elif subtreatmentType==1: #ADT+Abi, none, ADT, none while tot < maxSimulationTime: tot+=200 abo.append(1) adto.append(1) cutTimes.append(tot) tot+=1000 cutTimes.append(tot) abo.append(0) adto.append(0) tot+=200 cutTimes.append(tot) abo.append(0) adto.append(1) tot+=1000 cutTimes.append(tot) abo.append(0) adto.append(0) cutTimes=[firstTreatmentTime, firstTreatmentTime+800, firstTreatmentTime+2000]+cutTimes abo=[0,0,0]+abo adto=[0,1,0]+adto elif subtreatmentType==2: #ADT+abi, ADT, none while tot < maxSimulationTime: tot+=200 abo.append(1) adto.append(1) cutTimes.append(tot) tot+=200 cutTimes.append(tot) abo.append(0) adto.append(1) tot+=1000 cutTimes.append(tot) abo.append(0) adto.append(0) cutTimes=[firstTreatmentTime, firstTreatmentTime+800, firstTreatmentTime+2000]+cutTimes abo=[0,0,0]+abo adto=[0,1,0]+adto elif subtreatmentType==3: #ADT, ADT+abi, none while tot < maxSimulationTime: tot+=200 abo.append(0) adto.append(1) cutTimes.append(tot) tot+=200 cutTimes.append(tot) abo.append(1) adto.append(1) tot+=1000 cutTimes.append(tot) abo.append(0) adto.append(0) cutTimes=[firstTreatmentTime, firstTreatmentTime+800, firstTreatmentTime+2000]+cutTimes abo=[0,0,0]+abo adto=[0,1,0]+adto else: AbiOnOffFlag.append(abo[np.where(time[-1]<np.array(cutTimes))[0][0]]) ADTOnOffFlag.append(adto[np.where(time[-1]<np.array(cutTimes))[0][0]]) if treatmentType=='Adaptive': if subtreatmentType==0: if y[3] > PSA_zenith: AbiOnOffFlag.append(1) ADTOnOffFlag.append(1) elif (y[3] < PSA_nadir): AbiOnOffFlag.append(0) ADTOnOffFlag.append(0) else: AbiOnOffFlag.append(AbiOnOffFlag[-1]) ADTOnOffFlag.append(AbiOnOffFlag[-1]) elif subtreatmentType==1: if y[3] > PSA_zenith: if(count): AbiOnOffFlag.append(1) ADTOnOffFlag.append(1) else: AbiOnOffFlag.append(0) ADTOnOffFlag.append(1) elif (y[3] < PSA_nadir): AbiOnOffFlag.append(0) ADTOnOffFlag.append(0) else: AbiOnOffFlag.append(AbiOnOffFlag[-1]) ADTOnOffFlag.append(AbiOnOffFlag[-1]) if ((ADTOnOffFlag[-2] - ADTOnOffFlag[-1])>0): count=not(count) if (ADTOnOffFlag[-1] == 0): k = [15000, 10000, 10000] # If Abi is being given, then use Abi parameters. elif (AbiOnOffFlag[-1] == 1): k = [y[1] * 0.5, 100, 10000] # If Abi is not being given, use naive parameters. elif AbiOnOffFlag[-1] == 0: k = [y[1] * 1.5, 10000, 10000] y[3]= y[3] + sum(y[0:3]) - sigmaPSA * y[3] dydt = np.zeros([6]) #T+ growth dydt[0] = y[0] * r[0] #T+ death if k[0]== 0: dydt[1]=0 else: dydt[1] = y[0] * r[0] * ( ( y[0] + alphas[0] * y[1] + alphas[1] * y[2] ) / k[0] ) #TP growth dydt[2] = y[1] * r[1] #TP death dydt[3] = y[1] * r[1] * ( ( alphas[2] * y[0] + y[1] + alphas[3] * y[2] ) / k[1] ) #T- growth dydt[4] = y[2] * r[2] #T- death dydt[5] = y[2] * r[2] * ( ( alphas[4] * y[0] + alphas[5] * y[1] + y[2] ) / k[2] ) dt= -(1/sum(dydt))*np.log(np.random.uniform()) time.append(time[-1] + dt) #reaction = np.argmin(dydt/sum(dydt)<np.random.uniform()) reaction = np.where(np.random.uniform()<=np.cumsum(dydt)/sum(dydt))[0][0] if reaction==0: y[0]=y[0]+1 elif reaction==1: y[0]=y[0]-1 elif reaction==2: y[1]=y[1]+1 elif reaction==3: y[1]=y[1]-1 elif reaction==4: y[2]=y[2]+1 else: y[2]=y[2]-1 ######################################################################## if (y[2]<1):y[2]=1 ######################################################################## allSolution.append(list(y)) allSolution=np.array(allSolution) dicti[treatmentType][subtreatmentType][matrixIndex][np.argmax(y[0:3])]["count"]+=1 dicti[treatmentType][subtreatmentType][matrixIndex][np.argmax(y[0:3])]["PSA"]+=y[3] dicti[treatmentType][subtreatmentType][matrixIndex][np.argmax(y[0:3])]["densities"]+=y[0:3] if np.sum(np.logical_not(np.argmax(allSolution[:,0:3],1)==np.argmax(y[0:3])))>0: dicti[treatmentType][subtreatmentType][matrixIndex][np.argmax(y[0:3])]["Time"]+=time[np.where(np.logical_not(np.argmax(allSolution[:,0:3],1)==np.argmax(y[0:3])))[0][-1]+1] for cellType in range(3): divide= dicti[treatmentType][subtreatmentType][matrixIndex][cellType]["count"] if divide>0: dicti[treatmentType][subtreatmentType][matrixIndex][cellType]["PSA"]/=divide dicti[treatmentType][subtreatmentType][matrixIndex][cellType]["densities"]/=divide dicti[treatmentType][subtreatmentType][matrixIndex][cellType]["Time"]/=divide f = open("./nope/Run_forced_"+treatmentType+"_subtreat_"+str(subtreatmentType)+".txt", "w") f.write(str(dicti)) f.close()
[ "noreply@github.com" ]
mariandm.noreply@github.com
9cc040fe1ae166f3a782886247586b053353c86e
9c2b14de3cb746318aa17a67ba60fe0c48e45cba
/node_modules/mongodb/node_modules/bson/build/config.gypi
1c1ef6cad6e7fb06cb4beb87a958f8e311a81805
[ "MIT", "Apache-2.0" ]
permissive
shreyaspurohit/SemanticLink
5f0510ce32c1639d161aed73151b9c315839f9bc
2135e5076cd39a34befc54be4e92e607d02ba8f4
refs/heads/master
2016-09-05T08:54:54.893557
2013-03-09T08:43:39
2013-03-09T08:43:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,815
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 0, "gcc_version": 44, "host_arch": "x64", "node_install_npm": "true", "node_install_waf": "true", "node_prefix": "/", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_unsafe_optimizations": 0, "node_use_dtrace": "false", "node_use_etw": "false", "node_use_openssl": "true", "target_arch": "x64", "v8_no_strict_aliasing": 1, "v8_use_snapshot": "false", "nodedir": "/home/shreyaspurohit/.node-gyp/0.8.15", "copy_dev_lib": "true", "cache_lock_stale": "60000", "pre": "", "sign_git_tag": "", "user_agent": "node/v0.8.15", "always_auth": "", "fetch_retries": "2", "description": "true", "init_version": "0.0.0", "user": "1000", "force": "", "ignore": "", "cache_min": "", "editor": "vi", "rollback": "true", "cache_max": "null", "userconfig": "/home/shreyaspurohit/.npmrc", "init_author_url": "", "yes": "", "init_author_name": "", "coverage": "", "tmp": "/home/shreyaspurohit/tmp", "userignorefile": "/home/shreyaspurohit/.npmignore", "engine_strict": "", "usage": "", "depth": "null", "save_dev": "", "https_proxy": "", "onload_script": "", "rebuild_bundle": "true", "save_bundle": "", "shell": "/bin/bash", "prefix": "/home/shreyaspurohit/.nvm/v0.8.15", "registry": "https://registry.npmjs.org/", "versions": "", "searchopts": "", "save_optional": "", "cache_lock_wait": "10000", "browser": "", "cache": "/home/shreyaspurohit/.npm", "version": "", "searchsort": "name", "npaturl": "http://npat.npmjs.org/", "viewer": "man", "color": "true", "fetch_retry_mintimeout": "10000", "umask": "18", "fetch_retry_maxtimeout": "60000", "message": "%s", "global": "", "link": "", "unicode": "true", "save": "", "unsafe_perm": "true", "long": "", "production": "", "node_version": "v0.8.15", "tag": "latest", "fetch_retry_factor": "10", "username": "", "proprietary_attribs": "true", "npat": "", "strict_ssl": "true", "parseable": "", "globalconfig": "/home/shreyaspurohit/.nvm/v0.8.15/etc/npmrc", "init_module": "/home/shreyaspurohit/.npm-init.js", "dev": "", "globalignorefile": "/home/shreyaspurohit/.nvm/v0.8.15/etc/npmignore", "cache_lock_retries": "10", "init_author_email": "", "searchexclude": "", "group": "1000", "optional": "true", "git": "git", "json": "" } }
[ "shreyaspurohit@shreyas-purohit-portable.(none)" ]
shreyaspurohit@shreyas-purohit-portable.(none)
83fad54ec14446e17e20fd4c8fe1018398d8a8c6
7a49864e2de257ce2f0c0845c3875d701be45687
/shop/main_app/admin.py
4e5381125240659c38ed749c66a6c6ff86ba516f
[]
no_license
PontificSalivan/Shop
be7b805edcbfb8c6300d42e3400dc22ed2235c4d
ab1404a6d06a918a13094567cb9006b22457455f
refs/heads/master
2023-03-03T02:36:35.462871
2021-02-12T17:57:42
2021-02-12T17:57:42
337,730,915
0
0
null
null
null
null
UTF-8
Python
false
false
2,350
py
from PIL import Image from django.forms import ModelChoiceField, ModelForm, ValidationError from django.contrib import admin from django.utils.safestring import mark_safe from .models import * class NotebookAdminForm(ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['image'].help_text = mark_safe( '<span style="color:red;">При загрузке изображения с разрешением {}x{} оно будет сжато</span>'.format( *Product.MAX_RESOLUTION ) ) class SmartphoneAdminForm(ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['image'].help_text = mark_safe( '<span style="color:red;">При загрузке изображения с разрешением {}x{} оно будет сжато</span>'.format( *Product.MAX_RESOLUTION ) ) instance = kwargs.get('instance') if instance and not instance.sd: self.fields['sd_volume_max'].widget.attrs.update({ 'readonly': True, 'style': 'background: lightgray;' }) def clean(self): if not self.cleaned_data['sd']: self.cleaned_data['sd_volume_max'] = None return self.cleaned_data class NotebookAdmin(admin.ModelAdmin): form = NotebookAdminForm change_form_template = 'admin.html' def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == 'category': return ModelChoiceField(Category.objects.filter(slug='notebooks')) return super().formfield_for_foreignkey(db_field, request, **kwargs) class SmartphoneAdmin(admin.ModelAdmin): form = SmartphoneAdminForm change_form_template = 'admin.html' def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == 'category': return ModelChoiceField(Category.objects.filter(slug='smartphones')) return super().formfield_for_foreignkey(db_field, request, **kwargs) admin.site.register(Category) admin.site.register(Notebook, NotebookAdmin) admin.site.register(Smartphone, SmartphoneAdmin) admin.site.register(CartProduct) admin.site.register(Cart) admin.site.register(Customer)
[ "rasen13@mail.ru" ]
rasen13@mail.ru
63c36811234e4e17445c206a239feee4c4ae236e
e1c960d2eb1d9685acc5f72644302d711bc45dae
/sidproject/peristiwa/apps.py
8803951246cd784e9e1c832cfc9fc8494eb1e32b
[]
no_license
prianthon/sidj
fbd3111f184423cce5032f02aa5dbcb56cd2705c
2c0639e6f96139010a81d1c651ed88763d2c81da
refs/heads/master
2021-01-11T09:21:49.771465
2016-12-24T05:28:20
2016-12-24T05:28:20
77,035,075
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
from django.apps import AppConfig class PeristiwaConfig(AppConfig): name = 'peristiwa'
[ "prianthonsubardio@gmail.com" ]
prianthonsubardio@gmail.com
07f21dd8ea6c88a00921c3974f0b90fd6078e0e6
51888119e10cdff12dafb060a54824632edccf3f
/Folders/Python/Postage_old.py
f199f740817ab8b4db5d64cbd7f84eb3ac45c0ce
[ "BSD-2-Clause" ]
permissive
kuchinal/lamakaha
b64511ad8c6d2b36da5a84a266b9e7a69acd3106
24e3b2ff53bcac2ad1c0e5a3b9afd4593d85f22d
refs/heads/master
2023-09-01T17:55:56.551183
2023-07-31T19:32:04
2023-07-31T19:32:04
182,849,747
0
0
null
2021-09-10T06:34:22
2019-04-22T19:00:02
Python
UTF-8
Python
false
false
400
py
import nuke def Postage(): t= nuke.selectedNode() o = t['label'].value() x = t.xpos() y = t.ypos() u = nuke.nodes.PostageStamp(postage_stamp = 1, note_font_size = 20, tile_color = 4000,) name = u['name'].value() #p = name.replace('PostageStamp',o) #nuke.toNode(p) newname = u['label'].setValue(o) u['hide_input'].setValue(1) u.setInput(0,t) u.setXYpos(x,y+100)
[ "lamakaha@gmail.com" ]
lamakaha@gmail.com
48f890e38dcc694d1833976c10b34e0c952ef6b2
758d063e13238a58f5212e83208ca302163e017f
/tests/func_test.py
0664e4f147d26f5a55a303fc1bb4721614b87d2a
[]
no_license
misinglink/NLP-parser
eadd8f0d190b22d2a34fd7956dbf706edd3bb0df
adca58815755bd915f54d43e61f7c7a010657799
refs/heads/main
2023-03-28T11:19:49.007413
2021-04-01T23:51:15
2021-04-01T23:51:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
import os import pytest from func import get_prompt_length, less_than_500 from gptparser import make_prompts def test_propt_length1(): assert get_prompt_length(["a word is worth how much in integers?"]) == 8 def test_two_sents(): assert get_prompt_length(["two words", "three words", "six words"]) == 6 def prompts_less_than_500(): assert less_than_500() == True
[ "cesartole73@gmail.com" ]
cesartole73@gmail.com
9ada37e2dc34abdb0cc7a1ea982d687c03ea3cc8
28873fdbfb51b7ae3105ff338d83f3d8e57a3e3b
/pytorch/jklhj/DCGANs/config.py
de8a48f9452edca41d6a94c1e4717422bcba2ea6
[]
no_license
jklhj222/bin
7de7f54cb4d7a87053429efc3e2dd7438cb1475b
b92d6847648c43c5ccd2e348f50b0892e4913367
refs/heads/master
2023-04-14T14:49:06.702291
2023-03-24T13:15:29
2023-03-24T13:15:29
132,477,613
3
1
null
null
null
null
UTF-8
Python
false
false
765
py
#!/usr/bin/env python3 class DefaultConfig(): use_gpu = True num_workers = 2 input_size = 96 # for training setting train_gpu_id = 0 train_netd_model = '' train_netg_model = '' train_dir = './data' train_batch_size = 256 base_lrg = 2e-4 base_lrd = 2e-4 lr_decay_step = 100 g_train_every = 5 d_train_every = 1 max_epoch = 200 adam_beta1 = 0.5 nz = 100 ngf = 64 ndf = 64 show_iter = 50 save_iter = 600 pic_save_dir = './imgs' # for testing setting test_img = 'result.png' test_netg_model = '' test_netd_model = '' # pick 64 best pictures of 512 generated pictures gen_num = 64 gen_search_num = 512 gen_mean = 0 gen_std = 1
[ "jklhj222@gmail.com" ]
jklhj222@gmail.com
f85bca6082b992766a03e4274459537f254a3989
67287d3ac86c7746d0bac770d79d9a0fd1e89587
/envs/myEnvs/CartPoleSwingUp/env/cartpole_swingup_continuous.py
f16f2628e994b24c91ca2285d36131f69273f7f7
[ "MIT" ]
permissive
UCLA-StarAI/Analogous-Disentangled-Actor-Critic
1c37a94dcaac61a45123125f4757fd67ff10595b
37cb3ac7e39201a66b7e0b843dcc9926b97e0334
refs/heads/master
2021-07-15T07:24:50.197301
2021-03-18T03:10:04
2021-03-18T03:10:04
243,092,919
2
0
null
null
null
null
UTF-8
Python
false
false
7,284
py
""" Cart pole swing-up: Adapted from: hardmaru: https://github.com/hardmaru/estool/blob/master/custom_envs/cartpole_swingup.py Original version from: https://github.com/zuoxingdong/DeepPILCO/blob/master/cartpole_swingup.py hardmaru's changes: More difficult, since dt is 0.05 (not 0.01), and only 200 timesteps """ import gym from gym import spaces from gym.utils import seeding import logging import math import numpy as np logger = logging.getLogger(__name__) class CartPoleSwingUpContinuousEnv(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 50 } def __init__(self): self.g = 9.82 # gravity self.m_c = 0.5 # cart mass self.m_p = 0.5 # pendulum mass self.total_m = (self.m_p + self.m_c) self.l = 0.6 # pole's length self.m_p_l = (self.m_p * self.l) self.force_mag = 10.0 self.dt = 0.01 # seconds between state updates self.b = 0.1 # friction coefficient self.t = 0 # timestep self.t_limit = 1000 # Angle at which to fail the episode self.theta_threshold_radians = 12 * 2 * math.pi / 360 self.x_threshold = 2.4 high = np.array([ np.finfo(np.float32).max, np.finfo(np.float32).max, np.finfo(np.float32).max, np.finfo(np.float32).max, np.finfo(np.float32).max]) self.action_space = spaces.Box(-1.0, 1.0, shape=(1,)) self.observation_space = spaces.Box(-high, high) self.seed() self.viewer = None self.state = None def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): # Valid action action = np.clip(action, -1.0, 1.0)[0] action *= self.force_mag state = self.state x, x_dot, theta, theta_dot = state s = math.sin(theta) c = math.cos(theta) xdot_update = (-2 * self.m_p_l * ( theta_dot ** 2) * s + 3 * self.m_p * self.g * s * c + 4 * action - 4 * self.b * x_dot) / ( 4 * self.total_m - 3 * self.m_p * c ** 2) thetadot_update = (-3 * self.m_p_l * (theta_dot ** 2) * s * c + 6 * self.total_m * self.g * s + 6 * ( action - self.b * x_dot) * c) / (4 * self.l * self.total_m - 3 * self.m_p_l * c ** 2) x = x + x_dot * self.dt theta = theta + theta_dot * self.dt x_dot = x_dot + xdot_update * self.dt theta_dot = theta_dot + thetadot_update * self.dt self.state = (x, x_dot, theta, theta_dot) done = False if x < -self.x_threshold or x > self.x_threshold: done = True self.t += 1 if self.t >= self.t_limit: done = True reward_theta = (np.cos(theta) + 1.0) / 2.0 reward_theta = reward_theta if reward_theta > 0.8 else 0.0 reward_x = np.cos((x / self.x_threshold) * (np.pi / 2.0)) reward = reward_theta * reward_x obs = np.array([x, x_dot, np.cos(theta), np.sin(theta), theta_dot]) return obs, reward, done, {} def reset(self): # self.state = self.np_random.normal(loc=np.array([0.0, 0.0, 30*(2*np.pi)/360, 0.0]), scale=np.array([0.0, 0.0, 0.0, 0.0])) self.state = np.random.normal(loc=np.array([0.0, 0.0, np.pi, 0.0]), scale=np.array([0.2, 0.2, 0.2, 0.2])) self.steps_beyond_done = None self.t = 0 # timestep x, x_dot, theta, theta_dot = self.state obs = np.array([x, x_dot, np.cos(theta), np.sin(theta), theta_dot]) return obs def render(self, mode='human', close=False): if close: if self.viewer is not None: self.viewer.close() self.viewer = None return screen_width = 600 screen_height = 600 # before was 400 world_width = 5 # max visible position of cart scale = screen_width / world_width carty = screen_height / 2 # TOP OF CART polewidth = 6.0 polelen = scale * self.l # 0.6 or self.l cartwidth = 40.0 cartheight = 20.0 if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.Viewer(screen_width, screen_height) l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2 cart = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)]) self.carttrans = rendering.Transform() cart.add_attr(self.carttrans) cart.set_color(1, 0, 0) self.viewer.add_geom(cart) l, r, t, b = -polewidth / 2, polewidth / 2, polelen - polewidth / 2, -polewidth / 2 pole = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)]) pole.set_color(0, 0, 1) self.poletrans = rendering.Transform(translation=(0, 0)) pole.add_attr(self.poletrans) pole.add_attr(self.carttrans) self.viewer.add_geom(pole) self.axle = rendering.make_circle(polewidth / 2) self.axle.add_attr(self.poletrans) self.axle.add_attr(self.carttrans) self.axle.set_color(0.1, 1, 1) self.viewer.add_geom(self.axle) # Make another circle on the top of the pole self.pole_bob = rendering.make_circle(polewidth / 2) self.pole_bob_trans = rendering.Transform() self.pole_bob.add_attr(self.pole_bob_trans) self.pole_bob.add_attr(self.poletrans) self.pole_bob.add_attr(self.carttrans) self.pole_bob.set_color(0, 0, 0) self.viewer.add_geom(self.pole_bob) self.wheel_l = rendering.make_circle(cartheight / 4) self.wheel_r = rendering.make_circle(cartheight / 4) self.wheeltrans_l = rendering.Transform(translation=(-cartwidth / 2, -cartheight / 2)) self.wheeltrans_r = rendering.Transform(translation=(cartwidth / 2, -cartheight / 2)) self.wheel_l.add_attr(self.wheeltrans_l) self.wheel_l.add_attr(self.carttrans) self.wheel_r.add_attr(self.wheeltrans_r) self.wheel_r.add_attr(self.carttrans) self.wheel_l.set_color(0, 0, 0) # Black, (B, G, R) self.wheel_r.set_color(0, 0, 0) # Black, (B, G, R) self.viewer.add_geom(self.wheel_l) self.viewer.add_geom(self.wheel_r) self.track = rendering.Line( (screen_width / 2 - self.x_threshold * scale, carty - cartheight / 2 - cartheight / 4), (screen_width / 2 + self.x_threshold * scale, carty - cartheight / 2 - cartheight / 4)) self.track.set_color(0, 0, 0) self.viewer.add_geom(self.track) if self.state is None: return None x = self.state cartx = x[0] * scale + screen_width / 2.0 # MIDDLE OF CART self.carttrans.set_translation(cartx, carty) self.poletrans.set_rotation(x[2]) self.pole_bob_trans.set_translation(-self.l * np.sin(x[2]), self.l * np.cos(x[2])) return self.viewer.render(return_rgb_array=mode == 'rgb_array')
[ "anjiliu219@gmail.com" ]
anjiliu219@gmail.com
7d88d46cc5c57870e82464a384294b667819297e
1fc11d568f5a409471c9ea06b1244f3354ef694e
/models/topic.py
4f150dbe50cf3d49a08df3ca63c6a074766b46b0
[]
no_license
wanlikehandsome/bbs
022db63910eb55cb2be439ad8c0c631d02425c9f
58cbf900035fd4c227f0b66f07484ef0311c804a
refs/heads/master
2022-04-17T15:55:55.142185
2020-04-05T15:59:30
2020-04-05T15:59:30
255,565,453
0
0
null
null
null
null
UTF-8
Python
false
false
3,263
py
import time import json from models import Model from models.user import User from models.mongua import Mongua import logging import os import time ogger = logging.getLogger("bbs") class Cache(object): def get(self, key): pass def set(self, key, value): pass class MemoryCache(Cache): def __init__(self): self.cache = {} def get(self, key): return self.cache[key] def set(self, key, value): self.cache[key] = value class RedisCache(Cache): import redis redis_db = redis.StrictRedis(host='localhost', port=6379, db=0) def set(self, key, value): return RedisCache.redis_db.set(key, value) def get(self, key): return RedisCache.redis_db.get(key) class Topic(Mongua): __fields__ = Mongua.__fields__ + [ ('content', str, ''), ('title', str, -1), ('user_id', int, -1), ('board_id', int, -1), ('views', int, 0) ] should_update_all = True # 1. memory cache cache = MemoryCache() # 2. redis cahce redis_cache = RedisCache() def to_json(self): """ 将从MongoDB中查询到的对象转化为json格式 :return: json str """ d = dict() for k in Topic.__fields__: key = k[0] if not key.startswith('_'): # 过滤 _id d[key] = getattr(self,key) return json.dumps(d) @classmethod def from_json(cls, j): """ 根据json格式的数据, 返回一个topic对象 :param j: josn :return: topic object """ d = json.loads(j) instance = cls() for k, v in d.items(): setattr(instance, k, v) return instance @classmethod def all_delay(cls): return Topic.all() @classmethod def get(cls, id): m = cls.find_by(id=id) m.views += 1 m.save() return m def save(self): super(Topic, self).save() should_update_all = True @classmethod def cache_all(cls): """数据更新一次, 缓存更新一次 :return: topic list """ if Topic.should_update_all: Topic.redis_cache.set('topic_all', json.dumps([i.to_json() for i in cls.all_delay()])) Topic.should_update_all = False j = json.loads(Topic.redis_cache.get('topic_all').decode('utf-8')) j = [Topic.from_json(i) for i in j] return j @classmethod def cache_find(cls, board_id): """数据更新一次, 缓存更新一次 :return: topic list """ j = json.loads(Topic.redis_cache.get('topic_all').decode('utf-8')) j = [Topic.from_json(i) for i in j] topics_in_board = [] for topic_object in j: if topic_object.board_id == board_id: topics_in_board.append(topic_object) return topics_in_board def replies(self): from .reply import Reply ms = Reply.find_all(topic_id=self.id) return ms def board(self): from .board import Board m = Board.find(self.board_id) return m def user(self): u = User.find(id=self.user_id) return u
[ "2563418641@qq.com" ]
2563418641@qq.com
7565385a1a71e902a08e95a08b0e9204a95bb82e
9ad593596a4e19e5a172a350544a4d3c043dc742
/apps/dojo_secret/urls.py
19d8030c7ee3011fbed48e0600b0d5321b58278e
[]
no_license
cryu1994/dojo-secret
df646cf62c4aef130f005b46d834ec70456d62e0
27db97939bdd1acbfb79f04401869e06ccbc2461
refs/heads/master
2021-01-20T00:48:00.231449
2017-04-24T12:04:10
2017-04-24T12:04:10
89,191,858
0
0
null
null
null
null
UTF-8
Python
false
false
402
py
from django.conf.urls import url from . import views # from django.contrib import admin urlpatterns = [ url(r'^$', views.index), url(r'^register$', views.register), url(r'^success$', views.success), url(r'^users/login$', views.login), url(r'^user/comments$', views.comment), url(r'^like/(?P<comment_id>\d+)', views.like), url(r'^unlike/(?P<comment_id>\d+)', views.like), ]
[ "Home@Homes-MacBook-Pro-2.local" ]
Home@Homes-MacBook-Pro-2.local
81dc81454be87fff711af9a9957454ae444737a2
bc31f84cc452540c955096d5ae0cd104101c1efc
/code/utils/util.py
36176d0a9307f67c8579c60ca2d110452189f8e1
[]
no_license
szWingLee/spsr-master
a4373182258b37128a2fe574603b011698d1cae6
f0dff12fe2ce255c41159d946c9adace22f6a474
refs/heads/master
2022-12-16T07:06:31.451596
2020-09-20T06:12:19
2020-09-20T06:12:19
297,013,495
1
0
null
null
null
null
UTF-8
Python
false
false
4,730
py
import os import math from datetime import datetime import numpy as np import cv2 from torchvision.utils import make_grid import random import torch import logging #################### # miscellaneous #################### def get_timestamp(): return datetime.now().strftime('%y%m%d-%H%M%S') def mkdir(path): if not os.path.exists(path): os.makedirs(path) def mkdirs(paths): if isinstance(paths, str): mkdir(paths) else: for path in paths: mkdir(path) def mkdir_and_rename(path): if os.path.exists(path): new_name = path + '_archived_' + get_timestamp() print('Path already exists. Rename it to [{:s}]'.format(new_name)) logger = logging.getLogger('base') logger.info('Path already exists. Rename it to [{:s}]'.format(new_name)) os.rename(path, new_name) os.makedirs(path) def set_random_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False): '''set up logger''' l = logging.getLogger(logger_name) formatter = logging.Formatter( '%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s', datefmt='%y-%m-%d %H:%M:%S') log_file = os.path.join(root, phase + '_{}.log'.format(get_timestamp())) fh = logging.FileHandler(log_file, mode='w') fh.setFormatter(formatter) l.setLevel(level) l.addHandler(fh) if screen: sh = logging.StreamHandler() sh.setFormatter(formatter) l.addHandler(sh) #################### # image convert #################### def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): ''' Converts a torch Tensor into an image Numpy array Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) ''' tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] n_dim = tensor.dim() if n_dim == 4: n_img = len(tensor) img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR elif n_dim == 3: img_np = tensor.numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR elif n_dim == 2: img_np = tensor.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) if out_type == np.uint8: img_np = (img_np * 255.0).round() # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. return img_np.astype(out_type) def save_img(img, img_path, mode='RGB'): cv2.imwrite(img_path, img) #################### # metric #################### def calculate_psnr(img1, img2): # img1 and img2 have range [0, 255] img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) mse = np.mean((img1 - img2) ** 2) if mse == 0: return float('inf') return 20 * math.log10(255.0 / math.sqrt(mse)) def ssim(img1, img2): C1 = (0.01 * 255) ** 2 C2 = (0.03 * 255) ** 2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1 ** 2 mu2_sq = mu2 ** 2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) return ssim_map.mean() def calculate_ssim(img1, img2): '''calculate SSIM the same outputs as MATLAB's img1, img2: [0, 255] ''' if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') if img1.ndim == 2: return ssim(img1, img2) elif img1.ndim == 3: if img1.shape[2] == 3: ssims = [] for i in range(3): ssims.append(ssim(img1, img2)) return np.array(ssims).mean() elif img1.shape[2] == 1: return ssim(np.squeeze(img1), np.squeeze(img2)) else: raise ValueError('Wrong input image dimensions.')
[ "zirong_li@163.com" ]
zirong_li@163.com
04397df6f9217cce1b6ef745433b2018f610d8de
64c3095772ec4a7c395f2db508b118e9aa9f7b24
/graphene_example/urls.py
b181effb67810659b59823b6a1e505edcdf479e9
[]
no_license
rastukis/graphene-django-example
8d1c8b48d923d10d7af54d9d174bb32e8927f002
a9f3d5a04b0ca5632f9f930b2b88efb448d5a9e0
refs/heads/master
2022-06-20T12:56:00.374562
2018-11-19T19:38:40
2018-11-19T19:38:40
157,759,615
0
0
null
2022-05-25T00:23:12
2018-11-15T19:09:14
Python
UTF-8
Python
false
false
1,099
py
"""graphene_example URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.urls import path from django.contrib import admin from graphene_django.views import GraphQLView from apps.posts.views import PrivateGraphQLView urlpatterns = [ path('admin/', admin.site.urls), # Para usar la autenticacion del usuario #path('graphql/', PrivateGraphQLView.as_view(graphiql=True)), # Sin autenticacion url(r'^graphql', GraphQLView.as_view(graphiql=True)), ]
[ "mplascencia.cruz@gmail.com" ]
mplascencia.cruz@gmail.com
068bace6606bcfda49ebc36b73ac984d7a1fadfd
5abce69e22007e34bc7625e862d9e082382446ff
/CommClusters/mod/gmm.py
8f6310fb0439845eb0ffdc1ac31ca4d059e2357d
[]
no_license
zaqari/DataScideProjects
6ee5a64275ac2436e2e377239869355262a7672c
c8d9ad862159f659acf1079bd89bd058e7f28692
refs/heads/master
2023-06-15T07:51:59.911606
2021-07-11T22:24:40
2021-07-11T22:24:40
385,058,141
0
0
null
null
null
null
UTF-8
Python
false
false
6,187
py
import torch import torch.nn as nn import numpy as np from CommClusters.mod.sel import * from sklearn.datasets import make_spd_matrix class gMM(): def __init__(self, K, dims, eps=5e-3): super(gMM, self).__init__() self.means = None self.vars = torch.cat([torch.FloatTensor(make_spd_matrix(dims)).unsqueeze(0) for _ in range(K)], dim=0) self.k = K self.eps = eps self.dims = dims self.pi = torch.FloatTensor([1/self.k for _ in range(self.k)]) def random_initialize(self, x): idxs = np.random.choice(len(x), size=(self.k,), replace=False) self.means = x[idxs].unsqueeze(0) self.vars = self.covariance(x) def seed_initialize(self, x, mu): self.means = mu.unsqueeze(0) self.vars = self.covariance(x) def prob(self, x): N = torch.distributions.MultivariateNormal(self.means, self.vars) # return torch.exp(N.log_prob(x).T) return torch.exp(N.log_prob(x).T) def predict(self,x): P = self.pi.unsqueeze(-1) * self.prob(x) P = P / (P.sum(dim=0) + self.eps) return P def fit(self, x, epochs=1, mu=[]): if len(mu) > 0: self.seed_initialize(x, mu) else: self.random_initialize(x) for ep in range(epochs): # E-step l = self.predict(x.unsqueeze(1)) # M-step # calculating r-matrix r = l * self.pi.unsqueeze(-1) r = r/(r.sum(dim=0) + self.eps) #Calculating means self.means = (r.unsqueeze(-1) * x).sum(dim=1) / (r.sum(dim=-1).sum(dim=-1).view(-1,1) + self.eps) self.means = self.means.unsqueeze(0) #calculating update to covariance matrices self.vars = self.covariance(x) #Soft updating weights/pi per training epoch self.pi = self.pi + (self.eps * (r.sum(dim=-1)/(r.sum() + self.eps))) self.pi = self.pi/self.pi.sum() # print(ep, self.pi, '\n===][===') #WORKING ON ALGO from https://colab.research.google.com/drive/1Eb-G95_dd3XJ-0hm2qDqdtqMugLkSYE8#scrollTo=DrsHNw9L5fHc def covariance(self, x): l = self.predict(x.unsqueeze(1)) * self.pi.unsqueeze(-1) l = (l/l.sum(dim=0)).unsqueeze(-1) E = (x.unsqueeze(1) - self.means).transpose(0,1) covar = (((l*E).transpose(-1,-2) @ E) / (l.sum(dim=1).unsqueeze(-1))) / (self.dims) return torch.clamp(covar, min=self.eps) class dGMM(): def __init__(self,K, dims, eps=5e-3, lr=5e-3): super(dGMM, self).__init__() self.k = K self.dims = dims self.eps = eps self.lr = lr self.means = None self.vars = None self.pi = torch.FloatTensor([1/self.k for _ in range(self.k)]) ################################################################# ##### initialize values from scratch ################################################################# def random_initialize(self, x): idxs = np.random.choice(len(x), size=(self.k,), replace=False) self.means = x[idxs] E = (x.unsqueeze(1) - self.means) ** 2 self.vars = torch.rand(size=(self.k,self.dims)) * E.mean(dim=0) def seed_initialize(self, x, mu): self.means = mu E = (x.unsqueeze(1) - self.means) ** 2 self.vars = torch.rand(size=mu.shape) * E.mean(dim=0) #(1/(x.shape[0]-1)) * E.sum(dim=0) ################################################################# ##### Probability and covariance calculations ################################################################# def likelihood(self, x): N = torch.distributions.Normal(self.means, self.vars) return torch.exp(N.log_prob(x.unsqueeze(1))) def covariance(self, x): posterior = self.likelihood(x) * self.pi.view(1,-1,1) posterior = posterior / (posterior.sum(dim=0) + self.eps) #Updating covariance by normal means was leading to instability. Instead, # I implement a bastard GIBBS samper to update covariance over time. #(1) Calculate Error E = (x.unsqueeze(1) - self.means) #(2) Calculate the directionality of error vec DIR = torch.ones(size=E.shape) DIR = DIR * ((E < 0).float() * -1) #(2) Find update amount r = (E**2) * DIR #(3) Update covariance by update amount * lr self.vars = self.vars - (self.lr * (1/(r.shape[0]-1)) * r.sum(dim=0)) ################################################################# ##### Fit model and predict outputs ################################################################# def fit(self, x, epochs=1, mu=[]): if len(mu) > 0: self.seed_initialize(x, mu) else: self.random_initialize(x) for ep in range(epochs): ####### E-STEP ####### l = self.likelihood(x) ####### M-STEP ####### r = l * self.pi.unsqueeze(-1) r = r/(r.sum(dim=-1).unsqueeze(-1) + self.eps) self.means = (r * x.unsqueeze(1)).sum(dim=0) / (r.sum(dim=0) + self.eps) self.covariance(x) self.pi = self.pi + (self.lr * r.sum(dim=0).sum(dim=-1) / (r.sum() + self.eps)) self.pi = self.pi/self.pi.sum() def predict(self, x): l = self.likelihood(x).sum(dim=-1) return l #(l/l.sum(dim=0)) ################################################################# ##### Save and load previous model versions ################################################################# def save_weights(self, file): torch.save({'k': self.k, 'dims': self.dims, 'eps' : self.eps, 'lr': self.lr, 'mu': self.means, 'covar': self.vars, 'pi': self.pi}, file) def load_weights(self, file): m = torch.load(file) self.k, self.dims, self.eps, self.lr = m['k'], m['dims'], m['eps'], m['lr'] self.means, self.vars, self.pi = m['mu'], m['covar'], m['pi']
[ "zrosen@uci.edu" ]
zrosen@uci.edu
684cdd7584314554e56bbb62b5727417812180d0
cd05fd22fc567700cc00a484b34faa8004fc597d
/自研究/pyqt学习/maindemo.py
f1cc6eab13fa60c518e8fc7a7cdee4fdb1d6b61d
[]
no_license
kcc666/py
342647ed9c898933daa86b2cb4d4e7cbc233e9d4
4a27d18ac5c730e9203085c9f929c3bab3422c30
refs/heads/master
2021-07-25T09:59:39.814794
2020-08-18T02:21:32
2020-08-18T02:21:32
207,763,736
0
1
null
null
null
null
UTF-8
Python
false
false
346
py
from PyQt5.Qt import * class Window(QWidget): def __init__(self): super().__init__() self.setWindowTitle("学习") self.resize(500,500) def setup_ui(self): pass if __name__ == '__main__': import sys app = QApplication(sys.argv) window = Window() window.show() sys.exit(app.exec_())
[ "463217787@qq.com" ]
463217787@qq.com
eea4371df9310b44093e939f0f47fa6ba184bcde
6d4a47b2533145e7f7e62b1c77c51916a0b27784
/ProjectFiles/Python/BattleShipGameFiles/EnemyShipAI.py
a5eaf18f4017be95af82647b1ad523af354471b2
[]
no_license
srjamesjr/srjamesjr.github.io
4094176dabc426d198c1a29e42fdedcf99cff07d
5dc88c83daed1398edce7359b6f58967e0bd20d6
refs/heads/master
2020-04-25T15:15:06.526843
2019-11-21T05:16:58
2019-11-21T05:16:58
172,871,861
0
1
null
null
null
null
UTF-8
Python
false
false
9,817
py
import random def EnemyShipPlacement(): enemyLocation = [0, 0, 0, 0, 0] #ship, rotation, side, X, Y FoeBoardMatrix = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # a grid represention and the Graphic board [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # 13 x 9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] CursorTypeMinMax = [[[0, 8, 0, 11], [0, 7, 0, 12]], [[0, 8, 0, 10], [0, 6, 0, 12]], [[0, 8, 0, 10], [0, 6, 0, 12]], [[0, 8, 0, 9], [0, 5, 0, 12]], [[0, 8, 0, 8], [0, 4, 0, 12]], [[0, 8, 0, 12], [0, 8, 0, 12]]] # [ship][rotation][y,y,x,x] while enemyLocation[0] <= 4: EnemyRotation = random.randint(0,1) EnemyX = random.randint(0, CursorTypeMinMax[enemyLocation[0]][EnemyRotation][3]) EnemyY = random.randint(0, CursorTypeMinMax[enemyLocation[0]][EnemyRotation][1]) enemyLocation = [enemyLocation[0], EnemyRotation, 0, EnemyX, EnemyY] # ship, rotation, side, X, Y #enemyLocation = [3, 0, 0, 9, 8] if FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] == 0: # Base space empty if enemyLocation[0] == 0: # ship 0 if enemyLocation[1] == 0: # Rotation 0 if FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 1] == 0: # if shiplength is empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] = 1 # make it not empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 1] = 1 # place your ship enemyLocation[0] = 1 # go to next ship elif enemyLocation[1] == 1: # Rotation 1 if FoeBoardMatrix[enemyLocation[4] + 1][enemyLocation[3]] == 0: # if shiplength is empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] = 1 ##make it not empty FoeBoardMatrix[enemyLocation[4] + 1][enemyLocation[3]] = 1 # place your ship enemyLocation[0] = 1 # go to next ship elif enemyLocation[0] == 1: # Ship 1 if enemyLocation[1] == 0: # Rotation 0 if FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 1] == 0 and FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 2] == 0: # if shiplength is empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] = 2 # make it not empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 1] = 2 FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 2] = 2 # place your ship enemyLocation[0] = 2 # go to next ship elif enemyLocation[1] == 1: # Rotation 1 if FoeBoardMatrix[enemyLocation[4] + 1][enemyLocation[3]] == 0 and FoeBoardMatrix[enemyLocation[4] + 2][enemyLocation[3]] == 0: # if shiplength is empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] = 2 ##make it not empty FoeBoardMatrix[enemyLocation[4] + 1][enemyLocation[3]] = 2 FoeBoardMatrix[enemyLocation[4] + 2][enemyLocation[3]] = 2 # place your ship enemyLocation[0] = 2 # go to next ship elif enemyLocation[0] == 2: # Ship 2 if enemyLocation[1] == 0: # Rotation 0 if FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 1] == 0 and FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 2] == 0: # if shiplength is empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] = 3 ##make it not empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 1] = 3 FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 2] = 3 # place your ship enemyLocation[0] = 3 # go to next ship elif enemyLocation[1] == 1: # Rotation 1 if FoeBoardMatrix[enemyLocation[4] + 1][enemyLocation[3]] == 0 and FoeBoardMatrix[enemyLocation[4] + 2][enemyLocation[3]] == 0: # if shiplength is empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] = 3 # make it not empty FoeBoardMatrix[enemyLocation[4] + 1][enemyLocation[3]] = 3 FoeBoardMatrix[enemyLocation[4] + 2][enemyLocation[3]] = 3 # place your ship enemyLocation[0] = 3 # go to next ship elif enemyLocation[0] == 3: # Ship 3 if enemyLocation[1] == 0: # Rotation 0 if FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 1] == 0 and FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 2] == 0 and FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 3] == 0: # if shiplength is empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] = 4 # make it not empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 1] = 4 FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 2] = 4 FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 3] = 4 # place your ship enemyLocation[0] = 4 # go to next ship elif enemyLocation[1] == 1: # Rotation 1 if FoeBoardMatrix[enemyLocation[4] + 1][enemyLocation[3]] == 0 and FoeBoardMatrix[enemyLocation[4] + 2][enemyLocation[3]] == 0 and FoeBoardMatrix[enemyLocation[4] + 3][enemyLocation[3]] == 0: # if shiplength is empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] = 4 ##make it not empty FoeBoardMatrix[enemyLocation[4] + 1][enemyLocation[3]] = 4 FoeBoardMatrix[enemyLocation[4] + 2][enemyLocation[3]] = 4 FoeBoardMatrix[enemyLocation[4] + 3][enemyLocation[3]] = 4 # place your ship enemyLocation[0] = 4 # go to next ship elif enemyLocation[0] == 4: # Ship 4 if enemyLocation[1] == 0: # Rotation 0 if FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 1] == 0 and FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 2] == 0 and FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 3] == 0 and FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 4] == 0: # if shiplength is empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] = 5 # make it not empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 1] = 5 FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 2] = 5 FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 3] = 5 FoeBoardMatrix[enemyLocation[4]][enemyLocation[3] + 4] = 5 # place your ship enemyLocation[0] = 5 # go to target icon on foes board enemyLocation[1] = 0 enemyLocation[2] = 0 elif enemyLocation[1] == 1: # Rotation 1 if FoeBoardMatrix[enemyLocation[4] + 1][enemyLocation[3]] == 0 and FoeBoardMatrix[enemyLocation[4] + 2][enemyLocation[3]] == 0 and FoeBoardMatrix[enemyLocation[4] + 3][enemyLocation[3]] == 0 and FoeBoardMatrix[enemyLocation[4] + 4][enemyLocation[3]] == 0: # if shiplength is empty FoeBoardMatrix[enemyLocation[4]][enemyLocation[3]] = 5 ##make it not empty FoeBoardMatrix[enemyLocation[4] + 1][enemyLocation[3]] = 5 FoeBoardMatrix[enemyLocation[4] + 2][enemyLocation[3]] = 5 FoeBoardMatrix[enemyLocation[4] + 3][enemyLocation[3]] = 5 FoeBoardMatrix[enemyLocation[4] + 4][enemyLocation[3]] = 5 # place your ship enemyLocation[0] = 5 enemyLocation[1] = 0 enemyLocation[2] = 0 return FoeBoardMatrix def EnemyTargetingSystem(PlayerBoardMatrix, Cursor, ShipType, TestForWin, Player1ShipsDestroyed, right, backward): EnemyX = random.randint(0, 12) EnemyY = random.randint(0, 8) for X in range(0, EnemyX): right() for Y in range(0, EnemyY): backward() #drop missle on your board if PlayerBoardMatrix[EnemyY][EnemyX] > 0 and PlayerBoardMatrix[EnemyY][EnemyX] < 6: # on hit Cursor.shape(ShipType[2]) Cursor.stamp() PlayerBoardMatrix[EnemyY][EnemyX] = 6 TestForWin("Player1", PlayerBoardMatrix, Player1ShipsDestroyed) elif PlayerBoardMatrix[EnemyY][EnemyX] == 0: #on miss Cursor.shape(ShipType[1]) Cursor.stamp() PlayerBoardMatrix[EnemyY][EnemyX] = 7 TestForWin("Player1", PlayerBoardMatrix, Player1ShipsDestroyed) else: #already hit EnemyTargetingSystem(PlayerBoardMatrix, Cursor, ShipType, TestForWin, Player1ShipsDestroyed, right, backward) return PlayerBoardMatrix
[ "noreply@github.com" ]
srjamesjr.noreply@github.com
0ce55e334a15902480268b7355fc7dfe902c439a
ab3deecc4de4e30cfbbb1173763126034ca76c83
/venv/lib/python3.7/collections/abc.py
7e605fa09413bcee5e2727939a003fe259a9262e
[]
no_license
AnthonyLimo/BuildForSDGs-Demo
03def04795c90f2b51ef5c1e83a8674346eafc98
2cb40918cb882e96a79eaf064cf2052fe1b591eb
refs/heads/master
2022-12-08T04:24:52.282525
2020-09-03T15:18:04
2020-09-03T15:18:04
292,526,106
1
0
null
null
null
null
UTF-8
Python
false
false
106
py
/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/lib/python3.7/collections/abc.py
[ "anthony.kiplimo@africastalking.com" ]
anthony.kiplimo@africastalking.com
cf6bee7e32c961feb62eafd9e9a45399bdaf7ce4
27b6efd482e4feaf423583a5e9533e232404a340
/main.py
523be34a994d5761aff11d78884c24aa973c9ccd
[]
no_license
kimduuukbae/FindLostItem
2b6909ccd32828281c02ba88e9fb64205ed4719e
dcc04798c6135e0f671c1ecfdd89aec5775071f7
refs/heads/master
2020-06-15T03:55:50.239636
2019-07-04T08:12:22
2019-07-04T08:12:22
195,197,425
0
0
null
null
null
null
UHC
Python
false
false
9,139
py
from urllib.request import urlopen from urllib.parse import urlencode import urllib import xml.etree.ElementTree as ET from tkinter import * from tkinter import ttk from enum import Enum import smtplib from email.mime.text import MIMEText import telepot import folium import selenium.webdriver import requests my_token = "key" bot = telepot.Bot(token = my_token) bot.getMe() mylists = [] saveitem = "" class TextType(Enum): LostItem = 0 LostDay = 1 LostSpot = 2 LostInfo = 3 LostTakeId = 4 def getMaps(string): urlParams = { 'address': string, 'sensor': 'false', 'language' : 'ko', 'key' : 'key' } url = 'https://maps.google.com/maps/api/geocode/json?' + urllib.parse.urlencode(urlParams) response = requests.get(url) data = response.json() lat = 0 lng = 0 if data['status'] != 'ZERO_RESULTS': lat = data['results'][0]['geometry']['location']['lat'] lng = data['results'][0]['geometry']['location']['lng'] return lat,lng def handle(msg): global bot count = 0 content_type, chat_type, chat_id = telepot.glance(msg) if content_type != 'text': bot.sendMessage(chat_id, "텍스트만 보내새유") return bot.sendMessage(chat_id, msg['text'] + ' 정보에 대해 알려드릴게요. ') for i in range(0, len(mylists), 1): if mylists[i][TextType.LostItem.value].find(msg['text']) != -1: count += 1 bot.sendMessage(chat_id, "분실 물건 : " + mylists[i][TextType.LostItem.value] + " 분실 날짜 : " + mylists[i][TextType.LostDay.value] + " 분실 장소 : " + mylists[i][TextType.LostSpot.value]) if count is 0: bot.sendMessage(chat_id, "찾는 내용이 없습니다.") class MyTk: def __init__(self): self.root = Tk() self.root.title('분실물 찾기 서비스') self.root.geometry('600x800') self.mylist = Listbox(self.root, selectmode='extended') self.mylist.place(x=20, y=50, width=200, height=400) self.strings = StringVar() self.emailadd = StringVar() self.textbox = ttk.Entry(self.root, textvariable=self.strings) self.textbox.place(x=20, y=5, width=200) self.textbox2 = ttk.Entry(self.root, textvariable = self.emailadd) self.textbox2.place(x=20, y =470, width = 400) self.searchButton = Button(self.root, text ="검색", overrelief="solid", command=self.getList, repeatdelay=1000, repeatinterval=100) self.searchButton.place(x=230, y=5, width=50, height=20) self.sendButton = Button(self.root, text = "전송", overrelief = "solid", command=self.sendButtonAction) self.sendButton.place(x =480, y = 470, width = 50, height =20) self.clearButton = Button(self.root, text = "초기화", overrelief = "solid", command = self.clear) self.clearButton.place (x = 290, y = 5, width = 70, height = 20) self.Label1 = Label(self.root, text="", relief='solid') self.Label1.place(x=250, y=80, width=300, height=40) self.Label2 = Label(self.root, text="", relief='solid') self.Label2.place(x=250, y=150, width=300, height=40) self.Label3 = Label(self.root, text="", relief='solid') self.Label3.place(x=250, y=220, width=300, height=40) self.Label4 = Label(self.root, text="", relief='solid', wraplength = 300) self.Label4.place(x=250, y=300, width=300, height=150) self.Label5 = Label(self.root, text="", relief='solid') self.Label5.place(x=20, y=530, width=560, height=250) self.Label6 = Label(self.root, text="최근 0건 검색") self.Label6.place(x = 20, y = 30) self.Label7 = Label(self.root, text="", justify = 'center') self.Label7.place(x=150, y=510, width = 100, height = 20) self.mylist.bind("<Double-Button-1>", self.selection) self.allcount = self.getCount() self.end = self.allcount self.start = self.end - 401 self.yIdx = 0 self.plan = 10 self.selectNum = 0 self.allViewNum = 0 self.savestring = "" staticText = Label(self.root, text="분실 날짜") staticText.place(x = 360, y = 60, width = 80, height = 20) staticText2 = Label(self.root, text="분실 물건") staticText2.place(x=360, y=130, width=80, height=20) staticText3 = Label(self.root, text="분실 장소") staticText3.place(x=360, y=200, width=80, height=20) staticText4 = Label(self.root, text="분실 정보") staticText4.place(x=360, y=280, width=80, height=20) staticText5 = Label(self.root, text = "이메일 전송") staticText5.place(x=20, y = 450, width=70, height=20) staticText6 = Label(self.root, text="분실물 수령 위치 : ") staticText6.place(x=20, y=510, width=110, height=20) self.s = smtplib.SMTP('smtp.gmail.com',587) self.s.starttls() self.s.login('eMail', 'passWord') self.msg = MIMEText('내용: 본문 내용 테스트') self.msg['Subject'] = '제목: 메일 보내기 테스트' bot.message_loop(handle) self.root.mainloop() def clear(self): self.end = self.allcount self.start = self.end - 201 self.savestring ="" self.mylist.delete(0, self.mylist.size()) self.Label6.config(text="최근 0건 검색") def sendButtonAction(self): global mylists receive = self.textbox2.get() listargs = mylists[self.selectNum] msg = MIMEText('분실 날짜 : ' + listargs[TextType.LostDay.value] + '\n' + '분실 물건 : ' + listargs[TextType.LostItem.value] + '\n' + '분실 장소 : ' + listargs[TextType.LostSpot.value] + '\n' + '분실 정보 : \n' + listargs[TextType.LostInfo.value]) msg['Subject'] = "LostItem" self.s.sendmail("eMail", receive,msg.as_string()) self.s.quit() def selection(self, event): global mylists global saveitem listargs = mylists[event.widget.curselection()[0]] self.selectNum = event.widget.curselection()[0] self.Label1.config(text = listargs[TextType.LostDay.value]) self.Label2.config(text = listargs[TextType.LostItem.value]) self.Label3.config(text=listargs[TextType.LostSpot.value]) self.Label4.config(text=listargs[TextType.LostInfo.value]) if saveitem != listargs[TextType.LostTakeId.value]: lat,lng = getMaps(listargs[TextType.LostTakeId.value]) if lat != 0 and lng != 0: a = folium.Map(location=[lat,lng], zoom_start=15) folium.Marker([lat,lng]).add_to(a) a.save("save.html") self.driver = selenium.webdriver.PhantomJS('phantomjs') self.driver.set_window_size(500, 200) self.driver.get('save.html') self.driver.save_screenshot('screenshot.png') photo = PhotoImage(file="screenshot.png") self.Label5.config(image = photo) saveitem = listargs[TextType.LostTakeId.value] self.Label7.config(text = saveitem) else: self.Label5.config(text="회사 정보를 읽어올 수 없습니다.", image = None) self.Label7.config(text='') else: return def getCount(self): testCase = "http://openapi.seoul.go.kr:8088/key/xml/lostArticleInfo/1/1/" return int(ET.ElementTree(file=urllib.request.urlopen(testCase)).getroot().findtext('list_total_count')) def getList(self): url = "http://openapi.seoul.go.kr:8088/key/xml/lostArticleInfo/" + str( self.start) + "/" + str(self.end) + "/" tree = ET.ElementTree(file=urllib.request.urlopen(url)) root = tree.getroot() if self.savestring != self.strings.get(): self.savestring = self.strings.get() self.mylist.delete(0, self.mylist.size()) self.allViewNum = 0 self.end = self.allcount for a in root.findall('row'): condition = a.findtext('GET_NAME') if a.findtext('STATUS') == "수령" or condition.find("고객") != -1 or condition.find("연락") != -1 or condition.find(self.strings.get()) == -1: continue if len(mylists) <= self.yIdx: mylists.append([]) mylists[self.yIdx].append(a.findtext('GET_NAME')) mylists[self.yIdx].append(a.findtext('REG_DATE')) mylists[self.yIdx].append(a.findtext('GET_GOOD')) mylists[self.yIdx].append(a.findtext('GET_THING').replace("<br>", "\n")) mylists[self.yIdx].append(a.findtext('TAKE_ID')) self.mylist.insert(self.yIdx, mylists[self.yIdx][TextType.LostItem.value]) self.yIdx += 1 self.allViewNum += self.end - self.start - 1 self.Label6.config(text="최근 {0}건 검색".format(self.allViewNum)) self.end = self.start self.start = self.end - 401 self.plan += 10 ab = MyTk()
[ "39338850+kimduuukbae@users.noreply.github.com" ]
39338850+kimduuukbae@users.noreply.github.com
16850e52f133d71fefd06f2429f65610e2cdaf0f
ab19c3757766f00c7414aa10641f8c7e6321375d
/h.py
93769797074788cc1586538c20c074f4ac20bd00
[]
no_license
HHariHHaran/python-programming
2c70ff0c4b24ae48b8096075a29ffc0edfe1ef00
c2db869e352d7ee22d499dd772f5cb2285b2822f
refs/heads/master
2020-04-19T09:19:56.918989
2019-01-22T09:50:28
2019-01-22T09:50:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
66
py
A = int(raw_input()) for i in xrange(A): print "hello world"
[ "noreply@github.com" ]
HHariHHaran.noreply@github.com
08c724928dd870fb1914f496ecb1e8eed4e0ac31
0b12e31cafa598c163d2cc53706df193a73e31e3
/pro/urls.py
007cf0e8282f4b0d91c9e0b96e3c5297850817bf
[]
no_license
getopen/pro
6a4dba774558e1de0419a4c6daf030ee360d68fd
97e939d26d9fdaf54f05f3cd4a9b32a6722d0ac3
refs/heads/master
2021-07-06T09:35:18.077577
2017-09-30T16:07:06
2017-09-30T16:07:06
100,471,872
0
0
null
null
null
null
UTF-8
Python
false
false
936
py
"""pro URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include, url from django.contrib import admin urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^', include('question.urls', namespace='question')), url(r'^', include('people.urls', namespace='user')), url(r'^sites/', include('sites.urls', namespace='sites')), ]
[ "zhuoqun527@qq.com" ]
zhuoqun527@qq.com
b29528a81fe99fcf38ac6da0494cc7091dd75dcb
cba4a94cb34c0d5305146f9cab9caeebc40ab11a
/lib/miband2time.py
48b23e27652c543e704bd87560b1f1399eaedf2b
[]
no_license
4m1g0/PyBand2
73f0687a498dc448200baeda4cf87962826a14c7
06bd92d790576a3794279040976a80bb8d2fcc17
refs/heads/master
2020-03-22T05:28:30.153367
2018-07-02T15:15:15
2018-07-02T15:15:15
139,568,415
1
0
null
2018-07-03T10:40:38
2018-07-03T10:40:38
null
UTF-8
Python
false
false
4,101
py
import calendar import datetime import struct class MiBand2Time: def __init__(self, device, year, month, day, hour, min, sec=None, weekday=None, dst=0, tz=4): # Infer precision from parameters if not specified self.device = device self.year = year self.month = month self.day = day self.hour = hour self.min = min self.sec = sec if self.sec != None: self.precision = "sec" if weekday != None: self.weekday = weekday else: self.weekday = calendar.weekday(self.year, self.month, self.day) + 1 else: self.precision = "min" self.dst = dst self.tz = tz def toDatetime(self): return datetime.datetime(self.year, self.month, self.day, self.hour, self.min) def getBytes(self, honorOffset=False): # Trick the miband to record sleep out of schedule if(honorOffset): if(self.device.sleepOffset != 0): datetime[3] += self.sleepOffset if (self.precision == 'min'): dateBytes = struct.pack('<H4B', self.year, self.month, self.day, self.hour, self.min) elif (self.precision == 'sec'): dateBytes = struct.pack('<H7B', self.year, self.month, self.day, self.hour, self.min, self.sec, self.weekday, 0) else: raise ValueError('Precision can only be min or sec, got {0}'.format(self.precision)) # Last byte is timezone, but datetime is tz-unaware in python so it shouldn't be needed tail = struct.pack('2B', self.dst, self.tz) return dateBytes + tail @staticmethod def dateBytesToDatetime(device, datetime): mbDate = None if (len(datetime) == 8): dtm = struct.unpack('<H4B', datetime[0:6]) tz = struct.unpack('<2B', datetime[6:8]) mbDate = MiBand2Time(self, device, dtm[0], dtm[1], dtm[2], dtm[3], dtm[4], dst=tz[0], tz=tz[1]) elif (len(datetime) == 11): dtm = struct.unpack('<H7B', datetime[0:9]) tz = struct.unpack('<2B', datetime[9:11]) mbDate = MiBand2Time(device, dtm[0], dtm[1], dtm[2], dtm[3], dtm[4], sec=dtm[5], weekday=dtm[6], dst=tz[0], tz=tz[1]) else: raise ValueError('Unsupported DatetimeBytes length {0}'.format(len(datetime))) return mbDate def toMinPrecision(self): self.precision = "min" self.sec = None self.weekday = None def toSecPrecision(self, sec, weekday): self.precision = "sec" self.sec = sec self.weekday = weekday def addMinutes(self, minutes): tmp_sec = self.sec if self.sec != None else 0 tmp_min = (self.min + minutes + (tmp_sec/60)) tmp_hour = (self.hour + (tmp_min/60)) tmp_day = (self.day + (tmp_hour/24)) - 1 monthdays = calendar.monthrange(self.year, self.month)[1] tmp_month = (self.month + (tmp_day/(monthdays))) - 1 tmp_year = (self.year + (tmp_month/12)) if self.precision == "sec": tmp_weekday = calendar.weekday(tmp_year, tmp_month%12+1, tmp_day%monthdays+1)+1 return MiBand2Time(self, tmp_year, tmp_month%12+1 , tmp_day%monthdays+1, tmp_hour%24, tmp_min%60, tmp_sec%60, weekday=tmp_weekday, dst=self.dst, tz=self.tz) else: return MiBand2Time(self, tmp_year, tmp_month%12+1, tmp_day%monthdays+1, tmp_hour%24, tmp_min%60, dst=self.dst, tz=self.tz) def minutesUntilNow(self): now = datetime.datetime.now() years = now.year - self.year months = now.month - self.month days = now.day - self.day hours = now.hour - self.hour minutes = now.minute - self.min return years*365*24*60 + months*30*24*60 + days*24*60 + hours*60 + minutes def __str__(self): ret = "{0:04d}-{1:02d}-{2:02d} {3:02d}:{4:02d}".format(self.year, self.month, self.day, self.hour, self.min) if self.precision == "sec": ret += ":{0:02}".format(self.sec, self.weekday) return ret
[ "trigork@gmail.com" ]
trigork@gmail.com
96aa6cddb47242fd1fd40905f7a76afab1cc358a
a34ed23c7aea6f363d589055057092ec65d96597
/mapstory/settings/__init__.py
9c925ff4c80ca5db5e7f87fea6fdec58bf02f168
[]
no_license
jsiochi/mapstory-geonode
471bfdbb4a0a79a4fe2f17addaec355d73fb078f
41e1caccbdeb1cdeabdd3f03cc14af72d768d9da
refs/heads/master
2021-01-17T21:37:24.578904
2014-09-09T17:01:25
2014-09-09T17:01:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,774
py
# -*- coding: utf-8 -*- ######################################################################### # # Copyright (C) 2012 OpenPlans # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ######################################################################### # Django settings for the GeoNode project. import os from geonode.settings import * # # General Django development settings # SITENAME = 'MapStory' # Defines the directory that contains the settings file as the LOCAL_ROOT # It is used for relative settings elsewhere. LOCAL_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) WSGI_APPLICATION = "mapstory.wsgi.application" # Additional directories which hold static files STATICFILES_DIRS.insert( 0, os.path.join(LOCAL_ROOT, "static"), ) STATIC_ROOT = os.path.join(LOCAL_ROOT, "static_root") MEDIA_ROOT = os.path.join(LOCAL_ROOT, "uploaded") # Note that Django automatically includes the "templates" dir in all the # INSTALLED_APPS, se there is no need to add maps/templates or admin/templates TEMPLATE_DIRS = ( os.path.join(LOCAL_ROOT, "templates"), ) + TEMPLATE_DIRS # Location of url mappings ROOT_URLCONF = 'mapstory.urls' # Location of locale files LOCALE_PATHS = ( os.path.join(LOCAL_ROOT, 'locale'), ) + LOCALE_PATHS # Defines settings for development DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(LOCAL_ROOT, 'development.db'), }, } INSTALLED_APPS += ( 'mapstory', 'django.contrib.webdesign', 'geonode.contrib.geogit' ) OGC_SERVER = { 'default' : { 'BACKEND' : 'geonode.geoserver', 'LOCATION' : 'http://localhost:8080/geoserver/', # PUBLIC_LOCATION needs to be kept like this because in dev mode # the proxy won't work and the integration tests will fail # the entire block has to be overridden in the local_settings 'PUBLIC_LOCATION' : 'http://localhost:8000/geoserver/', 'USER' : 'admin', 'PASSWORD' : 'geoserver', 'MAPFISH_PRINT_ENABLED' : True, 'PRINT_NG_ENABLED' : True, 'GEONODE_SECURITY_ENABLED' : True, 'GEOGIT_ENABLED' : True, 'WMST_ENABLED' : False, 'BACKEND_WRITE_ENABLED': True, 'WPS_ENABLED' : True, # Set to name of database in DATABASES dictionary to enable 'DATASTORE': '', #'datastore', 'TIMEOUT': 10 # number of seconds to allow for HTTP requests } } #@todo remove this hack once maploom can deal with other config MAP_BASELAYERS = [ { "source": { "ptype": "gxp_wmscsource", "url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms", "restUrl": "/gs/rest", "name": "local geoserver" } }, { "source": {"ptype": "gxp_osmsource", "name": "OpenStreetMap"}, "type": "OpenLayers.Layer.OSM", "name": "mapnik", "title": "OpenStreetMap", "args": ["OpenStreetMap"], "visibility": True, "fixed": True, "group":"background" } ] DEBUG_STATIC = True REMOTE_CONTENT_URL = 'http://mapstory.dev.boundlessgeo.com/MapStoryOrg/images' DATABASE_PASSWORD = None if os.path.exists('mapstory/settings/local_settings.py'): exec open('mapstory/settings/local_settings.py') in globals() if DATABASE_PASSWORD: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'mapstory', 'USER': 'mapstory', 'PASSWORD': DATABASE_PASSWORD, 'HOST' : 'localhost', 'PORT' : '5432', }, 'datastore' : { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'mapstory_data', 'USER' : 'mapstory', 'PASSWORD' : DATABASE_PASSWORD, 'HOST' : 'localhost', 'PORT' : '5432', } } OGC_SERVER['default']['DATASTORE'] = 'datastore' UPLOADER = { 'BACKEND': 'geonode.importer', 'OPTIONS': { 'TIME_ENABLED': True, 'GEOGIT_ENABLED': True, } } USE_BIG_DATE = True GEOGIT_DATASTORE_NAME = 'geogit'
[ "planablediglet@gmail.com" ]
planablediglet@gmail.com
0a69d80d2290b6f3660527d5d070753aadf125cd
ec6e842aa3ae88e576fb6dec291f0d068ea42fea
/sloth/annotation_containers/darknet.py
55e0491b8dd4f9c99c48f08dc085f39223239e40
[]
no_license
PalouseRobosub/vision_dev
697b84c6200718b1c3c8821dcebf487513ef5501
cb30bf9918cecb57e44b72e69592789c27115046
refs/heads/master
2021-01-23T15:59:16.183537
2018-06-06T21:50:56
2018-06-06T21:50:56
93,279,883
1
1
null
2020-07-22T01:40:48
2017-06-03T23:50:39
Python
UTF-8
Python
false
false
6,342
py
from sloth.annotations.container import AnnotationContainer import os import struct import imghdr class DarknetContainer(AnnotationContainer): def get_image_size(self, fname): print("Getting image size of {}".format(fname)) '''Determine the image type of fhandle and return its size. from draco''' try: with open(fname, 'rb') as fhandle: print("fhandle: {}".format(fhandle)) head = fhandle.read(24) print("Head: {}".format(head)) if len(head) != 24: return if imghdr.what(fname) == 'png': check = struct.unpack('>i', head[4:8])[0] if check != 0x0d0a1a0a: return width, height = struct.unpack('>ii', head[16:24]) elif imghdr.what(fname) == 'gif': width, height = struct.unpack('<HH', head[6:10]) elif imghdr.what(fname) == 'jpeg': try: fhandle.seek(0) # Read 0xff next size = 2 ftype = 0 while not 0xc0 <= ftype <= 0xcf: fhandle.seek(size, 1) byte = fhandle.read(1) while ord(byte) == 0xff: byte = fhandle.read(1) ftype = ord(byte) size = struct.unpack('>H', fhandle.read(2))[0] - 2 # We are at a SOFn block fhandle.seek(1, 1) # Skip `precision' byte. height, width = struct.unpack('>HH', fhandle.read(4)) except Exception: #IGNORE:W0703 return else: return return width, height except IOError: print("Failed to open file: {}".format(fname)) return """ Containter which writes annotations in the darknet format. This file will need to be parsed and split to use """ def parseFromFile(self, fname): """ Overwritten to read darknet format """ labels = {} annotations = [] parentDir = os.path.split(fname)[0] + "/" with open(fname, "r") as f: while True: line = f.readline().rstrip() if '---' in line and len(labels) > 0: # Stop adding to list break elif '---' not in line: data = line.split(":") print (data) labels[int(data[1])] = data[0] #All labels loaded tmp = {} for line in f: if ">>" in line: _,filename = line.split(" ") tmp["filename"] = filename[1:-2] tmp["class"] = "image" tmp["annotations"] = [] elif "<<" in line: if not tmp['annotations']: tmp["unlabeled"] = True annotations.append(tmp) tmp = {} elif len(line) > 0: data = line.split(" ") label = {} label["class"] = labels[int(data[0])] path = parentDir + tmp['filename'] size = self.get_image_size(path) if size is None: print("Invalid size") tmp = {} continue label["height"] = data[3] * size[0] label["width"] = data[4] * size[0] label["x"] = data[1] * size[0] label["y"] = data[2] * size[1] return annotations def serializeToFile(self, fname, annotations): """ Overwritten to write darknet files """ print("Writing to file: {}".format(fname)) parentDir = os.path.split(fname)[0] parentDir = parentDir + ("/" if parentDir else "") with open(fname, "w") as f: print("File open") labels = [] for an in annotations: print("Using annotation: {}".format(an['annotations'])) for l in an['annotations']: if l['class'] not in labels: print("Adding class: {}".format(l['class'])) labels.append(l['class']) print("Labels: {}".format(labels)) print ("Created class list") # Write class number to label conversion header f.write("---\n") print("Labels: {}".format(labels)) for i, item in enumerate(labels): print("Writing pair: {}:{}".format(item, i)) f.write("{} : {}\n".format(item, i)) print("Wrote pair to file") f.write("---\n") print("Wrote class labels") # Write each file's annotations for an in annotations: f.write(">> \"" + an['filename'] + "\"\n") print("Using parent Dir: {}".format(parentDir)) print("Getting image size of: {}".format(an["filename"])) path = parentDir + an['filename'] size = self.get_image_size(path) print("Size: {}".format(size)) for label in an['annotations']: print("Adding label: {}".format(label)) dw = 1.0/size[0] dh = 1.0/size[1] x = (label['width'] / 2.0) + label['x'] y = (label['height'] / 2.0) + label['y'] x = x * dw w = label['width'] * dw y = y * dh h = label['height'] * dh print("Writing label to file") f.write("{} {} {} {} {}\n".format(labels.index(label['class']), x, y, w, h)) print("Wrote to file") f.write("<<\n") print("Wrote annotations") print("Finished writing") return
[ "seanp@kallaher.org" ]
seanp@kallaher.org
45743441ca09f232e46a89061c07576fb6fc06f8
af30f87a267495b204e5b5cc5be8f9244bb77747
/afib_diagnosis/venv/Scripts/django-admin.py
fbf52d82cf4a49bc54383da34610a0950ea17c1f
[]
no_license
hollandsean/FYP-Web
bc9517507f8e78f8b02044f7225e6ae5b453de26
e179e872d590bc5d94ac1e8b11775c044d66e3a1
refs/heads/master
2020-03-17T19:22:53.467343
2018-05-17T20:24:10
2018-05-17T20:24:10
131,615,966
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
#!C:\Users\sean\Documents\FOURTH_YEAR_SES_TWO\PROJECT\AFIB\afib_diagnosis\venv\Scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "sean.holland@mycit.ie" ]
sean.holland@mycit.ie
3aceae95ee0d6b94bb559db47039e4e77469f3b2
09478b6d8a1b785067a550fab4d3ef6445c18f58
/Flask/06.10/employee.py
d0766fce71ce8467a4607d5f89fbbde65bfb35a0
[]
no_license
Mikeyc85/QA-Training
a8c003d9dfe9ccde11bcce8753ae1d8815c89406
ef33a8b7d2a3430fd0847de434fec370f5460a62
refs/heads/main
2023-08-13T04:21:30.457583
2021-10-13T19:50:00
2021-10-13T19:50:00
406,368,004
0
0
null
null
null
null
UTF-8
Python
false
false
2,816
py
from flask import Flask, render_template,request,redirect import mysql.connector db=mysql.connector.connect(host="localhost",user="root",password="root",database="employees",auth_plugin='mysql_native_password') cursor=db.cursor() app = Flask(__name__) @app.route("/") def homepage(): cursor.execute("select * from personalInfo") data=cursor.fetchall() return render_template("Homepage.html",records=data) @app.route("/personalInfo_entry") def personalinfo_entry(): return render_template("personalinfoform.html") @app.route("/personalInfo_save",methods=["POST"]) def personalinfo_save(): cursor.execute("select ifnull(max(empno),0)+1 from personalInfo") newempno=cursor.fetchone() name=request.form["name"] department=request.form["department"] address=request.form["address"] country=request.form["country"] insertcommand="insert into personalInfo values({0},'{1}','{2}','{3}','{4}')".format((newempno[0]),name,department,address,country,) cursor.execute(insertcommand) db.commit() return redirect("/") @app.route("/deleteemployee/<eno>") def deleteemployee(eno): cursor.execute("delete from personalInfo where empno="+eno) db.commit() return redirect("/") @app.route("/editemployee/<empno>") def editemployee(empno): cursor.execute("select * from personalInfo where empno="+empno) data=cursor.fetchone() return render_template("personalinfoedit.html",record=data) @app.route("/personalInfo_edit",methods=["POST"]) def personalinfo_edit(): updatecommand="update personalInfo set empname='{0}',address='{1}' where empno={2}".format(request.form["name"],request.form["address"],request.form["empno"]) cursor.execute(updatecommand) db.commit() return redirect("/") @app.route("/countryvizlist/<country>") def countryvizlist(country): cursor.execute("select * from personalInfo where country='{0}'".format(country)) listofemployees=cursor.fetchall() cursor.execute("select count(*) from personalInfo where country='{0}'".format(country)) numberofemployees=cursor.fetchone() msg="List of Employees from "+country return render_template("SpecificList.html",records=listofemployees,number=numberofemployees[0],message=msg) @app.route("/departmentlist/<dept>") def deptlist(dept): cursor.execute("select * from personalInfo where department='{0}'".format(dept)) listofemployees=cursor.fetchall() cursor.execute("select count(*) from personalInfo where department='{0}'".format(dept)) numberofemployees=cursor.fetchone() msg="List of Employees working in "+dept return render_template("SpecificList.html",records=listofemployees,number=numberofemployees[0],message=msg) app.run(debug=True)
[ "noreply@github.com" ]
Mikeyc85.noreply@github.com
7841a010dbd4becdaddb5035acd0c8bf901d297e
22940905e1622b06670a585956007569b74ce306
/DeepLearningApp.py
f9b400abf39e64edc6d433bdbf5acb81458938bb
[]
no_license
DuongQuocVuong97/streamlit
3cc883daa11ee1c3437f6dc1e81b4a4c27d2df73
54feb11b68ee9a81ab1162a1fec792db4b611cd4
refs/heads/main
2023-07-10T21:50:16.653967
2021-08-24T08:00:40
2021-08-24T08:00:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,895
py
# Import Dependancies from datetime import date import yfinance as yf from plotly import graph_objs as go import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.metrics import mean_squared_error import tensorflow as tf from tensorflow import keras from tensorflow.keras import Sequential, layers, callbacks from tensorflow.keras.layers import Dense, LSTM, Dropout, GRU, Bidirectional import warnings warnings.filterwarnings('ignore') st.set_option('deprecation.showPyplotGlobalUse', False) # Data Collection START = "2005-01-01" TODAY = date.today().strftime("%Y-%m-%d") st.title('Stock Market Deep Learning App') stocks = ('^BSESN','GOOG', 'AAPL', 'MSFT', 'GME') selected_stock = st.selectbox('Select dataset for prediction', stocks) n_years = st.slider('Months of prediction:', 3, 5) period = n_years * 365 @st.cache def load_data(ticker): data = yf.download(ticker, START, TODAY) data.reset_index(inplace=True) return data data_load_state = st.text('Loading data...') data = load_data(selected_stock) data_load_state.text('Loading data... done!') train_dates = pd.to_datetime(data['Date']) cols = list(data)[1:6] df_for_training = data[cols].astype(float) st.subheader('Raw data') st.write(data.tail()) # Plot raw data def plot_raw_data(): fig = go.Figure() fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'], name="stock_open")) fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name="stock_close")) fig.layout.update(title_text='Time Series data with Rangeslider', xaxis_rangeslider_visible=True) st.plotly_chart(fig) plot_raw_data() # st.subheader('Data Cleaning') # Check for missing values # with st.echo(): #Check for Missing Values df = data.loc[:,['Date','Close']] (df.Close.isna().sum()) df_missing_date = df.loc[df.Close.isna() == True] df_missing_date.loc[:, ['Date']] # Replcase missing value with interpolation df.Close.interpolate(inplace=True) df = df.drop('Date', axis=1) # st.subheader('Data Transformation') # with st.echo(): # Split train data and test data whole_data = int(len(df) * 1) train_size = int(len(df) * 0.8) # Use iloc to select a number of rows train_data = df.iloc[:train_size] test_data = df.iloc[train_size:] # with st.echo(): # Scale the data # The input to scaler.fit -> array-like, sparse matrix, dataframe of shape (n_samples, n_features) from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler().fit(train_data) train_scaled = scaler.transform(train_data) test_scaled = scaler.transform(test_data) # with st.echo(): # Create input dataset # Th input shape should be [samples, time steps, features] def create_dataset(X, look_back=1): Xs, ys = [], [] for i in range(len(X) - look_back): v = X[i:i + look_back] Xs.append(v) ys.append(X[i + look_back]) return np.array(Xs), np.array(ys) X_train, y_train = create_dataset(train_scaled, 30) X_test, y_test = create_dataset(test_scaled, 30) # X_train.shape # y_train.shape # X_test.shape # y_test.shape # # X_test[:50].shape st.sidebar.title('Hyperparameters') n_neurons = st.sidebar.slider('Neurons', 1, 100, 50) l_rate = st.sidebar.selectbox('Learning Rate', (0.0001, 0.001, 0.01), 1) n_epochs = st.sidebar.number_input('Number of Epochs', 1, 50, 20) st.subheader('Build the Bidirectional Deep Learning Model & Fit the Model') # with st.echo(): # Import Dependancies import tensorflow as tf from tensorflow import keras from tensorflow.keras import Sequential, layers, callbacks from tensorflow.keras.layers import Dense, LSTM, Dropout, GRU, Bidirectional # Build The Model model = Sequential() # Input layer model.add(Bidirectional(LSTM(n_neurons, activation='relu', return_sequences=False), input_shape=(X_train.shape[1], X_train.shape[2]))) # Hidden layer # model.add(Bidirectional(LSTM(n_neurons))) # Output Layer model.add(Dense(1, activation='linear', name='Close')) # with st.echo(): # Compile The Model opt = keras.optimizers.Adam(l_rate) model.compile(optimizer=opt, loss='mse', metrics=['mse']) early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) train = st.button('Train Model') if train: with st.spinner('Training Model…'): with st.echo(): model.summary(print_fn=lambda x: st.write('{}'.format(x))) history = model.fit( X_train, y_train, epochs=n_epochs, validation_split=0.2,batch_size=16, shuffle=False,callbacks=[early_stop] ) st.success('Model Training Complete!') y_test = scaler.inverse_transform(y_test) y_train = scaler.inverse_transform(y_train) st.subheader('Plot the Model Loss') # with st.echo(): st.line_chart(pd.DataFrame(history.history)) st.subheader('Making Model Predictions on Test Data & New Data Set') # with st.echo(): X_new = X_test predictions = model.predict(X_new) predictions = scaler.inverse_transform(predictions) predictions y_test[:10] # with st.echo(): # Plot test data vs prediction plt.figure(figsize=(10, 6)) range_future = len(predictions) plt.plot(np.arange(range_future), np.array(y_test), label='Test data') plt.plot(np.arange(range_future), np.array(predictions), label='Prediction') plt.title('Test data vs prediction') plt.legend(loc='upper left') plt.xlabel('Time (day)') plt.ylabel('Daily Closing Price of Stock') st.pyplot() # with st.echo(): # Make New Test Data # Select 60 days of data from test data new_data = test_data.iloc[100:160] # Scale the input scaled_data = scaler.transform(new_data) # Reshape the input def create_dataset(X, look_back=1): Xs = [] for i in range(len(X) - look_back): v = X[i:i + look_back] Xs.append(v) return np.array(Xs) X_30 = create_dataset(scaled_data, 30) # with st.echo(): # Make prediction for new data predictions1 = model.predict(X_30) predictions1 = scaler.inverse_transform(predictions1) st.subheader('Evaluate The Model Performance') # with st.echo(): # Calculate MAE and RMSE errors = predictions - y_test mse = np.square(errors).mean() rmse = np.sqrt(mse) mae = np.abs(errors).mean() mae rmse scaler = MinMaxScaler() scaler = scaler.fit(df_for_training) df_for_training_scaled = scaler.transform(df_for_training) trainX = [] trainY = [] n_future = 1 # Number of days we want to predict into the future n_past = 14 # Number of past days we want to use to predict the future for i in range(n_past, len(df_for_training_scaled) - n_future + 1): trainX.append(df_for_training_scaled[i - n_past:i, 0:df_for_training.shape[1]]) trainY.append(df_for_training_scaled[i + n_future - 1:i + n_future, 0]) trainX, trainY = np.array(trainX), np.array(trainY) model = Sequential() model.add(Bidirectional(LSTM(50, activation='relu', return_sequences=False), input_shape=(trainX.shape[1], trainX.shape[2]))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse']) model.summary() early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) # fit model history = model.fit(trainX, trainY, epochs=25, batch_size=16, validation_split=0.1, verbose=1, shuffle=False, callbacks=[early_stop]) n_future = 90 # Redefining n_future to extend prediction dates beyond original n_future dates... forecast_period_dates = pd.date_range(list(train_dates)[-1], periods=n_future, freq='1d').tolist() forecast = model.predict(trainX[-n_future:]) # forecast forecast_copies = np.repeat(forecast, df_for_training.shape[1], axis=-1) y_pred_future = scaler.inverse_transform(forecast_copies)[:, 0] # Convert timestamp to date forecast_dates = [] for time_i in forecast_period_dates: forecast_dates.append(time_i.date()) df_forecast = pd.DataFrame({'Date': np.array(forecast_dates), 'Close': y_pred_future}) df_forecast['Date'] = pd.to_datetime(df_forecast['Date']) with st.echo(): df_forecast original = data[['Date', 'Close']] original['Date'] = pd.to_datetime(original['Date']) original = original.loc[original['Date'] >= '2020-4-1'] st.subheader('PREDICTING THE FUTURE') # with st.echo(): def plot_future_data(): fig = go.Figure() fig.add_trace(go.Scatter(x=original['Date'], y=original['Close'], name="Historical Trend")) fig.add_trace(go.Scatter(x=df_forecast['Date'], y=df_forecast['Close'], name="Forecast")) fig.layout.update(title_text='Future Price Direction', xaxis_rangeslider_visible=True) st.plotly_chart(fig) plot_future_data()
[ "noreply@github.com" ]
DuongQuocVuong97.noreply@github.com
19980c6f1fb1f32f16324e451c5252e77f2d892d
484b03da7d3eabc8887e0f5a6be6c2287b0ebcc4
/fanta/fantaapp/models/models_old.py
927ccbdc96583b931e3d572b048ff91e843cad8b
[]
no_license
abenassen/holyfootball
4ad3d025692f4dd0d7d5b09f8a190f131da4ca57
cd41a44b33276b8ff1a5d3d50f944f526826abd5
refs/heads/master
2020-12-03T00:20:13.079415
2017-09-02T09:50:23
2017-09-02T09:50:23
96,015,986
0
0
null
null
null
null
UTF-8
Python
false
false
47,956
py
nome_turni_coppa = [u'Finale', u'Semifinale', u'Quarti', u'Ottavi', u'Sedicesimi', u'Trentaduesimi', u'Sessantaquattresimi', u'Turno Preliminare'] votoprimavera = {'P': 3.5, 'D':4.5, 'C':4.5, 'A':4.5} ruoli_lunghi = {'P': "Portiere", 'D':"Difensore", 'C':"Centrocampista", 'A':"Attaccante"} ruoli_lunghi_plurali = {'P': "Portieri", 'D':"Difensori", 'C':"Centrocampisti", 'A':"Attaccanti"} def randomHash(): N = 12 return ''.join(random.SystemRandom().choice(string.ascii_letters + string.digits) for _ in range(N)) def lastCampionato(): return Campionato.objects.latest('id').id class Redazione(models.Model): nome = models.CharField(max_length=50) # nome della redazione descrizione = models.TextField() # descrizione del funzionamento della redazione def __unicode__(self): return self.nome class Campionato(models.Model): """Si riferisce ad un campionato nazionale, e.g. Serie A, Liga...""" nome = models.CharField(max_length=50, unique=True) #nome del campionato datainizio = models.DateField() #data indicativa inizio campionato datafine = models.DateField() #data indicativa fine campionato totale_giornate = models.PositiveIntegerField(default=38) def __unicode__(self): return self.nome def giornate_disputate(self): try: val = self.giornata_set.filter(disputata='True').latest('numero').numero except ObjectDoesNotExist: val = 0 return val def giornate_da_disputare(self): return self.totale_giornate - self.giornate_disputate() class Lega(models.Model): nome = models.CharField(max_length=50) # nome della lega descrizione = models.TextField(blank=True) # descrizione della lega numeropartecipanti = models.PositiveIntegerField(default=10, validators=[MaxValueValidator(20)]) # descrizione della lega codice = models.CharField(max_length=20, default=randomHash, unique = True, db_index=True) calcolo_voto = models.CharField(max_length=100, default='votostd') # contiene il riferimento alla funzione di un oggetto della classe Voto per il calcolo del voto, inserita nel modulo funzioni_voto.py budgetiniziale = models.PositiveIntegerField(default=1000) numeroportieri = models.PositiveIntegerField(default=3) numerodifensori = models.PositiveIntegerField(default=8) numerocentrocampisti = models.PositiveIntegerField(default=8) numeroattaccanti = models.PositiveIntegerField(default=6) con_coppa = models.BooleanField(default=True) redazione = models.ForeignKey(Redazione) campionato = models.ForeignKey(Campionato, default=lastCampionato) numero_gironi = models.PositiveIntegerField(default=4) def get_absolute_url(self): return reverse('aprilega', kwargs={'legahash': self.codice}) def nuovo_allenatore(self, utente, is_amministratore=False): if (self.allenatore_set.count() >= self.numeropartecipanti): raise ValueError("Lega gia' completa!") return Allenatore(lega=self, utente=utente, amministratore=is_amministratore, budget=self.budgetiniziale, numeroportieri=self.numeroportieri,numerodifensori=self.numerodifensori, numerocentrocampisti=self.numerocentrocampisti,numeroattaccanti=self.numeroattaccanti) def limite_ruolo(self, ruolo): """restituisce il numero di calciatori per rosa in un dato ruolo dato da 'P','D'... """ return getattr(self, 'numero'+ ruoli_lunghi_plurali[ruolo].lower()) @property def limite_tesserati(self): tot = 0 for r in ruoli_lunghi.keys(): tot = tot + self.limite_ruolo(r) return tot def totale_giornate(self): return self.numero_gironi*(self.numeropartecipanti-1) def genera_calendario(self): """genera tutti gli accoppiamenti del torneo""" if (self.giornatalega_set.count()>0): raise ValueError("Il set delle giornate non e' vuoto! " + str(self.giornatalega_set.count()) + " incontri gia' presenti") if ((self.numeropartecipanti - 1)*self.numero_gironi > self.campionato.giornate_da_disputare): self.numero_gironi = math.floor(self.campionato.giornate_da_disputare/(self.numeropartecipanti - 1)) if (self.numero_gironi==0): raise ValueError('Non ci sono sufficienti giornate nel campionato per generare almeno un girone.') allenatori = list(self.allenatore_set.all()) #ottengo la lista di allenatori della lega if len(allenatori)<self.numeropartecipanti: # se gli allenatori iscritti alla lega sono meno del numero di partecipanti fissato per la lega, la lega e' incompleta raise ValueError("Numero di allenatori non sufficiente a riempire la lega: %d." % (len(allenatori))) random.shuffle(allenatori) # mischio gli allenatori rr = roundRobin(allenatori) # genero gli accoppiamenti di tutte le giornate if (self.numero_gironi%2 == 0): # se il numero di gironi e' pari tengo conto di casa e fuori casa rr1 = [[ (x[1], x[0]) for x in giornata] for giornata in rr] accoppiamenti = (rr+rr1)*(self.numero_gironi/2) else: accoppiamenti = rr*self.numero_gironi for g, giornata in enumerate(accoppiamenti): giornata_new = GiornataLega(lega=self,numero=(g+1)) giornata_new.save() for acc in giornata: if(acc[0] is None or acc[1] is None): # e' un incontro fittizio in cui una squadra riposa continue inc = IncontroLega(allenatorecasa=acc[0], allenatoretrasferta=acc[1], lega=self, giornatalega=giornata_new) inc.save() def genera_coppa(self): if (self.giornatalega_set.count() < self.totale_giornate()): raise ValueError("Un numero insufficiente di giornate e' presente. Avvia la generazione del calendario prima.") if (self.incontrocoppa_set.count()>0): raise ValueError("Il set delle giornate non e' vuoto! " + str(self.incontrocoppa_set.count()) + " incontri gia' presenti") allenatori = list(self.allenatore_set.all()) #ottengo la lista di allenatori della lega if len(allenatori)<self.numeropartecipanti: # se gli allenatori iscritti alla lega sono meno del numero di partecipanti fissato per la lega, la lega e' incompleta raise ValueError("Numero di allenatori non sufficiente a riempire la lega: %d." % (len(allenatori))) random.shuffle(allenatori) # mischio gli allenatori numero_turni = int(math.log(self.numeropartecipanti,2)) # numero turni da disputare, piu' eventualmente il preliminare turni_da_disputare = numero_turni numero_partite = 2*(numero_turni - 1) + 1 # i turni sono andata e ritorno tranne la finale turno_prec = [] turno_curr = [] if (2**numero_turni<self.numeropartecipanti): # il turno preliminare e' necessario numero_partite = numero_partite + 2 # si aggiungono i due turni preliminari gap_giornate = self.totale_giornate()/numero_partite # ogni quante giornate di campionato se ne disputa una di coppa numero_giornata_corrente = gap_giornate - 1 + (self.totale_giornate()% numero_partite) # voglio che la finale si disputi alla penultima giornata giornata_coppa_1 = self.giornatalega_set.get(numero=numero_giornata_corrente) # giornata dell'andata giornata_coppa_2 = self.giornatalega_set.get(numero=(numero_giornata_corrente+gap_giornate)) # giornata del ritorno for m,(x,y) in enumerate(izip(allenatori, allenatori[(len(allenatori)+1)/2:])): #creo il turno preliminare sorteggiando a caso delle coppie inc = IncontroCoppa.create(x,y, giornata_coppa_1, giornata_coppa_2, lega=self, tipo=nome_turni_coppa[-1], indice=(m+1)); # preliminare inc.save() numero_giornata_corrente = numero_giornata_corrente + 2*gap_giornate # incremento di due giornate, i turni preliminari gia' considerati giornata_coppa_1 = self.giornatalega_set.get(numero=numero_giornata_corrente) # giornata dell'andata giornata_coppa_2 = self.giornatalega_set.get(numero=(numero_giornata_corrente+gap_giornate)) # giornata del ritorno for m in range(2**(turni_da_disputare-1)): #creo il primo turno eliminatorio inc = IncontroCoppa.create(None,None, giornata_coppa_1, giornata_coppa_2, lega=self, tipo=nome_turni_coppa[turni_da_disputare-1], indice=(m+1)); # preliminare turno_curr.append(inc) inc.save() else: gap_giornate = self.totale_giornate()/numero_partite # ogni quante giornate di campionato se ne disputa una di coppa numero_giornata_corrente = gap_giornate - 1 + (self.totale_giornate()% numero_partite) # voglio che la finale si disputi alla penultima giornata giornata_coppa_1 = self.giornatalega_set.get(numero=numero_giornata_corrente) # giornata dell'andata giornata_coppa_2 = self.giornatalega_set.get(numero=(numero_giornata_corrente+gap_giornate)) # giornata del ritorno for m,(x,y) in izip(allenatori, allenatori[len(allenatori)/2+1:]): #creo il primo turno eliminatorio sorteggiando a caso delle coppie inc = IncontroCoppa.create(x,y, giornata_coppa_1, giornata_coppa_2, lega=self, tipo=nome_turni_coppa[turni_da_disputare-1], indice=(m+1)); # preliminare inc.save() turno_curr.append(inc) turni_da_disputare = turni_da_disputare - 1 print "turni da disp", turni_da_disputare for turno in range(turni_da_disputare): numero_giornata_corrente = numero_giornata_corrente + 2*gap_giornate # incremento di due giornate, che riguardano il turno precedente print numero_giornata_corrente giornata_coppa_1 = self.giornatalega_set.get(numero=numero_giornata_corrente) # giornata dell'andata if(turno!=turni_da_disputare-1): # se non sono alla finale... giornata_coppa_2 = self.giornatalega_set.get(numero=(numero_giornata_corrente+gap_giornate)) # giornata del ritorno else: giornata_coppa_2 = None turno_prec = turno_curr turno_curr = [] for m,(inc1,inc2) in enumerate(izip(turno_prec, turno_prec[(len(turno_prec)+1)/2:])): #creo il turno preliminare sorteggiando a caso delle coppie inc = IncontroCoppa.create(None,None,giornata_coppa_1, giornata_coppa_2, incontrocasa=inc1, incontrotrasferta=inc2, lega=self, tipo=nome_turni_coppa[turni_da_disputare-1-turno], indice=(m+1)); # turno eliminatorio turno_curr.append(inc) inc.save() [incontro_finale] = turno_curr incontro_finale.andata_e_ritorno = False incontro_finale.save() def __unicode__(self): return self.nome class LegaForm(ModelForm): class Meta: fields = ['nome','numeropartecipanti', 'descrizione', 'redazione'] labels = { 'nome': _('Nome della lega'), } #help_texts = { # 'name': _('Some useful help text.'), #} error_messages = { 'nome': { 'max_length': _("Il nome della lega e' troppo lungo."), }, } model = Lega widgets = { 'nome': TextInput(attrs={'placeholder': 'Nome Lega'}), 'descrizione': Textarea(attrs={'rows': '2'}), } class Allenatore(models.Model): """si riferisce ad un allenatore/squadra presente in una lega associato ad un dato utente""" utente = models.ForeignKey(settings.AUTH_USER_MODEL) #utente corrispondente a quest'allenatore/squadra lega = models.ForeignKey(Lega) budget = models.PositiveSmallIntegerField(editable=False, validators=[MinValueValidator(0)]) numeroportieri = models.PositiveIntegerField(editable=False, validators=[MinValueValidator(0)]) #numero di portieri da acquistare numerodifensori = models.PositiveIntegerField(editable=False, validators=[MinValueValidator(0)]) numerocentrocampisti = models.PositiveIntegerField(editable=False, validators=[MinValueValidator(0)]) numeroattaccanti = models.PositiveIntegerField(editable=False, validators=[MinValueValidator(0)]) nomesquadra = models.CharField(max_length=200) amministratore = models.BooleanField(default=False) # dice se l'allenatore e' uno degli amministratori della lega logourl = models.URLField(default='/static/fantaapp/images/savona.png') editabili = ['nomesquadra', 'logourl'] class Meta: unique_together = (("utente", "lega"),) # c'e' un unico allenatore/squadra per un dato utente/lega def resetta(self): self.numeroportieri = self.lega.numeroportieri self.numerodifensori = self.lega.numerodifensori self.numerocentrocampisti = self.lega.numerocentrocampisti self.numeroattaccanti = self.lega.numeroattaccanti self.budget = self.lega.budgetiniziale def save(self, *args, **kwargs): if (not(self.nomesquadra) or self.nomesquadra==""): # se la squadra non e' stata impostata le da' un nome di default self.nomesquadra="Squadra di " + self.utente.profile.alias if (not(self.id)): # sta venendo creato in questo momento self.resetta() super(Allenatore, self).save(*args, **kwargs) def numero_ruolo(self, ruolo): """numero calciatori in un dato ruolo ancora da acquistare""" return getattr(self, 'numero'+ ruoli_lunghi_plurali[ruolo].lower()) def decresci_ruolo(self, ruolo): currval = getattr(self, 'numero'+ ruoli_lunghi_plurali[ruolo].lower()) setattr(self, 'numero'+ ruoli_lunghi_plurali[ruolo].lower(), currval - 1) def cresci_ruolo(self, ruolo): currval = getattr(self, 'numero'+ ruoli_lunghi_plurali[ruolo].lower()) setattr(self, 'numero'+ ruoli_lunghi_plurali[ruolo].lower(), currval + 1) @property def nome(self): return self.utente.profile.alias @property def totale_da_tesserare(self): tot = 0 for r in ruoli_lunghi.keys(): tot = tot + self.numero_ruolo(r) return tot def ottieni_rosa(self): """produce un dizionari dei ruoli contenente le liste di coppie (calciatore, prezzo)""" transf = self.trasferimentorosa_set.select_related('calciatore').all() rosa_dict = {} for r in ruoli_lunghi_plurali.keys(): rosa_dict[r] = [] for tr in transf: print tr ru = tr.calciatore.ruolo.get(redazione=self.lega.redazione).nome if tr.acquisto: print 'acquisto' rosa_dict[ru].append((tr.calciatore, tr.valore)) else: print 'cessione' rosa_dict[ru] = [x for x in rosa_dict[ru] if x[0].id != tr.calciatore.id] print rosa_dict[ru] return rosa_dict def __unicode__(self): return self.nomesquadra class Messaggio(models.Model): """Contiene i messaggi su cio' che accade nella lega e ai singoli allenatori""" lega = models.ForeignKey(Lega) # lega del messaggio allenatore = models.ForeignKey(Allenatore, blank=True, null=True) # destinatario del messaggio, se None e' per tutti testo = models.CharField(max_length=200) # testo del messaggio data = models.DateTimeField(auto_now=True) # data del messaggio @property def datatesto(self): return self.data.strftime("%d-%m-%Y, %H:%M. ") + self.testo def __unicode__(self): return self.datatesto class SquadraCampionato(models.Model): """Si riferisce ad una vera squadra nel campionato""" nome = models.CharField(max_length=50) # nome della squadra campionato = models.ForeignKey(Campionato) # campionato di appartenenza def __unicode__(self): return self.nome.title() class Giornata(models.Model): """Si riferisce ad una giornata di un campionato reale""" campionato = models.ForeignKey(Campionato) numero = models.PositiveSmallIntegerField() # numero della giornata nel campionato da 1,2,... data = models.DateTimeField(auto_now_add=True) # data indicativa della giornata disputata = models.BooleanField(default=False) # dice se la giornata e' stata disputata def aggiorna(self): if (self.disputata): #se e' gia' disputata non c'e' niente da fare return match_giornata = self.incontrocampionato_set # altri incontri della stessa giornata if (match_giornata.exists()): disputata = False try: # cerco la prossima giornata di campionato, se dista meno di due giorni all'inizio, questa la ritengo comunque disputata prox = self.campionato.giornata_set.get(numero=self.numero+1) except Giornata.DoesNotExist: prox = None if (prox): ore = (prox.data - datetime.datetime.now(utc)) ore = ore.days*24 + ore.seconds//3600 disputata = (ore < 40) # se mancano meno di quaranta ore alla prossima giornata, ritengo questa conclusa disputata = disputata or all(match_giornata.values_list('disputato', flat=True)) # controlla che tutti gli incontri della giornata sono stati disputati data = min(match_giornata.values_list('data', flat=True)) # prende la data del primo incontro self.disputata = disputata self.data = data self.save() def __unicode__(self): return "Giornata %d" % self.numero class IncontroCampionato(models.Model): """Si riferisce ad un vero incontro disputato tra due squadre del campionato""" data = models.DateTimeField(auto_now_add=True) #data d'inizio dell'incontro giornata = models.ForeignKey(Giornata) # giornata a cui l'incontro appartiene squadracasa = models.ForeignKey(SquadraCampionato, related_name="IncontroCasa") #squadra che gioca in casa squadratrasferta = models.ForeignKey(SquadraCampionato, related_name="IncontroTransferta") #squadra che gioca in trasferta disputato = models.BooleanField(default=False) # se l'incontro e' gia' stato disputato golcasa = models.PositiveSmallIntegerField(default=0) # gol della squadra di casa goltrasferta = models.PositiveSmallIntegerField(default=0) # gol della squadra in trasferta def save(self, *args, **kwargs): super(IncontroCampionato, self).save(*args, **kwargs) def __unicode__(self): string = str(self.data.astimezone(timezone(settings.TIME_ZONE)).strftime('%d-%m-%Y %H:%M')) + ("\t %s-%s" % (self.squadracasa, self.squadratrasferta)) if (self.disputato): string = string + (" %d-%d" % (self.golcasa, self.goltrasferta)) return string @property def squadre(self): return (self.squadracasa, self.squadratrasferta) class Calciatore(models.Model): """calciatore di una data squadra""" nome = models.CharField(max_length=40) primavera = models.BooleanField(default=False) squadra = models.ForeignKey(SquadraCampionato, blank=True, null=True) scorsoanno = models.ForeignKey('self', blank=True, null=True) # altro oggetto calciatore corrispondente a se stesso l'anno prima #i seguenti sono dati statistici relativi all'anno precedente, usati nella visualizzazione in fase d'asta exsquadra = models.CharField(max_length=40) quotazione = models.PositiveSmallIntegerField(blank=True, null=True) fantamedia = models.FloatField(blank=True, null=True) fantamediasq = models.FloatField(blank=True, null=True) mediavoto = models.FloatField(blank=True, null=True) presenze = models.PositiveSmallIntegerField(blank=True, null=True) golfatti = models.PositiveSmallIntegerField(blank=True, null=True) golsubiti = models.PositiveSmallIntegerField(blank=True, null=True) rigoriparati = models.PositiveSmallIntegerField(blank=True, null=True) ammonizioni = models.PositiveSmallIntegerField(blank=True, null=True) espulsioni = models.PositiveSmallIntegerField(blank=True, null=True) assist = models.PositiveSmallIntegerField(blank=True, null=True) imageurl = models.URLField(blank=True, null=True) # url con un'immagine del giocatore def save(self, *args, **kwargs): if self.primavera: ru = self.ruolo.first().nome self.nome = 'Primavera ' + ru self.exsquadra = '' self.squadra = None return super(Calciatore, self).save(*args, **kwargs) def __unicode__(self): return self.nome.title() class Ruolo(models.Model): calciatore = models.ForeignKey(Calciatore, related_name='ruolo') redazione = models.ForeignKey(Redazione) nome = models.CharField(max_length=5) # stringa indicante il ruolo @property def nome_lungo(self): return ruoli_lunghi[self.nome] class Formazione(models.Model): """contiene la formazione inviata da un allenatore""" giocatori = models.ManyToManyField(Calciatore, through='Referto') allenatore = models.ForeignKey(Allenatore) data_invio = models.DateTimeField() #data d'invio della formazione definitiva = models.BooleanField(default=False) # se la formazione e' definitiva, perche' per esempio riguarda match gia' cominciati giornata = models.ForeignKey(Giornata) # tutte le partite che corrispondono a questa giornata modulo = models.CharField(max_length=5, default = '4,4,2', validators=[validate_comma_separated_integer_list]) # modulo tipo '4,4,2' #modulo = models.CommaSeparatedIntegerField(max_length=5, default='4,4,2') def save(self, *args, **kwargs): self.data_invio = datetime.datetime.now(timezone(settings.TIME_ZONE)) return super(Formazione, self).save(*args, **kwargs) def clona(self): """restituisce una copia dell'oggetto formazione, copiando anche i referti associati""" formazione = self referti = list(formazione.referto_set.all()) formazione.id = None formazione.save() for ref in referti: ref.id = None ref.formazione_id = formazione.id ref.save() return formazione def fantavoti(self, referti=None, redazione=None): """restituisce (calcolata_adesso, lista_giocatori) ove: calcolata_adesso e' True se l'ha ricalcolata o False se non ha fatto nulla, mentre lista_giocatori e' una lista di tuple (referto, ruolo) dei giocatori che sono scesi in campo. Nello stesso tempo imposta i referti. Il primo parametro e' False se non sono state effettuate modifiche.""" if redazione is None: redazione = self.allenatore.lega.redazione if referti is None: referti = self.referto_set.order_by('posizione').select_related('voto').prefetch_related('calciatore__ruolo__redazione').all() if not(any([ref.da_ricalcolare for ref in referti])): # la formazione e' vuota o gia' aggiornata lista = [ (ref, filter(lambda x: x.redazione==redazione, ref.calciatore.ruolo.all())[0]) for ref in referti if ref.entrato_in_campo ] return (False, lista) referti.update(entrato_in_campo=False, modificatore=False) titolari = referti[0:11] riserve = referti[11:] riserve = filter(lambda x: x.ha_giocato, riserve) # filtro solo le riserve che hanno giocato # prima metto i titolari che hanno giocato lista_giocatori_totale = [ (tit, filter(lambda x: x.redazione==redazione,tit.calciatore.ruolo.all())[0]) for tit in titolari] # produco una lista di coppie (referto, ruolo), per i titolari print >>sys.stderr, "lista giocatori totale" print >>sys.stderr, lista_giocatori_totale lista_giocatori = filter(lambda x: x[0].ha_giocato, lista_giocatori_totale) # filtro quelli che hanno preso un voto print >>sys.stderr, "lista giocatori in campo" print >>sys.stderr, lista_giocatori riserve_ruolo = {} schierati_in_ruolo = {} giocano_in_ruolo = {} for ru in ruoli_lunghi.keys(): riserve_ruolo[ru] = filter(lambda x: filter(lambda y: y.redazione==redazione, x.calciatore.ruolo.all())[0].nome==ru, riserve) schierati_in_ruolo[ru] = len(filter(lambda x: x[1].nome == ru, lista_giocatori_totale)) # conto i difensori schierati in formazione giocano_in_ruolo[ru] = len(filter(lambda x: x[1].nome == ru, lista_giocatori)) # conto i giocatori che giocano in ciascun ruolo riserve = filter(lambda x: filter(lambda y: y.redazione==redazione, x.calciatore.ruolo.all())[0].nome!='P', riserve) # escludo i portieri perche' non possono fare cambi ruolo... lista_da_sostituire = filter(lambda x: x[0].ha_giocato is False, lista_giocatori_totale) # lista di quelli che non hanno giocato for ref, ru in lista_da_sostituire[0:3]: # posso fare al piu' tre cambi print "cerco un sostituto per",ref.calciatore.nome if (giocano_in_ruolo['A']>=3): # ci sono gia' 3 attaccanti, non possono piu' entrare, quindi svuoto le liste di attaccanti riserve = filter(lambda x: filter(lambda y: y.redazione==redazione, x.calciatore.ruolo.all())[0].nome!='A', riserve) riserve_ruolo['A'] = [] if (riserve_ruolo[ru.nome]): # c'e' almeno una riserva di questo ruolo ris = riserve_ruolo[ru.nome].pop(0) print "ho trovato", ris.calciatore.nome if (ru.nome!='P'): riserve.remove(ris) lista_giocatori.append((ris, ru)) giocano_in_ruolo[ru.nome] += 1 # incremento di 1 quelli che giocano in questo ruolo continue print "Cerco un cambio ruolo" #non sono riuscito a sostituirlo con uno dello stesso ruolo, cerco un cambio ruolo if (ru == 'P'): # i portieri non fanno cambi ruolo continue if (ru == 'D' and giocano_in_ruolo[ru.nome] < 3): # se non ci sono almeno 3 difensori gia' in campo, non posso fare un cambio ruolo di difensori... continue if (riserve): # c'e' almeno una riserva disponibile, cerco un cambio ruolo ris = riserve.pop(0) print "Ho trovato", ris.calciatore.nome ru_ris = filter(lambda x: x.redazione==redazione, ris.calciatore.ruolo.all())[0] giocano_in_ruolo[ru_ris.nome] += 1 # incremento di 1 quelli che giocano in questo ruolo riserve_ruolo[ru_ris.nome].remove(ris) lista_giocatori.append((ris, ru_ris)) ref_entrati = [ref.id for (ref, ru) in lista_giocatori] print >>sys.stderr, "ref entrati" print >>sys.stderr, ref_entrati ref_entrati = Referto.objects.filter(pk__in=ref_entrati).update(entrato_in_campo=True) port_o_dif_in_campo = [ref.id for (ref, ru) in lista_giocatori if ru.nome=='D' or ru.nome=='P'] print >>sys.stderr, 'schierati in difesa' print >>sys.stderr, schierati_in_ruolo['D'] print >>sys.stderr, 'port o dif' print >>sys.stderr, port_o_dif_in_campo if ( schierati_in_ruolo['D']>3 and len(port_o_dif_in_campo) >= 5): # se ha schierati piu' di 3 difensori ed hanno giocato effettivamente piu' di 3, metto il flag modificatore Referto.objects.filter(pk__in=port_o_dif_in_campo).update(modificatore=True) for (ref, ru) in lista_giocatori: if(ref.id in port_o_dif_in_campo): ref.modificatore = True # aggiorno il modificatore sulla copia locale referti.update(da_ricalcolare=False) return (True, lista_giocatori) class GiornataLega(models.Model): giornata = models.ForeignKey(Giornata, blank=True, null=True) lega = models.ForeignKey(Lega) numero = models.PositiveSmallIntegerField() # numero della giornata nella lega def chiudi_giornata(self): incontricoppa = IncontroCoppa.objects.filter(incontro_ritorno__giornatalega=self).select_related('incontro_andata','incontro_ritorno') # seleziono i turni di coppa in cui di cui si e' giocato un ritorno in questa giornata if incontricoppa.count() == 0: return # non c'e' un ritorno di coppa, esco turnoattuale = incontricoppa[0].tipo indiceturno = nome_turni_coppa.index(turnoattuale) if indiceturno==0: # e' la finale, non ho niente da fare... esco (QUI SI PUO" INSERIRE LA PROCLAMAZIONE DEL VINCITORE DELLA COPPA return nuovo_turno = self.lega.incontrocoppa_set.filter(tipo=nome_turni_coppa[indiceturno-1]) #for turno in nome_turni_coppa[::-1][1:]: # cerco il prossimo turno # nuovo_turno = self.lega.incontrocoppa_set.filter(tipo=turno) # plnum = 2*nuovo_turno.count() # if plnum>0: # break if (incontricoppa[0].tipo == nome_turni_coppa[-1]): # e' il ritorno del turno preliminare #allenatori = self.lega.allenatori_set.all() scarto_alle = {} media_alle = {} for inc in incontricoppa: andata = inc.incontro_andata ritorno = inc.incontro_ritorno scarto_alle[andata.allenatorecasa.id] = andata.golcasa - andata.goltrasferta + ritorno.goltrasferta - ritorno.golcasa scarto_alle[andata.allenatoretrasferta.id] = -(andata.golcasa - andata.goltrasferta + ritorno.goltrasferta - ritorno.golcasa) media_alle[andata.allenatorecasa.id] = andata.fmcasa + ritorno.fmtrasferta media_alle[andata.allenatoretrasferta.id] = andata.fmtrasferta + ritorno.fmcasa alle_id = sorted(scarto_alle.keys(), key=lambda x: (scarto_alle[x], media_alle[x])) # ordina le teste di serie : 0 il peggiore -1 il migliore alle_selected = alle_id[-plnum:] # vengono ripescati solo gli ultimi plnum teste_di_serie = alle_selected[-plnum/2:][::-1] sfidanti = alle_selected[:plnum/2] for (forte,scarso,inccoppa) in zip(teste_di_serie, sfidanti, nuovo_turno.all()): inccoppa.setta_allenatori(scarso,forte) else: # non e' un turno preliminare for inc in nuovo_turno: inc.setta_allenatori_da_incontri() class IncontroLega(models.Model): """ si riferisce ad un incontro disputato tra due fantasquadre all'interno della lega """ allenatorecasa = models.ForeignKey(Allenatore, blank=True, null=True, related_name="IncontroCasa") # allenatore della squadra di casa allenatoretrasferta = models.ForeignKey(Allenatore, blank=True, null=True, related_name="IncontroTrasferta") # allenatore della squadra in trasferta formazionecasa = models.OneToOneField(Formazione, blank=True, null=True, related_name="IncontroCasa") # formazione della squadra in casa formazionetrasferta = models.OneToOneField(Formazione, blank=True, null=True, related_name="IncontroTrasferta") # formazione della squadra in trasferta lega = models.ForeignKey(Lega, blank=True, null=True) # lega a cui la giornata corrisponde giornatalega = models.ForeignKey(GiornataLega) # giornata nella lega fmcasa_nomod = models.DecimalField(default=0.0, max_digits=5, decimal_places = 2) fmtrasferta_nomod = models.DecimalField(default=0.0, max_digits=5, decimal_places = 2) modcasa = models.DecimalField(default=0.0, max_digits=5, decimal_places = 2) modtrasferta = models.DecimalField(default=0.0, max_digits=5, decimal_places = 2) #disputato = models.BooleanField(default=False) # se l'incontro e' gia' stato disputato o meno def __unicode__(self): if self.allenatorecasa is not None and self.allenatoretrasferta is not None: return self.allenatorecasa.__unicode__() + " - " + self.allenatoretrasferta.__unicode__() else: return "da definire - da definire" def short(self): return self.allenatorecasa.__unicode__().replace(" ", "").replace(".","")[0:3] + " - " + self.allenatoretrasferta.__unicode__().replace(" ","").replace(".","")[0:3] @property def disputato(self): if (self.fmcasa==0.0 or self.fmtrasferta==0.0): return False return True def aggiorna_incontro(self, refertocasa=None, refertotrasferta=None, redazione=None, aggiorna_comunque=False): formazioni = [self.formazionecasa, self.formazionetrasferta] referti_formazioni = [refertocasa, refertotrasferta] redazione = self.lega.redazione if self.lega is not None else ( self.IncontroCoppaAnd.lega.redazione if hasattr(self, 'IncontroCoppaAnd') else self.IncontroCoppaRit.lega.redazione) modificatori = [0.0,0.0] fm = [0.0,0.0] da_aggiornare = aggiorna_comunque calcolata_adesso = [False, False] liste_giocatori = [None, None] for ind,formazione in enumerate(formazioni): if(formazione): (calcolata_adesso[ind], liste_giocatori[ind]) = formazione.fantavoti(referti_formazioni[ind], redazione) if da_aggiornare or calcolata_adesso[ind]: conta_difensori = 0 # indice per contare quanti difensori ho gia' considerato lista_difensori = [] # contiene tutti i difensori for (ref, ru) in liste_giocatori[ind]: fm[ind] = fm[ind] + ref.fantavoto if(ref.modificatore): modificatori[ind] = modificatori[ind] + ref.votopuro if ru.nome=='D': conta_difensori = conta_difensori+1 lista_difensori.append(ref.votopuro) lista_difensori.sort() lista_difensori.reverse() min_difensori = sum(lista_difensori[3:]) # contiene il totale dei difensori oltre il terzo conta_difensori = 4 # 3 difensori piu il portiere modificatori[ind] = 0 if conta_difensori == 0 else (modificatori[ind]-min_difensori)/conta_difensori # prendo la media togliendo il minimo difensore (include il portiere) modificatori[ind] = math.floor((modificatori[ind]-6.0)/0.5)*3 modificatori[ind] = 1.0 if modificatori[ind]==0 else max(modificatori[ind],0) # modificatore fa 1 se la media sta tra if ind == 0: self.modcasa = modificatori[ind] self.fmcasa_nomod = fm[ind] else: self.modtrasferta = modificatori[ind] self.fmtrasferta_nomod = fm[ind] if any(calcolata_adesso) or da_aggiornare: self.save() return (da_aggiornare, liste_giocatori) @property def fmcasa(self): return float(self.fmcasa_nomod) - float(self.modtrasferta) + 1.0 @property def fmtrasferta(self): return float(self.fmtrasferta_nomod) - float(self.modcasa) @property def golcasa(self): return int(max(0, math.floor((float(self.fmcasa) - 66.0)/6.0)+1)) @property def goltrasferta(self): return int(max(0, math.floor((float(self.fmtrasferta) - 66.0)/6.0)+1)) class IncontroCoppa(models.Model): """ si riferisce ad un incontro di coppa con andata e ritorno. Se i due allenatori sono settati, si sa gia' chi la disputera' e si comporta quindi come un incontro di lega se invece sono settati gli incontri, vuol dire che a disputarla saranno i vincenti dei due incontri, una volta disputati""" incontrocasa = models.ForeignKey("self", related_name="QualificataCasaPer", blank=True, null=True) # incontro da cui proviene la squadra di casa incontrotrasferta = models.ForeignKey("self", related_name="QualificataTrasfertaPer", blank=True, null=True) # allenatore della squadra in trasferta incontro_andata = models.OneToOneField(IncontroLega, blank=True, null=True, related_name="IncontroCoppaAnd") # incontro per il match d'andata incontro_ritorno = models.OneToOneField(IncontroLega, blank=True, null=True, related_name="IncontroCoppaRit") # incontro per il match d'andata lega = models.ForeignKey(Lega) # lega a cui la giornata corrisponde tipo = models.CharField(max_length=20, default="Turno Preliminare") # specifica se si tratta di turno preliminare, quarti... andata_ritorno = models.BooleanField(default=True) # specifica se il turno contiene andata e ritorno, se e' false i ritorni saranno nulli indice = models.PositiveSmallIntegerField(default=0) # indice del turno e.g. 1o quarto, 2o quarto @classmethod def create(cls, allenatorecasa, allenatoretrasferta, giornata_andata, giornata_ritorno, **kwargs): inclega_andata = IncontroLega(allenatorecasa=allenatorecasa, allenatoretrasferta=allenatoretrasferta, giornatalega=giornata_andata) inclega_andata.save() inclega_ritorno = None if giornata_ritorno is not None: inclega_ritorno = IncontroLega(allenatorecasa=allenatoretrasferta, allenatoretrasferta=allenatorecasa, giornatalega=giornata_ritorno) inclega_ritorno.save() inc = cls(incontro_andata = inclega_andata, incontro_ritorno=inclega_ritorno, **kwargs); # preliminare return inc class Meta: unique_together = (("lega", "indice", "tipo"),) # per ogni lega e tipo c'e' un unico incontro @property def allenatorecasanome(self): if (self.incontro_andata is not None and self.incontro_andata.allenatorecasa is not None): return self.incontro_andata.allenatorecasa.__unicode__() elif (self.incontrocasa is not None): return ("Vincitore %s %d" % (self.incontrocasa.tipo, self.incontrocasa.indice)) return "da stabilire" @property def allenatoretrasfertanome(self): if (self.incontro_andata is not None and self.incontro_andata.allenatoretrasferta is not None): return self.incontro_andata.allenatoretrasferta.__unicode__() elif (self.incontrotrasferta is not None): return ("Vincitore %s %d" % (self.incontrotrasferta.tipo, self.incontrotrasferta.indice)) return "da stabilire" def setta_allenatori(self, allcasa_id, alltrasferta_id): # imposta l'allenatore che gioca in casa/trasferta l'andata self.incontro_andata.allenatorecasa_id = allcasa_id self.incontro_andata.allenatoretrasferta_id = alltrasferta_id self.incontro_andata.save() if(self.incontro_ritorno): self.incontro_ritorno.allenatorecasa_id = alltrasferta_id self.incontro_ritorno.allenatoretrasferta_id = allcasa_id self.incontro_ritorno.save() def setta_allenatori_da_incontri(self): vincitore_casa = self.incontrocasa.vincitore.id vincitore_trasferta = self.incontrotrasferta.vincitore.id self.setta_allenatori(vincitore_casa, vincitore_trasferta) @property def vincitore(self): scarto = self.incontro_andata.golcasa + self.incontro_ritorno.goltrasferta - self.incontro_andata.goltrasferta - self.incontro_ritorno.golcasa if scarto>0: return self.incontro_andata.allenatorecasa elif scarto<0: return self.incontro_andata.allenatoretrasferta else: # qui ci andrebbero i RIGORI!!! return None def __unicode__(self): return self.allenatorecasanome + " - " + self.allenatoretrasfertanome @receiver(post_delete, sender=IncontroCoppa) def my_handler(sender, instance, **kwargs): if instance.incontro_andata is not None: instance.incontro_andata.delete() if instance.incontro_ritorno is not None: instance.incontro_ritorno.delete() class Voto(models.Model): """Voto ricevuto da un calciatore in una certa giornata; contiene le informazioni sul voto puro e gli altri dati; il supporto per differenti redazioni e' inserito tramite la variabile redazione """ redazione = models.ForeignKey(Redazione) giornata = models.ForeignKey(Giornata) calciatore = models.ForeignKey(Calciatore) votopuro = models.DecimalField(default=6.0, max_digits=4, decimal_places = 2) assist = models.PositiveSmallIntegerField(default=0) golsuazione = models.PositiveSmallIntegerField(default=0) golsurigore = models.PositiveSmallIntegerField(default=0) ammo = models.PositiveSmallIntegerField(default=0) espu = models.PositiveSmallIntegerField(default=0) autogol = models.PositiveSmallIntegerField(default=0) golsubiti = models.PositiveSmallIntegerField(default=0) rigorisbagliati = models.PositiveSmallIntegerField(default=0) rigoriparati = models.PositiveSmallIntegerField(default=0) goldellavittoria = models.PositiveSmallIntegerField(default=0) goldelpareggio = models.PositiveSmallIntegerField(default=0) ha_giocato = models.BooleanField(default = False) def aggiorna_referti(self): refs = Referto.objects.filter(calciatore=self.calciatore, formazione__giornata=self.giornata, formazione__allenatore__lega__redazione=self.redazione).update(da_ricalcolare=True) def save(self, *args, **kwargs): super(Voto, self).save(*args, **kwargs) self.aggiorna_referti() class Referto(models.Model): formazione = models.ForeignKey(Formazione, on_delete=models.CASCADE) calciatore = models.ForeignKey(Calciatore, on_delete=models.CASCADE) posizione = models.PositiveSmallIntegerField() # posizione in campo; i titolari sono da 1 a 11; gli altri sono panchinari. E' usato per ottenere i voti della squadra voto = models.ForeignKey(Voto, blank=True, null=True) votopuro_db = models.DecimalField(max_digits=4, decimal_places = 2, blank=True, null=True) entrato_in_campo = models.BooleanField(default=False) # viene settato dalla funzione fantavoti di Formazione e dice se il giocatore schierato e' effettivamente andato a voto modificatore = models.BooleanField(default=False) # se e' True il giocatore e' stato coinvolto in un modificatore fantavoto_db = models.DecimalField(max_digits=4, decimal_places = 2, blank=True, null=True) da_ricalcolare = models.BooleanField(default = True) # quando i voti vengono a giornare, questo flag diventa True, indicando che la formazone associata va ricalcolata non_ha_giocato = models.BooleanField(default=False) # se e' true, non ha giocato indipendentemente da voto; se e' false guarda il voto class Meta: ordering = ['posizione'] def save(self, *args, **kwargs): if self.calciatore.primavera: ruolo = self.calciatore.ruolo.all()[0] # prendo un ruolo di una qualunque redazione self.votopuro_db = votoprimavera[ruolo.nome] self.fantavoto_db = votoprimavera[ruolo.nome] self.voto = None elif (not(self.id) or (not(self.voto) and not(self.calciatore.primavera)) or self.voto.calciatore_id != self.calciatore_id): # se il referto non e' associato ad un voto o se il calciatore del voto non coincide con quello del referto, cambio l'associazione redazione = self.formazione.allenatore.lega.redazione voto, created = Voto.objects.get_or_create(redazione=redazione, calciatore_id=self.calciatore_id, giornata=self.formazione.giornata) self.voto = voto super(Referto, self).save(*args, **kwargs) @property def votopuro(self): """se il voto e' scritto nel referto, lo uso, altrimenti lo prendo dall'oggetto Voto collegato""" if(self.votopuro_db): return float(self.votopuro_db) return float(self.voto.votopuro) @property def fantavoto(self): if(self.fantavoto_db): return float(self.fantavoto_db) return getattr(fantafun, self.formazione.allenatore.lega.calcolo_voto)(self.voto) @property def ha_giocato(self): if (self.non_ha_giocato): return False if (self.fantavoto_db is not None): return True return self.voto.ha_giocato class VotoForm(ModelForm): """ Edit a house """ class Meta: model = Voto fields = ['ha_giocato','votopuro', 'assist', 'golsuazione', 'golsurigore', 'ammo', 'espu', 'autogol', 'golsubiti', 'rigorisbagliati', 'rigoriparati', 'goldellavittoria', 'goldelpareggio'] widgets = {'votopuro': NumberInput(attrs={'step': '0.5'})} labels = { 'votopuro': _('Voto puro'), 'assist': _('Numero di assist'), 'golsuazione': _('Gol su azione'), 'golsurigore': _('Rigori segnati'), 'ammo': _('Ammonizioni'), 'espu': _('Espulsioni'), 'autogol': _('Autogol'), 'golsubiti': _('Gol subiti'), 'rigorisbagliati': _('Rigori sbagliati'), 'rigoriparati': _('Rigori parati'), 'goldellavittoria': _('Gol decisivi per la vittoria'), 'goldelpareggio': _('Gol decisivi per il pareggio'), 'ha_giocato': _("E' entrato in campo?") } class RefertoForm(ModelForm): """ Edit a person and her house """ class Meta: model = Referto fields = ['non_ha_giocato', 'fantavoto_db', 'votopuro_db'] labels = {'non_ha_giocato': _('Imponi SV'), 'fantavoto_db': _('Fantavoto'), 'votopuro_db': _('Voto Puro')} widgets = {'fantavoto_db': NumberInput(attrs={'step': 0.5}), 'votopuro_db': NumberInput(attrs={'step': 0.5})} class TrasferimentoRosa(models.Model): """acquisto/cessione di un calciatore da parte di un allenatore""" from asta.models import Asta calciatore = models.ForeignKey(Calciatore) # il calciatore acquistato valore = models.PositiveSmallIntegerField() # importo dell'acquisto/cessione (nel secondo caso sono i soldi recuperati acquisto = models.BooleanField(default=True) # se e' un acquisto o una cessione allenatore = models.ForeignKey(Allenatore) # l'allenatore che ha fatto il trasferimento asta = models.ForeignKey(Asta, blank=True, null=True) # asta da cui proviene l'acquisto def save(self, *args, **kwargs): redazione = self.allenatore.lega.redazione print >>sys.stderr, redazione.nome + " "+ self.calciatore.nome + " " + str(self.calciatore.id) ru = self.calciatore.ruolo.get(redazione=redazione).nome segno = 1 if self.acquisto else -1 self.allenatore.budget = self.allenatore.budget - segno*self.valore if (self.acquisto): self.allenatore.decresci_ruolo(ru) else: self.allenatore.cresci_ruolo(ru) self.allenatore.full_clean(exclude=['logourl']) self.allenatore.save() super(TrasferimentoRosa, self).save(*args, **kwargs) def delete(self, *args, **kwargs): redazione = self.allenatore.lega.redazione ru = self.calciatore.ruolo.get(redazione=redazione).nome segno = 1 if self.acquisto else -1 self.allenatore.budget = self.allenatore.budget + self.valore*segno if (self.acquisto): self.allenatore.cresci_ruolo(ru) else: self.allenatore.decresci_ruolo(ru) self.allenatore.full_clean(exclude=['logourl']) self.allenatore.save() super(TrasferimentoRosa, self).delete(*args, **kwargs) def __unicode__(self): return "%s da %s a %d" % (self.calciatore.nome,self.allenatore.nome, self.valore) class TrasferimentoRosaForm(ModelForm): def __init__(self, *args, **kwargs): lega = kwargs.pop('lega') super(TrasferimentoRosaForm, self).__init__(*args, **kwargs) self.fields['calciatore'] = ModelChoiceField(queryset=Calciatore.objects.filter(squadra__campionato=lega.campionato).order_by('nome')) class Meta: fields = ['calciatore', 'valore', 'acquisto', 'allenatore'] labels = { 'calciatore': _("Calciatore coinvolto nell'acquisto"), 'valore': _("Importo (spesa o crediti ottenuti"), 'allenatore': _('Allenatore del trasferimento'), } model = TrasferimentoRosa class ScambioForm(Form): def __init__(self, *args, **kwargs): lega = kwargs.pop('lega') super(ScambioForm, self).__init__(*args, **kwargs) self.fields['allenatore1'] = ModelChoiceField(queryset=lega.allenatore_set, error_messages={'required': 'Non puoi lasciare in bianco questo campo'}) self.fields['allenatore1'].label = 'Allenatore 1' self.fields['calciatore1'] = ModelChoiceField(queryset=Calciatore.objects.filter(squadra__campionato=lega.campionato).order_by('nome'), error_messages={'required': 'Non puoi lasciare in bianco questo campo'}) self.fields['calciatore1'].label = 'Calciatore 1' self.fields['allenatore2'] = ModelChoiceField(queryset=lega.allenatore_set, error_messages={'required': 'Non puoi lasciare in bianco questo campo'}) self.fields['allenatore2'].label = 'Allenatore 2' self.fields['calciatore2'] = ModelChoiceField(queryset=Calciatore.objects.filter(squadra__campionato=lega.campionato).order_by('nome'), error_messages={'required': 'Non puoi lasciare in bianco questo campo'}) self.fields['calciatore2'].label = 'Calciatore 2' self.fields['contropartita'] = IntegerField(min_value=-1000, max_value=1000) self.fields['contropartita'].label = 'Contropartita (da 1 a 2)' self.fields['contropartita'].initial = 0 def clean(self): # controllo che lo scambio fosse possibile cleaned_data = super(ScambioForm, self).clean() if self._errors: # ci sono gia' errori nel form return cleaned_data allenatore1 = cleaned_data['allenatore1'] allenatore2 = cleaned_data['allenatore2'] if allenatore1 == allenatore2: raise ValidationError(_('I due allenatori non possono essere uguali!')) rosa1 = allenatore1.ottieni_rosa() rosa2 = allenatore2.ottieni_rosa() contropartita = cleaned_data.get('contropartita',0) calciatore1 = None calciatore2 = None for ruolo in rosa1.keys(): lst1 = [x for x in rosa1[ruolo] if x[0] == cleaned_data['calciatore1']] lst2 = [x for x in rosa2[ruolo] if x[0] == cleaned_data['calciatore2']] if len(lst1)==1: # ho trovato il calciatore nella rosa dell'allenatore 1 if len(lst2)!=1: raise ValidationError(_('I due giocatori non hanno lo stesso ruolo')) (calciatore1, costo1) = lst1[0] (calciatore2, costo2) = lst2[0] break if calciatore1 is None: raise ValidationError(_('L\'allenatore dei %(all)s non possiede %(cal)s'), params={'all': allenatore1, 'cal': cleaned_data['calciatore1']}) if calciatore2 is None: raise ValidationError(_('L\'allenatore dei %(all)s non possiede %(cal)s'), params={'all': allenatore2, 'cal': cleaned_data['calciatore2']}) if (contropartita>0 and allenatore1.budget < contropartita) or (contropartita<0 and allenatore2.budget < -contropartita): raise ValidationError(_('Crediti insufficienti all\'acquisto.')) cleaned_data['costo1'] = costo1 cleaned_data['costo2'] = costo2 return cleaned_data
[ "abenassen@users.noreply.github.com" ]
abenassen@users.noreply.github.com
e8c097049a41c7f9bd4cff7d1c145fb15c0ccdff
3d457fa0163f68df31327dcd6a28e0f950adec9a
/vbmc4vsphere/vbmc.py
23100a37dd8f565e889145512606f58f275b5bd0
[ "Apache-2.0" ]
permissive
aksoydoruk/virtualbmc-for-vsphere
ed63f49ce11f8b17c2f6e023e34f04c27d049c37
03cb2befb17d830fcd4d686a641e8aaa052f4117
refs/heads/main
2023-08-15T09:52:28.878208
2021-10-16T04:38:59
2021-10-16T04:38:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,237
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import xml.etree.ElementTree as ET import struct import traceback import pyghmi.ipmi.bmc as bmc import pyghmi.ipmi.private.session as ipmisession from pyghmi.ipmi.private.serversession import IpmiServer as ipmiserver from pyghmi.ipmi.private.serversession import ServerSession as serversession from vbmc4vsphere import exception, log, utils LOG = log.get_logger() # Power states POWEROFF = 0 POWERON = 1 # From the IPMI - Intelligent Platform Management Interface Specification # Second Generation v2.0 Document Revision 1.1 October 1, 2013 # https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf # # Command failed and can be retried IPMI_COMMAND_NODE_BUSY = 0xC0 # Invalid data field in request IPMI_INVALID_DATA = 0xCC # Boot device maps GET_BOOT_DEVICES_MAP = { "ethernet": 0x4, "disk": 0x8, "cdrom": 0x14, "floppy": 0x3C, } SET_BOOT_DEVICES_MAP = { "network": "ethernet", "hd": "disk", "optical": "cdrom", "floppy": "floppy", } def sessionless_data(self, data, sockaddr): """Examines unsolocited packet and decides appropriate action. For a listening IpmiServer, a packet without an active session comes here for examination. If it is something that is utterly sessionless (e.g. get channel authentication), send the appropriate response. If it is a get session challenge or open rmcp+ request, spawn a session to handle the context. Patched by VirtualBMC for vSphere to handle sessionless IPMIv2 packet and ASF Presence Ping. Based on pyghmi 1.5.16, Apache License 2.0 https://opendev.org/x/pyghmi/src/branch/master/pyghmi/ipmi/private/serversession.py """ data = bytearray(data) if len(data) < 22: if data[0:4] == b"\x06\x00\xff\x06" and data[8] == 0x80: # asf presence ping LOG.info("Responding to asf presence ping") self.send_asf_presence_pong(data, sockaddr) else: return if not (data[0] == 6 and data[2:4] == b"\xff\x07"): # not ipmi return authtype = data[4] if authtype == 6: # ipmi 2 payload... payloadtype = data[5] if payloadtype not in (0, 16): return if payloadtype == 16: # new session to handle conversation serversession( self.authdata, self.kg, sockaddr, self.serversocket, data[16:], self.uuid, bmc=self, ) return # ditch two byte, because ipmi2 header is two # bytes longer than ipmi1 (payload type added, payload length 2). data = data[2:] myaddr, netfnlun = struct.unpack("2B", bytes(data[14:16])) netfn = (netfnlun & 0b11111100) >> 2 mylun = netfnlun & 0b11 if netfn == 6: # application request if data[19] == 0x38: # cmd = get channel auth capabilities verchannel, level = struct.unpack("2B", bytes(data[20:22])) version = verchannel & 0b10000000 if version != 0b10000000: return channel = verchannel & 0b1111 if channel != 0xE: return (clientaddr, clientlun) = struct.unpack("BB", bytes(data[17:19])) clientseq = clientlun >> 2 clientlun &= 0b11 # Lun is only the least significant bits level &= 0b1111 if authtype == 6: self.send_auth_cap_v2( myaddr, mylun, clientaddr, clientlun, clientseq, sockaddr ) else: self.send_auth_cap( myaddr, mylun, clientaddr, clientlun, clientseq, sockaddr ) elif data[19] == 0x54: clientaddr, clientlun = data[17:19] clientseq = clientlun >> 2 clientlun &= 0b11 self.send_cipher_suites( myaddr, mylun, clientaddr, clientlun, clientseq, data, sockaddr ) def send_auth_cap_v2(self, myaddr, mylun, clientaddr, clientlun, clientseq, sockaddr): """Send response to "get channel auth cap (0x38)" command with IPMI 2.0 headers. Copied from send_auth_cap function and modified to send response in the form of IPMI 2.0. Based on pyghmi 1.5.16, Apache License 2.0 https://opendev.org/x/pyghmi/src/branch/master/pyghmi/ipmi/private/serversession.py """ header = bytearray( b"\x06\x00\xff\x07\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00" ) headerdata = [clientaddr, clientlun | (7 << 2)] headersum = ipmisession._checksum(*headerdata) header += bytearray( headerdata + [headersum, myaddr, mylun | (clientseq << 2), 0x38] ) header += self.authcap bodydata = struct.unpack("B" * len(header[19:]), bytes(header[19:])) header.append(ipmisession._checksum(*bodydata)) ipmisession._io_sendto(self.serversocket, header, sockaddr) def send_asf_presence_pong(self, data, sockaddr): """Send response to ASF Presence Ping.""" header = bytearray( b"\x06\x00\xff\x06\x00\x00\x11\xbe\x40" + struct.pack("B", data[9]) + b"\x00\x10\x00\x00\x11\xbe\x00\x00\x00\x00\x81\x00\x00\x00\x00\x00\x00\x00" ) ipmisession._io_sendto(self.serversocket, header, sockaddr) # Patch pyghmi with modified functions ipmiserver.sessionless_data = sessionless_data ipmiserver.send_auth_cap_v2 = send_auth_cap_v2 ipmiserver.send_asf_presence_pong = send_asf_presence_pong class VirtualBMC(bmc.Bmc): def __init__( self, username, password, port, address, fakemac, vm_name, viserver, viserver_username=None, viserver_password=None, **kwargs ): super(VirtualBMC, self).__init__( {username: password}, port=port, address=address ) self.vm_name = vm_name self.fakemac = fakemac self._conn_args = { "vi": viserver, "vi_username": viserver_username, "vi_password": viserver_password, } def get_boot_device(self): LOG.debug("Get boot device called for %(vm)s", {"vm": self.vm_name}) try: with utils.viserver_open(**self._conn_args) as conn: vm = utils.get_viserver_vm(conn, self.vm_name) boot_element = vm.config.bootOptions.bootOrder boot_dev = None if boot_element: boot_dev = utils.get_bootable_device_type(conn, boot_element[0]) LOG.debug("Boot device is: %s" % boot_dev) return GET_BOOT_DEVICES_MAP.get(boot_dev, 0) return IPMI_COMMAND_NODE_BUSY except Exception as e: msg = "Error getting boot device of vm %(vm)s. " "Error: %(error)s" % { "vm": self.vm_name, "error": e, } LOG.error(msg) raise exception.VirtualBMCError(message=msg) def _remove_boot_elements(self, parent_element): for boot_element in parent_element.findall("boot"): parent_element.remove(boot_element) def set_boot_device(self, bootdevice): LOG.debug( "Set boot device called for %(vm)s with boot " 'device "%(bootdev)s"', {"vm": self.vm_name, "bootdev": bootdevice}, ) device = SET_BOOT_DEVICES_MAP.get(bootdevice) if device is None: # Invalid data field in request return IPMI_INVALID_DATA try: with utils.viserver_open(**self._conn_args) as conn: vm = utils.get_viserver_vm(conn, self.vm_name) utils.set_boot_device(conn, vm, device) except Exception as e: LOG.error( "Failed setting the boot device %(bootdev)s for vm %(vm)s." "Error: %(error)s", {"bootdev": device, "vm": self.vm_name, "error": e}, ) # Command failed, but let client to retry return IPMI_COMMAND_NODE_BUSY def get_power_state(self): LOG.debug("Get power state called for vm %(vm)s", {"vm": self.vm_name}) try: with utils.viserver_open(**self._conn_args) as conn: vm = utils.get_viserver_vm(conn, self.vm_name) if "poweredOn" == vm.runtime.powerState: return POWERON except Exception as e: msg = "Error getting the power state of vm %(vm)s. " "Error: %(error)s" % { "vm": self.vm_name, "error": e, } LOG.error(msg) raise exception.VirtualBMCError(message=msg) return POWEROFF def pulse_diag(self): LOG.debug("Power diag called for vm %(vm)s", {"vm": self.vm_name}) try: with utils.viserver_open(**self._conn_args) as conn: vm = utils.get_viserver_vm(conn, self.vm_name) utils.send_nmi(conn, vm) LOG.debug( "The NMI will be sent to the vm %(vm)s 60 seconds later", {"vm": self.vm_name}, ) except Exception as e: LOG.error( "Error powering diag the vm %(vm)s. " "Error: %(error)s", {"vm": self.vm_name, "error": e}, ) # Command failed, but let client to retry return IPMI_COMMAND_NODE_BUSY def power_off(self): LOG.debug("Power off called for vm %(vm)s", {"vm": self.vm_name}) try: with utils.viserver_open(**self._conn_args) as conn: vm = utils.get_viserver_vm(conn, self.vm_name) if "poweredOn" == vm.runtime.powerState: vm.PowerOff() except Exception as e: LOG.error( "Error powering off the vm %(vm)s. " "Error: %(error)s", {"vm": self.vm_name, "error": e}, ) # Command failed, but let client to retry return IPMI_COMMAND_NODE_BUSY def power_on(self): LOG.debug("Power on called for vm %(vm)s", {"vm": self.vm_name}) try: with utils.viserver_open(**self._conn_args) as conn: vm = utils.get_viserver_vm(conn, self.vm_name) if "poweredOn" != vm.runtime.powerState: vm.PowerOn() except Exception as e: LOG.error( "Error powering on the vm %(vm)s. " "Error: %(error)s", {"vm": self.vm_name, "error": e}, ) # Command failed, but let client to retry return IPMI_COMMAND_NODE_BUSY def power_shutdown(self): LOG.debug("Soft power off called for vm %(vm)s", {"vm": self.vm_name}) try: with utils.viserver_open(**self._conn_args) as conn: vm = utils.get_viserver_vm(conn, self.vm_name) if "poweredOn" == vm.runtime.powerState: vm.ShutdownGuest() except Exception as e: LOG.error( "Error soft powering off the vm %(vm)s. " "Error: %(error)s", {"vm": self.vm_name, "error": e}, ) # Command failed, but let client to retry return IPMI_COMMAND_NODE_BUSY def power_reset(self): LOG.debug("Power reset called for vm %(vm)s", {"vm": self.vm_name}) try: with utils.viserver_open(**self._conn_args) as conn: vm = utils.get_viserver_vm(conn, self.vm_name) if "poweredOn" == vm.runtime.powerState: vm.Reset() except Exception as e: LOG.error( "Error reseting the vm %(vm)s. " "Error: %(error)s", {"vm": self.vm_name, "error": e}, ) # Command not supported in present state return IPMI_COMMAND_NODE_BUSY def get_channel_access(self, request, session): """Fake response to "get channel access" command. Send dummy packet to response "get channel access" command. Just exists to be able to negotiate with vCenter Server. """ data = [ 0b00100010, # alerting disabled, auth enabled, always available 0x04, # priviredge level limit = administrator ] session.send_ipmi_response(data=data) def get_channel_info(self, request, session): """Fake response to "get channel access" command. Send dummy packet to response "get channel access" command as 802.3 LAN channel. Just exists to be able to negotiate with vCenter Server. """ data = [ 0x02, # channel number = 2 0x04, # channel medium type = 802.3 LAN 0x01, # channel protocol type = IPMB-1.0 0x80, # session support = multi-session 0xF2, # vendor id = 7154 0x1B, # vendor id = 7154 0x00, # vendor id = 7154 0x00, # reserved 0x00, # reserved ] session.send_ipmi_response(data=data) def get_lan_configuration_parameters(self, request, session): """Fake response to "get lan conf params" command. Send dummy packet to response "get lan conf params" command with fake MAC address. Just exists to be able to negotiate with vCenter Server. """ data = [0] # the first byte is revision, force to 0 as a dummy req_param = request["data"][1] LOG.info("Requested parameter = %s" % req_param) if req_param == 5: # mac address data.extend(utils.convert_fakemac_string_to_bytes(self.fakemac)) else: pass LOG.info("ne: %s" % data) if len(data) > 1: session.send_ipmi_response(data=data) else: session.send_ipmi_response(data=data, code=0x80) def handle_raw_request(self, request, session): """Call the appropriate function depending on the received command. Based on pyghmi 1.5.16, Apache License 2.0 https://opendev.org/x/pyghmi/src/branch/master/pyghmi/ipmi/bmc.py """ # | FNC:CMD | NetFunc | Command | # | --------- | ----------------|------------------------------------ | # | 0x00:0x00 | Chassis | Chassis Capabilities | # | 0x00:0x01 | Chassis | Get Chassis Status | # | 0x00:0x02 | Chassis | Chassis Control | # | 0x00:0x08 | Chassis | Set System Boot Options | # | 0x00:0x09 | Chassis | Get System Boot Options | # | 0x04:0x2D | Sensor/Event | Get Sensor Reading | # | 0x04:0x2F | Sensor/Event | Get Sensor Type | # | 0x04:0x30 | Sensor/Event | Set Sensor Reading and Event Status | # | 0x06:0x01 | App | Get Device ID | # | 0x06:0x02 | App | Cold Reset | # | 0x06:0x03 | App | Warm Reset | # | 0x06:0x04 | App | Get Self Test Results | # | 0x06:0x08 | App | Get Device GUID | # | 0x06:0x22 | App | Reset Watchdog Timer | # | 0x06:0x24 | App | Set Watchdog Timer | # | 0x06:0x2E | App | Set BMC Global Enables | # | 0x06:0x31 | App | Get Message Flags | # | 0x06:0x35 | App | Read Event Message Buffer | # | 0x06:0x36 | App | Get BT Interface Capabilities | # | 0x06:0x40 | App | Set Channel Access | # | 0x06:0x41 | App | Get Channel Access | # | 0x06:0x42 | App | Get Channel Info Command | # | 0x0A:0x10 | Storage | Get FRU Inventory Area Info | # | 0x0A:0x11 | Storage | Read FRU Data | # | 0x0A:0x12 | Storage | Write FRU Data | # | 0x0A:0x40 | Storage | Get SEL Info | # | 0x0A:0x42 | Storage | Reserve SEL | # | 0x0A:0x44 | Storage | Add SEL Entry | # | 0x0A:0x48 | Storage | Get SEL Time | # | 0x0A:0x49 | Storage | Set SEL Time | # | 0x0C:0x01 | Transport | Set LAN Configuration Parameters | # | 0x0C:0x02 | Transport | Get LAN Configuration Parameters | # | 0x2C:0x00 | Group Extension | Group Extension Command | # | 0x2C:0x03 | Group Extension | Get Power Limit | # | 0x2C:0x04 | Group Extension | Set Power Limit | # | 0x2C:0x05 | Group Extension | Activate/Deactivate Power Limit | # | 0x2C:0x06 | Group Extension | Get Asset Tag | # | 0x2C:0x08 | Group Extension | Set Asset Tag | LOG.info( "Received netfn = 0x%x (%d), command = 0x%x (%d), data = %s" % ( request["netfn"], request["netfn"], request["command"], request["command"], request["data"].hex(), ) ) try: if request["netfn"] == 6: if request["command"] == 1: # get device id return self.send_device_id(session) elif request["command"] == 2: # cold reset return session.send_ipmi_response(code=self.cold_reset()) elif request["command"] == 0x41: # get channel access return self.get_channel_access(request, session) elif request["command"] == 0x42: # get channel info return self.get_channel_info(request, session) elif request["command"] == 0x48: # activate payload return self.activate_payload(request, session) elif request["command"] == 0x49: # deactivate payload return self.deactivate_payload(request, session) elif request["netfn"] == 0: if request["command"] == 1: # get chassis status return self.get_chassis_status(session) elif request["command"] == 2: # chassis control return self.control_chassis(request, session) elif request["command"] == 8: # set boot options return self.set_system_boot_options(request, session) elif request["command"] == 9: # get boot options return self.get_system_boot_options(request, session) elif request["netfn"] == 12: if request["command"] == 2: # get lan configuration parameters return self.get_lan_configuration_parameters(request, session) session.send_ipmi_response(code=0xC1) except NotImplementedError: session.send_ipmi_response(code=0xC1) except Exception: session._send_ipmi_net_payload(code=0xFF) traceback.print_exc()
[ "2920259+kurokobo@users.noreply.github.com" ]
2920259+kurokobo@users.noreply.github.com
fa1a2a2da4ce8b7c223ecec643abba112a7b6263
bb10451047bf3d8e6b5c37a0bbf2a73729340260
/preprocessing/tracking.py
5e7c829ed110b26db2fd923b1821afa467ad4fc8
[]
no_license
jocelynqiaoqian/Computer_Vision_Project
cc9724d9c49ad5c3cfc8fcaa0b6a560d3c246852
3899690107d2f6b52220e731379152ce60a4b76d
refs/heads/master
2021-05-04T14:03:28.979975
2017-11-21T02:14:56
2017-11-21T02:14:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,728
py
import cv2 import sys (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.') if __name__ == '__main__' : # Set up tracker. # Instead of MIL, you can also use tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN'] tracker_type = tracker_types[4] if int(minor_ver) < 3: tracker = cv2.Tracker_create(tracker_type) else: if tracker_type == 'BOOSTING': tracker = cv2.TrackerBoosting_create() if tracker_type == 'MIL': tracker = cv2.TrackerMIL_create() if tracker_type == 'KCF': tracker = cv2.TrackerKCF_create() if tracker_type == 'TLD': tracker = cv2.TrackerTLD_create() if tracker_type == 'MEDIANFLOW': tracker = cv2.TrackerMedianFlow_create() if tracker_type == 'GOTURN': tracker = cv2.TrackerGOTURN_create() # Read video video = cv2.VideoCapture("../results/output_CandyEdge.m4v") # Exit if video not opened. if not video.isOpened(): print "Could not open video" sys.exit() # Read first frame. ok, frame = video.read() if not ok: print 'Cannot read video file' sys.exit() # Define an initial bounding box bbox = (287, 23, 86, 320) # Uncomment the line below to select a different bounding box bbox = cv2.selectROI(frame, False) # Initialize tracker with first frame and bounding box ok = tracker.init(frame, bbox) while True: # Read a new frame ok, frame = video.read() if not ok: break # Start timer timer = cv2.getTickCount() # Update tracker ok, bbox = tracker.update(frame) # Calculate Frames per second (FPS) fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer) # Draw bounding box if ok: # Tracking success p1 = (int(bbox[0]), int(bbox[1])) p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])) cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1) else : # Tracking failure cv2.putText(frame, "Tracking failure detected", (100,80), cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2) # Display tracker type on frame cv2.putText(frame, tracker_type + " Tracker", (100,20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50),2); # Display FPS on frame cv2.putText(frame, "FPS : " + str(int(fps)), (100,50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50), 2); # Display result cv2.imshow("Tracking", frame) # Exit if ESC pressed k = cv2.waitKey(1) & 0xff if k == 27 : break
[ "jf773@cornell.edu" ]
jf773@cornell.edu
fbe792816c6f306d39a1d6f860a9c02c7704b0a8
2c54a93bb144871a821ccc87f67f0b98a9140a5b
/.metadata/.plugins/org.eclipse.core.resources/.history/c7/e01b29f4b39900171d01ac63d6c54cb2
689f146401abceab6d37c8d3f12859cf3e418bad
[]
no_license
hashem65/SwarmInteligenceOpt
02ea0ad1cee4e422358f0fffec22cf40aeab940c
091eb75a1003bb7c6b349c5e9a2b66f3c65ab893
refs/heads/master
2021-09-09T10:27:51.311955
2018-03-15T06:43:25
2018-03-15T06:43:25
104,139,579
0
0
null
null
null
null
UTF-8
Python
false
false
2,127
#!/usr/bin/env python from numpy import array from random import random from math import sin, sqrt iter_max = 10000 pop_size = 100 dimensions = 20 c1 = 2 c2 = 2 err_crit = 0.00001 class Particle: pass def f6(param): para = param*20 para = param[0:20] num = (sin(sqrt((para[0] * para[0]) + (para[9] * para[1])))) * \ (sin(sqrt((para[2] * para[1]) + (para[8] * para[4])))) - 0.5 + \ (sin(sqrt((para[3] * para[3]) + (para[6] * para[2])))) * \ (sin(sqrt((para[5] * para[4]) + (para[7] * para[4])))) denom = (1.0 + 0.001 * ((para[0] * para[10]) + (para[14] * para[12]))) * \ (1.0 + 0.001 * ((para[10] * para[10]) + (para[15] * para[12]))) f6 = 0.5 - (num/denom) errorf6 = 1 - f6 return f6, errorf6; #initialize the particles particles = [] for i in range(pop_size): p = Particle() p.params = array([random() for i in range(dimensions)]) p.fitness = 0.0 p.v = 0.0 particles.append(p) # let the first particle be the global best gbest = particles[0] err = 999999999 while i < iter_max : for p in particles: fitness,err = f6(p.params) if fitness > p.fitness: p.fitness = fitness p.best = p.params if fitness > gbest.fitness: gbest = p v = p.v + c1 * random() * (p.best - p.params) \ + c2 * random() * (gbest.params - p.params) p.params = p.params + v i += 1 if err < err_crit: break #progress bar. '.' = 10% if i % (iter_max/10) == 0: print '.' print '\nParticle Swarm Optimisation\n' print 'PARAMETERS\n','-'*9 print 'Population size : ', pop_size print 'Dimensions : ', dimensions print 'Error Criterion : ', err_crit print 'c1 : ', c1 print 'c2 : ', c2 print 'function : f6' print 'RESULTS\n', '-'*7 print 'gbest fitness : ', gbest.fitness print 'gbest params : ', gbest.params print 'iterations : ', i+1 ## Uncomment to print particles #for p in particles: # print 'params: %s, fitness: %s, best: %s' % (p.params, p.fitness, p.best)
[ "hyou267@aucklanduni.ac.nz" ]
hyou267@aucklanduni.ac.nz
e8fe52a1dfc9be4acfa62d7b5331c459b99b3c95
f22d4319e6f848202fe847f9190b78ceaae8ed12
/envExemplo/Lista15/cotacoes.py
d24d99c34eac2570cbd61758b10295c149e9ff19
[]
no_license
AlexandreLouzada/Pyquest
7ecc0a3e3002df169bd53ae99e66c54019782698
29f0e67e5902fad0fc336ece63c9e5d3868d6b09
refs/heads/master
2023-08-30T22:54:46.438567
2023-08-21T19:04:39
2023-08-21T19:04:39
248,549,732
10
4
null
null
null
null
UTF-8
Python
false
false
340
py
import requests def obter_cotacao_moedas(): url = "https://api.exchangerate-api.com/v4/latest/BRL" response = requests.get(url) data = response.json() if response.status_code == 200: return data["rates"] else: print(f"Erro ao obter as cotações de moedas: {response.status_code}") return None
[ "professorlouzada@gmail.com" ]
professorlouzada@gmail.com
119eaee92a26b990c18be5c539d66fc169f18d94
6f9573c6ebc9d6431f610c540e281db11362cb43
/tree.py
f4c38bff6e4f261e805e802e0a30c11610383431
[]
no_license
llkhacquan/url-remove-prediction
ac92fd3ffcd4ec6593f39d20bdfd96c7de4d0166
5d4a61e0305d41892b5481d765f7a1930c11f47b
refs/heads/master
2020-05-17T08:21:39.739323
2019-05-04T08:05:37
2019-05-04T08:05:37
183,603,202
1
0
null
null
null
null
UTF-8
Python
false
false
1,927
py
import numpy as np import pandas as pd import sys import os from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import BayesianRidge from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn import tree, preprocessing from sklearn import svm from subprocess import call import logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(message)s') if len(sys.argv) > 1: data_file = sys.argv[1] else: logging.error( 'usage: python3 tree.py <data-feature-file> [prediction_output_file]') exit(-1) logging.info('Using feature file ' + data_file) if len(sys.argv) > 2: host = sys.argv[2] else: logging.error( 'usage: python3 tree.py <data-feature-file> [prediction_output_file]') exit(-1) data = pd.read_csv(data_file, sep=' ', header=None) print("Dataset length", len(data)) print("Dataset shape", data.shape) print("Data example:") print(data.head()) X = data.values[:, 1:] Y = data.values[:, 0].astype('int') test_size = 1 - min(100000/len(data), 0.5) print("Test size =", test_size, "(", len(data)*test_size, ")") print("Training size =", 1-test_size, "(", len(data)*(1-test_size), ")") X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size=test_size) clf = DecisionTreeClassifier() logging.info("start training") clf.fit(X_train[:, 2:], y_train) logging.info("done training") score = clf.score(X_test[:, 2:], y_test) print("score", score) y_pred = clf.predict(X_test[:, 2:]) print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) if len(sys.argv) > 2: logging.info("Extract predicted result to %s", (sys.argv[2])) dummy_data1 = [y_pred, y_test, X_test[:, 0]] df1 = pd.DataFrame(dummy_data1).transpose() df1.to_csv(sys.argv[2], sep=' ', header=None, index=False) logging.info("Done")
[ "quannk@coccoc.com" ]
quannk@coccoc.com
a100b36ab4229b73b6da9f86bed3a4cf38b9a2ef
42cb644e9e3aab54d0ed32c33e7772c0f9716c07
/task3/prog/publ.py
b0ea392105d2b00bf316e0a6dcf424620dbc6fbb
[]
no_license
tyomaz/practica2020
864cbbc58aab90a430ec84decd89298ccebff570
15a2b35e0926d2a40221357feed37af27150fcc2
refs/heads/master
2022-11-25T20:05:58.330691
2020-07-24T07:31:40
2020-07-24T07:31:40
276,693,157
0
0
null
null
null
null
UTF-8
Python
false
false
2,522
py
import time import random from multiprocessing import Manager, Process from influxdb import InfluxDBClient class Var: def __init__(self, name, begin_value, change_range): self.name = name self.value: float = float(begin_value) self.change_rate: float = float(change_range) print(self.value, self.change_rate) class PublisherClass: def __init__(self): self._client = InfluxDBClient(host='influx', port=8086, database="name") self.manager = Manager() self._lc = Manager().Lock() self._var_list = self.manager.list() self.wrk = None def add_field(self, variable: Var): self._lc.acquire(blocking=True) self._var_list.append(variable) self._lc.release() def start_work(self): if self.wrk is not None: return False self.wrk = Process(target=PublisherClass.work_f, args=[self]) self.wrk.start() return True def del_field(self, nm): index = -1 self._lc.acquire(blocking=True) for a in range(len(self._var_list)): if self._var_list[a].name == nm: index = a break rv = True if index != -1: self._var_list.pop(index) else: rv = False self._lc.release() return rv def stop_work(self): if self.wrk is None: return False self._lc.acquire(blocking=True) self.wrk.terminate() self.wrk.join() self.wrk = None self._lc.release() return True def work_f(self): while True: if len(self._var_list) != 0: self._lc.acquire(blocking=True) tm = {} for a in self._var_list: tm[a.name] = a.value self._client.write_points([ { "measurement": "mes", "fields": tm } ]) for a in range(len(self._var_list)): rr = self._var_list[a] rr.value = -1 + 2 * random.randint(0, 1) + rr.change_rate * random.random() self._var_list[a] = rr self._lc.release() time.sleep(1) def get_var_list(self): self._lc.acquire(blocking=True) r_m = {} for a in self._var_list: r_m[a.name] = a.value self._lc.release() return r_m
[ "noreply@github.com" ]
tyomaz.noreply@github.com
4609e99a44628726eb2f9570506891c0b578045c
495db4d37d0bf4f19d12cbae49768c517c8ab701
/09_numerosRomanos.py
1722936b21a0aa6182b57c71192df2651da0d872
[]
no_license
anbreaker/retosKeepcoding
34b786489071c064e1b0ec2182d40e7c92b84575
96eed8c53daccb88ac53671dfd6f107f0f63fd55
refs/heads/master
2020-08-24T18:04:37.385885
2019-12-12T23:02:06
2019-12-12T23:02:06
216,878,463
0
0
null
null
null
null
UTF-8
Python
false
false
1,820
py
# Conversor de numeros romanos en python # I 1 | V 5 | X 10 # L 50 | C 100 | D 500 | M 1000 # valoresNumerosRomanos = {1: 'I', 5: 'V', 10: 'X', 50: 'L', 100: 'C', 500: 'D', 1000: 'M'} numRomanos = {'M': 1000, 'CM': 900, 'D': 500, 'C': 100, 'XC': 90, 'L': 50, 'X': 10, 'IX': 9, 'V': 5, 'I': 1} def descomponiendoNumArabigo(numero): # Convertir a romano: resultado = '' for item in numRomanos: cociente = numero // numRomanos.get(item) if cociente > 0: numero = numero - numRomanos.get(item)*cociente mayorTres = item*cociente if mayorTres == 'CCCC': resultado += 'CD' elif mayorTres == 'XXXX': resultado += 'XL' elif mayorTres == 'IIII': resultado += 'IV' else: resultado += mayorTres # print(f'Letra Romana {item}\'s--> {cociente}\t num Arabe--> {numRomanos.get(item)}') # print(f'Resultado al final --> {resultado}') return resultado ''' def validarNumero(numero): if numero > 0: # print(f'en la def {numero}') return True else: return False # Pedir opciones numero = 0 while not validarNumero(numero): try: if not validarNumero(numero): numero = int(input('Introduzca un numero entero: ')) except ValueError: print('Debes introducir sólo numéros enteros positivos. ') ''' def descomponiendoNumRomano(numRoman): resultado = 0 for item in numRoman: resultado += numRomanos.get(item) print(resultado) return resultado numero = 199 numRoman = 'XIV' # print(f'El numero {numero} en romano es: {descomponiendoNumArabigo(numero)}') print(f'El numero {numRoman} romano es--> {descomponiendoNumRomano(numRoman)}')
[ "antunez19@gmail.com" ]
antunez19@gmail.com
d429f1a177c70f82dd239485cf71663e94656612
aef5738b63824bfb3e04bbfbe490c4cdbf2737c7
/samples/Ex_Files_Python_Gen/Ch3/03_02/coroutine_example.py
62536c0a3a74284ea008918ae9dd0366201c56f3
[ "MIT" ]
permissive
akashtalole/python-samples
15a25287153d0f19b2f0f3dd14bdac606f585c1d
9dc9ed9410f210b09154bd53efe1b741a15907a4
refs/heads/master
2023-05-22T22:13:45.934692
2022-05-07T05:29:02
2022-05-07T05:29:02
206,237,129
4
0
MIT
2023-05-01T21:15:20
2019-09-04T05:17:11
Python
UTF-8
Python
false
false
105
py
def coroutine_example(): while True: x = yield #do something with x print x
[ "taloleakash@gmail.com" ]
taloleakash@gmail.com
ccf3fe025541d9a45220bd61197b51888b9e6af1
09e5cfe06e437989a2ccf2aeecb9c73eb998a36c
/base/lib/python2.7/site-packages/wx-3.0-gtk2/wx/tools/XRCed/plugins/xh_gizmos.py
4e7490542a4986d421022ee395919f575e443028
[ "LicenseRef-scancode-python-cwi", "GPL-1.0-or-later", "LicenseRef-scancode-other-copyleft", "LicenseRef-scancode-free-unknown", "Python-2.0", "BSD-3-Clause", "BSD-2-Clause" ]
permissive
jorgediazjr/dials-dev20191018
b81b19653624cee39207b7cefb8dfcb2e99b79eb
77d66c719b5746f37af51ad593e2941ed6fbba17
refs/heads/master
2020-08-21T02:48:54.719532
2020-01-25T01:41:37
2020-01-25T01:41:37
216,089,955
0
1
BSD-3-Clause
2020-01-25T01:41:39
2019-10-18T19:03:17
Python
UTF-8
Python
false
false
5,971
py
# Name: gizmos.py # Purpose: XML handlers for wx.gismos classes # Author: Roman Rolinsky <rolinsky@femagsoft.com> # Created: 09.07.2007 # RCS-ID: $Id$ import wx import wx.xrc as xrc import wx.gizmos as gizmos class LEDNumberCtrlXmlHandler(xrc.XmlResourceHandler): def __init__(self): xrc.XmlResourceHandler.__init__(self) # Standard styles self.AddWindowStyles() # Custom styles self.AddStyle('wxLED_ALIGN_LEFT', gizmos.LED_ALIGN_LEFT) self.AddStyle('wxLED_ALIGN_RIGHT', gizmos.LED_ALIGN_RIGHT) self.AddStyle('wxLED_ALIGN_CENTER', gizmos.LED_ALIGN_CENTER) self.AddStyle('wxLED_DRAW_FADED', gizmos.LED_DRAW_FADED) def CanHandle(self,node): return self.IsOfClass(node, 'LEDNumberCtrl') # Process XML parameters and create the object def DoCreateResource(self): assert self.GetInstance() is None w = gizmos.LEDNumberCtrl(self.GetParentAsWindow(), self.GetID(), self.GetPosition(), self.GetSize(), self.GetStyle()) # wxLED_ALIGN_MASK was incorrect align = self.GetStyle() & 7 if align: w.SetAlignment(self.GetStyle() & 7) w.SetValue(self.GetText('value')) self.SetupWindow(w) return w class EditableListBoxXmlHandler(xrc.XmlResourceHandler): def __init__(self): xrc.XmlResourceHandler.__init__(self) # Standard styles self.AddWindowStyles() # Custom styles self.AddStyle('wxEL_ALLOW_NEW', gizmos.EL_ALLOW_NEW) self.AddStyle('wxEL_ALLOW_EDIT', gizmos.EL_ALLOW_EDIT) self.AddStyle('wxEL_ALLOW_DELETE', gizmos.EL_ALLOW_DELETE) def CanHandle(self, node): return self.IsOfClass(node, 'EditableListBox') # return self.IsOfClass(node, 'EditableListBox') or \ # self.insideBox and node.GetName() == 'item' # Process XML parameters and create the object def DoCreateResource(self): assert self.GetInstance() is None w = gizmos.EditableListBox(self.GetParentAsWindow(), self.GetID(), self.GetText("label"), self.GetPosition(), self.GetSize(), self.GetStyle(), self.GetName()) # Doesn't work #self.insideBox = True #self.CreateChildrenPrivately(None, self.GetParamNode('content')) #self.insideBox = False # Long way strings = [] n = self.GetParamNode('content') if n: n = n.GetChildren() while n: if n.GetType() != xrc.XML_ELEMENT_NODE or n.GetName() != "item": n = n.GetNext() continue strings.append(n.GetNodeContent()) n = n.GetNext() w.SetStrings(strings) self.SetupWindow(w) return w class TreeListCtrlXmlHandler(xrc.XmlResourceHandler): def __init__(self): xrc.XmlResourceHandler.__init__(self) # Standard styles self.AddWindowStyles() # Custom styles self.AddStyle('wxTR_DEFAULT_STYLE', wx.TR_DEFAULT_STYLE) self.AddStyle('wxTR_EDIT_LABELS', wx.TR_EDIT_LABELS) self.AddStyle('wxTR_NO_BUTTONS', wx.TR_NO_BUTTONS) self.AddStyle('wxTR_HAS_BUTTONS', wx.TR_HAS_BUTTONS) self.AddStyle('wxTR_TWIST_BUTTONS', wx.TR_TWIST_BUTTONS) self.AddStyle('wxTR_NO_LINES', wx.TR_NO_LINES) self.AddStyle('wxTR_FULL_ROW_HIGHLIGHT', wx.TR_FULL_ROW_HIGHLIGHT) self.AddStyle('wxTR_LINES_AT_ROOT', wx.TR_LINES_AT_ROOT) self.AddStyle('wxTR_HIDE_ROOT', wx.TR_HIDE_ROOT) self.AddStyle('wxTR_ROW_LINES', wx.TR_ROW_LINES) self.AddStyle('wxTR_HAS_VARIABLE_ROW_HEIGHT', wx.TR_HAS_VARIABLE_ROW_HEIGHT) self.AddStyle('wxTR_SINGLE', wx.TR_SINGLE) self.AddStyle('wxTR_MULTIPLE', wx.TR_MULTIPLE) self.AddStyle('wxTR_EXTENDED', wx.TR_EXTENDED) def CanHandle(self, node): return self.IsOfClass(node, 'TreeListCtrl') # Process XML parameters and create the object def DoCreateResource(self): assert self.GetInstance() is None w = gizmos.TreeListCtrl(self.GetParentAsWindow(), self.GetID(), style=self.GetStyle(), name=self.GetName()) w.AddColumn("Main column") w.AddColumn('Column 1') w.SetMainColumn(0) w.SetColumnWidth(0, 50) w.SetColumnWidth(1, 50) root = w.AddRoot('Root') w.SetItemText(root, "col 1", 1) item1 = w.AppendItem(root, 'item 1') w.SetItemText(item1, "col 1", 1) w.Expand(root) return w class DynamicSashWindowXmlHandler(xrc.XmlResourceHandler): def __init__(self): xrc.XmlResourceHandler.__init__(self) # Standard styles self.AddWindowStyles() # Custom styles self.AddStyle('wxDS_MANAGE_SCROLLBARS', gizmos.DS_MANAGE_SCROLLBARS) self.AddStyle('wxDS_DRAG_CORNER', gizmos.DS_DRAG_CORNER) def CanHandle(self, node): return self.IsOfClass(node, 'DynamicSashWindow') # Process XML parameters and create the object def DoCreateResource(self): assert self.GetInstance() is None w = gizmos.DynamicSashWindow(self.GetParentAsWindow(), self.GetID(), self.GetPosition(), self.GetSize(), self.GetStyle(), self.GetName()) self.SetupWindow(w) return w
[ "jorge7soccer@gmail.com" ]
jorge7soccer@gmail.com
fa3dd38cf2d1bec4b0d05019fd7694eb7cf0d6f1
7786df1ff60e537760e6e18e5955b1330c57c282
/pytorch.py
a377420c2804342705f424d81f57d692c900c427
[]
no_license
dheidenr/ipavlov_course
3186bb064c9f65d3369537288fcb2a2f0062995f
2e3765150805d49e1cbeba2fe367616d9437789f
refs/heads/master
2021-02-11T01:44:15.679322
2020-06-04T13:52:35
2020-06-04T13:52:35
244,439,172
1
1
null
null
null
null
UTF-8
Python
false
false
85
py
import torch print('hello') a = 10 b = a b = 2 print(b) a = (1, 2, 3) b = list(a)
[ "work-post@bk.ru" ]
work-post@bk.ru
a7589f94310be332d65680e35115af8b6f847f08
db869da1bcbc5584a3af8c109656b3ef9710ad83
/tools/colored-hangul-image-generator.py
137d432b1f0c29d25b94fb168d7f0cc4dcf457c6
[]
no_license
lionem2018/Skeletonization-for-color-character
b70dabf669bfecc2dd5d7d53784c0554e8c2e080
17cd311db3ca8168eca2c275e5fec02469017aed
refs/heads/master
2020-05-27T01:32:37.325491
2019-06-18T08:37:39
2019-06-18T08:37:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,786
py
#!/usr/bin/env python import argparse import glob import io import os import random import numpy from PIL import Image, ImageFont, ImageDraw from scipy.ndimage.interpolation import map_coordinates from scipy.ndimage.filters import gaussian_filter SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__)) # Default data paths. DEFAULT_LABEL_FILE = os.path.join(SCRIPT_PATH, '../labels/2350-common-hangul.txt') DEFAULT_FONTS_DIR = os.path.join(SCRIPT_PATH, '../fonts') DEFAULT_OUTPUT_DIR = os.path.join(SCRIPT_PATH, '../image-data') # Number of random distortion images to generate per font and character. DISTORTION_COUNT = 3 # Width and height of the resulting image. IMAGE_WIDTH = 64 IMAGE_HEIGHT = 64 def generate_hangul_images(label_file, fonts_dir, output_dir): """Generate Hangul image files. This will take in the passed in labels file and will generate several images using the font files provided in the font directory. The font directory is expected to be populated with *.ttf (True Type Font) files. The generated images will be stored in the given output directory. Image paths will have their corresponding labels listed in a CSV file. """ with io.open(label_file, 'r', encoding='utf-8') as f: labels = f.read().splitlines() image_dir = os.path.join(output_dir, 'hangul-images-color') if not os.path.exists(image_dir): os.makedirs(os.path.join(image_dir)) # Get a list of the fonts. fonts = glob.glob(os.path.join(fonts_dir, '*.ttf')) labels_csv = io.open(os.path.join(output_dir, 'labels-map.csv'), 'w', encoding='utf-8') total_count = 0 prev_count = 0 for character in labels: # Print image count roughly every 5000 images. if total_count - prev_count > 5000: prev_count = total_count print('{} images generated...'.format(total_count)) for font in fonts: total_count += 1 image = Image.new('RGB', (IMAGE_WIDTH, IMAGE_HEIGHT), color=0) # change image color format from binary('L') to RGB font = ImageFont.truetype(font, 48) drawing = ImageDraw.Draw(image) w, h = drawing.textsize(character, font=font) drawing.text( ((IMAGE_WIDTH-w)/2, (IMAGE_HEIGHT-h)/2), character, fill='#0000FF', # draw character with blue('#0000FF) font=font ) # change some part of character to red and green # 글자의 특정 부분을 빨간색이나 초록색으로 변경 pixels = image.load() # change to red # 빨간색으로 변경 for i in range(0, 31): for j in range(0, 31): if pixels[i, j] > (0, 0, 128): pixels[i, j] = (255, 0, 0) # change to green # 초록색으로 변경 for i in range(32, image.size[0]): for j in range(32, image.size[1]): if pixels[i, j] > (0, 0, 128): pixels[i, j] = (0, 255, 0) file_string = '{}.png'.format(total_count) file_path = os.path.join(image_dir, file_string) image.save(file_path, 'PNG') labels_csv.write(u'{},{}\n'.format(file_path, character)) # for i in range(DISTORTION_COUNT): # total_count += 1 # file_string = 'hangul_{}.png'.format(total_count) # file_path = os.path.join(image_dir, file_string) # arr = numpy.array(image) # distorted_array = elastic_distort( # arr, alpha=random.randint(30, 36), # sigma=random.randint(5, 6) # ) # distorted_image = Image.fromarray(distorted_array) # distorted_image.save(file_path, 'PNG') # labels_csv.write(u'{},{}\n'.format(file_path, character)) print('Finished generating {} images.'.format(total_count)) labels_csv.close() def elastic_distort(image, alpha, sigma): """Perform elastic distortion on an image. Here, alpha refers to the scaling factor that controls the intensity of the deformation. The sigma variable refers to the Gaussian filter standard deviation. """ random_state = numpy.random.RandomState(None) shape = image.shape dx = gaussian_filter( (random_state.rand(*shape) * 2 - 1), sigma, mode="constant" ) * alpha dy = gaussian_filter( (random_state.rand(*shape) * 2 - 1), sigma, mode="constant" ) * alpha x, y = numpy.meshgrid(numpy.arange(shape[0]), numpy.arange(shape[1])) indices = numpy.reshape(y+dy, (-1, 1)), numpy.reshape(x+dx, (-1, 1)) return map_coordinates(image, indices, order=1).reshape(shape) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--label-file', type=str, dest='label_file', default=DEFAULT_LABEL_FILE, help='File containing newline delimited labels.') parser.add_argument('--font-dir', type=str, dest='fonts_dir', default=DEFAULT_FONTS_DIR, help='Directory of ttf fonts to use.') parser.add_argument('--output-dir', type=str, dest='output_dir', default=DEFAULT_OUTPUT_DIR, help='Output directory to store generated images and ' 'label CSV file.') args = parser.parse_args() generate_hangul_images(args.label_file, args.fonts_dir, args.output_dir)
[ "lionem2018@gmail.com" ]
lionem2018@gmail.com
8eb8b78a3c73b4e6636cc5e1e1f54ed35cbe219d
2a9dff1294b9ee2eec1195d41b7d861206ea6f5d
/clean/old/main_proto.py
17178770bfed6e29735c7ab231132251a4fed2e2
[]
no_license
HanEmile/Heidelberg
a4dce19d5542a77ec417ee30ca8e715a6d227bf2
a64a41ff5c15b433d6b89d6014f33ec7ef91c146
refs/heads/master
2020-12-02T21:20:22.783224
2017-08-14T17:06:25
2017-08-14T17:06:25
96,296,221
0
2
null
2017-07-12T15:02:48
2017-07-05T08:30:22
Python
UTF-8
Python
false
false
2,788
py
import math import numpy as np import scipy as sp import matplotlib.pyplot as plt from scipy.interpolate import InterpolatedUnivariateSpline import os from multiprocessing import Pool # custom imports import heidelberg as hd import variables import constants ##### # README! # generate eaven distibuted coordinates and insert them into the rho function # to get a rho-value. Compare that value to a random value to see if a star # should be generated ##### # controll samples = int(1e3) stars = int(1e3) # lists / arrays lista = [] listb = [] arr_rand_pos = np.zeros((stars, 3)) # create new file for every calculation file_nr = 1 while os.path.isfile('3D/3D_data/' + str(file_nr) + '.csv') == True: file_nr += 1 path = '3D/3D_data/' + str(file_nr) + '.csv' print(path) def gen_star(star_nr): # create temporary array to store the data (-> multiprocessing) temp_arr = np.zeros((3)) # generate a random coordinate for every axis and stor it in an array for axis in range(0, 3): rand_val = np.random.uniform(int(0), int(1e15), size=1) arr_rand_pos[star_nr][axis] = rand_val # define x, y and z for better access x = arr_rand_pos[star_nr][0] y = arr_rand_pos[star_nr][1] z = arr_rand_pos[star_nr][2] # write the random values to the temporary array temp_arr[0] = x temp_arr[1] = y temp_arr[2] = z # r = math.sqrt(x**2 + y**2 + z**2) # lista.append(hd.rho(r)) # generate a random "check" number to determine if a star should be drawn or not rand_val_check = np.random.uniform(0, 1500, size=1) # print some information print("{:<20}{:<20}{:<20}".format(x, y, z), end="") print("{:<20}{:<20}".format( str(hd.rho3d(x, y, z)), str(rand_val_check) ), end="") print("{:<20}{:<20}".format(r, rho_r)) # test if the star should be drawn if rand_val_check < rho_r: # write the coordinates of the star to a file with open(path, "a") as data: data.write( str(temp_arr[0]).strip("[]") + "," ) data.write( str(temp_arr[1]).strip("[]") + "," ) data.write( str(temp_arr[2]).strip("[]") ) data.write("\n") # generate the stars for star in range(0, stars): gen_star(star) # print the collumn info so you know what is what print("{:<20}{:<20}{:<20}".format("x", "y", "z"), end="") print("{:<20}{:<20}{:<20}{:<20}".format("hd.rho3d(x, y, z)", "rand_val_check", "r", "hd.rho(r)")) print("") # # DISPLAY ARRAY R # arr_rho = np.logspace(0, 10, int(1e5)) # # for r in arr_r: # print(r, end="") # print(hd.rho(r)) # listb.append(hd.rho(r)) # # # plot the lists # plt.plot(lista) # plt.plot(listb) # # # configure the plot # plt.xscale('log') # plt.legend(["lista", "listb"]) # # # display the plot # plt.show()
[ "emile.hansmaennel@gmail.com" ]
emile.hansmaennel@gmail.com
30562d714d8e90497a2db796240e4ac888916f25
717442f6b0b497ea18c37de75f5ce5dac4768aef
/scrapers/scrapers/spiders/lydias_spider.py
e966c68fb38f1e1161a44f8eaa4068c8a62a909c
[]
no_license
marjevtic/testMarko
6c327ec7286ee0ece21c0d237bae861dac91d45f
336f1b35c99c4521ea833337a558ab0d2aa1222d
refs/heads/master
2021-01-22T04:48:42.197965
2012-09-10T07:39:28
2012-09-10T07:39:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,173
py
from scrapy.contrib.spiders import CrawlSpider from scrapy.selector import HtmlXPathSelector import modules.basic_func as basic from modules.zmags_xml import VariantsXml from modules.excel import DictExcel from modules.exception import ZmagsException from modules.terminal import DatabaseTerminal from project_modules.lydias import LydiasItem from modules.export_to_db import CommonExport from modules.database import Database import project_modules.lydias.lydias as lydias import hashlib import urllib2 import simplejson import sys import re import os from scrapy.xlib.pydispatch import dispatcher from scrapy import signals from scrapy.conf import settings class LydiasSpider(CrawlSpider): name = "lydias" allowed_domains = ["example.com"] start_urls = ["http://www.example.com"] counter = 0 def __init__(self, *a, **kw): super(LydiasSpider, self).__init__(*a, **kw) dispatcher.connect(self.spider_closed, signals.spider_closed) terminal = DatabaseTerminal(sys.argv, self.name) self.d = terminal.get_arguments() self.xml = VariantsXml() self.exc = ZmagsException(5) if self.d['database']: self.database = Database() self.database.connect() self.products, self.no_urls = self.database.select_products(self.d['catalog_id'], self.d['product_id']) self.database.disconnect() else: self.get_lists_from_excel() # fix for bug with links they provide self.products['urls'] = basic.cut_string_field(self.products['urls'], "&cat=") self.handle_not_provided() self.start_urls = self.products['urls'] self.images_store = "/" + settings['IMAGES_STORE'] lydias.add_properties(self.xml) self.total = len(self.products['urls']) def parse(self, response): self.counter += 1 basic.print_status(self.counter, self.total) hxs = HtmlXPathSelector(response) item = LydiasItem() if 'redirect_urls' in response.request.meta: cur_url = response.request.meta['redirect_urls'][0] else: cur_url = response.url index = self.products['urls'].index(cur_url) id = self.products['product_ids'][index] try: available = hxs.select('//div[@id="searchfor"]/text()').extract() if not available: item['product_id'] = [id] item['name'], item['price'], item['old_price'], item['description'] = self.get_basic_info(hxs) item['rating'], item['custom_rating'] = self.get_rating(hxs) chart = self.absolute_path(self.get_size_image(hxs)) item['sizes_chart_image_url'] = self.get_server_path(chart) color_urls, color_names, product_image, color_codes = self.get_image_swatches(hxs) color_urls = self.absolute_path(color_urls) item['color_image_url'] = self.make_colors_json(color_urls, color_names, color_codes) item['in_stock'] = ["IN_STOCK"] item['embroidery'] = self.get_embroidery(hxs) default_images = self.absolute_path(self.get_extra_images(hxs)) item['default_image_url'] = self.get_server_path(default_images) self.xml.create_xml(item) product_image = self.absolute_path(product_image) self.create_subproducts(id, color_names, product_image, color_codes, hxs) item['image_urls'] = product_image + color_urls + chart + default_images self.products['status'][index] = "ran" else: self.exc.code_handler(102, response.url) item['product_id'] = [id] item['in_stock'] = ["NOT_AVAILABLE"] self.products['status'][index] = "not_avail" self.xml.create_xml(item) except: self.products['status'][index] = "error" self.exc.code_handler(100, response.url) return item # function for checking if product has embroidery or not def get_embroidery(self, hxs): page = hxs.select('//html').extract()[0] if "document.getElementById('logocolor').disabled = true;" in page: return ["True"] else: return ["False"] # function for creating json with all information for colors def make_colors_json(self, color_urls, color_names, color_codes): dict = {} jsons = [] for i in range(0, len(color_urls)): dict['color_url'] = self.get_server_path_single(color_urls[i]) dict['color_name'] = color_names[i] dict['color_short'] = color_codes[i] json = basic.cdata(simplejson.dumps(dict)) jsons.append(json) return jsons # function for getting image server path def get_server_path_single(self, url): # return url return self.images_store + "/full/" + hashlib.sha1(url).hexdigest() + ".jpg" # function for getting image path for field of images def get_server_path(self, urls): # return urls new = [] for url in urls: new.append(self.images_store + "/full/" + hashlib.sha1(url).hexdigest() + ".jpg") return new #function for getting basic information for product def get_basic_info(self, hxs): name = hxs.select('//div[@id="proddetail"]/h1/text()').extract() price = hxs.select('//div[@id="proddetail"]/div[@class="yourprice bigprice"]/text()').extract() description = basic.cdata(hxs.select('//div[@id="details"]').extract()[0]) description = basic.clean_string(description) old_price = hxs.select('//span[@class="yourprice_product"]/text()').extract() if not price: price = hxs.select('//span[@id="PriceDisplay"]/text()').extract() if old_price: old_price = [re.sub('[^0-9.]', '', old_price[0])] price = [re.sub('[^0-9.]', '', price[0])] return name, price, old_price, [description] # function for getting rating, both number and sentence (e.g. Rating 5 out of 6 votes) def get_rating(self, hxs): temp = hxs.select('//div[@id="Customerssay"]/p[2]/text()').extract() if temp: rating = basic.get_middle_text(temp[0].replace(" ", ""), "Rating:", "out") return rating, temp else: return [], temp #function for getting reviews, returning rating and field of json reviews # or empty fields if there's no reviews def get_reviews(self, hxs): reviews = hxs.select('//div[@class="prodReview"]') if reviews: title = reviews[0].select('p[@class="review_title"]/text()').extract() text = reviews[0].select('p[@class="review_text"]/text()').extract() author = reviews[0].select('p[@class="review_author"]/text()').extract() location = reviews[0].select('p[@class="review_location"]/text()').extract() jsons = self.make_reviews_json(title, text, author, location) return jsons else: return [] # function for making json for reviews # currently not in use. cause there are no reviews in DPW design def make_reviews_json(self, title, text, author, location): jsons = [] print len(title) print len(text) print len(author) print len(location) os._exit(0) for i in range(0, len(title)): json = '{ "title" : " %s ", "text" : "%s", "author" : "%s", "location" :\ "%s" }' % (title[i], text[i], author[i], location[i]) json = basic.cdata(json) jsons.append(json) return jsons #function for getting size chart image def get_size_image(self, hxs): temp = hxs.select('//div[@class="TabbedPanelsContent cells"]/img/@src').extract() return temp #function for getting image swatches, returning fields (image_urls, image name, product color image) def get_image_swatches(self, hxs): colors = hxs.select('//div[@class="lolite"]') color_images = [] color_names = [] products_image = [] color_codes = [] for color in colors: color_images.append(color.select('a/img/@src').extract()[0]) color_names.append(color.select('a/img/@alt').extract()[0]) #if zoom image needed, this is the place to get it products_image.append(color.select('a/@rev').extract()[0]) color_codes.append(color.select('a/@onclick').extract()[0].split(",")[1].replace("'", "")) return color_images, color_names, products_image, color_codes #function for getting additional images, returns field of images or empty field if there is no def get_extra_images(self, hxs): additional_images = hxs.select('//div[@id="AddImg"]/script/text()').extract() if additional_images: temp = basic.get_middle_text(additional_images[0], '"', '"') thumb_images = temp[0].split(",") return thumb_images else: return [] #function for getting product id from the page def get_product_id(self, hxs): temp = hxs.select('//div[@id="wrap"]/script/text()').extract() id = basic.get_middle_text(temp[0], 'productid","', '"') return id[0] # function for getting sizes from another url, retunrning field of jsons for sizes # one id from the page is 115NB, if needed here to hardcode for testing # currently not in use def get_sizes(self, id, hxs): showmode = hxs.select('//input[@name="showmode"]/@value').extract()[0] itemmode = hxs.select('//input[@name="itemmode"]/@value').extract()[0] salemode = hxs.select('//input[@name="salemode"]/@value').extract()[0] url = "http://www.lydiasuniforms.com/ajaxed/product-showoptions.asp?sku=%s&opt1=AV&opt2=-1&type2=l1type" % (id) url += "&type3=&showmode=%s&itemmode=%s&salemode=%s&rnum=429" % (showmode, itemmode, salemode) jsons = [] print "reading page..." page = urllib2.urlopen(url).read() print "page read" page = page.replace("'", "") page = page.replace("[", ",") page = page.replace(",,", "") temp = page.split("]") for i in range(0, len(temp) - 2): tmp = temp[i].split(",") json = '{ "size_short" : " %s ", "size_full" : "%s", "some_number" :\ "%s", "some_id" : "%s" }' % (tmp[0], tmp[1], tmp[2], tmp[3]) json = basic.cdata(json) jsons.append(json) return jsons # function that handles creating subproducts, can be implemented for the usual way product for every combination # of size and color if needed def create_subproducts(self, id, color_names, product_image, color_codes, hxs): item = LydiasItem() # if no colors for specific product do this part and call to creating size children with empty string instead # of actual color name if len(color_names) == 0: item['master_product_id'] = [id] item['product_id'] = [id + "_" + "0"] item['color'] = ["NO_COLOR"] item['custom_size'] = self.create_sizes_subproducts(id, id + "_" + "0", "", hxs) self.xml.create_xml(item) # for handling cases when there are color options for specific product, create child for every color, and call # for creating size children for every provided color else: for i in range(0, len(color_names)): print "name :" + color_names[i] + " code:" + color_codes[i] item['master_product_id'] = [id] item['product_id'] = [id + "_" + str(i)] item['color'] = [color_names[i]] item['color_short'] = [color_codes[i]] item['normal_image_url'] = self.get_server_path([product_image[i]]) item['in_stock'] = ["IN_STOCK"] item['custom_size'] = self.create_sizes_subproducts(id, id + "_" + str(i), color_codes[i], hxs) self.xml.create_xml(item) item.clear() return 0 # function for creating child products for sizes # little messy with all the commented lines but those lines can be used if needed to go back to old way with # child products instead of json def create_sizes_subproducts(self, main_id, id, color_code, hxs): print color_code jsons = [] # if block for cases when color is provided if color_code != "": showmode = hxs.select('//input[@name="showmode"]/@value').extract()[0] itemmode = hxs.select('//input[@name="itemmode"]/@value').extract()[0] salemode = hxs.select('//input[@name="salemode"]/@value').extract()[0] url = "http://www.lydiasuniforms.com/ajaxed/product-showoptions.asp?sku=%s&opt1=%s&opt2=-1&type2=l1type&" \ "type3=&showmode=%s&itemmode=%s&salemode=%s&rnum=193" % (main_id, color_code, showmode, itemmode, salemode) page = urllib2.urlopen(url).read() page = page.replace("'", "") page = page.replace("[", ",") page = page.replace(",,", "") temp = page.split("]") for i in range(0, len(temp) - 2): tmp = temp[i].split(",") item = {} # item['master_product_id'] = [id] item['size_short'] = tmp[0] item['price_url'] = self.get_size_price(str(main_id), str(color_code), tmp[0]) item['size'] = tmp[1] # item['product_id'] = [id + "_" + str(i)] # item['in_stock'] = ["IN_STOCK"] # xml.create_xml(item) jsons.append(basic.cdata(simplejson.dumps(item))) return jsons # when the color is not provided different block of code cause it's done differently on the page else: temp = hxs.select('//div[@class="not_size"]/text()').extract() for i in range(0, len(temp)): item = {} # item['master_product_id'] = [id] # item['product_id'] = [id + "_" + str(i)] item['size_short'] = temp[i] item['price_url'] = self.get_size_price(str(main_id), "", temp[i]) # item['in_stock'] = ["IN_STOCK"] # xml.create_xml(item) jsons.append(basic.cdata(simplejson.dumps(item))) return jsons # return 0 # function for getting price for combination of every size and color, can return url where the price is, or can # parse that url to get that actual price but will drastically increase scraping time def get_size_price(self, id, color, size): if color != "": url = "http://www.lydiasuniforms.com/ajaxed/product-showprice.asp?sku=%s %s %s&qty=1&itemmode=" \ "0&showmode=1&rnum=388" % (str(id), str(color), size) else: url = "http://www.lydiasuniforms.com/ajaxed/product-showprice.asp?sku=%s %s&qty=1&itemmode=" \ "0&showmode=1&rnum=259" % (id, size) url = url.replace(" ", "%20") return url # just adding part for getting absolute paths for relative paths from page def absolute_path(self, urls): new = [] for i in urls: new.append("http://www.lydiasuniforms.com" + i) return new # function used for gettin embroidery information from clients page, was used only once to get it # cause embroidery is the same for all the products def get_emb(self, hxs): emb = hxs.select('//div[@id="emb"]').extract() lettering_colors = hxs.select('//select[@id="threadcolor"]/option/@value').extract() urls = [] d = {} colors = [] for i in range(1, len(lettering_colors)): d['type'] = "lettering colors" d['name'] = lettering_colors[i] url = "http://www.lydiasuniforms.com/images/lydias/threadcolor_" url += lettering_colors[i].lower().replace(' ', '_') + ".gif" d['url'] = self.get_server_path_single(url) urls.append(url) colors.append(basic.cdata(simplejson.dumps(d))) lettering = hxs.select('//select[@id="lettering"]/option/@value').extract() l = {} letterings = [] for i in range(1, len(lettering)): l['type'] = "lettering" l['name'] = lettering[i] url = "http://www.lydiasuniforms.com/images/lydias/lettering_" url += lettering[i].lower().replace(' ', '_') + ".gif" l['url'] = self.get_server_path_single(url) letterings.append(basic.cdata(simplejson.dumps(l))) urls.append(url) logo = hxs.select('//select[@id="logoname"]/option/@value').extract() logos = {} log = [] for i in range(1, len(logo)): logos['type'] = "logo" logos['name'] = logo[i] url = "http://www.lydiasuniforms.com/images/logos/" url += logo[i].lower() + ".jpg" logos['url'] = self.get_server_path_single(url) urls.append(url) log.append(basic.cdata(simplejson.dumps(logos))) item = LydiasItem() item['color'] = colors item['lettering'] = letterings item['log'] = log xml.create_xml(item) xml.write_xml("emb") return urls print colors, letterings, log os._exit(0) def handle_not_provided(self): item = LydiasItem() for n in self.no_urls['product_ids']: item['product_id'] = [n] index = self.no_urls['product_ids'].index(n) item['name'] = [self.no_urls['names'][index]] item['in_stock'] = ['NOT_AVAILABLE'] self.xml.create_xml(item) def spider_closed(self, spider): """Handles spider_closed signal from end of scraping. Handles usual end operations for scraper like writing xml, exporting to database and sending appropriate mail message.""" msg = "" if self.counter < self.total: msg += "\nScraper didn't go through all products, please report" msg += "\n\nScraped %d product out of %d\n\n" % (self.counter, self.total) # filename for writing xml if self.d['database']: try: self.database.connect() filename = self.database.get_name(self.d['catalog_id']) self.database.update_db(self.products) self.database.disconnect() msg += "\nRan from interface.\n" except: msg += "\nUpdating database failed, please report." else: msg += "\nRan from console.\n" filename = self.d['file'] self.xml.write_xml(self.name, filename) msg += self.exc.create_message(self.counter) #if self.d['upload']: #exp = CommonExport() #try: #exp.xml_to_db(self.name, filename, "4b0d6b52-7b05-4e54-9d87-dfe77ac270c9") #msg += "\n\nExport to database successful" #except StandardError: #msg += "\n\nExport to database failed" #else: #msg += "\n\nUpload to database not selected" ## part for exporting to database here from modules.mail import Mail mail = Mail() try: mail.send_mail(msg, "Lydias: {0}".format(filename)) except: msg += "\nSending mail failed." if self.d['database']: path = "logs/{0}".format(self.name) if not os.path.exists(path): os.makedirs(path) with open("{0}/{1}".format(path, filename), 'w') as f: f.write(msg) def get_lists_from_excel(self): xls = DictExcel(basic.get_excel_path(self.name, self.d['file'])) self.products = dict() try: self.products['urls'] = xls.read_excel_collumn_for_urls(3, 15) self.products['product_ids'] = xls.read_excel_collumn_for_ids(1, 15) self.products['names'] = xls.read_excel_collumn(2, 15) except IOError as e: msg = "I/O error {0}: {1}".format(e.errno, e.strerror) msg += "\nError occurred for given file: {0}".format(self.d['file']) self.exc.code_handler(103, msg=msg) except StandardError: msg = "Error reading excel file" msg += "\nError occurred for given file: {0}".format(self.d['file']) self.exc.code_handler(103, msg=msg) else: self.products = xls.delete_duplicates_dict(self.products) self.products, self.no_urls = xls.separate_no_urls(self.products) self.products = xls._add_none_status(self.products) self.no_urls = xls._add_none_status(self.no_urls)
[ "mjevtic@extensionengine.com" ]
mjevtic@extensionengine.com
1e47e3d1f3d6edfccee973842260a0ec8c1f4e93
3e3741d9ea06f1dcd560e27145256bd3177bed14
/04_爬虫/week2/day05/02useragent.py
65cea4e5ead7b25600a44ab4929ef7260b41121d
[]
no_license
Lousm/Python
778bc730db09ab135bf53c7b62af29df2407199a
d3f19600012b3576cd5d58df510c17590fcaec14
refs/heads/master
2020-03-26T16:40:01.188306
2018-11-06T03:56:20
2018-11-06T03:56:20
145,116,187
0
0
null
null
null
null
UTF-8
Python
false
false
103
py
from fake_useragent import UserAgent ua = UserAgent() print(ua.ie) print(ua.chrome) print(ua.google)
[ "mr_lousm@163.com" ]
mr_lousm@163.com
ea6f1fcff5a5681c6f1b5caf3bb61ce8170f5177
4e21181a535165d85d63aa9878583f1365143a49
/parser.py
be8b1558f444ec2b66bff4a9d26820e2063cb6a2
[]
no_license
redbassett/Jump
6c649d32f8785b92a88e06692718dd79fde74407
482a054b1b9606ba770217fb1a714b6dabb66bab
refs/heads/master
2021-01-13T02:18:19.568135
2012-04-30T14:34:02
2012-04-30T14:34:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
601
py
#!/usr/bin/env python import os ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.join(ROOT_DIR, "data") name = 'slicelevel' path = os.path.join(DATA_DIR, name) + '.lvl' with open(path, 'r') as f: data = f.read().strip().split('\n') #data = [[self._map.get(c) for c in row] for row in data] blocks = [] lethals = [] rowNum = 0 for row in data: cNum = 0 for c in row: if c == '.': blocks.append((cNum,rowNum)) elif c == '!': lethals.append((cNum,rowNum)) cNum += 20 rowNum += 20 print blocks print lethals
[ "redbassett@gmail.com" ]
redbassett@gmail.com
3bebefafd93efc9e06e2a2522f2a259352ae32b7
1110dc34c9d7e68ff60fc4d2b35c34c7f09bb015
/utils.py
46e586aa50323d85aba1074eba6914bf06df63f7
[ "MIT" ]
permissive
rienafairefr/light-automation
52ad88786471062639e3a6e31808fefdf61bc2fe
d782523db38d5f1f5832626aa5352c5ad7cae36e
refs/heads/master
2021-05-08T09:17:15.749340
2017-10-18T13:52:21
2017-10-18T13:52:21
107,105,705
0
0
null
2017-10-16T09:21:05
2017-10-16T09:21:05
null
UTF-8
Python
false
false
283
py
from random import randint def random6(): regs_values = [0] * 23 indices = [] while len(indices) < 6: val = randint(0, 22) print val if val not in indices: indices.append(val) regs_values[val] = 100 return regs_values
[ "(none)" ]
(none)
44f97dd07f1884ec7681c265df7b56cb53d814f1
5e11802ab90a382a711845951662f4f3df112bf1
/mc/cooperatives/migrations/0005_auto_20140930_1939.py
540d073303c3ff19a300c22d56853c5941138ed5
[]
no_license
banquito/dj_mundo_cooperativo
464327c95b2875da761456c5a4047ad7ba81e117
774557e6ea7a2f433c9b10440c77e12c910d6493
refs/heads/master
2016-09-05T13:57:23.712432
2015-06-08T21:14:58
2015-06-08T21:14:58
24,514,517
0
0
null
null
null
null
UTF-8
Python
false
false
4,403
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('cooperatives', '0004_auto_20140930_1832'), ] operations = [ migrations.CreateModel( name='Assembly', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('fecha_de_convocatoria', models.DateTimeField(verbose_name=b'date')), ('notificacion', models.BooleanField()), ('direccion', models.CharField(max_length=200)), ('localidad', models.CharField(max_length=200)), ('codigo_postal', models.CharField(max_length=200)), ('fecha_inicio_asamblea', models.DateTimeField(verbose_name=b'date')), ('fecha_fin_asamblea', models.DateTimeField(verbose_name=b'date')), ('fecha_inicio_consejo', models.DateTimeField(verbose_name=b'date')), ('fecha_fin_consejo', models.DateTimeField(verbose_name=b'date')), ('cooperative', models.ForeignKey(to='cooperatives.Cooperative')), ('miembros_consejo_1', models.OneToOneField(related_name=b'consejo_1', to='cooperatives.Partner')), ('miembros_consejo_2', models.OneToOneField(related_name=b'consejo_2', to='cooperatives.Partner')), ('miembros_consejo_3', models.OneToOneField(related_name=b'consejo_3', to='cooperatives.Partner')), ('miembros_consejo_presidente', models.OneToOneField(related_name=b'consejo_presidente', to='cooperatives.Partner')), ('miembros_consejo_secretario', models.OneToOneField(related_name=b'consejo_secretario', to='cooperatives.Partner')), ('miembros_consejo_tesorero', models.OneToOneField(related_name=b'consejo_tesorero', to='cooperatives.Partner')), ('precide_asamblea', models.OneToOneField(related_name=b'precide', to='cooperatives.Partner')), ('sindico_suplente', models.OneToOneField(related_name=b'suplente', to='cooperatives.Partner')), ('sindico_titular', models.OneToOneField(related_name=b'sindico', to='cooperatives.Partner')), ], options={ }, bases=(models.Model,), ), migrations.AddField( model_name='cooperative', name='capital_banco', field=models.CharField(max_length=200, null=True, blank=True), preserve_default=True, ), migrations.AddField( model_name='cooperative', name='capital_direccion', field=models.CharField(max_length=200, null=True, blank=True), preserve_default=True, ), migrations.AddField( model_name='cooperative', name='capital_fecha', field=models.DateTimeField(null=True, verbose_name=b'date', blank=True), preserve_default=True, ), migrations.AddField( model_name='cooperative', name='capital_monto', field=models.CharField(max_length=200, null=True, blank=True), preserve_default=True, ), migrations.AddField( model_name='cooperative', name='capital_numero', field=models.CharField(max_length=200, null=True, blank=True), preserve_default=True, ), migrations.AddField( model_name='cooperative', name='cuit', field=models.CharField(max_length=200, null=True, blank=True), preserve_default=True, ), migrations.AddField( model_name='cooperative', name='expediente', field=models.CharField(max_length=200, null=True, blank=True), preserve_default=True, ), migrations.AddField( model_name='cooperative', name='matricula', field=models.CharField(max_length=200, null=True, blank=True), preserve_default=True, ), migrations.AddField( model_name='cooperative', name='presentacion', field=models.DateTimeField(null=True, verbose_name=b'date', blank=True), preserve_default=True, ), ]
[ "tiko2015@gmail.com" ]
tiko2015@gmail.com
fcb11cc2d7e9117ffe7eb3f979746f69470c5c21
ee00f05260720d38fe2b5942fec050299d7e7409
/app/__init__.py
22158ee41e93cd0747ce31131003612b54bf2ce0
[]
no_license
atjessehill/Assignment-5
be7c55cd0d24d473b2211bc043a45783c75c9f22
0f1a65fb9dda5b5b749ab2ee77d3874f3d6cf435
refs/heads/master
2020-03-22T14:50:16.772752
2018-07-09T02:27:29
2018-07-09T02:27:29
140,209,515
0
0
null
null
null
null
UTF-8
Python
false
false
754
py
from flask import Flask, jsonify import json data = {"1": "Jesse", "2": "Jonathan", "3": "Luisa", "4": "Ana Maria", "5": "James"} app = Flask(__name__) def get_all_customers(): return data def get_customer_by_id(id): for key, value in data.items(): if key == id: print(key) print(value) print(id) return value return "No User with that ID" @app.route("/") def hello_world(): return "Hello, World!" @app.route('/customers', methods=['GET']) def return_customers(): d = get_all_customers() return jsonify(d) @app.route('/customers/<id>', methods=['GET']) def return_one_customer(id): d = get_customer_by_id(id) return d if __name__== "__main__": app.run()
[ "j_hill14@u.pacific.edu" ]
j_hill14@u.pacific.edu
260f5017feb5cabc9ecfe4f0f55bf860eda03bef
6320f2d56bd8fe12196fb1547f2b3553caaf7483
/Prac2_Ejer_6.py
962e86f7b37fa5796e6a040e8dbd33d950b5878d
[ "MIT" ]
permissive
TomasFisica/Redes_Prac_4
8d15bfb620a677ec22fbdfd2da899ebfc197e539
fa594f088b2089ef789e014f564548388b4954c4
refs/heads/master
2022-10-22T13:16:50.083692
2020-06-10T18:24:48
2020-06-10T18:24:48
265,703,928
0
0
null
null
null
null
UTF-8
Python
false
false
5,669
py
import numpy as np from matplotlib import pyplot as plt class Neu_tgh(): "Neurona cuya funcion de activacion es la tangente hiperbolica" def __init__(self,num_entrada): self.num_entr=num_entrada #Numero de entradas más el bais self.Pesos=np.random.randn(self.num_entr+1,1) self.Grad_Local=0 self.Entrada_arr=0 self.Salida=0 def Fordware(self,Entradas): self.Entrada_arr=np.array(Entradas) self.Entrada_arr=np.append(self.Entrada_arr,1) #Agrego bais self.Entrada_arr=self.Entrada_arr.reshape([1,self.num_entr+1]) self.Salida=self.Entrada_arr@self.Pesos return float(np.tanh(self.Salida)) def Glocal(self,grad_ext): self.Grad_Local=1-float(np.square(np.tanh(self.Salida))) self.Grad_Local*=grad_ext def Backpropagation(self, grad_ext): self.Glocal(grad_ext) Back=self.Grad_Local*self.Pesos.T[:,:self.num_entr] self.Pesos-=(self.Entrada_arr.T*self.Grad_Local)*1e-1 return Back def Loss_test(N11,N12,N21,N22,N33,xtrain,ytrain): """Determinar loss y accc para la primera arquitectura""" Score1=0;Score2=0;Score3=0;loss=0;acierto=0 for i in range(100): Score1=[N11.Fordware(xtrain[i][0]),N12.Fordware(xtrain[i][1])] Score2=[N21.Fordware(Score1),N22.Fordware(Score1)] Score3=N33.Fordware(Score2) loss+=np.square(ytrain[i]-Score3) #Loss de MSE if (Score3>0 and ytrain[i]>0)or (Score3<0 and ytrain[i]<0): acierto+=1 return float(loss)/100,acierto def Loss_test2(N211,N212,N222,N233,xtrain,ytrain): """Determinar loss y acc para la segunda arquitectura""" Score1=0;Score2=0;Score3=0;loss=0;acierto=0 for i in range(100): Score1=[N2_11.Fordware(xtrain[i][0]),N212.Fordware(xtrain[i][1])] Score2=[N222.Fordware(Score1)] Score1.append(Score2[0]) Score3=N233.Fordware(Score1) """Determino la loss del entrenamiento""" loss=np.square(ytrain[i]-Score3) #Loss de MSE if (Score3>0 and ytrain[i]>0)or (Score3<0 and ytrain[i]<0): acierto+=1 return float(loss)/100,acierto """Variables a utilizar""" x_train=np.random.choice([1,-1],[3000,2]) y_train=np.prod(x_train,axis=1).reshape(3000,1) x_test=np.random.choice([1,-1],[100,2]) y_test=np.prod(x_test,axis=1).reshape(100,1) loss=0 loss_test=0 accu_test=0 acc=0 Score_1=0 Score_2=0 Score_3=0 Grad_33=0 Grad_21=0 Grad_22=0 Grad_aux=0 Loss=[] Losstest=[] Accu_test=[] Accu=[] i=0 """Ahora defino las neuronas""" N_11=Neu_tgh(1) N_12=Neu_tgh(1) N_21=Neu_tgh(2) N_22=Neu_tgh(2) N_33=Neu_tgh(2) """Ahora realizo el entrenamiento""" for j in range(30): for k in range(100): Score_1=[N_11.Fordware(x_train[i][0]),N_12.Fordware(x_train[i][1])] Score_2=[N_21.Fordware(Score_1),N_22.Fordware(Score_1)] Score_3=N_33.Fordware(Score_2) """Determino la loss del entrenamiento""" loss=np.square(y_train[i]-Score_3) #Loss de MSE """Determino el gradiente""" Grad_33=N_33.Backpropagation((y_train[i]-Score_3)*(-2)) Grad_21=N_21.Backpropagation(Grad_33[0][0]) Grad_22=N_22.Backpropagation(Grad_33[0][1]) N_11.Backpropagation(Grad_21[0][0]+Grad_22[0][0]) N_12.Backpropagation(Grad_21[0][1]+Grad_22[0][1]) """Determino el accu""" if (Score_3>0 and y_train[i]>0)or (Score_3<0 and y_train[i]<0): acc+=1 i+=1 loss_test,accu_test= Loss_test(N_11,N_12,N_21,N_22,N_33,x_test,y_test) Losstest.append(loss_test) Accu_test.append(accu_test) Loss.append(float(loss)/100) loss=0 Accu.append(acc) acc=0 """Grafico los resultados""" """Grafico la loss""" f,(ax1)=plt.subplots(1) ax1.plot(range(30),Loss,color="K",label="Loss train");ax1.plot(range(30),Losstest,color="r",label="Loss teste") plt.legend() """Grafico la acc""" f,(ax2)=plt.subplots(1) ax2.plot(range(30),Accu,color="K",label="Acc train");ax2.plot(range(30),Accu_test,color="r",label="Acc teste") plt.legend() """Ahora realizo el ejercicio con la segunda arquitectura""" N2_11=Neu_tgh(1) N2_12=Neu_tgh(1) N2_22=Neu_tgh(2) N2_33=Neu_tgh(3) Loss2=[] Losstest2=[] Accu_test2=[] Accu2=[] i=0 """Ahora realizo el entrenamiento""" for j in range(30): for k in range(100): Score_1=[N2_11.Fordware(x_train[i][0]),N2_12.Fordware(x_train[i][1])] Score_2=[N2_22.Fordware(Score_1)] Score_1.append(Score_2[0]) Score_3=N2_33.Fordware(Score_1) """Determino la loss del entrenamiento""" loss=np.square(y_train[i]-Score_3) #Loss de MSE """Determino el gradiente""" Grad2_33=N2_33.Backpropagation((y_train[i]-Score_3)*(-2)) Grad2_22=N2_22.Backpropagation(Grad2_33[0][2]) N2_11.Backpropagation(Grad2_22[0][0]+Grad2_33[0][0]) N2_12.Backpropagation(Grad2_22[0][1]+Grad2_33[0][1]) """Determino el accu""" if (Score_3>0 and y_train[i]>0)or (Score_3<0 and y_train[i]<0): acc+=1 i+=1 loss_test,accu_test= Loss_test2(N2_11,N2_12,N2_22,N2_33,x_test,y_test) Losstest2.append(loss_test) Accu_test2.append(accu_test) Loss2.append(float(loss)/100) loss=0 Accu2.append(acc) acc=0 """Grafico los resultados""" """Grafico la loss""" f,(ax3)=plt.subplots(1) ax3.plot(range(30),Loss2,color="K",label="Loss train 2");ax3.plot(range(30),Losstest2,color="r",label="Loss teste 2") plt.legend() """Grafico la acc""" f,(ax4)=plt.subplots(1) ax4.plot(range(30),Accu2,color="K",label="Acc train 2");ax4.plot(range(30),Accu_test2,color="r",label="Acc teste 2") plt.legend()
[ "tomas.garcia.fisica@gmail.com" ]
tomas.garcia.fisica@gmail.com
a12499d02081c3a097095e5f9b609a3d9730a9a4
d9fb5fa6b69d8ad0e9608c98903ac83e84da25b3
/live_iniciando_django/urls.py
3c93ea96cc3475389e75545875aaaf0c0f304fc4
[]
no_license
schoolofnetcom/live-iniciando-django
bf80b71a868e1aba92b55e27c42672db68b4a26f
a991d6e9ec45421d393ca9d3b0cca86140b2537d
refs/heads/master
2021-04-09T13:03:29.591181
2018-03-16T03:34:44
2018-03-16T03:34:44
125,459,068
1
1
null
null
null
null
UTF-8
Python
false
false
831
py
"""live_iniciando_django URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from my_app import views urlpatterns = [ path('admin/', admin.site.urls), path('products/',views.products_list) ]
[ "argentinaluiz@gmail.com" ]
argentinaluiz@gmail.com
431cefec3649a3cd0e8cc6955a40346b2f736fec
9dcbe30676e2df00b3d7cb308885cb17dda89494
/qa/rpc-tests/qtum-condensing-txs.py
050b0348d84a904922a29e7b8ea59a5ef75a8368
[]
no_license
bkartel1/chat_wallet
9d901067b4bf140c20e82a0ff3e42cddfc1706b3
d8919bfd4bae461992ff84dc8a66ea01d78a7c5b
refs/heads/master
2020-03-16T20:17:48.112412
2018-04-25T13:43:41
2018-04-25T13:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,384
py
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.script import * from test_framework.mininode import * from test_framework.openchat import * import sys class CondensingTxsTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 1 def setup_network(self, split=False): self.nodes = start_nodes(self.num_nodes, self.options.tmpdir, [['-txindex=1', '-rpcmaxgasprice=10000000']]) self.node = self.nodes[0] self.is_network_split = False # verify that the state hash is not 0 on genesis def setup_contracts(self): """ pragma solidity ^0.4.0; contract Sender1 { // Sender2 sender2; // Sender3 sender3; address public sender2; address public sender3; function Sender1() { } function setSenders(address senderx, address sendery) public{ // sender2=Sender2(senderx); // sender3=Sender3(sendery); sender2 = senderx; sender3 = sendery; } function share() public payable{ if(msg.sender != address(sender3)){ // sender2.share.value(msg.value/2); sender2.call.value(msg.value/2)(bytes4(sha3("share()"))); } } function sendAll() public payable{ // sender2.keep.value(msg.value + this.balance); // sender2.call.value(msg.value + this.balance)(bytes4(sha3("keep()"))); sender2.call.value(this.balance)(bytes4(sha3("keep()"))); } function keep() public payable{ } function() payable { } //always payable } contract Sender2{ // Sender1 sender1; // Sender3 sender3; address public sender1; address public sender3; function Sender2() { } function setSenders(address senderx, address sendery) public{ // sender1=Sender1(senderx); // sender3=Sender3(sendery); sender1 = senderx; sender3 = sendery; } function share() public payable{ // sender3.share.value(msg.value/2); sender3.call.value(msg.value/2)(bytes4(sha3("share()"))); } function keep() public payable{ } function withdrawAll() public{ // sender3.withdraw(); sender3.call(bytes4(sha3("withdraw()"))); msg.sender.send(this.balance); } function() payable { } //always payable } contract Sender3 { // Sender1 sender1; // Sender2 sender2; address public sender1; address public sender2; function Sender3() { } function setSenders(address senderx, address sendery) public{ // sender1=Sender1(senderx); // sender2=Sender2(sendery); sender1 = senderx; sender2 = sendery; } function share() public payable{ // sender1.share.value(msg.value/2); // sender2.keep.value(msg.value/4); sender1.call.value(msg.value/2)(bytes4(sha3("share()"))); sender2.call.value(msg.value/4)(bytes4(sha3("keep()"))); } function withdraw() public{ msg.sender.send(this.balance); } function() payable { } //always payable } """ sender1_bytecode = "6060604052341561000c57fe5b5b5b5b6104cb8061001e6000396000f30060606040523615610076576000357c0100000000000000000000000000000000000000000000000000000000900463ffffffff1680635579818d1461007f578063622836a3146100d45780639b0079d414610126578063a8d5fd6514610178578063e14f680f14610182578063e4d06d821461018c575b61007d5b5b565b005b341561008757fe5b6100d2600480803573ffffffffffffffffffffffffffffffffffffffff1690602001909190803573ffffffffffffffffffffffffffffffffffffffff16906020019091905050610196565b005b34156100dc57fe5b6100e461021d565b604051808273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200191505060405180910390f35b341561012e57fe5b610136610243565b604051808273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200191505060405180910390f35b610180610269565b005b61018a6103a9565b005b61019461049c565b005b81600060006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555080600160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505b5050565b600060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161415156103a657600060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1660023481151561030557fe5b0460405180807f7368617265282900000000000000000000000000000000000000000000000000815250600701905060405180910390207c01000000000000000000000000000000000000000000000000000000009004906040518263ffffffff167c010000000000000000000000000000000000000000000000000000000002815260040180905060006040518083038185886187965a03f19350505050505b5b565b600060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff163160405180807f6b65657028290000000000000000000000000000000000000000000000000000815250600601905060405180910390207c01000000000000000000000000000000000000000000000000000000009004906040518263ffffffff167c010000000000000000000000000000000000000000000000000000000002815260040180905060006040518083038185886187965a03f19350505050505b565b5b5600a165627a7a72305820b491c90fc7b4f09ab3f6262b83707908d390a97f9730429d1ff5fa8e44a63b190029" self.sender1 = self.node.createcontract(sender1_bytecode, 1000000, OPENCHAT_MIN_GAS_PRICE/COIN)['address'] sender2_bytecode = "6060604052341561000c57fe5b5b5b5b6104b28061001e6000396000f30060606040523615610076576000357c0100000000000000000000000000000000000000000000000000000000900463ffffffff1680635579818d1461007f578063853828b6146100d45780639b0079d4146100e6578063a8d5fd6514610138578063e4d06d8214610142578063f34e0e7b1461014c575b61007d5b5b565b005b341561008757fe5b6100d2600480803573ffffffffffffffffffffffffffffffffffffffff1690602001909190803573ffffffffffffffffffffffffffffffffffffffff1690602001909190505061019e565b005b34156100dc57fe5b6100e4610225565b005b34156100ee57fe5b6100f661034f565b604051808273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200191505060405180910390f35b610140610375565b005b61014a61045d565b005b341561015457fe5b61015c610460565b604051808273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200191505060405180910390f35b81600060006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555080600160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505b5050565b600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1660405180807f7769746864726177282900000000000000000000000000000000000000000000815250600a01905060405180910390207c010000000000000000000000000000000000000000000000000000000090046040518163ffffffff167c010000000000000000000000000000000000000000000000000000000002815260040180905060006040518083038160008761646e5a03f192505050503373ffffffffffffffffffffffffffffffffffffffff166108fc3073ffffffffffffffffffffffffffffffffffffffff16319081150290604051809050600060405180830381858888f19350505050505b565b600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166002348115156103ba57fe5b0460405180807f7368617265282900000000000000000000000000000000000000000000000000815250600701905060405180910390207c01000000000000000000000000000000000000000000000000000000009004906040518263ffffffff167c010000000000000000000000000000000000000000000000000000000002815260040180905060006040518083038185886187965a03f19350505050505b565b5b565b600060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff16815600a165627a7a723058201842d5027fea2d624a38de6731e71832836efe8c51e5815b8ad85b7f3639e72a0029" self.sender2 = self.node.createcontract(sender2_bytecode, 1000000, OPENCHAT_MIN_GAS_PRICE/COIN)['address'] sender3_bytecode = "6060604052341561000c57fe5b5b5b5b6104a88061001e6000396000f3006060604052361561006b576000357c0100000000000000000000000000000000000000000000000000000000900463ffffffff1680633ccfd60b146100745780635579818d14610086578063622836a3146100db578063a8d5fd651461012d578063f34e0e7b14610137575b6100725b5b565b005b341561007c57fe5b610084610189565b005b341561008e57fe5b6100d9600480803573ffffffffffffffffffffffffffffffffffffffff1690602001909190803573ffffffffffffffffffffffffffffffffffffffff169060200190919050506101dc565b005b34156100e357fe5b6100eb610263565b604051808273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200191505060405180910390f35b610135610289565b005b341561013f57fe5b610147610456565b604051808273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200191505060405180910390f35b3373ffffffffffffffffffffffffffffffffffffffff166108fc3073ffffffffffffffffffffffffffffffffffffffff16319081150290604051809050600060405180830381858888f19350505050505b565b81600060006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555080600160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505b5050565b600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b600060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166002348115156102ce57fe5b0460405180807f7368617265282900000000000000000000000000000000000000000000000000815250600701905060405180910390207c01000000000000000000000000000000000000000000000000000000009004906040518263ffffffff167c010000000000000000000000000000000000000000000000000000000002815260040180905060006040518083038185886187965a03f1935050505050600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166004348115156103b357fe5b0460405180807f6b65657028290000000000000000000000000000000000000000000000000000815250600601905060405180910390207c01000000000000000000000000000000000000000000000000000000009004906040518263ffffffff167c010000000000000000000000000000000000000000000000000000000002815260040180905060006040518083038185886187965a03f19350505050505b565b600060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff16815600a165627a7a72305820cb1b06b481990e1e218f7d0b51a3ffdf5b7439cfdd9bb2dccc1476cb84dfc95b0029" self.sender3 = self.node.createcontract(sender3_bytecode, 1000000, OPENCHAT_MIN_GAS_PRICE/COIN)['address'] self.node.generate(1) assert(len(self.node.listcontracts()) == 3+NUM_DEFAULT_DGP_CONTRACTS) self.keep_abi = "e4d06d82" self.sendAll_abi = "e14f680f" self.setSenders_abi = "5579818d" self.share_abi = "a8d5fd65" self.withdrawAll_abi = "853828b6" self.withdraw_abi = "3ccfd60b" self.sender1_abi = "f34e0e7b" self.sender2_abi = "622836a3" self.sender3_abi = "9b0079d4" padded_sender1 = self.sender1.zfill(64) padded_sender2 = self.sender2.zfill(64) padded_sender3 = self.sender3.zfill(64) self.node.sendtocontract(self.sender1, self.setSenders_abi + padded_sender2 + padded_sender3) self.node.sendtocontract(self.sender2, self.setSenders_abi + padded_sender1 + padded_sender3) self.node.sendtocontract(self.sender3, self.setSenders_abi + padded_sender1 + padded_sender2) self.node.generate(1) # Verify that the senders have been set correctly assert_equal(self.node.callcontract(self.sender1, self.sender2_abi)['executionResult']['output'][24:], self.sender2) assert_equal(self.node.callcontract(self.sender1, self.sender3_abi)['executionResult']['output'][24:], self.sender3) assert_equal(self.node.callcontract(self.sender2, self.sender1_abi)['executionResult']['output'][24:], self.sender1) assert_equal(self.node.callcontract(self.sender2, self.sender3_abi)['executionResult']['output'][24:], self.sender3) assert_equal(self.node.callcontract(self.sender3, self.sender1_abi)['executionResult']['output'][24:], self.sender1) assert_equal(self.node.callcontract(self.sender3, self.sender2_abi)['executionResult']['output'][24:], self.sender2) def run_test(self): self.node.generate(COINBASE_MATURITY+50) print("Setting up contracts and calling setSenders") self.setup_contracts() A1 = self.node.getnewaddress() self.node.sendtoaddress(A1, 1) self.node.generate(1) assert("vin" not in self.node.getaccountinfo(self.sender1)) assert("vin" not in self.node.getaccountinfo(self.sender2)) assert("vin" not in self.node.getaccountinfo(self.sender3)) T1_id = self.node.sendtocontract(self.sender1, self.share_abi, 8)['txid'] B2_id = self.node.generate(1)[0] B2 = self.node.getblock(B2_id) # Since this is a ṔoW block we only require 3 txs atm (coinbase, T1 and COND tx) assert_equal(B2['tx'][1], T1_id) assert_equal(len(B2['tx']), 3) C1_id = B2['tx'][2] C1 = self.node.getrawtransaction(C1_id, True) assert_vin(C1, [('OP_SPEND', )]) assert_vout(C1, [(5, 'call'), (2.5, 'call'), (0.5, 'call')]) assert("vin" in self.node.getaccountinfo(self.sender1)) assert("vin" in self.node.getaccountinfo(self.sender2)) assert("vin" in self.node.getaccountinfo(self.sender3)) # We set the tx fee of T2 to a higher value such that it will be prioritized (be at index 1 in the block) T2_id = self.node.sendtocontract(self.sender1, self.keep_abi, 2, 50000, 0.0001)['txid'] T3_id = self.node.sendtocontract(self.sender1, self.sendAll_abi, 2)['txid'] B3_id = self.node.generate(1)[0] B3 = self.node.getblock(B3_id) # coinbase, T2, C2, T3, C3 assert_equal(len(B3['tx']), 5) assert_equal(B3['tx'][1], T2_id) C2_id = B3['tx'][2] C3_id = B3['tx'][4] C2 = self.node.getrawtransaction(C2_id, True) C3 = self.node.getrawtransaction(C3_id, True) assert_vin(C2, [('OP_SPEND', ), ('OP_SPEND', )]) assert_vout(C2, [(7, 'call')]) assert_vin(C3, [('OP_SPEND', ), ('OP_SPEND', ), ('OP_SPEND', )]) assert_vout(C3, [(11.5, 'call')]) assert("vin" not in self.node.getaccountinfo(self.sender1)) assert("vin" in self.node.getaccountinfo(self.sender2)) assert("vin" in self.node.getaccountinfo(self.sender3)) # We need the txfee to be higher than T5 so that T4 tx is prioritized over T5. # We set the gas such that the the tx will run but not immediately throw a out of gas exception T4_raw = make_transaction(self.node, [make_vin(self.node, 3*COIN)], [make_op_call_output(2*COIN, b"\x04", 22000, CScriptNum(OPENCHAT_MIN_GAS_PRICE), hex_str_to_bytes(self.share_abi), hex_str_to_bytes(self.sender2))]) T4_id = self.node.sendrawtransaction(T4_raw) T5_id = self.node.sendtocontract(self.sender2, self.withdrawAll_abi, 0, 1000000, OPENCHAT_MIN_GAS_PRICE/COIN, A1)['txid'] B4_id = self.node.generate(1)[0] B4 = self.node.getblock(B4_id) # Coinbase, T4, R1, T5, C4 assert_equal(len(B4['tx']), 5) assert_equal(B4['tx'][1], T4_id) assert_equal(B4['tx'][3], T5_id) R1_id = B4['tx'][2] R1 = self.node.getrawtransaction(R1_id, True) C4_id = B4['tx'][4] C4 = self.node.getrawtransaction(C4_id, True) assert_vout(R1, [(2, 'pubkeyhash')]) assert_vin(C4, [('OP_SPEND', ), ('OP_SPEND', )]) assert_vout(C4, [(12, 'pubkeyhash')]) assert_equal(sum(self.node.listcontracts().values()), 0) assert("vin" not in self.node.getaccountinfo(self.sender1)) assert("vin" not in self.node.getaccountinfo(self.sender2)) assert("vin" not in self.node.getaccountinfo(self.sender3)) if __name__ == '__main__': CondensingTxsTest().main()
[ "eug.ray@hotmail.com" ]
eug.ray@hotmail.com
8984d7b687d64f3221ccef0626348690949d4c6e
6346faf720a7bcedcb6b87c63291b1249df1cbcc
/django_dropbox_csv_export/integrations/tests/test_models.py
5e7a87265dd1852e9997b70fd6864436f3a9ea04
[ "MIT" ]
permissive
zkan/django-dropbox-csv-export
d0e50fa589b1681386b64a105200cb0f11e6ab30
5e77c539d84acf59d6f1dc1ffe3515b13fc34565
refs/heads/master
2021-07-18T01:19:24.355752
2017-10-25T13:18:34
2017-10-25T13:18:34
108,135,866
0
0
null
null
null
null
UTF-8
Python
false
false
652
py
from django.contrib.auth import get_user_model from django.test import TestCase from ..models import Integration class IntegrationTest(TestCase): def test_save_integration(self): User = get_user_model() user = User.objects.create( username='kan', password='12345', email='kan@pronto.com' ) integration = Integration() integration.user = user integration.access_token = 'abc' integration.save() integration = Integration.objects.last() self.assertEqual(integration.user, user) self.assertEqual(integration.access_token, 'abc')
[ "kan@prontomarketing.com" ]
kan@prontomarketing.com